prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import dash import dash_bootstrap_components as dbc from newsapi import NewsApiClient from dash import dcc, Input, Output, html, State from IPython import display import math from pprint import pprint import pandas as pd import numpy as np import nltk import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px import plotly.graph_objects as go from nltk.sentiment.vader import SentimentIntensityAnalyzer as SIA from tweets import get_trending_tweets, get_countries app = dash.Dash( external_stylesheets=[dbc.themes.BOOTSTRAP] ) countries = get_countries() alpha_countries = [] for country in countries: alpha_countries.append(country) alpha_countries.sort() items = [] for location in alpha_countries: items.append(location) items.pop() api = NewsApiClient(api_key='77e164585ab1422893fc26ae68be9f05') default_top = api.get_top_headlines() top = api.get_top_headlines() default_tweets = get_trending_tweets(1) tweets = get_trending_tweets(1) tweets_dict = {} news_dict = {} def generateChart(top): headlines = set() for title in top['articles']: headlines.add(title['title']) sia = SIA() headlinesResults = [] for line in headlines: pol_score_h = sia.polarity_scores(line) pol_score_h['headline'] = line headlinesResults.append(pol_score_h) headlineDf =
pd.DataFrame.from_records(headlinesResults)
pandas.DataFrame.from_records
#%load_ext autoreload #%autoreload 2 import dataclasses import glob import logging import os import shutil import warnings from dataclasses import dataclass from datetime import datetime, timedelta from typing import Dict, List, Optional, Tuple import numpy as np import pandas as pd from scipy.sparse.csr import csr_matrix from psykoda import detection, feature_extraction, preprocess, utils from psykoda.constants import COMMANDLINE_DATE_FORMAT, col from psykoda.io import labeled, reporting logger = logging.getLogger(__name__) to_stderr = {"_log_err": True} FILENAME_WEIGHT = "best_weight.h5" FILENAME_IDF_SID = "idf_sid.csv" FILENAME_IDF_DPORT = "idf_dport.csv" FILENAME_PLOT_DETECTION = "plot_detection.png" FILENAME_STATS = "stats.json" FILENAME_REPORT = "report.csv" FILENAME_FEATURE_MATRIX = "feature_matrix.csv" def configure_logging(debug: bool): """ Configure execution log settings. Parameters ---------- debug Whether to log "debug levels". """ PATH_LOG = "./log/log_" + datetime.strftime(datetime.today(), "%Y-%m-%d") + ".log" os.makedirs(os.path.dirname(PATH_LOG), exist_ok=True) log_level = logging.INFO if debug: log_level = logging.DEBUG # utilities stderr_filter = lambda record: getattr(record, "_log_err", False) # app config stderr_handler = logging.StreamHandler() stderr_handler.addFilter(stderr_filter) stderr_handler.setLevel(logging.INFO) stderr_handler.setFormatter(logging.Formatter("%(message)s")) handlers = [stderr_handler] logfile_handler = logging.FileHandler(PATH_LOG) logfile_handler.setLevel(logging.DEBUG) logfile_handler.setFormatter( logging.Formatter( "%(asctime)s %(levelname)-8s [%(module)s # %(funcName)s line %(lineno)d] %(message)s" ) ) handlers.append(logfile_handler) logging.basicConfig(handlers=handlers, level=log_level) class Incomplete_Args_Exception(Exception): pass load_config = utils.load_json @dataclass class OutputConfig: dir: str share_dir: Optional[str] subdir: Optional[str] @dataclass class PreprocessConfig: exclude_lists: Optional[str] screening: preprocess.ScreeningConfig @dataclass class InputConfig: dir: str @dataclasses.dataclass class LoadPreviousConfigItem: list: Optional[str] ndate: int = 730 @dataclasses.dataclass class LoadPreviousConfig: """ Log loading settings. Parameters ---------- list path to CSV file in which labeled IP addresses are listed ndate time range for labeled IP addresses, in days """ known_normal: Optional[LoadPreviousConfigItem] known_anomaly: Optional[LoadPreviousConfigItem] unknown: Optional[LoadPreviousConfigItem] @dataclass class PreviousConfig: load: LoadPreviousConfig log: labeled.Config @dataclass class IOConfig: input: InputConfig previous: PreviousConfig output: OutputConfig @dataclass class Service: """Service definition: set of destination port numbers Examples -------- >>> all = Service() >>> ssh = Service(include=[22]) >>> all_but_ssh = Service(exclude=[22]) >>> ssh_or_https = Service(include=[22, 443]) """ include: Optional[List[int]] exclude: Optional[List[int]] @dataclass class Subnet: """Subnet configuration: set of CIDR-formatted IP addresses with services to analyze Examples -------- >>> private_A = Subnet(["10.0.0.0/8"], get_names_of_services_from_config()) >>> private = Subnet(["private-A", "private-B", "private-C"], get_names_of_services_from_config()) # these constants are available for convenience and readability >>> my_network = Subnet(["10.0.0.0/16", "10.1.1.0/24"], get_names_of_services_from_config()) """ cidrs: List[str] services: List[str] @dataclass class DetectionUnitConfig: """Detection unit configuration Parameters ---------- services map from names of service to service definitions subnets map from names of subnet to subnet configurations """ services: Dict[str, Service] subnets: Dict[str, Subnet] @dataclass class TargetPeriod: days: int = 30 @dataclass class ArgumentsConfig: """Arguments modification configuration Parameters ---------- target_period: default target period used to determine date_from and date_to values if missing. """ target_period: TargetPeriod def set_default_date_detect(args, config: ArgumentsConfig): """ Configure training from/to dates according to args and config. Parameters ---------- args Command line args. config Settings for arguments. Returns ------- args Command line args with training from/to dates added. """ date_time_today = datetime.today() if args.date_from is None: args.date_from = date_time_today - timedelta(config.target_period.days) if args.date_to is None: args.date_to = date_time_today - timedelta(1) args.date_from_training = args.date_from - timedelta(args.period_train) args.date_to_training = args.date_from - timedelta(1) return args @dataclass class SkipDetectionConfig: train: int test: int @dataclass class ThresholdConfig: num_anomaly: int min_score: float @dataclass class AnomalyDetectionConfig: required_srcip: SkipDetectionConfig deepsad: detection.DeepSAD.Config train: detection.DeepSAD.TrainConfig threshold: ThresholdConfig @dataclasses.dataclass class DetectConfig: arguments: ArgumentsConfig detection_units: DetectionUnitConfig io: IOConfig preprocess: PreprocessConfig feature_extraction: feature_extraction.FeatureExtractionConfig anomaly_detection: AnomalyDetectionConfig def main_detection(args, config: DetectConfig, log: pd.DataFrame, label: pd.Series): """ Parameters ---------- args config log :index: :columns: label filled with 1 :index: """ dir_report = os.path.join(config.io.output.subdir, args.subnet, args.service) os.makedirs(dir_report, exist_ok=True) feature_label = main_detection_prepare_data( args, config.feature_extraction, log, label ) if feature_label is None: return feature_label.idf_sid.to_csv(os.path.join(dir_report, FILENAME_IDF_SID)) feature_label.idf_dport.to_csv(os.path.join(dir_report, FILENAME_IDF_DPORT)) train_test_splitted, x_train_labeled = main_detection_after_prepare_data( args, label, feature_label ) stats = main_detection_skip_or_detect( args, log, label, dir_report, feature_label, train_test_splitted, x_train_labeled, anomaly_detection_config=config.anomaly_detection, previous_config=config.io.previous.log, ) utils.save_json(stats, path=os.path.join(dir_report, FILENAME_STATS)) def main_detection_prepare_data( args, config: feature_extraction.FeatureExtractionConfig, log: pd.DataFrame, label: pd.Series, ) -> Optional[feature_extraction.FeatureLabel]: """Feature extraction""" logger.info("start detect on subnet %s and service %s", args.subnet, args.service) if len(log) == 0: logger.info("skip analysis; no logs exist") return None logger.info("extracting features") feature_label = feature_extraction.feature_extraction_all( log=log, iptable=pd.read_csv(config.address_to_location), idf_config=config.idf, ) if feature_label is None: logger.info("skip analysis; feature matrix is None") return None feature_label.extract_nonzeros() label = label.loc[label.index & feature_label.index] feature_label.put_labels(labeled_samples=label) feature_label.feature = feature_label.feature / feature_label.feature.max() return feature_label def main_detection_after_prepare_data( args, label: pd.Series, feature_label: feature_extraction.FeatureLabel ): """Split data and construct labeled training feature.""" train_test_splitted = feature_label.split_train_test(args.date_to_training) idx_labeled = [ feature_label.index.index(sample) for sample in label.index if sample in feature_label.index ] x_train_labeled = feature_label.feature[idx_labeled] return train_test_splitted, x_train_labeled def main_detection_skip_or_detect( args, log: pd.DataFrame, label: pd.Series, dir_report: str, feature_label: feature_extraction.FeatureLabel, train_test_splitted, x_train_labeled: csr_matrix, anomaly_detection_config: AnomalyDetectionConfig, previous_config: labeled.Config, ) -> dict: """Anomaly detection and output the result.""" x_train, y_train, x_test, index_test = train_test_splitted stats = { "subnet": args.subnet, "service": args.service, "date_from": args.date_from, "date_to": args.date_to, "num_samples_st_detection": len(index_test), "num_samples_training": len(y_train), "date_from_training": args.date_from_training, "date_to_training": args.date_to_training, "num_samples_labeled": x_train_labeled.shape[0], "samples_labeled": label.index.tolist(), } logger.info("stats: %s", stats) if len(y_train) < anomaly_detection_config.required_srcip.train: skip_message = f"#src_ip[train] = {len(y_train)} < config.anomaly_detection.required_srcip.train = {anomaly_detection_config.required_srcip.train}" logger.info(skip_message) stats["skipped"] = skip_message return stats if len(index_test) < anomaly_detection_config.required_srcip.test: skip_message = f"#src_ip[test] = {len(index_test)} < config.anomaly_detection.required_srcip.test = {anomaly_detection_config.required_srcip.test}" logger.info(skip_message) stats["skipped"] = skip_message return stats logger.info("training detector") verbose = 1 if logger.root.level < 20 else 0 detector = detection.DeepSAD(anomaly_detection_config.deepsad) detector.train( X=x_train, y=y_train, path_model=os.path.join(dir_report, FILENAME_WEIGHT), config=anomaly_detection_config.train, verbose=verbose, ) logger.info("outputting detection reports") anomaly_score = detector.compute_anomaly_score(x_test, scale=True) num_anomaly = min( sum(anomaly_score > anomaly_detection_config.threshold.min_score), anomaly_detection_config.threshold.num_anomaly, ) idx_sorted = np.argsort(anomaly_score)[::-1].tolist() idx_anomaly = idx_sorted[:num_anomaly] anomaly_score_sorted = pd.Series( anomaly_score[idx_sorted], index=pd.MultiIndex.from_tuples( [index_test[i] for i in idx_sorted], names=(col.DATETIME_ROUNDED, col.SRC_IP), ), name="anomaly_score", ) x_test_embeddings = detector.compute_embeddings(x_test) x_train_labeled_embeddings = detector.compute_embeddings(x_train_labeled) shap_value_idx_sorted = detector.explain_anomaly( x_test[idx_anomaly], background_samples=x_train ) shap_value_idx_sorted = pd.DataFrame( shap_value_idx_sorted, index=pd.MultiIndex.from_tuples( [index_test[i] for i in idx_anomaly], names=(col.DATETIME_ROUNDED, col.SRC_IP), ), columns=feature_label.columns, ) stats = output_result( args, log, label, dir_report, x_train_labeled_embeddings=x_train_labeled_embeddings, x_test_embeddings=x_test_embeddings, idx_anomaly=idx_anomaly, shap_value_idx_sorted=shap_value_idx_sorted, anomaly_score_sorted=anomaly_score_sorted, stats=stats, previous_config=previous_config, ) if args.debug: if isinstance(x_test, csr_matrix): x_test = x_test.toarray() ret = pd.DataFrame(x_test, index=index_test, columns=feature_label.columns) ret = ret.iloc[idx_sorted] ret.to_csv(os.path.join(dir_report, FILENAME_FEATURE_MATRIX)) return stats def output_result( args, log: pd.DataFrame, label: pd.Series, dir_report: str, *, x_train_labeled_embeddings, x_test_embeddings, idx_anomaly, shap_value_idx_sorted, anomaly_score_sorted, stats: dict, previous_config: labeled.Config, ): """Plot the detection result and output the report.""" reporting.plot.plot_detection( X=x_test_embeddings, idx_anomaly=idx_anomaly, name_anomaly=shap_value_idx_sorted.index, X_labeled=x_train_labeled_embeddings, name_labeled=label.index, path_saved=os.path.join(dir_report, FILENAME_PLOT_DETECTION), no_plot=args.no_plot, ) detection.detection_report( anomaly_score_sorted, shap_value_idx_sorted, shap_top_k=5, ).to_csv(os.path.join(dir_report, FILENAME_REPORT)) labeled.factory(previous_config)[1].save_previous_log( df=log, entries=shap_value_idx_sorted.index, ) stats["num_anomaly"] = len(idx_anomaly) stats["name_anomaly"] = shap_value_idx_sorted.index.tolist() logger.info( "successfully finish detection on subnet %s and service %s\n", args.subnet, args.service, ) return stats def report_all(path_list_stats: List[str], path_save: str): """ Summarizing all reports and save it. Parameters ---------- path_list_stats : list List of stats file paths path_save : str File path where the report will be saved """ os.makedirs(os.path.dirname(path_save), exist_ok=True) logger.info("summarizing all reports...") results_pd = pd.DataFrame( [], columns=["datetime_rounded", "src_ip", "subnet", "service"] ) idx = 0 for path in path_list_stats: # Load stats stats = utils.load_json(path) subnet, service = stats["subnet"], stats["service"] try: anomaly_list = stats["name_anomaly"] except (KeyError, TypeError): continue if not anomaly_list: continue # Load report path_report = path.replace(FILENAME_STATS, FILENAME_REPORT) report = pd.read_csv(path_report, index_col=[0, 1], parse_dates=[0]) logger.info(report.index) # Store anomalies in the DataFrame for (dt, src_ip) in anomaly_list: logger.info((dt, src_ip)) results_pd.loc[idx] = [dt, src_ip, subnet, service] if idx == 0: results_shaps = pd.DataFrame([], columns=report.columns) results_shaps.loc[idx] = report.loc[(dt, src_ip)] idx += 1 anomaly_found = idx > 0 if anomaly_found: # Anomaly found results_pd =
pd.concat([results_pd, results_shaps], axis=1)
pandas.concat
#!/usr/bin/env python # coding: utf-8 import inspect import json import os import urllib.request from functools import reduce from glob import glob from time import sleep from urllib.parse import quote import jieba import numpy as np import pandas as pd import seaborn as sns from icecream import ic from snorkel.labeling import PandasLFApplier, labeling_function from snorkel.labeling.model import LabelModel
pd.set_option("display.max_rows", 200)
pandas.set_option
""" Module contains tools for processing Stata files into DataFrames The StataReader below was originally written by <NAME> as part of PyDTA. It has been extended and improved by <NAME> from the Statsmodels project who also developed the StataWriter and was finally added to pandas in a once again improved version. You can find more information on http://presbrey.mit.edu/PyDTA and https://www.statsmodels.org/devel/ """ from __future__ import annotations from collections import abc import datetime from io import BytesIO import os import struct import sys from typing import ( Any, AnyStr, Hashable, Sequence, cast, ) import warnings from dateutil.relativedelta import relativedelta import numpy as np from pandas._libs.lib import infer_dtype from pandas._libs.writers import max_len_string_array from pandas._typing import ( Buffer, CompressionOptions, FilePathOrBuffer, StorageOptions, ) from pandas.util._decorators import ( Appender, doc, ) from pandas.core.dtypes.common import ( ensure_object, is_categorical_dtype, is_datetime64_dtype, ) from pandas import ( Categorical, DatetimeIndex, NaT, Timestamp, concat, isna, to_datetime, to_timedelta, ) from pandas.core import generic from pandas.core.frame import DataFrame from pandas.core.indexes.base import Index from pandas.core.series import Series from pandas.io.common import get_handle _version_error = ( "Version of given Stata file is {version}. pandas supports importing " "versions 105, 108, 111 (Stata 7SE), 113 (Stata 8/9), " "114 (Stata 10/11), 115 (Stata 12), 117 (Stata 13), 118 (Stata 14/15/16)," "and 119 (Stata 15/16, over 32,767 variables)." ) _statafile_processing_params1 = """\ convert_dates : bool, default True Convert date variables to DataFrame time values. convert_categoricals : bool, default True Read value labels and convert columns to Categorical/Factor variables.""" _statafile_processing_params2 = """\ index_col : str, optional Column to set as index. convert_missing : bool, default False Flag indicating whether to convert missing values to their Stata representations. If False, missing values are replaced with nan. If True, columns containing missing values are returned with object data types and missing values are represented by StataMissingValue objects. preserve_dtypes : bool, default True Preserve Stata datatypes. If False, numeric data are upcast to pandas default types for foreign data (float64 or int64). columns : list or None Columns to retain. Columns will be returned in the given order. None returns all columns. order_categoricals : bool, default True Flag indicating whether converted categorical data are ordered.""" _chunksize_params = """\ chunksize : int, default None Return StataReader object for iterations, returns chunks with given number of lines.""" _compression_params = f"""\ compression : str or dict, default None If string, specifies compression mode. If dict, value at key 'method' specifies compression mode. Compression mode must be one of {{'infer', 'gzip', 'bz2', 'zip', 'xz', None}}. If compression mode is 'infer' and `filepath_or_buffer` is path-like, then detect compression from the following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no compression). If dict and compression mode is one of {{'zip', 'gzip', 'bz2'}}, or inferred as one of the above, other entries passed as additional compression options. {generic._shared_docs["storage_options"]}""" _iterator_params = """\ iterator : bool, default False Return StataReader object.""" _reader_notes = """\ Notes ----- Categorical variables read through an iterator may not have the same categories and dtype. This occurs when a variable stored in a DTA file is associated to an incomplete set of value labels that only label a strict subset of the values.""" _read_stata_doc = f""" Read Stata file into DataFrame. Parameters ---------- filepath_or_buffer : str, path object or file-like object Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. A local file could be: ``file://localhost/path/to/table.dta``. If you want to pass in a path object, pandas accepts any ``os.PathLike``. By file-like object, we refer to objects with a ``read()`` method, such as a file handle (e.g. via builtin ``open`` function) or ``StringIO``. {_statafile_processing_params1} {_statafile_processing_params2} {_chunksize_params} {_iterator_params} {_compression_params} Returns ------- DataFrame or StataReader See Also -------- io.stata.StataReader : Low-level reader for Stata data files. DataFrame.to_stata: Export Stata data files. {_reader_notes} Examples -------- Creating a dummy stata for this example >>> df = pd.DataFrame({{'animal': ['falcon', 'parrot', 'falcon', ... 'parrot'], ... 'speed': [350, 18, 361, 15]}}) >>> df.to_stata('animals.dta') Read a Stata dta file: >>> df = pd.read_stata('animals.dta') Read a Stata dta file in 10,000 line chunks: >>> values = np.random.randint(0, 10, size=(20_000, 1), dtype="uint8") >>> df = pd.DataFrame(values, columns=["i"]) >>> df.to_stata('filename.dta') >>> itr = pd.read_stata('filename.dta', chunksize=10000) >>> for chunk in itr: ... # Operate on a single chunk, e.g., chunk.mean() ... pass >>> import os >>> os.remove("./filename.dta") >>> os.remove("./animals.dta") """ _read_method_doc = f"""\ Reads observations from Stata file, converting them into a dataframe Parameters ---------- nrows : int Number of lines to read from data file, if None read whole file. {_statafile_processing_params1} {_statafile_processing_params2} Returns ------- DataFrame """ _stata_reader_doc = f"""\ Class for reading Stata dta files. Parameters ---------- path_or_buf : path (string), buffer or path object string, path object (pathlib.Path or py._path.local.LocalPath) or object implementing a binary read() functions. {_statafile_processing_params1} {_statafile_processing_params2} {_chunksize_params} {_compression_params} {_reader_notes} """ _date_formats = ["%tc", "%tC", "%td", "%d", "%tw", "%tm", "%tq", "%th", "%ty"] stata_epoch = datetime.datetime(1960, 1, 1) # TODO: Add typing. As of January 2020 it is not possible to type this function since # mypy doesn't understand that a Series and an int can be combined using mathematical # operations. (+, -). def _stata_elapsed_date_to_datetime_vec(dates, fmt) -> Series: """ Convert from SIF to datetime. https://www.stata.com/help.cgi?datetime Parameters ---------- dates : Series The Stata Internal Format date to convert to datetime according to fmt fmt : str The format to convert to. Can be, tc, td, tw, tm, tq, th, ty Returns Returns ------- converted : Series The converted dates Examples -------- >>> dates = pd.Series([52]) >>> _stata_elapsed_date_to_datetime_vec(dates , "%tw") 0 1961-01-01 dtype: datetime64[ns] Notes ----- datetime/c - tc milliseconds since 01jan1960 00:00:00.000, assuming 86,400 s/day datetime/C - tC - NOT IMPLEMENTED milliseconds since 01jan1960 00:00:00.000, adjusted for leap seconds date - td days since 01jan1960 (01jan1960 = 0) weekly date - tw weeks since 1960w1 This assumes 52 weeks in a year, then adds 7 * remainder of the weeks. The datetime value is the start of the week in terms of days in the year, not ISO calendar weeks. monthly date - tm months since 1960m1 quarterly date - tq quarters since 1960q1 half-yearly date - th half-years since 1960h1 yearly date - ty years since 0000 """ MIN_YEAR, MAX_YEAR = Timestamp.min.year, Timestamp.max.year MAX_DAY_DELTA = (Timestamp.max - datetime.datetime(1960, 1, 1)).days MIN_DAY_DELTA = (Timestamp.min - datetime.datetime(1960, 1, 1)).days MIN_MS_DELTA = MIN_DAY_DELTA * 24 * 3600 * 1000 MAX_MS_DELTA = MAX_DAY_DELTA * 24 * 3600 * 1000 def convert_year_month_safe(year, month) -> Series: """ Convert year and month to datetimes, using pandas vectorized versions when the date range falls within the range supported by pandas. Otherwise it falls back to a slower but more robust method using datetime. """ if year.max() < MAX_YEAR and year.min() > MIN_YEAR: return to_datetime(100 * year + month, format="%Y%m") else: index = getattr(year, "index", None) return Series( [datetime.datetime(y, m, 1) for y, m in zip(year, month)], index=index ) def convert_year_days_safe(year, days) -> Series: """ Converts year (e.g. 1999) and days since the start of the year to a datetime or datetime64 Series """ if year.max() < (MAX_YEAR - 1) and year.min() > MIN_YEAR: return to_datetime(year, format="%Y") + to_timedelta(days, unit="d") else: index = getattr(year, "index", None) value = [ datetime.datetime(y, 1, 1) + relativedelta(days=int(d)) for y, d in zip(year, days) ] return Series(value, index=index) def convert_delta_safe(base, deltas, unit) -> Series: """ Convert base dates and deltas to datetimes, using pandas vectorized versions if the deltas satisfy restrictions required to be expressed as dates in pandas. """ index = getattr(deltas, "index", None) if unit == "d": if deltas.max() > MAX_DAY_DELTA or deltas.min() < MIN_DAY_DELTA: values = [base + relativedelta(days=int(d)) for d in deltas] return Series(values, index=index) elif unit == "ms": if deltas.max() > MAX_MS_DELTA or deltas.min() < MIN_MS_DELTA: values = [ base + relativedelta(microseconds=(int(d) * 1000)) for d in deltas ] return Series(values, index=index) else: raise ValueError("format not understood") base = to_datetime(base) deltas = to_timedelta(deltas, unit=unit) return base + deltas # TODO: If/when pandas supports more than datetime64[ns], this should be # improved to use correct range, e.g. datetime[Y] for yearly bad_locs = np.isnan(dates) has_bad_values = False if bad_locs.any(): has_bad_values = True data_col = Series(dates) data_col[bad_locs] = 1.0 # Replace with NaT dates = dates.astype(np.int64) if fmt.startswith(("%tc", "tc")): # Delta ms relative to base base = stata_epoch ms = dates conv_dates = convert_delta_safe(base, ms, "ms") elif fmt.startswith(("%tC", "tC")): warnings.warn("Encountered %tC format. Leaving in Stata Internal Format.") conv_dates = Series(dates, dtype=object) if has_bad_values: conv_dates[bad_locs] = NaT return conv_dates # Delta days relative to base elif fmt.startswith(("%td", "td", "%d", "d")): base = stata_epoch days = dates conv_dates = convert_delta_safe(base, days, "d") # does not count leap days - 7 days is a week. # 52nd week may have more than 7 days elif fmt.startswith(("%tw", "tw")): year = stata_epoch.year + dates // 52 days = (dates % 52) * 7 conv_dates = convert_year_days_safe(year, days) elif fmt.startswith(("%tm", "tm")): # Delta months relative to base year = stata_epoch.year + dates // 12 month = (dates % 12) + 1 conv_dates = convert_year_month_safe(year, month) elif fmt.startswith(("%tq", "tq")): # Delta quarters relative to base year = stata_epoch.year + dates // 4 quarter_month = (dates % 4) * 3 + 1 conv_dates = convert_year_month_safe(year, quarter_month) elif fmt.startswith(("%th", "th")): # Delta half-years relative to base year = stata_epoch.year + dates // 2 month = (dates % 2) * 6 + 1 conv_dates = convert_year_month_safe(year, month) elif fmt.startswith(("%ty", "ty")): # Years -- not delta year = dates first_month = np.ones_like(dates) conv_dates = convert_year_month_safe(year, first_month) else: raise ValueError(f"Date fmt {fmt} not understood") if has_bad_values: # Restore NaT for bad values conv_dates[bad_locs] = NaT return conv_dates def _datetime_to_stata_elapsed_vec(dates: Series, fmt: str) -> Series: """ Convert from datetime to SIF. https://www.stata.com/help.cgi?datetime Parameters ---------- dates : Series Series or array containing datetime.datetime or datetime64[ns] to convert to the Stata Internal Format given by fmt fmt : str The format to convert to. Can be, tc, td, tw, tm, tq, th, ty """ index = dates.index NS_PER_DAY = 24 * 3600 * 1000 * 1000 * 1000 US_PER_DAY = NS_PER_DAY / 1000 def parse_dates_safe(dates, delta=False, year=False, days=False): d = {} if is_datetime64_dtype(dates.dtype): if delta: time_delta = dates - stata_epoch d["delta"] = time_delta._values.view(np.int64) // 1000 # microseconds if days or year: date_index = DatetimeIndex(dates) d["year"] = date_index._data.year d["month"] = date_index._data.month if days: days_in_ns = dates.view(np.int64) - to_datetime( d["year"], format="%Y" ).view(np.int64) d["days"] = days_in_ns // NS_PER_DAY elif infer_dtype(dates, skipna=False) == "datetime": if delta: delta = dates._values - stata_epoch def f(x: datetime.timedelta) -> float: return US_PER_DAY * x.days + 1000000 * x.seconds + x.microseconds v = np.vectorize(f) d["delta"] = v(delta) if year: year_month = dates.apply(lambda x: 100 * x.year + x.month) d["year"] = year_month._values // 100 d["month"] = year_month._values - d["year"] * 100 if days: def g(x: datetime.datetime) -> int: return (x - datetime.datetime(x.year, 1, 1)).days v = np.vectorize(g) d["days"] = v(dates) else: raise ValueError( "Columns containing dates must contain either " "datetime64, datetime.datetime or null values." ) return DataFrame(d, index=index) bad_loc = isna(dates) index = dates.index if bad_loc.any(): dates = Series(dates) if is_datetime64_dtype(dates): dates[bad_loc] = to_datetime(stata_epoch) else: dates[bad_loc] = stata_epoch if fmt in ["%tc", "tc"]: d = parse_dates_safe(dates, delta=True) conv_dates = d.delta / 1000 elif fmt in ["%tC", "tC"]: warnings.warn("Stata Internal Format tC not supported.") conv_dates = dates elif fmt in ["%td", "td"]: d = parse_dates_safe(dates, delta=True) conv_dates = d.delta // US_PER_DAY elif fmt in ["%tw", "tw"]: d = parse_dates_safe(dates, year=True, days=True) conv_dates = 52 * (d.year - stata_epoch.year) + d.days // 7 elif fmt in ["%tm", "tm"]: d = parse_dates_safe(dates, year=True) conv_dates = 12 * (d.year - stata_epoch.year) + d.month - 1 elif fmt in ["%tq", "tq"]: d = parse_dates_safe(dates, year=True) conv_dates = 4 * (d.year - stata_epoch.year) + (d.month - 1) // 3 elif fmt in ["%th", "th"]: d = parse_dates_safe(dates, year=True) conv_dates = 2 * (d.year - stata_epoch.year) + (d.month > 6).astype(int) elif fmt in ["%ty", "ty"]: d = parse_dates_safe(dates, year=True) conv_dates = d.year else: raise ValueError(f"Format {fmt} is not a known Stata date format") conv_dates = Series(conv_dates, dtype=np.float64) missing_value = struct.unpack("<d", b"\x00\x00\x00\x00\x00\x00\xe0\x7f")[0] conv_dates[bad_loc] = missing_value return Series(conv_dates, index=index) excessive_string_length_error = """ Fixed width strings in Stata .dta files are limited to 244 (or fewer) characters. Column '{0}' does not satisfy this restriction. Use the 'version=117' parameter to write the newer (Stata 13 and later) format. """ class PossiblePrecisionLoss(Warning): pass precision_loss_doc = """ Column converted from {0} to {1}, and some data are outside of the lossless conversion range. This may result in a loss of precision in the saved data. """ class ValueLabelTypeMismatch(Warning): pass value_label_mismatch_doc = """ Stata value labels (pandas categories) must be strings. Column {0} contains non-string labels which will be converted to strings. Please check that the Stata data file created has not lost information due to duplicate labels. """ class InvalidColumnName(Warning): pass invalid_name_doc = """ Not all pandas column names were valid Stata variable names. The following replacements have been made: {0} If this is not what you expect, please make sure you have Stata-compliant column names in your DataFrame (strings only, max 32 characters, only alphanumerics and underscores, no Stata reserved words) """ class CategoricalConversionWarning(Warning): pass categorical_conversion_warning = """ One or more series with value labels are not fully labeled. Reading this dataset with an iterator results in categorical variable with different categories. This occurs since it is not possible to know all possible values until the entire dataset has been read. To avoid this warning, you can either read dataset without an iterator, or manually convert categorical data by ``convert_categoricals`` to False and then accessing the variable labels through the value_labels method of the reader. """ def _cast_to_stata_types(data: DataFrame) -> DataFrame: """ Checks the dtypes of the columns of a pandas DataFrame for compatibility with the data types and ranges supported by Stata, and converts if necessary. Parameters ---------- data : DataFrame The DataFrame to check and convert Notes ----- Numeric columns in Stata must be one of int8, int16, int32, float32 or float64, with some additional value restrictions. int8 and int16 columns are checked for violations of the value restrictions and upcast if needed. int64 data is not usable in Stata, and so it is downcast to int32 whenever the value are in the int32 range, and sidecast to float64 when larger than this range. If the int64 values are outside of the range of those perfectly representable as float64 values, a warning is raised. bool columns are cast to int8. uint columns are converted to int of the same size if there is no loss in precision, otherwise are upcast to a larger type. uint64 is currently not supported since it is concerted to object in a DataFrame. """ ws = "" # original, if small, if large conversion_data = ( (np.bool_, np.int8, np.int8), (np.uint8, np.int8, np.int16), (np.uint16, np.int16, np.int32), (np.uint32, np.int32, np.int64), ) float32_max = struct.unpack("<f", b"\xff\xff\xff\x7e")[0] float64_max = struct.unpack("<d", b"\xff\xff\xff\xff\xff\xff\xdf\x7f")[0] for col in data: dtype = data[col].dtype # Cast from unsupported types to supported types for c_data in conversion_data: if dtype == c_data[0]: if data[col].max() <= np.iinfo(c_data[1]).max: dtype = c_data[1] else: dtype = c_data[2] if c_data[2] == np.int64: # Warn if necessary if data[col].max() >= 2 ** 53: ws = precision_loss_doc.format("uint64", "float64") data[col] = data[col].astype(dtype) # Check values and upcast if necessary if dtype == np.int8: if data[col].max() > 100 or data[col].min() < -127: data[col] = data[col].astype(np.int16) elif dtype == np.int16: if data[col].max() > 32740 or data[col].min() < -32767: data[col] = data[col].astype(np.int32) elif dtype == np.int64: if data[col].max() <= 2147483620 and data[col].min() >= -2147483647: data[col] = data[col].astype(np.int32) else: data[col] = data[col].astype(np.float64) if data[col].max() >= 2 ** 53 or data[col].min() <= -(2 ** 53): ws = precision_loss_doc.format("int64", "float64") elif dtype in (np.float32, np.float64): value = data[col].max() if np.isinf(value): raise ValueError( f"Column {col} has a maximum value of infinity which is outside " "the range supported by Stata." ) if dtype == np.float32 and value > float32_max: data[col] = data[col].astype(np.float64) elif dtype == np.float64: if value > float64_max: raise ValueError( f"Column {col} has a maximum value ({value}) outside the range " f"supported by Stata ({float64_max})" ) if ws: warnings.warn(ws, PossiblePrecisionLoss) return data class StataValueLabel: """ Parse a categorical column and prepare formatted output Parameters ---------- catarray : Series Categorical Series to encode encoding : {"latin-1", "utf-8"} Encoding to use for value labels. """ def __init__(self, catarray: Series, encoding: str = "latin-1"): if encoding not in ("latin-1", "utf-8"): raise ValueError("Only latin-1 and utf-8 are supported.") self.labname = catarray.name self._encoding = encoding categories = catarray.cat.categories self.value_labels = list(zip(np.arange(len(categories)), categories)) self.value_labels.sort(key=lambda x: x[0]) self.text_len = 0 self.txt: list[bytes] = [] self.n = 0 # Compute lengths and setup lists of offsets and labels offsets: list[int] = [] values: list[int] = [] for vl in self.value_labels: category = vl[1] if not isinstance(category, str): category = str(category) warnings.warn( value_label_mismatch_doc.format(catarray.name), ValueLabelTypeMismatch, ) category = category.encode(encoding) offsets.append(self.text_len) self.text_len += len(category) + 1 # +1 for the padding values.append(vl[0]) self.txt.append(category) self.n += 1 if self.text_len > 32000: raise ValueError( "Stata value labels for a single variable must " "have a combined length less than 32,000 characters." ) # Ensure int32 self.off = np.array(offsets, dtype=np.int32) self.val = np.array(values, dtype=np.int32) # Total length self.len = 4 + 4 + 4 * self.n + 4 * self.n + self.text_len def generate_value_label(self, byteorder: str) -> bytes: """ Generate the binary representation of the value labels. Parameters ---------- byteorder : str Byte order of the output Returns ------- value_label : bytes Bytes containing the formatted value label """ encoding = self._encoding bio = BytesIO() null_byte = b"\x00" # len bio.write(struct.pack(byteorder + "i", self.len)) # labname labname = str(self.labname)[:32].encode(encoding) lab_len = 32 if encoding not in ("utf-8", "utf8") else 128 labname = _pad_bytes(labname, lab_len + 1) bio.write(labname) # padding - 3 bytes for i in range(3): bio.write(struct.pack("c", null_byte)) # value_label_table # n - int32 bio.write(struct.pack(byteorder + "i", self.n)) # textlen - int32 bio.write(struct.pack(byteorder + "i", self.text_len)) # off - int32 array (n elements) for offset in self.off: bio.write(struct.pack(byteorder + "i", offset)) # val - int32 array (n elements) for value in self.val: bio.write(struct.pack(byteorder + "i", value)) # txt - Text labels, null terminated for text in self.txt: bio.write(text + null_byte) return bio.getvalue() class StataMissingValue: """ An observation's missing value. Parameters ---------- value : {int, float} The Stata missing value code Notes ----- More information: <https://www.stata.com/help.cgi?missing> Integer missing values make the code '.', '.a', ..., '.z' to the ranges 101 ... 127 (for int8), 32741 ... 32767 (for int16) and 2147483621 ... 2147483647 (for int32). Missing values for floating point data types are more complex but the pattern is simple to discern from the following table. np.float32 missing values (float in Stata) 0000007f . 0008007f .a 0010007f .b ... 00c0007f .x 00c8007f .y 00d0007f .z np.float64 missing values (double in Stata) 000000000000e07f . 000000000001e07f .a 000000000002e07f .b ... 000000000018e07f .x 000000000019e07f .y 00000000001ae07f .z """ # Construct a dictionary of missing values MISSING_VALUES: dict[float, str] = {} bases = (101, 32741, 2147483621) for b in bases: # Conversion to long to avoid hash issues on 32 bit platforms #8968 MISSING_VALUES[b] = "." for i in range(1, 27): MISSING_VALUES[i + b] = "." + chr(96 + i) float32_base = b"\x00\x00\x00\x7f" increment = struct.unpack("<i", b"\x00\x08\x00\x00")[0] for i in range(27): key = struct.unpack("<f", float32_base)[0] MISSING_VALUES[key] = "." if i > 0: MISSING_VALUES[key] += chr(96 + i) int_value = struct.unpack("<i", struct.pack("<f", key))[0] + increment float32_base = struct.pack("<i", int_value) float64_base = b"\x00\x00\x00\x00\x00\x00\xe0\x7f" increment = struct.unpack("q", b"\x00\x00\x00\x00\x00\x01\x00\x00")[0] for i in range(27): key = struct.unpack("<d", float64_base)[0] MISSING_VALUES[key] = "." if i > 0: MISSING_VALUES[key] += chr(96 + i) int_value = struct.unpack("q", struct.pack("<d", key))[0] + increment float64_base = struct.pack("q", int_value) BASE_MISSING_VALUES = { "int8": 101, "int16": 32741, "int32": 2147483621, "float32": struct.unpack("<f", float32_base)[0], "float64": struct.unpack("<d", float64_base)[0], } def __init__(self, value: int | float): self._value = value # Conversion to int to avoid hash issues on 32 bit platforms #8968 value = int(value) if value < 2147483648 else float(value) self._str = self.MISSING_VALUES[value] @property def string(self) -> str: """ The Stata representation of the missing value: '.', '.a'..'.z' Returns ------- str The representation of the missing value. """ return self._str @property def value(self) -> int | float: """ The binary representation of the missing value. Returns ------- {int, float} The binary representation of the missing value. """ return self._value def __str__(self) -> str: return self.string def __repr__(self) -> str: return f"{type(self)}({self})" def __eq__(self, other: Any) -> bool: return ( isinstance(other, type(self)) and self.string == other.string and self.value == other.value ) @classmethod def get_base_missing_value(cls, dtype: np.dtype) -> int | float: # error: Non-overlapping equality check (left operand type: "dtype[Any]", right # operand type: "Type[signedinteger[Any]]") if dtype == np.int8: # type: ignore[comparison-overlap] value = cls.BASE_MISSING_VALUES["int8"] # error: Non-overlapping equality check (left operand type: "dtype[Any]", right # operand type: "Type[signedinteger[Any]]") elif dtype == np.int16: # type: ignore[comparison-overlap] value = cls.BASE_MISSING_VALUES["int16"] # error: Non-overlapping equality check (left operand type: "dtype[Any]", right # operand type: "Type[signedinteger[Any]]") elif dtype == np.int32: # type: ignore[comparison-overlap] value = cls.BASE_MISSING_VALUES["int32"] # error: Non-overlapping equality check (left operand type: "dtype[Any]", right # operand type: "Type[floating[Any]]") elif dtype == np.float32: # type: ignore[comparison-overlap] value = cls.BASE_MISSING_VALUES["float32"] # error: Non-overlapping equality check (left operand type: "dtype[Any]", right # operand type: "Type[floating[Any]]") elif dtype == np.float64: # type: ignore[comparison-overlap] value = cls.BASE_MISSING_VALUES["float64"] else: raise ValueError("Unsupported dtype") return value class StataParser: def __init__(self): # type code. # -------------------- # str1 1 = 0x01 # str2 2 = 0x02 # ... # str244 244 = 0xf4 # byte 251 = 0xfb (sic) # int 252 = 0xfc # long 253 = 0xfd # float 254 = 0xfe # double 255 = 0xff # -------------------- # NOTE: the byte type seems to be reserved for categorical variables # with a label, but the underlying variable is -127 to 100 # we're going to drop the label and cast to int self.DTYPE_MAP = dict( list(zip(range(1, 245), [np.dtype("a" + str(i)) for i in range(1, 245)])) + [ (251, np.dtype(np.int8)), (252, np.dtype(np.int16)), (253, np.dtype(np.int32)), (254, np.dtype(np.float32)), (255, np.dtype(np.float64)), ] ) self.DTYPE_MAP_XML = { 32768: np.dtype(np.uint8), # Keys to GSO 65526: np.dtype(np.float64), 65527: np.dtype(np.float32), 65528: np.dtype(np.int32), 65529: np.dtype(np.int16), 65530: np.dtype(np.int8), } # error: Argument 1 to "list" has incompatible type "str"; # expected "Iterable[int]" [arg-type] self.TYPE_MAP = list(range(251)) + list("bhlfd") # type: ignore[arg-type] self.TYPE_MAP_XML = { # Not really a Q, unclear how to handle byteswap 32768: "Q", 65526: "d", 65527: "f", 65528: "l", 65529: "h", 65530: "b", } # NOTE: technically, some of these are wrong. there are more numbers # that can be represented. it's the 27 ABOVE and BELOW the max listed # numeric data type in [U] 12.2.2 of the 11.2 manual float32_min = b"\xff\xff\xff\xfe" float32_max = b"\xff\xff\xff\x7e" float64_min = b"\xff\xff\xff\xff\xff\xff\xef\xff" float64_max = b"\xff\xff\xff\xff\xff\xff\xdf\x7f" self.VALID_RANGE = { "b": (-127, 100), "h": (-32767, 32740), "l": (-2147483647, 2147483620), "f": ( np.float32(struct.unpack("<f", float32_min)[0]), np.float32(struct.unpack("<f", float32_max)[0]), ), "d": ( np.float64(struct.unpack("<d", float64_min)[0]), np.float64(struct.unpack("<d", float64_max)[0]), ), } self.OLD_TYPE_MAPPING = { 98: 251, # byte 105: 252, # int 108: 253, # long 102: 254, # float 100: 255, # double } # These missing values are the generic '.' in Stata, and are used # to replace nans self.MISSING_VALUES = { "b": 101, "h": 32741, "l": 2147483621, "f": np.float32(struct.unpack("<f", b"\x00\x00\x00\x7f")[0]), "d": np.float64( struct.unpack("<d", b"\x00\x00\x00\x00\x00\x00\xe0\x7f")[0] ), } self.NUMPY_TYPE_MAP = { "b": "i1", "h": "i2", "l": "i4", "f": "f4", "d": "f8", "Q": "u8", } # Reserved words cannot be used as variable names self.RESERVED_WORDS = ( "aggregate", "array", "boolean", "break", "byte", "case", "catch", "class", "colvector", "complex", "const", "continue", "default", "delegate", "delete", "do", "double", "else", "eltypedef", "end", "enum", "explicit", "export", "external", "float", "for", "friend", "function", "global", "goto", "if", "inline", "int", "local", "long", "NULL", "pragma", "protected", "quad", "rowvector", "short", "typedef", "typename", "virtual", "_all", "_N", "_skip", "_b", "_pi", "str#", "in", "_pred", "strL", "_coef", "_rc", "using", "_cons", "_se", "with", "_n", ) class StataReader(StataParser, abc.Iterator): __doc__ = _stata_reader_doc def __init__( self, path_or_buf: FilePathOrBuffer, convert_dates: bool = True, convert_categoricals: bool = True, index_col: str | None = None, convert_missing: bool = False, preserve_dtypes: bool = True, columns: Sequence[str] | None = None, order_categoricals: bool = True, chunksize: int | None = None, compression: CompressionOptions = "infer", storage_options: StorageOptions = None, ): super().__init__() self.col_sizes: list[int] = [] # Arguments to the reader (can be temporarily overridden in # calls to read). self._convert_dates = convert_dates self._convert_categoricals = convert_categoricals self._index_col = index_col self._convert_missing = convert_missing self._preserve_dtypes = preserve_dtypes self._columns = columns self._order_categoricals = order_categoricals self._encoding = "" self._chunksize = chunksize self._using_iterator = False if self._chunksize is None: self._chunksize = 1 elif not isinstance(chunksize, int) or chunksize <= 0: raise ValueError("chunksize must be a positive integer when set.") # State variables for the file self._has_string_data = False self._missing_values = False self._can_read_value_labels = False self._column_selector_set = False self._value_labels_read = False self._data_read = False self._dtype: np.dtype | None = None self._lines_read = 0 self._native_byteorder = _set_endianness(sys.byteorder) with get_handle( path_or_buf, "rb", storage_options=storage_options, is_text=False, compression=compression, ) as handles: # Copy to BytesIO, and ensure no encoding # Argument 1 to "BytesIO" has incompatible type "Union[Any, bytes, None, # str]"; expected "bytes" self.path_or_buf = BytesIO(handles.handle.read()) # type: ignore[arg-type] self._read_header() self._setup_dtype() def __enter__(self) -> StataReader: """enter context manager""" return self def __exit__(self, exc_type, exc_value, traceback) -> None: """exit context manager""" self.close() def close(self) -> None: """close the handle if its open""" self.path_or_buf.close() def _set_encoding(self) -> None: """ Set string encoding which depends on file version """ if self.format_version < 118: self._encoding = "latin-1" else: self._encoding = "utf-8" def _read_header(self) -> None: first_char = self.path_or_buf.read(1) if struct.unpack("c", first_char)[0] == b"<": self._read_new_header() else: self._read_old_header(first_char) self.has_string_data = len([x for x in self.typlist if type(x) is int]) > 0 # calculate size of a data record self.col_sizes = [self._calcsize(typ) for typ in self.typlist] def _read_new_header(self) -> None: # The first part of the header is common to 117 - 119. self.path_or_buf.read(27) # stata_dta><header><release> self.format_version = int(self.path_or_buf.read(3)) if self.format_version not in [117, 118, 119]: raise ValueError(_version_error.format(version=self.format_version)) self._set_encoding() self.path_or_buf.read(21) # </release><byteorder> self.byteorder = self.path_or_buf.read(3) == b"MSF" and ">" or "<" self.path_or_buf.read(15) # </byteorder><K> nvar_type = "H" if self.format_version <= 118 else "I" nvar_size = 2 if self.format_version <= 118 else 4 self.nvar = struct.unpack( self.byteorder + nvar_type, self.path_or_buf.read(nvar_size) )[0] self.path_or_buf.read(7) # </K><N> self.nobs = self._get_nobs() self.path_or_buf.read(11) # </N><label> self._data_label = self._get_data_label() self.path_or_buf.read(19) # </label><timestamp> self.time_stamp = self._get_time_stamp() self.path_or_buf.read(26) # </timestamp></header><map> self.path_or_buf.read(8) # 0x0000000000000000 self.path_or_buf.read(8) # position of <map> self._seek_vartypes = ( struct.unpack(self.byteorder + "q", self.path_or_buf.read(8))[0] + 16 ) self._seek_varnames = ( struct.unpack(self.byteorder + "q", self.path_or_buf.read(8))[0] + 10 ) self._seek_sortlist = ( struct.unpack(self.byteorder + "q", self.path_or_buf.read(8))[0] + 10 ) self._seek_formats = ( struct.unpack(self.byteorder + "q", self.path_or_buf.read(8))[0] + 9 ) self._seek_value_label_names = ( struct.unpack(self.byteorder + "q", self.path_or_buf.read(8))[0] + 19 ) # Requires version-specific treatment self._seek_variable_labels = self._get_seek_variable_labels() self.path_or_buf.read(8) # <characteristics> self.data_location = ( struct.unpack(self.byteorder + "q", self.path_or_buf.read(8))[0] + 6 ) self.seek_strls = ( struct.unpack(self.byteorder + "q", self.path_or_buf.read(8))[0] + 7 ) self.seek_value_labels = ( struct.unpack(self.byteorder + "q", self.path_or_buf.read(8))[0] + 14 ) self.typlist, self.dtyplist = self._get_dtypes(self._seek_vartypes) self.path_or_buf.seek(self._seek_varnames) self.varlist = self._get_varlist() self.path_or_buf.seek(self._seek_sortlist) self.srtlist = struct.unpack( self.byteorder + ("h" * (self.nvar + 1)), self.path_or_buf.read(2 * (self.nvar + 1)), )[:-1] self.path_or_buf.seek(self._seek_formats) self.fmtlist = self._get_fmtlist() self.path_or_buf.seek(self._seek_value_label_names) self.lbllist = self._get_lbllist() self.path_or_buf.seek(self._seek_variable_labels) self._variable_labels = self._get_variable_labels() # Get data type information, works for versions 117-119. def _get_dtypes( self, seek_vartypes: int ) -> tuple[list[int | str], list[str | np.dtype]]: self.path_or_buf.seek(seek_vartypes) raw_typlist = [ struct.unpack(self.byteorder + "H", self.path_or_buf.read(2))[0] for _ in range(self.nvar) ] def f(typ: int) -> int | str: if typ <= 2045: return typ try: return self.TYPE_MAP_XML[typ] except KeyError as err: raise ValueError(f"cannot convert stata types [{typ}]") from err typlist = [f(x) for x in raw_typlist] def g(typ: int) -> str | np.dtype: if typ <= 2045: return str(typ) try: # error: Incompatible return value type (got "Type[number]", expected # "Union[str, dtype]") return self.DTYPE_MAP_XML[typ] # type: ignore[return-value] except KeyError as err: raise ValueError(f"cannot convert stata dtype [{typ}]") from err dtyplist = [g(x) for x in raw_typlist] return typlist, dtyplist def _get_varlist(self) -> list[str]: # 33 in order formats, 129 in formats 118 and 119 b = 33 if self.format_version < 118 else 129 return [self._decode(self.path_or_buf.read(b)) for _ in range(self.nvar)] # Returns the format list def _get_fmtlist(self) -> list[str]: if self.format_version >= 118: b = 57 elif self.format_version > 113: b = 49 elif self.format_version > 104: b = 12 else: b = 7 return [self._decode(self.path_or_buf.read(b)) for _ in range(self.nvar)] # Returns the label list def _get_lbllist(self) -> list[str]: if self.format_version >= 118: b = 129 elif self.format_version > 108: b = 33 else: b = 9 return [self._decode(self.path_or_buf.read(b)) for _ in range(self.nvar)] def _get_variable_labels(self) -> list[str]: if self.format_version >= 118: vlblist = [ self._decode(self.path_or_buf.read(321)) for _ in range(self.nvar) ] elif self.format_version > 105: vlblist = [ self._decode(self.path_or_buf.read(81)) for _ in range(self.nvar) ] else: vlblist = [ self._decode(self.path_or_buf.read(32)) for _ in range(self.nvar) ] return vlblist def _get_nobs(self) -> int: if self.format_version >= 118: return struct.unpack(self.byteorder + "Q", self.path_or_buf.read(8))[0] else: return struct.unpack(self.byteorder + "I", self.path_or_buf.read(4))[0] def _get_data_label(self) -> str: if self.format_version >= 118: strlen = struct.unpack(self.byteorder + "H", self.path_or_buf.read(2))[0] return self._decode(self.path_or_buf.read(strlen)) elif self.format_version == 117: strlen = struct.unpack("b", self.path_or_buf.read(1))[0] return self._decode(self.path_or_buf.read(strlen)) elif self.format_version > 105: return self._decode(self.path_or_buf.read(81)) else: return self._decode(self.path_or_buf.read(32)) def _get_time_stamp(self) -> str: if self.format_version >= 118: strlen = struct.unpack("b", self.path_or_buf.read(1))[0] return self.path_or_buf.read(strlen).decode("utf-8") elif self.format_version == 117: strlen = struct.unpack("b", self.path_or_buf.read(1))[0] return self._decode(self.path_or_buf.read(strlen)) elif self.format_version > 104: return self._decode(self.path_or_buf.read(18)) else: raise ValueError() def _get_seek_variable_labels(self) -> int: if self.format_version == 117: self.path_or_buf.read(8) # <variable_labels>, throw away # Stata 117 data files do not follow the described format. This is # a work around that uses the previous label, 33 bytes for each # variable, 20 for the closing tag and 17 for the opening tag return self._seek_value_label_names + (33 * self.nvar) + 20 + 17 elif self.format_version >= 118: return struct.unpack(self.byteorder + "q", self.path_or_buf.read(8))[0] + 17 else: raise ValueError() def _read_old_header(self, first_char: bytes) -> None: self.format_version = struct.unpack("b", first_char)[0] if self.format_version not in [104, 105, 108, 111, 113, 114, 115]: raise ValueError(_version_error.format(version=self.format_version)) self._set_encoding() self.byteorder = ( struct.unpack("b", self.path_or_buf.read(1))[0] == 0x1 and ">" or "<" ) self.filetype = struct.unpack("b", self.path_or_buf.read(1))[0] self.path_or_buf.read(1) # unused self.nvar = struct.unpack(self.byteorder + "H", self.path_or_buf.read(2))[0] self.nobs = self._get_nobs() self._data_label = self._get_data_label() self.time_stamp = self._get_time_stamp() # descriptors if self.format_version > 108: typlist = [ord(self.path_or_buf.read(1)) for _ in range(self.nvar)] else: buf = self.path_or_buf.read(self.nvar) typlistb = np.frombuffer(buf, dtype=np.uint8) typlist = [] for tp in typlistb: if tp in self.OLD_TYPE_MAPPING: typlist.append(self.OLD_TYPE_MAPPING[tp]) else: typlist.append(tp - 127) # bytes try: self.typlist = [self.TYPE_MAP[typ] for typ in typlist] except ValueError as err: invalid_types = ",".join([str(x) for x in typlist]) raise ValueError(f"cannot convert stata types [{invalid_types}]") from err try: self.dtyplist = [self.DTYPE_MAP[typ] for typ in typlist] except ValueError as err: invalid_dtypes = ",".join([str(x) for x in typlist]) raise ValueError(f"cannot convert stata dtypes [{invalid_dtypes}]") from err if self.format_version > 108: self.varlist = [ self._decode(self.path_or_buf.read(33)) for _ in range(self.nvar) ] else: self.varlist = [ self._decode(self.path_or_buf.read(9)) for _ in range(self.nvar) ] self.srtlist = struct.unpack( self.byteorder + ("h" * (self.nvar + 1)), self.path_or_buf.read(2 * (self.nvar + 1)), )[:-1] self.fmtlist = self._get_fmtlist() self.lbllist = self._get_lbllist() self._variable_labels = self._get_variable_labels() # ignore expansion fields (Format 105 and later) # When reading, read five bytes; the last four bytes now tell you # the size of the next read, which you discard. You then continue # like this until you read 5 bytes of zeros. if self.format_version > 104: while True: data_type = struct.unpack( self.byteorder + "b", self.path_or_buf.read(1) )[0] if self.format_version > 108: data_len = struct.unpack( self.byteorder + "i", self.path_or_buf.read(4) )[0] else: data_len = struct.unpack( self.byteorder + "h", self.path_or_buf.read(2) )[0] if data_type == 0: break self.path_or_buf.read(data_len) # necessary data to continue parsing self.data_location = self.path_or_buf.tell() def _setup_dtype(self) -> np.dtype: """Map between numpy and state dtypes""" if self._dtype is not None: return self._dtype dtypes = [] # Convert struct data types to numpy data type for i, typ in enumerate(self.typlist): if typ in self.NUMPY_TYPE_MAP: typ = cast(str, typ) # only strs in NUMPY_TYPE_MAP dtypes.append(("s" + str(i), self.byteorder + self.NUMPY_TYPE_MAP[typ])) else: dtypes.append(("s" + str(i), "S" + str(typ))) self._dtype = np.dtype(dtypes) return self._dtype def _calcsize(self, fmt: int | str) -> int: if isinstance(fmt, int): return fmt return struct.calcsize(self.byteorder + fmt) def _decode(self, s: bytes) -> str: # have bytes not strings, so must decode s = s.partition(b"\0")[0] try: return s.decode(self._encoding) except UnicodeDecodeError: # GH 25960, fallback to handle incorrect format produced when 117 # files are converted to 118 files in Stata encoding = self._encoding msg = f""" One or more strings in the dta file could not be decoded using {encoding}, and so the fallback encoding of latin-1 is being used. This can happen when a file has been incorrectly encoded by Stata or some other software. You should verify the string values returned are correct.""" warnings.warn(msg, UnicodeWarning) return s.decode("latin-1") def _read_value_labels(self) -> None: if self._value_labels_read: # Don't read twice return if self.format_version <= 108: # Value labels are not supported in version 108 and earlier. self._value_labels_read = True self.value_label_dict: dict[str, dict[float | int, str]] = {} return if self.format_version >= 117: self.path_or_buf.seek(self.seek_value_labels) else: assert self._dtype is not None offset = self.nobs * self._dtype.itemsize self.path_or_buf.seek(self.data_location + offset) self._value_labels_read = True self.value_label_dict = {} while True: if self.format_version >= 117: if self.path_or_buf.read(5) == b"</val": # <lbl> break # end of value label table slength = self.path_or_buf.read(4) if not slength: break # end of value label table (format < 117) if self.format_version <= 117: labname = self._decode(self.path_or_buf.read(33)) else: labname = self._decode(self.path_or_buf.read(129)) self.path_or_buf.read(3) # padding n = struct.unpack(self.byteorder + "I", self.path_or_buf.read(4))[0] txtlen = struct.unpack(self.byteorder + "I", self.path_or_buf.read(4))[0] off = np.frombuffer( self.path_or_buf.read(4 * n), dtype=self.byteorder + "i4", count=n ) val = np.frombuffer( self.path_or_buf.read(4 * n), dtype=self.byteorder + "i4", count=n ) ii = np.argsort(off) off = off[ii] val = val[ii] txt = self.path_or_buf.read(txtlen) self.value_label_dict[labname] = {} for i in range(n): end = off[i + 1] if i < n - 1 else txtlen self.value_label_dict[labname][val[i]] = self._decode(txt[off[i] : end]) if self.format_version >= 117: self.path_or_buf.read(6) # </lbl> self._value_labels_read = True def _read_strls(self) -> None: self.path_or_buf.seek(self.seek_strls) # Wrap v_o in a string to allow uint64 values as keys on 32bit OS self.GSO = {"0": ""} while True: if self.path_or_buf.read(3) != b"GSO": break if self.format_version == 117: v_o = struct.unpack(self.byteorder + "Q", self.path_or_buf.read(8))[0] else: buf = self.path_or_buf.read(12) # Only tested on little endian file on little endian machine. v_size = 2 if self.format_version == 118 else 3 if self.byteorder == "<": buf = buf[0:v_size] + buf[4 : (12 - v_size)] else: # This path may not be correct, impossible to test buf = buf[0:v_size] + buf[(4 + v_size) :] v_o = struct.unpack("Q", buf)[0] typ = struct.unpack("B", self.path_or_buf.read(1))[0] length = struct.unpack(self.byteorder + "I", self.path_or_buf.read(4))[0] va = self.path_or_buf.read(length) if typ == 130: decoded_va = va[0:-1].decode(self._encoding) else: # Stata says typ 129 can be binary, so use str decoded_va = str(va) # Wrap v_o in a string to allow uint64 values as keys on 32bit OS self.GSO[str(v_o)] = decoded_va def __next__(self) -> DataFrame: self._using_iterator = True return self.read(nrows=self._chunksize) def get_chunk(self, size: int | None = None) -> DataFrame: """ Reads lines from Stata file and returns as dataframe Parameters ---------- size : int, defaults to None Number of lines to read. If None, reads whole file. Returns ------- DataFrame """ if size is None: size = self._chunksize return self.read(nrows=size) @Appender(_read_method_doc) def read( self, nrows: int | None = None, convert_dates: bool | None = None, convert_categoricals: bool | None = None, index_col: str | None = None, convert_missing: bool | None = None, preserve_dtypes: bool | None = None, columns: Sequence[str] | None = None, order_categoricals: bool | None = None, ) -> DataFrame: # Handle empty file or chunk. If reading incrementally raise # StopIteration. If reading the whole thing return an empty # data frame. if (self.nobs == 0) and (nrows is None): self._can_read_value_labels = True self._data_read = True self.close() return DataFrame(columns=self.varlist) # Handle options if convert_dates is None: convert_dates = self._convert_dates if convert_categoricals is None: convert_categoricals = self._convert_categoricals if convert_missing is None: convert_missing = self._convert_missing if preserve_dtypes is None: preserve_dtypes = self._preserve_dtypes if columns is None: columns = self._columns if order_categoricals is None: order_categoricals = self._order_categoricals if index_col is None: index_col = self._index_col if nrows is None: nrows = self.nobs if (self.format_version >= 117) and (not self._value_labels_read): self._can_read_value_labels = True self._read_strls() # Read data assert self._dtype is not None dtype = self._dtype max_read_len = (self.nobs - self._lines_read) * dtype.itemsize read_len = nrows * dtype.itemsize read_len = min(read_len, max_read_len) if read_len <= 0: # Iterator has finished, should never be here unless # we are reading the file incrementally if convert_categoricals: self._read_value_labels() self.close() raise StopIteration offset = self._lines_read * dtype.itemsize self.path_or_buf.seek(self.data_location + offset) read_lines = min(nrows, self.nobs - self._lines_read) data = np.frombuffer( self.path_or_buf.read(read_len), dtype=dtype, count=read_lines ) self._lines_read += read_lines if self._lines_read == self.nobs: self._can_read_value_labels = True self._data_read = True # if necessary, swap the byte order to native here if self.byteorder != self._native_byteorder: data = data.byteswap().newbyteorder() if convert_categoricals: self._read_value_labels() if len(data) == 0: data = DataFrame(columns=self.varlist) else: data = DataFrame.from_records(data) data.columns = self.varlist # If index is not specified, use actual row number rather than # restarting at 0 for each chunk. if index_col is None: ix = np.arange(self._lines_read - read_lines, self._lines_read) data = data.set_index(ix) if columns is not None: try: data = self._do_select_columns(data, columns) except ValueError: self.close() raise # Decode strings for col, typ in zip(data, self.typlist): if type(typ) is int: data[col] = data[col].apply(self._decode, convert_dtype=True) data = self._insert_strls(data) cols_ = np.where([dtyp is not None for dtyp in self.dtyplist])[0] # Convert columns (if needed) to match input type ix = data.index requires_type_conversion = False data_formatted = [] for i in cols_: if self.dtyplist[i] is not None: col = data.columns[i] dtype = data[col].dtype if dtype != np.dtype(object) and dtype != self.dtyplist[i]: requires_type_conversion = True data_formatted.append( (col, Series(data[col], ix, self.dtyplist[i])) ) else: data_formatted.append((col, data[col])) if requires_type_conversion: data = DataFrame.from_dict(dict(data_formatted)) del data_formatted data = self._do_convert_missing(data, convert_missing) if convert_dates: def any_startswith(x: str) -> bool: return any(x.startswith(fmt) for fmt in _date_formats) cols = np.where([any_startswith(x) for x in self.fmtlist])[0] for i in cols: col = data.columns[i] try: data[col] = _stata_elapsed_date_to_datetime_vec( data[col], self.fmtlist[i] ) except ValueError: self.close() raise if convert_categoricals and self.format_version > 108: data = self._do_convert_categoricals( data, self.value_label_dict, self.lbllist, order_categoricals ) if not preserve_dtypes: retyped_data = [] convert = False for col in data: dtype = data[col].dtype if dtype in (np.dtype(np.float16), np.dtype(np.float32)): dtype = np.dtype(np.float64) convert = True elif dtype in ( np.dtype(np.int8), np.dtype(np.int16), np.dtype(np.int32), ): dtype = np.dtype(np.int64) convert = True retyped_data.append((col, data[col].astype(dtype))) if convert: data = DataFrame.from_dict(dict(retyped_data)) if index_col is not None: data = data.set_index(data.pop(index_col)) return data def _do_convert_missing(self, data: DataFrame, convert_missing: bool) -> DataFrame: # Check for missing values, and replace if found replacements = {} for i, colname in enumerate(data): fmt = self.typlist[i] if fmt not in self.VALID_RANGE: continue fmt = cast(str, fmt) # only strs in VALID_RANGE nmin, nmax = self.VALID_RANGE[fmt] series = data[colname] # appreciably faster to do this with ndarray instead of Series svals = series._values missing = (svals < nmin) | (svals > nmax) if not missing.any(): continue if convert_missing: # Replacement follows Stata notation missing_loc = np.nonzero(np.asarray(missing))[0] umissing, umissing_loc = np.unique(series[missing], return_inverse=True) replacement = Series(series, dtype=object) for j, um in enumerate(umissing): missing_value = StataMissingValue(um) loc = missing_loc[umissing_loc == j] replacement.iloc[loc] = missing_value else: # All replacements are identical dtype = series.dtype if dtype not in (np.float32, np.float64): dtype = np.float64 replacement = Series(series, dtype=dtype) # Note: operating on ._values is much faster than directly # TODO: can we fix that? replacement._values[missing] = np.nan replacements[colname] = replacement if replacements: columns = data.columns replacement_df = DataFrame(replacements, copy=False) replaced = concat( [data.drop(replacement_df.columns, axis=1), replacement_df], axis=1, copy=False, ) data = replaced[columns] return data def _insert_strls(self, data: DataFrame) -> DataFrame: if not hasattr(self, "GSO") or len(self.GSO) == 0: return data for i, typ in enumerate(self.typlist): if typ != "Q": continue # Wrap v_o in a string to allow uint64 values as keys on 32bit OS data.iloc[:, i] = [self.GSO[str(k)] for k in data.iloc[:, i]] return data def _do_select_columns(self, data: DataFrame, columns: Sequence[str]) -> DataFrame: if not self._column_selector_set: column_set = set(columns) if len(column_set) != len(columns): raise ValueError("columns contains duplicate entries") unmatched = column_set.difference(data.columns) if unmatched: joined = ", ".join(list(unmatched)) raise ValueError( "The following columns were not " f"found in the Stata data set: {joined}" ) # Copy information for retained columns for later processing dtyplist = [] typlist = [] fmtlist = [] lbllist = [] for col in columns: i = data.columns.get_loc(col) dtyplist.append(self.dtyplist[i]) typlist.append(self.typlist[i]) fmtlist.append(self.fmtlist[i]) lbllist.append(self.lbllist[i]) self.dtyplist = dtyplist self.typlist = typlist self.fmtlist = fmtlist self.lbllist = lbllist self._column_selector_set = True return data[columns] def _do_convert_categoricals( self, data: DataFrame, value_label_dict: dict[str, dict[float | int, str]], lbllist: Sequence[str], order_categoricals: bool, ) -> DataFrame: """ Converts categorical columns to Categorical type. """ value_labels = list(value_label_dict.keys()) cat_converted_data = [] for col, label in zip(data, lbllist): if label in value_labels: # Explicit call with ordered=True vl = value_label_dict[label] keys = np.array(list(vl.keys())) column = data[col] key_matches = column.isin(keys) if self._using_iterator and key_matches.all(): initial_categories: np.ndarray | None = keys # If all categories are in the keys and we are iterating, # use the same keys for all chunks. If some are missing # value labels, then we will fall back to the categories # varying across chunks. else: if self._using_iterator: # warn is using an iterator warnings.warn( categorical_conversion_warning, CategoricalConversionWarning ) initial_categories = None cat_data = Categorical( column, categories=initial_categories, ordered=order_categoricals ) if initial_categories is None: # If None here, then we need to match the cats in the Categorical categories = [] for category in cat_data.categories: if category in vl: categories.append(vl[category]) else: categories.append(category) else: # If all cats are matched, we can use the values categories = list(vl.values()) try: # Try to catch duplicate categories cat_data.categories = categories except ValueError as err: vc = Series(categories).value_counts() repeated_cats = list(vc.index[vc > 1]) repeats = "-" * 80 + "\n" + "\n".join(repeated_cats) # GH 25772 msg = f""" Value labels for column {col} are not unique. These cannot be converted to pandas categoricals. Either read the file with `convert_categoricals` set to False or use the low level interface in `StataReader` to separately read the values and the value_labels. The repeated labels are: {repeats} """ raise ValueError(msg) from err # TODO: is the next line needed above in the data(...) method? cat_series = Series(cat_data, index=data.index) cat_converted_data.append((col, cat_series)) else: cat_converted_data.append((col, data[col])) data = DataFrame(dict(cat_converted_data), copy=False) return data @property def data_label(self) -> str: """ Return data label of Stata file. """ return self._data_label def variable_labels(self) -> dict[str, str]: """ Return variable labels as a dict, associating each variable name with corresponding label. Returns ------- dict """ return dict(zip(self.varlist, self._variable_labels)) def value_labels(self) -> dict[str, dict[float | int, str]]: """ Return a dict, associating each variable name a dict, associating each value its corresponding label. Returns ------- dict """ if not self._value_labels_read: self._read_value_labels() return self.value_label_dict @Appender(_read_stata_doc) def read_stata( filepath_or_buffer: FilePathOrBuffer, convert_dates: bool = True, convert_categoricals: bool = True, index_col: str | None = None, convert_missing: bool = False, preserve_dtypes: bool = True, columns: Sequence[str] | None = None, order_categoricals: bool = True, chunksize: int | None = None, iterator: bool = False, compression: CompressionOptions = "infer", storage_options: StorageOptions = None, ) -> DataFrame | StataReader: reader = StataReader( filepath_or_buffer, convert_dates=convert_dates, convert_categoricals=convert_categoricals, index_col=index_col, convert_missing=convert_missing, preserve_dtypes=preserve_dtypes, columns=columns, order_categoricals=order_categoricals, chunksize=chunksize, storage_options=storage_options, compression=compression, ) if iterator or chunksize: return reader with reader: return reader.read() def _set_endianness(endianness: str) -> str: if endianness.lower() in ["<", "little"]: return "<" elif endianness.lower() in [">", "big"]: return ">" else: # pragma : no cover raise ValueError(f"Endianness {endianness} not understood") def _pad_bytes(name: AnyStr, length: int) -> AnyStr: """ Take a char string and pads it with null bytes until it's length chars. """ if isinstance(name, bytes): return name + b"\x00" * (length - len(name)) return name + "\x00" * (length - len(name)) def _convert_datetime_to_stata_type(fmt: str) -> np.dtype: """ Convert from one of the stata date formats to a type in TYPE_MAP. """ if fmt in [ "tc", "%tc", "td", "%td", "tw", "%tw", "tm", "%tm", "tq", "%tq", "th", "%th", "ty", "%ty", ]: return np.dtype(np.float64) # Stata expects doubles for SIFs else: raise NotImplementedError(f"Format {fmt} not implemented") def _maybe_convert_to_int_keys(convert_dates: dict, varlist: list[Hashable]) -> dict: new_dict = {} for key in convert_dates: if not convert_dates[key].startswith("%"): # make sure proper fmts convert_dates[key] = "%" + convert_dates[key] if key in varlist: new_dict.update({varlist.index(key): convert_dates[key]}) else: if not isinstance(key, int): raise ValueError("convert_dates key must be a column or an integer") new_dict.update({key: convert_dates[key]}) return new_dict def _dtype_to_stata_type(dtype: np.dtype, column: Series) -> int: """ Convert dtype types to stata types. Returns the byte of the given ordinal. See TYPE_MAP and comments for an explanation. This is also explained in the dta spec. 1 - 244 are strings of this length Pandas Stata 251 - for int8 byte 252 - for int16 int 253 - for int32 long 254 - for float32 float 255 - for double double If there are dates to convert, then dtype will already have the correct type inserted. """ # TODO: expand to handle datetime to integer conversion if dtype.type == np.object_: # try to coerce it to the biggest string # not memory efficient, what else could we # do? itemsize = max_len_string_array(ensure_object(column._values)) return max(itemsize, 1) # error: Non-overlapping equality check (left operand type: "dtype[Any]", right # operand type: "Type[floating[Any]]") elif dtype == np.float64: # type: ignore[comparison-overlap] return 255 # Non-overlapping equality check (left operand type: "dtype[Any]", right # operand type: "Type[floating[Any]]") elif dtype == np.float32: # type: ignore[comparison-overlap] return 254 # error: Non-overlapping equality check (left operand type: "dtype[Any]", right # operand type: "Type[signedinteger[Any]]") elif dtype == np.int32: # type: ignore[comparison-overlap] return 253 # error: Non-overlapping equality check (left operand type: "dtype[Any]", right # operand type: "Type[signedinteger[Any]]") elif dtype == np.int16: # type: ignore[comparison-overlap] return 252 # error: Non-overlapping equality check (left operand type: "dtype[Any]", right # operand type: "Type[signedinteger[Any]]") elif dtype == np.int8: # type: ignore[comparison-overlap] return 251 else: # pragma : no cover raise NotImplementedError(f"Data type {dtype} not supported.") def _dtype_to_default_stata_fmt( dtype, column: Series, dta_version: int = 114, force_strl: bool = False ) -> str: """ Map numpy dtype to stata's default format for this type. Not terribly important since users can change this in Stata. Semantics are object -> "%DDs" where DD is the length of the string. If not a string, raise ValueError float64 -> "%10.0g" float32 -> "%9.0g" int64 -> "%9.0g" int32 -> "%12.0g" int16 -> "%8.0g" int8 -> "%8.0g" strl -> "%9s" """ # TODO: Refactor to combine type with format # TODO: expand this to handle a default datetime format? if dta_version < 117: max_str_len = 244 else: max_str_len = 2045 if force_strl: return "%9s" if dtype.type == np.object_: itemsize = max_len_string_array(ensure_object(column._values)) if itemsize > max_str_len: if dta_version >= 117: return "%9s" else: raise ValueError(excessive_string_length_error.format(column.name)) return "%" + str(max(itemsize, 1)) + "s" elif dtype == np.float64: return "%10.0g" elif dtype == np.float32: return "%9.0g" elif dtype == np.int32: return "%12.0g" elif dtype == np.int8 or dtype == np.int16: return "%8.0g" else: # pragma : no cover raise NotImplementedError(f"Data type {dtype} not supported.") @doc(storage_options=generic._shared_docs["storage_options"]) class StataWriter(StataParser): """ A class for writing Stata binary dta files Parameters ---------- fname : path (string), buffer or path object string, path object (pathlib.Path or py._path.local.LocalPath) or object implementing a binary write() functions. If using a buffer then the buffer will not be automatically closed after the file is written. data : DataFrame Input to save convert_dates : dict Dictionary mapping columns containing datetime types to stata internal format to use when writing the dates. Options are 'tc', 'td', 'tm', 'tw', 'th', 'tq', 'ty'. Column can be either an integer or a name. Datetime columns that do not have a conversion type specified will be converted to 'tc'. Raises NotImplementedError if a datetime column has timezone information write_index : bool Write the index to Stata dataset. byteorder : str Can be ">", "<", "little", or "big". default is `sys.byteorder` time_stamp : datetime A datetime to use as file creation date. Default is the current time data_label : str A label for the data set. Must be 80 characters or smaller. variable_labels : dict Dictionary containing columns as keys and variable labels as values. Each label must be 80 characters or smaller. compression : str or dict, default 'infer' For on-the-fly compression of the output dta. If string, specifies compression mode. If dict, value at key 'method' specifies compression mode. Compression mode must be one of {{'infer', 'gzip', 'bz2', 'zip', 'xz', None}}. If compression mode is 'infer' and `fname` is path-like, then detect compression from the following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no compression). If dict and compression mode is one of {{'zip', 'gzip', 'bz2'}}, or inferred as one of the above, other entries passed as additional compression options. .. versionadded:: 1.1.0 {storage_options} .. versionadded:: 1.2.0 Returns ------- writer : StataWriter instance The StataWriter instance has a write_file method, which will write the file to the given `fname`. Raises ------ NotImplementedError * If datetimes contain timezone information ValueError * Columns listed in convert_dates are neither datetime64[ns] or datetime.datetime * Column dtype is not representable in Stata * Column listed in convert_dates is not in DataFrame * Categorical label contains more than 32,000 characters Examples -------- >>> data = pd.DataFrame([[1.0, 1]], columns=['a', 'b']) >>> writer = StataWriter('./data_file.dta', data) >>> writer.write_file() Directly write a zip file >>> compression = {{"method": "zip", "archive_name": "data_file.dta"}} >>> writer = StataWriter('./data_file.zip', data, compression=compression) >>> writer.write_file() Save a DataFrame with dates >>> from datetime import datetime >>> data = pd.DataFrame([[datetime(2000,1,1)]], columns=['date']) >>> writer = StataWriter('./date_data_file.dta', data, {{'date' : 'tw'}}) >>> writer.write_file() """ _max_string_length = 244 _encoding = "latin-1" def __init__( self, fname: FilePathOrBuffer, data: DataFrame, convert_dates: dict[Hashable, str] | None = None, write_index: bool = True, byteorder: str | None = None, time_stamp: datetime.datetime | None = None, data_label: str | None = None, variable_labels: dict[Hashable, str] | None = None, compression: CompressionOptions = "infer", storage_options: StorageOptions = None, ): super().__init__() self._convert_dates = {} if convert_dates is None else convert_dates self._write_index = write_index self._time_stamp = time_stamp self._data_label = data_label self._variable_labels = variable_labels self._compression = compression self._output_file: Buffer | None = None # attach nobs, nvars, data, varlist, typlist self._prepare_pandas(data) self.storage_options = storage_options if byteorder is None: byteorder = sys.byteorder self._byteorder = _set_endianness(byteorder) self._fname = fname self.type_converters = {253: np.int32, 252: np.int16, 251: np.int8} self._converted_names: dict[Hashable, str] = {} def _write(self, to_write: str) -> None: """ Helper to call encode before writing to file for Python 3 compat. """ self.handles.handle.write( to_write.encode(self._encoding) # type: ignore[arg-type] ) def _write_bytes(self, value: bytes) -> None: """ Helper to assert file is open before writing. """ self.handles.handle.write(value) # type: ignore[arg-type] def _prepare_categoricals(self, data: DataFrame) -> DataFrame: """ Check for categorical columns, retain categorical information for Stata file and convert categorical data to int """ is_cat = [is_categorical_dtype(data[col].dtype) for col in data] self._is_col_cat = is_cat self._value_labels: list[StataValueLabel] = [] if not any(is_cat): return data get_base_missing_value = StataMissingValue.get_base_missing_value data_formatted = [] for col, col_is_cat in zip(data, is_cat): if col_is_cat: svl = StataValueLabel(data[col], encoding=self._encoding) self._value_labels.append(svl) dtype = data[col].cat.codes.dtype if dtype == np.int64: raise ValueError( "It is not possible to export " "int64-based categorical data to Stata." ) values = data[col].cat.codes._values.copy() # Upcast if needed so that correct missing values can be set if values.max() >= get_base_missing_value(dtype): if dtype == np.int8: dtype = np.int16 elif dtype == np.int16: dtype = np.int32 else: dtype = np.float64 values = np.array(values, dtype=dtype) # Replace missing values with Stata missing value for type values[values == -1] = get_base_missing_value(dtype) data_formatted.append((col, values)) else: data_formatted.append((col, data[col])) return DataFrame.from_dict(dict(data_formatted)) def _replace_nans(self, data: DataFrame) -> DataFrame: # return data """ Checks floating point data columns for nans, and replaces these with the generic Stata for missing value (.) """ for c in data: dtype = data[c].dtype if dtype in (np.float32, np.float64): if dtype == np.float32: replacement = self.MISSING_VALUES["f"] else: replacement = self.MISSING_VALUES["d"] data[c] = data[c].fillna(replacement) return data def _update_strl_names(self) -> None: """No-op, forward compatibility""" pass def _validate_variable_name(self, name: str) -> str: """ Validate variable names for Stata export. Parameters ---------- name : str Variable name Returns ------- str The validated name with invalid characters replaced with underscores. Notes ----- Stata 114 and 117 support ascii characters in a-z, A-Z, 0-9 and _. """ for c in name: if ( (c < "A" or c > "Z") and (c < "a" or c > "z") and (c < "0" or c > "9") and c != "_" ): name = name.replace(c, "_") return name def _check_column_names(self, data: DataFrame) -> DataFrame: """ Checks column names to ensure that they are valid Stata column names. This includes checks for: * Non-string names * Stata keywords * Variables that start with numbers * Variables with names that are too long When an illegal variable name is detected, it is converted, and if dates are exported, the variable name is propagated to the date conversion dictionary """ converted_names: dict[Hashable, str] = {} columns = list(data.columns) original_columns = columns[:] duplicate_var_id = 0 for j, name in enumerate(columns): orig_name = name if not isinstance(name, str): name = str(name) name = self._validate_variable_name(name) # Variable name must not be a reserved word if name in self.RESERVED_WORDS: name = "_" + name # Variable name may not start with a number if "0" <= name[0] <= "9": name = "_" + name name = name[: min(len(name), 32)] if not name == orig_name: # check for duplicates while columns.count(name) > 0: # prepend ascending number to avoid duplicates name = "_" + str(duplicate_var_id) + name name = name[: min(len(name), 32)] duplicate_var_id += 1 converted_names[orig_name] = name columns[j] = name data.columns =
Index(columns)
pandas.core.indexes.base.Index
# coding=utf-8 # Copyright 2018-2020 EVA # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import numpy as np import pandas as pd from typing import Iterable from pandas import DataFrame from src.utils.logging_manager import LoggingManager, LoggingLevel class BatchEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, pd.DataFrame): return {"__dataframe__": obj.to_json()} return json.JSONEncoder.default(self, obj) def as_batch(d): if "__dataframe__" in d: return pd.read_json(d["__dataframe__"]) else: return d class Batch: """ Data model used for storing a batch of frames Arguments: frames (DataFrame): pandas Dataframe holding frames data identifier_column (str): A column used to uniquely a row """ def __init__(self, frames=
pd.DataFrame()
pandas.DataFrame
import pandas as pd import numpy as np import functions as f from lightfm import LightFM from scipy import sparse import math import operator import collections as cl from scipy.sparse import csr_matrix from sklearn.preprocessing import OneHotEncoder from sklearn.model_selection import train_test_split import time import xgboost as xgb from numpy import sort TRAINING_COLS = ['position','recent_index', 'user_bias', 'item_bias', 'lightfm_dot_product', 'lightfm_prediction', 'score'] def get_rec_matrix(df_train, df_test, inner_train, inner_gt, subm_csv, parameters = None, **kwargs): hotel_prices_file = kwargs.get('file_metadata', None) df_inner_train = pd.read_csv(inner_train) df_inner_gt = pd.read_csv(inner_gt) df_inner_gt = get_validation_set(df_test) df_inner_train = f.get_interaction_actions(df_inner_train, actions = parameters.listactions) df_inner_gt = f.get_interaction_actions(df_inner_gt, actions=parameters.listactions) df_inner_gt = remove_single_clickout_actions(df_inner_gt) df_inner_gt = create_recent_index(df_inner_gt) df_inner_gt_clickout, df_inner_gt_no_clickout = split_clickout(df_inner_gt) df_test_cleaned = f.get_interaction_actions(df_test, actions = parameters.listactions, clean_null = True) df_test_cleaned = f.remove_null_clickout(df_test_cleaned) test_interactions = create_recent_index(df_test_cleaned, grouped=True) df_train = pd.concat([df_inner_train, df_inner_gt_no_clickout, df_test_cleaned], sort=False) user_dict = create_user_dict(df_train) if hotel_prices_file != None: hotel_features, hotel_dict = get_hotel_prices(hotel_prices_file, df_train) else: hotel_features = None df_test_user, df_test_nation = split_one_action(df_test) mf_model = train_mf_model(df_train, parameters, item_features = hotel_features, hotel_dic = hotel_dict, user_dic = user_dict) df_train_xg = get_lightFM_features(df_inner_gt_clickout, mf_model, user_dict, hotel_dict, item_f=hotel_features) #df_train_xg = get_RNN_features(df_train_xg, 'rnn_test_sub_xgb_inner_100%_vanilla_opt_0,001lr.csv') xg_model = xg_boost_training(df_train_xg) df_test_xg = get_lightFM_features(df_test_user, mf_model, user_dict, hotel_dict, item_f=hotel_features, is_test = True) df_test_xg = (df_test_xg.merge(test_interactions, left_on=['session_id'], right_on=['session_id'], how="left")) df_test_xg['recent_index'] = df_test_xg.apply(lambda x : recent_index(x), axis=1) del df_test_xg['all_interactions'] #df_test_xg = get_RNN_features(df_test_xg, 'rnn_test_sub_xgb_dev_100%_vanilla_opt_0,001lr.csv') print(df_test_xg.head()) df_out = generate_submission(df_test_xg, xg_model) df_out_nation = complete_prediction(df_test_nation) df_out = pd.concat([df_out, df_out_nation]) df_out.to_csv(subm_csv, index=False) return df_out def get_validation_set(df): sessions = get_non_null_clickout(df) dft = df[df['session_id'].isin(sessions)] dft = dft[~dft['reference'].isnull()] return dft def get_non_null_clickout(df_test): print(df_test.head()) df_clickout = df_test[(~df_test['reference'].isnull()) & (df_test['action_type'] == 'clickout item')] return df_clickout['session_id'].drop_duplicates() def create_recent_index(df_orig, grouped=False): df_list_int = df_orig.groupby('session_id').apply(lambda x: get_list_session_interactions(x)).reset_index(name='all_interactions') df_list_int = df_list_int[['session_id', 'all_interactions']] if(grouped): return df_list_int df_orig = (df_orig.merge(df_list_int, left_on=['session_id'], right_on=['session_id'], how="left")) return df_orig def recent_index(x): #least_recent = len(x.all_interactions) list_interactions = x.all_interactions.split(" ") if str(x.item_id) in list_interactions: i = list_interactions.index(str(x.item_id)) i = i / len(list_interactions) else: i = -999 #i = least_recent - i return i def get_list_session_interactions(group): group.loc[:,'reference'] = group['reference'].apply(str) list_values = group.reference.drop_duplicates() joined = " ".join(list_values) return joined def get_RNN_features(df, filename): df_rnn = pd.read_csv(filename) df_rnn = df_rnn.rename(columns={'hotel_id':'item_id'}) df = (df.merge(df_rnn, left_on=['session_id', 'item_id'], right_on=['session_id', 'item_id'], how="left", suffixes=('_mf', '_rnn'))) df.fillna(0) print(df.head()) return df def generate_submission(df, xg_model, training_cols=TRAINING_COLS): df = df.groupby(['user_id', 'session_id', 'timestamp', 'step']).apply(lambda x: calculate_rank(x, xg_model, t_cols=training_cols)).reset_index(name='item_recommendations') df = df[['user_id', 'session_id', 'timestamp', 'step', 'item_recommendations']] return df def calculate_rank(group, model, t_cols=TRAINING_COLS): #cols = ['user_id', 'session_id', 'timestamp', 'item_id', 'step'] #print(group) df_test = group[t_cols] #print(df_test) xgtest = xgb.DMatrix(df_test) prediction = model.predict(xgtest, ntree_limit=model.best_ntree_limit) dic_pred = dict(zip(group['item_id'].apply(str), prediction)) sorted_x = sorted(dic_pred.items(), key=operator.itemgetter(1), reverse = True) sorted_items = list(map(lambda x:x[0], sorted_x)) #df = group.iloc[0] #df['item_recommendations'] = " ".join(sorted_items) return " ".join(sorted_items) def remove_single_clickout_actions(df): print('Initial size: ' + str(df.shape[0])) n_action_session = df.groupby('session_id').size().reset_index(name='n_actions') print(n_action_session.head()) df = (df.merge(n_action_session, left_on='session_id', right_on='session_id', how="left")) print(df.head()) df = df.drop(df[(df["action_type"] == "clickout item") & (df['n_actions'] == 1)].index) del df['n_actions'] return df def xg_boost_training(train): train = train[TRAINING_COLS + ['label']] df_train, df_val = train_test_split(train, test_size=0.2) print(df_train.head()) cols = ['label'] xgtrain = xgb.DMatrix(df_train.drop(cols, axis=1), df_train.label) xgval = xgb.DMatrix(df_val.drop(cols, axis=1), df_val.label) params = { 'objective':'binary:logistic', 'eta':0.1, 'booster':'gbtree', 'predictor': 'cpu_predictor', 'max_depth':7, 'nthread':4, 'seed':1, 'eval_metric':'auc', } model = xgb.train( params=list(params.items()), early_stopping_rounds=30, verbose_eval=10, dtrain=xgtrain, evals=[(xgtrain, 'train'), (xgval, 'test')], num_boost_round=300, ) return model def get_lightFM_features(df, mf_model, user_dict, hotel_dict, item_f = None, user_f=None, is_test = False): df_train_xg = f.explode_position_scalable(df, 'impressions') if(is_test == False): df_train_xg['recent_index'] = df_train_xg.apply(lambda x : recent_index(x), axis=1) df_train_xg = df_train_xg[['user_id', 'session_id', 'timestamp', 'step', 'reference', 'position', 'item_id', 'recent_index']] else: df_train_xg = df_train_xg[['user_id', 'session_id', 'timestamp', 'step', 'reference', 'position', 'item_id']] #df_train_xg = create_recent_index(df_train_xg) if(is_test == False): df_train_xg['label'] = df_train_xg.apply(lambda x: 1 if (str(x.item_id) == str(x.reference)) else 0, axis=1) df_train_xg['user_id_enc'] = df_train_xg['user_id'].map(user_dict) df_train_xg['item_id_enc'] = df_train_xg['item_id'].map(hotel_dict) df_train_xg_null = df_train_xg[(df_train_xg['item_id_enc'].isnull())] df_train_xg_not_null = df_train_xg[~(df_train_xg['item_id_enc'].isnull())] #df_train_xg_not_null = df_train_xg[(~df_train_xg['item_id_enc'].isnull()) & (~df_train_xg['user_id_enc'].isnull())] #df_train_xg_null = df_train_xg[(df_train_xg['item_id_enc'].isnull()) | (df_train_xg['user_id_enc'].isnull())] print('Utenti nulli') df_user_null = df_train_xg[df_train_xg['user_id_enc'].isnull()] df_user_null = df_user_null['user_id'].drop_duplicates() print(df_user_null) print('There are # ' + str(df_train_xg_not_null.shape[0]) + ' not null pairs') print('There are # ' + str(df_train_xg_null.shape[0]) + ' null pairs') df_train_xg_not_null.loc[:,'user_id_enc'] = df_train_xg_not_null['user_id_enc'].apply(int) df_train_xg_not_null.loc[:,'item_id_enc'] = df_train_xg_not_null['item_id_enc'].apply(int) #df_train_xg = df_train_xg.fillna('no_data') #df_train_xg_cleaned, df_train_xg_errors = split_no_info_hotel(df_train_xg) df_train_xg_not_null.loc[:,'score'] = mf_model.predict(np.array(df_train_xg_not_null['user_id_enc']), np.array(df_train_xg_not_null['item_id_enc']), item_features=item_f, num_threads=4) df_train_xg_null.loc[:,'score'] = -999 df_train_xg_not_null.loc[:,'user_bias'] = mf_model.user_biases[df_train_xg_not_null['user_id_enc']] df_train_xg_null.loc[:,'user_bias'] = -999 df_train_xg_not_null.loc[:,'item_bias'] = mf_model.item_biases[df_train_xg_not_null['item_id_enc']] df_train_xg_null.loc[:,'item_bias'] = -999 user_embeddings = mf_model.user_embeddings[df_train_xg_not_null.user_id_enc] item_embeddings = mf_model.item_embeddings[df_train_xg_not_null.item_id_enc] df_train_xg_not_null.loc[:,'lightfm_dot_product'] = (user_embeddings * item_embeddings).sum(axis=1) df_train_xg_null.loc[:,'lightfm_dot_product'] = -999 df_train_xg_not_null.loc[:,'lightfm_prediction'] = df_train_xg_not_null['lightfm_dot_product'] + df_train_xg_not_null['user_bias'] + df_train_xg_not_null['item_bias'] df_train_xg_null.loc[:,'lightfm_prediction'] = -999 df_train_xg = pd.concat([df_train_xg_not_null, df_train_xg_null], ignore_index=True, sort=False) df_train_xg = df_train_xg.sort_values(by=['user_id', 'session_id', 'timestamp', 'step'], ascending=False) cols = ['reference', 'user_id_enc', 'item_id_enc'] df_train_xg = df_train_xg.drop(cols, axis=1) return df_train_xg def split_clickout(df): print('Size iniziale: ' + str(df.shape[0])) df_clickout = get_clickouts(df) df_no_clickout = get_no_clickout(df) print('There are #: ' + str(df_clickout.shape[0]) + ' clickout actions') print('There are #: ' + str(df_no_clickout.shape[0]) + ' no clickout actions') return df_clickout, df_no_clickout def get_clickouts(df_test): df_test['step_max'] = df_test.groupby(['user_id'])['step'].transform(max) df_clickout = df_test[(df_test['step_max'] == df_test['step']) & (df_test['action_type'] == 'clickout item')] del df_clickout['step_max'] return df_clickout def get_no_clickout(df): df['step_max'] = df.groupby(['user_id'])['step'].transform(max) df_no_clickout = df[(~(df['step_max'] == df['step'])) | (~(df['action_type'] == 'clickout item'))] del df_no_clickout['step_max'] return df_no_clickout def complete_prediction(df_test_nation): df_test_nation['item_recommendations'] = df_test_nation.apply(lambda x: fill_recs(x.impressions), axis=1) df_out_nation = df_test_nation[['user_id', 'session_id', 'timestamp','step', 'item_recommendations']] return df_out_nation def fill_recs(imp): l = imp.split('|') return f.list_to_space_string(l) def train_mf_model(df_train, params, item_features = None, user_features = None, hotel_dic = None, user_dic = None): df_interactions = get_n_interaction(df_train, weight_dic = params.actionsweights) if user_dic == None: print('Null user dictionary. Creating it...') user_dic = create_user_dict(df_interactions) if hotel_dic == None: print('Null hotel dictionary. Creating it...') hotel_dic = create_item_dict(df_interactions) interaction_matrix = f.create_sparse_interaction_matrix(df_interactions, user_dic, hotel_dic) mf_model = runMF(interaction_matrix, params, n_jobs = 4, item_f = item_features, user_f = user_features) return mf_model def generate_prices_sparse_matrix(df, features_col='intervals'): df['present'] = 1 hotel_dict = create_item_dict(df) #Controllare che sia uguale all'altro dizionario feature_dict = create_item_dict(df, col_name='feature') list_hotel = list(df['reference']) list_features = list(df['feature']) list_data = list(df['present']) n_items = len(list_hotel) n_features = len(list_features) # Convert each list of string in a list of indexes list_items = list(map(lambda x: hotel_dict[x], list_hotel)) list_features = list(map(lambda x: feature_dict[x], list_features)) # Generate the sparse matrix row = np.array(list_items) col = np.array(list_features) data = np.array(list_data) csr = csr_matrix((data, (row, col)), shape=(n_items, n_features)) return csr, hotel_dict def get_hotel_prices(metadata_file, interactions, n_categories = 2000): """ Required Input - - metadata_file = file with the average price for each hotel """ df_metadata =
pd.read_csv(metadata_file)
pandas.read_csv
# --- # jupyter: # jupytext: # formats: ipynb,py:light # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.3.0 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- from google.cloud import bigquery client = bigquery.Client() # %load_ext google.cloud.bigquery # %reload_ext google.cloud.bigquery # + ####################################### print('Setting everything up...') ####################################### import warnings warnings.filterwarnings('ignore') import pandas_gbq import pandas as pd import numpy as np import matplotlib import matplotlib.pyplot as plt import matplotlib.lines as mlines from matplotlib.lines import Line2D import matplotlib.ticker as ticker import matplotlib.cm as cm import matplotlib as mpl import matplotlib.pyplot as plt # %matplotlib inline import os import sys from datetime import datetime from datetime import date from datetime import time from datetime import timedelta import time DATASET = '' plt.style.use('ggplot') pd.options.display.max_rows = 999 pd.options.display.max_columns = 999 pd.options.display.max_colwidth = 999 from IPython.display import HTML as html_print def cstr(s, color='black'): return "<text style=color:{}>{}</text>".format(color, s) print('done.') # - cwd = os.getcwd() cwd = str(cwd) print(cwd) # + dic = { 'src_hpo_id': [ "saou_uab_selma", "saou_uab_hunt", "saou_tul", "pitt_temple", "saou_lsu", "trans_am_meyers", "trans_am_essentia", "saou_ummc", "seec_miami", "seec_morehouse", "seec_emory", "uamc_banner", "pitt", "nyc_cu", "ipmc_uic", "trans_am_spectrum", "tach_hfhs", "nec_bmc", "cpmc_uci", "nec_phs", "nyc_cornell", "ipmc_nu", "nyc_hh", "ipmc_uchicago", "aouw_mcri", "syhc", "cpmc_ceders", "seec_ufl", "saou_uab", "trans_am_baylor", "cpmc_ucsd", "ecchc", "chci", "aouw_uwh", "cpmc_usc", "hrhc", "ipmc_northshore", "chs", "cpmc_ucsf", "jhchc", "aouw_mcw", "cpmc_ucd", "ipmc_rush", "va", "saou_umc" ], 'HPO': [ "UAB Selma", "UAB Huntsville", "Tulane University", "Temple University", "Louisiana State University", "Reliant Medical Group (Meyers Primary Care)", "Essentia Health Superior Clinic", "University of Mississippi", "SouthEast Enrollment Center Miami", "SouthEast Enrollment Center Morehouse", "SouthEast Enrollment Center Emory", "Banner Health", "University of Pittsburgh", "Columbia University Medical Center", "University of Illinois Chicago", "Spectrum Health", "Henry Ford Health System", "Boston Medical Center", "UC Irvine", "Partners HealthCare", "Weill Cornell Medical Center", "Northwestern Memorial Hospital", "Harlem Hospital", "University of Chicago", "Marshfield Clinic", "San Ysidro Health Center", "Cedars-Sinai", "University of Florida", "University of Alabama at Birmingham", "Baylor", "UC San Diego", "Eau Claire Cooperative Health Center", "Community Health Center, Inc.", "UW Health (University of Wisconsin Madison)", "University of Southern California", "HRHCare", "NorthShore University Health System", "Cherokee Health Systems", "UC San Francisco", "Jackson-Hinds CHC", "Medical College of Wisconsin", "UC Davis", "Rush University", "United States Department of Veterans Affairs - Boston", "University Medical Center (UA Tuscaloosa)" ] } site_df = pd.DataFrame(data=dic) site_df # + ###################################### print('Getting the data from the database...') ###################################### site_map = pd.io.gbq.read_gbq(''' select distinct * from ( SELECT DISTINCT(src_hpo_id) as src_hpo_id FROM `{}._mapping_visit_occurrence` UNION ALL SELECT DISTINCT(src_hpo_id) as src_hpo_id FROM `{}._mapping_care_site` UNION ALL SELECT DISTINCT(src_hpo_id) as src_hpo_id FROM `{}._mapping_condition_occurrence` UNION ALL SELECT DISTINCT(src_hpo_id) as src_hpo_id FROM `{}._mapping_device_exposure` UNION ALL SELECT DISTINCT(src_hpo_id) as src_hpo_id FROM `{}._mapping_drug_exposure` UNION ALL SELECT DISTINCT(src_hpo_id) as src_hpo_id FROM `{}._mapping_location` UNION ALL SELECT DISTINCT(src_hpo_id) as src_hpo_id FROM `{}._mapping_measurement` UNION ALL SELECT DISTINCT(src_hpo_id) as src_hpo_id FROM `{}._mapping_note` UNION ALL SELECT DISTINCT(src_hpo_id) as src_hpo_id FROM `{}._mapping_observation` UNION ALL SELECT DISTINCT(src_hpo_id) as src_hpo_id FROM `{}._mapping_person` UNION ALL SELECT DISTINCT(src_hpo_id) as src_hpo_id FROM `{}._mapping_procedure_occurrence` UNION ALL SELECT DISTINCT(src_hpo_id) as src_hpo_id FROM `{}._mapping_provider` UNION ALL SELECT DISTINCT(src_hpo_id) as src_hpo_id FROM `{}._mapping_specimen` UNION ALL SELECT DISTINCT(src_hpo_id) as src_hpo_id FROM `{}._mapping_visit_occurrence` ) '''.format(DATASET, DATASET, DATASET, DATASET, DATASET, DATASET, DATASET, DATASET, DATASET, DATASET, DATASET, DATASET, DATASET, DATASET, DATASET, DATASET, DATASET, DATASET, DATASET, DATASET, DATASET, DATASET, DATASET, DATASET, DATASET, DATASET), dialect='standard') print(site_map.shape[0], 'records received.') # - site_df = pd.merge(site_map, site_df, how='outer', on='src_hpo_id') site_df Lipid = (40782589, 40795800, 40772572) CBC = (40789356, 40789120, 40789179, 40772748, 40782735, 40789182, 40786033, 40779159) CBCwDiff = (40785788, 40785796, 40779195, 40795733, 40795725, 40772531, 40779190, 40785793, 40779191, 40782561, 40789266) CMP = (3049187, 3053283, 40775801, 40779224, 40782562, 40782579, 40785850, 40785861, 40785869, 40789180, 40789190, 40789527, 40791227, 40792413, 40792440, 40795730, 40795740, 40795754) Physical_Measurement = (40654163, 40655804, 40654162, 40655805, 40654167, 40654164) measurement_codes = Lipid + CBC + CBCwDiff + CMP + Physical_Measurement # # Integration of Units for All Measurements: # # #### Getting the numbers for all of the unit concept IDs by site # + unit_concept_ids_by_site_query = """ CREATE TABLE `{DATASET}.sites_unit_counts` OPTIONS ( expiration_timestamp=TIMESTAMP_ADD(CURRENT_TIMESTAMP(), INTERVAL 3 MINUTE) ) AS SELECT DISTINCT mm.src_hpo_id, COUNT(m.measurement_id) as number_total_units FROM `{DATASET}.unioned_ehr_measurement` m JOIN `{DATASET}._mapping_measurement` mm ON m.measurement_id = mm.measurement_id GROUP BY 1 ORDER BY number_total_units DESC """.format(DATASET = DATASET) unit_concept_ids_by_site = pd.io.gbq.read_gbq(unit_concept_ids_by_site_query, dialect='standard') # + unit_concept_ids_by_site_query = """ SELECT * FROM `{DATASET}.sites_unit_counts` """.format(DATASET = DATASET) unit_concept_ids_by_site = pd.io.gbq.read_gbq(unit_concept_ids_by_site_query, dialect='standard') # - unit_concept_ids_by_site # #### Below are the "successful" unit concept IDs # + successful_unit_concept_ids_by_site_query = """ CREATE TABLE `{DATASET}.sites_successful_unit_counts` OPTIONS ( expiration_timestamp=TIMESTAMP_ADD(CURRENT_TIMESTAMP(), INTERVAL 3 MINUTE) ) AS SELECT DISTINCT mm.src_hpo_id, COUNT(m.measurement_id) as number_valid_units FROM `{DATASET}.unioned_ehr_measurement` m JOIN `{DATASET}._mapping_measurement` mm ON m.measurement_id = mm.measurement_id JOIN `{DATASET}.concept` c ON m.unit_concept_id = c.concept_id WHERE c.standard_concept IN ('S') AND LOWER(c.domain_id) LIKE '%unit%' GROUP BY 1 ORDER BY number_valid_units DESC """.format(DATASET = DATASET) successful_unit_concept_ids_by_site = pd.io.gbq.read_gbq(successful_unit_concept_ids_by_site_query, dialect='standard') # + successful_unit_concept_ids_by_site_query = """ SELECT * FROM `{DATASET}.sites_successful_unit_counts` """.format(DATASET = DATASET) successful_unit_concept_ids_by_site = pd.io.gbq.read_gbq(successful_unit_concept_ids_by_site_query, dialect='standard') # - successful_unit_concept_ids_by_site final_all_units_df = pd.merge(site_df, unit_concept_ids_by_site, on = 'src_hpo_id', how = 'left') final_all_units_df = pd.merge(final_all_units_df, successful_unit_concept_ids_by_site, on = 'src_hpo_id', how = 'left') final_all_units_df['total_unit_success_rate'] = round(final_all_units_df['number_valid_units'] / final_all_units_df['number_total_units'] * 100, 2) final_all_units_df = final_all_units_df.fillna(0) final_all_units_df = final_all_units_df.sort_values(by='total_unit_success_rate', ascending = False) final_all_units_df # # Integration of Units for Selected Measurements # # #### making the distinction because - according to the [AoU EHR Operations](https://sites.google.com/view/ehrupload/omop-tables/measurement?authuser=0) page (as of 03/11/2020) - the unit_concept_id are only required for the 'required labs' # + selected_unit_concept_ids_by_site_query = """ CREATE TABLE `{DATASET}.sites_unit_counts_selected_measurements` OPTIONS ( expiration_timestamp=TIMESTAMP_ADD(CURRENT_TIMESTAMP(), INTERVAL 3 MINUTE) ) AS SELECT DISTINCT mm.src_hpo_id, COUNT(m.measurement_id) as number_sel_meas FROM `{DATASET}.unioned_ehr_measurement` m JOIN `{DATASET}._mapping_measurement` mm ON m.measurement_id = mm.measurement_id JOIN `{DATASET}.concept_ancestor` ca ON ca.descendant_concept_id = m.measurement_concept_id JOIN `{DATASET}.concept` c ON m.unit_concept_id = c.concept_id WHERE ca.ancestor_concept_id IN {selected_measurements} GROUP BY 1 ORDER BY number_sel_meas DESC """.format(DATASET = DATASET, selected_measurements = measurement_codes) selected_unit_concept_ids_by_site = pd.io.gbq.read_gbq(selected_unit_concept_ids_by_site_query, dialect='standard') # + selected_unit_concept_ids_by_site_query = """ SELECT * FROM `{DATASET}.sites_unit_counts_selected_measurements` """.format(DATASET = DATASET) selected_unit_concept_ids_by_site = pd.io.gbq.read_gbq(selected_unit_concept_ids_by_site_query, dialect='standard') # - selected_unit_concept_ids_by_site # #### Below are the 'successful' unit_concept_ids # + successful_selected_unit_concept_ids_by_site_query = """ CREATE TABLE `{DATASET}.sites_successful_unit_counts_sel_meas` OPTIONS ( expiration_timestamp=TIMESTAMP_ADD(CURRENT_TIMESTAMP(), INTERVAL 3 MINUTE) ) AS SELECT DISTINCT mm.src_hpo_id, COUNT(m.unit_concept_id) as number_valid_units_sel_meas FROM `{DATASET}.unioned_ehr_measurement` m JOIN `{DATASET}._mapping_measurement` mm ON m.measurement_id = mm.measurement_id JOIN `{DATASET}.concept_ancestor` ca ON ca.descendant_concept_id = m.measurement_concept_id JOIN `{DATASET}.concept` c ON m.unit_concept_id = c.concept_id WHERE c.standard_concept IN ('S') AND LOWER(c.domain_id) LIKE '%unit%' AND ca.ancestor_concept_id IN {selected_measurements} GROUP BY 1 ORDER BY number_valid_units_sel_meas DESC """.format(DATASET = DATASET, selected_measurements = measurement_codes) successful_selected_unit_concept_ids_by_site =
pd.io.gbq.read_gbq(successful_selected_unit_concept_ids_by_site_query, dialect='standard')
pandas.io.gbq.read_gbq
# -*- coding: utf-8 -*- """ Created on Fri Dec 13 15:21:55 2019 @author: raryapratama """ #%% #Step (1): Import Python libraries, set land conversion scenarios general parameters import numpy as np import matplotlib.pyplot as plt from scipy.integrate import quad import seaborn as sns import pandas as pd #PF_PO Scenario ##Set parameters #Parameters for primary forest initAGB = 233 #source: van Beijma et al. (2018) initAGB_min = 233-72 initAGB_max = 233 + 72 #parameters for oil palm plantation. Source: Khasanah et al. (2015) tf_palmoil = 26 a_nucleus = 2.8167 b_nucleus = 6.8648 a_plasma = 2.5449 b_plasma = 5.0007 c_cont_po_nucleus = 0.5448 #carbon content in biomass c_cont_po_plasma = 0.5454 tf = 201 a = 0.082 b = 2.53 #%% #Step (2_1): C loss from the harvesting/clear cut df1nu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_S1nu') df1pl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_S1pl') df3nu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_Enu') df3pl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_Epl') t = range(0,tf,1) c_firewood_energy_S1nu = df1nu['Firewood_other_energy_use'].values c_firewood_energy_S1pl = df1pl['Firewood_other_energy_use'].values c_firewood_energy_Enu = df3nu['Firewood_other_energy_use'].values c_firewood_energy_Epl = df3pl['Firewood_other_energy_use'].values #%% #Step (2_2): C loss from the harvesting/clear cut as wood pellets dfEnu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_Enu') dfEpl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_Epl') c_pellets_Enu = dfEnu['Wood_pellets'].values c_pellets_Epl = dfEpl['Wood_pellets'].values #%% #Step (3): Aboveground biomass (AGB) decomposition df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_S1nu') tf = 201 t = np.arange(tf) def decomp(t,remainAGB): return (1-(1-np.exp(-a*t))**b)*remainAGB #set zero matrix output_decomp = np.zeros((len(t),len(df['C_remainAGB'].values))) for i,remain_part in enumerate(df['C_remainAGB'].values): #print(i,remain_part) output_decomp[i:,i] = decomp(t[:len(t)-i],remain_part) print(output_decomp[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix = np.zeros((len(t)-1,len(df['C_remainAGB'].values-1))) i = 0 while i < tf: subs_matrix[:,i] = np.diff(output_decomp[:,i]) i = i + 1 print(subs_matrix[:,:4]) print(len(subs_matrix)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix = subs_matrix.clip(max=0) print(subs_matrix[:,:4]) #make the results as absolute values subs_matrix = abs(subs_matrix) print(subs_matrix[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix = np.zeros((len(t)-200,len(df['C_remainAGB'].values))) print(zero_matrix) subs_matrix = np.vstack((zero_matrix, subs_matrix)) print(subs_matrix[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot = (tf,1) decomp_emissions = np.zeros(matrix_tot) i = 0 while i < tf: decomp_emissions[:,0] = decomp_emissions[:,0] + subs_matrix[:,i] i = i + 1 print(decomp_emissions[:,0]) #%% #Step (4): Dynamic stock model of in-use wood materials from dynamic_stock_model import DynamicStockModel df1nu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_S1nu') df1pl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_S1pl') df3nu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_Enu') df3pl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_Epl') #product lifetime #building materials B = 35 TestDSM1nu = DynamicStockModel(t = df1nu['Year'].values, i = df1nu['Input_PF'].values, lt = {'Type': 'Normal', 'Mean': np.array([B]), 'StdDev': np.array([0.3*B])}) TestDSM1pl = DynamicStockModel(t = df1pl['Year'].values, i = df1pl['Input_PF'].values, lt = {'Type': 'Normal', 'Mean': np.array([B]), 'StdDev': np.array([0.3*B])}) TestDSM3nu = DynamicStockModel(t = df3nu['Year'].values, i = df3nu['Input_PF'].values, lt = {'Type': 'Normal', 'Mean': np.array([B]), 'StdDev': np.array([0.3*B])}) TestDSM3pl = DynamicStockModel(t = df3pl['Year'].values, i = df3pl['Input_PF'].values, lt = {'Type': 'Normal', 'Mean': np.array([B]), 'StdDev': np.array([0.3*B])}) CheckStr1nu, ExitFlag1nu = TestDSM1nu.dimension_check() CheckStr1pl, ExitFlag1nu = TestDSM1pl.dimension_check() CheckStr3nu, ExitFlag3nu = TestDSM3nu.dimension_check() CheckStr3pl, ExitFlag3pl = TestDSM3pl.dimension_check() Stock_by_cohort1nu, ExitFlag1nu = TestDSM1nu.compute_s_c_inflow_driven() Stock_by_cohort1pl, ExitFlag1pl = TestDSM1pl.compute_s_c_inflow_driven() Stock_by_cohort3nu, ExitFlag3nu = TestDSM3nu.compute_s_c_inflow_driven() Stock_by_cohort3pl, ExitFlag3pl = TestDSM3pl.compute_s_c_inflow_driven() S1nu, ExitFlag1nu = TestDSM1nu.compute_stock_total() S1pl, ExitFlag1pl = TestDSM1pl.compute_stock_total() S3nu, ExitFlag3nu = TestDSM3nu.compute_stock_total() S3pl, ExitFlag3pl = TestDSM3pl.compute_stock_total() O_C1nu, ExitFlag1nu = TestDSM1nu.compute_o_c_from_s_c() O_C1pl, ExitFlag1pl = TestDSM1pl.compute_o_c_from_s_c() O_C3nu, ExitFlag3nu = TestDSM3nu.compute_o_c_from_s_c() O_C3pl, ExitFlag3pl = TestDSM3pl.compute_o_c_from_s_c() O1nu, ExitFlag1nu = TestDSM1nu.compute_outflow_total() O1pl, ExitFlag1pl = TestDSM1pl.compute_outflow_total() O3nu, ExitFlag3nu = TestDSM3nu.compute_outflow_total() O3pl, ExitFlag3pl = TestDSM3pl.compute_outflow_total() DS1nu, ExitFlag1nu = TestDSM1nu.compute_stock_change() DS1pl, ExitFlag1pl = TestDSM1pl.compute_stock_change() DS3nu, ExitFlag3nu = TestDSM3nu.compute_stock_change() DS3pl, ExitFlag3pl = TestDSM3pl.compute_stock_change() Bal1nu, ExitFlag1nu = TestDSM1nu.check_stock_balance() Bal1pl, ExitFlag1pl = TestDSM1pl.check_stock_balance() Bal3nu, ExitFlag3nu = TestDSM3nu.check_stock_balance() Bal3pl, ExitFlag3pl = TestDSM3pl.check_stock_balance() #print output flow print(TestDSM1nu.o) print(TestDSM1pl.o) print(TestDSM3nu.o) print(TestDSM3pl.o) #plt.plot(TestDSM1.s) #plt.xlim([0, 100]) #plt.ylim([0,50]) #plt.show() #%% #Step (5): Biomass growth A = range(0,tf_palmoil,1) #calculate the biomass and carbon content of palm oil trees over time def Y_nucleus(A): return (44/12*1000*c_cont_po_nucleus*(a_nucleus*A + b_nucleus)) output_Y_nucleus = np.array([Y_nucleus(Ai) for Ai in A]) print(output_Y_nucleus) def Y_plasma(A): return (44/12*1000*c_cont_po_plasma*(a_plasma*A + b_plasma)) output_Y_plasma = np.array([Y_plasma(Ai) for Ai in A]) print(output_Y_plasma) ##8 times 25-year cycle of new AGB of oil palm, one year gap between the cycle #nucleus counter = range(0,8,1) y_nucleus = [] for i in counter: y_nucleus.append(output_Y_nucleus) flat_list_nucleus = [] for sublist in y_nucleus: for item in sublist: flat_list_nucleus.append(item) #the length of the list is now 208, so we remove the last 7 elements of the list to make the len=tf flat_list_nucleus = flat_list_nucleus[:len(flat_list_nucleus)-7] #plasma y_plasma = [] for i in counter: y_plasma.append(output_Y_plasma) flat_list_plasma = [] for sublist in y_plasma: for item in sublist: flat_list_plasma.append(item) #the length of the list is now 208, so we remove the last 7 elements of the list to make the len=tf flat_list_plasma = flat_list_plasma[:len(flat_list_plasma)-7] #plotting t = range (0,tf,1) plt.xlim([0, 200]) plt.plot(t, flat_list_nucleus) plt.plot(t, flat_list_plasma, color='seagreen') plt.fill_between(t, flat_list_nucleus, flat_list_plasma, color='darkseagreen', alpha=0.4) plt.xlabel('Time (year)') plt.ylabel('AGB (tCO2-eq/ha)') plt.show() ###Yearly Sequestration ###Nucleus #find the yearly sequestration by calculating the differences between elements in list 'flat_list_nucleus(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) flat_list_nucleus = [p - q for q, p in zip(flat_list_nucleus, flat_list_nucleus[1:])] #since there is no sequestration between the replanting year (e.g., year 25 to 26), we have to replace negative numbers in 'flat_list_nuclues' with 0 values flat_list_nucleus = [0 if i < 0 else i for i in flat_list_nucleus] #insert 0 value to the list as the first element, because there is no sequestration in year 0 var = 0 flat_list_nucleus.insert(0,var) #make 'flat_list_nucleus' elements negative numbers to denote sequestration flat_list_nucleus = [ -x for x in flat_list_nucleus] print(flat_list_nucleus) #Plasma #find the yearly sequestration by calculating the differences between elements in list 'flat_list_plasma(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) flat_list_plasma = [t - u for u, t in zip(flat_list_plasma, flat_list_plasma[1:])] #since there is no sequestration between the replanting year (e.g., year 25 to 26), we have to replace negative numbers in 'flat_list_plasma' with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) flat_list_plasma = [0 if i < 0 else i for i in flat_list_plasma] #insert 0 value to the list as the first element, because there is no sequestration in year 0 var = 0 flat_list_plasma.insert(0,var) #make 'flat_list_plasma' elements negative numbers to denote sequestration flat_list_plasma = [ -x for x in flat_list_plasma] print(flat_list_plasma) #%% #Step(6): post-harvest processing of wood/palm oil #post-harvest wood processing df1nu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_S1nu') df1pl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_S1pl') dfEnu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_Enu') dfEpl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_Epl') t = range(0,tf,1) PH_Emissions_HWP_S1nu = df1nu['PH_Emissions_HWP'].values PH_Emissions_HWP_S1pl = df1pl['PH_Emissions_HWP'].values PH_Emissions_HWP_Enu = df3pl['PH_Emissions_HWP'].values PH_Emissions_HWP_Epl = df3pl['PH_Emissions_HWP'].values #post-harvest palm oil processing df1nu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_S1nu') df1pl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_S1pl') dfEnu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_Enu') dfEpl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_Epl') t = range(0,tf,1) PH_Emissions_PO_S1nu = df1nu['PH_Emissions_PO'].values PH_Emissions_PO_S1pl = df1pl['PH_Emissions_PO'].values PH_Emissions_PO_Enu = df3pl['PH_Emissions_PO'].values PH_Emissions_PO_Epl = df3pl['PH_Emissions_PO'].values #%% #Step (7_1): landfill gas decomposition (CH4) #CH4 decomposition hl = 20 #half-live k = (np.log(2))/hl #S1nu df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_S1nu') tf = 201 t = np.arange(tf) def decomp_CH4_S1nu(t,remainAGB_CH4_S1nu): return (1-(1-np.exp(-k*t)))*remainAGB_CH4_S1nu #set zero matrix output_decomp_CH4_S1nu = np.zeros((len(t),len(df['Landfill_decomp_CH4'].values))) for i,remain_part_CH4_S1nu in enumerate(df['Landfill_decomp_CH4'].values): #print(i,remain_part) output_decomp_CH4_S1nu[i:,i] = decomp_CH4_S1nu(t[:len(t)-i],remain_part_CH4_S1nu) print(output_decomp_CH4_S1nu[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CH4_S1nu = np.zeros((len(t)-1,len(df['Landfill_decomp_CH4'].values-1))) i = 0 while i < tf: subs_matrix_CH4_S1nu[:,i] = np.diff(output_decomp_CH4_S1nu[:,i]) i = i + 1 print(subs_matrix_CH4_S1nu[:,:4]) print(len(subs_matrix_CH4_S1nu)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CH4_S1nu = subs_matrix_CH4_S1nu.clip(max=0) print(subs_matrix_CH4_S1nu[:,:4]) #make the results as absolute values subs_matrix_CH4_S1nu = abs(subs_matrix_CH4_S1nu) print(subs_matrix_CH4_S1nu[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CH4_S1nu = np.zeros((len(t)-200,len(df['Landfill_decomp_CH4'].values))) print(zero_matrix_CH4_S1nu) subs_matrix_CH4_S1nu = np.vstack((zero_matrix_CH4_S1nu, subs_matrix_CH4_S1nu)) print(subs_matrix_CH4_S1nu[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CH4_S1nu = (tf,1) decomp_tot_CH4_S1nu = np.zeros(matrix_tot_CH4_S1nu) i = 0 while i < tf: decomp_tot_CH4_S1nu[:,0] = decomp_tot_CH4_S1nu[:,0] + subs_matrix_CH4_S1nu[:,i] i = i + 1 print(decomp_tot_CH4_S1nu[:,0]) #S1pl df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_S1pl') tf = 201 t = np.arange(tf) def decomp_CH4_S1pl(t,remainAGB_CH4_S1pl): return (1-(1-np.exp(-k*t)))*remainAGB_CH4_S1pl #set zero matrix output_decomp_CH4_S1pl = np.zeros((len(t),len(df['Landfill_decomp_CH4'].values))) for i,remain_part_CH4_S1pl in enumerate(df['Landfill_decomp_CH4'].values): #print(i,remain_part) output_decomp_CH4_S1pl[i:,i] = decomp_CH4_S1pl(t[:len(t)-i],remain_part_CH4_S1pl) print(output_decomp_CH4_S1pl[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CH4_S1pl = np.zeros((len(t)-1,len(df['Landfill_decomp_CH4'].values-1))) i = 0 while i < tf: subs_matrix_CH4_S1pl[:,i] = np.diff(output_decomp_CH4_S1pl[:,i]) i = i + 1 print(subs_matrix_CH4_S1pl[:,:4]) print(len(subs_matrix_CH4_S1pl)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CH4_S1pl = subs_matrix_CH4_S1pl.clip(max=0) print(subs_matrix_CH4_S1pl[:,:4]) #make the results as absolute values subs_matrix_CH4_S1pl= abs(subs_matrix_CH4_S1pl) print(subs_matrix_CH4_S1pl[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CH4_S1pl = np.zeros((len(t)-200,len(df['Landfill_decomp_CH4'].values))) print(zero_matrix_CH4_S1pl) subs_matrix_CH4_S1pl = np.vstack((zero_matrix_CH4_S1pl, subs_matrix_CH4_S1pl)) print(subs_matrix_CH4_S1pl[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CH4_S1pl = (tf,1) decomp_tot_CH4_S1pl = np.zeros(matrix_tot_CH4_S1pl) i = 0 while i < tf: decomp_tot_CH4_S1pl[:,0] = decomp_tot_CH4_S1pl[:,0] + subs_matrix_CH4_S1pl[:,i] i = i + 1 print(decomp_tot_CH4_S1pl[:,0]) #Enu df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_Enu') tf = 201 t = np.arange(tf) def decomp_CH4_Enu(t,remainAGB_CH4_Enu): return (1-(1-np.exp(-k*t)))*remainAGB_CH4_Enu #set zero matrix output_decomp_CH4_Enu = np.zeros((len(t),len(df['Landfill_decomp_CH4'].values))) for i,remain_part_CH4_Enu in enumerate(df['Landfill_decomp_CH4'].values): #print(i,remain_part) output_decomp_CH4_Enu[i:,i] = decomp_CH4_Enu(t[:len(t)-i],remain_part_CH4_Enu) print(output_decomp_CH4_Enu[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CH4_Enu = np.zeros((len(t)-1,len(df['Landfill_decomp_CH4'].values-1))) i = 0 while i < tf: subs_matrix_CH4_Enu[:,i] = np.diff(output_decomp_CH4_Enu[:,i]) i = i + 1 print(subs_matrix_CH4_Enu[:,:4]) print(len(subs_matrix_CH4_Enu)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CH4_Enu = subs_matrix_CH4_Enu.clip(max=0) print(subs_matrix_CH4_Enu[:,:4]) #make the results as absolute values subs_matrix_CH4_Enu = abs(subs_matrix_CH4_Enu) print(subs_matrix_CH4_Enu[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CH4_Enu = np.zeros((len(t)-200,len(df['Landfill_decomp_CH4'].values))) print(zero_matrix_CH4_Enu) subs_matrix_CH4_Enu = np.vstack((zero_matrix_CH4_Enu, subs_matrix_CH4_Enu)) print(subs_matrix_CH4_Enu[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CH4_Enu = (tf,1) decomp_tot_CH4_Enu= np.zeros(matrix_tot_CH4_Enu) i = 0 while i < tf: decomp_tot_CH4_Enu[:,0] = decomp_tot_CH4_Enu[:,0] + subs_matrix_CH4_Enu[:,i] i = i + 1 print(decomp_tot_CH4_Enu[:,0]) #Epl df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_Epl') tf = 201 t = np.arange(tf) def decomp_CH4_Epl(t,remainAGB_CH4_Epl): return (1-(1-np.exp(-k*t)))*remainAGB_CH4_Epl #set zero matrix output_decomp_CH4_Epl = np.zeros((len(t),len(df['Landfill_decomp_CH4'].values))) for i,remain_part_CH4_Epl in enumerate(df['Landfill_decomp_CH4'].values): #print(i,remain_part) output_decomp_CH4_Epl[i:,i] = decomp_CH4_Epl(t[:len(t)-i],remain_part_CH4_Epl) print(output_decomp_CH4_Epl[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CH4_Epl = np.zeros((len(t)-1,len(df['Landfill_decomp_CH4'].values-1))) i = 0 while i < tf: subs_matrix_CH4_Epl[:,i] = np.diff(output_decomp_CH4_Epl[:,i]) i = i + 1 print(subs_matrix_CH4_Epl[:,:4]) print(len(subs_matrix_CH4_Epl)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CH4_Epl = subs_matrix_CH4_Epl.clip(max=0) print(subs_matrix_CH4_Epl[:,:4]) #make the results as absolute values subs_matrix_CH4_Epl = abs(subs_matrix_CH4_Epl) print(subs_matrix_CH4_Epl[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CH4_Epl = np.zeros((len(t)-200,len(df['Landfill_decomp_CH4'].values))) print(zero_matrix_CH4_Epl) subs_matrix_CH4_Epl = np.vstack((zero_matrix_CH4_Epl, subs_matrix_CH4_Epl)) print(subs_matrix_CH4_Epl[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CH4_Epl = (tf,1) decomp_tot_CH4_Epl = np.zeros(matrix_tot_CH4_Epl) i = 0 while i < tf: decomp_tot_CH4_Epl[:,0] = decomp_tot_CH4_Epl[:,0] + subs_matrix_CH4_Epl[:,i] i = i + 1 print(decomp_tot_CH4_Epl[:,0]) #plotting t = np.arange(0,tf) plt.plot(t,decomp_tot_CH4_S1nu,label='CH4_S1nu') plt.plot(t,decomp_tot_CH4_S1pl,label='CH4_S1pl') plt.plot(t,decomp_tot_CH4_Enu,label='CH4_Enu') plt.plot(t,decomp_tot_CH4_Epl,label='CH4_Epl') plt.xlim(0,200) plt.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) plt.show() #%% #Step (7_2): landfill gas decomposition (CO2) #CO2 decomposition hl = 20 #half-live k = (np.log(2))/hl #S1nu df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_S1nu') tf = 201 t = np.arange(tf) def decomp_CO2_S1nu(t,remainAGB_CO2_S1nu): return (1-(1-np.exp(-k*t)))*remainAGB_CO2_S1nu #set zero matrix output_decomp_CO2_S1nu = np.zeros((len(t),len(df['Landfill_decomp_CO2'].values))) for i,remain_part_CO2_S1nu in enumerate(df['Landfill_decomp_CO2'].values): #print(i,remain_part) output_decomp_CO2_S1nu[i:,i] = decomp_CO2_S1nu(t[:len(t)-i],remain_part_CO2_S1nu) print(output_decomp_CO2_S1nu[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CO2_S1nu = np.zeros((len(t)-1,len(df['Landfill_decomp_CO2'].values-1))) i = 0 while i < tf: subs_matrix_CO2_S1nu[:,i] = np.diff(output_decomp_CO2_S1nu[:,i]) i = i + 1 print(subs_matrix_CO2_S1nu[:,:4]) print(len(subs_matrix_CO2_S1nu)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CO2_S1nu = subs_matrix_CO2_S1nu.clip(max=0) print(subs_matrix_CO2_S1nu[:,:4]) #make the results as absolute values subs_matrix_CO2_S1nu = abs(subs_matrix_CO2_S1nu) print(subs_matrix_CO2_S1nu[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CO2_S1nu = np.zeros((len(t)-200,len(df['Landfill_decomp_CO2'].values))) print(zero_matrix_CO2_S1nu) subs_matrix_CO2_S1nu = np.vstack((zero_matrix_CO2_S1nu, subs_matrix_CO2_S1nu)) print(subs_matrix_CO2_S1nu[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CO2_S1nu = (tf,1) decomp_tot_CO2_S1nu = np.zeros(matrix_tot_CO2_S1nu) i = 0 while i < tf: decomp_tot_CO2_S1nu[:,0] = decomp_tot_CO2_S1nu[:,0] + subs_matrix_CO2_S1nu[:,i] i = i + 1 print(decomp_tot_CO2_S1nu[:,0]) #S1pl df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_S1pl') tf = 201 t = np.arange(tf) def decomp_CO2_S1pl(t,remainAGB_CO2_S1pl): return (1-(1-np.exp(-k*t)))*remainAGB_CO2_S1pl #set zero matrix output_decomp_CO2_S1pl = np.zeros((len(t),len(df['Landfill_decomp_CO2'].values))) for i,remain_part_CO2_S1pl in enumerate(df['Landfill_decomp_CO2'].values): #print(i,remain_part) output_decomp_CO2_S1pl[i:,i] = decomp_CO2_S1pl(t[:len(t)-i],remain_part_CO2_S1pl) print(output_decomp_CO2_S1pl[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CO2_S1pl = np.zeros((len(t)-1,len(df['Landfill_decomp_CO2'].values-1))) i = 0 while i < tf: subs_matrix_CO2_S1pl[:,i] = np.diff(output_decomp_CO2_S1pl[:,i]) i = i + 1 print(subs_matrix_CO2_S1pl[:,:4]) print(len(subs_matrix_CO2_S1pl)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CO2_S1pl = subs_matrix_CO2_S1pl.clip(max=0) print(subs_matrix_CO2_S1pl[:,:4]) #make the results as absolute values subs_matrix_CO2_S1pl= abs(subs_matrix_CO2_S1pl) print(subs_matrix_CO2_S1pl[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CO2_S1pl = np.zeros((len(t)-200,len(df['Landfill_decomp_CO2'].values))) print(zero_matrix_CO2_S1pl) subs_matrix_CO2_S1pl = np.vstack((zero_matrix_CO2_S1pl, subs_matrix_CO2_S1pl)) print(subs_matrix_CO2_S1pl[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CO2_S1pl = (tf,1) decomp_tot_CO2_S1pl = np.zeros(matrix_tot_CO2_S1pl) i = 0 while i < tf: decomp_tot_CO2_S1pl[:,0] = decomp_tot_CO2_S1pl[:,0] + subs_matrix_CO2_S1pl[:,i] i = i + 1 print(decomp_tot_CO2_S1pl[:,0]) #Enu df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_Enu') tf = 201 t = np.arange(tf) def decomp_CO2_Enu(t,remainAGB_CO2_Enu): return (1-(1-np.exp(-k*t)))*remainAGB_CO2_Enu #set zero matrix output_decomp_CO2_Enu = np.zeros((len(t),len(df['Landfill_decomp_CO2'].values))) for i,remain_part_CO2_Enu in enumerate(df['Landfill_decomp_CO2'].values): #print(i,remain_part) output_decomp_CO2_Enu[i:,i] = decomp_CO2_Enu(t[:len(t)-i],remain_part_CO2_Enu) print(output_decomp_CO2_Enu[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CO2_Enu = np.zeros((len(t)-1,len(df['Landfill_decomp_CO2'].values-1))) i = 0 while i < tf: subs_matrix_CO2_Enu[:,i] = np.diff(output_decomp_CO2_Enu[:,i]) i = i + 1 print(subs_matrix_CO2_Enu[:,:4]) print(len(subs_matrix_CO2_Enu)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CO2_Enu = subs_matrix_CO2_Enu.clip(max=0) print(subs_matrix_CO2_Enu[:,:4]) #make the results as absolute values subs_matrix_CO2_Enu = abs(subs_matrix_CO2_Enu) print(subs_matrix_CO2_Enu[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CO2_Enu = np.zeros((len(t)-200,len(df['Landfill_decomp_CO2'].values))) print(zero_matrix_CO2_Enu) subs_matrix_CO2_Enu = np.vstack((zero_matrix_CO2_Enu, subs_matrix_CO2_Enu)) print(subs_matrix_CO2_Enu[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CO2_Enu = (tf,1) decomp_tot_CO2_Enu= np.zeros(matrix_tot_CO2_Enu) i = 0 while i < tf: decomp_tot_CO2_Enu[:,0] = decomp_tot_CO2_Enu[:,0] + subs_matrix_CO2_Enu[:,i] i = i + 1 print(decomp_tot_CO2_Enu[:,0]) #Epl df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO_EC.xlsx', 'PF_PO_Epl') tf = 201 t = np.arange(tf) def decomp_CO2_Epl(t,remainAGB_CO2_Epl): return (1-(1-np.exp(-k*t)))*remainAGB_CO2_Epl #set zero matrix output_decomp_CO2_Epl = np.zeros((len(t),len(df['Landfill_decomp_CO2'].values))) for i,remain_part_CO2_Epl in enumerate(df['Landfill_decomp_CO2'].values): #print(i,remain_part) output_decomp_CO2_Epl[i:,i] = decomp_CO2_Epl(t[:len(t)-i],remain_part_CO2_Epl) print(output_decomp_CO2_Epl[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CO2_Epl = np.zeros((len(t)-1,len(df['Landfill_decomp_CO2'].values-1))) i = 0 while i < tf: subs_matrix_CO2_Epl[:,i] = np.diff(output_decomp_CO2_Epl[:,i]) i = i + 1 print(subs_matrix_CO2_Epl[:,:4]) print(len(subs_matrix_CO2_Epl)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CO2_Epl = subs_matrix_CO2_Epl.clip(max=0) print(subs_matrix_CO2_Epl[:,:4]) #make the results as absolute values subs_matrix_CO2_Epl = abs(subs_matrix_CO2_Epl) print(subs_matrix_CO2_Epl[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CO2_Epl = np.zeros((len(t)-200,len(df['Landfill_decomp_CO2'].values))) print(zero_matrix_CO2_Epl) subs_matrix_CO2_Epl = np.vstack((zero_matrix_CO2_Epl, subs_matrix_CO2_Epl)) print(subs_matrix_CO2_Epl[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CO2_Epl = (tf,1) decomp_tot_CO2_Epl = np.zeros(matrix_tot_CO2_Epl) i = 0 while i < tf: decomp_tot_CO2_Epl[:,0] = decomp_tot_CO2_Epl[:,0] + subs_matrix_CO2_Epl[:,i] i = i + 1 print(decomp_tot_CO2_Epl[:,0]) #plotting t = np.arange(0,tf) plt.plot(t,decomp_tot_CO2_S1nu,label='CO2_S1nu') plt.plot(t,decomp_tot_CO2_S1pl,label='CO2_S1pl') plt.plot(t,decomp_tot_CO2_Enu,label='CO2_Enu') plt.plot(t,decomp_tot_CO2_Epl,label='CO2_Epl') plt.xlim(0,200) plt.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) plt.show() #%% #Step (8): Sum the emissions and sequestration (net carbon balance), CO2 and CH4 are separated #https://stackoverflow.com/questions/52703442/python-sum-values-from-multiple-lists-more-than-two #C_loss + C_remainAGB + C_remainHWP + PH_Emissions_PO Emissions_PF_PO_S1nu = [c_firewood_energy_S1nu, decomp_emissions[:,0], TestDSM1nu.o, PH_Emissions_PO_S1nu, PH_Emissions_HWP_S1nu, decomp_tot_CO2_S1nu[:,0]] Emissions_PF_PO_S1pl = [c_firewood_energy_S1pl, decomp_emissions[:,0], TestDSM1pl.o, PH_Emissions_PO_S1pl, PH_Emissions_HWP_S1pl, decomp_tot_CO2_S1pl[:,0]] Emissions_PF_PO_Enu = [c_firewood_energy_Enu, c_pellets_Enu, decomp_emissions[:,0], TestDSM3nu.o, PH_Emissions_PO_Enu, PH_Emissions_HWP_Enu, decomp_tot_CO2_Enu[:,0]] Emissions_PF_PO_Epl = [c_firewood_energy_Epl, c_pellets_Epl, decomp_emissions[:,0], TestDSM3pl.o, PH_Emissions_PO_Epl, PH_Emissions_HWP_Epl, decomp_tot_CO2_Epl[:,0]] Emissions_PF_PO_S1nu = [sum(x) for x in zip(*Emissions_PF_PO_S1nu)] Emissions_PF_PO_S1pl = [sum(x) for x in zip(*Emissions_PF_PO_S1pl)] Emissions_PF_PO_Enu = [sum(x) for x in zip(*Emissions_PF_PO_Enu)] Emissions_PF_PO_Epl = [sum(x) for x in zip(*Emissions_PF_PO_Epl)] #CH4_S1nu Emissions_CH4_PF_PO_S1nu = decomp_tot_CH4_S1nu[:,0] #CH4_S1pl Emissions_CH4_PF_PO_S1pl = decomp_tot_CH4_S1pl[:,0] #CH4_Enu Emissions_CH4_PF_PO_Enu = decomp_tot_CH4_Enu[:,0] #CH4_Epl Emissions_CH4_PF_PO_Epl = decomp_tot_CH4_Epl[:,0] #%% #Step (9): Generate the excel file (emissions_seq_scenarios.xlsx) from Step (8) calculation #print year column year = [] for x in range (0, tf): year.append(x) print (year) #print CH4 emission column import itertools lst = [0] Emissions_CH4 = list(itertools.chain.from_iterable(itertools.repeat(x, tf) for x in lst)) print(Emissions_CH4) #print emission ref lst1 = [0] Emission_ref = list(itertools.chain.from_iterable(itertools.repeat(x, tf) for x in lst1)) print(Emission_ref) #replace the first element with 1 to denote the emission reference as year 0 (for dynGWP calculation) Emission_ref[0] = 1 print(Emission_ref) Col1 = year Col2_S1nu = Emissions_PF_PO_S1nu Col2_S1pl = Emissions_PF_PO_S1pl Col2_Enu = Emissions_PF_PO_Enu Col2_Epl = Emissions_PF_PO_Epl Col3_S1nu = Emissions_CH4_PF_PO_S1nu Col3_S1pl = Emissions_CH4_PF_PO_S1pl Col3_Enu = Emissions_CH4_PF_PO_Enu Col3_Epl = Emissions_CH4_PF_PO_Epl Col4 = flat_list_nucleus Col5 = Emission_ref Col6 = flat_list_plasma #S1 df1_nu =
pd.DataFrame.from_dict({'Year':Col1,'kg_CO2':Col2_S1nu,'kg_CH4':Col3_S1nu,'kg_CO2_seq':Col4,'emission_ref':Col5})
pandas.DataFrame.from_dict
# -*- coding: utf-8 -*- import pandas as pd import numpy as np from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier from sklearn.neural_network import MLPRegressor, MLPClassifier from seaborn import lineplot from sklearn.metrics import mean_absolute_error as mae from sklearn.metrics import mean_squared_error as mse from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt import matplotlib.dates as mdates ### READ DATA INTO ONE DATAFRAME a = pd.read_csv("T1YFFM.csv", index_col="DATE") b = pd.read_csv("T5YFFM.csv", index_col="DATE") c = pd.read_csv("T10YFFM.csv", index_col="DATE") d = pd.read_csv("TB3SMFFM.csv", index_col="DATE") r = pd.read_csv("USREC.csv", index_col="DATE") data = pd.concat([a, b, c, d, r], axis=1) data.index = pd.to_datetime(data.index) data["T1YFFM_1"] = data["T1YFFM"].shift(1) data["T5YFFM_1"] = data["T5YFFM"].shift(1) data["T10YFFM_1"] = data["T10YFFM"].shift(1) data["TB3SMFFM_1"] = data["TB3SMFFM"].shift(1) data["T1YFFM_2"] = data["T1YFFM"].shift(2) data["T5YFFM_2"] = data["T5YFFM"].shift(2) data["T10YFFM_2"] = data["T10YFFM"].shift(2) data["TB3SMFFM_2"] = data["TB3SMFFM"].shift(2) # Create all target variables for i in range(18): data["future_rec_6m_{}".format(str(i))] = ( data["USREC"] .shift(-1 * i) .iloc[::-1] .rolling(6, min_periods=0) .sum() .iloc[::-1] ) data = data.fillna(0) def bad_model_test(data, date_filter, feature_cols, target_col, graph=False): # filter data_filtered = data[data.index < date_filter].copy(deep=True) features = data_filtered[feature_cols].copy(deep=True) target = data_filtered[[target_col]].copy(deep=True) # Scale features scaler_feature = MinMaxScaler() scaler_feature.fit(features) scaled_features = scaler_feature.transform(features) # Scale target scaler_target = MinMaxScaler() scaler_target.fit(target) scaled_target = np.ravel(scaler_target.transform(target)) regr = MLPRegressor(hidden_layer_sizes=(10, 10, 10)) model = regr.fit(scaled_features, scaled_target) predictions = model.predict(scaled_features) print(mse(predictions, scaled_target)) if graph: # graph_results(data_filtered[['preds', target_col]]) graph_results( data_filtered.index, np.ravel(scaler_target.inverse_transform([predictions])), np.ravel(scaler_target.inverse_transform([scaled_target])), ) def graph_results(index, predictions, scaled_target): fig, ax = plt.subplots(figsize=(25, 12)) # myFmt = mdates.DateFormatter("%y-%m") # ax.xaxis.set_major_formatter(myFmt) ax.xaxis.set_major_locator(mdates.MonthLocator(interval=12)) ax.set_title("Preds", size=30) # wide_df = data[['preds', target_col]] wide_df =
pd.DataFrame(index=index)
pandas.DataFrame
import pandas as pd import numpy as np import matplotlib.pyplot as plt from linearmodels import PanelOLS import statsmodels.api as sm import econtools as econ import econtools.metrics as mt import math from statsmodels.stats.outliers_influence import variance_inflation_factor from auxiliary.prepare import * from auxiliary.table2 import * from auxiliary.table3 import * from auxiliary.table4 import * from auxiliary.table5 import * from auxiliary.table6 import * from auxiliary.table7 import * from auxiliary.extension import * from auxiliary.table_formula import * def calc_vif(X): # Calculating VIF vif = pd.DataFrame() vif["variables"] = X.columns vif["VIF"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])] return(vif) def table5_setting(data): df = data df = df[((df['turin_co_sample']==1) | (df['turin_pr_sample']==1)) & ((df['post_experience']>=5)|(df['post_experience'].isnull()==True)) & ((df['pre_experience']>=5)|(df['pre_experience'].isnull()==True))& (df['missing']==0)] df = df[(df['ctrl_pop_turin_co_sample']==1) | (df['ctrl_pop_turin_pr_sample']==1) | (df['ctrl_exp_turin_co_sample']==1) | (df['ctrl_exp_turin_pr_sample']==1) | (df['ctrl_pop_exp_turin_co_sample']==1) | (df['ctrl_pop_exp_turin_pr_sample']==1)] df = df.reset_index() #re-construct trend-pa: setting id_auth_remained = df['id_auth'].unique() id_auth_remained_df = pd.DataFrame({'id_auth': [], 'group_num': []}) for i in range(len(id_auth_remained)): id_auth_remained_df.loc[i,'id_auth'] = id_auth_remained[i] id_auth_remained_df.loc[i,'group_num'] = i+1 for i in range(len(df)): for j in range(len(id_auth_remained_df)): if df.loc[i, 'id_auth'] == id_auth_remained_df.loc[j, 'id_auth']: df.loc[i, 'id_auth_remained'] = j+1 id_auth_remained_dum = pd.get_dummies(df['id_auth_remained']).rename(columns=lambda x: 'id_auth_remained' + str(x)) df = pd.concat([df, id_auth_remained_dum],axis = 1) #re-construct trend-pa for i in range(len(id_auth_remained_dum.columns)): df['trend_pa_remained_'+str(i+1)] = 0 for j in range(len(df)): if df.loc[j, id_auth_remained_dum.columns[i]]==1 and df.loc[j, 'authority_code']!=3090272 and df.loc[j, 'authority_code']!=3070001: df.loc[j,'trend_pa_remained_'+str(i+1)] = 1 df.drop([id_auth_remained_dum.columns[i]],axis = 1) return(df) def table5_PanelA_odd(data): outcomes = ['discount','delay_ratio','overrun_ratio','days_to_award'] t = 'turin_co_sample' g = 'ctrl_exp' c_outcomes=1 i = 5 df1 = data df1_tmp = df1[(df1[t]==1)& (df1[g +'_' + t]==1) & (df1['post_experience']>=i) & (df1['pre_experience']>=i)& (df1['post_experience'].isnull()==False) & (df1['pre_experience'].isnull()==False) & (df1['missing']==0) & (df1['fiscal_efficiency'].isnull()==False) & (df1['reserve_price'].isnull()==False)&(df1['municipality'].isnull()==False)] for o in outcomes: df1 = df1_tmp[df1_tmp[o].isnull()==False] df1 = df1.reset_index() df1 = df1.sort_values(by = 'authority_code', ascending = True) df1['ind'] = np.nan for i in range(len(df1)): if i == 0: df1.loc[i, 'ind'] = 1 else: if df1.loc[i, 'authority_code'] != df1.loc[i-1, 'authority_code']: df1.loc[i, 'ind'] = 1 #create dummies for administration-year pairs all_years = df1['year'].unique() all_authorities = df1['authority_code'].unique() auth_year_reg_col = [] for auth in all_authorities: for yr in all_years: df1['auth_year_' + str(auth)+'_' + str(yr)] = 0 auth_year_reg_col.append('auth_year_' + str(auth)+'_' + str(yr)) df1.loc[(df1['year']==yr) & (df1['authority_code']==auth), 'auth_year_' + str(auth)+'_' + str(yr) ] = 1 ##regression for first stage #create dummies for work category all_categories = df1['work_category'].unique() for cat in all_categories: df1['cat_'+cat] = 0 df1.loc[df1['work_category']==cat, 'cat_'+cat] =1 ### Regression first stage #setting work_dum = pd.get_dummies(df1['work_category']).rename(columns=lambda x: 'work_dum_' + str(x)) year_dum = pd.get_dummies(df1['year']).rename(columns=lambda x: 'year_dum_' + str(x)) auth_dum = pd.get_dummies(df1['authority_code']).rename(columns=lambda x: 'auth_dum_' + str(x)) dum_df = pd.concat([work_dum, year_dum, auth_dum],axis = 1) df1 = pd.concat([df1,dum_df],axis = 1) work_list = list(work_dum.columns) year_list = list(year_dum.columns) auth_list = list(auth_dum.columns) reg_col = [] for i in work_list: reg_col.append(i) for j in year_list: reg_col.append(j) for k in auth_list: reg_col.append(k) exog_var = ['fpsb_auction','reserve_price','municipality','fiscal_efficiency'] exog = exog_var + reg_col exog.remove('year_dum_2000.0') exog.remove('work_dum_OG01') exog.remove('auth_dum_3.0') exog.remove('auth_dum_1708.0') #1. reg fe_reg_1 = mt.reg(df1, o, exog, cluster = 'auth_anno', addcons= True, check_colinear = True) #2. reg fe_reg_2 = mt.reg(df1, o, exog, cluster = 'authority_code',addcons= True, check_colinear = True) ci_1 = fe_reg_1.summary.loc['fpsb_auction',['CI_low', 'CI_high']].round() ci_2 = fe_reg_2.summary.loc['fpsb_auction',['CI_low', 'CI_high']].round() if o == 'discount': ci_discount = pd.DataFrame((ci_1,ci_2)) elif o == 'delay_ratio': ci_delay_ratio = pd.DataFrame((ci_1,ci_2)) elif o == 'overrun_ratio': ci_overrun_ratio = pd.DataFrame((ci_1,ci_2)) else: ci_days_to_award = pd.DataFrame((ci_1,ci_2)) ci = pd.concat([ci_discount,ci_delay_ratio,ci_overrun_ratio,ci_days_to_award],axis=1).reset_index() del ci['index'] return(ci) def table5_PanelA_even(data): outcomes = ['discount','delay_ratio','overrun_ratio','days_to_award'] t = 'turin_co_sample' g = 'ctrl_exp' c_outcomes=1 i = 5 df1 = data df1_tmp = df1[(df1[t]==1)& (df1[g +'_' + t]==1) & (df1['post_experience']>=i) & (df1['pre_experience']>=i)& (df1['post_experience'].isnull()==False) & (df1['pre_experience'].isnull()==False) & (df1['missing']==0) & (df1['fiscal_efficiency'].isnull()==False) & (df1['reserve_price'].isnull()==False)&(df1['municipality'].isnull()==False)] for o in outcomes: df1 = df1_tmp[df1_tmp[o].isnull()==False] df1 = df1.reset_index() df1 = df1.sort_values(by = 'authority_code', ascending = True) df1['ind'] = np.nan for i in range(len(df1)): if i == 0: df1.loc[i, 'ind'] = 1 else: if df1.loc[i, 'authority_code'] != df1.loc[i-1, 'authority_code']: df1.loc[i, 'ind'] = 1 #create dummies for administration-year pairs all_years = df1['year'].unique() all_authorities = df1['authority_code'].unique() auth_year_reg_col = [] for auth in all_authorities: for yr in all_years: df1['auth_year_' + str(auth)+'_' + str(yr)] = 0 auth_year_reg_col.append('auth_year_' + str(auth)+'_' + str(yr)) df1.loc[(df1['year']==yr) & (df1['authority_code']==auth), 'auth_year_' + str(auth)+'_' + str(yr) ] = 1 ##regression for first stage #create dummies for work category all_categories = df1['work_category'].unique() for cat in all_categories: df1['cat_'+cat] = 0 df1.loc[df1['work_category']==cat, 'cat_'+cat] =1 ### Regression first stage #setting work_dum = pd.get_dummies(df1['work_category']).rename(columns=lambda x: 'work_dum_' + str(x)) year_dum = pd.get_dummies(df1['year']).rename(columns=lambda x: 'year_dum_' + str(x)) auth_dum = pd.get_dummies(df1['authority_code']).rename(columns=lambda x: 'auth_dum_' + str(x)) dum_df = pd.concat([work_dum, year_dum, auth_dum],axis = 1) df1 = pd.concat([df1,dum_df],axis = 1) work_list = list(work_dum.columns) year_list = list(year_dum.columns) auth_list = list(auth_dum.columns) reg_col = [] for i in work_list: reg_col.append(i) for j in year_list: reg_col.append(j) exog_var = ['fpsb_auction','reserve_price','municipality','fiscal_efficiency','trend','trend_treat'] for i in range(1,36): exog_var.append('trend_pa_remained_'+str(i)) exog = exog_var + reg_col exog.remove('year_dum_2000.0') exog.remove('work_dum_OG01') for i in [2,4,6,7,9,11,12,13,15,16,17,18,20,21,22,23,24,25,26,28,34,35]: exog.remove('trend_pa_remained_'+str(i)) #1. reg fe_reg_1 = mt.reg(df1, o, exog, cluster = 'auth_anno', check_colinear = True) #2. reg fe_reg_2 = mt.reg(df1, o, exog, cluster = 'authority_code', check_colinear = True) ci_1 = fe_reg_1.summary.loc['fpsb_auction',['CI_low', 'CI_high']].round() ci_2 = fe_reg_2.summary.loc['fpsb_auction',['CI_low', 'CI_high']].round() if o == 'discount': ci_discount = pd.DataFrame((ci_1,ci_2)) elif o == 'delay_ratio': ci_delay_ratio = pd.DataFrame((ci_1,ci_2)) elif o == 'overrun_ratio': ci_overrun_ratio = pd.DataFrame((ci_1,ci_2)) else: ci_days_to_award = pd.DataFrame((ci_1,ci_2)) ci = pd.concat([ci_discount,ci_delay_ratio,ci_overrun_ratio,ci_days_to_award],axis=1).reset_index() del ci['index'] return(ci) def table5_PanelB_odd(data): outcomes = ['discount','delay_ratio','overrun_ratio','days_to_award'] t = 'turin_pr_sample' g = 'ctrl_exp' c_outcomes=1 i = 5 df1 = data df1_tmp = df1[(df1[t]==1)& (df1[g +'_' + t]==1) & (df1['post_experience']>=i) & (df1['pre_experience']>=i)& (df1['post_experience'].isnull()==False) & (df1['pre_experience'].isnull()==False) & (df1['missing']==0) & (df1['fiscal_efficiency'].isnull()==False) & (df1['reserve_price'].isnull()==False)&(df1['municipality'].isnull()==False)] for o in outcomes: df1 = df1_tmp[df1_tmp[o].isnull()==False] df1 = df1.reset_index() df1 = df1.sort_values(by = 'authority_code', ascending = True) df1['ind'] = np.nan for i in range(len(df1)): if i == 0: df1.loc[i, 'ind'] = 1 else: if df1.loc[i, 'authority_code'] != df1.loc[i-1, 'authority_code']: df1.loc[i, 'ind'] = 1 #create dummies for administration-year pairs all_years = df1['year'].unique() all_authorities = df1['authority_code'].unique() auth_year_reg_col = [] for auth in all_authorities: for yr in all_years: df1['auth_year_' + str(auth)+'_' + str(yr)] = 0 auth_year_reg_col.append('auth_year_' + str(auth)+'_' + str(yr)) df1.loc[(df1['year']==yr) & (df1['authority_code']==auth), 'auth_year_' + str(auth)+'_' + str(yr) ] = 1 ##regression for first stage #create dummies for work category all_categories = df1['work_category'].unique() for cat in all_categories: df1['cat_'+cat] = 0 df1.loc[df1['work_category']==cat, 'cat_'+cat] =1 ### Regression first stage #setting work_dum = pd.get_dummies(df1['work_category']).rename(columns=lambda x: 'work_dum_' + str(x)) year_dum = pd.get_dummies(df1['year']).rename(columns=lambda x: 'year_dum_' + str(x)) auth_dum = pd.get_dummies(df1['authority_code']).rename(columns=lambda x: 'auth_dum_' + str(x)) dum_df = pd.concat([work_dum, year_dum, auth_dum],axis = 1) df1 = pd.concat([df1,dum_df],axis = 1) work_list = list(work_dum.columns) year_list = list(year_dum.columns) auth_list = list(auth_dum.columns) reg_col = [] for i in work_list: reg_col.append(i) for j in year_list: reg_col.append(j) for k in auth_list: reg_col.append(k) exog_var = ['fpsb_auction','reserve_price','municipality','fiscal_efficiency'] exog = exog_var + reg_col exog.remove('year_dum_2000.0') exog.remove('work_dum_OG01') exog.remove('auth_dum_3.0') exog.remove('auth_dum_1708.0') #1. reg fe_reg_1 = mt.reg(df1, o, exog, cluster = 'auth_anno', addcons= True, check_colinear = True) #2. reg fe_reg_2 = mt.reg(df1, o, exog, cluster = 'authority_code',addcons= True, check_colinear = True) ci_1 = fe_reg_1.summary.loc['fpsb_auction',['CI_low', 'CI_high']].round() ci_2 = fe_reg_2.summary.loc['fpsb_auction',['CI_low', 'CI_high']].round() if o == 'discount': ci_discount = pd.DataFrame((ci_1,ci_2)) elif o == 'delay_ratio': ci_delay_ratio = pd.DataFrame((ci_1,ci_2)) elif o == 'overrun_ratio': ci_overrun_ratio = pd.DataFrame((ci_1,ci_2)) else: ci_days_to_award = pd.DataFrame((ci_1,ci_2)) ci = pd.concat([ci_discount,ci_delay_ratio,ci_overrun_ratio,ci_days_to_award],axis=1).reset_index() del ci['index'] return(ci) def table5_PanelB_even(data): outcomes = ['discount','delay_ratio','overrun_ratio','days_to_award'] t = 'turin_pr_sample' g = 'ctrl_exp' c_outcomes=1 i = 5 df1 = data df1_tmp = df1[(df1[t]==1)& (df1[g +'_' + t]==1) & (df1['post_experience']>=i) & (df1['pre_experience']>=i)& (df1['post_experience'].isnull()==False) & (df1['pre_experience'].isnull()==False) & (df1['missing']==0) & (df1['fiscal_efficiency'].isnull()==False) & (df1['reserve_price'].isnull()==False)&(df1['municipality'].isnull()==False)] for o in outcomes: df1 = df1_tmp[df1_tmp[o].isnull()==False] df1 = df1.reset_index() df1 = df1.sort_values(by = 'authority_code', ascending = True) df1['ind'] = np.nan for i in range(len(df1)): if i == 0: df1.loc[i, 'ind'] = 1 else: if df1.loc[i, 'authority_code'] != df1.loc[i-1, 'authority_code']: df1.loc[i, 'ind'] = 1 #create dummies for administration-year pairs all_years = df1['year'].unique() all_authorities = df1['authority_code'].unique() auth_year_reg_col = [] for auth in all_authorities: for yr in all_years: df1['auth_year_' + str(auth)+'_' + str(yr)] = 0 auth_year_reg_col.append('auth_year_' + str(auth)+'_' + str(yr)) df1.loc[(df1['year']==yr) & (df1['authority_code']==auth), 'auth_year_' + str(auth)+'_' + str(yr) ] = 1 ##regression for first stage #create dummies for work category all_categories = df1['work_category'].unique() for cat in all_categories: df1['cat_'+cat] = 0 df1.loc[df1['work_category']==cat, 'cat_'+cat] =1 ### Regression first stage #setting work_dum = pd.get_dummies(df1['work_category']).rename(columns=lambda x: 'work_dum_' + str(x)) year_dum = pd.get_dummies(df1['year']).rename(columns=lambda x: 'year_dum_' + str(x)) auth_dum = pd.get_dummies(df1['authority_code']).rename(columns=lambda x: 'auth_dum_' + str(x)) dum_df = pd.concat([work_dum, year_dum, auth_dum],axis = 1) df1 = pd.concat([df1,dum_df],axis = 1) work_list = list(work_dum.columns) year_list = list(year_dum.columns) auth_list = list(auth_dum.columns) reg_col = [] for i in work_list: reg_col.append(i) for j in year_list: reg_col.append(j) exog_var = ['fpsb_auction','reserve_price','municipality','fiscal_efficiency','trend','trend_treat'] for i in range(1,36): exog_var.append('trend_pa_remained_'+str(i)) exog = exog_var + reg_col exog.remove('year_dum_2000.0') exog.remove('year_dum_2006.0') exog.remove('work_dum_OG01') for i in [2,4,6,7,9,11,12,13,15,16,17,18,20,21,22,23,24,25,26,28,34,35]: exog.remove('trend_pa_remained_'+str(i)) #1. reg fe_reg_1 = mt.reg(df1, o, exog, cluster = 'auth_anno', check_colinear = True) #2. reg fe_reg_2 = mt.reg(df1, o, exog, cluster = 'authority_code', check_colinear = True) ci_1 = fe_reg_1.summary.loc['fpsb_auction',['CI_low', 'CI_high']].round() ci_2 = fe_reg_2.summary.loc['fpsb_auction',['CI_low', 'CI_high']].round() if o == 'discount': ci_discount = pd.DataFrame((ci_1,ci_2)) elif o == 'delay_ratio': ci_delay_ratio = pd.DataFrame((ci_1,ci_2)) elif o == 'overrun_ratio': ci_overrun_ratio =
pd.DataFrame((ci_1,ci_2))
pandas.DataFrame
import altair as alt import pandas as pd import seaborn as sns import six from .util import build_dataframe, size_chart, vega_palette from .pyplot import fill_between, plot, scatter as pscatter __all__ = ["regplot", "lmplot"] def regplot( x, y, data=None, x_estimator=None, x_bins=None, x_ci="ci", x_range=None, y_range=None, truncate=False, scatter=True, fit_reg=True, ci=95, n_boot=1000, units=None, order=1, logistic=False, lowess=False, robust=False, logx=False, color=None, scatter_kws={}, line_kws={}, ax=None, palette=None, height=None, aspect=1, color_scale=None ): if data is None: data, names = build_dataframe({"x": x, "y": y}) x, y = names["x"], names["y"] if x_range is None: x_raw_range = (data[x].min(), data[x].max()) x_pad = 0.05*(x_raw_range[1] - x_raw_range[0]) x_range = (x_raw_range[0] - x_pad, x_raw_range[1] + x_pad) def plot_regression(data, color): p = sns.regression._RegressionPlotter( data[x], data[y], x_estimator=x_estimator, x_bins=x_bins, x_ci=x_ci, n_boot=n_boot, units=units, ci=ci, truncate=truncate, order=order, logistic=logistic, lowess=lowess, robust=robust, logx=logx ) layers = [] grid, yhat, err_bands = p.fit_regression(x_range=x_range) layers.append(plot(grid, yhat, color=color, **line_kws)) if err_bands is not None: area = fill_between(grid, *err_bands, color=color) area.encoding.opacity = alt.value(0.15) layers.append(area) return layers def plot_scatter(data, color): p = sns.regression._RegressionPlotter( data[x], data[y], x_estimator=x_estimator, x_bins=x_bins, x_ci=x_ci, n_boot=n_boot, units=units, ci=ci, truncate=truncate, order=order, logistic=logistic, lowess=lowess, robust=robust, logx=logx ) layers = [] if p.x_estimator is None: layers.append(pscatter(x, y, data=data, color=color, **scatter_kws)) else: xs, ys, cis = p.estimate_data if [ci for ci in cis if ci is not None]: for xval, cci in zip(xs, cis): ci_df =
pd.DataFrame({x: [xval, xval], y: cci})
pandas.DataFrame
import imgaug.augmenters as iaa import numpy as np import torch from pose_est_nets.utils.io import ( check_if_semi_supervised, set_or_open_folder, get_latest_version, ) from pose_est_nets.models.heatmap_tracker import ( HeatmapTracker, SemiSupervisedHeatmapTracker, ) from pose_est_nets.models.regression_tracker import ( RegressionTracker, SemiSupervisedRegressionTracker, ) import matplotlib.pyplot as plt import os from typing import Callable, Optional, Tuple, List, Union, Literal from typeguard import typechecked from tqdm import tqdm from omegaconf import DictConfig, OmegaConf from pathlib import Path def get_videos_in_dir(video_dir: str) -> List[str]: # gather videos to process # TODO: check if you're give a path to a single video? assert os.path.isdir(video_dir) all_files = [video_dir + "/" + f for f in os.listdir(video_dir)] video_files = [] for f in all_files: if f.endswith(".mp4"): video_files.append(f) if len(video_files) == 0: raise IOError("Did not find any video files (.mp4) in %s" % video_dir) return video_files def get_model_class(map_type: str, semi_supervised: bool): """[summary] Args: map_type (str): "regression" | "heatmap" semi_supervised (bool): True if you want to use unlabeled videos Returns: a ptl model class to be initialized outside of this function. """ if not (semi_supervised): if map_type == "regression": return RegressionTracker elif map_type == "heatmap": return HeatmapTracker else: raise NotImplementedError( "%s is an invalid map_type for a fully supervised model" % map_type ) else: if map_type == "regression": return SemiSupervisedRegressionTracker elif map_type == "heatmap": return SemiSupervisedHeatmapTracker else: raise NotImplementedError( "%s is an invalid map_type for a semi-supervised model" % map_type ) def load_model_from_checkpoint(cfg: DictConfig, ckpt_file: str, eval: bool = False): """this will have: path to a specific .ckpt file which we extract using other funcs will also take the standard hydra config file""" from pose_est_nets.utils.io import check_if_semi_supervised semi_supervised = check_if_semi_supervised(cfg.model.losses_to_use) # pick the right model class ModelClass = get_model_class( map_type=cfg.model.model_type, semi_supervised=semi_supervised, ) # initialize a model instance, with weights loaded from .ckpt file if semi_supervised: model = ModelClass.load_from_checkpoint( ckpt_file, semi_super_losses_to_use=OmegaConf.to_object(cfg.model.losses_to_use), loss_params=OmegaConf.to_object(cfg.losses), ) else: model = ModelClass.load_from_checkpoint(ckpt_file) if eval: model.eval() return model def saveNumericalPredictions(model, datamod, threshold): i = 0 # hardcoded for mouse data rev_augmenter = [] rev_augmenter.append( iaa.Resize({"height": 406, "width": 396}) ) # get rid of this for the fish rev_augmenter = iaa.Sequential(rev_augmenter) model.eval() full_dl = datamod.full_dataloader() test_dl = datamod.test_dataloader() final_gt_keypoints = np.empty(shape=(len(test_dl), model.num_keypoints, 2)) final_imgs = np.empty( shape=(len(test_dl), 406, 396, 1) ) # TODO: specific to Rick data final_preds = np.empty(shape=(len(test_dl), model.num_keypoints, 2)) # dpk_final_preds = np.empty(shape = (len(test_dl), model.num_keypoints, 2)) for idx, batch in enumerate(test_dl): x, y = batch heatmap_pred = model.forward(x) if torch.cuda.is_available(): heatmap_pred = heatmap_pred.cuda() y = y.cuda() pred_keypoints, y_keypoints = model.computeSubPixMax(heatmap_pred, y, threshold) # dpk_final_preds[i] = pred_keypoints pred_keypoints = pred_keypoints.cpu() y_keypoints = y_keypoints.cpu() x = x[:, 0, :, :] # only taking one image dimension x = np.expand_dims(x, axis=3) final_imgs[i], final_gt_keypoints[i] = rev_augmenter( images=x, keypoints=np.expand_dims(y_keypoints, axis=0) ) final_imgs[i], final_preds[i] = rev_augmenter( images=x, keypoints=np.expand_dims(pred_keypoints, axis=0) ) # final_gt_keypoints[i] = y_keypoints # final_preds[i] = pred_keypoints i += 1 final_gt_keypoints = np.reshape( final_gt_keypoints, newshape=(len(test_dl), model.num_targets) ) final_preds = np.reshape(final_preds, newshape=(len(test_dl), model.num_targets)) # dpk_final_preds = np.reshape(dpk_final_preds, newshape = (len(test_dl), model.num_targets)) # np.savetxt('../../preds/mouse_gt.csv', final_gt_keypoints, delimiter = ',', newline = '\n') folder_name = get_latest_version("lightning_logs") csv_folder = set_or_open_folder(os.path.join("preds", folder_name)) np.savetxt( os.path.join(csv_folder, "preds.csv"), final_preds, delimiter=",", newline="\n" ) # np.savetxt('../preds/dpk_fish_predictions.csv', dpk_final_preds, delimiter = ',', newline = '\n') return def plotPredictions(model, datamod, save_heatmaps, threshold, mode): folder_name = get_latest_version("lightning_logs") img_folder = set_or_open_folder(os.path.join("preds", folder_name, "images")) if save_heatmaps: heatmap_folder = set_or_open_folder( os.path.join("preds", folder_name, "heatmaps") ) model.eval() if mode == "train": dl = datamod.train_dataloader() else: dl = datamod.test_dataloader() i = 0 for idx, batch in enumerate(dl): x, y = batch heatmap_pred = model.forward(x) if save_heatmaps: plt.imshow(heatmap_pred[0, 4].detach().cpu().numpy()) plt.savefig(os.path.join(heatmap_folder, "pred_map_%i" % i + ".png")) plt.clf() plt.imshow(y[0, 4].detach().cpu().numpy()) plt.savefig(os.path.join(heatmap_folder, "gt_map_%i" % i + ".png")) plt.clf() # if torch.cuda.is_available(): # heatmap_pred = heatmap_pred.cuda() # y = y.cuda() # TODO: that works, but remove cuda calls! threshold is on model which is on cuda, heatmap_pred and y are on CPU after saving heatmaps pred_keypoints, y_keypoints = model.computeSubPixMax( heatmap_pred.cuda(), y.cuda(), threshold ) plt.imshow(x[0][0]) pred_keypoints = pred_keypoints.cpu() y_keypoints = y_keypoints.cpu() plt.scatter(pred_keypoints[:, 0], pred_keypoints[:, 1], c="blue") plt.scatter(y_keypoints[:, 0], y_keypoints[:, 1], c="orange") plt.savefig(os.path.join(img_folder, "pred_%i" % i + ".png")) plt.clf() i += 1 def predict_videos( video_dir: str, ckpt_file: str, cfg_file: Union[str, DictConfig], save_dir: Optional[str] = None, sequence_length: int = 16, device: Literal["gpu", "cuda", "cpu"] = "gpu", video_pipe_kwargs={}, ): """Loop over a list of videos and process with tracker using DALI for fast inference. Args: video_dir (str): process all videos located in this directory ckpt_file (str): .ckpt file for model cfg_file (str): yaml file saved by hydra; must contain - cfg_file.losses - cfg_file.data.image_orig_dims - cfg_file.data.image_resize_dims - cfg_file.model.losses_to_use - cfg_file.model.model_type save_file (str): full filename of tracked points; currently supports hdf5 and csv; if NoneType, the output will be saved in the video path sequence_length (int) device (str): "gpu" | "cpu" video_pipe_kwargs (dict): extra keyword-value argument pairs for `pose_est_nets.datasets.DALI.video_pipe` function TODO: support different video formats """ import csv from nvidia.dali import pipeline_def import nvidia.dali.fn as fn from nvidia.dali.plugin.pytorch import LastBatchPolicy import nvidia.dali.types as types from omegaconf import OmegaConf import pandas as pd import time from pose_est_nets.datasets.dali import video_pipe, LightningWrapper, count_frames from pose_est_nets.datasets.datasets import BaseTrackingDataset, HeatmapDataset from pose_est_nets.models.regression_tracker import ( RegressionTracker, SemiSupervisedRegressionTracker, ) from pose_est_nets.models.heatmap_tracker import ( HeatmapTracker, SemiSupervisedHeatmapTracker, ) from pose_est_nets.utils.io import ( set_or_open_folder, get_latest_version, ) if device == "gpu" or device == "cuda": device_pt = "cuda" device_dali = "gpu" elif device == "cpu": device_pt = "cpu" device_dali = "cpu" else: raise NotImplementedError("must choose 'gpu' or 'cpu' for `device` argument") # gather videos to process assert os.path.exists(video_dir) all_files = [video_dir + "/" + f for f in os.listdir(video_dir)] video_files = [] for f in all_files: if f.endswith(".mp4"): video_files.append(f) if len(video_files) == 0: raise IOError("Did not find any video files (.mp4) in %s" % video_dir) if isinstance(cfg_file, str): # load configuration file with open(cfg_file, "r") as f: cfg = OmegaConf.load(f) elif isinstance(cfg_file, DictConfig): cfg = cfg_file else: raise ValueError("cfg_file must be str or DictConfig, not %s!" % type(cfg_file)) model = load_model_from_checkpoint(cfg=cfg, ckpt_file=ckpt_file, eval=True) model.to(device_pt) # set some defaults batch_size = ( 1 # don't change this, change sequence length (exposed to user) instead ) video_pipe_kwargs_defaults = {"num_threads": 2, "device_id": 0} for key, val in video_pipe_kwargs_defaults.items(): if key not in video_pipe_kwargs.keys(): video_pipe_kwargs[key] = val # loop over videos for video_file in video_files: print("Processing video at %s" % video_file) # build video loader/pipeline pipe = video_pipe( resize_dims=( cfg.data.image_resize_dims.height, cfg.data.image_resize_dims.width, ), batch_size=batch_size, sequence_length=sequence_length, filenames=[video_file], random_shuffle=False, device=device_dali, name="reader", pad_sequences=True, **video_pipe_kwargs ) predict_loader = LightningWrapper( pipe, output_map=["x"], last_batch_policy=LastBatchPolicy.FILL, last_batch_padded=False, auto_reset=False, reader_name="reader", ) # iterate through video n_frames_ = count_frames(video_file) # total frames in video n_frames = 0 # total frames processed keypoints_np = np.zeros((n_frames_, model.num_keypoints * 2)) confidence_np = np.zeros((n_frames_, model.num_keypoints)) t_beg = time.time() n = -1 # TODO: seperate it out from the function with torch.no_grad(): for n, batch in enumerate(tqdm(predict_loader)): outputs = model.forward(batch) if cfg.model.model_type == "heatmap": pred_keypoints, confidence = model.run_subpixelmaxima(outputs) # send to cpu pred_keypoints = pred_keypoints.detach().cpu().numpy() confidence = confidence.detach().cpu().numpy() else: pred_keypoints = outputs.detach().cpu().numpy() confidence = np.zeros((outputs.shape[0], outputs.shape[1] // 2)) n_frames_curr = pred_keypoints.shape[0] if n_frames + n_frames_curr > n_frames_: # final sequence final_batch_size = n_frames_ - n_frames keypoints_np[n_frames:] = pred_keypoints[:final_batch_size] confidence_np[n_frames:] = confidence[:final_batch_size] n_frames_curr = final_batch_size else: # at every sequence except the final keypoints_np[n_frames : n_frames + n_frames_curr] = pred_keypoints confidence_np[n_frames : n_frames + n_frames_curr] = confidence n_frames += n_frames_curr t_end = time.time() if n == -1: print( "WARNING: issue processing %s" % video_file ) # TODO: what can go wrong here? continue else: print( "inference speed: %1.2f fr/sec" % ((n * sequence_length) / (t_end - t_beg)) ) # save csv file of predictions in DeepLabCut format num_joints = model.num_keypoints predictions = np.zeros((keypoints_np.shape[0], num_joints * 3)) predictions[:, 0] = np.arange(keypoints_np.shape[0]) # put x vals back in original pixel space x_resize = cfg.data.image_resize_dims.width x_og = cfg.data.image_orig_dims.width predictions[:, 0::3] = keypoints_np[:, 0::2] / x_resize * x_og # put y vals back in original pixel space y_resize = cfg.data.image_resize_dims.height y_og = cfg.data.image_orig_dims.height predictions[:, 1::3] = keypoints_np[:, 1::2] / y_resize * y_og predictions[:, 2::3] = confidence_np # ugly but what can you do sometimes import sys sys.path.append('/home/eivinas/dev/dlc-frame-selection/scripts/') from config import BODYPARTS joint_labels = BODYPARTS[cfg.data.dataset] # build data frame xyl_labels = ["x", "y", "likelihood"] pdindex = pd.MultiIndex.from_product( [["%s_tracker" % cfg.model.model_type], joint_labels, xyl_labels], names=["scorer", "bodyparts", "coords"], ) df =
pd.DataFrame(predictions, columns=pdindex)
pandas.DataFrame
# coding: utf-8 # # Visualize E-GEOD-33245 patterns # This notebook will examine patterns of generic and experiment-specific genes using E-GEOD-33245 as the template experiment # # This experiment contains multiple comparisons/conditions: # # * grp_1v2 compares WT vs *crc* mutants # * grp_1v3 compares WT vs *cbrB* mutants # * grp_1v4 compares WT vs *crcZ* mutant # * grp_1v5 compares WT in LB vs WT in BSM # In[1]: get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') import pandas as pd import seaborn as sns import numpy as np from generic_expression_patterns_modules import process # In[2]: # Load data # Summary data using abs value of test statistic grp_1v2_file = "generic_gene_summary_E-GEOD-33245_1v2.tsv" grp_1v3_file = "generic_gene_summary_E-GEOD-33245_1v3.tsv" grp_1v4_file = "generic_gene_summary_E-GEOD-33245_1v4.tsv" grp_1v5_file = "generic_gene_summary_E-GEOD-33245_1v5.tsv" # Summary data using raw value of test statistic to get directionality grp_1v2_raw_file = "generic_gene_summary_E-GEOD-33245_1v2_raw.tsv" grp_1v3_raw_file = "generic_gene_summary_E-GEOD-33245_1v3_raw.tsv" grp_1v4_raw_file = "generic_gene_summary_E-GEOD-33245_1v4_raw.tsv" grp_1v5_raw_file = "generic_gene_summary_E-GEOD-33245_1v5_raw.tsv" # In[3]: # User parameters # FDR adjusted p-value cutoff to use to define DEGs pvalue_threshold = 0.05 # Get predicted generic DEGs using z-score cutoff # Z-score cutoff was found by calculating the score # whose invnorm(0.05/5549). Here we are using a p-value = 0.05 # with a Bonferroni correction for 5549 tests, which are # the number of P. aeruginosa genes zscore_threshold = 4.44 # ## Create dataframe to compare trends # We are going to merge data across different conditions. For example, we will merge `grp_1v2` and `grp_1v3` to use for plotting later in this notebook. The Hogan lab can look at these tables to find *things of interest* as we start looking into how to use our computational predictions of generic and specific genes. # In[4]: # Read data grp_1v2 = pd.read_csv(grp_1v2_file, sep="\t", header=0, index_col=0) grp_1v3 = pd.read_csv(grp_1v3_file, sep="\t", header=0, index_col=0) grp_1v4 = pd.read_csv(grp_1v4_file, sep="\t", header=0, index_col=0) grp_1v5 = pd.read_csv(grp_1v5_file, sep="\t", header=0, index_col=0) grp_1v2_raw = pd.read_csv(grp_1v2_raw_file, sep="\t", header=0, index_col=0) grp_1v3_raw = pd.read_csv(grp_1v3_raw_file, sep="\t", header=0, index_col=0) grp_1v4_raw = pd.read_csv(grp_1v4_raw_file, sep="\t", header=0, index_col=0) grp_1v5_raw = pd.read_csv(grp_1v5_raw_file, sep="\t", header=0, index_col=0) # In[5]: # Merge summary dfs using abs log2 FC and using raw values merged_1v2s_df = process.merge_abs_raw_dfs(grp_1v2, grp_1v2_raw, '1v2') merged_1v3s_df = process.merge_abs_raw_dfs(grp_1v3, grp_1v3_raw, '1v3') merged_1v4s_df = process.merge_abs_raw_dfs(grp_1v4, grp_1v4_raw, '1v4') merged_1v5s_df = process.merge_abs_raw_dfs(grp_1v5, grp_1v5_raw, '1v5') # In[6]: # Merge 1v2 and 1v3 summary dfs merged_1v2_1v3_df = process.merge_two_conditions_df(merged_1v2s_df, merged_1v3s_df, '1v2', '1v3') merged_1v2_1v3_df.head() # In[7]: # Merge 1v3 and 1v4 summaries merged_1v3_1v4_df = process.merge_two_conditions_df(merged_1v3s_df, merged_1v4s_df, '1v3', '1v4') merged_1v3_1v4_df.head() # In[8]: # Merge 1v2 and 1v4 summaries merged_1v2_1v4_df = process.merge_two_conditions_df(merged_1v2s_df, merged_1v4s_df, '1v2', '1v4') merged_1v2_1v4_df.head() # In[9]: # Save merged_1v2_1v3_df.to_csv("merged_E-GEOD_1v2_1v3_directionality.tsv", sep="\t") merged_1v2_1v4_df.to_csv("merged_E-GEOD_1v2_1v4_directionality.tsv", sep="\t") merged_1v3_1v4_df.to_csv("merged_E-GEOD_1v3_1v4_directionality.tsv", sep="\t") # ## Compare trends across different conditions # # We want to compare across different conditions. For example, given: # * Group 1v2: WT vs *crc* mutant # * Group 1v3: WT vs *cbr* mutant # # We can then compare the test statistic between these two groups above. We hope to see that, # * Genes 1v3 > 1v2 are genes that change more in 1v3 than 1v2 and we guess are specific to 1v3 (high z-score) # * Genes 1v3 < 1v2 are genes that change more in 1v2 than 1v3 and we guess are specific to 1v2 (high z-score) # * Genes on the 1v3 = 1v2 line are those genes that change equally in both and we guess are generic genes (low z-score) # ### 1v2 compared with 1v3 # In[10]: process.plot_two_conditions(merged_1v2_1v3_df, "1v2", "1v3", "WT vs crc mutant", "WT vs cbrB mutant") # ### 1v2 compared with 1v4 # In[11]: process.plot_two_conditions(merged_1v2_1v4_df, "1v2", "1v4", "WT vs crc mutant", "WT vs crcZ mutant") # ### 1v3 compared with 1v4 # In[12]: process.plot_two_conditions(merged_1v3_1v4_df, "1v3", "1v4", "WT vs cbrB mutant", "WT vs crcZ mutant") # **Takeaway:** # Genes with high specificity score (i.e. genes with a high absolute value z-score) are located in the off x-y regions, as expected since these off diagonal regions represent those genes that are more differentially expressed in one condition versus the other. This shows some promise for using z-score to distinguish between generic and specific genes and we can start looking more into these trends. # ## DEGs found using traditional criteria and using z-score # # When performing DE analysis, this can return hundreds of genes using traditional criteria (FDR adjusted p-value < 0.05 and log2 fold change > 2). We want to see what genes are selected when we add z-score as an additional criteria to indicate genes that are specific to the pertubagen in question. # ### 1v2 # In[13]: (DEGs_1v2_df, degs_1v2_traditional, degs_1v2_specific, degs_1v2_generic, degs_1v2_intersect, degs_1v2_intersect_generic, degs_1v2_diff) = process.get_and_save_DEG_lists(merged_1v2s_df, '1v2', pvalue_threshold, zscore_threshold) # In[14]: process.plot_venn(degs_1v2_traditional, degs_1v2_specific, degs_1v2_generic) # In[15]: process.plot_volcanos(degs_1v2_intersect, degs_1v2_diff, merged_1v2s_df, "1v2", "WT vs crc mutant") # ### 1v3 # In[16]: (DEGs_1v3_df, degs_1v3_traditional, degs_1v3_specific, degs_1v3_generic, degs_1v3_intersect, degs_1v3_intersect_generic, degs_1v3_diff) = process.get_and_save_DEG_lists(merged_1v3s_df, '1v3', pvalue_threshold, zscore_threshold) # In[17]: process.plot_venn(degs_1v3_traditional, degs_1v3_specific, degs_1v3_generic) # In[18]: process.plot_volcanos(degs_1v3_intersect, degs_1v3_diff, merged_1v3s_df, "1v3", "WT vs cbrB mutant") # ### 1v4 # In[19]: (DEGs_1v4_df, degs_1v4_traditional, degs_1v4_specific, degs_1v4_generic, degs_1v4_intersect, degs_1v4_intersect_generic, degs_1v4_diff) = process.get_and_save_DEG_lists(merged_1v4s_df, '1v4', pvalue_threshold, zscore_threshold) # In[20]: process.plot_venn(degs_1v4_traditional, degs_1v4_specific, degs_1v4_generic) # In[21]: process.plot_volcanos(degs_1v4_intersect, degs_1v4_diff, merged_1v4s_df, "1v4", "WT vs crcZ mutant") # ### 1v5 # In[22]: (DEGs_1v5_df, degs_1v5_traditional, degs_1v5_specific, degs_1v5_generic, degs_1v5_intersect, degs_1v5_intersect_generic, degs_1v5_diff) = process.get_and_save_DEG_lists(merged_1v5s_df, '1v5', pvalue_threshold, zscore_threshold) # In[23]: process.plot_venn(degs_1v5_traditional, degs_1v5_specific, degs_1v5_generic) # In[24]: process.plot_volcanos(degs_1v5_intersect, degs_1v5_diff, merged_1v5s_df, "1v5", "WT LB vs WT BSM") # In[25]: # Save DEGs to file to share with Hogan lab degs_all_df = pd.DataFrame({'1v2 traditional + specific': pd.Series(degs_1v2_intersect), '1v2 specific only': pd.Series(degs_1v2_diff), '1v2 traditional + generic': pd.Series(degs_1v2_intersect_generic), '1v3 traditional + specific': pd.Series(degs_1v3_intersect), '1v3 specific only':
pd.Series(degs_1v3_diff)
pandas.Series
import os import pandas as pd from typing import Any from django.contrib.gis.geos import LineString, MultiLineString def mission_planner_convert_log(url: str) -> list: """ This function takes in a string url of the .waypoints, .txt or .json file exported from the mission planner flight plan It returns an array of coordinates for each point Returns: [array] -- [ [long, lat], [long, lat], ... ] """ data = pd.read_table(str(url), delim_whitespace=True) df = pd.DataFrame(data) df.to_csv("me.csv",) datatest = pd.DataFrame((
pd.read_csv("me.csv", index_col=0)
pandas.read_csv
import os import random import re import sys from shutil import copyfile import cv2 import numpy as np import pandas as pd import pydicom as dicom import torch from PIL import Image import cn.protect.quality as quality from cn.protect.hierarchy import OrderHierarchy from torch.utils.data import Dataset from torchvision import transforms, datasets from cn.protect import Protect from cn.protect.privacy import KAnonymity from functools import reduce from logger import logPrint class DatasetInterface(Dataset): def __init__(self, labels): self.labels = torch.tensor(labels, dtype=torch.long) def __len__(self): return len(self.labels) def __getitem__(self, index): raise Exception("Method should be implemented in subclass.") def getInputSize(self): raise Exception("Method should be implemented by subclasses where " "models requires input size update (based on dataset).") def zeroLabels(self): self.labels = torch.zeros(len(self.labels), dtype=torch.long) class DatasetLoader: """Parent class used for specifying the data loading workflow """ def getDatasets(self, percUsers, labels, size=(None, None)): raise Exception("LoadData method should be override by child class, " "specific to the loaded dataset strategy.") @staticmethod def _filterDataByLabel(labels, trainDataframe, testDataframe): trainDataframe = trainDataframe[trainDataframe['labels'].isin(labels)] testDataframe = testDataframe[testDataframe['labels'].isin(labels)] return trainDataframe, testDataframe @staticmethod def _splitTrainDataIntoClientDatasets(percUsers, trainDataframe, DatasetType): DatasetLoader._setRandomSeeds() percUsers = percUsers / percUsers.sum() dataSplitCount = (percUsers * len(trainDataframe)).floor().numpy() _, *dataSplitIndex = [int(sum(dataSplitCount[range(i)])) for i in range(len(dataSplitCount))] trainDataframes = np.split(trainDataframe, indices_or_sections=dataSplitIndex) clientDatasets = [DatasetType(clientDataframe.reset_index(drop=True)) for clientDataframe in trainDataframes] return clientDatasets @staticmethod def _setRandomSeeds(seed=0): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) # When anonymizing the clients' datasets using _anonymizeClientDatasets the function passed as # parameter should take as parameter the cn.protect object and set ds specific generalisations @staticmethod def _anonymizeClientDatasets(clientDatasets, columns, k, quasiIds, setHierarchiesMethod): datasetClass = clientDatasets[0].__class__ resultDataframes = [] clientSyntacticMappings = [] dataframes = [pd.DataFrame(list(ds.dataframe['data']), columns=columns) for ds in clientDatasets] for dataframe in dataframes: anonIndex = dataframe.groupby(quasiIds)[dataframe.columns[0]].transform('size') >= k anonDataframe = dataframe[anonIndex] needProtectDataframe = dataframe[~anonIndex] # Might want to ss those for the report: # print(anonDataframe) # print(needProtectDataframe) protect = Protect(needProtectDataframe, KAnonymity(k)) protect.quality_model = quality.Loss() # protect.quality_model = quality.Classification() protect.suppression = 0 for qid in quasiIds: protect.itypes[qid] = 'quasi' setHierarchiesMethod(protect) protectedDataframe = protect.protect() mappings = protectedDataframe[quasiIds].drop_duplicates().to_dict('records') clientSyntacticMappings.append(mappings) protectedDataframe = pd.get_dummies(protectedDataframe) resultDataframe = pd.concat([anonDataframe, protectedDataframe]).fillna(0).sort_index() resultDataframes.append(resultDataframe) # All clients datasets should have same columns allColumns = set().union(*[df.columns.values for df in resultDataframes]) for resultDataframe in resultDataframes: for col in allColumns - set(resultDataframe.columns.values): resultDataframe[col] = 0 # Create new datasets by adding the labels to anonClientDatasets = [] for resultDataframe, initialDataset in zip(resultDataframes, clientDatasets): labels = initialDataset.dataframe['labels'].values labeledDataframe = pd.DataFrame(zip(resultDataframe.values, labels)) labeledDataframe.columns = ['data', 'labels'] anonClientDatasets.append(datasetClass(labeledDataframe)) return anonClientDatasets, clientSyntacticMappings, allColumns def _anonymizeTestDataset(self, testDataset, clientSyntacticMappings, columns, generalizedColumns): datasetClass = testDataset.__class__ dataframe = pd.DataFrame(list(testDataset.dataframe['data']), columns=columns) domainsSize = dict() quasiIds = clientSyntacticMappings[0][0].keys() for quasiId in quasiIds: domainsSize[quasiId] = dataframe[quasiId].max() - dataframe[quasiId].min() generalisedDataframe = pd.DataFrame(dataframe) ungeneralisedIndex = [] for i in range(len(dataframe)): legitMappings = [] for clientMappings in clientSyntacticMappings: legitMappings += [mapping for mapping in clientMappings if self.__legitMapping(dataframe.iloc[i], mapping)] if legitMappings: # leastGeneralMapping = reduce(self.__leastGeneral, legitMappings) leastGeneralMapping = legitMappings[0] for legitMapping in legitMappings[1:]: leastGeneralMapping = self.__leastGeneral(leastGeneralMapping, legitMapping, domainsSize) for col in leastGeneralMapping: generalisedDataframe[col][i] = leastGeneralMapping[col] else: ungeneralisedIndex.append(i) generalisedDataframe = generalisedDataframe.drop(i) generalisedDataframe = pd.get_dummies(generalisedDataframe) ungeneralisedDataframe = dataframe.iloc[ungeneralisedIndex] resultDataframe = pd.concat([ungeneralisedDataframe, generalisedDataframe]).fillna(0).sort_index() for col in generalizedColumns - set(resultDataframe.columns.values): resultDataframe[col] = 0 labels = testDataset.dataframe['labels'].values labeledDataframe = pd.DataFrame(zip(resultDataframe.values, labels)) labeledDataframe.columns = ['data', 'labels'] return datasetClass(labeledDataframe) @staticmethod def __leastGeneral(map1, map2, domainSize): map1Generality = map2Generality = 0 for col in map1: if isinstance(map1[col], str): interval = np.array(re.findall(r'\d+.\d+', map1[col]), dtype=np.float) map1Generality += (interval[1] - interval[0]) / domainSize[col] for col in map2: if isinstance(map1[col], str): interval = np.array(re.findall(r'\d+.\d+', map2[col]), dtype=np.float) map2Generality += (interval[1] - interval[0]) / domainSize[col] return map1 if map1Generality <= map2Generality else map2 @staticmethod def __legitMapping(entry, mapping): for col in mapping: if not isinstance(mapping[col], str): if entry[col] != mapping[col]: return False else: interval = np.array(re.findall(r'\d+.\d+', mapping[col]), dtype=np.float) if interval[0] < entry[col] or entry[col] >= interval[1]: return False return True class DatasetLoaderMNIST(DatasetLoader): def getDatasets(self, percUsers, labels, size=None): logPrint("Loading MNIST...") self._setRandomSeeds() data = self.__loadMNISTData() trainDataframe, testDataframe = self._filterDataByLabel(labels, *data) clientDatasets = self._splitTrainDataIntoClientDatasets(percUsers, trainDataframe, self.MNISTDataset) testDataset = self.MNISTDataset(testDataframe) return clientDatasets, testDataset @staticmethod def __loadMNISTData(): trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) # if not exist, download mnist dataset trainSet = datasets.MNIST('data', train=True, transform=trans, download=True) testSet = datasets.MNIST('data', train=False, transform=trans, download=True) # Scale pixel intensities to [-1, 1] xTrain = trainSet.train_data xTrain = 2 * (xTrain.float() / 255.0) - 1 # list of 2D images to 1D pixel intensities xTrain = xTrain.flatten(1, 2).numpy() yTrain = trainSet.train_labels.numpy() # Scale pixel intensities to [-1, 1] xTest = testSet.test_data.clone().detach() xTest = 2 * (xTest.float() / 255.0) - 1 # list of 2D images to 1D pixel intensities xTest = xTest.flatten(1, 2).numpy() yTest = testSet.test_labels.numpy() trainDataframe = pd.DataFrame(zip(xTrain, yTrain)) testDataframe = pd.DataFrame(zip(xTest, yTest)) trainDataframe.columns = testDataframe.columns = ['data', 'labels'] return trainDataframe, testDataframe class MNISTDataset(DatasetInterface): def __init__(self, dataframe): self.data = torch.stack([torch.from_numpy(data) for data in dataframe['data'].values], dim=0) super().__init__(dataframe['labels'].values) def __len__(self): return len(self.data) def __getitem__(self, index): return self.data[index], self.labels[index] class DatasetLoaderCOVIDx(DatasetLoader): def __init__(self, dim=(224, 224), assembleDatasets=True): self.assembleDatasets = assembleDatasets self.dim = dim self.dataPath = './data/COVIDx' self.testCSV = self.dataPath + '/test_split_v2.txt' self.trainCSV = self.dataPath + '/train_split_v2.txt' self.COVIDxLabelsDict = {'pneumonia': 0, 'normal': 1, 'COVID-19': 2} def getDatasets(self, percUsers, labels, size=None): logPrint("Loading COVIDx...") self._setRandomSeeds() data = self.__loadCOVIDxData(*size) trainDataframe, testDataframe = self._filterDataByLabel(labels, *data) clientDatasets = self._splitTrainDataIntoClientDatasets(percUsers, trainDataframe, self.COVIDxDataset) testDataset = self.COVIDxDataset(testDataframe, isTestDataset=True) return clientDatasets, testDataset def __loadCOVIDxData(self, trainSize, testSize): if self.__datasetNotFound(): logPrint("Can't find train|test split .txt files or " "/train, /test files not populated accordingly.") if not self.assembleDatasets: sys.exit(0) logPrint("Proceeding to assemble dataset from downloaded resources.") self.__joinDatasets() trainDataframe = self.__readDataframe(self.trainCSV, trainSize) testDataframe = self.__readDataframe(self.testCSV, testSize) return trainDataframe, testDataframe def __datasetNotFound(self): if not os.path.exists(self.dataPath + "/test_split_v2.txt") or \ not os.path.exists(self.dataPath + "/train_split_v2.txt") or \ not os.path.exists(self.dataPath + "/test") or \ not os.path.exists(self.dataPath + "/train") or \ not len(os.listdir(self.dataPath + "/test")) or \ not len(os.listdir(self.dataPath + "/train")): # Might also want to check that files count of # /test, /train folder match .txt files return True return False def __readDataframe(self, file, size): dataFrame = pd.read_csv(file, names=['id', 'fileNames', 'labels'], sep=' ', header=None, usecols=[1, 2]) dataFrame['labels'] = dataFrame['labels'].map(lambda label: self.COVIDxLabelsDict[label]) return dataFrame.head(size) def __joinDatasets(self): dataSources = ['/covid-chestxray-dataset', '/rsna-kaggle-dataset', '/Figure1-covid-chestxray-dataset'] if not len(os.listdir(self.dataPath + dataSources[0])): logPrint("You need to clone https://github.com/ieee8023/covid-chestxray-dataset to {}." "".format(self.dataPath + dataSources[0])) exit(0) if not len(os.listdir(self.dataPath + dataSources[1])): logPrint("You need to unzip (https://www.kaggle.com/c/rsna-pneumonia-detection-challenge) dataset to {}." "".format(self.dataPath + dataSources[1])) exit(0) COPY_FILE = True if COPY_FILE: if not os.path.exists(self.dataPath + '/train'): os.makedirs(self.dataPath + '/train') if not os.path.exists(self.dataPath + '/test'): os.makedirs(self.dataPath + '/test') # path to covid-19 dataset from https://github.com/ieee8023/covid-chestxray-dataset imgPath = self.dataPath + dataSources[0] + '/images' csvPath = self.dataPath + dataSources[0] + '/metadata.csv' # Path to https://www.kaggle.com/c/rsna-pneumonia-detection-challenge kaggle_dataPath = self.dataPath + '/rsna-kaggle-dataset' kaggle_csvname = 'stage_2_detailed_class_info.csv' # get all the normal from here kaggle_csvname2 = 'stage_2_train_labels.csv' # get all the 1s from here since 1 indicate pneumonia kaggle_imgPath = 'stage_2_train_images' # parameters for COVIDx dataset train = [] test = [] test_count = {'normal': 0, 'pneumonia': 0, 'COVID-19': 0} train_count = {'normal': 0, 'pneumonia': 0, 'COVID-19': 0} mapping = dict() mapping['COVID-19'] = 'COVID-19' mapping['SARS'] = 'pneumonia' mapping['MERS'] = 'pneumonia' mapping['Streptococcus'] = 'pneumonia' mapping['Normal'] = 'normal' mapping['Lung Opacity'] = 'pneumonia' mapping['1'] = 'pneumonia' # train/test split split = 0.1 # adapted from https://github.com/mlmed/torchxrayvision/blob/master/torchxrayvision./datasets.py#L814 csv = pd.read_csv(csvPath, nrows=None) idx_pa = csv["view"] == "PA" # Keep only the PA view csv = csv[idx_pa] pneumonias = ["COVID-19", "SARS", "MERS", "ARDS", "Streptococcus"] pathologies = ["Pneumonia", "Viral Pneumonia", "Bacterial Pneumonia", "No Finding"] + pneumonias pathologies = sorted(pathologies) # get non-COVID19 viral, bacteria, and COVID-19 infections from covid-chestxray-dataset # stored as patient id, image filename and label filename_label = {'normal': [], 'pneumonia': [], 'COVID-19': []} count = {'normal': 0, 'pneumonia': 0, 'COVID-19': 0} print(csv.keys()) for index, row in csv.iterrows(): f = row['finding'] if f in mapping: count[mapping[f]] += 1 entry = [int(row['patientid']), row['filename'], mapping[f]] filename_label[mapping[f]].append(entry) print('Data distribution from covid-chestxray-dataset:') print(count) # add covid-chestxray-dataset into COVIDx dataset # since covid-chestxray-dataset doesn't have test dataset # split into train/test by patientid # for COVIDx: # patient 8 is used as non-COVID19 viral test # patient 31 is used as bacterial test # patients 19, 20, 36, 42, 86 are used as COVID-19 viral test for key in filename_label.keys(): arr = np.array(filename_label[key]) if arr.size == 0: continue # split by patients # num_diff_patients = len(np.unique(arr[:,0])) # num_test = max(1, round(split*num_diff_patients)) # select num_test number of random patients if key == 'pneumonia': test_patients = ['8', '31'] elif key == 'COVID-19': test_patients = ['19', '20', '36', '42', '86'] # random.sample(list(arr[:,0]), num_test) else: test_patients = [] print('Key: ', key) print('Test patients: ', test_patients) # go through all the patients for patient in arr: if patient[0] in test_patients: if COPY_FILE: copyfile(os.path.join(imgPath, patient[1]), os.path.join(self.dataPath, 'test', patient[1])) test.append(patient) test_count[patient[2]] += 1 else: print("WARNING: passing copy file.") break else: if COPY_FILE: copyfile(os.path.join(imgPath, patient[1]), os.path.join(self.dataPath, 'train', patient[1])) train.append(patient) train_count[patient[2]] += 1 else: print("WARNING: passing copy file.") break print('test count: ', test_count) print('train count: ', train_count) # add normal and rest of pneumonia cases from https://www.kaggle.com/c/rsna-pneumonia-detection-challenge print(kaggle_dataPath) csv_normal = pd.read_csv(os.path.join(kaggle_dataPath, kaggle_csvname), nrows=None) csv_pneu = pd.read_csv(os.path.join(kaggle_dataPath, kaggle_csvname2), nrows=None) patients = {'normal': [], 'pneumonia': []} for index, row in csv_normal.iterrows(): if row['class'] == 'Normal': patients['normal'].append(row['patientId']) for index, row in csv_pneu.iterrows(): if int(row['Target']) == 1: patients['pneumonia'].append(row['patientId']) for key in patients.keys(): arr = np.array(patients[key]) if arr.size == 0: continue # split by patients # num_diff_patients = len(np.unique(arr)) # num_test = max(1, round(split*num_diff_patients)) # '/content/COVID-Net/' test_patients = np.load(self.dataPath + '/COVID-Net/rsna_test_patients_{}.npy' ''.format(key)) # random.sample(list(arr), num_test) # np.save('rsna_test_patients_{}.npy'.format(key), np.array(test_patients)) for patient in arr: ds = dicom.dcmread(os.path.join(kaggle_dataPath, kaggle_imgPath, patient + '.dcm')) pixel_array_numpy = ds.pixel_array imgname = patient + '.png' if patient in test_patients: if COPY_FILE: cv2.imwrite(os.path.join(self.dataPath, 'test', imgname), pixel_array_numpy) test.append([patient, imgname, key]) test_count[key] += 1 else: print("WARNING: passing copy file.") break else: if COPY_FILE: cv2.imwrite(os.path.join(self.dataPath, 'train', imgname), pixel_array_numpy) train.append([patient, imgname, key]) train_count[key] += 1 else: print("WARNING: passing copy file.") break print('test count: ', test_count) print('train count: ', train_count) # final stats print('Final stats') print('Train count: ', train_count) print('Test count: ', test_count) print('Total length of train: ', len(train)) print('Total length of test: ', len(test)) # export to train and test csv # format as patientid, filename, label - separated by a space train_file = open(self.dataPath + "/train_split_v2.txt", "w") for sample in train: info = str(sample[0]) + ' ' + sample[1] + ' ' + sample[2] + '\n' train_file.write(info) train_file.close() test_file = open(self.dataPath + "/test_split_v2.txt", "w") for sample in test: info = str(sample[0]) + ' ' + sample[1] + ' ' + sample[2] + '\n' test_file.write(info) test_file.close() class COVIDxDataset(DatasetInterface): def __init__(self, dataframe, isTestDataset=False): self.root = './data/COVIDx/' + ('test/' if isTestDataset else 'train/') self.paths = dataframe['fileNames'] super().__init__(dataframe['labels'].values) def __getitem__(self, index): imageTensor = self.__load_image(self.root + self.paths[index]) labelTensor = self.labels[index] return imageTensor, labelTensor @staticmethod def __load_image(img_path): if not os.path.exists(img_path): print("IMAGE DOES NOT EXIST {}".format(img_path)) image = Image.open(img_path).convert('RGB') image = image.resize((224, 224)).convert('RGB') transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) # if(imageTensor.size(0)>1): # #print(img_path," > 1 channels") # imageTensor = imageTensor.mean(dim=0,keepdim=True) imageTensor = transform(image) return imageTensor class DatasetLoaderDiabetes(DatasetLoader): def __init__(self, requiresAnonymization=False): self.requireDatasetAnonymization = requiresAnonymization # Parameters required by k-anonymity enforcement self.k = 4 self.quasiIds = ['Pregnancies', 'Age'] def getDatasets(self, percUsers, labels, size=None): logPrint("Loading Diabetes data...") self._setRandomSeeds() trainDataframe, testDataframe, columns = self.__loadDiabetesData() trainDataframe, testDataframe = self._filterDataByLabel(labels, trainDataframe, testDataframe) clientDatasets = self._splitTrainDataIntoClientDatasets(percUsers, trainDataframe, self.DiabetesDataset) testDataset = self.DiabetesDataset(testDataframe) if self.requireDatasetAnonymization: clientAnonymizationResults = self._anonymizeClientDatasets(clientDatasets, columns, 4, self.quasiIds, self.__setHierarchies) clientDatasets, syntacticMappings, generalizedColumns = clientAnonymizationResults testDataset = self._anonymizeTestDataset(testDataset, syntacticMappings, columns, generalizedColumns) return clientDatasets, testDataset @staticmethod def __loadDiabetesData(dataBinning=False): data = pd.read_csv('data/Diabetes/diabetes.csv') # Shuffle data = data.sample(frac=1).reset_index(drop=True) # Handling Missing Data¶ data['BMI'] = data.BMI.mask(data.BMI == 0, (data['BMI'].mean(skipna=True))) data['BloodPressure'] = data.BloodPressure.mask(data.BloodPressure == 0, (data['BloodPressure'].mean(skipna=True))) data['Glucose'] = data.Glucose.mask(data.Glucose == 0, (data['Glucose'].mean(skipna=True))) # data = data.drop(['Insulin'], axis=1) # data = data.drop(['SkinThickness'], axis=1) # data = data.drop(['DiabetesPedigreeFunction'], axis=1) labels = data['Outcome'] data = data.drop(['Outcome'], axis=1) if dataBinning: data['Age'] = data['Age'].astype(int) data.loc[data['Age'] <= 16, 'Age'] = 0 data.loc[(data['Age'] > 16) & (data['Age'] <= 32), 'Age'] = 1 data.loc[(data['Age'] > 32) & (data['Age'] <= 48), 'Age'] = 2 data.loc[(data['Age'] > 48) & (data['Age'] <= 64), 'Age'] = 3 data.loc[data['Age'] > 64, 'Age'] = 4 data['Glucose'] = data['Glucose'].astype(int) data.loc[data['Glucose'] <= 80, 'Glucose'] = 0 data.loc[(data['Glucose'] > 80) & (data['Glucose'] <= 100), 'Glucose'] = 1 data.loc[(data['Glucose'] > 100) & (data['Glucose'] <= 125), 'Glucose'] = 2 data.loc[(data['Glucose'] > 125) & (data['Glucose'] <= 150), 'Glucose'] = 3 data.loc[data['Glucose'] > 150, 'Glucose'] = 4 data['BloodPressure'] = data['BloodPressure'].astype(int) data.loc[data['BloodPressure'] <= 50, 'BloodPressure'] = 0 data.loc[(data['BloodPressure'] > 50) & (data['BloodPressure'] <= 65), 'BloodPressure'] = 1 data.loc[(data['BloodPressure'] > 65) & (data['BloodPressure'] <= 80), 'BloodPressure'] = 2 data.loc[(data['BloodPressure'] > 80) & (data['BloodPressure'] <= 100), 'BloodPressure'] = 3 data.loc[data['BloodPressure'] > 100, 'BloodPressure'] = 4 xTrain = data.head(int(len(data) * .8)).values xTest = data.tail(int(len(data) * .2)).values yTrain = labels.head(int(len(data) * .8)).values yTest = labels.tail(int(len(data) * .2)).values trainDataframe = pd.DataFrame(zip(xTrain, yTrain)) testDataframe = pd.DataFrame(zip(xTest, yTest)) trainDataframe.columns = testDataframe.columns = ['data', 'labels'] return trainDataframe, testDataframe, data.columns @staticmethod def __setHierarchies(protect): protect.hierarchies.Age = OrderHierarchy('interval', 1, 5, 2, 2, 2) protect.hierarchies.Pregnancies = OrderHierarchy('interval', 1, 2, 2, 2, 2) class DiabetesDataset(DatasetInterface): def __init__(self, dataframe): self.dataframe = dataframe self.data = torch.stack([torch.from_numpy(data) for data in dataframe['data'].values], dim=0).float() super().__init__(dataframe['labels'].values) def __len__(self): return len(self.data) def __getitem__(self, index): return self.data[index], self.labels[index] def getInputSize(self): return len(self.dataframe['data'][0]) class DatasetLoaderHeartDisease(DatasetLoader): def __init__(self, requiresAnonymization=False): self.requireDatasetAnonymization = requiresAnonymization # Parameters required by k-anonymity enforcement self.k = 2 self.quasiIds = ['age', 'sex'] def getDatasets(self, percUsers, labels, size=None): logPrint("Loading Heart Disease data...") self._setRandomSeeds() trainDataframe, testDataframe, columns = self.__loadHeartDiseaseData() trainDataframe, testDataframe = self._filterDataByLabel(labels, trainDataframe, testDataframe) clientDatasets = self._splitTrainDataIntoClientDatasets(percUsers, trainDataframe, self.HeartDiseaseDataset) testDataset = self.HeartDiseaseDataset(testDataframe) if self.requireDatasetAnonymization: clientAnonymizationResults = self._anonymizeClientDatasets(clientDatasets, columns, 4, self.quasiIds, self.__setHierarchies) clientDatasets, syntacticMappings, generalizedColumns = clientAnonymizationResults testDataset = self._anonymizeTestDataset(testDataset, syntacticMappings, columns, generalizedColumns) return clientDatasets, testDataset @staticmethod def __loadHeartDiseaseData(): trainData = pd.read_csv('data/HeartDisease/train.csv') testData =
pd.read_csv('data/HeartDisease/test.csv')
pandas.read_csv
import re from typing import Optional import warnings import numpy as np from pandas.errors import AbstractMethodError from pandas.util._decorators import cache_readonly from pandas.core.dtypes.common import ( is_hashable, is_integer, is_iterator, is_list_like, is_number, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCIndexClass, ABCMultiIndex, ABCPeriodIndex, ABCSeries, ) from pandas.core.dtypes.missing import isna, notna import pandas.core.common as com from pandas.io.formats.printing import pprint_thing from pandas.plotting._matplotlib.compat import _mpl_ge_3_0_0 from pandas.plotting._matplotlib.converter import register_pandas_matplotlib_converters from pandas.plotting._matplotlib.style import _get_standard_colors from pandas.plotting._matplotlib.tools import ( _flatten, _get_all_lines, _get_xlim, _handle_shared_axes, _subplots, format_date_labels, table, ) class MPLPlot: """ Base class for assembling a pandas plot using matplotlib Parameters ---------- data : """ @property def _kind(self): """Specify kind str. Must be overridden in child class""" raise NotImplementedError _layout_type = "vertical" _default_rot = 0 orientation: Optional[str] = None _pop_attributes = [ "label", "style", "logy", "logx", "loglog", "mark_right", "stacked", ] _attr_defaults = { "logy": False, "logx": False, "loglog": False, "mark_right": True, "stacked": False, } def __init__( self, data, kind=None, by=None, subplots=False, sharex=None, sharey=False, use_index=True, figsize=None, grid=None, legend=True, rot=None, ax=None, fig=None, title=None, xlim=None, ylim=None, xticks=None, yticks=None, sort_columns=False, fontsize=None, secondary_y=False, colormap=None, table=False, layout=None, include_bool=False, **kwds, ): import matplotlib.pyplot as plt self.data = data self.by = by self.kind = kind self.sort_columns = sort_columns self.subplots = subplots if sharex is None: if ax is None: self.sharex = True else: # if we get an axis, the users should do the visibility # setting... self.sharex = False else: self.sharex = sharex self.sharey = sharey self.figsize = figsize self.layout = layout self.xticks = xticks self.yticks = yticks self.xlim = xlim self.ylim = ylim self.title = title self.use_index = use_index self.fontsize = fontsize if rot is not None: self.rot = rot # need to know for format_date_labels since it's rotated to 30 by # default self._rot_set = True else: self._rot_set = False self.rot = self._default_rot if grid is None: grid = False if secondary_y else plt.rcParams["axes.grid"] self.grid = grid self.legend = legend self.legend_handles = [] self.legend_labels = [] for attr in self._pop_attributes: value = kwds.pop(attr, self._attr_defaults.get(attr, None)) setattr(self, attr, value) self.ax = ax self.fig = fig self.axes = None # parse errorbar input if given xerr = kwds.pop("xerr", None) yerr = kwds.pop("yerr", None) self.errors = { kw: self._parse_errorbars(kw, err) for kw, err in zip(["xerr", "yerr"], [xerr, yerr]) } if not isinstance(secondary_y, (bool, tuple, list, np.ndarray, ABCIndexClass)): secondary_y = [secondary_y] self.secondary_y = secondary_y # ugly TypeError if user passes matplotlib's `cmap` name. # Probably better to accept either. if "cmap" in kwds and colormap: raise TypeError("Only specify one of `cmap` and `colormap`.") elif "cmap" in kwds: self.colormap = kwds.pop("cmap") else: self.colormap = colormap self.table = table self.include_bool = include_bool self.kwds = kwds self._validate_color_args() def _validate_color_args(self): import matplotlib.colors if ( "color" in self.kwds and self.nseries == 1 and not is_list_like(self.kwds["color"]) ): # support series.plot(color='green') self.kwds["color"] = [self.kwds["color"]] if ( "color" in self.kwds and isinstance(self.kwds["color"], tuple) and self.nseries == 1 and len(self.kwds["color"]) in (3, 4) ): # support RGB and RGBA tuples in series plot self.kwds["color"] = [self.kwds["color"]] if ( "color" in self.kwds or "colors" in self.kwds ) and self.colormap is not None: warnings.warn( "'color' and 'colormap' cannot be used simultaneously. Using 'color'" ) if "color" in self.kwds and self.style is not None: if is_list_like(self.style): styles = self.style else: styles = [self.style] # need only a single match for s in styles: for char in s: if char in matplotlib.colors.BASE_COLORS: raise ValueError( "Cannot pass 'style' string with a color symbol and " "'color' keyword argument. Please use one or the other or " "pass 'style' without a color symbol" ) def _iter_data(self, data=None, keep_index=False, fillna=None): if data is None: data = self.data if fillna is not None: data = data.fillna(fillna) for col, values in data.items(): if keep_index is True: yield col, values else: yield col, values.values @property def nseries(self): if self.data.ndim == 1: return 1 else: return self.data.shape[1] def draw(self): self.plt.draw_if_interactive() def generate(self): self._args_adjust() self._compute_plot_data() self._setup_subplots() self._make_plot() self._add_table() self._make_legend() self._adorn_subplots() for ax in self.axes: self._post_plot_logic_common(ax, self.data) self._post_plot_logic(ax, self.data) def _args_adjust(self): pass def _has_plotted_object(self, ax): """check whether ax has data""" return len(ax.lines) != 0 or len(ax.artists) != 0 or len(ax.containers) != 0 def _maybe_right_yaxis(self, ax, axes_num): if not self.on_right(axes_num): # secondary axes may be passed via ax kw return self._get_ax_layer(ax) if hasattr(ax, "right_ax"): # if it has right_ax proparty, ``ax`` must be left axes return ax.right_ax elif hasattr(ax, "left_ax"): # if it has left_ax proparty, ``ax`` must be right axes return ax else: # otherwise, create twin axes orig_ax, new_ax = ax, ax.twinx() # TODO: use Matplotlib public API when available new_ax._get_lines = orig_ax._get_lines new_ax._get_patches_for_fill = orig_ax._get_patches_for_fill orig_ax.right_ax, new_ax.left_ax = new_ax, orig_ax if not self._has_plotted_object(orig_ax): # no data on left y orig_ax.get_yaxis().set_visible(False) if self.logy is True or self.loglog is True: new_ax.set_yscale("log") elif self.logy == "sym" or self.loglog == "sym": new_ax.set_yscale("symlog") return new_ax def _setup_subplots(self): if self.subplots: fig, axes = _subplots( naxes=self.nseries, sharex=self.sharex, sharey=self.sharey, figsize=self.figsize, ax=self.ax, layout=self.layout, layout_type=self._layout_type, ) else: if self.ax is None: fig = self.plt.figure(figsize=self.figsize) axes = fig.add_subplot(111) else: fig = self.ax.get_figure() if self.figsize is not None: fig.set_size_inches(self.figsize) axes = self.ax axes = _flatten(axes) valid_log = {False, True, "sym", None} input_log = {self.logx, self.logy, self.loglog} if input_log - valid_log: invalid_log = next(iter((input_log - valid_log))) raise ValueError( f"Boolean, None and 'sym' are valid options, '{invalid_log}' is given." ) if self.logx is True or self.loglog is True: [a.set_xscale("log") for a in axes] elif self.logx == "sym" or self.loglog == "sym": [a.set_xscale("symlog") for a in axes] if self.logy is True or self.loglog is True: [a.set_yscale("log") for a in axes] elif self.logy == "sym" or self.loglog == "sym": [a.set_yscale("symlog") for a in axes] self.fig = fig self.axes = axes @property def result(self): """ Return result axes """ if self.subplots: if self.layout is not None and not is_list_like(self.ax): return self.axes.reshape(*self.layout) else: return self.axes else: sec_true = isinstance(self.secondary_y, bool) and self.secondary_y all_sec = ( is_list_like(self.secondary_y) and len(self.secondary_y) == self.nseries ) if sec_true or all_sec: # if all data is plotted on secondary, return right axes return self._get_ax_layer(self.axes[0], primary=False) else: return self.axes[0] def _compute_plot_data(self): data = self.data if isinstance(data, ABCSeries): label = self.label if label is None and data.name is None: label = "None" data = data.to_frame(name=label) # GH16953, _convert is needed as fallback, for ``Series`` # with ``dtype == object`` data = data._convert(datetime=True, timedelta=True) include_type = [np.number, "datetime", "datetimetz", "timedelta"] # GH23719, allow plotting boolean if self.include_bool is True: include_type.append(np.bool_) # GH22799, exclude datatime-like type for boxplot exclude_type = None if self._kind == "box": # TODO: change after solving issue 27881 include_type = [np.number] exclude_type = ["timedelta"] # GH 18755, include object and category type for scatter plot if self._kind == "scatter": include_type.extend(["object", "category"]) numeric_data = data.select_dtypes(include=include_type, exclude=exclude_type) try: is_empty = numeric_data.columns.empty except AttributeError: is_empty = not len(numeric_data) # no non-numeric frames or series allowed if is_empty: raise TypeError("no numeric data to plot") # GH25587: cast ExtensionArray of pandas (IntegerArray, etc.) to # np.ndarray before plot. numeric_data = numeric_data.copy() for col in numeric_data: numeric_data[col] = np.asarray(numeric_data[col]) self.data = numeric_data def _make_plot(self): raise AbstractMethodError(self) def _add_table(self): if self.table is False: return elif self.table is True: data = self.data.transpose() else: data = self.table ax = self._get_ax(0) table(ax, data) def _post_plot_logic_common(self, ax, data): """Common post process for each axes""" if self.orientation == "vertical" or self.orientation is None: self._apply_axis_properties(ax.xaxis, rot=self.rot, fontsize=self.fontsize) self._apply_axis_properties(ax.yaxis, fontsize=self.fontsize) if hasattr(ax, "right_ax"): self._apply_axis_properties(ax.right_ax.yaxis, fontsize=self.fontsize) elif self.orientation == "horizontal": self._apply_axis_properties(ax.yaxis, rot=self.rot, fontsize=self.fontsize) self._apply_axis_properties(ax.xaxis, fontsize=self.fontsize) if hasattr(ax, "right_ax"): self._apply_axis_properties(ax.right_ax.yaxis, fontsize=self.fontsize) else: # pragma no cover raise ValueError def _post_plot_logic(self, ax, data): """Post process for each axes. Overridden in child classes""" pass def _adorn_subplots(self): """Common post process unrelated to data""" if len(self.axes) > 0: all_axes = self._get_subplots() nrows, ncols = self._get_axes_layout() _handle_shared_axes( axarr=all_axes, nplots=len(all_axes), naxes=nrows * ncols, nrows=nrows, ncols=ncols, sharex=self.sharex, sharey=self.sharey, ) for ax in self.axes: if self.yticks is not None: ax.set_yticks(self.yticks) if self.xticks is not None: ax.set_xticks(self.xticks) if self.ylim is not None: ax.set_ylim(self.ylim) if self.xlim is not None: ax.set_xlim(self.xlim) ax.grid(self.grid) if self.title: if self.subplots: if is_list_like(self.title): if len(self.title) != self.nseries: raise ValueError( "The length of `title` must equal the number " "of columns if using `title` of type `list` " "and `subplots=True`.\n" f"length of title = {len(self.title)}\n" f"number of columns = {self.nseries}" ) for (ax, title) in zip(self.axes, self.title): ax.set_title(title) else: self.fig.suptitle(self.title) else: if
is_list_like(self.title)
pandas.core.dtypes.common.is_list_like
# -*- coding: utf-8 -*- from abc import ABC from pathlib import Path import pandas as pd import scrapy from src.crawl.utils import cleanup from settings import YEAR, CRAWLING_OUTPUT_FOLDER BASE_URl = "https://www.helmo.be/Formations/{}" PROG_DATA_PATH = Path(__file__).parent.absolute().joinpath( f'../../../../{CRAWLING_OUTPUT_FOLDER}helmo_programs_{YEAR}.json') LANGUAGES_DICT = {"Français": 'fr', "Anglais": 'en'} class HELMOCourseSpider(scrapy.Spider, ABC): """ Course crawler for Haute Ecole Libre Mosane """ name = "helmo-courses" custom_settings = { 'FEED_URI': Path(__file__).parent.absolute().joinpath( f'../../../../{CRAWLING_OUTPUT_FOLDER}helmo_courses_{YEAR}.json').as_uri() } def start_requests(self): courses_df = pd.read_json(open(PROG_DATA_PATH, "r"))[["courses", "courses_urls"]] # Combine lists of strings courses_ids_list = courses_df["courses"].sum() courses_urls_list = courses_df["courses_urls"].sum() # Some courses are specified at two different urls which have exactly the same content courses_ds =
pd.Series(courses_ids_list, courses_urls_list)
pandas.Series
# ---------------- # IMPORT PACKAGES # ---------------- import pandas as pd from sklearn.ensemble import RandomForestClassifier import sklearn.metrics as skm import numpy as np import matplotlib.pyplot as plt # ---------------- # OBTAIN DATA # ---------------- # Data Source: https://archive.ics.uci.edu/ml/machine-learning-databases/00240/ # ---------------- # PROFILE DATA # ---------------- # Determine number of observations or data points in the training data set. subjects =
pd.read_csv("train/subject_train.txt", header=None, delim_whitespace=True, index_col=False)
pandas.read_csv
import json import pandas as pd import random import os import pyproj import numpy as np import geopandas as gpd from pathlib import Path from datetime import datetime from copy import deepcopy from shapely.geometry import Point from shapely.ops import transform from sklearn.preprocessing import OneHotEncoder # load config file with open(Path(os.path.dirname(os.path.realpath(__file__)), '../config.json')) as f: config = json.load(f) class DataLoader: """ Loads the combined HVP dataset containing POI data and URA land use data and performs data preparation. """ def __init__(self): """ Initialises the class object by loading the combined HVP dataset containing POI data and URA land use data. """ print('Loading batch data...') batch1 = pd.read_excel(os.path.join(os.path.dirname(__file__), config['processed_data_directory'] + 'batch_stop_data_1.xlsx')) batch2 = pd.read_excel(os.path.join(os.path.dirname(__file__), config['processed_data_directory'] + 'batch_stop_data_2.xlsx')) batch3 = pd.read_excel(os.path.join(os.path.dirname(__file__), config['processed_data_directory'] + 'batch_stop_data_3.xlsx')) batch4 = pd.read_excel(os.path.join(os.path.dirname(__file__), config['processed_data_directory'] + 'batch_stop_data_4.xlsx')) batch5 = pd.read_excel(os.path.join(os.path.dirname(__file__), config['processed_data_directory'] + 'batch_stop_data_5.xlsx')) batch6 = pd.read_excel(os.path.join(os.path.dirname(__file__), config['processed_data_directory'] + 'batch_stop_data_6.xlsx')) batch7 = pd.read_excel(os.path.join(os.path.dirname(__file__), config['processed_data_directory'] + 'batch_stop_data_7.xlsx')) batch8 = pd.read_excel(os.path.join(os.path.dirname(__file__), config['processed_data_directory'] + 'batch_stop_data_8.xlsx')) self.data = pd.concat([batch1, batch2, batch3, batch4, batch5, batch6, batch7, batch8], ignore_index=True) def check_stop_order(self, data): """ Checks if the stops made by each driver is in chronological order. Parameters: data: pd.Dataframe Contains the combined HVP dataset. """ for driver_id in data['DriverID'].unique(): driver_data = deepcopy(data[data['DriverID'] == driver_id].reset_index(drop=True)) unix_time = np.array([datetime.strptime(time_str, '%Y-%m-%d %H-%M-%S').timestamp() for time_str in driver_data['StartTime'].tolist()]) time_diff = unix_time[1:] - unix_time[:-1] if len(driver_data) > 1: assert np.any(time_diff < 0.0) def _buffer_in_meters(self, lng, lat, radius): """ Converts a latitude, longitude coordinate pair into a buffer with user-defined radius.s :param lng: float Contains the longitude information. :param lat: float Contains the latitude information. :param radius: float Contains the buffer radius in metres. :return: buffer_latlng: Polygon Contains the buffer. """ proj_meters = pyproj.CRS('EPSG:3414') # EPSG for Singapore proj_latlng = pyproj.CRS('EPSG:4326') project_to_metres = pyproj.Transformer.from_crs(proj_latlng, proj_meters, always_xy=True).transform project_to_latlng = pyproj.Transformer.from_crs(proj_meters, proj_latlng, always_xy=True).transform pt_meters = transform(project_to_metres, Point(lng, lat)) buffer_meters = pt_meters.buffer(radius) buffer_latlng = transform(project_to_latlng, buffer_meters) return buffer_latlng def _extract_other_driver_activities(self, driver_data, other_driver_data): """ Extracts the activity information performed by other drivers in the same area. Parameters: driver_data: pd.Dataframe Contains the combined HVP dataset for a particular driver. other_driver_data: pd.Dataframe Contains the combined HVP dataset for the other drivers. Return: driver: pd.Dataframe Contains the combined HVP dataset for a particular driver + past activities of other drivers """ other_driver_activities = pd.DataFrame() driver_data = gpd.GeoDataFrame(driver_data, geometry=gpd.points_from_xy(driver_data['StopLon'], driver_data['StopLat'])) other_driver_data = gpd.GeoDataFrame(other_driver_data, geometry=gpd.points_from_xy(other_driver_data['StopLon'], other_driver_data['StopLat'])) for i in range(len(driver_data)): # create 100m circular buffer around stop buffer = self._buffer_in_meters(driver_data.loc[i, 'StopLon'], driver_data.loc[i, 'StopLat'], 50.0) nearby_stops = other_driver_data[other_driver_data.intersects(buffer)].reset_index(drop=True) if len(nearby_stops) == 0: other_driver_activities = other_driver_activities.append(pd.Series(dtype=object), ignore_index=True) else: activity_cols = [col for col in nearby_stops.columns if ('Activity.' in col) and ('MappedActivity.' not in col) and ('Other.' not in col)] mapped_activity_cols = [col for col in nearby_stops.columns if ('MappedActivity.' in col) and ('Other.' not in col)] # calculate distribution of activities conducted near the stop summed_activity = nearby_stops.sum()[activity_cols] normalised_activity = (summed_activity) / (summed_activity.sum() + 1e-9) # calculate distribution of mapped activities conducted near the stop summed_mapped_activity = nearby_stops.sum()[mapped_activity_cols] normalised_mapped_activity = (summed_mapped_activity) / (summed_mapped_activity.sum() + 1e-9) # merge original and mapped activity types conducted by other drivers other_driver_activities = other_driver_activities.append(pd.concat([normalised_activity, normalised_mapped_activity]).T, ignore_index=True) assert len(driver_data) == len(other_driver_activities) other_driver_activities_cols = ['Other.{}'.format(column) for column in other_driver_activities.columns] other_driver_activities.columns = other_driver_activities_cols driver_data = pd.concat([driver_data, other_driver_activities], axis=1) driver_data.fillna(0, inplace=True) return driver_data def _extract_past_activities(self, data): """ Extracts past activities performed by each driver. Parameters: data: pd.Dataframe Contains the combined HVP dataset. Return: new_data: pd.DataFrame Contains the combined HVP dataset with past activities performed by each driver """ assert type(data) == gpd.GeoDataFrame new_data =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import html from bedrock.doc.relation import Relation from bedrock.doc.annotation import Annotation from bedrock.doc.token import Token from bedrock.doc.layer import Layer from bedrock.common import uima import logging from typing import Any import warnings class CAS2DataFrameConverter: def __init__(self, mapping_fns: dict = None, appending_fns: dict = None): if mapping_fns is None: self.__mapping_fns = {} else: self.__mapping_fns = mapping_fns if appending_fns is None: self.__appending_fns = {} else: self.__appending_fns = appending_fns def register_mapping_fn(self, layer_name: str, fn: Any): self.__mapping_fns[layer_name] = fn def register_appending_fn(self, layer_name: str, fn: Any): self.__appending_fns[layer_name] = fn def unregister_mapping_fn(self, layer_name: str): self.__mapping_fns[layer_name] = None def unregister_appending_fn(self, layer_name: str): self.__appending_fns[layer_name] = None # Generates panda df from the UIMA CAS: tokens, annotations, relations, uima (combined) def get_dataframes(self, cas): annotations =
pd.DataFrame(columns=Annotation.COLS)
pandas.DataFrame
# -*- coding: utf-8 -*- import csv import random from time import time from decimal import Decimal #from faker import Faker import boto3 import string import random import os import os import re import collections import nltk import pandas as pd #from nltk.corpus import stopwords from io import StringIO # python3; python2: BytesIO from nltk.corpus import stopwords import google.cloud from google.cloud import language_v1 import os nltk.download('punkt') nltk.download('stopwords') nltk.download('words') #df_sentimentScore = pd.DataFrame(columns=['sentence','sentiment_score','sentiment_magnitude','language']) df_sentimentScore = pd.DataFrame(columns=['text','label']) sentiment_score = [] #sentiment_magnitude = [] sentence1 = [] content_list=[] preprocessed_list=[] #langue=[] #stop_words = stopwords.words('english') # Connect to Boto3 s3 = boto3.resource( service_name='s3', region_name='us-east-2') # bucket_name = '' # def upload_to_s3(filename): # s3.Bucket(bucket_name).upload_file(Filename=filename, Key='demo/' + filename) # print ('Upload Complete') def upload_to_aws(local_file, bucket, s3_file): import boto3 from botocore.exceptions import NoCredentialsError ACCESS_KEY = 'AKIA5CUSOFRV64J75U7W' SECRET_KEY = '<KEY>' s3 = boto3.client('s3', aws_access_key_id=ACCESS_KEY, aws_secret_access_key=SECRET_KEY) try: s3.upload_file(local_file, bucket, s3_file) return True except FileNotFoundError: print("The file was not found") return False except NoCredentialsError: print("Credentials not available") return False #uploading all unstructured files to S3 def upload_files(path): session = boto3.Session( aws_access_key_id='AKIA5CUSOFRV64J75U7W', aws_secret_access_key='<KEY>', region_name='us-east-2' ) s3 = session.resource('s3') bucket = s3.Bucket('edgarteam3') for subdir, dirs, files in os.walk(path): for file in files: full_path = os.path.join(subdir, file) with open(full_path, 'rb') as data: bucket.put_object(Key=full_path[len(path)+1:], Body=data) def processed_file_to_s3(): bucket = 'edgarteam3processedfiles' # already created on S3 csv_buffer = StringIO() ACCESS_KEY = 'AKIA5CUSOFRV64J75U7W' SECRET_KEY = '<KEY>' df =
pd.DataFrame(preprocessed_list)
pandas.DataFrame
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/04_evaluation.core.ipynb (unless otherwise specified). __all__ = ['get_mean_probs', 'find_parens', 'mean_dist_probs', 'token_taxonomy', 'non_wordy', 'get_error_rates', 'get_error_rates_df', 'get_last_token_error_df', 'get_mean_cross_entropy', 'get_mean_probs', 'get_mean_cross_entropy_df', 'save_results', 'evaluate', 'TYPES'] # Cell import re import numpy as np import pandas as pd import tensorflow as tf from collections import Counter, defaultdict from ..data.core import replace_spec_toks_to_original, java_special_tokens from ..data.transforms import ( code_token_randomizer, line_randomizer, java_comment_remover, transform_df, ) from ..model.core import Model, RNNModel, TransformerHFModel, WildModel, _loss from pathlib import Path from scipy import stats from transformers import TFGPT2LMHeadModel from tqdm.auto import tqdm from typing import Dict, List, Optional # Cell def get_mean_probs(df: pd.DataFrame, model: Model, n: Optional[int] = None): """ Get the mean probability of each token that the model should predict for an entire pandas dataframe. :param df: the pandas dataframe containing each method to have the model predict on :param model: the model used to generate the predictions :param n: the number of methods to evaluate. If none, the entire dataframe will be used :returns: returns a numpy array of the mean probability for each token in the model's vocab """ if n is None: n = len(df) # setup container lists for the number of occurrences and sum of probabilities for each token counts = [0] * model.tokenizer.get_vocab_size() sum_probs = [0.0] * model.tokenizer.get_vocab_size() # loop through each method for mthd in df.code.values[:n]: # token the method and generate the probabilities for the model's predictions inputs = model.tokenize(mthd) probs = model.get_probs(inputs)[0].numpy() # loop through each token and its probability and update the container lists for idx, p in zip(inputs["input_ids"][0], probs): counts[idx] += 1 sum_probs[idx] += p[idx] # convert the lists to numpy lists and perform element wise division to get the mean probabilities for each token counts = np.array(counts) sum_probs = np.array(sum_probs) # perform division, but not when denominator is zero. In those cases, just leave value as NAN. nans = np.empty(counts.shape) nans.fill(np.nan) mean_probs = np.divide(sum_probs, counts, out=nans, where=counts != 0) # TODO: convert to dictionary with keys as tokens mean_probs = { model.tokenizer.id_to_token(i): mean_probs[i] for i in range(len(mean_probs)) } return mean_probs # Cell def find_parens(toks: List[str], opening: str, closing: str) -> Dict[int, int]: """ Get the indices for the opening and closing tokens. From https://stackoverflow.com/a/29992065/5768407 by user Baltasarq (https://stackoverflow.com/users/266978/baltasarq). :param toks: the tokenized version of a method :param opening: the opening token that will be matched against the closing token :param closing: the closing token that will be matched against the opening token :returns: returns a dictionary with the opening token indices as the keys and the closing token indices as the values """ toret = {} pstack = [] for i, tok in enumerate(toks): if tok == opening: pstack.append(i) elif tok == closing: if len(pstack) == 0: raise IndexError("No matching closing parens at: " + str(i)) toret[pstack.pop()] = i if len(pstack) > 0: raise IndexError("No matching opening parens at: " + str(pstack.pop())) return toret def _get_dist_probs( mthd: str, model: Model, opening: str, closing: str ) -> Dict[int, float]: """ Get the distances and mean probabilities between opening and closing tokens in a given method. :param mthd: the method to get the ranges of the opening and closing tokens and their probabilities :param model: the model used to generate the predictions :param opening: the opening token used for calculating the distance between opening and closing tokens :param closing: the closing token used for calculating the distance between opening and closing tokens as well as the token to get the mean probability of :returns: returns a dictionary with the distance between the opening and closing tokens as keys and their mean probabilities as values """ # WARNING: Careful when using different tokenizers since HF tokenizers lib have diff API then HF transformers lib tokenizers... You will need to update this when using custom model and tokenizer... # get the distances for the opening and closing tokens toks = model.tokenizer.encode(mthd).tokens idxs = find_parens(toks, opening, closing) # get the model probabilities for the given method inputs = model.tokenize(mthd) probs = model.get_probs(inputs)[0].numpy() # sum up the probabilities of the different distances for the closing token dist_probs = defaultdict(float) for open_id, close_id in idxs.items(): dist_probs[close_id - open_id] += probs[close_id][ inputs["input_ids"][0][close_id] ] # get the mean of the summed probabilities dist_cnts = Counter([close_id - open_id for open_id, close_id in idxs.items()]) dist_probs = {dist: dist_probs[dist] / n for dist, n in dist_cnts.items()} return dist_probs def mean_dist_probs( df: pd.DataFrame, model: Model, opening: Optional[str] = "<{>", closing: Optional[str] = "<}>", n: Optional[int] = None, ) -> pd.DataFrame: """ Get the distance between opening and closing tokens and the mean probability of each closing token that the model should predict for an entire pandas dataframe. :param df: the pandas dataframe containing each method to have the model predict on :param model: the model used to generate the predictions :param opening: the opening token used for calculating the distance between opening and closing tokens :param closing: the closing token used for calculating the distance between opening and closing tokens as well as the token to get the mean probability of :param n: the number of methods to evaluate. If none, the entire dataframe will be used :returns: returns a dataframe with the distances between opening and closing tokens and their mean probabilities """ if n is None: n = len(df) # get the probabilities for the different distances for an entire dataframe df = df.iloc[:n].copy() dist_probs = df.code.apply( lambda mthd: _get_dist_probs(mthd, model, opening, closing) ).values # flatten the keys of the different distances into a list dist_keys = [] for probs in dist_probs: dist_keys.extend(probs.keys()) # merge dictionaries across methods by taking the mean of probs with the same distance. Modified from https://stackoverflow.com/a/10461916/5768407, # users georg https://stackoverflow.com/users/989121/georg and <NAME> https://stackoverflow.com/users/12149730/r%c3%a9my-hosseinkhan-boucher mean_dist_probs = { k: np.nanmean(np.array([probs.get(k, np.nan) for probs in dist_probs])) for k in set(dist_keys) } std_dist_probs = { k: np.nanstd(np.array([probs.get(k, np.nan) for probs in dist_probs])) for k in set(dist_keys) } med_dist_probs = { k: np.nanmedian(np.array([probs.get(k, np.nan) for probs in dist_probs])) for k in set(dist_keys) } mad_dist_probs = { k: stats.median_abs_deviation( np.array([probs.get(k, np.nan) for probs in dist_probs]), nan_policy="omit" ) for k in set(dist_keys) } # TODO: convert to dictionary df_dist = ( pd.DataFrame( { "dist": list(mean_dist_probs.keys()), "mean_prob": list(mean_dist_probs.values()), "std_prob": list(std_dist_probs.values()), "med_prob": list(med_dist_probs.values()), "mad_prob": list(mad_dist_probs.values()), } ) .sort_values("dist") .reset_index(drop=True) ) return df_dist # Cell token_taxonomy = { "blocks": { "<{>": "{", "<}>": "}", "<[>": "[", "<]>": "]", "<(>": "(", "<)>": ")", "<;>": ";", "<return>": "return" }, "exceptions": { "<catch>": "catch", "<try>": "try", "<finally>": "finally", "<throw>": "throw", "<throws>": "throws" }, "oop": { "<class>": "class", "<instanceof>": "instanceof", "<interface>": "interface", "<private>": "private", "<protected>": "protected", "<public>": "public", "<abstract>": "abstract", "<extends>": "extends", "<package>": "package", "<this>": "this", "<implements>": "implements", "<import>": "import", "<new>": "new", "<super>": "super" }, "tests": { "<assert>": "assert" }, "declarations": { "<native>": "native", "<static>": "static", "<synchronized>": "synchronized", "<transient>": "transient", "<volatile>": "volatile", "<void>": "void", "<final>": "final", "<enum>": "enum" }, "conditionals": { "<else>": "else", "<if>": "if", "<switch>": "switch", "<case>": "case", "<default>": "default" }, "loops": { "<break>": "break", "<do>": "do", "<for>": "for", "<while>": "while", "<continue>": "continue" }, "operators": { "<=>": "=", "<+>": "+", "<->": "-", "<*>": "*", "</>": "/", "<%>": "%", "<++>": "++", "<-->": "--", "<!>": "!", "<==>": "==", "<!=>": "!=", "<greater_equal>": ">=", "<lesser_equal>": "<=", "<&&>": "&&", "<||>": "||", "<?>": "?", "<:>": ":", "<~>": "~", "<double_lesser>": "<<", "<double_greater>": ">>", "<triple_greater>": ">>>", "<&>": "&", "<^>": "^", "<|>": "|" }, "datatypes": { "<byte>": "byte", "<char>": "char", "<float>": "float", "<boolean>": "boolean", "<double>": "double", "<int>": "int", "<long>": "long", "<short>": "short", "<strictfp>": "strictfp" }, "extra_tokens": { "<@>": "@", "<...>": "...", "<null>": "null", "<true>": "true", "<false>": "false", "<n>": "\n" } } # Cell non_wordy = ["<n>", "<...>", "<@>", *token_taxonomy["operators"], *token_taxonomy["blocks"]] non_wordy.remove("<return>") # Cell def get_error_rates(df: pd.DataFrame, model: Model, n: Optional[int] = None): if n is None: n = len(df) # setup container lists for the number of occurrences and sum of probabilities for each token cnts = [0] * model.tokenizer.get_vocab_size() err_cnts = [0] * model.tokenizer.get_vocab_size() # loop through each method for mthd in df.code.values[:n]: # token the method and generate the probabilities for the model's predictions inputs = model.tokenize(mthd) probs = model.get_probs(inputs)[0].numpy() # loop through each token and its probability and update the container lists for idx, p in zip(inputs["input_ids"][0], probs): cnts[idx] += 1 err_cnts[idx] += 1 # convert the lists to numpy lists and perform element wise division to get the mean probabilities for each token cnts = np.array(cnts) err_cnts = np.array(err_cnts) # perform division, but not when denominator is zero. In those cases, just leave value as NAN. nans = np.empty(cnts.shape) nans.fill(np.nan) mean_errs = np.divide(err_cnts, cnts, out=nans, where=cnts != 0) error_taxonomy = token_taxonomy.copy() for cat, tokens in error_taxonomy.items(): errs = [] cnt_sum = 0 for token, keyword in tokens.items(): idx = model.tokenizer.token_to_id(token) error_taxonomy[cat][token] = {"error_rate": mean_errs[idx], "count": cnts[idx]} errs.append(mean_errs[idx]) cnt_sum += cnts[idx] errs = np.array(errs) error_taxonomy[cat]["stats"] = { "mean_error_rate": np.nanmean(errs), "stdev_error_rate": np.nanstd(errs), "median_error_rate": np.nanmedian(errs), "mad_error_rate": stats.median_abs_deviation(errs, nan_policy="omit"), } return error_taxonomy # Cell def get_error_rates_df(df: pd.DataFrame, model: Model, bs: int = 16, n: Optional[int] = None): if n is None: n = len(df) # setup container lists for the number of occurrences and sum of probabilities for each token rows = [] # loop through each method for i in tqdm(range(0, n, bs), desc="Error Rates", total = (n // bs) + 1): batch = ["<sos>" + mthd for mthd in df.code.values[i:i + bs]] # token the method and get the probabilities for each token from the model inputs = np.stack([x.ids for x in model.tokenizer.encode_batch(batch)], axis = 0) probs = model.get_probs(inputs) for i in range(len(batch)): row = { "y_" + k: np.array([0.] * model.tokenizer.get_vocab_size()) for k in token_taxonomy.keys() } row_cnt = { "y_" + k: np.array([0] * model.tokenizer.get_vocab_size()) for k in token_taxonomy.keys() } # loop through each token and its probability and update the container lists for j, (idx, p) in enumerate(zip(inputs[i], probs[i])): tok = model.tokenizer.id_to_token(idx) for k in token_taxonomy: if tok in token_taxonomy[k]: # Check if token is wordy and could be part of variable or method if tok not in non_wordy: # Get the token version of the token behind the token under study # and check if the last character in the token contains a letter inp_tok_prev = model.tokenizer.id_to_token(inputs[i][j - 1]) if re.search('[a-zA-Z]', inp_tok_prev[-1]): break # Check if there is a token infront of the token under study # if there is, get the token version of it # and check if the first character in the token contains a letter if j + 1 < len(inputs[i]): inp_tok_next = model.tokenizer.id_to_token(inputs[i][j + 1]) if re.search('[a-zA-Z]', inp_tok_next[0]): break row["y_" + k][idx] += p[idx] row_cnt["y_" + k][idx] += 1 for k in row: # Check if there were no tokens found in this method for this particular taxonomy category if not row_cnt[k].any(): row[k] = np.nan else: sum_cnt = np.sum(row_cnt[k]) row[k] = np.sum(row[k]) / sum_cnt rows.append(row) error_df = pd.DataFrame(rows) error_df["original_code"] = replace_spec_toks_to_original(df, java_special_tokens, n).code.values error_df["transformed_code"] = df.code.values[:n] return error_df # Cell def get_last_token_error_df(df: pd.DataFrame, model: Model, bs: int = 16, n: Optional[int] = None): if n is None: n = len(df) # setup container lists for probabilities of the last token ending = [] row = defaultdict(list) # loop through each batch of methods for i in tqdm(range(0, n, bs), desc="Error Rates", total = (n // bs) + 1): # get the batch of methods batch = [mthd for mthd in df.code.values[i:i + bs]] # tokenize the batch and get the probabilities for each token from the model inputs = model.batch_tokenize(batch) probs = model.get_probs(inputs) # turn off padding so that we can get the idx of the last token model.tokenizer.backend_tokenizer.no_padding() idx_last_ids = [len(x.ids) - 1 for x in model.tokenizer.backend_tokenizer.encode_batch(batch)] # loop through the ids of the last token for bs_idx, tok_idx in enumerate(idx_last_ids): # append the probability of the last token to the list prob = probs[bs_idx][tok_idx][inputs["input_ids"][bs_idx][tok_idx]].item() ending.append(prob) # turn the list into a dataframe in the correct format last_error_df = pd.DataFrame(ending, columns=["y_ending_error"]) last_error_df["original_code"] = replace_spec_toks_to_original(df, java_special_tokens, n).code.values last_error_df["transformed_code"] = df.code.values[:n] return last_error_df # Cell def get_mean_cross_entropy(df: pd.DataFrame, model: Model, n: Optional[int] = None): """ Get the mean cross entropy for a model on an entire pandas dataframe :param df: the pandas dataframe containing each method to have the model predict on :param model: the model used to generate the predictions :param n: the number of methods to evaluate. If none, the entire dataframe will be used :returns: returns the mean cross entropy of the models predictions compared to true labels """ if n is None: n = len(df) cross_entropy_losses = [] # Need to change to sparse_categorical_crossentropy for mthd in df.code.values[:n]: # token the method and get the probabilities for each token from the model inputs = model.tokenize(mthd) probs = model.get_probs(inputs)[0].numpy() # calculate the cross entropy between the labels and probabilities losses = tf.keras.losses.sparse_categorical_crossentropy( inputs["input_ids"], probs ).numpy() cross_entropy_losses.append(losses) # flatten list of cross entropies and calculate the mean, median, std, and mad cross_entropy_losses = np.concatenate(cross_entropy_losses) return { "mean": np.mean(cross_entropy_losses), "median": np.median(cross_entropy_losses), "std": np.std(cross_entropy_losses), "mad": stats.median_abs_deviation(cross_entropy_losses), } # Cell def get_mean_probs(df: pd.DataFrame, model: Model, n: Optional[int] = None): """ Get the mean probability of each token that the model should predict for an entire pandas dataframe. :param df: the pandas dataframe containing each method to have the model predict on :param model: the model used to generate the predictions :param n: the number of methods to evaluate. If none, the entire dataframe will be used :returns: returns a numpy array of the mean probability for each token in the model's vocab """ if n is None: n = len(df) # setup container lists for the number of occurrences and sum of probabilities for each token counts = [0] * model.tokenizer.get_vocab_size() sum_probs = [0.0] * model.tokenizer.get_vocab_size() # loop through each method for mthd in df.code.values[:n]: # token the method and generate the probabilities for the model's predictions inputs = model.tokenize(mthd) probs = model.get_probs(inputs)[0].numpy() # loop through each token and its probability and update the container lists for idx, p in zip(inputs["input_ids"][0], probs): counts[idx] += 1 sum_probs[idx] += p[idx] # convert the lists to numpy lists and perform element wise division to get the mean probabilities for each token counts = np.array(counts) sum_probs = np.array(sum_probs) # perform division, but not when denominator is zero. In those cases, just leave value as NAN. nans = np.empty(counts.shape) nans.fill(np.nan) mean_probs = np.divide(sum_probs, counts, out=nans, where=counts != 0) # TODO: convert to dictionary with keys as tokens mean_probs = { model.tokenizer.id_to_token(i): mean_probs[i] for i in range(len(mean_probs)) } return mean_probs # Cell def get_mean_cross_entropy_df(df: pd.DataFrame, model: Model, bs = 16, n: Optional[int] = None): """ Get the mean cross entropy for a model on an entire pandas dataframe :param df: the pandas dataframe containing each method to have the model predict on :param model: the model used to generate the predictions :param n: the number of methods to evaluate. If none, the entire dataframe will be used :returns: returns the mean cross entropy of the models predictions compared to true labels """ if n is None: n = len(df) cross_entropy_losses = [] for i in tqdm(range(0, n, bs), desc="Cross Entropies", total = (n // bs) + 1): batch = ["<sos>" + mthd for mthd in df.code.values[i:i + bs]] # token the method and get the probabilities for each token from the model inputs = np.stack([x.ids for x in model.tokenizer.encode_batch(batch)], axis = 0) probs = model.get_probs(inputs) # calculate the cross entropy between the labels and probabilities losses = tf.keras.losses.sparse_categorical_crossentropy( inputs, probs ).numpy() cross_entropy_losses.extend(np.mean(losses, axis = 1)) new_df = pd.DataFrame( zip(replace_spec_toks_to_original(df, java_special_tokens, n).code.values, df.code.values[:n], cross_entropy_losses), columns=["original_code", "transformed_code", "y_cross_entropy"] ) return new_df # Cell TYPES = 3 def _get_metrics(df, model): error_taxonomy_df = get_error_rates_df(df, model, bs = 192) # mean_cross_entropy_df = get_mean_cross_entropy_df(df, model, bs = 192) return { "error_taxonomy": error_taxonomy_df, # "mean_cross_entropy": mean_cross_entropy_df, } def save_results(control_df, treatment_df, model, err_path, cross_path): control_metrics = _get_metrics(control_df, model) treatment_metrics = _get_metrics(treatment_df, model) err_df = pd.concat( [control_metrics["error_taxonomy"], treatment_metrics["error_taxonomy"]] ).sort_index().reset_index(drop=True) err_df["x_treatment"] = [False, True] * len(control_metrics["error_taxonomy"]) err_df.to_json(err_path, orient="records", lines=True) # cross_df = pd.concat( # [control_metrics["mean_cross_entropy"], treatment_metrics["mean_cross_entropy"]] # ).sort_index().reset_index(drop=True) # cross_df["x_treatment"] = [False, True] * len(control_metrics["mean_cross_entropy"]) # cross_df.to_json(cross_path, orient="records", lines=True) def _long_range(bigclone_path, bugfix_path, cmt_path, model, out_path, n=None): out_path.mkdir(parents=True, exist_ok=True) for i in range(1, TYPES + 1): df =
pd.read_json(bigclone_path / f"bigclone-type-{i}.jsonl", orient="records", lines=True)
pandas.read_json
import numpy as np import pandas as pd from scipy.interpolate import interp1d from scipy.spatial import distance from scipy.optimize import differential_evolution class IntracellAnalysisV2: # IA constants FC_UPPER_VOLTAGE = 4.20 FC_LOWER_VOLTAGE = 2.70 NE_UPPER_VOLTAGE = 0.01 NE_LOWER_VOLTAGE = 1.50 PE_UPPER_VOLTAGE = 4.30 PE_LOWER_VOLTAGE = 2.86 THRESHOLD = 4.84 * 0.0 def __init__(self, pe_pristine_file, ne_pristine_file, cycle_type='rpt_0.2C', step_type=0, error_type='V-Q', ne_2pos_file=None, ne_2neg_file=None ): """ Invokes the cell electrode analysis class. This is a class designed to fit the cell and electrode parameters in order to determine changes of electrodes within the full cell from only full cell cycling data. Args: pe_pristine_file (str): file name for the half cell data of the pristine (uncycled) positive electrode ne_pristine_file (str): file name for the half cell data of the pristine (uncycled) negative electrode cycle_type (str): type of diagnostic cycle for the fitting step_type (int): charge or discharge (0 for charge, 1 for discharge) error_type (str): defines which error metric is to be used ne_2neg_file (str): file name of the data for the negative component of the anode ne_2pos_file (str): file name of the data for the positive component of the anode """ self.pe_pristine = pd.read_csv(pe_pristine_file, usecols=['SOC_aligned', 'Voltage_aligned']) self.ne_1_pristine = pd.read_csv(ne_pristine_file, usecols=['SOC_aligned', 'Voltage_aligned']) if ne_2neg_file and ne_2pos_file: self.ne_2_pristine_pos = pd.read_csv(ne_2pos_file) self.ne_2_pristine_neg = pd.read_csv(ne_2neg_file) else: self.ne_2_pristine_pos = pd.DataFrame() self.ne_2_pristine_neg = pd.DataFrame() if step_type == 0: self.capacity_col = 'charge_capacity' else: self.capacity_col = 'discharge_capacity' self.cycle_type = cycle_type self.step_type = step_type self.error_type = error_type def process_beep_cycle_data_for_candidate_halfcell_analysis_ah(self, cell_struct, cycle_index): """ Ingests BEEP structured cycling data and cycle_index and returns a Dataframe of evenly spaced capacity with corresponding voltage. Inputs: cell_struct (MaccorDatapath): BEEP structured cycling data cycle_index (int): cycle number at which to evaluate Outputs: real_cell_candidate_charge_profile_aligned (Dataframe): columns Q_aligned (evenly spaced) and Voltage_aligned """ # filter the data down to the diagnostic type of interest diag_type_cycles = cell_struct.diagnostic_data.loc[cell_struct.diagnostic_data['cycle_type'] == self.cycle_type] real_cell_candidate_charge_profile = diag_type_cycles.loc[ (diag_type_cycles.cycle_index == cycle_index) & (diag_type_cycles.step_type == 0) # step_type = 0 is charge, 1 is discharge & (diag_type_cycles.voltage < self.FC_UPPER_VOLTAGE) & (diag_type_cycles[self.capacity_col] > 0)][['voltage', 'charge_capacity']] # renaming capacity,voltage column real_cell_candidate_charge_profile['Q'] = real_cell_candidate_charge_profile['charge_capacity'] real_cell_candidate_charge_profile['Voltage'] = real_cell_candidate_charge_profile['voltage'] real_cell_candidate_charge_profile.drop('voltage', axis=1, inplace=True) # interpolate voltage along evenly spaced capacity axis q_vec = np.linspace(0, np.max(real_cell_candidate_charge_profile['Q']), 1001) real_cell_candidate_charge_profile_aligned = pd.DataFrame() real_cell_candidate_charge_profile_interper = interp1d(real_cell_candidate_charge_profile['Q'], real_cell_candidate_charge_profile['Voltage'], bounds_error=False, fill_value=( self.FC_LOWER_VOLTAGE, self.FC_UPPER_VOLTAGE)) real_cell_candidate_charge_profile_aligned['Voltage_aligned'] = real_cell_candidate_charge_profile_interper( q_vec) real_cell_candidate_charge_profile_aligned['Q_aligned'] = q_vec return real_cell_candidate_charge_profile_aligned def _impose_electrode_scale(self, pe_pristine=pd.DataFrame(), ne_1_pristine=pd.DataFrame(), ne_2_pristine_pos=pd.DataFrame(), ne_2_pristine_neg=pd.DataFrame(), lli=0.0, q_pe=0.0, q_ne=0.0, x_ne_2=0.0): """ Scales the reference electrodes according to specified capacities and offsets their capacities according to lli. Blends negative electrode materials. Inputs: pe_pristine (Dataframe): half cell data of the pristine (uncycled) positive electrode ne_pristine (Dataframe): half cell data of the pristine (uncycled) negative electrode ne_2_pos (Dataframe): half cell data for the positive component of the anode ne_2_neg (Dataframe): half cell data for the negative component of the anode lli (float): Loss of Lithium Inventory - capacity of the misalignment between cathode and anode zero-capacity q_pe (float): capacity of the positive electrode (cathode) q_ne (float): capacity of the negative electrode (anode) x_ne_2 (float): fraction of ne_2_pristine_pos or ne_2_pristine_neg (positive or negative value, respectively) to ne_1_pristine Outputs: pe_degraded (Dataframe): positive electrode with imposed capacity scale to emulate degradation ne_degraded (Dataframe): negative electrode with imposed capacity scale and capacity offset to emulate degradation """ # Blend negative electrodes ne_pristine = blend_electrodes(ne_1_pristine, ne_2_pristine_pos, ne_2_pristine_neg, x_ne_2) # rescaling pristine electrodes to q_pe and q_ne pe_q_scaled = pe_pristine.copy() pe_q_scaled['Q_aligned'] = (pe_q_scaled['SOC_aligned'] / 100) * q_pe ne_q_scaled = ne_pristine.copy() ne_q_scaled['Q_aligned'] = (ne_q_scaled['SOC_aligned'] / 100) * q_ne # translate pristine ne electrode with lli ne_q_scaled['Q_aligned'] = ne_q_scaled['Q_aligned'] + lli # Re-interpolate to align dataframes for differencing lower_q = np.min((np.min(pe_q_scaled['Q_aligned']), np.min(ne_q_scaled['Q_aligned']))) upper_q = np.max((np.max(pe_q_scaled['Q_aligned']), np.max(ne_q_scaled['Q_aligned']))) q_vec = np.linspace(lower_q, upper_q, 1001) # Actually aligning the electrode Q's pe_pristine_interper = interp1d(pe_q_scaled['Q_aligned'], pe_q_scaled['Voltage_aligned'], bounds_error=False) pe_degraded = pe_q_scaled.copy() pe_degraded['Q_aligned'] = q_vec pe_degraded['Voltage_aligned'] = pe_pristine_interper(q_vec) ne_pristine_interper = interp1d(ne_q_scaled['Q_aligned'], ne_q_scaled['Voltage_aligned'], bounds_error=False) ne_degraded = ne_q_scaled.copy() ne_degraded['Q_aligned'] = q_vec ne_degraded['Voltage_aligned'] = ne_pristine_interper(q_vec) # Returning pe and ne degraded on an Ah basis return pe_degraded, ne_degraded def halfcell_degradation_matching_ah(self, x, *params): """ Calls underlying functions to impose degradation through electrode capacity scale and alignment through LLI. Modifies emulated full cell data to be within full cell voltage range and calibrates (zeros) capacity at the lowest permissible voltage. Interpolates real and emulated data onto a common capacity axis. Inputs: x (list): [LLI, q_pe, q_ne, x_ne_2] *params: pe_pristine (Dataframe): half cell data of the pristine (uncycled) positive electrode ne_pristine (Dataframe): half cell data of the pristine (uncycled) negative electrode ne_2_pos (Dataframe): half cell data for the positive component of the anode ne_2_neg (Dataframe): half cell data for the negative component of the anode real_cell_candidate_charge_profile_aligned (Dataframe): columns Q_aligned (evenly spaced) and Voltage_aligned Outputs: pe_out_zeroed (Dataframe): cathode capacity and voltage columns scaled, offset, and aligned along capacity ne_out_zeroed (Dataframe): anode capacity and voltage columns scaled, offset, and aligned along capacity df_real_aligned (Dataframe): capacity and voltage interpolated evenly across capacity for the real cell data emulated_full_cell_aligned (Dataframe): capacity and voltage interpolated evenly across capacity for the emulated cell data """ lli = x[0] q_pe = x[1] q_ne = x[2] x_ne_2 = x[3] (pe_pristine, ne_1_pristine, ne_2_pristine_pos, ne_2_pristine_neg, real_cell_candidate_charge_profile_aligned) = params # output degraded ne and pe (on a AH basis, with electrode alignment # (NaNs for voltage, when no capacity actually at the corresponding capacity index)) pe_out, ne_out = self._impose_electrode_scale(pe_pristine, ne_1_pristine, ne_2_pristine_pos, ne_2_pristine_neg, lli, q_pe, q_ne, x_ne_2) # PE - NE = full cell voltage emulated_full_cell_with_degradation = pd.DataFrame() emulated_full_cell_with_degradation['Q_aligned'] = pe_out['Q_aligned'].copy() emulated_full_cell_with_degradation['Voltage_aligned'] = pe_out['Voltage_aligned'] - ne_out['Voltage_aligned'] # Replace emulated full cell values outside of voltage range with NaN emulated_full_cell_with_degradation['Voltage_aligned'].loc[ emulated_full_cell_with_degradation['Voltage_aligned'] < self.FC_LOWER_VOLTAGE] = np.nan emulated_full_cell_with_degradation['Voltage_aligned'].loc[ emulated_full_cell_with_degradation['Voltage_aligned'] > self.FC_UPPER_VOLTAGE] = np.nan # Center the emulated full cell and half cell curves onto the same Q at which the real (degraded) # capacity measurement started (self.FC_LOWER_VOLTAGE) emulated_full_cell_with_degradation_zeroed = pd.DataFrame() emulated_full_cell_with_degradation_zeroed['Voltage_aligned'] = emulated_full_cell_with_degradation[ 'Voltage_aligned'].copy() zeroing_value = emulated_full_cell_with_degradation['Q_aligned'].loc[ np.nanargmin(emulated_full_cell_with_degradation['Voltage_aligned']) ] emulated_full_cell_with_degradation_zeroed['Q_aligned'] = \ (emulated_full_cell_with_degradation['Q_aligned'].copy() - zeroing_value) pe_out_zeroed = pe_out.copy() pe_out_zeroed['Q_aligned'] = pe_out['Q_aligned'] - zeroing_value ne_out_zeroed = ne_out.copy() ne_out_zeroed['Q_aligned'] = ne_out['Q_aligned'] - zeroing_value # Interpolate full cell profiles across same Q range min_q = np.min( real_cell_candidate_charge_profile_aligned['Q_aligned'].loc[ ~real_cell_candidate_charge_profile_aligned['Voltage_aligned'].isna()]) max_q = np.max( real_cell_candidate_charge_profile_aligned['Q_aligned'].loc[ ~real_cell_candidate_charge_profile_aligned['Voltage_aligned'].isna()]) emulated_interper = interp1d(emulated_full_cell_with_degradation_zeroed['Q_aligned'].loc[ ~emulated_full_cell_with_degradation_zeroed['Voltage_aligned'].isna()], emulated_full_cell_with_degradation_zeroed['Voltage_aligned'].loc[ ~emulated_full_cell_with_degradation_zeroed['Voltage_aligned'].isna()], bounds_error=False) real_interper = interp1d( real_cell_candidate_charge_profile_aligned['Q_aligned'].loc[ ~real_cell_candidate_charge_profile_aligned['Voltage_aligned'].isna()], real_cell_candidate_charge_profile_aligned['Voltage_aligned'].loc[ ~real_cell_candidate_charge_profile_aligned['Voltage_aligned'].isna()], bounds_error=False) q_vec = np.linspace(min_q, max_q, 1001) emulated_aligned = pd.DataFrame() emulated_aligned['Q_aligned'] = q_vec emulated_aligned['Voltage_aligned'] = emulated_interper(q_vec) real_aligned = pd.DataFrame() real_aligned['Q_aligned'] = q_vec real_aligned['Voltage_aligned'] = real_interper(q_vec) return pe_out_zeroed, ne_out_zeroed, real_aligned, emulated_aligned def get_dqdv_over_v_from_degradation_matching_ah(self, x, *params): """ This function imposes degradation scaling ,then outputs the dqdv representation of the emulated cell data. Inputs: x (list): [LLI, q_pe, q_ne, x_ne_2] *params: pe_pristine (Dataframe): half cell data of the pristine (uncycled) positive electrode ne_pristine (Dataframe): half cell data of the pristine (uncycled) negative electrode ne_2_pos (Dataframe): half cell data for the positive component of the anode ne_2_neg (Dataframe): half cell data for the negative component of the anode real_cell_candidate_charge_profile_aligned (Dataframe): columns Q_aligned (evenly spaced) and Voltage_aligned Outputs: pe_out_zeroed (Dataframe): cathode capacity and voltage columns scaled, offset, and aligned along capacity ne_out_zeroed (Dataframe): anode capacity and voltage columns scaled, offset, and aligned along capacity dq_dv_over_v_real (Dataframe): dqdv across voltage for the real cell data dq_dv_over_v_emulated (Dataframe): dqdv across voltage for the emulated cell data df_real_interped (Dataframe): capacity and voltage interpolated evenly across capacity for the real cell data emulated_full_cell_interped (Dataframe): capacity and voltage interpolated evenly across capacity for the emulated cell data """ pe_out_zeroed, ne_out_zeroed, df_real_interped, emulated_full_cell_interped = \ self.halfcell_degradation_matching_ah(x, *params) # Calculate dqdv from full cell profiles dq_dv_real = pd.DataFrame(np.gradient(df_real_interped['Q_aligned'], df_real_interped['Voltage_aligned']), columns=['dQdV']).ewm(0.1).mean() dq_dv_emulated = pd.DataFrame( np.gradient(emulated_full_cell_interped['Q_aligned'], emulated_full_cell_interped['Voltage_aligned']), columns=['dQdV']).ewm(0.1).mean() # Include original data dq_dv_real['Q_aligned'] = df_real_interped['Q_aligned'] dq_dv_real['Voltage_aligned'] = df_real_interped['Voltage_aligned'] dq_dv_emulated['Q_aligned'] = emulated_full_cell_interped['Q_aligned'] dq_dv_emulated['Voltage_aligned'] = emulated_full_cell_interped['Voltage_aligned'] # Interpolate dQdV and Q over V, aligns real and emulated over V voltage_vec = np.linspace(self.FC_LOWER_VOLTAGE, self.FC_UPPER_VOLTAGE, 1001) v_dq_dv_interper_real = interp1d(dq_dv_real['Voltage_aligned'].loc[~dq_dv_real['Voltage_aligned'].isna()], dq_dv_real['dQdV'].loc[~dq_dv_real['Voltage_aligned'].isna()], bounds_error=False, fill_value=0) v_q_interper_real = interp1d(dq_dv_real['Voltage_aligned'].loc[~dq_dv_real['Voltage_aligned'].isna()], dq_dv_real['Q_aligned'].loc[~dq_dv_real['Voltage_aligned'].isna()], bounds_error=False, fill_value=(0, np.max(df_real_interped['Q_aligned']))) v_dq_dv_interper_emulated = interp1d(dq_dv_emulated['Voltage_aligned'].loc[ ~dq_dv_emulated['Voltage_aligned'].isna()], dq_dv_emulated['dQdV'].loc[~dq_dv_emulated['Voltage_aligned'].isna()], bounds_error=False, fill_value=0) v_q_interper_emulated = interp1d(dq_dv_emulated['Voltage_aligned'].loc[ ~dq_dv_emulated['Voltage_aligned'].isna()], dq_dv_emulated['Q_aligned'].loc[~dq_dv_emulated['Voltage_aligned'].isna()], bounds_error=False, fill_value=(0, np.max(df_real_interped['Q_aligned']))) dq_dv_over_v_real = pd.DataFrame(v_dq_dv_interper_real(voltage_vec), columns=['dQdV']).fillna(0) dq_dv_over_v_real['Q_aligned'] = v_q_interper_real(voltage_vec) dq_dv_over_v_real['Voltage_aligned'] = voltage_vec dq_dv_over_v_emulated = pd.DataFrame(v_dq_dv_interper_emulated(voltage_vec), columns=['dQdV']).fillna(0) dq_dv_over_v_emulated['Q_aligned'] = v_q_interper_emulated(voltage_vec) dq_dv_over_v_emulated['Voltage_aligned'] = voltage_vec return (pe_out_zeroed, ne_out_zeroed, dq_dv_over_v_real, dq_dv_over_v_emulated, df_real_interped, emulated_full_cell_interped) def get_dvdq_over_q_from_degradation_matching_ah(self, x, *params): """ This function imposes degradation scaling ,then outputs the dVdQ representation of the emulated cell data. Inputs: x (list): [LLI, q_pe, q_ne, x_ne_2] *params: pe_pristine (Dataframe): half cell data of the pristine (uncycled) positive electrode ne_pristine (Dataframe): half cell data of the pristine (uncycled) negative electrode ne_2_pos (Dataframe): half cell data for the positive component of the anode ne_2_neg (Dataframe): half cell data for the negative component of the anode real_cell_candidate_charge_profile_aligned (Dataframe): columns Q_aligned (evenly spaced) and Voltage_aligned Outputs: pe_out_zeroed (Dataframe): cathode capacity and voltage columns scaled, offset, and aligned along capacity ne_out_zeroed (Dataframe): anode capacity and voltage columns scaled, offset, and aligned along capacity dv_dq_real (Dataframe): dVdQ across capacity for the real cell data dv_dq_emulated (Dataframe): dVdQ across capacity for the emulated cell data df_real_interped (Dataframe): capacity and voltage interpolated evenly across capacity for the real cell data emulated_full_cell_interped (Dataframe): capacity and voltage interpolated evenly across capacity for the emulated cell data """ pe_out_zeroed, ne_out_zeroed, df_real_interped, emulated_full_cell_interped = \ self.halfcell_degradation_matching_ah(x, *params) # Calculate dQdV from full cell profiles dv_dq_real = pd.DataFrame(np.gradient(df_real_interped['Voltage_aligned'], df_real_interped['Q_aligned']), columns=['dVdQ']).ewm(0.1).mean() dv_dq_emulated = pd.DataFrame( np.gradient(emulated_full_cell_interped['Voltage_aligned'], emulated_full_cell_interped['Q_aligned']), columns=['dVdQ']).ewm(0.1).mean() # Include original data dv_dq_real['Q_aligned'] = df_real_interped['Q_aligned'] dv_dq_real['Voltage_aligned'] = df_real_interped['Voltage_aligned'] dv_dq_emulated['Q_aligned'] = emulated_full_cell_interped['Q_aligned'] dv_dq_emulated['Voltage_aligned'] = emulated_full_cell_interped['Voltage_aligned'] # Q interpolation not needed, as interpolated over Q by default return (pe_out_zeroed, ne_out_zeroed, dv_dq_real, dv_dq_emulated, df_real_interped, emulated_full_cell_interped) def get_v_over_q_from_degradation_matching_ah(self, x, *params): """ This function imposes degradation scaling ,then outputs the V-Q representation of the emulated cell data. Inputs: x (list): [LLI, q_pe, q_ne, x_ne_2] *params: pe_pristine (Dataframe): half cell data of the pristine (uncycled) positive electrode ne_pristine (Dataframe): half cell data of the pristine (uncycled) negative electrode ne_2_pos (Dataframe): half cell data for the positive component of the anode ne_2_neg (Dataframe): half cell data for the negative component of the anode real_cell_candidate_charge_profile_aligned (Dataframe): columns Q_aligned (evenly spaced) and Voltage_aligned Outputs: pe_out_zeroed (Dataframe): cathode capacity and voltage columns scaled, offset, and aligned along capacity ne_out_zeroed (Dataframe): anode capacity and voltage columns scaled, offset, and aligned along capacity df_real_interped (Dataframe): capacity and voltage interpolated evenly across capacity for the real cell data emulated_full_cell_interped (Dataframe): capacity and voltage interpolated evenly across capacity for the emulated cell data """ (pe_out_zeroed, ne_out_zeroed, real_aligned, emulated_aligned) = \ self.halfcell_degradation_matching_ah(x, *params) min_soc_full_cell = np.min(real_aligned.loc[~real_aligned.Voltage_aligned.isna()].Q_aligned) max_soc_full_cell = np.max(real_aligned.loc[~real_aligned.Voltage_aligned.isna()].Q_aligned) soc_vec_full_cell = np.linspace(min_soc_full_cell, max_soc_full_cell, 1001) emulated_full_cell_interper = interp1d( emulated_aligned.Q_aligned.loc[~real_aligned.Voltage_aligned.isna()], emulated_aligned.Voltage_aligned.loc[~real_aligned.Voltage_aligned.isna()], bounds_error=False) real_full_cell_interper = interp1d(real_aligned.Q_aligned.loc[~real_aligned.Voltage_aligned.isna()], real_aligned.Voltage_aligned.loc[~real_aligned.Voltage_aligned.isna()], bounds_error=False) # Interpolate the emulated full-cell profile emulated_full_cell_interped = pd.DataFrame() emulated_full_cell_interped['Q_aligned'] = soc_vec_full_cell emulated_full_cell_interped['Voltage_aligned'] = emulated_full_cell_interper(soc_vec_full_cell) # Interpolate the true full-cell profile df_real_interped = emulated_full_cell_interped.copy() df_real_interped['Q_aligned'] = soc_vec_full_cell df_real_interped['Voltage_aligned'] = real_full_cell_interper(soc_vec_full_cell) return pe_out_zeroed, ne_out_zeroed, df_real_interped, emulated_full_cell_interped def get_v_over_q_from_degradation_matching_ah_no_real(self, x, *params): """ This function imposes degradation scaling ,then outputs the V-Q representation of the emulated cell data, in the absence of real cell data. Inputs: x (list): [LLI, q_pe, q_ne, x_ne_2] *params: pe_pristine (Dataframe): half cell data of the pristine (uncycled) positive electrode ne_pristine (Dataframe): half cell data of the pristine (uncycled) negative electrode ne_2_pos (Dataframe): half cell data for the positive component of the anode ne_2_neg (Dataframe): half cell data for the negative component of the anode real_cell_candidate_charge_profile_aligned (Dataframe): columns Q_aligned (evenly spaced) and Voltage_aligned Outputs: pe_out_zeroed (Dataframe): cathode capacity and voltage columns scaled, offset, and aligned along capacity ne_out_zeroed (Dataframe): anode capacity and voltage columns scaled, offset, and aligned along capacity emulated_full_cell_interped (Dataframe): capacity and voltage interpolated evenly across capacity for the emulated cell data """ (pe_out_zeroed, ne_out_zeroed, emulated_aligned) = \ self.halfcell_degradation_matching_ah_no_real(x, *params) min_q_full_cell = np.min(emulated_aligned.loc[~emulated_aligned.Voltage_aligned.isna()].Q_aligned) max_q_full_cell = np.max(emulated_aligned.loc[~emulated_aligned.Voltage_aligned.isna()].Q_aligned) q_vec_full_cell = np.linspace(min_q_full_cell, max_q_full_cell, 1001) emulated_full_cell_interper = interp1d( emulated_aligned.Q_aligned.loc[~emulated_aligned.Voltage_aligned.isna()], emulated_aligned.Voltage_aligned.loc[~emulated_aligned.Voltage_aligned.isna()], bounds_error=False) # Interpolate the emulated full-cell profile emulated_full_cell_interped = pd.DataFrame() emulated_full_cell_interped['Q_aligned'] = q_vec_full_cell emulated_full_cell_interped['Voltage_aligned'] = emulated_full_cell_interper(q_vec_full_cell) return pe_out_zeroed, ne_out_zeroed, emulated_full_cell_interped def halfcell_degradation_matching_ah_no_real(self, x, *params): """ Calls underlying functions to impose degradation through electrode capacity scale and alignment through LLI. Modifies emulated full cell data to be within full cell voltage range and calibrates (zeros) capacity at the lowest permissible voltage. Inputs: x (list): [LLI, q_pe, q_ne, x_ne_2] *params: pe_pristine (Dataframe): half cell data of the pristine (uncycled) positive electrode ne_pristine (Dataframe): half cell data of the pristine (uncycled) negative electrode ne_2_pos (Dataframe): half cell data for the positive component of the anode ne_2_neg (Dataframe): half cell data for the negative component of the anode real_cell_candidate_charge_profile_aligned (Dataframe): columns Q_aligned (evenly spaced) and Voltage_aligned Outputs: pe_out_zeroed (Dataframe): cathode capacity and voltage columns scaled, offset, and aligned along capacity ne_out_zeroed (Dataframe): anode capacity and voltage columns scaled, offset, and aligned along capacity emulated_aligned (Dataframe): full cell data corresponding to the imposed degradation """ lli = x[0] q_pe = x[1] q_ne = x[2] x_ne_2 = x[3] pe_pristine, ne_1_pristine, ne_2_pristine_pos, ne_2_pristine_neg = params pe_out, ne_out = self._impose_electrode_scale(pe_pristine, ne_1_pristine, ne_2_pristine_pos, ne_2_pristine_neg, lli, q_pe, q_ne, x_ne_2) # outputs degraded ne and pe (on a AH basis, with electrode alignment (NaNs for voltage, when no overlap)) emulated_full_cell_with_degradation = pd.DataFrame() emulated_full_cell_with_degradation['Q_aligned'] = pe_out['Q_aligned'].copy() emulated_full_cell_with_degradation['Voltage_aligned'] = pe_out['Voltage_aligned'] - ne_out['Voltage_aligned'] # Replace emulated full cell values outside of voltage range with NaN emulated_full_cell_with_degradation['Voltage_aligned'].loc[ emulated_full_cell_with_degradation['Voltage_aligned'] < self.FC_LOWER_VOLTAGE] = np.nan emulated_full_cell_with_degradation['Voltage_aligned'].loc[ emulated_full_cell_with_degradation['Voltage_aligned'] > self.FC_UPPER_VOLTAGE] = np.nan # Center the emulated full cell and half cell curves onto the same Q at which the real (degraded) # capacity measurement started (self.FC_LOWER_VOLTAGE) emulated_full_cell_with_degradation_zeroed =
pd.DataFrame()
pandas.DataFrame
# Copyright 2019 Elasticsearch BV # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # File called _pytest for PyCharm compatability import pandas as pd import pytest from eland.dataframe import DEFAULT_NUM_ROWS_DISPLAYED from eland.tests.common import TestData, assert_pandas_eland_series_equal class TestDataFrameRepr(TestData): @classmethod def setup_class(cls): # conftest.py changes this default - restore to original setting pd.set_option("display.max_rows", 60) """ to_string """ def test_simple_lat_lon(self): """ Note on nested object order - this can change when note this could be a bug in ES... PUT my_index/doc/1 { "location": { "lat": "50.033333", "lon": "8.570556" } } GET my_index/_search "_source": { "location": { "lat": "50.033333", "lon": "8.570556" } } GET my_index/_search { "_source": "location" } "_source": { "location": { "lon": "8.570556", "lat": "50.033333" } } Hence we store the pandas df source json as 'lon', 'lat' """ pd_dest_location = self.pd_flights()["DestLocation"].head(1) ed_dest_location = self.ed_flights()["DestLocation"].head(1) assert_pandas_eland_series_equal(pd_dest_location, ed_dest_location) def test_num_rows_to_string(self): # check setup works assert pd.get_option("display.max_rows") == 60 # Test eland.DataFrame.to_string vs pandas.DataFrame.to_string # In pandas calling 'to_string' without max_rows set, will dump ALL rows # Test n-1, n, n+1 for edge cases self.num_rows_to_string(DEFAULT_NUM_ROWS_DISPLAYED - 1) self.num_rows_to_string(DEFAULT_NUM_ROWS_DISPLAYED) with pytest.warns(UserWarning): # UserWarning displayed by eland here (compare to pandas with max_rows set) self.num_rows_to_string( DEFAULT_NUM_ROWS_DISPLAYED + 1, None, DEFAULT_NUM_ROWS_DISPLAYED ) # Test for where max_rows lt or gt num_rows self.num_rows_to_string(10, 5, 5) self.num_rows_to_string(100, 200, 200) def num_rows_to_string(self, rows, max_rows_eland=None, max_rows_pandas=None): ed_flights = self.ed_flights()[["DestLocation", "OriginLocation"]] pd_flights = self.pd_flights()[["DestLocation", "OriginLocation"]] ed_head = ed_flights.head(rows) pd_head = pd_flights.head(rows) ed_head_str = ed_head.to_string(max_rows=max_rows_eland) pd_head_str = pd_head.to_string(max_rows=max_rows_pandas) # print("\n", ed_head_str) # print("\n", pd_head_str) assert pd_head_str == ed_head_str def test_empty_dataframe_string(self): ed_ecom = self.ed_ecommerce() pd_ecom = self.pd_ecommerce() ed_ecom_s = ed_ecom[ed_ecom["currency"] == "USD"].to_string() pd_ecom_s = pd_ecom[pd_ecom["currency"] == "USD"].to_string() assert ed_ecom_s == pd_ecom_s """ repr """ def test_num_rows_repr(self): self.num_rows_repr( pd.get_option("display.max_rows") - 1, pd.get_option("display.max_rows") - 1 ) self.num_rows_repr( pd.get_option("display.max_rows"), pd.get_option("display.max_rows") ) self.num_rows_repr( pd.get_option("display.max_rows") + 1, pd.get_option("display.min_rows") ) def num_rows_repr(self, rows, num_rows_printed): ed_flights = self.ed_flights() pd_flights = self.pd_flights() ed_head = ed_flights.head(rows) pd_head = pd_flights.head(rows) ed_head_str = repr(ed_head) pd_head_str = repr(pd_head) if num_rows_printed < rows: # add 1 for ellipsis num_rows_printed = num_rows_printed + 1 # number of rows is num_rows_printed + 3 (header, summary) assert (num_rows_printed + 3) == len(ed_head_str.splitlines()) assert pd_head_str == ed_head_str def test_empty_dataframe_repr(self): ed_ecom = self.ed_ecommerce() pd_ecom = self.pd_ecommerce() ed_ecom_r = repr(ed_ecom[ed_ecom["currency"] == "USD"]) pd_ecom_r = repr(pd_ecom[pd_ecom["currency"] == "USD"]) assert ed_ecom_r == pd_ecom_r """ to_html """ def test_num_rows_to_html(self): # check setup works assert pd.get_option("display.max_rows") == 60 # Test eland.DataFrame.to_string vs pandas.DataFrame.to_string # In pandas calling 'to_string' without max_rows set, will dump ALL rows # Test n-1, n, n+1 for edge cases self.num_rows_to_html(DEFAULT_NUM_ROWS_DISPLAYED - 1) self.num_rows_to_html(DEFAULT_NUM_ROWS_DISPLAYED) with pytest.warns(UserWarning): # UserWarning displayed by eland here self.num_rows_to_html( DEFAULT_NUM_ROWS_DISPLAYED + 1, None, DEFAULT_NUM_ROWS_DISPLAYED ) # Test for where max_rows lt or gt num_rows self.num_rows_to_html(10, 5, 5) self.num_rows_to_html(100, 200, 200) def num_rows_to_html(self, rows, max_rows_eland=None, max_rows_pandas=None): ed_flights = self.ed_flights() pd_flights = self.pd_flights() ed_head = ed_flights.head(rows) pd_head = pd_flights.head(rows) ed_head_str = ed_head.to_html(max_rows=max_rows_eland) pd_head_str = pd_head.to_html(max_rows=max_rows_pandas) # print(ed_head_str) # print(pd_head_str) assert pd_head_str == ed_head_str def test_empty_dataframe_to_html(self): ed_ecom = self.ed_ecommerce() pd_ecom = self.pd_ecommerce() ed_ecom_h = ed_ecom[ed_ecom["currency"] == "USD"].to_html() pd_ecom_h = pd_ecom[pd_ecom["currency"] == "USD"].to_html() assert ed_ecom_h == pd_ecom_h """ _repr_html_ """ def test_num_rows_repr_html(self): # check setup works assert pd.get_option("display.max_rows") == 60 show_dimensions = pd.get_option("display.show_dimensions") # TODO - there is a bug in 'show_dimensions' as it gets added after the last </div> # For now test without this pd.set_option("display.show_dimensions", False) # Test eland.DataFrame.to_string vs pandas.DataFrame.to_string # In pandas calling 'to_string' without max_rows set, will dump ALL rows # Test n-1, n, n+1 for edge cases self.num_rows_repr_html(pd.get_option("display.max_rows") - 1) self.num_rows_repr_html(pd.get_option("display.max_rows")) self.num_rows_repr_html(
pd.get_option("display.max_rows")
pandas.get_option
import os import pandas as pd import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np import matplotlib.dates as mdates from datetime import date, timedelta, datetime import seaborn as sns import geopandas as gpd from shapely.geometry import mapping, Point, Polygon mpl.rcParams['pdf.fonttype'] = 42 fsm_path = '/Volumes/fsmresfiles/PrevMed/Covid-19-Modeling' idph_data_path = os.path.join(fsm_path, 'IDPH line list',) ltcf_data_path = os.path.join(fsm_path, 'IDPH LTCF') cleaned_line_list_fname = os.path.join(idph_data_path, 'LL_200701_JGcleaned_no_race.csv') ltcf_fname = os.path.join(ltcf_data_path, 'Modelors LTC Report_200703.xlsx') cleaned_ltcf_fname = os.path.join(ltcf_data_path, 'Modelors LTC Report_200703_first_specimen.csv') box_data_path = '/Users/jlg1657/Box/NU-malaria-team/data/covid_IDPH' project_path = '/Users/jlg1657/Box/NU-malaria-team/projects/covid_chicago' plot_path = os.path.join(project_path, 'Plots + Graphs') shp_path = os.path.join(box_data_path, 'shapefiles') def load_daily_ll_deaths() : df = pd.read_csv(cleaned_line_list_fname) df = df.dropna(subset=['deceased_date']) df = df.groupby('deceased_date')['id'].agg(len).reset_index() df = df.rename(columns={'id' : 'daily_deaths_line_list', 'deceased_date' : 'Deceased Date'}) df['Deceased Date'] = pd.to_datetime(df['Deceased Date']) return df def clean_ltcf() : df = pd.read_excel(ltcf_fname, skiprows=3) gdf = df.groupby('State Case Number')['Outbreak ID'].agg(len).reset_index() gdf = gdf.rename(columns={'Outbreak ID': 'num'}) gdf = gdf[gdf['num'] > 1] adf = pd.DataFrame() for d, ddf in df.groupby('State Case Number') : sdf = ddf.head(1) adf = pd.concat([adf, sdf]) adf.to_csv(cleaned_ltcf_fname, index=False) def load_daily_ltcf_deaths() : df = pd.read_csv(cleaned_ltcf_fname) df = df.dropna(subset=['Deceased Date']) df = df.groupby('Deceased Date')['State Case Number'].agg(len).reset_index() df = df.rename(columns={'State Case Number' : 'daily_deaths_LTCF'}) df['Deceased Date'] = pd.to_datetime(df['Deceased Date']) return df def merge_LL_LTCF_deaths() : ll_df = load_daily_ll_deaths() ltcf_df = load_daily_ltcf_deaths() df =
pd.merge(left=ll_df, right=ltcf_df, on='Deceased Date', how='outer')
pandas.merge
import torch, os import numpy as np from MiniImagenet_memorization import MiniImagenet as MiniImagenet_fix from torch.utils.data import DataLoader import random, argparse from meta import Meta_mini from utils import get_config, save_model, name_path, load_model import time import pandas as pd # get arguments parser = argparse.ArgumentParser() parser.add_argument('--n', type=int) parser.add_argument('--s', type=int) parser.add_argument('--q', type=int) parser.add_argument('--zero', type=int) parser.add_argument('--zero_interval', type=int, default=1) parser.add_argument('--order', type=str) parser.add_argument('--inivar', type=float) parser.add_argument('--seed', type=int) parser.add_argument('--device', type=int) parser.add_argument('--epoch', type=int, default=12) parser.add_argument('--resume_epoch', type=int, default=-1) args = parser.parse_args() n_way = args.n k_shot = args.s k_qry = args.q if args.zero == 1: apply_zero_trick = True elif args.zero == 0: apply_zero_trick = False maml_order = args.order init_var = args.inivar seed = args.seed device = torch.device('cuda:{}'.format(args.device)) num_epoch = args.epoch if args.s == 1: task_num, batchsz = 4, 10000 if args.s == 5: task_num, batchsz = 2, 5000 outer_lr, inner_lr = 0.001, 0.01 train_update_steps, test_update_steps = 5, 10 # Set seeds torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) # Directories root = "./results_memo/" # The directory for saving files data_root = "../data_miniImagenet/" # The directory for data save_path = name_path(root, n_way, k_shot, k_qry, maml_order, args.zero, args.zero_interval, init_var, seed) print("Save the results at: ", save_path) mini = MiniImagenet_fix(data_root, mode='train', n_way=n_way, k_shot=k_shot, k_query=k_qry, batchsz=batchsz, resize=84) mini_test = MiniImagenet_fix(data_root, mode='test', n_way=n_way, k_shot=k_shot, k_query=k_qry, batchsz=400, resize=84) maml = Meta_mini(n_way, k_shot, k_qry, task_num, train_update_steps, test_update_steps, inner_lr, outer_lr, get_config(n_way), device).to(device) # Set initial norm maml.set_last_layer_variance(init_var) if init_var == 0: maml.set_last_layer_to_zero() test_text = [] train_text = [] start = time.time() count_steps = 0 test_zero_text = [] test_text = [] for epoch in range(num_epoch): db = DataLoader(mini, task_num, shuffle=True, num_workers=8, pin_memory=True) # Set resume training if args.resume_epoch>epoch: continue elif args.resume_epoch==epoch: maml.load_model(save_path, epoch) for step, (x_spt, y_spt, x_qry, y_qry) in enumerate(db): x_spt, y_spt, x_qry, y_qry = x_spt.to(device), y_spt.to(device), x_qry.to(device), y_qry.to(device) # Apply zero trick or not if apply_zero_trick and (count_steps%args.zero_interval==0): maml.set_last_layer_to_zero() # Choose first order or second order MAML for training if maml_order == "first": accs = maml.forward_FOMAML(x_spt, y_spt, x_qry, y_qry) elif maml_order == "second": accs = maml.forward_SOMAML(x_spt, y_spt, x_qry, y_qry) # Finetuning if step % 200 == 0: train_text.append(accs) print(time.time()-start) db_test = DataLoader(mini_test, 1, shuffle=True, num_workers=8, pin_memory=True) accs_all_test = [] accs_all_test_zero = [] for x_spt, y_spt, x_qry, y_qry in db_test: x_spt, y_spt, x_qry, y_qry = x_spt.squeeze(0).to(device), y_spt.squeeze(0).to(device), x_qry.squeeze(0).to(device), y_qry.squeeze(0).to(device) # Original finetune method accs = maml.finetunning(x_spt, y_spt, x_qry, y_qry) accs_all_test.append(accs) # finetune with applying zeroing trick accs = maml.finetunning_zero(x_spt, y_spt, x_qry, y_qry) accs_all_test_zero.append(accs) accs = np.array(accs_all_test).mean(axis=0).astype(np.float16) test_text.append(accs) accs = np.array(accs_all_test_zero).mean(axis=0).astype(np.float16) test_zero_text.append(accs) print(time.time()-start) if (count_steps) % 200 == 0: maml.save_model(save_path, epoch, step) txt_path = os.path.join(save_path, "test_E{}S{}.csv".format(epoch, step)) df = pd.DataFrame(test_text) df.to_csv(txt_path,index=False) txt_path = os.path.join(save_path, "test_zero_E{}S{}.csv".format(epoch, step)) df =
pd.DataFrame(test_zero_text)
pandas.DataFrame
import pandas as pd import random from collections import deque from .Broker import Broker from .Order import Order class BacktestBroker(Broker): def __init__(self, balance, maxLeverage=1, interest=0, commission=0.001, liveTrading=False, symbol='BTC'): self._balance = balance self._cashBalance = balance self._borrowed = 0 self._borrowedShares = 0 self.maxLeverage = maxLeverage self.interest = interest self.commission = commission self.liveTrading = liveTrading self.symbol = symbol self.price = None self.transactions = pd.DataFrame(columns=[ 'amount', 'price', 'symbol', ], index=pd.to_datetime([])) self.book = pd.DataFrame(columns=[ 'balance', 'cashBalance', 'borrowed', 'borrowedShares', symbol, 'returns', ], index=
pd.to_datetime([])
pandas.to_datetime
""" Estimators for systems of equations References ---------- Greene, <NAME>. "Econometric analysis 4th edition." International edition, New Jersey: Prentice Hall (2000). StataCorp. 2013. Stata 13 Base Reference Manual. College Station, TX: Stata Press. <NAME>., & <NAME>. (2007). systemfit: A Package for Estimating Systems of Simultaneous Equations in R. Journal of Statistical Software, 23(4), 1 - 40. doi:http://dx.doi.org/10.18637/jss.v023.i04 """ from __future__ import annotations from collections import abc from functools import reduce import textwrap from typing import Dict, List, Mapping, Optional, Sequence, Tuple, Union, cast import warnings import numpy as np from numpy.linalg import inv, lstsq, matrix_rank, solve from pandas import DataFrame, Index, Series, concat from linearmodels.iv._utility import IVFormulaParser from linearmodels.iv.data import IVData from linearmodels.shared.exceptions import missing_warning from linearmodels.shared.hypotheses import InvalidTestStatistic, WaldTestStatistic from linearmodels.shared.linalg import has_constant from linearmodels.shared.utility import AttrDict from linearmodels.system._utility import ( LinearConstraint, blocked_column_product, blocked_cross_prod, blocked_diag_product, blocked_inner_prod, inv_matrix_sqrt, ) from linearmodels.system.covariance import ( ClusteredCovariance, GMMHeteroskedasticCovariance, GMMHomoskedasticCovariance, GMMKernelCovariance, HeteroskedasticCovariance, HomoskedasticCovariance, KernelCovariance, ) from linearmodels.system.gmm import ( HeteroskedasticWeightMatrix, HomoskedasticWeightMatrix, KernelWeightMatrix, ) from linearmodels.system.results import GMMSystemResults, SystemResults from linearmodels.typing import ( ArrayLike, ArraySequence, Float64Array, Literal, OptionalArrayLike, ) __all__ = ["SUR", "IV3SLS", "IVSystemGMM", "LinearConstraint"] UNKNOWN_EQ_TYPE = """ Contents of each equation must be either a dictionary with keys 'dependent' and 'exog' or a 2-element tuple of he form (dependent, exog). equations[{key}] was {type} """ COV_TYPES = { "unadjusted": "unadjusted", "homoskedastic": "unadjusted", "robust": "robust", "heteroskedastic": "robust", "kernel": "kernel", "hac": "kernel", "clustered": "clustered", } COV_EST = { "unadjusted": HomoskedasticCovariance, "robust": HeteroskedasticCovariance, "kernel": KernelCovariance, "clustered": ClusteredCovariance, } GMM_W_EST = { "unadjusted": HomoskedasticWeightMatrix, "robust": HeteroskedasticWeightMatrix, "kernel": KernelWeightMatrix, } GMM_COV_EST = { "unadjusted": GMMHomoskedasticCovariance, "robust": GMMHeteroskedasticCovariance, "kernel": GMMKernelCovariance, } def _missing_weights(weights: Dict[str, Optional[ArrayLike]]) -> None: """Raise warning if missing weighs found""" missing = [key for key in weights if weights[key] is None] if missing: msg = "Weights not found for equation labels:\n{0}".format(", ".join(missing)) warnings.warn(msg, UserWarning) def _parameters_from_xprod( xpx: Float64Array, xpy: Float64Array, constraints: Optional[LinearConstraint] = None ) -> Float64Array: r""" Estimate regression parameters from cross produces Parameters ---------- xpx : ndarray Cross product measuring variation in x (nvar by nvar) xpy : ndarray Cross produce measuring covariation between x and y (nvar by 1) constraints : LinearConstraint Constraints to use in estimation Returns ------- params : ndarray Estimated parameters (nvar by 1) Notes ----- xpx and xpy can be any form similar to the two inputs into the usual parameter estimator for a linear regression. In particular, many estimators can be written as .. math:: (x^\prime w x)^{-1}(x^\prime w y) for some weight matrix :math:`w`. """ if constraints is not None: cons = constraints xpy = cons.t.T @ xpy - cons.t.T @ xpx @ cons.a.T xpx = cons.t.T @ xpx @ cons.t params_c = solve(xpx, xpy) params = cons.t @ params_c + cons.a.T else: params = solve(xpx, xpy) return params class SystemFormulaParser(object): def __init__( self, formula: Union[Mapping[str, str], str], data: DataFrame, weights: Optional[Mapping[str, ArrayLike]] = None, eval_env: int = 6, ) -> None: if not isinstance(formula, (Mapping, str)): raise TypeError("formula must be a string or dictionary-like") self._formula: Union[Mapping[str, str], str] = formula self._data = data self._weights = weights self._parsers: Dict[str, IVFormulaParser] = {} self._weight_dict: Dict[str, Optional[Series]] = {} self._eval_env = eval_env self._clean_formula: Dict[str, str] = {} self._parse() @staticmethod def _prevent_autoconst(formula: str) -> str: if not (" 0+" in formula or " 0 +" in formula): formula = "~ 0 +".join(formula.split("~")) return formula def _parse(self) -> None: formula = self._formula data = self._data weights = self._weights parsers = self._parsers weight_dict = self._weight_dict cln_formula = self._clean_formula if isinstance(formula, Mapping): for formula_key in formula: f = formula[formula_key] f = self._prevent_autoconst(f) parsers[formula_key] = IVFormulaParser(f, data, eval_env=self._eval_env) if weights is not None: if formula_key in weights: weight_dict[formula_key] = weights[formula_key] else: weight_dict[formula_key] = None cln_formula[formula_key] = f else: formula = formula.replace("\n", " ").strip() parts = formula.split("}") for part in parts: key = base_key = None part = part.strip() if part == "": continue part = part.replace("{", "") if ":" in part.split("~")[0]: base_key, part = part.split(":") key = base_key = base_key.strip() part = part.strip() f = self._prevent_autoconst(part) if base_key is None: base_key = key = f.split("~")[0].strip() count = 0 while key in parsers: key = base_key + ".{0}".format(count) count += 1 assert isinstance(key, str) parsers[key] = IVFormulaParser(f, data, eval_env=self._eval_env) cln_formula[key] = f if weights is not None: if key in weights: weight_dict[key] = weights[key] else: weight_dict[key] = None _missing_weights(weight_dict) self._weight_dict = weight_dict def _get_variable(self, variable: str) -> Dict[str, Optional[DataFrame]]: return dict( [(key, getattr(self._parsers[key], variable)) for key in self._parsers] ) @property def formula(self) -> Dict[str, str]: """Cleaned version of formula""" return self._clean_formula @property def eval_env(self) -> int: """Set or get the eval env depth""" return self._eval_env @eval_env.setter def eval_env(self, value: int) -> None: self._eval_env = value # Update parsers for new level parsers = self._parsers new_parsers = {} for key in parsers: parser = parsers[key] new_parsers[key] = IVFormulaParser( parser._formula, parser._data, self._eval_env ) self._parsers = new_parsers @property def equation_labels(self) -> List[str]: return list(self._parsers.keys()) @property def data(self) -> Dict[str, Dict[str, ArrayLike]]: out = {} dep = self.dependent for key in dep: out[key] = {"dependent": dep[key]} exog = self.exog for key in exog: out[key]["exog"] = exog[key] endog = self.endog for key in endog: out[key]["endog"] = endog[key] instr = self.instruments for key in instr: out[key]["instruments"] = instr[key] for key in self._weight_dict: if self._weight_dict[key] is not None: out[key]["weights"] = self._weight_dict[key] return out @property def dependent(self) -> Dict[str, Optional[DataFrame]]: return self._get_variable("dependent") @property def exog(self) -> Dict[str, Optional[DataFrame]]: return self._get_variable("exog") @property def endog(self) -> Dict[str, Optional[DataFrame]]: return self._get_variable("endog") @property def instruments(self) -> Dict[str, Optional[DataFrame]]: return self._get_variable("instruments") class _SystemModelBase(object): r""" Base class for system estimators Parameters ---------- equations : dict Dictionary-like structure containing dependent, exogenous, endogenous and instrumental variables. Each key is an equations label and must be a string. Each value must be either a tuple of the form (dependent, exog, endog, instrument[, weights]) or a dictionary with keys 'dependent', and at least one of 'exog' or 'endog' and 'instruments'. When using a tuple, values must be provided for all 4 variables, although either empty arrays or `None` can be passed if a category of variable is not included in a model. The dictionary may contain optional keys for 'exog', 'endog', 'instruments', and 'weights'. 'exog' can be omitted if all variables in an equation are endogenous. Alternatively, 'exog' can contain either an empty array or `None` to indicate that an equation contains no exogenous regressors. Similarly 'endog' and 'instruments' can either be omitted or may contain an empty array (or `None`) if all variables in an equation are exogenous. sigma : array_like Prespecified residual covariance to use in GLS estimation. If not provided, FGLS is implemented based on an estimate of sigma. """ def __init__( self, equations: Mapping[str, Union[Mapping[str, ArrayLike], Sequence[ArrayLike]]], *, sigma: Optional[ArrayLike] = None, ) -> None: if not isinstance(equations, Mapping): raise TypeError("equations must be a dictionary-like") for key in equations: if not isinstance(key, str): raise ValueError("Equation labels (keys) must be strings") self._equations = equations self._sigma = None if sigma is not None: self._sigma = np.asarray(sigma) k = len(self._equations) if self._sigma.shape != (k, k): raise ValueError( "sigma must be a square matrix with dimensions " "equal to the number of equations" ) self._param_names: List[str] = [] self._eq_labels: List[str] = [] self._dependent: List[IVData] = [] self._exog: List[IVData] = [] self._instr: List[IVData] = [] self._endog: List[IVData] = [] self._y: List[Float64Array] = [] self._x: List[Float64Array] = [] self._wy: List[Float64Array] = [] self._wx: List[Float64Array] = [] self._w: List[Float64Array] = [] self._z: List[Float64Array] = [] self._wz: List[Float64Array] = [] self._weights: List[IVData] = [] self._formula: Optional[Union[str, Dict[str, str]]] = None self._constraints: Optional[LinearConstraint] = None self._constant_loc: Optional[Series] = None self._has_constant = None self._common_exog = False self._original_index: Optional[Index] = None self._model_name = "Three Stage Least Squares (3SLS)" self._validate_data() @property def formula(self) -> Optional[Union[str, Dict[str, str]]]: """Set or get the formula used to construct the model""" return self._formula @formula.setter def formula(self, value: Optional[Union[str, Dict[str, str]]]) -> None: self._formula = value def _validate_data(self) -> None: ids = [] for i, key in enumerate(self._equations): self._eq_labels.append(key) eq_data = self._equations[key] dep_name = "dependent_" + str(i) exog_name = "exog_" + str(i) endog_name = "endog_" + str(i) instr_name = "instr_" + str(i) if isinstance(eq_data, (tuple, list)): dep = IVData(eq_data[0], var_name=dep_name) self._dependent.append(dep) current_id: Tuple[int, ...] = (id(eq_data[1]),) self._exog.append( IVData(eq_data[1], var_name=exog_name, nobs=dep.shape[0]) ) endog = IVData(eq_data[2], var_name=endog_name, nobs=dep.shape[0]) if endog.shape[1] > 0: current_id += (id(eq_data[2]),) ids.append(current_id) self._endog.append(endog) self._instr.append( IVData(eq_data[3], var_name=instr_name, nobs=dep.shape[0]) ) if len(eq_data) == 5: self._weights.append(IVData(eq_data[4])) else: dep_shape = self._dependent[-1].shape self._weights.append(IVData(np.ones(dep_shape))) elif isinstance(eq_data, (dict, Mapping)): dep = IVData(eq_data["dependent"], var_name=dep_name) self._dependent.append(dep) exog = eq_data.get("exog", None) self._exog.append(IVData(exog, var_name=exog_name, nobs=dep.shape[0])) current_id = (id(exog),) endog_values = eq_data.get("endog", None) endog = IVData(endog_values, var_name=endog_name, nobs=dep.shape[0]) self._endog.append(endog) if "endog" in eq_data: current_id += (id(eq_data["endog"]),) ids.append(current_id) instr_values = eq_data.get("instruments", None) instr = IVData(instr_values, var_name=instr_name, nobs=dep.shape[0]) self._instr.append(instr) if "weights" in eq_data: self._weights.append(IVData(eq_data["weights"])) else: self._weights.append(IVData(np.ones(dep.shape))) else: msg = UNKNOWN_EQ_TYPE.format(key=key, type=type(vars)) raise TypeError(msg) self._has_instruments = False for instr in self._instr: self._has_instruments = self._has_instruments or (instr.shape[1] > 1) for i, comps in enumerate( zip(self._dependent, self._exog, self._endog, self._instr, self._weights) ): shapes = [a.shape[0] for a in comps] if min(shapes) != max(shapes): raise ValueError( "Dependent, exogenous, endogenous and " "instruments, and weights, if provided, do " "not have the same number of observations in " "{eq}".format(eq=self._eq_labels[i]) ) self._drop_missing() self._common_exog = len(set(ids)) == 1 if self._common_exog: # Common exog requires weights are also equal w0 = self._weights[0].ndarray for w in self._weights: self._common_exog = self._common_exog and bool(np.all(w.ndarray == w0)) constant = [] constant_loc = [] for dep, exog, endog, instr, w, label in zip( self._dependent, self._exog, self._endog, self._instr, self._weights, self._eq_labels, ): y = cast(Float64Array, dep.ndarray) x = np.concatenate([exog.ndarray, endog.ndarray], 1) z = np.concatenate([exog.ndarray, instr.ndarray], 1) w_arr = cast(Float64Array, w.ndarray) w_arr = w_arr / np.nanmean(w_arr) w_sqrt = np.sqrt(w_arr) self._w.append(w_arr) self._y.append(y) self._x.append(x) self._z.append(z) self._wy.append(y * w_sqrt) self._wx.append(x * w_sqrt) self._wz.append(z * w_sqrt) cols = list(exog.cols) + list(endog.cols) self._param_names.extend([label + "_" + col for col in cols]) if y.shape[0] <= x.shape[1]: raise ValueError( "Fewer observations than variables in " "equation {eq}".format(eq=label) ) if matrix_rank(x) < x.shape[1]: raise ValueError( "Equation {eq} regressor array is not full " "rank".format(eq=label) ) if x.shape[1] > z.shape[1]: raise ValueError( "Equation {eq} has fewer instruments than " "endogenous variables.".format(eq=label) ) if z.shape[1] > z.shape[0]: raise ValueError( "Fewer observations than instruments in " "equation {eq}".format(eq=label) ) if matrix_rank(z) < z.shape[1]: raise ValueError( "Equation {eq} instrument array is full " "rank".format(eq=label) ) for rhs in self._x: const, const_loc = has_constant(rhs) constant.append(const) constant_loc.append(const_loc) self._has_constant = Series( constant, index=[d.cols[0] for d in self._dependent] ) self._constant_loc = constant_loc def _drop_missing(self) -> None: k = len(self._dependent) nobs = self._dependent[0].shape[0] self._original_index = self._dependent[0].rows.copy() missing = np.zeros(nobs, dtype=bool) values = [self._dependent, self._exog, self._endog, self._instr, self._weights] for i in range(k): for value in values: nulls = value[i].isnull if nulls.any(): missing |= np.asarray(nulls) missing_warning(missing, stacklevel=4) if np.any(missing): for i in range(k): self._dependent[i].drop(missing) self._exog[i].drop(missing) self._endog[i].drop(missing) self._instr[i].drop(missing) self._weights[i].drop(missing) def __repr__(self) -> str: return self.__str__() + "\nid: {0}".format(hex(id(self))) def __str__(self) -> str: out = self._model_name + ", " out += "{0} Equations:\n".format(len(self._y)) eqns = ", ".join(self._equations.keys()) out += "\n".join(textwrap.wrap(eqns, 70)) if self._common_exog: out += "\nCommon Exogenous Variables" return out def predict( self, params: ArrayLike, *, equations: Optional[Mapping[str, Mapping[str, ArrayLike]]] = None, data: Optional[DataFrame] = None, eval_env: int = 8, ) -> DataFrame: """ Predict values for additional data Parameters ---------- params : array_like Model parameters (nvar by 1) equations : dict Dictionary-like structure containing exogenous and endogenous variables. Each key is an equations label and must match the labels used to fir the model. Each value must be a dictionary with keys 'exog' and 'endog'. If predictions are not required for one of more of the model equations, these keys can be omitted. data : DataFrame Values to use when making predictions from a model constructed from a formula eval_env : int Depth to use when evaluating formulas. Returns ------- predictions : DataFrame Fitted values from supplied data and parameters Notes ----- If `data` is not none, then `equations` must be none. Predictions from models constructed using formulas can be computed using either `equations`, which will treat these are arrays of values corresponding to the formula-process data, or using `data` which will be processed using the formula used to construct the values corresponding to the original model specification. When using `exog` and `endog`, the regressor array for a particular equation is assembled as `[equations[eqn]['exog'], equations[eqn]['endog']]` where `eqn` is an equation label. These must correspond to the columns in the estimated model. """ if data is not None: assert self.formula is not None parser = SystemFormulaParser(self.formula, data=data, eval_env=eval_env) equations = parser.data params = np.atleast_2d(np.asarray(params)) if params.shape[0] == 1: params = params.T nx = int(sum([_x.shape[1] for _x in self._x])) if params.shape[0] != nx: raise ValueError( f"Parameters must have {nx} elements; found {params.shape[0]}." ) loc = 0 out = AttrDict() for i, label in enumerate(self._eq_labels): kx = self._x[i].shape[1] assert isinstance(equations, abc.Mapping) if label in equations: b = params[loc : loc + kx] eqn = equations[label] exog = eqn.get("exog", None) endog = eqn.get("endog", None) if exog is None and endog is None: loc += kx continue if exog is not None: exog_endog = IVData(exog).pandas if endog is not None: endog = IVData(endog) exog_endog = concat([exog_endog, endog.pandas], axis=1) else: exog_endog = IVData(endog).pandas fitted = np.asarray(exog_endog) @ b fitted = DataFrame(fitted, index=exog_endog.index, columns=[label]) out[label] = fitted loc += kx out = reduce( lambda left, right: left.merge( right, how="outer", left_index=True, right_index=True ), [out[key] for key in out], ) return out def _multivariate_ls_fit(self) -> Tuple[Float64Array, Float64Array]: wy, wx, wxhat = self._wy, self._wx, self._wxhat k = len(wxhat) xpx = blocked_inner_prod(wxhat, np.eye(len(wxhat))) _xpy = [] for i in range(k): _xpy.append(wxhat[i].T @ wy[i]) xpy = np.vstack(_xpy) beta = _parameters_from_xprod(xpx, xpy, constraints=self.constraints) loc = 0 eps = [] for i in range(k): nb = wx[i].shape[1] b = beta[loc : loc + nb] eps.append(wy[i] - wx[i] @ b) loc += nb eps_arr = np.hstack(eps) return beta, eps_arr def _construct_xhat(self) -> None: k = len(self._x) self._xhat = [] self._wxhat = [] for i in range(k): x, z = self._x[i], self._z[i] if z.shape == x.shape and np.all(z == x): # OLS, no instruments self._xhat.append(x) self._wxhat.append(self._wx[i]) else: delta = lstsq(z, x, rcond=None)[0] xhat = z @ delta self._xhat.append(xhat) w = self._w[i] self._wxhat.append(xhat * np.sqrt(w)) def _gls_estimate( self, eps: Float64Array, nobs: int, total_cols: int, ci: Sequence[int], full_cov: bool, debiased: bool, ) -> Tuple[Float64Array, Float64Array, Float64Array, Float64Array]: """Core estimation routine for iterative GLS""" wy, wx, wxhat = self._wy, self._wx, self._wxhat if self._sigma is None: sigma = eps.T @ eps / nobs sigma *= self._sigma_scale(debiased) else: sigma = self._sigma est_sigma = sigma if not full_cov: sigma = np.diag(np.diag(sigma)) sigma_inv = inv(sigma) k = len(wy) xpx = blocked_inner_prod(wxhat, sigma_inv) xpy = np.zeros((total_cols, 1)) for i in range(k): sy = np.zeros((nobs, 1)) for j in range(k): sy += sigma_inv[i, j] * wy[j] xpy[ci[i] : ci[i + 1]] = wxhat[i].T @ sy beta = _parameters_from_xprod(xpx, xpy, constraints=self.constraints) loc = 0 for j in range(k): _wx = wx[j] _wy = wy[j] kx = _wx.shape[1] eps[:, [j]] = _wy - _wx @ beta[loc : loc + kx] loc += kx return beta, eps, sigma, est_sigma def _multivariate_ls_finalize( self, beta: Float64Array, eps: Float64Array, sigma: Float64Array, cov_type: str, **cov_config: bool, ) -> SystemResults: k = len(self._wx) # Covariance estimation cov_estimator = COV_EST[cov_type] cov_est = cov_estimator( self._wxhat, eps, sigma, sigma, gls=False, constraints=self._constraints, **cov_config, ) cov = cov_est.cov individual = AttrDict() debiased = cov_config.get("debiased", False) for i in range(k): wy = wye = self._wy[i] w = self._w[i] cons = bool(self.has_constant.iloc[i]) if cons: wc = np.ones_like(wy) * np.sqrt(w) wye = wy - wc @ lstsq(wc, wy, rcond=None)[0] total_ss = float(wye.T @ wye) stats = self._common_indiv_results( i, beta, cov, eps, eps, "OLS", cov_type, cov_est, 0, debiased, cons, total_ss, ) key = self._eq_labels[i] individual[key] = stats nobs = eps.size results = self._common_results( beta, cov, "OLS", 0, nobs, cov_type, sigma, individual, debiased ) results["wresid"] = results.resid results["cov_estimator"] = cov_est results["cov_config"] = cov_est.cov_config individual = results["individual"] r2s = [individual[eq].r2 for eq in individual] results["system_r2"] = self._system_r2(eps, sigma, "ols", False, debiased, r2s) return SystemResults(results) @property def has_constant(self) -> Series: """Vector indicating which equations contain constants""" return self._has_constant def _f_stat( self, stats: AttrDict, debiased: bool ) -> Union[WaldTestStatistic, InvalidTestStatistic]: cov = stats.cov k = cov.shape[0] sel = list(range(k)) if stats.has_constant: sel.pop(stats.constant_loc) cov = cov[sel][:, sel] params = stats.params[sel] df = params.shape[0] nobs = stats.nobs null = "All parameters ex. constant are zero" name = "Equation F-statistic" try: stat = float(params.T @ inv(cov) @ params) except np.linalg.LinAlgError: return InvalidTestStatistic( "Covariance is singular, possibly due " "to constraints.", name=name ) if debiased: total_reg = np.sum([s.shape[1] for s in self._wx]) df_denom = len(self._wx) * nobs - total_reg wald = WaldTestStatistic(stat / df, null, df, df_denom=df_denom, name=name) else: return WaldTestStatistic(stat, null=null, df=df, name=name) return wald def _common_indiv_results( self, index: int, beta: Float64Array, cov: Float64Array, wresid: Float64Array, resid: Float64Array, method: str, cov_type: str, cov_est: Union[ HomoskedasticCovariance, HeteroskedasticCovariance, KernelCovariance, ClusteredCovariance, GMMHeteroskedasticCovariance, GMMHomoskedasticCovariance, ], iter_count: int, debiased: bool, constant: bool, total_ss: float, *, weight_est: Optional[ Union[ HomoskedasticWeightMatrix, HeteroskedasticWeightMatrix, KernelWeightMatrix, ] ] = None, ) -> AttrDict: loc = 0 for i in range(index): loc += self._wx[i].shape[1] i = index stats = AttrDict() # Static properties stats["eq_label"] = self._eq_labels[i] stats["dependent"] = self._dependent[i].cols[0] stats["instruments"] = ( self._instr[i].cols if self._instr[i].shape[1] > 0 else None ) stats["endog"] = self._endog[i].cols if self._endog[i].shape[1] > 0 else None stats["method"] = method stats["cov_type"] = cov_type stats["cov_estimator"] = cov_est stats["cov_config"] = cov_est.cov_config stats["weight_estimator"] = weight_est stats["index"] = self._dependent[i].rows stats["original_index"] = self._original_index stats["iter"] = iter_count stats["debiased"] = debiased stats["has_constant"] = constant assert self._constant_loc is not None stats["constant_loc"] = self._constant_loc[i] # Parameters, errors and measures of fit wxi = self._wx[i] nobs, df = wxi.shape b = beta[loc : loc + df] e = wresid[:, [i]] nobs = e.shape[0] df_c = nobs - int(constant) df_r = nobs - df stats["params"] = b stats["cov"] = cov[loc : loc + df, loc : loc + df] stats["wresid"] = e stats["nobs"] = nobs stats["df_model"] = df stats["resid"] = resid[:, [i]] stats["fitted"] = self._x[i] @ b stats["resid_ss"] = float(resid[:, [i]].T @ resid[:, [i]]) stats["total_ss"] = total_ss stats["r2"] = 1.0 - stats.resid_ss / stats.total_ss stats["r2a"] = 1.0 - (stats.resid_ss / df_r) / (stats.total_ss / df_c) names = self._param_names[loc : loc + df] offset = len(stats.eq_label) + 1 stats["param_names"] = [n[offset:] for n in names] # F-statistic stats["f_stat"] = self._f_stat(stats, debiased) return stats def _common_results( self, beta: Float64Array, cov: Float64Array, method: str, iter_count: int, nobs: int, cov_type: str, sigma: Float64Array, individual: AttrDict, debiased: bool, ) -> AttrDict: results = AttrDict() results["method"] = method results["iter"] = iter_count results["nobs"] = nobs results["cov_type"] = cov_type results["index"] = self._dependent[0].rows results["original_index"] = self._original_index names = list(individual.keys()) results["sigma"] =
DataFrame(sigma, columns=names, index=names)
pandas.DataFrame
import os, sys import numpy as np import pandas as pd from datetime import datetime, date import csv import ast import shutil import requests import json from zipfile import ZipFile from bs4 import BeautifulSoup __author__ = '<NAME>, <NAME>' __copyright__ = '© Pandemic Central, 2021' __license__ = 'MIT' __status__ = 'release' __url__ = 'https://github.com/solveforj/pandemic-central' __version__ = '3.0.0' # DOWNLOAD def get_facebook_data(): url = 'https://data.humdata.org/dataset/movement-range-maps' content = requests.get(url).content soup = BeautifulSoup(content, 'html.parser') download_url = soup.find_all('a',\ {"class": "btn btn-empty btn-empty-blue hdx-btn resource-url-analytics ga-download"},\ href=True)[1]['href'] download_url = 'https://data.humdata.org' + download_url zip = requests.get(download_url) os.mkdir('temp') temp_path = ('temp/data.zip') with open(temp_path, 'wb') as temp: temp.write(zip.content) with ZipFile(temp_path, 'r') as unzip: unzip.extractall('temp/') files = os.listdir('temp') return files # PROCESS def facebook_mobility_to_pd(files): for filename in files: if filename.startswith('movement-range'): path = 'temp/' + filename # Read and compress data file df_load = pd.read_csv(path, sep='\t', dtype={'polygon_id':str}) df_load = df_load[df_load['country'] == 'USA'] df = df_load[['ds', 'polygon_id', 'all_day_bing_tiles_visited_relative_change', 'all_day_ratio_single_tile_users']] df = df.rename({'polygon_id':'FIPS','ds':'date','all_day_bing_tiles_visited_relative_change':'fb_movement_change', 'all_day_ratio_single_tile_users':'fb_stationary'}, axis=1) df = df.reset_index(drop=True) # Compute 14 day rolling averages for movement data df['fb_movement_change'] = pd.Series(df.groupby("FIPS")['fb_movement_change'].rolling(7).mean()).reset_index(drop=True) df['fb_stationary'] = pd.Series(df.groupby("FIPS")['fb_stationary'].rolling(7).mean()).reset_index(drop=True) # Move dates forward by 1 day so that movement averages represent data from past week df['date'] = pd.to_datetime(df['date']) df['date'] = df['date'] +
pd.Timedelta(value=1, unit='day')
pandas.Timedelta
import pandas as pd import numpy as np from datetime import datetime, timedelta import os import pickle import re from collections import defaultdict from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix, roc_auc_score, roc_curve from nltk.stem import SnowballStemmer import matplotlib.pyplot as plt class AmazonReviews(): ''' Class for reading Amazon review data and building a ML model to predict whether or not a product will trend based on a customer review. The review data is sourced from (https://s3.amazonaws.com/amazon-reviews-pds/readme.html). date_filter: DataFrame Filters the raw Amazon review data reviews_df: DataFrame Filtered data frame of the Amazon review data reviews_selected_df: DataFrame Filtered reviews_df for the time window to calculate the trend score product_trend_df: DataFrame Output of the trend calculation process and can analyze whether the trend score is calcualted correctly obs: DataFrame Entire set of observations the model will be trained and tested upon. X: np.array Array for sklearn interface representing the feature space. y: np.array Array for sklearn interface representing the target. X_train: np.array Array for the sklearn interface representing the training feature space. X_test: np.array Array for the sklearn interface representing the testing feature space. y_train: np.array Array for the sklearn interface representing the training target. y_test: np.array Array for the sklearn interface representing the testing target. results: DataFrame Stores the results of each model. DataFrame consists of accuracy, precision, recall, F1, and AUC. y_scores: defaultdict Dictionary storing the target probabilities for each model. ''' data_path = '../data/' RANDOM_STATE = 42 def __init__(self, date_filter=datetime(2014,1,1)):# should add a flag to force to read from file ''' Initalizes an AmazonReview instance date_filter: (optional) If None, then date_filter will be set to 2014-01-01 ''' self.date_filter = date_filter self.results = pd.DataFrame(columns=['Precision', 'Recall', 'F1', 'Accuracy','AUC']) self.y_scores = defaultdict(np.ndarray) def load_data(self, path): ''' Loads the AmazonReview data path: File path to the tab separated Amazon Review data (https://s3.amazonaws.com/amazon-reviews-pds/readme.html) ''' # only load from file if pickle does not exist i = path.rfind('/') f = self.data_path + path[i+1:] + '.pkl' if os.path.isfile(f): self.reviews_df =
pd.read_pickle(f)
pandas.read_pickle
import numpy as np import pandas as pd import seaborn as sns import estimagic.differentiation.finite_differences as fd from multiprocessing import Pool from matplotlib import pyplot as plt from estimagic.differentiation.generate_steps import generate_steps from estimagic.optimization.utilities import namedtuple_from_kwargs from estimagic.differentiation.numdiff_np import first_derivative from src.model_code.rastrigin import grad_rastrigin from src.model_code.rastrigin import rastrigin from src.model_code.levy import func_levy from src.model_code.levy import grad_levy from src.model_code.ackley import ackley from src.model_code.ackley import grad_ackley from scipy.optimize._numdiff import approx_derivative from bld.project_paths import project_paths_join as ppj if __name__ == "__main__": def calculate_error(params, diff, func, grad): """Difference between numerical and analytical derivatives, devided by analytial derivative. Args: params(np.array): 1d numpy array of function arguments diff(np.array): difficulty parameter, controls wiggliness of the function func(np.array): functions for which derivatives are calculated grad(np.array): gradients of the functions Returns: error(np.array): numpy array of relative errors, calculated for different methods """ method = ["center", "forward", "backward"] error = {} for i,m in enumerate(method): diff_dict = {'diff': diff} num_der = first_derivative(func, params,func_kwargs=diff_dict, method=m) analytical_der = grad(params, diff) error[m] = (num_der - analytical_der )/np.abs(analytical_der).clip(1e-8, np.inf) return error diff_vec = np.linspace(0, 40, 100) functions = [rastrigin, func_levy] gradients = [grad_rastrigin, grad_levy] function_names = ["Rastrigin", "Levy"] for f,g, func_name in zip(functions, gradients, function_names): error_vec = [calculate_error(np.array([5.0, 8.5]),diff_i, f, g) for diff_i in diff_vec] to_concat = [] for err, d in zip(error_vec, diff_vec): df =
pd.DataFrame(err)
pandas.DataFrame
#encoding=utf-8 import pandas as pd from Data import load_file from sklearn.preprocessing import Imputer dir='D:/kesci/data/part_data' test_master_numeric='/test_master_numeric.csv' test_master_category='/test_master_category.csv' test_UserUpdate='/test_UserUpdate.csv' test_LogInfo='/test_LogInfo.csv' train_master_numeric='/train_master_numeric.csv' train_master_category='/train_master_category.csv' train_UserUpdate='/train_UserUpdate.csv' train_LogInfo='/train_LogInfo.csv' test_master_1=load_file(dir,test_master_numeric) test_master_2=load_file(dir,test_master_category) train_master_1=load_file(dir,train_master_numeric) train_master_2=load_file(dir,train_master_category) test_UserUpdate_3=load_file(dir,test_UserUpdate) test_LogInfo_4=load_file(dir,test_LogInfo) train_UserUpdate_3=load_file(dir,train_UserUpdate) train_LogInfo_4=load_file(dir,train_LogInfo) train=pd.concat([train_master_1,train_master_2],axis=1) test=pd.concat([test_master_1,test_master_2],axis=1) print(train.shape) print(test.shape) train=pd.merge(train,train_UserUpdate_3,how='left',on='Idx') train=pd.merge(train,train_LogInfo_4,how='left',on='Idx') print(train.shape) test=pd.merge(test,test_UserUpdate_3,how='left',on='Idx') test=pd.merge(test,test_LogInfo_4,how='left',on='Idx') print(test.shape) train=Imputer().fit_transform(train) test=Imputer().fit_transform(test) print(train.shape) print(test.shape) train=pd.DataFrame(train) test=
pd.DataFrame(test)
pandas.DataFrame
import glob import numpy as np import scipy import os from sklearn.cluster import KMeans from sklearn.metrics import adjusted_rand_score from joblib import dump import pandas as pd from multiprocessing.pool import ThreadPool from pyhydra.utils import check_symmetric, launch_svc __author__ = "<NAME>" __copyright__ = "Copyright 2019-2020 The CBICA & SBIA Lab" __credits__ = ["<NAME>, <NAME>"] __license__ = "See LICENSE file" __version__ = "0.1.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Development" def consensus_clustering(clustering_results, k): """ This function performs consensus clustering on a co-occurence matrix :param clustering_results: an array containing all the clustering results across different iterations, in order to perform :param k: :return: """ num_pt = clustering_results.shape[0] cooccurence_matrix = np.zeros((num_pt, num_pt)) for i in range(num_pt - 1): for j in range(i + 1, num_pt): cooccurence_matrix[i, j] = sum(clustering_results[i, :] == clustering_results[j, :]) cooccurence_matrix = np.add(cooccurence_matrix, cooccurence_matrix.transpose()) ## here is to compute the Laplacian matrix Laplacian = np.subtract(np.diag(np.sum(cooccurence_matrix, axis=1)), cooccurence_matrix) Laplacian_norm = np.subtract(np.eye(num_pt), np.matmul(np.matmul(np.diag(1 / np.sqrt(np.sum(cooccurence_matrix, axis=1))), cooccurence_matrix), np.diag(1 / np.sqrt(np.sum(cooccurence_matrix, axis=1))))) ## replace the nan with 0 Laplacian_norm = np.nan_to_num(Laplacian_norm) ## check if the Laplacian norm is symmetric or not, because matlab eig function will automatically check this, but not in numpy or scipy if check_symmetric(Laplacian_norm): ## extract the eigen value and vector ## matlab eig equivalence is eigh, not eig from numpy or scipy, see this post: https://stackoverflow.com/questions/8765310/scipy-linalg-eig-return-complex-eigenvalues-for-covariance-matrix ## Note, the eigenvector is not unique, thus the matlab and python eigenvector may be different, but this will not affect the results. evalue, evector = scipy.linalg.eigh(Laplacian_norm) else: # evalue, evector = np.linalg.eig(Laplacian_norm) raise Exception("The Laplacian matrix should be symmetric here...") ## check if the eigen vector is complex if np.any(np.iscomplex(evector)): evalue, evector = scipy.linalg.eigh(Laplacian) ## create the kmean algorithm with sklearn kmeans = KMeans(n_clusters=k, n_init=20).fit(evector.real[:, 0: k]) final_predict = kmeans.labels_ return final_predict def cv_cluster_stability(result, k): """ To compute the adjusted rand index across different pair of 2 folds cross CV :param result: :return: """ num_pair = 0 aris = [] if k == 1: adjusted_rand_index = 0 ## note, here, we manually set it to be 0, because it does not make sense when k==1. TODO, need to clarify if there is really heterogeneity in the data, i.e., k == 1 or k>1 else: for i in range(result.shape[1] - 1): for j in range(i+1, result.shape[1]): num_pair += 1 non_zero_index = np.all(result[:, [i, j]], axis=1) pair_result = result[:, [i, j]][non_zero_index] ari = adjusted_rand_score(pair_result[:, 0], pair_result[:, 1]) aris.append(ari) adjusted_rand_index = np.mean(np.asarray(aris)) return adjusted_rand_index def hydra_solver_svm_tl(num_component, num_component_former, num_repetition, X, y, k, output_dir, num_iteration, tol, balanced, predefined_c, n_threads, num_run): """ This is the main function of HYDRA, which find the convex polytope using a supervised classification fashion. :param num_repetition: the number of iteration of CV currently. This is helpful to reconstruct the model and also moniter the processing :param X: corrected training data feature :param y: traing data label :param k: hyperparameter for desired number of clusters in patients :param options: commandline parameters :return: the optimal model """ index_pt = np.where(y == 1)[0] # index for PTs index_cn = np.where(y == -1)[0] # index for CNs ### initialize the final weight for the polytope from the former C weight_file = os.path.join(output_dir, 'clustering_run' + str(num_run-1), 'component_' + str(num_component_former), str(k) + '_clusters', 'tsv', 'weight_sample_cv_' + str(num_repetition) + '.tsv') weight_sample = pd.read_csv(weight_file, sep='\t').to_numpy() ## cluster assignment is based on this svm scores across different SVM/hyperplanes svm_scores = np.zeros((weight_sample.shape[0], weight_sample.shape[1])) update_weights_pool = ThreadPool(n_threads) for j in range(num_iteration): for m in range(k): sample_weight = np.ascontiguousarray(weight_sample[:, m]) if np.count_nonzero(sample_weight[index_pt]) == 0: print("Cluster dropped, meaning that all PT has been assigned to one single hyperplane in iteration: %d" % (j-1)) svm_scores[:, m] = np.asarray([np.NINF] * (y.shape[0])) else: results = update_weights_pool.apply_async(launch_svc, args=(X, y, predefined_c, sample_weight, balanced)) weight_coef = results.get()[0] intesept = results.get()[1] ## Apply the data again the trained model to get the final SVM scores svm_scores[:, m] = (np.matmul(weight_coef, X.transpose()) + intesept).transpose().squeeze() final_predict = np.argmax(svm_scores[index_pt], axis=1) ## decide the converge of the polytope based on the toleration weight_sample_hold = weight_sample.copy() # after each iteration, first set the weight of patient rows to be 0 weight_sample[index_pt, :] = 0 # then set the pt's weight to be 1 for the assigned hyperplane for n in range(len(index_pt)): weight_sample[index_pt[n], final_predict[n]] = 1 ## check the loss comparted to the tolorence for stopping criteria loss = np.linalg.norm(np.subtract(weight_sample, weight_sample_hold), ord='fro') print("The loss is: %f" % loss) if loss < tol: print("The polytope has been converged for iteration %d in finding %d clusters" % (j, k)) break update_weights_pool.close() update_weights_pool.join() ## after deciding the final convex polytope, we refit the training data once to save the best model weight_sample_final = np.zeros((y.shape[0], k)) ## change the weight of PTs to be 1, CNs to be 1/k # then set the pt's weight to be 1 for the assigned hyperplane for n in range(len(index_pt)): weight_sample_final[index_pt[n], final_predict[n]] = 1 weight_sample_final[index_cn] = 1 / k update_weights_pool_final = ThreadPool(n_threads) for o in range(k): sample_weight = np.ascontiguousarray(weight_sample_final[:, o]) if np.count_nonzero(sample_weight[index_pt]) == 0: print("Cluster dropped, meaning that the %d th hyperplane is useless!" % (o)) else: results = update_weights_pool_final.apply_async(launch_svc, args=(X, y, predefined_c, sample_weight, balanced)) ## save the final model for the k SVMs/hyperplanes if not os.path.exists( os.path.join(output_dir, 'clustering_run' + str(num_run), 'component_' + str(num_component), str(k) + '_clusters', 'models')): os.makedirs(os.path.join(output_dir, 'clustering_run' + str(num_run), 'component_' + str(num_component), str(k) + '_clusters', 'models')) dump(results.get()[2], os.path.join(output_dir, 'clustering_run' + str(num_run), 'component_' + str(num_component), str(k) + '_clusters', 'models', 'svm-' + str(o) + '_last_repetition.joblib')) update_weights_pool_final.close() update_weights_pool_final.join() y[index_pt] = final_predict + 1 if not os.path.exists(os.path.join(output_dir, 'clustering_run' + str(num_run), 'component_' + str(num_component), str(k) + '_clusters', 'tsv')): os.makedirs(os.path.join(output_dir, 'clustering_run' + str(num_run), 'component_' + str(num_component), str(k) + '_clusters', 'tsv')) ## save the assigned weight for each subject across k-fold columns = ['hyperplane' + str(i) for i in range(k)] weight_sample_df = pd.DataFrame(weight_sample_final, columns=columns) weight_sample_df.to_csv(os.path.join(output_dir, 'clustering_run' + str(num_run), 'component_' + str(num_component), str(k) + '_clusters', 'tsv', 'weight_sample_cv_' + str(num_repetition) + '.tsv'), index=False, sep='\t', encoding='utf-8') ## save the final_predict_all columns = ['y_hat'] y_hat_df = pd.DataFrame(y, columns=columns) y_hat_df.to_csv(os.path.join(output_dir, 'clustering_run' + str(num_run), 'component_' + str(num_component), str(k) + '_clusters', 'tsv', 'y_hat_cv_' + str(num_repetition) + '.tsv'), index=False, sep='\t', encoding='utf-8') ## save the pt index columns = ['pt_index'] pt_df = pd.DataFrame(index_pt, columns=columns) pt_df.to_csv(os.path.join(output_dir, 'clustering_run' + str(num_run), 'component_' + str(num_component), str(k) + '_clusters', 'tsv', 'pt_index_cv_' + str(num_repetition) + '.tsv'), index=False, sep='\t', encoding='utf-8') return y def cluster_stability_across_resolution(c, c_former, output_dir, k_continuing, num_run, stop_tol=0.98): """ To evaluate the stability of clustering across two different C for stopping criterion. Args: c: c_former: output_dir: k_continuing: num_run: stop_tol: max_num_iter: Returns: """ ## read the output of current C and former Cs cluster_ass1 = os.path.join(output_dir, 'clustering_run' + str(num_run), 'component_' + str(c), 'clustering_assignment.tsv') ass1_df = pd.read_csv(cluster_ass1, sep='\t') ass1_df = ass1_df.loc[ass1_df['diagnosis'] == 1] cluster_ass2 = os.path.join(output_dir, 'clustering_run' + str(num_run-1), 'component_' + str(c_former), 'clustering_assignment.tsv') ass2_df =
pd.read_csv(cluster_ass2, sep='\t')
pandas.read_csv
# pip3 install apyori # importacao das bibliotecas import pandas as pd import numpy as np from apyori import apriori from matplotlib import pyplot as plt # Configurando print das colunas e linhas pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) def apriori_alg(observations): # Aplicacao do algoritmo apriori association = apriori(observations, min_support=0.1)# , min_lift=1.2, min_length=2) association_results = list(association) # Criando dataframe para visualizacao dos dados df = pd.DataFrame(columns=('Names','Support','Confidence','Lift')) Support =[] Confidence = [] Lift = [] Items = [] for RelationRecord in association_results: for ordered_stat in RelationRecord.ordered_statistics: Support.append(RelationRecord.support) Items.append(RelationRecord.items) Confidence.append(ordered_stat.confidence) Lift.append(ordered_stat.lift) df['Names'] = list(map(set, Items)) df['Support'] = Support df['Confidence'] = Confidence df['Lift']= Lift return df.copy() # Selecionando dados a partir do csv df =
pd.read_csv('_ASSOC_VoleiStars.csv', index_col=None, encoding='iso-8859-1')
pandas.read_csv
#libraries import numpy as np import pandas as pd from datetime import datetime as dt import time import datetime import os import warnings warnings.filterwarnings("ignore") import logging logging.basicConfig(filename='log.txt',level=logging.DEBUG, format='%(asctime)s %(message)s')
pd.set_option('max_colwidth', 500)
pandas.set_option
from functools import partial from pathlib import Path from pprint import pprint from typing import Any import ujson import numpy as np import pandas as pd from tensorflow import config as tfc from tensorflow.keras.models import load_model from tqdm import trange, tqdm from tifffile import imsave import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable import matplotlib.ticker as mtick from matplotlib.ticker import FormatStrFormatter import matplotlib.colors as mcolors import utils import vis import backend import preprocessing from synthetic import SyntheticPSF from wavefront import Wavefront from zernike import Zernike import logging logger = logging.getLogger('') def zernikies_to_actuators(coefficients: np.array, dm_pattern: Path, dm_state: np.array, scalar: float = 1): dm_pattern =
pd.read_csv(dm_pattern, header=None)
pandas.read_csv
import numpy as np import pandas as pd class LinearRegression: def __init__(self, reg: str = None, pen: float = None): # Sanity check if reg not in (None, 'l1', 'l2'): raise ValueError('Regularization not supported') if reg in ('l1', 'l2'): try: assert pen > 0 except (AssertionError, TypeError): raise ValueError('Penalty must be positive when regularization is specified') self.reg = reg # type of regularization, can be None, 'l1' or 'l2' self.pen = pen # penalty (lambda), must be positive for L1 or L2 regularization self.features = pd.Index([]) # name of the features self.target = pd.Index([]) # name of the target self.w = pd.Series([]) # weights self.b = 0.0 # bias self.lr = 0.0 # learning rate, must be positive self.n_epoch = 0 # number of epochs, must be a positive integer def train(self, X: pd.DataFrame, y: pd.Series, lr: float = 0.01, n_epoch: int = 50) -> pd.Series: r"""Train the model to data Args: X: pd.DataFrame Feature matrix y: pd.Series Target vector lr: float Learning rate, must be positive n_epoch: int Number of epochs, must be a positive integer Returns: losses: pd.Series Training loss per data point """ # Sanity check try: assert lr > 0 except (AssertionError, TypeError): raise ValueError('Learning rate must be positive') try: assert isinstance(n_epoch, int) assert n_epoch > 0 except AssertionError: raise ValueError('Number of epochs must be a positive integer') # Initialize weights and bias self.features = X.columns self.target = y.name self.w = pd.Series(np.zeros(len(self.features)), name='w', index=self.features) self.b = 0.0 self.lr = lr self.n_epoch = n_epoch # Train model with SGD losses = [] for i_epoch in range(n_epoch): for (i_data, xi), (_, yi) in zip(X.iterrows(), y.iteritems()): _X = xi.to_frame().T _y =
pd.Series(yi, index=[i_data], name=self.target)
pandas.Series
# -*- coding: utf-8 -*- import pandas as pd import numpy as np import scipy.optimize as optimize from scipy.special import betaln from pandas.stats.moments import rolling_mean as rolling_m from pandas.stats.moments import rolling_corr from warnings import warn import matplotlib.pyplot as plt from time import time from datetime import datetime from pandas.io.data import DataReader import sys import os import logging import itertools def dataset(name): """ Return sample dataset from /data directory. """ mod = sys.modules[__name__] filename = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'data', name + '.pkl') return pd.read_pickle(filename) def profile(algo, data=None, to_profile=[]): """ Profile algorithm using line_profiler. :param algo: Algorithm instance. :param data: Stock prices, default is random portfolio. :param to_profile: List of methods to profile, default is `step` method. Example of use: tools.profile(Anticor(window=30, c_version=False), to_profile=[Anticor.weights]) """ from line_profiler import LineProfiler if data is None: data = random_portfolio(n=1000, k=10, mu=0.) to_profile = to_profile or [algo.step] profile = LineProfiler(*to_profile) profile.runcall(algo.run, data) profile.print_stats() def load_ticker(ticker, start=datetime(2000,1,1), end=None): return DataReader(ticker, "yahoo", start=start, end=None) def quickrun(algo, data=None, **kwargs): """ Run algorithm and print its running time and some statistics. """ if data is None: data = random_portfolio(n=1000, k=3, mu=0.0001) t = time() result = algo.run(data) logging.debug('Time: {:.2f}s'.format(time() - t)) print(result.summary()) result.plot(**kwargs) plt.show() return result def random_portfolio(n, k, mu=0., sd=0.01, corr=None, dt=1., nan_pct=0.): """ Generate asset prices assuming multivariate geometric Brownian motion. :param n: Number of time steps. :param k: Number of assets. :param mu: Drift parameter. Can be scalar or vector. Default is 0. :param sd: Volatility of single assets. Default is 0.01. :param corr: Correlation matrix of assets. Default is identity. :param dt: Time step. :param nan_pct: Add given percentage of NaN values. Useful for testing """ # default values corr = corr if corr is not None else np.eye(k) sd = sd * np.ones(k) mu = mu * np.ones(k) # drift nu = mu - sd**2 / 2. # do a Cholesky factorization on the correlation matrix R = np.linalg.cholesky(corr).T # generate uncorrelated random sequence x = np.matrix(np.random.normal(size=(n - 1,k))) # correlate the sequences ep = x * R # multivariate brownian W = nu * dt + ep * np.diag(sd) * np.sqrt(dt) # generate potential path S = np.vstack([np.ones((1, k)), np.cumprod(np.exp(W), 0)]) # add nan values if nan_pct > 0: r = S * 0 + np.random.random(S.shape) S[r < nan_pct] = np.nan return pd.DataFrame(S) def bcrp_weights(X): """ Find best constant rebalanced portfolio. :param X: Prices in ratios. """ x_0 = np.ones(X.shape[1]) / float(X.shape[1]) fun = lambda b: -np.prod(np.dot(X, b)) cons = ({'type': 'eq', 'fun': lambda b: sum(b) - 1.},) res = optimize.minimize(fun, x_0, bounds=[(0.,1.)]*len(x_0), constraints=cons, method='slsqp') if not res.success: warn('BCRP not found', RuntimeWarning) return res.x def rolling_cov_pairwise(df, *args, **kwargs): d = {} for c in df.columns: d[c] = pd.rolling_cov(df[c], df, *args, **kwargs) p = pd.Panel(d) return p.transpose(1,0,2) def rolling_corr(x, y, **kwargs): """ Rolling correlation between columns from x and y. """ def rolling(dataframe, *args, **kwargs): ret = dataframe.copy() for col in ret: ret[col] = rolling_m(ret[col], *args, **kwargs) return ret n, k = x.shape EX = rolling(x, **kwargs) EY = rolling(y, **kwargs) EX2 = rolling(x ** 2, **kwargs) EY2 = rolling(y ** 2, **kwargs) RXY = np.zeros((n, k, k)) for i, col_x in enumerate(x): for j, col_y in enumerate(y): DX = EX2[col_x] - EX[col_x] ** 2 DY = EY2[col_y] - EY[col_y] ** 2 RXY[:, i, j] =
rolling_m(x[col_x] * y[col_y], **kwargs)
pandas.stats.moments.rolling_mean
import os.path import matplotlib.pyplot as plt import numpy as np import pandas as pd from matplotlib import pyplot from pandas.api.types import is_string_dtype from sklearn import metrics from sklearn.decomposition import PCA from sklearn.ensemble import BaggingClassifier, AdaBoostClassifier, RandomForestClassifier, VotingClassifier from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.naive_bayes import MultinomialNB from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import MinMaxScaler from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from dataset_creation import read_data # Options for pandas ----- pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) accuracy = [] precision = [] recall = [] f1 = [] model_names = [] def read_data_from_questionnaire(): # reads data/category_columns_dataset.csv dataset = pd.read_csv("final_questionnaire.csv", sep=',', header=0, skiprows=0) print('Dataset size is: ', len(dataset)) print(dataset.head(5)) #Convert "Ναι / Οχι" responses in 0-1 dataset['follow'] = dataset['follow'].apply(lambda x: 0 if x=='Όχι' else 1) # Convert "Άντρας / Γυναίκα" responses in m-f dataset['gender'] = dataset['gender'].apply(lambda x: 0 if x == 'Άντρας' else 1) print(dataset.head(5)) print(dataset.columns) #Drop name, reasons & category columns dataset.drop(['name', 'reasons', 'category'], axis='columns', inplace=True) print(dataset.shape) #Convert all string values to numeric for x in dataset.columns: dataset[x] = pd.to_numeric(dataset[x], errors='coerce') # Drop rows with age <0 and >100 dataset.drop(dataset[dataset['age'] < 0].index, inplace=True) dataset.drop(dataset[dataset['age'] > 100].index, inplace=True) print(dataset.shape) # Drop examples (if any) that may contain NaN features # --------------------------------------------------------------- dataset.dropna(inplace=True) print(dataset.shape) #dataset.drop(['age']) return dataset; def preprocess_data_from_mongo(df): for i in df.columns: if is_string_dtype(df[i]): df[i] = df[i].map(lambda x: str(x).replace('%','')) df[i] = df[i].map(lambda x: str(x).replace('--', '0')) df[i] = df[i].map(lambda x: str(x).replace(',', '')) # Convert all string values to numeric, except the category column if i != 'category': df[i] = pd.to_numeric(df[i], errors='coerce') # Convert continuous follow_probability to 0-1 df['follow_probability'] = df['follow_probability'].apply(lambda x: 1 if x >= 0.5 else 0) # Drop examples (if any) that may contain NaN features # --------------------------------------------------------------- df.dropna(inplace=True) #print(df.shape) #print(df.head(5)) return df def print_scores(y_true, y_pred, model_name): print("Results with ",model_name) print("Accuracy: {:.5f}".format(metrics.accuracy_score(y_true, y_pred))) print("Precision: {:.5f}".format(metrics.precision_score(y_true, y_pred))) print("Recall: {:.5f}".format(metrics.recall_score(y_true, y_pred))) print("F1: {:.5f}".format(metrics.f1_score(y_true, y_pred))) accuracy.append(metrics.accuracy_score(y_true, y_pred)) precision.append(metrics.precision_score(y_true, y_pred)) recall.append(metrics.recall_score(y_true, y_pred)) f1.append(metrics.f1_score(y_true, y_pred)) model_names.append(model_name) def plot_results(name): x = np.arange(len(model_names)) width = 0.2 # the width of the bars X_axis = np.arange(len(model_names)) plt.bar(X_axis - 0.3, accuracy, width, label='Accuracy', color='red') plt.bar(X_axis - 0.1, precision, width, label='Precision', color='purple') plt.bar(X_axis + 0.1, recall, width, label='Recall') plt.bar(X_axis + 0.3, f1, width, label='F1') plt.xticks(X_axis, model_names, rotation=45) # Pad margins so that markers don't get clipped by the axes plt.margins(0.2) # Tweak spacing to prevent clipping of tick-labels plt.subplots_adjust(bottom=0.25) plt.xlabel("Models") plt.ylabel("Scores") plt.title("Machine Learning Model Scores") plt.legend() plt.savefig(name + '.png') plt.show() def fit_predict(x_train, x_test, model): model.fit(x_train) y_predicted = model.predict(x_test) return y_predicted def make_prediction(dataset, prediction_type): print(dataset.head(2)) X = dataset.iloc[:, :-1].values y = dataset.iloc[:, -1].values x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3, stratify=y, random_state=2) # Scale all the data with MinMaxScaler # --------------------------------------------------------------- scaler = MinMaxScaler() x_train_s = scaler.fit_transform(x_train) x_test_s = scaler.transform(x_test) if prediction_type == 'mongo_info': pca = PCA(0.95) pca.fit(x_train_s) x_train_final = pca.transform(x_train_s) x_test_final = pca.transform(x_test_s) else: x_train_final = x_train_s x_test_final = x_test_s if prediction_type == 'questionnaire_info': # Naive Bayes # --------------------------------------------------------------- mnb = MultinomialNB().fit(x_train, y_train) y_predicted = mnb.predict(x_test_final) print_scores(y_test, y_predicted, "MultinomialNB") print("score on train: ", str(mnb.score(x_train_final, y_train)), "\n") # --------------------------------------------------------------- # Logistic Regression # --------------------------------------------------------------- grid = {"C": np.logspace(-3, 3, 7), "tol": [1e-2, 1e-3, 1e-4, 1e-5], "penalty": ["l1", "l2"], "solver": ["saga"], "max_iter": [5000]} lr = GridSearchCV(LogisticRegression(), param_grid=grid) lr.fit(x_train_final, y_train) y_predicted = lr.predict(x_test_final) print_scores(y_test, y_predicted, "Logistic Regression") print("score on train: ", str(lr.score(x_train_final, y_train)), "\n") # --------------------------------------------------------------- # K Neighbors Classifier # --------------------------------------------------------------- knn = KNeighborsClassifier(algorithm='brute', n_jobs=-1) knn.fit(x_train_final, y_train) y_predicted = knn.predict(x_test_final) print_scores(y_test, y_predicted, "K Neighbors Classifier") print("score on train: ", str(knn.score(x_train_final, y_train)), "\n") # --------------------------------------------------------------- # Support Vector Machine # --------------------------------------------------------------- param_grid = {'C': [0.1, 1, 10, 100, 1000], 'gamma': [1, 0.1, 0.01, 0.001, 0.0001], 'kernel': ['rbf']} svm = GridSearchCV(SVC(), param_grid) svm.fit(x_train_final, y_train) y_predicted = svm.predict(x_test_final) print_scores(y_test, y_predicted, "Support Vector Machine") print("score on train: " + str(svm.score(x_train_final, y_train)), "\n") # --------------------------------------------------------------- # Decision Tree Classifier # --------------------------------------------------------------- clf = DecisionTreeClassifier() clf.fit(x_train_final, y_train) y_predicted = clf.predict(x_test_final) print_scores(y_test, y_predicted, "Decision Tree Classifier") print("score on train: " + str(clf.score(x_train_final, y_train)), "\n") print(clf.feature_importances_) # --------------------------------------------------------------- # Bagging Decision Tree # --------------------------------------------------------------- # max_samples: maximum size 0.5=50% of each sample taken from the full dataset # max_features: maximum of features 1=100% taken here all 10K # n_estimators: number of decision trees bg = BaggingClassifier(DecisionTreeClassifier(), max_samples=0.5, max_features=1.0, n_estimators=10) bg.fit(x_train_final, y_train) y_predicted = bg.predict(x_test_final) print_scores(y_test, y_predicted, "Bagging Decision Tree") print("score on train: " + str(bg.score(x_train_final, y_train)), "\n") # --------------------------------------------------------------- # Boosting Decision Tree # --------------------------------------------------------------- adb = AdaBoostClassifier(DecisionTreeClassifier(min_samples_split=10, max_depth=4), n_estimators=10, learning_rate=0.6) adb.fit(x_train_final, y_train) y_predicted = adb.predict(x_test_final) print_scores(y_test, y_predicted, "Boosting Decision Tree") print("score on train: " + str(adb.score(x_train_final, y_train)), "\n") # --------------------------------------------------------------- # Random Forest Classifier # --------------------------------------------------------------- # n_estimators = number of decision trees rf = RandomForestClassifier(n_estimators=30, max_depth=9) rf.fit(x_train_final, y_train) y_predicted = rf.predict(x_test_final) print_scores(y_test, y_predicted, "Random Forest Classifier") print("score on train: " + str(rf.score(x_train_final, y_train)), "\n") # perform Random Forest Build-in importance importance = rf.feature_importances_ # summarize feature importance importanceDict = {} listImp = [] print('Random Forest Build-in importance') for i, v in enumerate(importance): print('Feature: %0d, Score: %.5f' % (i, v)) listImp.append(v) importanceDict[v] = i print() # plot feature importance pyplot.bar([x for x in range(len(importance))], importance) pyplot.show() # --------------------------------------------------------------- if prediction_type == 'questionnaire_info': # Voting Classifier # --------------------------------------------------------------- # 1) naive bias = mnb # 2) logistic regression =lr # 3) random forest =rf # 4) support vector machine = svm evc = VotingClassifier(estimators=[('mnb', mnb), ('lr', lr), ('rf', rf), ('svm', svm)], voting='hard') evc.fit(x_train_final, y_train) y_predicted = evc.predict(x_test_final) print_scores(y_test, y_predicted, "Voting Classifier") print("score on train: " + str(evc.score(x_train_final, y_train)), "\n") # --------------------------------------------------------------- if __name__ == '__main__': #Make prediction on the questionnaire print("Machine learning methods: Questionnaire") dataset_quest = read_data_from_questionnaire() make_prediction(dataset_quest,'questionnaire_info') plot_results("questionnaire") accuracy = [] precision = [] recall = [] f1 = [] model_names = [] # Make prediction on the crowdtangle's info print("Machine learning methods: Crowdtangle") if os.path.isfile('prediction_info.csv'): dataset_mongo_updated =
pd.read_csv("prediction_info.csv")
pandas.read_csv
# Load datasets import os import re import shutil import json import pickle import logging as log from pathlib import Path from typing import * from collections import Counter from itertools import combinations, groupby import tqdm import pandas as pd import numpy as np import takco from takco.link.profile import pfd_prob_pervalue def progress(*args, **kwargs): disable = log.getLogger().getEffectiveLevel() >= 30 return tqdm.tqdm(*args, disable=disable, **kwargs) ## Dataset def get_snow_datasets(snow_rootdir: Path): root = Path(snow_rootdir).joinpath("datasets").expanduser().absolute() for d in root.iterdir(): if d.is_dir(): union_path = d.joinpath("union_dedup_json") input_dataset = takco.evaluate.dataset.WebDataCommons( fnames=sorted(union_path.glob("*.json")) ) reference_path = d.joinpath("evaluation/normalised_fd_relations") output_dataset = takco.evaluate.dataset.WebDataCommons( fnames=sorted(reference_path.glob("*.json")) ) yield d.name, (input_dataset, output_dataset) ## Generic functions def aggr_by_val(items): aggr = {} for k, v in items: aggr.setdefault(v, set()).add(k) return aggr def _make_date_regex(): import calendar ms = [m.lower() for m in calendar.month_name if m] monthnames = "(?:%s)" % "|".join([s for m in ms for s in set([m, m[:3]])]) dns = [f for i in range(1, 32) for f in set([str(i), f"{i:02d}"])] daynrs = "(%s)" % "|".join(dns) mns = [f for i in range(1, 13) for f in set([str(i), f"{i:02d}"])] monthnrs = "(%s)" % "|".join(mns) regexes = [ r"(?:\d{4}[/\-\.\s])?%s[/\-\.\s]%s(?:[/\-\.\s]\d{4})?\b" % x for m in [monthnrs, monthnames] for d in [daynrs, daynrs + "(?:th|nd)?"] for x in [(m, d), (d, m)] ] + [ r"\d{4}\b", monthnames, ] # year return "|".join("(?:%s)" % r for r in regexes) def looks_date(series, threshold=0.75): series = series.replace("", np.nan).dropna().astype("str") # First match simple numbers if series.str.match("-?\d+[,.]\d+").mean() > threshold: return False rex = _make_date_regex() flags = re.IGNORECASE return series.str.match(rex, flags=flags).mean() > threshold def looks_duration(series, threshold=0.75): series = series.replace("", np.nan).dropna().astype("str") return series.str.match("(?:\d+:)+\d+").mean() > threshold def looks_numeric(series, threshold=0.75): series = series.replace("", np.nan).dropna().astype("str") if looks_date(series, threshold=threshold) or looks_duration(series): return False # date return (series.str.count("[\d\.\-%]") / series.str.len()).mean() > threshold def looks_longtext(series, threshold=30): return series.str.len().mean() > threshold def get_context_headers(headers: Sequence[Sequence[str]]): p = ["page title", "table heading", "disambiguation of", "uri"] return [j for j, h in enumerate(headers) for i in p for c in h if c.startswith(i)] def get_singleton_cols(df): return list(df.columns[df.describe().T["unique"] == 1]) def get_longtext_cols(df, threshold=30): return [ n for n, (_, c) in enumerate(df.iteritems()) if looks_longtext(c, threshold=threshold) ] def guess_numeric_cols(df, threshold=0.75): return [ n for n, (_, c) in enumerate(df.iteritems()) if looks_numeric(c, threshold=threshold) ] def guess_date_cols(df, threshold=0.75): return [ n for n, (_, c) in enumerate(df.iteritems()) if looks_date(c, threshold=threshold) ] ## KB matching class KB: def __init__(self, snow_rootdir: Path, **kwargs): # Make KB features root = Path(snow_rootdir).expanduser().absolute() kb_fnames = list(root.joinpath("knowledgebase/tables/").glob("*.csv")) kb_text = {} for fname in progress(kb_fnames, desc="Loading KB classes"): name = fname.name.split(".")[0] vals = pd.read_csv(fname, usecols=[1], skiprows=4, header=None, nrows=None) kb_text[name] = vals[1] from sklearn.feature_extraction.text import TfidfVectorizer self.kb_vectorizer = TfidfVectorizer(analyzer=self._analyze, **kwargs) self.K = self.kb_vectorizer.fit_transform(kb_text.values()) log.debug("Made KB feature matrix of shape %s", self.K.shape) self.classes = list(kb_text) @staticmethod def _analyze(xs): """Extract full-cell and BoW features""" return [t for x in xs if x for t in ([x.lower()] + x.lower().split()) if t] def _get_query(self, df): ok_cols = [ ci for ci, (_, col) in enumerate(df.iteritems()) if ( (not looks_numeric(col, 0.5)) and (not looks_longtext(col)) and (not looks_date(col, 0.5)) and col.notna().mean() > 0.5 ) ] if not ok_cols: return [], None qtexts = [df.iloc[:, ci] for ci in ok_cols] Q = self.kb_vectorizer.transform(qtexts) return ok_cols, Q def get_sim(self, df): ok_cols, Q = self._get_query(df) if not ok_cols: return None simmat = self.K.dot(Q.T).todense() sim = pd.DataFrame(simmat, index=self.classes, columns=ok_cols) # weight similarities by log-frac of matching cells in column sim *= np.log1p(np.array((Q > 0).sum(axis=1)).T[0]) / np.log1p(len(df)) # also weight by fraction unique sim *= df.describe().T.reset_index().unique.astype("float") / len(df) return sim def predict_classes(self, df, threshold=0.01): """Predict KB classes for short, non-numeric columns""" sim = self.get_sim(df) if sim is None: return {} preds = pd.DataFrame({"class": sim.idxmax(), "score": sim.max()}) return preds[preds.score > threshold].to_dict("index") ## Foreign Keys class ForeignKeyTracker: def __init__(self, dataset_name): self.dataset_name = dataset_name self.class_value_fk = {} self.class_nfds = Counter() def split_fk(self, df, columns, fkcolnr, fkclass): value_fk = self.class_value_fk.setdefault(fkclass, {}) prefix = f"{fkclass}_{self.dataset_name}" fks = [ f"{prefix}~Row{value_fk.setdefault(v, len(value_fk))}" for v in df.iloc[:, fkcolnr] ] df = df.fillna("") df[fkcolnr] = fks columns = list(columns) columns[fkcolnr] = ("FK",) return df, columns def iter_fk_tables(self): for fkclass, value_fk in self.class_value_fk.items(): body = [ (f"{fkclass}_{self.dataset_name}~Row{i}", val) for val, i in value_fk.items() ] head = [("PK", "rdf-schema#label")] name = f"{fkclass}_{self.dataset_name}.json" yield takco.Table(head=head, body=body, _id=name) def decompose_fd_tables( self, df, keys, fkclass: str, header: pd.Series = None, exclude_cols=None ): for c in df.columns: if exclude_cols and (c in exclude_cols): continue if (c not in keys) and (len(set(df[c])) > 1): fd_df = df[[c] + list(keys)] # get filled unique rows filled_mask = fd_df[[c]].fillna(False).applymap(bool).any(axis=1) filled_mask &= fd_df[list(keys)].fillna(False).applymap(bool).all(axis=1) fd_df = fd_df[filled_mask].drop_duplicates(ignore_index=True) if header is not None: head = list(zip(*header[[c] + list(keys)])) else: head = list(zip(*fd_df.columns)) # Make name based on fkclass count nfd = self.class_nfds[fkclass] _id = f"{fkclass}_{self.dataset_name}_fd_{nfd}.json" self.class_nfds[fkclass] += 1 yield takco.Table(head=head, body=fd_df.values, _id=_id) ## Matching and stitching class TfidfMatcher: curr = r"(?:\$|kr|\€|usd|chf|\£|\¥|\₹|s\$|hk\$|nt\$|tl|р|aed)" re_money = re.compile(f"(?:{curr}[\d\s,\.]+)|(?:[\d\s,\.]+{curr})|free|gratis") def __init__(self, name=None, num_threshold=0.5, **kwargs): self.num_threshold = num_threshold kwargs["analyzer"] = self.__class__._analyzer self.tfidf_kwargs = kwargs self.name = name or self.__class__.__name__ @staticmethod def iter_text(tabid_df, num_threshold=0.5): for tabid, df in progress(tabid_df.items(), desc="Getting column text"): columns = list(df.columns) numeric_cis = set(guess_numeric_cols(df, threshold=num_threshold)) date_cis = set(guess_date_cols(df, threshold=num_threshold)) literal_cis = numeric_cis | date_cis context_cis = set(get_context_headers(columns)) singleton_cis = set(get_singleton_cols(df)) longtext_cis = set(get_longtext_cols(df)) for colnr, c in enumerate(df): text = [] # Only cluster non-numeric, short, non-singleton-context columns bad_colnrs = literal_cis | longtext_cis | (singleton_cis & context_cis) if colnr not in bad_colnrs: text = df.iloc[:, colnr] yield tabid, colnr, text @classmethod def _analyzer_tokens(cls, value): value = cls.re_money.sub(" $MONEY$ ", value) value = re.sub("\d", "$", value) yield from value.split() @classmethod def _analyzer(cls, values): return [t for v in values if v for t in cls._analyzer_tokens(v) if t] def _get_index_and_features(self, tabid_df, tabid_and_colnr_to_colid): from sklearn.feature_extraction.text import TfidfVectorizer tabids, colnrs, texts = zip( *self.iter_text(tabid_df, num_threshold=self.num_threshold) ) colids = [tabid_and_colnr_to_colid[tc] for tc in zip(tabids, colnrs)] index = pd.MultiIndex.from_tuples(zip(colids, tabids)) texts = progress(texts, desc="Extracting features") D = TfidfVectorizer(**self.tfidf_kwargs).fit_transform(texts) return index, D def match(self, tabid_df, tabid_and_colnr_to_colid): index, D = self._get_index_and_features(tabid_df, tabid_and_colnr_to_colid) log.debug("Got %s column features. Calculating similarities...", D.shape) simmat = pd.DataFrame(D.dot(D.T).todense(), index=index, columns=index) simseries = simmat.stack().stack() simseries.index.names = ("ci1", "ti1", "ti2", "ci2") return simseries.rename(self.name) class ExactHeadMatcher: def __init__(self, name=None, include_context=True): self.include_context = include_context self.name = name or self.__class__.__name__ def match(self, tabid_df, tabid_and_colnr_to_colid): D = pd.DataFrame( [ (ti, ci, " ".join(tabid_df[ti].columns[cn])) for (ti, cn), ci in tabid_and_colnr_to_colid.items() for context in [set(get_context_headers(tabid_df[ti].columns))] if self.include_context or (cn not in context) ], columns=["ti", "ci", "h"], ) hsim = D.merge(D, on="h", suffixes=("1", "2")).set_index( ["ci1", "ti1", "ti2", "ci2"] ) return hsim.assign(h=1).h.rename(self.name) class KBClassMatcher: def __init__(self, kb, name=None, include_context=True, pred_max_threshold = 0.5): self.kb = kb self.include_context = include_context self.name = name or self.__class__.__name__ self.pred_max_threshold = pred_max_threshold def match(self, tabid_df, tabid_and_colnr_to_colid): tabid_fkpreds = {} for tabid, df in progress(tabid_df.items(), f'Getting {self.name} candidates'): pred = self.kb.get_sim(df).agg(['idxmax', 'max']).T pred['max'] /= pred['max'].max() pred = pred[ pred['max'] > self.pred_max_threshold ] tabid_fkpreds[tabid] = pred.values # tabid_fkpreds[tabid] = pred.to_dict(orient='index') # fkclass_candidates = [] # for tabid, fkpreds in tabid_fkpreds.items(): # context = set(get_context_headers(df.columns)) # for cn, fkpred in fkpreds.items(): # fkclass, score = fkpred['idxmax'], fkpred['max'] # if self.include_context or (cn not in context): # ci = tabid_and_colnr_to_colid.get((tabid, cn)) # if ci is not None: # cands = (tabid, ci, fkclass, score) # fkclass_candidates.append( cands ) fkclass_candidates = [] for (ti, cn), ci in tabid_and_colnr_to_colid.items(): if ti in tabid_fkpreds: context = set(get_context_headers(tabid_df[ti].columns)) if self.include_context or (cn not in context): for fkclass, score in tabid_fkpreds.get(tabid, []): cands = (ti, ci, fkclass, score) fkclass_candidates.append( cands ) D =
pd.DataFrame(fkclass_candidates, columns=["ti", "ci", "fkclass", "score"])
pandas.DataFrame
# # Copyright (C) 2019 Databricks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from distutils.version import LooseVersion import inspect import numpy as np import pandas as pd import pyspark import databricks.koalas as ks from databricks.koalas.exceptions import PandasNotImplementedError from databricks.koalas.missing.indexes import MissingPandasLikeIndex, MissingPandasLikeMultiIndex from databricks.koalas.testing.utils import ReusedSQLTestCase, TestUtils class IndexesTest(ReusedSQLTestCase, TestUtils): @property def pdf(self): return pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [4, 5, 6, 3, 2, 1, 0, 0, 0],}, index=[0, 1, 3, 5, 6, 8, 9, 9, 9], ) @property def kdf(self): return ks.from_pandas(self.pdf) def test_index(self): for pdf in [ pd.DataFrame(np.random.randn(10, 5), index=list("abcdefghij")), pd.DataFrame( np.random.randn(10, 5), index=pd.date_range("2011-01-01", freq="D", periods=10) ), pd.DataFrame(np.random.randn(10, 5), columns=list("abcde")).set_index(["a", "b"]), ]: kdf = ks.from_pandas(pdf) self.assert_eq(kdf.index, pdf.index) def test_index_getattr(self): kidx = self.kdf.index item = "databricks" expected_error_message = "'Index' object has no attribute '{}'".format(item) with self.assertRaisesRegex(AttributeError, expected_error_message): kidx.__getattr__(item) def test_multi_index_getattr(self): arrays = [[1, 1, 2, 2], ["red", "blue", "red", "blue"]] idx = pd.MultiIndex.from_arrays(arrays, names=("number", "color")) pdf = pd.DataFrame(np.random.randn(4, 5), idx) kdf = ks.from_pandas(pdf) kidx = kdf.index item = "databricks" expected_error_message = "'MultiIndex' object has no attribute '{}'".format(item) with self.assertRaisesRegex(AttributeError, expected_error_message): kidx.__getattr__(item) def test_to_series(self): pidx = self.pdf.index kidx = self.kdf.index self.assert_eq(kidx.to_series(), pidx.to_series()) self.assert_eq(repr(kidx.to_series(name="a")), repr(pidx.to_series(name="a"))) # With name pidx.name = "Koalas" kidx.name = "Koalas" self.assert_eq(repr(kidx.to_series()), repr(pidx.to_series())) self.assert_eq(repr(kidx.to_series(name=("x", "a"))), repr(pidx.to_series(name=("x", "a")))) # With tupled name pidx.name = ("x", "a") kidx.name = ("x", "a") self.assert_eq(repr(kidx.to_series()), repr(pidx.to_series())) self.assert_eq(repr(kidx.to_series(name="a")), repr(pidx.to_series(name="a"))) self.assert_eq((kidx + 1).to_series(), (pidx + 1).to_series()) pidx = self.pdf.set_index("b", append=True).index kidx = self.kdf.set_index("b", append=True).index with self.sql_conf({"spark.sql.execution.arrow.enabled": False}): self.assert_eq(kidx.to_series(), pidx.to_series()) self.assert_eq(kidx.to_series(name="a"), pidx.to_series(name="a")) def test_to_frame(self): pidx = self.pdf.index kidx = self.kdf.index self.assert_eq(repr(kidx.to_frame()), repr(pidx.to_frame())) self.assert_eq(repr(kidx.to_frame(index=False)), repr(pidx.to_frame(index=False))) pidx.name = "a" kidx.name = "a" self.assert_eq(repr(kidx.to_frame()), repr(pidx.to_frame())) self.assert_eq(repr(kidx.to_frame(index=False)), repr(pidx.to_frame(index=False))) if LooseVersion(pd.__version__) >= LooseVersion("0.24"): # The `name` argument is added in pandas 0.24. self.assert_eq(repr(kidx.to_frame(name="x")), repr(pidx.to_frame(name="x"))) self.assert_eq( repr(kidx.to_frame(index=False, name="x")), repr(pidx.to_frame(index=False, name="x")), ) pidx = self.pdf.set_index("b", append=True).index kidx = self.kdf.set_index("b", append=True).index self.assert_eq(repr(kidx.to_frame()), repr(pidx.to_frame())) self.assert_eq(repr(kidx.to_frame(index=False)), repr(pidx.to_frame(index=False))) if LooseVersion(pd.__version__) >= LooseVersion("0.24"): # The `name` argument is added in pandas 0.24. self.assert_eq( repr(kidx.to_frame(name=["x", "y"])), repr(pidx.to_frame(name=["x", "y"])) ) self.assert_eq( repr(kidx.to_frame(index=False, name=["x", "y"])), repr(pidx.to_frame(index=False, name=["x", "y"])), ) def test_index_names(self): kdf = self.kdf self.assertIsNone(kdf.index.name) idx = pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], name="x") pdf = pd.DataFrame(np.random.randn(10, 5), index=idx, columns=list("abcde")) kdf = ks.from_pandas(pdf) pser = pdf.a kser = kdf.a self.assertEqual(kdf.index.name, pdf.index.name) self.assertEqual(kdf.index.names, pdf.index.names) pidx = pdf.index kidx = kdf.index pidx.name = "renamed" kidx.name = "renamed" self.assertEqual(kidx.name, pidx.name) self.assertEqual(kidx.names, pidx.names) self.assert_eq(kidx, pidx) self.assertEqual(kdf.index.name, pdf.index.name) self.assertEqual(kdf.index.names, pdf.index.names) self.assertEqual(kser.index.names, pser.index.names) pidx.name = None kidx.name = None self.assertEqual(kidx.name, pidx.name) self.assertEqual(kidx.names, pidx.names) self.assert_eq(kidx, pidx) self.assertEqual(kdf.index.name, pdf.index.name) self.assertEqual(kdf.index.names, pdf.index.names) self.assertEqual(kser.index.names, pser.index.names) with self.assertRaisesRegex(ValueError, "Names must be a list-like"): kidx.names = "hi" expected_error_message = "Length of new names must be {}, got {}".format( len(kdf._internal.index_map), len(["0", "1"]) ) with self.assertRaisesRegex(ValueError, expected_error_message): kidx.names = ["0", "1"] def test_multi_index_names(self): arrays = [[1, 1, 2, 2], ["red", "blue", "red", "blue"]] idx = pd.MultiIndex.from_arrays(arrays, names=("number", "color")) pdf = pd.DataFrame(np.random.randn(4, 5), idx) kdf = ks.from_pandas(pdf) self.assertEqual(kdf.index.names, pdf.index.names) pidx = pdf.index kidx = kdf.index pidx.names = ["renamed_number", "renamed_color"] kidx.names = ["renamed_number", "renamed_color"] self.assertEqual(kidx.names, pidx.names) pidx.names = ["renamed_number", None] kidx.names = ["renamed_number", None] self.assertEqual(kidx.names, pidx.names) if LooseVersion(pyspark.__version__) < LooseVersion("2.4"): # PySpark < 2.4 does not support struct type with arrow enabled. with self.sql_conf({"spark.sql.execution.arrow.enabled": False}): self.assert_eq(kidx, pidx) else: self.assert_eq(kidx, pidx) with self.assertRaises(PandasNotImplementedError): kidx.name with self.assertRaises(PandasNotImplementedError): kidx.name = "renamed" def test_index_rename(self): pdf = pd.DataFrame( np.random.randn(10, 5), index=pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], name="x") ) kdf = ks.from_pandas(pdf) pidx = pdf.index kidx = kdf.index self.assert_eq(kidx.rename("y"), pidx.rename("y")) self.assert_eq(kdf.index.names, pdf.index.names) kidx.rename("z", inplace=True) pidx.rename("z", inplace=True) self.assert_eq(kidx, pidx) self.assert_eq(kdf.index.names, pdf.index.names) self.assert_eq(kidx.rename(None), pidx.rename(None)) self.assert_eq(kdf.index.names, pdf.index.names) def test_multi_index_rename(self): arrays = [[1, 1, 2, 2], ["red", "blue", "red", "blue"]] idx = pd.MultiIndex.from_arrays(arrays, names=("number", "color")) pdf = pd.DataFrame(np.random.randn(4, 5), idx) kdf = ks.from_pandas(pdf) pmidx = pdf.index kmidx = kdf.index self.assert_eq(kmidx.rename(["n", "c"]), pmidx.rename(["n", "c"])) self.assert_eq(kdf.index.names, pdf.index.names) kmidx.rename(["num", "col"], inplace=True) pmidx.rename(["num", "col"], inplace=True) self.assert_eq(kmidx, pmidx) self.assert_eq(kdf.index.names, pdf.index.names) self.assert_eq(kmidx.rename([None, None]), pmidx.rename([None, None])) self.assert_eq(kdf.index.names, pdf.index.names) self.assertRaises(TypeError, lambda: kmidx.rename("number")) self.assertRaises(ValueError, lambda: kmidx.rename(["number"])) def test_multi_index_levshape(self): pidx = pd.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2)]) kidx = ks.from_pandas(pidx) self.assertEqual(pidx.levshape, kidx.levshape) def test_index_unique(self): kidx = self.kdf.index # here the output is different than pandas in terms of order expected = [0, 1, 3, 5, 6, 8, 9] self.assert_eq(expected, sorted(kidx.unique().to_pandas())) self.assert_eq(expected, sorted(kidx.unique(level=0).to_pandas())) expected = [1, 2, 4, 6, 7, 9, 10] self.assert_eq(expected, sorted((kidx + 1).unique().to_pandas())) with self.assertRaisesRegex(IndexError, "Too many levels*"): kidx.unique(level=1) with self.assertRaisesRegex(KeyError, "Requested level (hi)*"): kidx.unique(level="hi") def test_multi_index_copy(self): arrays = [[1, 1, 2, 2], ["red", "blue", "red", "blue"]] idx = pd.MultiIndex.from_arrays(arrays, names=("number", "color")) pdf = pd.DataFrame(np.random.randn(4, 5), idx) kdf = ks.from_pandas(pdf) self.assert_eq(kdf.index.copy(), pdf.index.copy()) def test_drop_duplicates(self): pidx = pd.Index([4, 2, 4, 1, 4, 3]) kidx = ks.from_pandas(pidx) self.assert_eq(kidx.drop_duplicates().sort_values(), pidx.drop_duplicates().sort_values()) self.assert_eq( (kidx + 1).drop_duplicates().sort_values(), (pidx + 1).drop_duplicates().sort_values() ) def test_dropna(self): pidx = pd.Index([np.nan, 2, 4, 1, np.nan, 3]) kidx = ks.from_pandas(pidx) self.assert_eq(kidx.dropna(), pidx.dropna()) self.assert_eq((kidx + 1).dropna(), (pidx + 1).dropna()) def test_index_symmetric_difference(self): pidx1 = pd.Index([1, 2, 3, 4]) pidx2 = pd.Index([2, 3, 4, 5]) kidx1 = ks.from_pandas(pidx1) kidx2 = ks.from_pandas(pidx2) self.assert_eq( kidx1.symmetric_difference(kidx2).sort_values(), pidx1.symmetric_difference(pidx2).sort_values(), ) self.assert_eq( (kidx1 + 1).symmetric_difference(kidx2).sort_values(), (pidx1 + 1).symmetric_difference(pidx2).sort_values(), ) pmidx1 = pd.MultiIndex( [["lama", "cow", "falcon"], ["speed", "weight", "length"]], [[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 0, 0, 0, 1, 2, 0, 1, 2]], ) pmidx2 = pd.MultiIndex( [["koalas", "cow", "falcon"], ["speed", "weight", "length"]], [[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 0, 0, 0, 1, 2, 0, 1, 2]], ) kmidx1 = ks.from_pandas(pmidx1) kmidx2 = ks.from_pandas(pmidx2) self.assert_eq( kmidx1.symmetric_difference(kmidx2).sort_values(), pmidx1.symmetric_difference(pmidx2).sort_values(), ) idx = ks.Index(["a", "b", "c"]) midx = ks.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) with self.assertRaisesRegex(NotImplementedError, "Doesn't support*"): idx.symmetric_difference(midx) def test_multi_index_symmetric_difference(self): idx = ks.Index(["a", "b", "c"]) midx = ks.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) midx_ = ks.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) self.assert_eq( midx.symmetric_difference(midx_), midx.to_pandas().symmetric_difference(midx_.to_pandas()), ) with self.assertRaisesRegex(NotImplementedError, "Doesn't support*"): midx.symmetric_difference(idx) def test_missing(self): kdf = ks.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) # Index functions missing_functions = inspect.getmembers(MissingPandasLikeIndex, inspect.isfunction) unsupported_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "unsupported_function" ] for name in unsupported_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*Index.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.set_index("a").index, name)() deprecated_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "deprecated_function" ] for name in deprecated_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*Index.*{}.*is deprecated".format(name) ): getattr(kdf.set_index("a").index, name)() # MultiIndex functions missing_functions = inspect.getmembers(MissingPandasLikeMultiIndex, inspect.isfunction) unsupported_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "unsupported_function" ] for name in unsupported_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*Index.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.set_index(["a", "b"]).index, name)() deprecated_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "deprecated_function" ] for name in deprecated_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*Index.*{}.*is deprecated".format(name) ): getattr(kdf.set_index(["a", "b"]).index, name)() # Index properties missing_properties = inspect.getmembers( MissingPandasLikeIndex, lambda o: isinstance(o, property) ) unsupported_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "unsupported_property" ] for name in unsupported_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*Index.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.set_index("a").index, name) deprecated_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "deprecated_property" ] for name in deprecated_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*Index.*{}.*is deprecated".format(name) ): getattr(kdf.set_index("a").index, name) # MultiIndex properties missing_properties = inspect.getmembers( MissingPandasLikeMultiIndex, lambda o: isinstance(o, property) ) unsupported_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "unsupported_property" ] for name in unsupported_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*Index.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.set_index(["a", "b"]).index, name) deprecated_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "deprecated_property" ] for name in deprecated_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*Index.*{}.*is deprecated".format(name) ): getattr(kdf.set_index(["a", "b"]).index, name) def test_index_has_duplicates(self): indexes = [("a", "b", "c"), ("a", "a", "c"), (1, 3, 3), (1, 2, 3)] names = [None, "ks", "ks", None] has_dup = [False, True, True, False] for idx, name, expected in zip(indexes, names, has_dup): pdf = pd.DataFrame({"a": [1, 2, 3]}, index=pd.Index(idx, name=name)) kdf = ks.from_pandas(pdf) self.assertEqual(kdf.index.has_duplicates, expected) def test_multiindex_has_duplicates(self): indexes = [ [list("abc"), list("edf")], [list("aac"), list("edf")], [list("aac"), list("eef")], [[1, 4, 4], [4, 6, 6]], ] has_dup = [False, False, True, True] for idx, expected in zip(indexes, has_dup): pdf = pd.DataFrame({"a": [1, 2, 3]}, index=idx) kdf = ks.from_pandas(pdf) self.assertEqual(kdf.index.has_duplicates, expected) def test_multi_index_not_supported(self): kdf = ks.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) with self.assertRaisesRegex(TypeError, "cannot perform any with this index type"): kdf.set_index(["a", "b"]).index.any() with self.assertRaisesRegex(TypeError, "cannot perform all with this index type"): kdf.set_index(["a", "b"]).index.all() def test_index_nlevels(self): pdf = pd.DataFrame({"a": [1, 2, 3]}, index=pd.Index(["a", "b", "c"])) kdf = ks.from_pandas(pdf) self.assertEqual(kdf.index.nlevels, 1) def test_multiindex_nlevel(self): pdf = pd.DataFrame({"a": [1, 2, 3]}, index=[list("abc"), list("def")]) kdf = ks.from_pandas(pdf) self.assertEqual(kdf.index.nlevels, 2) def test_multiindex_from_arrays(self): arrays = [["a", "a", "b", "b"], ["red", "blue", "red", "blue"]] pidx = pd.MultiIndex.from_arrays(arrays) kidx = ks.MultiIndex.from_arrays(arrays) self.assert_eq(pidx, kidx) def test_multiindex_swaplevel(self): pidx = pd.MultiIndex.from_arrays([["a", "b"], [1, 2]]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.swaplevel(0, 1), kidx.swaplevel(0, 1)) pidx = pd.MultiIndex.from_arrays([["a", "b"], [1, 2]], names=["word", "number"]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.swaplevel(0, 1), kidx.swaplevel(0, 1)) pidx = pd.MultiIndex.from_arrays([["a", "b"], [1, 2]], names=["word", None]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.swaplevel(-2, -1), kidx.swaplevel(-2, -1)) self.assert_eq(pidx.swaplevel(0, 1), kidx.swaplevel(0, 1)) self.assert_eq(pidx.swaplevel("word", 1), kidx.swaplevel("word", 1)) with self.assertRaisesRegex(IndexError, "Too many levels: Index"): kidx.swaplevel(-3, "word") with self.assertRaisesRegex(IndexError, "Too many levels: Index"): kidx.swaplevel(0, 2) with self.assertRaisesRegex(IndexError, "Too many levels: Index"): kidx.swaplevel(0, -3) with self.assertRaisesRegex(KeyError, "Level work not found"): kidx.swaplevel(0, "work") def test_multiindex_droplevel(self): pidx = pd.MultiIndex.from_tuples( [("a", "x", 1), ("b", "y", 2)], names=["level1", "level2", "level3"] ) kidx = ks.from_pandas(pidx) with self.assertRaisesRegex(IndexError, "Too many levels: Index has only 3 levels, not 5"): kidx.droplevel(4) with self.assertRaisesRegex(KeyError, "Level level4 not found"): kidx.droplevel("level4") with self.assertRaisesRegex(KeyError, "Level.*level3.*level4.*not found"): kidx.droplevel([("level3", "level4")]) with self.assertRaisesRegex( ValueError, "Cannot remove 4 levels from an index with 3 levels: at least one " "level must be left.", ): kidx.droplevel([0, 0, 1, 2]) with self.assertRaisesRegex( ValueError, "Cannot remove 3 levels from an index with 3 levels: at least one " "level must be left.", ): kidx.droplevel([0, 1, 2]) self.assert_eq(pidx.droplevel(0), kidx.droplevel(0)) self.assert_eq(pidx.droplevel([0, 1]), kidx.droplevel([0, 1])) self.assert_eq(pidx.droplevel([0, "level2"]), kidx.droplevel([0, "level2"])) def test_index_fillna(self): pidx = pd.Index([1, 2, None]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.fillna(0), kidx.fillna(0)) self.assert_eq(pidx.rename("name").fillna(0), kidx.rename("name").fillna(0)) with self.assertRaisesRegex(TypeError, "Unsupported type <class 'list'>"): kidx.fillna([1, 2]) def test_index_drop(self): pidx = pd.Index([1, 2, 3]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.drop(1), kidx.drop(1)) self.assert_eq(pidx.drop([1, 2]), kidx.drop([1, 2])) def test_multiindex_drop(self): pidx = pd.MultiIndex.from_tuples( [("a", "x"), ("b", "y"), ("c", "z")], names=["level1", "level2"] ) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.drop("a"), kidx.drop("a")) self.assert_eq(pidx.drop(["a", "b"]), kidx.drop(["a", "b"])) self.assert_eq(pidx.drop(["x", "y"], level=1), kidx.drop(["x", "y"], level=1)) self.assert_eq(pidx.drop(["x", "y"], level="level2"), kidx.drop(["x", "y"], level="level2")) pidx.names = ["lv1", "lv2"] kidx.names = ["lv1", "lv2"] self.assert_eq(pidx.drop(["x", "y"], level="lv2"), kidx.drop(["x", "y"], level="lv2")) self.assertRaises(IndexError, lambda: kidx.drop(["a", "b"], level=2)) self.assertRaises(KeyError, lambda: kidx.drop(["a", "b"], level="level")) kidx.names = ["lv", "lv"] self.assertRaises(ValueError, lambda: kidx.drop(["x", "y"], level="lv")) def test_sort_values(self): pidx = pd.Index([-10, -100, 200, 100]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.sort_values(), kidx.sort_values()) self.assert_eq(pidx.sort_values(ascending=False), kidx.sort_values(ascending=False)) pidx.name = "koalas" kidx.name = "koalas" self.assert_eq(pidx.sort_values(), kidx.sort_values()) self.assert_eq(pidx.sort_values(ascending=False), kidx.sort_values(ascending=False)) pidx =
pd.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)])
pandas.MultiIndex.from_tuples
from __future__ import annotations import numpy as np import pandas as pd from lamarck.utils import objective_ascending_map def rank_formatter(name): def deco(rank_func): def wrapper(obj, *a, **kw): return rank_func(obj, *a, **kw).astype(int).rename(name) return wrapper return deco class RankCalculator: """ Fitness calculations based on the simulation results. """ results: pd.DataFrame out: list | str def __init__(self, results_df: pd.DataFrame = pd.DataFrame(), out: list | str = ''): self.update(results_df=results_df, out=out) def update(self, results_df: pd.DataFrame = None, out: list | str = None) -> None: if results_df is not None: self.results = results_df.copy() if out is not None: self.out = out @rank_formatter('Rank') def single(self, objective: str) -> pd.Series: """ Ranks one `output` to optimize according to a defined `objective`. """ return self.results[self.out]\ .rank(method='min', ascending=objective_ascending_map[objective]) @rank_formatter('Rank') def ranked(self, objectives: list[str]) -> pd.Series: """ Get the Gene Ranks based on a set of `outputs` and `objectives` in order of priority. """ ranks = [ self.results[priority].rank(method='min', ascending=objective_ascending_map[objective]) for priority, objective in zip(self.out, objectives)] rank = ranks[-1] for r in ranks[::-1]: order = int(np.log10(r.max())) + 1 factor = 10**order rscore = r * factor + rank rank = rscore.rank(method='min') return rank @rank_formatter('Rank') def pareto(self, objectives: list[str]) -> pd.Series: """ Get the Pareto Ranks based on the `pareto fronts` and the `crowds` Series. """ fronts = self.pareto_fronts(objectives) crowds = self.pareto_crowds(fronts) r1 = fronts.rank(method='dense', ascending=True) r2 = crowds.rank(method='dense', ascending=False) order1 = int(np.log10(r2.max())) + 1 factor1 = 10**order1 return (r1 * factor1 + r2).rank(method='min') def pareto_fronts(self, objectives: list[str]) -> pd.Series: """ Get the Pareto Fronts. """ norm_df = normalize_df_by_objective(self.results, self.out, objectives) dominators = get_dominators(norm_df) return get_fronts(dominators).rename('Front') def pareto_crowds(self, fronts: pd.Series) -> pd.Series: """ Get the Pareto Crowds. """ frontvals = sorted(fronts.unique()) crowds = pd.Series(np.zeros(len(self.results[self.out])), index=self.results.index) for front in frontvals: f = fronts == front crowds[f] = get_crowd(self.results[f]) return crowds.rename('Crowd') def normalize_series_by_objective(series, objective): maxval = series.max() minval = series.min() data_range = maxval - minval abs_series = series - minval if objective == 'max': norm_series = abs_series/data_range elif objective == 'min': norm_series = 1 - abs_series/data_range return norm_series def normalize_df_by_objective(df, outputs, objectives): data_dict = { output: normalize_series_by_objective(df[output], objective) for output, objective in zip(outputs, objectives) } return
pd.DataFrame(data_dict, index=df.index)
pandas.DataFrame
#!/usr/bin/env python from pandas.io.formats.format import SeriesFormatter from Bio.SeqUtils import seq1 from Bio import SeqIO import pandas as pd import argparse from pathlib import Path import numpy as np from summarise_snpeff import parse_vcf, write_vcf import csv import re from functools import reduce from bindingcalculator import BindingCalculator from itertools import takewhile def get_contextual_bindingcalc_values(residues_list,binding_calculator, option, bindingcalc_data = None): if option == "res_ret_esc": residues_df = residues_list.copy() res_ret_esc_df = binding_calculator.escape_per_site(residues_df.loc[(residues_df["Gene_Name"] == "S") & (residues_df["respos"] >= 331) & (residues_df["respos"] <= 531) & (residues_df["respos"].isin(bindingcalc_data["site"].unique())), "respos"]) res_ret_esc_df["Gene_Name"] = "S" res_ret_esc_df.rename(columns = {"retained_escape" : "BEC_RES"}, inplace = True) residues_df = residues_df.merge(res_ret_esc_df[["site", "BEC_RES", "Gene_Name"]], left_on = ["Gene_Name", "respos"], right_on = ["Gene_Name", "site"],how = "left") residues_df.drop(axis = 1 , columns = ["site"], inplace = True) return(residues_df) else: ab_escape_fraction = 1 - binding_calculator.binding_retained(residues_list) return(ab_escape_fraction) def summarise_score(summary_df, metric): #assumes grouping by sample_id and summarising for each sample summary_df_info = summary_df.groupby("sample_id").agg({metric: ['sum', 'min', 'max']}) summary_df_info.columns = summary_df_info.columns.droplevel(0) summary_df_info = summary_df_info.reset_index() summary_df_info = summary_df_info.rename_axis(None, axis=1) summary_df_mins = pd.merge(left = summary_df, right = summary_df_info[["sample_id", "min"]], left_on = ["sample_id", metric], right_on = ["sample_id", "min"]) summary_df_mins[metric + "_min"] = summary_df_mins["residues"] + ":" + summary_df_mins[metric].fillna("").astype(str) summary_df_mins = summary_df_mins[["sample_id",metric + "_min"]].groupby("sample_id").agg({metric + "_min" : lambda x : list(x)}) summary_df_mins[metric + "_min"] = summary_df_mins[metric + "_min"].str.join(",") summary_df_max = pd.merge(left = summary_df, right = summary_df_info[["sample_id", "max"]], left_on = ["sample_id", metric], right_on = ["sample_id", "max"]) summary_df_max[metric + "_max"] = summary_df_max["residues"] + ":" + summary_df_max[metric].fillna("").astype(str) summary_df_max = summary_df_max[["sample_id",metric + "_max"]].groupby("sample_id").agg({metric + "_max" : lambda x : list(x)}) summary_df_max[metric + "_max"] = summary_df_max[metric + "_max"].str.join(",") summary_df_sum = summary_df.groupby("sample_id").agg({metric: sum}) summary_df_sum.columns = [metric + "_sum"] summary_df_final = summary_df_sum.merge(summary_df_max,on='sample_id').merge(summary_df_mins,on='sample_id') return(summary_df_final) def sample_header_format(item,sample,vcf,filtered,vcf_loc): if vcf == True: if item.startswith("##bcftools_mergeCommand=merge"): if filtered: item = re.sub(r'(?<=merged\.vcf )[a-zA-Z0-9_\. \/]+(?=;)', vcf_loc, item) else: item = re.sub(r'(?<=merged\.vcf )[a-zA-Z0-9_\. \/]+(?=;)', vcf_loc, item) else: if item.startswith("##reference="): item = re.sub(r'(?<=muscle\/)[a-zA-Z0-9_\.\/]+(?=\.fasta)', f'{sample}', item) if item.startswith("##source="): item = re.sub(r'(?<=muscle\/)[a-zA-Z0-9_\.]+(?=\.fasta)', f'{sample}', item) item = re.sub(r'(?<=fatovcf\/)[a-zA-Z0-9_\.]+(?=\.vcf)', f'{sample}', item) if item.startswith("##bcftools_mergeCommand=merge"): if filtered: item = re.sub(r'(?<=merged\.vcf )[a-zA-Z0-9_\. \/]+(?=;)', vcf_loc, item) else: item = re.sub(r'(?<=merged\.vcf )[a-zA-Z0-9_\. \/]+(?=;)', vcf_loc, item) return(item) def main(): parser = argparse.ArgumentParser(description='') parser.add_argument('input_vcf', metavar='anno_concat.tsv', type=str, help='Concatenated SPEAR anno file') parser.add_argument('output_dir', metavar='spear_vcfs/', type=str, help='Destination dir for summary tsv files') parser.add_argument('data_dir', metavar='data/', type=str, help='Data dir for binding calculator data files') parser.add_argument('input_header', metavar='merged.vcf', type=str, help='Merged VCF file for header retrieval') parser.add_argument('sample_list', metavar='', nargs="+", help='list of inputs to detect no variant samples ') parser.add_argument('--is_vcf_input', default="False", type=str, help = "Set input file type to VCF") parser.add_argument('--is_filtered', default="False", type=str, help = "Specify files come from filtered directory") args = parser.parse_args() Path(f'{args.output_dir}/per_sample_annotation').mkdir(parents=True, exist_ok=True) if args.is_vcf_input == True: if args.is_filtered: infiles = f'{args.output_dir}/intermediate_output/masked/*.masked.vcf' else: infiles = f'{args.output_dir}/intermediate_output/indels/*.indels.vcf' else: infiles = f'{args.output_dir}/intermediate_output/indels/*.indels.vcf' with open(args.input_header, 'r') as fobj: headiter = takewhile(lambda s: s.startswith('#'), fobj) merged_header =
pd.Series(headiter)
pandas.Series
import os import logging import json import collections import yaml import pandas as pd import graphviz as gv # import numpy as np # from matplotlib import pyplot as plt from kinemparse import assembly as lib_asm from mathtools import utils from seqtools import fstutils_openfst as fstutils import pywrapfst as libfst logger = logging.getLogger(__name__) def convert_labels(labels): new_labels = tuple(gen_labels(labels)) def gen_filled_labels(labels): for start, end, action, arg1 in labels: if arg1.startswith('leg'): yield start, end, action, arg1, 'table top 1' elif arg1.startswith('shelf'): yield start, end, action, arg1, 'leg 1' yield start, end, action, arg1, 'leg 2' yield start, end, action, arg1, 'leg 3' yield start, end, action, arg1, 'leg 4' elif arg1.startswith('side panel'): all_args = tuple(label[3] for label in labels) if 'back panel 1' in all_args and 'front panel 1' not in all_args: yield start, end, action, arg1, 'front panel 1' elif 'front panel 1' in all_args and 'back panel 1' not in all_args: yield start, end, action, arg1, 'back panel 1' else: warn_str = f"Can't guess arg2 for side panel: {all_args}" raise AssertionError(warn_str) elif arg1.startswith('bottom panel'): yield start, end, action, arg1, 'side panel 1' yield start, end, action, arg1, 'side panel 2' yield start, end, action, arg1, 'front panel 1' elif arg1.startswith('pin'): yield start, end, action, arg1, '??? FIXME' elif arg1.startswith('front panel') or arg1.startswith('back panel'): yield start, end, action, arg1, 'side panel 1' yield start, end, action, arg1, 'side panel 2' yield start, end, action, arg1, 'bottom panel 1' new_new_labels = pd.DataFrame( tuple(gen_filled_labels(new_labels)), columns=('start', 'end', 'action', 'arg1', 'arg2') ) return new_new_labels def gen_labels(labels): event_starts = {} def get_event_bounds(part_name, start_index, end_index): if part_name in event_starts: start_index = event_starts[part_name] del event_starts[part_name] else: warn_str = f" No start action for {part_name}" logger.warning(warn_str) start_index = start_index return (start_index, end_index) part_names = collections.defaultdict(list) def get_part_name(base_name): part_num = len(part_names[base_name]) + 1 part_name = f"{base_name} {part_num}" part_names[base_name].append(part_name) return part_name for row in labels.itertuples(index=False): label = row.label i_start = row.start i_end = row.end if label.startswith('pick up'): part_name = label.split('pick up ')[1] if part_name in event_starts: warn_str = f" Repeated pick up action: {label}" logger.warning(warn_str) event_starts[part_name] = i_start elif label.startswith('lay down'): part_name = label.split('lay down ')[1] if part_name not in event_starts: warn_str = f" No pick up action before {label}" logger.warning(warn_str) continue del event_starts[part_name] elif label == 'spin leg': base_name = 'leg' start_index, end_index = get_event_bounds(base_name, i_start, i_end) part_name = get_part_name(base_name) yield (start_index, end_index, 'attach', part_name) elif label == 'attach shelf to table': base_name = 'shelf' start_index, end_index = get_event_bounds(base_name, i_start, i_end) part_name = get_part_name(base_name) yield (start_index, end_index, 'attach', part_name) elif label.startswith('attach drawer'): base_name = label.split('attach drawer ')[1] start_index, end_index = get_event_bounds(base_name, i_start, i_end) part_name = get_part_name(base_name) yield (start_index, end_index, 'attach', part_name) elif label == 'attach drawer back panel': base_name = 'back panel' start_index, end_index = get_event_bounds(base_name, i_start, i_end) part_name = get_part_name(base_name) yield (start_index, end_index, 'attach', part_name) elif label == 'slide bottom of drawer': base_name = 'bottom panel' start_index, end_index = get_event_bounds(base_name, i_start, i_end) part_name = get_part_name(base_name) yield (start_index, end_index, 'attach', part_name) elif label == 'insert drawer pin': base_name = 'pin' start_index, end_index = get_event_bounds(base_name, i_start, i_end) part_name = get_part_name(base_name) logger.warning(' SKIPPING PIN-INSERTION ACTIONS') continue # yield (start_index, end_index, 'attach', part_name) def parse_assembly_actions(actions, kinem_vocab): def gen_segments(actions): prev_start = actions['start'][0] prev_end = actions['end'][0] prev_start_index = 0 for row in actions.itertuples(index=True): i = row.Index # label = row.label i_start = row.start i_end = row.end # arg1 = row.arg1 # arg2 = row.arg2 if i_start != prev_start or i_end != prev_end: yield prev_start_index, i - 1 prev_start = i_start prev_end = i_end prev_start_index = i else: yield prev_start_index, i def gen_kinem_labels(actions): state = lib_asm.Assembly() action_segs = tuple(gen_segments(actions)) for start, end in action_segs: segment = actions.loc[start:end] for row in segment.itertuples(index=False): # label = row.label # i_start = row.start # i_end = row.end arg1 = row.arg1 arg2 = row.arg2 parent = lib_asm.Link(arg1) child = lib_asm.Link(arg2) joint = lib_asm.Joint((arg1, arg2), 'rigid', arg1, arg2) state = state.add_joint( joint, parent, child, # directed=False, in_place=False ) joint = lib_asm.Joint((arg2, arg1), 'rigid', arg2, arg1) state = state.add_joint( joint, child, parent, # directed=False, in_place=False ) start_idx = actions.loc[start]['start'] end_idx = actions.loc[end]['end'] state_idx = utils.getIndex(state, kinem_vocab) yield start_idx, end_idx, state_idx kinem_labels = tuple(gen_kinem_labels(actions)) return pd.DataFrame(kinem_labels, columns=['start', 'end', 'state']) def make_goal_state(furn_name): if furn_name == 'Kallax_Shelf_Drawer': connections = ( ('side panel 1', 'front panel 1'), ('side panel 2', 'front panel 1'), ('bottom panel 1', 'front panel 1'), ('bottom panel 1', 'side panel 1'), ('bottom panel 1', 'side panel 2'), ('back panel 1', 'side panel 1'), ('back panel 1', 'side panel 2'), ('back panel 1', 'bottom panel 1'), ) elif furn_name == 'Lack_Coffee_Table': connections = ( ('leg 1', 'table top 1'), ('leg 2', 'table top 1'), ('leg 3', 'table top 1'), ('leg 4', 'table top 1'), ('shelf 1', 'leg 1'), ('shelf 1', 'leg 2'), ('shelf 1', 'leg 3'), ('shelf 1', 'leg 4') ) elif furn_name == 'Lack_TV_Bench': connections = ( ('leg 1', 'table top 1'), ('leg 2', 'table top 1'), ('leg 3', 'table top 1'), ('leg 4', 'table top 1'), ('shelf 1', 'leg 1'), ('shelf 1', 'leg 2'), ('shelf 1', 'leg 3'), ('shelf 1', 'leg 4') ) elif furn_name == 'Lack_Side_Table': connections = ( ('leg 1', 'table top 1'), ('leg 2', 'table top 1'), ('leg 3', 'table top 1'), ('leg 4', 'table top 1'), ) else: err_str = f"Unrecognized furniture name: {furn_name}" raise ValueError(err_str) goal_state = lib_asm.Assembly() for arg1, arg2 in connections: link1 = lib_asm.Link(arg1) link2 = lib_asm.Link(arg2) joint_12 = lib_asm.Joint((arg1, arg2), 'rigid', arg1, arg2) joint_21 = lib_asm.Joint((arg2, arg1), 'rigid', arg2, arg1) goal_state = goal_state.add_joint(joint_12, link1, link2, in_place=False) goal_state = goal_state.add_joint(joint_21, link2, link1, in_place=False) return goal_state def _convert_labels(labels): def ignore(label): ignore_prefixes = ( 'push', 'align', 'tighten', 'rotate', 'flip', 'position', 'pick up', 'lay down' ) for prefix in ignore_prefixes: if label.startswith(prefix): return True return False filtered_labels = tuple(label for label in labels if not ignore(label)) label_pairs = [] for cur_label, next_label in zip(filtered_labels[:-1], filtered_labels[1:]): if cur_label.startswith('pick up') and next_label.startswith('lay down'): pick_name = cur_label.split('pick up')[1] place_name = next_label.split('lay down')[1] if pick_name == place_name: continue else: logger.info(f"{pick_name} != {place_name}") label_pairs.append((cur_label, next_label)) if not any(label_pairs): return [] new_labels = (label_pairs[0][0],) + tuple(second for first, second in label_pairs) return new_labels def main(out_dir=None, data_dir=None, annotation_dir=None): out_dir = os.path.expanduser(out_dir) data_dir = os.path.expanduser(data_dir) annotation_dir = os.path.expanduser(annotation_dir) annotation_dir = os.path.join(annotation_dir, 'action_annotations') vocab_fn = os.path.join( data_dir, 'ANU_ikea_dataset', 'indexing_files', 'atomic_action_list.txt' ) with open(vocab_fn, 'rt') as file_: action_vocab = file_.read().split('\n') part_names = ( label.split('pick up ')[1] for label in action_vocab if label.startswith('pick up') ) new_action_vocab = tuple(f"{part}" for part in part_names) logger = utils.setupRootLogger(filename=os.path.join(out_dir, 'log.txt')) fig_dir = os.path.join(out_dir, 'figures') if not os.path.exists(fig_dir): os.makedirs(fig_dir) out_labels_dir = os.path.join(out_dir, 'labels') if not os.path.exists(out_labels_dir): os.makedirs(out_labels_dir) # gt_action = np.load(os.path.join(annotation_dir, 'gt_action.npy'), allow_pickle=True) with open(os.path.join(annotation_dir, 'gt_segments.json'), 'r') as _file: gt_segments = json.load(_file) ann_seqs = { seq_name: [ann for ann in ann_seq['annotation']] for seq_name, ann_seq in gt_segments['database'].items() } kinem_vocab = [lib_asm.Assembly()] all_label_index_seqs = collections.defaultdict(list) for seq_name, ann_seq in ann_seqs.items(): logger.info(f"Processing sequence {seq_name}...") furn_name, other_name = seq_name.split('/') goal_state = make_goal_state(furn_name) label_seq = tuple(ann['label'] for ann in ann_seq) segment_seq = tuple(ann['segment'] for ann in ann_seq) start_seq, end_seq = tuple(zip(*segment_seq)) df =
pd.DataFrame({'start': start_seq, 'end': end_seq, 'label': label_seq})
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[1]: import library.areamanager as areamanager import pandas as pd import json import time import collections import numpy as np import pickle import library.cat_utils as cat_utils import library.geo_utils as geo_utils from library.parallel_util import run_parallel from library.constants import geocat_constants,experiment_constants from tqdm import tqdm import math import sklearn import sklearn.neighbors SPLIT_YEAR=2017 earth_radius = 6371000/1000 # km in earth cities=['lasvegas','phoenix','charlotte','madison'] # cities=experiment_constants.CITIES #cities=['madison'] dict_alias_title,category_tree,dict_alias_depth=cat_utils.cat_structs("../../data/categories.json") undirected_category_tree=category_tree.to_undirected() def category_filter(categories): tmp_cat_list=list() if categories != None: for category in categories: try: if dict_alias_depth[dict_alias_title[category]] <= 2: tmp_cat_list.append(dict_alias_title[category]) except: pass tmp_cat_list=cat_utils.get_most_detailed_categories(tmp_cat_list,dict_alias_title,dict_alias_depth) return tmp_cat_list def category_normalization(categories): if categories != None: return categories else: return [] TRAIN_SIZE=experiment_constants.TRAIN_SIZE TEST_SIZE=1-TRAIN_SIZE # In[2]: fbusiness=open("../../data/business.json") poi_data = dict() start_time=time.time() for i, line in enumerate(fbusiness): # json to dict obj_json = json.loads(line) # add to the data collection if obj_json['categories'] != None: poi_data[obj_json['business_id']]={'latitude':obj_json['latitude'], 'longitude':obj_json['longitude'], 'categories':obj_json['categories'].split(', ')} else: poi_data[obj_json['business_id']]={'latitude':obj_json['latitude'], 'longitude':obj_json['longitude'], 'categories':obj_json['categories']} print(time.time()-start_time) # In[3]: areas=dict() for city in cities: areas[city]=areamanager.delimiter_area(city) # In[4]: cities_pid_in_area=dict() start_time=time.time() for city in cities: area=areas[city] pid_in_area=collections.defaultdict(bool) for poi_id in poi_data: if areamanager.poi_in_area(area,poi_data[poi_id]): pid_in_area[poi_id]=True cities_pid_in_area[city]=pid_in_area print(time.time()-start_time) # In[5]: fuser=open("../../data/user.json") user_friend = dict() user_data = dict() start_time=time.time() for i, line in enumerate(fuser): # json to dict obj_json = json.loads(line) # add to the data collection user_friend[obj_json['user_id']]=obj_json['friends'].split(', ') custom_obj = dict() for key, value in obj_json.items(): if key not in ['friends','elite','name','user_id']: custom_obj[key] = value user_data[obj_json['user_id']] = custom_obj print(time.time()-start_time) # In[6]: freview=open("../../data/review.json") cities_checkin_data=dict() for city in cities: cities_checkin_data[city]=list() start_time=time.time() for i, line in enumerate(freview): # json to dict obj_json = json.loads(line) for city in cities: if cities_pid_in_area[city][obj_json['business_id']]: # add to the data collection cities_checkin_data[city].append({'user_id':obj_json['user_id'], 'poi_id':obj_json['business_id'], 'date':obj_json['date']}) break if i % 500000 ==0: print(i) print(time.time()-start_time) ftip=open("../../data/tip.json") start_time=time.time() for i, line in enumerate(ftip): # json to dict obj_json = json.loads(line) for city in cities: if cities_pid_in_area[city][obj_json['business_id']]: # add to the data collection cities_checkin_data[city].append({'user_id':obj_json['user_id'], 'poi_id':obj_json['business_id'], 'date':obj_json['date']}) break if i % 500000 ==0: print(i) print(time.time()-start_time) # In[ ]: # df_checkin=pd.read_csv("../../data/checkin.csv") # df_checkin=df_checkin.set_index("user_id") # In[ ]: # city_area=areamanager.delimiter_area('madison') # df_checkin_city=areamanager.pois_in_area(city_area,df_checkin.reset_index()) # In[ ]: # i=0 # for idx,checkin in df_checkin.iterrows(): # # print(checkin.business_id) # if cities_pid_in_area['madison'][checkin.business_id]: # i+=1 # i # In[ ]: # print(len(df_checkin_city['business_id'].drop_duplicates())) # print(len(df_checkin_city['user_id'].drop_duplicates())) # print(len(df_checkin_city)) # In[7]: genoptions=['poi','neighbor','user','checkin','test','train' ,'user_data'] genoptions=['checkin', 'poi','neighbor', 'user','user_data' ] # In[ ]: for city in cities: print("CITY: %s" % (city)) # Pega os checkins da cidade checkin_data=cities_checkin_data[city] print("checkin_data size: %d"%(len(checkin_data))) # transforma em dataframe df_checkin=pd.DataFrame.from_dict(checkin_data) df_checkin.head(1) # Começa a parte de filtragrem df_diff_users_visited=df_checkin[['user_id','poi_id']].drop_duplicates().reset_index(drop=True).groupby('poi_id').count().reset_index().rename(columns={"user_id":"diffusersvisited"}) df_diff_users_visited=df_diff_users_visited[df_diff_users_visited['diffusersvisited']>=5] del df_diff_users_visited['diffusersvisited'] df_checkin=
pd.merge(df_checkin,df_diff_users_visited,on='poi_id',how='inner')
pandas.merge
#!/usr/bin/python #-*- coding: utf-8 -*- # >.>.>.>.>.>.>.>.>.>.>.>.>.>.>.>. # Licensed under the Apache License, Version 2.0 (the "License") # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # --- File Name: collect_results.py # --- Creation Date: 08-09-2020 # --- Last Modified: Tue 13 Oct 2020 23:36:17 AEDT # --- Author: <NAME> # .<.<.<.<.<.<.<.<.<.<.<.<.<.<.<.< """ Collect results. """ import os import json import numpy as np import argparse import pandas as pd from collections import OrderedDict METRICS_TEMPLATE = { 'beta_vae_sklearn': { "train_accuracy": None, "eval_accuracy": None }, 'dci': { "informativeness_train": None, "informativeness_test": None, "disentanglement": None, "completeness": None }, 'downstream_task_boosted_trees': {}, 'factor_vae_metric': { "train_accuracy": None, "eval_accuracy": None, # "num_active_dims": None # disentanglement_lib wrong implementation. }, 'mig': { "discrete_mig": None }, 'modularity_explicitness': { "modularity_score": None, "explicitness_score_train": None, "explicitness_score_test": None }, 'sap_score': { "SAP_score": None }, 'unsupervised': { "gaussian_total_correlation": None, "gaussian_wasserstein_correlation": None, "gaussian_wasserstein_correlation_norm": None, "mutual_info_score": None }, 'tpl': { "avg_tpl": None, "n_active_dims": None } } def get_mean_std_for_config(v_ls, target): ''' v_ls: [{'eval':0.8, ..}, {'eval': 0.7, ...}, ...] target: 'eval' ''' pure_ls = [] for item in v_ls: if item is not None: pure_ls.append(item[target]) return (None, None) if len(pure_ls) == 0 else (np.mean(pure_ls), np.std(pure_ls)) def count_samples(x): x = list(filter(None, x)) return len(x) def get_moments(res_dict, template): ''' Args: result dict for each config and seed: {'0_0_0_0': [{'eval':0.8}, {'eval': 0.7}, ...]} template of collected results: {'eval': None, ...} Return: mean and std of each config: {'0_0_0_0': {'eval.mean': 0.75, 'eval.std': 0.05}, ...} ''' res_dict_moments = {} for k, v in res_dict.items(): res_dict_moments[k] = {} for res_k in template.keys(): res_dict_moments[k][res_k+'.mean'], \ res_dict_moments[k][res_k+'.std'] \ = get_mean_std_for_config(v, res_k) res_dict_moments[k]['n_samples'] = count_samples(v) return res_dict_moments def get_json(result_json): if os.path.exists(result_json): with open(result_json, 'r') as f: data = json.load(f) return data else: return None def get_metric_result(subdir, metric, representation): result_json = os.path.join(subdir, 'metrics', representation, metric, 'results/json/evaluation_results.json') return get_json(result_json) def get_tpl_result(subdir): result_json = os.path.join( subdir, 'metrics/tpl/results/json/evaluation_results.json') return get_json(result_json) def main(): parser = argparse.ArgumentParser(description='Project description.') parser.add_argument('--results_dir', help='Results directory.', type=str, default='/mnt/hdd/repo_results/Ramiel/sweep') parser.add_argument('--metric', help='Name of the collect metric.', type=str, default='factor_vae_metric', choices=[ 'beta_vae_sklearn', 'dci', 'downstream_task_boosted_trees', 'factor_vae_metric', 'mig', 'modularity_explicitness', 'sap_score', 'unsupervised', 'tpl' ]) parser.add_argument('--representation', help='Representation used.', type=str, default='mean', choices=['mean', 'sampled']) # parser.add_argument('--overwrite', # help='Whether to overwrite output directory.', # type=_str_to_bool, # default=False) args = parser.parse_args() subdirs = os.listdir(args.results_dir) res_dict = {} key_template = METRICS_TEMPLATE[args.metric] for subdir in subdirs: sub_path = os.path.join(args.results_dir, subdir) if not os.path.isdir(sub_path): continue parse_subdir = subdir.split('-') hyps = '-'.join(parse_subdir) seed = '0' if hyps not in res_dict: res_dict[hyps] = [None] * 1 # get result for this seed, a dictionary. if args.metric == 'tpl': res_dict[hyps][int(seed)] = get_tpl_result(sub_path) else: res_dict[hyps][int(seed)] = get_metric_result( sub_path, args.metric, args.representation) # {'0_0_0_0': {'eval.mean': 0.75, 'eval.std': 0.05, 'n_samples': 2}, ...} res_dict = get_moments(res_dict, key_template) col_heads = ['_config'] + list(res_dict[list(res_dict.keys())[0]].keys()) col_dicts = {k: [] for k in col_heads} for k, v in res_dict.items(): col_dicts['_config'].append(k) for j in col_dicts.keys(): if j != '_config': col_dicts[j].append(v[j]) new_results = OrderedDict(sorted(col_dicts.items())) results_df =
pd.DataFrame(new_results)
pandas.DataFrame
""" Summarize and run basic analysis on MTurk returns """ import json import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from factor_analyzer import FactorAnalyzer, ModelSpecificationParser, ConfirmatoryFactorAnalyzer from joblib import load from matplotlib.backends.backend_pdf import PdfPages from sklearn.experimental import enable_iterative_imputer # noqa from sklearn.impute import IterativeImputer from models.plotting import make_fa_plots, make_density from processing.loading import process_turk_files from processing.mappings import short_question_names, question_names, factor_names factor_structure = {"competent": ["competent", "efficient", "focused", "intelligent", "reliable", "responsible"], "broken": ["broken", "clumsy", "confused", "lost"], "curious": ["curious", "investigative"] } condition_ratings = None demos = None other_data = None demo_trajs = [] demo_exps = [] demo_prompts = [] demo_wids = [] for base in ["pilot1", "active1", "active2", "mdn_active1", "mdn_active2"]: cr, d, o, comparison = process_turk_files(base + ".csv", traj_file=base + "_trajs.json") q_names = [q_name for q_name in question_names if q_name in cr.columns] # Fill in missing values cr[cr[q_names] == 6] = np.nan imp = IterativeImputer(missing_values=np.nan, max_iter=200, random_state=0, min_value=1, max_value=5) to_impute = cr[q_names].to_numpy() cr[q_names] = np.rint(imp.fit_transform(to_impute)).astype(int) assert not cr[cr[q_names] == np.nan].any().any() assert not cr[cr[q_names] == 6].any().any() if condition_ratings is not None: condition_ratings = pd.concat([condition_ratings, cr], ignore_index=True) demos =
pd.concat([demos, d])
pandas.concat
""" training of LR_clim_clim_conv baseline """ from tensorflow.keras.layers import Input, Dense from cbrain.layers import * from tensorflow.keras.models import Model from tensorflow.keras.losses import mse, binary_crossentropy from tensorflow.keras.utils import plot_model from tensorflow.keras import backend as K from tensorflow.keras.callbacks import LearningRateScheduler,Callback import numpy as np import matplotlib.pyplot as plt import argparse import os import tensorflow as tf from cbrain.imports import * from cbrain.utils import * import pandas as ps # constuction of LR_clim_clim_conv closely mirroring AE_clim_clim_conv with linear activations original_dim_input=64 # CAM variables node size original_dim_output=int(65+64) # SP + CAM variables node size # network parameters input_shape = (original_dim_input,) out_shape=(original_dim_output,) intermediate_dim = 463 # number of first hidden layers of linear Encoder or last hidden layers of linear Decoder batch_size = 714 latent_dim = 5 # latent space width epochs = 40 ## Linear Encoder inputs =Input(shape=input_shape, name='encoder_input') x_0 =Dense(intermediate_dim, activation='linear')(inputs) x_1 =Dense(intermediate_dim, activation='linear')(x_0) x_2 =Dense(int(np.round(intermediate_dim/2)), activation='linear')(x_1) x_3 =Dense(int(np.round(intermediate_dim/4)), activation='linear')(x_2) x_4 =Dense(int(np.round(intermediate_dim/8)), activation='linear')(x_3) x_5 =Dense(int(np.round(intermediate_dim/16)), activation='linear')(x_4) z_lin = Dense(latent_dim, activation='linear', name='z_lin')(x_5) # instantiate encoder model encoder_lin = Model(inputs, [z_lin], name='encoder_lin') ## linear Decoder decoder_inputs =Input(shape=(latent_dim,), name='decoder_input') x_1 =Dense(int(np.round(intermediate_dim/16)), activation='linear')(decoder_inputs) x_2 =Dense(int(np.round(intermediate_dim/8)), activation='linear')(x_1) x_3 =Dense(int(np.round(intermediate_dim/4)), activation='linear')(x_2) x_4 =Dense(int(np.round(intermediate_dim/2)), activation='linear')(x_3) x_5 =Dense(intermediate_dim, activation='linear')(x_4) x_6 =Dense(intermediate_dim, activation='linear')(x_5) outputs = Dense(original_dim_output, activation='linear')(x_6) decoder_lin = Model(decoder_inputs, outputs, name='decoder') emul_outputs=decoder_lin(encoder_lin(inputs)) LR_clim_clim_conv=Model(inputs,emul_outputs) #loading scaling dictionary of SP variables scale_array=ps.read_csv('nn_config/scale_dicts/Scaling_cond_VAE.csv') PHQ_std_surf=scale_array.PHQ_std.values[-1] TPHYSTND_std_23=scale_array.TPHYSTND_std.values[-1] PRECT_std=scale_array.PRECT_std.values FSNS_std=scale_array.FSNS_std.values FSNT_std=scale_array.FSNT_std.values FLNS_std=scale_array.FLNS_std.values FLNT_std=scale_array.FLNT_std.values # loading scaling dictionaries of CAM variables scale_array_2D=ps.read_csv('nn_config/scale_dicts/Scaling_enc_II_range_profiles.csv') scale_array_1D=
ps.read_csv('nn_config/scale_dicts/Scaling_enc_II_range.csv')
pandas.read_csv
# pylint: disable=W0102 import nose import numpy as np from pandas import Index, MultiIndex, DataFrame, Series from pandas.compat import OrderedDict, lrange from pandas.sparse.array import SparseArray from pandas.core.internals import * import pandas.core.internals as internals import pandas.util.testing as tm from pandas.util.testing import ( assert_almost_equal, assert_frame_equal, randn) from pandas.compat import zip, u def assert_block_equal(left, right): assert_almost_equal(left.values, right.values) assert(left.dtype == right.dtype) assert_almost_equal(left.mgr_locs, right.mgr_locs) def get_numeric_mat(shape): arr = np.arange(shape[0]) return np.lib.stride_tricks.as_strided( x=arr, shape=shape, strides=(arr.itemsize,) + (0,) * (len(shape) - 1)).copy() N = 10 def create_block(typestr, placement, item_shape=None, num_offset=0): """ Supported typestr: * float, f8, f4, f2 * int, i8, i4, i2, i1 * uint, u8, u4, u2, u1 * complex, c16, c8 * bool * object, string, O * datetime, dt * sparse (SparseArray with fill_value=0.0) * sparse_na (SparseArray with fill_value=np.nan) """ placement = BlockPlacement(placement) num_items = len(placement) if item_shape is None: item_shape = (N,) shape = (num_items,) + item_shape mat = get_numeric_mat(shape) if typestr in ('float', 'f8', 'f4', 'f2', 'int', 'i8', 'i4', 'i2', 'i1', 'uint', 'u8', 'u4', 'u2', 'u1'): values = mat.astype(typestr) + num_offset elif typestr in ('complex', 'c16', 'c8'): values = 1.j * (mat.astype(typestr) + num_offset) elif typestr in ('object', 'string', 'O'): values = np.reshape(['A%d' % i for i in mat.ravel() + num_offset], shape) elif typestr in ('bool'): values = np.ones(shape, dtype=np.bool_) elif typestr in ('datetime', 'dt'): values = (mat * 1e9).astype('M8[ns]') elif typestr in ('sparse', 'sparse_na'): # FIXME: doesn't support num_rows != 10 assert shape[-1] == 10 assert all(s == 1 for s in shape[:-1]) if typestr.endswith('_na'): fill_value = np.nan else: fill_value = 0.0 values = SparseArray([fill_value, fill_value, 1, 2, 3, fill_value, 4, 5, fill_value, 6], fill_value=fill_value) arr = values.sp_values.view() arr += (num_offset - 1) else: raise ValueError('Unsupported typestr: "%s"' % typestr) return make_block(values, placement=placement, ndim=len(shape)) def create_single_mgr(typestr, num_rows=None): if num_rows is None: num_rows = N return SingleBlockManager( create_block(typestr, placement=slice(0, num_rows), item_shape=()), np.arange(num_rows)) def create_mgr(descr, item_shape=None): """ Construct BlockManager from string description. String description syntax looks similar to np.matrix initializer. It looks like this:: a,b,c: f8; d,e,f: i8 Rules are rather simple: * see list of supported datatypes in `create_block` method * components are semicolon-separated * each component is `NAME,NAME,NAME: DTYPE_ID` * whitespace around colons & semicolons are removed * components with same DTYPE_ID are combined into single block * to force multiple blocks with same dtype, use '-SUFFIX':: 'a:f8-1; b:f8-2; c:f8-foobar' """ if item_shape is None: item_shape = (N,) offset = 0 mgr_items = [] block_placements = OrderedDict() for d in descr.split(';'): d = d.strip() names, blockstr = d.partition(':')[::2] blockstr = blockstr.strip() names = names.strip().split(',') mgr_items.extend(names) placement = list(np.arange(len(names)) + offset) try: block_placements[blockstr].extend(placement) except KeyError: block_placements[blockstr] = placement offset += len(names) mgr_items = Index(mgr_items) blocks = [] num_offset = 0 for blockstr, placement in block_placements.items(): typestr = blockstr.split('-')[0] blocks.append(create_block(typestr, placement, item_shape=item_shape, num_offset=num_offset,)) num_offset += len(placement) return BlockManager(sorted(blocks, key=lambda b: b.mgr_locs[0]), [mgr_items] + [np.arange(n) for n in item_shape]) class TestBlock(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): # self.fblock = get_float_ex() # a,c,e # self.cblock = get_complex_ex() # # self.oblock = get_obj_ex() # self.bool_block = get_bool_ex() # self.int_block = get_int_ex() self.fblock = create_block('float', [0, 2, 4]) self.cblock = create_block('complex', [7]) self.oblock = create_block('object', [1, 3]) self.bool_block = create_block('bool', [5]) self.int_block = create_block('int', [6]) def test_constructor(self): int32block = create_block('i4', [0]) self.assertEqual(int32block.dtype, np.int32) def test_pickle(self): import pickle def _check(blk): pickled = pickle.dumps(blk) unpickled = pickle.loads(pickled) assert_block_equal(blk, unpickled) _check(self.fblock) _check(self.cblock) _check(self.oblock) _check(self.bool_block) def test_mgr_locs(self): assert_almost_equal(self.fblock.mgr_locs, [0, 2, 4]) def test_attrs(self): self.assertEqual(self.fblock.shape, self.fblock.values.shape) self.assertEqual(self.fblock.dtype, self.fblock.values.dtype) self.assertEqual(len(self.fblock), len(self.fblock.values)) def test_merge(self): avals = randn(2, 10) bvals = randn(2, 10) ref_cols = Index(['e', 'a', 'b', 'd', 'f']) ablock = make_block(avals, ref_cols.get_indexer(['e', 'b'])) bblock = make_block(bvals, ref_cols.get_indexer(['a', 'd'])) merged = ablock.merge(bblock) assert_almost_equal(merged.mgr_locs, [0, 1, 2, 3]) assert_almost_equal(merged.values[[0, 2]], avals) assert_almost_equal(merged.values[[1, 3]], bvals) # TODO: merge with mixed type? def test_copy(self): cop = self.fblock.copy() self.assertIsNot(cop, self.fblock) assert_block_equal(self.fblock, cop) def test_reindex_index(self): pass def test_reindex_cast(self): pass def test_insert(self): pass def test_delete(self): newb = self.fblock.copy() newb.delete(0) assert_almost_equal(newb.mgr_locs, [2, 4]) self.assertTrue((newb.values[0] == 1).all()) newb = self.fblock.copy() newb.delete(1) assert_almost_equal(newb.mgr_locs, [0, 4]) self.assertTrue((newb.values[1] == 2).all()) newb = self.fblock.copy() newb.delete(2) assert_almost_equal(newb.mgr_locs, [0, 2]) self.assertTrue((newb.values[1] == 1).all()) newb = self.fblock.copy() self.assertRaises(Exception, newb.delete, 3) def test_split_block_at(self): # with dup column support this method was taken out # GH3679 raise nose.SkipTest("skipping for now") bs = list(self.fblock.split_block_at('a')) self.assertEqual(len(bs), 1) self.assertTrue(np.array_equal(bs[0].items, ['c', 'e'])) bs = list(self.fblock.split_block_at('c')) self.assertEqual(len(bs), 2) self.assertTrue(np.array_equal(bs[0].items, ['a'])) self.assertTrue(np.array_equal(bs[1].items, ['e'])) bs = list(self.fblock.split_block_at('e')) self.assertEqual(len(bs), 1) self.assertTrue(np.array_equal(bs[0].items, ['a', 'c'])) bblock = get_bool_ex(['f']) bs = list(bblock.split_block_at('f')) self.assertEqual(len(bs), 0) def test_get(self): pass def test_set(self): pass def test_fillna(self): pass def test_repr(self): pass class TestBlockManager(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): self.mgr = create_mgr('a: f8; b: object; c: f8; d: object; e: f8;' 'f: bool; g: i8; h: complex') def test_constructor_corner(self): pass def test_attrs(self): mgr = create_mgr('a,b,c: f8-1; d,e,f: f8-2') self.assertEqual(mgr.nblocks, 2) self.assertEqual(len(mgr), 6) def test_is_mixed_dtype(self): self.assertFalse(create_mgr('a,b:f8').is_mixed_type) self.assertFalse(create_mgr('a:f8-1; b:f8-2').is_mixed_type) self.assertTrue(create_mgr('a,b:f8; c,d: f4').is_mixed_type) self.assertTrue(create_mgr('a,b:f8; c,d: object').is_mixed_type) def test_is_indexed_like(self): mgr1 = create_mgr('a,b: f8') mgr2 = create_mgr('a:i8; b:bool') mgr3 = create_mgr('a,b,c: f8') self.assertTrue(mgr1._is_indexed_like(mgr1)) self.assertTrue(mgr1._is_indexed_like(mgr2)) self.assertTrue(mgr1._is_indexed_like(mgr3)) self.assertFalse(mgr1._is_indexed_like( mgr1.get_slice(slice(-1), axis=1))) def test_duplicate_ref_loc_failure(self): tmp_mgr = create_mgr('a:bool; a: f8') axes, blocks = tmp_mgr.axes, tmp_mgr.blocks blocks[0].mgr_locs = np.array([0]) blocks[1].mgr_locs = np.array([0]) # test trying to create block manager with overlapping ref locs self.assertRaises(AssertionError, BlockManager, blocks, axes) blocks[0].mgr_locs = np.array([0]) blocks[1].mgr_locs = np.array([1]) mgr = BlockManager(blocks, axes) mgr.iget(1) def test_contains(self): self.assertIn('a', self.mgr) self.assertNotIn('baz', self.mgr) def test_pickle(self): import pickle pickled = pickle.dumps(self.mgr) mgr2 = pickle.loads(pickled) # same result assert_frame_equal(DataFrame(self.mgr), DataFrame(mgr2)) # share ref_items # self.assertIs(mgr2.blocks[0].ref_items, mgr2.blocks[1].ref_items) # GH2431 self.assertTrue(hasattr(mgr2, "_is_consolidated")) self.assertTrue(hasattr(mgr2, "_known_consolidated")) # reset to False on load self.assertFalse(mgr2._is_consolidated) self.assertFalse(mgr2._known_consolidated) def test_non_unique_pickle(self): import pickle mgr = create_mgr('a,a,a:f8') mgr2 = pickle.loads(pickle.dumps(mgr)) assert_frame_equal(DataFrame(mgr), DataFrame(mgr2)) mgr = create_mgr('a: f8; a: i8') mgr2 = pickle.loads(pickle.dumps(mgr)) assert_frame_equal(DataFrame(mgr), DataFrame(mgr2)) def test_get_scalar(self): for item in self.mgr.items: for i, index in enumerate(self.mgr.axes[1]): res = self.mgr.get_scalar((item, index)) exp = self.mgr.get(item, fastpath=False)[i] assert_almost_equal(res, exp) exp = self.mgr.get(item).values[i] assert_almost_equal(res, exp) def test_get(self): cols = Index(list('abc')) values = np.random.rand(3, 3) block = make_block(values=values.copy(), placement=np.arange(3)) mgr = BlockManager(blocks=[block], axes=[cols, np.arange(3)]) assert_almost_equal(mgr.get('a', fastpath=False), values[0]) assert_almost_equal(mgr.get('b', fastpath=False), values[1]) assert_almost_equal(mgr.get('c', fastpath=False), values[2]) assert_almost_equal(mgr.get('a').values, values[0]) assert_almost_equal(mgr.get('b').values, values[1]) assert_almost_equal(mgr.get('c').values, values[2]) def test_set(self): mgr = create_mgr('a,b,c: int', item_shape=(3,)) mgr.set('d', np.array(['foo'] * 3)) mgr.set('b', np.array(['bar'] * 3)) assert_almost_equal(mgr.get('a').values, [0] * 3) assert_almost_equal(mgr.get('b').values, ['bar'] * 3) assert_almost_equal(mgr.get('c').values, [2] * 3) assert_almost_equal(mgr.get('d').values, ['foo'] * 3) def test_insert(self): self.mgr.insert(0, 'inserted', np.arange(N)) self.assertEqual(self.mgr.items[0], 'inserted') assert_almost_equal(self.mgr.get('inserted'), np.arange(N)) for blk in self.mgr.blocks: yield self.assertIs, self.mgr.items, blk.ref_items def test_set_change_dtype(self): self.mgr.set('baz', np.zeros(N, dtype=bool)) self.mgr.set('baz', np.repeat('foo', N)) self.assertEqual(self.mgr.get('baz').dtype, np.object_) mgr2 = self.mgr.consolidate() mgr2.set('baz', np.repeat('foo', N)) self.assertEqual(mgr2.get('baz').dtype, np.object_) mgr2.set('quux', randn(N).astype(int)) self.assertEqual(mgr2.get('quux').dtype, np.int_) mgr2.set('quux', randn(N)) self.assertEqual(mgr2.get('quux').dtype, np.float_) def test_copy(self): shallow = self.mgr.copy(deep=False) # we don't guaranteee block ordering for blk in self.mgr.blocks: found = False for cp_blk in shallow.blocks: if cp_blk.values is blk.values: found = True break self.assertTrue(found) def test_sparse(self): mgr = create_mgr('a: sparse-1; b: sparse-2') # what to test here? self.assertEqual(mgr.as_matrix().dtype, np.float64) def test_sparse_mixed(self): mgr = create_mgr('a: sparse-1; b: sparse-2; c: f8') self.assertEqual(len(mgr.blocks), 3) self.assertIsInstance(mgr, BlockManager) # what to test here? def test_as_matrix_float(self): mgr = create_mgr('c: f4; d: f2; e: f8') self.assertEqual(mgr.as_matrix().dtype, np.float64) mgr = create_mgr('c: f4; d: f2') self.assertEqual(mgr.as_matrix().dtype, np.float32) def test_as_matrix_int_bool(self): mgr = create_mgr('a: bool-1; b: bool-2') self.assertEqual(mgr.as_matrix().dtype, np.bool_) mgr = create_mgr('a: i8-1; b: i8-2; c: i4; d: i2; e: u1') self.assertEqual(mgr.as_matrix().dtype, np.int64) mgr = create_mgr('c: i4; d: i2; e: u1') self.assertEqual(mgr.as_matrix().dtype, np.int32) def test_as_matrix_datetime(self): mgr = create_mgr('h: datetime-1; g: datetime-2') self.assertEqual(mgr.as_matrix().dtype, 'M8[ns]') def test_astype(self): # coerce all mgr = create_mgr('c: f4; d: f2; e: f8') for t in ['float16', 'float32', 'float64', 'int32', 'int64']: t = np.dtype(t) tmgr = mgr.astype(t) self.assertEqual(tmgr.get('c').dtype.type, t) self.assertEqual(tmgr.get('d').dtype.type, t) self.assertEqual(tmgr.get('e').dtype.type, t) # mixed mgr = create_mgr('a,b: object; c: bool; d: datetime;' 'e: f4; f: f2; g: f8') for t in ['float16', 'float32', 'float64', 'int32', 'int64']: t = np.dtype(t) tmgr = mgr.astype(t, raise_on_error=False) self.assertEqual(tmgr.get('c').dtype.type, t) self.assertEqual(tmgr.get('e').dtype.type, t) self.assertEqual(tmgr.get('f').dtype.type, t) self.assertEqual(tmgr.get('g').dtype.type, t) self.assertEqual(tmgr.get('a').dtype.type, np.object_) self.assertEqual(tmgr.get('b').dtype.type, np.object_) if t != np.int64: self.assertEqual(tmgr.get('d').dtype.type, np.datetime64) else: self.assertEqual(tmgr.get('d').dtype.type, t) def test_convert(self): def _compare(old_mgr, new_mgr): """ compare the blocks, numeric compare ==, object don't """ old_blocks = set(old_mgr.blocks) new_blocks = set(new_mgr.blocks) self.assertEqual(len(old_blocks), len(new_blocks)) # compare non-numeric for b in old_blocks: found = False for nb in new_blocks: if (b.values == nb.values).all(): found = True break self.assertTrue(found) for b in new_blocks: found = False for ob in old_blocks: if (b.values == ob.values).all(): found = True break self.assertTrue(found) # noops mgr = create_mgr('f: i8; g: f8') new_mgr = mgr.convert() _compare(mgr,new_mgr) mgr = create_mgr('a, b: object; f: i8; g: f8') new_mgr = mgr.convert() _compare(mgr,new_mgr) # convert mgr = create_mgr('a,b,foo: object; f: i8; g: f8') mgr.set('a', np.array(['1'] * N, dtype=np.object_)) mgr.set('b', np.array(['2.'] * N, dtype=np.object_)) mgr.set('foo', np.array(['foo.'] * N, dtype=np.object_)) new_mgr = mgr.convert(convert_numeric=True) self.assertEqual(new_mgr.get('a').dtype, np.int64) self.assertEqual(new_mgr.get('b').dtype, np.float64) self.assertEqual(new_mgr.get('foo').dtype, np.object_) self.assertEqual(new_mgr.get('f').dtype, np.int64) self.assertEqual(new_mgr.get('g').dtype, np.float64) mgr = create_mgr('a,b,foo: object; f: i4; bool: bool; dt: datetime;' 'i: i8; g: f8; h: f2') mgr.set('a', np.array(['1'] * N, dtype=np.object_)) mgr.set('b', np.array(['2.'] * N, dtype=np.object_)) mgr.set('foo', np.array(['foo.'] * N, dtype=np.object_)) new_mgr = mgr.convert(convert_numeric=True) self.assertEqual(new_mgr.get('a').dtype, np.int64) self.assertEqual(new_mgr.get('b').dtype, np.float64) self.assertEqual(new_mgr.get('foo').dtype, np.object_) self.assertEqual(new_mgr.get('f').dtype, np.int32) self.assertEqual(new_mgr.get('bool').dtype, np.bool_) self.assertEqual(new_mgr.get('dt').dtype.type, np.datetime64) self.assertEqual(new_mgr.get('i').dtype, np.int64) self.assertEqual(new_mgr.get('g').dtype, np.float64) self.assertEqual(new_mgr.get('h').dtype, np.float16) def test_interleave(self): pass def test_interleave_non_unique_cols(self): df = DataFrame([ [Timestamp('20130101'), 3.5], [Timestamp('20130102'), 4.5]], columns=['x', 'x'], index=[1, 2]) df_unique = df.copy() df_unique.columns = ['x', 'y'] np.testing.assert_array_equal(df_unique.values, df.values) def test_consolidate(self): pass def test_consolidate_ordering_issues(self): self.mgr.set('f', randn(N)) self.mgr.set('d', randn(N)) self.mgr.set('b', randn(N)) self.mgr.set('g',
randn(N)
pandas.util.testing.randn
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from catboost import CatBoostRegressor from tqdm import tqdm import gc import datetime as dt print('Loading Properties ...') properties2016 = pd.read_csv('../input/properties_2016.csv', low_memory = False) properties2017 = pd.read_csv('../input/properties_2017.csv', low_memory = False) print('Loading Train ...') train2016 = pd.read_csv('../input/train_2016_v2.csv', parse_dates=['transactiondate'], low_memory=False) train2017 = pd.read_csv('../input/train_2017.csv', parse_dates=['transactiondate'], low_memory=False) def add_date_features(df): df["transaction_year"] = df["transactiondate"].dt.year df["transaction_month"] = (df["transactiondate"].dt.year - 2016)*12 + df["transactiondate"].dt.month df["transaction_day"] = df["transactiondate"].dt.day df["transaction_quarter"] = (df["transactiondate"].dt.year - 2016)*4 +df["transactiondate"].dt.quarter df.drop(["transactiondate"], inplace=True, axis=1) return df train2016 = add_date_features(train2016) train2017 = add_date_features(train2017) print('Loading Sample ...') sample_submission = pd.read_csv('../input/sample_submission.csv', low_memory = False) print('Merge Train with Properties ...') train2016 = pd.merge(train2016, properties2016, how = 'left', on = 'parcelid') train2017 = pd.merge(train2017, properties2017, how = 'left', on = 'parcelid') print('Tax Features 2017 ...') train2017.iloc[:, train2017.columns.str.startswith('tax')] = np.nan print('Concat Train 2016 & 2017 ...') train_df = pd.concat([train2016, train2017], axis = 0) test_df = pd.merge(sample_submission[['ParcelId']], properties2016.rename(columns = {'parcelid': 'ParcelId'}), how = 'left', on = 'ParcelId') del properties2016, properties2017, train2016, train2017 gc.collect(); print('Remove missing data fields ...') missing_perc_thresh = 0.98 exclude_missing = [] num_rows = train_df.shape[0] for c in train_df.columns: num_missing = train_df[c].isnull().sum() if num_missing == 0: continue missing_frac = num_missing / float(num_rows) if missing_frac > missing_perc_thresh: exclude_missing.append(c) print("We exclude: %s" % len(exclude_missing)) del num_rows, missing_perc_thresh gc.collect(); print ("Remove features with one unique value !!") exclude_unique = [] for c in train_df.columns: num_uniques = len(train_df[c].unique()) if train_df[c].isnull().sum() != 0: num_uniques -= 1 if num_uniques == 1: exclude_unique.append(c) print("We exclude: %s" % len(exclude_unique)) print ("Define training features !!") exclude_other = ['parcelid', 'logerror','propertyzoningdesc'] train_features = [] for c in train_df.columns: if c not in exclude_missing \ and c not in exclude_other and c not in exclude_unique: train_features.append(c) print("We use these for training: %s" % len(train_features)) print ("Define categorial features !!") cat_feature_inds = [] cat_unique_thresh = 1000 for i, c in enumerate(train_features): num_uniques = len(train_df[c].unique()) if num_uniques < cat_unique_thresh \ and not 'sqft' in c \ and not 'cnt' in c \ and not 'nbr' in c \ and not 'number' in c: cat_feature_inds.append(i) print("Cat features are: %s" % [train_features[ind] for ind in cat_feature_inds]) print ("Replacing NaN values by -999 !!") train_df.fillna(-999, inplace=True) test_df.fillna(-999, inplace=True) print ("Training time !!") X_train = train_df[train_features] y_train = train_df.logerror print(X_train.shape, y_train.shape) test_df['transactiondate'] = pd.Timestamp('2016-12-01') test_df = add_date_features(test_df) X_test = test_df[train_features] print(X_test.shape) num_ensembles = 5 y_pred = 0.0 for i in tqdm(range(num_ensembles)): model = CatBoostRegressor( iterations=630, learning_rate=0.03, depth=6, l2_leaf_reg=3, loss_function='MAE', eval_metric='MAE', random_seed=i) model.fit( X_train, y_train, cat_features=cat_feature_inds) y_pred += model.predict(X_test) y_pred /= num_ensembles submission = pd.DataFrame({ 'ParcelId': test_df['ParcelId'], }) test_dates = { '201610': pd.Timestamp('2016-09-30'), '201611': pd.Timestamp('2016-10-31'), '201612': pd.Timestamp('2016-11-30'), '201710': pd.Timestamp('2017-09-30'), '201711': pd.Timestamp('2017-10-31'), '201712':
pd.Timestamp('2017-11-30')
pandas.Timestamp
# pylint: disable-msg=E1101,W0613,W0603 import os import copy from collections import defaultdict import numpy as np import pandas.json as _json from pandas.tslib import iNaT from pandas.compat import StringIO, long, u from pandas import compat, isnull from pandas import Series, DataFrame, to_datetime from pandas.io.common import get_filepath_or_buffer, _get_handle from pandas.core.common import AbstractMethodError from pandas.formats.printing import pprint_thing loads = _json.loads dumps = _json.dumps # interface to/from def to_json(path_or_buf, obj, orient=None, date_format='epoch', double_precision=10, force_ascii=True, date_unit='ms', default_handler=None, lines=False): if lines and orient != 'records': raise ValueError( "'lines' keyword only valid when 'orient' is records") if isinstance(obj, Series): s = SeriesWriter( obj, orient=orient, date_format=date_format, double_precision=double_precision, ensure_ascii=force_ascii, date_unit=date_unit, default_handler=default_handler).write() elif isinstance(obj, DataFrame): s = FrameWriter( obj, orient=orient, date_format=date_format, double_precision=double_precision, ensure_ascii=force_ascii, date_unit=date_unit, default_handler=default_handler).write() else: raise NotImplementedError("'obj' should be a Series or a DataFrame") if lines: s = _convert_to_line_delimits(s) if isinstance(path_or_buf, compat.string_types): with open(path_or_buf, 'w') as fh: fh.write(s) elif path_or_buf is None: return s else: path_or_buf.write(s) class Writer(object): def __init__(self, obj, orient, date_format, double_precision, ensure_ascii, date_unit, default_handler=None): self.obj = obj if orient is None: orient = self._default_orient self.orient = orient self.date_format = date_format self.double_precision = double_precision self.ensure_ascii = ensure_ascii self.date_unit = date_unit self.default_handler = default_handler self.is_copy = None self._format_axes() def _format_axes(self): raise
AbstractMethodError(self)
pandas.core.common.AbstractMethodError
import re import struct import pandas as pd import numpy as np from argparse import ArgumentParser from pathlib import Path from tqdm import tqdm from collections import namedtuple from datetime import datetime, timedelta from model_sx_log import ModelSxLog from kaitaistruct import KaitaiStream, BytesIO, ValidationNotEqualError TIMESTAMP_IDS = (0xd00007dd, 0xd00007de) # these id's update the rolling timestamp HEADER_PAT = re.compile(b'\xd0\x00\x07\xde', re.MULTILINE) agg_descriptor = namedtuple('periodicEntry', 'ID unknown size') dataPoint = namedtuple('dataPoint', 'timestamp ID value') MAX_LEN = 50000 def read_entries(data, start_offset=0): # Inspired by: https://stackoverflow.com/questions/49699820/parsing-binary-messages-with-kaitai-struct-python stream = KaitaiStream(BytesIO(data)) stream.seek(start_offset) last = stream.pos() start = ModelSxLog(stream) log_entry = start.log_entry yield log_entry n_entries = 1 with tqdm(total=stream.size() - start_offset, unit='B', unit_scale=True, desc='Processing log') as pbar: while not stream.is_eof(): if n_entries % 1000 == 0: consumed = stream.pos() - last pbar.update(consumed) last = stream.pos() try: log_entry = ModelSxLog.Entry(stream, _root=start._root) if sum(log_entry.raw_bytes) % 256 != 0: print(f'Checksum error at {stream.pos()}, seeking to the next entry...') stream.read_bytes_term(0xaa, include_term=False, consume_term=False, eos_error=True) else: yield log_entry except ValidationNotEqualError: print(f'Encountered an error at {stream.pos()}, probably a corrupt entry, seeking to next one...') stream.read_bytes_term(0xaa, include_term=False, consume_term=False, eos_error=True) pass n_entries += 1 pbar.update(stream.pos() - last) stream.close() def process_log(data, dt_min=None, dt_max=None, start_offset=0): agg_descriptors = dict() rollingTime = datetime.utcfromtimestamp(0) # init rolling time for entry in read_entries(data, start_offset=start_offset): if entry.is_on_change and entry.body.sig_id in TIMESTAMP_IDS: rollingTime = datetime.utcfromtimestamp(struct.unpack('>L', entry.body.value[:4])[0]) millis = struct.unpack('>H', entry.body.value[4:6])[0] rollingTime += timedelta(seconds=millis / 1000) timestamp = rollingTime + timedelta(seconds=entry.counter / 1000.0) if dt_max and timestamp >= dt_max: print('Reached end timestamp, stop processing', flush=True) break if not entry.is_on_change: if entry.body.is_descriptor: agg_id = entry.body.aggregate_body.aggregate_id agg_descriptors[agg_id] = [agg_descriptor(desc.sig_id, desc.unknown, desc.size) for desc in entry.body.aggregate_body.descriptors] else: if timestamp <= dt_min: continue agg_id = entry.body.aggregate_id if agg_id not in agg_descriptors: continue # The descriptors are probably in a previous log file substream = entry.body.aggregate_body.values cursor = 0 for descriptor in agg_descriptors[agg_id]: yield dataPoint(timestamp, descriptor.ID, substream[cursor: cursor + descriptor.size]) cursor += descriptor.size else: if timestamp <= dt_min: continue yield dataPoint(timestamp, entry.body.sig_id, entry.body.value) def process_row(d, key, max_len=50000, _cache=None, _store=None): """ Append row d to the store 'key'. When the number of items in the key's cache reaches max_len, append the list of rows to the HDF5 store and clear the list. """ # keep the rows for each key separate. lst = _cache.setdefault(key, []) if len(lst) >= max_len: store_and_clear(lst, key, _store=_store) lst.append(d) def store_and_clear(lst, key, _store=None): """ Convert key's cache list to a DataFrame and append that to HDF5. """ key = f'/{key}' values = streamline_list(lst) if values is not None: df =
pd.DataFrame(values)
pandas.DataFrame
import argparse import tempfile import os import pandas as pd import numpy as np from conga.tcrdist.make_10x_clones_file import make_10x_clones_file from conga.preprocess import calc_tcrdist_matrix_cpp # from hello import say_hello_to, parse_charptr_to_py_int def covepitope_convert_from_10x(): parser = argparse.ArgumentParser(description='') parser.add_argument( 'fca_file', type=str, help='The CSV file containing filtered contig annotation', ) parser.add_argument( '--organism', dest='organism', default='human', ) parser.add_argument( '--edge-threshold', dest='edge_threshold', default=100, help='Any edge that has distance above this number will be removed from the output edge table. This is to reduce the file size. (default: 100)', ) parser.add_argument( 'clones_csv', help='The name/path of the output CSV file containing clonotypes', ) parser.add_argument( 'edges_csv', help='The name/path of the output CSV file containing the pairwise TCRDist3 distances', ) args = parser.parse_args() temp_clones_file = tempfile.NamedTemporaryFile() # parse filtered_contig_annotations.csv into paired clonotypes make_10x_clones_file(args.fca_file, args.organism, temp_clones_file.name) df = pd.read_csv(temp_clones_file.name, sep='\t') df = df.rename( columns={ 'clone_id': 'original_index', 'subject': 'donor', 'va_gene': 'v_a_gene', 'ja_gene': 'j_a_gene', 'va2_gene': 'va2', 'ja2_gene': 'ja2', 'vb_gene': 'v_b_gene', 'jb_gene': 'j_b_gene', 'cdr3a': 'cdr3_a_aa', 'cdr3a_nucseq': 'cdr3_a_nucseq', 'cdr3a2_nucseq': 'cdr3a2_nt', 'cdr3b': 'cdr3_b_aa', 'cdr3b_nucseq': 'cdr3_b_nucseq', } ) df['index'] = np.arange(len(df)) df.to_csv(args.clones_csv, index=False) # tuples of tuples with tcr info tcrs = [((l.v_a_gene, l.j_a_gene, l.cdr3_a_aa), (l.v_b_gene, l.j_b_gene, l.cdr3_b_aa)) for l in df.itertuples()] D_cpp = calc_tcrdist_matrix_cpp(tcrs, args.organism).astype(np.uint) df_edges =
pd.DataFrame(D_cpp)
pandas.DataFrame
import pandas as pd from sqlalchemy import create_engine from library import cf import talib.abstract as ta import pymysql.cursors import numpy as np from library.logging_pack import * logger.debug("subindex시작!!!!") pymysql.install_as_MySQLdb() daily_craw_engine=create_engine( "mysql+mysqldb://" + cf.db_id + ":" + cf.db_passwd + "@" + cf.db_ip + ":" + cf.db_port + "/daily_craw", encoding='utf-8') daily_buy_list_engine = create_engine( "mysql+mysqldb://" + cf.db_id + ":" + cf.db_passwd + "@" + cf.db_ip + ":" + cf.db_port + "/daily_buy_list" , encoding='utf-8') simul_engine=create_engine( "mysql+mysqldb://" + cf.db_id + ":" + cf.db_passwd + "@" + cf.db_ip + ":" + cf.db_port + "/simulator11", encoding='utf-8') min_craw_engine = create_engine("mysql+mysqldb://" + cf.db_id + ":" + cf.db_passwd + "@" + cf.db_ip + ":" + cf.db_port + "/min_craw", encoding='utf-8') stand_date = '20070903' #데이터 변환 class subindex: def __init__(self): logger.debug("subindex 함수로 들어왔다!!") def collecting(self): co_sql = f"select TABLE_NAME FROM information_schema.tables WHERE table_schema = 'daily_craw'" target_code = daily_craw_engine.execute(co_sql).fetchall() num = len(target_code) for i in range(num): self.db_name = target_code[i][0] self.db_name = self.db_name.replace("%", "%%") self.collect_db() print(self.db_name , "을 가져온다!") def collect_db(self): # 데이터 불러오기 sql = "select date,code,vol10,code_name,open,close,low,high,volume from daily_craw.`%s` where Date >= %s order by Date " rows = daily_craw_engine.execute(sql%(self.db_name,stand_date)).fetchall() three_s = pd.DataFrame(rows, columns=['date', 'code','vol10' ,'code_name','open' ,'close', 'low', 'high', 'volume']) three_s = three_s.fillna(0) # 데이터 변환 th_date = list(np.asarray(three_s['date'].tolist())) th_date_np = np.array(th_date, dtype='f8') th_close = list(np.asarray(three_s['close'].tolist())) th_close_np = np.array(th_close, dtype='f8') th_high = list(np.asarray(three_s['high'].tolist())) th_high_np = np.array(th_high, dtype='f8') th_low = list(np.asarray(three_s['low'].tolist())) th_low_np = np.array(th_low, dtype='f8') th_volume = list(np.asarray(three_s['volume'].tolist())) th_volume_np = np.array(th_volume, dtype='f8') th_open = list(np.asarray(three_s['open'].tolist())) th_open_np = np.array(th_open, dtype='f8') th_vol10 = list(np.asarray(three_s['vol10'].tolist())) th_vol10_np = np.array(th_vol10, dtype='f8') #주가고가저가 변동폭 th_diff =((three_s['high']-three_s['low'])/three_s['high'])*100 # 30일간 주가최저최고 변동폭 클때 th_diff30 = th_diff.rolling(30).max() # 보조지표 계산 th_cci = ta._ta_lib.CCI(th_high_np, th_low_np, th_close_np, 9) th_cci60 = ta._ta_lib.CCI(th_high_np, th_low_np, th_close_np, 60) ##rsi th_rsi = ta._ta_lib.RSI(th_close_np, 14) th_rsi5 = ta._ta_lib.RSI(th_close_np, 5) th_OBV = ta._ta_lib.OBV(th_close_np, th_volume_np) th_macd, th_macd_signal, th_macd_hist = ta._ta_lib.MACD(th_close_np, fastperiod=12, slowperiod=26, signalperiod=9) th_stoch_slowk, th_stoch_slowd = ta._ta_lib.STOCH(th_high_np, th_low_np, th_close_np, fastk_period=10, slowk_period=2, slowk_matype=0, slowd_period=2, slowd_matype=0) ##책에따라 12일선 기준으로 바꿈 th_BBAND_U, th_BBAND_M, th_BBAND_L = ta._ta_lib.BBANDS(th_close_np, timeperiod=20, nbdevup=2, nbdevdn=2, matype=0) th_BBAND_U14, th_BBAND_M14, th_BBAND_L14 = ta._ta_lib.BBANDS(th_close_np, timeperiod=14, nbdevup=2, nbdevdn=2, matype=0) th_BBAND_WIDE = (th_BBAND_U-th_BBAND_L)/th_BBAND_M th_BBAND_WIDE14 = (th_BBAND_U14 - th_BBAND_L14) / th_BBAND_M14 th_pb=(th_close_np-th_BBAND_L) / (th_BBAND_U-th_BBAND_L) th_pb14 = (th_close_np - th_BBAND_L14) / (th_BBAND_U14 - th_BBAND_L14) th_sar = ta._ta_lib.SAR(th_high_np, th_low_np,0.04,0.4) th_ibs = (th_close_np -th_low_np)/(th_high_np-th_low_np) th_dema5 = ta._ta_lib.DEMA(th_close_np, 5) th_dema20 = ta._ta_lib.DEMA(th_close_np,20) th_dema60 = ta._ta_lib.DEMA(th_close_np, 60) th_tema5 = ta._ta_lib.TEMA(th_close_np,5) th_tema20 = ta._ta_lib.TEMA(th_close_np, 20) th_tema60 = ta._ta_lib.TEMA(th_close_np, 60) #ema = 지수이동평균 th_ema5 = ta._ta_lib.EMA(th_close_np, 5) th_ema20 = ta._ta_lib.EMA(th_close_np, 20) th_ema60 = ta._ta_lib.EMA(th_close_np, 60) th_ema112 = ta._ta_lib.EMA(th_close_np, 112) th_ema224 = ta._ta_lib.EMA(th_close_np, 224) th_ema448 = ta._ta_lib.EMA(th_close_np, 448) th_ema448diff = ((th_close_np-th_ema448)/th_close_np * 100) th_ema224diff = ((th_close_np-th_ema224)/th_close_np*100) th_ema112diff = ((th_close_np-th_ema112)/th_close_np*100) #ma 이동평균 th_ma112 = ta._ta_lib.MA(th_close_np, 112) th_ma224 = ta._ta_lib.MA(th_close_np, 224) th_ma448 = ta._ta_lib.MA(th_close_np, 448) th_clo5diff = ((th_close_np - ta._ta_lib.MA(th_close_np, 5)) / th_close_np * 100) th_clo20diff = ((th_close_np - ta._ta_lib.MA(th_close_np, 20)) / th_close_np * 100) #dmi값들 14->11로 고쳐씀 th_pdi = ta._ta_lib.PLUS_DI(th_high_np,th_low_np,th_close_np, 11) th_mdi = ta._ta_lib.MINUS_DI(th_high_np, th_low_np, th_close_np, 11) th_dm = ta._ta_lib.PLUS_DM(th_high_np,th_low_np, 11) th_adx = ta._ta_lib.ADX(th_high_np,th_low_np,th_close_np, 14) th_adxr = ta._ta_lib.ADXR(th_high_np, th_low_np, th_close_np, 14) th_obvsig9 =ta._ta_lib.MA(ta._ta_lib.OBV(th_close_np, th_volume_np),9) #윌리엄 변동율 th_williumr = ta._ta_lib.WILLR(th_high_np,th_low_np,th_close_np, 14) th_mfi = ta._ta_lib.MFI(th_high_np,th_low_np,th_close_np,th_volume_np, 14) #거래량 오실레이터공식 10일 th_ad = ((th_close_np-th_open_np)/(th_high_np-th_low_np) * th_volume_np / th_vol10_np*10) # #일중강도 th_ll = (2*th_close_np-th_high_np-th_low_np)/(th_high_np-th_low_np) * th_volume_np # nan을 모두 0으로 전환 np.nan_to_num(th_cci, copy=False) np.nan_to_num(th_cci60, copy=False) np.nan_to_num(th_rsi, copy=False) np.nan_to_num(th_macd, copy=False) np.nan_to_num(th_macd_signal, copy=False) np.nan_to_num(th_macd_hist, copy=False) np.nan_to_num(th_stoch_slowk, copy=False) np.nan_to_num(th_stoch_slowd, copy=False) np.nan_to_num(th_BBAND_L, copy=False) np.nan_to_num(th_BBAND_M, copy=False) np.nan_to_num(th_BBAND_U, copy=False) np.nan_to_num(th_BBAND_L14, copy=False) np.nan_to_num(th_BBAND_M14, copy=False) np.nan_to_num(th_BBAND_U14, copy=False) np.nan_to_num(th_OBV, copy=False) np.nan_to_num(th_sar, copy=False) np.nan_to_num(th_dema5, copy=False) np.nan_to_num(th_dema20, copy=False) np.nan_to_num(th_dema60, copy=False) np.nan_to_num(th_tema5, copy=False) np.nan_to_num(th_tema20, copy=False) np.nan_to_num(th_tema60, copy=False) np.nan_to_num(th_ema5, copy=False) np.nan_to_num(th_ema112diff, copy=False) np.nan_to_num(th_ema224diff, copy=False) np.nan_to_num(th_ema448diff, copy=False) np.nan_to_num(th_ema20, copy=False) np.nan_to_num(th_ema60, copy=False) np.nan_to_num(th_ema112, copy=False) np.nan_to_num(th_ema224, copy=False) np.nan_to_num(th_ema448, copy=False) np.nan_to_num(th_ma112, copy=False) np.nan_to_num(th_ma224, copy=False) np.nan_to_num(th_ma448, copy=False) np.nan_to_num(th_pdi, copy=False) np.nan_to_num(th_mdi, copy=False) np.nan_to_num(th_dm, copy=False) np.nan_to_num(th_adx, copy=False) np.nan_to_num(th_adxr, copy=False) np.nan_to_num(th_williumr, copy=False) np.nan_to_num(th_pb, copy=False) np.nan_to_num(th_pb14, copy=False) np.nan_to_num(th_BBAND_WIDE, copy=False) np.nan_to_num(th_BBAND_WIDE14, copy=False) np.nan_to_num(th_mfi, copy=False) np.nan_to_num(th_ll, copy=False) np.nan_to_num(th_ad, copy=False) np.nan_to_num(th_rsi5, copy=False) np.nan_to_num(th_ibs, copy=False) np.nan_to_num(th_diff, copy=False) np.nan_to_num(th_diff30, copy=False) np.nan_to_num(th_obvsig9, copy=False) # DataFrame 화 하기 df_ad = pd.DataFrame(th_ad, columns=['ad']) df_cci = pd.DataFrame(th_cci, columns=['cci']) df_cci60 = pd.DataFrame(th_cci, columns=['cci60']) df_rsi5 = pd.DataFrame(th_rsi5, columns=['rsi5']) df_rsi = pd.DataFrame(th_rsi, columns=['rsi']) df_macd = pd.DataFrame(th_macd, columns=['macd']) df_macd_signal = pd.DataFrame(th_macd_signal, columns=['macd_signal']) df_macd_hist = pd.DataFrame(th_macd_hist, columns=['macd_hist']) df_stoch_slowk = pd.DataFrame(th_stoch_slowk, columns=['stoch_slowk']) df_stoch_slowd = pd.DataFrame(th_stoch_slowd, columns=['stoch_slowd']) #볼린저밴드 df_BBand_U = pd.DataFrame(th_BBAND_U, columns=['BBand_U']) df_BBand_M = pd.DataFrame(th_BBAND_M, columns=['BBand_M']) df_BBand_L = pd.DataFrame(th_BBAND_L, columns=['BBand_L']) df_BBand_U14 = pd.DataFrame(th_BBAND_U, columns=['BBand_U14']) df_BBand_M14 = pd.DataFrame(th_BBAND_M, columns=['BBand_M14']) df_BBand_L14 = pd.DataFrame(th_BBAND_L, columns=['BBand_L14']) df_ibs = pd.DataFrame(th_ibs, columns=['ibs']) df_pb14 = pd.DataFrame(th_pb, columns=['pb14']) df_obvsig9 =
pd.DataFrame(th_obvsig9, columns=['obvsig9'])
pandas.DataFrame
# Fed Interest Rate Data (Dates are approximate- representing the Sunday of the week when the rate was announced) import pandas as pd import numpy as np from datetime import timedelta file0319 = pd.read_html('https://www.federalreserve.gov/monetarypolicy/openmarket.htm') file9002 = pd.read_html('https://www.federalreserve.gov/monetarypolicy/openmarket_archive.htm') # DF containing all instances where the Fed released a new funds rate rates_df = pd.DataFrame() file2_yrs = list(range(1990,2003))[::-1] file2_yrs.remove(1993) years = [[2019, 2018, 2017, 2016, 2015, 2008, 2007, 2006, 2005, 2004, 2003], file2_yrs] counter1 = 0 for file in [file0319, file9002]: counter2 = 0 file_df =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import time def patient(rdb): """ Returns list of patients """ patients = """SELECT "Name" FROM patient ORDER BY index""" try: patients = pd.read_sql(patients, rdb) patients = patients["Name"].values.tolist() except: patients = ['Patient'] return patients def label(rdb): """ Returns list of parameter for linear and bar drop down """ sql = """SELECT type FROM name WHERE type IN ('Heart Rate','Heart Rate Variability SDNN', 'Resting Heart Rate', 'VO2 Max','Walking Heart Rate Average')""" sql2 = """SELECT type FROM name WHERE type NOT IN ('Heart Rate','Heart Rate Variability SDNN', 'Resting Heart Rate','VO2 Max','Walking Heart Rate Average')""" try: df, df2 = pd.read_sql(sql, rdb), pd.read_sql(sql2, rdb) label_linear, label_bar = df["type"].values.tolist(), df2["type"].values.tolist() except: label_linear, label_bar = [], [] return label_linear, label_bar def month(rdb, patient): """ Returns list of months in database for selected patient """ sql = """SELECT DISTINCT TO_CHAR("Date",'YYYY-MM') AS month FROM applewatch_numeric WHERE "Name"='{}' AND type ='Resting Heart Rate' ORDER BY month""".format(patient) try: df = pd.read_sql(sql, rdb) months = df['month'].to_list() except: months = [] return months def week(rdb, patient): """ Returns list of weeks in database for selected patient """ sql = """SELECT DISTINCT TO_CHAR("Date", 'IYYY/IW') AS week FROM applewatch_numeric WHERE "Name"='{}' AND type ='Resting Heart Rate' ORDER BY week """.format(patient) try: df = pd.read_sql(sql, rdb) weeks = df['week'].to_list() except: weeks = [] return weeks def min_max_date(rdb, patient): """ Returns min and max date for selected patient """ sql = """SELECT min_date,max_date FROM patient WHERE "Name"='{}'""".format(patient) try: df = pd.read_sql(sql, rdb) min_date, max_date = df['min_date'].iloc[0].date(), df['max_date'].iloc[0].date() except: min_date, max_date = '', '' return min_date, max_date def age_sex(rdb, patient): """ Returns age and gender for selected patient""" sql = """SELECT "Age","Sex" from patient where "Name"='{}' """.format(patient) try: df = pd.read_sql(sql, rdb) age, sex = df['Age'][0], df['Sex'][0] except: age, sex = '', '' return age, sex def classification_ecg(rdb, patient): """ Returns ecg classification for patient information card """ sql = """SELECT "Classification",count(*) FROM ecg WHERE "Patient"='{}' GROUP BY "Classification" """.format(patient) try: df = pd.read_sql(sql, rdb) except: df = pd.DataFrame() return df def number_of_days_more_6(rdb, patient): """ Returns number of days the patient had the Apple Watch on their hand for more than 6 hours""" sql = """SELECT count (*) FROM (SELECT "Date"::date FROM applewatch_categorical WHERE "Name" = '{}' AND "type" = 'Apple Stand Hour' GROUP BY "Date"::date HAVING count("Date"::date) > 6) days """.format(patient) try: df = pd.read_sql(sql, rdb) df = df.iloc[0]['count'] except: df = '0' return df def card(rdb, patient, group, date, value): """ Returns DataFrame with resting, working, mean hear rate, step count, exercise time, activity for the cards """ if group == 'M': to_char = """ TO_CHAR("Date",'YYYY-MM') """ group_by = "month" elif group == 'W': to_char = """ TO_CHAR("Date", 'IYYY/IW') """ group_by = "week" elif group == 'DOW': to_char = """ TRIM(TO_CHAR("Date", 'Day')) """ group_by = "DOW" else: to_char = """ "Date"::date """ group_by = "date" value = date sql = """SELECT {0} AS {3},type, CASE WHEN type in ('Active Energy Burned','Step Count','Apple Exercise Time') THEN SUM("Value") WHEN type in ('Heart Rate','Walking Heart Rate Average','Resting Heart Rate') THEN AVG("Value") END AS "Value" FROM applewatch_numeric WHERE "Name" = '{1}' AND type in ('Active Energy Burned','Step Count','Apple Exercise Time','Heart Rate', 'Walking Heart Rate Average','Resting Heart Rate') AND {0}='{2}' GROUP BY {3},type""".format(to_char, patient, value, group_by) try: df = pd.read_sql(sql, rdb) df["Value"] = df["Value"].round(2) except: df = pd.DataFrame() return df def table(rdb, patient, group, linear, bar): """ Returns a table with the patient and parameters that were selected from drop downs """ if isinstance(linear, list): linear = "'" + "','".join(linear) + "'" else: linear = "'" + linear + "'" if group == 'M': to_char = """ TO_CHAR("Date",'YYYY-MM')""" group_by = "month" elif group == 'W': to_char = """ TO_CHAR("Date", 'IYYY/IW') """ group_by = "week" elif group == 'DOW': to_char = """ TRIM(TO_CHAR("Date",'Day')) """ group_by = ' "DOW" ' else: to_char = """ "Date"::date """ group_by = "date" sql = """SELECT {0} as {4},"type", CASE WHEN type IN ('Heart Rate','Heart Rate Variability SDNN','Resting Heart Rate','VO2 Max', 'Walking Heart Rate Average') THEN AVG("Value") ELSE SUM("Value") END AS "Value" FROM applewatch_numeric WHERE "Name" = '{1}' AND "type" in ({2},'{3}') GROUP BY {0},type ORDER BY "type",{4} """.format(to_char, patient, linear, bar, group_by) try: df = pd.read_sql(sql, rdb) if group == 'DOW': cats = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] df['DOW'] = pd.Categorical(df['DOW'], categories=cats, ordered=True) df = df.sort_values('DOW') group_by = "DOW" df = df.pivot(index=group_by, columns='type', values='Value').reset_index() except: df = pd.DataFrame() return df, group_by def day_figure(rdb, patient, bar, date): """ Returns DataFrame for day figure with heart rate and selected parameter and patient """ sql = """ SELECT "Date","type","Value" FROM applewatch_numeric WHERE "Name" = '{}' AND "Date"::date='{}' AND "type" in ('Heart Rate','{}') ORDER BY "type","Date" """.format(patient, date, bar) try: df = pd.read_sql(sql, rdb) except: df = pd.DataFrame() return df def trend_figure(rdb, patient, group, start_date, end_date): """ Returns DataFrame for trend figure """ if group == 'M': to_char = """ TO_CHAR("Date",'YYYY-MM')""" group_by = "month" elif group == 'W': to_char = """ TO_CHAR("Date", 'IYYY/IW') """ group_by = "week" elif group == 'DOW': to_char = """TRIM(TO_CHAR("Date", 'Day')) """ group_by = """ "DOW" """ else: to_char = """ "Date"::date """ group_by = "date" """ TRIM(TO_CHAR("Date", 'Day')) in ()""" sql = """SELECT {0} as {1},extract('hour' from "Date") as hour,AVG("Value") AS "Value" FROM applewatch_numeric WHERE "Name" = '{2}' AND type='Heart Rate' AND "Date" BETWEEN '{3}' AND '{4}' GROUP BY {0},extract('hour' from "Date") ORDER BY {1},hour """.format(to_char, group_by, patient, start_date, end_date) try: df = pd.read_sql(sql, rdb) except: df = pd.DataFrame() return df # Query data for ECG_analyse def ecgs(rdb, patient): """ Returns DataFrame for table_ecg""" sql2 = """SELECT "Day","Date"::time AS Time, "Classification" FROM ecg WHERE "Patient"='{}' ORDER BY "Day" """.format(patient) try: df = pd.read_sql(sql2, rdb) except: df = pd.DataFrame() return df def ecg_data(rdb, day, patient, time): """ Returns DatFrame to plot ecg signal """ sql = """SELECT * FROM ECG where "Day"='{0}' and "Patient"='{1}' and "Date"::time='{2}' """.format(day, patient, time) try: df =
pd.read_sql(sql, rdb)
pandas.read_sql
# -*- coding: utf-8 -*- # pylint: disable=E1101 # flake8: noqa from datetime import datetime import csv import os import sys import re import nose import platform from multiprocessing.pool import ThreadPool from numpy import nan import numpy as np from pandas.io.common import DtypeWarning from pandas import DataFrame, Series, Index, MultiIndex, DatetimeIndex from pandas.compat import( StringIO, BytesIO, PY3, range, long, lrange, lmap, u ) from pandas.io.common import URLError import pandas.io.parsers as parsers from pandas.io.parsers import (read_csv, read_table, read_fwf, TextFileReader, TextParser) import pandas.util.testing as tm import pandas as pd from pandas.compat import parse_date import pandas.lib as lib from pandas import compat from pandas.lib import Timestamp from pandas.tseries.index import date_range import pandas.tseries.tools as tools from numpy.testing.decorators import slow import pandas.parser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def read_csv(self, *args, **kwargs): raise NotImplementedError def read_table(self, *args, **kwargs): raise NotImplementedError def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) self.dirpath = tm.get_data_path() self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') def construct_dataframe(self, num_rows): df = DataFrame(np.random.rand(num_rows, 5), columns=list('abcde')) df['foo'] = 'foo' df['bar'] = 'bar' df['baz'] = 'baz' df['date'] = pd.date_range('20000101 09:00:00', periods=num_rows, freq='s') df['int'] = np.arange(num_rows, dtype='int64') return df def generate_multithread_dataframe(self, path, num_rows, num_tasks): def reader(arg): start, nrows = arg if not start: return pd.read_csv(path, index_col=0, header=0, nrows=nrows, parse_dates=['date']) return pd.read_csv(path, index_col=0, header=None, skiprows=int(start) + 1, nrows=nrows, parse_dates=[9]) tasks = [ (num_rows * i / num_tasks, num_rows / num_tasks) for i in range(num_tasks) ] pool = ThreadPool(processes=num_tasks) results = pool.map(reader, tasks) header = results[0].columns for r in results[1:]: r.columns = header final_dataframe = pd.concat(results) return final_dataframe def test_converters_type_must_be_dict(self): with tm.assertRaisesRegexp(TypeError, 'Type converters.+'): self.read_csv(StringIO(self.data1), converters=0) def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), decimal='') def test_empty_thousands_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands='') def test_multi_character_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands=',,') def test_empty_string(self): data = """\ One,Two,Three a,1,one b,2,two ,3,three d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv(StringIO(data)) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}, keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv( StringIO(data), na_values=['a'], keep_default_na=False) xp = DataFrame({'One': [np.nan, 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) # GH4318, passing na_values=None and keep_default_na=False yields # 'None' as a na_value data = """\ One,Two,Three a,1,None b,2,two ,3,None d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv( StringIO(data), keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['None', 'two', 'None', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) # it works! read_csv(fname, index_col=0, parse_dates=True) def test_dialect(self): data = """\ label1,label2,label3 index1,"a,c,e index2,b,d,f """ dia = csv.excel() dia.quoting = csv.QUOTE_NONE df = self.read_csv(StringIO(data), dialect=dia) data = '''\ label1,label2,label3 index1,a,c,e index2,b,d,f ''' exp = self.read_csv(StringIO(data)) exp.replace('a', '"a', inplace=True) tm.assert_frame_equal(df, exp) def test_dialect_str(self): data = """\ fruit:vegetable apple:brocolli pear:tomato """ exp = DataFrame({ 'fruit': ['apple', 'pear'], 'vegetable': ['brocolli', 'tomato'] }) dia = csv.register_dialect('mydialect', delimiter=':') # noqa df = self.read_csv(StringIO(data), dialect='mydialect') tm.assert_frame_equal(df, exp) csv.unregister_dialect('mydialect') def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) tm.assert_equal(expected.A.dtype, 'int64') tm.assert_equal(expected.B.dtype, 'float') tm.assert_equal(expected.C.dtype, 'float') df = self.read_csv(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) data_with_odd_sep = """A|B|C 1|2.334,01|5 10|13|10, """ df = self.read_csv(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) def test_separator_date_conflict(self): # Regression test for issue #4678: make sure thousands separator and # date parsing do not conflict. data = '06-02-2013;13:00;1-000.215' expected = DataFrame( [[datetime(2013, 6, 2, 13, 0, 0), 1000.215]], columns=['Date', 2] ) df = self.read_csv(StringIO(data), sep=';', thousands='-', parse_dates={'Date': [0, 1]}, header=None) tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) tm.assertIsInstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # GH 8217 # series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) self.assertFalse(result._is_view) def test_inf_parsing(self): data = """\ ,A a,inf b,-inf c,Inf d,-Inf e,INF f,-INF g,INf h,-INf i,inF j,-inF""" inf = float('inf') expected = Series([inf, -inf] * 5) df = read_csv(StringIO(data), index_col=0) tm.assert_almost_equal(df['A'].values, expected.values) df = read_csv(StringIO(data), index_col=0, na_filter=False) tm.assert_almost_equal(df['A'].values, expected.values) def test_multiple_date_col(self): # Can use multiple date parsers data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def func(*date_cols): return lib.try_parse_dates(parsers._concat_date_cols(date_cols)) df = self.read_csv(StringIO(data), header=None, date_parser=func, prefix='X', parse_dates={'nominal': [1, 2], 'actual': [1, 3]}) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'nominal'], d) df = self.read_csv(StringIO(data), header=None, date_parser=func, parse_dates={'nominal': [1, 2], 'actual': [1, 3]}, keep_date_col=True) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ df = read_csv(StringIO(data), header=None, prefix='X', parse_dates=[[1, 2], [1, 3]]) self.assertIn('X1_X2', df) self.assertIn('X1_X3', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'X1_X2'], d) df = read_csv(StringIO(data), header=None, parse_dates=[[1, 2], [1, 3]], keep_date_col=True) self.assertIn('1_2', df) self.assertIn('1_3', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = '''\ KORD,19990127 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 ''' df = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[1], index_col=1) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.index[0], d) def test_multiple_date_cols_int_cast(self): data = ("KORD,19990127, 19:00:00, 18:56:00, 0.8100\n" "KORD,19990127, 20:00:00, 19:56:00, 0.0100\n" "KORD,19990127, 21:00:00, 20:56:00, -0.5900\n" "KORD,19990127, 21:00:00, 21:18:00, -0.9900\n" "KORD,19990127, 22:00:00, 21:56:00, -0.5900\n" "KORD,19990127, 23:00:00, 22:56:00, -0.5900") date_spec = {'nominal': [1, 2], 'actual': [1, 3]} import pandas.io.date_converters as conv # it works! df = self.read_csv(StringIO(data), header=None, parse_dates=date_spec, date_parser=conv.parse_date_time) self.assertIn('nominal', df) def test_multiple_date_col_timestamp_parse(self): data = """05/31/2012,15:30:00.029,1306.25,1,E,0,,1306.25 05/31/2012,15:30:00.029,1306.25,8,E,0,,1306.25""" result = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[[0, 1]], date_parser=Timestamp) ex_val = Timestamp('05/31/2012 15:30:00.029') self.assertEqual(result['0_1'][0], ex_val) def test_single_line(self): # GH 6607 # Test currently only valid with python engine because sep=None and # delim_whitespace=False. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'sep=None with delim_whitespace=False'): # sniff separator buf = StringIO() sys.stdout = buf # printing warning message when engine == 'c' for now try: # it works! df = self.read_csv(StringIO('1,2'), names=['a', 'b'], header=None, sep=None) tm.assert_frame_equal(DataFrame({'a': [1], 'b': [2]}), df) finally: sys.stdout = sys.__stdout__ def test_multiple_date_cols_with_header(self): data = """\ ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}) self.assertNotIsInstance(df.nominal[0], compat.string_types) ts_data = """\ ID,date,nominalTime,actualTime,A,B,C,D,E KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def test_multiple_date_col_name_collision(self): self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), parse_dates={'ID': [1, 2]}) data = """\ date_NominalTime,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" # noqa self.assertRaises(ValueError, self.read_csv, StringIO(data), parse_dates=[[1, 2]]) def test_index_col_named(self): no_header = """\ KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" h = "ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir\n" data = h + no_header rs = self.read_csv(StringIO(data), index_col='ID') xp = self.read_csv(StringIO(data), header=0).set_index('ID') tm.assert_frame_equal(rs, xp) self.assertRaises(ValueError, self.read_csv, StringIO(no_header), index_col='ID') data = """\ 1,2,3,4,hello 5,6,7,8,world 9,10,11,12,foo """ names = ['a', 'b', 'c', 'd', 'message'] xp = DataFrame({'a': [1, 5, 9], 'b': [2, 6, 10], 'c': [3, 7, 11], 'd': [4, 8, 12]}, index=Index(['hello', 'world', 'foo'], name='message')) rs = self.read_csv(StringIO(data), names=names, index_col=['message']) tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) rs = self.read_csv(StringIO(data), names=names, index_col='message') tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) def test_usecols_index_col_False(self): # Issue 9082 s = "a,b,c,d\n1,2,3,4\n5,6,7,8" s_malformed = "a,b,c,d\n1,2,3,4,\n5,6,7,8," cols = ['a', 'c', 'd'] expected = DataFrame({'a': [1, 5], 'c': [3, 7], 'd': [4, 8]}) df = self.read_csv(StringIO(s), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(s_malformed), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) def test_index_col_is_True(self): # Issue 9798 self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), index_col=True) def test_converter_index_col_bug(self): # 1835 data = "A;B\n1;2\n3;4" rs = self.read_csv(StringIO(data), sep=';', index_col='A', converters={'A': lambda x: x}) xp = DataFrame({'B': [2, 4]}, index=Index([1, 3], name='A')) tm.assert_frame_equal(rs, xp) self.assertEqual(rs.index.name, xp.index.name) def test_date_parser_int_bug(self): # #3071 log_file = StringIO( 'posix_timestamp,elapsed,sys,user,queries,query_time,rows,' 'accountid,userid,contactid,level,silo,method\n' '1343103150,0.062353,0,4,6,0.01690,3,' '12345,1,-1,3,invoice_InvoiceResource,search\n' ) def f(posix_string): return datetime.utcfromtimestamp(int(posix_string)) # it works! read_csv(log_file, index_col=0, parse_dates=0, date_parser=f) def test_multiple_skts_example(self): data = "year, month, a, b\n 2001, 01, 0.0, 10.\n 2001, 02, 1.1, 11." pass def test_malformed(self): # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#') self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # skip_footer data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: try: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): # XXX df = self.read_table( StringIO(data), sep=',', header=1, comment='#', skip_footer=1) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(5) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read(2) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read() self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) def test_passing_dtype(self): # GH 6607 # Passing dtype is currently only supported by the C engine. # Temporarily copied to TestCParser*. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): df = DataFrame(np.random.rand(5, 2), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # GH 3795 # passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) tm.assert_series_equal(result.dtypes, Series( {'A': 'object', 'B': 'object'})) # we expect all object columns, so need to convert to test for # equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # valid but we don't support it (date) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0, parse_dates=['B']) # valid but we don't support it self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'timedelta64', 'B': 'float64'}, index_col=0) with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): # empty frame # GH12048 self.read_csv(StringIO('A,B'), dtype=str) def test_quoting(self): bad_line_small = """printer\tresult\tvariant_name Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jacob Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jakob Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\t"Furststiftische Hofdruckerei, <Kempten"" Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tGaller, Alois Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tHochfurstliche Buchhandlung <Kempten>""" self.assertRaises(Exception, self.read_table, StringIO(bad_line_small), sep='\t') good_line_small = bad_line_small + '"' df = self.read_table(StringIO(good_line_small), sep='\t') self.assertEqual(len(df), 3) def test_non_string_na_values(self): # GH3611, na_values that are not a string are an issue with tm.ensure_clean('__non_string_na_values__.csv') as path: df = DataFrame({'A': [-999, 2, 3], 'B': [1.2, -999, 4.5]}) df.to_csv(path, sep=' ', index=False) result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, result2) tm.assert_frame_equal(result2, result3) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, result3) tm.assert_frame_equal(result5, result3) tm.assert_frame_equal(result6, result3) tm.assert_frame_equal(result7, result3) good_compare = result3 # with an odd float format, so we can't match the string 999.0 # exactly, but need float matching df.to_csv(path, sep=' ', index=False, float_format='%.3f') result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, good_compare) tm.assert_frame_equal(result2, good_compare) tm.assert_frame_equal(result3, good_compare) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, good_compare) tm.assert_frame_equal(result5, good_compare) tm.assert_frame_equal(result6, good_compare) tm.assert_frame_equal(result7, good_compare) def test_default_na_values(self): _NA_VALUES = set(['-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A', 'N/A', 'NA', '#NA', 'NULL', 'NaN', 'nan', '-NaN', '-nan', '#N/A N/A', '']) self.assertEqual(_NA_VALUES, parsers._NA_VALUES) nv = len(_NA_VALUES) def f(i, v): if i == 0: buf = '' elif i > 0: buf = ''.join([','] * i) buf = "{0}{1}".format(buf, v) if i < nv - 1: buf = "{0}{1}".format(buf, ''.join([','] * (nv - i - 1))) return buf data = StringIO('\n'.join([f(i, v) for i, v in enumerate(_NA_VALUES)])) expected = DataFrame(np.nan, columns=range(nv), index=range(nv)) df = self.read_csv(data, header=None) tm.assert_frame_equal(df, expected) def test_custom_na_values(self): data = """A,B,C ignore,this,row 1,NA,3 -1.#IND,5,baz 7,8,NaN """ expected = [[1., nan, 3], [nan, 5, nan], [7, 8, nan]] df = self.read_csv(StringIO(data), na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df.values, expected) df2 = self.read_table(StringIO(data), sep=',', na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df2.values, expected) df3 = self.read_table(StringIO(data), sep=',', na_values='baz', skiprows=[1]) tm.assert_almost_equal(df3.values, expected) def test_nat_parse(self): # GH 3062 df = DataFrame(dict({ 'A': np.asarray(lrange(10), dtype='float64'), 'B': pd.Timestamp('20010101')})) df.iloc[3:6, :] = np.nan with tm.ensure_clean('__nat_parse_.csv') as path: df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) expected = Series(dict(A='float64', B='datetime64[ns]')) tm.assert_series_equal(expected, result.dtypes) # test with NaT for the nan_rep # we don't have a method to specif the Datetime na_rep (it defaults # to '') df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) def test_skiprows_bug(self): # GH #505 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=lrange(6), header=None, index_col=0, parse_dates=True) data2 = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) tm.assert_frame_equal(data, data2) def test_deep_skiprows(self): # GH #4382 text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in range(10)]) condensed_text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in [0, 1, 2, 3, 4, 6, 8, 9]]) data = self.read_csv(StringIO(text), skiprows=[6, 8]) condensed_data = self.read_csv(StringIO(condensed_text)) tm.assert_frame_equal(data, condensed_data) def test_skiprows_blank(self): # GH 9832 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) def test_detect_string_na(self): data = """A,B foo,bar NA,baz NaN,nan """ expected = [['foo', 'bar'], [nan, 'baz'], [nan, nan]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) def test_unnamed_columns(self): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] df = self.read_table(StringIO(data), sep=',') tm.assert_almost_equal(df.values, expected) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'Unnamed: 3', 'Unnamed: 4']) def test_string_nas(self): data = """A,B,C a,b,c d,,f ,g,h """ result = self.read_csv(StringIO(data)) expected = DataFrame([['a', 'b', 'c'], ['d', np.nan, 'f'], [np.nan, 'g', 'h']], columns=['A', 'B', 'C']) tm.assert_frame_equal(result, expected) def test_duplicate_columns(self): for engine in ['python', 'c']: data = """A,A,B,B,B 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ # check default beahviour df = self.read_table(StringIO(data), sep=',', engine=engine) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=False) self.assertEqual(list(df.columns), ['A', 'A', 'B', 'B', 'B']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=True) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) def test_csv_mixed_type(self): data = """A,B,C a,1,2 b,3,4 c,4,5 """ df = self.read_csv(StringIO(data)) # TODO def test_csv_custom_parser(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ f = lambda x: datetime.strptime(x, '%Y%m%d') df = self.read_csv(StringIO(data), date_parser=f) expected = self.read_csv(StringIO(data), parse_dates=True) tm.assert_frame_equal(df, expected) def test_parse_dates_implicit_first_col(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ df = self.read_csv(StringIO(data), parse_dates=True) expected = self.read_csv(StringIO(data), index_col=0, parse_dates=True) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) tm.assert_frame_equal(df, expected) def test_parse_dates_string(self): data = """date,A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ rs = self.read_csv( StringIO(data), index_col='date', parse_dates='date') idx = date_range('1/1/2009', periods=3) idx.name = 'date' xp = DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 3, 4], 'C': [2, 4, 5]}, idx) tm.assert_frame_equal(rs, xp) def test_yy_format(self): data = """date,time,B,C 090131,0010,1,2 090228,1020,3,4 090331,0830,5,6 """ rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[['date', 'time']]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[[0, 1]]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) def test_parse_dates_column_list(self): from pandas.core.datetools import to_datetime data = '''date;destination;ventilationcode;unitcode;units;aux_date 01/01/2010;P;P;50;1;12/1/2011 01/01/2010;P;R;50;1;13/1/2011 15/01/2010;P;P;50;1;14/1/2011 01/05/2010;P;P;50;1;15/1/2011''' expected = self.read_csv(StringIO(data), sep=";", index_col=lrange(4)) lev = expected.index.levels[0] levels = list(expected.index.levels) levels[0] = lev.to_datetime(dayfirst=True) # hack to get this to work - remove for final test levels[0].name = lev.name expected.index.set_levels(levels, inplace=True) expected['aux_date'] = to_datetime(expected['aux_date'], dayfirst=True) expected['aux_date'] = lmap(Timestamp, expected['aux_date']) tm.assertIsInstance(expected['aux_date'][0], datetime) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=[0, 5], dayfirst=True) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=['date', 'aux_date'], dayfirst=True) tm.assert_frame_equal(df, expected) def test_no_header(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df = self.read_table(StringIO(data), sep=',', header=None) df_pref = self.read_table(StringIO(data), sep=',', prefix='X', header=None) names = ['foo', 'bar', 'baz', 'quux', 'panda'] df2 = self.read_table(StringIO(data), sep=',', names=names) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df.values, expected) tm.assert_almost_equal(df.values, df2.values) self.assert_numpy_array_equal(df_pref.columns, ['X0', 'X1', 'X2', 'X3', 'X4']) self.assert_numpy_array_equal(df.columns, lrange(5)) self.assert_numpy_array_equal(df2.columns, names) def test_no_header_prefix(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df_pref = self.read_table(StringIO(data), sep=',', prefix='Field', header=None) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df_pref.values, expected) self.assert_numpy_array_equal(df_pref.columns, ['Field0', 'Field1', 'Field2', 'Field3', 'Field4']) def test_header_with_index_col(self): data = """foo,1,2,3 bar,4,5,6 baz,7,8,9 """ names = ['A', 'B', 'C'] df = self.read_csv(StringIO(data), names=names) self.assertEqual(names, ['A', 'B', 'C']) values = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] expected = DataFrame(values, index=['foo', 'bar', 'baz'], columns=['A', 'B', 'C']) tm.assert_frame_equal(df, expected) def test_read_csv_dataframe(self): df = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = self.read_table(self.csv1, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D']) self.assertEqual(df.index.name, 'index') self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_no_index_name(self): df = self.read_csv(self.csv2, index_col=0, parse_dates=True) df2 = self.read_table(self.csv2, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D', 'E']) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.ix[:, ['A', 'B', 'C', 'D'] ].values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_infer_compression(self): # GH 9770 expected = self.read_csv(self.csv1, index_col=0, parse_dates=True) inputs = [self.csv1, self.csv1 + '.gz', self.csv1 + '.bz2', open(self.csv1)] for f in inputs: df = self.read_csv(f, index_col=0, parse_dates=True, compression='infer') tm.assert_frame_equal(expected, df) inputs[3].close() def test_read_table_unicode(self): fin = BytesIO(u('\u0141aski, Jan;1').encode('utf-8')) df1 = read_table(fin, sep=";", encoding="utf-8", header=None) tm.assertIsInstance(df1[0].values[0], compat.text_type) def test_read_table_wrong_num_columns(self): # too few! data = """A,B,C,D,E,F 1,2,3,4,5,6 6,7,8,9,10,11,12 11,12,13,14,15,16 """ self.assertRaises(Exception, self.read_csv, StringIO(data)) def test_read_table_duplicate_index(self): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ result = self.read_csv(StringIO(data), index_col=0) expected = self.read_csv(StringIO(data)).set_index('index', verify_integrity=False) tm.assert_frame_equal(result, expected) def test_read_table_duplicate_index_implicit(self): data = """A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ # it works! result = self.read_csv(StringIO(data)) def test_parse_bools(self): data = """A,B True,1 False,2 True,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B YES,1 no,2 yes,3 No,3 Yes,3 """ data = self.read_csv(StringIO(data), true_values=['yes', 'Yes', 'YES'], false_values=['no', 'NO', 'No']) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B TRUE,1 FALSE,2 TRUE,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B foo,bar bar,foo""" result = self.read_csv(StringIO(data), true_values=['foo'], false_values=['bar']) expected = DataFrame({'A': [True, False], 'B': [False, True]}) tm.assert_frame_equal(result, expected) def test_int_conversion(self): data = """A,B 1.0,1 2.0,2 3.0,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.float64) self.assertEqual(data['B'].dtype, np.int64) def test_infer_index_col(self): data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ data = self.read_csv(
StringIO(data)
pandas.compat.StringIO
import pathlib import pytest import pandas as pd import numpy as np import gradelib EXAMPLES_DIRECTORY = pathlib.Path(__file__).parent / "examples" GRADESCOPE_EXAMPLE = gradelib.Gradebook.from_gradescope( EXAMPLES_DIRECTORY / "gradescope.csv" ) CANVAS_EXAMPLE = gradelib.Gradebook.from_canvas(EXAMPLES_DIRECTORY / "canvas.csv") # the canvas example has Lab 01, which is also in Gradescope. Let's remove it CANVAS_WITHOUT_LAB_EXAMPLE = gradelib.Gradebook( points=CANVAS_EXAMPLE.points.drop(columns="lab 01"), maximums=CANVAS_EXAMPLE.maximums.drop(index="lab 01"), late=CANVAS_EXAMPLE.late.drop(columns="lab 01"), dropped=CANVAS_EXAMPLE.dropped.drop(columns="lab 01"), ) # given ROSTER = gradelib.read_egrades_roster(EXAMPLES_DIRECTORY / "egrades.csv") def assert_gradebook_is_sound(gradebook): assert gradebook.points.shape == gradebook.dropped.shape == gradebook.late.shape assert (gradebook.points.columns == gradebook.dropped.columns).all() assert (gradebook.points.columns == gradebook.late.columns).all() assert (gradebook.points.index == gradebook.dropped.index).all() assert (gradebook.points.index == gradebook.late.index).all() assert (gradebook.points.columns == gradebook.maximums.index).all() # assignments property # ----------------------------------------------------------------------------- def test_assignments_are_produced_in_order(): assert list(GRADESCOPE_EXAMPLE.assignments) == list( GRADESCOPE_EXAMPLE.points.columns ) # keep_pids() # ----------------------------------------------------------------------------- def test_keep_pids(): # when actual = GRADESCOPE_EXAMPLE.keep_pids(ROSTER.index) # then assert len(actual.pids) == 3 assert_gradebook_is_sound(actual) def test_keep_pids_raises_if_pid_does_not_exist(): # given pids = ["A12345678", "ADNEDNE00"] # when with pytest.raises(KeyError): actual = GRADESCOPE_EXAMPLE.keep_pids(pids) # keep_assignments() and remove_assignments() # ----------------------------------------------------------------------------- def test_keep_assignments(): # when actual = GRADESCOPE_EXAMPLE.keep_assignments(["homework 01", "homework 02"]) # then assert set(actual.assignments) == {"homework 01", "homework 02"} assert_gradebook_is_sound(actual) def test_keep_assignments_raises_if_assignment_does_not_exist(): # given assignments = ["homework 01", "this aint an assignment"] # then with pytest.raises(KeyError): GRADESCOPE_EXAMPLE.keep_assignments(assignments) def test_remove_assignments(): # when actual = GRADESCOPE_EXAMPLE.remove_assignments( GRADESCOPE_EXAMPLE.assignments.starting_with("lab") ) # then assert set(actual.assignments) == { "homework 01", "homework 02", "homework 03", "homework 04", "homework 05", "homework 06", "homework 07", "project 01", "project 02", } assert_gradebook_is_sound(actual) def test_remove_assignments_raises_if_assignment_does_not_exist(): # given assignments = ["homework 01", "this aint an assignment"] # then with pytest.raises(KeyError): GRADESCOPE_EXAMPLE.remove_assignments(assignments) # combine() # ----------------------------------------------------------------------------- def test_combine_with_keep_pids(): # when combined = gradelib.Gradebook.combine( [GRADESCOPE_EXAMPLE, CANVAS_WITHOUT_LAB_EXAMPLE], keep_pids=ROSTER.index ) # then assert "homework 01" in combined.assignments assert "midterm exam" in combined.assignments assert_gradebook_is_sound(combined) def test_combine_raises_if_duplicate_assignments(): # the canvas example and the gradescope example both have lab 01. # when with pytest.raises(ValueError): combined = gradelib.Gradebook.combine([GRADESCOPE_EXAMPLE, CANVAS_EXAMPLE]) def test_combine_raises_if_indices_do_not_match(): # when with pytest.raises(ValueError): combined = gradelib.Gradebook.combine( [CANVAS_WITHOUT_LAB_EXAMPLE, GRADESCOPE_EXAMPLE] ) # number_of_lates() # ----------------------------------------------------------------------------- def test_number_of_lates(): # when labs = GRADESCOPE_EXAMPLE.assignments.starting_with("lab") actual = GRADESCOPE_EXAMPLE.number_of_lates(within=labs) # then assert list(actual) == [1, 4, 2, 2] def test_number_of_lates_with_empty_assignment_list_raises(): # when with pytest.raises(ValueError): actual = GRADESCOPE_EXAMPLE.number_of_lates(within=[]) def test_number_of_lates_with_no_assignment_list_uses_all_assignments(): # when actual = GRADESCOPE_EXAMPLE.number_of_lates() # then assert list(actual) == [1, 5, 2, 2] # forgive_lates() # ----------------------------------------------------------------------------- def test_forgive_lates(): # when labs = GRADESCOPE_EXAMPLE.assignments.starting_with("lab") actual = GRADESCOPE_EXAMPLE.forgive_lates(n=3, within=labs) # then assert list(actual.number_of_lates(within=labs)) == [0, 1, 0, 0] assert_gradebook_is_sound(actual) def test_forgive_lates_with_empty_assignment_list_raises(): # when with pytest.raises(ValueError): actual = GRADESCOPE_EXAMPLE.forgive_lates(n=3, within=[]) def test_forgive_lates_forgives_the_first_n_lates(): # by "first", we mean in the order specified by the `within` argument # student A10000000 had late lab 01, 02, 03, and 07 assignments = ["lab 02", "lab 07", "lab 01", "lab 03"] # when actual = GRADESCOPE_EXAMPLE.forgive_lates(n=2, within=assignments) # then assert not actual.late.loc["A10000000", "lab 02"] assert not actual.late.loc["A10000000", "lab 07"] assert actual.late.loc["A10000000", "lab 01"] assert actual.late.loc["A10000000", "lab 03"] def test_forgive_lates_does_not_forgive_dropped(): # given labs = GRADESCOPE_EXAMPLE.assignments.starting_with("lab") dropped = GRADESCOPE_EXAMPLE.dropped.copy() dropped.iloc[:, :] = True example = gradelib.Gradebook( points=GRADESCOPE_EXAMPLE.points, maximums=GRADESCOPE_EXAMPLE.maximums, late=GRADESCOPE_EXAMPLE.late, dropped=dropped, ) # when actual = example.forgive_lates(n=3, within=labs) # then assert list(actual.number_of_lates(within=labs)) == [1, 4, 2, 2] assert_gradebook_is_sound(actual) # drop_lowest() # ----------------------------------------------------------------------------- def test_drop_lowest_on_simple_example_1(): # given columns = ["hw01", "hw02", "hw03", "lab01"] p1 = pd.Series(data=[1, 30, 90, 20], index=columns, name="A1") p2 = pd.Series(data=[2, 7, 15, 20], index=columns, name="A2") points = pd.DataFrame([p1, p2]) maximums = pd.Series([2, 50, 100, 20], index=columns) gradebook = gradelib.Gradebook(points, maximums) homeworks = gradebook.assignments.starting_with("hw") # if we are dropping 1 HW, the right strategy is to drop the 50 point HW # for A1 and to drop the 100 point homework for A2 # when actual = gradebook.drop_lowest(1, within=homeworks) # then assert actual.dropped.iloc[0, 1] assert actual.dropped.iloc[1, 2] assert list(actual.dropped.sum(axis=1)) == [1, 1] assert_gradebook_is_sound(actual) def test_drop_lowest_on_simple_example_2(): # given columns = ["hw01", "hw02", "hw03", "lab01"] p1 = pd.Series(data=[1, 30, 90, 20], index=columns, name="A1") p2 = pd.Series(data=[2, 7, 15, 20], index=columns, name="A2") points = pd.DataFrame([p1, p2]) maximums =
pd.Series([2, 50, 100, 20], index=columns)
pandas.Series
import unittest import pandas as pd import numpy as np from pandas.testing import assert_frame_equal from msticpy.analysis.anomalous_sequence import sessionize class TestSessionize(unittest.TestCase): def setUp(self): self.df1 = pd.DataFrame({"UserId": [], "time": [], "operation": []}) self.df1_with_ses_col = pd.DataFrame( {"UserId": [], "time": [], "operation": [], "session_ind": []} ) self.df1_sessionized = pd.DataFrame( { "UserId": [], "time_min": [], "time_max": [], "operation_list": [], "duration": [], "number_events": [], } ) self.df2 = pd.DataFrame( { "UserId": [1, 1, 2, 3, 1, 2, 2], "time": [ pd.to_datetime("2020-01-03 00:00:00"), pd.to_datetime("2020-01-03 00:01:00"), pd.to_datetime("2020-01-05 00:00:00"), pd.to_datetime("2020-01-06 11:06:00"), pd.to_datetime("2020-01-03 01:00:00"), pd.to_datetime("2020-01-05 00:21:00"), pd.to_datetime("2020-01-05 00:25:00"), ], "operation": ["A", "B", "C", "A", "A", "B", "C"], } ) self.df2_with_ses_col_1 = pd.DataFrame( { "UserId": [1, 1, 1, 2, 2, 2, 3], "time": [ pd.to_datetime("2020-01-03 00:00:00"), pd.to_datetime("2020-01-03 00:01:00"), pd.to_datetime("2020-01-03 01:00:00"), pd.to_datetime("2020-01-05 00:00:00"), pd.to_datetime("2020-01-05 00:21:00"), pd.to_datetime("2020-01-05 00:25:00"), pd.to_datetime("2020-01-06 11:06:00"), ], "operation": ["A", "B", "A", "C", "B", "C", "A"], "session_ind": [0, 0, 1, 2, 3, 4, 5], } ) self.df2_sessionized_1 = pd.DataFrame( { "UserId": [1, 1, 2, 2, 2, 3], "time_min": [ pd.to_datetime("2020-01-03 00:00:00"), pd.to_datetime("2020-01-03 01:00:00"), pd.to_datetime("2020-01-05 00:00:00"), pd.to_datetime("2020-01-05 00:21:00"), pd.to_datetime("2020-01-05 00:25:00"), pd.to_datetime("2020-01-06 11:06:00"), ], "time_max": [ pd.to_datetime("2020-01-03 00:01:00"), pd.to_datetime("2020-01-03 01:00:00"), pd.to_datetime("2020-01-05 00:00:00"), pd.to_datetime("2020-01-05 00:21:00"), pd.to_datetime("2020-01-05 00:25:00"), pd.to_datetime("2020-01-06 11:06:00"), ], "operation_list": [["A", "B"], ["A"], ["C"], ["B"], ["C"], ["A"]], "duration": [ pd.to_timedelta(1, "min"), pd.to_timedelta(0, "min"), pd.to_timedelta(0, "min"),
pd.to_timedelta(0, "min")
pandas.to_timedelta
from tqdm import tqdm import pandas as pd import sys, os import collections """ Small script to concat ENCODE files into a single dataframe to process it easily 5 cols = SRS sequencing 12 cols = LRS sequencing """ encode_dl_directory = "/gstock/biolo_datasets/ENCODE/DL/" dict_df = collections.defaultdict(list) for file in tqdm(os.listdir(encode_dl_directory)): # print(file) cols = open(encode_dl_directory + file, "r").readline().strip().split("\t") cols_length = len(cols) if cols_length == 5: dict_df[cols_length].append(pd.read_csv(encode_dl_directory + file, sep="\t")) elif cols_length == 12: dict_df[cols_length].append(
pd.read_csv(encode_dl_directory + file, sep="\t")
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # In[ ]: #Importing all the necessary packages and operators import os import pandas as pd import dask.dataframe as dd import json import datetime from airflow import models from airflow.providers.google.cloud.operators.bigquery import ( BigQueryCreateEmptyDatasetOperator, BigQueryDeleteDatasetOperator, ) from airflow.providers.google.cloud.transfers.gcs_to_bigquery import GCSToBigQueryOperator from airflow.utils.dates import days_ago from airflow.operators.python import PythonOperator DATASET_NAME = os.environ.get("GCP_DATASET_NAME", 'Cap2_DS') TABLE_NAME = os.environ.get("GCP_TABLE_NAME", 'Mod2_Proj2') dag = models.DAG( dag_id='gcs_to_bigquery_operator', start_date=days_ago(1), schedule_interval='@daily', tags=['example'] ) #Converting string column into dict column def string_to_dict(dict_string): # Convert to proper json format dict_string = dict_string.replace("'", '"') return json.loads(dict_string) # Function to concatanate all the csv files and perform necessary transformations def transform_data(): #Read .CSV files into dask dataframe dask_df = dd.read_csv('gs://saums_bucket/egen_cap1/*.csv') #Convert the dask df into pandas df pandas_df = dask_df.compute() pandas_df['dict_col']=pandas_df['1d'].apply(string_to_dict) #Flattening the dict column and merging it with original dataframe flattened_df = pd.json_normalize(pandas_df['dict_col']) mergedDf = pandas_df.merge(flattened_df, left_index=True, right_index=True) transformed_df = mergedDf[['name','price','price_timestamp','market_cap','volume','price_change', 'price_change_pct', 'volume_change', 'volume_change_pct', 'market_cap_change', 'market_cap_change_pct']] transformed_df['price_timestamp'] = pd.to_datetime(transformed_df['price_timestamp']) transformed_df = transformed_df[['name', 'price','price_change','price_change_pct','price_timestamp', 'market_cap','market_cap_change', 'market_cap_change_pct','volume','volume_change', 'volume_change_pct']] transformed_df['price_timestamp'] = transformed_df['price_timestamp'].dt.strftime("%m-%d-%Y %H:%M:%S") transformed_df['price_timestamp'] =
pd.to_datetime(transformed_df['price_timestamp'])
pandas.to_datetime
import pandas as pd import numpy as np #series ''' s = pd.Series(np.random.randn(5)) print(s) print (s.tail(2)) ''' #dataFrame d={'name':['anish','harshal','shivam','joyal'], 'age':[20,20,19,19], 'home':['kol','mum','del','ker'], 'rate':[4.4,4.3,5.4,6.5], 'rate2':[1,2,3,4]} pf=
pd.DataFrame(d,index=[1,2,3,4])
pandas.DataFrame
"""Feature extraction of image for training ML models""" import os import cv2 import numpy as np import pandas as pd #import matplotlib.pyplot as plt from skimage.filters import sobel, scharr, roberts, prewitt from skimage.feature import canny from scipy import ndimage as nd # Extract the features using different gabor kernels def addGabor(df,img): num = 1 kernels = [] ksize = 9 for theta in range(2): theta = theta/4.*np.pi for sigma in (1,3): for lamda in np.arange(0,np.pi,np.pi/4): for gamma in (0.05,0.5): gabor_label = "gabor" + str(num) kernel = cv2.getGaborKernel((ksize,ksize),sigma,theta,lamda,gamma,0,cv2.CV_32F) kernels.append(kernel) fimg = cv2.filter2D(img,cv2.CV_8UC3,kernel) filtered_img = fimg.reshape(-1) df[gabor_label] = filtered_img num += 1 return df # Extract the features using different edge detector methods def addEdges(df,gray): canny_edges = canny(gray,0.6) roberts_edges = roberts(gray) sobel_edges = sobel(gray) scharr_edges = scharr(gray) prewitt_edges = prewitt(gray) df['canny_edges'] = canny_edges.reshape(-1) df['roberts_edge'] = roberts_edges.reshape(-1) df['sobel_edge'] = sobel_edges.reshape(-1) df['scharr_edge'] = scharr_edges.reshape(-1) df['prewitt_edge'] = prewitt_edges.reshape(-1) return df # Extract feutures using gaussian and median filters def addFilter(df,gray): gaussian_3 = nd.gaussian_filter(gray,sigma=3) gaussian_7 = nd.gaussian_filter(gray,sigma=7) median_img = nd.median_filter(gray,size=3) df['gaussian_3'] = gaussian_3.reshape(-1) df['gaussian_3'] = gaussian_7.reshape(-1) df['gaussian_3'] = median_img.reshape(-1) return df # Add ground truth of the given input image def addTruthLabel(df,truthfile): gd = cv2.imread(truthfile,0) df['ground_truth'] = gd.reshape(-1) return df # Add all the feautes in the dataframe def calc_features(imgfile): df = pd.DataFrame([]) img = cv2.imread(imgfile) gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) img1 = np.reshape(gray,(-1)) df['pixels'] = img1 df = addGabor(df,img1) df = addEdges(df,gray) df = addFilter(df,gray) return df imgpath = r"C:\Users\shubh\Documents\steel_detection\metal_nut\test\scratch" gdpath = r"C:\Users\shubh\Documents\steel_detection\metal_nut\ground_truth\scratch" imglist = ["021.png", "022.png"] gdlist = ["021_mask.png", "021_mask.png"] imgfiles = [os.path.join(imgpath,file) for file in imglist] gdfiles = [os.path.join(gdpath,file) for file in gdlist] df =
pd.DataFrame([])
pandas.DataFrame
import numpy as np import scipy import matplotlib import pandas as pd import sklearn from sklearn.preprocessing import MinMaxScaler import tensorflow as tf import keras import matplotlib.pyplot as plt from datetime import datetime from loss_mse import loss_mse_warmup from custom_generator import batch_generator #Keras from tensorflow.python.keras.models import Sequential from tensorflow.python.keras.layers import Input, Dense, GRU, Embedding from tensorflow.python.keras.optimizers import RMSprop from tensorflow.python.keras.callbacks import EarlyStopping, ModelCheckpoint, TensorBoard, ReduceLROnPlateau #########Wczytanie danych############ dataset = pd.read_csv('dataset_PSE (1).csv', delimiter = ',') #print(dataset) ########Wizualizacja surowych probek########### #Vds= dataset.iloc[:,3] # ZAP, raw, unstamped. #visualize ZAP #plt.figure() #Vds.plot() #plt.show() #plt.savefig('RAW_Unstamped_ZAP.pdf') ############Sprawdzenie i naprawa danych############# #identyfikacja wadliwych rekordow #dataset['Godzina'].map(int) dataset = dataset[dataset['Godzina'] != '2A'] #odrzucono 2 rekordow #sprawdzenie danych HCheck = dataset[dataset['Godzina'].map(int).isin([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24])] #print(HCheck) #19669 rekordow #############Analiza sasiedztwa uszkodzonych danych############## #dataset['DH'] = dataset['Data'].map(str)+ dataset['Godzina'] #db_ds = dataset[dataset['Godzina'] == '2A'] #print(db_ds) #print(dataset) #db_ds = dataset[dataset['Data'] == 20171029] #print(db_ds) #print(dataset) ##########Konwersja etykiet probek############# timeStamps =
pd.to_datetime(dataset.Data,format='%Y%m%d')
pandas.to_datetime
# Copyright 2019 QuantRocket LLC - All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pandas as pd import numpy as np from statsmodels.tsa.vector_ar.vecm import coint_johansen from moonshot import Moonshot from moonshot.commission import PerShareCommission class USStockCommission(PerShareCommission): IB_COMMISSION_PER_SHARE = 0.005 class PairsStrategy(Moonshot): """ Pairs trading strategy that uses the Johansen test to re-calculate hedge ratios daily and uses Bollinger Bands to time entries and exits. Buys (sells) the spread when it crosses below (above) its lower (upper) Bollinger Band and exits when it crosses its moving average. To use the strategy, subclass this base class and define the appropriate DB and CONIDS. """ CODE = "pairs" DB = None DB_FIELDS = ["Close", "Open"] CONIDS = [] LOOKBACK_WINDOW = 20 # Calculate hedge ratios and Bollinger Bands using this lookback BBAND_STD = 1 # Set Bollinger Bands this many standard deviations away from mean COMMISSION_CLASS = USStockCommission def get_hedge_ratio(self, pair_prices): """ Helper function that uses the Johansen test to calculate hedge ratio. This is applied to the pair prices on a rolling basis in prices_to_signals. """ pair_prices = pair_prices.dropna() # Skip if we don't have at least 75% of the expected observations if len(pair_prices) < self.LOOKBACK_WINDOW * 0.75: return
pd.Series(0, index=pair_prices.columns)
pandas.Series
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import re from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.decomposition import TruncatedSVD from sklearn import preprocessing, model_selection, metrics import lightgbm as lgb import gc train_df = pd.read_csv('../input/train.csv', parse_dates=["activation_date"]) test_df = pd.read_csv('../input/test.csv', parse_dates=["activation_date"]) import matplotlib.pyplot as plt import pandas as pd import numpy as np import seaborn as sns import random import nltk nltk.data.path.append("/media/sayantan/Personal/nltk_data") from nltk.stem.snowball import RussianStemmer from fuzzywuzzy import fuzz from nltk.corpus import stopwords from tqdm import tqdm from scipy.stats import skew, kurtosis from scipy.spatial.distance import cosine, cityblock, jaccard, canberra, euclidean, minkowski, braycurtis from nltk import word_tokenize stopwords = stopwords.words('russian') def genFeatures(x): x["activation_weekday"] = x["activation_date"].dt.weekday x["monthday"] = x["activation_date"].dt.day x["weekinmonday"] = x["monthday"] // 7 ##################Added in set 1 - 0.01 Improvement x['price_new'] = np.log1p(x.price) # log transform improves co-relation with deal_price x['count_null_in_row'] = x.isnull().sum(axis=1)# works x['has_description'] = x.description.isnull().astype(int) x['has_image'] = x.image.isnull().astype(int) x['has_image_top'] = x.image_top_1.isnull().astype(int) x['has_param1'] = x.param_1.isnull().astype(int) x['has_param2'] = x.param_2.isnull().astype(int) x['has_param3'] = x.param_3.isnull().astype(int) x['has_price'] = x.price.isnull().astype(int) #################Added in set 2 - 0.00x Improvement x["description"].fillna("NA", inplace=True) x["desc_nwords"] = x["description"].apply(lambda x: len(x.split())) x['len_description'] = x['description'].apply(lambda x: len(x)) x["title_nwords"] = x["title"].apply(lambda x: len(x.split())) x['len_title'] = x['title'].apply(lambda x: len(x)) x['params'] = x['param_1'].fillna('') + ' ' + x['param_2'].fillna('') + ' ' + x['param_3'].fillna('') x['params'] = x['params'].str.strip() x['len_params'] = x['params'].apply(lambda x: len(x)) x['words_params'] = x['params'].apply(lambda x: len(x.split())) x['symbol1_count'] = x['description'].str.count('↓') x['symbol2_count'] = x['description'].str.count('\*') x['symbol3_count'] = x['description'].str.count('✔') x['symbol4_count'] = x['description'].str.count('❀') x['symbol5_count'] = x['description'].str.count('➚') x['symbol6_count'] = x['description'].str.count('ஜ') x['symbol7_count'] = x['description'].str.count('.') x['symbol8_count'] = x['description'].str.count('!') x['symbol9_count'] = x['description'].str.count('\?') x['symbol10_count'] = x['description'].str.count(' ') x['symbol11_count'] = x['description'].str.count('-') x['symbol12_count'] = x['description'].str.count(',') #################### return x train_df = genFeatures(train_df) test_df = genFeatures(test_df) test_df['deal_probability']=10.0 ############################ english_stemmer = nltk.stem.SnowballStemmer('russian') def clean_text(text): #text = re.sub(r'(\d+),(\d+)', r'\1.\2', text) text = text.replace(u'²', '2') text = text.lower() text = re.sub(u'[^a-zа-я0-9]', ' ', text) text = re.sub('\s+', ' ', text) return text.strip() def stem_tokens(tokens, stemmer): stemmed = [] for token in tokens: #stemmed.append(stemmer.lemmatize(token)) stemmed.append(stemmer.stem(token)) return stemmed def preprocess_data(line, exclude_stopword=True, encode_digit=False): ## tokenize line = clean_text(line) tokens = [x.lower() for x in nltk.word_tokenize(line)] ## stem tokens_stemmed = stem_tokens(tokens, english_stemmer)#english_stemmer if exclude_stopword: tokens_stemmed = [x for x in tokens_stemmed if x not in stopwords] return ' '.join(tokens_stemmed) train_test = pd.concat((train_df, test_df), axis = 'rows') ## After cleaning => then find intersection train_test["title_clean"]= list(train_test[["title"]].apply(lambda x: preprocess_data(x["title"]), axis=1)) train_test["desc_clean"]= list(train_test[["description"]].apply(lambda x: preprocess_data(x["description"]), axis=1)) train_test["params_clean"]= list(train_test[["params"]].apply(lambda x: preprocess_data(x["params"]), axis=1)) train_test['count_common_words_title_desc'] = train_test.apply(lambda x: len(set(str(x['title_clean']).lower().split()).intersection(set(str(x['desc_clean']).lower().split()))), axis=1) train_test['count_common_words_title_params'] = train_test.apply(lambda x: len(set(str(x['title_clean']).lower().split()).intersection(set(str(x['params_clean']).lower().split()))), axis=1) train_test['count_common_words_params_desc'] = train_test.apply(lambda x: len(set(str(x['params_clean']).lower().split()).intersection(set(str(x['desc_clean']).lower().split()))), axis=1) print("Cleaned texts..") ################### # Count Nouns import pymorphy2 morph = pymorphy2.MorphAnalyzer(result_type=None) from fastcache import clru_cache as lru_cache @lru_cache(maxsize=1000000) def lemmatize_pos(word): _, tag, norm_form, _, _ = morph.parse(word)[0] return norm_form, tag.POS def getPOS(x, pos1 = 'NOUN'): lemmatized = [] x = clean_text(x) #x = re.sub(u'[.]', ' ', x) for s in x.split(): s, pos = lemmatize_pos(s) if pos != None: if pos1 in pos: lemmatized.append(s) return ' '.join(lemmatized) train_test['get_nouns_title'] = list(train_test.apply(lambda x: getPOS(x['title'], 'NOUN'), axis=1)) train_test['get_nouns_desc'] = list(train_test.apply(lambda x: getPOS(x['description'], 'NOUN'), axis=1)) train_test['get_adj_title'] = list(train_test.apply(lambda x: getPOS(x['title'], 'ADJ'), axis=1)) train_test['get_adj_desc'] = list(train_test.apply(lambda x: getPOS(x['description'], 'ADJ'), axis=1)) train_test['get_verb_title'] = list(train_test.apply(lambda x: getPOS(x['title'], 'VERB'), axis=1)) train_test['get_verb_desc'] = list(train_test.apply(lambda x: getPOS(x['description'], 'VERB'), axis=1)) # Count digits def count_digit(x): x = clean_text(x) return len(re.findall(r'\b\d+\b', x)) train_test['count_of_digit_in_title'] = list(train_test.apply(lambda x: count_digit(x['title']), axis=1)) train_test['count_of_digit_in_desc'] = list(train_test.apply(lambda x: count_digit(x['description']), axis=1)) train_test['count_of_digit_in_params'] = list(train_test.apply(lambda x: count_digit(x['params']), axis=1)) ## get unicode features count_unicode = lambda x: len([c for c in x if ord(c) > 1105]) count_distunicode = lambda x: len({c for c in x if ord(c) > 1105}) train_test['count_of_unicode_in_title'] = list(train_test.apply(lambda x: count_unicode(x['title']), axis=1)) train_test['count_of_unicode_in_desc'] = list(train_test.apply(lambda x: count_distunicode(x['description']), axis=1)) train_test['count_of_distuni_in_title'] = list(train_test.apply(lambda x: count_unicode(x['title']), axis=1)) train_test['count_of_distuni_in_desc'] = list(train_test.apply(lambda x: count_distunicode(x['description']), axis=1)) ### count_caps = lambda x: len([c for c in x if c.isupper()]) train_test['count_caps_in_title'] = list(train_test.apply(lambda x: count_caps(x['title']), axis=1)) train_test['count_caps_in_desc'] = list(train_test.apply(lambda x: count_caps(x['description']), axis=1)) import string count_punct = lambda x: len([c for c in x if c in string.punctuation]) train_test['count_punct_in_title'] = list(train_test.apply(lambda x: count_punct(x['title']), axis=1)) train_test['count_punct_in_desc'] = list(train_test.apply(lambda x: count_punct(x['description']), axis=1)) print("Computed POS Features and others..") train_test['count_common_nouns'] = train_test.apply(lambda x: len(set(str(x['get_nouns_title']).lower().split()).intersection(set(str(x['get_nouns_desc']).lower().split()))), axis=1) train_test['count_common_adj'] = train_test.apply(lambda x: len(set(str(x['get_adj_title']).lower().split()).intersection(set(str(x['get_adj_desc']).lower().split()))), axis=1) train_test['ratio_of_unicode_in_title'] = train_test['count_of_unicode_in_title'] / train_test['len_title'] train_test['ratio_of_unicode_in_desc'] = train_test['count_of_unicode_in_desc'] / train_test['len_description'] train_test['ratio_of_punct_in_title'] = train_test['count_punct_in_title'] / train_test['len_title'] train_test['ratio_of_punct_in_desc'] = train_test['count_punct_in_desc'] / train_test['len_description'] train_test['ratio_of_cap_in_title'] = train_test['count_caps_in_title'] / train_test['len_title'] train_test['ratio_of_cap_in_desc'] = train_test['count_caps_in_desc'] / train_test['len_description'] train_test['count_nouns_in_title'] = train_test["get_nouns_title"].apply(lambda x: len(x.split())) train_test['count_nouns_in_desc'] = train_test['get_nouns_desc'].apply(lambda x: len(x.split())) train_test['count_adj_in_title'] = train_test["get_adj_title"].apply(lambda x: len(x.split())) train_test['count_adj_in_desc'] = train_test['get_adj_desc'].apply(lambda x: len(x.split())) train_test['count_verb_title'] = train_test['get_verb_title'].apply(lambda x: len(x.split())) train_test['count_verb_desc'] = train_test['get_verb_desc'].apply(lambda x: len(x.split())) train_test['ratio_nouns_in_title'] = train_test["count_nouns_in_title"] / train_test["title_nwords"] train_test['ratio_nouns_in_desc'] = train_test["count_nouns_in_desc"] / train_test["desc_nwords"] train_test['ratio_adj_in_title'] = train_test["count_adj_in_title"] / train_test["title_nwords"] train_test['ratio_adj_in_desc'] = train_test["count_adj_in_desc"] / train_test["desc_nwords"] train_test['ratio_vrb_in_title'] = train_test["count_verb_title"] / train_test["title_nwords"] train_test['ratio_vrb_in_desc'] = train_test["count_verb_desc"] / train_test["desc_nwords"] train_test["title"]= list(train_test[["title"]].apply(lambda x: clean_text(x["title"]), axis=1)) train_test["description"]= list(train_test[["description"]].apply(lambda x: clean_text(x["description"]), axis=1)) train_test["params"]= list(train_test[["params"]].apply(lambda x: clean_text(x["params"]), axis=1)) ####################### ### Save ####################### train_df = train_test.loc[train_test.deal_probability != 10].reset_index(drop = True) test_df = train_test.loc[train_test.deal_probability == 10].reset_index(drop = True) for c in train_df.columns: if train_df[c].dtype == 'float64': train_df[c] = train_df[c].astype('float32') test_df[c] = test_df[c].astype('float32') train_df.to_feather('../train_basic_features.pkl') test_df.to_feather('../test__basic_features.pkl') ####################### ### Label Enc ####################### from sklearn.preprocessing import StandardScaler, OneHotEncoder, LabelEncoder, MinMaxScaler cat_vars = ["user_id", "region", "city", "parent_category_name", "category_name", "user_type", "param_1", "param_2", "param_3"] for col in cat_vars: lbl = preprocessing.LabelEncoder() lbl.fit(list(train_df[col].values.astype('str')) + list(test_df[col].values.astype('str'))) train_df[col] = lbl.transform(list(train_df[col].values.astype('str'))) test_df[col] = lbl.transform(list(test_df[col].values.astype('str'))) train_df.to_feather('../train_basic_features_lblencCats.pkl') test_df.to_feather('../test__basic_features_lblencCats.pkl') ####################### ### One hots ####################### train_df=pd.read_feather('../train_basic_features_lblencCats.pkl') test_df=pd.read_feather('../test__basic_features_lblencCats.pkl') from sklearn.externals import joblib le = OneHotEncoder() X = le.fit_transform(np.array(train_df.user_id.values.tolist() + test_df.user_id.values.tolist()).reshape(-1,1)) joblib.dump(X, "../user_id_onehot.pkl") X = le.fit_transform(np.array(train_df.region.values.tolist() + test_df.region.values.tolist()).reshape(-1,1)) joblib.dump(X, "../region_onehot.pkl") X = le.fit_transform(np.array(train_df.city.values.tolist() + test_df.city.values.tolist()).reshape(-1,1)) joblib.dump(X, "../city_onehot.pkl") X = le.fit_transform(np.array(train_df.parent_category_name.values.tolist() + test_df.parent_category_name.values.tolist()).reshape(-1,1)) joblib.dump(X, "../parent_category_name_onehot.pkl") X = le.fit_transform(np.array(train_df.category_name.values.tolist() + test_df.category_name.values.tolist()).reshape(-1,1)) joblib.dump(X, "../category_name_onehot.pkl") X = le.fit_transform(np.array(train_df.user_type.values.tolist() + test_df.user_type.values.tolist()).reshape(-1,1)) joblib.dump(X, "../user_type_onehot.pkl") X = le.fit_transform(np.array(train_df.param_1.values.tolist() + test_df.param_1.values.tolist()).reshape(-1,1)) joblib.dump(X, "../param_1_onehot.pkl") X = le.fit_transform(np.array(train_df.param_2.values.tolist() + test_df.param_2.values.tolist()).reshape(-1,1)) joblib.dump(X, "../param_2_onehot.pkl") X = le.fit_transform(np.array(train_df.param_3.values.tolist() + test_df.param_3.values.tolist()).reshape(-1,1)) joblib.dump(X, "../param_3_onehot.pkl") train_df.drop(cat_vars, inplace = True, axis = 'columns') test_df.drop(cat_vars, inplace = True, axis = 'columns') train_df.to_feather('../train_basic_features_woCats.pkl') test_df.to_feather('../test__basic_features_woCats.pkl') ####################### ### Tfidf ####################### train_df=pd.read_feather('../train_basic_features_woCats.pkl') test_df=pd.read_feather('../test__basic_features_woCats.pkl') from sklearn.externals import joblib ### TFIDF Vectorizer ### train_df['params'] = train_df['params'].fillna('NA') test_df['params'] = test_df['params'].fillna('NA') tfidf_vec = TfidfVectorizer(ngram_range=(1,3),max_features = 10000,#min_df=3, max_df=.85, analyzer='word', token_pattern= r'\w{1,}', use_idf=1, smooth_idf=0, sublinear_tf=1,) #TfidfVectorizer(ngram_range=(1,2)) full_tfidf = tfidf_vec.fit_transform(train_df['params'].values.tolist() + test_df['params'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['params'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['params'].values.tolist()) del full_tfidf print("TDIDF Params UNCLEAN..") joblib.dump([train_tfidf, test_tfidf], "../params_tfidf.pkl") ### TFIDF Vectorizer ### train_df['title_clean'] = train_df['title_clean'].fillna('NA') test_df['title_clean'] = test_df['title_clean'].fillna('NA') tfidf_vec = TfidfVectorizer(ngram_range=(1,2),max_features = 20000,#,min_df=3, max_df=.85, analyzer='word', token_pattern= r'\w{1,}', use_idf=1, smooth_idf=0, sublinear_tf=1,) full_tfidf = tfidf_vec.fit_transform(train_df['title_clean'].values.tolist() + test_df['title_clean'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['title_clean'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['title_clean'].values.tolist()) joblib.dump([train_tfidf, test_tfidf], "../title_tfidf.pkl") del full_tfidf print("TDIDF TITLE CLEAN..") ### TFIDF Vectorizer ### train_df['desc_clean'] = train_df['desc_clean'].fillna(' ') test_df['desc_clean'] = test_df['desc_clean'].fillna(' ') tfidf_vec = TfidfVectorizer(ngram_range=(1,2), max_features = 20000, #,min_df=3, max_df=.85, analyzer='word', token_pattern= r'\w{1,}', use_idf=1, smooth_idf=0, sublinear_tf=1,) full_tfidf = tfidf_vec.fit_transform(train_df['desc_clean'].values.tolist() + test_df['desc_clean'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['desc_clean'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['desc_clean'].values.tolist()) joblib.dump([train_tfidf, test_tfidf], "../desc_tfidf.pkl") del full_tfidf print("TDIDF DESC CLEAN..") ### TFIDF Vectorizer ### train_df['get_nouns_title'] = train_df['get_nouns_title'].fillna(' ') test_df['get_nouns_title'] = test_df['get_nouns_title'].fillna(' ') tfidf_vec = TfidfVectorizer(ngram_range=(1,1), max_features = 10000) full_tfidf = tfidf_vec.fit_transform(train_df['get_nouns_title'].values.tolist() + test_df['get_nouns_title'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['get_nouns_title'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['get_nouns_title'].values.tolist()) joblib.dump([train_tfidf, test_tfidf], "../nouns_title_tfidf.pkl") del full_tfidf print("TDIDF Title Noun..") ### TFIDF Vectorizer ### train_df['get_nouns_desc'] = train_df['get_nouns_desc'].fillna(' ') test_df['get_nouns_desc'] = test_df['get_nouns_desc'].fillna(' ') tfidf_vec = TfidfVectorizer(ngram_range=(1,1), max_features = 10000) full_tfidf = tfidf_vec.fit_transform(train_df['get_nouns_desc'].values.tolist() + test_df['get_nouns_desc'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['get_nouns_desc'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['get_nouns_desc'].values.tolist()) joblib.dump([train_tfidf, test_tfidf], "../nouns_desc_tfidf.pkl") del full_tfidf print("TDIDF Desc Noun..") ### TFIDF Vectorizer ### train_df['get_adj_title'] = train_df['get_adj_title'].fillna(' ') test_df['get_adj_title'] = test_df['get_adj_title'].fillna(' ') tfidf_vec = TfidfVectorizer(ngram_range=(1,1), max_features = 10000) full_tfidf = tfidf_vec.fit_transform(train_df['get_adj_title'].values.tolist() + test_df['get_adj_title'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['get_adj_title'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['get_adj_title'].values.tolist()) joblib.dump([train_tfidf, test_tfidf], "../adj_title_tfidf.pkl") del full_tfidf print("TDIDF TITLE Adj..") ### TFIDF Vectorizer ### train_df['get_adj_desc'] = train_df['get_adj_desc'].fillna(' ') test_df['get_adj_desc'] = test_df['get_adj_desc'].fillna(' ') tfidf_vec = TfidfVectorizer(ngram_range=(1,1), max_features = 10000) full_tfidf = tfidf_vec.fit_transform(train_df['get_adj_desc'].values.tolist() + test_df['get_adj_desc'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['get_adj_desc'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['get_adj_desc'].values.tolist()) joblib.dump([train_tfidf, test_tfidf], "../adj_desc_tfidf.pkl") del full_tfidf print("TDIDF Desc Adj..") ### TFIDF Vectorizer ### train_df['get_verb_title'] = train_df['get_verb_title'].fillna(' ') test_df['get_verb_title'] = test_df['get_verb_title'].fillna(' ') tfidf_vec = TfidfVectorizer(ngram_range=(1,1), max_features = 10000) full_tfidf = tfidf_vec.fit_transform(train_df['get_verb_title'].values.tolist() + test_df['get_verb_title'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['get_verb_title'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['get_verb_title'].values.tolist()) joblib.dump([train_tfidf, test_tfidf], "../verb_title_tfidf.pkl") del full_tfidf print("TDIDF TITLE Verb..") ### TFIDF Vectorizer ### train_df['get_verb_desc'] = train_df['get_verb_desc'].fillna(' ') test_df['get_verb_desc'] = test_df['get_verb_desc'].fillna(' ') tfidf_vec = TfidfVectorizer(ngram_range=(1,1), max_features = 10000) full_tfidf = tfidf_vec.fit_transform(train_df['get_verb_desc'].values.tolist() + test_df['get_verb_desc'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['get_verb_desc'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['get_verb_desc'].values.tolist()) joblib.dump([train_tfidf, test_tfidf], "../verb_desc_tfidf.pkl") del full_tfidf print("TDIDF Desc Verb..") ############################### # Sentence to seq ############################### print('Generate Word Sequences') train_df=pd.read_feather('../train_basic_features_woCats.pkl') test_df=pd.read_feather('../test__basic_features_woCats.pkl') from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences MAX_NUM_OF_WORDS = 100000 TIT_MAX_SEQUENCE_LENGTH = 100 df = pd.concat((train_df, test_df), axis = 'rows') tokenizer = Tokenizer(num_words=MAX_NUM_OF_WORDS) tokenizer.fit_on_texts(df['title'].tolist()) sequences = tokenizer.texts_to_sequences(df['title'].tolist()) titleSequences = pad_sequences(sequences, maxlen=TIT_MAX_SEQUENCE_LENGTH) joblib.dump(titleSequences, "../titleSequences.pkl") MAX_NUM_OF_WORDS = 10000 TIT_MAX_SEQUENCE_LENGTH = 20 tokenizer = Tokenizer(num_words=MAX_NUM_OF_WORDS) tokenizer.fit_on_texts(df['params'].tolist()) sequences = tokenizer.texts_to_sequences(df['params'].tolist()) titleSequences = pad_sequences(sequences, maxlen=TIT_MAX_SEQUENCE_LENGTH) joblib.dump(titleSequences, "../paramSequences.pkl") MAX_NUM_OF_WORDS = 100000 TIT_MAX_SEQUENCE_LENGTH = 100 tokenizer = Tokenizer(num_words=MAX_NUM_OF_WORDS) tokenizer.fit_on_texts(df['description'].tolist()) sequences = tokenizer.texts_to_sequences(df['description'].tolist()) titleSequences = pad_sequences(sequences, maxlen=TIT_MAX_SEQUENCE_LENGTH) joblib.dump(titleSequences, "../descSequences.pkl") #######OHC WeekDay from sklearn.preprocessing import StandardScaler, OneHotEncoder, LabelEncoder, MinMaxScaler le = OneHotEncoder() X = le.fit_transform(np.array(train_df.activation_weekday.values.tolist() + test_df.activation_weekday.values.tolist()).reshape(-1,1)) ################################################ # Cat encoding ################################################ train_df=pd.read_feather('../train_basic_features.pkl') test_df=pd.read_feather('../test__basic_features.pkl') def catEncode(train_char, test_char, y, colLst = [], nbag = 10, nfold = 20, minCount = 3, postfix = ''): train_df = train_char.copy() test_df = test_char.copy() if not colLst: print("Empty ColLst") for c in train_char.columns: data = train_char[[c]].copy() data['y'] = y enc_mat = np.zeros((y.shape[0],4)) enc_mat_test = np.zeros((test_char.shape[0],4)) for bag in np.arange(nbag): kf = model_selection.KFold(n_splits= nfold, shuffle=True, random_state=2017*bag) for dev_index, val_index in kf.split(range(data['y'].shape[0])): dev_X, val_X = data.iloc[dev_index,:], data.iloc[val_index,:] datax = dev_X.groupby([c]).agg([len,np.mean,np.std, np.median]) datax.columns = ['_'.join(col).strip() for col in datax.columns.values] # datax = datax.loc[datax.y_len > minCount] ind = c + postfix datax.rename(columns = {'y_mean': ('y_mean_' + ind), 'y_std': ('y_std_' + ind), 'y_len_': ('y_len' + ind), 'y_median_': ('y_median' + ind),}, inplace = True) # datax[c+'_medshftenc'] = datax['y_median']-med_y # datax.drop(['y_len','y_mean','y_std','y_median'],axis=1,inplace=True) datatst = test_char[[c]].copy() val_X = val_X.join(datax,on=[c], how='left').fillna(np.mean(y)) datatst = datatst.join(datax,on=[c], how='left').fillna(np.mean(y)) enc_mat[val_index,...] += val_X[list(set(datax.columns)-set([c]))] enc_mat_test += datatst[list(set(datax.columns)-set([c]))] enc_mat_test /= (nfold * nbag) enc_mat /= (nbag) enc_mat = pd.DataFrame(enc_mat) enc_mat.columns=[ind + str(x) for x in list(set(datax.columns)-set([c]))] enc_mat_test = pd.DataFrame(enc_mat_test) enc_mat_test.columns=enc_mat.columns train_df = pd.concat((enc_mat.reset_index(drop = True),train_df.reset_index(drop = True)), axis=1) test_df = pd.concat([enc_mat_test.reset_index(drop = True),test_df.reset_index(drop = True)],axis=1) else: print("Not Empty ColLst") data = train_char[colLst].copy() data['y'] = y enc_mat = np.zeros((y.shape[0],4)) enc_mat_test = np.zeros((test_char.shape[0],4)) for bag in np.arange(nbag): kf = model_selection.KFold(n_splits= nfold, shuffle=True, random_state=2017*bag) for dev_index, val_index in kf.split(range(data['y'].shape[0])): dev_X, val_X = data.iloc[dev_index,:], data.iloc[val_index,:] datax = dev_X.groupby(colLst).agg([len,np.mean,np.std, np.median]) datax.columns = ['_'.join(col).strip() for col in datax.columns.values] # datax = datax.loc[datax.y_len > minCount] ind = '_'.join(colLst) + postfix datax.rename(columns = {'y_mean': ('y_mean_' + ind), 'y_std': ('y_std_' + ind), 'y_len': ('y_len_' + ind), 'y_median': ('y_median_' + ind),}, inplace = True) datatst = test_char[colLst].copy() val_X = val_X.join(datax,on=colLst, how='left').fillna(np.mean(y)) datatst = datatst.join(datax,on=colLst, how='left').fillna(np.mean(y)) print(val_X[list(set(datax.columns)-set(colLst))].columns) enc_mat[val_index,...] += val_X[list(set(datax.columns)-set(colLst))] enc_mat_test += datatst[list(set(datax.columns)-set(colLst))] enc_mat_test /= (nfold * nbag) enc_mat /= (nbag) enc_mat = pd.DataFrame(enc_mat) enc_mat.columns=[ind + str(x) for x in list(set(datax.columns)-set([c]))] enc_mat_test = pd.DataFrame(enc_mat_test) enc_mat_test.columns=enc_mat.columns train_df = pd.concat((enc_mat.reset_index(drop = True),train_df.reset_index(drop = True)), axis=1) test_df = pd.concat([enc_mat_test.reset_index(drop = True),test_df.reset_index(drop = True)],axis=1) print(train_df.columns) print(test_df.columns) for c in train_df.columns: if train_df[c].dtype == 'float64': train_df[c] = train_df[c].astype('float32') test_df[c] = test_df[c].astype('float32') return train_df, test_df catCols = ['user_id', 'region', 'city', 'parent_category_name', 'category_name', 'user_type'] train_df, test_df = catEncode(train_df[catCols].copy(), test_df[catCols].copy(), train_df.deal_probability.values, nbag = 10, nfold = 10, minCount = 0) train_df.to_feather('../train_cat_targetenc.pkl') test_df.to_feather('../test_cat_targetenc.pkl') ################################################################ # Tfidf - part 2 ################################################################ import os; os.environ['OMP_NUM_THREADS'] = '1' from sklearn.decomposition import TruncatedSVD import nltk nltk.data.path.append("/media/sayantan/Personal/nltk_data") from nltk.stem.snowball import RussianStemmer from nltk.corpus import stopwords import time from typing import List, Dict from sklearn.feature_extraction import DictVectorizer from sklearn.feature_extraction.text import TfidfVectorizer as Tfidf from sklearn.model_selection import KFold from sklearn.externals import joblib from scipy.sparse import hstack, csr_matrix import pandas as pd import numpy as np import gc from sklearn.preprocessing import StandardScaler, OneHotEncoder, LabelEncoder, MinMaxScaler from sklearn import model_selection english_stemmer = nltk.stem.SnowballStemmer('russian') def clean_text(text): #text = re.sub(r'(\d+),(\d+)', r'\1.\2', text) text = text.replace(u'²', '2') text = text.lower() text = re.sub(u'[^a-zа-я0-9]', ' ', text) text = re.sub('\s+', ' ', text) return text.strip() def stem_tokens(tokens, stemmer): stemmed = [] for token in tokens: #stemmed.append(stemmer.lemmatize(token)) stemmed.append(stemmer.stem(token)) return stemmed def preprocess_data(line, exclude_stopword=True, encode_digit=False): ## tokenize line = clean_text(line) tokens = [x.lower() for x in nltk.word_tokenize(line)] ## stem tokens_stemmed = stem_tokens(tokens, english_stemmer)#english_stemmer if exclude_stopword: tokens_stemmed = [x for x in tokens_stemmed if x not in stopwords] return ' '.join(tokens_stemmed) stopwords = stopwords.words('russian') train_per=pd.read_csv('../input/train_active.csv', usecols = ['param_1', 'param_2', 'param_3'])#,'title','description']) test_per=pd.read_csv('../input/test_active.csv', usecols = ['param_1', 'param_2', 'param_3'])#,'title','description']) train_test = pd.concat((train_per, test_per), axis = 'rows') del train_per, test_per; gc.collect() train_test['params'] = train_test['param_1'].fillna('') + ' ' + train_test['param_2'].fillna('') + ' ' + train_test['param_3'].fillna('') import re train_test.drop(['param_1', 'param_2', 'param_3'], axis = 'columns', inplace=True) train_test["params"]= list(train_test[["params"]].apply(lambda x: clean_text(x["params"]), axis=1)) import re train_df=pd.read_feather('../train_basic_features_woCats.pkl') test_df=pd.read_feather('../test__basic_features_woCats.pkl') from sklearn.externals import joblib ### TFIDF Vectorizer ### train_df['params'] = train_df['params'].fillna('NA') test_df['params'] = test_df['params'].fillna('NA') tfidf_vec = TfidfVectorizer(ngram_range=(1,3),max_features = 10000,#min_df=3, max_df=.85, analyzer='word', token_pattern= r'\w{1,}', use_idf=1, smooth_idf=0, sublinear_tf=1,) #TfidfVectorizer(ngram_range=(1,2)) full_tfidf = tfidf_vec.fit_transform(train_test['params'].values.tolist() + train_df['params'].values.tolist() + test_df['params'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['params'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['params'].values.tolist()) del full_tfidf print("TDIDF Params UNCLEAN..") joblib.dump([train_tfidf, test_tfidf], "../params_tfidf2.pkl") tfidf_vec = TfidfVectorizer(ngram_range=(1,1),max_features = 10000,max_df=.4,#min_df=3, analyzer='word', token_pattern= r'\w{1,}', use_idf=1, smooth_idf=0, sublinear_tf=1,) #TfidfVectorizer(ngram_range=(1,2)) full_tfidf = tfidf_vec.fit_transform(train_test['params'].values.tolist() + train_df['params'].values.tolist() + test_df['params'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['params'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['params'].values.tolist()) del full_tfidf print("TDIDF Params UNCLEAN..") joblib.dump([train_tfidf, test_tfidf], "../params_tfidf3.pkl") del(train_test); gc.collect() train_per=pd.read_csv('../input/train_active.csv', usecols = ['title'])#,'title','description']) test_per=pd.read_csv('../input/test_active.csv', usecols = ['title'])#,'title','description']) train_test = pd.concat((train_per, test_per), axis = 'rows') del train_per, test_per; gc.collect() train_test.fillna('NA', inplace=True) train_test["title_clean"]= list(train_test[["title"]].apply(lambda x: preprocess_data(x["title"]), axis=1)) train_df['title_clean'] = train_df['title_clean'].fillna('NA') test_df['title_clean'] = test_df['title_clean'].fillna('NA') tfidf_vec = TfidfVectorizer(ngram_range=(1,2),max_features = 20000,#,min_df=3, max_df=.85, analyzer='word', token_pattern= r'\w{1,}', use_idf=1, smooth_idf=0, sublinear_tf=1,) full_tfidf = tfidf_vec.fit_transform(train_test['title_clean'].values.tolist()+train_df['title_clean'].values.tolist() + test_df['title_clean'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['title_clean'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['title_clean'].values.tolist()) joblib.dump([train_tfidf, test_tfidf], "../title_tfidf2.pkl") del full_tfidf print("TDIDF TITLE CLEAN..") train_df['title_clean'] = train_df['title_clean'].fillna('NA') test_df['title_clean'] = test_df['title_clean'].fillna('NA') tfidf_vec = TfidfVectorizer(ngram_range=(1,1),max_features = 20000, max_df=.4,#,min_df=3, analyzer='word', token_pattern= r'\w{1,}', use_idf=1, smooth_idf=0, sublinear_tf=1,) full_tfidf = tfidf_vec.fit_transform(train_test['title_clean'].values.tolist()+train_df['title_clean'].values.tolist() + test_df['title_clean'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['title_clean'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['title_clean'].values.tolist()) joblib.dump([train_tfidf, test_tfidf], "../title_tfidf3.pkl") del full_tfidf print("TDIDF TITLE CLEAN..") del(train_test); gc.collect() ###Too slow### ''' train_per=pd.read_csv('../input/train_active.csv', usecols = ['description'])#,'title','description']) test_per=pd.read_csv('../input/test_active.csv', usecols = ['description'])#,'title','description']) train_per.fillna(' ', inplace=True) test_per.fillna(' ', inplace=True) train_test["desc_clean"]= list(train_test[["description"]].apply(lambda x: preprocess_data(x["description"]), axis=1)) ### TFIDF Vectorizer ### train_df['desc_clean'] = train_df['desc_clean'].fillna(' ') test_df['desc_clean'] = test_df['desc_clean'].fillna(' ') tfidf_vec = TfidfVectorizer(ngram_range=(1,2), max_features = 20000, stop_words = stopwords#,min_df=3, analyzer='word', token_pattern= r'\w{1,}', use_idf=1, smooth_idf=0, sublinear_tf=1,) full_tfidf = tfidf_vec.fit_transform(train_test['desc_clean'].values.tolist()+train_df['desc_clean'].values.tolist() + test_df['desc_clean'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['desc_clean'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['desc_clean'].values.tolist()) joblib.dump([train_tfidf, test_tfidf], "../desc_tfidf2.pkl") del full_tfidf print("TDIDF DESC CLEAN..") tfidf_vec = TfidfVectorizer(ngram_range=(1,1), max_features = 20000, max_df=.4,#,min_df=3, analyzer='word', token_pattern= r'\w{1,}', use_idf=1, smooth_idf=0, sublinear_tf=1,) full_tfidf = tfidf_vec.fit_transform(train_test['desc_clean'].values.tolist()+train_df['desc_clean'].values.tolist() + test_df['desc_clean'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['desc_clean'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['desc_clean'].values.tolist()) joblib.dump([train_tfidf, test_tfidf], "../desc_tfidf3.pkl") del full_tfidf print("TDIDF DESC CLEAN..") ''' ########################################## # 13. Chargram -- too slow ########################################## from collections import Counter train_df=pd.read_feather('../train_basic_features_woCats.pkl') test_df=pd.read_feather('../test__basic_features_woCats.pkl') def char_ngrams(s): s = s.lower() s = s.replace(u' ', '') result = Counter() len_s = len(s) for n in [3, 4, 5]: result.update(s[i:i+n] for i in range(len_s - n + 1)) return ' '.join(list(result)) data = pd.concat((train_df, test_df), axis = 'rows') data['param_chargram'] = list(data[['params']].apply(lambda x: char_ngrams(x['params']), axis=1)) data['title_chargram'] = list(data[['title']].apply(lambda x: char_ngrams(x['title']), axis=1)) #data['desc_chargram'] = list(data[['description']].apply(lambda x: char_ngrams(x['description']), axis=1)) #data['count_common_chargram'] = data.apply(lambda x: len(set(str(x['title_chargram']).lower().split()).intersection(set(str(x['desc_chargram']).lower().split()))), axis=1) train_df = data.loc[data.deal_probability != 10].reset_index(drop = True) test_df = data.loc[data.deal_probability == 10].reset_index(drop = True) del(data); gc.collect() #####Chargram -TFIDF tfidf_vec = TfidfVectorizer(ngram_range=(1,3),max_features = 10000, min_df=3, max_df=.75) full_tfidf = tfidf_vec.fit_transform(train_df['title_chargram'].values.tolist() + test_df['title_chargram'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['title_chargram'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['title_chargram'].values.tolist()) from sklearn.externals import joblib joblib.dump([train_tfidf, test_tfidf], '../title_chargram_tfidf.pkl') tfidf_vec = TfidfVectorizer(ngram_range=(1,3),max_features = 10000, min_df=3, max_df=.75) full_tfidf = tfidf_vec.fit_transform(train_df['param_chargram'].values.tolist() + test_df['param_chargram'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['param_chargram'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['param_chargram'].values.tolist()) from sklearn.externals import joblib joblib.dump([train_tfidf, test_tfidf], '../param_chargram_tfidf.pkl') #######Chargram of Cat and Parent cat def clean_text(text): #text = re.sub(r'(\d+),(\d+)', r'\1.\2', text) text = text.replace(u'²', '2') text = text.lower() text = re.sub(u'[^a-zа-я0-9]', ' ', text) text = re.sub('\s+', ' ', text) return text.strip() train_df = pd.read_feather('../train_basic_features.pkl') test_df = pd.read_feather('../test__basic_features.pkl') data = pd.concat([train_df, test_df], axis= 'rows') data['categories'] = data["parent_category_name"].fillna(' ') + data["category_name"].fillna(' ') data['cat_chargram'] = list(data[['categories']].apply(lambda x: char_ngrams(x['categories']), axis=1)) train_df = data.loc[data.deal_probability != 10].reset_index(drop = True) test_df = data.loc[data.deal_probability == 10].reset_index(drop = True) del(data); gc.collect() tfidf_vec = TfidfVectorizer(ngram_range=(1,3),max_features = 1000, min_df=3, max_df=.75) full_tfidf = tfidf_vec.fit_transform(train_df['cat_chargram'].values.tolist() + test_df['cat_chargram'].values.tolist()) train_tfidf = tfidf_vec.transform(train_df['cat_chargram'].values.tolist()) test_tfidf = tfidf_vec.transform(test_df['cat_chargram'].values.tolist()) from sklearn.externals import joblib joblib.dump([train_tfidf, test_tfidf], '../cat_chargram_tfidf.pkl') ############################## ## New Kaggle Ftr ############################## import pandas as pd import gc used_cols = ['item_id', 'user_id'] train = pd.read_csv('../input/train.csv', usecols=used_cols) train_active = pd.read_csv('../input/train_active.csv', usecols=used_cols) test = pd.read_csv('../input/test.csv', usecols=used_cols) test_active = pd.read_csv('../input/test_active.csv', usecols=used_cols) train_periods = pd.read_csv('../input/periods_train.csv', parse_dates=['date_from', 'date_to']) test_periods = pd.read_csv('../input/periods_test.csv', parse_dates=['date_from', 'date_to']) train.head() all_samples = pd.concat([ train, train_active, test, test_active ]).reset_index(drop=True) all_samples.drop_duplicates(['item_id'], inplace=True) del train_active del test_active gc.collect() all_periods = pd.concat([ train_periods, test_periods ]) del train_periods del test_periods gc.collect() all_periods.head() all_periods['days_up'] = (all_periods['date_to'] - all_periods['date_from']).dt.days gp = all_periods.groupby(['item_id'])[['days_up']] gp_df = pd.DataFrame() gp_df['days_up_sum'] = gp.sum()['days_up'] gp_df['times_put_up'] = gp.count()['days_up'] gp_df.reset_index(inplace=True) gp_df.rename(index=str, columns={'index': 'item_id'}) gp_df.head() all_periods.drop_duplicates(['item_id'], inplace=True) all_periods = all_periods.merge(gp_df, on='item_id', how='left') all_periods.head() del gp del gp_df gc.collect() all_periods = all_periods.merge(all_samples, on='item_id', how='left') all_periods.head() gp = all_periods.groupby(['user_id'])[['days_up_sum', 'times_put_up']].mean().reset_index() \ .rename(index=str, columns={ 'days_up_sum': 'avg_days_up_user', 'times_put_up': 'avg_times_up_user' }) gp.head() n_user_items = all_samples.groupby(['user_id'])[['item_id']].count().reset_index() \ .rename(index=str, columns={ 'item_id': 'n_user_items' }) gp = gp.merge(n_user_items, on='user_id', how='left') gp.head() train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train = train.merge(gp, on='user_id', how='left') test = test.merge(gp, on='user_id', how='left') agg_cols = list(gp.columns)[1:] del gp gc.collect() train.head() train = train[['avg_days_up_user','avg_times_up_user','n_user_items']] test = test[['avg_days_up_user','avg_times_up_user','n_user_items']] train.to_feather('../train_kag_agg_ftr.ftr') test.to_feather('../test_kag_agg_ftr.ftr') def catEncode(train_char, test_char, y, colLst = [], nbag = 10, nfold = 20, minCount = 3, postfix = ''): train_df = train_char.copy() test_df = test_char.copy() if not colLst: print("Empty ColLst") for c in train_char.columns: data = train_char[[c]].copy() data['y'] = y enc_mat = np.zeros((y.shape[0],4)) enc_mat_test = np.zeros((test_char.shape[0],4)) for bag in np.arange(nbag): kf = model_selection.KFold(n_splits= nfold, shuffle=True, random_state=2017*bag) for dev_index, val_index in kf.split(range(data['y'].shape[0])): dev_X, val_X = data.iloc[dev_index,:], data.iloc[val_index,:] datax = dev_X.groupby([c]).agg([len,np.mean,np.std, np.median]) datax.columns = ['_'.join(col).strip() for col in datax.columns.values] # datax = datax.loc[datax.y_len > minCount] ind = c + postfix datax.rename(columns = {'y_mean': ('y_mean_' + ind), 'y_std': ('y_std_' + ind), 'y_len_': ('y_len' + ind), 'y_median_': ('y_median' + ind),}, inplace = True) # datax[c+'_medshftenc'] = datax['y_median']-med_y # datax.drop(['y_len','y_mean','y_std','y_median'],axis=1,inplace=True) datatst = test_char[[c]].copy() val_X = val_X.join(datax,on=[c], how='left').fillna(np.mean(y)) datatst = datatst.join(datax,on=[c], how='left').fillna(np.mean(y)) enc_mat[val_index,...] += val_X[list(set(datax.columns)-set([c]))] enc_mat_test += datatst[list(set(datax.columns)-set([c]))] enc_mat_test /= (nfold * nbag) enc_mat /= (nbag) enc_mat = pd.DataFrame(enc_mat) enc_mat.columns=[ind + str(x) for x in list(set(datax.columns)-set([c]))] enc_mat_test = pd.DataFrame(enc_mat_test) enc_mat_test.columns=enc_mat.columns train_df = pd.concat((enc_mat.reset_index(drop = True),train_df.reset_index(drop = True)), axis=1) test_df = pd.concat([enc_mat_test.reset_index(drop = True),test_df.reset_index(drop = True)],axis=1) else: print("Not Empty ColLst") data = train_char[colLst].copy() data['y'] = y enc_mat = np.zeros((y.shape[0],4)) enc_mat_test = np.zeros((test_char.shape[0],4)) for bag in np.arange(nbag): kf = model_selection.KFold(n_splits= nfold, shuffle=True, random_state=2017*bag) for dev_index, val_index in kf.split(range(data['y'].shape[0])): dev_X, val_X = data.iloc[dev_index,:], data.iloc[val_index,:] datax = dev_X.groupby(colLst).agg([len,np.mean,np.std, np.median]) datax.columns = ['_'.join(col).strip() for col in datax.columns.values] # datax = datax.loc[datax.y_len > minCount] ind = '_'.join(colLst) + postfix datax.rename(columns = {'y_mean': ('y_mean_' + ind), 'y_std': ('y_std_' + ind), 'y_len': ('y_len_' + ind), 'y_median': ('y_median_' + ind),}, inplace = True) datatst = test_char[colLst].copy() val_X = val_X.join(datax,on=colLst, how='left').fillna(np.mean(y)) datatst = datatst.join(datax,on=colLst, how='left').fillna(np.mean(y)) print(val_X[list(set(datax.columns)-set(colLst))].columns) enc_mat[val_index,...] += val_X[list(set(datax.columns)-set(colLst))] enc_mat_test += datatst[list(set(datax.columns)-set(colLst))] enc_mat_test /= (nfold * nbag) enc_mat /= (nbag) enc_mat = pd.DataFrame(enc_mat) enc_mat.columns=[ind + str(x) for x in list(set(datax.columns)-set([c]))] enc_mat_test =
pd.DataFrame(enc_mat_test)
pandas.DataFrame
import matplotlib.pyplot as plt import numpy as np import pandas as pd from vc.definitions import ROOT_DIR #################################################################### # Common variables. #################################################################### # Get the the root dir of the module. # Folder path to data files. folder_path = ROOT_DIR + "/datasets/temp_brazil_cities/raw_data/" # Set the year you want to look at. year = 1977 #################################################################### # Load and clean data for each city individually. #################################################################### # Load data into Pandas DataFrame with first row as column names and first column as index names. belem_df = pd.read_csv(folder_path + "station_belem.csv", header=0, index_col=0) # Remove pre-generated average columns. belem_df = belem_df.drop(["D-J-F", "M-A-M", "J-J-A", "S-O-N", "metANN"], axis=1) # Set erroneous values to NaN so they don't disturb the results. belem_df[belem_df > 100] = np.nan curitiba_df = pd.read_csv(folder_path + "station_curitiba.csv", header=0, index_col=0) curitiba_df = curitiba_df.drop(["D-J-F", "M-A-M", "J-J-A", "S-O-N", "metANN"], axis=1) curitiba_df[curitiba_df > 100] = np.nan fortaleza_df = pd.read_csv(folder_path + "station_fortaleza.csv", header=0, index_col=0) fortaleza_df = fortaleza_df.drop(["D-J-F", "M-A-M", "J-J-A", "S-O-N", "metANN"], axis=1) fortaleza_df[fortaleza_df > 100] = np.nan goiania_df = pd.read_csv(folder_path + "station_goiania.csv", header=0, index_col=0) goiania_df = goiania_df.drop(["D-J-F", "M-A-M", "J-J-A", "S-O-N", "metANN"], axis=1) goiania_df[goiania_df > 100] = np.nan macapa_df = pd.read_csv(folder_path + "station_macapa.csv", header=0, index_col=0) macapa_df = macapa_df.drop(["D-J-F", "M-A-M", "J-J-A", "S-O-N", "metANN"], axis=1) macapa_df[macapa_df > 100] = np.nan manaus_df = pd.read_csv(folder_path + "station_manaus.csv", header=0, index_col=0) manaus_df = manaus_df.drop(["D-J-F", "M-A-M", "J-J-A", "S-O-N", "metANN"], axis=1) manaus_df[manaus_df > 100] = np.nan recife_df = pd.read_csv(folder_path + "station_recife.csv", header=0, index_col=0) recife_df = recife_df.drop(["D-J-F", "M-A-M", "J-J-A", "S-O-N", "metANN"], axis=1) recife_df[recife_df > 100] = np.nan rio_df = pd.read_csv(folder_path + "station_rio.csv", header=0, index_col=0) rio_df = rio_df.drop(["D-J-F", "M-A-M", "J-J-A", "S-O-N", "metANN"], axis=1) rio_df[rio_df > 100] = np.nan salvador_df = pd.read_csv(folder_path + "station_salvador.csv", header=0, index_col=0) salvador_df = salvador_df.drop(["D-J-F", "M-A-M", "J-J-A", "S-O-N", "metANN"], axis=1) salvador_df[salvador_df > 100] = np.nan sao_luiz_df = pd.read_csv(folder_path + "station_sao_luiz.csv", header=0, index_col=0) sao_luiz_df = sao_luiz_df.drop(["D-J-F", "M-A-M", "J-J-A", "S-O-N", "metANN"], axis=1) sao_luiz_df[sao_luiz_df > 100] = np.nan sao_paulo_df = pd.read_csv(folder_path + "station_sao_paulo.csv", header=0, index_col=0) sao_paulo_df = sao_paulo_df.drop(["D-J-F", "M-A-M", "J-J-A", "S-O-N", "metANN"], axis=1) sao_paulo_df[sao_paulo_df > 100] = np.nan vitoria_df = pd.read_csv(folder_path + "station_vitoria.csv", header=0, index_col=0) vitoria_df = vitoria_df.drop(["D-J-F", "M-A-M", "J-J-A", "S-O-N", "metANN"], axis=1) vitoria_df[vitoria_df > 100] = np.nan #################################################################### # Make mean df by adding data for each city with data from that year. #################################################################### mean_df = pd.DataFrame() if year in belem_df.index: mean_df = pd.concat([mean_df, pd.DataFrame({"Belem": belem_df.loc[year]})], axis=1) if year in curitiba_df.index: mean_df = pd.concat( [mean_df, pd.DataFrame({"Curitiba": curitiba_df.loc[year]})], axis=1 ) if year in fortaleza_df.index: mean_df = pd.concat( [mean_df, pd.DataFrame({"Fortaleza": fortaleza_df.loc[year]})], axis=1 ) if year in goiania_df.index: mean_df = pd.concat( [mean_df, pd.DataFrame({"Goiania": goiania_df.loc[year]})], axis=1 ) if year in macapa_df.index: mean_df = pd.concat( [mean_df, pd.DataFrame({"Macapa": macapa_df.loc[year]})], axis=1 ) if year in manaus_df.index: mean_df = pd.concat( [mean_df, pd.DataFrame({"Manaus": manaus_df.loc[year]})], axis=1 ) if year in recife_df.index: mean_df = pd.concat( [mean_df, pd.DataFrame({"Recife": recife_df.loc[year]})], axis=1 ) if year in rio_df.index: mean_df = pd.concat([mean_df, pd.DataFrame({"Rio": rio_df.loc[year]})], axis=1) if year in salvador_df.index: mean_df = pd.concat( [mean_df, pd.DataFrame({"Salvador": salvador_df.loc[year]})], axis=1 ) if year in sao_luiz_df.index: mean_df = pd.concat( [mean_df, pd.DataFrame({"Sao Luiz": sao_luiz_df.loc[year]})], axis=1 ) if year in sao_paulo_df.index: mean_df = pd.concat( [mean_df, pd.DataFrame({"Sao Paulo": sao_paulo_df.loc[year]})], axis=1 ) if year in vitoria_df.index: mean_df = pd.concat( [mean_df,
pd.DataFrame({"Vitoria": vitoria_df.loc[year]})
pandas.DataFrame
# Analysis of *rXiv clusters # %% import logging import re from datetime import datetime import altair as alt import pandas as pd import statsmodels.api as sm from numpy.random import choice from scipy.spatial.distance import cityblock from statsmodels.api import OLS, Poisson, ZeroInflatedPoisson from eurito_indicators import PROJECT_DIR from eurito_indicators.getters.arxiv_getters import ( get_arxiv_articles, get_cluster_names, get_arxiv_tokenised, get_arxiv_topic_model, get_covid_papers, query_arxiv_institute, ) from eurito_indicators.pipeline.clustering_naming import ( k_check_clusters, make_distance_to_clusters, make_doc_comm_lookup, ) from eurito_indicators.pipeline.processing_utils import make_lq from eurito_indicators.pipeline.topic_modelling import post_process_model_clusters from eurito_indicators.pipeline.topic_utils import make_topic_mix, train_topic_model from eurito_indicators.utils.altair_save_utils import ( ch_resize, google_chrome_driver_setup, save_altair, ) from eurito_indicators.utils.other_utils import clean_table VAL_PATH = f"{PROJECT_DIR}/outputs/reports/val_figures" FIG_PATH = f"{PROJECT_DIR}/outputs/reports/final_report_deck" def plot_k_check_outputs(val_results, cluster_names): """ Plots the results of a validation of clustering results using kmeans """ logging.info("Cluster overlaps") cluster_check = ( pd.concat([x[0] for x in kmeans_validation_results], axis=1) .mean(axis=1) .reset_index(name="co_occ") .assign(c1_name=lambda df: df["c1"].map(cluster_names)) .assign(c2_name=lambda df: df["c2"].map(cluster_names)) ) hm = ( alt.Chart(cluster_check) .mark_point(filled=True, stroke="black", strokeWidth=1) .encode( x=alt.X("c1_name:N", sort=alt.EncodingSortField("c1")), y=alt.Y("c2_name:N", sort=alt.EncodingSortField("c2")), size=alt.Size("co_occ", title="Number of co-occurrences"), color=alt.Color("co_occ", scale=alt.Scale(scheme="oranges")), tooltip=["c1_name", "c2_name"], ) ) logging.info("Correlations between assignment shares") dists_df = ( pd.concat([x[1] for x in kmeans_validation_results], axis=1) .mean(axis=1) .reset_index(name="share_corr") .assign(c1_name=lambda df: df["c1"].map(cluster_names)) .assign(c2_name=lambda df: df["c2"].map(cluster_names)) ) pl = ( alt.Chart(dists_df) .mark_rect() .encode( x=alt.X("c1_name:N", sort=alt.EncodingSortField("c1")), y=alt.Y("c2_name:N", sort=alt.EncodingSortField("c2")), color="share_corr", tooltip=["c1_name", "c2_name", "share_corr"], ) ) logging.info("Distribution of correlations with other clusters") melted = ( dists_df[["c1", "c2", "share_corr"]] .melt(id_vars=["share_corr"]) .assign(cl_name=lambda df: df["value"].map(cluster_names)) ) sort_clusters = ( melted.groupby("cl_name")["share_corr"] .mean() .sort_values(ascending=False) .index.tolist() ) boxp = ( alt.Chart(melted) .mark_boxplot() .encode(y=alt.Y("cl_name:N", sort=sort_clusters), x="share_corr") ) return hm, pl, boxp def make_clean_cluster_names(cluster_names): clean_clusters = { k: " ".join([x.capitalize() for x in re.sub("_", " ", v).split(" ")]) for k,v in cluster_names.items() } return clean_clusters def tag_covid_cluster(table, cluster_lookup, cluster_name): t = table.assign( cluster=lambda df: df["article_id"].map(cluster_lookup).map(cluster_name) ).assign(is_covid=lambda df: ~df["cluster"].isna()) return t def tag_month_year(table, art): return table["article_id"].map(art.set_index("article_id")["month_year"].to_dict()) def make_temp_reg_table(inst_cov, all_arts, focus_countries): """Creates a regression table to analyse the link between research nationality, topic and timeliness of Covid-19 response """ inst_cov["created"] = inst_cov["article_id"].map( all_arts.set_index("article_id")["created"] ) number_collabs = inst_cov.groupby("article_id")["country"].apply( lambda x: len(set(x)) ) inst_cov["n_collabs"] = inst_cov["article_id"].map(number_collabs) reg_data = ( inst_cov.query("is_covid==True") .query("month_year < '2021-01-01'") .query("month_year >= '2020-01-01'") .copy()[["country", "cluster", "month_year", "created", "n_collabs"]] .reset_index(drop=True) ) reg_data["y"] = [x.month for x in reg_data["month_year"]] reg_data["time_since_cov"] = [ (x - datetime(2019, 12, 30)).days for x in reg_data["created"] ] reg_data = reg_data.loc[reg_data["country"].isin(focus_countries)].reset_index( drop=True ) return reg_data def time_reg_comparison(reg_data): X_count = sm.add_constant(pd.get_dummies(reg_data["country"])) X_clust = sm.add_constant( pd.concat( [ pd.get_dummies(reg_data["country"]), pd.get_dummies(reg_data["cluster"]), reg_data["n_collabs"], ], axis=1, ) ) results = [ OLS(endog=reg_data["time_since_cov"], exog=exog).fit() for exog in [X_count, X_clust] ] return results def make_comparison_reg(arts, cluster, clust_assign, cluster_control): """Regression analysis comparing citations and collaboration levels between covid and non-covid papers """ ids = list(clust_assign[cluster]) + list(cluster_control[cluster]) logging.info(len(ids)) arts_sel = ( arts.loc[arts["article_id"].isin(ids)] .reset_index(drop=True) .dropna(axis=0, subset=["citation_count", "abstract"]) ) arts_sel["is_covid"] = arts_sel["article_id"].isin(clust_assign[cluster]) # Citation analysis exog = arts_sel["is_covid"].astype(float) cit_res = ZeroInflatedPoisson( endog=arts_sel["citation_count"].astype(float), exog=exog ).fit() collab_b = ( inst_cov.loc[inst_cov["article_id"].isin(arts_sel["article_id"])] .groupby("article_id") .apply(lambda x: len(set(x["country"]))) ) arts_sel["n_collab"] = arts_sel["article_id"].map(collab_b) # Collaboration analysis arts_sel_2 = arts_sel.dropna(axis=0, subset=["n_collab"]) exog_2 = sm.add_constant(arts_sel_2["is_covid"]).astype(float) collab_res = Poisson(endog=arts_sel_2["n_collab"].astype(float), exog=exog_2).fit() return cit_res, collab_res, arts_sel def plot_regression_coefficients(long): """Plots regression confidence intervals""" reg_int = ( alt.Chart(long) .mark_line(color="red") .encode( y=alt.Y( "name", sort=alt.EncodingSortField("value", "mean", order="descending"), title="Reseach cluster", ), x=alt.X("value", title="Confidence interval"), detail="name", ) ) hor = ( alt.Chart(long) .transform_calculate(x="0") .mark_rule(color="black", strokeDash=[2, 2]) .encode(x="x:Q") ) return reg_int + hor if __name__ == "__main__": driv = google_chrome_driver_setup() logging.info("Reading data") arx_tm = get_arxiv_topic_model() arts = get_covid_papers() cluster_names = get_cluster_names() clean_names = make_clean_cluster_names(cluster_names) tm, cl = post_process_model_clusters( model=arx_tm[0], top_level=0, cl_level=1, top_thres=0.7 ) clust_assign = {k: [el[0] for el in v] for k, v in cl.items()} paper_cluster_lookup = {k[0]: v for k, v in make_doc_comm_lookup(cl).items()} cov_cl = ( arts.copy() .assign(cluster=lambda df: df["article_id"].map(paper_cluster_lookup)) .dropna(axis=0, subset=["cluster"]) .reset_index(drop=True) .assign(tokenised=lambda df: arx_tm[3]) ) logging.info("K-check cluster outputs") kmeans_validation_results = [ k_check_clusters(tm, n_clust=k, cluster_assignments=clust_assign) for k in [23] * 5 + [15] * 5 + [30] * 5 ] heatmap, corr_shares, corr_distr = plot_k_check_outputs( kmeans_validation_results, cluster_names ) save_altair(heatmap, "cluster_cooccurrences", driver=driv, path=FIG_PATH) save_altair(corr_shares, "cluster_correlations", driver=driv, path=FIG_PATH) save_altair(corr_distr, "correlation_distributions", driver=driv, path=FIG_PATH) cov_cl["cluster_name"] = cov_cl["cluster"].map(clean_names) cov_cl = cov_cl.loc[cov_cl["year"] >= 2020] logging.info("Descriptive analysis") # Distribution of sources over clusters cluster_source = ( cov_cl.groupby("cluster_name")["article_source"] .value_counts() .reset_index(name="article_n") ) source_ch = ( alt.Chart(cluster_source) .mark_bar() .encode( y=alt.Y( "cluster_name", sort=alt.EncodingSortField("article_n", order="descending"), ), x="article_n", color="article_source", ) ).properties(height=500, width=300) save_altair(ch_resize(source_ch), "cluster_sources", driver=driv, path=FIG_PATH) logging.info("Evolution of activity") cluster_time = ( cov_cl.groupby("cluster_name")["month_year"] .value_counts(normalize=True) .reset_index(name="article_n") ) #cluster_time = clean_table(cluster_time, ["cluster_name"], clean_names) # Gets the countries that responded fastest to Covid-19 timeliness_studies = ( cluster_time.pivot_table( index="month_year", columns="cluster_name", values="article_n" ) .fillna(0) .cumsum() .iloc[6] .sort_values(ascending=False) .index.tolist() ) cluster_agg = cov_cl["month_year"].value_counts(normalize=True) cluster_time["average"] = cluster_time["month_year"].map(cluster_agg) source_ch = ( alt.Chart(cluster_time) .mark_line(point=True, size=2) .encode( y=alt.Y( "article_n", title=["Share", "of papers"], axis=alt.Axis(format="%") ), x=alt.X("month_year", axis=alt.Axis(format="%b-%Y")), tooltip=["cluster_name", "article_n"], ) ).properties(height=70, width=120) source_avg = ( alt.Chart(cluster_time) .mark_line(color="darkorange", strokeWidth=1) .encode( y=alt.Y("average"), x=alt.X("month_year", axis=alt.Axis(format="%b-%Y")) ) ).properties(height=70, width=120) topic_evolution = ch_resize( (source_ch + source_avg) .facet( facet=alt.Facet( "cluster_name", sort=timeliness_studies, title="Topical cluster" ), columns=5, ) .configure_point(size=15) ) save_altair(topic_evolution, "arxiv_topic_evolution", driver=driv, path=FIG_PATH) #### CONTINUE HERE logging.info("International analysis") logging.info("Read data") all_arts = get_arxiv_articles().query("article_source!='cord'") inst = query_arxiv_institute().query("is_multinational == 0").reset_index(drop=True) inst_cov = tag_covid_cluster(inst, paper_cluster_lookup, clean_names) inst_cov["month_year"] = tag_month_year(inst_cov, all_arts) inst_cov = ( inst_cov.query("month_year>='2020-01-01'") # .query("month_year<='2021-02-01'") .reset_index(drop=True) ) focus_countries = ( inst_cov.query("is_covid==True")["country"].value_counts().iloc[:30].index ) country_shares = ( inst_cov.groupby(["month_year", "is_covid", "country"]) .size() .unstack(level=[1, 2]) .fillna(0) .apply(lambda x: x / x.sum()) .stack(level=[0, 1]) .reset_index(name="paper_shares") ) country_shares = country_shares.loc[ country_shares["country"].isin(focus_countries) ].reset_index(drop=True) countries_sorted = ( country_shares.query("month_year<'2020-06-01'") .query("is_covid==True") .groupby("country")["paper_shares"] .sum() .sort_values(ascending=False) .index.tolist() ) # %% country_shares = clean_table( country_shares, ["is_covid"], {True: "Covid", False: "Not Covid"} ) country_chart = ( ( alt.Chart(country_shares) .mark_line(point=True, size=1) .transform_window( mean="mean(paper_shares)", frame=[-1, 1], groupby=["is_covid_clean", "country"], ) .encode( x=alt.X("month_year", title=None, axis=alt.Axis(format="%b%y")), y=alt.Y( "mean:Q", axis=alt.Axis(format="%"), title=["Share", "of papers"] ), color=alt.Color("is_covid_clean", title="Category"), facet=alt.Facet( "country", columns=5, sort=countries_sorted, title="Country" ), ) ) .properties(height=70, width=120) .configure_point(size=10) ) save_altair( ch_resize(country_chart), "arxiv_country_trends", driver=driv, path=FIG_PATH ) logging.info("Analysis of specialisation") focus_countries = ( inst_cov.query("is_covid==True")["country"].value_counts().iloc[:30].index ) totals = ( inst_cov.dropna(axis=0, subset=["cluster"]) .groupby(["country", "cluster"]) .size() .unstack() .fillna(0) .stack() .loc[focus_countries] ) lq = ( make_lq( inst_cov.dropna(axis=0, subset=["cluster"]) .groupby(["country", "cluster"]) .size() .unstack() .fillna(0) ) .stack() .loc[focus_countries] ) countries_sorted = totals.unstack(level=0).sum().index.tolist() clusters_sorted = ( totals.unstack(level=1).sum().sort_values(ascending=False).index.tolist() ) combi = pd.concat([totals, lq], axis=1) combi.columns = ["total", "specialisation"] combi = combi.reset_index(drop=False) # Plot heatmap heatmap = ( alt.Chart(combi.query("total>0")) .mark_point(filled=True, shape="square", stroke="darkgrey", strokeWidth=0.5) .encode( y=alt.Y("country", sort=countries_sorted), x=alt.X("cluster", sort=clusters_sorted, axis=alt.Axis(labelAngle=320)), size=alt.Size("total", scale=alt.Scale(type="log")), tooltip=["country", "cluster"], color=alt.X( "specialisation", scale=alt.Scale(scheme="redblue", type="log", domainMid=1), sort="descending", ), ) ) save_altair(heatmap, "country_specialisation", driver=driv, path=FIG_PATH) logging.info("Regression analysis") inst_cov["created"] = inst_cov["article_id"].map( all_arts.set_index("article_id")["created"] ) reg_data = make_temp_reg_table(inst_cov, all_arts, focus_countries) reg_results = time_reg_comparison(reg_data) regression_coefficients = pd.concat( [ reg_results[n].conf_int().loc[focus_countries].stack() for n, name in enumerate(["Country", "Cluster"]) ], axis=1, ) regression_coefficients.columns = ["country", "cluster"] regression_df = regression_coefficients.stack().reset_index(name="coefficient") # %% ch = ( alt.Chart() .mark_line() .encode( y=alt.Y( "level_2", axis=alt.Axis(ticks=False, labels=False, title=None), scale=alt.Scale(domain=["country", "cluster"]), ), color=alt.Color("level_2", scale=alt.Scale(domain=["country", "cluster"])), x=alt.X("coefficient", title="Time coefficient"), detail="level_0", ) ).properties(height=15, width=100) hor = ( alt.Chart().transform_calculate(x="1").mark_rule(color="black").encode(x="x:Q") ) regression_comparison = alt.layer(ch, hor, data=regression_df).facet( facet=alt.Facet( "level_0", sort=alt.EncodingSortField("coefficient", op="mean"), title=None, header=alt.Header(orient="top"), ), columns=3, ) logging.info("Covid / non covid regression comparison") tok = get_arxiv_tokenised() arts_2020 = ( all_arts.query("article_source!='cord'") .query("month_year < '2020-09-01'") .query("month_year > '2020-03-01'") .reset_index(drop=True) .assign(tok=lambda df: df["article_id"].map(tok)) .dropna(axis=0, subset=["tok"]) ) mdl, ids = train_topic_model(150, arts_2020["tok"], arts_2020["article_id"]) topic_mix = make_topic_mix(mdl, 150, ids) # Measure distance between all documents and cluster centroids centroids = ( topic_mix.assign(cl=lambda df: df.index.map(paper_cluster_lookup)) .dropna(axis=0, subset=["cl"]) .melt(id_vars="cl") .groupby(["cl", "variable"])["value"] .mean() .unstack() ) arxiv_dist_to_clust = make_distance_to_clusters(topic_mix, cityblock, clust_assign) arx_dist_not_covid = arxiv_dist_to_clust.loc[ ~arxiv_dist_to_clust.index.isin(set(arts["article_id"])) ] logging.info("Get controls by cluster") cluster_control = { c: set(arx_dist_not_covid.sort_values(c, ascending=True).index[:500]) for c in arx_dist_not_covid.columns } covid_comparisons = [ make_comparison_reg(arts_2020, cl, clust_assign, cluster_control) for cl in range(23) ] cits, collabs = [ [ x[n].conf_int().assign(name=name) for x, name in zip(covid_comparisons, clean_names.values()) ] for n in [0, 1] ] cit_long = ( pd.concat(cits) .query("index!='const'") .sort_values(0, ascending=False) .reset_index(drop=True) .melt(id_vars="name") ) cit_reg_plot = plot_regression_coefficients(cit_long).properties( title="Regression analysis: Citation counts" ) logging.info("plotting results") coll_long = (
pd.concat(collabs)
pandas.concat
import torch from torch.utils import data as D import os, io from datetime import datetime from . import preprocessing from zeiss_umbrella.fundus.adversarial import get_diff from zeiss_umbrella.fundus.quality_augmentation.transform import preset_augment from zeiss_umbrella.fundus.quality_augmentation.make_dataset import convert_to_hdf5, convert_to_hdf5_jpeg import pandas as pd from skimage.io import imread import numpy as np import cv2 import warnings import h5py class FundusDataset(D.Dataset): """Fundus Dataset loader""" def __init__(self, root_dir=None, csv_name=None, df=None, corruption_dic=None, phase=None, transform_dic=None, flip_labels=False, gaussian_noise=None): """ Three ways of loading dataset: 1. from a .csv file 2. from a pandas dataframe 3. from a .h5 corruption dataset These ways are mutually exclusive root_dir: directory where images and label csv are stored csv_name: the name of the csv label file stored in root_dir df: dataframe with image names and labels corruption_dic: dictionary storing setting of corruption dataset phase: 'train' or 'valid' (specifically for .h5 files) transform_dic: dictionary storing setting of transformation. format: {'type': 'normalize'/'default'/'augmented'} 'corruption': 'true' or 'false' perform corruption before above transformation or not if true should define 'ops' and 'or_less' in the transform_dic flip_labels: flip labels or not gaussian_noise: amplitude of gaussian noise added after transformations defined in transform_dic are performed """ self.corruption_dic = corruption_dic self.transform_dic = transform_dic self.gaussian_noise = gaussian_noise if self.corruption_dic: h5_file = h5py.File(corruption_dic['h5_path'], "r") if self.corruption_dic['valid_corruption']: self.data_x = h5_file.get(phase).get('augmented') else: if phase == 'train': self.data_x = h5_file.get(phase).get('augmented') elif phase == 'valid': self.data_x = h5_file[h5_file['valid']['original'][0]] else: raise ValueError("unknown phase") self.labels = h5_file.get(phase).get('label') elif df.__class__.__name__ != 'NoneType': self.labels = df.copy() else: self.labels = pd.read_csv(os.path.join(root_dir, csv_name)) self.root_dir = root_dir self.flip_labels = flip_labels if transform_dic['type'] == 'normalize': transform = preprocessing.normalize() elif transform_dic['type'] == 'augmented': transform = preprocessing.augmented() else: transform = preprocessing.default() self.transform = transform def __len__(self): return len(self.labels) def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() if self.corruption_dic: if self.corruption_dic['output_type'] == 'jpeg': img = imread(io.BytesIO(self.data_x[idx])) label = int(self.labels[idx]) else: img = self.data_x[idx] label = int(self.labels[idx]) else: img_name = os.path.join(self.root_dir, self.labels['image'][idx] + '.jpeg') img = imread(img_name) label = self.labels['level'][idx] if self.transform_dic.get('corruption', None): img = preset_augment(img, ops=self.transform_dic['ops'], or_less=self.transform_dic['or_less']) if self.transform: img = self.transform(img) if self.gaussian_noise: img += self.gaussian_noise * torch.randn_like(img) if self.flip_labels: label = (label != 1).astype(label.dtype) return img, torch.tensor(label).item() def normal_balance(df, root_dir, csv_name, class_name, seed): """ Generate balanced dataframe saved as .csv file from input dataframe :param seed: seed for reproducibility :param class_name: Name of the class to be balanced :param root_dir: path to the folder saving the resulting .csv file :param csv_name: name of the csv file :param df: input dataframe """ df_copy = df.copy() dominant_class = df_copy.groupby(class_name).count().idxmax()[0] num_dominant_class = df_copy.groupby(class_name).count().max()[0] for label_class in df_copy[class_name].unique(): if label_class != dominant_class: sample_class = df_copy[df_copy[class_name] == label_class].copy() for _ in range(int(num_dominant_class / len(sample_class)) - 1): df_copy = df_copy.append(sample_class) rest_length = num_dominant_class - int(num_dominant_class / len(sample_class)) * len(sample_class) df_copy = df_copy.append(sample_class.sample(n=rest_length, random_state=seed)) df_copy.to_csv(os.path.join(root_dir, csv_name)) print('Generating {}'.format(csv_name)) def generate_distance_stat(input_csv_name, root_dir, class_name, device, batch_size): """ Calculate the Euclidean distance between all sample pairs and save it as a .csv file. :param input_csv_name: The original dataset csv :param root_dir: dir where samples and dataset csv are stored :param class_name: the name of the label (level for fundus dataset) :param device: the device used to calculate distance :param batch_size :return: a .csv file with head "image1 image2 dist" """ d = preprocessing.default_transform() df = pd.read_csv(os.path.join(root_dir, input_csv_name)) dominant_class = df.groupby(class_name).count().idxmax()[0] distance_dict = {'image1': [], 'image2': [], 'dist': []} for label in df['level'].unique(): if label != dominant_class: df_label = df[df[class_name] == label] # stack all the samples as a tensor image_tensor = torch.stack( [d(imread(os.path.join(root_dir, img_name + '.jpeg'))) for img_name in df_label['image']]) counter = 0 for ind, img_name1 in enumerate(df_label['image']): counter += 1 print('progress: {:.3f}'.format(counter / len(df_label))) # process batch by batch for i in range(0, len(df_label), batch_size): step_size = min(batch_size, len(df_label) - i) image1_tensor = image_tensor[ind].repeat(step_size, 1, 1, 1) distance = ( get_diff(image_tensor[i:i + step_size], image1_tensor, device=device).max(dim=1)[0]).tolist() distance_dict['dist'] += distance distance_dict['image2'] += df_label['image'].tolist() distance_dict['image1'] += [img_name1] * len(df_label) df_distance =
pd.DataFrame(distance_dict)
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import numpy as np import pandas as pd import datetime as dt from scipy import stats import pymannkendall as mk from Modules import Read from Modules.Utils import Listador, FindOutlier, Cycles from Modules.Graphs import GraphSerieOutliers, GraphDataFrames, GraphSingleDF from TestRandomnes import RunsTest,ChangePointTest,SpearmanCoefTest,AndersonTest,MannKendall_modified Path_out = os.path.abspath(os.path.join(os.path.dirname(__file__), 'Sedimentos')) Est_path = os.path.abspath(os.path.join(os.path.dirname(__file__), 'CleanSedimentos')) Res_est = Listador(Est_path, inicio='resolidos', final='.csv') Trn_est = Listador(Est_path, inicio='Trans', final='.csv') Men_est = Listador(Est_path, inicio='Valores_', final='.csv') Armen_r = pd.read_csv(os.path.join(Est_path, Res_est[0]), index_col=0) Coque_r = pd.read_csv(os.path.join(Est_path, Res_est[1]), index_col=0) Esper_r = pd.read_csv(os.path.join(Est_path, Res_est[2]), index_col=0) Rayar_r = pd.read_csv(os.path.join(Est_path, Res_est[3]), index_col=0) Magan_r = pd.read_csv(os.path.join(Est_path, Res_est[4]), index_col=0) Monte_r = pd.read_csv(os.path.join(Est_path, Res_est[5]), index_col=0) Palen_r = pd.read_csv(os.path.join(Est_path, Res_est[6]), index_col=0) Armen_r.index = pd.DatetimeIndex(Armen_r.index) Coque_r.index = pd.DatetimeIndex(Coque_r.index) Esper_r.index = pd.DatetimeIndex(Esper_r.index) Rayar_r.index = pd.DatetimeIndex(Rayar_r.index) Magan_r.index = pd.DatetimeIndex(Magan_r.index) Monte_r.index = pd.DatetimeIndex(Monte_r.index) Palen_r.index = pd.DatetimeIndex(Palen_r.index) Armen_t = pd.read_csv(os.path.join(Est_path, Trn_est[0]), index_col=0) Coque_t = pd.read_csv(os.path.join(Est_path, Trn_est[1]), index_col=0) Esper_t = pd.read_csv(os.path.join(Est_path, Trn_est[2]), index_col=0) Rayar_t = pd.read_csv(os.path.join(Est_path, Trn_est[3]), index_col=0) Magan_t = pd.read_csv(os.path.join(Est_path, Trn_est[4]), index_col=0) Monte_t = pd.read_csv(os.path.join(Est_path, Trn_est[5]), index_col=0) Palen_t = pd.read_csv(os.path.join(Est_path, Trn_est[6]), index_col=0) Armen_t.index = pd.DatetimeIndex(Armen_t.index) Coque_t.index = pd.DatetimeIndex(Coque_t.index) Esper_t.index = pd.DatetimeIndex(Esper_t.index) Rayar_t.index =
pd.DatetimeIndex(Rayar_t.index)
pandas.DatetimeIndex
import os import wx import datetime from pubsub import pub import xlwings as xlw import pandas as pd import numpy as np import wx.lib.mixins.listctrl as listmix import image_viewer import analyzer wildcard = "Python source (*.py)|*.py|" \ "Compiled Python (*.pyc)|*.pyc|" \ "Comma sep(csv) (*.csv)|*.csv|" \ "Space sep (*.txt)|*.txt|" \ "Excel workbook (*.xlsx)|*.xlsx|" \ "All files (*.*)|*.*" # the context is example, thus need to clear first mw_listctrldata = { 1: ("Hey!", "You can edit", "me!"), 2: ("Try changing the contents", "by", "clicking"), 3: ("in", "a", "cell"), 4: ("See how the length columns", "change", "?"), 5: ("You can use", "TAB,", "cursor down,"), 6: ("and cursor up", "to", "navigate"), 7: ("But editing", "the cells", "don't change the data !!!"), } types_listctrldata = { 1: ("So this is", "another table", "!"), 2: ("you can input", "a", "xlsx file"), 3: ("with", "two", "sheets"), 4: ("like", "the", "input_data.xlsx"), 5: ("molecular weight", "sheet for", "upper table,"), 6: ("peptide types", "sheet for", "this table"), } input_listctrldata = dict() result_listctrldata = dict() name_list = ['lambda=0', 'lambda=0.05', 'lambda=0.0', 'lambda=0.15'] num_list = [52.4, 57.8, 59.1, 54.6] class TestListCtrl(wx.ListCtrl, listmix.ListCtrlAutoWidthMixin, listmix.TextEditMixin): def __init__(self, parent, ID, pos=wx.DefaultPosition, size=wx.DefaultSize, style=0): wx.ListCtrl.__init__(self, parent, ID, pos, size, style) listmix.ListCtrlAutoWidthMixin.__init__(self) listmix.TextEditMixin.__init__(self) def Populate(self): # for normal, simple columns, you can add them like this: self.InsertColumn(0, "A") self.InsertColumn(1, "B") self.InsertColumn(2, "C") items = mw_listctrldata.items() for key, data in items: index = self.InsertItem(self.GetItemCount(), str(data[0])) self.SetItem(index, 1, str(data[1])) self.SetItem(index, 2, str(data[2])) self.SetItemData(index, key) self.SetColumnWidth(0, wx.LIST_AUTOSIZE) self.SetColumnWidth(1, wx.LIST_AUTOSIZE) self.SetColumnWidth(2, wx.LIST_AUTOSIZE) self.currentItem = 0 def Populate2(self): self.InsertColumn(0, "A") self.InsertColumn(1, "B") self.InsertColumn(2, "C") items = types_listctrldata.items() for key, data in items: index = self.InsertItem(self.GetItemCount(), str(data[0])) self.SetItem(index, 1, str(data[1])) self.SetItem(index, 2, str(data[2])) self.SetItemData(index, key) self.SetColumnWidth(0, wx.LIST_AUTOSIZE) self.SetColumnWidth(1, wx.LIST_AUTOSIZE) self.SetColumnWidth(2, wx.LIST_AUTOSIZE) self.currentItem = 0 def Populate3(self): self.InsertColumn(0, "A") items = input_listctrldata.items() for key, data in items: index = self.InsertItem(self.GetItemCount(), str(data[0])) self.SetItemData(index, key) self.SetColumnWidth(0, wx.LIST_AUTOSIZE) self.currentItem = 0 def Populate4(self): self.InsertColumn(0, "A") self.InsertColumn(1, "B") items = result_listctrldata.items() for key, data in items: index = self.InsertItem(self.GetItemCount(), str(data[0])) self.SetItem(index, 1, str(data[1])) self.SetItemData(index, key) self.SetColumnWidth(0, wx.LIST_AUTOSIZE) self.SetColumnWidth(1, wx.LIST_AUTOSIZE) self.currentItem = 0 # well... This function didn't be used, but search for self.GetItem only def SetStringItem(self, index, col, data): if col in range(3): wx.ListCtrl.SetItem(self, index, col, data) wx.ListCtrl.SetItem(self, index, 3 + col, str(len(data))) else: try: datalen = int(data) except: return wx.ListCtrl.SetItem(self, index, col, data) data = self.GetItem(index, col - 3).GetText() wx.ListCtrl.SetItem(self, index, col - 3, data[0:datalen]) class Frame(wx.Frame): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) font_large = wx.Font(20, wx.ROMAN, wx.NORMAL, wx.NORMAL, False, '') font_medium = wx.Font(16, wx.ROMAN, wx.NORMAL, wx.NORMAL, False, '') super().SetFont(font_medium) pnl = wx.Panel(self) pnl.SetFont(font_large) mw_list = TestListCtrl(pnl, 10, size=(1080, 250), style=wx.LC_REPORT | wx.BORDER_NONE # | wx.LC_SORT_ASCENDING # Content of list as instructions is nonsense with auto-sort enabled | wx.LC_HRULES | wx.LC_VRULES ) mw_list.Populate() types_list = TestListCtrl(pnl, 11, size=(1080, 250), style=wx.LC_REPORT | wx.BORDER_NONE # | wx.LC_SORT_ASCENDING | wx.LC_HRULES | wx.LC_VRULES ) types_list.Populate2() input_list = TestListCtrl(pnl, 12, size=(540, 200), style=wx.LC_REPORT | wx.BORDER_NONE # | wx.LC_SORT_ASCENDING | wx.LC_HRULES | wx.LC_VRULES ) input_list.Populate3() result_list = TestListCtrl(pnl, 13, size=(540, 200), style=wx.LC_REPORT | wx.BORDER_NONE # | wx.LC_SORT_ASCENDING | wx.LC_HRULES | wx.LC_VRULES ) result_list.Populate4() self.mw_list = mw_list self.types_list = types_list self.input_list = input_list self.result_list = result_list for_mw = wx.StaticText(pnl, label="Molecular weight of Amino acid") for_types = wx.StaticText(pnl, label="Types of Peptide") for_input = wx.StaticText(pnl, label="Input data") for_result = wx.StaticText(pnl, label="Result data") sizer = wx.BoxSizer(wx.VERTICAL) box1 = wx.BoxSizer(wx.VERTICAL) box1.Add(for_mw) box1.Add(mw_list, 20, wx.EXPAND) box1.Add(for_types) box1.Add(types_list, 20, wx.EXPAND) box2 = wx.BoxSizer(wx.HORIZONTAL) sub_box = wx.BoxSizer(wx.VERTICAL) sub_box2 = wx.BoxSizer(wx.VERTICAL) sub_box.Add(for_input) sub_box.Add(input_list, 22) sub_box2.Add(for_result) sub_box2.Add(result_list, 23) box2.Add(sub_box, 21) box2.Add(sub_box2, 21) sizer.Add(box1) sizer.Add(box2) pnl.SetSizer(sizer) self.makemanuBar() self.CreateStatusBar() now = datetime.datetime.now() self.SetStatusText(f"Program started at {datetime.datetime.strftime(now, '%Y, %m %d %T')} (static)") # event handlers self.analyzer = analyzer.Control() self.Bind(wx.EVT_CLOSE, self.OnExit) # *args self.opentype = 4 self.savetype = 4 self.input_df = None self.query_type = "1" self.query_type2 = "" self.origin_path = None self.output_path = None def makemanuBar(self): file_menu = wx.Menu() introItem = file_menu.Append(-1, "&Introduction\tCtrl-I", "The introduction about this program") openItem = file_menu.Append(-1, "&Open\tCtrl-O", "Open the file") save_asItem = file_menu.Append(-1, "&Save As\tCtrl-Shift-S", "Save as a self-named file") file_menu.AppendSeparator() exitItem = file_menu.Append(wx.ID_EXIT, "Exit\tESC", "Terminate the program") work_menu = wx.Menu() analyzeItem = work_menu.Append(-1, "&Analyze\tCtrl-A", "Analyze a series of molecular and rank the possible types") appendMatterItem = work_menu.Append(-1, "Append &Matter\tCtrl-M", "tail added matter") queryItem = work_menu.Append(-1, "&Query the type\tCtrl-Q", "To see information about single type peptide") work_menu.AppendSeparator() drawItem = work_menu.Append(-1, "&Draw\tCtrl-D", "Draw the diagram") viewItem = work_menu.Append(-1, "&View\tCtrl-V", "Open the image viewer") help_menu = wx.Menu() aboutItem = help_menu.Append(wx.ID_ABOUT, "", "Who created this?") menuBar = wx.MenuBar() menuBar.Append(file_menu, "&File") menuBar.Append(work_menu, "&Work") menuBar.Append(help_menu, "&Help") self.SetMenuBar(menuBar) # menu event self.Bind(wx.EVT_MENU, self.OnIntro, introItem) self.Bind(wx.EVT_MENU, self.OnOpen, openItem) self.Bind(wx.EVT_MENU, self.OnSave_As, save_asItem) self.Bind(wx.EVT_MENU, self.OnExit, exitItem) self.Bind(wx.EVT_MENU, self.OnAnalyze, analyzeItem) self.Bind(wx.EVT_MENU, self.OnAppend, appendMatterItem) self.Bind(wx.EVT_MENU, self.OnQuerySingleType, queryItem) self.Bind(wx.EVT_MENU, self.OnAbout, aboutItem) self.Bind(wx.EVT_MENU, self.OnDraw, drawItem) self.Bind(wx.EVT_MENU, self.OnView, viewItem) def OnOpen(self, event): dlg = wx.FileDialog( self, message="Choose a file", defaultDir=os.getcwd(), defaultFile="", wildcard=wildcard, # if needed: wx.FD_MULTIPLE | to load many files style=wx.FD_OPEN | wx.FD_CHANGE_DIR | wx.FD_FILE_MUST_EXIST | wx.FD_PREVIEW ) dlg.SetFilterIndex(self.opentype) if dlg.ShowModal() == wx.ID_OK: paths = dlg.GetPaths() self.origin_path = paths[0] self.opentype = dlg.GetFilterIndex() file_type = dlg.GetFilename().split(".")[1] if file_type == "csv": df = pd.read_csv(self.origin_path, header=None, sep=",") elif file_type == "txt": df = pd.read_csv(self.origin_path, header=None, sep=" ") elif file_type == "xlsx": xlw_app = xlw.App(visible=False) wb = xlw.Book(self.origin_path) mw_sheet = wb.sheets[0].used_range.value types_sheet = wb.sheets[1].used_range.value input_sheet = wb.sheets[2].used_range.value mw_df = pd.DataFrame(mw_sheet) types_df = pd.DataFrame(types_sheet) input_df = pd.DataFrame(input_sheet) wb.close() xlw_app.kill() else: raise Exception("It's not usable yet!") global mw_listctrldata global types_listctrldata global input_listctrldata mw_listctrldata.clear() types_listctrldata.clear() for val in mw_df.itertuples(): mw_listctrldata[val[0]] = val[1:] for val in types_df.itertuples(): types_listctrldata[val[0]] = val[1:] for val in input_df.itertuples(): input_listctrldata[val[0]] = val[1:] self.mw_list.ClearAll() self.mw_list.Populate() self.types_list.ClearAll() self.types_list.Populate2() self.input_list.ClearAll() self.input_list.Populate3() # pretreat the mw, types df for analyzing self.analyzer.aa = analyzer.pretreat_mw(mw_listctrldata) self.analyzer.pep = analyzer.pretreat_types(types_listctrldata) self.input_df = list(input_listctrldata.values()) dlg.Destroy() def OnSave_As(self, event): mw_text = self.gettext(self.mw_list, self.mw_list.GetItemCount, self.mw_list.GetColumnCount) types_text = self.gettext(self.types_list, self.types_list.GetItemCount, self.types_list.GetColumnCount) input_text = self.gettext(self.input_list, self.input_list.GetItemCount, self.input_list.GetColumnCount) result_text = self.gettext(self.result_list, self.result_list.GetItemCount, self.result_list.GetColumnCount) dlg = wx.FileDialog( self, message="Save file as ...", defaultDir=os.getcwd(), defaultFile="", wildcard=wildcard, style=wx.FD_SAVE | wx.FD_OVERWRITE_PROMPT ) dlg.SetFilterIndex(self.savetype) if dlg.ShowModal() == wx.ID_OK: self.output_path = dlg.GetPath() mw_output = pd.DataFrame(mw_text).to_string(index=False, header=False) types_output = pd.DataFrame(types_text).to_string(index=False, header=False) input_output =
pd.Series(input_text)
pandas.Series
from typing import NoReturn, Tuple, Any, Union, Optional, List, Callable, Dict from timeatlas.abstract.abstract_base_generator import AbstractBaseGenerator from timeatlas.time_series import TimeSeries from timeatlas.time_series_dataset import TimeSeriesDataset from timeatlas.config.constants import COMPONENT_VALUES from .anomalies import AnomalyABC from .utils import get_operator from .labeler import AnomalySetLabeler from .config import AnomalyConfigParser import pandas as pd import numpy as np from itertools import cycle from copy import copy import math from os import path class AnomalyGenerator(AbstractBaseGenerator): """ A generator that introcudes an anomaly into a given TimeSeriesDataset. The types and parameters are controlled with a .ini file, that can be created with "AnomalyGeneratorTemplate" """ def __init__(self, data: TimeSeriesDataset, conf_file: str, save_as: str = 'text'): """ Args: data: TimeSeriesDataset containing the data conf_file: config file created with AnomalyGeneratorTemplate """ # Each generator set a label_suffix # Here: AGM -> Anomaly Generator Manual super().__init__() self.label_suffix = "AGM" assert save_as == 'text' or save_as == 'pickle' or save_as == 'tsd' self.save_as = save_as # assertions assert isinstance(data, TimeSeriesDataset) assert all(isinstance(x, TimeSeries) for x in data), "One or more elements are not a TimeSeries-object" assert path.isfile( conf_file), f"No config file found under given path '{conf_file}'" # set data self.data = data.copy(deep=True) # read the config file self.config = AnomalyConfigParser(config_file=conf_file) self.GLOBAL = self.config['GLOBAL'] self.ANOMALIES = self.config['ANOMALIES'] self.selection = self.GLOBAL['selection'] self.percent = self.GLOBAL['percent'] self.amount = self.GLOBAL['amount'] self.outfile = self.GLOBAL['outfile'] # create numpy-random.RandomState object self.seed = self.GLOBAL['seed'] # functions for anomaly self.ABC = AnomalyABC(self.seed) self.anomaly_functions = self.get_anomaly_function() # adding a label column to the dataframe and creating the results anomaly labels self.labels = AnomalySetLabeler() # figure out the precision of the data self.precision = self.generation_precision() @staticmethod def precision_and_scale(x: float): """ Get the precision of a value Args: x: a (float) number Returns: the number of positions after the comma """ # 14 is the maximal number of digits python can handle (more is also unrealistic) max_digits = 14 # if the number is NaN return nothing if math.isnan(x): return # figure out the magniture -> the numbers before the comma int_part = int(abs(x)) magnitude = 1 if int_part == 0 else int(math.log10(int_part)) + 1 if magnitude >= max_digits: return (magnitude, 0) # shift the number after the comma in front of the comma and figure out the amount frac_part = abs(x) - int_part multiplier = 10 ** (max_digits - magnitude) frac_digits = multiplier + int(multiplier * frac_part + 0.5) while frac_digits % 10 == 0: frac_digits /= 10 scale = int(math.log10(frac_digits)) return scale @staticmethod def clean_parameters(values) -> Dict: """ Function to cleanup the parameters. If the parameter in the config-file are None, they are removed. Args: values: parameter values from he config files Returns: Dict of the paramters without the None """ return {k: v for k, v in values['PARAMETERS'].items() if v is not None} @staticmethod def create_zip_object(data, anomaly_f): ''' combines the two lists of the data, where the anomalies are added to and the anomaly-function if the function list is shorter it will cycle through them until all data has 1 anomaly if the data is shorter it will only assign one anomaly function Args: data: pd.Series of data anomaly_f: function of ABC.anomalies creating the anomaly Returns: zip-object ''' # warnings.warn("Length of data > length of anomalies: Not all anomalies will be assigned.") zip_list = zip(data, cycle(anomaly_f)) return zip_list def generation_precision(self): ''' Set the rounded average precision of the values inside a dataframe Returns: rounded average number of digits after the comma ''' precision_df = np.array( [self.precision_and_scale(x) for ts in self.data for x in ts._data.values]) # This is more of a security. A correctly formated TimeSeries-object has no None elements precision_df = precision_df[precision_df != None] return int(round(precision_df.mean())) def save(self) -> NoReturn: """ Saving the labels and the new TimeSeriesDataset to file. Returns: NoReturn """ self.labels.finalize() if self.save_as == 'text': self.data.to_text(path=f'./{self.outfile}_data') elif self.save_as == 'pickle': self.data.to_pickle(path=f'./{self.outfile}_data.pkl') elif self.save_as == 'tsd': return self.data # This function is no longer needed, since we save the labels now in the TimeSeries # self.labels.annotation.to_csv(f'./{self.outfile}_data/{self.outfile}_labels.csv', index=False) def get_anomaly_function(self) -> List: ''' Get all functions in the config file Returns: list of tuples with the functions as (function, parameters) ''' functions = [] for key, values in self.ANOMALIES.items(): function = getattr(self.ABC, values['function']) # removing the keys with None parameters = self.clean_parameters(values) functions.append((function, parameters)) return functions def chose_amount(self) -> List: """ Chose the number of time windows based on a fixed amount given by the user in the config file: eg. amount = 10, will select 10 elements Returns: List of pair of indices and data """ ind, data = self.data.select_components_randomly(n=self.amount, seed=self.seed, indices=True) return list(zip(ind, data)) def chose_selection(self) -> List: """ Chose the number of time windows based on a user selection given by the user in the config file: eg. selection = [0,1,5,9] will select the first, second, sixth and tenth element. Returns: List of pair of indices and data """ data = self.data[self.selection] return list(zip(self.selection, data)) def chose_percentage(self) -> List: """ Chose the number of time windows based on a user selection given by the user in the config file: e.g. percent = 0.2 will select 20% of the TimeSeriesDataset (min=0, max=1) Returns: List of pair of indices and data """ ind, data = self.data.select_components_by_percentage(percent=self.percent, seed=self.seed, indices=True) return list(zip(ind, data)) def add_data(self, new_data: TimeSeries, index: int) -> NoReturn: """ Replacing the old TimeSeries with the new TimeSeries containing the anomaly. Args: new_data: new TimeSeries that will replace the old one index: index of the TimeSeries to replace in the TimeSeriesDataset Returns: NoReturn """ self.data[index]._data[f'0_{COMPONENT_VALUES}'].replace(to_replace=
pd.Series(new_data)
pandas.Series
""" Create ensemble forecast. """ import numpy as np import pandas as pd from pywtk.site_lookup import get_3tiersites_from_wkt from pywtk.wtk_api import get_nc_data, WIND_FCST_DIR from pywtk import site_lookup from . import stats class Ensemble: """Creation of ensemble forecasts.""" _allowable_horizons = (1, 4, 6, 24) # 1 and 24 hour values estimated from NREL wind power error report; others # are arbitrary _default_error_kurtosis = {1: 18, 4: 14, 6: 10, 24: 2.5} def __init__(self, coordinates, horizon=24, isclose_distance=10, error_kurtosis=None): """ :param tuple coordinates: lat / long of forecast location (decimal deg) :param int_or_list horizon: Forecast horizon(s), hours. :param dict error: Forecast errors for each horizon :param float isclose_distance: Largest distance [km?] between wind toolkit data point and forecast coordinates to be `close`, otherwise will take the mean of the three closest points TODO: Should really do an inverse-distance mean... """ if isinstance(horizon, int): horizon = [horizon] for h in horizon: assert h in self._allowable_horizons self.latitude, self.longitude = coordinates self.horizon = horizon self.isclose_distance = isclose_distance if error_kurtosis is None: self.error_kurtosis = self._default_error_kurtosis.copy() else: self.error_kurtosis = error_kurtosis def create_ensemble(self, forecast, n, kurtosis): """Create *n* p.u. forecasts from the base pywtk forecast. :param DataFrame forecast: pywtk site forecast; should be normalized to p.u. power output. :param int n: Number of data points to generate. :param float kurtosis: Kurtosis for p.u. power prediction error """ # For each timestep, we fit a hyperbolic distribution to the # _p90 10th percentile, mean, and _p10 90th percentile to estimate the # errors, then generate n power predictions at that point. ten_percentile_col = [c for c in forecast.columns if '_p90' in c][0] ninety_percentile_col = [c for c in forecast.columns if '_p10' in c][0] mean_col = set(forecast.columns) - \ set((ten_percentile_col, ninety_percentile_col)) if len(mean_col) > 1: raise ValueError("Ambiguous mean column") mean_col = list(mean_col)[0] forecasts = [] for i, row in forecast.iterrows(): percentiles = {0.1: row[ten_percentile_col], 0.9: row[ninety_percentile_col]} error_dist, _, _ = stats.fit_hyperbolic( row[mean_col], percentiles=percentiles, kurtosis=kurtosis, x0=None ) forecasts.append(error_dist.rvs(size=n)) forecasts = np.array(forecasts) forecasts = np.around(np.clip(forecasts, 0, 1), 4) return
pd.DataFrame(forecasts, index=forecast.index)
pandas.DataFrame
import os import pandas as pd CURRENT_DIR = os.path.dirname(__file__) INPUT_DIR = os.path.join(CURRENT_DIR, "input") TMP_DIR = os.path.join(CURRENT_DIR, "tmp") GRAPHER_DIR = os.path.join(CURRENT_DIR, "grapher") def main(): # GCP data gas_gcp = pd.read_excel( os.path.join(INPUT_DIR, "country_fuel/gas_by_country.xlsx"), sheet_name="Data", skiprows=1 ) oil_gcp = pd.read_excel( os.path.join(INPUT_DIR, "country_fuel/oil_by_country.xlsx"), sheet_name="Data", skiprows=1 ) coal_gcp = pd.read_excel( os.path.join(INPUT_DIR, "country_fuel/coal_by_country.xlsx"), sheet_name="Data", skiprows=1 ) flaring_gcp = pd.read_excel( os.path.join(INPUT_DIR, "country_fuel/flaring_by_country.xlsx"), sheet_name="Data", skiprows=1 ) cement_gcp = pd.read_excel( os.path.join(INPUT_DIR, "country_fuel/cement_by_country.xlsx"), sheet_name="Data", skiprows=1 ) country_gcp = pd.read_csv( os.path.join(INPUT_DIR, "shared/gcp_country_standardized.csv") ) gas_gcp = pd.melt(gas_gcp, id_vars=["Year"], var_name=["Country"], value_name="Gas") oil_gcp = pd.melt(oil_gcp, id_vars=["Year"], var_name=["Country"], value_name="Oil") coal_gcp =
pd.melt(coal_gcp, id_vars=["Year"], var_name=["Country"], value_name="Coal")
pandas.melt
import os import re from retry import retry from typing import List, Union import pandas as pd import requests from tqdm import tqdm import multitasking import signal from .config import EastmoneyFundHeaders from ..utils import to_numeric from jsonpath import jsonpath signal.signal(signal.SIGINT, multitasking.killall) @to_numeric def get_quote_history(fund_code: str, pz: int = 40000) -> pd.DataFrame: """ 根据基金代码和要获取的页码抓取基金净值信息 Parameters ---------- fund_code : str 6 位基金代码 pz : int, optional 页码, 默认为 40000 以获取全部历史数据 Returns ------- DataFrame 包含基金历史净值等数据 Examples -------- >>> import efinance as ef >>> ef.fund.get_quote_history('161725') 日期 单位净值 累计净值 涨跌幅 0 2021-06-11 1.5188 3.1499 -3.09 1 2021-06-10 1.5673 3.1984 1.69 2 2021-06-09 1.5412 3.1723 0.11 3 2021-06-08 1.5395 3.1706 -6.5 4 2021-06-07 1.6466 3.2777 1.61 ... ... ... ... ... 1469 2015-06-08 1.0380 1.0380 2.5692 1470 2015-06-05 1.0120 1.0120 1.5045 1471 2015-06-04 0.9970 0.9970 -- 1472 2015-05-29 0.9950 0.9950 -- 1473 2015-05-27 1.0000 1.0000 -- """ data = { 'FCODE': f'{fund_code}', 'IsShareNet': 'true', 'MobileKey': '1', 'appType': 'ttjj', 'appVersion': '6.2.8', 'cToken': '1', 'deviceid': '1', 'pageIndex': '1', 'pageSize': f'{pz}', 'plat': 'Iphone', 'product': 'EFund', 'serverVersion': '6.2.8', 'uToken': '1', 'userId': '1', 'version': '6.2.8' } url = 'https://fundmobapi.eastmoney.com/FundMNewApi/FundMNHisNetList' json_response = requests.get( url, headers=EastmoneyFundHeaders, data=data).json() rows = [] columns = ['日期', '单位净值', '累计净值', '涨跌幅'] if json_response is None: return pd.DataFrame(rows, columns=columns) datas = json_response['Datas'] if len(datas) == 0: return pd.DataFrame(rows, columns=columns) rows = [] for stock in datas: date = stock['FSRQ'] rows.append({ '日期': date, '单位净值': stock['DWJZ'], '累计净值': stock['LJJZ'], '涨跌幅': stock['JZZZL'] }) df =
pd.DataFrame(rows)
pandas.DataFrame
import warnings from collections import Counter from typing import Dict from unittest.mock import patch import numpy as np import pandas as pd import pyarrow import pytest from pandas import DataFrame import ray from ray.data import Dataset from ray.data.aggregate import Max from ray.data.preprocessor import Preprocessor, PreprocessorNotFittedException from ray.data.preprocessors import ( BatchMapper, Chain, CustomStatefulPreprocessor, LabelEncoder, MinMaxScaler, OneHotEncoder, OrdinalEncoder, SimpleImputer, StandardScaler, ) from ray.data.preprocessors.encoder import Categorizer, MultiHotEncoder from ray.data.preprocessors.hasher import FeatureHasher from ray.data.preprocessors.normalizer import Normalizer from ray.data.preprocessors.scaler import MaxAbsScaler, RobustScaler from ray.data.preprocessors.tokenizer import Tokenizer from ray.data.preprocessors.transformer import PowerTransformer from ray.data.preprocessors.utils import simple_hash, simple_split_tokenizer from ray.data.preprocessors.vectorizer import CountVectorizer, HashingVectorizer @pytest.fixture def create_dummy_preprocessors(): class DummyPreprocessorWithNothing(Preprocessor): _is_fittable = False class DummyPreprocessorWithPandas(DummyPreprocessorWithNothing): def _transform_pandas(self, df: "pd.DataFrame") -> "pd.DataFrame": return df class DummyPreprocessorWithArrow(DummyPreprocessorWithNothing): def _transform_arrow(self, table: "pyarrow.Table") -> "pyarrow.Table": return table class DummyPreprocessorWithPandasAndArrow(DummyPreprocessorWithNothing): def _transform_pandas(self, df: "pd.DataFrame") -> "pd.DataFrame": return df def _transform_arrow(self, table: "pyarrow.Table") -> "pyarrow.Table": return table yield ( DummyPreprocessorWithNothing(), DummyPreprocessorWithPandas(), DummyPreprocessorWithArrow(), DummyPreprocessorWithPandasAndArrow(), ) def test_standard_scaler(): """Tests basic StandardScaler functionality.""" col_a = [-1, 0, 1, 2] col_b = [1, 1, 5, 5] col_c = [1, 1, 1, None] in_df =
pd.DataFrame.from_dict({"A": col_a, "B": col_b, "C": col_c})
pandas.DataFrame.from_dict
#!/conda/bin/python2.7 import sys import argparse import vcf import pandas from vcf.parser import _vcf_metadata_parser as vcf_parser class vep_converter(): def __init__(self, input_name, output_name, transcript_file): self._input_name = input_name self._output_name = output_name self._transcript_dic = {} with open(transcript_file, 'r') as transcript_data: for input_line in transcript_data: # Remove header if input_line[0] == '#': pass else: input_list = input_line.strip().split('\t') ensembl = input_list[0] if len(input_list) == 2: refseq = 'NONE' elif input_list[2] == '': refseq = 'NONE' else: refseq = input_list[2] self._transcript_dic[ensembl] = refseq self._conseq_dict = {'transcript_ablation' : ['Splice_Site', 1], # A feature ablation whereby the deleted region includes a transcript feature 'exon_loss_variant' : ['Splice_Site', 1], # A sequence variant whereby an exon is lost from the transcript 'splice_donor_variant' : ['Splice_Site', 2], # A splice variant that changes the 2 base region at the 5' end of an intron 'splice_acceptor_variant' : ['Splice_Site', 2], # A splice variant that changes the 2 base region at the 3' end of an intron 'stop_gained' : ['Nonsense_Mutation', 3], # A sequence variant whereby at least one base of a codon is changed, resulting in a premature stop codon, leading to a shortened transcript 'frameshift_variant' : ['Frame_Shift', 3], # A sequence variant which causes a disruption of the translational reading frame, because the number of nucleotides inserted or deleted is not a multiple of three 'stop_lost' : ['Nonstop_Mutation', 3], # A sequence variant where at least one base of the terminator codon (stop) is changed, resulting in an elongated transcript 'start_lost' : ['Translation_Start_Site', 4], # A codon variant that changes at least one base of the canonical start codon 'initiator_codon_variant' : ['Translation_Start_Site', 4], # A codon variant that changes at least one base of the first codon of a transcript 'disruptive_inframe_insertion' : ['In_Frame_Ins', 5], # An inframe increase in cds length that inserts one or more codons into the coding sequence within an existing codon 'disruptive_inframe_deletion' : ['In_Frame_Del', 5], # An inframe decrease in cds length that deletes bases from the coding sequence starting within an existing codon 'inframe_insertion' : ['In_Frame_Ins', 5], # An inframe non synonymous variant that inserts bases into the coding sequence 'inframe_deletion' : ['In_Frame_Del', 5], # An inframe non synonymous variant that deletes bases from the coding sequence 'protein_altering_variant' : ['Protein_Alter', 5], # A sequence variant which is predicted to change the protein encoded in the coding sequence 'missense_variant' : ['Missense_Mutation', 6], # A sequence variant, that changes one or more bases, resulting in a different amino acid sequence but where the length is preserved 'conservative_missense_variant' : ['Missense_Mutation', 6], # A sequence variant whereby at least one base of a codon is changed resulting in a codon that encodes for a different but similar amino acid. These variants may or may not be deleterious 'rare_amino_acid_variant' : ['Missense_Mutation', 6], # A sequence variant whereby at least one base of a codon encoding a rare amino acid is changed, resulting in a different encoded amino acid 'transcript_amplification' : ['Intron', 7], # A feature amplification of a region containing a transcript 'splice_region_variant' : ['Splice_Region', 8], # A sequence variant in which a change has occurred within the region of the splice site, either within 1-3 bases of the exon or 3-8 bases of the intron 'stop_retained_variant' : ['Silent', 9], # A sequence variant where at least one base in the terminator codon is changed, but the terminator remains 'synonymous_variant' : ['Silent', 9], # A sequence variant where there is no resulting change to the encoded amino acid 'incomplete_terminal_codon_variant' : ['Silent', 10], # A sequence variant where at least one base of the final codon of an incompletely annotated transcript is changed 'coding_sequence_variant' : ['Missense_Mutation', 11], # A sequence variant that changes the coding sequence 'mature_miRNA_variant' : ['RNA', 11], # A transcript variant located with the sequence of the mature miRNA 'exon_variant' : ['RNA', 11], # A sequence variant that changes exon sequence '5_prime_UTR_variant' : ['5\'UTR', 12], # A UTR variant of the 5' UTR '5_prime_UTR_premature_start_codon_gain_variant' : ['5\'UTR', 12], # snpEff-specific effect, creating a start codon in 5' UTR '3_prime_UTR_variant' : ['3\'UTR', 12], # A UTR variant of the 3' UTR 'non_coding_exon_variant' : ['RNA', 13], # A sequence variant that changes non-coding exon sequence 'non_coding_transcript_exon_variant' : ['RNA', 13], # snpEff-specific synonym for non_coding_exon_variant 'non_coding_transcript_variant' : ['RNA', 14], # A transcript variant of a non coding RNA gene 'nc_transcript_variant' : ['RNA', 14], # A transcript variant of a non coding RNA gene (older alias for non_coding_transcript_variant) 'intron_variant' : ['Intron', 14], # A transcript variant occurring within an intron 'intragenic_variant' : ['Intron', 14], # A variant that occurs within a gene but falls outside of all transcript 'INTRAGENIC' : ['Intron', 14], # snpEff-specific synonym of intragenic_variant 'NMD_transcript_variant' : ['Silent', 15], # A variant in a transcript that is the target of NMD 'upstream_gene_variant' : ['5\'Flank', 16], # A sequence variant located 5' of a gene 'downstream_gene_variant' : ['3\'Flank', 16], # A sequence variant located 3' of a gene 'TFBS_ablation' : ['Targeted_Region', 17], # A feature ablation whereby the deleted region includes a transcription factor binding site 'TFBS_amplification' : ['Targeted_Region', 17], # A feature amplification of a region containing a transcription factor binding site 'TF_binding_site_variant' : ['Intergenic', 17], # A sequence variant located within a transcription factor binding site 'regulatory_region_ablation' : ['Targeted_Region', 17], # A feature ablation whereby the deleted region includes a regulatory region 'regulatory_region_amplification' : ['Targeted_Region', 17], # A feature amplification of a region containing a regulatory region 'regulatory_region_variant' : ['Intergenic', 17], # A sequence variant located within a regulatory region 'regulatory_region' : ['Intergenic', 17], # snpEff-specific effect that should really be regulatory_region_variant 'feature_elongation' : ['Targeted_Region', 18], # A sequence variant that causes the extension of a genomic feature, with regard to the reference sequence 'feature_truncation' : ['Targeted_Region', 18], # A sequence variant that causes the reduction of a genomic feature, with regard to the reference sequence 'intergenic_variant' : ['Intergenic', 19], # A sequence variant located in the intergenic region, between genes 'intergenic_region' : ['Intergenic', 19], # snpEff-specific effect that should really be intergenic_variant 'ETC' : ['None', 20] # none } self._biotype_dict = {'protein_coding' : 1, # Contains an open reading frame (ORF) 'LRG_gene' : 2, # Gene in a "Locus Reference Genomic" region known to have disease-related sequence variations 'IG_C_gene' : 2, # Immunoglobulin (Ig) variable chain genes imported or annotated according to the IMGT 'IG_D_gene' : 2, # Immunoglobulin (Ig) variable chain genes imported or annotated according to the IMGT 'IG_J_gene' : 2, # Immunoglobulin (Ig) variable chain genes imported or annotated according to the IMGT 'IG_LV_gene' : 2, # Immunoglobulin (Ig) variable chain genes imported or annotated according to the IMGT 'IG_V_gene' : 2, # Immunoglobulin (Ig) variable chain genes imported or annotated according to the IMGT 'TR_C_gene' : 2, # T-cell receptor (TcR) genes imported or annotated according to the IMGT 'TR_D_gene' : 2, # T-cell receptor (TcR) genes imported or annotated according to the IMGT 'TR_J_gene' : 2, # T-cell receptor (TcR) genes imported or annotated according to the IMGT 'TR_V_gene' : 2, # T-cell receptor (TcR) genes imported or annotated according to the IMGT 'miRNA' : 3, # Non-coding RNA predicted using sequences from RFAM and miRBase 'snRNA' : 3, # Non-coding RNA predicted using sequences from RFAM and miRBase 'snoRNA' : 3, # Non-coding RNA predicted using sequences from RFAM and miRBase 'ribozyme' : 3, # Non-coding RNA predicted using sequences from RFAM and miRBase 'tRNA' : 3, #Added by <NAME> 'sRNA' : 3, # Non-coding RNA predicted using sequences from RFAM and miRBase 'scaRNA' : 3, # Non-coding RNA predicted using sequences from RFAM and miRBase 'rRNA' : 3, # Non-coding RNA predicted using sequences from RFAM and miRBase 'lincRNA' : 3, # Long, intervening noncoding (linc) RNAs, that can be found in evolutionarily conserved, intergenic regions 'bidirectional_promoter_lncrna' : 3, # A non-coding locus that originates from within the promoter region of a protein-coding gene, with transcription proceeding in the opposite direction on the other strand 'bidirectional_promoter_lncRNA' : 3, # A non-coding locus that originates from within the promoter region of a protein-coding gene, with transcription proceeding in the opposite direction on the other strand 'known_ncrna' : 4, 'vaultRNA' : 4, # Short non coding RNA genes that form part of the vault ribonucleoprotein complex 'macro_lncRNA' : 4, # unspliced lncRNAs that are several kb in size 'Mt_tRNA' : 4, # Non-coding RNA predicted using sequences from RFAM and miRBase 'Mt_rRNA' : 4, # Non-coding RNA predicted using sequences from RFAM and miRBase 'antisense' : 5, # Has transcripts that overlap the genomic span (i.e. exon or introns) of a protein-coding locus on the opposite strand 'antisense_RNA' : 5, # Alias for antisense (Y. Boursin) 'sense_intronic' : 5, # Long non-coding transcript in introns of a coding gene that does not overlap any exons 'sense_overlapping' : 5, # Long non-coding transcript that contains a coding gene in its intron on the same strand '3prime_overlapping_ncrna' : 5, # Transcripts where ditag and/or published experimental data strongly supports the existence of short non-coding transcripts transcribed from the 3'UTR '3prime_overlapping_ncRNA' : 5, # Transcripts where ditag and/or published experimental data strongly supports the existence of short non-coding transcripts transcribed from the 3'UTR 'misc_RNA' : 5, # Non-coding RNA predicted using sequences from RFAM and miRBase 'non_coding' : 5, # Transcript which is known from the literature to not be protein coding 'regulatory_region' : 6, # A region of sequence that is involved in the control of a biological process 'disrupted_domain' : 6, # Otherwise viable coding region omitted from this alternatively spliced transcript because the splice variation affects a region coding for a protein domain 'processed_transcript' : 6, # Doesn't contain an ORF 'TEC' : 6, # To be Experimentally Confirmed. This is used for non-spliced EST clusters that have polyA features. This category has been specifically created for the ENCODE project to highlight regions that could indicate the presence of protein coding genes that require experimental validation, either by 5' RACE or RT-PCR to extend the transcripts, or by confirming expression of the putatively-encoded peptide with specific antibodies 'TF_binding_site' : 7, # A region of a nucleotide molecule that binds a Transcription Factor or Transcription Factor complex 'CTCF_binding_site' :7, # A transcription factor binding site with consensus sequence CCGCGNGGNGGCAG, bound by CCCTF-binding factor 'promoter_flanking_region' : 7, # A region immediately adjacent to a promoter which may or may not contain transcription factor binding sites 'enhancer' : 7, # A cis-acting sequence that increases the utilization of (some) eukaryotic promoters, and can function in either orientation and in any location (upstream or downstream) relative to the promoter 'promoter' : 7, # A regulatory_region composed of the TSS(s) and binding sites for TF_complexes of the basal transcription machinery 'open_chromatin_region' : 7, # A DNA sequence that in the normal state of the chromosome corresponds to an unfolded, un-complexed stretch of double-stranded DNA 'retained_intron' : 7, # Alternatively spliced transcript believed to contain intronic sequence relative to other, coding, variants 'nonsense_mediated_decay' : 7, # If the coding sequence (following the appropriate reference) of a transcript finishes >50bp from a downstream splice site then it is tagged as NMD. If the variant does not cover the full reference coding sequence then it is annotated as NMD if NMD is unavoidable i.e. no matter what the exon structure of the missing portion is the transcript will be subject to NMD 'non_stop_decay' : 7, # Transcripts that have polyA features (including signal) without a prior stop codon in the CDS, i.e. a non-genomic polyA tail attached directly to the CDS without 3' UTR. These transcripts are subject to degradation 'ambiguous_orf' : 7, # Transcript believed to be protein coding, but with more than one possible open reading frame 'pseudogene' : 8, # Have homology to proteins but generally suffer from a disrupted coding sequence and an active homologous gene can be found at another locus. Sometimes these entries have an intact coding sequence or an open but truncated ORF, in which case there is other evidence used (for example genomic polyA stretches at the 3' end) to classify them as a pseudogene. Can be further classified as one of the following 'processed_pseudogene' : 8, # Pseudogene that lack introns and is thought to arise from reverse transcription of mRNA followed by reinsertion of DNA into the genome 'polymorphic_pseudogene' : 8, # Pseudogene owing to a SNP/DIP but in other individuals/haplotypes/strains the gene is translated 'retrotransposed' : 8, # Pseudogene owing to a reverse transcribed and re-inserted sequence 'translated_processed_pseudogene' : 8, # Pseudogenes that have mass spec data suggesting that they are also translated 'translated_unprocessed_pseudogene' : 8, # Pseudogenes that have mass spec data suggesting that they are also translated 'transcribed_processed_pseudogene' : 8, # Pseudogene where protein homology or genomic structure indicates a pseudogene, but the presence of locus-specific transcripts indicates expression 'transcribed_unprocessed_pseudogene' : 8, # Pseudogene where protein homology or genomic structure indicates a pseudogene, but the presence of locus-specific transcripts indicates expression 'transcribed_unitary_pseudogene' : 8, #Pseudogene where protein homology or genomic structure indicates a pseudogene, but the presence of locus-specific transcripts indicates expression 'unitary_pseudogene' : 8, # A species specific unprocessed pseudogene without a parent gene, as it has an active orthologue in another species 'unprocessed_pseudogene' : 8, # Pseudogene that can contain introns since produced by gene duplication 'Mt_tRNA_pseudogene' : 8, # Non-coding RNAs predicted to be pseudogenes by the Ensembl pipeline 'tRNA_pseudogene' : 8, # Non-coding RNAs predicted to be pseudogenes by the Ensembl pipeline 'snoRNA_pseudogene' : 8, # Non-coding RNAs predicted to be pseudogenes by the Ensembl pipeline 'snRNA_pseudogene' : 8, # Non-coding RNAs predicted to be pseudogenes by the Ensembl pipeline 'scRNA_pseudogene' : 8, # Non-coding RNAs predicted to be pseudogenes by the Ensembl pipeline 'rRNA_pseudogene' : 8, # Non-coding RNAs predicted to be pseudogenes by the Ensembl pipeline 'misc_RNA_pseudogene' : 8, # Non-coding RNAs predicted to be pseudogenes by the Ensembl pipeline 'miRNA_pseudogene' : 8, # Non-coding RNAs predicted to be pseudogenes by the Ensembl pipeline 'IG_C_pseudogene' : 8, # Inactivated immunoglobulin gene 'IG_D_pseudogene' : 8, # Inactivated immunoglobulin gene 'IG_J_pseudogene' : 8, # Inactivated immunoglobulin gene 'IG_V_pseudogene' : 8, # Inactivated immunoglobulin gene 'TR_J_pseudogene' : 8, # Inactivated immunoglobulin gene 'TR_V_pseudogene' : 8, # Inactivated immunoglobulin gene 'artifact' : 9, # Used to tag mistakes in the public databases (Ensembl/SwissProt/Trembl) 'ETC' : 10 # none } def pick_cons(self, input_list): best_cons = 'intergenic_variant' best_score = 19 if input_list == []: pass else: for input_cons in input_list: if input_cons in self._conseq_dict: one_cons, one_score = self._conseq_dict[input_cons] else: one_cons, one_score = self._conseq_dict['ETC'] if one_cons == 'Frame_Shift': if self._var_type == 'Del': one_cons = 'Frame_Shift_Del' elif self._var_type == 'Ins': one_cons = 'Frame_Shift_Ins' elif one_cons == 'Protein_Alter': if self._var_inframe == 'FALSE' and self._var_type == 'Del': one_cons = 'Frame_Shift_Del' elif self._var_inframe == 'FALSE' and self._var_type == 'Ins': one_cons = 'Frame_Shift_Ins' elif self._var_inframe == 'TRUE' and self._var_type == 'Del': one_cons = 'In_Frame_Del' elif self._var_inframe == 'TURE' and self._var_type == 'Ins': one_cons = 'In_Frame_Ins' if one_score < best_score: best_cons = one_cons best_score = one_score return best_cons, best_score def sort_csq(self, input_list): column_names = ['#', 'gene', 'biotype', 'consequence', 'length', 'transcript', 'vep'] raw_df =
pandas.DataFrame(columns=column_names)
pandas.DataFrame
__author__ = "<NAME>" __copyright__ = "BMW Group" __version__ = "0.0.1" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Development" from tsa import Logger import sys import numpy as np import pandas as pd import datetime from dateutil.relativedelta import relativedelta import argparse import matplotlib.pyplot as plt import matplotlib.dates as mdates from statsmodels.tsa.seasonal import seasonal_decompose from copy import copy, deepcopy from scipy import stats class UVariateTimeSeriesClass(object): """ Uni-variate time series class Attributes: _ts_df_cols - internal column names for dataframe that will be input to model ts_df - time series data frame freq - frequency of time series, possibilities ['S', 'min', 'H', 'D', 'W', 'M'] p_train - float value defining which part of data is to be used as training data. Note, value of 1.0 would mean all data will be used as training data, hence no test data will be generated. timeformat - time format if time series data needs to be brought into datetime # _mode - defines the mode as 'test' or 'forecast' _train_dt - training data _test_dt - test data model_fit - fitted model fittedvalues - computed fitted values residuals - residuals rmse - RMSE on test set (test data and the forecast on test data) upper_whisker_res - upper whisker for residuals lower_conf_int - upper confidence interval upper_conf_int - lower confidence interval forecast - computed forcatsed values residuals_forecast - residuals between forecasted and real values. Note, this variable exist only if test data existed Methods: ts_transform() - transforms time series using log10 or box-cox ts_resample() - resamples time series at the chosen frequency freq _plot_residuals() - residual plots helper function ts_test() - evaluates fitted model on the test data, if this one has been generated ts_forecast() - forecasts time series and plots the results _plot_forecast() - helper function for plotting forecasted time-series ts_decompose() - decomposes time series in seasonal, trend and resduals and plots the results plot_decompose() - plots the results of ts_decompose() Helper methods: _prepare_fit() - prepares ts_fit of child class. Supposed to be called by a child class _residuals() - helper function for calculating residuals. Supposed to be called by a child class _check_ts_test() - checks for test. Supposed to be called by a child class _check_ts_forecast() - checks for forecast. Supposed to be called by a child class """ def __init__(self, ts_df, time_format="%Y-%m-%d %H:%M:%S", freq='D', p_train=1.0, **kwds): """ Initializes the object UVariateTimeSeriesForecaster """ self._ts_df_cols = ['ds', 'y'] self.ts_df = ts_df self.time_format = time_format self.freq = freq self.p_train = p_train self.transform = None self._boxcox_lmbda = None self._mode = '' self._train_dt = None self._test_dt = None self.model_fit = None self.fittedvalues = None self.residuals = None self.rmse = None self.upper_whisker_res = None self.lower_conf_int = None self.upper_conf_int = None self.forecast = None self.residuals_forecast = None self.seasonal = None self.trend = None self.baseline = None self._uvts_cls_logger = Logger('uvts_cls') # Assertion Tests try: assert self.freq in ['S', 'min', 'H', 'D', 'W', 'M'] except AssertionError: self._uvts_cls_logger.warning("freq should be in ['S', 'min', 'H', 'D', W', 'M']. " "Assuming daily frequency!") self.freq = 'D' try: self.p_train = float(self.p_train) assert self.p_train > 0 except AssertionError: self._uvts_cls_logger.error("p_train defines part of data on which you would train your model." "This value cannot be less than or equal to zero!") self._uvts_cls_logger.exception("Exception occurred, p_train") except ValueError: self._uvts_cls_logger.error("p_train must be convertible to float type!") self._uvts_cls_logger.exception("Exception occurred, p_train") else: if int(self.p_train) < 1: self._mode = 'test' else: self._mode = 'forecast' try: assert pd.DataFrame(self.ts_df).shape[1] <= 2 except AssertionError: self._uvts_cls_logger.error( "Time series must be uni-variate. " "Hence, at most a time columns and a column of numeric values are expected!") self._uvts_cls_logger.exception("Exception occurred, ts_df") else: self.ts_df = self.ts_df.reset_index() self.ts_df.columns = self._ts_df_cols self.ts_df['y'] = self.ts_df['y'].apply(np.float64, errors='coerce') self.ts_df.set_index('ds', inplace=True) print(type(self._uvts_cls_logger)) print(self._uvts_cls_logger) self._uvts_cls_logger.info("Using time series data of range: " + str(min(self.ts_df.index)) + ' - ' + str( max(self.ts_df.index)) + " and shape: " + str(self.ts_df.shape)) if not isinstance(self.ts_df.index, pd.DatetimeIndex): self._uvts_cls_logger.warning("Time conversion required...") self.ts_df = self.ts_df.reset_index() try: self.ts_df['ds'] = self.ts_df['ds'].apply( lambda x: datetime.datetime.strptime( str(x).translate({ord('T'): ' ', ord('Z'): None})[:-1], self.time_format)) except ValueError as e: self._uvts_cls_logger.warning("Zulu time conversion not successful: {}".format(e)) self._uvts_cls_logger.warning("Will try without assuming zulu time...") try: self.ts_df['ds'] = self.ts_df['ds'].apply( lambda x: datetime.datetime.strptime(str(x), self.time_format)) except ValueError as e: self._uvts_cls_logger.info("Time conversion not successful. Check your time_format: {}".format(e)) else: self._uvts_cls_logger.info("Time conversion successful!") else: self._uvts_cls_logger.info("Time conversion successful!") # set index self.ts_df.set_index('ds', inplace=True) # self.ts_df.index = pd.to_datetime(self.ts_df.index) self.ts_df.sort_index(inplace=True) # resample self.ts_resample() # delegate super(UVariateTimeSeriesClass, self).__init__(**kwds) def __copy__(self): """ Copies the object """ cls = self.__class__ result = cls.__new__(cls) result.__dict__.update(self.__dict__) return result def __deepcopy__(self, memo): """ Deepcopies the object """ cls = self.__class__ result = cls.__new__(cls) memo[id(self)] = result for k, v in self.__dict__.items(): setattr(result, k, deepcopy(v, memo)) return result def ts_transform(self, transform): """ Transforms time series via applying casted 'transform'. Right now 'log10' and 'box-cox' possible. """ try: assert transform.lower().strip() in ['log10', 'box-cox'] except AssertionError: self._uvts_cls_logger.error( "transform should be in ['log10', 'box-cox'] or empty. Assuming no transform! " "Hence, if you get bad results, you would like maybe to choose e.g., log10 here.") self._uvts_cls_logger.exception("Assertion exception occurred, transform") self.transform = None else: self.transform = transform.lower() # transform if self.transform == 'log10': try: self.ts_df['y'] = self.ts_df['y'].apply(np.log10) except ValueError: self._uvts_cls_logger.exception("log10 transformation did not work! Possibly negative " "values present?") elif self.transform == 'box-cox': if input("Do you want to provide lambda for box.cox? y/n?").strip().lower() == 'y': self._boxcox_lmbda = float(input()) else: self._boxcox_lmbda = None try: if self._boxcox_lmbda is None: bc, lmbda_1 = stats.boxcox(self.ts_df['y'], lmbda=self._boxcox_lmbda) self.ts_df['y'] = stats.boxcox(self.ts_df['y'], lmbda=lmbda_1) else: self.ts_df['y'] = stats.boxcox(self.ts_df['y'], lmbda=self._boxcox_lmbda) except ValueError: self._uvts_cls_logger.exception("box-cox transformation did not work! " "Possibly negative values present or bad lmbda?") return self def set_frequency(self, new_freq): """ Sets new frequency and resamples time series to that new frequency """ try: assert new_freq in ['S', 'min', 'H', 'D', 'W', 'M'] except AssertionError: self._uvts_cls_logger.error("frequency should be in ['S', 'min', 'H', 'D', W', 'M']") else: self.freq = new_freq self.ts_resample() def ts_check_frequency(self): """ Checks the frequency of time series """ if self.ts_df.index.freq is None: self._uvts_cls_logger.info("No specific frequency detected.") self._uvts_cls_logger.info("Frequency chosen in initialization: " + str( self.freq) + " enter 'n' and call ts_resample() if you are satisfied with this value.") if input("Should a histogram of time deltas be plotted y/n?").strip().lower() == 'y': ff = pd.Series(self.ts_df.index[1:(len(self.ts_df))] - self.ts_df.index[0:(len(self.ts_df) - 1)]) ff = ff.apply(lambda x: int(x.total_seconds() / (60 * 60))) plt.hist(ff, bins=120) plt.xlabel("Rounded time delta [H]") plt.ylabel("Frequency of occurrence") self._uvts_cls_logger.info(ff.value_counts()) self._uvts_cls_logger.info("Should hourly frequency not fit, choose a reasonable frequency and call " "set_frequency(new_freq)") else: pass else: self._uvts_cls_logger.info("Time series frequency: " + str(self.ts_df.index.freq)) def ts_resample(self): """ Brings original time series to the chosen frequency freq """ ts_freq = pd.DataFrame( index=pd.date_range(self.ts_df.index[0], self.ts_df.index[len(self.ts_df) - 1], freq=self.freq), columns=['dummy']) self.ts_df = ts_freq.join(self.ts_df).drop(['dummy'], axis=1) self.ts_df.y = self.ts_df.y.fillna(method='ffill') # if np.isnan ( self.ts_df.y ).any (): # self.ts_df.y = self.ts_df.y.fillna ( method='bfill' ) if np.isnan(self.ts_df.y).any(): self._uvts_cls_logger.warning("Some NaN found, something went wrong, check the data!") sys.exit(-1) self._uvts_cls_logger.info("Time series resampled at frequency: " + str(self.ts_df.index.freq) + ". New shape of the data: " + str(self.ts_df.shape)) return self def _prepare_fit(self): """ Prepares data for training or forecasting modes """ if self.ts_df.index.freq is None: self._uvts_cls_logger.warning("Time series exhibit no frequency. Calling ts_resample()...") try: self.ts_resample() except ValueError: self._uvts_cls_logger.error("Resample did not work! Error:" + str(sys.exc_info()[0])) sys.exit("STOP") ts_df = self.ts_df ts_test_df = pd.DataFrame() if self._mode == 'forecast' or int(self.p_train) == 1: self._train_dt = ts_df self._test_dt = ts_test_df elif self._mode == 'test' and int(self.p_train) < 1: # split ts_df = ts_df.reset_index() ts_df.columns = self._ts_df_cols ts_test_df = ts_df # training ts_df = pd.DataFrame(ts_df.loc[:int(self.p_train * len(ts_df) - 1), ]) ts_df.set_index('ds', inplace=True) # test ts_test_df = pd.DataFrame(ts_test_df.loc[int(self.p_train * len(ts_test_df)):, ]) ts_test_df.set_index('ds', inplace=True) # now set self._train_dt = ts_df if not ts_test_df.empty: self._test_dt = ts_test_df return self def _residuals(self): """ Calculate residuals """ if self.model_fit is None: self._uvts_cls_logger.error("No model has been fitted, residuals cannot be computed!") sys.exit("STOP") try: # use fittedvalues to fill in the model dictionary self.residuals = pd.Series(np.asarray(self._train_dt['y']) - np.asarray(self.fittedvalues).flatten(), index=self._train_dt['y'].index) self.upper_whisker_res = self.residuals.mean() + 1.5 * ( self.residuals.quantile(0.75) - self.residuals.quantile(0.25)) except (KeyError, AttributeError): self._uvts_cls_logger.exception("Exception occurred: Model was not fitted or ts has other structure") return self def _plot_residuals(self, y, yhat, _id): """ Plot the residuals """ try: assert self.model_fit is not None except AssertionError: self._uvts_cls_logger.exception("Model has to be fitted first! Please call ts_fit(...)") fig, axes = plt.subplots(2, 1, figsize=(20, 5), sharex=True) axes[0].plot(
pd.Series(yhat, index=self._train_dt.index)
pandas.Series
''' This file is part of PM4Py (More Info: https://pm4py.fit.fraunhofer.de). PM4Py is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. PM4Py is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with PM4Py. If not, see <https://www.gnu.org/licenses/>. ''' from enum import Enum from typing import Optional, Dict, Any, Union, Tuple, List import pandas as pd from pm4py.statistics.traces.generic.common import case_duration as case_duration_commons from pm4py.util import exec_utils, constants, pandas_utils from pm4py.util import variants_util from pm4py.util import xes_constants as xes from pm4py.util.business_hours import soj_time_business_hours_diff from pm4py.util.constants import CASE_CONCEPT_NAME from pm4py.util.xes_constants import DEFAULT_TIMESTAMP_KEY class Parameters(Enum): ATTRIBUTE_KEY = constants.PARAMETER_CONSTANT_ATTRIBUTE_KEY ACTIVITY_KEY = constants.PARAMETER_CONSTANT_ACTIVITY_KEY TIMESTAMP_KEY = constants.PARAMETER_CONSTANT_TIMESTAMP_KEY CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY MAX_VARIANTS_TO_RETURN = "max_variants_to_return" VARIANTS_DF = "variants_df" ENABLE_SORT = "enable_sort" SORT_BY_COLUMN = "sort_by_column" SORT_ASCENDING = "sort_ascending" MAX_RET_CASES = "max_ret_cases" BUSINESS_HOURS = "business_hours" WORKTIMING = "worktiming" WEEKENDS = "weekends" def get_variant_statistics(df: pd.DataFrame, parameters: Optional[Dict[Union[str, Parameters], Any]] = None) -> Union[ List[Dict[str, int]], List[Dict[List[str], int]]]: """ Get variants from a Pandas dataframe Parameters ----------- df Dataframe parameters Parameters of the algorithm, including: Parameters.CASE_ID_KEY -> Column that contains the Case ID Parameters.ACTIVITY_KEY -> Column that contains the activity Parameters.MAX_VARIANTS_TO_RETURN -> Maximum number of variants to return variants_df -> If provided, avoid recalculation of the variants dataframe Returns ----------- variants_list List of variants inside the Pandas dataframe """ if parameters is None: parameters = {} case_id_glue = exec_utils.get_param_value(Parameters.CASE_ID_KEY, parameters, CASE_CONCEPT_NAME) max_variants_to_return = exec_utils.get_param_value(Parameters.MAX_VARIANTS_TO_RETURN, parameters, None) variants_df = exec_utils.get_param_value(Parameters.VARIANTS_DF, parameters, get_variants_df(df, parameters=parameters)) variants_df = variants_df.reset_index() variants_list = pandas_utils.to_dict_records(variants_df.groupby("variant").agg("count").reset_index()) variants_list = sorted(variants_list, key=lambda x: (x[case_id_glue], x["variant"]), reverse=True) if max_variants_to_return: variants_list = variants_list[:min(len(variants_list), max_variants_to_return)] return variants_list def get_variants_df_and_list(df: pd.DataFrame, parameters: Optional[Dict[Union[str, Parameters], Any]] = None) -> Tuple[ pd.DataFrame, Union[List[Dict[str, int]], List[Dict[List[str], int]]]]: """ (Technical method) Provides variants_df and variants_list out of the box Parameters ------------ df Dataframe parameters Parameters of the algorithm, including: Parameters.CASE_ID_KEY -> Column that contains the Case ID Parameters.ACTIVITY_KEY -> Column that contains the activity Returns ------------ variants_df Variants dataframe variants_list List of variants sorted by their count """ if parameters is None: parameters = {} case_id_glue = exec_utils.get_param_value(Parameters.CASE_ID_KEY, parameters, CASE_CONCEPT_NAME) variants_df = get_variants_df(df, parameters=parameters) variants_stats = get_variant_statistics(df, parameters=parameters) variants_list = [] for vd in variants_stats: variant = vd["variant"] count = vd[case_id_glue] variants_list.append([variant, count]) variants_list = sorted(variants_list, key=lambda x: (x[1], x[0]), reverse=True) return variants_df, variants_list def get_cases_description(df: pd.DataFrame, parameters: Optional[Dict[Union[str, Parameters], Any]] = None) -> Dict[ str, Dict[str, Any]]: """ Get a description of traces present in the Pandas dataframe Parameters ----------- df Pandas dataframe parameters Parameters of the algorithm, including: Parameters.CASE_ID_KEY -> Column that identifies the case ID Parameters.TIMESTAMP_KEY -> Column that identifies the timestamp enable_sort -> Enable sorting of traces Parameters.SORT_BY_COLUMN -> Sort traces inside the dataframe using the specified column. Admitted values: startTime, endTime, caseDuration Parameters.SORT_ASCENDING -> Set sort direction (boolean; it true then the sort direction is ascending, otherwise descending) Parameters.MAX_RET_CASES -> Set the maximum number of returned traces Returns ----------- ret Dictionary of traces associated to their start timestamp, their end timestamp and their duration """ if parameters is None: parameters = {} case_id_glue = exec_utils.get_param_value(Parameters.CASE_ID_KEY, parameters, CASE_CONCEPT_NAME) timestamp_key = exec_utils.get_param_value(Parameters.TIMESTAMP_KEY, parameters, DEFAULT_TIMESTAMP_KEY) enable_sort = exec_utils.get_param_value(Parameters.ENABLE_SORT, parameters, True) sort_by_column = exec_utils.get_param_value(Parameters.SORT_BY_COLUMN, parameters, "startTime") sort_ascending = exec_utils.get_param_value(Parameters.SORT_ASCENDING, parameters, True) max_ret_cases = exec_utils.get_param_value(Parameters.MAX_RET_CASES, parameters, None) business_hours = exec_utils.get_param_value(Parameters.BUSINESS_HOURS, parameters, False) worktiming = exec_utils.get_param_value(Parameters.WORKTIMING, parameters, [7, 17]) weekends = exec_utils.get_param_value(Parameters.WEEKENDS, parameters, [6, 7]) grouped_df = df[[case_id_glue, timestamp_key]].groupby(df[case_id_glue]) # grouped_df = df[[case_id_glue, timestamp_key]].groupby(df[case_id_glue]) first_eve_df = grouped_df.first() last_eve_df = grouped_df.last() del grouped_df last_eve_df.columns = [str(col) + '_2' for col in first_eve_df.columns] stacked_df = pd.concat([first_eve_df, last_eve_df], axis=1) del first_eve_df del last_eve_df del stacked_df[case_id_glue] del stacked_df[case_id_glue + "_2"] stacked_df['caseDuration'] = stacked_df[timestamp_key + "_2"] - stacked_df[timestamp_key] stacked_df['caseDuration'] = stacked_df['caseDuration'].astype('timedelta64[s]') if business_hours: stacked_df['caseDuration'] = stacked_df.apply( lambda x: soj_time_business_hours_diff(x[timestamp_key], x[timestamp_key + "_2"], worktiming, weekends), axis=1) else: stacked_df['caseDuration'] = stacked_df[timestamp_key + "_2"] - stacked_df[timestamp_key] stacked_df['caseDuration'] = stacked_df['caseDuration'].astype('timedelta64[s]') stacked_df[timestamp_key + "_2"] = stacked_df[timestamp_key + "_2"].astype('int64') // 10 ** 9 stacked_df[timestamp_key] = stacked_df[timestamp_key].astype('int64') // 10 ** 9 stacked_df = stacked_df.rename(columns={timestamp_key: 'startTime', timestamp_key + "_2": 'endTime'}) if enable_sort: stacked_df = stacked_df.sort_values(sort_by_column, ascending=sort_ascending) if max_ret_cases is not None: stacked_df = stacked_df.head(n=min(max_ret_cases, len(stacked_df))) ret = pandas_utils.to_dict_index(stacked_df) return ret def get_variants_df(df, parameters=None): """ Get variants dataframe from a Pandas dataframe Parameters ----------- df Dataframe parameters Parameters of the algorithm, including: Parameters.CASE_ID_KEY -> Column that contains the Case ID Parameters.ACTIVITY_KEY -> Column that contains the activity Returns ----------- variants_df Variants dataframe """ if parameters is None: parameters = {} case_id_glue = exec_utils.get_param_value(Parameters.CASE_ID_KEY, parameters, CASE_CONCEPT_NAME) activity_key = exec_utils.get_param_value(Parameters.ACTIVITY_KEY, parameters, xes.DEFAULT_NAME_KEY) if variants_util.VARIANT_SPECIFICATION == variants_util.VariantsSpecifications.STRING: new_df = df.groupby(case_id_glue)[activity_key].agg(lambda col: constants.DEFAULT_VARIANT_SEP.join(
pd.Series.to_list(col)
pandas.Series.to_list
''' example of loading FinMind api ''' from Data import Load import requests import pandas as pd url = 'http://finmindapi.servebeer.com/api/data' list_url = 'http://finmindapi.servebeer.com/api/datalist' translate_url = 'http://finmindapi.servebeer.com/api/translation' '''----------------TaiwanStockInfo----------------''' form_data = {'dataset': 'TaiwanStockInfo'} res = requests.post( url, verify=True, data=form_data) temp = res.json() data = pd.DataFrame(temp['data']) data.head() '''----------------Taiwan Stock Dividend Result----------------''' form_data = {'dataset': 'StockDividendResult'} res = requests.post( url, verify=True, data=form_data) temp = res.json() data = pd.DataFrame(temp['data']) data.head() '''----------------TotalMarginPurchaseShortSale----------------''' form_data = {'dataset': 'StockDividendResult', 'stock_id': '2330', 'date': '2010-10-01'} res = requests.post( url, verify=True, data=form_data) temp = res.json() data = pd.DataFrame(temp['data']) data.head() '''----------------TaiwanStockNews----------------''' form_data = {'dataset': 'TaiwanStockNews', 'date': '2019-10-10', 'stock_id': '2317'} res = requests.post( url, verify=True, data=form_data) temp = res.json() data = pd.DataFrame(temp['data']) data.head() '''----------------TaiwanStockPrice----------------''' form_data = {'dataset': 'TaiwanStockPrice', 'stock_id': '2317', 'date': '2019-06-01'} res = requests.post( url, verify=True, data=form_data) temp = res.json() data = pd.DataFrame(temp['data']) data.head() '''----------------TaiwanStockPriceMinute----------------''' form_data = {'dataset': 'TaiwanStockPriceMinute', 'stock_id': '2330', 'date': '2019-06-01'} res = requests.post( url, verify=True, data=form_data) temp = res.json() data = pd.DataFrame(temp['data']) data.head() '''----------------FinancialStatements----------------''' form_data = {'dataset': 'FinancialStatements', 'stock_id': '2317', 'date': '2019-01-01'} res = requests.post( url, verify=True, data=form_data) temp = res.json() data = pd.DataFrame(temp['data']) data = Load.transpose(data) data.head() '''----------------TaiwanCashFlowsStatement----------------''' form_data = {'dataset': 'TaiwanCashFlowsStatement', 'stock_id': '2330', 'date': '2019-06-01'} res = requests.post( url, verify=True, data=form_data) temp = res.json() data = pd.DataFrame(temp['data']) data.head() '''----------------TaiwanStockStockDividend----------------''' form_data = {'dataset': 'TaiwanStockStockDividend', 'stock_id': '2317', 'date': '2018-01-01'} res = requests.post( url, verify=True, data=form_data) temp = res.json() data =
pd.DataFrame(temp['data'])
pandas.DataFrame
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.13.7 # kernelspec: # display_name: Python 3.8.8 64-bit ('cam') # language: python # name: python388jvsc74a57bd0acafb728b15233fa3654ff8b422c21865df0ca42ea3b74670e1f2f098ebd61ca # --- # %% [markdown] slideshow={"slide_type": "slide"} # <img src="img/python-logo-notext.svg" # style="display:block;margin:auto;width:10%"/> # <h1 style="text-align:center;">Python: Pandas Data Frames 1</h1> # <h2 style="text-align:center;">Coding Akademie München GmbH</h2> # <br/> # <div style="text-align:center;">Dr. <NAME></div> # <div style="text-align:center;"><NAME></div> # %% [markdown] slideshow={"slide_type": "slide"} # # Data Frames # # Data Frames sind die am häufigsten verwendete Datenstruktur von Pandas. # # Sie ermöglichen das bequeme Einlesen, Verarbeiten und Speichern von Daten. # # Konzeptionell besteht ein Data Frame aus mehreren `Series`-Instanzen, die einen gemeinsamen Index haben. # %% slideshow={"slide_type": "-"} import numpy as np import pandas as pd # %% [markdown] slideshow={"slide_type": "subslide"} # ## Erzeugen eines Data Frames # %% [markdown] # ### Aus einem NumPy Array # %% def create_data_frame(): rng = np.random.default_rng(42) array = rng.normal(size=(5, 4), scale=5.0) index = 'A B C D E'.split() columns = 'w x y z'.split() return pd.DataFrame(array, index=index, columns=columns) # %% slideshow={"slide_type": "subslide"} df = create_data_frame() df # %% type(df) # %% [markdown] # ### Aus einer CSV-Datei # %% df_csv = pd.read_csv("example_data.csv") # %% df_csv # %% df_csv =
pd.read_csv("example_data.csv", index_col=0)
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Mon Feb 12 15:18:57 2018 @author: Denny.Lehman """ import pandas as pd import numpy as np import datetime import time from pandas.tseries.offsets import MonthEnd def npv(rate, df): value = 0 for i in range(0, df.size): value += df.iloc[i] / (1 + rate) ** (i + 1) return value # use this function if finance wants to use the faster CSV version. This version requires proper data cleaning steps def get_datatape_csv(filepath): list_of_column_names_required = ['System Project: Sunnova System ID', 'Committed Capital', 'Quote: Recurring Payment', 'Quote: Contract Type' ,'Quote: Payment Escalator', 'InService Date', 'Asset Portfolio - Partner', 'Location'] rename_list = {'System Project: Sunnova System ID':'ID','Committed Capital':'Committed Capital', 'Quote: Contract Type' :'Contract Type', 'Quote: Recurring Payment':'Recurring Payment','Quote: Payment Escalator':'Escalator', 'Location' : 'State'} d_types = {'System Project: Sunnova System ID':str, 'Committed Capital':np.float64, 'Quote: Recurring Payment': np.float64, 'Quote: Contract Type':str, 'Quote: Payment Escalator':str, 'Asset Portfolio - Partner':str } parse_dates = ['InService Date'] names=['ID', 'CC', 'RP', 'CT', 'PE', 'InS', 'AP'] df3 = pd.read_csv(filepath, sep=',', skiprows=0, header=2) #, usecols=list_of_column_names_required, thousands=',', dtype=d_types) #, parse_dates=parse_dates) # , nrows=10) df3 = df3.rename(columns=rename_list) def get_datatape(filepath): start = time.time() # Import S1 datatape to Pandas DataFrame df1 = pd.read_excel(filepath, sheetname='Active', header=4, index_col=None, na_values=['N/A'], parse_cols="C:F,J:L,P,V,AI,N,AY") #, converters={'Interconnected': pd.to_datetime}) print(time.time()-start) # Rename Columns df1 = df1.rename(columns= {'Interconnected':'InService Date', 'Type':'Contract Type', 'Capital ($)':'Committed Capital', 'Estimate':'Annual Attribute', '$/kW':'Power Rate', '%':'Escalator', 'Year 1':'Recurring Payment', 'Location':'State', 'Quote: RIS CoverPg Monthly Pmt Without PPMT':'Monthly Pmt Without PPMT'}) return df1 def get_S1_datatape(filepath): start = time.time() # df1 = pd.read_excel(filepath, sheetname = 'Active header1', index_col=None, na_values=['NA'], parse_cols="A:D,J,N,T,AG") df1 = pd.read_excel(filepath, sheetname='Active', header=2, index_col=None, na_values=['N/A'], parse_cols="D:F,I,L,O,U,AH,P,Q,AY") print(time.time()-start) # Rename the columns in the dataframe to be more concise and descriptive df1 = df1.rename(columns= {'Asset Portfolio - Customer':'Asset Portfolio - Customer','System Project: Sunnova System ID':'ID', 'Committed Capital':'Committed Capital', 'Quote: Contract Type':'Contract Type','InService Date':'InService Date', 'Quote: Expected Production - Change Order':'Annual Attribute', 'Quote: Solar Rate':'Power Rate', 'Quote: Payment Escalator':'Escalator', 'Quote: Recurring Payment':'Recurring Payment', 'Quote: Installation State':'State', 'Quote: RIS CoverPg Monthly Pmt Without PPMT':'Monthly Pmt Without PPMT'}) return df1 def get_contract_type(df1, target_contracts): # Make contracts not null # targets = ['Lease', 'Loan', 'EZ Own'] # df1['Contract Type'].apply(lambda sentence: any(word in sentence for word in targets)) df1 = df1[df1['Contract Type'].str.contains('|'.join(target_contracts), na=False)] return df1 def remove_non_inService_Systems(df): #df['InService Date'] = pd.to_datetime(df['InService Date']) remove = [] for i in range(0, df['InService Date'].size): if type(df['InService Date'].iloc[i]) == pd._libs.tslib.NaTType: remove.append(i) df = df.drop(df.index[remove]) return df #--------------------------------------------------------------------------- def remove_blank_inservice_date(df): remove = [] for i in range(1, df['InService Date'].size): if df['InService Date'].iloc[i] == datetime.time(0,0): remove.append(i) if type(df['InService Date'].iloc[i]) == pd._libs.tslib.NaTType: remove.append(i) df = df.drop(df.index[remove]) df['InService Date'] = pd.to_datetime(df['InService Date']) return df def convert_date_to_EOM(ser): ser = ser + MonthEnd(1) return ser def create_first_production_first_payment_and_last_payment_date(df): # initialize new columns of dataframe df['First Payment Date'] = pd.to_datetime(0) df['Last Payment Date'] = pd.to_datetime(0) # Make first production date - the end of month one month after inservice date df['First Production Date'] =
pd.to_datetime(df['InService Date'])
pandas.to_datetime
import unittest import pandas as pd import numpy as np from scipy.sparse.csr import csr_matrix from string_grouper.string_grouper import DEFAULT_MIN_SIMILARITY, \ DEFAULT_REGEX, DEFAULT_NGRAM_SIZE, DEFAULT_N_PROCESSES, DEFAULT_IGNORE_CASE, \ StringGrouperConfig, StringGrouper, StringGrouperNotFitException, \ match_most_similar, group_similar_strings, match_strings, \ compute_pairwise_similarities from unittest.mock import patch, Mock def mock_symmetrize_matrix(x: csr_matrix) -> csr_matrix: return x class SimpleExample(object): def __init__(self): self.customers_df = pd.DataFrame( [ ('BB016741P', 'Mega Enterprises Corporation', 'Address0', 'Tel0', 'Description0', 0.2), ('CC082744L', 'Hyper Startup Incorporated', '', 'Tel1', '', 0.5), ('AA098762D', 'Hyper Startup Inc.', 'Address2', 'Tel2', 'Description2', 0.3), ('BB099931J', 'Hyper-Startup Inc.', 'Address3', 'Tel3', 'Description3', 0.1), ('HH072982K', 'Hyper Hyper Inc.', 'Address4', '', 'Description4', 0.9), ('EE059082Q', 'Mega Enterprises Corp.', 'Address5', 'Tel5', 'Description5', 1.0) ], columns=('Customer ID', 'Customer Name', 'Address', 'Tel', 'Description', 'weight') ) self.customers_df2 = pd.DataFrame( [ ('BB016741P', 'Mega Enterprises Corporation', 'Address0', 'Tel0', 'Description0', 0.2), ('CC082744L', 'Hyper Startup Incorporated', '', 'Tel1', '', 0.5), ('AA098762D', 'Hyper Startup Inc.', 'Address2', 'Tel2', 'Description2', 0.3), ('BB099931J', 'Hyper-Startup Inc.', 'Address3', 'Tel3', 'Description3', 0.1), ('DD012339M', 'HyperStartup Inc.', 'Address4', 'Tel4', 'Description4', 0.1), ('HH072982K', 'Hyper Hyper Inc.', 'Address5', '', 'Description5', 0.9), ('EE059082Q', 'Mega Enterprises Corp.', 'Address6', 'Tel6', 'Description6', 1.0) ], columns=('Customer ID', 'Customer Name', 'Address', 'Tel', 'Description', 'weight') ) self.a_few_strings = pd.Series(['BB016741P', 'BB082744L', 'BB098762D', 'BB099931J', 'BB072982K', 'BB059082Q']) self.one_string = pd.Series(['BB0']) self.two_strings = pd.Series(['Hyper', 'Hyp']) self.whatever_series_1 = pd.Series(['whatever']) self.expected_result_with_zeroes = pd.DataFrame( [ (1, 'Hyper Startup Incorporated', 0.08170638, 'whatever', 0), (0, 'Mega Enterprises Corporation', 0., 'whatever', 0), (2, 'Hyper Startup Inc.', 0., 'whatever', 0), (3, 'Hyper-Startup Inc.', 0., 'whatever', 0), (4, 'Hyper Hyper Inc.', 0., 'whatever', 0), (5, 'Mega Enterprises Corp.', 0., 'whatever', 0) ], columns=['left_index', 'left_Customer Name', 'similarity', 'right_side', 'right_index'] ) self.expected_result_centroid = pd.Series( [ 'Mega Enterprises Corporation', 'Hyper Startup Inc.', 'Hyper Startup Inc.', 'Hyper Startup Inc.', 'Hyper Hyper Inc.', 'Mega Enterprises Corporation' ], name='group_rep_Customer Name' ) self.expected_result_centroid_with_index_col = pd.DataFrame( [ (0, 'Mega Enterprises Corporation'), (2, 'Hyper Startup Inc.'), (2, 'Hyper Startup Inc.'), (2, 'Hyper Startup Inc.'), (4, 'Hyper Hyper Inc.'), (0, 'Mega Enterprises Corporation') ], columns=['group_rep_index', 'group_rep_Customer Name'] ) self.expected_result_first = pd.Series( [ 'Mega Enterprises Corporation', 'Hyper Startup Incorporated', 'Hyper Startup Incorporated', 'Hyper Startup Incorporated', 'Hyper Hyper Inc.', 'Mega Enterprises Corporation' ], name='group_rep_Customer Name' ) class StringGrouperConfigTest(unittest.TestCase): def test_config_defaults(self): """Empty initialisation should set default values""" config = StringGrouperConfig() self.assertEqual(config.min_similarity, DEFAULT_MIN_SIMILARITY) self.assertEqual(config.max_n_matches, None) self.assertEqual(config.regex, DEFAULT_REGEX) self.assertEqual(config.ngram_size, DEFAULT_NGRAM_SIZE) self.assertEqual(config.number_of_processes, DEFAULT_N_PROCESSES) self.assertEqual(config.ignore_case, DEFAULT_IGNORE_CASE) def test_config_immutable(self): """Configurations should be immutable""" config = StringGrouperConfig() with self.assertRaises(Exception) as _: config.min_similarity = 0.1 def test_config_non_default_values(self): """Configurations should be immutable""" config = StringGrouperConfig(min_similarity=0.1, max_n_matches=100, number_of_processes=1) self.assertEqual(0.1, config.min_similarity) self.assertEqual(100, config.max_n_matches) self.assertEqual(1, config.number_of_processes) class StringGrouperTest(unittest.TestCase): def test_auto_blocking_single_DataFrame(self): """tests whether automatic blocking yields consistent results""" # This function will force an OverflowError to occur when # the input Series have a combined length above a given number: # OverflowThreshold. This will in turn trigger automatic splitting # of the Series/matrices into smaller blocks when n_blocks = None sort_cols = ['right_index', 'left_index'] def fix_row_order(df): return df.sort_values(sort_cols).reset_index(drop=True) simple_example = SimpleExample() df1 = simple_example.customers_df2['<NAME>'] # first do manual blocking sg = StringGrouper(df1, min_similarity=0.1) pd.testing.assert_series_equal(sg.master, df1) self.assertEqual(sg.duplicates, None) matches = fix_row_order(sg.match_strings(df1, n_blocks=(1, 1))) self.assertEqual(sg._config.n_blocks, (1, 1)) # Create a custom wrapper for this StringGrouper instance's # _build_matches() method which will later be used to # mock _build_matches(). # Note that we have to define the wrapper here because # _build_matches() is a non-static function of StringGrouper # and needs access to the specific StringGrouper instance sg # created here. def mock_build_matches(OverflowThreshold, real_build_matches=sg._build_matches): def wrapper(left_matrix, right_matrix, nnz_rows=None, sort=True): if (left_matrix.shape[0] + right_matrix.shape[0]) > \ OverflowThreshold: raise OverflowError return real_build_matches(left_matrix, right_matrix, nnz_rows, sort) return wrapper def do_test_with(OverflowThreshold): nonlocal sg # allows reference to sg, as sg will be modified below # Now let us mock sg._build_matches: sg._build_matches = Mock(side_effect=mock_build_matches(OverflowThreshold)) sg.clear_data() matches_auto = fix_row_order(sg.match_strings(df1, n_blocks=None)) pd.testing.assert_series_equal(sg.master, df1) pd.testing.assert_frame_equal(matches, matches_auto) self.assertEqual(sg._config.n_blocks, None) # Note that _build_matches is called more than once if and only if # a split occurred (that is, there was more than one pair of # matrix-blocks multiplied) if len(sg._left_Series) + len(sg._right_Series) > \ OverflowThreshold: # Assert that split occurred: self.assertGreater(sg._build_matches.call_count, 1) else: # Assert that split did not occur: self.assertEqual(sg._build_matches.call_count, 1) # now test auto blocking by forcing an OverflowError when the # combined Series' lengths is greater than 10, 5, 3, 2 do_test_with(OverflowThreshold=100) # does not trigger auto blocking do_test_with(OverflowThreshold=10) do_test_with(OverflowThreshold=5) do_test_with(OverflowThreshold=3) do_test_with(OverflowThreshold=2) def test_n_blocks_single_DataFrame(self): """tests whether manual blocking yields consistent results""" sort_cols = ['right_index', 'left_index'] def fix_row_order(df): return df.sort_values(sort_cols).reset_index(drop=True) simple_example = SimpleExample() df1 = simple_example.customers_df2['<NAME>'] matches11 = fix_row_order(match_strings(df1, min_similarity=0.1)) matches12 = fix_row_order( match_strings(df1, n_blocks=(1, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches12) matches13 = fix_row_order( match_strings(df1, n_blocks=(1, 3), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches13) matches14 = fix_row_order( match_strings(df1, n_blocks=(1, 4), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches14) matches15 = fix_row_order( match_strings(df1, n_blocks=(1, 5), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches15) matches16 = fix_row_order( match_strings(df1, n_blocks=(1, 6), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches16) matches17 = fix_row_order( match_strings(df1, n_blocks=(1, 7), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches17) matches18 = fix_row_order( match_strings(df1, n_blocks=(1, 8), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches18) matches21 = fix_row_order( match_strings(df1, n_blocks=(2, 1), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches21) matches22 = fix_row_order( match_strings(df1, n_blocks=(2, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches22) matches32 = fix_row_order( match_strings(df1, n_blocks=(3, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches32) # Create a custom wrapper for this StringGrouper instance's # _build_matches() method which will later be used to # mock _build_matches(). # Note that we have to define the wrapper here because # _build_matches() is a non-static function of StringGrouper # and needs access to the specific StringGrouper instance sg # created here. sg = StringGrouper(df1, min_similarity=0.1) def mock_build_matches(OverflowThreshold, real_build_matches=sg._build_matches): def wrapper(left_matrix, right_matrix, nnz_rows=None, sort=True): if (left_matrix.shape[0] + right_matrix.shape[0]) > \ OverflowThreshold: raise OverflowError return real_build_matches(left_matrix, right_matrix, nnz_rows, sort) return wrapper def test_overflow_error_with(OverflowThreshold, n_blocks): nonlocal sg sg._build_matches = Mock(side_effect=mock_build_matches(OverflowThreshold)) sg.clear_data() max_left_block_size = (len(df1)//n_blocks[0] + (1 if len(df1) % n_blocks[0] > 0 else 0)) max_right_block_size = (len(df1)//n_blocks[1] + (1 if len(df1) % n_blocks[1] > 0 else 0)) if (max_left_block_size + max_right_block_size) > OverflowThreshold: with self.assertRaises(Exception): _ = sg.match_strings(df1, n_blocks=n_blocks) else: matches_manual = fix_row_order(sg.match_strings(df1, n_blocks=n_blocks)) pd.testing.assert_frame_equal(matches11, matches_manual) test_overflow_error_with(OverflowThreshold=100, n_blocks=(1, 1)) test_overflow_error_with(OverflowThreshold=10, n_blocks=(1, 1)) test_overflow_error_with(OverflowThreshold=10, n_blocks=(2, 1)) test_overflow_error_with(OverflowThreshold=10, n_blocks=(1, 2)) test_overflow_error_with(OverflowThreshold=10, n_blocks=(4, 4)) def test_n_blocks_both_DataFrames(self): """tests whether manual blocking yields consistent results""" sort_cols = ['right_index', 'left_index'] def fix_row_order(df): return df.sort_values(sort_cols).reset_index(drop=True) simple_example = SimpleExample() df1 = simple_example.customers_df['Customer Name'] df2 = simple_example.customers_df2['Customer Name'] matches11 = fix_row_order(match_strings(df1, df2, min_similarity=0.1)) matches12 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches12) matches13 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 3), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches13) matches14 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 4), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches14) matches15 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 5), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches15) matches16 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 6), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches16) matches17 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 7), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches17) matches18 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 8), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches18) matches21 = fix_row_order( match_strings(df1, df2, n_blocks=(2, 1), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches21) matches22 = fix_row_order( match_strings(df1, df2, n_blocks=(2, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches22) matches32 = fix_row_order( match_strings(df1, df2, n_blocks=(3, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches32) def test_n_blocks_bad_option_value(self): """Tests that bad option values for n_blocks are caught""" simple_example = SimpleExample() df1 = simple_example.customers_df2['<NAME>'] with self.assertRaises(Exception): _ = match_strings(df1, n_blocks=2) with self.assertRaises(Exception): _ = match_strings(df1, n_blocks=(0, 2)) with self.assertRaises(Exception): _ = match_strings(df1, n_blocks=(1, 2.5)) with self.assertRaises(Exception): _ = match_strings(df1, n_blocks=(1, 2, 3)) with self.assertRaises(Exception): _ = match_strings(df1, n_blocks=(1, )) def test_tfidf_dtype_bad_option_value(self): """Tests that bad option values for n_blocks are caught""" simple_example = SimpleExample() df1 = simple_example.customers_df2['<NAME>'] with self.assertRaises(Exception): _ = match_strings(df1, tfidf_matrix_dtype=None) with self.assertRaises(Exception): _ = match_strings(df1, tfidf_matrix_dtype=0) with self.assertRaises(Exception): _ = match_strings(df1, tfidf_matrix_dtype='whatever') def test_compute_pairwise_similarities(self): """tests the high-level function compute_pairwise_similarities""" simple_example = SimpleExample() df1 = simple_example.customers_df['<NAME>'] df2 = simple_example.expected_result_centroid similarities = compute_pairwise_similarities(df1, df2) expected_result = pd.Series( [ 1.0, 0.6336195351561589, 1.0000000000000004, 1.0000000000000004, 1.0, 0.826462625999832 ], name='similarity' ) expected_result = expected_result.astype(np.float32) pd.testing.assert_series_equal(expected_result, similarities) sg = StringGrouper(df1, df2) similarities = sg.compute_pairwise_similarities(df1, df2) pd.testing.assert_series_equal(expected_result, similarities) def test_compute_pairwise_similarities_data_integrity(self): """tests that an exception is raised whenever the lengths of the two input series of the high-level function compute_pairwise_similarities are unequal""" simple_example = SimpleExample() df1 = simple_example.customers_df['<NAME>'] df2 = simple_example.expected_result_centroid with self.assertRaises(Exception): _ = compute_pairwise_similarities(df1, df2[:-2]) @patch('string_grouper.string_grouper.StringGrouper') def test_group_similar_strings(self, mock_StringGouper): """mocks StringGrouper to test if the high-level function group_similar_strings utilizes it as expected""" mock_StringGrouper_instance = mock_StringGouper.return_value mock_StringGrouper_instance.fit.return_value = mock_StringGrouper_instance mock_StringGrouper_instance.get_groups.return_value = 'whatever' test_series_1 = None test_series_id_1 = None df = group_similar_strings( test_series_1, string_ids=test_series_id_1 ) mock_StringGrouper_instance.fit.assert_called_once() mock_StringGrouper_instance.get_groups.assert_called_once() self.assertEqual(df, 'whatever') @patch('string_grouper.string_grouper.StringGrouper') def test_match_most_similar(self, mock_StringGouper): """mocks StringGrouper to test if the high-level function match_most_similar utilizes it as expected""" mock_StringGrouper_instance = mock_StringGouper.return_value mock_StringGrouper_instance.fit.return_value = mock_StringGrouper_instance mock_StringGrouper_instance.get_groups.return_value = 'whatever' test_series_1 = None test_series_2 = None test_series_id_1 = None test_series_id_2 = None df = match_most_similar( test_series_1, test_series_2, master_id=test_series_id_1, duplicates_id=test_series_id_2 ) mock_StringGrouper_instance.fit.assert_called_once() mock_StringGrouper_instance.get_groups.assert_called_once() self.assertEqual(df, 'whatever') @patch('string_grouper.string_grouper.StringGrouper') def test_match_strings(self, mock_StringGouper): """mocks StringGrouper to test if the high-level function match_strings utilizes it as expected""" mock_StringGrouper_instance = mock_StringGouper.return_value mock_StringGrouper_instance.fit.return_value = mock_StringGrouper_instance mock_StringGrouper_instance.get_matches.return_value = 'whatever' test_series_1 = None test_series_id_1 = None df = match_strings(test_series_1, master_id=test_series_id_1) mock_StringGrouper_instance.fit.assert_called_once() mock_StringGrouper_instance.get_matches.assert_called_once() self.assertEqual(df, 'whatever') @patch( 'string_grouper.string_grouper.StringGrouper._symmetrize_matrix', side_effect=mock_symmetrize_matrix ) def test_match_list_symmetry_without_symmetrize_function(self, mock_symmetrize_matrix_param): """mocks StringGrouper._symmetrize_matches_list so that this test fails whenever _matches_list is **partially** symmetric which often occurs when the kwarg max_n_matches is too small""" simple_example = SimpleExample() df = simple_example.customers_df2['<NAME>'] sg = StringGrouper(df, max_n_matches=2).fit() mock_symmetrize_matrix_param.assert_called_once() # obtain the upper and lower triangular parts of the matrix of matches: upper = sg._matches_list[sg._matches_list['master_side'] < sg._matches_list['dupe_side']] lower = sg._matches_list[sg._matches_list['master_side'] > sg._matches_list['dupe_side']] # switch the column names of lower triangular part (i.e., transpose) to convert it to upper triangular: upper_prime = lower.rename(columns={'master_side': 'dupe_side', 'dupe_side': 'master_side'}) # obtain the intersection between upper and upper_prime: intersection = upper_prime.merge(upper, how='inner', on=['master_side', 'dupe_side']) # if the intersection is empty then _matches_list is completely non-symmetric (this is acceptable) # if the intersection is not empty then at least some matches are repeated. # To make sure all (and not just some) matches are repeated, the lengths of # upper, upper_prime and their intersection should be identical. self.assertFalse(intersection.empty or len(upper) == len(upper_prime) == len(intersection)) def test_match_list_symmetry_with_symmetrize_function(self): """This test ensures that _matches_list is symmetric""" simple_example = SimpleExample() df = simple_example.customers_df2['<NAME>'] sg = StringGrouper(df, max_n_matches=2).fit() # Obtain the upper and lower triangular parts of the matrix of matches: upper = sg._matches_list[sg._matches_list['master_side'] < sg._matches_list['dupe_side']] lower = sg._matches_list[sg._matches_list['master_side'] > sg._matches_list['dupe_side']] # Switch the column names of the lower triangular part (i.e., transpose) to convert it to upper triangular: upper_prime = lower.rename(columns={'master_side': 'dupe_side', 'dupe_side': 'master_side'}) # Obtain the intersection between upper and upper_prime: intersection = upper_prime.merge(upper, how='inner', on=['master_side', 'dupe_side']) # If the intersection is empty this means _matches_list is completely non-symmetric (this is acceptable) # If the intersection is not empty this means at least some matches are repeated. # To make sure all (and not just some) matches are repeated, the lengths of # upper, upper_prime and their intersection should be identical. self.assertTrue(intersection.empty or len(upper) == len(upper_prime) == len(intersection)) @patch( 'string_grouper.string_grouper.StringGrouper._fix_diagonal', side_effect=mock_symmetrize_matrix ) def test_match_list_diagonal_without_the_fix(self, mock_fix_diagonal): """test fails whenever _matches_list's number of self-joins is not equal to the number of strings""" # This bug is difficult to reproduce -- I mostly encounter it while working with very large datasets; # for small datasets setting max_n_matches=1 reproduces the bug simple_example = SimpleExample() df = simple_example.customers_df['<NAME>'] matches = match_strings(df, max_n_matches=1) mock_fix_diagonal.assert_called_once() num_self_joins = len(matches[matches['left_index'] == matches['right_index']]) num_strings = len(df) self.assertNotEqual(num_self_joins, num_strings) def test_match_list_diagonal(self): """This test ensures that all self-joins are present""" # This bug is difficult to reproduce -- I mostly encounter it while working with very large datasets; # for small datasets setting max_n_matches=1 reproduces the bug simple_example = SimpleExample() df = simple_example.customers_df['Customer Name'] matches = match_strings(df, max_n_matches=1) num_self_joins = len(matches[matches['left_index'] == matches['right_index']]) num_strings = len(df) self.assertEqual(num_self_joins, num_strings) def test_zero_min_similarity(self): """Since sparse matrices exclude zero elements, this test ensures that zero similarity matches are returned when min_similarity <= 0. A bug related to this was first pointed out by @nbcvijanovic""" simple_example = SimpleExample() s_master = simple_example.customers_df['Customer Name'] s_dup = simple_example.whatever_series_1 matches = match_strings(s_master, s_dup, min_similarity=0) pd.testing.assert_frame_equal(simple_example.expected_result_with_zeroes, matches) def test_zero_min_similarity_small_max_n_matches(self): """This test ensures that a warning is issued when n_max_matches is suspected to be too small while min_similarity <= 0 and include_zeroes is True""" simple_example = SimpleExample() s_master = simple_example.customers_df['Customer Name'] s_dup = simple_example.two_strings with self.assertRaises(Exception): _ = match_strings(s_master, s_dup, max_n_matches=1, min_similarity=0) def test_get_non_matches_empty_case(self): """This test ensures that _get_non_matches() returns an empty DataFrame when all pairs of strings match""" simple_example = SimpleExample() s_master = simple_example.a_few_strings s_dup = simple_example.one_string sg = StringGrouper(s_master, s_dup, max_n_matches=len(s_master), min_similarity=0).fit() self.assertTrue(sg._get_non_matches_list().empty) def test_n_grams_case_unchanged(self): """Should return all ngrams in a string with case""" test_series = pd.Series(pd.Series(['aaa'])) # Explicit do not ignore case sg = StringGrouper(test_series, ignore_case=False) expected_result = ['McD', 'cDo', 'Don', 'ona', 'nal', 'ald', 'lds'] self.assertListEqual(expected_result, sg.n_grams('McDonalds')) def test_n_grams_ignore_case_to_lower(self): """Should return all case insensitive ngrams in a string""" test_series = pd.Series(pd.Series(['aaa'])) # Explicit ignore case sg = StringGrouper(test_series, ignore_case=True) expected_result = ['mcd', 'cdo', 'don', 'ona', 'nal', 'ald', 'lds'] self.assertListEqual(expected_result, sg.n_grams('McDonalds')) def test_n_grams_ignore_case_to_lower_with_defaults(self): """Should return all case insensitive ngrams in a string""" test_series = pd.Series(pd.Series(['aaa'])) # Implicit default case (i.e. default behaviour) sg = StringGrouper(test_series) expected_result = ['mcd', 'cdo', 'don', 'ona', 'nal', 'ald', 'lds'] self.assertListEqual(expected_result, sg.n_grams('McDonalds')) def test_build_matrix(self): """Should create a csr matrix only master""" test_series = pd.Series(['foo', 'bar', 'baz']) sg = StringGrouper(test_series) master, dupe = sg._get_right_tf_idf_matrix(), sg._get_left_tf_idf_matrix() c = csr_matrix([[0., 0., 1.], [1., 0., 0.], [0., 1., 0.]]) np.testing.assert_array_equal(c.toarray(), master.toarray()) np.testing.assert_array_equal(c.toarray(), dupe.toarray()) def test_build_matrix_master_and_duplicates(self): """Should create a csr matrix for master and duplicates""" test_series_1 = pd.Series(['foo', 'bar', 'baz']) test_series_2 = pd.Series(['foo', 'bar', 'bop']) sg = StringGrouper(test_series_1, test_series_2) master, dupe = sg._get_right_tf_idf_matrix(), sg._get_left_tf_idf_matrix() master_expected = csr_matrix([[0., 0., 0., 1.], [1., 0., 0., 0.], [0., 1., 0., 0.]]) dupes_expected = csr_matrix([[0., 0., 0., 1.], [1., 0., 0., 0.], [0., 0., 1., 0.]]) np.testing.assert_array_equal(master_expected.toarray(), master.toarray()) np.testing.assert_array_equal(dupes_expected.toarray(), dupe.toarray()) def test_build_matches(self): """Should create the cosine similarity matrix of two series""" test_series_1 = pd.Series(['foo', 'bar', 'baz']) test_series_2 = pd.Series(['foo', 'bar', 'bop']) sg = StringGrouper(test_series_1, test_series_2) master, dupe = sg._get_right_tf_idf_matrix(), sg._get_left_tf_idf_matrix() expected_matches = np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 0.]]) np.testing.assert_array_equal(expected_matches, sg._build_matches(master, dupe)[0].toarray()) def test_build_matches_list(self): """Should create the cosine similarity matrix of two series""" test_series_1 = pd.Series(['foo', 'bar', 'baz']) test_series_2 = pd.Series(['foo', 'bar', 'bop']) sg = StringGrouper(test_series_1, test_series_2) sg = sg.fit() master = [0, 1] dupe_side = [0, 1] similarity = [1.0, 1.0] expected_df = pd.DataFrame({'master_side': master, 'dupe_side': dupe_side, 'similarity': similarity}) expected_df.loc[:, 'similarity'] = expected_df.loc[:, 'similarity'].astype(sg._config.tfidf_matrix_dtype) pd.testing.assert_frame_equal(expected_df, sg._matches_list) def test_case_insensitive_build_matches_list(self): """Should create the cosine similarity matrix of two case insensitive series""" test_series_1 = pd.Series(['foo', 'BAR', 'baz']) test_series_2 = pd.Series(['FOO', 'bar', 'bop']) sg = StringGrouper(test_series_1, test_series_2) sg = sg.fit() master = [0, 1] dupe_side = [0, 1] similarity = [1.0, 1.0] expected_df = pd.DataFrame({'master_side': master, 'dupe_side': dupe_side, 'similarity': similarity}) expected_df.loc[:, 'similarity'] = expected_df.loc[:, 'similarity'].astype(sg._config.tfidf_matrix_dtype) pd.testing.assert_frame_equal(expected_df, sg._matches_list) def test_get_matches_two_dataframes(self): test_series_1 = pd.Series(['foo', 'bar', 'baz']) test_series_2 = pd.Series(['foo', 'bar', 'bop']) sg = StringGrouper(test_series_1, test_series_2).fit() left_side = ['foo', 'bar'] left_index = [0, 1] right_side = ['foo', 'bar'] right_index = [0, 1] similarity = [1.0, 1.0] expected_df = pd.DataFrame({'left_index': left_index, 'left_side': left_side, 'similarity': similarity, 'right_side': right_side, 'right_index': right_index}) expected_df.loc[:, 'similarity'] = expected_df.loc[:, 'similarity'].astype(sg._config.tfidf_matrix_dtype) pd.testing.assert_frame_equal(expected_df, sg.get_matches()) def test_get_matches_single(self): test_series_1 = pd.Series(['foo', 'bar', 'baz', 'foo']) sg = StringGrouper(test_series_1) sg = sg.fit() left_side = ['foo', 'foo', 'bar', 'baz', 'foo', 'foo'] right_side = ['foo', 'foo', 'bar', 'baz', 'foo', 'foo'] left_index = [0, 3, 1, 2, 0, 3] right_index = [0, 0, 1, 2, 3, 3] similarity = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0] expected_df = pd.DataFrame({'left_index': left_index, 'left_side': left_side, 'similarity': similarity, 'right_side': right_side, 'right_index': right_index}) expected_df.loc[:, 'similarity'] = expected_df.loc[:, 'similarity'].astype(sg._config.tfidf_matrix_dtype) pd.testing.assert_frame_equal(expected_df, sg.get_matches()) def test_get_matches_1_series_1_id_series(self): test_series_1 = pd.Series(['foo', 'bar', 'baz', 'foo']) test_series_id_1 = pd.Series(['A0', 'A1', 'A2', 'A3']) sg = StringGrouper(test_series_1, master_id=test_series_id_1) sg = sg.fit() left_side = ['foo', 'foo', 'bar', 'baz', 'foo', 'foo'] left_side_id = ['A0', 'A3', 'A1', 'A2', 'A0', 'A3'] left_index = [0, 3, 1, 2, 0, 3] right_side = ['foo', 'foo', 'bar', 'baz', 'foo', 'foo'] right_side_id = ['A0', 'A0', 'A1', 'A2', 'A3', 'A3'] right_index = [0, 0, 1, 2, 3, 3] similarity = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0] expected_df = pd.DataFrame({'left_index': left_index, 'left_side': left_side, 'left_id': left_side_id, 'similarity': similarity, 'right_id': right_side_id, 'right_side': right_side, 'right_index': right_index}) expected_df.loc[:, 'similarity'] = expected_df.loc[:, 'similarity'].astype(sg._config.tfidf_matrix_dtype) pd.testing.assert_frame_equal(expected_df, sg.get_matches()) def test_get_matches_2_series_2_id_series(self): test_series_1 = pd.Series(['foo', 'bar', 'baz']) test_series_id_1 = pd.Series(['A0', 'A1', 'A2']) test_series_2 = pd.Series(['foo', 'bar', 'bop']) test_series_id_2 = pd.Series(['B0', 'B1', 'B2']) sg = StringGrouper(test_series_1, test_series_2, duplicates_id=test_series_id_2, master_id=test_series_id_1).fit() left_side = ['foo', 'bar'] left_side_id = ['A0', 'A1'] left_index = [0, 1] right_side = ['foo', 'bar'] right_side_id = ['B0', 'B1'] right_index = [0, 1] similarity = [1.0, 1.0] expected_df = pd.DataFrame({'left_index': left_index, 'left_side': left_side, 'left_id': left_side_id, 'similarity': similarity, 'right_id': right_side_id, 'right_side': right_side, 'right_index': right_index}) expected_df.loc[:, 'similarity'] = expected_df.loc[:, 'similarity'].astype(sg._config.tfidf_matrix_dtype) pd.testing.assert_frame_equal(expected_df, sg.get_matches()) def test_get_matches_raises_exception_if_unexpected_options_given(self): # When the input id data does not correspond with its string data: test_series_1 = pd.Series(['foo', 'bar', 'baz']) bad_test_series_id_1 = pd.Series(['A0', 'A1']) good_test_series_id_1 = pd.Series(['A0', 'A1', 'A2']) test_series_2 = pd.Series(['foo', 'bar', 'bop']) bad_test_series_id_2 = pd.Series(['B0', 'B1']) good_test_series_id_2 = pd.Series(['B0', 'B1', 'B2']) with self.assertRaises(Exception): _ = StringGrouper(test_series_1, master_id=bad_test_series_id_1) with self.assertRaises(Exception): _ = StringGrouper(test_series_1, duplicates=test_series_2, duplicates_id=bad_test_series_id_2, master_id=good_test_series_id_1) # When the input data is ok but the option combinations are invalid: with self.assertRaises(Exception): _ = StringGrouper(test_series_1, test_series_2, master_id=good_test_series_id_1) with self.assertRaises(Exception): _ = StringGrouper(test_series_1, test_series_2, duplicates_id=good_test_series_id_2) with self.assertRaises(Exception): _ = StringGrouper(test_series_1, duplicates_id=good_test_series_id_2) with self.assertRaises(Exception): _ = StringGrouper(test_series_1, master_id=good_test_series_id_1, duplicates_id=good_test_series_id_2) with self.assertRaises(Exception): _ = StringGrouper(test_series_1, master_id=good_test_series_id_1, ignore_index=True, replace_na=True) # Here we force an exception by making the number of index-levels of duplicates different from master: # and setting replace_na=True test_series_2.index = pd.MultiIndex.from_tuples(list(zip(list('ABC'), [0, 1, 2]))) with self.assertRaises(Exception): _ = StringGrouper(test_series_1, duplicates=test_series_2, replace_na=True) def test_get_groups_single_df_group_rep_default(self): """Should return a pd.Series object with the same length as the original df. The series object will contain a list of the grouped strings""" simple_example = SimpleExample() customers_df = simple_example.customers_df pd.testing.assert_series_equal( simple_example.expected_result_centroid, group_similar_strings( customers_df['Customer Name'], min_similarity=0.6, ignore_index=True ) ) sg = StringGrouper(customers_df['Customer Name']) pd.testing.assert_series_equal( simple_example.expected_result_centroid, sg.group_similar_strings( customers_df['Customer Name'], min_similarity=0.6, ignore_index=True ) ) def test_get_groups_single_valued_series(self): """This test ensures that get_groups() returns a single-valued DataFrame or Series object since the input-series is also single-valued. This test was created in response to a bug discovered by <NAME>""" pd.testing.assert_frame_equal( pd.DataFrame([(0, "hello")], columns=['group_rep_index', 'group_rep']), group_similar_strings( pd.Series(["hello"]), min_similarity=0.6 ) ) pd.testing.assert_series_equal( pd.Series(["hello"], name='group_rep'), group_similar_strings(
pd.Series(["hello"])
pandas.Series
# -*- coding: utf-8 -*- # run in py3 !! import os os.environ["CUDA_VISIBLE_DEVICES"] = "1"; import tensorflow as tf config = tf.ConfigProto() # config.gpu_options.per_process_gpu_memory_fraction=0.5 config.gpu_options.allow_growth = True tf.Session(config=config) import numpy as np from sklearn import preprocessing import tensorflow as tf import time import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error import pandas as pd from keras import backend as K import keras.layers.convolutional as conv from keras.layers import merge from keras.wrappers.scikit_learn import KerasRegressor from keras import utils from keras.layers.pooling import MaxPooling1D, MaxPooling2D from keras.layers import pooling from keras.models import Sequential, Model from keras.regularizers import l1, l2 from keras import layers from keras.layers import Dense, Dropout, Activation, Flatten, Input, Convolution1D, Convolution2D, LSTM from keras.optimizers import SGD, RMSprop from keras.layers.normalization import BatchNormalization from keras import initializers from keras.callbacks import EarlyStopping from keras import callbacks from keras import backend as K from keras.utils import to_categorical from keras.callbacks import EarlyStopping, ModelCheckpoint, Callback from keras.models import Model from keras import initializers, layers from keras.optimizers import SGD, Adadelta, Adam from keras.regularizers import l1, l2 from keras import regularizers import sys sys.path.append('.') from hist_figure import his_figures if len(sys.argv) > 1: prefix = sys.argv[1] else: prefix = time.time() DATAPATH = '5fold/' RESULT_PATH = './results/' feature_num = 25 batch_num = 2 # batch_size = 32 batch_size = 512 SEQ_LENGTH = 20 STATEFUL = False scaler = None # tmp, for fit_transform # id,usage,date,com_date,week,month,year # com_date,date,id,month,usage,week,year def get_data(path_to_dataset='df_dh.csv', sequence_length=20, stateful=False, issplit=True): fold_index = 1 ### dtypes = {'sub': 'float', 'super': 'float', 'error': 'float', 'com_date': 'int', 'week': 'str', 'month': 'str', 'year': 'str', 'numbers': 'int', 'log': 'float', 'id': 'str', 'usage': 'float'} parse_dates = ['date'] print(path_to_dataset) df = pd.read_csv(DATAPATH + path_to_dataset, header=0, dtype=dtypes, parse_dates=parse_dates, encoding="utf-8") # print(path_to_dataset) print(df.columns) df = df[df['error'] >= 0] # df_test = pd.read_csv(DATAPATH+"test"+str(fold_index)+".csv", header = 0, dtype=dtypes, parse_dates=parse_dates,encoding="utf-8") def helper(x): split = list(map(int, x.strip('[').strip(']').split(','))) d = {} for counter, value in enumerate(split): k = str(len(split)) + "-" + str(counter) d[k] = value return d # df_train_temp = df_train['week'].apply(helper).apply(pd.Series) df_week = df['week'].apply(helper).apply(pd.Series).as_matrix() # 7 df_month = df['month'].apply(helper).apply(pd.Series).as_matrix() # 12 df_year = df['year'].apply(helper).apply(pd.Series).as_matrix() # 3 df_empty = df[['super', 'com_date', 'error', 'numbers']].copy() # print(df_empty) df_super = df_empty.ix[:, [0]] df_com_date = df_empty.ix[:, [1]] df_error = df_empty.ix[:, [2]] df_numbers = df_empty.ix[:, [3]] X_train_ = np.column_stack((df_super, df_com_date, df_numbers, df_week, df_month)) Y_train_ = df_error.as_matrix() ss_x = preprocessing.MaxAbsScaler() ss_y = preprocessing.MaxAbsScaler() global scaler scaler = ss_y # ss_x = preprocessing.StandardScaler() array_new = ss_x.fit_transform(df_empty.ix[:, [0]]) df_super = pd.DataFrame(array_new) array_new = ss_x.fit_transform(df_empty.ix[:, [1]]) df_com_date = pd.DataFrame(array_new) array_new = ss_x.fit_transform(df_empty.ix[:, [3]]) df_numbers = pd.DataFrame(array_new) array_new = ss_y.fit_transform(df_empty.ix[:, [2]]) df_error = pd.DataFrame(array_new) df_week = ss_x.fit_transform(df_week) df_week = pd.DataFrame(df_week) df_month = ss_x.fit_transform(df_month) df_month =
pd.DataFrame(df_month)
pandas.DataFrame
from minder_utils.configurations import feature_config, config import numpy as np from .calculation import entropy_rate_from_sequence from .TimeFunctions import rp_location_delta from .util import * from minder_utils.util.util import PBar import pandas as pd from typing import Union import sys def get_moving_average(df:pd.DataFrame, name, w:int = 3): ''' This function calculates the moving average of the values in the ```'value'``` column. It will return the dataframe with the moving average in the column ```'value'```. Arguments --------- - df: pandas.DataFrame: A dataframe containing at least a column called ```'value'```. - name: string: This string is the name that will be given in the column ```'location'```. If this column does not already exist, it will be added. - w: int: The size of the moving window when calculating the moving average. Defaults to ```3```. Returns -------- - df: pandas.Dataframe : The original dataframe, with a new column containing the moving average. There will be missing values in the first ```w-1``` rows, caused by the lack of values to calculate a mean using the moving window. ''' values = df['value'].values if values.shape[0]<w: df['value'] = pd.NA df['location'] = name return df # moving average w = 3 values_ma = np.convolve(values, np.ones(w), 'valid')/w df['value'] = pd.NA df.loc[df.index[w-1:],'value'] = values_ma df['location'] = name return df def get_value_delta(df:pd.DataFrame, name): ''' This function calculates the delta of the values in the ```'value'``` column. It will return the dataframe with thenew values in the column ```'value'```. Arguments --------- - df: pandas.DataFrame: A dataframe containing at least a column called ```'values'```. - name: string: This string is the name that will be given in the column ```'location'```. If this column does not already exist, it will be added. Returns -------- - df: pandas.Dataframe : The original dataframe, with a new column containing the delta values. There will be a missing value in the first row, since delta can not be calculated here. ''' values = df['value'].values if values.shape[0]<2: df['value'] = pd.NA df['location'] = name return df values_delta = values[1:]/values[:-1] df['value'] = pd.NA df.loc[df.index[1:],'value'] = values_delta df['location'] = name return df def get_location_activity(data, location, time_range=None, name=None): data = data[data.location == location][['id', 'time', 'value']] data.time = pd.to_datetime(data.time) if time_range is None: data = data.set_index('time').reset_index() else: data = data.set_index('time').between_time(*time_range).reset_index() data.time = data.time.dt.date data = data.groupby(['id', 'time'])['value'].sum().reset_index() data['week'] = compute_week_number(data.time) data['location'] = name if not name is None else location return data def get_bathroom_activity(data, time_range=None, name=None): data = get_location_activity(data=data, location='bathroom1', time_range=time_range, name=name) ''' data = data[data.location == 'bathroom1'][['id', 'time', 'value']] data.time = pd.to_datetime(data.time) data = data.set_index('time').between_time(*time_range).reset_index() data.time = data.time.dt.date data = data.groupby(['id', 'time'])['value'].sum().reset_index() data['week'] = compute_week_number(data.time) data['location'] = name ''' return data def get_bedroom_activity(data, time_range=None, name=None): return get_location_activity(data=data, location='bedroom1', time_range=time_range, name=name) def get_body_temperature(data): data = data[data.location == 'body_temperature'][['id', 'time', 'value']] data.time = pd.to_datetime(data.time).dt.date data = data.groupby(['id', 'time'])['value'].mean().reset_index() data['week'] = compute_week_number(data.time) data['location'] = 'body_temperature' return data def get_bathroom_delta(data, func, name): def func_group_by(x): x = func(input_df=x, single_location='bathroom1', recall_value=feature_config['bathroom_urgent']['recall_value']) return x out = data.groupby(by=['id'])[['time', 'location']].apply( func_group_by).reset_index() out.columns = ['id', 'value'] out_rp = (pd.DataFrame(out.value.values.tolist()) .stack() .reset_index(level=1) .rename(columns={0: 'val', 'level_1': 'key'})) out = out.drop('value', 1).join(out_rp).reset_index(drop=True).dropna() out.columns = ['id', 'time', 'value'] out['week'] = compute_week_number(out.time) out['location'] = name return out def get_bathroom_delta_v1(data, func, name): data.time = pd.to_datetime(data.time).dt.date results = {} for p_id in data.id.unique(): p_data = func(data[data.id == p_id].copy(), single_location='bathroom1', recall_value=feature_config['bathroom_urgent']['recall_value']) if len(p_data) > 0: results[p_id] = p_data results = pd.DataFrame([(i, j, results[i][j].astype(float)) for i in results for j in results[i]], columns=['id', 'time', 'value']) results['week'] = compute_week_number(results.time) results['location'] = name return results def get_weekly_activity_data(data): data.time = pd.to_datetime(data.time).dt.date data = data.groupby(['id', 'time', 'location'])['value'].sum().reset_index() data['week'] = compute_week_number(data.time) data = data[data.location.isin(config['activity']['sensors'])] data = data.pivot_table(index=['id', 'week'], columns='location', values='value').reset_index().replace(np.nan, 0) return data def get_outlier_freq(data, func, name): data.time =
pd.to_datetime(data.time)
pandas.to_datetime
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Oct 14 21:31:56 2017 @author: Franz """ import scipy.signal import numpy as np import scipy.io as so import os.path import re import matplotlib.pylab as plt import h5py import matplotlib.patches as patches import numpy.random as rand import seaborn as sns import pandas as pd from functools import reduce import random import pdb class Mouse : def __init__(self, idf, list=None, typ='') : self.recordings = [] self.recordings.append(list) self.typ = typ self.idf = idf def add(self, rec) : self.recordings.append(rec) def __len__(self) : return len(self.recordings) def __repr__(self) : return ", ".join(self.recordings) ### PROCESSING OF RECORDING DATA ############################################## def load_stateidx(ppath, name, ann_name=''): """ load the sleep state file of recording (folder) $ppath/$name @Return: M,K sequence of sleep states, sequence of 0'1 and 1's indicating non- and annotated states """ ddir = os.path.join(ppath, name) ppath, name = os.path.split(ddir) if ann_name == '': ann_name = name sfile = os.path.join(ppath, name, 'remidx_' + ann_name + '.txt') f = open(sfile, 'r') lines = f.readlines() f.close() n = 0 for l in lines: if re.match('\d', l): n += 1 M = np.zeros(n, dtype='int') K = np.zeros(n, dtype='int') i = 0 for l in lines : if re.search('^\s+$', l) : continue if re.search('\s*#', l) : continue if re.match('\d+\s+-?\d+', l) : a = re.split('\s+', l) M[i] = int(a[0]) K[i] = int(a[1]) i += 1 return M,K def load_recordings(ppath, rec_file) : """ load_recordings(ppath, rec_file) load recording listing with syntax: [E|C] \s+ recording_name #COMMENT @RETURN: (list of controls, lis of experiments) """ exp_list = [] ctr_list = [] rfile = os.path.join(ppath, rec_file) f = open(rfile, newline=None) lines = f.readlines() f.close() for l in lines : if re.search('^\s+$', l) : continue if re.search('^\s*#', l) : continue a = re.split('\s+', l) if re.search('E', a[0]) : exp_list.append(a[1]) if re.search('C', a[0]) : ctr_list.append(a[1]) return ctr_list, exp_list def load_dose_recordings(ppath, rec_file): """ load recording list with following syntax: A line is either control or experiments; Control recordings look like: C \s recording_name Experimental recordings also come with an additional dose parameter (allowing for comparison of multiple doses with controls) E \s recording_name \s dose_1 E \s recording_name \s dose_2 """ rfile = os.path.join(ppath, rec_file) f = open(rfile, newline=None) lines = f.readlines() f.close() # first get all potential doses doses = {} ctr_list = [] for l in lines : if re.search('^\s+$', l): continue if re.search('^\s*#', l): continue a = re.split('\s+', l) if re.search('E', a[0]): if a[2] in doses: doses[a[2]].append(a[1]) else: doses[a[2]] = [a[1]] if re.search('C', a[0]): ctr_list.append(a[1]) return ctr_list, doses def get_snr(ppath, name): """ read and return sampling rate (SR) from file $ppath/$name/info.txt """ fid = open(os.path.join(ppath, name, 'info.txt'), newline=None) lines = fid.readlines() fid.close() values = [] for l in lines : a = re.search("^" + 'SR' + ":" + "\s+(.*)", l) if a : values.append(a.group(1)) return float(values[0]) def get_infoparam(ifile, field): """ NOTE: field is a single string and the function does not check for the type of the values for field. In fact, it just returns the string following field """ fid = open(ifile, newline=None) lines = fid.readlines() fid.close() values = [] for l in lines : a = re.search("^" + field + ":" + "\s+(.*)", l) if a : values.append(a.group(1)) return values def add_infoparam(ifile, field, vals): """ :param ifile: info file :param field: Parameters specifier, e.g. 'SR' :param vals: list with parameters """ fid = open(ifile, 'a') vals = [str(s) for s in vals] param = " ".join(vals) fid.write('%s:\t%s' % (field, param)) fid.write(os.linesep) fid.close() def laser_start_end(laser, SR=1525.88, intval=5): """laser_start_end(ppath, name) print start and end index of laser stimulation trains: For example, if you was stimulated for 2min every 20 min with 20 Hz, return the start and end index of the each 2min stimulation period (train) returns the tuple (istart, iend), both indices are inclusive, i.e. part of the sequence @Param: laser - laser, vector of 0s and 1s intval - minimum time separation [s] between two laser trains @Return: (istart, iend) - tuple of two np.arrays with laser start and end indices """ idx = np.where(laser > 0.5)[0] if len(idx) == 0 : return ([], []) idx2 = np.nonzero(np.diff(idx)*(1./SR) > intval)[0] istart = np.hstack([idx[0], idx[idx2+1]]) iend = np.hstack([idx[idx2], idx[-1]]) return (istart, iend) def load_laser(ppath, name): """ load laser from recording ppath/name @RETURN: @laser, vector of 0's and 1's """ # laser might be .mat or h5py file # perhaps we could find a better way of testing that file = os.path.join(ppath, name, 'laser_'+name+'.mat') try: laser = np.array(h5py.File(file,'r').get('laser')) except: laser = so.loadmat(file)['laser'] return np.squeeze(laser) def laser_protocol(ppath, name): """ What was the stimulation frequency and the inter-stimulation interval for recording $ppath/$name? @Return: iinter-stimulation intervals, avg. inter-stimulation interval, frequency """ laser = load_laser(ppath, name) SR = get_snr(ppath, name) # first get inter-stimulation interval (istart, iend) = laser_start_end(laser, SR) intv = np.diff(np.array(istart/float(SR))) d = intv/60.0 print("The laser was turned on in average every %.2f min," % (np.mean(d))) print("with a min. interval of %.2f min and max. interval of %.2f min." % (np.min(d), np.max(d))) print("Laser stimulation lasted for %f s." % (np.mean(np.array(iend/float(SR)-istart/float(SR)).mean()))) # print laser start times print("Start time of each laser trial:") j=1 for t in istart: print("trial %d: %.2f" % (j, (t / float(SR)) / 60)) j += 1 # for each laser stimulation interval, check laser stimulation frequency dt = 1/float(SR) freq = [] laser_up = [] laser_down = [] for (i,j) in zip(istart, iend): part = laser[i:j+1] (a,b) = laser_start_end(part, SR, 0.005) dur = (j-i+1)*dt freq.append(len(a) / dur) up_dur = (b-a+1)*dt*1000 down_dur = (a[1:]-b[0:-1]-1)*dt*1000 laser_up.append(np.mean(up_dur)) laser_down.append(np.mean(down_dur)) print(os.linesep + "Laser stimulation freq. was %.2f Hz," % np.mean(np.array(freq))) print("with laser up and down duration of %.2f and %.2f ms." % (np.mean(np.array(laser_up)), np.mean(np.array(laser_down)))) return d, np.mean(d), np.mean(np.array(freq)) def swap_eeg(ppath, rec, ch='EEG'): """ swap EEG and EEG2 or EMG with EMG2 if $ch='EMG' """ if ch == 'EEG': name = 'EEG' else: name = ch EEG = so.loadmat(os.path.join(ppath, rec, name+'.mat'))[name] EEG2 = so.loadmat(os.path.join(ppath, rec, name+'2.mat'))[name + '2'] tmp = EEG EEG = EEG2 EEG2 = tmp file_eeg1 = os.path.join(ppath, rec, '%s.mat' % name) file_eeg2 = os.path.join(ppath, rec, '%s2.mat' % name) so.savemat(file_eeg1, {name : EEG}) so.savemat(file_eeg2, {name+'2' : EEG2}) def eeg_conversion(ppath, rec, conv_factor=0.195): """ multiply all EEG and EMG channels with the given conversion factor and write the conversion factor as parameter (conversion:) into the info file. Only if there's no conversion factor in the info file specified, the conversion will be executed :param ppath: base filder :param rec: recording :param conv_factor: conversion factor :return: n/s """ ifile = os.path.join(ppath, rec, 'info.txt') conv = get_infoparam(ifile, 'conversion') if len(conv) > 0: print("found conversion: parameter in info file") print("returning: no conversion necessary!!!") return else: files = os.listdir(os.path.join(ppath, rec)) files = [f for f in files if re.match('^EEG', f)] for f in files: name = re.split('\.', f)[0] EEG = so.loadmat(os.path.join(ppath, rec, name+'.mat'), squeeze_me=True)[name] if EEG[0].dtype == 'int16': EEG = EEG * conv_factor file_eeg = os.path.join(ppath, rec, '%s.mat' % name) print(file_eeg) so.savemat(file_eeg, {name: EEG}) else: print('Wrong datatype! probably already converted; returning...') return files = os.listdir(os.path.join(ppath, rec)) files = [f for f in files if re.match('^EMG', f)] for f in files: name = re.split('\.', f)[0] EMG = so.loadmat(os.path.join(ppath, rec, name+'.mat'), squeeze_me=True)[name] if EMG[0].dtype == 'int16': EMG = EMG * conv_factor file_emg = os.path.join(ppath, rec, '%s.mat' % name) print(file_emg) so.savemat(file_emg, {name: EMG}) else: print('Wrong datatype! probably already converted; returning...') return add_infoparam(ifile, 'conversion', [conv_factor]) calculate_spectrum(ppath, rec) ### DEPRICATED ############################################ def video_pulse_detection(ppath, rec, SR=1000, iv = 0.01): """ return index of each video frame onset ppath/rec - recording @Optional SR - sampling rate of EEG(!) recording iv - minimum time inverval (in seconds) between two frames @Return index of each video frame onset """ V = np.squeeze(so.loadmat(os.path.join(ppath, rec, 'videotime_' + rec + '.mat'))['video']) TS = np.arange(0, len(V)) # indices where there's a jump in the signal t = TS[np.where(V<0.5)]; if len(t) == 0: idx = [] return idx # time points where the interval between jumps is longer than iv t2 = np.where(np.diff(t)*(1.0/SR)>=iv)[0] idx = np.concatenate(([t[0]],t[t2+1])) return idx # SIGNAL PROCESSING ########################################################### def my_lpfilter(x, w0, N=4): """ create a lowpass Butterworth filter with a cutoff of w0 * the Nyquist rate. The nice thing about this filter is that is has zero-phase distortion. A conventional lowpass filter would introduce a phase lag. w0 - filter cutoff; value between 0 and 1, where 1 corresponds to nyquist frequency. So if you want a filter with cutoff at x Hz, the corresponding w0 value is given by w0 = 2 * x / sampling_rate N - order of filter @Return: low-pass filtered signal See also my hp_filter, or my_bpfilter """ from scipy import signal b,a = signal.butter(N, w0) y = signal.filtfilt(b,a, x) return y def my_hpfilter(x, w0, N=4): """ create an N-th order highpass Butterworth filter with cutoff frequency w0 * sampling_rate/2 """ from scipy import signal # use scipy.signal.firwin to generate filter #taps = signal.firwin(numtaps, w0, pass_zero=False) #y = signal.lfilter(taps, 1.0, x) b,a = signal.butter(N, w0, 'high') y = signal.filtfilt(b,a, x, padlen = x.shape[0]-1) return y def my_bpfilter(x, w0, w1, N=4,bf=True): """ create N-th order bandpass Butterworth filter with corner frequencies w0*sampling_rate/2 and w1*sampling_rate/2 """ #from scipy import signal #taps = signal.firwin(numtaps, w0, pass_zero=False) #y = signal.lfilter(taps, 1.0, x) #return y from scipy import signal b,a = signal.butter(N, [w0, w1], 'bandpass') if bf: y = signal.filtfilt(b,a, x) else: y = signal.lfilter(b,a, x) return y def my_notchfilter(x, sr=1000, band=5, freq=60, ripple=10, order=3, filter_type='butter'): from scipy.signal import iirfilter,lfilter fs = sr nyq = fs/2.0 low = freq - band/2.0 high = freq + band/2.0 low = low/nyq high = high/nyq b, a = iirfilter(order, [low, high], rp=ripple, btype='bandstop', analog=False, ftype=filter_type) filtered_data = lfilter(b, a, x) return filtered_data def downsample_vec(x, nbin): """ y = downsample_vec(x, nbin) downsample the vector x by replacing nbin consecutive \ bin by their mean \ @RETURN: the downsampled vector """ n_down = int(np.floor(len(x) / nbin)) x = x[0:n_down*nbin] x_down = np.zeros((n_down,)) # 0 1 2 | 3 4 5 | 6 7 8 for i in range(nbin) : idx = list(range(i, int(n_down*nbin), int(nbin))) x_down += x[idx] return x_down / nbin def smooth_data(x, sig): """ y = smooth_data(x, sig) smooth data vector @x with gaussian kernel with standard deviation $sig """ sig = float(sig) if sig == 0.0: return x # gaussian: gauss = lambda x, sig : (1/(sig*np.sqrt(2.*np.pi)))*np.exp(-(x*x)/(2.*sig*sig)) bound = 1.0/10000 L = 10. p = gauss(L, sig) while (p > bound): L = L+10 p = gauss(L, sig) #F = map(lambda x: gauss((x, sig)), np.arange(-L, L+1.)) # py3: F = [gauss(x, sig) for x in np.arange(-L, L+1.)] F = F / np.sum(F) return scipy.signal.fftconvolve(x, F, 'same') def power_spectrum(data, length, dt): """ scipy's implementation of Welch's method using hanning window to estimate the power spectrum The function returns power density with units V**2/Hz see also https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.signal.welch.html The label on the y-axis should say PSD [V**2/Hz] @Parameters data - time series; float vector! length - length of hanning window, even integer! @Return: power density, frequencies The function returns power density in units V^2 / Hz Note that np.var(data) ~ np.sum(power density) * (frequencies[1]-frequencies[0]) """ f, pxx = scipy.signal.welch(data, fs=1.0/dt, window='hanning', nperseg=int(length), noverlap=int(length/2)) return pxx, f def spectral_density(data, length, nfft, dt): """ calculate the spectrogram for the time series given by data with time resolution dt The powerspectrum for each window of length $length is computed using Welch's method. The windows for the powerspectrum calculation are half-overlapping. If length contains 5s of data, then the first windows goes from 0s to 5s, the second window from 2.5 to 7.5s, ... The last window ends at ceil(len(data)/length)*5s Another example, assume we have 13 s of data, with 5 s windows, the the powerdensity is calculated for the following time windows: 0 -- 5, 2.5 -- 7.5, 5 -- 10, 7.5 -- 12.5, 10 -- 15 In total there are thus 2*ceil(13/5)-1 = 5 windows The last window starts at 2*3-2 * (5/2) = 10 s Note: the returned time axis starts at time point goes from 0 to 10s in 2.5s steps @Parameters: data - time series length - window length of data used to calculate powerspectrum. Note that the time resolution of the spectrogram is length/2 nfft - size of the window used to calculate the powerspectrum. determines the frequency resolution. @Return: Powspectrum, frequencies, time axis """ n = len(data) k = int(np.ceil((1.0*n)/length)) data = np.concatenate((data, np.zeros((length*k-n,)))) fdt = length*dt/2 # time step for spectrogram t = np.arange(0, fdt*(2*k-2)+fdt/2.0, fdt) # frequency axis of spectrogram f = np.linspace(0, 1, int(np.ceil(nfft/2.0))+1) * (0.5/dt) # the power spectrum is calculated for 2*k-1 time points Pow = np.zeros((len(f), k*2-1)) j = 0 for i in range(0, k-2+1): w1=data[(length*i):(i+1)*length] w2=data[length*i+int(length/2):(i+1)*length+int(length/2)] Pow[:,j] = power_spectrum(w1, nfft, dt)[0] Pow[:,j+1] = power_spectrum(w2, nfft, dt)[0] j += 2 # last time point Pow[:,j],f = power_spectrum(data[length*(k-1):k*length], nfft, dt) return Pow, f, t def calculate_spectrum(ppath, name, fres=0.5): """ calculate EEG and EMG spectrogram used for sleep stage detection. Function assumes that data vectors EEG.mat and EMG.mat exist in recording folder ppath/name; these are used to calculate the powerspectrum fres - resolution of frequency axis all data saved in "true" mat files :return EEG Spectrogram, EMG Spectrogram, frequency axis, time axis """ SR = get_snr(ppath, name) swin = round(SR)*5 fft_win = round(swin/5) # approximate number of data points per second if (fres == 1.0) or (fres == 1): fft_win = int(fft_win) elif fres == 0.5: fft_win = 2*int(fft_win) else: print("Resolution %f not allowed; please use either 1 or 0.5" % fres) (peeg2, pemg2) = (False, False) # Calculate EEG spectrogram EEG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EEG.mat'))['EEG']) Pxx, f, t = spectral_density(EEG, int(swin), int(fft_win), 1/SR) if os.path.isfile(os.path.join(ppath, name, 'EEG2.mat')): peeg2 = True EEG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EEG2.mat'))['EEG2']) Pxx2, f, t = spectral_density(EEG, int(swin), int(fft_win), 1/SR) #save the stuff to a .mat file spfile = os.path.join(ppath, name, 'sp_' + name + '.mat') if peeg2 == True: so.savemat(spfile, {'SP':Pxx, 'SP2':Pxx2, 'freq':f, 'dt':t[1]-t[0],'t':t}) else: so.savemat(spfile, {'SP':Pxx, 'freq':f, 'dt':t[1]-t[0],'t':t}) # Calculate EMG spectrogram EMG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EMG.mat'))['EMG']) Qxx, f, t = spectral_density(EMG, int(swin), int(fft_win), 1/SR) if os.path.isfile(os.path.join(ppath, name, 'EMG2.mat')): pemg2 = True EMG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EMG2.mat'))['EMG2']) Qxx2, f, t = spectral_density(EMG, int(swin), int(fft_win), 1/SR) # save the stuff to .mat file spfile = os.path.join(ppath, name, 'msp_' + name + '.mat') if pemg2 == True: so.savemat(spfile, {'mSP':Qxx, 'mSP2':Qxx2, 'freq':f, 'dt':t[1]-t[0],'t':t}) else: so.savemat(spfile, {'mSP':Qxx, 'freq':f, 'dt':t[1]-t[0],'t':t}) return Pxx, Qxx, f, t def whiten_spectrogram(ppath, name, fmax=50): """ experimental :param ppath: :param name: :param fmax: :return: """ P = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat'), squeeze_me=True) SPE = P['SP'] freq = P['freq'] ifreq = np.where(freq <= fmax)[0] SPE = SPE[ifreq,:] nfilt = 5 filt = np.ones((nfilt, nfilt)) filt = np.divide(filt, filt.sum()) #SPE = scipy.signal.convolve2d(SPE, filt, boundary='symm', mode='same') m = np.mean(SPE,axis=1) SPE -= np.tile(m, (SPE.shape[1], 1)).T SPE = SPE.T C = np.dot(SPE.T, SPE) [evals, L] = np.linalg.eigh(C) idx = np.argsort(evals) D = np.diag(np.sqrt(evals[idx])) L = L[:,idx] W = np.dot(L, np.dot(np.linalg.inv(D),np.dot(L.T,SPE.T))) nfilt = 2 filt = np.ones((nfilt,nfilt)) filt = np.divide(filt, filt.sum()) W = scipy.signal.convolve2d(W, filt, boundary='symm', mode='same') return W, D, L def normalize_spectrogram(ppath, name, fmax=0, band=[], vm=5, pplot=True, sptype='', filt_dim=[]): """ Normalize EEG spectrogram by deviding each frequency band by its average value. :param ppath, name: base folder, recording name :param fmax: maximum frequency; frequency axis of spectrogram goes from 0 to fmax if fmax=0, use complete frequency axis :param band: list or tuple, define lower and upper range of a frequency band, if pplot=True, plot band, along with spectrogram; if band=[], disregard :param vm: color range for plotting spectrogram :pplot: if True, plot spectrogram along with power band :sptype: if sptype='fine' plot 'special' spectrogram, save under sp_fine_$name.mat; otherwise plot 'normal' spectrogram sp_$name.mat :filt_dim: list or tuple; the two values define the dimensions of box filter used to filter the normalized spectrogram; if filt_dim=[], then no filtering :return SPE, t, freq: normalized spectrogram (np.array), time axis, frequency axis """ if (len(sptype) == 0) or (sptype=='std'): P = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat'), squeeze_me=True) elif sptype == 'fine': P = so.loadmat(os.path.join(ppath, name, 'sp_fine_' + name + '.mat'), squeeze_me=True) SPE = P['SP'] freq = P['freq'] t = P['t'] if fmax > 0: ifreq = np.where(freq <= fmax)[0] else: ifreq = np.arange(0, len(freq)) freq = freq[ifreq] nfilt = 4 filt = np.ones((nfilt,nfilt)) filt = np.divide(filt, filt.sum()) SPE = SPE[ifreq,:] # before #SPE = SPE[ifreq] #W = scipy.signal.convolve2d(SPE, filt, boundary='symm', mode='same') #sp_mean = W.mean(axis=1) sp_mean = SPE.mean(axis=1) SPE = np.divide(SPE, np.tile(sp_mean, (SPE.shape[1], 1)).T) if len(filt_dim) > 0: filt = np.ones(filt_dim) filt = np.divide(filt, filt.sum()) SPE = scipy.signal.convolve2d(SPE, filt, boundary='symm', mode='same') # get high gamma peaks if len(band) > 0: iband = np.where((freq >= band[0]) & (freq <= band[-1]))[0] pow_band = SPE[iband,:].mean(axis=0) thr = pow_band.mean() + pow_band.std() idx = np.where(pow_band > thr)[0] # plot normalized spectrogram, along with band if pplot: plt.ion() plt.figure() if len(band) > 0: med = np.median(SPE.mean(axis=0)) ax1 = plt.subplot(211) plt.pcolormesh(t, freq, SPE, vmin=0, vmax=vm*med, cmap='jet') plt.subplot(212, sharex=ax1) plt.plot(t,SPE[iband,:].mean(axis=0)) plt.plot(t[idx], pow_band[idx], '.') plt.draw() return SPE, t, freq[ifreq] def recursive_spectrogram(ppath, name, sf=0.3, alpha=0.3, pplot=True): """ calculate EEG/EMG spectrogram in a way that can be implemented by a closed-loop system. The spectrogram is temporally filtered using a recursive implementation of a lowpass filter @Parameters: ppath/name - mouse EEG recording sf - smoothing factor along frequency axis alpha - temporal lowpass filter time constant pplot - if pplot==True, plot figure @Return: SE, SM - EEG, EMG spectrogram """ EEG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EEG.mat'))['EEG']) EMG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EMG.mat'))['EMG']) len_eeg = len(EEG) fdt = 2.5 SR = get_snr(ppath, name) # we calculate the powerspectrum for 5s windows swin = int(np.round(SR) * 5.0) # but we sample new data each 2.5 s swinh = int(swin/2.0) fft_win = int(swin / 5.0) # number of 2.5s long samples spoints = int(np.floor(len_eeg / swinh)) SE = np.zeros((int(fft_win/2+1), spoints)) SM = np.zeros((int(fft_win/2+1), spoints)) print("Starting calculating spectrogram for %s..." % name) for i in range(2, spoints): # we take the last two swinh windows (the new 2.5 s long sample and the one from # the last iteration) x = EEG[(i-2)*swinh:i*swinh] [p, f] = power_spectrum(x.astype('float'), fft_win, 1.0/SR) p = smooth_data(p, sf) # recursive low pass filtering of spectrogram: # the current state is an estimate of the current sample and the previous state SE[:,i] = alpha*p + (1-alpha) * SE[:,i-1] # and the same of EMG x = EMG[(i-2)*swinh:i*swinh] [p, f] = power_spectrum(x.astype('float'), fft_win, 1.0/SR) p = smooth_data(p, sf) SM[:,i] = alpha*p + (1-alpha) * SM[:,i-1] if pplot: # plot EEG spectrogram t = np.arange(0, SM.shape[1])*fdt plt.figure() ax1 = plt.subplot(211) im = np.where((f>=0) & (f<=30))[0] med = np.median(SE.max(axis=0)) ax1.imshow(np.flipud(SE[im,:]), vmin=0, vmax=med*2) plt.xticks(()) ix = list(range(0, 30, 10)) fi = f[im][::-1] plt.yticks(ix, list(map(int, fi[ix]))) box_off(ax1) plt.axis('tight') plt.ylabel('Freq (Hz)') # plot EMG amplitude ax2 = plt.subplot(212) im = np.where((f>=10) & (f<100))[0] df = np.mean(np.diff(f)) # amplitude is the square root of the integral ax2.plot(t, np.sqrt(SM[im,:].sum(axis=0)*df)/1000.0) plt.xlim((0, t[-1])) plt.ylabel('EMG Ampl (mV)') plt.xlabel('Time (s)') box_off(ax2) plt.show(block=False) return SE, SM, f def recursive_sleepstate_rem(ppath, recordings, sf=0.3, alpha=0.3, past_mu=0.2, std_thdelta = 1.5, past_len=120, sdt=2.5, psave=False, xemg=False): """ predict a REM period only based on EEG/EMG history; the same algorithm is also used for closed-loop REM sleep manipulation. The algorithm uses for REM sleep detection a threshold on delta power, EMG power, and theta/delta power. For theta/delta I use two thresholds: A hard (larger) threshold and a soft (lower) threshold. Initially, theta/delta has to cross the hard threshold to initiate a REM period. Then, as long as, theta/delta is above the soft threshold (and EMG power stays low) REM sleep continues. @Parameters: ppath base folder with recordings recordings list of recordings sf smoothing factor for each powerspectrum alpha smoothing factor along time dimension past_mu percentage (0 .. 1) of brain states that are allowed to have EMG power larger than threshold during the last $past_len seconds past_len window to calculate $past_mu std_thdelta the hard theta/delta threshold is given by, mean(theta/delta) + $std_thdelta * std(theta/delta) sdt time bin for brain sttate, typically 2.5s psave if True, save threshold parameters to file. """ idf = re.split('_', recordings[0])[0] # 02/05/2020 changed from int to float: past_len = float(np.round(past_len/sdt)) # calculate spectrogram (SE, SM) = ([],[]) for rec in recordings: A,B, freq = recursive_spectrogram(ppath, rec, sf=sf, alpha=alpha) SE.append(A) SM.append(B) # fuse lists SE and SM SE = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SE)) if not xemg: SM = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SM)) else: SM = SE # EEG, EMG bands ntbins = SE.shape[1] r_delta = [0.5, 4] r_theta = [5,12] # EMG band r_mu = [300, 500] i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0] i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0] i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0] pow_delta = np.sum(SE[i_delta,:], axis=0) pow_theta = np.sum(SE[i_theta,:], axis=0) pow_mu = np.sum(SM[i_mu,:], axis=0) # theta/delta th_delta = np.divide(pow_theta, pow_delta) thr_th_delta1 = np.nanmean(th_delta) + std_thdelta*np.nanstd(th_delta) thr_th_delta2 = np.nanmean(th_delta) + 0.0*np.nanstd(th_delta) thr_delta = pow_delta.mean() thr_mu = pow_mu.mean() + 0.5*np.nanstd(pow_mu) ### The actual algorithm for REM detection rem_idx = np.zeros((ntbins,)) prem = 0 # whether or not we are in REM for i in range(ntbins): if prem == 0 and pow_delta[i] < thr_delta and pow_mu[i] < thr_mu: ### could be REM if th_delta[i] > thr_th_delta1: ### we are potentially entering REM if (i - past_len) >= 0: sstart = int(i-past_len) else: sstart = 0 # count the percentage of brainstate bins with elevated EMG power c_mu = np.sum( np.where(pow_mu[sstart:i]>thr_mu)[0] ) / (past_len*1.0) if c_mu < past_mu: ### we are in REM prem = 1 # turn laser on rem_idx[i] = 1 # We are currently in REM; do we stay there? if prem == 1: ### REM continues, if theta/delta is larger than soft threshold and if there's ### no EMG activation if (th_delta[i] > thr_th_delta2) and (pow_mu[i] < thr_mu): rem_idx[i] = 1 else: prem = 0 #turn laser off # for loop ends # Determine which channel is EEG, EMG ch_alloc = get_infoparam(os.path.join(ppath, recordings[0], 'info.txt'), 'ch_alloc')[0] # plot the whole stuff: # (1) spectrogram # (2) EMG Power # (3) Delta # (4) TH_Delta plt.figure() t = np.arange(0, sdt*(ntbins-1)+sdt/2.0, sdt) ax1 = plt.subplot(411) im = np.where((freq>=0) & (freq<=30))[0] med = np.median(SE.max(axis=0)) ax1.imshow(np.flipud(SE[im,:]), vmin=0, vmax=med*2) plt.yticks(list(range(0, 31, 10)), list(range(30, -1, -10))) plt.ylabel('Freq. (Hz)') plt.axis('tight') ax2 = plt.subplot(412) ax2.plot(t, pow_mu, color='black') ax2.plot(t, np.ones((len(t),))*thr_mu, color='red') plt.ylabel('EMG Pow.') plt.xlim((t[0], t[-1])) ax3 = plt.subplot(413, sharex=ax2) ax3.plot(t, pow_delta, color='black') ax3.plot(t, np.ones((len(t),))*thr_delta, color='red') plt.ylabel('Delta Pow.') plt.xlim((t[0], t[-1])) ax4 = plt.subplot(414, sharex=ax3) ax4.plot(t, th_delta, color='black') ax4.plot(t, np.ones((len(t),))*thr_th_delta1, color='red') ax4.plot(t, np.ones((len(t),))*thr_th_delta2, color='pink') ax4.plot(t, rem_idx*thr_th_delta1, color='blue') plt.ylabel('Theta/Delta') plt.xlabel('Time (s)') plt.xlim((t[0], t[-1])) plt.show(block=False) # write config file if psave: cfile = os.path.join(ppath, idf + '_rem.txt') fid = open(cfile, 'w') fid.write(('IDF: %s'+os.linesep) % idf) fid.write(('ch_alloc: %s'+os.linesep) % ch_alloc) fid.write(('THR_DELTA: %.2f'+os.linesep) % thr_delta) fid.write(('THR_MU: %.2f'+os.linesep) % thr_mu) fid.write(('THR_TH_DELTA: %.2f %.2f'+os.linesep) % (thr_th_delta1, thr_th_delta2)) fid.write(('STD_THDELTA: %.2f'+os.linesep) % std_thdelta) fid.write(('PAST_MU: %.2f'+os.linesep) % past_mu) fid.write(('SF: %.2f'+os.linesep) % sf) fid.write(('ALPHA: %.2f'+os.linesep) % alpha) fid.write(('Bern: %.2f' + os.linesep) % 0.5) if xemg: fid.write(('XEMG: %d'+os.linesep) % 1) else: fid.write(('XEMG: %d' + os.linesep) % 0) fid.close() print('wrote file %s' % cfile) def recursive_sleepstate_rem_control(ppath, recordings, past_len=120, sdt=2.5, delay=120): """ algorithm running laser control for REM sleep dependent activation/inhibtion. $delay s after a detected REM sleep period, the laser is turned on for the same duration. If a new REM period starts, the laser stops, but we keep track of the missing time. The next time is laser turns on again, it stays on for the duration of the most recent REM period + the remaining time. The algorithm for REM detection is the same as used forclosed-loop REM sleep manipulation. The function reads in the required parameters from the configuration file (MOUSEID_rem.txt) The algorithm uses for REM sleep detection a threshold on delta power, EMG power, and theta/delta power. For theta/delta I use two thresholds: A hard (larger) threshold and a soft (lower) threshold. Initially, theta/delta has to cross the hard threshold to initiate a REM period. Then, as long as, theta/delta is above the soft threshold (and EMG power stays low) REM sleep continues. @Parameters: ppath base folder with recordings recordings list of recordings past_len window to calculate $past_mu sdt time bin for brain sttate, typically 2.5s delay delay to wait after a REM sleep periods ends, till the laser is turned on. """ idf = re.split('_', recordings[0])[0] past_len = int(np.round(past_len/sdt)) # load parameters cfile = os.path.join(ppath, idf + '_rem.txt') params = load_sleep_params(ppath, cfile) thr_th_delta1 = params['THR_TH_DELTA'][0] thr_th_delta2 = params['THR_TH_DELTA'][1] thr_delta = params['THR_DELTA'][0] thr_mu = params['THR_MU'][0] alpha = params['ALPHA'][0] sf = params['SF'][0] past_mu = params['PAST_MU'][0] xemg = params['XEMG'][0] # calculate spectrogram (SE, SM) = ([], []) for rec in recordings: A, B, freq = recursive_spectrogram(ppath, rec, sf=sf, alpha=alpha) SE.append(A) SM.append(B) # fuse lists SE and SM SE = np.squeeze(reduce(lambda x, y: np.concatenate((x, y)), SE)) if not xemg: SM = np.squeeze(reduce(lambda x, y: np.concatenate((x, y)), SM)) else: SM = SE # EEG, EMG bands ntbins = SE.shape[1] r_delta = [0.5, 4] r_theta = [5, 12] # EMG band r_mu = [300, 500] i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0] i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0] i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0] pow_delta = np.sum(SE[i_delta, :], axis=0) pow_theta = np.sum(SE[i_theta, :], axis=0) pow_mu = np.sum(SM[i_mu, :], axis=0) th_delta = np.divide(pow_theta, pow_delta) ### The actual algorithm for REM detection rem_idx = np.zeros((ntbins,)) prem = 0 # whether or not we are in REM # NEW variables: laser_idx = np.zeros((ntbins,)) delay = int(np.round(delay/sdt)) delay_count = 0 curr_rem_dur = 0 dur_count = 0 on_delay = False laser_on = False for i in range(ntbins): if prem == 0 and pow_delta[i] < thr_delta and pow_mu[i] < thr_mu: ### could be REM if th_delta[i] > thr_th_delta1: ### we are potentially entering REM if (i - past_len) >= 0: sstart = i - past_len else: sstart = 0 # count the percentage of brainstate bins with elevated EMG power c_mu = np.sum(np.where(pow_mu[sstart:i] > thr_mu)[0]) / past_len if c_mu < past_mu: ### we are in REM prem = 1 # turn laser on rem_idx[i] = 1 curr_rem_dur += 1 #NEW # We are currently in REM; do we stay there? if prem == 1: ### REM continues, if theta/delta is larger than soft threshold and if there's ### no EMG activation if (th_delta[i] > thr_th_delta2) and (pow_mu[i] < thr_mu): rem_idx[i] = 1 curr_rem_dur += 1 else: prem = 0 # turn laser off dur_count += curr_rem_dur #NEW delay_count = delay #NEW curr_rem_dur = 0 #NEW on_delay = True #NEW # NEW: if on_delay: if prem == 0: delay_count -=1 if delay_count == 0: laser_on = True on_delay = False if laser_on: if prem == 0: if dur_count >= 0: dur_count -= 1 laser_idx[i] = 1 else: laser_on = False else: laser_on = False # plot the whole stuff: # (1) spectrogram # (2) EMG Power # (3) Delta # (4) TH_Delta plt.figure() t = np.arange(0, sdt*(ntbins-1)+sdt/2.0, sdt) ax1 = plt.subplot(411) im = np.where((freq>=0) & (freq<=30))[0] med = np.median(SE.max(axis=0)) ax1.imshow(np.flipud(SE[im,:]), vmin=0, vmax=med*2) plt.yticks(list(range(0, 31, 10)), list(range(30, -1, -10))) plt.ylabel('Freq. (Hz)') plt.axis('tight') ax2 = plt.subplot(412) ax2.plot(t, pow_mu, color='black') ax2.plot(t, np.ones((len(t),))*thr_mu, color='red') plt.ylabel('EMG Pow.') plt.xlim((t[0], t[-1])) ax3 = plt.subplot(413, sharex=ax2) ax3.plot(t, pow_delta, color='black') ax3.plot(t, np.ones((len(t),))*thr_delta, color='red') plt.ylabel('Delta Pow.') plt.xlim((t[0], t[-1])) ax4 = plt.subplot(414, sharex=ax3) ax4.plot(t, th_delta, color='black') ax4.plot(t, np.ones((len(t),))*thr_th_delta1, color='red') ax4.plot(t, np.ones((len(t),))*thr_th_delta2, color='pink') ax4.plot(t, rem_idx*thr_th_delta1, color='green', label='REM') ax4.plot(t, laser_idx * thr_th_delta1, color='blue', label='Laser') plt.ylabel('Theta/Delta') plt.xlabel('Time (s)') plt.xlim((t[0], t[-1])) plt.legend() plt.show(block=False) def load_sleep_params(path, param_file): """ load parameter file generated by &recursive_sleepstate_rem || &recursive_sleepstate_nrem @Return: Dictionary: Parameter --> Value """ fid = open(os.path.join(path, param_file), 'r') lines = fid.readlines() params = {} for line in lines: if re.match('^[\S_]+:', line): a = re.split('\s+', line) key = a[0][:-1] params[key] = a[1:-1] # transform number strings to floats for k in params: vals = params[k] new_vals = [] for v in vals: if re.match('^[\d\.]+$', v): new_vals.append(float(v)) else: new_vals.append(v) params[k] = new_vals return params def recursive_sleepstate_nrem(ppath, recordings, sf=0.3, alpha=0.3, std_thdelta = 1.5, sdt=2.5, psave=False, xemg=False): """ predict NREMs period only based on EEG/EMG history; the same algorithm is also used for closed-loop NREM sleep manipulation. The algorithm uses for NREM sleep detection thresholds for delta power, EMG power, and theta/delta power. For delta I use two thresholds: A hard (larger) threshold and a soft (lower) threshold. Initially, theta/delta has to cross the hard threshold to initiate a NREM period. Then, as long as, theta/delta is above the soft threshold (and EMG power stays low) REM sleep continues. The values for hard and soft threshold are fitted using a Gaussian mixture model :param ppath: base folder :param recordings: list of recordings :param sf: smoothing factor for each powerspectrum :param alpha: spatial smoothing factor :param std_thdelta: factor to set threshold for theta/delta :param sdt: time step of brain state classification, typically 2.5 s :param psave: save parameters to text file? :param xemg: use EEG instead of EMG? """ # to fit Gaussian mixture model to delta power distributino from sklearn import mixture idf = re.split('_', recordings[0])[0] # calculate spectrogram (SE, SM) = ([],[]) for rec in recordings: A,B, freq = recursive_spectrogram(ppath, rec, sf=sf, alpha=alpha) SE.append(A) SM.append(B) # fuse lists SE and SM SE = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SE)) if not xemg: SM = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SM)) else: SM = SE # EEG, EMG bands ntbins = SE.shape[1] r_delta = [0.5, 4] r_theta = [5,12] # EMG band r_mu = [300, 500] i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0] i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0] i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0] pow_delta = np.sum(SE[i_delta,:], axis=0) pow_theta = np.sum(SE[i_theta,:], axis=0) pow_mu = np.sum(SM[i_mu,:], axis=0) # theta/delta th_delta = np.divide(pow_theta, pow_delta) thr_th_delta1 = np.nanmean(th_delta) + std_thdelta*np.nanstd(th_delta) thr_th_delta2 = np.nanmean(th_delta) + 0.0*np.nanstd(th_delta) thr_mu = pow_mu.mean() + 0.5*np.nanstd(pow_mu) med_delta = np.median(pow_delta) pow_delta_fit = pow_delta[np.where(pow_delta<=3*med_delta)] # fit Gaussian mixture model to delta power # see http://www.astroml.org/book_figures/chapter4/fig_GMM_1D.html gm = mixture.GaussianMixture(n_components=2) fit = gm.fit(pow_delta_fit.reshape(-1, 1)) means = np.squeeze(fit.means_) x = np.arange(0, med_delta*3, 100) plt.figure() plt.hist(pow_delta_fit, 100, normed=True, histtype='stepfilled', alpha=0.4) logprob = fit.score_samples(x.reshape(-1,1)) responsibilities = fit.predict_proba(x.reshape((-1,1))) pdf = np.exp(logprob) pdf_individual = responsibilities * pdf[:, np.newaxis] plt.plot(x, pdf, '-k') plt.plot(x, pdf_individual, '--k') plt.xlim((0, med_delta*3)) plt.ylabel('p(x)') plt.xlabel('x = Delta power') # get point where curves cut each other if means[0] < means[1]: idx = np.where((x>= means[0]) & (x<= means[1]))[0] else: idx = np.where((x >= means[1]) & (x <= means[0]))[0] imin = np.argmin(pdf[idx]) xcut = x[idx[0]+imin] plt.plot(xcut, pdf[idx[0]+imin], 'ro') ilow = np.argmin(np.abs(x-means[0])) plt.plot(x[ilow], pdf[ilow], 'bo') ihigh = np.argmin(np.abs(x-means[1])) plt.plot(x[ihigh], pdf[ihigh], 'go') plt.show(block=False) # set parameters for hard and soft delta thresholds tmp = np.array([x[ihigh], xcut, x[ilow]]) tmp.sort() thr_delta1 = tmp[-1] # x[ihigh]; right peak of distribution thr_delta2 = tmp[1] # trough of distribution # NREM yes or no according to thresholds # However, this variable does not directly control whether laser should # be on or off; whether NREM sleep is really on or off is determined # by nrem_idx; if pnrem_hidden == 1, then all threshold critera, but not # sleep history criteria are fulfilled pnrem_hidden = 0 # if nrem_idx[i] == 1, time point i is NREM nrem_idx = np.zeros((ntbins,), dtype='int8') # NREM stays on after thresholds are NOT fulfilled to avoid interruptions by microarousals grace_period = int(20 / sdt) # nrem_delay: NREM only starts with some delay nrem_delay = int(10 / sdt) grace_count = grace_period delay_count = nrem_delay for i in range(ntbins): if pnrem_hidden == 0: ### Entering NREM: # Delta power laser than high threshold if pow_delta[i] > thr_delta1 and pow_mu[i] < thr_mu and th_delta[i] < thr_th_delta1: ### NOT-NREM -> NREM pnrem_hidden = 1 nrem_idx[i] = 0 delay_count -= 1 # we are fully in NREM, that's why grace_count is reset: grace_count = grace_period else: ### NOT-NREM -> NOT-NREM if grace_count > 0: grace_count -= 1 nrem_idx[i] = 1 else: nrem_idx[i] = 0 else: ### pnrem_hidden == 1 if pow_delta[i] > thr_delta2 and pow_mu[i] < thr_mu and th_delta[i] < thr_th_delta1: if delay_count > 0: delay_count -= 1 nrem_idx[i] = 0 else : nrem_idx[i] = 1 else: ### Exit NREM -> NOT-NREM # were are fully out of NREM, so delay_count can be reset: delay_count = nrem_delay pnrem_hidden = 0 if grace_count > 0: grace_count -= 1 nrem_idx[i] = 1 #### figure ############################################## plt.figure() t = np.arange(0, sdt * (ntbins - 1) + sdt / 2.0, sdt) ax1 = plt.subplot(411) im = np.where((freq >= 0) & (freq <= 30))[0] med = np.median(SE.max(axis=0)) ax1.imshow(np.flipud(SE[im, :]), vmin=0, vmax=med * 2, cmap='jet') ax1.pcolorfast(t, freq[im], np.flipud(SE[im, :]), vmin=0, vmax=med * 2, cmap='jet') plt.yticks(list(range(0, 31, 10)), list(range(30, -1, -10))) plt.ylabel('Freq. (Hz)') plt.axis('tight') ax2 = plt.subplot(412, sharex=ax1) ax2.plot(t, pow_mu, color='black') ax2.plot(t, np.ones((len(t),)) * thr_mu, color='red') plt.ylabel('EMG Pow.') plt.xlim((t[0], t[-1])) ax3 = plt.subplot(413, sharex=ax2) ax3.plot(t, pow_delta, color='black') ax3.plot(t, np.ones((len(t),)) * thr_delta1, color='red') ax3.plot(t, np.ones((len(t),)) * thr_delta2, color=[1, 0.6, 0.6]) ax3.plot(t, nrem_idx * thr_delta1, color=[0.6, 0.6, 0.6]) plt.ylabel('Delta Pow.') plt.xlim((t[0], t[-1])) ax4 = plt.subplot(414, sharex=ax3) ax4.plot(t, th_delta, color='black') ax4.plot(t, np.ones((len(t),)) * thr_th_delta1, color='red') plt.ylabel('Theta/Delta') plt.xlabel('Time (s)') plt.xlim((t[0], t[-1])) plt.show(block=False) # Determine which channel is EEG, EMG ch_alloc = get_infoparam(os.path.join(ppath, recordings[0], 'info.txt'), 'ch_alloc')[0] # write config file if psave: cfile = os.path.join(ppath, idf + '_nrem.txt') fid = open(cfile, 'w') fid.write(('IDF: %s' + os.linesep) % idf) fid.write(('ch_alloc: %s' + os.linesep) % ch_alloc) fid.write(('THR_DELTA: %.2f %.2f' + os.linesep) % (thr_delta1, thr_delta2)) fid.write(('THR_MU: %.2f' + os.linesep) % thr_mu) fid.write(('THR_TH_DELTA: %.2f %.2f' + os.linesep) % (thr_th_delta1, thr_th_delta2)) fid.write(('STD_THDELTA: %.2f' + os.linesep) % std_thdelta) fid.write(('SF: %.2f' + os.linesep) % sf) fid.write(('ALPHA: %.2f' + os.linesep) % alpha) if xemg: fid.write(('XEMG: %d' + os.linesep) % 1) else: fid.write(('XEMG: %d' + os.linesep) % 0) fid.close() print('wrote file %s' % cfile) def rem_online_analysis(ppath, recordings, backup='', single_mode=False, fig_file='', overlap=0): """ analyze results from closed-loop experiments :param ppath: base folder :param recordings: list of strings, recordinds :param backup: string, potential second backup folder with recordings :param single_mode: boolean, if True, average across all REM periods (irrespective of mouse) and plot each single REM period as dot :param overlap: float between 0 and 100; specifices percentage by which the online detected REM period has to overlap with real (annotated) REM period to be further consided for analysis; if overlap == 0, then any overlap counts, i.e. this parameter has no influence :return: df, pd.DataFrame, with control and experimental REM durations as data columns """ if type(recordings) != list: recordings = [recordings] overlap = overlap / 100.0 paths = dict() for rec in recordings: if os.path.isdir(os.path.join(ppath, rec)): paths[rec] = ppath else: paths[rec] = backup mice = dict() for rec in recordings: idf = re.split('_', rec)[0] if not idf in mice: mice[idf] = 1 mice = list(mice.keys()) if len(mice) == 1: single_mode=True dur_exp = {m:[] for m in mice} dur_ctr = {m:[] for m in mice} for rec in recordings: idf = re.split('_', rec)[0] M,S = load_stateidx(paths[rec], rec) sr = get_snr(paths[rec], rec) nbin = int(np.round(sr)*2.5) dt = (1.0/sr)*nbin laser = load_laser(paths[rec], rec) rem_trig = so.loadmat(os.path.join(paths[rec], rec, 'rem_trig_%s.mat'%rec), squeeze_me=True)['rem_trig'] laser = downsample_vec(laser, nbin) laser[np.where(laser>0)] = 1 rem_trig = downsample_vec(rem_trig, nbin) rem_trig[np.where(rem_trig>0)] = 1 laser_idx = np.where(laser==1)[0] rem_idx = np.where(rem_trig==1)[0] # REM sequences from offline analysis (assumed to be the # "ground truth" seq = get_sequences(np.where(M==1)[0]) for s in seq: # check true REM sequences overlapping with online detected sequences isect = np.intersect1d(s, rem_idx) #print(len(isect)/ len(s)) # test if real REM period s overlaps with online detected REM periods and, # if yes, make sure that the overlap is at least overlap *100 percent if len(np.intersect1d(s, rem_idx)) > 0 and float(len(isect)) / len(s) >= overlap: drn = (s[-1]-s[0]+1)*dt # does the sequence overlap with laser? if len(np.intersect1d(isect, laser_idx))>0: dur_exp[idf].append(drn) else: dur_ctr[idf].append(drn) data = {'exp':[], 'ctr':[]} # if single_mode put all REM periods together, # otherwise average across REM periods for each mouse if len(mice) == 1 or single_mode==True: for m in mice: data['exp'] += dur_exp[m] data['ctr'] += dur_ctr[m] else: for idf in dur_ctr: dur_ctr[idf] = np.array(dur_ctr[idf]).mean() dur_exp[idf] = np.array(dur_exp[idf]).mean() data['exp'] = np.array(list(dur_exp.values())) data['ctr'] = np.array(list(dur_ctr.values())) df = pd.DataFrame({'ctr':pd.Series(data['ctr']), 'exp' : pd.Series(data['exp'])}) # plot everything if not single_mode: plt.ion() plt.figure() ax = plt.axes([0.2, 0.15, 0.3, 0.7]) df_mean = df.mean() plt.bar([1], [df_mean['ctr']], color='grey', label='W/o Laser') plt.bar([2], [df_mean['exp']], color='blue', label='With laser') plt.xticks([1,2]) box_off(ax) #ax.set_xticklabels(['ctr', 'exp'], rotation=30) plt.ylabel('REM duration (s)') for (a,b) in zip(df['ctr'], df['exp']): plt.plot([1,2], [a,b], color='black') plt.legend(bbox_to_anchor=(0., 1.0, 1., .102), loc=3, mode='expand', ncol=1, frameon=False) else: plt.figure() ax = plt.axes([0.2, 0.15, 0.3, 0.7]) df_mean = df.mean() plt.bar([1], [df_mean['ctr']], color='grey') plt.bar([2], [df_mean['exp']], color='blue') plt.xticks([1,2]) box_off(ax) #ax.set_xticklabels(['ctr', 'exp'], rotation=30) plt.ylabel('REM duration (s)') a = df['ctr'] b = df['exp'] plt.plot(np.ones((len(a),)), a, '.', color='black', label='W/o Laser') plt.plot(2*np.ones((len(b),)), b, '.', color='black', label='With laser') plt.legend(bbox_to_anchor=(0., 1.0, 1., .102), loc=3, mode='expand', ncol=1, frameon=False) plt.show() if len(fig_file) > 0: save_figure(fig_file) return df def online_homeostasis(ppath, recordings, backup='', mode=0, single_mode=False, pplot=True, overlap=0, ma_thr=0): """ Further analysis of data obtained from closed loop stimulation Assume the sleep structure looks like this R R R R W W N N N N N W W N N N N R R R R R REM_pre -- inter REM ---- REM_post REM_pre is the duration of the first REM period, inter-REM is everything between REM_pre and the next REM period REM_post. The function calculates the inter REM duration after REM periods with laser and after REM periods w/o laser :param ppath: base folder :param recordings: list of recording, or file listing :param backup: backup folder for $ppath :param mode: mode == 0, calculate complete inter REM duration mode == 2, only calculate duration of wake in inter REM periods mode == 3, only calculate duration of NREM in inter REM periods :param single_mode: consider each single recording, instead of mice :param overlap: percentage (number between 0 and 100). Defines the percentage how much a true (offline annotated) REM period should overlap with laser to be considered as REM sleep with laser. Of note, REM periods w/o laser have to have 0 overlap with laser. All remaining REM periods are discarded. :param pplot: if True, plot figure; errorbars show 95% confidence intervals, calculated using bootstrapping :param ma: :return: df, if single_mode == True $df is a pandas DataFrame: REM iREM laser mouse - mouse ID REM - REM duration iREM - inter REM duration after REM periods with laser laser - 'y' or 'n'; depending on whether laser was on during REM sleep period (for "REM") or during the preceding REM sleep period (for "iREM") if single_mode == False, mouse is the data frame index """ if type(recordings) != list: recordings = [recordings] if overlap > 0: overlap = overlap / 100 paths = dict() for rec in recordings: if os.path.isdir(os.path.join(ppath, rec)): paths[rec] = ppath else: paths[rec] = backup mice = dict() for rec in recordings: idf = re.split('_', rec)[0] if not idf in mice: mice[idf] = 1 mice = list(mice.keys()) if len(mice) == 1: single_mode=True remdur_exp = {m:[] for m in mice} remdur_ctr = {m:[] for m in mice} itdur_exp = {m:[] for m in mice} itdur_ctr = {m:[] for m in mice} for rec in recordings: idf = re.split('_', rec)[0] M = load_stateidx(paths[rec], rec)[0] sr = get_snr(paths[rec], rec) nbin = int(np.round(sr)*2.5) dt = (1.0/sr)*nbin if ma_thr>0: seq = get_sequences(np.where(M==2)[0]) for s in seq: if len(s)*dt <= ma_thr: M[s] = 3 laser = load_laser(paths[rec], rec) rem_trig = so.loadmat(os.path.join(paths[rec], rec, 'rem_trig_%s.mat' % rec), squeeze_me=True)['rem_trig'] laser = downsample_vec(laser, nbin) laser[np.where(laser>0)] = 1 rem_trig = downsample_vec(rem_trig, nbin) rem_trig[np.where(rem_trig>0)] = 1 laser_idx = np.where(laser==1)[0] rem_idx = np.where(rem_trig==1)[0] # REM sequences from offline analysis (assumed to be the # "ground truth" seq = get_sequences(np.where(M==1)[0]) for (p,q) in zip(seq[0:-1], seq[1:]): # check if true REM sequences do overlap with online detected sequences # and only continue working with those: if len(np.intersect1d(p, rem_idx)) > 0: drn = (p[-1]-p[0]+1)*dt it_M = M[p[-1]+1:q[0]] if mode == 0: it_drn = len(it_M)*dt elif mode == 2: it_drn = len(np.where(it_M==2)[0]) * dt else: it_drn = len(np.where(it_M == 3)[0]) * dt # does the true REM sequence overlap with laser? # by setting overlap to a value > 0, you can # set a percentage how much the REM period should overlap with laser # NEW 08/26/21 if len(np.intersect1d(p, laser_idx)) / len(p) > overlap: remdur_exp[idf].append(drn) itdur_exp[idf].append(it_drn) elif len(np.intersect1d(p, laser_idx)) == 0: remdur_ctr[idf].append(drn) itdur_ctr[idf].append(it_drn) else: pass # if single_mode put all REM periods together, # otherwise average across REM periods for each mouse if len(mice) == 1 or single_mode==True: data = {'itexp':[], 'itctr':[], 'remexp':[], 'remctr':[]} for m in mice: data['itexp'] += itdur_exp[m] data['itctr'] += itdur_ctr[m] data['remexp'] += remdur_exp[m] data['remctr'] += remdur_ctr[m] df = pd.DataFrame({'REM': data['remexp']+data['remctr'], 'iREM':data['itexp']+data['itctr'], 'laser': ['y']*len(data['remexp']) + ['n']*len(data['remctr'])}) else: for idf in mice: itdur_ctr[idf] = np.array(itdur_ctr[idf]).mean() itdur_exp[idf] = np.array(itdur_exp[idf]).mean() remdur_ctr[idf] = np.array(remdur_ctr[idf]).mean() remdur_exp[idf] = np.array(remdur_exp[idf]).mean() data = {} for s in ['itexp', 'itctr', 'remexp', 'remctr']: data[s] = np.zeros((len(mice),)) i = 0 for m in mice: data['itexp'][i] = itdur_exp[m] data['itctr'][i] = itdur_ctr[m] data['remexp'][i] = remdur_exp[m] data['remctr'][i] = remdur_ctr[m] i += 1 df = pd.DataFrame({'REM': np.concatenate((data['remexp'], data['remctr'])), 'iREM': np.concatenate((data['itexp'], data['itctr'])), 'laser': ['y']*len(mice) + ['n']*len(mice), 'mouse': mice+mice}) if pplot and not single_mode: dfm = pd.melt(df, id_vars=['laser', 'mouse'], var_name='state') sns.set_style('whitegrid') plt.ion() plt.figure() sns.barplot(data=dfm, hue='laser', x='state', y='value', palette=['blue', 'gray']) sns.swarmplot(data=dfm, hue='laser', x='state', y='value', dodge=True, color='black') sns.despine() plt.ylabel('Duration (s)') if pplot and single_mode: dfm = pd.melt(df, id_vars=['laser'], var_name='state') plt.ion() plt.figure() sns.set(style="whitegrid") #sns.swarmplot(data=df[['itctr', 'itexp']], color='black') #sns.barplot(data=df[['itctr', 'itexp']], palette=['gray', 'blue'], errcolor='black') sns.barplot(data=dfm, hue='laser', x='state', y='value', palette=['blue', 'gray']) sns.swarmplot(data=dfm, hue='laser', x='state', y='value', dodge=True, color='black') sns.despine() plt.ylabel('Duration (s)') return df ### FUNCTIONS USED BY SLEEP_STATE ##################################################### def get_sequences(idx, ibreak=1) : """ get_sequences(idx, ibreak=1) idx - np.vector of indices @RETURN: seq - list of np.vectors """ diff = idx[1:] - idx[0:-1] breaks = np.nonzero(diff>ibreak)[0] breaks = np.append(breaks, len(idx)-1) seq = [] iold = 0 for i in breaks: r = list(range(iold, i+1)) seq.append(idx[r]) iold = i+1 return seq def threshold_crossing(data, th, ilen, ibreak, m): """ seq = threshold_crossing(data, th, ilen, ibreak, m) """ if m>=0: idx = np.where(data>=th)[0] else: idx = np.where(data<=th)[0] # gather sequences j = 0 seq = [] while (j <= len(idx)-1): s = [idx[j]] for k in range(j+1,len(idx)): if (idx[k] - idx[k-1]-1) <= ibreak: # add j to sequence s.append(idx[k]) else: break if (s[-1] - s[0]+1) >= ilen and not(s[0] in [i[1] for i in seq]): seq.append((s[0], s[-1])) if j == len(idx)-1: break j=k return seq def closest_precessor(seq, i): """ find the preceding element in seq which is closest to i helper function for sleep_state """ tmp = seq-i; d = np.where(tmp<0)[0] if len(d)>0: id = seq[d[-1]]; else: id = 0; return id def write_remidx(M, K, ppath, name, mode=1) : """ rewrite_remidx(idx, states, ppath, name) replace the indices idx in the remidx file of recording name with the assignment given in states """ if mode == 0 : outfile = os.path.join(ppath, name, 'remidx_' + name + '.txt') else : outfile = os.path.join(ppath, name, 'remidx_' + name + '_corr.txt') f = open(outfile, 'w') s = ["%d\t%d\n" % (i,j) for (i,j) in zip(M[0,:],K)] f.writelines(s) f.close() ####################################################################################### ### MANIPULATING FIGURES ############################################################## def set_fontsize(fs): import matplotlib matplotlib.rcParams.update({'font.size': fs}) def set_fontarial(): """ set Arial as default font """ import matplotlib matplotlib.rcParams['font.sans-serif'] = "Arial" def save_figure(fig_file): # alternative way of setting nice fonts: #matplotlib.rcParams['pdf.fonttype'] = 42 #matplotlib.rcParams['ps.fonttype'] = 42 #matplotlib.pylab.savefig(fig_file, dpi=300) #matplotlib.rcParams['text.usetex'] = False #matplotlib.rcParams['text.usetex'] = True plt.savefig(fig_file, bbox_inches="tight", dpi=200) #matplotlib.rcParams['text.usetex'] = False def box_off(ax): """ similar to Matlab's box off """ ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() ####################################################################################### def sleep_state(ppath, name, th_delta_std=1, mu_std=0, sf=1, sf_delta=3, pwrite=0, pplot=True, pemg=True, vmax=2.5, pspec_norm=False, use_idx=[]): """ automatic sleep state detection based on delta, theta, sigma, gamma and EMG power. New: use also sigma band: that's very helpful to classify pre-REM periods as NREM; otherwise they tend to be classified as wake. Gamma peaks nicely pick up during microarousals. My strategy is the following: I smooth delta band a lot to avoid strong fragmentation of sleep; but to still pick up microarousals I use the gamma power. spectrogram data has to be calculated before using calculate_spectrum Each bin in the spectrogram gets assigned one of four states: 1-REM 2-Wake 3-NREM 0-undef :param ppath: base folder :param name: recording name :param th_delta_std: threshold for theta/delta band is calculated as mean(theta/delta) + th_delta_std*std(theta/delta) :param mu_std: threshold for EMG power is calculate as "mean(EMG) + mu_std * mean(EMG) :param sf: smoothing factor for gamma and sigma power :param sf_delta: smoothing factor for delta power :param pwrite: if True, save sleep classification to file remidx_$name.txt :param pplot: if True, plot figures :param pemg: if True, use EMG as EMG, otherwise use EEG gamma power instead :param vmax: float, set maximum of color range of EEG heatmap. :param pspec_norm: boolean, if True, normalized EEG spectrogram by deviding each frequency band by its mean; only affects plotting, no effect on sleep state calculation :param use_idx: list, if not empty, use only given indices to calculate sleep state :return: """ PRE_WAKE_REM = 30.0 # Minimum Duration and Break in # high theta/delta, high emg, high delta, high sigma and gamma sequences # # duration[i,0] is the minimum duration of sequence of state i # duration[i,1] is maximal break duration allowed in a sequence of state i duration = np.zeros((5,2)) # high theta/delta duration[0,:] = [5,15] # high emg duration[1,:] = [0, 5] # high delta duration[2,:] = [10, 10] # high sigma duration[3,:] = [10, 10] # gamma duration[4,:] = [0, 5] # Frequency Bands/Ranges for delta, theta, and, gamma r_delta = [0.5, 4] r_sigma = [12, 20] r_theta = [5,12] # EMG band r_mu = [50, 500] if not pemg: r_mu = [250, 500] # high gamma power r_gamma = [100, 150] #load EEG and EMG spectrum, calculated by calculate_spectrum P = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat')) if pemg: Q = so.loadmat(os.path.join(ppath, name, 'msp_' + name + '.mat')) else: Q = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat')) SPEEG = np.squeeze(P['SP']) if pemg == 1: SPEMG = np.squeeze(Q['mSP']) else: SPEMG = np.squeeze(P['SP']) if use_idx == []: use_idx = range(0, SPEEG.shape[1]) freq = np.squeeze(P['freq']) t = np.squeeze(P['t']) dt = float(np.squeeze(P['dt'])) N = len(t) duration = np.divide(duration,dt) # get indices for frequency bands i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0] i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0] i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0] i_sigma = np.where((freq >= r_sigma[0]) & (freq <= r_sigma[1]))[0] i_gamma = np.where((freq >= r_gamma[0]) & (freq <= r_gamma[1]))[0] p_delta = smooth_data( SPEEG[i_delta,:].mean(axis=0), sf_delta ) p_theta = smooth_data( SPEEG[i_theta,:].mean(axis=0), 0 ) # now filtering for EMG to pick up microarousals p_mu = smooth_data( SPEMG[i_mu,:].mean(axis=0), sf ) p_sigma = smooth_data( SPEEG[i_sigma,:].mean(axis=0), sf ) p_gamma = smooth_data( SPEEG[i_gamma,:].mean(axis=0), 0 ) th_delta = np.divide(p_theta, p_delta) #th_delta = smooth_data(th_delta, 2); seq = {} seq['high_theta'] = threshold_crossing(th_delta, np.nanmean(th_delta[use_idx])+th_delta_std*np.nanstd(th_delta[use_idx]), duration[0,1], duration[0,1], 1) seq['high_emg'] = threshold_crossing(p_mu, np.nanmean(p_mu[use_idx])+mu_std*np.nanstd(p_mu[use_idx]), duration[1,0], duration[1,1], 1) seq['high_delta'] = threshold_crossing(p_delta, np.nanmean(p_delta[use_idx]), duration[2,0], duration[2,1], 1) seq['high_sigma'] = threshold_crossing(p_sigma, np.nanmean(p_sigma[use_idx]), duration[3,0], duration[3,1], 1) seq['high_gamma'] = threshold_crossing(p_gamma, np.nanmean(p_gamma[use_idx]), duration[4,0], duration[4,1], 1) # Sleep-State Rules idx = {} for k in seq: tmp = [list(range(i,j+1)) for (i,j) in seq[k]] # now idea why this works to flatten a list # idx[k] = sum(tmp, []) # alternative that I understand: if len(tmp) == 0: idx[k] = np.array([]) else: idx[k] = np.array(reduce(lambda x,y: x+y, tmp)) idx['low_emg'] = np.setdiff1d(np.arange(0,N), np.array(idx['high_emg'])) idx['low_delta'] = np.setdiff1d(np.arange(0,N), np.array(idx['high_delta'])) idx['low_theta'] = np.setdiff1d(np.arange(0,N), np.array(idx['high_theta'])) #REM Sleep: thdel up, emg down, delta down a = np.intersect1d(idx['high_theta'], idx['low_delta']) # non high_emg phases b = np.setdiff1d(a, idx['high_emg']) rem = get_sequences(b, duration[0,1]) rem_idx = reduce(lambda x,y: np.concatenate((x,y)), rem) # SWS Sleep # delta high, no theta, no emg a = np.setdiff1d(idx['high_delta'], idx['high_emg']) # no emg activation b = np.setdiff1d(a, idx['high_theta']) # no theta; sws = get_sequences(b) sws_idx = reduce(lambda x,y: np.concatenate((x,y)), sws) #print a # Wake # low delta + high emg and not rem a = np.unique(np.union1d(idx['low_delta'], idx['high_emg'])) b = np.setdiff1d(a, rem_idx) wake = get_sequences(b) wake_idx = reduce(lambda x,y: np.concatenate((x,y)), wake) # sequences with low delta, high sigma and low emg are NREM a = np.intersect1d(np.intersect1d(idx['high_sigma'], idx['low_delta']), idx['low_emg']) a = np.setdiff1d(a, rem_idx) sws_idx = np.unique(np.union1d(a, sws_idx)) wake_idx = np.setdiff1d(wake_idx, a) #NREM sequences with high gamma are wake a = np.intersect1d(sws_idx, idx['high_gamma']) sws_idx = np.setdiff1d(sws_idx, a) wake_idx = np.unique(np.union1d(wake_idx,a)) # Wake and Theta wake_motion_idx = np.intersect1d(wake_idx, idx['high_theta']) # Wake w/o Theta wake_nomotion_idx = np.setdiff1d(wake_idx, idx['low_theta']) # Are there overlapping sequences? a = np.intersect1d(np.intersect1d(rem_idx, wake_idx), sws_idx) # Are there undefined sequences? undef_idx = np.setdiff1d(np.setdiff1d(np.setdiff1d(np.arange(0,N), rem_idx), wake_idx), sws_idx) # Wake wins over SWS sws_idx = np.setdiff1d(sws_idx, wake_idx) # Special rules # if there's a REM sequence directly following a short wake sequence (PRE_WAKE_REM), # this wake sequence goes to SWS # NREM to REM transitions are sometimes mistaken as quite wake periods for rem_seq in rem: if len(rem_seq) > 0: irem_start = rem_seq[0] # is there wake in the preceding bin? if irem_start-1 in wake_idx: # get the closest sws bin in the preceding history isws_end = closest_precessor(sws_idx, irem_start) if (irem_start - isws_end)*dt < PRE_WAKE_REM: new_rem = np.arange(isws_end+1,irem_start) rem_idx = np.union1d(rem_idx, new_rem) wake_idx = np.setdiff1d(wake_idx, new_rem) else: new_wake = rem_seq wake_idx = np.union1d(wake_idx, new_wake) rem_idx = np.setdiff1d(rem_idx, new_wake) # two different representations for the results: S = {} S['rem'] = rem_idx S['nrem'] = sws_idx S['wake'] = wake_idx S['awake'] = wake_motion_idx S['qwake'] = wake_nomotion_idx M = np.zeros((N,)) if len(rem_idx) > 0: M[rem_idx] = 1 if len(wake_idx) > 0: M[wake_idx] = 2 if len(sws_idx) > 0: M[sws_idx] = 3 if len(undef_idx) > 0: M[undef_idx] = 0 # write sleep annotation to file if pwrite: outfile = os.path.join(ppath, name, 'remidx_' + name + '.txt') print("writing annotation to %s" % outfile) f = open(outfile, 'w') s = ["%d\t%d\n" % (i,j) for (i,j) in zip(M,np.zeros((N,)))] f.writelines(s) f.close() # nice plotting plt.ion() if pplot: plt.figure(figsize=(18,9)) axes1=plt.axes([0.1, 0.9, 0.8, 0.05]) A = np.zeros((1,len(M))) A[0,:] = M cmap = plt.cm.jet my_map = cmap.from_list('ha', [[0,0,0], [0,1,1],[0.5,0,1], [0.8, 0.8, 0.8]], 4) #tmp = axes1.imshow(A, vmin=0, vmax=3) tmp = axes1.pcolorfast(t, [0,1], A, vmin=0, vmax=3) tmp.set_cmap(my_map) axes1.axis('tight') tmp.axes.get_xaxis().set_visible(False) tmp.axes.get_yaxis().set_visible(False) box_off(axes1) # show spectrogram axes2=plt.axes([0.1, 0.75, 0.8, 0.1], sharex=axes1) ifreq = np.where(freq <= 30)[0] med = np.median(SPEEG.max(axis=0)) if pspec_norm: ifreq = np.where(freq <= 80)[0] filt = np.ones((6, 1)) filt = filt / np.sum(filt) SPEEG = scipy.signal.convolve2d(SPEEG, filt, mode='same') spec_mean = SPEEG.mean(axis=1) SPEEG = np.divide(SPEEG, np.repeat([spec_mean], SPEEG.shape[1], axis=0).T) med = np.median(SPEEG.max(axis=0)) axes2.pcolorfast(t, freq[ifreq], SPEEG[ifreq, :], vmax = med*vmax, cmap='jet') else: axes2.pcolorfast(t, freq[ifreq], SPEEG[ifreq, :], vmax=med * vmax, cmap='jet') axes2.axis('tight') plt.ylabel('Freq (Hz)') box_off(axes2) # show delta power axes3=plt.axes([0.1, 0.6, 0.8, 0.1], sharex=axes2) axes3.plot(t,p_delta, color='gray') plt.ylabel('Delta (a.u.)') plt.xlim((t[0], t[-1])) seq = get_sequences(S['nrem']) #for s in seq: # plt.plot(t[s],p_delta[s], color='red') s = idx['high_delta'] seq = get_sequences(s) for s in seq: plt.plot(t[s],p_delta[s], color='red') box_off(axes3) axes4=plt.axes([0.1, 0.45, 0.8, 0.1], sharex=axes3) axes4.plot(t,p_sigma, color='gray') plt.ylabel('Sigma (a.u.)') plt.xlim((t[0], t[-1])) s = idx['high_sigma'] seq = get_sequences(s) for s in seq: plt.plot(t[s],p_sigma[s], color='red') box_off(axes4) axes5=plt.axes([0.1, 0.31, 0.8, 0.1], sharex=axes4) axes5.plot(t,th_delta, color='gray') plt.ylabel('Th/Delta (a.u.)') plt.xlim((t[0], t[-1])) s = idx['high_theta'] seq = get_sequences(s) for s in seq: plt.plot(t[s],th_delta[s], color='red') box_off(axes5) axes6=plt.axes([0.1, 0.17, 0.8, 0.1], sharex=axes5) axes6.plot(t,p_gamma, color='gray') plt.ylabel('Gamma (a.u.)') plt.xlim((t[0], t[-1])) s = idx['high_gamma'] seq = get_sequences(s) for s in seq: plt.plot(t[s],p_gamma[s], color='red') box_off(axes6) axes7=plt.axes([0.1, 0.03, 0.8, 0.1], sharex=axes6) axes7.plot(t,p_mu, color='gray') plt.xlabel('Time (s)') plt.ylabel('EMG (a.u.)') plt.xlim((t[0], t[-1])) s = idx['high_emg'] seq = get_sequences(s) for s in seq: plt.plot(t[s],p_mu[s], color='red') box_off(axes7) plt.show() # 2nd figure showing distribution of different bands plt.figure(figsize=(20,3)) axes1 = plt.axes([0.05, 0.1, 0.13, 0.8]) plt.hist(p_delta, bins=100) plt.plot(np.nanmean(p_delta), 10, 'ro') plt.title('delta') plt.ylabel('# Occurances') box_off(axes1) axes1 = plt.axes([0.25, 0.1, 0.13, 0.8]) plt.hist(th_delta, bins=100) plt.plot(np.nanmean(th_delta)+th_delta_std*np.nanstd(th_delta), 10, 'ro') plt.title('theta/delta') box_off(axes1) axes1 = plt.axes([0.45, 0.1, 0.13, 0.8]) plt.hist(p_sigma, bins=100) plt.plot(np.nanmean(p_sigma), 10, 'ro') plt.title('sigma') box_off(axes1) axes1 = plt.axes([0.65, 0.1, 0.13, 0.8]) plt.hist(p_gamma, bins=100) plt.plot(np.nanmean(p_gamma), 10, 'ro') plt.title('gamma') box_off(axes1) axes1 = plt.axes([0.85, 0.1, 0.13, 0.8]) plt.hist(p_mu, bins=100) plt.plot(np.nanmean(p_mu)+np.nanstd(p_mu), 10, 'ro') plt.title('EMG') plt.show(block=False) box_off(axes1) plt.show() return M,S def plot_hypnograms(ppath, recordings, tbin=0, unit='h', ma_thr=20, title='', tstart=0, tend=-1): """ plot all hypnograms specified in @recordings :param ppath: base folder :param recordings: list of recordings :param tbin: tbin for xticks :param unit: time unit; h - hour, min - minute, s - second :param ma_thr: float, wake periods shorter than $ma_thr are considered as microarousals and further converted to NREM :param tstart: float, start time point (in seconds!) of hypnograms :param tend: float, last shown time point (in seconds!) :param title: optional title for figure """ recordings = recordings[::-1] sr = get_snr(ppath, recordings[0]) nbin = int(np.round(sr) * 2.5) dt_sec = (1.0 / sr) * nbin istart = int(np.round(tstart/dt_sec)) dt = dt_sec if unit == 'h': dt /= 3600 elif unit == 'min': dt /= 60 rec_len = dict() irec = 0 ny = (1.0-0.2) / len(recordings) dy = ny * 0.75 cmap = plt.cm.jet my_map = cmap.from_list('brs', [[0, 0, 0], [0, 1, 1], [0.5, 0, 1], [0.8, 0.8, 0.8]], 4) plt.ion() plt.figure(figsize=(9,4)) axes = [] for rec in recordings: M,K = load_stateidx(ppath, rec) #kcut = np.where(K<0)[0] #M = M[kcut] #M[kcut] = 0 if tend == -1: iend = len(M) else: iend = int(tend/dt_sec) M = M[istart:iend] if ma_thr>0: seq = get_sequences(np.where(M==2)[0]) for s in seq: if len(s)*dt_sec <= ma_thr: M[s] = 3 rec_len[rec] = len(M)*dt t = np.arange(0, len(M))*dt ax = plt.axes([0.05, ny*irec+0.15, 0.75, dy]) tmp = ax.pcolorfast(t, [0, 1], np.array([M]), vmin=0, vmax=3, cmap=my_map) box_off(ax) ax.axis('tight') tmp.axes.get_yaxis().set_visible(False) if irec > 0: tmp.axes.get_xaxis().set_visible(False) if irec == 0: plt.xlabel('Time (%s)' % unit) irec += 1 axes.append(ax) if len(title) > 0: plt.title(title) max_dur = max(rec_len.values()) if tbin > 0: xtick = np.arange(0, max_dur, tbin) for (ax, rec) in zip(axes, recordings): ax.set_xlim([0, max_dur]) if tbin > 0: ax.set_xticks(xtick) ax.text(max_dur+max_dur*0.01, 0.5, rec) plt.show() def plot_swa(ppath, name, delta_win, alpha, band=[0.5, 4.5], swa_yrange=[]): """ plot slow wave (delta) activity during NREM The top plot shows the hynogram. The middle plot shows the delta power (irrespective of brain state) as line plot The bottom plot shows for consecutive $delta_win seconds long bins, the median delta power (SWA) during NREM, if the ration of NREM during the corresponding bin >= $alpha Example call: dm=plot_swa(ppath, name, 30, 0.5, swa_yrange=[0, 0.012]) :param ppath, name: basefolder, recording name :param delta_win: plot median swa value for each consecutive $delta_win seconds long window, if :param alpha: the ratio of NREM in this window is larger than alpha (value between 0 and 1) :param swa_yrange: tuple, minimun and maximum value of yrange for SWA :return df: pd.DataFrame with SWA time points and corresponding median SWA values """ r_delta = band sr = get_snr(ppath, name) nbin = int(np.round(2.5*sr)) dt = nbin*(1.0/sr) M,_ = load_stateidx(ppath, name) t = np.arange(0, len(M))*dt P = so.loadmat(os.path.join(ppath, name, 'sp_%s.mat' % name), squeeze_me=True) SP = P['SP'] freq = P['freq'] df = freq[1]-freq[0] idelta = np.where((freq>=r_delta[0]) & (freq<=r_delta[1]))[0] pow_delta = SP[idelta,:].sum(axis=0)*df # get NREM sequences contributing points for fitting iwin = int(delta_win/dt) #seq = get_sequences(nrem_idx, ibreak=int((delta_win/dt)*0.1)) delta_med = [] for j in range(0, len(M)-iwin, iwin): s = range(j, j+iwin) sc = j+int(iwin/2) Mcut = M[s] if (1.0*len(np.where(Mcut==3)[0])) / len(s) >= alpha: i = np.where(Mcut==3)[0] i = i+s[0] a = np.median(pow_delta[i]) delta_med.append((t[sc],a)) df = pd.DataFrame(columns=['time', 'pow'], data=delta_med) # generate figure # show brainstate plt.ion() plt.figure(figsize=(10, 4)) axes_brs = plt.axes([0.1, 0.85, 0.8, 0.1]) cmap = plt.cm.jet my_map = cmap.from_list('brs', [[0, 0, 0], [0, 1, 1], [0.6, 0, 1], [0.8, 0.8, 0.8]], 4) tmp = axes_brs.pcolorfast(t, [0, 1], np.array([M]), vmin=0, vmax=3) tmp.set_cmap(my_map) axes_brs.axis('tight') axes_brs.axes.get_xaxis().set_visible(False) axes_brs.axes.get_yaxis().set_visible(False) axes_brs.spines["top"].set_visible(False) axes_brs.spines["right"].set_visible(False) axes_brs.spines["bottom"].set_visible(False) axes_brs.spines["left"].set_visible(False) # plot delta power as function of time c = 1000**2 axes_tdelta = plt.axes([0.1, 0.55, 0.8, 0.2], sharex=axes_brs) plt.plot(t, pow_delta/c, 'k') box_off(axes_tdelta) axes_tdelta.axes.get_xaxis().set_visible(False) axes_tdelta.spines["bottom"].set_visible(False) plt.ylabel('SWA (mV$\mathrm{^2}$)') # plot delta power medians axes_delta = plt.axes([0.1, 0.12, 0.8, 0.35], sharex=axes_brs) for (s,delta) in delta_med: plt.plot(s, delta/c, 'ko') print(t) plt.xlim((t[0], t[-1])) box_off(axes_delta) plt.xlabel('Time (s)') plt.ylabel('NREM SWA (mV$\mathrm{^2}$)') if swa_yrange == []: ymax = df['pow'].max()/c plt.ylim([0, ymax+0.1*ymax]) else: plt.ylim(swa_yrange) plt.show() return df def laser_triggered_eeg(ppath, name, pre, post, f_max, pnorm=2, pplot=False, psave=False, tstart=0, tend=-1, peeg2=False, vm=2.5, prune_trials=True, mu=[10, 200], trig_state=0, harmcs=0, iplt_level=1): """ calculate laser triggered, averaged EEG and EMG spectrum :param ppath: base folder containing mouse recordings :param name: recording :param pre: time before laser :param post: time after laser :param f_max: calculate/plot frequencies up to frequency f_max :param pnorm: normalization, pnorm = 0, no normalization pnorm = 1, normalize each frequency band by its average power pnorm = 2, normalize each frequency band by the average power during the preceding baseline period :param vm: float to set saturation level of colormap :param pplot: plot figure yes=True, no=False :param psave: save the figure, yes=True, no = False :param tstart: float, starting time point. Only lasers trials after tstart will be considered :param tend: float, only laser trials up to tend will be considered; if tend==-1, use whole recording :param peeg2: if True, use EEG channel 2 :param prune_trials: if True, throw out trials with EEG or EMG artifacts :param mu: tuple; range used for EMG amplitude calculation :param trig_state: int; if > 0, only use trials where brain is at laser onset in brainstate trig_state 1=REM, 2=Wake, 3=NREM :param harmcs: if >0, interpolate all frequencies corresponding to multiples of harmcs by the average power of the two neighboring frequencies. :param iplt_level: options - 1 or 2. If 1 only take one neighboring frequency above and below the harmonic; if 2, take 2 neighbors above and below, respectively """ def _interpolate_harmonics(SP, freq, f_max, harmcs, iplt_level): df = freq[2]-freq[1] for h in np.arange(harmcs, f_max, harmcs): i = np.argmin(np.abs(freq - h)) if np.abs(freq[i] - h) < df and h != 60: if iplt_level == 2: SP[i,:] = (SP[i-2:i,:] + SP[i+1:i+3,:]).mean(axis=0) * 0.5 else: SP[i,:] = (SP[i-1,:] + SP[i+1,:]) * 0.5 return SP SR = get_snr(ppath, name) NBIN = np.round(2.5*SR) lsr = load_laser(ppath, name) idxs, idxe = laser_start_end(lsr) laser_dur = np.mean((idxe-idxs)/SR) print('%s: Average laser duration: %f; Number of trials %d' % (name, laser_dur, len(idxs))) # downsample EEG time to spectrogram time idxs = [int(i/NBIN) for i in idxs] idxe = [int(i/NBIN) for i in idxe] #load EEG and EMG P = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat')) Q = so.loadmat(os.path.join(ppath, name, 'msp_' + name + '.mat')) if not peeg2: SPEEG = np.squeeze(P['SP']) else: SPEEG = np.squeeze(P['SP2']) SPEMG = np.squeeze(Q['mSP']) freq = np.squeeze(P['freq']) t = np.squeeze(P['t']) dt = float(np.squeeze(P['dt'])) ifreq = np.where(freq<=f_max)[0] ipre = int(np.round(pre/dt)) ipost = int(np.round(post/dt)) speeg_mean = SPEEG.mean(axis=1) spemg_mean = SPEMG.mean(axis=1) # interpolate frequencies corresponding to harmonics of $harmcs if harmcs > 0: SPEEG = _interpolate_harmonics(SPEEG, freq, f_max, harmcs) SPEMG = _interpolate_harmonics(SPEMG, freq, f_max, harmcs) if tend > -1: i = np.where((np.array(idxs)*dt >= tstart) & (np.array(idxs)*dt <= tend))[0] else: i = np.where(np.array(idxs)*dt >= tstart)[0] idxs = [idxs[j] for j in i] idxe = [idxe[j] for j in i] skips = [] skipe = [] if prune_trials: for (i,j) in zip(idxs, idxe): A = SPEEG[0,i-ipre:i+ipost+1] / speeg_mean[0] B = SPEMG[0,i-ipre:i+ipost+1] / spemg_mean[0] k = np.where(A >= np.median(A)*50)[0] l = np.where(B >= np.median(B)*500)[0] if len(k) > 0 or len(l) > 0: skips.append(i) skipe.append(j) print("%s: kicking out %d trials" % (name, len(skips))) idxs_new = [] idxe_new = [] for (i,j) in zip(idxs, idxe): if not i in skips: idxs_new.append(i) idxe_new.append(j) idxs = idxs_new idxe = idxe_new # select trials where brain state is right before laser in trig_state if trig_state > 0: idxs_new = [] idxe_new = [] M = load_stateidx(ppath, name)[0] for (i,j) in zip(idxs, idxe): if i < len(M) and M[i] == trig_state: idxs_new.append(i) idxe_new.append(j) idxs = idxs_new idxe = idxe_new # Spectrogram for EEG and EMG normalized by average power in each frequency band if pnorm == 1: SPEEG = np.divide(SPEEG, np.repeat(speeg_mean, len(t)).reshape(len(speeg_mean), len(t))) SPEMG = np.divide(SPEMG, np.repeat(spemg_mean, len(t)).reshape(len(spemg_mean), len(t))) speeg_parts = [] spemg_parts = [] for (i,j) in zip(idxs, idxe): if i>=ipre and j+ipost < len(t): eeg_part = SPEEG[ifreq,i-ipre:i+ipost+1] speeg_parts.append(eeg_part) spemg_parts.append(SPEMG[ifreq,i-ipre:i+ipost+1]) EEGLsr = np.array(speeg_parts).mean(axis=0) EMGLsr = np.array(spemg_parts).mean(axis=0) # smooth spectrogram nfilt = 3 filt = np.ones((nfilt,nfilt)) filt = np.divide(filt, filt.sum()) EEGLsr = scipy.signal.convolve2d(EEGLsr, filt, boundary='symm', mode='same') if pnorm == 2: for i in range(EEGLsr.shape[0]): EEGLsr[i,:] = np.divide(EEGLsr[i,:], np.sum(np.abs(EEGLsr[i,0:ipre]))/(1.0*ipre)) EMGLsr[i,:] = np.divide(EMGLsr[i,:], np.sum(np.abs(EMGLsr[i,0:ipre]))/(1.0*ipre)) # get time axis dt = (1.0/SR)*NBIN t = np.linspace(-ipre*dt, ipost*dt, ipre+ipost+1) f = freq[ifreq] if pplot: # get rid of boxes around matplotlib plots def box_off(ax): ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() plt.ion() plt.figure(figsize=(10,8)) ax = plt.axes([0.1, 0.55, 0.4, 0.35]) plt.pcolormesh(t,f,EEGLsr, vmin=0, vmax=np.median(EEGLsr)*vm, cmap='jet') plt.plot([0,0], [0,f[-1]], color=(1,1,1)) plt.plot([laser_dur,laser_dur], [0,f[-1]], color=(1,1,1)) plt.axis('tight') plt.xlabel('Time (s)') plt.ylabel('Freq (Hz)') box_off(ax) plt.title('EEG', fontsize=12) cbar = plt.colorbar() if pnorm >0: cbar.set_label('Rel. Power') else: cbar.set_label('Power uV^2s') ax = plt.axes([0.62, 0.55, 0.35, 0.35]) ilsr = np.where((t>=0) & (t<=120))[0] plt.plot(f,EEGLsr[:,0:ipre].mean(axis=1), color='gray', label='baseline', lw=2) plt.plot(f,EEGLsr[:,ilsr].mean(axis=1), color='blue', label='laser', lw=2) box_off(ax) plt.xlabel('Freq. (Hz)') plt.ylabel('Power (uV^2)') #plt.legend(loc=0) #plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, borderaxespad=0.) ax = plt.axes([0.1, 0.1, 0.4, 0.35]) plt.pcolormesh(t,f,EMGLsr, cmap='jet') plt.plot([0,0], [0,f[-1]], color=(1,1,1)) plt.plot([laser_dur,laser_dur], [0,f[-1]], color=(1,1,1)) plt.axis('tight') plt.xlabel('Time (s)') plt.ylabel('Freq (Hz)') box_off(ax) plt.title('EMG', fontsize=12) cbar = plt.colorbar() if pnorm >0: cbar.set_label('Rel. Power') else: cbar.set_label('Power (uV^2s)') ax = plt.axes([0.62, 0.1, 0.35, 0.35]) mf = np.where((f>=mu[0]) & (f <= mu[1]))[0] df = f[1]-f[0] # amplitude is square root of (integral over each frequency) avg_emg = np.sqrt(EMGLsr[mf,:].sum(axis=0)*df) m = np.max(avg_emg)*1.5 plt.plot([0,0], [0,np.max(avg_emg)*1.5], color=(0,0,0)) plt.plot([laser_dur,laser_dur], [0,np.max(avg_emg)*1.5], color=(0,0,0)) plt.xlim((t[0], t[-1])) plt.ylim((0,m)) plt.plot(t,avg_emg, color='black', lw=2) box_off(ax) plt.xlabel('Time (s)') plt.ylabel('EMG ampl. (uV)') plt.show() if psave: img_file = os.path.join(ppath, name, 'fig_'+name+'_spec.png') save_figure(img_file) return EEGLsr, EMGLsr, freq[ifreq], t def laser_triggered_eeg_avg(ppath, recordings, pre, post, f_max, laser_dur, pnorm=1, pplot=1, tstart=0, tend=-1, vm=[], cb_ticks=[], mu=[10, 100], trig_state=0, harmcs=0, iplt_level=1, peeg2=False, fig_file=''): """ calculate average spectrogram for all recordings listed in @recordings; for averaging take mouse identity into account :param ppath: base folder :param recordings: list of recordings :param pre: time before laser onset :param post: time after laser onset :param f_max: maximum frequency shown for EEG spectrogram :param laser_dur: duration of laser stimulation :param pnorm: normalization, pnorm = 0, no normalization pnorm = 1, normalize each frequency band by its average power pnorm = 2, normalize each frequency band by the average power during the preceding baseline period :param pplot: pplot==0 - no figure; pplot==1 - conventional figure; pplot==2 - pretty figure showing EEG spectrogram along with EMG amplitude note: the errorbar for the EMG amplitude is the S.E.M. :param tstart: only consider laser trials with laser onset after tstart seconds :param tend: only consider laser trials with laser onset before tend seconds :param vm: saturation of heatmap for EEG spectrogram :param cb_ticks: ticks for colorbar (only applies for pplot==2) :param mu: frequencies for EMG amplitude calculation :param trig_state: if > 0, only use trials where brain is at laser onset in brainstate trig_state 1=REM, 2=Wake, 3=NREM :param peeg2: if True, use EEG2 instead of EEG :param harmcs: if >0, interpolate all frequencies corresponding to multiples of harmcs by the average power of the two neighboring frequencies. :param iplt_level: options - 1 or 2. If 1 only take one neighboring frequency above and below the harmonic; if 2, take 2 neighbors above and below, respectively :param fig_file: if specified, save figure to given file :return: t, f, EEGSpec, EMGSpec, EEGLsr t - time axis f - frequency axis EEGSpec - dict with mouse id -> 2D np.array(frequency x time) EMGSpec - dict with mouse id -> 2D np.array(frequency x time) EEGLsr - 2D np.array(frequency x time) """ EEGSpec = {} EMGSpec = {} mice = [] for rec in recordings: idf = re.split('_', rec)[0] if not(idf in mice): mice.append(idf) EEGSpec[idf] = [] EMGSpec[idf] = [] for rec in recordings: idf = re.split('_', rec)[0] EEG, EMG, f, t = laser_triggered_eeg(ppath, rec, pre, post, f_max, mu=mu, pnorm=pnorm, pplot=False, psave=False, tstart=tstart, tend=tend, trig_state=trig_state, peeg2=peeg2, harmcs=harmcs, iplt_level=iplt_level) EEGSpec[idf].append(EEG) EMGSpec[idf].append(EMG) for idf in mice: EEGSpec[idf] = np.array(EEGSpec[idf]).mean(axis=0) EMGSpec[idf] = np.array(EMGSpec[idf]).mean(axis=0) EEGLsr = np.array([EEGSpec[k] for k in mice]).mean(axis=0) EMGLsr = np.array([EMGSpec[k] for k in mice]).mean(axis=0) mf = np.where((f >= mu[0]) & (f <= mu[1]))[0] if harmcs > 0: harm_freq = np.arange(0, f.max(), harmcs) for h in harm_freq: mf = np.setdiff1d(mf, mf[np.where(f[mf]==h)[0]]) df = f[1] - f[0] EMGAmpl = np.zeros((len(mice), EEGLsr.shape[1])) i=0 for idf in mice: # amplitude is square root of (integral over each frequency) if harmcs == 0: EMGAmpl[i,:] = np.sqrt(EMGSpec[idf][mf,:].sum(axis=0)*df) else: tmp = 0 for qf in mf: tmp += EMGSpec[idf][qf,:] * (f[qf] - f[qf-1]) EMGAmpl[i,:] = np.sqrt(tmp) i += 1 avg_emg = EMGAmpl.mean(axis=0) sem_emg = EMGAmpl.std(axis=0) / np.sqrt(len(mice)) if pplot==1: plt.ion() plt.figure(figsize=(12,10)) ax = plt.axes([0.1, 0.55, 0.4, 0.4]) if len(vm) == 2: plt.pcolormesh(t,f,EEGLsr, cmap='jet', vmin=vm[0], vmax=vm[1]) else: plt.pcolormesh(t, f, EEGLsr, cmap='jet') plt.plot([0,0], [0,f[-1]], color=(1,1,1)) plt.plot([laser_dur,laser_dur], [0,f[-1]], color=(1,1,1)) plt.axis('tight') plt.xlabel('Time (s)') plt.ylabel('Freq (Hz)') box_off(ax) plt.title('EEG') cbar = plt.colorbar() if pnorm >0: cbar.set_label('Rel. Power') else: cbar.set_label('Power uV^2s') ax = plt.axes([0.6, 0.55, 0.3, 0.4]) ipre = np.where(t<0)[0] ilsr = np.where((t>=0) & (t<=120))[0] plt.plot(f,EEGLsr[:,ipre].mean(axis=1), color='gray', label='baseline', lw=2) plt.plot(f,EEGLsr[:,ilsr].mean(axis=1), color='blue', label='laser', lw=2) box_off(ax) plt.xlabel('Freq. (Hz)') plt.ylabel('Power (uV^2)') #plt.legend(loc=0) #plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, borderaxespad=0.) ax = plt.axes([0.1, 0.05, 0.4, 0.4]) plt.pcolormesh(t,f,EMGLsr, cmap='jet') plt.plot([0,0], [0,f[-1]], color=(1,1,1)) plt.plot([laser_dur,laser_dur], [0,f[-1]], color=(1,1,1)) plt.axis('tight') plt.xlabel('Time (s)') plt.ylabel('Freq (Hz)') box_off(ax) plt.title('EMG') cbar = plt.colorbar() if pnorm >0: cbar.set_label('Rel. Power') else: cbar.set_label('Power uV^2s') ax = plt.axes([0.6, 0.05, 0.3, 0.4]) m = np.max(avg_emg)*1.5 plt.plot([0,0], [0,np.max(avg_emg)*1.5], color=(0,0,0)) plt.plot([laser_dur,laser_dur], [0,np.max(avg_emg)*1.5], color=(0,0,0)) plt.xlim((t[0], t[-1])) plt.ylim((0,m)) plt.plot(t,avg_emg, color='black', lw=2) plt.fill_between(t, avg_emg-sem_emg, avg_emg+sem_emg) box_off(ax) plt.xlabel('Time (s)') plt.ylabel('EMG ampl. (uV)') plt.show() elif pplot==2: # pretty figure plt.figure() if len(vm) > 0: cb_ticks = vm # plot EEG spectrogram axes_cbar = plt.axes([0.8, 0.75, 0.1, 0.2]) ax = plt.axes([0.1, 0.55, 0.75, 0.4]) if len(vm) == 2: im=ax.pcolorfast(t, f, EEGLsr, cmap='jet', vmin=vm[0], vmax=vm[1]) else: im = ax.pcolorfast(t, f, EEGLsr, cmap='jet') plt.plot([0,0], [0,f[-1]], color=(1,1,1)) plt.plot([laser_dur,laser_dur], [0,f[-1]], color=(1,1,1)) plt.axis('tight') plt.xlabel('Time (s)') plt.ylabel('Freq (Hz)') box_off(ax) # colorbar for EEG spectrogram cb = plt.colorbar(im, ax=axes_cbar, pad=0.0, aspect=10.0, orientation='vertical') if pnorm > 0: cb.set_label('Rel. Power') else: cb.set_label('Power (uV^2s)') cb.ax.xaxis.set_ticks_position("bottom") cb.ax.xaxis.set_label_position('top') if len(cb_ticks) > 0: cb.set_ticks(cb_ticks) axes_cbar.set_alpha(0.0) axes_cbar.spines["top"].set_visible(False) axes_cbar.spines["right"].set_visible(False) axes_cbar.spines["bottom"].set_visible(False) axes_cbar.spines["left"].set_visible(False) axes_cbar.axes.get_xaxis().set_visible(False) axes_cbar.axes.get_yaxis().set_visible(False) # EMG amplitude ax = plt.axes([0.1, 0.1, 0.75, 0.3]) m = np.max(avg_emg) * 1.5 ax.add_patch(patches.Rectangle((0, 0), laser_dur, np.max(avg_emg)*1.5, facecolor=[0.6, 0.6, 1], edgecolor=[0.6, 0.6, 1])) plt.xlim((t[0], t[-1])) plt.ylim((0, m)) plt.fill_between(t, avg_emg-sem_emg, avg_emg+sem_emg, color='gray', zorder=2) plt.plot(t, avg_emg, color='black', lw=2) box_off(ax) plt.xlabel('Time (s)') plt.ylabel('EMG ampl. ($\mathrm{\mu V}$)') plt.show() if len(fig_file) > 0: save_figure(fig_file) return t, f, EEGSpec, EMGSpec, EEGLsr def laser_brainstate(ppath, recordings, pre, post, pplot=True, fig_file='', start_time=0, end_time=-1, ma_thr=0, edge=0, sf=0, cond=0, single_mode=False, ci=95, backup='', csv_file=''): """ calculate laser triggered probability of REM, Wake, NREM ppath - base folder holding all recording recordings - list of recording pre - time before laser onset post - time after laser onset @Optional: pplot - pplot==True: plot figure fig_file - specify filename including ending, if you wish to save figure start_time - in [s], only consider laser onsets starting after $start_time end_time - in [s], only consider laset onsets starting before $end_time sf - smoothing factor for Gaussian kernel; if sf=0, no filtering edge - only use if $sf > 0: to avoid smoothing artifacts, set edge to a value > 0, e.g. 20 ma_thr - if > 0, smooth out microarousals with duration < $ma_thr cond - cond==0: consider all trials; cond==[1,2,3] only plot trials, where mouse was in REM, Wake, or NREM as laser turned on single_mode - if True, plot every single mouse backup - optional backup folder; if specified each single recording folder can be either on $ppath or $backup; if it's on both folders, the version in ppath is used ci - string; possible values: 'sem', 'sd', or value betwen 0 and 100, corresponding to the bootstrapped confidence interval. The default is ci=95 csv_file - if filename (without or including full file path) is provided, save pd.DataFrame df (see @Return) to csv file @Return: df_timecourse: pd.DataFrame with columns: mouse, time, perc, state. df: pd.DataFrame with columns mouse_id, REM, NREM, Wake, Lsr Lsr has three values: 0 - before laser, 1 - during laser, 2 - after laser if laser was on for laser_dur s, then df[df['Lsr'] == 0]['REM'] is the average % of REM sleep during laser stimulation for each mouse df[df['Lsr'] == 0]['REM'] is the average % of REM sleep during the laser_dur s long time interval preceding laser onset. df[df['Lsr'] == 2]['REM'] is the average during the time inverval of duration laser_dur that directly follows laser stimulation """ if type(recordings) != list: recordings = [recordings] rec_paths = dict() for rec in recordings: if os.path.isdir(os.path.join(ppath, rec)): rec_paths[rec] = ppath else: rec_paths[rec] = backup pre += edge post += edge BrainstateDict = {} mouse_order = [] for rec in recordings: idf = re.split('_', rec)[0] BrainstateDict[idf] = [] if not idf in mouse_order: mouse_order.append(idf) nmice = len(BrainstateDict) for rec in recordings: ppath = rec_paths[rec] SR = get_snr(ppath, rec) NBIN = np.round(2.5*SR) dt = NBIN * 1.0/SR istart_time = int(np.round(start_time / dt)) M = load_stateidx(ppath, rec)[0] if end_time == -1: iend_time = len(M) else: iend_time = int(np.round(end_time / dt)) seq = get_sequences(np.where(M==2)[0]) for s in seq: if len(s)*dt <= ma_thr: M[s] = 3 (idxs, idxe) = laser_start_end(load_laser(ppath, rec)) idf = re.split('_', rec)[0] ipre = int(np.round(pre/dt)) ipost = int(np.round(post/dt)) idxs = [int(i/NBIN) for i in idxs] idxe = [int(i/NBIN) for i in idxe] laser_dur = np.mean((np.array(idxe) - np.array(idxs))) * dt for (i,j) in zip(idxs, idxe): if i>=ipre and i+ipost<=len(M)-1 and i>istart_time and i < iend_time: bs = M[i-ipre:i+ipost+1] BrainstateDict[idf].append(bs) # I assume here that every recording has same dt t = np.linspace(-ipre*dt, ipost*dt, ipre+ipost+1) # first time point where the laser was fully on (during the complete bin). izero = np.where(t>0)[0][0] # the first time bin overlapping with laser is then izero -= 1 # @BS: mouse x time x state BS = np.zeros((nmice, len(t), 3)) Trials = [] imouse = 0 for mouse in mouse_order: if cond==0: M = np.array(BrainstateDict[mouse]) Trials.append(M) for state in range(1,4): C = np.zeros(M.shape) C[np.where(M==state)] = 1 BS[imouse,:,state-1] = C.mean(axis=0) if cond>0: M = BrainstateDict[mouse] Msel = [] for trial in M: if trial[izero] == cond: Msel.append(trial) M = np.array(Msel) Trials.append(M) for state in range(1,4): C = np.zeros(M.shape) C[np.where(M==state)] = 1 BS[imouse,:,state-1] = C.mean(axis=0) imouse += 1 # flatten Trials Trials = reduce(lambda x,y: np.concatenate((x,y), axis=0), Trials) BS = BS*100 if sf > 0: for state in [2, 1, 0]: for i in range(nmice): BS[i, :, state] = smooth_data(BS[i, :, state], sf) df_timecourse = pd.DataFrame() state_map = {1: 'REM', 2: 'Wake', 3: 'NREM'} for s in state_map: df = nparray2df(BS[:, :, s - 1], mouse_order, t, 'perc', 'mouse', 'time') df['state'] = state_map[s] df_timecourse = df_timecourse.append(df) nmice = imouse if pplot: state_label = {0:'REM', 1:'Wake', 2:'NREM'} it = np.where((t >= -pre + edge) & (t <= post - edge))[0] plt.ion() if not single_mode: plt.figure() ax = plt.axes([0.15, 0.15, 0.6, 0.7]) colors = [[0, 1, 1 ],[0.5, 0, 1],[0.6, 0.6, 0.6]] if ci == 'sem': for state in [2,1,0]: tmp = BS[:, :, state].mean(axis=0) plt.plot(t[it], tmp[it], color=colors[state], lw=3, label=state_label[state]) if nmice > 1: smp = BS[:,:,state].std(axis=0) / np.sqrt(nmice) plt.fill_between(t[it], tmp[it]-smp[it], tmp[it]+smp[it], color=colors[state], alpha=0.4, zorder=3) plt.xlim([-pre+edge, post-edge]) plt.ylim([0,100]) ax.add_patch(patches.Rectangle((0,0), laser_dur, 100, facecolor=[0.6, 0.6, 1], edgecolor=[0.6, 0.6, 1])) box_off(ax) plt.xlabel('Time (s)') plt.ylabel('Probability') #plt.legend(bbox_to_anchor=(0., 1.02, 0.5, .102), loc=3, ncol=3, borderaxespad=0.) plt.draw() else: bs_colors = {'REM': [0, 1, 1], 'Wake': [0.5, 0, 1], 'NREM': [0.6, 0.6, 0.6]} dfm = df_timecourse.groupby(['mouse', 'state', 'time']).mean().reset_index() for s in [3, 2, 1]: sns.lineplot(data=dfm[dfm.state == state_map[s]], ci=ci, x='time', y='perc', color=bs_colors[state_map[s]], err_kws={'alpha': 0.8, 'zorder': 3}) plt.xlim([-pre+edge, post-edge]) plt.ylim([0,100]) ax.add_patch(patches.Rectangle((0,0), laser_dur, 100, facecolor=[0.6, 0.6, 1], edgecolor=[0.6, 0.6, 1])) box_off(ax) plt.xlabel('Time (s)') plt.ylabel('Probability') else: plt.figure(figsize=(7,7)) clrs = sns.color_palette("husl", nmice) for state in [2,1,0]: ax = plt.subplot('31' + str(3-state)) for i in range(nmice): plt.plot(t[it], BS[i,it,state], color=clrs[i], label=mouse_order[i]) ax.add_patch(patches.Rectangle((0, 0), laser_dur, 100, facecolor=[0.6, 0.6, 1], edgecolor=[0.6, 0.6, 1], alpha=0.8)) plt.xlim((t[it][0], t[it][-1])) plt.ylim((0,100)) plt.ylabel('% ' + state_label[state]) if state==0: plt.xlabel('Time (s)') else: ax.set_xticklabels([]) if state==2: ax.legend(mouse_order, bbox_to_anchor=(0., 1.0, 1., .102), loc=3, mode='expand', ncol=len(mouse_order), frameon=False) box_off(ax) # figure showing all trials plt.figure(figsize=(4,6)) set_fontarial() plt.ion() ax = plt.axes([0.15, 0.1, 0.8, 0.8]) cmap = plt.cm.jet my_map = cmap.from_list('ha', [[0,1,1],[0.5,0,1], [0.6, 0.6, 0.6]], 3) x = list(range(Trials.shape[0])) plt.pcolormesh(t,np.array(x), np.flipud(Trials), cmap=my_map, vmin=1, vmax=3) plt.plot([0,0], [0, len(x)-1], color='white') plt.plot([laser_dur,laser_dur], [0, len(x)-1], color='white') ax.axis('tight') plt.draw() plt.xlabel('Time (s)') plt.ylabel('Trial No.') box_off(ax) plt.show() if len(fig_file)>0: plt.savefig(fig_file) # compile dataframe with all baseline and laser values ilsr = np.where((t>=0) & (t<=laser_dur))[0] ibase = np.where((t>=-laser_dur) & (t<0))[0] iafter = np.where((t>=laser_dur) & (t<laser_dur*2))[0] df = pd.DataFrame(columns = ['Mouse', 'REM', 'NREM', 'Wake', 'Lsr']) mice = mouse_order + mouse_order + mouse_order lsr = np.concatenate((np.ones((nmice,), dtype='int'), np.zeros((nmice,), dtype='int'), np.ones((nmice,), dtype='int')*2)) df['Mouse'] = mice df['Lsr'] = lsr df['REM'] = np.concatenate((BS[:,ilsr,0].mean(axis=1), BS[:,ibase,0].mean(axis=1), BS[:,iafter,0].mean(axis=1))) df['NREM'] = np.concatenate((BS[:,ilsr,2].mean(axis=1), BS[:,ibase,2].mean(axis=1), BS[:,iafter,2].mean(axis=1))) df['Wake'] = np.concatenate((BS[:,ilsr,1].mean(axis=1), BS[:,ibase,1].mean(axis=1), BS[:,iafter,1].mean(axis=1))) if len(csv_file) > 0: df.to_csv(csv_file, index=False) return df_timecourse, df, Trials def laser_brainstate_bootstrap(ppath, recordings, pre, post, edge=0, sf=0, nboots=1000, alpha=0.05, backup='', start_time=0, ma_thr=20, bootstrap_mode=0, fig_file=''): """ Align brain state with laser stimulation and calculate two-sided 1-$alpha confidence intervals using bootstrapping. :param ppath: base folder :param recordings: list of recordings :param pre: time before laser :param post: time after laser onset :param edge: add $edge seconds add beginning and end (that are not shown in the plot) to avoid filtering artifacts :param sf: smoothing factor for Gaussian filter; better do not use :param nboots: int, how many times the whole data set is resampled for boot-strapping :param alpha: plot shows 1-$alpha confidence interval :param backup: optional backup folder where recordings are stored :param start_time: start time of recordding used for analysis :param ma_thr: sleep periods < ma_thr are thrown away :param bootstrap_mode: default=0 bootstrap_mode == 0: Take inter-mouse variance and inter-trial variance (of each mouse) into account. That is, bootstrapping re-models the variance expected when re-doing the same experimental design (same mouse number and total trial number). To account for potentially different number of trials per mouse, resample the data during each iteration the following way: Assume that there are n laser trials from m mice; randomly select (with replacment) ntrial mice; then select from each mouse randomly one trial. bootstrap_mode == 1: Only take inter-trial variance (of each mouse) into account. That is, bootstrapping models the variance expected when redoing the experiment with exactly the same mice. :param fig_file, if file name is specified, the figure will be saved :return: P - p-values for NREM, REM, Wake Mod - by how much the percentage of NREM, REM, Wake is increased compared to baseline """ pre += edge post += edge rec_paths = dict() for rec in recordings: if os.path.isdir(os.path.join(ppath, rec)): rec_paths[rec] = ppath else: rec_paths[rec] = backup # dict: mouse_id --> laser trials, R W N sequence BrainstateDict = {} for rec in recordings: idf = re.split('_', rec)[0] BrainstateDict[idf] = [] mice = list(BrainstateDict.keys()) nmice = len(BrainstateDict) for rec in recordings: ppath = rec_paths[rec] SR = get_snr(ppath, rec) NBIN = np.round(2.5 * SR) dt = NBIN * 1 / SR istart_time = int(np.round(start_time / dt)) M = load_stateidx(ppath, rec)[0] seq = get_sequences(np.where(M == 2)[0]) for s in seq: if len(s) * dt <= ma_thr: M[s] = 3 (idxs, idxe) = laser_start_end(load_laser(ppath, rec)) idf = re.split('_', rec)[0] #SR = get_snr(ppath, rec) #NBIN = np.round(2.5 * SR) ipre = int(np.round(pre / dt)) ipost = int(np.round(post / dt)) idxs = [int(i / NBIN) for i in idxs] idxe = [int(i / NBIN) for i in idxe] laser_dur = np.mean((np.array(idxe) - np.array(idxs))) * dt for (i, j) in zip(idxs, idxe): if i >= ipre and j + ipost <= len(M) - 1 and i > istart_time: bs = M[i - ipre:i + ipost + 1] BrainstateDict[idf].append(bs) for mouse in mice: BrainstateDict[mouse] = np.array(BrainstateDict[mouse]) # I assume here that every recording has same dt t = np.linspace(-ipre*dt, ipost*dt, ipre+ipost+1) Trials = dict() for mouse in BrainstateDict: Trials[mouse] = np.zeros((BrainstateDict[mouse].shape[0], len(t), 3)) # total number of trials: ntrials = 0 for mouse in BrainstateDict: M = np.array(BrainstateDict[mouse]) for state in range(1, 4): C = np.zeros(M.shape) C[np.where(M == state)] = 100. Trials[mouse][:,:,state-1] = C ntrials += Trials[mouse].shape[0] Prob = np.zeros((nboots, len(t), 3)) if bootstrap_mode == 1: for b in range(nboots): # average brain state percentage for each mouse during iteration b mouse_mean_state = np.zeros((nmice, len(t), 3)) i = 0 for mouse in mice: mmouse = Trials[mouse].shape[0] iselect = rand.randint(0, mmouse, (mmouse,)) for s in [1,2,3]: #bBS[s][offset:offset+mmouse,:] = Trials[mouse][iselect,:,s-1] mouse_mean_state[i,:,s-1] = Trials[mouse][iselect,:,s-1].mean(axis=0) i += 1 for s in [1,2,3]: Prob[b,:,s-1] = mouse_mean_state[:,:,s-1].mean(axis=0) else: mx_iter = np.zeros((ntrials, len(t), 3)) for b in range(nboots): # for each iteration select randomly select ntrials mice irand_mice = rand.randint(0, nmice, ntrials) # average brain state percentage for each mouse during iteration b # mouse_mean_state = np.zeros((nmice, len(t), 3)) i = 0 # there are ntrials mice for j in irand_mice: mouse = mice[irand_mice[j]] # we have nmouse trials per mouse mmouse = Trials[mouse].shape[0] # select one random trial from the current mouse iselect = rand.randint(0, mmouse) for s in [1, 2, 3]: mx_iter[i,:,s-1] = Trials[mouse][iselect,:,s-1] i += 1 # mx_iter is the resampled data set for bootstrap iteration b # now we calculate the statistics we're interesting in, which is the mean for s in [1, 2, 3]: Prob[b,:,s-1] = mx_iter[:,:,s-1].mean(axis=0) # simple average for each brainstate across mice (w/o) bootstrapping Prob_mean = np.zeros((nmice, len(t), 3)) for s in [1,2,3]: i = 0 for mouse in mice: Prob_mean[i,:,s-1] = Trials[mouse][:,:,s-1].mean(axis=0) i += 1 usProb = Prob.copy() Prob = np.sort(Prob, axis=0) Bounds = np.zeros((2, len(t), 3)) a = int((nboots * alpha) / 2.0) for s in [1,2,3]: Bounds[0,:,s-1] = Prob[a,:,s-1] Bounds[1,:,s-1] = Prob[-a,:, s-1] # smooth_data if sf > 0: for s in range(3): Bounds[0, :, s] = smooth_data(Bounds[0, :, s], sf) Bounds[1, :, s] = smooth_data(Bounds[1, :, s], sf) for i in range(nmice): for s in range(3): Prob_mean[i, :, s] = smooth_data(Prob_mean[i,:,s], sf) # plot figure colors = np.array([[0, 1, 1], [0.5, 0, 1], [0.6, 0.6, 0.6]]) br_states = {1:'REM', 2:'Wake', 3:'NREM'} #colors = np.array([[55,255,255], [153,255,153],[153,153,153]])/255. it = np.where((t>=-pre+edge) & (t<=post-edge))[0] plt.ion() plt.figure() ax = plt.axes([0.15, 0.15, 0.6, 0.7]) for s in [3,2,1]: ax.fill_between(t[it], Bounds[0,it,s-1], Bounds[1,it,s-1], color=colors[s-1,:], alpha=0.8, zorder=3, edgecolor=None) ax.plot(t[it], Prob_mean[:, it, s-1].mean(axis=0), color=colors[s-1,:], label=br_states[s]) ax.add_patch(patches.Rectangle((0, 0), laser_dur, 100, facecolor=[0.6, 0.6, 1], edgecolor=[0.6, 0.6, 1])) plt.xlim([-pre+edge, post-edge]) plt.ylim([0,100]) plt.xlabel('Time (s)') plt.ylabel('Brain state (%)') plt.legend(bbox_to_anchor = (1.0, 0.7, 1., .102), loc = 3, mode = 'expand', ncol = 1, frameon = False) box_off(ax) plt.draw() # statistics # OLD VERSION # ibase = np.where((t>=-laser_dur) & (t<0))[0] # ilsr = np.where((t>=0) & (t<laser_dur))[0] # P = np.zeros((3,)) # Mod = np.zeros((3,)) # for istate in [1,2,3]: # basel = usProb[:,ibase,istate-1].mean(axis=1) # laser = usProb[:,ilsr, istate-1].mean(axis=1) # d = laser - basel # if np.mean(d) >= 0: # # now we want all values be larger than 0 # p = len(np.where(d>0)[0]) / (1.0*nboots) # sig = 1 - p # if sig == 0: # sig = 1.0/nboots # Mod[istate-1] = (np.mean(laser) / np.mean(basel) - 1) * 100 # else: # p = len(np.where(d<0)[0]) / (1.0*nboots) # sig = 1 - p # if sig == 0: # sig = 1.0/nboots # Mod[istate-1] = -(1 - np.mean(laser) / np.mean(basel)) * 100 # P[istate-1] = sig # NEW VERSION ibase = np.where((t>=-laser_dur) & (t<0))[0] ilsr = np.where((t>=0) & (t<laser_dur))[0] P = np.zeros((3,)) Mod = np.zeros((3,)) for istate in [1,2,3]: basel = usProb[:,ibase,istate-1].mean(axis=1) laser = usProb[:,ilsr, istate-1].mean(axis=1) d = laser - basel p = 2 * np.min([len(np.where(d > 0)[0]) / nboots, len(np.where(d <= 0)[0]) / nboots]) if np.mean(d) >= 0: # now we want all values be larger than 0 #p = len(np.where(d>0)[0]) / (1.0*nboots) sig = p if sig == 0: sig = 1.0/nboots Mod[istate-1] = (np.mean(laser) / np.mean(basel) - 1) * 100 else: # p = len(np.where(d<0)[0]) / (1.0*nboots) sig = p if sig == 0: sig = 1.0/nboots Mod[istate-1] = -(1 - np.mean(laser) / np.mean(basel)) * 100 P[istate-1] = sig labels = {1:'REM', 2:'Wake', 3:'NREM'} for s in [1,2,3]: print('%s is changed by %f perc.; P = %f, bootstrap' % (labels[s], Mod[s-1], P[s-1])) print("n = %d mice" % len(mice)) if len(fig_file) > 0: plt.savefig(fig_file, bbox_inches="tight") return P, Mod def _despine_axes(ax): ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.spines["bottom"].set_visible(False) ax.spines["left"].set_visible(False) ax.axes.get_xaxis().set_visible(False) ax.axes.get_yaxis().set_visible(False) def sleep_example(ppath, name, tlegend, tstart, tend, fmax=30, fig_file='', vm=[], ma_thr=10, fontsize=12, cb_ticks=[], emg_ticks=[], r_mu = [10, 100], fw_color=True, pemg_ampl=False, raw_ex = [], eegemg_legend=[], eegemg_max=[]): """ plot sleep example :param ppath: base folder :param name: recording name :param tstart: start (in seconds) of shown example interval :param tend: end of example interval :param tlegend: length of time legend :param fmax: maximum frequency shown for EEG spectrogram :param fig_file: file name where figure will be saved :param vm: saturation of EEG spectrogram :param fontsize: fontsize :param cb_ticks: ticks for colorbar :param emg_ticks: ticks for EMG amplitude axis (uV) :param r_mu: range of frequencies for EMG amplitude :param fw_color: if True, use standard color scheme for brainstate (gray - NREM, violet - Wake, cyan - REM); otherwise use Shinjae's color scheme :param pemg_ampl: if True, plot EMG amplitude, other EMG raw traces :param raw_ex: list of tuples; e.g. if you wish to show 2 raw examples of length t s at time point i and j s, set raw_ex = [(i,t), (j,t)]. If raw_ex == [], no raw traces are plotted The raw examples are labeled by gray rectangles :param eegemg_legend: list with 2 floats: scale bar (in micro Volts) for EEG and EMG raw example :param eegemg_max: list of 2 floats, the y range (ylim) for EEG and EMG raw examples (in micro Volts) goes from -eegemg_max[0] to eegemg_max[0] (for EEG) and from -eegemg_max[1] to eegemg_max[1] (for EMG) Example call including EEG/EMG raw traces: sleepy.sleep_example(ppath, name2, 300, 1000, 4000, raw_ex=[(2140, 5), (3000, 5)], eegemg_legend=[200, 200], eegemg_max=[200, 200], fig_file='/Users/tortugar/Desktop/example.png') """ set_fontarial() set_fontsize(fontsize) # True, if laser exists, otherwise set to False plaser = True sr = get_snr(ppath, name) nbin = np.round(2.5 * sr) dt = nbin * 1 / sr ddt = 1.0/sr istart = int(np.round(tstart/dt)) iend = int(np.round(tend/dt)) dur = (iend-istart+1)*dt istart_emg = int(istart*nbin) iend_emg = int((iend+1)*nbin) M,K = load_stateidx(ppath, name) #kcut = np.where(K>=0)[0] #M = M[kcut] if tend==-1: iend = len(M) M = M[istart:iend] seq = get_sequences(np.where(M==2)[0]) for s in seq: if len(s)*dt <= ma_thr: M[s] = 3 t = np.arange(0, len(M))*dt t_emg = np.arange(0, iend_emg-istart_emg)*ddt P = so.loadmat(os.path.join(ppath, name, 'sp_%s.mat' % name), squeeze_me=True) SPEEG = P['SP'] # calculate median for choosing right saturation for heatmap med = np.median(SPEEG.max(axis=0)) if len(vm) == 0: vm = [0, med*2.5] #t = np.squeeze(P['t']) freq = P['freq'] if pemg_ampl: P = so.loadmat(os.path.join(ppath, name, 'msp_%s.mat' % name), squeeze_me=True) SPEMG = P['mSP']#/1000000.0 else: emg = so.loadmat(os.path.join(ppath, name, 'EMG.mat'), squeeze_me=True)['EMG'] # load laser if not os.path.isfile(os.path.join(ppath, name, 'laser_%s.mat' % name)): plaser = False if plaser: laser = load_laser(ppath, name) idxs, idxe = laser_start_end(laser, SR=sr) idxs = [int(i / nbin) for i in idxs] idxe = [int(i / nbin) for i in idxe] # laser if plaser: laser_start = [] laser_end = [] for (i,j) in zip(idxs, idxe): if i>=istart and j <= iend: laser_start.append(i-istart) laser_end.append(j-istart) # create figure plt.ion() plt.figure(figsize=(8,4)) # axis in the background to draw laser patches axes_back = plt.axes([0.1, .4, 0.8, 0.52]) _despine_axes(axes_back) if plaser: for (i,j) in zip(laser_start, laser_end): axes_back.add_patch(patches.Rectangle((i*dt, 0), (j-i+1)*dt, 1, facecolor=[0.6, 0.6, 1], edgecolor=[0.6, 0.6, 1])) axes_back.text(laser_end[0] * dt + dur * 0.01, 0.94, 'Laser', color=[0.6, 0.6, 1]) plt.ylim((0,1)) plt.xlim([t[0], t[-1]]) # show brainstate axes_brs = plt.axes([0.1, 0.4, 0.8, 0.05]) cmap = plt.cm.jet if fw_color: my_map = cmap.from_list('brs', [[0, 0, 0], [0, 1, 1], [0.6, 0, 1], [0.8, 0.8, 0.8]], 4) else: my_map = cmap.from_list('brs', [[0, 0, 0], [153 / 255.0, 76 / 255.0, 9 / 255.0], [120 / 255.0, 120 / 255.0, 120 / 255.0], [1, 0.75, 0]], 4) tmp = axes_brs.pcolorfast(t, [0, 1], np.array([M]), vmin=0, vmax=3) tmp.set_cmap(my_map) axes_brs.axis('tight') _despine_axes(axes_brs) axes_legend = plt.axes([0.1, 0.33, 0.8, 0.05]) plt.ylim((0,1.1)) plt.xlim([t[0], t[-1]]) plt.plot([0, tlegend], [1, 1], color='black', lw=1) plt.text(tlegend/4.0, 0.1, str(tlegend) + ' s') _despine_axes(axes_legend) # show spectrogram ifreq = np.where(freq <= fmax)[0] # axes for colorbar axes_cbar = plt.axes([0.82, 0.68, 0.1, 0.2]) # axes for EEG spectrogram axes_spec = plt.axes([0.1, 0.68, 0.8, 0.2], sharex=axes_brs) im = axes_spec.pcolorfast(t, freq[ifreq], SPEEG[ifreq, istart:iend], cmap='jet', vmin=vm[0], vmax=vm[1]) axes_spec.axis('tight') axes_spec.set_xticklabels([]) axes_spec.set_xticks([]) axes_spec.spines["bottom"].set_visible(False) plt.ylabel('Freq (Hz)') box_off(axes_spec) plt.xlim([t[0], t[-1]]) # colorbar for EEG spectrogram cb = plt.colorbar(im, ax=axes_cbar, pad=0.0, aspect=10.0) cb.set_label('Power ($\mathrm{\mu}$V$^2$s)') if len(cb_ticks) > 0: cb.set_ticks(cb_ticks) axes_cbar.set_alpha(0.0) _despine_axes(axes_cbar) # show EMG axes_emg = plt.axes([0.1, 0.5, 0.8, 0.1], sharex=axes_spec) if pemg_ampl: i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0] p_mu = np.sqrt(SPEMG[i_mu, :].sum(axis=0) * (freq[1] - freq[0])) #* 1000.0 # back to muV axes_emg.plot(t, p_mu[istart:iend], color='black') # * 1000: to go from mV to uV if len(emg_ticks) > 0: axes_emg.set_yticks(emg_ticks) plt.ylabel('Ampl. ' + '$\mathrm{(\mu V)}$') plt.xlim((t[0], t[-1] + 1)) else: axes_emg.plot(t_emg, emg[istart_emg:iend_emg], color='black', lw=0.2) plt.xlim((t_emg[0], t_emg[-1] + 1)) box_off(axes_emg) axes_emg.patch.set_alpha(0.0) axes_emg.spines["bottom"].set_visible(False) # axis for raw data example if len(raw_ex) > 0: axes_raw_ex = plt.axes([0.1, .39, 0.8, 0.51]) axes_raw_ex.patch.set_alpha(0) _despine_axes(axes_raw_ex) for (ta, tlen) in raw_ex: ta = ta-tstart axes_raw_ex.add_patch(patches.Rectangle((ta, 0), tlen, 1, fill=False, edgecolor=[0.4, 0.4, 0.4], lw=0.3)) plt.ylim((0,1)) plt.xlim([t[0], t[-1]]) eeg = so.loadmat(os.path.join(ppath, name, 'EEG.mat'), squeeze_me=True)['EEG'] emg = so.loadmat(os.path.join(ppath, name, 'EMG.mat'), squeeze_me=True)['EMG'] # axes to label EEG EMG ax_eeg_label = plt.axes([0.04, 0.18, 0.05, 0.1]) ax_eeg_label.set_xlim([0, 1]) ax_eeg_label.set_ylim([0, 1]) ax_eeg_label.text(0, 0.5, 'EEG', verticalalignment='center') _despine_axes(ax_eeg_label) ax_emg_label = plt.axes([0.04, 0.05, 0.05, 0.1]) ax_emg_label.set_xlim([0, 1]) ax_emg_label.set_ylim([0, 1]) ax_emg_label.text(0, 0.5, 'EMG', verticalalignment='center') _despine_axes(ax_emg_label) # axes for legend ax_eeg_legend = plt.axes([0.92, 0.05, 0.05, 0.1]) ax_emg_legend = plt.axes([0.92, 0.18, 0.05, 0.1]) ax_eeg_legend.set_xlim([0, 1]) ax_emg_legend.set_xlim([0, 1]) ax_eeg_legend.set_ylim([-eegemg_max[0], eegemg_max[0]]) ax_emg_legend.set_ylim([-eegemg_max[1], eegemg_max[1]]) ax_eeg_legend.plot([0., 0.], [-eegemg_legend[0]/2, eegemg_legend[0]/2], color='black') ax_emg_legend.plot([0., 0.], [-eegemg_legend[1]/2, eegemg_legend[1]/2], color='black') ax_eeg_legend.text(0.1, -eegemg_legend[0]/2, str(eegemg_legend[0]/1000) + 'mV', rotation=90, fontsize=8) ax_emg_legend.text(0.1, -eegemg_legend[1]/2, str(eegemg_legend[1]/1000) + 'mV', rotation=90, fontsize=8) _despine_axes(ax_eeg_legend) _despine_axes(ax_emg_legend) nraw_ex = len(raw_ex) raw_axes_eeg = [] raw_axes_emg = [] len_x = 0.8/nraw_ex-0.02 start_x = np.linspace(0.1+len_x, 0.9, nraw_ex) - len_x for i in range(nraw_ex): a = plt.axes([start_x[i], 0.05, (0.8/nraw_ex)-0.02, .1]) raw_axes_emg.append(a) a = plt.axes([start_x[i], 0.18, (0.8/nraw_ex)-0.02, .1]) raw_axes_eeg.append(a) for (ax, i) in zip(raw_axes_eeg, range(len(raw_ex))): ta, tlen = raw_ex[i] idx = range(int(ta*sr), int(ta*sr+tlen*sr)) t_eeg = np.arange(0, len(idx))*ddt ax.plot(t_eeg, eeg[idx], color='k', lw=0.5) ax.set_xlim([t_eeg[0], t_eeg[-1]]) _despine_axes(ax) ax.set_ylim([-eegemg_max[0], eegemg_max[0]]) for (ax, i) in zip(raw_axes_emg, range(len(raw_ex))): ta, tlen = raw_ex[i] idx = range(int(ta*sr), int(ta*sr+tlen*sr)) t_eeg = np.arange(0, len(idx))*ddt ax.plot(t_eeg, emg[idx], color='k', lw=0.5) ax.set_xlim([t_eeg[0], t_eeg[-1]]) _despine_axes(ax) ax.set_ylim([-eegemg_max[1], eegemg_max[1]]) axes_raw_time = plt.axes([0.1, 0.03, len_x, 0.02]) plt.plot([0, tlen/10], [0,0], color='black', lw=0.8) plt.ylim([-1,1]) plt.xlim([t_eeg[0], t_eeg[-1]]) _despine_axes(axes_raw_time) if len(fig_file) > 0: save_figure(fig_file) plt.show() def sleep_stats(ppath, recordings, ma_thr=10.0, tstart=0, tend=-1, pplot=True, csv_file=''): """ Calculate average percentage of each brain state, average duration and average frequency plot histograms for REM, NREM, and Wake durations @PARAMETERS: ppath - base folder recordings - single string specifying recording or list of recordings @OPTIONAL: ma_thr - threshold for wake periods to be considered as microarousals tstart - only consider recorded data starting from time tstart, default 0s tend - only consider data recorded up to tend s, default -1, i.e. everything till the end pplot - generate plot in the end; True or False csv_file - file where data should be saved as csv file (e.g. csv_file = '/home/Users/Franz/Documents/my_data.csv') @RETURN: ndarray of percentages (# mice x [REM,Wake,NREM]) ndarray of state durations ndarray of transition frequency / hour """ if type(recordings) != list: recordings = [recordings] Percentage = {} Duration = {} Frequency = {} mice = [] for rec in recordings: idf = re.split('_', os.path.split(rec)[-1])[0] if not idf in mice: mice.append(idf) Percentage[idf] = {1:[], 2:[], 3:[]} Duration[idf] = {1:[], 2:[], 3:[]} Frequency[idf] = {1:[], 2:[], 3:[]} nmice = len(Frequency) for rec in recordings: idf = re.split('_', os.path.split(rec)[-1])[0] SR = get_snr(ppath, rec) NBIN = np.round(2.5*SR) dt = NBIN * 1/SR # load brain state M, K = load_stateidx(ppath, rec) kcut = np.where(K >= 0)[0] M = M[kcut] istart = int(np.round((1.0 * tstart) / dt)) if tend==-1: iend = len(M)-1 else: iend = int(np.round((1.0*tend) / dt)) M[np.where(M==5)] = 2 # polish out microarousals seq = get_sequences(np.where(M==2)[0]) for s in seq: if np.round(len(s)*dt) <= ma_thr: M[s] = 3 midx = np.arange(istart,iend+1) Mcut = M[midx] nm = len(Mcut)*1.0 # get percentage of each state for s in [1,2,3]: Percentage[idf][s].append(len(np.where(Mcut==s)[0]) / nm) # get frequency of each state for s in [1,2,3]: Frequency[idf][s].append( len(get_sequences(np.where(Mcut==s)[0])) * (3600. / (nm*dt)) ) # get average duration for each state for s in [1,2,3]: seq = get_sequences(np.where(Mcut==s)[0]) Duration[idf][s] += [len(i)*dt for i in seq] PercMx = np.zeros((nmice,3)) i=0 for k in mice: for s in [1,2,3]: PercMx[i,s-1] = np.array(Percentage[k][s]).mean() i += 1 PercMx *= 100 FreqMx = np.zeros((nmice,3)) i = 0 for k in mice: for s in [1,2,3]: FreqMx[i,s-1] = np.array(Frequency[k][s]).mean() i += 1 DurMx = np.zeros((nmice,3)) i = 0 for k in mice: for s in [1,2,3]: DurMx[i,s-1] = np.array(Duration[k][s]).mean() i += 1 DurHist = {1:[], 2:[], 3:[]} for s in [1,2,3]: DurHist[s] = np.squeeze(np.array(reduce(lambda x,y: x+y, [Duration[k][s] for k in Duration]))) if pplot: clrs = sns.color_palette("husl", nmice) plt.ion() # plot bars summarizing results - Figure 1 plt.figure(figsize=(10, 5)) ax = plt.axes([0.1, 0.15, 0.2, 0.8]) plt.bar([1,2,3], PercMx.mean(axis=0), align='center', color='gray', fill=False) plt.xticks([1,2,3], ['REM', 'Wake', 'NREM'], rotation=60) for i in range(nmice): plt.plot([1,2,3], PercMx[i,:], 'o', label=mice[i], color=clrs[i]) plt.ylabel('Percentage (%)') plt.legend(fontsize=9) plt.xlim([0.2, 3.8]) box_off(ax) ax = plt.axes([0.4, 0.15, 0.2, 0.8]) plt.bar([1,2,3], DurMx.mean(axis=0), align='center', color='gray', fill=False) plt.xticks([1,2,3], ['REM', 'Wake', 'NREM'], rotation=60) for i in range(nmice): plt.plot([1, 2, 3], DurMx[i, :], 'o', label=mice[i], color=clrs[i]) plt.ylabel('Duration (s)') plt.xlim([0.2, 3.8]) box_off(ax) ax = plt.axes([0.7, 0.15, 0.2, 0.8]) plt.bar([1,2,3], FreqMx.mean(axis=0), align='center', color='gray', fill=False) plt.xticks([1,2,3], ['REM', 'Wake', 'NREM'], rotation=60) for i in range(nmice): plt.plot([1, 2, 3], FreqMx[i, :], 'o', label=mice[i], color=clrs[i]) plt.ylabel('Frequency (1/h)') plt.xlim([0.2, 3.8]) box_off(ax) plt.show(block=False) # plot histograms - Figure 2 plt.figure(figsize=(5, 10)) ax = plt.axes([0.2,0.1, 0.7, 0.2]) h, edges = np.histogram(DurHist[1], bins=40, range=(0, 300), density=True) binWidth = edges[1] - edges[0] plt.bar(edges[0:-1], h*binWidth, width=5) plt.xlim((edges[0], edges[-1])) plt.xlabel('Duration (s)') plt.ylabel('Freq. REM') box_off(ax) ax = plt.axes([0.2,0.4, 0.7, 0.2]) h, edges = np.histogram(DurHist[2], bins=40, range=(0, 1200), density=True) binWidth = edges[1] - edges[0] plt.bar(edges[0:-1], h*binWidth, width=20) plt.xlim((edges[0], edges[-1])) plt.xlabel('Duration (s)') plt.ylabel('Freq. Wake') box_off(ax) ax = plt.axes([0.2,0.7, 0.7, 0.2]) h, edges = np.histogram(DurHist[3], bins=40, range=(0, 1200), density=True) binWidth = edges[1] - edges[0] plt.bar(edges[0:-1], h*binWidth, width=20) plt.xlim((edges[0], edges[-1])) plt.xlabel('Duration (s)') plt.ylabel('Freq. NREM') box_off(ax) plt.show() mouse_list = [[m]*3 for m in mice] mouse_list = sum(mouse_list, []) state_list = ['REM', 'Wake', 'NREM']*nmice df = pd.DataFrame({'mouse':mouse_list, 'state':state_list, 'Perc':PercMx.flatten(), 'Dur':DurMx.flatten(), 'Freq':FreqMx.flatten()}) if len(csv_file) > 0: df.to_csv(csv_file, index=False) return PercMx, DurMx, FreqMx, df def sleep_timecourse_list(ppath, recordings, tbin, n, tstart=0, tend=-1, ma_thr=-1, pplot=True, single_mode=False, csv_file=''): """ simplified version of sleep_timecourse plot sleep timecourse for a list of recordings The function does not distinguish between control and experimental mice. It computes/plots the how the percentage, frequency (1/h) of brain states and duration of brain state episodes evolves over time. See also sleep_timecourse @Parameters: ppath Base folder with recordings recordings list of recordings as e.g. generated by &load_recordings tbin duration of single time bin in seconds n number of time bins @Optional: tstart start time of first bin in seconds tend end time of last bin; end of recording if tend==-1 ma_thr set microarousals (wake periods <= ma_thr seconds) to NREM if ma_thr==-1, don't do anything pplot plot figures summarizing results single_mode if True, plot each single mouse csv_file string, if non-empty, write data into file $ppath/$csv_file .csv to load csv file: data = pd.read_csv($csv_file.csv, header=[0,1,2]) @Return: TimeMx, DurMx, FreqMx, df Dict[state][time_bin x mouse_id] df is a pandas DataFrame of the format Perc DUR REM Wake NREM REM Wake etc. bin1 ... binn bin1 ... binn bin1 ... bin2 bin1 ... bin2 etc. mouse1 . . . mousen """ if type(recordings) != list: recordings = [recordings] Mice = {} mouse_order = [] for rec in recordings: idf = re.split('_', os.path.split(rec)[-1])[0] if not idf in mouse_order: mouse_order.append(idf) Mice[idf] = 1 Mice = list(Mice.keys()) TimeCourse = {} FreqCourse = {} DurCourse = {} for rec in recordings: idf = re.split('_', rec)[0] SR = get_snr(ppath, rec) NBIN = np.round(2.5*SR) # time bin in Fourier time dt = NBIN * 1/SR M,K = load_stateidx(ppath, rec) kcut = np.where(K>=0)[0] #kidx = np.setdiff1d(np.arange(0, M.shape[0]), kcut) M = M[kcut] M[np.where(M)==5] = 2 # polish out microarousals if ma_thr>0: seq = get_sequences(np.where(M==2)[0]) for s in seq: if len(s)*dt <= ma_thr: M[s] = 3 if tend==-1: iend = len(M)-1 else: iend = int(np.round((1.0*tend) / dt)) M = M[0:iend+1] istart = int(np.round((1.0*tstart) / dt)) ibin = int(np.round(tbin / dt)) # how brain state percentage changes over time perc_time = [] for i in range(n): #midx = np.arange(istart+i*ibin, istart+(i+1)*ibin) #midx = np.setdiff1d(midx, kcut) #M_cut = M[np.arange(istart+i*ibin, istart+(i+1)*ibin)] M_cut = M[(istart+i*ibin):(istart+(i+1)*ibin)] perc = [] for s in [1,2,3]: perc.append( len(np.where(M_cut==s)[0]) / (1.0*len(M_cut)) ) perc_time.append(perc) perc_vec = np.zeros((n,3)) for i in range(3): perc_vec[:,i] = np.array([v[i] for v in perc_time]) TimeCourse[rec] = perc_vec # how frequency of sleep stage changes over time freq_time = [] for i in range(n): #midx = np.arange(istart+i*ibin, istart+(i+1)*ibin) #midx = np.setdiff1d(midx, kcut) #M_cut = M[np.arange(istart+i*ibin, istart+(i+1)*ibin)] M_cut = M[(istart+i*ibin):(istart+(i+1)*ibin)] freq = [] for s in [1,2,3]: tmp = len(get_sequences(np.where(M_cut==s)[0])) * (3600. / (len(M_cut)*dt)) freq.append(tmp) freq_time.append(freq) freq_vec = np.zeros((n,3)) for i in range(3): freq_vec[:,i] = np.array([v[i] for v in freq_time]) FreqCourse[rec] = freq_vec # how duration of sleep stage changes over time dur_time = [] for i in range(n): #midx = np.arange(istart+i*ibin, istart+(i+1)*ibin) #midx = np.setdiff1d(midx, kcut) M_cut = M[(istart+i*ibin):(istart+(i+1)*ibin)] dur = [] for s in [1,2,3]: tmp = get_sequences(np.where(M_cut==s)[0]) tmp = np.array([len(j)*dt for j in tmp]).mean() dur.append(tmp) dur_time.append(dur) dur_vec = np.zeros((n,3)) for i in range(3): dur_vec[:,i] = np.array([v[i] for v in dur_time]) DurCourse[rec] = dur_vec # collect all recordings belonging to a Control mouse TimeCourseMouse = {} DurCourseMouse = {} FreqCourseMouse = {} # Dict[mouse_id][time_bin x br_state] for mouse in Mice: TimeCourseMouse[mouse] = [] DurCourseMouse[mouse] = [] FreqCourseMouse[mouse] = [] for rec in recordings: idf = re.split('_', rec)[0] TimeCourseMouse[idf].append(TimeCourse[rec]) DurCourseMouse[idf].append(DurCourse[rec]) FreqCourseMouse[idf].append(FreqCourse[rec]) mx = np.zeros((n, len(Mice))) TimeMx = {1:mx, 2:mx.copy(), 3:mx.copy()} mx = np.zeros((n, len(Mice))) DurMx = {1:mx, 2:mx.copy(), 3:mx.copy()} mx = np.zeros((n, len(Mice))) FreqMx = {1:mx, 2:mx.copy(), 3:mx.copy()} # Dict[R|W|N][time_bin x mouse_id] i = 0 for k in mouse_order: for s in range(1,4): tmp = np.array(TimeCourseMouse[k]).mean(axis=0) TimeMx[s][:,i] = tmp[:,s-1] tmp = np.array(DurCourseMouse[k]).mean(axis=0) DurMx[s][:,i] = tmp[:,s-1] tmp = np.array(FreqCourseMouse[k]).mean(axis=0) FreqMx[s][:,i] = tmp[:,s-1] i += 1 if pplot: clrs = sns.color_palette("husl", len(mouse_order)) label = {1:'REM', 2:'Wake', 3:'NREM'} tlabel = np.linspace(istart*dt, istart*dt+n*ibin*dt, n+1) t = np.linspace(istart*dt, istart*dt+n*ibin*dt, n+1)[0:-1] + (ibin*dt/2.0) t /= 3600.0 tlabel /= 3600.0 # plot percentage of brain state as function of time plt.ion() plt.figure() for s in range(1,4): ax = plt.axes([0.1, (s-1)*0.3+0.1, 0.8, 0.2]) if not single_mode: plt.errorbar(t, np.nanmean(TimeMx[s],axis=1), yerr = np.nanstd(TimeMx[s],axis=1), color='gray', fmt = 'o', linestyle='-', linewidth=2, elinewidth=2) else: for i in range(len(mouse_order)): plt.plot(t, TimeMx[s][:,i], 'o-', linewidth=1.5, color=clrs[i]) if s==3: ax.legend(mouse_order, bbox_to_anchor = (0., 1.0, 1., .102), loc=3, mode='expand', ncol=len(mouse_order), frameon=False) box_off(ax) plt.xlim((-0.5, n-0.5)) if s==1: #plt.ylim([0, 0.2]) pass else: plt.ylim([0, 1.0]) plt.ylabel('Perc ' + label[s] + '(%)') plt.xticks(tlabel) plt.xlim([tlabel[0], tlabel[-1]]) if s == 1: plt.xlabel('Time (h)') plt.draw() # plot duration as function of time plt.figure() for s in range(1,4): ax = plt.axes([0.1, (s-1)*0.3+0.1, 0.8, 0.2]) if not single_mode: plt.errorbar(t, np.nanmean(DurMx[s],axis=1), yerr = np.nanstd(DurMx[s],axis=1), color='gray', fmt = 'o', linestyle='-', linewidth=2, elinewidth=2) else: for i in range(len(mouse_order)): plt.plot(t, DurMx[s][:,i], 'o-', linewidth=1.5, color=clrs[i]) if s==3: ax.legend(mouse_order, bbox_to_anchor = (0., 1.0, 1., .102), loc=3, mode='expand', ncol=len(mouse_order), frameon=False) box_off(ax) plt.xlim((-0.5, n-0.5)) plt.ylabel('Dur ' + label[s] + '(s)') plt.xticks(tlabel) plt.xlim([tlabel[0], tlabel[-1]]) if s==1: plt.xlabel('Time (h)') plt.draw() # plot frequency as function of time plt.figure() for s in range(1,4): ax = plt.axes([0.1, (s-1)*0.3+0.1, 0.8, 0.2]) if not single_mode: plt.errorbar(t, np.nanmean(FreqMx[s],axis=1), yerr = np.nanstd(FreqMx[s],axis=1), color='gray', fmt = 'o', linestyle='-', linewidth=2, elinewidth=2) else: for i in range(len(mouse_order)): plt.plot(t, FreqMx[s][:,i], 'o-', linewidth=1.5, color=clrs[i]) if s==3: ax.legend(mouse_order, bbox_to_anchor = (0., 1.0, 1., .102), loc=3, mode='expand', ncol=len(mouse_order), frameon=False) box_off(ax) plt.xlim((-0.5, n-0.5)) plt.ylabel('Freq ' + label[s] + '(1/h)') plt.xticks(tlabel) plt.xlim([tlabel[0], tlabel[-1]]) if s==1: plt.xlabel('Time (h)') plt.draw() # write data into dataframe and csv file bins = ['bin' + str(i+1) for i in range(n)] columns = pd.MultiIndex.from_product([['Perc', 'Dur', 'Freq'], ['REM', 'Wake', 'NREM'], bins], names=['stats', 'state', 'bin']) D = np.concatenate((TimeMx[1].T, TimeMx[2].T, TimeMx[3].T, DurMx[1].T, DurMx[2].T, DurMx[3].T, FreqMx[1].T, FreqMx[2].T, FreqMx[3].T), axis=1) df = pd.DataFrame(D, index=mouse_order, columns=columns) if len(csv_file) > 0: df.to_csv(csv_file, index=False) return TimeMx, DurMx, FreqMx, df def ma_timecourse_list(ppath, recordings, tbin, n, tstart=0, tend=-1, ma_thr=20, pplot=True, single_mode=False, csv_file=''): """ Calculate percentage, duration, and frequency of microarousals :param ppath: base folder :param recordings: single recording or list of recordings :param tbin: time bin in seconds :param n: number of time bins :param tstart: start time in recording(s) for analysi :param tend: end time for analysis :param ma_thr: microarousal threshold; any wake period shorter than $ma_thr will be considered as microarousal :param pplot: if True, plot figure :param single_mode: if True, plot each single mouse with different color :param csv_file: string, if non-empty, write data into file "csv_file"; file name should end with ".csv" :return: TimeMX, DurMX, FreqMx, df - np.array(# time bins x mice) TimeMX, DurMX, FreqMx: arrays with shape "time bins x mice" df: DataFrame with columns: mouse, perc, dur, freq, bin For example, to get the first time bins of perc, dur, freq of mouse M1 type df[(df.mouse == 'M1') & (df.bin == 't0')] """ if type(recordings) != list: recordings = [recordings] mouse_order = [] for rec in recordings: idf = re.split('_', rec)[0] if not idf in mouse_order: mouse_order.append(idf) TimeCourse = {} FreqCourse = {} DurCourse = {} for rec in recordings: SR = get_snr(ppath, rec) NBIN = np.round(2.5 * SR) # time bin in Fourier time dt = NBIN * 1 / SR M, K = load_stateidx(ppath, rec) kcut = np.where(K >= 0)[0] # kidx = np.setdiff1d(np.arange(0, M.shape[0]), kcut) M = M[kcut] Mnew = np.zeros(M.shape) Mnew[np.where(M) == 5] = 1 # polish out microarousals if ma_thr > 0: seq = get_sequences(np.where(M == 2)[0]) for s in seq: if len(s) * dt <= ma_thr: Mnew[s] = 1 M = Mnew if tend == -1: iend = len(M) - 1 else: iend = int(np.round((1.0 * tend) / dt)) M = M[0:iend + 1] istart = int(np.round((1.0 * tstart) / dt)) ibin = int(np.round(tbin / dt)) # how brain state percentage changes over time perc_time = [] for i in range(n): midx = np.arange(istart + i * ibin, istart + (i + 1) * ibin) # midx = np.setdiff1d(midx, kcut) M_cut = M[midx] perc = len(np.where(M_cut == 1)[0]) / (1.0 * len(M_cut)) perc_time.append(perc) TimeCourse[rec] = np.array(perc_time) # how frequency of sleep stage changes over time freq_time = [] for i in range(n): midx = np.arange(istart + i * ibin, istart + (i + 1) * ibin) # midx = np.setdiff1d(midx, kcut) M_cut = M[midx] s = 1 freq = len(get_sequences(np.where(M_cut == s)[0])) * (3600. / (len(M_cut) * dt)) freq_time.append(freq) FreqCourse[rec] = np.array(freq_time) # how duration of microarousals changes over time dur_time = [] for i in range(n): midx = np.arange(istart + i * ibin, istart + (i + 1) * ibin) # midx = np.setdiff1d(midx, kcut) M_cut = M[midx] s = 1 tmp = get_sequences(np.where(M_cut == s)[0]) dur = np.array([len(j) * dt for j in tmp]).mean() dur_time.append(dur) DurCourse[rec] = np.array(dur_time) # collect all recordings belonging to a Control mouse TimeCourseMouse = {} DurCourseMouse = {} FreqCourseMouse = {} # Dict[mouse_id][time_bin x br_state] for mouse in mouse_order: TimeCourseMouse[mouse] = [] DurCourseMouse[mouse] = [] FreqCourseMouse[mouse] = [] for rec in recordings: idf = re.split('_', rec)[0] TimeCourseMouse[idf].append(TimeCourse[rec]) DurCourseMouse[idf].append(DurCourse[rec]) FreqCourseMouse[idf].append(FreqCourse[rec]) # np.array(time x mouse_id) TimeMx = np.zeros((n, len(mouse_order))) DurMx = np.zeros((n, len(mouse_order))) FreqMx = np.zeros((n, len(mouse_order))) i = 0 for k in mouse_order: tmp = np.array(TimeCourseMouse[k]).mean(axis=0) TimeMx[:,i] = tmp tmp = np.array(DurCourseMouse[k]).mean(axis=0) DurMx[:,i] = tmp tmp = np.array(FreqCourseMouse[k]).mean(axis=0) FreqMx[:,i] = tmp i += 1 # plotting if pplot: plot_dict = {0:TimeMx, 1:DurMx, 2:FreqMx} clrs = sns.color_palette("husl", len(mouse_order)) ylabel = {0:'Perc (%)', 1:'Dur (s)', 2:'Freq ($h^{-1}$)'} tlabel = np.linspace(istart*dt, istart*dt+n*ibin*dt, n+1) t = np.linspace(istart*dt, istart*dt+n*ibin*dt, n+1)[0:-1] + (ibin*dt/2.0) t /= 3600.0 tlabel /= 3600.0 # plot percentage of brain state as function of time plt.ion() plt.figure() for s in range(0, 3): ax = plt.axes([0.15, s*0.3+0.1, 0.8, 0.2]) if not single_mode: plt.errorbar(t, np.nanmean(plot_dict[s],axis=1), yerr = np.nanstd(plot_dict[s],axis=1), color='gray', fmt = 'o', linestyle='-', linewidth=2, elinewidth=2) else: for i in range(len(mouse_order)): plt.plot(t, plot_dict[s][:,i], 'o-', linewidth=1.5, color=clrs[i]) if s==2: ax.legend(mouse_order, bbox_to_anchor = (0., 1.0, 1., .102), loc=3, mode='expand', ncol=len(mouse_order), frameon=False) box_off(ax) plt.xlim((-0.5, n-0.5)) plt.ylabel(ylabel[s]) plt.xticks(tlabel) plt.xlim([tlabel[0], tlabel[-1]]) if s == 0: plt.xlabel('Time (h)') plt.draw() bins = [['t' + str(i)]*len(mouse_order) for i in range(n)] bins = sum(bins, []) cols = ['mouse', 'perc', 'dur', 'freq', 'bin'] mice = mouse_order*n df = pd.DataFrame(columns=cols) df['mouse'] = mice df['bin'] = bins df['perc'] = TimeMx.flatten() df['dur'] = DurMx.flatten() df['freq'] = FreqMx.flatten() if len(csv_file) > 0: df.to_csv(csv_file, index=False) return TimeMx, DurMx, FreqMx, df def transition_timecourse_list(ppath, recordings, tbin, n, tdown=10, tstart=0, tend=-1, ma_thr=-1, pplot=True, single_mode=False, csv_file=''): if type(recordings) != list: recordings = [recordings] mouse_order = [] for rec in recordings: idf = re.split('_', rec)[0] if not idf in mouse_order: mouse_order.append(idf) Recordings = {idf:[] for idf in mouse_order} SR = get_snr(ppath, recordings[0]) NBIN = np.round(2.5 * SR) # time bin in Fourier time dt = NBIN * 1 / SR istart = int(np.round((1.0 * tstart) / dt)) ibin = int(np.round(tbin / dt)) idown = int(tdown/dt) for rec in recordings: idf = re.split('_', rec)[0] M = load_stateidx(ppath, rec)[0] # polish out microarousals if ma_thr > 0: seq = get_sequences(np.where(M == 2)[0]) for s in seq: if len(s) * dt <= ma_thr: M[s] = 1 if tend == -1: iend = len(M) - 1 else: iend = int(np.round((1.0 * tend) / dt)) M = M[0:iend + 1] # how brain state percentage changes over time Recordings[idf].append(M) MX = {idf:[] for idf in mouse_order} for i in range(n): for idf in mouse_order: recs = Recordings[idf] midx = np.arange(istart + i * ibin, istart + (i + 1) * ibin) recs = [downsample_states(rec[midx], idown) for rec in recs] recs = np.array(recs, dtype='int') #recs = downsample_states(recs, idown) pmx = complete_transition_matrix(recs, np.array(range(recs.shape[1]))) MX[idf].append(pmx) #transform MX to a DataFrame trans_map = {'11':'RR', '12':'RW', '13':'RN', '21':'WR', '22':'WW', '23':'WN', '31':'NR', '32':'NW', '33':'NN'} data = [] for i in range(n): for si in [1,2,3]: for sj in [1,2,3]: for idf in mouse_order: trans = trans_map[str(si)+str(sj)] data += [[idf, 't'+str(i), MX[idf][i][si-1, sj-1], trans]] df = pd.DataFrame(data=data, columns=['mouse', 'time', 'prob', 'trans']) return df def sleep_through_days(ppath, recordings, tstart=0, tend=-1, stats=0, xticks=[], ma_thr=20, min_dur=[0,0,0], single_mode=True, csv_file = ''): """ Follow sleep quantity (percentage, bout duration, or frequency / hour) over multiple days :param ppath: base folder :param recordings: list of lists of recordings, for example [[F1_010118n1, F2_010118n1], [F1_010218n1, F1_010218n1]] specifies the recordings of F1 and F2 for two days :param tstart: float, quantificiation of sleep starts at $start s :param tend: float, quantification of sleep ends at $tend s :param stats: Measured sleep variable (statistics): 0 - percentage, 1 - episode duration, 2 - episode frequency, 3 - latency to first state occurance REM, Wake, and NREM :param xticks: list of string, specifying the xticks :param ma_thr: float, wake periods shorter than $ma_thr are considered as microarousals and further converted to NREM :param min_dur: list with 3 floats, specifying the minimum duration of the first REM, Wake, and NREM period, only relevant if $stats == 3 :param single_mode: if True, plot each single mouse in different color :param csv_file: string, save pd.DataFrame to file; the actual file name will be "$csv_file + stats + $stats .csv" and will be save in the folder $ppath :return: np.array, mice x [REM,Wake,NREM] x days AND pd.DataFrame the pd.DataFrame has the following format: state REM Wake NREM day Day1 ... Dayn Day1 ... Dayn Day1 ... Dayn mouse1 . . . mousen """ states = {1:'REM', 2:'Wake', 3:'NREM'} stats_label = {0:'(%)', 1:'Dur (s)', 2: 'Freq. (1/h)', 3: 'Lat. (min)'} mice_per_day = {} iday = 0 for day in recordings: mice = [] for rec in day: idf = re.split('_', os.path.split(rec)[-1])[0] if not idf in mice: mice.append(idf) mice_per_day[iday] = mice iday += 1 ndays = len(mice_per_day) nmice = len(mice_per_day[0]) for i in range(ndays): for j in range(i+1, ndays): if mice_per_day[i] != mice_per_day[j]: print("ERROR: mice on day %d and %d not consistent" % (i+1, j+1)) return #DayResults: mice x [R|W|N] x days DayResults = np.zeros((nmice, 3, ndays)) for day in range(ndays): if stats<=2: res = sleep_stats(ppath, recordings[day], tstart=tstart, tend=tend, pplot=False, ma_thr=ma_thr)[stats] else: res = np.zeros((nmice, 3)) for s in range(1,4): res[:,s-1] = state_onset(ppath, recordings[day], s, min_dur=min_dur[s-1], tstart=tstart, tend=tend, pplot=False) DayResults[:,:,day] = res plt.ion() clrs = sns.color_palette("husl", nmice) plt.figure(figsize=(10,6)) for s in range(1, 4): ax = plt.axes([0.1, (s - 1) * 0.3 + 0.1, 0.8, 0.2]) if single_mode: for i in range(nmice): plt.plot(list(range(1,ndays+1)), DayResults[i,s-1,:], 'o-', color=clrs[i], label=mice[i]) else: plt.errorbar(list(range(1, ndays+1)), DayResults[:, s-1, :].mean(axis=0), yerr=DayResults[:, s-1, :].std(axis=0), color='gray', label='avg', linewidth=2) if s == 1: if len(xticks) == 0: plt.xticks(list(range(1,ndays+1))) else: plt.xticks(list(range(1, ndays + 1), xticks)) else: plt.xticks(list(range(1, ndays + 1))) ax.set_xticklabels([]) if s == 3: ax.legend(bbox_to_anchor=(0., 1.0, 1., .102), loc=3, mode='expand', ncol=nmice, frameon=False) box_off(ax) if s == 1: plt.xlabel('Day') plt.ylabel(states[s] + ' ' + stats_label[stats]) if len(xticks) > 0: col = xticks else: col = ['Day' + str(i+1) for i in range(ndays)] # put data into pandas dataframe columns = pd.MultiIndex.from_product([['REM', 'Wake', 'NREM'], col], names=['state', 'day']) D = np.concatenate((DayResults[:,0,:], DayResults[:,1,:], DayResults[:,2,:]), axis=1) df = pd.DataFrame(D, index=mice, columns=columns) if len(csv_file) > 0: csv_file += '_stats' + str(stats) + '.csv' df.to_csv(os.path.join(ppath, csv_file), index=False) return DayResults, df def sleep_timecourse(ppath, trace_file, tbin, n, tstart=0, tend=-1, pplot=True, stats='perc', csv_file='', ma_thr=0): """ plot how percentage of REM,Wake,NREM changes over time; compares control with experimental data; experimental recordings can have different "doses" a simpler version is sleep_timecourse_list @Parameters trace_file - text file, specifies control and experimental recordings, the syntax for the file is the same as required for load_dose_recording Example: with one control and two experimental groups (1 or 2 third column) # Comments #Mouse Recording dose C B1_01012020n1 C B2_01012020n1 # no dose value for controls E B1_01022020n1 1 E B2_01022020n1 1 E B1_01032020n1 2 E B2_01032020n1 2 tbin - size of time bin in seconds n - number of time bins @Optional: tstart - beginning of recording (time <tstart is thrown away) tend - end of recording (time >tend is thrown away) pplot - plot figure if True stats - statistics; stats = 'perc': compute percentage of each brain state in each time bin; stats = 'freq': compute frequency of each state for each time bin stats = 'dur': compute average duration of each state sequence for each time bin @Return: TimeMxCtr - Dict[R|W|N][time_bin x mouse_id] TimeMxExp - Dict[R|W|N][dose][time_bin x mouse_id] df - pandas.DataFrame with columns ['mouse', 'dose', 'state', 'time', $stats] How to run 2way anova with repeated measures? to determine with effects for different doses on REM: # extract all REM values from DataFrame df_rem = df[df.state == 'REM'] the within factors are 'time' and 'dose'; the dependent variable is 'perc' using pingouin the anova can be calculated using pg.rm_anova(data=df_rem, dv='perc', within=['time', 'dose'], subject='mouse', correction=True) """ (ctr_rec, exp_rec) = load_dose_recordings(ppath, trace_file) Recordings = [] Recordings += ctr_rec for k in exp_rec.keys(): Recordings += exp_rec[k] CMice = [] for mouse in ctr_rec: idf = re.split('_', mouse)[0] if not idf in CMice: CMice.append(idf) EMice = {} for d in exp_rec: mice = exp_rec[d] EMice[d] = [] for mouse in mice: idf = re.split('_', mouse)[0] if not idf in EMice[d]: EMice[d].append(idf) TimeCourse = {} for rec in Recordings: idf = re.split('_', rec)[0] SR = get_snr(ppath, rec) NBIN = np.round(2.5*SR) # time bin in Fourier time dt = NBIN * 1/SR M = load_stateidx(ppath, rec)[0] M[np.where(M)==5] = 2 if ma_thr > 0: seq = get_sequences(np.where(M==2)[0]) for s in seq: if len(s)*dt <= ma_thr: M[s] = 3 if tend==-1: iend = len(M)-1 else: iend = int(np.round((1.0*tend) / dt)) M = M[0:iend+1] istart = int(np.round((1.0*tstart) / dt)) ibin = int(np.round(tbin / dt)) perc_time = [] for i in range(n): # return something even if istart+i+1)*ibin >= len(M) M_cut = M[istart+i*ibin:istart+(i+1)*ibin] #midx = np.arange(istart + i * ibin, istart + (i + 1) * ibin) perc = [] for s in [1,2,3]: if stats == 'perc': perc.append( 100 * len(np.where(M_cut==s)[0]) / (1.0*len(M_cut)) ) elif stats == 'freq': tmp = len(get_sequences(np.where(M_cut==s)[0])) * (3600. / (len(M_cut)*dt)) perc.append(tmp) else: tmp = get_sequences(np.where(M_cut==s)[0]) tmp = np.array([len(j)*dt for j in tmp]).mean() perc.append(tmp) perc_time.append(perc) # number of time bins x [REM|Wake|NREM] perc_vec = np.zeros((n,3)) for i in range(3): # for each time bin we have a list of 3 elements for each state. # take from each of these triplets the i-th state, forming a column vector perc_vec[:,i] = np.array([v[i] for v in perc_time]) TimeCourse[rec] = perc_vec # define data frame containing all data #bins = ['t' + str(i) for i in range(n)] cols = ['mouse', 'dose', 'state', 'time', stats] df = pd.DataFrame(columns=cols) state_map = {1: 'REM', 2:'Wake', 3:'NREM'} # collect all recordings belonging to a Control mouse TimeCourseCtr = {} # Dict[mouse_id][time_bin x br_state] for mouse in CMice: TimeCourseCtr[mouse] = [] for rec in Recordings: idf = re.split('_', rec)[0] if rec in ctr_rec: TimeCourseCtr[idf].append(TimeCourse[rec]) mx = np.zeros((n, len(CMice))) TimeMxCtr = {1:mx, 2:mx.copy(), 3:mx.copy()} # Dict[R|W|N][time_bin x mouse_id] i = 0 for k in TimeCourseCtr: for s in range(1,4): # [time_bin x br_state] tmp = np.array(TimeCourseCtr[k]).mean(axis=0) TimeMxCtr[s][:,i] = tmp[:,s-1] #for j in range(n): # df = df.append(pd.Series([k, '0', state_map[s], 't'+str(j), tmp[j,s-1]], index=cols), ignore_index=True) #pdb.set_trace() for j in range(n): for r in range(len(TimeCourseCtr[k])): df = df.append(pd.Series([k, '0', state_map[s], 't'+str(j), TimeCourseCtr[k][r][j,s-1]], index=cols), ignore_index=True) i += 1 # collect all recording belonging to one Exp mouse with a specific dose TimeCourseExp = {} # Dict[dose][mouse_id][time_bin x br_state] for d in EMice: TimeCourseExp[d]={} for mouse in EMice[d]: TimeCourseExp[d][mouse] = [] for rec in Recordings: idf = re.split('_', rec)[0] for d in exp_rec: if rec in exp_rec[d]: TimeCourseExp[d][idf].append(TimeCourse[rec]) # dummy dictionary to initialize TimeMxExp # Dict[R|W|N][dose][time_bin x mouse_id] TimeMxExp = {1:{}, 2:{}, 3:{}} for s in [1,2,3]: TimeMxExp[s] = {} for d in EMice: TimeMxExp[s][d] = np.zeros((n, len(EMice[d]))) for d in TimeCourseExp: i = 0 for k in TimeCourseExp[d]: print(k) tmp = np.array(TimeCourseExp[d][k]).mean(axis=0) for s in [1,2,3]: # [time_bin x br_state] for mouse k #tmp = sum(TimeCourseExp[d][k]) / (1.0*len(TimeCourseExp[d][k])) TimeMxExp[s][d][:,i] = tmp[:,s-1] #for j in range(n): # df = df.append(pd.Series([k, d, state_map[s], 't'+str(j), tmp[j, s-1]], index=cols), ignore_index=True) for j in range(n): for r in range(len(TimeCourseExp[d][k])): df = df.append(pd.Series([k, d, state_map[s], 't'+str(j), TimeCourseExp[d][k][r][j,s-1]], index=cols), ignore_index=True) i += 1 if pplot: tlabel = np.linspace(istart*dt, istart*dt+n*ibin*dt, n+1) t = np.linspace(istart*dt, istart*dt+n*ibin*dt, n+1)[0:-1] + (ibin*dt/2.0) t /= 3600.0 tlabel /= 3600.0 plt.ion() plt.figure() ndose = len(EMice) ax = plt.axes([0.1, 0.7, 0.8, 0.2]) plt.errorbar(t, TimeMxCtr[1].mean(axis=1), yerr = TimeMxCtr[1].std(axis=1), color='gray', fmt = 'o', linestyle='-', linewidth=2, elinewidth=2) box_off(ax) plt.xlim([t[0], t[-1]]) #plt.yticks([0, 0.1, 0.2]) plt.xticks(tlabel) if stats=='perc': plt.ylabel('% REM') elif stats == 'freq': plt.ylabel('Freq. REM (1/h)') else: plt.ylabel('Dur. REM (s)') i = 1 for d in TimeMxExp[1]: c = 1 - 1.0/ndose*i plt.errorbar(t, TimeMxExp[1][d].mean(axis=1), yerr = TimeMxExp[1][d].std(axis=1), color=[c, c, 1], fmt = 'o', linestyle='-', linewidth=2, elinewidth=2) i += 1 ax = plt.axes([0.1, 0.4, 0.8, 0.2]) plt.errorbar(t, TimeMxCtr[2].mean(axis=1), yerr = TimeMxCtr[2].std(axis=1), color='gray', fmt = 'o', linestyle='-', linewidth=2, elinewidth=2) box_off(ax) plt.xlim([t[0], t[-1]]) #plt.yticks([0, 0.1, 0.2]) plt.xticks(tlabel) if stats=='perc': plt.ylabel('% Wake') elif stats == 'freq': plt.ylabel('Freq. Wake (1/h)') else: plt.ylabel('Dur. Wake (s)') i = 1 for d in TimeMxExp[2]: c = 1 - 1.0/ndose*i plt.errorbar(t, TimeMxExp[2][d].mean(axis=1), yerr = TimeMxExp[2][d].std(axis=1), color=[c, c, 1], fmt = 'o', linestyle='-', linewidth=2, elinewidth=2) i += 1 ax = plt.axes([0.1, 0.1, 0.8, 0.2]) plt.errorbar(t, TimeMxCtr[3].mean(axis=1), yerr = TimeMxCtr[3].std(axis=1), color='gray', fmt = 'o', linestyle='-', linewidth=2, elinewidth=2) box_off(ax) plt.xlim([t[0], t[-1]]) #plt.yticks([0, 0.1, 0.2]) plt.xticks(tlabel) if stats=='perc': plt.ylabel('% NREM') elif stats == 'freq': plt.ylabel('Freq. NREM (1/h)') else: plt.ylabel('Dur. NREM (s)') plt.xlabel('Time (h)') plt.show() i = 1 for d in TimeMxExp[2]: c = 1 - 1.0/ndose*i plt.errorbar(t, TimeMxExp[3][d].mean(axis=1), yerr = TimeMxExp[3][d].std(axis=1), color=[c, c, 1], fmt = 'o', linestyle='-', linewidth=2, elinewidth=2, label=d) i += 1 plt.legend() if len(csv_file) > 0: df.to_csv(os.path.join(csv_file), index=False) return TimeMxCtr, TimeMxExp, df def state_onset(ppath, recordings, istate, min_dur, iseq=0, ma_thr=10, tstart=0, tend=-1, pplot=True): """ calculate time point of first occurance of state $istate in @recordings :param ppath: base folder :param recordings: list of recordings :param istate: 1 = REM, 2 = Wake, 3 = NREM :param min_dur: minimum duration in [s] to be counted as first occurance :param iseq: calculate the $iseq-th occurance state $istate :param ma_thr: microarousal threshould :param tstart: float, quantificiation of sleep starts at $start s :param tend: float, quantification of sleep ends at $tend s :return: np.array, average latency (in minutes) for each mouse. If one mouse contributes several recordings the average latency is computed """ if type(recordings) != list: recordings = [recordings] # get all mice in recordings mice = [] dt = 2.5 for rec in recordings: idf = re.split('_', rec)[0] if not idf in mice: mice.append(idf) latency = {m:[] for m in mice} for rec in recordings: SR = get_snr(ppath, rec) # Number of EEG bins / brainstate bin NBIN = np.round(2.5 * SR) # Precise time bin duration of each brain state: dt = NBIN * 1.0 / SR idf = re.split('_', rec)[0] M,K = load_stateidx(ppath, rec) # flatten out microarousals if istate == 3 and ma_thr > 0: seq = get_sequences(np.where(M==2)[0]) for s in seq: if len(s)*dt <= ma_thr: M[s] = 3 kcut = np.where(K>=0)[0] M = M[kcut] istart = int(np.round(tstart/dt)) iend = int(np.round(tend/dt)) if tend == -1: iend = len(M) M = M[istart:iend] seq = get_sequences(np.where(M==istate)[0]) seq = [s for s in seq if len(s) * dt >= min_dur] #ifirst = seq[seq[iseq][0]] ifirst = seq[iseq][0] latency[idf].append(ifirst*dt) for m in mice: latency[m] = np.nanmax(np.array(latency[m])) values = np.array([latency[m]/60. for m in mice]) clrs = sns.color_palette("husl", len(mice)) if pplot: # print latencies for m in mice: print("%s - %.2f min" % (m, latency[m] / 60.)) plt.ion() plt.figure() ax = plt.subplot(111) set_fontsize(14) #plt.bar(range(0, len(values)), values, color='gray') for i in range(len(mice)): plt.plot(i, values[i], 'o', color=clrs[i], label=m) #plt.legend(bbox_to_anchor=(0., 1.0, 1., .102), loc=3, mode='expand', ncol=len(mice), frameon=False) plt.xticks(list(range(0, len(values))), mice) plt.ylabel('Onset Latency (min)') box_off(ax) plt.show() return values def sleep_spectrum(ppath, recordings, istate=1, pmode=1, fres=1/3, ma_thr=20.0, f_max=30, pplot=True, sig_type='EEG', mu=[10, 100], tstart=0, tend=-1, sthres=np.inf, peeg2=False, pnorm=False, single_mode=False, conv=1.0, fig_file='', laser_color='blue', ci='sd'): """ calculate power spectrum for brain state i state for the given recordings. The function first calculates for each mouse the powerspectrum for each istate sequence, and then averages across all sequences. Note: If recordings with different sampling rates are combined, set f_max to a frequency value, which exists for all recordings. @Param: ppath - folder containing all recordings recordings - single recording (string) or list of recordings @Optional: istate - state for which to calculate power spectrum; 1=REM, 2=Wake, 3=NREM fres - resolution of frequency axis; i.e. fres = F[i] - F[i-1] ma_thr - short wake periods <= $ma_thr are considered as sleep f_max - maximal frequency, if f_max==-1: f_max is maximally possible frequency pplot - if True, plot figure showing result pmode - mode: pmode == 1, compare state during laser with baseline outside laser interval pmode == 0, just plot power spectrum for state istate and don't care about laser pmode == 2, compare periods of state if they overlap with laser and if the laser precedes the state with state periods w/o laser. That's is we are looking here at "laser induced" periods; the period itself can be longer as laser stimulation (as long as it follows laser onset). tstart - use EEG starting from time point tstart [seconds] sig_type - string, if 'EMG' calculate EMG amplitude (from the EMG spectrum). E.g., sleepy.sleep_spectrum(ppath, E, istate=2, f_max=30, sig_type='EMG') mu - tuple, lower and upper range for EMG frequencies used for amplitude calculation tend - use data up to tend [seconds], if tend == -1, use data till end sthres - maximum length of bout duration of state $istate used for calculation. If bout duration > $sthres, only use the bout up to $sthres seconds after bout onset. peeg2 - if True, use EEG2 channel for spectrum analysis pnorm - if True, normalize powerspectrum by dividing each frequency through each average power over the whole EEG recording single_mode - if True, plot each single mouse fig_file - if specified save to given file ci - parameter for seaborn.lineplot, if ci=='sd' plot standard deviation, for int values plot confidence interval (e.g. ci=95 will plot the 95% confidence interval). Only works, if there are more than one mouse! errorbars: If it's multiple mice make errorbars over mice; if it's multiple recordings of ONE mouse, show errorbars across recordings; if just one recording show now errorbars @Return: Pow - Dict[No loaser = 0|Laser = 1][array], where array: mice x frequencies, if more than one mouse; otherwise, array: recordings x frequencies F - Frequencies """ if type(recordings) != list: recordings = [recordings] Mice = {} for rec in recordings: idf = re.split('_', rec)[0] if not idf in Mice: Mice[idf] = Mouse(idf, rec, 'E') else: Mice[idf].add(rec) mouse_order = [] for rec in recordings: idf = re.split('_', rec)[0] if not idf in mouse_order: mouse_order.append(idf) # Spectra: Dict[mouse_id][laser_on|laser_off][list of powerspectrum_arrays] Spectra = {} Ids = list(Mice.keys()) for i in Ids: Spectra[i] = {0:[], 1:[]} Spectra[i] = {0:[], 1:[]} for idf in mouse_order: for rec in Mice[idf].recordings: # load EEG if sig_type =='EEG': if not peeg2: EEG = np.squeeze(so.loadmat(os.path.join(ppath, rec, 'EEG.mat'))['EEG']).astype('float')*conv else: EEG = np.squeeze(so.loadmat(os.path.join(ppath, rec, 'EEG2.mat'))['EEG2']).astype('float')*conv elif sig_type == 'EMG': if not peeg2: EEG = np.squeeze(so.loadmat(os.path.join(ppath, rec, 'EMG.mat'))['EMG']).astype('float')*conv else: EEG = np.squeeze(so.loadmat(os.path.join(ppath, rec, 'EMG2.mat'))['EMG2']).astype('float')*conv else: pass # load brain state M,K = load_stateidx(ppath, rec) # set brain states where K<0 to zero; # this whay they are effectively discarded M[K<0] = 0 sr = get_snr(ppath, rec) # calculate time window #twin = int(np.round(sr * (1/fres))) * (1/sr) twin = sr * (1/fres) * (1/sr) # number of time bins for each time bin in spectrogram nbin = int(np.round(sr) * 2.5) # duration of time bin in spectrogram / brainstate dt = nbin * 1/sr nwin = np.round(twin*sr) istart = int(np.round(tstart/dt)) if tend==-1: iend = M.shape[0] else: iend = int(np.round(tend/dt)) istart_eeg = istart*nbin iend_eeg = (iend-1)*nbin+1 M[np.where(M==5)]=2 # flatten out microarousals seq = get_sequences(np.where(M==2)[0]) for s in seq: if len(s)*dt <= ma_thr: M[s] = 3 # get all sequences of state $istate M = M[istart:iend] seq = get_sequences(np.where(M==istate)[0]) EEG = EEG[istart_eeg:iend_eeg] if pnorm: pow_norm = power_spectrum(EEG, nwin, 1 / sr)[0] if pmode == 1 or pmode == 2: laser = load_laser(ppath, rec)[istart_eeg:iend_eeg] (idxs, idxe) = laser_start_end(laser, SR=sr) # downsample EEG time to spectrogram time idxs = [int(i/nbin) for i in idxs] idxe = [int(i/nbin) for i in idxe] laser_idx = [] for (i,j) in zip(idxs, idxe): laser_idx += list(range(i,j+1)) laser_idx = np.array(laser_idx) if pmode == 1 or pmode == 2: # first analyze frequencies not overlapping with laser seq_nolsr = [] for s in seq: s = np.setdiff1d(s, laser_idx) if len(s) > 0: q = get_sequences(s) seq_nolsr += q for s in seq_nolsr: if len(s)*nbin >= nwin: drn = (s[-1]-s[0])*dt if drn > sthres: # b is the end of segment used for power spectrum calculation; # that is, the last index (in raw EEG) of the segment b = (s[0] + int(np.round(sthres/dt)))*nbin else: b = int((s[-1]+1)*nbin) sup = list(range(int(s[0]*nbin), b)) if sup[-1]>len(EEG): sup = list(range(int(s[0]*nbin), len(EEG))) if len(sup) >= nwin: Pow, F = power_spectrum(EEG[sup], nwin, 1/sr) if pnorm: Pow = np.divide(Pow, pow_norm) Spectra[idf][0].append(Pow) # now analyze sequences overlapping with laser seq_lsr = [] for s in seq: if pmode == 1: s = np.intersect1d(s, laser_idx) if len(s) > 0: q = get_sequences(s) seq_lsr += q if pmode == 2: r = np.intersect1d(s, laser_idx) if len(r) > 0 and s[0] in laser_idx: seq_lsr += [s] for s in seq_lsr: # should not be necessary any more... #if pmode == 1: # s = np.intersect1d(s, laser_idx) if len(s)*nbin >= nwin: # calculate power spectrum # upsample indices # brain state time 0 1 2 # EEG time 0-999 1000-1999 2000-2999 drn = (s[-1]-s[0])*dt if drn > sthres: b = (s[0] + int(np.round(sthres/dt)))*nbin else: b = int((s[-1]+1)*nbin) sup = list(range(int(s[0]*nbin), b)) if sup[-1]>len(EEG): sup = list(range(int(s[0]*nbin), len(EEG))) # changed line on 02/08/2019 if len(sup) >= nwin: Pow, F = power_spectrum(EEG[sup], nwin, 1/sr) if pnorm: Pow = np.divide(Pow, pow_norm) Spectra[idf][1].append(Pow) # don't care about laser if pmode == 0: for s in seq: if len(s)*nbin >= nwin: drn = (s[-1]-s[0])*dt if drn > sthres: b = (s[0] + int(np.round(sthres/dt)))*nbin else: b = int((s[-1]+1)*nbin) sup = list(range(int(s[0]*nbin), b)) if sup[-1]>len(EEG): sup = list(range(int(s[0]*nbin), len(EEG))) # changed line on 02/08/2019 if len(sup) >= nwin: Pow, F = power_spectrum(EEG[sup], nwin, 1/sr) if pnorm: Pow = np.divide(Pow, pow_norm) Spectra[idf][0].append(Pow) mF = F.copy() if sig_type == 'EEG': if f_max > -1: ifreq = np.where(F<=f_max)[0] F = F[ifreq] else: f_max = F[-1] else: f_max = F[-1] ifreq = range(0, F.shape[0]) Pow = {0:[], 1:[]} if len(Ids)==1: # only one mouse #Pow[0] = np.array(Spectra[Ids[0]][0]) #Pow[1] = np.array(Spectra[Ids[0]][1]) Pow[0] = np.array([s[ifreq] for s in Spectra[Ids[0]][0]]) Pow[1] = np.array([s[ifreq] for s in Spectra[Ids[0]][1]]) else: # several mice Pow[0] = np.zeros((len(Ids),len(F))) Pow[1] = np.zeros((len(Ids),len(F))) i = 0 for m in Ids: #Pow[0][i,:] = np.array(Spectra[m][0]).mean(axis=0) tmp = [s[ifreq] for s in Spectra[m][0]] Pow[0][i,:] = np.array(tmp).mean(axis=0) if pmode == 1 or pmode == 2: #Pow[1][i,:] = np.array(Spectra[m][1]).mean(axis=0) tmp = [s[ifreq] for s in Spectra[m][1]] Pow[1][i,:] = np.array(tmp).mean(axis=0) i += 1 if pplot: plt.ion() plt.figure() if sig_type == 'EEG': ax = plt.axes([0.2, 0.15, 0.6, 0.7]) n = Pow[0].shape[0] clrs = sns.color_palette("husl", len(mouse_order)) if pmode==1 or pmode==2: if not single_mode: a = Pow[1].mean(axis=0) - Pow[1].std(axis=0) / np.sqrt(n) b = Pow[1].mean(axis=0) + Pow[1].std(axis=0) / np.sqrt(n) plt.fill_between(F, a, b, alpha=0.5, color=laser_color) plt.plot(F, Pow[1].mean(axis=0), color=laser_color, lw=2, label='With laser') else: for i in range(len(mouse_order)): plt.plot(F, Pow[1][i,:], '--', color=clrs[i]) if not single_mode: a = Pow[0].mean(axis=0)-Pow[0].std(axis=0)/np.sqrt(n) b = Pow[0].mean(axis=0)+Pow[0].std(axis=0)/np.sqrt(n) plt.fill_between(F, a, b, alpha=0.5, color='gray') plt.plot(F, Pow[0].mean(axis=0), color='gray', lw=2, alpha=0.5, label='W/o laser') else: for i in range(len(mouse_order)): plt.plot(F, Pow[0][i, :], label=mouse_order[i], color=clrs[i]) plt.legend(bbox_to_anchor=(0., 1.0, 1., .102), loc=3, mode='expand', ncol=len(mouse_order), frameon=False) if pmode>=1 and not single_mode: plt.legend(bbox_to_anchor=(0., 1.0, 1., .102), loc=3, mode='expand', frameon=False) box_off(ax) plt.xlim([0, f_max]) plt.xlabel('Freq. (Hz)') plt.ylabel('Power ($\mathrm{\mu V^2}$)') plt.show() else: # plot EMG amplitude nmice = len(mouse_order) clrs = sns.color_palette("husl", nmice) # plot EMG Ampl = {0:[], 1:[]} # range of frequencies mfreq = np.where((mF >= mu[0]) & (mF <= mu[1]))[0] df = mF[1] - mF[0] if pmode>=1: for i in [0, 1]: Ampl[i] = np.sqrt(Pow[i][:,mfreq].sum(axis=1)*df) else: Ampl[0] = np.sqrt(Pow[0][:,mfreq].sum(axis=1)*df) if pmode>=1: ax = plt.axes([0.2, 0.15, 0.4, 0.7]) ax.bar([0], Ampl[0].mean(), color='gray', label='w/o laser') ax.bar([1], Ampl[1].mean(), color='blue', label='laser') plt.legend(bbox_to_anchor=(0., 1.0, 1., .102), loc=3, mode='expand', frameon=False) if len(Ids) == 1: i=0 plt.plot([0,1], [np.mean(Ampl[0]), np.mean(Ampl[1])], color=clrs[i], label=mouse_order[i]) else: for i in range(nmice): plt.plot([0,1], [Ampl[0][i], Ampl[1][i]], color=clrs[i], label=mouse_order[i]) box_off(ax) plt.ylabel('EMG Ampl. ($\mathrm{\mu V}$)') ax.set_xticks([0,1]) ax.set_xticklabels(['', '']) # some basic stats #[tstats, p] = stats.ttest_rel(Ampl[0], Ampl[1]) #print("Stats for EMG amplitude: t-statistics: %.3f, p-value: %.3f" % (tstats, p)) if len(fig_file) > 0: save_figure(fig_file) # Use seaborn to plot powerspectra with confidence intervals across mice: # At some point I will make this the standard code vals = [] if len(mouse_order) > 0: mi = 0 for m in mouse_order: for i in range(len(F)): if len(mouse_order) > 1: vals.append([0, m, Pow[0][mi][i], F[i]]) else: vals.append([0, m, Pow[0][:,i].mean(), F[i]]) if pmode >= 1: if len(mouse_order) > 1: vals.append([1, m, Pow[1][mi][i], F[i]]) else: vals.append([1, m, Pow[1][:,i].mean(), F[i]]) mi += 1 df = pd.DataFrame(columns=['Lsr', 'Idf', 'Pow', 'Freq'], data=vals) if pplot: plt.figure() ax = plt.subplot(111) if pmode >= 1: sns.lineplot(x='Freq', y='Pow', hue='Lsr', data=df, ci=ci, palette={0:'gray', 1:'blue'}) else: sns.lineplot(x='Freq', y='Pow', data=df, ci=ci, palette=['gray']) box_off(ax) plt.xlim([0, f_max]) return Pow, F, df def set_awake(M, MSP, freq, mu=[10, 100]): imu = np.where((freq>=mu[0]) & (freq<=mu[1]))[0] df = freq[1]-freq[0] widx = np.where(M==2)[0] ampl = np.sqrt(MSP[imu, :].sum(axis=0)*df) wampl = ampl[widx] thr = wampl.mean() + 1*wampl.std() awk_idx = widx[np.where(wampl>thr)[0]] #qwk_idx = np.setdiff1d(widx, awk_idx) M[awk_idx] = 5 return M def sleep_spectrum_simple(ppath, recordings, istate=1, tstart=0, tend=-1, fmax=-1, mu=[10,100], ci='sd', pmode=1, pnorm = False, pplot=True, harmcs=0, harmcs_mode='iplt', iplt_level=0, peeg2=False, pemg2=False, exclusive_mode=0, csv_files=[]): """ caluclate EEG power spectrum using pre-calculate spectogram save in ppath/sp_"name".mat :param ppath: base folder :param recordings: list of recordings :param istate: brain state for which power spectrum is computed. 1-REM, 2-Wake, 3-NREM, 5-"active wake" :param tstart: use EEG/EMG starting from time point tstart [seconds] :param tend: use EEG/EMG up to time point tend [seconds]; if tend=-1, use EEG/EMG till the end :param fmax: maximum frequency shown on x-axis :param ci: 'sd' | int between 0 and 100 specificing confidence interval :param pmode: mode: pmode == 0, just plot power spectrum for state istate and don't care about laser pmode == 1, compare state during laser with baseline outside laser interval :param pnorm: if True, normalize spectrogram by dividing each frequency band by its average power :param pplot: if True, plot figure # What do to with episodes partially overlapping with laser :param exclusive_mode: if > 0, apply some exception for episodes of state $istate, that overlap with laser. Say there's a REM period that only partially overlaps with laser. If $exclusive_mode == 1, then do not use the part w/o laser for the 'no laser' condition; This can be relevant for closed-loop stimulation: The laser turns on after the spontaneous onset of REM sleep. So, the initial part of REM sleep would be interpreted as 'no laser', potentially inducing a bias, because at the very beginning the REM spectrum looks different than later on. If $exclusive_mode == 2, then add the part w/o laser to the 'with laser' condition. If $exclusive_mode == 0, then interprete the part w/o laser as 'w/o laser'. # interpolating/discarding harmonics :param harmcs, harmcs_mode, iplt_level: if $harmcs > 0 and $harmcs_mode == 'emg', remove all harmonics of base frequency $harmcs, from the frequencies used for EMG amplitude calculation; do nothing for harmonics in EEG if $harmcs > 0 and $harmcs_mode == 'iplt', interpolate all harmonics by substituting the power at the harmonic by a sum of the neighboring frequencies. If $iplt_level == 1, only take one neighboring frequency below and above the harmonic, if $iplt_level == 2, use the two neighboring frequencies above and below for the interpolation :parm peeg2: if True, use EEG2.mat instead of EEG.mat for EEG powerspectrum calculation :param pemg2: if True, use EMG2 for EMG amplitude calcuation :param csv_files: if two file names are provided, the results for EEG power spectrum and EMG amplitude are saved to the csv files. The EEG powerspectrum is saved to the first file. :return (ps_mx, freq, df, df_amp) ps_mx: dict: 0|1 -> np.array(no. mice x frequencies) freq: vector with frequencies df: DataFrame with EEG powerspectrum; columns: 'Idf', 'Freq', 'Pow', 'Lsr' df_amp: DataFrame with EMG amplitude; columns: 'Idf', 'Amp', 'Lsr' """ def _interpolate_harmonics(SP, freq, f_max, harmcs, iplt_level): df = freq[2]-freq[1] for h in np.arange(harmcs, f_max, harmcs): i = np.argmin(np.abs(freq - h)) if np.abs(freq[i] - h) < df and h != 60: if iplt_level == 2: SP[i,:] = (SP[i-2:i,:] + SP[i+1:i+3,:]).mean(axis=0) * 0.5 elif iplt_level == 1: SP[i,:] = (SP[i-1,:] + SP[i+1,:]) * 0.5 else: pass return SP # def _interpolate_harmonics(SP, freq, f_max, harmcs, iplt_level): # df = freq[2]-freq[1] # for h in np.arange(harmcs, f_max, harmcs): # i = np.argmin(np.abs(freq - h)) # if np.abs(freq[i] - h) < df and h != 60: # SP[i,:] = (SP[i-iplt_level:i,:] + SP[i+1:i+1+iplt_level,:]).mean(axis=0) * 0.5 # return SP mice = [] for rec in recordings: idf = re.split('_', rec)[0] if not idf in mice: mice.append(idf) ps_mice = {0: {m:[] for m in mice}, 1: {m:[] for m in mice}} amp_mice = {0: {m:0 for m in mice}, 1: {m:0 for m in mice}} count_mice = {0: {m:0 for m in mice}, 1: {m:0 for m in mice}} data = [] for rec in recordings: print(rec) emg_loaded = False # load brain state idf = re.split('_', rec)[0] M = load_stateidx(ppath, rec)[0] sr = get_snr(ppath, rec) # number of time bins for each time bin in spectrogram nbin = int(np.round(sr) * 2.5) dt = nbin * (1/sr) # determine start and end of time frame used for calculation istart = int(np.round(tstart / dt)) if tend > -1: iend = int(np.round(tend / dt)) else: iend = len(M) istart_eeg = istart*nbin #iend_eeg = (iend-1)*nbin+1 iend_eeg = iend*nbin M = M[istart:iend] if istate == 5: tmp = so.loadmat(os.path.join(ppath, rec, 'msp_%s.mat' % rec), squeeze_me=True) if not pemg2: MSP = tmp['mSP'][:,istart:iend] freq_emg = tmp['freq'] else: MSP = tmp['mSP2'][:,istart:iend] freq_emg = tmp['freq'] emg_loaded = True M = set_awake(M[istart:iend], MSP[istart:iend], freq_emg, mu=mu) if type(istate) == int: idx = np.where(M==istate)[0] else: idx = np.array([], dtype='int') for s in istate: idx = np.concatenate((idx, np.where(M==s)[0])) # load laser if pmode == 1: lsr = load_laser(ppath, rec) idxs, idxe = laser_start_end(lsr[istart_eeg:iend_eeg]) # downsample EEG time to spectrogram time idxs = [int(i/nbin) for i in idxs] idxe = [int(i/nbin) for i in idxe] laser_idx = [] for (i,j) in zip(idxs, idxe): laser_idx += range(i,j+1) laser_idx = np.array(laser_idx) idx_lsr = np.intersect1d(idx, laser_idx) idx_nolsr = np.setdiff1d(idx, laser_idx) if exclusive_mode > 0 and exclusive_mode < 3: #rm_idx = [] rem_seq = get_sequences(np.where(M==1)[0]) for s in rem_seq: d = np.intersect1d(s, idx_lsr) if len(d) > 0: # that's the part of the REM period with laser # that does not overlap with laser drm = np.setdiff1d(s, d) idx_nolsr = np.setdiff1d(idx_nolsr, drm) if exclusive_mode == 2: idx_lsr = np.union1d(idx_lsr, drm) if exclusive_mode == 3: rem_trig = so.loadmat(os.path.join(ppath, rec, 'rem_trig_%s.mat'%rec), squeeze_me=True)['rem_trig'] rem_trig = downsample_vec(rem_trig, nbin) rem_trig[np.where(rem_trig>0)] = 1 trig_idx = np.where(rem_trig==1)[0] idx_lsr = np.intersect1d(trig_idx, idx_lsr) idx_nolsr = np.intersect1d(trig_idx, idx_nolsr) ###################################################################### # load EEG spectrogram tmp = so.loadmat(os.path.join(ppath, rec, 'sp_%s.mat' % rec), squeeze_me=True) if not peeg2: SP = tmp['SP'][:,istart:iend] else: SP = tmp['SP2'][:, istart:iend] if pnorm: sp_mean = np.mean(SP, axis=1) SP = np.divide(SP, np.tile(sp_mean, (SP.shape[1], 1)).T) freq = tmp['freq'] df = freq[1]-freq[0] if fmax > -1: ifreq = np.where(freq <= fmax)[0] freq = freq[ifreq] SP = SP[ifreq,:] # load EMG spectrogram if not emg_loaded: tmp = so.loadmat(os.path.join(ppath, rec, 'msp_%s.mat' % rec), squeeze_me=True) if not pemg2: MSP = tmp['mSP'][:,istart:iend] freq_emg = tmp['freq'] else: MSP = tmp['mSP2'][:,istart:iend] freq_emg = tmp['freq'] imu = np.where((freq_emg>=mu[0]) & (freq_emg<=mu[-1]))[0] if harmcs > 0 and harmcs_mode == 'iplt': SP = _interpolate_harmonics(SP, freq, fmax, harmcs, iplt_level) MSP = _interpolate_harmonics(MSP, freq, fmax, harmcs, iplt_level) if harmcs > 0 and harmcs_mode == 'emg': harm_freq = np.arange(0, freq_emg.max(), harmcs) for h in harm_freq: imu = np.setdiff1d(imu, imu[np.where(np.round(freq_emg[imu], decimals=1)==h)[0]]) tmp = 0 for i in imu: tmp += MSP[i,:] * (freq_emg[i]-freq_emg[i-1]) emg_ampl = np.sqrt(tmp) else: emg_ampl = np.sqrt(MSP[imu,:].sum(axis=0)*df) ################################################### if pmode == 1: count_mice[0][idf] += len(idx_nolsr) count_mice[1][idf] += len(idx_lsr) ps_lsr = SP[:,idx_lsr].sum(axis=1) ps_nolsr = SP[:,idx_nolsr].sum(axis=1) ps_mice[1][idf].append(ps_lsr) ps_mice[0][idf].append(ps_nolsr) amp_mice[1][idf] += emg_ampl[idx_lsr].sum() amp_mice[0][idf] += emg_ampl[idx_nolsr].sum() else: count_mice[0][idf] += len(idx) ps_nolsr = SP[:,idx].sum(axis=1) ps_mice[0][idf].append(ps_nolsr) amp_mice[0][idf] += emg_ampl[idx].sum() lsr_cond = [] if pmode == 0: lsr_cond = [0] else: lsr_cond = [0,1] ps_mx = {0:[], 1:[]} amp_mx = {0:[], 1:[]} for l in lsr_cond: mx = np.zeros((len(mice), len(freq))) amp = np.zeros((len(mice),)) for (i,idf) in zip(range(len(mice)), mice): mx[i,:] = np.array(ps_mice[l][idf]).sum(axis=0) / count_mice[l][idf] amp[i] = amp_mice[l][idf] / count_mice[l][idf] ps_mx[l] = mx amp_mx[l] = amp # transform data arrays to pandas dataframe data_nolsr = list(np.reshape(ps_mx[0], (len(mice)*len(freq),))) amp_freq = list(freq)*len(mice) amp_idf = reduce(lambda x,y: x+y, [[b]*len(freq) for b in mice]) if pmode == 1: data_lsr = list(np.reshape(ps_mx[1], (len(mice)*len(freq),))) list_lsr = ['yes']*len(freq)*len(mice) + ['no']*len(freq)*len(mice) data = [[a,b,c,d] for (a,b,c,d) in zip(amp_idf*2, amp_freq*2, data_lsr+data_nolsr, list_lsr)] else: list_lsr = ['no']*len(freq)*len(mice) data = [[a,b,c,d] for (a,b,c,d) in zip(amp_idf, amp_freq, data_nolsr, list_lsr)] df =
pd.DataFrame(columns=['Idf', 'Freq', 'Pow', 'Lsr'], data=data)
pandas.DataFrame
""" Copyright 2022 <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np import pandas as pd from impetuous.convert import create_synonyms , flatten_dict from scipy.stats import rankdata from scipy.stats import ttest_rel , ttest_ind , mannwhitneyu from scipy.stats.mstats import kruskalwallis as kruskwall from sklearn.decomposition import PCA import itertools import typing def subArraysOf ( Array:list,Array_:list=None ) -> list : if Array_ == None : Array_ = Array[:-1] if Array == [] : if Array_ == [] : return ( [] ) return( subArraysOf(Array_,Array_[:-1]) ) return([Array]+subArraysOf(Array[1:],Array_)) def permuter( inputs:list , n:int ) -> list : # permuter( inputs = ['T2D','NGT','Female','Male'] , n = 2 ) return( [p[0] for p in zip(itertools.permutations(inputs,n))] ) def grouper ( inputs, n ) : iters = [iter(inputs)] * n return zip ( *iters ) def whiten_data ( Xdf ) : # REMEMBER BOYS AND GIRLS THIS IS SOMETHING YOU MIGHT NOT WANT TO DO :) mean_center = lambda x: x-np.mean(x,0) X = Xdf.values u , s , v = np.linalg.svd( mean_center(X),full_matrices=False ) X_white = np.dot(X,np.dot( np.diag(s**-1),np.abs(v) )) # we don't know the sign return ( pd.DataFrame( X_white,index=Xdf.index.values,columns=Xdf.columns ) ) def threshold ( E , A ) : if not 'pandas' in str(type(A)) or not 'pandas' in str(type(E)): print ( "ERROR MUST SUPPLY TWO PANDAS DATAFRAMES" ) return ( -1 ) thresholds_df = pd .DataFrame ( np.dot( E,A.T ) , columns = A .index , index = E .index ) .apply ( lambda x:x/np.sum(E,1) ) return ( thresholds_df ) def solve ( C = pd.DataFrame([ [10,1],[3,5] ]) , E = pd.DataFrame([ [25],[31] ]) ): if not 'pandas' in str(type(C)) or not 'pandas' in str(type(E)): print ( "ERROR MUST SUPPLY TWO PANDAS DATAFRAMES" ) return ( -1 ) recover = lambda U,S,Vt : np.dot(U*S,Vt) cU, cS, cVt = np.linalg.svd(C, full_matrices=False ) cST = 1/cS psuedo_inverse = pd.DataFrame( recover(cVt.T,cST,cU.T) , index=C.columns ,columns=C.index ) identity = np.dot(C,psuedo_inverse) TOLERANCE = np.max( np.sqrt( ( identity * ( ( 1-np.eye(len(np.diag(identity)))) ) )**2 )) return ( np.dot( psuedo_inverse,E),TOLERANCE ) import re def find_category_variables( istr ) : return ( re.findall( r'C\((.*?)\)', istr ) ) def encode_categorical( G = ['Male','Male','Female'] ): # # CREATES AN BINARY ENCODING MATRIX FROM THE SUPPLIED LIST # USES A PANDAS DATAFRAME AS INTERMEDIATE FOR ERROR CHECKING # THIS PUTS THE O IN OPLS (ORTHOGONAL) # ugl = list(set(G)) ; n = len(ugl) ; m = len(G) lgu = { u:j for u,j in zip(ugl,range(n)) } enc_d = pd.DataFrame( np.zeros(m*n).reshape(-1,n),columns=ugl ) for i in range ( m ) : j = lgu[G[i]] enc_d.iloc[i,j] = 1 return ( enc_d ) def create_encoding_journal( use_categories, journal_df ) : encoding_df = None for category in use_categories : catvals = journal_df.loc[category].to_list() cat_encoding = encode_categorical( catvals ) cat_encoding.index = journal_df.columns.values if encoding_df is None : encoding_df = cat_encoding.T else : encoding_df = pd.concat([encoding_df,cat_encoding.T]) return ( encoding_df ) def quantify_density_probability ( rpoints , cutoff = None ) : # # DETERMINE P VALUES loc_pdf = lambda X,mean,variance : [ 1./np.sqrt(2.*np.pi*variance)*np.exp(-((x-mean)/(2.*variance))**2) for x in X ] from scipy.special import erf as erf_ loc_cdf = lambda X,mean,variance : [ 0.5*( 1. + erf_( (x-mean)/np.sqrt( 2.*variance ) ) ) for x in X ] loc_Q = lambda X,mean,variance : [ 1. - 0.5*( 1. + erf_( (x-mean)/np.sqrt( 2.*variance ) ) ) for x in X ] M_,Var_ = np.mean(rpoints),np.std(rpoints)**2 # # INSTEAD OF THE PROBABILTY DENSITY WE RETURN THE FRACTIONAL RANKS # SINCE THIS ALLOWS US TO CALCULATE RANK STATISTICS FOR THE PROJECTION corresponding_density = rankdata (rpoints,'average') / len(rpoints) # loc_pdf( rpoints,M_,Var_ ) corresponding_pvalue = loc_Q ( rpoints,M_,Var_ ) # # HERE WE MIGHT BE DONE if not cutoff is None : resolution = 10. ; nbins = 100. # # ONLY FOR ASSESING h1,h2 = np.histogram(rpoints,bins=int(np.ceil(len(rpoints)/resolution))) bin_radius = 0.5 * ( h2[1:] + h2[:-1] ) radial_density = np.cumsum( h1 )/np.sum( h1 ) # lt # # NOW RETRIEVE ALL DENSITIES OF THE RADII tol = 1./nbins corresponding_radius = np.min( bin_radius[radial_density > cutoff/nbins] ) return ( corresponding_pvalue , corresponding_density, corresponding_radius ) return ( corresponding_pvalue , corresponding_density ) def find_category_interactions ( istr ) : all_cats = re.findall( r'C\((.*?)\)', istr ) interacting = [ ':' in c for c in istr.split(')') ][ 0:len(all_cats) ] interacting_categories = [ [all_cats[i-1],all_cats[i]] for i in range(1,len(interacting)) if interacting[i] ] return ( interacting_categories ) def create_encoding_data_frame ( journal_df , formula , bVerbose = False ) : # # THE JOURNAL_DF IS THE COARSE GRAINED DATA (THE MODEL) # THE FORMULA IS THE SEMANTIC DESCRIPTION OF THE PROBLEM # interaction_pairs = find_category_interactions ( formula.split('~')[1] ) add_pairs = [] sjdf = set(journal_df.index) if len( interaction_pairs ) > 0 : for pair in interaction_pairs : cpair = [ 'C('+p+')' for p in pair ] upair = [ pp*(pp in sjdf)+cp*(cp in sjdf and not pp in sjdf) for (pp,cp) in zip( pair,cpair) ] journal_df.loc[ ':'.join(upair) ] = [ p[0]+'-'+p[1] for p in journal_df.loc[ upair,: ].T.values ] add_pairs.append(':'.join(upair)) use_categories = list(set(find_category_variables(formula.split('~')[1]))) cusecats = [ 'C('+p+')' for p in use_categories ] use_categories = [ u*( u in sjdf) + cu *( cu in sjdf ) for (u,cu) in zip(use_categories,cusecats) ] use_categories = [ *use_categories,*add_pairs ] # if len( use_categories )>0 : encoding_df = create_encoding_journal ( use_categories , journal_df ).T else : encoding_df = None # if bVerbose : print ( [ v for v in encoding_df.columns.values ] ) print ( 'ADD IN ANY LINEAR TERMS AS THEIR OWN AXIS' ) # # THIS TURNS THE MODEL INTO A MIXED LINEAR MODEL add_df = journal_df.loc[ [c.replace(' ','') for c in formula.split('~')[1].split('+') if not 'C('in c],: ] if len(add_df)>0 : if encoding_df is None : encoding_df = add_df.T else : encoding_df = pd.concat([ encoding_df.T , journal_df.loc[ [ c.replace(' ','') for c in formula.split('~')[1].split('+') if not 'C(' in c] , : ] ]).T return ( encoding_df.apply(pd.to_numeric) ) def interpret_problem ( analyte_df , journal_df , formula , bVerbose=False ) : # # THE JOURNAL_DF IS THE COARSE GRAINED DATA (THE MODEL) # THE ANALYTE_DF IS THE FINE GRAINED DATA (THE DATA) # THE FORMULA IS THE SEMANTIC DESCRIPTION OF THE PROBLEM # interaction_pairs = find_category_interactions ( formula.split('~')[1] ) add_pairs = [] if len( interaction_pairs )>0 : for pair in interaction_pairs : journal_df.loc[ ':'.join(pair) ] = [ p[0]+'-'+p[1] for p in journal_df.loc[ pair,: ].T.values ] add_pairs.append(':'.join(pair)) use_categories = list(set(find_category_variables(formula.split('~')[1]))) use_categories = [u for u in use_categories if 'C('+u+')' in set(formula.replace(' ','').split('~')[1].split('+'))] use_categories = [ *use_categories,*add_pairs ] # if len( use_categories )>0 : encoding_df = create_encoding_journal ( use_categories , journal_df ).T else : encoding_df = None # if bVerbose : print ( [ v for v in encoding_df.columns.values ] ) print ( 'ADD IN ANY LINEAR TERMS AS THEIR OWN AXIS' ) # # THIS TURNS THE MODEL INTO A MIXED LINEAR MODEL add_df = journal_df.loc[ [c.replace(' ','') for c in formula.split('~')[1].split('+') if not 'C('in c],: ] if len(add_df)>0 : if encoding_df is None : encoding_df = add_df.T else : encoding_df = pd.concat([ encoding_df.T , journal_df.loc[ [ c.replace(' ','') for c in formula.split('~')[1].split('+') if not 'C(' in c] , : ] ]).T return ( encoding_df ) def calculate_alignment_properties ( encoding_df , quantx, quanty, scorex, analyte_df = None , journal_df = None , bVerbose = False , synonyms = None , blur_cutoff = 99.8 , exclude_labels_from_centroids = [''] , study_axii = None , owner_by = 'tesselation' ): if bVerbose : print ( np.shape(encoding_df) ) print ( np.shape(analyte_df) ) print ( 'qx:',np.shape(quantx) ) print ( 'qy:',np.shape(quanty) ) print ( 'sx:',np.shape(scorex) ) print ( 'WILL ASSIGN OWNER BY PROXIMITY TO CATEGORICALS' ) if analyte_df is None or journal_df is None: print ( 'USER MUST SUPPLY ANALYTE AND JOURNAL DATA FRAMES' ) exit(1) # # THESE ARE THE CATEGORICAL DESCRIPTORS use_centroid_indices = [ i for i in range(len(encoding_df.columns.values)) if ( encoding_df.columns.values[i] not in set( exclude_labels_from_centroids ) ) ] # use_centroids = list( quanty[use_centroid_indices] ) use_labels = list( encoding_df.columns.values[use_centroid_indices] ) # if owner_by == 'tesselation' : transcript_owner = [ use_labels[ np.argmin([ np.sum((xw-cent)**2) for cent in use_centroids ])] for xw in quantx ] sample_owner = [ use_labels[ np.argmin([ np.sum((yw-cent)**2) for cent in use_centroids ])] for yw in scorex ] # if owner_by == 'angle' : angular_proximity = lambda B,A : 1 - np.dot(A,B) / ( np.sqrt(np.dot(A,A))*np.sqrt(np.dot(B,B)) ) transcript_owner = [ use_labels[ np.argmin([ angular_proximity(xw,cent) for cent in use_centroids ])] for xw in quantx ] sample_owner = [ use_labels[ np.argmin([ angular_proximity(yw,cent) for cent in use_centroids ])] for yw in scorex ] # # print ( 'PLS WEIGHT RADIUS' ) radius = lambda vector:np.sqrt(np.sum((vector)**2)) # radii # # print ( 'ESTABLISH LENGTH SCALES' ) xi_l = np.max(np.abs(quantx),0) # rpoints = np.array( [ radius( v/xi_l ) for v in quantx ] ) # HERE WE MERGE THE AXES xpoints = np.array( [ radius((v/xi_l)[0]) for v in quantx ] ) # HERE WE USE THE X AXES ypoints = np.array( [ radius((v/xi_l)[1]) for v in quantx ] ) # HERE WE USE THE Y AXES # # print ( 'ESTABLISH PROJECTION OF THE WEIGHTS ONTO THEIR AXES' ) proj = lambda B,A : np.dot(A,B) / np.sqrt( np.dot(A,A) ) # # ADDING IN ADDITIONAL DIRECTIONS # THAT WE MIGHT BE INTERESTED IN if 'list' in str( type( study_axii ) ): for ax in study_axii : if len( set( ax ) - set( use_labels ) ) == 0 and len(ax)==2 : axsel = np.array([ use_centroids[i] for i in range(len(use_labels)) if use_labels[i] in set(ax) ]) axis_direction = axsel[0]-axsel[1] use_labels .append( '-'.join(ax) ) use_centroids .append( np.array(axis_direction) ) proj_df = pd.DataFrame( [ [ np.abs(proj(P/xi_l,R/xi_l)) for P in quantx ] for R in use_centroids ] , index = use_labels , columns=analyte_df.index.values ) # # print ( 'P VALUES ALIGNED TO PLS AXES' ) for idx in proj_df.index : proj_p,proj_rho = quantify_density_probability ( proj_df.loc[idx,:].values ) proj_df = proj_df.rename( index = {idx:idx+',r'} ) proj_df.loc[idx+',p'] = proj_p proj_df.loc[idx+',rho'] = proj_rho # # print ( 'THE EQUIDISTANT 1D STATS' ) corresponding_pvalue , corresponding_density , corresponding_radius = quantify_density_probability ( rpoints , cutoff = blur_cutoff ) # # print ( 'THE TWO XY 1D STATS' ) corr_pvalue_0 , corr_density_0 = quantify_density_probability ( xpoints ) corr_pvalue_1 , corr_density_1 = quantify_density_probability ( ypoints ) # bOrderedAlphas = False if True : # DO ALPHA LEVELS BASED ON DENSITY bOrderedAlphas = True use_points = rpoints > corresponding_radius ordered_alphas = [ float(int(u))*0.5 + 0.01 for u in use_points ] result_dfs = [] # # print ( 'COMPILE RESULTS FRAME' ) for ( lookat,I_ ) in [ ( quantx , 0 ) , ( scorex , 1 ) ] : lookat = [ [ l[0],l[1] ] for l in lookat ] if I_ == 1 : aidx = journal_df.columns.values else : aidx = analyte_df.index.values qdf = pd.DataFrame( [v[0] for v in lookat] , index=aidx , columns = ['x'] ) qdf['y'] = [ v[1] for v in lookat ] names = aidx if I_ == 0 : qdf[ 'owner' ] = transcript_owner qdf['Corr,p' ] = corresponding_pvalue qdf['Corr,r' ] = corresponding_density qdf['Corr0,p'] = corr_pvalue_0 qdf['Corr0,r'] = corr_density_0 qdf['Corr1,p'] = corr_pvalue_1 qdf['Corr1,r'] = corr_density_1 qdf = pd.concat([qdf.T,proj_df]).T if bOrderedAlphas : qdf[ 'alpha' ] = ordered_alphas else : qdf['alpha'] = [ '0.3' for a in transcript_owner ] else : qdf['owner'] = sample_owner # The default should be the aligned projection weight qdf['alpha'] = [ '0.2' for n in names ] if synonyms is None : qdf['name'] = names else : qdf['name'] = [ synonyms[v] if v in synonyms else v for v in names ] result_dfs.append(qdf.copy()) return ( result_dfs ) def run_rpls_regression ( analyte_df , journal_df , formula , bVerbose = False , synonyms = None , blur_cutoff = 99.8 , exclude_labels_from_centroids = [''] , pls_components = 2, bDeveloperTesting = False , study_axii = None , owner_by = 'tesselation' ) : encoding_df = interpret_problem ( analyte_df , journal_df , formula , bVerbose = bVerbose ) from sklearn.cross_decomposition import PLSRegression as PLS if not bDeveloperTesting : pls_components = 2 rpls = PLS( pls_components ) rpls_res = rpls.fit( X = analyte_df.T.values , Y = encoding_df .values ) quantx,quanty = rpls_res.x_weights_ , rpls_res.y_weights_ scorex = rpls_res.x_scores_ res_df = calculate_alignment_properties ( encoding_df , quantx, quanty, scorex, journal_df = journal_df, analyte_df = analyte_df , blur_cutoff = blur_cutoff , bVerbose = bVerbose, exclude_labels_from_centroids = exclude_labels_from_centroids , study_axii = study_axii , owner_by = owner_by ) return ( res_df ) import impetuous.fit as ifit import impetuous.clustering as icluster def run_shape_alignment_clustering ( analyte_df , journal_df , formula, bVerbose = False ) : NOTE_ = "This is just a kmeans in arbitrary dimensions that start out with centroids that have been shape aligned" encoding_df = interpret_problem ( analyte_df , journal_df , formula , bVerbose = bVerbose ) Q = encoding_df.T.apply( lambda x:(rankdata(x,'average')-0.5)/len(x) ).values P = analyte_df .apply( lambda x:(rankdata(x,'average')-0.5)/len(x) ).values centroids = ifit.ShapeAlignment( P, Q , bReturnTransform = False , bShiftModel = True , bUnrestricted = True ) # # FOR DIAGNOSTIC PURPOSES centroids_df = pd.DataFrame ( centroids , index = encoding_df.columns , columns = encoding_df.index ) lookup_ = {i:n for n,i in zip( centroids_df.index,range(len(centroids_df.index)) ) } labels , centroids = icluster.seeded_kmeans( P , centroids ) res_df = pd.DataFrame( [labels] , columns=analyte_df.index , index=['cluster index'] ) nam_df = pd.DataFrame( [ lookup_[l] for l in labels ] , columns = ['cluster name'] , index = analyte_df.index ).T res_df = pd.concat( [ res_df , nam_df ] ) clusters_df = pd.concat( [ centroids_df, pd.DataFrame( res_df.T.groupby('cluster name').apply(len),columns=['size']) ] ,axis=1 ) return ( res_df , clusters_df ) def knn_clustering_alignment ( P, Q , bHighDim = False ) : print ( "DOING KMEANS ALIGNMENT INSTEAD" ) return ( kmeans_clustering_alignment( P , Q , bHighDim = bHighDim ) ) def kmeans_clustering_alignment( P , Q , bHighDim=False ) : NOTE_ = "This is just a standard kmeans in arbitrary dimensions that start out with centroids that have been shape aligned" ispanda = lambda P: 'pandas' in str(type(P)).lower() BustedPanda = lambda R : R.values if ispanda(R) else R P_ = BustedPanda ( P ) Q_ = BustedPanda ( Q ) if bHighDim : centroids = ifit .HighDimensionalAlignment ( P_ , Q_ ) else : centroids = ifit .ShapeAlignment ( P_ , Q_ , bReturnTransform = False , bShiftModel = True , bUnrestricted = True ) if ispanda ( Q ) : # # FOR DIAGNOSTIC PURPOSES centroids_df = pd.DataFrame ( centroids , index = Q.index , columns = Q.columns ) lookup_ = {i:n for n,i in zip( centroids_df.index,range(len(centroids_df.index)) ) } labels , centroids = icluster.seeded_kmeans( P_ , centroids ) if ispanda ( Q ) and ispanda ( P ) : # # MORE DIAGNOSTICS res_df = pd.DataFrame( [labels] , columns=P.index , index=['cluster index'] ) res_df .loc[ 'cluster name' ] = [ lookup_[l] for l in res_df.loc['cluster index'].values ] print ( res_df ) return ( np.array(labels), np.array(centroids) ) def tol_check( val, TOL=1E-10 ): if val > TOL : print ( "WARNING: DATA ENTROPY HIGH (SNR LOW)", val ) ispanda = lambda P : 'pandas' in str(type(P)).lower() def multifactor_solution ( analyte_df , journal_df , formula , bLegacy = False ) : A , J , f = analyte_df , journal_df , formula if bLegacy : encoding_df = interpret_problem ( analyte_df = A , journal_df = J , formula = f ).T else : encoding_df = create_encoding_data_frame ( journal_df = J , formula = f ).T solution_ = solve ( A.T, encoding_df.T ) tol_check ( solution_[1] ) beta_df = pd.DataFrame ( solution_[0] , index=A.index , columns=encoding_df.index ) U, S, VT = np.linalg.svd ( beta_df.values,full_matrices=False ) P = pd.DataFrame( U.T , index = [ 'Comp'+str(r) for r in range(len(U.T))] , columns = A.index ) W = pd.DataFrame( VT , index = [ 'Comp'+str(r) for r in range(len(U.T))] , columns = encoding_df.index ) Z = threshold ( encoding_df.T , S*W ) .T return ( P.T , W.T , Z.T , encoding_df.T , beta_df ) def multifactor_evaluation ( analyte_df , journal_df , formula ) : # # ALTOUGH A GOOD METHOD IT IS STILL NOT SUFFICIENT # P, W, Z, encoding_df , beta_df = multifactor_solution ( analyte_df , journal_df , formula ) eval_df = beta_df.apply(lambda x:x**2) all = [beta_df] for c in eval_df.columns : all.append ( pd.DataFrame ( quantify_density_probability ( eval_df.loc[:,c].values ), index = [c+',p',c+',r'], columns=eval_df.index ).T) res_df = pd.concat( all,axis=1 ) for c in res_df.columns: if ',p' in c: q = [ qv[0] for qv in qvalues(res_df.loc[:,c].values) ] res_df.loc[:,c.split(',p')[0]+',q'] = q return ( res_df ) def regression_assessment ( model , X , y , bLog = False ) : desc_ = """ ALTERNATIVE NAIVE MODEL ASSESSMENT FOR A REGRESSION MODEL !PRVT2D1701CM5487! """ y_ = y coefs = model.coef_ mstat = dict() if bLog : X = np.array( [ [ np.log(x) for x in xx ] for xx in X ]) yp = np.exp(np.dot( coefs, X ) + model.intercept_ ) else : yp = (np.dot( coefs, X ) + model.intercept_ ) # n = len ( y_ ) ; p = len(coefs) ym = np.mean( y_ ) # CRITICAL DIMENSION ... # # BZ FORMS TSS = np.array([ np.sum(( y_ - ym ) ** 2, axis=0) ])[0]; dof_tss = n-1 ; mstat['TSS'] = TSS RSS = np.array([ np.sum(( y_ - yp ) ** 2, axis=0) ])[0]; dof_rss = n-p ; mstat['RSS'] = RSS ESS = np.array([ np.sum(( yp - ym ) ** 2, axis=0) ])[0]; dof_ess = p-1 ; mstat['ESS'] = ESS mstat['dof_tss'] = dof_tss ; mstat['dof_rss'] = dof_rss ; mstat['dof_ess'] = dof_ess # TMS = TSS / dof_tss ; mstat['TMS'] = TMS RMS = RSS / dof_rss ; mstat['RMS'] = RMS EMS = ESS / dof_ess ; mstat['EMS'] = EMS # # F-TEST dof_numerator = dof_rss dof_denominator = dof_ess from scipy.stats import f fdist = f( dof_numerator , dof_denominator ) f0 = EMS / RMS # mstat['dof_numerator'] = dof_numerator mstat['dof_denominator'] = dof_denominator mstat['p-value'] = 1 - fdist.cdf(f0) mstat['f0'] = f0 mstat['yp'] = yp mstat['model'] = model # return ( mstat ) def proj_c ( P ) : # P CONTAINS MUTUTALLY ORTHOGONAL COMPONENTS ALONG THE COLUMNS # THE CS CALCULATION MIGHT SEEM STRANGE BUT FULLFILS THE PURPOSE if not ispanda(P) : # ispandor är coola print ( "FUNCTION REQUIRES A SAIGA OR PANDA DATA FRAME" ) CS = P.T.apply( lambda x: pd.Series( [x[0],x[1]]/np.sqrt(np.sum(x**2)),index=['cos','sin']) ).T RHO = P.T.apply( lambda x: np.sqrt(np.sum(x**2)) ) CYL = pd.concat( [RHO*CS['cos'],RHO*CS['sin']],axis=1 ) CYL.columns = ['X','Y'] return ( CYL ) def multivariate_factorisation ( analyte_df , journal_df , formula , bVerbose = False , synonyms = None , blur_cutoff = 99.8 , exclude_labels_from_centroids = [''] , bDeveloperTesting = False , bReturnAll = False , study_axii = None , owner_by = 'angle' , bDoRecast = False , bUseThresholds = False ) : P, W, Z, encoding_df , beta_df = multifactor_solution ( analyte_df , journal_df , formula ) # # USE THE INFLATION PROJECTION AS DEFAULT if not bUseThresholds : aA = np.linalg.svd ( analyte_df - np.mean(np.mean(analyte_df)) , full_matrices=False ) aE = np.linalg.svd ( encoding_df.T , full_matrices=False ) Z = pd.DataFrame ( np.dot( np.dot( W.T , aE[-1] ), aA[-1]) , columns = encoding_df.T.columns , index= [ 'mComp' + str(r) for r in range(len(aE[-1]))] ).T if bDoRecast : print ( "WARNING: THROWING AWAY INFORMATION IN ORDER TO DELIVER A" ) print ( " VISUALLY MORE PLEASING POINT CLOUD ... ") P = proj_c( P ) W = proj_c( W ) Z = proj_c( Z ) res_df = calculate_alignment_properties ( encoding_df , quantx = P.values , quanty = W.values , scorex = Z.values , journal_df = journal_df , analyte_df = analyte_df , blur_cutoff = blur_cutoff , bVerbose = bVerbose , exclude_labels_from_centroids = exclude_labels_from_centroids , study_axii = study_axii , owner_by = owner_by ) if bReturnAll : return ( { 'Mutlivariate Solutions' : res_df , 'Feature Scores' : P , 'Encoding Weights' : W , 'Sample Scores' : Z , 'Encoding DataFrame' : encoding_df }) else : return ( res_df ) def associations ( M , W = None , bRanked = True ) : ispanda = lambda P : 'pandas' in str(type(P)).lower() if not ispanda( M ) : print ( "FUNCTION ",'recast_alignments'," REQUIRES ", 'M'," TO BE A PANDAS DATAFRAME" ) bValid = False if not W is None : if not len(W.columns.values) == len(M.columns.values): W = M else: bValid = True else : W = M if bRanked : from scipy.stats import rankdata M = ( M.T.apply(lambda x:rankdata(x,'average')).T-0.5 )/len(M.columns) W = ( W.T.apply(lambda x:rankdata(x,'average')).T-0.5 )/len(W.columns) rho1 = M.T.apply( lambda x:np.sqrt( np.dot( x,x ) ) ) rho2 = rho1 if bValid : rho2 = W.T.apply( lambda x:np.sqrt( np.dot( x,x ) ) ) R2 = pd.DataFrame( np.array([np.array([r]) for r in rho1.values])*[rho2.values] , index = rho1.index, columns = rho2.index ) PQ = pd.DataFrame( np.dot( M,W.T ), index = rho1.index, columns = rho2.index ) res = PQ/R2 return ( res ) crop = lambda x,W:x[:,:W] def run_shape_alignment_regression( analyte_df , journal_df , formula , bVerbose = False , synonyms = None , blur_cutoff = 99.8 , exclude_labels_from_centroids = [''] , study_axii = None , owner_by = 'tesselation' , transform = crop ) : print ( 'WARNING: STILL UNDER DEVELOPMENT' ) print ( 'WARNING: DEFAULT IS TO CROP ALIGNED FACTORS!!') encoding_df = interpret_problem ( analyte_df , journal_df , formula , bVerbose = bVerbose ) Q = encoding_df.T.apply( lambda x:(rankdata(x,'average')-0.5)/len(x) ).copy().values P = analyte_df .apply( lambda x:(rankdata(x,'average')-0.5)/len(x) ).copy().values centroids = ifit.ShapeAlignment( P, Q , bReturnTransform = False , bShiftModel = True , bUnrestricted = True ) # # FOR DIAGNOSTIC PURPOSES centroids_df = pd.DataFrame ( centroids , index = encoding_df.columns , columns = encoding_df.index ) xws = ifit.WeightsAndScoresOf( P ) yws = ifit.WeightsAndScoresOf( centroids ) W = np.min( [*np.shape(xws[0]),*np.shape(yws[0])] ) quantx = transform( xws[0],W ) quanty = transform( yws[0],W ) scorex = transform( xws[1],W ) res_df = calculate_alignment_properties ( encoding_df , quantx, quanty, scorex, analyte_df = analyte_df.copy() , journal_df = journal_df.copy() , blur_cutoff = blur_cutoff , bVerbose = bVerbose, exclude_labels_from_centroids = exclude_labels_from_centroids , study_axii = study_axii , owner_by = owner_by, synonyms=synonyms ) return ( res_df ) def add_foldchanges ( df, information_df , group='', fc_type=0 , foldchange_indentifier = 'FC,') : all_vals = list(set(information_df.loc[group].values)) pair_values = [all_vals[i] for i in range(len(all_vals)) if i<2 ] group1 = df.iloc[:,[n in pair_values[0] for n in information_df.loc[group].values] ].T group2 = df.iloc[:,[n in pair_values[1] for n in information_df.loc[group].values] ].T if fc_type == 0: FC = np.mean(group1.values,0) - np.mean(group2.values,0) if fc_type == 1: FC = np.log2( np.mean(group1.values,0) - np.mean(group2.values,0) ) FCdf = pd.DataFrame(FC,index=df.index,columns=[foldchange_indentifier+'-'.join(pair_values) ] ) df = pd.concat([df.T,FCdf.T]).T return ( df ) from statsmodels.stats.multitest import multipletests def adjust_p ( pvalue_list , method = 'fdr_bh' , alpha = 0.05, check_r_bh = False , is_sorted = False , returnsorted = False ) : """ WRAPPER FOR MULTIPLE HYPOTHESIS TESTING pvalue_list = [0.00001,0.01,0.0002,0.00005,0.01,0.1,0.2,0.4,0.5,0.6,0.7,0.8,0.9,0.99,0.0114,0.15,0.23,0.20] """ available_methods = set( [ 'bonferroni' , 'sidak', 'holm-sidak' , 'holm' , 'simes-hochberg' , 'hommel' , 'fdr_bh' , 'fdr_by' , 'fdr_tsbh' , 'fdr_tsbky' ] ) if method not in available_methods : print ( available_methods ) r_equiv = { 'fdr_bh':'BH' } if check_r_bh and method in r_equiv : from rpy2.robjects.packages import importr from rpy2.robjects.vectors import FloatVector r_stats = importr('stats') p_adjust = r_stats.p_adjust ( FloatVector(pvalue_list), method = r_equiv[method] ) else : p_adjust_results = multipletests ( pvalue_list, alpha=alpha, method=method, is_sorted = is_sorted , returnsorted = returnsorted ) p_adjust = [ p_adj for p_adj in p_adjust_results[1] ] return ( p_adjust ) def qvalues ( p_values_in , pi0 = None ) : p_s = p_values_in if pi0 is None : pi0 = 1. qs_ = [] m = float(len(p_s)) ; itype = str( type( p_s[0] ) ) ; added_info = False if 'list' in itype or 'tuple' in itype : added_info = True ps = [ p[0] for p in p_s ] else : ps = p_s frp_ = rankdata( ps,method='ordinal' )/m ifrp_ = [ ( (p<=f)*f + p*(p>f) ) for p,f in zip(ps,frp_) ] for ip in range(len(ps)) : p_ = ps[ ip ] ; f_ = frp_[ip] q_ = pi0 * p_ / ifrp_[ip] qs_.append( (q_,p_) ) if added_info : q = [ tuple( [qvs[0]]+list(pinf) ) for ( qvs,pinf ) in zip(qs_,p_s) ] qs_ = q return qs_ class Qvalues ( object ) : def __init__( self, pvalues:np.array , method:str = "UNIQUE" , pi0:np.array = None ) : from scipy.stats import rankdata self.rankdata = rankdata self.method : str = method self.pvalues : np.array = pvalues self.qvalues : np.array = None self.qpres : np.array = None if method == "FDR-BH" : self.qpres = self.qvaluesFDRBH ( self.pvalues ) if method == "QVALS" : self.qpres = self.qvaluesFDRBH ( self.pvalues , pi0 ) if method == "UNIQUE" : self.qpres = self.qvaluesUNIQUE ( self.pvalues , pi0 ) def __str__ ( self ) : return ( self.info() ) def __repr__( self ) : return ( self.info() ) def help ( self ) : desc__ = "\n\nRANK CORRECTION FOR P-VALUES\nVIABLE METHODS ARE method = FDR-BH , QVALS , UNIQUE\n\n EMPLOYED METHOD: " + self.method return ( desc__ ) def info ( self ) : desc__ = "\nMETHOD:"+self.method+"\n q-values \t p-values\n" return ( desc__+'\n'.join( [ ' \t '.join(["%10.10e"%z for z in s]) for s in self.qpres ] ) ) def get ( self ) : return ( self.qpres ) def qvaluesFDRBH ( self , p_values_in:np.array = None , pi0:np.array = None ) : p_s = p_values_in if p_s is None : p_s = self.pvalues m = int(len(p_s)) if pi0 is None : pi0 = np.array([1. for i in range(m)]) qs_ = [] ps = p_s frp_ = (self.rankdata( ps,method='ordinal' )-0.5)/m ifrp_ = [ ( (p<=f)*f + p*(p>f) ) for p,f in zip(ps,frp_) ] for ip,p0 in zip(range(m),pi0) : p_ = ps[ ip ] ; f_ = frp_[ip] q_ = p0 * p_ / ifrp_[ip] qs_.append( (q_,p_) ) self.qvalues = np.array([q[0] for q in qs_]) return np.array(qs_) def qvaluesUNIQUE ( self , p_values_in = None , pi0 = None ) : p_s = p_values_in if p_s is None : p_s = self.pvalues m = int(len(set(p_s))) n = int(len(p_s)) if pi0 is None : pi0 = np.array([1. for i in range(n)]) qs_ = [] ps = p_s frp_ = (self.rankdata( ps,method='average' )-0.5)/m ifrp_ = [ ( (p<=f)*f + p*(p>f) ) for p,f in zip(ps,frp_) ] for ip,p0 in zip( range(n),pi0 ) : p_ = ps[ ip ] ; f_ = frp_[ip] q_ = p0 * p_ / ifrp_[ip] qs_.append( (q_,p_) ) self.qvalues = np.array([q[0] for q in qs_]) return np.array(qs_) class Pvalues ( object ) : def __init__( self, data_values:np.array , method:str = "RANK DERIV E" ) : from scipy.stats import rankdata self.rankdata = rankdata self.method : str = method self.dvalues : np.array = data_values self.pvalues : np.array = None self.dsdrvalues : np.array = None self.dpres : np.array = None if method == "RANK DERIV E" : self.dpres = self.pvalues_dsdr_e ( self.dvalues , True) if method == "RANK DERIV N" : self.dpres = self.pvalues_dsdr_n ( self.dvalues , True ) if method == "NORMAL" : self.dpres = self.normal_pvalues ( self.dvalues , True ) self.pvalues = self.dpres[0] def __str__ ( self ) : return ( self.info() ) def __repr__( self ) : return ( self.info() ) def help ( self ) : # # PVALUES FROM "RANK DERIVATIVES" # desc__ = "\n\nRANK DERIVATIVE P-VALUES\nVIABLE METHODS ARE method = RANK DERIV E, RANK DERIV N \n\n EMPLOYED METHOD: " + self.method return ( desc__ ) def info ( self ) : desc__ = "\nMETHOD:"+self.method+"\n p-values \t ds-values\n" return ( desc__+'\n'.join( [ ' \t '.join(["%10.10e"%z for z in s]) for s in self.dpres.T ] ) ) def get ( self ) : return ( self.qpres ) def sgn ( self, x:float) -> int : return( - int(x<0) + int(x>=0) ) def nn ( self, N:int , i:int , n:int=1 )->list : t = [(i-n)%N,(i+n)%N] if i-n<0 : t[0] = 0 t[1] += n-i if i+n>=N : t[0] -= n+i-N t[1] = N-1 return ( t ) def normal_pvalues ( self, v:np.array , bReturnDerivatives:bool=False ) -> np.array : ds = v # TRY TO ACT LIKE YOU ARE NORMAL ... N = len(v) M_ , Var_ = np.mean(ds) , np.std(ds)**2 from scipy.special import erf as erf_ loc_Q = lambda X,mean,variance : [ 1. - 0.5*( 1. + erf_( (x-mean)/np.sqrt( 2.*variance ) ) ) for x in X ] rv = loc_Q ( ds,M_,Var_ ) if bReturnDerivatives : rv = [*rv,*ds ] return ( np.array(rv).reshape(-1,N) ) def pvalues_dsdr_n ( self, v:np.array , bReturnDerivatives:bool=False , bSymmetric:bool=True ) -> np.array : # N = len(v) vsym = lambda a,b : a*self.sgn(a) if b else a import scipy.stats as st rv = st.rankdata(v,'ordinal') - 1 vr = { int(k):v for k,v in zip(rv,range(len(rv)))} ds = [] for w,r in zip(v,rv) : nr = self.nn(N,int(r),1) nv = [ vr[j] for j in nr ] s_ = [ v[j] for j in sorted(list(set( [ *[vr[int(r)]] , *nv ] )) ) ] dsv = np.mean( np.diff(s_) ) ds.append( vsym( dsv , bSymmetric) ) # DR IS ALWAYS 1 M_,Var_ = np.mean(ds) , np.std(ds)**2 from scipy.special import erf as erf_ loc_Q = lambda X,mean,variance : [ 1. - 0.5*( 1. + erf_( (x-mean)/np.sqrt( 2.*variance ) ) ) for x in X ] rv = loc_Q ( ds,M_,Var_ ) if bReturnDerivatives : rv = [*rv,*ds ] return ( np.array(rv).reshape(-1,N) ) def pvalues_dsdr_e ( self, v:np.array , bReturnDerivatives:bool=False , bSymmetric:bool=True ) -> np.array : # N = len(v) vsym = lambda a,b : a*self.sgn(a) if b else a import scipy.stats as st rv = st.rankdata(v,'ordinal') - 1 vr = { int(k):v for k,v in zip(rv,range(len(rv)))} ds = [] for w,r in zip(v,rv) : nr = self.nn(N,int(r),1) nv = [ vr[j] for j in nr ] s_ = [ v[j] for j in sorted(list(set( [ *[vr[int(r)]] , *nv ] )) ) ] dsv = np.mean( np.diff(s_) ) ds.append( vsym( dsv , bSymmetric) ) # DR IS ALWAYS 1 M_ = np.mean ( ds ) loc_E = lambda X,L_mle : [ np.exp(-L_mle*x) for x in X ] ev = loc_E ( ds,1.0/M_) # EXP DISTRIBUTION P if bReturnDerivatives : rv = [*ev,*ds ] return ( np.array(rv).reshape(-1,N) ) class MultiFactorAnalysis ( object ) : def __init__( self, analyte_df, journal_df, formula ) : #super(MultiFactorAnalysis,self).__init__() self.rankdata = rankdata self.A = analyte_df self.J = journal_df self.f = formula self.E = None self.C = None self.B = None self.R = None self.TOL = None self.multifactor_evaluation ( self.A , self.J , self.f ) #print ( self.predict(self.A.iloc[:,0],'male') ) def fit(self, analyte_df, journal_df, formula) : self.__init__( analyte_df, journal_df, formula ) def tol_check ( self, val, TOL=1E-10 ): if val > TOL : print ( "WARNING: DATA ENTROPY HIGH (SNR LOW)", val ) def recover ( self, U, S, Vt ): return ( np.dot(U*S,Vt) ) def qvalues ( self, p_values_in , pi0 = None ) : p_s = p_values_in if pi0 is None : pi0 = 1. qs_ = [] m = float(len(p_s)) ; itype = str( type( p_s[0] ) ) ; added_info = False if 'list' in itype or 'tuple' in itype : added_info = True ps = [ p[0] for p in p_s ] else : ps = p_s frp_ = rankdata( ps,method='ordinal' )/m ifrp_ = [ ( (p<=f)*f + p*(p>f) ) for p,f in zip(ps,frp_) ] for ip in range(len(ps)) : p_ = ps[ ip ] ; f_ = frp_[ip] q_ = pi0 * p_ / ifrp_[ip] qs_.append( (q_,p_) ) if added_info : q = [ tuple( [qvs[0]]+list(pinf) ) for ( qvs,pinf ) in zip(qs_,p_s) ] qs_ = q return qs_ def solve ( self , C=None , E=None ) : if C is None : C = self.C if E is None : E = self.E if not 'pandas' in str(type(C)) or not 'pandas' in str(type(E)): print ( "ERROR MUST SUPPLY TWO PANDAS DATAFRAMES" ) return ( -1 ) cU, cS, cVt = np.linalg.svd(C, full_matrices=False ) cST = 1/cS psuedo_inverse = pd.DataFrame( self.recover(cVt.T,cST,cU.T) , index=C.columns ,columns=C.index ) identity = np.dot( C , psuedo_inverse ) TOLERANCE = np.max( np.sqrt( ( identity * ( ( 1-np.eye(len(np.diag(identity)))) ) )**2 )) self.B = np.dot( psuedo_inverse,E ) self.TOL = TOLERANCE return ( self.B , self.TOL ) def encode_categorical ( self , G = ['A','B'] ): # # CREATES AN BINARY ENCODING MATRIX FROM THE SUPPLIED LIST # USES A PANDAS DATAFRAME AS INTERMEDIATE FOR ERROR CHECKING # ugl = list(set(G)) ; n = len(ugl) ; m = len(G) lgu = { u:j for u,j in zip(ugl,range(n)) } enc_d = pd.DataFrame( np.zeros(m*n).reshape(-1,n),columns=ugl ) for i in range ( m ) : j = lgu[G[i]] enc_d.iloc[i,j] = 1 return ( enc_d ) def create_encoding_journal ( self , use_categories, journal_df ) : encoding_df = None for category in use_categories : catvals = journal_df.loc[category].to_list() cat_encoding = self.encode_categorical( catvals ) cat_encoding.index = journal_df.columns.values if encoding_df is None : encoding_df = cat_encoding.T else : encoding_df = pd.concat([encoding_df,cat_encoding.T]) return ( encoding_df ) def find_category_interactions ( self , istr ) : all_cats = re.findall( r'C\((.*?)\)', istr ) interacting = [ ':' in c for c in istr.split(')') ][ 0:len(all_cats) ] interacting_categories = [ [all_cats[i-1],all_cats[i]] for i in range(1,len(interacting)) if interacting[i] ] return ( interacting_categories ) def create_encoding_data_frame ( self, journal_df=None , formula=None , bVerbose = False ) : # # THE JOURNAL_DF IS THE COARSE GRAINED DATA (THE MODEL) # THE FORMULA IS THE SEMANTIC DESCRIPTION OF THE PROBLEM # if journal_df is None : journal_df = self.J if formula is None : formula = self.f interaction_pairs = self.find_category_interactions ( formula.split('~')[1] ) add_pairs = [] sjdf = set(journal_df.index) if len( interaction_pairs ) > 0 : for pair in interaction_pairs : cpair = [ 'C('+p+')' for p in pair ] upair = [ pp*(pp in sjdf)+cp*(cp in sjdf and not pp in sjdf) for (pp,cp) in zip( pair,cpair) ] journal_df.loc[ ':'.join(upair) ] = [ p[0]+'-'+p[1] for p in journal_df.loc[ upair,: ].T.values ] add_pairs.append(':'.join(upair)) use_categories = list(set(find_category_variables(formula.split('~')[1]))) cusecats = [ 'C('+p+')' for p in use_categories ] use_categories = [ u*( u in sjdf) + cu *( cu in sjdf ) for (u,cu) in zip(use_categories,cusecats) ] use_categories = [ *use_categories,*add_pairs ] # if len( use_categories ) > 0 : encoding_df = self.create_encoding_journal ( use_categories , journal_df ).T else : encoding_df = None # if bVerbose : print ( [ v for v in encoding_df.columns.values ] ) print ( 'ADD IN ANY LINEAR TERMS AS THEIR OWN AXIS' ) # # THIS TURNS THE MODEL INTO A MIXED LINEAR MODEL add_df = journal_df.loc[ [c.replace(' ','') for c in formula.split('~')[1].split('+') if not 'C('in c],: ] if len(add_df)>0 : if encoding_df is None : encoding_df = add_df.T else : encoding_df = pd.concat([ encoding_df.T , journal_df.loc[ [ c.replace(' ','') for c in formula.split('~')[1].split('+') if not 'C(' in c] , : ] ]).T self.E = encoding_df.apply(pd.to_numeric) return ( self.E ) def threshold ( self, E , A ) : if not 'pandas' in str(type(A)) or not 'pandas' in str(type(E)): print ( "ERROR MUST SUPPLY TWO PANDAS DATAFRAMES" ) return ( -1 ) thresholds_df = pd .DataFrame ( np.dot( E,A.T ) , columns = A .index , index = E .index ) .apply ( lambda x:x/np.sum(E,1) ) return ( thresholds_df ) def multifactor_solution ( self , analyte_df=None , journal_df=None , formula=None , bLegacy = False ) : A , J , f = analyte_df , journal_df , formula if A is None : A = self.A if J is None : J = self.J if f is None : f = self.f encoding_df = self.create_encoding_data_frame ( journal_df = J , formula = f ).T encoding_df.loc['NormFinder'] = np.array([1 for i in range(len(encoding_df.columns))]) self.E = encoding_df solution_ = self.solve ( A.T, encoding_df.T ) self.tol_check ( solution_[1] ) beta_df = pd.DataFrame ( solution_[0] , index=A.index , columns=encoding_df.index ) self.B = beta_df return ( encoding_df.T , beta_df ) def quantify_density_probability ( self , rpoints , cutoff = None ) : # # DETERMINE P VALUES loc_pdf = lambda X,mean,variance : [ 1./np.sqrt(2.*np.pi*variance)*np.exp(-((x-mean)/(2.*variance))**2) for x in X ] from scipy.special import erf as erf_ loc_cdf = lambda X,mean,variance : [ 0.5*( 1. + erf_( (x-mean)/np.sqrt( 2.*variance ) ) ) for x in X ] loc_Q = lambda X,mean,variance : [ 1. - 0.5*( 1. + erf_( (x-mean)/np.sqrt( 2.*variance ) ) ) for x in X ] M_,Var_ = np.mean(rpoints),np.std(rpoints)**2 # # INSTEAD OF THE PROBABILTY DENSITY WE RETURN THE FRACTIONAL RANKS # SINCE THIS ALLOWS US TO CALCULATE RANK STATISTICS FOR THE PROJECTION corresponding_density = ( self.rankdata (rpoints,'average')-0.5 ) / len( set(rpoints) ) corresponding_pvalue = loc_Q ( rpoints,M_,Var_ ) return ( corresponding_pvalue , corresponding_density ) def predict ( self, X, name ) : desc__=""" print ( self.predict(X.iloc[:,0],'male') ) """ if len( X ) == len(self.A.iloc[:,0].values) and name in set(self.B.columns) : coefs = self.B.loc[:,name].values return ( name , np.dot( coefs,X )>self.TOL ) else : print ( "CANNOT PREDICT" ) def regression_assessment ( self ) : desc_ = """ ALTERNATIVE NAIVE MODEL ASSESSMENT FOR A REGRESSION MODEL !PRVT2D1701CM5487! NO CV; NOT YET INFORMATIVE """ X = self.A coefs = self.B.T yp = np.dot( coefs,X ) y_ = self.E.values # # NORMFINDER IS INTERCEPT mstat = dict() # n = len ( y_ ); p = len(coefs); q = len ( coefs.T ) if q>n : print ( "OVER DETERMINED SYSTEM OF EQUATIONS " ) ym = np.mean( y_ , axis=0 ) # # BZ FORMS TSS = np.array([ np.sum(( y_ - ym ) ** 2, axis=1) ])[0]; dof_tss = np.abs(n-1) ; mstat['TSS'] = TSS RSS = np.array([ np.sum(( y_ - yp ) ** 2, axis=1) ])[0]; dof_rss = np.abs(n-q) ; mstat['RSS'] = RSS ESS = np.array([ np.sum(( yp - ym ) ** 2, axis=1) ])[0]; dof_ess = np.abs(p-1) ; mstat['ESS'] = ESS mstat['dof_tss'] = dof_tss ; mstat['dof_rss'] = dof_rss ; mstat['dof_ess'] = dof_ess # TMS = TSS / dof_tss ; mstat['TMS'] = TMS RMS = RSS / dof_rss ; mstat['RMS'] = RMS EMS = ESS / dof_ess ; mstat['EMS'] = EMS # # F-TEST dof_numerator = dof_rss dof_denominator = dof_ess from scipy.stats import f fdist = f( dof_numerator , dof_denominator ) f0 = EMS / RMS # # mstat['dof_numerator'] = dof_numerator mstat['dof_denominator'] = dof_denominator mstat['p-value'] = 1 - fdist.cdf(f0) mstat['f0'] = f0 mstat['yp'] = yp mstat['model'] = model return ( mstat ) def multifactor_evaluation ( self, analyte_df=None , journal_df=None , formula=None ) : # if analyte_df is None : analyte_df = self.A if journal_df is None : journal_df = self.J if formula is None : formula = self.f encoding_df , beta_df = self.multifactor_solution ( analyte_df , journal_df , formula ) eval_df = beta_df.apply(lambda x:x**2) all = [ beta_df ] for c in eval_df.columns : all.append ( pd.DataFrame ( self.quantify_density_probability ( eval_df.loc[:,c].values ), index = [c+',p',c+',r'], columns=eval_df.index ).T) res_df = pd.concat( all , axis=1 ) for c in res_df.columns : if ',p' in c : q = [ qv[0] for qv in self.qvalues(res_df.loc[:,c].values) ] res_df.loc[:,c.split(',p')[0]+',q'] = q self.R = res_df return ( self.R ) from scipy import stats from statsmodels.stats.anova import anova_lm as anova import statsmodels.api as sm import patsy def anova_test ( formula, group_expression_df, journal_df, test_type = 'random' ) : type_d = { 'paired':1 , 'random':2 , 'fixed':1 } formula = formula.replace(' ','') tmp_df = pd.concat([ journal_df, group_expression_df ]) gname = tmp_df.index.tolist()[-1] formula_l = formula.split('~') rename = { gname:formula_l[0] } tmp_df.rename( index=rename, inplace=True ) tdf = tmp_df.T.iloc[ :,[ col in formula for col in tmp_df.T.columns] ].apply( pd.to_numeric ) y, X = patsy.dmatrices( formula, tdf, return_type='dataframe') model = sm.OLS(endog=y,exog=X).fit() model .model.data.design_info = X.design_info table = sm.stats.anova_lm(model,typ=type_d[test_type]) return table.iloc[ [(idx in formula) for idx in table.index],-1] def glm_test ( formula , df , jdf , distribution='Gaussian' ) : tmp_df = pd.concat([ jdf, df ]) family_description = """ Family(link, variance) # The parent class for one-parameter exponential families. Binomial([link]) # Binomial exponential family distribution. Gamma([link]) # Gamma exponential family distribution. Gaussian([link]) # Gaussian exponential family distribution. InverseGaussian([link]) # InverseGaussian exponential family. NegativeBinomial([link, alpha]) # Negative Binomial exponential family. Poisson([link]) # Poisson exponential family. Tweedie([link, var_power, eql]) # Tweedie family. """ if distribution == 'Gaussian' : family = sm.families.Gaussian() if distribution == 'Binomial' : family = sm.families.Binomial() if distribution == 'Gamma' : family = sm.families.Gamma() if distribution == 'InverseGaussian' : family = sm.families.InverseGaussian() if distribution == 'NegativeBinomial' : family = sm.families.NegativeBinomial() if distribution == 'Poisson' : family = sm.families.Poisson() formula = formula.replace( ' ','' ) gname = tmp_df.index.tolist()[-1] formula_l = formula.split('~') rename = { gname:formula_l[0] } tmp_df .rename( index=rename, inplace=True ) tdf = tmp_df.T.iloc[ :,[ col in formula for col in tmp_df.T.columns] ].apply( pd.to_numeric ) y , X = patsy.dmatrices( formula, tdf, return_type='dataframe') distribution_model = sm.GLM( y, X, family=family ) glm_results = distribution_model.fit() if False: print('Parameters: ', glm_results.params ) print('T-values : ', glm_results.tvalues ) print('p-values : ', glm_results.pvalues ) table = glm_results.pvalues return table.iloc[ [( idx.split('[')[0] in formula) for idx in table.index]] def t_test ( df , endogen = 'expression' , group = 'disease' , pair_values = ('Sick','Healthy') , test_type = 'independent', equal_var = False , alternative = 'greater' ) : group1 = df.iloc[:,[n in pair_values[0] for n in df.loc[group,:].values] ].loc[endogen,:].astype(float) group2 = df.iloc[:,[n in pair_values[1] for n in df.loc[group,:].values] ].loc[endogen,:].astype(float) if test_type == 'independent' : pv = ttest_ind ( group1, group2 , equal_var = equal_var ) if test_type == 'related' : pv = ttest_rel ( group1, group2 ) try : p_mannu = mannwhitneyu( group1, group2, alternative=alternative )[1] except ValueError as err: print(err.args) p_mannu = 1.0 pvalue = pv[1] ; statistic=pv[0] return ( pvalue , p_mannu, statistic ) def mycov( x , full_matrices=0 ): x = x - x.mean( axis=0 ) U, s, V = np.linalg.svd( x , full_matrices = full_matrices ) C = np.dot(np.dot(V.T,np.diag(s**2)),V) return C / (x.shape[0]-1) from scipy.special import chdtrc as chi2_cdf def p_value_merger ( pvalues_df , p_label=',p' , axis = 0 ) : # print( " REQUIRED READING: doi: 10.1093/bioinformatics/btw438" ) print( " ALSO MAKE SURE TO ADD THAT ARTICLE AS ADDITIONAL CITATION" ) print( " IF THIS METHOD IS EMPLOYED" ) print( " READ ABOVE ! " ) print( " YOU CALLED A FUNCTION FOR MERGING P-VALUES" ) print( " THIS METHOD IS NO LONGER SUPPORTED " ) print( " FOR IMPETUOUS VERSIONS > 0.84.0 " ) print( " THE METHOD merge_significance COULD BE EMPLOYED INSTEAD ") print( " BUT IT IS NOT RECOMMENDED " ) print( " FATAL : WILL TERMINATE NOW " ) exit(1) def parse_test ( statistical_formula, group_expression_df , journal_df , test_type = 'random' ) : # # THE FALLBACK IS A TYPE2 ANOVA ident = False if 'glm' in statistical_formula.lower() : if not test_type in set(['Gaussian','Binomial','Gamma','InverseGaussian','NegativeBinomial','Poisson']): test_type = 'Gaussian' print('ONLY GAUSSIAN TESTS ARE SUPPORTED') print('THIS TEST IS NO LONGER SUPPORTED') result = glm_test( statistical_formula, group_expression_df , journal_df , distribution = test_type ) ident = True if 'ttest' in statistical_formula.lower() : ident = True ; result = None # # WE CONDUCT SEPARATE TESTS FOR ALL THE UNIQUE PAIR LABELS PRESENT check = [ idx for idx in journal_df.index if idx in statistical_formula ] df = pd.concat( [journal_df,group_expression_df],axis=0 ).T for c in check : if test_type in set([ 'related' , 'fixed' , 'paired' ]): test_type = 'related' else : test_type = 'independent' for pair in permuter( list(set(journal_df.loc[c].values)),2) : result_ = t_test( df, endogen = df.columns.values[-1], group = c, pair_values = pair, test_type = test_type, equal_var = False ) hdr = ' '.join( [c,' '.join([str(p) for p in pair])] ) tdf = pd.Series( result_, index = [ hdr, hdr+' mwu', hdr+' stat,s' ] ) if result is None : result = tdf else : result = pd.concat([result,tdf]) result.name = 'PR>t' if not ident : result = anova_test( statistical_formula, group_expression_df , journal_df , test_type=test_type ) return ( result ) def prune_journal ( journal_df , remove_units_on = '_' ) : journal_df = journal_df.loc[ [ 'label' in idx.lower() or '[' in idx for idx in journal_df.index.values] , : ].copy() bSel = [ ('label' in idx.lower() ) for idx in journal_df.index.values] bool_dict = { False:0 , True:1 , 'False':0 , 'True':1 } str_journal = journal_df.iloc[ bSel ] journal_df = journal_df.replace({'ND':np.nan}) nmr_journal = journal_df.iloc[ [ not b for b in bSel ] ].replace(bool_dict).apply( pd.to_numeric ) if not remove_units_on is None : nmr_journal.index = [ idx.split(remove_units_on)[0] for idx in nmr_journal.index ] journal_df = pd.concat( [nmr_journal,str_journal] ) return( journal_df ) def merge_significance ( significance_df , distance_type='euclidean' ) : # TAKES P VALUES OR Q VALUES # TRANSFORMS INTO A MERGED P OR Q VALUE VIA # THE DISTANCE SCORE # THE DATA DOMAIN SIGNIFICANCE IS ALONG COLUMNS AND # GROUPS ALONG INDICES # EX: pd.DataFrame( np.random.rand(20).reshape(5,4) , columns=['bio','cars','oil','money']).apply( lambda x: -1.*np.log10(x) ).T.apply( lambda x: np.sqrt(np.sum(x**2)) ) # distance = lambda x : np.sqrt(np.sum(x**2)) if distance_type == 'euclidean' : # ESTIMATE distance = lambda x : np.sqrt(np.sum(x**2)) if distance_type == 'extreme' : # ANTI-CONSERVATIVE ESTIMATE distance = lambda x : np.max(x) if distance_type == 'mean' : # MEAN ESTIMATE distance = lambda x : np.mean(x) get_pvalue = lambda x : 10**(-x) return ( significance_df.apply( lambda x: -1.*np.log10(x) ).T.apply(distance).apply(get_pvalue) ) def group_significance( subset , all_analytes_df = None , tolerance = 0.05 , significance_name = 'pVal' , AllAnalytes = None , SigAnalytes = None, alternative = 'two-sided' ) : # FISHER ODDS RATIO CHECK # CHECK FOR ALTERNATIVE : # 'greater' ( ENRICHMENT IN GROUP ) # 'two-sided' ( DIFFERENTIAL GROUP EXPERSSION ) # 'less' ( DEPLETION IN GROUP ) if AllAnalytes is None : if all_analytes_df is None : AllAnalytes = set( all_analytes_df.index.values ) if SigAnalytes is None : if all_analytes_df is None : SigAnalytes = set( all_analytes_df.iloc[(all_analytes_df<tolerance).loc[:,significance_name]].index.values ) Analytes = set(subset.index.values) notAnalytes = AllAnalytes - Analytes notSigAnalytes = AllAnalytes - SigAnalytes AB = len(Analytes&SigAnalytes) ; nAB = len(notAnalytes&SigAnalytes) AnB = len(Analytes&notSigAnalytes) ; nAnB = len(notAnalytes&notSigAnalytes) oddsratio , pval = stats.fisher_exact([[AB, nAB], [AnB, nAnB]], alternative=alternative ) return ( pval , oddsratio ) def quantify_groups_by_analyte_pvalues( analyte_df, grouping_file, delimiter='\t', tolerance = 0.05 , p_label = 'C(Status),p' , group_prefix = '' , alternative = 'two-sided' ) : AllAnalytes = set( analyte_df.index.values ) ; nidx = len( AllAnalytes ) SigAnalytes = set( analyte_df.iloc[ (analyte_df.loc[:,p_label].values < tolerance), : ].index.values ) if len( AllAnalytes ) == len(SigAnalytes) : print ( 'THIS STATISTICAL TEST WILL BE NONSENSE' ) eval_df = None with open( grouping_file ) as input : for line in input : vline = line.replace('\n','').split(delimiter) gid, gdesc, analytes_ = vline[0], vline[1], vline[2:] try : group = analyte_df.loc[[a for a in analytes_ if a in AllAnalytes] ].dropna( axis=0, how='any', thresh=analyte_df.shape[1]/2 ).drop_duplicates() except KeyError as e : continue L_ = len( group ) ; str_analytes=','.join(group.index.values) if L_ > 0 : pv , odds = group_significance( group , AllAnalytes=AllAnalytes, SigAnalytes=SigAnalytes , alternative=alternative ) rdf = pd.DataFrame( [[pv]], columns = [ group_prefix + 'Fisher_' + p_label ] , index = [ gid ] ) rdf .columns = [ col+',p' if ',p' not in col else col for col in rdf.columns ] rdf[ 'description' ] = gdesc+',' + str(L_) ; rdf['analytes'] = str_analytes rdf[ group_prefix + 'NGroupAnalytes' ] = L_ rdf[ group_prefix + 'AllFracFilling' ] = L_ / float( len(analytes_) ) present_sig = set(group.index.values)&SigAnalytes rdf[ group_prefix + 'SigFracGroupFill' ] = float ( len ( present_sig ) ) / float( len(analytes_) ) ndf = rdf if eval_df is None : eval_df = ndf else : eval_df = pd.concat( [ eval_df,ndf ] ) edf = eval_df.T for col in eval_df.columns : if ',p' in col : q = [q_[0] for q_ in qvalues(eval_df.loc[:,col].values)]; l=col.split(',')[0]+',q' edf.loc[l] = q return ( edf.T ) class APCA ( object ) : # # THIS CLASS PERFORMS A SPARSE PCA IF REQUESTED # IT THEN USES THE SPARSE SVD ALGORITHM FOUND IN SCIPY # THE STANDARD IS TO USE THE NUMPY SVD # def __init__ ( self , X = None , k =-1 , fillna = None , transcending = True , not_sparse = True ) : from scipy.sparse import csc_matrix from scipy.sparse.linalg import svds self.svds_ , self.smatrix_ = svds , csc_matrix self.components_ = None self.F_ = None self.U_ , self.S_, self.V_ = None,None,None self.evr_ = None self.var_ = None self.fillna_ = fillna self.X_ = self.interpret_input(X) self.k_ = k self.transcending_ = transcending self.not_sparse = not_sparse def interpret_input ( self,X ) : if 'pandas' in str(type(X)) : for idx in X.index : X.loc[idx] = [ np.nan if 'str' in str(type(v)) else v for v in X.loc[idx].values ] if 'float' in str(type(self.fillna_)) or 'int' in str(type(self.fillna_)) : X = X.fillna(self.fillna_) self.X_ = X.values else : self.X_ = X return ( self.X_ ) def fit ( self , X=None ) : self.fit_transform( X=X ) def fit_transform ( self , X=None ) : if X is None: X = self.X_ if not X is None : X = self.interpret_input(X) Xc = X - np.mean( X , 0 ) if self.k_<=0 : k_ = np.min( np.shape(Xc) ) - 1 else: k_ = self.k_ if self.not_sparse : u, s, v = np.linalg.svd( Xc , full_matrices = False ) self.transcending_ = False else : u, s, v = self.svds_ ( self.smatrix_(Xc, dtype=float) , k=k_ ) if self.transcending_ : u, s, v = self.transcending_order(u,s,v) S = np.diag( s ) self.F_ = np.dot(u,S) self.var_ = s ** 2 / Xc.shape[0] self.explained_variance_ratio_ = self.var_/self.var_.sum() self.U_ , self.S_ , self.V_ = u,s,v self.components_ = self.V_ return ( self.F_ ) def transcending_order(self,u,s,v) : return ( u[:,::-1],s[::-1],v[::-1,:] ) def apply_matrix( self , R ) : self.U_ = np.dot( self.U_,R.T ) self.V_ = np.dot( self.V_.T,R.T ).T self.F_ = np.dot( self.F_,R.T ) self.components_ = self.V_ return ( self.F_ ) dimred = PCA() def quantify_groups ( analyte_df , journal_df , formula , grouping_file , synonyms = None , delimiter = '\t' , test_type = 'random' , split_id = None , skip_line_char = '#' ) : statistical_formula = formula if not split_id is None : nidx = [ idx.split(split_id)[-1].replace(' ','') for idx in analyte_df.index.values ] analyte_df.index = nidx sidx = set( analyte_df.index.values ) ; nidx=len(sidx) eval_df = None with open ( grouping_file ) as input: for line in input: if line[0] == skip_line_char : continue vline = line.replace('\n','').split(delimiter) gid,gdesc,analytes_ = vline[0],vline[1],vline[2:] if not synonyms is None : [ analytes_.append(synonyms[a]) for a in analytes_ if a in synonyms ] try : group = analyte_df.loc[[a for a in analytes_ if a in sidx] ].dropna( axis=0, how='any', thresh=analyte_df.shape[1]/2 ).drop_duplicates() except KeyError as e : continue L_ = len( group ) ; str_analytes=','.join(group.index.values) if L_>0 : dimred.fit(group.values) group_expression_df = pd.DataFrame([dimred.components_[0]],columns=analyte_df.columns.values,index=[gid]) rdf = pd.DataFrame( parse_test( statistical_formula, group_expression_df , journal_df , test_type=test_type )).T rdf .columns = [ col+',p' if (not ',s' in col) else col+',s' for col in rdf.columns ] rdf['description'] = gdesc+','+str(L_) rdf['analytes'] = str_analytes rdf.index = [ gid ] ; ndf = pd.concat([rdf.T,group_expression_df.T]).T if eval_df is None : eval_df = ndf else : eval_df = pd.concat([eval_df,ndf]) edf = eval_df.T for col in eval_df.columns : if ',p' in col : q = [q_[0] for q_ in qvalues(eval_df.loc[:,col].values)]; l=col.split(',')[0]+',q' edf.loc[l] = q return ( edf.T ) from scipy.stats import combine_pvalues def quantify_by_dictionary ( analyte_df , journal_df , formula , split_id=None, grouping_dictionary = dict() , synonyms = None , delimiter = ':' ,test_type = 'random', tolerance = 0.05, supress_q = False , analyte_formula = None, use_loc_pca=False , k=-1 ) : if use_loc_pca : dimred = APCA(X=analyte_df,k=k) if not 'dict' in str(type(grouping_dictionary)) : print ( 'INVALID GROUPING' ) return statistical_formula = formula if not split_id is None : nidx = [ idx.split(split_id)[-1].replace(' ','') for idx in analyte_df.index.values ] analyte_df.index = nidx sidx = set( analyte_df.index.values ) ; nidx = len(sidx) eval_df = None if True : for line in grouping_dictionary.items() : gid,analytes_ = line[0],line[1:][0] gdesc = line[0].split(delimiter)[0] if not synonyms is None : [ analytes_.append(synonyms[a]) for a in analytes_ if a in synonyms ] try : group = analyte_df.loc[[a for a in analytes_ if a in sidx] ].dropna( axis=0, how='any', thresh=analyte_df.shape[1]/2 ).drop_duplicates() except KeyError as e : continue L_ = len( group ) ; str_analytes=','.join(group.index.values) if L_>0 : dimred .fit( group.values ) ddf = None for ic in range(len( dimred.components_ )) : group_expression_df =
pd.DataFrame([dimred.components_[ic]],columns=analyte_df.columns.values,index=[gid])
pandas.DataFrame
""" NAD Lab Tools This program was written for the NAD Lab at the University of Arizona by <NAME>. It processes intracellular calcium concentration and pH measurements (from the InCytim2 software) as well as filters the data for outliers and spikes. The experiment consists of placing fluorescent-stained cells under a microscope to measure either calcium concentration or pH. Over a period of time, solutions are added to determine the response of the quantities. <NAME> 2019 """ import sys import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import tkinter as tk from tkinter import ttk from tkinter.filedialog import askopenfilenames, askdirectory # File names for analysis names = [] # Output directory output = '' # Names of drugs added to solution events = [] # Beginning of baseline measurement itime = 60 # End of baseline measurement ftime = 200 # Lower threshold to exclude cells lbase = 50 # Upper threshold to exclude cells ubase = 150 # Mode to analyze data - can be either 'Calcium' or 'pH' measure = 'Calcium' def process_data(df): """ Takes in a pandas dataframe and calculates the mean Calcium/pH as well as ratios between different wavelength measurements. Then formats the data into a CSV file. Lastly, uses the user-defined thresholds to exclude outlier cells. Arguments: df {pd.DataFrame} -- a dataframe to process Returns: tuple -- a tuple of dataframes containing the processed dataframes, their outliers, and graph data """ global itime, ftime, lbase, ubase, measure # Adjusts parameters based on Calcium/pH mode meas = '' length1 = '' length2 = '' meanname = '' if measure == 'Calcium': meas = 'Ca++' length1 = '340' length2 = '380' meanname = 'Mean Calcium (nM)' elif measure == 'pH': meas = 'pH' length1 = '488' length2 = '460' meanname = 'Mean pH' # Reads pertinent data from dataframe times = df.iloc[:, 0].to_frame(name='Time (s)').astype(float) calcium = df.filter(like=meas, axis=1).astype(float) conc_340 = df.filter(like=length1, axis=1).astype(float) conc_380 = df.filter(like=length2, axis=1).astype(float) ratio = pd.DataFrame() # Calculates ratio of different wavelength measurements for i, col in enumerate(conc_340.columns): ratio[length1 + '/' + length2 + col[-4:] ] = conc_340.iloc[:, i] / conc_380.iloc[:, i] # Calculates mean ratio and Calcium/pH mean_ratio = ratio.mean(axis=1).to_frame(name='Mean Ratio') mean_ca = calcium.mean(axis=1).to_frame(name=meanname) # Empty dataframe to space columns in CSV file empty = pd.DataFrame(columns=['']) # Data for CSV processed_data = pd.concat([times, empty, calcium, empty, conc_340, empty, conc_380, empty, ratio, empty, mean_ca, mean_ratio], axis=1) # Data for graph graph_data = pd.concat([times, mean_ca], axis=1) remove = [] # Get baseline times for cells baselines = calcium[(times.iloc[:, 0].astype(float) >= itime) & ( times.iloc[:, 0].astype(float) <= ftime)] # Exclude outliers if len(baselines) != 0: for i in range(len(baselines.iloc[0])): baseline = baselines.iloc[:, i].mean() if baseline <= lbase or baseline >= ubase: remove.append(i) else: remove = range(len(calcium.iloc[0])) # Compiles outlier data calc_outliers = calcium.drop(calcium.columns[remove], axis=1) conc_340_outliers = conc_340.drop(conc_340.columns[remove], axis=1) conc_380_outliers = conc_380.drop(conc_380.columns[remove], axis=1) ratio_outliers = pd.DataFrame() # Outlier ratios for i, col in enumerate(conc_340_outliers.columns): ratio_outliers[length1 + '/' + length2 + col[-4:]] = conc_340_outliers.iloc[:, i] / conc_380_outliers.iloc[:, i] # Outlier means mean_ratio_outliers = ratio_outliers.mean( axis=1).to_frame(name='Mean Ratio') mean_ca_outliers = calc_outliers.mean(axis=1).to_frame(name=meanname) # Format CSV for outliers processed_outliers = pd.concat([times, empty, calc_outliers, empty, conc_340_outliers, empty, conc_380_outliers, empty, ratio_outliers, empty, mean_ca_outliers, mean_ratio_outliers], axis=1) # Outlier graph graph_outliers = pd.concat([times, mean_ca_outliers], axis=1) return processed_data, processed_outliers, graph_data, graph_outliers def save_figure(df, filename, output, events, eventtimes): """ Takes in a pandas dataframe and saves the graph of the data. Also labels events on the graph the user defines. Arguments: df {pd.DataFrame} -- a dataframe to generate a graph from filename {str} -- the name to save the graph as output {str} -- a path to the desired output folder events {list} -- a list of events to mark on the diagram eventtimes {list} -- a list of the times when the events happened """ global measure # Calcium/pH mode meanname = '' if measure == 'Calcium': meanname = 'Mean Calcium (nM)' elif measure == 'pH': meanname = 'Mean pH' # Formatting of the graph df.plot(x='Time (s)', y=meanname, kind='line', legend=None) ax = plt.gca() plt.xlabel('Time (s)') plt.ylabel(meanname) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) xdata = ax.lines[0].get_xdata() ydata = ax.lines[0].get_ydata() # Annotate the plot with events for i, event in enumerate(events): if i >= len(eventtimes): break idx = np.where( (xdata >= (eventtimes[i] - 3)) & (xdata <= (eventtimes[i] + 3))) plt.annotate(event, xy=(xdata[idx], ydata[idx]), xycoords='data', xytext=(0, 50), textcoords='offset points', arrowprops=dict(arrowstyle='-|>', facecolor='black'), horizontalalignment='right', verticalalignment='top') plt.savefig(os.path.join(output, filename + '.png')) def spike_detection(df): """ Implements a simple "bandpass" filter to remove spikes from the data. Also uses local median filtering to establish where spikes happen. Arguments: df {pd.DataFrame} -- a dataframe to despike Returns: pd.DataFrame -- the despiked dataframe """ global measure # Calcium/pH mode meanname = '' if measure == 'Calcium': meanname = 'Mean Calcium (nM)' elif measure == 'pH': meanname = 'Mean pH' # Filter parameters minimum = 15 maximum = 50 radius = 5 epsilon = 10 # Read means means = np.array(df[meanname]) # Calculate differences in array, e.g. [1, 5, 3] would return [4, -2] diffs = np.abs(np.diff(means)) # Apply "bandpass" filter and flatten array remove = np.array(np.where((diffs > minimum) & (diffs < maximum))).flatten() # Function to return whether a number is within epsilon of a specified value def within(e, a, r): return (a > e - r) & (a < e + r) # Apply radius around point to remove from data as well as median filtering remove = np.array([np.arange(i, i + radius) for i in remove if any(within(np.median(means[:i]), means[i:i+radius], epsilon)) and all(diffs[i-radius:i+radius] < maximum)]).flatten() # Ensure indices are not out of bounds remove = remove[(remove > 1) & (remove < len(means))] # Remove duplicate indices remove = np.unique(remove) # Remove spikes and return new dataframe return df.drop(remove) def process_file(name, output, events): """ Reads a raw data file and puts the data into a pandas dataframe. Then processes the data and saves the files. Arguments: name {str} -- a path to the data file output {str} -- a path to the desired output folder events {list} -- a list of events to mark on the diagram """ global measure # Read data file (specific to InCytim2 software) dummy = False time = False data = [] eventtimes = [] with open(name) as lines: for line in lines: if 'Event_Times' in line: time = True elif 'Horizontal' in line: time = False elif 'DATA_AFTER_THIS_LINE' in line: dummy = True elif time: eventtimes.append(float(line)) elif dummy: data.append(line.split()) # Sets top row of dataframe to be the header filename = os.path.basename(name)[:-4] df = pd.DataFrame(data) header = df.iloc[0] df = df[1:] df.columns = header # Processes data processed_data, processed_outliers, graph_data, graph_outliers = process_data( df) # Spike detection graph_outliers = spike_detection(graph_outliers) # Saves CSV files processed_data.to_csv(os.path.join(output, filename + '.csv'), index=False) processed_outliers.to_csv(os.path.join( output, filename + '_outliers.csv'), index=False) # Saves graphs save_figure(graph_data, filename, output, events, eventtimes) save_figure(graph_outliers, filename + '_outliers', output, events, eventtimes) def generate_average(names, output): """ Reads previously processed CSV files and averages them together. Also outputs a despiked version of the data. Arguments: names {list} -- a list of paths to the CSV files output {str} -- a path to the desired output folder """ global measure # Calcium/pH mode meanname = '' if measure == 'Calcium': meanname = 'Mean Calcium (nM)' elif measure == 'pH': meanname = 'Mean pH' # Drop empty columns and determine shortest experiment means =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import tabula import numpy as np from CNAFenums import Approach, Landing, Role from local_func import getFILES, INTERGER import uuid, re, os, glob import PyPDF2 from progress.bar import Bar def msharp(log_file, aircraft_filter='All', nav = False): #print(log_file) msharp_data_raw = pd.read_excel(log_file, index_col=None) Column_type = msharp_data_raw.iloc[4] Landings_start = pd.Index(Column_type).get_loc('Landings') App_start = pd.Index(Column_type).get_loc('App') msharp_data_raw.iat[5,2] = "Date" #Trim off header data msharp_data = msharp_data_raw[7:msharp_data_raw.loc[msharp_data_raw.iloc[:,2] == 'Career Totals'].index.values[0]] msharp_data.columns = msharp_data_raw.iloc[5].fillna('DROP') msharp_data.loc[0,msharp_data.columns[Landings_start]] = "Landings" msharp_data.loc[0,msharp_data.columns[App_start]] = "App" msharp_data = msharp_data.sort_index() msharp_data = msharp_data.drop('DROP', axis=1) msharp_data.columns = msharp_data.columns.astype(str) new_app = pd.Index(msharp_data.iloc[0]).get_loc('App') new_ldg = pd.Index(msharp_data.iloc[0]).get_loc('Landings') msharp_data = msharp_data.drop(0) msharp_data = msharp_data.reset_index(drop=True) ############################################### ## Clean T&R ## ############################################### TR = msharp_data.filter(regex=("T&R*")) msharp_data = msharp_data.drop(columns=TR.columns) TR_string = [] for index, row in TR.iterrows(): row = row.dropna() row = row.astype(str) TR_string.append(row.str.cat(sep=', ')) msharp_data['T&R']=TR_string ############################################### ## Clean APP ## ############################################### app_raw = msharp_data.iloc[:,new_app:-2] msharp_data = msharp_data.drop(columns=app_raw.columns) app_raw.columns = [x[0] for x in app_raw.columns] app_raw.columns = [Approach(x).name for x in app_raw.columns] ############################################### ## Clean LDG ## ############################################### ldg_raw = msharp_data.iloc[:,new_ldg:-2] msharp_data = msharp_data.drop(columns=ldg_raw.columns) ldg_raw.columns = [x[0] for x in ldg_raw.columns] ldg_raw.columns = [Landing(x).name for x in ldg_raw.columns] msharp_data = pd.concat([msharp_data, app_raw, ldg_raw], axis=1) ############################################### ## Clean Date ## ############################################### #msharp_data["Date"] = msharp_data["Date"].apply(lambda x: x.strftime('%d/%m/%Y')) ############################################### ## Add role ## ############################################### msharp_data["Role"] = msharp_data.apply(lambda row: Role.ACFT_CMDR.name if row["ACMDR"] > 0.0 else (Role.COPILOT.name if row["TPT"] > 0.0 else Role.OTHER.name) , axis=1) msharp_data = msharp_data.rename(columns={"TMS": "Model", "SIM": "SIT", "ACT": "AIT", "NAVFLIR":"Record", 6.0:""}) msharp_data["Record"] = msharp_data["Record"].apply(lambda x: str(uuid.uuid4())[:8] if
pd.isna(x)
pandas.isna
import numpy as np import pandas as pd import argparse def check_smiles_match(data,screen): return (data['SMILES'].values==screen['SMILES'].values).all() def apply_screen(data,col_name,selection_type,selection_thresh,keep): data = data.sort_values(col_name,ascending=True) if selection_type=='Fraction': if keep=='High': data = data[-int(len(data)*selection_thresh):] elif keep=='Low': data = data[0:-int(len(data)*selection_thresh)] else: print('WARNING: INVALID KEEP TYPE') elif selection_type=='Cutoff': if keep=='High': data = data[data[col_name]>selection_thresh] elif keep=='Low': data = data[data[col_name]<selection_thresh] else: print('WARNING: INVALID KEEP TYPE') else: print('WARNING: INVALID SELECTION TYPE') return data parser = argparse.ArgumentParser() parser.add_argument('--molfile', type=str, required=True) parser.add_argument('--outfile', type=str, required=True) parser.add_argument('--screen_file1', type=str, default=None) parser.add_argument('--selection_type1', type=str, default='Fraction') # Fraction or Cutoff Value parser.add_argument('--selection_thresh1', type=float, default=0.5) parser.add_argument('--keep1', type=str, default='High') # High or low parser.add_argument('--screen_file2', type=str, default=None) parser.add_argument('--selection_type2', type=str, default='Cutoff') # Fraction or Cutoff Value parser.add_argument('--selection_thresh2', type=float, default=5.0) parser.add_argument('--keep2', type=str, default='Low') # High or low args = parser.parse_args() data = pd.read_csv(args.molfile) data = data.drop_duplicates() # Remove duplicates if args.screen_file1 is not None: screen1 = pd.read_csv(args.screen_file1) # Check if smiles match: if not check_smiles_match(data,screen1): print('WARNING: SMILES LISTS DO NOT MATCH') # Add screen col_name1 = pd.DataFrame(screen1.columns)[[not (x =='SMILES') for x in screen1.columns]].values[0][0] data[col_name1]=screen1[col_name1] if args.screen_file2 is not None: screen2 = pd.read_csv(args.screen_file2) # Check if smiles match: if not check_smiles_match(data,screen1): print('WARNING: SMILES LISTS DO NOT MATCH') # Add screen col_name2 =
pd.DataFrame(screen2.columns)
pandas.DataFrame
import folium import time import branca from tqdm import tqdm from datetime import datetime import requests import numpy as np import pandas as pd import matplotlib.pyplot as plt import codecs from folium.features import DivIcon from nts_data_collect import terminal_intakes from bokeh.io import save from bokeh.plotting import figure, output_file, save def bokeh_plot(data): ''' INPUTS: 'data', numpy array, first column is each label, first row is x-axis (here time) every remaining row is a variable to be plotted against x-axis. i.e. np.array([['Time',0,1,2,3...],['Gas Input',4,3,5,7...]...]) DESCRIPTION: Defining a function that, given a table of inputs, creates and saves HTML files containing plots of the timeseries of each variable in the table ''' # iterating over rows for i in range(1,len(data[1:,0])+1): # name of html file produced output_file('Terminal Plots/'+str(data[i,0])+".html") # creating base plot p = figure(plot_width=400,plot_height=200,\ x_axis_type="datetime", title=data[i,0]) # axis labels p.xaxis.axis_label = 'Time' p.yaxis.axis_label = 'Instantaneous flow (mcm/day)' # plotting line (time is always first row) p.line(data[0,1:],data[i,1:]) # saving plot given prev specified output file name save(p) return def createplots(): ''' Main creation of folium plot, takes locations, geoJSON files, and terminal intake data and combines. ''' # collection of initial data of gsa coming into UK terminals terminal_data = terminal_intakes() # conversion of string to official datetime format for i in range(1,len(terminal_data[0,:])): terminal_data[0,i] = datetime.strptime(terminal_data[0,i],'%Y-%m-%d %H:%M:%S') # importing locations and parsing the file locations = pd.read_excel(r'location.xlsx') locations = locations.to_numpy()[:,1:] titles = locations[0,:] i = 0 # following section stops importing when there are no coordinates # can occur in some types of csv file while True: try: if titles[i] != titles[i]: titles = np.delete(titles,i) i -= 1 i += 1 except: break location_names = locations[1:,0] locations = locations[1:,:] c = ['blue'] location_index = np.arange(0,len(locations[0,:]),3) overall_location = np.array([[0,0]]) # while loop to coninually add new data to plots while True: # creation of base-map, tiles defines the style (see docs for more) # coords specify centering on UK and appropriate zoom m = folium.Map(location=[54.213730,-3.105027],zoom_start=6,tiles='cartodbpositron') # creating html files (plots) of each terminals data bokeh_plot(terminal_data) # iterating over location_indexes (in this case only 1 aka terminals) # lots of the following code is only relevent if different markers need to # represent different classes of Slocation # this can be added in the location.xlsx file as new columns for j in location_index: class_location = np.array([[-1,0]]) for i in range(len(locations[:,1+j])): loc = locations[i,j+1:j+3] if loc[0] != loc[0]: break class_location = np.append(class_location,[loc],axis=0) class_location = class_location[1:,:] for i in range(len(class_location)): # reading html files created earlier f = codecs.open('Terminal Plots/'+str(location_names[i])+'.html','r') html = f.read() # creating a 'frame' to place them in iframe = branca.element.IFrame(html=html,width=420,height=230) # defining the popup of a marker popup = folium.Popup(iframe,max_width=5000) # plotting each marker with appropriate popup containing # relevant html plot folium.Marker([class_location[i,0],class_location[i,1]],\ popup=popup,\ icon=folium.Icon(color=c[j],icon='graph_up')).add_to(m) # adding toggle-able layers folium.LayerControl().add_to(m) # saving map m.save(r'folium_map.html') terminal_data_pd =
pd.DataFrame(terminal_data)
pandas.DataFrame
''' Tests for bipartitepandas DATE: March 2021 ''' import pytest import numpy as np import pandas as pd import bipartitepandas as bpd import pickle ################################### ##### Tests for BipartiteBase ##### ################################### def test_refactor_1(): # 2 movers between firms 0 and 1, and 1 stayer at firm 2. worker_data = [] # Firm 0 -> 1 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Firm 1 -> 0 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 0, 'y': 1., 't': 2}) # Firm 2 -> 2 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 2, 'y': 2., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 1 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 0 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 def test_refactor_2(): # 2 movers between firms 0 and 1, and 1 stayer at firm 2. Time has jumps. worker_data = [] # Firm 0 -> 1 # Time 1 -> 3 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 3}) # Firm 1 -> 0 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 0, 'y': 1., 't': 2}) # Firm 2 -> 2 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 2, 'y': 2., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 1 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 0 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 def test_refactor_3(): # 1 mover between firms 0 and 1, and 2 between firms 1 and 2. worker_data = [] # Firm 0 -> 1 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Firm 1 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) # Firm 2 -> 1 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 1, 'y': 2., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 1 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 2 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 assert movers.iloc[2]['i'] == 2 assert movers.iloc[2]['j1'] == 2 assert movers.iloc[2]['j2'] == 1 assert movers.iloc[2]['y1'] == 1 assert movers.iloc[2]['y2'] == 2 def test_refactor_4(): # 1 mover between firms 0 and 1, and 2 between firms 1 and 2. worker_data = [] # Firm 0 -> 1 -> 0 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) worker_data.append({'i': 0, 'j': 0, 'y': 1., 't': 3}) # Firm 1 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) # Firm 2 -> 1 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 1, 'y': 2., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 0 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j1'] == 1 assert movers.iloc[2]['j2'] == 2 assert movers.iloc[2]['y1'] == 1 assert movers.iloc[2]['y2'] == 1 assert movers.iloc[3]['i'] == 2 assert movers.iloc[3]['j1'] == 2 assert movers.iloc[3]['j2'] == 1 assert movers.iloc[3]['y1'] == 1 assert movers.iloc[3]['y2'] == 2 def test_refactor_5(): # 1 mover between firms 0 and 1, and 2 between firms 1 and 2. Time has jumps. worker_data = [] # Firm 0 -> 1 -> 0 # Time 1 -> 2 -> 4 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) worker_data.append({'i': 0, 'j': 0, 'y': 1., 't': 4}) # Firm 1 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) # Firm 2 -> 1 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 1, 'y': 2., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 0 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j1'] == 1 assert movers.iloc[2]['j2'] == 2 assert movers.iloc[2]['y1'] == 1 assert movers.iloc[2]['y2'] == 1 assert movers.iloc[3]['i'] == 2 assert movers.iloc[3]['j1'] == 2 assert movers.iloc[3]['j2'] == 1 assert movers.iloc[3]['y1'] == 1 assert movers.iloc[3]['y2'] == 2 def test_refactor_6(): # 1 mover between firms 0 and 1, and 2 between firms 1 and 2. Time has jumps. worker_data = [] # Firm 0 -> 0 -> 1 -> 0 # Time 1 -> 2 -> 3 -> 5 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 2}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 3}) worker_data.append({'i': 0, 'j': 0, 'y': 1., 't': 5}) # Firm 1 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) # Firm 2 -> 1 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 1, 'y': 2., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 0 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j1'] == 1 assert movers.iloc[2]['j2'] == 2 assert movers.iloc[2]['y1'] == 1 assert movers.iloc[2]['y2'] == 1 assert movers.iloc[3]['i'] == 2 assert movers.iloc[3]['j1'] == 2 assert movers.iloc[3]['j2'] == 1 assert movers.iloc[3]['y1'] == 1 assert movers.iloc[3]['y2'] == 2 def test_refactor_7(): # 1 mover between firms 0 and 1, and 2 between firms 1 and 2. Time has jumps. worker_data = [] # Firm 0 -> 0 -> 1 -> 0 # Time 1 -> 3 -> 4 -> 6 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 3}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 4}) worker_data.append({'i': 0, 'j': 0, 'y': 1., 't': 6}) # Firm 1 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) # Firm 2 -> 1 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 1, 'y': 2., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 0 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j1'] == 1 assert movers.iloc[2]['j2'] == 2 assert movers.iloc[2]['y1'] == 1 assert movers.iloc[2]['y2'] == 1 assert movers.iloc[3]['i'] == 2 assert movers.iloc[3]['j1'] == 2 assert movers.iloc[3]['j2'] == 1 assert movers.iloc[3]['y1'] == 1 assert movers.iloc[3]['y2'] == 2 def test_refactor_8(): # 2 movers between firms 0 and 1, and 1 between firms 1 and 2. Time has jumps. worker_data = [] # Firm 0 -> 0 -> 1 -> 0 # Time 1 -> 3 -> 4 -> 6 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 3}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 4}) worker_data.append({'i': 0, 'j': 0, 'y': 1., 't': 6}) # Firm 0 -> 1 worker_data.append({'i': 1, 'j': 0, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 2}) # Firm 2 -> 1 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 1, 'y': 2., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 0 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j1'] == 0 assert movers.iloc[2]['j2'] == 1 assert movers.iloc[2]['y1'] == 1 assert movers.iloc[2]['y2'] == 1 assert movers.iloc[3]['i'] == 2 assert movers.iloc[3]['j1'] == 2 assert movers.iloc[3]['j2'] == 1 assert movers.iloc[3]['y1'] == 1 assert movers.iloc[3]['y2'] == 2 def test_refactor_9(): # 2 movers between firms 0 and 1, and 1 between firms 1 and 2. Time has jumps. worker_data = [] # Firm 0 -> 0 -> 1 -> 0 # Time 1 -> 3 -> 4 -> 6 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 3}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 4}) worker_data.append({'i': 0, 'j': 0, 'y': 1., 't': 6}) # Firm 1 -> 0 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 0, 'y': 1., 't': 2}) # Firm 2 -> 1 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 1, 'y': 2., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 0 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j1'] == 1 assert movers.iloc[2]['j2'] == 0 assert movers.iloc[2]['y1'] == 1 assert movers.iloc[2]['y2'] == 1 assert movers.iloc[3]['i'] == 2 assert movers.iloc[3]['j1'] == 2 assert movers.iloc[3]['j2'] == 1 assert movers.iloc[3]['y1'] == 1 assert movers.iloc[3]['y2'] == 2 def test_refactor_10(): # 1 mover between firms 0 and 1, 1 between firms 1 and 2, and 1 stayer at firm 2. worker_data = [] # Firm 0 -> 1 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Firm 1 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) # Firm 2 -> 2 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert stayers.iloc[0]['i'] == 2 assert stayers.iloc[0]['j1'] == 2 assert stayers.iloc[0]['j2'] == 2 assert stayers.iloc[0]['y1'] == 1 assert stayers.iloc[0]['y2'] == 1 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 1 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 2 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 def test_refactor_11(): # 1 mover between firms 0 and 1 and 2 and 3, 1 between firms 1 and 2, and 1 stayer at firm 2. # Check going to event study and back to long, for data where movers have extended periods where they stay at the same firm worker_data = [] # Firm 0 -> 1 -> 2 -> 3 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) worker_data.append({'i': 0, 'j': 2, 'y': 0.5, 't': 3}) worker_data.append({'i': 0, 'j': 2, 'y': 0.5, 't': 4}) worker_data.append({'i': 0, 'j': 2, 'y': 0.75, 't': 5}) worker_data.append({'i': 0, 'j': 3, 'y': 1.5, 't': 6}) # Firm 1 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) # Firm 2 -> 2 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df).clean_data().get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert stayers.iloc[0]['i'] == 0 assert stayers.iloc[0]['j1'] == 2 assert stayers.iloc[0]['j2'] == 2 assert stayers.iloc[0]['y1'] == 0.5 assert stayers.iloc[0]['y2'] == 0.5 assert stayers.iloc[0]['t1'] == 4 assert stayers.iloc[0]['t2'] == 4 assert stayers.iloc[1]['i'] == 2 assert stayers.iloc[1]['j1'] == 2 assert stayers.iloc[1]['j2'] == 2 assert stayers.iloc[1]['y1'] == 1. assert stayers.iloc[1]['y2'] == 1. assert stayers.iloc[1]['t1'] == 1 assert stayers.iloc[1]['t2'] == 1 assert stayers.iloc[2]['i'] == 2 assert stayers.iloc[2]['j1'] == 2 assert stayers.iloc[2]['j2'] == 2 assert stayers.iloc[2]['y1'] == 1. assert stayers.iloc[2]['y2'] == 1. assert stayers.iloc[2]['t1'] == 2 assert stayers.iloc[2]['t2'] == 2 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2. assert movers.iloc[0]['y2'] == 1. assert movers.iloc[0]['t1'] == 1 assert movers.iloc[0]['t2'] == 2 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 2 assert movers.iloc[1]['y1'] == 1. assert movers.iloc[1]['y2'] == 0.5 assert movers.iloc[1]['t1'] == 2 assert movers.iloc[1]['t2'] == 3 assert movers.iloc[2]['i'] == 0 assert movers.iloc[2]['j1'] == 2 assert movers.iloc[2]['j2'] == 3 assert movers.iloc[2]['y1'] == 0.75 assert movers.iloc[2]['y2'] == 1.5 assert movers.iloc[2]['t1'] == 5 assert movers.iloc[2]['t2'] == 6 assert movers.iloc[3]['i'] == 1 assert movers.iloc[3]['j1'] == 1 assert movers.iloc[3]['j2'] == 2 assert movers.iloc[3]['y1'] == 1. assert movers.iloc[3]['y2'] == 1. assert movers.iloc[3]['t1'] == 1 assert movers.iloc[3]['t2'] == 2 bdf = bdf.get_long() for row in range(len(bdf)): df_row = df.iloc[row] bdf_row = bdf.iloc[row] for col in ['i', 'j', 'y', 't']: assert df_row[col] == bdf_row[col] def test_refactor_12(): # Check going to event study and back to long df = bpd.SimBipartite(bpd.sim_params({'p_move': 0.05, 'rng': np.random.default_rng(1234)})).sim_network() bdf = bpd.BipartiteLong(df).clean_data() assert len(bdf) == len(bdf.get_es().get_long()) def test_contiguous_fids_11(): # Check contiguous_ids() with firm ids. worker_data = [] # Firm 0 -> 1 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Firm 1 -> 3 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 3, 'y': 1., 't': 2}) # Firm 3 -> 3 worker_data.append({'i': 2, 'j': 3, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 3, 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert stayers.iloc[0]['i'] == 2 assert stayers.iloc[0]['j1'] == 2 assert stayers.iloc[0]['j2'] == 2 assert stayers.iloc[0]['y1'] == 1 assert stayers.iloc[0]['y2'] == 1 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 1 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 2 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 def test_contiguous_wids_12(): # Check contiguous_ids() with worker ids. worker_data = [] # Firm 0 -> 1 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Firm 1 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) # Worker 3 # Firm 2 -> 2 worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert stayers.iloc[0]['i'] == 2 assert stayers.iloc[0]['j1'] == 2 assert stayers.iloc[0]['j2'] == 2 assert stayers.iloc[0]['y1'] == 1 assert stayers.iloc[0]['y2'] == 1 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 1 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 2 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 def test_contiguous_cids_13(): # Check contiguous_ids() with cluster ids. worker_data = [] # Firm 0 -> 1 # Cluster 1 -> 2 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1, 'g': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2, 'g': 2}) # Firm 1 -> 2 # Cluster 2 -> 1 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1, 'g': 2}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2, 'g': 1}) # Firm 2 -> 2 # Cluster 1 -> 1 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1, 'g': 1}) worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 2, 'g': 1}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert stayers.iloc[0]['i'] == 2 assert stayers.iloc[0]['j1'] == 2 assert stayers.iloc[0]['j2'] == 2 assert stayers.iloc[0]['y1'] == 1 assert stayers.iloc[0]['y2'] == 1 assert stayers.iloc[0]['g1'] == 0 assert stayers.iloc[0]['g2'] == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[0]['g1'] == 0 assert movers.iloc[0]['g2'] == 1 assert movers.iloc[1]['i'] == 1 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 2 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 assert movers.iloc[1]['g1'] == 1 assert movers.iloc[1]['g2'] == 0 def test_contiguous_cids_14(): # Check contiguous_ids() with cluster ids. worker_data = [] # Firm 0 -> 1 # Cluster 2 -> 1 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1, 'g': 2}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2, 'g': 1}) # Firm 1 -> 2 # Cluster 1 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1, 'g': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2, 'g': 2}) # Firm 2 -> 2 # Cluster 2 -> 2 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1, 'g': 2}) worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 2, 'g': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df, include_id_reference_dict=True) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es().original_ids() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[0]['original_g1'] == 2 assert movers.iloc[0]['original_g2'] == 1 assert movers.iloc[0]['g1'] == 0 assert movers.iloc[0]['g2'] == 1 assert movers.iloc[1]['i'] == 1 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 2 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 assert movers.iloc[1]['original_g1'] == 1 assert movers.iloc[1]['original_g2'] == 2 assert movers.iloc[1]['g1'] == 1 assert movers.iloc[1]['g2'] == 0 assert stayers.iloc[0]['i'] == 2 assert stayers.iloc[0]['j1'] == 2 assert stayers.iloc[0]['j2'] == 2 assert stayers.iloc[0]['y1'] == 1 assert stayers.iloc[0]['y2'] == 1 assert stayers.iloc[0]['original_g1'] == 2 assert stayers.iloc[0]['original_g2'] == 2 assert stayers.iloc[0]['g1'] == 0 assert stayers.iloc[0]['g2'] == 0 def test_col_dict_15(): # Check that col_dict works properly. worker_data = [] # Firm 0 -> 1 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Firm 1 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) # Worker 3 # Firm 2 -> 2 worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]).rename({'j': 'firm', 'i': 'worker'}, axis=1) bdf = bpd.BipartiteLong(data=df, col_dict={'j': 'firm', 'i': 'worker'}) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert stayers.iloc[0]['i'] == 2 assert stayers.iloc[0]['j1'] == 2 assert stayers.iloc[0]['j2'] == 2 assert stayers.iloc[0]['y1'] == 1 assert stayers.iloc[0]['y2'] == 1 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 1 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 2 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 def test_worker_year_unique_16_1(): # Workers with multiple jobs in the same year, keep the highest paying, with long format. Testing 'max', 'sum', and 'mean' options, where options should not have an effect. worker_data = [] # Firm 0 -> 1 # Time 1 -> 2 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Firm 1 -> 2 -> 3 # Time 1 -> 2 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) worker_data.append({'i': 1, 'j': 3, 'y': 0.5, 't': 2}) # Worker 3 # Firm 2 -> 1 -> 2 # Time 1 -> 1 -> 2 worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 3, 'j': 1, 'y': 1.5, 't': 1}) worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) for how in ['max', 'sum', 'mean']: bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data(bpd.clean_params({'i_t_how': how})) stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j'] == 0 assert movers.iloc[0]['y'] == 2 assert movers.iloc[0]['t'] == 1 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j'] == 1 assert movers.iloc[1]['y'] == 1 assert movers.iloc[1]['t'] == 2 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j'] == 1 assert movers.iloc[2]['y'] == 1 assert movers.iloc[2]['t'] == 1 assert movers.iloc[3]['i'] == 1 assert movers.iloc[3]['j'] == 2 assert movers.iloc[3]['y'] == 1 assert movers.iloc[3]['t'] == 2 assert movers.iloc[4]['i'] == 2 assert movers.iloc[4]['j'] == 1 assert movers.iloc[4]['y'] == 1.5 assert movers.iloc[4]['t'] == 1 assert movers.iloc[5]['i'] == 2 assert movers.iloc[5]['j'] == 2 assert movers.iloc[5]['y'] == 1 assert movers.iloc[5]['t'] == 2 def test_worker_year_unique_16_2(): # Workers with multiple jobs in the same year, keep the highest paying, with long format. Testing 'max', 'sum' and 'mean' options, where options should have an effect. worker_data = [] # Firm 0 -> 1 # Time 1 -> 2 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Firm 1 -> 2 -> 2 -> 3 # Time 1 -> 2 -> 2 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) worker_data.append({'i': 1, 'j': 2, 'y': 1.5, 't': 2}) worker_data.append({'i': 1, 'j': 3, 'y': 0.5, 't': 2}) # Worker 3 # Firm 2 -> 1 -> 2 # Time 1 -> 1 -> 2 worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 3, 'j': 1, 'y': 1.5, 't': 1}) worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) for how in ['max', 'sum', 'mean']: bdf = bpd.BipartiteLong(data=df.copy()) bdf = bdf.clean_data(bpd.clean_params({'i_t_how': how})) stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j'] == 0 assert movers.iloc[0]['y'] == 2 assert movers.iloc[0]['t'] == 1 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j'] == 1 assert movers.iloc[1]['y'] == 1 assert movers.iloc[1]['t'] == 2 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j'] == 1 assert movers.iloc[2]['y'] == 1 assert movers.iloc[2]['t'] == 1 assert movers.iloc[3]['i'] == 1 assert movers.iloc[3]['j'] == 2 if how == 'max': assert movers.iloc[3]['y'] == 1.5 elif how == 'sum': assert movers.iloc[3]['y'] == 2.5 elif how == 'mean': assert movers.iloc[3]['y'] == 1.25 assert movers.iloc[3]['t'] == 2 assert movers.iloc[4]['i'] == 2 assert movers.iloc[4]['j'] == 1 assert movers.iloc[4]['y'] == 1.5 assert movers.iloc[4]['t'] == 1 assert movers.iloc[5]['i'] == 2 assert movers.iloc[5]['j'] == 2 assert movers.iloc[5]['y'] == 1 assert movers.iloc[5]['t'] == 2 def test_worker_year_unique_16_3(): # Workers with multiple jobs in the same year, keep the highest paying, with collapsed long format. Testing 'max', 'sum', and 'mean' options, where options should have an effect. Using collapsed long data. worker_data = [] # Firm 0 -> 1 # Time 1 -> 2 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't1': 1, 't2': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't1': 2, 't2': 2}) # Firm 1 -> 2 -> 2 -> 3 # Time 1 -> 2 -> 2 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't1': 1, 't2': 2}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't1': 2, 't2': 2}) worker_data.append({'i': 1, 'j': 2, 'y': 1.5, 't1': 2, 't2': 2}) worker_data.append({'i': 1, 'j': 3, 'y': 0.5, 't1': 2, 't2': 2}) # Worker 3 # Firm 2 -> 1 # Time 1 -> 1 worker_data.append({'i': 3, 'j': 2, 'y': 1., 't1': 1, 't2': 2}) worker_data.append({'i': 3, 'j': 1, 'y': 1.5, 't1': 1, 't2': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) for how in ['max', 'sum', 'mean']: bdf = bpd.BipartiteLongCollapsed(data=df) bdf = bdf.clean_data(bpd.clean_params({'i_t_how': how})) stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert stayers.iloc[0]['i'] == 2 assert stayers.iloc[0]['j'] == 1 assert stayers.iloc[0]['y'] == 1.5 assert stayers.iloc[0]['t1'] == 1 assert stayers.iloc[0]['t2'] == 2 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j'] == 0 assert movers.iloc[0]['y'] == 2 assert movers.iloc[0]['t1'] == 1 assert movers.iloc[0]['t2'] == 1 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j'] == 1 assert movers.iloc[1]['y'] == 1 assert movers.iloc[1]['t1'] == 2 assert movers.iloc[1]['t2'] == 2 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j'] == 1 assert movers.iloc[2]['y'] == 1 assert movers.iloc[2]['t1'] == 1 assert movers.iloc[2]['t2'] == 1 assert movers.iloc[3]['i'] == 1 assert movers.iloc[3]['j'] == 2 if how == 'max': assert movers.iloc[3]['y'] == 1.5 elif how == 'sum': assert movers.iloc[3]['y'] == 2.5 elif how == 'mean': assert movers.iloc[3]['y'] == 1.25 assert movers.iloc[3]['t1'] == 2 assert movers.iloc[3]['t2'] == 2 def test_worker_year_unique_16_4(): # Workers with multiple jobs in the same year, keep the highest paying, with event study format. Testing 'max', 'sum', and 'mean' options, where options should have an effect. NOTE: because of how data converts from event study to long (it only shifts period 2 (e.g. j2, y2) for the last row, as it assumes observations zigzag), it will only correct duplicates for period 1 worker_data = [] # Worker 0 worker_data.append({'i': 0, 'j1': 0, 'j2': 1, 'y1': 2., 'y2': 1., 't1': 1, 't2': 2}) # Worker 1 worker_data.append({'i': 1, 'j1': 1, 'j2': 2, 'y1': 0.5, 'y2': 1.5, 't1': 1, 't2': 2}) worker_data.append({'i': 1, 'j1': 1, 'j2': 2, 'y1': 0.75, 'y2': 1., 't1': 1, 't2': 2}) worker_data.append({'i': 1, 'j1': 2, 'j2': 1, 'y1': 1., 'y2': 2., 't1': 1, 't2': 2}) # Worker 3 worker_data.append({'i': 3, 'j1': 2, 'j2': 2, 't1': 1, 't2': 1, 'y1': 1., 'y2': 1.}) worker_data.append({'i': 3, 'j1': 2, 'j2': 2, 'y1': 1., 'y2': 1., 't1': 2, 't2': 2}) worker_data.append({'i': 3, 'j1': 1, 'j2': 1, 'y1': 1.5, 'y2': 1.5, 't1': 1, 't2': 1}) worker_data.append({'i': 3, 'j1': 1, 'j2': 1, 'y1': 1.5, 'y2': 1.5, 't1': 2, 't2': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) for how in ['max', 'sum', 'mean']: bdf = bpd.BipartiteEventStudy(data=df.copy(), include_id_reference_dict=True) bdf = bdf.clean_data(bpd.clean_params({'i_t_how': how})).original_ids() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert stayers.iloc[0]['i'] == 2 assert stayers.iloc[0]['original_i'] == 3 assert stayers.iloc[0]['j1'] == 1 assert stayers.iloc[0]['j2'] == 1 assert stayers.iloc[0]['y1'] == 1.5 assert stayers.iloc[0]['y2'] == 1.5 assert stayers.iloc[0]['t1'] == 1 assert stayers.iloc[0]['t2'] == 1 assert stayers.iloc[1]['i'] == 2 assert stayers.iloc[1]['original_i'] == 3 assert stayers.iloc[1]['j1'] == 1 assert stayers.iloc[1]['j2'] == 1 assert stayers.iloc[1]['y1'] == 1.5 assert stayers.iloc[1]['y2'] == 1.5 assert stayers.iloc[1]['t1'] == 2 assert stayers.iloc[1]['t2'] == 2 assert movers.iloc[0]['original_i'] == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[0]['t1'] == 1 assert movers.iloc[0]['t2'] == 2 assert movers.iloc[1]['original_i'] == 1 assert movers.iloc[1]['i'] == 1 if how == 'max': assert movers.iloc[1]['j1'] == 2 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['j2'] == 1 assert movers.iloc[1]['y2'] == 2 elif how == 'sum': assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['y1'] == 1.25 assert movers.iloc[1]['j2'] == 2 assert movers.iloc[1]['y2'] == 2.5 elif how == 'mean': assert movers.iloc[1]['j1'] == 2 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['j2'] == 1 assert movers.iloc[1]['y2'] == 2 assert movers.iloc[1]['t1'] == 1 assert movers.iloc[1]['t2'] == 2 def test_string_ids_17(): # String worker and firm ids. worker_data = [] # Worker 'a' worker_data.append({'i': 'a', 'j': 'a', 'y': 2., 't': 1}) worker_data.append({'i': 'a', 'j': 'b', 'y': 1., 't': 2}) # Worker 'b' worker_data.append({'i': 'b', 'j': 'b', 'y': 1., 't': 1}) worker_data.append({'i': 'b', 'j': 'c', 'y': 1., 't': 2}) worker_data.append({'i': 'b', 'j': 'd', 'y': 0.5, 't': 2}) # Worker 'd' worker_data.append({'i': 'd', 'j': 'c', 'y': 1., 't': 1}) worker_data.append({'i': 'd', 'j': 'b', 'y': 1.5, 't': 1}) worker_data.append({'i': 'd', 'j': 'c', 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j'] == 0 assert movers.iloc[0]['y'] == 2 assert movers.iloc[0]['t'] == 1 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j'] == 1 assert movers.iloc[1]['y'] == 1 assert movers.iloc[1]['t'] == 2 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j'] == 1 assert movers.iloc[2]['y'] == 1 assert movers.iloc[2]['t'] == 1 assert movers.iloc[3]['i'] == 1 assert movers.iloc[3]['j'] == 2 assert movers.iloc[3]['y'] == 1 assert movers.iloc[3]['t'] == 2 assert movers.iloc[4]['i'] == 2 assert movers.iloc[4]['j'] == 1 assert movers.iloc[4]['y'] == 1.5 assert movers.iloc[4]['t'] == 1 assert movers.iloc[5]['i'] == 2 assert movers.iloc[5]['j'] == 2 assert movers.iloc[5]['y'] == 1 assert movers.iloc[5]['t'] == 2 def test_general_methods_18(): # Test some general methods, like n_workers/n_firms/n_clusters, included_cols(), drop(), and rename(). worker_data = [] # Worker 0 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1, 'g': 2}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2, 'g': 1}) # Worker 1 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1, 'g': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2, 'g': 2}) # Worker 2 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1, 'g': 2}) worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 2, 'g': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() assert bdf.n_workers() == 3 assert bdf.n_firms() == 3 assert bdf.n_clusters() == 2 correct_cols = True all_cols = bdf._included_cols() for col in ['i', 'j', 'y', 't', 'g']: if col not in all_cols: correct_cols = False break assert correct_cols bdf.drop('g1', axis=1, inplace=True) assert 'g1' in bdf.columns and 'g2' in bdf.columns bdf.drop('g', axis=1, inplace=True) assert 'g1' not in bdf.columns and 'g2' not in bdf.columns bdf.rename({'i': 'w'}) assert 'i' in bdf.columns bdf['g1'] = 1 bdf['g2'] = 1 bdf.col_dict['g1'] = 'g1' bdf.col_dict['g2'] = 'g2' assert 'g1' in bdf.columns and 'g2' in bdf.columns bdf.rename({'g': 'r'}) assert 'g1' not in bdf.columns and 'g2' not in bdf.columns def test_save_19(): # Make sure changing attributes in a saved version does not overwrite values in the original. worker_data = [] # Worker 0 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Worker 1 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) worker_data.append({'i': 1, 'j': 3, 'y': 0.5, 't': 2}) # Worker 3 worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 3, 'j': 1, 'y': 1.5, 't': 1}) worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) # Long bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data().drop('m', axis=1, inplace=True) bdf2 = bdf.copy() bdf2 = bdf2.gen_m(copy=False) assert 'm' in bdf2._included_cols() and 'm' not in bdf._included_cols() # Event study bdf = bdf.gen_m(copy=False).get_es() bdf = bdf.clean_data().drop('m', axis=1, inplace=True) bdf2 = bdf.copy() bdf2 = bdf2.gen_m(copy=False) assert 'm' in bdf2._included_cols() and 'm' not in bdf._included_cols() # Collapsed long bdf = bdf.gen_m(copy=False).get_long().get_collapsed_long() bdf = bdf.clean_data().drop('m', axis=1, inplace=True) bdf2 = bdf.copy() bdf2 = bdf2.gen_m(copy=False) assert 'm' in bdf2._included_cols() and 'm' not in bdf._included_cols() # Collapsed event study bdf = bdf.gen_m(copy=False).get_es() bdf = bdf.clean_data().drop('m', axis=1, inplace=True) bdf2 = bdf.copy() bdf2 = bdf2.gen_m(copy=False) assert 'm' in bdf2._included_cols() and 'm' not in bdf._included_cols() def test_id_reference_dict_20(): # String worker and firm ids, link with id_reference_dict. worker_data = [] # Worker 'a' worker_data.append({'i': 'a', 'j': 'a', 'y': 2., 't': 1}) worker_data.append({'i': 'a', 'j': 'b', 'y': 1., 't': 2}) # Worker 'b' worker_data.append({'i': 'b', 'j': 'b', 'y': 1., 't': 1}) worker_data.append({'i': 'b', 'j': 'c', 'y': 1., 't': 2}) worker_data.append({'i': 'b', 'j': 'd', 'y': 0.5, 't': 2}) # Worker 'd' worker_data.append({'i': 'd', 'j': 'c', 'y': 1., 't': 1}) worker_data.append({'i': 'd', 'j': 'b', 'y': 1.5, 't': 1}) worker_data.append({'i': 'd', 'j': 'c', 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df, include_id_reference_dict=True) bdf = bdf.clean_data() id_reference_dict = bdf.id_reference_dict merge_df = bdf.merge(id_reference_dict['i'], how='left', left_on='i', right_on='adjusted_ids_1').rename({'original_ids': 'original_i'}) merge_df = merge_df.merge(id_reference_dict['j'], how='left', left_on='j', right_on='adjusted_ids_1').rename({'original_ids': 'original_j'}) stayers = merge_df[merge_df['m'] == 0] movers = merge_df[merge_df['m'] == 1] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['original_i'] == 'a' assert movers.iloc[0]['j'] == 0 assert movers.iloc[0]['original_j'] == 'a' assert movers.iloc[0]['y'] == 2 assert movers.iloc[0]['t'] == 1 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['original_i'] == 'a' assert movers.iloc[1]['j'] == 1 assert movers.iloc[1]['original_j'] == 'b' assert movers.iloc[1]['y'] == 1 assert movers.iloc[1]['t'] == 2 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['original_i'] == 'b' assert movers.iloc[2]['j'] == 1 assert movers.iloc[2]['original_j'] == 'b' assert movers.iloc[2]['y'] == 1 assert movers.iloc[2]['t'] == 1 assert movers.iloc[3]['i'] == 1 assert movers.iloc[3]['original_i'] == 'b' assert movers.iloc[3]['j'] == 2 assert movers.iloc[3]['original_j'] == 'c' assert movers.iloc[3]['y'] == 1 assert movers.iloc[3]['t'] == 2 assert movers.iloc[4]['i'] == 2 assert movers.iloc[4]['original_i'] == 'd' assert movers.iloc[4]['j'] == 1 assert movers.iloc[4]['original_j'] == 'b' assert movers.iloc[4]['y'] == 1.5 assert movers.iloc[4]['t'] == 1 assert movers.iloc[5]['i'] == 2 assert movers.iloc[5]['original_i'] == 'd' assert movers.iloc[5]['j'] == 2 assert movers.iloc[5]['original_j'] == 'c' assert movers.iloc[5]['y'] == 1 assert movers.iloc[5]['t'] == 2 def test_id_reference_dict_22(): # String worker and firm ids, link with id_reference_dict. Testing original_ids() method. worker_data = [] # Worker 'a' worker_data.append({'i': 'a', 'j': 'a', 'y': 2., 't': 1}) worker_data.append({'i': 'a', 'j': 'b', 'y': 1., 't': 2}) # Worker 'b' worker_data.append({'i': 'b', 'j': 'b', 'y': 1., 't': 1}) worker_data.append({'i': 'b', 'j': 'c', 'y': 1., 't': 2}) worker_data.append({'i': 'b', 'j': 'd', 'y': 0.5, 't': 2}) # Worker 'd' worker_data.append({'i': 'd', 'j': 'c', 'y': 1., 't': 1}) worker_data.append({'i': 'd', 'j': 'b', 'y': 1.5, 't': 1}) worker_data.append({'i': 'd', 'j': 'c', 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df, include_id_reference_dict=True) bdf = bdf.clean_data() merge_df = bdf.original_ids() stayers = merge_df[merge_df['m'] == 0] movers = merge_df[merge_df['m'] == 1] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['original_i'] == 'a' assert movers.iloc[0]['j'] == 0 assert movers.iloc[0]['original_j'] == 'a' assert movers.iloc[0]['y'] == 2 assert movers.iloc[0]['t'] == 1 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['original_i'] == 'a' assert movers.iloc[1]['j'] == 1 assert movers.iloc[1]['original_j'] == 'b' assert movers.iloc[1]['y'] == 1 assert movers.iloc[1]['t'] == 2 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['original_i'] == 'b' assert movers.iloc[2]['j'] == 1 assert movers.iloc[2]['original_j'] == 'b' assert movers.iloc[2]['y'] == 1 assert movers.iloc[2]['t'] == 1 assert movers.iloc[3]['i'] == 1 assert movers.iloc[3]['original_i'] == 'b' assert movers.iloc[3]['j'] == 2 assert movers.iloc[3]['original_j'] == 'c' assert movers.iloc[3]['y'] == 1 assert movers.iloc[3]['t'] == 2 assert movers.iloc[4]['i'] == 2 assert movers.iloc[4]['original_i'] == 'd' assert movers.iloc[4]['j'] == 1 assert movers.iloc[4]['original_j'] == 'b' assert movers.iloc[4]['y'] == 1.5 assert movers.iloc[4]['t'] == 1 assert movers.iloc[5]['i'] == 2 assert movers.iloc[5]['original_i'] == 'd' assert movers.iloc[5]['j'] == 2 assert movers.iloc[5]['original_j'] == 'c' assert movers.iloc[5]['y'] == 1 assert movers.iloc[5]['t'] == 2 def test_id_reference_dict_23(): # String worker and firm ids, link with id_reference_dict. Testing original_ids() method where there are multiple steps of references. worker_data = [] # Worker 'a' # Firm a -> b -> c turns into 0 -> 1 -> 2 turns into 0 -> 1 worker_data.append({'i': 'a', 'j': 'a', 'y': 2., 't': 1}) worker_data.append({'i': 'a', 'j': 'b', 'y': 1., 't': 2}) worker_data.append({'i': 'a', 'j': 'c', 'y': 1.5, 't': 3}) # Worker 'b' # Firm b -> d turns into 1 -> 3 turns into 0 -> 2 worker_data.append({'i': 'b', 'j': 'b', 'y': 1., 't': 1}) worker_data.append({'i': 'b', 'j': 'd', 'y': 1., 't': 2}) worker_data.append({'i': 'b', 'j': 'c', 'y': 0.5, 't': 2}) # Worker 'd' # Firm b -> d turns into 1 -> 3 turns into 0 -> 2 worker_data.append({'i': 'd', 'j': 'd', 'y': 1., 't': 1}) worker_data.append({'i': 'd', 'j': 'b', 'y': 1.5, 't': 1}) worker_data.append({'i': 'd', 'j': 'd', 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df, include_id_reference_dict=True) bdf = bdf.clean_data() bdf = bdf[bdf['j'] > 0] bdf = bdf.clean_data(bpd.clean_params({'connectedness': None})) merge_df = bdf.original_ids() stayers = merge_df[merge_df['m'] == 0] movers = merge_df[merge_df['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['original_i'] == 'a' assert movers.iloc[0]['j'] == 0 assert movers.iloc[0]['original_j'] == 'b' assert movers.iloc[0]['y'] == 1 assert movers.iloc[0]['t'] == 2 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['original_i'] == 'a' assert movers.iloc[1]['j'] == 1 assert movers.iloc[1]['original_j'] == 'c' assert movers.iloc[1]['y'] == 1.5 assert movers.iloc[1]['t'] == 3 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['original_i'] == 'b' assert movers.iloc[2]['j'] == 0 assert movers.iloc[2]['original_j'] == 'b' assert movers.iloc[2]['y'] == 1 assert movers.iloc[2]['t'] == 1 assert movers.iloc[3]['i'] == 1 assert movers.iloc[3]['original_i'] == 'b' assert movers.iloc[3]['j'] == 2 assert movers.iloc[3]['original_j'] == 'd' assert movers.iloc[3]['y'] == 1 assert movers.iloc[3]['t'] == 2 assert movers.iloc[4]['i'] == 2 assert movers.iloc[4]['original_i'] == 'd' assert movers.iloc[4]['j'] == 0 assert movers.iloc[4]['original_j'] == 'b' assert movers.iloc[4]['y'] == 1.5 assert movers.iloc[4]['t'] == 1 assert movers.iloc[5]['i'] == 2 assert movers.iloc[5]['original_i'] == 'd' assert movers.iloc[5]['j'] == 2 assert movers.iloc[5]['original_j'] == 'd' assert movers.iloc[5]['y'] == 1 assert movers.iloc[5]['t'] == 2 def test_fill_time_24_1(): # Test .fill_time() method for long format, with no data to fill in. worker_data = [] # Worker 0 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Worker 1 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) # Worker 3 worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() new_df = bdf.fill_periods() stayers = new_df[new_df['m'] == 0] movers = new_df[new_df['m'] == 1] assert stayers.iloc[0]['i'] == 2 assert stayers.iloc[0]['j'] == 2 assert stayers.iloc[0]['y'] == 1 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j'] == 0 assert movers.iloc[0]['y'] == 2 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j'] == 1 assert movers.iloc[1]['y'] == 1 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j'] == 1 assert movers.iloc[2]['y'] == 1 assert movers.iloc[3]['i'] == 1 assert movers.iloc[3]['j'] == 2 assert movers.iloc[3]['y'] == 1 def test_fill_time_24_2(): # Test .fill_time() method for long format, with 1 row of data to fill in. worker_data = [] # Worker 0 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Worker 1 # Time 1 -> 3 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 3}) # Worker 3 worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() new_df = bdf.fill_periods() stayers = new_df[new_df.groupby('i')['m'].transform('max') == 0] movers = new_df[new_df.groupby('i')['m'].transform('max') == 1] assert stayers.iloc[0]['i'] == 2 assert stayers.iloc[0]['j'] == 2 assert stayers.iloc[0]['y'] == 1 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j'] == 0 assert movers.iloc[0]['y'] == 2 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j'] == 1 assert movers.iloc[1]['y'] == 1 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j'] == 1 assert movers.iloc[2]['y'] == 1 assert movers.iloc[3]['i'] == 1 assert movers.iloc[3]['j'] == - 1 assert np.isnan(movers.iloc[3]['y']) assert np.isnan(movers.iloc[3]['m']) assert movers.iloc[4]['i'] == 1 assert movers.iloc[4]['j'] == 2 assert movers.iloc[4]['y'] == 1 def test_fill_time_24_3(): # Test .fill_time() method for long format, with 2 rows of data to fill in. worker_data = [] # Worker 0 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Worker 1 # Time 1 -> 4 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 4}) # Worker 3 worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() new_df = bdf.fill_periods() stayers = new_df[new_df.groupby('i')['m'].transform('max') == 0] movers = new_df[new_df.groupby('i')['m'].transform('max') == 1] assert stayers.iloc[0]['i'] == 2 assert stayers.iloc[0]['j'] == 2 assert stayers.iloc[0]['y'] == 1 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j'] == 0 assert movers.iloc[0]['y'] == 2 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j'] == 1 assert movers.iloc[1]['y'] == 1 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j'] == 1 assert movers.iloc[2]['y'] == 1 assert movers.iloc[3]['i'] == 1 assert movers.iloc[3]['j'] == - 1 assert np.isnan(movers.iloc[3]['y']) assert np.isnan(movers.iloc[3]['m']) assert movers.iloc[4]['i'] == 1 assert movers.iloc[4]['j'] == - 1 assert np.isnan(movers.iloc[4]['y']) assert np.isnan(movers.iloc[4]['m']) assert movers.iloc[5]['i'] == 1 assert movers.iloc[5]['j'] == 2 assert movers.iloc[5]['y'] == 1 def test_uncollapse_25(): # Convert from collapsed long to long format. worker_data = [] # Worker 0 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't1': 1, 't2': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't1': 2, 't2': 2}) # Worker 1 # Time 1 -> 3 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't1': 1, 't2': 2}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't1': 2, 't2': 2}) worker_data.append({'i': 1, 'j': 2, 'y': 1.5, 't1': 2, 't2': 2}) worker_data.append({'i': 1, 'j': 3, 'y': 0.5, 't1': 2, 't2': 2}) # Worker 3 worker_data.append({'i': 3, 'j': 2, 'y': 1., 't1': 1, 't2': 2}) worker_data.append({'i': 3, 'j': 1, 'y': 1.5, 't1': 1, 't2': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLongCollapsed(data=df).uncollapse() assert bdf.iloc[0]['i'] == 0 assert bdf.iloc[0]['j'] == 0 assert bdf.iloc[0]['y'] == 2 assert bdf.iloc[0]['t'] == 1 assert bdf.iloc[1]['i'] == 0 assert bdf.iloc[1]['j'] == 1 assert bdf.iloc[1]['y'] == 1 assert bdf.iloc[1]['t'] == 2 assert bdf.iloc[2]['i'] == 1 assert bdf.iloc[2]['j'] == 1 assert bdf.iloc[2]['y'] == 1 assert bdf.iloc[2]['t'] == 1 assert bdf.iloc[3]['i'] == 1 assert bdf.iloc[3]['j'] == 1 assert bdf.iloc[3]['y'] == 1 assert bdf.iloc[3]['t'] == 2 assert bdf.iloc[4]['i'] == 1 assert bdf.iloc[4]['j'] == 2 assert bdf.iloc[4]['y'] == 1 assert bdf.iloc[4]['t'] == 2 assert bdf.iloc[5]['i'] == 1 assert bdf.iloc[5]['j'] == 2 assert bdf.iloc[5]['y'] == 1.5 assert bdf.iloc[5]['t'] == 2 assert bdf.iloc[6]['i'] == 1 assert bdf.iloc[6]['j'] == 3 assert bdf.iloc[6]['y'] == 0.5 assert bdf.iloc[6]['t'] == 2 assert bdf.iloc[7]['i'] == 3 assert bdf.iloc[7]['j'] == 2 assert bdf.iloc[7]['y'] == 1 assert bdf.iloc[7]['t'] == 1 assert bdf.iloc[8]['i'] == 3 assert bdf.iloc[8]['j'] == 2 assert bdf.iloc[8]['y'] == 1 assert bdf.iloc[8]['t'] == 2 assert bdf.iloc[9]['i'] == 3 assert bdf.iloc[9]['j'] == 1 assert bdf.iloc[9]['y'] == 1.5 assert bdf.iloc[9]['t'] == 1 assert bdf.iloc[10]['i'] == 3 assert bdf.iloc[10]['j'] == 1 assert bdf.iloc[10]['y'] == 1.5 assert bdf.iloc[10]['t'] == 2 def test_keep_ids_26(): # Keep only given ids. df = bpd.SimBipartite(bpd.sim_params({'p_move': 0.05, 'rng': np.random.default_rng(1234)})).sim_network() bdf = bpd.BipartiteLong(df).clean_data() all_fids = bdf['j'].unique() ids_to_keep = all_fids[: len(all_fids) // 2] bdf_keep = bdf.get_es().keep_ids('j', ids_to_keep).get_long() assert set(bdf_keep['j']) == set(ids_to_keep) # Make sure long and es give same results bdf_keep2 = bdf.keep_ids('j', ids_to_keep) assert len(bdf_keep) == len(bdf_keep2) def test_drop_ids_27(): # Drop given ids. df = bpd.SimBipartite(bpd.sim_params({'p_move': 0.05, 'rng': np.random.default_rng(1234)})).sim_network() bdf = bpd.BipartiteLong(df).clean_data() all_fids = bdf['j'].unique() ids_to_drop = all_fids[: len(all_fids) // 2] bdf_keep = bdf.get_es().drop_ids('j', ids_to_drop).get_long() assert set(bdf_keep['j']) == set(all_fids).difference(set(ids_to_drop)) # Make sure long and es give same results bdf_keep2 = bdf.drop_ids('j', ids_to_drop) assert len(bdf_keep) == len(bdf_keep2) def test_min_obs_firms_28_1(): # List only firms that meet a minimum threshold of observations. # Using long/event study. df = bpd.SimBipartite(bpd.sim_params({'p_move': 0.05, 'rng': np.random.default_rng(1234)})).sim_network() bdf = bpd.BipartiteLong(df).clean_data() threshold = 250 # First, manually estimate the valid set of firms frame = bdf.copy() n_moves = frame.groupby('j')['i'].size() valid_firms = sorted(n_moves[n_moves >= threshold].index) # Next, estimate the set of valid firms using the built-in function valid_firms2 = sorted(bdf.min_obs_firms(threshold)) valid_firms3 = sorted(bdf.get_es().min_obs_firms(threshold)) assert (0 < len(valid_firms) < df['j'].nunique()) assert len(valid_firms) == len(valid_firms2) == len(valid_firms3) for i in range(len(valid_firms)): assert valid_firms[i] == valid_firms2[i] == valid_firms3[i] def test_min_obs_firms_28_2(): # List only firms that meet a minimum threshold of observations. # Using long collapsed/event study collapsed. df = bpd.SimBipartite(bpd.sim_params({'p_move': 0.05, 'rng': np.random.default_rng(1234)})).sim_network() bdf = bpd.BipartiteLong(df).clean_data().get_collapsed_long() threshold = 60 # First, manually estimate the valid set of firms frame = bdf.copy() n_moves = frame.groupby('j')['i'].size() valid_firms = sorted(n_moves[n_moves >= threshold].index) # Next, estimate the set of valid firms using the built-in function valid_firms2 = sorted(bdf.min_obs_firms(threshold)) valid_firms3 = sorted(bdf.get_es().min_obs_firms(threshold)) assert (0 < len(valid_firms) < df['j'].nunique()) assert len(valid_firms) == len(valid_firms2) == len(valid_firms3) for i in range(len(valid_firms)): assert valid_firms[i] == valid_firms2[i] == valid_firms3[i] def test_min_obs_frame_29_1(): # Keep only firms that meet a minimum threshold of observations. # Using long/event study. df = bpd.SimBipartite(bpd.sim_params({'p_move': 0.05, 'rng': np.random.default_rng(1234)})).sim_network() bdf = bpd.BipartiteLong(df).clean_data() threshold = 250 # First, manually estimate the new frame frame = bdf.copy() n_moves = frame.groupby('j')['i'].size() valid_firms = sorted(n_moves[n_moves >= threshold].index) new_frame = frame.keep_ids('j', valid_firms) new_frame.reset_index(drop=True, inplace=True) # Next, estimate the new frame using the built-in function new_frame2 = bdf.min_obs_frame(threshold) new_frame3 = bdf.get_es().min_obs_frame(threshold).get_long() assert (0 < len(new_frame) < len(bdf)) assert len(new_frame) == len(new_frame2) == len(new_frame3) for i in range(100): # range(len(new_frame)): # It takes too long to go through all rows for col in ['i', 'j', 'y', 't']: # Skip 'm' since we didn't recompute it assert new_frame.iloc[i][col] == new_frame2.iloc[i][col] == new_frame3.iloc[i][col] for i in range(len(new_frame) - 100, len(new_frame)): # range(len(new_frame)): # It takes too long to go through all rows for col in ['i', 'j', 'y', 't']: # Skip 'm' since we didn't recompute it assert new_frame.iloc[i][col] == new_frame2.iloc[i][col] == new_frame3.iloc[i][col] def test_min_obs_frame_29_2(): # Keep only firms that meet a minimum threshold of observations. # Using long collapsed/event study collapsed. df = bpd.SimBipartite(bpd.sim_params({'p_move': 0.05, 'rng': np.random.default_rng(1234)})).sim_network() bdf = bpd.BipartiteLong(df).clean_data().get_collapsed_long() threshold = 60 # First, manually estimate the new frame frame = bdf.copy() n_moves = frame.groupby('j')['i'].size() valid_firms = sorted(n_moves[n_moves >= threshold].index) new_frame = frame.keep_ids('j', valid_firms) # Next, estimate the new frame using the built-in function new_frame2 = bdf.min_obs_frame(threshold) new_frame3 = bdf.get_es().min_obs_frame(threshold).get_long() assert (0 < len(new_frame) < len(bdf)) assert len(new_frame) == len(new_frame2) == len(new_frame3) for i in range(100): # range(len(new_frame)): # It takes too long to go through all rows for col in ['i', 'j', 'y', 't1', 't2']: # Skip 'm' since we didn't recompute it assert new_frame.iloc[i][col] == new_frame2.iloc[i][col] == new_frame3.iloc[i][col] for i in range(len(new_frame) - 100, len(new_frame)): # range(len(new_frame)): # It takes too long to go through all rows for col in ['i', 'j', 'y', 't1', 't2']: # Skip 'm' since we didn't recompute it assert new_frame.iloc[i][col] == new_frame2.iloc[i][col] == new_frame3.iloc[i][col] def test_min_workers_firms_30(): # List only firms that meet a minimum threshold of workers. # Using long/event study/long collapsed/event study collapsed. df = bpd.SimBipartite(bpd.sim_params({'p_move': 0.05, 'rng': np.random.default_rng(1234)})).sim_network() bdf = bpd.BipartiteLong(df).clean_data() threshold = 40 # First, manually estimate the valid set of firms frame = bdf.copy() # Count workers n_workers = frame.groupby('j')['i'].nunique() valid_firms = sorted(n_workers[n_workers >= threshold].index) # Next, estimate the set of valid firms using the built-in function valid_firms2 = sorted(bdf.min_workers_firms(threshold)) valid_firms3 = sorted(bdf.get_es().min_workers_firms(threshold)) valid_firms4 = sorted(bdf.get_collapsed_long().min_workers_firms(threshold)) valid_firms5 = sorted(bdf.get_collapsed_long().get_es().min_workers_firms(threshold)) assert (0 < len(valid_firms) < df['j'].nunique()) assert len(valid_firms) == len(valid_firms2) == len(valid_firms3) == len(valid_firms4) == len(valid_firms5) for i in range(len(valid_firms)): assert valid_firms[i] == valid_firms2[i] == valid_firms3[i] == valid_firms4[i] == valid_firms5[i] def test_min_workers_frame_31(): # Keep only firms that meet a minimum threshold of workers. # Using long/event study/long collapsed/event study collapsed. df = bpd.SimBipartite(bpd.sim_params({'p_move': 0.05, 'rng': np.random.default_rng(1234)})).sim_network() bdf = bpd.BipartiteLong(df).clean_data() threshold = 60 # First, manually estimate the new frame frame = bdf.copy() # Count workers n_workers = frame.groupby('j')['i'].nunique() valid_firms = n_workers[n_workers >= threshold].index new_frame = frame.keep_ids('j', valid_firms).get_collapsed_long() # Next, estimate the new frame using the built-in function new_frame2 = bdf.min_workers_frame(threshold).get_collapsed_long() new_frame3 = bdf.get_es().min_workers_frame(threshold).get_long().get_collapsed_long() new_frame4 = bdf.get_collapsed_long().min_workers_frame(threshold) new_frame5 = bdf.get_collapsed_long().get_es().min_workers_frame(threshold).get_long() assert (0 < len(new_frame) < len(bdf)) assert len(new_frame) == len(new_frame2) == len(new_frame3) == len(new_frame4) == len(new_frame5) for i in range(100): # range(len(new_frame)): # It takes too long to go through all rows for col in ['i', 'j', 'y', 't1', 't2']: # Skip 'm' since we didn't recompute it assert new_frame.iloc[i][col] == new_frame2.iloc[i][col] == new_frame3.iloc[i][col] == new_frame4.iloc[i][col] == new_frame5.iloc[i][col] for i in range(len(new_frame) - 100, len(new_frame)): # range(len(new_frame)): # It takes too long to go through all rows for col in ['i', 'j', 'y', 't1', 't2']: # Skip 'm' since we didn't recompute it assert new_frame.iloc[i][col] == new_frame2.iloc[i][col] == new_frame3.iloc[i][col] == new_frame4.iloc[i][col] == new_frame5.iloc[i][col] def test_min_moves_firms_32_1(): # List only firms that meet a minimum threshold of moves. # Using long/event study. df = bpd.SimBipartite(bpd.sim_params({'p_move': 0.05, 'rng': np.random.default_rng(1234)})).sim_network() bdf = bpd.BipartiteLong(df).clean_data() threshold = 20 # First, manually estimate the valid set of firms frame = bdf.copy() frame.loc[frame.loc[:, 'm'] == 2, 'm'] = 1 n_moves = frame.groupby('j')['m'].sum() valid_firms = sorted(n_moves[n_moves >= threshold].index) # Next, estimate the set of valid firms using the built-in function valid_firms2 = sorted(bdf.min_moves_firms(threshold)) valid_firms3 = sorted(bdf.get_es().min_moves_firms(threshold)) assert (0 < len(valid_firms) < df['j'].nunique()) assert len(valid_firms) == len(valid_firms2) == len(valid_firms3) for i in range(len(valid_firms)): assert valid_firms[i] == valid_firms2[i] == valid_firms3[i] def test_min_moves_firms_32_2(): # List only firms that meet a minimum threshold of moves. # Using long collapsed/event study collapsed. df = bpd.SimBipartite(bpd.sim_params({'p_move': 0.05, 'rng': np.random.default_rng(1234)})).sim_network() bdf = bpd.BipartiteLong(df).clean_data().get_collapsed_long() threshold = 20 # First, manually estimate the valid set of firms frame = bdf.copy() frame.loc[frame.loc[:, 'm'] == 2, 'm'] = 1 n_moves = frame.groupby('j')['m'].sum() valid_firms = sorted(n_moves[n_moves >= threshold].index) # Next, estimate the set of valid firms using the built-in function valid_firms2 = sorted(bdf.min_moves_firms(threshold)) valid_firms3 = sorted(bdf.get_es().min_moves_firms(threshold)) assert (0 < len(valid_firms) < df['j'].nunique()) assert len(valid_firms) == len(valid_firms2) == len(valid_firms3) for i in range(len(valid_firms)): assert valid_firms[i] == valid_firms2[i] == valid_firms3[i] def test_min_moves_frame_33(): # Keep only firms that meet a minimum threshold of moves. # Using long/event study/long collapsed/event study collapsed. df = bpd.SimBipartite(bpd.sim_params({'p_move': 0.05, 'rng': np.random.default_rng(1234)})).sim_network() bdf = bpd.BipartiteLong(df).clean_data() threshold = 12 # First, manually estimate the valid set of firms frame = bdf.copy() frame.loc[frame.loc[:, 'm'] == 2, 'm'] = 1 n_moves = frame.groupby('j')['m'].sum() valid_firms = sorted(n_moves[n_moves >= threshold].index) new_frame = frame.keep_ids('j', valid_firms) # Iterate until set of firms stays the same between loops loop = True n_loops = 0 while loop: n_loops += 1 prev_frame = new_frame prev_frame.loc[prev_frame.loc[:, 'm'] == 2, 'm'] = 1 # Keep firms with sufficiently many moves n_moves = prev_frame.groupby('j')['m'].sum() valid_firms = sorted(n_moves[n_moves >= threshold].index) new_frame = prev_frame.keep_ids('j', valid_firms) loop = (len(new_frame) != len(prev_frame)) new_frame = new_frame.get_collapsed_long() # Next, estimate the new frame using the built-in function new_frame2 = bdf.min_moves_frame(threshold).get_collapsed_long() new_frame3 = bdf.get_es().min_moves_frame(threshold).get_long().get_collapsed_long() new_frame4 = bdf.get_collapsed_long().min_moves_frame(threshold) new_frame5 = bdf.get_collapsed_long().get_es().min_moves_frame(threshold).get_long() assert n_loops > 1 assert (0 < len(new_frame) < len(bdf)) assert len(new_frame) == len(new_frame2) == len(new_frame3) == len(new_frame4) == len(new_frame5) for i in range(100): # range(len(new_frame)): # It takes too long to go through all rows for col in ['i', 'j', 'y', 't1', 't2']: # Skip 'm' since we didn't recompute it assert new_frame.iloc[i][col] == new_frame2.iloc[i][col] == new_frame3.iloc[i][col] == new_frame4.iloc[i][col] == new_frame5.iloc[i][col] for i in range(len(new_frame) - 100, len(new_frame)): # range(len(new_frame)): # It takes too long to go through all rows for col in ['i', 'j', 'y', 't1', 't2']: # Skip 'm' since we didn't recompute it assert new_frame.iloc[i][col] == new_frame2.iloc[i][col] == new_frame3.iloc[i][col] == new_frame4.iloc[i][col] == new_frame5.iloc[i][col] def test_min_movers_firms_34(): # List only firms that meet a minimum threshold of movers. # Using long/event study/long collapsed/event study collapsed. df = bpd.SimBipartite(bpd.sim_params({'p_move': 0.05, 'rng': np.random.default_rng(1234)})).sim_network() bdf = bpd.BipartiteLong(df).clean_data() threshold = 20 # First, manually estimate the valid set of firms frame = bdf.copy() # Keep movers frame = frame[frame['m'] > 0] n_movers = frame.groupby('j')['i'].nunique() valid_firms = sorted(n_movers[n_movers >= threshold].index) # Next, estimate the set of valid firms using the built-in function valid_firms2 = sorted(bdf.min_movers_firms(threshold)) valid_firms3 = sorted(bdf.get_es().min_movers_firms(threshold)) valid_firms4 = sorted(bdf.get_collapsed_long().min_movers_firms(threshold)) valid_firms5 = sorted(bdf.get_collapsed_long().get_es().min_movers_firms(threshold)) assert (0 < len(valid_firms) < df['j'].nunique()) assert len(valid_firms) == len(valid_firms2) == len(valid_firms3) == len(valid_firms4) == len(valid_firms5) for i in range(len(valid_firms)): assert valid_firms[i] == valid_firms2[i] == valid_firms3[i] == valid_firms4[i] == valid_firms5[i] def test_min_movers_frame_35(): # Keep only firms that meet a minimum threshold of movers. # Using long/event study/long collapsed/event study collapsed. df = bpd.SimBipartite(bpd.sim_params({'p_move': 0.05, 'rng': np.random.default_rng(1234)})).sim_network() bdf = bpd.BipartiteLong(df).clean_data() threshold = 12 # First, manually estimate the new frame frame = bdf.copy() # Keep movers frame_movers = frame[frame['m'] > 0] n_movers = frame_movers.groupby('j')['i'].nunique() valid_firms = n_movers[n_movers >= threshold].index new_frame = frame.keep_ids('j', valid_firms) # Iterate until set of firms stays the same between loops loop = True n_loops = 0 while loop: n_loops += 1 prev_frame = new_frame # Keep movers prev_frame_movers = prev_frame[prev_frame['m'] > 0] n_movers = prev_frame_movers.groupby('j')['i'].nunique() valid_firms = n_movers[n_movers >= threshold].index new_frame = prev_frame.keep_ids('j', valid_firms) loop = (len(new_frame) != len(prev_frame)) new_frame = new_frame.get_collapsed_long() # Next, estimate the new frame using the built-in function new_frame2 = bdf.min_movers_frame(threshold).get_collapsed_long() new_frame3 = bdf.get_es().min_movers_frame(threshold).get_long().get_collapsed_long() new_frame4 = bdf.get_collapsed_long().min_movers_frame(threshold) new_frame5 = bdf.get_collapsed_long().get_es().min_movers_frame(threshold).get_long() assert n_loops > 1 assert (0 < len(new_frame) < len(bdf)) assert len(new_frame) == len(new_frame2) == len(new_frame3) == len(new_frame4) == len(new_frame5) for i in range(100): # range(len(new_frame)): # It takes too long to go through all rows for col in ['i', 'j', 'y', 't1', 't2']: # Skip 'm' since we didn't recompute it assert new_frame.iloc[i][col] == new_frame2.iloc[i][col] == new_frame3.iloc[i][col] == new_frame4.iloc[i][col] == new_frame5.iloc[i][col] for i in range(len(new_frame) - 100, len(new_frame)): # range(len(new_frame)): # It takes too long to go through all rows for col in ['i', 'j', 'y', 't1', 't2']: # Skip 'm' since we didn't recompute it assert new_frame.iloc[i][col] == new_frame2.iloc[i][col] == new_frame3.iloc[i][col] == new_frame4.iloc[i][col] == new_frame5.iloc[i][col] ################################### ##### Tests for BipartiteLong ##### ################################### def test_long_get_es_extended_1(): # Test get_es_extended() by making sure it is generating the event study correctly for periods_pre=2 and periods_post=1 worker_data = [] # Worker 0 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 3}) worker_data.append({'i': 0, 'j': 0, 'y': 1., 't': 4}) # Worker 1 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) worker_data.append({'i': 1, 'j': 2, 'y': 2., 't': 3}) worker_data.append({'i': 1, 'j': 5, 'y': 1., 't': 3}) # Worker 3 worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 2}) worker_data.append({'i': 3, 'j': 3, 'y': 1.5, 't': 3}) # Worker 4 worker_data.append({'i': 4, 'j': 0, 'y': 1., 't': 1}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) df['g'] = df['j'] # Fill in g column as j bdf = bpd.BipartiteLong(df) bdf = bdf.clean_data() es_extended = bdf.get_es_extended(periods_pre=2, periods_post=1, include=['j', 'y'], transition_col='g') assert es_extended.iloc[0]['i'] == 0 assert es_extended.iloc[0]['j_l2'] == 1 assert es_extended.iloc[0]['j_l1'] == 1 assert es_extended.iloc[0]['j_f1'] == 0 assert es_extended.iloc[0]['y_l2'] == 1 assert es_extended.iloc[0]['y_l1'] == 1 assert es_extended.iloc[0]['y_f1'] == 1 assert es_extended.iloc[0]['t'] == 4 assert es_extended.iloc[1]['i'] == 2 assert es_extended.iloc[1]['j_l2'] == 2 assert es_extended.iloc[1]['j_l1'] == 2 assert es_extended.iloc[1]['j_f1'] == 3 assert es_extended.iloc[1]['y_l2'] == 1 assert es_extended.iloc[1]['y_l1'] == 1 assert es_extended.iloc[1]['y_f1'] == 1.5 assert es_extended.iloc[1]['t'] == 3 def test_long_get_es_extended_2(): # Test get_es_extended() by making sure workers move firms at the fulcrum of the event study sim_data = bpd.SimBipartite().sim_network() bdf = bpd.BipartiteLong(sim_data) bdf = bdf.clean_data() es_extended = bdf.get_es_extended(periods_pre=3, periods_post=2, include=['j', 'y']) assert np.sum(es_extended['j_l1'] == es_extended['j_f1']) == 0 def test_long_get_es_extended_3_1(): # Test get_es_extended() by making sure workers move firms at the fulcrum of the event study and stable_pre works sim_data = bpd.SimBipartite().sim_network() bdf = bpd.BipartiteLong(sim_data) bdf = bdf.clean_data() es_extended = bdf.get_es_extended(periods_pre=2, periods_post=3, stable_pre='j', include=['j', 'y']) assert np.sum(es_extended['j_l2'] != es_extended['j_l1']) == 0 assert np.sum(es_extended['j_l1'] == es_extended['j_f1']) == 0 def test_long_get_es_extended_3_2(): # Test get_es_extended() by making sure workers move firms at the fulcrum of the event study and stable_post works sim_data = bpd.SimBipartite().sim_network() bdf = bpd.BipartiteLong(sim_data) bdf = bdf.clean_data() es_extended = bdf.get_es_extended(periods_pre=3, periods_post=2, stable_post='j', include=['j', 'y']) assert np.sum(es_extended['j_l1'] == es_extended['j_f1']) == 0 assert np.sum(es_extended['j_f1'] != es_extended['j_f2']) == 0 def test_long_get_es_extended_3_3(): # Test get_es_extended() by making sure workers move firms at the fulcrum of the event study and stable_post and stable_pre work together sim_data = bpd.SimBipartite().sim_network() bdf = bpd.BipartiteLong(sim_data) bdf = bdf.clean_data() es_extended = bdf.get_es_extended(periods_pre=3, periods_post=2, stable_pre='j', stable_post='j', include=['j', 'y']) assert len(es_extended) > 0 # Make sure something is left assert np.sum(es_extended['j_l3'] != es_extended['j_l2']) == 0 assert np.sum(es_extended['j_l2'] != es_extended['j_l1']) == 0 assert np.sum(es_extended['j_l1'] == es_extended['j_f1']) == 0 assert np.sum(es_extended['j_f1'] != es_extended['j_f2']) == 0 # Only uncomment for manual testing - this produces a graph which pauses the testing # def test_long_plot_es_extended_4(): # # Test plot_es_extended() by making sure it doesn't crash # sim_data = bpd.SimBipartite().sim_network() # bdf = bpd.BipartiteLong(sim_data).clean_data().cluster(grouping=bpd.grouping.kmeans(n_clusters=2)) # bdf.plot_es_extended() # assert True # Just making sure it doesn't crash ############################################ ##### Tests for BipartiteLongCollapsed ##### ############################################ def test_long_collapsed_1(): # Test constructor for BipartiteLongCollapsed. worker_data = [] # Worker 0 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Worker 1 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) # Worker 3 worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() df = pd.DataFrame(bdf.get_collapsed_long()).rename({'y': 'y'}, axis=1) bdf = bpd.BipartiteLongCollapsed(df, col_dict={'y': 'y'}) bdf = bdf.clean_data() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert stayers.iloc[0]['i'] == 2 assert stayers.iloc[0]['j'] == 2 assert stayers.iloc[0]['y'] == 1 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j'] == 0 assert movers.iloc[0]['y'] == 2 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j'] == 1 assert movers.iloc[1]['y'] == 1 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j'] == 1 assert movers.iloc[2]['y'] == 1 assert movers.iloc[3]['i'] == 1 assert movers.iloc[3]['j'] == 2 assert movers.iloc[3]['y'] == 1 ######################################### ##### Tests for BipartiteEventStudy ##### ######################################### def test_event_study_1(): # Test constructor for BipartiteEventStudy. worker_data = [] # Worker 0 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Worker 1 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) # Worker 3 worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 3, 'j': 2, 'y': 2., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() df = pd.DataFrame(bdf.get_es()).rename({'t1': 't'}, axis=1) bdf = bpd.BipartiteEventStudy(df, col_dict={'t1': 't'}) bdf = bdf.clean_data() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert stayers.iloc[0]['i'] == 2 assert stayers.iloc[0]['j1'] == 2 assert stayers.iloc[0]['j2'] == 2 assert stayers.iloc[0]['y1'] == 1 assert stayers.iloc[0]['y2'] == 1 assert stayers.iloc[0]['t1'] == 1 assert stayers.iloc[0]['t2'] == 1 assert stayers.iloc[1]['i'] == 2 assert stayers.iloc[1]['j1'] == 2 assert stayers.iloc[1]['j2'] == 2 assert stayers.iloc[1]['y1'] == 2 assert stayers.iloc[1]['y2'] == 2 assert stayers.iloc[1]['t1'] == 2 assert stayers.iloc[1]['t2'] == 2 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[0]['t1'] == 1 assert movers.iloc[0]['t2'] == 2 assert movers.iloc[1]['i'] == 1 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 2 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 assert movers.iloc[1]['t1'] == 1 assert movers.iloc[1]['t2'] == 2 def test_get_cs_2(): # Test get_cs() for BipartiteEventStudy. worker_data = [] # Worker 0 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Worker 1 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) # Worker 3 worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 3, 'j': 2, 'y': 2., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() df = pd.DataFrame(bdf.get_es()).rename({'t1': 't'}, axis=1) bdf = bpd.BipartiteEventStudy(df, col_dict={'t1': 't'}) bdf = bdf.clean_data() bdf = bdf.get_cs() stayers = bdf[bdf['m'] == 0] movers1 = bdf[(bdf['m'] > 0) & (bdf['cs'] == 1)] movers0 = bdf[(bdf['m'] > 0) & (bdf['cs'] == 0)] assert stayers.iloc[0]['i'] == 2 assert stayers.iloc[0]['j1'] == 2 assert stayers.iloc[0]['j2'] == 2 assert stayers.iloc[0]['y1'] == 1 assert stayers.iloc[0]['y2'] == 1 assert stayers.iloc[0]['t1'] == 1 assert stayers.iloc[0]['t2'] == 1 assert stayers.iloc[1]['i'] == 2 assert stayers.iloc[1]['j1'] == 2 assert stayers.iloc[1]['j2'] == 2 assert stayers.iloc[1]['y1'] == 2 assert stayers.iloc[1]['y2'] == 2 assert stayers.iloc[1]['t1'] == 2 assert stayers.iloc[1]['t2'] == 2 assert movers1.iloc[0]['i'] == 0 assert movers1.iloc[0]['j1'] == 0 assert movers1.iloc[0]['j2'] == 1 assert movers1.iloc[0]['y1'] == 2 assert movers1.iloc[0]['y2'] == 1 assert movers1.iloc[0]['t1'] == 1 assert movers1.iloc[0]['t2'] == 2 assert movers1.iloc[1]['i'] == 1 assert movers1.iloc[1]['j1'] == 1 assert movers1.iloc[1]['j2'] == 2 assert movers1.iloc[1]['y1'] == 1 assert movers1.iloc[1]['y2'] == 1 assert movers1.iloc[1]['t1'] == 1 assert movers1.iloc[1]['t2'] == 2 assert movers0.iloc[0]['i'] == 0 assert movers0.iloc[0]['j1'] == 1 assert movers0.iloc[0]['j2'] == 0 assert movers0.iloc[0]['y1'] == 1 assert movers0.iloc[0]['y2'] == 2 assert movers0.iloc[0]['t1'] == 2 assert movers0.iloc[0]['t2'] == 1 assert movers0.iloc[1]['i'] == 1 assert movers0.iloc[1]['j1'] == 2 assert movers0.iloc[1]['j2'] == 1 assert movers0.iloc[1]['y1'] == 1 assert movers0.iloc[1]['y2'] == 1 assert movers0.iloc[1]['t1'] == 2 assert movers0.iloc[1]['t2'] == 1 ################################################## ##### Tests for BipartiteEventStudyCollapsed ##### ################################################## def test_event_study_collapsed_1(): # Test constructor for BipartiteEventStudyCollapsed. worker_data = [] # Worker 0 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Worker 1 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) worker_data.append({'i': 1, 'j': 2, 'y': 2., 't': 3}) # Worker 3 worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() df = pd.DataFrame(bdf.get_es()).rename({'y1': 'comp1'}, axis=1) bdf = bpd.BipartiteEventStudyCollapsed(df, col_dict={'y1': 'comp1'}) bdf = bdf.clean_data() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert stayers.iloc[0]['i'] == 2 assert stayers.iloc[0]['j1'] == 2 assert stayers.iloc[0]['j2'] == 2 assert stayers.iloc[0]['y1'] == 1 assert stayers.iloc[0]['y2'] == 1 assert stayers.iloc[0]['t11'] == 1 assert stayers.iloc[0]['t12'] == 2 assert stayers.iloc[0]['t21'] == 1 assert stayers.iloc[0]['t22'] == 2 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[0]['t11'] == 1 assert movers.iloc[0]['t12'] == 1 assert movers.iloc[0]['t21'] == 2 assert movers.iloc[0]['t22'] == 2 assert movers.iloc[1]['i'] == 1 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 2 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1.5 assert movers.iloc[1]['t11'] == 1 assert movers.iloc[1]['t12'] == 1 assert movers.iloc[1]['t21'] == 2 assert movers.iloc[1]['t22'] == 3 def test_get_cs_2(): # Test get_cs() for BipartiteEventStudyCollapsed. worker_data = [] # Worker 0 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Worker 1 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) worker_data.append({'i': 1, 'j': 2, 'y': 2., 't': 3}) # Worker 3 worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() df = pd.DataFrame(bdf.get_es()).rename({'y1': 'comp1'}, axis=1) bdf = bpd.BipartiteEventStudyCollapsed(df, col_dict={'y1': 'comp1'}) bdf = bdf.clean_data() bdf = bdf.get_cs() stayers = bdf[bdf['m'] == 0] movers1 = bdf[(bdf['m'] > 0) & (bdf['cs'] == 1)] movers0 = bdf[(bdf['m'] > 0) & (bdf['cs'] == 0)] assert stayers.iloc[0]['i'] == 2 assert stayers.iloc[0]['j1'] == 2 assert stayers.iloc[0]['j2'] == 2 assert stayers.iloc[0]['y1'] == 1 assert stayers.iloc[0]['y2'] == 1 assert stayers.iloc[0]['t11'] == 1 assert stayers.iloc[0]['t12'] == 2 assert stayers.iloc[0]['t21'] == 1 assert stayers.iloc[0]['t22'] == 2 assert movers1.iloc[0]['i'] == 0 assert movers1.iloc[0]['j1'] == 0 assert movers1.iloc[0]['j2'] == 1 assert movers1.iloc[0]['y1'] == 2 assert movers1.iloc[0]['y2'] == 1 assert movers1.iloc[0]['t11'] == 1 assert movers1.iloc[0]['t12'] == 1 assert movers1.iloc[0]['t21'] == 2 assert movers1.iloc[0]['t22'] == 2 assert movers1.iloc[1]['i'] == 1 assert movers1.iloc[1]['j1'] == 1 assert movers1.iloc[1]['j2'] == 2 assert movers1.iloc[1]['y1'] == 1 assert movers1.iloc[1]['y2'] == 1.5 assert movers1.iloc[1]['t11'] == 1 assert movers1.iloc[1]['t12'] == 1 assert movers1.iloc[1]['t21'] == 2 assert movers1.iloc[1]['t22'] == 3 assert movers0.iloc[0]['i'] == 0 assert movers0.iloc[0]['j1'] == 1 assert movers0.iloc[0]['j2'] == 0 assert movers0.iloc[0]['y1'] == 1 assert movers0.iloc[0]['y2'] == 2 assert movers0.iloc[0]['t11'] == 2 assert movers0.iloc[0]['t12'] == 2 assert movers0.iloc[0]['t21'] == 1 assert movers0.iloc[0]['t22'] == 1 assert movers0.iloc[1]['i'] == 1 assert movers0.iloc[1]['j1'] == 2 assert movers0.iloc[1]['j2'] == 1 assert movers0.iloc[1]['y1'] == 1.5 assert movers0.iloc[1]['y2'] == 1 assert movers0.iloc[1]['t11'] == 2 assert movers0.iloc[1]['t12'] == 3 assert movers0.iloc[1]['t21'] == 1 assert movers0.iloc[1]['t22'] == 1 ##################################### ##### Tests for BipartitePandas ##### ##################################### def test_reformatting_1(): # Convert from long --> event study --> long --> collapsed long --> collapsed event study --> collapsed long to ensure conversion maintains data properly. worker_data = [] # Worker 0 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1, 'g': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2, 'g': 2}) # Worker 1 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1, 'g': 2}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2, 'g': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 2., 't': 3, 'g': 1}) worker_data.append({'i': 1, 'j': 5, 'y': 1., 't': 3, 'g': 3}) # Worker 3 worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 1, 'g': 1}) worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 2, 'g': 1}) # Worker 4 worker_data.append({'i': 4, 'j': 0, 'y': 1., 't': 1, 'g': 1}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_es() bdf = bdf.clean_data() bdf = bdf.get_long() bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.clean_data() bdf = bdf.get_es() bdf = bdf.clean_data() bdf = bdf.get_long() bdf = bdf.clean_data() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert stayers.iloc[0]['i'] == 2 assert stayers.iloc[0]['j'] == 2 assert stayers.iloc[0]['y'] == 1 assert stayers.iloc[0]['t1'] == 1 assert stayers.iloc[0]['t2'] == 2 assert stayers.iloc[0]['g'] == 0 assert stayers.iloc[1]['i'] == 3 assert stayers.iloc[1]['j'] == 0 assert stayers.iloc[1]['y'] == 1 assert stayers.iloc[1]['t1'] == 1 assert stayers.iloc[1]['t2'] == 1 assert stayers.iloc[1]['g'] == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j'] == 0 assert movers.iloc[0]['y'] == 2 assert movers.iloc[0]['t1'] == 1 assert movers.iloc[0]['t2'] == 1 assert movers.iloc[0]['g'] == 0 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j'] == 1 assert movers.iloc[1]['y'] == 1 assert movers.iloc[1]['t1'] == 2 assert movers.iloc[1]['t2'] == 2 assert movers.iloc[1]['g'] == 1 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j'] == 1 assert movers.iloc[2]['y'] == 1 assert movers.iloc[2]['t1'] == 1 assert movers.iloc[2]['t2'] == 1 assert movers.iloc[2]['g'] == 1 assert movers.iloc[3]['i'] == 1 assert movers.iloc[3]['j'] == 2 assert movers.iloc[3]['y'] == 1.5 assert movers.iloc[3]['t1'] == 2 assert movers.iloc[3]['t2'] == 3 assert movers.iloc[3]['g'] == 0 ################################### ##### Tests for Connectedness ##### ################################### def test_connectedness_1(): # Test connected and leave-one-firm-out for collapsed long format. # There are 2 biconnected sets that are connected by 1 mover, so the largest connected set is all the observations, while the largest biconnected component is the larger of the 2 biconnected sets. worker_data = [] # Group 1 is firms 0 to 5 # Worker 0 # Firm 0 -> 1 worker_data.append({'i': 0, 'j': 0, 'y': 1, 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1.5, 't': 2}) # Worker 1 # Firm 1 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 2, 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1, 't': 2}) # Worker 2 # Firm 2 -> 3 worker_data.append({'i': 2, 'j': 2, 'y': 3, 't': 1}) worker_data.append({'i': 2, 'j': 3, 'y': 2.5, 't': 2}) # Worker 3 # Firm 3 -> 4 worker_data.append({'i': 3, 'j': 3, 'y': 1, 't': 1}) worker_data.append({'i': 3, 'j': 4, 'y': 1, 't': 2}) # Worker 4 # Firm 4 -> 5 worker_data.append({'i': 4, 'j': 4, 'y': 1, 't': 1}) worker_data.append({'i': 4, 'j': 5, 'y': 1.3, 't': 2}) # Worker 5 # Firm 5 -> 0 worker_data.append({'i': 5, 'j': 5, 'y': 1.1, 't': 1}) worker_data.append({'i': 5, 'j': 0, 'y': 1, 't': 2}) # Group 2 is firms 6 to 9 # Group 2 is linked to Group 1 through firms 3 and 6 # Worker 6 # Firm 3 -> 6 worker_data.append({'i': 6, 'j': 3, 'y': 2, 't': 1}) worker_data.append({'i': 6, 'j': 6, 'y': 1, 't': 2}) # Worker 7 # Firm 6 -> 7 worker_data.append({'i': 7, 'j': 6, 'y': 1, 't': 1}) worker_data.append({'i': 7, 'j': 7, 'y': 2, 't': 2}) # Worker 8 # Firm 7 -> 8 worker_data.append({'i': 8, 'j': 7, 'y': 1.5, 't': 1}) worker_data.append({'i': 8, 'j': 8, 'y': 1.2, 't': 2}) # Worker 9 # Firm 8 -> 9 worker_data.append({'i': 9, 'j': 8, 'y': 1.6, 't': 1}) worker_data.append({'i': 9, 'j': 9, 'y': 2, 't': 2}) # Worker 10 # Firm 9 -> 6 worker_data.append({'i': 10, 'j': 9, 'y': 1.8, 't': 1}) worker_data.append({'i': 10, 'j': 6, 'y': 1.4, 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) # Connected bdf = bpd.BipartiteLong(df).clean_data().get_collapsed_long().clean_data(bpd.clean_params({'connectedness': 'connected'})) assert bdf.n_firms() == 10 # Biconnected bdf = bpd.BipartiteLong(df).clean_data().get_collapsed_long().clean_data(bpd.clean_params({'connectedness': 'leave_one_firm_out'})) assert bdf.n_firms() == 6 def test_connectedness_2(): # Test connected and leave-one-firm-out for collapsed long format. Now, add two firms connected to the largest biconnected set that are linked only by 1 mover. # There are 3 biconnected sets that are connected by 1 mover, so the largest connected set is all the observations, while the largest biconnected component is the larger of the 3 biconnected sets. worker_data = [] # Group 1 is firms 0 to 5 # Worker 0 # Firm 0 -> 1 worker_data.append({'i': 0, 'j': 0, 'y': 1, 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1.5, 't': 2}) # Worker 1 # Firm 1 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 2, 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1, 't': 2}) # Worker 2 # Firm 2 -> 3 worker_data.append({'i': 2, 'j': 2, 'y': 3, 't': 1}) worker_data.append({'i': 2, 'j': 3, 'y': 2.5, 't': 2}) # Worker 3 # Firm 3 -> 4 worker_data.append({'i': 3, 'j': 3, 'y': 1, 't': 1}) worker_data.append({'i': 3, 'j': 4, 'y': 1, 't': 2}) # Worker 4 # Firm 4 -> 5 worker_data.append({'i': 4, 'j': 4, 'y': 1, 't': 1}) worker_data.append({'i': 4, 'j': 5, 'y': 1.3, 't': 2}) # Worker 5 # Firm 5 -> 0 worker_data.append({'i': 5, 'j': 5, 'y': 1.1, 't': 1}) worker_data.append({'i': 5, 'j': 0, 'y': 1, 't': 2}) # Group 2 is firms 6 to 9 # Group 2 is linked to Group 1 through firms 3 and 6 # Worker 6 # Firm 3 -> 6 worker_data.append({'i': 6, 'j': 3, 'y': 2, 't': 1}) worker_data.append({'i': 6, 'j': 6, 'y': 1, 't': 2}) # Worker 7 # Firm 6 -> 7 worker_data.append({'i': 7, 'j': 6, 'y': 1, 't': 1}) worker_data.append({'i': 7, 'j': 7, 'y': 2, 't': 2}) # Worker 8 # Firm 7 -> 8 worker_data.append({'i': 8, 'j': 7, 'y': 1.5, 't': 1}) worker_data.append({'i': 8, 'j': 8, 'y': 1.2, 't': 2}) # Worker 9 # Firm 8 -> 9 worker_data.append({'i': 9, 'j': 8, 'y': 1.6, 't': 1}) worker_data.append({'i': 9, 'j': 9, 'y': 2, 't': 2}) # Worker 10 # Firm 9 -> 6 worker_data.append({'i': 10, 'j': 9, 'y': 1.8, 't': 1}) worker_data.append({'i': 10, 'j': 6, 'y': 1.4, 't': 2}) # Group 3 is firms 10 to 11 # Worker 11 # Firm 10 -> 4 worker_data.append({'i': 11, 'j': 10, 'y': 1.3, 't': 1}) worker_data.append({'i': 11, 'j': 4, 'y': 1.2, 't': 2}) worker_data.append({'i': 11, 'j': 11, 'y': 1, 't': 3}) worker_data.append({'i': 11, 'j': 10, 'y': 1.1, 't': 4}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) # Connected bdf = bpd.BipartiteLong(df).clean_data().get_collapsed_long().clean_data(bpd.clean_params({'connectedness': 'connected'})) assert bdf.n_firms() == 12 # Biconnected bdf = bpd.BipartiteLong(df).clean_data().get_collapsed_long().clean_data(bpd.clean_params({'connectedness': 'leave_one_firm_out'})) assert bdf.n_firms() == 6 def test_connectedness_3(): # Test connected and leave-one-firm-out for collapsed long format. # There are 2 biconnected sets that are connected by 1 mover, so the largest connected set is all the observations. However, unlike test 1, the largest biconnected component is also all the observations. This is because individual 2 goes from firm 2 to 3 to 6 to 7. It seems that removing 3 disconnects the 2 groups, but the shifts used to compute the biconnected components corrects this. worker_data = [] # Group 1 is firms 0 to 5 # Worker 0 # Firm 0 -> 1 worker_data.append({'i': 0, 'j': 0, 'y': 1, 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1.5, 't': 2}) # Worker 1 # Firm 1 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 2, 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1, 't': 2}) # Worker 2 # Firm 2 -> 3 -> 6 -> 7 worker_data.append({'i': 2, 'j': 2, 'y': 3, 't': 1}) worker_data.append({'i': 2, 'j': 3, 'y': 2.5, 't': 2}) worker_data.append({'i': 2, 'j': 6, 'y': 1, 't': 3}) worker_data.append({'i': 2, 'j': 7, 'y': 2.5, 't': 4}) # Worker 3 # Firm 3 -> 4 worker_data.append({'i': 3, 'j': 3, 'y': 1, 't': 1}) worker_data.append({'i': 3, 'j': 4, 'y': 1, 't': 2}) # Worker 4 # Firm 4 -> 5 worker_data.append({'i': 4, 'j': 4, 'y': 1, 't': 1}) worker_data.append({'i': 4, 'j': 5, 'y': 1.3, 't': 2}) # Worker 5 # Firm 5 -> 0 worker_data.append({'i': 5, 'j': 5, 'y': 1.1, 't': 1}) worker_data.append({'i': 5, 'j': 0, 'y': 1, 't': 2}) # Group 2 is firms 6 to 9 # Group 2 is linked to Group 1 through firms 2, 3, 6, and 7 # Worker 6 # Firm 6 -> 7 worker_data.append({'i': 6, 'j': 6, 'y': 1, 't': 1}) worker_data.append({'i': 6, 'j': 7, 'y': 2, 't': 2}) # Worker 7 # Firm 7 -> 8 worker_data.append({'i': 7, 'j': 7, 'y': 1.5, 't': 1}) worker_data.append({'i': 7, 'j': 8, 'y': 1.2, 't': 2}) # Worker 8 # Firm 8 -> 9 worker_data.append({'i': 8, 'j': 8, 'y': 1.6, 't': 1}) worker_data.append({'i': 8, 'j': 9, 'y': 2, 't': 2}) # Worker 9 # Firm 9 -> 6 worker_data.append({'i': 9, 'j': 9, 'y': 1.8, 't': 1}) worker_data.append({'i': 9, 'j': 6, 'y': 1.4, 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) # Connected bdf = bpd.BipartiteLong(df).clean_data().get_collapsed_long().clean_data(bpd.clean_params({'connectedness': 'connected'})) assert bdf.n_firms() == 10 # Biconnected bdf = bpd.BipartiteLong(df).clean_data().get_collapsed_long().clean_data(bpd.clean_params({'connectedness': 'leave_one_firm_out'})) assert bdf.n_firms() == 10 def test_connectedness_4(): # Test connected and leave-one-firm-out for collapsed long format. # There are 2 biconnected sets that are connected by 1 mover, so the largest connected set is all the observations. Unlike test 3, the largest biconnected component is group 1. This is because individual 2 goes from firm 2 to 3 to 6. We also now have individual 4 going from 4 to 5 to 6. However, removing firm 6 disconnects the 2 groups. Additionally, these new linkages to firm 6 mean firm 6 is a member of both groups. worker_data = [] # Group 1 is firms 0 to 5 # Worker 0 # Firm 0 -> 1 worker_data.append({'i': 0, 'j': 0, 'y': 1, 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1.5, 't': 2}) # Worker 1 # Firm 1 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 2, 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1, 't': 2}) # Worker 2 # Firm 2 -> 3 -> 6 worker_data.append({'i': 2, 'j': 2, 'y': 3, 't': 1}) worker_data.append({'i': 2, 'j': 3, 'y': 2.5, 't': 2}) worker_data.append({'i': 2, 'j': 6, 'y': 1, 't': 3}) # Worker 3 # Firm 3 -> 4 worker_data.append({'i': 3, 'j': 3, 'y': 1, 't': 1}) worker_data.append({'i': 3, 'j': 4, 'y': 1, 't': 2}) # Worker 4 # Firm 4 -> 5 -> 6 worker_data.append({'i': 4, 'j': 4, 'y': 1, 't': 1}) worker_data.append({'i': 4, 'j': 5, 'y': 1.3, 't': 2}) worker_data.append({'i': 4, 'j': 6, 'y': 1.15, 't': 3}) # Worker 5 # Firm 5 -> 0 worker_data.append({'i': 5, 'j': 5, 'y': 1.1, 't': 1}) worker_data.append({'i': 5, 'j': 0, 'y': 1, 't': 2}) # Group 2 is firms 6 to 9 # Group 2 is linked to Group 1 through firms 2, 3, and 6 # Worker 6 # Firm 6 -> 7 worker_data.append({'i': 6, 'j': 6, 'y': 1, 't': 1}) worker_data.append({'i': 6, 'j': 7, 'y': 2, 't': 2}) # Worker 7 # Firm 7 -> 8 worker_data.append({'i': 7, 'j': 7, 'y': 1.5, 't': 1}) worker_data.append({'i': 7, 'j': 8, 'y': 1.2, 't': 2}) # Worker 8 # Firm 8 -> 9 worker_data.append({'i': 8, 'j': 8, 'y': 1.6, 't': 1}) worker_data.append({'i': 8, 'j': 9, 'y': 2, 't': 2}) # Worker 9 # Firm 9 -> 6 worker_data.append({'i': 9, 'j': 9, 'y': 1.8, 't': 1}) worker_data.append({'i': 9, 'j': 6, 'y': 1.4, 't': 2}) df = pd.concat([
pd.DataFrame(worker, index=[i])
pandas.DataFrame
__author__ = "<NAME>" __copyright__ = "xuanchen yao" __license__ = "mit" import mysql.connector import pandas as pd import numpy as np from sklearn.ensemble import RandomForestClassifier def train(i): try: rds_host='mybike.c0jxuz6r8olg.us-west-2.rds.amazonaws.com' name='hibike' pwd='<PASSWORD>' db_name='bike' port=3306 conn = mysql.connector.connect(host=rds_host,user=name, password=pwd, database=db_name) df =
pd.read_sql("select * from weather", con=conn)
pandas.read_sql
import random import time import numpy as np import pandas as pd from pyziabm.runner2017mpi_r4 import Runner def participation_to_list(h5in, outlist): trade_df = pd.read_hdf(h5in, 'trades') trade_df = trade_df.assign(trader_id = trade_df.resting_order_id.str.split('_').str[0]) lt_df = pd.DataFrame(trade_df.groupby(['trader_id']).quantity.count()) lt_df.rename(columns={'quantity': 'trade'}, inplace=True) if 'p999999' in lt_df.index: lt_df.drop('p999999', inplace=True) ltsum_df = pd.DataFrame(trade_df.groupby(['trader_id']).quantity.sum()) ltsum_df.rename(columns={'quantity': 'trade_vol'}, inplace=True) ltsum_df = ltsum_df.assign(Participation = 100*ltsum_df.trade_vol/ltsum_df.trade_vol.sum()) providers = ltsum_df.index.unique() market_makers = [x for x in providers if x.startswith('m')] market_makers.append('j0') ltsum_df = ltsum_df.ix[market_makers] part_dict = {'MCRun': j, 'MM_Participation': ltsum_df.loc['m0', 'Participation']} if 'j0' in providers: part_dict.update({'PJ_Participation': ltsum_df.loc['j0', 'Participation']}) outlist.append(part_dict) def position_to_list(h5in, outlist): mmcf_df = pd.read_hdf(h5in, 'mmp') market_makers = mmcf_df.mmid.unique() for mm in market_makers: pos_dict = {} pos_dict['MCRun'] = j pos_dict['MarketMaker'] = mm pos_dict['Min'] = mmcf_df[mmcf_df.mmid == mm].position.min() pos_dict['Max'] = mmcf_df[mmcf_df.mmid == mm].position.max() outlist.append(pos_dict) def profit_to_list(h5in, outlist): trade_df = pd.read_hdf(h5in, 'trades') trade_df = trade_df.assign(trader_id = trade_df.resting_order_id.str.split('_').str[0]) buy_trades = trade_df[trade_df.side=='buy'] buy_trades = buy_trades.assign(BuyCashFlow = buy_trades.price*buy_trades.quantity) buy_trades = buy_trades.assign(BuyVol = buy_trades.groupby('trader_id').quantity.cumsum(), CumulBuyCF = buy_trades.groupby('trader_id').BuyCashFlow.cumsum() ) buy_trades.rename(columns={'timestamp': 'buytimestamp'}, inplace=True) sell_trades = trade_df[trade_df.side=='sell'] sell_trades = sell_trades.assign(SellCashFlow = -sell_trades.price*sell_trades.quantity) sell_trades = sell_trades.assign(SellVol = sell_trades.groupby('trader_id').quantity.cumsum(), CumulSellCF = sell_trades.groupby('trader_id').SellCashFlow.cumsum() ) sell_trades.rename(columns={'timestamp': 'selltimestamp'}, inplace=True) buy_trades = buy_trades[['trader_id', 'BuyVol', 'CumulBuyCF', 'buytimestamp']] sell_trades = sell_trades[['trader_id', 'SellVol', 'CumulSellCF', 'selltimestamp']] cash_flow =
pd.merge(buy_trades, sell_trades, left_on=['trader_id', 'BuyVol'], right_on=['trader_id', 'SellVol'])
pandas.merge
import numpy as np from datetime import timedelta from distutils.version import LooseVersion import pandas as pd import pandas.util.testing as tm from pandas import to_timedelta from pandas.util.testing import assert_series_equal, assert_frame_equal from pandas import (Series, Timedelta, DataFrame, Timestamp, TimedeltaIndex, timedelta_range, date_range, DatetimeIndex, Int64Index, _np_version_under1p10, Float64Index, Index, tslib) from pandas.tests.test_base import Ops class TestTimedeltaIndexOps(Ops): def setUp(self): super(TestTimedeltaIndexOps, self).setUp() mask = lambda x: isinstance(x, TimedeltaIndex) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [] def test_ops_properties(self): self.check_ops_properties(['days', 'hours', 'minutes', 'seconds', 'milliseconds']) self.check_ops_properties(['microseconds', 'nanoseconds']) def test_asobject_tolist(self): idx = timedelta_range(start='1 days', periods=4, freq='D', name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), Timedelta('3 days'), Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = TimedeltaIndex([timedelta(days=1), timedelta(days=2), pd.NaT, timedelta(days=4)], name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), pd.NaT, Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): # monotonic idx1 = TimedeltaIndex(['1 days', '2 days', '3 days']) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = TimedeltaIndex(['1 days', np.nan, '3 days', 'NaT']) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timedelta('1 days')), self.assertEqual(idx.max(), Timedelta('3 days')), self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = TimedeltaIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') td = TimedeltaIndex(np.asarray(dr)) self.assertEqual(np.min(td), Timedelta('16815 days')) self.assertEqual(np.max(td), Timedelta('16820 days')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, td, out=0) self.assertEqual(np.argmin(td), 0) self.assertEqual(np.argmax(td), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, td, out=0) def test_round(self): td = pd.timedelta_range(start='16801 days', periods=5, freq='30Min') elt = td[1] expected_rng = TimedeltaIndex([ Timedelta('16801 days 00:00:00'), Timedelta('16801 days 00:00:00'), Timedelta('16801 days 01:00:00'), Timedelta('16801 days 02:00:00'), Timedelta('16801 days 02:00:00'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(td.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with self.assertRaisesRegexp(ValueError, msg): td.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, td.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_representation(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex([], dtype='timedelta64[ns]', freq='D')""" exp2 = ("TimedeltaIndex(['1 days'], dtype='timedelta64[ns]', " "freq='D')") exp3 = ("TimedeltaIndex(['1 days', '2 days'], " "dtype='timedelta64[ns]', freq='D')") exp4 = ("TimedeltaIndex(['1 days', '2 days', '3 days'], " "dtype='timedelta64[ns]', freq='D')") exp5 = ("TimedeltaIndex(['1 days 00:00:01', '2 days 00:00:00', " "'3 days 00:00:00'], dtype='timedelta64[ns]', freq=None)") with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """Series([], dtype: timedelta64[ns])""" exp2 = """0 1 days dtype: timedelta64[ns]""" exp3 = """0 1 days 1 2 days dtype: timedelta64[ns]""" exp4 = """0 1 days 1 2 days 2 3 days dtype: timedelta64[ns]""" exp5 = """0 1 days 00:00:01 1 2 days 00:00:00 2 3 days 00:00:00 dtype: timedelta64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex: 0 entries Freq: D""" exp2 = """TimedeltaIndex: 1 entries, 1 days to 1 days Freq: D""" exp3 = """TimedeltaIndex: 2 entries, 1 days to 2 days Freq: D""" exp4 = """TimedeltaIndex: 3 entries, 1 days to 3 days Freq: D""" exp5 = ("TimedeltaIndex: 3 entries, 1 days 00:00:01 to 3 days " "00:00:00") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = idx.summary() self.assertEqual(result, expected) def test_add_iadd(self): # only test adding/sub offsets as + is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng + delta expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng + 1 expected = timedelta_range('1 days 10:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_sub_isub(self): # only test adding/sub offsets as - is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng - delta expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng - 1 expected = timedelta_range('1 days 08:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) idx = TimedeltaIndex(['1 day', '2 day']) msg = "cannot subtract a datelike from a TimedeltaIndex" with tm.assertRaisesRegexp(TypeError, msg): idx - Timestamp('2011-01-01') result = Timestamp('2011-01-01') + idx expected = DatetimeIndex(['2011-01-02', '2011-01-03']) tm.assert_index_equal(result, expected) def test_ops_compat(self): offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] rng = timedelta_range('1 days', '10 days', name='foo') # multiply for offset in offsets: self.assertRaises(TypeError, lambda: rng * offset) # divide expected = Int64Index((np.arange(10) + 1) * 12, name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected, exact=False) # divide with nats rng = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') expected = Float64Index([12, np.nan, 24], name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected) # don't allow division by NaT (make could in the future) self.assertRaises(TypeError, lambda: rng / pd.NaT) def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') self.assertRaises(TypeError, lambda: tdi - dt) self.assertRaises(TypeError, lambda: tdi - dti) self.assertRaises(TypeError, lambda: td - dt) self.assertRaises(TypeError, lambda: td - dti) result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): self.assertEqual(result, expected) self.assertIsInstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches self.assertRaises(TypeError, lambda: dt_tz - ts) self.assertRaises(TypeError, lambda: dt_tz - dt) self.assertRaises(TypeError, lambda: dt_tz - ts_tz2) self.assertRaises(TypeError, lambda: dt - dt_tz) self.assertRaises(TypeError, lambda: ts - dt_tz) self.assertRaises(TypeError, lambda: ts_tz2 - ts) self.assertRaises(TypeError, lambda: ts_tz2 - dt) self.assertRaises(TypeError, lambda: ts_tz - ts_tz2) # with dti self.assertRaises(TypeError, lambda: dti - ts_tz) self.assertRaises(TypeError, lambda: dti_tz - ts) self.assertRaises(TypeError, lambda: dti_tz - ts_tz2) result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'H']: idx = pd.TimedeltaIndex(['1 hours', '2 hours'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti =
date_range('20130101', periods=3, name='bar')
pandas.date_range
import numpy as np import pandas as pd from scipy import sparse def genpoisson_spiketrain(rate, dt, duration): offset = duration events = np.cumsum(np.random.exponential(scale = 1 / rate, size = int(duration*rate + offset))) return np.round(events[np.logical_and(0 < events, events < duration)], -int(np.log10(dt))) def genpoisson_spiketrains(nneurons, rate, dt, duration): spike_timings = np.array([], dtype = np.float) spike_neurons = np.array([], dtype = np.int) for n in range(nneurons): spike_train = genpoisson_spiketrain(rate, dt, duration) spike_timings = np.r_[spike_timings, spike_train] spike_neurons = np.r_[spike_neurons, n * np.ones_like(spike_train, dtype = np.int)] return pd.DataFrame({ "neuronid": spike_neurons, "spiketime": spike_timings }) def gen_sequence(nneurons = 10, seqlen = 0.1, dt = 0.001): return np.round(np.linspace(dt, seqlen-dt, nneurons), int(-np.log10(dt))) def gen_sequences(neurons = np.arange(10), nsequences = 10, start = 0, end = 60, seqlen = 0.1, dt = 0.001, shrink = 1): spike_timings = np.array([], dtype = np.float) spike_neurons = np.array([], dtype = np.int) nneurons = len(neurons) sequence_onsets = np.random.choice( np.arange(start, end - seqlen, seqlen), nsequences, replace = False ) for onset in sequence_onsets: spike_timings = np.r_[spike_timings, onset + gen_sequence(nneurons, seqlen / shrink, dt)] spike_neurons = np.r_[spike_neurons, neurons] return pd.DataFrame({ "neuronid": spike_neurons, "spiketime": spike_timings }) def gen_sequences_with_replay(shrinkages = [2], neurons = np.arange(10), nsequences = 10, duration = 60, seqlen = 0.1, dt = 0.001): duration_per_type = duration / (len(shrinkages) + 1) sequences = gen_sequences(neurons, nsequences, 0, duration_per_type, seqlen, dt) for idx, shrinkage in enumerate(shrinkages): replay = gen_sequences(neurons, nsequences, duration_per_type * (idx + 1), duration_per_type * (idx + 2), seqlen, dt, abs(shrinkage)) if shrinkage < 0: # reverse replay replay = pd.DataFrame({ "neuronid": replay.neuronid, "spiketime": np.copy(replay.spiketime[::-1]) }) sequences = pd.concat([sequences, replay]) return sequences def df2binarray_csc(df, duration_ms = 61, binwidth = 1): neuronids = df.neuronid spikes_ms = df.spiketime * 1000 nneurons = int(neuronids.max()+1) nrow = nneurons ncol = int(duration_ms) // binwidth + 1000 binarray_lil = sparse.lil_matrix((nrow, ncol)) for neuronid in range(nneurons): spike_train_of_a_neuron = spikes_ms[neuronids == neuronid] bins = np.arange(0, ncol * binwidth, binwidth) digitized_spike_train_of_a_neuron = np.digitize(spike_train_of_a_neuron, bins) - 1 binned_spike_train_of_a_neuron = np.bincount(digitized_spike_train_of_a_neuron) binarray_lil[neuronid, digitized_spike_train_of_a_neuron] = binned_spike_train_of_a_neuron[digitized_spike_train_of_a_neuron] return binarray_lil.tocsc() def gendata(): dt = 0.001 # nsequences = 10 # seqlen = 0.3 nsequences = 10 seqlen = 0.1 shrinkages = [1, 1] nneurons = 10 duration = nsequences * seqlen * (len(shrinkages) + 1) + 0.2 nseqkinds = 3 df = pd.DataFrame() for idx in range(nseqkinds): df_seq = gen_sequences_with_replay( shrinkages = shrinkages, neurons = np.arange(nneurons*(idx), nneurons*(idx+1)), nsequences = nsequences, duration = duration, seqlen = seqlen, dt = dt) df_seq = pd.DataFrame({ "neuronid": df_seq.neuronid, "spiketime": np.copy(df_seq.spiketime + duration * idx + idx) }) df =
pd.concat([df, df_seq])
pandas.concat
from __future__ import print_function, division import os import glob import re import copy import warnings import numpy as np import pandas as pd pd.options.display.max_colwidth = 100 import pyemu from ..pyemu_warnings import PyemuWarning from pyemu.pst.pst_controldata import ControlData, SvdData, RegData from pyemu.pst import pst_utils from pyemu.plot import plot_utils # from pyemu.utils.os_utils import run class Pst(object): """All things PEST(++) control file Args: filename (`str`): the name of the control file load (`bool`, optional): flag to load the control file. Default is True resfile (`str`, optional): corresponding residual file. If `None`, a residual file with the control file base name is sought. Default is `None` Note: This class is the primary mechanism for dealing with PEST control files. Support is provided for constructing new control files as well as manipulating existing control files. Example:: pst = pyemu.Pst("my.pst") pst.control_data.noptmax = -1 pst.write("my_new.pst") """ def __init__(self, filename, load=True, resfile=None): self.parameter_data = None """pandas.DataFrame: '* parameter data' information. Columns are standard PEST variable names Example:: pst.parameter_data.loc[:,"partrans"] = "log" pst.parameter_data.loc[:,"parubnd"] = 10.0 """ self.observation_data = None """pandas.DataFrame: '* observation data' information. Columns are standard PEST variable names Example:: pst.observation_data.loc[:,"weight"] = 1.0 pst.observation_data.loc[:,"obgnme"] = "obs_group" """ self.prior_information = None """pandas.DataFrame: '* prior information' data. Columns are standard PEST variable names""" self.model_input_data = pst_utils.pst_config["null_model_io"] self.model_output_data = pst_utils.pst_config["null_model_io"] self.filename = filename self.resfile = resfile self.__res = None self.__pi_count = 0 self.with_comments = False self.comments = {} self.other_sections = {} self.new_filename = None for key, value in pst_utils.pst_config.items(): self.__setattr__(key, copy.copy(value)) # self.tied = None self.control_data = ControlData() """pyemu.pst.pst_controldata.ControlData: '* control data' information. Access with standard PEST variable names Example:: pst.control_data.noptmax = 2 pst.control_data.pestmode = "estimation" """ self.svd_data = SvdData() """pyemu.pst.pst_controldata.SvdData: '* singular value decomposition' section information. Access with standard PEST variable names Example:: pst.svd_data.maxsing = 100 """ self.reg_data = RegData() """pyemu.pst.pst_controldata.RegData: '* regularization' section information. Access with standard PEST variable names. Example:: pst.reg_data.phimlim = 1.00 #yeah right! """ if load: if not os.path.exists(filename): raise Exception("pst file not found:{0}".format(filename)) self.load(filename) def __setattr__(self, key, value): if key == "model_command": if isinstance(value, str): value = [value] super(Pst, self).__setattr__(key, value) @classmethod def from_par_obs_names(cls, par_names=["par1"], obs_names=["obs1"]): """construct a shell `Pst` instance from parameter and observation names Args: par_names ([`str`]): list of parameter names. Default is [`par1`] obs_names ([`str`]): list of observation names. Default is [`obs1`] Note: While this method works, it does not make template or instruction files. Users are encouraged to use `Pst.from_io_files()` for more usefulness Example:: par_names = ["par1","par2"] obs_names = ["obs1","obs2"] pst = pyemu.Pst.from_par_obs_names(par_names,obs_names) """ return pst_utils.generic_pst(par_names=par_names, obs_names=obs_names) @property def phi(self): """get the weighted total objective function. Returns: `float`: sum of squared residuals Note: Requires `Pst.res` (the residuals file) to be available """ psum = 0.0 for _, contrib in self.phi_components.items(): psum += contrib return psum @property def phi_components(self): """get the individual components of the total objective function Returns: `dict`: dictionary of observation group, contribution to total phi Note: Requires `Pst.res` (the residuals file) to be available """ # calculate phi components for each obs group components = {} ogroups = self.observation_data.groupby("obgnme").groups rgroups = self.res.groupby("group").groups self.res.index = self.res.name for og, onames in ogroups.items(): # assert og in rgroups.keys(),"Pst.phi_componentw obs group " +\ # "not found: " + str(og) # og_res_df = self.res.ix[rgroups[og]] og_res_df = self.res.loc[onames, :].dropna(axis=1) # og_res_df.index = og_res_df.name og_df = self.observation_data.loc[ogroups[og], :] og_df.index = og_df.obsnme # og_res_df = og_res_df.loc[og_df.index,:] assert og_df.shape[0] == og_res_df.shape[0], ( " Pst.phi_components error: group residual dataframe row length" + "doesn't match observation data group dataframe row length" + str(og_df.shape) + " vs. " + str(og_res_df.shape) + "," + og ) if "modelled" not in og_res_df.columns: print(og_res_df) m = self.res.loc[onames, "modelled"] print(m.loc[m.isna()]) raise Exception("'modelled' not in res df columns for group " + og) # components[og] = np.sum((og_res_df["residual"] * # og_df["weight"]) ** 2) components[og] = np.sum( ( (og_df.loc[:, "obsval"] - og_res_df.loc[og_df.obsnme, "modelled"]) * og_df.loc[:, "weight"] ) ** 2 ) if ( not self.control_data.pestmode.startswith("reg") and self.prior_information.shape[0] > 0 ): ogroups = self.prior_information.groupby("obgnme").groups for og in ogroups.keys(): if og not in rgroups.keys(): raise Exception( "Pst.adjust_weights_res() obs group " + "not found: " + str(og) ) og_res_df = self.res.loc[rgroups[og], :] og_res_df.index = og_res_df.name og_df = self.prior_information.loc[ogroups[og], :] og_df.index = og_df.pilbl og_res_df = og_res_df.loc[og_df.index, :] if og_df.shape[0] != og_res_df.shape[0]: raise Exception( " Pst.phi_components error: group residual dataframe row length" + "doesn't match observation data group dataframe row length" + str(og_df.shape) + " vs. " + str(og_res_df.shape) ) components[og] = np.sum((og_res_df["residual"] * og_df["weight"]) ** 2) return components @property def phi_components_normalized(self): """get the individual components of the total objective function normalized to the total PHI being 1.0 Returns: `dict`: dictionary of observation group, normalized contribution to total phi Note: Requires `Pst.res` (the residuals file) to be available """ # use a dictionary comprehension to go through and normalize each component of phi to the total phi = self.phi comps = self.phi_components norm = {i: c / phi for i, c in comps.items()} print(phi, comps, norm) return norm def set_res(self, res): """reset the private `Pst.res` attribute. Args: res : (`pandas.DataFrame` or `str`): something to use as Pst.res attribute. If `res` is `str`, a dataframe is read from file `res` """ if isinstance(res, str): res = pst_utils.read_resfile(res) self.__res = res @property def res(self): """get the residuals dataframe attribute Returns: `pandas.DataFrame`: a dataframe containing the residuals information. Note: if the Pst.__res attribute has not been loaded, this call loads the res dataframe from a file """ if self.__res is not None: return self.__res else: if self.resfile is not None: if not os.path.exists(self.resfile): raise Exception( "Pst.res: self.resfile " + str(self.resfile) + " does not exist" ) else: self.resfile = self.filename.replace(".pst", ".res") if not os.path.exists(self.resfile): self.resfile = self.resfile.replace(".res", ".rei") if not os.path.exists(self.resfile): self.resfile = self.resfile.replace(".rei", ".base.rei") if not os.path.exists(self.resfile): if self.new_filename is not None: self.resfile = self.new_filename.replace(".pst", ".res") if not os.path.exists(self.resfile): self.resfile = self.resfile.replace(".res", ".rei") if not os.path.exists(self.resfile): raise Exception( "Pst.res: " + "could not residual file case.res" + " or case.rei" + " or case.base.rei" + " or case.obs.csv" ) res = pst_utils.read_resfile(self.resfile) missing_bool = self.observation_data.obsnme.apply( lambda x: x not in res.name ) missing = self.observation_data.obsnme[missing_bool] if missing.shape[0] > 0: raise Exception( "Pst.res: the following observations " + "were not found in " + "{0}:{1}".format(self.resfile, ",".join(missing)) ) self.__res = res return self.__res @property def nprior(self): """number of prior information equations Returns: `int`: the number of prior info equations """ self.control_data.nprior = self.prior_information.shape[0] return self.control_data.nprior @property def nnz_obs(self): """get the number of non-zero weighted observations Returns: `int`: the number of non-zeros weighted observations """ nnz = 0 for w in self.observation_data.weight: if w > 0.0: nnz += 1 return nnz @property def nobs(self): """get the number of observations Returns: `int`: the number of observations """ self.control_data.nobs = self.observation_data.shape[0] return self.control_data.nobs @property def npar_adj(self): """get the number of adjustable parameters (not fixed or tied) Returns: `int`: the number of adjustable parameters """ pass np = 0 for t in self.parameter_data.partrans: if t not in ["fixed", "tied"]: np += 1 return np @property def npar(self): """get number of parameters Returns: `int`: the number of parameters """ self.control_data.npar = self.parameter_data.shape[0] return self.control_data.npar @property def forecast_names(self): """get the forecast names from the pestpp options (if any). Returns None if no forecasts are named Returns: [`str`]: a list of forecast names. """ if "forecasts" in self.pestpp_options.keys(): if isinstance(self.pestpp_options["forecasts"], str): return self.pestpp_options["forecasts"].lower().split(",") else: return [f.lower() for f in self.pestpp_options["forecasts"]] elif "predictions" in self.pestpp_options.keys(): if isinstance(self.pestpp_options["predictions"], str): return self.pestpp_options["predictions"].lower().split(",") else: return [f.lower() for f in self.pestpp_options["predictions"]] else: return None @property def obs_groups(self): """get the observation groups Returns: [`str`]: a list of unique observation groups """ og = self.observation_data.obgnme.unique().tolist() return og @property def nnz_obs_groups(self): """get the observation groups that contain at least one non-zero weighted observation Returns: [`str`]: a list of observation groups that contain at least one non-zero weighted observation """ obs = self.observation_data og = obs.loc[obs.weight > 0.0, "obgnme"].unique().tolist() return og @property def adj_par_groups(self): """get the parameter groups with atleast one adjustable parameter Returns: [`str`]: a list of parameter groups with at least one adjustable parameter """ par = self.parameter_data tf = set(["tied", "fixed"]) adj_pargp = par.loc[par.partrans.apply(lambda x: x not in tf), "pargp"].unique() return adj_pargp.tolist() @property def par_groups(self): """get the parameter groups Returns: [`str`]: a list of parameter groups """ return self.parameter_data.pargp.unique().tolist() @property def prior_groups(self): """get the prior info groups Returns: [`str`]: a list of prior information groups """ og = self.prior_information.obgnme.unique().tolist() return og @property def prior_names(self): """get the prior information names Returns: [`str`]: a list of prior information names """ return self.prior_information.pilbl.tolist() @property def par_names(self): """get the parameter names Returns: [`str`]: a list of parameter names """ return self.parameter_data.parnme.tolist() @property def adj_par_names(self): """get the adjustable (not fixed or tied) parameter names Returns: [`str`]: list of adjustable (not fixed or tied) parameter names """ par = self.parameter_data tf = set(["tied", "fixed"]) adj_names = par.loc[par.partrans.apply(lambda x: x not in tf), "parnme"] return adj_names.tolist() @property def obs_names(self): """get the observation names Returns: [`str`]: a list of observation names """ return self.observation_data.obsnme.tolist() @property def nnz_obs_names(self): """get the non-zero weight observation names Returns: [`str`]: a list of non-zero weighted observation names """ obs = self.observation_data nz_names = obs.loc[obs.weight > 0.0, "obsnme"] return nz_names.tolist() @property def zero_weight_obs_names(self): """get the zero-weighted observation names Returns: [`str`]: a list of zero-weighted observation names """ obs = self.observation_data return obs.loc[obs.weight == 0.0, "obsnme"].tolist() @property def estimation(self): """check if the control_data.pestmode is set to estimation Returns: `bool`: True if `control_data.pestmode` is estmation, False otherwise """ return self.control_data.pestmode == "estimation" @property def tied(self): """list of tied parameter names Returns: `pandas.DataFrame`: a dataframe of tied parameter information. Columns of `tied` are `parnme` and `partied`. Returns `None` if no tied parameters are found. """ par = self.parameter_data tied_pars = par.loc[par.partrans == "tied", "parnme"] if tied_pars.shape[0] == 0: return None if "partied" not in par.columns: par.loc[:, "partied"] = np.NaN tied = par.loc[tied_pars, ["parnme", "partied"]] return tied @property def template_files(self): """list of template file names Returns: `[str]`: a list of template file names, extracted from `Pst.model_input_data.pest_file`. Returns `None` if this attribute is `None` """ if ( self.model_input_data is not None and "pest_file" in self.model_input_data.columns ): return self.model_input_data.pest_file.to_list() else: return None @property def input_files(self): """list of model input file names Returns: `[str]`: a list of model input file names, extracted from `Pst.model_input_data.model_file`. Returns `None` if this attribute is `None` """ if ( self.model_input_data is not None and "model_file" in self.model_input_data.columns ): return self.model_input_data.model_file.to_list() else: return None @property def instruction_files(self): """list of instruction file names Returns: `[str]`: a list of instruction file names, extracted from `Pst.model_output_data.pest_file`. Returns `None` if this attribute is `None` """ if ( self.model_output_data is not None and "pest_file" in self.model_output_data.columns ): return self.model_output_data.pest_file.to_list() else: return None @property def output_files(self): """list of model output file names Returns: `[str]`: a list of model output file names, extracted from `Pst.model_output_data.model_file`. Returns `None` if this attribute is `None` """ if ( self.model_output_data is not None and "model_file" in self.model_output_data.columns ): return self.model_output_data.model_file.to_list() else: return None @staticmethod def _read_df(f, nrows, names, converters, defaults=None): """a private method to read part of an open file into a pandas.DataFrame. Args: f (`file`): open file handle nrows (`int`): number of rows to read names ([`str`]): names to set the columns of the dataframe with converters (`dict`): dictionary of lambda functions to convert strings to numerical format defaults (`dict`): dictionary of default values to assign columns. Default is None Returns: `pandas.DataFrame`: dataframe of control file section info """ seek_point = f.tell() line = f.readline() raw = line.strip().split() if raw[0].lower() == "external": filename = raw[1] if not os.path.exists(filename): raise Exception( "Pst._read_df() error: external file '{0}' not found".format( filename ) ) df = pd.read_csv(filename, index_col=False, comment="#") df.columns = df.columns.str.lower() for name in names: if name not in df.columns: raise Exception( "Pst._read_df() error: name" + "'{0}' not in external file '{1}' columns".format( name, filename ) ) if name in converters: df.loc[:, name] = df.loc[:, name].apply(converters[name]) if defaults is not None: for name in names: df.loc[:, name] = df.loc[:, name].fillna(defaults[name]) else: if nrows is None: raise Exception( "Pst._read_df() error: non-external sections require nrows" ) f.seek(seek_point) df = pd.read_csv( f, header=None, names=names, nrows=nrows, delim_whitespace=True, converters=converters, index_col=False, comment="#", ) # in case there was some extra junk at the end of the lines if df.shape[1] > len(names): df = df.iloc[:, len(names)] df.columns = names if defaults is not None: for name in names: df.loc[:, name] = df.loc[:, name].fillna(defaults[name]) elif np.any(pd.isnull(df).values.flatten()): raise Exception("NANs found") f.seek(seek_point) extras = [] for _ in range(nrows): line = f.readline() extra = np.NaN if "#" in line: raw = line.strip().split("#") extra = " # ".join(raw[1:]) extras.append(extra) df.loc[:, "extra"] = extras return df def _read_line_comments(self, f, forgive): comments = [] while True: org_line = f.readline() line = org_line.lower().strip() self.lcount += 1 if org_line == "": if forgive: return None, comments else: raise Exception("unexpected EOF") if line.startswith("++") and line.split("++")[1].strip()[0] != "#": self._parse_pestpp_line(line) elif "++" in line: comments.append(line.strip()) elif line.startswith("#"): comments.append(line.strip()) else: break return org_line.strip(), comments def _read_section_comments(self, f, forgive): lines = [] section_comments = [] while True: line, comments = self._read_line_comments(f, forgive) section_comments.extend(comments) if line is None or line.startswith("*"): break if len(line.strip()) == 0: continue lines.append(line) return line, lines, section_comments @staticmethod def _parse_external_line(line, pst_path="."): raw = line.strip().split() existing_path, filename = Pst._parse_path_agnostic(raw[0]) if pst_path is not None: if pst_path != ".": filename = os.path.join(pst_path, filename) else: filename = os.path.join(existing_path, filename) raw = line.lower().strip().split() options = {} if len(raw) > 1: if len(raw) % 2 == 0: s = "wrong number of entries on 'external' line:'{0}\n".format(line) s += "Should include 'filename', then pairs of key-value options" raise Exception(s) options = {k.lower(): v.lower() for k, v in zip(raw[1:-1], raw[2:])} return filename, options @staticmethod def _parse_path_agnostic(filename): filename = filename.replace("\\", os.sep).replace("/", os.sep) return os.path.split(filename) @staticmethod def _cast_df_from_lines( section, lines, fieldnames, converters, defaults, alias_map={}, pst_path="." ): # raw = lines[0].strip().split() # if raw[0].lower() == "external": if section.lower().strip().split()[-1] == "external": dfs = [] for line in lines: filename, options = Pst._parse_external_line(line, pst_path) if not os.path.exists(filename): raise Exception( "Pst._cast_df_from_lines() error: external file '{0}' not found".format( filename ) ) sep = options.get("sep", ",") missing_vals = options.get("missing_values", None) if sep.lower() == "w": df = pd.read_csv( filename, delim_whitespace=True, na_values=missing_vals ) else: df =
pd.read_csv(filename, sep=sep, na_values=missing_vals)
pandas.read_csv
""" Created on May 21, 2020 @author: <NAME> start server with the following command: bokeh serve --show OS_Report view at: http://localhost:5006/OS_Report """ import os, sys import pandas as pd import numpy as np import logging from bokeh.io import curdoc from bokeh.models import TextInput, Button, TextAreaInput, Select from bokeh.models.widgets.markups import Div, PreText from bokeh.layouts import layout, column, row from bokeh.models.widgets import Panel, Tabs import datetime import socket from bokeh.layouts import column, layout, row, gridplot from bokeh.models.widgets import Panel from bokeh.models import CustomJS, ColumnDataSource, Select, Slider, CheckboxGroup, RadioButtonGroup from bokeh.models import ColumnDataSource, DataTable, DateFormatter, StringFormatter, BooleanFormatter, TableColumn from bokeh.models import CheckboxButtonGroup import gspread from gspread_dataframe import get_as_dataframe from oauth2client.service_account import ServiceAccountCredentials import smtplib, ssl from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from email.mime.image import MIMEImage os.environ['OPSTOOL_DIR'] = '/Users/pfagrelius/Research/DESI/Operations/desilo/ops_tool' class OpsTool(object): def __init__(self): self.test = True self.get_all_emails = False #Change this if you want the code to print out all email addresses. self.semester = '2022A' #None means all combined. Options are 2021B, 2022A logging.basicConfig(filename=os.path.join(os.environ['OPSTOOL_DIR'], 'auto_ops_tool.log'), level=logging.DEBUG, format='%(asctime)s %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p') self.logger = logging.getLogger(__name__) self.url = "https://docs.google.com/spreadsheets/d/1nzShIvgfqqeibVcGpHzm7dSpjJ78vDtWz-3N0wV9hu0/edit#gid=0" self.feedback_url = "https://docs.google.com/spreadsheets/d/1rivcM5d5U2_WcVTfNcLFQRkZSE8I55VuEdS3ui2e_VU/edit?resourcekey#gid=1162490958" self.preops_url = 'https://docs.google.com/spreadsheets/d/1HkoRySeJmrU_K39L_jsFLLhXl2mCbzG9OPgacRRN1xU/edit?resourcekey#gid=1462663923' self.credentials = "./credentials.json" self.creds = ServiceAccountCredentials.from_json_keyfile_name(self.credentials) self.client = gspread.authorize(self.creds) #self.sheet = self.client.open_by_url(self.url).sheet1 #self.df = get_as_dataframe(self.sheet, header=0) #self.df = self.df[['Date', 'Comment', 'LO', 'SO_1', 'SO_2', 'OA', 'EM']] self.feedback_sheet = self.client.open_by_url(self.feedback_url).sheet1 self.feedback_df = get_as_dataframe(self.feedback_sheet, header=0) self.preops_sheet = self.client.open_by_url(self.preops_url).sheet1 self.preops_df = get_as_dataframe(self.preops_sheet, header=0) for col in ['Timestamp','Your Name','Start date of your shift']: self.preops_df[col] = self.preops_df[col].astype(str) self.title = Div(text='Observing Operations Dashboard', css_classes=['h1-title-style']) if self.semester == None: pass else: try: self.df = pd.read_csv(os.path.join(os.environ['OPSTOOL_DIR'], 'obs_schedule_{}.csv'.format(self.semester))) except Exception as e: print(e) self.df['Date'] = pd.to_datetime(self.df['Date'], format='%m/%d/%y') self.user_info = pd.read_csv(os.path.join(os.environ['OPSTOOL_DIR'], 'user_info.csv')) self.today = datetime.datetime.now().strftime('%Y-%m-%d') self.today_df = self.df[self.df.Date == self.today] self.per_shift_filen = os.path.join(os.environ['OPSTOOL_DIR'], 'per_shift.csv') self.per_shift_df = pd.read_csv(self.per_shift_filen) self.per_observer_filen = os.path.join(os.environ['OPSTOOL_DIR'], 'per_observer.csv') self.per_observer_df = pd.read_csv(self.per_observer_filen) for col in self.per_observer_df.columns: self.per_observer_df[col] = self.per_observer_df[col].astype(str) hostname = socket.gethostname() if 'desi' in hostname: self.location = 'kpno' else: self.location = 'home' all_names = [] for name in np.unique(self.df.SO_1): all_names.append(name.strip()) for name in np.unique(self.df.SO_2): all_names.append(name.strip()) all_names = np.unique(all_names) self.all_names = all_names email_list = [] print('These Names Dont have Emails:') for name in all_names: emails = self.user_info[self.user_info['name'] == name]['email'] try: email = emails.values[0] email_list.append(email) except: print(name) if self.get_all_emails: print(email_list) def gave_feedback(self, shift_df): """Expect columns to be Observer, Shift Type, Start, End """ returns = [] for i, row in shift_df.iterrows(): obs = row['Observer'] these_rows = self.feedback_df[self.feedback_df['Observer Name'] == obs] try: last_row = these_rows.iloc[[-1]] if row['Start'] == last_row['Observing Start'].values[0]: returns.append(last_row['Timestamp'].values[0]) else: returns.append('{}'.format(last_row['Timestamp'].values[0])) except: returns.append('None') return returns def filled_preops_form(self, shift_df): """Expect columns to be Observer, Shift Type, Start, End """ returns = [] for i, row in shift_df.iterrows(): obs = row['Observer'] these_rows = self.preops_df[self.preops_df['Your Name'] == obs.strip()] try: last_row = these_rows.iloc[[-1]] if row['Start'] == last_row['Start date of your shift'].values[0]: returns.append(last_row['Timestamp'].values[0]) else: returns.append('{}'.format(last_row['Timestamp'].values[0])) except: returns.append('None') return returns def get_email(self, name): try: email = self.user_info[self.user_info['name'] == str(name).strip()]['email'].values[0] except: email = None return email def new_day(self): self.today = self.enter_date.value self.today_df = self.df[self.df.Date == self.today] self.today_source.data = self.today_df self.daily_report() def sched_load(self): sheet = self.client.open_by_url(self.url).sheet1 df = get_as_dataframe(sheet, usecols = [0,1,2,3,4,5,6,7], header = 5) self.df = df.dropna(thresh=1) self.df.Date =
pd.to_datetime(self.df.Date,format='%b. %d, %Y')
pandas.to_datetime
from contextlib import nullcontext import copy import numpy as np import pytest from pandas._libs.missing import is_matching_na from pandas.core.dtypes.common import is_float from pandas import ( Index, MultiIndex, Series, ) import pandas._testing as tm @pytest.mark.parametrize( "arr, idx", [ ([1, 2, 3, 4], [0, 2, 1, 3]), ([1, np.nan, 3, np.nan], [0, 2, 1, 3]), ( [1, np.nan, 3, np.nan], MultiIndex.from_tuples([(0, "a"), (1, "b"), (2, "c"), (3, "c")]), ), ], ) def test_equals(arr, idx): s1 = Series(arr, index=idx) s2 = s1.copy() assert s1.equals(s2) s1[1] = 9 assert not s1.equals(s2) @pytest.mark.parametrize( "val", [1, 1.1, 1 + 1j, True, "abc", [1, 2], (1, 2), {1, 2}, {"a": 1}, None] ) def test_equals_list_array(val): # GH20676 Verify equals operator for list of Numpy arrays arr = np.array([1, 2]) s1 = Series([arr, arr]) s2 = s1.copy() assert s1.equals(s2) s1[1] = val cm = ( tm.assert_produces_warning(FutureWarning, check_stacklevel=False) if isinstance(val, str) else nullcontext() ) with cm: assert not s1.equals(s2) def test_equals_false_negative(): # GH8437 Verify false negative behavior of equals function for dtype object arr = [False, np.nan] s1 = Series(arr) s2 = s1.copy() s3 = Series(index=range(2), dtype=object) s4 = s3.copy() s5 = s3.copy() s6 = s3.copy() s3[:-1] = s4[:-1] = s5[0] = s6[0] = False assert s1.equals(s1) assert s1.equals(s2) assert s1.equals(s3) assert s1.equals(s4) assert s1.equals(s5) assert s5.equals(s6) def test_equals_matching_nas(): # matching but not identical NAs left = Series([np.datetime64("NaT")], dtype=object) right = Series([np.datetime64("NaT")], dtype=object) assert left.equals(right) assert Index(left).equals(Index(right)) assert left.array.equals(right.array) left = Series([np.timedelta64("NaT")], dtype=object) right = Series([np.timedelta64("NaT")], dtype=object) assert left.equals(right) assert Index(left).equals(Index(right)) assert left.array.equals(right.array) left = Series([np.float64("NaN")], dtype=object) right = Series([np.float64("NaN")], dtype=object) assert left.equals(right) assert Index(left, dtype=left.dtype).equals(Index(right, dtype=right.dtype)) assert left.array.equals(right.array) def test_equals_mismatched_nas(nulls_fixture, nulls_fixture2): # GH#39650 left = nulls_fixture right = nulls_fixture2 if hasattr(right, "copy"): right = right.copy() else: right = copy.copy(right) ser = Series([left], dtype=object) ser2 = Series([right], dtype=object) if is_matching_na(left, right): assert ser.equals(ser2) elif (left is None and is_float(right)) or (right is None and
is_float(left)
pandas.core.dtypes.common.is_float
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2013-2019 European Commission (JRC); # Licensed under the EUPL (the 'Licence'); # You may not use this work except in compliance with the Licence. # You may obtain a copy of the Licence at: http://ec.europa.eu/idabc/eupl """*(TO BE DEFUNCT)* The core that accepts a vehicle-model and wltc-classes, runs the simulation and updates the model with results. .. Attention:: The documentation of this core module has several issues and needs work. Notation -------- * ALL_CAPITAL variables denote *vectors* over the velocity-profile (the cycle), * ALL_CAPITAL starting with underscore (`_`) denote *matrices* (gears x time). For instance, GEARS is like that:: [0, 0, 1, 1, 1, 2, 2, ... 1, 0, 0] <---- cycle time-steps ----> and _GEARS is like that:: t:||: 0 1 2 3 ---+------------- g1:|[[ 1, 1, 1, 1, ... 1, 1 g2:| 2, 2, 2, 2, ... 2, 2 g3:| 3, 3, 3, 3, ... 3, 3 g4:| 4, 4, 4, 4, ... 4, 4 ]] Major vectors & matrices ------------------------ V: floats (#cycle_steps) The wltp-class velocity profile. _GEARS: integers (#gears X #cycle_steps) One row for each gear (starting with 1 to #gears). _N_GEARS: floats (#gears X #cycle_steps) One row per gear with the Engine-revolutions required to follow the V-profile (unfeasable revs included), produced by multiplying ``V * gear-rations``. _GEARS_YES: boolean (#gears X #cycle_steps) One row per gear having ``True`` wherever gear is possible for each step. .. Seealso:: :mod:`~,datamodel` for in/out schemas """ import logging import re import sys from typing import Union import numpy as np import pandas as pd from . import ( io as wio, cycles, invariants, vehicle, engine, vmax, downscale, datamodel, cycler, ) from .invariants import v_decimals, vround log = logging.getLogger(__name__) def _shapes(*arrays): import operator op_shape = operator.attrgetter("shape") return list(map(op_shape, arrays)) def _dtypes(*arrays): import operator op_shape = operator.attrgetter("dtype") return list(map(op_shape, arrays)) class Experiment(object): """Runs the vehicle and cycle data describing a WLTC experiment. See :mod:`wltp.experiment` for documentation. """ def __init__(self, mdl, skip_model_validation=False, validate_wltc_data=False): """ :param mdl: trees (formed by dicts & lists) holding the experiment data. :param skip_model_validation: when true, does not validate the model. """ self._set_model( mdl, skip_validation=skip_model_validation, validate_wltc_data=validate_wltc_data, ) self.wltc = self._model["wltc_data"] def run(self): """Invokes the main-calculations and extracts/update Model values! @see: Annex 2, p 70 """ m = wio.pstep_factory.get() c = wio.pstep_factory.get().cycle w = wio.pstep_factory.get().wot mdl = self._model ## Prepare results # cycle = mdl.get(m.cycle) if cycle is None: cycle =
pd.DataFrame()
pandas.DataFrame