prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import pytest import numpy as np import pandas as pd from dask.array import from_array, Array from dask.delayed import Delayed from dask.dataframe import from_pandas, Series, to_numeric @pytest.mark.parametrize("arg", ["5", 5, "5 "]) def test_to_numeric_on_scalars(arg): output = to_numeric(arg) assert isinstance(output, Delayed) assert output.compute() == 5 def test_to_numeric_on_dask_array(): arg = from_array(["1.0", "2", "-3", "5.1"]) expected = np.array([1.0, 2.0, -3.0, 5.1]) output = to_numeric(arg) assert isinstance(output, Array) assert list(output.compute()) == list(expected) def test_to_numeric_on_dask_dataframe_series(): s = pd.Series(["1.0", "2", -3, -5.1]) arg = from_pandas(s, npartitions=2) expected = pd.to_numeric(s) output = to_numeric(arg) assert output.dtype == "int64" assert isinstance(output, Series) assert list(output.compute()) == list(expected) def test_to_numeric_on_dask_dataframe_series_with_meta(): s =
pd.Series(["1.0", "2", -3, -5.1])
pandas.Series
import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import itertools from sklearn.metrics import accuracy_score from scipy.optimize import curve_fit from sklearn.metrics import r2_score from matplotlib.patches import Rectangle def objective(x, a, b, c): return a * np.exp(-b * x) + c def get_dprime_vs_acc_csv(dataset_pkl): # open tabular dataset and extract features and labels, remove unwanted colums like image reference dataset = pd.read_pickle(dataset_pkl) print(dataset.columns) features = [ele for ele in dataset.columns if ele not in {'label', 'image', 'category'}] labels = dataset.label.unique() data = dataset.drop(['image'], axis=1) # consuct dprime matrix combinations = [] for feature in features: class_dictionary = {} for i, label_i in enumerate(labels[:-1]): for label_j in labels[i + 1:]: ui = data[data['label'] == label_i][feature].mean() uj = data[data['label'] == label_j][feature].mean() sigmai = data[data['label'] == label_i][feature].std() sigmaj = data[data['label'] == label_j][feature].std() class_dictionary[label_i+'_vs_'+label_j] = np.abs((np.max([ui, uj]) - np.min([ui, uj])) / np.sqrt((sigmai ** 2 + sigmaj ** 2) / 2)) combinations.append(class_dictionary) df = pd.DataFrame(combinations,index = features) # compute accuracy matrix df_acc = df.copy() for feature in df.index: for labels in df.columns: # get the class labels we want to compare labeli,labelj = labels.split('_vs_') # get data cooresponding to class labels and the feature for classifcation data = dataset[['label',feature]][dataset[['label',feature]].label.isin([labeli,labelj])] # compute means of feature for each class dd = data.groupby('label',as_index=False).mean() mu_labeli = dd.loc[dd['label'] == labeli, feature].values[0] mu_labelj = dd.loc[dd['label'] == labelj, feature].values[0] #print(mu_labeli,mu_labelj) # compute unbiased threshold threshold = np.mean([mu_labeli, mu_labelj]) # assign predicted labels based on means if mu_labeli < mu_labelj: lower_label = labeli upper_label = labelj else: lower_label = labelj upper_label = labeli y_predictions = [] y_actuals = [] for index, row in data.iterrows(): y_actuals.append(row["label"]) # make classifcation based on if feature value is above or below threshold if row[feature] < threshold: y_predictions.append(lower_label) else: y_predictions.append(upper_label) acc = accuracy_score(y_actuals, y_predictions) #print(labeli,'vs',labelj,':',feature, 'accuracy:',acc) df_acc.loc[feature, labels] = acc F = [] T=[] A=[] D =[] for f in features: for label in df.columns: A.append(df_acc[label][f]) D.append(df[label][f]) F.append(f) T.append(label) df_results = pd.DataFrame( { "Tasks": T, "Parameters": F, "Dprime": D, "Accuracy": A, }, ) print(df_results) return df_results.to_csv().encode('utf-8') def calculate_dprime_and_acc_matrix(dataset_pkl): # open tabular dataset and extract features and labels, remove unwanted colums like image reference dataset =
pd.read_pickle(dataset_pkl)
pandas.read_pickle
import matplotlib.pyplot as plt import cartopy.crs as ccrs import cartopy.io.shapereader as shpreader from matplotlib import cm from matplotlib import colors import monet as m import numpy as np import pandas as pd import wrf as wrfpy import xarray as xr def get_proj(ds): """ Extracts information about the CMAQ grid projection from the proj4_srs attribute in an output file dataset. Parameters ---------- :param ds: `xarray.Dataset` CMAQ dataset containing the proj4_srs attribute with grid projection information. :return cartopy_crs: cartopy coordinate reference system """ proj_params = ds.proj4_srs proj_params = proj_params.replace(' ', '') proj_params = proj_params.split('+') proj = proj_params[1].split('=')[1] truelat1 = float(proj_params[2].split('=')[1]) truelat2 = float(proj_params[3].split('=')[1]) central_latitude = float(proj_params[4].split('=')[1]) central_longitude = float(proj_params[5].split('=')[1]) if proj == 'lcc': cartopy_crs = ccrs.LambertConformal(central_longitude=central_longitude, central_latitude=central_latitude, standard_parallels=[truelat1, truelat2]) return cartopy_crs else: raise ValueError('Your projection is not the expected Lambert Conformal.') def get_domain_boundary(ds, cartopy_crs): """ Finds the boundary of the CMAQ or WRF domain. Parameters ---------- :param ds: `xarray.Dataset` Dataset from WRF or CMAQ containing a latitude and longitude coordinate. Note that currently this function only works if the latitude coordinate is either named "latitude" or "XLAT" and the longitude coordinate is either named "longitude" or "XLONG." :param cartopy_crs: `cartopy.crs.CRS` Cartopy coordinate reference system. :return projected_bounds: list Bounds of the domain transformed into the specified coordinate reference system. """ # Rename the lat-lon corrdinates to get wrf-python to recognize them variables = {'latitude': 'XLAT', 'longitude': 'XLONG'} try: ds = xr.Dataset.rename(ds, variables) except ValueError: print(f'Variables {variables} cannot be renamed, ' f'those on the left are not in this dataset.') # I need to manually convert the boundaries of the WRF domain into Plate Carree to set the limits. # Get the raw map bounds using a wrf-python utility raw_bounds = wrfpy.util.geo_bounds(ds) # Get the projected bounds telling cartopy that the input coordinates are lat/lon (Plate Carree) projected_bounds = cartopy_crs.transform_points(ccrs.PlateCarree(), np.array([raw_bounds.bottom_left.lon, raw_bounds.top_right.lon]), np.array([raw_bounds.bottom_left.lat, raw_bounds.top_right.lat])) return projected_bounds def conc_map(plot_var, cmap=cm.get_cmap('bwr'), figsize=(8,8), ax=None, cartopy_crs=None, proj_bounds=None, vmin=-1, vmax=1, cbar_args={}, savefig=False, figpath='conc_map.png'): """ Creates a filled colormap across the full domain in the native (Lambert Conformal) map projection. Parameters ---------- :param plot_var: `xarray.DataArray` Array containing the variable you want to plot along with "latitude" and "longitude" coordinates. :param cmap: `matplotlib.colors.Colormap` Colormap for the pcolormesh. :param figsize: tuple Desired figure size. :param ax: `matplotlib.pyplot.axis` Existing axis -- if you have one -- on which to make the plot. :param cartopy_crs: `cartopy.crs.CRS` Cartopy coordinate reference system. :param proj_bounds: array-like Domain boundaries projected into the `cartopy_crs`. :param vmin: float Minimum value displayed on the colorbar. :param vmax: float Maximum value displayed on the colorbar. :param cbar_args: dict Additional keyword arguments that will be passed to `matplotlib.pyplot.colorbar`. :param save_fig: bool Option to save the plot. :param figpath: string If you choose to save the figure, this parameter controls the output figure's name and type. """ if ax is None: # Create a figure fig = plt.figure(figsize=figsize) # Set the GeoAxes to the projection used by WRF ax = fig.add_subplot(1, 1, 1, projection=cartopy_crs) # Normalize the values, so that the colorbar plots correctly norm = colors.Normalize(vmin=vmin, vmax=vmax) # Create the pcolormesh cn = ax.pcolormesh(wrfpy.to_np(plot_var.longitude), wrfpy.to_np(plot_var.latitude), wrfpy.to_np(plot_var), transform=ccrs.PlateCarree(), cmap=cmap, norm=norm, ) if proj_bounds is not None: # Format the projected bounds so they can be used in the xlim and ylim attributes proj_xbounds = [proj_bounds[0, 0], proj_bounds[1, 0]] proj_ybounds = [proj_bounds[0, 1], proj_bounds[1, 1]] # Finally, set the x and y limits ax.set_xlim(proj_xbounds) ax.set_ylim(proj_ybounds) # Download and add the states, coastlines, and lakes shapename = 'admin_1_states_provinces_lakes' states_shp = shpreader.natural_earth(resolution='10m', category='cultural', name=shapename) # Add features to the maps ax.add_geometries( shpreader.Reader(states_shp).geometries(), ccrs.PlateCarree(), facecolor='none', linewidth=.5, edgecolor="black" ) # Add features to the maps # ax.add_feature(cfeature.LAKES) # ax.add_feature(cfeature.OCEAN) # Add color bars if "cbar_ticks" not in cbar_args: cbar_args["cbar_ticks"] = None if "cbar_label" not in cbar_args: cbar_args["cbar_label"] = 'Concentration' if "shrink" not in cbar_args: cbar_args["shrink"] = 1 if "pad" not in cbar_args: cbar_args["pad"] = 0.05 cbar = plt.colorbar(cn, ax=ax, ticks=cbar_args["cbar_ticks"], label=cbar_args["cbar_label"], shrink=cbar_args["shrink"], pad=cbar_args["pad"] ) # Save the figure(s) if savefig: plt.savefig(figpath, dpi=300, transparent=True, bbox_inches='tight') def pollution_plot(da, vmin=0, vmax=12, cmap=cm.get_cmap('YlOrBr'), extent=None, cbar_label='PM$_{2.5}$ ($\mu g/m^{3}$)', figsize=(15,7), titlestr='Title', savefig=False, figpath='./pollution_plot.png'): """ Creates a filled colormap using the Plate Carree projectsion across a user-defined section of the domain (defaults to the full domain) using the monit package paradigm. Parameters ---------- :param da: `xarray.DataArray` Array containing the variable you want to plot along with "latitude" and "longitude" coordinates. :param vmin: float Minimum value displayed on the colorbar. :param vmax: float Maximum value displayed on the colorbar. :param cmap: `matplotlib.colors.Colormap` Colormap for the plot. :param extent: list Plot boundaries in the format [{x_min}, {x_max}, {y_min}, {y_max}]. :param cbar_label: string Label for the colarbar. :param figsize: tuple Desired figure size. :param titlestr: string Plot title. :param savefig: bool Option to save the plot. :param figpath: string If you choose to save the figure, this parameter controls the output figure's name and type. """ if extent is None: extent = [da.longitude.min(), da.longitude.max(), da.latitude.min(), da.latitude.max() - 2] ax = m.plots.draw_map(states=True, resolution='10m', linewidth=0.5, figsize=figsize, extent=extent, subplot_kw={'projection': ccrs.PlateCarree()}) p = da.plot(x='longitude', y='latitude', ax=ax, robust=True, vmin=vmin, vmax=vmax, cmap=cmap, cbar_kwargs={'label': cbar_label, 'extend': 'neither'}, ) if titlestr is not None: ax.set_title(titlestr) if savefig: plt.savefig(figpath, dpi=300, transparent=True, bbox_inches='tight') else: plt.show() def conc_compare(da1, da2, extent=None, vmin1=0, vmax1=10, vmin2=-1, vmax2=1, cmap1=cm.get_cmap('YlOrBr'), cmap2=cm.get_cmap('bwr'), cbar_label1='PM$_{2.5}$ ($\mu g/m^{3}$)', cbar_label2='PM$_{2.5}$ Difference (%)', titlestr1=None, titlestr2=None, figsize=(15,7), savefig=False, figpath1='./conc_compare1.png', figpath2='./conc_compare2.png'): """ Creates two filled colormaps for concentration comparisons. Parameters ---------- :param da1: `xarray.DataArray` Array containing the variable you want to plot first along with "latitude" and "longitude" coordinates. :param da2: `xarray.DataArray` Array containing the variable you want to plot second along with "latitude" and "longitude" coordinates. :param extent: list Plot boundaries in the format [{x_min}, {x_max}, {y_min}, {y_max}]. :param vmin1: float Minimum value displayed on the colorbar for plot 1. :param vmax1: float Maximum value displayed on the colorbar for plot 1. :param vmin2: float Minimum value displayed on the colorbar for plot 2. :param vmax2: float Maximum value displayed on the colorbar for plot 2. :param cmap1: `matplotlib.colors.Colormap` Colormap for plot 1. :param cmap2: `matplotlib.colors.Colormap` Colormap for plot 2. :param cbar_label1: string Label for colarbar 1. :param cbar_label2: string Label for colarbar 2. :param figsize: tuple Desired figure size. :param titlestr1: string Plot 1 title. :param titlestr2: string Plot 2 title. :param savefig: bool Option to save the plot. :param figpath1: string If you choose to save figures, this parameter controls figure 1's name and type. :param figpath2: string If you choose to save the figures, this parameter controls figure 2's name and type. """ # f, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, figsize=fsize) if extent is None: extent = [da1.longitude.min(), da1.longitude.max(), da1.latitude.min(), da1.latitude.max() - 2] f1, ax1 = m.plots.draw_map(states=True, resolution='10m', figsize=figsize, linewidth=0.5, extent=extent, subplot_kw={'projection': ccrs.PlateCarree()}, return_fig=True) f2, ax2 = m.plots.draw_map(states=True, resolution='10m', figsize=figsize, linewidth=0.5, extent=extent, subplot_kw={'projection': ccrs.PlateCarree()}, return_fig=True) # f.axes.append(ax2) da1.plot(x='longitude', y='latitude', ax=ax1, robust=True, vmin=vmin1, vmax=vmax1, cmap=cmap1, cbar_kwargs={'label': cbar_label1, 'extend': 'neither'}, ) da2.plot(x='longitude', y='latitude', ax=ax2, robust=True, vmin=vmin2, vmax=vmax2, cmap=cmap2, cbar_kwargs={'label': cbar_label2, 'extend': 'neither'}, ) if titlestr1 is not None: ax1.set_title(titlestr1) if titlestr2 is not None: ax2.set_title(titlestr2) if savefig: f1.savefig(figpath1, dpi=300, transparent=True, bbox_inches='tight') f2.savefig(figpath2, dpi=300, transparent=True, bbox_inches='tight') else: f1.show() f2.show() def prof_change(gen_idx, gen_df1, gen_df2, date=None, column_names=['Base Case', 'w/ Renewables'], figsize=(7,3), colors=['purple','orange'], linewidth=2, linestyles=['-','-.'], titlestr1='', ylabelstr='Power (MW)', savefig=False, outfile_pfix='../cmaqpy/data/plots/gen_profs_'): """ Plots changes in generation or emissions profiles for a user-specified unit. Parameters ---------- :param gen_idx: int Index for the generator that you want to plot. :param gen_df1: `pandas.DataFrame` DataFrame containing the generator profiles for case 1. :param gen_df2: `pandas.DataFrame` DataFrame containing the generator profiles for case 2. :param date: string Date for generator profile plotting. Defaults to None, and plots the entire available time period. :param column_names: list of strings Names for case 1 and case 2. These will be written to the plot legend. :param figsize: tuple Desired figure size. :param colors: list of strings Colors for case 1 and case 2 plots. :param linewidth: float Width of lines on plots. :param linestyle: list of strings Style of lines for case 1 and case 2. :param titlestr1: string Plot title. :param ylabelstr: string Label for y-axis. :param savefig: bool Option to save the plot. :param outfile_pfix: string If you choose to save the figure, this parameter controls the output figure's name. The generator name will be appended. """ if date is None: change_df1 = pd.concat([gen_df1.iloc[gen_idx,5:], gen_df2.iloc[gen_idx,5:]], axis=1) else: change_df1 = pd.concat([gen_df1.loc[gen_idx,
pd.Timestamp(f'{date} 00')
pandas.Timestamp
""" generic """ from __future__ import (absolute_import, division, print_function, unicode_literals) import sys import numpy as np import pandas as pd from sklearn.ensemble import ExtraTreesRegressor, GradientBoostingRegressor from scipy import stats from ..util import timeout, TimeoutError def get_regressor(x, y, n_estimators=1500, n_tries=5, verbose=False): """Calculate an ExtraTreesRegressor on predictor and target variables Parameters ---------- x : numpy.array Predictor vector y : numpy.array Target vector n_estimators : int, optional Number of estimators to use n_tries : int, optional Number of attempts to calculate regression verbose : bool, optional If True, output progress statements Returns ------- classifier : sklearn.ensemble.ExtraTreesRegressor The classifier with the highest out of bag scores of all the attempted "tries" oob_scores : numpy.array Out of bag scores of the classifier """ if verbose: sys.stderr.write('Getting regressor\n') clfs = [] oob_scores = [] for i in range(n_tries): if verbose: sys.stderr.write('%d.' % i) clf = ExtraTreesRegressor(n_estimators=n_estimators, oob_score=True, bootstrap=True, max_features='sqrt', n_jobs=1, random_state=i).fit(x, y) clfs.append(clf) oob_scores.append(clf.oob_score_) clf = clfs[np.argmax(oob_scores)] clf.feature_importances = pd.Series(clf.feature_importances_, index=x.columns) return clf, oob_scores def get_boosting_regressor(x, y, verbose=False): """Calculate a GradientBoostingRegressor on predictor and target variables Parameters ---------- x : numpy.array Predictor variable y : numpy.array Target variable verbose : bool, optional If True, output status messages Returns ------- classifier : sklearn.ensemble.GradientBoostingRegressor A fitted classifier of the predictor and target variable """ if verbose: sys.stderr.write('Getting boosting regressor\n') clf = GradientBoostingRegressor(n_estimators=50, subsample=0.6, max_features=100, verbose=0, learning_rate=0.1, random_state=0).fit(x, y) clf.feature_importances = pd.Series(clf.feature_importances_, index=x.columns) if verbose: sys.stderr.write('Finished boosting regressor\n') return clf def get_unstarted_events(mongodb): """ get events that have not been started yet. generator sets started to True before returning an event Parameters ---------- mongodb : pymongo.Database A MongoDB database object """ go_on = True while go_on: event = mongodb['list'].find_one({"started": False}) if event is None: go_on = False else: event['started'] = True mongodb['list'].save(event) yield event @timeout(5) # because these sometimes hang def get_slope(x, y): """Get the linear regression slope of x and y Parameters ---------- x : numpy.array X-values of data y : numpy.array Y-values of data Returns ------- slope : float Scipy.stats.linregress slope """ return stats.linregress(x, y)[0] @timeout(5) # because these sometimes hang def do_r(s_1, s_2, method=stats.pearsonr, min_items=12): """Calculate correlation ("R-value") between two vectors Parameters ---------- s_1 : pandas.Series Predictor vector s_2 : pandas.Series Target vector method : function, optional Which correlation method to use. (default scipy.stats.pearsonr) min_items : int, optional Minimum number of items occuring in both s_1 and s_2 (default 12) Returns ------- r_value : float R-value of the correlation, i.e. how correlated the two inputs are p_value : float p-value of the correlation, i.e. how likely this correlation would happen given the null hypothesis that the two are not correlated Notes ----- If too few items overlap, return (np.nan, np.nan) """ s_1, s_2 = s_1.dropna().align(s_2.dropna(), join='inner') if len(s_1) <= min_items: return np.nan, np.nan return method(s_1, s_2) @timeout(10) # because these sometimes hang def get_robust_values(x, y): """Calculate robust linear regression Parameters ---------- x : numpy.array Predictor vector y : numpy.array Target vector Returns ------- intercept : float Intercept of the fitted line slope : float Slope of the fitted line t_statistic : float T-statistic of the fit p_value : float p-value of the fit """ import statsmodels.api as sm r = sm.RLM(y, sm.add_constant(x), missing='drop').fit() results = r.params[0], r.params[1], r.tvalues[0], r.pvalues[0] return results @timeout(5) def get_dcor(x, y): """Calculate distance correlation between two vectors Uses the distance correlation package from: https://github.com/andrewdyates/dcor Parameters ---------- x : numpy.array 1-dimensional array (aka a vector) of the independent, predictor variable y : numpy.array 1-dimensional array (aka a vector) of the dependent, target variable Returns ------- dc : float Distance covariance dr : float Distance correlation dvx : float Distance variance on x dvy : float Distance variance on y """ # cython version of dcor try: import dcor_cpy as dcor except ImportError as e: sys.stderr.write("Please install dcor_cpy.") raise e dc, dr, dvx, dvy = dcor.dcov_all(x, y) return dc, dr, dvx, dvy @timeout(100) def apply_calc_rs(X, y, method=stats.pearsonr): """Apply R calculation method on each column of X versus the values of y Parameters ---------- X : pandas.DataFrame A (n_samples, n_features) sized DataFrame, assumed to be of log-normal expression values y : pandas.Series A (n_samples,) sized Series, assumed to be of percent spliced-in alternative splicing scores method : function, optional Which correlation method to use on each feature in X versus the values in y Returns ------- r_coefficients : pandas.Series Correlation coefficients p_values : pandas.Series Correlation significances (smaller is better) See Also -------- do_r This is the underlying function which calculates correlation """ out_R = pd.Series(index=X.columns, name=y.name) out_P = pd.Series(index=X.columns, name=y.name) for this_id, data in X.iteritems(): x = pd.Series(data, name=this_id) try: r, p = do_r(x, y, method=method) except TimeoutError: sys.stderr.write( "%s r timeout event:%s, gene:%s\n" % (method, y.name, x.name)) r, p = np.nan, np.nan out_R.ix[this_id] = r out_P.ix[this_id] = p return out_R, out_P @timeout(220) def apply_calc_robust(X, y, verbose=False): """Calculate robust regression between the columns of X and y Parameters ---------- X : pandas.DataFrame A (n_samples, n_features) Dataframe of the predictor variable y : pandas.DataFrame A (n_samples, m_features) DataFrame of the response variable verbose : bool, optional If True, output status messages as the calculation is happening Returns ------- out_I : pandas.Series Intercept of regressions out_S : pandas.Series Slope of regressions out_T : pandas.Series t-statistic of regressions out_P : pandas.Series p-values of regressions See Also -------- get_robust_values This is the underlying function which calculates the slope, intercept, t-value, and p-value of the fit """ if verbose: sys.stderr.write("getting robust regression\n") out_I = pd.Series(index=X.columns, name=y.name) # intercept out_S = pd.Series(index=X.columns, name=y.name) # slope out_T =
pd.Series(index=X.columns, name=y.name)
pandas.Series
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import operator from itertools import product, starmap from numpy import nan, inf import numpy as np import pandas as pd from pandas import (Index, Series, DataFrame, isnull, bdate_range, NaT, date_range, timedelta_range, _np_version_under1p8) from pandas.tseries.index import Timestamp from pandas.tseries.tdi import Timedelta import pandas.core.nanops as nanops from pandas.compat import range, zip from pandas import compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from .common import TestData class TestSeriesOperators(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_comparisons(self): left = np.random.randn(10) right = np.random.randn(10) left[:3] = np.nan result = nanops.nangt(left, right) with np.errstate(invalid='ignore'): expected = (left > right).astype('O') expected[:3] = np.nan assert_almost_equal(result, expected) s = Series(['a', 'b', 'c']) s2 = Series([False, True, False]) # it works! exp = Series([False, False, False]) tm.assert_series_equal(s == s2, exp) tm.assert_series_equal(s2 == s, exp) def test_op_method(self): def check(series, other, check_reverse=False): simple_ops = ['add', 'sub', 'mul', 'floordiv', 'truediv', 'pow'] if not compat.PY3: simple_ops.append('div') for opname in simple_ops: op = getattr(Series, opname) if op == 'div': alt = operator.truediv else: alt = getattr(operator, opname) result = op(series, other) expected = alt(series, other) tm.assert_almost_equal(result, expected) if check_reverse: rop = getattr(Series, "r" + opname) result = rop(series, other) expected = alt(other, series) tm.assert_almost_equal(result, expected) check(self.ts, self.ts * 2) check(self.ts, self.ts[::2]) check(self.ts, 5, check_reverse=True) check(tm.makeFloatSeries(), tm.makeFloatSeries(), check_reverse=True) def test_neg(self): assert_series_equal(-self.series, -1 * self.series) def test_invert(self): assert_series_equal(-(self.series < 0), ~(self.series < 0)) def test_div(self): with np.errstate(all='ignore'): # no longer do integer div for any ops, but deal with the 0's p = DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = p['first'] / p['second'] expected = Series( p['first'].values.astype(float) / p['second'].values, dtype='float64') expected.iloc[0:3] = np.inf assert_series_equal(result, expected) result = p['first'] / 0 expected = Series(np.inf, index=p.index, name='first') assert_series_equal(result, expected) p = p.astype('float64') result = p['first'] / p['second'] expected = Series(p['first'].values / p['second'].values) assert_series_equal(result, expected) p = DataFrame({'first': [3, 4, 5, 8], 'second': [1, 1, 1, 1]}) result = p['first'] / p['second'] assert_series_equal(result, p['first'].astype('float64'), check_names=False) self.assertTrue(result.name is None) self.assertFalse(np.array_equal(result, p['second'] / p['first'])) # inf signing s = Series([np.nan, 1., -1.]) result = s / 0 expected = Series([np.nan, np.inf, -np.inf]) assert_series_equal(result, expected) # float/integer issue # GH 7785 p = DataFrame({'first': (1, 0), 'second': (-0.01, -0.02)}) expected = Series([-0.01, -np.inf]) result = p['second'].div(p['first']) assert_series_equal(result, expected, check_names=False) result = p['second'] / p['first'] assert_series_equal(result, expected) # GH 9144 s = Series([-1, 0, 1]) result = 0 / s expected = Series([0.0, nan, 0.0]) assert_series_equal(result, expected) result = s / 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) result = s // 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) def test_operators(self): def _check_op(series, other, op, pos_only=False, check_dtype=True): left = np.abs(series) if pos_only else series right = np.abs(other) if pos_only else other cython_or_numpy = op(left, right) python = left.combine(right, op) tm.assert_series_equal(cython_or_numpy, python, check_dtype=check_dtype) def check(series, other): simple_ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'mod'] for opname in simple_ops: _check_op(series, other, getattr(operator, opname)) _check_op(series, other, operator.pow, pos_only=True) _check_op(series, other, lambda x, y: operator.add(y, x)) _check_op(series, other, lambda x, y: operator.sub(y, x)) _check_op(series, other, lambda x, y: operator.truediv(y, x)) _check_op(series, other, lambda x, y: operator.floordiv(y, x)) _check_op(series, other, lambda x, y: operator.mul(y, x)) _check_op(series, other, lambda x, y: operator.pow(y, x), pos_only=True) _check_op(series, other, lambda x, y: operator.mod(y, x)) check(self.ts, self.ts * 2) check(self.ts, self.ts * 0) check(self.ts, self.ts[::2]) check(self.ts, 5) def check_comparators(series, other, check_dtype=True): _check_op(series, other, operator.gt, check_dtype=check_dtype) _check_op(series, other, operator.ge, check_dtype=check_dtype) _check_op(series, other, operator.eq, check_dtype=check_dtype) _check_op(series, other, operator.lt, check_dtype=check_dtype) _check_op(series, other, operator.le, check_dtype=check_dtype) check_comparators(self.ts, 5) check_comparators(self.ts, self.ts + 1, check_dtype=False) def test_operators_empty_int_corner(self): s1 = Series([], [], dtype=np.int32) s2 = Series({'x': 0.}) tm.assert_series_equal(s1 * s2, Series([np.nan], index=['x'])) def test_operators_timedelta64(self): # invalid ops self.assertRaises(Exception, self.objSeries.__add__, 1) self.assertRaises(Exception, self.objSeries.__add__, np.array(1, dtype=np.int64)) self.assertRaises(Exception, self.objSeries.__sub__, 1) self.assertRaises(Exception, self.objSeries.__sub__, np.array(1, dtype=np.int64)) # seriese ops v1 = date_range('2012-1-1', periods=3, freq='D') v2 = date_range('2012-1-2', periods=3, freq='D') rs = Series(v2) - Series(v1) xp = Series(1e9 * 3600 * 24, rs.index).astype('int64').astype('timedelta64[ns]') assert_series_equal(rs, xp) self.assertEqual(rs.dtype, 'timedelta64[ns]') df = DataFrame(dict(A=v1)) td = Series([timedelta(days=i) for i in range(3)]) self.assertEqual(td.dtype, 'timedelta64[ns]') # series on the rhs result = df['A'] - df['A'].shift() self.assertEqual(result.dtype, 'timedelta64[ns]') result = df['A'] + td self.assertEqual(result.dtype, 'M8[ns]') # scalar Timestamp on rhs maxa = df['A'].max() tm.assertIsInstance(maxa, Timestamp) resultb = df['A'] - df['A'].max() self.assertEqual(resultb.dtype, 'timedelta64[ns]') # timestamp on lhs result = resultb + df['A'] values = [Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')] expected = Series(values, name='A') assert_series_equal(result, expected) # datetimes on rhs result = df['A'] - datetime(2001, 1, 1) expected = Series( [timedelta(days=4017 + i) for i in range(3)], name='A') assert_series_equal(result, expected) self.assertEqual(result.dtype, 'm8[ns]') d = datetime(2001, 1, 1, 3, 4) resulta = df['A'] - d self.assertEqual(resulta.dtype, 'm8[ns]') # roundtrip resultb = resulta + d assert_series_equal(df['A'], resultb) # timedeltas on rhs td = timedelta(days=1) resulta = df['A'] + td resultb = resulta - td assert_series_equal(resultb, df['A']) self.assertEqual(resultb.dtype, 'M8[ns]') # roundtrip td = timedelta(minutes=5, seconds=3) resulta = df['A'] + td resultb = resulta - td assert_series_equal(df['A'], resultb) self.assertEqual(resultb.dtype, 'M8[ns]') # inplace value = rs[2] + np.timedelta64(timedelta(minutes=5, seconds=1)) rs[2] += np.timedelta64(timedelta(minutes=5, seconds=1)) self.assertEqual(rs[2], value) def test_operator_series_comparison_zerorank(self): # GH 13006 result = np.float64(0) > pd.Series([1, 2, 3]) expected = 0.0 > pd.Series([1, 2, 3]) self.assert_series_equal(result, expected) result = pd.Series([1, 2, 3]) < np.float64(0) expected = pd.Series([1, 2, 3]) < 0.0 self.assert_series_equal(result, expected) result = np.array([0, 1, 2])[0] > pd.Series([0, 1, 2]) expected = 0.0 > pd.Series([1, 2, 3]) self.assert_series_equal(result, expected) def test_timedeltas_with_DateOffset(self): # GH 4532 # operate with pd.offsets s = Series([Timestamp('20130101 9:01'), Timestamp('20130101 9:02')]) result = s + pd.offsets.Second(5) result2 =
pd.offsets.Second(5)
pandas.offsets.Second
import re from datetime import datetime, timedelta import numpy as np import pandas.compat as compat import pandas as pd from pandas.compat import u, StringIO from pandas.core.base import FrozenList, FrozenNDArray, DatetimeIndexOpsMixin from pandas.util.testing import assertRaisesRegexp, assert_isinstance from pandas import Series, Index, Int64Index, DatetimeIndex, PeriodIndex from pandas import _np_version_under1p7 import pandas.tslib as tslib import nose import pandas.util.testing as tm class CheckStringMixin(object): def test_string_methods_dont_fail(self): repr(self.container) str(self.container) bytes(self.container) if not compat.PY3: unicode(self.container) def test_tricky_container(self): if not hasattr(self, 'unicode_container'): raise nose.SkipTest('Need unicode_container to test with this') repr(self.unicode_container) str(self.unicode_container) bytes(self.unicode_container) if not compat.PY3: unicode(self.unicode_container) class CheckImmutable(object): mutable_regex = re.compile('does not support mutable operations') def check_mutable_error(self, *args, **kwargs): # pass whatever functions you normally would to assertRaises (after the Exception kind) assertRaisesRegexp(TypeError, self.mutable_regex, *args, **kwargs) def test_no_mutable_funcs(self): def setitem(): self.container[0] = 5 self.check_mutable_error(setitem) def setslice(): self.container[1:2] = 3 self.check_mutable_error(setslice) def delitem(): del self.container[0] self.check_mutable_error(delitem) def delslice(): del self.container[0:3] self.check_mutable_error(delslice) mutable_methods = getattr(self, "mutable_methods", []) for meth in mutable_methods: self.check_mutable_error(getattr(self.container, meth)) def test_slicing_maintains_type(self): result = self.container[1:2] expected = self.lst[1:2] self.check_result(result, expected) def check_result(self, result, expected, klass=None): klass = klass or self.klass assert_isinstance(result, klass) self.assertEqual(result, expected) class TestFrozenList(CheckImmutable, CheckStringMixin, tm.TestCase): mutable_methods = ('extend', 'pop', 'remove', 'insert') unicode_container = FrozenList([u("\u05d0"), u("\u05d1"), "c"]) def setUp(self): self.lst = [1, 2, 3, 4, 5] self.container = FrozenList(self.lst) self.klass = FrozenList def test_add(self): result = self.container + (1, 2, 3) expected = FrozenList(self.lst + [1, 2, 3]) self.check_result(result, expected) result = (1, 2, 3) + self.container expected = FrozenList([1, 2, 3] + self.lst) self.check_result(result, expected) def test_inplace(self): q = r = self.container q += [5] self.check_result(q, self.lst + [5]) # other shouldn't be mutated self.check_result(r, self.lst) class TestFrozenNDArray(CheckImmutable, CheckStringMixin, tm.TestCase): mutable_methods = ('put', 'itemset', 'fill') unicode_container = FrozenNDArray([u("\u05d0"), u("\u05d1"), "c"]) def setUp(self): self.lst = [3, 5, 7, -2] self.container = FrozenNDArray(self.lst) self.klass = FrozenNDArray def test_shallow_copying(self): original = self.container.copy() assert_isinstance(self.container.view(), FrozenNDArray) self.assertFalse(isinstance(self.container.view(np.ndarray), FrozenNDArray)) self.assertIsNot(self.container.view(), self.container) self.assert_numpy_array_equal(self.container, original) # shallow copy should be the same too assert_isinstance(self.container._shallow_copy(), FrozenNDArray) # setting should not be allowed def testit(container): container[0] = 16 self.check_mutable_error(testit, self.container) def test_values(self): original = self.container.view(np.ndarray).copy() n = original[0] + 15 vals = self.container.values() self.assert_numpy_array_equal(original, vals) self.assertIsNot(original, vals) vals[0] = n self.assert_numpy_array_equal(self.container, original) self.assertEqual(vals[0], n) class Ops(tm.TestCase): def setUp(self): self.int_index = tm.makeIntIndex(10) self.float_index = tm.makeFloatIndex(10) self.dt_index = tm.makeDateIndex(10) self.dt_tz_index = tm.makeDateIndex(10).tz_localize(tz='US/Eastern') self.period_index = tm.makePeriodIndex(10) self.string_index = tm.makeStringIndex(10) arr = np.random.randn(10) self.int_series = Series(arr, index=self.int_index) self.float_series = Series(arr, index=self.int_index) self.dt_series = Series(arr, index=self.dt_index) self.dt_tz_series = self.dt_tz_index.to_series(keep_tz=True) self.period_series = Series(arr, index=self.period_index) self.string_series = Series(arr, index=self.string_index) types = ['int','float','dt', 'dt_tz', 'period','string'] self.objs = [ getattr(self,"{0}_{1}".format(t,f)) for t in types for f in ['index','series'] ] def check_ops_properties(self, props, filter=None, ignore_failures=False): for op in props: for o in self.is_valid_objs: # if a filter, skip if it doesn't match if filter is not None: filt = o.index if isinstance(o, Series) else o if not filter(filt): continue try: if isinstance(o, Series): expected = Series(getattr(o.index,op),index=o.index) else: expected = getattr(o,op) except (AttributeError): if ignore_failures: continue result = getattr(o,op) # these couuld be series, arrays or scalars if isinstance(result,Series) and isinstance(expected,Series): tm.assert_series_equal(result,expected) elif isinstance(result,Index) and isinstance(expected,Index): tm.assert_index_equal(result,expected) elif isinstance(result,np.ndarray) and isinstance(expected,np.ndarray): self.assert_numpy_array_equal(result,expected) else: self.assertEqual(result, expected) # freq raises AttributeError on an Int64Index because its not defined # we mostly care about Series hwere anyhow if not ignore_failures: for o in self.not_valid_objs: # an object that is datetimelike will raise a TypeError, otherwise # an AttributeError if issubclass(type(o), DatetimeIndexOpsMixin): self.assertRaises(TypeError, lambda : getattr(o,op)) else: self.assertRaises(AttributeError, lambda : getattr(o,op)) class TestIndexOps(Ops): def setUp(self): super(TestIndexOps, self).setUp() self.is_valid_objs = [ o for o in self.objs if o._allow_index_ops ] self.not_valid_objs = [ o for o in self.objs if not o._allow_index_ops ] def test_ops(self): tm._skip_if_not_numpy17_friendly() for op in ['max','min']: for o in self.objs: result = getattr(o,op)() if not isinstance(o, PeriodIndex): expected = getattr(o.values, op)() else: expected = pd.Period(ordinal=getattr(o.values, op)(), freq=o.freq) try: self.assertEqual(result, expected) except ValueError: # comparing tz-aware series with np.array results in ValueError expected = expected.astype('M8[ns]').astype('int64') self.assertEqual(result.value, expected) def test_nanops(self): # GH 7261 for op in ['max','min']: for klass in [Index, Series]: obj = klass([np.nan, 2.0]) self.assertEqual(getattr(obj, op)(), 2.0) obj = klass([np.nan]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = klass([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = klass([pd.NaT, datetime(2011, 11, 1)]) # check DatetimeIndex monotonic path self.assertEqual(getattr(obj, op)(), datetime(2011, 11, 1)) obj = klass([pd.NaT, datetime(2011, 11, 1), pd.NaT]) # check DatetimeIndex non-monotonic path self.assertEqual(getattr(obj, op)(), datetime(2011, 11, 1)) def test_value_counts_unique_nunique(self): for o in self.objs: klass = type(o) values = o.values # create repeated values, 'n'th element is repeated by n+1 times if isinstance(o, PeriodIndex): # freq must be specified because repeat makes freq ambiguous o = klass(np.repeat(values, range(1, len(o) + 1)), freq=o.freq) else: o = klass(np.repeat(values, range(1, len(o) + 1))) expected_s = Series(range(10, 0, -1), index=values[::-1], dtype='int64') tm.assert_series_equal(o.value_counts(), expected_s) if isinstance(o, DatetimeIndex): # DatetimeIndex.unique returns DatetimeIndex self.assertTrue(o.unique().equals(klass(values))) else: self.assert_numpy_array_equal(o.unique(), values) self.assertEqual(o.nunique(), len(np.unique(o.values))) for null_obj in [np.nan, None]: for o in self.objs: klass = type(o) values = o.values if o.values.dtype == 'int64': # skips int64 because it doesn't allow to include nan or None continue if o.values.dtype == 'datetime64[ns]' and _np_version_under1p7: # Unable to assign None continue # special assign to the numpy array if o.values.dtype == 'datetime64[ns]': values[0:2] = pd.tslib.iNaT else: values[0:2] = null_obj # create repeated values, 'n'th element is repeated by n+1 times if isinstance(o, PeriodIndex): o = klass(np.repeat(values, range(1, len(o) + 1)), freq=o.freq) else: o = klass(np.repeat(values, range(1, len(o) + 1))) if isinstance(o, DatetimeIndex): expected_s_na = Series(list(range(10, 2, -1)) + [3], index=values[9:0:-1]) expected_s = Series(list(range(10, 2, -1)), index=values[9:1:-1]) else: expected_s_na = Series(list(range(10, 2, -1)) +[3], index=values[9:0:-1], dtype='int64') expected_s = Series(list(range(10, 2, -1)), index=values[9:1:-1], dtype='int64') tm.assert_series_equal(o.value_counts(dropna=False), expected_s_na) tm.assert_series_equal(o.value_counts(), expected_s) # numpy_array_equal cannot compare arrays includes nan result = o.unique() self.assert_numpy_array_equal(result[1:], values[2:]) if isinstance(o, DatetimeIndex): self.assertTrue(result[0] is pd.NaT) else: self.assertTrue(pd.isnull(result[0])) self.assertEqual(o.nunique(), 8) self.assertEqual(o.nunique(dropna=False), 9) def test_value_counts_inferred(self): klasses = [Index, Series] for klass in klasses: s_values = ['a', 'b', 'b', 'b', 'b', 'c', 'd', 'd', 'a', 'a'] s = klass(s_values) expected = Series([4, 3, 2, 1], index=['b', 'a', 'd', 'c']) tm.assert_series_equal(s.value_counts(), expected) self.assert_numpy_array_equal(s.unique(), np.unique(s_values)) self.assertEqual(s.nunique(), 4) # don't sort, have to sort after the fact as not sorting is platform-dep hist = s.value_counts(sort=False) hist.sort() expected = Series([3, 1, 4, 2], index=list('acbd')) expected.sort() tm.assert_series_equal(hist, expected) # sort ascending hist = s.value_counts(ascending=True) expected = Series([1, 2, 3, 4], index=list('cdab')) tm.assert_series_equal(hist, expected) # relative histogram. hist = s.value_counts(normalize=True) expected = Series([.4, .3, .2, .1], index=['b', 'a', 'd', 'c']) tm.assert_series_equal(hist, expected) # bins self.assertRaises(TypeError, lambda bins: s.value_counts(bins=bins), 1) s1 = Series([1, 1, 2, 3]) res1 = s1.value_counts(bins=1) exp1 = Series({0.998: 4}) tm.assert_series_equal(res1, exp1) res1n = s1.value_counts(bins=1, normalize=True) exp1n = Series({0.998: 1.0}) tm.assert_series_equal(res1n, exp1n) self.assert_numpy_array_equal(s1.unique(), np.array([1, 2, 3])) self.assertEqual(s1.nunique(), 3) res4 = s1.value_counts(bins=4) exp4 = Series({0.998: 2, 1.5: 1, 2.0: 0, 2.5: 1}, index=[0.998, 2.5, 1.5, 2.0]) tm.assert_series_equal(res4, exp4) res4n = s1.value_counts(bins=4, normalize=True) exp4n = Series({0.998: 0.5, 1.5: 0.25, 2.0: 0.0, 2.5: 0.25}, index=[0.998, 2.5, 1.5, 2.0]) tm.assert_series_equal(res4n, exp4n) # handle NA's properly s_values = ['a', 'b', 'b', 'b', np.nan, np.nan, 'd', 'd', 'a', 'a', 'b'] s = klass(s_values) expected = Series([4, 3, 2], index=['b', 'a', 'd']) tm.assert_series_equal(s.value_counts(), expected) self.assert_numpy_array_equal(s.unique(), np.array(['a', 'b', np.nan, 'd'], dtype='O')) self.assertEqual(s.nunique(), 3) s = klass({}) expected = Series([], dtype=np.int64) tm.assert_series_equal(s.value_counts(), expected) self.assert_numpy_array_equal(s.unique(), np.array([])) self.assertEqual(s.nunique(), 0) # GH 3002, datetime64[ns] txt = "\n".join(['xxyyzz20100101PIE', 'xxyyzz20100101GUM', 'xxyyzz20100101EGG', 'xxyyww20090101EGG', 'foofoo20080909PIE', 'foofoo20080909GUM']) f = StringIO(txt) df = pd.read_fwf(f, widths=[6, 8, 3], names=["person_id", "dt", "food"], parse_dates=["dt"]) s = klass(df['dt'].copy()) idx = pd.to_datetime(['2010-01-01 00:00:00Z', '2008-09-09 00:00:00Z', '2009-01-01 00:00:00X']) expected_s = Series([3, 2, 1], index=idx) tm.assert_series_equal(s.value_counts(), expected_s) expected = np.array(['2010-01-01 00:00:00Z', '2009-01-01 00:00:00Z', '2008-09-09 00:00:00Z'], dtype='datetime64[ns]') if isinstance(s, DatetimeIndex): expected = DatetimeIndex(expected) self.assertTrue(s.unique().equals(expected)) else: self.assert_numpy_array_equal(s.unique(), expected) self.assertEqual(s.nunique(), 3) # with NaT s = df['dt'].copy() s = klass([v for v in s.values] + [pd.NaT]) result = s.value_counts() self.assertEqual(result.index.dtype, 'datetime64[ns]') tm.assert_series_equal(result, expected_s) result = s.value_counts(dropna=False) expected_s[pd.NaT] = 1 tm.assert_series_equal(result, expected_s) unique = s.unique() self.assertEqual(unique.dtype, 'datetime64[ns]') # numpy_array_equal cannot compare pd.NaT self.assert_numpy_array_equal(unique[:3], expected) self.assertTrue(unique[3] is pd.NaT or unique[3].astype('int64') == pd.tslib.iNaT) self.assertEqual(s.nunique(), 3) self.assertEqual(s.nunique(dropna=False), 4) # timedelta64[ns] td = df.dt - df.dt + timedelta(1) td = klass(td) result = td.value_counts() expected_s = Series([6], index=[86400000000000]) self.assertEqual(result.index.dtype, 'int64')
tm.assert_series_equal(result, expected_s)
pandas.util.testing.assert_series_equal
#!/usr/bin/env python # coding: utf-8 # # Experiments @Fischer in Montebelluna 28.02.20 # We had the oppurtunity to use the Flexometer for ski boots of Fischer with their help at Montebelluna. The idea is to validate our system acquiring simultaneously data by our sensor setup and the one from their machine. With the machine of Fischer it's possible to apply exact loads. # We used booth our sensorized ski boots (Dynafit Hoji Pro Tour W and Dynafit TLT Speedfit). The Hoji we already used in the past for our experiments in the lab @Bz with our selfbuild experiment test bench. For the TLT Speedfit this was the first experiment. # # Strain gauge setup: # - Dynafit Hoji Pro Tour: 4 pairs of strain gauges 1-4 (a=0°, b=90°) # - Dynafit TLT Speedfit: 4 triples of strain gauges 1-4 (a=0°,b=45°,c=90°) # As we had only a restricted time, we tested all 4 strain gauges pairs of the Hoji and only strain gauge triple 3 for TLT Speedfit. For the first time the new prototype of datalogger was running in an experiment. In addition also the first time in battery mode and not at room temperature. Unfortunately the connection of the strains to the logging system was not the best as in battery mode we don't have any possibility to control the connection to the channels yet. We'll get a solution for this the next days. # # Experiments (ambient temperature: 4°C): # - #1: Hoji Pro Tour, 4a&b # - #2: Hoji Pro Tour, 3a&b # - #3: Hoji Pro Tour, 2a&b # - #4: Hoji Pro Tour, 1a&b # - #5: TLT Speedfit, 3a&b&c # # ATTENTION: The Hoji boot was not closed as much as the TLT. Take in consideration this when looking at force/angular displacement graph. # In[50]: # Importing libraries import pandas as pd import numpy as np import datetime import time import matplotlib.pyplot as plt from matplotlib.pyplot import figure import csv import matplotlib.patches as mpatches #needed for plot legend from matplotlib.pyplot import * get_ipython().run_line_magic('matplotlib', 'inline') from IPython.display import set_matplotlib_formats set_matplotlib_formats('png', 'pdf') # # Machine Data: load and plot # The boot was loaded cyclical by the machine with a maximum of F = 150N. In each single experiment 1-5 we exported the data of the last 5 cycles. # # In[51]: #Loading data in df[expnr]: exprnr-> experiment 1-5 with cycle 1-5 expnr=5 #number of exp cyclenr = 5 #number of cycle per experiment colnr = 2*cyclenr # dfm={} for expnr in range(expnr): d = {} for i in range(cyclenr): #load data from cycle 1-5 d[expnr,i] = pd.DataFrame() d[expnr,i] = pd.read_csv('ESP'+ str(expnr+1) + 'ciclo'+ str(i+1) +'.csv', sep='\t',header=None) dfm[expnr]=pd.concat([d[expnr,0], d[expnr,1], d[expnr,2], d[expnr,3], d[expnr,4]], axis=1, join='inner') dfm[expnr] = np.array(dfm[expnr]) #transform in np.array for i in range(len(dfm[expnr])): #replace , with . and change format to float for j in range(colnr): dfm[expnr][i,j]=float(dfm[expnr][i,j].replace(',', '.')) #print(dfm[1][:,0]) # In[52]: figm, axm = plt.subplots(5, 5, figsize=(13, 11), sharex='col') #define plot settings col_title = ['Experiment {}'.format(col) for col in range(1, 5)] for i in range(expnr+1): for j in range(cyclenr): axm[j,i].plot(dfm[i][:,2*j+1],dfm[i][:,2*j]) axm[0,i].set_title('Experiment '+ str(i+1)) axm[j,0].set(ylabel='F[N] Cycle'+ str(j+1)) axm[4,i].set(xlabel='angle [°]') plt.tight_layout() figm.suptitle('Machine Data Plot (Hoji Pro Tour: 1-4, TLT Speedfit: 5)',fontsize=16) figm.subplots_adjust(top=0.88) # On the x-axis the force F is shown (max 150N) and on the y-axis the displacement angle alpha. # In the plot above the columns are showing the experiment and the rows the single cycles. The cycles within the same experiment are quite similar (qualitative). It's cool how clear is the difference between the two different ski boot models we used. Experiment 1-4 is showing Dynafit Hoji Pro Tour and experiment 5 the Dynafit TLT Speedfit. # # Calculate surface under curve # To compare the energy release between Hoji and TLT we are going to calculate the surface in the closed curve. # We can calculate an area under a curve (curve to x-axis) by integration (E = \int{M dphi}). Via interpolation of extracted points on the curve we generate a function which is integrated afterwards by trapezian rule to get the surface. By subtracting the surface of unloading from the one of loading the area between can be calculated, which corresponds the energy release. # In[53]: from scipy.interpolate import interp1d from numpy import trapz # Experiment data x1=dfm[1][:,1] # Exp1 cycle 1 Hoji y1=dfm[1][:,0] # Exp1 cycle 1 Hoji x2=dfm[4][:,1] # Exp5 cycle 1 Hoji y2=dfm[4][:,0] # Exp5 cycle 1 Hoji ym1=np.array([-29,17,41.14,63,96,147.8]) # x points loading Hoji xm1=np.array([-1.5,2.9,7.312,11,13.7,13.94]) # y points loading Hoji ym2=np.array([-29,3.741,25,43.08,63,72,106,147.8]) # x points unloading Hoji xm2=np.array([-1.5,-0.646,1.2,3.127,6.6,8.37,13.28,13.94]) # y points unloading Hoji ym3=np.array([-28.5,-12.27,4.841,18.01,31.92,39.46,87.48,145.6]) # x points loading TLT xm3=np.array([-2.752,-0.989,1.022,3.23,5.387,6.012,6.521,6.915]) # y point loading TLT ym4=np.array([-28.5,2.042,26.35,41.36,51.86,56.33,93.87,145.6]) # x points unloading TLT xm4=np.array([-2.752,-1.94,-0.43,1.524,3.76,5.625,6.24,6.915]) # y points unloading TLt # Interpolation f1 = interp1d(xm1, ym1) f2 = interp1d(xm2, ym2) f3 = interp1d(xm3, ym3) f4 = interp1d(xm4, ym4) # Plot of original data and interpolation fig0, ax0 = plt.subplots(1, 2, figsize=(15, 8)) fig0.suptitle('Ski boot testing machine', fontsize=16) #fig0.suptitle('Interpolation of experiment data 1&5 cycle 1 (left: Hoji, right: TLT)', fontsize=16) ax0[0].plot(x1,y1) # loading Hoji ax0[0].set_title('Hoji Pro Tour W') #ax0[0].plot(xm2,ym2, 'o', xm2, f2(xm2), '-', xm2, f2(xm2), '--') # unloading Hoji #ax0[0].plot(x1,y1,xm1,ym1, 'o', xm1, f1(xm1), '-') # loading Hoji #ax0[0].plot(xm2,ym2, 'o', xm2, f2(xm2), '-', xm2, f2(xm2), '--') # unloading Hoji ax0[0].set(xlabel='angle [°]') ax0[0].set(ylabel='Force [N]') ax0[1].plot(x2,y2) # loading Hoji ax0[1].set_title('TLT Speedfit') #ax0[1].plot(x2,y2,xm3,ym3, 'o', xm3, f3(xm3), '-') # loading Hoji #ax0[1].plot(xm4,ym4, 'o', xm4, f4(xm4), '-', xm4, f4(xm4), '--') # unloading Hoji ax0[1].set(xlabel='angle [°]') ax0[1].set(ylabel='Force [N]') plt.show() # Calculation of area between loading and unloading curve -> Energy area1_hoji=np.trapz(f1(xm1), xm1) area2_hoji=np.trapz(f2(xm2), xm2) area1_TLT=np.trapz(f3(xm3), xm3) area2_TLT=np.trapz(f4(xm4), xm4) energy_hoji=abs(area1_hoji-area2_hoji) energy_TLT=abs(area1_TLT-area2_TLT) #print('Energy release Hoji = ', energy_hoji, '[J]') #print('Energy release TLT = ', energy_TLT, '[J]') # # Bootsensing: load and plot # We created a datalogger which is saving the experiment data in a .txt file on a SD card. After the experiments we took them from the SD card to our PC. # <NAME> did an excellent work with his file reader (https://github.com/raphaFanti/multiSensor/blob/master/analysis/03.%20Experiments_200220/Analysis%20v02/datanalysis_200220-v02.ipynb) which I'm using here to load this data. I modified the col_names as we used adapted column names the last time and updated the experiment date. He implemented also a good way to store all in a big dataframe. I'll copy also this code from Raphael. # In[54]: # transforms a time string into a datetime element def toDate(timeString): hh, mm, ss = timeString.split(":") return datetime.datetime(2020, 2, 28, int(hh), int(mm), int(ss)) # date of experiment: 28.02.20 # returns a dataframe for each sub experient col_names = ["ID","strain1","strain2","strain3","temp","millis"] # column names from file cols_ordered = ["time","strain1","strain2","strain3"] # order wished cols_int = ["strain1","strain2","strain3"] # to be transformed to int columns def getDf(fl, startTime): # ! note that we remove the first data line for each measurement since the timestamp remains zero for two first lines fl.readline() # line removed line = fl.readline() lines = [] while "Time" not in line: cleanLine = line.rstrip() # trick for int since parsing entire column was not working intsLine = cleanLine.replace(".00", "") splitedLine = intsLine.split(",") lines.append(splitedLine) line = fl.readline() # create dataframe df = pd.DataFrame(lines, columns = col_names) # create time colum df["time"] = df["millis"].apply(lambda x: startTime + datetime.timedelta(milliseconds = int(x))) # drop ID, millis and temperature, and order columns df = df.drop(["ID", "temp", "millis"], axis = 1) df = df[cols_ordered] # adjust types df[cols_int] = df[cols_int].astype(int) return df # Load data to dataframe. As we were not working with our usually experiment protocol, I had to skip phase = bs2. # In[55]: filenames = ["2022823_exp1","2022848_exp2","2022857_exp3", "202285_exp4", "2022829_exp5"] nExp = len(filenames) # we simply calculate the number of experiments # big data frame df = pd.DataFrame() for i, this_file in enumerate(filenames): # experiment counter exp = i + 1 # open file with open(this_file + ".TXT", 'r') as fl: # throw away first 3 lines and get baseline 1 start time for i in range(3): fl.readline() # get start time for first baseline bl1_time = fl.readline().replace("BASELINE Time: ", "") startTime = toDate(bl1_time) # get data for first baseline df_bl1 = getDf(fl, startTime) df_bl1["phase"] = "bl1" # get start time for experiment exp_time = fl.readline().replace("RECORDING Time: ", "") startTime = toDate(exp_time) # get data for experiment df_exp = getDf(fl, startTime) df_exp["phase"] = "exp" # get start time for second baseline #bl2_time = fl.readline().replace("BASELINE Time: ", "") #startTime = toDate(bl2_time) # get data for second baseline #df_bl2 = getDf(fl, startTime) #df_bl2["phase"] = "bl2" # create full panda df_exp_full = pd.concat([df_bl1, df_exp]) # create experiment column df_exp_full["exp"] = exp df = pd.concat([df, df_exp_full]) # shift columns exp and phase to begining cols = list(df.columns) cols = [cols[0]] + [cols[-1]] + [cols[-2]] + cols[1:-2] df = df[cols] #print(df) # In[56]: def plotExpLines(df, exp): fig, ax = plt.subplots(3, 1, figsize=(15, 8), sharex='col') fig.suptitle('Experiment ' + str(exp), fontsize=16) # fig.subplots_adjust(top=0.88) ax[0].plot(dfExp["time"], dfExp["strain3"], 'tab:green') ax[0].set(ylabel='strain3') ax[1].plot(dfExp["time"], dfExp["strain1"], 'tab:red') ax[1].set(ylabel='strain1') ax[2].plot(dfExp["time"], dfExp["strain2"], 'tab:blue') ax[2].set(ylabel='strain2') ax[2].set(xlabel='time [ms]') plt.show() # ### Experiment 1 # In[57]: figure(num=None, figsize=(10, 8), dpi=80, facecolor='w', edgecolor='k') plt.plot(df[df["exp"] == 1]['time'],df[df["exp"] == 1]['strain3']) plt.xlabel('daytime') plt.ylabel('4A') plt.title('Experiment 1: 4A ') plt.show() # We applied 34 cycles. # ### Experiment 2 # In[58]: figure(num=None, figsize=(10, 8), dpi=80, facecolor='w', edgecolor='k') plt.plot(df[df["exp"] == 2]['time'],df[df["exp"] == 2]['strain3']) plt.xlabel('daytime') plt.ylabel('3A') plt.title('Experiment 2: 3A ') plt.show() # # Experiment 3 # In[59]: figure(num=None, figsize=(10, 8), dpi=80, facecolor='w', edgecolor='k') plt.plot(df[df["exp"] == 3]['time'],df[df["exp"] == 3]['strain3']) plt.xlabel('daytime') plt.ylabel('2B') plt.title('Experiment 3: 2B ') plt.show() # ### Experiment 4 # In[60]: figure(num=None, figsize=(12, 8), dpi=80, facecolor='w', edgecolor='k') plt.plot(df[df["exp"] == 4]['time'],df[df["exp"] == 4]['strain3']) plt.xlabel('daytime') plt.ylabel('1A') plt.title('Experiment 4: 1A ') plt.show() # ### Experiment 5 # In[61]: fig, ax = plt.subplots(2, 1, figsize=(15, 8), sharex='col') fig.suptitle('Experiment 5: 3B & 3C ', fontsize=16) # fig.subplots_adjust(top=0.88) ax[0].plot(df[df["exp"] == 5]['time'], df[df["exp"] == 5]['strain3'], 'tab:green') ax[0].set(ylabel='3C') ax[1].plot(df[df["exp"] == 5]['time'], df[df["exp"] == 5]['strain2'], 'tab:red') ax[1].set(ylabel='3B') ax[1].set(xlabel='daytime') plt.show() # In[62]: #dfExp = df[df["exp"] == 3] #plotExpLines(dfExp, 3) # # Analysis # Now we try to compare the data from the Flexometer of Fischer and from our Bootsensing. # - Fischer: force F over displacement angle alpha # - Bootsensing: deformation measured by strain gauge (resistance change) in at the moment unknown unit over time (daytime in plot shown) # The idea now is to identify the last 5 cycles in Bootsensing data automatically and to exstract time information (t0,t). Afterwards this delta t can be applied on Fischers data to plot force F over the extracted time. # ### Bootsensing: Cycle identification # For Experiment 1-5 we will identfy the last 5 cycles of strain3. As the data of Fischer starts at a peak (maximum load), we will identify them also in our bootsensing data and extract the last 6 peak indexes. Applying these indices on strain3/time data we get the last 5 cycles. # # Find peaks: find_peaks function https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html # Find valley: with Inverse of find peaks # # # In[63]: from scipy.signal import find_peaks import numpy as np # Load data of Experiments 1-5 ds={} # dict for strain data -> dataformat will be changed dt={} # time data peaks={} # peaks valleys={} # valleys inv_ds={} # inverse for valleys calculation ds_peaks={} # index of peak (used for 5-2) ds_peaks_end={} # index of last peaks ds_valleys_end = {} # index of last valley ds_valleys={} # index of valley (used for 5-2) len_valley={} # valley lenght for i in range(1,6): # i = Experiment number ds[i]=df[df["exp"] == i]['strain3'] #data for strain3 dt[i]=df[df["exp"] == i]['time'] # time data ds[i]=ds[i].dropna() # drop NaN dt[i]=dt[i].dropna() ds[i]=ds[i].reset_index(drop=True) #reset index dt[i]=dt[i].reset_index(drop=True) peaks[i],_=find_peaks(ds[i],prominence=100000) # find peaks inv_ds[i]=ds[i]*(-1) # inverse of ds valleys[i],_=find_peaks(inv_ds[i],prominence=10000) # find valleys for j in range(1,6): # j = cycle number ds_valleys[j,i]=valleys[i][-1-j:-j] # selecting last 5 valleys ds_valleys_end[j,i]=valleys[i][-1:] # select last valley ds_valleys[j,i]=ds_valleys[j,i][0] # assign index ds_valleys_end[j,i]=ds_valleys_end[j,i][0] ds_peaks[j,i]=peaks[i][-1-j:-j] # selecting last 5 peaks ds_peaks_end[j,i]=peaks[i][-1:] # select last peak ds_peaks[j,i]=ds_peaks[j,i][0] # assign index ds_peaks_end[j,i]=ds_peaks_end[j,i][0] #print(ds1[1][ds_valleys[1,1]]) #Calculate cycle lengths #for i in range(1,6): #len_valley[e] = dt1[e][ds_valleys[1,1]] - dt1[e][ds_valleys[2,1]] #1th #len_valley1_2[i] = dt1[ds_valley_3[i]] - dt1[ds_valley_4[i]] #2th #len_valley2_3[i] = dt1[ds_valley_2[i]] - dt1[ds_valley_3[i]] #3th #len_valley3_4[i] = dt1[ds_valley_1[i]] - dt1[ds_valley_2[i]] #4th #len_valley4_5[i] = dt1[ds_valley_last_end[i]] - dt1[ds_valley_1[i]] #5th # EXPERIMENT 1: pay attention for peaks/valley after cycles # Now we will plot the data for strain3 for each experiment with their peaks and valleys. # In[64]: # Plot peaks and valleys for Exp 1-5 for strain3 fig1, ax1 = plt.subplots(5, 1, figsize=(15, 8)) fig1.subplots_adjust(top=2) fig1.suptitle('Experiments 1-5: peaks and valleys ', fontsize=16) for i in range(5): # i for Experiment number ax1[i].plot(df[df["exp"] == (i+1)]['time'], df[df["exp"] == (i+1)]['strain3'], 'tab:green') ax1[i].plot(dt[(i+1)][peaks[(i+1)]],ds[(i+1)][peaks[(i+1)]],"x") #Plot peaks with x ax1[i].plot(dt[(i+1)][valleys[(i+1)]],ds[(i+1)][valleys[(i+1)]],"o") #Plot valleys with o ax1[i].set(ylabel='raw signal') ax1[i].set(xlabel='daytime') ax1[i].set_title('Experiment'+str(i+1)) plt.tight_layout() fig1.subplots_adjust(top=0.88) # spacer between title and plot plt.show() # Plot last 5 cycles for Exp 1-5 for strain3 fig2, ax2 = plt.subplots(5, 1, figsize=(10, 8)) fig2.suptitle('Experiments 1-5: last 5 cycles ', fontsize=16) for i in range(5): # i for Experiment number ax2[i].plot(dt[(i+1)][ds_valleys[5,(i+1)]:ds_valleys_end[1,(i+1)]],ds[(i+1)][ds_valleys[5,(i+1)]:ds_valleys_end[1,(i+1)]]) # select data between 5th last and last valley #ax2[i].plot(dt[(i+1)][ds_peaks[5,(i+1)]:ds_peaks_end[1,(i+1)]],ds[(i+1)][ds_peaks[5,(i+1)]:ds_peaks_end[1,(i+1)]])# select data between 5th last and last peak ax2[i].set(ylabel='raw signal') ax2[i].set(xlabel='daytime') ax2[i].set_title('Experiment'+str(i+1)) plt.tight_layout() fig2.subplots_adjust(top=0.88) # spacer between title and plot plt.show() #plt.axvline(x=dt[ds_valley_2_index],color="grey") #time borders 3th cycle #plt.axvline(x=dt[ds_valley_3_index],color="grey") #plt.axhline(y=ds[ds_valley_3_index],color="red") # h line # For Experiment 2-5 the last 5 cycles are clear. The signal of experiment 1 is raising again after the cyclic loading as it's not possible to select the last 5 cycles with this "peaks" method, but happily we can extract still the last cycle. # As we can see in the plot of the last 5 cycles above, the last cycle for Exp1, Exp3 and Exp5 is ending with a peak where Exp2 and Exp4 is ending with a valley. We can say this from the plots as we know from our exported machine data that a cycle ends always with the maximum force of 150N. This means a valley or peak for our bootsensing system. # ### Match Fischer Data with Bootsensing cycle time # Now we are going to match the Bootsensing cycle time with the force data of Fischer for each experiment 1-5. As the machine of Fischer applied the load with a frequency of 0.33 Hz, the cycle length of each cycle should be approximately t=3s. We verified this calculating the length between 2 neighbour valley of our bootsensing data (see code above). # In[65]: #Identify frequency of Fischer Dataacquisition f={} # Fischer force matrix freq={} # matrix with vector lenght to identify frequency for i in range(5): # f[i] = dfm[i][:,2*i] # load force data for Exp5, strain3 0,2,4,6,8 freq[i] = len(dfm[i][:,2*i]) # force vector len #Create time linspace for Fischer data #Timestamp can not be selected by item, done without manually time_start1=dt[1][ds_peaks[5,1]] # Exp1: select manually last cycle time_end1=dt[1][ds_peaks[4,1]] time_start2=dt[2][ds_valleys[5,2]] # Exp2 time_end2=dt[2][ds_valleys[4,2]] time_start3=dt[3][ds_peaks[5,3]] # Exp3 time_end3=dt[3][ds_peaks[4,3]] time_start4=dt[4][ds_valleys[5,4]] # Exp4 time_end4=dt[4][ds_valleys[4,4]] time_start5=dt[5][ds_peaks[5,5]] # Exp5 time_end5=dt[5][ds_peaks[4,5]] #print(time_start1,time_end1) x1=pd.date_range(time_start1, time_end1, periods=freq[0]).to_pydatetime() x2=pd.date_range(time_start2, time_end2, periods=freq[1]).to_pydatetime() x3=pd.date_range(time_start3, time_end3, periods=freq[2]).to_pydatetime() x4=pd.date_range(time_start4, time_end4, periods=freq[3]).to_pydatetime() x5=pd.date_range(time_start5, time_end5, periods=freq[4]).to_pydatetime() #Plot Fischer Data in timerange x fig3, ax3 = plt.subplots(5, 2, figsize=(12, 10)) fig3.suptitle('Experiments 1-5: Fischer F over Bootsensing daytime (left), Bootsensing cycle (right) ', fontsize=16) ax3[0,0].plot(x1,f[0]) ax3[0,0].set(xlabel='daytime') ax3[0,0].set(ylabel='F[N]') ax3[0,0].set_title('Experiment 1') ax3[1,0].plot(x2,f[1]) ax3[1,0].set(xlabel='daytime') ax3[1,0].set(ylabel='F[N]') ax3[1,0].set_title('Experiment 2') ax3[2,0].plot(x3,f[2]) ax3[2,0].set(xlabel='daytime') ax3[2,0].set(ylabel='F[N]') ax3[2,0].set_title('Experiment 3') ax3[3,0].plot(x4,f[3]) ax3[3,0].set(xlabel='daytime') ax3[3,0].set(ylabel='F[N]') ax3[3,0].set_title('Experiment 4') ax3[4,0].plot(x5,f[4]) ax3[4,0].set(xlabel='daytime') ax3[4,0].set(ylabel='F[N]') ax3[4,0].set_title('Experiment 5') #for i in range(1,5): # Exp2-5 #ax3[i,1].plot(dt[i+1][ds_peaks[2,i+1]:ds_peaks[1,i+1]],ds[i+1][ds_peaks[2,i+1]:ds_peaks[1,i+1]]) #ax3[i,1].set(ylabel='strain3') #ax3[i,1].set(xlabel='daytime') ax3[0,1].plot(dt[1][ds_peaks[5,1]:ds_peaks[4,1]],ds[1][ds_peaks[5,1]:ds_peaks[4,1]]) # special for Exp1 with peaks ax3[0,1].set(xlabel='daytime') ax3[0,1].set(ylabel='4A') ax3[1,1].plot(dt[2][ds_valleys[5,2]:ds_valleys[4,2]],ds[2][ds_valleys[5,2]:ds_valleys[4,2]]) #Exp2 with valleys ax3[1,1].set(xlabel='daytime') ax3[1,1].set(ylabel='3A') ax3[2,1].plot(dt[3][ds_peaks[5,3]:ds_peaks[4,3]],ds[3][ds_peaks[5,3]:ds_peaks[4,3]]) #Exp3 with peaks ax3[2,1].set(xlabel='daytime') ax3[2,1].set(ylabel='2B') ax3[3,1].plot(dt[4][ds_valleys[5,4]:ds_valleys[4,4]],ds[4][ds_valleys[5,4]:ds_valleys[4,4]]) # Exp4 with valley ax3[3,1].set(xlabel='daytime') ax3[3,1].set(ylabel='1A') ax3[4,1].plot(dt[5][ds_peaks[5,5]:ds_peaks[4,5]],ds[5][ds_peaks[5,5]:ds_peaks[4,5]]) #Exp5 with peaks ax3[4,1].set(xlabel='daytime') ax3[4,1].set(ylabel='3B') plt.tight_layout() fig3.subplots_adjust(top=0.88) # spacer between title and plot plt.show() # In the graphs of Fischer data (left side) you can note a little kink in unloading as well as in loading. In experiment 5 (TLT) the kink is much more prominent. # ATTENTION: As we verified the length between neighbour valleys as well as neighbour peaks in our bootsensing data, we can confirm the freqeuncy of f=0.33 Hz applied by the machine (see plots below). # ### Time delta Fischer&bootsensing # Now we're going to find identify the extrema for Fischer force data and out bootsensing strain data for each single Experiment 1-5. As we applied the same timespan on the x-axis for both plot we can compare the x-coordinate of the left plot with the corresponding right one to check the response time (time delay) of our bootsensing system (like reaction time of strain gauges). # In[66]: # Find extrema in Fischer F for Exp 1-5 in last cycle inv_f={} # inverse of F valleys_f={} # valleys in Fischer F fmin={} # f for extrema for i in range(5): # find extrema (in this case valley) inv_f[i]=f[i]*(-1) # inverse of f valleys_f[i],_=find_peaks(inv_f[i],prominence=10) # find valleys fmin[i]=f[i][valleys_f[i]] # y-coordinate for minima # x-coordinate for minima x1min=x1[valleys_f[0]] #Exp1 x2min=x2[valleys_f[1]] #Exp2 x3min=x3[valleys_f[2]] #Exp3 x4min=x4[valleys_f[3]] #Exp4 x5min=x5[valleys_f[4]] #Exp5 # Find extrema in bootsensing data for Exp 1-5 in last cycle # extract time and strain for last cycle Exp1-5 (manually) t1=dt[1][ds_peaks[5,1]:ds_peaks[4,1]] # Exp1 -> valley t1=t1.reset_index(drop=True) # reset index ds1=ds[1][ds_peaks[5,1]:ds_peaks[4,1]] ds1=ds1.reset_index(drop=True) t2=dt[2][ds_valleys[5,2]:ds_valleys[4,2]] # Exp2 -> peak t2=t2.reset_index(drop=True) ds2=ds[2][ds_valleys[5,2]:ds_valleys[4,2]] ds2=ds2.reset_index(drop=True) t3=dt[3][ds_peaks[5,3]:ds_peaks[4,3]] # Exp3 -> valley t3=t3.reset_index(drop=True) ds3=ds[3][ds_peaks[5,3]:ds_peaks[4,3]] ds3=ds3.reset_index(drop=True) t4=dt[4][ds_valleys[5,4]:ds_valleys[4,4]] # Exp4 -> peak t4=t4.reset_index(drop=True) ds4=ds[4][ds_valleys[5,4]:ds_valleys[4,4]] ds4=ds4.reset_index(drop=True) t5=dt[5][ds_peaks[5,5]:ds_peaks[4,5]] # Exp5 -> valley t5=t5.reset_index(drop=True) ds5=ds[5][ds_peaks[5,5]:ds_peaks[4,5]] ds5=ds5.reset_index(drop=True) # Find valley for Exp1,3,5 valley_ds1,_=find_peaks(ds1*(-1)) # Exp1 valley_ds3,_=find_peaks(ds3*(-1)) # Exp3 valley_ds5,_=find_peaks(ds5*(-1)) # Exp5 # Find peak for Exp2,4 peak_ds2,_=find_peaks(ds2) # Exp2 peak_ds4,_=find_peaks(ds4) # Exp4 # Apply extrema index on x-coordinate of bootsensing for Exp1-5 t1ext=t1[valley_ds1].dt.to_pydatetime() # converting in same format as xmin t2ext=t2[peak_ds2].dt.to_pydatetime() t3ext=t3[valley_ds3].dt.to_pydatetime() t4ext=t4[peak_ds4].dt.to_pydatetime() t5ext=t5[valley_ds5].dt.to_pydatetime() #Calculating timedelta in format to_pydatetime() deltat1=t1ext-x1min deltat2=t2ext-x2min deltat3=t3ext-x3min deltat4=t4ext-x4min deltat5=t5ext-x5min print(deltat1,deltat2,deltat3,deltat4,deltat5) # If we look at the timedelta for Exp1-5 we see that we are in range of deltat=0,007678s-0,1669s. For the setup at the moment if is enough. Maybe by increasing the data acquisition frequency we could improve this time delta. # As we know that the machine applied the load with a frequency of f=0.33 Hz with f=1/T we can calculate the timespan of loading. Identifying the vector length of Fischer force data we can plot the force over time for each single cycle. # In[67]: fm=0.33 # frequency in Hz (preset) T=1/fm #calculate time period T fd={} for i in range(5): fd[i]= len(f[i]) freq=fd[0] #as all fd[i] have the same length we choose f[0] x = np.linspace(0, T, freq, endpoint=False) #Plot fig4, ax4 = plt.subplots(5, 1, figsize=(6, 8)) fig4.suptitle('Experiments 1-5: Fischer F over time t ', fontsize=16) for i in range(5): ax4[i].plot(x,f[i]) ax4[i].set(xlabel='daytime') ax4[i].set(ylabel='F[N]') ax4[i].set_title('Experiment '+str(i+1)) plt.tight_layout() fig4.subplots_adjust(top=0.88) # spacer between title and plot plt.show() # In[68]: # Plot an example experiment with peaks and valleys for thesis fig5, ax5 = plt.subplots(1, figsize=(15, 8)) #fig5.subplots_adjust(top=2) #fig5.suptitle('Experiments 1-5: peaks and valleys ', fontsize=16) ax5.plot(df[df["exp"] == (3)]['time'], df[df["exp"] == (3)]['strain3'], 'tab:blue',label='strain gauge 2b') ax5.plot(dt[(3)][peaks[(3)]],ds[(3)][peaks[(3)]],"rx",label='peak') #Plot peaks with x ax5.plot(dt[(3)][valleys[(3)]],ds[(3)][valleys[(3)]],"ro",label='valley') #Plot valleys with o ax5.set(ylabel='raw signal') ax5.set(xlabel='daytime') ax5.set_title('Cyclic loading of TLT Speedfit') ax5.legend() plt.tight_layout() fig5.subplots_adjust(top=0.88) # spacer between title and plot plt.show() # # Machine force and strain data matching # In[69]: from datetime import timedelta # Select strain 4A (stored in strain3) and machine data for Experiment 1 data_s1=pd.concat([dt[1][ds_peaks[5,1]:ds_peaks[4,1]], ds[1][ds_peaks[5,1]:ds_peaks[4,1]]],axis=1).reset_index(drop=True) # one dataframe with strain and time # Select strain 3C (stored in strain3) and machine data for Experiment 5 data_s5C=pd.concat([dt[5][ds_peaks[5,5]:ds_peaks[4,5]],ds[5][ds_peaks[5,5]:ds_peaks[4,5]]],axis=1).reset_index(drop=True) # one dataframe with strain and time # Convert machine time to DataFrame in ms precision x1=pd.DataFrame(x1,columns=['time']).astype('datetime64[ms]') # Experiment 1 x5=pd.DataFrame(x5,columns=['time']).astype('datetime64[ms]') # Experiment 5 # Convert machine force data to DataFrame f1=
pd.DataFrame(f[0],columns=['force [N]'])
pandas.DataFrame
# Place this file in src/ of the DIPS folder preprocessed as in # https://github.com/amorehead/DIPS-Plus up to and including the step prune_pairs.py (but not beyond that step). import logging import os import random from pathlib import Path import atom3.pair as pa import click import pandas as pd from atom3 import database as db from tqdm import tqdm from project.utils.constants import DB5_TEST_PDB_CODES, ATOM_COUNT_LIMIT @click.command() @click.argument('output_dir', default='../DIPS/final/raw', type=click.Path()) def main(output_dir: str): """Partition dataset filenames.""" filter_by_atom_count = True max_atom_count = 10000 logger = logging.getLogger(__name__) logger.info(f'Writing filename DataFrames to their respective text files') # Make sure the output_dir exists if not os.path.exists(output_dir): os.mkdir(output_dir) print('pairs-postprocessed.txt start') pairs_postprocessed_txt = os.path.join(output_dir, 'pairs-postprocessed.txt') if os.path.exists(pairs_postprocessed_txt): print('pairs-postprocessed.txt exists, skipping ...') else: open(pairs_postprocessed_txt, 'w').close() # Create pairs-postprocessed.txt from scratch each run # Record dataset filenames conditionally by sequence length (if requested - otherwise, record all) pair_filenames = [pair_filename for pair_filename in Path(output_dir).rglob('*.dill')] for pair_filename in tqdm(pair_filenames): struct_id = pair_filename.as_posix().split(os.sep)[-2] if filter_by_atom_count: postprocessed_pair: pa.Pair = pd.read_pickle(pair_filename) if len(postprocessed_pair.df0) < max_atom_count and len(postprocessed_pair.df1) < max_atom_count: with open(pairs_postprocessed_txt, 'a') as f: path, filename = os.path.split(pair_filename.as_posix()) filename = os.path.join(struct_id, filename) f.write(filename + '\n') # Pair file was copied else: with open(pairs_postprocessed_txt, 'a') as f: path, filename = os.path.split(pair_filename.as_posix()) filename = os.path.join(struct_id, filename) f.write(filename + '\n') # Pair file was copied print('pairs-postprocessed.txt done') # Prepare files pairs_postprocessed_train_txt = os.path.join(output_dir, 'pairs-postprocessed-train.txt') if not os.path.exists(pairs_postprocessed_train_txt): # Create train data list if not already existent open(pairs_postprocessed_train_txt, 'w+').close() pairs_postprocessed_val_txt = os.path.join(output_dir, 'pairs-postprocessed-val.txt') if not os.path.exists(pairs_postprocessed_val_txt): # Create val data list if not already existent open(pairs_postprocessed_val_txt, 'w+').close() pairs_postprocessed_test_txt = os.path.join(output_dir, 'pairs-postprocessed-test.txt') if not os.path.exists(pairs_postprocessed_test_txt): # Create test data list if not already existent open(pairs_postprocessed_test_txt, 'w+').close() # Write out training-validation partitions for DIPS output_dirs = [filename for filename in os.listdir(output_dir) if os.path.isdir(os.path.join(output_dir, filename))] random.shuffle(output_dirs) train_dirs = output_dirs[:-40] val_dirs = output_dirs[-40:-20] test_dirs = output_dirs[-20:] # Ascertain training and validation filename separately filenames_frame =
pd.read_csv(pairs_postprocessed_txt, header=None)
pandas.read_csv
import pandas as pd import numpy as np import json import pycountry_convert as pc from ai4netmon.Analysis.aggregate_data import data_collectors as dc from ai4netmon.Analysis.aggregate_data import graph_methods as gm FILES_LOCATION = 'https://raw.githubusercontent.com/sermpezis/ai4netmon/main/data/misc/' PATH_AS_RANK = FILES_LOCATION+'ASrank.csv' PATH_PERSONAL = FILES_LOCATION+'perso.txt' PATH_PEERINGDB = FILES_LOCATION+'peeringdb_2_dump_2021_07_01.json' AS_HEGEMONY_PATH = FILES_LOCATION+'AS_hegemony.csv' ALL_ATLAS_PROBES = FILES_LOCATION+'RIPE_Atlas_probes.json' ROUTEVIEWS_PEERS = FILES_LOCATION+'RouteViews_peers.json' AS_RELATIONSHIPS = FILES_LOCATION+'AS_relationships_20210701.as-rel2.txt' def cc2cont(country_code): ''' Receives a country code ISO2 (e.g., 'US') and returns the corresponding continent name (e.g., 'North America'). Exceptions: - if 'EU' is given as country code (it happened in data), then it is treated as the continent code - if the country code is not found, then a None value is returned :param country_code: (str) ISO2 country code :return: (str) continent name of the given country(-ies) ''' if country_code in ['EU']: continent_code = country_code else: try: continent_code = pc.country_alpha2_to_continent_code(country_code) except KeyError: return None continent_name = pc.convert_continent_code_to_continent_name(continent_code) return continent_name def get_continent(country_code): ''' Receives a series of country codes ISO2 (e.g., 'US') and returns the corresponding continent names (e.g., 'North America'). For NaN or None elements, it returns a None value :param country_code: (pandas Series) ISO2 country codes :return: (list of str) continent names of the given countries ''' continent_name = [] for cc in country_code.tolist(): if
pd.isna(cc)
pandas.isna
# -*- coding: utf-8 -*- """ Created on Sun Apr 1 00:49:21 2018 @author: teo """ # -*- coding: utf-8 -*- """ Created on Thu Mar 8 10:32:18 2018 @author: teo """ import pandas as pd from plotly import tools import numpy as np import matplotlib.pyplot as plt import plotly.plotly as py import plotly.graph_objs as go import cufflinks as cf cf.go_offline() from plotly.graph_objs import * from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot #init_notebook_mode(connected=True) data=pd.read_csv("C:\\Users\\teo\Downloads\\HR_comma_sep.csv",header=0) # ------------------------------ Pre-Processing--------------------------------------------- data_viz=pd.DataFrame(data) # Check for null columns data_list=[data] for dataset in data_list: print("+++++++++++++++++++++++++++") print(pd.isnull(dataset).sum() >0) print("+++++++++++++++++++++++++++") #We dont have missing values xx=["other","sales","accounting","hr","technical","support","product_mng","marketing"] for dataset in data_list[:]: #Mapping departments dep_mapping={"sales":1,"accounting":2,"hr":3,"technical":4,"support":5,"product_mng":6,"marketing":7} dataset['sales']=dataset['sales'].map(dep_mapping) dataset['sales']=dataset['sales'].fillna(0)# for other deparments RandD,IT #Mapping salary salary_mapping={'low':1,'medium':2,'high':3} dataset['salary']=dataset['salary'].map(salary_mapping) #Mapping monthly average hours dataset.loc[dataset['average_montly_hours']<=100,'average_montly_hours'] =0 dataset.loc[(dataset['average_montly_hours']>100) & (dataset['average_montly_hours'] <=150),'average_montly_hours']=1 dataset.loc[(dataset['average_montly_hours']>150) & (dataset['average_montly_hours'] <=250),'average_montly_hours']=2 dataset.loc[(dataset['average_montly_hours']>250) & (dataset['average_montly_hours']<=300),'average_montly_hours'] =3 dataset.loc[dataset['average_montly_hours']>300,'average_montly_hours'] =4 #Mapping time spend company dataset.loc[dataset['time_spend_company']<=3,'time_spend_company'] =3 dataset.loc[(dataset['time_spend_company']>3) & (dataset['time_spend_company'] <=6),'time_spend_company']=6 dataset.loc[dataset['time_spend_company']>6 ,'time_spend_company'] =9 #Mapping last evaluation dataset.loc[dataset['last_evaluation']<=0.25,'last_evaluation'] =0 dataset.loc[(dataset['last_evaluation']>0.25) & (dataset['last_evaluation']<=0.5),'last_evaluation'] =1 dataset.loc[(dataset['last_evaluation']>0.5) & (dataset['last_evaluation'] <=0.75),'last_evaluation']=2 dataset.loc[dataset['last_evaluation']>0.75 ,'last_evaluation'] =3 #Mapping satisfaction level dataset.loc[dataset['satisfaction_level']<=0.25,'satisfaction_level'] =0 dataset.loc[(dataset['satisfaction_level']>0.25) & (dataset['satisfaction_level'] <=0.5),'satisfaction_level']=1 dataset.loc[(dataset['satisfaction_level']>0.5) & (dataset['satisfaction_level']<=0.75),'satisfaction_level'] =2 dataset.loc[dataset['satisfaction_level']>0.75 ,'satisfaction_level'] =3 #convert list to dataframe features = dataset.dtypes.index dataDF = pd.DataFrame() #creates a new dataframe that's empty dataDF = dataDF.append(data_list, ignore_index = False) features = list(dataDF.columns[:10]) features.pop(6) from sklearn import preprocessing y = dataDF["left"] X = dataDF[features] X=preprocessing.scale(X) X=pd.DataFrame(X) init_notebook_mode(connected=True) #cf.set_config_file(offline=False, world_readable=True, theme='ggplot') df_plot_helper_salary=data_viz.groupby("salary")["left"].sum() df_plot_helper_department=data_viz.groupby("sales")["left"].sum() df_plot_helper_left=data_viz.groupby("left")["left"].sum() salary_size=data_viz.groupby("salary").size() sales_size=data_viz.groupby("sales").size() df_plot_helper_department2=sales_size-df_plot_helper_department df_plot_helper_salary2=salary_size-df_plot_helper_salary #rename the sales column data['sales']=data.rename(columns={'sales':'department'},inplace=True) data=data.drop(['sales'],1) #visualziation of the dependent variable left a=data_viz.query('left == "0"') #df_plot_helper_department2=a.groupby("sales")["sales"].sum().apply(lambda x: '%.3f' % x) import plotly plotly.offline.init_notebook_mode() ###############Department Barchart############## x1=[0,1,2,3,4,5,6,7,] y1=pd.DataFrame({'email':df_plot_helper_salary.index, 'list':df_plot_helper_salary.values}) y2=pd.DataFrame({'email':df_plot_helper_salary2.index, 'list':df_plot_helper_salary2.values}) y11=pd.DataFrame({'email':df_plot_helper_department.index, 'list':df_plot_helper_department.values}) y22=
pd.DataFrame({'email':df_plot_helper_department2.index, 'list':df_plot_helper_department2.values})
pandas.DataFrame
''' Copyright 2022 Airbus SAS Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' from sos_trades_core.tools.post_processing.post_processing_factory import PostProcessingFactory from sos_trades_core.study_manager.study_manager import StudyManager from os.path import join, dirname from numpy import asarray, arange, array import pandas as pd import numpy as np from sos_trades_core.execution_engine.func_manager.func_manager import FunctionManager from sos_trades_core.execution_engine.func_manager.func_manager_disc import FunctionManagerDisc import matplotlib.pyplot as plt from scipy.interpolate import interp1d def update_dspace_with(dspace_dict, name, value, lower, upper): ''' type(value) has to be ndarray ''' if not isinstance(lower, (list, np.ndarray)): lower = [lower] * len(value) if not isinstance(upper, (list, np.ndarray)): upper = [upper] * len(value) dspace_dict['variable'].append(name) dspace_dict['value'].append(value.tolist()) dspace_dict['lower_bnd'].append(lower) dspace_dict['upper_bnd'].append(upper) dspace_dict['dspace_size'] += len(value) def update_dspace_dict_with(dspace_dict, name, value, lower, upper, activated_elem=None, enable_variable=True): if not isinstance(lower, (list, np.ndarray)): lower = [lower] * len(value) if not isinstance(upper, (list, np.ndarray)): upper = [upper] * len(value) if activated_elem is None: activated_elem = [True] * len(value) dspace_dict[name] = {'value': value, 'lower_bnd': lower, 'upper_bnd': upper, 'enable_variable': enable_variable, 'activated_elem': activated_elem} dspace_dict['dspace_size'] += len(value) class Study(StudyManager): def __init__(self, year_start=2000, year_end=2020, time_step=1, name='', execution_engine=None): super().__init__(__file__, execution_engine=execution_engine) self.study_name = 'usecase' self.macro_name = '.Macroeconomics' self.year_start = year_start self.year_end = year_end self.time_step = time_step self.nb_poles = 8 def setup_usecase(self): setup_data_list = [] years = np.arange(self.year_start, self.year_end + 1, 1) self.nb_per = round(self.year_end - self.year_start + 1) # data dir data_dir = join( dirname(dirname(dirname(dirname(dirname(__file__))))), 'tests', 'data') if self.year_start == 2000 and self.year_end == 2020: data_dir = join( dirname(dirname(dirname(dirname(dirname(__file__))))), 'tests', 'data/sectorization_fitting') #Invest hist_invest = pd.read_csv(join(data_dir, 'hist_invest_sectors.csv')) agri_invest = pd.DataFrame({'years': hist_invest['years'], 'investment': hist_invest['Agriculture']}) services_invest = pd.DataFrame({'years': hist_invest['years'], 'investment': hist_invest['Services']}) indus_invest = pd.DataFrame({'years': hist_invest['years'], 'investment': hist_invest['Industry']}) #Energy hist_energy = pd.read_csv(join(data_dir, 'hist_energy_sect.csv')) agri_energy = pd.DataFrame({'years': hist_energy['years'], 'Total production': hist_energy['Agriculture']}) services_energy = pd.DataFrame({'years': hist_energy['years'], 'Total production': hist_energy['Services']}) indus_energy = pd.DataFrame({'years': hist_energy['years'], 'Total production': hist_energy['Industry']}) #Workforce hist_workforce = pd.read_csv(join(data_dir, 'hist_workforce_sect.csv')) agri_workforce = pd.DataFrame({'years': hist_workforce['years'], 'workforce': hist_workforce['Agriculture']}) services_workforce = pd.DataFrame({'years': hist_workforce['years'], 'workforce': hist_workforce['Services']}) indus_workforce = pd.DataFrame({'years': hist_workforce['years'], 'workforce': hist_workforce['Industry']}) else: invest_init = 31.489 invest_serie = np.zeros(self.nb_per) invest_serie[0] = invest_init for year in np.arange(1, self.nb_per): invest_serie[year] = invest_serie[year - 1] * 1.02 agri_invest = pd.DataFrame({'years': years, 'investment': invest_serie * 0.0187}) indus_invest = pd.DataFrame({'years': years, 'investment': invest_serie * 0.18737}) services_invest = pd.DataFrame({'years': years, 'investment': invest_serie * 0.7939}) #Energy brut_net = 1/1.45 energy_outlook = pd.DataFrame({ 'year': [2000, 2005, 2010, 2017, 2018, 2025, 2030, 2035, 2040, 2050, 2060, 2100], 'energy': [118.112,134.122 ,149.483879, 162.7848774, 166.4685636, 180.7072889, 189.6932084, 197.8418842, 206.1201182, 220.000, 250.0, 300.0]}) f2 = interp1d(energy_outlook['year'], energy_outlook['energy']) #Find values for 2020, 2050 and concat dfs energy_supply = f2(np.arange(self.year_start, self.year_end+1)) energy_supply_values = energy_supply * brut_net indus_energy = pd.DataFrame({'years': years, 'Total production': energy_supply_values * 0.2894}) agri_energy = pd.DataFrame({'years': years, 'Total production': energy_supply_values * 0.2136}) services_energy = pd.DataFrame({'years': years, 'Total production': energy_supply_values * 0.37}) total_workforce_df = pd.read_csv(join(data_dir, 'workingage_population_df.csv')) #multiply ageworking pop by employment rate workforce = total_workforce_df['population_1570']* 0.659 workforce = workforce[:self.nb_per] agri_workforce = pd.DataFrame({'years': years, 'workforce': workforce * 0.274}) services_workforce = pd.DataFrame({'years': years, 'workforce': workforce * 0.509}) indus_workforce = pd.DataFrame({'years': years, 'workforce': workforce * 0.217}) #Damage damage_df = pd.DataFrame({'years': years, 'damages': np.zeros(self.nb_per), 'damage_frac_output': np.zeros(self.nb_per), 'base_carbon_price': np.zeros(self.nb_per)}) #Share invest share_invest = np.asarray([27.0] * self.nb_per) share_invest =
pd.DataFrame({'years':years, 'share_investment': share_invest})
pandas.DataFrame
#===============================================================================# # PyGrouper - <NAME> from __future__ import print_function import re, os, sys, time import itertools import json import logging from time import sleep from collections import defaultdict from functools import partial from math import ceil from warnings import warn import six if six.PY3: from configparser import ConfigParser elif six.PY2: from ConfigParser import ConfigParser from itertools import repeat import traceback import multiprocessing from copy import deepcopy as copy import numpy as np import pandas as pd from pandas.api.types import CategoricalDtype from RefProtDB.utils import fasta_dict_from_file from . import _version from .subfuncts import * # from ._orig_code import timed pd.set_option( "display.width", 170, "display.max_columns", 500, ) __author__ = '<NAME>' __copyright__ = _version.__copyright__ __credits__ = ['<NAME>', '<NAME>'] __license__ = 'BSD 3-Clause' __version__ = _version.__version__ __maintainer__ = '<NAME>' __email__ = '<EMAIL>' program_title = 'gpGrouper v{}'.format(__version__) BASE_DIR = os.path.dirname(os.path.abspath(__file__)) logfilename = program_title.replace(' ', '_') + '.log' logging.basicConfig(filename=logfilename, level=logging.DEBUG) logging.info('{}: Initiating {}'.format(datetime.now(), program_title)) SEP = ';' labelflag = {'none': 0, # hard coded number IDs for labels 'TMT_126': 1260, 'TMT_127_C': 1270, 'TMT_127_N': 1271, 'TMT_128_C': 1280, 'TMT_128_N': 1281, 'TMT_129_C': 1290, 'TMT_129_N': 1291, 'TMT_130_C': 1300, 'TMT_130_N': 1301, 'TMT_131': 1310, 'iTRAQ_114': 113, 'iTRAQ_114': 114, 'iTRAQ_115': 115, 'iTRAQ_116': 116, 'iTRAQ_117': 117, 'iTRAQ_118': 118, 'iTRAQ_119': 119, 'iTRAQ_121': 121, } flaglabel = {v:k for k,v in labelflag.items()} E2G_COLS = ['EXPRecNo', 'EXPRunNo', 'EXPSearchNo', 'EXPLabelFLAG', 'AddedBy', 'CreationTS', 'ModificationTS', 'GeneID', 'GeneSymbol', 'Description', 'TaxonID', 'HIDs', 'PeptidePrint', 'GPGroup', 'GPGroups_All', 'ProteinGIs', 'ProteinRefs', 'ProteinGI_GIDGroups', 'ProteinGI_GIDGroupCount', 'ProteinRef_GIDGroups', 'ProteinRef_GIDGroupCount', 'IDSet', 'IDGroup', 'IDGroup_u2g', 'SRA', 'Coverage', 'Coverage_u2g', 'PSMs', 'PSMs_u2g', 'PeptideCount', 'PeptideCount_u2g', 'PeptideCount_S', 'PeptideCount_S_u2g', 'AreaSum_u2g_0', 'AreaSum_u2g_all', 'AreaSum_max', 'AreaSum_dstrAdj', 'GeneCapacity', 'iBAQ_dstrAdj'] DATA_COLS = ['EXPRecNo', 'EXPRunNo', 'EXPSearchNo', 'Sequence', 'PSMAmbiguity', 'Modifications', 'ActivationType', 'DeltaScore', 'DeltaCn', 'Rank', 'SearchEngineRank', 'PrecursorArea', 'q_value', 'PEP', 'IonScore', 'MissedCleavages', 'IsolationInterference', 'IonInjectTime', 'Charge', 'mzDa', 'MHDa', 'DeltaMassDa', 'DeltaMassPPM', 'RTmin', 'FirstScan', 'LastScan', 'MSOrder', 'MatchedIons', 'SpectrumFile', 'AddedBy', 'oriFLAG', 'CreationTS', 'ModificationTS', 'GeneID', 'GeneIDs_All', 'GeneIDCount_All', 'ProteinGIs', 'ProteinGIs_All', 'ProteinGICount_All', 'ProteinRefs', 'ProteinRefs_All', 'ProteinRefCount_All', 'HIDs', 'HIDCount_All', 'TaxonID', 'TaxonIDs_All', 'TaxonIDCount_All', 'PSM_IDG', 'SequenceModi', 'SequenceModiCount', 'LabelFLAG', 'PeptRank', 'AUC_UseFLAG', 'PSM_UseFLAG', 'Peak_UseFLAG', 'SequenceArea', 'PrecursorArea_split', # 'RazorArea', 'PrecursorArea_dstrAdj'] _EXTRA_COLS = ['LastScan', 'MSOrder', 'MatchedIons'] # these columns are not required to be in the output data columns try: from PIL import Image, ImageFont, ImageDraw imagetitle = True except ImportError: imagetitle = False if six.PY2: class DirEntry: def __init__(self, f): self.f = f def is_file(self): return os.path.isfile(self.f) def is_dir(self): return os.path.isdir(self.f) @property def name(self): return self.f def scandir(path='.'): files = os.listdir('.') for f in files: yield DirEntry(f) os.scandir = scandir def _apply_df(input_args): df, func, i, func_args, kwargs = input_args return i, df.apply(func, args=(func_args), **kwargs) def apply_by_multiprocessing(df, func, workers=1, func_args=None, **kwargs): """ Spawns multiple processes if has os.fork and workers > 1 """ if func_args is None: func_args = tuple() if workers == 1 or not hasattr(os, 'fork'): result = _apply_df((df, func, 0, func_args, kwargs,)) return result[1] workers = min(workers, len(df)) # edge case where df has less rows than workers workers = max(workers, 1) # has to be at least 1 # pool = multiprocessing.Pool(processes=workers) with multiprocessing.Pool(processes=workers) as pool: result = pool.map(_apply_df, [(d, func, i, func_args, kwargs,) for i, d in enumerate(np.array_split(df, workers))] ) # pool.close() result = sorted(result, key=lambda x: x[0]) return pd.concat([x[1] for x in result]) def quick_save(df,name='df_snapshot.p', path=None, q=False): import pickle #import RefSeqInfo if path: name = path+name #df.to_csv('test_matched.tab', index=False, sep='\t') pickle.dump(df, open(name, 'wb')) print('Pickling...') if q: print('Exiting prematurely') sys.exit(0) def _get_rawfile_info(path, spectraf): if path is None: path = '.' if not os.path.isdir(path): return ('not found, check rawfile path', 'not found') for f in os.listdir(path): if f == spectraf: rawfile = os.path.abspath(os.path.join(path,f)) break else: return ('not found', 'not found') fstats = os.stat(rawfile) mod_date = datetime.fromtimestamp(fstats.st_mtime).strftime("%m/%d/%Y %H:%M:%S") size = byte_formatter(fstats.st_size) return (size, mod_date) def _spectra_summary(spectraf, data): """ Calculates metadata per spectra file. The return order is as follows: -minimum RT_min -maximum RT_min -min IonScore -max IonScore -min q_value -max q_value -min PEP -max PEP -min Area (precursor, exculding zeros) -max Area -PSM Count -median DeltaMassPPM """ data = data[data.SpectrumFile==spectraf] RT_min = data.RTmin.min() RT_max = data.RTmin.max() IonScore_min = data.IonScore.min() IonScore_max = data.IonScore.max() q_min = data.q_value.min() q_max = data.q_value.max() PEP_min = data.PEP.min() PEP_max = data.PEP.max() area_min = data[data.PrecursorArea!=0].PrecursorArea.min() area_max = data.PrecursorArea.max() count = len(data[data.PSM_UseFLAG==1]) dmass_median = data.DeltaMassPPM.median() return(RT_min, RT_max, IonScore_min, IonScore_max, q_min, q_max, PEP_min, PEP_max, area_min, area_max, count, dmass_median) def spectra_summary(usrdata): """Summaries the spectral files included in an analysis. Args: usrdata: a UserData instance with the data loaded Returns: A pandas DataFrame with relevant columns, ready for export if the raw files cannot be found at usrdata.rawfiledir, then 'not found' is returned for those columns """ msfdata = pd.DataFrame() # msfdata['RawFileName'] = list(set(usrdata.df.SpectrumFile.tolist())) msfdata['RawFileName'] = sorted(usrdata.df.SpectrumFile.unique()) msfdata['EXPRecNo'] = usrdata.recno msfdata['EXPRunNo'] = usrdata.runno msfdata['EXPSearchNo'] = usrdata.searchno msfdata['AddedBy'] = usrdata.added_by msfdata['CreationTS'] = datetime.now().strftime("%m/%d/%Y %H:%M:%S") msfdata['ModificationTS'] = datetime.now().strftime("%m/%d/%Y %H:%M:%S") summary_info = msfdata.apply(lambda x: _spectra_summary(x['RawFileName'], usrdata.df), axis=1) (msfdata['RTmin_min'], msfdata['RTmin_max'], msfdata['IonScore_min'], msfdata['IonScore_max'], msfdata['qValue_min'], msfdata['qValue_max'], msfdata['PEP_min'], msfdata['PEP_max'], msfdata['Area_min'], msfdata['Area_max'], msfdata['PSMCount'], msfdata['DeltaMassPPM_med']) = zip(*summary_info) rawfile_info = msfdata.apply(lambda x: _get_rawfile_info(usrdata.rawfiledir, x['RawFileName']), axis=1) msfdata['RawFileSize'], msfdata['RawFileTS'] = zip(*rawfile_info) return msfdata def get_gid_ignore_list(inputfile): """Input a file with a list of geneids to ignore when normalizing across taxa Each line should have 1 geneid on it. Use '#' at the start of the line for comments Output a list of geneids to ignore. """ # Don't convert GIDs to ints, # GIDs are not ints for the input data return [x.strip() for x in open(inputfile, 'r') if not x.strip().startswith('#')] def _format_peptideinfo(row): if len(row) == 0: return ('', 0, '', 0, '', 0, '', 0, '', 0, ()) result = ( # ','.join(row['GeneID'].dropna().unique()), SEP.join(str(x) for x in set(row['geneid'])), row['geneid'].replace('', np.nan).nunique(dropna=True), # ','.join(row['TaxonID'].dropna().unique()), SEP.join(str(x) for x in set(row['taxon'])), row['taxon'].replace('', np.nan).nunique(dropna=True), # ','.join(row['ProteinGI'].dropna().unique()), SEP.join(str(x) for x in set(row['gi'])), row['gi'].replace('', np.nan).nunique(dropna=True), SEP.join(str(x) for x in set(row['ref'])), row['ref'].replace('', np.nan).nunique(dropna=True), # ','.join(row['HomologeneID'].dropna().unique()), SEP.join(str(x) for x in set(row['homologene'])), row['homologene'].replace('', np.nan).nunique(dropna=True), SEP.join(str(x) for x in row['capacity']), # tuple(row['capacity']), # row['capacity'].mean(), ) return result def _extract_peptideinfo(row, database): return _format_peptideinfo(database.loc[row]) def combine_coverage(start_end): start_end = sorted(copy(start_end)) # for ix, entry in enumerate(start_end[:-1]): ix = 0 while ix < len(start_end): try: entry = start_end[ix] next_entry = start_end[ix+1] except IndexError: # done break if entry[1] >= next_entry[0] and entry[1] <= next_entry[1]: start_end[ix][1] = next_entry[1] start_end.pop(ix+1) else: ix += 1 return start_end def _calc_coverage(seqs, pepts): pepts = sorted(pepts, key=lambda x: min(y+len(x) for y in [s.find(x) for s in seqs])) coverages = list() for s in seqs: start_end = list() coverage = 0 for pept in pepts: start = 0 mark = s.find(pept.upper(), start) while mark != -1: start_id, end_id = mark, mark + len(pept) start += end_id for start_i, end_i in start_end: if start_id < end_i and end_id > end_i: start_id = end_i break elif start_id < start_i and end_id > start_i and end_id < end_i: end_id = start_i break elif start_id >= start_i and end_id <= end_i: start_id = end_id = 0 break else: continue if start_id != end_id: start_end.append( [ start_id, end_id ] ) # start_end = combine_coverage(start_end) # only need to do this if we updated this list # coverage += end_id-start_id mark = s.find(pept.upper(), start) start_end = combine_coverage(start_end) coverage = np.sum([ x[1] - x[0] for x in start_end ]) coverages.append( coverage/len(s) ) # sum(y-x) if coverages: return np.mean(coverages) else: print('Warning, GeneID', row['GeneID'], 'has a coverage of 0') return 0 def calc_coverage_axis(row, fa, psms): """ Calculates total and u2g coverage for each GeneID (row) with respect to reference fasta (fa) and peptide evidence (psms) """ if row['GeneID'] == '-1': # reserved for no GeneID match return 0, 0 seqs = fa[fa.geneid == row['GeneID']]['sequence'].tolist() if len(seqs) == 0: # mismatch warn('When calculating coverage, GeneID {} not found in fasta file'.format(row['GeneID'])) return 0, 0 pepts = row['PeptidePrint'].split('_') u2g_pepts = psms[ (psms.GeneID == row['GeneID']) & (psms.GeneIDCount_All == 1) ].Sequence.unique() return _calc_coverage(seqs, pepts), _calc_coverage(seqs, u2g_pepts) if len(u2g_pepts) > 0 else 0 def calc_coverage(df, fa, psms): res = df.pipe(apply_by_multiprocessing, calc_coverage_axis, workers=WORKERS, func_args=(fa, psms), axis=1 ) # df['Coverage'], df['Coverage_u2g'] = list(zip(res)) df['Coverage'], df['Coverage_u2g'] = list(zip(*res)) return df def extract_peptideinfo(usrdata, database): filter_int = partial(filter, lambda x : x.isdigit()) to_int = partial(map, int) ixs = (usrdata.df.metadatainfo.str.strip('|') .str.split('|') .apply(filter_int) .apply(to_int) .apply(list) # .apply(pd.Series) # .stack() # .to_frame() ) # info = ixs.apply(lambda x : _format_peptideinfo(database.loc[x])).apply(pd.Series) info = ixs.pipe(apply_by_multiprocessing, _extract_peptideinfo, func_args=(database,), workers=WORKERS, ).apply(pd.Series) info.columns = ['GeneIDs_All', 'GeneIDCount_All', 'TaxonIDs_All', 'TaxonIDCount_All', 'ProteinGIs_All', 'ProteinGICount_All', 'ProteinRefs_All', 'ProteinRefCount_All', 'HIDs', 'HIDCount_All', 'GeneCapacities'] for col in ('TaxonIDs_All', 'ProteinGIs_All', 'ProteinGICount_All', 'ProteinRefs_All', 'ProteinRefCount_All', 'HIDs', 'HIDCount_All'): info[col] = info[col].astype('category') info['TaxonIDCount_All'] = info['TaxonIDCount_All'].astype(np.int16) usrdata.df = usrdata.df.join(info) # (usrdata.df['GeneIDs_All'], # usrdata.df['GeneIDCount_All'], # usrdata.df['TaxonIDs_All'], # usrdata.df['TaxonIDCount_All'], # usrdata.df['ProteinGIs_All'], # usrdata.df['ProteinGICount_All'], # usrdata.df['ProteinRefs_All'], # usrdata.df['ProteinRefCount_All'], # usrdata.df['HIDs'], # usrdata.df['HIDCount_All'], # usrdata.df['GeneCapacities']) = zip(*info) # usrdata.df['TaxonIDs_All'] = usrdata.df['TaxonIDs_All'].dropna().astype(str) # usrdata.df['HIDs'] = usrdata.df['HIDs'].fillna('') return 0 def gene_mapper(df, other_col=None): if other_col is None or other_col not in df.columns: raise ValueError("Must specify other column") groupdf = (df[['geneid', other_col]] .drop_duplicates() .groupby('geneid') ) # d = {k: SEP.join(filter(None, str(v))) for k, v in groupdf[other_col]} d = {k: SEP.join(filter(None, map(str, v))) for k, v in groupdf[other_col]} return d def gene_taxon_mapper(df): """Returns a dictionary with mapping: gene -> taxon Input is the metadata extracted previously""" return gene_mapper(df, 'taxon') def gene_symbol_mapper(df): """Returns a dictionary with mapping: gene -> taxon Input is the metadata extracted previously""" return gene_mapper(df, 'symbol') def gene_desc_mapper(df): """Returns a dictionary with mapping: gene -> taxon Input is the metadata extracted previously""" return gene_mapper(df, 'description') def gene_hid_mapper(df): """Returns a dictionary with mapping: gene -> taxon Input is the metadata extracted previously""" return gene_mapper(df, 'homologene') def gene_protgi_mapper(df): """Returns a dictionary with mapping: gene -> taxon Input is the metadata extracted previously""" return gene_mapper(df, 'gi') def gene_protref_mapper(df): """Returns a dictionary with mapping: gene -> taxon Input is the metadata extracted previously""" return gene_mapper(df, 'ref') def assign_IDG(df, filtervalues=None): filtervalues = filtervalues or dict() ion_score_bins = filtervalues.get('ion_score_bins', (10, 20, 30)) df['PSM_IDG'] = pd.cut(df['IonScore'], # bins=(0, *ion_score_bins, np.inf), bins=(0,) + tuple(ion_score_bins) + (np.inf,), labels=[7, 5, 3, 1], include_lowest=True, right=False).astype('int') df.loc[ df['q_value'] > .01, 'PSM_IDG' ] += 1 df.loc[ (df['IonScore'].isna() | df['q_value'].isna()), 'PSM_IDG'] = 9 return df def make_seqlower(usrdata, col='Sequence'): """Make a new column called sequence_lower from a DataFrame""" usrdata['sequence_lower'] = usrdata[col].str.lower() return def peptidome_matcher(usrdata, ref_dict): if not ref_dict: return usrdata ref_dict_filtered = ref_dict pmap = partial(map, str) result = (usrdata.Sequence.str.upper().map(ref_dict) .fillna('') .map(pmap) .map('|'.join) .add('|') ) usrdata['metadatainfo'] += result return usrdata def redundant_peaks(usrdata): """ Remove redundant, often ambiguous peaks by keeping the peak with the highest ion score""" peaks = usrdata.sort_values(by='IonScore', ascending=False).\ drop_duplicates(subset=['SpectrumFile','SequenceModi', 'Charge', 'PrecursorArea']) peaks['Peak_UseFLAG'] = 1 # peaks['Peak_UseFLAG'] = True usrdata = usrdata.join(peaks['Peak_UseFLAG']) usrdata['Peak_UseFLAG'] = usrdata.Peak_UseFLAG.fillna(0).astype(np.int8) # usrdata['Peak_UseFLAG'] = usrdata.Peak_UseFLAG.fillna(False) print('Redundant peak areas removed : ', len(usrdata)-len(peaks)) return usrdata def sum_area(df): """Sum the area of similar peaks New column SequenceArea is created """ df['Sequence_set'] = df['Sequence'].apply(lambda x: tuple(set(list(x)))) summed_area = (df.query('Peak_UseFLAG==1') # .filter(items=['SequenceModi', 'Charge', 'PrecursorArea']) .groupby(['SequenceModi', 'Charge']) .agg({'PrecursorArea_split': 'sum'}) .reset_index() .rename(columns={'PrecursorArea_split': 'SequenceArea'}) ) df = df.merge(summed_area, how='left', on=['SequenceModi', 'Charge']) return df def auc_reflagger(df): """Remove duplicate sequence areas """ #usrdata['Sequence_set'] = usrdata['Sequence'].apply(lambda x: tuple(set(list(x)))) no_dups = (df.sort_values(by=['SequenceModi', 'Charge', 'SequenceArea', 'PSM_IDG', 'IonScore', 'PEP', 'q_value'], ascending=[1,1,0,1,0,1,1]) .drop_duplicates(subset=['SequenceArea', 'Charge', 'SequenceModi',]) .assign(AUC_reflagger = True) ) df = (df.join(no_dups[['AUC_reflagger']]) .assign(AUC_reflagger = lambda x: (x['AUC_reflagger'] .fillna(0) .astype(np.int8))) ) return df def export_metadata(program_title='version',usrdata=None, matched_psms=0, unmatched_psms=0, usrfile='file', taxon_totals=dict(), outname=None, outpath='.', **kwargs): """Update iSPEC database with some metadata information """ print('{} | Exporting metadata'.format(time.ctime())) #print('Number of matched psms : ', matched_psms) d = dict( version=program_title, searchdb=usrdata.searchdb, filterstamp=usrdata.filterstamp, matched_psms=matched_psms, unmatched_psms=unmatched_psms, inputname=usrdata.datafile, hu=taxon_totals.get('9606', 0), mou=taxon_totals.get('10090', 0), gg=taxon_totals.get('9031', 0), recno=usrdata.recno, runno=usrdata.runno, searchno=usrdata.searchno ) with open(os.path.join(outpath, outname), 'w') as f: json.dump(d, f) def split_on_geneid(df): """Duplicate psms based on geneids. Areas of each psm is recalculated based on unique peptides unique for its particular geneid later. """ oriflag = lambda x: 1 if x[-1] == 0 else 0 glstsplitter = (df['GeneIDs_All'].str.split(SEP) .apply(pd.Series, 1).stack() .to_frame(name='GeneID') .assign(oriFLAG= lambda x: x.index.map(oriflag)) ) glstsplitter.index = glstsplitter.index.droplevel(-1) # get rid of # multi-index df = (df.join(glstsplitter) .reset_index()) df['GeneID'] = df.GeneID.fillna('-1') df.loc[df.GeneID == '', 'GeneID'] = '-1' df['GeneID'] = df.GeneID.fillna('-1') # df['GeneID'] = df.GeneID.astype(int) df['GeneID'] = df.GeneID.astype(str) return df def rank_peptides(df, area_col, ranks_only=False): """Rank peptides here area_col is sequence area_calculator ranks_only returns just the ranks column. This does not reset the original index """ df = df.sort_values(by=['GeneID', area_col, 'SequenceModi', 'Charge', 'PSM_IDG', 'IonScore', 'PEP', 'q_value'], ascending=[1, 0, 0, 1, 1, 0, 1, 1]) if not ranks_only: # don't reset index for just the ranks df.reset_index(inplace=True) # drop=True ? df.Modifications.fillna('', inplace=True) # must do this to compare nans df[area_col].fillna(0, inplace=True) # must do this to compare #nans ranks = (df[ (df.AUC_UseFLAG == 1) & (df.PSM_UseFLAG == 1) & (df.Peak_UseFLAG == 1) ] .groupby(['GeneID', 'LabelFLAG']) .cumcount() + 1) # add 1 to start the peptide rank at 1, not 0 ranks.name = 'PeptRank' if ranks_only: return ranks df = df.join(ranks) return df def flag_AUC_PSM(df, fv, contaminant_label='__CONTAMINANT__', phospho=False): if fv['pep'] =='all' : fv['pep'] = float('inf') if fv['idg'] =='all' : fv['idg'] = float('inf') df['AUC_UseFLAG'] = 1 df['PSM_UseFLAG'] = 1 df.loc[(df['Charge'] < fv['zmin']) | (df['Charge'] > fv['zmax']), ['AUC_UseFLAG', 'PSM_UseFLAG']] = 0 df.loc[df['SequenceModiCount'] > fv['modi'], ['AUC_UseFLAG', 'PSM_UseFLAG']] = 0 df.loc[(df['IonScore'].isnull() | df['q_value'].isnull()), ['AUC_UseFLAG', 'PSM_UseFLAG']] = 1, 0 df.loc[df['IonScore'] < fv['ion_score'], ['AUC_UseFLAG', 'PSM_UseFLAG']] = 0 df.loc[df['q_value'] > fv['qvalue'], ['AUC_UseFLAG', 'PSM_UseFLAG']] = 0 df.loc[df['PEP'] > fv['pep'], ['AUC_UseFLAG', 'PSM_UseFLAG']] = 0 df.loc[df['PSM_IDG'] > fv['idg'], ['AUC_UseFLAG', 'PSM_UseFLAG']] = 0 if df['PSMAmbiguity'].dtype == str: df.loc[(df['Peak_UseFLAG'] == 0) & (df['PSMAmbiguity'].str.lower()=='unambiguous'), ['AUC_UseFLAG', 'PSM_UseFLAG']] = 1 df.loc[(df['Peak_UseFLAG'] == 0) & (df['PSMAmbiguity'].str.lower()!='unambiguous'), ['AUC_UseFLAG', 'PSM_UseFLAG']] = 0 elif any(df['PSMAmbiguity'].dtype == x for x in (int, float)): df.loc[(df['Peak_UseFLAG'] == 0) & (df['PSMAmbiguity'] == 0), ['AUC_UseFLAG', 'PSM_UseFLAG']] = 1 df.loc[(df['Peak_UseFLAG'] == 0) & (df['PSMAmbiguity'] != 0), ['AUC_UseFLAG', 'PSM_UseFLAG']] = 0 df.loc[ df['AUC_reflagger'] == 0, 'AUC_UseFLAG'] = 0 df.loc[ df['GeneIDs_All'].fillna('').str.contains(contaminant_label), ['AUC_UseFLAG', 'PSM_UseFLAG'] ] = 0, 0 if phospho: df.loc[ ~df['SequenceModi'].str.contains('pho', case=False), ['AUC_UseFLAG', 'PSM_UseFLAG'] ] = 0, 0 return df def gene_taxon_map(usrdata, gene_taxon_dict): """make 'gene_taxon_map' column per row which displays taxon for given gene""" usrdata['TaxonID'] = usrdata['GeneID'].map(gene_taxon_dict) return def get_all_taxons(taxonidlist): """Return a set of all taxonids from usrdata.TaxonIDList""" taxon_ids = set(SEP.join(x for x in taxonidlist if x.strip()).split(SEP)) return taxon_ids def multi_taxon_splitter(taxon_ids, usrdata, gid_ignore_list, area_col): """Plugin for multiple taxons Returns a dictionary with the totals for each detected taxon""" taxon_totals = dict() for taxon in taxon_ids: #all_others = [x for x in taxon_ids if x != taxon] uniq_taxon = usrdata[ #(usrdata._data_tTaxonIDList.str.contains(taxon)) & #(~usrdata._data_tTaxonIDList.str.contains('|'.join(all_others)))& (usrdata['AUC_UseFLAG'] == 1) & (usrdata['TaxonID'] == str(taxon)) & (usrdata['TaxonIDCount_All'] == 1) & (~usrdata['GeneID'].isin(gid_ignore_list)) ] taxon_totals[taxon] = (uniq_taxon[area_col] / uniq_taxon['GeneIDCount_All']).sum() tot_unique = sum(taxon_totals.values()) #sum of all unique # now compute ratio: for taxon in taxon_ids: taxon = str(taxon) try: percentage = taxon_totals[taxon] / tot_unique except ZeroDivisionError: warn("""This file has multiple taxa but no unique to taxa peptides. Please check this experiment """) percentage = 1 taxon_totals[taxon] = percentage print(taxon, ' ratio : ', taxon_totals[taxon]) #logfile.write('{} ratio : {}\n'.format(taxon, taxon_totals[taxon])) return taxon_totals def create_df(inputdf, label, inputcol='GeneID'): """Create and return a DataFrame with gene/protein information from the input peptide DataFrame""" return pd.DataFrame({'GeneID': list(set(inputdf[inputcol])), 'EXPLabelFLAG': labelflag.get(label, label)}) def select_good_peptides(usrdata, labelix): """Selects peptides of a given label with the correct flag and at least one genecount The LabelFLAG is set here for TMT/iTRAQ/SILAC data. """ temp_df = usrdata[((usrdata['PSM_UseFLAG'] == 1) | usrdata['AUC_UseFLAG'] ==1) & (usrdata['GeneIDCount_All'] > 0)].copy() # keep match between runs temp_df['LabelFLAG'] = labelix return temp_df def get_gene_capacity(genes_df, database, col='GeneID'): """Get gene capcaity from the stored metadata""" capacity = (database.groupby('geneid').capacity.mean() .to_frame(name='GeneCapacity')) genes_df = genes_df.merge(capacity, how='left', left_on='GeneID', right_index=True) return genes_df def get_gene_info(genes_df, database, col='GeneID'): subset = ['geneid', 'homologene', 'description', 'symbol', 'taxon'] genecapacity = (database.groupby('geneid')['capacity'] .mean() .rename('capacity_mean') ) geneinfo = (database[subset] .drop_duplicates('geneid') .set_index('geneid') .join(genecapacity) .rename(columns=dict(gi = 'ProteinGI', homologene = 'HomologeneID', taxon = 'TaxonID', description = 'Description', ref = 'ProteinAccession', symbol = 'GeneSymbol', capacity_mean = 'GeneCapacity' )) ) # geneinfo.index = geneinfo.index.astype(str) # geneinfo['TaxonID'] = geneinfo.TaxonID.astype(str) out = genes_df.merge(geneinfo, how='left', left_on='GeneID', right_index=True) return out def get_peptides_for_gene(genes_df, temp_df): full = (temp_df.groupby('GeneID')['sequence_lower'] .agg((lambda x: frozenset(x), 'nunique')) .rename(columns={'<lambda>': 'PeptideSet', 'nunique': 'PeptideCount'}) # .agg(full_op) .assign(PeptidePrint = lambda x: x['PeptideSet'].apply(sorted).str.join('_')) ) full['PeptideSet'] = full.apply(lambda x : frozenset(x['PeptideSet']), axis=1) q_uniq = 'GeneIDCount_All == 1' q_strict = 'PSM_IDG < 4' q_strict_u = '{} & {}'.format(q_uniq, q_strict) try: uniq = (temp_df.query(q_uniq) .groupby('GeneID')['sequence_lower'] .agg('nunique') .to_frame('PeptideCount_u2g')) except IndexError: uniq = pd.DataFrame(columns=['PeptideCount_u2g']) try: strict = (temp_df.query(q_strict) .groupby('GeneID')['sequence_lower'] .agg('nunique') .to_frame('PeptideCount_S')) except IndexError: strict = pd.DataFrame(columns=['PeptideCount_S']) try: s_u2g = (temp_df.query(q_strict_u) .groupby('GeneID')['sequence_lower'] .agg('nunique') .to_frame('PeptideCount_S_u2g')) except IndexError: s_u2g = pd.DataFrame(columns=['PeptideCount_S_u2g']) result = pd.concat((full, uniq, strict, s_u2g), copy=False, axis=1).fillna(0) ints = ['' + x for x in ('PeptideCount', 'PeptideCount_u2g', 'PeptideCount_S', 'PeptideCount_S_u2g')] result[ints] = result[ints].astype(np.integer) genes_df = genes_df.merge(result, how='left', left_on='GeneID', right_index=True) return genes_df def get_psms_for_gene(genes_df, temp_df): psmflag = 'PSM_UseFLAG' total = temp_df.groupby('GeneID')[psmflag].sum() total.name = 'PSMs' q_uniq = 'GeneIDCount_All == 1' total_u2g = (temp_df.query(q_uniq) .groupby('GeneID')[psmflag] .sum()) total_u2g.name = 'PSMs_u2g' q_strict = 'PSM_IDG < 4' total_s = (temp_df.query(q_strict) .groupby('GeneID')[psmflag] .sum()) total_s.name = 'PSMs_S' q_strict_u = '{} & {}'.format(q_uniq, q_strict) total_s_u2g = (temp_df.query(q_strict_u) .groupby('GeneID')[psmflag] .sum()) total_s_u2g.name = 'PSMs_S_u2g' result = (pd.concat( (total, total_u2g, total_s, total_s_u2g), copy=False, axis=1) .fillna(0) .astype(np.integer)) genes_df = genes_df.merge(result, how='left', left_on='GeneID', right_index=True) return genes_df def calculate_full_areas(genes_df, temp_df, area_col, normalize): """ Calculates full (non distributed ) areas for gene ids. calculates full, gene count normalized, unique to gene, and unique to gene with no miscut areas. """ qstring = 'AUC_UseFLAG == 1' full = temp_df.query(qstring).groupby('GeneID')[area_col].sum()/normalize full.name = 'AreaSum_max' # full_adj = (temp_df.query(qstring) # .assign(gpAdj = lambda x: x[area_col] / x['GeneIDCount_All']) # .groupby('GeneID')['gpAdj'] # temp column # .sum()/normalize # ) # full_adj.name = 'AreaSum_gpcAdj' # qstring_s = qstring + ' & IDG < 4' # strict = temp_df.query(qstring_s).groupby('GeneID')[area_col].sum() # strict.name = '' qstring_u = qstring + ' & GeneIDCount_All == 1' uniq = temp_df.query(qstring_u).groupby('GeneID')[area_col].sum()/normalize uniq.name = 'AreaSum_u2g_all' qstring_u0 = qstring_u + ' & MissedCleavages == 0' uniq_0 = temp_df.query(qstring_u0).groupby('GeneID')[area_col].sum()/normalize uniq_0.name = 'AreaSum_u2g_0' result = pd.concat( (full, uniq, uniq_0), copy=False, axis=1) .fillna(0) genes_df = genes_df.merge(result, how='left', left_on='GeneID', right_index=True) return genes_df def _distribute_area(inputdata, genes_df, area_col, taxon_totals=None, taxon_redistribute=True): """Row based normalization of PSM area (mapped to a specific gene). Normalization is based on the ratio of the area of unique peptides for the specific gene to the sum of the areas of the unique peptides for all other genes that this particular peptide also maps to. """ # if inputdata.AUC_UseFLAG == 0: # return 0 inputvalue = inputdata[area_col] geneid = inputdata['GeneID'] gene_inputdata = genes_df.query('GeneID == @geneid') u2g_values = gene_inputdata['AreaSum_u2g_all'].values if len(u2g_values) == 1: u2g_area = u2g_values[0] # grab u2g info, should always be #of length 1 elif len(u2g_values) > 1 : warn('DistArea is not singular at GeneID : {}'.format( datetime.now(),inputdata['GeneID'])) distArea = 0 # this should never happen (and never has) else : distArea = 0 print('No distArea for GeneID : {}'.format(inputdata['GeneID'])) # taxon_ratio = taxon_totals.get(inputdata.gene_taxon_map, 1) if u2g_area != 0 : totArea = 0 gene_list = inputdata.GeneIDs_All.split(SEP) all_u2gareas = (genes_df[genes_df['GeneID'].isin(gene_list)] .query('PeptideCount_u2g > 0') # all geneids with at least 1 unique pept .AreaSum_u2g_all) if len(all_u2gareas) > 1 and any(x == 0 for x in all_u2gareas): # special case with multiple u2g peptides but not all have areas, rare but does happen u2g_area = 0 # force to distribute by gene count (and taxon percentage if appropriate) else: totArea = all_u2gareas.sum() distArea = (u2g_area/totArea) * inputvalue #ratio of u2g peptides over total area elif all(gene_inputdata.IDSet == 3): return 0 if u2g_area == 0: # no uniques, normalize by genecount taxon_percentage = taxon_totals.get(str(inputdata.TaxonID), 1) distArea = inputvalue if taxon_percentage < 1: distArea *= taxon_percentage gpg_selection = genes_df.GPGroup == gene_inputdata.GPGroup.values[0] try: if taxon_redistribute: taxonid_selection = genes_df.TaxonID == gene_inputdata.TaxonID.values[0] distArea /= len( genes_df[(gpg_selection) & (taxonid_selection)]) else: distArea /= len( genes_df[(gpg_selection) ]) except ZeroDivisionError: pass return distArea def distribute_area(temp_df, genes_df, area_col, taxon_totals, taxon_redistribute=True): """Distribute psm area based on unique gene product area Checks for AUC_UseFLAG==1 for whether or not to use each peak for quantification """ q = 'AUC_UseFLAG == 1 & GeneIDCount_All > 1' distarea = 'PrecursorArea_dstrAdj' temp_df[distarea] = 0 # temp_df[distarea] = (temp_df.query(q) # .apply( # _distribute_area, args=(genes_df, # area_col, # taxon_totals, # taxon_redistribute), # axis=1) # ) temp_df[distarea] = (temp_df.query(q) .pipe(apply_by_multiprocessing, _distribute_area, workers=WORKERS, func_args=(genes_df, area_col, taxon_totals, taxon_redistribute), axis=1) ) one_id = (temp_df.GeneIDCount_All == 1) & (temp_df.AUC_UseFLAG == 1) temp_df.loc[ one_id , distarea ] = temp_df.loc[ one_id, area_col ] # temp_df[distarea].fillna(0, inplace=True) return def _set2_or_3(row, genes_df, allsets): peptset = row.PeptideSet # allsets = genes_df.PeptideSet.unique() # calculate outside this function for performance boost if six.PY2 and any(set(peptset) < x for x in allsets): return 3 elif six.PY3 and any(peptset < allsets): return 3 # check if is set 3 across multiple genes, or is set2 gid = row.GeneID # sel = genes_df[ (genes_df.IDSet == 1) & # (genes_df.PeptideSet & peptset) ].query('GeneID != @gid') sel = genes_df[(genes_df.PeptideSet & peptset) ].query('GeneID != @gid') sel_idset1 = sel.query('IDSet == 1') in_pop = sel.PeptideSet in_pop_set1 = sel_idset1.PeptideSet in_row = sel.apply( lambda x: peptset - x['PeptideSet'], axis=1 ) in_pop_all = set(in_pop.apply(tuple).apply(pd.Series).stack().unique()) if not in_pop_set1.empty: in_pop_all_set1 = set(in_pop_set1.apply(tuple).apply(pd.Series).stack().unique()) else: in_pop_all_set1 = set() diff = (peptset - in_pop_all) # check if is not a subset of anything diff_idset1 = (peptset - in_pop_all_set1) # check if is not a subset of set1 ids if len( diff_idset1 ) == 0: # is a subset of idset1 ids return 3 elif len( diff ) > 0: # is not a subset of anything return 2 else: sel_not_idset1 = sel.query('IDSet != 1') if any(sel_not_idset1.PeptideSet == peptset): return 2 # shares all peptides with another, and is not a subset of anything # need to check if is a subset of everything combined, but not a subset of one thing # ex: # PEPTIDES # row = A B # match1 = A # match2 = B if (all( (peptset - sel.PeptideSet).apply(bool) ) and not all( (sel_not_idset1.PeptideSet - peptset).apply(bool) ) ): return 2 else: pept_lengths = sel_not_idset1.PeptideSet.apply(len) if len(peptset) >= pept_lengths.max(): return 2 else: return 3 # len_shared = sel_not_idset1.PeptideSet.apply(lambda x: x & peptset).apply(len) # max_shared = len_shared.max() # all_shared_pepts = (set([x for y in sel_not_idset1.PeptideSet.values for x in y]) # & peptset) return 3 class _DummyDataFrame: def eat_args(self, *args, **kwargs): return None def __getattr__(self, name): if name not in self.__dict__: return self.eat_args def check_length_in_pipe(df): """Checks the length of a DataFrame in a pipe and if zero returns an object to suppress all errors, just returning None (ideally) """ if len(df) == 0: return _DummyDataFrame() return df def assign_gene_sets(genes_df, temp_df): all_ = genes_df.PeptideSet.unique() allsets = genes_df.PeptideSet.unique() genes_df.loc[genes_df.PeptideCount_u2g > 0, 'IDSet'] = 1 genes_df.loc[genes_df.PeptideCount_u2g == 0, 'IDSet'] = \ (genes_df.query('PeptideCount_u2g == 0') .pipe(check_length_in_pipe) # .apply(_set2_or_3, args=(genes_df, allsets), axis=1)) .pipe(apply_by_multiprocessing, _set2_or_3, genes_df=genes_df, allsets=allsets, axis=1, workers=WORKERS) ) genes_df['IDSet'] = genes_df['IDSet'].fillna(3).astype(np.int8) # if u2g count greater than 0 then set 1 gpg = (temp_df.groupby('GeneID') .PSM_IDG.min() .rename('IDGroup')) gpg_u2g = (temp_df.query('GeneIDCount_All==1') .groupby('GeneID') .PSM_IDG.min() .rename('IDGroup_u2g')) gpgs = (pd.concat([gpg, gpg_u2g], axis=1).fillna(0).astype(np.int8) .assign(GeneID = lambda x: x.index) ) genes_df =
pd.merge(genes_df, gpgs, on='GeneID', how='left')
pandas.merge
# -*- coding: utf-8 -*- # Loading libraries import os import sys import time from networkx.algorithms.centrality import group import pandas as pd import re import csv from swmmtoolbox import swmmtoolbox as swmm from datetime import datetime from os import listdir from concurrent import futures from sqlalchemy import create_engine from sqlalchemy.orm import scoped_session from sqlalchemy.orm import sessionmaker import multiprocessing import pyproj event_id = input('4-digit event_id like: 0123: ') model_id = f'model_{event_id}'# + input('4-digit model_id like: 0123: ' ) precipitation_id = f'precipitation_{event_id}'# + input('4-digit raingage_id like 0123: ') epsg_modelo = input('EPSG (ejemplo: 5348): ') project_folder = os.path.abspath(os.path.join(os.getcwd(),"../..")) data_raw_folder = os.path.join(project_folder,'data', 'raw_swmm') event_folder = os.path.join(data_raw_folder, 'Run_[' + event_id + ']') model_inp = os.path.join(event_folder, 'model.inp') model_out = os.path.join(event_folder, 'model.out') # Connection to database engine_base_ina = create_engine('postgresql://postgres:[email protected]:5555/base-ina') RELEVANT_GROUP_TYPES_OUT = [ 'link', 'node', 'subcatchment', # 'system' ] RELEVANT_GROUP_TYPES_INP = [ 'coordinates', 'subcatchments', 'raingages', 'conduits', 'orifices', 'weirs', 'outfalls', # 'vertices', # 'polygons', 'subareas', # 'losses', 'infiltration', 'junctions', 'storage', # 'properties', # "curves", ] RELEVANT_LINKS = [ # 'channel10944', # 'channel24416', # 'channel60443', # 'channel17459', # 'channel87859', # 'channel14380', # 'channel55414', # 'channel77496', # 'channel83013', # 'channel52767', # 'channel12818', # 'conduit11698', # 'channel6317', # 'conduit18801', # 'conduit50317', # 'conduit528', # 'conduit36611', # 'conduit50827', # 'conduit78108', # 'conduit57848', # 'conduit42638', # 'conduit34157', # 'conduit29340', # 'conduit19715', # 'conduit23023', # 'conduit37130', # 'conduit21772', # 'channel52598', # 'conduit75783', # 'conduit62715', # 'conduit48979', # 'conduit82544', # 'conduit83110', # 'conduit33678', # 'conduit18303', # 'conduit40724', # 'conduit13927' ] RELEVANT_SUBCATCHMENTS = [] RELEVANT_NODES = [] RELEVANT_SUBAREAS = [] RELEVANT_OUTFALLS = [] RELEVANT_VERTICES = [] RELEVANT_POLYGNOS = [] RELEVANT_LINKS_CONDUITS = [] RELEVANT_LINKS_ORIFICES = [] RELEVANT_LINKS_WEIRS = [] RELEVANT_LOSSES = [] RELEVANT_INFILTRATION = [] RELEVANT_JUNCTIONS = [] RELEVANT_STORAGE = [] MODEL_OUT_COLS = { 'SUBCATCHMENTS_COLS' : [ 'event_id', 'elapsed_time', 'subcatchment_id', 'rainfall', 'elapsed_time', 'snow_depth', 'evaporation_loss', 'infiltration_loss', 'runoff_rate', 'groundwater_outflow', 'groundwater_elevation', 'soil_moisture' ], 'LINKS_COLS' : [ 'event_id', 'elapsed_time', 'link_id', 'flow_rate', 'flow_depth', 'flow_velocity', 'froude_number', 'capacity' ], 'NODES_COLS' : [ 'event_id', 'elapsed_time', 'node_id', 'depth_above_invert', 'hydraulic_head', 'volume_stored_ponded', 'lateral_inflow', 'total_inflow', 'flow_lost_flooding' ] } MODEL_INP_COLS = { 'NODES_COORDINATES' : [ 'node_id', 'x_coord', 'y_coord', ], "SUBCATCHMENTS" : [ "subcatchment_id", "raingage_id", "outlet", "area", "imperv", "width", "slope", "curb_len" ], "LINKS_CONDUITS" : [ "conduit_id", "from_node", "to_node", "length", "roughness", "in_offset", "out_offset", "init_flow", "max_flow" ], "LINKS_ORIFICES" : [ "orifice_id", "from_node", "to_node", "type", "offset", "q_coeff", "gated", "close_time" ], "LINKS_WEIRS" : [ "weir_id", "from_node", "to_node", "type", "crest_ht", "q_coeff", "gated", "end_con", "end_coeff", "surcharge" ], "SUBAREAS" : [ "subcatchment_id", "n_imperv", "n_perv", "s_imperv", "s_perv", "pct_zero", "route_to" ], "NODES_STORAGE" : [ "storage_id", "elevation", "max_depth", "init_depth", "shape", "curve_name_params", "n_a", "f_evap" ], "NODES_OUTFALLS" : [ "outfall_id", "elevation", "type", # "stage_data", "gated", # "route_to" ], "NODES_JUNCTIONS" : [ "junction_id", "elevation", "max_depth", "init_depth", "sur_depth", "aponded" ], "INFILTRATION": [ "subcatchment_id", "max_rate", "min_rate", "decay", "dry_time", "max_infil", ], # "POLYGONS": [ # "subcatchment_id", # "x_coord", # "y_coord" # ], # "VERICES": [ # "link_id", # "x_coord", # "y_coord" # ], "PROPERTIES": [ "model_name", "model_version", "flow_units", "infiltration", "flow_routing", "link_offsets", "min_slope", "allow_ponding", "skip_steady_state", "start_date", "start_time", "report_start_date", "report_start_time", "end_date", "end_time", "sweep_start", "sweep_end", "report_step", "wet_step", "dry_step", "routing_step", "inertial_damping", "normal_flow_limited", "force_main_equation", "variable_step", "lengthening_step", "min_surfarea", "max_trials", "head_tolerance", "sys_flow", "lat_flow_tol", "minimum_step", "threads" ] } # dictionary to store data groups = {} # Definition of starting postiion of each element def group_start_line(model): with open(model, 'r') as inp: groups = {} count = 0 lines = inp.readlines() for line in lines: if ('[' in line) & (']' in line): groups.update({line[1:-2].lower() : {'start': count}}) count += 1 # subselection of elements from MODEL_ELEMENTS groups = {key:value for key,value in groups.items() if key in RELEVANT_GROUP_TYPES_INP} LINK_TYPES = ['orifices', 'conduits', 'weirs'] NODE_TYPES = ['outfalls', 'junctions', 'storage'] for key in [key for key in groups.keys() if key in LINK_TYPES]: groups['links_' + key] = groups.pop(key) for key in [key for key in groups.keys() if key in NODE_TYPES]: groups['nodes_' + key] = groups.pop(key) groups['nodes_coordinates'] = groups.pop('coordinates') return groups # adding header and skip-lines to elements dict def build_groups_dicts(model): groups = group_start_line(model) count = 0 for element, start_dict in groups.items(): start = start_dict['start'] with open(model, 'r') as inp: lines = inp.readlines() for index, line in enumerate(lines): if (index - start == 1) & (';;' in line) & (';;--' not in line): groups[element].update({'header':[col for col in re.split("\s\s+", line[2:-1]) if len(col) > 1]}) elif (index - start == 2) & (';;--------------' in line): groups[element].update({'line_to_skip': index}) elif (index - start == 3): break # some corrrections on header because of mismatches on inp file # groups['properties'].update({'header': MODEL_INP_COLS['PROPERTIES']}) groups['subcatchments'].update({'header': MODEL_INP_COLS['SUBCATCHMENTS']}) groups['subareas'].update({'header': MODEL_INP_COLS['SUBAREAS']}) groups['infiltration'].update({'header': MODEL_INP_COLS['INFILTRATION']}) groups['links_conduits'].update({'header': MODEL_INP_COLS['LINKS_CONDUITS']}) groups['links_weirs'].update({'header': MODEL_INP_COLS['LINKS_WEIRS']}) groups['links_orifices'].update({'header': MODEL_INP_COLS['LINKS_ORIFICES']}) groups['nodes_coordinates'].update({'header': MODEL_INP_COLS['NODES_COORDINATES']}) groups['nodes_outfalls'].update({'header': MODEL_INP_COLS['NODES_OUTFALLS']}) groups['nodes_storage'].update({'header': MODEL_INP_COLS['NODES_STORAGE']}) groups['nodes_junctions'].update({'header': MODEL_INP_COLS['NODES_JUNCTIONS']}) return groups # %% def list_files(directory, extension, prefix): return (f for f in listdir(directory) if (f.endswith('.' + extension)) & (f.startswith(prefix))) def raingages_meta_to_dfs(model, model_id): """ Read a .CSV into a Pandas DataFrame until a blank line is found, then stop. """ start = build_groups_dicts(model)['raingages']['start'] skip_rows = build_groups_dicts(model)['raingages']['line_to_skip'] header = ['raingage_id', 'format', 'interval', 'unit'] df = pd.DataFrame() with open(model, newline='') as f: contents = [] r = csv.reader(f) for i, line in enumerate(r): if i > start + 1: if i != skip_rows: if not line: break # elif i == start + 1: # headers = line else: formatted_line = [line[0].split()[0], line[0].split()[1], line[0].split()[2],line[0].split()[7]] contents.append(formatted_line) df = pd.DataFrame(data = contents, columns= header,) df['interval'] = df['interval'].map( lambda x: datetime.strptime(x, '%H:%M')) df.insert(0, 'precipitation_id', precipitation_id) print('raingages','df created!') return df def date_parser(line): year = line[0].split()[1] month = line[0].split()[2].zfill(2) day = line[0].split()[3].zfill(2) hour = line[0].split()[4].zfill(2) minute = line[0].split()[5].zfill(2) str_date = '-'.join([year, month, day, hour, minute] ) date_format = '%Y-%m-%d-%H-%M' return datetime.strptime(str_date, date_format) # %% def raingages_to_df(event_folder, event_id, model, model_id): contents = [] for file in list_files(event_folder, 'txt', 'P'): raingage_id = file.split('.')[0] with open(os.path.join(event_folder, file), newline='') as f: r = csv.reader(f) for i, line in enumerate(r): try: formatted_line = [ raingage_id, date_parser(line), line[0].split()[6] ] contents.append(formatted_line) except: print('error') df_timeseries = pd.DataFrame(data = contents, columns= ['raingage_id', 'elapsed_time', 'value']) df_timeseries.insert(0, 'precipitation_id', precipitation_id) df_metadata = raingages_meta_to_dfs(model, model_id) return df_metadata, df_timeseries # %% def load_raingages_to_db(event_folder, event_id, model, model_id): raingage_metadata, raingage_timeseries = raingages_to_df(event_folder, event_id, model, model_id) table_metadata = 'raingages_metadata' table_timeseries = 'raingages_timeseries' try: raingage_metadata.to_sql(table_metadata, engine_base_ina, index=False, if_exists='append') except Exception as e: print(e) try: raingage_timeseries.to_sql(table_timeseries, engine_base_ina, index=False, if_exists='append') except Exception as e: print(e) # def group_type_to_dfs(model, model_id, group, id_col, col_to_check, own_relevant__list, relevant_dependent_list): # """ Read a .CSV into a Pandas DataFrame until a blank line is found, then stop. # """ # start = build_groups_dicts(model)[group]['start'] # skip_rows = build_groups_dicts(model)[group]['line_to_skip'] # header = build_groups_dicts(model)[group]['header'] # global own_relevant__list # own_relevant_list = [] # df = pd.DataFrame() # with open(model, newline='') as f: # contents = [] # r = csv.reader(f) # for i, line in enumerate(r): # if i >= start + 1: # if i != skip_rows: # if not line: # break # # elif i == start + 1: # # headers = line # else: # if len(relevant_dependecy_list) == 0: # own_relevant__list.append(line[0].split()[id_col]) # contents.append(line[0].split()) # else: # if line[0].split()[col_to_check].lower() in relevant_dependent_list: # own_relevant__list.append(line[0].split()[id_col]) # contents.append(line[0].split()) # df = pd.DataFrame(data = contents, columns= [col.lower().replace("-", "_").replace("%", "").replace(" ", "_") for col in header],) # df.insert(0, 'model_id', model_id) # print(group,'df created!') # return df def conduits_to_dfs(model, model_id): """ Read a .CSV into a Pandas DataFrame until a blank line is found, then stop. """ start = build_groups_dicts(model)['links_conduits']['start'] skip_rows = build_groups_dicts(model)['links_conduits']['line_to_skip'] header = build_groups_dicts(model)['links_conduits']['header'] global RELEVANT_LINKS_CONDUITS RELEVANT_LINKS_CONDUITS = [] df = pd.DataFrame() with open(model, newline='') as f: contents = [] r = csv.reader(f) for i, line in enumerate(r): if i > start + 1: if i != skip_rows: if not line: break # elif i == start + 1: # headers = line else: if len(RELEVANT_LINKS) == 0: contents.append(line[0].split()) else: if line[0].split()[0].lower() in RELEVANT_LINKS: RELEVANT_LINKS_CONDUITS.append(line[0].split()[0]) contents.append(line[0].split()) df = pd.DataFrame(data = contents, columns= [col.lower().replace("-", "_").replace("%", "").replace(" ", "_") for col in header],) df.insert(0, 'model_id', model_id) print('conduits','df created!') return df def weirs_to_dfs(model, model_id): """ Read a .CSV into a Pandas DataFrame until a blank line is found, then stop. """ start = build_groups_dicts(model)['links_weirs']['start'] skip_rows = build_groups_dicts(model)['links_weirs']['line_to_skip'] header = build_groups_dicts(model)['links_weirs']['header'] global RELEVANT_LINKS_WEIRS RELEVANT_LINKS_WEIRS = [] df = pd.DataFrame() with open(model, newline='') as f: contents = [] r = csv.reader(f) for i, line in enumerate(r): if i > start + 1: if i != skip_rows: if not line: break # elif i == start + 1: # headers = line else: if len(RELEVANT_LINKS) == 0: contents.append(line[0].split()) else: if line[0].split()[0].lower() in RELEVANT_LINKS: RELEVANT_LINKS_WEIRS.append(line[0].split()[0]) contents.append(line[0].split()) df = pd.DataFrame(data = contents, columns= [col.lower().replace("-", "_").replace("%", "").replace(" ", "_") for col in header],) df.insert(0, 'model_id', model_id) print('weirs','df created!') return df def orifices_to_dfs(model, model_id): """ Read a .CSV into a Pandas DataFrame until a blank line is found, then stop. """ start = build_groups_dicts(model)['links_orifices']['start'] skip_rows = build_groups_dicts(model)['links_orifices']['line_to_skip'] header = build_groups_dicts(model)['links_orifices']['header'] global RELEVANT_LINKS_ORIFICES RELEVANT_LINKS_ORIFICES = [] df = pd.DataFrame() with open(model, newline='') as f: contents = [] r = csv.reader(f) for i, line in enumerate(r): if i > start + 1: if i != skip_rows: if not line: break # elif i == start + 1: # headers = line else: if len(RELEVANT_LINKS) == 0: contents.append(line[0].split()) else: if line[0].split()[0].lower() in RELEVANT_LINKS: RELEVANT_LINKS_ORIFICES.append(line[0].split()[0]) contents.append(line[0].split()) df = pd.DataFrame(data = contents, columns= [col.lower().replace("-", "_").replace("%", "").replace(" ", "_") for col in header],) df.insert(0, 'model_id', model_id) print('orifices','df created!') return df def get_nodes_from_links(model, model_id): conduits_df = conduits_to_dfs(model, model_id) orifices_df = orifices_to_dfs(model, model_id) weirs_df = weirs_to_dfs(model, model_id) links_dfs = [ conduits_df, orifices_df, weirs_df ] nodes = [] for df in links_dfs: for col in [col for col in df.columns if 'node' in col]: nodes += df[col].unique().tolist() return nodes #cambio de coordenadas def convert_coords(coord_tuple): transformer = pyproj.Transformer.from_crs(crs_from='epsg:' + epsg_modelo, crs_to='epsg:4326') lon, lat = transformer.transform(coord_tuple[0], coord_tuple[1]) return (lon,lat) def nodes_to_dfs(model, model_id): """ Read a .CSV into a Pandas DataFrame until a blank line is found, then stop. """ global RELEVANT_NODES RELEVANT_NODES = get_nodes_from_links(model, model_id) start = build_groups_dicts(model)['nodes_coordinates']['start'] skip_rows = build_groups_dicts(model)['nodes_coordinates']['line_to_skip'] header = build_groups_dicts(model)['nodes_coordinates']['header'] df = pd.DataFrame() with open(model, newline='') as f: contents = [] r = csv.reader(f) for i, line in enumerate(r): if i > start + 1: if i != skip_rows: if not line: break # elif (i == start + 1): # headers = line else: if len(RELEVANT_NODES) == 0: contents.append(line[0].split()) else: if line[0].split()[0] in RELEVANT_NODES: contents.append(line[0].split()) df = pd.DataFrame(data = contents, columns= [col.lower().replace("-", "_").replace("%", "").replace(" ", "_") for col in header],) df.insert(0, 'model_id', model_id) cols =['lat', 'lon'] coords = [] coordinates = [(j[0], j[1]) for i,j in df[['x_coord', 'y_coord']].iterrows()] pool = multiprocessing.Pool(8) coords.append(pool.map(convert_coords, coordinates)) pool.close() pool.join() # for i in df[['x_coord', 'y_coord']].iterrows(): # coords.append(convert_coords(i[1])) # from pyproj import Transformer # def convert_coords(coord_tuple): # global coords # transformer = Transformer.from_crs(crs_from='epsg:5348' , crs_to='epsg:4326') # lon, lat = transformer.transform(coord_tuple[0], coord_tuple[1]) # coords.append((lon, lat, coord_tuple[2])) # return coords # import concurrent.futures # coords = [] # with concurrent.futures.ProcessPoolExecutor(max_workers=8) as executor: # for result in executor.map(convert_coords, [(i[1], i[2], i[3]) for i in coordinates]): # pass # coords = result df = pd.concat([df, pd.DataFrame(coords[0], columns=cols)], axis=1) print('nodes','df created!') return df def outfalls_to_dfs(model, model_id): """ Read a .CSV into a Pandas DataFrame until a blank line is found, then stop. """ global RELEVANT_NODES RELEVANT_NODES = get_nodes_from_links(model, model_id) start = build_groups_dicts(model)['nodes_outfalls']['start'] skip_rows = build_groups_dicts(model)['nodes_outfalls']['line_to_skip'] header = build_groups_dicts(model)['nodes_outfalls']['header'] df =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import numpy as np import os import datetime import requests from tqdm import tqdm from collections import Counter import joblib import os # TODO: re-implement sucking data from the internet by checking for all days # and sucking only what it needs and put that in the load_data module # so it automatically happens whenever you load the data, rather # than having to manually do it here. ##### # Step 1: Update counts data ##### # from https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_daily_reports # # get today's date # yesterdays_date_str = (datetime.date.today() - datetime.timedelta(days=1)).strftime('%Y-%m-%d') # print(f'Yesterday: {yesterdays_date_str}') # yesterdays_date_str_for_JHU_data = (datetime.date.today() - datetime.timedelta(days=1)).strftime('%m-%d-%Y') # print(f'Yesterday: {yesterdays_date_str}') # # url = f"https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/{yesterdays_date_str_for_JHU_data}.csv" # r = requests.get(url, allow_redirects=True) # with open(f'source_data/csse_covid_19_daily_reports/{yesterdays_date_str_for_JHU_data}.csv', 'w') as f: # f.write(r.content.decode("utf-8")) if not os.path.exists('loaded_data'): os.mkdir('loaded_data') today_str = datetime.datetime.today().strftime('%Y-%m-%d') loaded_data_filename = os.path.join('loaded_data', today_str) + '.joblib' success = False try: print(f'Loading {loaded_data_filename}...') tmp_dict = joblib.load(loaded_data_filename) map_state_to_series = tmp_dict['map_state_to_series'] current_cases_ranked_us_states = tmp_dict['current_cases_ranked_us_states'] current_cases_ranked_non_us_states = tmp_dict['current_cases_ranked_non_us_states'] current_cases_ranked_non_us_provinces = tmp_dict['current_cases_ranked_non_us_provinces'] current_cases_ranked_us_counties = tmp_dict['current_cases_ranked_us_counties'] map_state_to_current_case_cnt = tmp_dict['map_state_to_current_case_cnt'] map_state_to_fips = tmp_dict['map_state_to_fips'] print('...done!') success = True except: print('...loading failed!') if not success: # don't download on the server if os.environ['PWD'] != '/home/data/src/covid_model': url = "https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-states.csv" r = requests.get(url, allow_redirects=True) with open('source_data/states.csv', 'w') as f: f.write(r.content.decode("utf-8")) url = "https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-counties.csv" r = requests.get(url, allow_redirects=True) with open('source_data/counties.csv', 'w') as f: f.write(r.content.decode("utf-8")) print('Downloading last month of data if not available') for days_back in tqdm(range(1, 28)): date = datetime.date.today() - datetime.timedelta(days=days_back) date_str = date.strftime('%m-%d-%Y') url = f"https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/{date_str}.csv" filename = f'source_data/csse_covid_19_daily_reports/{date_str}.csv' if not os.path.exists(filename): r = requests.get(url, allow_redirects=True) print(filename, len(r.content.decode("utf-8"))) with open(filename, 'w') as f: f.write(r.content.decode("utf-8")) ##### # Step 1: Get US Data States ##### print('Processing U.S. States...') data_dir = 'source_data' us_full_count_data = pd.read_csv(os.path.join(data_dir, 'states.csv')) # from https://github.com/nytimes/covid-19-data # curl https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-states.csv us_full_count_data['date'] = us_full_count_data['date'].astype('datetime64[ns]') us_full_count_data['state_orig'] = us_full_count_data['state'] us_full_count_data['state'] = [f'US: {us_full_count_data.iloc[i]["state"]}' for i in range(len(us_full_count_data))] us_full_count_data.rename(columns={'cases': 'positive', 'deaths': 'deceased'}, inplace=True) quick_grab_tuples = list( set(zip(*[us_full_count_data[col] for col in ['state', 'state_orig', 'fips']]))) map_state_to_fips = {tmp_tuple[0]: tmp_tuple[2] for tmp_tuple in quick_grab_tuples} us_full_count_data = us_full_count_data[['date', 'state', 'positive', 'deceased']] # get totals across U.S. list_of_dict_totals = list() for date in sorted(set(us_full_count_data['date'])): date_iloc = [i for i, x in enumerate(us_full_count_data['date']) if x == date] sum_cases = sum(us_full_count_data.iloc[date_iloc]['positive']) sum_deaths = sum(us_full_count_data.iloc[date_iloc]['deceased']) list_of_dict_totals.append({'date': date, 'positive': sum_cases, 'deceased': sum_deaths, 'state': 'US: total'}) us_total_counts_data = pd.DataFrame(list_of_dict_totals) us_full_count_data = us_full_count_data.append(us_total_counts_data, ignore_index=True) us_states = sorted(set(us_full_count_data['state'])) ##### # Step 1b: Get US Data Counties ##### print('Processing U.S. Counties...') data_dir = 'source_data' us_county_full_data = pd.read_csv(os.path.join(data_dir, 'counties.csv')) # from https://github.com/nytimes/covid-19-data # curl https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-states.csv us_county_full_data['date'] = us_county_full_data['date'].astype('datetime64[ns]') us_county_full_data['state_orig'] = us_county_full_data['state'] us_county_full_data['state'] = [ f'US: {state}: {county}' for state, county in zip(us_county_full_data['state'], us_county_full_data['county'])] quick_grab_tuples = list( set(zip(*[us_county_full_data[col] for col in ['state', 'state_orig', 'county', 'fips']]))) tmp_map_state_to_fips = {tmp_tuple[0]: tmp_tuple[3] for tmp_tuple in quick_grab_tuples} map_state_to_fips.update(tmp_map_state_to_fips) us_county_full_data.rename(columns={'cases': 'positive', 'deaths': 'deceased'}, inplace=True) us_county_full_data = us_county_full_data[['date', 'state', 'positive', 'deceased']] us_counties = sorted(set(us_county_full_data['state'])) us_full_count_data = pd.concat([us_full_count_data, us_county_full_data]) ###### # Step 2a: Get International Data Nations ###### print('Processing non-U.S. Nations...') data_dir = os.path.join('source_data', 'csse_covid_19_daily_reports') onlyfiles = [f for f in os.listdir(data_dir) if os.path.isfile(os.path.join(data_dir, f))] list_of_small_dataframes = list() for file in tqdm(sorted(onlyfiles)): if not file.endswith('.csv'): continue full_filename = os.path.join(data_dir, file) tmp_count_data = pd.read_csv(os.path.join(data_dir, file)) tmp_count_data.rename(columns={'Country_Region': 'Country/Region', 'Province_State': 'Province/State'}, inplace=True) print(f'processing file {full_filename} with {len(tmp_count_data)} rows...') tmp_count_data['date'] = datetime.datetime.strptime(file[:-4], '%m-%d-%Y') list_of_small_dataframes.append(tmp_count_data) # Filter out data associated with provinces full_count_data = pd.concat(list_of_small_dataframes) # null_provice_inds = [i for i, x in enumerate(full_count_data['Province/State']) if type(x) != str] # full_count_data = full_count_data.iloc[null_provice_inds] full_count_data = full_count_data.groupby(['date', 'Country/Region'])[['Confirmed', 'Deaths']].sum().reset_index() full_count_data.rename(columns={'Country/Region': 'state', 'Confirmed': 'positive', 'Deaths': 'deceased'}, inplace=True) # get totals across U.S. (again) # us_total_counts_data['state'] = 'United States' # full_count_data = full_count_data.append(us_total_counts_data, ignore_index=True) non_us_countries = sorted(set(full_count_data['state'])) full_count_data = pd.concat([full_count_data, us_full_count_data]) ###### # Step 2b: Get International Data Provinces ###### print('Processing non-U.S. Provinces...') data_dir = os.path.join('source_data', 'csse_covid_19_daily_reports') onlyfiles = [f for f in os.listdir(data_dir) if os.path.isfile(os.path.join(data_dir, f))] list_of_small_dataframes = list() for file in tqdm(sorted(onlyfiles)): if not file.endswith('.csv'): continue full_filename = os.path.join(data_dir, file) tmp_count_data = pd.read_csv(os.path.join(data_dir, file)) tmp_count_data.rename(columns={'Country_Region': 'Country/Region', 'Province_State': 'Province/State'}, inplace=True) print(f'processing file {full_filename} with {len(tmp_count_data)} rows...') tmp_count_data['date'] = datetime.datetime.strptime(file[:-4], '%m-%d-%Y') list_of_small_dataframes.append(tmp_count_data) # Filter out data associated with provinces province_full_data = pd.concat(list_of_small_dataframes) # null_provice_inds = [i for i, x in enumerate(full_count_data['Province/State']) if type(x) != str] # full_count_data = full_count_data.iloc[null_provice_inds] province_full_data = province_full_data.groupby(['date', 'Country/Region', 'Province/State'])[ ['Confirmed', 'Deaths']].sum().reset_index() province_full_data['state'] = [f'{country}: {province}' for country, province in zip(province_full_data['Country/Region'], province_full_data['Province/State'])] province_full_data.rename(columns={'Confirmed': 'positive', 'Deaths': 'deceased'}, inplace=True) # get totals across U.S. (again) # us_total_counts_data['state'] = 'United States' # full_count_data = full_count_data.append(us_total_counts_data, ignore_index=True) non_us_provinces = sorted(set(province_full_data['state'])) full_count_data = pd.concat([full_count_data, province_full_data]) ##### # Step 4: Further processing, rendering dictionaries ##### map_state_to_series = dict() max_date = max(full_count_data['date']) - datetime.timedelta(days=2) date_inds = [i for i, x in enumerate(full_count_data['date']) if x == max_date] today_data = full_count_data.iloc[date_inds] map_state_to_current_case_cnt = {state: cases for state, cases in zip(today_data['state'], today_data['positive'])} current_cases_ranked_us_states = sorted(us_states, key=lambda x: -map_state_to_current_case_cnt.get(x, 0)) current_cases_ranked_us_counties = sorted(us_counties, key=lambda x: -map_state_to_current_case_cnt.get(x, 0)) current_cases_ranked_non_us_states = sorted(non_us_countries, key=lambda x: -map_state_to_current_case_cnt.get(x, 0)) current_cases_ranked_non_us_provinces = sorted(non_us_provinces, key=lambda x: -map_state_to_current_case_cnt.get(x, 0)) # germany_inds = [i for i, x in enumerate(full_count_data['country']) if x == 'France'] # date_sorted_inds = sorted(germany_inds, key=lambda x: full_count_data.iloc[x]['date']) # full_count_data.iloc[date_sorted_inds[-10:]] # build reverse index for states, since this computaiton is expensive map_state_to_iloc = dict() for iloc, state in enumerate(full_count_data['state']): map_state_to_iloc.setdefault(state, list()).append(iloc) print('Processing states, counties, and provinces...') # data munging gets daily-differences differences by state for state in tqdm(sorted(set(full_count_data['state']))): state_iloc = map_state_to_iloc[state] state_iloc = sorted(state_iloc, key=lambda x: full_count_data.iloc[x]['date']) cases_series = pd.Series( {date: x for date, x in zip(full_count_data.iloc[state_iloc]['date'], full_count_data.iloc[state_iloc]['positive'])}) deaths_series = pd.Series( {date: x for date, x in zip(full_count_data.iloc[state_iloc]['date'], full_count_data.iloc[state_iloc]['deceased'])}) cases_series.index = pd.DatetimeIndex(cases_series.index) deaths_series.index =
pd.DatetimeIndex(deaths_series.index)
pandas.DatetimeIndex
import pandas as pd import numpy as np import pandas import csv import ast from sklearn.tree import DecisionTreeClassifier from sklearn.neural_network import MLPClassifier from sklearn.linear_model import LogisticRegression from sklearn import svm from sklearn.metrics import f1_score,confusion_matrix from sklearn.metrics import precision_score, recall_score, cohen_kappa_score , accuracy_score from sklearn.ensemble import BaggingClassifier from sklearn.ensemble import GradientBoostingClassifier,AdaBoostClassifier import pickle input_feat =[0,1,2,3,4,5,6,7,8] # input_feat = [0,1,2,3,4] # input_feat = [5,6,7,8] output_feat = [9] no_estimators=65 def is_valid_python_file(contents): try: ast.parse(contents) return True except SyntaxError: return False def mean(a): return sum(a)/len(a) def basic_model(df): train_x = df.iloc[:,input_feat] train_y = df.iloc[:,output_feat] train_x =train_x.values train_y =train_y.values # clf = MLPClassifier(solver='lbfgs' , alpha=1e-5,hidden_layer_sizes=(100,50,2), random_state=1).fit(train_x,train_y) # clf=svm.SVC(kernel='rbf').fit(train_x,train_y) clf=DecisionTreeClassifier().fit(train_x,train_y) # clf=LogisticRegression(solver='lbfgs') model = BaggingClassifier(base_estimator=clf, n_estimators=no_estimators, random_state=7) # model = AdaBoostClassifier(base_estimator=clf, n_estimators=no_estimators, learning_rate=5) model=model.fit(train_x,train_y) return model df1=pd.read_csv("MainTable.csv") df2=pd.read_csv("CodeState.csv") df_merged_code=pd.merge(df1,df2,on="CodeStateID") df_merged_code=df_merged_code.rename(columns={"Order" : "StartOrder"}) def add_features_basic(df_train): df_train = df_train.sort_values(by=['SubjectID']) prev_student = None p_prior_correct = [] p_prior_completed = [] prior_attempts = [] for index, rows in df_train.iterrows(): curr_student = rows['SubjectID'] if(prev_student != curr_student): attempts = 0 first_correct_attempts = 0 completed_attempts = 0 prev_student = curr_student if(attempts > 0): p_prior_correct.append(first_correct_attempts/attempts) p_prior_completed.append(completed_attempts/attempts) prior_attempts.append(attempts) else: p_prior_correct.append(1/2.0) p_prior_completed.append(1/2.0) prior_attempts.append(0) if(rows['FirstCorrect']==True): first_correct_attempts+=1 if(rows['EverCorrect']==True): completed_attempts+=1 attempts+=1 df_train['p_prior_correct'] = p_prior_correct df_train['p_prior_completed'] = p_prior_completed df_train['prior_attempts'] = prior_attempts is_syntax_error = [] has_fname_error=[] for index, rows in df_train.iterrows(): fname=rows["ProblemID"] if(df_train[index:index+1]['Code'].isna().sum()==1): is_syntax_error.append(True) continue x = is_valid_python_file(rows['Code']) if(x == False): is_syntax_error.append(True) else: is_syntax_error.append(False) df_train['is_syntax_error'] = is_syntax_error is_semantic_error = [] for index, rows in df_train.iterrows(): if(rows['is_syntax_error'] == True): is_semantic_error.append('NA') elif(rows['is_syntax_error'] == False and rows['Correct'] == False): is_semantic_error.append(True) else: is_semantic_error.append(False) df_train['is_semantic_error'] = is_semantic_error df_train=df_train.sort_values(["SubjectID"]) prev_student = None p_syntax_errors = [] p_semantic_errors = [] for index, rows in df_train.iterrows(): curr_student = rows['SubjectID'] if(prev_student != curr_student): num_syntax_errors = 0 num_semantic_errors = 0 total_attempts = 0 prev_student = curr_student if(total_attempts == 0): p_syntax_errors.append(1.0/3) p_semantic_errors.append(1.0/3) if(rows['is_syntax_error'] == True): num_syntax_errors = num_syntax_errors + 1 if(rows['is_semantic_error'] == True): num_semantic_errors=num_semantic_errors + 1 total_attempts+=1 else: p_semantic_errors.append(num_semantic_errors/total_attempts) p_syntax_errors.append(num_syntax_errors/total_attempts) if(rows['is_syntax_error'] == True): num_syntax_errors = num_syntax_errors + 1 if(rows['is_semantic_error'] == True): num_semantic_errors=num_semantic_errors + 1 total_attempts+=1 df_train['pSubjectSyntaxErrors'] = p_syntax_errors df_train['pSubjectSemanticErrors'] = p_semantic_errors return df_train accuracy_list=[] f1_score_list=[] precision_score_list=[] kappa_score_list=[] recall_score_list=[] tp=[] fp=[] fn=[] tn=[] frames=[] for i in range(10): print("Fold=\t",i) print("\n") df_train=pd.read_csv("CV/Fold"+ str(i) + "/Training.csv") df_test =pd.read_csv("CV/Fold" + str(i) + "/Test.csv") df_train=pd.merge(df_merged_code,df_train,on=["StartOrder","SubjectID","ProblemID"]) df_test=pd.merge(df_merged_code,df_test,on=["StartOrder","SubjectID","ProblemID"]) df_train = df_train.replace(np.nan, '', regex=True) df_test = df_test.replace(np.nan, '', regex=True) df_pcorrect=df_train.groupby("ProblemID",as_index=False)["FirstCorrect"].mean() df_pcorrect=df_pcorrect.rename(columns={"FirstCorrect" : "Pcorrectforproblem"}) df_train=pd.merge(df_pcorrect,df_train,on=["ProblemID"]) df_pmedian = df_train.groupby("ProblemID",as_index=False)["Attempts"].median() df_pmedian=df_pmedian.rename(columns = {"Attempts" : "Pmedian" }) df_train=pd.merge(df_pmedian,df_train,on=["ProblemID"]) df_train=add_features_basic(df_train) df_test = add_features_basic(df_test) c = [] dic = {} for index, rows in df_train.iterrows(): _id = rows['ProblemID'] if(_id in dic.keys()): c.append(dic[_id]) else: d = df_train[df_train['ProblemID']==_id] f = len(d[d['is_semantic_error']==True].index) t = len(d.index) dic[_id] = (f*1.0)/t c.append((f*1.0)/t) df_train['pProblemSemanticError'] = c df_prob_synt=df_train.groupby("ProblemID",as_index=False)["is_syntax_error"].mean() df_prob_synt=df_prob_synt.rename(columns={"is_syntax_error" : "Prob_synt"}) df_train=
pd.merge(df_prob_synt,df_train,on=["ProblemID"])
pandas.merge
import sys import os import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy as sp import pylab from matplotlib import colors, colorbar from scipy import cluster #import rpy2 #import rpy2.robjects as robjects #from rpy2.robjects.packages import importr from tqdm import tqdm #from rpy2.robjects import r, numpy2ri import time import yaml import networkx as nx import argparse sys.setrecursionlimit(10000) from . import lineageGroup_utils as lg_utils import warnings warnings.simplefilter(action='ignore', category=FutureWarning) # NOTE: NEED PANDAS >= 0.22.0 def create_output_dir(outputdir = None): """ A simple function to create an output directory to store important logging information, as well as important figures for qc """ if outputdir is None: i = 1 outputdir = "output" + str(i) while os.path.exists(os.path.dirname(outputdir)): i += 1 outputdir = "output" + str(i) if not os.path.exists(outputdir): os.makedirs(outputdir) with open(outputdir + "/lglog.txt", "w") as f: f.write("LINEAGE GROUP OUTPUT LOG:\n") return outputdir def findTopLG(PIVOT_in, iteration, outputdir, min_intbc_prop = 0.2, kinship_thresh=0.2): # calculate sum of observed intBCs, identify top intBC intBC_sums = PIVOT_in.sum(0).sort_values(ascending=False) ordered_intBCs = intBC_sums.index.tolist() intBC_top = intBC_sums.index[0] # take subset of PIVOT table that contain cells that have the top intBC subPIVOT_in = PIVOT_in[PIVOT_in[intBC_top]>0] subPIVOT_in_sums = subPIVOT_in.sum(0) ordered_intBCs2 = subPIVOT_in_sums.sort_values(ascending=False).index.tolist() subPIVOT_in = subPIVOT_in[ordered_intBCs2] # binarize subPIVOT_in[subPIVOT_in>0]=1 # Define intBC set subPIVOT_in_sums2 = subPIVOT_in.sum(0) total = subPIVOT_in_sums2[intBC_top] intBC_sums_filt = subPIVOT_in_sums2[subPIVOT_in_sums2>=min_intbc_prop*total] # Reduce PIV to only intBCs considered in set intBC_set = intBC_sums_filt.index.tolist() PIV_set = PIVOT_in.iloc[:,PIVOT_in.columns.isin(intBC_set)] # Calculate fraction of UMIs within intBC_set ("kinship") for each cell in PIV_set f_inset = PIV_set.sum(axis=1) # define set of cells with good kinship f_inset_filt = f_inset[f_inset>=kinship_thresh] LG_cells = f_inset_filt.index.tolist() # Return updated PIV with LG_cells removed PIV_noLG = PIVOT_in.iloc[~PIVOT_in.index.isin(LG_cells),:] # Return PIV with LG_cells assigned PIV_LG = PIVOT_in.iloc[PIVOT_in.index.isin(LG_cells),:] PIV_LG["lineageGrp"]= iteration+1 with open(outputdir + "/lglog.txt", "a") as f: # print statements f.write("LG"+str(iteration+1)+" Assignment: " + str(PIV_LG.shape[0]) + " cells assigned\n") # Plot distribution of kinship scores h4 = plt.figure(figsize=(15,10)) ax4 = plt.hist(f_inset, bins=49, alpha=0.5, histtype='step') yax4 = plt.yscale('log', basey=10) plt.savefig(outputdir + "/kinship_scores.png") return PIV_LG, PIV_noLG, intBC_set def iterative_lg_assign(pivot_in, min_clust_size, outputdir, min_intbc_thresh=0.2, kinship_thresh=0.2): ## Run LG Assign function # initiate output variables PIV_assigned = pd.DataFrame() master_intBC_list = [] # Loop for iteratively assigning LGs prev_clust_size = np.inf i = 0 while prev_clust_size > min_clust_size: # run function PIV_outs = findTopLG(pivot_in, i, outputdir, min_intbc_prop=min_intbc_thresh, kinship_thresh=kinship_thresh) # parse returned objects PIV_LG = PIV_outs[0] PIV_noLG = PIV_outs[1] intBC_set_i = PIV_outs[2] # append returned objects to output variables PIV_assigned = PIV_assigned.append(PIV_LG) master_intBC_list.append(intBC_set_i) # update PIVOT-in pivot_in = PIV_noLG prev_clust_size = PIV_LG.shape[0] i += 1 return PIV_assigned, master_intBC_list def get_lg_group(df, piv, curr_LG): lg_group = df[df["lineageGrp"] == curr_LG] cells = np.unique(lg_group["cellBC"]) lg_pivot = piv.loc[cells] props = lg_pivot.apply(lambda x: pylab.sum(x) / len(x)).to_frame().reset_index() props.columns = ["iBC", "prop"] props = props.sort_values(by="prop", ascending=False) props.index = props["iBC"] return lg_group, props def rand_cmap(nlabels, type='bright', first_color_black=True, last_color_black=False, verbose=True): """ Creates a random colormap to be used together with matplotlib. Useful for segmentation tasks :param nlabels: Number of labels (size of colormap) :param type: 'bright' for strong colors, 'soft' for pastel colors :param first_color_black: Option to use first color as black, True or False :param last_color_black: Option to use last color as black, True or False :param verbose: Prints the number of labels and shows the colormap. True or False :return: colormap for matplotlib """ from matplotlib.colors import LinearSegmentedColormap import colorsys if type not in ('bright', 'soft'): print ('Please choose "bright" or "soft" for type') return if verbose: print('Number of labels: ' + str(nlabels)) # Generate color map for bright colors, based on hsv if type == 'bright': randHSVcolors = [(np.random.uniform(low=0.0, high=1), np.random.uniform(low=0.2, high=1), np.random.uniform(low=0.9, high=1)) for i in range(nlabels)] # Convert HSV list to RGB randRGBcolors = [] for HSVcolor in randHSVcolors: randRGBcolors.append(colorsys.hsv_to_rgb(HSVcolor[0], HSVcolor[1], HSVcolor[2])) if first_color_black: randRGBcolors[0] = [0, 0, 0] if last_color_black: randRGBcolors[-1] = [0, 0, 0] random_colormap = LinearSegmentedColormap.from_list('new_map', randRGBcolors, N=nlabels) # Generate soft pastel colors, by limiting the RGB spectrum if type == 'soft': low = 0.6 high = 0.95 randRGBcolors = [(np.random.uniform(low=low, high=high), np.random.uniform(low=low, high=high), np.random.uniform(low=low, high=high)) for i in range(nlabels)] if first_color_black: randRGBcolors[0] = [0, 0, 0] if last_color_black: randRGBcolors[-1] = [0, 0, 0] random_colormap = LinearSegmentedColormap.from_list('new_map', randRGBcolors, N=nlabels) # Display colorbar if verbose: from matplotlib import colors, colorbar from matplotlib import pyplot as plt fig, ax = plt.subplots(1, 1, figsize=(15, 0.5)) bounds = np.linspace(0, nlabels, nlabels + 1) norm = colors.BoundaryNorm(bounds, nlabels) cb = colorbar.ColorbarBase(ax, cmap=random_colormap, norm=norm, spacing='proportional', ticks=None, boundaries=bounds, format='%1i', orientation=u'horizontal') return random_colormap def assign_lineage_groups(dfMT, max_kinship_LG, master_intBCs): """ Assign cells in the allele table to a lineage group :param alleletable: allele table :param ind1: clusterings :param df_pivot_I: binary pivot table relating cell BC to integration BC :return: allele table with lineage group assignments """ dfMT["lineageGrp"]=0 cellBC2LG = {} for n in max_kinship_LG.index: cellBC2LG[n] = max_kinship_LG.loc[n, "lineageGrp"] dfMT["lineageGrp"] = dfMT["cellBC"].map(cellBC2LG) dfMT["lineageGrp"] = dfMT["lineageGrp"].fillna(value=0) lg_sizes = {} rename_lg = {} for n, g in dfMT.groupby(["lineageGrp"]): if n != 0: lg_sizes[n] = len(g["cellBC"].unique()) sorted_by_value = sorted(lg_sizes.items(), key = lambda kv: kv[1])[::-1] for i, tup in zip(range(1, len(sorted_by_value)+1), sorted_by_value): print(i, tup[0], float(i)) rename_lg[tup[0]] = float(i) rename_lg[0] = 0.0 dfMT["lineageGrp"] = dfMT.apply(lambda x: rename_lg[x.lineageGrp], axis=1) return dfMT def plot_overlap_heatmap(at_pivot_I, at, outputdir): # remove old plots plt.close() flat_master = [] for n, lg in at.groupby("lineageGrp"): for item in lg["intBC"].unique(): flat_master.append(item) at_pivot_I = at_pivot_I[flat_master] h2 = plt.figure(figsize=(20,20)) axmat2 = h2.add_axes([0.3,0.1,0.6,0.8]) im2 = axmat2.matshow(at_pivot_I, aspect='auto', origin='upper') plt.savefig(outputdir + "/clustered_intbc.png") plt.close() def add_cutsite_encoding(lg_group): lg_group["s1"] = 0 lg_group["s2"] = 0 lg_group["s3"] = 0 for i in lg_group.index: if lg_group.loc[i, "r1"] == "['None']": lg_group.loc[i, "s1"] = .9 elif "D" in lg_group.loc[i, "r1"]: lg_group.loc[i, "s1"] = 1.9 elif 'I' in lg_group.loc[i, "r1"]: lg_group.loc[i, 's1'] = 2.9 if lg_group.loc[i, "r2"] == "['None']": lg_group.loc[i, "s2"] = .9 elif "D" in lg_group.loc[i, "r2"]: lg_group.loc[i, "s2"] = 1.9 elif 'I' in lg_group.loc[i, "r2"]: lg_group.loc[i, 's2'] = 2.9 if lg_group.loc[i, "r3"] == "['None']": lg_group.loc[i, "s3"] = .9 elif "D" in lg_group.loc[i, "r3"]: lg_group.loc[i, "s3"] = 1.9 elif 'I' in lg_group.loc[i, "r3"]: lg_group.loc[i, 's3'] = 2.9 return lg_group def plot_overlap_heatmap_lg(at, at_pivot_I, outputdir): if not os.path.exists(outputdir + "/lineageGrp_piv_heatmaps"): os.makedirs(outputdir + "/lineageGrp_piv_heatmaps") for n, lg_group in tqdm(at.groupby("lineageGrp")): plt.close() lg_group = add_cutsite_encoding(lg_group) s_cmap = colors.ListedColormap(['grey', 'red', 'blue'], N=3) lg_group_pivot = pd.pivot_table(lg_group, index=["cellBC"], columns=["intBC"], values=['s1', 's2', 's3'], aggfunc=pylab.mean).T lg_group_pivot2 = pd.pivot_table(lg_group,index=['cellBC'],columns=['intBC'],values='UMI',aggfunc=pylab.size) cell_umi_count = lg_group.groupby(["cellBC"]).agg({"UMI": "count"}).sort_values(by="UMI") n_unique_alleles = lg_group.groupby(["intBC"]).agg({"r1": "nunique", "r2": "nunique", "r3": "nunique"}) cellBCList = lg_group["cellBC"].unique() col_order = lg_group_pivot2.dropna(axis=1, how="all").sum().sort_values(ascending=False,inplace=False).index if len(col_order) < 2: continue s3 = lg_group_pivot.unstack(level=0).T s3 = s3[col_order] s3 = s3.T.stack(level=1).T s3 = s3.loc[cell_umi_count.index] s3_2 = lg_group_pivot2.dropna(axis=1, how="all").sum().sort_values(ascending=False, inplace=False)[col_order] n_unique_alleles = n_unique_alleles.loc[col_order] s3_intBCs = col_order s3_cellBCs = s3.index.tolist() # Plot heatmap h = plt.figure(figsize=(14,10)) ax = h.add_axes([0.3, 0.1, 0.6, 0.8],frame_on=True) im = ax.matshow(s3, aspect='auto', origin ="lower", cmap=s_cmap) axx1 = plt.xticks(range(1, len(col_order)*3, 3), col_order, rotation='vertical', family="monospace") ax3 = h.add_axes([0.2, 0.1, 0.1, 0.8], frame_on=True) plt.barh(range(s3.shape[0]), cell_umi_count["UMI"]) plt.ylim([0, s3.shape[0]]) ax3.autoscale(tight=True) axy0 = ax3.set_yticks(range(len(s3_cellBCs))) axy1 = ax3.set_yticklabels(s3_cellBCs, family='monospace') w = (1/3) x = np.arange(len(s3_intBCs)) ax2 = h.add_axes([0.3, 0, 0.6, 0.1], frame_on = False) b1 = ax2.bar(x - w, n_unique_alleles["r1"], width = w, label="r1") b2 = ax2.bar(x, n_unique_alleles["r2"], width = w, label="r2") b3 = ax2.bar(x + w, n_unique_alleles["r3"], width = w, label='r3') ax2.set_xlim([0, len(s3_intBCs)]) ax2.set_ylim(ymin=0, ymax=(max(n_unique_alleles["r1"].max(), n_unique_alleles["r2"].max(), n_unique_alleles["r3"].max()) + 10)) ax2.set_xticks([]) ax2.yaxis.tick_right() ax2.invert_yaxis() ax2.autoscale(tight=True) plt.legend() #plt.gcf().subplots_adjust(bottom=0.15) plt.tight_layout() plt.savefig(outputdir + "/lineageGrp_piv_heatmaps/lg_" + str(int(n)) + "_piv_heatmap.png") plt.close() def collectAlleles(at, thresh = 0.05): lineageGrps = at["lineageGrp"].unique() at_piv =
pd.pivot_table(at, index="cellBC", columns="intBC", values="UMI", aggfunc="count")
pandas.pivot_table
import inspect import os import datetime from collections import OrderedDict import numpy as np from numpy import nan, array import pandas as pd import pytest from pandas.util.testing import assert_series_equal, assert_frame_equal from numpy.testing import assert_allclose from pvlib import tmy from pvlib import pvsystem from pvlib import clearsky from pvlib import irradiance from pvlib import atmosphere from pvlib import solarposition from pvlib.location import Location from conftest import needs_numpy_1_10, requires_scipy latitude = 32.2 longitude = -111 tus = Location(latitude, longitude, 'US/Arizona', 700, 'Tucson') times = pd.date_range(start=datetime.datetime(2014,1,1), end=datetime.datetime(2014,1,2), freq='1Min') ephem_data = solarposition.get_solarposition(times, latitude=latitude, longitude=longitude, method='nrel_numpy') am = atmosphere.relativeairmass(ephem_data.apparent_zenith) irrad_data = clearsky.ineichen(ephem_data['apparent_zenith'], am, linke_turbidity=3) aoi = irradiance.aoi(0, 0, ephem_data['apparent_zenith'], ephem_data['azimuth']) meta = {'latitude': 37.8, 'longitude': -122.3, 'altitude': 10, 'Name': 'Oakland', 'State': 'CA', 'TZ': -8} pvlib_abspath = os.path.dirname(os.path.abspath(inspect.getfile(tmy))) tmy3_testfile = os.path.join(pvlib_abspath, 'data', '703165TY.csv') tmy2_testfile = os.path.join(pvlib_abspath, 'data', '12839.tm2') tmy3_data, tmy3_metadata = tmy.readtmy3(tmy3_testfile) tmy2_data, tmy2_metadata = tmy.readtmy2(tmy2_testfile) def test_systemdef_tmy3(): expected = {'tz': -9.0, 'albedo': 0.1, 'altitude': 7.0, 'latitude': 55.317, 'longitude': -160.517, 'name': '"SAND POINT"', 'strings_per_inverter': 5, 'modules_per_string': 5, 'surface_azimuth': 0, 'surface_tilt': 0} assert expected == pvsystem.systemdef(tmy3_metadata, 0, 0, .1, 5, 5) def test_systemdef_tmy2(): expected = {'tz': -5, 'albedo': 0.1, 'altitude': 2.0, 'latitude': 25.8, 'longitude': -80.26666666666667, 'name': 'MIAMI', 'strings_per_inverter': 5, 'modules_per_string': 5, 'surface_azimuth': 0, 'surface_tilt': 0} assert expected == pvsystem.systemdef(tmy2_metadata, 0, 0, .1, 5, 5) def test_systemdef_dict(): expected = {'tz': -8, ## Note that TZ is float, but Location sets tz as string 'albedo': 0.1, 'altitude': 10, 'latitude': 37.8, 'longitude': -122.3, 'name': 'Oakland', 'strings_per_inverter': 5, 'modules_per_string': 5, 'surface_azimuth': 0, 'surface_tilt': 5} assert expected == pvsystem.systemdef(meta, 5, 0, .1, 5, 5) @needs_numpy_1_10 def test_ashraeiam(): thetas = np.linspace(-90, 90, 9) iam = pvsystem.ashraeiam(thetas, .05) expected = np.array([ nan, 0.9193437 , 0.97928932, 0.99588039, 1. , 0.99588039, 0.97928932, 0.9193437 , nan]) assert_allclose(iam, expected, equal_nan=True) @needs_numpy_1_10 def test_PVSystem_ashraeiam(): module_parameters = pd.Series({'b': 0.05}) system = pvsystem.PVSystem(module_parameters=module_parameters) thetas = np.linspace(-90, 90, 9) iam = system.ashraeiam(thetas) expected = np.array([ nan, 0.9193437 , 0.97928932, 0.99588039, 1. , 0.99588039, 0.97928932, 0.9193437 , nan]) assert_allclose(iam, expected, equal_nan=True) @needs_numpy_1_10 def test_physicaliam(): thetas = np.linspace(-90, 90, 9) iam = pvsystem.physicaliam(thetas, 1.526, 0.002, 4) expected = np.array([ nan, 0.8893998 , 0.98797788, 0.99926198, nan, 0.99926198, 0.98797788, 0.8893998 , nan]) assert_allclose(iam, expected, equal_nan=True) @needs_numpy_1_10 def test_PVSystem_physicaliam(): module_parameters = pd.Series({'K': 4, 'L': 0.002, 'n': 1.526}) system = pvsystem.PVSystem(module_parameters=module_parameters) thetas = np.linspace(-90, 90, 9) iam = system.physicaliam(thetas) expected = np.array([ nan, 0.8893998 , 0.98797788, 0.99926198, nan, 0.99926198, 0.98797788, 0.8893998 , nan]) assert_allclose(iam, expected, equal_nan=True) # if this completes successfully we'll be able to do more tests below. @pytest.fixture(scope="session") def sam_data(): data = {} data['cecmod'] = pvsystem.retrieve_sam('cecmod') data['sandiamod'] = pvsystem.retrieve_sam('sandiamod') data['cecinverter'] = pvsystem.retrieve_sam('cecinverter') return data @pytest.fixture(scope="session") def sapm_module_params(sam_data): modules = sam_data['sandiamod'] module = 'Canadian_Solar_CS5P_220M___2009_' module_parameters = modules[module] return module_parameters @pytest.fixture(scope="session") def cec_module_params(sam_data): modules = sam_data['cecmod'] module = 'Example_Module' module_parameters = modules[module] return module_parameters def test_sapm(sapm_module_params): times = pd.DatetimeIndex(start='2015-01-01', periods=5, freq='12H') effective_irradiance = pd.Series([-1, 0.5, 1.1, np.nan, 1], index=times) temp_cell = pd.Series([10, 25, 50, 25, np.nan], index=times) out = pvsystem.sapm(effective_irradiance, temp_cell, sapm_module_params) expected = pd.DataFrame(np.array( [[ -5.0608322 , -4.65037767, nan, nan, nan, -4.91119927, -4.15367716], [ 2.545575 , 2.28773882, 56.86182059, 47.21121608, 108.00693168, 2.48357383, 1.71782772], [ 5.65584763, 5.01709903, 54.1943277 , 42.51861718, 213.32011294, 5.52987899, 3.48660728], [ nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan]]), columns=['i_sc', 'i_mp', 'v_oc', 'v_mp', 'p_mp', 'i_x', 'i_xx'], index=times) assert_frame_equal(out, expected, check_less_precise=4) out = pvsystem.sapm(1, 25, sapm_module_params) expected = OrderedDict() expected['i_sc'] = 5.09115 expected['i_mp'] = 4.5462909092579995 expected['v_oc'] = 59.260800000000003 expected['v_mp'] = 48.315600000000003 expected['p_mp'] = 219.65677305534581 expected['i_x'] = 4.9759899999999995 expected['i_xx'] = 3.1880204359100004 for k, v in expected.items(): assert_allclose(out[k], v, atol=1e-4) # just make sure it works with a dict input pvsystem.sapm(effective_irradiance, temp_cell, sapm_module_params.to_dict()) def test_PVSystem_sapm(sapm_module_params): system = pvsystem.PVSystem(module_parameters=sapm_module_params) times = pd.DatetimeIndex(start='2015-01-01', periods=5, freq='12H') effective_irradiance = pd.Series([-1, 0.5, 1.1, np.nan, 1], index=times) temp_cell = pd.Series([10, 25, 50, 25, np.nan], index=times) out = system.sapm(effective_irradiance, temp_cell) @pytest.mark.parametrize('airmass,expected', [ (1.5, 1.00028714375), (np.array([[10, np.nan]]), np.array([[0.999535, 0]])), (pd.Series([5]), pd.Series([1.0387675])) ]) def test_sapm_spectral_loss(sapm_module_params, airmass, expected): out = pvsystem.sapm_spectral_loss(airmass, sapm_module_params) if isinstance(airmass, pd.Series): assert_series_equal(out, expected, check_less_precise=4) else: assert_allclose(out, expected, atol=1e-4) def test_PVSystem_sapm_spectral_loss(sapm_module_params): system = pvsystem.PVSystem(module_parameters=sapm_module_params) times = pd.DatetimeIndex(start='2015-01-01', periods=2, freq='12H') airmass = pd.Series([1, 10], index=times) out = system.sapm_spectral_loss(airmass) @pytest.mark.parametrize('aoi,expected', [ (45, 0.9975036250000002), (np.array([[-30, 30, 100, np.nan]]), np.array([[np.nan, 1.007572, 0, np.nan]])), (pd.Series([80]), pd.Series([0.597472])) ]) def test_sapm_aoi_loss(sapm_module_params, aoi, expected): out = pvsystem.sapm_aoi_loss(aoi, sapm_module_params) if isinstance(aoi, pd.Series): assert_series_equal(out, expected, check_less_precise=4) else: assert_allclose(out, expected, atol=1e-4) def test_sapm_aoi_loss_limits(): module_parameters = {'B0': 5, 'B1': 0, 'B2': 0, 'B3': 0, 'B4': 0, 'B5': 0} assert pvsystem.sapm_aoi_loss(1, module_parameters) == 5 module_parameters = {'B0': 5, 'B1': 0, 'B2': 0, 'B3': 0, 'B4': 0, 'B5': 0} assert pvsystem.sapm_aoi_loss(1, module_parameters, upper=1) == 1 module_parameters = {'B0': -5, 'B1': 0, 'B2': 0, 'B3': 0, 'B4': 0, 'B5': 0} assert pvsystem.sapm_aoi_loss(1, module_parameters) == 0 def test_PVSystem_sapm_aoi_loss(sapm_module_params): system = pvsystem.PVSystem(module_parameters=sapm_module_params) times = pd.DatetimeIndex(start='2015-01-01', periods=2, freq='12H') aoi = pd.Series([45, 10], index=times) out = system.sapm_aoi_loss(aoi) @pytest.mark.parametrize('test_input,expected', [ ([1000, 100, 5, 45, 1000], 1.1400510967821877), ([np.array([np.nan, 1000, 1000]), np.array([100, np.nan, 100]), np.array([1.1, 1.1, 1.1]), np.array([10, 10, 10]), 1000], np.array([np.nan, np.nan, 1.081157])), ([pd.Series([1000]), pd.Series([100]), pd.Series([1.1]),
pd.Series([10])
pandas.Series
import datetime from collections import OrderedDict import warnings import numpy as np from numpy import array, nan import pandas as pd import pytest from numpy.testing import assert_almost_equal, assert_allclose from conftest import assert_frame_equal, assert_series_equal from pvlib import irradiance from conftest import requires_ephem, requires_numba # fixtures create realistic test input data # test input data generated at Location(32.2, -111, 'US/Arizona', 700) # test input data is hard coded to avoid dependencies on other parts of pvlib @pytest.fixture def times(): # must include night values return pd.date_range(start='20140624', freq='6H', periods=4, tz='US/Arizona') @pytest.fixture def irrad_data(times): return pd.DataFrame(np.array( [[ 0. , 0. , 0. ], [ 79.73860422, 316.1949056 , 40.46149818], [1042.48031487, 939.95469881, 118.45831879], [ 257.20751138, 646.22886049, 62.03376265]]), columns=['ghi', 'dni', 'dhi'], index=times) @pytest.fixture def ephem_data(times): return pd.DataFrame(np.array( [[124.0390863 , 124.0390863 , -34.0390863 , -34.0390863 , 352.69550699, -2.36677158], [ 82.85457044, 82.97705621, 7.14542956, 7.02294379, 66.71410338, -2.42072165], [ 10.56413562, 10.56725766, 79.43586438, 79.43274234, 144.76567754, -2.47457321], [ 72.41687122, 72.46903556, 17.58312878, 17.53096444, 287.04104128, -2.52831909]]), columns=['apparent_zenith', 'zenith', 'apparent_elevation', 'elevation', 'azimuth', 'equation_of_time'], index=times) @pytest.fixture def dni_et(times): return np.array( [1321.1655834833093, 1321.1655834833093, 1321.1655834833093, 1321.1655834833093]) @pytest.fixture def relative_airmass(times): return pd.Series([np.nan, 7.58831596, 1.01688136, 3.27930443], times) # setup for et rad test. put it here for readability timestamp = pd.Timestamp('20161026') dt_index = pd.DatetimeIndex([timestamp]) doy = timestamp.dayofyear dt_date = timestamp.date() dt_datetime = datetime.datetime.combine(dt_date, datetime.time(0)) dt_np64 = np.datetime64(dt_datetime) value = 1383.636203 @pytest.mark.parametrize('testval, expected', [ (doy, value), (np.float64(doy), value), (dt_date, value), (dt_datetime, value), (dt_np64, value), (np.array([doy]), np.array([value])), (pd.Series([doy]), np.array([value])), (dt_index, pd.Series([value], index=dt_index)), (timestamp, value) ]) @pytest.mark.parametrize('method', [ 'asce', 'spencer', 'nrel', pytest.param('pyephem', marks=requires_ephem)]) def test_get_extra_radiation(testval, expected, method): out = irradiance.get_extra_radiation(testval, method=method) assert_allclose(out, expected, atol=10) def test_get_extra_radiation_epoch_year(): out = irradiance.get_extra_radiation(doy, method='nrel', epoch_year=2012) assert_allclose(out, 1382.4926804890767, atol=0.1) @requires_numba def test_get_extra_radiation_nrel_numba(times): with warnings.catch_warnings(): # don't warn on method reload or num threads warnings.simplefilter("ignore") result = irradiance.get_extra_radiation( times, method='nrel', how='numba', numthreads=4) # and reset to no-numba state irradiance.get_extra_radiation(times, method='nrel') assert_allclose(result, [1322.332316, 1322.296282, 1322.261205, 1322.227091]) def test_get_extra_radiation_invalid(): with pytest.raises(ValueError): irradiance.get_extra_radiation(300, method='invalid') def test_grounddiffuse_simple_float(): result = irradiance.get_ground_diffuse(40, 900) assert_allclose(result, 26.32000014911496) def test_grounddiffuse_simple_series(irrad_data): ground_irrad = irradiance.get_ground_diffuse(40, irrad_data['ghi']) assert ground_irrad.name == 'diffuse_ground' def test_grounddiffuse_albedo_0(irrad_data): ground_irrad = irradiance.get_ground_diffuse( 40, irrad_data['ghi'], albedo=0) assert 0 == ground_irrad.all() def test_grounddiffuse_albedo_invalid_surface(irrad_data): with pytest.raises(KeyError): irradiance.get_ground_diffuse( 40, irrad_data['ghi'], surface_type='invalid') def test_grounddiffuse_albedo_surface(irrad_data): result = irradiance.get_ground_diffuse(40, irrad_data['ghi'], surface_type='sand') assert_allclose(result, [0, 3.731058, 48.778813, 12.035025], atol=1e-4) def test_isotropic_float(): result = irradiance.isotropic(40, 100) assert_allclose(result, 88.30222215594891) def test_isotropic_series(irrad_data): result = irradiance.isotropic(40, irrad_data['dhi']) assert_allclose(result, [0, 35.728402, 104.601328, 54.777191], atol=1e-4) def test_klucher_series_float(): # klucher inputs surface_tilt, surface_azimuth = 40.0, 180.0 dhi, ghi = 100.0, 900.0 solar_zenith, solar_azimuth = 20.0, 180.0 # expect same result for floats and pd.Series expected = irradiance.klucher( surface_tilt, surface_azimuth, pd.Series(dhi), pd.Series(ghi), pd.Series(solar_zenith), pd.Series(solar_azimuth) ) # 94.99429931664851 result = irradiance.klucher( surface_tilt, surface_azimuth, dhi, ghi, solar_zenith, solar_azimuth ) assert_allclose(result, expected[0]) def test_klucher_series(irrad_data, ephem_data): result = irradiance.klucher(40, 180, irrad_data['dhi'], irrad_data['ghi'], ephem_data['apparent_zenith'], ephem_data['azimuth']) # pvlib matlab 1.4 does not contain the max(cos_tt, 0) correction # so, these values are different assert_allclose(result, [0., 36.789794, 109.209347, 56.965916], atol=1e-4) # expect same result for np.array and pd.Series expected = irradiance.klucher( 40, 180, irrad_data['dhi'].values, irrad_data['ghi'].values, ephem_data['apparent_zenith'].values, ephem_data['azimuth'].values ) assert_allclose(result, expected, atol=1e-4) def test_haydavies(irrad_data, ephem_data, dni_et): result = irradiance.haydavies( 40, 180, irrad_data['dhi'], irrad_data['dni'], dni_et, ephem_data['apparent_zenith'], ephem_data['azimuth']) # values from matlab 1.4 code assert_allclose(result, [0, 27.1775, 102.9949, 33.1909], atol=1e-4) def test_reindl(irrad_data, ephem_data, dni_et): result = irradiance.reindl( 40, 180, irrad_data['dhi'], irrad_data['dni'], irrad_data['ghi'], dni_et, ephem_data['apparent_zenith'], ephem_data['azimuth']) # values from matlab 1.4 code assert_allclose(result, [np.nan, 27.9412, 104.1317, 34.1663], atol=1e-4) def test_king(irrad_data, ephem_data): result = irradiance.king(40, irrad_data['dhi'], irrad_data['ghi'], ephem_data['apparent_zenith']) assert_allclose(result, [0, 44.629352, 115.182626, 79.719855], atol=1e-4) def test_perez(irrad_data, ephem_data, dni_et, relative_airmass): dni = irrad_data['dni'].copy() dni.iloc[2] = np.nan out = irradiance.perez(40, 180, irrad_data['dhi'], dni, dni_et, ephem_data['apparent_zenith'], ephem_data['azimuth'], relative_airmass) expected = pd.Series(np.array( [ 0. , 31.46046871, np.nan, 45.45539877]), index=irrad_data.index) assert_series_equal(out, expected, check_less_precise=2) def test_perez_components(irrad_data, ephem_data, dni_et, relative_airmass): dni = irrad_data['dni'].copy() dni.iloc[2] = np.nan out = irradiance.perez(40, 180, irrad_data['dhi'], dni, dni_et, ephem_data['apparent_zenith'], ephem_data['azimuth'], relative_airmass, return_components=True) expected = pd.DataFrame(np.array( [[ 0. , 31.46046871, np.nan, 45.45539877], [ 0. , 26.84138589, np.nan, 31.72696071], [ 0. , 0. , np.nan, 4.47966439], [ 0. , 4.62212181, np.nan, 9.25316454]]).T, columns=['sky_diffuse', 'isotropic', 'circumsolar', 'horizon'], index=irrad_data.index ) expected_for_sum = expected['sky_diffuse'].copy() expected_for_sum.iloc[2] = 0 sum_components = out.iloc[:, 1:].sum(axis=1) sum_components.name = 'sky_diffuse' assert_frame_equal(out, expected, check_less_precise=2) assert_series_equal(sum_components, expected_for_sum, check_less_precise=2) def test_perez_arrays(irrad_data, ephem_data, dni_et, relative_airmass): dni = irrad_data['dni'].copy() dni.iloc[2] = np.nan out = irradiance.perez(40, 180, irrad_data['dhi'].values, dni.values, dni_et, ephem_data['apparent_zenith'].values, ephem_data['azimuth'].values, relative_airmass.values) expected = np.array( [ 0. , 31.46046871, np.nan, 45.45539877]) assert_allclose(out, expected, atol=1e-2) assert isinstance(out, np.ndarray) def test_perez_scalar(): # copied values from fixtures out = irradiance.perez(40, 180, 118.45831879, 939.95469881, 1321.1655834833093, 10.56413562, 144.76567754, 1.01688136) # this will fail. out is ndarry with ndim == 0. fix in future version. # assert np.isscalar(out) assert_allclose(out, 109.084332) @pytest.mark.parametrize('model', ['isotropic', 'klucher', 'haydavies', 'reindl', 'king', 'perez']) def test_sky_diffuse_zenith_close_to_90(model): # GH 432 sky_diffuse = irradiance.get_sky_diffuse( 30, 180, 89.999, 230, dni=10, ghi=51, dhi=50, dni_extra=1360, airmass=12, model=model) assert sky_diffuse < 100 def test_get_sky_diffuse_invalid(): with pytest.raises(ValueError): irradiance.get_sky_diffuse( 30, 180, 0, 180, 1000, 1100, 100, dni_extra=1360, airmass=1, model='invalid') def test_liujordan(): expected = pd.DataFrame(np.array( [[863.859736967, 653.123094076, 220.65905025]]), columns=['ghi', 'dni', 'dhi'], index=[0]) out = irradiance.liujordan( pd.Series([10]), pd.Series([0.5]), pd.Series([1.1]), dni_extra=1400) assert_frame_equal(out, expected) def test_get_total_irradiance(irrad_data, ephem_data, dni_et, relative_airmass): models = ['isotropic', 'klucher', 'haydavies', 'reindl', 'king', 'perez'] for model in models: total = irradiance.get_total_irradiance( 32, 180, ephem_data['apparent_zenith'], ephem_data['azimuth'], dni=irrad_data['dni'], ghi=irrad_data['ghi'], dhi=irrad_data['dhi'], dni_extra=dni_et, airmass=relative_airmass, model=model, surface_type='urban') assert total.columns.tolist() == ['poa_global', 'poa_direct', 'poa_diffuse', 'poa_sky_diffuse', 'poa_ground_diffuse'] @pytest.mark.parametrize('model', ['isotropic', 'klucher', 'haydavies', 'reindl', 'king', 'perez']) def test_get_total_irradiance_scalars(model): total = irradiance.get_total_irradiance( 32, 180, 10, 180, dni=1000, ghi=1100, dhi=100, dni_extra=1400, airmass=1, model=model, surface_type='urban') assert list(total.keys()) == ['poa_global', 'poa_direct', 'poa_diffuse', 'poa_sky_diffuse', 'poa_ground_diffuse'] # test that none of the values are nan assert np.isnan(np.array(list(total.values()))).sum() == 0 def test_poa_components(irrad_data, ephem_data, dni_et, relative_airmass): aoi = irradiance.aoi(40, 180, ephem_data['apparent_zenith'], ephem_data['azimuth']) gr_sand = irradiance.get_ground_diffuse(40, irrad_data['ghi'], surface_type='sand') diff_perez = irradiance.perez( 40, 180, irrad_data['dhi'], irrad_data['dni'], dni_et, ephem_data['apparent_zenith'], ephem_data['azimuth'], relative_airmass) out = irradiance.poa_components( aoi, irrad_data['dni'], diff_perez, gr_sand) expected = pd.DataFrame(np.array( [[ 0. , -0. , 0. , 0. , 0. ], [ 35.19456561, 0. , 35.19456561, 31.4635077 , 3.73105791], [956.18253696, 798.31939281, 157.86314414, 109.08433162, 48.77881252], [ 90.99624896, 33.50143401, 57.49481495, 45.45978964, 12.03502531]]), columns=['poa_global', 'poa_direct', 'poa_diffuse', 'poa_sky_diffuse', 'poa_ground_diffuse'], index=irrad_data.index) assert_frame_equal(out, expected) @pytest.mark.parametrize('pressure,expected', [ (93193, [[830.46567, 0.79742, 0.93505], [676.09497, 0.63776, 3.02102]]), (None, [[868.72425, 0.79742, 1.01664], [680.66679, 0.63776, 3.28463]]), (101325, [[868.72425, 0.79742, 1.01664], [680.66679, 0.63776, 3.28463]]) ]) def test_disc_value(pressure, expected): # see GH 449 for pressure=None vs. 101325. columns = ['dni', 'kt', 'airmass'] times = pd.DatetimeIndex(['2014-06-24T1200', '2014-06-24T1800'], tz='America/Phoenix') ghi = pd.Series([1038.62, 254.53], index=times) zenith = pd.Series([10.567, 72.469], index=times) out = irradiance.disc(ghi, zenith, times, pressure=pressure) expected_values = np.array(expected) expected = pd.DataFrame(expected_values, columns=columns, index=times) # check the pandas dataframe. check_less_precise is weird assert_frame_equal(out, expected, check_less_precise=True) # use np.assert_allclose to check values more clearly assert_allclose(out.values, expected_values, atol=1e-5) def test_disc_overirradiance(): columns = ['dni', 'kt', 'airmass'] ghi = np.array([3000]) solar_zenith = np.full_like(ghi, 0) times = pd.date_range(start='2016-07-19 12:00:00', freq='1s', periods=len(ghi), tz='America/Phoenix') out = irradiance.disc(ghi=ghi, solar_zenith=solar_zenith, datetime_or_doy=times) expected = pd.DataFrame(np.array( [[8.72544336e+02, 1.00000000e+00, 9.99493933e-01]]), columns=columns, index=times) assert_frame_equal(out, expected) def test_disc_min_cos_zenith_max_zenith(): # map out behavior under difficult conditions with various # limiting kwargs settings columns = ['dni', 'kt', 'airmass'] times = pd.DatetimeIndex(['2016-07-19 06:11:00'], tz='America/Phoenix') out = irradiance.disc(ghi=1.0, solar_zenith=89.99, datetime_or_doy=times) expected = pd.DataFrame(np.array( [[0.00000000e+00, 1.16046346e-02, 12.0]]), columns=columns, index=times) assert_frame_equal(out, expected) # max_zenith and/or max_airmass keep these results reasonable out = irradiance.disc(ghi=1.0, solar_zenith=89.99, datetime_or_doy=times, min_cos_zenith=0) expected = pd.DataFrame(np.array( [[0.00000000e+00, 1.0, 12.0]]), columns=columns, index=times) assert_frame_equal(out, expected) # still get reasonable values because of max_airmass=12 limit out = irradiance.disc(ghi=1.0, solar_zenith=89.99, datetime_or_doy=times, max_zenith=100) expected = pd.DataFrame(np.array( [[0., 1.16046346e-02, 12.0]]), columns=columns, index=times) assert_frame_equal(out, expected) # still get reasonable values because of max_airmass=12 limit out = irradiance.disc(ghi=1.0, solar_zenith=89.99, datetime_or_doy=times, min_cos_zenith=0, max_zenith=100) expected = pd.DataFrame(np.array( [[277.50185968, 1.0, 12.0]]), columns=columns, index=times) assert_frame_equal(out, expected) # max_zenith keeps this result reasonable out = irradiance.disc(ghi=1.0, solar_zenith=89.99, datetime_or_doy=times, min_cos_zenith=0, max_airmass=100) expected = pd.DataFrame(np.array( [[0.00000000e+00, 1.0, 36.39544757]]), columns=columns, index=times) assert_frame_equal(out, expected) # allow zenith to be close to 90 and airmass to be infinite # and we get crazy values out = irradiance.disc(ghi=1.0, solar_zenith=89.99, datetime_or_doy=times, max_zenith=100, max_airmass=100) expected = pd.DataFrame(np.array( [[6.68577449e+03, 1.16046346e-02, 3.63954476e+01]]), columns=columns, index=times) assert_frame_equal(out, expected) # allow min cos zenith to be 0, zenith to be close to 90, # and airmass to be very big and we get even higher DNI values out = irradiance.disc(ghi=1.0, solar_zenith=89.99, datetime_or_doy=times, min_cos_zenith=0, max_zenith=100, max_airmass=100) expected = pd.DataFrame(np.array( [[7.21238390e+03, 1., 3.63954476e+01]]), columns=columns, index=times) assert_frame_equal(out, expected) def test_dirint_value(): times = pd.DatetimeIndex(['2014-06-24T12-0700', '2014-06-24T18-0700']) ghi = pd.Series([1038.62, 254.53], index=times) zenith = pd.Series([10.567, 72.469], index=times) pressure = 93193. dirint_data = irradiance.dirint(ghi, zenith, times, pressure=pressure) assert_almost_equal(dirint_data.values, np.array([868.8, 699.7]), 1) def test_dirint_nans(): times = pd.date_range(start='2014-06-24T12-0700', periods=5, freq='6H') ghi = pd.Series([np.nan, 1038.62, 1038.62, 1038.62, 1038.62], index=times) zenith = pd.Series([10.567, np.nan, 10.567, 10.567, 10.567], index=times) pressure = pd.Series([93193., 93193., np.nan, 93193., 93193.], index=times) temp_dew = pd.Series([10, 10, 10, np.nan, 10], index=times) dirint_data = irradiance.dirint(ghi, zenith, times, pressure=pressure, temp_dew=temp_dew) assert_almost_equal(dirint_data.values, np.array([np.nan, np.nan, np.nan, np.nan, 893.1]), 1) def test_dirint_tdew(): times = pd.DatetimeIndex(['2014-06-24T12-0700', '2014-06-24T18-0700']) ghi = pd.Series([1038.62, 254.53], index=times) zenith = pd.Series([10.567, 72.469], index=times) pressure = 93193. dirint_data = irradiance.dirint(ghi, zenith, times, pressure=pressure, temp_dew=10) assert_almost_equal(dirint_data.values, np.array([882.1, 672.6]), 1) def test_dirint_no_delta_kt(): times = pd.DatetimeIndex(['2014-06-24T12-0700', '2014-06-24T18-0700']) ghi = pd.Series([1038.62, 254.53], index=times) zenith = pd.Series([10.567, 72.469], index=times) pressure = 93193. dirint_data = irradiance.dirint(ghi, zenith, times, pressure=pressure, use_delta_kt_prime=False) assert_almost_equal(dirint_data.values, np.array([861.9, 670.4]), 1) def test_dirint_coeffs(): coeffs = irradiance._get_dirint_coeffs() assert coeffs[0, 0, 0, 0] == 0.385230 assert coeffs[0, 1, 2, 1] == 0.229970 assert coeffs[3, 2, 6, 3] == 1.032260 def test_dirint_min_cos_zenith_max_zenith(): # map out behavior under difficult conditions with various # limiting kwargs settings # times don't have any physical relevance times = pd.DatetimeIndex(['2014-06-24T12-0700', '2014-06-24T18-0700']) ghi = pd.Series([0, 1], index=times) solar_zenith = pd.Series([90, 89.99], index=times) out = irradiance.dirint(ghi, solar_zenith, times) expected = pd.Series([0.0, 0.0], index=times, name='dni') assert_series_equal(out, expected) out = irradiance.dirint(ghi, solar_zenith, times, min_cos_zenith=0) expected = pd.Series([0.0, 0.0], index=times, name='dni') assert_series_equal(out, expected) out = irradiance.dirint(ghi, solar_zenith, times, max_zenith=90) expected = pd.Series([0.0, 0.0], index=times, name='dni') assert_series_equal(out, expected, check_less_precise=True) out = irradiance.dirint(ghi, solar_zenith, times, min_cos_zenith=0, max_zenith=90) expected = pd.Series([0.0, 144.264507], index=times, name='dni') assert_series_equal(out, expected, check_less_precise=True) out = irradiance.dirint(ghi, solar_zenith, times, min_cos_zenith=0, max_zenith=100) expected = pd.Series([0.0, 144.264507], index=times, name='dni') assert_series_equal(out, expected, check_less_precise=True) def test_gti_dirint(): times = pd.DatetimeIndex( ['2014-06-24T06-0700', '2014-06-24T09-0700', '2014-06-24T12-0700']) poa_global = np.array([20, 300, 1000]) aoi = np.array([100, 70, 10]) zenith = np.array([80, 45, 20]) azimuth = np.array([90, 135, 180]) surface_tilt = 30 surface_azimuth = 180 # test defaults output = irradiance.gti_dirint( poa_global, aoi, zenith, azimuth, times, surface_tilt, surface_azimuth) expected_col_order = ['ghi', 'dni', 'dhi'] expected = pd.DataFrame(array( [[ 21.05796198, 0. , 21.05796198], [ 288.22574368, 60.59964218, 245.37532576], [ 931.04078010, 695.94965324, 277.06172442]]), columns=expected_col_order, index=times) assert_frame_equal(output, expected) # test ignore calculate_gt_90 output = irradiance.gti_dirint( poa_global, aoi, zenith, azimuth, times, surface_tilt, surface_azimuth, calculate_gt_90=False) expected_no_90 = expected.copy() expected_no_90.iloc[0, :] = np.nan assert_frame_equal(output, expected_no_90) # test pressure input pressure = 93193. output = irradiance.gti_dirint( poa_global, aoi, zenith, azimuth, times, surface_tilt, surface_azimuth, pressure=pressure) expected = pd.DataFrame(array( [[ 21.05796198, 0. , 21.05796198], [ 289.81109139, 60.52460392, 247.01373353], [ 932.46756378, 648.05001357, 323.49974813]]), columns=expected_col_order, index=times) assert_frame_equal(output, expected) # test albedo input albedo = 0.05 output = irradiance.gti_dirint( poa_global, aoi, zenith, azimuth, times, surface_tilt, surface_azimuth, albedo=albedo) expected = pd.DataFrame(array( [[ 21.3592591, 0. , 21.3592591 ], [ 292.5162373, 64.42628826, 246.95997198], [ 941.6753031, 727.16311901, 258.36548605]]), columns=expected_col_order, index=times) assert_frame_equal(output, expected) # test temp_dew input temp_dew = np.array([70, 80, 20]) output = irradiance.gti_dirint( poa_global, aoi, zenith, azimuth, times, surface_tilt, surface_azimuth, temp_dew=temp_dew) expected = pd.DataFrame(array( [[ 21.05796198, 0. , 21.05796198], [ 292.40468994, 36.79559287, 266.3862767 ], [ 931.79627208, 689.81549269, 283.5817439]]), columns=expected_col_order, index=times) assert_frame_equal(output, expected) def test_erbs(): index = pd.DatetimeIndex(['20190101']*3 + ['20190620']) ghi = pd.Series([0, 50, 1000, 1000], index=index) zenith = pd.Series([120, 85, 10, 10], index=index) expected = pd.DataFrame(np.array( [[0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [9.67192672e+01, 4.15703604e+01, 4.05723511e-01], [7.94205651e+02, 2.17860117e+02, 7.18132729e-01], [8.42001578e+02, 1.70790318e+02, 7.68214312e-01]]), columns=['dni', 'dhi', 'kt'], index=index) out = irradiance.erbs(ghi, zenith, index) assert_frame_equal(np.round(out, 0), np.round(expected, 0)) def test_erbs_min_cos_zenith_max_zenith(): # map out behavior under difficult conditions with various # limiting kwargs settings columns = ['dni', 'dhi', 'kt'] times = pd.DatetimeIndex(['2016-07-19 06:11:00'], tz='America/Phoenix') # max_zenith keeps these results reasonable out = irradiance.erbs(ghi=1.0, zenith=89.99999, datetime_or_doy=times, min_cos_zenith=0) expected = pd.DataFrame(np.array( [[0., 1., 1.]]), columns=columns, index=times) assert_frame_equal(out, expected) # 4-5 9s will produce bad behavior without max_zenith limit out = irradiance.erbs(ghi=1.0, zenith=89.99999, datetime_or_doy=times, max_zenith=100) expected = pd.DataFrame(np.array( [[6.00115286e+03, 9.98952601e-01, 1.16377640e-02]]), columns=columns, index=times) assert_frame_equal(out, expected) # 1-2 9s will produce bad behavior without either limit out = irradiance.erbs(ghi=1.0, zenith=89.99, datetime_or_doy=times, min_cos_zenith=0, max_zenith=100) expected = pd.DataFrame(np.array( [[4.78419761e+03, 1.65000000e-01, 1.00000000e+00]]), columns=columns, index=times) assert_frame_equal(out, expected) # check default behavior under hardest condition out = irradiance.erbs(ghi=1.0, zenith=90, datetime_or_doy=times) expected = pd.DataFrame(np.array( [[0., 1., 0.01163776]]), columns=columns, index=times) assert_frame_equal(out, expected) def test_erbs_all_scalar(): ghi = 1000 zenith = 10 doy = 180 expected = OrderedDict() expected['dni'] = 8.42358014e+02 expected['dhi'] = 1.70439297e+02 expected['kt'] = 7.68919470e-01 out = irradiance.erbs(ghi, zenith, doy) for k, v in out.items(): assert_allclose(v, expected[k], 5) def test_dirindex(times): ghi = pd.Series([0, 0, 1038.62, 254.53], index=times) ghi_clearsky = pd.Series( np.array([0., 79.73860422, 1042.48031487, 257.20751138]), index=times ) dni_clearsky = pd.Series( np.array([0., 316.1949056, 939.95469881, 646.22886049]), index=times ) zenith = pd.Series( np.array([124.0390863, 82.85457044, 10.56413562, 72.41687122]), index=times ) pressure = 93193. tdew = 10. out = irradiance.dirindex(ghi, ghi_clearsky, dni_clearsky, zenith, times, pressure=pressure, temp_dew=tdew) dirint_close_values = irradiance.dirint(ghi, zenith, times, pressure=pressure, use_delta_kt_prime=True, temp_dew=tdew).values expected_out = np.array([np.nan, 0., 748.31562753, 630.72592644]) tolerance = 1e-8 assert np.allclose(out, expected_out, rtol=tolerance, atol=0, equal_nan=True) tol_dirint = 0.2 assert np.allclose(out.values, dirint_close_values, rtol=tol_dirint, atol=0, equal_nan=True) def test_dirindex_min_cos_zenith_max_zenith(): # map out behavior under difficult conditions with various # limiting kwargs settings # times don't have any physical relevance times = pd.DatetimeIndex(['2014-06-24T12-0700', '2014-06-24T18-0700']) ghi = pd.Series([0, 1], index=times) ghi_clearsky = pd.Series([0, 1], index=times) dni_clearsky = pd.Series([0, 5], index=times) solar_zenith = pd.Series([90, 89.99], index=times) out = irradiance.dirindex(ghi, ghi_clearsky, dni_clearsky, solar_zenith, times) expected = pd.Series([nan, nan], index=times) assert_series_equal(out, expected) out = irradiance.dirindex(ghi, ghi_clearsky, dni_clearsky, solar_zenith, times, min_cos_zenith=0) expected = pd.Series([nan, nan], index=times) assert_series_equal(out, expected) out = irradiance.dirindex(ghi, ghi_clearsky, dni_clearsky, solar_zenith, times, max_zenith=90) expected = pd.Series([nan, nan], index=times) assert_series_equal(out, expected) out = irradiance.dirindex(ghi, ghi_clearsky, dni_clearsky, solar_zenith, times, min_cos_zenith=0, max_zenith=100) expected = pd.Series([nan, 5.], index=times) assert_series_equal(out, expected) def test_dni(): ghi = pd.Series([90, 100, 100, 100, 100]) dhi = pd.Series([100, 90, 50, 50, 50]) zenith = pd.Series([80, 100, 85, 70, 85]) clearsky_dni = pd.Series([50, 50, 200, 50, 300]) dni = irradiance.dni(ghi, dhi, zenith, clearsky_dni=clearsky_dni, clearsky_tolerance=2) assert_series_equal(dni, pd.Series([float('nan'), float('nan'), 400, 146.190220008, 573.685662283])) dni = irradiance.dni(ghi, dhi, zenith) assert_series_equal(dni, pd.Series([float('nan'), float('nan'), 573.685662283, 146.190220008, 573.685662283])) @pytest.mark.parametrize( 'surface_tilt,surface_azimuth,solar_zenith,' + 'solar_azimuth,aoi_expected,aoi_proj_expected', [(0, 0, 0, 0, 0, 1), (30, 180, 30, 180, 0, 1), (30, 180, 150, 0, 180, -1), (90, 0, 30, 60, 75.5224878, 0.25), (90, 0, 30, 170, 119.4987042, -0.4924038)]) def test_aoi_and_aoi_projection(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth, aoi_expected, aoi_proj_expected): aoi = irradiance.aoi(surface_tilt, surface_azimuth, solar_zenith, solar_azimuth) assert_allclose(aoi, aoi_expected, atol=1e-6) aoi_projection = irradiance.aoi_projection( surface_tilt, surface_azimuth, solar_zenith, solar_azimuth) assert_allclose(aoi_projection, aoi_proj_expected, atol=1e-6) @pytest.fixture def airmass_kt(): # disc algorithm stopped at am=12. test am > 12 for out of range behavior return np.array([1, 5, 12, 20]) def test_kt_kt_prime_factor(airmass_kt): out = irradiance._kt_kt_prime_factor(airmass_kt) expected = np.array([ 0.999971, 0.723088, 0.548811, 0.471068]) assert_allclose(out, expected, atol=1e-5) def test_clearsky_index(): ghi = np.array([-1., 0., 1., 500., 1000., np.nan]) ghi_measured, ghi_modeled = np.meshgrid(ghi, ghi) # default max_clearsky_index with np.errstate(invalid='ignore', divide='ignore'): out = irradiance.clearsky_index(ghi_measured, ghi_modeled) expected = np.array( [[1. , 0. , 0. , 0. , 0. , np.nan], [0. , 0. , 0. , 0. , 0. , np.nan], [0. , 0. , 1. , 2. , 2. , np.nan], [0. , 0. , 0.002 , 1. , 2. , np.nan], [0. , 0. , 0.001 , 0.5 , 1. , np.nan], [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]]) assert_allclose(out, expected, atol=0.001) # specify max_clearsky_index with np.errstate(invalid='ignore', divide='ignore'): out = irradiance.clearsky_index(ghi_measured, ghi_modeled, max_clearsky_index=1.5) expected = np.array( [[1. , 0. , 0. , 0. , 0. , np.nan], [0. , 0. , 0. , 0. , 0. , np.nan], [0. , 0. , 1. , 1.5 , 1.5 , np.nan], [0. , 0. , 0.002 , 1. , 1.5 , np.nan], [0. , 0. , 0.001 , 0.5 , 1. , np.nan], [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]]) assert_allclose(out, expected, atol=0.001) # scalars out = irradiance.clearsky_index(10, 1000) expected = 0.01 assert_allclose(out, expected, atol=0.001) # series times = pd.date_range(start='20180601', periods=2, freq='12H') ghi_measured = pd.Series([100, 500], index=times) ghi_modeled = pd.Series([500, 1000], index=times) out = irradiance.clearsky_index(ghi_measured, ghi_modeled) expected = pd.Series([0.2, 0.5], index=times) assert_series_equal(out, expected) def test_clearness_index(): ghi = np.array([-1, 0, 1, 1000]) solar_zenith = np.array([180, 90, 89.999, 0]) ghi, solar_zenith = np.meshgrid(ghi, solar_zenith) # default min_cos_zenith out = irradiance.clearness_index(ghi, solar_zenith, 1370) # np.set_printoptions(precision=3, floatmode='maxprec', suppress=True) expected = np.array( [[0. , 0. , 0.011, 2. ], [0. , 0. , 0.011, 2. ], [0. , 0. , 0.011, 2. ], [0. , 0. , 0.001, 0.73 ]]) assert_allclose(out, expected, atol=0.001) # specify min_cos_zenith with np.errstate(invalid='ignore', divide='ignore'): out = irradiance.clearness_index(ghi, solar_zenith, 1400, min_cos_zenith=0) expected = np.array( [[0. , nan, 2. , 2. ], [0. , 0. , 2. , 2. ], [0. , 0. , 2. , 2. ], [0. , 0. , 0.001, 0.714]]) assert_allclose(out, expected, atol=0.001) # specify max_clearness_index out = irradiance.clearness_index(ghi, solar_zenith, 1370, max_clearness_index=0.82) expected = np.array( [[ 0. , 0. , 0.011, 0.82 ], [ 0. , 0. , 0.011, 0.82 ], [ 0. , 0. , 0.011, 0.82 ], [ 0. , 0. , 0.001, 0.73 ]]) assert_allclose(out, expected, atol=0.001) # specify min_cos_zenith and max_clearness_index with np.errstate(invalid='ignore', divide='ignore'): out = irradiance.clearness_index(ghi, solar_zenith, 1400, min_cos_zenith=0, max_clearness_index=0.82) expected = np.array( [[ 0. , nan, 0.82 , 0.82 ], [ 0. , 0. , 0.82 , 0.82 ], [ 0. , 0. , 0.82 , 0.82 ], [ 0. , 0. , 0.001, 0.714]]) assert_allclose(out, expected, atol=0.001) # scalars out = irradiance.clearness_index(1000, 10, 1400) expected = 0.725 assert_allclose(out, expected, atol=0.001) # series times = pd.date_range(start='20180601', periods=2, freq='12H') ghi = pd.Series([0, 1000], index=times) solar_zenith = pd.Series([90, 0], index=times) extra_radiation = pd.Series([1360, 1400], index=times) out = irradiance.clearness_index(ghi, solar_zenith, extra_radiation) expected = pd.Series([0, 0.714285714286], index=times) assert_series_equal(out, expected) def test_clearness_index_zenith_independent(airmass_kt): clearness_index = np.array([-1, 0, .1, 1]) clearness_index, airmass_kt = np.meshgrid(clearness_index, airmass_kt) out = irradiance.clearness_index_zenith_independent(clearness_index, airmass_kt) expected = np.array( [[0. , 0. , 0.1 , 1. ], [0. , 0. , 0.138, 1.383], [0. , 0. , 0.182, 1.822], [0. , 0. , 0.212, 2. ]]) assert_allclose(out, expected, atol=0.001) # test max_clearness_index out = irradiance.clearness_index_zenith_independent( clearness_index, airmass_kt, max_clearness_index=0.82) expected = np.array( [[ 0. , 0. , 0.1 , 0.82 ], [ 0. , 0. , 0.138, 0.82 ], [ 0. , 0. , 0.182, 0.82 ], [ 0. , 0. , 0.212, 0.82 ]]) assert_allclose(out, expected, atol=0.001) # scalars out = irradiance.clearness_index_zenith_independent(.4, 2) expected = 0.443 assert_allclose(out, expected, atol=0.001) # series times = pd.date_range(start='20180601', periods=2, freq='12H') clearness_index =
pd.Series([0, .5], index=times)
pandas.Series
# Import 311 CARE/CARE+ Requests and clean import numpy as np import pandas as pd import geopandas as gpd import intake from shapely.geometry import Point import boto3 catalog = intake.open_catalog('./catalogs/*.yml') bucket_name = 's3://public-health-dashboard/' s3 = boto3.client('s3') df = catalog.care311.read() for col in ['createddate', 'updateddate', 'closeddate', 'servicedate']: df[col] =
pd.to_datetime(df[col])
pandas.to_datetime
""" A module for parsing information from various files. """ import os import re from typing import Dict, List, Match, Optional, Tuple, Union import numpy as np import pandas as pd import qcelemental as qcel from arkane.exceptions import LogError from arkane.ess import ess_factory, GaussianLog, MolproLog, OrcaLog, QChemLog, TeraChemLog from arc.common import determine_ess, get_close_tuple, get_logger, is_same_pivot from arc.exceptions import InputError, ParserError from arc.species.converter import str_to_xyz, xyz_from_data logger = get_logger() def parse_frequencies(path: str, software: str, ) -> np.ndarray: """ Parse the frequencies from a freq job output file. Args: path (str): The log file path. software (str): The ESS. Returns: np.ndarray The parsed frequencies (in cm^-1). """ lines = _get_lines_from_file(path) freqs = np.array([], np.float64) if software.lower() == 'qchem': for line in lines: if ' Frequency:' in line: items = line.split() for i, item in enumerate(items): if i: freqs = np.append(freqs, [(float(item))]) elif software.lower() == 'gaussian': with open(path, 'r') as f: line = f.readline() while line != '': # this line intends to only capture the last occurrence of the frequencies if 'and normal coordinates' in line: freqs = np.array([], np.float64) if 'Frequencies --' in line: freqs = np.append(freqs, [float(frq) for frq in line.split()[2:]]) line = f.readline() elif software.lower() == 'molpro': read = False for line in lines: if 'Nr' in line and '[1/cm]' in line: continue if read: if line == os.linesep: read = False continue freqs = np.append(freqs, [float(line.split()[-1])]) if 'Low' not in line and 'Vibration' in line and 'Wavenumber' in line: read = True elif software.lower() == 'orca': with open(path, 'r') as f: line = f.readline() read = True while line: if 'VIBRATIONAL FREQUENCIES' in line: while read: if not line.strip(): line = f.readline() elif not line.split()[0] == '0:': line = f.readline() else: read = False while line.strip(): if float(line.split()[1]) != 0.0: freqs = np.append(freqs, [float(line.split()[1])]) line = f.readline() break else: line = f.readline() elif software.lower() == 'terachem': read_output = False for line in lines: if '=== Mode' in line: # example: '=== Mode 1: 1198.526 cm^-1 ===' freqs = np.append(freqs, [float(line.split()[3])]) elif 'Vibrational Frequencies/Thermochemical Analysis After Removing Rotation and Translation' in line: read_output = True continue elif read_output: if 'Temperature (Kelvin):' in line or 'Frequency(cm-1)' in line: continue if not line.strip(): break # example: # 'Mode Eigenvalue(AU) Frequency(cm-1) Intensity(km/mol) Vib.Temp(K) ZPE(AU) ...' # ' 1 0.0331810528 170.5666870932 52.2294230772 245.3982965841 0.0003885795 ...' freqs = np.append(freqs, [float(line.split()[2])]) else: raise ParserError(f'parse_frequencies() can currently only parse Gaussian, Molpro, Orca, QChem and TeraChem ' f'files, got {software}') logger.debug(f'Using parser.parse_frequencies(). Determined frequencies are: {freqs}') return freqs def parse_normal_displacement_modes(path: str, software: Optional[str] = None, ) -> Tuple[np.ndarray, np.ndarray]: """ Parse frequencies and normal displacement modes. Args: path (str): The path to the log file. software (str, optional): The software to used to generate the log file. Raises: NotImplementedError: If the parser is not implemented for the ESS this log file belongs to. Returns: Tuple[np.ndarray, np.ndarray] The frequencies (in cm^-1) and The normal displacement modes. """ software = software or determine_ess(path) freqs, normal_disp_modes, normal_disp_modes_entries = list(), list(), list() num_of_freqs_per_line = 3 with open(path, 'r') as f: lines = f.readlines() if software == 'gaussian': parse, parse_normal_disp_modes = False, False for line in lines: if 'Harmonic frequencies (cm**-1)' in line: # e.g.: Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering parse = True if parse and len(line.split()) in [0, 1, 3]: parse_normal_disp_modes = False normal_disp_modes.extend(normal_disp_modes_entries) normal_disp_modes_entries = list() if parse and 'Frequencies --' in line: # e.g.: Frequencies -- -18.0696 127.6948 174.9499 splits = line.split() freqs.extend(float(freq) for freq in splits[2:]) num_of_freqs_per_line = len(splits) - 2 normal_disp_modes_entries = list() elif parse_normal_disp_modes: # parsing, e.g.: # Atom AN X Y Z X Y Z X Y Z # 1 6 -0.00 0.00 -0.09 -0.00 0.00 -0.18 0.00 -0.00 -0.16 # 2 7 -0.00 0.00 -0.10 0.00 -0.00 0.02 0.00 -0.00 0.26 splits = line.split()[2:] for i in range(num_of_freqs_per_line): if len(normal_disp_modes_entries) < i + 1: normal_disp_modes_entries.append(list()) normal_disp_modes_entries[i].append(splits[3 * i: 3 * i + 3]) elif parse and 'Atom AN X Y Z' in line: parse_normal_disp_modes = True elif parse and not line or '-------------------' in line: parse = False else: raise NotImplementedError(f'parse_normal_displacement_modes is currently not implemented for {software}.') freqs = np.array(freqs, np.float64) normal_disp_modes = np.array(normal_disp_modes, np.float64) return freqs, normal_disp_modes def parse_geometry(path: str) -> Optional[Dict[str, tuple]]: """ Parse the xyz geometry from an ESS log file. Args: path (str): The ESS log file to parse from. Returns: Optional[Dict[str, tuple]] The cartesian geometry. """ log = ess_factory(fullpath=path) try: coords, number, _ = log.load_geometry() except LogError: logger.debug(f'Could not parse xyz from {path}') # try parsing Gaussian standard orientation instead of the input orientation parsed by Arkane lines = _get_lines_from_file(path) xyz_str = '' for i in range(len(lines)): if 'Standard orientation:' in lines[i]: xyz_str = '' j = i while len(lines) and not lines[j].split()[0].isdigit(): j += 1 while len(lines) and '-------------------' not in lines[j]: splits = lines[j].split() xyz_str += f'{qcel.periodictable.to_E(int(splits[1]))} {splits[3]} {splits[4]} {splits[5]}\n' j += 1 break if xyz_str: return str_to_xyz(xyz_str) return None return xyz_from_data(coords=coords, numbers=number) def parse_t1(path: str) -> Optional[float]: """ Parse the T1 parameter from a Molpro or Orca coupled cluster calculation. Args: path (str): The ess log file path. Returns: Optional[float] The T1 parameter. """ if not os.path.isfile(path): raise InputError('Could not find file {0}'.format(path)) log = ess_factory(fullpath=path) try: t1 = log.get_T1_diagnostic() except (LogError, NotImplementedError): logger.warning('Could not read t1 from {0}'.format(path)) t1 = None return t1 def parse_e_elect(path: str, zpe_scale_factor: float = 1., ) -> Optional[float]: """ Parse the electronic energy from an sp job output file. Args: path (str): The ESS log file to parse from. zpe_scale_factor (float): The ZPE scaling factor, used only for composite methods in Gaussian via Arkane. Returns: Optional[float] The electronic energy in kJ/mol. """ if not os.path.isfile(path): raise InputError(f'Could not find file {path}') log = ess_factory(fullpath=path) try: e_elect = log.load_energy(zpe_scale_factor) * 0.001 # convert to kJ/mol except (LogError, NotImplementedError): logger.warning(f'Could not read e_elect from {path}') e_elect = None return e_elect def parse_zpe(path: str) -> Optional[float]: """ Determine the calculated ZPE from a frequency output file Args: path (str): The path to a frequency calculation output file. Returns: Optional[float] The calculated zero point energy in kJ/mol. """ if not os.path.isfile(path): raise InputError('Could not find file {0}'.format(path)) log = ess_factory(fullpath=path) try: zpe = log.load_zero_point_energy() * 0.001 # convert to kJ/mol except (LogError, NotImplementedError): logger.warning('Could not read zpe from {0}'.format(path)) zpe = None return zpe def parse_1d_scan_energies(path: str) -> Tuple[Optional[List[float]], Optional[List[float]]]: """ Parse the 1D torsion scan energies from an ESS log file. Args: path (str): The ESS log file to parse from. Raises: InputError: If ``path`` is invalid. Returns: Tuple[Optional[List[float]], Optional[List[float]]] The electronic energy in kJ/mol and the dihedral scan angle in degrees. """ if not os.path.isfile(path): raise InputError(f'Could not find file {path}') log = ess_factory(fullpath=path) try: energies, angles = log.load_scan_energies() energies *= 0.001 # convert to kJ/mol angles *= 180 / np.pi # convert to degrees except (LogError, NotImplementedError, ZeroDivisionError): logger.warning(f'Could not read energies from {path}') energies, angles = None, None return energies, angles def parse_1d_scan_coords(path: str) -> List[Dict[str, tuple]]: """ Parse the 1D torsion scan coordinates from an ESS log file. Args: path (str): The ESS log file to parse from. Returns: list The Cartesian coordinates. """ lines = _get_lines_from_file(path) log = ess_factory(fullpath=path) if not isinstance(log, GaussianLog): raise NotImplementedError(f'Currently parse_1d_scan_coords only supports Gaussian files, got {type(log)}') traj = list() done = False i = 0 while not done: if i >= len(lines) or 'Normal termination of Gaussian' in lines[i] or 'Error termination via' in lines[i]: done = True elif 'Optimization completed' in lines[i]: while len(lines) and 'Input orientation:' not in lines[i]: i += 1 i += 5 xyz_str = '' while len(lines) and '--------------------------------------------' not in lines[i]: splits = lines[i].split() xyz_str += f'{qcel.periodictable.to_E(int(splits[1]))} {splits[3]} {splits[4]} {splits[5]}\n' i += 1 traj.append(str_to_xyz(xyz_str)) i += 1 return traj def parse_nd_scan_energies(path: str, software: Optional[str] = None, return_original_dihedrals: bool = False, ) -> Tuple[dict, Optional[List[float]]]: """ Parse the ND torsion scan energies from an ESS log file. Args: path (str): The ESS log file to parse from. software (str, optional): The software used to run this scan, default is 'gaussian'. return_original_dihedrals (bool, optional): Whether to return the dihedral angles of the original conformer. ``True`` to return, default is ``False``. Raises: InputError: If ``path`` is invalid. Returns: Tuple[dict, Optional[List[float]]] The "results" dictionary, which has the following structure:: results = {'directed_scan_type': <str, used for the fig name>, 'scans': <list, entries are lists of torsion indices>, 'directed_scan': <dict, keys are tuples of '{0:.2f}' formatted dihedrals, values are dictionaries with the following keys and values: {'energy': <float, energy in kJ/mol>, * only this is used here 'xyz': <dict>, 'is_isomorphic': <bool>, 'trsh': <list, job.ess_trsh_methods>}> }, The dihedrals angles of the original conformer """ software = software or determine_ess(path) results = {'directed_scan_type': f'ess_{software}', 'scans': list(), 'directed_scan': dict(), } if software == 'gaussian': # internal variables: # - scan_d_dict (dict): keys are scanning dihedral names (e.g., 'D2', or 'D4'), values are the corresponding # torsion indices tuples (e.g., (4, 1, 2, 5), or (4, 1, 3, 6)). # - dihedrals_dict (dict): keys are torsion tuples (e.g., (4, 1, 2, 5), or (4, 1, 3, 6)), # values are lists of dihedral angles in degrees corresponding to the torsion # (e.g., [-159.99700, -149.99690, -139.99694, -129.99691, -119.99693]). # - torsions (list): entries are torsion indices that are scanned, e.g.: [(4, 1, 2, 5), (4, 1, 3, 6)] with open(path, 'r', buffering=8192) as f: line = f.readline() symbols, torsions, shape, resolution, original_dihedrals = list(), list(), list(), list(), list() scan_d_dict = dict() min_e = None while line: line = f.readline() if 'The following ModRedundant input section has been read:' in line: # ' The following ModRedundant input section has been read:' # ' D 4 1 2 5 S 36 10.000' # ' D 4 1 3 6 S 36 10.000' line = f.readline() while True: splits = line.split() if len(splits) == 8: torsions.append(tuple([int(index) for index in splits[1:5]])) shape.append(int(splits[6]) + 1) # the last point is repeated resolution.append(float(splits[7])) else: break line = f.readline() results['scans'] = torsions if 'Symbolic Z-matrix:' in line: # --------------------- # HIR calculation by AI # --------------------- # Symbolic Z-matrix: # Charge = 0 Multiplicity = 1 # c # o 1 oc2 # o 1 oc3 2 oco3 # o 1 oc4 2 oco4 3 dih4 0 # h 2 ho5 1 hoc5 3 dih5 0 # h 3 ho6 1 hoc6 4 dih6 0 # Variables: # oc2 1.36119 # oc3 1.36119 # oco3 114.896 # oc4 1.18581 # oco4 122.552 # dih4 180. # ho5 0.9637 # hoc5 111.746 # dih5 20.003 # ho6 0.9637 # hoc6 111.746 # dih6 -160. for i in range(2): f.readline() while 'Variables' not in line: symbols.append(line.split()[0].upper()) line = f.readline() if 'Initial Parameters' in line: # ---------------------------- # ! Initial Parameters ! # ! (Angstroms and Degrees) ! # -------------------------- -------------------------- # ! Name Definition Value Derivative Info. ! # -------------------------------------------------------------------------------- # ! R1 R(1,2) 1.3612 calculate D2E/DX2 analytically ! # ! R2 R(1,3) 1.3612 calculate D2E/DX2 analytically ! # ! R3 R(1,4) 1.1858 calculate D2E/DX2 analytically ! # ! R4 R(2,5) 0.9637 calculate D2E/DX2 analytically ! # ! R5 R(3,6) 0.9637 calculate D2E/DX2 analytically ! # ! A1 A(2,1,3) 114.896 calculate D2E/DX2 analytically ! # ! A2 A(2,1,4) 122.552 calculate D2E/DX2 analytically ! # ! A3 A(3,1,4) 122.552 calculate D2E/DX2 analytically ! # ! A4 A(1,2,5) 111.746 calculate D2E/DX2 analytically ! # ! A5 A(1,3,6) 111.746 calculate D2E/DX2 analytically ! # ! D1 D(3,1,2,5) 20.003 calculate D2E/DX2 analytically ! # ! D2 D(4,1,2,5) -159.997 Scan ! # ! D3 D(2,1,3,6) 20.0 calculate D2E/DX2 analytically ! # ! D4 D(4,1,3,6) -160.0 Scan ! # -------------------------------------------------------------------------------- for i in range(5): line = f.readline() # original_zmat = {'symbols': list(), 'coords': list(), 'vars': dict()} while '--------------------------' not in line: splits = line.split() # key = splits[2][:-1].replace('(', '_').replace(',', '_') # val = float(splits[3]) # original_zmat['symbols'].append(symbols[len(original_zmat['symbols'])]) # original_zmat['vars'][key] = val if 'Scan' in line: scan_d_dict[splits[1]] = \ tuple([int(index) for index in splits[2][2:].replace(')', '').split(',')]) original_dihedrals.append(float(splits[3])) line = f.readline() elif 'Summary of Optimized Potential Surface Scan' in line: # ' Summary of Optimized Potential Surface Scan (add -264.0 to energies):' base_e = float(line.split('(add ')[1].split()[0]) energies, dihedrals_dict = list(), dict() dihedral_num = 0 while 'Grad' not in line: line = f.readline() splits = line.split() if 'Eigenvalues --' in line: # convert Hartree energy to kJ/mol energies = [(base_e + float(e)) * 4.3597447222071e-18 * 6.02214179e23 * 1e-3 for e in splits[2:]] min_es = min(energies) min_e = min_es if min_e is None else min(min_e, min_es) dihedral_num = 0 if splits[0] in list(scan_d_dict.keys()) \ and scan_d_dict[splits[0]] not in list(dihedrals_dict.keys()): # parse the dihedral information # ' D1 20.00308 30.00361 40.05829 50.36777 61.07341' # ' D2 -159.99700-149.99690-139.99694-129.99691-119.99693' # ' D3 19.99992 19.99959 19.94509 19.63805 18.93967' # ' D4 -160.00000-159.99990-159.99994-159.99991-159.99993' dihedrals = [float(dihedral) for dihedral in line.replace('-', ' -').split()[1:]] for i in range(len(dihedrals)): if 0 > dihedrals[i] >= -0.0049999: dihedrals[i] = 0.0 dihedrals_dict[scan_d_dict[splits[0]]] = dihedrals dihedral_num += 1 if len(list(dihedrals_dict.keys())) == len(list(scan_d_dict.keys())): # we have all the data for this block, pass to ``results`` and initialize ``dihedrals_dict`` for i, energy in enumerate(energies): dihedral_list = [dihedrals_dict[torsion][i] for torsion in torsions] # ordered key = tuple(f'{dihedral:.2f}' for dihedral in dihedral_list) # overwrite previous values for a close key if found: key = get_close_tuple(key, results['directed_scan'].keys()) or key results['directed_scan'][key] = {'energy': energy} dihedrals_dict = dict() # keys are torsion tuples, values are dihedral angles break line = f.readline() else: raise NotImplementedError(f'parse_nd_scan_energies is currently only implemented for Gaussian, got {software}.') for key in results['directed_scan'].keys(): results['directed_scan'][key] = {'energy': results['directed_scan'][key]['energy'] - min_e} if return_original_dihedrals: return results, original_dihedrals else: return results, None def parse_xyz_from_file(path: str) -> Optional[Dict[str, tuple]]: """ Parse xyz coordinated from: - .xyz: XYZ file - .gjf: Gaussian input file - .out or .log: ESS output file (Gaussian, Molpro, Orca, QChem, TeraChem) - calls parse_geometry() - other: Molpro or QChem input file Args: path (str): The file path. Raises: ParserError: If the coordinates could not be parsed. Returns: Optional[Dict[str, tuple]] The parsed cartesian coordinates. """ lines = _get_lines_from_file(path) file_extension = os.path.splitext(path)[1] xyz = None relevant_lines = list() if file_extension == '.xyz': for i, line in enumerate(reversed(lines)): splits = line.strip().split() if len(splits) == 1 and all([c.isdigit() for c in splits[0]]): # this is the last number of atoms line (important when parsing trajectories) num_of_atoms = int(splits[0]) break else: raise ParserError(f'Could not identify the number of atoms line in the xyz file {path}') index = len(lines) - i - 1 relevant_lines = lines[index + 2: index + 2 + num_of_atoms] elif file_extension == '.gjf': start_parsing = False for line in lines: if start_parsing and line and line != '\n' and line != '\r\n': relevant_lines.append(line) elif start_parsing: break else: splits = line.split() if len(splits) == 2 and all([s.isdigit() for s in splits]): start_parsing = True elif 'out' in file_extension or 'log' in file_extension: xyz = parse_geometry(path) else: record = False for line in lines: if '$end' in line or '}' in line: break if record and len(line.split()) == 4: relevant_lines.append(line) elif '$molecule' in line: record = True elif 'geometry={' in line: record = True if not relevant_lines: raise ParserError(f'Could not parse xyz coordinates from file {path}') if xyz is None and relevant_lines: xyz = str_to_xyz(''.join([line for line in relevant_lines if line])) return xyz def parse_trajectory(path: str) -> List[Dict[str, tuple]]: """ Parse all geometries from an xyz trajectory file or an ESS output file. Args: path (str): The file path. Raises: ParserError: If the trajectory could not be read. Returns: List[Dict[str, tuple]] Entries are xyz's on the trajectory. """ lines = _get_lines_from_file(path) ess_file = False if path.split('.')[-1] != 'xyz': try: log = ess_factory(fullpath=path) ess_file = True except InputError: ess_file = False if ess_file: if not isinstance(log, GaussianLog): raise NotImplementedError(f'Currently parse_trajectory only supports Gaussian files, got {type(log)}') traj = list() done = False i = 0 while not done: if i >= len(lines) or 'Normal termination of Gaussian' in lines[i] or 'Error termination via' in lines[i]: done = True elif 'Input orientation:' in lines[i]: i += 5 xyz_str = '' while len(lines) and '--------------------------------------------' not in lines[i]: splits = lines[i].split() xyz_str += f'{qcel.periodictable.to_E(int(splits[1]))} {splits[3]} {splits[4]} {splits[5]}\n' i += 1 traj.append(str_to_xyz(xyz_str)) i += 1 else: # this is not an ESS output file, probably an XYZ format file with several Cartesian coordinates skip_line = False num_of_atoms = 0 traj, xyz_lines = list(), list() for line in lines: splits = line.strip().split() if len(splits) == 1 and all([c.isdigit() for c in splits[0]]): if len(xyz_lines): if len(xyz_lines) != num_of_atoms: raise ParserError(f'Could not parse trajectory, expected {num_of_atoms} atoms, ' f'but got {len(xyz_lines)} for point {len(traj) + 1} in the trajectory.') traj.append(str_to_xyz(''.join([xyz_line for xyz_line in xyz_lines]))) num_of_atoms = int(splits[0]) skip_line = True xyz_lines = list() elif skip_line: # skip the comment line skip_line = False continue else: xyz_lines.append(line) if len(xyz_lines): # add the last point in the trajectory if len(xyz_lines) != num_of_atoms: raise ParserError(f'Could not parse trajectory, expected {num_of_atoms} atoms, ' f'but got {len(xyz_lines)} for point {len(traj) + 1} in the trajectory.') traj.append(str_to_xyz(''.join([xyz_line for xyz_line in xyz_lines]))) if not len(traj): raise ParserError(f'Could not parse trajectory from {path}') return traj def parse_dipole_moment(path: str) -> Optional[float]: """ Parse the dipole moment in Debye from an opt job output file. Args: path: The ESS log file. Returns: Optional[float] The dipole moment in Debye. """ lines = _get_lines_from_file(path) log = ess_factory(path) dipole_moment = None if isinstance(log, GaussianLog): # example: # Dipole moment (field-independent basis, Debye): # X= -0.0000 Y= -0.0000 Z= -1.8320 Tot= 1.8320 read = False for line in lines: if 'dipole moment' in line.lower() and 'debye' in line.lower(): read = True elif read: dipole_moment = float(line.split()[-1]) read = False elif isinstance(log, MolproLog): # example: ' Dipole moment /Debye 2.96069859 0.00000000 0.00000000' for line in lines: if 'dipole moment' in line.lower() and '/debye' in line.lower(): splits = line.split() dm_x, dm_y, dm_z = float(splits[-3]), float(splits[-2]), float(splits[-1]) dipole_moment = (dm_x ** 2 + dm_y ** 2 + dm_z ** 2) ** 0.5 elif isinstance(log, OrcaLog): # example: 'Magnitude (Debye) : 2.11328' for line in lines: if 'Magnitude (Debye)' in line: dipole_moment = float(line.split()[-1]) elif isinstance(log, QChemLog): # example: # Dipole Moment (Debye) # X 0.0000 Y 0.0000 Z 2.0726 # Tot 2.0726 skip = False read = False for line in lines: if 'dipole moment' in line.lower() and 'debye' in line.lower(): skip = True elif skip: skip = False read = True elif read: dipole_moment = float(line.split()[-1]) read = False elif isinstance(log, TeraChemLog): # example: 'DIPOLE MOMENT: {-0.000178, -0.000003, -0.000019} (|D| = 0.000179) DEBYE' for line in lines: if 'dipole moment' in line.lower() and 'debye' in line.lower(): splits = line.split('{')[1].split('}')[0].replace(',', '').split() dm_x, dm_y, dm_z = float(splits[0]), float(splits[1]), float(splits[2]) dipole_moment = (dm_x ** 2 + dm_y ** 2 + dm_z ** 2) ** 0.5 else: raise ParserError('Currently dipole moments can only be parsed from either Gaussian, Molpro, Orca, QChem, ' 'or TeraChem optimization output files') if dipole_moment is None: raise ParserError('Could not parse the dipole moment') return dipole_moment def parse_polarizability(path: str) -> Optional[float]: """ Parse the polarizability from a freq job output file, returns the value in Angstrom^3. Args: path: The ESS log file. Returns: Optional[float] The polarizability in Angstrom^3. """ lines = _get_lines_from_file(path) polarizability = None for line in lines: if 'Isotropic polarizability for W' in line: # example: Isotropic polarizability for W= 0.000000 11.49 Bohr**3. # 1 Bohr = 0.529177 Angstrom polarizability = float(line.split()[-2]) * 0.529177 ** 3 return polarizability def _get_lines_from_file(path: str) -> List[str]: """ A helper function for getting a list of lines from a file. Args: path (str): The file path. Raises: InputError: If the file could not be read. Returns: List[str] Entries are lines from the file. """ if os.path.isfile(path): with open(path, 'r') as f: lines = f.readlines() else: raise InputError(f'Could not find file {path}') return lines def process_conformers_file(conformers_path: str) -> Tuple[List[Dict[str, tuple]], List[float]]: """ Parse coordinates and energies from an ARC conformers file of either species or TSs. Args: conformers_path (str): The path to an ARC conformers file (either a "conformers_before_optimization" or a "conformers_after_optimization" file). Raises: InputError: If the file could not be found. Returns: Tuple[List[Dict[str, tuple]], List[float]] Conformer coordinates in a dict format, the respective energies in kJ/mol. """ if not os.path.isfile(conformers_path): raise InputError('Conformers file {0} could not be found'.format(conformers_path)) with open(conformers_path, 'r') as f: lines = f.readlines() xyzs, energies = list(), list() line_index = 0 while line_index < len(lines): if 'conformer' in lines[line_index] and ':' in lines[line_index] and lines[line_index].strip()[-2].isdigit(): xyz, energy = '', None line_index += 1 while len(lines) and line_index < len(lines) and lines[line_index].strip() \ and 'SMILES' not in lines[line_index] \ and 'energy' not in lines[line_index].lower() \ and 'guess method' not in lines[line_index].lower(): xyz += lines[line_index] line_index += 1 while len(lines) and line_index < len(lines) and 'conformer' not in lines[line_index]: if 'relative energy:' in lines[line_index].lower(): energy = float(lines[line_index].split()[2]) line_index += 1 xyzs.append(str_to_xyz(xyz)) energies.append(energy) else: line_index += 1 return xyzs, energies def parse_str_blocks(file_path: str, head_pat: Union[Match, str], tail_pat: Union[Match, str], regex: bool = True, tail_count: int = 1, block_count: int = 1, ) -> List[str]: """ Return a list of blocks defined by the head pattern and the tail pattern. Args: file_path (str): The path to the readable file. head_pat (str/regex): Str pattern or regular expression of the head of the block. tail_pat (str/regex): Str pattern or regular expresion of the tail of the block. regex (bool, optional): Use regex (True) or str pattern (False) to search. tail_count (int, optional): The number of times that the tail repeats. block_count (int, optional): The max number of blocks to search. -1 for any number. Raises: InputError: If the file could not be found. Returns: List[str] List of str blocks. """ if not os.path.isfile(file_path): raise InputError('Could not find file {0}'.format(file_path)) with open(file_path, 'r') as f: blks = [] # Different search mode if regex: def search(x, y): return re.search(x, y) else: def search(x, y): return x in y # 'search' for the head or 'read' until the tail mode = 'search' line = f.readline() while line != '': if mode == 'search': # Stop searching if found enough blocks if (len(blks)) == block_count: break # Check if matching the head pattern else: match = search(head_pat, line) # Switch to 'read' mode if match: tail_repeat = 0 mode = 'read' blks.append([]) blks[-1].append(line) elif mode == 'read': blks[-1].append(line) match = search(tail_pat, line) if match: tail_repeat += 1 # If see enough tail patterns, switch to 'search' mode if tail_repeat == tail_count: mode = 'search' line = f.readline() # Remove the last incomplete search if len(blks) > 0 and (tail_repeat != tail_count): blks.pop() return blks def parse_scan_args(file_path: str) -> dict: """ Get the scan arguments, including which internal coordinates (IC) are being scanned, which are frozen, what is the step size and the number of atoms, etc. Args: file_path (str): The path to a readable output file. Raises: NotImplementedError: If files other than Gaussian log is input Returns: dict A dictionary that contains the scan arguments as well as step number, step size, number of atom:: {'scan': <list, atom indexes of the torsion to be scanned>, 'freeze': <list, list of internal coordinates identified by atom indexes>, 'step': <int, number of steps to scan>, 'step_size': <float, the size of each step>, 'n_atom': <int, the number of atoms of the molecule>, } """ log = ess_factory(fullpath=file_path) scan_args = {'scan': None, 'freeze': [], 'step': 0, 'step_size': 0, 'n_atom': 0} if isinstance(log, GaussianLog): try: # g09, g16 scan_blk = parse_str_blocks(file_path, 'The following ModRedundant input section has been read:', 'Isotopes and Nuclear Properties', regex=False)[0][1:-1] except IndexError: # Cannot find any block # g03 scan_blk_1 = parse_str_blocks(file_path, 'The following ModRedundant input section has been read:', 'GradGradGradGrad', regex=False)[0][1:-2] scan_blk_2 = parse_str_blocks(file_path, 'NAtoms=', 'One-electron integrals computed', regex=False)[0][:1] scan_blk = scan_blk_1 + scan_blk_2 scan_pat = r'[DBA]?(\s+\d+){2,4}\s+S\s+\d+[\s\d.]+' frz_pat = r'[DBA]?(\s+\d+){2,4}\s+F' value_pat = r'[\d.]+' for line in scan_blk: if re.search(scan_pat, line.strip()): values = re.findall(value_pat, line) scan_len = len(values) - 2 # atom indexes + step + stepsize scan_args['scan'] = [int(values[i]) for i in range(scan_len)] scan_args['step'] = int(values[-2]) scan_args['step_size'] = float(values[-1]) if re.search(frz_pat, line.strip()): values = re.findall(value_pat, line) scan_args['freeze'].append([int(values[i]) for i in range(len(values))]) if 'NAtoms' in line: scan_args['n_atom'] = int(line.split()[1]) else: raise NotImplementedError(f'parse_scan_args() can currently only parse Gaussian output ' f'files, got {log}') return scan_args def parse_ic_info(file_path: str) -> pd.DataFrame: """ Get the information of internal coordinates (ic) of an intermediate scan conformer. Args: file_path (str): The path to a readable output file. Raises: NotImplementedError: If files other than Gaussian log is input Returns: pd.DataFrame A DataFrame containing the information of the internal coordinates """ log = ess_factory(fullpath=file_path) ic_dict = {item: [] for item in ['label', 'type', 'atoms', 'redundant', 'scan']} scan_args = parse_scan_args(file_path) max_atom_ind = scan_args['n_atom'] if isinstance(log, GaussianLog): ic_info_block = parse_str_blocks(file_path, 'Initial Parameters', '-----------', regex=False, tail_count=3)[0][5:-1] for line in ic_info_block: # Line example with split() indices: # 0 1 2 3 4 5 6 7 # ! R1 R(1, 2) 1.3581 calculate D2E/DX2 analytically ! terms = line.split() ic_dict['label'].append(terms[1]) ic_dict['type'].append(terms[1][0]) # 'R: bond, A: angle, D: dihedral atom_inds = re.split(r'[(),]', terms[2])[1:-1] ic_dict['atoms'].append([int(atom_ind) for atom_ind in atom_inds]) # Identify redundant, cases like 5 atom angles or redundant atoms if (ic_dict['type'][-1] == 'A' and len(atom_inds) > 3) \ or (ic_dict['type'][-1] == 'R' and len(atom_inds) > 2) \ or (ic_dict['type'][-1] == 'D' and len(atom_inds) > 4): ic_dict['redundant'].append(True) else: # Sometimes, redundant atoms with weird indices are added. # Reason unclear. Maybe to better define the molecule, or to # solve equations more easily. weird_indices = [index for index in ic_dict['atoms'][-1] if index <= 0 or index > max_atom_ind] if weird_indices: ic_dict['redundant'].append(True) else: ic_dict['redundant'].append(False) # Identify ics being scanned if len(scan_args['scan']) == len(atom_inds) == 4 \ and is_same_pivot(scan_args['scan'], ic_dict['atoms'][-1]): ic_dict['scan'].append(True) elif len(scan_args['scan']) == len(atom_inds) == 2 \ and set(scan_args['scan']) == set(ic_dict['atoms'][-1]): ic_dict['scan'].append(True) else: # Currently doesn't support scan of angles ic_dict['scan'].append(False) else: raise NotImplementedError(f'parse_ic_info() can currently only parse Gaussian output ' f'files, got {log}') ic_info =
pd.DataFrame.from_dict(ic_dict)
pandas.DataFrame.from_dict
"""Module to run a basic decision tree model Author(s): <NAME> (<EMAIL>) """ import pandas as pd import numpy as np import logging from sklearn import preprocessing from primrose.base.transformer import AbstractTransformer class ExplicitCategoricalTransform(AbstractTransformer): DEFAULT_NUMERIC = -9999 def __init__(self, categoricals): """initialize the ExplicitCategoricalTransform Args: categoricals: dictionary containing for each column to be transformed: - transformations: list of strings to be executed on the data ('x' represents the current categorical variable) - rename: if present, rename the current categorical variable to that name - to_numeric: if true, attempt to apply to_numeric after previous transformations """ self.categoricals = categoricals def fit(self, data): pass @staticmethod def _process_transformations(data, input_data, categorical, x): """transform a column Args: data (dataframe): dataframe input configuration (JSON): JSON categorical config for this variable categorical (str): varible name x (str): transformation string Returns: data (dataframe) """ if "transformations" in input_data.keys(): logging.info( "Applying key {} to variable {}".format("transformations", categorical) ) for transformation in input_data["transformations"]: exec(transformation.format(x=x)) @staticmethod def _process_rename(data, input_data, categorical): """rename a field Args: data (dataframe): dataframe input configuration (JSON): JSON categorical config for this variable categorical (str): varible name Returns: (tuple): tuple containing: data (dataframe): dataframe name (str): original name (if not "to_numeric": True), new_name otherwise """ if "rename" in input_data.keys(): logging.info("Applying key {} to variable {}".format("rename", categorical)) data = data.rename({categorical: input_data["rename"]}, axis="columns") return data, input_data["rename"] return data, categorical @staticmethod def _process_numeric(data, input_data, name): """convert column to numeric Args: data (dataframe): dataframe input configuration (JSON): JSON categorical config for this variable name (str): field name Returns: data with the colun converted to numeric """ if input_data.get("to_numeric", False): logging.info("Applying key {} to variable {}".format("to_numeric", name)) # if there are errors converting to numerical values, we need to sub in a reasonable value if sum(pd.to_numeric(data[name], errors="coerce").isnull()) > 0: logging.info( "Can't convert these entries in {}. Replacing with {}: {}".format( name, ExplicitCategoricalTransform.DEFAULT_NUMERIC, np.unique( data[name][ pd.to_numeric(data[name], errors="coerce").isnull() ].astype(str) ), ) ) data[name][ pd.to_numeric(data[name], errors="coerce").isnull() ] = ExplicitCategoricalTransform.DEFAULT_NUMERIC try: data[name] =
pd.to_numeric(data[name])
pandas.to_numeric
#!/usr/bin/env python3 """Pastrami - Population scale haplotype copying script""" __author__ = "<NAME>, <NAME>" __copyright__ = "Copyright 2021, <NAME>, <NAME>" __credits__ = ["<NAME>", "<NAME>", "<NAME>", "<NAME>"] __license__ = "GPL" __version__ = "0.3" __maintainer__ = "<NAME>, <NAME>" __email__ = "<EMAIL>; <EMAIL>" __status__ = "Development" __title__ = "pastrami.py" # Standard modules import logging import math import os.path import pickle import random import re import shlex import shutil import statistics import string import subprocess import sys from argparse import ArgumentParser, HelpFormatter py_version = sys.version_info if py_version[0] < 3 or py_version[1] < 4: sys.exit(f"Error: {__title__} requires Python version 3.4+ to work. Please install a newer version of Python.") # Additional installs try: import numpy as np except ModuleNotFoundError as err: sys.exit(f"Error: Numpy not found. Please install numpy prior to running {__title__}") try: from scipy.optimize import minimize except ModuleNotFoundError as err: sys.exit(f"Error: Scipy not found. Please install scipy prior to running {__title__}") try: import pandas as pd except ModuleNotFoundError as err: sys.exit(f"Error: Pandas not found. Please install pandas prior to running {__title__}") try: import pathos.multiprocessing as mp except ModuleNotFoundError as err: sys.exit(f"Error: Pathos not found. Please install pathos prior to running {__title__}") VERSION = __version__ PROGRAM_NAME = __title__ class Colors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' class Support: @staticmethod def error_out(message: str = None): if message is not None: sys.exit(Colors.FAIL + f"Error: {message}" + Colors.ENDC) else: sys.exit(Colors.FAIL + "The program encountered an error and has to exit." + Colors.ENDC) @staticmethod def validate_file(the_file: str): return os.path.isfile(the_file) @staticmethod def validate_file_size(the_file: str, fake_run: str = False): if fake_run: return True else: return os.stat(the_file).st_size > 0 @staticmethod def validate_file_and_size_or_error(the_file: str, error_prefix: str = 'The file', presence_suffix: str = 'doesn\'t exist', size_suffix: str = 'is size 0', fake_run: bool = False): if not Support.validate_file(the_file=the_file) and not fake_run: error_message = ' '.join([error_prefix, the_file, presence_suffix]) Support.error_out(message=error_message) if not Support.validate_file_size(the_file=the_file) and not fake_run: error_message = ' '.join([error_prefix, the_file, size_suffix]) Support.error_out(message=error_message) @staticmethod def validate_dir(the_dir: str): return os.path.isdir(the_dir) # TODO: This is a hastily written method, needs error fixing @staticmethod def validate_dir_or_error(the_dir: str, error_prefix: str = "The dir", presence_suffix: str = "doesn't exist", fake_run: bool = False): if not Support.validate_dir(the_dir=the_dir) and not fake_run: error_message = ' '.join([error_prefix, the_dir, presence_suffix]) Support.error_out(message=error_message) # TODO: Implement checks for dependency progams @staticmethod def check_dependencies(program_list: list = None) -> list: errors = [] for program in program_list: if shutil.which(program) is None: errors.append(program) return errors @staticmethod def find_plink_binary(): if shutil.which("plink") is not None: return "plink" elif shutil.which("plink2") is not None: return "plink2" else: return None @staticmethod def run_command(command_str: str = None, command_list: list = None, shell=False): if command_str is None and command_list is None: raise ValueError("Support.run_command() was called without any command to execute.") try: if command_str is not None: logging.info(f"Attempting to run: {command_str}") output = subprocess.check_output(shlex.split(command_str), encoding="utf-8", shell=shell) else: logging.info(f"Attempting to run: " + " ".join([str(x) for x in command_list])) output = subprocess.check_output(command_list, encoding="utf-8", shell=shell) except subprocess.CalledProcessError as e: logging.error(f"Encountered an error executing the command: ") if command_str is not None: logging.error(command_str) else: logging.error(command_list) logging.error(f"Error details:") logging.error(f"Exit code={e.returncode}") logging.error(f"Error message={e.output}") sys.exit(1) # logging.info(f"Command output = {output}") logging.info("Command executed without raising any exceptions") return output @staticmethod def validate_filename(filename: str): if re.match(r"^[a-zA-Z0-9_.-]+$", filename): return True else: return False @staticmethod def validate_output_prefix(out_prefix: str): parent, prefix = os.path.split(out_prefix) if parent != "": if not Support.validate_dir(parent): Support.safe_dir_create(parent) return Support.validate_filename(prefix) @staticmethod def safe_dir_create(this_dir: str): try: os.makedirs(this_dir) except IOError: print(f"I don't seem to have access to output prefix directory. Are the permissions correct?") sys.exit(1) @staticmethod def safe_dir_rm(this_dir: str): try: os.rmdir(this_dir) except IOError: print(f"I don't seem to have access to output prefix directory. Are the permissions correct?") sys.exit(1) @staticmethod def merge_fam_files(infile1: str, infile2: str, outputfile: str): """Merged two TFAM files into a single one (for aggregate function) Parameters ---------- infile1 : str Input TFAM file #1 (e.g., reference TFAM file) infile2: str Input TFAM file #2 (e.g., query TFAM file) outputfile: str Output TFAM file Returns ------- None """ with open(outputfile, "w") as out_handle: with open(infile1, "r") as infile1_handle: for line in infile1_handle: out_handle.write(line) with open(infile2, "r") as infile2_handle: for line in infile2_handle: out_handle.write(line) @staticmethod def create_pop_group_from_tfam(tfam_in_file: str, tsv_out_file: str): """Takes unique population names from the input file and make them as group Parameters ---------- tfam_in_file : str Input TFAM file tsv_out_file: str Output TSV file Returns ------- None """ unique_populations = {} with open(tfam_in_file, "r") as f_in: for line in f_in: pop = line.strip().split()[0] unique_populations[pop] = True unique_populations = sorted(unique_populations.keys()) with open(tsv_out_file, "r") as f_out: f_out.write("#Population\tGroup\n") for this_pop in unique_populations: f_out.write(f"{this_pop}\t{this_pop}\n") @staticmethod def init_logger(log_file, verbosity): """Configures the logging for printing Returns ------- None Logger behavior is set based on the Inputs variable """ try: logging.basicConfig(filename=log_file, filemode="w", level=logging.DEBUG, format=f"[%(asctime)s] %(message)s", datefmt="%m-%d-%Y %I:%M:%S %p") except FileNotFoundError: print(f"The supplied location for the log file '{log_file}'" + f"doesn't exist. Please check if the location exists.") sys.exit(1) except IOError: print(f"I don't seem to have access to make the log file." + f"Are the permissions correct or is there a directory with the same name?") sys.exit(1) if verbosity: console = logging.StreamHandler() console.setLevel(logging.INFO) formatter = logging.Formatter(fmt=f"[%(asctime)s] %(message)s", datefmt="%m-%d-%Y %I:%M:%S %p") console.setFormatter(formatter) logging.getLogger().addHandler(console) class Analysis: chromosomes = list(range(1, 23)) fake_run = False debug = True min_haplotype_occurences = 0 optim_step_size = 0.0001 error_threshold = 1e-8 optim_iterations = 10 tolerance = 1e-8 ancestry_fraction_postfix = "_fractions.Q" ancestry_painting_postfix = "_paintings.Q" pop_estimates_postfix = "_estimates.Q" outsourced_optimizer_pop_estimates_postfix = "_outsourcedOptimizer_estimates.Q" finegrain_estimates_postfix = "_fine_grain_estimates.Q" program_list = {'required': ["plink"]} def __init__(self, opts): # General attributes self.threads = opts.threads self.log_file = opts.log_file self.verbosity = opts.verbosity self.pool = None # Any errors we encounter self.errors = [] # The actual queue for the analysis self.analysis = [] # Verbosity levels and colors self.error_color = Colors.FAIL self.main_process_verbosity = 1 self.warning_color = Colors.WARNING self.warning_verbosity = 1 self.main_process_color = Colors.OKGREEN self.sub_process_verbosity = 2 self.sub_process_color = Colors.OKBLUE self.command_verbosity = 3 # Sub-commands self.sub_command = opts.sub_command self.plink_command = None self.ancestry_infile = None self.combined_copying_fractions = None self.combined_output_file = None self.fam_infile = None self.haplotype_file = None self.haplotypes = None self.map_dir = None self.max_rate = None self.max_snps = None self.min_snps = None self.out_prefix = None self.pop_group_file = None self.query_combined_file = None self.query_copying_fractions = None self.query_output_file = None self.query_prefix = None self.query_tfam = None self.query_tfam_file = None self.query_tped_file = None self.reference_copying_fractions = None self.reference_haplotype_counts = None self.reference_haplotype_fractions = None self.reference_individual_populations = None self.reference_individuals = None self.reference_output_file = None self.reference_pickle_output_file = None self.reference_population_counts = None self.reference_populations = None self.reference_prefix = None self.reference_tfam = None self.reference_tfam_file = None self.reference_tped_file = None # All sub-command options if self.sub_command == 'all': # TODO: Test all subcommand # Required options self.reference_prefix = opts.reference_prefix self.query_prefix = opts.query_prefix self.out_prefix = opts.out_prefix self.map_dir = opts.map_dir self.haplotype_file = opts.haplotypes self.pop_group_file = opts.pop_group_file # Outputs to be made self.reference_pickle_output_file = None self.reference_output_file = None self.reference_pickle_file = None self.query_output_file = None self.combined_output_file = None self.ancestry_infile = None self.fam_infile = None # Hapmake self.min_snps = opts.min_snps self.max_snps = opts.max_snps self.max_rate = opts.max_rate # Build options self.reference_tpeds = pd.Series([], dtype=pd.StringDtype()) self.reference_background = pd.Series([], dtype=pd.StringDtype()) # Query options self.query_tpeds = pd.Series([], dtype=pd.StringDtype()) self.query_individuals = None # aggregate options self.ref_pop_group_map = {} self.ind_pop_map = {} self.pop_ind_map = {} # reverse map of ind_pop_map, sacrificing memory for speed later on self.reference_individual_dict = {} self.reference_pops = {} self.ancestry_fractions = {} self.af_header = [] self.painting_vectors = {} self.painting_vectors_keys = [] self.fine_grain_estimates = {} # Hapmake sub-command options if self.sub_command == 'hapmake': self.min_snps = opts.min_snps self.max_snps = opts.max_snps self.max_rate = opts.max_rate self.map_dir = opts.map_dir self.haplotype_file = opts.haplotypes # Build sub-command options if self.sub_command == 'build': self.reference_pickle_output_file = opts.reference_pickle_out self.reference_prefix = opts.reference_prefix self.haplotype_file = opts.haplotypes self.reference_output_file = opts.reference_out self.reference_tpeds = pd.Series([], dtype=pd.StringDtype()) self.reference_background = pd.Series([], dtype=pd.StringDtype()) # Query sub-command options if self.sub_command == 'query': self.reference_pickle_file = opts.reference_pickle self.query_prefix = opts.query_prefix self.query_output_file = opts.query_out self.combined_output_file = opts.combined_out self.query_tpeds = pd.Series([], dtype=pd.StringDtype()) self.query_individuals = None # Co-ancestry sub-command options if self.sub_command == 'coanc': self.haplotype_file = opts.haplotypes self.reference_prefix = opts.reference_prefix self.query_prefix = opts.query_prefix self.reference_output_file = opts.reference_out self.query_output_file = opts.query_out self.query_combined_file = opts.combined_out # Aggregate sub-command options if self.sub_command == 'aggregate': self.ancestry_infile = opts.ancestry_infile self.pop_group_file = opts.pop_group_file self.out_prefix = opts.out_prefix self.fam_infile = opts.fam_infile self.ref_pop_group_map = {} self.ind_pop_map = {} self.pop_ind_map = {} # reverse map of ind_pop_map, sacrificing memory for speed later on self.reference_individual_dict = {} self.reference_pops = {} self.ancestry_fractions = {} self.af_header = [] self.painting_vectors = {} self.painting_vectors_keys = [] self.fine_grain_estimates = {} Support.init_logger(log_file=self.log_file, verbosity=self.verbosity) """ [Class section] Run control """ def validate_options(self): plink_command = Support.find_plink_binary() if plink_command is None: self.errors += ["Can't find plink or plink2. Please make sure the binary exists as one of those two names"] else: self.plink_command = plink_command if self.sub_command == "all": self.validate_and_set_all_subcommand_options() # self.analysis += ['build_reference_set', 'query_reference_set', 'build_coanc', 'post_pastrami'] self.analysis += ['build_reference_set', 'query_reference_set', 'post_pastrami'] if self.sub_command == 'hapmake': self.validate_map_dir() self.analysis += ['make_haplotypes'] if self.sub_command == 'build': self.validate_reference_prefix() self.validate_haplotypes() self.analysis += ['build_reference_set'] if self.sub_command == 'query': self.validate_reference_pickle() self.validate_query_prefix() self.analysis += ['query_reference_set'] if self.sub_command == 'coanc': self.validate_reference_prefix() if self.query_prefix is not None: self.validate_query_prefix() self.validate_haplotypes() self.analysis += ['build_coanc'] if self.sub_command == 'aggregate': self.validate_ancestry_infile() self.validate_pop_group_file() self.validate_fam_infile() self.analysis += ['post_pastrami'] if len(self.analysis) == 0: self.errors = self.errors + ['Nothing to do!'] def __str__(self): long_string = f""" Class constants: chromosomes = {Analysis.chromosomes} fake_run = {Analysis.fake_run} debug = {Analysis.debug} min_haplotype_occurences = {Analysis.min_haplotype_occurences} optim_step_size = {Analysis.optim_step_size} error_threshold = {Analysis.error_threshold} optim_iterations = {Analysis.optim_iterations} tolerance = {Analysis.tolerance} ancestry_fraction_postfix = {Analysis.ancestry_fraction_postfix} ancestry_painting_postfix = {Analysis.ancestry_painting_postfix} pop_estimates_postfix = {Analysis.pop_estimates_postfix} finegrain_estimates_postfix = {Analysis.finegrain_estimates_postfix} Instance variables: * General program parameters log_file = {self.log_file} threads = {self.threads} verbosity = {self.verbosity} * Verbosity options command_verbosity = {self.command_verbosity} main_process_verbosity = {self.main_process_verbosity} sub_process_verbosity = {self.sub_process_verbosity} warning_verbosity = {self.warning_verbosity} * Subcommand to be executed sub_command = {self.sub_command} * Hapmake-specific parameter options max_rate = {self.max_rate} max_snps = {self.max_snps} min_snps = {self.min_snps} * Hapmake-specific input/output options out_prefix = {self.out_prefix} map_dir = {self.map_dir} haplotype_file = {self.haplotype_file} * Query files input/output options query_prefix = {self.query_prefix} query_tfam_file = {self.query_tfam_file} query_tped_file = {self.query_tped_file} query_output_file = {self.query_output_file} query_combined_file = {self.query_combined_file} * Reference files input/output options reference_prefix = {self.reference_prefix} reference_tfam_file = {self.reference_tfam_file} reference_tped_file = {self.reference_tped_file} reference_output_file = {self.reference_output_file} reference_pickle_output_file = {self.reference_pickle_output_file} * Combined query-reference file location combined_output_file = {self.combined_output_file} * Aggregate-specific options pop_group_file = {self.pop_group_file} ancestry_infile = {self.ancestry_infile} fam_infile = {self.fam_infile} """ return long_string # TODO: Print a summary of what parameters were provided, what needs to be performed def summarize_run(self): logging.info(self.main_process_color + str(self) + Colors.ENDC) logging.info(self.main_process_color + f"Analysis to perform: " + ",".join(self.analysis) + Colors.ENDC) def go(self): self.summarize_run() # self.pool = mp.Pool(processes=self.threads) self.pool = mp.ProcessingPool(nodes=self.threads) while True: step = self.analysis[0] self.analysis = self.analysis[1:] function = getattr(self, step) function() if len(self.analysis) == 0: break # self.pool.terminate() """ [Class section] Functions for validating file """ def validate_and_set_all_subcommand_options(self): self.validate_reference_prefix() self.validate_query_prefix() Support.validate_output_prefix(self.out_prefix) if self.haplotype_file is None: if self.map_dir is None: self.errors += [self.sub_command + ' requires --haplotypes or --map-dir'] return else: self.validate_map_dir() self.haplotype_file = self.out_prefix + ".hap" if self.pop_group_file is None: self.pop_group_file = self.out_prefix + ".pop_group.tsv" Support.create_pop_group_from_tfam(tfam_in_file=self.reference_tfam_file, tsv_out_file=self.pop_group_file) else: self.validate_pop_group_file() self.reference_pickle_output_file = self.out_prefix + ".pickle" self.reference_output_file = self.out_prefix + ".hap" self.reference_pickle_file = self.reference_pickle_output_file self.query_output_file = self.out_prefix + "_query.tsv" self.combined_output_file = self.out_prefix + ".tsv" self.ancestry_infile = self.combined_output_file self.fam_infile = self.out_prefix + ".fam" Support.merge_fam_files(infile1=self.query_tfam_file, infile2=self.reference_tfam_file, outputfile=self.fam_infile) def validate_haplotypes(self): if self.haplotype_file is None: self.errors += [self.sub_command + ' requires --haplotypes'] return Support.validate_file_and_size_or_error(the_file=self.haplotype_file, error_prefix='Haplotype file', fake_run=self.fake_run) def validate_reference_prefix(self): if self.reference_prefix is None: self.errors += [self.sub_command + ' requires --reference-prefix'] return self.reference_tped_file = self.reference_prefix + '.tped' self.reference_tfam_file = self.reference_prefix + '.tfam' for i in [self.reference_tped_file, self.reference_tfam_file]: Support.validate_file_and_size_or_error(the_file=i, fake_run=self.fake_run) def validate_query_prefix(self): if self.query_prefix is None: self.errors += [self.sub_command + ' requires --query-prefix'] return self.query_tped_file = self.query_prefix + '.tped' self.query_tfam_file = self.query_prefix + '.tfam' for i in [self.query_tped_file, self.query_tfam_file]: Support.validate_file_and_size_or_error(the_file=i, fake_run=self.fake_run) def validate_reference_pickle(self): if self.reference_pickle_file is None: self.errors += [self.sub_command + ' requires --query-prefix'] return Support.validate_file_and_size_or_error(the_file=self.reference_pickle_file, error_prefix='Reference pickle', fake_run=self.fake_run) def validate_map_dir(self): if self.map_dir is None: self.errors += [self.sub_command + ' requires --map-dir'] return Support.validate_dir_or_error(the_dir=self.map_dir, error_prefix='Map directory', fake_run=self.fake_run) def validate_ancestry_infile(self): if self.ancestry_infile is None: self.errors += [self.sub_command + ' requires --pastrami-output'] return Support.validate_file_and_size_or_error(the_file=self.ancestry_infile, error_prefix='Pastrami\' query output', fake_run=self.fake_run) # TODO: If user doesn't supply pop-group file, create one based on the TFAM file def validate_pop_group_file(self): if self.pop_group_file is None: self.errors += [self.sub_command + ' requires --pop-group'] return Support.validate_file_and_size_or_error(the_file=self.pop_group_file, error_prefix='Population group mapping file', fake_run=self.fake_run) def validate_fam_infile(self): if self.fam_infile is None: self.errors += [self.sub_command + ' requires --pastrami-fam'] return Support.validate_file_and_size_or_error(the_file=self.fam_infile, error_prefix='FAM input', fake_run=self.fake_run) """ [Class section] Haplotype maker """ def process_hapmap_file(self, chrom: int): logging.info(f"[hapmake|chr{chrom}] Started processing") haplotypes = "" map_data = [] with open(os.path.join(self.map_dir, f"chr{chrom}.map"), "r") as f: for line in f: (position, cmorgan, snp) = line.rstrip().split("\t") map_data.append([int(position), float(cmorgan), snp]) logging.info(f"[hapmake|chr{chrom}] File read") left_snp = 0 right_snp = 0 snps = False for row in range(len(map_data)): right_snp += 1 if right_snp >= len(map_data): break # If the two SNPs have a recombination rate great than the max rate if map_data[right_snp][1] - map_data[left_snp][1] >= self.max_rate: if right_snp - left_snp >= self.min_snps: snps = True else: left_snp = right_snp right_snp += 1 # If the haplotype is long enough if right_snp - left_snp >= self.max_snps: snps = True # If snps isn't False, then save the range of the window if snps is True: haplotypes += f"{chrom}\t{left_snp}\t{right_snp}\t{map_data[right_snp - 2][1] - map_data[left_snp][1]}\n" snps = False left_snp = right_snp logging.info(f"[hapmake|chr{chrom}] All haplotypes discovered") return haplotypes def make_haplotypes(self): logging.info(f"[hapmake|chrAll] Starting pool for processing") # pool = mp.Pool(processes=self.threads) # self.pool.restart() results = self.pool.map(self.process_hapmap_file, range(1, 23)) # results.wait() # results = results.get() with open(self.haplotype_file, "w") as f: f.write("".join(results) + "\n") logging.info(f"[hapmake|chrAll] Files written") # self.pool.close() # self.pool.join() # self.pool.terminate() """ [Class section] Core Pastrami code - to be fragmented further in future """ def load_reference_pickle(self): logging.info('Loading reference pickle ' + self.reference_pickle_file) pickle_file_handle = open(self.reference_pickle_file, 'rb') old_pickle = pickle.load(pickle_file_handle) self.reference_tfam = old_pickle.reference_tfam # self.reference_haplotype_counts = old_pickle.reference_haplotype_counts self.reference_haplotype_fractions = old_pickle.reference_haplotype_fractions self.reference_populations = old_pickle.reference_populations self.reference_background = old_pickle.reference_background self.haplotypes = old_pickle.haplotypes self.reference_copying_fractions = old_pickle.reference_copying_fractions del old_pickle logging.info('Reference pickle file loaded!') def load_reference_tfam(self): self.reference_tfam =
pd.read_table(self.reference_tfam_file, index_col=None, header=None, sep=' ')
pandas.read_table
import os from functools import reduce import pandas as pd import numpy as np from . import settings def get_data(cryptocurrency, fillna=0): crypto_path = os.path.join(settings.RESOURCES_DIR, cryptocurrency) # Currency related data frames price_df = _read_csv(os.path.join(crypto_path, 'price.csv')) _lower_headers(price_df) # price_df = _floaterize_prices(price_df) price_df['date'] = pd.to_datetime(price_df['date']) transactions_df = _read_csv(os.path.join(crypto_path, 'transactions.csv')) _lower_headers(transactions_df) transactions_df['date'] = pd.to_datetime(transactions_df['date']) # Forum related data frames reply_df = _read_csv(os.path.join(crypto_path, 'reply_opinion.csv')) _lower_headers(reply_df) topic_df = _read_csv(os.path.join(crypto_path, 'topic_opinion.csv')) _lower_headers(topic_df) # Categorize vader scores reply_df = _transform_vader_series(reply_df, 'reply') topic_df = _transform_vader_series(topic_df, 'topic') # Drop useless columns _drop_inplace(reply_df, ['reply', 'vader']) _drop_inplace(topic_df, ['topic', 'reply', 'topiccontent', 'vader', 'opinion']) # Group by date and aggregate vader categorical columns reply_df = _fold_categorical_vader(reply_df, 'reply', by='date') topic_df = _fold_categorical_vader(topic_df, 'topic', by='date', agg={'views':'sum'}) # Calculate daily sentiment reply_df = _sum_categorical_vader(reply_df, 'reply') topic_df = _sum_categorical_vader(topic_df, 'topic') # Set date as index for forum related dfs reply_df['date'] = pd.to_datetime(reply_df['date']) reply_df.index = pd.DatetimeIndex(reply_df['date']) reply_df = reply_df.drop(columns='date') topic_df['date'] =
pd.to_datetime(topic_df['date'])
pandas.to_datetime
import pandas as pd c1 = pd.read_csv('machine/Calling/Sensors_1.csv') c2 = pd.read_csv('machine/Calling/Sensors_2.csv') c3 = pd.read_csv('machine/Calling/Sensors_3.csv') c4 = pd.read_csv('machine/Calling/Sensors_4.csv') c5 = pd.read_csv('machine/Calling/Sensors_5.csv') c6 = pd.read_csv('machine/Calling/Sensors_6.csv') c7 = pd.read_csv('machine/Calling/Sensors_7.csv') c8 = pd.read_csv('machine/Calling/Sensors_8.csv') c9 = pd.read_csv('machine/Calling/Sensors_9.csv') c10 = pd.read_csv('machine/Calling/Sensors_10.csv') calling = pd.concat([c1,c2,c3,c4,c5,c6,c7,c8,c9,c10], axis = 0) t1 = pd.read_csv('machine/Texting/Sensors_1.csv') t2 = pd.read_csv('machine/Texting/Sensors_2.csv') t3 = pd.read_csv('machine/Texting/Sensors_3.csv') t4 = pd.read_csv('machine/Texting/Sensors_4.csv') t5 = pd.read_csv('machine/Texting/Sensors_5.csv') t6 = pd.read_csv('machine/Texting/Sensors_6.csv') t7 = pd.read_csv('machine/Texting/Sensors_7.csv') t8 =
pd.read_csv('machine/Texting/Sensors_8.csv')
pandas.read_csv
import os import minerva as mine import pandas as pd import random import re def sentence_to_conll_string( sentence: mine.Sentence, entity_name: str, conflate: bool = False ) -> str: words = [t.text for t in sentence] annos = sentence.get_annotation(entity_name) labels = ["O"] * len(words) if annos: ner = isinstance(annos[0], mine.TokenSpan) if ner: for span in annos: entity_tag = span.value if not conflate else "Entity" labels[span.start_index] = "B-" + entity_tag for index in range(span.start_index + 1, span.end_index + 1): labels[index] = "I-" + entity_tag else: raise NotImplementedError("Ouput for non-spans is not implemented yet.") return "\n".join(["\t".join(line) for line in zip(words, labels)]) + "\n" XLSX_PATH = "data/PsyTAR_dataset.xlsx" CSV_PATH = "data/PsyTAR_binary.csv" BINARY_PATH = "data/binary/" CONLL_ALL_PATH = "data/all/" CONLL_CONFLATED_PATH = "data/conflated/" sentence_df = pd.read_excel( XLSX_PATH, sheet_name="Sentence_Labeling", dtype={"drug_id": str, "sentences": str} ) sentence_df = sentence_df[ ["drug_id", "sentence_index", "sentences", "ADR", "WD", "EF", "INF", "SSI", "DI"] ] sentence_df = sentence_df.dropna(subset=["sentences"]) sentence_df = sentence_df.loc[sentence_df.sentences.apply(lambda x: len(x.strip())) > 0] sentence_df = sentence_df.fillna(0) sentence_df[["ADR", "WD", "EF", "INF", "SSI", "DI"]] = ( sentence_df[["ADR", "WD", "EF", "INF", "SSI", "DI"]] .replace(re.compile("[!* ]+"), 1) .astype(int) ) print("Writing binary datasets...") out_df = sentence_df[["sentences", "ADR", "WD", "EF", "INF", "SSI", "DI"]].iloc[:-1] out_df.to_csv( BINARY_PATH + os.sep + "full.csv", header=True, index=False, sep="\t", encoding="utf8", decimal=".", ) train_df = out_df.sample(frac=0.7, random_state=120307) testdev_df = out_df.drop(train_df.index) test_df = testdev_df.sample(frac=0.66, random_state=703021) dev_df = testdev_df.drop(test_df.index) train_df.to_csv( BINARY_PATH + os.sep + "train.csv", header=True, index=False, sep="\t", encoding="utf8", decimal=".", ) test_df.to_csv( BINARY_PATH + os.sep + "test.csv", header=True, index=False, sep="\t", encoding="utf8", decimal=".", ) dev_df.to_csv( BINARY_PATH + os.sep + "dev.csv", header=True, index=False, sep="\t", encoding="utf8", decimal=".", ) print("Done.") sentences_map = {} for drug_name in sentence_df.drug_id.unique(): sentences_map[drug_name] = {} for _, row in sentence_df.iterrows(): sentences_map[row.drug_id][row.sentence_index] = mine.Sentence(row.sentences) sheet_names = ["ADR", "WD", "SSI", "DI"] invalid_sentences = set() total_annos = 0 total_warns = 0 for sheet in sheet_names: labels_df =
pd.read_excel(XLSX_PATH, sheet_name=sheet + "_Identified")
pandas.read_excel
import numpy as np import pandas as pd def set_order(df, row): if pd.isnull(row['order']): if pd.notnull(row['family']): row['order'] = df[(pd.notnull(df['order']) & df['family']== row['family'])]['order'].head(1) elif pd.notnull(row['genus']): row['order'] = df[(
pd.notnull(df['order'])
pandas.notnull
# Copyright (c) 2017, Intel Research and Development Ireland Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __authors__ = '<NAME>, <NAME>' __copyright__ = "Copyright (c) 2017, Intel Research and Development Ireland Ltd." __license__ = "Apache 2.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Development" from analytics_engine.heuristics.beans.infograph import InfoGraphNode, InfoGraphNodeType, \ InfoGraphNodeCategory, InfoGraphNodeLayer import pandas import math class Fingerprint(object): # Deprecated @staticmethod def _node_is_nic_on_management_net(node, graph, mng_net_name): node_name = InfoGraphNode.get_name(node) node_type = InfoGraphNode.get_type(node) if node_type == InfoGraphNodeType.VIRTUAL_NIC or \ node_type == InfoGraphNodeType.VIRTUAL_NIC_2: neighs = graph.neighbors(node_name) for n in neighs: neighbor = InfoGraphNode.\ get_node(graph, n) if InfoGraphNode.get_type(neighbor) == \ InfoGraphNodeType.VIRTUAL_NETWORK: network_name = \ InfoGraphNode.get_attributes( neighbor)['name'] if network_name == mng_net_name: return True return False @staticmethod def workload_capacity_usage(annotated_subgraph): """ This is a type of fingerprint """ # TODO: Validate graph categories = list() categories.append(InfoGraphNodeCategory.COMPUTE) categories.append(InfoGraphNodeCategory.NETWORK) # TODO: Add a Volume to the workloads to get HD usage categories.append(InfoGraphNodeCategory.STORAGE) # TODO: Get telemetry for Memory categories.append(InfoGraphNodeCategory.MEMORY) fingerprint = dict() counter = dict() for category in categories: fingerprint[category] = 0 counter[category] = 0 # calculation of the fingerprint on top of the virtual resources local_subgraph = annotated_subgraph.copy() local_subgraph.filter_nodes('layer', "physical") local_subgraph.filter_nodes('layer', "service") for node in local_subgraph.nodes(data=True): # if Fingerprint._node_is_nic_on_management_net( # node, annotated_subgraph, mng_net_name): # continue category = InfoGraphNode.get_category(node) utilization = InfoGraphNode.get_utilization(node) if 'utilization' in utilization.columns.values: mean = utilization['utilization'].mean() fingerprint[category] += mean counter[category] += 1 # This is just an average # TODO: Improve the average for category in categories: if counter[category] > 0: fingerprint[category] = \ fingerprint[category] / counter[category] return fingerprint @staticmethod def machine_capacity_usage(annotated_subgraph): """ This is a type of fingerprint from the infrastructure perspective """ # TODO: Validate graph categories = list() categories.append(InfoGraphNodeCategory.COMPUTE) categories.append(InfoGraphNodeCategory.NETWORK) # TODO: Add a Volume to the workloads to get HD usage categories.append(InfoGraphNodeCategory.STORAGE) # TODO: Get telemetry for Memory categories.append(InfoGraphNodeCategory.MEMORY) fingerprint = dict() counter = dict() for category in categories: fingerprint[category] = 0 counter[category] = 0 # calculation of the fingerprint on top of the virtual resources local_subgraph = annotated_subgraph.copy() local_subgraph.filter_nodes('layer', "virtual") local_subgraph.filter_nodes('layer', "service") local_subgraph.filter_nodes('type', 'machine') for node in local_subgraph.nodes(data=True): # if Fingerprint._node_is_nic_on_management_net( # node, annotated_subgraph, mng_net_name): # continue name = InfoGraphNode.get_name(node) category = InfoGraphNode.get_category(node) utilization = InfoGraphNode.get_utilization(node) if 'utilization' in utilization.columns.values: # LOG.info("NODE: {} - CATEGORY: {}".format(name, category)) mean = utilization['utilization'].mean() fingerprint[category] += mean counter[category] += 1 # This is just an average # TODO: Improve the average for category in categories: if counter[category] > 0: fingerprint[category] = \ fingerprint[category] / counter[category] return fingerprint @staticmethod def compute_node(annotated_subgraph, hostname=None): """ This is a type of fingerprint from the infrastructure perspective """ # TODO: Validate graph data = dict() statistics = dict() compute = InfoGraphNodeCategory.COMPUTE data[compute] = pandas.DataFrame() statistics[compute] = {'mean': 0, 'median': 0, 'min': 0, 'max': 0, 'var': 0, 'std_dev': 0} network = InfoGraphNodeCategory.NETWORK data[network] = pandas.DataFrame() statistics[network] = {'mean': 0, 'median': 0, 'min': 0, 'max': 0, 'var': 0, 'std_dev': 0} storage = InfoGraphNodeCategory.STORAGE data[storage] = pandas.DataFrame() statistics[storage] = {'mean': 0, 'median': 0, 'min': 0, 'max': 0, 'var': 0, 'std_dev': 0} memory = InfoGraphNodeCategory.MEMORY data[memory] = pandas.DataFrame() statistics[memory] = {'mean': 0, 'median': 0, 'min': 0, 'max': 0, 'var': 0, 'std_dev': 0} # Calculation of the fingerprint on top of the virtual resources local_subgraph = annotated_subgraph.copy() for node in local_subgraph.nodes(data=True): layer = InfoGraphNode.get_layer(node) is_machine = InfoGraphNode.node_is_machine(node) if is_machine: continue if layer == InfoGraphNodeLayer.VIRTUAL: continue if layer == InfoGraphNodeLayer.SERVICE: continue # If hostname has been specified, need to take into account only # nodes that are related to the specific host attrs = InfoGraphNode.get_attributes(node) allocation = attrs['allocation'] if 'allocation' in attrs \ else None if hostname and not hostname == allocation: continue category = InfoGraphNode.get_category(node) utilization = InfoGraphNode.get_utilization(node) try: utilization = utilization.drop('timestamp', 1) except ValueError: utilization = InfoGraphNode.get_utilization(node) data[category] = pandas.concat([data[category], utilization]) for category in statistics: if not data[category].empty: mean = data[category]['utilization'].mean() median = (data[category]['utilization']).median() min = data[category]['utilization'].min() maximum = data[category]['utilization'].max() var = data[category]['utilization'].var() std_dev = math.sqrt(var) else: mean = 0 median = 0 min = 0 maximum = 0 var = 0 std_dev = 0 statistics[category] = \ {'mean': mean, 'median': median, 'min': min, 'max': maximum, 'var': var, 'std_dev': std_dev} return [data, statistics] @staticmethod def compute_node_resources(annotated_subgraph, hostname=None): """ This is a type of fingerprint from the infrastructure perspective """ # TODO: Validate graph data = dict() statistics = dict() # Calculation of the fingerprint on top of the virtual resources local_subgraph = annotated_subgraph.copy() for node in local_subgraph.nodes(data=True): layer = InfoGraphNode.get_layer(node) if layer == InfoGraphNodeLayer.VIRTUAL: continue if layer == InfoGraphNodeLayer.SERVICE: continue type = InfoGraphNode.get_type(node) if type == 'core': continue # If hostname has been specified, need to take into account only # nodes that are related to the specific host attrs = InfoGraphNode.get_attributes(node) allocation = attrs['allocation'] if 'allocation' in attrs \ else None if hostname and not hostname == allocation: continue name = InfoGraphNode.get_name(node) statistics[name] = {'mean': 0, 'median': 0, 'min': 0, 'max': 0, 'var': 0, 'std_dev': 0} utilization = InfoGraphNode.get_utilization(node) try: utilization = utilization.drop('timestamp', 1) except ValueError: utilization = InfoGraphNode.get_utilization(node) data[name] = utilization if not data[name].empty: mean = data[name]['utilization'].mean() median = (data[name]['utilization']).median() min = data[name]['utilization'].min() maximum = data[name]['utilization'].max() var = data[name]['utilization'].var() std_dev = math.sqrt(var) else: mean = 0 median = 0 min = 0 maximum = 0 var = 0 std_dev = 0 statistics[name] = \ {'mean': mean, 'median': median, 'min': min, 'max': maximum, 'var': var, 'std_dev': std_dev} return [data, statistics] @staticmethod def workload(nodes): """ This is a type of fingerprint from the infrastructure perspective """ # TODO: Validate graph data = dict() statistics = dict() compute = InfoGraphNodeCategory.COMPUTE data[compute] = pandas.DataFrame() statistics[compute] = {'mean': 0, 'median': 0, 'min': 0, 'max': 0, 'var': 0, 'std_dev': 0} network = InfoGraphNodeCategory.NETWORK data[network] = pandas.DataFrame() statistics[network] = {'mean': 0, 'median': 0, 'min': 0, 'max': 0, 'var': 0, 'std_dev': 0} storage = InfoGraphNodeCategory.STORAGE data[storage] = pandas.DataFrame() statistics[storage] = {'mean': 0, 'median': 0, 'min': 0, 'max': 0, 'var': 0, 'std_dev': 0} memory = InfoGraphNodeCategory.MEMORY data[memory] =
pandas.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd import os, errno import datetime import uuid import itertools import yaml import subprocess import scipy.sparse as sp from scipy.spatial.distance import squareform from sklearn.decomposition.nmf import non_negative_factorization from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score from sklearn.utils import sparsefuncs from fastcluster import linkage from scipy.cluster.hierarchy import leaves_list import matplotlib.pyplot as plt import scanpy as sc def save_df_to_npz(obj, filename): np.savez_compressed(filename, data=obj.values, index=obj.index.values, columns=obj.columns.values) def save_df_to_text(obj, filename): obj.to_csv(filename, sep='\t') def load_df_from_npz(filename): with np.load(filename, allow_pickle=True) as f: obj = pd.DataFrame(**f) return obj def check_dir_exists(path): """ Checks if directory already exists or not and creates it if it doesn't """ try: os.makedirs(path) except OSError as exception: if exception.errno != errno.EEXIST: raise def worker_filter(iterable, worker_index, total_workers): return (p for i,p in enumerate(iterable) if (i-worker_index)%total_workers==0) def fast_euclidean(mat): D = mat.dot(mat.T) squared_norms = np.diag(D).copy() D *= -2.0 D += squared_norms.reshape((-1,1)) D += squared_norms.reshape((1,-1)) D = np.sqrt(D) D[D < 0] = 0 return squareform(D, checks=False) def fast_ols_all_cols(X, Y): pinv = np.linalg.pinv(X) beta = np.dot(pinv, Y) return(beta) def fast_ols_all_cols_df(X,Y): beta = fast_ols_all_cols(X, Y) beta = pd.DataFrame(beta, index=X.columns, columns=Y.columns) return(beta) def var_sparse_matrix(X): mean = np.array(X.mean(axis=0)).reshape(-1) Xcopy = X.copy() Xcopy.data **= 2 var = np.array(Xcopy.mean(axis=0)).reshape(-1) - (mean**2) return(var) def get_highvar_genes_sparse(expression, expected_fano_threshold=None, minimal_mean=0.01, numgenes=None): # Find high variance genes within those cells gene_mean = np.array(expression.mean(axis=0)).astype(float).reshape(-1) E2 = expression.copy(); E2.data **= 2; gene2_mean = np.array(E2.mean(axis=0)).reshape(-1) gene_var = pd.Series(gene2_mean - (gene_mean**2)) del(E2) gene_mean = pd.Series(gene_mean) gene_fano = gene_var / gene_mean # Find parameters for expected fano line top_genes = gene_mean.sort_values(ascending=False)[:20].index A = (np.sqrt(gene_var)/gene_mean)[top_genes].min() w_mean_low, w_mean_high = gene_mean.quantile([0.10, 0.90]) w_fano_low, w_fano_high = gene_fano.quantile([0.10, 0.90]) winsor_box = ((gene_fano > w_fano_low) & (gene_fano < w_fano_high) & (gene_mean > w_mean_low) & (gene_mean < w_mean_high)) fano_median = gene_fano[winsor_box].median() B = np.sqrt(fano_median) gene_expected_fano = (A**2)*gene_mean + (B**2) fano_ratio = (gene_fano/gene_expected_fano) # Identify high var genes if numgenes is not None: highvargenes = fano_ratio.sort_values(ascending=False).index[:numgenes] high_var_genes_ind = fano_ratio.index.isin(highvargenes) T=None else: if not expected_fano_threshold: T = (1. + gene_counts_fano[winsor_box].std()) else: T = expected_fano_threshold high_var_genes_ind = (fano_ratio > T) & (gene_counts_mean > minimal_mean) gene_counts_stats = pd.DataFrame({ 'mean': gene_mean, 'var': gene_var, 'fano': gene_fano, 'expected_fano': gene_expected_fano, 'high_var': high_var_genes_ind, 'fano_ratio': fano_ratio }) gene_fano_parameters = { 'A': A, 'B': B, 'T':T, 'minimal_mean': minimal_mean, } return(gene_counts_stats, gene_fano_parameters) def get_highvar_genes(input_counts, expected_fano_threshold=None, minimal_mean=0.01, numgenes=None): # Find high variance genes within those cells gene_counts_mean = pd.Series(input_counts.mean(axis=0).astype(float)) gene_counts_var = pd.Series(input_counts.var(ddof=0, axis=0).astype(float)) gene_counts_fano =
pd.Series(gene_counts_var/gene_counts_mean)
pandas.Series
import numpy as np import pandas as pd import matplotlib.pyplot as plt import warnings import calendar import seaborn as sns sns.set(style='white', palette='deep') plt.style.use('grayscale') warnings.filterwarnings('ignore') width = 0.35 # Funções def autolabel(rects,ax, df): #autolabel for rect in rects: height = rect.get_height() ax.annotate('{} ({:.2f}%)'.format(height, height*100/df.shape[0]), xy = (rect.get_x() + rect.get_width()/2, height), xytext= (0,3), textcoords="offset points", ha='center', va='bottom', fontsize=15) def autolabel_without_pct(rects,ax): #autolabel for rect in rects: height = rect.get_height() ax.annotate('{}'.format(height), xy = (rect.get_x() + rect.get_width()/2, height), xytext= (0,3), textcoords="offset points", ha='center', va='bottom', fontsize=15) def autolabel_horizontal(rects,ax): """ Attach a text label above each bar displaying its height """ for rect in rects: width = rect.get_width() ax.text(rect.get_x() + rect.get_width()+3, rect.get_y() + rect.get_height()/2., '%.2f' % width, ha='center', va='center', color='black', fontsize=15) # Importando o Arquivo df = pd.read_excel('Banco de Dados - WDO.xlsx') # Verificando Null Values df.isnull().sum() null_values = (df.isnull().sum()/len(df)*100) null_values = pd.DataFrame(null_values, columns= ['% Null Values']) null_values # Deletando Null Values df_feature = df.copy() df_feature.dropna(inplace=True) df_feature.isnull().sum() # Alterando nome de colunas bank = ['corretora_', 'bank_'] letters = ['<KEY>'] new_columns = np.array([]) for i in bank: for j in range(0,4): new_columns = np.append(new_columns, i+list(letters[0])[j]) df_feature.columns count = 0 for i in df_feature.loc[:, ['win_xp_(5m)', 'win_rico_(5m)', 'win_clear_(5m)', 'win_modal_(5m)', 'win_ubs_(5m)', 'win_btg_(5m)', 'win_bradesco_(5m)', 'win_genial(5m)']]: df_feature.rename(columns={i:new_columns[count]}, inplace=True) count+=1 # Verificando erro de digitação df_feature.columns df_feature.set_index('data', inplace=True) max_value = np.array([]) min_value = np.array([]) max_index = np.array([]) min_index = np.array([]) max_time = np.array([]) min_time = np.array([]) count = 0 value_error_final = pd.DataFrame() for i in df_feature.loc[:,['abertura', 'maxima', 'minima', 'fechamento', '20mma_maxima_2m', '20mma_minima_2m', '9mme_fechamento', '200mma_fechamento', '20mma_maxima_5m', '20mma_minima_5m', 'volume_financeiro','corretora_a', 'corretora_b', 'corretora_c', 'corretora_d', 'bank_a', 'bank_b', 'bank_c', 'bank_d','gain', 'quantas_correcoes', 'quantos_pontos_avancou', 'quantos_pontos_retornados']]: max_value = np.append(max_value,df_feature[i].max()) min_value = np.append(min_value,df_feature[i].min()) max_index = np.append(max_index,df_feature.loc[:,i].idxmax()) min_index = np.append(min_index,df_feature.loc[:,i].idxmin()) max_time = np.append(max_time,df_feature[df_feature[i] == df_feature[i].max()]['horario']) min_time = np.append(min_time,df_feature[df_feature[i] == df_feature[i].min()]['horario']) print('O máximo valor para a coluna |{}| foi de {}, no dia {} e no horário {}'.format(i,max_value[count], max_index[count],max_time[count])) print('O mínimo valor para a coluna |{}| foi de {}, no dia {} e no horário {}'.format(i,min_value[count], min_index[count], min_time[count])) print('*'*100) valer_error = pd.DataFrame({'valor_max':[max_value[count]], 'dia_max': [max_index[count]], 'horario_max': [max_time[count]], 'valor_min':[min_value[count]], 'dia_min': [min_index[count]], 'horario_min': [min_time[count]]}, index=[i]) value_error_final = pd.concat([valer_error,value_error_final]) count+=1 df_feature = df_feature.drop('gain', axis=1) #Pela amplitude podemos verificar erros de digitação nas colunas |máximas| e |mínimas| df_feature['amplitude'] = df_feature['maxima']-df_feature['minima'] # Criando coluna amplitude amplitude_error = df_feature[df_feature['amplitude'] <0][['maxima', 'minima', 'horario']] #Verificando se a ME9 está menor que as MA20 de ativação nove_compra_error = df_feature[df_feature['tipo_de_negociacao']=='compra'][['20mma_maxima_2m', '9mme_fechamento' , 'horario']] nove_venda_error = df_feature[df_feature['tipo_de_negociacao']=='venda'][['20mma_minima_2m', '9mme_fechamento' , 'horario']] nove_compra_error['error'] = nove_compra_error['9mme_fechamento']-nove_compra_error['20mma_maxima_2m'] nove_venda_error['error'] = nove_venda_error['9mme_fechamento']-nove_venda_error['20mma_minima_2m'] nove_compra_error = nove_compra_error[nove_compra_error['error'].values<0] nove_venda_error = nove_venda_error[nove_venda_error['error'].values>0] nove_compra_error[['20mma_maxima_2m', '9mme_fechamento']] = nove_compra_error[['9mme_fechamento','20mma_maxima_2m']].where(nove_compra_error['error']<0, nove_compra_error[['20mma_maxima_2m', '9mme_fechamento']].values) nove_venda_error[['20mma_minima_2m','9mme_fechamento']] = nove_venda_error[['9mme_fechamento','20mma_minima_2m']].where(nove_venda_error['error']>0, nove_venda_error[['20mma_minima_2m','9mme_fechamento']].values) df_feature.groupby(df_feature.index)['horario'].get_group('2019-06-03 ')[0] df_feature.groupby(df_feature.index)['horario'].get_group('2019-06-19 ')[0] df_feature.groupby(df_feature.index)['horario'].value_counts() for i in range(0, len(nove_compra_error)): df_feature.loc[(df_feature.index == nove_compra_error.index[i]) & (df_feature['horario']==nove_compra_error['horario'][i]), '20mma_maxima_2m'] = nove_compra_error['20mma_maxima_2m'].values[i] df_feature.loc[(df_feature.index == nove_compra_error.index[i]) & (df_feature['horario']==nove_compra_error['horario'][i]), '9mme_fechamento'] = nove_compra_error['9mme_fechamento'].values[i] for i in range(0, len(nove_venda_error)): df_feature.loc[(df_feature.index == nove_venda_error.index[i]) & (df_feature['horario']==nove_venda_error['horario'][i]), '20mma_minima_2m'] = nove_venda_error['20mma_minima_2m'].values[i] df_feature.loc[(df_feature.index == nove_venda_error.index[i]) & (df_feature['horario']==nove_venda_error['horario'][i]), '9mme_fechamento'] = nove_venda_error['9mme_fechamento'].values[i] nove_venda_error['20mma_minima_2m'][1] df_feature.loc[(df_feature.index == nove_venda_error.index[1]) & (df_feature['horario']==nove_venda_error['horario'][1]), '20mma_minima_2m'] #Verificando se M20 2m high tem divergência com M20 2m Low df_feature.columns m20_error_high_2m = df_feature[df_feature['20mma_maxima_2m']<df_feature['20mma_minima_2m']][['20mma_maxima_2m', '20mma_minima_2m', 'horario']] m20_error_high_2m['error'] = m20_error_high_2m['20mma_maxima_2m']-m20_error_high_2m['20mma_minima_2m'] m20_error_high_2m[['20mma_maxima_2m', '20mma_minima_2m']] = m20_error_high_2m[['20mma_minima_2m', '20mma_maxima_2m']].where(m20_error_high_2m['error']<0, m20_error_high_2m[['20mma_maxima_2m', '20mma_minima_2m']].values) for i in range(0, len(m20_error_high_2m)): df_feature.loc[(df_feature.index == m20_error_high_2m.index[i]) & (df_feature['horario']==m20_error_high_2m['horario'][i]), '20mma_maxima_2m'] = m20_error_high_2m['20mma_maxima_2m'].values[i] df_feature.loc[(df_feature.index == m20_error_high_2m.index[i]) & (df_feature['horario']==m20_error_high_2m['horario'][i]), '20mma_minima_2m'] = m20_error_high_2m['20mma_minima_2m'].values[i] #Verificando se M20 5m high tem divergência com M20 5m Low df_feature.columns m20_error_high_5m = df_feature[df_feature['20mma_maxima_5m']<df_feature['20mma_minima_5m']][['20mma_maxima_5m', '20mma_minima_5m', 'horario']] m20_error_high_5m['error'] = m20_error_high_5m['20mma_maxima_5m']-m20_error_high_5m['20mma_minima_5m'] m20_error_high_5m[['20mma_maxima_5m', '20mma_minima_5m']] = m20_error_high_5m[['20mma_minima_5m', '20mma_maxima_5m']].where(m20_error_high_5m['error']<0, m20_error_high_5m[['20mma_maxima_5m', '20mma_minima_5m']].values) for i in range(0, len(m20_error_high_5m)): df_feature.loc[(df_feature.index == m20_error_high_5m.index[i]) & (df_feature['horario']==m20_error_high_5m['horario'][i]), '20mma_maxima_5m'] = m20_error_high_5m['20mma_maxima_5m'].values[i] df_feature.loc[(df_feature.index == m20_error_high_5m.index[i]) & (df_feature['horario']==m20_error_high_5m['horario'][i]), '20mma_minima_5m'] = m20_error_high_5m['20mma_minima_5m'].values[i] #Salvando planilha tratada df_feature.to_excel('WDO Tratado.xlsx') #Quais foram as operações com maior frequência? PLOT df_feature.columns df_compra = df_feature[df_feature['tipo_de_negociacao']=='compra']['tipo_de_negociacao'] df_venda = df_feature[df_feature['tipo_de_negociacao']=='venda']['tipo_de_negociacao'] labels = [df_compra.values[0],df_venda.values[0]] ind = np.arange(len(labels)) values = [len(df_compra), len(df_venda)] fig = plt.figure(figsize=(10,10)) ax = fig.add_subplot(1,1,1) ax.set_title('Quantidade de Operações de Compra e Veda \n Realizado pela Estratégia de negociação', fontsize=15) ax.set_xlabel('Tipo de Operação', fontsize=15) ax.set_ylabel('Quantidade de Operações Realizadas', fontsize=15) ax.set_xticklabels(['Compra', 'Venda'], fontsize=15) ax.set_yticklabels(np.arange(0,501,100), fontsize=15) rects1= ax.bar('Compra', len(df_compra), width, edgecolor='black') rects2=ax.bar('Venda', len(df_venda), width, edgecolor='black') ax.set_xticks(ind) autolabel(rects1,ax,df_feature) autolabel(rects2,ax,df_feature) plt.tight_layout() #Quais foram os dias com maiores operações? PLOT df_feature.columns df_compra = df_feature[df_feature['tipo_de_negociacao']=='compra'][['horario','tipo_de_negociacao']] df_venda = df_feature[df_feature['tipo_de_negociacao']=='venda'][['horario','tipo_de_negociacao']] df_compra['data'] = df_compra.index df_compra['dia'] = df_compra['data'].apply(lambda x: x.weekday()) df_compra['mes'] = df_compra['data'].apply(lambda x: x.month) df_compra['hora'] = df_compra['horario'].apply(lambda x: x.hour) df_venda['data'] = df_venda.index df_venda['dia'] = df_venda['data'].apply(lambda x: x.weekday()) df_venda['mes'] = df_venda['data'].apply(lambda x: x.month) df_venda['hora'] = df_venda['horario'].apply(lambda x: x.hour) dias = {} for i,v in enumerate(list(calendar.day_name)): dias[i]=v meses = {} for i,v in enumerate(list(calendar.month_name)[1:],1): meses[i]=v dias_nomes_compra = np.array([]) for i in df_compra['dia']: for j in range(0,len(dias)): if i == list(dias.keys())[j]: dias_nomes_compra = np.append(dias_nomes_compra,dias[j]) dias_nomes_venda = np.array([]) for i in df_venda['dia']: for j in range(0,len(dias)): if i == list(dias.keys())[j]: dias_nomes_venda = np.append(dias_nomes_venda,dias[j]) def compra_venda(x): for i in range(6,len(meses)+1): if x == i: return meses[x] df_compra['dia'] = dias_nomes_compra df_venda['dia'] = dias_nomes_venda df_compra['mes'] = df_compra['mes'].apply(compra_venda ) df_venda['mes'] = df_venda['mes'].apply(compra_venda ) fig = plt.figure(figsize=(15,15)) ax = fig.add_subplot(1,1,1) labels = np.array([]) for i in range(0,5): labels = np.append(labels,dias[i]) len_dia_compra = np.array([]) len_dia_venda = np.array([]) for i in labels: len_dia_compra = np.append(len_dia_compra, len(df_compra[df_compra['dia']==i])) len_dia_venda = np.append(len_dia_venda, len(df_venda[df_venda['dia']==i])) ind = np.arange(len(labels)) ax.set_title('Tabela de Operações por Dias', fontsize=15) ax.set_xticks(ind) ax.set_xticklabels(['Segunda', 'Terça', 'Quarta', 'Quinta', 'Sexta'], fontsize=15) ax.set_xlabel('Dias da semana', fontsize=15) ax.set_yticklabels(np.arange(0,150,20),fontsize=15) ax.set_ylabel('Quantidade de Operações por Dias', fontsize=15) for i in range(0,len(labels)): rects1 = ax.bar(ind+width/2, len_dia_compra, width=width, edgecolor='black') rects2 = ax.bar(ind-width/2, len_dia_venda, width=width, edgecolor='black') ax.legend(['compra','venda' ], fontsize=15, loc='best') autolabel_without_pct(rects1,ax) autolabel_without_pct(rects2,ax) plt.tight_layout() #Quais foram os mesmos com maires operações? PLOT labels = [] len_mes_compra = [] len_mes_venda = [] [labels.append(meses[i]) for i in range(6,13)] [len_mes_compra.append(len(df_compra[df_compra['mes']==i])) for i in labels] [len_mes_venda.append(len(df_venda[df_venda['mes']==i])) for i in labels] ind=np.arange(len(labels)) fig = plt.figure(figsize=(10,10)) ax = fig.add_subplot(1,1,1) ax.set_title('Tabela de Operações por Mês', fontsize=15) ax.set_xticks(ind) ax.set_xticklabels(['Junho', 'Julho', 'Agosto', 'Setembro', 'Outubro', 'Novembro', 'Dezembro'], fontsize=15) ax.set_yticklabels(np.arange(0,110,10), fontsize=15) ax.set_ylabel('Quantidade de Operações por Mês', fontsize=15) for i in range(0,len(len_mes_compra)): rects1= ax.bar(ind+width/2, len_mes_compra, width=width, edgecolor='black') rects2= ax.bar(ind-width/2, len_mes_venda, width=width, edgecolor='black') ax.legend(['compra','venda' ], fontsize=15, loc='best') autolabel_without_pct(rects1,ax,) autolabel_without_pct(rects2,ax,) plt.tight_layout() #Quais horários obteve mais sinais? PLOT bins = np.arange(9,18) time = list(np.arange(9,18)) time_string = [str(time[i]) for i in range(0,len(time))] len_time_compra = list(df_compra.groupby(
pd.cut(df_compra['hora'], bins)
pandas.cut
from strategy.rebalance import get_relative_to_expiry_rebalance_dates, \ get_fixed_frequency_rebalance_dates, \ get_relative_to_expiry_instrument_weights from strategy.calendar import get_mtm_dates import pandas as pd import pytest from pandas.util.testing import assert_index_equal, assert_frame_equal def assert_dict_of_frames(dict1, dict2): assert dict1.keys() == dict2.keys() for key in dict1: assert_frame_equal(dict1[key], dict2[key], check_names=False) def test_tradeables_dates(): # no CME holdiays between this date range sd = pd.Timestamp("2015-01-02") ed = pd.Timestamp("2015-03-23") exchanges = ["CME"] tradeable_dates = get_mtm_dates(sd, ed, exchanges) exp_tradeable_dates = pd.date_range( "2015-01-02", "2015-03-23", freq="B" ) assert_index_equal(tradeable_dates, exp_tradeable_dates) # with an adhoc holiday holidays = [pd.Timestamp("2015-01-02")] tradeable_dates = get_mtm_dates(sd, ed, exchanges, holidays=holidays) exp_tradeable_dates = pd.date_range( "2015-01-03", "2015-03-23", freq="B" ) assert_index_equal(tradeable_dates, exp_tradeable_dates) # with CME holiday (New Years day) sd = pd.Timestamp("2015-01-01") ed = pd.Timestamp("2015-01-02") tradeable_dates = get_mtm_dates(sd, ed, exchanges) exp_tradeable_dates = pd.DatetimeIndex([pd.Timestamp("2015-01-02")]) assert_index_equal(tradeable_dates, exp_tradeable_dates) def test_relative_to_expiry_rebalance_dates(): # each contract rolling individually, same offset # change to ES and TY sd = pd.Timestamp("2015-01-02") ed = pd.Timestamp("2015-03-23") expiries = pd.DataFrame( [["2015ESH", "2015-03-20", "2015-03-20"], ["2015ESM", "2015-06-19", "2015-06-19"], ["2015TYH", "2015-02-27", "2015-03-20"], ["2015TYM", "2015-05-29", "2015-06-19"]], columns=["contract", "first_notice", "last_trade"] ) offsets = -3 rebal_dates = get_relative_to_expiry_rebalance_dates( sd, ed, expiries, offsets, all_monthly=False, holidays=None ) exp_rebal_dates = pd.DatetimeIndex( ["2015-01-02", "2015-02-24", "2015-03-17"] ) assert_index_equal(rebal_dates, exp_rebal_dates) # rolling all monthly contracts together, same offset rebal_dates = get_relative_to_expiry_rebalance_dates( sd, ed, expiries, offsets, all_monthly=True, holidays=None ) exp_rebal_dates = pd.DatetimeIndex(["2015-01-02", "2015-02-24"]) assert_index_equal(rebal_dates, exp_rebal_dates) # rolling each contract individually, different offset offsets = {"ES": -3, "TY": -4} rebal_dates = get_relative_to_expiry_rebalance_dates( sd, ed, expiries, offsets, all_monthly=False, holidays=None ) exp_rebal_dates = pd.DatetimeIndex( ["2015-01-02", "2015-02-23", "2015-03-17"] ) assert_index_equal(rebal_dates, exp_rebal_dates) def test_relative_to_expiry_weights(): expiries = pd.DataFrame( [["2015ESH", "2015-03-20", "2015-03-20"], ["2015ESM", "2015-06-19", "2015-06-19"], ["2015ESU", "2015-09-18", "2015-09-18"], ["2015TYH", "2015-03-16", "2015-03-20"], ["2015TYM", "2015-05-29", "2015-06-19"], ["2015TYU", "2015-08-31", "2015-09-21"]], columns=["contract", "first_notice", "last_trade"] ) # one generic and one product dts = pd.date_range("2015-03-17", "2015-03-18", freq="B") offsets = -3 root_gnrcs = {"ES": ["ES1"]} wts = get_relative_to_expiry_instrument_weights( dts, root_gnrcs, expiries, offsets ) exp_wts = { "ES": pd.DataFrame( [1.0, 1.0], index=pd.MultiIndex.from_tuples( [(pd.Timestamp("2015-03-17"), "2015ESH"), (pd.Timestamp("2015-03-18"), "2015ESM")], names=("date", "contract")), columns=["ES1"] ) } assert_dict_of_frames(wts, exp_wts) # multiple products dts = pd.date_range("2015-03-13", "2015-03-20", freq="B") offsets = -1 root_gnrcs = {"ES": ["ES1"], "TY": ["TY1"]} wts = get_relative_to_expiry_instrument_weights( dts, root_gnrcs, expiries, offsets ) exp_wts = { "ES": pd.DataFrame([1.0, 1.0, 1.0, 1.0, 1.0, 1.0], index=pd.MultiIndex.from_tuples( [(pd.Timestamp("2015-03-13"), "2015ESH"), (pd.Timestamp("2015-03-16"), "2015ESH"), (
pd.Timestamp("2015-03-17")
pandas.Timestamp
#################################################################################################### # EXPERIMENT TRACKING ROUTINES #################################################################################################### import numpy as np import imageio from matplotlib import pyplot as plt from matplotlib import animation from matplotlib import image as mpimg import os, sys, json import glob import pickle import pandas as pd import itertools as it from time import strftime, localtime, time, perf_counter ################### Global Parameters EXPERIMENT_PATH = r'/experiments' # path where new experiments will be created ################### create_experiment def create_experiment(process_run, params): ''' Create experiment by processing runs over all combinations of hparam key values param: process_run func function variable for run processing logic param: params dict dict of parameters that are NOT hyper-parameters param: hparams dict dict of hyperparameters whose value are all combinations per run param: verbose int 0 = no output, 1 = only print, 2 = print + plots (as PNGs) return: str exper_path returns the experiment path ** Assumes process_run method whose args match hparam keys. For example... from util_experiment import create_experiment ... my_process_run(run_folder, params): data_shape = hparam['data_shape'] # will be 32 on first run, 64 on second... ... return(run_summary) where run_summary is dict of metrics my_hparams = {data_shape: [32, 64, 128], ...} # will process_run for all combinations start_experment('my_exp_name', my_process_run, my_hparams, verbose=2) ''' # set base path to exerimentS folder (needs lots of space) # set params variables for all experiment runs exper_tag = params['exper_tag'] if 'exper_tag' in params else 'Unknown' verbose = bool(params['verbose']) if 'verbose' in params else True # print everything instead of minimal filelog = bool(params['filelog']) if 'filelog' in params else True # print to file instead of terminal # create experiment folder under /logs dt = get_datetime_string() exper_path = EXPERIMENT_PATH + exper_tag + '-'+ dt if not os.path.isdir(exper_path): os.makedirs(exper_path) # if filelog: # all stdout print to file? >>>>>>>>>>>> ignore filelog for Colab WandB version # sys.stdout = open(exper_path + '/' + exper_tag + '-print.txt', 'w') if verbose: nRuns = np.prod([len(v) for v in params.values() if isinstance(v, list) ]) print(f'>>> START EXPERIMENT: path="{exper_path}" with {nRuns} runs using...\nparams = {params}') # generate list of all hparams and its combinations hparam_list = [] h_keys = [] # find all params that are hyper-params, having a list of values, rather than single scalar for key, value in params.items(): # print('key = ', key, 'value = ', value, type(value)) # DEBUG: remove if isinstance(value, list): h_keys.append(key) # generate all combinations among hyper-params list combinations = it.product(*(params[key] for key in h_keys)) for tup in combinations: s = '{ ' for i, key in enumerate(h_keys): if isinstance(tup[i], str): s += f"'{key}': '{tup[i]}', " else: s += f"'{key}': {tup[i]}, " s = s[:-2] + ' }' # remove comma and add closing bracket # print('tup = ', tup, 's = ', s) # >>>> TODO debug remove hparam_list.append(eval(s)) # execute process_run for each hparam_list combination result_list = [] for i, hparam in enumerate(hparam_list): if verbose: print('=' * 80) print(f'>>> START RUN{i:02d} with hparams = {hparam}') print(f'>>> INFO: START RUN{i:02d} with hparam = {hparam}', file=sys.stderr) run_log = hparam params.update(hparam) # print('params = ', params) # create new run folder with hparam value appended run_folder = exper_path + f'/runs/RUN{i:02d}_' + dt[-4:] + '_' + \ ''.join([f'{str(key)[:3]}{str(value).replace(".", "")}_' for (key, value) in hparam.items()])[:-1] if not os.path.isdir(run_folder): os.makedirs(run_folder) start_time = perf_counter() ############# execute PROCESS_RUN function in calling experiment run_metrics = process_run(run_folder, params) run_log.update(run_metrics) # get elapse time of this run and save elapse_time = perf_counter() - start_time run_log.update({'run_time': elapse_time}) # save run_log ndarray plus scalars as exper_results rows run_dict = _save_run_log(run_folder, run_log, verbose) result_list.append(run_dict) if verbose: # print(f'>>> END RUN{i:02d} elapse={elapse_time:0.3f} sec with run_log={list(run_log.keys())}') print(f'>>> END RUN{i:02d} elapse={elapse_time:0.3f} sec run_log={",".join([str(key) for key in run_log.keys()])}') # create run-results df with rows of metrics from all runs run_results = pd.DataFrame(result_list) total_run_time = run_results['run_time'].sum() run_results.to_json(exper_path + '/run_results.json') print(f'>>> INFO: Saving run results with total run time = {total_run_time/60:0.1f} min', file=sys.stderr) # create animated GIF for all PNG plots across all runs if len(hparam_list) > 1: # only if there is more than one PNG to convert to video create_all_MP4(exper_path, nImagesPerSec=1.0) print(f'>>> INFO: Generated MP4 video from all run PNGs', file=sys.stderr) if verbose: print('Experiment Results... ', run_results) print(f'>>> END EXPERIMENT: elapse={(total_run_time/60):3.1f} min') sys.stdout.close() return exper_path ########################################################################################## # Internal Subroutines ########################################################################################## ####################### _create_all_MP4 def create_all_MP4(exper_path, nImagesPerSec=1.0): ''' find all PNG file in RUN01; then call _create_MP4 for each exper_path str path to experiment folder nImagesPerSec float sets images-per-second, so 0.5 is PNG image every 2 sec ''' filenames = glob.glob(exper_path + '/runs/RUN00*/*.png') if len(filenames) == 0: print(f' WARNING: create_all_MP4 found no PNG plot files in first run folder') return for filename in filenames: plot_name = filename[filename.rfind('\\') :] # find last slash before PNG filename plot_name = plot_name[1 : -4] # trim slash in front and '.PNG' at end # print('plot_name = ', plot_name) _create_MP4(exper_path, plot_name, nImagesPerSec=nImagesPerSec) ####################### _create_aminGIF ...used by _create_all_aminGIF def _create_MP4(exper_path, plot_name, nImagesPerSec): ''' create aminated GIF from PNG plot in each run exper_path str path to experiment folder plot_name str name of plot PNG file (without '.png' ext) fps float sets frames-per-second ''' MP4_file = exper_path + '/' + plot_name + '.mp4' filenames = glob.glob(exper_path + '/runs/RUN*' + '/' + plot_name + '.png') filenames = sorted(filenames) images = [mpimg.imread(f) for f in filenames] print(f' INFO: generating {plot_name} MP4 with {len(images)} PNG images') if len(filenames) == 0: print(f' WARNING: Create_MP4 found no PNG files for {plot_name} plot') # set/calculate video parameters nFramesPerSec = 30 nImages = len(images) nFramesPerImage = int(nFramesPerSec * nImagesPerSec) nFrames = nFramesPerImage * nImages # First set up the figure, the axis, and the plot element we want to animate fig = plt.figure(figsize=(9.6, 5.4), dpi=100) plt.axis('off') a = images[0] # im = plt.imshow(a, interpolation=None, aspect='auto', vmin=0, vmax=1) im = plt.imshow(a, interpolation=None, aspect='equal') def animate(i): ii = i // nFramesPerImage # repeat each image nFramesPerImage times im.set_array(images[ii]) return [im] # anim = animation.FuncAnimation(fig, animate, frames=len(images), anim = animation.FuncAnimation(fig, animate, frames=nFrames, repeat=False) # anim = animation.FuncAnimation(fig, animate, frames=nFrames, blit=True, repeat=False) # interval=10, blit=True, repeat=False) anim.save(MP4_file, fps=nFramesPerSec, extra_args=['-vcodec', 'libx264']) ####################### _create_all_aminGIF def _create_all_aminGIF(exper_path, fps=0.5, repeat_first=5): ''' find all PNG file in RUN01; then call _create_aminGIF for each exper_path str path to experiment folder fps float sets frames-per-second, so 0.5 is frame every 2 sec repeat_first int repeats the first PNG as start of loop ''' filenames = glob.glob(exper_path + '/runs/RUN00*/*.png') print(f' INFO: generating {len(filenames)} anim-GIFs') if len(filenames) == 0: print(f' WARNING: create_aminGIF found no PNG plot files in first run folder') return for filename in filenames: plot_name = filename[filename.rfind('\\') :] # find last slash before PNG filename plot_name = plot_name[1 : -4] # trim slash in front and '.PNG' at end # print('plot_name = ', plot_name) _create_aminGIF(exper_path, plot_name, fps=fps, repeat_first=repeat_first) ####################### _create_aminGIF ...used by _create_all_aminGIF def _create_aminGIF(exper_path, plot_name, fps=0.5, repeat_first=5): ''' create aminated GIF from PNG plot in each run exper_path str path to experiment folder plot_name str name of plot PNG file (without '.png' ext) fps float sets frames-per-second repeat_first int repeats the first PNG as start of loop ''' anim_file = exper_path + '/' + plot_name + '.gif' with imageio.get_writer(anim_file, mode='I', fps=fps) as writer: # collect filenames for plot_name across all runs # filenames = glob.glob(exper_path + '/runs/RUN*' + '/' + plot_name + '.png') filenames = glob.glob(exper_path + '/runs/RUN*' + '/' + plot_name + '.png') filenames = sorted(filenames) print(f' INFO: generating anim-GIF {plot_name} with {len(filenames)} PNGs') if len(filenames) == 0: print(f' WARNING: Create_AminGIF found no PNG file for {plot_name} plot') # append each PNG together for i, filename in enumerate(filenames): if i == 0: # repeat the first PNG several times for ii in range(repeat_first): image = imageio.imread(filename) writer.append_data(image) else: image = imageio.imread(filename) writer.append_data(image) # write anim GIF image = imageio.imread(filename) writer.append_data(image) ####################### _save_run_log def _save_run_log(run_path, run_log, verbose): ''' save all run_log items in run_path folder, depending on object type run_path str path to current run folder run_log dict keyvalue of result variables to be saved for this run verbose int level of print verbosity ''' print(f'>>> SAVE RUN LOG: run_path={run_path} with type={type(run_path)}') # if (type(run_log) is dict): # TODO: fix by defining 'dict' type # print(f'ERROR: run_log is not type DICT') dict = {} for key, value in run_log.items(): # TODO - save model, history as ndarray value_str = '' if isinstance(value, int) or isinstance(value, np.int32): dict.update({key: value}) value_str = str(value) elif isinstance(value, float) or isinstance(value, np.float32): dict.update({key: value}) value_str = str(value) elif isinstance(value, np.ndarray): np.save(run_path + '/' + str(key), value) elif isinstance(value, list): with open(run_path + '/' + str(key + '.pkl'), 'wb') as f: # https://stackoverflow.com/questions/12309269/how-do-i-write-json-data-to-a-file/37795053#37795053 TODO: pickle.dump(value, f) # value.to_pickle(run_path + '/' + str(key)) else: print(f' SAVE ERROR: var {key} with value {value} not saved') if verbose: print(f' {key}: {type(value)} = {value_str}') return dict ################### get_datetime_string def get_datetime_string(): ''' Return datetime string like "YYYYMMDD-HHMMSS" Note: add '%z' for '-ZZZZ' is GMT offset, like MST = -7000 ''' return strftime("%Y%m%d-%H%M%S", localtime()) ######### get dict from arg def get_dict_from_arg(arg_no): ''' Returns dictionary pass in arg# as string ''' # for arg in sys.argv: # print('arg = ', arg) data = sys.argv[arg_no] # print('data = ', data, type(data)) data2 = str(data).replace("'", '"') # print('data2 = ', data2, type(data)) dict = json.loads(data2) # print('dict = ', dict) # for key, value in dict.items(): # print(f'key={key} value={value}') return dict # return json.loads(str(sys.argv[arg]).replace("'", '"')) ################################################################# # Save dataframe to experiment run_path def save_dataframe(path, df_name, df_table): #>>>>> TODO use json instead ??? """Save dataframe to path folder with name 'df_name' using pickle Parameters ---------- path : str file path to destination df_name : str df_table : [type] [description] """ # df_table.to_pickle(f'{path}/{df_name}.pkl') df_table.to_json(f'{path}/{df_name}.json') # Load dataframe from a previous experiment run_path def load_dataframe(path, df_name): # df = pd.read_pickle(path + '\\' + df_name + '.pkl') df =
pd.read_json(path + '\\' + df_name + '.json')
pandas.read_json
#!/usr/bin/env python3 import ccxt from configparser import ConfigParser import json import os import pickle import redis import socket import tempfile import time import threading import zlib import numpy as np import talib.abstract as ta from pandas import DataFrame, Series from requests_futures.sessions import FuturesSession from sklearn.preprocessing import MinMaxScaler import keras.models BLACK_LIST = ['BNB'] CRON_TIME = 15 TA_TIME_FRAME = '15m' ML_TIME_FRAME = '1h' # '1h', '4h', '1d' STEP_SIZE = 5 BOT_NAME = 'Detector' HOST_NAME = socket.gethostname() CONFIG_FILE = '{}/config.ini'.format(os.path.dirname(os.path.abspath(__file__))) config = ConfigParser() config.read(CONFIG_FILE) session = FuturesSession() rd = redis.StrictRedis(host=config['REDIS']['HOST'], port=config['REDIS']['PORT'], password=config['REDIS']['PASS'], db=0) exchange = ccxt.binance({'apiKey': config['BINANCE']['KEY'], 'secret': config['BINANCE']['SECRET']}) def make_keras_picklable(): def __getstate__(self): with tempfile.NamedTemporaryFile(suffix='.hdf5', delete=True) as fd: keras.models.save_model(self, fd.name, overwrite=True) model_str = fd.read() d = {'model_str': model_str} return d def __setstate__(self, state): with tempfile.NamedTemporaryFile(suffix='.hdf5', delete=True) as fd: fd.write(state['model_str']) fd.flush() model = keras.models.load_model(fd.name) self.__dict__ = model.__dict__ cls = keras.models.Model cls.__getstate__ = __getstate__ cls.__setstate__ = __setstate__ class Symbol(object): def __init__(self, obj): self.__dict__ = json.loads(json.dumps(obj)) def log(text): msg = '{} {} {} {}'.format(time.strftime("%d/%m/%Y %H:%M"), HOST_NAME, BOT_NAME, text) url = 'https://api.telegram.org/bot{}/sendMessage?chat_id={}&text={}&parse_mode=markdown' \ .format(config['TELEGRAM']['BOT'], config['TELEGRAM']['CHAT'], msg) session.get(url) print(msg) return def crossed(series1, series2, direction=None): if isinstance(series1, np.ndarray): series1 = Series(series1) if isinstance(series2, int) or isinstance(series2, float) or isinstance(series2, np.ndarray): series2 =
Series(index=series1.index, data=series2)
pandas.Series
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/03_key_driver_analysis.ipynb (unless otherwise specified). __all__ = ['KeyDriverAnalysis'] # Cell import numpy as np import pandas as pd pd.set_option('display.max_columns', 500) import time from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier import matplotlib.pyplot as plt import shap from .preprocessing import DataframePreprocessor class KeyDriverAnalysis: """ Performs key driver analysis """ def __init__(self, df, outcome_col='outcome', text_col=None, include_cols=[], ignore_cols=[], verbose=1): """ Instantiates the KeyDriverAnalysis instance. """ self.v = verbose self.pp = None # set with call to _preprocess self.df, self.x, self.y = self._preprocess(df, outcome_col=outcome_col, text_col=text_col, include_cols=include_cols, ignore_cols=ignore_cols) def _preprocess(self, df, outcome_col='outcome', text_col=None, include_cols=[], ignore_cols=[]): """ preprocesses DataFrame """ temp_treatment = 'CausalNLP_temp_treatment' df = df.copy() df[temp_treatment] = [0] * df.shape[0] # preprocess self.pp = DataframePreprocessor(treatment_col = temp_treatment, outcome_col = outcome_col, text_col=text_col, include_cols=include_cols, ignore_cols=ignore_cols, verbose=self.v) df, x, y, _ = self.pp.preprocess(df, training=True, min_df=0.05, max_df=0.5, ngram_range=(1,1), stop_words='english') return df, x, y def correlations(self, outcome_only=True): """ Computes corelations between independent variables and outcome """ df = self.x.copy() df[self.pp.outcome_col] = self.y corrALL = df.apply(pd.to_numeric, errors='coerce').corr() if outcome_only: df_results = corrALL[[self.pp.outcome_col]] df_results = df_results.sort_values(by=self.pp.outcome_col, key=abs, ascending=False) return df_results.iloc[1: , :] #return df_results.sort_values(by=[self.pp.outcome_col]) else: return corrALL def importances(self, plot=True, split_pct=0.2, use_shap=False, shap_background_size=50, rf_model=None, n_estimators=100, n_jobs=-1, random_state=42): """ Identifies important predictors using a RandomForest model. """ X_train, X_test, y_train, y_test = train_test_split(self.x.values, self.y.values, test_size=split_pct, random_state=random_state) rf_type = RandomForestClassifier if self.pp.is_classification else RandomForestRegressor rf = rf_type(n_estimators = n_estimators, n_jobs = n_jobs, oob_score = True, bootstrap = True, random_state = random_state) rf.fit(X_train, y_train) if self.v: print('R^2 Training Score: {:.2f} \nOOB Score: {:.2f} \nR^2 Validation Score: {:.2f}'.format( rf.score(X_train, y_train), rf.oob_score_, rf.score(X_test, y_test))) driverNames = self.x.columns.values if use_shap: explainer = shap.KernelExplainer(rf.predict, X_test[:shap_background_size,:]) shap_values = explainer.shap_values(X_test[:shap_background_size,:]) if plot: shap.summary_plot(shap_values, X_test[:shap_background_size,:], feature_names=driverNames) vals = np.abs(shap_values).mean(0) df_results = pd.DataFrame(list(zip(driverNames, vals)), columns=['Driver','Importance']) df_results.sort_values(by=['Importance'], ascending=False, inplace=True) return df_results else: df_results = pd.DataFrame(data = {'Driver': driverNames, 'Importance': rf.feature_importances_}) df_results = df_results.sort_values('Importance', ascending=False) if plot: feat_importances =
pd.Series(rf.feature_importances_, index=driverNames)
pandas.Series
# coding=utf-8 from hielen2.source import CloudSource, ActionSchema, GeoInfoSchema from hielen2.utils import LocalFile, ColorMap, Style, FTPPath from hielen2.ext.source_rawsource import Source as RawSource import hielen2.api.features as featman from hielen2.mapmanager import Multiraster from hielen2.cloudmanager import PotreeCM from .cloudpainter import makemultilaz import json from pathlib import Path from marshmallow import fields from numpy import full from pandas import read_csv, DataFrame, Series, DatetimeIndex from matplotlib.cm import jet from matplotlib.colors import rgb2hex from xarray import open_rasterio from shutil import copy import geojson from datetime import datetime import traceback series_file_date_parser = lambda x: datetime.strptime(x, "%d/%m/%Y %H.%M") #mapbasename="basemap.tif" class ConfigSchema(GeoInfoSchema): #class ConfigSchema(ActionSchema): _self_hints = { "TinSAR Base" : { 0: ["master_cloud","references to master cloud csv in FTP",True], }, "TinSAR Color Maps": { 0: ["displ_cmap","Displacement colormap range",True], 1: ["ampli_cmap","Amplitude colormap range",True], }, "TinSAR Selected Points":{ 0: ["point_style","style code for the selected points",True], 1: ["series_file","textfile containing selected points and dataseries of theirs",True] } } master_cloud = FTPPath(required=True, allow_none=False) displ_cmap = ColorMap(required=False,allow_none=True,default=None) ampli_cmap = ColorMap(required=False,allow_none=True,default=None) point_style = Style(required=False, allow_none=True,default=None) series_file = FTPPath(required=False, allow_none=True) class FeedSchema(ActionSchema): _self_hints = { "TinSAR Feed": { 0: ["displacement_cloud","reference to result cloud in FTP",True], 1: ["amplitude_cloud","refernce to radar amplitutde cloud in FTP",True], 2: ["displacement_geotiff","reference to result geotiff in FTP",True], 3: ["amplitude_geotiff","refernce to radar amplitude geotiff in FTP",True] } } displacement_cloud = FTPPath(required=False, allow_none=True) amplitude_cloud = FTPPath(required=False, allow_none=True) displacement_geotiff = FTPPath(required=False, allow_none=True) amplitude_geotiff = FTPPath(required=False, allow_none=True) def get_imgname(mapname,timestamp,param): return f"{mapname}_{timestamp[:14]}_{param}.tif" class Source(CloudSource): ''' PhotoMonitoring source manager ''' def _config(self, brandnewconf=True, **kwargs): if brandnewconf: kwargs['opacity']=50 out=super().config(**kwargs) chstruct={ "param": 'Displacement', "struct": { "cache": None, "modules": {}, "mu":"mm", "operands": {"output":"displacement"}, "operator": None } } self.addParamSeries(**chstruct) chstruct={ "param": 'Radar_Amplitude', "struct": { "cache": None, "modules": {}, "mu":"mm", "operands": {"output":"amplitude"}, "operator": None } } self.addParamSeries(**chstruct) else: out=kwargs timestamp=out['timestamp'] out['master_cloud']=kwargs['master_cloud'] confpath=self.hasher(timestamp) mapmanager=Multiraster(self.uid,confpath) mapmanager.mapcache.mkdir() mapmanager.setMFparams(bands=3,crs='EPSG:4326') self.filecache.mkdir(confpath) #CONFIGURABILI: displ_cmap, ampli_cmap def_cmap=[ [ a/100, rgb2hex(jet (a/100)[0:3]) ] for a in range(0,101,10) ] if kwargs['displ_cmap'] is None: kwargs['displ_cmap'] = ColorMap.make_colormap(def_cmap) kwargs['displ_cmap']["norm"] = None out['displ_cmap']=kwargs['displ_cmap'] if kwargs['ampli_cmap'] is None: kwargs['ampli_cmap'] = ColorMap.make_colormap(def_cmap) kwargs['ampli_cmap']["norm"] = None out['ampli_cmap']=kwargs['ampli_cmap'] self.setParamOperands('Displacement',cmap=out["displ_cmap"]) self.setParamOperands('Radar_Amplitude',cmap=out["ampli_cmap"]) cloudman=PotreeCM(self.uid,confpath) cloudman.cloudcache.mkdir() clds=makemultilaz(out['master_cloud'],str(self.filecache / confpath ),basemanage='a') for k,w in clds.items(): cloudman.makePotree(w,k) #print(json.dumps(out,indent=4)) out['point_style']=kwargs['point_style'] try: points_file=Path(kwargs["series_file"]) except Exception as e: points_file = None self._feed_subitems(points_file,out['point_style']) if not brandnewconf: ##Ricreare le cloud associate alla config try: nextconf=self.getActionValues('config',slice(timestamp,None))[1]['timestamp'] except Exception as e: nextconf=None feeds=self.getActionValues('feed',slice(timestamp,nextconf)) for f in feeds: feedkwargs=f['value'] self.feed(**feedkwargs) return out def config(self,**kwargs): return self._config(brandnewconf=True,**kwargs) def updateConfig(self,**kwargs): return self._config(brandnewconf=False,**kwargs) def cleanConfig(self,timestamp): """ da analizzare """ timestamp=self.hasher(timestamp) self.filecache.rmdir(timestamp) PotreeCM(self.uid,timestamp).cloudcache.rmdir() Multiraster(self.uid,timestamp).mapcache.rmdir() def _feed_subitems(self, points_file=None,point_style=None): try: subitems= set(self.getFeatureInfo('subitems')) except Exception as e: subitems= set([]) """ associa punti a feature principale e crea serie dati """ if points_file is not None: series=read_csv(points_file,sep=";",index_col=0,skiprows=3,parse_dates=[0],date_parser=series_file_date_parser) points=
read_csv(points_file,sep=";",index_col=0,header=None)
pandas.read_csv
import numpy as np from pandas import Categorical, Series import pandas._testing as tm class TestUnique: def test_unique_data_ownership(self): # it works! GH#1807 Series(Series(["a", "c", "b"]).unique()).sort_values() def test_unique(self): # GH#714 also, dtype=float ser = Series([1.2345] * 100) ser[::2] = np.nan result = ser.unique() assert len(result) == 2 # explicit f4 dtype ser = Series([1.2345] * 100, dtype="f4") ser[::2] = np.nan result = ser.unique() assert len(result) == 2 def test_unique_nan_object_dtype(self): # NAs in object arrays GH#714 ser = Series(["foo"] * 100, dtype="O") ser[::2] = np.nan result = ser.unique() assert len(result) == 2 def test_unique_none(self): # decision about None ser = Series([1, 2, 3, None, None, None], dtype=object) result = ser.unique() expected = np.array([1, 2, 3, None], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_unique_categorical(self): # GH#18051 cat = Categorical([]) ser = Series(cat) result = ser.unique() tm.assert_categorical_equal(result, cat) cat = Categorical([np.nan]) ser = Series(cat) result = ser.unique()
tm.assert_categorical_equal(result, cat)
pandas._testing.assert_categorical_equal
import numpy as np import pandas as pd MONTHS_IN_QUARTER = 3 MONTHS_IN_YEAR = 12 CONVERSION_YIELD = 0.06 CONVERSION_FV = 1.03 GLOBEX_CODES = ("ZN", "ZB", "UB", "ZT", "TN", "Z3N", "ZF") def _n_and_v(globex_code, year_fraction): mask = np.in1d(globex_code, ("ZN", "ZB", "UB", "TN")) n = mask * np.nan v = mask * np.nan if mask.any(): values = ( np.floor(year_fraction / MONTHS_IN_QUARTER * MONTHS_IN_YEAR) * MONTHS_IN_QUARTER ) n[mask] = values if isinstance(values, float) else values[mask] values = n * (n < 7) + MONTHS_IN_QUARTER * (n >= 7) v[mask] = values if isinstance(values, float) else values[mask] mask = np.in1d(globex_code, ("ZT", "Z3N", "ZF")) if mask.any(): values = np.floor(year_fraction * MONTHS_IN_YEAR) n[mask] = values if isinstance(values, float) else values[mask] values = n * (n < 7) + (n - 6) * (n >= 7) v[mask] = values if isinstance(values, float) else values[mask] if np.isnan(n).all(): raise NotImplementedError(f"No {globex_code} deliverables found!") return n, v def conversion_factor(globex_code, coupon, time_to_maturity): years = np.floor(time_to_maturity) year_fraction = time_to_maturity - years n, v = _n_and_v(globex_code, year_fraction) a = 1 / pow(CONVERSION_FV, v / 6) b = (coupon / 2) * (6 - v) / 6 c = 1 / pow(CONVERSION_FV, 2 * years + 1 * (n >= 7)) d = (coupon / CONVERSION_YIELD) * (1 - c) factor = a * (coupon / 2 + c + d) - b return factor if factor.size > 1 else float(factor) def extract_deliverables(df): deliverables = [] for code in GLOBEX_CODES: tmp_df = df[find_deliverables_of(code, df.MATURITY)].copy() tmp_df["DELIVERABLE"] = code tmp_df["CONV_FACTOR"] = conversion_factor( tmp_df.DELIVERABLE, tmp_df.COUPON / 100, tmp_df.MATURITY ) deliverables.append(tmp_df) deliverables =
pd.concat(deliverables)
pandas.concat
import os from matplotlib import use use('Agg') from matplotlib import pyplot as plt from matplotlib.cm import get_cmap plt.switch_backend('agg') import cartopy.crs as ccrs import numpy as np from blackswan.utils import get_time from blackswan import templating from blackswan.utils import prepare_static_folder import logging LOGGER = logging.getLogger("PYWPS") def get_time_nc(nc_file, tv='time'): """ returns all timestamps of given netcdf file as datetime list. :param nc_file: NetCDF file(s) :param tv: name of temporal dimension :return format: netcdftime._datetime.datetime """ from netCDF4 import MFDataset, num2date ds = MFDataset(nc_file) try: time = ds.variables[tv] except: tv = 'time_counter' ds.close() try: ds = MFDataset(nc_file) time = ds.variables[tv] if (hasattr(time, 'units') and hasattr(time, 'calendar')) == True: timestamps = num2date(time[:], time.units, time.calendar) elif hasattr(time, 'units'): timestamps = num2date(time[:], time.units) else: timestamps = num2date(time[:]) ds.close() except Exception as e: raise Exception return timestamps def pdf_from_analog(lon, lat, data, vmin, vmax, Nlin=30, domain=[-80,50,20,70], output='ana_map.pdf', title='Analogs'): fig = plt.figure() fig.set_size_inches(18.5, 10.5, forward=True) ax = plt.axes(projection=ccrs.PlateCarree()) ax.set_extent(domain, crs=ccrs.PlateCarree()) ax.coastlines(linewidth=0.8) ax.gridlines() levels = np.linspace(vmin, vmax, Nlin) cmap = get_cmap("RdBu_r") data_map = ax.contourf(lon, lat, data, levels=levels, extend='both', cmap=cmap, projection=ccrs.PlateCarree()) data_cbar = plt.colorbar(data_map, extend='both', shrink=0.6) data_cont = ax.contour(lon, lat, data, levels=levels, linewidths=0.8, colors="white", linestyles='dashed', projection=ccrs.PlateCarree()) plt.clabel(data_cont, inline=1, fmt='%1.0f') plt.title(title) plt.tight_layout() pdffilename = output plt.savefig(pdffilename) fig.clf() plt.close(fig) return pdffilename def pdf_from_ld(x, y, n_set=50, output='ld_dist.pdf'): fig = plt.figure() fig.set_size_inches(18.5, 10.5, forward=True) xedges, yedges = np.linspace(0, 25, n_set), np.linspace(0, 1, n_set) hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges)) xidx = np.clip(np.digitize(x, xedges), 0, hist.shape[0]-1) yidx = np.clip(np.digitize(y, yedges), 0, hist.shape[1]-1) c = hist[xidx, yidx] plt.scatter(x, y, c=c, cmap='jet') pdffilename = output plt.savefig(pdffilename) fig.clf() plt.close(fig) return pdffilename def get_configfile(files, seasoncyc_base=None, seasoncyc_sim=None, base_id='NCEP', sim_id='NCEP', timewin=1, varname='slp', seacyc=False, cycsmooth=91, nanalog=20, seasonwin=30, distfun='rms', outformat='.txt', period=["1973-01-01", "2012-12-31"], bbox="-180.0,-90.0,180,90.0", calccor=True, silent=False, config_file = "config.txt"): """ Generates the configuration file for the CASTf90 calculation. TODO: use jjinja template :param files: input files (reference period and period for analyses) :param timewin: number of days the distance is averaged :param varname: variable name in input files :param seacyc: remove the smoothed seasonal cycle from the input fields (True/False) :param cycsmooth: smoothing window for the seasonal cycle in days (should be an odd integer) :param nanalog: Number of analogs to detect :param distfun: Name of the distance function used to calculate the analogs. (Supported values: 'rms' 'mahalanobis', 'S1' (Teweles and wobus), 'cosine' (correlation) and - still experimental - 'of' (displacement and amplitude score based on optical flow image distortion) :param outformat: file format for output ('txt' or 'nc' (default)) :param analysis_period: dates for which analogs are desired :param period: reference period in which analogs are picked (for netcdf output attributes) :param bbox: coordinates for the region to be analysed :param calccor: calculate rank correlation for analog fields (True/False) :param silent: handling of log file output :returns: configuration file """ from datetime import datetime as dt date_stamp = dt.strftime(dt.now(), format='%Y%m%d_%H%M%S') LOGGER.info('start configuration file preparation at: %s' % (date_stamp)) # convert True/False to Fortran syntax seacyc = str(seacyc) calccor = str(calccor) silent = str(silent) # write stuff to configuration file # NB: if order or format or number changes, need to edit wps_analogs_viewer.py # and template_analogviewer.html where these scripts read in the config # params # config_file = "config.txt" config = open(config_file, "w") config.write( '!Configuration file for CASTf90 analogs processes deployed in blackswan\n') config.write('!Created : %s \n' % (date_stamp)) config.write('!Version : 0.1.5 \n') config.write('&FILES \n') config.write(' my_files%archivefile = "{file}" \n'.format( file=os.path.relpath(files[0]))) config.write(' my_files%simulationfile = "{file}" \n'.format( file=os.path.relpath(files[1]))) config.write(' my_files%outputfile = "{file}" \n'.format( file=os.path.relpath(files[2]))) if seacyc is not 'False': config.write(' my_files%seacycfilebase = "{file}" \n'.format( file=os.path.relpath(seasoncyc_base))) config.write(' my_files%seacycfilesim = "{file}" \n'.format( file=os.path.relpath(seasoncyc_sim))) config.write('/ \n') config.write('&PARAM \n') config.write(' my_params%timewin = {timewin} \n'.format(timewin=timewin)) config.write(' my_params%varname = "{varname}" \n'.format(varname=varname)) config.write(' my_params%seacyc = .{seacyc}. \n'.format( seacyc=seacyc.upper())) config.write(' my_params%cycsmooth = {cycsmooth} \n'.format( cycsmooth=cycsmooth)) config.write(' my_params%nanalog = {nanalog} \n'.format(nanalog=nanalog)) config.write(' my_params%seasonwin = {seasonwin} \n'.format( seasonwin=seasonwin)) config.write(' my_params%distfun = "{distfun}" \n'.format(distfun=distfun)) config.write(' my_params%calccor = .{calccor}. \n'.format( calccor=calccor.upper())) config.write(' my_params%oformat = "{outformat}" \n'.format( outformat=outformat)) # ".txt" # ! if equals ".nc" config.write(' my_params%silent = .{silent}.\n'.format( silent=silent.upper())) config.write('/\n') config.write('&ATTS\n') config.write(' my_atts%simsource = "{sim_id}" \n'.format(sim_id=sim_id)) # model name config.write( ' my_atts%predictorvar = "{varname}" \n'.format(varname=varname)) config.write(' my_atts%archisource = "{base_id}" \n'.format(base_id=base_id)) config.write(' my_atts%archiperiod = "{start},{end}" \n'.format( start=period[0], end=period[1])) config.write(' my_atts%predictordom = "{bbox}" \n'.format(bbox=bbox)) config.write('/\n') config.close() return config_file # def subset(resource=[], bbox='-80,50,22.5,70'): # """ # OBSOLETE # Returns a subset. # :param resource: netCDF input files of one dataset # :param bbox: bounding box # :return: subset netCDF file # """ # from tempfile import mkstemp # from cdo import Cdo # cdo = Cdo() # resource.sort() # ip, nc_concat = mkstemp(dir='.',suffix='.nc') # nc_concat = cdo.cat(input=resource, output=nc_concat) # ip, nc_subset = mkstemp(dir='.',suffix='.nc') # nc_subset = cdo.sellonlatbox('%s' % bbox, input=nc_concat, output=nc_subset) # LOGGER.info('subset done: %s ' % nc_subset) # return nc_subset def seacyc(archive, simulation, basecyc='seasoncyc_base.nc', simcyc='seasoncyc_sim.nc', method='base'): """ Subtracts the seasonal cycle. :param archive: netCDF file containing the reference period :param simulation: netCDF file containing the period to be analysed :param method: method to generate the seasonal cycle files base = seasonal cycle generated from reference period sim = seasonal cycle generated from period to be analysed own = seasonal cycle generated for both time windows :return [str,str]: two netCDF filenames for analysis and reference period (located in working directory) """ try: LOGGER.debug('seacyc started with method: %s' % method) from shutil import copy from blackswan.ocgis_module import call # from blackswan.utils import get_variable from cdo import Cdo cdo = Cdo(env=os.environ) if method == 'base': seasoncyc_base = cdo.ydaymean( input=archive, output=basecyc) seasoncyc_sim = simcyc copy(seasoncyc_base, seasoncyc_sim) LOGGER.debug('seasoncyc_base calculated : %s' % seasoncyc_base) elif method == 'sim': seasoncyc_sim = cdo.ydaymean( input=simulation, output=simcyc) seasoncyc_base = basecyc copy(seasoncyc_sim, seasoncyc_base) elif method == 'own': seasoncyc_base = cdo.ydaymean( input=archive, output=basecyc) seasoncyc_sim = cdo.ydaymean( input=simulation, output=simcyc) nt = cdo.ntime(input=seasoncyc_sim) nt = int(nt[0]) # check number of timesteps if (nt<365): LOGGER.debug('Simulation is to short ( %s ) to calculate seasonal cycle, use reference instead', str(nt)) seasoncyc_sim = simcyc copy(seasoncyc_base, seasoncyc_sim) else: raise Exception('normalisation method not found') except Exception: msg = 'seacyc function failed:' LOGGER.exception(msg) raise Exception(msg) return seasoncyc_base, seasoncyc_sim # obsolete, remove # def config_edits(configfile): # """ # Edits the CASTf90 configuration file. Removes filepaths. # :param configfile: configfile name with its path # :return str: modified_configfile name # """ # try: # # Read in the file # filedata = None # with open(configfile, 'r') as file: # filedata = file.read() # # Replace the target string # filedata = filedata.replace( # '/home/scratch01/sradanov/A2C2/NCEP/', '').replace('/home/estimr2/sradanov/Operational/', '') # # Write the file out again # with open(configfile, 'w') as file: # file.write(filedata) # LOGGER.info('configfile modified') # except Exception: # LOGGER.exeption('Failed to modify configfile:') # return configfile def reformat_analogs(analogs, prefix='modified-analogfile.tsv'): """ Reformats analogs results file for analogues viewer code. :param analogs: output from analog_detection process :return str: reformatted analogs file for analogues viewer """ # import numpy as np import pandas as pd try: num_cols = 3 # dateAnlg, Dis, Corr # Create dataframe and read in output csv file of analogs process dfS =
pd.DataFrame()
pandas.DataFrame
import re import pandas as pd # Dataframe cleaning from qutil.format.number import fmtl, fmtn, fmtpx def clean_column_names(df, inplace=True): clean_cols = df.columns.str.lower().str.replace(' ', '_') clean_cols = [re.sub(r'\W+', '', x) for x in clean_cols] clean_cols = [re.sub('__', '_', x) for x in clean_cols] df.columns = clean_cols return None def proper_column_names(df, inplace=False, for_display=True): """ Clean column names :param df: DataFrame :param inplace: :return: """ if not inplace: df = df.copy() clean_cols = df.columns.str.replace(' ', '_') clean_cols = [re.sub(r'\W+', '', x) for x in clean_cols] clean_cols = [re.sub('__', '_', x) for x in clean_cols] clean_cols = [x.title() for x in clean_cols if not (x.isupper())] if for_display: clean_cols = [x.replace('_', ' ') for x in clean_cols] df.columns = clean_cols if not inplace: return df def cols_to_datetime(df, keys): if isinstance(keys, list): for key in keys: df[key] =
pd.to_datetime(df[key])
pandas.to_datetime
import datetime from collections import OrderedDict import numpy as np import pandas as pd import pytest from numpy.testing import assert_almost_equal, assert_allclose from pandas.util.testing import assert_frame_equal, assert_series_equal from pvlib.location import Location from pvlib import clearsky from pvlib import solarposition from pvlib import irradiance from pvlib import atmosphere from conftest import (requires_ephem, requires_numba, needs_numpy_1_10, pandas_0_22) # setup times and location to be tested. tus = Location(32.2, -111, 'US/Arizona', 700) # must include night values times = pd.date_range(start='20140624', freq='6H', periods=4, tz=tus.tz) ephem_data = solarposition.get_solarposition( times, tus.latitude, tus.longitude, method='nrel_numpy') irrad_data = tus.get_clearsky(times, model='ineichen', linke_turbidity=3) dni_et = irradiance.extraradiation(times.dayofyear) ghi = irrad_data['ghi'] # setup for et rad test. put it here for readability timestamp = pd.Timestamp('20161026') dt_index = pd.DatetimeIndex([timestamp]) doy = timestamp.dayofyear dt_date = timestamp.date() dt_datetime = datetime.datetime.combine(dt_date, datetime.time(0)) dt_np64 = np.datetime64(dt_datetime) value = 1383.636203 @pytest.mark.parametrize('input, expected', [ (doy, value), (np.float64(doy), value), (dt_date, value), (dt_datetime, value), (dt_np64, value), (np.array([doy]), np.array([value])), (pd.Series([doy]), np.array([value])), (dt_index, pd.Series([value], index=dt_index)), (timestamp, value) ]) @pytest.mark.parametrize('method', [ 'asce', 'spencer', 'nrel', requires_ephem('pyephem')]) def test_extraradiation(input, expected, method): out = irradiance.extraradiation(input) assert_allclose(out, expected, atol=1) @requires_numba def test_extraradiation_nrel_numba(): result = irradiance.extraradiation(times, method='nrel', how='numba', numthreads=8) assert_allclose(result, [1322.332316, 1322.296282, 1322.261205, 1322.227091]) def test_extraradiation_epoch_year(): out = irradiance.extraradiation(doy, method='nrel', epoch_year=2012) assert_allclose(out, 1382.4926804890767, atol=0.1) def test_extraradiation_invalid(): with pytest.raises(ValueError): irradiance.extraradiation(300, method='invalid') def test_grounddiffuse_simple_float(): result = irradiance.grounddiffuse(40, 900) assert_allclose(result, 26.32000014911496) def test_grounddiffuse_simple_series(): ground_irrad = irradiance.grounddiffuse(40, ghi) assert ground_irrad.name == 'diffuse_ground' def test_grounddiffuse_albedo_0(): ground_irrad = irradiance.grounddiffuse(40, ghi, albedo=0) assert 0 == ground_irrad.all() def test_grounddiffuse_albedo_invalid_surface(): with pytest.raises(KeyError): irradiance.grounddiffuse(40, ghi, surface_type='invalid') def test_grounddiffuse_albedo_surface(): result = irradiance.grounddiffuse(40, ghi, surface_type='sand') assert_allclose(result, [0, 3.731058, 48.778813, 12.035025], atol=1e-4) def test_isotropic_float(): result = irradiance.isotropic(40, 100) assert_allclose(result, 88.30222215594891) def test_isotropic_series(): result = irradiance.isotropic(40, irrad_data['dhi']) assert_allclose(result, [0, 35.728402, 104.601328, 54.777191], atol=1e-4) def test_klucher_series_float(): result = irradiance.klucher(40, 180, 100, 900, 20, 180) assert_allclose(result, 88.3022221559) def test_klucher_series(): result = irradiance.klucher(40, 180, irrad_data['dhi'], irrad_data['ghi'], ephem_data['apparent_zenith'], ephem_data['azimuth']) assert_allclose(result, [0, 37.446276, 109.209347, 56.965916], atol=1e-4) def test_haydavies(): result = irradiance.haydavies(40, 180, irrad_data['dhi'], irrad_data['dni'], dni_et, ephem_data['apparent_zenith'], ephem_data['azimuth']) assert_allclose(result, [0, 14.967008, 102.994862, 33.190865], atol=1e-4) def test_reindl(): result = irradiance.reindl(40, 180, irrad_data['dhi'], irrad_data['dni'], irrad_data['ghi'], dni_et, ephem_data['apparent_zenith'], ephem_data['azimuth']) assert_allclose(result, [np.nan, 15.730664, 104.131724, 34.166258], atol=1e-4) def test_king(): result = irradiance.king(40, irrad_data['dhi'], irrad_data['ghi'], ephem_data['apparent_zenith']) assert_allclose(result, [0, 44.629352, 115.182626, 79.719855], atol=1e-4) def test_perez(): am = atmosphere.relativeairmass(ephem_data['apparent_zenith']) dni = irrad_data['dni'].copy() dni.iloc[2] = np.nan out = irradiance.perez(40, 180, irrad_data['dhi'], dni, dni_et, ephem_data['apparent_zenith'], ephem_data['azimuth'], am) expected = pd.Series(np.array( [ 0. , 31.46046871, np.nan, 45.45539877]), index=times) assert_series_equal(out, expected, check_less_precise=2) def test_perez_components(): am = atmosphere.relativeairmass(ephem_data['apparent_zenith']) dni = irrad_data['dni'].copy() dni.iloc[2] = np.nan out, df_components = irradiance.perez(40, 180, irrad_data['dhi'], dni, dni_et, ephem_data['apparent_zenith'], ephem_data['azimuth'], am, return_components=True) expected = pd.Series(np.array( [ 0. , 31.46046871, np.nan, 45.45539877]), index=times) expected_components = pd.DataFrame( np.array([[ 0. , 26.84138589, np.nan, 31.72696071], [ 0. , 0. , np.nan, 4.47966439], [ 0. , 4.62212181, np.nan, 9.25316454]]).T, columns=['isotropic', 'circumsolar', 'horizon'], index=times ) if pandas_0_22(): expected_for_sum = expected.copy() expected_for_sum.iloc[2] = 0 else: expected_for_sum = expected sum_components = df_components.sum(axis=1) assert_series_equal(out, expected, check_less_precise=2) assert_frame_equal(df_components, expected_components) assert_series_equal(sum_components, expected_for_sum, check_less_precise=2) @needs_numpy_1_10 def test_perez_arrays(): am = atmosphere.relativeairmass(ephem_data['apparent_zenith']) dni = irrad_data['dni'].copy() dni.iloc[2] = np.nan out = irradiance.perez(40, 180, irrad_data['dhi'].values, dni.values, dni_et, ephem_data['apparent_zenith'].values, ephem_data['azimuth'].values, am.values) expected = np.array( [ 0. , 31.46046871, np.nan, 45.45539877]) assert_allclose(out, expected, atol=1e-2) def test_liujordan(): expected = pd.DataFrame(np. array([[863.859736967, 653.123094076, 220.65905025]]), columns=['ghi', 'dni', 'dhi'], index=[0]) out = irradiance.liujordan( pd.Series([10]), pd.Series([0.5]), pd.Series([1.1]), dni_extra=1400) assert_frame_equal(out, expected) # klutcher (misspelling) will be removed in 0.3 def test_total_irrad(): models = ['isotropic', 'klutcher', 'klucher', 'haydavies', 'reindl', 'king', 'perez'] AM = atmosphere.relativeairmass(ephem_data['apparent_zenith']) for model in models: total = irradiance.total_irrad( 32, 180, ephem_data['apparent_zenith'], ephem_data['azimuth'], dni=irrad_data['dni'], ghi=irrad_data['ghi'], dhi=irrad_data['dhi'], dni_extra=dni_et, airmass=AM, model=model, surface_type='urban') assert total.columns.tolist() == ['poa_global', 'poa_direct', 'poa_diffuse', 'poa_sky_diffuse', 'poa_ground_diffuse'] @pytest.mark.parametrize('model', ['isotropic', 'klucher', 'haydavies', 'reindl', 'king', 'perez']) def test_total_irrad_scalars(model): total = irradiance.total_irrad( 32, 180, 10, 180, dni=1000, ghi=1100, dhi=100, dni_extra=1400, airmass=1, model=model, surface_type='urban') assert list(total.keys()) == ['poa_global', 'poa_direct', 'poa_diffuse', 'poa_sky_diffuse', 'poa_ground_diffuse'] # test that none of the values are nan assert np.isnan(np.array(list(total.values()))).sum() == 0 def test_globalinplane(): aoi = irradiance.aoi(40, 180, ephem_data['apparent_zenith'], ephem_data['azimuth']) airmass = atmosphere.relativeairmass(ephem_data['apparent_zenith']) gr_sand = irradiance.grounddiffuse(40, ghi, surface_type='sand') diff_perez = irradiance.perez( 40, 180, irrad_data['dhi'], irrad_data['dni'], dni_et, ephem_data['apparent_zenith'], ephem_data['azimuth'], airmass) irradiance.globalinplane( aoi=aoi, dni=irrad_data['dni'], poa_sky_diffuse=diff_perez, poa_ground_diffuse=gr_sand) def test_disc_keys(): clearsky_data = tus.get_clearsky(times, model='ineichen', linke_turbidity=3) disc_data = irradiance.disc(clearsky_data['ghi'], ephem_data['zenith'], ephem_data.index) assert 'dni' in disc_data.columns assert 'kt' in disc_data.columns assert 'airmass' in disc_data.columns def test_disc_value(): times = pd.DatetimeIndex(['2014-06-24T12-0700','2014-06-24T18-0700']) ghi = pd.Series([1038.62, 254.53], index=times) zenith = pd.Series([10.567, 72.469], index=times) pressure = 93193. disc_data = irradiance.disc(ghi, zenith, times, pressure=pressure) assert_almost_equal(disc_data['dni'].values, np.array([830.46, 676.09]), 1) def test_dirint(): clearsky_data = tus.get_clearsky(times, model='ineichen', linke_turbidity=3) pressure = 93193. dirint_data = irradiance.dirint(clearsky_data['ghi'], ephem_data['zenith'], ephem_data.index, pressure=pressure) def test_dirint_value(): times = pd.DatetimeIndex(['2014-06-24T12-0700','2014-06-24T18-0700']) ghi = pd.Series([1038.62, 254.53], index=times) zenith = pd.Series([10.567, 72.469], index=times) pressure = 93193. dirint_data = irradiance.dirint(ghi, zenith, times, pressure=pressure) assert_almost_equal(dirint_data.values, np.array([ 888. , 683.7]), 1) def test_dirint_nans(): times = pd.DatetimeIndex(start='2014-06-24T12-0700', periods=5, freq='6H') ghi = pd.Series([np.nan, 1038.62, 1038.62, 1038.62, 1038.62], index=times) zenith = pd.Series([10.567, np.nan, 10.567, 10.567, 10.567,], index=times) pressure = pd.Series([93193., 93193., np.nan, 93193., 93193.], index=times) temp_dew = pd.Series([10, 10, 10, np.nan, 10], index=times) dirint_data = irradiance.dirint(ghi, zenith, times, pressure=pressure, temp_dew=temp_dew) assert_almost_equal(dirint_data.values, np.array([np.nan, np.nan, np.nan, np.nan, 893.1]), 1) def test_dirint_tdew(): times = pd.DatetimeIndex(['2014-06-24T12-0700','2014-06-24T18-0700']) ghi = pd.Series([1038.62, 254.53], index=times) zenith = pd.Series([10.567, 72.469], index=times) pressure = 93193. dirint_data = irradiance.dirint(ghi, zenith, times, pressure=pressure, temp_dew=10) assert_almost_equal(dirint_data.values, np.array([892.9, 636.5]), 1) def test_dirint_no_delta_kt(): times = pd.DatetimeIndex(['2014-06-24T12-0700','2014-06-24T18-0700']) ghi = pd.Series([1038.62, 254.53], index=times) zenith = pd.Series([10.567, 72.469], index=times) pressure = 93193. dirint_data = irradiance.dirint(ghi, zenith, times, pressure=pressure, use_delta_kt_prime=False) assert_almost_equal(dirint_data.values, np.array([861.9, 670.4]), 1) def test_dirint_coeffs(): coeffs = irradiance._get_dirint_coeffs() assert coeffs[0,0,0,0] == 0.385230 assert coeffs[0,1,2,1] == 0.229970 assert coeffs[3,2,6,3] == 1.032260 def test_erbs(): ghi = pd.Series([0, 50, 1000, 1000]) zenith = pd.Series([120, 85, 10, 10]) doy = pd.Series([1, 1, 1, 180]) expected = pd.DataFrame(np. array([[ -0.00000000e+00, 0.00000000e+00, -0.00000000e+00], [ 9.67127061e+01, 4.15709323e+01, 4.05715990e-01], [ 7.94187742e+02, 2.17877755e+02, 7.18119416e-01], [ 8.42358014e+02, 1.70439297e+02, 7.68919470e-01]]), columns=['dni', 'dhi', 'kt']) out = irradiance.erbs(ghi, zenith, doy) assert_frame_equal(np.round(out, 0), np.round(expected, 0)) def test_erbs_all_scalar(): ghi = 1000 zenith = 10 doy = 180 expected = OrderedDict() expected['dni'] = 8.42358014e+02 expected['dhi'] = 1.70439297e+02 expected['kt'] = 7.68919470e-01 out = irradiance.erbs(ghi, zenith, doy) for k, v in out.items(): assert_allclose(v, expected[k], 5) @needs_numpy_1_10 def test_dirindex(): clearsky_data = tus.get_clearsky(times, model='ineichen', linke_turbidity=3) ghi = pd.Series([0, 0, 1038.62, 254.53], index=times) ghi_clearsky = pd.Series( np.array([0., 79.73860422, 1042.48031487, 257.20751138]), index=times ) dni_clearsky = pd.Series( np.array([0., 316.1949056, 939.95469881, 646.22886049]), index=times ) zenith = pd.Series( np.array([124.0390863, 82.85457044, 10.56413562, 72.41687122]), index=times ) pressure = 93193. tdew = 10. out = irradiance.dirindex(ghi, ghi_clearsky, dni_clearsky, zenith, times, pressure=pressure, temp_dew=tdew) dirint_close_values = irradiance.dirint(ghi, zenith, times, pressure=pressure, use_delta_kt_prime=True, temp_dew=tdew).values expected_out = np.array([np.nan, 0., 748.31562753, 630.72592644]) tolerance = 1e-8 assert np.allclose(out, expected_out, rtol=tolerance, atol=0, equal_nan=True) tol_dirint = 0.2 assert np.allclose(out.values, dirint_close_values, rtol=tol_dirint, atol=0, equal_nan=True) def test_dni(): ghi = pd.Series([90, 100, 100, 100, 100]) dhi = pd.Series([100, 90, 50, 50, 50]) zenith =
pd.Series([80, 100, 85, 70, 85])
pandas.Series
import os import pandas as pd import json from cloud_pricing.data.interface import FixedInstance class AWSProcessor(FixedInstance): aws_gpu_ram = { 'p3': ('V100', 16), 'p2': ('K80', 12), 'g4': ('T4', 16), 'g3': ('M60', 8) } aws_pricing_index_ohio_url = "https://pricing.us-east-1.amazonaws.com/offers/v1.0/aws/AmazonEC2/current/us-east-1/index.json" include_cols = [ 'instanceType', 'location', 'productFamily', 'instanceFamily', 'currentGeneration', 'physicalProcessor', 'clockSpeed', 'sku', 'storage', 'tenancy', 'operatingSystem', 'capacitystatus', 'vcpu', 'memory', 'gpu' ] def __init__(self, table_name='aws_data.pkl'): super().__init__(table_name) def filter(self, *args, **kwargs): if kwargs['spot']: print("AWSProcessor currently doesn't support spot instances since they are updated live.") return return super().filter(*args, **kwargs) def setup(self): print("Downloading latest AWS data...") # Download latest pricing data data_name = 'ohio-ec2.json' self.download_data(self.aws_pricing_index_ohio_url, data_name) with open('ohio-ec2.json', 'r') as f: raw_aws_data=json.load(f) # Create products table data = [] for p in raw_aws_data['products'].values(): data.append({ 'sku': p['sku'], 'productFamily': p['productFamily'], **p['attributes'] }) products_df = pd.DataFrame(data).filter(self.include_cols).set_index('sku') # Create pricing table on_demand = raw_aws_data['terms']['OnDemand'] pricing_data = [] all_skus = set() for sku,v in on_demand.items(): for offer in v.values(): for dim in offer['priceDimensions'].values(): if sku in all_skus: print("Duplicate SKU", sku) else: all_skus.add(sku) pricing_data.append({ 'sku': sku, 'Price ($/hr)': dim['pricePerUnit']['USD'] if 'USD' in dim['pricePerUnit'] else dim['pricePerUnit'] }) pricing_df =
pd.DataFrame(pricing_data)
pandas.DataFrame
import json import pandas as pd def get_char_lines(script): dialog_json = script["dialog"] dialog = json_normalize(dialog_json) return dialog def get_char_names(script): char_names = script["characters"] return char_names def get_char_lines(char_names, dialog): char_lines = list() for i in range(len(char_names)): temp = dialog.loc[dialog['character'] == char_names[i]] char_lines.append(temp) return char_lines def get_lines_array(char_lines): lines =
pd.concat(char_lines, axis=0)
pandas.concat
from __future__ import division import numpy as np import os.path import sys import pandas as pd from base.uber_model import UberModel, ModelSharedInputs from .therps_functions import TherpsFunctions import time from functools import wraps def timefn(fn): @wraps(fn) def measure_time(*args, **kwargs): t1 = time.time() result = fn(*args, **kwargs) t2 = time.time() print("therps_model_rest.py@timefn: " + fn.func_name + " took " + "{:.6f}".format(t2 - t1) + " seconds") return result return measure_time class TherpsInputs(ModelSharedInputs): """ Input class for Therps. """ def __init__(self): """Class representing the inputs for Therps""" super(TherpsInputs, self).__init__() # Inputs: Assign object attribute variables from the input Pandas DataFrame """ Therps constructor. :param chem_name: :param use: :param formu_name: :param percent_act_ing: :param foliar_diss_hlife: :param num_apps: :param app_interval: :param application_rate: :param ld50_bird: :param lc50_bird: :param noaec_bird: :param noael_bird: :param species_of_the_tested_bird_avian_ld50: :param species_of_the_tested_bird_avian_lc50: :param species_of_the_tested_bird_avian_noaec: :param species_of_the_tested_bird_avian_noael: :param tw_bird_ld50: :param tw_bird_lc50: :param tw_bird_noaec: :param tw_bird_noael: :param mineau_sca_fact: :param aw_herp_sm: :param aw_herp_md: :param aw_herp_slg: :param awc_herp_sm: :param awc_herp_md: :param awc_herp_lg: :param bw_frog_prey_mamm: :param bw_frog_prey_herp: :return: """ self.use = pd.Series([], dtype="object", name="use") self.formu_name = pd.Series([], dtype="object", name="formu_name") self.percent_act_ing = pd.Series([], dtype="float", name="percent_act_ing") self.foliar_diss_hlife = pd.Series([], dtype="float64", name="foliar_diss_hlife") self.num_apps = pd.Series([], dtype="int64", name="num_apps") self.app_interval = pd.Series([], dtype="int", name="app_interval") self.application_rate = pd.Series([], dtype="float", name="application_rate") self.ld50_bird = pd.Series([], dtype="float", name="ld50_bird") self.lc50_bird = pd.Series([], dtype="float", name="lc50_bird") self.noaec_bird = pd.Series([], dtype="float", name="noaec_bird") self.noael_bird = pd.Series([], dtype="float", name="noael_bird") self.species_of_the_tested_bird_avian_ld50 = pd.Series([], dtype="float", name="species_of_the_tested_bird_avian_ld50") self.species_of_the_tested_bird_avian_lc50 = pd.Series([], dtype="float", name="species_of_the_tested_bird_avian_lc50") self.species_of_the_tested_bird_avian_noaec = pd.Series([], dtype="float", name="species_of_the_tested_bird_avian_noaec") self.species_of_the_tested_bird_avian_noael = pd.Series([], dtype="float", name="species_of_the_tested_bird_avian_noael") self.tw_bird_ld50 = pd.Series([], dtype="float", name="tw_bird_ld50") self.tw_bird_lc50 = pd.Series([], dtype="float", name="tw_bird_lc50") self.tw_bird_noaec = pd.Series([], dtype="float", name="tw_bird_noaec") self.tw_bird_noael = pd.Series([], dtype="float", name="tw_bird_noael") self.mineau_sca_fact = pd.Series([], dtype="float", name="mineau_sca_fact") self.aw_herp_sm = pd.Series([], dtype="float", name="aw_herp_sm") self.aw_herp_md = pd.Series([], dtype="float", name="aw_herp_md") self.aw_herp_lg = pd.Series([], dtype="float", name="aw_herp_lg") self.awc_herp_sm = pd.Series([], dtype="float", name="awc_herp_sm") self.awc_herp_md = pd.Series([], dtype="float", name="awc_herp_md") self.awc_herp_lg = pd.Series([], dtype="float", name="awc_herp_lg") self.bw_frog_prey_mamm = pd.Series([], dtype="float", name="bw_frog_prey_mamm") self.bw_frog_prey_herp = pd.Series([], dtype="float", name="bw_frog_prey_herp") ## application rates and days of applications #self.app_rates = pd.Series([], dtype="object") #Series of lists, each list contains app_rates of a model simulation run #self.day_out = pd.Series([], dtype="object") #Series of lists, each list contains day #'s of applications within a model simulaiton run class TherpsOutputs(object): """ Output class for Therps. """ def __init__(self): """Class representing the outputs for Therps""" super(TherpsOutputs, self).__init__() ## application rates and days of applications #self.day_out = pd.Series([], dtype='object', name='day_out') #self.app_rates = pd.Series([], dtype='object', name='app_rates') # TODO: Add these back in after deciding how to handle the numpy arrays # timeseries of concentrations related to herbiferous food sources # self.out_c_ts_sg = pd.Series([], dtype='float') # short grass # self.out_c_ts_blp = pd.Series([], dtype='float') # broad-leafed plants # self.out_c_ts_fp = pd.Series([], dtype='float') # fruits/pods # # self.out_c_ts_mean_sg = pd.Series([], dtype='float') # short grass # self.out_c_ts_mean_blp = pd.Series([], dtype='float') # broad-leafed plants # self.out_c_ts_mean_fp = pd.Series([], dtype='float') # fruits/pods # Table 5 self.out_ld50_ad_sm = pd.Series([], dtype='float', name="out_ld50_ad_sm") self.out_ld50_ad_md = pd.Series([], dtype='float', name="out_ld50_ad_md") self.out_ld50_ad_lg = pd.Series([], dtype='float', name="out_ld50_ad_lg") self.out_eec_dose_bp_sm = pd.Series([], dtype='float', name="out_eec_dose_bp_sm") self.out_eec_dose_bp_md = pd.Series([], dtype='float', name="out_eec_dose_bp_md") self.out_eec_dose_bp_lg = pd.Series([], dtype='float', name="out_eec_dose_bp_lg") self.out_arq_dose_bp_sm = pd.Series([], dtype='float', name="out_arq_dose_bp_sm") self.out_arq_dose_bp_md = pd.Series([], dtype='float', name="out_arq_dose_bp_md") self.out_arq_dose_bp_lg = pd.Series([], dtype='float', name="out_arq_dose_bp_lg") self.out_eec_dose_fr_sm = pd.Series([], dtype='float', name="out_eec_dose_fr_sm") self.out_eec_dose_fr_md = pd.Series([], dtype='float', name="out_eec_dose_fr_md") self.out_eec_dose_fr_lg = pd.Series([], dtype='float', name="out_eec_dose_fr_lg") self.out_arq_dose_fr_sm = pd.Series([], dtype='float', name="out_arq_dose_fr_sm") self.out_arq_dose_fr_md = pd.Series([], dtype='float', name="out_arq_dose_fr_md") self.out_arq_dose_fr_lg = pd.Series([], dtype='float', name="out_arq_dose_fr_lg") self.out_eec_dose_hm_md = pd.Series([], dtype='float', name="out_eec_dose_hm_md") self.out_eec_dose_hm_lg = pd.Series([], dtype='float', name="out_eec_dose_hm_lg") self.out_arq_dose_hm_md = pd.Series([], dtype='float', name="out_arq_dose_hm_md") self.out_arq_dose_hm_lg = pd.Series([], dtype='float', name="out_arq_dose_hm_lg") self.out_eec_dose_im_md = pd.Series([], dtype='float', name="out_eec_dose_im_md") self.out_eec_dose_im_lg = pd.Series([], dtype='float', name="out_eec_dose_im_lg") self.out_arq_dose_im_md = pd.Series([], dtype='float', name="out_arq_dose_im_md") self.out_arq_dose_im_lg = pd.Series([], dtype='float', name="out_arq_dose_im_lg") self.out_eec_dose_tp_md = pd.Series([], dtype='float', name="out_eec_dose_tp_md") self.out_eec_dose_tp_lg = pd.Series([], dtype='float', name="out_eec_dose_tp_lg") self.out_arq_dose_tp_md = pd.Series([], dtype='float', name="out_arq_dose_tp_md") self.out_arq_dose_tp_lg = pd.Series([], dtype='float', name="out_arq_dose_tp_lg") # Table 6 self.out_eec_diet_herp_bl = pd.Series([], dtype='float', name="out_eec_diet_herp_bl") self.out_eec_arq_herp_bl = pd.Series([], dtype='float', name="out_eec_arq_herp_bl") self.out_eec_diet_herp_fr = pd.Series([], dtype='float', name="out_eec_diet_herp_fr") self.out_eec_arq_herp_fr = pd.Series([], dtype='float', name="out_eec_arq_herp_fr") self.out_eec_diet_herp_hm = pd.Series([], dtype='float', name="out_eec_diet_herp_hm") self.out_eec_arq_herp_hm =
pd.Series([], dtype='float', name="out_eec_arq_herp_hm")
pandas.Series
import re from copy import copy from typing import Iterable, Optional, Union import pandas as pd import requests from bs4 import BeautifulSoup from pvoutput.consts import ( MAP_URL, PV_OUTPUT_COUNTRY_CODES, PV_OUTPUT_MAP_COLUMN_NAMES, REGIONS_URL, ) _MAX_NUM_PAGES = 1024 def get_pv_systems_for_country( country: Union[str, int], ascending: Optional[bool] = None, sort_by: Optional[str] = None, max_pages: int = _MAX_NUM_PAGES, region: Optional[str] = None, ) -> pd.DataFrame: """ Args: country: either a string such as 'United Kingdom' (see consts.PV_OUTPUT_COUNTRY_CODES for all recognised strings), or a PVOutput.org country code, in the range [1, 257]. ascending: if True, ask PVOutput.org to sort results by ascending. If False, sort by descending. If None, use PVOutput.org's default sort order. sort_by: The column to ask PVOutput.org to sort by. One of: timeseries_duration, average_generation_per_day, efficiency, power_generation, capacity, address, name max_pages: The maximum number of search pages to scrape. Returns: pd.DataFrame with index system_id (int) and these columns: name, system_DC_capacity_W, panel, inverter, address, orientation, array_tilt_degrees, shade, timeseries_duration, total_energy_gen_Wh, average_daily_energy_gen_Wh average_efficiency_kWh_per_kW """ country_code = _convert_to_country_code(country) regions = [region] if region else get_regions_for_country(country_code) all_metadata = [] for region in regions: for page_number in range(max_pages): print( "\rReading page {:2d} for region: {}".format(page_number, region), end="", flush=True, ) url = _create_map_url( country_code=country_code, page_number=page_number, ascending=ascending, sort_by=sort_by, region=region, ) soup = get_soup(url) if _page_is_blank(soup): break metadata = _process_metadata(soup) metadata["region"] = region all_metadata.append(metadata) if not _page_has_next_link(soup): break return pd.concat(all_metadata) ############ LOAD HTML ################### def _create_map_url( country_code: Optional[int] = None, page_number: Optional[int] = None, ascending: Optional[bool] = None, sort_by: Optional[str] = None, region: Optional[str] = None, ) -> str: """ Args: page_number: Get this page number of the search results. Zero-indexed. The first page is page 0, the second page is page 1, etc. """ _check_country_code(country_code) if ascending is None: sort_order = None else: sort_order = "asc" if ascending else "desc" if sort_by is None: sort_by_pv_output_col_name = None else: try: sort_by_pv_output_col_name = PV_OUTPUT_MAP_COLUMN_NAMES[sort_by] except KeyError: raise ValueError("sort_by must be one of {}".format(PV_OUTPUT_MAP_COLUMN_NAMES.keys())) url_params = { "country": country_code, "p": page_number, "d": sort_order, "o": sort_by_pv_output_col_name, "region": region, } url_params_list = [ "{}={}".format(key, value) for key, value in url_params.items() if value is not None ] query_string = "&".join(url_params_list) url = copy(MAP_URL) if query_string: url += "?" + query_string return url def _raise_country_error(country, msg=""): country_codes = PV_OUTPUT_COUNTRY_CODES.values() raise ValueError( "Wrong value country='{}'. {}country must be an integer country" " code in the range [{}, {}], or one of {}.".format( country, msg, min(country_codes), max(country_codes), ", ".join(PV_OUTPUT_COUNTRY_CODES.keys()), ) ) def _check_country_code(country_code: Union[None, int]): if country_code is None: return country_codes = PV_OUTPUT_COUNTRY_CODES.values() if not min(country_codes) <= country_code <= max(country_codes): _raise_country_error(country_code, "country outside of valid range! ") def _convert_to_country_code(country: Union[str, int]) -> int: if isinstance(country, str): try: return PV_OUTPUT_COUNTRY_CODES[country] except KeyError: _raise_country_error(country) elif isinstance(country, int): _check_country_code(country) return country def _page_has_next_link(soup: BeautifulSoup): return bool(soup.find_all("a", text="Next")) ############# PROCESS HTML ######################### def _process_metadata(soup: BeautifulSoup, return_constituents=False) -> pd.DataFrame: pv_system_size_metadata = _process_system_size_col(soup) index = pv_system_size_metadata.index pv_systems_metadata = [ pv_system_size_metadata, _process_output_col(soup, index), _process_generation_and_average_cols(soup, index), _process_efficiency_col(soup, index), ] df = pd.concat(pv_systems_metadata, axis="columns") df = _convert_metadata_cols_to_numeric(df) df["system_DC_capacity_W"] = df["capacity_kW"] * 1e3 del df["capacity_kW"] if return_constituents: pv_systems_metadata.append(df) return tuple(pv_systems_metadata) return df def _process_system_size_col(soup: BeautifulSoup) -> pd.DataFrame: pv_system_size_col = soup.find_all("a", href=re.compile("display\.jsp\?sid=")) metadata = [] for row in pv_system_size_col: metadata_for_row = {} # Get system ID href = row.attrs["href"] p = re.compile("^display\.jsp\?sid=(\d+)$") href_match = p.match(href) metadata_for_row["system_id"] = href_match.group(1) # Process title (lots of metadata in here!) title, title_meta = row.attrs["title"].split("|") # Name and capacity p = re.compile("(.*) (\d+\.\d+kW)") title_match = p.match(title) metadata_for_row["name"] = title_match.group(1) metadata_for_row["capacity"] = title_match.group(2) # Other key-value pairs: key_value = title_meta.split("<br/>") key_value_dict = {} for line in key_value: key_value_split = line.split(":") key = key_value_split[0].strip() # Some values have a colon(!) value = ":".join(key_value_split[1:]).strip() key_value_dict[key] = value metadata_for_row.update(key_value_dict) # Some cleaning # Remove <img ...> from Location location = metadata_for_row["Location"] p = re.compile("(<img .*\>)?(.*)") img_groups = p.search(location).groups() if img_groups[0] is not None: metadata_for_row["Location"] = img_groups[1].strip() metadata.append(metadata_for_row) df =
pd.DataFrame(metadata)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Sun Mar 29 11:21:50 2020 @author: kaisa """ import os import pandas as pd import matplotlib.pyplot as plt from matplotlib import cm import matplotlib.dates as mdates import seaborn as sns from datetime import datetime, timedelta import numpy as np from bokeh.plotting import ColumnDataSource, figure, output_file, show, save from bokeh.models import HoverTool sns.set() # ----------------- Import data --------------------- # Covid-19 time series covid_conf = pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv') covid_deaths = pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv') # transform data def transform_covid_data(df): df.drop(columns=['Province/State', 'Lat', 'Long'], inplace=True) df = df.groupby('Country/Region').sum() df = df.transpose() df.index = [datetime.strptime(d, '%m/%d/%y') for d in df.index] return df covid_conf = transform_covid_data(covid_conf) covid_deaths = transform_covid_data(covid_deaths) # Country data country_info = pd.read_csv(os.path.join('.', 'data', 'covid19countryinfo.csv')) def convert_string(x): try: return np.float(x.replace(',','')) except: return np.nan for c in ['pop', 'gdp2019', 'healthexp']: country_info[c] = country_info[c].apply(convert_string) # Restrictions restrictions = pd.read_csv(os.path.join('.', 'data', 'restrictions.csv'),sep=';') restrictions['date'] = pd.to_datetime(restrictions['date'], format='%d.%m.%Y') # --------- Question 1: Duration till turning point ---------- def get_time_series(df, country, min_value): s = df.loc[df[country]>=min_value, country] s.index = np.array([datetime.timestamp(x) for x in s.index])/(3600*24) s.index -= s.index[0] return s """ countries = ['China', 'Korea, South', 'Italy', 'Germany', 'US'] for i, c in enumerate(countries): fig, ax = plt.subplots(nrows=1, ncols=2, sharex=True, figsize=(10,4.5)) s = get_time_series(covid_conf, c, 100) color = cm.viridis(100) ax[0].plot(s, color=color, label='Cases (total)') ax[0].tick_params(axis='y', labelcolor=color) ax[0].set_xlabel('Days since 100 cases') ax2 = ax[0].twinx() color = cm.viridis(150) ax2.plot(s.index, np.gradient(s, s.index), color=color, label='Cases per day') ax2.tick_params(axis='y', labelcolor=color) lines, labels = ax[0].get_legend_handles_labels() lines2, labels2 = ax2.get_legend_handles_labels() ax2.legend(lines + lines2, labels + labels2, loc='upper left') ax2.grid(None) s = get_time_series(covid_deaths, c, 10) color = cm.viridis(100) ax[1].plot(s, color=color, label='Deaths (total)') ax[1].tick_params(axis='y', labelcolor=color) ax[1].set_xlabel('Days since 10 deaths') ax2 = ax[1].twinx() color = cm.viridis(150) ax2.plot(s.index, np.gradient(s, s.index), color=color, label='Deaths per day') ax2.tick_params(axis='y', labelcolor=color) lines, labels = ax[1].get_legend_handles_labels() lines2, labels2 = ax2.get_legend_handles_labels() ax2.legend(lines + lines2, labels + labels2, loc='upper left') ax2.grid(None) plt.suptitle(c) fig.tight_layout() plt.subplots_adjust(top=0.92) plt.savefig(os.path.join('D:\\Datensicherung\\Projekte\\Udacity_DataScience\\diagramme',c+'_series'), dpi=200) """ # ---------- Question 2: Effect of restrictions ------------ def add_annotations(ax, df, s): last_y = 0 df.reset_index(drop=True, inplace=True) for i, row in df.iterrows(): y = s.iloc[s.index.get_loc(row.date, method='nearest')] x_text = row.date - timedelta(days=10) y_text = y + s.max()/10 y_text = max(y_text, last_y+s.max()/12) last_y = y_text ann = ax.annotate(str(i+1), xy=(row.date, y), xycoords='data', xytext=(x_text, y_text), textcoords='data', size=15, va="center", ha="center", bbox=dict(boxstyle="round4", fc="w"), arrowprops=dict(arrowstyle="-|>", connectionstyle="arc3,rad=-0.2", fc="k", color='k'), ) plt.text(1.02, 0.92-i*0.06, '{:d}: {}'.format(i+1,row.text), horizontalalignment='left', verticalalignment='top', transform=ax.transAxes, fontsize=11) plt.text(1.02, 1, 'Restrictions / Actions:', horizontalalignment='left', verticalalignment='top', transform=ax.transAxes, fontsize=13, fontweight='bold') countries = ['Korea, South', 'Italy', 'Germany'] for i, c in enumerate(countries): fig, ax = plt.subplots(figsize=(9,4)) s = covid_conf[c] plt.plot(s) ax.set_xlim((s.idxmin(),s.idxmax()+timedelta(days=5))) myFmt = mdates.DateFormatter('%m-%d') ax.xaxis.set_major_formatter(myFmt) ax.set_ylabel('Confirmed cases (total)') fig.tight_layout() plt.subplots_adjust(right=0.6, top=0.93) plt.suptitle(c) add_annotations(ax, restrictions.loc[restrictions.country_region==c], s) plt.savefig(os.path.join('D:\\Datensicherung\\Projekte\\Udacity_DataScience\\diagramme',c+'_measures'), dpi=200) # ---------- Question 3: Correlation with death/cases ratio ------------ from collections import defaultdict from bokeh.palettes import Viridis ratio = defaultdict(list) df_death_ratio = [] country_info['death_ratio'] = np.nan for c in covid_conf.columns: df = pd.concat([
pd.Series(covid_conf[c], name='Cases')
pandas.Series
# Mar21, 2022 ## #--------------------------------------------------------------------- # SERVER only input all files (.bam and .fa) output MeH matrix in .csv # August 3, 2021 clean # FINAL github #--------------------------------------------------------------------- import random import math import pysam import csv import sys import pandas as pd import numpy as np import datetime import time as t from collections import Counter, defaultdict, OrderedDict #--------------------------------------- # Functions definition #--------------------------------------- def open_log(fname): open_log.logfile = open(fname, 'w', 1) def logm(message): log_message = "[%s] %s\n" % (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), message) print(log_message), open_log.logfile.write(log_message) def close_log(): open_log.logfile.close() # Count # of windows with enough reads for complete/impute def coverage(methbin,complete,w): count=0 tot = 0 meth=methbin.iloc[:,methbin.columns!='Qname'] if len(meth.columns)>=w: for i in range(len(meth.columns)-w+1): # extract a window temp = meth.iloc[:,i:i+w].copy() #print(temp) tot = tot+1 if (enough_reads(window=temp,complete=complete,w=w)): count=count+1 #toprint=temp.notnull().sum(axis=1)>=w #print(toprint.sum()) #print(count) #print(tot) return count/tot*100 else: return 0 # Check whether a window has enough reads for complete/impute def enough_reads(window,w,complete): temp=np.isnan(window).sum(axis=1)==0 if complete: # For heterogeneity estimation return temp.sum()>=2**w else: # for imputation tempw1=np.isnan(window).sum(axis=1)==1 return temp.sum()>=2**(w-2) and tempw1.sum()>0 def impute(window,w): full_ind=np.where(np.isnan(window).sum(axis=1)==0)[0] part_ind=np.where(np.isnan(window).sum(axis=1)==1)[0] for i in range(len(part_ind)): sam = [] # which column is nan pos=np.where(np.isnan(window[part_ind[i],:]))[0] if np.unique(window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos]).shape[0]==1: window[part_ind[i],pos]=window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos][0] else: #print("win_part i pos =",window[part_ind[i],pos]) for j in range(len(full_ind)): if (window[part_ind[i],:]==window[full_ind[j],:]).sum()==w-1: sam.append(j) if len(sam)>0: s1=random.sample(sam, 1) s=window[full_ind[s1],pos] else: s=random.sample(window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos].tolist(), k=1)[0] window[part_ind[i],pos]=np.float64(s) #print("win_part i =",window[part_ind[i],pos]) #print("s = ",np.float64(s)) return window def getcomplete(window,w): temp=np.isnan(window).sum(axis=1)==0 mat=window[np.where(temp)[0],:] #temp=window.notnull().sum(axis=1)>=w #mat=window.iloc[np.where(temp)[0],:] #else: # temp=mat.notnull().sum(axis=1)>=w-1 return mat def PattoDis(mat,dist=1): s=mat.shape[0] dis=np.zeros((s,s)) for i in range(s): for j in range(s): if j<i: if dist==1: d=Ham_d(mat.iloc[i,],mat.iloc[j,]) else: d=WDK_d(mat.iloc[i,],mat.iloc[j,]) dis[i,j]=dis[j,i]=d return dis def Ham_d(pat1,pat2): return (pat1!=pat2).sum() def WDK_d(pat1,pat2): d=0 w=pat1.shape[0] for i in range(w): # k-1 for j in range(w-i): # starting pos s=(w-i-1)*(1-np.all(pat1[j:j+i+1]==pat2[j:j+i+1])) d+=s return d # input a window of w CGs and output a list of proportions with starting genomic location and genomic distance across def window_summ(pat,start,dis,chrom): m=np.shape(pat)[0] d=np.shape(pat)[1] all_pos=np.zeros((2**d,d)) for i in range(d): all_pos[:,i]=np.linspace(0,2**d-1,2**d)%(2**(i+1))//(2**i) #print(all_pos) prob=np.zeros((2**d,1)) #print(prob) for i in range(2**d): count = 0 for j in range(m): if (all_pos[i,:]==pat.iloc[j,:]).sum()==d: count += 1 #print(count) prob[i]=count if d==3: out=pd.DataFrame({'chrom':chrom,'pos':start,'p01':prob[0],'p02':prob[1],'p03':prob[2],'p04':prob[3],\ 'p05':prob[4],'p06':prob[5],'p07':prob[6],'p08':prob[7],'dis':dis}) if d==4: out=pd.DataFrame({'chrom':chrom,'pos':start,'p01':prob[0],'p02':prob[1],'p03':prob[2],'p04':prob[3],\ 'p05':prob[4],'p06':prob[5],'p07':prob[6],'p08':prob[7],'p09':prob[8],'p10':prob[9],\ 'p11':prob[10],'p12':prob[11],'p13':prob[12],'p14':prob[13],'p15':prob[14],\ 'p16':prob[15],'dis':dis}) if d==5: out=pd.DataFrame({'chrom':chrom,'pos':start,'p01':prob[0],'p02':prob[1],'p03':prob[2],'p04':prob[3],\ 'p05':prob[4],'p06':prob[5],'p07':prob[6],'p08':prob[7],'p09':prob[8],'p10':prob[9],\ 'p11':prob[10],'p12':prob[11],'p13':prob[12],'p14':prob[13],'p15':prob[14],\ 'p16':prob[15],'p17':prob[16],'p18':prob[17],'p19':prob[18],'p20':prob[19],\ 'p21':prob[20],'p22':prob[21],'p23':prob[22],'p24':prob[23],'p25':prob[24],\ 'p26':prob[25],'p27':prob[26],'p28':prob[27],'p29':prob[28],'p30':prob[29],\ 'p31':prob[30],'p32':prob[31],'dis':dis}) if d==6: out=pd.DataFrame({'chrom':chrom,'pos':start,'p01':prob[0],'p02':prob[1],'p03':prob[2],'p04':prob[3],\ 'p05':prob[4],'p06':prob[5],'p07':prob[6],'p08':prob[7],'p09':prob[8],'p10':prob[9],\ 'p11':prob[10],'p12':prob[11],'p13':prob[12],'p14':prob[13],'p15':prob[14],\ 'p16':prob[15],'p17':prob[16],'p18':prob[17],'p19':prob[18],'p20':prob[19],\ 'p21':prob[20],'p22':prob[21],'p23':prob[22],'p24':prob[23],'p25':prob[24],\ 'p26':prob[25],'p27':prob[26],'p28':prob[27],'p29':prob[28],'p30':prob[29],\ 'p31':prob[30],'p32':prob[31],'p33':prob[32],'p34':prob[33],'p35':prob[34],\ 'p36':prob[35],'p37':prob[36],'p38':prob[37],'p39':prob[38],'p40':prob[39],\ 'p41':prob[40],'p42':prob[41],'p43':prob[42],'p44':prob[43],'p45':prob[44],\ 'p46':prob[45],'p47':prob[46],'p48':prob[47],'p49':prob[48],'p50':prob[49],\ 'p51':prob[50],'p52':prob[51],'p53':prob[52],'p54':prob[53],'p55':prob[54],\ 'p56':prob[55],'p57':prob[56],'p58':prob[57],'p59':prob[58],'p60':prob[59],\ 'p61':prob[60],'p62':prob[61],'p63':prob[62],'p64':prob[63],'dis':dis}) return out def MeHperwindow(pat,start,dis,chrom,D,w,optional,MeH=2,dist=1,strand='f'): count=np.zeros((2**w,1)) m=np.shape(pat)[0] pat=np.array(pat) if w==2: pat = Counter([str(i[0])+str(i[1]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['00','10','01','11']]) if w==3: pat = Counter([str(i[0])+str(i[1])+str(i[2]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['000','100','010','110','001','101','011','111']]) if w==4: pat = Counter([str(i[0])+str(i[1])+str(i[2])+str(i[3]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['0000','1000','0100','1100','0010','1010','0110','1110','0001',\ '1001','0101','1101','0011','1011','0111','1111']]) if w==5: pat = Counter([str(i[0])+str(i[1])+str(i[2])+str(i[3])+str(i[4]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['00000','10000','01000','11000','00100','10100','01100','11100','00010',\ '10010','01010','11010','00110','10110','01110','11110','00001','10001','01001','11001','00101',\ '10101','01101','11101','00011','10011','01011','11011','00111','10111','01111','11111']]) if w==6: pat = Counter([str(i[0])+str(i[1])+str(i[2])+str(i[3])+str(i[4])+str(i[5]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['000000','100000','010000','110000','001000','101000','011000','111000','000100',\ '100100','010100','110100','001100','101100','011100','111100','000010','100010','010010','110010','001010',\ '101010','011010','111010','000110', '100110','010110','110110','001110','101110','011110','111110',\ '000001','100001','010001','110001','001001','101001','011001','111001','000101',\ '100101','010101','110101','001101','101101','011101','111101','000011','100011','010011','110011','001011',\ '101011','011011','111011','000111', '100111','010111','110111','001111','101111','011111','111111']]) if MeH==1: # Abundance based score=(((count/m)**2).sum(axis=0))**(-1) elif MeH==2: # PWS based interaction=np.multiply.outer(count/m,count/m).reshape((2**w,2**w)) Q=sum(sum(D*interaction)) #print("Q =",Q) if Q==0: score=0 else: score=(sum(sum(D*(interaction**2)))/(Q**2))**(-0.5) elif MeH==3: #Phylogeny based count=count.reshape(2**w) count=np.concatenate((count[[0]],count)) if dist==1 and w==4: phylotree=np.append(np.append(np.append(np.append([0],np.repeat(0.5,16)),np.repeat(0.25,6)),[0.5]),np.repeat(0.25,6)) #phylotree=np.repeat(0,1).append(np.repeat(0.5,16)).append(np.repeat(0.25,6)).append(0.5).append(np.repeat(0.25,6)) countn=np.zeros(30) #count<-rep(0,29) countn[1:17]=count[[1,9,5,3,2,13,11,10,7,6,4,15,14,12,8,16]] countn[17]=countn[4]+countn[7] countn[18]=countn[9]+countn[12] countn[19]=countn[1]+countn[2] countn[20]=countn[3]+countn[6] countn[21]=countn[17]+countn[18] countn[22]=countn[19]+countn[20] countn[23]=countn[21]+countn[22] countn[24]=countn[5]+countn[8] countn[25]=countn[10]+countn[13] countn[26]=countn[24]+countn[25] countn[27]=countn[23]+countn[26] countn[28]=countn[11]+countn[14] countn[29]=countn[27]+countn[28] #Q=sum(sum(phylotree*count)) if dist==2 and w==4: phylotree=np.append(np.append(np.append(np.append([0],np.repeat(3,16)),np.repeat(1.5,6)),[3.2,0.8]),np.repeat(2,3),np.repeat(1.5,2)) #phylotree=c(rep(3,16),rep(1.5,6),3.2,0.8,rep(2,3),1.5,1.5) countn=np.zeros(30) #print(count) countn[1:17]=count[[1,9,5,3,2,13,11,10,7,6,4,15,14,12,8,16]] countn[17]=countn[1]+countn[2] countn[18]=countn[5]+countn[8] countn[19]=countn[3]+countn[6] countn[20]=countn[10]+countn[13] countn[21]=countn[4]+countn[7] countn[22]=countn[11]+countn[14] countn[23]=countn[17]+countn[18] countn[24]=countn[21]+countn[22] countn[25]=countn[19]+countn[20] countn[26]=countn[23]+countn[24] countn[27]=countn[25]+countn[26] countn[28]=countn[9]+countn[12] countn[29]=countn[27]+countn[28] #Q=sum(phylotree*count) if dist==2 and w==3: phylotree=np.append(np.append(np.append([0],np.repeat(1.5,8)),np.repeat(0.75,3)),np.repeat(1.5,0.75)) #phylotree=np.array(0).append(np.repeat(1.5,8)).append(np.repeat(0.75,3)).append(1.5,0.75) #phylotree=c(rep(1.5,8),rep(0.75,3),1.5,0.75) countn=np.zeros(14) countn[1:9]=count[1:9] countn[9]=countn[1]+countn[2] countn[10]=countn[5]+countn[6] countn[11]=countn[3]+countn[4] countn[12]=countn[9]+countn[10] countn[13]=countn[11]+countn[12] #Q=sum(phylotree*count) if dist==1 and w==3: phylotree=np.append(np.append(np.append([0],np.repeat(0.5,8)),np.repeat(0.25,3)),[0.5,0.25]) #phylotree=np.array(0).append(np.repeat(0.5,8)).append(np.repeat(0.25,3)).append(0.5,0.25) countn=np.zeros(14) countn[1:9]=count[1:9] countn[9]=countn[1]+countn[2] countn[10]=countn[5]+countn[6] countn[11]=countn[3]+countn[4] countn[12]=countn[9]+countn[10] countn[13]=countn[11]+countn[12] #print("count = ",count) #print("phylotree = ",phylotree) Q=sum(phylotree*countn) score=sum(phylotree*((countn/Q)**2))**(-1) elif MeH==4: #Entropy score=0 for i in count: if i>0: score-=(i/m)*np.log2(i/m)/w elif MeH==5: #Epipoly score=1-((count/m)**2).sum(axis=0) if optional: if MeH!=3: count=count.reshape(2**w) count=np.concatenate((count[[0]],count)) if w==3: opt=pd.DataFrame({'chrom':chrom,'pos':start,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'MeH':round(score,5),'dis':dis,'strand':strand}, index=[0]) if w==4: opt=pd.DataFrame({'chrom':chrom,'pos':start,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'p09':count[9],'p10':count[10],\ 'p11':count[11],'p12':count[12],'p13':count[13],'p14':count[14],'p15':count[15],\ 'p16':count[16],'MeH':round(score,5),'dis':dis,'strand':strand}, index=[0]) if w==5: opt=pd.DataFrame({'chrom':chrom,'pos':start,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'p09':count[9],'p10':count[10],\ 'p11':count[11],'p12':count[12],'p13':count[13],'p14':count[14],'p15':count[15],\ 'p16':count[16],'p17':count[17],'p18':count[18],'p19':count[19],'p20':count[20],\ 'p21':count[21],'p22':count[22],'p23':count[23],'p24':count[24],'p25':count[25],\ 'p26':count[26],'p27':count[27],'p28':count[28],'p29':count[29],'p30':count[30],\ 'p31':count[31],'p32':count[32],'MeH':round(score,5),'dis':dis,'strand':strand}, index=[0]) if w==6: opt=pd.DataFrame({'chrom':chrom,'pos':start,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'p09':count[9],'p10':count[10],\ 'p11':count[11],'p12':count[12],'p13':count[13],'p14':count[14],'p15':count[15],\ 'p16':count[16],'p17':count[17],'p18':count[18],'p19':count[19],'p20':count[20],\ 'p21':count[21],'p22':count[22],'p23':count[23],'p24':count[24],'p25':count[25],\ 'p26':count[26],'p27':count[27],'p28':count[28],'p29':count[29],'p30':count[30],\ 'p31':count[31],'p32':count[32],'p33':count[33],'p34':count[34],'p35':count[35],\ 'p36':count[36],'p37':count[37],'p38':count[38],'p39':count[39],'p40':count[40],\ 'p41':count[41],'p42':count[42],'p43':count[43],'p44':count[44],'p45':count[45],\ 'p46':count[46],'p47':count[47],'p48':count[48],'p49':count[49],'p50':count[50],\ 'p51':count[51],'p52':count[52],'p53':count[53],'p54':count[54],'p55':count[55],\ 'p56':count[56],'p57':count[57],'p58':count[58],'p59':count[59],'p60':count[60],\ 'p61':count[61],'p62':count[62],'p63':count[63],'p64':count[64],'MeH':round(score,5),'dis':dis,'strand':strand}, index=[0]) return out, opt else: out=pd.DataFrame({'chrom':chrom,'pos':start,'MeH':round(score,5),'dis':dis,'strand':strand}, index=[0]) return out def impute(window,w): full_ind=np.where(np.isnan(window).sum(axis=1)==0)[0] part_ind=np.where(np.isnan(window).sum(axis=1)==1)[0] for i in range(len(part_ind)): sam = [] # which column is nan pos=np.where(np.isnan(window[part_ind[i],:]))[0] if np.unique(window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos]).shape[0]==1: window[part_ind[i],pos]=window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos][0] else: #print("win_part i pos =",window[part_ind[i],pos]) for j in range(len(full_ind)): if (window[part_ind[i],:]==window[full_ind[j],:]).sum()==w-1: sam.append(j) if len(sam)>0: s1=random.sample(sam, 1) s=window[full_ind[s1],pos] else: s=random.sample(window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos].tolist(), k=1)[0] window[part_ind[i],pos]=np.float64(s) return window def CGgenome_scr(bamfile,w,fa,optional,melv,silence=False,dist=1,MeH=2,imp=True): filename, file_extension = os.path.splitext(bamfile) sample = str.split(filename,'_')[0] coverage = cov_context = 0 # load bamfile samfile = pysam.AlignmentFile("MeHdata/%s.bam" % (filename), "rb") # load reference genome fastafile = pysam.FastaFile('MeHdata/%s.fa' % fa) # initialise data frame for genome screening (load C from bam file) aggreR = aggreC = pd.DataFrame(columns=['Qname']) # initialise data frame for output ResultPW = pd.DataFrame(columns=['chrom','pos','MeH','dis','strand']) if melv: ResML = pd.DataFrame(columns=['chrom','pos','ML','strand','depth']) # if user wants to output compositions of methylation patterns at every eligible window, initialise data frame if optional: if w==3: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08',\ 'MeH','dis','strand']) if w==4: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11',\ 'p12','p13','p14','p15','p16','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','p33','p34','p35','p36','p37','p38','p39','p40','p41','p42','p43','p44','p45','p46'\ ,'p47','p48','p49','p50','p51','p52','p53','p54','p55','p56','p57','p58','p59','p60','p61','p62','p63','p64'\ ,'MeH','dis','strand']) neverr = never = True # all methylation patterns for Methylation heterogeneity evaluation all_pos=np.zeros((2**w,w)) for i in range(w): all_pos[:,i]=np.linspace(0,2**w-1,2**w)%(2**(i+1))//(2**i) # distance matrix, also for Methylation heterogeneity evaluation D=PattoDis(pd.DataFrame(all_pos),dist=dist) # 1:Hamming distance, 2: WDK start=datetime.datetime.now() # vector for saving methylation statuses before imputation MU=np.zeros((2,w)) # screen bamfile by column for pileupcolumn in samfile.pileup(): coverage += 1 chrom = pileupcolumn.reference_name if not silence: if (pileupcolumn.pos % 2000000 == 1): print("CG %s s %s w %s %s pos %s Result %s" % (datetime.datetime.now(),filename,w,chrom,pileupcolumn.pos,ResultPW.shape[0])) # Forward strand, check if 'CG' in reference genome if (fastafile.fetch(chrom,pileupcolumn.pos,pileupcolumn.pos+2)=='CG'): cov_context += 1 temp = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) # append reads in the column for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and not pileupread.alignment.is_reverse: # C d = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} df2 = pd.DataFrame(data=d) temp=temp.append(df2, ignore_index=True) if melv: temp2 = temp.replace(['C'],1) temp2 = temp2.replace(['G'],0) temp2 = temp2.replace(['A','T','N'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'f','depth':depth,'ML':float(MC)/depth}, index=[0]) ResML=ResML.append(toappend) # merge with other columns if (not temp.empty): aggreC = pd.merge(aggreC,temp,how='outer',on=['Qname']) aggreC = aggreC.drop_duplicates() # Reverse strand, check if 'CG' in reference genome if pileupcolumn.pos>1: if (fastafile.fetch(chrom,pileupcolumn.pos-1,pileupcolumn.pos+1)=='CG'): cov_context += 1 tempr = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and pileupread.alignment.is_reverse: # C dr = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} dfr2 = pd.DataFrame(data=dr) tempr=tempr.append(dfr2, ignore_index=True) if melv: temp2 = tempr.replace(['G'],1) temp2 = temp2.replace(['C'],0) temp2 = temp2.replace(['A','T','N'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'r','depth':depth,'ML':float(MC)/depth}, index=[0]) ResML=ResML.append(toappend) if (not tempr.empty): aggreR = pd.merge(aggreR,tempr,how='outer',on=['Qname']) aggreR = aggreR.drop_duplicates() # Impute and estimate, if there are 2w-1 columns if never and aggreC.shape[1] == (2*w): # C/G to 1, rest to 0, N to NA never = False aggreC = aggreC.replace(['C'],1) aggreC = aggreC.replace(['T'],0) aggreC = aggreC.replace(['A','N','G'],np.nan) methbin = aggreC meth = methbin.copy() # remove read ID meth = meth.drop('Qname',axis=1) # back up for imputation if imp: methtemp = meth.copy() # imputation by sliding window of 1 C for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # save methylation statuses before imputation # check if eligible for imputation, impute if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values # overwrite imputed window meth = methtemp.copy() # Evaluate methylation level and methylation heterogeneity and append to result for i in range(0,w,1): # w windows window = meth.iloc[:,range(i,i+w)].values # check if enough complete patterns for evaluating MeH if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) # if need to output methylation patterns if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) Resultopt=Resultopt.append(opt) # evaluate and output MeH else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) ResultPW=ResultPW.append(toappend) # remove 1 column aggreC = aggreC.drop(meth.columns[0:1],axis=1) # drop rows with no values aggreC.dropna(axis = 0, thresh=2, inplace = True) #total += w # Reverse if neverr and aggreR.shape[1] == (2*w): neverr = False aggreR = aggreR.replace(['G'],1) aggreR = aggreR.replace(['A'],0) aggreR = aggreR.replace(['C','N','T'],np.nan) methbin = aggreR # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() for i in range(0,w,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) ResultPW=ResultPW.append(toappend) aggreR = aggreR.drop(meth.columns[0:1],axis=1) aggreR.dropna(axis = 0, thresh=2, inplace = True) #------------------ # SECONDARY CASE #------------------ if (aggreC.shape[1] == (3*w-1)): aggreC = aggreC.replace(['C'],1) aggreC = aggreC.replace(['T'],0) aggreC = aggreC.replace(['A','N','G'],np.nan) methbin = aggreC # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(w-1,2*w-1,1): #for i in range(0,meth.shape[1]-w+1,1): #if i>w-2 and i<2*w: window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) ResultPW=ResultPW.append(toappend) if ResultPW.shape[0] % 100000 == 1: ResultPW.to_csv(r"MeHdata/CG_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CG_ML_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CG_opt_%s.csv"%(filename),index = False, header=True) if not silence: print("Checkpoint CG. For file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) aggreC = aggreC.drop(meth.columns[0:w],axis=1) aggreC.dropna(axis = 0, thresh=2, inplace = True) #print(aggreC) #total += w # reverse if (aggreR.shape[1] == (3*w-1)): aggreR = aggreR.replace(['G'],1) aggreR = aggreR.replace(['A'],0) aggreR = aggreR.replace(['C','N','T'],np.nan) methbin = aggreR # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(w-1,2*w-1,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) ResultPW=ResultPW.append(toappend) if ResultPW.shape[0] % 100000 == 1: ResultPW.to_csv(r"MeHdata/CG_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CG_ML_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CG_opt_%s.csv"%(filename),index = False, header=True) if not silence: print("Checkpoint CG. For file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) aggreR = aggreR.drop(meth.columns[0:w],axis=1) aggreR.dropna(axis = 0, thresh=2, inplace = True) if ResultPW.shape[0]>0: ResultPW.to_csv(r"MeHdata/CG_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CG_opt_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CG_ML_%s.csv"%(filename),index = False, header=True) return sample, coverage, cov_context, 'CG' print("Done CG for file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) #samfile.close() def CHHgenome_scr(bamfile,w,fa,optional,melv,silence=False,dist=1,MeH=2,imp=True): filename, file_extension = os.path.splitext(bamfile) sample = str.split(filename,'_')[0] coverage = cov_context = 0 #directory = "Outputs/" + str(sample) + '.csv' #original filename of .bams samfile = pysam.AlignmentFile("MeHdata/%s.bam" % (filename), "rb") fastafile = pysam.FastaFile('MeHdata/%s.fa' % fa) aggreR = aggreC = pd.DataFrame(columns=['Qname']) ResultPW = pd.DataFrame(columns=['chrom','pos','MeH','dis','strand']) if melv: ResML = pd.DataFrame(columns=['chrom','pos','ML','depth','strand']) if optional: if w==3: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08',\ 'MeH','dis','strand']) if w==4: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11',\ 'p12','p13','p14','p15','p16','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','p33','p34','p35','p36','p37','p38','p39','p40','p41','p42','p43','p44','p45','p46'\ ,'p47','p48','p49','p50','p51','p52','p53','p54','p55','p56','p57','p58','p59','p60','p61','p62','p63','p64'\ ,'MeH','dis','strand']) neverr = never = True #chr_lengths = fastafile.get_reference_length(chrom) all_pos=np.zeros((2**w,w)) for i in range(w): all_pos[:,i]=np.linspace(0,2**w-1,2**w)%(2**(i+1))//(2**i) D=PattoDis(pd.DataFrame(all_pos),dist=dist) #1:Hamming distance start=datetime.datetime.now() MU=np.zeros((2,w)) for pileupcolumn in samfile.pileup(): coverage += 1 chrom = pileupcolumn.reference_name if not silence: if (pileupcolumn.pos % 2000000 == 1): print("CHH %s s %s w %s %s pos %s Result %s" % (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'),filename,w,chrom,pileupcolumn.pos,ResultPW.shape[0])) # forward if fastafile.fetch(chrom,pileupcolumn.pos,pileupcolumn.pos+1)=='C' and fastafile.fetch(chrom,pileupcolumn.pos+1,pileupcolumn.pos+2)!='G' and fastafile.fetch(chrom,pileupcolumn.pos+2,pileupcolumn.pos+3)!='G': cov_context += 1 temp = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and not pileupread.alignment.is_reverse: # C d = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} df2 = pd.DataFrame(data=d) #df2.head() temp=temp.append(df2, ignore_index=True) #temp.head() if melv: temp2 = temp.replace(['C'],1) temp2 = temp2.replace(['T'],0) temp2 = temp2.replace(['A','G','N'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'f','depth':depth,'ML':float(MC)/depth}, index=[0]) ResML=ResML.append(toappend) if (not temp.empty): #temp.head() aggreC = pd.merge(aggreC,temp,how='outer',on=['Qname']) aggreC = aggreC.drop_duplicates() # reverse if pileupcolumn.pos>2: if fastafile.fetch(chrom,pileupcolumn.pos,pileupcolumn.pos+1)=='G' and fastafile.fetch(chrom,pileupcolumn.pos-1,pileupcolumn.pos)!='C' and fastafile.fetch(chrom,pileupcolumn.pos-2,pileupcolumn.pos-1)!='C': cov_context += 1 tempr = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and pileupread.alignment.is_reverse: # C d = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} df2 = pd.DataFrame(data=d) #df2.head() tempr=tempr.append(df2, ignore_index=True) #temp.head() if melv: temp2 = tempr.replace(['G'],1) temp2 = temp2.replace(['A'],0) temp2 = temp2.replace(['C','T','N'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'r','depth':depth,'ML':float(MC)/depth}, index=[0]) ResML=ResML.append(toappend) if (not tempr.empty): aggreR = pd.merge(aggreR,tempr,how='outer',on=['Qname']) aggreR = aggreR.drop_duplicates() if never and aggreC.shape[1] == (2*w): never = False aggreC = aggreC.replace(['C'],1) aggreC = aggreC.replace(['T'],0) aggreC = aggreC.replace(['A','N','G'],np.nan) methbin = aggreC # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(0,w,1): window = meth.iloc[:,range(i,i+w)].values # MeH eligibility if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) ResultPW=ResultPW.append(toappend) aggreC = aggreC.drop(meth.columns[0:1],axis=1) aggreC.dropna(axis = 0, thresh=2, inplace = True) #total += w # reverse if neverr and aggreR.shape[1] == (2*w): neverr = False aggreR = aggreR.replace(['G'],1) aggreR = aggreR.replace(['A'],0) aggreR = aggreR.replace(['C','N','T'],np.nan) methbin = aggreR # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(0,w,1): window = meth.iloc[:,range(i,i+w)].values #if enough_reads(window,w,complete=True): if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) ResultPW=ResultPW.append(toappend) aggreR = aggreR.drop(meth.columns[0:1],axis=1) aggreR.dropna(axis = 0, thresh=2, inplace = True) #------------------ # SECONDARY CASE #------------------ if (aggreC.shape[1] == (3*w-1)): aggreC = aggreC.replace(['C'],1) aggreC = aggreC.replace(['T'],0) aggreC = aggreC.replace(['N','G','A'],np.nan) methbin = aggreC # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(w-1,2*w-1,1): window = meth.iloc[:,range(i,i+w)].values # MeH eligibility if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) ResultPW=ResultPW.append(toappend) if ResultPW.shape[0] % 100000 == 1: ResultPW.to_csv(r"MeHdata/CHH_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CHH_opt_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CHH_ML_%s.csv"%(filename),index = False, header=True) if not silence: print("Checkpoint CHH. For file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) aggreC = aggreC.drop(meth.columns[0:w],axis=1) aggreC.dropna(axis = 0, thresh=2, inplace = True) #print(aggreC) #total += w if (aggreR.shape[1] == (3*w-1)): aggreR = aggreR.replace(['G'],1) aggreR = aggreR.replace(['A'],0) aggreR = aggreR.replace(['N','T','C'],np.nan) methbin = aggreR # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(w-1,2*w-1,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) ResultPW=ResultPW.append(toappend) if ResultPW.shape[0] % 100000 == 1: ResultPW.to_csv(r"MeHdata/CHH_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CHH_ML_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CHH_opt_%s.csv"%(filename),index = False, header=True) if not silence: print("Checkpoint CHH. For file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) aggreR = aggreR.drop(meth.columns[0:w],axis=1) aggreR.dropna(axis = 0, thresh=2, inplace = True) #print(aggreC) #total += w if ResultPW.shape[0]>0: ResultPW.to_csv(r"MeHdata/CHH_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CHH_ML_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CHH_opt_%s.csv"%(filename),index = False, header=True) return sample, coverage, cov_context, 'CHH' print("Done CHH for file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) def CHGgenome_scr(bamfile,w,fa,optional,melv,silence=False,dist=1,MeH=2,imp=True): filename, file_extension = os.path.splitext(bamfile) sample = str.split(filename,'_')[0] #directory = "Outputs/" + str(sample) + '.csv' #original filename of .bams samfile = pysam.AlignmentFile("MeHdata/%s.bam" % (filename), "rb") fastafile = pysam.FastaFile('MeHdata/%s.fa' % fa) coverage = cov_context = 0 aggreR = aggreC = pd.DataFrame(columns=['Qname']) ResultPW = pd.DataFrame(columns=['chrom','pos','MeH','dis','strand']) if melv: ResML = pd.DataFrame(columns=['chrom','pos','ML','depth','strand']) if optional: if w==3: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08',\ 'MeH','dis','strand']) if w==4: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11',\ 'p12','p13','p14','p15','p16','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','p33','p34','p35','p36','p37','p38','p39','p40','p41','p42','p43','p44','p45','p46'\ ,'p47','p48','p49','p50','p51','p52','p53','p54','p55','p56','p57','p58','p59','p60','p61','p62','p63','p64'\ ,'MeH','dis','strand']) neverr = never = True #chr_lengths = fastafile.get_reference_length(chrom) all_pos=np.zeros((2**w,w)) for i in range(w): all_pos[:,i]=np.linspace(0,2**w-1,2**w)%(2**(i+1))//(2**i) D=PattoDis(pd.DataFrame(all_pos),dist=dist) #1:Hamming distance MU=np.zeros((2,w)) start=datetime.datetime.now() for pileupcolumn in samfile.pileup(): coverage += 1 chrom = pileupcolumn.reference_name if not silence: if (pileupcolumn.pos % 2000000 == 1): print("CHG %s s %s w %s %s pos %s Result %s" % (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'),filename,w,chrom,pileupcolumn.pos,ResultPW.shape[0])) if fastafile.fetch(chrom,pileupcolumn.pos,pileupcolumn.pos+1)=='C' and fastafile.fetch(chrom,pileupcolumn.pos+1,pileupcolumn.pos+2)!='G' and fastafile.fetch(chrom,pileupcolumn.pos+2,pileupcolumn.pos+3)=='G': cov_context += 1 temp = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and not pileupread.alignment.is_reverse: # C d = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} df2 = pd.DataFrame(data=d) #df2.head() temp=temp.append(df2, ignore_index=True) #temp.head() if melv: temp2 = temp.replace(['C'],1) temp2 = temp2.replace(['T'],0) temp2 = temp2.replace(['A','G'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'f','depth':depth,'ML':float(MC)/float(MC+UC)}, index=[0]) ResML=ResML.append(toappend) if (not temp.empty): #temp.head() aggreC = pd.merge(aggreC,temp,how='outer',on=['Qname']) aggreC = aggreC.drop_duplicates() # reverse if pileupcolumn.pos>2: if fastafile.fetch(chrom,pileupcolumn.pos,pileupcolumn.pos+1)=='G' and fastafile.fetch(chrom,pileupcolumn.pos-1,pileupcolumn.pos)!='C' and fastafile.fetch(chrom,pileupcolumn.pos-2,pileupcolumn.pos-1)=='C': cov_context += 1 tempr = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and pileupread.alignment.is_reverse: # G dr = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} df2r = pd.DataFrame(data=dr) #df2.head() tempr=tempr.append(df2r, ignore_index=True) #temp.head() if melv: temp2 = tempr.replace(['G'],1) temp2 = temp2.replace(['A'],0) temp2 = temp2.replace(['C','T'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'r','depth':depth,'ML':float(MC)/float(MC+UC)}, index=[0]) ResML=ResML.append(toappend) if (not tempr.empty): #temp.head() aggreR = pd.merge(aggreR,tempr,how='outer',on=['Qname']) aggreR = aggreR.drop_duplicates() if never and aggreC.shape[1] == (2*w): never = False aggreC = aggreC.replace(['C'],1) aggreC = aggreC.replace(['T'],0) aggreC = aggreC.replace(['A','G','N'],np.nan) methbin = aggreC # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(0,w,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='f') Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='f') ResultPW=ResultPW.append(toappend) aggreC = aggreC.drop(meth.columns[0:1],axis=1) aggreC.dropna(axis = 0, thresh=2, inplace = True) #total += w # reverse if neverr and aggreR.shape[1] == (2*w): neverr = False aggreR = aggreR.replace(['G'],1) aggreR = aggreR.replace(['A'],0) aggreR = aggreR.replace(['N','C','T'],np.nan) methbin = aggreR # backup meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(0,w,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='r') Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='r') ResultPW=ResultPW.append(toappend) aggreR = aggreR.drop(meth.columns[0:1],axis=1) aggreR.dropna(axis = 0, thresh=2, inplace = True) #total += w #------------------ # SECONDARY CASE #------------------ if (aggreC.shape[1] == (3*w-1)): aggreC = aggreC.replace(['C'],1) aggreC = aggreC.replace(['T'],0) aggreC = aggreC.replace(['N','A','G'],np.nan) methbin = aggreC # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(w-1,2*w-1,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='f') Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='f') ResultPW=ResultPW.append(toappend) if ResultPW.shape[0] % 100000 == 1: ResultPW.to_csv(r"MeHdata/CHG_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CHG_opt_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CHG_ML_%s.csv"%(filename),index = False, header=True) if not silence: print("Checkpoint CHG. For file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) aggreC = aggreC.drop(meth.columns[0:w],axis=1) aggreC.dropna(axis = 0, thresh=2, inplace = True) #print(aggreC) #total += w # reverse if (aggreR.shape[1] == (3*w-1)): aggreR = aggreR.replace(['G'],1) aggreR = aggreR.replace(['A'],0) aggreR = aggreR.replace(['N','T','C'],np.nan) methbin = aggreR # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(w-1,2*w-1,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='r') Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='r') ResultPW=ResultPW.append(toappend) if ResultPW.shape[0] % 100000 == 1: ResultPW.to_csv(r"MeHdata/CHG_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CHG_opt_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CHG_ML_%s.csv"%(filename),index = False, header=True) if not silence: print("Checkpoint CHG. For file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos+1)) aggreR = aggreR.drop(meth.columns[0:w],axis=1) aggreR.dropna(axis = 0, thresh=2, inplace = True) if ResultPW.shape[0]>0: ResultPW.to_csv(r"MeHdata/CHG_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CHG_ML_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CHG_opt_%s.csv"%(filename),index = False, header=True) return sample, coverage, cov_context, 'CHG' print("Done CHG for file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos+1)) def split_bam(samplenames,Folder): # get bam size spbam_list = [] bamfile = samplenames + '.bam' statinfo_out = os.stat(Folder+bamfile) bamsize = statinfo_out.st_size samfile = pysam.Samfile(Folder+bamfile, "rb") fileout_base = os.path.splitext(bamfile)[0] # filename ext = '.bam' x = 0 fileout = Folder+fileout_base+"_" + str(x)+ext # filename_x.bam print("fileout",fileout) header = samfile.header outfile = pysam.Samfile(fileout, "wb", header = header) sum_Outfile_Size=0 for reads in samfile.fetch(): outfile.write(reads) statinfo_out = os.stat(fileout) outfile_Size = statinfo_out.st_size if(outfile_Size >=337374182 and sum_Outfile_Size <= bamsize): sum_Outfile_Size = sum_Outfile_Size + outfile_Size x = x + 1 spbam_list.append(fileout_base + "_" + str(x)+ext) outfile.close() pysam.index(fileout) fileout = Folder+fileout_base + "_" + str(x)+ext print("fileout",fileout) outfile = pysam.Samfile(fileout, "wb",header = header) outfile.close() pysam.index(fileout) import argparse parser = argparse.ArgumentParser() parser.add_argument("-w", "--windowsize",type=int, default=4 ,help='number of CGs') parser.add_argument("-c", "--cores",type=int, default=4, help='number of cores') parser.add_argument("-m", "--MeH",type=int, default=2, help='Methylation heterogeneity score 1:Abundance 2:PW 3:Phylogeny') parser.add_argument("-d", "--dist",type=int, default=1, help='Distance between methylation patterns 1:Hamming 2:WDK') parser.add_argument("--CG", default=False, action='store_true', help='Include genomic context CG') parser.add_argument("--CHG", default=False, action='store_true', help='Include genomic context CHG') parser.add_argument("--CHH", default=False, action='store_true', help='Include genomic context CHH') parser.add_argument("--opt", default=False, action='store_true', help='Outputs compositions of methylation patterns') parser.add_argument('--mlv', default=False, action='store_true', help='Outputs methylation levels') parser.add_argument('--imp', default=True, action='store_false', help='Implement BSImp (impute if valid)') args = parser.parse_args() import sys import time import os import pandas as pd import multiprocessing from joblib import Parallel, delayed #num_cores = multiprocessing.cpu_count() if __name__ == "__main__": open_log('MeHscreening.log') logm("Call genome screening.") #start = time.time() Folder = 'MeHdata/' files = os.listdir(Folder) bam_list = [] # all samples' bam files for file in files: filename, file_extension = os.path.splitext(file) if file_extension == '.fa': fa = filename if file_extension == '.bam': bam_list.append(filename) #if 'cores' in args: # num_cores = args.cores #else: # num_cores = 4 Parallel(n_jobs=args.cores)(delayed(split_bam)(bamfile,Folder=Folder) for bamfile in bam_list) spbam_list = [] tempfiles = os.listdir(Folder) for file in tempfiles: filename, file_extension = os.path.splitext(file) if file_extension=='.bam' and filename not in bam_list: spbam_list.append(filename) #print(spbam_list) topp = pd.DataFrame(columns=['sample','coverage','context_coverage','context']) #CG = [] #start=t.time() if args.CG: con='CG' CG=Parallel(n_jobs=args.cores)(delayed(CGgenome_scr)(bamfile,w=args.windowsize,fa=fa,MeH=args.MeH,dist=args.dist,optional=args.opt,melv=args.mlv,imp=args.imp) for bamfile in spbam_list) logm("Merging MeH within samples for CG.") # merge MeH within sample for file in spbam_list: filename, file_extension = os.path.splitext(file) sample = str.split(file,'_')[0] print("Merging within sample",sample,"...") if not sample == filename: res_dir = Folder + con + '_' + str(sample) + '.csv' toapp_dir = Folder + con + '_' + file + '.csv' if os.path.exists(res_dir): Tomod = pd.read_csv(res_dir) Toappend = pd.read_csv(toapp_dir) Toappend['bin'] = [((x-1)//400)*400+200 for x in Toappend['pos']] Toappend=Toappend.drop(columns=['pos']) #Toappend=Toappend.dropna(axis = 0, thresh=4, inplace = True) Toappend=Toappend.groupby(['chrom','bin','strand']).agg({'MeH': 'mean'}).reset_index() Tomod = Tomod.append(Toappend) Tomod.to_csv(res_dir,index = False,header=True) #os.remove(toapp_dir) else: Toappend = pd.read_csv(toapp_dir) Toappend['bin'] = [((x-1)//400)*400+200 for x in Toappend['pos']] Toappend=Toappend.drop(columns=['pos']) #Toappend=Toappend.dropna(axis = 0, thresh=4, inplace = True) Toappend=Toappend.groupby(['chrom','bin','strand']).agg({'MeH': 'mean'}).reset_index() Toappend.to_csv(res_dir,index = False,header=True) # not into bins of 400bp if args.opt: for file in spbam_list: filename, file_extension = os.path.splitext(file) sample = str.split(file,'_')[0] #print("sample = ",sample) if not sample == filename: res_dir = Folder + con + '_opt_' + str(sample) + '.csv' toapp_dir = Folder + con + '_opt_' +file + '.csv' if os.path.exists(res_dir): Tomod = pd.read_csv(res_dir) Toappend = pd.read_csv(toapp_dir) Tomod = Tomod.append(Toappend) Tomod.to_csv(res_dir,index = False, header = True) else: Toappend = pd.read_csv(toapp_dir) Toappend.to_csv(res_dir,index = False,header=True) #os.chdir('../') #os.chdir(outputFolder) logm("Merging ML within samples for CG.") # append ML within samples if args.mlv: for file in spbam_list: filename, file_extension = os.path.splitext(file) sample = str.split(file,'_')[0] res_dir = Folder + con + '_ML_' + str(sample) + '.csv' toapp_dir = Folder + con + '_ML_' + file + '.csv' if os.path.exists(res_dir): Tomod = pd.read_csv(res_dir) Toappend = pd.read_csv(toapp_dir) Toappend['bin'] = [((x-1)//400)*400+200 for x in Toappend['pos']] Count = Toappend.groupby(['chrom','bin','strand']).size().reset_index(name='counts') Toappend=Toappend.merge(Count, on=['chrom','bin','strand']) conditions = [ (Toappend['counts'] > 4), (Toappend['counts'] < 5) ] # create a list of the values we want to assign for each condition values = [Toappend['ML'], np.nan] # create a new column and use np.select to assign values to it using our lists as arguments Toappend['ML'] = np.select(conditions, values) Toappend=Toappend.drop(columns=['counts','pos']) Toappend=Toappend.groupby(['chrom','bin','strand']).agg({'ML': 'mean'}).reset_index() Tomod = Tomod.append(Toappend) Tomod.to_csv(res_dir,index = False,header=True) #os.remove(toapp_dir) else: Toappend = pd.read_csv(toapp_dir) Toappend['bin'] = [((x-1)//400)*400+200 for x in Toappend['pos']] Count = Toappend.groupby(['chrom','bin','strand']).size().reset_index(name='counts') Toappend=Toappend.merge(Count, on=['chrom','bin','strand']) #print(Toappend) conditions = [ (Toappend['counts'] > 4), (Toappend['counts'] < 5) ] # create a list of the values we want to assign for each condition values = [Toappend['ML'], np.nan] # create a new column and use np.select to assign values to it using our lists as arguments Toappend['ML'] = np.select(conditions, values) Toappend=Toappend.drop(columns=['counts','pos']) Toappend=Toappend.groupby(['chrom','bin','strand']).agg({'ML': 'mean'}).reset_index() Toappend.to_csv(res_dir,index = False,header=True) logm("Merging ML between samples for CG.") # merge ML between samples if args.mlv: for sample in bam_list: tomerge_dir = Folder + con + '_ML_' + str(sample) + '.csv' res_dir = Folder + con + '_ML_' + 'Results.csv' if os.path.exists(res_dir): Result = pd.read_csv(res_dir) Tomerge = pd.read_csv(tomerge_dir) Tomerge.dropna(axis = 0, thresh=4, inplace = True) Tomerge = Tomerge.rename(columns={'ML': sample}) Result=Result.merge(Tomerge, on=['chrom','bin','strand']) Result.dropna(axis = 0, thresh=4, inplace = True) Result.to_csv(res_dir,index = False,header=True) os.remove(tomerge_dir) else: Result = pd.read_csv(tomerge_dir) Result = Result.rename(columns={'ML': sample}) #Result = Result.drop(columns=['counts','pos','depth','dis']) Result.dropna(axis = 0, thresh=4, inplace = True) Result.to_csv(res_dir,index = False,header=True) os.remove(tomerge_dir) logm("Merging MeH between samples for CG.") # merge MeH between samples for sample in bam_list: tomerge_dir = Folder + con + '_' + str(sample) + '.csv' res_dir = Folder + con + '_' + 'Results.csv' if os.path.exists(res_dir): Result = pd.read_csv(res_dir) Tomerge = pd.read_csv(tomerge_dir) Tomerge.dropna(axis = 0, thresh=4, inplace = True) Tomerge = Tomerge.rename(columns={'MeH': sample}) Result = Result.merge(Tomerge, on=['chrom','bin','strand']) Result.dropna(axis = 0, thresh=4, inplace = True) Result.to_csv(Folder + con + '_' +'Results.csv',index = False,header=True) os.remove(tomerge_dir) else: Result = pd.read_csv(tomerge_dir) Result.head() Result.dropna(axis = 0, thresh=4, inplace = True) Result = Result.rename(columns={'MeH': sample}) Result.to_csv(Folder + con + '_' +'Results.csv',index = False,header=True) os.remove(tomerge_dir) Result.to_csv(Folder + con + '_' +'Results.csv' ,index = False,header=True) print("All done.",len(bam_list),"bam files processed and merged for CG.") logm("All done. "+str(len(bam_list))+" bam files processed and merged for CG.") for i in CG: toout=pd.DataFrame({'sample':i[0],'coverage':i[1],'context_coverage':i[2],'context':i[3]},index=[0]) topp=topp.append(toout) if args.CHG: con='CHG' CG=Parallel(n_jobs=args.cores)(delayed(CHGgenome_scr)(bamfile,w=args.windowsize,fa=fa,MeH=args.MeH,dist=args.dist,optional=args.opt,melv=args.mlv,imp=args.imp) for bamfile in spbam_list) logm("Merging MeH within samples for CHG.") for file in spbam_list: filename, file_extension = os.path.splitext(file) sample = str.split(file,'_')[0] print("Merging within sample",sample,"...") if not sample == filename: res_dir = Folder + con + '_' + str(sample) + '.csv' toapp_dir = Folder + con + '_' + file + '.csv' if os.path.exists(res_dir): Tomod = pd.read_csv(res_dir) Toappend = pd.read_csv(toapp_dir) Toappend['bin'] = [((x-1)//400)*400+200 for x in Toappend['pos']] Toappend=Toappend.drop(columns=['pos']) Toappend=Toappend.groupby(['chrom','bin','strand']).agg({'MeH': 'mean'}).reset_index() Tomod = Tomod.append(Toappend) Tomod.to_csv(res_dir,index = False,header=True) else: Toappend = pd.read_csv(toapp_dir) Toappend['bin'] = [((x-1)//400)*400+200 for x in Toappend['pos']] Toappend=Toappend.drop(columns=['pos']) Toappend=Toappend.groupby(['chrom','bin','strand']).agg({'MeH': 'mean'}).reset_index() Toappend.to_csv(res_dir,index = False,header=True) # not into bins of 400bp if args.opt: for file in spbam_list: filename, file_extension = os.path.splitext(file) sample = str.split(file,'_')[0] #print("sample = ",sample) if not sample == filename: res_dir = Folder + con + '_opt_' + str(sample) + '.csv' toapp_dir = Folder + con + '_opt_' +file + '.csv' if os.path.exists(res_dir): Tomod = pd.read_csv(res_dir) Toappend = pd.read_csv(toapp_dir) Tomod = Tomod.append(Toappend) Tomod.to_csv(res_dir,index = False,header=True) os.remove(toapp_dir) else: Toappend = pd.read_csv(toapp_dir) Toappend.to_csv(res_dir,index = False,header=True) os.remove(toapp_dir) logm("Merging ML within samples for CHG.") # append ML within samples if args.mlv: for file in spbam_list: filename, file_extension = os.path.splitext(file) sample = str.split(file,'_')[0] res_dir = Folder + con + '_ML_' + str(sample) + '.csv' toapp_dir = Folder + con + '_ML_' + file + '.csv' if os.path.exists(res_dir): Tomod = pd.read_csv(res_dir) Toappend = pd.read_csv(toapp_dir) Toappend['bin'] = [((x-1)//400)*400+200 for x in Toappend['pos']] Count = Toappend.groupby(['chrom','bin','strand']).size().reset_index(name='counts') #Count=Count.drop_duplicates() #print(Count) Toappend=Toappend.merge(Count, on=['chrom','bin','strand']) conditions = [ (Toappend['counts'] > 4), (Toappend['counts'] < 5) ] # create a list of the values we want to assign for each condition values = [Toappend['ML'], np.nan] # create a new column and use np.select to assign values to it using our lists as arguments Toappend['ML'] = np.select(conditions, values) Toappend=Toappend.drop(columns=['counts','pos']) Toappend=Toappend.groupby(['chrom','bin','strand']).agg({'ML': 'mean'}).reset_index() Tomod = Tomod.append(Toappend) Tomod.to_csv(res_dir,index = False,header=True) os.remove(toapp_dir) else: Toappend = pd.read_csv(toapp_dir) Toappend['bin'] = [((x-1)//400)*400+200 for x in Toappend['pos']] Count = Toappend.groupby(['chrom','bin','strand']).size().reset_index(name='counts') Toappend=Toappend.merge(Count, on=['chrom','bin','strand']) #print(Toappend) conditions = [ (Toappend['counts'] > 4), (Toappend['counts'] < 5) ] # create a list of the values we want to assign for each condition values = [Toappend['ML'], np.nan] # create a new column and use np.select to assign values to it using our lists as arguments Toappend['ML'] = np.select(conditions, values) Toappend=Toappend.drop(columns=['counts','pos']) Toappend=Toappend.groupby(['chrom','bin','strand']).agg({'ML': 'mean'}).reset_index() Toappend.to_csv(res_dir,index = False,header=True) os.remove(toapp_dir) logm("Merging MeH between samples for CHG.") # merge MeH between samples for sample in bam_list: tomerge_dir = Folder + con + '_' + str(sample) + '.csv' res_dir = Folder + con + '_' + 'Results.csv' if os.path.exists(res_dir): Result = pd.read_csv(res_dir) Tomerge = pd.read_csv(tomerge_dir) #Tomerge = Tomerge.drop(columns=['dis','ML','depth']) Tomerge.dropna(axis = 0, thresh=4, inplace = True) Tomerge = Tomerge.rename(columns={'MeH': sample}) Result = Result.merge(Tomerge, on=['chrom','bin','strand']) Result.dropna(axis = 0, thresh=4, inplace = True) Result.to_csv(Folder + con + '_' +'Results.csv',index = False,header=True) os.remove(tomerge_dir) else: Result =
pd.read_csv(tomerge_dir)
pandas.read_csv
from distutils.version import LooseVersion from warnings import catch_warnings import numpy as np import pytest from pandas._libs.tslibs import Timestamp import pandas as pd from pandas import ( DataFrame, HDFStore, Index, MultiIndex, Series, _testing as tm, bdate_range, concat, date_range, isna, read_hdf, ) from pandas.tests.io.pytables.common import ( _maybe_remove, ensure_clean_path, ensure_clean_store, tables, ) from pandas.io.pytables import Term pytestmark = pytest.mark.single def test_select_columns_in_where(setup_path): # GH 6169 # recreate multi-indexes when columns is passed # in the `where` argument index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo_name", "bar_name"], ) # With a DataFrame df = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) with ensure_clean_store(setup_path) as store: store.put("df", df, format="table") expected = df[["A"]] tm.assert_frame_equal(store.select("df", columns=["A"]), expected) tm.assert_frame_equal(store.select("df", where="columns=['A']"), expected) # With a Series s = Series(np.random.randn(10), index=index, name="A") with ensure_clean_store(setup_path) as store: store.put("s", s, format="table") tm.assert_series_equal(store.select("s", where="columns=['A']"), s) def test_select_with_dups(setup_path): # single dtypes df = DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]) df.index = date_range("20130101 9:30", periods=10, freq="T") with ensure_clean_store(setup_path) as store: store.append("df", df) result = store.select("df") expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=df.columns) expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=["A"]) expected = df.loc[:, ["A"]] tm.assert_frame_equal(result, expected) # dups across dtypes df = concat( [ DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]), DataFrame( np.random.randint(0, 10, size=20).reshape(10, 2), columns=["A", "C"] ), ], axis=1, ) df.index = date_range("20130101 9:30", periods=10, freq="T") with ensure_clean_store(setup_path) as store: store.append("df", df) result = store.select("df") expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=df.columns) expected = df tm.assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ["A"]] result = store.select("df", columns=["A"]) tm.assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ["B", "A"]] result = store.select("df", columns=["B", "A"]) tm.assert_frame_equal(result, expected, by_blocks=True) # duplicates on both index and columns with ensure_clean_store(setup_path) as store: store.append("df", df) store.append("df", df) expected = df.loc[:, ["B", "A"]] expected = concat([expected, expected]) result = store.select("df", columns=["B", "A"]) tm.assert_frame_equal(result, expected, by_blocks=True) def test_select(setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): # select with columns= df = tm.makeTimeDataFrame() _maybe_remove(store, "df") store.append("df", df) result = store.select("df", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # equivalently result = store.select("df", [("columns=['A', 'B']")]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # with a data column _maybe_remove(store, "df") store.append("df", df, data_columns=["A"]) result = store.select("df", ["A > 0"], columns=["A", "B"]) expected = df[df.A > 0].reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # all a data columns _maybe_remove(store, "df") store.append("df", df, data_columns=True) result = store.select("df", ["A > 0"], columns=["A", "B"]) expected = df[df.A > 0].reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # with a data column, but different columns _maybe_remove(store, "df") store.append("df", df, data_columns=["A"]) result = store.select("df", ["A > 0"], columns=["C", "D"]) expected = df[df.A > 0].reindex(columns=["C", "D"]) tm.assert_frame_equal(expected, result) def test_select_dtypes(setup_path): with ensure_clean_store(setup_path) as store: # with a Timestamp data column (GH #2637) df = DataFrame( { "ts": bdate_range("2012-01-01", periods=300), "A": np.random.randn(300), } ) _maybe_remove(store, "df") store.append("df", df, data_columns=["ts", "A"]) result = store.select("df", "ts>=Timestamp('2012-02-01')") expected = df[df.ts >= Timestamp("2012-02-01")] tm.assert_frame_equal(expected, result) # bool columns (GH #2849) df = DataFrame(np.random.randn(5, 2), columns=["A", "B"]) df["object"] = "foo" df.loc[4:5, "object"] = "bar" df["boolv"] = df["A"] > 0 _maybe_remove(store, "df") store.append("df", df, data_columns=True) expected = df[df.boolv == True].reindex(columns=["A", "boolv"]) # noqa for v in [True, "true", 1]: result = store.select("df", f"boolv == {v}", columns=["A", "boolv"]) tm.assert_frame_equal(expected, result) expected = df[df.boolv == False].reindex(columns=["A", "boolv"]) # noqa for v in [False, "false", 0]: result = store.select("df", f"boolv == {v}", columns=["A", "boolv"]) tm.assert_frame_equal(expected, result) # integer index df = DataFrame({"A": np.random.rand(20), "B": np.random.rand(20)}) _maybe_remove(store, "df_int") store.append("df_int", df) result = store.select("df_int", "index<10 and columns=['A']") expected = df.reindex(index=list(df.index)[0:10], columns=["A"]) tm.assert_frame_equal(expected, result) # float index df = DataFrame( { "A": np.random.rand(20), "B": np.random.rand(20), "index": np.arange(20, dtype="f8"), } ) _maybe_remove(store, "df_float") store.append("df_float", df) result = store.select("df_float", "index<10.0 and columns=['A']") expected = df.reindex(index=list(df.index)[0:10], columns=["A"]) tm.assert_frame_equal(expected, result) with ensure_clean_store(setup_path) as store: # floats w/o NaN df = DataFrame({"cols": range(11), "values": range(11)}, dtype="float64") df["cols"] = (df["cols"] + 10).apply(str) store.append("df1", df, data_columns=True) result = store.select("df1", where="values>2.0") expected = df[df["values"] > 2.0] tm.assert_frame_equal(expected, result) # floats with NaN df.iloc[0] = np.nan expected = df[df["values"] > 2.0] store.append("df2", df, data_columns=True, index=False) result = store.select("df2", where="values>2.0") tm.assert_frame_equal(expected, result) # https://github.com/PyTables/PyTables/issues/282 # bug in selection when 0th row has a np.nan and an index # store.append('df3',df,data_columns=True) # result = store.select( # 'df3', where='values>2.0') # tm.assert_frame_equal(expected, result) # not in first position float with NaN ok too df = DataFrame({"cols": range(11), "values": range(11)}, dtype="float64") df["cols"] = (df["cols"] + 10).apply(str) df.iloc[1] = np.nan expected = df[df["values"] > 2.0] store.append("df4", df, data_columns=True) result = store.select("df4", where="values>2.0") tm.assert_frame_equal(expected, result) # test selection with comparison against numpy scalar # GH 11283 with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() expected = df[df["A"] > 0] store.append("df", df, data_columns=True) np_zero = np.float64(0) # noqa result = store.select("df", where=["A>np_zero"]) tm.assert_frame_equal(expected, result) def test_select_with_many_inputs(setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( { "ts": bdate_range("2012-01-01", periods=300), "A": np.random.randn(300), "B": range(300), "users": ["a"] * 50 + ["b"] * 50 + ["c"] * 100 + [f"a{i:03d}" for i in range(100)], } ) _maybe_remove(store, "df") store.append("df", df, data_columns=["ts", "A", "B", "users"]) # regular select result = store.select("df", "ts>=Timestamp('2012-02-01')") expected = df[df.ts >= Timestamp("2012-02-01")] tm.assert_frame_equal(expected, result) # small selector result = store.select("df", "ts>=Timestamp('2012-02-01') & users=['a','b','c']") expected = df[ (df.ts >= Timestamp("2012-02-01")) & df.users.isin(["a", "b", "c"]) ] tm.assert_frame_equal(expected, result) # big selector along the columns selector = ["a", "b", "c"] + [f"a{i:03d}" for i in range(60)] result = store.select("df", "ts>=Timestamp('2012-02-01') and users=selector") expected = df[(df.ts >= Timestamp("2012-02-01")) & df.users.isin(selector)] tm.assert_frame_equal(expected, result) selector = range(100, 200) result = store.select("df", "B=selector") expected = df[df.B.isin(selector)] tm.assert_frame_equal(expected, result) assert len(result) == 100 # big selector along the index selector = Index(df.ts[0:100].values) result = store.select("df", "ts=selector") expected = df[df.ts.isin(selector.values)] tm.assert_frame_equal(expected, result) assert len(result) == 100 def test_select_iterator(setup_path): # single table with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame(500) _maybe_remove(store, "df") store.append("df", df) expected = store.select("df") results = list(store.select("df", iterator=True)) result = concat(results) tm.assert_frame_equal(expected, result) results = list(store.select("df", chunksize=100)) assert len(results) == 5 result = concat(results) tm.assert_frame_equal(expected, result) results = list(store.select("df", chunksize=150)) result = concat(results) tm.assert_frame_equal(result, expected) with ensure_clean_path(setup_path) as path: df = tm.makeTimeDataFrame(500) df.to_hdf(path, "df_non_table") msg = "can only use an iterator or chunksize on a table" with pytest.raises(TypeError, match=msg): read_hdf(path, "df_non_table", chunksize=100) with pytest.raises(TypeError, match=msg): read_hdf(path, "df_non_table", iterator=True) with ensure_clean_path(setup_path) as path: df = tm.makeTimeDataFrame(500) df.to_hdf(path, "df", format="table") results = list(read_hdf(path, "df", chunksize=100)) result = concat(results) assert len(results) == 5 tm.assert_frame_equal(result, df) tm.assert_frame_equal(result, read_hdf(path, "df")) # multiple with ensure_clean_store(setup_path) as store: df1 = tm.makeTimeDataFrame(500) store.append("df1", df1, data_columns=True) df2 = tm.makeTimeDataFrame(500).rename(columns="{}_2".format) df2["foo"] = "bar" store.append("df2", df2) df = concat([df1, df2], axis=1) # full selection expected = store.select_as_multiple(["df1", "df2"], selector="df1") results = list( store.select_as_multiple(["df1", "df2"], selector="df1", chunksize=150) ) result = concat(results) tm.assert_frame_equal(expected, result) def test_select_iterator_complete_8014(setup_path): # GH 8014 # using iterator and where clause chunksize = 1e4 # no iterator with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100064, "S") _maybe_remove(store, "df") store.append("df", expected) beg_dt = expected.index[0] end_dt = expected.index[-1] # select w/o iteration and no where clause works result = store.select("df") tm.assert_frame_equal(expected, result) # select w/o iterator and where clause, single term, begin # of range, works where = f"index >= '{beg_dt}'" result = store.select("df", where=where) tm.assert_frame_equal(expected, result) # select w/o iterator and where clause, single term, end # of range, works where = f"index <= '{end_dt}'" result = store.select("df", where=where) tm.assert_frame_equal(expected, result) # select w/o iterator and where clause, inclusive range, # works where = f"index >= '{beg_dt}' & index <= '{end_dt}'" result = store.select("df", where=where) tm.assert_frame_equal(expected, result) # with iterator, full range with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100064, "S") _maybe_remove(store, "df") store.append("df", expected) beg_dt = expected.index[0] end_dt = expected.index[-1] # select w/iterator and no where clause works results = list(store.select("df", chunksize=chunksize)) result = concat(results) tm.assert_frame_equal(expected, result) # select w/iterator and where clause, single term, begin of range where = f"index >= '{beg_dt}'" results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results)
tm.assert_frame_equal(expected, result)
pandas._testing.assert_frame_equal
# -*- coding: utf-8 -*- # This file as well as the whole tsfresh package are licenced under the MIT licence (see the LICENCE.txt) # <NAME> (<EMAIL>), Blue Yonder Gmbh, 2016 import pandas as pd import numpy as np from tests.fixtures import DataTestCase import mock from tsfresh.transformers.relevant_feature_augmenter import RelevantFeatureAugmenter class RelevantFeatureAugmenterTestCase(DataTestCase): def setUp(self): self.test_df = self.create_test_data_sample() fc_parameters = {"length": None} self.kind_to_fc_parameters = {"a": fc_parameters.copy(), "b": fc_parameters.copy()} def test_not_fitted(self): augmenter = RelevantFeatureAugmenter() X = pd.DataFrame() self.assertRaises(RuntimeError, augmenter.transform, X) def test_no_timeseries(self): augmenter = RelevantFeatureAugmenter() X = pd.DataFrame() y = pd.Series() self.assertRaises(RuntimeError, augmenter.fit, X, y) def test_nothing_relevant(self): augmenter = RelevantFeatureAugmenter(kind_to_fc_parameters=self.kind_to_fc_parameters, column_value="val", column_id="id", column_sort="sort", column_kind="kind") y = pd.Series({10: 1, 500: 0}) X =
pd.DataFrame(index=[10, 500])
pandas.DataFrame
import pandas as pd import numpy as np import datetime import pickle from mlxtend.preprocessing import TransactionEncoder from mlxtend.frequent_patterns import apriori from mlxtend.frequent_patterns import association_rules with open("top_n-20m.pickle", "rb") as fp: top_n = pickle.load(fp) top_n_items = [ [x[0] for x in row] for row in top_n] te = TransactionEncoder() te_ary = te.fit(top_n_items).transform(top_n_items, sparse=True) topn_df =
pd.DataFrame.sparse.from_spmatrix(te_ary, columns=te.columns_)
pandas.DataFrame.sparse.from_spmatrix
import numpy as np import os import pandas as pd ######## feature template ######## def get_bs_cat(df_policy, idx_df, col): ''' In: DataFrame(df_policy), Any(idx_df), str(col), Out: Series(cat_), Description: get category directly from df_policy ''' df = df_policy.groupby(level=0).agg({col: lambda x: x.iloc[0]}) return(df.loc[idx_df, col].fillna(0)) def get_bs_real_freq(X_all, idx_df, col): ''' In: DataFrame(X_all), Any(idx_df) str(col), Out: Series(real_freq_), Description: get number of occurance of each value of categorical features ''' # frequency of category df_map = X_all.groupby([col]).agg({'real_prem_plc': lambda x: len(x)}) # map premium by category to policy real_freq_col = X_all[col].map(df_map['real_prem_plc']) return(real_freq_col.loc[idx_df]) def get_bs_cat_inter(df_policy, idx_df, col1, col2): ''' In: DataFrame(df_policy), Any(idx_df) str(col), Out: Series(cat_col1_col2), Description: get interaction of two categorical features ''' # all col combination of col1 and col2 df_policy = df_policy.groupby(level=0).agg({col1: lambda x: str(x.iloc[0]), col2: lambda x: str(x.iloc[0])}) # concat col1 and col2 cat_col1_col2 = df_policy[col1] + df_policy[col2] return(cat_col1_col2.loc[idx_df]) def get_bs_real_mc_mean(col_cat, X_train, y_train, X_valid=pd.DataFrame(), train_only=True, fold=5, prior=1000): ''' In: str(col_cat) DataFrame(X_train), DataFrame(y_train), DataFrame(X_valid), bool(train_only), double(fold), Out: Series(real_mc_prob_distr), Description: get mean of next_premium by col_cat ''' if train_only: np.random.seed(1) rand = np.random.rand(len(X_train)) lvs = [i / float(fold) for i in range(fold+1)] X_arr = [] for i in range(fold): msk = (rand >= lvs[i]) & (rand < lvs[i+1]) X_slice = X_train[msk] X_base = X_train[~msk] y_base = y_train[~msk] X_slice = get_bs_real_mc_mean(col_cat, X_base, y_base, X_valid=X_slice, train_only=False, prior=prior) X_arr.append(X_slice) real_mc_mean = pd.concat(X_arr).loc[X_train.index] else: # merge col_cat with label y_train = y_train.merge(X_train[[col_cat]], how='left', left_index=True, right_index=True) y_train = y_train.assign(real_mc_mean = y_train['Next_Premium']) # get mean of each category and smoothed by global mean smooth_mean = lambda x: (x.sum() + prior * y_train['real_mc_mean'].mean()) / (len(x) + prior) y_train = y_train.groupby([col_cat]).agg({'real_mc_mean': smooth_mean}) real_mc_mean = X_valid[col_cat].map(y_train['real_mc_mean']) # fill na with global mean real_mc_mean = real_mc_mean.where(~
pd.isnull(real_mc_mean)
pandas.isnull
"""Plotting Utils.""" import altair as alt import numpy as np import pandas as pd def similarity_heatmaps(sim_of_sim, labels_dict, axis_title='', width=300, columns=2, min_step=1): plot_data = pd.DataFrame() for key in sim_of_sim: # Compute x^2 + y^2 across a 2D grid labels = labels_dict[key] or range(len(sim_of_sim[key])) x, y = np.meshgrid(labels, labels) z = sim_of_sim[key] # Convert this grid to columnar data expected by Altair row = pd.DataFrame({'x': x.ravel(), 'y': y.ravel(), 'z': sim_of_sim[key].ravel(), 'key': key}) plot_data = plot_data.append(row + text, ignore_index=True) base = alt.Chart(plot_data, width=width, height=width).mark_rect().encode( x=alt.X('x:N', sort=labels, title=axis_title, axis=alt.Axis(values=np.asarray(labels)[list(range(0, len(labels), min_step))])), y=alt.X('y:N', sort=labels, title=axis_title, axis=alt.Axis(values=np.asarray(labels)[list(range(0, len(labels), min_step))])), color=alt.Color('z:Q', title='Similarity'), ) # Configure text text = base.mark_text(baseline='middle').encode( text='z:Q', color=alt.condition( alt.datum.z > 0.5, alt.value('black'), alt.value('white') ) ) plot = base + text plot.facet( facet=alt.Facet('key:N', title='', header=alt.Header(labelFontSize=16)), columns=columns ).resolve_scale( color='independent', x='independent', y='independent', ).configure_axis( labelFontSize=14, titleFontSize=16 ).configure_legend( labelFontSize=14, titleFontSize=14 ).configure_title( fontSize=18) def layer_similarity(sim_of_sim, labels_dict, axis_title='', width=300, columns=2): plot_data =
pd.DataFrame()
pandas.DataFrame
import re import numpy as np import pandas as pd import itertools from collections import OrderedDict from tqdm.auto import tqdm import datetime from sklearn.model_selection import KFold, StratifiedKFold from sklearn.feature_extraction.text import CountVectorizer from logging import getLogger logger = getLogger("splt") def load(DO_TEST = False): """raw csvとweaponなど外部データを読み込んでjoin""" train = pd.read_csv("../data/train_data.csv") test = pd.read_csv('../data/test_data.csv') if DO_TEST: logger.info("【TEST_MODE】Remove train/test data.") train = train.iloc[:1000,:] test = test.iloc[:300,:] train["split_type"] = "train" test["split_type"] = "test" merge = pd.concat([train, test]).reset_index(drop=True).drop(["game-ver", "lobby"], axis=1) merge["period"] = pd.to_datetime(merge["period"]) # 外部データの結合 weapon = pd.read_csv("../data/weapon_merge.csv") weapon = weapon[["key", "category1", "category2", "mainweapon", "subweapon", "special", "reskin", "main_power_up"]] weapon.columns = ["key", "cat1", "cat2", "main", "sub", "special", "reskin", "powerup"] # 区切り文字が無いことを確認 assert weapon.applymap(lambda x:"-" in x).any().any() == False assert merge[["mode", "stage"]].applymap(lambda x:"-" in x).any().any() == False m2 = merge.copy() for team, num in itertools.product(["A", "B"], [1, 2, 3, 4]): m2 = pd.merge(left=m2, right=weapon, left_on=f"{team}{num}-weapon", right_on="key", how="left") assert m2.shape[0] == merge.shape[0] m2 = m2.drop("key", axis=1).rename(columns={x:f"{team}{num}-weapon_{x}" for x in weapon.columns if x!= "key"}) col_weapon_names = ["weapon"] + ["weapon_" + x for x in weapon.columns[1:]] # 外部stageデータの結合 stage = pd.read_csv("../data/stage.csv") area = pd.merge(left=merge["stage"], right=stage, left_on="stage", right_on="key", how="left")["area"] m2["stage_area"] = area # A1 user推定関連 m = pd.read_csv("../data/merge_A1-level_bin.csv") m2["A1-level_bin"] = m["A1-level_bin"] m =
pd.read_csv("../data/merge_A1-uid.csv")
pandas.read_csv
from IMLearn.utils import split_train_test from IMLearn.learners.regressors import LinearRegression from typing import NoReturn import numpy as np import pandas as pd import plotly.graph_objects as go import plotly.express as px import plotly.io as pio pio.templates.default = "simple_white" def load_data(filename: str): """ Load house prices dataset and preprocess data. Parameters ---------- filename: str Path to house prices dataset Returns ------- Design matrix and response vector (prices) - either as a single DataFrame or a Tuple[DataFrame, Series] """ data = pd.read_csv(filename).dropna() data.drop(data[(data["id"] == 0)].index, inplace=True) features = ["bedrooms", "bathrooms", "sqft_living", "sqft_lot", "waterfront", "view", "condition", "grade", "sqft_above", "sqft_basement"] floors = pd.get_dummies(data["floors"]) house_age = data["yr_built"] - pd.to_numeric(data["date"].astype( str).apply(lambda x: x[:4])) years_from_renovation = data["yr_renovated"] - pd.to_numeric(data[ "date"].astype(str).apply(lambda x: x[:4])) last_renovation_or_built_year = pd.concat([house_age, years_from_renovation], axis=1).max(axis=1) data["zipcode"] = (data["zipcode"] / 10).astype(int) zipcodes = pd.get_dummies(data["zipcode"], prefix="zipcode-") x =
pd.concat([floors, data[features], zipcodes], axis=1)
pandas.concat
#----------------------------------------------------------------- #-- Master Thesis - Model-Based Predictive Maintenance on FPGA #-- #-- File : prediction.py #-- Description : Model analysis module on test data #-- #-- Author : <NAME> #-- Master : MSE Mechatronics #-- Date : 14.01.2022 #----------------------------------------------------------------- import data_structure as ds import pandas as pd import configparser from matplotlib import pyplot as plt from pandas import DataFrame from model_manipulation import Model import numpy as np import seaborn as sns print("All libraries are loaded from prediction") # prediction and create dataframe for storing information def dataStoring(model, data_scaled, window, timestep, features, batch_size, one_step): dfAnomaly = pd.DataFrame(index=np.arange(window), columns=['Expected', 'Reconstructed', 'Error'], dtype=np.float64) # prediction using one input after the other (batch size of 1) if one_step: for i in range(window): # make one-step forecast X = data_scaled[i] X = X.reshape(X.shape[0], timestep, features) yhat = model.predict(X, batch_size=batch_size) yhat = yhat[0,0] # store forecast dfAnomaly['Reconstructed'].iloc[i] = yhat expected = data_scaled[i] dfAnomaly['Expected'].iloc[i] = data_scaled[i] print('DataNum=%d, Reconstructed=%f, Expected=%f' % (i+1, yhat, expected)) # report performance) test_mae_loss = np.mean(np.abs(yhat-expected)) print('Test L1 loss: %.3f' % test_mae_loss) dfAnomaly['Error'].iloc[i] = test_mae_loss # prediction using several inputs at the same time (batch size greather than 1) else: X = data_scaled[0:window] X = X.reshape(X.shape[0], timestep, features) print("Running reconstruction of test data") yhat = model.predict(X, batch_size=batch_size, verbose=1) yhat = yhat.reshape(window, 1) dfAnomaly['Reconstructed'] = yhat dfAnomaly['Expected'] = data_scaled[0:window] dfAnomaly['Error'] = np.abs(dfAnomaly['Reconstructed'].values - dfAnomaly['Expected'].values) # looking at the summary of the model model.summary() return dfAnomaly # plots of expected vs reconstructed/predicted values def showResults(dfAnomaly, window, threshold): plt.figure(figsize=(16, 9)) plt.plot(dfAnomaly['Expected']) plt.plot(dfAnomaly['Reconstructed']) plt.ylabel('Acceleration values (g)') plt.xlabel('Time steps') plt.legend(['Target', 'Reconstruction']) plt.title('Reconstruction of acceleration values') plt.show() # summarize results results =
DataFrame()
pandas.DataFrame
""" Tests for simulation of time series Author: <NAME> License: Simplified-BSD """ import numpy as np import pandas as pd from numpy.testing import assert_, assert_allclose, assert_equal import pytest from scipy.signal import lfilter from .test_impulse_responses import TVSS from statsmodels.tools.sm_exceptions import SpecificationWarning, \ EstimationWarning from statsmodels.tsa.statespace import (sarimax, structural, varmax, dynamic_factor) def test_arma_lfilter(): # Tests of an ARMA model simulation against scipy.signal.lfilter # Note: the first elements of the generated SARIMAX datasets are based on # the initial state, so we do not include them in the comparisons np.random.seed(10239) nobs = 100 eps = np.random.normal(size=nobs) # AR(1) mod = sarimax.SARIMAX([0], order=(1, 0, 0)) actual = mod.simulate([0.5, 1.], nobs + 1, state_shocks=np.r_[eps, 0], initial_state=np.zeros(mod.k_states)) desired = lfilter([1], [1, -0.5], eps) assert_allclose(actual[1:], desired) # MA(1) mod = sarimax.SARIMAX([0], order=(0, 0, 1)) actual = mod.simulate([0.5, 1.], nobs + 1, state_shocks=np.r_[eps, 0], initial_state=np.zeros(mod.k_states)) desired = lfilter([1, 0.5], [1], eps) assert_allclose(actual[1:], desired) # ARMA(1, 1) mod = sarimax.SARIMAX([0], order=(1, 0, 1)) actual = mod.simulate([0.5, 0.2, 1.], nobs + 1, state_shocks=np.r_[eps, 0], initial_state=np.zeros(mod.k_states)) desired = lfilter([1, 0.2], [1, -0.5], eps) assert_allclose(actual[1:], desired) def test_arma_direct(): # Tests of an ARMA model simulation against direct construction # This is useful for e.g. trend components # Note: the first elements of the generated SARIMAX datasets are based on # the initial state, so we do not include them in the comparisons np.random.seed(10239) nobs = 100 eps = np.random.normal(size=nobs) exog = np.random.normal(size=nobs) # AR(1) mod = sarimax.SARIMAX([0], order=(1, 0, 0)) actual = mod.simulate([0.5, 1.], nobs + 1, state_shocks=np.r_[eps, 0], initial_state=np.zeros(mod.k_states)) desired = np.zeros(nobs) for i in range(nobs): if i == 0: desired[i] = eps[i] else: desired[i] = 0.5 * desired[i - 1] + eps[i] assert_allclose(actual[1:], desired) # MA(1) mod = sarimax.SARIMAX([0], order=(0, 0, 1)) actual = mod.simulate([0.5, 1.], nobs + 1, state_shocks=np.r_[eps, 0], initial_state=np.zeros(mod.k_states)) desired = np.zeros(nobs) for i in range(nobs): if i == 0: desired[i] = eps[i] else: desired[i] = 0.5 * eps[i - 1] + eps[i] assert_allclose(actual[1:], desired) # ARMA(1, 1) mod = sarimax.SARIMAX([0], order=(1, 0, 1)) actual = mod.simulate([0.5, 0.2, 1.], nobs + 1, state_shocks=np.r_[eps, 0], initial_state=np.zeros(mod.k_states)) desired = np.zeros(nobs) for i in range(nobs): if i == 0: desired[i] = eps[i] else: desired[i] = 0.5 * desired[i - 1] + 0.2 * eps[i - 1] + eps[i] assert_allclose(actual[1:], desired) # ARMA(1, 1) + intercept mod = sarimax.SARIMAX([0], order=(1, 0, 1), trend='c') actual = mod.simulate([1.3, 0.5, 0.2, 1.], nobs + 1, state_shocks=np.r_[eps, 0], initial_state=np.zeros(mod.k_states)) desired = np.zeros(nobs) for i in range(nobs): trend = 1.3 if i == 0: desired[i] = trend + eps[i] else: desired[i] = (trend + 0.5 * desired[i - 1] + 0.2 * eps[i - 1] + eps[i]) assert_allclose(actual[1:], desired) # ARMA(1, 1) + intercept + time trend # Note: to allow time-varying SARIMAX to simulate 101 observations, need to # give it 101 observations up front mod = sarimax.SARIMAX(np.zeros(nobs + 1), order=(1, 0, 1), trend='ct') actual = mod.simulate([1.3, 0.2, 0.5, 0.2, 1.], nobs + 1, state_shocks=np.r_[eps, 0], initial_state=np.zeros(mod.k_states)) desired = np.zeros(nobs) for i in range(nobs): trend = 1.3 + 0.2 * (i + 1) if i == 0: desired[i] = trend + eps[i] else: desired[i] = (trend + 0.5 * desired[i - 1] + 0.2 * eps[i - 1] + eps[i]) assert_allclose(actual[1:], desired) # ARMA(1, 1) + intercept + time trend + exog # Note: to allow time-varying SARIMAX to simulate 101 observations, need to # give it 101 observations up front # Note: the model is regression with SARIMAX errors, so the exog is # introduced into the observation equation rather than the ARMA part mod = sarimax.SARIMAX(np.zeros(nobs + 1), exog=np.r_[0, exog], order=(1, 0, 1), trend='ct') actual = mod.simulate([1.3, 0.2, -0.5, 0.5, 0.2, 1.], nobs + 1, state_shocks=np.r_[eps, 0], initial_state=np.zeros(mod.k_states)) desired = np.zeros(nobs) for i in range(nobs): trend = 1.3 + 0.2 * (i + 1) if i == 0: desired[i] = trend + eps[i] else: desired[i] = (trend + 0.5 * desired[i - 1] + 0.2 * eps[i - 1] + eps[i]) desired = desired - 0.5 * exog assert_allclose(actual[1:], desired) def test_structural(): np.random.seed(38947) nobs = 100 eps = np.random.normal(size=nobs) exog = np.random.normal(size=nobs) eps1 = np.zeros(nobs) eps2 = np.zeros(nobs) eps2[49] = 1 eps3 = np.zeros(nobs) eps3[50:] = 1 # AR(1) mod1 = structural.UnobservedComponents([0], autoregressive=1) mod2 = sarimax.SARIMAX([0], order=(1, 0, 0)) actual = mod1.simulate([1, 0.5], nobs, state_shocks=eps, initial_state=np.zeros(mod1.k_states)) desired = mod2.simulate([0.5, 1], nobs, state_shocks=eps, initial_state=np.zeros(mod2.k_states)) assert_allclose(actual, desired) # ARX(1) mod1 = structural.UnobservedComponents(np.zeros(nobs), exog=exog, autoregressive=1) mod2 = sarimax.SARIMAX(np.zeros(nobs), exog=exog, order=(1, 0, 0)) actual = mod1.simulate([1, 0.5, 0.2], nobs, state_shocks=eps, initial_state=np.zeros(mod2.k_states)) desired = mod2.simulate([0.2, 0.5, 1], nobs, state_shocks=eps, initial_state=np.zeros(mod2.k_states)) assert_allclose(actual, desired) # Irregular mod = structural.UnobservedComponents([0], 'irregular') actual = mod.simulate([1.], nobs, measurement_shocks=eps, initial_state=np.zeros(mod.k_states)) assert_allclose(actual, eps) # Fixed intercept # (in practice this is a deterministic constant, because an irregular # component must be added) warning = SpecificationWarning match = 'irregular component added' with pytest.warns(warning, match=match): mod = structural.UnobservedComponents([0], 'fixed intercept') actual = mod.simulate([1.], nobs, measurement_shocks=eps, initial_state=[10]) assert_allclose(actual, 10 + eps) # Deterministic constant mod = structural.UnobservedComponents([0], 'deterministic constant') actual = mod.simulate([1.], nobs, measurement_shocks=eps, initial_state=[10]) assert_allclose(actual, 10 + eps) # Local level mod = structural.UnobservedComponents([0], 'local level') actual = mod.simulate([1., 1.], nobs, measurement_shocks=eps, state_shocks=eps2, initial_state=np.zeros(mod.k_states)) assert_allclose(actual, eps + eps3) # Random walk mod = structural.UnobservedComponents([0], 'random walk') actual = mod.simulate([1.], nobs, measurement_shocks=eps, state_shocks=eps2, initial_state=np.zeros(mod.k_states)) assert_allclose(actual, eps + eps3) # Fixed slope # (in practice this is a deterministic trend, because an irregular # component must be added) warning = SpecificationWarning match = 'irregular component added' with pytest.warns(warning, match=match): mod = structural.UnobservedComponents([0], 'fixed slope') actual = mod.simulate([1., 1.], nobs, measurement_shocks=eps, state_shocks=eps2, initial_state=[0, 1]) assert_allclose(actual, eps + np.arange(100)) # Deterministic trend mod = structural.UnobservedComponents([0], 'deterministic trend') actual = mod.simulate([1.], nobs, measurement_shocks=eps, state_shocks=eps2, initial_state=[0, 1]) assert_allclose(actual, eps + np.arange(100)) # Local linear deterministic trend mod = structural.UnobservedComponents( [0], 'local linear deterministic trend') actual = mod.simulate([1., 1.], nobs, measurement_shocks=eps, state_shocks=eps2, initial_state=[0, 1]) desired = eps + np.r_[np.arange(50), 1 + np.arange(50, 100)] assert_allclose(actual, desired) # Random walk with drift mod = structural.UnobservedComponents([0], 'random walk with drift') actual = mod.simulate([1.], nobs, state_shocks=eps2, initial_state=[0, 1]) desired = np.r_[np.arange(50), 1 + np.arange(50, 100)] assert_allclose(actual, desired) # Local linear trend mod = structural.UnobservedComponents([0], 'local linear trend') actual = mod.simulate([1., 1., 1.], nobs, measurement_shocks=eps, state_shocks=np.c_[eps2, eps1], initial_state=[0, 1]) desired = eps + np.r_[np.arange(50), 1 + np.arange(50, 100)] assert_allclose(actual, desired) actual = mod.simulate([1., 1., 1.], nobs, measurement_shocks=eps, state_shocks=np.c_[eps1, eps2], initial_state=[0, 1]) desired = eps + np.r_[np.arange(50), np.arange(50, 150, 2)] assert_allclose(actual, desired) # Smooth trend mod = structural.UnobservedComponents([0], 'smooth trend') actual = mod.simulate([1., 1.], nobs, measurement_shocks=eps, state_shocks=eps1, initial_state=[0, 1]) desired = eps + np.r_[np.arange(100)] assert_allclose(actual, desired) actual = mod.simulate([1., 1.], nobs, measurement_shocks=eps, state_shocks=eps2, initial_state=[0, 1]) desired = eps + np.r_[np.arange(50), np.arange(50, 150, 2)] assert_allclose(actual, desired) # Random trend mod = structural.UnobservedComponents([0], 'random trend') actual = mod.simulate([1., 1.], nobs, state_shocks=eps1, initial_state=[0, 1]) desired = np.r_[np.arange(100)] assert_allclose(actual, desired) actual = mod.simulate([1., 1.], nobs, state_shocks=eps2, initial_state=[0, 1]) desired = np.r_[np.arange(50), np.arange(50, 150, 2)] assert_allclose(actual, desired) # Seasonal (deterministic) mod = structural.UnobservedComponents([0], 'irregular', seasonal=2, stochastic_seasonal=False) actual = mod.simulate([1.], nobs, measurement_shocks=eps, initial_state=[10]) desired = eps + np.tile([10, -10], 50) assert_allclose(actual, desired) # Seasonal (stochastic) mod = structural.UnobservedComponents([0], 'irregular', seasonal=2) actual = mod.simulate([1., 1.], nobs, measurement_shocks=eps, state_shocks=eps2, initial_state=[10]) desired = eps + np.r_[np.tile([10, -10], 25), np.tile([11, -11], 25)] assert_allclose(actual, desired) # Cycle (deterministic) mod = structural.UnobservedComponents([0], 'irregular', cycle=True) actual = mod.simulate([1., 1.2], nobs, measurement_shocks=eps, initial_state=[1, 0]) x1 = [np.cos(1.2), np.sin(1.2)] x2 = [-np.sin(1.2), np.cos(1.2)] T = np.array([x1, x2]) desired = eps states = [1, 0] for i in range(nobs): desired[i] += states[0] states = np.dot(T, states) assert_allclose(actual, desired) # Cycle (stochastic) mod = structural.UnobservedComponents([0], 'irregular', cycle=True, stochastic_cycle=True) actual = mod.simulate([1., 1., 1.2], nobs, measurement_shocks=eps, state_shocks=np.c_[eps2, eps2], initial_state=[1, 0]) x1 = [np.cos(1.2), np.sin(1.2)] x2 = [-np.sin(1.2), np.cos(1.2)] T = np.array([x1, x2]) desired = eps states = [1, 0] for i in range(nobs): desired[i] += states[0] states = np.dot(T, states) + eps2[i] assert_allclose(actual, desired) def test_varmax(): np.random.seed(371934) nobs = 100 eps = np.random.normal(size=nobs) exog = np.random.normal(size=(nobs, 1)) eps1 = np.zeros(nobs) eps2 = np.zeros(nobs) eps2[49] = 1 eps3 = np.zeros(nobs) eps3[50:] = 1 # VAR(2) - single series mod1 = varmax.VARMAX([[0]], order=(2, 0), trend='n') mod2 = sarimax.SARIMAX([0], order=(2, 0, 0)) actual = mod1.simulate([0.5, 0.2, 1], nobs, state_shocks=eps, initial_state=np.zeros(mod1.k_states)) desired = mod2.simulate([0.5, 0.2, 1], nobs, state_shocks=eps, initial_state=np.zeros(mod2.k_states)) assert_allclose(actual, desired) # VMA(2) - single series mod1 = varmax.VARMAX([[0]], order=(0, 2), trend='n') mod2 = sarimax.SARIMAX([0], order=(0, 0, 2)) actual = mod1.simulate([0.5, 0.2, 1], nobs, state_shocks=eps, initial_state=np.zeros(mod1.k_states)) desired = mod2.simulate([0.5, 0.2, 1], nobs, state_shocks=eps, initial_state=np.zeros(mod2.k_states)) assert_allclose(actual, desired) # VARMA(2, 2) - single series warning = EstimationWarning match = r'VARMA\(p,q\) models is not' with pytest.warns(warning, match=match): mod1 = varmax.VARMAX([[0]], order=(2, 2), trend='n') mod2 = sarimax.SARIMAX([0], order=(2, 0, 2)) actual = mod1.simulate([0.5, 0.2, 0.1, -0.2, 1], nobs, state_shocks=eps, initial_state=np.zeros(mod1.k_states)) desired = mod2.simulate([0.5, 0.2, 0.1, -0.2, 1], nobs, state_shocks=eps, initial_state=np.zeros(mod2.k_states)) assert_allclose(actual, desired) # VARMA(2, 2) + trend - single series warning = EstimationWarning match = r'VARMA\(p,q\) models is not' with pytest.warns(warning, match=match): mod1 = varmax.VARMAX([[0]], order=(2, 2), trend='c') mod2 = sarimax.SARIMAX([0], order=(2, 0, 2), trend='c') actual = mod1.simulate([10, 0.5, 0.2, 0.1, -0.2, 1], nobs, state_shocks=eps, initial_state=np.zeros(mod1.k_states)) desired = mod2.simulate([10, 0.5, 0.2, 0.1, -0.2, 1], nobs, state_shocks=eps, initial_state=np.zeros(mod2.k_states)) assert_allclose(actual, desired) # VAR(1) transition = np.array([[0.5, 0.1], [-0.1, 0.2]]) mod = varmax.VARMAX([[0, 0]], order=(1, 0), trend='n') actual = mod.simulate(np.r_[transition.ravel(), 1., 0, 1.], nobs, state_shocks=np.c_[eps1, eps1], initial_state=np.zeros(mod.k_states)) assert_allclose(actual, 0) actual = mod.simulate(np.r_[transition.ravel(), 1., 0, 1.], nobs, state_shocks=np.c_[eps1, eps1], initial_state=[1, 1]) desired = np.zeros((nobs, 2)) state = np.r_[1, 1] for i in range(nobs): desired[i] = state state = np.dot(transition, state) assert_allclose(actual, desired) # VAR(1) + measurement error mod = varmax.VARMAX([[0, 0]], order=(1, 0), trend='n', measurement_error=True) actual = mod.simulate(np.r_[transition.ravel(), 1., 0, 1., 1., 1.], nobs, measurement_shocks=np.c_[eps, eps], state_shocks=np.c_[eps1, eps1], initial_state=np.zeros(mod.k_states)) assert_allclose(actual, np.c_[eps, eps]) # VARX(1) mod = varmax.VARMAX(np.zeros((nobs, 2)), order=(1, 0), trend='n', exog=exog) actual = mod.simulate(np.r_[transition.ravel(), 5, -2, 1., 0, 1.], nobs, state_shocks=np.c_[eps1, eps1], initial_state=[1, 1]) desired = np.zeros((nobs, 2)) state = np.r_[1, 1] for i in range(nobs): desired[i] = state if i < nobs - 1: state = exog[i + 1] * [5, -2] + np.dot(transition, state) assert_allclose(actual, desired) # VMA(1) # TODO: This is just a smoke test mod = varmax.VARMAX( np.random.normal(size=(nobs, 2)), order=(0, 1), trend='n') mod.simulate(mod.start_params, nobs) # VARMA(2, 2) + trend + exog # TODO: This is just a smoke test warning = EstimationWarning match = r"VARMA\(p,q\) models is not" with pytest.warns(warning, match=match): mod = varmax.VARMAX( np.random.normal(size=(nobs, 2)), order=(2, 2), trend='c', exog=exog) mod.simulate(mod.start_params, nobs) def test_dynamic_factor(): np.random.seed(93739) nobs = 100 eps = np.random.normal(size=nobs) exog = np.random.normal(size=(nobs, 1)) eps1 = np.zeros(nobs) eps2 = np.zeros(nobs) eps2[49] = 1 eps3 = np.zeros(nobs) eps3[50:] = 1 # DFM: 2 series, AR(2) factor mod1 = dynamic_factor.DynamicFactor([[0, 0]], k_factors=1, factor_order=2) mod2 = sarimax.SARIMAX([0], order=(2, 0, 0)) actual = mod1.simulate([-0.9, 0.8, 1., 1., 0.5, 0.2], nobs, measurement_shocks=np.c_[eps1, eps1], state_shocks=eps, initial_state=np.zeros(mod1.k_states)) desired = mod2.simulate([0.5, 0.2, 1], nobs, state_shocks=eps, initial_state=np.zeros(mod2.k_states)) assert_allclose(actual[:, 0], -0.9 * desired) assert_allclose(actual[:, 1], 0.8 * desired) # DFM: 2 series, AR(2) factor, exog mod1 = dynamic_factor.DynamicFactor(np.zeros((nobs, 2)), k_factors=1, factor_order=2, exog=exog) mod2 = sarimax.SARIMAX([0], order=(2, 0, 0)) actual = mod1.simulate([-0.9, 0.8, 5, -2, 1., 1., 0.5, 0.2], nobs, measurement_shocks=np.c_[eps1, eps1], state_shocks=eps, initial_state=np.zeros(mod1.k_states)) desired = mod2.simulate([0.5, 0.2, 1], nobs, state_shocks=eps, initial_state=np.zeros(mod2.k_states)) assert_allclose(actual[:, 0], -0.9 * desired + 5 * exog[:, 0]) assert_allclose(actual[:, 1], 0.8 * desired - 2 * exog[:, 0]) # DFM, 3 series, VAR(2) factor, exog, error VAR # TODO: This is just a smoke test mod = dynamic_factor.DynamicFactor(np.random.normal(size=(nobs, 3)), k_factors=2, factor_order=2, exog=exog, error_order=2, error_var=True) mod.simulate(mod.start_params, nobs) def test_known_initialization(): # Need to test that "known" initialization is taken into account in # time series simulation np.random.seed(38947) nobs = 100 eps = np.random.normal(size=nobs) eps1 = np.zeros(nobs) eps2 = np.zeros(nobs) eps2[49] = 1 eps3 = np.zeros(nobs) eps3[50:] = 1 # SARIMAX # (test that when state shocks are shut down, the initial state # geometrically declines according to the AR parameter) mod = sarimax.SARIMAX([0], order=(1, 0, 0)) mod.ssm.initialize_known([100], [[0]]) actual = mod.simulate([0.5, 1.], nobs, state_shocks=eps1) assert_allclose(actual, 100 * 0.5**np.arange(nobs)) # Unobserved components # (test that the initial level shifts the entire path) mod = structural.UnobservedComponents([0], 'local level') mod.ssm.initialize_known([100], [[0]]) actual = mod.simulate([1., 1.], nobs, measurement_shocks=eps, state_shocks=eps2) assert_allclose(actual, 100 + eps + eps3) # VARMAX # (here just test that with an independent VAR we have each initial state # geometrically declining at the appropriate rate) transition = np.diag([0.5, 0.2]) mod = varmax.VARMAX([[0, 0]], order=(1, 0), trend='n') mod.initialize_known([100, 50], np.diag([0, 0])) actual = mod.simulate(np.r_[transition.ravel(), 1., 0, 1.], nobs, measurement_shocks=np.c_[eps1, eps1], state_shocks=np.c_[eps1, eps1]) assert_allclose(actual, np.c_[100 * 0.5**np.arange(nobs), 50 * 0.2**np.arange(nobs)]) # Dynamic factor # (test that the initial state declines geometrically and then loads # correctly onto the series) mod = dynamic_factor.DynamicFactor([[0, 0]], k_factors=1, factor_order=1) mod.initialize_known([100], [[0]]) actual = mod.simulate([0.8, 0.2, 1.0, 1.0, 0.5], nobs, measurement_shocks=np.c_[eps1, eps1], state_shocks=eps1) tmp = 100 * 0.5**np.arange(nobs) assert_allclose(actual, np.c_[0.8 * tmp, 0.2 * tmp]) def test_sequential_simulate(): # Test that we can perform simulation, change the system matrices, and then # perform simulation again (i.e. check that everything updates correctly # in the simulation smoother). n_simulations = 100 mod = sarimax.SARIMAX([1], order=(0, 0, 0), trend='c') actual = mod.simulate([1, 0], n_simulations) assert_allclose(actual, np.ones(n_simulations)) actual = mod.simulate([10, 0], n_simulations) assert_allclose(actual, np.ones(n_simulations) * 10) def test_sarimax_end_time_invariant_noshocks(): # Test simulating values from the end of a time-invariant SARIMAX model # In this test, we suppress randomness by setting the shocks to zeros endog = np.arange(1, 11) mod = sarimax.SARIMAX(endog) res = mod.filter([0.5, 1.]) nsimulations = 10 measurement_shocks = np.zeros((nsimulations, mod.k_endog)) state_shocks = np.zeros((nsimulations, mod.k_states)) initial_state = res.predicted_state[..., -1] assert_allclose(initial_state, 5) actual = res.simulate(nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) # Compute the desired simulated values directly desired = 10 * 0.5**np.arange(1, nsimulations + 1) assert_allclose(actual, desired) # Test using the model versus the results class mod_actual = mod.simulate( res.params, nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) assert_allclose(mod_actual, desired) # Alternatively, since we've shut down the shocks, we can compare against # the forecast values assert_allclose(actual, res.forecast(nsimulations)) def test_sarimax_simple_differencing_end_time_invariant_noshocks(): # Test simulating values from the end of a time-invariant SARIMAX model # in which simple differencing is used. # In this test, we suppress randomness by setting the shocks to zeros endog = np.cumsum(np.arange(0, 11)) mod = sarimax.SARIMAX(endog, order=(1, 1, 0), simple_differencing=True) res = mod.filter([0.5, 1.]) nsimulations = 10 measurement_shocks = np.zeros((nsimulations, mod.k_endog)) state_shocks = np.zeros((nsimulations, mod.k_states)) initial_state = res.predicted_state[..., -1] assert_allclose(initial_state, 5) actual = res.simulate(nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) # Compute the desired simulated values directly desired = 10 * 0.5**np.arange(1, nsimulations + 1) assert_allclose(actual, desired) # Test using the model versus the results class mod_actual = mod.simulate( res.params, nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) assert_allclose(mod_actual, desired) # Alternatively, since we've shut down the shocks, we can compare against # the forecast values assert_allclose(actual, res.forecast(nsimulations)) def test_sarimax_time_invariant_shocks(reset_randomstate): # Test simulating values from the end of a time-invariant SARIMAX model, # with nonzero shocks endog = np.arange(1, 11) mod = sarimax.SARIMAX(endog) res = mod.filter([0.5, 1.]) nsimulations = 10 measurement_shocks = np.random.normal(size=nsimulations) state_shocks = np.random.normal(size=nsimulations) initial_state = res.predicted_state[:1, -1] actual = res.simulate(nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) desired = ( lfilter([1], [1, -0.5], np.r_[initial_state, state_shocks])[:-1] + measurement_shocks) assert_allclose(actual, desired) # Test using the model versus the results class mod_actual = mod.simulate( res.params, nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) assert_allclose(mod_actual, desired) def test_sarimax_simple_differencing_end_time_invariant_shocks(): # Test simulating values from the end of a time-invariant SARIMAX model # in which simple differencing is used. # In this test, we suppress randomness by setting the shocks to zeros endog = np.cumsum(np.arange(0, 11)) mod = sarimax.SARIMAX(endog, order=(1, 1, 0), simple_differencing=True) res = mod.filter([0.5, 1.]) nsimulations = 10 measurement_shocks = np.random.normal(size=nsimulations) state_shocks = np.random.normal(size=nsimulations) initial_state = res.predicted_state[:1, -1] actual = res.simulate(nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) desired = ( lfilter([1], [1, -0.5], np.r_[initial_state, state_shocks])[:-1] + measurement_shocks) assert_allclose(actual, desired) # Test using the model versus the results class mod_actual = mod.simulate( res.params, nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) assert_allclose(mod_actual, desired) def test_sarimax_time_varying_trend_noshocks(): # Test simulating values from the end of a time-varying SARIMAX model # In this test, we suppress randomness by setting the shocks to zeros endog = np.arange(1, 11) mod = sarimax.SARIMAX(endog, trend='t') res = mod.filter([1., 0.2, 1.]) nsimulations = 10 measurement_shocks = np.zeros((nsimulations, mod.k_endog)) state_shocks = np.zeros((nsimulations, mod.k_states)) initial_state = res.predicted_state[..., -1] assert_allclose(initial_state, 12) actual = res.simulate(nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) # Compute the desired simulated values directly desired = lfilter([1], [1, -0.2], np.r_[12, np.arange(11, 20)]) assert_allclose(actual, desired) # Test using the model versus the results class mod_actual = mod.simulate( res.params, nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) assert_allclose(mod_actual, desired) # Alternatively, since we've shut down the shocks, we can compare against # the forecast values assert_allclose(actual, res.forecast(nsimulations)) def test_sarimax_simple_differencing_time_varying_trend_noshocks(): # Test simulating values from the end of a time-varying SARIMAX model # in which simple differencing is used. # In this test, we suppress randomness by setting the shocks to zeros endog = np.cumsum(np.arange(0, 11)) mod = sarimax.SARIMAX(endog, order=(1, 1, 0), trend='t', simple_differencing=True) res = mod.filter([1., 0.2, 1.]) nsimulations = 10 measurement_shocks = np.zeros((nsimulations, mod.k_endog)) state_shocks = np.zeros((nsimulations, mod.k_states)) initial_state = res.predicted_state[..., -1] assert_allclose(initial_state, 12) actual = res.simulate(nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) # Compute the desired simulated values directly desired = lfilter([1], [1, -0.2], np.r_[12, np.arange(11, 20)]) assert_allclose(actual, desired) # Test using the model versus the results class mod_actual = mod.simulate( res.params, nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) assert_allclose(mod_actual, desired) # Alternatively, since we've shut down the shocks, we can compare against # the forecast values assert_allclose(actual, res.forecast(nsimulations)) def test_sarimax_time_varying_trend_shocks(reset_randomstate): # Test simulating values from the end of a time-varying SARIMAX model, # with nonzero shocks endog = np.arange(1, 11) mod = sarimax.SARIMAX(endog, trend='t') res = mod.filter([1., 0.2, 1.]) nsimulations = 10 measurement_shocks = np.random.normal(size=nsimulations) state_shocks = np.random.normal(size=nsimulations) initial_state = res.predicted_state[:1, -1] actual = res.simulate(nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) x = np.r_[initial_state, state_shocks + np.arange(11, 21)] desired = lfilter([1], [1, -0.2], x)[:-1] + measurement_shocks assert_allclose(actual, desired) # Test using the model versus the results class mod_actual = mod.simulate( res.params, nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) assert_allclose(mod_actual, desired) def test_sarimax_simple_differencing_time_varying_trend_shocks( reset_randomstate): # Test simulating values from the end of a time-varying SARIMAX model # in which simple differencing is used. # with nonzero shocks endog = np.cumsum(np.arange(0, 11)) mod = sarimax.SARIMAX(endog, order=(1, 1, 0), trend='t', simple_differencing=True) res = mod.filter([1., 0.2, 1.]) nsimulations = 10 measurement_shocks = np.random.normal(size=nsimulations) state_shocks = np.random.normal(size=nsimulations) initial_state = res.predicted_state[:1, -1] assert_allclose(initial_state, 12) actual = res.simulate(nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) x = np.r_[initial_state, state_shocks + np.arange(11, 21)] desired = lfilter([1], [1, -0.2], x)[:-1] + measurement_shocks assert_allclose(actual, desired) # Test using the model versus the results class mod_actual = mod.simulate( res.params, nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) assert_allclose(mod_actual, desired) def test_sarimax_time_varying_exog_noshocks(): # Test simulating values from the end of a time-varying SARIMAX model # In this test, we suppress randomness by setting the shocks to zeros # Note that `exog` here has basically the same effect as measurement shocks endog = np.arange(1, 11) exog = np.arange(1, 21)**2 mod = sarimax.SARIMAX(endog, exog=exog[:10]) res = mod.filter([1., 0.2, 1.]) nsimulations = 10 measurement_shocks = np.zeros((nsimulations, mod.k_endog)) state_shocks = np.zeros((nsimulations, mod.k_states)) initial_state = res.predicted_state[..., -1] actual = res.simulate(nsimulations, exog=exog[10:], anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) # Compute the desired simulated values directly desired = (lfilter([1], [1, -0.2], np.r_[initial_state, [0] * 9]) + exog[10:]) assert_allclose(actual, desired) # Test using the model versus the results class mod_actual = mod.simulate( res.params, nsimulations, exog=exog[10:], anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) assert_allclose(mod_actual, desired) # Alternatively, since we've shut down the shocks, we can compare against # the forecast values assert_allclose(actual, res.forecast(nsimulations, exog=exog[10:])) def test_sarimax_simple_differencing_time_varying_exog_noshocks(): # Test simulating values from the end of a time-varying SARIMAX model # with simple differencing # In this test, we suppress randomness by setting the shocks to zeros endog = np.cumsum(np.arange(0, 11)) exog = np.cumsum(np.arange(0, 21)**2) mod = sarimax.SARIMAX(endog, order=(1, 1, 0), exog=exog[:11], simple_differencing=True) res = mod.filter([1., 0.2, 1.]) nsimulations = 10 measurement_shocks = np.zeros((nsimulations, mod.k_endog)) state_shocks = np.zeros((nsimulations, mod.k_states)) initial_state = res.predicted_state[..., -1] actual = res.simulate(nsimulations, exog=exog[11:], anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) # Compute the desired simulated values directly desired = (lfilter([1], [1, -0.2], np.r_[initial_state, [0] * 9]) + np.diff(exog)[10:]) assert_allclose(actual, desired) # Test using the model versus the results class mod_actual = mod.simulate( res.params, nsimulations, exog=exog[11:], anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) assert_allclose(mod_actual, desired) # Alternatively, since we've shut down the shocks, we can compare against # the forecast values assert_allclose(actual, res.forecast(nsimulations, exog=exog[11:])) def test_sarimax_time_varying_exog_shocks(reset_randomstate): # Test simulating values from the end of a time-varying SARIMAX model, # with nonzero shocks endog = np.arange(1, 11) exog = np.arange(1, 21)**2 mod = sarimax.SARIMAX(endog, exog=exog[:10]) res = mod.filter([1., 0.2, 1.]) nsimulations = 10 measurement_shocks = np.random.normal(size=nsimulations) state_shocks = np.random.normal(size=nsimulations) initial_state = res.predicted_state[:1, -1] actual = res.simulate(nsimulations, exog=exog[10:], anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) x = np.r_[initial_state, state_shocks[:-1]] desired = lfilter([1], [1, -0.2], x) + exog[10:] + measurement_shocks assert_allclose(actual, desired) # Test using the model versus the results class mod_actual = mod.simulate( res.params, nsimulations, exog=exog[10:], anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) assert_allclose(mod_actual, desired) def test_sarimax_simple_differencing_time_varying_exog_shocks( reset_randomstate): # Test simulating values from the end of a time-varying SARIMAX model # Note that `exog` here has basically the same effect as measurement shocks endog = np.cumsum(np.arange(0, 11)) exog = np.cumsum(np.arange(0, 21)**2) mod = sarimax.SARIMAX(endog, order=(1, 1, 0), exog=exog[:11], simple_differencing=True) res = mod.filter([1., 0.2, 1.]) nsimulations = 10 measurement_shocks = np.random.normal(size=nsimulations) state_shocks = np.random.normal(size=nsimulations) initial_state = res.predicted_state[:1, -1] actual = res.simulate(nsimulations, exog=exog[11:], anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) # Compute the desired simulated values directly x = np.r_[initial_state, state_shocks[:-1]] desired = (lfilter([1], [1, -0.2], x) + np.diff(exog)[10:] + measurement_shocks) assert_allclose(actual, desired) # Test using the model versus the results class mod_actual = mod.simulate( res.params, nsimulations, exog=exog[11:], anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) assert_allclose(mod_actual, desired) def test_unobserved_components_end_time_invariant_noshocks(): # Test simulating values from the end of a time-invariant # UnobservedComponents model # In this test, we suppress randomness by setting the shocks to zeros endog = np.arange(1, 11) mod = structural.UnobservedComponents(endog, 'llevel') res = mod.filter([1., 1.]) nsimulations = 10 measurement_shocks = np.zeros((nsimulations, mod.k_endog)) state_shocks = np.zeros((nsimulations, mod.k_states)) initial_state = res.predicted_state[..., -1] actual = res.simulate(nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) # The mean of the simulated local level values is just the last value desired = initial_state[0] assert_allclose(actual, desired) # Test using the model versus the results class mod_actual = mod.simulate( res.params, nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) assert_allclose(mod_actual, desired) # Alternatively, since we've shut down the shocks, we can compare against # the forecast values assert_allclose(actual, res.forecast(nsimulations)) def test_unobserved_components_end_time_invariant_shocks(reset_randomstate): # Test simulating values from the end of a time-invariant # UnobservedComponents model, with nonzero shocks endog = np.arange(1, 11) mod = structural.UnobservedComponents(endog, 'llevel') res = mod.filter([1., 1.]) nsimulations = 10 measurement_shocks = np.random.normal(size=nsimulations) state_shocks = np.random.normal(size=nsimulations) initial_state = res.predicted_state[:1, -1] actual = res.simulate(nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) desired = (initial_state + np.cumsum(np.r_[0, state_shocks[:-1]]) + measurement_shocks) assert_allclose(actual, desired) # Test using the model versus the results class mod_actual = mod.simulate( res.params, nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) assert_allclose(mod_actual, desired) def test_unobserved_components_end_time_varying_exog_noshocks(): # Test simulating values from the end of a time-varying # UnobservedComponents model with exog # In this test, we suppress randomness by setting the shocks to zeros endog = np.arange(1, 11) exog = np.arange(1, 21)**2 mod = structural.UnobservedComponents(endog, 'llevel', exog=exog[:10]) res = mod.filter([1., 1., 1.]) nsimulations = 10 measurement_shocks = np.zeros((nsimulations, mod.k_endog)) state_shocks = np.zeros((nsimulations, mod.k_states)) initial_state = res.predicted_state[..., -1] actual = res.simulate(nsimulations, exog=exog[10:], anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) # The mean of the simulated local level values is just the last value desired = initial_state[0] + exog[10:] assert_allclose(actual, desired) # Test using the model versus the results class mod_actual = mod.simulate( res.params, nsimulations, exog=exog[10:], anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) assert_allclose(mod_actual, desired) # Alternatively, since we've shut down the shocks, we can compare against # the forecast values assert_allclose(actual, res.forecast(nsimulations, exog=exog[10:])) def test_unobserved_components_end_time_varying_exog_shocks(reset_randomstate): # Test simulating values from the end of a time-varying # UnobservedComponents model with exog endog = np.arange(1, 11) exog = np.arange(1, 21)**2 mod = structural.UnobservedComponents(endog, 'llevel', exog=exog[:10]) res = mod.filter([1., 1., 1.]) nsimulations = 10 measurement_shocks = np.random.normal(size=nsimulations) state_shocks = np.random.normal(size=nsimulations) initial_state = res.predicted_state[:1, -1] actual = res.simulate(nsimulations, exog=exog[10:], anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) desired = (initial_state + np.cumsum(np.r_[0, state_shocks[:-1]]) + measurement_shocks + exog[10:]) assert_allclose(actual, desired) # Test using the model versus the results class mod_actual = mod.simulate( res.params, nsimulations, exog=exog[10:], anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) assert_allclose(mod_actual, desired) def test_varmax_end_time_invariant_noshocks(): # Test simulating values from the end of a time-invariant VARMAX model # In this test, we suppress randomness by setting the shocks to zeros endog = np.arange(1, 21).reshape(10, 2) mod = varmax.VARMAX(endog, trend='n') res = mod.filter([1., 1., 1., 1., 1., 0.5, 1.]) nsimulations = 10 measurement_shocks = np.zeros((nsimulations, mod.k_endog)) state_shocks = np.zeros((nsimulations, mod.k_states)) initial_state = res.predicted_state[:, -1] actual = res.simulate(nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) desired = (initial_state[:, None] * 2 ** np.arange(10)).T assert_allclose(actual, desired) # Test using the model versus the results class mod_actual = mod.simulate( res.params, nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) assert_allclose(mod_actual, desired) # Alternatively, since we've shut down the shocks, we can compare against # the forecast values assert_allclose(actual, res.forecast(nsimulations)) def test_varmax_end_time_invariant_shocks(reset_randomstate): # Test simulating values from the end of a time-invariant VARMAX model, # with nonzero shocks endog = np.arange(1, 21).reshape(10, 2) mod = varmax.VARMAX(endog, trend='n') res = mod.filter([1., 1., 1., 1., 1., 0.5, 1.]) nsimulations = 10 measurement_shocks = np.random.normal(size=(nsimulations, mod.k_endog)) state_shocks = np.random.normal(size=(nsimulations, mod.k_states)) initial_state = res.predicted_state[:, -1] actual = res.simulate(nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) desired = np.zeros((nsimulations, mod.k_endog)) desired[0] = initial_state for i in range(1, nsimulations): desired[i] = desired[i - 1].sum() + state_shocks[i - 1] desired = desired + measurement_shocks assert_allclose(actual, desired) # Test using the model versus the results class mod_actual = mod.simulate( res.params, nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) assert_allclose(mod_actual, desired) def test_varmax_end_time_varying_trend_noshocks(): # Test simulating values from the end of a time-varying VARMAX model # with a trend # In this test, we suppress randomness by setting the shocks to zeros endog = np.arange(1, 21).reshape(10, 2) mod = varmax.VARMAX(endog, trend='ct') res = mod.filter([1., 1., 1., 1., 1, 1, 1., 1., 1., 0.5, 1.]) nsimulations = 10 measurement_shocks = np.zeros((nsimulations, mod.k_endog)) state_shocks = np.zeros((nsimulations, mod.k_states)) # Need to set the final predicted state given the new trend with res._set_final_predicted_state(exog=None, out_of_sample=10): initial_state = res.predicted_state[:, -1].copy() # Simulation actual = res.simulate(nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) desired = np.zeros((nsimulations, mod.k_endog)) desired[0] = initial_state tmp_trend = 1 + np.arange(11, 21) for i in range(1, nsimulations): desired[i] = desired[i - 1].sum() + tmp_trend[i] + state_shocks[i - 1] desired = desired + measurement_shocks assert_allclose(actual, desired) # Test using the model versus the results class mod_actual = mod.simulate( res.params, nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) assert_allclose(mod_actual, desired) # Alternatively, since we've shut down the shocks, we can compare against # the forecast values assert_allclose(actual, res.forecast(nsimulations)) def test_varmax_end_time_varying_trend_shocks(reset_randomstate): # Test simulating values from the end of a time-varying VARMAX model # with a trend endog = np.arange(1, 21).reshape(10, 2) mod = varmax.VARMAX(endog, trend='ct') res = mod.filter([1., 1., 1., 1., 1, 1, 1., 1., 1., 0.5, 1.]) nsimulations = 10 measurement_shocks = np.random.normal(size=(nsimulations, mod.k_endog)) state_shocks = np.random.normal(size=(nsimulations, mod.k_states)) # Need to set the final predicted state given the new trend with res._set_final_predicted_state(exog=None, out_of_sample=10): initial_state = res.predicted_state[:, -1].copy() # Simulation actual = res.simulate(nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) desired = np.zeros((nsimulations, mod.k_endog)) desired[0] = initial_state tmp_trend = 1 + np.arange(11, 21) for i in range(1, nsimulations): desired[i] = desired[i - 1].sum() + tmp_trend[i] + state_shocks[i - 1] desired = desired + measurement_shocks assert_allclose(actual, desired) # Test using the model versus the results class mod_actual = mod.simulate( res.params, nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) assert_allclose(mod_actual, desired) def test_varmax_end_time_varying_exog_noshocks(): # Test simulating values from the end of a time-varying VARMAX model # with exog # In this test, we suppress randomness by setting the shocks to zeros endog = np.arange(1, 21).reshape(10, 2) exog = np.arange(1, 21)**2 mod = varmax.VARMAX(endog, trend='n', exog=exog[:10]) res = mod.filter([1., 1., 1., 1., 1., 1., 1., 0.5, 1.]) nsimulations = 10 measurement_shocks = np.zeros((nsimulations, mod.k_endog)) state_shocks = np.zeros((nsimulations, mod.k_states)) # Need to set the final predicted state given the new exog tmp_exog = mod._validate_out_of_sample_exog(exog[10:], out_of_sample=10) with res._set_final_predicted_state(exog=tmp_exog, out_of_sample=10): initial_state = res.predicted_state[:, -1].copy() # Simulation actual = res.simulate(nsimulations, exog=exog[10:], anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) desired = np.zeros((nsimulations, mod.k_endog)) desired[0] = initial_state for i in range(1, nsimulations): desired[i] = desired[i - 1].sum() + exog[10 + i] + state_shocks[i - 1] desired = desired + measurement_shocks assert_allclose(actual, desired) # Test using the model versus the results class mod_actual = mod.simulate( res.params, nsimulations, exog=exog[10:], anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) assert_allclose(mod_actual, desired) # Alternatively, since we've shut down the shocks, we can compare against # the forecast values assert_allclose(actual, res.forecast(nsimulations, exog=exog[10:])) def test_varmax_end_time_varying_exog_shocks(reset_randomstate): # Test simulating values from the end of a time-varying VARMAX model # with exog endog = np.arange(1, 23).reshape(11, 2) exog = np.arange(1, 21)**2 mod = varmax.VARMAX(endog[:10], trend='n', exog=exog[:10]) res = mod.filter([1., 1., 1., 1., 1., 1., 1., 0.5, 1.]) mod2 = varmax.VARMAX(endog, trend='n', exog=exog[:11]) res2 = mod2.filter([1., 1., 1., 1., 1., 1., 1., 0.5, 1.]) nsimulations = 10 measurement_shocks = np.random.normal(size=(nsimulations, mod.k_endog)) state_shocks = np.random.normal(size=(nsimulations, mod.k_states)) # Need to set the final predicted state given the new exog tmp_exog = mod._validate_out_of_sample_exog(exog[10:], out_of_sample=10) with res._set_final_predicted_state(exog=tmp_exog, out_of_sample=10): initial_state = res.predicted_state[:, -1].copy() # Simulation actual = res.simulate(nsimulations, exog=exog[10:], anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) actual2 = res2.simulate(nsimulations, exog=exog[11:], anchor=-1, measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=res2.predicted_state[:, -2]) desired = np.zeros((nsimulations, mod.k_endog)) desired[0] = initial_state for i in range(1, nsimulations): desired[i] = desired[i - 1].sum() + exog[10 + i] + state_shocks[i - 1] desired = desired + measurement_shocks assert_allclose(actual, desired) assert_allclose(actual2, desired) # Test using the model versus the results class mod_actual = mod.simulate( res.params, nsimulations, exog=exog[10:], anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) assert_allclose(mod_actual, desired) def test_dynamic_factor_end_time_invariant_noshocks(): # Test simulating values from the end of a time-invariant dynamic factor # In this test, we suppress randomness by setting the shocks to zeros endog = np.arange(1, 21).reshape(10, 2) mod = dynamic_factor.DynamicFactor(endog, k_factors=1, factor_order=1) mod.ssm.filter_univariate = True res = mod.filter([1., 1., 1., 1., 1.]) nsimulations = 10 measurement_shocks = np.zeros((nsimulations, mod.k_endog)) state_shocks = np.zeros((nsimulations, mod.k_states)) initial_state = res.predicted_state[..., -1] # Simulation actual = res.simulate(nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) # Construct the simulation directly desired = np.zeros((nsimulations, mod.k_endog)) desired[0] = initial_state for i in range(1, nsimulations): desired[i] = desired[i - 1] + state_shocks[i - 1] desired = desired + measurement_shocks assert_allclose(actual, desired) # Test using the model versus the results class mod_actual = mod.simulate( res.params, nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) assert_allclose(mod_actual, desired) # Alternatively, since we've shut down the shocks, we can compare against # the forecast values assert_allclose(actual, res.forecast(nsimulations)) def test_dynamic_factor_end_time_invariant_shocks(reset_randomstate): # Test simulating values from the end of a time-invariant dynamic factor endog = np.arange(1, 21).reshape(10, 2) mod = dynamic_factor.DynamicFactor(endog, k_factors=1, factor_order=1) mod.ssm.filter_univariate = True res = mod.filter([1., 1., 1., 1., 1., 1., 1.]) nsimulations = 10 measurement_shocks = np.random.normal(size=(nsimulations, mod.k_endog)) state_shocks = np.random.normal(size=(nsimulations, mod.k_states)) initial_state = res.predicted_state[..., -1] # Simulation actual = res.simulate(nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) # Construct the simulation directly desired = np.zeros((nsimulations, mod.k_endog)) desired[0] = initial_state for i in range(1, nsimulations): desired[i] = desired[i - 1] + state_shocks[i - 1] desired = desired + measurement_shocks assert_allclose(actual, desired) # Test using the model versus the results class mod_actual = mod.simulate( res.params, nsimulations, anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) assert_allclose(mod_actual, desired) def test_dynamic_factor_end_time_varying_exog_noshocks(): # Test simulating values from the end of a time-varying dynamic factor # model with exogenous inputs # In this test, we suppress randomness by setting the shocks to zeros endog = np.arange(1, 21).reshape(10, 2) exog = np.arange(1, 21)**2 mod = dynamic_factor.DynamicFactor(endog, k_factors=1, factor_order=1, exog=exog[:10]) mod.ssm.filter_univariate = True res = mod.filter([1., 1., 1., 1., 1., 1., 1.]) nsimulations = 10 measurement_shocks = np.zeros((nsimulations, mod.k_endog)) state_shocks = np.zeros((nsimulations, mod.k_states)) initial_state = res.predicted_state[..., -1] # Simulation actual = res.simulate(nsimulations, exog=exog[10:], anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) # Construct the simulation directly desired = np.zeros((nsimulations, mod.k_endog)) desired[0] = initial_state for i in range(1, nsimulations): desired[i] = desired[i - 1] + state_shocks[i - 1] desired = desired + measurement_shocks + exog[10:, None] assert_allclose(actual, desired) # Test using the model versus the results class mod_actual = mod.simulate( res.params, nsimulations, exog=exog[10:], anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) assert_allclose(mod_actual, desired) # Alternatively, since we've shut down the shocks, we can compare against # the forecast values assert_allclose(actual, res.forecast(nsimulations, exog=exog[10:])) def test_dynamic_factor_end_time_varying_exog_shocks(reset_randomstate): # Test simulating values from the end of a time-varying dynamic factor # model with exogenous inputs endog = np.arange(1, 23).reshape(11, 2) exog = np.arange(1, 21)**2 mod = dynamic_factor.DynamicFactor( endog[:10], k_factors=1, factor_order=1, exog=exog[:10]) mod.ssm.filter_univariate = True res = mod.filter([1., 1., 1., 1., 1., 1., 1.]) mod2 = dynamic_factor.DynamicFactor( endog, k_factors=1, factor_order=1, exog=exog[:11]) mod2.ssm.filter_univariate = True res2 = mod2.filter([1., 1., 1., 1., 1., 1., 1.]) nsimulations = 10 measurement_shocks = np.random.normal(size=(nsimulations, mod.k_endog)) state_shocks = np.random.normal(size=(nsimulations, mod.k_states)) initial_state = res.predicted_state[..., -1] # Simulations actual = res.simulate(nsimulations, exog=exog[10:], anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) actual2 = res2.simulate(nsimulations, exog=exog[11:], anchor=-1, measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) # Construct the simulation directly desired = np.zeros((nsimulations, mod.k_endog)) desired[0] = initial_state for i in range(1, nsimulations): desired[i] = desired[i - 1] + state_shocks[i - 1] desired = desired + measurement_shocks + exog[10:, None] assert_allclose(actual, desired) assert_allclose(actual2, desired) # Test using the model versus the results class mod_actual = mod.simulate( res.params, nsimulations, exog=exog[10:], anchor='end', measurement_shocks=measurement_shocks, state_shocks=state_shocks, initial_state=initial_state) assert_allclose(mod_actual, desired) def test_pandas_univariate_rangeindex(): # Simulate will also have RangeIndex endog = pd.Series(np.zeros(2)) mod = sarimax.SARIMAX(endog) res = mod.filter([0.5, 1.]) # Default simulate anchors to the start of the sample actual = res.simulate(2, state_shocks=np.zeros(2), initial_state=np.zeros(1)) desired = pd.Series([0, 0]) assert_allclose(actual, desired) # Alternative anchor changes the index actual = res.simulate(2, anchor=2, state_shocks=np.zeros(2), initial_state=np.zeros(1)) ix = pd.RangeIndex(2, 4) desired = pd.Series([0, 0], index=ix) assert_allclose(actual, desired) assert_(actual.index.equals(desired.index)) def test_pandas_univariate_rangeindex_repetitions(): # Simulate will also have RangeIndex endog = pd.Series(np.zeros(2)) mod = sarimax.SARIMAX(endog) res = mod.filter([0.5, 1.]) # Default simulate anchors to the start of the sample actual = res.simulate(2, state_shocks=np.zeros(2), initial_state=np.zeros(1), repetitions=2) columns = pd.MultiIndex.from_product([['y'], [0, 1]]) desired = pd.DataFrame(np.zeros((2, 2)), columns=columns) assert_allclose(actual, desired) assert_(actual.columns.equals(desired.columns)) # Alternative anchor changes the index actual = res.simulate(2, anchor=2, state_shocks=np.zeros(2), initial_state=np.zeros(1), repetitions=2) ix = pd.RangeIndex(2, 4) columns = pd.MultiIndex.from_product([['y'], [0, 1]]) desired = pd.DataFrame(np.zeros((2, 2)), index=ix, columns=columns) assert_allclose(actual, desired) assert_(actual.index.equals(desired.index)) assert_(actual.columns.equals(desired.columns)) def test_pandas_univariate_dateindex(): # Simulation will maintain have date index ix = pd.date_range(start='2000', periods=2, freq='M') endog = pd.Series(np.zeros(2), index=ix) mod = sarimax.SARIMAX(endog) res = mod.filter([0.5, 1.]) # Default simulate anchors to the start of the sample actual = res.simulate(2, state_shocks=np.zeros(2), initial_state=np.zeros(1)) ix = pd.date_range(start='2000-01', periods=2, freq='M') desired = pd.Series([0, 0], index=ix) assert_allclose(actual, desired) assert_(actual.index.equals(desired.index)) # Alternative anchor changes the index actual = res.simulate(2, anchor=2, state_shocks=np.zeros(2), initial_state=np.zeros(1)) ix = pd.date_range(start='2000-03', periods=2, freq='M') desired = pd.Series([0, 0], index=ix) assert_allclose(actual, desired) def test_pandas_univariate_dateindex_repetitions(): # Simulation will maintain have date index ix = pd.date_range(start='2000', periods=2, freq='M') endog = pd.Series(np.zeros(2), index=ix) mod = sarimax.SARIMAX(endog) res = mod.filter([0.5, 1.]) # Default simulate anchors to the start of the sample actual = res.simulate(2, state_shocks=np.zeros(2), initial_state=np.zeros(1), repetitions=2) ix = pd.date_range(start='2000-01', periods=2, freq='M') columns = pd.MultiIndex.from_product([['y'], [0, 1]]) desired = pd.DataFrame(np.zeros((2, 2)), index=ix, columns=columns) assert_allclose(actual, desired) assert_(actual.columns.equals(desired.columns)) # Alternative anchor changes the index actual = res.simulate(2, anchor=2, state_shocks=np.zeros(2), initial_state=np.zeros(1), repetitions=2) ix = pd.date_range(start='2000-03', periods=2, freq='M') columns = pd.MultiIndex.from_product([['y'], [0, 1]]) desired = pd.DataFrame(np.zeros((2, 2)), index=ix, columns=columns) assert_allclose(actual, desired) assert_(actual.index.equals(desired.index)) assert_(actual.columns.equals(desired.columns)) def test_pandas_multivariate_rangeindex(): # Simulate will also have RangeIndex endog = pd.DataFrame(np.zeros((2, 2))) mod = varmax.VARMAX(endog, trend='n') res = mod.filter([0.5, 0., 0., 0.2, 1., 0., 1.]) # Default simulate anchors to the start of the sample actual = res.simulate(2, state_shocks=np.zeros((2, 2)), initial_state=np.zeros(2)) desired = pd.DataFrame(np.zeros((2, 2))) assert_allclose(actual, desired) # Alternative anchor changes the index actual = res.simulate(2, anchor=2, state_shocks=np.zeros((2, 2)), initial_state=np.zeros(2)) ix = pd.RangeIndex(2, 4) desired = pd.DataFrame(np.zeros((2, 2)), index=ix) assert_allclose(actual, desired) assert_(actual.index.equals(desired.index)) def test_pandas_multivariate_rangeindex_repetitions(): # Simulate will also have RangeIndex endog = pd.DataFrame(np.zeros((2, 2)), columns=['y1', 'y2']) mod = varmax.VARMAX(endog, trend='n') res = mod.filter([0.5, 0., 0., 0.2, 1., 0., 1.]) # Default simulate anchors to the start of the sample actual = res.simulate(2, state_shocks=np.zeros((2, 2)), initial_state=np.zeros(2), repetitions=2) columns = pd.MultiIndex.from_product([['y1', 'y2'], [0, 1]]) desired = pd.DataFrame(np.zeros((2, 4)), columns=columns) assert_allclose(actual, desired) assert_(actual.columns.equals(desired.columns)) # Alternative anchor changes the index actual = res.simulate(2, anchor=2, state_shocks=np.zeros((2, 2)), initial_state=np.zeros(2), repetitions=2) ix = pd.RangeIndex(2, 4) columns = pd.MultiIndex.from_product([['y1', 'y2'], [0, 1]]) desired = pd.DataFrame(np.zeros((2, 4)), index=ix, columns=columns) assert_allclose(actual, desired) assert_(actual.index.equals(desired.index)) assert_(actual.columns.equals(desired.columns)) def test_pandas_multivariate_dateindex(): # Simulate will also have RangeIndex ix = pd.date_range(start='2000', periods=2, freq='M') endog = pd.DataFrame(np.zeros((2, 2)), index=ix) mod = varmax.VARMAX(endog, trend='n') res = mod.filter([0.5, 0., 0., 0.2, 1., 0., 1.]) # Default simulate anchors to the start of the sample actual = res.simulate(2, state_shocks=np.zeros((2, 2)), initial_state=np.zeros(2)) desired = pd.DataFrame(np.zeros((2, 2)), index=ix) assert_allclose(actual, desired) # Alternative anchor changes the index actual = res.simulate(2, anchor=2, state_shocks=np.zeros((2, 2)), initial_state=np.zeros(2)) ix = pd.date_range(start='2000-03', periods=2, freq='M') desired = pd.DataFrame(np.zeros((2, 2)), index=ix) assert_allclose(actual, desired) assert_(actual.index.equals(desired.index)) def test_pandas_multivariate_dateindex_repetitions(): # Simulate will also have RangeIndex ix = pd.date_range(start='2000', periods=2, freq='M') endog = pd.DataFrame(np.zeros((2, 2)), columns=['y1', 'y2'], index=ix) mod = varmax.VARMAX(endog, trend='n') res = mod.filter([0.5, 0., 0., 0.2, 1., 0., 1.]) # Default simulate anchors to the start of the sample actual = res.simulate(2, state_shocks=np.zeros((2, 2)), initial_state=np.zeros(2), repetitions=2) columns = pd.MultiIndex.from_product([['y1', 'y2'], [0, 1]]) desired = pd.DataFrame(np.zeros((2, 4)), columns=columns, index=ix) assert_allclose(actual, desired) assert_(actual.columns.equals(desired.columns)) # Alternative anchor changes the index actual = res.simulate(2, anchor=2, state_shocks=np.zeros((2, 2)), initial_state=np.zeros(2), repetitions=2) ix = pd.date_range(start='2000-03', periods=2, freq='M') columns = pd.MultiIndex.from_product([['y1', 'y2'], [0, 1]]) desired = pd.DataFrame(np.zeros((2, 4)), index=ix, columns=columns) assert_allclose(actual, desired) assert_(actual.index.equals(desired.index)) assert_(actual.columns.equals(desired.columns)) def test_pandas_anchor(): # Test that anchor with dates works ix =
pd.date_range(start='2000', periods=2, freq='M')
pandas.date_range
import os import pandas as pd import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from typing import Union, Optional, List, Dict from tqdm import tqdm from .basic_predictor import BasicPredictor from .utils import inverse_preprocess_data from common_utils_dev import to_parquet, to_abs_path COMMON_CONFIG = { "data_dir": to_abs_path(__file__, "../../../storage/dataset/dataset/v001/train"), "exp_dir": to_abs_path(__file__, "../../../storage/experiments/v001"), "test_data_dir": to_abs_path( __file__, "../../../storage/dataset/dataset/v001/test" ), } DATA_CONFIG = { "checkpoint_dir": "./check_point", "generate_output_dir": "./generated_output", "base_feature_assets": ["BTC-USDT"], } MODEL_CONFIG = { "lookback_window": 120, "batch_size": 512, "lr": 0.0001, "epochs": 10, "print_epoch": 1, "print_iter": 50, "save_epoch": 1, "criterion": "l2", "criterion_params": {}, "load_strict": False, "model_name": "BackboneV1", "model_params": { "in_channels": 86, "n_blocks": 5, "n_block_layers": 10, "growth_rate": 12, "dropout": 0.1, "channel_reduction": 0.5, "activation": "tanhexp", "normalization": "bn", "seblock": True, "sablock": True, }, } class PredictorV1(BasicPredictor): """ Functions: train(): train the model with train_data generate(save_dir: str): generate predictions & labels with test_data predict(X: torch.Tensor): gemerate prediction with given data """ def __init__( self, data_dir=COMMON_CONFIG["data_dir"], test_data_dir=COMMON_CONFIG["test_data_dir"], d_config={}, m_config={}, exp_dir=COMMON_CONFIG["exp_dir"], device="cuda", pin_memory=False, num_workers=8, mode="train", default_d_config=DATA_CONFIG, default_m_config=MODEL_CONFIG, ): super().__init__( data_dir=data_dir, test_data_dir=test_data_dir, d_config=d_config, m_config=m_config, exp_dir=exp_dir, device=device, pin_memory=pin_memory, num_workers=num_workers, mode=mode, default_d_config=default_d_config, default_m_config=default_m_config, ) def _invert_to_prediction(self, pred_abs_factor, pred_sign_factor): multiply = ((pred_sign_factor >= 0.5) * 1.0) + ((pred_sign_factor < 0.5) * -1.0) return pred_abs_factor * multiply def _compute_train_loss(self, train_data_dict): # Set train mode self.model.train() self.model.zero_grad() # Set loss pred_abs_factor, pred_sign_factor = self.model( x=train_data_dict["X"], id=train_data_dict["ID"] ) # Y loss loss = self.criterion(pred_abs_factor, train_data_dict["Y"].view(-1).abs()) * 10 loss += self.binary_criterion( pred_sign_factor, (train_data_dict["Y"].view(-1) >= 0) * 1.0 ) return ( loss, self._invert_to_prediction( pred_abs_factor=pred_abs_factor, pred_sign_factor=pred_sign_factor ), ) def _compute_test_loss(self, test_data_dict): # Set eval mode self.model.eval() # Set loss pred_abs_factor, pred_sign_factor = self.model( x=test_data_dict["X"], id=test_data_dict["ID"] ) # Y loss loss = self.criterion(pred_abs_factor, test_data_dict["Y"].view(-1).abs()) * 10 loss += self.binary_criterion( pred_sign_factor, (test_data_dict["Y"].view(-1) >= 0) * 1.0 ) return ( loss, self._invert_to_prediction( pred_abs_factor=pred_abs_factor, pred_sign_factor=pred_sign_factor ), ) def _step(self, train_data_dict): loss, _ = self._compute_train_loss(train_data_dict=train_data_dict) loss.backward() self.optimizer.step() return loss def _display_info(self, train_loss, test_loss, test_predictions, test_labels): pred_norm = test_predictions[test_predictions >= 0].abs().mean() label_norm = test_labels[test_labels >= 0].abs().mean() # Print loss info print( f""" [+] train_loss: {train_loss:.2f}, test_loss: {test_loss:.2f} | [+] pred_norm: {pred_norm:.2f}, label_norm: {label_norm:.2f}""" ) def _build_abs_bins(self, df): abs_bins = {} for column in df.columns: _, abs_bins[column] = pd.qcut( df[column].abs(), 10, labels=False, retbins=True ) abs_bins[column] = np.concatenate([[0], abs_bins[column][1:-1], [np.inf]]) return
pd.DataFrame(abs_bins)
pandas.DataFrame
""" oil price data source: https://www.ppac.gov.in/WriteReadData/userfiles/file/PP_9_a_DailyPriceMSHSD_Metro.pdf """ import pandas as pd import numpy as np import tabula import requests import plotly.express as px import plotly.graph_objects as go import time from pandas.tseries.offsets import MonthEnd import re import xmltodict def process_table(table_df): print("processing the downloaded PDF from PPAC website.") cols = ['Date', 'Delhi_Petrol', 'Mumbai_Petrol', 'Chennai_Petrol', 'Kolkata_Petrol', 'Date_D', 'Delhi_Diesel', 'Mumbai_Diesel','Chennai_Diesel', 'Kolkata_Diesel'] table_df.columns = cols table_df.drop(table_df.index[[0,3]],inplace=True) table_df.drop('Date_D',axis=1,inplace=True) table_df.dropna(how='any',inplace=True) table_df = table_df.astype(str) table_df = table_df.apply(lambda x: x.str.replace(" ", "")) table_df[['Delhi_Petrol', 'Mumbai_Petrol', 'Chennai_Petrol', 'Kolkata_Petrol', 'Delhi_Diesel', 'Mumbai_Diesel','Chennai_Diesel', 'Kolkata_Diesel']] = table_df[['Delhi_Petrol', 'Mumbai_Petrol', 'Chennai_Petrol', 'Kolkata_Petrol', 'Delhi_Diesel', 'Mumbai_Diesel','Chennai_Diesel', 'Kolkata_Diesel']].astype(float) table_df['Date'] = pd.to_datetime(table_df['Date']) table_petrol = table_df[['Date','Delhi_Petrol', 'Mumbai_Petrol', 'Chennai_Petrol','Kolkata_Petrol']] table_diesel = table_df[['Date','Delhi_Diesel', 'Mumbai_Diesel','Chennai_Diesel', 'Kolkata_Diesel']] new_cols = [i.replace("_Petrol", "") for i in list(table_petrol.columns)] table_petrol.columns = new_cols table_diesel.columns = new_cols return table_petrol, table_diesel def get_international_exchange_rates(start_date,end_date): print("sending request for international exchange rates.") exchange_dates_url = "https://api.exchangeratesapi.io/history?" params = {"start_at": start_date, "end_at":end_date, "base":"USD", "symbols":"INR"} try: req = requests.get(exchange_dates_url,params=params) except Exception as e: print(e) print("request failed. using the saved data.") dollar_exchange_rates = pd.read_csv("dollar_exhange_rates.csv") dollar_exchange_rates['Date'] = pd.to_datetime(dollar_exchange_rates) dollar_exchange_rates.set_index('Date').sort_index(ascending=False) return dollar_exchange_rates else: print("request successful. processing the data.") dollar_exchange_rates = pd.DataFrame(req.json()['rates']).T.reset_index() dollar_exchange_rates['index'] = pd.to_datetime(dollar_exchange_rates['index']) dollar_exchange_rates.set_index('index').sort_index(ascending=False) dollar_exchange_rates.to_csv("dollar_exhange_rates.csv") return dollar_exchange_rates # def merge_data(dollar_exchange_rates, international_oil_prices, oil_price_data): # print("merging the international oil price data, international exchange rate data and domestic oil price data.") # trim_int = international_oil_prices.loc[international_oil_prices.index.isin(oil_price_data.index)].dropna() # oil_price_data = oil_price_data.merge(trim_int, left_index=True, right_index=True).sort_index(ascending=False) # oil_price_data = oil_price_data.merge(dollar_exchange_rates, left_index=True, right_index=True).sort_index(ascending=False) # oil_price_data['INR'] = oil_price_data['INR'].round(2) # oil_price_data['INR_pc'] = (((oil_price_data['INR'] - oil_price_data['INR'].iloc[-1])/oil_price_data['INR'].iloc[-1])*100).round(2) # oil_price_data['rup_lit_crude'] = (oil_price_data['Price'] / 159) * oil_price_data['INR'] # oil_price_data['int_pc'] = (((oil_price_data['Price'] - oil_price_data['Price'].iloc[-1])/oil_price_data['Price'].iloc[-1])*100).round(2) # oil_price_data['rup_lit_crude_pc'] = (((oil_price_data['rup_lit_crude'] - oil_price_data['rup_lit_crude'].iloc[-1])/oil_price_data['rup_lit_crude'].iloc[-1])*100).round(2) # return oil_price_data def download_ppac(): print("sending request for domestic oil price data from PPAC website.") ppac_url = r"https://www.ppac.gov.in/WriteReadData/userfiles/file/PP_9_a_DailyPriceMSHSD_Metro.pdf" try: req = requests.get(ppac_url) except Exception as e: print(e) print("Request unsuccessful. The saved file will be used.") else: with open('DATA/price_data.pdf', 'wb') as file: file.write(req.content) print('file saved successfully.') def prepare_downloaded_file(): print("preparing downloaded file for analysis.") oil_prices = 'DATA/price_data.pdf' tables = tabula.read_pdf(oil_prices, pages="all") proc_dfs = [process_table(i) for i in tables] petrol_df = pd.concat(i[0] for i in proc_dfs) diesel_df = pd.concat(i[1] for i in proc_dfs) print(f"Success. Length of Petrol prices {len(petrol_df)}------ diesel prices {len(diesel_df)}") petrol_df['mean_price'] = (petrol_df['Delhi']+petrol_df['Mumbai']+petrol_df['Chennai']+petrol_df['Kolkata'])/4 diesel_df['mean_price'] = (diesel_df['Delhi']+diesel_df['Mumbai']+diesel_df['Chennai']+diesel_df['Kolkata'])/4 print("Adding percent change columns") for i in petrol_df.columns[1:]: petrol_df[f'{i}_pc'] = (((petrol_df[i] - petrol_df[i].iloc[-1])/petrol_df[i].iloc[-1]) * 100).round(2) for i in diesel_df.columns[1:]: diesel_df[f'{i}_pc'] = (((diesel_df[i] - diesel_df[i].iloc[-1])/diesel_df[i].iloc[-1]) * 100).round(2) petrol_df.set_index("Date",inplace=True) diesel_df.set_index("Date",inplace=True) return petrol_df, diesel_df def prep_consumption_df(consumption_df,year): consumption_df.reset_index(inplace=True) consumption_df.dropna(how='any',inplace=True) consumption_df.drop('index',axis=1,inplace=True) #print(consumption_df) cols = ['products', 'April','May','June','July','August','September','October','November','December','January','February','March','Total'] consumption_df.drop(consumption_df.index[0],inplace=True) consumption_df.columns = cols consumption_df = consumption_df.loc[(consumption_df['products']=='MS')|(consumption_df['products']=='HSD')].reset_index().drop(['index','Total'],axis=1) melt_df = pd.melt(consumption_df, id_vars = 'products',var_name='month',value_name='average_cons') melt_df.sort_values('products',inplace=True) melt_df = melt_df.reset_index().drop('index',axis=1) melt_df['year'] = year melt_df['year'] = melt_df['year'].apply(lambda x: x.split('-')[0]).astype(int) melt_df['year'] = np.where((melt_df['month'].isin(['January','February','March'])),melt_df['year']+1,melt_df['year']) melt_df['average_cons'] = melt_df['average_cons'].astype(float).round(2) return melt_df def prep_consumption_df_present(consumption_df,year): consumption_df.reset_index().drop('index',inplace=True,axis=1) consumption_df.drop(consumption_df.index[range(0,6)],inplace=True) consumption_df.reset_index(inplace=True) consumption_df.drop('index',axis=1,inplace=True) print(consumption_df) consumption_df.drop(consumption_df.index[range(14,20)],inplace=True) consumption_df.reset_index(inplace=True) consumption_df.drop('index',axis=1,inplace=True) #print(consumption_df) cols = ['products', 'April','May','June','July','August','September','October','November','December','January','February','March','Total'] consumption_df.drop(consumption_df.index[0],inplace=True) consumption_df.columns = cols consumption_df = consumption_df.loc[(consumption_df['products']=='MS')|(consumption_df['products']=='HSD')].reset_index().drop(['index','Total'],axis=1) melt_df =
pd.melt(consumption_df, id_vars = 'products',var_name='month',value_name='average_cons')
pandas.melt
#!/usr/bin/env python import click import numpy as np import os import pandas as pd import re import torch from tqdm import tqdm bar_format = "{percentage:3.0f}%|{bar:20}{r_bar}" # Local imports from architectures import PWM, get_metrics from train import _get_seqs_labels_ids, _get_data_loader from utils import get_file_handle CONTEXT_SETTINGS = { "help_option_names": ["-h", "--help"], } @click.command(no_args_is_help=True, context_settings=CONTEXT_SETTINGS) @click.argument( "meme_file", type=click.Path(exists=True, resolve_path=True), ) @click.argument( "tsv_file", type=click.Path(exists=True, resolve_path=True), ) @click.option( "-b", "--batch-size", help="Batch size.", type=int, default=100, show_default=True, ) @click.option( "-d", "--debugging", help="Debugging mode.", is_flag=True, ) @click.option( "-o", "--output-dir", help="Output directory.", type=click.Path(resolve_path=True), default="./", show_default=True, ) @click.option( "-p", "--prefix", help="Output prefix.", ) @click.option( "-s", "--scoring", help="Scoring function.", type=click.Choice(["max", "sum"]), default="max", show_default=True, ) def main(**args): # Create output dir if not os.path.exists(args["output_dir"]): os.makedirs(args["output_dir"]) ############## # Load Data # ############## # Initialize device = "cuda" if torch.cuda.is_available() else "cpu" # Get data seqs, y_true, _ = _get_seqs_labels_ids(args["tsv_file"], args["debugging"]) # Get DataLoader data_loader = _get_data_loader(seqs, y_true, args["batch_size"]) # Load model pwms, names = _get_PWMs(args["meme_file"], resize_pwms=True, return_log=True) pwm_model = PWM(pwms, seqs.shape[2], args["scoring"]).to(device) ############## # Score PWMs # ############## # Initialize idx = 0 scores = np.zeros((len(data_loader.dataset), pwm_model._options["groups"])) with torch.no_grad(): for x, _ in tqdm(iter(data_loader), total=len(data_loader), bar_format=bar_format): # Prepare inputs x = x.to(device) # Get scores s = pwm_model(x) scores[idx:idx+x.shape[0], :] = s.cpu().numpy() # Index increase idx += x.shape[0] ############### # AUC metrics # ############### # Initialize aucs = [] metrics = get_metrics() # Compute AUCs for i in range(len(names)): y_score = scores[:, i] aucs.append([names[i]]) for m in metrics: aucs[-1].append(metrics[m](y_true, y_score)) ############### # Output AUCs # ############### # Create DataFrame df =
pd.DataFrame(aucs, columns=["PWM"]+[m for m in metrics])
pandas.DataFrame
#! python3 #import os #os.environ["R_HOME"] = r"" #os.environ["path"] = r"C:\Users\localadmin\Anaconda3;C:\Users\localadmin\Anaconda3\Scripts;C:\Users\localadmin\Anaconda3\Library\bin;C:\Users\localadmin\Anaconda3\Library\mingw-w64\lib;C:\Users\localadmin\Anaconda3\Library\mingw-w64\bin;" + os.environ["path"] import os import settings if settings.R_HOME: os.environ["R_HOME"] = settings.R_HOME import argparse import msstats import gostats import pandas as pd from io import StringIO from get_uniprot import UniprotParser, UniprotSequence import csv parser = argparse.ArgumentParser(description="Automated workflow for processing PeakView data through MSstats and GOstats") parser.add_argument("-i", "-input_file", type=str, help="Filepath to experiment description file where each row has 5 columns, ion, fdr, out, treatment, " "control", dest="i") msstats_pvalue_cutoff = settings.msstats_cutoff gostats_pvalue_cutoff = settings.gostats_cutoff gostats_check = settings.gostats_check def split_base(work): work = pd.read_csv(work, sep="\t") new_work = [] for i, r in work.iterrows(): r["out"] = r["out"].rstrip("/") #print(r["out"]) #if ";" in r["control"] or ";" in r["treatment"]: control = r["control"].split(";") treatment = r["treatment"].split(";") control_dict = {} treatment_dict = {} ion =
pd.read_csv(r["ion"])
pandas.read_csv
# -*- coding: utf-8 -*- import pytest import numpy as np from pandas.compat import range import pandas as pd import pandas.util.testing as tm # ------------------------------------------------------------------- # Comparisons class TestFrameComparisons(object): def test_df_boolean_comparison_error(self): # GH#4576 # boolean comparisons with a tuple/list give unexpected results df = pd.DataFrame(np.arange(6).reshape((3, 2))) # not shape compatible with pytest.raises(ValueError): df == (2, 2) with pytest.raises(ValueError): df == [2, 2] def test_df_float_none_comparison(self): df = pd.DataFrame(np.random.randn(8, 3), index=range(8), columns=['A', 'B', 'C']) with pytest.raises(TypeError): df.__eq__(None) def test_df_string_comparison(self): df = pd.DataFrame([{"a": 1, "b": "foo"}, {"a": 2, "b": "bar"}]) mask_a = df.a > 1 tm.assert_frame_equal(df[mask_a], df.loc[1:1, :]) tm.assert_frame_equal(df[-mask_a], df.loc[0:0, :]) mask_b = df.b == "foo" tm.assert_frame_equal(df[mask_b], df.loc[0:0, :]) tm.assert_frame_equal(df[-mask_b], df.loc[1:1, :]) @pytest.mark.parametrize('opname', ['eq', 'ne', 'gt', 'lt', 'ge', 'le']) def test_df_flex_cmp_constant_return_types(self, opname): # GH#15077, non-empty DataFrame df = pd.DataFrame({'x': [1, 2, 3], 'y': [1., 2., 3.]}) const = 2 result = getattr(df, opname)(const).get_dtype_counts() tm.assert_series_equal(result, pd.Series([2], ['bool'])) @pytest.mark.parametrize('opname', ['eq', 'ne', 'gt', 'lt', 'ge', 'le']) def test_df_flex_cmp_constant_return_types_empty(self, opname): # GH#15077 empty DataFrame df = pd.DataFrame({'x': [1, 2, 3], 'y': [1., 2., 3.]}) const = 2 empty = df.iloc[:0] result = getattr(empty, opname)(const).get_dtype_counts() tm.assert_series_equal(result, pd.Series([2], ['bool'])) @pytest.mark.parametrize('timestamps', [ [pd.Timestamp('2012-01-01 13:00:00+00:00')] * 2, [pd.Timestamp('2012-01-01 13:00:00')] * 2]) def test_tz_aware_scalar_comparison(self, timestamps): # Test for issue #15966 df = pd.DataFrame({'test': timestamps}) expected = pd.DataFrame({'test': [False, False]}) tm.assert_frame_equal(df == -1, expected) # ------------------------------------------------------------------- # Arithmetic class TestFrameFlexArithmetic(object): def test_df_add_flex_filled_mixed_dtypes(self): # GH#19611 dti = pd.date_range('2016-01-01', periods=3) ser = pd.Series(['1 Day', 'NaT', '2 Days'], dtype='timedelta64[ns]') df = pd.DataFrame({'A': dti, 'B': ser}) other = pd.DataFrame({'A': ser, 'B': ser}) fill = pd.Timedelta(days=1).to_timedelta64() result = df.add(other, fill_value=fill) expected = pd.DataFrame( {'A': pd.Series(['2016-01-02', '2016-01-03', '2016-01-05'], dtype='datetime64[ns]'), 'B': ser * 2}) tm.assert_frame_equal(result, expected) class TestFrameMulDiv(object): """Tests for DataFrame multiplication and division""" # ------------------------------------------------------------------ # Mod By Zero def test_df_mod_zero_df(self): # GH#3590, modulo as ints df = pd.DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) # this is technically wrong, as the integer portion is coerced to float # ### first = pd.Series([0, 0, 0, 0], dtype='float64') second = pd.Series([np.nan, np.nan, np.nan, 0]) expected = pd.DataFrame({'first': first, 'second': second}) result = df % df tm.assert_frame_equal(result, expected) def test_df_mod_zero_array(self): # GH#3590, modulo as ints df = pd.DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) # this is technically wrong, as the integer portion is coerced to float # ### first = pd.Series([0, 0, 0, 0], dtype='float64') second = pd.Series([np.nan, np.nan, np.nan, 0]) expected = pd.DataFrame({'first': first, 'second': second}) # numpy has a slightly different (wrong) treatment with np.errstate(all='ignore'): arr = df.values % df.values result2 = pd.DataFrame(arr, index=df.index, columns=df.columns, dtype='float64') result2.iloc[0:3, 1] = np.nan tm.assert_frame_equal(result2, expected) def test_df_mod_zero_int(self): # GH#3590, modulo as ints df = pd.DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = df % 0 expected =
pd.DataFrame(np.nan, index=df.index, columns=df.columns)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # ------------------------------------------------------------------- # **TD DSA 2021 de <NAME> - rapport de <NAME>** # ------------------------- ------------------------------------- # # Analyse descriptive # ## Setup # In[5]: get_ipython().system('pip install textblob') # In[6]: get_ipython().system('pip install emot') # In[7]: get_ipython().system('pip install wordcloud') # In[8]: #Temps et fichiers import os import warnings import time from datetime import timedelta #Manipulation de données import pandas as pd import numpy as np # Text from collections import Counter import nltk nltk.download('punkt') from nltk.tokenize import word_tokenize nltk.download('stopwords') from nltk.corpus import stopwords nltk.download('vader_lexicon') from nltk.sentiment.vader import SentimentIntensityAnalyzer from nltk.stem import WordNetLemmatizer nltk.download('wordnet') from nltk.util import ngrams from textblob import TextBlob import string import re import spacy from emot.emo_unicode import UNICODE_EMO, EMOTICONS #Visualisation import matplotlib.pyplot as plt get_ipython().run_line_magic('matplotlib', 'inline') import seaborn as sns import plotly.express as px import plotly.graph_objects as go from wordcloud import WordCloud #Tracking d'expérience import mlflow import mlflow.sklearn from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import TfidfTransformer # ### Utilisation du package # In[9]: #Cette cellule permet d'appeler la version packagée du projet et d'en assurer le reload avant appel des fonctions get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') # In[10]: from dsa_sentiment.scripts.make_dataset import load_data from dsa_sentiment.scripts.evaluate import eval_metrics from dsa_sentiment.scripts.make_dataset import Preprocess_StrLower, Preprocess_transform_target # ### Configuration de l'experiment MLFlow # In[11]: mlflow.tracking.get_tracking_uri() # ### Chargement des données # In[12]: # On Importe les données #df df_train=pd.read_parquet('/mnt/data/interim/df_train.gzip') df_val=pd.read_parquet('/mnt/data/interim/df_val.gzip') df_test=pd.read_parquet('/mnt/data/interim/df_test.gzip') #X X_train=pd.read_parquet('/mnt/data/interim/X_train.gzip') X_val=pd.read_parquet('/mnt/data/interim/X_val.gzip') X_test=pd.read_parquet('/mnt/data/interim/X_test.gzip') #y y_train=pd.read_parquet('/mnt/data/interim/y_train.gzip') y_val=pd.read_parquet('/mnt/data/interim/y_val.gzip') y_test=pd.read_parquet('/mnt/data/interim/y_test.gzip') # ## EDA # On commence par nalyser l'équilibre des différentes classes de sentiments # In[13]: df = df_train df.head() # ### Analyse de l'équilibre du jeu d'entrainement par label # In[14]: fig = px.histogram(df, x="sentiment", color="sentiment", title = 'Nombre de tweets par sentiment') fig.show() # Il existe un léger déséquilibre dans les classes en faveur des sentiments `neutral` # ### Analyse des champs lexicaux par label # Pour la suite des travaux, on créée un corpus contenant la concaténation de tous les tweets d'une certaine tonalité. # In[15]: def create_corpus(text_series): text = text_series.apply(lambda x : x.split()) text = sum(text, []) return text # In[16]: positive_text = create_corpus(df['text'][df['sentiment']=='positive']) negative_text = create_corpus(df['text'][df['sentiment']=='negative']) neutral_text = create_corpus(df['text'][df['sentiment']=='neutral']) # Il devient alors possible de crééer des histogrammes représentant la fréquence de N-grams dans un corpus =donné # In[17]: def plot_freq_dist(text_corpus, nb=30, ngram=1, title=''): ''' Plot the most common words inputs: text_corpus : a corpus of words nb : number of words to plot title : graph title returns: nothing, plots the graph ''' freq_pos=Counter(ngrams(create_corpus(pd.Series(text_corpus)),ngram)) pos_df = pd.DataFrame({ "words":[' '.join(items) for items in list(freq_pos.keys())], "Count":list(freq_pos.values()) }) common_pos= pos_df.nlargest(columns="Count", n=30) fig = px.bar(common_pos, x="words", y="Count", labels={"words": "Words", "Count":"Frequency"}, title=title) fig.show(); # In[18]: plot_freq_dist(positive_text, title = 'Most common words associated with positive tweets') # Le résultat montre la prépondérance des `stopwords`, ces mots d'articulation, qui sont très communs et gènent l'identifiaction de mots clefs propres à un document / ensemble de documents spécifiques. # # Il convient donc d'effectuer des opérations de retraitement du texte pour analyse. # ### Preprocessing # Parmi les éléments propres aux tweets qui peuvent avoir un impact sur la suite on compte : # # - les mots clefs marqués par un `#` # - les noms d'utilisateurs commençant par un `@` # - les emoticons et emojis # - les nombre de mots en MAJUSCULES # - la répétition de caractères pour marquer l'emphase `!!!!`, `looooong`, ou l'autocensure `f***` # - les fautes de frappes (mots de moins de 2 caractères) # Afin de disposer de traitements homogènes, repoductibles et paramétrables, une fonction spécifique est créée. Les différenst paramètres pourront être testés dans les phase de modélistaion ultérieures. # source [preprocess](https://www.kaggle.com/stoicstatic/twitter-sentiment-analysis-for-beginners) # In[57]: def preprocess_text(text_series, apply_lemmatizer=True, apply_lowercase=True, apply_url_standerdisation=True, apply_user_standerdisation=True, apply_emoticon_to_words=True, apply_stopwords_removal=True, apply_shortwords_removal=True, apply_non_alphabetical_removal=True, apply_only_2_consecutive_charac=True ): ''' Main preprocess function inputs: text_series : a pandas Series object with text to preprocess outputs: a preprocessed pandas Series object ''' processedText = [] if apply_lemmatizer: # Create Lemmatizer and Stemmer. wordLemm = WordNetLemmatizer() # Defining regex patterns. urlPattern = r"((http://)[^ ]*|(https://)[^ ]*|( www\.)[^ ]*)" userPattern = '@[^\s]+' alphaPattern = r"[^(\w|\*|(!){2}|#)]" sequencePattern = r"(.)\1\1+" seqReplacePattern = r"\1\1" for tweet in text_series: if apply_lowercase: tweet = tweet.lower() if apply_url_standerdisation: # Replace all URls with 'URL' tweet = re.sub(urlPattern,' URL',tweet) if apply_user_standerdisation: # Replace @USERNAME to 'USER'. tweet = re.sub(userPattern,' USER', tweet) if apply_emoticon_to_words: # Replace all emojis. for emo in EMOTICONS: #refactor outputs so that we come up with a single word when/if text spliting afterwards val = "_".join(EMOTICONS[emo].replace(",","").split()) val='EMO_'+val tweet = tweet.replace(emo, ' '+val+' ') for emot in UNICODE_EMO: val = "_".join(UNICODE_EMO[emot].replace(",","").replace(":","").split()) val='EMO_'+val tweet = tweet.replace(emo, ' '+val+' ') if apply_only_2_consecutive_charac: # Replace 3 or more consecutive letters by 2 letter. tweet = re.sub(sequencePattern, seqReplacePattern, tweet) if apply_non_alphabetical_removal: # Replace all non alphabets. tweet = re.sub(alphaPattern, " ", tweet) tweetwords = '' for word in tweet.split(): # Checking if the word is a stopword. if apply_stopwords_removal: if word in stopwords.words('english'): word='' else: word=word #if word not in stopwordlist: if apply_shortwords_removal: if len(word)<=1: word='' else: word=word # Lemmatizing the word. if apply_lemmatizer: word = wordLemm.lemmatize(word) else: word=word tweetwords += (word+' ') processedText.append(tweetwords) return processedText # In[20]: positive_text_prepro = preprocess_text(df['text'][df['sentiment']=='positive'], apply_lemmatizer=False, apply_non_alphabetical_removal=True) # In[56]: pd.Series(positive_text_prepro).head() # In[21]: neutral_text_prepro = preprocess_text(df['text'][df['sentiment']=='neutral'], apply_lemmatizer=False, apply_non_alphabetical_removal=True) # In[58]: pd.Series(neutral_text_prepro).head() # In[22]: negative_text_prepro = preprocess_text(df['text'][df['sentiment']=='negative'], apply_lemmatizer=False, apply_non_alphabetical_removal=True) # In[59]: pd.Series(negative_text_prepro).head() # ### Analyses des mots clefs des tweets positifs # La fonction suivante permettra de réaliser des nuages de mots à partir d'un corpus # In[23]: def plotWc(text, stopwords=None, title=''): wc = WordCloud( stopwords=stopwords, width=800, height=400, max_words=1000, random_state=44, background_color="white", collocations=False ).generate(text) plt.figure(figsize = (10,10)) plt.imshow(wc, interpolation="bilinear") plt.axis("off") plt.title(title) plt.show() # In[24]: plotWc(" ".join(positive_text_prepro), stopwords=stopwords.words('english'), title = "Wordcloud des tweets positifs") # Les tweets positpositive_text_prepro marqués par la forte reprétsentation de mots à connotation positive `love`, `good`, `happy`. # # Cet a priori graphique peut être confirmé par un graphique de fréquence des mots individuels les plus présents # In[26]: plot_freq_dist(create_corpus(pd.Series(positive_text_prepro)), title = 'Most common words associated with positive tweets') # In[27]: plot_freq_dist(create_corpus(pd.Series(positive_text_prepro)), ngram=2, title = 'Most common 2grams associated with positive tweets') # In[28]: plot_freq_dist(create_corpus(pd.Series(positive_text_prepro)), ngram=3, title = 'Most common 3grams associated with positive tweets') # In[29]: plot_freq_dist(create_corpus(
pd.Series(positive_text_prepro)
pandas.Series
#from subprocess import Popen, check_call #import os import pandas as pd import numpy as np import math import PySimpleGUI as sg import webbrowser # Read Data csv_path1 = "output/final_data.csv" prop_df = pd.read_csv(csv_path1) n = prop_df.shape[0] prop_df.sort_values(by=["PRICE"],ascending=True,inplace=True) prop_df.index = range(len(prop_df.index)) prop_df_old = prop_df.copy() # Read Languages csvLanguage = "data_sets/languages_spoken.csv" lang_df = pd.read_csv(csvLanguage) languages = [lang for lang in lang_df.columns.tolist() if lang not in ["Community Area","Community Area Name","PREDOMINANT NON-ENGLISH LANGUAGE (%)","TOTAL"]] languages.sort() # Add locations local = prop_df["LOCATION"].unique().tolist() local.sort() local = ["NONE"] + local sg.theme('BluePurple') # House Fact Column col_fact = [ [sg.Text('Address:',size=(12,1)),sg.Text(size=(30,1), key='address')], [sg.Text('Location:',size=(12,1)),sg.Text(size=(30,1), key='location')], [sg.Text('Price:',size=(12,1)),sg.Text(size=(30,1),key='price')], [sg.Text('HOA:',size=(12,1)),sg.Text(size=(30,1),key='hoa')], [sg.Text('Tax Year:',size=(12,1)),sg.Text(size=(30,1),key='taxYear')], [sg.Text('Tax Assessed:',size=(12,1)),sg.Text(size=(30,1),key='assessTax')], [sg.Text('SquareFeet:',size=(12,1)),sg.Text(size=(30,1), key='sqft')], [sg.Text('Year Built:',size=(12,1)),sg.Text(size=(30,1),key='year')] ] col_fact2 = [ [sg.Text('# of Beds:',size=(20,1)),sg.Text(size=(12,1),key='beds')], [sg.Text('# of Bathrooms:',size=(20,1)),sg.Text(size=(12,1),key='baths')], [sg.Text('Sold Date:',size=(20,1)),sg.Text(size=(12,1),key='soldDT')], [sg.Text('Sold Price:',size=(20,1)),sg.Text(size=(12,1),key='soldP')], [sg.Text('Zestimate:',size=(20,1)),sg.Text(size=(12,1),key='zest')], [sg.Text('Est Tax:',size=(20,1)),sg.Text(size=(12,1),key='estTax')], [sg.Text('Property Type:',size=(20,1)),sg.Text(size=(12,1),key="propType")] ] # Commute Column col_commute1 = [ [sg.Text('Commute Time:',size=(14,1)),sg.Text(size=(10,1),key='kommute')], [sg.Text('# of Transfers:',size=(14,1)),sg.Text(size=(10,1),key='kommuteTransfers')], [sg.Text('Walking Time:',size=(14,1)),sg.Text(size=(10,1),key='kommuteWalk')] ] col_commute2 = [ [sg.Frame(layout=[[sg.Listbox(values=[],size=(20,5),key='kommuteSteps')]],title="Commute Steps:",title_color="blue")] ] # Grocery Column col_grocery = [ [sg.Frame(layout=[[sg.Listbox(values=[],size=(30,5),key='storeWalk')]],title="Grocery Stores(walking):",title_color="blue"), sg.Frame(layout=[[sg.Listbox(values=[],size=(30,5),key='storeDrive')]],title="Grocery Stores(driving):",title_color="blue") ] ] # Crime Column col_crime = [ [sg.Text('GUN',size=(10,1)),sg.Text(size=(10,1),key='crimeGun')], [sg.Text('MURDER',size=(10,1)),sg.Text(size=(10,1),key='crimeMurder')], [sg.Text('DRUG',size=(10,1)),sg.Text(size=(10,1),key='crimeDrug')], [sg.Text('HUMAN',size=(10,1)),sg.Text(size=(10,1),key='crimeHuman')], [sg.Text('THEFT',size=(10,1)),sg.Text(size=(10,1),key='crimeTheft')], [sg.Text('OTHER',size=(10,1)),sg.Text(size=(10,1),key='crimeOther')] ] # SocioEconomic Column col_socio = [ [sg.Text('Percent of aged 25+ without HS diploma:',size=(30,1)),sg.Text(size=(8,1),key='hsDiploma')], [sg.Text('Percent of households below poverty:',size=(30,1)),sg.Text(size=(8,1),key='homePoverty')], [sg.Text('Percent of housing crowded:',size=(30,1)),sg.Text(size=(8,1),key='homeCrowded')], [sg.Text('Percent of aged 16+ unemployed:',size=(30,1)),sg.Text(size=(8,1),key='unemployed')], [sg.Text('Percent aged under 18 or over 64:',size=(30,1)),sg.Text(size=(8,1),key='aged')], [sg.Text('Per capita income:',size=(30,1)),sg.Text(size=(8,1),key='income')] ] # Language Column col_language = [ [sg.Text('Select Language 1: '), sg.InputCombo(tuple(languages), key='lang1', default_value="CHINESE", enable_events=True,size=(20, 1)), sg.Text("",size=(10,1),key="perLang1")], [sg.Text('Select Language 2: '), sg.InputCombo(tuple(languages), key='lang2', default_value="SPANISH", enable_events=True,size=(20, 1)), sg.Text("",size=(10,1),key="perLang2")], [sg.Text('Select Language 3: '), sg.InputCombo(tuple(languages), key='lang3', default_value="POLISH", enable_events=True,size=(20, 1)), sg.Text("",size=(10,1),key="perLang3")], [sg.Text('Select Language 4: '), sg.InputCombo(tuple(languages), key='lang4', default_value="RUSSIAN", enable_events=True,size=(20, 1)), sg.Text("",size=(10,1),key="perLang4")], [sg.Text('Select Language 5: '), sg.InputCombo(tuple(languages), key='lang5', default_value="AFRICAN LANGUAGES", enable_events=True,size=(20, 1)), sg.Text("",size=(10,1),key="perLang5")], [sg.Text('Select Language 6: '), sg.InputCombo(tuple(languages), key='lang6', default_value="GREEK", enable_events=True,size=(20, 1)), sg.Text("",size=(10,1),key="perLang6")] ] # Button Column col_button = [ [sg.Button('',image_filename="images/thumbsDown.png",image_size=(100,100),image_subsample=5,border_width=0,key="dislike"),sg.Text(' ' * 25), sg.Button('',image_filename="images/unsure.png",image_size=(100,100),image_subsample=3,border_width=0,key="unsure"),sg.Text(' ' * 25), sg.Button('',image_filename="images/thumbsUp.png",image_size=(100,100),image_subsample=5,border_width=0,key="like") ] ] # Score Column col_score = [ [sg.Text("Your Rating: ",size=(15,1)),sg.Text(size=(10,1),key="rate")], [sg.Text("Predicted Score: ",size=(15,1)),sg.Text(size=(10,1),key="score")] ] layout = [[sg.Text('Is this house Hot or Not?',font=('Helvetica', 20))], [sg.Frame(layout=[[sg.Text('User Select: '),sg.InputCombo(('MM','XY'),size=(10,1),key='user',default_value='MM',enable_events=True)]],title="SELECT USER",title_color="blue"), sg.Frame(layout=[[sg.Text("View Select: "),sg.InputCombo(('ALL','UNRATED', 'RATED'), key='userRated', default_value="ALL", enable_events=True,size=(20, 1))]], title="RATING VIEW",title_color="blue")], [sg.Text('Sort by: '), sg.InputCombo(('COMMUTE_TIME','WALKING_TIME', 'PRICE'), key='sortBy', default_value="PRICE", enable_events=True,size=(20, 1)), sg.Radio("Ascending",group_id="radio1",key="ascend",default=True,enable_events=True), sg.Radio("Descending",group_id="radio1",key="descend",enable_events=True), sg.Button('Save Work and Exit'), sg.Text(" "*5),sg.Column(col_score,background_color="red")], [sg.Text('Filter by Location: '), sg.InputCombo(local,key='filter', default_value="NONE", enable_events=True,size=(20, 1))], [sg.Frame(layout = [[sg.Listbox(values=prop_df["ADDRESS"], size=(30, 12), key='-home-', enable_events=True)]],title="Home Selection:",title_color="blue"), sg.Frame(layout = [[sg.Column(col_fact,background_color="grey"), sg.Column(col_fact2,background_color="grey")]],title="General Information:",title_color="blue") ], [sg.Frame(layout = [[sg.Column(col_commute1,background_color="purple"), sg.Column(col_commute2,background_color="purple")]],title="Commute Information:",title_color="blue"), sg.Frame(layout = [[sg.Column(col_grocery,background_color="blue")]],title="Grocery Information:",title_color="blue")], [sg.Frame(layout = [[sg.Column(col_crime,background_color="green")]],title="Crime Statistics:",title_color="blue"), sg.Frame(layout = [[sg.Column(col_socio,background_color="magenta")]],title="Socioeconomic Statistics:",title_color="blue"), sg.Frame(layout = [[sg.Column(col_language,background_color="orange")]],title="Language Spoken (%)",title_color="blue")], [sg.Column(col_button,justification="center")] ] window = sg.Window('Housing Dating App', layout) while True: # Event Loop event, values = window.read() print(event, values) print("EVENT: ", event) print("VALUE: ", values) if event in ["-home-"]: print(values["-home-"][0]) i = prop_df["ADDRESS"].tolist().index(values["-home-"][0]) if event in ['Save Work and Exit',None]: break if event in ['sortBy','ascend','descend']: print("ITEM1: ",values['sortBy']) prop_df.sort_values(by=[values['sortBy']],ascending=values['ascend'],inplace=True) prop_df.index = range(len(prop_df.index)) window.Element("-home-").Update(prop_df["ADDRESS"]) if event in ['filter','userRated','user']: print("ITEM1: ",values['filter']) print("ITEM2: ",values['userRated']) if values['filter'] in ["NONE"]: if values['userRated'] in ['ALL']: prop_df = prop_df_old.copy() prop_df.sort_values(by=[values['sortBy']],ascending=values['ascend'],inplace=True) prop_df.index = range(len(prop_df.index)) window.Element("-home-").Update(prop_df["ADDRESS"]) n = prop_df.shape[0] elif values['userRated'] in ['UNRATED']: prop_df = prop_df_old.loc[pd.isnull(prop_df_old[values['user']+"_RATING"])].copy() prop_df.sort_values(by=[values['sortBy']],ascending=values['ascend'],inplace=True) prop_df.index = range(len(prop_df.index)) window.Element("-home-").Update(prop_df["ADDRESS"]) n = prop_df.shape[0] elif values['userRated'] in ['RATED']: prop_df = prop_df_old.loc[pd.notnull(prop_df_old[values['user']+"_RATING"])].copy() prop_df.sort_values(by=[values['sortBy']],ascending=values['ascend'],inplace=True) prop_df.index = range(len(prop_df.index)) window.Element("-home-").Update(prop_df["ADDRESS"]) n = prop_df.shape[0] else: if values['userRated'] in ['ALL']: prop_df = prop_df_old.loc[prop_df_old["LOCATION"] == values["filter"]].copy() prop_df.sort_values(by=[values['sortBy']],ascending=values['ascend'],inplace=True) prop_df.index = range(len(prop_df.index)) window.Element("-home-").Update(prop_df["ADDRESS"]) n = prop_df.shape[0] elif values['userRated'] in ['UNRATED']: prop_df = prop_df_old.loc[(prop_df_old["LOCATION"] == values["filter"]) & (pd.isnull(prop_df_old[values['user']+"_RATING"]))].copy() prop_df.sort_values(by=[values['sortBy']],ascending=values['ascend'],inplace=True) prop_df.index = range(len(prop_df.index)) window.Element("-home-").Update(prop_df["ADDRESS"]) n = prop_df.shape[0] elif values['userRated'] in ['RATED']: prop_df = prop_df_old.loc[(prop_df_old["LOCATION"] == values["filter"]) & (pd.notnull(prop_df_old[values['user']+"_RATING"]))].copy() prop_df.sort_values(by=[values['sortBy']],ascending=values['ascend'],inplace=True) prop_df.index = range(len(prop_df.index)) window.Element("-home-").Update(prop_df["ADDRESS"]) n = prop_df.shape[0] if event in ["lang1"]: window['perLang1'].update(str(f'{prop_df[values["lang1"]][i]/prop_df["TOTAL"][i]:.2%}')) if event in ["lang2"]: window['perLang2'].update(str(f'{prop_df[values["lang2"]][i]/prop_df["TOTAL"][i]:.2%}')) if event in ["lang3"]: window['perLang3'].update(str(f'{prop_df[values["lang3"]][i]/prop_df["TOTAL"][i]:.2%}')) if event in ["lang4"]: window['perLang4'].update(str(f'{prop_df[values["lang4"]][i]/prop_df["TOTAL"][i]:.2%}')) if event in ["lang5"]: window['perLang5'].update(str(f'{prop_df[values["lang5"]][i]/prop_df["TOTAL"][i]:.2%}')) if event in ["lang6"]: window['perLang6'].update(str(f'{prop_df[values["lang6"]][i]/prop_df["TOTAL"][i]:.2%}')) if event in ["-home-","like","unsure","dislike"]: if n > 0: id = prop_df_old["ADDRESS"].tolist().index(prop_df["ADDRESS"][i]) if event == "like": prop_df_old.at[id,values['user']+"_RATING"] = 3 if values['userRated'] in ['UNRATED']: prop_df.drop(prop_df.index[i],inplace=True) prop_df.index = range(len(prop_df.index)) n = prop_df.shape[0] if i == n: i = n-1 window.Element("-home-").Update(prop_df["ADDRESS"]) else: prop_df.at[i,values['user']+"_RATING"] = 3 if i < n-1: i += 1 if event == "unsure": prop_df_old.at[id,values['user']+"_RATING"] = 2 if values['userRated'] in ['UNRATED']: prop_df.drop(prop_df.index[i],inplace=True) prop_df.index = range(len(prop_df.index)) n = prop_df.shape[0] if i == n: i = n-1 window.Element("-home-").Update(prop_df["ADDRESS"]) else: prop_df.at[i,values['user']+"_RATING"] = 2 if i < n-1: i += 1 if event == "dislike": prop_df_old.at[id,values['user']+"_RATING"] = 1 if values['userRated'] in ['UNRATED']: prop_df.drop(prop_df.index[i],inplace=True) prop_df.index = range(len(prop_df.index)) n = prop_df.shape[0] if i == n: i = n-1 window.Element("-home-").Update(prop_df["ADDRESS"]) else: prop_df.at[i,values['user']+"_RATING"] = 1 if i < n-1: i += 1 window.Element("-home-").update(set_to_index=i,scroll_to_index=max(0,i-3)) if n > 0: webbrowser.open(prop_df['URL'][i]) #call_url = prop_df['URL'][i] #mycmd = r'start chrome /new-tab {}'.format(call_url) #try: # os.system("taskkill /F /IM chrome.exe") #except: # pass #p1 = Popen(mycmd,shell=True) window['address'].update(prop_df['ADDRESS'][i]) window['location'].update(prop_df['LOCATION'][i]) if pd.isnull(prop_df['SQFT'][i]): window['sqft'].update("") else: window['sqft'].update(math.floor(prop_df['SQFT'][i])) if pd.isnull(prop_df['YEAR'][i]): window['year'].update("") else: window['year'].update(prop_df['YEAR'][i]) if pd.isnull(prop_df['LAST_SOLD_DATE'][i]): window['soldDT'].update("") else: window['soldDT'].update(prop_df['LAST_SOLD_DATE'][i]) if
pd.isnull(prop_df["ZESTIMATE"][i])
pandas.isnull
import os import zipfile as zp import pandas as pd import numpy as np import core import requests class Labels: init_cols = [ 'station_id', 'station_name', 'riv_or_lake', 'hydroy', 'hydrom', 'day', 'lvl', 'flow', 'temp', 'month'] trans_cols = [ 'date', 'year', 'month', 'day', 'hydroy', 'hydrom', 'station_id', 'station_name', 'riv_or_lake', 'riv_or_lake_id', 'lvl', 'flow', 'temp'] def transform(trans_df): trans_df = trans_df.reset_index().drop('index', axis=1) dfc = trans_df.copy() lstrip = 'AĄBCĆDEĘFGHIJKLŁMNŃOÓPQRSŚTUVWXYZŹŻaąbcćdeęfghijklłmnńoópqrsśtuvwxyzźż( ' rivlakeid = dfc['riv_or_lake'].map(lambda x: x.lstrip(lstrip).rstrip(')')) trans_df['riv_or_lake'] = trans_df['riv_or_lake'].map(lambda x: x.rstrip(' ()1234567890 ')) trans_df['riv_or_lake_id'] = rivlakeid trans_df['month'] = trans_df['month'].fillna(method='ffill').astype(int) trans_df['day'] = trans_df['day'].fillna(method='ffill').astype(int) trans_df['year'] = trans_df['hydroy'] trans_df.loc[(trans_df['month'] == 11) | (trans_df['month'] == 12), 'year'] = trans_df['year'].astype(int) - 1 trans_df['date'] =
pd.to_datetime(trans_df[['year', 'month', 'day']])
pandas.to_datetime
# -*- coding: utf-8 -*- # e_bb_retriever # <NAME> version = 'e_bb_retriever.v.9.0.0' # Python modules import os import pickle as pic import argparse # External modules import pandas as pd # Local modules from classes.libdesign import LibDesign from classes.logger import Logger if __name__ == '__main__': # Arg parser parser = argparse.ArgumentParser(description="""e_bb_retreaver collects all the building blocks for a giver libDESIGN into csv files in the folder that is given through arguments. The input arguments are wfolder (the folder system of eDESIGNER, tk: token, the combination of the Db_Run time stamp and run number separated by _, dn: the design number or a list of design numbers and of: the output folder. There are two files created for each cycle and named ddn_Cn.csv and dn_Cn_all.csv where n is the cycle number and ddn is the design number. These files contain the building block smiles and ids that should be used to obtain the maximum size of the library while maintaining the heavy atom distribution. The output folder will be created if it does not already exist""") parser.add_argument('-wf', '--wfolder', help='Working Folder', type=str, default='./') parser.add_argument('-tk', '--token', help='combination of Db_Run time stamp and run number separated by _', type=str, default=None) parser.add_argument('-df', '--design_number', help='number of the design of interest or a list of designs , separated', type=str, default=None) parser.add_argument('-of', '--output_folder', help='folder where the files will be saved', type=str, default=None) args = parser.parse_args() assert args.token is not None, 'A token must be provided' assert args.design_number is not None, 'A design number or a list of design numbers must be provided' assert args.output_folder is not None, 'An output folder must be provided' args.design_number = args.design_number.split(',') args.design_number = [item.strip(' ') for item in args.design_number] args.design_number = [int(item) for item in args.design_number] # Initialization log = Logger(os.path.join(args.wfolder, 'logs', args.token + '_lib_design_interpreter.log')) log.update(version) try: # Try to create the output folder but do not delete it if it aready exists os.mkdir(args.output_folder) except: pass # Body of the script log.update('Loading pickled designs to object...') with open(os.path.join(args.wfolder, 'results', args.token + '_libDESIGNS.pic'), 'rb') as f: lib_list = [] while True: try: lib_list.append(pic.load(f)) except: # reached the end of the file break log.update('Creating dataframes and dumping them into files...') for lib_id in args.design_number: design = lib_list[lib_id] if design.id != lib_id: log.update(f'Design {lib_id} in list does not match with design.id {design.id}') else: for cycle in range(design.n_cycles): all_dfs = [] int_dfs = [] for bbt, limit in zip(design.bbts[cycle], design.int_limits[cycle]): if limit > 0: # It might be that a bbt does not have internal compounds but it does have all # compounds and therefore the file for internal compounds does not exists. # That is why we need to check for the number of compounds to avoid an I/O exception df_int = pd.read_csv(os.path.join(args.wfolder, 'comps', args.token.split('_')[0], str(bbt) + '.int.smi'), sep=' ', header=None, names=['smiles', 'id'], nrows=limit) int_dfs.append(df_int.copy()) for bbt, limit in zip(design.bbts[cycle], design.all_limits[cycle]): if limit > 0: # This should not be necessary, but just in case df_all = pd.read_csv(os.path.join(args.wfolder, 'comps', args.token.split('_')[0], str(bbt) + '.smi'), sep=' ', header=None, names=['smiles', 'id'], nrows=limit) all_dfs.append(df_all.copy()) all_dfs = pd.concat(all_dfs) int_dfs =
pd.concat(int_dfs)
pandas.concat
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Jan 9 13:55:53 2021 @author: Clement """ import pandas import geopandas as gpd import numpy import os import sys import datetime sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) from gen_fct import file_fct from gen_fct import df_fct def last_update_db (dir_name, db_list): list_dir, list_files = file_fct.list_dir_files(f'{dir_name}') db_daily = db_list[db_list.loc[:,'update']==True] if 'last_update.json' in list_files: last_update = pandas.read_json(f'{dir_name}/last_update.json', orient = "table") last_update['delta_day'] = last_update.apply(lambda x: (pandas.to_datetime('today')-x["date"]).days,axis=1) print(last_update) print('\n') else: last_update =
pandas.DataFrame(index=db_daily.index, columns=['date', 'delta_day'])
pandas.DataFrame
from tracemalloc import Statistic from turtle import color from unittest import result import pandas as pd import numpy as np import scipy from scipy.stats import norm from scipy.optimize import minimize import ipywidgets as widgets from IPython.display import display def drawdown(return_series: pd.Series, amount: float = 1000): """ Takes a time series of asset returns Computes and returns a DataFrame that contains: the wealth index the previous peaks percent drawdowns """ wealth_index = amount * (1 + return_series).cumprod() previous_peaks = wealth_index.cummax() drawdowns = (wealth_index - previous_peaks) / previous_peaks return pd.DataFrame({ 'Wealth': wealth_index, 'Peaks': previous_peaks, 'Drawdowns': drawdowns }) def get_hfi_returns(): """ Load and format the EDHEC Hedge Fund Index Returns """ hfi = pd.read_csv('data/edhec-hedgefundindices.csv', header=0, index_col=0, parse_dates=True) hfi = hfi/100 hfi.index = hfi.index.to_period('M') return hfi def get_ind_returns(): """ Load and format the Ken French 30 Industry Portfolios Value Wighted Monthly Returns """ ind = pd.read_csv('data/ind30_m_vw_rets.csv', header=0, index_col=0, parse_dates=True) / 100 ind.index = pd.to_datetime(ind.index, format='%Y%m').to_period('M') ind.columns = ind.columns.str.strip() return ind def get_total_market_index_returns(): """ """ ind_return = get_ind_returns() ind_nfirms = get_ind_nfirms() ind_size = get_ind_size() ind_mktcap = ind_nfirms * ind_size total_mktcap = ind_mktcap.sum(axis='columns') ind_capweight = ind_mktcap.divide(total_mktcap, axis='rows') total_market_return = (ind_capweight * ind_return).sum(axis='columns') return total_market_return def get_ind_nfirms(): """ """ ind = pd.read_csv('data/ind30_m_nfirms.csv', header=0, index_col=0, parse_dates=True) ind.index = pd.to_datetime(ind.index, format='%Y%m').to_period('M') ind.columns = ind.columns.str.strip() return ind def get_ind_size(): """ """ ind = pd.read_csv('data/ind30_m_size.csv', header=0, index_col=0, parse_dates=True) ind.index = pd.to_datetime(ind.index, format='%Y%m').to_period('M') ind.columns = ind.columns.str.strip() return ind def semideviation(r): """ Returns the semideviation aka negative semideviation of r r must be a Series or a Dataframe """ is_negative = r < 0 return r[is_negative].std(ddof=0) def skewness(r): """ Alternative to scipy.stats.skew() Computes the skewness of the supplied Series or DataFrame Returns a float or a Series """ demeaned_r = r - r.mean() # use the population standard deviation, so set dof=0 sigma_r = r.std(ddof=0) exp = (demeaned_r ** 3).mean() return exp/sigma_r ** 3 def kurtosis(r): """ Alternative to scipy.stats.kurtosis() Computes the kurtosis of the supplied Series or DataFrame Returns a float or a Series """ demeaned_r = r - r.mean() # use the population standard deviation, so set dof=0 sigma_r = r.std(ddof=0) exp = (demeaned_r ** 4).mean() return exp/sigma_r ** 4 def is_normal(r, level=0.01): """ Applies the Jarque-Bera test to determine if a Series is normal or not Test is applied at the 1% level by default Returns True if the hypothesis of normality is accepted, False otherwise """ statistic, p_value = scipy.stats.jarque_bera(r) return p_value > level def var_historic(r, level=5): """ Returns the historic Value at Risk at a specified level i.e. returns the number such that "level" percent of the returns fall bellow that number, and the level (100-level) percent are above """ if isinstance(r, pd.DataFrame): return r.aggregate(var_historic, level=level) elif isinstance(r, pd.Series): return -np.percentile(r, level) else: raise TypeError('Expected r to be Series or DataFrame') def var_gaussian(r, level=5, modified=False): """ Returns the Parametric Gaussian VaR of a Series or DataFrame """ # compute the Z score assuming it was Gaussian z = norm.ppf(level/100) if modified: # modify the Z score based on observed skewness and kurtosis s = skewness(r) k = kurtosis(r) z = (z + (z**2 - 1) * s/6 + (z**3 - 3*z) * (k-3)/24 - (2*z**3 - 5*z) * (s**2)/36 ) return -(r.mean() + z*r.std(ddof=0)) def cvar_historic(r, level=5): """ Computes the Conditional VaR of Series or DataFrame """ if isinstance(r, pd.Series): is_beyond = r <= -var_historic(r, level=level) return -r[is_beyond].mean() elif isinstance(r, pd.DataFrame): return r.aggregate(cvar_historic, level=level) else: raise TypeError('Expected r to be Series or DataFrame') def annualized_return(r): n_months = r.shape[0] r = r / 100 annualized_return = (r + 1).prod() ** (12/n_months) - 1 return annualized_return def annualized_volatility(r): r = r / 100 return r.std() * np.sqrt(12) def annualized_rets(r, periods_per_year): """ Annualizes a set of returns We should infer the periods per year """ compunded_growth = (1 + r).prod() n_periods = r.shape[0] return compunded_growth ** (periods_per_year/n_periods) - 1 def annualized_vol(r, periods_per_year): """ Annualizes the volatility of a set of returns We should infer the periods per year """ return r.std() * (periods_per_year ** 0.5) def sharp_ratio(r, riskfree_rate, periods_per_year): """ Computes the annualized sharpe ratio of a set of returns """ rf_per_period = (1 + riskfree_rate) ** (1 / periods_per_year) - 1 excess_ret = r - rf_per_period ann_ex_ret = annualized_rets(excess_ret, periods_per_year) ann_vol = annualized_vol(r, periods_per_year) return ann_ex_ret / ann_vol def portfolio_return(weights, returns): """ Calculate portfolio returns Weights -> Returns """ return weights.T @ returns def portfolio_vol(weights, covmat): """ Calculate portfolio volatility Weights -> Vol """ return (weights.T @ covmat @ weights) ** 0.5 def plot_ef2(n_points, er, cov, style='.-'): """ Plots the 2-asset efficient frontier """ if er.shape[0] != 2 or er.shape[0] != 2: raise ValueError('plot_ef2 can only plot 2-asset frontiers') weights = [np.array([w, 1-w]) for w in np.linspace(0, 1, n_points)] rets = [portfolio_return(w, er) for w in weights] vols = [portfolio_vol(w, cov) for w in weights] ef = pd.DataFrame({ 'Returns': rets, 'Volatility': vols }) return ef.plot.line(x='Volatility', y='Returns', style=style) def optimal_weights(n_points, er, cov): """ -> list of weights ro run the optimizer on to minimize the volatility """ target_rs = np.linspace(er.min(), er.max(), n_points) weights = [minimize_vol(target_return, er, cov) for target_return in target_rs] return weights def gmv(cov: pd.DataFrame) -> pd.DataFrame: """ Returns the weights of the Global Minimum Volatility portfolio by given covariance matrix """ n = cov.shape[0] return max_sharp_ratio(0, np.repeat(1, n), cov) def plot_ef(n_points: int, er: pd.DataFrame, cov: pd.DataFrame, show_cml=False, style='.-', riskfree_rate=0, show_ew=False, show_gmv=False) -> pd.DataFrame: """ Plots the N-asset efficient frontier show_ew = equally wighted """ weights = optimal_weights(n_points, er, cov) rets = [portfolio_return(w, er) for w in weights] vols = [portfolio_vol(w, cov) for w in weights] ef = pd.DataFrame({ 'Returns': rets, 'Volatility': vols }) ax = ef.plot.line(x='Volatility', y='Returns', style=style) if show_ew: n = er.shape[0] w_ew = np.repeat(1/n, n) r_ew = portfolio_return(w_ew, er) vol_ew = portfolio_vol(w_ew, cov) # display EW ax.plot([vol_ew], [r_ew], color='goldenrod', marker='o', markersize=10) if show_gmv: w_gmv = gmv(cov) r_gmv = portfolio_return(w_gmv, er) vol_gmv = portfolio_vol(w_gmv, cov) # display GMV ax.plot([vol_gmv], [r_gmv], color='midnightblue', marker='o', markersize=10) if show_cml: ax.set_xlim(left=0) weights_msr = max_sharp_ratio(riskfree_rate, er, cov) returns_msr = portfolio_return(weights_msr, er) volatility_msr = portfolio_vol(weights_msr, cov) # Add Capital Market Line cml_x = [0, volatility_msr] cml_y = [riskfree_rate, returns_msr] ax.plot(cml_x, cml_y, color='green', marker='o', linestyle='dashed', markersize=12, linewidth=2) return ax def minimize_vol(target_return, er, cov): """ target_ret -> w """ n = er.shape[0] init_guess = np.repeat(1/n, n) bounds = ((0.0, 1.0),) * n return_is_target = { 'type': 'eq', 'args': (er,), 'fun': lambda weights, er: target_return - portfolio_return(weights, er) } weights_sum_to_1 = { 'type': 'eq', 'fun': lambda weights: np.sum(weights) - 1 } results = minimize( portfolio_vol, init_guess, args=(cov,), method='SLSQP', options={'disp': False}, constraints=(return_is_target, weights_sum_to_1), bounds=bounds) return results.x def negative_sharp_ratio(weights, riskfree_rate, er, cov): """ Returns the negative of the sharp ratio, given wights """ r = portfolio_return(weights, er) vol = portfolio_vol(weights, cov) return -(r - riskfree_rate) / vol def max_sharp_ratio(riskfree_rate, er, cov): """ Returns the weights of the portfolio that gives you the maximum sharp ratio given the riskfree rate and expected returns and a covariance matrix """ n = er.shape[0] init_guess = np.repeat(1/n, n) bounds = ((0.0, 1.0),) * n weights_sum_to_1 = { 'type': 'eq', 'fun': lambda weights: np.sum(weights) - 1 } results = minimize( negative_sharp_ratio, init_guess, args=(riskfree_rate, er, cov,), method='SLSQP', options={'disp': False}, constraints=(weights_sum_to_1), bounds=bounds) return results.x def run_cppi(risky_return, safe_return=None, multiplier=3, start=1000, floor=0.8, riskfree_rate=0.03, drawdown=None): """ Run a backtest of the CPPI strategy, given a set of returns for the risky asset Returns a dictionary containing: Asset Value History, Risk Budget History, Risky Weight History """ # 1. Cushion - (Asset Value - Floor Value) # 2. Compute allocation to the safe and risky assets -> m * risk_budget # 3. Recompute the asset value based on the returns # set up the CPPI parameters dates = risky_return.index number_steps = len(dates) account_value = start floor_value = start * floor peak = start if isinstance(risky_return, pd.Series): risky_return = pd.DataFrame(risky_return, columns=['R']) if safe_return is None: safe_return = pd.DataFrame().reindex_like(risky_return) # fast way to set all values to a number safe_return.values[:] = riskfree_rate / 12 account_history = pd.DataFrame().reindex_like(risky_return) cushion_history =
pd.DataFrame()
pandas.DataFrame
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. from datetime import datetime, timedelta import numpy as np import pytest from pandas.errors import ( NullFrequencyError, OutOfBoundsDatetime, PerformanceWarning) import pandas as pd from pandas import ( DataFrame, DatetimeIndex, NaT, Series, Timedelta, TimedeltaIndex, Timestamp, timedelta_range) import pandas.util.testing as tm def get_upcast_box(box, vector): """ Given two box-types, find the one that takes priority """ if box is DataFrame or isinstance(vector, DataFrame): return DataFrame if box is Series or isinstance(vector, Series): return Series if box is pd.Index or isinstance(vector, pd.Index): return pd.Index return box # ------------------------------------------------------------------ # Timedelta64[ns] dtype Comparisons class TestTimedelta64ArrayLikeComparisons: # Comparison tests for timedelta64[ns] vectors fully parametrized over # DataFrame/Series/TimedeltaIndex/TimedeltaArray. Ideally all comparison # tests will eventually end up here. def test_compare_timedelta64_zerodim(self, box_with_array): # GH#26689 should unbox when comparing with zerodim array box = box_with_array xbox = box_with_array if box_with_array is not pd.Index else np.ndarray tdi = pd.timedelta_range('2H', periods=4) other = np.array(tdi.to_numpy()[0]) tdi = tm.box_expected(tdi, box) res = tdi <= other expected = np.array([True, False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(res, expected) with pytest.raises(TypeError): # zero-dim of wrong dtype should still raise tdi >= np.array(4) class TestTimedelta64ArrayComparisons: # TODO: All of these need to be parametrized over box def test_compare_timedelta_series(self): # regression test for GH#5963 s = pd.Series([timedelta(days=1), timedelta(days=2)]) actual = s > timedelta(days=1) expected = pd.Series([False, True]) tm.assert_series_equal(actual, expected) def test_tdi_cmp_str_invalid(self, box_with_array): # GH#13624 xbox = box_with_array if box_with_array is not pd.Index else np.ndarray tdi = TimedeltaIndex(['1 day', '2 days']) tdarr = tm.box_expected(tdi, box_with_array) for left, right in [(tdarr, 'a'), ('a', tdarr)]: with pytest.raises(TypeError): left > right with pytest.raises(TypeError): left >= right with pytest.raises(TypeError): left < right with pytest.raises(TypeError): left <= right result = left == right expected = np.array([False, False], dtype=bool) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) result = left != right expected = np.array([True, True], dtype=bool) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize('dtype', [None, object]) def test_comp_nat(self, dtype): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) lhs, rhs = left, right if dtype is object: lhs, rhs = left.astype(object), right.astype(object) result = rhs == lhs expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = rhs != lhs expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(lhs == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == rhs, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(lhs != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != lhs, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(lhs < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > lhs, expected) def test_comparisons_nat(self): tdidx1 = pd.TimedeltaIndex(['1 day', pd.NaT, '1 day 00:00:01', pd.NaT, '1 day 00:00:01', '5 day 00:00:03']) tdidx2 = pd.TimedeltaIndex(['2 day', '2 day', pd.NaT, pd.NaT, '1 day 00:00:02', '5 days 00:00:03']) tdarr = np.array([np.timedelta64(2, 'D'), np.timedelta64(2, 'D'), np.timedelta64('nat'), np.timedelta64('nat'), np.timedelta64(1, 'D') + np.timedelta64(2, 's'), np.timedelta64(5, 'D') + np.timedelta64(3, 's')]) cases = [(tdidx1, tdidx2), (tdidx1, tdarr)] # Check pd.NaT is handles as the same as np.nan for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) # TODO: better name def test_comparisons_coverage(self): rng = timedelta_range('1 days', periods=10) result = rng < rng[3] expected = np.array([True, True, True] + [False] * 7) tm.assert_numpy_array_equal(result, expected) # raise TypeError for now with pytest.raises(TypeError): rng < rng[3].value result = rng == list(rng) exp = rng == rng tm.assert_numpy_array_equal(result, exp) # ------------------------------------------------------------------ # Timedelta64[ns] dtype Arithmetic Operations class TestTimedelta64ArithmeticUnsorted: # Tests moved from type-specific test files but not # yet sorted/parametrized/de-duplicated def test_ufunc_coercions(self): # normal ops are also tested in tseries/test_timedeltas.py idx = TimedeltaIndex(['2H', '4H', '6H', '8H', '10H'], freq='2H', name='x') for result in [idx * 2, np.multiply(idx, 2)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['4H', '8H', '12H', '16H', '20H'], freq='4H', name='x') tm.assert_index_equal(result, exp) assert result.freq == '4H' for result in [idx / 2, np.divide(idx, 2)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['1H', '2H', '3H', '4H', '5H'], freq='H', name='x') tm.assert_index_equal(result, exp) assert result.freq == 'H' idx = TimedeltaIndex(['2H', '4H', '6H', '8H', '10H'], freq='2H', name='x') for result in [-idx, np.negative(idx)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['-2H', '-4H', '-6H', '-8H', '-10H'], freq='-2H', name='x') tm.assert_index_equal(result, exp) assert result.freq == '-2H' idx = TimedeltaIndex(['-2H', '-1H', '0H', '1H', '2H'], freq='H', name='x') for result in [abs(idx), np.absolute(idx)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['2H', '1H', '0H', '1H', '2H'], freq=None, name='x') tm.assert_index_equal(result, exp) assert result.freq is None def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') msg = "cannot subtract a datelike from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi - dt with pytest.raises(TypeError, match=msg): tdi - dti msg = (r"descriptor '__sub__' requires a 'datetime\.datetime' object" " but received a 'Timedelta'") with pytest.raises(TypeError, match=msg): td - dt msg = "bad operand type for unary -: 'DatetimeArray'" with pytest.raises(TypeError, match=msg): td - dti result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = pd.date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = pd.date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): assert result == expected assert isinstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): dt_tz - ts msg = "can't subtract offset-naive and offset-aware datetimes" with pytest.raises(TypeError, match=msg): dt_tz - dt msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): dt_tz - ts_tz2 msg = "can't subtract offset-naive and offset-aware datetimes" with pytest.raises(TypeError, match=msg): dt - dt_tz msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): ts - dt_tz with pytest.raises(TypeError, match=msg): ts_tz2 - ts with pytest.raises(TypeError, match=msg): ts_tz2 - dt with pytest.raises(TypeError, match=msg): ts_tz - ts_tz2 # with dti with pytest.raises(TypeError, match=msg): dti - ts_tz with pytest.raises(TypeError, match=msg): dti_tz - ts with pytest.raises(TypeError, match=msg): dti_tz - ts_tz2 result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length msg = "cannot add indices of unequal length" with pytest.raises(ValueError, match=msg): tdi + dti[0:1] with pytest.raises(ValueError, match=msg): tdi[0:1] + dti # random indexes with pytest.raises(NullFrequencyError): tdi + pd.Int64Index([1, 2, 3]) # this is a union! # pytest.raises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') assert result == expected result = td + dt expected = Timestamp('20130102') assert result == expected # TODO: Needs more informative name, probably split up into # more targeted tests @pytest.mark.parametrize('freq', ['D', 'B']) def test_timedelta(self, freq): index = pd.date_range('1/1/2000', periods=50, freq=freq) shifted = index + timedelta(1) back = shifted + timedelta(-1) tm.assert_index_equal(index, back) if freq == 'D': expected = pd.tseries.offsets.Day(1) assert index.freq == expected assert shifted.freq == expected assert back.freq == expected else: # freq == 'B' assert index.freq == pd.tseries.offsets.BusinessDay(1) assert shifted.freq is None assert back.freq == pd.tseries.offsets.BusinessDay(1) result = index - timedelta(1) expected = index + timedelta(-1) tm.assert_index_equal(result, expected) # GH#4134, buggy with timedeltas rng = pd.date_range('2013', '2014') s = Series(rng) result1 = rng - pd.offsets.Hour(1) result2 = DatetimeIndex(s - np.timedelta64(100000000)) result3 = rng - np.timedelta64(100000000) result4 = DatetimeIndex(s - pd.offsets.Hour(1)) tm.assert_index_equal(result1, result4) tm.assert_index_equal(result2, result3) class TestAddSubNaTMasking: # TODO: parametrize over boxes def test_tdi_add_timestamp_nat_masking(self): # GH#17991 checking for overflow-masking with NaT tdinat = pd.to_timedelta(['24658 days 11:15:00', 'NaT']) tsneg = Timestamp('1950-01-01') ts_neg_variants = [tsneg, tsneg.to_pydatetime(), tsneg.to_datetime64().astype('datetime64[ns]'), tsneg.to_datetime64().astype('datetime64[D]')] tspos = Timestamp('1980-01-01') ts_pos_variants = [tspos, tspos.to_pydatetime(), tspos.to_datetime64().astype('datetime64[ns]'), tspos.to_datetime64().astype('datetime64[D]')] for variant in ts_neg_variants + ts_pos_variants: res = tdinat + variant assert res[1] is pd.NaT def test_tdi_add_overflow(self): # See GH#14068 # preliminary test scalar analogue of vectorized tests below with pytest.raises(OutOfBoundsDatetime): pd.to_timedelta(106580, 'D') + Timestamp('2000') with pytest.raises(OutOfBoundsDatetime): Timestamp('2000') + pd.to_timedelta(106580, 'D') _NaT = int(pd.NaT) + 1 msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): pd.to_timedelta([106580], 'D') + Timestamp('2000') with pytest.raises(OverflowError, match=msg): Timestamp('2000') + pd.to_timedelta([106580], 'D') with pytest.raises(OverflowError, match=msg): pd.to_timedelta([_NaT]) - Timedelta('1 days') with pytest.raises(OverflowError, match=msg): pd.to_timedelta(['5 days', _NaT]) - Timedelta('1 days') with pytest.raises(OverflowError, match=msg): (pd.to_timedelta([_NaT, '5 days', '1 hours']) - pd.to_timedelta(['7 seconds', _NaT, '4 hours'])) # These should not overflow! exp = TimedeltaIndex([pd.NaT]) result = pd.to_timedelta([pd.NaT]) - Timedelta('1 days') tm.assert_index_equal(result, exp) exp = TimedeltaIndex(['4 days', pd.NaT]) result = pd.to_timedelta(['5 days', pd.NaT]) - Timedelta('1 days') tm.assert_index_equal(result, exp) exp = TimedeltaIndex([pd.NaT, pd.NaT, '5 hours']) result = (pd.to_timedelta([pd.NaT, '5 days', '1 hours']) + pd.to_timedelta(['7 seconds', pd.NaT, '4 hours'])) tm.assert_index_equal(result, exp) class TestTimedeltaArraylikeAddSubOps: # Tests for timedelta64[ns] __add__, __sub__, __radd__, __rsub__ # TODO: moved from frame tests; needs parametrization/de-duplication def test_td64_df_add_int_frame(self): # GH#22696 Check that we don't dispatch to numpy implementation, # which treats int64 as m8[ns] tdi = pd.timedelta_range('1', periods=3) df = tdi.to_frame() other =
pd.DataFrame([1, 2, 3], index=tdi)
pandas.DataFrame
#!/usr/bin/env python3 # SPDX-License-Identifier: BSD-3-Clause-Clear # Copyright (c) 2019, The Numerical Algorithms Group, Ltd. All rights reserved. """Shared routines for different Metric Sets """ from warnings import warn import numpy import pandas from ..trace import Trace from ..traceset import TraceSet from .._plotsettings import pypop_mpl_params, figparams __all__ = ["Metric", "MetricSet"] class Metric: """Individual performance metrics to be used within a metricset. Defines metric name, properties and method of calculation. """ def __init__( self, key, level, displayname=None, desc=None, is_inefficiency=False, freq_corr=False, ): """ Parameters ---------- key: str Key by which to identify metric. level: int Level at which to display metric in the stack. displayname: str or None Display name to use for metric in table etc. Defaults to key. desc: str or None Detailed description of the metric. is_inefficiency: bool Tag metric as an inefficiency (rather than efficiency) for correct display and shading. Default False. freq_corr: bool Correct performance metrics based on average clock frequency (use to correct for node dynamic clocking issues). Default False. """ self.key = key self.level = level self.description = str(desc) if desc else "" self.is_inefficiency = is_inefficiency if displayname: self.displayname = r"↪ " * bool(self.level) + displayname else: self.displayname = r"↪ " * bool(self.level) + self.key class MetricSet: """Calculate and plot POP MPI metrics Statistics data is expected to have been produced with `collect_statistics()` Attributes ---------- metric_data metric_definition """ _programming_model = None _default_metric_key = "Number of Processes" _default_group_key = None _default_scaling_key = "Total Threads" _key_descriptions = { "Number of Processes": "", "Threads per Process": "", "Total Threads": "", "Hybrid Layout": "", "Tag": "", } def __init__(self, stats_data, ref_key=None, sort_keys=True): """ Parameters ---------- stats_data: TraceSet instance, dict, iterable or instance of Trace Statistics as collected with `collect_statistics()`. Dictionary keys will be used as the dataframe index. If a list, a dict will be constructed by enumeration. ref_key: str or None Key of stats_dict that should be used as the reference for calculation of scaling values. By default the trace with smallest number of processes and smallest number of threads per process will be used. sort_keys: bool If true (default), lexically sort the keys in the returned DataFrame. """ self._stats_dict = MetricSet._dictify_stats(stats_data) self._metric_data = None self._sort_keys = sort_keys self._ref_key = ( self._choose_ref_key(self._stats_dict) if ref_key is None else ref_key ) def _calculate_metrics(self): raise NotImplementedError def _repr_html_(self): return self.metric_data._repr_html_() @staticmethod def _choose_ref_key(stats_dict): """ Take the stats dict and choose an appropriate reference trace. As a default choice choose the smallest number of total threads, breaking ties with smallest number of threads per process """ return min( stats_dict.items(), key=lambda x: "{:05}_{:05}_{}".format( sum(x[1].metadata.threads_per_process), max(x[1].metadata.threads_per_process), x[1].metadata.tag, ), )[0] @property def metric_data(self): """pandas.DataFrame: Calculated metric data. """ if self._metric_data is None: self._calculate_metrics(ref_key=self._ref_key) return self._metric_data @staticmethod def _dictify_stats(stats_data): if isinstance(stats_data, TraceSet): return {k: v for k, v in enumerate(stats_data.traces)} else: if isinstance(stats_data, Trace): return {0: stats_data} if not isinstance(stats_data, dict): stats_data = {k: v for k, v in enumerate(stats_data)} for df in stats_data.values(): if not isinstance(df, Trace): raise ValueError("stats_dict must be an iterable of pypop.trace.Trace") return stats_data @property def metrics(self): """List of :py:class:`pypop.metrics.Metric`: List of metrics that will be calculated. """ return self._metric_list def _create_subdataframe(self, metadata, idxkey): if len(set(metadata.threads_per_process)) != 1: warn( "The supplied trace has a varying number of threads per process. " "The PyPOP metrics were designed assuming a homogenous number of " "threads per process -- analysis results may be inaccurate." ) layout_keys = { "Number of Processes": pandas.Series( data=[metadata.num_processes], index=[idxkey] ), "Threads per Process": pandas.Series( data=[metadata.threads_per_process[0]], index=[idxkey] ), "Total Threads": pandas.Series( data=[sum(metadata.threads_per_process)], index=[idxkey] ), "Hybrid Layout": pandas.Series( data=[ "{}x{}".format( metadata.num_processes, metadata.threads_per_process[0] ) ], index=[idxkey], ), "Tag": pandas.Series(data=[metadata.tag], index=[idxkey]), } for metric in self._metric_list: layout_keys[metric.key] =
pandas.Series(data=[0.0], index=[idxkey])
pandas.Series
from IMLearn.utils import split_train_test from IMLearn.learners.regressors import LinearRegression from typing import NoReturn import numpy as np import pandas as pd import plotly.graph_objects as go import plotly.express as px import plotly.io as pio pio.templates.default = "simple_white" def load_data(filename: str): """ Load house prices dataset and preprocess data. Parameters ---------- filename: str Path to house prices dataset Returns ------- Design matrix and response vector (prices) - either as a single DataFrame or a Tuple[DataFrame, Series] """ df = pd.read_csv(filename).drop_duplicates().dropna() # Drop not needed features df.drop(['id'], axis=1, inplace=True) df.drop(['lat'], axis=1, inplace=True) df.drop(['long'], axis=1, inplace=True) # Edit date to datetime pandas df['date'] = pd.to_datetime(df['date'], format="%Y%m%dT%f", errors='coerce') # only positive numbers lst = ["price", "sqft_living", "sqft_lot", "sqft_above", "yr_built", "sqft_living15", "sqft_lot15", "bathrooms", "floors"] for feature in lst: df = df[df[feature] > 0] # checks where there is a basement df['has_basement'] = np.where(df['sqft_basement'] > 0, 1, 0) # renovated in the last 10 years df['new_renovation'] = np.where(
pd.DatetimeIndex(df['date'])
pandas.DatetimeIndex
import matplotlib.pyplot as plt import os import numpy as np import pandas as pd from matplotlib import cm # import matplotlib from adjustText import adjust_text import re import matplotlib.patheffects as pe import scipy.stats as st # deprecated def plot_hist_exp_1(results, household_size, pool_size, prevalence): fnr_indep = results[:, 0] fnr_correlated = results[:, 1] eff_indep = results[:, 2] eff_correlated = results[:, 3] test_indep = results[:, 4] test_correlated = results[:, 5] fig, [ax0, ax1] = plt.subplots(1,2, figsize=(10,6)) ax0.hist([fnr_indep, fnr_correlated], label=['naive pooling', 'correlated pooling'], color=['mediumaquamarine', 'mediumpurple']) ax0.legend(loc='upper right') ax0.set_xlabel('$FNR$') ax0.set_ylabel('Frequency') ax0.set_title('FNR values under naive and\ncorrelated pooling') ax1.hist(fnr_indep - fnr_correlated, color='lightskyblue', rwidth=0.7) ax1.set_title('difference in FNR values') ax1.set_ylabel('Frequency') plt.tight_layout() plt.savefig('../figs/experiment_1/fnr_diff_pool-size={}_household-size={}_prevalence={}.pdf'.format(pool_size, household_size, prevalence)) plt.close() fig, [ax0, ax1] = plt.subplots(1,2, figsize=(10,6)) ax0.hist([test_indep, test_correlated], label=['naive pooling', 'correlated pooling'], color=['mediumaquamarine', 'mediumpurple']) ax0.legend(loc='upper right') ax0.set_xlabel('$\#$ followup tests per positive identified') ax0.set_ylabel('Frequency') ax0.set_title('$\#$ followup tests per positive identified under\nnaive and correlated pooling') ax1.hist(test_indep - test_correlated, color='lightskyblue', rwidth=0.7) ax1.set_title('difference in $\#$ followup tests per positive identified') ax1.set_ylabel('Frequency') plt.tight_layout() plt.savefig('../figs/experiment_1/relative_test_consumption_pool-size={}_household-size={}_prevalence={}.pdf'.format(pool_size, household_size, prevalence)) plt.close() return # deprecated def generate_heatmap_plots_for_exp_1(): dir = '../results/experiment_1' aggregate_results = {} for filename in os.listdir(dir): if filename == ".DS_Store" or not filename.endswith('.data'): continue parts = re.split('=|[.](?!\d)|_', filename) print(parts) household_size = int(parts[4]) prevalence = float(parts[6]) filedir = os.path.join(dir, filename) with open(filedir) as f: results = np.loadtxt(f) avgs = np.mean(results, axis=0) aggregate_results[(prevalence, household_size)] = avgs df_agg = pd.DataFrame.from_dict(aggregate_results, orient='index', columns=['indep fnr', 'corr fnr', 'indep eff', 'corr eff', 'indep test', 'corr test']) df_agg.index = pd.MultiIndex.from_tuples(df_agg.index, names=['prevalence', 'household size']) df_agg = df_agg.reset_index() df_agg = df_agg.sort_values(by=['prevalence', 'household size']) df_agg['indep sn'] = 1 - df_agg['indep fnr'] df_agg['corr sn'] = 1 - df_agg['corr fnr'] df_agg['sn diff'] = df_agg['corr sn'] - df_agg['indep sn'] df_agg['rel test consumption'] = df_agg['corr test'] / df_agg['indep test'] fig, [ax0, ax1] = plt.subplots(1, 2, figsize=(8, 4)) table_sn = pd.pivot_table(df_agg, values='sn diff', index=['household size'], columns=['prevalence']) print(table_sn) heatmap = ax0.pcolor(table_sn, cmap=cm.BuPu) ax0.set_aspect('equal') ax0.set_yticks(np.arange(0.5, len(table_sn.index), 1)) ax0.set_yticklabels(table_sn.index) ax0.set_xticks(np.arange(0.5, len(table_sn.columns), 1)) ax0.set_xticklabels(table_sn.columns) ax0.set_xlabel('prevalence') ax0.set_ylabel('household size') ax0.set_title('Difference in FNR') fig.colorbar(heatmap, ax=ax0, orientation="horizontal") table_test = pd.pivot_table(df_agg, values='rel test consumption', index=['household size'], columns=['prevalence']) heatmap = ax1.pcolor(table_test, cmap=cm.YlGn_r) ax1.set_aspect('equal') ax1.set_yticks(np.arange(0.5, len(table_test.index), 1)) ax1.set_yticklabels(table_test.index) ax1.set_xticks(np.arange(0.5, len(table_test.columns), 1)) ax1.set_xticklabels(table_test.columns) ax1.set_xlabel('prevalence') ax1.set_ylabel('household size') ax1.set_title('Relative test consumption') fig.colorbar(heatmap, ax=ax1, orientation="horizontal") fig.tight_layout() fig.savefig('../figs/experiment_1/tmp_heapmap_for_fnr_and_test.pdf', bbox_inches='tight') plt.clf() return def plot_hist_exp_2(results, param, val=None): fnr_indep = results[:, 0] fnr_correlated = results[:, 1] eff_indep = results[:, 2] eff_correlated = results[:, 3] # print Sn (naive), Sn (correlated), Eff (naive), Eff (correlated) num_iters = results.shape[0] pool_size = 6. f = open(f"../results/experiment_2/nominal_scenario_results_{num_iters}.txt", "w") f.write(f"sensitivity: {1 - np.mean(fnr_indep):.1%} (naive), {1 - np.mean(fnr_correlated):.1%} (correlated);\ efficiency: {np.mean(eff_indep):.2f} (naive), {np.mean(eff_correlated):.2f} (correlated)\n") f.write(f"standard error: {np.std(fnr_indep)/np.sqrt(num_iters)}, {np.std(fnr_correlated)/np.sqrt(num_iters)}, \ {np.std(eff_indep)/np.sqrt(num_iters)}, {np.std(eff_correlated)/np.sqrt(num_iters)}\n") f.write(f"improvement: {(1 - np.mean(fnr_correlated)) / (1 - np.mean(fnr_indep))-1:.2%} (sensitivity); \ {np.mean(eff_correlated) / np.mean(eff_indep)-1:.2%} (efficiency)\n") frac_sample_indiv_test_naive = 1 / np.mean(eff_indep) - 1 / pool_size frac_sample_indiv_test_correlated = 1 / np.mean(eff_correlated) - 1 / pool_size frac_positive_sample_indiv_test_naive = 0.01 * (1 - np.mean(fnr_indep)) / 0.95 frac_positive_sample_indiv_test_correlated = 0.01 * (1 - np.mean(fnr_correlated)) / 0.95 frac_negative_sample_indiv_test_naive = frac_sample_indiv_test_naive - frac_positive_sample_indiv_test_naive frac_negative_sample_indiv_test_correlated = frac_sample_indiv_test_correlated - frac_positive_sample_indiv_test_correlated f.write(f"fraction of samples tested individually: {frac_sample_indiv_test_naive:.2%} (naive), {frac_sample_indiv_test_correlated:.2%} (correlated)\n") f.write(f"fraction of positive samples tested individually: {frac_positive_sample_indiv_test_naive:.2%} (naive), {frac_positive_sample_indiv_test_correlated:.2%} (correlated)\n") f.write(f"fraction of negative samples tested individually: {frac_negative_sample_indiv_test_naive:.2%} (naive), {frac_negative_sample_indiv_test_correlated:.2%} (correlated)\n") f.write(f"implied FPR: {frac_negative_sample_indiv_test_naive * 0.0001} (naive), {frac_negative_sample_indiv_test_correlated * 0.0001} (correlated)\n") f.close() ax1 = plt.subplot(111) n, bins, patches = ax1.hist(results[:, :2], label=['naive', 'correlated'], color=['mediumaquamarine', 'mediumpurple']) hatches = [".", '//'] for patch_set, hatch in zip(patches, hatches): for patch in patch_set.patches: patch.set_hatch(hatch) patch.set_edgecolor('k') plt.legend(loc='upper right') plt.xlabel('False negative rate') plt.ylabel('Frequency') if param == 'nominal': plt.title('Histogram of FNR values under {} scenario'.format(param)) plt.savefig('../figs/experiment_2/fnr_{}_scenario.pdf'.format(param)) else: plt.title('Histogram of FNR values for one-stage group testing \n under {} = {}'.format(param, val)) plt.savefig('../figs/experiment_2/fnr_{}={}.pdf'.format(param, val), dpi=600) plt.close() ax2 = plt.subplot(111) n, bins, patches = ax2.hist(results[:, 2:], label=['naive', 'correlated'], color=['mediumaquamarine', 'mediumpurple']) hatches = ["..", '//'] for patch_set, hatch in zip(patches, hatches): for patch in patch_set.patches: patch.set_hatch(hatch) plt.legend(loc='upper right') plt.xlabel('Efficiency') plt.ylabel('Frequency') if param == 'nominal': plt.title('Histogram of testing efficiency under {} scenario'.format(param)) plt.savefig('../figs/experiment_2/eff_{}_scenario.pdf'.format(param)) else: plt.title('Histogram of testing efficiency for one-stage group testing \n under {} = {}'.format(param, val)) plt.savefig('../figs/experiment_2/eff_{}={}.pdf'.format(param, val), dpi=600) plt.close() return def generate_sensitivity_plots(param): dir = '../results/experiment_2/sensitivity_analysis_2000/' fnr_indep = [] fnr_corr = [] eff_indep = [] eff_corr = [] index = [] for filename in os.listdir(dir): if param in filename: val = filename.split(param, 1)[1][:-5] val = val.split('_', 1)[0][1:] val = int(val) if param == 'pool size' else val if param == 'household dist' else float(val) filedir = os.path.join(dir, filename) with open(filedir) as f: results = np.loadtxt(f) avgs = np.mean(results, axis=0) fnr_indep.append(avgs[0]) fnr_corr.append(avgs[1]) eff_indep.append(avgs[2]) eff_corr.append(avgs[3]) index.append(val) df = pd.DataFrame({'FNR (naive)': fnr_indep, 'FNR (correlated)': fnr_corr, 'efficiency (naive)': eff_indep,'efficiency (correlated)': eff_corr}, index=index) df = df.sort_index() df = df.rename_axis(param).reset_index() df['sensitivity (naive)'] = 1 - df['FNR (naive)'] df['sensitivity (correlated)'] = 1 - df['FNR (correlated)'] fig, ax = plt.subplots() ax2 = ax.twinx() #fnrs = df[['FNR (naive)', 'FNR (correlated)']].plot.bar(ax=ax, legend=False, color=['mediumaquamarine', 'mediumpurple'], alpha=1) sns = df[['sensitivity (naive)', 'sensitivity (correlated)']].plot.bar(ax=ax, legend=False, color=['mediumaquamarine', 'mediumpurple'], alpha=1) l = df.shape[0] bars = ax.patches hatches = [".."] * l + ['//'] * l for bar, hatch in zip(bars, hatches): bar.set_hatch(hatch) df[['efficiency (naive)']].plot.line(ax=ax2, legend=False, marker='^', markeredgecolor='w', markeredgewidth=0, \ color=['mediumaquamarine'], path_effects=[pe.Stroke(linewidth=3, foreground='w'), pe.Normal()]) df[['efficiency (correlated)']].plot.line(ax=ax2, legend=False, marker='o', markeredgecolor='w', markeredgewidth=0, \ color=['mediumpurple'], path_effects=[pe.Stroke(linewidth=3, foreground='w'), pe.Normal()]) ax.set_xticklabels(df[param]) ax.set_ylabel('sensitivity') ax.set_ylim(0.6) ax2.set_ylabel('efficiency') ax2.set_ylim(1) if param in ['prevalence', 'pool size'] else ax2.set_ylim(4.5) if param == 'FNR': ax.set_xlabel('population-average individual test FNR') elif param == 'household dist': ax.set_xlabel('household size distribution') else: ax.set_xlabel(param) h, l = ax.get_legend_handles_labels() h2, l2 = ax2.get_legend_handles_labels() ax.legend(h + h2, l + l2, loc='lower left', bbox_to_anchor=(0, 1.02, 0.6, 1.02), ncol=2) fig.savefig('../figs/experiment_2/sensitivity_plots/sensitivity_for_{}_new.pdf'.format(param), bbox_inches='tight', dpi=600) plt.clf() return def generate_pareto_fontier_plots(): dir = '../results/experiment_2/pareto_analysis_2000/' aggregate_results = {} for filename in os.listdir(dir): if filename == ".DS_Store": continue parts = re.split('=|[.](?!\d)|_', filename) prev = float(parts[2]) pool_size = int(parts[4]) filedir = os.path.join(dir, filename) with open(filedir) as f: results = np.loadtxt(f) avgs = np.mean(results, axis=0) aggregate_results[(prev, pool_size)] = avgs df_agg = pd.DataFrame.from_dict(aggregate_results, orient='index', columns=['fnr (naive)', 'fnr (correlated)', 'eff (naive)', 'eff (correlated)']) df_agg.index = pd.MultiIndex.from_tuples(df_agg.index, names=['prevalence', 'pool size']) df_agg = df_agg.reset_index() df_agg = df_agg.sort_values(by=['prevalence', 'pool size']) df_agg['sn (naive)'] = 1 - df_agg['fnr (naive)'] df_agg['sn (correlated)'] = 1 - df_agg['fnr (correlated)'] for prev in df_agg['prevalence'].unique(): df = df_agg[df_agg['prevalence'] == prev] ax = df.sort_values(by='pool size').plot(x='sn (naive)', y = 'eff (naive)', sort_columns=True, color='mediumpurple', marker='^', style='--') df.sort_values(by='pool size').plot(x='sn (correlated)', y = 'eff (correlated)', sort_columns=True, ax=ax, color='mediumaquamarine', marker='o', style='-') texts = [] for i, point in df.iterrows(): texts.append(ax.text(point['sn (naive)'], point['eff (naive)'], str(int(point['pool size'])), color='dimgrey')) texts.append(ax.text(point['sn (correlated)'], point['eff (correlated)'], str(int(point['pool size'])), color='dimgrey')) adjust_text(texts, only_move={'points':'y', 'texts':'xy'}) plt.legend(['naive', 'correlated']) plt.xlabel('Sensitivity = 1 - FNR') plt.ylabel('Efficiency') plt.title('Tradeoff between test efficiency and sensitivity\n under prevalence = {}'.format(prev)) plt.grid(True, ls=':') plt.savefig('../figs/experiment_2/pareto_plots/pareto_for_prev_{}.pdf'.format(prev), format='pdf', dpi=600, bbox_inches='tight') plt.close() return def generate_heatmap_plots(): dir = '../results/experiment_2/pareto_analysis_2000/' aggregate_results = {} for filename in os.listdir(dir): if filename == ".DS_Store": continue parts = re.split('=|[.](?!\d)|_', filename) prev = float(parts[2]) pool_size = int(parts[4]) filedir = os.path.join(dir, filename) with open(filedir) as f: results = np.loadtxt(f) avgs = np.mean(results, axis=0) aggregate_results[(prev, pool_size)] = avgs df_agg = pd.DataFrame.from_dict(aggregate_results, orient='index', columns=['fnr (naive)', 'fnr (correlated)', 'eff (naive)', 'eff (correlated)']) df_agg.index = pd.MultiIndex.from_tuples(df_agg.index, names=['prevalence', 'pool size']) df_agg = df_agg.reset_index() df_agg = df_agg.sort_values(by=['prevalence', 'pool size']) df_agg['sn (naive)'] = 1 - df_agg['fnr (naive)'] df_agg['sn (correlated)'] = 1 - df_agg['fnr (correlated)'] df_agg['sn diff'] = (df_agg['sn (correlated)'] - df_agg['sn (naive)']) * 100 df_agg['eff diff'] = df_agg['eff (correlated)'] - df_agg['eff (naive)'] fig, [ax0, ax1] = plt.subplots(1, 2, figsize=(8, 4)) table_sn = pd.pivot_table(df_agg, values='sn diff', index=['prevalence'], columns=['pool size']) # print(table_sn) heatmap = ax0.pcolor(table_sn, cmap=cm.BuPu) ax0.set_aspect('equal') ax0.set_yticks(np.arange(0.5, len(table_sn.index), 1)) ax0.set_yticklabels(table_sn.index) ax0.set_xticks(np.arange(0.5, len(table_sn.columns), 1)) ax0.set_xticklabels(table_sn.columns) ax0.set_xlabel('pool size') ax0.set_ylabel('prevalence') ax0.set_title('Difference in sensitivity (%)') fig.colorbar(heatmap, ax=ax0, orientation="horizontal", label="(%)") textcolors = ["k", "w"] threshold = 0.049 * 100 for i, prev in enumerate(table_sn.index): for j, pool_size in enumerate(table_sn.columns): text = ax0.text(j+0.5, i+0.5, "{:.1f}".format(table_sn.iloc[i,j]), ha="center", va="center", color=textcolors[table_sn.iloc[i, j] > threshold], size=7) table_eff = pd.pivot_table(df_agg, values='eff diff', index=['prevalence'], columns=['pool size']) heatmap = ax1.pcolor(table_eff, cmap=cm.YlGn) ax1.set_aspect('equal') ax1.set_yticks(np.arange(0.5, len(table_eff.index), 1)) ax1.set_yticklabels(table_eff.index) ax1.set_xticks(np.arange(0.5, len(table_eff.columns), 1)) ax1.set_xticklabels(table_eff.columns) ax1.set_xlabel('pool size') ax1.set_ylabel('prevalence') ax1.set_title('Difference in efficiency') fig.colorbar(heatmap, ax=ax1, orientation="horizontal") textcolors = ["k", "w"] threshold = 0.675 for i, prev in enumerate(table_eff.index): for j, pool_size in enumerate(table_eff.columns): text = ax1.text(j+0.5, i+0.5, "{:.2f}".format(table_eff.iloc[i,j]).replace("0.", "."), \ ha="center", va="center", color=textcolors[table_eff.iloc[i, j] > threshold], size=7) fig.tight_layout() fig.savefig('../figs/experiment_2/pareto_plots/heapmap_for_fnr_and_eff_2000.pdf', format='pdf', dpi=600, bbox_inches='tight') plt.clf() return def generate_test_consumption_results(): dir = '../results/experiment_2/pareto_analysis_2000/' aggregate_results = {} for filename in os.listdir(dir): if filename == ".DS_Store": continue parts = re.split('=|[.](?!\d)|_', filename) prev = float(parts[2]) pool_size = int(parts[4]) filedir = os.path.join(dir, filename) with open(filedir) as f: results = np.loadtxt(f) avgs = np.mean(results, axis=0) aggregate_results[(prev, pool_size)] = avgs df_agg = pd.DataFrame.from_dict(aggregate_results, orient='index', columns=['fnr (naive)', 'fnr (correlated)', 'eff (naive)', 'eff (correlated)']) df_agg.index = pd.MultiIndex.from_tuples(df_agg.index, names=['prevalence', 'pool size']) df_agg = df_agg.reset_index() df_agg = df_agg.sort_values(by=['prevalence', 'pool size']) df_agg['sn (naive)'] = 1 - df_agg['fnr (naive)'] df_agg['sn (correlated)'] = 1 - df_agg['fnr (correlated)'] df_results = pd.DataFrame(columns=['prevalence', 'opt pool size (naive)', 'opt sn * eff (naive)', 'opt pool size (correlated)', 'opt sn * eff (correlated)', 'tests needed reduction']) for prev in df_agg['prevalence'].unique(): df = df_agg[df_agg['prevalence'] == prev].reset_index() df['sn*eff (naive)'] = df['sn (naive)'] * df['eff (naive)'] df['sn*eff (correlated)'] = df['sn (correlated)'] * df['eff (correlated)'] opt_pool_size_naive = df['pool size'].iloc[df['sn*eff (naive)'].idxmax()] opt_sn_eff_prod_naive = df['sn*eff (naive)'].max() opt_pool_size_corr = df['pool size'].iloc[df['sn*eff (correlated)'].idxmax()] opt_sn_eff_prod_corr = df['sn*eff (correlated)'].max() if prev == 0.01: print('naive:', df[['prevalence', 'pool size', 'sn (naive)', 'eff (naive)']]\ [(df['pool size'] == opt_pool_size_naive)]) print('correlated: ', df[['prevalence', 'pool size', 'sn (correlated)', 'eff (correlated)']]\ [(df['pool size'] == opt_pool_size_corr)]) test_needed_reduction = 1 - opt_sn_eff_prod_naive / opt_sn_eff_prod_corr # (1 / naive - 1 / corr) / (1 / corr) = corr / naive - 1 # increase when using NP # (1 / naive - 1 / corr) / (1 / naive) = 1 - naive/corr # reduction when using CP results = np.array([prev, opt_pool_size_naive, opt_sn_eff_prod_naive, opt_pool_size_corr, opt_sn_eff_prod_corr, test_needed_reduction]).round(3) df_results = df_results.append(dict(zip(df_results.columns, results)), ignore_index=True) df_results.to_csv('../results/experiment_2/opt_pool_size_test_reduction_2000.csv', index=False) return def generate_bound_in_theorem_2_results(n_iters=1000000, n_resamples=10000): filename = f'../results/PCR_tests/bounds_in_theorem_2_alternative_{n_iters}.csv' dir = f'../results/PCR_tests/bound_analysis_{n_iters}' df =
pd.read_csv(filename)
pandas.read_csv
import os import sys import xarray as xr import numpy as np import pandas as pd from datetime import datetime from dateutil.relativedelta import relativedelta pkg_dir = os.path.join(os.path.dirname(__file__),'..') sys.path.append(pkg_dir) from silverpieces.functions import * def fill_time_index(nd_array): td = nd_array.shape[0] for i in range(td): nd_array[i,:,:] = i def fill_year(nd_array): start_time = datetime(2001,1,1) td = nd_array.shape[0] for i in range(td): nd_array[i,:,:] = (start_time + relativedelta(days=i)).year - start_time.year def create_daily_sp_cube(start_time, end_time, nx=2, ny=3, fun_fill=fill_time_index): start_time = pd.to_datetime(start_time) end_time = pd.to_datetime(end_time) tdim = pd.date_range(start=start_time, end=end_time, freq='D') xdim = np.arange(0, nx * 0.5 - 1e-2, 0.5) ydim = np.arange(0.25, 0.25 + ny * 0.5 - 1e-2, 0.5) x = np.empty([len(tdim), ny, nx]) fun_fill(x) y = xr.DataArray(x, coords=[tdim,ydim,xdim], dims=['time', 'lat', 'lon'], name='test_daily_data') return y def test_num_year_detection(): assert max_shifting_years('2001-01-01', '2003-12-31', '2001-01-01', '2001-12-31') == 2 assert max_shifting_years('2001-01-01', '2003-12-31', '2001-01-01', '2001-10-31') == 2 assert max_shifting_years('2001-01-01', '2003-12-31', '2001-03-01', '2001-12-31') == 2 # assert max_shifting_years('2001-01-01', '2003-12-31', '2001-01-01', '2002-12-31') == 1 assert max_shifting_years('2001-01-01', '2003-12-30', '2001-01-01', '2002-12-31') == 0 # If the windows is less than a calendar year, it should still find the right max shift assert max_shifting_years('2007-01-01', '2018-12-31', '2001-01-01', '2001-12-31') == 11 # 2016 a leap year... assert max_shifting_years('2007-01-01', '2018-12-31', '2016-01-01', '2016-12-31') == 11 def test_periods_stat_yearly_stats(): start_time = pd.to_datetime('2001-01-01') end_time = pd.to_datetime('2002-12-31') x = create_daily_sp_cube('2001-01-01', '2009-12-31', nx=2, ny=3, fun_fill=fill_year) s = SpatialTemporalDataArrayStat() y = s.periods_stat_yearly(x, '2001-01-01', '2002-12-31') assert len(y.time) == (9 - 2 + 1) tdim = y[s.time_dimname].values assert pd.to_datetime(tdim[0] ) == end_time assert pd.to_datetime(tdim[-1]) ==
pd.to_datetime('2009-12-31')
pandas.to_datetime
# coding: utf-8 # In[2]: get_ipython().magic('matplotlib inline') import matplotlib.pyplot as plt from keras.layers import Bidirectional, Input, LSTM, Dense, Activation, Conv1D, Flatten, Embedding, MaxPooling1D, Dropout #from keras.layers.embeddings import Embedding from keras.preprocessing.sequence import pad_sequences from keras import optimizers from gensim.models import Word2Vec from keras.models import Sequential, Model import pandas as pd import numpy as np from keras.preprocessing.text import Tokenizer, text_to_word_sequence from sklearn.utils import shuffle import pickle from sklearn.model_selection import train_test_split from autocorrect import spell import spacy from spacy.gold import GoldParse nlp = spacy.load('en') import re from sklearn.utils import shuffle import keras # In[3]: df = pd.read_csv('train.csv') # In[4]: pred_cols = ['toxic','severe_toxic','obscene','threat','insult','identity_hate'] # In[5]: df['total_classes'] = df['toxic']+df['severe_toxic']+df['obscene']+df['threat']+df['insult']+df['identity_hate'] # In[6]: df['comment_text'] = df['comment_text'].apply(lambda x : x.replace("'", "").replace('"','')) # In[7]: def correct_spelling(text): words = text_to_word_sequence(text) #print (words) words = [spell(w) for w in words] return " ".join(words) # In[8]: #df['comment_text'] = df['comment_text'].apply(lambda x : correct_spelling(x)) # In[9]: df['comment_text'] = df['comment_text'].apply(lambda x: re.sub('[0-9]','',x)) # In[10]: def replace_unknown_words_with_UNK(sentence): words = text_to_word_sequence(sentence) words = [get_word(w) for w in words] return " ".join(words) # In[11]: def get_word(w): if w in tokenizer.word_index: return w else: return "unk" # In[12]: def train_tokenizer(texts): tokenizer = Tokenizer() sent_list = texts tokenizer.fit_on_texts(sent_list) return tokenizer # In[13]: def load_glove_embedding(glove_path): word2emb = {} with open(glove_path, "rb") as fglove: for line in fglove: cols = line.strip().split() word = cols[0] embedding = np.array(cols[1:], dtype="float32") word2emb[word] = embedding return word2emb # In[14]: def generate_word2vec(comments): sents = [text_to_word_sequence(s) for s in comments] vector = Word2Vec(sents, size=100, iter=50, min_count=1) return vector # In[37]: comment_list = df['comment_text'].tolist() glove_file = 'glove.840B.300d.txt' #glove_file = 'glove.6B.100d.txt' emb_matrix = load_glove_embedding(glove_file) #emb_matrix = generate_word2vec(comment_list) max_len = 300 comment_list.append("unk") tokenizer = train_tokenizer(comment_list) n_classes = 1 # ### Replacing all the unknown words with UNK. This will have no impact on training as all the words are known # In[38]: df['comment_text'] = df['comment_text'].apply(lambda x : replace_unknown_words_with_UNK(x)) # In[17]: print ("The vocabulary size is: {0}".format(len(tokenizer.word_index))) print (tokenizer.texts_to_sequences([replace_unknown_words_with_UNK("DFLSDKJFLS ADFSDF was Infosys CEO")])) # In[18]: def clean_up(dfin): dfin['comment_text'] = dfin['comment_text'].apply(lambda x : str(x).replace("'", "").replace('"','')) dfin['comment_text'] = dfin['comment_text'].apply(lambda x: re.sub('[0-9]','',x)) #dfin['comment_text'] = dfin['comment_text'].apply(lambda x : replace_unknown_words_with_UNK(x)) return dfin # In[19]: class_count = [] for col in pred_cols: class_count.append((col,len(df[df[col]==1]))) print (class_count) # In[20]: def get_stratified_train(df, oversample=None): df_all_toxic = df[np.logical_and(df['toxic'] ==1 , df['total_classes'] ==1)] df_all_severe_toxic = df[np.logical_and(df['severe_toxic'] ==1 , df['total_classes'] <=6)] df_all_obscene = df[np.logical_and(df['obscene'] ==1 , df['total_classes'] <=6)] df_all_threat = df[np.logical_and(df['threat'] ==1 , df['total_classes'] <=6)] df_all_insult = df[np.logical_and(df['insult'] ==1 , df['total_classes'] <=6)] df_all_identity_hate = df[np.logical_and(df['identity_hate'] ==1 , df['total_classes'] <=6)] df_all_rest =df[df['total_classes'] ==0] print("Counts:- toxic:{0}, severe_toxic:{1}, obscene:{2}, threat:{3}, insult:{4}, identity_hate:{5}, rest:{6}".format(len(df_all_toxic),len(df_all_severe_toxic),len(df_all_obscene),len(df_all_threat),len(df_all_insult),len(df_all_identity_hate), len(df_all_rest))) X_train_toxic, X_test_toxic = train_test_split(df_all_toxic, test_size=0.10, random_state=42) X_train_severe_toxic, X_test_severe_toxic = train_test_split(df_all_severe_toxic, test_size=0.1, random_state=42) X_train_obscene, X_test_obscene = train_test_split(df_all_obscene, test_size=0.05, random_state=42) X_train_threat, X_test_threat = train_test_split(df_all_threat, test_size=0.05, random_state=42) X_train_insult, X_test_insult = train_test_split(df_all_insult, test_size=0.10, random_state=42) X_train_identity_hate, X_test_identity_hate = train_test_split(df_all_identity_hate, test_size=0.1, random_state=42) X_train_rest, X_test_rest = train_test_split(df_all_rest, test_size=0.10, random_state=42) print("Train Counts:- toxic:{0}, severe_toxic:{1}, obscene:{2}, threat:{3}, insult:{4}, identity_hate:{5}, rest:{6}".format(len(X_train_toxic),len(X_train_severe_toxic),len(X_train_obscene),len(X_train_threat),len(X_train_insult),len(X_train_identity_hate), len(X_train_rest))) print("Test Counts:- toxic:{0}, severe_toxic:{1}, obscene:{2}, threat:{3}, insult:{4}, identity_hate:{5}, rest:{6}".format(len(X_test_toxic),len(X_test_severe_toxic),len(X_test_obscene),len(X_test_threat),len(X_test_insult),len(X_test_identity_hate), len(X_test_rest))) X_train =
pd.concat([X_train_toxic, X_train_severe_toxic, X_train_obscene, X_train_threat, X_train_insult, X_train_identity_hate, X_train_rest])
pandas.concat
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Functions to reproduce the post-processing of data on text charts. Some text-based charts (pivot tables and t-test table) perform post-processing of the data in Javascript. When sending the data to users in reports we want to show the same data they would see on Explore. In order to do that, we reproduce the post-processing in Python for these chart types. """ from typing import Any, Callable, Dict, Optional, Union import pandas as pd from superset.utils.core import DTTM_ALIAS, extract_dataframe_dtypes, get_metric_name def sql_like_sum(series: pd.Series) -> pd.Series: """ A SUM aggregation function that mimics the behavior from SQL. """ return series.sum(min_count=1) def pivot_table( result: Dict[Any, Any], form_data: Optional[Dict[str, Any]] = None ) -> Dict[Any, Any]: """ Pivot table. """ for query in result["queries"]: data = query["data"] df = pd.DataFrame(data) form_data = form_data or {} if form_data.get("granularity") == "all" and DTTM_ALIAS in df: del df[DTTM_ALIAS] metrics = [get_metric_name(m) for m in form_data["metrics"]] aggfuncs: Dict[str, Union[str, Callable[[Any], Any]]] = {} for metric in metrics: aggfunc = form_data.get("pandas_aggfunc") or "sum" if pd.api.types.is_numeric_dtype(df[metric]): if aggfunc == "sum": aggfunc = sql_like_sum elif aggfunc not in {"min", "max"}: aggfunc = "max" aggfuncs[metric] = aggfunc groupby = form_data.get("groupby") or [] columns = form_data.get("columns") or [] if form_data.get("transpose_pivot"): groupby, columns = columns, groupby df = df.pivot_table( index=groupby, columns=columns, values=metrics, aggfunc=aggfuncs, margins=form_data.get("pivot_margins"), ) # Re-order the columns adhering to the metric ordering. df = df[metrics] # Display metrics side by side with each column if form_data.get("combine_metric"): df = df.stack(0).unstack().reindex(level=-1, columns=metrics) # flatten column names df.columns = [" ".join(column) for column in df.columns] # re-arrange data into a list of dicts data = [] for i in df.index: row = {col: df[col][i] for col in df.columns} row[df.index.name] = i data.append(row) query["data"] = data query["colnames"] = list(df.columns) query["coltypes"] = extract_dataframe_dtypes(df) query["rowcount"] = len(df.index) return result def list_unique_values(series: pd.Series) -> str: """ List unique values in a series. """ return ", ".join(set(str(v) for v in
pd.Series.unique(series)
pandas.Series.unique
import math import matplotlib.pyplot as plt import numpy as np import pandas as pd import os from pandas.core.frame import DataFrame from torch.utils.data import Dataset, DataLoader import torch import pickle import datetime class data_loader(Dataset): def __init__(self, df_feature, df_label, df_label_reg, t=None): assert len(df_feature) == len(df_label) assert len(df_feature) == len(df_label_reg) # df_feature = df_feature.reshape(df_feature.shape[0], df_feature.shape[1] // 6, df_feature.shape[2] * 6) self.df_feature=df_feature self.df_label=df_label self.df_label_reg = df_label_reg self.T=t self.df_feature=torch.tensor( self.df_feature, dtype=torch.float32) self.df_label=torch.tensor( self.df_label, dtype=torch.float32) self.df_label_reg=torch.tensor( self.df_label_reg, dtype=torch.float32) def __getitem__(self, index): sample, target, label_reg =self.df_feature[index], self.df_label[index], self.df_label_reg[index] if self.T: return self.T(sample), target else: return sample, target, label_reg def __len__(self): return len(self.df_feature) def create_dataset(df, station, start_date, end_date, mean=None, std=None): data=df[station] feat, label, label_reg =data[0], data[1], data[2] referece_start_time=datetime.datetime(2013, 3, 1, 0, 0) referece_end_time=datetime.datetime(2017, 2, 28, 0, 0) assert (pd.to_datetime(start_date) - referece_start_time).days >= 0 assert (pd.to_datetime(end_date) - referece_end_time).days <= 0 assert (pd.to_datetime(end_date) - pd.to_datetime(start_date)).days >= 0 index_start=(pd.to_datetime(start_date) - referece_start_time).days index_end=(pd.to_datetime(end_date) - referece_start_time).days feat=feat[index_start: index_end + 1] label=label[index_start: index_end + 1] label_reg=label_reg[index_start: index_end + 1] # ori_shape_1, ori_shape_2=feat.shape[1], feat.shape[2] # feat=feat.reshape(-1, feat.shape[2]) # feat=(feat - mean) / std # feat=feat.reshape(-1, ori_shape_1, ori_shape_2) return data_loader(feat, label, label_reg) def create_dataset_shallow(df, station, start_date, end_date, mean=None, std=None): data=df[station] feat, label, label_reg =data[0], data[1], data[2] referece_start_time=datetime.datetime(2013, 3, 1, 0, 0) referece_end_time=datetime.datetime(2017, 2, 28, 0, 0) assert (pd.to_datetime(start_date) - referece_start_time).days >= 0 assert (pd.to_datetime(end_date) - referece_end_time).days <= 0 assert (pd.to_datetime(end_date) - pd.to_datetime(start_date)).days >= 0 index_start=(pd.to_datetime(start_date) - referece_start_time).days index_end=(pd.to_datetime(end_date) - referece_start_time).days feat=feat[index_start: index_end + 1] label=label[index_start: index_end + 1] label_reg=label_reg[index_start: index_end + 1] # ori_shape_1, ori_shape_2=feat.shape[1], feat.shape[2] # feat=feat.reshape(-1, feat.shape[2]) # feat=(feat - mean) / std # feat=feat.reshape(-1, ori_shape_1, ori_shape_2) return feat, label_reg def get_dataset_statistic(df, station, start_date, end_date): data=df[station] feat, label =data[0], data[1] referece_start_time=datetime.datetime(2013, 3, 1, 0, 0) referece_end_time=datetime.datetime(2017, 2, 28, 0, 0) assert (pd.to_datetime(start_date) - referece_start_time).days >= 0 assert (
pd.to_datetime(end_date)
pandas.to_datetime
import pandas as pd from src.utility.file_utility import get_directory_files, create_directory, copy_file from src.utility.system_utility import progress_bar from src.utility.image_utility import load_image, crop_roi, save_image from sklearn.model_selection import train_test_split def get_labels(n_labels, as_string=True): if as_string: return ['0000' + str(i) if i < 10 else '000' + str(i) for i in range(n_labels)] else: return [int(i) for i in range(n_labels)] def get_image_label(label_code, labels): return [1 if label_code == i else 0 for i in labels] def create_traing_data_table(folder_path, output_path, img_ext='ppm'): directories = get_directory_files(folder_path) directories.sort() datatable = pd.DataFrame(columns=['image_path', 'label', 'roi_x1', 'roi_y1', 'roi_x2', 'roi_y2']) total_count = 0 for label in directories: current_directory = label path_label_folder = folder_path + '/' + current_directory images = [image for image in get_directory_files(path_label_folder) if img_ext in image] images.sort() category_df = pd.read_csv(path_label_folder + '/GT-' + current_directory + '.csv', sep=';') count = 0 for img in images: img_path = path_label_folder + '/' + img category_df_row = category_df.iloc[count] datatable.loc[total_count] = [img_path, label, category_df_row['Roi.X1'], category_df_row['Roi.Y1'], category_df_row['Roi.X2'], category_df_row['Roi.Y2']] count += 1 total_count += 1 progress_bar(count, len(images), 'Processing label: ' + label + ' with ' + str(len(images)) + ' images') print() datatable.to_csv(output_path, index=False, header=True) def split_train_data(train_out_folder, validation_out_folder, dataset_path, validation_size=0.25, labels=43, roi_folder_suffix='_roi'): dataframe = pd.read_csv(dataset_path) x_train, x_valid, y_train, y_valid = train_test_split(dataframe['image_path'].values, dataframe['label'].values, test_size=validation_size, shuffle=True) for i in range(labels): if i < 10: folder = '0000' + str(i) else: folder = '000' + str(i) create_directory(train_out_folder + '/' + folder) create_directory(validation_out_folder + '/' + folder) # Simply move images copy_images(x_train, y_train, train_out_folder) print() copy_images(x_valid, y_valid, validation_out_folder) # Save images only ROI save_images_roi(x_train, y_train, train_out_folder + roi_folder_suffix, dataframe) print() save_images_roi(x_valid, y_valid, validation_out_folder + roi_folder_suffix, dataframe) def copy_images(x, y, output_path): for i in range(x.shape[0]): label = y[i] if label < 10: folder = '0000' + str(label) else: folder = '000' + str(label) file_name = x[i].split('/')[-1] copy_file(x[i], output_path + '/' + folder + '/' + file_name) progress_bar(i, x.shape[0], 'Copying ' + str(x.shape[0]) + ' images in: ' + output_path) def prepare_test_data(starting_folder, output_folder, data_frame_path, sep=';', label_col='ClassId', labels=43, roi_folder_suffix='_roi'): files = get_directory_files(starting_folder) files.sort() data_frame =
pd.read_csv(data_frame_path, sep=sep)
pandas.read_csv
from __future__ import print_function from datetime import datetime, timedelta import numpy as np import pandas as pd from pandas import (Series, Index, Int64Index, Timestamp, Period, DatetimeIndex, PeriodIndex, TimedeltaIndex, Timedelta, timedelta_range, date_range, Float64Index, _np_version_under1p10) import pandas.tslib as tslib import pandas.tseries.period as period import pandas.util.testing as tm from pandas.tests.test_base import Ops class TestDatetimeIndexOps(Ops): tz = [None, 'UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/Asia/Singapore', 'dateutil/US/Pacific'] def setUp(self): super(TestDatetimeIndexOps, self).setUp() mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): self.check_ops_properties( ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'week', 'dayofweek', 'dayofyear', 'quarter']) self.check_ops_properties(['date', 'time', 'microsecond', 'nanosecond', 'is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end', 'weekday_name'], lambda x: isinstance(x, DatetimeIndex)) def test_ops_properties_basic(self): # sanity check that the behavior didn't change # GH7206 for op in ['year', 'day', 'second', 'weekday']: self.assertRaises(TypeError, lambda x: getattr(self.dt_series, op)) # attribute access should still work! s = Series(dict(year=2000, month=1, day=10)) self.assertEqual(s.year, 2000) self.assertEqual(s.month, 1) self.assertEqual(s.day, 10) self.assertRaises(AttributeError, lambda: s.weekday) def test_asobject_tolist(self): idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [Timestamp('2013-01-31'), Timestamp('2013-02-28'), Timestamp('2013-03-31'), Timestamp('2013-04-30')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx', tz='Asia/Tokyo') expected_list = [Timestamp('2013-01-31', tz='Asia/Tokyo'), Timestamp('2013-02-28', tz='Asia/Tokyo'), Timestamp('2013-03-31', tz='Asia/Tokyo'), Timestamp('2013-04-30', tz='Asia/Tokyo')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = DatetimeIndex([datetime(2013, 1, 1), datetime(2013, 1, 2), pd.NaT, datetime(2013, 1, 4)], name='idx') expected_list = [Timestamp('2013-01-01'), Timestamp('2013-01-02'), pd.NaT, Timestamp('2013-01-04')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): for tz in self.tz: # monotonic idx1 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], tz=tz) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = pd.DatetimeIndex(['2011-01-01', pd.NaT, '2011-01-03', '2011-01-02', pd.NaT], tz=tz) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timestamp('2011-01-01', tz=tz)) self.assertEqual(idx.max(), Timestamp('2011-01-03', tz=tz)) self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = DatetimeIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = DatetimeIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = DatetimeIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') self.assertEqual(np.min(dr), Timestamp('2016-01-15 00:00:00', freq='D')) self.assertEqual(np.max(dr), Timestamp('2016-01-20 00:00:00', freq='D')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, dr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, dr, out=0) self.assertEqual(np.argmin(dr), 0) self.assertEqual(np.argmax(dr), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, dr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, dr, out=0) def test_round(self): for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=5, freq='30Min', tz=tz) elt = rng[1] expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 01:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(rng.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with tm.assertRaisesRegexp(ValueError, msg): rng.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, rng.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_repeat_range(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) self.assertIsNone(result.freq) self.assertEqual(len(result), 5 * len(rng)) for tz in self.tz: index = pd.date_range('2001-01-01', periods=2, freq='D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-02', '2001-01-02'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = pd.date_range('2001-01-01', periods=2, freq='2D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-03', '2001-01-03'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = pd.DatetimeIndex(['2001-01-01', 'NaT', '2003-01-01'], tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-01', 'NaT', 'NaT', 'NaT', '2003-01-01', '2003-01-01', '2003-01-01'], tz=tz) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) def test_repeat(self): reps = 2 msg = "the 'axis' parameter is not supported" for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=2, freq='30Min', tz=tz) expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), ]) res = rng.repeat(reps) tm.assert_index_equal(res, expected_rng) self.assertIsNone(res.freq) tm.assert_index_equal(np.repeat(rng, reps), expected_rng) tm.assertRaisesRegexp(ValueError, msg, np.repeat, rng, reps, axis=1) def test_representation(self): idx = [] idx.append(DatetimeIndex([], freq='D')) idx.append(DatetimeIndex(['2011-01-01'], freq='D')) idx.append(DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00' ], freq='H', tz='Asia/Tokyo')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='UTC')) exp = [] exp.append("""DatetimeIndex([], dtype='datetime64[ns]', freq='D')""") exp.append("DatetimeIndex(['2011-01-01'], dtype='datetime64[ns]', " "freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01 09:00:00+09:00', " "'2011-01-01 10:00:00+09:00', '2011-01-01 11:00:00+09:00']" ", dtype='datetime64[ns, Asia/Tokyo]', freq='H')") exp.append("DatetimeIndex(['2011-01-01 09:00:00-05:00', " "'2011-01-01 10:00:00-05:00', 'NaT'], " "dtype='datetime64[ns, US/Eastern]', freq=None)") exp.append("DatetimeIndex(['2011-01-01 09:00:00+00:00', " "'2011-01-01 10:00:00+00:00', 'NaT'], " "dtype='datetime64[ns, UTC]', freq=None)""") with pd.option_context('display.width', 300): for indx, expected in zip(idx, exp): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(indx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') idx7 = DatetimeIndex(['2011-01-01 09:00', '2011-01-02 10:15']) exp1 = """Series([], dtype: datetime64[ns])""" exp2 = """0 2011-01-01 dtype: datetime64[ns]""" exp3 = """0 2011-01-01 1 2011-01-02 dtype: datetime64[ns]""" exp4 = """0 2011-01-01 1 2011-01-02 2 2011-01-03 dtype: datetime64[ns]""" exp5 = """0 2011-01-01 09:00:00+09:00 1 2011-01-01 10:00:00+09:00 2 2011-01-01 11:00:00+09:00 dtype: datetime64[ns, Asia/Tokyo]""" exp6 = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 NaT dtype: datetime64[ns, US/Eastern]""" exp7 = """0 2011-01-01 09:00:00 1 2011-01-02 10:15:00 dtype: datetime64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7], [exp1, exp2, exp3, exp4, exp5, exp6, exp7]): result = repr(Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') exp1 = """DatetimeIndex: 0 entries Freq: D""" exp2 = """DatetimeIndex: 1 entries, 2011-01-01 to 2011-01-01 Freq: D""" exp3 = """DatetimeIndex: 2 entries, 2011-01-01 to 2011-01-02 Freq: D""" exp4 = """DatetimeIndex: 3 entries, 2011-01-01 to 2011-01-03 Freq: D""" exp5 = ("DatetimeIndex: 3 entries, 2011-01-01 09:00:00+09:00 " "to 2011-01-01 11:00:00+09:00\n" "Freq: H") exp6 = """DatetimeIndex: 3 entries, 2011-01-01 09:00:00-05:00 to NaT""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6], [exp1, exp2, exp3, exp4, exp5, exp6]): result = idx.summary() self.assertEqual(result, expected) def test_resolution(self): for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U'], ['day', 'day', 'day', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond']): for tz in self.tz: idx = pd.date_range(start='2013-04-01', periods=30, freq=freq, tz=tz) self.assertEqual(idx.resolution, expected) def test_union(self): for tz in self.tz: # union rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=10, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=8, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_union = rng.union(other) tm.assert_index_equal(result_union, expected) def test_add_iadd(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) result = rng + delta expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng + 1 expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add a datelike to a DatetimeIndex" with tm.assertRaisesRegexp(TypeError, msg): idx + Timestamp('2011-01-01') with tm.assertRaisesRegexp(TypeError, msg): Timestamp('2011-01-01') + idx def test_add_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now raises # TypeError (GH14164) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') with tm.assertRaises(TypeError): dti + dti with tm.assertRaises(TypeError): dti_tz + dti_tz with tm.assertRaises(TypeError): dti_tz + dti with tm.assertRaises(TypeError): dti + dti_tz def test_difference(self): for tz in self.tz: # diff rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=3, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_diff = rng.difference(other) tm.assert_index_equal(result_diff, expected) def test_sub_isub(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('1999-12-31 22:00', '2000-01-31 22:00', tz=tz) result = rng - delta tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng - 1 expected = pd.date_range('2000-01-01 08:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) def test_sub_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now changed to # return subtraction -> TimeDeltaIndex (GH ...) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') dti_tz2 = date_range('20130101', periods=3).tz_localize('UTC') expected = TimedeltaIndex([0, 0, 0]) result = dti - dti tm.assert_index_equal(result, expected) result = dti_tz - dti_tz tm.assert_index_equal(result, expected) with tm.assertRaises(TypeError): dti_tz - dti with tm.assertRaises(TypeError): dti - dti_tz with tm.assertRaises(TypeError): dti_tz - dti_tz2 # isub dti -= dti tm.assert_index_equal(dti, expected) # different length raises ValueError dti1 = date_range('20130101', periods=3) dti2 = date_range('20130101', periods=4) with tm.assertRaises(ValueError): dti1 - dti2 # NaN propagation dti1 = DatetimeIndex(['2012-01-01', np.nan, '2012-01-03']) dti2 = DatetimeIndex(['2012-01-02', '2012-01-03', np.nan]) expected = TimedeltaIndex(['1 days', np.nan, np.nan]) result = dti2 - dti1 tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'D']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_comp_nat(self): left = pd.DatetimeIndex([pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03')]) right = pd.DatetimeIndex([pd.NaT, pd.NaT, pd.Timestamp('2011-01-03')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 for tz in self.tz: idx = pd.date_range('2011-01-01 09:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = DatetimeIndex(np.repeat(idx.values, range(1, len(idx) + 1)), tz=tz) exp_idx = pd.date_range('2011-01-01 18:00', freq='-1H', periods=10, tz=tz) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = pd.date_range('2011-01-01 09:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(idx.unique(), expected) idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 08:00', '2013-01-01 08:00', pd.NaT], tz=tz) exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00'], tz=tz) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00', pd.NaT], tz=tz) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(DatetimeIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['2015', '2015', '2016'], ['2015', '2015', '2014'])): tm.assertIn(idx[0], idx) def test_order(self): # with freq idx1 = DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D', name='idx') idx2 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo', name='tzidx') for idx in [idx1, idx2]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assert_numpy_array_equal(indexer, np.array([2, 1, 0]), check_dtype=False) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) # without freq for tz in self.tz: idx1 = DatetimeIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], tz=tz, name='idx1') exp1 = DatetimeIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx1') idx2 = DatetimeIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], tz=tz, name='idx2') exp2 = DatetimeIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx2') idx3 = DatetimeIndex([pd.NaT, '2011-01-03', '2011-01-05', '2011-01-02', pd.NaT], tz=tz, name='idx3') exp3 = DatetimeIndex([pd.NaT, pd.NaT, '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx3') for idx, expected in [(idx1, exp1), (idx2, exp2), (idx3, exp3)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertIsNone(ordered.freq) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) def test_getitem(self): idx1 = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = pd.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx[0] self.assertEqual(result, Timestamp('2011-01-01', tz=idx.tz)) result = idx[0:5] expected = pd.date_range('2011-01-01', '2011-01-05', freq='D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[0:10:2] expected = pd.date_range('2011-01-01', '2011-01-09', freq='2D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[-20:-5:3] expected = pd.date_range('2011-01-12', '2011-01-24', freq='3D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[4::-1] expected = DatetimeIndex(['2011-01-05', '2011-01-04', '2011-01-03', '2011-01-02', '2011-01-01'], freq='-1D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) self.assertIsNone(idx_dup.freq) # freq is reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertIsNone(result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = pd.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx.take([0]) self.assertEqual(result, Timestamp('2011-01-01', tz=idx.tz)) result = idx.take([0, 1, 2]) expected = pd.date_range('2011-01-01', '2011-01-03', freq='D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([0, 2, 4]) expected = pd.date_range('2011-01-01', '2011-01-05', freq='2D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([7, 4, 1]) expected = pd.date_range('2011-01-08', '2011-01-02', freq='-3D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([3, 2, 5]) expected = DatetimeIndex(['2011-01-04', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) result = idx.take([-3, 2, 5]) expected = DatetimeIndex(['2011-01-29', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) def test_take_invalid_kwargs(self): idx = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assertRaisesRegexp(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['A', '2A', '-2A', 'Q', '-1Q', 'M', '-1M', 'D', '3D', '-3D', 'W', '-1W', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S']: idx = pd.date_range('2011-01-01 09:00:00', freq=freq, periods=10) result = pd.DatetimeIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) self.assertEqual(result.freq, freq) def test_nat_new(self): idx = pd.date_range('2011-01-01', freq='D', periods=5, name='x') result = idx._nat_new() exp = pd.DatetimeIndex([pd.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 for tz in self.tz: idx = pd.DatetimeIndex([], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) idx = pd.DatetimeIndex(['2011-01-01 10:00', '2011-01-01 11:00' '2011-01-01 12:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.DatetimeIndex(['2011-01-01 13:00', '2011-01-01 14:00' '2011-01-01 15:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.DatetimeIndex(['2011-01-01 07:00', '2011-01-01 08:00' '2011-01-01 09:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(-3, freq='H'), exp) def test_nat(self): self.assertIs(pd.DatetimeIndex._na_value, pd.NaT) self.assertIs(pd.DatetimeIndex([])._na_value, pd.NaT) for tz in [None, 'US/Eastern', 'UTC']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], tz=tz) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) self.assertFalse(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.DatetimeIndex(['2011-01-01', 'NaT'], tz=tz) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) self.assertTrue(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 for tz in [None, 'UTC', 'US/Eastern', 'Asia/Tokyo']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT']) self.assertTrue(idx.equals(idx)) self.assertTrue(idx.equals(idx.copy())) self.assertTrue(idx.equals(idx.asobject)) self.assertTrue(idx.asobject.equals(idx)) self.assertTrue(idx.asobject.equals(idx.asobject)) self.assertFalse(idx.equals(list(idx))) self.assertFalse(idx.equals(pd.Series(idx))) idx2 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT'], tz='US/Pacific') self.assertFalse(idx.equals(idx2)) self.assertFalse(idx.equals(idx2.copy())) self.assertFalse(idx.equals(idx2.asobject)) self.assertFalse(idx.asobject.equals(idx2)) self.assertFalse(idx.equals(list(idx2))) self.assertFalse(idx.equals(pd.Series(idx2))) # same internal, different tz idx3 = pd.DatetimeIndex._simple_new(idx.asi8, tz='US/Pacific') tm.assert_numpy_array_equal(idx.asi8, idx3.asi8) self.assertFalse(idx.equals(idx3)) self.assertFalse(idx.equals(idx3.copy())) self.assertFalse(idx.equals(idx3.asobject)) self.assertFalse(idx.asobject.equals(idx3)) self.assertFalse(idx.equals(list(idx3))) self.assertFalse(idx.equals(pd.Series(idx3))) class TestTimedeltaIndexOps(Ops): def setUp(self): super(TestTimedeltaIndexOps, self).setUp() mask = lambda x: isinstance(x, TimedeltaIndex) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [] def test_ops_properties(self): self.check_ops_properties(['days', 'hours', 'minutes', 'seconds', 'milliseconds']) self.check_ops_properties(['microseconds', 'nanoseconds']) def test_asobject_tolist(self): idx = timedelta_range(start='1 days', periods=4, freq='D', name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), Timedelta('3 days'), Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = TimedeltaIndex([timedelta(days=1), timedelta(days=2), pd.NaT, timedelta(days=4)], name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), pd.NaT, Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): # monotonic idx1 = TimedeltaIndex(['1 days', '2 days', '3 days']) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = TimedeltaIndex(['1 days', np.nan, '3 days', 'NaT']) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timedelta('1 days')), self.assertEqual(idx.max(), Timedelta('3 days')), self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = TimedeltaIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') td = TimedeltaIndex(np.asarray(dr)) self.assertEqual(np.min(td), Timedelta('16815 days')) self.assertEqual(np.max(td), Timedelta('16820 days')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, td, out=0) self.assertEqual(np.argmin(td), 0) self.assertEqual(np.argmax(td), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, td, out=0) def test_round(self): td = pd.timedelta_range(start='16801 days', periods=5, freq='30Min') elt = td[1] expected_rng = TimedeltaIndex([ Timedelta('16801 days 00:00:00'), Timedelta('16801 days 00:00:00'), Timedelta('16801 days 01:00:00'), Timedelta('16801 days 02:00:00'), Timedelta('16801 days 02:00:00'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(td.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with self.assertRaisesRegexp(ValueError, msg): td.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, td.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_representation(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex([], dtype='timedelta64[ns]', freq='D')""" exp2 = ("TimedeltaIndex(['1 days'], dtype='timedelta64[ns]', " "freq='D')") exp3 = ("TimedeltaIndex(['1 days', '2 days'], " "dtype='timedelta64[ns]', freq='D')") exp4 = ("TimedeltaIndex(['1 days', '2 days', '3 days'], " "dtype='timedelta64[ns]', freq='D')") exp5 = ("TimedeltaIndex(['1 days 00:00:01', '2 days 00:00:00', " "'3 days 00:00:00'], dtype='timedelta64[ns]', freq=None)") with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """Series([], dtype: timedelta64[ns])""" exp2 = """0 1 days dtype: timedelta64[ns]""" exp3 = """0 1 days 1 2 days dtype: timedelta64[ns]""" exp4 = """0 1 days 1 2 days 2 3 days dtype: timedelta64[ns]""" exp5 = """0 1 days 00:00:01 1 2 days 00:00:00 2 3 days 00:00:00 dtype: timedelta64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex: 0 entries Freq: D""" exp2 = """TimedeltaIndex: 1 entries, 1 days to 1 days Freq: D""" exp3 = """TimedeltaIndex: 2 entries, 1 days to 2 days Freq: D""" exp4 = """TimedeltaIndex: 3 entries, 1 days to 3 days Freq: D""" exp5 = ("TimedeltaIndex: 3 entries, 1 days 00:00:01 to 3 days " "00:00:00") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = idx.summary() self.assertEqual(result, expected) def test_add_iadd(self): # only test adding/sub offsets as + is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng + delta expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng + 1 expected = timedelta_range('1 days 10:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_sub_isub(self): # only test adding/sub offsets as - is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng - delta expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng - 1 expected = timedelta_range('1 days 08:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) idx = TimedeltaIndex(['1 day', '2 day']) msg = "cannot subtract a datelike from a TimedeltaIndex" with tm.assertRaisesRegexp(TypeError, msg): idx - Timestamp('2011-01-01') result = Timestamp('2011-01-01') + idx expected = DatetimeIndex(['2011-01-02', '2011-01-03']) tm.assert_index_equal(result, expected) def test_ops_compat(self): offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] rng = timedelta_range('1 days', '10 days', name='foo') # multiply for offset in offsets: self.assertRaises(TypeError, lambda: rng * offset) # divide expected = Int64Index((np.arange(10) + 1) * 12, name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected, exact=False) # divide with nats rng = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') expected = Float64Index([12, np.nan, 24], name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected) # don't allow division by NaT (make could in the future) self.assertRaises(TypeError, lambda: rng / pd.NaT) def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') self.assertRaises(TypeError, lambda: tdi - dt) self.assertRaises(TypeError, lambda: tdi - dti) self.assertRaises(TypeError, lambda: td - dt) self.assertRaises(TypeError, lambda: td - dti) result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): self.assertEqual(result, expected) self.assertIsInstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches self.assertRaises(TypeError, lambda: dt_tz - ts) self.assertRaises(TypeError, lambda: dt_tz - dt) self.assertRaises(TypeError, lambda: dt_tz - ts_tz2) self.assertRaises(TypeError, lambda: dt - dt_tz) self.assertRaises(TypeError, lambda: ts - dt_tz) self.assertRaises(TypeError, lambda: ts_tz2 - ts) self.assertRaises(TypeError, lambda: ts_tz2 - dt) self.assertRaises(TypeError, lambda: ts_tz - ts_tz2) # with dti self.assertRaises(TypeError, lambda: dti - ts_tz) self.assertRaises(TypeError, lambda: dti_tz - ts) self.assertRaises(TypeError, lambda: dti_tz - ts_tz2) result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'H']: idx = pd.TimedeltaIndex(['1 hours', '2 hours'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length self.assertRaises(ValueError, lambda: tdi + dti[0:1]) self.assertRaises(ValueError, lambda: tdi[0:1] + dti) # random indexes self.assertRaises(TypeError, lambda: tdi + Int64Index([1, 2, 3])) # this is a union! # self.assertRaises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') self.assertEqual(result, expected) result = td + dt expected = Timestamp('20130102') self.assertEqual(result, expected) def test_comp_nat(self): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 idx = timedelta_range('1 days 09:00:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = TimedeltaIndex(np.repeat(idx.values, range(1, len(idx) + 1))) exp_idx = timedelta_range('1 days 18:00:00', freq='-1H', periods=10) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = timedelta_range('1 days 09:00:00', freq='H', periods=10) tm.assert_index_equal(idx.unique(), expected) idx = TimedeltaIndex(['1 days 09:00:00', '1 days 09:00:00', '1 days 09:00:00', '1 days 08:00:00', '1 days 08:00:00', pd.NaT]) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00']) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00', pd.NaT]) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(TimedeltaIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['00:01:00', '00:01:00', '00:02:00'], ['00:01:00', '00:01:00', '00:00:01'])): tm.assertIn(idx[0], idx) def test_unknown_attribute(self): # GH 9680 tdi = pd.timedelta_range(start=0, periods=10, freq='1s') ts = pd.Series(np.random.normal(size=10), index=tdi) self.assertNotIn('foo', ts.__dict__.keys()) self.assertRaises(AttributeError, lambda: ts.foo) def test_order(self): # GH 10295 idx1 = TimedeltaIndex(['1 day', '2 day', '3 day'], freq='D', name='idx') idx2 = TimedeltaIndex( ['1 hour', '2 hour', '3 hour'], freq='H', name='idx') for idx in [idx1, idx2]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, idx[::-1]) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) idx1 = TimedeltaIndex(['1 hour', '3 hour', '5 hour', '2 hour ', '1 hour'], name='idx1') exp1 = TimedeltaIndex(['1 hour', '1 hour', '2 hour', '3 hour', '5 hour'], name='idx1') idx2 = TimedeltaIndex(['1 day', '3 day', '5 day', '2 day', '1 day'], name='idx2') # TODO(wesm): unused? # exp2 = TimedeltaIndex(['1 day', '1 day', '2 day', # '3 day', '5 day'], name='idx2') # idx3 = TimedeltaIndex([pd.NaT, '3 minute', '5 minute', # '2 minute', pd.NaT], name='idx3') # exp3 = TimedeltaIndex([pd.NaT, pd.NaT, '2 minute', '3 minute', # '5 minute'], name='idx3') for idx, expected in [(idx1, exp1), (idx1, exp1), (idx1, exp1)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertIsNone(ordered.freq) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) def test_getitem(self): idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx[0] self.assertEqual(result, pd.Timedelta('1 day')) result = idx[0:5] expected = pd.timedelta_range('1 day', '5 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[0:10:2] expected = pd.timedelta_range('1 day', '9 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[-20:-5:3] expected = pd.timedelta_range('12 day', '24 day', freq='3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[4::-1] expected = TimedeltaIndex(['5 day', '4 day', '3 day', '2 day', '1 day'], freq='-1D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) self.assertIsNone(idx_dup.freq) # freq is reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertIsNone(result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx.take([0]) self.assertEqual(result, pd.Timedelta('1 day')) result = idx.take([-1]) self.assertEqual(result, pd.Timedelta('31 day')) result = idx.take([0, 1, 2]) expected = pd.timedelta_range('1 day', '3 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([0, 2, 4]) expected = pd.timedelta_range('1 day', '5 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([7, 4, 1]) expected = pd.timedelta_range('8 day', '2 day', freq='-3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([3, 2, 5]) expected = TimedeltaIndex(['4 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) result = idx.take([-3, 2, 5]) expected = TimedeltaIndex(['29 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) def test_take_invalid_kwargs(self): idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assertRaisesRegexp(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['D', '3D', '-3D', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S' ]: idx = pd.timedelta_range('1', freq=freq, periods=10) result = pd.TimedeltaIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) self.assertEqual(result.freq, freq) def test_nat_new(self): idx = pd.timedelta_range('1', freq='D', periods=5, name='x') result = idx._nat_new() exp = pd.TimedeltaIndex([pd.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 idx = pd.TimedeltaIndex([], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) idx = pd.TimedeltaIndex(['5 hours', '6 hours', '9 hours'], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.TimedeltaIndex(['8 hours', '9 hours', '12 hours'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.TimedeltaIndex(['2 hours', '3 hours', '6 hours'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='H'), exp) tm.assert_index_equal(idx.shift(0, freq='T'), idx) exp = pd.TimedeltaIndex(['05:03:00', '06:03:00', '9:03:00'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='T'), exp) exp = pd.TimedeltaIndex(['04:57:00', '05:57:00', '8:57:00'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='T'), exp) def test_repeat(self): index = pd.timedelta_range('1 days', periods=2, freq='D') exp = pd.TimedeltaIndex(['1 days', '1 days', '2 days', '2 days']) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = TimedeltaIndex(['1 days', 'NaT', '3 days']) exp = TimedeltaIndex(['1 days', '1 days', '1 days', 'NaT', 'NaT', 'NaT', '3 days', '3 days', '3 days']) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) def test_nat(self): self.assertIs(pd.TimedeltaIndex._na_value, pd.NaT) self.assertIs(pd.TimedeltaIndex([])._na_value, pd.NaT) idx = pd.TimedeltaIndex(['1 days', '2 days']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) self.assertFalse(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.TimedeltaIndex(['1 days', 'NaT']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) self.assertTrue(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 idx = pd.TimedeltaIndex(['1 days', '2 days', 'NaT']) self.assertTrue(idx.equals(idx)) self.assertTrue(idx.equals(idx.copy())) self.assertTrue(idx.equals(idx.asobject)) self.assertTrue(idx.asobject.equals(idx)) self.assertTrue(idx.asobject.equals(idx.asobject)) self.assertFalse(idx.equals(list(idx))) self.assertFalse(idx.equals(pd.Series(idx))) idx2 = pd.TimedeltaIndex(['2 days', '1 days', 'NaT']) self.assertFalse(idx.equals(idx2)) self.assertFalse(idx.equals(idx2.copy())) self.assertFalse(idx.equals(idx2.asobject)) self.assertFalse(idx.asobject.equals(idx2)) self.assertFalse(idx.asobject.equals(idx2.asobject)) self.assertFalse(idx.equals(list(idx2))) self.assertFalse(idx.equals(pd.Series(idx2))) class TestPeriodIndexOps(Ops): def setUp(self): super(TestPeriodIndexOps, self).setUp() mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): self.check_ops_properties( ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'week', 'dayofweek', 'dayofyear', 'quarter']) self.check_ops_properties(['qyear'], lambda x: isinstance(x, PeriodIndex)) def test_asobject_tolist(self): idx = pd.period_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [pd.Period('2013-01-31', freq='M'), pd.Period('2013-02-28', freq='M'), pd.Period('2013-03-31', freq='M'), pd.Period('2013-04-30', freq='M')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = PeriodIndex(['2013-01-01', '2013-01-02', 'NaT', '2013-01-04'], freq='D', name='idx') expected_list = [pd.Period('2013-01-01', freq='D'), pd.Period('2013-01-02', freq='D'), pd.Period('NaT', freq='D'), pd.Period('2013-01-04', freq='D')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) tm.assert_index_equal(result, expected) for i in [0, 1, 3]: self.assertEqual(result[i], expected[i]) self.assertIs(result[2], pd.NaT) self.assertEqual(result.name, expected.name) result_list = idx.tolist() for i in [0, 1, 3]: self.assertEqual(result_list[i], expected_list[i]) self.assertIs(result_list[2], pd.NaT) def test_minmax(self): # monotonic idx1 = pd.PeriodIndex([pd.NaT, '2011-01-01', '2011-01-02', '2011-01-03'], freq='D') self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = pd.PeriodIndex(['2011-01-01', pd.NaT, '2011-01-03', '2011-01-02', pd.NaT], freq='D') self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), pd.Period('2011-01-01', freq='D')) self.assertEqual(idx.max(), pd.Period('2011-01-03', freq='D')) self.assertEqual(idx1.argmin(), 1) self.assertEqual(idx2.argmin(), 0) self.assertEqual(idx1.argmax(), 3) self.assertEqual(idx2.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = PeriodIndex([], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) obj = PeriodIndex([pd.NaT], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) obj = PeriodIndex([pd.NaT, pd.NaT, pd.NaT], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) def test_numpy_minmax(self): pr = pd.period_range(start='2016-01-15', end='2016-01-20') self.assertEqual(np.min(pr), Period('2016-01-15', freq='D')) self.assertEqual(np.max(pr), Period('2016-01-20', freq='D')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, pr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, pr, out=0) self.assertEqual(np.argmin(pr), 0) self.assertEqual(np.argmax(pr), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, pr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, pr, out=0) def test_representation(self): # GH 7601 idx1 = PeriodIndex([], freq='D') idx2 = PeriodIndex(['2011-01-01'], freq='D') idx3 = PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = PeriodIndex(['2011', '2012', '2013'], freq='A') idx6 = PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], freq='H') idx7 = pd.period_range('2013Q1', periods=1, freq="Q") idx8 = pd.period_range('2013Q1', periods=2, freq="Q") idx9 = pd.period_range('2013Q1', periods=3, freq="Q") idx10 = PeriodIndex(['2011-01-01', '2011-02-01'], freq='3D') exp1 = """PeriodIndex([], dtype='period[D]', freq='D')""" exp2 = """PeriodIndex(['2011-01-01'], dtype='period[D]', freq='D')""" exp3 = ("PeriodIndex(['2011-01-01', '2011-01-02'], dtype='period[D]', " "freq='D')") exp4 = ("PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], " "dtype='period[D]', freq='D')") exp5 = ("PeriodIndex(['2011', '2012', '2013'], dtype='period[A-DEC]', " "freq='A-DEC')") exp6 = ("PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], " "dtype='period[H]', freq='H')") exp7 = ("PeriodIndex(['2013Q1'], dtype='period[Q-DEC]', " "freq='Q-DEC')") exp8 = ("PeriodIndex(['2013Q1', '2013Q2'], dtype='period[Q-DEC]', " "freq='Q-DEC')") exp9 = ("PeriodIndex(['2013Q1', '2013Q2', '2013Q3'], " "dtype='period[Q-DEC]', freq='Q-DEC')") exp10 = ("PeriodIndex(['2011-01-01', '2011-02-01'], " "dtype='period[3D]', freq='3D')") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7, idx8, idx9, idx10], [exp1, exp2, exp3, exp4, exp5, exp6, exp7, exp8, exp9, exp10]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): # GH 10971 idx1 = PeriodIndex([], freq='D') idx2 = PeriodIndex(['2011-01-01'], freq='D') idx3 = PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = PeriodIndex(['2011', '2012', '2013'], freq='A') idx6 = PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], freq='H') idx7 = pd.period_range('2013Q1', periods=1, freq="Q") idx8 = pd.period_range('2013Q1', periods=2, freq="Q") idx9 = pd.period_range('2013Q1', periods=3, freq="Q") exp1 = """Series([], dtype: object)""" exp2 = """0 2011-01-01 dtype: object""" exp3 = """0 2011-01-01 1 2011-01-02 dtype: object""" exp4 = """0 2011-01-01 1 2011-01-02 2 2011-01-03 dtype: object""" exp5 = """0 2011 1 2012 2 2013 dtype: object""" exp6 = """0 2011-01-01 09:00 1 2012-02-01 10:00 2 NaT dtype: object""" exp7 = """0 2013Q1 dtype: object""" exp8 = """0 2013Q1 1 2013Q2 dtype: object""" exp9 = """0 2013Q1 1 2013Q2 2 2013Q3 dtype: object""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7, idx8, idx9], [exp1, exp2, exp3, exp4, exp5, exp6, exp7, exp8, exp9]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = PeriodIndex([], freq='D') idx2 = PeriodIndex(['2011-01-01'], freq='D') idx3 = PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = PeriodIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = PeriodIndex(['2011', '2012', '2013'], freq='A') idx6 = PeriodIndex( ['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], freq='H') idx7 = pd.period_range('2013Q1', periods=1, freq="Q") idx8 = pd.period_range('2013Q1', periods=2, freq="Q") idx9 = pd.period_range('2013Q1', periods=3, freq="Q") exp1 = """PeriodIndex: 0 entries Freq: D""" exp2 = """PeriodIndex: 1 entries, 2011-01-01 to 2011-01-01 Freq: D""" exp3 = """PeriodIndex: 2 entries, 2011-01-01 to 2011-01-02 Freq: D""" exp4 = """PeriodIndex: 3 entries, 2011-01-01 to 2011-01-03 Freq: D""" exp5 = """PeriodIndex: 3 entries, 2011 to 2013 Freq: A-DEC""" exp6 = """PeriodIndex: 3 entries, 2011-01-01 09:00 to NaT Freq: H""" exp7 = """PeriodIndex: 1 entries, 2013Q1 to 2013Q1 Freq: Q-DEC""" exp8 = """PeriodIndex: 2 entries, 2013Q1 to 2013Q2 Freq: Q-DEC""" exp9 = """PeriodIndex: 3 entries, 2013Q1 to 2013Q3 Freq: Q-DEC""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7, idx8, idx9], [exp1, exp2, exp3, exp4, exp5, exp6, exp7, exp8, exp9]): result = idx.summary() self.assertEqual(result, expected) def test_resolution(self): for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U'], ['day', 'day', 'day', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond']): idx = pd.period_range(start='2013-04-01', periods=30, freq=freq) self.assertEqual(idx.resolution, expected) def test_union(self): # union rng1 = pd.period_range('1/1/2000', freq='D', periods=5) other1 = pd.period_range('1/6/2000', freq='D', periods=5) expected1 = pd.period_range('1/1/2000', freq='D', periods=10) rng2 = pd.period_range('1/1/2000', freq='D', periods=5) other2 = pd.period_range('1/4/2000', freq='D', periods=5) expected2 = pd.period_range('1/1/2000', freq='D', periods=8) rng3 = pd.period_range('1/1/2000', freq='D', periods=5) other3 = pd.PeriodIndex([], freq='D') expected3 = pd.period_range('1/1/2000', freq='D', periods=5) rng4 = pd.period_range('2000-01-01 09:00', freq='H', periods=5) other4 = pd.period_range('2000-01-02 09:00', freq='H', periods=5) expected4 = pd.PeriodIndex(['2000-01-01 09:00', '2000-01-01 10:00', '2000-01-01 11:00', '2000-01-01 12:00', '2000-01-01 13:00', '2000-01-02 09:00', '2000-01-02 10:00', '2000-01-02 11:00', '2000-01-02 12:00', '2000-01-02 13:00'], freq='H') rng5 = pd.PeriodIndex(['2000-01-01 09:01', '2000-01-01 09:03', '2000-01-01 09:05'], freq='T') other5 = pd.PeriodIndex(['2000-01-01 09:01', '2000-01-01 09:05' '2000-01-01 09:08'], freq='T') expected5 = pd.PeriodIndex(['2000-01-01 09:01', '2000-01-01 09:03', '2000-01-01 09:05', '2000-01-01 09:08'], freq='T') rng6 = pd.period_range('2000-01-01', freq='M', periods=7) other6 = pd.period_range('2000-04-01', freq='M', periods=7) expected6 = pd.period_range('2000-01-01', freq='M', periods=10) rng7 = pd.period_range('2003-01-01', freq='A', periods=5) other7 = pd.period_range('1998-01-01', freq='A', periods=8) expected7 = pd.period_range('1998-01-01', freq='A', periods=10) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3), (rng4, other4, expected4), (rng5, other5, expected5), (rng6, other6, expected6), (rng7, other7, expected7)]: result_union = rng.union(other) tm.assert_index_equal(result_union, expected) def test_add_iadd(self): rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) # previously performed setop union, now raises TypeError (GH14164) with tm.assertRaises(TypeError): rng + other with tm.assertRaises(TypeError): rng += other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng + pd.offsets.YearEnd(5) expected = pd.period_range('2019', '2029', freq='A') tm.assert_index_equal(result, expected) rng += pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: msg = ('Input has different freq(=.+)? ' 'from PeriodIndex\\(freq=A-DEC\\)') with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng + o rng = pd.period_range('2014-01', '2016-12', freq='M') result = rng + pd.offsets.MonthEnd(5) expected = pd.period_range('2014-06', '2017-05', freq='M') tm.assert_index_equal(result, expected) rng += pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: rng = pd.period_range('2014-01', '2016-12', freq='M') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=M\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng + o # Tick offsets = [pd.offsets.Day(3), timedelta(days=3), np.timedelta64(3, 'D'), pd.offsets.Hour(72), timedelta(minutes=60 * 24 * 3), np.timedelta64(72, 'h'), Timedelta('72:00:00')] for delta in offsets: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') result = rng + delta expected = pd.period_range('2014-05-04', '2014-05-18', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23), Timedelta('23:00:00')]: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=D\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng + o offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), pd.offsets.Minute(120), timedelta(minutes=120), np.timedelta64(120, 'm'), Timedelta(minutes=120)] for delta in offsets: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') result = rng + delta expected = pd.period_range('2014-01-01 12:00', '2014-01-05 12:00', freq='H') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for delta in [pd.offsets.YearBegin(2), timedelta(minutes=30), np.timedelta64(30, 's'), Timedelta(seconds=30)]: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=H\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): result = rng + delta with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng += delta # int rng = pd.period_range('2000-01-01 09:00', freq='H', periods=10) result = rng + 1 expected = pd.period_range('2000-01-01 10:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_difference(self): # diff rng1 = pd.period_range('1/1/2000', freq='D', periods=5) other1 = pd.period_range('1/6/2000', freq='D', periods=5) expected1 = pd.period_range('1/1/2000', freq='D', periods=5) rng2 = pd.period_range('1/1/2000', freq='D', periods=5) other2 = pd.period_range('1/4/2000', freq='D', periods=5) expected2 = pd.period_range('1/1/2000', freq='D', periods=3) rng3 = pd.period_range('1/1/2000', freq='D', periods=5) other3 = pd.PeriodIndex([], freq='D') expected3 = pd.period_range('1/1/2000', freq='D', periods=5) rng4 = pd.period_range('2000-01-01 09:00', freq='H', periods=5) other4 = pd.period_range('2000-01-02 09:00', freq='H', periods=5) expected4 = rng4 rng5 = pd.PeriodIndex(['2000-01-01 09:01', '2000-01-01 09:03', '2000-01-01 09:05'], freq='T') other5 = pd.PeriodIndex( ['2000-01-01 09:01', '2000-01-01 09:05'], freq='T') expected5 = pd.PeriodIndex(['2000-01-01 09:03'], freq='T') rng6 = pd.period_range('2000-01-01', freq='M', periods=7) other6 = pd.period_range('2000-04-01', freq='M', periods=7) expected6 = pd.period_range('2000-01-01', freq='M', periods=3) rng7 = pd.period_range('2003-01-01', freq='A', periods=5) other7 = pd.period_range('1998-01-01', freq='A', periods=8) expected7 = pd.period_range('2006-01-01', freq='A', periods=2) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3), (rng4, other4, expected4), (rng5, other5, expected5), (rng6, other6, expected6), (rng7, other7, expected7), ]: result_union = rng.difference(other) tm.assert_index_equal(result_union, expected) def test_sub_isub(self): # previously performed setop, now raises TypeError (GH14164) # TODO needs to wait on #13077 for decision on result type rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) with tm.assertRaises(TypeError): rng - other with tm.assertRaises(TypeError): rng -= other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng - pd.offsets.YearEnd(5) expected = pd.period_range('2009', '2019', freq='A') tm.assert_index_equal(result, expected) rng -= pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: rng = pd.period_range('2014', '2024', freq='A') msg = ('Input has different freq(=.+)? ' 'from PeriodIndex\\(freq=A-DEC\\)') with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng - o rng = pd.period_range('2014-01', '2016-12', freq='M') result = rng - pd.offsets.MonthEnd(5) expected = pd.period_range('2013-08', '2016-07', freq='M') tm.assert_index_equal(result, expected) rng -= pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: rng = pd.period_range('2014-01', '2016-12', freq='M') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=M\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng - o # Tick offsets = [pd.offsets.Day(3), timedelta(days=3), np.timedelta64(3, 'D'), pd.offsets.Hour(72), timedelta(minutes=60 * 24 * 3), np.timedelta64(72, 'h')] for delta in offsets: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') result = rng - delta expected = pd.period_range('2014-04-28', '2014-05-12', freq='D') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23)]: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=D\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng - o offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), pd.offsets.Minute(120), timedelta(minutes=120), np.timedelta64(120, 'm')] for delta in offsets: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') result = rng - delta expected = pd.period_range('2014-01-01 08:00', '2014-01-05 08:00', freq='H') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) for delta in [pd.offsets.YearBegin(2), timedelta(minutes=30), np.timedelta64(30, 's')]: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=H\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): result = rng + delta with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng += delta # int rng = pd.period_range('2000-01-01 09:00', freq='H', periods=10) result = rng - 1 expected = pd.period_range('2000-01-01 08:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) def test_comp_nat(self): left = pd.PeriodIndex([pd.Period('2011-01-01'), pd.NaT, pd.Period('2011-01-03')]) right = pd.PeriodIndex([pd.NaT, pd.NaT, pd.Period('2011-01-03')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 idx = pd.period_range('2011-01-01 09:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = PeriodIndex(np.repeat(idx.values, range(1, len(idx) + 1)), freq='H') exp_idx = PeriodIndex(['2011-01-01 18:00', '2011-01-01 17:00', '2011-01-01 16:00', '2011-01-01 15:00', '2011-01-01 14:00', '2011-01-01 13:00', '2011-01-01 12:00', '2011-01-01 11:00', '2011-01-01 10:00', '2011-01-01 09:00'], freq='H') expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = pd.period_range('2011-01-01 09:00', freq='H', periods=10) tm.assert_index_equal(idx.unique(), expected) idx = PeriodIndex(['2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 08:00', '2013-01-01 08:00', pd.NaT], freq='H') exp_idx = PeriodIndex(['2013-01-01 09:00', '2013-01-01 08:00'], freq='H') expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = PeriodIndex(['2013-01-01 09:00', '2013-01-01 08:00', pd.NaT], freq='H') expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.period_range('2011-01-01', '2011-01-31', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) # freq will not be reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.period_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5])
tm.assert_index_equal(res, exp)
pandas.util.testing.assert_index_equal
# Copyright 2021 VicEdTools authors # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for importing data into OARS.""" from datetime import datetime import re import numpy as np import pandas as pd # Todo: Transition from only adding maths/english class codes to adding all # relevant class codes as tags from the student enrolment data def class_selector(class_string: str) -> pd.Series: '''Identifies whether a given class name is an english or maths class. Args: class_string: a class code string Returns: A pandas Series containing two items, "Maths"/"English" and the class code. ''' # maths pattern pattern = "(?P<class_code>[789]MA[BEFG][0-9]|10MA[PQRSTU][X]?[0-9]|11FM[PQRSTU][0-9])" match = re.match(pattern, class_string) if match: class_code = match.group("class_code") return pd.Series(["Maths", class_code]) # english/eal pattern pattern = "(?P<class_code>[789]EN[BEFG][0-9]|10EN[PQRSTU][0-9]|[789]EAL[BEFG][0-9]?|10EAL[PQRSTU][0-9]?)" match = re.match(pattern, class_string) if match: class_code = match.group("class_code") return pd.Series(["English", class_code]) # else return pd.Series([None, None]) def student_imports(student_details_file: str, student_enrolment_file: str, current_students_file: str, new_students_file: str, update_students_file: str) -> None: '''Creates files to update the OARS student database. Creates two separate files, one to update the details of existing students in the database and one to add new students. Args: student_details_file: a student details export csv from Compass. Can be downloaded using vicedtools.compass.export_student_details or directly from https://[schoolID].compass.education/Services/FileDownload/CsvRequestHandler?type=37 student_enrolment_file: a student enrolment file exported from Compass. Can be downloaded using vicedtools.compass.export_student_enrolments current_students_file: a current students export from OARS new_students_file: the filename to save the new students import for OARS update_students_file: the filename to save the update students import for OARS ''' existing_students_df = pd.read_excel(current_students_file) student_details_df =
pd.read_csv(student_details_file, dtype=np.str)
pandas.read_csv
# -*- coding: utf-8 -*- import torch from pytorch_fid import fid_score import pandas as pd from glob import glob import os, argparse import numpy as np # %% device = torch.device('cuda' if (torch.cuda.is_available()) else 'cpu') batch_size = 50 dim = 2048 #path1 = './Datasets/Zurich_patches/fold2/patch_tlevel1/A/test' #path2 = './Datasets/Zurich_patches_fake/fold2/patch_tlevel1/cyc_A' # %% #fid_value = fid_score.calculate_fid_given_paths( # [path1, path2], # batch_size, device, dim) # %% def calculate_FIDs(dataset, fold=1): # dataset='Zurich' # fold=1 assert dataset in ['Balvan', 'Eliceiri', 'Zurich'], "dataset must be in ['Balvan', 'Eliceiri', 'Zurich']" if dataset == 'Eliceiri': dataroot_real = f'./Datasets/{dataset}_patches' dataroot_fake = f'./Datasets/{dataset}_patches_fake' dataroot_train = f'./Datasets/{dataset}_temp' else: dataroot_real = f'./Datasets/{dataset}_patches/fold{fold}' dataroot_fake = f'./Datasets/{dataset}_patches_fake/fold{fold}' dataroot_train = f'./Datasets/{dataset}_temp/fold{fold}' gan_names = ['train2testA', 'train2testB', 'testA', 'testB', 'B2A', 'cyc_A', 'cyc_B', 'drit_A', 'drit_B', 'p2p_A', 'p2p_B', 'star_A', 'star_B', 'comir'] # gan_names = ['cyc_A', 'cyc_B', 'drit_A', 'drit_B', 'p2p_A', 'p2p_B', 'star_A', 'star_B', 'comir', 'B2A'] # csv information header = [ 'Dataset', 'Fold', 'Tlevel', 'GAN_name', 'Path_fake', 'Path_real', 'FID', ] df = pd.DataFrame(columns=header) row_dict = {'Dataset': dataset, 'Fold': fold} for tlevel in [int(tl[-1]) for tl in glob(f'{dataroot_fake}/patch_tlevel*')]: row_dict['Tlevel'] = tlevel for gan_name in gan_names: row_dict['GAN_name'] = gan_name if gan_name in ['train2testA', 'train2testB']: row_dict['Path_fake'] = f'{dataroot_train}/{gan_name[-1]}/train/' row_dict['Path_real'] = f'{dataroot_real}/patch_tlevel{tlevel}/{gan_name[-1]}/test/' elif gan_name in ['testA', 'testB']: row_dict['Path_fake'] = f'{dataroot_real}/patch_tlevel{tlevel}/{gan_name[-1]}/test/' row_dict['Path_real'] = f'{dataroot_real}/patch_tlevel{tlevel}/{gan_name[-1]}/test/' elif gan_name == 'comir': row_dict['Path_fake'] = f'{dataroot_fake}/patch_tlevel{tlevel}/{gan_name}_A/' row_dict['Path_real'] = f'{dataroot_fake}/patch_tlevel{tlevel}/{gan_name}_B/' elif gan_name == 'B2A': row_dict['Path_fake'] = f'{dataroot_real}/patch_tlevel{tlevel}/A/test/' row_dict['Path_real'] = f'{dataroot_real}/patch_tlevel{tlevel}/B/test/' else: row_dict['Path_fake'] = f'{dataroot_fake}/patch_tlevel{tlevel}/{gan_name}/' row_dict['Path_real'] = f'{dataroot_real}/patch_tlevel{tlevel}/{gan_name[-1]}/test/' row_dict['FID'] = fid_score.calculate_fid_given_paths( [ row_dict['Path_fake'], row_dict['Path_real'] ], batch_size, device, dim) df = df.append(row_dict, ignore_index=True) result_dir = dataroot_fake if not os.path.exists(result_dir): os.makedirs(result_dir) df.to_csv(f'{result_dir}/FIDs.csv') return # %% def calculate_FIDs_3D(dataset, fold=1): # dataset='RIRE' # fold=1 assert dataset in ['RIRE'], "dataset must be in ['RIRE']" dataroot_real = f'./Datasets/{dataset}_patches_forFID/real/fold{fold}' dataroot_fake = f'./Datasets/{dataset}_patches_forFID/fake/fold{fold}' gan_names = ['cyc_A', 'cyc_B', 'drit_A', 'drit_B', 'p2p_A', 'p2p_B', 'star_A', 'star_B', 'comir', 'B2A'] # csv information header = [ 'Dataset', 'Fold', 'Tlevel', 'GAN_name', 'Path_fake', 'Path_real', 'FID', ] df = pd.DataFrame(columns=header) row_dict = {'Dataset': dataset, 'Fold': fold} row_dict['Tlevel'] = 1 for gan_name in gan_names: row_dict['GAN_name'] = gan_name if gan_name == 'comir': row_dict['Path_fake'] = f'{dataroot_fake}/{gan_name}_A/' row_dict['Path_real'] = f'{dataroot_fake}/{gan_name}_B/' elif gan_name == 'B2A': row_dict['Path_fake'] = f'{dataroot_real}/A/test/' row_dict['Path_real'] = f'{dataroot_real}/B/test/' else: row_dict['Path_fake'] = f'{dataroot_fake}/{gan_name}/' row_dict['Path_real'] = f'{dataroot_real}/{gan_name[-1]}/test/' row_dict['FID'] = fid_score.calculate_fid_given_paths( [ row_dict['Path_fake'], row_dict['Path_real'] ], batch_size, device, dim) df = df.append(row_dict, ignore_index=True) result_dir = dataroot_fake if not os.path.exists(result_dir): os.makedirs(result_dir) df.to_csv(f'{result_dir}/FIDs.csv') return # %% def make_FID_success_table(dataset, preprocess='nopre'): # dataset='Zurich' # fold=1 assert dataset in ['Balvan', 'Eliceiri', 'Zurich'], "dataset must be in ['Balvan', 'Eliceiri', 'Zurich']" if dataset == 'Eliceiri': dataroot_real = f'./Datasets/{dataset}_patches' path_FIDcsv = f'./Datasets/{dataset}_patches_fake' w = 834 folds = [''] else: dataroot_real = f'./Datasets/{dataset}_patches/fold{{fold}}' path_FIDcsv = f'./Datasets/{dataset}_patches_fake/fold*' w = 300 folds = [1, 2, 3] def success_rate(patches_dir, method, gan_name='', preprocess='nopre', mode='b2a'): if gan_name in ['A2A', 'B2B', 'B2A']: gan_name = '' # read results dfs = [pd.read_csv(csv_path) for csv_path in glob(f'{patches_dir}/patch_tlevel*/results/{method+gan_name}_{mode}_{preprocess}.csv')] whole_df = pd.concat(dfs) n_success = whole_df['Error'][whole_df['Error'] <= w*0.02].count() rate_success = n_success / len(whole_df) # print(f'{method+gan_name}_{preprocess}', rate_success) return rate_success # gan_names = ['testA', 'testB', 'B2A', # 'cyc_A', 'cyc_B', 'drit_A', 'drit_B', 'p2p_A', 'p2p_B', 'star_A', 'star_B', 'comir'] gan_names = ['cyc_A', 'cyc_B', 'drit_A', 'drit_B', 'p2p_A', 'p2p_B', 'star_A', 'star_B', 'comir', 'B2A'] # csv information header = [ 'Method', 'Dataset', 'FID_mean', 'FID_STD', 'Success_aAMD_mean', 'Success_aAMD_STD', 'Success_SIFT_mean', 'Success_SIFT_STD', ] df =
pd.DataFrame(columns=header)
pandas.DataFrame
import pandas as pd import numpy as np import matplotlib.pyplot as plt plt.style.use('ggplot') target = 'scale' # IP plot_mode = 'all_in_one' obj = 'occ' # Port flow_dir = 'all' port_dir = 'sys' user_plot_pr = ['TCP'] user_plot_pr = ['UDP'] port_hist = pd.DataFrame({'A' : []}) user_port_hist = pd.DataFrame({'A' : []}) def acf(x, length=10): return np.array([1]+[np.corrcoef(x[:-i], x[i:])[0,1] \ for i in range(1, length)]) def scale_check(data_idx, plot=False): files = ['stanc', 'arcnn_f90', 'wpgan', 'ctgan', 'bsl1', 'bsl2', 'real'] names = ['stan_b', 'stan_a', 'wpgan', 'ctgan', 'bsl1', 'bsl2', 'real'] if files[data_idx] == 'real': df = pd.read_csv("./postprocessed_data/%s/day2_90user.csv" % files[data_idx]) elif files[data_idx] == 'stanc' or files[data_idx] == 'stan': df = pd.read_csv("./postprocessed_data/%s/%s_piece%d.csv" % (files[data_idx], files[data_idx], 0)) else: df = pd.read_csv("./postprocessed_data/%s/%s_piece%d.csv" % (files[data_idx], files[data_idx], 0), index_col=None) li = [df] for piece_idx in range(1, 5): df = pd.read_csv("./postprocessed_data/%s/%s_piece%d.csv" % (files[data_idx], files[data_idx], piece_idx), index_col=None, header=0) li.append(df) df = pd.concat(li, axis=0, ignore_index=True) scale_list = [] for col in ['byt', 'pkt']: scale_list.append(col) scale_list.append(str(np.min(df[col]))) scale_list.append(str(np.log(np.max(df[col])))) scale_list.append(';') print(files[data_idx], ':', (' '.join(scale_list))) def pr_distribution(data_idx, plot=False): files = ['stan','stanc', 'arcnn_f90', 'wpgan', 'ctgan', 'bsl1', 'bsl2', 'real'] names = ['stan_fwd','stan_b', 'stan_a', 'wpgan', 'ctgan', 'bsl1', 'bsl2', 'real'] if files[data_idx] == 'real': df = pd.read_csv("./postprocessed_data/%s/day2_90user.csv" % files[data_idx]) elif files[data_idx] == 'stanc' or files[data_idx] == 'stan': df = pd.read_csv("./postprocessed_data/%s/%s_piece%d.csv" % (files[data_idx], files[data_idx], 0)) else: df = pd.read_csv("./postprocessed_data/%s/%s_piece%d.csv" % (files[data_idx], files[data_idx], 0), index_col=None) li = [df] for piece_idx in range(1, 5): df = pd.read_csv("./postprocessed_data/%s/%s_piece%d.csv" % (files[data_idx], files[data_idx], piece_idx), index_col=None, header=0) li.append(df) df = pd.concat(li, axis=0, ignore_index=True) # pr marginal distribution pr_series = df['pr'].value_counts() print(names[data_idx], pr_series) ct = [0, 0, 0] for i in pr_series.keys(): if i == 'TCP': ct[0] += pr_series[i] elif i == 'UDP': ct[1] += pr_series[i] else: ct[2] += pr_series[i] ct2 = [x/sum(ct) for x in ct] print(ct2) with open('results/pr/pr_marginal.csv', 'a') as out: out.write(','.join([names[data_idx], str(ct2[0]), str(ct2[1]), str(ct2[2]), '\n'])) # prob of spec ports # http 80/tcp # https 443/tcp, 443/udp # ssh 22/tcp # DNS Service 53 # FTP 21/tcp # ob_ports = [80, 443, 22, 53, 21] # for ob_q in ob_ports: # df_ = df[df['dp'] == ob_q] # print(ob_q, len(df_.index)/len(df.index), len(df_.index), len(df.index)) # input() def check_distribution(df, name, user=None): # count = df_all.value_counts() # df.hist = df.hist() df = df.astype(int) # print(df.value_counts(normalize=True)) global port_hist global user_port_hist if port_dir == 'sys': df.hist(bins=1024) # s is an instance of Series # plt.plot(df.value_counts().index, df.value_counts().values) plt.savefig('./results/ports/%s/%s.png' % (port_dir, name)) plt.clf() port_hist[name+'_port'] = df.value_counts(normalize=True)[:10].index port_hist[name+'_occ'] = df.value_counts(normalize=True)[:10].values else: l_p = [] l_o = [] bar_size = 6000 for i in range(1024, 65536, bar_size): l_p.append(i) l_o.append(len(df[(i<=df) & (df<i+bar_size)].index)) # print(df[(i<=df) & (df<i+bar_size)]) # print(i, i+bar_size) # input() # print(l_o, name) l_o = [x/sum(l_o) for x in l_o] if len(user_port_hist.columns) == 1: user_port_hist[name+'_port'] = l_p user_port_hist[name+'_occ'] = l_o plt.plot(l_p, l_o) plt.xlabel("user port") plt.ylabel("probability") plt.title("user port distribution") # plt.xticks(x_pos, x) # plt.savefig('./results/ports/%s/%s.png' % (port_dir, name)) # plt.clf() print('plotted %s' % name) def port_distribution(data_idx, plot=False): files = ['stan','stanc', 'arcnn_f90', 'wpgan', 'ctgan', 'bsl1', 'bsl2', 'real'] names = ['stan_fwd','stan_b', 'stan_a', 'wpgan', 'ctgan', 'bsl1', 'bsl2', 'real'] if files[data_idx] == 'real': df = pd.read_csv("./postprocessed_data/%s/day2_90user.csv" % files[data_idx]) elif files[data_idx] == 'stanc' or files[data_idx] == 'stan': df = pd.read_csv("./postprocessed_data/%s/%s_piece%d.csv" % (files[data_idx], files[data_idx], 0)) else: df = pd.read_csv("./postprocessed_data/%s/%s_piece%d.csv" % (files[data_idx], files[data_idx], 0), index_col=None) li = [df] for piece_idx in range(1, 5): df = pd.read_csv("./postprocessed_data/%s/%s_piece%d.csv" % (files[data_idx], files[data_idx], piece_idx), index_col=None, header=0) li.append(df) df = pd.concat(li, axis=0, ignore_index=True) for pr in ['TCP', 'UDP']: df_pr = df[df['pr'] == pr] if flow_dir == 'outgoing': flows = df_pr[df_pr['sa'].str.startswith('42.219')] elif flow_dir == 'incoming': flows = df_pr[df_pr['da'].str.startswith('42.219')] else: flows = df_pr.dropna() # outgoing_port = pd.concat([outgoing_flows['sp'], outgoing_flows['dp']], axis= 0) # check_distribution(outgoing_port, files[data_idx]+'_outgoing') # incoming_port = pd.concat([flows['sp'], flows['dp']], axis= 0) if port_dir == 'sys': incoming_port = flows[flows['dp']<1024]['dp'] check_distribution(incoming_port, names[data_idx]+'_'+ pr +'_'+flow_dir) else: user_port = flows[flows['dp']>=1024]['dp'] check_distribution(user_port, names[data_idx]+'_'+ pr +'_'+flow_dir, user=True) def attribute_autocorr(data_idx, plot=False): files = ['stanc', 'arcnn_f90', 'wpgan', 'ctgan', 'bsl1', 'bsl2', 'real'] # files = ['stanc', 'arcnn_f90', 'wpgan', 'ctgan', 'real'] if files[data_idx] == 'real': df = pd.read_csv("./postprocessed_data/%s/day2_90user.csv" % files[data_idx]) elif files[data_idx] == 'stanc': df = pd.read_csv("./postprocessed_data/%s/%s_piece%d.csv" % (files[data_idx], files[data_idx], 0)) else: df = pd.read_csv("./postprocessed_data/%s/%s_piece%d.csv" % (files[data_idx], files[data_idx], 0), index_col=None) li = [df] for piece_idx in range(1, 5): df = pd.read_csv("./postprocessed_data/%s/%s_piece%d.csv" % (files[data_idx], files[data_idx], piece_idx), index_col=None, header=0) li.append(df) df = pd.concat(li, axis=0, ignore_index=True) df1 = df[['byt', 'pkt']] # print(df1) # input() auto = acf(df1['byt']) print(files[data_idx], auto) if plot: # df_plot = pd.read_csv('results/ip_power_law/volumn_%s.csv' % files[data_idx], header=None) # print(df_plot) # input() plt.plot(auto) # plt.plot(df_plot[1]) if plot_mode != 'all_in_one': plt.savefig('results/ip_power_law/%s.png' % files[data_idx]) plt.clf() def ip_volumne(data_idx, plot=False): files = ['stanc', 'arcnn_f90', 'wpgan', 'ctgan', 'bsl1', 'bsl2', 'real'] # files = ['stanc', 'arcnn_f90', 'wpgan', 'ctgan', 'real'] if files[data_idx] == 'real': df = pd.read_csv("./postprocessed_data/%s/day2_90user.csv" % files[data_idx]) elif files[data_idx] == 'stanc': df = pd.read_csv("./postprocessed_data/%s/%s_piece%d.csv" % (files[data_idx], files[data_idx], 0)) else: df = pd.read_csv("./postprocessed_data/%s/%s_piece%d.csv" % (files[data_idx], files[data_idx], 0), index_col=None) li = [df] for piece_idx in range(1, 5): df = pd.read_csv("./postprocessed_data/%s/%s_piece%d.csv" % (files[data_idx], files[data_idx], piece_idx), index_col=None, header=0) li.append(df) df = pd.concat(li, axis=0, ignore_index=True) df1 = df[['sa', 'da', 'byt']] df2_s = df1[['sa', 'byt']] df2_d = df1[['da', 'byt']] df2_s.columns = ['ip', 'byt'] df2_d.columns = ['ip', 'byt'] df_all = pd.concat([df2_s, df2_d], axis= 0) df_nolocal = df_all[~df_all['ip'].str.startswith('42.219')] df_nolocal = df_nolocal.sample(1000000) group_cols = df_nolocal.columns.tolist() group_cols.remove('byt') df_sum = df_nolocal.groupby(group_cols,as_index=False)['byt'].sum() # print(df_sum) # print(df_sum[df_sum['ip']=='172.16.58.3']) # input() count = df_sum['byt']#.value_counts() s = count.sort_values(ascending=False) # final_df = count.sort_values(by=['byt'], ascending=False) # print(final_df) # input() print(files[data_idx], len(df.index), len(df_nolocal.index), len(df_sum.index), len(count.index)) s.to_csv('results/ip_power_law/volumn_%s.csv' % files[data_idx]) if plot: df_plot = pd.read_csv('results/ip_power_law/volumn_%s.csv' % files[data_idx], header=None) # print(df_plot) # input() plt.plot(np.log(df_plot[1])) # plt.plot(df_plot[1]) if plot_mode != 'all_in_one': plt.savefig('results/ip_power_law/%s.png' % files[data_idx]) plt.clf() def ip_power_law(data_idx, plot=False): files = ['stanc', 'arcnn_f90', 'wpgan', 'ctgan', 'bsl1', 'bsl2', 'real'] files = ['stanc', 'arcnn_f90', 'wpgan', 'ctgan', 'real'] if files[data_idx] == 'real': df =
pd.read_csv("./postprocessed_data/%s/day2_90user.csv" % files[data_idx])
pandas.read_csv
#!/usr/bin/env python """ DataExplore Application based on pandastable. Created January 2014 Copyright (C) <NAME> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA """ from __future__ import absolute_import, print_function import sys, datetime try: from tkinter import * from tkinter.ttk import * except: from Tkinter import * from ttk import * if (sys.version_info > (3, 0)): from tkinter import filedialog, messagebox, simpledialog else: import tkFileDialog as filedialog import tkSimpleDialog as simpledialog import tkMessageBox as messagebox from collections import OrderedDict import matplotlib matplotlib.use('TkAgg', warn=False) import pandas as pd import re, os, platform, time from .core import Table from .data import TableModel from .prefs import Preferences from . import images, util, dialogs from .dialogs import MultipleValDialog from . import plugin from .preferences import Prefs class DataExplore(Frame): """DataExplore application using pandastable widget. Args: parent: parent tkinter Frame, default None data: data, a pandas DataFrame projfile: path to a project file, opened on launch msgpack: path to a dataframe stored as msgpack, default None """ def __init__(self, parent=None, data=None, projfile=None, msgpack=None): """Initialize the application. """ self.parent=parent if not self.parent: Frame.__init__(self) self.main=self.master else: self.main=Toplevel() self.master=self.main if getattr(sys, 'frozen', False): #the application is frozen self.modulepath = os.path.dirname(sys.executable) else: self.modulepath = os.path.dirname(__file__) icon = os.path.join(self.modulepath,'dataexplore.gif') img = PhotoImage(file=icon) self.main.tk.call('wm', 'iconphoto', self.main._w, img) # Get platform into a variable self.currplatform = platform.system() self.setConfigDir() if not hasattr(self,'defaultsavedir'): self.defaultsavedir = os.getcwd() self.main.title('DataExplore') self.createMenuBar() self.discoverPlugins() self.setupGUI() self.setStyles() self.clipboarddf = None self.projopen = False opts = {'layout':{'type':'checkbutton','default':'horizontal'}} #self.prefs = Prefs('.dataexplore', opts=opts) if data != None: self.data = data self.newProject(data) elif projfile != None: self.loadProject(projfile) elif msgpack != None: self.load_msgpack(msgpack) else: self.newProject() self.main.protocol('WM_DELETE_WINDOW',self.quit) self.main.lift() return def setStyles(self): """Set theme and widget styles""" style = self.style = Style(self) available_themes = self.style.theme_names() plf = util.checkOS() if plf == 'linux': style.theme_use('default') elif plf == 'darwin': style.theme_use('clam') self.bg = bg = self.style.lookup('TLabel.label', 'background') style.configure('Horizontal.TScale', background=bg) #set common background style for all widgets because of color issues #if plf in ['linux','darwin']: # self.option_add("*background", bg) dialogs.applyStyle(self.menu) return def setConfigDir(self): """Set up config folder""" homepath = os.path.join(os.path.expanduser('~')) path = '.dataexplore' self.configpath = os.path.join(homepath, path) self.pluginpath = os.path.join(self.configpath, 'plugins') if not os.path.exists(self.configpath): os.mkdir(self.configpath) os.makedirs(self.pluginpath) return def setupGUI(self): """Add all GUI elements""" self.m = PanedWindow(self.main, orient=HORIZONTAL) self.m.pack(fill=BOTH,expand=1) self.nb = Notebook(self.main) self.m.add(self.nb) self.setGeometry() return def createMenuBar(self): """Create the menu bar for the application. """ self.menu=Menu(self.main) self.file_menu={'01New Project':{'cmd': self.newProject}, '02Open Project':{'cmd': lambda: self.loadProject(asksave=True)}, '03Close':{'cmd':self.closeProject}, '04Save':{'cmd':self.saveProject}, '05Save As':{'cmd':self.saveasProject}, '06sep':'', '07Import CSV':{'cmd':self.importCSV}, '08Import from URL':{'cmd':self.importURL}, '08Import Excel':{'cmd':self.importExcel}, '09Export CSV':{'cmd':self.exportCSV}, '10sep':'', '11Quit':{'cmd':self.quit}} if self.parent: self.file_menu['08Return to Database']={'cmd':self.return_data} self.file_menu=self.createPulldown(self.menu,self.file_menu) self.menu.add_cascade(label='File',menu=self.file_menu['var']) self.edit_menu={'01Undo Last Change':{'cmd': self.undo}, '02Copy Table':{'cmd': self.copyTable}, '03Table Preferences':{'cmd': self.currentTablePrefs}, } self.edit_menu = self.createPulldown(self.menu,self.edit_menu) self.menu.add_cascade(label='Edit',menu=self.edit_menu['var']) self.sheet_menu={'01Add Sheet':{'cmd': lambda: self.addSheet(select=True)}, '02Remove Sheet':{'cmd': lambda: self.deleteSheet(ask=True)}, '03Copy Sheet':{'cmd':self.copySheet}, '04Rename Sheet':{'cmd':self.renameSheet}, '05Sheet Description':{'cmd':self.editSheetDescription} } self.sheet_menu=self.createPulldown(self.menu,self.sheet_menu) self.menu.add_cascade(label='Sheet',menu=self.sheet_menu['var']) self.view_menu={'01Zoom In':{'cmd': lambda: self._call('zoomIn')}, '02Zoom Out':{'cmd': lambda: self._call('zoomOut')}, '03sep':'', '04Dark Theme':{'cmd': lambda: self._call('setTheme', name='dark')}, '05Bold Theme':{'cmd': lambda: self._call('setTheme', name='bold')}, '06Default Theme':{'cmd': lambda: self._call('setTheme', name='default')}, } self.view_menu = self.createPulldown(self.menu,self.view_menu) self.menu.add_cascade(label='View',menu=self.view_menu['var']) self.table_menu={'01Describe Table':{'cmd':self.describe}, '02Convert Column Names':{'cmd':lambda: self._call('convertColumnNames')}, '03Convert Numeric':{'cmd': lambda: self._call('convertNumeric')}, '04Clean Data': {'cmd': lambda: self._call('cleanData')}, '05Find Duplicates': {'cmd': lambda: self._call('findDuplicates')}, '06Correlation Matrix':{'cmd': lambda: self._call('corrMatrix')}, '07Concatenate Tables':{'cmd':self.concat}, '08Table to Text':{'cmd': lambda: self._call('showasText')}, '09Table Info':{'cmd': lambda: self._call('showInfo')}, '10sep':'', '11Transform Values':{'cmd': lambda: self._call('transform')}, '12Group-Aggregate':{'cmd': lambda: self._call('aggregate')}, '13Merge/Concat Tables': {'cmd': lambda: self._call('doCombine')}, '14Pivot Table':{'cmd': lambda: self._call('pivot')}, '15Melt Table':{'cmd': lambda: self._call('melt')}, '16Time Series Resampling':{'cmd': lambda: self._call('resample')} } self.table_menu=self.createPulldown(self.menu,self.table_menu) self.menu.add_cascade(label='Tools',menu=self.table_menu['var']) self.dataset_menu={'01Sample Data':{'cmd':self.sampleData}, '03Iris Data':{'cmd': lambda: self.getData('iris.csv')}, '03Tips Data':{'cmd': lambda: self.getData('tips.csv')}, '04Stacked Data':{'cmd':self.getStackedData}, '05Pima Diabetes': {'cmd': lambda: self.getData('pima.csv')}, '06Titanic': {'cmd': lambda: self.getData('titanic3.csv')}, '07miRNA expression': {'cmd': lambda: self.getData('miRNA.csv')}, '08CO2 time series': {'cmd': lambda: self.getData('co2-ppm-mauna-loa.csv')} } self.dataset_menu=self.createPulldown(self.menu,self.dataset_menu) self.menu.add_cascade(label='Datasets',menu=self.dataset_menu['var']) self.plots_menu={'01Store plot':{'cmd':self.addPlot}, '02Clear plots':{'cmd':self.updatePlotsMenu}, '03PDF report':{'cmd':self.pdfReport}, '04sep':''} self.plots_menu=self.createPulldown(self.menu,self.plots_menu) self.menu.add_cascade(label='Plots',menu=self.plots_menu['var']) self.plugin_menu={'01Update Plugins':{'cmd':self.discoverPlugins}, '02Install Plugin':{'cmd':self.installPlugin}, '03sep':''} self.plugin_menu=self.createPulldown(self.menu,self.plugin_menu) self.menu.add_cascade(label='Plugins',menu=self.plugin_menu['var']) self.help_menu={'01Online Help':{'cmd':self.online_documentation}, '02About':{'cmd':self.about}} self.help_menu=self.createPulldown(self.menu,self.help_menu) self.menu.add_cascade(label='Help',menu=self.help_menu['var']) self.main.config(menu=self.menu) return def bring_to_foreground(self, set_focus=False): self.main.deiconify() self.main.attributes('-topmost', True) self.main.after_idle(self.main.attributes, '-topmost', False) self.main.lift() if set_focus: #Looks like at least on Windows the following is required for the window #to also get focus (deiconify, ..., iconify, deiconify) import platform if platform.system() != "Linux": # http://stackoverflow.com/a/13867710/261181 self.main.iconify() self.main.deiconify() return def getBestGeometry(self): """Calculate optimal geometry from screen size""" ws = self.main.winfo_screenwidth() hs = self.main.winfo_screenheight() self.w = w = ws/1.4; h = hs*0.7 x = (ws/2)-(w/2); y = (hs/2)-(h/2) g = '%dx%d+%d+%d' % (w,h,x,y) return g def setGeometry(self): self.winsize = self.getBestGeometry() self.main.geometry(self.winsize) return def createPulldown(self,menu,dict): """Create pulldown menu, returns a dict""" var = Menu(menu,tearoff=0) dialogs.applyStyle(var) items = list(dict.keys()) items.sort() for item in items: if item[-3:] == 'sep': var.add_separator() else: command = None if 'cmd' in dict[item]: command = dict[item]['cmd'] if 'sc' in dict[item]: var.add_command(label='%-25s %9s' %(item[2:],dict[item]['sc']), command=command) else: var.add_command(label='%-25s' %(item[2:]), command=command) dict['var'] = var return dict def progressDialog(self): t = Toplevel(self) pb = Progressbar(t, mode="indeterminate") pb.pack(side="bottom", fill=X) t.title('Progress') t.transient(self) t.grab_set() t.resizable(width=False, height=False) return pb def currentTablePrefs(self): table = self.getCurrentTable() table.showPrefs() return def preferencesDialog(self): """Prefs dialog from config parser info - not yet implemented""" def save(): d = dialogs.getDictfromTkVars(opts, tkvars, widgets) p.writeConfig(d) from . import plotting defaultfont = 'monospace' p = Prefs('.dataexplore') opts = {'layout':{'type':'checkbutton','default':False,'label':'vertical plot tools'}, 'fontsize':{'type':'scale','default':12,'range':(5,40),'interval':1,'label':'font size'}, 'colormap':{'type':'combobox','default':'Spectral','items':plotting.colormaps}, } sections = {'main':['layout'],'plot':['fontsize','colormap']} p.createConfig(opts) t=Toplevel(self) dialog, tkvars, widgets = dialogs.dialogFromOptions(t, opts, sections) dialog.pack(side=TOP,fill=BOTH) bf=Frame(t) bf.pack() Button(bf, text='Save', command=save).pack(side=LEFT) Button(bf, text='Close', command=t.destroy).pack(side=LEFT) t.title('About') t.transient(self) t.grab_set() t.resizable(width=False, height=False) d = dialogs.getDictfromTkVars(opts, tkvars, widgets) print (d) return def loadMeta(self, table, meta): """Load meta data for a sheet, this includes plot options and table selections""" tablesettings = meta['table'] #rowheadersettings = meta['rowheader'] #print (meta['rowheader']) if 'childtable' in meta: childtable = meta['childtable'] childsettings = meta['childselected'] else: childtable = None #load plot options opts = {'mplopts': table.pf.mplopts, 'mplopts3d': table.pf.mplopts3d, 'labelopts': table.pf.labelopts} #'layoutopts': table.pf.layoutopts} for m in opts: if m in meta: util.setAttributes(opts[m], meta[m]) opts[m].updateFromOptions() #load table settings util.setAttributes(table, tablesettings) #util.setAttributes(table.rowheader, rowheadersettings) if childtable is not None: table.createChildTable(df=childtable) util.setAttributes(table.child, childsettings) #redraw col selections if type(table.multiplecollist) is tuple: table.multiplecollist = list(table.multiplecollist) table.drawMultipleCols() return def saveMeta(self, table): """Save meta data such as current plot options""" meta = {} #save plot options meta['mplopts'] = util.getAttributes(table.pf.mplopts) meta['mplopts3d'] = util.getAttributes(table.pf.mplopts3d) meta['labelopts'] = util.getAttributes(table.pf.labelopts) meta['layoutopts'] = util.getAttributes(table.pf.layoutopts) #save table selections meta['table'] = util.getAttributes(table) #meta['rowheader'] = util.getAttributes(table.rowheader) #save row colors since its a dataframe and isn't picked up by getattributes currently meta['table']['rowcolors'] = table.rowcolors #save child table if present if table.child != None: meta['childtable'] = table.child.model.df meta['childselected'] = util.getAttributes(table.child) return meta def newProject(self, data=None, df=None): """Create a new project from data or empty""" w = self.closeProject() if w == None: return self.sheets = OrderedDict() self.sheetframes = {} #store references to enclosing widgets self.openplugins = {} #refs to running plugins self.updatePlotsMenu() for n in self.nb.tabs(): self.nb.forget(n) if data != None: for s in sorted(data.keys()): if s == 'meta': continue df = data[s]['table'] if 'meta' in data[s]: meta = data[s]['meta'] else: meta=None #try: self.addSheet(s, df, meta) '''except Exception as e: print ('error reading in options?') print (e)''' else: self.addSheet('sheet1') self.filename = None self.projopen = True self.main.title('DataExplore') return def loadProject(self, filename=None, asksave=False): """Open project file""" w=True if asksave == True: w = self.closeProject() if w == None: return if filename == None: filename = filedialog.askopenfilename(defaultextension='.dexpl"', initialdir=os.getcwd(), filetypes=[("project","*.dexpl"), ("All files","*.*")], parent=self.main) if not filename: return ext = os.path.splitext(filename)[1] if ext != '.dexpl': print ('does not appear to be a project file') return if os.path.isfile(filename): #pb = self.progressDialog() #t = threading.Thread() #t.__init__(target=pd.read_msgpack, args=(filename)) #t.start() data = pd.read_msgpack(filename) #create backup file before we change anything backupfile = filename+'.bak' pd.to_msgpack(backupfile, data, encoding='utf-8') else: print ('no such file') self.quit() return self.newProject(data) self.filename = filename self.main.title('%s - DataExplore' %filename) self.projopen = True return def saveProject(self, filename=None): """Save project""" if filename != None: self.filename = filename if not hasattr(self, 'filename') or self.filename == None: self.saveasProject() else: self.doSaveProject(self.filename) return def saveasProject(self): """Save as a new filename""" filename = filedialog.asksaveasfilename(parent=self.main, defaultextension='.dexpl', initialdir=self.defaultsavedir, filetypes=[("project","*.dexpl")]) if not filename: return self.filename=filename self.doSaveProject(self.filename) return def doSaveProject(self, filename): """Save sheets as dict in msgpack""" self._checkTables() data={} for i in self.sheets: table = self.sheets[i] data[i] = {} data[i]['table'] = table.model.df data[i]['meta'] = self.saveMeta(table) #try: pd.to_msgpack(filename, data, encoding='utf-8') #except: # print('SAVE FAILED!!!') return def _checkTables(self): """Check tables before saving that so we are not saving filtered copies""" for s in self.sheets: t=self.sheets[s] if t.filtered==True: t.showAll() return def closeProject(self): """Close""" if self.projopen == False: w = False else: w = messagebox.askyesnocancel("Close Project", "Save this project?", parent=self.master) if w==None: return elif w==True: self.saveProject() else: pass for n in self.nb.tabs(): self.nb.forget(n) self.filename = None self.projopen = False self.main.title('DataExplore') return w def importCSV(self): """Import csv to a new sheet""" self.addSheet(select=True) table = self.getCurrentTable() table.importCSV(dialog=True) return def importURL(self): """Import CSV from URL""" url = simpledialog.askstring("Import url", "Input CSV URL", parent=self.master) if url is not None: name = os.path.basename(url) df = pd.read_csv(url) self.addSheet(sheetname=name, df=df, select=True) return def exportCSV(self): """Import csv to a new sheet""" table = self.getCurrentTable() table.doExport() return def importExcel(self, filename=None): if filename is None: filename = filedialog.askopenfilename(parent=self.master, defaultextension='.xls', initialdir=os.getcwd(), filetypes=[("xls","*.xls"), ("xlsx","*.xlsx"), ("All files","*.*")]) data =
pd.read_excel(filename,sheetname=None)
pandas.read_excel
import glob import pandas as pd import numpy as np import config from lcoc import afdc import warnings warnings.simplefilter(action='ignore', category=FutureWarning) ##### Functions ##### ################### ### Residential ### ################### def res_rates_to_utils(scenario = 'baseline', urdb_rates_file = 'outputs/cost-of-electricity/urdb-res-rates/res_rates.csv', eia_cw_file = config.EIAID_TO_UTILITY_CW_PATH, eia_utils_file = config.EIA_RES_PATH, outpath = 'outputs/cost-of-electricity/res-utilities/'): """ Takes res urdb rates from urdb_path and combines with eia_utils_file to produce utility-lvl annual avg cost of electricity estimates under the following scenarios: 'baseline' (replace eia cost of electricity w/ off-peak TOU rate, if applicable), 'no-tou' (eia cost of electricity only), 'tou-only' (only TOU rates from URDB are considered). """ # Load/Preprocess EIA datasets eiaid_cw = pd.read_csv(eia_cw_file) eiaid_cw = eiaid_cw[['eiaid', 'entity', 'state']] eiaid_utils = pd.read_csv(eia_utils_file) eiaid_utils.rename(columns={'avg_price_cents_per_kwh': 'eia_cost_per_kwh'}, inplace=True) eiaid_utils['eia_cost_per_kwh'] = eiaid_utils['eia_cost_per_kwh'] / 100 eiaid_utils = eiaid_utils[eiaid_utils.eiaid!=99999] wm = lambda x: np.average(x, weights=eiaid_utils.loc[x.index, "customers"]) f = {'customers': 'sum', 'eia_cost_per_kwh': wm} eiaid_utils = eiaid_utils.groupby(['entity', 'state']).agg(f).reset_index() #eiaid_utils.columns = eiaid_utils.columns.droplevel(1) eiaid_res_df = eiaid_cw.merge(eiaid_utils, how='right', on=['entity', 'state']) eiaid_res_df = eiaid_res_df.drop_duplicates() # Load URDB Rates urdb_rates = pd.read_csv(urdb_rates_file, low_memory=False) # Find Off-Peak TOU Price for URDB Rates all_tou_rates_df = urdb_rates[urdb_rates.is_tou_rate==1] eiaid_tou_rates_df = all_tou_rates_df.groupby('eiaid')['electricity_cost_per_kwh'].min().reset_index() eiaid_tou_rates_df.rename(columns={'electricity_cost_per_kwh': 'offpeak_tou_cost_per_kwh'}, inplace=True) # Baseline - {MIN((off-peak TOU, EIA average))} if scenario == "baseline": #default eiaid_res_df = eiaid_res_df.merge(eiaid_tou_rates_df, how='left', on='eiaid') tou_rates_used, costs_incl_tou = 0, [] for i in range(len(eiaid_res_df)): eia_cost = eiaid_res_df.iloc[i].eia_cost_per_kwh offpeak_tou_cost = eiaid_res_df.iloc[i].offpeak_tou_cost_per_kwh low_cost = min([eia_cost, offpeak_tou_cost]) if low_cost == offpeak_tou_cost: tou_rates_used+=1 costs_incl_tou.append(low_cost) eiaid_res_df['cost_per_kwh'] = costs_incl_tou print("Complete, {0} utitilies represented ({1} TOU rates used).".format(len(eiaid_res_df), tou_rates_used)) eiaid_res_df.to_csv(outpath+'res_utils.csv', index=False) # No-TOU - "Business as Usual", EIA averages used (upper bound) elif scenario == "no-tou": eiaid_res_df['cost_per_kwh'] = eiaid_res_df['eia_cost_per_kwh'] print("Complete, {} utilities represented (no TOU rates used).".format(len(eiaid_res_df))) eiaid_res_df.to_csv(outpath+"upper_bnd_res_utils.csv", index=False) # TOU-Only - URDB TOU rates only (lower bound) elif scenario == "tou-only": eiaid_tou_rates_df['cost_per_kwh'] = eiaid_tou_rates_df['offpeak_tou_cost_per_kwh'] eiaid_tou_rates_df = eiaid_tou_rates_df.merge(eiaid_res_df[['eiaid', 'state', 'customers']], how='inner', on='eiaid') print("Complete, {} utitilies represented (only TOU rates used).".format(len(eiaid_tou_rates_df))) eiaid_tou_rates_df.to_csv(outpath+"lower_bnd_res_utils.csv", index=False) else: raise ValueError('scenario not in ["baseline", "no_tou", "tou-only"]') return eiaid_res_df def res_utils_to_state(utils_file = 'outputs/cost-of-electricity/res-utilities/res_utils.csv', outfile = 'outputs/cost-of-electricity/res-states/res_states_baseline.csv'): """ Takes utility-level cost of electricity and calculates customer-weighted state-level cost of electricity for the baseline scenario (TOU & No-TOU). """ res_util_df = pd.read_csv(utils_file, low_memory=False) states, cost_per_kwh, customers = [], [], [] for state in set(res_util_df['state']): temp_df = res_util_df[res_util_df['state'] == state] tot_customers = temp_df['customers'].sum() wgt_cost = ((temp_df['cost_per_kwh'] * temp_df['customers']) / tot_customers).sum() states.append(state) customers.append(tot_customers) cost_per_kwh.append(wgt_cost) state_df = pd.DataFrame({'state': states, 'customers': customers, 'cost_per_kwh': cost_per_kwh}) #Add national estimate nat_customers = state_df['customers'].sum() nat_cost_per_kwh = ((state_df['cost_per_kwh'] * state_df['customers']) / nat_customers).sum() nat_df = pd.DataFrame({'state': ['US'], 'customers': [nat_customers], 'cost_per_kwh': [nat_cost_per_kwh]}) state_df = pd.concat([state_df, nat_df]).reset_index(drop=True) state_df.to_csv(outfile, index=False) print('Complete, national cost of electricity is ${}/kWh.'.format(round(nat_cost_per_kwh,2))) def calculate_state_residential_lcoc(coe_file = 'outputs/cost-of-electricity/res-states/res_states_baseline.csv', fixed_costs_path = 'data/fixed-costs/residential/', annual_maint_frac = 0.01, #Annual cost of maintenance (fraction of equip costs) veh_lifespan = 15, veh_kwh_per_100miles = 29.82, #source: EIA aavmt = 10781, #source: 2017 NHTS fraction_residential_charging = 0.81, #source: EPRI study fraction_home_l1_charging = 0.16, #source: EPRI study dr = 0.035, #source: Mercatus outfile = 'outputs/cost-of-charging/residential/res_states_baseline.csv'): """ Function calculates the state-level residential levelized cost of charging, taking into account the average cost of electricity, fixed costs, and equipment maintenance. """ # Load data df = pd.read_csv(coe_file) filenames = ['res_level1.txt', 'res_level2.txt'] fixed_cost_files = [fixed_costs_path + filename for filename in filenames] fixed_costs = {} for file in fixed_cost_files: if 'level1' in file: plug_typ = 'L1' elif 'level2' in file: plug_typ = 'L2' plug_typ_dict = {} with open (file) as f: for line in f: key, val = line.split(':') plug_typ_dict[key] = float(val) fixed_costs[plug_typ] = plug_typ_dict # Calculate lifetime EVSE cost of maintenance (assumed to be 1% of equipment cost annually) for plug_typ in fixed_costs.keys(): discounted_lifetime_maint_cost = 0 for i in range(1, veh_lifespan+1): ann_maint_cost = annual_maint_frac * fixed_costs[plug_typ]['equipment'] discounted_ann_maint_cost = ann_maint_cost / (1+dr)**i discounted_lifetime_maint_cost += discounted_ann_maint_cost fixed_costs[plug_typ]['lifetime_evse_maint'] = discounted_lifetime_maint_cost # Calculate lifetime energy from residential charging lifetime_miles = veh_lifespan * aavmt veh_kwh_per_mile = veh_kwh_per_100miles / 100 lifetime_energy_kwh = lifetime_miles * veh_kwh_per_mile lifetime_residential_energy_kwh = fraction_residential_charging * lifetime_energy_kwh # Calculate lvl fixed costs for residential L1, L2 charging try: lvl_fixed_costs_l1 = (fixed_costs['L1']['equipment'] + fixed_costs['L1']['installation'] \ + fixed_costs['L1']['lifetime_evse_maint']) / lifetime_residential_energy_kwh except: lvl_fixed_costs_l1 = 0 lvl_fixed_costs_l2 = (fixed_costs['L2']['equipment'] + fixed_costs['L2']['installation'] \ + fixed_costs['L2']['lifetime_evse_maint']) / lifetime_residential_energy_kwh # Calculate single lvl fixed cost for residential charging lvl_fixed_costs_res = lvl_fixed_costs_l1 * fraction_home_l1_charging + lvl_fixed_costs_l2 * (1-fraction_home_l1_charging) # Calculate state-level residential LCOC, write to file df['lcoc_cost_per_kwh'] = df['cost_per_kwh'] + lvl_fixed_costs_res df = df[['state', 'lcoc_cost_per_kwh']] df.to_csv(outfile, index=False) nat_lcoc = round(float(df[df.state=='US']['lcoc_cost_per_kwh']), 2) print('LCOC calculation complete, national LCOC (residential) is ${}/kWh'.format(nat_lcoc)) ########################### ### Workplace/Public L2 ### ########################### def calculate_state_workplace_public_l2_lcoc(coe_path = config.EIA_COM_PATH, fixed_costs_file = 'data/fixed-costs/workplace-public-l2/com_level2.txt', equip_lifespan = 15, equip_utilization_kwh_per_day = 30, #source: INL outpath = 'outputs/cost-of-charging/workplace-public-l2/work_pub_l2_states_baseline.csv'): """ Function calculates the state-level workplace/public-L2 levelized cost of charging, taking into account the average cost of electricity, fixed costs, and equipment maintenance. """ # Load data df = pd.read_csv(coe_path) fixed_cost_dict = {} with open(fixed_costs_file) as f: for line in f: key, val = line.split(':') fixed_cost_dict[key] = float(val) ann_maint_cost = 0.01 * fixed_cost_dict['equipment'] lifetime_maint_cost = ann_maint_cost * equip_lifespan fixed_cost_dict['lifetime_evse_maint'] = lifetime_maint_cost # Calculate lifetime energy output lifetime_evse_energy_kwh = equip_lifespan * 365 * equip_utilization_kwh_per_day # Calculate lvl fixed costs for commercial charging lvl_fixed_costs = (fixed_cost_dict['equipment'] + fixed_cost_dict['installation'] \ + fixed_cost_dict['lifetime_evse_maint']) / lifetime_evse_energy_kwh # Calculate state-level workplace/public-L2 LCOC, write to file df['cost'] = df['cost'] / 100 df['lcoc_cost_per_kwh'] = df['cost'] + lvl_fixed_costs df.rename(columns={'description': 'state'}, inplace=True) df = df[['state', 'lcoc_cost_per_kwh']] df.to_csv(outpath, index=False) nat_lcoc = round(float(df[df.state=='US']['lcoc_cost_per_kwh']), 2) print('LCOC calculation complete, national LCOC (workplace/pub-L2) is ${}/kWh'.format(nat_lcoc)) #################### ### DCFC Station ### #################### def dcfc_rates_to_utils(urdb_rates_files = config.DCFC_PROFILES_DICT, outpath = 'outputs/cost-of-electricity/urdb-dcfc-utilities/'): """ Aggregates dcfc urdb rates in urdb_rates_files by utility, keeping the minimum cost of electricity value. """ for prof in urdb_rates_files.keys(): rates_df =
pd.read_csv(urdb_rates_files[prof], low_memory=False)
pandas.read_csv
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Distance Measurement Calculation.py: This file uses the Mahalanobis Distance distance-based # # matching technique to match donors and recipients # # # # Author: <NAME> # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # import pandas as pd import numpy as np from scipy.spatial.distance import cdist xls = pd.ExcelFile('') # Read in recipients and filter r = pd.read_excel(xls, 'file_name_recipients') r = pd.DataFrame(r) recipients = list(r['respondentid']) # Read in donors and filter for d = pd.read_excel(xls, 'file_name_donors') d = pd.DataFrame(d) donors = list(d['respondentid']) #Read in importance and filter for importance = pd.read_excel(xls, 'file_name_importance') imp = pd.DataFrame(importance) imp = imp.sort_values('demo') #Create diagonal matrix of importance (I) I = pd.DataFrame.as_matrix(imp["importance"]) I = np.diag(I) np.savetxt("I_matrix.csv", I, delimiter=",") #Create X matrix using only variables in I X =
pd.DataFrame()
pandas.DataFrame
from package import dataHandler as dh from package import featureHandler as fh from sklearn.model_selection import KFold from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, VotingClassifier from sklearn.metrics import roc_auc_score,accuracy_score import random import numpy as np import pandas as pd from sklearn import preprocessing import itertools def get_participant_matches(participants): matches = get_fixed_participant_matches() + get_variable_participant_matches(participants,age_range=5) return matches def get_fixed_participant_matches(): """There are 10 control females and 7 viable PD females. Thus to use most of the data set possible, the 3 of the control females will need to match with 3 PD males 9 of these control females will be a fixed match. 7 control and PD female matches were done so simply by ordering age by ascending order and matching them. The other 3 control females were all older, so this will create matches with the least age difference Of the 3 older control females, 2 of them will be fix matched with 2 PD males of the closest age. These PD males are not similar in age to any control males, so they would not have been utilised anyway""" female_matches = [('C010', 'P019'), #53 and 53 ('C031', 'P038'), #67 and 57 ('C030', 'P021'), #67 and 58 ('C028', 'P001'), #69 and 58 ('C024', 'P026'), #71 and 62 ('C025', 'P027'), #72 and 67 ('C014', 'P008')] #74 and 69 mixed_matches = [('C021', 'P002'), #81 and 82 ('C032', 'P012')] #94 and 91 return female_matches + mixed_matches def get_variable_participant_matches(participants, age_range=5): controls_to_match = participants.loc[['C004','C013','C009','C020','C006','C026']] #C026 is female, everyone else male viable_matches = dh.df_retrieve(participants,{'is PD': True,'Sex':'Male'}) viable_matches = viable_matches.loc[~viable_matches.index.isin(['P002','P012','P013','P014'])] #exclude these because P002 and P012 matched already with other females, and P013 has weird CoP that results in some features being NaN #Pair controls with their potential matches potential_matches_df =
pd.DataFrame(columns=['Possible PD matches','How many'])
pandas.DataFrame
# coding: utf-8 import pandas as pd from pandas import Series,DataFrame import numpy as np import itertools import matplotlib.pyplot as plt get_ipython().magic('matplotlib inline') from collections import Counter import re import datetime as dt from datetime import date from datetime import datetime import requests from bs4 import BeautifulSoup import string import nltk from nltk.tokenize import word_tokenize, sent_tokenize from nltk.corpus import stopwords from string import punctuation from nltk.tokenize import TweetTokenizer from nltk import tokenize from wordcloud import WordCloud from PIL import Image from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import HashingVectorizer from sklearn.decomposition import TruncatedSVD from sklearn.manifold import TSNE from sklearn.pipeline import Pipeline from sklearn.pipeline import FeatureUnion from sklearn.cross_validation import cross_val_score from sklearn.cross_validation import StratifiedKFold from sklearn.grid_search import GridSearchCV from sklearn.cluster import MiniBatchKMeans from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import LinearSVC, SVC from sklearn.linear_model import SGDClassifier from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.preprocessing import scale from sklearn.linear_model import LogisticRegression from sklearn import model_selection from sklearn.naive_bayes import MultinomialNB from sklearn.naive_bayes import BernoulliNB from sklearn.feature_selection import SelectPercentile from sklearn.model_selection import train_test_split from sklearn import metrics from sklearn.metrics import accuracy_score, classification_report, confusion_matrix from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve, auc,precision_score, accuracy_score, recall_score, f1_score from scipy import interp import bokeh.plotting as bp from bokeh.models import HoverTool, BoxSelectTool from bokeh.plotting import figure, show, output_notebook from bokeh.io import push_notebook, show, output_notebook import bokeh.plotting as bplt import lda import pyLDAvis import pyLDAvis.gensim import warnings warnings.filterwarnings("ignore") import logging import gensim from gensim import corpora, models, similarities from gensim.models.word2vec import Word2Vec from gensim.models.doc2vec import Doc2Vec,TaggedDocument from gensim.models.ldamodel import LdaModel from copy import deepcopy from pprint import pprint from keras.models import Sequential from keras.layers import Dense, Dropout, SimpleRNN, LSTM, Activation from keras.callbacks import EarlyStopping from keras.preprocessing import sequence import pickle import os print(os.getcwd()) # Importing tweets from csv into dataframe # (wczytanie danych tweetow z csv do ramki) try: tweets = pd.read_csv('bezrobocie_tweets_15.08.2017.csv', names = ['username', 'date', 'retweets', 'favorites', 'text', 'geo', 'mentions', 'hashtags', 'id', 'permalink'], sep=";", skiprows=1, encoding='utf-8') except ValueError as exc: raise ParseError('CSV parse error - %s', parser_context=None) print(tweets.head()) tweets.text[1] # Removing duplicates from dataframe # (usuniecie duplikatow tweetow z ramki) #print('before', len(tweets)) # 21069 tweets.drop_duplicates(['text'], inplace=True) print(len(tweets)) # 20803 # Separating the time variable by hour, day, month and year for further analysis using datetime # (podzial zmiennej data na godzine, rok, miesiac) tweets['date'] = pd.to_datetime(tweets['date']) tweets['hour'] = tweets['date'].apply(lambda x: x.hour) tweets['month'] = tweets['date'].apply(lambda x: x.month) tweets['day'] = tweets['date'].apply(lambda x: x.day) tweets['year'] = tweets['date'].apply(lambda x: x.year) tweets['length'] = tweets["text"].apply(len) tweets['num_of_words'] = tweets["text"].str.split().apply(len) # addding 1 column for counting # (dodanie 1 kolumny do zliczania) tweets['dummy_count'] = 1 tweets.head(5) # Changing date into string # (zamiana daty na string) tweets['time_decoded'] =
pd.to_datetime(tweets.date)
pandas.to_datetime
import pytest import os from mapping import util from pandas.util.testing import assert_frame_equal, assert_series_equal import pandas as pd from pandas import Timestamp as TS import numpy as np @pytest.fixture def price_files(): cdir = os.path.dirname(__file__) path = os.path.join(cdir, 'data/') files = ["CME-FVU2014.csv", "CME-FVZ2014.csv"] return [os.path.join(path, f) for f in files] def assert_dict_of_frames(dict1, dict2): assert dict1.keys() == dict2.keys() for key in dict1: assert_frame_equal(dict1[key], dict2[key]) def test_read_price_data(price_files): # using default name_func in read_price_data() df = util.read_price_data(price_files) dt1 = TS("2014-09-30") dt2 = TS("2014-10-01") idx = pd.MultiIndex.from_tuples([(dt1, "CME-FVU2014"), (dt1, "CME-FVZ2014"), (dt2, "CME-FVZ2014")], names=["date", "contract"]) df_exp = pd.DataFrame([119.27344, 118.35938, 118.35938], index=idx, columns=["Open"]) assert_frame_equal(df, df_exp) def name_func(fstr): file_name = os.path.split(fstr)[-1] name = file_name.split('-')[1].split('.')[0] return name[-4:] + name[:3] df = util.read_price_data(price_files, name_func) dt1 = TS("2014-09-30") dt2 = TS("2014-10-01") idx = pd.MultiIndex.from_tuples([(dt1, "2014FVU"), (dt1, "2014FVZ"), (dt2, "2014FVZ")], names=["date", "contract"]) df_exp = pd.DataFrame([119.27344, 118.35938, 118.35938], index=idx, columns=["Open"]) assert_frame_equal(df, df_exp) def test_calc_rets_one_generic(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5')]) rets = pd.Series([0.1, 0.05, 0.1, 0.8], index=idx) vals = [1, 0.5, 0.5, 1] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([0.1, 0.075, 0.8], index=weights.index.levels[0], columns=['CL1']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL2']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, 0.15], [0.075, 0.45], [-0.5, 0.2]], index=weights.index.levels[0], columns=['CL1', 'CL2']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics_nans_in_second_generic(): idx = pd.MultiIndex.from_tuples([(
TS('2015-01-03')
pandas.Timestamp
import numpy as np import pandas as pd from datetime import date ### Settings all_persons = [ 101, 102, 103, 104, 105, 106, 107, 211, 212, 213, 214, 215, 216, 217 ] persons_no_task = [0, 0, 0, 0, 0] nr_of_tasks = 10 nr_of_weeks_new = 54 nr_of_monthly_tasks = 4 hallways = 5 #task number of hallways ### Determine other settings nr_of_people = len(all_persons) nr_of_weekly_tasks = nr_of_tasks - nr_of_monthly_tasks nr_no_task = len(persons_no_task) persons_no_task_nonzero_ind = [] for n in range(0, len(persons_no_task)): if persons_no_task[n] != 0: if persons_no_task[n] not in all_persons: print('Error: persons_no_task person is not in all_persons') else: persons_no_task_nonzero_ind = persons_no_task_nonzero_ind + [ all_persons.index(persons_no_task[n]) ] #%% Preallocate memory total_task_counter = np.zeros((nr_of_people, ), dtype=float) task_counters = np.zeros((nr_of_people, nr_of_tasks), dtype=float) #Example of task_counters table: # Task 1 Task 2 Task 3 #Person 1 x x x #Person 2 x x x tasks = np.full((nr_of_weeks_new, nr_of_tasks), -1, dtype=int) #Example of tasks table: # Task 1 Task 2 Task 3 #Week 1 x x x #Week 2 x x x current_week_counter = np.zeros((nr_of_people, ), dtype=float) last_week_counter = np.zeros((nr_of_people, ), dtype=int) last_2week_counter = np.zeros((nr_of_people, ), dtype=int) old_noclean_weeks = np.zeros( (nr_of_people, 1), dtype=int) #amount of weeks that each person did not clean datevector = np.zeros((nr_of_weeks_new, 1), dtype=int) #vector for new dates datevector_str = [] #vector for new dates first_of_month = np.zeros((nr_of_weeks_new, 1), dtype=int) #bool if this week of the month #%% Read old list file_read = pd.read_csv('task_in.csv', delimiter=';') #table oldlist_export = np.array(file_read)[:, 0:nr_of_tasks + nr_no_task + 1] oldlist = oldlist_export[:, 1::].astype(int) #part without dates #convert to hours from December , 1899 (Excel default) to January 0, 0000 excel_date = date(1899, 12, 30).toordinal() #Start date of Excel numbering startdate = oldlist_export[-1, 0] + excel_date print('date = ' + str(date.fromordinal(startdate))) startdate = startdate + 7 # start first new week ### Set current_week_couter to last old week last_persons = oldlist[-1, 0:nr_of_tasks] for current_task in range(0, nr_of_tasks): # find person that did the current task roomnr_oldtask = last_persons[current_task] if roomnr_oldtask != 0 and roomnr_oldtask != -1: # Find index of person pers_ind = all_persons.index(roomnr_oldtask) if current_task == hallways: current_week_counter[pers_ind] = 0.5 else: current_week_counter[pers_ind] = 1 ### load roomnr_oldtask into task_counters per week for current_week in range(0, len(oldlist[:, 0])): for current_task in range(0, nr_of_tasks): # find person that did the current task roomnr_oldtask = oldlist[current_week, current_task] if roomnr_oldtask != 0 and roomnr_oldtask != -1: # Find index of person pers_ind = all_persons.index(roomnr_oldtask) task_counters[pers_ind, current_task] = task_counters[pers_ind, current_task] + 1.0 ### load room nr of persons that do not have to clean in old_noclean_weeks ... for current_person_nr in range(0, nr_no_task): for current_week in range(0, len(oldlist[:, 0])): roomnr_oldtask = oldlist[current_week, nr_of_tasks + current_person_nr] if roomnr_oldtask != 0 and roomnr_oldtask != -1: pers_ind = all_persons.index(roomnr_oldtask) old_noclean_weeks[pers_ind] = old_noclean_weeks[pers_ind] + 1 ### ... and give them compensation points nr_of_weeks_old = len(oldlist[:, 0]) avg_chance_per_task = np.ones((nr_of_tasks, ), dtype=float) nr_of_weekly_tasks_done_old = np.sum(task_counters[:, 0]) weekly_chance_old = nr_of_weekly_tasks_done_old / ( nr_of_people * nr_of_weeks_old - np.sum(old_noclean_weeks)) #chance of getting a weekly task avg_chance_per_task[0:nr_of_weekly_tasks] = weekly_chance_old nr_of_monthly_tasks_done_old = np.sum(task_counters[:, nr_of_tasks - 1]) monthly_chance_old = nr_of_monthly_tasks_done_old / ( nr_of_people * nr_of_weeks_old - np.sum(old_noclean_weeks)) #chance of getting a monthly task avg_chance_per_task[nr_of_weekly_tasks:nr_of_tasks] = monthly_chance_old old_noclean_tasks = old_noclean_weeks * avg_chance_per_task task_counters = task_counters + old_noclean_tasks #sum all points total_task_counter_old = np.sum(task_counters, 1) print('total_task_counter_before= ' + str(total_task_counter_old)) #%% Start calculation ### Fill datevector and find first mondays of the month t = startdate for current_week in range(0, nr_of_weeks_new): datevector[current_week, :] = t datevector_str = datevector_str + [ date.fromordinal(t).strftime("%d-%m-%Y") ] first_monday_of_month = date.fromordinal(t).day if first_monday_of_month <= 7: first_of_month[current_week] = 1 t = t + 7 #add a week ### Use task_counters to build the tasks table for current_week in range(0, nr_of_weeks_new): last_2week_counter = last_week_counter last_week_counter = current_week_counter current_week_counter = np.zeros((nr_of_people, ), dtype=float) for current_task in range(0, nr_of_tasks): # check if it is hallways because this is the least work so easiest # to do as task two weeks in a row # determine if the task has to be done (weekly task or first monday of the month) if (current_task < nr_of_tasks - nr_of_monthly_tasks) or ( first_of_month[current_week] == 1): total_task_counter = np.sum(task_counters, 1) #choose person based on their cleaning score current_task_counter = np.round(task_counters[:, current_task]) total_task_counter2 = np.round(total_task_counter) cleaning_score = 18 * current_week_counter + 8 * last_week_counter + 2 * last_2week_counter + 2 * current_task_counter + total_task_counter2 # give people not doing task infinite cleaning score for n in range(0, len(persons_no_task)): if persons_no_task[n] != 0: cleaning_score[all_persons.index( persons_no_task[n])] = np.inf # find possibilities lowest_counter = np.min(cleaning_score) lowest_ind = np.arange(0, nr_of_people)[ cleaning_score == lowest_counter] #lowest indices #round cleaning scores because of decimals random_of_lowest = np.random.randint( 0, len(lowest_ind)) #choose random person lowest_person = lowest_ind[random_of_lowest] task_counters[lowest_person, current_task] = task_counters[lowest_person, current_task] + 1 current_week_counter[ lowest_person] = current_week_counter[lowest_person] + 1 if current_task == hallways: task_counters[lowest_person, current_task] = task_counters[lowest_person, current_task] - 0.5 current_week_counter[ lowest_person] = current_week_counter[lowest_person] - 0.5 tasks[current_week, current_task] = lowest_person ### update total task counters for people not doing task total_task_counter = np.sum(task_counters, 1) total_task_counter_diff = np.sum(total_task_counter) - np.sum( total_task_counter_old) tasks_per_pers = total_task_counter_diff / (nr_of_people - len(persons_no_task_nonzero_ind)) total_task_counter[persons_no_task_nonzero_ind] = total_task_counter[ persons_no_task_nonzero_ind] + tasks_per_pers print('total_task_counter =' + str(total_task_counter)) # print std deviation std_deviation = np.std(total_task_counter) print('std = ' + str(std_deviation)) # convert count of persons back to room numbers for current_person in range(0, len(all_persons)): tasks[tasks == current_person] = all_persons[current_person] #make table with dates, tasks and persons that do not have a task newlist = np.zeros((nr_of_weeks_new, nr_of_tasks + nr_no_task + 1), dtype=int) newlist[:, 0] = datevector[:, 0] - excel_date newlist[:, 1:nr_of_tasks + 1] = tasks newlist[:, nr_of_tasks + 1:nr_of_tasks + 1 + nr_no_task] = np.ones( (nr_of_weeks_new, 1), dtype=int) * persons_no_task colnames = [ 'Date', 'Living', 'room', 'Toilets', 'Bathroom', 'Showers', 'Hallways', 'Kit', 'ch', 'en', 'Laundry', 'Notask1', 'Notask2', 'Notask3', 'Notask4', 'Notask5' ] outtable = pd.DataFrame( newlist, # values index=newlist[:, 0], # 1st column as index columns=colnames) # 1st row as the column names vector_str =
pd.DataFrame({'Day': datevector_str})
pandas.DataFrame
import subprocess import numpy as np import pandas as pd from nicenumber import __version__, getlog from nicenumber import nicenumber as nn from pytest import raises def test_init(): """Test main package __init__.py""" # test getlog function works to create logger log = getlog(__name__) assert log.name == __name__ # test version strings match args = ['poetry', 'version', '-s'] toml_ver = subprocess.run(args, capture_output=True, text=True).stdout.rstrip() assert __version__ == toml_ver def check_expected_result(func, vals: list): """Call function with kw args for each dict in list Parameters ---------- func : callable Function to call vals : list List of dicts with kw args """ for kw, expected_result in vals: result = func(**kw) # handle pd.NA without equality if
pd.isnull(expected_result)
pandas.isnull
import nltk from nltk.corpus import stopwords import pandas as pd import string from collections import Counter from keras.preprocessing.text import Tokenizer from keras.models import Sequential from keras.layers import Dense, Dropout import random from numpy import array from pandas import DataFrame from matplotlib import pyplot from bag_of_words import clean_doc nltk.download('stopwords') # load doc, clean and return line of tokens def doc_to_line(filename, vocab): doc = load_doc(filename) tokens = clean_doc(doc) # filter by vocab tokens = [w for w in tokens if w in vocab] return ' '.join(tokens) # load doc into memory def load_doc(filename): file = open(filename, 'r') text = file.read() file.close() return text def evaluate_mode(X_train, y_train, X_test, y_test): scores = list() n_repeats = 2 n_words = X_test.shape[1] for i in range(n_repeats): model = get_model(n_words) # fit network model.fit(X_train, y_train, epochs=5, verbose=1) # evaluate loss, acc = model.evaluate(X_test, y_test, verbose=1) scores.append(acc) print('%d accuracy: %s' % ((i+1), acc)) return scores def get_model(n_words): # define network model = Sequential() model.add(Dense(50, input_shape=(n_words,), activation='relu')) model.add(Dense(4, activation='sigmoid')) # compile network model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) return model def get_data(data): # load the vocabulary vocab_filename = 'data/vocab.txt' vocab = load_doc(vocab_filename) vocab = vocab.split() vocab = set(vocab) sentences = data['productDisplayName'].values.tolist() usage =
pd.get_dummies(data['season'])
pandas.get_dummies
""" I/O functions of the aecg package: tools for annotated ECG HL7 XML files This module implements helper functions to parse and read annotated electrocardiogram (ECG) stored in XML files following HL7 specification. See authors, license and disclaimer at the top level directory of this project. """ # Imports ===================================================================== from typing import Dict, Tuple from lxml import etree from aecg import validate_xpath, new_validation_row, VALICOLS, \ TIME_CODES, SEQUENCE_CODES, \ Aecg, AecgLead, AecgAnnotationSet import copy import logging import pandas as pd import re import zipfile # Python logging ============================================================== logger = logging.getLogger(__name__) def parse_annotations(xml_filename: str, zip_filename: str, aecg_doc: etree._ElementTree, aecgannset: AecgAnnotationSet, path_prefix: str, annsset_xmlnode_path: str, valgroup: str = "RHYTHM", log_validation: bool = False) -> Tuple[ AecgAnnotationSet, pd.DataFrame]: """Parses `aecg_doc` XML document and extracts annotations Args: xml_filename (str): Filename of the aECG XML file. zip_filename (str): Filename of zip file containint the aECG XML file. If '', then xml file is not stored in a zip file. aecg_doc (etree._ElementTree): XML document of the aECG XML file. aecgannset (AecgAnnotationSet): Annotation set to which append found annotations. path_prefix (str): Prefix of xml path from which start searching for annotations. annsset_xmlnode_path (str): Path to xml node of the annotation set containing the annotations. valgroup (str, optional): Indicates whether to search annotations in rhythm or derived waveform. Defaults to "RHYTHM". log_validation (bool, optional): Indicates whether to maintain the validation results in `aecg.validatorResults`. Defaults to False. Returns: Tuple[AecgAnnotationSet, pd.DataFrame]: Annotation set updated with found annotations and dataframe with results of validation. """ anngrpid = 0 # Annotations stored within a beat beatnodes = aecg_doc.xpath(( path_prefix + "/component/annotation/code[@code=\'MDC_ECG_BEAT\']").replace( '/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) beatnum = 0 valpd = pd.DataFrame() if len(beatnodes) > 0: logger.info( f'{xml_filename},{zip_filename},' f'{valgroup} {len(beatnodes)} annotated beats found') for beatnode in beatnodes: for rel_path in ["../component/annotation/" "code[contains(@code, \"MDC_ECG_\")]"]: annsnodes = beatnode.xpath(rel_path.replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) rel_path2 = "../value" for annsnode in annsnodes: ann = {"anngrpid": anngrpid, "beatnum": "", "code": "", "codetype": "", "wavecomponent": "", "wavecomponent2": "", "timecode": "", "value": "", "value_unit": "", "low": "", "low_unit": "", "high": "", "high_unit": "", "lead": ""} # Annotation code valrow2 = validate_xpath( annsnode, ".", "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + rel_path if valrow2["VALIOUT"] == "PASSED": ann["code"] = valrow2["VALUE"] # Annotation type from top level value valrow2 = validate_xpath(annsnode, "../value", "urn:hl7-org:v3", "code", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/value" if log_validation: valpd = valpd.append(pd.DataFrame( [valrow2], columns=VALICOLS), ignore_index=True) if valrow2["VALIOUT"] == "PASSED": ann["codetype"] = valrow2["VALUE"] # Annotations type valrow2 = validate_xpath( annsnode, rel_path2, "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + rel_path + \ "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["beatnum"] = beatnum ann["codetype"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) subannsnodes = annsnode.xpath( rel_path.replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) if len(subannsnodes) == 0: subannsnodes = [annsnode] else: subannsnodes += [annsnode] # Exclude annotations reporting interval values only subannsnodes = [ sa for sa in subannsnodes if not sa.get("code").startswith("MDC_ECG_TIME_PD_")] for subannsnode in subannsnodes: # Annotations type valrow2 = validate_xpath(subannsnode, rel_path2, "urn:hl7-org:v3", "code", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["wavecomponent"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value valrow2 = validate_xpath(subannsnode, rel_path2, "urn:hl7-org:v3", "value", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value units valrow2 = validate_xpath(subannsnode, rel_path2, "urn:hl7-org:v3", "unit", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value_unit"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # annotations info from supporting ROI rel_path3 = "../support/supportingROI/component/"\ "boundary/value" for n in ["", "low", "high"]: if n != "": rp = rel_path3 + "/" + n else: rp = rel_path3 valrow3 = validate_xpath( subannsnode, rp, "urn:hl7-org:v3", "value", new_validation_row(xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow3["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rp if valrow3["VALIOUT"] == "PASSED": if n != "": ann[n] = valrow3["VALUE"] else: ann["value"] = valrow3["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow3], columns=VALICOLS), ignore_index=True) valrow3 = validate_xpath( subannsnode, rp, "urn:hl7-org:v3", "unit", new_validation_row(xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow3["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rp if valrow3["VALIOUT"] == "PASSED": if n != "": ann[n + "_unit"] = valrow3["VALUE"] else: ann["value_unit"] = valrow3["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow3], columns=VALICOLS), ignore_index=True) # annotations time encoding, lead and other info used # by value and supporting ROI rel_path4 = "../support/supportingROI/component/"\ "boundary/code" roinodes = subannsnode.xpath( rel_path4.replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) for roinode in roinodes: valrow4 = validate_xpath( roinode, ".", "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow4["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path4 if valrow4["VALIOUT"] == "PASSED": if valrow4["VALUE"] in ["TIME_ABSOLUTE", "TIME_RELATIVE"]: ann["timecode"] = valrow4["VALUE"] else: ann["lead"] = valrow4["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow4], columns=VALICOLS), ignore_index=True) aecgannset.anns.append(copy.deepcopy(ann)) else: # Annotations type valrow2 = validate_xpath(annsnode, ".", "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_BEAT_" "ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + rel_path +\ "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["beatnum"] = beatnum ann["codetype"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value valrow2 = validate_xpath(annsnode, rel_path2, "urn:hl7-org:v3", "value", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value units valrow2 = validate_xpath(annsnode, rel_path2, "urn:hl7-org:v3", "unit", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value_unit"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # annotations time encoding, lead and other info used # by value and supporting ROI rel_path4 = "../support/supportingROI/component/" \ "boundary/code" roinodes = annsnode.xpath( rel_path4.replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) for roinode in roinodes: valrow4 = validate_xpath(roinode, ".", "urn:hl7-org:v3", "code", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow4["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path4 if valrow4["VALIOUT"] == "PASSED": if valrow4["VALUE"] in ["TIME_ABSOLUTE", "TIME_RELATIVE"]: ann["timecode"] = valrow4["VALUE"] else: ann["lead"] = valrow4["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow4], columns=VALICOLS), ignore_index=True) aecgannset.anns.append(copy.deepcopy(ann)) else: if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) anngrpid = anngrpid + 1 beatnum = beatnum + 1 if len(beatnodes) > 0: logger.info( f'{xml_filename},{zip_filename},' f'{valgroup} {beatnum} annotated beats and {anngrpid} ' f'annotations groups found') anngrpid_from_beats = anngrpid # Annotations stored without an associated beat for codetype_path in ["/component/annotation/code[" "(contains(@code, \"MDC_ECG_\") and" " not (@code=\'MDC_ECG_BEAT\'))]"]: annsnodes = aecg_doc.xpath( (path_prefix + codetype_path).replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) rel_path2 = "../value" for annsnode in annsnodes: ann = {"anngrpid": anngrpid, "beatnum": "", "code": "", "codetype": "", "wavecomponent": "", "wavecomponent2": "", "timecode": "", "value": "", "value_unit": "", "low": "", "low_unit": "", "high": "", "high_unit": "", "lead": ""} # Annotations code valrow2 = validate_xpath(annsnode, ".", "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path if log_validation: valpd = valpd.append(pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) if valrow2["VALIOUT"] == "PASSED": ann["code"] = valrow2["VALUE"] # Annotation type from top level value valrow2 = validate_xpath(annsnode, "../value", "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/value" if log_validation: valpd = valpd.append(pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) if valrow2["VALIOUT"] == "PASSED": ann["codetype"] = valrow2["VALUE"] subannsnodes = annsnode.xpath( (".." + codetype_path).replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) if len(subannsnodes) == 0: subannsnodes = [annsnode] for subannsnode in subannsnodes: subsubannsnodes = subannsnode.xpath( (".." + codetype_path).replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) tmpnodes = [subannsnode] if len(subsubannsnodes) > 0: tmpnodes = tmpnodes + subsubannsnodes for subsubannsnode in tmpnodes: ann["wavecomponent"] = "" ann["wavecomponent2"] = "" ann["timecode"] = "" ann["value"] = "" ann["value_unit"] = "" ann["low"] = "" ann["low_unit"] = "" ann["high"] = "" ann["high_unit"] = "" roi_base = "../support/supportingROI/component/boundary" rel_path3 = roi_base + "/value" valrow2 = validate_xpath( subsubannsnode, ".", "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_" "ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/code" if valrow2["VALIOUT"] == "PASSED": if not ann["codetype"].endswith("WAVE"): ann["codetype"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations type valrow2 = validate_xpath( subsubannsnode, rel_path2, "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_" "ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["wavecomponent"] = valrow2["VALUE"] # if ann["wavecomponent"] == "": # ann["wavecomponent"] = valrow2["VALUE"] # else: # ann["wavecomponent2"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value valrow2 = validate_xpath( subsubannsnode, rel_path2, "urn:hl7-org:v3", "", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_" "ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value as attribute valrow2 = validate_xpath( subsubannsnode, rel_path2, "urn:hl7-org:v3", "value", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_" "ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value units valrow2 = validate_xpath( subsubannsnode, rel_path2, "urn:hl7-org:v3", "unit", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_" "ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value_unit"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # annotations info from supporting ROI for n in ["", "low", "high"]: if n != "": rp = rel_path3 + "/" + n else: rp = rel_path3 valrow3 = validate_xpath( subsubannsnode, rp, "urn:hl7-org:v3", "value", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_" "ANNS"), failcat="WARNING") valrow3["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rp if valrow3["VALIOUT"] == "PASSED": if n != "": ann[n] = valrow3["VALUE"] else: ann["value"] = valrow3["VALUE"] else: roi_base = "../component/annotation/support/"\ "supportingROI/component/boundary" # Annotations type valrow2 = validate_xpath(subsubannsnode, "../component/annotation/" "value", "urn:hl7-org:v3", "code", new_validation_row( xml_filename, valgroup, "ANNSET_NOBEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + \ "../component/annotation/value" if valrow2["VALIOUT"] == "PASSED": ann["wavecomponent2"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # annotation values if n != "": rp = roi_base + "/value/" + n else: rp = roi_base + "/value" valrow3 = validate_xpath(subsubannsnode, rp, "urn:hl7-org:v3", "value", new_validation_row( xml_filename, valgroup, "ANNSET_NOBEAT_ANNS"), failcat="WARNING") valrow3["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rp if valrow3["VALIOUT"] == "PASSED": if n != "": ann[n] = valrow3["VALUE"] else: ann["value"] = valrow3["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow3], columns=VALICOLS), ignore_index=True) valrow3 = validate_xpath( subsubannsnode, rp, "urn:hl7-org:v3", "unit", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT" "_ANNS"), failcat="WARNING") valrow3["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rp if valrow3["VALIOUT"] == "PASSED": if n != "": ann[n + "_unit"] = valrow3["VALUE"] else: ann["value_unit"] = valrow3["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow3], columns=VALICOLS), ignore_index=True) # annotations time encoding, lead and other info used by # value and supporting ROI for rel_path4 in ["../support/supportingROI/component/" "boundary", "../component/annotation/support/" "supportingROI/component/boundary"]: roinodes = subsubannsnode.xpath( rel_path4.replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) for roinode in roinodes: valrow4 = validate_xpath(roinode, "./code", "urn:hl7-org:v3", "code", new_validation_row( xml_filename, valgroup, "ANNSET_NOBEAT_ANNS"), failcat="WARNING") valrow4["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rel_path4 if valrow4["VALIOUT"] == "PASSED": if valrow4["VALUE"] in ["TIME_ABSOLUTE", "TIME_RELATIVE"]: ann["timecode"] = valrow4["VALUE"] else: ann["lead"] = valrow4["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow4], columns=VALICOLS), ignore_index=True) aecgannset.anns.append(copy.deepcopy(ann)) anngrpid = anngrpid + 1 logger.info( f'{xml_filename},{zip_filename},' f'{valgroup} {anngrpid-anngrpid_from_beats} annotations groups' f' without an associated beat found') return aecgannset, valpd def parse_generalinfo(aecg_doc: etree._ElementTree, aecg: Aecg, log_validation: bool = False) -> Aecg: """Parses `aecg_doc` XML document and extracts general information This function parses the `aecg_doc` xml document searching for general information that includes in the returned `Aecg`: unique identifier (UUID), ECG date and time of collection (EGDTC), and device information. Args: aecg_doc (etree._ElementTree): aECG XML document aecg (Aecg): The aECG object to update log_validation (bool, optional): Indicates whether to maintain the validation results in `aecg.validatorResults`. Defaults to False. Returns: Aecg: `aecg` updated with the information found in the xml document. """ # ======================================= # UUID # ======================================= valrow = validate_xpath(aecg_doc, "./*[local-name() = \"id\"]", "", "root", new_validation_row(aecg.filename, "GENERAL", "UUID")) if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'UUID found: {valrow["VALUE"]}') aecg.UUID = valrow["VALUE"] else: logger.critical( f'{aecg.filename},{aecg.zipContainer},' f'UUID not found') valrow = validate_xpath(aecg_doc, "./*[local-name() = \"id\"]", "", "extension", new_validation_row(aecg.filename, "GENERAL", "UUID")) if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if valrow["VALIOUT"] == "PASSED": logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'UUID extension found: {valrow["VALUE"]}') aecg.UUID += valrow["VALUE"] logger.info( f'{aecg.filename},{aecg.zipContainer},' f'UUID updated to: {aecg.UUID}') else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'UUID extension not found') # ======================================= # EGDTC # ======================================= valpd = pd.DataFrame() egdtc_found = False for n in ["low", "center", "high"]: valrow = validate_xpath(aecg_doc, "./*[local-name() = \"effectiveTime\"]/" "*[local-name() = \"" + n + "\"]", "", "value", new_validation_row(aecg.filename, "GENERAL", "EGDTC_" + n), "WARNING") if valrow["VALIOUT"] == "PASSED": egdtc_found = True logger.info( f'{aecg.filename},{aecg.zipContainer},' f'EGDTC {n} found: {valrow["VALUE"]}') aecg.EGDTC[n] = valrow["VALUE"] if log_validation: valpd = valpd.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if not egdtc_found: logger.critical( f'{aecg.filename},{aecg.zipContainer},' f'EGDTC not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append(valpd, ignore_index=True) # ======================================= # DEVICE # ======================================= # DEVICE = {"manufacturer": "", "model": "", "software": ""} valrow = validate_xpath(aecg_doc, "./component/series/author/" "seriesAuthor/manufacturerOrganization/name", "urn:hl7-org:v3", "", new_validation_row(aecg.filename, "GENERAL", "DEVICE_manufacturer"), "WARNING") if valrow["VALIOUT"] == "PASSED": tmp = valrow["VALUE"].replace("\n", "|") logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DEVICE manufacturer found: {tmp}') aecg.DEVICE["manufacturer"] = valrow["VALUE"] else: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'DEVICE manufacturer not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) valrow = validate_xpath(aecg_doc, "./component/series/author/" "seriesAuthor/manufacturedSeriesDevice/" "manufacturerModelName", "urn:hl7-org:v3", "", new_validation_row(aecg.filename, "GENERAL", "DEVICE_model"), "WARNING") if valrow["VALIOUT"] == "PASSED": tmp = valrow["VALUE"].replace("\n", "|") logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DEVICE model found: {tmp}') aecg.DEVICE["model"] = valrow["VALUE"] else: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'DEVICE model not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) valrow = validate_xpath(aecg_doc, "./component/series/author/" "seriesAuthor/manufacturedSeriesDevice/" "softwareName", "urn:hl7-org:v3", "", new_validation_row(aecg.filename, "GENERAL", "DEVICE_software"), "WARNING") if valrow["VALIOUT"] == "PASSED": tmp = valrow["VALUE"].replace("\n", "|") logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DEVICE software found: {tmp}') aecg.DEVICE["software"] = valrow["VALUE"] else: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'DEVICE software not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) return aecg def parse_subjectinfo(aecg_doc: etree._ElementTree, aecg: Aecg, log_validation: bool = False) -> Aecg: """Parses `aecg_doc` XML document and extracts subject information This function parses the `aecg_doc` xml document searching for subject information that includes in the returned `Aecg`: subject unique identifier (USUBJID), gender, birthtime, and race. Args: aecg_doc (etree._ElementTree): aECG XML document aecg (Aecg): The aECG object to update log_validation (bool, optional): Indicates whether to maintain the validation results in `aecg.validatorResults`. Defaults to False. Returns: Aecg: `aecg` updated with the information found in the xml document. """ # ======================================= # USUBJID # ======================================= valpd = pd.DataFrame() for n in ["root", "extension"]: valrow = validate_xpath(aecg_doc, "./componentOf/timepointEvent/componentOf/" "subjectAssignment/subject/trialSubject/id", "urn:hl7-org:v3", n, new_validation_row(aecg.filename, "SUBJECTINFO", "USUBJID_" + n)) if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DM.USUBJID ID {n} found: {valrow["VALUE"]}') aecg.USUBJID[n] = valrow["VALUE"] else: if n == "root": logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'DM.USUBJID ID {n} not found') else: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'DM.USUBJID ID {n} not found') if log_validation: valpd = valpd.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if (aecg.USUBJID["root"] == "") and (aecg.USUBJID["extension"] == ""): logger.error( f'{aecg.filename},{aecg.zipContainer},' f'DM.USUBJID cannot be established.') if log_validation: aecg.validatorResults = aecg.validatorResults.append(valpd, ignore_index=True) # ======================================= # SEX / GENDER # ======================================= valrow = validate_xpath(aecg_doc, "./componentOf/timepointEvent/componentOf/" "subjectAssignment/subject/trialSubject/" "subjectDemographicPerson/" "administrativeGenderCode", "urn:hl7-org:v3", "code", new_validation_row(aecg.filename, "SUBJECTINFO", "SEX"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DM.SEX found: {valrow["VALUE"]}') aecg.SEX = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'DM.SEX not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) # ======================================= # BIRTHTIME # ======================================= valrow = validate_xpath(aecg_doc, "./componentOf/timepointEvent/componentOf/" "subjectAssignment/subject/trialSubject/" "subjectDemographicPerson/birthTime", "urn:hl7-org:v3", "value", new_validation_row(aecg.filename, "SUBJECTINFO", "BIRTHTIME"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DM.BIRTHTIME found.') aecg.BIRTHTIME = valrow["VALUE"] # age_in_years = aecg.subject_age_in_years() else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'DM.BIRTHTIME not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) # ======================================= # RACE # ======================================= valrow = validate_xpath(aecg_doc, "./componentOf/timepointEvent/componentOf/" "subjectAssignment/subject/trialSubject/" "subjectDemographicPerson/raceCode", "urn:hl7-org:v3", "code", new_validation_row(aecg.filename, "SUBJECTINFO", "RACE"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DM.RACE found: {valrow["VALUE"]}') else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'DM.RACE not found') aecg.RACE = valrow["VALUE"] if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) return aecg def parse_trtainfo(aecg_doc: etree._ElementTree, aecg: Aecg, log_validation: bool = False) -> Aecg: """Parses `aecg_doc` XML document and extracts subject information This function parses the `aecg_doc` xml document searching for treatment information that includes in the returned `Aecg`. Args: aecg_doc (etree._ElementTree): aECG XML document aecg (Aecg): The aECG object to update log_validation (bool, optional): Indicates whether to maintain the validation results in `aecg.validatorResults`. Defaults to False. Returns: Aecg: `aecg` updated with the information found in the xml document. """ valrow = validate_xpath(aecg_doc, "./componentOf/timepointEvent/componentOf/" "subjectAssignment/definition/" "treatmentGroupAssignment/code", "urn:hl7-org:v3", "code", new_validation_row(aecg.filename, "STUDYINFO", "TRTA"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'TRTA information found: {valrow["VALUE"]}') aecg.TRTA = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'TRTA information not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) return aecg def parse_studyinfo(aecg_doc: etree._ElementTree, aecg: Aecg, log_validation: bool = False) -> Aecg: """Parses `aecg_doc` XML document and extracts study information This function parses the `aecg_doc` xml document searching for study information that includes in the returned `Aecg`: study unique identifier (STUDYID), and study title. Args: aecg_doc (etree._ElementTree): aECG XML document aecg (Aecg): The aECG object to update log_validation (bool, optional): Indicates whether to maintain the validation results in `aecg.validatorResults`. Defaults to False. Returns: Aecg: `aecg` updated with the information found in the xml document. """ valpd = pd.DataFrame() for n in ["root", "extension"]: valrow = validate_xpath(aecg_doc, "./componentOf/timepointEvent/componentOf/" "subjectAssignment/componentOf/" "clinicalTrial/id", "urn:hl7-org:v3", n, new_validation_row(aecg.filename, "STUDYINFO", "STUDYID_" + n), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'STUDYID {n} found: {valrow["VALUE"]}') aecg.STUDYID[n] = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'STUDYID {n} not found') if log_validation: valpd = valpd.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if log_validation: aecg.validatorResults = \ aecg.validatorResults.append(valpd, ignore_index=True) valrow = validate_xpath(aecg_doc, "./componentOf/timepointEvent/componentOf/" "subjectAssignment/componentOf/" "clinicalTrial/title", "urn:hl7-org:v3", "", new_validation_row(aecg.filename, "STUDYINFO", "STUDYTITLE"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": tmp = valrow["VALUE"].replace("\n", "") logger.info( f'{aecg.filename},{aecg.zipContainer},' f'STUDYTITLE found: {tmp}') aecg.STUDYTITLE = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'STUDYTITLE not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) return aecg def parse_timepoints(aecg_doc: etree._ElementTree, aecg: Aecg, log_validation: bool = False) -> Aecg: """Parses `aecg_doc` XML document and extracts timepoints information This function parses the `aecg_doc` xml document searching for timepoints information that includes in the returned `Aecg`: absolute timepoint or study event information (TPT), relative timepoint or study event relative to a reference event (RTPT), and protocol timepoint information (PTPT). Args: aecg_doc (etree._ElementTree): aECG XML document aecg (Aecg): The aECG object to update log_validation (bool, optional): Indicates whether to maintain the validation results in `aecg.validatorResults`. Defaults to False. Returns: Aecg: `aecg` updated with the information found in the xml document. """ # ======================================= # TPT # ======================================= valpd = pd.DataFrame() for n in ["code", "displayName"]: valrow = validate_xpath(aecg_doc, "./componentOf/timepointEvent/code", "urn:hl7-org:v3", n, new_validation_row(aecg.filename, "STUDYINFO", "TPT_" + n), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'TPT {n} found: {valrow["VALUE"]}') aecg.TPT[n] = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'TPT {n} not found') if log_validation: valpd = valpd.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if log_validation: aecg.validatorResults = \ aecg.validatorResults.append(valpd, ignore_index=True) valrow = validate_xpath(aecg_doc, "./componentOf/timepointEvent/reasonCode", "urn:hl7-org:v3", "code", new_validation_row(aecg.filename, "STUDYINFO", "TPT_reasonCode"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'TPT reasonCode found: {valrow["VALUE"]}') aecg.TPT["reasonCode"] = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'TPT reasonCode not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) valpd = pd.DataFrame() for n in ["low", "high"]: valrow = validate_xpath(aecg_doc, "./componentOf/timepointEvent/" "effectiveTime/" + n, "urn:hl7-org:v3", "value", new_validation_row(aecg.filename, "STUDYINFO", "TPT_" + n), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'TPT {n} found: {valrow["VALUE"]}') aecg.TPT[n] = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'TPT {n} not found') if log_validation: valpd = valpd.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if log_validation: aecg.validatorResults = \ aecg.validatorResults.append(valpd, ignore_index=True) # ======================================= # RTPT # ======================================= valpd = pd.DataFrame() for n in ["code", "displayName"]: valrow = validate_xpath(aecg_doc, "./definition/relativeTimepoint/code", "urn:hl7-org:v3", "code", new_validation_row(aecg.filename, "STUDYINFO", "RTPT_" + n), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'RTPT {n} found: {valrow["VALUE"]}') aecg.RTPT[n] = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'RTPT {n} not found') if log_validation: valpd = valpd.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if log_validation: aecg.validatorResults = \ aecg.validatorResults.append(valpd, ignore_index=True) valrow = validate_xpath(aecg_doc, "./definition/relativeTimepoint/componentOf/" "pauseQuantity", "urn:hl7-org:v3", "value", new_validation_row(aecg.filename, "STUDYINFO", "RTPT_pauseQuantity"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'RTPT pauseQuantity value found: {valrow["VALUE"]}') aecg.RTPT["pauseQuantity"] = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'RTPT pauseQuantity value not found') if log_validation: aecg.validatorResults = \ aecg.validatorResults.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) valrow = validate_xpath(aecg_doc, "./definition/relativeTimepoint/componentOf/" "pauseQuantity", "urn:hl7-org:v3", "unit", new_validation_row(aecg.filename, "STUDYINFO", "RTPT_pauseQuantity_unit"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'RTPT pauseQuantity unit found: {valrow["VALUE"]}') aecg.RTPT["pauseQuantity_unit"] = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'RTPT pauseQuantity unit not found') if log_validation: aecg.validatorResults = \ aecg.validatorResults.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) # ======================================= # PTPT # ======================================= valpd = pd.DataFrame() for n in ["code", "displayName"]: valrow = validate_xpath(aecg_doc, "./definition/relativeTimepoint/" "componentOf/protocolTimepointEvent/code", "urn:hl7-org:v3", n, new_validation_row(aecg.filename, "STUDYINFO", "PTPT_" + n), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'PTPT {n} found: {valrow["VALUE"]}') aecg.PTPT[n] = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'PTPT {n} not found') if log_validation: valpd = valpd.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if log_validation: aecg.validatorResults = \ aecg.validatorResults.append(valpd, ignore_index=True) valrow = validate_xpath(aecg_doc, "./definition/relativeTimepoint/componentOf/" "protocolTimepointEvent/component/" "referenceEvent/code", "urn:hl7-org:v3", "code", new_validation_row(aecg.filename, "STUDYINFO", "PTPT_referenceEvent"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'PTPT referenceEvent code found: {valrow["VALUE"]}') aecg.PTPT["referenceEvent"] = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'PTPT referenceEvent code not found') if log_validation: aecg.validatorResults = \ aecg.validatorResults.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) valrow = validate_xpath(aecg_doc, "./definition/relativeTimepoint/componentOf/" "protocolTimepointEvent/component/" "referenceEvent/code", "urn:hl7-org:v3", "displayName", new_validation_row(aecg.filename, "STUDYINFO", "PTPT_referenceEvent_" "displayName"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'PTPT referenceEvent displayName found: ' f'{valrow["VALUE"]}') aecg.PTPT["referenceEvent_displayName"] = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'PTPT referenceEvent displayName not found') if log_validation: aecg.validatorResults = \ aecg.validatorResults.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) return aecg def parse_rhythm_waveform_info(aecg_doc: etree._ElementTree, aecg: Aecg, log_validation: bool = False) -> Aecg: """Parses `aecg_doc` XML document and extracts rhythm waveform information This function parses the `aecg_doc` xml document searching for rhythm waveform information that includes in the returned `Aecg`: waveform identifier, code, display name, and date and time of collection. Args: aecg_doc (etree._ElementTree): aECG XML document aecg (Aecg): The aECG object to update log_validation (bool, optional): Indicates whether to maintain the validation results in `aecg.validatorResults`. Defaults to False. Returns: Aecg: `aecg` updated with the information found in the xml document. """ valpd = pd.DataFrame() for n in ["root", "extension"]: valrow = validate_xpath(aecg_doc, "./component/series/id", "urn:hl7-org:v3", n, new_validation_row(aecg.filename, "RHYTHM", "ID_" + n), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM ID {n} found: {valrow["VALUE"]}') aecg.RHYTHMID[n] = valrow["VALUE"] else: if n == "root": logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM ID {n} not found') else: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM ID {n} not found') if log_validation: valpd = valpd.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if log_validation: aecg.validatorResults = \ aecg.validatorResults.append(valpd, ignore_index=True) valrow = validate_xpath(aecg_doc, "./component/series/code", "urn:hl7-org:v3", "code", new_validation_row(aecg.filename, "RHYTHM", "CODE"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM code found: {valrow["VALUE"]}') aecg.RHYTHMCODE["code"] = valrow["VALUE"] if aecg.RHYTHMCODE["code"] != "RHYTHM": logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM unexpected code found: {valrow["VALUE"]}') valrow["VALIOUT"] = "WARNING" valrow["VALIMSG"] = "Unexpected value found" else: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM code not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) valrow = validate_xpath(aecg_doc, "./component/series/code", "urn:hl7-org:v3", "displayName", new_validation_row(aecg.filename, "RHYTHM", "CODE_displayName"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM displayName found: {valrow["VALUE"]}') aecg.RHYTHMCODE["displayName"] = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM displayName not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) valpd = pd.DataFrame() for n in ["low", "high"]: valrow = validate_xpath(aecg_doc, "./component/series/effectiveTime/" + n, "urn:hl7-org:v3", "value", new_validation_row(aecg.filename, "RHYTHM", "EGDTC_" + n), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHMEGDTC {n} found: {valrow["VALUE"]}') aecg.RHYTHMEGDTC[n] = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHMEGDTC {n} not found') if log_validation: valpd = valpd.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if log_validation: aecg.validatorResults = \ aecg.validatorResults.append(valpd, ignore_index=True) return aecg def parse_derived_waveform_info(aecg_doc: etree._ElementTree, aecg: Aecg, log_validation: bool = False) -> Aecg: """Parses `aecg_doc` XML document and extracts derived waveform information This function parses the `aecg_doc` xml document searching for derived waveform information that includes in the returned `Aecg`: waveform identifier, code, display name, and date and time of collection. Args: aecg_doc (etree._ElementTree): aECG XML document aecg (Aecg): The aECG object to update log_validation (bool, optional): Indicates whether to maintain the validation results in `aecg.validatorResults`. Defaults to False. Returns: Aecg: `aecg` updated with the information found in the xml document. """ valpd = pd.DataFrame() for n in ["root", "extension"]: valrow = validate_xpath(aecg_doc, "./component/series/derivation/" "derivedSeries/id", "urn:hl7-org:v3", n, new_validation_row(aecg.filename, "DERIVED", "ID_" + n), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DERIVED ID {n} found: {valrow["VALUE"]}') aecg.DERIVEDID[n] = valrow["VALUE"] else: if n == "root": logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'DERIVED ID {n} not found') else: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'DERIVED ID {n} not found') if log_validation: valpd = valpd.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if log_validation: aecg.validatorResults = \ aecg.validatorResults.append(valpd, ignore_index=True) valrow = validate_xpath(aecg_doc, "./component/series/derivation/" "derivedSeries/code", "urn:hl7-org:v3", "code", new_validation_row(aecg.filename, "DERIVED", "CODE"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'DERIVED code found: {valrow["VALUE"]}') aecg.DERIVEDCODE["code"] = valrow["VALUE"] if aecg.DERIVEDCODE["code"] != "REPRESENTATIVE_BEAT": logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'DERIVED unexpected code found: {valrow["VALUE"]}') valrow["VALIOUT"] = "WARNING" valrow["VALIMSG"] = "Unexpected value found" else: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'DERIVED code not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) valrow = validate_xpath(aecg_doc, "./component/series/derivation/" "derivedSeries/code", "urn:hl7-org:v3", "displayName", new_validation_row(aecg.filename, "DERIVED", "CODE_displayName"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'DERIVED displayName found: {valrow["VALUE"]}') aecg.DERIVEDCODE["displayName"] = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'DERIVED displayName not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) valpd = pd.DataFrame() for n in ["low", "high"]: valrow = validate_xpath(aecg_doc, "./component/series/derivation/" "derivedSeries/effectiveTime/" + n, "urn:hl7-org:v3", "value", new_validation_row(aecg.filename, "DERIVED", "EGDTC_" + n), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DERIVEDEGDTC {n} found: {valrow["VALUE"]}') aecg.DERIVEDEGDTC[n] = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'DERIVEDEGDTC {n} not found') if log_validation: valpd = valpd.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if log_validation: aecg.validatorResults = \ aecg.validatorResults.append(valpd, ignore_index=True) return aecg def parse_rhythm_waveform_timeseries(aecg_doc: etree._ElementTree, aecg: Aecg, include_digits: bool = False, log_validation: bool = False) -> Aecg: """Parses `aecg_doc` XML document and extracts rhythm's timeseries This function parses the `aecg_doc` xml document searching for rhythm waveform timeseries (sequences) information that includes in the returned :any:`Aecg`. Each found sequence is stored as an :any:`AecgLead` in the :any:`Aecg.RHYTHMLEADS` list of the returned :any:`Aecg`. Args: aecg_doc (etree._ElementTree): aECG XML document aecg (Aecg): The aECG object to update include_digits (bool, optional): Indicates whether to include the digits information in the returned `Aecg`. log_validation (bool, optional): Indicates whether to maintain the validation results in `aecg.validatorResults`. Defaults to False. Returns: Aecg: `aecg` updated with the information found in the xml document. """ path_prefix = './component/series/component/sequenceSet/' \ 'component/sequence' seqnodes = aecg_doc.xpath((path_prefix + '/code').replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) if len(seqnodes) > 0: logger.info( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM sequenceSet(s) found: ' f'{len(seqnodes)} sequenceSet nodes') else: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM sequenceSet not found') for xmlnode in seqnodes: xmlnode_path = aecg_doc.getpath(xmlnode) valrow = validate_xpath(aecg_doc, xmlnode_path, "urn:hl7-org:v3", "code", new_validation_row(aecg.filename, "RHYTHM", "SEQUENCE_CODE"), failcat="WARNING") valpd = pd.DataFrame() if valrow["VALIOUT"] == "PASSED": if not valrow["VALUE"] in SEQUENCE_CODES: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM unexpected sequenceSet code ' f'found: {valrow["VALUE"]}') valrow["VALIOUT"] = "WARNING" valrow["VALIMSG"] = "Unexpected sequence code found" if valrow["VALUE"] in TIME_CODES: logger.info( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM sequenceSet code found: {valrow["VALUE"]}') aecg.RHYTHMTIME["code"] = valrow["VALUE"] # Retrieve time head info from value node rel_path = "../value/head" valrow2 = validate_xpath( xmlnode, rel_path, "urn:hl7-org:v3", "value", new_validation_row( aecg.filename, "RHYTHM", "SEQUENCE_TIME_HEAD"), failcat="WARNING") valrow2["XPATH"] = xmlnode_path + "/" + rel_path if valrow2["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM SEQUENCE_TIME_HEAD found: {valrow2["VALUE"]}') aecg.RHYTHMTIME["head"] = valrow2["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM SEQUENCE_TIME_HEAD not found') if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Retrieve time increment info from value node rel_path = "../value/increment" for n in ["value", "unit"]: valrow2 = validate_xpath( xmlnode, rel_path, "urn:hl7-org:v3", n, new_validation_row( aecg.filename, "RHYTHM", "SEQUENCE_TIME_" + n), failcat="WARNING") valrow2["XPATH"] = xmlnode_path + "/" + rel_path if valrow2["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM SEQUENCE_TIME_{n} found: ' f'{valrow2["VALUE"]}') if n == "value": aecg.RHYTHMTIME["increment"] = float( valrow2["VALUE"]) else: aecg.RHYTHMTIME[n] = valrow2["VALUE"] if log_validation: valpd = \ valpd.append(pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) else: logger.info( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM sequenceSet code found: ' f'{valrow["VALUE"]}') logger.info( f'{aecg.filename},{aecg.zipContainer},' f'LEADNAME from RHYTHM sequenceSet code: ' f'{valrow["VALUE"]}') # Assume is a lead aecglead = AecgLead() aecglead.leadname = valrow["VALUE"] # Inherit last parsed RHYTHMTIME aecglead.LEADTIME = copy.deepcopy(aecg.RHYTHMTIME) # Retrive lead origin info rel_path = "../value/origin" for n in ["value", "unit"]: valrow2 = validate_xpath( xmlnode, rel_path, "urn:hl7-org:v3", n, new_validation_row( aecg.filename, "RHYTHM", "SEQUENCE_LEAD_ORIGIN_" + n), failcat="WARNING") valrow2["XPATH"] = xmlnode_path + "/" + rel_path if valrow2["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM SEQUENCE_LEAD_ORIGIN_{n} ' f'found: {valrow2["VALUE"]}') if n == "value": try: aecglead.origin = float(valrow2["VALUE"]) except Exception as ex: valrow2["VALIOUT"] == "ERROR" valrow2["VALIMSG"] = "SEQUENCE_LEAD_"\ "ORIGIN is not a "\ "number" else: aecglead.origin_unit = valrow2["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM SEQUENCE_LEAD_ORIGIN_{n} not found') if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Retrive lead scale info rel_path = "../value/scale" for n in ["value", "unit"]: valrow2 = validate_xpath( xmlnode, rel_path, "urn:hl7-org:v3", n, new_validation_row( aecg.filename, "RHYTHM", "SEQUENCE_LEAD_SCALE_" + n), failcat="WARNING") valrow2["XPATH"] = xmlnode_path + "/" + rel_path if valrow2["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM SEQUENCE_LEAD_SCALE_{n} ' f'found: {valrow2["VALUE"]}') if n == "value": try: aecglead.scale = float(valrow2["VALUE"]) except Exception as ex: logger.error( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM SEQUENCE_LEAD_SCALE ' f'value is not a valid number: \"{ex}\"') valrow2["VALIOUT"] == "ERROR" valrow2["VALIMSG"] = "SEQUENCE_LEAD_"\ "SCALE is not a "\ "number" else: aecglead.scale_unit = valrow2["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM SEQUENCE_LEAD_SCALE_{n} not found') if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Include digits if requested if include_digits: rel_path = "../value/digits" valrow2 = validate_xpath( xmlnode, rel_path, "urn:hl7-org:v3", "", new_validation_row( aecg.filename, "RHYTHM", "SEQUENCE_LEAD_DIGITS"), failcat="WARNING") valrow2["XPATH"] = xmlnode_path + "/" + rel_path if valrow2["VALIOUT"] == "PASSED": try: # Convert string of digits to list of integers # remove new lines sdigits = valrow2["VALUE"].replace("\n", " ") # remove carriage retruns sdigits = sdigits.replace("\r", " ") # remove tabs sdigits = sdigits.replace("\t", " ") # collapse 2 or more spaces into 1 space char # and remove leading/trailing white spaces sdigits = re.sub("\\s+", " ", sdigits).strip() # Convert string into list of integers aecglead.digits = [int(s) for s in sdigits.split(' ')] logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DIGITS added to lead' f' {aecglead.leadname} (n: ' f'{len(aecglead.digits)})') except Exception as ex: logger.error( f'{aecg.filename},{aecg.zipContainer},' f'Error parsing DIGITS from ' f'string to list of integers: \"{ex}\"') valrow2["VALIOUT"] == "ERROR" valrow2["VALIMSG"] = "Error parsing SEQUENCE_"\ "LEAD_DIGITS from string"\ " to list of integers" else: logger.error( f'{aecg.filename},{aecg.zipContainer},' f'DIGITS not found for lead {aecglead.leadname}') if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) else: logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DIGITS were not requested by the user') aecg.RHYTHMLEADS.append(copy.deepcopy(aecglead)) else: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM sequenceSet code not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if valpd.shape[0] > 0: aecg.validatorResults = \ aecg.validatorResults.append(valpd, ignore_index=True) return aecg def parse_derived_waveform_timeseries(aecg_doc: etree._ElementTree, aecg: Aecg, include_digits: bool = False, log_validation: bool = False): """Parses `aecg_doc` XML document and extracts derived's timeseries This function parses the `aecg_doc` xml document searching for derived waveform timeseries (sequences) information that includes in the returned :any:`Aecg`. Each found sequence is stored as an :any:`AecgLead` in the :any:`Aecg.DERIVEDLEADS` list of the returned :any:`Aecg`. Args: aecg_doc (etree._ElementTree): aECG XML document aecg (Aecg): The aECG object to update include_digits (bool, optional): Indicates whether to include the digits information in the returned `Aecg`. log_validation (bool, optional): Indicates whether to maintain the validation results in `aecg.validatorResults`. Defaults to False. Returns: Aecg: `aecg` updated with the information found in the xml document. """ path_prefix = './component/series/derivation/derivedSeries/component'\ '/sequenceSet/component/sequence' seqnodes = aecg_doc.xpath((path_prefix + '/code').replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) if len(seqnodes) > 0: logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DERIVED sequenceSet(s) found: ' f'{len(seqnodes)} sequenceSet nodes') else: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'DERIVED sequenceSet not found') for xmlnode in seqnodes: xmlnode_path = aecg_doc.getpath(xmlnode) valrow = validate_xpath(aecg_doc, xmlnode_path, "urn:hl7-org:v3", "code", new_validation_row(aecg.filename, "DERIVED", "SEQUENCE_CODE"), failcat="WARNING") valpd = pd.DataFrame() if valrow["VALIOUT"] == "PASSED": if not valrow["VALUE"] in SEQUENCE_CODES: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'DERIVED unexpected sequenceSet code ' f'found: {valrow["VALUE"]}') valrow["VALIOUT"] = "WARNING" valrow["VALIMSG"] = "Unexpected sequence code found" if valrow["VALUE"] in TIME_CODES: logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DERIVED sequenceSet code found: {valrow["VALUE"]}') aecg.DERIVEDTIME["code"] = valrow["VALUE"] # Retrieve time head info from value node rel_path = "../value/head" valrow2 = validate_xpath( xmlnode, rel_path, "urn:hl7-org:v3", "value", new_validation_row(aecg.filename, "DERIVED", "SEQUENCE_TIME_HEAD"), failcat="WARNING") valrow2["XPATH"] = xmlnode_path + "/" + rel_path if valrow2["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DERIVED SEQUENCE_TIME_HEAD found: ' f'{valrow2["VALUE"]}') aecg.DERIVEDTIME["head"] = valrow2["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'DERIVED SEQUENCE_TIME_HEAD not found') if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Retrieve time increment info from value node rel_path = "../value/increment" for n in ["value", "unit"]: valrow2 = validate_xpath( xmlnode, rel_path, "urn:hl7-org:v3", n, new_validation_row(aecg.filename, "DERIVED", "SEQUENCE_TIME_" + n), failcat="WARNING") valrow2["XPATH"] = xmlnode_path + "/" + rel_path if valrow2["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DERIVED SEQUENCE_TIME_{n} found: ' f'{valrow2["VALUE"]}') if n == "value": aecg.DERIVEDTIME["increment"] =\ float(valrow2["VALUE"]) else: aecg.DERIVEDTIME[n] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'DERIVED sequenceSet code found: {valrow["VALUE"]}') logger.info( f'{aecg.filename},{aecg.zipContainer},' f'LEADNAME from DERIVED sequenceSet code: ' f'{valrow["VALUE"]}') # Assume is a lead aecglead = AecgLead() aecglead.leadname = valrow["VALUE"] # Inherit last parsed DERIVEDTIME aecglead.LEADTIME = copy.deepcopy(aecg.DERIVEDTIME) # Retrive lead origin info rel_path = "../value/origin" for n in ["value", "unit"]: valrow2 = validate_xpath( xmlnode, rel_path, "urn:hl7-org:v3", n, new_validation_row(aecg.filename, "DERIVED", "SEQUENCE_LEAD_ORIGIN_" + n), failcat="WARNING") valrow2["XPATH"] = xmlnode_path + "/" + rel_path if valrow2["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DERIVED SEQUENCE_LEAD_ORIGIN_{n} ' f'found: {valrow2["VALUE"]}') if n == "value": try: aecglead.origin = float(valrow2["VALUE"]) except Exception as ex: valrow2["VALIOUT"] == "ERROR" valrow2["VALIMSG"] = \ "SEQUENCE_LEAD_ORIGIN is not a number" else: aecglead.origin_unit = valrow2["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'DERIVED SEQUENCE_LEAD_ORIGIN_{n} not found') if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Retrive lead scale info rel_path = "../value/scale" for n in ["value", "unit"]: valrow2 = validate_xpath( xmlnode, rel_path, "urn:hl7-org:v3", n, new_validation_row(aecg.filename, "DERIVED", "SEQUENCE_LEAD_SCALE_" + n), failcat="WARNING") valrow2["XPATH"] = xmlnode_path + "/" + rel_path if valrow2["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DERIVED SEQUENCE_LEAD_SCALE_{n} ' f'found: {valrow2["VALUE"]}') if n == "value": try: aecglead.scale = float(valrow2["VALUE"]) except Exception as ex: logger.error( f'{aecg.filename},{aecg.zipContainer},' f'DERIVED SEQUENCE_LEAD_SCALE' f' value is not a valid number: \"{ex}\"') valrow2["VALIOUT"] == "ERROR" valrow2["VALIMSG"] = "SEQUENCE_LEAD_SCALE"\ " is not a number" else: aecglead.scale_unit = valrow2["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'DERIVED SEQUENCE_LEAD_SCALE_{n} not found') if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Include digits if requested if include_digits: rel_path = "../value/digits" valrow2 = validate_xpath( xmlnode, rel_path, "urn:hl7-org:v3", "", new_validation_row(aecg.filename, "DERIVED", "SEQUENCE_LEAD_DIGITS"), failcat="WARNING") valrow2["XPATH"] = xmlnode_path + "/" + rel_path if valrow2["VALIOUT"] == "PASSED": try: # Convert string of digits to list of integers # remove new lines sdigits = valrow2["VALUE"].replace("\n", " ") # remove carriage retruns sdigits = sdigits.replace("\r", " ") # remove tabs sdigits = sdigits.replace("\t", " ") # collapse 2 or more spaces into 1 space char # and remove leading/trailing white spaces sdigits = re.sub("\\s+", " ", sdigits).strip() # Convert string into list of integers aecglead.digits = [int(s) for s in sdigits.split(' ')] logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DIGITS added to lead' f' {aecglead.leadname} (n: ' f'{len(aecglead.digits)})') except Exception as ex: logger.error( f'{aecg.filename},{aecg.zipContainer},' f'Error parsing DIGITS from ' f'string to list of integers: \"{ex}\"') valrow2["VALIOUT"] == "ERROR" valrow2["VALIMSG"] = "Error parsing SEQUENCE_"\ "LEAD_DIGITS from string"\ " to list of integers" else: logger.error( f'{aecg.filename},{aecg.zipContainer},' f'DIGITS not found for lead {aecglead.leadname}') if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) else: logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DIGITS were not requested by the user') aecg.DERIVEDLEADS.append(copy.deepcopy(aecglead)) else: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'RHYTHM sequenceSet code not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if valpd.shape[0] > 0: aecg.validatorResults = \ aecg.validatorResults.append(valpd, ignore_index=True) return aecg def parse_waveform_annotations(aecg_doc: etree._ElementTree, aecg: Aecg, anngrp: Dict, log_validation: bool = False): """Parses `aecg_doc` XML document and extracts waveform annotations This function parses the `aecg_doc` xml document searching for waveform annotation sets that includes in the returned :any:`Aecg`. As indicated in the `anngrp` parameter, each annotation set is stored as an :any:`AecgAnnotationSet` in the :any:`Aecg.RHYTHMANNS` or :any:`Aecg.DERIVEDANNS` list of the returned :any:`Aecg`. Args: aecg_doc (etree._ElementTree): aECG XML document aecg (Aecg): The aECG object to update anngrp (Dict): includes a `valgroup` key indicating whether the rhythm or derived waveform annotations should be located, and a `path_prefix` with the xml path prefix for which start searching for annotation sets in the `aecg_doc` xml document. log_validation (bool, optional): Indicates whether to maintain the validation results in `aecg.validatorResults`. Defaults to False. Returns: Aecg: `aecg` updated with the information found in the xml document. """ val_grp = anngrp["valgroup"] logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'{val_grp}: searching annotations started') path_prefix = anngrp["path_prefix"] anns_setnodes = aecg_doc.xpath(path_prefix.replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) if len(anns_setnodes) == 0: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'{anngrp["valgroup"]}: no annotation nodes found') for xmlnode in anns_setnodes: aecgannset = AecgAnnotationSet() xmlnode_path = aecg_doc.getpath(xmlnode) # Annotation set: human author information valrow = validate_xpath( aecg_doc, xmlnode_path + "/author/assignedEntity/assignedAuthorType/" "assignedPerson/name", "urn:hl7-org:v3", "", new_validation_row(aecg.filename, "RHYTHM", "ANNSET_AUTHOR_NAME"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'{val_grp} annotations author: {valrow["VALUE"]}') aecgannset.person = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'{val_grp} annotations author not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) # Annotation set: device author information valrow = validate_xpath(aecg_doc, xmlnode_path + "/author/assignedEntity" "/assignedAuthorType/" "assignedDevice/" "manufacturerModelName", "urn:hl7-org:v3", "", new_validation_row( aecg.filename, "RHYTHM", "ANNSET_AUTHOR_DEVICE_MODEL"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": tmp = valrow["VALUE"].replace("\n", "") logger.info( f'{aecg.filename},{aecg.zipContainer},' f'{val_grp} annotations device model: {tmp}') aecgannset.device["model"] = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'{val_grp} annotations device model not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) valrow = validate_xpath(aecg_doc, xmlnode_path + "/author/assignedEntity/" "assignedAuthorType/assignedDevice/" "playedManufacturedDevice/" "manufacturerOrganization/name", "urn:hl7-org:v3", "", new_validation_row( aecg.filename, "RHYTHM", "ANNSET_AUTHOR_DEVICE_NAME"), failcat="WARNING") if valrow["VALIOUT"] == "PASSED": tmp = valrow["VALUE"].replace("\n", "") logger.info( f'{aecg.filename},{aecg.zipContainer},' f'{val_grp} annotations device name: {tmp}') aecgannset.device["name"] = valrow["VALUE"] else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'{val_grp} annotations device name not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) aecgannset, valpd = parse_annotations(aecg.filename, aecg.zipContainer, aecg_doc, aecgannset, path_prefix, xmlnode_path, anngrp["valgroup"], log_validation) if len(aecgannset.anns) == 0: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'{val_grp} no annotations set found') if log_validation: aecg.validatorResults = \ aecg.validatorResults.append(valpd, ignore_index=True) if anngrp["valgroup"] == "RHYTHM": aecg.RHYTHMANNS.append(copy.deepcopy(aecgannset)) else: aecg.DERIVEDANNS.append(copy.deepcopy(aecgannset)) logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'{val_grp}: searching annotations finished') return aecg def parse_rhythm_waveform_annotations(aecg_doc: etree._ElementTree, aecg: Aecg, log_validation: bool = False) -> Aecg: """Parses `aecg_doc` XML document and extracts rhythm waveform annotations This function parses the `aecg_doc` xml document searching for rhtyhm waveform annotation sets that includes in the returned :any:`Aecg`. Each annotation set is stored as an :any:`AecgAnnotationSet` in the :any:`Aecg.RHYTHMANNS` list of the returned :any:`Aecg`. Args: aecg_doc (etree._ElementTree): aECG XML document aecg (Aecg): The aECG object to update log_validation (bool, optional): Indicates whether to maintain the validation results in `aecg.validatorResults`. Defaults to False. Returns: Aecg: `aecg` updated with the information found in the xml document. """ aecg = parse_waveform_annotations( aecg_doc, aecg, {"valgroup": "RHYTHM", "path_prefix": "./component/series/subjectOf/annotationSet"}, log_validation) return aecg def parse_derived_waveform_annotations(aecg_doc: etree._ElementTree, aecg: Aecg, log_validation: bool = False) -> Aecg: """Parses `aecg_doc` XML document and extracts derived waveform annotations This function parses the `aecg_doc` xml document searching for derived waveform annotation sets that includes in the returned :any:`Aecg`. Each annotation set is stored as an :any:`AecgAnnotationSet` in the :any:`Aecg.DERIVEDANNS` list of the returned :any:`Aecg`. Args: aecg_doc (etree._ElementTree): aECG XML document aecg (Aecg): The aECG object to update log_validation (bool, optional): Indicates whether to maintain the validation results in `aecg.validatorResults`. Defaults to False. Returns: Aecg: `aecg` updated with the information found in the xml document. """ aecg = parse_waveform_annotations( aecg_doc, aecg, {"valgroup": "DERIVED", "path_prefix": "./component/series/derivation/" "derivedSeries/subjectOf/annotationSet"}, log_validation) return aecg def read_aecg(xml_filename: str, zip_container: str = "", include_digits: bool = False, aecg_schema_filename: str = "", ns_clean: bool = True, remove_blank_text: bool = True, in_memory_xml: bool = False, log_validation: bool = False) -> Aecg: """Reads an aECG HL7 XML file and returns an `Aecg` object. Args: xml_filename (str): Path to the aECG xml file. zip_container (str, optional): Zipfile containing the aECG xml. Empty string if path points to an xml file in the system. Defaults to "". include_digits (bool, optional): Waveform values are not read nor parsed if False. Defaults to False. aecg_schema_filename (str, optional): xsd file to instantiate the lxml.etree.XMLSchema object for validating the aECG xml document. Schema validation is not performed if empty string is provided. Defaults to "". ns_clean (bool, optional): Indicates whether to clean up namespaces during XML parsing. Defaults to True. remove_blank_text (bool, optional): Indicates whether to clean up blank text during parsing. Defaults to True. in_memory_xml (bool, optional): If True, keeps a copy of the parsed XML in :attr:`xmldoc`. log_validation (bool, optional): If True, populates :attr:`validatorResults` with parsing information retrieved while reading and parsing the aECG xml file. Returns: Aecg: An aECG object instantiated with the information read from the `xml_filename` file. """ # ======================================= # Initialize Aecg object # ======================================= aecg = Aecg() aecg.filename = xml_filename aecg.zipContainer = zip_container # ======================================= # Read XML document # ======================================= aecg_doc = None parser = etree.XMLParser(ns_clean=ns_clean, remove_blank_text=remove_blank_text) if zip_container == "": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'Reading aecg from {xml_filename} [no zip container]') valrow = new_validation_row(xml_filename, "READFILE", "FILENAME") valrow["VALUE"] = xml_filename try: aecg_doc = etree.parse(xml_filename, parser) valrow["VALIOUT"] = "PASSED" valrow["VALIMSG"] = "" logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'XML file loaded and parsed') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) except Exception as ex: msg = f'Could not open or parse XML file: \"{ex}\"' logger.error( f'{aecg.filename},{aecg.zipContainer},{msg}') valrow["VALIOUT"] = "ERROR" valrow["VALIMSG"] = msg if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) # Add row with zipcontainer rule as PASSED because there is no zip # container to test valrow = new_validation_row(xml_filename, "READFILE", "ZIPCONTAINER") valrow["VALIOUT"] = "PASSED" if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) else: logger.info( f'{aecg.filename},{aecg.zipContainer},' f'Reading aecg from {xml_filename} ' f'[zip container: {zip_container}]') valrow = new_validation_row(xml_filename, "READFILE", "ZIPCONTAINER") valrow["VALUE"] = zip_container try: with zipfile.ZipFile(zip_container, "r") as zf: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'Zip file opened') valrow2 = new_validation_row(xml_filename, "READFILE", "FILENAME") valrow2["VALUE"] = xml_filename try: aecg0 = zf.read(xml_filename) logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'XML file read from zip file') try: aecg_doc = etree.fromstring(aecg0, parser) logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'XML file loaded and parsed') except Exception as ex: msg = f'Could not parse XML file: \"{ex}\"' logger.error( f'{aecg.filename},{aecg.zipContainer},{msg}') valrow2["VALIOUT"] = "ERROR" valrow2["VALIMSG"] = msg if log_validation: aecg.validatorResults = \ aecg.validatorResults.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) valrow2["VALIOUT"] = "PASSED" valrow2["VALIMSG"] = "" if log_validation: aecg.validatorResults = aecg.validatorResults.append(
pd.DataFrame([valrow2], columns=VALICOLS)
pandas.DataFrame
import os import sqlite3 import numpy as np import scipy.special as ss import pylab as pl import pandas as pd from astropy.io import fits import om10_lensing_equations as ole __all__ = ['LensedHostGenerator', 'generate_lensed_host', 'lensed_sersic_2d', 'random_location'] def boundary_max(data): ny, nx = data.shape boundary = np.concatenate((data[:, 0], data[:, -1], data[0, :], data[-1, :])) return np.max(boundary) def write_fits_stamp(data, magnorms, lens_id, galaxy_type, pixel_scale, outfile, overwrite=True): boundary_ratio = boundary_max(data)/np.max(data) if boundary_ratio > 1e-2: print(f'(boundary max/data max) = {boundary_ratio:.2e} ' f'for {galaxy_type} {lens_id}') for magnorm in magnorms.values(): if not np.isfinite(magnorm): raise RuntimeError(f'non-finite magnorm for {lens_id}') os.makedirs(os.path.dirname(os.path.abspath(outfile)), exist_ok=True) output = fits.HDUList(fits.PrimaryHDU()) output[0].data = data output[0].header.set('LENS_ID', lens_id, 'Lens system ID') output[0].header.set('GALTYPE', galaxy_type, 'Galaxy component type') for band, magnorm in magnorms.items(): output[0].header.set(f'MAGNORM{band.upper()}', magnorm, f'magnorm for {band}-band') output[0].header.set('PIXSCALE', pixel_scale, 'pixel scale in arcseconds') output.writeto(outfile, overwrite=overwrite) def lensed_sersic_2d(lens_pix, source_pix, source_cat): """ Defines a magnitude of lensed host galaxy using 2d Sersic profile Parameters ---------- lens_pix: (np.array, np.array) Arrays of xy pixel coordinates for the lens. source_pix: (np.array, np.array) Arrays of xy pixel coordinates for the bulge or disk. source_cat: dict-like Dictionary of source parameters. Returns ------- (dict, np.array) dictionary of magnorms, lensed image """ ysc1 = source_cat['ys1'] # x position of the source, arcseconds ysc2 = source_cat['ys2'] # y position of the source, arcseconds Reff = source_cat['Reff_src'] # Effective radius of the source, arcseconds qs = source_cat['qs'] # axis ratio of the source, b/a phs = source_cat['phs'] # orientation of the source, degree ndex = source_cat['ns'] # index of the source g_limage = ole.sersic_2d(*source_pix, ysc1, ysc2, Reff, qs, phs, ndex) g_source = ole.sersic_2d(*lens_pix, ysc1, ysc2, Reff, qs, phs, ndex) g_limage_sum = np.sum(g_limage) g_source_sum = np.sum(g_source) if g_limage_sum == 0 or g_source_sum == 0: raise RuntimeError('lensed image or soruce has zero-valued integral ' f'for lens id {source_cat["lensid"]}') dmag = -2.5*np.log10(g_limage_sum/g_source_sum) bands = 'ugrizy' mag_lensed = {band: source_cat[f'mag_src_{band}'] + dmag for band in bands} return mag_lensed, g_limage def generate_lensed_host(xi1, xi2, lens_P, srcP_b, srcP_d, dsx, outdir, object_type): """ Does ray tracing of light from host galaxies using a non-singular isothermal ellipsoid profile, and writes out a FITS image files of the results of the ray tracing. Parameters ---------- xi1: np.array Array of x-positions of lens image in pixel coordinates xi2: np.array Array of y-positions of lens image in pixel coordinates lens_P: dict Lens parameters (produced by create_cats_{object_type}) srcP_b: dict Source bulge parameters (produced by create_cats_{object_type}) srcP_d: dict Source disk parameters (produced by create_cats_{object_type}) dsx: float Pixel scale in arcseconds """ xlc1 = lens_P['xl1'] # x position of the lens, arcseconds xlc2 = lens_P['xl2'] # y position of the lens, arcseconds rlc = 0.0 # core size of Non-singular Isothermal # Ellipsoid vd = lens_P['vd'] # velocity dispersion of the lens zl = lens_P['zl'] # redshift of the lens zs = srcP_b['zs'] # redshift of the source rle = ole.re_sv(vd, zl, zs) # Einstein radius of lens, arcseconds. ql = lens_P['ql'] # axis ratio b/a le = ole.e2le(1.0 - ql) # scale factor due to projection of ellpsoid phl = lens_P['phl'] # position angle of the lens, degree eshr = lens_P['gamma'] # external shear eang = lens_P['phg'] # position angle of external shear ekpa = 0.0 # external convergence ai1, ai2 = ole.alphas_sie(xlc1, xlc2, phl, ql, rle, le, eshr, eang, ekpa, xi1, xi2) yi1 = xi1 - ai1 yi2 = xi2 - ai2 lens_id = lens_P['UID_lens'] magnorms, lensed_image_b = lensed_sersic_2d((xi1, xi2), (yi1, yi2), srcP_b) outfile = os.path.join(outdir, f'{object_type}_lensed_bulges', f"{lens_id}_bulge.fits") write_fits_stamp(lensed_image_b, magnorms, lens_id, 'bulge', dsx, outfile) magnorms, lensed_image_d = lensed_sersic_2d((xi1, xi2), (yi1, yi2), srcP_d) outfile = os.path.join(outdir, f'{object_type}_lensed_disks', f"{lens_id}_disk.fits") write_fits_stamp(lensed_image_d, magnorms, lens_id, 'disk', dsx, outfile) def random_location(Reff_src, qs, phs, ns, rng=None): """Sample a random (x, y) location from the surface brightness profile of the galaxy. The input parameters are Sersic parameters for the host galaxy. Parameters: ----------- Reff_src: float the effective radius in arcseconds, the radius within which half of the light is contained qs: float axis ratio of the source, b/a phs: float position angle of the galaxy in degrees ns: int Sersic index rng: numpy.random.RandomState [None] RandomState object to use for generating random draws from [0, 1). If None, then create a RandomState with default seeding. Returns: ----------- dx: horizontal coordinate of random location (pixel coordinates) dy: vertical coordinate of random location (pixel coordinates) """ if rng is None: rng = np.random.RandomState() phs_rad = np.deg2rad(phs-90) bn = ss.gammaincinv(2. * ns, 0.5) z = rng.random_sample() x = ss.gammaincinv(2. * ns, z) R = (x / bn)**ns * Reff_src theta = rng.random_sample() * 2 * np.pi xp, yp = R * np.cos(theta), R * np.sin(theta) xt = xp * np.sqrt(qs) yt = yp / np.sqrt(qs) dx, dy = np.linalg.solve([[np.cos(phs_rad), np.sin(phs_rad)], [-np.sin(phs_rad), np.cos(phs_rad)]], [xt, yt]) return dx, dy def check_random_locations(): """Defines a random location to compare to""" npoints = 100000 Reff_disk = 0.2 qs_disk = 0.3 phs_disk = 8. ns_disk = 1.0 x_d = np.zeros(npoints) y_d = np.zeros(npoints) for i in range(npoints): x_d[i], y_d[i] = random_location(Reff_disk, qs_disk, phs_disk, ns_disk) bsz = 5.0 nnn = 1000 # number of pixels per side dsx = bsz/nnn xi1, xi2 = ole.make_r_coor(nnn, dsx) src_disk = ole.sersic_2d(xi1,xi2,0.0,0.0,Reff_disk,qs_disk,phs_disk,ns_disk) src_disk_norm = src_disk/(np.sum(src_disk)*dsx*dsx) src_disk_px = np.sum(src_disk, axis=1) src_disk_norm_px = src_disk_px/(np.sum(src_disk_px)*dsx) src_disk_py = np.sum(src_disk, axis=0) src_disk_norm_py = src_disk_py/(np.sum(src_disk_py)*dsx) xsteps = xi1[:,0] #--------------------------------------------------------------- from matplotlib.ticker import NullFormatter nullfmt = NullFormatter() # no labels # definitions for the axes left, width = 0.1, 0.65 bottom, height = 0.1, 0.65 bottom_h = left_h = left + width + 0.02 rect_scatter = [left, bottom, width, height] rect_histx = [left, bottom_h, width, 0.2] rect_histy = [left_h, bottom, 0.2, height] # start with a rectangular Figure pl.figure(1, figsize=(8, 8)) axScatter = pl.axes(rect_scatter) axHistx = pl.axes(rect_histx) axHisty = pl.axes(rect_histy) # no labels axHistx.xaxis.set_major_formatter(nullfmt) axHisty.yaxis.set_major_formatter(nullfmt) # the scatter plot: axScatter.scatter(x_d, y_d) axScatter.contour(xi1, xi2, src_disk, colors=['k',]) # now determine nice limits by hand: binwidth = 0.02 xymax = max(np.max(np.abs(x_d)), np.max(np.abs(y_d))) lim = (int(xymax/binwidth) + 1) * binwidth axScatter.set_xlim((-lim, lim)) axScatter.set_ylim((-lim, lim)) bins = np.arange(-lim, lim + binwidth, binwidth) axHistx.hist(x_d, bins=bins, density=1) axHistx.plot(xsteps, src_disk_norm_px, 'k-') axHisty.hist(y_d, bins=bins, density=1,orientation='horizontal') axHisty.plot(src_disk_norm_py, xsteps, 'k-') axHistx.set_xlim(axScatter.get_xlim()) axHisty.set_ylim(axScatter.get_ylim()) return 0 class LensedHostGenerator: """Class to generate lensed hosts.""" def __init__(self, host_truth_file, lens_truth_file, obj_type, outdir, pixel_size=0.04, num_pix=250, rng=None): with sqlite3.connect(host_truth_file) as conn: host_df = pd.read_sql(f'select * from {obj_type}_hosts', conn) \ .query('image_number==0') with sqlite3.connect(lens_truth_file) as conn: lens_df = pd.read_sql(f'select * from {obj_type}_lens', conn) self.df =
pd.merge(host_df, lens_df, on='lens_cat_sys_id', how='inner')
pandas.merge
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import datetime from reda.importers.eit_version_2010 import _average_swapped_current_injections def _extract_adc_data(mat, **kwargs): """Extract adc-channel related data (i.e., data that is captured for all 48 channels of the 40-channel medusa system """ md = mat['MD'].squeeze() frequencies = mat['MP']['fm'].take(0) # it seems that there exist different file formats under this same official # version. if md['fm'].size == frequencies.size: use_v = 0 else: use_v = 1 # print('@@@') # import IPython # IPython.embed() # exit() # Labview epoch epoch = datetime.datetime(1904, 1, 1) def convert_epoch(x): timestamp = epoch + datetime.timedelta(seconds=x.astype(float)) return timestamp dfl = [] # loop over frequencies for f_id in range(0, frequencies.size): frequency = frequencies[f_id] if use_v == 0: def get_field(key): return md[key][f_id] elif use_v == 1: def get_field(key): indices = np.where( md['fm'].take(0) == frequencies[f_id]) return md[key].take(0)[indices] # def get_field(key): # indices = np.where(md['fm'].take(f_id) == frequencies[f_id]) # return md[key].take(f_id)[indices] timestamp = np.atleast_2d( [convert_epoch(x) for x in get_field('Time')] ).T.squeeze() column_names = ['ch{:02}'.format(i) for i in range(48)] ab = get_field('cni') index_pairs = [ (channel, 'Ug3_{}'.format(i)) for channel in column_names for i in range(3) ] Ug3 = get_field('Ug3') ug3_reshaped = Ug3.reshape([Ug3.shape[0], Ug3.shape[1] * 3]) df = pd.DataFrame( ug3_reshaped, index=pd.MultiIndex.from_arrays( [ ab[:, 0], ab[:, 1], np.ones(ab.shape[0]) * frequency, timestamp ], names=['a', 'b', 'frequency', 'datetime'] ), columns=pd.MultiIndex.from_tuples( index_pairs, names=['channel', 'parameter']) ) dfl.append(df) dfl = pd.concat(dfl) dfl.sort_index(axis=0, inplace=True) dfl.sort_index(axis=1, inplace=True) return dfl def _extract_md(mat, **kwargs): """Note that the md struct for this version is structured differently than the others... """ md = mat['MD'].squeeze() frequencies = mat['MP']['fm'].take(0) # Labview epoch epoch = datetime.datetime(1904, 1, 1) def convert_epoch(x): timestamp = epoch + datetime.timedelta(seconds=x.astype(float)) return timestamp dfl = [] # loop over frequencies for f_id in range(0, frequencies.size): def get_field(key): indices = np.where( md['fm'].take(0) == frequencies[f_id]) return md[key].take(0)[indices] timestamp = np.atleast_2d( [convert_epoch(x) for x in get_field('Time')] ).T.squeeze() df = pd.DataFrame() df['datetime'] = timestamp ab = get_field('cni') df['a'] = ab[:, 0] df['b'] = ab[:, 1] df['U0'] = get_field('U0') Is3 = get_field('Is3') df['Is1'] = Is3[:, 0] df['Is2'] = Is3[:, 1] df['Is3'] = Is3[:, 2] df['Is'] = np.mean(Is3, axis=1) # [mA] df['Iab'] = df['Is'] * 1000 Il3 = get_field('Il3') df['Il1'] = Il3[:, 0] df['Il2'] = Il3[:, 1] df['Il3'] = Il3[:, 2] df['Il'] = np.mean(Il3, axis=1) # [mA] df['Ileakage'] = df['Il'] * 1000 df['frequency'] = frequencies[f_id] dfl.append(df) df = pd.concat(dfl) return df def _extract_emd(mat, **kwargs): emd = mat['EMD'].squeeze() # Labview epoch epoch = datetime.datetime(1904, 1, 1) def convert_epoch(x): timestamp = epoch + datetime.timedelta(seconds=x.astype(float)) return timestamp dfl = [] # loop over frequencies for f_id in range(0, emd.size): # print('Frequency: ', emd[f_id]['fm']) fdata = emd[f_id] # fdata_md = md[f_id] timestamp = np.atleast_2d( [convert_epoch(x) for x in fdata['Time'].squeeze()] ).T df = pd.DataFrame( np.hstack(( timestamp, fdata['ni'], fdata['nu'][:, np.newaxis], fdata['Z3'], fdata['Is3'], fdata['Il3'], fdata['Zg3'], )), ) df.columns = ( 'datetime', 'a', 'b', 'p', 'Z1', 'Z2', 'Z3', 'Is1', 'Is2', 'Is3', 'Il1', 'Il2', 'Il3', 'Zg1', 'Zg2', 'Zg3', ) df['frequency'] = np.ones(df.shape[0]) * fdata['fm'] # cast to correct type df['datetime'] =
pd.to_datetime(df['datetime'])
pandas.to_datetime
import requests import pandas as pd _MACHINE_SCHEDULE_RDB_URL='http://rdb.pri.diamond.ac.uk/php/opr/cs_oprgetjsonyearcal.php' class MachineScheduleItem: def __init__(self, item: dict): self._item = item @staticmethod def _str_to_datetime(dt_str: str): return pd.to_datetime(dt_str, utc=True) @property def start(self): return self._str_to_datetime(self._item['fromdatetime']) @property def end(self): return self._str_to_datetime(self._item['todatetime']) @property def duration(self): return self.end - self.start @property def description(self): year = self.start.year return F"{self.run} - {self._item['typedescription']}" @property def run(self): return F"{self.start.year} {self._item['description']}" def __str__(self): s = F"<MachineScheduleItem: {self.description}>" return s def __repr__(self): return str(self) class MachineSchedule: def __init__(self): self._url = _MACHINE_SCHEDULE_RDB_URL self._cal = {} def _get_machine_calendar(self, year): # Machine Calendar REST API: https://confluence.diamond.ac.uk/x/zAB_Aw resp = requests.get(self._url, params={'CALYEAR': year}, headers={'content-type': 'application/json'}) if resp.status_code != 200: raise RuntimeError(F'Unable to get machine calendar from {self._url}') cal = resp.json() if len(cal) == 1: cal = cal[0] self._cal.update({year: cal}) return cal def get_run(self, year, run): """Return tuple of (start_time, end_time, [run])""" if year not in self._cal: self._get_machine_calendar(year) run_items = [] for run_item in self._cal[year]['run'][str(run)]: run_items.append(MachineScheduleItem(run_item)) return run_items[0].start, run_items[-1].end, run_items def get_run_total_beamtime(self, year, run): run = self.get_run(year, run) beamtimes =
pd.Series([r.duration for r in run])
pandas.Series
import os import sys import math from neuralprophet.df_utils import join_dataframes import numpy as np import pandas as pd import torch from collections import OrderedDict from neuralprophet import hdays as hdays_part2 import holidays as pyholidays import warnings import logging log = logging.getLogger("NP.utils") def reg_func_abs(weights): """Regularization of weights to induce sparcity Args: weights (torch tensor): Model weights to be regularized towards zero Returns: regularization loss, scalar """ return torch.mean(torch.abs(weights)).squeeze() def reg_func_trend(weights, threshold=None): """Regularization of weights to induce sparcity Args: weights (torch tensor): Model weights to be regularized towards zero threshold (float): value below which not to regularize weights Returns: regularization loss, scalar """ abs_weights = torch.abs(weights) if threshold is not None and not math.isclose(threshold, 0): abs_weights = torch.clamp(abs_weights - threshold, min=0.0) reg = torch.sum(abs_weights).squeeze() return reg def reg_func_season(weights): return reg_func_abs(weights) def reg_func_events(events_config, country_holidays_config, model): """ Regularization of events coefficients to induce sparcity Args: events_config (OrderedDict): Configurations (upper, lower windows, regularization) for user specified events country_holidays_config (OrderedDict): Configurations (holiday_names, upper, lower windows, regularization) for country specific holidays model (TimeNet): The TimeNet model object Returns: regularization loss, scalar """ reg_events_loss = 0.0 if events_config is not None: for event, configs in events_config.items(): reg_lambda = configs.reg_lambda if reg_lambda is not None: weights = model.get_event_weights(event) for offset in weights.keys(): reg_events_loss += reg_lambda * reg_func_abs(weights[offset]) if country_holidays_config is not None: reg_lambda = country_holidays_config.reg_lambda if reg_lambda is not None: for holiday in country_holidays_config.holiday_names: weights = model.get_event_weights(holiday) for offset in weights.keys(): reg_events_loss += reg_lambda * reg_func_abs(weights[offset]) return reg_events_loss def reg_func_regressors(regressors_config, model): """ Regularization of regressors coefficients to induce sparcity Args: regressors_config (OrderedDict): Configurations for user specified regressors model (TimeNet): The TimeNet model object Returns: regularization loss, scalar """ reg_regressor_loss = 0.0 for regressor, configs in regressors_config.items(): reg_lambda = configs.reg_lambda if reg_lambda is not None: weight = model.get_reg_weights(regressor) reg_regressor_loss += reg_lambda * reg_func_abs(weight) return reg_regressor_loss def symmetric_total_percentage_error(values, estimates): """Compute STPE Args: values (np.array): estimates (np.array): Returns: scalar (float) """ sum_abs_diff = np.sum(np.abs(estimates - values)) sum_abs = np.sum(np.abs(estimates) + np.abs(values)) return 100 * sum_abs_diff / (10e-9 + sum_abs) def season_config_to_model_dims(season_config): """Convert the NeuralProphet seasonal model configuration to input dims for TimeNet model. Args: season_config (AllSeasonConfig): NeuralProphet seasonal model configuration Returns: seasonal_dims (dict(int)): input dims for TimeNet model """ if season_config is None or len(season_config.periods) < 1: return None seasonal_dims = OrderedDict({}) for name, period in season_config.periods.items(): resolution = period.resolution if season_config.computation == "fourier": resolution = 2 * resolution seasonal_dims[name] = resolution return seasonal_dims def get_holidays_from_country(country, df=None): """ Return all possible holiday names of given country Args: country (string): country name to retrieve country specific holidays df (Dataframe or list of dataframes): Dataframe or list of dataframes from which datestamps will be retrieved from Returns: A set of all possible holiday names of given country """ if df is None: dates = None else: if isinstance(df, list): df, _ = join_dataframes(df) dates = df["ds"].copy(deep=True) if dates is None: years = np.arange(1995, 2045) else: years = list({x.year for x in dates}) # manually defined holidays try: with warnings.catch_warnings(): warnings.simplefilter("ignore") holiday_names = getattr(hdays_part2, country)(years=years).values() except AttributeError: try: holiday_names = getattr(pyholidays, country)(years=years).values() except AttributeError: raise AttributeError("Holidays in {} are not currently supported!".format(country)) return set(holiday_names) def events_config_to_model_dims(events_config, country_holidays_config): """ Convert the NeuralProphet user specified events configurations along with country specific holidays to input dims for TimeNet model. Args: events_config (OrderedDict): Configurations (upper, lower windows, regularization) for user specified events country_holidays_config (configure.Holidays): Configurations (holiday_names, upper, lower windows, regularization) for country specific holidays Returns: events_dims (OrderedDict): A dictionary with keys corresponding to individual holidays containing configs with properties such as the mode, list of event delims of the event corresponding to the offsets, and the indices in the input dataframe corresponding to each event. """ if events_config is None and country_holidays_config is None: return None additive_events_dims = pd.DataFrame(columns=["event", "event_delim"]) multiplicative_events_dims = pd.DataFrame(columns=["event", "event_delim"]) if events_config is not None: for event, configs in events_config.items(): mode = configs.mode for offset in range(configs.lower_window, configs.upper_window + 1): event_delim = create_event_names_for_offsets(event, offset) if mode == "additive": additive_events_dims = additive_events_dims.append( {"event": event, "event_delim": event_delim}, ignore_index=True ) else: multiplicative_events_dims = multiplicative_events_dims.append( {"event": event, "event_delim": event_delim}, ignore_index=True ) if country_holidays_config is not None: lower_window = country_holidays_config.lower_window upper_window = country_holidays_config.upper_window mode = country_holidays_config.mode for country_holiday in country_holidays_config.holiday_names: for offset in range(lower_window, upper_window + 1): holiday_delim = create_event_names_for_offsets(country_holiday, offset) if mode == "additive": additive_events_dims = additive_events_dims.append( {"event": country_holiday, "event_delim": holiday_delim}, ignore_index=True ) else: multiplicative_events_dims = multiplicative_events_dims.append( {"event": country_holiday, "event_delim": holiday_delim}, ignore_index=True ) # sort based on event_delim event_dims = pd.DataFrame() if not additive_events_dims.empty: additive_events_dims = additive_events_dims.sort_values(by="event_delim").reset_index(drop=True) additive_events_dims["mode"] = "additive" event_dims = additive_events_dims if not multiplicative_events_dims.empty: multiplicative_events_dims = multiplicative_events_dims.sort_values(by="event_delim").reset_index(drop=True) multiplicative_events_dims["mode"] = "multiplicative" event_dims = event_dims.append(multiplicative_events_dims) event_dims_dic = OrderedDict({}) # convert to dict format for event, row in event_dims.groupby("event"): event_dims_dic[event] = { "mode": row["mode"].iloc[0], "event_delim": list(row["event_delim"]), "event_indices": list(row.index), } return event_dims_dic def create_event_names_for_offsets(event_name, offset): """ Create names for offsets of every event Args: event_name (string): Name of the event offset (int): Offset of the event Returns: offset_name (string): A name created for the offset of the event """ offset_name = "{}_{}{}".format(event_name, "+" if offset >= 0 else "-", abs(offset)) return offset_name def regressors_config_to_model_dims(regressors_config): """ Convert the NeuralProphet user specified regressors configurations to input dims for TimeNet model. Args: regressors_config (OrderedDict): Configurations for user specified regressors Returns: regressors_dims (OrderedDict): A dictionary with keys corresponding to individual regressors and values in a dict containing the mode, and the indices in the input dataframe corresponding to each regressor. """ if regressors_config is None: return None else: additive_regressors = [] multiplicative_regressors = [] if regressors_config is not None: for regressor, configs in regressors_config.items(): mode = configs.mode if mode == "additive": additive_regressors.append(regressor) else: multiplicative_regressors.append(regressor) # sort based on event_delim regressors_dims =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd import matplotlib.pyplot as plt import json import warnings import sys import absl.logging absl.logging.set_verbosity(absl.logging.ERROR) import argparse import logging import os """Silence every warning of notice from tensorflow.""" logging.getLogger('tensorflow').setLevel(logging.ERROR) os.environ["KMP_AFFINITY"] = "noverbose" os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import tensorflow as tf tf.get_logger().setLevel('ERROR') tf.autograph.set_verbosity(3) from tensorflow.keras.optimizers import Adam from tensorflow.keras.losses import MeanAbsoluteError, MeanSquaredError import tensorflow.keras.backend as K from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error from utils import RobustMAE, RobustLoss from utils import Normalizer from model import Finder from spektral.data import DisjointLoader from data_loader import DataLoader from pymatgen import Composition, Element, MPRester from matminer.featurizers.base import MultipleFeaturizer from matminer.featurizers import composition as cf from matminer.featurizers.composition import ElementFraction class Worker(object): """ **Arguments** - `train_path`: path to the training database - `val_path`: path to the validation database - `test_path`: path to the test database - `model_path`: path where the best model is saved - `epochs`: number of epochs - `learning_rate`: initial learning rate, which is lowered at every epoch by a factor of 0.999 - `batch_size`: minibatch size - `patience`: number of epochs to wait with no improvement in loss before stopped by early stopping criterion - `channels`: internal vector dimension of the message passing layer; - `aggregate_type`: permutation invariant function to aggregate messages - `mae_loss`: use mean absolute error as the loss function instead of default L1 robust loss - `train`: flag to train Finder model - `test`: flag to test Finder model - `pred_func`: predict a function (multi-target regression) - `is_pickle`: use this flag if data is stored as a pickle file - `threshold_radius`: atoms located at a distance less than the threshold radius are bonded in the crystal graph - `use_crystal_structure`: use crystal structure details (crystal graph) - `embedding_path`: path where the element embedding JSON files are saved - `embedding_type`: element embedding type. Available embedding types: mat2vec, onehot, cgcnn, megnet16, mlelmo """ def __init__(self, train_path, val_path, test_path, model_path='saved_models/best_model_gnn', learning_rate= 3e-4, epochs=1200, batch_size=128, patience=300, channels=200, aggregate_type='mean', mae_loss=False, train=False, test=False, pred_func=False, is_pickle=False, threshold_radius=4, use_crystal_structure=False, embedding_path='data/embeddings/', embedding_type='mat2vec', max_no_atoms=500): self.train_path = train_path self.val_path = val_path self.test_path = test_path self.model_path = model_path self.learning_rate = learning_rate self.epochs = epochs self.batch_size = batch_size self.patience = patience self.channels = channels self.aggregate_type = aggregate_type self.mae_loss = mae_loss self.train = train self.test = test self.pred_func = pred_func self.is_pickle = is_pickle self.threshold_radius = threshold_radius self.use_crystal_structure = use_crystal_structure self.embedding_path = embedding_path self.embedding_type = embedding_type self.max_no_atoms = max_no_atoms self.scaler = Normalizer() def train_model(self): dataset_tr = DataLoader(data_path=self.train_path, is_train=self.train, pred_func=self.pred_func, is_pickle=self.is_pickle, scaler=self.scaler, embedding_path=self.embedding_path, embedding_type=self.embedding_type, threshold_radius=self.threshold_radius, use_crystal_structure=self.use_crystal_structure, max_no_atoms=self.max_no_atoms) ## get scaler attribute after fitting on training data self.scaler = dataset_tr.scaler scaler_dict = self.scaler.state_dict() os.makedirs('saved_models/best_model_gnn', exist_ok=True) json.dump(scaler_dict, open("saved_models/best_model_gnn/scaler_dict.json", 'w' )) # save the state of scaler dataset_val = DataLoader(data_path=self.val_path, is_train=False, pred_func=self.pred_func, is_pickle=self.is_pickle, scaler=self.scaler, embedding_path=self.embedding_path, embedding_type=self.embedding_type, use_crystal_structure=self.use_crystal_structure, max_no_atoms=self.max_no_atoms) loader_tr = DisjointLoader(dataset_tr, batch_size=self.batch_size, epochs=self.epochs) loader_val = DisjointLoader(dataset_val, batch_size=self.batch_size, epochs=1) n_out = dataset_tr.n_labels # Dimension of the target if self.mae_loss: robust = False else: robust = True model = Finder(channels=self.channels, n_out=n_out, robust=robust, aggregate_type=self.aggregate_type, use_crystal_structure=self.use_crystal_structure) optimizer = Adam(self.learning_rate) if self.mae_loss: loss_fn = MeanAbsoluteError() else: loss_fn = RobustLoss() robust_mae = RobustMAE(scaler=self.scaler, pred_func=self.pred_func) try: if self.train: ################################################################################ # Fit model ################################################################################ @tf.function(input_signature=loader_tr.tf_signature(), experimental_relax_shapes=True) def train_step(inputs, target): with tf.GradientTape() as tape: predictions = model(inputs, training=True) target=tf.cast(target, tf.float32) loss = loss_fn(target, predictions) + sum(model.losses) if self.mae_loss: mae = loss_fn(target, predictions) else: mae = robust_mae.mean_absolute_error(target, predictions) gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) return loss, mae train_mae = [] validation_mae = [] step = loss = 0 tr_mae = 0 validation_data = list(loader_val) epoch_no = 1 best_val_mae = 1e6 for batch in loader_tr: step += 1 l, tmae = train_step(*batch) loss+=l tr_mae+=tmae if step == loader_tr.steps_per_epoch: val_loss = 0 val_mae = 0 for batch_val in validation_data: val_inputs, val_targets = batch_val val_predictions = model(val_inputs, training=False) val_loss += loss_fn(val_targets, val_predictions) if self.mae_loss: val_mae+=loss_fn(val_targets, val_predictions) else: val_mae += robust_mae.mean_absolute_error(val_targets, val_predictions) step = 0 K.set_value(optimizer.learning_rate, optimizer.lr*0.999) # reduce learning rate print('\nEpoch: ', epoch_no) print("Training Loss: {:.5f} \t Validation Loss: {:.5f}\n".format(loss / loader_tr.steps_per_epoch, val_loss / loader_val.steps_per_epoch)) print("Training MAE: {:.5f} \t Validation MAE: {:.5f}\n".format(tr_mae / loader_tr.steps_per_epoch, val_mae / loader_val.steps_per_epoch)) train_mae.append(tr_mae/loader_tr.steps_per_epoch) validation_mae.append(val_mae/loader_val.steps_per_epoch) if val_mae/loader_val.steps_per_epoch < best_val_mae: # save current best model and scaler metadata model.save('saved_models/best_model_gnn',save_format='tf') if len(validation_mae) > self.patience: if validation_mae[-(self.patience+1)] < min(validation_mae[-self.patience:]): print(f'\nEarly stopping. No validation loss ' f'improvement in {self.patience} epochs.') break with open('results/history.csv', 'a+') as file: file.write(str(epoch_no)+','+str((tr_mae/loader_tr.steps_per_epoch).numpy())+','+str((val_mae/loader_val.steps_per_epoch).numpy())+'\n') epoch_no+=1 loss = 0 tr_mae = 0 tm = [t.numpy() for t in train_mae] vm = [v.numpy() for v in validation_mae] df = pd.DataFrame({'Train MAE': tm, 'Validation MAE': vm}) df.to_csv('results/training_history.csv') ## plotting plt.plot(range(1, len(train_mae)+1), train_mae, lw=2, ls='-', c='blue', label='Train') plt.plot(range(1, len(validation_mae)+1), validation_mae, lw=2, ls='-', c='red', label='Validation') plt.xlabel('Epoch Number', fontsize=14) plt.ylabel('Mean Absolute Error', fontsize=14) plt.legend() plt.tight_layout() plt.savefig('results/training_log.png', dpi=100) # plt.show() except KeyboardInterrupt: pass if self.test: self.test_model() def test_model(self): ################################################################################ # Evaluate model ################################################################################ print("\n\nLoading current best model ...\n") try: model_path = self.model_path model = tf.keras.models.load_model(model_path) except: print('No model exists. Please run with --train to train the model first') if self.mae_loss: loss_fn = MeanAbsoluteError() else: loss_fn = RobustLoss() scaler_dict = json.load(open("{0}/scaler_dict.json".format(self.model_path))) self.scaler.load_state_dict(state_dict=scaler_dict) # update scaler robust_mae = RobustMAE(scaler=self.scaler, pred_func=self.pred_func) dataset_te = DataLoader(data_path=self.test_path, is_train=False, pred_func=self.pred_func, is_pickle=self.is_pickle, scaler=self.scaler, embedding_path=self.embedding_path, embedding_type=self.embedding_type, use_crystal_structure=self.use_crystal_structure, max_no_atoms=self.max_no_atoms) loader_te = DisjointLoader(dataset_te, batch_size=self.batch_size, epochs=1, shuffle=False) print('Testing the model ...\n') loss = 0 test_mae = 0 target_list = [] predictions_list = [] uncertainity_list = [] for batch in loader_te: inputs, target = batch predictions = model(inputs, training=False) loss += loss_fn(target, predictions) if self.mae_loss: predictions_list.extend(list(predictions.numpy())) else: predictions_list.extend(list(tf.split(predictions, 2, axis=-1)[0].numpy())) uncertainity_list.extend(list(tf.split(predictions, 2, axis=-1)[1].numpy())) test_mae += robust_mae.mean_absolute_error(target, predictions) loss /= loader_te.steps_per_epoch print("Test Loss: {:.5f}".format(loss / loader_te.steps_per_epoch)) # print("Test MAE denormed: {:.5f}".format(test_mae / loader_te.steps_per_epoch)) preds = np.array(predictions_list).flatten() sigmas = np.array(uncertainity_list).flatten() predictions = self.scaler.denorm(preds) uncertainities = tf.math.exp(sigmas) * self.scaler.std df_in = self.get_valid_compounds(
pd.read_csv(self.test_path)
pandas.read_csv
import numpy as np import pandas as pd import json from mplsoccer.pitch import Pitch, VerticalPitch path = "C:/Users/brand/desktop/events/events_England.json" with open(path) as f: data = json.load(f) train = pd.DataFrame(data) path2 = "C:/Users/brand/desktop/players.json" with open(path2) as f: play = json.load(f) players = pd.DataFrame(play) lst = ['events_France.json','events_Germany.json','events_Italy.json','events_Spain.json'] pathway = "C:/Users/brand/desktop/events/" for country in lst: with open(pathway + country) as f: datal = json.load(f) tl = pd.DataFrame(datal) train = pd.concat([train,tl],ignore_index=True) #pd.unique(train['subEventName']) shots = train[train['subEventName'] == 'Shot'] print(len(shots)) shots_model =
pd.DataFrame(columns=["Goal","X","Y"], dtype=object)
pandas.DataFrame
import unittest import platform import random import string import platform import pandas as pd import numpy as np import numba import hpat from hpat.tests.test_utils import (count_array_REPs, count_parfor_REPs, count_parfor_OneDs, count_array_OneDs, dist_IR_contains, get_start_end) from hpat.tests.gen_test_data import ParquetGenerator from numba.config import IS_32BITS @hpat.jit def inner_get_column(df): # df2 = df[['A', 'C']] # df2['D'] = np.ones(3) return df.A COL_IND = 0 class TestDataFrame(unittest.TestCase): def test_create1(self): def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.random.ranf(n)}) return df.A hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_series_equal(hpat_func(n), test_impl(n)) def test_create_cond1(self): def test_impl(A, B, c): if c: df = pd.DataFrame({'A': A}) else: df = pd.DataFrame({'A': B}) return df.A hpat_func = hpat.jit(test_impl) n = 11 A = np.ones(n) B = np.arange(n) + 1.0 c = 0 pd.testing.assert_series_equal(hpat_func(A, B, c), test_impl(A, B, c)) c = 2 pd.testing.assert_series_equal(hpat_func(A, B, c), test_impl(A, B, c)) @unittest.skip('Implement feature to create DataFrame without column names') def test_create_without_column_names(self): def test_impl(): df = pd.DataFrame([100, 200, 300, 400, 200, 100]) return df hpat_func = hpat.jit(test_impl) pd.testing.assert_frame_equal(hpat_func(), test_impl()) def test_unbox1(self): def test_impl(df): return df.A hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.random.ranf(n)}) pd.testing.assert_series_equal(hpat_func(df), test_impl(df)) @unittest.skip("needs properly refcounted dataframes") def test_unbox2(self): def test_impl(df, cond): n = len(df) if cond: df['A'] = np.arange(n) + 2.0 return df.A hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.ones(n), 'B': np.random.ranf(n)}) pd.testing.assert_series_equal(hpat_func(df.copy(), True), test_impl(df.copy(), True)) pd.testing.assert_series_equal(hpat_func(df.copy(), False), test_impl(df.copy(), False)) @unittest.skip('Implement feature to create DataFrame without column names') def test_unbox_without_column_names(self): def test_impl(df): return df df = pd.DataFrame([100, 200, 300, 400, 200, 100]) hpat_func = hpat.jit(test_impl) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_box1(self): def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.arange(n)}) return df hpat_func = hpat.jit(test_impl) n = 11 do_check = False if platform.system() == 'Windows' and not IS_32BITS else True pd.testing.assert_frame_equal(hpat_func(n), test_impl(n), check_dtype=do_check) def test_box2(self): def test_impl(): df = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'bb', 'ccc']}) return df hpat_func = hpat.jit(test_impl) pd.testing.assert_frame_equal(hpat_func(), test_impl()) @unittest.skip("pending df filter support") def test_box3(self): def test_impl(df): df = df[df.A != 'dd'] return df hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': ['aa', 'bb', 'cc']}) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_box_categorical(self): def test_impl(df): df['A'] = df['A'] + 1 return df hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': [1, 2, 3], 'B': pd.Series(['N', 'Y', 'Y'], dtype=pd.api.types.CategoricalDtype(['N', 'Y']))}) pd.testing.assert_frame_equal(hpat_func(df.copy(deep=True)), test_impl(df)) def test_box_dist_return(self): def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.arange(n)}) return df hpat_func = hpat.jit(distributed={'df'})(test_impl) n = 11 hres, res = hpat_func(n), test_impl(n) self.assertEqual(count_array_OneDs(), 3) self.assertEqual(count_parfor_OneDs(), 2) dist_sum = hpat.jit( lambda a: hpat.distributed_api.dist_reduce( a, np.int32(hpat.distributed_api.Reduce_Type.Sum.value))) dist_sum(1) # run to compile np.testing.assert_allclose(dist_sum(hres.A.sum()), res.A.sum()) np.testing.assert_allclose(dist_sum(hres.B.sum()), res.B.sum()) def test_len1(self): def test_impl(n): df = pd.DataFrame({'A': np.ones(n, np.int64), 'B': np.random.ranf(n)}) return len(df) hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_shape1(self): def test_impl(n): df = pd.DataFrame({'A': np.ones(n, np.int64), 'B': np.random.ranf(n)}) return df.shape hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_column_getitem1(self): def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.random.ranf(n)}) Ac = df['A'].values return Ac.sum() hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) self.assertEqual(count_parfor_OneDs(), 1) def test_column_list_getitem1(self): def test_impl(df): return df[['A', 'C']] hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame( {'A': np.arange(n), 'B': np.ones(n), 'C': np.random.ranf(n)}) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_filter1(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + n, 'B': np.arange(n)**2}) df1 = df[df.A > .5] return df1.B.sum() hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_filter2(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + n, 'B': np.arange(n)**2}) df1 = df.loc[df.A > .5] return np.sum(df1.B) hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_filter3(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + n, 'B': np.arange(n)**2}) df1 = df.iloc[(df.A > .5).values] return np.sum(df1.B) hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_iloc1(self): def test_impl(df, n): return df.iloc[1:n].B.values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) np.testing.assert_array_equal(hpat_func(df, n), test_impl(df, n)) def test_iloc2(self): def test_impl(df, n): return df.iloc[np.array([1, 4, 9])].B.values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) np.testing.assert_array_equal(hpat_func(df, n), test_impl(df, n)) def test_iloc3(self): def test_impl(df): return df.iloc[:, 1].values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) np.testing.assert_array_equal(hpat_func(df), test_impl(df)) @unittest.skip("TODO: support A[[1,2,3]] in Numba") def test_iloc4(self): def test_impl(df, n): return df.iloc[[1, 4, 9]].B.values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) np.testing.assert_array_equal(hpat_func(df, n), test_impl(df, n)) def test_iloc5(self): # test iloc with global value def test_impl(df): return df.iloc[:, COL_IND].values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_loc1(self): def test_impl(df): return df.loc[:, 'B'].values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_iat1(self): def test_impl(n): df = pd.DataFrame({'B': np.ones(n), 'A': np.arange(n) + n}) return df.iat[3, 1] hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) def test_iat2(self): def test_impl(df): return df.iat[3, 1] hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'B': np.ones(n), 'A': np.arange(n) + n}) self.assertEqual(hpat_func(df), test_impl(df)) def test_iat3(self): def test_impl(df, n): return df.iat[n - 1, 1] hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'B': np.ones(n), 'A': np.arange(n) + n}) self.assertEqual(hpat_func(df, n), test_impl(df, n)) def test_iat_set1(self): def test_impl(df, n): df.iat[n - 1, 1] = n**2 return df.A # return the column to check column aliasing hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'B': np.ones(n), 'A': np.arange(n) + n}) df2 = df.copy() pd.testing.assert_series_equal(hpat_func(df, n), test_impl(df2, n)) def test_iat_set2(self): def test_impl(df, n): df.iat[n - 1, 1] = n**2 return df # check df aliasing/boxing hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'B': np.ones(n), 'A': np.arange(n) + n}) df2 = df.copy() pd.testing.assert_frame_equal(hpat_func(df, n), test_impl(df2, n)) def test_set_column1(self): # set existing column def test_impl(n): df = pd.DataFrame({'A': np.ones(n, np.int64), 'B': np.arange(n) + 3.0}) df['A'] = np.arange(n) return df hpat_func = hpat.jit(test_impl) n = 11 do_check = False if platform.system() == 'Windows' and not IS_32BITS else True pd.testing.assert_frame_equal(hpat_func(n), test_impl(n), check_dtype=do_check) def test_set_column_reflect4(self): # set existing column def test_impl(df, n): df['A'] = np.arange(n) hpat_func = hpat.jit(test_impl) n = 11 df1 = pd.DataFrame({'A': np.ones(n, np.int64), 'B': np.arange(n) + 3.0}) df2 = df1.copy() hpat_func(df1, n) test_impl(df2, n) do_check = False if platform.system() == 'Windows' and not IS_32BITS else True pd.testing.assert_frame_equal(df1, df2, check_dtype=do_check) def test_set_column_new_type1(self): # set existing column with a new type def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.arange(n) + 3.0}) df['A'] = np.arange(n) return df hpat_func = hpat.jit(test_impl) n = 11 do_check = False if platform.system() == 'Windows' and not IS_32BITS else True pd.testing.assert_frame_equal(hpat_func(n), test_impl(n), check_dtype=do_check) def test_set_column2(self): # create new column def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.arange(n) + 1.0}) df['C'] = np.arange(n) return df hpat_func = hpat.jit(test_impl) n = 11 do_check = False if platform.system() == 'Windows' and not IS_32BITS else True pd.testing.assert_frame_equal(hpat_func(n), test_impl(n), check_dtype=do_check) def test_set_column_reflect3(self): # create new column def test_impl(df, n): df['C'] = np.arange(n) hpat_func = hpat.jit(test_impl) n = 11 df1 = pd.DataFrame({'A': np.ones(n, np.int64), 'B': np.arange(n) + 3.0}) df2 = df1.copy() hpat_func(df1, n) test_impl(df2, n) do_check = False if platform.system() == 'Windows' and not IS_32BITS else True pd.testing.assert_frame_equal(df1, df2, check_dtype=do_check) def test_set_column_bool1(self): def test_impl(df): df['C'] = df['A'][df['B']] hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': [1, 2, 3], 'B': [True, False, True]}) df2 = df.copy() test_impl(df2) hpat_func(df) pd.testing.assert_series_equal(df.C, df2.C) def test_set_column_reflect1(self): def test_impl(df, arr): df['C'] = arr return df.C.sum() hpat_func = hpat.jit(test_impl) n = 11 arr = np.random.ranf(n) df = pd.DataFrame({'A': np.ones(n), 'B': np.random.ranf(n)}) hpat_func(df, arr) self.assertIn('C', df) np.testing.assert_almost_equal(df.C.values, arr) def test_set_column_reflect2(self): def test_impl(df, arr): df['C'] = arr return df.C.sum() hpat_func = hpat.jit(test_impl) n = 11 arr = np.random.ranf(n) df = pd.DataFrame({'A': np.ones(n), 'B': np.random.ranf(n)}) df2 = df.copy() np.testing.assert_almost_equal(hpat_func(df, arr), test_impl(df2, arr)) def test_df_values1(self): def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.arange(n)}) return df.values hpat_func = hpat.jit(test_impl) n = 11 np.testing.assert_array_equal(hpat_func(n), test_impl(n)) def test_df_values2(self): def test_impl(df): return df.values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.ones(n), 'B': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df), test_impl(df)) def test_df_values_parallel1(self): def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.arange(n)}) return df.values.sum() hpat_func = hpat.jit(test_impl) n = 11 np.testing.assert_array_equal(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_df_apply(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)}) B = df.apply(lambda r: r.A + r.B, axis=1) return df.B.sum() n = 121 hpat_func = hpat.jit(test_impl) np.testing.assert_almost_equal(hpat_func(n), test_impl(n)) def test_df_apply_branch(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)}) B = df.apply(lambda r: r.A < 10 and r.B > 20, axis=1) return df.B.sum() n = 121 hpat_func = hpat.jit(test_impl) np.testing.assert_almost_equal(hpat_func(n), test_impl(n)) def test_df_describe(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(0, n, 1, np.float32), 'B': np.arange(n)}) #df.A[0:1] = np.nan return df.describe() hpat_func = hpat.jit(test_impl) n = 1001 hpat_func(n) # XXX: test actual output self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) def test_sort_values(self): def test_impl(df): df.sort_values('A', inplace=True) return df.B.values n = 1211 np.random.seed(2) df = pd.DataFrame({'A': np.random.ranf(n), 'B': np.arange(n), 'C': np.random.ranf(n)}) hpat_func = hpat.jit(test_impl) np.testing.assert_almost_equal(hpat_func(df.copy()), test_impl(df)) def test_sort_values_copy(self): def test_impl(df): df2 = df.sort_values('A') return df2.B.values n = 1211 np.random.seed(2) df = pd.DataFrame({'A': np.random.ranf(n), 'B': np.arange(n), 'C': np.random.ranf(n)}) hpat_func = hpat.jit(test_impl) np.testing.assert_almost_equal(hpat_func(df.copy()), test_impl(df)) def test_sort_values_single_col(self): def test_impl(df): df.sort_values('A', inplace=True) return df.A.values n = 1211 np.random.seed(2) df = pd.DataFrame({'A': np.random.ranf(n)}) hpat_func = hpat.jit(test_impl) np.testing.assert_almost_equal(hpat_func(df.copy()), test_impl(df)) def test_sort_values_single_col_str(self): def test_impl(df): df.sort_values('A', inplace=True) return df.A.values n = 1211 random.seed(2) str_vals = [] for _ in range(n): k = random.randint(1, 30) val = ''.join(random.choices(string.ascii_uppercase + string.digits, k=k)) str_vals.append(val) df = pd.DataFrame({'A': str_vals}) hpat_func = hpat.jit(test_impl) self.assertTrue((hpat_func(df.copy()) == test_impl(df)).all()) def test_sort_values_str(self): def test_impl(df): df.sort_values('A', inplace=True) return df.B.values n = 1211 random.seed(2) str_vals = [] str_vals2 = [] for i in range(n): k = random.randint(1, 30) val = ''.join(random.choices(string.ascii_uppercase + string.digits, k=k)) str_vals.append(val) val = ''.join(random.choices(string.ascii_uppercase + string.digits, k=k)) str_vals2.append(val) df = pd.DataFrame({'A': str_vals, 'B': str_vals2}) # use mergesort for stability, in str generation equal keys are more probable sorted_df = df.sort_values('A', inplace=False, kind='mergesort') hpat_func = hpat.jit(test_impl) self.assertTrue((hpat_func(df) == sorted_df.B.values).all()) def test_sort_parallel_single_col(self): # create `kde.parquet` file ParquetGenerator.gen_kde_pq() # TODO: better parallel sort test def test_impl(): df = pd.read_parquet('kde.parquet') df.sort_values('points', inplace=True) res = df.points.values return res hpat_func = hpat.jit(locals={'res:return': 'distributed'})(test_impl) save_min_samples = hpat.hiframes.sort.MIN_SAMPLES try: hpat.hiframes.sort.MIN_SAMPLES = 10 res = hpat_func() self.assertTrue((np.diff(res) >= 0).all()) finally: # restore global val hpat.hiframes.sort.MIN_SAMPLES = save_min_samples def test_df_isna1(self): '''Verify DataFrame.isna implementation for various types of data''' def test_impl(df): return df.isna() hpat_func = hpat.jit(test_impl) # TODO: add column with datetime values when test_series_datetime_isna1 is fixed df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0], 'B': [np.inf, 5, np.nan, 6], 'C': ['aa', 'b', None, 'ccc'], 'D': [None, 'dd', '', None]}) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_df_astype_str1(self): '''Verifies DataFrame.astype implementation converting various types to string''' def test_impl(df): return df.astype(str) hpat_func = hpat.jit(test_impl) # TODO: add column with float values when test_series_astype_float_to_str1 is fixed df = pd.DataFrame({'A': [-1, 2, 11, 5, 0, -7], 'B': ['aa', 'bb', 'cc', 'dd', '', 'fff'] }) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_df_astype_float1(self): '''Verifies DataFrame.astype implementation converting various types to float''' def test_impl(df): return df.astype(np.float64) hpat_func = hpat.jit(test_impl) # TODO: uncomment column with string values when test_series_astype_str_to_float64 is fixed df = pd.DataFrame({'A': [-1, 2, 11, 5, 0, -7], # 'B': ['3.24', '1E+05', '-1', '-1.3E-01', 'nan', 'inf'], 'C': [3.24, 1E+05, -1, -1.3E-01, np.nan, np.inf] }) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_df_astype_int1(self): '''Verifies DataFrame.astype implementation converting various types to int''' def test_impl(df): return df.astype(np.int32) hpat_func = hpat.jit(test_impl) n = 6 # TODO: uncomment column with string values when test_series_astype_str_to_int32 is fixed df = pd.DataFrame({'A': np.ones(n, dtype=np.int64), 'B': np.arange(n, dtype=np.int32), # 'C': ['-1', '2', '3', '0', '-7', '99'], 'D': np.arange(float(n), dtype=np.float32) }) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_sort_parallel(self): # create `kde.parquet` file ParquetGenerator.gen_kde_pq() # TODO: better parallel sort test def test_impl(): df = pd.read_parquet('kde.parquet') df['A'] = df.points.astype(np.float64) df.sort_values('points', inplace=True) res = df.A.values return res hpat_func = hpat.jit(locals={'res:return': 'distributed'})(test_impl) save_min_samples = hpat.hiframes.sort.MIN_SAMPLES try: hpat.hiframes.sort.MIN_SAMPLES = 10 res = hpat_func() self.assertTrue((np.diff(res) >= 0).all()) finally: # restore global val hpat.hiframes.sort.MIN_SAMPLES = save_min_samples def test_itertuples(self): def test_impl(df): res = 0.0 for r in df.itertuples(): res += r[1] return res hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.ones(n, np.int64)}) self.assertEqual(hpat_func(df), test_impl(df)) def test_itertuples_str(self): def test_impl(df): res = "" for r in df.itertuples(): res += r[1] return res hpat_func = hpat.jit(test_impl) n = 3 df = pd.DataFrame({'A': ['aa', 'bb', 'cc'], 'B': np.ones(n, np.int64)}) self.assertEqual(hpat_func(df), test_impl(df)) def test_itertuples_order(self): def test_impl(n): res = 0.0 df = pd.DataFrame({'B': np.arange(n), 'A': np.ones(n, np.int64)}) for r in df.itertuples(): res += r[1] return res hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) def test_itertuples_analysis(self): """tests array analysis handling of generated tuples, shapes going through blocks and getting used in an array dimension """ def test_impl(n): res = 0 df = pd.DataFrame({'B': np.arange(n), 'A': np.ones(n, np.int64)}) for r in df.itertuples(): if r[1] == 2: A = np.ones(r[1]) res += len(A) return res hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) @unittest.skipIf(platform.system() == 'Windows', "Attribute 'dtype' are different int64 and int32") def test_df_head1(self): def test_impl(n): df = pd.DataFrame({'A': np.ones(n), 'B': np.arange(n)}) return df.head(3) hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_frame_equal(hpat_func(n), test_impl(n)) def test_pct_change1(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.arange(n) + 1}) return df.pct_change(3) hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_frame_equal(hpat_func(n), test_impl(n)) def test_mean1(self): # TODO: non-numeric columns should be ignored automatically def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.arange(n) + 1}) return df.mean() hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_series_equal(hpat_func(n), test_impl(n)) def test_median1(self): # TODO: non-numeric columns should be ignored automatically def test_impl(n): df = pd.DataFrame({'A': 2 ** np.arange(n), 'B': np.arange(n) + 1.0}) return df.median() hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_series_equal(hpat_func(n), test_impl(n)) def test_std1(self): # TODO: non-numeric columns should be ignored automatically def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.arange(n) + 1}) return df.std() hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_series_equal(hpat_func(n), test_impl(n)) def test_var1(self): # TODO: non-numeric columns should be ignored automatically def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.arange(n) + 1}) return df.var() hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_series_equal(hpat_func(n), test_impl(n)) def test_max1(self): # TODO: non-numeric columns should be ignored automatically def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.arange(n) + 1}) return df.max() hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_series_equal(hpat_func(n), test_impl(n)) def test_min1(self): # TODO: non-numeric columns should be ignored automatically def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.arange(n) + 1}) return df.min() hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_series_equal(hpat_func(n), test_impl(n)) def test_sum1(self): # TODO: non-numeric columns should be ignored automatically def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.arange(n) + 1}) return df.sum() hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_series_equal(hpat_func(n), test_impl(n)) def test_prod1(self): # TODO: non-numeric columns should be ignored automatically def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.arange(n) + 1}) return df.prod() hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_series_equal(hpat_func(n), test_impl(n)) def test_count1(self): # TODO: non-numeric columns should be ignored automatically def test_impl(n): df = pd.DataFrame({'A': np.arange(n) + 1.0, 'B': np.arange(n) + 1}) return df.count() hpat_func = hpat.jit(test_impl) n = 11 pd.testing.assert_series_equal(hpat_func(n), test_impl(n)) def test_df_fillna1(self): def test_impl(df): return df.fillna(5.0) df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0]}) hpat_func = hpat.jit(test_impl) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) def test_df_fillna_str1(self): def test_impl(df): return df.fillna("dd") df =
pd.DataFrame({'A': ['aa', 'b', None, 'ccc']})
pandas.DataFrame
from collections import OrderedDict from datetime import timedelta import numpy as np import pytest from pandas.core.dtypes.dtypes import CategoricalDtype, DatetimeTZDtype import pandas as pd from pandas import ( Categorical, DataFrame, Series, Timedelta, Timestamp, _np_version_under1p14, concat, date_range, option_context, ) from pandas.core.arrays import integer_array import pandas.util.testing as tm def _check_cast(df, v): """ Check if all dtypes of df are equal to v """ assert all(s.dtype.name == v for _, s in df.items()) class TestDataFrameDataTypes: def test_concat_empty_dataframe_dtypes(self): df = DataFrame(columns=list("abc")) df["a"] = df["a"].astype(np.bool_) df["b"] = df["b"].astype(np.int32) df["c"] = df["c"].astype(np.float64) result = pd.concat([df, df]) assert result["a"].dtype == np.bool_ assert result["b"].dtype == np.int32 assert result["c"].dtype == np.float64 result = pd.concat([df, df.astype(np.float64)]) assert result["a"].dtype == np.object_ assert result["b"].dtype == np.float64 assert result["c"].dtype == np.float64 def test_empty_frame_dtypes_ftypes(self): empty_df = pd.DataFrame() tm.assert_series_equal(empty_df.dtypes, pd.Series(dtype=np.object)) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal(empty_df.ftypes, pd.Series(dtype=np.object)) nocols_df = pd.DataFrame(index=[1, 2, 3]) tm.assert_series_equal(nocols_df.dtypes, pd.Series(dtype=np.object)) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal(nocols_df.ftypes, pd.Series(dtype=np.object)) norows_df = pd.DataFrame(columns=list("abc")) tm.assert_series_equal( norows_df.dtypes, pd.Series(np.object, index=list("abc")) ) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal( norows_df.ftypes, pd.Series("object:dense", index=list("abc")) ) norows_int_df = pd.DataFrame(columns=list("abc")).astype(np.int32) tm.assert_series_equal( norows_int_df.dtypes, pd.Series(np.dtype("int32"), index=list("abc")) ) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal( norows_int_df.ftypes, pd.Series("int32:dense", index=list("abc")) ) odict = OrderedDict df = pd.DataFrame(odict([("a", 1), ("b", True), ("c", 1.0)]), index=[1, 2, 3]) ex_dtypes = pd.Series( odict([("a", np.int64), ("b", np.bool), ("c", np.float64)]) ) ex_ftypes = pd.Series( odict([("a", "int64:dense"), ("b", "bool:dense"), ("c", "float64:dense")]) ) tm.assert_series_equal(df.dtypes, ex_dtypes) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal(df.ftypes, ex_ftypes) # same but for empty slice of df tm.assert_series_equal(df[:0].dtypes, ex_dtypes) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal(df[:0].ftypes, ex_ftypes) def test_datetime_with_tz_dtypes(self): tzframe = DataFrame( { "A": date_range("20130101", periods=3), "B": date_range("20130101", periods=3, tz="US/Eastern"), "C": date_range("20130101", periods=3, tz="CET"), } ) tzframe.iloc[1, 1] = pd.NaT tzframe.iloc[1, 2] = pd.NaT result = tzframe.dtypes.sort_index() expected = Series( [ np.dtype("datetime64[ns]"), DatetimeTZDtype("ns", "US/Eastern"), DatetimeTZDtype("ns", "CET"), ], ["A", "B", "C"], ) tm.assert_series_equal(result, expected) def test_dtypes_are_correct_after_column_slice(self): # GH6525 df = pd.DataFrame(index=range(5), columns=list("abc"), dtype=np.float_) odict = OrderedDict tm.assert_series_equal( df.dtypes, pd.Series(odict([("a", np.float_), ("b", np.float_), ("c", np.float_)])), ) tm.assert_series_equal( df.iloc[:, 2:].dtypes, pd.Series(odict([("c", np.float_)])) ) tm.assert_series_equal( df.dtypes, pd.Series(odict([("a", np.float_), ("b", np.float_), ("c", np.float_)])), ) def test_select_dtypes_include_using_list_like(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.Categorical(list("abc")), "g": pd.date_range("20130101", periods=3), "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), "i": pd.date_range("20130101", periods=3, tz="CET"), "j": pd.period_range("2013-01", periods=3, freq="M"), "k": pd.timedelta_range("1 day", periods=3), } ) ri = df.select_dtypes(include=[np.number]) ei = df[["b", "c", "d", "k"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=[np.number], exclude=["timedelta"]) ei = df[["b", "c", "d"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=[np.number, "category"], exclude=["timedelta"]) ei = df[["b", "c", "d", "f"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=["datetime"]) ei = df[["g"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=["datetime64"]) ei = df[["g"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=["datetimetz"]) ei = df[["h", "i"]] tm.assert_frame_equal(ri, ei) with pytest.raises(NotImplementedError, match=r"^$"): df.select_dtypes(include=["period"]) def test_select_dtypes_exclude_using_list_like(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], } ) re = df.select_dtypes(exclude=[np.number]) ee = df[["a", "e"]] tm.assert_frame_equal(re, ee) def test_select_dtypes_exclude_include_using_list_like(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.date_range("now", periods=3).values, } ) exclude = (np.datetime64,) include = np.bool_, "integer" r = df.select_dtypes(include=include, exclude=exclude) e = df[["b", "c", "e"]] tm.assert_frame_equal(r, e) exclude = ("datetime",) include = "bool", "int64", "int32" r = df.select_dtypes(include=include, exclude=exclude) e = df[["b", "e"]] tm.assert_frame_equal(r, e) def test_select_dtypes_include_using_scalars(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.Categorical(list("abc")), "g": pd.date_range("20130101", periods=3), "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), "i": pd.date_range("20130101", periods=3, tz="CET"), "j": pd.period_range("2013-01", periods=3, freq="M"), "k": pd.timedelta_range("1 day", periods=3), } ) ri = df.select_dtypes(include=np.number) ei = df[["b", "c", "d", "k"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include="datetime") ei = df[["g"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include="datetime64") ei = df[["g"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include="category") ei = df[["f"]] tm.assert_frame_equal(ri, ei) with pytest.raises(NotImplementedError, match=r"^$"): df.select_dtypes(include="period") def test_select_dtypes_exclude_using_scalars(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.Categorical(list("abc")), "g": pd.date_range("20130101", periods=3), "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), "i": pd.date_range("20130101", periods=3, tz="CET"), "j": pd.period_range("2013-01", periods=3, freq="M"), "k": pd.timedelta_range("1 day", periods=3), } ) ri = df.select_dtypes(exclude=np.number) ei = df[["a", "e", "f", "g", "h", "i", "j"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(exclude="category") ei = df[["a", "b", "c", "d", "e", "g", "h", "i", "j", "k"]] tm.assert_frame_equal(ri, ei) with pytest.raises(NotImplementedError, match=r"^$"): df.select_dtypes(exclude="period") def test_select_dtypes_include_exclude_using_scalars(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.Categorical(list("abc")), "g": pd.date_range("20130101", periods=3), "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), "i": pd.date_range("20130101", periods=3, tz="CET"), "j": pd.period_range("2013-01", periods=3, freq="M"), "k": pd.timedelta_range("1 day", periods=3), } ) ri = df.select_dtypes(include=np.number, exclude="floating") ei = df[["b", "c", "k"]] tm.assert_frame_equal(ri, ei) def test_select_dtypes_include_exclude_mixed_scalars_lists(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.Categorical(list("abc")), "g": pd.date_range("20130101", periods=3), "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), "i": pd.date_range("20130101", periods=3, tz="CET"), "j": pd.period_range("2013-01", periods=3, freq="M"), "k": pd.timedelta_range("1 day", periods=3), } ) ri = df.select_dtypes(include=np.number, exclude=["floating", "timedelta"]) ei = df[["b", "c"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=[np.number, "category"], exclude="floating") ei = df[["b", "c", "f", "k"]] tm.assert_frame_equal(ri, ei) def test_select_dtypes_duplicate_columns(self): # GH20839 odict = OrderedDict df = DataFrame( odict( [ ("a", list("abc")), ("b", list(range(1, 4))), ("c", np.arange(3, 6).astype("u1")), ("d", np.arange(4.0, 7.0, dtype="float64")), ("e", [True, False, True]), ("f", pd.date_range("now", periods=3).values), ] ) ) df.columns = ["a", "a", "b", "b", "b", "c"] expected = DataFrame( {"a": list(range(1, 4)), "b": np.arange(3, 6).astype("u1")} ) result = df.select_dtypes(include=[np.number], exclude=["floating"]) tm.assert_frame_equal(result, expected) def test_select_dtypes_not_an_attr_but_still_valid_dtype(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.date_range("now", periods=3).values, } ) df["g"] = df.f.diff() assert not hasattr(np, "u8") r = df.select_dtypes(include=["i8", "O"], exclude=["timedelta"]) e = df[["a", "b"]] tm.assert_frame_equal(r, e) r = df.select_dtypes(include=["i8", "O", "timedelta64[ns]"]) e = df[["a", "b", "g"]] tm.assert_frame_equal(r, e) def test_select_dtypes_empty(self): df = DataFrame({"a": list("abc"), "b": list(range(1, 4))}) msg = "at least one of include or exclude must be nonempty" with pytest.raises(ValueError, match=msg): df.select_dtypes() def test_select_dtypes_bad_datetime64(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.date_range("now", periods=3).values, } ) with pytest.raises(ValueError, match=".+ is too specific"): df.select_dtypes(include=["datetime64[D]"]) with pytest.raises(ValueError, match=".+ is too specific"): df.select_dtypes(exclude=["datetime64[as]"]) def test_select_dtypes_datetime_with_tz(self): df2 = DataFrame( dict( A=Timestamp("20130102", tz="US/Eastern"), B=Timestamp("20130603", tz="CET"), ), index=range(5), ) df3 = pd.concat([df2.A.to_frame(), df2.B.to_frame()], axis=1) result = df3.select_dtypes(include=["datetime64[ns]"]) expected = df3.reindex(columns=[]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "dtype", [str, "str", np.string_, "S1", "unicode", np.unicode_, "U1"] ) @pytest.mark.parametrize("arg", ["include", "exclude"]) def test_select_dtypes_str_raises(self, dtype, arg): df = DataFrame( { "a": list("abc"), "g": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.date_range("now", periods=3).values, } ) msg = "string dtypes are not allowed" kwargs = {arg: [dtype]} with pytest.raises(TypeError, match=msg): df.select_dtypes(**kwargs) def test_select_dtypes_bad_arg_raises(self): df = DataFrame( { "a": list("abc"), "g": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.date_range("now", periods=3).values, } ) msg = "data type.*not understood" with pytest.raises(TypeError, match=msg): df.select_dtypes(["blargy, blarg, blarg"]) def test_select_dtypes_typecodes(self): # GH 11990 df = tm.makeCustomDataframe(30, 3, data_gen_f=lambda x, y: np.random.random()) expected = df FLOAT_TYPES = list(np.typecodes["AllFloat"]) tm.assert_frame_equal(df.select_dtypes(FLOAT_TYPES), expected) def test_dtypes_gh8722(self, float_string_frame): float_string_frame["bool"] = float_string_frame["A"] > 0 result = float_string_frame.dtypes expected = Series( {k: v.dtype for k, v in float_string_frame.items()}, index=result.index ) tm.assert_series_equal(result, expected) # compat, GH 8722 with option_context("use_inf_as_na", True): df = DataFrame([[1]]) result = df.dtypes tm.assert_series_equal(result, Series({0: np.dtype("int64")})) def test_ftypes(self, mixed_float_frame): frame = mixed_float_frame expected = Series( dict( A="float32:dense", B="float32:dense", C="float16:dense", D="float64:dense", ) ).sort_values() # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): result = frame.ftypes.sort_values() tm.assert_series_equal(result, expected) def test_astype_float(self, float_frame): casted = float_frame.astype(int) expected = DataFrame( float_frame.values.astype(int), index=float_frame.index, columns=float_frame.columns, ) tm.assert_frame_equal(casted, expected) casted = float_frame.astype(np.int32) expected = DataFrame( float_frame.values.astype(np.int32), index=float_frame.index, columns=float_frame.columns, ) tm.assert_frame_equal(casted, expected) float_frame["foo"] = "5" casted = float_frame.astype(int) expected = DataFrame( float_frame.values.astype(int), index=float_frame.index, columns=float_frame.columns, ) tm.assert_frame_equal(casted, expected) def test_astype_mixed_float(self, mixed_float_frame): # mixed casting casted = mixed_float_frame.reindex(columns=["A", "B"]).astype("float32") _check_cast(casted, "float32") casted = mixed_float_frame.reindex(columns=["A", "B"]).astype("float16") _check_cast(casted, "float16") def test_astype_mixed_type(self, mixed_type_frame): # mixed casting mn = mixed_type_frame._get_numeric_data().copy() mn["little_float"] = np.array(12345.0, dtype="float16") mn["big_float"] = np.array(123456789101112.0, dtype="float64") casted = mn.astype("float64") _check_cast(casted, "float64") casted = mn.astype("int64") _check_cast(casted, "int64") casted = mn.reindex(columns=["little_float"]).astype("float16") _check_cast(casted, "float16") casted = mn.astype("float32") _check_cast(casted, "float32") casted = mn.astype("int32") _check_cast(casted, "int32") # to object casted = mn.astype("O") _check_cast(casted, "object") def test_astype_with_exclude_string(self, float_frame): df = float_frame.copy() expected = float_frame.astype(int) df["string"] = "foo" casted = df.astype(int, errors="ignore") expected["string"] = "foo" tm.assert_frame_equal(casted, expected) df = float_frame.copy() expected = float_frame.astype(np.int32) df["string"] = "foo" casted = df.astype(np.int32, errors="ignore") expected["string"] = "foo" tm.assert_frame_equal(casted, expected) def test_astype_with_view_float(self, float_frame): # this is the only real reason to do it this way tf = np.round(float_frame).astype(np.int32) casted = tf.astype(np.float32, copy=False) # TODO(wesm): verification? tf = float_frame.astype(np.float64) casted = tf.astype(np.int64, copy=False) # noqa def test_astype_with_view_mixed_float(self, mixed_float_frame): tf = mixed_float_frame.reindex(columns=["A", "B", "C"]) casted = tf.astype(np.int64) casted = tf.astype(np.float32) # noqa @pytest.mark.parametrize("dtype", [np.int32, np.int64]) @pytest.mark.parametrize("val", [np.nan, np.inf]) def test_astype_cast_nan_inf_int(self, val, dtype): # see gh-14265 # # Check NaN and inf --> raise error when converting to int. msg = "Cannot convert non-finite values \\(NA or inf\\) to integer" df = DataFrame([val]) with pytest.raises(ValueError, match=msg): df.astype(dtype) def test_astype_str(self): # see gh-9757 a = Series(date_range("2010-01-04", periods=5)) b = Series(date_range("3/6/2012 00:00", periods=5, tz="US/Eastern")) c = Series([Timedelta(x, unit="d") for x in range(5)]) d = Series(range(5)) e = Series([0.0, 0.2, 0.4, 0.6, 0.8]) df = DataFrame({"a": a, "b": b, "c": c, "d": d, "e": e}) # Datetime-like result = df.astype(str) expected = DataFrame( { "a": list(map(str, map(lambda x: Timestamp(x)._date_repr, a._values))), "b": list(map(str, map(Timestamp, b._values))), "c": list( map( str, map(lambda x: Timedelta(x)._repr_base(format="all"), c._values), ) ), "d": list(map(str, d._values)), "e": list(map(str, e._values)), } ) tm.assert_frame_equal(result, expected) def test_astype_str_float(self): # see gh-11302 result = DataFrame([np.NaN]).astype(str) expected = DataFrame(["nan"]) tm.assert_frame_equal(result, expected) result = DataFrame([1.12345678901234567890]).astype(str) # < 1.14 truncates # >= 1.14 preserves the full repr val = "1.12345678901" if _np_version_under1p14 else "1.1234567890123457" expected = DataFrame([val]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("dtype_class", [dict, Series]) def test_astype_dict_like(self, dtype_class): # GH7271 & GH16717 a = Series(date_range("2010-01-04", periods=5)) b = Series(range(5)) c = Series([0.0, 0.2, 0.4, 0.6, 0.8]) d = Series(["1.0", "2", "3.14", "4", "5.4"]) df = DataFrame({"a": a, "b": b, "c": c, "d": d}) original = df.copy(deep=True) # change type of a subset of columns dt1 = dtype_class({"b": "str", "d": "float32"}) result = df.astype(dt1) expected = DataFrame( { "a": a, "b": Series(["0", "1", "2", "3", "4"]), "c": c, "d": Series([1.0, 2.0, 3.14, 4.0, 5.4], dtype="float32"), } ) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(df, original) dt2 = dtype_class({"b": np.float32, "c": "float32", "d": np.float64}) result = df.astype(dt2) expected = DataFrame( { "a": a, "b": Series([0.0, 1.0, 2.0, 3.0, 4.0], dtype="float32"), "c": Series([0.0, 0.2, 0.4, 0.6, 0.8], dtype="float32"), "d": Series([1.0, 2.0, 3.14, 4.0, 5.4], dtype="float64"), } ) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(df, original) # change all columns dt3 = dtype_class({"a": str, "b": str, "c": str, "d": str}) tm.assert_frame_equal(df.astype(dt3), df.astype(str)) tm.assert_frame_equal(df, original) # error should be raised when using something other than column labels # in the keys of the dtype dict dt4 = dtype_class({"b": str, 2: str}) dt5 = dtype_class({"e": str}) msg = "Only a column name can be used for the key in a dtype mappings argument" with pytest.raises(KeyError, match=msg): df.astype(dt4) with pytest.raises(KeyError, match=msg): df.astype(dt5) tm.assert_frame_equal(df, original) # if the dtypes provided are the same as the original dtypes, the # resulting DataFrame should be the same as the original DataFrame dt6 = dtype_class({col: df[col].dtype for col in df.columns}) equiv = df.astype(dt6) tm.assert_frame_equal(df, equiv) tm.assert_frame_equal(df, original) # GH 16717 # if dtypes provided is empty, the resulting DataFrame # should be the same as the original DataFrame dt7 = dtype_class({}) result = df.astype(dt7) tm.assert_frame_equal(df, equiv) tm.assert_frame_equal(df, original) def test_astype_duplicate_col(self): a1 = Series([1, 2, 3, 4, 5], name="a") b = Series([0.1, 0.2, 0.4, 0.6, 0.8], name="b") a2 = Series([0, 1, 2, 3, 4], name="a") df = concat([a1, b, a2], axis=1) result = df.astype(str) a1_str = Series(["1", "2", "3", "4", "5"], dtype="str", name="a") b_str = Series(["0.1", "0.2", "0.4", "0.6", "0.8"], dtype=str, name="b") a2_str = Series(["0", "1", "2", "3", "4"], dtype="str", name="a") expected = concat([a1_str, b_str, a2_str], axis=1) tm.assert_frame_equal(result, expected) result = df.astype({"a": "str"}) expected = concat([a1_str, b, a2_str], axis=1) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "dtype", [ "category", CategoricalDtype(), CategoricalDtype(ordered=True), CategoricalDtype(ordered=False), CategoricalDtype(categories=list("abcdef")), CategoricalDtype(categories=list("edba"), ordered=False), CategoricalDtype(categories=list("edcb"), ordered=True), ], ids=repr, ) def test_astype_categorical(self, dtype): # GH 18099 d = {"A": list("abbc"), "B": list("bccd"), "C": list("cdde")} df = DataFrame(d) result = df.astype(dtype) expected = DataFrame({k: Categorical(d[k], dtype=dtype) for k in d}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "cls", [ pd.api.types.CategoricalDtype, pd.api.types.DatetimeTZDtype, pd.api.types.IntervalDtype, ], ) def test_astype_categoricaldtype_class_raises(self, cls): df = DataFrame({"A": ["a", "a", "b", "c"]}) xpr = "Expected an instance of {}".format(cls.__name__) with pytest.raises(TypeError, match=xpr): df.astype({"A": cls}) with pytest.raises(TypeError, match=xpr): df["A"].astype(cls) @pytest.mark.parametrize("dtype", ["Int64", "Int32", "Int16"]) def test_astype_extension_dtypes(self, dtype): # GH 22578 df = pd.DataFrame([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], columns=["a", "b"]) expected1 = pd.DataFrame( { "a": integer_array([1, 3, 5], dtype=dtype), "b": integer_array([2, 4, 6], dtype=dtype), } ) tm.assert_frame_equal(df.astype(dtype), expected1) tm.assert_frame_equal(df.astype("int64").astype(dtype), expected1) tm.assert_frame_equal(df.astype(dtype).astype("float64"), df) df = pd.DataFrame([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], columns=["a", "b"]) df["b"] = df["b"].astype(dtype) expected2 = pd.DataFrame( {"a": [1.0, 3.0, 5.0], "b": integer_array([2, 4, 6], dtype=dtype)} ) tm.assert_frame_equal(df, expected2) tm.assert_frame_equal(df.astype(dtype), expected1) tm.assert_frame_equal(df.astype("int64").astype(dtype), expected1) @pytest.mark.parametrize("dtype", ["Int64", "Int32", "Int16"]) def test_astype_extension_dtypes_1d(self, dtype): # GH 22578 df = pd.DataFrame({"a": [1.0, 2.0, 3.0]}) expected1 = pd.DataFrame({"a": integer_array([1, 2, 3], dtype=dtype)}) tm.assert_frame_equal(df.astype(dtype), expected1) tm.assert_frame_equal(df.astype("int64").astype(dtype), expected1) df = pd.DataFrame({"a": [1.0, 2.0, 3.0]}) df["a"] = df["a"].astype(dtype) expected2 = pd.DataFrame({"a": integer_array([1, 2, 3], dtype=dtype)}) tm.assert_frame_equal(df, expected2) tm.assert_frame_equal(df.astype(dtype), expected1) tm.assert_frame_equal(df.astype("int64").astype(dtype), expected1) @pytest.mark.parametrize("dtype", ["category", "Int64"]) def test_astype_extension_dtypes_duplicate_col(self, dtype): # GH 24704 a1 = Series([0, np.nan, 4], name="a") a2 = Series([np.nan, 3, 5], name="a") df = concat([a1, a2], axis=1) result = df.astype(dtype) expected = concat([a1.astype(dtype), a2.astype(dtype)], axis=1) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "dtype", [{100: "float64", 200: "uint64"}, "category", "float64"] ) def test_astype_column_metadata(self, dtype): # GH 19920 columns = pd.UInt64Index([100, 200, 300], name="foo") df = DataFrame(np.arange(15).reshape(5, 3), columns=columns) df = df.astype(dtype) tm.assert_index_equal(df.columns, columns) @pytest.mark.parametrize("dtype", ["M8", "m8"]) @pytest.mark.parametrize("unit", ["ns", "us", "ms", "s", "h", "m", "D"]) def test_astype_from_datetimelike_to_objectt(self, dtype, unit): # tests astype to object dtype # gh-19223 / gh-12425 dtype = "{}[{}]".format(dtype, unit) arr = np.array([[1, 2, 3]], dtype=dtype) df = DataFrame(arr) result = df.astype(object) assert (result.dtypes == object).all() if dtype.startswith("M8"): assert result.iloc[0, 0] == pd.to_datetime(1, unit=unit) else: assert result.iloc[0, 0] == pd.to_timedelta(1, unit=unit) @pytest.mark.parametrize("arr_dtype", [np.int64, np.float64]) @pytest.mark.parametrize("dtype", ["M8", "m8"]) @pytest.mark.parametrize("unit", ["ns", "us", "ms", "s", "h", "m", "D"]) def test_astype_to_datetimelike_unit(self, arr_dtype, dtype, unit): # tests all units from numeric origination # gh-19223 / gh-12425 dtype = "{}[{}]".format(dtype, unit) arr = np.array([[1, 2, 3]], dtype=arr_dtype) df = DataFrame(arr) result = df.astype(dtype) expected = DataFrame(arr.astype(dtype)) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("unit", ["ns", "us", "ms", "s", "h", "m", "D"]) def test_astype_to_datetime_unit(self, unit): # tests all units from datetime origination # gh-19223 dtype = "M8[{}]".format(unit) arr = np.array([[1, 2, 3]], dtype=dtype) df = DataFrame(arr) result = df.astype(dtype) expected = DataFrame(arr.astype(dtype)) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("unit", ["ns"]) def test_astype_to_timedelta_unit_ns(self, unit): # preserver the timedelta conversion # gh-19223 dtype = "m8[{}]".format(unit) arr = np.array([[1, 2, 3]], dtype=dtype) df = DataFrame(arr) result = df.astype(dtype) expected = DataFrame(arr.astype(dtype)) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("unit", ["us", "ms", "s", "h", "m", "D"]) def test_astype_to_timedelta_unit(self, unit): # coerce to float # gh-19223 dtype = "m8[{}]".format(unit) arr = np.array([[1, 2, 3]], dtype=dtype) df = DataFrame(arr) result = df.astype(dtype) expected = DataFrame(df.values.astype(dtype).astype(float)) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("unit", ["ns", "us", "ms", "s", "h", "m", "D"]) def test_astype_to_incorrect_datetimelike(self, unit): # trying to astype a m to a M, or vice-versa # gh-19224 dtype = "M8[{}]".format(unit) other = "m8[{}]".format(unit) df = DataFrame(np.array([[1, 2, 3]], dtype=dtype)) msg = ( r"cannot astype a datetimelike from \[datetime64\[ns\]\] to" r" \[timedelta64\[{}\]\]" ).format(unit) with pytest.raises(TypeError, match=msg): df.astype(other) msg = ( r"cannot astype a timedelta from \[timedelta64\[ns\]\] to" r" \[datetime64\[{}\]\]" ).format(unit) df = DataFrame(np.array([[1, 2, 3]], dtype=other)) with pytest.raises(TypeError, match=msg): df.astype(dtype) def test_timedeltas(self): df = DataFrame( dict( A=Series(date_range("2012-1-1", periods=3, freq="D")), B=Series([timedelta(days=i) for i in range(3)]), ) ) result = df.dtypes expected = Series( [np.dtype("datetime64[ns]"), np.dtype("timedelta64[ns]")], index=list("AB") ) tm.assert_series_equal(result, expected) df["C"] = df["A"] + df["B"] result = df.dtypes expected = Series( [ np.dtype("datetime64[ns]"), np.dtype("timedelta64[ns]"), np.dtype("datetime64[ns]"), ], index=list("ABC"), ) tm.assert_series_equal(result, expected) # mixed int types df["D"] = 1 result = df.dtypes expected = Series( [ np.dtype("datetime64[ns]"), np.dtype("timedelta64[ns]"), np.dtype("datetime64[ns]"), np.dtype("int64"), ], index=list("ABCD"), ) tm.assert_series_equal(result, expected) def test_arg_for_errors_in_astype(self): # issue #14878 df = DataFrame([1, 2, 3]) with pytest.raises(ValueError): df.astype(np.float64, errors=True) df.astype(np.int8, errors="ignore") def test_arg_for_errors_in_astype_dictlist(self): # GH-25905 df = pd.DataFrame( [ {"a": "1", "b": "16.5%", "c": "test"}, {"a": "2.2", "b": "15.3", "c": "another_test"}, ] ) expected = pd.DataFrame( [ {"a": 1.0, "b": "16.5%", "c": "test"}, {"a": 2.2, "b": "15.3", "c": "another_test"}, ] ) type_dict = {"a": "float64", "b": "float64", "c": "object"} result = df.astype(dtype=type_dict, errors="ignore") tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "input_vals", [ ([1, 2]), (["1", "2"]), (list(pd.date_range("1/1/2011", periods=2, freq="H"))), (list(pd.date_range("1/1/2011", periods=2, freq="H", tz="US/Eastern"))), ([pd.Interval(left=0, right=5)]), ], ) def test_constructor_list_str(self, input_vals, string_dtype): # GH 16605 # Ensure that data elements are converted to strings when # dtype is str, 'str', or 'U' result = DataFrame({"A": input_vals}, dtype=string_dtype) expected = DataFrame({"A": input_vals}).astype({"A": string_dtype}) tm.assert_frame_equal(result, expected) def test_constructor_list_str_na(self, string_dtype): result = DataFrame({"A": [1.0, 2.0, None]}, dtype=string_dtype) expected = DataFrame({"A": ["1.0", "2.0", None]}, dtype=object) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "data, expected", [ # empty (DataFrame(), True), # multi-same (DataFrame({"A": [1, 2], "B": [1, 2]}), True), # multi-object ( DataFrame( { "A": np.array([1, 2], dtype=object), "B": np.array(["a", "b"], dtype=object), } ), True, ), # multi-extension ( DataFrame( {"A": pd.Categorical(["a", "b"]), "B": pd.Categorical(["a", "b"])} ), True, ), # differ types (DataFrame({"A": [1, 2], "B": [1.0, 2.0]}), False), # differ sizes ( DataFrame( { "A": np.array([1, 2], dtype=np.int32), "B": np.array([1, 2], dtype=np.int64), } ), False, ), # multi-extension differ ( DataFrame( {"A": pd.Categorical(["a", "b"]), "B": pd.Categorical(["b", "c"])} ), False, ), ], ) def test_is_homogeneous_type(self, data, expected): assert data._is_homogeneous_type is expected def test_asarray_homogenous(self): df = pd.DataFrame({"A": pd.Categorical([1, 2]), "B": pd.Categorical([1, 2])}) result = np.asarray(df) # may change from object in the future expected = np.array([[1, 1], [2, 2]], dtype="object") tm.assert_numpy_array_equal(result, expected) def test_str_to_small_float_conversion_type(self): # GH 20388 np.random.seed(13) col_data = [str(np.random.random() * 1e-12) for _ in range(5)] result = pd.DataFrame(col_data, columns=["A"]) expected = pd.DataFrame(col_data, columns=["A"], dtype=object) tm.assert_frame_equal(result, expected) # change the dtype of the elements from object to float one by one result.loc[result.index, "A"] = [float(x) for x in col_data] expected = pd.DataFrame(col_data, columns=["A"], dtype=float) tm.assert_frame_equal(result, expected) class TestDataFrameDatetimeWithTZ: def test_interleave(self, timezone_frame): # interleave with object result = timezone_frame.assign(D="foo").values expected = np.array( [ [ Timestamp("2013-01-01 00:00:00"), Timestamp("2013-01-02 00:00:00"), Timestamp("2013-01-03 00:00:00"), ], [ Timestamp("2013-01-01 00:00:00-0500", tz="US/Eastern"), pd.NaT, Timestamp("2013-01-03 00:00:00-0500", tz="US/Eastern"), ], [ Timestamp("2013-01-01 00:00:00+0100", tz="CET"), pd.NaT, Timestamp("2013-01-03 00:00:00+0100", tz="CET"), ], ["foo", "foo", "foo"], ], dtype=object, ).T tm.assert_numpy_array_equal(result, expected) # interleave with only datetime64[ns] result = timezone_frame.values expected = np.array( [ [ Timestamp("2013-01-01 00:00:00"), Timestamp("2013-01-02 00:00:00"), Timestamp("2013-01-03 00:00:00"), ], [
Timestamp("2013-01-01 00:00:00-0500", tz="US/Eastern")
pandas.Timestamp
from datetime import datetime, timedelta from typing import Any import weakref import numpy as np from pandas._libs import index as libindex from pandas._libs.lib import no_default from pandas._libs.tslibs import frequencies as libfrequencies, resolution from pandas._libs.tslibs.parsing import parse_time_string from pandas._libs.tslibs.period import Period from pandas._typing import DtypeObj, Label from pandas.util._decorators import Appender, cache_readonly, doc from pandas.core.dtypes.common import ( ensure_platform_int, is_bool_dtype, is_datetime64_any_dtype, is_dtype_equal, is_float, is_integer, is_object_dtype, is_scalar, pandas_dtype, ) from pandas.core.dtypes.dtypes import PeriodDtype from pandas.core.arrays.period import ( PeriodArray, period_array, raise_on_incompatible, validate_dtype_freq, ) import pandas.core.common as com import pandas.core.indexes.base as ibase from pandas.core.indexes.base import ( InvalidIndexError, _index_shared_docs, ensure_index, maybe_extract_name, ) from pandas.core.indexes.datetimelike import DatetimeIndexOpsMixin from pandas.core.indexes.datetimes import DatetimeIndex, Index from pandas.core.indexes.extension import inherit_names from pandas.core.indexes.numeric import Int64Index from pandas.core.ops import get_op_result_name from pandas.core.tools.datetimes import DateParseError from pandas.tseries import frequencies from pandas.tseries.offsets import DateOffset, Tick _index_doc_kwargs = dict(ibase._index_doc_kwargs) _index_doc_kwargs.update(dict(target_klass="PeriodIndex or list of Periods")) # --- Period index sketch def _new_PeriodIndex(cls, **d): # GH13277 for unpickling values = d.pop("data") if values.dtype == "int64": freq = d.pop("freq", None) values = PeriodArray(values, freq=freq) return cls._simple_new(values, **d) else: return cls(values, **d) @inherit_names( ["strftime", "to_timestamp", "asfreq", "start_time", "end_time"] + PeriodArray._field_ops, PeriodArray, wrap=True, ) @inherit_names(["is_leap_year", "freq", "_format_native_types"], PeriodArray) class PeriodIndex(DatetimeIndexOpsMixin, Int64Index): """ Immutable ndarray holding ordinal values indicating regular periods in time. Index keys are boxed to Period objects which carries the metadata (eg, frequency information). Parameters ---------- data : array-like (1d int np.ndarray or PeriodArray), optional Optional period-like data to construct index with. copy : bool Make a copy of input ndarray. freq : str or period object, optional One of pandas period strings or corresponding objects. year : int, array, or Series, default None month : int, array, or Series, default None quarter : int, array, or Series, default None day : int, array, or Series, default None hour : int, array, or Series, default None minute : int, array, or Series, default None second : int, array, or Series, default None tz : object, default None Timezone for converting datetime64 data to Periods. dtype : str or PeriodDtype, default None Attributes ---------- day dayofweek dayofyear days_in_month daysinmonth end_time freq freqstr hour is_leap_year minute month quarter qyear second start_time week weekday weekofyear year Methods ------- asfreq strftime to_timestamp See Also -------- Index : The base pandas Index type. Period : Represents a period of time. DatetimeIndex : Index with datetime64 data. TimedeltaIndex : Index of timedelta64 data. period_range : Create a fixed-frequency PeriodIndex. Examples -------- >>> idx = pd.PeriodIndex(year=year_arr, quarter=q_arr) """ _typ = "periodindex" _attributes = ["name", "freq"] # define my properties & methods for delegation _is_numeric_dtype = False _infer_as_myclass = True _data: PeriodArray freq: DateOffset _engine_type = libindex.PeriodEngine _supports_partial_string_indexing = True # ------------------------------------------------------------------------ # Index Constructors def __new__( cls, data=None, ordinal=None, freq=None, tz=None, dtype=None, copy=False, name=None, **fields, ): valid_field_set = { "year", "month", "day", "quarter", "hour", "minute", "second", } if not set(fields).issubset(valid_field_set): argument = list(set(fields) - valid_field_set)[0] raise TypeError(f"__new__() got an unexpected keyword argument {argument}") name = maybe_extract_name(name, data, cls) if data is None and ordinal is None: # range-based. data, freq2 = PeriodArray._generate_range(None, None, None, freq, fields) # PeriodArray._generate range does validation that fields is # empty when really using the range-based constructor. freq = freq2 data = PeriodArray(data, freq=freq) else: freq = validate_dtype_freq(dtype, freq) # PeriodIndex allow PeriodIndex(period_index, freq=different) # Let's not encourage that kind of behavior in PeriodArray. if freq and isinstance(data, cls) and data.freq != freq: # TODO: We can do some of these with no-copy / coercion? # e.g. D -> 2D seems to be OK data = data.asfreq(freq) if data is None and ordinal is not None: # we strangely ignore `ordinal` if data is passed. ordinal = np.asarray(ordinal, dtype=np.int64) data = PeriodArray(ordinal, freq) else: # don't pass copy here, since we copy later. data = period_array(data=data, freq=freq) if copy: data = data.copy() return cls._simple_new(data, name=name) @classmethod def _simple_new(cls, values: PeriodArray, name: Label = None): """ Create a new PeriodIndex. Parameters ---------- values : PeriodArray Values that can be converted to a PeriodArray without inference or coercion. """ assert isinstance(values, PeriodArray), type(values) result = object.__new__(cls) result._data = values # For groupby perf. See note in indexes/base about _index_data result._index_data = values._data result.name = name result._cache = {} result._reset_identity() return result # ------------------------------------------------------------------------ # Data @property def values(self): return np.asarray(self) @property def _has_complex_internals(self): # used to avoid libreduction code paths, which raise or require conversion return True def _shallow_copy(self, values=None, name: Label = no_default): name = name if name is not no_default else self.name cache = self._cache.copy() if values is None else {} if values is None: values = self._data result = self._simple_new(values, name=name) result._cache = cache return result def _maybe_convert_timedelta(self, other): """ Convert timedelta-like input to an integer multiple of self.freq Parameters ---------- other : timedelta, np.timedelta64, DateOffset, int, np.ndarray Returns ------- converted : int, np.ndarray[int64] Raises ------ IncompatibleFrequency : if the input cannot be written as a multiple of self.freq. Note IncompatibleFrequency subclasses ValueError. """ if isinstance(other, (timedelta, np.timedelta64, Tick, np.ndarray)): offset = frequencies.to_offset(self.freq.rule_code) if isinstance(offset, Tick): # _check_timedeltalike_freq_compat will raise if incompatible delta = self._data._check_timedeltalike_freq_compat(other) return delta elif isinstance(other, DateOffset): freqstr = other.rule_code base = libfrequencies.get_base_alias(freqstr) if base == self.freq.rule_code: return other.n raise raise_on_incompatible(self, other) elif is_integer(other): # integer is passed to .shift via # _add_datetimelike_methods basically # but ufunc may pass integer to _add_delta return other # raise when input doesn't have freq raise raise_on_incompatible(self, None) def _is_comparable_dtype(self, dtype: DtypeObj) -> bool: """ Can we compare values of the given dtype to our own? """ if not isinstance(dtype, PeriodDtype): return False return dtype.freq == self.freq # ------------------------------------------------------------------------ # Rendering Methods def _mpl_repr(self): # how to represent ourselves to matplotlib return self.astype(object)._values @property def _formatter_func(self): return self.array._formatter(boxed=False) # ------------------------------------------------------------------------ # Indexing @cache_readonly def _engine(self): # To avoid a reference cycle, pass a weakref of self._values to _engine_type. period = weakref.ref(self._values) return self._engine_type(period, len(self)) @doc(Index.__contains__) def __contains__(self, key: Any) -> bool: if isinstance(key, Period): if key.freq != self.freq: return False else: return key.ordinal in self._engine else: hash(key) try: self.get_loc(key) return True except KeyError: return False @cache_readonly def _int64index(self) -> Int64Index: return Int64Index._simple_new(self.asi8, name=self.name) # ------------------------------------------------------------------------ # Index Methods def __array_wrap__(self, result, context=None): """ Gets called after a ufunc. Needs additional handling as PeriodIndex stores internal data as int dtype Replace this to __numpy_ufunc__ in future version """ if isinstance(context, tuple) and len(context) > 0: func = context[0] if func is np.add: pass elif func is np.subtract: name = self.name left = context[1][0] right = context[1][1] if isinstance(left, PeriodIndex) and isinstance(right, PeriodIndex): name = left.name if left.name == right.name else None return Index(result, name=name) elif isinstance(left, Period) or isinstance(right, Period): return Index(result, name=name) elif isinstance(func, np.ufunc): if "M->M" not in func.types: msg = f"ufunc '{func.__name__}' not supported for the PeriodIndex" # This should be TypeError, but TypeError cannot be raised # from here because numpy catches. raise ValueError(msg) if is_bool_dtype(result): return result # the result is object dtype array of Period # cannot pass _simple_new as it is return type(self)(result, freq=self.freq, name=self.name) def asof_locs(self, where, mask: np.ndarray) -> np.ndarray: """ where : array of timestamps mask : array of booleans where data is not NA """ where_idx = where if isinstance(where_idx, DatetimeIndex): where_idx = PeriodIndex(where_idx._values, freq=self.freq) elif not isinstance(where_idx, PeriodIndex): raise TypeError("asof_locs `where` must be DatetimeIndex or PeriodIndex") elif where_idx.freq != self.freq: raise raise_on_incompatible(self, where_idx) locs = self.asi8[mask].searchsorted(where_idx.asi8, side="right") locs = np.where(locs > 0, locs - 1, 0) result = np.arange(len(self))[mask].take(locs) first = mask.argmax() result[(locs == 0) & (where_idx.asi8 < self.asi8[first])] = -1 return result @doc(Index.astype) def astype(self, dtype, copy=True, how="start"): dtype = pandas_dtype(dtype) if is_datetime64_any_dtype(dtype): # 'how' is index-specific, isn't part of the EA interface. tz = getattr(dtype, "tz", None) return self.to_timestamp(how=how).tz_localize(tz) # TODO: should probably raise on `how` here, so we don't ignore it. return super().astype(dtype, copy=copy) @property def is_full(self) -> bool: """ Returns True if this PeriodIndex is range-like in that all Periods between start and end are present, in order. """ if len(self) == 0: return True if not self.is_monotonic: raise ValueError("Index is not monotonic") values = self.asi8 return ((values[1:] - values[:-1]) < 2).all() @property def inferred_type(self) -> str: # b/c data is represented as ints make sure we can't have ambiguous # indexing return "period" @Appender(_index_shared_docs["get_indexer"] % _index_doc_kwargs) def get_indexer(self, target, method=None, limit=None, tolerance=None): target = ensure_index(target) if isinstance(target, PeriodIndex): if target.freq != self.freq: # No matches no_matches = -1 * np.ones(self.shape, dtype=np.intp) return no_matches target = target.asi8 self_index = self._int64index else: self_index = self if tolerance is not None: tolerance = self._convert_tolerance(tolerance, target) if self_index is not self: # convert tolerance to i8 tolerance = self._maybe_convert_timedelta(tolerance) return Index.get_indexer(self_index, target, method, limit, tolerance) @Appender(_index_shared_docs["get_indexer_non_unique"] % _index_doc_kwargs) def get_indexer_non_unique(self, target): target = ensure_index(target) if not self._is_comparable_dtype(target.dtype): no_matches = -1 * np.ones(self.shape, dtype=np.intp) return no_matches, no_matches target = target.asi8 indexer, missing = self._int64index.get_indexer_non_unique(target) return ensure_platform_int(indexer), missing def get_loc(self, key, method=None, tolerance=None): """ Get integer location for requested label. Parameters ---------- key : Period, NaT, str, or datetime String or datetime key must be parseable as Period. Returns ------- loc : int or ndarray[int64] Raises ------ KeyError Key is not present in the index. TypeError If key is listlike or otherwise not hashable. """ orig_key = key if not is_scalar(key): raise InvalidIndexError(key) if isinstance(key, str): try: loc = self._get_string_slice(key) return loc except (TypeError, ValueError): pass try: asdt, reso = parse_time_string(key, self.freq) except DateParseError as err: # A string with invalid format raise KeyError(f"Cannot interpret '{key}' as period") from err grp = resolution.Resolution.get_freq_group(reso) freqn = resolution.get_freq_group(self.freq) # _get_string_slice will handle cases where grp < freqn assert grp >= freqn if grp == freqn: key = Period(asdt, freq=self.freq) loc = self.get_loc(key, method=method, tolerance=tolerance) return loc elif method is None: raise KeyError(key) else: key = asdt elif is_integer(key): # Period constructor will cast to string, which we dont want raise KeyError(key) try: key = Period(key, freq=self.freq) except ValueError as err: # we cannot construct the Period raise KeyError(orig_key) from err try: return Index.get_loc(self, key, method, tolerance) except KeyError as err: raise KeyError(orig_key) from err def _maybe_cast_slice_bound(self, label, side: str, kind: str): """ If label is a string or a datetime, cast it to Period.ordinal according to resolution. Parameters ---------- label : object side : {'left', 'right'} kind : {'loc', 'getitem'} Returns ------- bound : Period or object Notes ----- Value of `side` parameter should be validated in caller. """ assert kind in ["loc", "getitem"] if isinstance(label, datetime): return Period(label, freq=self.freq) elif isinstance(label, str): try: parsed, reso = parse_time_string(label, self.freq) bounds = self._parsed_string_to_bounds(reso, parsed) return bounds[0 if side == "left" else 1] except ValueError as err: # string cannot be parsed as datetime-like # TODO: we need tests for this case raise KeyError(label) from err elif is_integer(label) or is_float(label): self._invalid_indexer("slice", label) return label def _parsed_string_to_bounds(self, reso: str, parsed: datetime): if reso not in ["year", "month", "quarter", "day", "hour", "minute", "second"]: raise KeyError(reso) grp = resolution.Resolution.get_freq_group(reso) iv = Period(parsed, freq=(grp, 1)) return (iv.asfreq(self.freq, how="start"), iv.asfreq(self.freq, how="end")) def _validate_partial_date_slice(self, reso: str): grp = resolution.Resolution.get_freq_group(reso) freqn = resolution.get_freq_group(self.freq) if not grp < freqn: # TODO: we used to also check for # reso in ["day", "hour", "minute", "second"] # why is that check not needed? raise ValueError def _get_string_slice(self, key: str, use_lhs: bool = True, use_rhs: bool = True): # TODO: Check for non-True use_lhs/use_rhs parsed, reso = parse_time_string(key, self.freq) try: return self._partial_date_slice(reso, parsed, use_lhs, use_rhs) except KeyError as err: raise KeyError(key) from err def insert(self, loc, item): if not isinstance(item, Period) or self.freq != item.freq: return self.astype(object).insert(loc, item) i8result = np.concatenate( (self[:loc].asi8, np.array([item.ordinal]), self[loc:].asi8) ) arr = type(self._data)._simple_new(i8result, dtype=self.dtype) return type(self)._simple_new(arr, name=self.name) def join(self, other, how="left", level=None, return_indexers=False, sort=False): """ See Index.join """ self._assert_can_do_setop(other) if not isinstance(other, PeriodIndex): return self.astype(object).join( other, how=how, level=level, return_indexers=return_indexers, sort=sort ) result = Int64Index.join( self, other, how=how, level=level, return_indexers=return_indexers, sort=sort, ) if return_indexers: result, lidx, ridx = result return self._apply_meta(result), lidx, ridx return self._apply_meta(result) # ------------------------------------------------------------------------ # Set Operation Methods def _assert_can_do_setop(self, other): super()._assert_can_do_setop(other) # *Can't* use PeriodIndexes of different freqs # *Can* use PeriodIndex/DatetimeIndex if isinstance(other, PeriodIndex) and self.freq != other.freq: raise raise_on_incompatible(self, other) def _setop(self, other, sort, opname: str): """ Perform a set operation by dispatching to the Int64Index implementation. """ self._validate_sort_keyword(sort) self._assert_can_do_setop(other) res_name = get_op_result_name(self, other) other = ensure_index(other) i8self = Int64Index._simple_new(self.asi8) i8other = Int64Index._simple_new(other.asi8) i8result = getattr(i8self, opname)(i8other, sort=sort) parr = type(self._data)(np.asarray(i8result, dtype=np.int64), dtype=self.dtype) result = type(self)._simple_new(parr, name=res_name) return result def intersection(self, other, sort=False): self._validate_sort_keyword(sort) self._assert_can_do_setop(other) other = ensure_index(other) if self.equals(other): return self._get_reconciled_name_object(other) if not is_dtype_equal(self.dtype, other.dtype): # TODO: fastpath for if we have a different PeriodDtype this = self.astype("O") other = other.astype("O") return this.intersection(other, sort=sort) return self._setop(other, sort, opname="intersection") def difference(self, other, sort=None): self._validate_sort_keyword(sort) self._assert_can_do_setop(other) other = ensure_index(other) if self.equals(other): # pass an empty PeriodArray with the appropriate dtype return type(self)._simple_new(self._data[:0], name=self.name) if is_object_dtype(other): return self.astype(object).difference(other).astype(self.dtype) elif not is_dtype_equal(self.dtype, other.dtype): return self return self._setop(other, sort, opname="difference") def _union(self, other, sort): if not len(other) or self.equals(other) or not len(self): return super()._union(other, sort=sort) # We are called by `union`, which is responsible for this validation assert isinstance(other, type(self)) if not is_dtype_equal(self.dtype, other.dtype): this = self.astype("O") other = other.astype("O") return this._union(other, sort=sort) return self._setop(other, sort, opname="_union") # ------------------------------------------------------------------------ def _apply_meta(self, rawarr) -> "PeriodIndex": if not isinstance(rawarr, PeriodIndex): if not isinstance(rawarr, PeriodArray): rawarr =
PeriodArray(rawarr, freq=self.freq)
pandas.core.arrays.period.PeriodArray
""" This library contains a set of functions that help you detect similar images in your archive. It will detect the 'best' image per group using a high-pass filter and copy these to another folder. Thus, you do not have to pre-select images for your photo show yourself (content itself is not considered a quality critera). """ from functools import partial import glob import os import shutil import cv2 import numpy as np import pandas as pd import matplotlib.pyplot as plt import scipy.stats as sts from sklearn.linear_model import LogisticRegression version = '0.1.3' def split_filepath(file, split=False): """ Function to split file from path and return either of them. Parameters: ------------------------------ file: (str), full path to file split: (bool), flag, if path shall be returned Returns: ------------------------------ str, Filename """ file = file.replace('\\', '/') if split is True: if os.path.isfile(file): _ = file.split('/') return '/'.join(_[:-2]), _[-1] else: if os.path.exists(file): if file[-1] is not '/': file = file + '/' return file else: print('The file/path {} does not exist.'.format(file)) else: return file def read_files(path, ext): """ Function to read image filenames from a directory and their creation date. Parameters: ------------------------------ path: (str), filename ext: (str), extension for files to be considered Returns: ------------------------------ list, Filenames """ files = glob.glob('{}*.{}'.format(path, ext)) # file modification date seems to be more reliable files = [(split_filepath(f, split=True)[-1], os.stat(f).st_mtime) for f in files] #files = [(split_filepath(f, split=True)[-1], os.path.getctime(f)) for f in files] return files def read_img(file, read_type=None): """ Function to read images. Parameters: ------------------------------ file: (str), filename read_type: (str), different opencv conversions of images Returns: ------------------------------ array, Image """ if read_type == None: return cv2.imread(file) elif read_type == 'rgb': return cv2.cvtColor(cv2.imread(file), cv2.COLOR_BGR2RGB) elif read_type == 'hsv': return cv2.cvtColor(cv2.imread(file), cv2.COLOR_BGR2HSV) elif read_type == 'gray': return cv2.cvtColor(cv2.imread(file), cv2.COLOR_BGR2GRAY) def resize_img(img, scale=0.2): """ Function resizes image. Parameters: ------------------------------ img: (array), image scale: (float), factor used for reduction (1.0 means no change) Returns: ------------------------------ array, Image """ x, y = int(img.shape[0]*scale), int(img.shape[1]*scale) return cv2.resize(img, (y, x)) def calculate_hist(img, channels=[0], mask=None, histSize=[256], ranges=[0, 256]): """ Function to calculate histograms for image data. Refer to cv2.calcHist of opencv library for more information. Returns: ------------------------------ array, Histogramm of Image """ return cv2.calcHist([img], channels=channels, mask=None, histSize=histSize, ranges=ranges) def minimize_image(img, min_pix=8): """ Function that resizes images to icon size, leaving only the bare silhouette of the image. Parameters: ------------------------------ img: (array), input image min_pix: (int, tuple), min value for the min axis Returns: ------------------------------ array, Resized image. """ if len(img.shape) == 2: y, x = img.shape elif len(img.shape) == 3: y, x, _ = img.shape if type(min_pix) == int: if x <= y: y = int(y/x * 8) x = 8 else: x = int(x/y * 8) y = 8 elif type(min_pix) == tuple: x, y = min_pix return cv2.resize(img, (x, y)) def copy_images(df, path=('./images/', './processed/'), rank_col=None, crit_col=None): """ Function that copies the processed images to the destination repository. Parameters: ------------------------------ df: (pandas DataFrame), that is grouped by column rank_col path = (tuple, str), (input_path, output_path) of images rank_col: (str), ranked column in the DataFrame crit_col: (str), the column containing the criteria, greater values are better Returns: ------------------------------ None """ for cur_file in df.loc[df.groupby([rank_col])[crit_col].idxmax(), 'file'].values: shutil.copy2(path[0] + cur_file, path[1] + cur_file) def rotate_img(img, degree=0): """ Function that rotates images. Parameters: ------------------------------ img = (np.array), input image degree = (float), expected rotation degree (between 0° and 360°) Returns: ------------------------------ array, Rotated image. """ rows, cols = img.shape M_rot = cv2.getRotationMatrix2D((cols/2,rows/2), degree, 1) img_rot = cv2.warpAffine(img, M_rot, (cols,rows), flags=cv2.INTER_NEAREST, borderMode=cv2.BORDER_REPLICATE) return img_rot def warp_img(img, scale=0.0, how=None): """ Function that warps images. Parameters: ------------------------------ img = (np.array), input image scale = (float), needs to be in [0, 0.5), defines how much the image axis is stretched how = (str), stretched axis, has to be in ("bottom", "top", "left", "right") Returns: ------------------------------ array, Warped image. """ rows, cols = img.shape if how == 'bottom': pinp = np.float32([[rows*scale,0],[rows*(1 - scale),0],[0,cols],[rows,cols]]) # squeeze bottom x elif how == 'top': pinp = np.float32([[0,0],[rows,0],[rows*scale,cols],[rows*(1 - scale),cols]]) # squeeze top x elif how == 'left': pinp = np.float32([[0,cols*scale],[rows,0],[0,cols*(1-scale)],[rows,cols]]) # squeeze left side elif how == 'right': pinp = np.float32([[0,0],[rows,cols*scale],[0,cols],[rows,cols*(1-scale)]]) # squeeze right side else: print('Parameter how has to be in "bottom", "top", "left", "right".') pout = np.float32([[0,0], [rows,0], [0,cols], [rows,cols]]) M_warp = cv2.getPerspectiveTransform(pinp, pout) img_warp = cv2.warpPerspective(img, M_warp, (cols,rows), flags=cv2.INTER_NEAREST, borderMode=cv2.BORDER_REPLICATE) return img_warp def compare_hashes_adv(images, hash_dim=(8, 8), range_deg=(-5, 5, 1), warping=('left', 'right', 'top', 'bottom'), range_warp=(0.01, 0.06, 0.01), return_hash_only=False): """ Advanced function that compares the hashes of consecutive images and takes small variations into account. Parameters: ------------------------------ images = (list), list of images (arrays) hash_dim = (tuple), expected x & y pixel of the hashed images range_deg = (tuple), (min_value, max_value, step) for image rotation warping = (tuple), how to warp image, choose and combine ('left', 'right', 'top', 'bottom') range_warp = (tuple), (min_value, max_value, step) for image warping, min/max_values have to be in [0, 0.5) return_hash_only = (bool), if True, only true image hash is calculated Returns: ------------------------------ List of hash similarity of consecutive images. """ def hash_checker(img_a, img_b): return sum([1 if i[0] == i[1] else 0 for i in zip(img_a, img_b)]) if return_hash_only is True: images = [minimize_image(img, min_pix=hash_dim) for img in images] img_mean = [np.mean(img) for img in images] imgs_reshaped = [img.reshape(-1) for img in images] hashes = [] for enum, cur_img in enumerate(imgs_reshaped): hashes.append([1 if px > img_mean[enum] else 0 for px in cur_img]) compared_hashes = [hash_checker(*pair) for pair in zip(hashes, hashes[1:] + hashes[:1])] else: images_adv = [] for img in images: images_ = [img] images_ += [rotate_img(img, deg) for deg in range(*range_deg)] images_ += [warp_img(img, scale, how=how) for how in warping for scale in np.arange(*range_warp)] images_adv.append([minimize_image(img, min_pix=hash_dim).reshape(-1) for img in images_]) img_mean = [np.mean(img) for images in images_adv for img in images] ix, iy = len(images), len(images_adv[0]) img_mean = np.array(img_mean).reshape(ix, iy) hashes = [] for enum, cur_img in enumerate(images_adv): var = [] for enum2, variant in enumerate(cur_img): var.append([1 if px > img_mean[enum][enum2] else 0 for px in variant]) hashes.append(var) def hash_checker(img_a, img_b): return sum([1 if i[0] == i[1] else 0 for i in zip(img_a, img_b)]) compared_hashes = [] for pair in zip(hashes, hashes[1:] + hashes[:1]): a, b = pair max_hash = 0 for img_b in b: cur_hash = hash_checker(a[0], img_b) if cur_hash > max_hash: max_hash = cur_hash compared_hashes.append(max_hash) return compared_hashes def high_pass_filter(img, x_shift=30, y_shift=30): """ High-pass filter for images, calculates the magnitude spectrum. Parameters: ------------------------------ img: (array), two dimensional image data x_shift, y_shift: (int), filter threshold, 0 means no filtering at all Returns: ------------------------------ array, Magnitude spectrum of the image """ rows, cols = img.shape _row, _col = int(rows/2), int(cols/2) f = np.fft.fft2(img) fshift = np.fft.fftshift(f) fshift[_row - y_shift:_row + y_shift, _col - x_shift:_col + x_shift] = 0 # here happens the filtering f_ishift = np.fft.ifftshift(fshift) img_back = np.fft.ifft2(f_ishift) img_back = np.abs(img_back) flattened_spectrum = img_back.reshape(-1, 1) x_hist, y_hist = np.histogram(flattened_spectrum, bins=255) y_hist_corr = [(y_hist[i] + y_hist[i+1])/2.0 for i in range(len(y_hist)-1)] mag_spectrum = np.cumsum(y_hist_corr)[-1] return mag_spectrum def calculate_performance(labels, predictions, n_img=None): """ Returns performance summary for ranking evaluation - can be used for calibration. Has two contributions: Parameters: ------------------------------ labels = (series, array), true labels predictions = (series, array), predicted labels n_img = (int), true number of groups Returns: ------------------------------ tuple, (image groups found, unique image groups found, true number of image groups normalized reduction ratio (1 is best )) """ df_perf = pd.DataFrame(np.c_[labels, predictions], columns=['labels', 'pred']) df_grouped = df_perf.groupby(['pred'])['labels'].apply(lambda x: len(set(x))).to_frame() groups_found = min(n_img, len(set(df_grouped.index[df_grouped['labels']==1].values))) groups_unique = len(df_perf['pred'].unique()) max_red = n_img / len(df_perf) reduction = groups_unique / len(df_perf) * groups_found / n_img reduction /= max_red return (groups_found, groups_unique, n_img, reduction) def calc_correlations(images, method): """ Function to calculate correlations between images. Parameters: ------------------------------ images: list, of images read in HSV mode method: str, 'bhattacharyya', 'correl' refer to cv2 for further information Returns: ------------------------------ List of calculated correlation measures. """ methods = {'bhattacharyya': cv2.HISTCMP_BHATTACHARYYA, 'correl': cv2.HISTCMP_CORREL, } img_hists = [calculate_hist(cur_img, [0,1], None, [180, 256], [0,180, 0,256]) for cur_img in images] cors = [cv2.compareHist(img_hists[i-1], img_hists[i], methods[method]) for i in range(len(img_hists))] cors.append(cors.pop(0)) if method == 'bhattacharyya': cors = list(map(lambda x: 1 - x, cors)) return cors def timelag_ranker(series, max_lag=5, max_per_group=5): def timelag_ranker_(series, max_lag, max_per_group): """ Ranker function, distinguishes images based on difference timestamps. Parameters: ------------------------------ series = pandas Series of timestamps max_lag = (float), seconds between images group_default = (int), maximum number of images per group Returns: ------------------------------ Generator of Rank """ rank = 1 n_group = 0 for row in series.iloc[:-1]: yield rank n_group += 1 if row > max_lag: rank += 1 n_group = 0 elif n_group > max_per_group: rank += 1 n_group = 0 yield rank return list(timelag_ranker_(series, max_lag, max_per_group)) def hash_ranker(series, dim=None, limit=0.875): def hash_ranker_(series, dim, limit): """ Ranker function, distinguishes images based on similary of image hashes. Hash refers here to low resolution images (~8 px per x and y dimensions) For advanced hashing, higher limit is recommended, e.g., limit ~= 0.925. Parameters: ------------------------------ series = pandas Series, containing image hash values dims = (int), number of image dimensions (in px) limit = (float), lower limit for hash similarity to be recognized as similar imageS Returns: ------------------------------ Generator of Rank """ rank = 1 for row in series.iloc[:-1]: yield rank if row < np.product(dim) * limit: rank += 1 yield rank return list(hash_ranker_(series, dim, limit)) def corr_ranker(series, limits={'bhattacharyya': 0.61, 'correl': 0.8}): def corr_ranker(series, limits): """ Ranker function, distinguishes images based on correlation of image (has to be provided). Parameters: ------------------------------ series = pandas Series, containing image hash values limits = (dict), where keys refer to the method used and the values are the lower bounds for recognition as similar images. Returns: ------------------------------ Generator of Rank """ name = series.name.split('_')[0] rank = 1 for row in series.iloc[:-1]: yield rank if row < limits[name]: rank += 1 yield rank return list(corr_ranker(series, limits)) def vote_ranker(series, limit=0.41): def vote_ranker_(series, limit): """ Ranker function, mean of differences of ranks (from different methods) serves as discriminator of ranks from ensemble. Parameters: ------------------------------ series = pandas Series, containing image average limit = (dict), has to be in [0, 1] Returns: ------------------------------ Generator of Rank """ rank = 1 for row in series.iloc[:-1]: yield rank if row < limit: rank += 1 yield rank return list(vote_ranker_(series, limit)) def calculate_axis_ratio(img): """ Function returns axis-ratio of image. Parameters: ------------------------------ img: (array), input image Returns: ------------------------------ float, Axis ratio (horizontal/vertical) """ if len(img.shape) == 2: h, v = img.shape elif len(img.shape) == 3: h, v, _ = img.shape else: h, v = img.shape[0], img.shape[1] return h/v def img_shape_ranker(series, limit=0.01): def img_shape_ranker_(series, limit): """ Ranker function, checks if a the image axis ratio changes (horizontal to vertical and vice versa). Parameters: ------------------------------ series = pandas Series, containing image average limit = (dict), has to be in (0, np.inf] Returns: ------------------------------ Generator of Rank """ rank = 1 for row in series.iloc[:-1]: yield rank if abs(row) >= limit: rank += 1 yield rank return list(img_shape_ranker_(series, limit)) def batch_hashing(df, n_dims=(8, 64)): """ Function that calculates the image hashes for different image dimensions. Parameters: ------------------------------ df: (pandas DataFrame), dataframe containing at least the following columns: target, gray_images n_dims: (tuple, int), (min_value, max_value) for quadratic image hashes Returns: ------------------------------ list of pandas DataFrames """ df = df.copy() targets = np.arange(0, len(df['target'].unique())) runs = [] for i in range(*n_dims, 1): df['hash_value'] = compare_hashes_adv(df['gray_images'], hash_dim=(i, i), return_hash_only=True) df['hash_value'] /= (i*i) runs.append(df[['target', 'hash_value']].copy()) return runs def return_hashing_dist(data, _type=None, target_col=None, comp_col=None): """ Function that calculates the hash values for (first) similar & non-similar images Parameters: ------------------------------ data: (list of pandas DataFrame), each dataframe is expected to contain at least the following columns: target, hash_value _type: (str), choose between 'similar' and 'nonsimilar' target_col: (str), column name of the target column comp_col: (str), column name of the column used for comparison Returns: ------------------------------ list of pandas DataFrames """ if _type == 'similar': similar = [] for cur_res in data: #TODO: calculate mean of element [0,n-1] if group size > 2 rel_rows = (cur_res.groupby([target_col])[comp_col].agg('count') > 1).values similar.append(cur_res.groupby([target_col])[comp_col].first().iloc[rel_rows]) return similar elif _type == 'nonsimilar': nonsimilar = np.array([cur_res.groupby([target_col])[comp_col].last().values for cur_res in data]) return nonsimilar def make_logreg_fit(similar, nonsimilar, make_plot=True, labels=('x', 'Probability'), limits=None): """ Function that performs a logistic regression fit on the groups of similar and non-similar images and provides the threshold value (+ plot). Parameters: ------------------------------ similar: (array), containing the hash values found for similar groups nonsimilar: (array), containing the hash values found for non-similar groups make_plot: (bool), create plot if True labels: (tuple), x- and y-label for the plot limits: (tuple), (min_x, max_x) for plots if not None Returns: ------------------------------ float, threshold. """ X_train = np.append(nonsimilar, similar) X_train = np.c_[X_train, np.ones(len(X_train))] y_train = np.array(len(nonsimilar)*[0] + len(similar)*[1]) if limits is None: min_val, max_val = min(X_train[:,0]), max(X_train[:,0]) else: min_val, max_val = limits lreg = LogisticRegression() lreg.fit(X_train, y_train) x_vals = np.arange(min_val*0.8, max_val*1.2, 0.001) probs = lreg.predict_proba(np.c_[x_vals, np.ones(len(x_vals))]) lower_bound = np.argmax(probs[probs<=0.50]) if make_plot is True: fig, axs = plt.subplots(2, 1, figsize=(15, 10), sharex=True, gridspec_kw={'height_ratios': [5, 1]}, tight_layout=True) for paxis in range(2): axs[paxis].plot([x_vals[lower_bound], x_vals[lower_bound]], [-0.1, 1.1], '-', color='gray', alpha=0.5, lw=10) axs[0].plot(x_vals, probs[:,1], 'b-', label='Probability curve', alpha=0.5) axs[0].scatter(X_train[y_train==0, 0], lreg.predict_proba(X_train)[y_train==0, 1], marker='.', s=400, ec='gray', label='False', color='red', alpha=.8) axs[0].scatter(X_train[y_train==1, 0], lreg.predict_proba(X_train)[y_train==1, 1], marker='.', s=400, ec='gray', label='True', color='green', alpha=.8) axs[1].eventplot(similar, lineoffsets=[0.2], linelengths=0.4, linewidths=0.5, orientation='horizontal', color='green', alpha=0.5) axs[1].eventplot(nonsimilar, lineoffsets=[0.75], linelengths=0.4, linewidths=0.5, orientation='horizontal', color='red', alpha=0.5) axs[0].axis([min_val*0.8, max_val*1.1, -0.1, 1.1]) axs[0].grid() axs[0].legend(loc='upper left') xl, yl = labels axs[1].set_xlabel(xl) axs[0].set_ylabel(yl) axs[0].set_title('Logistic regression fit') axs[1].axis([min_val*0.9, max_val*1.1, -0.1, 1.1]) axs[1].set_ylabel('Event') axs[1].tick_params(labelleft=False) axs[1].grid() plt.show() threshold = x_vals[lower_bound] print('Limit at {:.2f}'.format(threshold)) return threshold def bootstrap_data(df, n_runs=10): """ This function shuffles the input data and repeatedly calculates the ranks using a variety of methods. This provides better estimates on the average values for both image groups (similar or non-similar). Parameters: ------------------------------ df: (pandas DataFrame), dataframe containing at least the following columns: target, creation_date, gray_images, hsv_images, rgb_images n_runs: (int), how often the experiment is repeated Returns: ------------------------------ list of pandas DataFrames """ true_targets = df['target'].copy() targets = np.arange(0, len(true_targets.unique())) #TODO: replace methods with function call methods = {'avg_hash': [cv2.img_hash.averageHash, 8], 'block_hash': [partial(cv2.img_hash.blockMeanHash, mode=cv2.img_hash.BLOCK_MEAN_HASH_MODE_1), 121], 'phash': [cv2.img_hash.pHash, 8], 'marr_hildreth_hash': [cv2.img_hash.marrHildrethHash, 72], 'radial_variance_hash': [cv2.img_hash.radialVarianceHash, 40]} runs = [] for i in range(n_runs): np.random.seed(i) new_targets = np.random.choice(targets, size=len(targets), replace=False) # add some "randomness" by reversing images of each group if i % 2 == 0: df.sort_values(['creation_date'], inplace=True) else: df.sort_values(['creation_date'], ascending=False, inplace=True) df['target'] = true_targets.map(dict(zip(targets, new_targets))) df.sort_values(['target'], inplace=True) df['hash_value'] = compare_hashes_adv(df['gray_images'].tolist(), return_hash_only=True) df['hash_value_adv'] = compare_hashes_adv(df['gray_images'].tolist(), ) df['correl_corr'] = calc_correlations(df['hsv_images'].tolist(), 'correl') df['bhattacharyya_corr'] = calc_correlations(df['hsv_images'].tolist(), 'bhattacharyya') #TODO: method call with function call for k, (func, dim) in methods.items(): df[k+'_value'] = df['rgb_images'].apply(lambda x: func(x)) df[k+'_value_tmp'] = np.append(df[k+'_value'].values[1:], df[k+'_value'].values[:1]) df[k+'_value_cmp'] = df[[k+'_value', k+'_value_tmp']].apply( lambda x: cv2.norm(x[0][0], x[1][0], cv2.NORM_HAMMING), axis=1) df[k+'_value_cmp'] = 1 - df[k+'_value_cmp'] / (8 * dim) add_cols = [c for c in df.columns if c.endswith('_cmp')] runs.append(df[['target', 'creation_date', 'hash_value', 'hash_value_adv','correl_corr', 'bhattacharyya_corr'] + add_cols]) return runs def return_dist(data, _type=None, target_col=None, comp_col=None): """ Function that calculates the comparison values for (first) similar & non-similar images Parameters: ------------------------------ data: (list of pandas DataFrame), each dataframe is expected to contain at least the following columns: target, hash_value _type: (str), choose between 'similar' and 'nonsimilar' target_col: (str), column name of the target column comp_col: (str), column name of the column used for comparison Returns: ------------------------------ list of pandas DataFrames """ if _type == 'similar': similar = [] for cur_res in data: #TODO: calculate mean of element [0,n-1] if group size > 2 rel_rows = (cur_res.groupby([target_col])[comp_col].agg('count') > 1).values similar.append(cur_res.groupby([target_col])[comp_col].first().iloc[rel_rows]) similar = np.sort(np.array(similar).reshape(-1)) return similar elif _type == 'nonsimilar': nonsimilar = np.sort(np.array([cur_res.groupby([target_col])[comp_col].last().values for cur_res in data]).reshape(-1)) return nonsimilar def plot_distributions(similar, nonsimilar, bins=10, labels=('x', 'y'), title=''): """ Function that plots the histogram + kernel density functions of comparison value for (first) similar & non-similar distributions. Parameters: ------------------------------ similar: (array), containing the hash values found for similar groups nonsimilar: (array), containing the hash values found for non-similar groups bins: (int), number of bins in histogram label: (tuple), x- and y-label for plot title: (str), plot title Returns: ------------------------------ None """ full_vals = np.append(similar, nonsimilar) xmin, xmax = min(full_vals), max(full_vals) margin = (xmax - xmin)*0.1 xrange = np.arange(xmin - margin*2, xmax + margin*2, 0.01) plt.figure(figsize=(15, 5)) kde_sim = sts.gaussian_kde(similar) plt.hist(similar, bins=bins, rwidth=0.9, density=True, label='first', color='gold', alpha=0.7); plt.plot(xrange, kde_sim(xrange), lw=2, ls='-', color='#6666ff', label='similar-KDE') kde_nonsim = sts.gaussian_kde(nonsimilar) plt.hist(nonsimilar, bins=bins, rwidth=0.9, density=True, label='last', color='gray', alpha=0.7); plt.plot(xrange, kde_nonsim(xrange), lw=2, ls='-', color='#ff6666', label='last-KDE') plt.xlim([xmin - margin*2, xmax + margin*2]) plt.xlabel(labels[0]) plt.ylabel(labels[1]) plt.title(title) plt.legend() plt.grid() plt.show() def performance_report(similar, nonsimilar, limit=None, add_std=False): """ Prints a performance report. Parameters: ------------------------------ similar: (array), containing the hash values found for similar groups nonsimilar: (array), containing the hash values found for non-similar groups limit: (float), threshold value, if None, mean is used add_std: (bool), if True, standard deviation is added to the mean threshold, works only if limit is None Returns: ------------------------------ tuple (precision_score, recall_score, f1_score) """ def precision_score(tp, fp, eps=1e-10): return (tp + eps) / (tp + fp + eps) def recall_score(tp, fn, eps=1e-10): return (tp + eps) / (tp + fn + eps) def f1_score(tp, fp, fn, eps=1e-10): return 2 / (1/precision_score(tp, fp) + 1/recall_score(tp, fn)) if limit is None: limit = similar.mean() if add_std is True: limit += similar.std() tp = sum([1 for c in similar if c >= limit]) fn = len(similar) - tp tn = sum([1 for c in nonsimilar if c < limit]) fp = len(nonsimilar) - tn p_score, r_score = precision_score(tp, fp), recall_score(tp, fn) f_score = f1_score(tp, fp, fn) print('Performance report\n'+'-'*50) print('True positive: {} -- False negative: {}'.format(tp, fn)) print('True negative: {} -- False positive: {}'.format(tn, fp)) print('\nPrecision score: {:.4f}'.format(p_score)) print('Recall score: {:.4f}'.format(r_score)) print('F1 score: {:.4f}'.format(f_score)) return (p_score, r_score, f_score) def plot_summary(df): """ Plots histogramms for the methods used. Parameters: ------------------------------ df: (pandas DataFrame), expecting index to contain names of methods and columns - 'groups_found' (i.e., the number of image groups identified) - 'reduction' (i.e., the standardized reduction) - 'groups_true' (i.e., the true number of image groups) Returns: ------------------------------ None. """ fig, axs = plt.subplots(1,2, sharey=True, figsize=(15, 10), tight_layout=True) methods = [m.replace('_rank', '').capitalize() for m in df.index] n_img = df['groups_true'].values[0] axs[0].barh(methods, df['groups_found'], alpha=0.6) axs[0].plot([n_img, n_img], [-1, len(df)+1], 'r') axs[0].set_xlim([0, df['groups_found'].max()*1.05]) axs[1].set_ylim([-0.5, len(df)]) axs[0].grid(which='major', axis='x', alpha=0.8) axs[0].set_xlabel('Images identified') axs[0].set_title('Images identified by different ranking methods\n') axs[1].barh(methods, df['reduction'], alpha=0.6) axs[1].plot([1.0, 1.0], [-1, len(df)+1], 'r') axs[1].set_xlim([0, df['reduction'].max()*1.05]) axs[1].set_ylim([-0.5, len(df)]) axs[1].grid(which='major', axis='x', alpha=0.8) axs[1].set_xlabel('Standardized reduction') axs[1].set_title('Standardized reduction by different ranking methods\n') plt.show() def hash_image(image, method): """ #TODO: DOCSTRING # second value in list is used for normalization of hashing comparison value """ methods = {'avg_hash': [cv2.img_hash.averageHash, 8], 'block_hash': [partial(cv2.img_hash.blockMeanHash, mode=cv2.img_hash.BLOCK_MEAN_HASH_MODE_1), 121], 'phash': [cv2.img_hash.pHash, 8], 'marr_hildreth_hash': [cv2.img_hash.marrHildrethHash, 72], 'radial_variance_hash': [cv2.img_hash.radialVarianceHash, 40]} func, dim = methods[method] image_values =
pd.Series(image)
pandas.Series
import datetime import logging from pathlib import Path import numpy as np import pandas as pd import plotly.graph_objs as go from numpy.linalg import inv from scipy.linalg import sqrtm from sklearn import covariance from sklearn.base import BaseEstimator from sklearn.covariance import EmpiricalCovariance from sklearn.decomposition import PCA from statsmodels.api import OLS from statsmodels.tools import add_constant from .. import tools # expenses + tax dividend EXPENSES = { "CASH": 0.0, "TMF": 0.0108, "DPST": 0.0104, "ASHR": 0.0065, "TQQQ": 0.0095, "UGLD": 0.0135, "ERX": 0.01, "RING": 0.0039, "LABU": 0.0109, "YINN": 0.0152, "SOXL": 0.0097, "RETL": 0.0105, "TYD": 0.0097, "UDOW": 0.0095, "GBTC": 0.02, "FAS": 0.0096, "MCHI": 0.0064, "CQQQ": 0.0070, "CHIX": 0.0065, "UBT": 0.0095, "FXI": 0.0074, "DRN": 0.0109, "O": 0 + 0.045 * 0.15, "DSUM": 0.0045 + 0.035 * 0.15, "SPY": 0.0009, "TLT": 0.0015, "ZIV": 0.0135, "GLD": 0.004, "BABA": 0.0, "BIDU": 0.0, "IEF": 0.0015, "KWEB": 0.007, "JPNL": 0.0121, "EDC": 0.0148, "EEMV.L": 0.0025, "IWVL.L": 0.003, "MVEU.L": 0.0025, "USMV": 0.0015, "ACWV": 0.002, "EFAV": 0.002, "KRE": 0.0035, "EEM": 0.0068, "VNQ": 0.0012 + 0.0309 * 0.15, "EWJ": 0.0049, "HYG": 0.0049, "VLUE": 0.0004, "SPMV": 0.001, "IDWP.L": 0.0069, "ZN": 0.0, "RFR": 0.0, } class CovarianceEstimator(object): """Estimator which accepts sklearn objects. :param w: regularization from paper `Enhanced Portfolio Optimization`, value 0 means no regularization, value 1 means to ignore covariances :param frequency: how often should we recalculate covariance matrix, used to speed up MPT prototyping """ def __init__(self, cov_est, window, standardize=True, w=0.0, frequency=1): self.cov_est = cov_est self.window = window self.standardize = standardize self.w = w self.frequency = frequency self._last_cov = None self._last_n = 0 def fit(self, X): # assert X.mean().mean() < 1. # reuse covariance matrix if ( self.frequency > 1 and len(X) - self._last_n < self.frequency and list(X.columns) == list(self._last_cov.columns) ): return self._last_cov # only use last window if self.window: X = X.iloc[-self.window :] # remove zero-variance elements zero_variance = X.std() == 0 Y = X.iloc[:, ~zero_variance.values] # most estimators assume isotropic covariance matrix, so standardize before feeding them std = Y.std() Y = Y / std # can estimator handle NaN values? if getattr(self.cov_est, "allow_nan", False): self.cov_est.fit(Y) cov = pd.DataFrame( self.cov_est.covariance_, index=Y.columns, columns=Y.columns ) else: # compute full covariance for non-NaN columns Yn = Y.dropna(1, how="any") full_cov = self.cov_est.fit(Yn).covariance_ full_cov = pd.DataFrame(full_cov, index=Yn.columns, columns=Yn.columns) full_cov = full_cov.reindex(Y.columns).reindex(columns=Y.columns) # put back NaN columns one by one, compute covariance using # available history cols = list(Yn.columns) for col in set(Y.columns) - set(Yn.columns): cols.append(col) c = Y[cols].dropna().cov().loc[col] full_cov.loc[col, cols] = c full_cov.loc[cols, col] = c cov = full_cov.loc[Y.columns, Y.columns] # standardize back cov = np.outer(std, std) * cov # put back zero covariance cov = cov.reindex(X.columns).reindex(columns=X.columns).fillna(0.0) # turn on? # assert np.linalg.eig(cov)[0].min() > 0 # annualize covariance cov *= tools.freq(X.index) # regularize cov = (1 - self.w) * cov + self.w * np.diag(np.diag(cov)) # CASH should have zero covariance if "CASH" in X.columns: cov.loc["CASH", :] = 0 cov.loc[:, "CASH"] = 0 self._last_cov = cov self._last_n = len(X) return cov class SharpeEstimator(object): def __init__( self, global_sharpe=0.4, override_sharpe=None, override_mean=None, capm=None, rfr=0.0, verbose=False, cov_estimator=None, tax_adjustment=None, ): """ :param rfr: risk-free rate """ self.override_sharpe = override_sharpe or {} self.override_mean = override_mean or {} self.capm = capm or {} self.global_sharpe = global_sharpe self.rfr = rfr self.verbose = verbose self.cov_estimator = cov_estimator self.tax_adjustment = tax_adjustment def fit(self, X, sigma): """ formula for mean is: sh * vol + rf - expenses """ # estimate sigma again if cov_estimator is present if self.cov_estimator is not None: sigma = self.cov_estimator.fit(X - 1) est_sh =
pd.Series(self.global_sharpe, index=sigma.index)
pandas.Series
# -*- coding: utf-8 -*- """ Created on Tue Sep 14 10:59:05 2021 @author: franc """ import os import numpy as np import pandas as pd import matplotlib.pyplot as plt from pathlib import Path import json from collections import Counter, OrderedDict import math import torchtext from torchtext.data import get_tokenizer from googletrans import Translator # from deep_translator import GoogleTranslator # pip install googletrans==4.0.0rc1 import pickle # pip install pickle-mixin import nltk from nltk.stem import WordNetLemmatizer from nltk.corpus import wordnet as wn # python -m spacy download es_core_news_sm import spacy import fasttext.util import contractions import re # libreria de expresiones regulares import string # libreria de cadena de caracteres import itertools import sys sys.path.append("/tmp/TEST") from treetagger import TreeTagger import pathlib from scipy.spatial import distance from scipy.stats import kurtosis from scipy.stats import skew class NLPClass: def __init__(self): self.numero = 1 nltk.download('wordnet') def translations_dictionary(self, df_translate=None, path=""): ''' It appends to a dictionary different animals names in spanish and english languages. It adds them so that english animals names appear in WordNet synset. Parameters ---------- df_translate : pandas.dataframe, optional. If it's not None, the rows are appended. Otherwise it's initialized and then the rows are appended. The default is None. path : string, optional The path where to save the pickle file with the dictionary. Unless path is empty. The default is "". Returns ------- df_translate : pandas.dataframe. Pandas.dataframe with the new rows appended. ''' df_auxiliar = pd.DataFrame(columns=['spanish','english']) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["yaguareté"], 'english': ["jaguar"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["llama"], 'english': ["llama"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["picaflor"], 'english': ["hummingbird"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["chita"], 'english': ["cheetah"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["torcaza"], 'english': ["dove"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["yacaré"], 'english': ["alligator"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["corvina"], 'english': ["croaker"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["vizcacha"], 'english': ["viscacha"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["orca"], 'english': ["killer_whale"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["barata"], 'english': ["german_cockroach"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["coipo"], 'english': ["coypu"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["cuncuna"], 'english': ["caterpillar"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["carpincho"], 'english': ["capybara"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["jote"], 'english': ["buzzard"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["zorzal"], 'english': ["fieldfare"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["guanaco"], 'english': ["guanaco"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["pejerrey"], 'english': ["silverside"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["mandril"], 'english': ["mandrill"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["peludo"], 'english': ["armadillo"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["chingue"], 'english': ["skunk"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["guaren"], 'english': ["brown_rat"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["cata"], 'english': ["budgerigar"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(
pd.DataFrame({'spanish': ["bonito"], 'english': ["atlantic_bonito"]})
pandas.DataFrame