prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
from .base import Transformer import pandas as pd import numpy as np import os ISO_COUNTRY_CODES = os.path.join(os.path.dirname(__file__), 'countrycodes.csv') class UCDPTransformer(Transformer): """ Data source specific transformers """ def __init__(self, source, target): super().__init__(source, target) self.iso = pd.read_csv(ISO_COUNTRY_CODES, usecols=[0, 2], names=['name', 'iso3'], header=0) def read(self): try: self.ucdp_df = pd.read_csv(self.source[0]) except FileNotFoundError as exc: raise ValueError("Source file {} not found.".format(self.source)) \ from exc def write(self): self.df.to_csv(self.target, mode='w', index=False) def transform(self): # self.transform_forcibly_displaced_populations() self.transform_ucdp() self.transform_country_code() def __repr__(self): return "<UCDPTransformer data for {}-{} ({} rows)>".format(self.df['year'].min(), self.df['year'].max(), len(self.df)) def transform_ucdp(self): events_df = self.ucdp_df.groupby(['year', 'country'])['best'].agg(['size']) events_df.reset_index(inplace=True) unique_states = events_df.drop_duplicates("country")[["country"]] unique_states["key"] = 1 unique_years = events_df.drop_duplicates("year")[["year"]] unique_years["key"] = 1 states_years_df = pd.merge(unique_states, unique_years, on = "key").drop("key",axis=1) events_df = pd.merge(states_years_df, events_df, how = "left", on = ["country","year"]).fillna(0) events_df.columns.values[2] = 'value' subevents_df = self.ucdp_df.groupby(['year', 'country', 'type_of_violence'])['best'].agg(['size']) subevents_df.reset_index(inplace=True) state_based_df = subevents_df[subevents_df['type_of_violence'] == 1][['year', 'country', 'size']] state_based_df = pd.merge(states_years_df, state_based_df, how = "left", on = ["country","year"]).fillna(0) state_based_df.columns.values[2] = 'value' nonstate_df = subevents_df[subevents_df['type_of_violence'] == 2][['year', 'country', 'size']] nonstate_df = pd.merge(states_years_df, nonstate_df, how = "left", on = ["country","year"]).fillna(0) nonstate_df.columns.values[2] = 'value' one_sided_df = subevents_df[subevents_df['type_of_violence'] == 3][['year', 'country', 'size']] one_sided_df = pd.merge(states_years_df, one_sided_df, how = "left", on = ["country","year"]).fillna(0) one_sided_df.columns.values[2] = 'value' rakhine_df = self.ucdp_df[self.ucdp_df['adm_1'] == "Rakhine State"] myanmar_df = rakhine_df.groupby(['year'])['best'].agg(['size']) myanmar_df = pd.merge(unique_years, myanmar_df, how = "left", on = ["year"]).fillna(0).drop("key", axis=1) myanmar_df.columns.values[1] = 'value' myanmar_df["country"] = "Myanmar" events_df.loc[:, "Indicator Code"] = "UC.EVT.TOT" events_df.loc[:, "Indicator Name"] = "Number of conflict events per year" state_based_df.loc[:, "Indicator Code"] = "UC.EVT.STA" state_based_df.loc[:, "Indicator Name"] = "Number of state-based conflict events per year" nonstate_df.loc[:, "Indicator Code"] = "UC.EVT.NON" nonstate_df.loc[:, "Indicator Name"] = "Number of non-state conflict events per year" one_sided_df.loc[:, "Indicator Code"] = "UC.EVT.ONE" one_sided_df.loc[:, "Indicator Name"] = "Number of one-sided conflict events per year" myanmar_df.loc[:, "Indicator Code"] = "UC.EVT.RAKH" myanmar_df.loc[:, "Indicator Name"] = "Number of conflict events in Rakhine State per year" events_fatal = self.ucdp_df.groupby(['year', 'country'])['best'].agg(['sum']) events_fatal.reset_index(inplace=True) events_fatal = pd.merge(states_years_df, events_fatal, how = "left", on = ["country","year"]).fillna(0) events_fatal.columns.values[2] = 'value' civil_fatal = self.ucdp_df.groupby(['year', 'country'])['deaths_civilians'].agg(['sum']) civil_fatal.reset_index(inplace=True) civil_fatal = pd.merge(states_years_df, civil_fatal, how = "left", on = ["country","year"]).fillna(0) civil_fatal.columns.values[2] = 'value' subevents_fatal = self.ucdp_df.groupby(['year', 'country', 'type_of_violence'])['best'].agg(['sum']) subevents_fatal.reset_index(inplace=True) state_based_fatal = subevents_fatal[subevents_df['type_of_violence'] == 1][['year', 'country', 'sum']] state_based_fatal =
pd.merge(states_years_df, state_based_fatal, how = "left", on = ["country","year"])
pandas.merge
import pandas as pd import sqlite3 from datetime import datetime, timedelta, date from sklearn import preprocessing import matplotlib.pyplot as plt import seaborn as sns import selectStock_datetime def scaler(result_df:pd.DataFrame) -> pd.DataFrame: """ date๋ฅผ ์ œ์™ธํ•œ ๋‚˜๋จธ์ง€ ์ปฌ๋Ÿผ 0๊ณผ 1์‚ฌ์ด๋กœ ์ •๊ทœํ™”ํ•˜๋Š” ํ•จ์ˆ˜ result_df : ์ •๊ทœํ™”ํ•  ๋ฐ์ดํ„ฐ ํ”„๋ ˆ์ž„ ๋ฐ์ดํ„ฐ """ date_c = list(result_df['date']) x = result_df.values #returns a numpy array min_max_scaler = preprocessing.MinMaxScaler() x_scaled = min_max_scaler.fit_transform(x) result_df = pd.DataFrame(x_scaled, columns=result_df.columns) result_df['date'] = date_c return result_df def service(code:str, start_day:int, end_day:int, period:int, drop_holi = 0, stock_moving_avg = 1, day_shift = 0) -> pd.DataFrame: ''' ๊ฐ ์˜ต์…˜์„ ์ž…๋ ฅ๋ฐ›์•„ ํ•ด๋‹น ๊ธฐ๊ฐ„์˜ ๋ฐ์ดํ„ฐ๋ฅผ DB๋กœ๋ถ€ํ„ฐ ์กฐํšŒํ•˜์—ฌ ์›ํ•˜๋Š” ํ˜•ํƒœ๋กœ ๊ฐ€๊ณตํ•˜์—ฌ ๋ฆฌํ„ดํ•˜๋Š” ํ•จ์ˆ˜ -- ์˜ต์…˜ ์„ค๋ช… -- code : ์กฐํšŒํ•  ์ข…๋ชฉ์ด๋ฆ„ start_day : ์กฐํšŒ๋ฅผ ์‹œ์ž‘ ๋‚ ์งœ end_day : ์กฐํšŒ ์ข…๋ฃŒ ๋‚ ์งœ period : ๋‰ด์Šค ๊ธ๋ถ€์ •๊ณผ ์ฃผ๊ฐ€๋ฅผ ์ด๋™ํ‰๊ท  ๋‚ผ ๊ธฐ๊ฐ„ drop_holi : ์ฃผ๋ง ํ˜น์€ ๊ณตํœด์ผ ๋‰ด์Šค๋ฅผ ์‚ฌ์šฉํ• ์ง€ ์—ฌ๋ถ€. 0 (๋””ํดํŠธ) - ๋‹ค์Œ ์˜์—…์ผ ์ฃผ๊ฐ€๋กœ ์ฑ„์›Œ์„œ ์‚ฌ์šฉ / 1 - ์ฃผ๋ง ๋ฐ ๊ณตํœด์ผ ๋ฐ์ดํ„ฐ๋Š” drop stock_moving_avg : ์ฃผ๊ฐ€๋ฅผ ์ด๋™ํ‰๊ท  ๋‚ผ์ง€ ์—ฌ๋ถ€. 1 (๋””ํดํŠธ) - ์ฃผ๊ฐ€ ์ด๋™ํ‰๊ท  ์‚ฌ์šฉ / 0 - ์ด๋™ํ‰๊ท  ์‚ฌ์šฉ์•ˆํ•จ day_shift : ๋‰ด์Šค์™€ ์ฃผ๊ฐ€์˜ ๋ช‡ ์ผ์˜ ํ…€์„ ๋‘๊ณ  ๋ถ„์„ํ•  ์ง€. 0(๋””ํดํŠธ) | +x - ํ•ด๋‹น์ผ์˜ ๋‰ด์Šค์™€ ๋‹ค์Œ๋‚ ์˜ ์ฃผ๊ฐ€ ๋ถ„์„ | -x - ํ•ด๋‹น์ผ์˜ ๋‰ด์Šค์™€ ์ „๋‚ ์˜ ์ฃผ๊ฐ€ ๋ถ„์„ -- ๋ฆฌํ„ด ์„ค๋ช…-- result_df : ๋‚ ์งœ / ๊ธ๋ถ€์ • / ์ฃผ๊ฐ€ ๋“ฑ๋ฝ ๊ฒฐ๊ณผ๋ฅผ ์ •์ œํ•œ ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ all_keyword : ์กฐํšŒํ•œ ๊ธฐ๊ฐ„ ์ค‘ ์ „์ฒด์˜ ํ‚ค์›Œ๋“œ pos_keyword : ์กฐํšŒํ•œ ๊ธฐ๊ฐ„ ์ค‘ ์ฃผ๊ฐ€๊ฐ€ ์˜ค๋ฅธ๋‚ ์˜ ํ‚ค์›Œ๋“œ neg_keyword : ์กฐํšŒํ•œ ๊ธฐ๊ฐ„ ์ค‘ ์ฃผ๊ฐ€๊ฐ€ ๋‚ด๋ฆฐ๋‚ ์˜ ํ‚ค์›Œ๋“œ df_length : ์กฐํšŒํ•œ ๊ธฐ๊ฐ„์˜ ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ๊ธธ์ด ''' # ์ด๋™ํ‰๊ท ์„ ๊ณ ๋ คํ•˜์—ฌ DB์—์„œ ์กฐํšŒํ•  ๋‚ ์งœ ์„ค์ • inq_day = (datetime.strptime(str(start_day), "%Y%m%d").date() - timedelta(days = period - 1)).strftime('%Y%m%d') end_day = str(end_day) # db ๊ฒฝ๋กœ๋Š” ๋กœ์ปฌ์— ๋งž๊ฒŒ ์„ค์ •ํ•ด์•ผํ•จ conn = sqlite3.connect("DB/2jo.db") # ์ปค์„œ ๋ฐ”์ธ๋”ฉ c = conn.cursor() # ๋‰ด์Šค๋ฐ์ดํ„ฐ ์กฐํšŒ # query = c.execute(f"select a.id, a.date, a.code, b.senti, b.senti_proba from news_db b join news_id a on b.id = a.id where a.date BETWEEN {inq_day} and {end_day};") query = c.execute(f"select a.id, a.date, a.code, b.keyword, b.senti, b.senti_proba from news_db b join news_id a on b.id = a.id where a.code = \'{code}\' and (a.date BETWEEN {inq_day} and {end_day});") # ์ปฌ๋Ÿผ๋ช… ์กฐํšŒ cols = [column[0] for column in query.description] # ๋ฐ์ดํ„ฐ ํ”„๋ ˆ์ž„์œผ๋กœ ๋งŒ๋“ค๊ธฐ news_result_df = pd.DataFrame.from_records(data=query.fetchall(), columns=cols) # ํ‚ค์›Œ๋“œ ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ๋งŒ๋“ค์–ด ๋†“๊ธฐ keyword_result_df = news_result_df.groupby('date')['keyword'].apply(lambda x: x.sum()) # ์ปค์„œ ๋‹ซ๊ธฐ - ์ผ๋‹จ ์ฃผ์„์ฒ˜๋ฆฌํ•จ # conn.close() # ์ฃผ๊ฐ€ ๋ฐ์ดํ„ฐ ์กฐํšŒ query = c.execute(f"select s_date, s_code, f_rate from stock_db where s_code = \'{code}\' and (s_date BETWEEN {inq_day} and {end_day});") # ์ปฌ๋Ÿผ๋ช… ์กฐํšŒ cols = [column[0] for column in query.description] # ๋ฐ์ดํ„ฐ ํ”„๋ ˆ์ž„์œผ๋กœ ๋งŒ๋“ค๊ธฐ stock_result_df = pd.DataFrame.from_records(data=query.fetchall(), columns=cols) stock_result_df.rename(columns={'s_date': 'date', 's_code': 'code', 'f_rate': 'UpDown'}, inplace=True) # ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ๊ธธ์ด ๋ฐ˜ํ™˜ df_length = len(stock_result_df) # ์ฃผ๋ง ๋ฐ ๊ณตํœด์ผ drop ์—ฌ๋ถ€๋Š” ์˜ต์…˜์— ๋”ฐ๋ผ; ๋””ํดํŠธ๋Š” ๋“œ๋ž์•ˆํ•จ if drop_holi: # ์ฃผ๋ง์ด๋‚˜ ๊ณตํœด์ผ ๋“ฑ์œผ๋กœ ์ฃผ๊ฐ€๊ฐ€ ๋น ์ง„ ๋‚ ์€ drop merge_outer_df = pd.merge(news_result_df,stock_result_df, how='outer',on='date') merge_outer_df = merge_outer_df.dropna(subset=['UpDown']) else: # ์ฃผ๋ง์ด๋‚˜ ๊ณตํœด์ผ ๋“ฑ์œผ๋กœ ์ฃผ๊ฐ€๊ฐ€ ๋น ์ง„ ๋‚ ์€ ๋‹ค์Œ Business Day์˜ ์ฃผ๊ฐ€๋กœ ์ฑ„์›Œ์คŒ merge_outer_df =
pd.merge(news_result_df,stock_result_df, how='outer',on='date')
pandas.merge
import pandas as pd import os import json import numpy as np from datetime import datetime, date import sqlalchemy from sqlalchemy.ext.automap import automap_base from sqlalchemy.orm import Session from sqlalchemy import create_engine, func, desc from flask import Flask, jsonify, render_template, redirect, url_for, request from flask_sqlalchemy import SQLAlchemy # might be able to remove import pymysql # additional packages might be able to remove from sqlalchemy import Table from sqlalchemy import Column, Integer, Text import csv # project 2 config file from config import pw # gp config file from db_config import pwd # prediction apps from FirstPrediction import FirstPredict, recipe_info, FinalPredict from secondPredict import SecondPredict df = pd.read_csv('wine_pairings_v7.csv', index_col = 'wine') app = Flask(__name__, template_folder="templates") app.config["SQLALCHEMY_DATABASE_URI"] = ( os.environ.get("JAWSDB_URL", "") or f"mysql+pymysql://root:{pwd}@127.0.0.1:3306/wine_db" ) db = SQLAlchemy(app) session = db.session Base = automap_base() Base.prepare(db.engine, reflect=True) wine_data = Base.classes.wine_data wine_map_data = Base.classes.world_wine_data wine_blurbs = Base.classes.wine_blurbs @app.route("/") def index(): result = render_template("index.html") return result @app.route("/grape_guide", methods = ["GET","POST"]) def wine(): wine_prediction = "blank" if request.method == "POST": wine_prediction = request.form["wine-selection"] print(wine_prediction) result = render_template("grape_guide.html", wine_selection = wine_prediction) return result @app.route("/wine_data/<wine>") def get_wine_data(wine): qry = ( session.query("* from wine_data;") .statement ) df = pd.read_sql_query(qry, db.engine).drop(columns = "ID") df = df.loc[df[wine]> 0] data = { "Wine_Name": pd.DataFrame(df[wine]).columns.values.tolist(), "Attribute_Labels": np.array(pd.DataFrame(df["Attributes"]).values).flatten().tolist(), "Attribute_Values": np.array(pd.DataFrame(df[wine]).values).flatten().tolist() } return jsonify(data) @app.route("/wine_blurb/<wine>") def get_wine_blurb(wine): qry = session.query("*").filter(wine_blurbs.wine == wine).statement df =
pd.read_sql_query(qry, db.engine)
pandas.read_sql_query
import json import re import time import app_settings from collections import Counter import matplotlib.pyplot as plt from gensim.models import Doc2Vec from gensim.models import Word2Vec from gensim.models.doc2vec import TaggedDocument # import nltk # nltk.download('punkt') from sklearn.manifold import TSNE onlyfiles = app_settings.MPD_FILENAMES file_count=1000 train_data = onlyfiles[:file_count] test_data = onlyfiles[file_count:int(file_count+file_count*0.2)] counted = Counter() def extract_playlist_info(playlist): name = playlist["name"] songs = playlist["tracks"] song_ids = [str(s["track_uri"]) for s in songs] # song_ids = [str(s["album_uri"]) for s in songs] song_names = [str(s["track_name"]) for s in songs] # song_ids = " ".join(song_ids) # tokenized_text = word_tokenize(song_ids) return (name+" "+str(playlist["pid"]), (song_names, song_ids)) def searchForId(playlists): id="spotify:track:0mt02gJ425Xjm7c3jYkOBn" for p in playlists: pl = extract_playlist_info(p) if id in pl[1][1]: print("yeaaaahhhh") def generator_playlists(nr_of_files): for f in onlyfiles[:nr_of_files]: print(f) fullPath = app_settings.MPD_PATH + str(f) data = json.load(open(fullPath)) playlists=[] searchForId(data["playlists"]) for playlist in data["playlists"]: pl=extract_playlist_info(playlist) onlyIds=pl[1][1] # onlyIds=" ".join(onlyIds) yield onlyIds def data_to_word2vec(files,dimension,max_vocab_size): gen=generator_playlists(files) model=Word2Vec(size=dimension,min_count=1,max_vocab_size=max_vocab_size) model.build_vocab(gen) # print(model.wv['spotify:track:0mt02gJ425Xjm7c3jYkOBn']) gen = generator_playlists(files) model.train(gen,total_examples=model.corpus_count,epochs=model.epochs) # model = Word2Vec(gen, min_count=1) # print(model.wv.vocab['spotify:track:0mt02gJ425Xjm7c3jYkOBn']) # print(model.wv.most_similar(positive="spotify:track:0mt02gJ425Xjm7c3jYkOBn")) return model #retruns list of all playlists in file def get_file_contents(files): for f in onlyfiles[:files]: print(f) fullPath = app_settings.MPD_PATH + str(f) data = json.load(open(fullPath)) # playlists=[] pls= [pl for pl in data["playlists"]] yield pls # data_to_word2vec() def get_docs(files): for f in onlyfiles[:files]: print(f) fullPath = app_settings.MPD_PATH + str(f) data = json.load(open(fullPath)) # playlists=[] for playlist in data["playlists"]: pl=extract_playlist_info(playlist) # playlists.append(pl) pl=pl[1][1] pl=" ".join(pl) yield pl # class tagged_docs: # def __iter__(self): # for f in files: # print(f) # fullPath = PATH + str(f) # data = json.load(open(fullPath)) # for playlist in data["playlists"]: # name = playlist["name"] # songs = playlist["tracks"] # song_ids = [str(s["track_uri"]) for s in songs] # # song_ids = " ".join(song_ids) # # tokenized_text = word_tokenize(song_ids) # doc = TaggedDocument( song_ids,[name]) # yield doc # def trainModel(files): class tagged_docs: def __iter__(self): for f in files: print(f) fullPath = app_settings.MPD_PATH + str(f) data = json.load(open(fullPath)) for playlist in data["playlists"]: name = playlist["name"] # name+="-"+str(playlist["pid"])+" "+name name=[name+" "+str(playlist["pid"]),name] songs = playlist["tracks"] song_ids = [str(s["track_uri"]) for s in songs] # song_ids = " ".join(song_ids) # tokenized_text = word_tokenize(song_ids) doc = TaggedDocument( song_ids,name) yield doc # pprint(data) # counted+=readTitles.titles_to_list(data) # print(counted) cnt = Counter(counted) # docs=memorySavingReader.tagged_docs(data) docs = tagged_docs() # model = Doc2Vec(docs, vector_size=100, window=8, min_count=5, workers=4) vecSize=300 window=2 model=Doc2Vec(vector_size=vecSize, window=window,workers=8) model.build_vocab(docs) start = time.clock() print(model.iter) model.train(docs, total_examples=model.corpus_count, epochs=model.iter) print("training took", time.clock() - start) # model.train(docs) cnt = Counter(counted) print(cnt) #model.save("fullModeD2V"+str(vecSize)+"D"+str(window)+"W") f=open("fullModeD2V"+str(vecSize)+"D"+str(window)+"W","wb") pickle.dump(model,f) return model def testModel(files,model): for f in files: fullPath = app_settings.MPD_PATH + str(f) data = json.load(open(fullPath)) for playlist in data["playlists"]: pid=playlist["pid"] name = playlist["name"] songs = playlist["tracks"] song_ids = [str(s["track_uri"]) for s in songs] # song_ids=" ".join(song_ids) # tokenized_text = word_tokenize(song_ids) # inferred_vector = model.infer_vector(TaggedDocument("","Chill")) # print(model.docvecs.most_similar(positive=['Chill'], negative=[], topn=10)) inferred_vector = model.infer_vector(song_ids[0]) inferred_vector = model.infer_vector(TaggedDocument(song_ids[0],name)) inferred_vector2 = model.infer_vector(song_ids[0]) inferred_vector3 = name sims = model.docvecs.most_similar([inferred_vector],topn=10) print(name) import compare for tup in sims: try: mostSimilarList=int(str(tup[0]).split(" ")[-1]) compare.compare_pids(pid,mostSimilarList) except: print(tup) print("song and name") print(sims) print("only song") print(model.docvecs.most_similar([inferred_vector2],topn=10)) print("only name") tags = model.docvecs.doctags if name not in tags: print("name not in tags") else: print(model.docvecs.most_similar(name,topn=10)) # model=trainModel(onlyfiles) # model=Doc2Vec.load("fullModel") # print("loading done") # testModel(onlyfiles,model) def firstn(arr): for a in arr: yield a def plot(data): fig, ax = plt.subplots() for twoDimVec in data: ax.scatter(twoDimVec[0], twoDimVec[1]) print("show") plt.show() def tsne_plot(model): vocab = list(model.docvecs.doctags)[:1000] X = model.docvecs[vocab] tsne = TSNE(n_components=2) print("try to fit transfo tsne") X_tsne = tsne.fit_transform(X[:1000]) print("transfo done") import pandas as pd df =
pd.DataFrame(X_tsne, index=vocab, columns=['x', 'y'])
pandas.DataFrame
import re from collections import defaultdict import pandas as pd from scipy import stats import numpy as np from rdflib import Namespace, Literal from brickschema.namespaces import BRICK, A, OWL # from brickschema.inference import BrickInferenceSession from brickschema.inference import OWLRLAllegroInferenceSession from brickschema.graph import Graph import resolve_ui as ui import distance import recordlinkage from recordlinkage.base import BaseCompareFeature def graph_from_triples(triples): g = Graph(load_brick=True) # g.load_file("ttl/owl.ttl") g.add(*triples) sess = OWLRLAllegroInferenceSession() return sess.expand(g) def tokenize_string(s): s = s.lower() s = re.split(r'-| |_|#|/|:', s) return s def compatible_classes(graph, c1, c2): """ Returns true if the two classes are compatible (equal, or one is a subclass of another), false otherwise """ q1 = f"ASK {{ <{c1}> owl:equivalentClass?/rdfs:subClassOf*/owl:equivalentClass? <{c2}> }}" q2 = f"ASK {{ <{c2}> owl:equivalentClass?/rdfs:subClassOf*/owl:equivalentClass? <{c1}> }}" return graph.query(q1)[0] or graph.query(q2)[0] def trim_prefix_tokenized(names): if len(names) <= 1: return names max_length = max(map(len, names)) pfx_size = 1 # increase pfx_size until it doesn't match, then reduce by 1 and trim while pfx_size <= max_length: pfx = names[0][:pfx_size] if not all(map(lambda x: x[:pfx_size] == pfx, names[1:])): pfx_size -= 1 return list([x[pfx_size:] for x in names]) pfx_size += 1 # def trim_common_prefix(names): # if len(names) <= 1: # return names # max_length = max(map(len, names)) # min_length = min(map(len, names)) # pfx_size = max_length # while True: # pfx = names[0][:pfx_size] # # if prefix is common, we return # if not all(map(lambda x: x[:pfx_size] == pfx, names[1:])): # pfx_size = int(pfx_size / 2) + 1 # # return list([x[:pfx_size] for x in names]) # ignore_brick_classes = [BRICK.Sensor, BRICK class VectorJaccardCompare(BaseCompareFeature): def _compute_vectorized(self, s1, s2): s1 = list(s1) s2 = list(s2) sim = np.array([1-distance.jaccard(s1[i], s2[i]) for i in range(len(s1))]) return sim class MaxLevenshteinMatch(BaseCompareFeature): def _compute_vectorized(self, s1, s2): # calculate pair-wise levenshtein s1 = list(s1) s2 = list(s2) sim = np.array([distance.jaccard(s1[i], s2[i]) for i in range(len(s1))]) min_dist = np.min(sim) sim = np.array([1 if x == min_dist and x > .8 else 0 for x in sim]) return sim def cluster_on_labels(graphs): # populates the following list; contains lists of URIs that are linked to # be the same entity clusters = [] # list of clustered entities clustered = set() datasets = [] for source, graph in graphs.items(): df = pd.DataFrame(columns=['label', 'uris']) print(f"{'-'*5} {source} {'-'*5}") res = graph.query("SELECT ?ent ?lab WHERE { \ { ?ent rdf:type/rdfs:subClassOf* brick:Equipment } \ UNION \ { ?ent rdf:type/rdfs:subClassOf* brick:Point } \ UNION \ { ?ent rdf:type/rdfs:subClassOf* brick:Location } \ ?ent brick:sourcelabel ?lab }") # TODO: remove common prefix from labels? labels = [tokenize_string(str(row[1])) for row in res if isinstance(row[1], Literal)] # labels = [l for l in labels if l != ["unknown"]] labels = trim_prefix_tokenized(labels) uris = [row[0] for row in res if isinstance(row[1], Literal)] df['label'] = labels df['uris'] = uris datasets.append(df) print("lengths", [len(df) for df in datasets]) if len(datasets) <= 1: return clusters, clustered indexer = recordlinkage.Index() indexer.full() candidate_links = indexer.index(*datasets) comp = recordlinkage.Compare() comp.add(VectorJaccardCompare('label', 'label', label='y_label')) features = comp.compute(candidate_links, *datasets) # use metric of '>=.9' because there's just one feature for now and it # scales [0, 1] matches = features[features.sum(axis=1) >= .9] for idx_list in matches.index: pairs = zip(datasets, idx_list) entities = [ds['uris'].iloc[idx] for ds, idx in pairs] for ent in entities: clustered.add(str(ent)) clusters.append(entities) return clusters, clustered def cluster_on_type_alignment(graphs, clustered): clusters = [] counts = defaultdict(lambda: defaultdict(set)) uris = {} for source, graph in graphs.items(): res = graph.query("SELECT ?ent ?type ?lab WHERE { \ ?ent rdf:type ?type .\ { ?type rdfs:subClassOf+ brick:Equipment } \ UNION \ { ?type rdfs:subClassOf+ brick:Point } \ UNION \ { ?type rdfs:subClassOf+ brick:Location } \ ?ent brick:sourcelabel ?lab }") for row in res: entity, brickclass, label = row if entity in clustered: continue counts[brickclass][source].add(str(label)) uris[str(label)] = entity for bc, c in counts.items(): mode_count = stats.mode([len(x) for x in c.values()]).mode[0] candidates = [(src, list(ents)) for src, ents in c.items() if len(ents) == mode_count] if len(candidates) <= 1: continue print(f"class {bc} has {len(c)} sources with {mode_count} candidates each") # short-circuit in the common case if mode_count == 1: cluster = [uris[ents[0]] for _, ents in candidates] if cluster not in clusters: clusters.append(cluster) continue datasets = [
pd.DataFrame({'label': ents, 'uris': [uris[x] for x in ents]})
pandas.DataFrame
import re import pandas rule = 'ใ€€+็ฌฌ([^ๆก]{1,5})ๆกใ€€(.*)' chapter = '็ฌฌ[ไธ€ไบŒไธ‰ๅ››ไบ”ๅ…ญไธƒๅ…ซไนๅ]{1,3}ๅˆ†?[็ซ ็ผ–]' pattern = re.compile(rule) chapter_pattern = re.compile(chapter) FORMAL_DIGIT="้›ถไธ€ไบŒไธ‰ๅ››ไบ”ๅ…ญไธƒๅ…ซไน" math_digit="0123456789" def format2digit(word): trans = "" if word.startswith('ๅ'): trans += '1' for c in word: if c in FORMAL_DIGIT: trans += math_digit[FORMAL_DIGIT.index(c)] if word.endswith(c): if c=="ๅ": trans += '0' if c=="็™พ": trans += '00' return trans df =
pandas.DataFrame()
pandas.DataFrame
# FT_connect_functions from __future__ import print_function import numpy as np import time, os, sys import matplotlib.pyplot as plt from scipy import ndimage as ndi from skimage import color, feature, filters, io, measure, morphology, segmentation, img_as_ubyte, transform, registration import warnings import math import pandas as pd import argparse import subprocess import re import glob from skimage.segmentation import clear_border from ortools.graph import pywrapgraph import time from shutil import copyfile from scipy.spatial import distance from FT_connect_config import * def genDisplacement(filename_t0,filename_t1): global pathToSegs temp1 = np.asarray(np.load(filename_t0,allow_pickle=True)).item() imfilename1 = temp1['filename'].split('/')[-1] img1 = io.imread(pathToSegs+imfilename1); temp2 = np.asarray(np.load(filename_t1,allow_pickle=True)).item() imfilename2 = temp2['filename'].split('/')[-1] img2 = io.imread(pathToSegs+imfilename2); shift_vector = registration.phase_cross_correlation(img1, img2) return(shift_vector[0]) def buildFeatureFrame(filename_t0,timepoint,pathtoimage="./"): temp = np.asarray(np.load(filename_t0,allow_pickle=True)).item() imfilename = temp['filename'].split('/')[-1] img = io.imread(pathtoimage+imfilename); masks = clear_border(temp['masks']) image_props = measure.regionprops_table(masks, intensity_image=img, properties=('label','area', 'centroid', 'bbox','mean_intensity')) im_df = pd.DataFrame(image_props) im_df['time'] = timepoint return(im_df) def expandBoundBox(FeatureFrame, expansion = 2): hf_row = np.ceil((FeatureFrame['bbox-3']-FeatureFrame['bbox-1'])/2) hf_col = np.ceil((FeatureFrame['bbox-2']-FeatureFrame['bbox-0'])/2) maxes = expansion*np.amax(np.vstack((hf_row,hf_col)).T,axis=1).astype(int) FeatureFrame['ebox-0'] = np.amax(np.vstack((np.zeros(FeatureFrame.shape[0]),FeatureFrame['bbox-0']-maxes)).T,axis=1).astype(int) FeatureFrame['ebox-1'] = np.amax(np.vstack((np.zeros(FeatureFrame.shape[0]),FeatureFrame['bbox-1']-maxes)).T,axis=1).astype(int) FeatureFrame['ebox-2'] = np.amin(np.vstack((np.zeros(FeatureFrame.shape[0])+np.max(FeatureFrame['bbox-2']),FeatureFrame['bbox-2']+maxes)).T,axis=1).astype(int) FeatureFrame['ebox-3'] = np.amin(np.vstack((np.zeros(FeatureFrame.shape[0])+np.max(FeatureFrame['bbox-3']),FeatureFrame['bbox-3']+maxes)).T,axis=1).astype(int) return(FeatureFrame) def futureBoundBox(FeatureFrame,shiftVector): FeatureFrame['fbox-0'] = np.amax(np.vstack((np.zeros(FeatureFrame.shape[0]),FeatureFrame['ebox-0'] - shiftVector[1] )).T,axis=1).astype(int) FeatureFrame['fbox-1'] = np.amax(np.vstack((np.zeros(FeatureFrame.shape[0]),FeatureFrame['ebox-1'] - shiftVector[0] )).T,axis=1).astype(int) FeatureFrame['fbox-2'] = np.amin(np.vstack((np.zeros(FeatureFrame.shape[0])+np.max(FeatureFrame['ebox-2']),FeatureFrame['ebox-2'] - shiftVector[1] )).T,axis=1).astype(int) FeatureFrame['fbox-3'] = np.amin(np.vstack((np.zeros(FeatureFrame.shape[0])+np.max(FeatureFrame['ebox-3']),FeatureFrame['ebox-3'] - shiftVector[0] )).T,axis=1).astype(int) return(FeatureFrame) def expectedLocation(FeatureFrame,shiftVector): FeatureFrame['fcentroid-0'] = FeatureFrame['centroid-0'] - shiftVector[1] FeatureFrame['fcentroid-1'] = FeatureFrame['centroid-1'] - shiftVector[0] return(FeatureFrame) def genCandidateNodes(FeatureFrame_t0, FeatureFrame_t1): candidates = (((np.asarray(FeatureFrame_t1['centroid-0'])[:,None]>=np.asarray(FeatureFrame_t0['fbox-0']))& (np.asarray(FeatureFrame_t1['centroid-0'])[:,None]<np.asarray(FeatureFrame_t0['fbox-2']))& (np.asarray(FeatureFrame_t1['centroid-1'])[:,None]>=np.asarray(FeatureFrame_t0['fbox-1']))& (np.asarray(FeatureFrame_t1['centroid-1'])[:,None]<np.asarray(FeatureFrame_t0['fbox-3'])))) return(candidates) def getDifference(FeatureFrame_t0, FeatureFrame_t1, feature="position",normed=True): if (feature == "position"): delta0 = (np.asarray(FeatureFrame_t1['centroid-0'])[:,None]-np.asarray(FeatureFrame_t0['fcentroid-0'])) delta1 = (np.asarray(FeatureFrame_t1['centroid-1'])[:,None]-np.asarray(FeatureFrame_t0['fcentroid-1'])) result = np.sqrt(delta0**2 + delta1**2 ) else : result = np.abs(np.asarray(FeatureFrame_t1[feature])[:,None]-np.asarray(FeatureFrame_t0[feature])) if normed: result = result/10**np.floor(np.log10(np.max(result))) return(result) def DivSizeScore(mom_area, sis_area_1, sis_area_2): global DivSizeDiffThreshold,DivSizeScoreReturn,DivSizeRatio_Min,DivSizeRatio_Max areaRatio = (mom_area / (sis_area_1 + sis_area_2)) diffArea = np.abs(sis_area_1 - sis_area_2)/np.sqrt(sis_area_1 *sis_area_2) if((areaRatio >= DivSizeRatio_Min)&(areaRatio < DivSizeRatio_Max)&(diffArea<DivSizeDiffThreshold)): return(0.0) else: return(DivSizeScoreReturn) def DivIntScore(sis_int_1, sis_int_2): global DivIntensityDiffThreshold,DivIntensityScoreReturn diffInt = np.abs(sis_int_1 - sis_int_2)/np.sqrt(sis_int_1*sis_int_2) if((diffInt<DivIntensityDiffThreshold)): return(0.0) else: return(DivIntensityScoreReturn) def DivScore(FeatureFrame_t0, FeatureFrame_t1, index_mom, index_sis_1, index_sis_2): global DivMoveScoreReturn, mitosis_RangeMultiplier momFF_select = FeatureFrame_t0.loc[index_mom] sis1FF_select = FeatureFrame_t1.loc[index_sis_1] sis2FF_select = FeatureFrame_t1.loc[index_sis_2] mom_loc = [momFF_select['centroid-0'],momFF_select['centroid-1']] mom_corner_1 = [momFF_select['bbox-0'],momFF_select['bbox-1']] mom_corner_2 = [momFF_select['bbox-2'],momFF_select['bbox-3']] mom_area = (momFF_select['area']) mom_range = distance.euclidean(mom_corner_1,mom_corner_2) sis1_loc = [sis1FF_select['centroid-0'],sis1FF_select['centroid-1']] sis1_area = (sis1FF_select['area']) sis1_int = (sis1FF_select['mean_intensity']) sis2_loc = [sis2FF_select['centroid-0'],sis2FF_select['centroid-1']] sis2_area = (sis2FF_select['area']) sis2_int = (sis2FF_select['mean_intensity']) mom_s1_dist = distance.euclidean(sis1_loc,mom_loc) mom_s2_dist = distance.euclidean(sis2_loc,mom_loc) sis_middle_loc = (np.array(sis1_loc)+np.array(sis2_loc))/2 cost1 = distance.euclidean(sis_middle_loc,mom_loc) cost2 = np.abs(mom_s1_dist-mom_s2_dist) cost3 = distance.euclidean(sis1_loc,sis2_loc) if(cost3 < (mitosis_RangeMultiplier*mom_range)): MoveCost = cost1 + cost2/2 else: MoveCost = DivMoveScoreReturn SizeCost = DivSizeScore(mom_area=mom_area, sis_area_1=sis1_area, sis_area_2=sis2_area) IntCost = DivIntScore(sis_int_1=sis1_int, sis_int_2=sis2_int) finalScore = np.round((MoveCost+SizeCost+IntCost),1) return([index_mom,index_sis_1,index_sis_2,finalScore]) def GenMitosisPairs(CandidateFrame, motherIndex): #returns array of daughter index-pairs in candidate frame DaughtersPossible = np.where(CandidateFrame[:,motherIndex])[0] if(len(DaughtersPossible)>1): DaughtersPairs = np.array(np.meshgrid(DaughtersPossible, DaughtersPossible)).T.reshape(-1,2) Sisters = np.unique(np.sort(DaughtersPairs),axis=0) Sisters = Sisters[Sisters[:,0] != Sisters[:,1]] includeMotherIndex = np.append((np.zeros((Sisters.shape[0],1))+motherIndex).astype(int),Sisters, 1) return(includeMotherIndex) else: return(np.array([[0,0,0]])) def getMitosisCandidates(CandidateFrame,FeatureFrame_t0, FeatureFrame_t1): global mitosis_MaxScore divCandidates = np.vstack(list(map(lambda x: GenMitosisPairs(CandidateFrame, x), range(CandidateFrame.shape[1])))) divCandidates = divCandidates[(divCandidates[:,1]!=0)&(divCandidates[:,2]!=0)] divScores = np.vstack(list(map(lambda x: DivScore(FeatureFrame_t0=FeatureFrame_t0, FeatureFrame_t1=FeatureFrame_t1, index_mom=divCandidates[x,0], index_sis_1=divCandidates[x,1], index_sis_2=divCandidates[x,2]), range(divCandidates.shape[0])))) divScores = divScores[divScores[:,3]<mitosis_MaxScore] return(divScores[:,:3].astype(int)) def getCostMatrix(FeatureFrame_t0, FeatureFrame_t1, shiftVec): global track_frameExpCoeff, costIntCoefficient, costSizeCoefficient, costPositionCoefficient FeatureFrame_t0 = expandBoundBox(FeatureFrame_t0, expansion = track_frameExpCoeff) FeatureFrame_t0 = futureBoundBox(FeatureFrame_t0, shiftVector=shiftVec) CandidateMtx = genCandidateNodes(FeatureFrame_t0,FeatureFrame_t1) FeatureFrame_t0 = expectedLocation(FeatureFrame_t0, shiftVector=shiftVec) deltaPosition = getDifference(FeatureFrame_t0,FeatureFrame_t1,"position") deltaArea = getDifference(FeatureFrame_t0,FeatureFrame_t1,"area") deltaIntensity = getDifference(FeatureFrame_t0,FeatureFrame_t1,"mean_intensity") costMatrix = ((costIntCoefficient*(deltaIntensity)+costSizeCoefficient*(deltaArea)+costPositionCoefficient*(deltaPosition))*CandidateMtx) return((FeatureFrame_t0,CandidateMtx,costMatrix)) def solveMinCostFlow(CostMatrix,mitosisCands): global openingCost, closingCost t0Nodes = np.array(range(CostMatrix.shape[1]))+1 t1Nodes = np.array(range(CostMatrix.shape[1],np.sum(CostMatrix.shape)))+1 start_nodes = np.concatenate((np.repeat([0],np.sum(CostMatrix.shape)), # all connections to source node (np.nonzero(CostMatrix))[1]+1, # all connections from t0 to t1 t0Nodes,t1Nodes # all connections to sink node )).tolist() end_nodes = np.concatenate((t0Nodes,t1Nodes, # all connections to source node np.nonzero(CostMatrix)[0]+int(CostMatrix.shape[1])+1, # all connections from t0 to t1 np.repeat([np.sum(CostMatrix.shape)+1],np.sum(CostMatrix.shape)) # all connections to sink node )).tolist() costs = np.concatenate((np.repeat(1,CostMatrix.shape[1]), # all connections to source node np.repeat(openingCost,CostMatrix.shape[0]), CostMatrix[CostMatrix!=0], # all connections from t0 to t1 np.repeat(closingCost,CostMatrix.shape[1]), # all connections to sink node np.repeat(1,CostMatrix.shape[0]) # all connections to sink node )).tolist() nodeCaps = np.concatenate((t0Nodes,t1Nodes),axis=0) nodeCaps = np.vstack((nodeCaps, np.repeat(1,len(nodeCaps)))).T if(len(mitosisCands)>0): nodeCaps[np.searchsorted(nodeCaps[:,0],mitosisCands+1),1]=2 capacities = np.concatenate((nodeCaps[:,1], # all connections to source node np.repeat(1,np.sum(CostMatrix[CostMatrix!=0].shape)),# all connections from t0 to t1 np.repeat(1,np.sum(CostMatrix.shape)) # all connections to sink node )).tolist() # supply_amount = np.min([CostMatrix.shape[1]+len(mitosisCands),CostMatrix.shape[0]])#np.max([CostMatrix.shape[0],CostMatrix.shape[1]]) supply_amount = np.max([CostMatrix.shape[1],CostMatrix.shape[0]])#np.max([CostMatrix.shape[0],CostMatrix.shape[1]]) supplies = np.concatenate(([supply_amount],np.repeat(0,np.sum(CostMatrix.shape)),[-1*supply_amount])).tolist() min_cost_flow = pywrapgraph.SimpleMinCostFlow() # Add each arc. for i in range(len(start_nodes)): min_cost_flow.AddArcWithCapacityAndUnitCost(start_nodes[i], end_nodes[i],capacities[i], int(costs[i])) for i in range(len(supplies)): min_cost_flow.SetNodeSupply(i, supplies[i]) ArcFrame =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import numpy as np import matplotlib.pyplot as plt import scipy.optimize # exponential fn to fit to curves def expfun(t, c1, a, T_inf): return - c1 * np.exp(-a * t) + T_inf rawdata = pd.read_csv('lab2_home_raw_data.csv') fig1, ax1 = plt.subplots(figsize=(7,3), tight_layout=True) fig2, ax2 = plt.subplots(figsize=(7,3), tight_layout=True) # we iterate through each type, of which # there are two: (uninsulated, insulated) curve_parameters = dict() for runtype, d1 in rawdata.groupby('type'): xs = d1['time'][d1['time'] <= 50] ys = d1['tempK'][d1['time'] <= 50] - 273.15 ''' fit to our model of the system. For a body for which LC assumption is true, the governing equation is given by: dTs/dt = - (h As) / (m Cv) * ( T_s(t) - T_inf ) We can group parameters: dTs/dt = - a * (Ts(t) - Tinf) This 1st order ode has solution of the form: where c1, a, and T_inf are free parameters T_s(t) = - c1 e^( -a t ) + T_inf So we fit the exp curve to those parameters ''' params, _ = scipy.optimize.curve_fit(expfun, xs, ys, p0=(1, 1e-2, 1)) xxs = np.linspace(np.min(xs), np.max(xs), 900) yys = expfun(xxs, *params) curve_parameters[runtype] = { 'c1' : params[0], 'hAs/mCv' : params[1], 'T_inf' : params[2] } # we iterate through each run if runtype == 'uninsulated': for run, d2 in d1.groupby('video_fname'): ax1.scatter(d2['time'][d2['time'] <= 50], d2['tempK'][d2['time'] <= 50]- 273.15, marker='+', label=runtype) ax1.plot(xxs, yys, 'k', label='exp fitted - {}'.format(runtype)) ax1.set_ylabel('Temperature (C)') ax1.set_xlabel('Time (s)') ax1.legend() elif runtype == 'insulated': for run, d2 in d1.groupby('video_fname'): ax2.scatter(d2['time'][d2['time'] <= 50], d2['tempK'][d2['time'] <= 50]- 273.15, marker='+', label=runtype) ax2.plot(xxs, yys, 'k', label='exp fitted - {}'.format(runtype)) ax2.set_ylabel('Temperature (C)') ax2.set_xlabel('Time (s)') ax2.legend()
pd.DataFrame(curve_parameters)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Code for finding the best pair of parameter (d_cn, k_var). In this script, we denote d_cn as ct (abbr. CN threshold) and k_var as st (abbr. SNPeff threshold). @author: <NAME> (<EMAIL>) """ import numpy as np import tensorflow as tf import pandas as pd import os from IO import * from method import * from sklearn.metrics import roc_auc_score tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import sys, getopt ############################################# ## Params ############################################# cn_start, cn_step, cn_stop = [0., 0., 0.] snpeff_start, snpeff_step, snpeff_stop = [0, 0, 0] path = 'Jai Hyun Park' num_repeat = 10 argv = sys.argv try: opts, etc_args = getopt.getopt(argv[1:], 'h', ["repeat=", "path=", "cn-start=", "cn-step=", "cn-stop=", "snpeff-start=", "snpeff-step=", "snpeff-stop="]) except getopt.GetoptError: print("invalid args") sys.exit(2) for opt, arg in opts: if opt in ("--repeat"): num_repeat = int(arg) elif opt in ("--path"): path = arg elif opt in ("--cn-start"): cn_start = float(arg) elif opt in ("--cn-step"): cn_step = float(arg) elif opt in ("--cn-stop"): cn_stop = float(arg) elif opt in ("--snpeff-start"): snpeff_start = int(arg) elif opt in ("--snpeff-step"): snpeff_step = int(arg) elif opt in ("--snpeff-stop"): snpeff_stop = int(arg) cts = np.arange(cn_start, cn_stop, cn_step) #Cn Threshold sts = np.arange(snpeff_start, snpeff_stop, snpeff_step) #Snpeff Threshold print("* Experiment on ct = (", cn_start, ":", cn_step, ":", cn_stop, "), st = (", snpeff_start, ":", snpeff_step, ":", snpeff_stop, ")") print("* repeat ", num_repeat, "times, and the results will be written in", path) ############################################# ## Load data ############################################# # Train data CN, SNPeff, true = read_all_data('data/Challenge/', '_challenge_CNs.txt', 'out/SNPeff/SNPeff_train.csv') full_data = np.concatenate([CN, SNPeff.T]) num_CN_gene = CN.shape[0] # gene list gene_list = np.array(pd.read_csv('out/SNPeff/variant_gene_list.csv', sep = '\t', header = None, dtype='str')) ############################################# ## Our method ############################################# approx_aucs = [[0. for st in sts] for ct in cts] exact_aucs = [[0. for st in sts] for ct in cts] approx_accs = [[0. for st in sts] for ct in cts] exact_accs = [[0. for st in sts] for ct in cts] full_num = full_data.shape[1] val_size = (int) (full_num / num_repeat) print(full_num, val_size) for idx_ct in range(len(cts)): for idx_st in range(len(sts)): full_data, true = random_shuffle(full_data, true) print("ct:", cts[idx_ct], ", st:", sts[idx_st]) ctr = 0 exact_auc, approx_auc = [0, 0] exact_acc, approx_acc = [0, 0] # Cross Validation for i in range(num_repeat): if (i > 0): full_data = np.roll(full_data, shift=val_size, axis=1) true = np.roll(true, shift=val_size, axis=0) train_data, train_true = full_data[:, val_size:], true[val_size:] val_data, val_true = full_data[:, :val_size], true[:val_size] cand1 = candidate1_generation(cts[idx_ct], num_CN_gene, train_data) cand2 = candidate2_generation(sts[idx_st], num_CN_gene, train_data, train_true) candidate = np.concatenate((cand1, np.array(cand2) + num_CN_gene)) w = model_generation(train_data, train_true, val_data, val_true, candidate) tmp_approx_acc, tmp_exact_acc, tmp_approx_auc, tmp_exact_auc = profile(val_data, val_true, candidate, w) approx_auc += tmp_approx_auc exact_auc += tmp_exact_auc approx_acc += tmp_approx_acc exact_acc += tmp_exact_acc if tmp_approx_auc != 0: ctr += 1 if ctr != 0: approx_aucs[idx_ct][idx_st], exact_aucs[idx_ct][idx_st] = [approx_auc / ctr, exact_auc / num_repeat] approx_accs[idx_ct][idx_st], exact_accs[idx_ct][idx_st] = [approx_acc / ctr, exact_acc / num_repeat] else: approx_aucs[idx_ct][idx_st], exact_aucs[idx_ct][idx_st] = [0, exact_auc / num_repeat] approx_accs[idx_ct][idx_st], exact_accs[idx_ct][idx_st] = [0, exact_acc / num_repeat] print("acc(approx/exact):", approx_accs[idx_ct][idx_st], exact_accs[idx_ct][idx_st]) print("auc(approx/exact):", approx_aucs[idx_ct][idx_st], exact_aucs[idx_ct][idx_st])
pd.DataFrame(approx_aucs, index=cts)
pandas.DataFrame
# -*- coding: utf-8 -*- """ docstring, to write """ import os from datetime import datetime from typing import Union, Optional, Any, List, Dict, Iterable, Sequence, NoReturn from numbers import Real import numpy as np np.set_printoptions(precision=5, suppress=True) import pandas as pd import xmltodict as xtd from pyedflib import EdfReader from ...utils.misc import ( get_record_list_recursive, ) from ...utils.utils_interval import intervals_union from ..base import NSRRDataBase __all__ = [ "SHHS", ] class SHHS(NSRRDataBase): """ Sleep Heart Health Study ABOUT shhs ---------- ***ABOUT the dataset: 1. shhs1 (Visit 1): 1.1. the baseline clinic visit and polysomnogram performed between November 1, 1995 and January 31, 1998 1.2. in all, 6,441 men and women aged 40 years and older were enrolled 1.3. 5,804 rows, down from the original 6,441 due to data sharing rules on certain cohorts and subjects 2. shhs-interim-followup (Interim Follow-up): 2.1. an interim clinic visit or phone call 2-3 years after baseline (shhs1) 2.2. 5,804 rows, despite some subjects not having complete data, all original subjects are present in the dataset 3. shhs2 (Visit 2): 3.1. the follow-up clinic visit and polysomnogram performed between January 2001 and June 2003 3.2. during this exam cycle 3, a second polysomnogram was obtained in 3,295 of the participants 3.3. 4,080 rows, not all cohorts and subjects took part 4. shhs-cvd (CVD Outcomes): 4.1. the tracking of adjudicated heart health outcomes (e.g. stroke, heart attack) between baseline (shhs1) and 2008-2011 (varies by parent cohort) 4.2. 5,802 rows, outcomes data were not provided on all subjects 5. shhs-cvd-events (CVD Outcome Events): 5.1. event-level details for the tracking of heart health outcomes (shhs-cvd) 5.2. 4,839 rows, representing individual events 6. ECG was sampled at 125 Hz in shhs1 and 250/256 Hz in shhs2 7. `annotations-events-nsrr` and `annotations-events-profusion`: annotation files both contain xml files, the former processed in the EDF Editor and Translator tool, the latter exported from Compumedics Profusion 8. about 10% of the records have HRV (including sleep stages and sleep events) annotations ***DATA Analysis Tips: 1. Respiratory Disturbance Index (RDI): 1.1. A number of RDI variables exist in the data set. These variables are highly skewed. 1.2. log-transformation is recommended, among which the following transformation performed best, at least in some subsets: NEWVA = log(OLDVAR + 0.1) 2. Obstructive Apnea Index (OAI): 2.1. There is one OAI index in the data set. It reflects obstructive events associated with a 4% desaturation or arousal. Nearly 30% of the cohort has a zero value for this variable 2.2. Dichotomization is suggested (e.g. >=3 or >=4 events per hour indicates positive) 3. Central Apnea Index (CAI): 3.1. Several variables describe central breathing events, with different thresholds for desaturation and requirement/non-requirement of arousals. หœ58% of the cohort have zero values 3.2. Dichotomization is suggested (e.g. >=3 or >=4 events per hour indicates positive) 4. Sleep Stages: 4.1. Stage 1 and stage 3-4 are not normally distributed, but stage 2 and REM sleep are. 4.2. To use these data as continuous dependent variables, stages 1 and 3-4 must be transformed. The following formula is suggested: โ€“log(-log(val/100+0.001)) 5. Sleep time below 90% O2: 5.1. Percent of total sleep time with oxygen levels below 75%, 80%, 85% and 90% were recorded 5.2. Dichotomization is suggested (e.g. >5% and >10% of sleep time with oxygen levels below a specific O2 level indicates positive) More: [1] ***ABOUT signals: (ref. [10]) 1. C3/A2 and C4/A1 EEGs, sampled at 125 Hz 2. right and left electrooculograms (EOGs), sampled at 50 Hz 3. a bipolar submental electromyogram (EMG), sampled at 125 Hz 4. thoracic and abdominal excursions (THOR and ABDO), recorded by inductive plethysmography bands and sampled at 10 Hz 5. "AIRFLOW" detected by a nasal-oral thermocouple, sampled at 10 Hz 6. finger-tip pulse oximetry sampled at 1 Hz 7. ECG from a bipolar lead, sampled at 125 Hz for most SHHS-1 studies and 250 (and 256?) Hz for SHHS-2 studies 8. Heart rate (PR) derived from the ECG and sampled at 1 Hz 9. body position (using a mercury gauge sensor) 10. ambient light (on/off, by a light sensor secured to the recording garment) ***ABOUT annotations (NOT including "nsrrid","visitnumber","pptid" etc.): 1. hrv annotations: (in csv files, ref. [2]) Start__sec_ --- 5 minute window start time NN_RR --- Ratio of consecutive normal sinus beats (NN) over all cardiac inter-beat (RR) intervals AVNN --- Mean of all normal sinus to normal sinus interbeat intervals (NN) IHR --- Instantaneous heart rate SDNN --- Standard deviation of all normal sinus to normal sinus interbeat (NN) intervals SDANN --- Standard deviation of the averages of normal sinus to normal sinus interbeat (NN) intervals in all 5-minute segments SDNNIDX --- Mean of the standard deviations of normal sinus to normal sinus interbeat (NN) intervals in all 5-minute segments rMSSD --- Square root of the mean of the squares of difference between adjacent normal sinus to normal sinus interbeat (NN) intervals pNN10 --- Percentage of differences between adjacent normal sinus to normal sinus interbeat (NN) intervals that are >10 ms pNN20 --- Percentage of differences between adjacent normal sinus to normal sinus interbeat (NN) intervals that are >20 ms pNN30 --- Percentage of differences between adjacent normal sinus to normal sinus interbeat (NN) intervals that are >30 ms pNN40 --- Percentage of differences between adjacent normal sinus to normal sinus interbeat (NN) intervals that are >40 ms pNN50 --- Percentage of differences between adjacent normal sinus to normal sinus interbeat (NN) intervals that are >50 ms tot_pwr --- Total normal sinus to normal sinus interbeat (NN) interval spectral power up to 0.4 Hz ULF --- Ultra-low frequency power, the normal sinus to normal sinus interbeat (NN) interval spectral power between 0 and 0.003 Hz VLF --- Very low frequency power, the normal sinus to normal sinus interbeat (NN) interval spectral power between 0.003 and 0.04 Hz LF --- Low frequency power, the normal sinus to normal sinus interbeat (NN) interval spectral power between 0.04 and 0.15 Hz HF --- High frequency power, the normal sinus to normal sinus interbeat (NN) interval spectral power between 0.15 and 0.4 Hz LF_HF --- The ratio of low to high frequency power LF_n --- Low frequency power (normalized) HF_n --- High frequency power (normalized) 2. wave delineation annotations: (in csv files, NOTE: see "CAUTION" by the end of this part, ref. [2]) RPoint --- Sample Number indicating R Point (peak of QRS) Start --- Sample Number indicating start of beat End --- Sample Number indicating end of beat STLevel1 --- Level of ECG 1 in Raw data ( 65536 peak to peak rawdata = 10mV peak to peak) STSlope1 --- Slope of ECG 1 stored as int and to convert to a double divide raw value by 1000.0 STLevel2 --- Level of ECG 2 in Raw data ( 65536 peak to peak rawdata = 10mV peak to peak) STSlope2 --- Slope of ECG 2 stored as int and to convert to a double divide raw value by 1000.0 Manual --- (True / False) True if record was manually inserted Type --- Type of beat (0 = Artifact / 1 = Normal Sinus Beat / 2 = VE / 3 = SVE) Class --- no longer used PPoint --- Sample Number indicating peak of the P wave (-1 if no P wave detected) PStart --- Sample Number indicating start of the P wave PEnd --- Sample Number indicating end of the P wave TPoint --- Sample Number indicating peak of the T wave (-1 if no T wave detected) TStart --- Sample Number indicating start of the T wave TEnd --- Sample Number indicating end of the T wave TemplateID --- The ID of the template to which this beat has been assigned (-1 if not assigned to a template) nsrrid --- nsrrid of this record samplingrate--- frequency of the ECG signal of this record seconds --- Number of seconds from beginning of recording to R-point (Rpoint / sampling rate) epoch --- Epoch (30 second) number rpointadj --- R Point adjusted sample number (RPoint * (samplingrate/256)) CAUTION: all the above sampling numbers except for rpointadj assume 256 Hz, while the rpointadj column has been added to provide an adjusted sample number based on the actual sampling rate. 3. event annotations: (in xml files) TODO 4. event_profusion annotations: (in xml files) TODO ***DEFINITION of concepts in sleep study: 1. Arousal: (ref. [3],[4]) 1.1. interruptions of sleep lasting 3 to 15 seconds 1.2. can occur spontaneously or as a result of sleep-disordered breathing or other sleep disorders 1.3. sends you back to a lighter stage of sleep 1.4. if the arousal last more than 15 seconds, it becomes an awakening 1.5. the higher the arousal index (occurrences per hour), the more tired you are likely to feel, though people vary in their tolerance of sleep disruptions 2. Central Sleep Apnea (CSA): (ref. [3],[5],[6]) 2.1. breathing repeatedly stops and starts during sleep 2.2. occurs because your brain (central nervous system) doesn't send proper signals to the muscles that control your breathing, which is point that differs from obstructive sleep apnea 2.3. may occur as a result of other conditions, such as heart failure, stroke, high altitude, etc. 3. Obstructive Sleep Apnea (OSA): (ref. [3],[7]) 3.1. occurs when throat muscles intermittently relax and block upper airway during sleep 3.2. a noticeable sign of obstructive sleep apnea is snoring 4. Complex (Mixed) Sleep Apnea: (ref. [3]) 4.1. combination of both CSA and OSA 4.2. exact mechanism of the loss of central respiratory drive during sleep in OSA is unknown but is most likely related to incorrect settings of the CPAP (Continuous Positive Airway Pressure) treatment and other medical conditions the person has 5. Hypopnea: overly shallowย breathingย or an abnormally lowย respiratory rate. Hypopnea is defined by some to be less severe thanย apneaย (the complete cessation of breathing) 6. Apnea Hypopnea Index (AHI): to write 6.1. used to indicate the severity of OSA 6.2. number of apneas or hypopneas recorded during the study per hour of sleep 6.3. based on the AHI, the severity of OSA is classified as follows - none/minimal: AHI < 5 per hour - mild: AHI โ‰ฅ 5, but < 15 per hour - moderate: AHI โ‰ฅ 15, but < 30 per hour - severe: AHI โ‰ฅ 30 per hour 7. Oxygen Desaturation: 7.1. used to indicate the severity of OSA 7.2. reductions in blood oxygen levels (desaturation) 7.3. at sea level, a normal blood oxygen level (saturation) is usually 96 - 97% 7.4. (no generally accepted classifications for severity of oxygen desaturation) - mild: >= 90% - moderate: 80% - 89% - severe: < 80% NOTE ---- ISSUES ------ 1. `Start__sec_` might not be the start time, but rather the end time, of the 5 minute windows in some records 2. the current version "0.15.0" removed EEG spectral summary variables Usage ----- 1. sleep stage 2. sleep apnea References ---------- [1] https://sleepdata.org/datasets/shhs/pages/ [2] https://sleepdata.org/datasets/shhs/pages/13-hrv-analysis.md [3] https://en.wikipedia.org/wiki/Sleep_apnea [4] https://www.sleepapnea.org/treat/getting-sleep-apnea-diagnosis/sleep-study-details/ [5] https://www.mayoclinic.org/diseases-conditions/central-sleep-apnea/symptoms-causes/syc-20352109 [6] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2287191/ [7] https://www.mayoclinic.org/diseases-conditions/obstructive-sleep-apnea/symptoms-causes/syc-20352090 [8] https://en.wikipedia.org/wiki/Hypopnea [9] http://healthysleep.med.harvard.edu/sleep-apnea/diagnosing-osa/understanding-results [10] https://sleepdata.org/datasets/shhs/pages/full-description.md """ def __init__(self, db_dir:str, working_dir:Optional[str]=None, verbose:int=2, **kwargs:Any,) -> NoReturn: """ Parameters ---------- db_dir: str, storage path of the database working_dir: str, optional, working directory, to store intermediate files and log file verbose: int, default 2, log verbosity kwargs: auxilliary key word arguments default db_dir: "/export/algo/wenh06/ecg_data/shhs/" """ super().__init__(db_name="SHHS", db_dir=db_dir, working_dir=working_dir, verbose=verbose, **kwargs) self.current_version = kwargs.get("current_version" , "0.15.0") self.psg_data_path = None self.ann_path = None self.hrv_ann_path = None self.eeg_ann_path = None self.wave_deli_path = None self.event_ann_path = None self.event_profusion_ann_path = None self.form_paths() self.fs = None self.file_opened = None # stats try: self.rec_with_hrv_ann = [f"shhs{int(row['visitnumber'])}-{int(row['nsrrid'])}" for _,row in self.load_hrv_summary_ann().iterrows()] except: self.rec_with_hrv_ann = [] self.all_signals = [ "SaO2", "H.R.", "EEG(sec)", "ECG", "EMG", "EOG(L)", "EOG(R)", "EEG", "SOUND", "AIRFLOW", "THOR RES", "ABDO RES", "POSITION", "LIGHT", "NEW AIR", "OX stat", ] # annotations regarding sleep analysis self.hrv_ann_summary_keys = [ "nsrrid", "visitnumber", "NN_RR", "AVNN", "IHR", "SDNN", "SDANN", "SDNNIDX", "rMSSD", "pNN10", "pNN20", "pNN30", "pNN40", "pNN50", "tot_pwr", "ULF", "VLF", "LF", "HF", "LF_HF", "LF_n", "HF_n" ] self.hrv_ann_detailed_keys = [ "nsrrid", "visitnumber", "Start__sec_", "ihr", "NN_RR", "AVNN", "SDNN", "rMSSD", "PNN10", "PNN20", "PNN30", "PNN40", "PNN50", "TOT_PWR", "VLF", "LF", "LF_n", "HF", "HF_n", "LF_HF", "sleepstage01", "sleepstage02", "sleepstage03", "sleepstage04", "sleepstage05", "sleepstage06", "sleepstage07", "sleepstage08", "sleepstage09", "sleepstage10", "event01start", "event01end", "event02start", "event02end", "event03start", "event03end", "event04start", "event04end", "event05start", "event05end", "event06start", "event06end", "event07start", "event07end", "event08start", "event08end", "event09start", "event09end", "event10start", "event10end", "event11start", "event11end", "event12start", "event12end", "event13start", "event13end", "event14start", "event14end", "event15start", "event15end", "event16start", "event16end", "event17start", "event17end", "event18start", "event18end", "hasrespevent" ] self.hrv_ann_epoch_len_sec = 300 # 5min self.sleep_ann_keys_from_hrv = [ "Start__sec_", "sleepstage01", "sleepstage02", "sleepstage03", "sleepstage04", "sleepstage05", "sleepstage06", "sleepstage07", "sleepstage08", "sleepstage09", "sleepstage10", "event01start", "event01end", "event02start", "event02end", "event03start", "event03end", "event04start", "event04end", "event05start", "event05end", "event06start", "event06end", "event07start", "event07end", "event08start", "event08end", "event09start", "event09end", "event10start", "event10end", "event11start", "event11end", "event12start", "event12end", "event13start", "event13end", "event14start", "event14end", "event15start", "event15end", "event16start", "event16end", "event17start", "event17end", "event18start", "event18end", "hasrespevent" ] self.sleep_stage_ann_keys_from_hrv = [ "Start__sec_", "sleepstage01", "sleepstage02", "sleepstage03", "sleepstage04", "sleepstage05", "sleepstage06", "sleepstage07", "sleepstage08", "sleepstage09", "sleepstage10", ] self.sleep_event_ann_keys_from_hrv = [ "Start__sec_", "event01start", "event01end", "event02start", "event02end", "event03start", "event03end", "event04start", "event04end", "event05start", "event05end", "event06start", "event06end", "event07start", "event07end", "event08start", "event08end", "event09start", "event09end", "event10start", "event10end", "event11start", "event11end", "event12start", "event12end", "event13start", "event13end", "event14start", "event14end", "event15start", "event15end", "event16start", "event16end", "event17start", "event17end", "event18start", "event18end", "hasrespevent" ] # annotations from events-nsrr and events-profusion folders self.event_keys = [ "EventType", "EventConcept", "Start", "Duration", "SignalLocation", "SpO2Nadir", "SpO2Baseline" ] # NOTE: the union of names from shhs1-200001 to shhs1-200399 # NOT a full search self.short_event_types_from_event = [ "Respiratory", "Stages", "Arousals", ] self.long_event_types_from_event = [ "Respiratory|Respiratory", "Stages|Stages", "Arousals|Arousals", ] # NOTE: the union of names from shhs1-200001 to shhs1-200399 # NOT a full search # NOT including sleep stages self.short_event_names_from_event = [ "Central Apnea", "Obstructive Apnea", "Mixed Apnea", "Hypopnea", "SpO2 artifact", "SpO2 desaturation", "Arousal ()", "Arousal (Standard)", "Arousal (STANDARD)", "Arousal (CHESHIRE)", "Arousal (ASDA)", "Unsure", ] self.long_event_names_from_event = [ "Central apnea|Central Apnea", "Obstructive apnea|Obstructive Apnea", "Mixed apnea|Mixed Apnea", "Hypopnea|Hypopnea", "SpO2 artifact|SpO2 artifact", "SpO2 desaturation|SpO2 desaturation", "Arousal|Arousal ()", "Arousal|Arousal (Standard)", "Arousal|Arousal (STANDARD)", "Arousal resulting from Chin EMG|Arousal (CHESHIRE)", "ASDA arousal|Arousal (ASDA)", "Unsure|Unsure", ] self.event_profusion_keys = [ "Name", "Start", "Duration", "Input", "LowestSpO2", "Desaturation" ] # NOTE: currently the union of names from shhs1-200001 to shhs1-200099, # NOT a full search self.event_names_from_event_profusion = [ "Central Apnea", "Obstructive Apnea", "Mixed Apnea", "Hypopnea", "SpO2 artifact", "SpO2 desaturation", "Arousal ()", "Arousal (ASDA)", "Unsure", ] self.apnea_types = [ "Central Apnea", "Obstructive Apnea", "Mixed Apnea", "Hypopnea", ] # annotations regarding wave delineation self.wave_deli_keys = [ "RPoint", "Start", "End", "STLevel1", "STSlope1", "STLevel2", "STSlope2", "Manual", "Type", "PPoint", "PStart", "PEnd", "TPoint", "TStart", "TEnd", "TemplateID", "nsrrid", "samplingrate", "seconds", "epoch", "rpointadj", ] self.wave_deli_samp_num_keys = [ "RPoint", "Start", "End", "PPoint", "PStart", "PEnd", "TPoint", "TStart", "TEnd", ] # TODO: other annotation files: EEG # self-defined items self.sleep_stage_keys = ["start_sec", "sleep_stage"] self.sleep_event_keys = ["event_name", "event_start", "event_end", "event_duration"] self.sleep_epoch_len_sec = 30 self.ann_sleep_stages = [0,1,2,3,4,5,9] """ 0 --- Wake 1 --- sleep stage 1 2 --- sleep stage 2 3 --- sleep stage 3/4 4 --- sleep stage 3/4 5 --- REM stage 9 --- Movement/Wake or Unscored? """ self.sleep_stage_protocol = kwargs.get("sleep_stage_protocol", "aasm") self.all_sleep_stage_names = ["W", "R", "N1", "N2", "N3", "N4"] self.sleep_stage_name_value_mapping = { "W":0, "R":1, "N1":2, "N2":3, "N3":4, "N4":5 } self.sleep_stage_names = [] self.update_sleep_stage_names() self._to_simplified_states = {9:0, 0:0, 5:1, 1:2, 2:2, 3:3, 4:3} """ 9 to nan? 0 --- awake 1 --- REM 2 --- N1 (NREM1/2), shallow sleep 3 --- N2 (NREM3/4), deep sleep """ self._to_aasm_states = {9:0, 0:0, 5:1, 1:2, 2:3, 3:4, 4:4} """ 9 to nan? 0 --- awake 1 --- REM 2 --- N1 (NREM1) 3 --- N2 (NREM2) 4 --- N3 (NREM3/4) """ self._to_shhs_states = {9:0, 0:0, 5:1, 1:2, 2:3, 3:4, 4:5} # for plotting self.palette = { "W": "orange", "R": "yellow", "N1": "green", "N2": "cyan", "N3": "blue", "N4": "purple", "Central Apnea": "red", "Obstructive Apnea": "yellow", "Mixed Apnea": "cyan", "Hypopnea": "purple", } # TODO: add more def form_paths(self) -> NoReturn: """ finished, """ self.psg_data_path = os.path.join(self.db_dir, "polysomnography", "edfs") self.ann_path = os.path.join(self.db_dir, "datasets") self.hrv_ann_path = os.path.join(self.ann_path, "hrv-analysis") self.eeg_ann_path = os.path.join(self.ann_path, "eeg-spectral-analysis") self.wave_deli_path = os.path.join(self.db_dir, "polysomnography", "annotations-rpoints") self.event_ann_path = os.path.join(self.db_dir, "polysomnography", "annotations-events-nsrr") self.event_profusion_ann_path = os.path.join(self.db_dir, "polysomnography", "annotations-events-profusion") def update_sleep_stage_names(self) -> NoReturn: """ finished, """ if self.sleep_stage_protocol == "aasm": nb_stages = 5 elif self.sleep_stage_protocol == "simplified": nb_stages = 4 elif self.sleep_stage_protocol == "shhs": nb_stages = 6 else: raise ValueError(f"No stage protocol named {self.sleep_stage_protocol}") self.sleep_stage_names = self.all_sleep_stage_names[:nb_stages] def get_subject_id(self, rec:str) -> int: """ finished, Parameters ---------- rec: str, record name, typically in the form "shhs1-200001" Returns ------- pid, int, `subject_id` derived from `rec` """ head_shhs1,head_shhs2v3,head_shhs2v4 = "30000", "30001", "30002" dataset_no, no = rec.split("-") dataset_no = dataset_no[-1] if dataset_no == "2": raise ValueError("SHHS2 has two different sampling frequencies, currently could not be distinguished using only `rec`") pid = int(head_shhs1+dataset_no+no) return pid def get_visit_number(self, rec:str) -> int: """ finished, Parameters ---------- rec: str, record name, typically in the form "shhs1-200001" Returns ------- int, visit number extracted from `rec` """ return int(rec.split("-")[0][-1]) def get_nsrrid(self, rec:str) -> int: """ finished, Parameters ---------- rec: str, record name, typically in the form "shhs1-200001" Returns ------- int, nsrrid extracted from `rec` """ return int(rec.split("-")[1]) def get_fs(self, rec:str, sig:str="ECG", rec_path:Optional[str]=None) -> int: """ finished, Parameters ---------- rec: str, record name, typically in the form "shhs1-200001" sig: str, default "ECG", signal name rec_path: str, optional, path of the file which contains the psg data, if not given, default path will be used Returns ------- fs, int, the sampling frequency of the signal `sig` of the record `rec` """ frp = self.match_full_rec_path(rec, rec_path) self.safe_edf_file_operation("open", frp) chn_num = self.file_opened.getSignalLabels().index(self.match_channel(sig)) fs = self.file_opened.getSampleFrequency(chn_num) self.safe_edf_file_operation("close") return fs def get_chn_num(self, rec:str, sig:str="ECG", rec_path:Optional[str]=None) -> int: """ finished, Parameters ---------- rec: str, record name, typically in the form "shhs1-200001" sig: str, default "ECG", signal name rec_path: str, optional, path of the file which contains the psg data, if not given, default path will be used Returns ------- chn_num, int, the number of channel of the signal `sig` of the record `rec` """ frp = self.match_full_rec_path(rec, rec_path) self.safe_edf_file_operation("open", frp) chn_num = self.file_opened.getSignalLabels().index(self.match_channel(sig)) self.safe_edf_file_operation("close") return chn_num def match_channel(self, channel:str) -> str: """ finished, Parameters ---------- channel: str, channel name Returns ------- str, the standard channel name in SHHS """ for sig in self.all_signals: if sig.lower() == channel.lower(): return sig raise ValueError(f"No channel named {channel}") def match_full_rec_path(self, rec:str, rec_path:Optional[str]=None, rec_type:str="psg") -> str: """ finished, Parameters ---------- rec: str, record name, typically in the form "shhs1-200001" rec_path: str, optional, path of the file which contains the desired data, if not given, default path will be used rec_type: str, default "psg", record type, data or annotations Returns ------- """ extension = { "psg": ".edf", "wave_delineation": "-rpoint.csv", "event": "-nsrr.xml", "event_profusion": "-profusion.xml" } folder_or_file = { "psg": self.psg_data_path, "hrv_summary": os.path.join(self.hrv_ann_path, f"shhs{self.get_visit_number(rec)}-hrv-summary-{self.current_version}.csv"), "hrv_5min": os.path.join(self.hrv_ann_path, f"shhs{self.get_visit_number(rec)}-hrv-5min-{self.current_version}.csv"), "eeg_band_summary": os.path.join(self.eeg_ann_path, f"shhs{self.get_visit_number(rec)}-eeg-band-summary-dataset-{self.current_version}.csv"), "eeg_spectral_summary": os.path.join(self.eeg_ann_path, f"shhs{self.get_visit_number(rec)}-eeg-spectral-summary-dataset-{self.current_version}.csv"), "wave_delineation": self.wave_deli_path, "event": self.event_ann_path, "event_profusion": self.event_profusion_ann_path } if rec_path is not None: rp = rec_path elif rec_type.split("_")[0] in ["hrv", "eeg"]: rp = folder_or_file[rec_type] else: rp = os.path.join(folder_or_file[rec_type]+rec.split("-")[0], rec+extension[rec_type]) return rp def database_stats(self) -> NoReturn: """ """ raise NotImplementedError def database_info(self, detailed:bool=False) -> NoReturn: """ finished, print information about the database Parameters ---------- detailed: bool, default False, if False, "What","Who","When","Funding" will be printed, if True, then docstring of the class will be printed additionally """ raw_info = { "What": "Multi-cohort study focused on sleep-disordered breathing and cardiovascular outcomes", "Who": "5804 adults aged 40 and older", "When": "Two exam cycles, 1995-1998 and 2001-2003. Cardiovascular disease outcomes were tracked until 2010", "Funding": "National Heart, Lung, and Blood Institute" } print(raw_info) if detailed: print(self.__doc__) def show_rec_stats(self, rec:str, rec_path:Optional[str]=None) -> NoReturn: """ finished, Parameters ---------- rec: str, record name, typically in the form "shhs1-200001" rec_path: str, optional, path of the file which contains the psg data, if not given, default path will be used """ frp = self.match_full_rec_path(rec, rec_path, rec_type="psg") self.safe_edf_file_operation("open", frp) for chn,lb in enumerate(self.file_opened.getSignalLabels()): print("SignalLabel:",lb) print("Prefilter:",self.file_opened.getPrefilter(chn)) print("Transducer:",self.file_opened.getTransducer(chn)) print("PhysicalDimension:",self.file_opened.getPhysicalDimension(chn)) print("SampleFrequency:",self.file_opened.getSampleFrequency(chn)) print("*"*40) self.safe_edf_file_operation("close") def load_data(self, rec:str) -> NoReturn: """ """ raise ValueError("Please load specific data, for example, psg, ecg, eeg, etc.") def load_ann(self, rec:str) -> NoReturn: """ """ raise ValueError("Please load specific annotations, for example, event annotations, etc.") def load_psg_data(self, rec:str, channel:str="all", rec_path:Optional[str]=None) -> Dict[str, np.ndarray]: """ finished, Parameters ---------- rec: str, record name, typically in the form "shhs1-200001" channel: str, default "all", name of the channel of PSG, if is "all", then all channels will be returned rec_path: str, optional, path of the file which contains the psg data, if not given, default path will be used Returns ------- dict, psg data """ chn = self.match_channel(channel) if channel.lower() != "all" else "all" frp = self.match_full_rec_path(rec, rec_path, rec_type="psg") self.safe_edf_file_operation("open", frp) data_dict = {k: self.file_opened.readSignal(idx) for idx,k in enumerate(self.file_opened.getSignalLabels())} self.safe_edf_file_operation("close") if chn == "all": return data_dict else: return {chn: data_dict[chn]} def load_ecg_data(self, rec:str, rec_path:Optional[str]=None) -> np.ndarray: """ finished, Parameters ---------- rec: str, record name, typically in the form "shhs1-200001" rec_path: str, optional, path of the file which contains the ecg data, if not given, default path will be used Returns ------- """ return self.load_psg_data(rec=rec, channel="ecg", rec_path=rec_path)[self.match_channel("ecg")] def load_event_ann(self, rec:str, event_ann_path:Optional[str]=None, simplify:bool=False) -> pd.DataFrame: """ finished, Parameters ---------- rec: str, record name, typically in the form "shhs1-200001" event_ann_path: str, optional, path of the file which contains the events-nsrr annotations, if not given, default path will be used Returns ------- df_events: DataFrame, """ file_path = self.match_full_rec_path(rec, event_ann_path, rec_type="event") with open(file_path) as fd: doc = xtd.parse(fd.read()) df_events = pd.DataFrame(doc["PSGAnnotation"]["ScoredEvents"]["ScoredEvent"][1:]) if simplify: df_events["EventType"] = df_events["EventType"].apply(lambda s: s.split("|")[1]) df_events["EventConcept"] = df_events["EventConcept"].apply(lambda s: s.split("|")[1]) for c in ["Start", "Duration", "SpO2Nadir", "SpO2Baseline"]: df_events[c] = df_events[c].apply(self.str_to_real_number) return df_events def load_event_profusion_ann(self, rec:str, event_profusion_ann_path:Optional[str]=None) -> dict: """ finished, Parameters ---------- rec: str, record name, typically in the form "shhs1-200001" event_profusion_ann_path: str, optional, path of the file which contains the events-profusion annotations, if not given, default path will be used Returns ------- dict, with items "sleep_stage_list", "df_events" TODO: merge "sleep_stage_list" and "df_events" into one DataFrame """ file_path = self.match_full_rec_path(rec, event_profusion_ann_path, rec_type="event_profusion") with open(file_path) as fd: doc = xtd.parse(fd.read()) sleep_stage_list = [int(ss) for ss in doc["CMPStudyConfig"]["SleepStages"]["SleepStage"]] df_events = pd.DataFrame(doc["CMPStudyConfig"]["ScoredEvents"]["ScoredEvent"]) for c in ["Start", "Duration", "LowestSpO2", "Desaturation"]: df_events[c] = df_events[c].apply(self.str_to_real_number) ret = { "sleep_stage_list": sleep_stage_list, "df_events": df_events } return ret def load_hrv_summary_ann(self, rec:Optional[str]=None, hrv_ann_path:Optional[str]=None) -> pd.DataFrame: """ finished, Parameters ---------- rec: str, optional, record name, typically in the form "shhs1-200001" hrv_ann_path: str, optional, path of the summary HRV annotation file, if not given, default path will be used Returns ------- df_hrv_ann, DataFrame, if `rec` is not None, df_hrv_ann is the summary HRV annotations of `rec`; if `rec` is None, df_hrv_ann is the summary HRV annotations of all records that had HRV annotations (about 10% of all the records in SHHS) """ if rec is None: file_path = self.match_full_rec_path("shhs1-200001", hrv_ann_path, rec_type="hrv_summary") df_hrv_ann = pd.read_csv(file_path, engine="python") file_path = self.match_full_rec_path("shhs2-200001", hrv_ann_path, rec_type="hrv_summary") df_hrv_ann = pd.concat([df_hrv_ann, pd.read_csv(file_path, engine="python")]) return df_hrv_ann file_path = self.match_full_rec_path(rec, hrv_ann_path, rec_type="hrv_summary") df_hrv_ann = pd.read_csv(file_path, engine="python") if rec is None: return df_hrv_ann df_hrv_ann = df_hrv_ann[df_hrv_ann["nsrrid"]==self.get_nsrrid(rec)].reset_index(drop=True) return df_hrv_ann def load_hrv_detailed_ann(self, rec:str, hrv_ann_path:Optional[str]=None) -> pd.DataFrame: """ finished, Parameters ---------- rec: str, record name, typically in the form "shhs1-200001" hrv_ann_path: str, optional, path of the detailed HRV annotation file, if not given, default path will be used Returns ------- df_hrv_ann, DataFrame, detailed HRV annotations of `rec` """ file_path = self.match_full_rec_path(rec, hrv_ann_path, rec_type="hrv_5min") if not os.path.isfile(file_path): raise FileNotFoundError(f"Record {rec} has no HRV annotation (including sleep annotaions). Or the annotation file has not been downloaded yet. Or the path {file_path} is not correct. Please check!") self.logger.info(f"HRV annotations of record {rec} will be loaded from the file\n{file_path}") df_hrv_ann =
pd.read_csv(file_path, engine="python")
pandas.read_csv
# -*- coding:utf-8 _*- """ @author:<NAME> @time: 2019/12/02 """ from urllib.parse import unquote import pandas as pd from redis import ConnectionPool, Redis from scrapy.utils.project import get_project_settings from dingxiangyuan import settings from sqlalchemy import create_engine from DBUtils.PooledDB import PooledDB class DBPoolHelper(object): def __init__(self, dbname, user=None, password=None, db_type='postgressql', host='localhost', port=5432): """ # sqlite3 # ่ฟžๆŽฅๆ•ฐๆฎๅบ“ๆ–‡ไปถๅ๏ผŒsqliteไธๆ”ฏๆŒๅŠ ๅฏ†๏ผŒไธไฝฟ็”จ็”จๆˆทๅๅ’Œๅฏ†็  import sqlite3 config = {"datanase": "path/to/your/dbname.db"} pool = PooledDB(sqlite3, maxcached=50, maxconnections=1000, maxusage=1000, **config) # mysql import pymysql pool = PooledDB(pymysql,5,host='localhost', user='root',passwd='<PASSWORD>',db='myDB',port=3306) #5ไธบ่ฟžๆŽฅๆฑ ้‡Œ็š„ๆœ€ๅฐ‘่ฟžๆŽฅๆ•ฐ # postgressql import psycopg2 POOL = PooledDB(creator=psycopg2, host="127.0.0.1", port="5342", user, password, database) # sqlserver import pymssql pool = PooledDB(creator=pymssql, host=host, port=port, user=user, password=password, database=database, charset="utf8") :param type: """ if db_type == 'postgressql': import psycopg2 pool = PooledDB(creator=psycopg2, host=host, port=port, user=user, password=password, database=dbname) elif db_type == 'mysql': import pymysql pool = PooledDB(pymysql, 5, host='localhost', user='root', passwd='<PASSWORD>', db='myDB',port=3306) # 5ไธบ่ฟžๆŽฅๆฑ ้‡Œ็š„ๆœ€ๅฐ‘่ฟžๆŽฅๆ•ฐ elif db_type == 'sqlite': import sqlite3 config = {"datanase": dbname} pool = PooledDB(sqlite3, maxcached=50, maxconnections=1000, maxusage=1000, **config) else: raise Exception('่ฏท่พ“ๅ…ฅๆญฃ็กฎ็š„ๆ•ฐๆฎๅบ“็ฑปๅž‹, db_type="postgresql" or db_type="mysql" or db_type="sqlite"' ) self.conn = pool.connection() self.cursor = self.conn.cursor() def connect_close(self): """ๅ…ณ้—ญ่ฟžๆŽฅ""" self.cursor.close() self.conn.close() def execute(self, sql, params=tuple()): self.cursor.execute(sql, params) # ๆ‰ง่กŒ่ฟ™ไธช่ฏญๅฅ self.conn.commit() def fetchone(self, sql, params=tuple()): self.cursor.execute(sql, params) data = self.cursor.fetchone() return data def fetchall(self, sql, params=tuple()): self.cursor.execute(sql, params) data = self.cursor.fetchall() return data def pandas_db_helper(): """ 'postgresql://postgres:[email protected]:5432/xiaomuchong' "mysql+pymysql://root:[email protected]:3306/srld?charset=utf8mb4" "sqlite: ///sqlite3.db" """ engine = create_engine(settings.DATABASE_ENGINE) conn = engine.connect() return conn def redis_init(): settings = get_project_settings() if settings["REDIS_PARAMS"]: pool = ConnectionPool(host=settings["REDIS_HOST"], port=settings["REDIS_PORT"], password=settings["REDIS_PARAMS"]['password']) else: pool = ConnectionPool(host=settings["REDIS_HOST"], port=settings["REDIS_PORT"]) conn = Redis(connection_pool=pool) return conn redis_conn = redis_init() db_conn = pandas_db_helper() def cal_page_url(row): topic_url, reply_num = row[0], row[1] page_num = reply_num // 35 + 1 redis_conn.sadd('topic_page_urls', topic_url) for page in range(2, page_num + 1): redis_conn.sadd('topic_page_urls', f'{topic_url}?ppg={page}') print(topic_url) def insert_redis_topic_page_urls(): data = pd.read_sql(sql="topics", con=db_conn, columns=["topic_url", "reply_num"]) data.apply(cal_page_url, axis=1) def get_topic_left_start_urls(): topic_urls = pd.read_sql(sql="select distinct topic_url from posts_replies", con=db_conn) topic_urls_floor_one = pd.read_sql(sql="select topic_url from posts_replies where floor=1", con=db_conn) has_topic_urls = set(topic_urls['topic_url']) - set(topic_urls_floor_one['topic_url']) topic_page_urls = redis_conn.smembers('topic_page_urls') start_urls = {url.decode() for url in topic_page_urls if url.decode().split('?')[0] in has_topic_urls} print(len(has_topic_urls), len(start_urls)) def get_user_start_urls(): """ ่Žทๅ–็”จๆˆท่กจ่ตทๅง‹url """ user_urls =
pd.read_sql(sql="select distinct author_url from posts_replies", con=db_conn)
pandas.read_sql
# -*- coding: utf-8 -*- """ Created on Sat Aug 29 11:29:34 2020 @author: Pavan """ import pandas as pd pd.set_option('mode.chained_assignment', None) import numpy as np import math import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.ticker as mtick mpl.rcParams['font.family'] = 'serif' import scipy.stats as stats import itertools from datetime import datetime, date import os import yfinance as yf # from functools import partial from american_option_pricing import american_option import density_utilities as du import prediction_ensemble_py as pe import warnings warnings.simplefilter(action='ignore', category=FutureWarning) """ ####################################################################################### Import Data ####################################################################################### """ data = pd.read_excel('spy.xlsx', index_col=None) current_date = date(2020,9,29) expiry_date = date(2020,10,2) days_to_expiry = np.busday_count( current_date, expiry_date)-1 # min_p_profit = 35 # hor_leg_factor = 0.05 forecast_dens = False save_results = True save_plots = True Strategies = [] Strategies = ["Butterfly","Double Broken Wing Butterfly","Iron Condor"] # Strategies = ["Iron Condor"] """ ####################################################################################### Get Risk Free Date ####################################################################################### """ print("\n Gathering Risk Free Rate") rf_eod_data = yf.download("^IRX", start="2020-07-01", end= current_date.strftime("%Y-%m-%d")) for col in rf_eod_data.columns: rf_eod_data[col] = pd.to_numeric(rf_eod_data[col],errors='coerce') rf_eod_data=rf_eod_data.fillna(method='ffill') rf_eod_data['interest']=((1+(rf_eod_data['Adj Close']/100))**(1/252))-1 rf_eod_data['annualized_interest']=252*(((1+(rf_eod_data['Adj Close']/100))**(1/252))-1) rf_value =rf_eod_data['annualized_interest'].iloc[-1] print("\nCurrent Risk Free Rate is :",'{:.3f}%'.format(rf_value*100)) """ ####################################################################################### Data Cleaning ####################################################################################### """ def wrang_1(df, col_names): for col in col_names: df[col] = df[col].str.rstrip('%') df[col] = pd.to_numeric(df[col],errors='coerce') df[col] = [float(x)/100.0 for x in df[col].values] return df convert_cols = ["Impl Vol", "Prob.ITM","Prob.OTM","Prob.Touch"] data = wrang_1(data,convert_cols) def label_type(row): if row['Symbol'][0] == "." : return 'Option' return 'Stock' data['Type']=data.apply(lambda row: label_type(row), axis=1) data['Expiry_Date']= data.Symbol.str.extract('(\d+)') data['Expiry_Date'] = data['Expiry_Date'].apply(lambda x: pd.to_datetime(str(x), format='%y%m%d')) expiry_date_str = expiry_date.strftime("%Y%m%d") data['Expiry_Date'] = data['Expiry_Date'].fillna(
pd.Timestamp(expiry_date_str)
pandas.Timestamp
from pop_finder import locator_mod import pandas as pd import numpy as np from scipy import stats import matplotlib.pyplot as plt import matplotlib import os import shutil from sklearn.model_selection import StratifiedKFold from sklearn.metrics import confusion_matrix, classification_report import itertools def contour_classifier( sample_data, num_contours=10, run_locator=False, gen_dat=None, nboots=50, return_plots=True, return_df=True, save_dir="out", multi_iter=1, **kwargs, ): """ Wrapper function that runs locator to generate a density of predictions, then uses contour lines to choose the most likely population. Parameters ---------- sample_data : string Filepath to input file containing coordinates and populations of samples, including individuals from unknown populations. num_contours : int Number of contours to generate and search for closest population in (Default=10). run_locator : boolean Run locator and use outputs to generate classifications. If set to False, then will look in specified save_dir for the *_predlocs.txt files from a previous locator run. If set to True, ensure that gen_dat is not None (Default=False). gen_dat : string Filepath to input genetic data in VCF format (Default=None). nboots : int Number of bootstrap iterations (Default=50). return_plots : boolean Return contour plots of prediction densities overlayed with true population locations (Default=True). return_df : boolean If true, saves the results in a csv file in the save_dir folder (Default=True). save_dir : string Folder to save results. Folder should already be in directory. If using results from multiple iterations, only include prefix (e.g. 'out' for 'out1', 'out2', 'out3'; Default='out'). multi_iter : int How many times to run locator to get predictions. If the sample size is small, it is better to run multiple iterations (Default=1). Returns ------- class_df : pd.DataFrame Dataframe containing classifications of samples of unknown origin. """ # Check if save_dir exists if (os.path.isdir(save_dir) is not True and os.path.isdir(save_dir + "1") is not True): raise ValueError("save_dir does not exist") # Check is sample_data path exists if (isinstance(sample_data, pd.DataFrame) is False and os.path.exists(sample_data) is False): raise ValueError("path to sample_data incorrect") # Make sure hdf5 file is not used as gen_dat if run_locator is True and gen_dat.endswith('hdf5'): raise ValueError("Cannot use hdf5 file, please use vcf") if run_locator is True: # Check components if os.path.exists(gen_dat) is not True: raise ValueError("path to genetic data incorrect") for i in range(1, multi_iter + 1): if os.path.exists(save_dir + str(i)): shutil.rmtree(save_dir + str(i)) os.makedirs(save_dir + str(i)) locator_mod.locator( sample_data, gen_dat, bootstrap=True, nboots=nboots, out=save_dir + str(i), **kwargs, ) plt.close() out_list = [] for i in range(1, multi_iter + 1): for j in range(nboots): out_list.append( save_dir + str(i) + "/loc_boot" + str(j) + "_predlocs.txt" ) with open(out_list[0], "a") as outfile: for names in out_list[1:]: with open(names) as infile: string = "" outfile.write(string.join(infile.readlines()[1:])) else: if multi_iter == 1: if os.path.isdir(save_dir) is True: # Check to make sure right number of boots selected if os.path.exists( save_dir + "/loc_boot" + str(nboots + 1) + "_predlocs.txt" ): raise ValueError( "Number of bootstraps in output directory does not\ match nboots specified" ) out_list = [ save_dir + "/loc_boot" + str(i) + "_predlocs.txt" for i in range(nboots) ] if sum(1 for line in open(out_list[0])) == sum( 1 for line in open(out_list[1]) ): with open(out_list[0], "a") as outfile: for names in out_list[1:]: with open(names) as infile: string = "" outfile.write( string.join( infile.readlines()[1:] ) ) else: # Check to make sure right number of boots selected if os.path.exists( save_dir + "1/loc_boot" + str(nboots + 1) + "_predlocs.txt" ): raise ValueError( "Number of bootstraps in output directory does not\ match nboots specified" ) out_list = [ save_dir + "1/loc_boot" + str(i) + "_predlocs.txt" for i in range(nboots) ] if sum(1 for line in open(out_list[0])) == sum( 1 for line in open(out_list[1]) ): with open(out_list[0], "a") as outfile: for names in out_list[1:]: with open(names) as infile: string = "" outfile.write( string.join( infile.readlines()[1:] ) ) if multi_iter > 1: out_list = [] for i in range(1, multi_iter + 1): for j in range(nboots): out_list.append( save_dir+str(i)+"/loc_boot"+str(j)+"_predlocs.txt" ) if sum(1 for line in open(out_list[0])) == sum( 1 for line in open(out_list[1]) ): with open(out_list[0], "a") as outfile: for names in out_list[1:]: with open(names) as infile: string = "" outfile.write(string.join(infile.readlines()[1:])) # Convert input data file (true locs) into correct file for contour wrapper if isinstance(sample_data, pd.DataFrame) is not True: true_dat =
pd.read_csv(sample_data, sep="\t")
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import argparse import os.path from datetime import datetime import pandas as pd import matplotlib.pyplot as plt import xgboost as xgb from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from preprocessing.preprocessing import preprocess_whole_pipeline def load_model(path_model): bst = xgb.Booster({'nthread': 8}) # init model bst.load_model(path_model) # load data return bst def get_prediction(model, data_test, ID, label, output_path): dtest = xgb.DMatrix(data_test) ypred = [max(0,round(value,2)) for value in list(model.predict(dtest))] res = pd.DataFrame({"drug_id":ID, label:ypred},columns=["drug_id",label]) if output_path != "print": res.to_csv(path_or_buf=output_path, index=False, float_format='%.2f') print("Prediction DONE, results available here: " + output_path) else: print(res) def create_model(data_train,label,max_depth,eta,num_round,path_model,NaN_imputation_feature_scaling_PCA_boolean,directory_of_script): ''' Creation of the model using XGBoost ''' print("Training model using: XGBoost") df_train, df_test = train_test_split(data_train, test_size=0.2) dtrain = xgb.DMatrix(df_train.drop(label,axis=1), label=df_train[label]) dtest = xgb.DMatrix(df_test.drop(label,axis=1), label=df_test[label]) evallist = [(dtest, 'eval'), (dtrain, 'train')] evals_result = {} param = {'max_depth': max_depth, 'eta': eta, 'objective': 'reg:squarederror'} param['nthread'] = 8 param['eval_metric'] = 'rmse' bst = xgb.train(param, dtrain, num_round, evallist, early_stopping_rounds=10, evals_result=evals_result) now = datetime.now() dt_string = now.strftime("%d_%m_%Y_%H_%M_%S") param_string = 'max_depth_' + str(param['max_depth']) + "_eta_" + str(param['eta']) + "_num_round_" + str(num_round) + "_NaN_imputation_feature_scaling_PCA_usage_" + str(NaN_imputation_feature_scaling_PCA_boolean) model_name = param_string + "_" + dt_string bst.save_model(path_model + "_" + model_name) print("Model is available here: " + path_model + "_" + model_name) ''' Get the XGBoost model results and information ''' print("Plotting validation curve") x_axis = range(len(evals_result['train']['rmse'])) fig, ax = plt.subplots(figsize=(10, 10)) ax.plot(x_axis, evals_result['train']['rmse'], label='Train') ax.plot(x_axis, evals_result['eval']['rmse'], label='Test') ax.legend() plt.ylabel('RMSE') plt.xlabel('Number of Rounds') plt.title('XGBoost RMSE') plt.savefig(os.path.join(directory_of_script,"results","Validation Curve" + "_" + model_name + ".png")) print("Learning Curve is available here: " + os.path.join(directory_of_script,"results","Validation Curve" + "_" + model_name + ".png")) ypred = bst.predict(dtest) RMSE = mean_squared_error(df_test[label], ypred, squared=False) print("RMSE: %.4f" % RMSE) print("Check importance of features\n") fig, ax = plt.subplots(figsize=(100, 100)) ax = xgb.plot_importance(bst,ax=ax) ax.figure.savefig(os.path.join(directory_of_script,"results","Feature Importance" + "_" + model_name + ".png")) print("Features Importance is available here: " + os.path.join(directory_of_script,"results","Feature Importance" + "_" + model_name + ".png")) print("Training DONE") def main(args): directory_of_script = os.path.dirname(os.path.realpath(__file__)) path_of_output_prediction = args.path_of_output_prediction data_directory = args.data_directory path_model = args.path_model mode = args.mode NaN_imputation_feature_scaling_PCA_usage = args.NaN_imputation_feature_scaling_PCA_usage max_depth = args.max_depth eta = args.eta num_round = args.num_round FILENAME_DRUGS_TRAIN = "drugs_train.csv" FILENAME_DRUGS_TEST = "drugs_test.csv" FILENAME_FEATURE_ENG = "drug_label_feature_eng.csv" FILENAME_ACTIVE_INGREDIENTS = "active_ingredients.csv" FEATURE_TO_DUMMY = ["administrative_status", "marketing_status", "approved_for_hospital_use", "dosage_form", "marketing_authorization_status", "marketing_authorization_process", "pharmaceutical_companies"] LABEL = "price" path_drugs_train = os.path.join(data_directory,FILENAME_DRUGS_TRAIN) path_feature_eng = os.path.join(data_directory,FILENAME_FEATURE_ENG) path_active_ingredients = os.path.join(data_directory,FILENAME_ACTIVE_INGREDIENTS) path_drugs_test = args.path_of_data_to_predict if path_drugs_test is None : path_drugs_test = os.path.join(data_directory,FILENAME_DRUGS_TEST) ''' Reading files ''' print("Reading files...") df_drugs_train =
pd.read_csv(path_drugs_train, sep=",")
pandas.read_csv
import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.models import model_from_json import os.path from tensorflow import keras import streamlit as st import numpy as np from app import days # db_connection = sql.connect(host='localhost', database='timeseries', user='root', password='') # test_data = pd.read_sql('SELECT * FROM btc_usdt', con=db_connection) crypto_currency = 'BTC' base_currency = 'USD' prediction_days = 60 def get_train_data(): n_days = days data = pd.read_csv('./data/btc_usdt.csv', header=None) data.columns = ['Date', 'Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume'] data['Date'] = pd.to_datetime(data['Date']) scaler = MinMaxScaler(feature_range=(0,1)) scaled_data = scaler.fit_transform(data['Close'].values.reshape(-1,1)) x_train, y_train = [], [] if n_days > 1: for x in range(prediction_days, len(scaled_data)-n_days): x_train.append(scaled_data[x-prediction_days:x, 0]) y_train.append(scaled_data[x+n_days, 0]) else: for x in range(prediction_days, len(scaled_data)): x_train.append(scaled_data[x-prediction_days:x, 0]) y_train.append(scaled_data[x, 0]) x_train, y_train = np.array(x_train), np.array(y_train) x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1],1)) return data, scaler, x_train, y_train def get_test_data(): data = get_train_data()[0] scaler = MinMaxScaler(feature_range=(0,1)) test_start = "2018-01-01" test_data = pd.read_csv('./data/btc_usdt.csv', header=None) test_data.columns = ['Date', 'Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume'] test_data['Date'] = pd.to_datetime(test_data['Date']) test_data = test_data.loc[test_data['Date']>=test_start] actual_values = test_data['Close'].values scaler = MinMaxScaler(feature_range=(0,1)) scaled_data = scaler.fit_transform(actual_values.reshape(-1,1)) total_data =
pd.concat((data['Close'], test_data['Close']), axis=0)
pandas.concat
import os import re import warnings import numpy as np import pandas as pd from sklearn.compose import ColumnTransformer from sklearn.impute import SimpleImputer from sklearn.pipeline import Pipeline from sklearn.preprocessing import OrdinalEncoder, StandardScaler from Logging.logging import Logger from Prediction_data_ingestion.data_loading_prediction import DataGetterPrediction warnings.simplefilter(action='ignore', category=FutureWarning) class PreprocessingMethodsPrediction: """ Description: This class will contain the methods which will be used for the data transformation before the date clustering and model training Written By: <NAME> Version: 1.0 Revision: None """ def __init__(self): self.logger_obj = Logger() self.file_object = open("PredictionLogs/preprocessingLogs.txt", "a+") self.df = DataGetterPrediction(self.file_object, self.logger_obj).getData().copy() def removeUnnecessaryFeatureColumn(self, column_name): """ Description: This method is used to remove any unnecessary columns from the dataframe Written By: <NAME> Version: 1.0 Revision: None :param column_name: Name of column that needs to be removed from the dataframe :return: None """ try: # removing the given column from the dataframe self.df.drop(columns=[column_name], inplace=True) self.logger_obj.log(self.file_object, f"Feature column named {column_name} removed from the dataframe") except Exception as e: self.logger_obj.log(self.file_object, f"Exception occurred while removing a feature column {column_name} from the " f"dataframe. Exception: {str(e)} ") raise e def datatypeToDatetime(self, column_name): """ Description: This method is used to change the datatype of a column (Date_of_Journey) to datetime Written By: <NAME> Version: 1.0 Revision: None :param column_name: Name of the column for which the datatype needs to be changed to datetime :return: None """ try: # converting the datatype of provided column into datetime self.df[column_name] = pd.to_datetime(self.df[column_name], format="%d/%m/%Y") self.logger_obj.log(self.file_object, f"Datatype of feature column named {column_name} changed to datetime..") except Exception as e: self.logger_obj.log(self.file_object, f"Exception occurred while changing the datatype of column {column_name} to datetime. " f"Exception: {str(e)}") raise e def splittingDatetimeColumnIntoThree(self, column_name): """ Description: This method is used to create three new columns from the datetime column from the dataframe. Method also removes the original datetime column after creating three new columns. Written By: <NAME> Version: 1.0 Revision: None :param column_name: Name of datetime column that needs to split into 3 columns :return: None """ try: # splitting the Date_of_Journey which contains the whole data into three new columns each of those showing # day, month and year of the date self.df['Day_of_Journey'] = self.df['Date_of_Journey'].dt.day self.df['Month_of_Journey'] = self.df['Date_of_Journey'].dt.month self.df['Year_of_Journey'] = self.df['Date_of_Journey'].dt.year self.logger_obj.log(self.file_object, "Successfully split the datetime column into three newly created " "columns namely Day_of_Journey, Month_of_Journey and Year_of_Journey") # removing the original Date_of_Journey column from the dataframe self.removeUnnecessaryFeatureColumn("Date_of_Journey") except Exception as e: self.logger_obj.log(self.file_object, f"Exception occurred while splitting the datetime column into three newly created " f"columns. Exception: {str(e)}") raise e def convertDurationIntoMinutes(self): """ Description: This method is used to create a new column named Flight_Duration which contains the flight duration in minutes from the already present Duration column which has duration in the hours and minutes. Function also removes the original Duration column after removing the Flight_Duration column Written By: <NAME> Version: 1.0 Revision: None :return: None """ try: # creating the three possible pattern for the values in the featue column containing duration in hours and # minutes pattern1 = re.compile(r"(\d+)(h|m)(\s)(\d*)(h|m)*") pattern2 = re.compile(r"(\s*)(\d+)(h)") pattern3 = re.compile(r"(\s*)(\d+)(m)") # creating an empty list which will be used to store the flight duration in minute for every data # observation min_lst = [] # calculating the flight duration in minutes for each data observation and then adding it to the created # empty list for i in range(self.df.shape[0]): if 'h' in self.df.loc[i, "Duration"] and 'm' in self.df.loc[i, "Duration"]: matchobj = re.match(pattern1, self.df.loc[i, "Duration"]) hour = int(matchobj.group(1)) minute = int(matchobj.group(4)) total_min = 60 * hour + minute min_lst.append(total_min) elif 'h' in self.df.loc[i, "Duration"] and 'm' not in self.df.loc[i, "Duration"]: matchobj = re.match(pattern2, self.df.loc[i, "Duration"]) hour = int(matchobj.group(2)) min_lst.append(60 * hour) elif 'h' not in self.df.loc[i, "Duration"] and 'm' in self.df.loc[i, "Duration"]: matchobj = re.match(pattern3, self.df.loc[i, "Duration"]) minute = int(matchobj.group(2)) min_lst.append(minute) else: min_lst.append(self.df.loc[i, "Duration"]) # removing the original Duration column which contains the flight duration in hours and minutes self.removeUnnecessaryFeatureColumn("Duration") # adding a new duration column which contains the flight duration in minutes to the dataframe train_values =
pd.Series(min_lst)
pandas.Series
# Copyright ยฉ 2019 <NAME> """ Test for the ``preprocess._aggregate_columns._difference`` module. """ from pandas import DataFrame from pandas.util.testing import assert_frame_equal import unittest # Tests for: from ...clean_variables import VariableCleaner class PreprocessConstantDifferenceTests(unittest.TestCase): """ Tests for the ``preprocess._aggregate_columns._difference`` module. Assert final data frames match expectations. """ @staticmethod def test_clean_difference_ints_0(): """Test subtracting 0 from a column.""" _input = DataFrame({"A": [1, 2, 3]}) _expected = DataFrame({"A": [1, 2, 3]}) _groupings = [{"operator": "difference", "columns": ["A"], "value": 0}] _vc = VariableCleaner(_input) _vc.clean(_groupings) assert_frame_equal(_expected, _vc.frame) @staticmethod def test_clean_difference_ints_1(): """Test subtracting 1 from a column.""" _input = DataFrame({"A": [1, 2, 3]}) _expected = DataFrame({"A": [0, 1, 2]}) _groupings = [{"operator": "difference", "columns": ["A"], "value": 1}] _vc = VariableCleaner(_input) _vc.clean(_groupings) assert_frame_equal(_expected, _vc.frame) @staticmethod def test_clean_difference_floats_0(): """Test subtracting 0.0 from a column.""" _input = DataFrame({"A": [1.0, 2.0, 3.0]}) _expected = DataFrame({"A": [1.0, 2.0, 3.0]}) _groupings = [{"operator": "difference", "columns": ["A"], "value": 0.0}] _vc = VariableCleaner(_input) _vc.clean(_groupings) assert_frame_equal(_expected, _vc.frame) @staticmethod def test_clean_difference_floats_negative_1(): """Test subtracting -1.0 from a column.""" _input = DataFrame({"A": [1.0, 2.0, 3.0]}) _expected = DataFrame({"A": [2.0, 3.0, 4.0]}) _groupings = [{"operator": "difference", "columns": ["A"], "value": -1.0}] _vc = VariableCleaner(_input) _vc.clean(_groupings) assert_frame_equal(_expected, _vc.frame) class PreprocessVariableDifferenceTests(unittest.TestCase): """ Tests for the ``preprocess._aggregate_columns._difference`` module with column subtraction. """ @staticmethod def test_clean_difference_int_column(): """Test subtracting the right column from the left.""" _input = DataFrame({"A": [1, 2, 3], "B": [2, 3, 4]}) _expected = DataFrame({"A": [-1, -1, -1], "B": [2, 3, 4]}) _groupings = [{"operator": "difference", "columns": ["A"], "value": "B"}] _vc = VariableCleaner(_input) _vc.clean(_groupings) assert_frame_equal(_expected, _vc.frame) @staticmethod def test_clean_difference_right_string_column(): """Test subtracting the right column from the left. Right column has strings.""" _input =
DataFrame({"A": [1, 2, 3], "B": ["2", "3", "4"]})
pandas.DataFrame
""" The ``risk_models`` module provides functions for estimating the covariance matrix given historical returns. Because of the complexity of estimating covariance matrices (and the importance of efficient computations), this module mostly provides a convenient wrapper around the underrated `sklearn.covariance` module. The format of the data input is the same as that in :ref:`expected-returns`. **Currently implemented:** - sample covariance - semicovariance - exponentially weighted covariance - mininum covariance determinant - shrunk covariance matrices: - manual shrinkage - Ledoit Wolf shrinkage - Oracle Approximating shrinkage - covariance to correlation matrix """ import warnings import numpy as np import pandas as pd import sklearn.covariance from .expected_returns import returns_from_prices def sample_cov(prices, frequency=252): """ Calculate the annualised sample covariance matrix of (daily) asset returns. :param prices: adjusted closing prices of the asset, each row is a date and each column is a ticker/id. :type prices: pd.DataFrame :param frequency: number of time periods in a year, defaults to 252 (the number of trading days in a year) :type frequency: int, optional :return: annualised sample covariance matrix :rtype: pd.DataFrame """ if not isinstance(prices, pd.DataFrame): warnings.warn("prices are not in a dataframe", RuntimeWarning) prices = pd.DataFrame(prices) daily_returns = returns_from_prices(prices) return daily_returns.cov() * frequency def semicovariance(prices, benchmark=0.000079, frequency=252): """ Estimate the semicovariance matrix, i.e the covariance given that the returns are less than the benchmark. .. semicov = E([min(r_i - B, 0)] . [min(r_j - B, 0)]) :param prices: adjusted closing prices of the asset, each row is a date and each column is a ticker/id. :type prices: pd.DataFrame :param benchmark: the benchmark return, defaults to the daily risk-free rate, i.e :math:`1.02^{(1/252)} -1`. :type benchmark: float :param frequency: number of time periods in a year, defaults to 252 (the number of trading days in a year). Ensure that you use the appropriate benchmark, e.g if ``frequency=12`` use the monthly risk-free rate. :type frequency: int, optional :return: semicovariance matrix :rtype: pd.DataFrame """ if not isinstance(prices, pd.DataFrame): warnings.warn("prices are not in a dataframe", RuntimeWarning) prices = pd.DataFrame(prices) daily_returns = returns_from_prices(prices) drops = np.fmin(daily_returns - benchmark, 0) return drops.cov() * frequency def _pair_exp_cov(X, Y, span=180): """ Calculate the exponential covariance between two timeseries of returns. :param X: first time series of returns :type X: pd.Series :param Y: second time series of returns :type Y: pd.Series :param span: the span of the exponential weighting function, defaults to 180 :type span: int, optional :return: the exponential covariance between X and Y :rtype: float """ covariation = (X - X.mean()) * (Y - Y.mean()) # Exponentially weight the covariation and take the mean if span < 10: warnings.warn("it is recommended to use a higher span, e.g 30 days") return covariation.ewm(span=span).mean()[-1] def exp_cov(prices, span=180, frequency=252): """ Estimate the exponentially-weighted covariance matrix, which gives greater weight to more recent data. :param prices: adjusted closing prices of the asset, each row is a date and each column is a ticker/id. :type prices: pd.DataFrame :param span: the span of the exponential weighting function, defaults to 180 :type span: int, optional :param frequency: number of time periods in a year, defaults to 252 (the number of trading days in a year) :type frequency: int, optional :return: annualised estimate of exponential covariance matrix :rtype: pd.DataFrame """ if not isinstance(prices, pd.DataFrame): warnings.warn("prices are not in a dataframe", RuntimeWarning) prices = pd.DataFrame(prices) assets = prices.columns daily_returns = returns_from_prices(prices) N = len(assets) # Loop over matrix, filling entries with the pairwise exp cov S = np.zeros((N, N)) for i in range(N): for j in range(i, N): S[i, j] = S[j, i] = _pair_exp_cov( daily_returns.iloc[:, i], daily_returns.iloc[:, j], span ) return
pd.DataFrame(S * frequency, columns=assets, index=assets)
pandas.DataFrame
from torch.utils.data import Dataset from cmapPy.pandasGEXpress.parse import parse from torch.utils.data import DataLoader from torch.utils.data.sampler import Sampler import numpy as np import os import ai.causalcell.utils.register as register from rdkit import Chem import pandas as pd from rdkit.Chem import AllChem import random import pickle import time paths_to_L1000_files = { "phase1": { "path_to_dir": "Data/L1000_PhaseI", "path_to_data": "Data/L1000_PhaseI/GSE92742_Broad_LINCS/GSE92742_Broad_LINCS_Level5_COMPZ.MODZ_" "n473647x12328.gctx", "path_to_sig_info": "Data/L1000_PhaseI/GSE92742_Broad_LINCS/GSE92742_Broad_LINCS_sig_info.txt", "path_to_gene_info": "Data/L1000_PhaseI/GSE92742_Broad_LINCS/GSE92742_Broad_LINCS_gene_info.txt", "path_to_pert_info": "Data/L1000_PhaseI/GSE92742_Broad_LINCS/GSE92742_Broad_LINCS_pert_info.txt", "path_to_cell_info": "Data/L1000_PhaseI/GSE92742_Broad_LINCS/GSE92742_Broad_LINCS_cell_info.txt" }, "phase2": { "path_to_dir": "Data/L1000_PhaseII", "path_to_data": "Data/L1000_PhaseII/GSE70138_Broad_LINCS/Level5_COMPZ_n118050x12328_2017-03-06.gctx", "path_to_sig_info": "Data/L1000_PhaseII/GSE70138_Broad_LINCS/sig_info_2017-03-06.txt", "path_to_gene_info": "Data/L1000_PhaseII/GSE70138_Broad_LINCS/gene_info_2017-03-06.txt", "path_to_pert_info": "Data/L1000_PhaseII/GSE70138_Broad_LINCS/pert_info_2017-03-06.txt", "path_to_cell_info": "Data/L1000_PhaseII/GSE70138_Broad_LINCS/cell_info_2017-04-28.txt" }} """Dict of l1000 datasets that will be initialized with the relevant dataset objects if necessary so that all dataloaders use the same dataset object when possible, in order to instantiate only one.""" dict_of_l1000_datasets = {} def get_fingerprint(smile, radius, nBits): try: if smile == "-666" or smile == "restricted": return None return np.array(AllChem.GetMorganFingerprintAsBitVect(Chem.MolFromSmiles(smile), radius, nBits)) except: return None def get_concentration(s): if s.endswith('ยตM') or s.endswith('um'): return float(s[:-3]) if s.endswith('nM'): return 0.001 * float(s[:-3]) return -1 def get_time(s): return float(s[:-2]) ######################################################################################################################## # L1000 dataset ######################################################################################################################## class L1000Dataset(Dataset): """ Information on the dataset can be found here: https://docs.google.com/document/d/1q2gciWRhVCAAnlvF2iRLuJ7whrGP6QjpsCMq1yWz7dU/edit#heading=h.usef9o7fuux3 """ def __init__(self, phase="phase2", radius=2, nBits=1024): """ :param phase: phase 1 or 2 of the dataset :param radius: parameter for fingerprints https://www.macinchem.org/reviews/clustering/clustering.php :param nBits: desired length of fingerprints """ assert phase in ["phase1", "phase2", "both"] self.both = (phase == "both") if phase == "both": self.phase = "phase1" else: self.phase = phase # fingerprint parameters self.radius = radius self.nBits = nBits # Load metadata self.cell_info, self.landmark_gene_list, self.pert_info = self.load_metadata() self.sig_info = self.build_environment_representation() # Load data if self.both: self.data = pd.concat([self.load_data("phase1"), self.load_data("phase2")], sort=False) else: self.data = self.load_data(phase) # Get dictionary of non empty environments self.env_dict = self.get_env_dict() def load_data(self, phase): """ We store the data as a single column dataframe containing numpy arrays. It allows a considerable speedup when accessing rows during training """ path_to_data = paths_to_L1000_files[phase]["path_to_data"] df_path = os.path.join(paths_to_L1000_files[phase]["path_to_dir"], "dataframe.pkl") if os.path.isfile(df_path): print("Loading data of", phase) pickle_in = open(df_path, "rb") data = pickle.load(pickle_in) else: # If the data has not been saved yet, parse the original file and save dataframe print("Parsing original data, only happens the first time...") data = parse(path_to_data, rid=self.landmark_gene_list).data_df.T # Ensure that the order of columns corresponds to landmark_gene_list data = data[self.landmark_gene_list] # Remove rows that are not in sig_info data = data[data.index.isin(self.sig_info.index)] # Transform data so that it only has one column d = pd.DataFrame(index=data.index, columns=["gene_expr"]) d["gene_expr"] = list(data.to_numpy()) data = d # Save data pickle_out = open(df_path, "wb") pickle.dump(data, pickle_out, protocol=2) pickle_out.close() return data def get_env_dict(self): """ :return: dict with (pert, cell) keys corresponding to non empty environments dict[(pert, cell)] contains the list of all corresponding sig_ids """ dict_path = os.path.join(paths_to_L1000_files[self.phase]["path_to_dir"], "dict_" + str(self.both) + ".npy") if os.path.isfile(dict_path): # if the dict has been saved previously, load it env_dict = np.load(dict_path, allow_pickle='TRUE').item() else: print("Building dict of all environments, only happens the first time...") env_dict = {} for index, row in self.data.iterrows(): pert = self.sig_info.pert_id.loc[index] cell = self.sig_info.cell_id.loc[index] if (pert, cell) in env_dict.keys(): env_dict[(pert, cell)].append(index) else: env_dict[(pert, cell)] = [index] np.save(dict_path, env_dict) return env_dict def load_metadata(self): # cell_info and gene_info files are the same for both phases cell_info = pd.read_csv(paths_to_L1000_files[self.phase]["path_to_cell_info"], sep="\t", index_col="cell_id") cell_info['cell_id'] = cell_info.index # Store cell_id in a column # Get list of landmark genes gene_info = pd.read_csv(paths_to_L1000_files[self.phase]["path_to_gene_info"], sep="\t") landmark_gene_list = gene_info[gene_info['pr_is_lm'] == 1]["pr_gene_id"].astype(str) # Load pert_info pert_info = pd.read_csv(paths_to_L1000_files[self.phase]["path_to_pert_info"], sep="\t", index_col="pert_id", usecols=["pert_id", "canonical_smiles"]) if self.both: # If we want both phases, load the other phase as well pert_info_2 = pd.read_csv(paths_to_L1000_files["phase2"]["path_to_pert_info"], sep="\t", index_col="pert_id", usecols=["pert_id", "canonical_smiles"]) pert_info = pd.concat([pert_info, pert_info_2]) # Remove duplicate indices pert_info = pert_info.loc[~pert_info.index.duplicated(keep='first')] # Load fingerprints fps_path = os.path.join(paths_to_L1000_files[self.phase]["path_to_dir"], "fingerprints_" + str(self.radius) + "_" + str(self.nBits) + "_" + str(self.both) + ".pkl") if os.path.isfile(fps_path): fps =
pd.read_pickle(fps_path)
pandas.read_pickle
import pandas as pd import numpy as np from brightwind.transform import transform as tf from brightwind.utils import utils from brightwind.analyse import plot as plt from brightwind.utils.utils import _convert_df_to_series import matplotlib __all__ = ['monthly_means', 'momm', 'dist', 'dist_matrix', 'dist_of_wind_speed', 'dist_by_dir_sector', 'dist_matrix_by_dir_sector', 'dist_12x24', 'freq_distribution', 'freq_table', 'time_continuity_gaps', 'coverage', 'basic_stats', 'TI', 'sector_ratio', 'calc_air_density'] def dist_matrix(var_series, x_series, y_series, num_bins_x=None, num_bins_y=None, x_bins=None, y_bins=None, x_bin_labels=None, y_bin_labels=None, var_label=None, x_label=None, y_label=None, aggregation_method='%frequency', return_data=False): """ Calculates the distribution of a variable against two other variables, on an X-Y plane, returning a heat map. By default, the X and Y variables are binned in bins of 1. However, this behaviour can be modified by the user. :param var_series: Time-series of the variable whose distribution we need to find. :type var_series: pandas.Series :param x_series: Time-series of the X variable which we want to bin against, forms columns of distribution. :type x_series: pandas.Series :param y_series: Time-series of the Y variable which we want to bin against, forms rows of distribution. :type y_series: pandas.Series :param num_bins_x: Number of evenly spaced bins to use for x_series. If this and x_bins are not specified, bins of width 1 are used. :type num_bins_x: int :param num_bins_y: Number of evenly spaced bins to use for y_series. If this and y_bins are not specified, bins of width 1 are used. :type num_bins_y: int :param x_bins: (optional) Array of numbers where adjacent elements of array form a bin. Overwrites num_bins_x. If set to None derives the min and max from the x_series series and creates evenly spaced number of bins specified by num_bins_x. :type x_bins: list, array, None :param y_bins: (optional) Array of numbers where adjacent elements of array form a bin. Overwrites num_bins_y. If set to None derives the min and max from the y_series series and creates evenly spaced number of bins specified by num_bins_y. :type y_bins: list, array, None :param x_bin_labels: (optional) Labels of bins to be used for x_series, uses (bin-start, bin-end] format by default. :type x_bin_labels:list :param y_bin_labels: (optional) Labels of bins to be used for y_series, uses (bin-start, bin-end] format by default. :type y_bin_labels: list :param var_label: (Optional) Label to use for variable distributed, by default name of the var_series is used. :type var_label: str :param x_label: (Optional) Label to use for x_label of heat map, by default name of the x_series is used. :type x_label: str :param y_label: (Optional) Label to use for y_label of heat map, by default name of the y_series is used. :type y_label: str :param aggregation_method: Statistical method used to find distribution. It can be mean, max, min, std, count, %frequency or a custom function. Computes frequency in percentages by default. :type aggregation_method: str or function :param return_data: If True data is also returned with a plot. :return: A heat map and a distribution matrix if return_data is True, otherwise just a heat map. **Example usage** :: import brightwind as bw df = bw.load_csv(r'C:\\Users\\Stephen\\Documents\\Analysis\\demo_data.csv') # For distribution of mean wind speed standard deviation against wind speed and temperature bw.dist_matrix(df.Spd40mNStd, x_series=df.T2m, y_series=df.Spd40mN, aggregation_method='mean') # To change the number of bins bw.dist_matrix(df.Spd40mNStd, x_series=df.T2m, y_series=df.Spd40mN, num_bins_x=4, num_bins_y=10) # To specify custom bins bw.dist_matrix(df.Spd40mNStd, x_series=df.T2m, y_series=df.Spd40mN, y_bins=[0,6,12, 15, 41], y_bin_labels=['low wind', 'medium wind', 'gale', 'storm'], aggregation_method='min', return_data=True) # For custom aggregation function def custom_agg(x): return x.mean()+(2*x.std()) data = bw.dist_matrix(df.Spd40mNStd, x_series=df.T2m, y_series=df.Spd40mN, aggregation_method=custom_agg, return_data=True) """ var_series = _convert_df_to_series(var_series).dropna() y_series = _convert_df_to_series(y_series).dropna() x_series = _convert_df_to_series(x_series).dropna() if x_label is not None: x_series.name = x_label if y_label is not None: y_series.name = y_label if var_series.name is None: var_series.name = 'var_series' if y_series.name is None: y_series.name = 'binned_var_1' if x_series.name is None: x_series.name = 'binned_var_2' if var_label is None: var_label = aggregation_method.capitalize() + ' of ' + var_series.name var_series.name = var_label if x_series.name == var_series.name: x_series.name = x_series.name+"_binned" if y_series.name == var_series.name: y_series.name = y_series.name+"_binned" if num_bins_x is None and x_bins is None: x_bins = np.arange(int(np.floor(x_series.min())), int(np.ceil(x_series.max()) + 1 + (x_series.max() % 1 == 0)), 1) elif num_bins_x is not None and x_bins is None: x_bins = np.linspace(x_series.min(), x_series.max(), num_bins_x + 1) elif x_bins is not None: x_bins = x_bins if num_bins_y is None and y_bins is None: y_bins = np.arange(int(np.floor(y_series.min())), int(np.ceil(y_series.max()) + 1 + (y_series.max() % 1 == 0)), 1) elif num_bins_y is not None and y_bins is None: y_bins = np.linspace(y_series.min(), y_series.max(), num_bins_y + 1) elif y_bins is not None: y_bins = y_bins var_binned_series_1 =
pd.cut(y_series, y_bins, right=False)
pandas.cut
import gzip import re import tempfile from collections import defaultdict import numpy as np import pandas as pd from .. import access # minimum number of valid samples per # splicing event for ccle_splicing() MIN_VALID_COUNT = 100 # minimum standard deviation per splicing # event for ccle_splicing() MIN_STDEV = 0.01 class Processors: """ CCLE dataset processors. """ @staticmethod def ccle_annotations(raw_path): """ Process CCLE cell line annotations. Args: raw_path (str): the complete path to the raw downloaded file Returns: Processed DataFrame """ df = pd.read_csv(raw_path, sep="\t") df = df.astype(str) return df @staticmethod def ccle_chromatin(raw_path): """ Process CCLE chromatin profiling estimates. Args: raw_path (str): the complete path to the raw downloaded file Returns: Processed DataFrame """ df = pd.read_csv(raw_path, index_col=1) df = df.iloc[:, 1:] return df @staticmethod def ccle_translocations_svaba(raw_path): """ Process CCLE SvABA calls. Args: raw_path (str): the complete path to the raw downloaded file Returns: Processed DataFrame """ df = pd.read_excel(raw_path) ccle_annotations = access.load("ccle_annotations") ccle_to_depmap = dict( zip(ccle_annotations["CCLE_ID"], ccle_annotations["depMapID"]) ) string_cols = [ "CCLE_name", "map_id", "bp1", "bp2", "class", "gene1", "gene2", "site1", "site2", "fusion", ] for col in string_cols: df[col] = df[col].astype(str) df["depmap_id"] = df["CCLE_name"].apply(ccle_to_depmap.get) return df @staticmethod def ccle_rppa_info(raw_path): """ Process CCLE RPPA antibody info. Args: raw_path (str): the complete path to the raw downloaded file Returns: Processed DataFrame """ df = pd.read_csv(raw_path) df = df.astype(str) df["format_id"] = ( df["Target_Genes"].apply(lambda x: x.replace(" ", "-")) + "_" + df["Antibody_Name"] ) return df @staticmethod def ccle_rppa(raw_path): """ Process CCLE RPPA values. Args: raw_path (str): the complete path to the raw downloaded file Returns: Processed DataFrame """ df = pd.read_csv(raw_path, index_col=0) ccle_rppa_info = access.load("ccle_rppa_info") antibody_name_map = dict( zip(ccle_rppa_info["Antibody_Name"], ccle_rppa_info["format_id"]) ) ccle_annotations = access.load("ccle_annotations") ccle_to_depmap = dict( zip(ccle_annotations["CCLE_ID"], ccle_annotations["depMapID"]) ) df.columns = map(antibody_name_map.get, df.columns) df.index = df.index.map(ccle_to_depmap.get) return df @staticmethod def ccle_gene_tpm(raw_path): """ Process CCLE gene TPM measurements. Args: raw_path (str): the complete path to the raw downloaded file Returns: Processed DataFrame """ df = pd.read_csv(raw_path, sep="\t", index_col=0) df = df.iloc[:, 1:] g19_7_definitions = access.load("g19_7_definitions") gene_name_map = dict( zip(g19_7_definitions["gene_id"], g19_7_definitions["gene_name"]) ) gene_name_map = defaultdict(str, gene_name_map) gene_names = df.index.map(lambda x: f"{gene_name_map.get(x)}_{x}") df = df.set_index(gene_names) df = np.log2(df + 1) df = df.astype(np.float16) df = df.T ccle_annotations = access.load("ccle_annotations") ccle_to_depmap = dict( zip(ccle_annotations["CCLE_ID"], ccle_annotations["depMapID"]) ) df.index = df.index.map(ccle_to_depmap.get) return df @staticmethod def ccle_transcript_tpm(raw_path): """ Process CCLE transcript TPM measurements. Args: raw_path (str): the complete path to the raw downloaded file Returns: Processed DataFrame """ df = pd.read_csv(raw_path, sep="\t") g19_7_definitions = access.load("g19_7_definitions") gene_name_map = dict( zip(g19_7_definitions["gene_id"], g19_7_definitions["gene_name"]) ) gene_name_map = defaultdict(str, gene_name_map) df.index = df[["gene_id", "transcript_id"]].apply( lambda x: f"{gene_name_map.get(x['gene_id'])}_{x['transcript_id']}", axis=1 ) df = df.drop(["gene_id", "transcript_id"], axis=1) df = np.log2(df + 1) df = df.astype(np.float16) df = df.T ccle_annotations = access.load("ccle_annotations") ccle_to_depmap = dict( zip(ccle_annotations["CCLE_ID"], ccle_annotations["depMapID"]) ) df.index = df.index.map(ccle_to_depmap.get) return df @staticmethod def ccle_exonusage(raw_path): """ Process CCLE splicing measurements. Args: raw_path (str): the complete path to the raw downloaded file Returns: Processed DataFrame """ def reorder_exon(exon): """ Helper function for formatting exon splicing IDs. Args: exon (str): exon identifier Returns: Processed DataFrame """ exon_split = exon.split("_") return "_".join(exon_split[3:]) + "_" + "_".join(exon_split[:3]) temp = tempfile.NamedTemporaryFile(mode="wb") with gzip.open(raw_path, "rb") as f: for line in f: line = re.sub(b"[^\S\t\n\r]+NA\t", b"nan\t", line) line = re.sub(b"[^\S\t\n\r]+NA\n", b"nan\n", line) temp.write(line) df = pd.read_csv(temp.name, skiprows=2, index_col=0, sep="\t") temp.close() df.index = df.index.map(reorder_exon) df.index = pd.Series(df.index, index=df.index) + "_" + pd.Series(df["gene_id"]) df = df.iloc[:, 1:] df = df.T ccle_annotations = access.load("ccle_annotations") ccle_to_depmap = dict( zip(ccle_annotations["CCLE_ID"], ccle_annotations["depMapID"]) ) df.index = df.index.map(ccle_to_depmap.get) exonusage_nans = df.isna().sum(axis=0) keep_cols = df.columns[exonusage_nans < len(df) - MIN_VALID_COUNT] df = df[keep_cols] stdevs = df.std(axis=0) df = df[df.columns[stdevs >= MIN_STDEV]] df = df.astype(np.float16) return df @staticmethod def ccle_mirna(raw_path): """ Process CCLE miRNA measurements. Args: raw_path (str): the complete path to the raw downloaded file Returns: Processed DataFrame """ df = pd.read_csv(raw_path, sep="\t", skiprows=2) df.index = df["Description"] + "_" + df["Name"].apply(lambda x: x[1:]) df = df.iloc[:, 2:] df = np.log2(df) df = df.T df = df.astype(np.float16) ccle_annotations = access.load("ccle_annotations") ccle_to_depmap = dict( zip(ccle_annotations["CCLE_ID"], ccle_annotations["depMapID"]) ) df.index = df.index.map(ccle_to_depmap.get) return df @staticmethod def ccle_rrbs_tss1kb(raw_path): """ Process CCLE RRBS TSS 1kb measurements. Args: raw_path (str): the complete path to the raw downloaded file Returns: Processed DataFrame """ df = pd.read_csv(raw_path, sep="\t", index_col=0) df = df.iloc[:-1, 2:] df = df.T df[df == "\tNA"] = np.nan df[df == " NA"] = np.nan df[df == " NA"] = np.nan df = df.astype(np.float16) ccle_annotations = access.load("ccle_annotations") ccle_to_depmap = dict( zip(ccle_annotations["CCLE_ID"], ccle_annotations["depMapID"]) ) df.index = df.index.map(ccle_to_depmap.get) return df @staticmethod def ccle_rrbs_tss_clusters(raw_path): """ Process CCLE RRBS TSS cluster measurements. Args: raw_path (str): the complete path to the raw downloaded file Returns: Processed DataFrame """ df = pd.read_csv(raw_path, sep="\t", index_col=0) df = df.iloc[:-1, 2:] df = df.T df[df == "\tNA"] = np.nan df[df == " NA"] = np.nan df[df == " NA"] = np.nan df = df.astype(np.float16) ccle_annotations = access.load("ccle_annotations") ccle_to_depmap = dict( zip(ccle_annotations["CCLE_ID"], ccle_annotations["depMapID"]) ) df.index = df.index.map(ccle_to_depmap.get) return df @staticmethod def ccle_rrbs_cgi_clusters(raw_path): """ Process CCLE RRBS CGI cluster measurements. Args: raw_path (str): the complete path to the raw downloaded file Returns: Processed DataFrame """ df = pd.read_csv(raw_path, sep="\t", index_col=0) df = df.iloc[:-1] df["cluster_pos"] = df.index df["cluster_n"] = df.groupby("cluster_pos").cumcount() + 1 df.index = df["cluster_pos"].astype(str) + "-" + df["cluster_n"].astype(str) df = df.iloc[:, 2:-2] df = df.T df[df == "\tNA"] = np.nan df[df == " NA"] = np.nan df[df == " NA"] = np.nan df = df.astype(np.float16) ccle_annotations = access.load("ccle_annotations") ccle_to_depmap = dict( zip(ccle_annotations["CCLE_ID"], ccle_annotations["depMapID"]) ) df.index = df.index.map(ccle_to_depmap.get) return df @staticmethod def ccle_rrbs_enhancer_clusters(raw_path): """ Process CCLE RRBS enhancer cluster measurements. Args: raw_path (str): the complete path to the raw downloaded file Returns: Processed DataFrame """ df = pd.read_csv(raw_path, sep="\t", index_col=0) df.index = df.index + "_" + df.groupby(level=0).cumcount().astype(str) df = df.iloc[:, 2:] df.index = df.index.map(lambda x: x.replace("_", "-")) + "_enh" df = df.T df[df == "\tNA"] = np.nan df[df == " NA"] = np.nan df[df == " NA"] = np.nan df = df.astype(np.float16) ccle_annotations = access.load("ccle_annotations") ccle_to_depmap = dict( zip(ccle_annotations["CCLE_ID"], ccle_annotations["depMapID"]) ) df.index = df.index.map(ccle_to_depmap.get) return df @staticmethod def ccle_tertp(raw_path): """ Process CCLE TERT promoter calls. Args: raw_path (str): the complete path to the raw downloaded file Returns: Processed DataFrame """ df = pd.read_excel(raw_path, skiprows=4) df = df.set_index("depMapID") df["TERTp_mut"] = df["TERT_promoter_mutation"] != "wildtype" return df @staticmethod def ccle_msi(raw_path): """ Process CCLE MSI calls. Args: raw_path (str): the complete path to the raw downloaded file Returns: Processed DataFrame """ df =
pd.read_excel(raw_path, sheet_name="MSI calls")
pandas.read_excel
import itertools import numpy as np import cantera as ct import pandas as pd import re import pickle from .. import simulation as sim from ...cti_core import cti_processor as ctp class shockTube(sim.Simulation): def __init__(self,pressure:float,temperature:float,observables:list, kineticSens:int,physicalSens:int,conditions:dict, initialTime,finalTime,thermalBoundary,mechanicalBoundary, processor:ctp.Processor=None,cti_path="",save_timeHistories:int=0, save_physSensHistories=0,moleFractionObservables:list=[], absorbanceObservables:list=[],concentrationObservables:list=[], fullParsedYamlFile:dict={}, time_shift_value:float = 0, atol:float=1e-15, rtol:float=1e-9, rtol_sens:float=0.0001, atol_sens:float=1e-6): ''' Child class pertaining to shock tube simulations. Inherits all attributes and methods from simulations class including __init__(). Also has its own internal init method due to additional data requirements. Parameters ---------- pressure : float Pressure in [atm]. temperature : float Temperature in [K]. observables : list Species which sensitivity analysis is performed for. kineticSens : int 0 for off, 1 for on. physicalSens : int 0 for off, 1 for on. conditions : dict Initial mole fractions for species in simulation. initialTime : float Time to begin simulation from (s). finalTime : float Time to end simulation (s). thermalBoundary : str Thermal boundary condition inside the reactor. Shock tubes can either be adiabatic or isothermal. mechanicalBoundary : TYPE Mechanical bondary condition inside the reactor. Shock tubes can either be constant pressure or constant volume. processor : ctp.Processor, optional Loaded cti file. The default is None. cti_path : str, optional Path of cti file for running. If processor is provided this is not needed. The default is "". save_timeHistories : int, optional Boolean variable describing if time histories for simulation runs are saved. 0 for not saved, 1 for saved. The default is 0. save_physSensHistories : TYPE, optional Boolean variable describing if physical sensitivity time histories are saved. 0 for not saved, 1 for saved. The default is 0. moleFractionObservables : list, optional Species for which experimental data in the form of mole fraction time histories will be provided for optimization. Kinetic sensitivities are calculated for all these species. The default is []. absorbanceObservables : list, optional Species for which experimental data in the form of summed absorption time histories (from some or all of the species) will be provided for optimization. Kinetic sensitivities are calculated for all these species. The default is []. concentrationObservables : list, optional Species for which experimental data in the form of concentration time histories will be provided for optimization. Kinetic sensitivities are calculated for all these species. The default is []. fullParsedYamlFile : dict, optional Full dictionary from the parsed shock tube yaml file. The default is {}. time_shift_value : float, optional The numerical value by which the time vector of the simulation is shifted in seconds. The default is 0. atol : float, optional Get the absolute error tolerance. The default is 1e-15. rtol : float, optional Get the relative error tolerance. The default is 1e-9. rtol_sens : float, optional Scalar relative error tolerance for sensitivity. The default is 0.0001. atol_sens : float, optional Scalar absolute error tolerance for sensitivity. The default is 1e-6. Returns ------- None. ''' sim.Simulation.__init__(self,pressure,temperature,observables,kineticSens,physicalSens, conditions,processor,cti_path) self.initialTime = initialTime self.finalTime = finalTime self.thermalBoundary = thermalBoundary self.mechanicalBoundary = mechanicalBoundary self.kineticSensitivities= None self.timeHistory = None self.experimentalData = None self.concentrationObservables = concentrationObservables self.moleFractionObservables = moleFractionObservables self.absorbanceObservables = absorbanceObservables self.fullParsedYamlFile = fullParsedYamlFile self.time_shift_value = time_shift_value if save_timeHistories == 1: self.timeHistories=[] self.timeHistoryInterpToExperiment = None self.pressureAndTemperatureToExperiment = None else: self.timeHistories=None if save_physSensHistories == 1: self.physSensHistories = [] self.setTPX() self.dk = [0] self.atol=atol self.rtol=rtol self.rtol_sensitivity=rtol_sens self.atol_sensitivity=atol_sens def printVars(self): ''' Prints variables associated with the reactor initial conditions. ''' print('initial time: {0}\nfinal time: {1}\n'.format(self.initialTime,self.finalTime), '\nthermalBoundary: {0}\nmechanicalBoundary: {1}'.format(self.thermalBoundary,self.mechanicalBoundary), '\npressure: {0}\ntemperature: {1}\nobservables: {2}'.format(self.pressure,self.temperature,self.observables), '\nkineticSens: {0}\nphysicalSens: {1}'.format(self.kineticSens,self.physicalSens), '\nTPX: {0}'.format(self.processor.solution.TPX) ) #maybe unify paths with cti file?, also really fix the python styling def write_time_histories(self, path=''): if self.timeHistories == None: print("Error: this simulation is not saving time histories, reinitialize with flag") return -1 if path=='': path = './time_histories.time' pickle.dump(self.timeHistories,open(path,'wb')) return 0 def write_physSensHistories(self, path=''): if self.physSensHistories == None: print("Error: this simulation is not saving time histories, reinitialize with flag") return -1 if path=='': path = './physSensHistories.sens' pickle.dump(self.physSensHistories,open(path,'wb')) return 0 def load_physSensHistories(self, path=''): if self.physSensHistories == None: print("Error: this simulation is not saving time histories, reinitialize with flag") return -1 if path=='': path = './physSensHistories.sens' pickle.load(self.physSensHistories,open(path,'wb')) return 0 #note this is destructive, the original timeHistories are overwritten, run before any runs #same write is destructive by default def load_time_histories(self, path=''): if self.timeHistories == None: print("Error: this simulation is not saving time histories, reinitialize with flag") return -1 if path=='': path = './time_histories.time' pickle.load(self.timeHistories,open(path,'wb')) return 0 def settingShockTubeConditions(self): ''' Determine the mechanical and thermal boundary conditions for a shock tube based on what was initialized. ''' #assigning the thermal boundary variable if re.match('[aA]diabatic',self.thermalBoundary): energy = 'on' elif re.match('[iI]sothermal',self.thermalBoundary): energy = 'off' else: raise Exception('Please specify a thermal boundary condition, adiabatic or isothermal') #assigning the mehcanical boundary variable if re.match('[Cc]onstant [Pp]ressure',self.mechanicalBoundary): mechBoundary = 'constant pressure' elif re.match('[Cc]onstant [Vv]olume',self.mechanicalBoundary): mechBoundary = 'constant volume' else: raise Exception('Please specifiy a mehcanical boundary condition, constant pressure or constant volume') #return the thermal and mechanical boundary of the shock tube return energy,mechBoundary def sensitivity_adjustment(self,temp_del:float=0.0, pres_del:float=0.0, spec_pair:(str,float)=('',0.0)): ''' Appends the sensitivity adjustment to list, and calls sensitivity adjustment function from the simulations class, to adjust P,T,X for the sensitivity calculation Parameters ---------- temp_del : float, optional The decimal value of the percent by which temperature is perturbed. The default is 0.0. pres_del : float, optional The decimal value of the percent by which pressure is perturbed. The default is 0.0. spec_pair : (str,float), optional The string of a species and the decimal value of the percent by which that species is perturbed . The default is ('',0.0). Returns ------- data : Pandas Data Frame Time history of the perturbed simulation. ''' if temp_del != 0.0: self.dk.append(temp_del) if pres_del != 0.0: self.dk.append(pres_del) if spec_pair[1] != 0.0: self.dk.append(spec_pair[1]) kin_temp = self.kineticSens self.kineticSens = 0 data = sim.Simulation.sensitivity_adjustment(self,temp_del,pres_del,spec_pair) self.kineticSens = kin_temp return data def run(self,initialTime:float=-1.0, finalTime:float=-1.0): ''' Run the shock tube simulation Parameters ---------- initialTime : float, optional The time at which the reactor simulation begins, in seconds. The default is -1.0. finalTime : float, optional The time at which the reactor simulation ends, in seconds. The default is -1.0. Returns ------- timeHistory: Pandas DataFrame Time history of simulation containing temperature, pressurea and species results. kineticSensitivities: numpy array three dimensional numpy array: (time x reaction x observable). ''' if initialTime == -1.0: initialTime = self.initialTime if finalTime == -1.0: finalTime = self.finalTime self.timeHistory = None self.kineticSensitivities= None #3D numpy array, columns are reactions with timehistories, depth gives the observable for those histories conditions = self.settingShockTubeConditions() mechanicalBoundary = conditions[1] #same solution for both cp and cv sims if mechanicalBoundary == 'constant pressure': shockTube = ct.IdealGasConstPressureReactor(self.processor.solution, name = 'R1', energy = conditions[0]) else: shockTube = ct.IdealGasReactor(self.processor.solution, name = 'R1', energy = conditions[0]) sim = ct.ReactorNet([shockTube]) sim.rtol=self.rtol sim.atol=self.atol #print(sim.rtol_sensitivity,sim.atol_sensitivity) sim.rtol_sensitivity=self.rtol_sensitivity sim.atol_sensitivity=self.atol_sensitivity columnNames = [shockTube.component_name(item) for item in range(shockTube.n_vars)] columnNames = ['time']+['pressure']+columnNames self.timeHistory = pd.DataFrame(columns=columnNames) if self.kineticSens == 1: for i in range(self.processor.solution.n_reactions): shockTube.add_sensitivity_reaction(i) dfs = [pd.DataFrame() for x in range(len(self.observables))] tempArray = [np.zeros(self.processor.solution.n_reactions) for x in range(len(self.observables))] t = self.initialTime counter = 0 #print(sim.rtol_sensitivity,sim.atol_sensitivity) while t < self.finalTime: t = sim.step() if mechanicalBoundary =='constant volume': state = np.hstack([t,shockTube.thermo.P,shockTube.mass,shockTube.volume, shockTube.T, shockTube.thermo.X]) else: state = np.hstack([t,shockTube.thermo.P, shockTube.mass, shockTube.T, shockTube.thermo.X]) self.timeHistory.loc[counter] = state if self.kineticSens == 1: counter_1 = 0 for observable,reaction in itertools.product(self.observables, range(self.processor.solution.n_reactions)): tempArray[self.observables.index(observable)][reaction] = sim.sensitivity(observable, reaction) counter_1 +=1 if counter_1 % self.processor.solution.n_reactions == 0: dfs[self.observables.index(observable)] = dfs[self.observables.index(observable)].append((( pd.DataFrame(tempArray[self.observables.index(observable)])).transpose()), ignore_index=True) counter+=1 if self.timeHistories != None: self.timeHistory.time = self.timeHistory.time + self.time_shift_value #self.timeHistory.time = self.timeHistory.time + 0 self.timeHistories.append(self.timeHistory) ############################################################ if self.kineticSens == 1: numpyMatrixsksens = [dfs[dataframe].values for dataframe in range(len(dfs))] self.kineticSensitivities = np.dstack(numpyMatrixsksens) return self.timeHistory,self.kineticSensitivities else: return self.timeHistory #interpolate the most recent time history against the oldest by default #working_data used if have list not pandas frame #return more data about what was interpolated in a tuple? def interpolate_time(self,index:int=None,time_history=None): ''' This function interpolates and returns the most recent time history against the original time history by default, unless a specific time history index or time history is passed in. If an index is passed in then an interpolated time history associated with that index in the list is returned. If a specific time_history is passed in then an interpolated version of that time history is returned. Parameters ---------- index : int, optional The index value of the specific time history to be interpolated. The default is None. time_history : Pandas Data Frame, optional Pandas dataframe containing the time history from a simulation. The default is None. Returns ------- interpolatedTimeHistory: Pandas Data Frame Interpolated time history. ''' if self.timeHistories == None: print("Error: this simulation is not saving time histories, reinitialize with flag") return -1 else: if index is not None and time_history is not None: print("Error: can only specify one of index, time_history") return -1 if index is None: index = -1 if time_history is None: return self.interpolation(self.timeHistories[0],self.timeHistories[index],["temperature","pressure"]+self.observables) else: return self.interpolation(self.timeHistories[0],time_history,["temperature","pressure"]+self.observables) #assumes most recent time histories are the correct ones to interpolate on #interpolates agains the original time history def interpolate_species_adjustment(self): ''' This function interpolates the time history of a species adjustment run, against the original time history. ''' interpolated_data = [] species_to_loop = set(self.conditions.keys()).difference(['Ar','AR','HE','He','Kr','KR','Xe','XE','NE','Ne']) for x in range(0,len(species_to_loop)): interpolated_data.insert(0,self.interpolate_time(index=-1-x)) return interpolated_data def interpolate_species_sensitivities(self): ''' This function interpolates the time history of a species sensitivity against the original time history. ''' interpolated_data = self.interpolate_species_adjustment() interpolated_sens = [] ind_off = len(self.timeHistories)-len(set(self.conditions.keys()).difference(['Ar','AR','HE','He','Kr','KR','Xe','XE','NE','Ne'])) for i,th in enumerate(interpolated_data): ind = ind_off + i interpolated_sens.append(self.interpolate_physical_sensitivities(index=ind,time_history=th)) return interpolated_sens #interpolate a range of time histories agains the original #possibly add experimental flag to do range with exp data #end is exclusive #start here tomorrow def interpolate_range(self,begin:int,end:int): ''' Function that defines a time range for interpolation. Parameters ---------- begin : int Time to begin interpolation. end : int Time to end interpolation. Returns ------- interpolated_data : Pandas Data Frame Interpolated time history. ''' if begin<0 or end>len(self.timeHistories): print("Error: invalid indices") if self.timeHistories == None: print("Error: simulation is not saving time histories") interpolated_data = [] for x in range(begin,end): interpolated_data.append(self.interpolate_time(index=x)) return interpolated_data #interpolates agains the original time history def interpolate_physical_sensitivities(self, index:int=-1, time_history=None): ''' This function interpolates the time history of a physical sensitivity, excluding species, against the original time history and returns a numpy array. Parameters ---------- index : int, optional The index value of the specific time history to be interpolated. The default is -1. time_history : Pandas Data Frame, optional Pandas dataframe containing the time history from a simulation. The default is None. Returns ------- sensitivity: Pandas Data Frame. Physical sensitivity Data Frame. ''' interpolated_time = self.interpolate_time(index) if time_history is None else time_history #print(interpolated_time) #calculate which dk dk = self.dk[index] sensitivity = self.sensitivityCalculation(self.timeHistories[0][self.observables], interpolated_time[self.observables],self.observables,dk) if self.physSensHistories != None: self.physSensHistories.append(sensitivity) # print('this is sensitivity') # print(sensitivity) return sensitivity #returns a 3D array of interpolated time histories corrosponding to physical sensitivities def interpolate_experimental_kinetic(self, pre_interpolated = []): ''' This function interpolates kinetic sensitivities to experimental data. Parameters ---------- pre_interpolated : list, optional List of kinetic sensitivties to be interpolated. If not provided the function will look for kinetic sensitivities that were saved as an attribute. The default is []. Returns ------- flipped: numpy array Interpolated 3d array containing sensitivities. ''' if self.experimentalData == None: print("Error: experimental data must be loaded") return -1 if len(pre_interpolated) == 0 and not self.kineticSensitivities.any(): print("Error: must specify pre_interpolated or have kineticSensitivities run first") return -1 elif len(pre_interpolated)>0: array = pre_interpolated else: array = self.kineticSensitivities exp_interp_array = [] #if len(self.experimentalData) < array.shape[2]: # print("Error: mismatch between kineticSensitivities observables and given experimental data") # return -1 #exp data and kineticSensitivities must match in size and order of observables for i,frame in enumerate(self.experimentalData): if i > array.shape[2]: break sheet = array[:,:,i] exp_interp_array.append([]) for time_history in sheet.T: # new_history = np.interp(frame.ix[:,0], # self.timeHistories[0]['time'], # time_history) new_history = np.interp(frame.iloc[:,0], self.timeHistories[0]['time'], time_history) new_history = new_history.reshape((new_history.shape[0], 1)) exp_interp_array[-1].append(new_history) flipped = [] for x in exp_interp_array: flipped.append(np.hstack(x)) return flipped def map_and_interp_ksens(self,time_history=None): ''' This function maps kinetic sensitivity calculations returned from cantera to kineitcs parameters A,n and Ea, as well as interpolates them to the corresponding experimental data. It returns a dictonary containing the interpolated kinetic senstivities. Parameters ---------- time_history : Pandas Data Frame, optional The original time history is required for obtaining temperature values in order to do the mapping. The default is None. Returns ------- dict Dictionary containing the mapping for kinetic sensitivities. ''' A = self.kineticSensitivities N = np.zeros(A.shape) Ea = np.zeros(A.shape) for i in range(0,A.shape[2]): sheetA = A[:,:,i] #sheet for specific observable for x,column in enumerate(sheetA.T): N[:,x,i]= np.multiply(column,np.log(self.timeHistories[0]['temperature'])) if time_history is None else np.multiply(column,np.log(time_history['temperature'])) #not sure if this mapping is correct, check with burke and also update absorption mapping #to_mult_ea = np.divide(-1,np.multiply(1/ct.gas_constant,self.timeHistories[0]['temperature'])) if time_history is None else np.divide(-1,np.multiply(ct.gas_constant,time_history['temperature'])) to_mult_ea = np.divide(-1,np.multiply(1,self.timeHistories[0]['temperature'])) if time_history is None else np.divide(-1,np.multiply(1,time_history['temperature'])) Ea[:,x,i]= np.multiply(column,to_mult_ea) return {'A':self.interpolate_experimental_kinetic(A), 'N':self.interpolate_experimental_kinetic(N), 'Ea':self.interpolate_experimental_kinetic(Ea)} #assumes pre_interpolated has been interpolated against the original time history #assumes pre_interpolated is a list of dataframes where each dataframe is a time history #single is a single dataframe representing one time history/run of the simulation def interpolate_experimental(self,pre_interpolated = [], single = None): ''' This function interpolates the time history of a physical sensitivity against the corresponding experimental data and returns a pandas dataframe. Parameters ---------- pre_interpolated : list, optional has been interpolated against the original time history, assumes pre_interpolated is a list of dataframes where each dataframe is a time history. The default is []. single : Pandas Data Frame, optional Single Pandas Data Frame to be interpolated against experimental data. The default is None. Returns ------- int_exp: Pandas Data Frame Interpolated data frame. ''' if self.timeHistories == None: print("Error: can't interpolate without time histories") return -1 if self.experimentalData == None: print("Error: must have experimental data before interpolation") return -1 if len(pre_interpolated)!=0 and single != None: print("Error: can only specify one of pre_interpolated, single") if single is not None: pre_interpolated = [single] int_exp = [] #This portion of the function removes the pressure and the temperature from the pre_interpolated frames #so that when it gets interpolated against experimental data the temperature and pressure are not there if isinstance(pre_interpolated[0],pd.DataFrame): if 'pressure' in pre_interpolated[0].columns.tolist() and 'temperature' in pre_interpolated[0].columns.tolist(): pre_interpolated = [df.drop(columns=['temperature','pressure']) for df in pre_interpolated] #make sure you put the observables list in the correct order #check what order the experimental list is parsed in #making new observables list if single is not None: mole_fraction_and_concentration_observables= self.moleFractionObservables + self.concentrationObservables mole_fraction_and_concentration_observables = [x for x in mole_fraction_and_concentration_observables if x is not None] for time_history in pre_interpolated: array_list = [] max_size = 0 for i, observable in enumerate(mole_fraction_and_concentration_observables): interpolated_column = np.interp(self.experimentalData[i]['Time'].values, self.timeHistories[0]['time'].values, time_history[observable].values) interpolated_column = np.reshape(interpolated_column,((interpolated_column.shape[0],1))) array_list.append(interpolated_column) max_size = max(interpolated_column.shape[0],max_size) padded_arrays = [] for arr in array_list: if arr.shape[0] < max_size: padded_arrays.append(np.pad(arr, ((0,max_size-arr.shape[0]),(0,0)), 'constant',constant_values = np.nan)) else: padded_arrays.append(arr) np_array = np.hstack((padded_arrays)) new_frame = pd.DataFrame(np_array) int_exp.append(new_frame) for x in int_exp: x.columns = mole_fraction_and_concentration_observables return int_exp[0] #check and make sure this part actually works for what we want for interpolating the pre interpolated time histories #make sure we are getting the correct columns else: for time_history in pre_interpolated: array_list = [] max_size = 0 for i,frame in enumerate(self.experimentalData): #each frame is data for one observable if i>len(self.observables): break #change these bboth to use observable # interpolated_column= np.interp(frame.ix[:,0], # self.timeHistories[0]['time'], # time_history.ix[:,i]) interpolated_column= np.interp(frame.iloc[:,0], self.timeHistories[0]['time'], time_history.iloc[:,i]) interpolated_column= np.reshape(interpolated_column, ((interpolated_column.shape[0],1))) array_list.append(interpolated_column) max_size = max(interpolated_column.shape[0],max_size) padded_arrays= [] for arr in array_list: if arr.shape[0] < max_size: padded_arrays.append(np.pad(arr, ((0,max_size - arr.shape[0]),(0,0)), 'constant',constant_values=np.nan)) else: padded_arrays.append(arr) np_array = np.hstack((padded_arrays)) new_frame = pd.DataFrame(np_array) int_exp.append(new_frame) for x in int_exp: x.columns = self.observables[0:len(self.experimentalData)] if single is not None: return int_exp[0] else: return int_exp def interpolation(self,originalValues,newValues, thingBeingInterpolated): ''' This function is the base interpolation function, interpolating one set of data to another on a per time basis and returns a pandas dataframe. Parameters ---------- originalValues : Pandas Data Frame Original dataframe of time history. newValues : Pandas Data Frame New dataframe of time history. thingBeingInterpolated : list List of observable names. Returns ------- interpolatedData: Pandas Data Frame Interpolated Data Frame. ''' #interpolating time histories to original time history if isinstance(originalValues,pd.DataFrame) and isinstance(newValues,pd.DataFrame): tempDfForInterpolation = newValues[thingBeingInterpolated] #tempListForInterpolation = [tempDfForInterpolation.ix[:,x].values for x in range(tempDfForInterpolation.shape[1])] tempListForInterpolation = [tempDfForInterpolation.iloc[:,x].values for x in range(tempDfForInterpolation.shape[1])] interpolatedData = [np.interp(originalValues['time'].values,newValues['time'].values,tempListForInterpolation[x]) for x in range(len(tempListForInterpolation))] interpolatedData = [pd.DataFrame(interpolatedData[x]) for x in range(len(interpolatedData))] interpolatedData = pd.concat(interpolatedData, axis=1,ignore_index=True) interpolatedData.columns = thingBeingInterpolated else: print("Error: values must be pandas dataframes") return -1 return interpolatedData def sensitivityCalculation(self,originalValues,newValues,thingToFindSensitivtyOf,dk=.01): ''' This function calculates log/log sensitivity and returns a pandas dataframe. Parameters ---------- originalValues : Pandas Data Frame Original dataframe of time history. newValues : Pandas Data Frame New dataframe of time history. thingToFindSensitivtyOf : list List of observable names. dk : float, optional The decimal value of the percentage by which the original value was perturbed. The default is .01. Returns ------- sensitivity: Pandas Data Frame Sensitivity of observables. ''' if isinstance(originalValues,pd.DataFrame) and isinstance(newValues,pd.DataFrame): newValues.columns = thingToFindSensitivtyOf newValues = newValues.applymap(np.log) originalValues = originalValues.applymap(np.log) #tab sensitivity = (newValues.subtract(originalValues)/dk) return sensitivity else: print("Error: wrong datatype, both must be pandas data frames") return -1 def importExperimentalData(self,csvFileList): ''' This function imports experimental data in csv format and returns a list of pandas dataframes. Parameters ---------- csvFileList : list List of csv file directories. Returns ------- experimentalData : list Experimental data from csv files as pandas data frames stored in a list. ''' print('Importing shock tube data the following csv files...') print(csvFileList) experimentalData = [pd.read_csv(csv) for csv in csvFileList] experimentalData = [experimentalData[x].dropna(how='any') for x in range(len(experimentalData))] experimentalData = [experimentalData[x].apply(pd.to_numeric, errors = 'coerce').dropna() for x in range(len(experimentalData))] for x in range(len(experimentalData)): experimentalData[x] = experimentalData[x][~(experimentalData[x][experimentalData[x].columns[1]] < 0)] self.experimentalData = experimentalData return experimentalData def savingInterpTimeHistoryAgainstExp(self,timeHistory): ''' This function writes the time history which is interpolated against experimetnal data as a class object. Parameters ---------- timeHistory : Pandas Data Frame Time history interpolated against experimental data . Returns ------- timeHistoryInterpToExperiment: Pandas Data Frame Time history that is being saved. ''' self.timeHistoryInterpToExperiment = timeHistory def interpolatePressureandTempToExperiment(self,simulation,experimental_data): ''' This function interpolates the pressure and temperature time history from a simulation against the corresponding experimental data. Parameters ---------- simulation : class variable The simulation assoicated with the time history to be interpolated. experimental_data : list List of corresponding experimental data dataframtes . Returns ------- list_of_df : list List of interpolated data frames for pressure and temperature. ''' p_and_t = ['pressure','temperature'] list_of_df = [] for df in experimental_data: temp = [] for variable in p_and_t: interpolated_data = np.interp(df['Time'],simulation.timeHistories[0]['time'],simulation.timeHistories[0][variable]) interpolated_data = interpolated_data.reshape((interpolated_data.shape[0],1)) temp.append(interpolated_data) temp = np.hstack(temp) temp = pd.DataFrame(temp) temp.columns = p_and_t list_of_df.append(temp) self.pressureAndTemperatureToExperiment = list_of_df return list_of_df def calculate_time_shift_sensitivity(self,simulation,experimental_data,dk=1e-8): ''' This function interpolates the pressure and temperature time history from a simulation against the corresponding experimental data. Parameters ---------- simulation : class variable The simulation assoicated with the time history to be interpolated. experimental_data : list List of corresponding experimental data dataframtes . dk : float, optional Decimal percentage by which time values are perturbed. Default is 1e-8. Returns ------- time_shift_sensitivity : Pandas Data Frame List of Pandas Data Frames containing time shift sensitivity values. ''' lst_obs = simulation.moleFractionObservables + simulation.concentrationObservables lst_obs = [i for i in lst_obs if i] one_percent_of_average = dk original_time = simulation.timeHistories[0]['time'] new_time = original_time + one_percent_of_average #interpolate to the orignal time interpolated_against_original_time = [] for i,obs in enumerate(lst_obs): interpolated_original_observable_against_original_time = np.interp(original_time,new_time,simulation.timeHistories[0][lst_obs[i]]) s1 = pd.Series(interpolated_original_observable_against_original_time,name=lst_obs[i]) interpolated_against_original_time.append(s1) observables_interpolated_against_original_time_df = pd.concat(interpolated_against_original_time,axis=1) #calculate sensitivity calculated_sensitivity = [] for i,obs in enumerate(lst_obs): sens = (observables_interpolated_against_original_time_df[obs].apply(np.log) - simulation.timeHistories[0][obs].apply(np.log))/one_percent_of_average s1 = pd.Series(sens,name=lst_obs[i]) calculated_sensitivity.append(s1) calculated_sensitivity_df =
pd.concat(calculated_sensitivity,axis=1)
pandas.concat
import pandas as pd from functools import reduce from sklearn.decomposition import PCA from sklearn import preprocessing import numpy as np import random as rd import matplotlib import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import os import sys def determine_number_of_components(df): """Determine number of components based on the samples""" samples = list(df.shape)[1] if samples == 1: n_components = 1 elif samples == 2: n_components = 2 else: n_components = 3 return n_components def perform_pca(df, n_components): """Run PCA analysis""" df = df.astype(float) scaled_data = preprocessing.scale(df.T, with_std=False) pca = PCA(n_components=n_components) pca.fit(scaled_data) pca_data = pca.transform(scaled_data) per_var = np.round(pca.explained_variance_ratio_* 100, decimals=1) labels = ['PC' + str(x) for x in range(1, len(per_var)+1)] return scaled_data, pca_data, per_var, labels def generate_scree_plot(out, per_var, labels): """Generate scree plot""" plt.figure() plt.rcParams["figure.figsize"] = (20,20) plt.bar(x=range(1,len(per_var)+1), height=per_var, tick_label=labels) plt.ylabel('Percentage of Explained Variance') plt.xlabel('Principal Component') plt.title('Scree Plot') plt.xticks(rotation='vertical') plt.savefig(os.path.join(out, "scree_plot.pdf")) plt.savefig(os.path.join(out, "scree_plot.png")) plt.close() def generate_pc1_pc2_plot(out, pca_df, per_var): """Scatterplot PC1 and PC2""" plt.figure() plt.rcParams["figure.figsize"] = (20,20) plt.scatter(pca_df.PC1, pca_df.PC2) plt.xlabel('PC1 - {0}%'.format(per_var[0]), fontsize=22) plt.ylabel('PC2 - {0}%'.format(per_var[1]), fontsize=22) plt.title('PCA components 1 & 2', fontsize=22) for sample in pca_df.index: plt.annotate(sample, (pca_df.PC1.loc[sample], pca_df.PC2.loc[sample])) plt.savefig(os.path.join(out, "PCA_1_2.pdf")) plt.savefig(os.path.join(out, "PCA_1_2.png")) plt.close() def generate_pc2_pc3_plot(out, pca_df, per_var): """Scatterplot PC1 and PC2""" plt.figure() plt.rcParams["figure.figsize"] = (20,20) plt.scatter(pca_df.PC2, pca_df.PC3) plt.xlabel('PC2 - {0}%'.format(per_var[1]), fontsize=22) plt.ylabel('PC3 - {0}%'.format(per_var[2]), fontsize=22) plt.title('PCA components 2 & 3', fontsize=22) for sample in pca_df.index: plt.annotate(sample, (pca_df.PC2.loc[sample], pca_df.PC3.loc[sample])) plt.savefig(os.path.join(out, "PCA_2_3.pdf")) plt.savefig(os.path.join(out, "PCA_2_3.png")) plt.close() def generate_pc1_pc3_plot(out, pca_df, per_var): """Scatterplot PC1 and PC3""" plt.figure() plt.rcParams["figure.figsize"] = (20,20) plt.scatter(pca_df.PC1, pca_df.PC3) plt.xlabel('PC1 - {0}%'.format(per_var[0]), fontsize=22) plt.ylabel('PC3 - {0}%'.format(per_var[2]), fontsize=22) plt.title('PCA components 1 & 3', fontsize=22) for sample in pca_df.index: plt.annotate(sample, (pca_df.PC1.loc[sample], pca_df.PC3.loc[sample])) plt.savefig(os.path.join(out, "PCA_1_3.pdf")) plt.savefig(os.path.join(out, "PCA_1_3.png")) plt.close() def generate_pca_3d(out, pca_df, per_var): """Scatterplot PC1, PC2, PC3""" labels = [] pc1 = [] pc2 = [] pc3 = [] for i, row in pca_df.iterrows(): labels.append(i) pc1.append(row["PC1"]) pc2.append(row["PC2"]) pc3.append(row["PC3"]) fig = plt.figure(figsize=(20,20)) ax = fig.add_subplot(111, projection='3d') ax.scatter(pc1, pc2, pc3) ax.set_xlabel('PC1 - {0}%'.format(per_var[0])) ax.set_ylabel('PC2 - {0}%'.format(per_var[1])) ax.set_zlabel('PC3 - {0}%'.format(per_var[2])) for label, x, y, z in zip(labels, pc1, pc2, pc3): ax.text(x, y, z, label) plt.savefig(os.path.join(out, "PCA_3D.pdf")) plt.savefig(os.path.join(out, "PCA_3D.png")) def counts2tpm(counts_df, lengths_df): """Convert a table of raw counts to TPM Input-1: pandas dataframe of counts (the id should be the index) Input-2: pandas dataframe of lengths (the id should be the index) Output: pandas dataframe of TPMs """ df = pd.merge(lengths_df, counts_df, left_index=True, right_index=True) counts = df.iloc[:,1:] rate = (counts).div(df.iloc[:,0], axis=0) denom = rate.sum() tpm = rate/denom*1e6 return tpm def counts2tpm_many(counts_df, lengths_df): """Convert a table of raw counts to TPM Input-1: pandas dataframe of counts (the id should be the index) Input-2: pandas dataframe of lengths (the id should be the index) Each sample has a different length column Output: pandas dataframe of TPMs """ columns = counts_df.columns tpms = [] for column in columns: temp_counts = pd.DataFrame(counts_df[column]) temp_length =
pd.DataFrame(lengths_df[column])
pandas.DataFrame
# -*- coding: utf-8 -*- from datetime import datetime import pandas as pd # from numba import njit from zvt import zvt_config from zvt.api.data_type import Region, Provider, EntityType from zvt.domain import BlockMoneyFlow, BlockCategory, Block from zvt.contract import IntervalLevel from zvt.contract.recorder import FixedCycleDataRecorder from zvt.networking.request import sync_get from zvt.utils.time_utils import to_pd_timestamp from zvt.utils.utils import to_float # ๅฎžๆ—ถ่ต„้‡‘ๆต # 'http://vip.stock.finance.sina.com.cn/quotes_service/api/json_v2.php/MoneyFlow.ssl_bkzj_bk?page=1&num=20&sort=netamount&asc=0&fenlei=1' # 'http://vip.stock.finance.sina.com.cn/quotes_service/api/json_v2.php/MoneyFlow.ssl_bkzj_bk?page=1&num=20&sort=netamount&asc=0&fenlei=0' class SinaBlockMoneyFlowRecorder(FixedCycleDataRecorder): # ่ฎฐๅฝ•็š„ไฟกๆฏไปŽๅ“ช้‡Œๆฅ region = Region.CHN provider = Provider.Sina # entity็š„schema entity_schema = Block # ่ฎฐๅฝ•็š„schema data_schema = BlockMoneyFlow url = 'http://vip.stock.finance.sina.com.cn/quotes_service/api/json_v2.php/MoneyFlow.ssl_bkzj_zjlrqs?page=1&num={}&sort=opendate&asc=0&bankuai={}%2F{}' def __init__(self, exchanges=None, entity_ids=None, codes=None, batch_size=10, force_update=True, sleeping_time=10, default_size=zvt_config['batch_size'], real_time=False, fix_duplicate_way='ignore', start_timestamp=None, end_timestamp=None, close_hour=0, close_minute=0, level=IntervalLevel.LEVEL_1DAY, kdata_use_begin_time=False, one_day_trading_minutes=24 * 60) -> None: super().__init__(EntityType.Block, exchanges, entity_ids, codes, batch_size, force_update, sleeping_time, default_size, real_time, fix_duplicate_way, start_timestamp, end_timestamp, close_hour, close_minute, level, kdata_use_begin_time, one_day_trading_minutes) def generate_url(self, category, code, number): if category == BlockCategory.industry.value: block = 0 elif category == BlockCategory.concept.value: block = 1 return self.url.format(number, block, code) def record(self, entity, start, end, size, timestamps, http_session): url = self.generate_url(category=entity.category, code=entity.code, number=size) text = sync_get(http_session, url, return_type='text') if text is None: return None json_list = eval(text) if len(json_list) == 0: return None # @njit(nopython=True) def numba_boost_up(json_list): result_list = [] for item in json_list: result_list.append({ 'name': entity.name, 'timestamp': to_pd_timestamp(item['opendate']), 'close': to_float(item['avg_price']), 'change_pct': to_float(item['avg_changeratio']), 'turnover_rate': to_float(item['turnover']) / 10000, 'net_inflows': to_float(item['netamount']), 'net_inflow_rate': to_float(item['ratioamount']), 'net_main_inflows': to_float(item['r0_net']), 'net_main_inflow_rate': to_float(item['r0_ratio']) }) return result_list result_list = numba_boost_up(json_list) if len(result_list) > 0: df =
pd.DataFrame.from_records(result_list)
pandas.DataFrame.from_records
import json import networkx as nx import numpy as np import os import pandas as pd from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.preprocessing import LabelEncoder from tqdm import tqdm from config import logger, config def read_profile_data(): profile_na = np.zeros(67) profile_na[0] = -1 profile_na = pd.DataFrame(profile_na.reshape(1, -1)) profile_df = pd.read_csv(config.profile_file) profile_na.columns = profile_df.columns profile_df = profile_df.append(profile_na) return profile_df def merge_raw_data(): tr_queries = pd.read_csv(config.train_query_file, parse_dates=['req_time']) te_queries = pd.read_csv(config.test_query_file, parse_dates=['req_time']) tr_plans = pd.read_csv(config.train_plan_file, parse_dates=['plan_time']) te_plans = pd.read_csv(config.test_plan_file, parse_dates=['plan_time']) tr_click = pd.read_csv(config.train_click_file) trn = tr_queries.merge(tr_click, on='sid', how='left') trn = trn.merge(tr_plans, on='sid', how='left') trn = trn.drop(['click_time'], axis=1) trn['click_mode'] = trn['click_mode'].fillna(0) tst = te_queries.merge(te_plans, on='sid', how='left') tst['click_mode'] = -1 df = pd.concat([trn, tst], axis=0, sort=False) df = df.drop(['plan_time'], axis=1) df = df.reset_index(drop=True) df['weekday'] = df['req_time'].dt.weekday df['day'] = df['req_time'].dt.day df['hour'] = df['req_time'].dt.hour df = df.drop(['req_time'], axis=1) logger.info('total data size: {}'.format(df.shape)) logger.info('data columns: {}'.format(', '.join(df.columns))) return df def extract_plans(df): plans = [] for sid, plan in tqdm(zip(df['sid'].values, df['plans'].values)): try: p = json.loads(plan) for x in p: x['sid'] = sid plans.extend(p) except: pass return pd.DataFrame(plans) def generate_od_features(df): feat = df[['o','d']].drop_duplicates() feat = feat.merge(df.groupby('o')[['day', 'hour', 'pid', 'click_mode']].nunique().reset_index(), how='left', on='o') feat.rename(columns={'day': 'o_nunique_day', 'hour': 'o_nunique_hour', 'pid': 'o_nunique_pid', 'click_mode': 'o_nunique_click'}, inplace=True) feat = feat.merge(df.groupby('d')[['day', 'hour', 'pid', 'click_mode']].nunique().reset_index(), how='left', on='d') feat.rename(columns={'day': 'd_nunique_day', 'hour': 'd_nunique_hour', 'pid': 'd_nunique_pid', 'click_mode': 'd_nunique_click'}, inplace=True) feat = feat.merge(df.groupby(['o', 'd'])[['day', 'hour', 'pid', 'click_mode']].nunique().reset_index(), how='left', on=['o', 'd']) feat.rename(columns={'day': 'od_nunique_day', 'hour': 'od_nunique_hour', 'pid': 'od_nunique_pid', 'click_mode': 'od_nunique_click'}, inplace=True) return feat def generate_pid_features(df): feat = df.groupby('pid')[['hour', 'day']].nunique().reset_index() feat.rename(columns={'hour': 'pid_nunique_hour', 'day': 'pid_nunique_day'}, inplace=True) feat['nunique_hour_d_nunique_day'] = feat['pid_nunique_hour'] / feat['pid_nunique_day'] feat = feat.merge(df.groupby('pid')[['o', 'd']].nunique().reset_index(), how='left', on='pid') feat.rename(columns={'o': 'pid_nunique_o', 'd': 'pid_nunique_d'}, inplace=True) feat['nunique_o_d_nunique_d'] = feat['pid_nunique_o'] / feat['pid_nunique_d'] return feat def generate_od_cluster_features(df): G = nx.Graph() G.add_nodes_from(df['o'].unique().tolist()) G.add_nodes_from(df['d'].unique().tolist()) edges = df[['o','d']].apply(lambda x: (x[0],x[1]), axis=1).tolist() G.add_edges_from(edges) cluster = nx.clustering(G) cluster_df = pd.DataFrame([{'od': key, 'cluster': cluster[key]} for key in cluster.keys()]) return cluster_df def gen_od_feas(data): data['o1'] = data['o'].apply(lambda x: float(x.split(',')[0])) data['o2'] = data['o'].apply(lambda x: float(x.split(',')[1])) data['d1'] = data['d'].apply(lambda x: float(x.split(',')[0])) data['d2'] = data['d'].apply(lambda x: float(x.split(',')[1])) data = data.drop(['o', 'd'], axis=1) return data def gen_plan_feas(data): n = data.shape[0] mode_list_feas = np.zeros((n, 12)) max_dist, min_dist, mean_dist, std_dist = np.zeros((n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)) max_price, min_price, mean_price, std_price = np.zeros((n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)) max_eta, min_eta, mean_eta, std_eta = np.zeros((n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)) min_dist_mode, max_dist_mode, min_price_mode, max_price_mode, min_eta_mode, max_eta_mode, first_mode = np.zeros( (n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)) mode_texts = [] for i, plan in tqdm(enumerate(data['plans'].values)): try: cur_plan_list = json.loads(plan) except: cur_plan_list = [] if len(cur_plan_list) == 0: mode_list_feas[i, 0] = 1 first_mode[i] = 0 max_dist[i] = -1 min_dist[i] = -1 mean_dist[i] = -1 std_dist[i] = -1 max_price[i] = -1 min_price[i] = -1 mean_price[i] = -1 std_price[i] = -1 max_eta[i] = -1 min_eta[i] = -1 mean_eta[i] = -1 std_eta[i] = -1 min_dist_mode[i] = -1 max_dist_mode[i] = -1 min_price_mode[i] = -1 max_price_mode[i] = -1 min_eta_mode[i] = -1 max_eta_mode[i] = -1 mode_texts.append('word_null') else: distance_list = [] price_list = [] eta_list = [] mode_list = [] for tmp_dit in cur_plan_list: distance_list.append(int(tmp_dit['distance'])) if tmp_dit['price'] == '': price_list.append(0) else: price_list.append(int(tmp_dit['price'])) eta_list.append(int(tmp_dit['eta'])) mode_list.append(int(tmp_dit['transport_mode'])) mode_texts.append( ' '.join(['word_{}'.format(mode) for mode in mode_list])) distance_list = np.array(distance_list) price_list = np.array(price_list) eta_list = np.array(eta_list) mode_list = np.array(mode_list, dtype='int') mode_list_feas[i, mode_list] = 1 distance_sort_idx = np.argsort(distance_list) price_sort_idx = np.argsort(price_list) eta_sort_idx = np.argsort(eta_list) max_dist[i] = distance_list[distance_sort_idx[-1]] min_dist[i] = distance_list[distance_sort_idx[0]] mean_dist[i] = np.mean(distance_list) std_dist[i] = np.std(distance_list) max_price[i] = price_list[price_sort_idx[-1]] min_price[i] = price_list[price_sort_idx[0]] mean_price[i] = np.mean(price_list) std_price[i] = np.std(price_list) max_eta[i] = eta_list[eta_sort_idx[-1]] min_eta[i] = eta_list[eta_sort_idx[0]] mean_eta[i] = np.mean(eta_list) std_eta[i] = np.std(eta_list) first_mode[i] = mode_list[0] max_dist_mode[i] = mode_list[distance_sort_idx[-1]] min_dist_mode[i] = mode_list[distance_sort_idx[0]] max_price_mode[i] = mode_list[price_sort_idx[-1]] min_price_mode[i] = mode_list[price_sort_idx[0]] max_eta_mode[i] = mode_list[eta_sort_idx[-1]] min_eta_mode[i] = mode_list[eta_sort_idx[0]] feature_data = pd.DataFrame(mode_list_feas) feature_data.columns = ['mode_feas_{}'.format(i) for i in range(12)] feature_data['max_dist'] = max_dist feature_data['min_dist'] = min_dist feature_data['mean_dist'] = mean_dist feature_data['std_dist'] = std_dist feature_data['max_price'] = max_price feature_data['min_price'] = min_price feature_data['mean_price'] = mean_price feature_data['std_price'] = std_price feature_data['max_eta'] = max_eta feature_data['min_eta'] = min_eta feature_data['mean_eta'] = mean_eta feature_data['std_eta'] = std_eta feature_data['max_dist_mode'] = max_dist_mode feature_data['min_dist_mode'] = min_dist_mode feature_data['max_price_mode'] = max_price_mode feature_data['min_price_mode'] = min_price_mode feature_data['max_eta_mode'] = max_eta_mode feature_data['min_eta_mode'] = min_eta_mode feature_data['first_mode'] = first_mode logger.info('mode tfidf...') tfidf_enc = TfidfVectorizer(ngram_range=(1, 2)) tfidf_vec = tfidf_enc.fit_transform(mode_texts) svd_enc = TruncatedSVD(n_components=10, n_iter=20, random_state=2019) mode_svd = svd_enc.fit_transform(tfidf_vec) mode_svd = pd.DataFrame(mode_svd) mode_svd.columns = ['svd_mode_{}'.format(i) for i in range(10)] data = pd.concat([data, feature_data, mode_svd], axis=1) data = data.drop(['plans'], axis=1) return data def gen_profile_feas(data): profile_data = read_profile_data() x = profile_data.drop(['pid'], axis=1).values svd = TruncatedSVD(n_components=20, n_iter=20, random_state=2019) svd_x = svd.fit_transform(x) svd_feas = pd.DataFrame(svd_x) svd_feas.columns = ['svd_fea_{}'.format(i) for i in range(20)] svd_feas['pid'] = profile_data['pid'].values data['pid'] = data['pid'].fillna(-1) data = data.merge(svd_feas, on='pid', how='left') return data def group_weekday_and_hour(row): if row['weekday'] == 0 or row['weekday'] == 6: w = 0 else: w = row['weekday'] if row['hour'] > 7 and row['hour'] < 18: # 7:00 - 18:00 h = row['hour'] elif row['hour'] >= 18 and row['hour'] < 21: # 18:00 - 21:00 h = 1 elif row['hour'] >= 21 or row['hour'] < 6: # 21:00 - 6:00 h = 0 else: # 6:00 - 7:00 h = 2 return str(w) + '_' + str(h) def gen_ratio_feas(data): data['dist-d-eta'] = data['mean_dist'] / data['mean_eta'] data['price-d-dist'] = data['mean_price'] / data['mean_dist'] data['price-d-eta'] = data['mean_price'] / data['mean_eta'] data['o1-d-d1'] = data['o1'] / data['d1'] data['o2-d-d2'] = data['o2'] / data['d2'] return data def gen_fly_dist_feas(data): data['fly-dist'] = ((data['d1'] - data['o1'])**2 + (data['d2'] - data['o2'])**2)**0.5 data['fly-dist-d-dist'] = data['fly-dist'] / data['mean_dist'] data['fly-dist-d-eta'] = data['fly-dist'] / data['mean_eta'] data['price-d-fly-dist'] = data['mean_price'] / data['fly-dist'] return data def gen_aggregate_profile_feas(data): aggr = data.groupby('pid')['sid'].agg(['count']) aggr.columns = ['%s_%s' % ('sid', col) for col in aggr.columns.values] aggr = aggr.reset_index() aggr.loc[aggr['pid'] == -1.0,'sid_count'] = 0 # reset in case pid == -1 data = data.merge(aggr, how='left', on=['pid']) return data def gen_pid_feat(data): feat = pd.read_csv(config.pid_feature_file) data = data.merge(feat, how='left', on='pid') return data def gen_od_feat(data): feat = pd.read_csv(config.od_feature_file) tr_sid = pd.read_csv(config.train_query_file, usecols=['sid','o','d']) te_sid = pd.read_csv(config.test_query_file, usecols=['sid','o','d']) sid = pd.concat((tr_sid, te_sid)) logger.info('sid shape={}'.format(sid.shape)) feat = sid.merge(feat, how='left', on=['o','d']).drop(['o','d'], axis=1) logger.info('feature shape={}'.format(feat.shape)) logger.info('feature columns={}'.format(feat.columns)) data = data.merge(feat, how='left', on='sid') click_cols = [c for c in feat.columns if c.endswith('click')] data.drop(click_cols, axis=1, inplace=True) return data def gen_od_cluster_feat(data): feat = pd.read_csv(config.od_cluster_feature_file) tr_sid = pd.read_csv(config.train_query_file, usecols=['sid','o','d']) te_sid = pd.read_csv(config.test_query_file, usecols=['sid','o','d']) sid = pd.concat((tr_sid, te_sid)) f = feat.copy() feat = sid.merge(feat, how='left', left_on='o', right_on='od').drop(['od','o'], axis=1) feat.rename(columns={'cluster': 'o_cluster'}, inplace=True) feat = feat.merge(f, how='left', left_on='d', right_on='od').drop(['od','d'], axis=1) feat.rename(columns={'cluster': 'd_cluster'}, inplace=True) data = data.merge(feat, how='left', on='sid') return data def gen_od_eq_feat(data): data['o1-eq-d1'] = (data['o1'] == data['d1']).astype(int) data['o2-eq-d2'] = (data['o2'] == data['d2']).astype(int) data['o-eq-d'] = data['o1-eq-d1']*data['o2-eq-d2'] data['o1-m-o2'] = np.abs(data['o1'] - data['o2']) data['d1-m-d2'] = np.abs(data['d1'] - data['d2']) data['od_area'] = data['o1-m-o2']*data['d1-m-d2'] data['od_ratio'] = data['o1-m-o2']/data['d1-m-d2'] return data def gen_od_mode_cnt_feat(data): feat = pd.read_csv(config.od_mode_cnt_feature_file) tr_sid = pd.read_csv(config.train_query_file, usecols=['sid','o','d']) te_sid = pd.read_csv(config.test_query_file, usecols=['sid','o','d']) sid = pd.concat((tr_sid, te_sid)) feat = sid.merge(feat, how='left', on=['o','d']).drop(['o','d'], axis=1) data = data.merge(feat, how='left', on='sid') return data def gen_weekday_hour_cnt_feat(data): feat = pd.read_csv(config.weekday_hour_feature_file) tr_sid = pd.read_csv(config.train_query_file, usecols=['sid','req_time']) te_sid = pd.read_csv(config.test_query_file, usecols=['sid','req_time']) sid = pd.concat((tr_sid, te_sid)) sid['req_time'] = pd.to_datetime(sid['req_time']) sid['hour'] = sid['req_time'].map(lambda x: x.hour) sid['weekday'] = sid['req_time'].map(lambda x: x.weekday()) feat = sid.merge(feat, how='left', on=['hour','weekday']).drop(['hour','weekday','req_time'], axis=1) data = data.merge(feat, how='left', on='sid') return data def gen_od_plan_agg_feat(data): #feat = pd.read_csv(config.od_plan_agg_feature_file) #tr_sid = pd.read_csv(config.train_query_file, usecols=['sid','o','d','req_time']) #te_sid = pd.read_csv(config.test_query_file, usecols=['sid','o','d', 'req_time']) #sid = pd.concat((tr_sid, te_sid)) #sid['req_time'] = pd.to_datetime(sid['req_time']) #sid['hour'] = sid['req_time'].map(lambda x: x.hour) #feat = sid.merge(feat, how='left', on=['o','d','hour']).drop(['o','d','hour','req_time'], axis=1) feat = pd.read_csv(config.od_plan_agg_feature_file) data = data.merge(feat, how='left', on='sid') return data def gen_mode_feat(data): feat = pd.read_csv(config.mode_feature_file) data = data.merge(feat, how='left', on='sid') return data def gen_mode_stats_feat(data): feat = pd.read_csv(config.od_stats_file) data = data.merge(feat, how='left', on='sid') return data def gen_daily_plan_feat(data): feat = pd.read_csv(config.daily_plan_file) data = data.merge(feat, how='left', on='sid') return data def gen_weather_feat(data): feat = pd.read_csv(config.weather_file) data = data.merge(feat, how='left', on='sid') return data def gen_od_pid_count_feat(data): feat = pd.read_csv(config.od_pid_count_file) data = data.merge(feat, how='left', on='sid') return data def gen_plan_ratio_feat(data): feat = pd.read_csv(config.plan_ratio_file) data = data.merge(feat, how='left', on='sid') return data def generate_f1(df): trn_feat_name, tst_feat_name = config.get_feature_name('f1') if os.path.exists(trn_feat_name) and os.path.exists(tst_feat_name): logger.info('loading the training and test features from files.') trn = pd.read_csv(trn_feat_name) tst = pd.read_csv(tst_feat_name) else: df = gen_od_feas(df) df = gen_plan_feas(df) df = gen_profile_feas(df) df = gen_ratio_feas(df) df = gen_fly_dist_feas(df) df = gen_aggregate_profile_feas(df) # 0.6759966661470926 df = gen_pid_feat(df) # 0.6762996872664375 df = gen_od_feat(df) # without click count: 0.6780576865566392; with click count: 0.6795810670221226 df = gen_od_cluster_feat(df) # 0.6796523605372234 df = gen_od_eq_feat(df) trn = df[df['click_mode'] != -1] tst = df[df['click_mode'] == -1] return trn, tst def generate_f2(df): trn_feat_name, tst_feat_name = config.get_feature_name('f2') if os.path.exists(trn_feat_name) and os.path.exists(tst_feat_name): logger.info('loading the training and test features from files.') trn = pd.read_csv(trn_feat_name) tst = pd.read_csv(tst_feat_name) else: trn, tst = generate_f1(df) df = pd.concat((trn, tst)) df = gen_od_mode_cnt_feat(df) # [+] fold #0: 0.6835031183515229 df = gen_weekday_hour_cnt_feat(df) df = gen_od_plan_agg_feat(df) df = gen_mode_feat(df) #df = gen_mode_stats_feat(df) ## df = gen_weather_feat(df) #df = gen_daily_plan_feat(df) #df = gen_od_pid_count_feat(df) ## df = gen_plan_ratio_feat(df) trn = df[df['click_mode'] != -1] tst = df[df['click_mode'] == -1] return trn, tst def generate_f3(df): trn_feat_name, tst_feat_name = config.get_feature_name('f1') if os.path.exists(trn_feat_name) and os.path.exists(tst_feat_name): logger.info('loading the training and test features from files.') trn = pd.read_csv(trn_feat_name) tst = pd.read_csv(tst_feat_name) else: trn, tst = generate_f2(df) df = pd.concat((trn, tst)) #df = gen_mode_stats_feat(df) ## df = gen_weather_feat(df) #df = gen_daily_plan_feat(df) #df = gen_od_pid_count_feat(df) ## df = gen_plan_ratio_feat(df) trn = df[df['click_mode'] != -1] tst = df[df['click_mode'] == -1] return trn, tst def get_train_test_features(): config.set_feature_name('f1') if os.path.exists(config.train_feature_file) and os.path.exists(config.test_feature_file): logger.info('loading the training and test features from files.') trn = pd.read_csv(config.train_feature_file) tst = pd.read_csv(config.test_feature_file) else: df = merge_raw_data() logger.info('generating feature f1.') trn, tst = generate_f1(df) logger.info('saving the training and test f1 features.') trn.to_csv(config.train_feature_file, index=False) tst.to_csv(config.test_feature_file, index=False) y = trn['click_mode'].values sub = tst[['sid']].copy() trn.drop(['sid', 'pid', 'click_mode'], axis=1, inplace=True) tst.drop(['sid', 'pid', 'click_mode'], axis=1, inplace=True) return trn, y, tst, sub def get_train_test_features2(): config.set_feature_name('f2') if os.path.exists(config.train_feature_file) and os.path.exists(config.test_feature_file): logger.info('loading the training and test features from files.') trn = pd.read_csv(config.train_feature_file) tst = pd.read_csv(config.test_feature_file) else: df = merge_raw_data() logger.info('generating feature f2.') trn, tst = generate_f2(df) logger.info('saving the training and test f2 features.') trn.to_csv(config.train_feature_file, index=False) tst.to_csv(config.test_feature_file, index=False) y = trn['click_mode'].values sub = tst[['sid']].copy() trn.drop(['sid', 'pid', 'click_mode'], axis=1, inplace=True) tst.drop(['sid', 'pid', 'click_mode'], axis=1, inplace=True) return trn, y, tst, sub def get_train_test_features2a(): config.set_feature_name('f2') if os.path.exists(config.train_feature_file) and os.path.exists(config.test_feature_file): logger.info('loading the training and test features from files.') trn = pd.read_csv(config.train_feature_file) tst = pd.read_csv(config.test_feature_file) else: df = merge_raw_data() logger.info('generating feature f2.') trn, tst = generate_f2(df) logger.info('saving the training and test f2 features.') trn.to_csv(config.train_feature_file, index=False) tst.to_csv(config.test_feature_file, index=False) y = trn['click_mode'].values sub = tst[['sid']].copy() feat = pd.read_csv('/home/ubuntu/projects/kddcup2019track1/build/feature/od_coord_feature.csv') trn = trn.merge(feat, how='left', on='sid') tst = tst.merge(feat, how='left', on='sid') feat = pd.read_csv('/home/ubuntu/projects/kddcup2019track1/input/data_set_phase1/var_dist_time.csv') trn = trn.merge(feat, how='left', on='sid') tst = tst.merge(feat, how='left', on='sid') feat = pd.read_csv('/home/ubuntu/projects/kddcup2019track1/input/data_set_phase1/var_dist_min.csv') trn = trn.merge(feat, how='left', on='sid') tst = tst.merge(feat, how='left', on='sid') trn.drop(['sid', 'pid', 'click_mode'], axis=1, inplace=True) tst.drop(['sid', 'pid', 'click_mode'], axis=1, inplace=True) return trn, y, tst, sub def get_train_test_features3(): config.set_feature_name('f3') if os.path.exists(config.train_feature_file) and os.path.exists(config.test_feature_file): logger.info('loading the training and test features from files.') trn = pd.read_csv(config.train_feature_file) tst = pd.read_csv(config.test_feature_file) else: df = merge_raw_data() logger.info('generating feature f3.') trn, tst = generate_f3(df) logger.info('saving the training and test f3 features.') trn.to_csv(config.train_feature_file, index=False) tst.to_csv(config.test_feature_file, index=False) y = trn['click_mode'].values sub = tst[['sid']].copy() trn.drop(['sid', 'pid', 'click_mode'], axis=1, inplace=True) tst.drop(['sid', 'pid', 'click_mode'], axis=1, inplace=True) return trn, y, tst, sub def get_train_test_features4(): config.set_feature_name('f4') if os.path.exists(config.train_feature_file) and os.path.exists(config.test_feature_file): logger.info('loading the training and test features from files.') trn = pd.read_csv(config.train_feature_file) tst =
pd.read_csv(config.test_feature_file)
pandas.read_csv
import pandas as pd import numpy as np def construct_freq_df(df_copy): ''' Construct a dataframe such that indices are seperated by delta 1 min from the Market Data and put it in a format that markov matrices can be obtained by the pd.crosstab() method ''' #This is here in case user passes the actual dataframe, we do not want to modify the actual dataframe df = df_copy.copy() #Blank dataframe placeholder frames = pd.DataFrame() #Set the index to timestamp and convert it to pd timestamp #The datatype of the timestamp column should be string df.set_index('timestamp', inplace=True) df.index = pd.to_datetime(df.index) #We need to get customer behaviour from entry to checkout for each unique customerr for customer in df['customer_no'].unique(): #get customer temp_df = df[df['customer_no'] == customer] #expand timestamp index such that delta T is 1 min, and forward fill isles temp_df = temp_df.asfreq('T',method='ffill') #insert 'entry' 1 min before first isle #re sort index so that times make sense #(WE MIGHT NEED TO SKIP THIS NOT SURE IF ENTRY STATE IS REQUIRED) temp_df.loc[temp_df.index[0] - pd.to_timedelta('1min')] = [customer,'entry'] temp_df.sort_index(inplace=True) #after is simply a shift(-1) of current location #checkout location does not have an after, so drop the NA's here temp_df['after'] = temp_df['location'].shift(-1) temp_df.dropna(inplace=True) #join the frequency table for each customer frames = pd.concat([frames, temp_df], axis=0) #return the frequency frame return frames def generate_markov_matrix(df_copy): ''' Generate the Markov Matrix for a Market Data dataframe, structured by constuct_freq_df() function NOTE: Columns indicate current state, rows indicate after state, probabilities are read current -> after probability sum of columns should add to 1. Since Checkout state is a sink, all after probabilities are 0, not calculated. ''' df = df_copy.copy() return pd.crosstab(df['after'], df['location'], normalize=1) class Customer: def __init__(self, idn, state, transition_mat): self.id = idn self.state = state self.transition_mat = transition_mat self.tr_array_dict = { 'dairy' : self.transition_mat[0,:], 'drinks' : self.transition_mat[1,:], 'entry' : self.transition_mat[2,:], 'fruit' : self.transition_mat[3,:], 'spices' : self.transition_mat[4,:] } def __repr__(self): """ Returns a csv string for that customer. """ return f'{self.id};{self.state}' def is_active(self): """ Returns True if the customer has not reached the checkout for the second time yet, False otherwise. """ if self.state != 'checkout': return True if self.state == 'checkout': return False def next_state(self): """ Propagates the customer to the next state using a weighted random choice from the transition probabilities conditional on the current state. Returns nothing. """ self.state = np.random.choice(['checkout', 'dairy', 'drinks', 'fruit', 'spices'], p=self.tr_array_dict[f'{self.state}']) class SuperMarket: """manages multiple Customer instances that are currently in the market. """ def __init__(self,transition_matrix): #List contains the customer objects self.customers = [] #Timing stuff set to some defults, open and close time get their values from the simulate() method when called self.open_time = pd.to_datetime('08:00',format='%H:%M') self.close_time = pd.to_datetime('17:00',format='%H:%M') self.current_time = pd.to_datetime('08:00',format='%H:%M') #Customer id counter, so that we can consistently assign ids to new customers self.last_id = 0 #current and total state during a simulation, total state is initiated like this because it becomes the header of a dataframe #when returned from results() method, also it needs to be in 1x3 shapre for np.vstack() to work in update_total_state() self.current_state = np.array([]) self.total_state = np.array(['timestamp','customer_id','customer_location']) #transition matrix is assigned when initiating the SuperMarket object self.transition_matrix = transition_matrix def __repr__(self): pass def write_current_state(self): """ writes the current state during a simulation. Makes rows with current time, customer.id and customer.state of current customers in the market """ self.current_state = np.array([[self.current_time, customer.id, customer.state] for customer in self.customers]) def update_total_state(self): """ updates the total state, this is constantly updated by the current state during a simulation which yields the final data from the simulation can be directly accessed or returned as a neat dataframe by the results() method """ self.total_state = np.vstack((self.total_state,self.current_state)) def next_minute(self): """propagates all customers to the next state. Adds one minute to current time and updates all customers in the market to their next state """ self.current_time += pd.Timedelta(1,'m') #self.customers = [customer.next_state() for customer in self.customers] for customer in self.customers: customer.next_state() #return get_time() def add_new_customers(self, n_customers): """randomly creates new customers. Adds n_customer number of customers to the current list, they all start at the entry, and assigned an id that is +1 of the current id. Afterwards updates the last id by the latest customer """ self.customers = self.customers + [Customer(self.last_id + 1 + i, 'entry', self.transition_matrix) for i in range(n_customers)] self.last_id = self.customers[-1].id def remove_exiting_customers(self): """removes every customer that is not active any more. Goes through the customer list and if they are active keeps them, the ones in checkout are dropped """ self.customers = [customer for customer in self.customers if customer.is_active() == True] def count_checkout(self): """ counts the number of customers that are at checkout at the current_state. This would be easier if current_state was a dataframe but since it is a numpy matrix we return the submatrix where the 3rd row is checkout, then we "pseudo count" them by looking at the shape """ row_mask = (self.current_state[:,2] == 'checkout') return self.current_state[row_mask,:].shape[0] def simulate(self,initial_customers=20,open_time='8:00',close_time='8:10'): """ Simulates the SuperMarket. Gets initial customers, opening time and closing time from the user """ self.current_state = np.array([]) self.total_state = np.array(['timestamp','customer_id','customer_location']) #Timing stuff self.open_time =
pd.to_datetime(open_time,format='%H:%M')
pandas.to_datetime
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jun 14 11:32:39 2019 @author: github.com/sahandv """ import sys, os, time import platform from pathlib import Path def scopus_initialize(ignore_py_version = False, ignore_scopus_config = False): if platform.system() != 'Linux': print("\n * It is recommended to use a Linux system.") if ignore_py_version is False: try: assert sys.version_info >= (3, 5) except AssertionError: sys.exit("\n * Please use Python 3.5 +") try: import mmap except ImportError: sys.exit("\n * Please install mmap.") try: import tqdm except ImportError: sys.exit("\n * Please install tqdm.") try: import pandas except ImportError: sys.exit("\n * Please install pandas.") try: import nltk except ImportError: sys.exit("\n * Please install nltk.") if ignore_scopus_config is False: try: import scopus except ImportError: sys.exit("\n * Please install scopus package before using this code. Try usng 'pip install scopus'.") my_file = Path(str(Path.home())+'/.scopus/config.ini') if my_file.is_file(): print("\n * Configuration file already exists at "+str(Path.home())+'/.scopus/config.ini'+". You may the file and edit the entries manually.") else: scopus.utils.create_config() def search_scopus(query, download = True): from scopus import ScopusSearch result = ScopusSearch(query,download = download) return result def retrieve_abstract_try(eid,view = 'REF',param = 'references'): from scopus import AbstractRetrieval try: refs = AbstractRetrieval(eid, view = view)._json[param] except KeyError: print('An error occurred (1) ...') return 1 except UnboundLocalError: print('An error occurred (2). Probably an empty eID provided? ') return 2 except KeyboardInterrupt: sys.exit("Interrupting due to user command.") except: print('An error occurred (?)...') return 0 else: return refs # ============================================================================= # Get references for document by eID # # eid : the publication scopus eid # retry : the number of retries if it fails due to some reason like quota # force : don't prompt to fail the program and go more than retry limit # ============================================================================= def get_refs_by_eid(eid, retry = 1, force = False): # from scopus import AbstractRetrieval import pandas as pd refs = None for i in range(retry+1): refs = retrieve_abstract_try(eid) if refs == 1 or refs == 2 or (refs == 0 and retry == 0): print('Returning None.') return None, None, None if refs == 0: print("Trying again: " , i ," of ", retry) if i >= retry and force is False: print("How many more retries do you want? [0 means break] ") input_val = input() input_val = int(input_val) if input_val == 0: print('Returning None.') return None, None, None else: get_refs_by_eid(eid, input_val, force) if refs != 1 and refs != 2 and refs != 0: break try: ref_list_full = refs['reference'] ref_count = refs['@total-references'] except TypeError: print('Returning None.') return None, None, None if ref_count == '1' or ref_count == 1: print('The article has only 1 refrences.') ref_list_full = [ref_list_full] if ref_count == '0' or ref_count == 0: print('The article has 0 refrences! Returning None and ignoring.') return None, None, None ref_list_full_df = pd.DataFrame(ref_list_full) try: ref_list_eid = ref_list_full_df['scopus-eid'] except KeyError: ref_list_eid = None return ref_list_eid,ref_list_full,ref_count # ============================================================================= # Fetch references for a series of eIDs # ============================================================================= def get_refs_from_publications_df(dataframe_eid,verbose = True,retry = 0, force = False): import pandas as pd import psutil memory = psutil.virtual_memory() if len(dataframe_eid) > 10000 and memory[1]/1000000000 < 8: input("There are too many records to fetch (>10k) for your free memory. Please free up memory or press Enter to continue anyway.") all_refs = [] valid_eids = [] for eid in dataframe_eid: if verbose is True: print('Fetching references for ',eid) refs_eid, _, _, = get_refs_by_eid(eid,retry,force) if refs_eid is not None: all_refs.append(refs_eid) valid_eids.append(eid) return valid_eids,all_refs # ============================================================================= # Get number of lines in file # ============================================================================= def get_num_lines(file_address): import mmap fp = open(file_address, "r+") buf = mmap.mmap(fp.fileno(), 0) lines = 0 while buf.readline(): lines += 1 return lines # ============================================================================= # Read author properties from 'author' field # ============================================================================= def read_author(author_field,retry_no=0): import json retry_no+=1 author_json = None author_field = author_field.replace("\'", "\"") author_field = author_field.replace("None", "\"\"") try: author_json = json.loads(author_field) except json.JSONDecodeError as decodererror: if 'Expecting value' in decodererror.msg: author_field = author_field[1:-1] read_author(author_field,retry_no) if retry_no>4: return author_json # if 'Extra data' in decodererror.msg: # author_field = author_field[2:-2] # author_field = author_field.split('}, {') # author_json = [] # for row in author_field: # row = '{'+row+'}' # try: # author_json.append(json.loads(row)) # except json.JSONDecodeError as decodererror: # print(decodererror.args,'\n',row) return author_json # ============================================================================= # Turn author dictionary to string in WoS format # ============================================================================= def authors_to_string(authors_row): if authors_row != '': strings = [] for author in authors_row: strings.append(author['surname']+', '+author['initials'].replace('.','')) return '; '.join(strings) else: return '' # ============================================================================= # Turn JSON data to Pandas DataFrame # ============================================================================= def json_to_df(file_address = None,verbose = True): import json from tqdm import tqdm import pandas as pd if file_address is None: from stat import S_ISREG, ST_CTIME, ST_MODE dir_path = str(Path.home())+'/.scopus/scopus_search/COMPLETE/' data = (os.path.join(dir_path, fn) for fn in os.listdir(dir_path)) data = ((os.stat(path), path) for path in data) data = ((stat[ST_CTIME], path) for stat, path in data if S_ISREG(stat[ST_MODE])) print("\n * No json file was supplied. Searching the scopus cache files...") for cdate, path in sorted(data): print(' - ', time.ctime(cdate), os.path.basename(path)) file_address = path if file_address is not None: print("Will process ",file_address,'. File size: ',int(os.path.getsize(file_address)/1000000),'MB') try: input("Press enter to process...") except SyntaxError: pass else: sys.exit("Please supply a json file. The cache was also empty. :(") all_publications = [] counter = 0 with open(file_address) as publication_data_text: for line in tqdm(publication_data_text, total=get_num_lines(file_address)): publication_data_dict = json.loads(line) try: publication_data_dict["author_keywords"] = publication_data_dict['authkeywords'].split(" | ") except KeyError: if verbose is True: print(counter," - This publication has no author keywords!") all_publications.append(publication_data_dict) counter+=1 print("\nFinished parsing.") return
pd.DataFrame(all_publications)
pandas.DataFrame
# ไฝ ๅฅฝ, ๆฌข่ฟŽไฝฟ็”จ EF ้ฅฎ้ฃŸ่ฎก็ฎ—ๅ™จ # ไฝ ๅช้œ€่ฆๆ”นไธคไธชๆ•ฐๅญ—ๅฐฑๅฏไปฅไฝฟ็”จไบ†: heat_required = 2500 # ่ฏทๆŠŠๆ•ฐๅญ—2500ๆ”นๆˆไฝ ๆ‰€้œ€่ฆๆ‘„ๅ…ฅ็š„ๆ€ป่ƒฝ้‡ required_cp_ratio=2.5 # ๅฆ‚ๆžœไฝ ๅธŒๆœ›็ขณๆฐดๆไพ›็š„่ƒฝ้‡ๆ˜ฏ่›‹็™ฝ่ดจๆไพ›็š„่ƒฝ่ƒฝ้‡็š„ไธ‰ๅ€, ๅฐฑๆŠŠ2ๆ”นๆˆ3 # ๆŒ‰็…ง่ฟ™ไธชๆ ผๅผๆทปๅŠ ไฝ ้œ€่ฆ็š„้ฃŸ็‰ฉๆ•ฐๆฎ # '้ธก่ƒธ่‚‰': [7.72, 0, 29.55] ็š„ๆ„ๆ€ๆ˜ฏ: # ้ฃŸ็‰ฉๅ็งฐ:้ธก่ƒธ่‚‰ # ๆฏ100g้ธก่ƒธ่‚‰ๅซๆœ‰7.72g่„‚่‚ช # ๆฏ100g้ธก่ƒธ่‚‰ๅซๆœ‰0g็ขณๆฐดๅŒ–ๅˆ็‰ฉ # ๆฏ100g้ธก่ƒธ่‚‰ๅซๆœ‰29.55g่„‚่‚ช # ๅฆ‚ๆžœ่ฆๆทปๅŠ ๆ•ฐๆฎ, ้œ€่ฆๅœจ '่’ธๅ—็“œ': [0.07, 5.33, 0.8] ๅŽ้ขๅŠ ๅ…ฅไธ€ๆกๆ–ฐๆ•ฐๆฎ # ๆณจๆ„, ๆฏไธช้ฃŸ็‰ฉ็š„ๆ•ฐๆฎไน‹้—ด่ฆ็”จ้€—ๅท้š”ๅผ€ data_dict = {'้ธก่ƒธ่‚‰': [7.72, 0, 29.55], '็ฑณ้ฅญ': [0.33, 25.86, 2.60], '็บข่–ฏ': [0.05, 20.45, 1.57], '็‰›ๆŽ’': [15.01, 0, 27.29], '่’ธๅ—็“œ': [0.07, 5.33, 0.8],'้ขๅŒ…':[3.29,50.61,7.64],'ๅฏๅฃๅฏไน':[0,10.6,0]} # ไธ‹้ข็š„ไธ้œ€่ฆ็œ‹ #๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ #๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ #๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ #๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ #๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ #๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ #๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ #๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ #๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ #๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ #๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ #๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ #๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ #๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ #๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ #๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ #๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ #๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ #๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ #๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ #๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ #๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ #๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ #๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ๏ผ import numpy as np import pandas as pd import time start=time.time() def data_function(data_dict): data = pd.DataFrame(data_dict) data.shape[1] for i in range(data.shape[0]): data.loc[i] =
pd.to_numeric(data.iloc[i, :], errors='coerce')
pandas.to_numeric
import re import time from datetime import datetime import json import numpy as np import pandas as pd from utilities.canvas_api import ( get_courses, get_outcome_results, get_course_users, get_users, get_enrollment_terms, ) from utilities.cbl_calculator import calculate_traditional_grade from utilities.db_functions import ( insert_grades_to_db, create_record, delete_outcome_results, upsert_alignments, upsert_users, upsert_outcome_results, upsert_outcomes, upsert_courses, query_current_outcome_results, get_db_courses, insert_course_students, delete_course_students, delete_grades_current_term, upsert_enrollment_terms, get_calculation_dictionaries, get_current_term, get_sync_terms ) def make_grade_object(grade, outcome_avgs, record_id, course, user_id): """ Creates grade dictionary for grades table :param grade: Letter Grade :param outcome_avgs: List of outcome average info dictionaries :param record_id: Current Record ID :param course: Course Dictionary :param user_id: User ID :return: return dictionary formatted for Grades Table """ # store in a dict grade = dict( user_id=user_id, course_id=course["id"], grade=grade["grade"], threshold=grade["threshold"], min_score=grade["min_score"], record_id=record_id, outcomes=outcome_avgs, ) return grade def outcome_results_to_df_dict(df): return df.to_dict("records") def make_empty_grade(course, grades_list, record_id, user_id): """ Create empty grade for non-graded courses :param course: course dictionary :param grades_list: list to append empty grade to :param record_id: record ID :param user_id: user_id :return: """ empty_grade = {"grade": "n/a", "threshold": None, "min_score": None} grade = make_grade_object(empty_grade, [], record_id, course, user_id) grades_list.append(grade) def make_outcome_result(outcome_result, course_id, enrollment_term): temp_dict = { "id": outcome_result["id"], "score": outcome_result["score"], "course_id": course_id, "user_id": outcome_result["links"]["user"], "outcome_id": outcome_result["links"]["learning_outcome"], "alignment_id": outcome_result["links"]["alignment"], "submitted_or_assessed_at": outcome_result["submitted_or_assessed_at"], "last_updated": datetime.utcnow(), # 'enrollment_term': enrollment_term } return temp_dict def format_outcome(outcome): try: temp_dict = { "id": outcome["id"], "display_name": outcome["display_name"], "title": outcome["title"], "calculation_int": outcome["calculation_int"], } except: temp_dict = { "id": outcome["id"], "display_name": outcome["display_name"], "title": outcome["title"], "calculation_int": 65, } print("*****************") print("there was a calc_int error") return temp_dict return temp_dict def format_alignments(alignment): ids = ["id", "name"] return {_id: alignment[_id] for _id in ids} def pull_outcome_results(current_term, engine): # get all courses for current term todo - pull from database current_term_id = current_term["id"] courses = get_courses(current_term_id) # get outcome result rollups for each course and list of outcomes pattern = "@dtech|Teacher Assistant|LAB Day|FIT|Innovation Diploma FIT" count = 0 for idx, course in enumerate(courses): print(course["id"]) print(f'{course["name"]} is course {idx + 1} our of {len(courses)}') # Check if it's a non-graded course if re.match(pattern, course["name"]): print(course["name"]) continue # get course users users = get_course_users(course) user_ids = [user["id"] for user in users] outcome_results, alignments, outcomes = get_outcome_results( course, user_ids=user_ids ) # Format results, Removed Null filter (works better for upsert) res_temp = [ make_outcome_result(outcome_result, course["id"], current_term_id) for outcome_result in outcome_results ] # filter out any duplicates (this shouldn't be an issue but a duplicate sometimes shown up) done = [] outcome_results = [] for res in res_temp: if res['id'] not in done: done.append(res['id']) outcome_results.append(res) # outcome_results = [i for n, i in enumerate(outcome_results) if i not in outcome_results[n + 1:]] # Format outcomes outcomes = [format_outcome(outcome) for outcome in outcomes] # Filter out duplicate outcomes outcomes = [ val for idx, val in enumerate(outcomes) if val not in outcomes[idx + 1 :] ] # format Alignments alignments = [format_alignments(alignment) for alignment in alignments] # filter out duplicate alignments alignments = [ val for idx, val in enumerate(alignments) if val not in alignments[idx + 1 :] ] # If there are results to upload if outcome_results: upsert_outcomes(outcomes, engine) print("outcome upsert complete") upsert_alignments(alignments, engine) print("alignment upsert complete") print(f'deleting outcome_results for {course["name"]}') delete_outcome_results(course["id"], engine) print("old outcome results deleted") print(f"outcomes results to upload: {len(outcome_results)}") upsert_outcome_results(outcome_results, engine) print("result upsert complete") # count = count + 1 # if count > 1: # break def insert_grades(current_term, engine): print(f"Grade pull started at {datetime.now()}") calculation_dictionaries = get_calculation_dictionaries(engine) # check if the cut off date has been set if current_term["cut_off_date"]: cut_off_date = current_term["cut_off_date"] # if not, set it to the last day of the term else: cut_off_date = current_term["end_at"] outcome_results = query_current_outcome_results(current_term["id"], engine) # Check if there are any outcome results in the current_term. If not exit. if outcome_results.empty: print(f"Term {current_term['id']} has no outcome results.") return None drop_eligible_results = outcome_results.loc[ outcome_results["submitted_or_assessed_at"] < cut_off_date ] # get min score from drop_eligible_results group_cols = ["links.user", "course_id", "outcome_id"] min_score = ( drop_eligible_results.groupby(group_cols) .agg(min_score=("score", "min")) .reset_index() ) full_avg = ( outcome_results.groupby(group_cols) .agg(full_avg=("score", "mean"), count=("score", "count"), sum=("score", "sum")) .reset_index() ) outcome_avgs = pd.merge(min_score, full_avg, on=group_cols) outcome_avgs["drop_avg"] = (outcome_avgs["sum"] - outcome_avgs["min_score"]) / ( outcome_avgs["count"] - 1 ) # Pick the higher average outcome_avgs["outcome_avg"] = np.where( outcome_avgs["drop_avg"] > outcome_avgs["full_avg"], outcome_avgs["drop_avg"], outcome_avgs["full_avg"], ) # calculate the grades group_cols = ["links.user", "course_id"] grades = outcome_avgs.groupby(group_cols).agg( grade_dict=( "outcome_avg", lambda x: calculate_traditional_grade(x, calculation_dictionaries), ) ) grades.reset_index(inplace=True) # format the grades grades[["threshold", "min_score", "grade"]] = pd.DataFrame( grades["grade_dict"].values.tolist(), index=grades.index ) # Make a new record print(f"Record created at {datetime.now()}") record_id = create_record(current_term["id"], engine) grades["record_id"] = record_id # Create grades_dict for database insert grades.rename(columns={"links.user": "user_id"}, inplace=True) grade_cols = [ "course_id", "user_id", "threshold", "min_score", "grade", "record_id", ] grades_list = grades[grade_cols].to_dict("r") # Delete grades from current term delete_grades_current_term(current_term["id"], engine) # Insert into Database if len(grades_list): insert_grades_to_db(grades_list, engine) def calc_outcome_avgs(outcome_results): """ Calculates outcome averages with both simple and weighted averages, choosing the higher of the two :param outcome_results: :return: DataFrame of outcome_averages with max of two averages """ group_cols = ["links.user", "outcome_id", "course_id"] # Calculate the average without dropping the low score no_drop_avg = ( outcome_results.groupby(group_cols) .agg(no_drop_score=("score", "mean")) .reset_index() ) # Calculate the average without dropping the low score outcome_results_drop_min = outcome_results[outcome_results["rank"] != 1.0] drop_avg = ( outcome_results_drop_min.groupby(group_cols) .agg(drop_score=("score", "mean")) .reset_index() ) # Merge them together outcome_averages =
pd.merge(no_drop_avg, drop_avg, on=group_cols)
pandas.merge
import pandas_datareader.data as web import datetime import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output import tweepy from ibm_watson import PersonalityInsightsV3 import json import pandas as pd import time # Credentials for APIs and auth callers TWITTER_AUTH = tweepy.OAuthHandler(TWITTER_CONSUMER_KEY,TWITTER_CONSUMER_SECRET) TWITTER_AUTH.set_access_token(TWITTER_ACCESS_TOKEN,TWITTER_ACCESS_TOKEN_SECRET) TWITTER = tweepy.API(TWITTER_AUTH) # Placeholder data # df = pd.read_csv('austen_with_time.csv') app = dash.Dash() app.layout = html.Div(children=[ # Hidden div that stores cached state, the intermediate value html.Div(id='intermediate-value', style={'display': 'none'}), html.Div(children=''' Enter twitter handle: '''), dcc.Input(id='input', value='elonmusk', type='text'), html.Div(id='overall-graph'), html.Div(id='personality-graph'), html.Div(id='needs-graph'), html.Div(id='values-graph'), ]) # Get data, process it, and make it available to other callbacks @app.callback(Output('intermediate-value', 'children'), [Input('input', 'value')] ) def get_and_process_data(input): # WARNING: this is a very expensive step # API call and store data # Do not set the num_periods over 5, it will eat up the API num_periods = 5 name = 'elonmusk' df_a =
pd.DataFrame()
pandas.DataFrame
import os import sys import argparse import tempfile import pandas as pd import sys_tool from allele_util import AlleleUtil from coord_util import CoordUtil from tf_util import TfUtil from dhs_util import MasterDhsUtil, UniformDhsUtil from phastcons_util import PhastconsUtil from tss_util import TssDistUtil from eqtl_util import EqtlUtil from gerp_util import GerpUtil from genome_seg_util import GenomeSegUtil from dna_shape_gc_content_util import DnaShapeGcContentUtil from eigen_util import EigenUtil from nki_lad_util import NkiLadUtil from repli_chip_util import RepliChipUtil from sanger_tfbs_util import SangerTfbsUtil from vista_enhancer_util import VistaEnhancerUtil from gwava_util import GwavaUtil from augmented_feature_util import AugmentedUtil if sys.version_info[0] == 3: # Using Python3 from functools import reduce # `reduce` is a built-in function in Python2 if __name__ == "__main__": parser = argparse.ArgumentParser(description="Extract BEF features.", allow_abbrev=False) parser.add_argument('-r', '--rsnp', dest='r_src', type=str, required=True, help="input file of rSNP rsid") parser.add_argument('-c', '--csnp', dest='c_src', type=str, required=True, help="input file of cSNP rsid") parser.add_argument('-f', '--feature', dest='f_dest', type=str, required=True, help="output file of the feature matrix") args = parser.parse_args() print("[cerenkov_bef] RSNP src: {}; CSNP src: {}; Feature Dest: {};". format(args.r_src, args.c_src, args.f_dest)) # ----- 0. READ RSID ----- rsnp_fn = args.r_src rsnp_dfm = pd.read_table(rsnp_fn, header=0, usecols=['name']) rsnp_dfm = rsnp_dfm.assign(label=1) csnp_fn = args.c_src csnp_dfm =
pd.read_table(csnp_fn, header=0, usecols=['name'])
pandas.read_table
""" A nowtrade module to enables pulling stock/currency data from external sources. Also makes it easy to store this data locally for future strategy testing. """ import urllib.request import urllib.error import zipfile import datetime from io import StringIO import pandas_datareader.data as web import pandas as pd from pandas import read_csv from nowtrade import logger class NoDataException(Exception): """ Exception used when no data could be gathered from a data connection. """ pass class DataConnection(object): """ Base class for all data connections. """ def __init__(self): self.logger = logger.Logger(self.__class__.__name__) self.logger.info('Initialized') def __str__(self): return self.__class__.__name__ class YahooConnection(DataConnection): """ Utilizes Pandas' Remote Data Access methods to fetch symbol data from Yahoo. """ def get_data(self, symbol, start, end): """ @type symbol: string @type start: datetime @type end: datetime @return: Returns a pandas DataFrame of the requested symbol @rtype: pandas.DataFrame """ ret = web.DataReader(str(symbol).upper(), 'yahoo', start, end) ret.rename(columns=lambda name: '%s_%s' % (symbol, name), inplace=True) return ret class GoogleConnection(DataConnection): """ Utilizes Pandas' Remote Data Access methods to fetch symbol data from Google. """ def _request(self, url): """ Used for custom request outside of Pandas framework. """ try: return urllib.request.urlopen(url) except urllib.error.HTTPError as e: print('Error when connecting to Google servers:', urllib.error) except IOError as error: print('Could not connect to Google servers with url %s: %s' % (url, error)) except Exception as error: # pylint: disable=broad-except print( 'Unknown Error when trying to connect to Google servers: %s' % error) def get_data(self, symbol, start, end, symbol_in_column=True): """ @type symbol: string @type start: datetime @type end: datetime @return: Returns a pandas DataFrame of the requested symbol @rtype: pandas.DataFrame """ ret = web.DataReader(str(symbol).upper(), 'google', start, end) if symbol_in_column: ret.rename(columns=lambda name: '%s_%s' % (symbol, name), inplace=True) return ret def get_ticks(self, symbol, period='15d', interval=60, symbol_in_column=True): """ Always returns 15 days worth of 1min data. Get tick prices for the given ticker symbol. @param symbol: symbol symbol @type symbol: string """ symbol = str(symbol).upper() data = None # Return data url = 'http://www.google.com/finance/getprices?i=%s&p=%s&f=d,o,h,l,c,v&q=%s' \ % (interval, period, symbol) page = self._request(url) entries = page.readlines()[7:] # first 7 line is document information days = [] # Keep track of all days day = None # Keep track of current day date = None # Keep track of current time # sample values:'a1316784600,31.41,31.5,31.4,31.43,150911' for entry in entries: quote = entry.strip().split(',') if quote[0].startswith('a'): # Datetime day = datetime.datetime.fromtimestamp(int(quote[0][1:])) days.append(day) date = day else: date = day + \ datetime.timedelta(minutes=int(quote[0])*interval/60) if symbol_in_column: data_frame = pd.DataFrame({'%s_Open' % symbol: float(quote[4]), '%s_High' % symbol: float(quote[2]), '%s_Low' % symbol: float(quote[3]), '%s_Close' % symbol: float(quote[1]), '%s_Volume' % symbol: int(quote[5])}, index=[date]) else: data_frame = pd.DataFrame({'Open': float(quote[4]), 'High': float(quote[2]), 'Low': float(quote[3]), 'Close': float(quote[1]), 'Volume': int(quote[5])}, index=[date]) if data is None: data = data_frame else: data = data.combine_first(data_frame) # Reindex for missing minutes new_index = None for day in days: index = pd.date_range(start=day, periods=391, freq='1Min') if new_index is None: new_index = index else: new_index = new_index + index # Front fill for minute data return data.reindex(new_index, method='ffill') class OandaConnection(DataConnection): """ Data connection used to gather data from the Oanda forex broker. """ def __init__(self, account_id, access_token, environment='practice'): DataConnection.__init__(self) import oandapy # pylint: disable=import-error self.account_id = account_id self.environment = environment self.oanda = oandapy.API( environment=environment, access_token=access_token) def __str__(self): return 'OandaConnection(account_id=%s, access_token=******, environment=%s)' \ % (self.account_id, self.environment) def __repr__(self): return 'OandaConnection(account_id=%s, access_token=******, environment=%s)' \ % (self.account_id, self.environment) def get_data(self, symbol, granularity='H1', periods=5000, realtime=False, symbol_in_column=True): """ Gets the dataframe containing all of the currency data requested. """ self.logger.info('Getting %s candles of %s data for %s granularity \ (realtime=%s, symbol_in_column=%s)' % (periods, symbol, granularity, realtime, symbol_in_column)) candles = self.oanda.get_history(account_id=self.account_id, instrument=symbol, granularity=granularity, count=periods)['candles'] if not realtime: candles.pop() data = None for candle in candles: date = datetime.datetime.strptime( candle['time'], "%Y-%m-%dT%H:%M:%S.000000Z") if symbol_in_column: data_frame = pd.DataFrame({'%s_Open' % symbol: candle['openBid'], '%s_High' % symbol: candle['highBid'], '%s_Low' % symbol: candle['lowBid'], '%s_Close' % symbol: candle['closeBid'], '%s_Volume' % symbol: candle['volume']}, index=[date]) else: data_frame = pd.DataFrame({'Open' % symbol: candle['openBid'], 'High' % symbol: candle['highBid'], 'Low' % symbol: candle['lowBid'], 'Close' % symbol: candle['closeBid'], 'Volume' % symbol: candle['volume']}, index=[date]) if data is None: data = data_frame else: data = data.combine_first(data_frame) self.logger.debug('Data: %s' % data) return data class ForexiteConnection(DataConnection): """ Forexite 1min data """ URL = "http://www.forexite.com/free_forex_quotes/%s/%s/%s%s%s.zip" #URL = "http://www.forexite.com/free_forex_quotes/YY/MM/DDMMYY.zip" def get_data(self, start, end): """ Always returns 1min OPEN, HIGH, LOW, CLOSE for all available currency pairs on the Forexite website. No Volume information. """ assert start <= end data = {} # One day at a time while start <= end: day = str(start.day) if len(day) == 1: day = '0%s' % day month = str(start.month) if len(month) == 1: month = '0%s' % month long_year = str(start.year) year = long_year[2:] url = self.URL % (long_year, month, day, month, year) start = start + datetime.timedelta(1) try: page = urllib.request.urlopen(url) except urllib.error.HTTPError as error: print(error) continue zipf = zipfile.ZipFile(StringIO(page.read())) series = read_csv(zipf.open('%s%s%s.txt' % (day, month, year)), parse_dates=True) for ticker in series['<TICKER>'].unique(): data_frame = series.loc[series['<TICKER>'] == ticker] # pylint: disable=no-member first_row = data_frame.iloc[0] start_date = first_row['<DTYYYYMMDD>'] start_time = first_row['<TIME>'] data_frame.index = pd.date_range(str(start_date) + ' ' + str(start_time).zfill(6), periods=len(data_frame), freq='1Min') del data_frame['<TICKER>'] del data_frame['<DTYYYYMMDD>'] del data_frame['<TIME>'] def rename_columns(name): return '%s_%s' % (ticker, name.strip( '<>').capitalize()) # pylint: disable=cell-var-from-loop data_frame.rename(columns=rename_columns, inplace=True) if ticker in data: data[ticker] = data[ticker].combine_first(data_frame) else: data[ticker] = data_frame return data class MySQLConnection(DataConnection): """ MySQL database connection to retrieve data. Requires a table name that matches the capitalized name of the symbol you are pulling from. For example, if you wanted to pull data for the 'msft' symbol, you would need a MySQL table named 'MSFT'. """ def __init__(self, host='localhost', port=3306, database='symbol_data', username='root', password=''): DataConnection.__init__(self) import MySQLdb _db = MySQLdb.connect(host=host, port=port, user=username, passwd=password, db=database) self.cursor = _db.cursor() def get_data(self, symbol, start, end, volume=False, date_column='date', custom_cols=None): """ Returns a dataframe of the symbol data requested. Assumes a MySQL table exists for the capitalized symbol name. Assumes you have column names matching the following: date, open, high, low, close, volume Volume is optional. custom_cols is a list of custom column names you want to pull in on top of the OHLCV data. """ if custom_cols is None: custom_cols = [] query = 'SELECT %s, open, high, low, close' % date_column if volume: query += ', volume' for col in custom_cols: query += ', %s' % col query += ' FROM %s WHERE %s >= "%s" AND %s <= "%s"' query = query % (symbol, date_column, start, date_column, end) num_results = self.cursor.execute(query) if num_results < 1: raise NoDataException() results = [] for result in self.cursor.fetchall(): row = {'%s_Date' % symbol: result[0], '%s_Open' % symbol: result[1], '%s_High' % symbol: result[2], '%s_Low' % symbol: result[3], '%s_Close' % symbol: result[4]} index = 4 if volume: index += 1 row['%s_Volume' % symbol] = result[index] for col in custom_cols: index += 1 row['%s_%s' % (symbol, col)] = result[index] results.append(row) ret =
pd.DataFrame.from_dict(results)
pandas.DataFrame.from_dict
# -*- coding: utf-8 -*- # @Author: <NAME> # @Date: 2019-02-19 18:41:56 # @Last Modified by: <NAME> # @Last Modified time: 29.11.2019 """ This script demonstrates how a building can be generated by importing building data from excel. An appropriate example file with some building data is imported from examplefiles/ExcelBuildingData_Sample.xlsx. In the excel every room is listed by its own, via a custom defined zoning algorithm these rooms are combined to zones. The user needs to adjust the zoning to his needs. See # Block: Zoning methodologies (define your zoning function here) Limitations and assumptions: - Outer and inner wall area depend on the calculations done in the excel - Ground floor area is only as big the respective net area of the heated room volume (NetArea) - Floor area is only as big the respective net area of the heated room volume (NetArea) - Rooftop area is only as big the respective net area of the heated room volume (NetArea) - Rooftops are flat and not tilted, see "RooftopTilt" - Ceiling area is only as big the respective net area of the heated room volume (NetArea) - Ceiling, floor and inner walls are only respected by half their area, since they belong half to the respective and half to the adjacent zone - Orientations are clockwise in degree, 0ยฐ is directed north -respective construction types have to be added to the TypeBuildingElements.json -respective UsageTypes for Zones have to be added to the UseConditions.json -excel file format has to be as shown in the "ExcelBuildingData_Sample.xlsx" Information about the required excel format: #Documentation in progress! -yellowed columns are necessary input to teaser -> donยดt change column header, keep value names consistent. -non yellowed columns may either not be used or be used for your zoning algorithm -Under the cell โ€šUsage typeโ€˜ you will see some cells that are blank but have their row filled. It means the blank cell actually belongs to the Usage type above but in that specific row we filled the characteristics of the window/wall of a different orientation of the same exact room. That means every row is either a new room or a new orientation of that room. A room might have two outer walls in two different orientation so for each outer wall, a an extra row defining the respective orientation is added -The entries in the excel sheet must be consistent for python being able to convert it. -If an inner wall is reaching inside a room but is not the limit of the room, it should be accounted with 2x the area """ import os import warnings import shutil import pandas as pd import numpy as np from teaser.project import Project from teaser.logic.buildingobjects.building import Building from teaser.logic.buildingobjects.thermalzone import ThermalZone from teaser.logic.buildingobjects.useconditions import UseConditions from teaser.logic.buildingobjects.buildingphysics.outerwall import OuterWall from teaser.logic.buildingobjects.buildingphysics.floor import Floor from teaser.logic.buildingobjects.buildingphysics.rooftop import Rooftop from teaser.logic.buildingobjects.buildingphysics.groundfloor import GroundFloor from teaser.logic.buildingobjects.buildingphysics.ceiling import Ceiling from teaser.logic.buildingobjects.buildingphysics.window import Window from teaser.logic.buildingobjects.buildingphysics.innerwall import InnerWall def import_data(path=None, sheet_names=None): """ Import data from the building data excel file and perform some preprocessing for nan and empty cells. If several sheets are imported, the data is concatenated to one dataframe Parameters ---------- path: str path to the excel file that should be imported sheet_names: list or str sheets of excel that should be imported """ # process an import of a single sheet as well as several sheets, # which will be concatenated with an continuous index if type(sheet_names) == list: data = pd.DataFrame() _data = pd.read_excel(io=path, sheet_name=sheet_names, header=0, index_col=None) for sheet in sheet_names: data = data.append(_data[sheet], sort=False) data = data.reset_index(drop=False) data["index"] = data["index"] + 2 # sync the index with the excel index else: data = pd.read_excel(io=path, sheet_name=sheet_names, header=0, index_col=0) # Cut of leading or tailing white spaces from any string in the dataframe data = data.applymap(lambda x: x.strip() if type(x) is str else x) # Convert every N/A, nan, empty strings and strings called N/a, n/A, NAN, # nan, na, Na, nA or NA to np.nan data = data.replace( ["", "N/a", "n/A", "NAN", "nan", "na", "Na", "nA", "NA"], np.nan, regex=False ) data = data.fillna(np.nan) return data def get_list_of_present_entries(list_): """ Extracts a list of all in the list available entries, discarding "None" and "nan" entries Parameters ---------- list_: list list that shall be processed """ _List = [] for x in list_: if x not in _List: if not None: if not pd.isna(x): _List.append(x) return _List # Block: Zoning methodologies (define your zoning function here) # ------------------------------------------------------------- def zoning_example(data): """ This is an example on how the rooms of a building could be aggregated to zones. In this example the UsageType has to be empty in the case that the respective line does not represent another room but a different orientated wall or window belonging to a room that is already declared once in the excel file. Parameters ---------- data: pandas.dataframe The data which shall be zoned return data: pandas.dataframe The zoning should return the imported dataset with an additional column called "Zone" which inhibits the information to which zone the respective room shall be part of, and also a column called "UsageType_Teaser" which stores the in UsageType of each row. UsageType must be available in the UseConditions.json. """ # account all outer walls not adjacent to the ambient to the entity # "inner wall" # !right now the wall construction of the added wall is not respected, # the same wall construction as regular # inner wall is set for index, line in data.iterrows(): if not pd.isna(line["WallAdjacentTo"]): data.loc[index, "InnerWallArea[mยฒ]"] = ( data.loc[index, "OuterWallArea[mยฒ]"] + data.loc[index, "WindowArea[mยฒ]"] + data.loc[index, "InnerWallArea[mยฒ]"] ) data.loc[index, "WindowOrientation[ยฐ]"] = np.NaN data.loc[index, "WindowArea[mยฒ]"] = np.NaN data.loc[index, "WindowConstruction"] = np.NaN data.loc[index, "OuterWallOrientation[ยฐ]"] = np.NaN data.loc[index, "OuterWallArea[mยฒ]"] = np.NaN data.loc[index, "OuterWallConstruction"] = np.NaN # make all rooms that belong to a certain room have the same room identifier _list = [] for index, line in data.iterrows(): if pd.isna(line["BelongsToIdentifier"]): _list.append(line["RoomIdentifier"]) else: _list.append(line["BelongsToIdentifier"]) data["RoomCluster"] = _list # check for lines in which the net area is zero, marking an second wall # or window # element for the respective room, and in which there is still stated a # UsageType which is wrong # and should be changed in the file for i, row in data.iterrows(): if (row["NetArea[mยฒ]"] == 0 or row["NetArea[mยฒ]"] == np.nan) and not pd.isna( row["UsageType"] ): warnings.warn( "In line %s the net area is zero, marking an second wall or " "window element for the respective room, " "and in which there is still stated a UsageType which is " "wrong and should be changed in the file" % i ) # make all rooms of the cluster having the usage type of the main usage type _groups = data.groupby(["RoomCluster"]) for index, cluster in _groups: count = 0 for line in cluster.iterrows(): if
pd.isna(line[1]["BelongsToIdentifier"])
pandas.isna
import os import pandas as pd #from pandas.util.testing import assert_frame_equal from rdkit import Chem from rdkit.Chem import AllChem import metamoles from metamoles import cheminform #from metamoles import * #Tests for the RDKit molecular similarity functions #Requires metamoles/test/playground_df_cleaned_kegg_with_smiles.csv to be in the same directory for tests to pass. data_path = os.path.join(metamoles.__path__[0], 'data') def test_input_data(): """Tests input_data function in metamoles.py""" input_df = pd.read_csv(data_path + "/playground_df_cleaned_kegg_with_smiles.csv") test_df = cheminform.input_data(input_df) assert isinstance(test_df, pd.DataFrame) == True, """TypeError, function should return a pandas dataframe""" #assert return '1/1 tests successful' def test_fingerprint_products(): """Tests fingerprint_products function in metamoles.py""" input_df = pd.read_csv(data_path + "/playground_df_cleaned_kegg_with_smiles.csv") test_df = cheminform.input_data(input_df) assert isinstance(cheminform.fingerprint_products(test_df), pd.DataFrame) == True, """TypeError, function should return a pandas dataframe""" #assert return '1/1 tests successful' def test_sim_i_j(): """Tests sim_i_j function in metamoles.py""" input_df = pd.read_csv(data_path + "/playground_df_cleaned_kegg_with_smiles.csv") test_df = cheminform.fingerprint_products(cheminform.input_data(input_df)) A = test_df.iloc[0] #B = test_df.iloc[1] #C = test_df.iloc[2] assert cheminform.sim_i_j(A, A) == 1, "Self correlation is broken" #assert metamoles.sim_i_j(A, B) == -1, "Standard correlation is broken" #assert metamoles.sim_i_j(A, C) == 0, "Standard correlation is broken" return '1/1 tests successful' def test_sim_i_all(): """Test sim_i_all function in metamoles.py""" input_df = pd.read_csv(data_path + "/playground_df_cleaned_kegg_with_smiles.csv") test_df = cheminform.fingerprint_products(cheminform.input_data(input_df)) metric = pd.DataFrame() assert metric.empty == True, """ShapeError, input metric dataframe should be initialized as empty""" for index, row in test_df.iterrows(): assert cheminform.sim_i_all(test_df, index, row, metric) == None, """OutputError, function shouldn't return anything""" assert metric[index].all() >= 0 and metric[index].all() <= 1.0, """ValueError, metric should be between 0 and 1""" return "3/3 Tests successful" def test_sim_metric(): """Test sim_i_all function in metamoles.py""" input_df = pd.read_csv(data_path + "/playground_df_cleaned_kegg_with_smiles.csv") test_df = cheminform.fingerprint_products(cheminform.input_data(input_df)) assert isinstance(cheminform.sim_metric(test_df), pd.DataFrame) == True, """TypeError, function should return a dataframe""" assert cheminform.sim_metric(test_df).isnull().values.any() == False, """ValueError, function-generated dataframe should not contain null values""" #assert test_df.size == metamoles.sim_metric(test_df).size, """ShapeError, #function-generated dataframe should be the same size as input dataframe""" return "2/2 Tests successful" def test_calculate_dist(): """Test calculate_dist function in metamoles.py""" df =
pd.read_csv(data_path + "/playground_df_cleaned_kegg_with_smiles.csv")
pandas.read_csv
import csv from pathlib import Path import pandas as pd import numpy as np import torch as torch from torch import nn from torch.nn import functional as F import sklearn import time import wandb import uuid import numerapi import pathlib import os import shutil from functools import reduce import scipy from fast_soft_sort.pytorch_ops import soft_rank from tqdm import tqdm TARGET_NAME = f"target" PREDICTION_NAME = f"prediction" def getImportantFeatures(model,test_data,feature_names): diff = MDA(model,feature_names,test_data) keep_features=[] for i in diff: if i[1] > 0: keep_features.append(i[0]) return keep_features def corrcoef(target, pred): # np.corrcoef in torch from @mdo # https://forum.numer.ai/t/custom-loss-functions-for-xgboost-using-pytorch/960 pred_n = pred - pred.mean() target_n = target - target.mean() pred_n = pred_n / pred_n.norm() target_n = target_n / target_n.norm() return (pred_n * target_n).sum() def spearman( target, pred, regularization="l2", regularization_strength=1.0, ): target = target.view(1,-1) pred = pred.view(1,-1) pred = soft_rank( pred, regularization=regularization, regularization_strength=regularization_strength, ) return pred.requires_grad_(True).mean() def score_(df): return correlation(df['prediction'], df['target']) def numerai_score(df): scores = df.groupby('era').apply(score_) return scores.mean(), scores.std(ddof=0) def MDA(model, features, testSet): """ function from https://forum.numer.ai/t/feature-selection-by-marcos-lopez-de-prado/3170 """ preds=model(torch.from_numpy(testSet[features].to_numpy()).float().view(-1, 1, len(features))).detach().numpy() testSet['prediction'] = preds # predict with a pre-fitted model on an OOS validation set corr, std = numerai_score(testSet) # save base scores print("Base corr: ", corr) diff = [] np.random.seed(42) with tqdm(total=len(features)) as progress: for col in features: # iterate through each features X = testSet.copy() np.random.shuffle(X[col].values) # shuffle the a selected feature column, while maintaining the distribution of the feature inp = torch.from_numpy(X[features].to_numpy()).view(-1, 1, len(features)).float() testSet['prediction'] = model(inp).detach().numpy()# run prediction with the same pre-fitted model, with one shuffled feature corrX, stdX = numerai_score(testSet) # compare scores... # print(col, corrX-corr) diff.append((col, corrX-corr)) progress.update(1) return diff def refresh_numerai_data(): remove("numerai_datasets.zip") remove("numerai_datasets") napi = numerapi.NumerAPI(verbosity="info") napi.download_current_dataset(unzip=True,dest_filename="numerai_datasets") def get_factors(n): return set(reduce(list.__add__, ([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0))) def determine_fitness_for_batch_size(n): if n < 4000 and n > 80: return True else: return False def get_batch_size(total_size): factors = list(get_factors(total_size)) factors = list(filter(determine_fitness_for_batch_size, factors)) if len(factors) > 0: return np.max(factors) else: return 1 def calculate_multilayer_output_length_conv(layers, length_in, kernel_size, stride=1, padding=0, dilation=1): for i in range(layers): length_in = calculate_output_length_conv(length_in, kernel_size, stride, padding, dilation) return length_in def get_dataset(): training_data = pd.read_csv("numerai_datasets/numerai_training_data.csv") target = training_data["target"] tournament_data = pd.read_csv("numerai_datasets/numerai_tournament_data.csv") feature_names = [ f for f in training_data.columns if f.startswith("feature") ] return training_data,tournament_data,feature_names def remove(path): """ param <path> could either be relative or absolute. """ if os.path.isfile(path) or os.path.islink(path): os.remove(path) # remove the file elif os.path.isdir(path): shutil.rmtree(path) # remove dir and all contains else: raise ValueError("file {} is not a file or dir.".format(path)) class BatchNormResizeLayer(nn.Module): def __init__(self, lambd): super(BatchNormResizeLayer, self).__init__() self.lambd = lambd def forward(self, x): return self.lambd(x) class CustomConfig: """A class for storing configurations that works with wandb.""" def __init__(self, init_dict=None, **kwargs): self.dict_version={} for k, v in kwargs.items(): setattr(self, k, v) self.dict_version[k]=v if init_dict != None: for i in init_dict: self.dict_version[i]=init_dict[i] setattr(self, i, init_dict[i]) def calculate_output_length_conv(length_in, kernel_size, stride=1, padding=0, dilation=1): return (length_in + 2 * padding - dilation * (kernel_size - 1) - 1) // stride + 1 # Submissions are scored by spearman correlation def correlation(predictions, targets): ranked_preds = predictions.rank(pct=True, method="first") return np.corrcoef(ranked_preds, targets)[0, 1] # convenience method for scoring def score(df): return correlation(df[PREDICTION_NAME], df[TARGET_NAME]) # Payout is just the score cliped at +/-25% def payout(scores): return scores.clip(lower=-0.25, upper=0.25) # to neutralize a column in a df by many other columns on a per-era basis def neutralize(df, columns, extra_neutralizers=None, proportion=1.0, normalize=True, era_col="era"): # need to do this for lint to be happy bc [] is a "dangerous argument" if extra_neutralizers is None: extra_neutralizers = [] unique_eras = df[era_col].unique() computed = [] for u in unique_eras: print(u, end="\r") df_era = df[df[era_col] == u] scores = df_era[columns].values if normalize: scores2 = [] for x in scores.T: x = (pd.Series(x).rank(method="first").values - .5) / len(x) scores2.append(x) scores = np.array(scores2).T extra = df_era[extra_neutralizers].values exposures = np.concatenate([extra], axis=1) else: exposures = df_era[extra_neutralizers].values scores -= proportion * exposures.dot( np.linalg.pinv(exposures.astype(np.float32)).dot(scores.astype(np.float32))) scores /= scores.std(ddof=0) computed.append(scores) return pd.DataFrame(np.concatenate(computed), columns=columns, index=df.index) # to neutralize any series by any other series def neutralize_series(series, by, proportion=1.0): scores = series.values.reshape(-1, 1) exposures = by.values.reshape(-1, 1) # this line makes series neutral to a constant column so that it's centered and for sure gets corr 0 with exposures exposures = np.hstack( (exposures, np.array([np.mean(series)] * len(exposures)).reshape(-1, 1))) correction = proportion * (exposures.dot( np.linalg.lstsq(exposures, scores, rcond=None)[0])) corrected_scores = scores - correction neutralized = pd.Series(corrected_scores.ravel(), index=series.index) return neutralized def unif(df): x = (df.rank(method="first") - 0.5) / len(df) return
pd.Series(x, index=df.index)
pandas.Series
# -*- coding: utf-8 -*- """ Created on Sun Nov 19 20:35:51 2017 @author: Steff """ import pandas as pd import json as j def extract_companies(indices = []): data = pd.read_csv("../../data/raw/movies_metadata.csv", index_col=5) if (len(indices) > 0): # keep only necessary rows data = data.loc[indices] comp = data["production_companies"] comp = comp.str.replace(" "," ") comp = comp.str.replace(" , ",", ") comp = comp.str.replace(': \"',": \'") comp = comp.str.replace(', \"',", \'") comp = comp.str.replace('",',"',") comp = comp.str.replace("\"","'") comp = comp.str.replace("'name': '","\"name\": \"") comp = comp.str.replace("', 'id':","\", \"id\":") comp = comp.str.replace("'id':","\"id\":") comp = comp.str.replace("\\","") comp = comp.str.replace("xa0","") #comp = comp.str.replace("'name':","\"name\":").replace("'id':","\"name\":") def parseCompany(m_id, c_id, c_name): #print(m_id,c_id,c_name) data_company_to_movie.append({ "company": c_id, "movie": m_id }) data_companies[c_id] = c_name if (c_id == 0): print(m_id,c_name) data_company_to_movie = [] data_companies = {} i = 0 for index, row in comp.iteritems(): i += 1 #print(row) try: jrow = j.loads(row) for c in jrow: parseCompany(index,c["id"],c["name"]) except ValueError: print("\n----------------\n",index,row,"\n----------------\n") except TypeError: print("\n----------------\n",index,row,"\n----------------\n") #if (i>3): # break c2m_df =
pd.DataFrame(data_company_to_movie)
pandas.DataFrame
# -*- coding: utf-8 -*- """OREGON Arrest Analysis (anna).ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1kchDTfhL69aAuNMBJmlfIrSrP8j7bBrJ """ import pandas as pd import numpy as np import matplotlib.pyplot as plt import pylab from math import pi from google.colab import files uploaded = files.upload() data_path = "oregonfinalversion1.csv" arrests = pd.read_csv(data_path, index_col=0) #arrests.loc[' STATEWIDE TOTAL'] arrests.head() race = ['White', 'Black', 'Other'] totalArrests = [83117, 3307, 10470] fig, ax=plt.subplots(figsize = (5,5)) ##creating bar chart plt.bar(race, totalArrests) plt.xlabel('Race') plt.ylabel('Total Arrests') plt.title('Total Arrests in Oregon in 2019 by Race') for i, data in enumerate(totalArrests): ##adding labels to bars plt.text(x=i, y=data+1, s=f"{data}", ha='center') plt.show() r = ['White', 'Black', 'Other'] rawData = {'greenBars':[83117, 3307,10470], 'blueBars':[3163765,92680,956292]} df = pd.DataFrame(rawData) totals = [i+j for i,j in zip(df['greenBars'], df['blueBars'])] greenBars = [i / j * 100 for i,j in zip(df['greenBars'], totals)] blueBars = [i / j * 100 for i,j in zip(df['blueBars'], totals)] fig, ax=plt.subplots(figsize = (5,10)) barWidth = 0.85 names = race plt.bar(r, greenBars, color='#7F8DA8', edgecolor='white', width=barWidth) plt.bar(r, blueBars, bottom=greenBars, color='#FADFC3', edgecolor='white', width=barWidth) plt.xticks(r, names) plt.xlabel("Race") plt.ylabel("Percentage") plt.ylim(0,30) plt.title('Arrests as % of Population in Oregon') plt.show() r2 = ['White', 'Black','Other'] rawData = {'greenBars':[10979,1335,2522], 'blueBars':[83117,3307,10470]} df =
pd.DataFrame(rawData)
pandas.DataFrame
import re import loompy import pandas as pd from loom_table.loom_utils import csv_to_loom def is_ion_formula(string: str) -> bool: # At least two chemical elements with number or no number, optional positive or negative adduct, # optional numbered suffix (to match also annotation_id) return ( re.match(r"^(?:[A-Z][a-z]?\d*){2,}(?:[+-][A-Z][a-z]?)?(_\d+)?$", string) is not None ) point_cols = ["center_y", "center_x"] ion_intensity_cols = [ c for c in pd.read_csv("../spatiomolecular_matrix.csv").columns if is_ion_formula(c) ] csv_to_loom( csv_path="../spatiomolecular_matrix.csv", dense_columns=point_cols, out_path="spatiomolecular_matrix.zarr.loom", ) with loompy.connect("spatiomolecular_matrix.zarr.loom") as ds: ds.row_attrs["area"] # int64 column # Use scan to iterate over views of "chunks" # or create a view of the whole dataset: view = ds.view[:, :] data = view[:] row_attributes = view.ra # AttributeManager # Each row attribute is a numpy array # Storage is a dict of attribute names (str) and values (np.array) row_attributes_df =
pd.DataFrame(view.ra.storage)
pandas.DataFrame
import operator import re import warnings import numpy as np import pytest from pandas._libs.sparse import IntIndex import pandas.util._test_decorators as td import pandas as pd from pandas import isna from pandas.core.sparse.api import SparseArray, SparseDtype, SparseSeries import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal @pytest.fixture(params=["integer", "block"]) def kind(request): return request.param class TestSparseArray: def setup_method(self, method): self.arr_data = np.array([np.nan, np.nan, 1, 2, 3, np.nan, 4, 5, np.nan, 6]) self.arr = SparseArray(self.arr_data) self.zarr = SparseArray([0, 0, 1, 2, 3, 0, 4, 5, 0, 6], fill_value=0) def test_constructor_dtype(self): arr = SparseArray([np.nan, 1, 2, np.nan]) assert arr.dtype == SparseDtype(np.float64, np.nan) assert arr.dtype.subtype == np.float64 assert np.isnan(arr.fill_value) arr = SparseArray([np.nan, 1, 2, np.nan], fill_value=0) assert arr.dtype == SparseDtype(np.float64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], dtype=np.float64) assert arr.dtype == SparseDtype(np.float64, np.nan) assert np.isnan(arr.fill_value) arr = SparseArray([0, 1, 2, 4], dtype=np.int64) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], fill_value=0, dtype=np.int64) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], dtype=None) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], fill_value=0, dtype=None) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 def test_constructor_dtype_str(self): result = SparseArray([1, 2, 3], dtype='int') expected = SparseArray([1, 2, 3], dtype=int) tm.assert_sp_array_equal(result, expected) def test_constructor_sparse_dtype(self): result = SparseArray([1, 0, 0, 1], dtype=SparseDtype('int64', -1)) expected = SparseArray([1, 0, 0, 1], fill_value=-1, dtype=np.int64) tm.assert_sp_array_equal(result, expected) assert result.sp_values.dtype == np.dtype('int64') def test_constructor_sparse_dtype_str(self): result = SparseArray([1, 0, 0, 1], dtype='Sparse[int32]') expected = SparseArray([1, 0, 0, 1], dtype=np.int32) tm.assert_sp_array_equal(result, expected) assert result.sp_values.dtype == np.dtype('int32') def test_constructor_object_dtype(self): # GH 11856 arr = SparseArray(['A', 'A', np.nan, 'B'], dtype=np.object) assert arr.dtype == SparseDtype(np.object) assert np.isnan(arr.fill_value) arr = SparseArray(['A', 'A', np.nan, 'B'], dtype=np.object, fill_value='A') assert arr.dtype == SparseDtype(np.object, 'A') assert arr.fill_value == 'A' # GH 17574 data = [False, 0, 100.0, 0.0] arr = SparseArray(data, dtype=np.object, fill_value=False) assert arr.dtype == SparseDtype(np.object, False) assert arr.fill_value is False arr_expected = np.array(data, dtype=np.object) it = (type(x) == type(y) and x == y for x, y in zip(arr, arr_expected)) assert np.fromiter(it, dtype=np.bool).all() @pytest.mark.parametrize("dtype", [SparseDtype(int, 0), int]) def test_constructor_na_dtype(self, dtype): with pytest.raises(ValueError, match="Cannot convert"): SparseArray([0, 1, np.nan], dtype=dtype) def test_constructor_spindex_dtype(self): arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2])) # XXX: Behavior change: specifying SparseIndex no longer changes the # fill_value expected = SparseArray([0, 1, 2, 0], kind='integer') tm.assert_sp_array_equal(arr, expected) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=[1, 2, 3], sparse_index=IntIndex(4, [1, 2, 3]), dtype=np.int64, fill_value=0) exp = SparseArray([0, 1, 2, 3], dtype=np.int64, fill_value=0) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2]), fill_value=0, dtype=np.int64) exp = SparseArray([0, 1, 2, 0], fill_value=0, dtype=np.int64) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=[1, 2, 3], sparse_index=IntIndex(4, [1, 2, 3]), dtype=None, fill_value=0) exp = SparseArray([0, 1, 2, 3], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 @pytest.mark.parametrize("sparse_index", [ None, IntIndex(1, [0]), ]) def test_constructor_spindex_dtype_scalar(self, sparse_index): # scalar input arr = SparseArray(data=1, sparse_index=sparse_index, dtype=None) exp = SparseArray([1], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=1, sparse_index=IntIndex(1, [0]), dtype=None) exp = SparseArray([1], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 def test_constructor_spindex_dtype_scalar_broadcasts(self): arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2]), fill_value=0, dtype=None) exp = SparseArray([0, 1, 2, 0], fill_value=0, dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 @pytest.mark.parametrize('data, fill_value', [ (np.array([1, 2]), 0), (np.array([1.0, 2.0]), np.nan), ([True, False], False), ([pd.Timestamp('2017-01-01')], pd.NaT), ]) def test_constructor_inferred_fill_value(self, data, fill_value): result = SparseArray(data).fill_value if pd.isna(fill_value): assert pd.isna(result) else: assert result == fill_value @pytest.mark.parametrize('format', ['coo', 'csc', 'csr']) @pytest.mark.parametrize('size', [ pytest.param(0, marks=td.skip_if_np_lt("1.16", reason='NumPy-11383')), 10 ]) @td.skip_if_no_scipy def test_from_spmatrix(self, size, format): import scipy.sparse mat = scipy.sparse.random(size, 1, density=0.5, format=format) result = SparseArray.from_spmatrix(mat) result = np.asarray(result) expected = mat.toarray().ravel() tm.assert_numpy_array_equal(result, expected) @td.skip_if_no_scipy def test_from_spmatrix_raises(self): import scipy.sparse mat = scipy.sparse.eye(5, 4, format='csc') with pytest.raises(ValueError, match="not '4'"): SparseArray.from_spmatrix(mat) @pytest.mark.parametrize('scalar,dtype', [ (False, SparseDtype(bool, False)), (0.0, SparseDtype('float64', 0)), (1, SparseDtype('int64', 1)), ('z', SparseDtype('object', 'z'))]) def test_scalar_with_index_infer_dtype(self, scalar, dtype): # GH 19163 arr = SparseArray(scalar, index=[1, 2, 3], fill_value=scalar) exp = SparseArray([scalar, scalar, scalar], fill_value=scalar) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == dtype assert exp.dtype == dtype @pytest.mark.parametrize("fill", [1, np.nan, 0]) @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") def test_sparse_series_round_trip(self, kind, fill): # see gh-13999 arr = SparseArray([np.nan, 1, np.nan, 2, 3], kind=kind, fill_value=fill) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) arr = SparseArray([0, 0, 0, 1, 1, 2], dtype=np.int64, kind=kind, fill_value=fill) res = SparseArray(SparseSeries(arr), dtype=np.int64) tm.assert_sp_array_equal(arr, res) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) @pytest.mark.parametrize("fill", [True, False, np.nan]) @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") def test_sparse_series_round_trip2(self, kind, fill): # see gh-13999 arr = SparseArray([True, False, True, True], dtype=np.bool, kind=kind, fill_value=fill) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) def test_get_item(self): assert np.isnan(self.arr[1]) assert self.arr[2] == 1 assert self.arr[7] == 5 assert self.zarr[0] == 0 assert self.zarr[2] == 1 assert self.zarr[7] == 5 errmsg = re.compile("bounds") with pytest.raises(IndexError, match=errmsg): self.arr[11] with pytest.raises(IndexError, match=errmsg): self.arr[-11] assert self.arr[-1] == self.arr[len(self.arr) - 1] def test_take_scalar_raises(self): msg = "'indices' must be an array, not a scalar '2'." with pytest.raises(ValueError, match=msg): self.arr.take(2) def test_take(self): exp = SparseArray(np.take(self.arr_data, [2, 3])) tm.assert_sp_array_equal(self.arr.take([2, 3]), exp) exp = SparseArray(np.take(self.arr_data, [0, 1, 2])) tm.assert_sp_array_equal(self.arr.take([0, 1, 2]), exp) def test_take_fill_value(self): data = np.array([1, np.nan, 0, 3, 0]) sparse = SparseArray(data, fill_value=0) exp = SparseArray(np.take(data, [0]), fill_value=0) tm.assert_sp_array_equal(sparse.take([0]), exp) exp = SparseArray(np.take(data, [1, 3, 4]), fill_value=0) tm.assert_sp_array_equal(sparse.take([1, 3, 4]), exp) def test_take_negative(self): exp = SparseArray(np.take(self.arr_data, [-1])) tm.assert_sp_array_equal(self.arr.take([-1]), exp) exp = SparseArray(np.take(self.arr_data, [-4, -3, -2])) tm.assert_sp_array_equal(self.arr.take([-4, -3, -2]), exp) @pytest.mark.parametrize('fill_value', [0, None, np.nan]) def test_shift_fill_value(self, fill_value): # GH #24128 sparse = SparseArray(np.array([1, 0, 0, 3, 0]), fill_value=8.0) res = sparse.shift(1, fill_value=fill_value) if isna(fill_value): fill_value = res.dtype.na_value exp = SparseArray(np.array([fill_value, 1, 0, 0, 3]), fill_value=8.0) tm.assert_sp_array_equal(res, exp) def test_bad_take(self): with pytest.raises(IndexError, match="bounds"): self.arr.take([11]) def test_take_filling(self): # similar tests as GH 12631 sparse = SparseArray([np.nan, np.nan, 1, np.nan, 4]) result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([np.nan, np.nan, 4]) tm.assert_sp_array_equal(result, expected) # XXX: test change: fill_value=True -> allow_fill=True result = sparse.take(np.array([1, 0, -1]), allow_fill=True) expected = SparseArray([np.nan, np.nan, np.nan]) tm.assert_sp_array_equal(result, expected) # allow_fill=False result = sparse.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = SparseArray([np.nan, np.nan, 4]) tm.assert_sp_array_equal(result, expected) msg = "Invalid value in 'indices'" with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -2]), allow_fill=True) with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -5]), allow_fill=True) with pytest.raises(IndexError): sparse.take(np.array([1, -6])) with pytest.raises(IndexError): sparse.take(np.array([1, 5])) with pytest.raises(IndexError): sparse.take(np.array([1, 5]), allow_fill=True) def test_take_filling_fill_value(self): # same tests as GH 12631 sparse = SparseArray([np.nan, 0, 1, 0, 4], fill_value=0) result = sparse.take(np.array([1, 0, -1])) expected =
SparseArray([0, np.nan, 4], fill_value=0)
pandas.core.sparse.api.SparseArray
import os import sys import argparse import pandas as pd import numpy as np ### Version 3, created 12 August 2020 by <NAME> ### ### Reformats concatenated, headerless MELT vcf files, into the relevant information columns, with extraneous information/columns removed, ready to use in the duplicate-removal scripts ### This includes renaming MELT SPLIT hits to match the original TE names from RepeatMasker and the original TE library def get_args(): #What this script does parser = argparse.ArgumentParser(description="General removal of most MELT duplicate calls and overlapping calls", formatter_class=argparse.ArgumentDefaultsHelpFormatter) required = parser.add_argument_group('required arguments') #Give input coordinate file of formatted MELT SPLIT hits parser.add_argument('-s', '--split', help='filtered, unique, concatenated MELT SPLIT file', required=True) #Argument of directory containing the formatted MELT DELETION hits parser.add_argument('-del', '--deletion', help='filtered, unique, concatenated MELT DELETION file', required=True) #Argument of directory containing the list of formatted MELT hits (need full path) parser.add_argument('-d', '--directory', type=str, help='Path to the directory of the input file', default=".") #Argument of the output directory (need full path) parser.add_argument('-od', '--outdir', type=str, help='Location of directory for the output file', default=".") #Argument of the output directory (need full path) parser.add_argument('-mt', '--melttes', type=str, help='Path to list of MELT ZIP basenames (MELT compatible TE names = zip_te_names.txt)', required=True) #Argument of the output directory (need full path) parser.add_argument('-lib', '--telibrary', type=str, help='Path to the list of RepeatMasker TE names (te_list.txt)', required=True) #Argument of the output directory (need full path) parser.add_argument('-tecat', '--tecategories', type=str, help='Path to the list of RepeatMasker TE names, with TE family category (te_lib_categories.txt)', required=True) args = parser.parse_args() SPLIT = args.split DELETION = args.deletion DIR = args.directory OUTDIR = args.outdir SPLIT_TE_NAMES = args.melttes TE_NAMES = args.telibrary CAT_TE_NAMES = args.tecategories return SPLIT, DELETION, DIR, OUTDIR, SPLIT_TE_NAMES, TE_NAMES, CAT_TE_NAMES SPLIT, DELETION, DIR, OUTDIR, SPLIT_TE_NAMES, TE_NAMES, CAT_TE_NAMES = get_args() if DIR == ".": DIR = os.getcwd() if OUTDIR == ".": OUTDIR = os.getcwd() BASENAME = os.path.basename(SPLIT).split("_SPLIT")[0] SPLIT_HITS = os.path.join(DIR, SPLIT) DEL_HITS = os.path.join(DIR, DELETION) OUTBASE = os.path.join(OUTDIR, BASENAME) OUTPUT1 = OUTBASE + "_cat_assess_dups_headers.bed" OUTPUT2 = OUTBASE + "_cat_assess_dups.bed" HEADERS1 = ['#CHROM', 'POS', 'END', 'ASSESS', 'SVTYPE', 'SVLENGTH', 'ORIENTATION', 'Austroriparius', 'Brandtii', 'Ciliolabrum', 'Davidii', 'Myotis', 'Occultus', 'Sept_TTU', 'Thysanodes', 'Velifer', 'Vivesi', 'Yumanensis', 'MODULE'] HEADERS2 = ['#CHROM', 'POS', 'END', 'SVTYPE', 'SVLENGTH', 'ORIENTATION', 'Austroriparius', 'Brandtii', 'Ciliolabrum', 'Davidii', 'Myotis', 'Occultus', 'Sept_TTU', 'Thysanodes', 'Velifer', 'Vivesi', 'Yumanensis', 'MODULE'] SPLIT_DF = pd.read_csv(SPLIT_HITS, sep='\t', names=HEADERS1) DEL_DF =
pd.read_csv(DEL_HITS, sep='\t', names=HEADERS2)
pandas.read_csv
#!/usr/bin/python import pandas as pd from scipy.signal import savgol_filter import json import time import darts from darts import TimeSeries from darts.models import RNNModel from sktime.performance_metrics.forecasting import mean_absolute_percentage_error import dysts from dysts.flows import * from dysts.base import * from dysts.utils import * from dysts.analysis import * hyperparams = { "input_chunk_length": 50, "output_chunk_length": 1, "model": "LSTM", "n_rnn_layers": 2, "random_state": 0 } results = dict() # cwd = os.getcwd() cwd = os.path.dirname(os.path.realpath(__file__)) output_path = cwd + "/results/importance_sampling.json" print("Saving data to: ", output_path) full_epoch_count = 400 forecast_length = 200 transient_length = 2 n_iters = 5 epoch_count = 30 n_ic = 10 # model retraining is not currently working in darts traj_len = 150 show_progress = False print(f"{n_ic} points sampled per iteration, with trajectory length {traj_len}, for a total of {n_iters} iterations of length {epoch_count}") print(n_ic * traj_len * n_iters * epoch_count) print(1000 * full_epoch_count) # 1000 timepoints in an epoch for equation_ind, equation_name in enumerate(get_attractor_list()): np.random.seed(0) print(f"{equation_name} {equation_ind}", flush=True) results[equation_name] = dict() equation = getattr(dysts.flows, equation_name)() if hasattr(equation, "delay"): if equation.delay: continue sol = equation.make_trajectory(1200, resample=True) y_train, y_test = sol[:-forecast_length, 0], sol[-forecast_length:, 0] y_train_ts = TimeSeries.from_dataframe(pd.DataFrame(y_train)) results[equation_name]["true_value"] = y_test.tolist() ## Baseline forecast try: del model except: pass model = RNNModel(**hyperparams) base_t0 = time.perf_counter() model.fit(y_train_ts, epochs=full_epoch_count) base_t1 = time.perf_counter() y_val_pred = model.predict(forecast_length) y_val_pred = np.squeeze(y_val_pred.values()) score = mean_absolute_percentage_error(y_test, y_val_pred, symmetric=True) base_elapsed = base_t1 - base_t0 print(score, base_elapsed) # plt.figure() # plt.plot(y_test) # plt.plot(y_val_pred) results[equation_name]["base_value"] = y_val_pred.tolist() results[equation_name]["base_time"] = base_elapsed results[equation_name]["base_score"] = score pred_backtest = model.historical_forecasts(y_train_ts, retrain=False, start=(1 + model.input_chunk_length)).values() # Importance sampling experiment model = RNNModel(**hyperparams) comp_t0 = time.perf_counter() for i in range(n_iters): print(i) if i == 0: ic_indices = np.random.choice(np.arange(len(y_train_ts) - (forecast_length + transient_length)), n_ic) else: pred_backtest = model.historical_forecasts(y_train_ts, retrain=False, start=(1 + model.input_chunk_length)).values() y_train_backtest = y_train_ts.values()[(1 + model.input_chunk_length):] mse_back = np.squeeze((pred_backtest - y_train_backtest)**2) mse_back = savgol_filter(mse_back, 51, 3) mse_back[mse_back<0] = 0.0 sample_probs = mse_back**4 sample_probs /= np.sum(sample_probs) ic_indices = np.random.choice(np.arange(len(y_train_backtest)), n_ic, p=sample_probs, replace=True) ## Random sampling as a control condition # ic_indices = np.random.choice(np.arange(len(y_train_backtest)), n_ic) # ic_indices = np.argsort(mse_back)[-n_ic:] ic_vals = sol[ic_indices] + 1e-2 * (np.random.random(sol[ic_indices].shape) - 0.5) equation.ic = ic_vals new_sol = equation.make_trajectory(traj_len + transient_length, resample=True)[:, transient_length:, :] y_train_list = list(new_sol[..., 0]) y_train_list = [TimeSeries.from_dataframe(pd.DataFrame(item)) for item in y_train_list] model.fit(y_train_list, epochs=epoch_count) comp_t1 = time.perf_counter() comp_elapsed = comp_t1 - comp_t0 y_val_pred = model.predict(forecast_length, series=y_train_ts) y_val_pred = np.squeeze(y_val_pred.values()) score = mean_absolute_percentage_error(y_test, y_val_pred, symmetric=True) print(score, comp_elapsed) # plt.plot(y_val_pred) # plt.show() results[equation_name]["importance_values"] = y_val_pred.tolist() results[equation_name]["importance_time"] = comp_elapsed results[equation_name]["importance_score"] = score with open(output_path, 'w') as f: json.dump(results, f, indent=4) ## Random timepoint baseline for equation_ind, equation_name in enumerate(get_attractor_list()): np.random.seed(0) print(f"{equation_name} {equation_ind}", flush=True) equation = getattr(dysts.flows, equation_name)() if hasattr(equation, "delay"): if equation.delay: continue sol = equation.make_trajectory(1200, resample=True) y_train, y_test = sol[:-forecast_length, 0], sol[-forecast_length:, 0] y_train_ts = TimeSeries.from_dataframe(
pd.DataFrame(y_train)
pandas.DataFrame
# Process 2017 bitcoin data for Informer import pandas as pd import os from sklearn.decomposition import PCA import datetime import math import pandas as pd import numpy as np import torch BETTI_NUMBER_0_PATH = "/content/drive/MyDrive/bitcoin/CoinWorks/data/betti_0(100).csv" BETTI_NUMBER_1_PATH = "/content/drive/MyDrive/bitcoin/CoinWorks/data/betti_1(100).csv" AMOMAT_DIR = "/content/drive/MyDrive/bitcoin/CoinWorks/data/amo/" OCCMAT_DIR = "/content/drive/MyDrive/bitcoin/CoinWorks/data/occ/" PRICE_PATH = "/content/drive/MyDrive/bitcoin/CoinWorks/data/pricedBitcoin2009-2018.csv" PROCESSED_DIR = "/content/drive/MyDrive/aliyun/processed_data/2017/" #TOTALTX_DIR = "/content/drive/MyDrive/aliyun/bitcoin_totaltx_2018_2020.csv" #PERIOD = [2018, 2019, 2020] def getBetweenDay(begin_date, end_date): date_list = [] date_arr = [] date_unix_list = [] begin_date = datetime.datetime.strptime(begin_date, "%Y-%m-%d") print("begin_date:",begin_date) # end_date = datetime.datetime.strptime(time.strftime('%Y-%m-%d', time.localtime(time.time())), "%Y-%m-%d") end_date = datetime.datetime.strptime(end_date, "%Y-%m-%d") print("end_date:",end_date) while begin_date <= end_date: date_unix = math.trunc(begin_date.replace(tzinfo=datetime.timezone.utc).timestamp()*1000) date_unix_list.append(date_unix) date_str = begin_date.strftime("%Y-%m-%d") date_list.append(date_str) date_arr.append([date_str, date_unix]) begin_date += datetime.timedelta(days=1) return np.asarray(date_arr) def combine_features_with_data(dataset_model): data_price = pd.read_csv(PRICE_PATH)[-365:][["totaltx","price"]].reset_index(drop=True) #btc_price_2018_2020 = data_price.Open.str.replace(",","") #total_tx = pd.read_csv(TOTALTX_DIR, index_col=0) date_arr = pd.DataFrame(getBetweenDay("2017-01-01", "2017-12-31"))[0] btc_2017 = pd.concat([data_price, date_arr], axis = 1) btc_2017.columns = ["totaltx", "price", "date"] data_feature = pd.DataFrame([]) if dataset_model == "betti": #for YEAR in PERIOD: #for file_name in os.listdir(BETTI_NUMBER_DIR): feature_betti_0 = pd.read_csv(BETTI_NUMBER_0_PATH, index_col=0).loc[:, "V1":"V50"] feature_betti_1 = pd.read_csv(BETTI_NUMBER_1_PATH, index_col=0).loc[:, "V1":"V50"] feature_betti_number = pd.concat([feature_betti_0,feature_betti_1], axis = 1) data_feature = pd.concat([data_feature,feature_betti_number]).reset_index(drop=True) #data_feature.to_csv("data_feature.csv") print("data_feature:",data_feature) elif dataset_model == "betti_der": feature_betti_0 = pd.read_csv(BETTI_NUMBER_0_PATH, index_col=0).loc[:, "V1":"V50"] feature_betti_1 =
pd.read_csv(BETTI_NUMBER_1_PATH, index_col=0)
pandas.read_csv
#!/usr/bin/env python2 #coding=utf-8 # Copyright 2020 <NAME> and <NAME>. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #coding=utf-8 from __future__ import unicode_literals from __future__ import print_function import sys reload(sys) sys.setdefaultencoding("utf-8") import argparse import functools import sqlite3 import logging import json import manatee manatee.setEncoding('UTF-8') import numpy as np import pandas as pd import joblib import datetime import os.path # from treeinterpreter import treeinterpreter as ti log = logging.getLogger("train") pstructure = "p" gstructure = "g" def text(corpus, docid, attrname='word'): doc = corpus.get_struct('doc') word = corpus.get_attr(attrname) beg = doc.beg(docid) end = doc.end(docid) p = corpus.get_struct(pstructure) g = corpus.get_struct(gstructure) grng = g.whole() prng = p.whole() it = word.textat(beg) paragraphs = [] tokens = None for i in range(beg, end): if prng.find_beg(i) == i: if tokens is not None: paragraphs.append(tokens) tokens = [] if grng.find_beg(i) != i and tokens: tokens.append(" ") tokens.append(it.next()) if tokens: paragraphs.append(tokens) out = '' for p in paragraphs: for t in p: out += t out += ' ' return out.strip() def gen_text(corpus, attrname): doc = corpus.get_struct('doc') attr = corpus.get_attr(attrname) for i in xrange(doc.size()): beg, end = doc.beg(i), doc.end(i) it = attr.textat(beg) yield [it.next() for pos in xrange(beg, end)] def read_annots(corpus, db): annots = pd.read_sql("select file, name, value from document_annotations", db) annots = annots[annots.name.isin(simple_attributes)] doc = corpus.get_struct("doc") sa = doc.get_attr("filename") lex = {sa.pos2str(i): i for i in xrange(doc.size())} annots['docid'] = annots.file.map(lambda docname: lex.get(docname, -1)) return annots[annots.docid != -1].drop(columns="file") default_annot_values = { 'zanr': ['zpravodajstvรญ', 'rozhovor', 'komentรกล™'], 'tema': ['migraฤnรญ krize', 'domรกcรญ politika', 'zahraniฤnรญ politika / diplomacie', 'spoleฤnost / spoleฤenskรก situace', 'jinรฉ', 'energetika', 'sociรกlnรญ politika', 'konflikt na Ukrajinฤ›', 'kultura', 'konflikt v Sรฝrii', 'zbrojnรญ politika', 'ekonomika / finance', 'konspirace'], 'zamereni': ['zahraniฤnรญ', 'domรกcรญ', 'obojรญ', 'nelze urฤit'], 'lokace': ['EU', 'ฤŒeskรก republika', 'USA', 'jinรก zemฤ›', 'jinรฉ / nelze urฤit', 'Rusko', 'NATO', 'Rusko + USA'], 'argumentace': ['ne', 'ano'], 'emoce': ['missing', 'rozhoล™ฤenรญ', 'soucit', 'strach', 'nenรกvist', 'jinรก'], 'vyzneni_celku': ['neutrรกlnรญ', 'negativnรญ', 'pozitivnรญ'], 'rusko': ['missing', 'pozitivnรญ pล™รญklad', 'neutrรกlnรญ', 'obฤ›ลฅ', 'negativnรญ pล™รญklad', 'hrdina'], 'vyzneni1': ['neutrรกlnรญ', 'negativnรญ', 'missing', 'pozitivnรญ', 'velebรญcรญ', 'nenรกvistnรฉ'], 'vyzneni2': ['neutrรกlnรญ', 'negativnรญ', 'missing', 'pozitivnรญ', 'velebรญcรญ', 'nenรกvistnรฉ'], 'vyzneni3': ['neutrรกlnรญ', 'negativnรญ', 'missing', 'pozitivnรญ', 'velebรญcรญ', 'nenรกvistnรฉ'], 'obrazek': ['ne', 'ano'], 'video': ['ne', 'ano'], 'nazor': ['ne', 'ano'], 'odbornik': ['ne', 'ano'], 'zdroj': ['ne', 'ano'], 'strach': ['ne', 'ano'], 'vina': ['ne', 'ano'], 'nalepkovani': ['ne', 'ano'], 'demonizace': ['ne', 'ano'], 'relativizace': ['ne', 'ano'], 'fabulace': ['ne', 'ano'], 'year': '2016,2017,2018'.split(',') } simple_attributes = ['vina', 'nalepkovani', 'argumentace', 'emoce', 'demonizace', 'relativizace', 'strach', 'fabulace', 'nazor', 'lokace', 'zdroj', 'rusko', 'odbornik', 'tema', 'zanr', 'zamereni', 'vyzneni_celku', ] binary_attributes = [x for x in default_annot_values\ if len(default_annot_values[x]) == 2] def main(): fmt = '[%(asctime)-15s] %(levelname)s: %(message)s' logging.basicConfig(level=logging.INFO, format=fmt) m = argparse.ArgumentDefaultsHelpFormatter p = argparse.ArgumentParser(description="", formatter_class=m) p.add_argument("-c", "--corpus", type=str, required=True) p.add_argument("-d", "--db", type=str, required=True) p.add_argument("-o", "--outfile", type=str, required=True) args = p.parse_args() log.info("opening database {}".format(args.db)) db = sqlite3.connect(args.db) db.isolation_level = None # I want to handle transactions myself log.info("opening corpus {}".format(args.corpus)) corp = manatee.Corpus(args.corpus) log.info("corpus has %d positions" % corp.size()) log.info("reading annotations") attrs = read_annots(corp, db) headers_simple = [] headers_multi = [] for k, v in default_annot_values.iteritems(): if k not in simple_attributes: continue if len(v) > 2: for vv in v: headers_multi.append((k, vv, (k + "_" + vv).replace(' ', '-'))) else: headers_simple.append(k) log.info("reading corpus text") doc = corp.get_struct('doc') docsize = corp.get_struct('doc').size() fn = doc.get_attr('filename') with open('labels.csv', 'w') as lf: for x in headers_simple: print(x, file=lf) for x,y,z in headers_multi: print(z.encode('utf-8'), file=lf) print("Grouping most common answer") most_common = attrs.groupby(["docid", "name"]).agg(lambda x:
pd.Series.mode(x)
pandas.Series.mode
import pandas as pd import numpy as np import matplotlib.pyplot as plt import sys cardData = pd.read_csv('CardData.csv', header=0, encoding='utf-8-sig') coinData =
pd.read_csv('CoinData.csv', header=0, encoding='utf-8-sig')
pandas.read_csv
from sklearn.preprocessing import StandardScaler as SS import pandas as pd import numpy as np class data_scaler(object): """ A class for scaling and unscaling data. """ def __init__(self, mva=30, data=None): self.mva = mva self.scaler = SS() self.orig_data = data self.datasets = {} self.mvas = {} self.datasetcount = 0 if data is not None: self.datasets['orig'] = data def set_mva(mva=30): """ Allows the moving average period to be set. Must be an integer. """ self.mva = mva def transform_data(self, data=None): """ This is for scaling the original data for use in machine learning. Takes a numpy array as input, divides by a moving average with period mva (integer), and returns the scaled data as well as the scaler and moving average (needed for returning the data to its original form). """ if data is None and self.data is None: print('error! you need to supply the data here or when instantiating the class') return None elif data is None and self.data is not None: data = self.data self.datasets['orig'] = data # take the moving average with period self.mva rolling_mean =
pd.Series(data)
pandas.Series
#!python # builtin import os import sys import logging import json import time import contextlib import multiprocessing import urllib import csv # external import numpy as np import pandas as pd import h5py import pyteomics.mgf # local from ion_networks._version import __version__ as VERSION from ion_networks import numba_functions GITHUB_VERSION_FILE = "https://raw.githubusercontent.com/swillems/ion_networks/master/ion_networks/_version.py" BASE_PATH = os.path.dirname(__file__) UPDATE_COMMAND = os.path.join(os.path.dirname(BASE_PATH), "install", "update.sh") LIB_PATH = os.path.join(BASE_PATH, "lib") DEFAULT_PARAMETER_PATH = os.path.join(LIB_PATH, "default_parameters") DEFAULT_PARAMETER_FILES = { "convert": "convert_parameters.json", "create": "create_parameters.json", "evidence": "evidence_parameters.json", "interface": "interface_parameters.json", "database": "database_parameters.json", "annotation": "annotation_parameters.json", "mgf": "mgf_parameters.json", } DATA_TYPE_FILE_EXTENSIONS = { "DDA": ".mgf", "SONAR": "_Apex3DIons.csv", "HDMSE": "_Apex3DIons.csv", "SWIMDIA": "_Apex3DIons.csv", "DIAPASEF": "_centroids.hdf", } LOGGER = logging.getLogger("Ion-networks") MAX_THREADS = 1 @contextlib.contextmanager def open_logger(log_file_name, log_level=logging.INFO): # TODO: Docstring start_time = time.time() formatter = logging.Formatter('%(asctime)s > %(message)s') LOGGER.setLevel(log_level) if not LOGGER.hasHandlers(): console_handler = logging.StreamHandler(stream=sys.stdout) console_handler.setLevel(log_level) console_handler.setFormatter(formatter) LOGGER.addHandler(console_handler) if log_file_name is not None: if log_file_name == "": log_file_name = BASE_PATH else: log_file_name = os.path.abspath(log_file_name) if os.path.isdir(log_file_name): log_file_name = os.path.join(log_file_name, "log.txt") directory = os.path.dirname(log_file_name) if not os.path.exists(directory): os.makedirs(directory) file_handler = logging.FileHandler(log_file_name, mode="a") file_handler.setLevel(log_level) file_handler.setFormatter(formatter) LOGGER.addHandler(file_handler) LOGGER.info("=" * 50) LOGGER.info(f"COMMAND: ion_networks {' '.join(sys.argv[1:])}") LOGGER.info(f"VERSION: {VERSION}") LOGGER.info(f"LOGFILE: {log_file_name}") LOGGER.info("") try: yield LOGGER LOGGER.info("") LOGGER.info("Successfully finished execution") except: LOGGER.info("") LOGGER.exception("Something went wrong, execution incomplete!") finally: LOGGER.info(f"Time taken: {time.time() - start_time}") LOGGER.info("=" * 50) if log_file_name is not None: LOGGER.removeHandler(file_handler) def read_parameters_from_json_file(file_name="", default=""): """ Read a custom or default parameter file. Parameters ---------- default : str The default parameters that should be loaded. Options are: "create" "evidence" "interface" "" file_name : str The name of a .json file that contains parameters defined by the user. These will override the default parameters. Returns ------- dict A dictionary with parameters. """ if default == "": parameters = {"log_file_name": ""} else: default_parameter_file_name = os.path.join( DEFAULT_PARAMETER_PATH, DEFAULT_PARAMETER_FILES[default] ) with open(default_parameter_file_name, "r") as in_file: parameters = json.load(in_file) if file_name != "": with open(file_name, "r") as in_file: user_defined_parameters = json.load(in_file) parameters.update(user_defined_parameters) # TODO: Numba expects proper floats or integers, not a mixture # TODO: e.g. DT_error = 2.0, instead of DT_error = 2 if "threads" in parameters: set_threads(parameters["threads"]) return parameters def set_threads(threads): global MAX_THREADS max_cpu_count = multiprocessing.cpu_count() if threads > max_cpu_count: MAX_THREADS = max_cpu_count else: while threads <= 0: threads += max_cpu_count MAX_THREADS = threads def get_file_names_with_extension(input_path, extension=""): """ Get all file names with a specific extension from a list of files and folders. Parameters ---------- input_path : iterable[str] An iterable with files or folders from which all files with a specific extension need to be selected. extension : str The extension of the files of interest. Returns ------- list A sorted list with unique file names with the specific extension. """ input_files = set() if not isinstance(extension, str): for tmp_extension in extension: for file_name in get_file_names_with_extension( input_path, tmp_extension ): input_files.add(file_name) else: for current_path in input_path: if os.path.isfile(current_path): if current_path.endswith(extension): input_files.add(current_path) elif os.path.isdir(current_path): for current_file_name in os.listdir(current_path): if current_file_name.endswith(extension): file_name = os.path.join( current_path, current_file_name ) input_files.add(file_name) return sorted([os.path.abspath(file_name) for file_name in input_files]) def read_data_from_file( data_type, file_name, log_transform_intensity=True, ): """ Convert an [input_file.*] file to a pd.DataFrame with as columns the dimensions associated with the data type. Parameters ---------- data_type : str The data type of the [input_file.*] file. Options are: 'DDA' 'SONAR' 'HDMSE' 'SWIMDIA' 'DIAPASEF' file_name : str The file name containing centroided ions. log_transform_intensity : bool Transform the intensities to logarithmic values. Returns ------- pd.DataFrame A pd.DataFrame with as columns the PRECURSOR_RT, PRECURSOR_MZ, FRAGMENT_MZ and FRAGMENT_LOGINT dimensions. """ if data_type == "DDA": read_function = read_data_from_mgf_file elif data_type == "SONAR": read_function = read_data_from_sonar_file elif data_type == "HDMSE": read_function = read_data_from_hdmse_file elif data_type == "SWIMDIA": read_function = read_data_from_swimdia_file elif data_type == "DIAPASEF": read_function = read_data_from_diapasef_file data = read_function( file_name, log_transform_intensity=log_transform_intensity, ) return data def read_data_from_mgf_file( file_name, log_transform_intensity=True, ): """ Convert an [mgf_input.mgf] file to a pd.DataFrame with as columns the PRECURSOR_RT, PRECURSOR_MZ, FRAGMENT_MZ and FRAGMENT_LOGINT dimensions. Parameters ---------- file_name : str The file name of the DDA .mgf file (generated with ms-convert). log_transform_intensity : bool Transform the intensities to logarithmic values. Returns ------- pd.DataFrame A pd.DataFrame with as columns the PRECURSOR_RT, PRECURSOR_MZ, FRAGMENT_MZ and FRAGMENT_LOGINT dimensions. """ LOGGER.info(f"Reading mgf file {file_name}") mz1s = [] mz2s = [] rts = [] ints = [] for spectrum in pyteomics.mgf.read(file_name): peak_count = len(spectrum["intensity array"]) ints.append(spectrum["intensity array"]) mz2s.append(spectrum["m/z array"]) rts.append( np.repeat(spectrum["params"]["rtinseconds"] / 60, peak_count) ) mz1s.append(np.repeat(spectrum["params"]["pepmass"][0], peak_count)) mz1s = np.concatenate(mz1s) mz2s = np.concatenate(mz2s) rts = np.concatenate(rts) ints = np.concatenate(ints) if log_transform_intensity: ints = np.log2(ints) dimensions = [ "FRAGMENT_MZ", "PRECURSOR_RT", "FRAGMENT_LOGINT", "PRECURSOR_MZ" ] data = np.stack([mz2s, rts, ints, mz1s]).T return pd.DataFrame(data, columns=dimensions) def read_data_from_sonar_file( file_name, log_transform_intensity=True, ): """ Convert a [sonar_input.csv] file to a pd.DataFrame with as columns the PRECURSOR_RT, PRECURSOR_MZ, FRAGMENT_MZ and FRAGMENT_LOGINT dimensions. Parameters ---------- file_name : str The file name of the SONAR .csv file (generated with Waters' Apex3d). log_transform_intensity : bool Transform the intensities to logarithmic values. Returns ------- pd.DataFrame A pd.DataFrame with as columns the PRECURSOR_RT, PRECURSOR_MZ, FRAGMENT_MZ and FRAGMENT_LOGINT dimensions. """ LOGGER.info(f"Reading sonar file {file_name}") data = pd.read_csv( file_name, engine="c", dtype=np.float, usecols=["Function", "m_z", "rt", "mobility", "area"] ).values data = data[np.searchsorted(data[:, 0], 2):, 1:] if log_transform_intensity: data[:, 2] = np.log2(data[:, 2]) data[:, 3] = 400 + data[:, 3] * (900 - 400) / 200 dimensions = [ "FRAGMENT_MZ", "PRECURSOR_RT", "FRAGMENT_LOGINT", "PRECURSOR_MZ" ] return pd.DataFrame(data, columns=dimensions) def read_data_from_hdmse_file( file_name, log_transform_intensity=True, ): """ Convert a [hdmse_input.csv] file to a pd.DataFrame with as columns the PRECURSOR_RT, PRECURSOR_DT, FRAGMENT_MZ and FRAGMENT_LOGINT dimensions. Parameters ---------- file_name : str The file name of the HDMSE .csv file (generated with Waters' Apex3d). log_transform_intensity : bool Transform the intensities to logarithmic values. Returns ------- pd.DataFrame A pd.DataFrame with as columns the PRECURSOR_RT, PRECURSOR_DT, FRAGMENT_MZ and FRAGMENT_LOGINT dimensions. """ LOGGER.info(f"Reading hdmse file {file_name}") data = pd.read_csv( file_name, engine="c", dtype=np.float, usecols=["Function", "m_z", "rt", "mobility", "area"] ).values data = data[np.searchsorted(data[:, 0], 2):, 1:] if log_transform_intensity: data[:, 2] = np.log2(data[:, 2]) dimensions = [ "FRAGMENT_MZ", "PRECURSOR_RT", "FRAGMENT_LOGINT", "PRECURSOR_DT" ] return
pd.DataFrame(data, columns=dimensions)
pandas.DataFrame
from PyQt5 import QtCore import pandas as pd class Node(QtCore.QObject): def __init__(self, name, dataframe=None, parent=None, metadata=None, delayed_params=None): if type(name)!=str or len(name)==0 or '/' in name: raise NamingException("Name must be a non-empty string with no '/' character") super().__init__(parent=parent) self.children = dict() self.name = name self.dataframe = dataframe self.metadata = metadata self.delayed_params = delayed_params def set_data(self, dataframe): self.dataframe = dataframe def append_data(self, dataframe, **kwargs): self.dataframe = self.dataframe.append(dataframe, **kwargs) def get_data(self, keep_alive=True): if self.dataframe is None and not self.delayed_params is None: file_path, node_path = self.delayed_params with pd.HDFStore(file_path, mode='r') as store: df = store.get(node_path) if keep_alive: self.dataframe = df return df else: return self.dataframe def has_data(self): return not self.dataframe is None def add_node(self, name=None, node=None, overwrite=False, **kwargs): if name is None and node is None: raise Exception('Must specify either <name> or <node>') if not name is None and not node is None: raise Exception("Can't specify both <name> and <node>") if node is None: node = Node(name, parent=self, **kwargs) if type(node) != Node: raise TypeError if self.has_child(node.name) and not overwrite: raise NodeExistsException self.children[node.name] = node return node def has_child(self, name): return name in self.children.keys() def get_child(self, name): if name in self.children: return self.children[name] else: raise NodeNotFoundException def add_meta(self, **kwargs): if self.metadata is None: self.metadata = kwargs else: self.metadata.update(kwargs) def get_meta(self, keep_alive=True): if self.metadata is None and not self.delayed_params is None: file_path, node_path = self.delayed_params with pd.HDFStore(file_path, mode='r') as store: meta = store.get_storer(node_path).attrs.metadata if keep_alive: self.metadata = meta else: meta = self.metadata if meta is None: return {} else: return meta def get_tree_str(self, prefix = '', previous_string=''): s = previous_string + prefix + '+ ' + self.name +'\n' prefix += ' ' for name in self.get_child_names(): s += self.children[name].get_tree_str(prefix=prefix) return s def get_child_names(self, sort=True): child_names = self.children.keys() if sort: return sorted(child_names, key=str.lower) else: return child_names def __str__(self): return self.get_tree_str() def __iter__(self): for name in self.children: yield self.children[name] class Repository(QtCore.QObject): _VERSION = '1.0' def __init__(self, file_path, parent=None, delayed=True): super().__init__(parent=parent) self.root = Node('root') self.root.set_data(pd.DataFrame()) self.root.add_meta(repository_version=self._VERSION) self.file_path = file_path self.load(delayed=delayed) return def load(self, delayed=True): try: with pd.HDFStore(self.file_path, mode='r') as store: nodes_list = store.keys() try: nodes_list.pop(nodes_list.index('/__root')) self.root.set_data(store.get('/__root')) meta = store.get_storer('/__root').attrs.metadata self.root.add_meta(**meta) except: print('Could not load data_index') try: version = self.root.get_meta()['repository_version'] if version != self._VERSION: raise Exception except: print('File repository version does not match the current verison of the code... You may have to open manually') nodes_list.sort(key=len) for path in nodes_list: if delayed: self.add_node(path=path, overwrite=True, delayed_params=[self.file_path, path]) else: df = store.get(path) try: meta = store.get_storer(path).attrs.metadata except: meta = dict() self.add_node(path=path, dataframe=df, metadata=meta, overwrite=True) except OSError: print("File does not exist") pass def save(self, overwrite=False): with
pd.HDFStore(self.file_path, mode='a')
pandas.HDFStore
################################################################################ ### Init ################################################################################ import logging logging.basicConfig( level=logging.INFO, format='%(asctime)s.%(msecs)03d %(levelname)s %(module)s - %(funcName)s: %(message)s', datefmt="%Y-%m-%d %H:%M:%S") logger = logging.getLogger(__name__) import os import argparse import multiprocessing import pandas as pd from tqdm import tqdm ################################################################################ ### Script ################################################################################ if __name__ == '__main__': parser = argparse.ArgumentParser( prog='merge_csv.py', description='Merges a list of csvs into a single output csv. Adds a column indicating the original filename.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('-i','--input', nargs='+', help='Required. List of input csvs.', required=True) parser.add_argument('output_csv', help='Output csv file.') args = parser.parse_args() logger.info("Checking input files") for x in args.input: assert os.path.exists(x) input_files = args.input input_pd = [
pd.read_csv(x)
pandas.read_csv
import pandas as pd import matplotlib.pyplot as plt from . import get_data class TeamStat: def __init__(self,tid): self.tid = tid self.team_data = pd.DataFrame() self.personal_data =
pd.DataFrame()
pandas.DataFrame
import os import sys import sklearn import numpy as np import pandas as pd import matplotlib.pyplot as plt import re import preprocessor as p from sklearn.feature_extraction.text import CountVectorizer from sklearn import svm from sklearn.linear_model import SGDClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split import wget import dload from pylatex import Document, Section, Subsection, Command from pylatex.utils import italic, NoEscape from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import GridSearchCV from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay from sklearn.metrics import plot_roc_curve, plot_confusion_matrix from datetime import date from io import BytesIO from io import StringIO #from IPython import display import base64 from wordcloud import WordCloud import seaborn as sns import uuid from sklearn.metrics import auc import requests import io import fileinput # Download/create the dataset def fetch(): print("fetching dataset!") # replace this with code to fetch the dataset url = 'https://raw.githubusercontent.com/vijayakuruba/Data/main/gender-classifier-DFE-791531.csv' wget.download(url) print("Download complete!") def clean_data(df): tweets = [] for line in df: # send to tweet_processor line_cleaned = p.clean(line) line_cleaned = line_cleaned.lower() tweets.append(line_cleaned) return tweets def prepare_data(df): #clean_tweets(df) df_tweet = clean_data(df["text"]) df_tweet = pd.DataFrame(df_tweet) df_text = clean_data(df["description"].fillna("")) df_text =
pd.DataFrame(df_text)
pandas.DataFrame
import argparse import os import requests import tempfile import numpy as np import pandas as pd import sys from sklearn.compose import ColumnTransformer from sklearn.impute import SimpleImputer from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, OneHotEncoder import logging import logging.handlers def _get_logger(): ''' ๋กœ๊น…์„ ์œ„ํ•ด ํŒŒ์ด์ฌ ๋กœ๊ฑฐ๋ฅผ ์‚ฌ์šฉ # https://stackoverflow.com/questions/17745914/python-logging-module-is-printing-lines-multiple-times ''' loglevel = logging.DEBUG l = logging.getLogger(__name__) if not l.hasHandlers(): l.setLevel(loglevel) logging.getLogger().addHandler(logging.StreamHandler(sys.stdout)) l.handler_set = True return l logger = _get_logger() # Since we get a headerless CSV file we specify the column names here. feature_columns_names = [ "sex", "length", "diameter", "height", "whole_weight", "shucked_weight", "viscera_weight", "shell_weight", ] label_column = "rings" feature_columns_dtype = { "sex": str, "length": np.float64, "diameter": np.float64, "height": np.float64, "whole_weight": np.float64, "shucked_weight": np.float64, "viscera_weight": np.float64, "shell_weight": np.float64 } label_column_dtype = {"rings": np.float64} def merge_two_dicts(x, y): z = x.copy() z.update(y) return z if __name__ =='__main__': parser = argparse.ArgumentParser() parser.add_argument('--base_dir', type=str, default="/opt/ml/processing") parser.add_argument('--dataset_file_path', type=str, default="input/untitled.csv") parser.add_argument('--label_column', type=str, default="fraud") # parse arguments args = parser.parse_args() logger.info("#############################################") logger.info(f"args.base_dir: {args.base_dir}") logger.info(f"args.dataset_file_path: {args.dataset_file_path}") logger.info(f"args.label_column: {args.label_column}") ############################################## base_dir = args.base_dir dataset_file_path = args.dataset_file_path label_column = args.label_column df = pd.read_csv( f"{base_dir}/{dataset_file_path}", # header=None, # names=feature_columns_names + [label_column], # dtype=merge_two_dicts(feature_columns_dtype, label_column_dtype # ) ) logger.info(f"dataset sample \n {df.head(2)}") logger.info(f"df columns \n {df.columns}") y = df.pop(label_column) float_cols = df.select_dtypes(include=['float']).columns.values int_cols = df.select_dtypes(include=['int']).columns.values numeric_features = np.concatenate((float_cols, int_cols), axis=0).tolist() # numeric_features = list(feature_columns_names) # numeric_features.remove("sex") numeric_transformer = Pipeline( steps=[ ("imputer", SimpleImputer(strategy="median")), ("scaler", StandardScaler()) ] ) categorical_features = df.select_dtypes(include=['object']).columns.values.tolist() # categorical_features = ["sex"] categorical_transformer = Pipeline( steps=[ ("imputer", SimpleImputer(strategy="constant", fill_value="missing")), ("onehot", OneHotEncoder(handle_unknown="ignore")) ] ) preprocess = ColumnTransformer( transformers=[ ("num", numeric_transformer, numeric_features), ("cat", categorical_transformer, categorical_features) ] ) X_pre = preprocess.fit_transform(df) y_pre = y.to_numpy().reshape(len(y), 1) X = np.concatenate((y_pre, X_pre), axis=1) np.random.shuffle(X) train, validation, test = np.split(X, [int(.7*len(X)), int(.85*len(X))]) pd.DataFrame(train).to_csv(f"{base_dir}/train/train.csv", header=False, index=False) pd.DataFrame(validation).to_csv(f"{base_dir}/validation/validation.csv", header=False, index=False) pd.DataFrame(test).to_csv(f"{base_dir}/test/test.csv", header=False, index=False) logger.info(f"preprocessed train sample \n {
pd.DataFrame(train)
pandas.DataFrame
"""New style (fast) tag count annos Use these for new projects. """ from mbf_genomics.annotator import Annotator import numpy as np import pypipegraph as ppg import hashlib import pandas as pd from pathlib import Path from dppd import dppd import dppd_plotnine # noqa:F401 from mbf_qualitycontrol import register_qc, QCCollectingJob, qc_disabled from mbf_genomics.util import parse_a_or_c_to_plot_name dp, X = dppd() # ## Base classes and strategies - skip these if you just care about using TagCount annotators class _CounterStrategyBase: cores_needed = 1 def extract_lookup(self, data): """Adapter for count strategies that have different outputs (e.g. one-hashmap-unstranded or two-hashmaps-one-forward-one-reversed) """ return data class CounterStrategyStrandedRust(_CounterStrategyBase): cores_needed = -1 name = "stranded" def __init__(self): self.disable_sanity_check = False def count_reads( self, interval_strategy, genome, bam_filename, bam_index_name, reverse=False ): # bam_filename = bamfil intervals = interval_strategy._get_interval_tuples_by_chr(genome) gene_intervals = IntervalStrategyGene()._get_interval_tuples_by_chr(genome) from mbf_bam import count_reads_stranded res = count_reads_stranded( bam_filename, bam_index_name, intervals, gene_intervals ) self.sanity_check(res, bam_filename) return res def sanity_check(self, foward_and_reverse, bam_filename): if self.disable_sanity_check: return error_count = 0 forward, reverse = foward_and_reverse for gene_stable_id, forward_count in forward.items(): reverse_count = reverse.get(gene_stable_id, 0) if (reverse_count > 100) and (reverse_count > forward_count * 1.1): error_count += 1 if error_count > 0.1 * len(forward): raise ValueError( "Found at least %.2f%% of genes to have a reverse read count (%s) " "above 110%% of the exon read count (and at least 100 tags). " "This indicates that this lane (%s) should have been reversed before alignment. " "Set reverse_reads=True on your Lane object" % ( 100.0 * error_count / len(forward), self.__class__.__name__, bam_filename, ) ) def extract_lookup(self, data): """Adapter for count strategies that have different outputs (e.g. one-hashmap-unstranded or two-hashmaps-one-forward-one-reversed) """ return data[0] class CounterStrategyUnstrandedRust(_CounterStrategyBase): cores_needed = -1 name = "unstranded" def count_reads( self, interval_strategy, genome, bam_filename, bam_index_name, reverse=False ): # bam_filename = bamfil intervals = interval_strategy._get_interval_tuples_by_chr(genome) gene_intervals = IntervalStrategyGene()._get_interval_tuples_by_chr(genome) # chr -> [gene_id, strand, [start], [stops] from mbf_bam import count_reads_unstranded res = count_reads_unstranded( bam_filename, bam_index_name, intervals, gene_intervals ) return res class _IntervalStrategy: def get_interval_lengths_by_gene(self, genome): by_chr = self._get_interval_tuples_by_chr(genome) length_by_gene = {} for chr, tups in by_chr.items(): for tup in tups: # stable_id, strand, [starts], [stops] gene_stable_id = tup[0] length = 0 for start, stop in zip(tup[2], tup[3]): length += stop - start length_by_gene[gene_stable_id] = length return length_by_gene def _get_interval_tuples_by_chr(self, genome): # pragma: no cover raise NotImplementedError() def get_deps(self): return [] class IntervalStrategyGenomicRegion(_IntervalStrategy): """Used internally by _FastTagCounterGR""" def __init__(self, gr): self.gr = gr self.name = f"GR_{gr.name}" def _get_interval_tuples_by_chr(self, genome): result = {chr: [] for chr in genome.get_chromosome_lengths()} if self.gr.genome != genome: # pragma: no cover raise ValueError("Mismatched genomes") df = self.gr.df if not "strand" in df.columns: df = df.assign(strand=1) df = df[["chr", "start", "stop", "strand"]] if df.index.duplicated().any(): raise ValueError("index must be unique") for tup in df.itertuples(): result[tup.chr].append((str(tup[0]), tup.strand, [tup.start], [tup.stop])) return result class IntervalStrategyGene(_IntervalStrategy): """Count from TSS to TES""" name = "gene" def _get_interval_tuples_by_chr(self, genome): result = {chr: [] for chr in genome.get_chromosome_lengths()} gene_info = genome.df_genes for tup in gene_info[["chr", "start", "stop", "strand"]].itertuples(): result[tup.chr].append((tup[0], tup.strand, [tup.start], [tup.stop])) return result class IntervalStrategyExon(_IntervalStrategy): """count all exons""" name = "exon" def _get_interval_tuples_by_chr(self, genome): result = {chr: [] for chr in genome.get_chromosome_lengths()} for gene in genome.genes.values(): exons = gene.exons_merged result[gene.chr].append( (gene.gene_stable_id, gene.strand, list(exons[0]), list(exons[1])) ) return result class IntervalStrategyIntron(_IntervalStrategy): """count all introns""" name = "intron" def _get_interval_tuples_by_chr(self, genome): result = {chr: [] for chr in genome.get_chromosome_lengths()} for gene in genome.genes.values(): exons = gene.introns_strict result[gene.chr].append( (gene.gene_stable_id, gene.strand, list(exons[0]), list(exons[1])) ) return result class IntervalStrategyExonSmart(_IntervalStrategy): """For protein coding genes: count only in exons of protein-coding transcripts. For other genes: count all exons""" name = "exonsmart" def _get_interval_tuples_by_chr(self, genome): result = {chr: [] for chr in genome.get_chromosome_lengths()} for g in genome.genes.values(): e = g.exons_protein_coding_merged if len(e[0]) == 0: e = g.exons_merged result[g.chr].append((g.gene_stable_id, g.strand, list(e[0]), list(e[1]))) return result # Now the actual tag count annotators class TagCountCommonQC: def register_qc(self, genes): if not qc_disabled(): self.register_qc_distribution(genes) self.register_qc_pca(genes) # self.register_qc_cummulative(genes) def register_qc_distribution(self, genes): output_filename = genes.result_dir / self.qc_folder / f"read_distribution.png" output_filename.parent.mkdir(exist_ok=True) def plot(output_filename, elements): df = genes.df df = dp(df).select({x.aligned_lane.name: x.columns[0] for x in elements}).pd if len(df) == 0: df = pd.DataFrame({"x": [0], "y": [0], "text": "no data"}) dp(df).p9().add_text("x", "y", "text").render(output_filename).pd else: plot_df = dp(df).melt(var_name="sample", value_name="count").pd plot = dp(plot_df).p9().theme_bw() print(df) if ((df > 0).sum(axis=0) > 1).any() and len(df) > 1: plot = plot.geom_violin( dp.aes(x="sample", y="count"), width=0.5, bw=0.1 ) if len(plot_df["sample"].unique()) > 1: plot = plot.annotation_stripes(fill_range=True) if (plot_df["count"] > 0).any(): # can't have a log boxplot with all nans (log(0)) plot = plot.scale_y_continuous( trans="log10", name=self.qc_distribution_scale_y_name, breaks=[1, 10, 100, 1000, 10000, 100_000, 1e6, 1e7], ) print(plot_df) return ( plot.add_boxplot( x="sample", y="count", _width=0.1, _fill=None, _color="blue" ) .turn_x_axis_labels() .title("Raw read distribution") .hide_x_axis_title() .render_args(limitsize=False) .render(output_filename, width=0.2 * len(elements) + 1, height=4) ) return register_qc( QCCollectingJob(output_filename, plot) .depends_on(genes.add_annotator(self)) .add(self) ) def register_qc_pca(self, genes): output_filename = genes.result_dir / self.qc_folder / f"pca.png" def plot(output_filename, elements): import sklearn.decomposition as decom if len(elements) == 1: xy = np.array([[0], [0]]).transpose() title = "PCA %s - fake / single sample" % genes.name else: pca = decom.PCA(n_components=2, whiten=False) data = genes.df[[x.columns[0] for x in elements]] data -= data.min() # min max scaling 0..1 data /= data.max() data = data[~pd.isnull(data).any(axis=1)] # can' do pca on NAN values if len(data): pca.fit(data.T) xy = pca.transform(data.T) title = "PCA %s\nExplained variance: x %.2f%%, y %.2f%%" % ( genes.name, pca.explained_variance_ratio_[0] * 100, pca.explained_variance_ratio_[1] * 100, ) else: xy = np.array( [[0] * len(elements), [0] * len(elements)] ).transpose() title = "PCA %s - fake / no rows" % genes.name plot_df = pd.DataFrame( {"x": xy[:, 0], "y": xy[:, 1], "label": [x.plot_name for x in elements]} ) print(plot_df) ( dp(plot_df) .p9() .theme_bw() .add_scatter("x", "y") .add_text( "x", "y", "label", # cool, this can go into an endless loop... # _adjust_text={ # "expand_points": (2, 2), # "arrowprops": {"arrowstyle": "->", "color": "red"}, # }, ) .scale_color_many_categories() .title(title) .render(output_filename, width=8, height=6) ) return register_qc( QCCollectingJob(output_filename, plot) .depends_on(genes.add_annotator(self)) .add(self) ) class _FastTagCounter(Annotator, TagCountCommonQC): def __init__( self, aligned_lane, count_strategy, interval_strategy, column_name, column_desc ): if not hasattr(aligned_lane, "get_bam"): raise ValueError("_FastTagCounter only accepts aligned lanes!") self.aligned_lane = aligned_lane self.genome = self.aligned_lane.genome self.count_strategy = count_strategy self.interval_strategy = interval_strategy self.columns = [(column_name % (self.aligned_lane.name,)).strip()] self.cache_name = ( "FT_%s_%s" % (count_strategy.name, interval_strategy.name) + "_" + hashlib.md5(self.columns[0].encode("utf-8")).hexdigest() ) self.column_properties = {self.columns[0]: {"description": column_desc}} self.vid = aligned_lane.vid self.cores_needed = count_strategy.cores_needed self.plot_name = self.aligned_lane.name self.qc_folder = f"{self.count_strategy.name}_{self.interval_strategy.name}" self.qc_distribution_scale_y_name = "raw counts" def calc(self, df): if ppg.inside_ppg(): data = self._data else: data = self.calc_data() lookup = self.count_strategy.extract_lookup(data) result = [] for gene_stable_id in df["gene_stable_id"]: result.append(lookup.get(gene_stable_id, 0)) result = np.array(result, dtype=np.float) return
pd.Series(result)
pandas.Series
"""Script to sanitize labels and convert annotations to the classifier format. """ import argparse import json import logging import nltk import os import pandas import utils logging.basicConfig(level=logging.INFO) DEFAULT_LABEL = 'O' def read_arguments(): """Parses the arguments from the stdin and returns an object.""" parser = argparse.ArgumentParser() parser.add_argument('annotated_documents', type=str, help='Path of directory with the annotated files') parser.add_argument('--output_directory', type=str, help='Path of directory to save the files') parser.add_argument('--mapping_filename', type=str, help='Filename to read the mappings.') parser.add_argument('--update_mappings', action='store_true', help='Add new labels found to mapping.') return parser.parse_args() def add_columns(annotation): new_column_index = [] new_column_pos = [] sentence_count = 0 sentence = [] for row in annotation.iterrows(): if pandas.isnull(row[1]['labels']): new_column_pos += [x[1] for x in nltk.pos_tag(sentence)] new_column_pos.append(pandas.np.nan) sentence = [] new_column_index.append(pandas.np.nan) else: new_column_index.append(len(sentence)) sentence.append(row[1]['tokens']) annotation['sentence_index'] = new_column_index annotation['pos_tag'] = new_column_pos def separate_labels(annotation): """Adds columns with raw lkif and yago uri labels""" def split_function(row): if row == DEFAULT_LABEL: return pandas.Series([DEFAULT_LABEL] * 2) uri, lkif = row.split('##') ner_tag = uri[0] return pandas.Series([uri, ner_tag + '-' + lkif]) annotation[['uri_tag', 'lkif_tag']] = annotation['labels'].apply( split_function) def apply_mappings(annotation, mappings): """Replace labels according to mappings.""" def get_or_update_label(mapping_key, label_name, row): original_label = row[label_name][2:] if original_label not in mappings[mapping_key]: # Add missing label mappings[mapping_key][original_label] = None if mappings[mapping_key][original_label] == "": return DEFAULT_LABEL if mappings[mapping_key][original_label] is not None: return row[label_name][:2] + mappings[mapping_key][original_label] return row[label_name][:2] + original_label def apply_function(row): if row['lkif_tag'] == DEFAULT_LABEL: return
pandas.Series([DEFAULT_LABEL] * 4)
pandas.Series
import pandas as pd from pathlib import Path import os import numpy as np import re root = os.path.dirname(os.getcwd()) html_url_repo = pd.read_csv(root + '/Dataset/3out.csv', header=None) # import maven comments which is stored as stdout file files = Path(root + '/Dataset/').glob('**/stdout') SATD_comments = pd.DataFrame(columns=['Link Location', 'Comment', 'Keywords']) Comments_with_no_keywords = pd.DataFrame(columns=['Link Location', 'Comment']) revision_list = pd.DataFrame(columns=['Repository ID', 'Revison']) with open(root + '/Dataset/keywords_list.txt', 'r') as file: keywords_debt = file.read().split(', ') maven_comments = 0 maven_repo = 0 pom_file = 0 error = [] for file in files: df =
pd.read_json(file)
pandas.read_json
from trading import models, serializers, services import pandas as pd import requests import json def create_update_symbols(): symbols = services.get_symbols() for element in symbols: symbol_obj, created = models.Symbols.objects.update_or_create( symbol=element.get('symbol', None), defaults={ 'symbol': element.get('symbol', None), 'name': element.get('name', None), 'isEnabled': element.get('isEnabled', None), 'iexId': element.get('iexId', None), 'date': element.get('date', None), 'symbol_type': element.get('type', None), } ) def create_update_history(symbol, range_time): history = services.get_history_data(symbol,range_time) for element in history: history_obj, created = models.HistoricalPrices.objects.filter(symbol=symbol).update_or_create( date=element.get('date', None), defaults={ 'symbol_id': symbol, 'date': element.get('date', None), 'open_price': element.get('open', None), 'high_price': element.get('high', None), 'low_price': element.get('low', None), 'close_price': element.get('close', None), 'volume': element.get('volume', None), 'uOpen': element.get('uOpen', None), 'uHigh': element.get('uHigh', None), 'uLow': element.get('uLow', None), 'uClose': element.get('uClose', None), 'uVolume': element.get('uVolume', None), 'change': element.get('change', None), 'changePercent': element.get('changePercent', None), 'changeOverTime': element.get('changeOverTime', None), } ) def get_recommendations(): df_recomendation =
pd.DataFrame()
pandas.DataFrame
""" filename chapter_id speaker_id dataset_id 0 1272/128104/1272-128104-0000.wav 128104 1272 dev-clean 1 1272/128104/1272-128104-0001.wav 128104 1272 dev-clean 2 1272/128104/1272-128104-0002.wav 128104 1272 dev-clean 3 1272/128104/1272-128104-0003.wav 128104 1272 dev-clean 4 1272/128104/1272-128104-0004.wav 128104 1272 dev-clean 5 1272/128104/1272-128104-0005.wav 128104 1272 dev-clean 6 1272/128104/1272-128104-0006.wav 128104 1272 dev-clean 7 1272/128104/1272-128104-0007.wav 128104 1272 dev-clean 8 1272/128104/1272-128104-0008.wav 128104 1272 dev-clean 9 1272/128104/1272-128104-0009.wav 128104 1272 dev-clean """ import logging import numpy as np import pandas as pd from python_speech_features import fbank, delta import ds_constants as c from ds_constants import SAMPLE_RATE from voxceleb_wav_reader import read_audio #def normalize_frames(m): # return [(v - np.mean(v)) / np.std(v) for v in m] def normalize_frames(m,epsilon=1e-12): return [(v - np.mean(v)) / max(np.std(v),epsilon) for v in m] def pre_process_inputs(signal=np.random.uniform(size=32000), target_sample_rate=8000): filter_banks, energies = fbank(signal, samplerate=target_sample_rate, nfilt=64, winlen=0.025) delta_1 = delta(filter_banks, N=1) delta_2 = delta(delta_1, N=1) filter_banks = normalize_frames(filter_banks) delta_1 = normalize_frames(delta_1) delta_2 = normalize_frames(delta_2) frames_features = np.hstack([filter_banks, delta_1, delta_2]) num_frames = len(frames_features) network_inputs = [] for j in range(8, num_frames - 8): frames_slice = frames_features[j - 8:j + 8] network_inputs.append(np.reshape(frames_slice, (32, 32, 3))) return np.array(network_inputs) class MiniBatch: def __init__(self, voxceleb, batch_size): # indices = np.random.choice(len(libri), size=batch_size, replace=False) # [anc1, anc2, anc3, pos1, pos2, pos3, neg1, neg2, neg3] # [sp1, sp2, sp3, sp1, sp2, sp3, sp4, sp5, sp6] unique_speakers = list(voxceleb['speaker_id'].unique()) num_triplets = batch_size anchor_batch = None positive_batch = None negative_batch = None for ii in range(num_triplets): two_different_speakers = np.random.choice(unique_speakers, size=2, replace=False) anchor_positive_speaker = two_different_speakers[0] negative_speaker = two_different_speakers[1] anchor_positive_file = voxceleb[voxceleb['speaker_id'] == anchor_positive_speaker].sample(n=2, replace=False) anchor_df =
pd.DataFrame(anchor_positive_file[0:1])
pandas.DataFrame
#!/usr/bin/python3 import sys import pandas as pd import numpy as np import os import concurrent.futures import functools, itertools import sofa_time import statistics import multiprocessing as mp import socket import ipaddress # sys.path.insert(0, '/home/st9540808/Desktop/sofa/bin') import sofa_models, sofa_preprocess import sofa_config import sofa_print colors_send = ['#14f2e0', '#41c8e5', '#6e9eeb'] colors_recv = ['#9a75f0', '#c74bf6', '#f320fa', '#fe2bcc'] color_send = itertools.cycle(colors_send) color_recv = itertools.cycle(colors_recv) sofa_ros2_fieldnames = [ "timestamp", # 0 "event", # 1 "duration", # 2 "deviceId", # 3 "copyKind", # 4 "payload", # 5 "bandwidth", # 6 "pkt_src", # 7 "pkt_dst", # 8 "pid", # 9 "tid", # 10 "name", # 11 "category", # 12 "unit", # 13 "msg_id"] # 14 # @profile def extract_individual_rosmsg(df_send_, df_recv_, *df_others_): """ Return a dictionary with topic name as key and a list of ros message as value. Structure of return value: {topic_name: {(guid, seqnum): log}} where (guid, seqnum) is a msg_id """ # Convert timestamp to unix time # unix_time_off = statistics.median(sofa_time.get_unix_mono_diff() for i in range(100)) # for df in (df_send, df_recv, *df_others): # df['ts'] = df['ts'] + unix_time_off df_send_[1]['ts'] = df_send_[1]['ts'] + df_send_[0].cpu_time_offset + df_send_[0].unix_time_off df_recv_[1]['ts'] = df_recv_[1]['ts'] + df_recv_[0].cpu_time_offset + df_recv_[0].unix_time_off df_others = [] for cfg_to_pass, df_other in df_others_: df_other['ts'] = df_other['ts'] + cfg_to_pass.cpu_time_offset + cfg_to_pass.unix_time_off df_others.append(df_other) df_send = df_send_[1] df_recv = df_recv_[1] # sort by timestamp df_send.sort_values(by=['ts'], ignore_index=True) df_recv.sort_values(by=['ts'], ignore_index=True) # publish side gb_send = df_send.groupby('guid') all_publishers_log = {guid:log for guid, log in gb_send} # subscription side gb_recv = df_recv.groupby('guid') all_subscriptions_log = {guid:log for guid, log in gb_recv} # other logs (assume there's no happen-before relations that needed to be resolved) # every dataframe is a dictionary in `other_log_list` gb_others = [df_other.groupby('guid') for df_other in df_others] other_log_list = [{guid:log for guid, log in gb_other} for gb_other in gb_others] # find guids that are in both subsciption and publisher log interested_guids = all_subscriptions_log.keys() \ & all_publishers_log.keys() res = {} for guid in interested_guids: # get a publisher from log df = all_publishers_log[guid] df_send_partial = all_publishers_log[guid].copy() add_data_calls = df[~pd.isna(df['seqnum'])] # get all non-NaN seqnums in log try: pubaddr, = pd.unique(df['publisher']).dropna() print(pubaddr) except ValueError as e: print('Find a guid that is not associated with a publisher memory address. Error: ' + str(e)) continue # print(add_data_calls) all_RTPSMsg_idx = ((df_send['func'] == '~RTPSMessageGroup') & (df_send['publisher'] == pubaddr)) all_RTPSMsgret_idx = ((df_send['func'] == '~RTPSMessageGroup exit') & (df_send['publisher'] == pubaddr)) all_sendSync_idx = ((df_send['func'] == 'sendSync') & (df_send['publisher'] == pubaddr)) all_nn_xpack_idx = (df['func'] == 'nn_xpack_send1') modified_rows = [] for idx, add_data_call in add_data_calls.iterrows(): ts = add_data_call['ts'] rcl_idx = df.loc[(df['ts'] < ts) & (df['layer'] == 'rcl')]['ts'].idxmax() df_send_partial.loc[rcl_idx, 'seqnum'] = add_data_call.loc['seqnum'] # For grouping RTPSMessageGroup function try: ts_gt = (df_send['ts'] > ts) # ts greater than that of add_data_call RTPSMsg_idx = df_send.loc[ts_gt & all_RTPSMsg_idx]['ts'].idxmin() modified_row = df_send.loc[RTPSMsg_idx] modified_row.at['seqnum'] = add_data_call.loc['seqnum'] modified_row.at['guid'] = guid modified_rows.append(modified_row) RTPSMsgret_idx = df_send.loc[ts_gt & all_RTPSMsgret_idx]['ts'].idxmin() modified_row = df_send.loc[RTPSMsgret_idx] modified_row.at['seqnum'] = add_data_call.loc['seqnum'] modified_row.at['guid'] = guid modified_rows.append(modified_row) sendSync_idx = df_send.loc[ts_gt & (df_send['ts'] < df_send.loc[RTPSMsgret_idx, 'ts']) & all_sendSync_idx] sendSync = sendSync_idx.copy() sendSync['seqnum'] = add_data_call.loc['seqnum'] modified_rows.extend(row for _, row in sendSync.iterrows()) except ValueError as e: pass if 'rmw_cyclonedds_cpp' in df['implementation'].values: try: df_cls = other_log_list[0][guid] seqnum = add_data_call.loc['seqnum'] max_ts = df_cls[(df_cls['layer'] == 'cls_egress') & (df_cls['seqnum'] == seqnum)]['ts'].max() index = df.loc[(ts < df['ts']) & (df['ts'] < max_ts) & all_nn_xpack_idx].index df_send_partial.loc[index, 'seqnum'] = seqnum except ValueError as e: pass df_send_partial = pd.concat([df_send_partial, pd.DataFrame(modified_rows)]) # get a subscrption from log df = all_subscriptions_log[guid] df_recv_partial = all_subscriptions_log[guid].copy() add_recvchange_calls = df[~pd.isna(df['seqnum'])] # get all not nan seqnums in log if 'cyclonedds' in df['layer'].unique(): add_recvchange_calls = df[df['func'] == 'ddsi_udp_conn_read exit'] all_sub = pd.unique(df['subscriber']) # How many subscribers subscribe to this topic? subs_map = {sub: (df['subscriber'] == sub) & (df['func'] == "rmw_take_with_info exit") for sub in all_sub} all_pid =
pd.unique(df_recv['pid'])
pandas.unique
""" Copyright (c) 2018 Intel Corporation. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import pandas as pd import numpy as np import os import sys import json from influxdb import InfluxDBClient from influxdb import DataFrameClient sys.path.insert(0, '../') from utils import create_dataframe # Connecting to influxDb influxdb1_client = InfluxDBClient("localhost", "8086", "admin","admin","Predictions_testset1") influxdb1_client.create_database("Predictions_testset1") influxdb2_client = InfluxDBClient("localhost", "8086", "admin","admin","Predictions_testset2") influxdb2_client.create_database("Predictions_testset2") dbname = input("Enter the database name: ") if(dbname == '1st_test' or dbname == '2nd_test'): if (dbname=="1st_test"): no_of_bearings = 8 influxdb_client = DataFrameClient("localhost", "8086", "admin","admin",dbname) elif(dbname == "2nd_test"): no_of_bearings = 4 influxdb_client = DataFrameClient("localhost", "8086", "admin","admin",dbname) frequency_component1, frequency_component2, frequency_component3, frequency_component4, frequency_component5 = (
pd.DataFrame()
pandas.DataFrame
def sim_reg_data(xmin, xmax, ymin, ymax, n, sd): import pandas as pd import numpy.random as nr w = nr.normal(loc = 0, scale = sd, size = n) xstep = float(xmax - xmin)/float(n - 1) ystep = float(ymax - ymin)/float(n - 1) x = [] xcur = xmin y = [] ycur = ymin for i in range(n): x.append(xcur) xcur += xstep y.append(ycur + w[i]) ycur += ystep out =
pd.DataFrame([x, y])
pandas.DataFrame
import argparse import numpy as np import pandas as pd import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt import os import seaborn as sns import matplotlib.dates as mdates import sys sys.path.append('../') from processing_helpers import * from load_paths import load_box_paths mpl.rcParams['pdf.fonttype'] = 42 def parse_args(): description = "Process simulation outputs to send to Civis" parser = argparse.ArgumentParser(description=description) parser.add_argument( "-stem", "--stem", type=str, help="Name of experiment and folder name", default=None, ) parser.add_argument( "-p", "--processStep", type=str, help="Only required if files are too large to process regions in a loop", default='generate_outputs', ) parser.add_argument( "-l", "--Location", type=str, help="Local or NUCLUSTER", default='Local', ) return parser.parse_args() def get_scenarioName(exp_suffix) : scenarioName = exp_suffix if exp_suffix == "reopen": scenarioName = "reopen_gradual" if exp_suffix == "gradual": scenarioName = "reopen_gradual" if exp_suffix == "interventionStop": scenarioName = "endsip" if exp_suffix == "0": scenarioName = "baseline" if exp_suffix == "neverSIP": scenarioName = "neversip" if exp_suffix == "stopSIP30": scenarioName = "july1partial30" if exp_suffix == "stopSIP10": scenarioName = "july1partial10" return(scenarioName) def plot_sim(dat,suffix,channels) : if suffix not in ["All","central","southern","northeast","northcentral"]: suffix_nr = str(suffix.split("-")[1]) if suffix == "All": suffix_nr ="illinois" capacity = load_capacity(suffix_nr) fig = plt.figure(figsize=(18, 12)) fig.subplots_adjust(right=0.97, wspace=0.2, left=0.07, hspace=0.15) palette = sns.color_palette('Set1', len(channels)) for c, channel in enumerate(channels): ax = fig.add_subplot(3, 3, c + 1) ax.plot(dat['date'], dat['%s_median' % channel], color=palette[c]) ax.fill_between(dat['date'].values, dat['%s_95CI_lower' % channel], dat['%s_95CI_upper' % channel], color=palette[c], linewidth=0, alpha=0.2) ax.fill_between(dat['date'].values, dat[ '%s_50CI_lower' % channel], dat[ '%s_50CI_upper' % channel], color=palette[c], linewidth=0, alpha=0.4) if channel in capacity.keys(): ax.plot([np.min(dat['date']), np.max(dat['date'])], [capacity[channel], capacity[channel]], '--', linewidth=2, color=palette[c]) ax.set_title(channel, y=0.85) ax.xaxis.set_major_formatter(mdates.DateFormatter('%b\n%y')) plotname = f'{scenarioName}_{suffix}' plotname = plotname.replace('EMS-','covidregion_') plt.savefig(os.path.join(plot_path, plotname + '.png')) plt.savefig(os.path.join(plot_path, 'pdf', plotname + '.pdf'), format='PDF') # plt.show() def load_and_plot_data(ems_region, savePlot=True) : region_suffix = f'_{str(ems_region)}' column_list = ['startdate', 'time', 'scen_num', 'sample_num', 'run_num'] outcome_channels = ['susceptible', 'infected', 'recovered', 'infected_cumul','asymp_cumul','asymp_det_cumul', 'symp_mild_cumul', 'symp_severe_cumul', 'symp_mild_det_cumul', 'symp_severe_det_cumul', 'hosp_det_cumul', 'hosp_cumul', 'detected_cumul', 'crit_cumul', 'crit_det_cumul', 'deaths_det_cumul', 'deaths', 'crit_det', 'critical', 'hosp_det', 'hospitalized'] for channel in outcome_channels: column_list.append(channel + region_suffix) df = load_sim_data(exp_name,region_suffix = region_suffix, column_list=column_list) df['ems'] = ems_region df['ventilators'] = get_vents(df['crit_det'].values) df['new_symptomatic'] = df['new_symptomatic_severe'] + df['new_symptomatic_mild'] + df['new_detected_symptomatic_severe'] + df['new_detected_symptomatic_mild'] channels = ['infected', 'new_infected', 'new_symptomatic', 'new_deaths', 'new_detected_deaths', 'hospitalized', 'critical', 'hosp_det', 'crit_det', 'ventilators', 'recovered'] plotchannels = ['infected', 'new_infected', 'new_symptomatic', 'new_deaths', 'new_detected_deaths', 'hosp_det', 'crit_det', 'ventilators', 'recovered'] adf = pd.DataFrame() for c, channel in enumerate(channels): mdf = df.groupby(['date', 'ems'])[channel].agg([CI_50, CI_2pt5, CI_97pt5, CI_25, CI_75]).reset_index() mdf = mdf.rename(columns={'CI_50': '%s_median' % channel, 'CI_2pt5': '%s_95CI_lower' % channel, 'CI_97pt5': '%s_95CI_upper' % channel, 'CI_25': '%s_50CI_lower' % channel, 'CI_75': '%s_50CI_upper' % channel}) if adf.empty: adf = mdf else: adf =
pd.merge(left=adf, right=mdf, on=['date', 'ems'])
pandas.merge
import numpy as np from typing import Dict, Tuple, Optional, List import pandas as pd from torch import Tensor from typing import Union def create_neurons(neuron_list): prinz_neurons = { "LP": { "LP_0": [100, 0, 8, 40, 5, 75, 0.05, 0.02], # this3 g_CaS g_A g_Kd "LP_1": [100, 0, 6, 30, 5, 50, 0.05, 0.02], # this2 # KCa, H # this3 "LP_2": [100, 0, 10, 50, 5, 100, 0.0, 0.03], "LP_3": [100, 0, 4, 20, 0, 25, 0.05, 0.03], "LP_4": [100, 0, 6, 30, 0, 50, 0.03, 0.02], # this2 }, "PY": { "PY_1": [200, 7.5, 0, 50, 0, 75, 0.05, 0.0], # this3 # this3 g_Na, g_CaT, g_CaS "PY_0": [100, 2.5, 2, 50, 0, 125, 0.05, 0.01], # this3 "PY_3": [400, 2.5, 2, 50, 0, 75, 0.05, 0.0], # this3 # this3 g_leak, g_Kd, g_Na "PY_5": [500, 2.5, 2, 40, 0, 125, 0.0, 0.02], # this2 # g_H, g_leak "PY_2": [200, 10.0, 0, 50, 0, 100, 0.03, 0.0], # this3 # CaT Kd H "PY_4": [500, 2.5, 2, 40, 0, 125, 0.01, 0.03], # this2 }, "PM": { "PM_0": [400, 2.5, 6, 50, 10, 100, 0.01, 0.0], # this2 g_Na, KCa "PM_3": [200, 5.0, 4, 40, 5, 125, 0.01, 0.0], # this3 CaT, g_A, g_Kd "PM_4": [300, 2.5, 2, 10, 5, 125, 0.01, 0.0], "PM_1": [100, 2.5, 6, 50, 5, 100, 0.01, 0.0], # this2 "PM_2": [200, 2.5, 4, 50, 5, 50, 0.01, 0.0], # this3 }, } # Note (PM_0 or PM_1) / (LP_2) / (PY_0) is figure 5a in Prinz 2004. # Note (PM_4) / (LP_3) / (PY_4) is figure 5b in Prinz 2004. ret = [] for n in neuron_list: membrane_area = np.asarray(n[2], dtype=np.float64) pn = np.asarray(prinz_neurons[n[0]][n[1]], dtype=np.float64) neuron = pn * membrane_area ret.append(neuron) return np.asarray(ret) def membrane_conductances_replaced_with_defaults(circuit_parameters, defaults_dict): default_neurons = create_neurons(defaults_dict["membrane_gbar"]) default_neurons = np.reshape(default_neurons, (1, 24)) type_names, cond_names = select_names() type_names = type_names[:24] cond_names = cond_names[:24] default_neurons_pd = pd.DataFrame(default_neurons, columns=[type_names, cond_names]) for tn, cn in zip(type_names, cond_names): if (tn, cn) in circuit_parameters: default_neurons_pd.loc[0][tn, cn] = circuit_parameters[tn, cn] * 0.628e-3 return default_neurons_pd def synapses_replaced_with_defaults(circuit_parameters, defaults_dict): type_names, cond_names = select_names() type_names = type_names[24:] cond_names = cond_names[24:] data_array = [] for tn, cn in zip(type_names, cond_names): if (tn, cn) in circuit_parameters: data_array.append(circuit_parameters[tn, cn]) data_array = np.asarray([data_array]) default_synapse_values =
pd.DataFrame(data_array, columns=[type_names, cond_names])
pandas.DataFrame
# -*- coding: utf-8 -*- import re import warnings from datetime import timedelta from itertools import product import pytest import numpy as np import pandas as pd from pandas import (CategoricalIndex, DataFrame, Index, MultiIndex, compat, date_range, period_range) from pandas.compat import PY3, long, lrange, lzip, range, u, PYPY from pandas.errors import PerformanceWarning, UnsortedIndexError from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.indexes.base import InvalidIndexError from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas._libs.tslib import Timestamp import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal, assert_copy from .common import Base class TestMultiIndex(Base): _holder = MultiIndex _compat_props = ['shape', 'ndim', 'size'] def setup_method(self, method): major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) self.index_names = ['first', 'second'] self.indices = dict(index=MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels ], names=self.index_names, verify_integrity=False)) self.setup_indices() def create_index(self): return self.index def test_can_hold_identifiers(self): idx = self.create_index() key = idx[0] assert idx._can_hold_identifiers_and_holds_name(key) is True def test_boolean_context_compat2(self): # boolean context compat # GH7897 i1 = MultiIndex.from_tuples([('A', 1), ('A', 2)]) i2 = MultiIndex.from_tuples([('A', 1), ('A', 3)]) common = i1.intersection(i2) def f(): if common: pass tm.assert_raises_regex(ValueError, 'The truth value of a', f) def test_labels_dtypes(self): # GH 8456 i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) assert i.labels[0].dtype == 'int8' assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(40)]) assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(400)]) assert i.labels[1].dtype == 'int16' i = MultiIndex.from_product([['a'], range(40000)]) assert i.labels[1].dtype == 'int32' i = pd.MultiIndex.from_product([['a'], range(1000)]) assert (i.labels[0] >= 0).all() assert (i.labels[1] >= 0).all() def test_where(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) def f(): i.where(True) pytest.raises(NotImplementedError, f) def test_where_array_like(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) klasses = [list, tuple, np.array, pd.Series] cond = [False, True] for klass in klasses: def f(): return i.where(klass(cond)) pytest.raises(NotImplementedError, f) def test_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(m.repeat(reps), expected) with tm.assert_produces_warning(FutureWarning): result = m.repeat(n=reps) tm.assert_index_equal(result, expected) def test_numpy_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(np.repeat(m, reps), expected) msg = "the 'axis' parameter is not supported" tm.assert_raises_regex( ValueError, msg, np.repeat, m, reps, axis=1) def test_set_name_methods(self): # so long as these are synonyms, we don't need to test set_names assert self.index.rename == self.index.set_names new_names = [name + "SUFFIX" for name in self.index_names] ind = self.index.set_names(new_names) assert self.index.names == self.index_names assert ind.names == new_names with tm.assert_raises_regex(ValueError, "^Length"): ind.set_names(new_names + new_names) new_names2 = [name + "SUFFIX2" for name in new_names] res = ind.set_names(new_names2, inplace=True) assert res is None assert ind.names == new_names2 # set names for specific level (# GH7792) ind = self.index.set_names(new_names[0], level=0) assert self.index.names == self.index_names assert ind.names == [new_names[0], self.index_names[1]] res = ind.set_names(new_names2[0], level=0, inplace=True) assert res is None assert ind.names == [new_names2[0], self.index_names[1]] # set names for multiple levels ind = self.index.set_names(new_names, level=[0, 1]) assert self.index.names == self.index_names assert ind.names == new_names res = ind.set_names(new_names2, level=[0, 1], inplace=True) assert res is None assert ind.names == new_names2 @pytest.mark.parametrize('inplace', [True, False]) def test_set_names_with_nlevel_1(self, inplace): # GH 21149 # Ensure that .set_names for MultiIndex with # nlevels == 1 does not raise any errors expected = pd.MultiIndex(levels=[[0, 1]], labels=[[0, 1]], names=['first']) m = pd.MultiIndex.from_product([[0, 1]]) result = m.set_names('first', level=0, inplace=inplace) if inplace: result = m tm.assert_index_equal(result, expected) def test_set_levels_labels_directly(self): # setting levels/labels directly raises AttributeError levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] with pytest.raises(AttributeError): self.index.levels = new_levels with pytest.raises(AttributeError): self.index.labels = new_labels def test_set_levels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] def assert_matching(actual, expected, check_dtype=False): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp) tm.assert_numpy_array_equal(act, exp, check_dtype=check_dtype) # level changing [w/o mutation] ind2 = self.index.set_levels(new_levels) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) # level changing specific level [w/o mutation] ind2 = self.index.set_levels(new_levels[0], level=0) assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.set_levels(new_levels[1], level=1) assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/o mutation] ind2 = self.index.set_levels(new_levels, level=[0, 1]) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # illegal level changing should not change levels # GH 13754 original_index = self.index.copy() for inplace in [True, False]: with tm.assert_raises_regex(ValueError, "^On"): self.index.set_levels(['c'], level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(ValueError, "^On"): self.index.set_labels([0, 1, 2, 3, 4, 5], level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Levels"): self.index.set_levels('c', level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Labels"): self.index.set_labels(1, level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) def test_set_labels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] def assert_matching(actual, expected): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp, dtype=np.int8) tm.assert_numpy_array_equal(act, exp) # label changing [w/o mutation] ind2 = self.index.set_labels(new_labels) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) # label changing specific level [w/o mutation] ind2 = self.index.set_labels(new_labels[0], level=0) assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.set_labels(new_labels[1], level=1) assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/o mutation] ind2 = self.index.set_labels(new_labels, level=[0, 1]) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing for levels of different magnitude of categories ind = pd.MultiIndex.from_tuples([(0, i) for i in range(130)]) new_labels = range(129, -1, -1) expected = pd.MultiIndex.from_tuples( [(0, i) for i in new_labels]) # [w/o mutation] result = ind.set_labels(labels=new_labels, level=1) assert result.equals(expected) # [w/ mutation] result = ind.copy() result.set_labels(labels=new_labels, level=1, inplace=True) assert result.equals(expected) def test_set_levels_labels_names_bad_input(self): levels, labels = self.index.levels, self.index.labels names = self.index.names with tm.assert_raises_regex(ValueError, 'Length of levels'): self.index.set_levels([levels[0]]) with tm.assert_raises_regex(ValueError, 'Length of labels'): self.index.set_labels([labels[0]]) with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names([names[0]]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_names(names[0]) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_levels(levels, level=0) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_labels(labels, level=0) # should have equal lengths with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names(names[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'string'): self.index.set_names(names, level=0) def test_set_levels_categorical(self): # GH13854 index = MultiIndex.from_arrays([list("xyzx"), [0, 1, 2, 3]]) for ordered in [False, True]: cidx = CategoricalIndex(list("bac"), ordered=ordered) result = index.set_levels(cidx, 0) expected = MultiIndex(levels=[cidx, [0, 1, 2, 3]], labels=index.labels) tm.assert_index_equal(result, expected) result_lvl = result.get_level_values(0) expected_lvl = CategoricalIndex(list("bacb"), categories=cidx.categories, ordered=cidx.ordered) tm.assert_index_equal(result_lvl, expected_lvl) def test_metadata_immutable(self): levels, labels = self.index.levels, self.index.labels # shouldn't be able to set at either the top level or base level mutable_regex = re.compile('does not support mutable operations') with tm.assert_raises_regex(TypeError, mutable_regex): levels[0] = levels[0] with tm.assert_raises_regex(TypeError, mutable_regex): levels[0][0] = levels[0][0] # ditto for labels with tm.assert_raises_regex(TypeError, mutable_regex): labels[0] = labels[0] with tm.assert_raises_regex(TypeError, mutable_regex): labels[0][0] = labels[0][0] # and for names names = self.index.names with tm.assert_raises_regex(TypeError, mutable_regex): names[0] = names[0] def test_inplace_mutation_resets_values(self): levels = [['a', 'b', 'c'], [4]] levels2 = [[1, 2, 3], ['a']] labels = [[0, 1, 0, 2, 2, 0], [0, 0, 0, 0, 0, 0]] mi1 = MultiIndex(levels=levels, labels=labels) mi2 = MultiIndex(levels=levels2, labels=labels) vals = mi1.values.copy() vals2 = mi2.values.copy() assert mi1._tuples is not None # Make sure level setting works new_vals = mi1.set_levels(levels2).values tm.assert_almost_equal(vals2, new_vals) # Non-inplace doesn't kill _tuples [implementation detail] tm.assert_almost_equal(mi1._tuples, vals) # ...and values is still same too tm.assert_almost_equal(mi1.values, vals) # Inplace should kill _tuples mi1.set_levels(levels2, inplace=True) tm.assert_almost_equal(mi1.values, vals2) # Make sure label setting works too labels2 = [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]] exp_values = np.empty((6,), dtype=object) exp_values[:] = [(long(1), 'a')] * 6 # Must be 1d array of tuples assert exp_values.shape == (6,) new_values = mi2.set_labels(labels2).values # Not inplace shouldn't change tm.assert_almost_equal(mi2._tuples, vals2) # Should have correct values tm.assert_almost_equal(exp_values, new_values) # ...and again setting inplace should kill _tuples, etc mi2.set_labels(labels2, inplace=True) tm.assert_almost_equal(mi2.values, new_values) def test_copy_in_constructor(self): levels = np.array(["a", "b", "c"]) labels = np.array([1, 1, 2, 0, 0, 1, 1]) val = labels[0] mi = MultiIndex(levels=[levels, levels], labels=[labels, labels], copy=True) assert mi.labels[0][0] == val labels[0] = 15 assert mi.labels[0][0] == val val = levels[0] levels[0] = "PANDA" assert mi.levels[0][0] == val def test_set_value_keeps_names(self): # motivating example from #3742 lev1 = ['hans', 'hans', 'hans', 'grethe', 'grethe', 'grethe'] lev2 = ['1', '2', '3'] * 2 idx = pd.MultiIndex.from_arrays([lev1, lev2], names=['Name', 'Number']) df = pd.DataFrame( np.random.randn(6, 4), columns=['one', 'two', 'three', 'four'], index=idx) df = df.sort_index() assert df._is_copy is None assert df.index.names == ('Name', 'Number') df.at[('grethe', '4'), 'one'] = 99.34 assert df._is_copy is None assert df.index.names == ('Name', 'Number') def test_copy_names(self): # Check that adding a "names" parameter to the copy is honored # GH14302 multi_idx = pd.Index([(1, 2), (3, 4)], names=['MyName1', 'MyName2']) multi_idx1 = multi_idx.copy() assert multi_idx.equals(multi_idx1) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx1.names == ['MyName1', 'MyName2'] multi_idx2 = multi_idx.copy(names=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx2) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx2.names == ['NewName1', 'NewName2'] multi_idx3 = multi_idx.copy(name=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx3) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx3.names == ['NewName1', 'NewName2'] def test_names(self): # names are assigned in setup names = self.index_names level_names = [level.name for level in self.index.levels] assert names == level_names # setting bad names on existing index = self.index tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", list(index.names) + ["third"]) tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", []) # initializing with bad names (should always be equivalent) major_axis, minor_axis = self.index.levels major_labels, minor_labels = self.index.labels tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first']) tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first', 'second', 'third']) # names are assigned index.names = ["a", "b"] ind_names = list(index.names) level_names = [level.name for level in index.levels] assert ind_names == level_names def test_astype(self): expected = self.index.copy() actual = self.index.astype('O') assert_copy(actual.levels, expected.levels) assert_copy(actual.labels, expected.labels) self.check_level_names(actual, expected.names) with tm.assert_raises_regex(TypeError, "^Setting.*dtype.*object"): self.index.astype(np.dtype(int)) @pytest.mark.parametrize('ordered', [True, False]) def test_astype_category(self, ordered): # GH 18630 msg = '> 1 ndim Categorical are not supported at this time' with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype(CategoricalDtype(ordered=ordered)) if ordered is False: # dtype='category' defaults to ordered=False, so only test once with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype('category') def test_constructor_single_level(self): result = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) assert isinstance(result, MultiIndex) expected = Index(['foo', 'bar', 'baz', 'qux'], name='first') tm.assert_index_equal(result.levels[0], expected) assert result.names == ['first'] def test_constructor_no_levels(self): tm.assert_raises_regex(ValueError, "non-zero number " "of levels/labels", MultiIndex, levels=[], labels=[]) both_re = re.compile('Must pass both levels and labels') with tm.assert_raises_regex(TypeError, both_re): MultiIndex(levels=[]) with tm.assert_raises_regex(TypeError, both_re): MultiIndex(labels=[]) def test_constructor_mismatched_label_levels(self): labels = [np.array([1]), np.array([2]), np.array([3])] levels = ["a"] tm.assert_raises_regex(ValueError, "Length of levels and labels " "must be the same", MultiIndex, levels=levels, labels=labels) length_error = re.compile('>= length of level') label_error = re.compile(r'Unequal label lengths: \[4, 2\]') # important to check that it's looking at the right thing. with tm.assert_raises_regex(ValueError, length_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 1, 2, 3], [0, 3, 4, 1]]) with tm.assert_raises_regex(ValueError, label_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 0, 0, 0], [0, 0]]) # external API with tm.assert_raises_regex(ValueError, length_error): self.index.copy().set_levels([['a'], ['b']]) with tm.assert_raises_regex(ValueError, label_error): self.index.copy().set_labels([[0, 0, 0, 0], [0, 0]]) def test_constructor_nonhashable_names(self): # GH 20527 levels = [[1, 2], [u'one', u'two']] labels = [[0, 0, 1, 1], [0, 1, 0, 1]] names = ((['foo'], ['bar'])) message = "MultiIndex.name must be a hashable type" tm.assert_raises_regex(TypeError, message, MultiIndex, levels=levels, labels=labels, names=names) # With .rename() mi = MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=('foo', 'bar')) renamed = [['foor'], ['barr']] tm.assert_raises_regex(TypeError, message, mi.rename, names=renamed) # With .set_names() tm.assert_raises_regex(TypeError, message, mi.set_names, names=renamed) @pytest.mark.parametrize('names', [['a', 'b', 'a'], ['1', '1', '2'], ['1', 'a', '1']]) def test_duplicate_level_names(self, names): # GH18872 pytest.raises(ValueError, pd.MultiIndex.from_product, [[0, 1]] * 3, names=names) # With .rename() mi = pd.MultiIndex.from_product([[0, 1]] * 3) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names) # With .rename(., level=) mi.rename(names[0], level=1, inplace=True) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names[:2], level=[0, 2]) def assert_multiindex_copied(self, copy, original): # Levels should be (at least, shallow copied) tm.assert_copy(copy.levels, original.levels) tm.assert_almost_equal(copy.labels, original.labels) # Labels doesn't matter which way copied tm.assert_almost_equal(copy.labels, original.labels) assert copy.labels is not original.labels # Names doesn't matter which way copied assert copy.names == original.names assert copy.names is not original.names # Sort order should be copied assert copy.sortorder == original.sortorder def test_copy(self): i_copy = self.index.copy() self.assert_multiindex_copied(i_copy, self.index) def test_shallow_copy(self): i_copy = self.index._shallow_copy() self.assert_multiindex_copied(i_copy, self.index) def test_view(self): i_view = self.index.view() self.assert_multiindex_copied(i_view, self.index) def check_level_names(self, index, names): assert [level.name for level in index.levels] == list(names) def test_changing_names(self): # names should be applied to levels level_names = [level.name for level in self.index.levels] self.check_level_names(self.index, self.index.names) view = self.index.view() copy = self.index.copy() shallow_copy = self.index._shallow_copy() # changing names should change level names on object new_names = [name + "a" for name in self.index.names] self.index.names = new_names self.check_level_names(self.index, new_names) # but not on copies self.check_level_names(view, level_names) self.check_level_names(copy, level_names) self.check_level_names(shallow_copy, level_names) # and copies shouldn't change original shallow_copy.names = [name + "c" for name in shallow_copy.names] self.check_level_names(self.index, new_names) def test_get_level_number_integer(self): self.index.names = [1, 0] assert self.index._get_level_number(1) == 0 assert self.index._get_level_number(0) == 1 pytest.raises(IndexError, self.index._get_level_number, 2) tm.assert_raises_regex(KeyError, 'Level fourth not found', self.index._get_level_number, 'fourth') def test_from_arrays(self): arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) # list of arrays as input result = MultiIndex.from_arrays(arrays, names=self.index.names) tm.assert_index_equal(result, self.index) # infer correctly result = MultiIndex.from_arrays([[pd.NaT, Timestamp('20130101')], ['a', 'b']]) assert result.levels[0].equals(Index([Timestamp('20130101')])) assert result.levels[1].equals(Index(['a', 'b'])) def test_from_arrays_iterator(self): # GH 18434 arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) # iterator as input result = MultiIndex.from_arrays(iter(arrays), names=self.index.names) tm.assert_index_equal(result, self.index) # invalid iterator input with tm.assert_raises_regex( TypeError, "Input must be a list / sequence of array-likes."): MultiIndex.from_arrays(0) def test_from_arrays_index_series_datetimetz(self): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3, tz='Asia/Tokyo') result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_timedelta(self): idx1 = pd.timedelta_range('1 days', freq='D', periods=3) idx2 = pd.timedelta_range('2 hours', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_period(self): idx1 = pd.period_range('2011-01-01', freq='D', periods=3) idx2 = pd.period_range('2015-01-01', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_datetimelike_mixed(self): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3) idx3 = pd.timedelta_range('1 days', freq='D', periods=3) idx4 = pd.period_range('2011-01-01', freq='D', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2, idx3, idx4]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) tm.assert_index_equal(result.get_level_values(2), idx3) tm.assert_index_equal(result.get_level_values(3), idx4) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2), pd.Series(idx3), pd.Series(idx4)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result2.get_level_values(2), idx3) tm.assert_index_equal(result2.get_level_values(3), idx4) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_categorical(self): # GH13743 idx1 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=False) idx2 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=True) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) result3 = pd.MultiIndex.from_arrays([idx1.values, idx2.values]) tm.assert_index_equal(result3.get_level_values(0), idx1) tm.assert_index_equal(result3.get_level_values(1), idx2) def test_from_arrays_empty(self): # 0 levels with tm.assert_raises_regex( ValueError, "Must pass non-zero number of levels/labels"): MultiIndex.from_arrays(arrays=[]) # 1 level result = MultiIndex.from_arrays(arrays=[[]], names=['A']) assert isinstance(result, MultiIndex) expected = Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # N levels for N in [2, 3]: arrays = [[]] * N names = list('ABC')[:N] result = MultiIndex.from_arrays(arrays=arrays, names=names) expected = MultiIndex(levels=[[]] * N, labels=[[]] * N, names=names) tm.assert_index_equal(result, expected) def test_from_arrays_invalid_input(self): invalid_inputs = [1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b']] for i in invalid_inputs: pytest.raises(TypeError, MultiIndex.from_arrays, arrays=i) def test_from_arrays_different_lengths(self): # see gh-13599 idx1 = [1, 2, 3] idx2 = ['a', 'b'] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) idx1 = [] idx2 = ['a', 'b'] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) idx1 = [1, 2, 3] idx2 = [] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) def test_from_product(self): first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] result = MultiIndex.from_product([first, second], names=names) tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) tm.assert_index_equal(result, expected) def test_from_product_iterator(self): # GH 18434 first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) # iterator as input result = MultiIndex.from_product(iter([first, second]), names=names) tm.assert_index_equal(result, expected) # Invalid non-iterable input with tm.assert_raises_regex( TypeError, "Input must be a list / sequence of iterables."): MultiIndex.from_product(0) def test_from_product_empty(self): # 0 levels with tm.assert_raises_regex( ValueError, "Must pass non-zero number of levels/labels"): MultiIndex.from_product([]) # 1 level result = MultiIndex.from_product([[]], names=['A']) expected = pd.Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # 2 levels l1 = [[], ['foo', 'bar', 'baz'], []] l2 = [[], [], ['a', 'b', 'c']] names = ['A', 'B'] for first, second in zip(l1, l2): result = MultiIndex.from_product([first, second], names=names) expected = MultiIndex(levels=[first, second], labels=[[], []], names=names) tm.assert_index_equal(result, expected) # GH12258 names = ['A', 'B', 'C'] for N in range(4): lvl2 = lrange(N) result = MultiIndex.from_product([[], lvl2, []], names=names) expected = MultiIndex(levels=[[], lvl2, []], labels=[[], [], []], names=names) tm.assert_index_equal(result, expected) def test_from_product_invalid_input(self): invalid_inputs = [1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b']] for i in invalid_inputs: pytest.raises(TypeError, MultiIndex.from_product, iterables=i) def test_from_product_datetimeindex(self): dt_index = date_range('2000-01-01', periods=2) mi = pd.MultiIndex.from_product([[1, 2], dt_index]) etalon = construct_1d_object_array_from_listlike([(1, pd.Timestamp( '2000-01-01')), (1, pd.Timestamp('2000-01-02')), (2, pd.Timestamp( '2000-01-01')), (2, pd.Timestamp('2000-01-02'))]) tm.assert_numpy_array_equal(mi.values, etalon) def test_from_product_index_series_categorical(self): # GH13743 first = ['foo', 'bar'] for ordered in [False, True]: idx = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=ordered) expected = pd.CategoricalIndex(list("abcaab") + list("abcaab"), categories=list("bac"), ordered=ordered) for arr in [idx, pd.Series(idx), idx.values]: result = pd.MultiIndex.from_product([first, arr]) tm.assert_index_equal(result.get_level_values(1), expected) def test_values_boxed(self): tuples = [(1, pd.Timestamp('2000-01-01')), (2, pd.NaT), (3, pd.Timestamp('2000-01-03')), (1, pd.Timestamp('2000-01-04')), (2, pd.Timestamp('2000-01-02')), (3, pd.Timestamp('2000-01-03'))] result = pd.MultiIndex.from_tuples(tuples) expected = construct_1d_object_array_from_listlike(tuples) tm.assert_numpy_array_equal(result.values, expected) # Check that code branches for boxed values produce identical results tm.assert_numpy_array_equal(result.values[:4], result[:4].values) def test_values_multiindex_datetimeindex(self): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(10 ** 18, 10 ** 18 + 5) naive = pd.DatetimeIndex(ints) aware = pd.DatetimeIndex(ints, tz='US/Central') idx = pd.MultiIndex.from_arrays([naive, aware]) result = idx.values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware) # n_lev > n_lab result = idx[:2].values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive[:2]) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware[:2]) def test_values_multiindex_periodindex(self): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(2007, 2012) pidx = pd.PeriodIndex(ints, freq='D') idx = pd.MultiIndex.from_arrays([ints, pidx]) result = idx.values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints)) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx) # n_lev > n_lab result = idx[:2].values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints[:2])) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx[:2]) def test_append(self): result = self.index[:3].append(self.index[3:]) assert result.equals(self.index) foos = [self.index[:1], self.index[1:3], self.index[3:]] result = foos[0].append(foos[1:]) assert result.equals(self.index) # empty result = self.index.append([]) assert result.equals(self.index) def test_append_mixed_dtypes(self): # GH 13660 dti = date_range('2011-01-01', freq='M', periods=3, ) dti_tz = date_range('2011-01-01', freq='M', periods=3, tz='US/Eastern') pi = period_range('2011-01', freq='M', periods=3) mi = MultiIndex.from_arrays([[1, 2, 3], [1.1, np.nan, 3.3], ['a', 'b', 'c'], dti, dti_tz, pi]) assert mi.nlevels == 6 res = mi.append(mi) exp = MultiIndex.from_arrays([[1, 2, 3, 1, 2, 3], [1.1, np.nan, 3.3, 1.1, np.nan, 3.3], ['a', 'b', 'c', 'a', 'b', 'c'], dti.append(dti), dti_tz.append(dti_tz), pi.append(pi)]) tm.assert_index_equal(res, exp) other = MultiIndex.from_arrays([['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z']]) res = mi.append(other) exp = MultiIndex.from_arrays([[1, 2, 3, 'x', 'y', 'z'], [1.1, np.nan, 3.3, 'x', 'y', 'z'], ['a', 'b', 'c', 'x', 'y', 'z'], dti.append(pd.Index(['x', 'y', 'z'])), dti_tz.append(pd.Index(['x', 'y', 'z'])), pi.append(pd.Index(['x', 'y', 'z']))]) tm.assert_index_equal(res, exp) def test_get_level_values(self): result = self.index.get_level_values(0) expected = Index(['foo', 'foo', 'bar', 'baz', 'qux', 'qux'], name='first') tm.assert_index_equal(result, expected) assert result.name == 'first' result = self.index.get_level_values('first') expected = self.index.get_level_values(0) tm.assert_index_equal(result, expected) # GH 10460 index = MultiIndex( levels=[CategoricalIndex(['A', 'B']), CategoricalIndex([1, 2, 3])], labels=[np.array([0, 0, 0, 1, 1, 1]), np.array([0, 1, 2, 0, 1, 2])]) exp = CategoricalIndex(['A', 'A', 'A', 'B', 'B', 'B']) tm.assert_index_equal(index.get_level_values(0), exp) exp = CategoricalIndex([1, 2, 3, 1, 2, 3]) tm.assert_index_equal(index.get_level_values(1), exp) def test_get_level_values_int_with_na(self): # GH 17924 arrays = [['a', 'b', 'b'], [1, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = Index([1, np.nan, 2]) tm.assert_index_equal(result, expected) arrays = [['a', 'b', 'b'], [np.nan, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = Index([np.nan, np.nan, 2]) tm.assert_index_equal(result, expected) def test_get_level_values_na(self): arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([np.nan, np.nan, np.nan]) tm.assert_index_equal(result, expected) result = index.get_level_values(1) expected = pd.Index(['a', np.nan, 1]) tm.assert_index_equal(result, expected) arrays = [['a', 'b', 'b'], pd.DatetimeIndex([0, 1, pd.NaT])] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = pd.DatetimeIndex([0, 1, pd.NaT]) tm.assert_index_equal(result, expected) arrays = [[], []] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([], dtype=object) tm.assert_index_equal(result, expected) def test_get_level_values_all_na(self): # GH 17924 when level entirely consists of nan arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([np.nan, np.nan, np.nan], dtype=np.float64) tm.assert_index_equal(result, expected) result = index.get_level_values(1) expected = pd.Index(['a', np.nan, 1], dtype=object) tm.assert_index_equal(result, expected) def test_reorder_levels(self): # this blows up tm.assert_raises_regex(IndexError, '^Too many levels', self.index.reorder_levels, [2, 1, 0]) def test_nlevels(self): assert self.index.nlevels == 2 def test_iter(self): result = list(self.index) expected = [('foo', 'one'), ('foo', 'two'), ('bar', 'one'), ('baz', 'two'), ('qux', 'one'), ('qux', 'two')] assert result == expected def test_legacy_pickle(self): if PY3: pytest.skip("testing for legacy pickles not " "support on py3") path = tm.get_data_path('multiindex_v1.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) assert obj.equals(obj2) res = obj.get_indexer(obj) exp = np.arange(len(obj), dtype=np.intp) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_legacy_v2_unpickle(self): # 0.7.3 -> 0.8.0 format manage path = tm.get_data_path('mindex_073.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) assert obj.equals(obj2) res = obj.get_indexer(obj) exp = np.arange(len(obj), dtype=np.intp) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_roundtrip_pickle_with_tz(self): # GH 8367 # round-trip of timezone index = MultiIndex.from_product( [[1, 2], ['a', 'b'], date_range('20130101', periods=3, tz='US/Eastern') ], names=['one', 'two', 'three']) unpickled = tm.round_trip_pickle(index) assert index.equal_levels(unpickled) def test_from_tuples_index_values(self): result = MultiIndex.from_tuples(self.index) assert (result.values == self.index.values).all() def test_contains(self): assert ('foo', 'two') in self.index assert ('bar', 'two') not in self.index assert None not in self.index def test_contains_top_level(self): midx = MultiIndex.from_product([['A', 'B'], [1, 2]]) assert 'A' in midx assert 'A' not in midx._engine def test_contains_with_nat(self): # MI with a NaT mi = MultiIndex(levels=[['C'], pd.date_range('2012-01-01', periods=5)], labels=[[0, 0, 0, 0, 0, 0], [-1, 0, 1, 2, 3, 4]], names=[None, 'B']) assert ('C', pd.Timestamp('2012-01-01')) in mi for val in mi.values: assert val in mi def test_is_all_dates(self): assert not self.index.is_all_dates def test_is_numeric(self): # MultiIndex is never numeric assert not self.index.is_numeric() def test_getitem(self): # scalar assert self.index[2] == ('bar', 'one') # slice result = self.index[2:5] expected = self.index[[2, 3, 4]] assert result.equals(expected) # boolean result = self.index[[True, False, True, False, True, True]] result2 = self.index[np.array([True, False, True, False, True, True])] expected = self.index[[0, 2, 4, 5]] assert result.equals(expected) assert result2.equals(expected) def test_getitem_group_select(self): sorted_idx, _ = self.index.sortlevel(0) assert sorted_idx.get_loc('baz') == slice(3, 4) assert sorted_idx.get_loc('foo') == slice(0, 2) def test_get_loc(self): assert self.index.get_loc(('foo', 'two')) == 1 assert self.index.get_loc(('baz', 'two')) == 3 pytest.raises(KeyError, self.index.get_loc, ('bar', 'two')) pytest.raises(KeyError, self.index.get_loc, 'quux') pytest.raises(NotImplementedError, self.index.get_loc, 'foo', method='nearest') # 3 levels index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) pytest.raises(KeyError, index.get_loc, (1, 1)) assert index.get_loc((2, 0)) == slice(3, 5) def test_get_loc_duplicates(self): index = Index([2, 2, 2, 2]) result = index.get_loc(2) expected = slice(0, 4) assert result == expected # pytest.raises(Exception, index.get_loc, 2) index = Index(['c', 'a', 'a', 'b', 'b']) rs = index.get_loc('c') xp = 0 assert rs == xp def test_get_value_duplicates(self): index = MultiIndex(levels=[['D', 'B', 'C'], [0, 26, 27, 37, 57, 67, 75, 82]], labels=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]], names=['tag', 'day']) assert index.get_loc('D') == slice(0, 3) with pytest.raises(KeyError): index._engine.get_value(np.array([]), 'D') def test_get_loc_level(self): index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) loc, new_index = index.get_loc_level((0, 1)) expected = slice(1, 2) exp_index = index[expected].droplevel(0).droplevel(0) assert loc == expected assert new_index.equals(exp_index) loc, new_index = index.get_loc_level((0, 1, 0)) expected = 1 assert loc == expected assert new_index is None pytest.raises(KeyError, index.get_loc_level, (2, 2)) index = MultiIndex(levels=[[2000], lrange(4)], labels=[np.array( [0, 0, 0, 0]), np.array([0, 1, 2, 3])]) result, new_index = index.get_loc_level((2000, slice(None, None))) expected = slice(None, None) assert result == expected assert new_index.equals(index.droplevel(0)) @pytest.mark.parametrize('level', [0, 1]) @pytest.mark.parametrize('null_val', [np.nan, pd.NaT, None]) def test_get_loc_nan(self, level, null_val): # GH 18485 : NaN in MultiIndex levels = [['a', 'b'], ['c', 'd']] key = ['b', 'd'] levels[level] = np.array([0, null_val], dtype=type(null_val)) key[level] = null_val idx = MultiIndex.from_product(levels) assert idx.get_loc(tuple(key)) == 3 def test_get_loc_missing_nan(self): # GH 8569 idx = MultiIndex.from_arrays([[1.0, 2.0], [3.0, 4.0]]) assert isinstance(idx.get_loc(1), slice) pytest.raises(KeyError, idx.get_loc, 3) pytest.raises(KeyError, idx.get_loc, np.nan) pytest.raises(KeyError, idx.get_loc, [np.nan]) @pytest.mark.parametrize('dtype1', [int, float, bool, str]) @pytest.mark.parametrize('dtype2', [int, float, bool, str]) def test_get_loc_multiple_dtypes(self, dtype1, dtype2): # GH 18520 levels = [np.array([0, 1]).astype(dtype1), np.array([0, 1]).astype(dtype2)] idx = pd.MultiIndex.from_product(levels) assert idx.get_loc(idx[2]) == 2 @pytest.mark.parametrize('level', [0, 1]) @pytest.mark.parametrize('dtypes', [[int, float], [float, int]]) def test_get_loc_implicit_cast(self, level, dtypes): # GH 18818, GH 15994 : as flat index, cast int to float and vice-versa levels = [['a', 'b'], ['c', 'd']] key = ['b', 'd'] lev_dtype, key_dtype = dtypes levels[level] = np.array([0, 1], dtype=lev_dtype) key[level] = key_dtype(1) idx = MultiIndex.from_product(levels) assert idx.get_loc(tuple(key)) == 3 def test_get_loc_cast_bool(self): # GH 19086 : int is casted to bool, but not vice-versa levels = [[False, True], np.arange(2, dtype='int64')] idx = MultiIndex.from_product(levels) assert idx.get_loc((0, 1)) == 1 assert idx.get_loc((1, 0)) == 2 pytest.raises(KeyError, idx.get_loc, (False, True)) pytest.raises(KeyError, idx.get_loc, (True, False)) def test_slice_locs(self): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index slob = slice(*idx.slice_locs(df.index[5], df.index[15])) sliced = stacked[slob] expected = df[5:16].stack() tm.assert_almost_equal(sliced.values, expected.values) slob = slice(*idx.slice_locs(df.index[5] + timedelta(seconds=30), df.index[15] - timedelta(seconds=30))) sliced = stacked[slob] expected = df[6:15].stack() tm.assert_almost_equal(sliced.values, expected.values) def test_slice_locs_with_type_mismatch(self): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index tm.assert_raises_regex(TypeError, '^Level type mismatch', idx.slice_locs, (1, 3)) tm.assert_raises_regex(TypeError, '^Level type mismatch', idx.slice_locs, df.index[5] + timedelta( seconds=30), (5, 2)) df = tm.makeCustomDataframe(5, 5) stacked = df.stack() idx = stacked.index with tm.assert_raises_regex(TypeError, '^Level type mismatch'): idx.slice_locs(timedelta(seconds=30)) # TODO: Try creating a UnicodeDecodeError in exception message with tm.assert_raises_regex(TypeError, '^Level type mismatch'): idx.slice_locs(df.index[1], (16, "a")) def test_slice_locs_not_sorted(self): index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) tm.assert_raises_regex(KeyError, "[Kk]ey length.*greater than " "MultiIndex lexsort depth", index.slice_locs, (1, 0, 1), (2, 1, 0)) # works sorted_index, _ = index.sortlevel(0) # should there be a test case here??? sorted_index.slice_locs((1, 0, 1), (2, 1, 0)) def test_slice_locs_partial(self): sorted_idx, _ = self.index.sortlevel(0) result = sorted_idx.slice_locs(('foo', 'two'), ('qux', 'one')) assert result == (1, 5) result = sorted_idx.slice_locs(None, ('qux', 'one')) assert result == (0, 5) result = sorted_idx.slice_locs(('foo', 'two'), None) assert result == (1, len(sorted_idx)) result = sorted_idx.slice_locs('bar', 'baz') assert result == (2, 4) def test_slice_locs_not_contained(self): # some searchsorted action index = MultiIndex(levels=[[0, 2, 4, 6], [0, 2, 4]], labels=[[0, 0, 0, 1, 1, 2, 3, 3, 3], [0, 1, 2, 1, 2, 2, 0, 1, 2]], sortorder=0) result = index.slice_locs((1, 0), (5, 2)) assert result == (3, 6) result = index.slice_locs(1, 5) assert result == (3, 6) result = index.slice_locs((2, 2), (5, 2)) assert result == (3, 6) result = index.slice_locs(2, 5) assert result == (3, 6) result = index.slice_locs((1, 0), (6, 3)) assert result == (3, 8) result = index.slice_locs(-1, 10) assert result == (0, len(index)) def test_consistency(self): # need to construct an overflow major_axis = lrange(70000) minor_axis = lrange(10) major_labels = np.arange(70000) minor_labels = np.repeat(lrange(10), 7000) # the fact that is works means it's consistent index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) # inconsistent major_labels = np.array([0, 0, 1, 1, 1, 2, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not index.is_unique def test_truncate(self): major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) result = index.truncate(before=1) assert 'foo' not in result.levels[0] assert 1 in result.levels[0] result = index.truncate(after=1) assert 2 not in result.levels[0] assert 1 in result.levels[0] result = index.truncate(before=1, after=2) assert len(result.levels[0]) == 2 # after < before pytest.raises(ValueError, index.truncate, 3, 1) def test_get_indexer(self): major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 2, 3, 3], dtype=np.intp) minor_labels = np.array([0, 1, 0, 0, 1, 0, 1], dtype=np.intp) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) idx1 = index[:5] idx2 = index[[1, 3, 5]] r1 = idx1.get_indexer(idx2) assert_almost_equal(r1, np.array([1, 3, -1], dtype=np.intp)) r1 = idx2.get_indexer(idx1, method='pad') e1 = np.array([-1, 0, 0, 1, 1], dtype=np.intp) assert_almost_equal(r1, e1) r2 = idx2.get_indexer(idx1[::-1], method='pad') assert_almost_equal(r2, e1[::-1]) rffill1 = idx2.get_indexer(idx1, method='ffill') assert_almost_equal(r1, rffill1) r1 = idx2.get_indexer(idx1, method='backfill') e1 = np.array([0, 0, 1, 1, 2], dtype=np.intp) assert_almost_equal(r1, e1) r2 = idx2.get_indexer(idx1[::-1], method='backfill') assert_almost_equal(r2, e1[::-1]) rbfill1 = idx2.get_indexer(idx1, method='bfill') assert_almost_equal(r1, rbfill1) # pass non-MultiIndex r1 = idx1.get_indexer(idx2.values) rexp1 = idx1.get_indexer(idx2) assert_almost_equal(r1, rexp1) r1 = idx1.get_indexer([1, 2, 3]) assert (r1 == [-1, -1, -1]).all() # create index with duplicates idx1 = Index(lrange(10) + lrange(10)) idx2 = Index(lrange(20)) msg = "Reindexing only valid with uniquely valued Index objects" with tm.assert_raises_regex(InvalidIndexError, msg): idx1.get_indexer(idx2) def test_get_indexer_nearest(self): midx = MultiIndex.from_tuples([('a', 1), ('b', 2)]) with pytest.raises(NotImplementedError): midx.get_indexer(['a'], method='nearest') with pytest.raises(NotImplementedError): midx.get_indexer(['a'], method='pad', tolerance=2) def test_hash_collisions(self): # non-smoke test that we don't get hash collisions index = MultiIndex.from_product([np.arange(1000), np.arange(1000)], names=['one', 'two']) result = index.get_indexer(index.values) tm.assert_numpy_array_equal(result, np.arange( len(index), dtype='intp')) for i in [0, 1, len(index) - 2, len(index) - 1]: result = index.get_loc(index[i]) assert result == i def test_format(self): self.index.format() self.index[:0].format() def test_format_integer_names(self): index = MultiIndex(levels=[[0, 1], [0, 1]], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[0, 1]) index.format(names=True) def test_format_sparse_display(self): index = MultiIndex(levels=[[0, 1], [0, 1], [0, 1], [0]], labels=[[0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0]]) result = index.format() assert result[3] == '1 0 0 0' def test_format_sparse_config(self): warn_filters = warnings.filters warnings.filterwarnings('ignore', category=FutureWarning, module=".*format") # GH1538 pd.set_option('display.multi_sparse', False) result = self.index.format() assert result[1] == 'foo two' tm.reset_display_options() warnings.filters = warn_filters def test_to_frame(self): tuples = [(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')] index = MultiIndex.from_tuples(tuples) result = index.to_frame(index=False) expected = DataFrame(tuples) tm.assert_frame_equal(result, expected) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) tuples = [(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')] index = MultiIndex.from_tuples(tuples, names=['first', 'second']) result = index.to_frame(index=False) expected = DataFrame(tuples) expected.columns = ['first', 'second'] tm.assert_frame_equal(result, expected) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) index = MultiIndex.from_product([range(5), pd.date_range('20130101', periods=3)]) result = index.to_frame(index=False) expected = DataFrame( {0: np.repeat(np.arange(5, dtype='int64'), 3), 1: np.tile(pd.date_range('20130101', periods=3), 5)}) tm.assert_frame_equal(result, expected) index = MultiIndex.from_product([range(5), pd.date_range('20130101', periods=3)]) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) def test_to_hierarchical(self): index = MultiIndex.from_tuples([(1, 'one'), (1, 'two'), (2, 'one'), ( 2, 'two')]) result = index.to_hierarchical(3) expected = MultiIndex(levels=[[1, 2], ['one', 'two']], labels=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1]]) tm.assert_index_equal(result, expected) assert result.names == index.names # K > 1 result = index.to_hierarchical(3, 2) expected = MultiIndex(levels=[[1, 2], ['one', 'two']], labels=[[0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]]) tm.assert_index_equal(result, expected) assert result.names == index.names # non-sorted index = MultiIndex.from_tuples([(2, 'c'), (1, 'b'), (2, 'a'), (2, 'b')], names=['N1', 'N2']) result = index.to_hierarchical(2) expected = MultiIndex.from_tuples([(2, 'c'), (2, 'c'), (1, 'b'), (1, 'b'), (2, 'a'), (2, 'a'), (2, 'b'), (2, 'b')], names=['N1', 'N2']) tm.assert_index_equal(result, expected) assert result.names == index.names def test_bounds(self): self.index._bounds def test_equals_multi(self): assert self.index.equals(self.index) assert not self.index.equals(self.index.values) assert self.index.equals(Index(self.index.values)) assert self.index.equal_levels(self.index) assert not self.index.equals(self.index[:-1]) assert not self.index.equals(self.index[-1]) # different number of levels index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) index2 = MultiIndex(levels=index.levels[:-1], labels=index.labels[:-1]) assert not index.equals(index2) assert not index.equal_levels(index2) # levels are different major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 2, 3]) minor_labels = np.array([0, 1, 0, 0, 1, 0]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not self.index.equals(index) assert not self.index.equal_levels(index) # some of the labels are different major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 2, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not self.index.equals(index) def test_equals_missing_values(self): # make sure take is not using -1 i = pd.MultiIndex.from_tuples([(0, pd.NaT), (0, pd.Timestamp('20130101'))]) result = i[0:1].equals(i[0]) assert not result result = i[1:2].equals(i[1]) assert not result def test_identical(self): mi = self.index.copy() mi2 = self.index.copy() assert mi.identical(mi2) mi = mi.set_names(['new1', 'new2']) assert mi.equals(mi2) assert not mi.identical(mi2) mi2 = mi2.set_names(['new1', 'new2']) assert mi.identical(mi2) mi3 = Index(mi.tolist(), names=mi.names) mi4 = Index(mi.tolist(), names=mi.names, tupleize_cols=False) assert mi.identical(mi3) assert not mi.identical(mi4) assert mi.equals(mi4) def test_is_(self): mi = MultiIndex.from_tuples(lzip(range(10), range(10))) assert mi.is_(mi) assert mi.is_(mi.view()) assert mi.is_(mi.view().view().view().view()) mi2 = mi.view() # names are metadata, they don't change id mi2.names = ["A", "B"] assert mi2.is_(mi) assert mi.is_(mi2) assert mi.is_(mi.set_names(["C", "D"])) mi2 = mi.view() mi2.set_names(["E", "F"], inplace=True) assert mi.is_(mi2) # levels are inherent properties, they change identity mi3 = mi2.set_levels([lrange(10), lrange(10)]) assert not mi3.is_(mi2) # shouldn't change assert mi2.is_(mi) mi4 = mi3.view() # GH 17464 - Remove duplicate MultiIndex levels mi4.set_levels([lrange(10), lrange(10)], inplace=True) assert not mi4.is_(mi3) mi5 = mi.view() mi5.set_levels(mi5.levels, inplace=True) assert not mi5.is_(mi) def test_union(self): piece1 = self.index[:5][::-1] piece2 = self.index[3:] the_union = piece1 | piece2 tups = sorted(self.index.values) expected = MultiIndex.from_tuples(tups) assert the_union.equals(expected) # corner case, pass self or empty thing: the_union = self.index.union(self.index) assert the_union is self.index the_union = self.index.union(self.index[:0]) assert the_union is self.index # won't work in python 3 # tuples = self.index.values # result = self.index[:4] | tuples[4:] # assert result.equals(tuples) # not valid for python 3 # def test_union_with_regular_index(self): # other = Index(['A', 'B', 'C']) # result = other.union(self.index) # assert ('foo', 'one') in result # assert 'B' in result # result2 = self.index.union(other) # assert result.equals(result2) def test_intersection(self): piece1 = self.index[:5][::-1] piece2 = self.index[3:] the_int = piece1 & piece2 tups = sorted(self.index[3:5].values) expected = MultiIndex.from_tuples(tups) assert the_int.equals(expected) # corner case, pass self the_int = self.index.intersection(self.index) assert the_int is self.index # empty intersection: disjoint empty = self.index[:2] & self.index[2:] expected = self.index[:0] assert empty.equals(expected) # can't do in python 3 # tuples = self.index.values # result = self.index & tuples # assert result.equals(tuples) def test_sub(self): first = self.index # - now raises (previously was set op difference) with pytest.raises(TypeError): first - self.index[-3:] with pytest.raises(TypeError): self.index[-3:] - first with pytest.raises(TypeError): self.index[-3:] - first.tolist() with pytest.raises(TypeError): first.tolist() - self.index[-3:] def test_difference(self): first = self.index result = first.difference(self.index[-3:]) expected = MultiIndex.from_tuples(sorted(self.index[:-3].values), sortorder=0, names=self.index.names) assert isinstance(result, MultiIndex) assert result.equals(expected) assert result.names == self.index.names # empty difference: reflexive result = self.index.difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # empty difference: superset result = self.index[-3:].difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # empty difference: degenerate result = self.index[:0].difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # names not the same chunklet = self.index[-3:] chunklet.names = ['foo', 'baz'] result = first.difference(chunklet) assert result.names == (None, None) # empty, but non-equal result = self.index.difference(self.index.sortlevel(1)[0]) assert len(result) == 0 # raise Exception called with non-MultiIndex result = first.difference(first.values) assert result.equals(first[:0]) # name from empty array result = first.difference([]) assert first.equals(result) assert first.names == result.names # name from non-empty array result = first.difference([('foo', 'one')]) expected = pd.MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'), ( 'foo', 'two'), ('qux', 'one'), ('qux', 'two')]) expected.names = first.names assert first.names == result.names tm.assert_raises_regex(TypeError, "other must be a MultiIndex " "or a list of tuples", first.difference, [1, 2, 3, 4, 5]) def test_from_tuples(self): tm.assert_raises_regex(TypeError, 'Cannot infer number of levels ' 'from empty list', MultiIndex.from_tuples, []) expected = MultiIndex(levels=[[1, 3], [2, 4]], labels=[[0, 1], [0, 1]], names=['a', 'b']) # input tuples result = MultiIndex.from_tuples(((1, 2), (3, 4)), names=['a', 'b']) tm.assert_index_equal(result, expected) def test_from_tuples_iterator(self): # GH 18434 # input iterator for tuples expected = MultiIndex(levels=[[1, 3], [2, 4]], labels=[[0, 1], [0, 1]], names=['a', 'b']) result = MultiIndex.from_tuples(zip([1, 3], [2, 4]), names=['a', 'b']) tm.assert_index_equal(result, expected) # input non-iterables with tm.assert_raises_regex( TypeError, 'Input must be a list / sequence of tuple-likes.'): MultiIndex.from_tuples(0) def test_from_tuples_empty(self): # GH 16777 result = MultiIndex.from_tuples([], names=['a', 'b']) expected = MultiIndex.from_arrays(arrays=[[], []], names=['a', 'b']) tm.assert_index_equal(result, expected) def test_argsort(self): result = self.index.argsort() expected = self.index.values.argsort() tm.assert_numpy_array_equal(result, expected) def test_sortlevel(self): import random tuples = list(self.index) random.shuffle(tuples) index = MultiIndex.from_tuples(tuples) sorted_idx, _ = index.sortlevel(0) expected = MultiIndex.from_tuples(sorted(tuples)) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(0, ascending=False) assert sorted_idx.equals(expected[::-1]) sorted_idx, _ = index.sortlevel(1) by1 = sorted(tuples, key=lambda x: (x[1], x[0])) expected = MultiIndex.from_tuples(by1) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(1, ascending=False) assert sorted_idx.equals(expected[::-1]) def test_sortlevel_not_sort_remaining(self): mi = MultiIndex.from_tuples([[1, 1, 3], [1, 1, 1]], names=list('ABC')) sorted_idx, _ = mi.sortlevel('A', sort_remaining=False) assert sorted_idx.equals(mi) def test_sortlevel_deterministic(self): tuples = [('bar', 'one'), ('foo', 'two'), ('qux', 'two'), ('foo', 'one'), ('baz', 'two'), ('qux', 'one')] index = MultiIndex.from_tuples(tuples) sorted_idx, _ = index.sortlevel(0) expected = MultiIndex.from_tuples(sorted(tuples)) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(0, ascending=False) assert sorted_idx.equals(expected[::-1]) sorted_idx, _ = index.sortlevel(1) by1 = sorted(tuples, key=lambda x: (x[1], x[0])) expected = MultiIndex.from_tuples(by1) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(1, ascending=False) assert sorted_idx.equals(expected[::-1]) def test_dims(self): pass def test_drop(self): dropped = self.index.drop([('foo', 'two'), ('qux', 'one')]) index = MultiIndex.from_tuples([('foo', 'two'), ('qux', 'one')]) dropped2 = self.index.drop(index) expected = self.index[[0, 2, 3, 5]] tm.assert_index_equal(dropped, expected) tm.assert_index_equal(dropped2, expected) dropped = self.index.drop(['bar']) expected = self.index[[0, 1, 3, 4, 5]] tm.assert_index_equal(dropped, expected) dropped = self.index.drop('foo') expected = self.index[[2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) index = MultiIndex.from_tuples([('bar', 'two')]) pytest.raises(KeyError, self.index.drop, [('bar', 'two')]) pytest.raises(KeyError, self.index.drop, index) pytest.raises(KeyError, self.index.drop, ['foo', 'two']) # partially correct argument mixed_index = MultiIndex.from_tuples([('qux', 'one'), ('bar', 'two')]) pytest.raises(KeyError, self.index.drop, mixed_index) # error='ignore' dropped = self.index.drop(index, errors='ignore') expected = self.index[[0, 1, 2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) dropped = self.index.drop(mixed_index, errors='ignore') expected = self.index[[0, 1, 2, 3, 5]] tm.assert_index_equal(dropped, expected) dropped = self.index.drop(['foo', 'two'], errors='ignore') expected = self.index[[2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) # mixed partial / full drop dropped = self.index.drop(['foo', ('qux', 'one')]) expected = self.index[[2, 3, 5]] tm.assert_index_equal(dropped, expected) # mixed partial / full drop / error='ignore' mixed_index = ['foo', ('qux', 'one'), 'two'] pytest.raises(KeyError, self.index.drop, mixed_index) dropped = self.index.drop(mixed_index, errors='ignore') expected = self.index[[2, 3, 5]] tm.assert_index_equal(dropped, expected) def test_droplevel_with_names(self): index = self.index[self.index.get_loc('foo')] dropped = index.droplevel(0) assert dropped.name == 'second' index = MultiIndex( levels=[Index(lrange(4)), Index(lrange(4)), Index(lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])], names=['one', 'two', 'three']) dropped = index.droplevel(0) assert dropped.names == ('two', 'three') dropped = index.droplevel('two') expected = index.droplevel(1) assert dropped.equals(expected) def test_droplevel_list(self): index = MultiIndex( levels=[Index(lrange(4)), Index(lrange(4)), Index(lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])], names=['one', 'two', 'three']) dropped = index[:2].droplevel(['three', 'one']) expected = index[:2].droplevel(2).droplevel(0) assert dropped.equals(expected) dropped = index[:2].droplevel([]) expected = index[:2] assert dropped.equals(expected) with pytest.raises(ValueError): index[:2].droplevel(['one', 'two', 'three']) with pytest.raises(KeyError): index[:2].droplevel(['one', 'four']) def test_drop_not_lexsorted(self): # GH 12078 # define the lexsorted version of the multi-index tuples = [('a', ''), ('b1', 'c1'), ('b2', 'c2')] lexsorted_mi = MultiIndex.from_tuples(tuples, names=['b', 'c']) assert lexsorted_mi.is_lexsorted() # and the not-lexsorted version df = pd.DataFrame(columns=['a', 'b', 'c', 'd'], data=[[1, 'b1', 'c1', 3], [1, 'b2', 'c2', 4]]) df = df.pivot_table(index='a', columns=['b', 'c'], values='d') df = df.reset_index() not_lexsorted_mi = df.columns assert not not_lexsorted_mi.is_lexsorted() # compare the results tm.assert_index_equal(lexsorted_mi, not_lexsorted_mi) with tm.assert_produces_warning(PerformanceWarning): tm.assert_index_equal(lexsorted_mi.drop('a'), not_lexsorted_mi.drop('a')) def test_insert(self): # key contained in all levels new_index = self.index.insert(0, ('bar', 'two')) assert new_index.equal_levels(self.index) assert new_index[0] == ('bar', 'two') # key not contained in all levels new_index = self.index.insert(0, ('abc', 'three')) exp0 = Index(list(self.index.levels[0]) + ['abc'], name='first') tm.assert_index_equal(new_index.levels[0], exp0) exp1 = Index(list(self.index.levels[1]) + ['three'], name='second') tm.assert_index_equal(new_index.levels[1], exp1) assert new_index[0] == ('abc', 'three') # key wrong length msg = "Item must have length equal to number of levels" with tm.assert_raises_regex(ValueError, msg): self.index.insert(0, ('foo2',)) left = pd.DataFrame([['a', 'b', 0], ['b', 'd', 1]], columns=['1st', '2nd', '3rd']) left.set_index(['1st', '2nd'], inplace=True) ts = left['3rd'].copy(deep=True) left.loc[('b', 'x'), '3rd'] = 2 left.loc[('b', 'a'), '3rd'] = -1 left.loc[('b', 'b'), '3rd'] = 3 left.loc[('a', 'x'), '3rd'] = 4 left.loc[('a', 'w'), '3rd'] = 5 left.loc[('a', 'a'), '3rd'] = 6 ts.loc[('b', 'x')] = 2 ts.loc['b', 'a'] = -1 ts.loc[('b', 'b')] = 3 ts.loc['a', 'x'] = 4 ts.loc[('a', 'w')] = 5 ts.loc['a', 'a'] = 6 right = pd.DataFrame([['a', 'b', 0], ['b', 'd', 1], ['b', 'x', 2], ['b', 'a', -1], ['b', 'b', 3], ['a', 'x', 4], ['a', 'w', 5], ['a', 'a', 6]], columns=['1st', '2nd', '3rd']) right.set_index(['1st', '2nd'], inplace=True) # FIXME data types changes to float because # of intermediate nan insertion; tm.assert_frame_equal(left, right, check_dtype=False) tm.assert_series_equal(ts, right['3rd']) # GH9250 idx = [('test1', i) for i in range(5)] + \ [('test2', i) for i in range(6)] + \ [('test', 17), ('test', 18)] left = pd.Series(np.linspace(0, 10, 11), pd.MultiIndex.from_tuples(idx[:-2])) left.loc[('test', 17)] = 11 left.loc[('test', 18)] = 12 right = pd.Series(np.linspace(0, 12, 13), pd.MultiIndex.from_tuples(idx)) tm.assert_series_equal(left, right) def test_take_preserve_name(self): taken = self.index.take([3, 0, 1]) assert taken.names == self.index.names def test_take_fill_value(self): # GH 12631 vals = [['A', 'B'], [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02')]] idx = pd.MultiIndex.from_product(vals, names=['str', 'dt']) result = idx.take(np.array([1, 0, -1])) exp_vals = [('A', pd.Timestamp('2011-01-02')), ('A', pd.Timestamp('2011-01-01')), ('B', pd.Timestamp('2011-01-02'))] expected = pd.MultiIndex.from_tuples(exp_vals, names=['str', 'dt']) tm.assert_index_equal(result, expected) # fill_value result = idx.take(np.array([1, 0, -1]), fill_value=True) exp_vals = [('A',
pd.Timestamp('2011-01-02')
pandas.Timestamp
import numpy as np import pytest import pandas as pd import pandas._testing as tm from pandas.core.arrays.sparse import SparseArray class TestSparseArrayConcat: @pytest.mark.parametrize("kind", ["integer", "block"]) def test_basic(self, kind): a = SparseArray([1, 0, 0, 2], kind=kind) b = SparseArray([1, 0, 2, 2], kind=kind) result = SparseArray._concat_same_type([a, b]) # Can't make any assertions about the sparse index itself # since we aren't don't merge sparse blocs across arrays # in to_concat expected = np.array([1, 2, 1, 2, 2], dtype="int64") tm.assert_numpy_array_equal(result.sp_values, expected) assert result.kind == kind @pytest.mark.parametrize("kind", ["integer", "block"]) def test_uses_first_kind(self, kind): other = "integer" if kind == "block" else "block" a = SparseArray([1, 0, 0, 2], kind=kind) b = SparseArray([1, 0, 2, 2], kind=other) result = SparseArray._concat_same_type([a, b]) expected = np.array([1, 2, 1, 2, 2], dtype="int64") tm.assert_numpy_array_equal(result.sp_values, expected) assert result.kind == kind @pytest.mark.parametrize( "other, expected_dtype", [ # compatible dtype -> preserve sparse (pd.Series([3, 4, 5], dtype="int64"), pd.SparseDtype("int64", 0)), # (pd.Series([3, 4, 5], dtype="Int64"), pd.SparseDtype("int64", 0)), # incompatible dtype -> Sparse[common dtype] (pd.Series([1.5, 2.5, 3.5], dtype="float64"),
pd.SparseDtype("float64", 0)
pandas.SparseDtype
# Copyright (c) Microsoft Corporation and contributors. # Licensed under the MIT License. import matplotlib.pyplot as plt from matplotlib.colors import Colormap import numpy as np import pandas as pd import seaborn as sns from mpl_toolkits.axes_grid1 import make_axes_locatable from sklearn.utils import check_array, check_consistent_length from sklearn.preprocessing import Binarizer from ..embed import selectSVD from ..utils import import_graph, pass_to_ranks def _check_common_inputs( figsize=None, height=None, title=None, context=None, font_scale=None, legend_name=None, title_pad=None, hier_label_fontsize=None, ): # Handle figsize if figsize is not None: if not isinstance(figsize, tuple): msg = "figsize must be a tuple, not {}.".format(type(figsize)) raise TypeError(msg) # Handle heights if height is not None: if not isinstance(height, (int, float)): msg = "height must be an integer or float, not {}.".format(type(height)) raise TypeError(msg) # Handle title if title is not None: if not isinstance(title, str): msg = "title must be a string, not {}.".format(type(title)) raise TypeError(msg) # Handle context if context is not None: if not isinstance(context, str): msg = "context must be a string, not {}.".format(type(context)) raise TypeError(msg) elif context not in ["paper", "notebook", "talk", "poster"]: msg = "context must be one of (paper, notebook, talk, poster), \ not {}.".format( context ) raise ValueError(msg) # Handle font_scale if font_scale is not None: if not isinstance(font_scale, (int, float)): msg = "font_scale must be an integer or float, not {}.".format( type(font_scale) ) raise TypeError(msg) # Handle legend name if legend_name is not None: if not isinstance(legend_name, str): msg = "legend_name must be a string, not {}.".format(type(legend_name)) raise TypeError(msg) if hier_label_fontsize is not None: if not isinstance(hier_label_fontsize, (int, float)): msg = "hier_label_fontsize must be a scalar, not {}.".format( type(legend_name) ) raise TypeError(msg) if title_pad is not None: if not isinstance(title_pad, (int, float)): msg = "title_pad must be a scalar, not {}.".format(type(legend_name)) raise TypeError(msg) def _transform(arr, method): if method is not None: if method in ["log", "log10"]: # arr = np.log(arr, where=(arr > 0)) # hacky, but np.log(arr, where=arr>0) is really buggy arr = arr.copy() if method == "log": arr[arr > 0] = np.log(arr[arr > 0]) else: arr[arr > 0] = np.log10(arr[arr > 0]) elif method in ["zero-boost", "simple-all", "simple-nonzero"]: arr = pass_to_ranks(arr, method=method) elif method == "binarize": transformer = Binarizer().fit(arr) arr = transformer.transform(arr) else: msg = "Transform must be one of {log, log10, binarize, zero-boost, simple-all, \ simple-nonzero, not {}.".format( method ) raise ValueError(msg) return arr def _process_graphs( graphs, inner_hier_labels, outer_hier_labels, transform, sort_nodes ): """Handles transformation and sorting of graphs for plotting""" for g in graphs: check_consistent_length(g, inner_hier_labels, outer_hier_labels) graphs = [_transform(arr, transform) for arr in graphs] if inner_hier_labels is not None: inner_hier_labels = np.array(inner_hier_labels) if outer_hier_labels is None: outer_hier_labels = np.ones_like(inner_hier_labels) else: outer_hier_labels = np.array(outer_hier_labels) else: inner_hier_labels = np.ones(graphs[0].shape[0], dtype=int) outer_hier_labels = np.ones_like(inner_hier_labels) graphs = [ _sort_graph(arr, inner_hier_labels, outer_hier_labels, sort_nodes) for arr in graphs ] return graphs def heatmap( X, transform=None, figsize=(10, 10), title=None, context="talk", font_scale=1, xticklabels=False, yticklabels=False, cmap="RdBu_r", vmin=None, vmax=None, center=0, cbar=True, inner_hier_labels=None, outer_hier_labels=None, hier_label_fontsize=30, ax=None, title_pad=None, sort_nodes=False, **kwargs ): r""" Plots a graph as a color-encoded matrix. Nodes can be grouped by providing `inner_hier_labels` or both `inner_hier_labels` and `outer_hier_labels`. Nodes can also be sorted by the degree from largest to smallest degree nodes. The nodes will be sorted within each group if labels are also provided. Read more in the :ref:`tutorials <plot_tutorials>` Parameters ---------- X : nx.Graph or np.ndarray object Graph or numpy matrix to plot transform : None, or string {'log', 'log10', 'zero-boost', 'simple-all', 'simple-nonzero'} - 'log' Plots the natural log of all nonzero numbers - 'log10' Plots the base 10 log of all nonzero numbers - 'zero-boost' Pass to ranks method. preserves the edge weight for all 0s, but ranks the other edges as if the ranks of all 0 edges has been assigned. - 'simple-all' Pass to ranks method. Assigns ranks to all non-zero edges, settling ties using the average. Ranks are then scaled by :math:`\frac{rank(\text{non-zero edges})}{n^2 + 1}` where n is the number of nodes - 'simple-nonzero' Pass to ranks method. Same as simple-all, but ranks are scaled by :math:`\frac{rank(\text{non-zero edges})}{\text{# non-zero edges} + 1}` - 'binarize' Binarize input graph such that any edge weight greater than 0 becomes 1. figsize : tuple of integers, optional, default: (10, 10) Width, height in inches. title : str, optional, default: None Title of plot. context : None, or one of {paper, notebook, talk (default), poster} The name of a preconfigured set. font_scale : float, optional, default: 1 Separate scaling factor to independently scale the size of the font elements. xticklabels, yticklabels : bool or list, optional If list-like, plot these alternate labels as the ticklabels. cmap : str, list of colors, or matplotlib.colors.Colormap, default: 'RdBu_r' Valid matplotlib color map. vmin, vmax : floats, optional (default=None) Values to anchor the colormap, otherwise they are inferred from the data and other keyword arguments. center : float, default: 0 The value at which to center the colormap cbar : bool, default: True Whether to draw a colorbar. inner_hier_labels : array-like, length of X's first dimension, default: None Categorical labeling of the nodes. If not None, will group the nodes according to these labels and plot the labels on the marginal outer_hier_labels : array-like, length of X's first dimension, default: None Categorical labeling of the nodes, ignored without ``inner_hier_labels`` If not None, will plot these labels as the second level of a hierarchy on the marginals hier_label_fontsize : int Size (in points) of the text labels for the ``inner_hier_labels`` and ``outer_hier_labels``. ax : matplotlib Axes, optional Axes in which to draw the plot, otherwise will generate its own axes title_pad : int, float or None, optional (default=None) Custom padding to use for the distance of the title from the heatmap. Autoscales if ``None`` sort_nodes : boolean, optional (default=False) Whether or not to sort the nodes of the graph by the sum of edge weights (degree for an unweighted graph). If ``inner_hier_labels`` is passed and ``sort_nodes`` is ``True``, will sort nodes this way within block. **kwargs : dict, optional additional plotting arguments passed to Seaborn's ``heatmap`` """ _check_common_inputs( figsize=figsize, title=title, context=context, font_scale=font_scale, hier_label_fontsize=hier_label_fontsize, title_pad=title_pad, ) # Handle ticklabels if isinstance(xticklabels, list): if len(xticklabels) != X.shape[1]: msg = "xticklabels must have same length {}.".format(X.shape[1]) raise ValueError(msg) elif not isinstance(xticklabels, bool): msg = "xticklabels must be a bool or a list, not {}".format(type(xticklabels)) raise TypeError(msg) if isinstance(yticklabels, list): if len(yticklabels) != X.shape[0]: msg = "yticklabels must have same length {}.".format(X.shape[0]) raise ValueError(msg) elif not isinstance(yticklabels, bool): msg = "yticklabels must be a bool or a list, not {}".format(type(yticklabels)) raise TypeError(msg) # Handle cmap if not isinstance(cmap, (str, list, Colormap)): msg = "cmap must be a string, list of colors, or matplotlib.colors.Colormap," msg += " not {}.".format(type(cmap)) raise TypeError(msg) # Handle center if center is not None: if not isinstance(center, (int, float)): msg = "center must be a integer or float, not {}.".format(type(center)) raise TypeError(msg) # Handle cbar if not isinstance(cbar, bool): msg = "cbar must be a bool, not {}.".format(type(center)) raise TypeError(msg) arr = import_graph(X) arr = _process_graphs( [arr], inner_hier_labels, outer_hier_labels, transform, sort_nodes )[0] # Global plotting settings CBAR_KWS = dict(shrink=0.7) # norm=colors.Normalize(vmin=0, vmax=1)) with sns.plotting_context(context, font_scale=font_scale): if ax is None: fig, ax = plt.subplots(figsize=figsize) plot = sns.heatmap( arr, cmap=cmap, square=True, xticklabels=xticklabels, yticklabels=yticklabels, cbar_kws=CBAR_KWS, center=center, cbar=cbar, ax=ax, vmin=vmin, vmax=vmax, **kwargs ) if title is not None: if title_pad is None: if inner_hier_labels is not None: title_pad = 1.5 * font_scale + 1 * hier_label_fontsize + 30 else: title_pad = 1.5 * font_scale + 15 plot.set_title(title, pad=title_pad) if inner_hier_labels is not None: if outer_hier_labels is not None: plot.set_yticklabels([]) plot.set_xticklabels([]) _plot_groups( plot, arr, inner_hier_labels, outer_hier_labels, fontsize=hier_label_fontsize, ) else: _plot_groups(plot, arr, inner_hier_labels, fontsize=hier_label_fontsize) return plot def gridplot( X, labels=None, transform=None, height=10, title=None, context="talk", font_scale=1, alpha=0.7, sizes=(10, 200), palette="Set1", legend_name="Type", inner_hier_labels=None, outer_hier_labels=None, hier_label_fontsize=30, title_pad=None, sort_nodes=False, ): r""" Plots multiple graphs on top of each other with dots as edges. This function is useful for visualizing multiple graphs simultaneously. The size of the dots correspond to the edge weights of the graphs, and colors represent input graphs. Read more in the :ref:`tutorials <plot_tutorials>` Parameters ---------- X : list of nx.Graph or np.ndarray object List of nx.Graph or numpy arrays to plot labels : list of str List of strings, which are labels for each element in X. ``len(X) == len(labels)``. transform : None, or string {'log', 'log10', 'zero-boost', 'simple-all', 'simple-nonzero'} - 'log' Plots the natural log of all nonzero numbers - 'log10' Plots the base 10 log of all nonzero numbers - 'zero-boost' Pass to ranks method. preserves the edge weight for all 0s, but ranks the other edges as if the ranks of all 0 edges has been assigned. - 'simple-all' Pass to ranks method. Assigns ranks to all non-zero edges, settling ties using the average. Ranks are then scaled by :math:`\frac{rank(\text{non-zero edges})}{n^2 + 1}` where n is the number of nodes - 'simple-nonzero' Pass to ranks method. Same as simple-all, but ranks are scaled by :math:`\frac{rank(\text{non-zero edges})}{\text{# non-zero edges} + 1}` - 'binarize' Binarize input graph such that any edge weight greater than 0 becomes 1. height : int, optional, default: 10 Height of figure in inches. title : str, optional, default: None Title of plot. context : None, or one of {paper, notebook, talk (default), poster} The name of a preconfigured set. font_scale : float, optional, default: 1 Separate scaling factor to independently scale the size of the font elements. palette : str, dict, optional, default: 'Set1' Set of colors for mapping the ``hue`` variable. If a dict, keys should be values in the hue variable alpha : float [0, 1], default : 0.7 Alpha value of plotted gridplot points sizes : length 2 tuple, default: (10, 200) Min and max size to plot edge weights legend_name : string, default: 'Type' Name to plot above the legend inner_hier_labels : array-like, length of X's first dimension, default: None Categorical labeling of the nodes. If not None, will group the nodes according to these labels and plot the labels on the marginal outer_hier_labels : array-like, length of X's first dimension, default: None Categorical labeling of the nodes, ignored without ``inner_hier_labels`` If not None, will plot these labels as the second level of a hierarchy on the marginals hier_label_fontsize : int Size (in points) of the text labels for the ``inner_hier_labels`` and ``outer_hier_labels``. title_pad : int, float or None, optional (default=None) Custom padding to use for the distance of the title from the heatmap. Autoscales if ``None`` sort_nodes : boolean, optional (default=False) Whether or not to sort the nodes of the graph by the sum of edge weights (degree for an unweighted graph). If ``inner_hier_labels`` is passed and ``sort_nodes`` is ``True``, will sort nodes this way within block. """ _check_common_inputs( height=height, title=title, context=context, font_scale=font_scale, hier_label_fontsize=hier_label_fontsize, title_pad=title_pad, ) if isinstance(X, list): graphs = [import_graph(x) for x in X] else: msg = "X must be a list, not {}.".format(type(X)) raise TypeError(msg) if labels is None: labels = np.arange(len(X)) check_consistent_length(X, labels) graphs = _process_graphs( X, inner_hier_labels, outer_hier_labels, transform, sort_nodes ) if isinstance(palette, str): palette = sns.color_palette(palette, desat=0.75, n_colors=len(labels)) dfs = [] for idx, graph in enumerate(graphs): rdx, cdx = np.where(graph > 0) weights = graph[(rdx, cdx)] df = pd.DataFrame( np.vstack([rdx + 0.5, cdx + 0.5, weights]).T, columns=["rdx", "cdx", "Weights"], ) df[legend_name] = [labels[idx]] * len(cdx) dfs.append(df) df = pd.concat(dfs, axis=0) with sns.plotting_context(context, font_scale=font_scale): sns.set_style("white") plot = sns.relplot( data=df, x="cdx", y="rdx", hue=legend_name, size="Weights", sizes=sizes, alpha=alpha, palette=palette, height=height, facet_kws={ "sharex": True, "sharey": True, "xlim": (0, graph.shape[0] + 1), "ylim": (0, graph.shape[0] + 1), }, ) plot.ax.axis("off") plot.ax.invert_yaxis() if title is not None: if title_pad is None: if inner_hier_labels is not None: title_pad = 1.5 * font_scale + 1 * hier_label_fontsize + 30 else: title_pad = 1.5 * font_scale + 15 plt.title(title, pad=title_pad) if inner_hier_labels is not None: if outer_hier_labels is not None: _plot_groups( plot.ax, graphs[0], inner_hier_labels, outer_hier_labels, fontsize=hier_label_fontsize, ) else: _plot_groups( plot.ax, graphs[0], inner_hier_labels, fontsize=hier_label_fontsize ) return plot def pairplot( X, labels=None, col_names=None, title=None, legend_name=None, variables=None, height=2.5, context="talk", font_scale=1, palette="Set1", alpha=0.7, size=50, marker=".", diag_kind="auto", ): r""" Plot pairwise relationships in a dataset. By default, this function will create a grid of Axes such that each dimension in data will by shared in the y-axis across a single row and in the x-axis across a single column. The off-diagonal Axes show the pairwise relationships displayed as scatterplot. The diagonal Axes show the univariate distribution of the data for that dimension displayed as either a histogram or kernel density estimates (KDEs). Read more in the :ref:`tutorials <plot_tutorials>` Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. labels : array-like or list, shape (n_samples), optional Labels that correspond to each sample in X. col_names : array-like or list, shape (n_features), optional Names or labels for each feature in X. If not provided, the default will be `Dimension 1, Dimension 2, etc`. title : str, optional, default: None Title of plot. legend_name : str, optional, default: None Title of the legend. variables : list of variable names, optional Variables to plot based on col_names, otherwise use every column with a numeric datatype. height : int, optional, default: 10 Height of figure in inches. context : None, or one of {paper, notebook, talk (default), poster} The name of a preconfigured set. font_scale : float, optional, default: 1 Separate scaling factor to independently scale the size of the font elements. palette : str, dict, optional, default: 'Set1' Set of colors for mapping the ``hue`` variable. If a dict, keys should be values in the hue variable. alpha : float, optional, default: 0.7 Opacity value of plotter markers between 0 and 1 size : float or int, optional, default: 50 Size of plotted markers. marker : string, optional, default: '.' Matplotlib style marker specification https://matplotlib.org/api/markers_api.html """ _check_common_inputs( height=height, title=title, context=context, font_scale=font_scale, legend_name=legend_name, ) # Handle X if not isinstance(X, (list, np.ndarray)): msg = "X must be array-like, not {}.".format(type(X)) raise TypeError(msg) # Handle Y if labels is not None: if not isinstance(labels, (list, np.ndarray)): msg = "Y must be array-like or list, not {}.".format(type(labels)) raise TypeError(msg) elif X.shape[0] != len(labels): msg = "Expected length {}, but got length {} instead for Y.".format( X.shape[0], len(labels) ) raise ValueError(msg) # Handle col_names if col_names is None: col_names = ["Dimension {}".format(i) for i in range(1, X.shape[1] + 1)] elif not isinstance(col_names, list): msg = "col_names must be a list, not {}.".format(type(col_names)) raise TypeError(msg) elif X.shape[1] != len(col_names): msg = "Expected length {}, but got length {} instead for col_names.".format( X.shape[1], len(col_names) ) raise ValueError(msg) # Handle variables if variables is not None: if len(variables) > len(col_names): msg = "variables cannot contain more elements than col_names." raise ValueError(msg) else: for v in variables: if v not in col_names: msg = "{} is not a valid key.".format(v) raise KeyError(msg) else: variables = col_names df = pd.DataFrame(X, columns=col_names) if labels is not None: if legend_name is None: legend_name = "Type" df_labels =
pd.DataFrame(labels, columns=[legend_name])
pandas.DataFrame
# # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from time import sleep from logbook import Logger import pandas as pd from zipline.gens.sim_engine import ( BAR, SESSION_START, SESSION_END, MINUTE_END, BEFORE_TRADING_START_BAR, MARKETS_CLOSED ) log = Logger('Realtime Clock') class RealtimeClock(object): """ Realtime clock for live trading. This class is a drop-in replacement for :class:`zipline.gens.sim_engine.MinuteSimulationClock`. The key difference between the two is that the RealtimeClock's event emission is synchronized to the (broker's) wall time clock, while MinuteSimulationClock yields a new event on every iteration (regardless of wall clock). The :param:`time_skew` parameter represents the time difference between the Broker and the live trading machine's clock. """ def __init__(self, sessions, execution_opens, execution_closes, before_trading_start_minutes, minute_emission, time_skew=pd.Timedelta("0s"), is_broker_alive=None, execution_id=None, stop_execution_callback=None): today = pd.to_datetime('now', utc=True).date() beginning_of_today = pd.to_datetime(today, utc=True) self.sessions = sessions[(beginning_of_today <= sessions)] self.execution_opens = execution_opens[(beginning_of_today <= execution_opens)] self.execution_closes = execution_closes[(beginning_of_today <= execution_closes)] self.before_trading_start_minutes = before_trading_start_minutes[ (beginning_of_today <= before_trading_start_minutes)] self.minute_emission = minute_emission self.time_skew = time_skew self.is_broker_alive = is_broker_alive or (lambda: True) self._last_emit = None self._before_trading_start_bar_yielded = False self._execution_id = execution_id self._stop_execution_callback = stop_execution_callback def __iter__(self): # yield from self.work_when_out_of_trading_hours() # return if not len(self.sessions): return for index, session in enumerate(self.sessions): self._before_trading_start_bar_yielded = False yield session, SESSION_START if self._stop_execution_callback: if self._stop_execution_callback(self._execution_id): break while self.is_broker_alive(): if self._stop_execution_callback: # put it here too, to break inner loop as well if self._stop_execution_callback(self._execution_id): break current_time = pd.to_datetime('now', utc=True) server_time = (current_time + self.time_skew).floor('1 min') if (server_time >= self.before_trading_start_minutes[index] and not self._before_trading_start_bar_yielded): self._last_emit = server_time self._before_trading_start_bar_yielded = True yield server_time, BEFORE_TRADING_START_BAR elif (server_time < self.execution_opens[index].tz_localize('UTC') and index == 0) or \ (self.execution_closes[index - 1].tz_localize('UTC') <= server_time < self.execution_opens[index].tz_localize('UTC')): # sleep anywhere between yesterday's close and today's open sleep(1) # self._last_emit = server_time # yield server_time, MARKETS_CLOSED if (self._last_emit is None or server_time - self._last_emit >= pd.Timedelta('1 minute')): self._last_emit = server_time yield server_time, MARKETS_CLOSED # if self.minute_emission: # yield server_time, MINUTE_END else: sleep(1) elif (self.execution_opens[index].tz_localize('UTC') <= server_time < self.execution_closes[index].tz_localize('UTC')): if (self._last_emit is None or server_time - self._last_emit >= pd.Timedelta('1 minute')): self._last_emit = server_time yield server_time, BAR if self.minute_emission: yield server_time, MINUTE_END else: sleep(1) elif server_time == self.execution_closes[index].tz_localize('UTC'): self._last_emit = server_time yield server_time, BAR if self.minute_emission: yield server_time, MINUTE_END yield server_time, SESSION_END break elif server_time > self.execution_closes[index].tz_localize('UTC'): break else: # We should never end up in this branch raise RuntimeError("Invalid state in RealtimeClock") def work_when_out_of_trading_hours(self): """ a debugging method to work while outside trading hours, so we are still able to make the engine work :return: """ from datetime import timedelta num_days = 5 from trading_calendars import get_calendar self.sessions = get_calendar("NYSE").sessions_in_range( str(pd.to_datetime('now', utc=True).date() - timedelta(days=num_days * 2)), str(
pd.to_datetime('now', utc=True)
pandas.to_datetime
import enum import numpy as np import pandas as pd from implicit.als import AlternatingLeastSquares from functools import partial from itertools import zip_longest from sklearn.preprocessing import StandardScaler from sklearn.base import TransformerMixin from typing import List # these must be initialized userid_to_id = {} itemid_to_id = {} id_to_userid = {} id_to_itemid = {} class BColor(enum.Enum): HEADER = '\033[95m' OKBLUE = '\033[94m' OKCYAN = '\033[96m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' def cprint(msg, color: BColor): print(f'{color}{msg}{BColor.ENDC}') def popularity_measure(source, fields: List[str], k=5000, beta: List[float] = None, add_target=None, scaler=None): """ ะ ะฐัั‡ะตั‚ ะพั†ะตะฝะบะธ ะฒะฐะถะฝะพัั‚ะธ ั‚ะพะฒะฐั€ะฐ ะฒ ะฟะพะบัƒะฟะบะต ะธ ะพั‚ะฑะพั€ ั‚ะพะฟ K ะฝะฐะธะฑะพะปะตะต ะฟะพะฟัƒะปัั€ะฝั‹ั… ั‚ะพะฒะฐั€ะพะฒ :param source - ะธัั…ะพะดะฝั‹ะต ะดะฐะฝะฝั‹ะต :param fields - ะฟั€ะธะทะฝะฐะบะธ, ะฟะพ ะบะพั‚ะพั€ั‹ะผ ะธะทะผะตั€ัะตั‚ัั ะผะตั€ะฐ ะฒะฐะถะฝะพัั‚ะธ ั‚ะพะฒะฐั€ะฐ :param k - ะบะพะปะธั‡ะตัั‚ะฒะพ ั‚ะพะฒะฐั€ะพะฒ, ะพั‚ะฑะธั€ะฐะตะผั‹ั… ะฒ ั‚ะพะฟ :param beta - ะผะฝะพะถะธั‚ะตะปะธ ะทะฝะฐั‡ะธะผะพัั‚ะธ ะดะปั ะบะฐะถะดะพะณะพ ะฟั€ะธะทะฝะฐะบะฐ ะฒ ะพั†ะตะฝะบะต :param add_target - ะฝะฐะทะฒะฐะฝะธะต ั„ะธะฝะฐะปัŒะฝะพะณะพ ะฟั€ะธะทะฝะฐะบะฐ. ะŸั€ะธะทะฝะฐะบ ะฝะต ะดะพะฑะฐะฒะปัะตั‚ัั, ะตัะปะธ target = None :param scaler - ะบะปะฐัั ะผะฐััˆั‚ะฐะฑะธั€ะพะฒะฐะฝะธั ะดะฐะฝะฝั‹ั… """ b = [1.] * len(fields) if beta is None else np.array(beta) assert len(fields) == len(b), '`fields` and `beta` dimensions must equal' assert issubclass(StandardScaler, TransformerMixin) or scaler is None, 'scaler must be a subclass of TransformerMixin' _df = source[['item_id']].copy() prepared = scaler().fit_transform(source[fields]) * b if scaler else source[fields] * b values = np.linalg.norm(prepared, ord=2, axis=1) _df['popularity'] = values if add_target: source.loc[:, add_target] = values popularity = _df.groupby('item_id')['popularity'].sum() return popularity.sort_values(ascending=False).head(k).index.tolist() def check_model(uim, mdl_params, rec_params, res, ttl='als'): """ :param uim: user-item matrix :param mdl_params: model init parameters :param rec_params: recommendation parameters :param res: true values, including user_id :param ttl: model title :return: predicted values (DataFrame) """ mdl = AlternatingLeastSquares(**mdl_params) mdl.fit(uim.T, show_progress=False) # rec_params['user_items'] = uim res[ttl] = res['user_id'].apply(partial(recommender, mdl=mdl, params=rec_params)) return mdl def recommender(user_id, mdl, params): """ ะŸั€ะตะดัะบะฐะทะฐั‚ะตะปัŒ-ะธะฝั‚ะตั€ะฟั€ะตั‚ะฐั‚ะพั€ """ uid = userid_to_id.get(user_id, None) if uid is None: return list() rec_score = mdl.recommend(userid_to_id[user_id], **params) return [id_to_itemid[rec[0]] for rec in rec_score] def precision_at_k(recommended_list, bought_list, k=5): """""" flags = np.sum(np.isin(bought_list, recommended_list[:k])) return flags / k def ap_k(recommended_list, bought_list, k=5): """""" flags = np.isin(recommended_list, bought_list) if np.sum(flags) == 0: return 0 func = partial(precision_at_k, recommended_list, bought_list) rel_items = np.arange(1, k + 1)[flags[:k]] return np.sum(list(map(func, rel_items))) / np.sum(flags) def calc_metric(metric_func, source: pd.DataFrame): """ ะŸะพะดัั‡ะตั‚ ะผะตั‚ั€ะธะบะธ :param metric_func - ั„ัƒะฝะบั†ะธั ะธะทะผะตั€ะตะฝะธั ะผะตั‚ั€ะธะบะธ. ะŸะตั€ะฒั‹ะน ะฐั€ะณัƒะผะตะฝั‚ - ั€ะตะบะพะผะตะฝะดะฐั†ะธะธ, ะฒั‚ะพั€ะพะน - ะฐะบั‚ัƒะฐะปัŒะฝั‹ะต ะทะฝะฐั‡ะตะฝะธั :param source - ะดะฐะฝะฝั‹ะต ะดะปั ะฟะพะดัั‡ะตั‚ะฐ ะผะตั‚ั€ะธะบะธ """ def metric_wrapper(pred, act): return metric_func(pred, act) if len(pred) != 0 else 0 metric = pd.DataFrame() for col in source.columns: if col == 'user_id': metric[col] = source[col] elif col == 'actual': continue else: metric[col] = source[[col, 'actual']].apply(lambda row: metric_wrapper(*row.values), axis=1) return metric def compare_metrics(res, saveto=None): """ Build dataframe with metrics comparison """ pr_at_k = calc_metric(partial(precision_at_k, k=5), res) ap_at_k = calc_metric(lambda pred, act: ap_k(pred, act, k=min(5, len(pred))), res) smr = pd.DataFrame([pr_at_k.mean(), ap_at_k.mean()], index=['precision@k', 'map@k']).drop(columns='user_id') if saveto: smr.T.to_csv(saveto) return smr def get_nearest(mdl, elem_id, k, mode): """ Get top K the nearest users/items to the given :param mdl: ALS fitted model :param elem_id: real user/item id :param k: number of items to find :param mode: users/items return switcher :return: list of similar users/items depend on mode """ if (mode == 'user') or (mode == 0): return [id_to_userid[idx] for idx, _ in mdl.similar_users(userid=userid_to_id[elem_id], N=k + 1)[1:]] if (mode == 'item') or (mode == 1): return [id_to_itemid[idx] for idx, _ in mdl.similar_items(itemid=itemid_to_id[elem_id], N=k + 1)[1:]] return [] def filter_top_for_users(items, users, measure='popularity', k=5): """ Get users top purchases :param items: data grouped by users and items :param users: user ids array :param measure: ranging measure :param k: number of items to find :return ungrouped dataframe """ filter_mask = (items['user_id'].isin(users)) & (items['item_id'] != -1) return items[filter_mask].sort_values(by=['user_id', measure], ascending=[True, False]).groupby('user_id').head(k) def basic_filter(items, k, placeholder=()): """ ะ˜ะท ัะฟะธัะบะฐ ั‚ะพะฒะฐั€ะพะฒ ะฑะตั€ะตะผ K ะฟะตั€ะฒั‹ั…, ะพั‚ะปะธั‡ะฝั‹ะน ะพั‚ ั‚ะพะฒะฐั€ะฐ-ะทะฐะณะปัƒัˆะบะธ, ะฐ ะตัะปะธ ั‚ะฐะบะธั… ะฝะตั‚, ั‚ะพ ะฒะพะทะฒั€ะฐั‰ะฐะตะผ ะทะฐะณะปัƒัˆะบัƒ """ return result[:k] if (result := [item for item in items if item != -1]) else placeholder def check_items_count(items, k): """ Check number of predictions for each user :param items: Series with users predictions. User ids must be in index :param k: number of required predictions :return: corrected predictions """ # ะตัะปะธ ะฟะพั…ะพะถะธะต ะฟะพะปัŒะทะพะฒะฐั‚ะตะปะธ ะผะฐะปะพ ะฟะพะบัƒะฟะฐะปะธ, ั‚ะพ ั€ะตะบะพะผะตะฝะดะฐั†ะธะน ะผะพะถะตั‚ ะฝะต ั…ะฒะฐั‚ะธั‚ัŒ sizes = items.apply(len) if (low_pred := items.index[sizes < k]).any(): cprint(f"Some users have less than {k} predictions!", BColor.WARNING) print(low_pred.tolist()) # ะบะฐะบะฐั-ั‚ะพ ะพะฑั€ะฐะฑะพั‚ะบะฐ ะฟะพะดะพะฑะฝั‹ั… ัะธั‚ัƒะฐั†ะธะน if (nan_pred := items.index[sizes == 0]).any(): cprint(f"Some users have no predictions at all!", BColor.FAIL) print(nan_pred.tolist()) # ะบะฐะบะฐั-ั‚ะพ ะพะฑั€ะฐะฑะพั‚ะบะฐ ะฟะพะดะพะฑะฝั‹ั… ัะธั‚ัƒะฐั†ะธะน return items def agg_func(src): """ ะะณะณั€ะตะณะฐั‚ะพั€ ะฟะพั…ะพะถะธั… ั‚ะพะฒะฐั€ะพะฒ: ะดะปั ะบะฐะถะดะพะณะพ ั‚ะพะฒะฐั€ะฐ ะฑะตั€ะตะผ ะฒะตั€ั…ะฝะธะต ะฒ ะพั‡ะตั€ะตะดะธ ะตัะปะธ ะพะฝะธ ะตั‰ะต ะฝะต ะฒ ะฟะพะดะฑะพั€ะบะต """ arr = np.array(list(zip_longest(*src)), dtype='float') res = [] for row in range(arr.shape[0]): for col in range(arr.shape[1]): if np.isnan(item := arr[row, col]): continue if item not in res: res.append(item) else: for col_item in arr[row + 1:, col]: if not np.isnan(col_item) and col_item not in res: res.append(col_item) break return np.array(res, dtype='int') def similar_item_recommend(mdl, users, data, measure='popularity', k=5, filter_func=basic_filter, placeholder=(), title='similar_items'): """ Recommend similar items based on top K purchases :param mdl: ALS fitted model :param users: user ids to recommend for :param data: source dataset :param measure: target field in the dataset :param k: number of items to recommend :param filter_func: additional filters like func(items: list) -> list :param placeholder: value to use if no predictions available :param title: name of target column :return: list of predictions for given user """ # ะฟะพ userid ะฟะพะปัƒั‡ะฐะตะผ ั‚ะพะฟ ะฟะพะบัƒะฟะพะบ ะฟะพะปัŒะทะพะฒะฐั‚ะตะปะตะน group_items = data.groupby(['user_id', 'item_id'])[measure].sum().reset_index() user_item_top = filter_top_for_users(group_items, users, measure, k) # ะดะปั ะบะฐะถะดะพะณะพ ั‚ะพะฒะฐั€ะฐ ะธะท ั‚ะพะฟะฐ ะฟะพะปัŒะทะพะฒะฐั‚ะตะปั ะฝะฐั…ะพะดะธะผ ะฑะปะธะถะฐะนัˆะธะต K ั‚ะพะฒะฐั€ะพะฒ ะธะท ั‚ะพะฟ5ะบ user_item_top[title] = user_item_top['item_id'].apply(lambda x: get_nearest(mdl, x, k, 'item')) # ะดะปั ะบะฐะถะดะพะณะพ ั‚ะพะฒะฐั€ะฐ ะธั‚ะตั€ะฐั‚ะธะฒะฝะพ ะฑะตั€ะตะผ ะตะณะพ ะฑะปะธะถะฐะนัˆะธะน, ะตัะปะธ ะตะณะพ ะตั‰ะต ะฝะตั‚ ะฒ ะฟั€ะตะดะปะพะถะบะต, preds = user_item_top.groupby('user_id')[title].agg(agg_func) # ั‚ะตะฟะตั€ัŒ ะผะพะถะตะผ ะดะพะฟะพะปะฝะธั‚ะตะปัŒะฝะพ ะพั‚ั„ะธะปัŒั‚ั€ะพะฒะฐั‚ัŒ ะฟะพะปัƒั‡ะตะฝะฝั‹ะต ัะฟะธัะบะธ # ะตัะปะธ ั„ะธะปัŒั‚ั€ ะฝะต ัƒะบะฐะทะฐะฝ - ะฑะตั€ะตะผ ะฟะตั€ะฒั‹ะต ะš ั‚ะพะฒะฐั€ะพะฒ preds = preds.apply(lambda val: filter_func(val, k, placeholder) if filter_func and callable(filter_func) else lambda x: x[:k]) # ะดะพะฑะฐะฒะปัะตะผ ั‚ะตั…, ะดะปั ะบะพะณะพ ะฟั€ะตะดัะบะฐะทะฐะฝะธั ะพั‚ััƒั‚ัั‚ะฒัƒัŽั‚ items = pd.Series([np.array(placeholder)] * len(users), index=users, name=title) items.update(preds) # ะฟั€ะพะฒะตั€ัะตะผ ะบะพะปะธั‡ะตัั‚ะฒะพ ะฟั€ะตะดัะบะฐะทะฐะฝะธะน items = check_items_count(items, k) return items def similar_user_recommend(mdl, users, data, measure='popularity', k=5, filter_func=basic_filter, placeholder=(), title='similar_users'): """ Recommend items based on similar user purchases :param mdl: ALS fitted model :param users: user ids to recommend for :param data: source dataset :param measure: target field in the dataset :param k: number of items to recommend :param filter_func: additional filters like func(items: list) -> list :param placeholder: value to use if no predictions available :param title: name of target column :return: list of predictions for given user """ # ะดะปั ะบะฐะถะดะพะณะพ ัŽะทะตั€ะฐ ะธะท ะทะฐะฟั€ะพัะฐ ะฝะฐั…ะพะดะธะผ K ะฑะปะธะถะฐะนัˆะธั… sim =
pd.Series(users)
pandas.Series
# -*- coding: utf-8 -*- """ Tests date parsing functionality for all of the parsers defined in parsers.py """ from distutils.version import LooseVersion from datetime import datetime import pytest import numpy as np import pandas.lib as lib from pandas.lib import Timestamp import pandas as pd import pandas.io.parsers as parsers import pandas.tseries.tools as tools import pandas.util.testing as tm from pandas import DataFrame, Series, Index, DatetimeIndex from pandas import compat from pandas.compat import parse_date, StringIO, lrange from pandas.tseries.index import date_range class ParseDatesTests(object): def test_separator_date_conflict(self): # Regression test for gh-4678: make sure thousands separator and # date parsing do not conflict. data = '06-02-2013;13:00;1-000.215' expected = DataFrame( [[datetime(2013, 6, 2, 13, 0, 0), 1000.215]], columns=['Date', 2] ) df = self.read_csv(
StringIO(data)
pandas.compat.StringIO
import matplotlib.pyplot as plt import matplotlib.image as mpimg from lifelines.datasets import load_waltons from lifelines import KaplanMeierFitter from scipy.stats import ranksums from scipy import interpolate from operator import add import numpy as np import pandas as pd import os.path import datetime import requests import glob import json import os import warnings warnings.filterwarnings('ignore') summary_order = [ "_study_count", "_subject_count", "_demographic_count", "_visit_count", "_sample_count", "_summary_lab_result_count", "_treatment_count" ] summary_count_headers = { "_subject_count": "Cases", "_study_count": "Studies", "_demographic_count": "Demographic records", "_visit_count": "Visit records", "_sample_count": "Samples", "_summary_lab_result_count": "Lab Results records", "_treatment_count": "Drug records" } chunk = 50 class MetricsTable(dict): ''' Represent metrics tables in HTML format for visualization ''' def _repr_html_(self): html = [] html.append("<table style>") html.append("<thead>") html.append("<th>Metric</th>") html.append("<th>Value</th>") html.append("</thead>") for key in self: html.append("<tr>") html.append("<td>%s</td>" % key) html.append("<td>%s</td>" % self[key]) html.append("<tr>") html.append("</table>") return ''.join(html) def add_keys(filename): ''' Get auth from our secret keys ''' global auth json_data = open(filename).read() keys = json.loads(json_data) auth = requests.post('https://aids.niaiddata.org/user/credentials/cdis/access_token', json=keys) return auth def get_keys(): ''' Get auth from internal service ''' global auth auth = requests.get('http://fence-service.default.svc.cluster.local/internal/access_token') def query_api(query_txt, variables=None): ''' Request results for a specific query ''' auth = add_keys('/home/jovyan/pd/credentials.json') if variables == None: query = {'query': query_txt} else: query = {'query': query_txt, 'variables': variables} output = requests.post('https://aids.niaiddata.org/api/v0/submission/graphql', headers={'Authorization': 'bearer ' + auth.json()['access_token']}, json=query).text data = json.loads(output) if 'errors' in data: print(data) return data def get_studies(project_id): ''' Get list of studies for specific project''' query_txt = """{ study(project_id: "%s"){ submitter_id }}""" % project_id data = query_api(query_txt) studies = [] for study in data['data']['study']: studies.append(study['submitter_id']) return studies def get_projects(): ''' Query list of projects ''' query_txt = """query Project { project(first:0) {project_id}} """ data = query_api(query_txt) projects = [] for pr in data['data']['project']: projects.append(pr['project_id']) projects = sorted(projects) return projects def query_summary_counts(projects=None): ''' Query summary counts for each data type''' if projects == None: projects = get_projects() elif not isinstance(projects,list): projects = [projects] dftotal =
pd.DataFrame()
pandas.DataFrame
import pandas as pd from pathlib import Path from argparse import ArgumentParser, RawDescriptionHelpFormatter from mcw_readers.interfaces.lut import lut from mcw_readers.interfaces.wb_parsers import wb_parser try: import importlib.resources as pkg_resources except ImportError: import importlib_resources as pkg_resources def get_parser(): """get cli parse""" parser_desc = 'parse multiple neuroscores as defined by a spec file' epilog = """ The spec file is a tsv. Each line represents a timepoint for a participant. The timepoints must be matched with the exams (A, B, or C) in neuroscore. Here are the tsv columns names and the information they represent: record_id The redcap record_id for the participant. redcap_repeat_instance The redcap repeat instance. neuroscore The full path to the Neuroscore xlsm file. exam The exam (A, B, or C) matching with the redcap_repeat_instance """ parser = ArgumentParser(description=parser_desc, formatter_class=RawDescriptionHelpFormatter, epilog=epilog) parser.add_argument('--spec', action='store', required=True, help='the tsv specification') return parser def main(): with pkg_resources.path('mcw_readers.data', 'epilepsy_lut.xlsx') as epilepsy_excel: epilepsy_lut = lut('epilepsy', str(epilepsy_excel)) parser = get_parser() args = parser.parse_args() spec = pd.read_csv(args.spec, sep='\t') spec.exam = spec.exam.str.lower() spec['exam_num'] = spec.exam.map({'a': 1, 'b': 2}) N = spec.shape[0] all_results = [] all_new_lines = [] all_missing_lines = [] for i, row in enumerate(spec.itertuples(), start=1): print(f'Working on row {i} / {N}') epilepsy_parser = wb_parser(row.neuroscore, verbose=False) results, new_lines, missing_lines = epilepsy_parser.parse_data( epilepsy_lut, row.exam_num) # adjust results results =
pd.DataFrame(results)
pandas.DataFrame
import glob import pandas as pd COLUMNS_MAPPING = { "Nยฐ de l'OM": "num_om", "Mode de rรฉservation (online, offline)": "mode_reservation", "Structure": "structure", "Date de dรฉbut mission": "date_debut_mission", "Date de fin mission": "date_fin_mission", "Statut": "status", "Lieu de dรฉpart": "lieu_depart", "Lieu d'arrivรฉe": "lieu_arrivee", "Type de prestation": "prestation_type", "Lieu รฉtape": "lieu_etape", "Nombre de prestations": "nombre_prestation", "Nombre d'OM": "nombre_om", "Nombre de jours": "nombre_jours", "Coรปt des prestations": "cout", } REVERSE_COLUMNS_MAPPING = {v: k for k, v in COLUMNS_MAPPING.items()} def get_data(dir_path, prestation_types=None): data = load_data(dir_path) data = clean_data(data, prestation_types) return data def load_data(dir_path): datas = [] for filepath in glob.glob(dir_path + "/Reportings_*.csv"): dataset = pd.read_csv(filepath, delimiter=";") datas.append(dataset) data =
pd.concat(datas, ignore_index=True)
pandas.concat
import sys import ast import xml.etree.ElementTree as ET def parse_properties(fn): et = ET.parse(fn) test_cases = list(et.getroot().iter('testcase')) all_properties = {} for i, test_case in enumerate(test_cases): name = '{file}::{name}'.format(**test_case.attrib) properties = { prop.attrib['name']: ast.literal_eval(prop.attrib['value']) for prop in test_case.iter('property') } all_properties[name] = properties fmt = '{:<150}' + '\t{}' * len(properties) if i == 0: print(fmt.format(name, *properties.keys())) sorted_keys = list(sorted(properties.keys())) if not sorted_keys: sorted_keys = ['total_threads', 'dangling_threads', 'total_sockets', 'open_sockets'] print(fmt.format(name, *[properties.get(key, 'N/A') for key in sorted_keys])) return all_properties if __name__ == '__main__': properties = parse_properties(sys.argv[1]) try: import pandas as pd except ImportError: ... else: df =
pd.DataFrame(properties)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Implements the global import of all data Created on Mon Dec 26 20:51:08 2016 @author: rwilson """ import numpy as np import glob import re import os import csv from itertools import repeat import pandas as pd import h5py from dateutil.parser import parse import codecs from scipy.io import loadmat from scipy import signal import shelve import pickle import numpy as np import pandas as pd class utilities: '''Collection of functions intended for data related processes. ''' def DB_group_names(Database, group_name = None): '''Read in group names found within group. If group is not provided the upper folder structure will be read from. Parameters ---------- Database : str Relative location of database group_name : str The expected attribute name/s Returns ------- group_names : list Group names found within the group notes ----- Add some additional error checks ''' with h5py.File(Database, 'r') as h5file: if group_name is not None: group = h5file.get(group_name) group_names = [key for key in group.keys()] else: group_names = [key for key in h5file.keys()] return group_names def DB_attrs_save(Database, dictionary): '''Save attribute to database head. Parameters ---------- Database : str Relative location of database dictionary : dict Dictionary of attributes notes ----- Add some additional error checks ''' print('* The following %s attributes will be updated' % Database) with h5py.File(Database, 'r+') as h5file: for key,item in zip(dictionary.keys(), dictionary.values()): print('Key:', key,'| item:', item) h5file.attrs[key] = item def DB_attrs_load(Database, attrs_names): '''Read attribute from database head. Parameters ---------- Database : str Relative location of database attrs_names : list(str) The expected attribute name/s Returns ------- dict_attri : dict The returned dictionary of attribute/s from the database notes ----- Add some additional error checks ''' dict_attrs = {} with h5py.File(Database, 'r') as h5file: for attrs_name in attrs_names: # Load the database attrs = h5file.attrs[attrs_name] dict_attrs[attrs_name] = attrs return dict_attrs def DB_pd_data_load(Database, group, cols = None, whereList = None): '''Loads in a pandas dataframe stored in group from the Database. Parameters ---------- Database : str Relative location of database group : str The expected group name cols : list(str) / list(int) If not None, will limit the return columns, only applicable for ``table`` format database. For ``fixed`` format database only int accepted whereList : list of Term (or convertable) objects or slice(from, to) The conditional import of data, example ['index>11', 'index<20'], only applicable for ``table`` format database. For ``fixed`` format database only a slice object is applicable and will use the row index numbers not the index values (i.e. df.iloc vs df.loc) Returns ------- group_df : DataFrame The PV data stored in the group ``PVdata`` as a pandas dataframe TSsurvey = pd.read_hdf(h5file, 'survey20180312093545', columns=[(1,1), (1,2)], # Load specific columns where = ['index>11', 'index<20']) # Load index 11 -> 20 ''' with pd.HDFStore(Database, 'r+') as h5file: # Check that the expected group name is found in the database # group_names = [key for key in h5file.keys()] # expected_group_name = '/'+group # if expected_group_name not in group_names: # raise KeyError('The %s group was not found within the %s database.' \ # %(expected_group_name, Database)) # Load the database try: group_df = pd.read_hdf(h5file, group, columns = cols, where = whereList) except TypeError: with pd.HDFStore(Database, 'r+') as h5file: group_df =
pd.read_hdf(h5file, group)
pandas.read_hdf
from datetime import datetime, timedelta from io import StringIO import re import sys import numpy as np import pytest from pandas._libs.tslib import iNaT from pandas.compat import PYPY from pandas.compat.numpy import np_array_datetime64_compat from pandas.core.dtypes.common import ( is_datetime64_dtype, is_datetime64tz_dtype, is_object_dtype, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.dtypes import DatetimeTZDtype import pandas as pd from pandas import ( CategoricalIndex, DataFrame, DatetimeIndex, Index, Interval, IntervalIndex, PeriodIndex, Series, Timedelta, TimedeltaIndex, Timestamp, ) from pandas.core.accessor import PandasDelegate from pandas.core.arrays import DatetimeArray, PandasArray, TimedeltaArray from pandas.core.base import NoNewAttributesMixin, PandasObject from pandas.core.indexes.datetimelike import DatetimeIndexOpsMixin import pandas.util.testing as tm class CheckStringMixin: def test_string_methods_dont_fail(self): repr(self.container) str(self.container) bytes(self.container) def test_tricky_container(self): if not hasattr(self, "unicode_container"): pytest.skip("Need unicode_container to test with this") repr(self.unicode_container) str(self.unicode_container) class CheckImmutable: mutable_regex = re.compile("does not support mutable operations") def check_mutable_error(self, *args, **kwargs): # Pass whatever function you normally would to pytest.raises # (after the Exception kind). with pytest.raises(TypeError): self.mutable_regex(*args, **kwargs) def test_no_mutable_funcs(self): def setitem(): self.container[0] = 5 self.check_mutable_error(setitem) def setslice(): self.container[1:2] = 3 self.check_mutable_error(setslice) def delitem(): del self.container[0] self.check_mutable_error(delitem) def delslice(): del self.container[0:3] self.check_mutable_error(delslice) mutable_methods = getattr(self, "mutable_methods", []) for meth in mutable_methods: self.check_mutable_error(getattr(self.container, meth)) def test_slicing_maintains_type(self): result = self.container[1:2] expected = self.lst[1:2] self.check_result(result, expected) def check_result(self, result, expected, klass=None): klass = klass or self.klass assert isinstance(result, klass) assert result == expected class TestPandasDelegate: class Delegator: _properties = ["foo"] _methods = ["bar"] def _set_foo(self, value): self.foo = value def _get_foo(self): return self.foo foo = property(_get_foo, _set_foo, doc="foo property") def bar(self, *args, **kwargs): """ a test bar method """ pass class Delegate(PandasDelegate, PandasObject): def __init__(self, obj): self.obj = obj def setup_method(self, method): pass def test_invalid_delegation(self): # these show that in order for the delegation to work # the _delegate_* methods need to be overridden to not raise # a TypeError self.Delegate._add_delegate_accessors( delegate=self.Delegator, accessors=self.Delegator._properties, typ="property", ) self.Delegate._add_delegate_accessors( delegate=self.Delegator, accessors=self.Delegator._methods, typ="method" ) delegate = self.Delegate(self.Delegator()) with pytest.raises(TypeError): delegate.foo with pytest.raises(TypeError): delegate.foo = 5 with pytest.raises(TypeError): delegate.foo() @pytest.mark.skipif(PYPY, reason="not relevant for PyPy") def test_memory_usage(self): # Delegate does not implement memory_usage. # Check that we fall back to in-built `__sizeof__` # GH 12924 delegate = self.Delegate(self.Delegator()) sys.getsizeof(delegate) class Ops: def _allow_na_ops(self, obj): """Whether to skip test cases including NaN""" if (isinstance(obj, Index) and obj.is_boolean()) or not obj._can_hold_na: # don't test boolean / integer dtypes return False return True def setup_method(self, method): self.bool_index = tm.makeBoolIndex(10, name="a") self.int_index = tm.makeIntIndex(10, name="a") self.float_index = tm.makeFloatIndex(10, name="a") self.dt_index = tm.makeDateIndex(10, name="a") self.dt_tz_index = tm.makeDateIndex(10, name="a").tz_localize(tz="US/Eastern") self.period_index = tm.makePeriodIndex(10, name="a") self.string_index = tm.makeStringIndex(10, name="a") self.unicode_index = tm.makeUnicodeIndex(10, name="a") arr = np.random.randn(10) self.bool_series = Series(arr, index=self.bool_index, name="a") self.int_series = Series(arr, index=self.int_index, name="a") self.float_series = Series(arr, index=self.float_index, name="a") self.dt_series = Series(arr, index=self.dt_index, name="a") self.dt_tz_series = self.dt_tz_index.to_series(keep_tz=True) self.period_series = Series(arr, index=self.period_index, name="a") self.string_series = Series(arr, index=self.string_index, name="a") self.unicode_series = Series(arr, index=self.unicode_index, name="a") types = ["bool", "int", "float", "dt", "dt_tz", "period", "string", "unicode"] self.indexes = [getattr(self, "{}_index".format(t)) for t in types] self.series = [getattr(self, "{}_series".format(t)) for t in types] # To test narrow dtypes, we use narrower *data* elements, not *index* elements index = self.int_index self.float32_series = Series(arr.astype(np.float32), index=index, name="a") arr_int = np.random.choice(10, size=10, replace=False) self.int8_series = Series(arr_int.astype(np.int8), index=index, name="a") self.int16_series = Series(arr_int.astype(np.int16), index=index, name="a") self.int32_series = Series(arr_int.astype(np.int32), index=index, name="a") self.uint8_series = Series(arr_int.astype(np.uint8), index=index, name="a") self.uint16_series = Series(arr_int.astype(np.uint16), index=index, name="a") self.uint32_series = Series(arr_int.astype(np.uint32), index=index, name="a") nrw_types = ["float32", "int8", "int16", "int32", "uint8", "uint16", "uint32"] self.narrow_series = [getattr(self, "{}_series".format(t)) for t in nrw_types] self.objs = self.indexes + self.series + self.narrow_series def check_ops_properties(self, props, filter=None, ignore_failures=False): for op in props: for o in self.is_valid_objs: # if a filter, skip if it doesn't match if filter is not None: filt = o.index if isinstance(o, Series) else o if not filter(filt): continue try: if isinstance(o, Series): expected = Series(getattr(o.index, op), index=o.index, name="a") else: expected = getattr(o, op) except (AttributeError): if ignore_failures: continue result = getattr(o, op) # these could be series, arrays or scalars if isinstance(result, Series) and isinstance(expected, Series): tm.assert_series_equal(result, expected) elif isinstance(result, Index) and isinstance(expected, Index): tm.assert_index_equal(result, expected) elif isinstance(result, np.ndarray) and isinstance( expected, np.ndarray ): tm.assert_numpy_array_equal(result, expected) else: assert result == expected # freq raises AttributeError on an Int64Index because its not # defined we mostly care about Series here anyhow if not ignore_failures: for o in self.not_valid_objs: # an object that is datetimelike will raise a TypeError, # otherwise an AttributeError err = AttributeError if issubclass(type(o), DatetimeIndexOpsMixin): err = TypeError with pytest.raises(err): getattr(o, op) @pytest.mark.parametrize("klass", [Series, DataFrame]) def test_binary_ops_docs(self, klass): op_map = { "add": "+", "sub": "-", "mul": "*", "mod": "%", "pow": "**", "truediv": "/", "floordiv": "//", } for op_name in op_map: operand1 = klass.__name__.lower() operand2 = "other" op = op_map[op_name] expected_str = " ".join([operand1, op, operand2]) assert expected_str in getattr(klass, op_name).__doc__ # reverse version of the binary ops expected_str = " ".join([operand2, op, operand1]) assert expected_str in getattr(klass, "r" + op_name).__doc__ class TestIndexOps(Ops): def setup_method(self, method): super().setup_method(method) self.is_valid_objs = self.objs self.not_valid_objs = [] def test_none_comparison(self): # bug brought up by #1079 # changed from TypeError in 0.17.0 for o in self.is_valid_objs: if isinstance(o, Series): o[0] = np.nan # noinspection PyComparisonWithNone result = o == None # noqa assert not result.iat[0] assert not result.iat[1] # noinspection PyComparisonWithNone result = o != None # noqa assert result.iat[0] assert result.iat[1] result = None == o # noqa assert not result.iat[0] assert not result.iat[1] result = None != o # noqa assert result.iat[0] assert result.iat[1] if is_datetime64_dtype(o) or is_datetime64tz_dtype(o): # Following DatetimeIndex (and Timestamp) convention, # inequality comparisons with Series[datetime64] raise with pytest.raises(TypeError): None > o with pytest.raises(TypeError): o > None else: result = None > o assert not result.iat[0] assert not result.iat[1] result = o < None assert not result.iat[0] assert not result.iat[1] def test_ndarray_compat_properties(self): for o in self.objs: # Check that we work. for p in ["shape", "dtype", "T", "nbytes"]: assert getattr(o, p, None) is not None # deprecated properties for p in ["flags", "strides", "itemsize"]: with tm.assert_produces_warning(FutureWarning): assert getattr(o, p, None) is not None with tm.assert_produces_warning(FutureWarning): assert hasattr(o, "base") # If we have a datetime-like dtype then needs a view to work # but the user is responsible for that try: with tm.assert_produces_warning(FutureWarning): assert o.data is not None except ValueError: pass with pytest.raises(ValueError): with tm.assert_produces_warning(FutureWarning): o.item() # len > 1 assert o.ndim == 1 assert o.size == len(o) with tm.assert_produces_warning(FutureWarning): assert Index([1]).item() == 1 assert Series([1]).item() == 1 def test_value_counts_unique_nunique(self): for orig in self.objs: o = orig.copy() klass = type(o) values = o._values if isinstance(values, Index): # reset name not to affect latter process values.name = None # create repeated values, 'n'th element is repeated by n+1 times # skip boolean, because it only has 2 values at most if isinstance(o, Index) and o.is_boolean(): continue elif isinstance(o, Index): expected_index = Index(o[::-1]) expected_index.name = None o = o.repeat(range(1, len(o) + 1)) o.name = "a" else: expected_index = Index(values[::-1]) idx = o.index.repeat(range(1, len(o) + 1)) # take-based repeat indices = np.repeat(np.arange(len(o)), range(1, len(o) + 1)) rep = values.take(indices) o = klass(rep, index=idx, name="a") # check values has the same dtype as the original assert o.dtype == orig.dtype expected_s = Series( range(10, 0, -1), index=expected_index, dtype="int64", name="a" ) result = o.value_counts() tm.assert_series_equal(result, expected_s) assert result.index.name is None assert result.name == "a" result = o.unique() if isinstance(o, Index): assert isinstance(result, o.__class__) tm.assert_index_equal(result, orig) assert result.dtype == orig.dtype elif is_datetime64tz_dtype(o): # datetimetz Series returns array of Timestamp assert result[0] == orig[0] for r in result: assert isinstance(r, Timestamp) tm.assert_numpy_array_equal( result.astype(object), orig._values.astype(object) ) else: tm.assert_numpy_array_equal(result, orig.values) assert result.dtype == orig.dtype assert o.nunique() == len(np.unique(o.values)) @pytest.mark.parametrize("null_obj", [np.nan, None]) def test_value_counts_unique_nunique_null(self, null_obj): for orig in self.objs: o = orig.copy() klass = type(o) values = o._ndarray_values if not self._allow_na_ops(o): continue # special assign to the numpy array if is_datetime64tz_dtype(o): if isinstance(o, DatetimeIndex): v = o.asi8 v[0:2] = iNaT values = o._shallow_copy(v) else: o = o.copy() o[0:2] = pd.NaT values = o._values elif needs_i8_conversion(o): values[0:2] = iNaT values = o._shallow_copy(values) else: values[0:2] = null_obj # check values has the same dtype as the original assert values.dtype == o.dtype # create repeated values, 'n'th element is repeated by n+1 # times if isinstance(o, (DatetimeIndex, PeriodIndex)): expected_index = o.copy() expected_index.name = None # attach name to klass o = klass(values.repeat(range(1, len(o) + 1))) o.name = "a" else: if isinstance(o, DatetimeIndex): expected_index = orig._values._shallow_copy(values) else: expected_index = Index(values) expected_index.name = None o = o.repeat(range(1, len(o) + 1)) o.name = "a" # check values has the same dtype as the original assert o.dtype == orig.dtype # check values correctly have NaN nanloc = np.zeros(len(o), dtype=np.bool) nanloc[:3] = True if isinstance(o, Index): tm.assert_numpy_array_equal(pd.isna(o), nanloc) else: exp = Series(nanloc, o.index, name="a") tm.assert_series_equal(pd.isna(o), exp) expected_s_na = Series( list(range(10, 2, -1)) + [3], index=expected_index[9:0:-1], dtype="int64", name="a", ) expected_s = Series( list(range(10, 2, -1)), index=expected_index[9:1:-1], dtype="int64", name="a", ) result_s_na = o.value_counts(dropna=False) tm.assert_series_equal(result_s_na, expected_s_na) assert result_s_na.index.name is None assert result_s_na.name == "a" result_s = o.value_counts() tm.assert_series_equal(o.value_counts(), expected_s) assert result_s.index.name is None assert result_s.name == "a" result = o.unique() if isinstance(o, Index): tm.assert_index_equal(result, Index(values[1:], name="a")) elif is_datetime64tz_dtype(o): # unable to compare NaT / nan tm.assert_extension_array_equal(result[1:], values[2:]) assert result[0] is pd.NaT else: tm.assert_numpy_array_equal(result[1:], values[2:]) assert pd.isna(result[0]) assert result.dtype == orig.dtype assert o.nunique() == 8 assert o.nunique(dropna=False) == 9 @pytest.mark.parametrize("klass", [Index, Series]) def test_value_counts_inferred(self, klass): s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"] s = klass(s_values) expected = Series([4, 3, 2, 1], index=["b", "a", "d", "c"]) tm.assert_series_equal(s.value_counts(), expected) if isinstance(s, Index): exp = Index(np.unique(np.array(s_values, dtype=np.object_))) tm.assert_index_equal(s.unique(), exp) else: exp = np.unique(np.array(s_values, dtype=np.object_)) tm.assert_numpy_array_equal(s.unique(), exp) assert s.nunique() == 4 # don't sort, have to sort after the fact as not sorting is # platform-dep hist = s.value_counts(sort=False).sort_values() expected = Series([3, 1, 4, 2], index=list("acbd")).sort_values() tm.assert_series_equal(hist, expected) # sort ascending hist = s.value_counts(ascending=True) expected = Series([1, 2, 3, 4], index=list("cdab")) tm.assert_series_equal(hist, expected) # relative histogram. hist = s.value_counts(normalize=True) expected = Series([0.4, 0.3, 0.2, 0.1], index=["b", "a", "d", "c"]) tm.assert_series_equal(hist, expected) @pytest.mark.parametrize("klass", [Index, Series]) def test_value_counts_bins(self, klass): s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"] s = klass(s_values) # bins with pytest.raises(TypeError): s.value_counts(bins=1) s1 = Series([1, 1, 2, 3]) res1 = s1.value_counts(bins=1) exp1 = Series({Interval(0.997, 3.0): 4}) tm.assert_series_equal(res1, exp1) res1n = s1.value_counts(bins=1, normalize=True) exp1n = Series({Interval(0.997, 3.0): 1.0}) tm.assert_series_equal(res1n, exp1n) if isinstance(s1, Index): tm.assert_index_equal(s1.unique(), Index([1, 2, 3])) else: exp = np.array([1, 2, 3], dtype=np.int64) tm.assert_numpy_array_equal(s1.unique(), exp) assert s1.nunique() == 3 # these return the same res4 = s1.value_counts(bins=4, dropna=True) intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0]) exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4, exp4) res4 = s1.value_counts(bins=4, dropna=False) intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0]) exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4, exp4) res4n = s1.value_counts(bins=4, normalize=True) exp4n = Series([0.5, 0.25, 0.25, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4n, exp4n) # handle NA's properly s_values = ["a", "b", "b", "b", np.nan, np.nan, "d", "d", "a", "a", "b"] s = klass(s_values) expected = Series([4, 3, 2], index=["b", "a", "d"]) tm.assert_series_equal(s.value_counts(), expected) if isinstance(s, Index): exp = Index(["a", "b", np.nan, "d"]) tm.assert_index_equal(s.unique(), exp) else: exp = np.array(["a", "b", np.nan, "d"], dtype=object) tm.assert_numpy_array_equal(s.unique(), exp) assert s.nunique() == 3 s = klass({}) expected = Series([], dtype=np.int64) tm.assert_series_equal(s.value_counts(), expected, check_index_type=False) # returned dtype differs depending on original if isinstance(s, Index): tm.assert_index_equal(s.unique(), Index([]), exact=False) else: tm.assert_numpy_array_equal(s.unique(), np.array([]), check_dtype=False) assert s.nunique() == 0 @pytest.mark.parametrize("klass", [Index, Series]) def test_value_counts_datetime64(self, klass): # GH 3002, datetime64[ns] # don't test names though txt = "\n".join( [ "xxyyzz20100101PIE", "xxyyzz20100101GUM", "xxyyzz20100101EGG", "xxyyww20090101EGG", "foofoo20080909PIE", "foofoo20080909GUM", ] ) f = StringIO(txt) df = pd.read_fwf( f, widths=[6, 8, 3], names=["person_id", "dt", "food"], parse_dates=["dt"] ) s = klass(df["dt"].copy()) s.name = None idx = pd.to_datetime( ["2010-01-01 00:00:00", "2008-09-09 00:00:00", "2009-01-01 00:00:00"] ) expected_s = Series([3, 2, 1], index=idx) tm.assert_series_equal(s.value_counts(), expected_s) expected = np_array_datetime64_compat( ["2010-01-01 00:00:00", "2009-01-01 00:00:00", "2008-09-09 00:00:00"], dtype="datetime64[ns]", ) if isinstance(s, Index): tm.assert_index_equal(s.unique(), DatetimeIndex(expected)) else: tm.assert_numpy_array_equal(s.unique(), expected) assert s.nunique() == 3 # with NaT s = df["dt"].copy() s = klass(list(s.values) + [pd.NaT]) result = s.value_counts() assert result.index.dtype == "datetime64[ns]" tm.assert_series_equal(result, expected_s) result = s.value_counts(dropna=False) expected_s[pd.NaT] = 1 tm.assert_series_equal(result, expected_s) unique = s.unique() assert unique.dtype == "datetime64[ns]" # numpy_array_equal cannot compare pd.NaT if isinstance(s, Index): exp_idx = DatetimeIndex(expected.tolist() + [pd.NaT]) tm.assert_index_equal(unique, exp_idx) else: tm.assert_numpy_array_equal(unique[:3], expected) assert pd.isna(unique[3]) assert s.nunique() == 3 assert s.nunique(dropna=False) == 4 # timedelta64[ns] td = df.dt - df.dt + timedelta(1) td = klass(td, name="dt") result = td.value_counts() expected_s = Series([6], index=[Timedelta("1day")], name="dt") tm.assert_series_equal(result, expected_s) expected = TimedeltaIndex(["1 days"], name="dt") if isinstance(td, Index): tm.assert_index_equal(td.unique(), expected) else: tm.assert_numpy_array_equal(td.unique(), expected.values) td2 = timedelta(1) + (df.dt - df.dt) td2 = klass(td2, name="dt") result2 = td2.value_counts() tm.assert_series_equal(result2, expected_s) def test_factorize(self): for orig in self.objs: o = orig.copy() if isinstance(o, Index) and o.is_boolean(): exp_arr = np.array([0, 1] + [0] * 8, dtype=np.intp) exp_uniques = o exp_uniques = Index([False, True]) else: exp_arr = np.array(range(len(o)), dtype=np.intp) exp_uniques = o codes, uniques = o.factorize() tm.assert_numpy_array_equal(codes, exp_arr) if isinstance(o, Series): tm.assert_index_equal(uniques, Index(orig), check_names=False) else: # factorize explicitly resets name tm.assert_index_equal(uniques, exp_uniques, check_names=False) def test_factorize_repeated(self): for orig in self.objs: o = orig.copy() # don't test boolean if isinstance(o, Index) and o.is_boolean(): continue # sort by value, and create duplicates if isinstance(o, Series): o = o.sort_values() n = o.iloc[5:].append(o) else: indexer = o.argsort() o = o.take(indexer) n = o[5:].append(o) exp_arr = np.array( [5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=np.intp ) codes, uniques = n.factorize(sort=True) tm.assert_numpy_array_equal(codes, exp_arr) if isinstance(o, Series): tm.assert_index_equal( uniques, Index(orig).sort_values(), check_names=False ) else: tm.assert_index_equal(uniques, o, check_names=False) exp_arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4], np.intp) codes, uniques = n.factorize(sort=False) tm.assert_numpy_array_equal(codes, exp_arr) if isinstance(o, Series): expected = Index(o.iloc[5:10].append(o.iloc[:5])) tm.assert_index_equal(uniques, expected, check_names=False) else: expected = o[5:10].append(o[:5]) tm.assert_index_equal(uniques, expected, check_names=False) def test_duplicated_drop_duplicates_index(self): # GH 4060 for original in self.objs: if isinstance(original, Index): # special case if original.is_boolean(): result = original.drop_duplicates() expected = Index([False, True], name="a") tm.assert_index_equal(result, expected) continue # original doesn't have duplicates expected = np.array([False] * len(original), dtype=bool) duplicated = original.duplicated() tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool result = original.drop_duplicates() tm.assert_index_equal(result, original) assert result is not original # has_duplicates assert not original.has_duplicates # create repeated values, 3rd and 5th values are duplicated idx = original[list(range(len(original))) + [5, 3]] expected = np.array([False] * len(original) + [True, True], dtype=bool) duplicated = idx.duplicated() tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool tm.assert_index_equal(idx.drop_duplicates(), original) base = [False] * len(idx) base[3] = True base[5] = True expected = np.array(base) duplicated = idx.duplicated(keep="last") tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool result = idx.drop_duplicates(keep="last") tm.assert_index_equal(result, idx[~expected]) base = [False] * len(original) + [True, True] base[3] = True base[5] = True expected = np.array(base) duplicated = idx.duplicated(keep=False) tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool result = idx.drop_duplicates(keep=False) tm.assert_index_equal(result, idx[~expected]) with pytest.raises( TypeError, match=( r"drop_duplicates\(\) got an " r"unexpected keyword argument" ), ): idx.drop_duplicates(inplace=True) else: expected = Series( [False] * len(original), index=original.index, name="a" ) tm.assert_series_equal(original.duplicated(), expected) result = original.drop_duplicates() tm.assert_series_equal(result, original) assert result is not original idx = original.index[list(range(len(original))) + [5, 3]] values = original._values[list(range(len(original))) + [5, 3]] s = Series(values, index=idx, name="a") expected = Series( [False] * len(original) + [True, True], index=idx, name="a" ) tm.assert_series_equal(s.duplicated(), expected) tm.assert_series_equal(s.drop_duplicates(), original) base = [False] * len(idx) base[3] = True base[5] = True expected = Series(base, index=idx, name="a") tm.assert_series_equal(s.duplicated(keep="last"), expected) tm.assert_series_equal( s.drop_duplicates(keep="last"), s[~np.array(base)] ) base = [False] * len(original) + [True, True] base[3] = True base[5] = True expected = Series(base, index=idx, name="a") tm.assert_series_equal(s.duplicated(keep=False), expected) tm.assert_series_equal( s.drop_duplicates(keep=False), s[~np.array(base)] ) s.drop_duplicates(inplace=True) tm.assert_series_equal(s, original) def test_drop_duplicates_series_vs_dataframe(self): # GH 14192 df = pd.DataFrame( { "a": [1, 1, 1, "one", "one"], "b": [2, 2, np.nan, np.nan, np.nan], "c": [3, 3, np.nan, np.nan, "three"], "d": [1, 2, 3, 4, 4], "e": [ datetime(2015, 1, 1), datetime(2015, 1, 1), datetime(2015, 2, 1), pd.NaT, pd.NaT, ], } ) for column in df.columns: for keep in ["first", "last", False]: dropped_frame = df[[column]].drop_duplicates(keep=keep) dropped_series = df[column].drop_duplicates(keep=keep) tm.assert_frame_equal(dropped_frame, dropped_series.to_frame()) def test_fillna(self): # # GH 11343 # though Index.fillna and Series.fillna has separate impl, # test here to confirm these works as the same for orig in self.objs: o = orig.copy() values = o.values # values will not be changed result = o.fillna(o.astype(object).values[0]) if isinstance(o, Index): tm.assert_index_equal(o, result) else: tm.assert_series_equal(o, result) # check shallow_copied assert o is not result for null_obj in [np.nan, None]: for orig in self.objs: o = orig.copy() klass = type(o) if not self._allow_na_ops(o): continue if
needs_i8_conversion(o)
pandas.core.dtypes.common.needs_i8_conversion
# -*- coding: utf-8 -*- import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import numpy as np import pandas as pd from keras import utils, callbacks from keras.models import Sequential, Model from keras.layers import Input, Dense, Flatten, Embedding, Dropout, Concatenate, Dot,Reshape,Merge from keras.callbacks import ModelCheckpoint from keras.optimizers import Adam, SGD, RMSprop,Adamax from sklearn.decomposition import PCA from sklearn.model_selection import train_test_split from sklearn import preprocessing import matplotlib.pyplot as plt import math from sklearn import preprocessing from sklearn.ensemble import ExtraTreesClassifier,ExtraTreesRegressor,RandomForestClassifier,RandomForestRegressor from sklearn.feature_selection import SelectFromModel from sklearn.linear_model import Lasso nbatch_size = 512 def rebuild_data(): """ ๆธ…ๆด—้€‰ๆ‹ฉ็‰นๅพๆ•ฐๆฎ """ user_header = ['user_id','gender', 'age', 'job'] user_df = pd.read_csv('./data/ml-1m/users.dat', sep='::', names=user_header, usecols=[0, 1, 2, 3], engine = 'python') user_df.set_index(['user_id'], inplace = False) movie_header = ['movie_id', 'title','category'] movie_df = pd.read_csv('./data/ml-1m/movies.dat', sep='::', names=movie_header, usecols=[0, 1, 2], engine = 'python') movie_df.set_index(['movie_id'], inplace = False) rating_header = ['user_id', 'movie_id', 'rating', 'timestamp'] rating_df = pd.read_csv('./data/ml-1m/ratings.dat',sep='::', names=rating_header, engine = 'python')[:100000] rating_user = [user_df[user_df['user_id'] == mid].values[0] for uid, mid, r, _ in rating_df.values] rating_movie = [movie_df[movie_df['movie_id'] == mid].values[0] for uid, mid, r, _ in rating_df.values] user_df = pd.DataFrame(rating_user, index=None, columns=['user_id', 'gender', 'age', 'job']) movie_df = pd.DataFrame(rating_movie, index=None, columns=['movie_id', 'title', 'category']) rating_df = rating_df.rating pd.to_pickle(user_df, './data/ml-1m/user_pick') pd.to_pickle(movie_df, './data/ml-1m/movie_pick') pd.to_pickle(rating_df, './data/ml-1m/rating_pick') print(user_df.shape,movie_df.shape,rating_df.shape) def load_data(): """ ๅŠ ่ฝฝๆ•ฐๆฎ """ user_df= pd.read_pickle('./data/ml-1m/user_pick') movie_df= pd.read_pickle('./data/ml-1m/movie_pick') rating_df= pd.read_pickle('./data/ml-1m/rating_pick') user_df= pd.read_pickle('./data/ml-1m/user_pick') for f in user_df.columns: if user_df[f].dtype == 'object': lbl = preprocessing.LabelEncoder() lbl.fit(list(user_df[f].values)) user_df[f] = lbl.transform(list(user_df[f].values)) movie_df=
pd.read_pickle('./data/ml-1m/movie_pick')
pandas.read_pickle
""" creates triple leveraged simulated datasets going back to the earliest dates for indices currently does this for QQQ and SPY Before running this, should be in environment with zipline installed """ import os import pandas as pd import numpy as np import matplotlib.pyplot as plt from scipy.stats import trimboth from sklearn.ensemble import RandomForestRegressor # location for saving data DATADIR = 'eod_data/simulated/' def check_correlations(df1, df2, plot=False): """ checks for correlations between two dataframes; both must have a 'daily_pct_chg' column this can be used for checking that a 2 or 3x etf is properly correlated with the underlying asset also gets the multiplication factor and standard deviation """ # check correlation to make sure it's high both = pd.concat([df1['daily_pct_chg'], df2['daily_pct_chg']], axis=1).dropna() both.columns = ['regular', 'leveraged'] if plot: corr = both.corr() # usually around 99.9 or 99.8 both.plot.scatter(x='regular', y='leveraged') plt.title('correlation: ' + str(round(corr.iloc[0, 1], 4))) plt.show() # look at distribution of TQQQ return multiples t = (both['leveraged'] / both['regular']).fillna(0).to_frame() t[np.isinf(t[0])] = 0 # exclude outliers, which throw off the mean # removes right and leftmost 5% of quantiles new_t = trimboth(t[0], 0.05) # t = t[t[0] < t[0].quantile(0.9)] # some large outliers # t[(t < 6) & (t > -6)].hist(bins=50) if plot: plt.hist(new_t, bins=50) plt.show() print('mean and std for multiples:') avg, std = new_t.mean(), new_t.std() print(avg) print(std) return avg def simulate_leveraged(stocks, etf_names=['QQQ', 'TQQQ', 'SQQQ'], return_dfs=False, write=True): """ creates 3x and 2x leveraged ETFS for historical data QQQ, SPY, todo: DJI if write, writes to /home/nate/Dropbox/data/eod_data/ stocks is dictionary of dataframes etf_names is list of 3 etfs: 1 that is the base (unleveraged) ETF, then 1 that is the positive etf, then one that is the negative leveraged ETF if return_dfs is True, will return the simulated dfs if write is True, writes simulated dfs to file """ normal = stocks[etf_names[0]].copy() pos = stocks[etf_names[1]].copy() neg = stocks[etf_names[2]].copy() pos_sim, neg_sim = create_simulated_leveraged(normal, pos, neg) # change columns for zipline format normal.reset_index(inplace=True) # Zipline will adjust the prices for splits and dividends I think, but better to just use # Quandl-adjusted prices normal = normal[['Date', 'Adj_Open', 'Adj_High', 'Adj_Low', 'Adj_Close', 'Adj_Volume', 'Dividend', 'Split']] normal.columns = ['date', 'open', 'high', 'low', 'close', 'volume', 'dividend', 'split'] normal['dividend'] = 0 normal['split'] = 0 if write: normal.to_csv(DATADIR + etf_names[0] + '.csv', index=False) pos_sim.to_csv(DATADIR + etf_names[1] + '.csv', index=False) neg_sim.to_csv(DATADIR + etf_names[2] + '.csv', index=False) if return_dfs: return normal, pos_sim, neg_sim def create_simulated_leveraged(df, pos_lev_df, neg_lev_df): # get max and min from untouched pos/neg leveraged dfs for # price adjusting later pos_max = pos_lev_df['Close'].max() pos_min = pos_lev_df['Close'].min() neg_max = neg_lev_df['Close'].max() neg_min = neg_lev_df['Close'].min() # TODO: need to add in splits to keep price between 40 and 180 for TQQQ, in between 10 and 80 for SQQQ # usually about 2.97 for a 3x etf df['daily_pct_chg'] = df['Adj_Close'].pct_change() pos_lev_df['daily_pct_chg'] = pos_lev_df['Adj_Close'].pct_change() neg_lev_df['daily_pct_chg'] = neg_lev_df['Adj_Close'].pct_change() # get average multipliers for leveraged etfs pos_mult = check_correlations(df, pos_lev_df) neg_mult = check_correlations(df, neg_lev_df) # get earliest dates for leveraged etfs earliest_pos = pos_lev_df.index.min() earliest_neg = neg_lev_df.index.min() # make dataframes to hold simulated data pos_sim = df.loc[:earliest_pos].copy() neg_sim = df.loc[:earliest_neg].copy() # simulate leveraged from beginning of normal ETF timeframe and calculate returns col = 'Adj_Close' # only works with Adj_Close for now # also need to set 'Close' column for calculating splits, etc pos_lev_df['daily_pct_chg'] = pos_lev_df[col].pct_change() neg_lev_df['daily_pct_chg'] = neg_lev_df[col].pct_change() pos_sim.loc[:, 'daily_pct_chg'] *= pos_mult # multiply the original ETF by the average multiple to get leveraged amount # backcalculate adjuted close pos_sim.loc[pos_sim.index[1]:, col] = ((pos_sim['daily_pct_chg'] + 1).cumprod() * pos_sim.iloc[0][col])[1:] neg_sim.loc[:, 'daily_pct_chg'] *= neg_mult neg_sim.loc[neg_sim.index[1]:, col] = ((neg_sim['daily_pct_chg'] + 1).cumprod() * neg_sim.iloc[0][col])[1:] # adjust to match latest tqqq price pos_sim['Close'] = pos_sim['Adj_Close'] neg_sim['Close'] = neg_sim['Adj_Close'] ratio = pos_lev_df.iloc[0]['Close'] / pos_sim.iloc[-1]['Close'] pos_sim['Close'] *= ratio ratio = pos_lev_df.iloc[0]['Adj_Close'] / pos_sim.iloc[-1]['Adj_Close'] pos_sim['Adj_Close'] *= ratio # adjust to neg leverage price ratio = neg_lev_df.iloc[0]['Close'] / neg_sim.iloc[-1]['Close'] neg_sim['Close'] *= ratio ratio = neg_lev_df.iloc[0]['Adj_Close'] / neg_sim.iloc[-1]['Adj_Close'] neg_sim['Adj_Close'] *= ratio pos_sim['Split'] = 1 neg_sim['Split'] = 1 pos_sim['Dividend'] = 0 neg_sim['Dividend'] = 0 # contain prices between 40 and 180 for positive leverage, 10 and 80 for negative low_adj = 0.25 # noticed from SQQQ high_adj = 2 # noticed from TQQQ # go backwards thru dataset, since the latest price matches the latest price in the real data # also start at the 2nd-to-last point, because the last one overlaps the actual data and can't be adjusted # problem with getting infinity for earliest very large values...just set splits, then do a calculation based on the compound splits total_split = 1 pos_splits = [] for i, r in pos_sim.iloc[-1::-1].iterrows(): # adjust to total split adjustment to this point r['Close'] /= total_split pos_sim.loc[i, 'Close'] = r['Close'] if r['Close'] < pos_min: # print('less') r['Split'] = low_adj pos_splits.append(low_adj) elif r['Close'] > pos_max: # print('more') r['Split'] = high_adj pos_splits.append(high_adj) else: pos_splits.append(1) total_split *= r['Split'] # TODO: fix issue where first price is not within range low_adj = 0.25 # noticed from SQQQ high_adj = 2 # noticed from TQQQ total_split = 1 neg_splits = [] # doesn't work with .iloc[1:-1:-1] for i, r in neg_sim.iloc[-1::-1].iterrows(): r['Close'] /= total_split neg_sim.loc[i, 'Close'] = r['Close'] if r['Close'] < neg_min: r['Split'] = low_adj neg_splits.append(low_adj) elif r['Close'] > neg_max: r['Split'] = high_adj neg_splits.append(high_adj) else: neg_splits.append(1) total_split *= r['Split'] pos_sim['Ticker'] = pos_lev_df['Ticker'][0] neg_sim['Ticker'] = neg_lev_df['Ticker'][0] pos_sim['Split'] = pos_splits neg_sim['Split'] = neg_splits pos_sim['Dividend'] = 0 neg_sim['Dividend'] = 0 pos_sim_full = pd.concat([pos_sim.iloc[:-1], pos_lev_df]) neg_sim_full =
pd.concat([neg_sim.iloc[:-1], neg_lev_df])
pandas.concat
import pandas as pd from genomics_data_index.api.query.GenomicsDataIndex import GenomicsDataIndex from genomics_data_index.api.query.features.MutationFeaturesComparator import MutationFeaturesComparator from genomics_data_index.storage.SampleSet import SampleSet from genomics_data_index.storage.model.db import Sample from genomics_data_index.test.integration import snippy_all_dataframes def test_summary_all(loaded_database_genomic_data_store: GenomicsDataIndex): db = loaded_database_genomic_data_store.connection.database all_sample_ids = {s.id for s in db.get_session().query(Sample).all()} dfA = pd.read_csv(snippy_all_dataframes['SampleA'], sep='\t') dfB = pd.read_csv(snippy_all_dataframes['SampleB'], sep='\t') dfC = pd.read_csv(snippy_all_dataframes['SampleC'], sep='\t') expected_df = pd.concat([dfA, dfB, dfC]) expected_df = expected_df.groupby('Mutation').agg({ 'Sequence': 'first', 'Position': 'first', 'Deletion': 'first', 'Insertion': 'first', 'Mutation': 'count', }).rename(columns={'Mutation': 'Count'}).sort_index() expected_df['Total'] = 9 expected_df['Percent'] = 100 * (expected_df['Count'] / expected_df['Total']) present_set = SampleSet(all_sample_ids) mutations_summarizer = MutationFeaturesComparator(connection=loaded_database_genomic_data_store.connection, ignore_annotations=True) mutations_df = mutations_summarizer.summary(present_set) mutations_df['Percent'] = mutations_df['Percent'].astype(int) # Convert to int for easier comparison mutations_df = mutations_df.sort_index() assert len(expected_df) == len(mutations_df) assert list(expected_df.columns) == list(mutations_df.columns) assert list(expected_df.index) == list(mutations_df.index) assert list(expected_df['Count']) == list(mutations_df['Count']) assert list(expected_df['Total']) == list(mutations_df['Total']) assert 22 == mutations_df.loc['reference:619:G:C', 'Percent'] def test_summary_unique(loaded_database_genomic_data_store: GenomicsDataIndex): db = loaded_database_genomic_data_store.connection.database sampleA = db.get_session().query(Sample).filter(Sample.name == 'SampleA').one() sampleB = db.get_session().query(Sample).filter(Sample.name == 'SampleB').one() sampleC = db.get_session().query(Sample).filter(Sample.name == 'SampleC').one() all_sample_ids = {s.id for s in db.get_session().query(Sample).all()} mutations_summarizer = MutationFeaturesComparator(connection=loaded_database_genomic_data_store.connection, ignore_annotations=True) dfA = pd.read_csv(snippy_all_dataframes['SampleA'], sep='\t') dfB =
pd.read_csv(snippy_all_dataframes['SampleB'], sep='\t')
pandas.read_csv
import matplotlib.pyplot as plt import pandas as pd import numpy as np def sigmoid(x): return 1 / (1 + np.exp(-0.005 * x)) def sigmoid_derivative(x): return 0.005 * x * (1 - x) def read_and_divide_into_train_and_test(csv_file): # Reading csv file here df = pd.read_csv(csv_file) # Dropping unnecessary column df.drop(['Code_number'], axis=1, inplace=True) # Replacing missing values in the Bare Nuclei column with mean of rest of the values df['Bare_Nuclei'] = pd.to_numeric(df['Bare_Nuclei'], errors='coerce') mean_missing = int(round(df['Bare_Nuclei'].mean())) df['Bare_Nuclei'] = df['Bare_Nuclei'].replace(np.NaN, mean_missing).astype(int) # Splitting dataframe into testing and training dataframes training_df = df.sample(frac=0.8, random_state=0) test_df = df.drop(training_df.index) training_inputs = training_df.iloc[:, :-1] training_labels = training_df.iloc[:, -1] test_inputs = test_df.iloc[:, :-1] test_labels = test_df.iloc[:, -1] # Creating the correlation heatmap of the dataframe df.drop(['Class'], axis=1, inplace=True) correlation = df.corr() plt.figure(figsize=(10, 10)) heatmap = plt.imshow(correlation, cmap='hot') plt.xticks(range(len(correlation)), correlation, rotation=90) plt.yticks(range(len(correlation)), correlation) for i in range(len(correlation)): for j in range(len(correlation)): if round(correlation.iloc[i, j], 2) > .5: color = 'k' else: color = 'w' plt.text(j, i, round(correlation.iloc[i, j], 2), ha="center", va="center", color=color) plt.fill() plt.colorbar(heatmap) print("Please close the heatmap to continue...") plt.show() plt.close() return training_inputs, training_labels, test_inputs, test_labels def run_on_test_set(test_inputs, test_labels, weights): test_output = sigmoid(test_inputs.dot(weights)) tp = 0 test_predictions = [] for i, j in test_output.iterrows(): j = float(j) if j < 0.5: test_predictions.append(0) elif j >= 0.5: test_predictions.append(1) for predicted_val, label in zip(test_predictions, test_labels): if predicted_val == label: tp += 1 # accuracy = tp_count / total number of samples accuracy = tp / len(test_labels) return accuracy def plot_loss_accuracy(accuracy_array, loss_array): fig, (ax1, ax2) = plt.subplots(2) ax1.plot(accuracy_array) ax1.set_title('Accuracy') ax2.plot(loss_array) ax2.set_title('Loss') plt.show() def main(): csv_file = './breast-cancer-wisconsin.csv'
pd.read_csv(csv_file)
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Thu Oct 25 12:09:05 2018 ๅŽŸๅง‹fitness:0.26 ;;ๅ››ๅทฅๅ†ต๏ผš1.012 @author: cwktu """ import pandas as pd import matplotlib.pyplot as plt import numpy as np import subprocess from math import sqrt import os ##%%ๆฑ‚ๆ›ฒ็บฟๆ–œ็އๆœ€ๅคง็‚น(ๅณ็€็ซ็‡ƒ็ƒง็‚น) def combustion_time(data,m): slope_max = 0 time = 0 if m==1: for i in range(len(data)-1): timex1 = data['Time_Soln#1_(sec)'][i] timex2 = data['Time_Soln#1_(sec)'][i+1] tempy1 = data[' Mole_fraction_OH_Soln#1_()'][i] tempy2 = data[' Mole_fraction_OH_Soln#1_()'][i+1] k = (tempy2-tempy1)/(timex2-timex1) if k>slope_max: slope_max = k time= i elif m==2: for i in range(len(data)-1): timex1 = data['Time_Soln#2_(sec)'][i] timex2 = data['Time_Soln#2_(sec)'][i+1] tempy1 = data[' Mole_fraction_OH_Soln#2_()'][i] tempy2 = data[' Mole_fraction_OH_Soln#2_()'][i+1] k = (tempy2-tempy1)/(timex2-timex1) if k>slope_max: slope_max = k time= i elif m==3: for i in range(len(data)-1): timex1 = data['Time_Soln#3_(sec)'][i] timex2 = data['Time_Soln#3_(sec)'][i+1] tempy1 = data[' Mole_fraction_OH_Soln#3_()'][i] tempy2 = data[' Mole_fraction_OH_Soln#3_()'][i+1] k = (tempy2-tempy1)/(timex2-timex1) if k>slope_max: slope_max = k time= i elif m==4: for i in range(len(data)-1): timex1 = data['Time_Soln#4_(sec)'][i] timex2 = data['Time_Soln#4_(sec)'][i+1] tempy1 = data[' Mole_fraction_OH_Soln#4_()'][i] tempy2 = data[' Mole_fraction_OH_Soln#4_()'][i+1] k = (tempy2-tempy1)/(timex2-timex1) if k>slope_max: slope_max = k time= i elif m==5: for i in range(len(data)-1): timex1 = data['Time_Soln#5_(sec)'][i] timex2 = data['Time_Soln#5_(sec)'][i+1] tempy1 = data[' Mole_fraction_OH_Soln#5_()'][i] tempy2 = data[' Mole_fraction_OH_Soln#5_()'][i+1] k = (tempy2-tempy1)/(timex2-timex1) if k>slope_max: slope_max = k time= i elif m==6: for i in range(len(data)-1): timex1 = data['Time_Soln#6_(sec)'][i] timex2 = data['Time_Soln#6_(sec)'][i+1] tempy1 = data[' Mole_fraction_OH_Soln#6_()'][i] tempy2 = data[' Mole_fraction_OH_Soln#6_()'][i+1] k = (tempy2-tempy1)/(timex2-timex1) if k>slope_max: slope_max = k time= i elif m==7: for i in range(len(data)-1): timex1 = data['Time_Soln#7_(sec)'][i] timex2 = data['Time_Soln#7_(sec)'][i+1] tempy1 = data[' Mole_fraction_OH_Soln#7_()'][i] tempy2 = data[' Mole_fraction_OH_Soln#7_()'][i+1] k = (tempy2-tempy1)/(timex2-timex1) if k>slope_max: slope_max = k time= i elif m==8: for i in range(len(data)-1): timex1 = data['Time_Soln#8_(sec)'][i] timex2 = data['Time_Soln#8_(sec)'][i+1] tempy1 = data[' Mole_fraction_OH_Soln#8_()'][i] tempy2 = data[' Mole_fraction_OH_Soln#8_()'][i+1] k = (tempy2-tempy1)/(timex2-timex1) if k>slope_max: slope_max = k time= i elif m==9: for i in range(len(data)-1): timex1 = data['Time_Soln#9_(sec)'][i] timex2 = data['Time_Soln#9_(sec)'][i+1] tempy1 = data[' Mole_fraction_OH_Soln#9_()'][i] tempy2 = data[' Mole_fraction_OH_Soln#9_()'][i+1] k = (tempy2-tempy1)/(timex2-timex1) if k>slope_max: slope_max = k time= i elif m==10: for i in range(len(data)-1): timex1 = data['Time_Soln#10_(sec)'][i] timex2 = data['Time_Soln#10_(sec)'][i+1] tempy1 = data[' Mole_fraction_OH_Soln#10_()'][i] tempy2 = data[' Mole_fraction_OH_Soln#10_()'][i+1] k = (tempy2-tempy1)/(timex2-timex1) if k>slope_max: slope_max = k time= i elif m==11: for i in range(len(data)-1): timex1 = data['Time_Soln#11_(sec)'][i] timex2 = data['Time_Soln#11_(sec)'][i+1] tempy1 = data[' Mole_fraction_OH_Soln#11_()'][i] tempy2 = data[' Mole_fraction_OH_Soln#11_()'][i+1] k = (tempy2-tempy1)/(timex2-timex1) if k>slope_max: slope_max = k time= i elif m==12: for i in range(len(data)-1): timex1 = data['Time_Soln#12_(sec)'][i] timex2 = data['Time_Soln#12_(sec)'][i+1] tempy1 = data[' Mole_fraction_OH_Soln#12_()'][i] tempy2 = data[' Mole_fraction_OH_Soln#12_()'][i+1] k = (tempy2-tempy1)/(timex2-timex1) if k>slope_max: slope_max = k time= i elif m==13: for i in range(len(data)-1): timex1 = data['Time_Soln#13_(sec)'][i] timex2 = data['Time_Soln#13_(sec)'][i+1] tempy1 = data[' Mole_fraction_OH_Soln#13_()'][i] tempy2 = data[' Mole_fraction_OH_Soln#13_()'][i+1] k = (tempy2-tempy1)/(timex2-timex1) if k>slope_max: slope_max = k time= i return slope_max,time def error(a,b): error=[] for i in range(len(a)): error.append(abs((a[i]-b[i])/b[i])) me = sum(error)/len(error) return me def Mean_squared_error(a,b): error=[] for i in range(len(a)): error.append((a[i]-b[i])*(a[i]-b[i])) mse = sum(error)/len(error) rmse = sqrt(mse) return rmse def mechanism_computation(path): data1 = pd.read_csv(path+"/CKSoln_solution_no_1.csv") data2 = pd.read_csv(path+"/CKSoln_solution_no_2.csv") data3 = pd.read_csv(path+"/CKSoln_solution_no_3.csv") data4 = pd.read_csv(path+"/CKSoln_solution_no_4.csv") data5 = pd.read_csv(path+"/CKSoln_solution_no_5.csv") data6 = pd.read_csv(path+"/CKSoln_solution_no_6.csv") data7 = pd.read_csv(path+"/CKSoln_solution_no_7.csv") data8 =
pd.read_csv(path+"/CKSoln_solution_no_8.csv")
pandas.read_csv
import heapq import pandas as pd class huff: def __init__(self,WordList=[],inputF=0): self.inputF=inputF ##if series is 1 it translates WordList from pandas to list, and returns pandas the encoded result if self.inputF == 1: self.WL=WordList.tolist() else : self.WL = WordList self.frekans=self.calculateFreq(self.WL) self.key=self.createTree(self.frekans) #list form self.keyDict=self.keytoDict(self.key) def calculateFreq(self,WordList): frekans={} for i in WordList: for k in i: if k in frekans: frekans[k]+=1 else: frekans[k]=1 return frekans def encode(self,WordList,keyDict): encoded=[] for i in WordList: stri="" for j in i: stri+=keyDict[j] encoded.append(stri) if self.inputF == 0: return encoded if self.inputF == 1: return
pd.Series(encoded)
pandas.Series
import numpy as np import pandas as pd import json import random from matplotlib import pyplot as plt from ai4netmon.Analysis.bias import bias_utils as bu from ai4netmon.Analysis.bias import radar_chart print('####### Example 2 - bias in RIPE monitors') ## datasets AGGREGATE_DATA_FNAME = '../../data/aggregate_data/asn_aggregate_data_20211201.csv' RIPE_RIS_FNAME = '../../data/misc/RIPE_RIS_peers_ip2asn.json' ## features CATEGORICAL_FEATURES = ['AS_rank_source', 'AS_rank_iso', 'AS_rank_continent', 'is_personal_AS', 'peeringDB_info_ratio', 'peeringDB_info_traffic', 'peeringDB_info_scope', 'peeringDB_info_type', 'peeringDB_policy_general'] NUMERICAL_FEATURES = ['AS_rank_numberAsns', 'AS_rank_numberPrefixes', 'AS_rank_numberAddresses', 'AS_rank_total', 'AS_rank_customer', 'AS_rank_peer', 'AS_rank_provider', 'peeringDB_info_prefixes4', 'peeringDB_info_prefixes6', 'peeringDB_ix_count', 'peeringDB_fac_count', 'AS_hegemony'] FEATURES = CATEGORICAL_FEATURES+NUMERICAL_FEATURES ## useful methods def get_feature_type(feature): if feature in CATEGORICAL_FEATURES: data_type = 'categorical' elif feature in NUMERICAL_FEATURES: data_type = 'numerical' else: raise ValueError return data_type ## load data df =
pd.read_csv(AGGREGATE_DATA_FNAME, header=0, index_col=0)
pandas.read_csv
"""Epochs analysis module. The functions in the module use local normalization to compute the returns, the normalized returns and the correlation matrix of financial time series. This script requires the following modules: * itertools * math * multiprocessing * pickle * typing * numpy * pandas * epochs_tools The module contains the following functions: * returns_data - computes the returns of the time series. * epochs_volatility_data - uses local normalization to compute the volatility of the time series. * epochs_normalized_returns_data - uses rolling normalization to normalize the returns of the time series. * epochs_correlation_matrix_data - uses local normalization to compute the correlation matrix of the normalized returns. * epochs_aggregated_dist_returns_pair_data - uses local normalization to compute the aggregated distribution of returns for a pair of stocks. * epochs_aggregated_dist_returns_market_data - uses local normalization to compute the aggregated distribution of returns for a market. * main - the main function of the script. ..moduleauthor:: <NAME> <www.github.com/juanhenao21> """ # ----------------------------------------------------------------------------- # Modules from itertools import product as iprod from itertools import combinations as icomb import math import multiprocessing as mp import pickle from typing import Any, Iterable, List, Tuple import numpy as np # type: ignore import pandas as pd # type: ignore import epochs_tools # ----------------------------------------------------------------------------- def returns_data(dates: List[str], time_step: str) -> None: """Computes the returns of the time series. :param dates: List of the interval of dates to be analyzed (i.e. ['1980-01-01', '2020-12-01']). :param time_step: time step of the data (i.e. '1m', '1h', '1d', 'wk', '1mo'). :return: None -- The function saves the data in a file and does not return a value. """ function_name: str = returns_data.__name__ epochs_tools.function_header_print_data(function_name, dates, time_step, "", "") try: # Load data data: pd.DataFrame = pickle.load( open( f"../data/original_data/original_data_{dates[0]}_{dates[1]}_step" + f"_{time_step}.pickle", "rb", ) ) returns_df: pd.DataFrame = data.pct_change().dropna() returns_df = returns_df.iloc[:, :200] # Saving data epochs_tools.save_data(returns_df, function_name, dates, time_step, "", "") except FileNotFoundError as error: print("No data") print(error) print() # ----------------------------------------------------------------------------- def epochs_volatility_data(dates: List[str], time_step: str, window: str) -> None: """Uses local normalization to compute the volatility of the time series. :param dates: List of the interval of dates to be analyzed (i.e. ['1980-01-01', '2020-12-31']). :param time_step: time step of the data (i.e. '1m', '1h', '1d', '1wk', '1mo'). :param window: window time to compute the volatility (i.e. '25'). :return: None -- The function saves the data in a file and does not return a value. """ function_name: str = epochs_volatility_data.__name__ epochs_tools.function_header_print_data(function_name, dates, time_step, window) try: # Load data data: pd.DataFrame = pickle.load( open( f"../data/epochs/returns_data_{dates[0]}_{dates[1]}_step" + f"_{time_step}_win_.pickle", "rb", ) ) std_df: pd.DataFrame = data.rolling(window=int(window)).std().dropna() # Saving data epochs_tools.save_data(std_df, function_name, dates, time_step, window) except FileNotFoundError as error: print("No data") print(error) print() # ----------------------------------------------------------------------------- def epochs_normalized_returns_data( dates: List[str], time_step: str, window: str ) -> None: """Uses rolling normalization to normalize the returns of the time series. :param dates: List of the interval of dates to be analyzed (i.e. ['1980-01-01', '2020-12-31']). :param time_step: time step of the data (i.e. '1m', '1h', '1d', 'wk', '1mo'). :param window: window time to compute the volatility (i.e. '60'). :return: None -- The function saves the data in a file and does not return a value. """ function_name: str = epochs_normalized_returns_data.__name__ epochs_tools.function_header_print_data(function_name, dates, time_step, window) try: # Load data data: pd.DataFrame = pickle.load( open( f"../data/epochs/returns_data_{dates[0]}_{dates[1]}_step" + f"_{time_step}_win_.pickle", "rb", ) ) data_win = data.iloc[int(window) - 1 :] data_mean = data.rolling(window=int(window)).mean().dropna() data_std = data.rolling(window=int(window)).std().dropna() normalized_df: pd.DataFrame = (data_win - data_mean) / data_std # Saving data epochs_tools.save_data(normalized_df, function_name, dates, time_step, window) except FileNotFoundError as error: print("No data") print(error) print() # ----------------------------------------------------------------------------- def epochs_correlation_matrix_data( dates: List[str], time_step: str, window: str ) -> None: """uses local normalization to compute the correlation matrix of the normalized returns. :param dates: List of the interval of dates to be analyzed (i.e. ['1980-01-01', '2020-12-31']). :param time_step: time step of the data (i.e. '1m', '1h', '1d', '1wk', '1mo'). :param window: window time to compute the volatility (i.e. '25'). :return: None -- The function saves the data in a file and does not return a value. """ function_name: str = epochs_correlation_matrix_data.__name__ epochs_tools.function_header_print_data(function_name, dates, time_step, window) try: # Load data data: pd.DataFrame = pickle.load( open( f"../data/epochs/epochs_normalized_returns_data_{dates[0]}" + f"_{dates[1]}_step_{time_step}_win_{window}.pickle", "rb", ) ) corr_matrix_df: pd.DataFrame = data.corr() # Saving data epochs_tools.save_data(corr_matrix_df, function_name, dates, time_step, window) except FileNotFoundError as error: print("No data") print(error) print() except TypeError as error: print("To compute the correlation is needed at least to stocks") print(error) print() # ---------------------------------------------------------------------------- def epochs_aggregated_dist_returns_pair_data( dates: List[str], time_step: str, cols: List[str], window: str, norm: str = "long" ) -> List[float]: """Uses local normalization to compute the aggregated distribution of returns for a pair of stocks. :param dates: List of the interval of dates to be analyzed (i.e. ['1980-01-01', '2020-12-31']). :param time_step: time step of the data (i.e. '1m', '1h', '1d', '1wk', '1mo'). :param cols: pair of stocks to be analized (i. e. ['AAPL', 'MSFT']). :param window: window time to compute the volatility (i.e. '25'). :norm: define if the normalization is made in the complete time series or in each epoch. Default 'long', 'short' is the other option. :return: List[float] -- The function returns a list with float numbers. """ try: # Load data two_col: pd.DataFrame = pickle.load( open( f"../data/epochs/returns_data_{dates[0]}_{dates[1]}_step" + f"_{time_step}_win__K_.pickle", "rb", ) )[[cols[0], cols[1]]] if norm == "long": two_col = (two_col - two_col.mean()) / two_col.std() # List to extend with the returns values of each pair agg_ret_mkt_list: List[float] = [] # Add the index as a column to group the return values two_col["DateCol"] = two_col.index # Add a column grouping the returns in the time window if time_step == "1m": two_col["DateCol"] = pd.to_datetime(two_col["DateCol"]) two_col["Group"] = two_col.groupby(
pd.Grouper(key="DateCol", freq=window + "T")
pandas.Grouper
# Vermont Police Tools - Tools for cleaning Vermont police data # # Written in 2020 by BTV CopWatch <<EMAIL>> # # To the extent possible under law, the author(s) have dedicated all copyright # and related and neighboring rights to this software to the public domain # worldwide. This software is distributed without any warranty. # # You should have received a copy of the CC0 Public Domain Dedication along # with this software. If not, see # <http://creativecommons.org/publicdomain/zero/1.0/>. """Tools for cleaning Chittenden County Sheriff's Office data.""" import pandas as pd from .. import utils def clean_roster(csv): """Clean a digitized roster.""" @utils.nullable def clean_job_title(job_title): job_title_choices = { "Sheriff": "Sheriff", "Captain": "Captain", "Lieutenant": "Lieutenant", "Sergeant": "Sergeant", "Corporal": "Corporal", "Deputy": "Deputy", "Deuty": "Deputy", # Fix a typo. } return job_title_choices[job_title] @utils.nullable def clean_star_no(star_no): assert star_no[:2] == "CC" return int(star_no[2:]) @utils.nullable def clean_employment_date(employment_date): return pd.to_datetime(employment_date.replace(".", "/")) @utils.nullable def clean_race(race): race_choices = { "B": "BLACK", "W": "WHITE", } return race_choices[race.capitalize()] @utils.nullable def clean_gender(gender): return gender.capitalize() dirty = pd.read_csv(csv) # Get the year from the name of the rightmost column. salary_label = dirty.columns[-2] overtime_pay_label = dirty.columns[-1] salary_year = int(salary_label.split()[-1]) cleaned =
pd.DataFrame()
pandas.DataFrame
import oemof.solph import pandas as pd from pommesdispatch.model_funcs import model_control def return_model_and_parameters(): """Create and parameterize a dispatch model using default values""" dm = model_control.DispatchModel() control_parameters = { "rolling_horizon": False, "aggregate_input": False, "countries": ['AT', 'BE', 'CH', 'CZ', 'DE', 'DK1', 'DK2', 'FR', 'NL', 'NO1', 'NO2', 'NO3', 'NO4', 'NO5', 'PL', 'SE1', 'SE2', 'SE3', 'SE4'], "solver": "gurobi", "fuel_cost_pathway": "middle", "activate_emissions_limit": False, "emissions_pathway": "100_percent_linear", "activate_demand_response": False, "demand_response_approach": "DLR", "demand_response_scenario": "50", "save_production_results": True, "save_price_results": True, "write_lp_file": False} time_parameters = { "start_time": "2017-01-01 00:00:00", "end_time": "2017-01-01 04:00:00", "freq": "60min"} input_output_parameters = { "path_folder_input": "tests/csv_files/", "path_folder_output": "tests/csv_files/"} all_parameters = {**control_parameters, **time_parameters, **input_output_parameters} dm.update_model_configuration(control_parameters, time_parameters, input_output_parameters, nolog=True) return dm, all_parameters def set_up_rolling_horizon_run(): """Set up a model for a rolling horizon run""" model_meta = { "overall_objective": 0, "overall_time": 0, "overall_solution_time": 0 } dm, all_parameters = return_model_and_parameters() dm.update_model_configuration({"rolling_horizon": True}, nolog=True) rolling_horizon_parameters = { "time_slice_length_wo_overlap_in_hours": 2, "overlap_in_hours": 1} dm.add_rolling_horizon_configuration( rolling_horizon_parameters, nolog=True) iteration_results = { "storages_initial": pd.DataFrame(), "model_results": {}, "dispatch_results": pd.DataFrame(), "power_prices":
pd.DataFrame()
pandas.DataFrame
# -*- coding:utf-8 -*- # /usr/bin/env python """ Author: <NAME> date: 2020/1/22 19:56 contact: <EMAIL> desc: ่‹ฑไธบ่ดขๆƒ…-ๅค–ๆฑ‡-่ดงๅธๅฏนๅކๅฒๆ•ฐๆฎ https://cn.investing.com/currencies/ https://cn.investing.com/currencies/eur-usd-historical-data """ import re import pandas as pd import requests from bs4 import BeautifulSoup from akshare.index.cons import short_headers, long_headers def currency_name_url(): url = "https://cn.investing.com/currencies/" res = requests.post(url, headers=short_headers) data_table = pd.read_html(res.text)[0].iloc[:, 1:] # ๅฎžๆ—ถ่ดงๅธ่กŒๆƒ… data_table.columns = ['ไธญๆ–‡ๅ็งฐ', '่‹ฑๆ–‡ๅ็งฐ', 'ๆœ€ๆ–ฐ', 'ๆœ€้ซ˜', 'ๆœ€ไฝŽ', 'ๆถจ่ทŒ้ข', 'ๆถจ่ทŒๅน…', 'ๆ—ถ้—ด'] name_code_dict = dict(zip(data_table["ไธญๆ–‡ๅ็งฐ"].tolist(), [item.lower().replace("/", "-") for item in data_table["่‹ฑๆ–‡ๅ็งฐ"].tolist()])) return name_code_dict def currency_hist(index_name="ๆฌงๅ…ƒ/็พŽๅ…ƒ", start_date="2005/01/01", end_date="2020/01/17"): """ ๅค–ๆฑ‡ๅކๅฒๆ•ฐๆฎ่Žทๅ–, ๆณจๆ„่Žทๅ–ๆ•ฐๆฎๅŒบ้—ด็š„้•ฟ็Ÿญ :param index_name: {'ๆฌงๅ…ƒ/็พŽๅ…ƒ': 'eur-usd', '่‹ฑ้•‘/็พŽๅ…ƒ': 'gbp-usd', '็พŽๅ…ƒ/ๆ—ฅๅ…ƒ': 'usd-jpy', 'ๆพณๅคงๅˆฉไบšๅ…ƒ/็พŽๅ…ƒ': 'aud-usd', '็พŽๅ…ƒ/ๅŠ ๆ‹ฟๅคงๅ…ƒ': 'usd-cad', 'ๆพณๅคงๅˆฉไบšๅ…ƒ/ๆธฏๅธ': 'aud-hkd', 'ๆ–ฐ่ฅฟๅ…ฐๅ…ƒ/็พŽๅ…ƒ': 'nzd-usd', '็พŽๅ…ƒ/ไบบๆฐ‘ๅธ': 'usd-cny', 'ๆพณๅคงๅˆฉไบšๅ…ƒ/ไบบๆฐ‘ๅธ': 'aud-cny', 'ไฟ„็ฝ—ๆ–ฏๅขๅธƒ/ไบบๆฐ‘ๅธ': 'rub-cny'} :type index_name: str :param start_date: ๆ—ฅๆœŸ :type start_date: str :param end_date: ๆ—ฅๆœŸ :type end_date: str :return: ่ดงๅธๅฏนๅކๅฒๆ•ฐๆฎ :rtype: pandas.DataFrame """ name_code_dict = currency_name_url() temp_url = f"https://cn.investing.com/currencies/{name_code_dict[index_name]}-historical-data" res = requests.post(temp_url, headers=short_headers) soup = BeautifulSoup(res.text, "lxml") title = soup.find("h2", attrs={"class": "float_lang_base_1"}).get_text() res = requests.post(temp_url, headers=short_headers) soup = BeautifulSoup(res.text, "lxml") data = soup.find_all(text=re.compile("window.histDataExcessInfo"))[0].strip() para_data = re.findall(r"\d+", data) payload = { "curr_id": para_data[0], "smlID": para_data[1], "header": title, "st_date": start_date, "end_date": end_date, "interval_sec": "Daily", "sort_col": "date", "sort_ord": "DESC", "action": "historical_data", } url = "https://cn.investing.com/instruments/HistoricalDataAjax" res = requests.post(url, data=payload, headers=long_headers) soup = BeautifulSoup(res.text, "lxml") vest_list = [item.get_text().strip().split("\n") for item in soup.find_all("tr")] raw_df =
pd.DataFrame(vest_list)
pandas.DataFrame
""" Access the most common functions of Facebook api. Download posts by ids, download all posts by given profile, profile infos, all with rate limiting. """ #!/usr/bin/env python # -*- coding: utf-8 -*- import datetime import time import requests import pandas as pd import facebook import logging from functools import wraps import pytz # TODO what error message is printed for calls for posts older than profile? POST_FIELDS = [ # list of fields called when acquiring posts by Facebook SDK "id", "application", "caption", "created_time", "description", "from", "link", "message", "message_tags", "name", "object_id", "parent_id", "permalink_url", "picture", "place", "properties", "status_type", "story", "type", "updated_time", "comments.filter(stream).limit(0).summary(true)", "likes.limit(0).summary(true)", "shares", "reactions.summary(true)", ] COMMENT_FIELDS = [ "id", "comment_count", "created_time", "from", "like_count", "message", "message_tags", "object", "parent", ] POST_INSIGHT_FIELD = "insights.metric({})".format( # extra insights field ",".join([ "post_activity_by_action_type_unique", "post_impressions_unique", "post_impressions_paid_unique", "post_impressions_fan_unique", "post_impressions_fan_paid_unique", "post_impressions_organic_unique", "post_impressions_viral_unique", "post_impressions_nonviral_unique", "post_impressions_by_story_type_unique", "post_engaged_users", "post_negative_feedback_by_type_unique", "post_engaged_fan", "post_clicks_by_type_unique", "post_reactions_by_type_total", ])) # TEST tested last in 2019, if needed, test! class SocialMediaApi: """Handles common features of Facebook and Twitter api. Methods ------- profiles_info(ids, path=None) -> pd.DataFrame Returns profiles info acquired by api calls. posts(ids, insights=False, path=None) -> pd.DataFrame Returns posts acquired by api calls. profiles_posts(ids, since, until, n=100000, insights=False, path=None) Returns posts from profiles within time range acquired by api calls. """ def save_df(self, df: pd.DataFrame, path: str): """Return DataFrame of elements and saves it to csv or excel path. Parameters ---------- df : pd.DataFrame DataFrame to save path : str path to table output file. Based on extension, table is saved to: None: nowhere .xlsx: Excel spreadsheet else: csv table """ if path is None: pass elif path.endswith(".xlsx"): with pd.ExcelWriter( # excel does not support timezones path=path, engine='xlsxwriter', options={'remove_timezone': True}) as writer: df.to_excel(writer) else: df.to_csv(path, encoding="utf-8") def add_info(self, df: pd.DataFrame): """Return `df` with profiles info columns. All new columns are added to the end of `df` with 'profile_' prefix. Parameters ---------- df : pd.DataFrame Posts dataframe. Must consist of self.post_from_col column. """ if len(df) == 0: logging.warning( ("no posts downloaded, thus no profile info is downloaded")) return df else: ids_downloaded = list(df[self.post_from_col].unique()) info_df = self.profiles_info(ids_downloaded) info_df = info_df.add_prefix("profile_") info_df.profile_api_call_id = info_df.profile_api_call_id.astype( "str") df[self.post_from_col] = df[self.post_from_col].astype("str") df = df.merge( info_df, how="left", left_on=self.post_from_col, right_on="profile_api_call_id") return df def profiles_info(self, ids: list, path: str=None) -> pd.DataFrame: """Return profiles info acquired by api calls. Parameters ---------- ids : list of strs or ints ids or names of profiles path : str or None (default None) if passed, dataframe is saved there as csv Output index 'api_call_id' notes profile id/name on which api was called. """ elements = [] for i in ids: element = self.get_profile_info(i) element["api_call_id"] = i elements.append(element) df = pd.DataFrame(elements) self.save_df(df, path) return df def posts( self, ids: list, insights: bool=False, comments: bool=False, info: bool=False, path: str=None) -> pd.DataFrame: """Return posts acquired by api calls. Parameters ---------- ids : list of strs or ints posts ids insights : bool (default False) whether insight fields should be called (requires page access token with admin rights) comments : bool (default False) whether comments_reactions should be included (demands downloading all comments) info : bool (default False) whether profiles info should be included (demands downloading all profiles info); usage includes accessing Facebook profile fans path : str or None (default None) if passed, dataframe is saved there as csv """ posts = [] for i in ids: element = self.get_post(i, insights=insights) if element is not None: posts.extend(self.transform_posts([element], i)) return posts try: df = pd.DataFrame(posts) except AttributeError: print(posts) return posts if info: df = self.add_info(df) if comments: df = self.add_comments(df) self.save_df(df, path) return df def profiles_posts( self, ids: list, since: datetime.datetime, until: datetime.datetime=datetime.datetime(2100, 1, 1), n: int=100000, insights: bool=False, comments: bool=False, info: bool=False, path: str=None ) -> pd.DataFrame: """Return posts from profiles within time range acquired by api calls. Parameters ---------- ids : list of strs or ints profiles ids or names since : datetime.datetime start of time range until : datetime.datetime end of time range n : int (default 100,000) maximal number of downloaded posts insights : bool (default False) whether insight fields should be called (requires page access token with admin rights) comments : bool (default False) whether comments_reactions should be included (demands downloading all comments) info : bool (default False) whether profiles info should be included (demands downloading all profiles info); usage includes accessing Facebook profile fans path : str (default None) if passed, dataframe is saved there as csv """ def add_timezone(x): if x.tzinfo is None: return pytz.utc.localize(x) else: return x def paginate_elements(first_connection): connection = first_connection while ( (len(elements) < n) and (pd.to_datetime( self.connection_date(elements[-1])) > since_tz)): try: connection = self.get_next_connection(connection) except KeyError: logging.info( ("connection has no next page: downloading profile " "posts with parameters {}") .format([i, since, until, n, insights])) return elements if self.returns_data(connection): elements.extend(self.connection_data(connection)) else: logging.error( ("no data in connection {} while downloading profile " "posts with parameters {}") .format(connection, [i, since, until, n, insights])) return elements return elements # timezone is needed for dates comparison since_tz = add_timezone(since) until_tz = add_timezone(until) posts = [] for i in ids: elements = [] # First, self.get_profile_posts_initial_page is called. connection = self.get_profile_posts_initial_call( i, since_tz, until_tz, n, insights) if self.returns_data(connection): elements.extend(self.connection_data(connection)) # Afterwards, next page of results is listed until number of # posts or time range is exceeded. elements = paginate_elements(connection) posts.extend(self.transform_posts(elements, i)) df = pd.DataFrame(posts) # erase posts outside of time range (Twitter does not allow to # download specific time range, but posts have to be downloaded from # present backwards) if len(df) > 0: try: df = df.loc[ ((df.created_time >= since) & (df.created_time <= until))] except AttributeError: logging.warning( ("time range control not executed: downloaded table has " "no 'created_time' column; present columns: {}") .format(df.columns)) if info: df = self.add_info(df) if comments: df = self.add_comments(df) self.save_df(df, path) return df class FbApi(SocialMediaApi): """Handle downloading from Facebook Graph api. Attributes ---------- token: Facebook access token (app access token or page access token, based on usage) Methods ------- profiles_info(ids, path=None) -> pd.DataFrame Returns profiles info acquired by api calls. posts(ids, insights=False, path=None) -> pd.DataFrame Returns posts acquired by api calls. profiles_posts(ids, since, until, n=100000, insights=False, path=None) Returns posts from profiles within time range acquired by api calls. posts_comments(ids, n=100000, path=False) -> pd.DataFrame Returns comments under posts with given ids acquired by api calls. Examples -------- >>> f = FbApi("fb_access_token") >>> f.profiles_info(profiles_ids) >>> f.posts(posts_ids) >>> f.profiles_posts(profiles_ids, since, until) >>> f.posts_comments(posts_ids) Notes ----- Wraps up Facebook Python SDK library: https://github.com/mobolic/facebook-sdk """ def __init__(self, token="xxx"): self.api = facebook.GraphAPI(token, version="3.1") def rate_limit_sdk(func): # TODO max_tries and wait as parameters """Return `func` multiple times in case of SDK limit error. After each rate limited call, waits for 15 minutes and tries again or gives up after 2 hour limit is reached. Twin method for self.rate_limit_requests (only difference in error code location). """ @wraps(func) def wrapper(*args, **kwargs): max_wait = 7200 wait = 900 max_tries = max_wait // wait tries = 0 while tries <= max_tries: try: return func(*args, **kwargs) except facebook.GraphAPIError as e: if e.code == 4: logging.warning( "request limit reached, waiting for 15 minutes") time.sleep(wait) else: logging.warning( ("Facebook sdk returned error message while" "calling {} with args: {}, kwargs: {}, error: {}") .format( func.__name__, args, kwargs, e)) return [] tries += 1 logging.error( ("request limit not solved, downloading stopped " "while calling {} with args: {}, kwargs: {}") .format(func.__name__, *args, **kwargs)) return [] return wrapper def rate_limit_requests(func): # TODO max_tries and wait as parameters """Return `func` multiple times in case of request limit error. After each rate limited call, waits for 15 minutes and tries again or gives up after 2 hour limit is reached. Twin method for self.rate_limit_sdk (only difference in error code location). """ @wraps(func) def wrapper(*args, **kwargs): max_wait = 7200 wait = 900 max_tries = max_wait // wait tries = 0 while tries <= max_tries: connection = func(*args, **kwargs) if "error" in connection: if connection["error"]["code"] == 4: logging.warning( "request limit reached, waiting for 15 minutes") time.sleep(wait) else: logging.warning( ("Facebook sdk returned error message while" "calling {} with args: {}, kwargs: {}, \n\n" "error: {}") .format( func.__name__, args, kwargs, connection["error"])) return [] else: return connection tries += 1 logging.error( ("request limit not solved, downloading stopped " "while calling {} with args: {}, kwargs: {}") .format(func.__name__, *args, **kwargs)) return [] return wrapper def returns_data(self, connection) -> bool: try: return connection["data"] != [] except (KeyError, TypeError): return False def connection_data(self, connection): return connection["data"] def connection_date(self, connection): return connection["created_time"] def transform_posts(self, posts: list, i) -> list: """Return list of posts in dictionaries with additional collumns. Parameters ---------- posts : list of dicts posts to transform i : str or int api call id noting how the row was acquired (ie. from profile with given `i` or by calling post id `i` directly) New columns: comments_count likes_count reactions_count shares_count interactions ( = comments_count + reactions_count + shares_count) post_link from_id from_name api_call_id ( = i) Updated columns: created_time is pd.to_datetime'd """ def post_with_additional_collumns(post): if post == []: return [] else: try: post["comments_count"] = post["comments"][ "summary"]["total_count"] except KeyError: post["comments_count"] = None try: post["from_id"] = post["from"]["id"] except KeyError: post["from_id"] = None try: post["from_name"] = post["from"]["name"] except KeyError: post["from_name"] = None post["created_time"] =
pd.to_datetime(post["created_time"])
pandas.to_datetime
__author__ = '<NAME>' import pandas as pd import numpy as np class Preprocess_Dataframe(object): """ Check property of dataset, alarm irregularities in case of wrongs in data Arguments: data: population sent in file or dataframe config: self config or default Returns: population: exact dataset for futher processing -> pandas.DataFrame """ def __init__(self, data, config): self.data = data self.config = config self.population = None def get_file(self): if type(self.data) is not str: self.population =
pd.DataFrame(data=self.data)
pandas.DataFrame
# encoding: utf-8 from __future__ import print_function import os from collections import OrderedDict import numpy as np import pandas as pd from . import performance as pfm from . import plotting import jaqs.util as jutil from jaqs.trade import common class SignalDigger(object): """ Attributes ---------- signal_data : pd.DataFrame - MultiIndex Index is pd.MultiIndex ['trade_date', 'symbol'], columns = ['signal', 'return', 'quantile'] period : int Horizon used to calculate return. n_quantiles : int output_format : str output_folder : str """ def __init__(self, output_folder=".", output_format='pdf'): self.output_format = output_format self.output_folder = os.path.abspath(output_folder) self.signal_data = None self.period = None self.n_quantiles = 5 self.benchmark_ret = None self.returns_report_data = dict() self.ic_report_data = dict() self.fig_data = dict() self.fig_objs = dict() def process_signal_before_analysis(self, signal, price=None, ret=None, benchmark_price=None, period=5, n_quantiles=5, mask=None, forward=False): """ Prepare for signal analysis. Parameters ---------- signal : pd.DataFrame Index is date, columns are stocks. price : pd.DataFrame Index is date, columns are stocks. ret : pd.DataFrame Index is date, columns are stocks. benchmark_price : pd.DataFrame or pd.Series or None Price of benchmark. mask : pd.DataFrame Data cells that should NOT be used. n_quantiles : int period : int periods to compute forward returns on. Returns ------- res : pd.DataFrame Index is pd.MultiIndex ['trade_date', 'symbol'], columns = ['signal', 'return', 'quantile'] """ """ Deal with suspensions: If the period of calculating return is d (from T to T+d), then we do not use signal values of those suspended on T, we do not calculate return for those suspended on T+d. """ # ---------------------------------------------------------------------- # parameter validation if price is None and ret is None: raise ValueError("One of price / ret must be provided.") if price is not None and ret is not None: raise ValueError("Only one of price / ret should be provided.") if ret is not None and benchmark_price is not None: raise ValueError("You choose 'return' mode but benchmark_price is given.") if not (n_quantiles > 0 and isinstance(n_quantiles, int)): raise ValueError("n_quantiles must be a positive integer. Input is: {}".format(n_quantiles)) # ensure inputs are aligned data = price if price is not None else ret assert np.all(signal.index == data.index) assert np.all(signal.columns == data.columns) if mask is not None: assert np.all(signal.index == mask.index) assert np.all(signal.columns == mask.columns) mask = jutil.fillinf(mask) mask = mask.astype(int).fillna(0).astype(bool) # dtype of mask could be float. So we need to convert. else: mask = pd.DataFrame(index=signal.index, columns=signal.columns, data=False) signal = jutil.fillinf(signal) data = jutil.fillinf(data) # ---------------------------------------------------------------------- # save data self.n_quantiles = n_quantiles self.period = period # ---------------------------------------------------------------------- # Get dependent variables if price is not None: df_ret = pfm.price2ret(price, period=self.period, axis=0) if benchmark_price is not None: benchmark_price = benchmark_price.loc[signal.index] bench_ret = pfm.price2ret(benchmark_price, self.period, axis=0) self.benchmark_ret = bench_ret residual_ret = df_ret.sub(bench_ret.values.flatten(), axis=0) else: residual_ret = df_ret else: residual_ret = ret # Get independent varibale signal = signal.shift(1) # avoid forward-looking bias # forward or not if forward: # point-in-time signal and forward return residual_ret = residual_ret.shift(-self.period) else: # past signal and point-in-time return signal = signal.shift(self.period) # ---------------------------------------------------------------------- # get masks # mask_prices = data.isnull() # Because we use FORWARD return, if one day's price is broken, the day that is <period> days ago is also broken. # mask_prices = np.logical_or(mask_prices, mask_prices.shift(self.period)) mask_price_return = residual_ret.isnull() mask_signal = signal.isnull() mask_tmp = np.logical_or(mask_signal, mask_price_return) mask_all = np.logical_or(mask, mask_tmp) # if price is not None: # mask_forward = np.logical_or(mask, mask.shift(self.period).fillna(True)) # mask = np.logical_or(mask, mask_forward) # ---------------------------------------------------------------------- # calculate quantile signal_masked = signal.copy() signal_masked = signal_masked[~mask_all] if n_quantiles == 1: df_quantile = signal_masked.copy() df_quantile.loc[:, :] = 1.0 else: df_quantile = jutil.to_quantile(signal_masked, n_quantiles=n_quantiles) # ---------------------------------------------------------------------- # stack def stack_td_symbol(df): df = pd.DataFrame(df.stack(dropna=False)) # do not dropna df.index.names = ['trade_date', 'symbol'] df.sort_index(axis=0, level=['trade_date', 'symbol'], inplace=True) return df mask_all = stack_td_symbol(mask_all) df_quantile = stack_td_symbol(df_quantile) residual_ret = stack_td_symbol(residual_ret) # ---------------------------------------------------------------------- # concat signal value res = stack_td_symbol(signal) res.columns = ['signal'] res['return'] = residual_ret res['quantile'] = df_quantile res = res.loc[~(mask_all.iloc[:, 0]), :] print("Nan Data Count (should be zero) : {:d}; " \ "Percentage of effective data: {:.0f}%".format(res.isnull().sum(axis=0).sum(), len(res) * 100. / signal.size)) res = res.astype({'signal': float, 'return': float, 'quantile': int}) self.signal_data = res def show_fig(self, fig, file_name): """ Save fig object to self.output_folder/filename. Parameters ---------- fig : matplotlib.figure.Figure file_name : str """ self.fig_objs[file_name] = fig if self.output_format in ['pdf', 'png', 'jpg']: fp = os.path.join(self.output_folder, '.'.join([file_name, self.output_format])) jutil.create_dir(fp) fig.savefig(fp) print("Figure saved: {}".format(fp)) elif self.output_format == 'base64': fig_b64 = jutil.fig2base64(fig, 'png') self.fig_data[file_name] = fig_b64 print("Base64 data of figure {} will be stored in dictionary.".format(file_name)) elif self.output_format == 'plot': fig.show() else: raise NotImplementedError("output_format = {}".format(self.output_format)) @plotting.customize def create_returns_report(self): """ Creates a tear sheet for returns analysis of a signal. """ n_quantiles = self.signal_data['quantile'].max() # ---------------------------------------------------------------------------------- # Daily Signal Return Time Series # Use regression or weighted average to calculate. period_wise_long_ret =\ pfm.calc_period_wise_weighted_signal_return(self.signal_data, weight_method='long_only') period_wise_short_ret = \ pfm.calc_period_wise_weighted_signal_return(self.signal_data, weight_method='short_only') cum_long_ret = pfm.period_wise_ret_to_cum(period_wise_long_ret, period=self.period, compound=False) cum_short_ret = pfm.period_wise_ret_to_cum(period_wise_short_ret, period=self.period, compound=False) # period_wise_ret_by_regression = perf.regress_period_wise_signal_return(signal_data) # period_wise_ls_signal_ret = \ # pfm.calc_period_wise_weighted_signal_return(signal_data, weight_method='long_short') # daily_ls_signal_ret = pfm.period2daily(period_wise_ls_signal_ret, period=period) # ls_signal_ret_cum = pfm.daily_ret_to_cum(daily_ls_signal_ret) # ---------------------------------------------------------------------------------- # Period-wise Quantile Return Time Series # We calculate quantile return using equal weight or market value weight. # Quantile is already obtained according to signal values. # quantile return period_wise_quantile_ret_stats = pfm.calc_quantile_return_mean_std(self.signal_data, time_series=True) cum_quantile_ret = pd.concat({k: pfm.period_wise_ret_to_cum(v['mean'], period=self.period, compound=False) for k, v in period_wise_quantile_ret_stats.items()}, axis=1) # top quantile minus bottom quantile return period_wise_tmb_ret = pfm.calc_return_diff_mean_std(period_wise_quantile_ret_stats[n_quantiles], period_wise_quantile_ret_stats[1]) cum_tmb_ret = pfm.period_wise_ret_to_cum(period_wise_tmb_ret['mean_diff'], period=self.period, compound=False) # ---------------------------------------------------------------------------------- # Alpha and Beta # Calculate using regression. ''' weighted_portfolio_alpha_beta tmb_alpha_beta = ''' # start plotting if self.output_format: vertical_sections = 6 gf = plotting.GridFigure(rows=vertical_sections, cols=1) gf.fig.suptitle("Returns Tear Sheet\n\n(no compound)\n (period length = {:d} days)".format(self.period)) plotting.plot_quantile_returns_ts(period_wise_quantile_ret_stats, ax=gf.next_row()) plotting.plot_cumulative_returns_by_quantile(cum_quantile_ret, ax=gf.next_row()) plotting.plot_cumulative_return(cum_long_ret, title="Signal Weighted Long Only Portfolio Cumulative Return", ax=gf.next_row()) plotting.plot_cumulative_return(cum_short_ret, title="Signal Weighted Short Only Portfolio Cumulative Return", ax=gf.next_row()) plotting.plot_mean_quantile_returns_spread_time_series(period_wise_tmb_ret, self.period, bandwidth=0.5, ax=gf.next_row()) plotting.plot_cumulative_return(cum_tmb_ret, title="Top Minus Bottom (long top, short bottom)" "Portfolio Cumulative Return", ax=gf.next_row()) self.show_fig(gf.fig, 'returns_report') self.returns_report_data = {'period_wise_quantile_ret': period_wise_quantile_ret_stats, 'cum_quantile_ret': cum_quantile_ret, 'cum_long_ret': cum_long_ret, 'cum_short_ret': cum_short_ret, 'period_wise_tmb_ret': period_wise_tmb_ret, 'cum_tmb_ret': cum_tmb_ret} @plotting.customize def create_information_report(self): """ Creates a tear sheet for information analysis of a signal. """ ic = pfm.calc_signal_ic(self.signal_data) ic.index = pd.to_datetime(ic.index, format="%Y%m%d") monthly_ic = pfm.mean_information_coefficient(ic, "M") if self.output_format: ic_summary_table = pfm.calc_ic_stats_table(ic) plotting.plot_information_table(ic_summary_table) columns_wide = 2 fr_cols = len(ic.columns) rows_when_wide = (((fr_cols - 1) // columns_wide) + 1) vertical_sections = fr_cols + 3 * rows_when_wide + 2 * fr_cols gf = plotting.GridFigure(rows=vertical_sections, cols=columns_wide) gf.fig.suptitle("Information Coefficient Report\n\n(period length = {:d} days)" "\ndaily IC = rank_corr(period-wise forward return, signal value)".format(self.period)) plotting.plot_ic_ts(ic, self.period, ax=gf.next_row()) plotting.plot_ic_hist(ic, self.period, ax=gf.next_row()) # plotting.plot_ic_qq(ic, ax=ax_ic_hqq[1::2]) plotting.plot_monthly_ic_heatmap(monthly_ic, period=self.period, ax=gf.next_row()) self.show_fig(gf.fig, 'information_report') self.ic_report_data = {'daily_ic': ic, 'monthly_ic': monthly_ic} def create_binary_event_report(self, signal, price, mask, benchmark_price, periods, join_method_periods='inner', group_by=None): """ Parameters ---------- signal : pd.DataFrame price : pd.DataFrame mask : pd.DataFrame benchmark_price : pd.DataFrame periods : list of int join_method_periods : {'inner', 'outer'}. Whether to take intersection or union of data of different periods. group_by : {'year', 'month', None} Calculate various statistics within each year/month/whole sample. Returns ------- res : dict """ import scipy.stats as scst # Raw Data dic_signal_data = OrderedDict() for my_period in periods: self.process_signal_before_analysis(signal, price=price, mask=mask, n_quantiles=1, period=my_period, benchmark_price=benchmark_price, forward=True) dic_signal_data[my_period] = self.signal_data # Processed Data dic_events = OrderedDict() dic_all = OrderedDict() for period, df in dic_signal_data.items(): ser_ret = df['return'] ser_sig = df['signal'].astype(bool) events_ret = ser_ret.loc[ser_sig] dic_events[period] = events_ret dic_all[period] = ser_ret df_events = pd.concat(dic_events, axis=1, join=join_method_periods) df_all = pd.concat(dic_all, axis=1, join=join_method_periods) # Data Statistics def _calc_statistics(df): df_res = pd.DataFrame(index=periods, columns=['Annu. Ret.', 'Annu. Vol.', #'Annual Return (all sample)', 'Annual Volatility (all sample)', 't-stat', 'p-value', 'skewness', 'kurtosis', 'occurance'], data=np.nan) df_res.index.name = 'Period' ser_periods = pd.Series(index=df.columns, data=df.columns.values) ratio = (1.0 * common.CALENDAR_CONST.TRADE_DAYS_PER_YEAR / ser_periods) mean = df.mean(axis=0) std = df.std(axis=0) annual_ret, annual_vol = mean * ratio, std * np.sqrt(ratio) t_stats, p_values = scst.ttest_1samp(df.values, np.zeros(df.shape[1]), axis=0) df_res.loc[:, 't-stat'] = t_stats df_res.loc[:, 'p-value'] = np.round(p_values, 5) df_res.loc[:, "skewness"] = scst.skew(df, axis=0) df_res.loc[:, "kurtosis"] = scst.kurtosis(df, axis=0) df_res.loc[:, 'Annu. Ret.'] = annual_ret df_res.loc[:, 'Annu. Vol.'] = annual_vol df_res.loc[:, 'occurance'] = len(df) # dic_res[period] = df return df_res if group_by == 'year': grouper_func = jutil.date_to_year elif group_by == 'month': grouper_func = jutil.date_to_month else: grouper_func = get_dummy_grouper idx_group = grouper_func(df_events.index.get_level_values('trade_date')) df_stats = df_events.groupby(idx_group).apply(_calc_statistics) idx_group_all = grouper_func(df_all.index.get_level_values('trade_date')) df_all_stats = df_all.groupby(idx_group_all).apply(_calc_statistics) df_all_stats = df_all_stats.loc[df_stats.index, ['Annu. Ret.', 'Annu. Vol.']] df_all_stats.columns = ['Annu. Ret. (all samp)', 'Annu. Vol. (all samp)'] df_stats = pd.concat([df_stats, df_all_stats], axis=1) # return df_all, df_events, df_stats ser_signal_raw, monthly_signal, yearly_signal = calc_calendar_distribution(signal) # return # plot gf = plotting.GridFigure(rows=len(np.unique(idx_group)) * len(periods) + 3, cols=2, height_ratio=1.2) gf.fig.suptitle("Event Return Analysis (annualized)") plotting.plot_calendar_distribution(ser_signal_raw, monthly_signal=monthly_signal, yearly_signal=yearly_signal, ax1=gf.next_row(), ax2=gf.next_row()) plotting.plot_event_bar(df_stats.reset_index(), x='Period', y='Annu. Ret.', hue='trade_date', ax=gf.next_row()) # plotting.plot_event_pvalue(df_stats['p-value'], ax=gf.next_subrow()) def _plot_dist(df): date = grouper_func(df.index.get_level_values('trade_date'))[0] plotting.plot_event_dist(df, group_by.title() + ' ' + str(date), axs=[gf.next_cell() for _ in periods]) if group_by is not None: df_events.groupby(idx_group).apply(_plot_dist) else: plotting.plot_event_dist(df_events, "", axs=[gf.next_cell() for _ in periods]) self.show_fig(gf.fig, 'event_report') # dic_res['df_res'] = df_res return df_all, df_events, df_stats @plotting.customize def create_full_report(self): """ Creates a full tear sheet for analysis and evaluating single return predicting (alpha) signal. """ # signal quantile description statistics qstb = calc_quantile_stats_table(self.signal_data) if self.output_format: plotting.plot_quantile_statistics_table(qstb) self.create_returns_report() self.create_information_report() # we do not do turnover analysis for now # self.create_turnover_report(signal_data) res = dict() res.update(self.returns_report_data) res.update(self.ic_report_data) res.update(self.fig_data) return res def create_single_signal_report(self, signal, price, periods, n_quantiles, mask=None, trade_condition=None): """ Parameters ---------- signal : pd.Series index is integer date, values are signals price : pd.Series index is integer date, values are prices mask : pd.Series or None, optional index is integer date, values are bool periods : list of int trade_condition : dict , optional {'cond_name1': {'col_name': str, 'hold': int, 'filter': func, 'direction': 1}, 'cond_name2': {'col_name': str, 'hold': int, 'filter': func, 'direction': -1}, } Returns ------- res : dict """ if isinstance(signal, pd.DataFrame): signal = signal.iloc[:, 0] if isinstance(price, pd.DataFrame): price = price.iloc[:, 0] # calc return ret_l = {period: pfm.price2ret(price, period=period, axis=0) for period in periods} df_ret = pd.concat(ret_l, axis=1) # ---------------------------------------------------------------------- # calculate quantile if n_quantiles == 1: df_quantile = signal.copy() df_quantile.loc[:] = 1.0 else: df_quantile = jutil.to_quantile(signal, n_quantiles=n_quantiles, axis=0) # ---------------------------------------------------------------------- # concat signal value res = pd.DataFrame(signal.shift(1)) res.columns = ['signal'] res['quantile'] = df_quantile res = pd.concat([res, df_ret], axis=1) res = res.dropna() print("Nan Data Count (should be zero) : {:d}; " \ "Percentage of effective data: {:.0f}%".format(res.isnull().sum(axis=0).sum(), len(res) * 100. / signal.size)) # calc quantile stats gp = res.groupby(by='quantile') dic_raw = {k: v for k, v in gp} dic_stats = OrderedDict() for q, df in gp: df_stat = pd.DataFrame(index=['mean', 'std'], columns=df_ret.columns, data=np.nan) df_stat.loc['mean', :] = df.loc[:, df_ret.columns].mean(axis=0) df_stat.loc['std', :] = df.loc[:, df_ret.columns].std(axis=0) dic_stats[q] = df_stat # calculate IC ics = calc_various_ic(res, ret_cols=df_ret.columns) # backtest if trade_condition is not None: def sim_backtest(df, dic_of_cond): dic_cum_ret = dict() for key, dic in dic_of_cond.items(): col_name = dic['column'] func = dic['filter'] n_hold = dic['hold'] direction = dic['direction'] mask = df[col_name].apply(func).astype(int) dic_cum_ret[key] = (df[n_hold] * mask).cumsum() * direction df_cumret = pd.concat(dic_cum_ret, axis=1) return df_cumret df_backtest = sim_backtest(res, trade_condition) # plot gf = plotting.GridFigure(rows=3, cols=1, height_ratio=1.2) gf.fig.suptitle("Event Return Analysis (annualized)") plotting.plot_ic_decay(ics, ax=gf.next_row()) plotting.plot_quantile_return_mean_std(dic_stats, ax=gf.next_row()) if trade_condition is not None: plotting.plot_batch_backtest(df_backtest, ax=gf.next_row()) self.show_fig(gf.fig, 'single_inst.pdf') def calc_ic(x, y, method='rank'): """ Calculate IC between x and y. Parameters ---------- x : np.ndarray y : np.ndarray method : {'rank', 'normal'} Returns ------- corr : float """ import scipy.stats as scst if method == 'rank': corr = scst.spearmanr(x, y)[0] elif method == 'normal': corr = np.corrcoef(x, y)[0, 1] else: raise NotImplementedError("method = {}".format(method)) return corr def calc_various_ic(df, ret_cols): res_dic = dict() # signal normal IC: signal value v.s. return res_dic['normal'] = [calc_ic(df['signal'], df[col], method='normal') for col in ret_cols] # signal rank IC: signal value v.s. return res_dic['rank'] = [calc_ic(df['signal'], df[col], method='rank') for col in ret_cols] # quantile normal IC: signal quantile v.s. return res_dic['normal_q'] = [calc_ic(df['quantile'], df[col], method='normal') for col in ret_cols] # quantile rank IC: signal quantile v.s. return res_dic['rank_q'] = [calc_ic(df['quantile'], df[col], method='rank') for col in ret_cols] res =
pd.DataFrame(index=ret_cols, data=res_dic)
pandas.DataFrame
from context import dero import pandas as pd from pandas.util.testing import assert_frame_equal from pandas import Timestamp from numpy import nan import numpy class DataFrameTest: df = pd.DataFrame([ (10516, 'a', '1/1/2000', 1.01), (10516, 'a', '1/2/2000', 1.02), (10516, 'a', '1/3/2000', 1.03), (10516, 'a', '1/4/2000', 1.04), (10516, 'b', '1/1/2000', 1.05), (10516, 'b', '1/2/2000', 1.06), (10516, 'b', '1/3/2000', 1.07), (10516, 'b', '1/4/2000', 1.08), (10517, 'a', '1/1/2000', 1.09), (10517, 'a', '1/2/2000', 1.10), (10517, 'a', '1/3/2000', 1.11), (10517, 'a', '1/4/2000', 1.12), ], columns = ['PERMNO','byvar','Date', 'RET']) df_duplicate_row = pd.DataFrame([ (10516, 'a', '1/1/2000', 1.01), (10516, 'a', '1/2/2000', 1.02), (10516, 'a', '1/3/2000', 1.03), (10516, 'a', '1/3/2000', 1.03), #this is a duplicated row (10516, 'a', '1/4/2000', 1.04), (10516, 'b', '1/1/2000', 1.05), (10516, 'b', '1/2/2000', 1.06), (10516, 'b', '1/3/2000', 1.07), (10516, 'b', '1/4/2000', 1.08), (10517, 'a', '1/1/2000', 1.09), (10517, 'a', '1/2/2000', 1.10), (10517, 'a', '1/3/2000', 1.11), (10517, 'a', '1/4/2000', 1.12), ], columns = ['PERMNO','byvar','Date', 'RET']) df_weight = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.01, 0), (10516, 'a', '1/2/2000', 1.02, 1), (10516, 'a', '1/3/2000', 1.03, 1), (10516, 'a', '1/4/2000', 1.04, 0), (10516, 'b', '1/1/2000', 1.05, 1), (10516, 'b', '1/2/2000', 1.06, 1), (10516, 'b', '1/3/2000', 1.07, 1), (10516, 'b', '1/4/2000', 1.08, 1), (10517, 'a', '1/1/2000', 1.09, 0), (10517, 'a', '1/2/2000', 1.1, 0), (10517, 'a', '1/3/2000', 1.11, 0), (10517, 'a', '1/4/2000', 1.12, 1), ], columns = ['PERMNO', 'byvar', 'Date', 'RET', 'weight']) df_nan_byvar = pd.DataFrame(data = [ ('a', 1), (nan, 2), ('b', 3), ('b', 4), ], columns = ['byvar', 'val']) df_nan_byvar_and_val = pd.DataFrame(data = [ ('a', 1), (nan, 2), ('b', nan), ('b', 4), ], columns = ['byvar', 'val']) single_ticker_df = pd.DataFrame(data = [ ('a', Timestamp('2000-01-01 00:00:00'), 'ADM'), ], columns = ['byvar', 'Date', 'TICKER']) df_datetime = df.copy() df_datetime['Date'] = pd.to_datetime(df_datetime['Date']) df_datetime_no_ret = df_datetime.copy() df_datetime_no_ret.drop('RET', axis=1, inplace=True) df_gvkey_str = pd.DataFrame([ ('001076','3/1/1995'), ('001076','4/1/1995'), ('001722','1/1/2012'), ('001722','7/1/2012'), ('001722', nan), (nan ,'1/1/2012') ], columns=['GVKEY','Date']) df_gvkey_str['Date'] = pd.to_datetime(df_gvkey_str['Date']) df_gvkey_num = df_gvkey_str.copy() df_gvkey_num['GVKEY'] = df_gvkey_num['GVKEY'].astype('float64') df_gvkey_str2 = pd.DataFrame([ ('001076','2/1/1995'), ('001076','3/2/1995'), ('001722','11/1/2011'), ('001722','10/1/2011'), ('001722', nan), (nan ,'1/1/2012') ], columns=['GVKEY','Date']) df_gvkey_str2['Date'] = pd.to_datetime(df_gvkey_str2['Date']) df_fill_data = pd.DataFrame( data=[ (4, 'c', nan, 'a'), (1, 'd', 3, 'a'), (10, 'e', 100, 'a'), (2, nan, 6, 'b'), (5, 'f', 8, 'b'), (11, 'g', 150, 'b'), ], columns=['y', 'x1', 'x2', 'group'] ) class TestCumulate(DataFrameTest): expect_between_1_3 = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.01, 1.01), (10516, 'a', '1/2/2000', 1.02, 1.02), (10516, 'a', '1/3/2000', 1.03, 1.0506), (10516, 'a', '1/4/2000', 1.04, 1.04), (10516, 'b', '1/1/2000', 1.05, 1.05), (10516, 'b', '1/2/2000', 1.06, 1.06), (10516, 'b', '1/3/2000', 1.07, 1.1342), (10516, 'b', '1/4/2000', 1.08, 1.08), (10517, 'a', '1/1/2000', 1.09, 1.09), (10517, 'a', '1/2/2000', 1.1, 1.1), (10517, 'a', '1/3/2000', 1.11, 1.2210000000000003), (10517, 'a', '1/4/2000', 1.12, 1.12), ], columns = ['PERMNO', 'byvar', 'Date', 'RET', 'cum_RET']) expect_first = pd.DataFrame([ (10516, 'a', '1/1/2000', 1.01, 1.01), (10516, 'a', '1/2/2000', 1.02, 1.02), (10516, 'a', '1/3/2000', 1.03, 1.0506), (10516, 'a', '1/4/2000', 1.04, 1.092624), (10516, 'b', '1/1/2000', 1.05, 1.05), (10516, 'b', '1/2/2000', 1.06, 1.06), (10516, 'b', '1/3/2000', 1.07, 1.1342), (10516, 'b', '1/4/2000', 1.08, 1.224936), (10517, 'a', '1/1/2000', 1.09, 1.09), (10517, 'a', '1/2/2000', 1.10, 1.10), (10517, 'a', '1/3/2000', 1.11, 1.221), (10517, 'a', '1/4/2000', 1.12, 1.36752), ], columns = ['PERMNO','byvar','Date', 'RET', 'cum_RET']) def test_method_between_1_3(self): cum_df = dero.pandas.cumulate(self.df, 'RET', 'between', periodvar='Date', byvars=['PERMNO','byvar'], time=[1,3]) assert_frame_equal(self.expect_between_1_3, cum_df, check_dtype=False) def test_method_between_m2_0(self): cum_df = dero.pandas.cumulate(self.df, 'RET', 'between', periodvar='Date', byvars=['PERMNO','byvar'], time=[-2,0]) #Actually same result as [1,3] assert_frame_equal(self.expect_between_1_3, cum_df, check_dtype=False) def test_shifted_index(self): df = self.df.copy() df.index = df.index + 10 cum_df = dero.pandas.cumulate(df, 'RET', 'between', periodvar='Date', byvars=['PERMNO','byvar'], time=[-2,0]) assert_frame_equal(self.expect_between_1_3, cum_df, check_dtype=False) def test_method_first(self): cum_df = dero.pandas.cumulate(self.df, 'RET', 'first', periodvar='Date', byvars=['PERMNO','byvar']) assert_frame_equal(self.expect_first, cum_df, check_dtype=False) def test_grossify(self): df = self.df.copy() #don't overwrite original df['RET'] -= 1 #ungrossify expect_first_grossify = self.expect_first.copy() expect_first_grossify['cum_RET'] -= 1 expect_first_grossify['RET'] -= 1 cum_df = dero.pandas.cumulate(df, 'RET', 'first', periodvar='Date', byvars=['PERMNO','byvar'], grossify=True) assert_frame_equal(expect_first_grossify, cum_df, check_dtype=False) class TestGroupbyMerge(DataFrameTest): def test_subset_max(self): byvars = ['PERMNO','byvar'] out = dero.pandas.groupby_merge(self.df, byvars, 'max', subset='RET') expect_df = pd.DataFrame( [(10516, 'a', '1/1/2000', 1.01, 1.04), (10516, 'a', '1/2/2000', 1.02, 1.04), (10516, 'a', '1/3/2000', 1.03, 1.04), (10516, 'a', '1/4/2000', 1.04, 1.04), (10516, 'b', '1/1/2000', 1.05, 1.08), (10516, 'b', '1/2/2000', 1.06, 1.08), (10516, 'b', '1/3/2000', 1.07, 1.08), (10516, 'b', '1/4/2000', 1.08, 1.08), (10517, 'a', '1/1/2000', 1.09, 1.12), (10517, 'a', '1/2/2000', 1.10, 1.12), (10517, 'a', '1/3/2000', 1.11, 1.12), (10517, 'a', '1/4/2000', 1.12, 1.12)], columns = ['PERMNO','byvar','Date', 'RET', 'RET_max']) assert_frame_equal(expect_df, out) def test_subset_std(self): byvars = ['PERMNO','byvar'] out = dero.pandas.groupby_merge(self.df, byvars, 'std', subset='RET') expect_df = pd.DataFrame( [(10516, 'a', '1/1/2000', 1.01, 0.012909944487358068), (10516, 'a', '1/2/2000', 1.02, 0.012909944487358068), (10516, 'a', '1/3/2000', 1.03, 0.012909944487358068), (10516, 'a', '1/4/2000', 1.04, 0.012909944487358068), (10516, 'b', '1/1/2000', 1.05, 0.012909944487358068), (10516, 'b', '1/2/2000', 1.06, 0.012909944487358068), (10516, 'b', '1/3/2000', 1.07, 0.012909944487358068), (10516, 'b', '1/4/2000', 1.08, 0.012909944487358068), (10517, 'a', '1/1/2000', 1.09, 0.012909944487358068), (10517, 'a', '1/2/2000', 1.10, 0.012909944487358068), (10517, 'a', '1/3/2000', 1.11, 0.012909944487358068), (10517, 'a', '1/4/2000', 1.12, 0.012909944487358068)], columns = ['PERMNO','byvar','Date', 'RET', 'RET_std']) assert_frame_equal(expect_df, out) def test_nan_byvar_transform(self): expect_df = self.df_nan_byvar.copy() expect_df['val_transform'] = expect_df['val'] out = dero.pandas.groupby_merge(self.df_nan_byvar, 'byvar', 'transform', (lambda x: x)) assert_frame_equal(expect_df, out) def test_nan_byvar_and_nan_val_transform_numeric(self): non_standard_index = self.df_nan_byvar_and_val.copy() non_standard_index.index = [5,6,7,8] expect_df = self.df_nan_byvar_and_val.copy() expect_df['val_transform'] = expect_df['val'] + 1 expect_df.index = [5,6,7,8] out = dero.pandas.groupby_merge(non_standard_index, 'byvar', 'transform', (lambda x: x + 1)) assert_frame_equal(expect_df, out) def test_nan_byvar_and_nan_val_and_nonstandard_index_transform_numeric(self): expect_df = self.df_nan_byvar_and_val.copy() expect_df['val_transform'] = expect_df['val'] + 1 def test_nan_byvar_sum(self): expect_df = pd.DataFrame(data = [ ('a', 1, 1.0), (nan, 2, nan), ('b', 3, 7.0), ('b', 4, 7.0), ], columns = ['byvar', 'val', 'val_sum']) out = dero.pandas.groupby_merge(self.df_nan_byvar, 'byvar', 'sum') assert_frame_equal(expect_df, out) class TestLongToWide: expect_df_with_colindex = pd.DataFrame(data = [ (10516, 'a', 1.01, 1.02, 1.03, 1.04), (10516, 'b', 1.05, 1.06, 1.07, 1.08), (10517, 'a', 1.09, 1.1, 1.11, 1.12), ], columns = ['PERMNO', 'byvar', 'RET1/1/2000', 'RET1/2/2000', 'RET1/3/2000', 'RET1/4/2000']) expect_df_no_colindex = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.01, 1.02, 1.03, 1.04), (10516, 'a', '1/2/2000', 1.01, 1.02, 1.03, 1.04), (10516, 'a', '1/3/2000', 1.01, 1.02, 1.03, 1.04), (10516, 'a', '1/4/2000', 1.01, 1.02, 1.03, 1.04), (10516, 'b', '1/1/2000', 1.05, 1.06, 1.07, 1.08), (10516, 'b', '1/2/2000', 1.05, 1.06, 1.07, 1.08), (10516, 'b', '1/3/2000', 1.05, 1.06, 1.07, 1.08), (10516, 'b', '1/4/2000', 1.05, 1.06, 1.07, 1.08), (10517, 'a', '1/1/2000', 1.09, 1.1, 1.11, 1.12), (10517, 'a', '1/2/2000', 1.09, 1.1, 1.11, 1.12), (10517, 'a', '1/3/2000', 1.09, 1.1, 1.11, 1.12), (10517, 'a', '1/4/2000', 1.09, 1.1, 1.11, 1.12), ], columns = ['PERMNO', 'byvar', 'Date', 'RET0', 'RET1', 'RET2', 'RET3']) input_data = DataFrameTest() ltw_no_dup_colindex = dero.pandas.long_to_wide(input_data.df, ['PERMNO', 'byvar'], 'RET', colindex='Date') ltw_dup_colindex = dero.pandas.long_to_wide(input_data.df_duplicate_row, ['PERMNO', 'byvar'], 'RET', colindex='Date') ltw_no_dup_no_colindex = dero.pandas.long_to_wide(input_data.df, ['PERMNO', 'byvar'], 'RET') ltw_dup_no_colindex = dero.pandas.long_to_wide(input_data.df_duplicate_row, ['PERMNO', 'byvar'], 'RET') df_list = [ltw_no_dup_colindex, ltw_dup_colindex, ltw_no_dup_no_colindex, ltw_dup_no_colindex] def test_no_duplicates_with_colindex(self): assert_frame_equal(self.expect_df_with_colindex, self.ltw_no_dup_colindex) def test_duplicates_with_colindex(self): assert_frame_equal(self.expect_df_with_colindex, self.ltw_dup_colindex) def test_no_duplicates_no_colindex(self):
assert_frame_equal(self.expect_df_no_colindex, self.ltw_no_dup_no_colindex)
pandas.util.testing.assert_frame_equal
import os import graco import numpy as np import pandas as pd import networkx as nx """ Takes network, feature and metric as input and calculates distance matrix. """ # ============================================================================= # -------------------------------- FUNCTIONS -------------------------------- # ============================================================================= def get_feature_matrix(feature, G_nx): if feature == 'GDV': GDV = graco.orbits(G_nx) return GDV else: GCV = graco.coefficients(G_nx) # Single equation sets if feature == 'GCV-D': feature_matrix = GCV['D'] elif feature == 'GCV-A': feature_matrix = GCV['A'] elif feature == 'GCV-G': feature_matrix = GCV['G'] elif feature == 'GCV-G-sym': feature_matrix = GCV['G'][['0-0','1-1','3-3']] elif feature == 'GCV-O': feature_matrix = GCV['O'] elif feature == 'GCV-3': feature_matrix = GCV[['A','D']].xs('0', axis=1, level='Equation') # Combined equation sets elif feature == 'GCV-DA': feature_matrix = GCV[['D','A']] elif feature == 'GCV-DG': feature_matrix = GCV[['D','G']] elif feature == 'GCV-DO': feature_matrix = GCV[['D','O']] elif feature == 'GCV-all': feature_matrix = GCV.drop(('G','0-0'), axis=1) elif feature == 'GCV-DG-2': feature_matrix = GCV[['D','G']].drop(('G','2-1'), axis=1) elif feature == 'GCV-DG-3': feature_matrix = GCV[['D','G']].drop(('G','3-3'), axis=1) elif feature == 'GCV-DG-sym': GCV_G_sym = GCV['G'][['0-0','1-1','3-3']] feature_matrix =
pd.concat([GCV['D'],GCV_G_sym], axis=1)
pandas.concat
from pathlib import Path import os import re import pandas as pd import numpy as np import random from math import ceil import cv2 import glob import shutil import experiment_code.constants as consts from experiment_code.targetfile_utils import Utils # import experiment_code.targetfile_utils as utils # create instances of directories class VisualSearch(Utils): """ This class makes target files for Visual Search using parameters set in __init__ Args: task_name (str): 'visual_search' orientations (int): orientations of target/distractor stims balance_blocks (dict): keys are 'condition_name', 'trial_type' block_dur_secs (int): length of task_name (sec) num_blocks (int): number of blocks to make tile_block (int): determines number of repeats for task_name trial_dur (int): length of trial (sec) iti_dur (iti): length of iti (sec) instruct_dur (int): length of instruct for task_names (sec) hand (str): response hand replace (bool): sample stim with or without replacement display_trial_feedback (bool): display trial-by-trial feedback """ def __init__(self): super().__init__() self.task_name = 'visual_search' self.orientations = list([90, 180, 270, 360]) # DO NOT CHANGE ORDER self.balance_blocks = {'condition_name': {'easy': '4', 'hard': '8'}, 'trial_type': [True, False]} self.block_dur_secs = 15 self.num_blocks = 5 self.tile_block = 1 self.trial_dur = 2 self.iti_dur = .5 self.instruct_dur = 5 self.hand = 'right' self.replace = False self.display_trial_feedback = True def _get_block_info(self, **kwargs): # length (in secs) of the block if kwargs.get('block_dur_secs'): self.block_dur_secs = kwargs['block_dur_secs'] # repeat the target files if kwargs.get('tile_block'): self.tile_block = kwargs['tile_block'] # num of blocks (i.e. target files) to make if kwargs.get('num_blocks'): self.num_blocks = kwargs['num_blocks'] * self.tile_block # get overall number of trials self.num_trials = int(self.block_dur_secs / (self.trial_dur + self.iti_dur)) # get `num_stims` - lowest denominator across `balance_blocks` denominator = np.prod([len(stim) for stim in [*self.balance_blocks.values()]]) self.num_stims = ceil(self.num_trials / denominator) # round up to nearest int def _create_columns(self): def _get_condition(x): for key in self.balance_blocks['condition_name'].keys(): cond = self.balance_blocks['condition_name'][key] if x==cond: value = key return value dataframe = pd.DataFrame() # make `condition_name` column conds = [self.balance_blocks['condition_name'][key] for key in self.balance_blocks['condition_name'].keys()] # conds = [self.balance_blocks['condition_name']['easy'], self.balance_blocks['condition_name']['hard']] dataframe['stim'] = self.num_trials*conds dataframe['condition_name'] = dataframe['stim'].apply(lambda x: _get_condition(x)) dataframe['stim'] = dataframe['stim'].astype(int) # make `trial_type` column dataframe['trial_type'] = self.num_trials*self.balance_blocks['trial_type'] dataframe['trial_type'] = dataframe['trial_type'].sort_values().reset_index(drop=True) dataframe['display_trial_feedback'] = self.display_trial_feedback return dataframe def _balance_design(self, dataframe): dataframe = dataframe.groupby([*self.balance_blocks], as_index=False).apply(lambda x: x.sample(n=self.num_stims, random_state=self.random_state, replace=True)).reset_index(drop=True) # ensure that only `num_trials` are sampled return dataframe.sample(n=self.num_trials, random_state=self.random_state, replace=False).reset_index(drop=True) def _save_visual_display(self, dataframe): # add visual display cols display_pos, orientations_correct = zip(*[self._make_search_display(cond, self.orientations, trial_type) for (cond, trial_type) in zip(dataframe["stim"], dataframe["trial_type"])]) data_dicts = [] for trial_idx, trial_conditions in enumerate(display_pos): for condition, point in trial_conditions.items(): data_dicts.append({'trial': trial_idx, 'stim': condition, 'xpos': point[0], 'ypos': point[1], 'orientation': orientations_correct[trial_idx][condition]}) # save out to dataframe df_display = pd.DataFrame.from_records(data_dicts) # save out visual display visual_display_name = self._get_visual_display_name() df_display.to_csv(os.path.join(self.target_dir, visual_display_name)) def _get_visual_display_name(self): tf_name = f"{self.task_name}_{self.block_dur_secs}sec" tf_name = self._get_target_file_name(tf_name) str_part = tf_name.partition(self.task_name) visual_display_name = 'display_pos' + str_part[2] return visual_display_name def _make_search_display(self, display_size, orientations, trial_type): # make location and orientations lists (for target and distractor items) # STIM POSITIONS grid_h_dva = 8.4 grid_v_dva = 11.7 n_h_items = 6 n_v_items = 8 item_h_pos = np.linspace(-grid_h_dva / 2.0, +grid_h_dva/ 2.0, n_h_items) item_v_pos = np.linspace(-grid_v_dva / 2.0, +grid_v_dva / 2.0, n_v_items) grid_pos = [] for curr_h_pos in item_h_pos: for curr_v_pos in item_v_pos: grid_pos.append([curr_h_pos, curr_v_pos]) locations = random.sample(grid_pos, display_size) ## STIM ORIENTATIONS orientations_list = orientations*int(display_size/4) # if trial type is false - randomly replace target stim (90) # with a distractor if not trial_type: orientations_list = [random.sample(orientations[1:],1)[0] if x==90 else x for x in orientations_list] # if trial is true and larger than 4, leave one target stim (90) in list # and randomly replace the others with distractor stims if display_size >4 and trial_type: indices = [i for i, x in enumerate(orientations_list) if x == 90] indices.pop(0) new_num = random.sample(orientations[1:],2) # always assumes that orientations_list is as follows: [90,180,270,360] for i, n in zip(*(indices, new_num)): orientations_list[i] = n return dict(enumerate(locations)), dict(enumerate(orientations_list)) def make_targetfile(self, **kwargs): """ makes target file(s) for visual search given parameters in __init__ """ # get info about block self._get_block_info(**kwargs) seeds = np.arange(self.num_blocks)+1 for self.block in np.arange(self.num_blocks): # randomly sample so that conditions (2Back- and 2Back+) are equally represented self.random_state = seeds[self.block] # create the dataframe df_target = self._create_columns() # balance the dataframe df_target = self._balance_design(dataframe = df_target) self.target_dir = os.path.join(consts.target_dir, self.task_name) # save visual display dataframe self._save_visual_display(dataframe = df_target) # save target file self._save_target_files(df_target) class NBack(Utils): """ This class makes target files for N Back using parameters set in __init__ Args: task_name (str): 'n_back' n_back (int): default is 2 balance_blocks (dict): keys are 'condition_name' block_dur_secs (int): length of task_name (sec) num_blocks (int): number of blocks to make tile_block (int): determines number of repeats for task_name trial_dur (int): length of trial (sec) iti_dur (iti): length of iti (sec) instruct_dur (int): length of instruct for task_names (sec) hand (str): response hand replace (bool): sample stim with or without replacement display_trial_feedback (bool): display trial-by-trial feedback """ def __init__(self): super().__init__() self.task_name = 'n_back' self.n_back = 2 self.balance_blocks = {'condition_name': {'easy': '2_back-', 'hard': '2_back+'}} self.block_dur_secs = 15 self.num_blocks = 5 self.tile_block = 1 self.trial_dur = 1.5 self.iti_dur = .5 self.instruct_dur = 5 self.hand = 'left' self.replace = False self.display_trial_feedback = True def _get_block_info(self, **kwargs): # length (in secs) of the block if kwargs.get('block_dur_secs'): self.block_dur_secs = kwargs['block_dur_secs'] # repeat the target files if kwargs.get('tile_block'): self.tile_block = kwargs['tile_block'] # num of blocks (i.e. target files) to make if kwargs.get('num_blocks'): self.num_blocks = kwargs['num_blocks'] * self.tile_block # get overall number of trials self.num_trials = int(self.block_dur_secs / (self.trial_dur + self.iti_dur)) # get `num_stims` - lowest denominator across `balance_blocks` denominator = np.prod([len(stim) for stim in [*self.balance_blocks.values()]]) self.num_stims = ceil(self.num_trials / denominator) # round up to nearest int def _create_columns(self): def _get_condition(x): for key in self.balance_blocks['condition_name'].keys(): cond = self.balance_blocks['condition_name'][key] if x==cond: value = key return value # make trial_type column dataframe = pd.DataFrame() dataframe['trial_type'] = self.num_stims*(True, False) dataframe = dataframe.sample(n=self.num_trials, random_state=self.random_state, replace=False).reset_index(drop=True) dataframe['trial_type'][:self.n_back] = False # first n+cond_type trials (depending on cond_type) have to be False # make `n_back` and `condition_name` cols conds = [self.balance_blocks['condition_name'][key] for key in self.balance_blocks['condition_name'].keys()] dataframe['n_back'] = np.where(dataframe["trial_type"]==False, conds[0], conds[1]) dataframe['condition_name'] = dataframe['n_back'].apply(lambda x: _get_condition(x)) dataframe['display_trial_feedback'] = self.display_trial_feedback return dataframe def _balance_design(self, dataframe): # load in stimuli stim_files = [f for f in os.listdir(str(consts.stim_dir / self.task_name)) if f.endswith('g')] # first two images are always random (and false) # all other images are either match or not a match random.seed(self.random_state) stim_list = random.sample(stim_files, k=self.n_back) for t in dataframe['trial_type'][self.n_back:]: # loop over n+self.n_back match_img = stim_list[-self.n_back] no_match_imgs = [stim for stim in stim_files if stim != match_img] # was match_img[0] if t == False: # not a match random.seed(self.random_state) stim_list.append(random.sample(no_match_imgs, k=self.n_back-1)) else: # match stim_list.append(match_img) dataframe["stim"] = [''.join(x) for x in stim_list] return dataframe def make_targetfile(self, **kwargs): """ makes target file(s) for n back given parameters in __init__ """ # get info about block self._get_block_info(**kwargs) seeds = np.arange(self.num_blocks)+1 for self.block in np.arange(self.num_blocks): # randomly sample so that conditions (2Back- and 2Back+) are equally represented self.random_state = seeds[self.block] # create the dataframe df_target = self._create_columns() # balance the dataframe df_target = self._balance_design(dataframe = df_target) self.target_dir = os.path.join(consts.target_dir, self.task_name) self._save_target_files(df_target) class SocialPrediction(Utils): """ This class makes target files for Social Prediction using parameters set in __init__ Args: task_name (str): 'social_prediction' dataset_name (str): 'homevideos' is the default logging_file (str): csv file containing info about stimuli video_name (list of str): name of video(s) to include resized (bool): resize frames of video balance_blocks (dict): keys are 'actors', 'condition_name', 'label' block_dur_secs (int): length of task_name (sec) num_blocks (int): number of blocks to make tile_block (int): determines number of repeats for task_name trial_dur (int): length of trial (sec) iti_dur (iti): length of iti (sec) instruct_dur (int): length of instruct for task_names (sec) hand (str): response hand replace (bool): sample stim with or without replacement display_trial_feedback (bool): display trial-by-trial feedback """ def __init__(self): super().__init__() self.task_name = 'social_prediction' self.dataset_name = 'homevideos' self.logging_file = 'homevideos_annotations_logging.csv' self.video_name = ['dynamic_0ms', 'dynamic_100ms'] self.resized = True self.balance_blocks = {'actors': ['SB', 'MK'], 'condition_name': {'dynamic_0ms': 'easy', 'dynamic_100ms': 'hard'}, 'label': ['hug', 'handShake']} self.block_dur_secs = 15 self.num_blocks = 5 self.tile_block = 1 self.trial_dur = 2.5 self.iti_dur = .5 self.instruct_dur = 5 self.hand = 'right' self.replace = False self.display_trial_feedback = True def _filter_dataframe(self, dataframe): # remove all filenames where any of the videos have not been extracted stims_to_remove = dataframe.query('extracted==False')["video_name"].to_list() df_filtered = dataframe[~dataframe["video_name"].isin(stims_to_remove)] # query rows with relevant videos and relevant labels label = self.balance_blocks['label'] actors = self.balance_blocks['actors'] df_filtered = df_filtered.query(f'condition_name=={self.video_name} and label=={label} and actors=={actors}') return df_filtered def _create_new_columns(self, dataframe): # make new `stim` if self.resized: dataframe['stim'] = dataframe['video_name'] + '_' + dataframe['condition_name'] + '_resized' + '.mp4' else: dataframe['stim'] = dataframe['video_name'] + '_' + dataframe['condition_name'] + '.mp4' # set `condition name` dataframe['condition_name'] = dataframe['condition_name'].apply(lambda x: self.balance_blocks['condition_name'][x]) # assign dataset name dataframe['dataset'] = self.dataset_name # assign trial type (only works currently for two labels) labels = self.balance_blocks['label'] if len(labels)==2: dataframe['trial_type'] = dataframe['label'].apply(lambda x: True if x==labels[0] else False) else: print(f'there are an incorrect number of labels, there should be two') dataframe['display_trial_feedback'] = self.display_trial_feedback return dataframe def _balance_design(self, dataframe): # group the dataframe according to `balance_blocks` dataframe = dataframe.groupby([*self.balance_blocks], as_index=False).apply(lambda x: x.sample(n=self.num_stims, random_state=self.random_state, replace=self.replace)).reset_index(drop=True) # ensure that only `num_trials` are sampled dataframe = dataframe.sample(n=self.num_trials, random_state=self.random_state, replace=False).reset_index(drop=True) return dataframe def _get_block_info(self, **kwargs): # length (in secs) of the block if kwargs.get('block_dur_secs'): self.block_dur_secs = kwargs['block_dur_secs'] # repeat the target files if kwargs.get('tile_block'): self.tile_block = kwargs['tile_block'] # num of blocks (i.e. target files) to make if kwargs.get('num_blocks'): self.num_blocks = kwargs['num_blocks'] * self.tile_block # get overall number of trials self.num_trials = int(self.block_dur_secs / (self.trial_dur + self.iti_dur)) # get `num_stims` - lowest denominator across `balance_blocks` denominator = np.prod([len(stim) for stim in [*self.balance_blocks.values()]]) self.num_stims = ceil(self.num_trials / denominator) # round up to nearest int def make_targetfile(self, **kwargs): """ makes target file(s) for social prediction given parameters in __init__ """ # get info about block self._get_block_info(**kwargs) # return logging file fpath = os.path.join(consts.stim_dir, self.task_name, self.logging_file) # read in stimulus dataframe df = pd.read_csv(fpath) # filter dataframe df_filtered = self._filter_dataframe(dataframe = df) # create new columns (`trial_type` etc) df_filtered = self._create_new_columns(dataframe = df_filtered) seeds = np.arange(self.num_blocks)+1 # for self.block, self.key in enumerate(self.block_design): for self.block in np.arange(self.num_blocks): # randomly sample so that conditions (easy and hard) are equally represented self.random_state = seeds[self.block] # balance the dataframe by `condition_name` and `player_num` df_target = self._balance_design(dataframe = df_filtered) # remove `df_target` rows from the main dataframe so that we're always sampling from unique rows if self.replace==False: df_filtered = df_filtered.merge(df_target, how='left', indicator=True) df_filtered = df_filtered[df_filtered['_merge'] == 'left_only'].drop('_merge', axis=1) self.target_dir = os.path.join(consts.target_dir, self.task_name) self._save_target_files(df_target) class SemanticPrediction(Utils): """ This class makes target files for Semantic Prediction using parameters set in __init__ Args: task_name (str): 'semantic_prediction' logging_file (str): csv file containing info about stimuli stem_word_dur (int): length of stem word (sec) last_word_dur (int): length of last word (sec) frac (int): proportion of meaningless trials. default is .3. balance_blocks (dict): keys are 'CoRT_descript', 'condition_name' block_dur_secs (int): length of task_name (sec) num_blocks (int): number of blocks to make tile_block (int): determines number of repeats for task_name trial_dur (int): length of trial (sec) iti_dur (iti): length of iti (sec) instruct_dur (int): length of instruct for task_names (sec) hand (str): response hand replace (bool): sample stim with or without replacement display_trial_feedback (bool): display trial-by-trial feedback """ def __init__(self): super().__init__() self.task_name = 'semantic_prediction' self.logging_file = 'sentence_validation.csv' self.stem_word_dur = 0.5 self.last_word_dur = 1.5 self.frac = .3 self.balance_blocks = {'CoRT_descript': ['strong non-CoRT', 'strong CoRT'], 'condition_name': {'high cloze': 'easy', 'low cloze': 'hard'}} self.block_dur_secs = 15 self.num_blocks = 5 self.tile_block = 1 self.trial_dur = 7 self.iti_dur = .5 self.instruct_dur = 5 self.hand = 'right' self.replace = False self.display_trial_feedback = True def _filter_dataframe(self, dataframe): # conds = [self.balance_blocks['condition_name'][key] for key in self.balance_blocks['condition_name'].keys()] conds = list(self.balance_blocks['condition_name'].keys()) dataframe = dataframe.query(f'CoRT_descript=={self.balance_blocks["CoRT_descript"]} and cloze_descript=={conds}') # strip erroneous characters from sentences dataframe['stim'] = dataframe['full_sentence'].str.replace('|', ' ') return dataframe def _create_new_columns(self, dataframe): # add condition column dataframe['condition_name'] = dataframe['cloze_descript'].apply(lambda x: self.balance_blocks['condition_name'][x]) dataframe['stem_word_dur'] = self.stem_word_dur dataframe['last_word_dur'] = self.last_word_dur dataframe['trial_dur_correct'] = (dataframe['word_count'] * dataframe['stem_word_dur']) + self.iti_dur + dataframe['last_word_dur'] dataframe['display_trial_feedback'] = self.display_trial_feedback dataframe.drop({'full_sentence'}, inplace=True, axis=1) return dataframe def _add_random_word(self, dataframe, columns): """ sample `frac_random` and add to `full_sentence` Args: dataframe (pandas dataframe): dataframe Returns: dataframe with modified `full_sentence` col """ idx = dataframe.groupby(columns).apply(lambda x: x.sample(frac=self.frac, replace=False, random_state=self.random_state)).index sampidx = idx.get_level_values(len(columns)) # get third level dataframe["trial_type"] = ~dataframe.index.isin(sampidx) dataframe["last_word"] = dataframe.apply(lambda x: x["random_word"] if not x["trial_type"] else x["target_word"], axis=1) return dataframe def _balance_design(self, dataframe): # group the dataframe according to `balance_blocks` dataframe = dataframe.groupby([*self.balance_blocks], as_index=False).apply(lambda x: x.sample(n=self.num_stims, random_state=self.random_state, replace=self.replace)).reset_index(drop=True) # ensure that only `num_trials` are sampled dataframe = dataframe.sample(n=self.num_trials, random_state=self.random_state, replace=False).reset_index(drop=True) return dataframe def _get_block_info(self, **kwargs): # length (in secs) of the block if kwargs.get('block_dur_secs'): self.block_dur_secs = kwargs['block_dur_secs'] # repeat the target files if kwargs.get('tile_block'): self.tile_block = kwargs['tile_block'] # num of blocks (i.e. target files) to make if kwargs.get('num_blocks'): self.num_blocks = kwargs['num_blocks'] * self.tile_block # get overall number of trials self.num_trials = int(self.block_dur_secs / (self.trial_dur + self.iti_dur)) # get `num_stims` - lowest denominator across `balance_blocks` denominator = np.prod([len(stim) for stim in [*self.balance_blocks.values()]]) self.num_stims = ceil(self.num_trials / denominator) # round up to nearest int def make_targetfile(self, **kwargs): """ makes target file(s) for semantic prediction given parameters in __init__ """ # get info about block self._get_block_info(**kwargs) # return logging file fpath = os.path.join(consts.stim_dir, self.task_name, self.logging_file) # read in stimulus dataframe df = pd.read_csv(fpath) # filter dataframe df_filtered = self._filter_dataframe(dataframe = df) # create new columns (`condition_name` etc) df_filtered = self._create_new_columns(dataframe = df_filtered) seeds = np.arange(self.num_blocks)+1 # for self.block, self.key in enumerate(self.block_design): for self.block in np.arange(self.num_blocks): # randomly sample so that conditions (easy and hard) are equally represented self.random_state = seeds[self.block] # balance the dataframe by `condition_name` and `player_num` df_target = self._balance_design(dataframe = df_filtered) # remove `df_target` rows from the main dataframe so that we're always sampling from unique rows if self.replace==False: df_filtered = df_filtered.merge(df_target, how='left', indicator=True) df_filtered = df_filtered[df_filtered['_merge'] == 'left_only'].drop('_merge', axis=1) # add random word based on `self.frac` df_target = self._add_random_word(dataframe=df_target, columns=['condition_name']) # 'CoRT_descript' # save out target files self.target_dir = os.path.join(consts.target_dir, self.task_name) self._save_target_files(df_target) class ActionObservation(Utils): """ This class makes target files for Action Observation using parameters set in __init__ Args: task_name (str): 'rest' logging_file (str): csv file containing info about stimuli video_name (list of str): name of video(s) to include manipulation (str): 'left_right' or 'miss_goal' resized (bool): resize frames of video balance_blocks (dict): keys are 'player_name', 'condition_name', 'trial_type' block_dur_secs (int): length of task_name (sec) num_blocks (int): number of blocks to make tile_block (int): determines number of repeats for task_name trial_dur (int): length of trial (sec) iti_dur (iti): length of iti (sec) instruct_dur (int): length of instruct for task_names (sec) hand (str): response hand replace (bool): sample stim with or without replacement display_trial_feedback (bool): display trial-by-trial feedback """ def __init__(self): super().__init__() self.task_name = "action_observation" self.logging_file = 'all_clips_annotation_logging.csv' self.video_name = ['dynamic_120ms'] self.manipulation = 'left_right' self.resized = True self.balance_blocks = {'player_name': ['DC', 'EW'], 'condition_name': ['easy', 'hard'], 'trial_type': ['left', 'right']} self.block_dur_secs = 15 self.num_blocks = 5 self.tile_block = 1 self.trial_dur = 2 self.iti_dur = .5 self.instruct_dur = 5 self.hand = 'left' self.replace = True # sample with or without replacement self.display_trial_feedback = True def _filter_dataframe(self, dataframe): def _get_player(x): if x.find('DC')>=0: player_name = 'DC' elif x.find('FI')>=0: player_name = 'FI' elif x.find('EW')>=0: player_name = 'EW' else: print('player does not exist') return player_name # remove all filenames where any of the videos have not been extracted # and where the player did not accurately hit the target (success=F) stims_to_remove = dataframe.query('extracted==False or player_success=="?"')["video_name"].to_list() df_filtered = dataframe[~dataframe["video_name"].isin(stims_to_remove)] # remove rows without video info df_filtered = df_filtered.query(f'condition_name=={self.video_name}') # create `player_name` df_filtered['player_name'] = df_filtered['video_name'].apply(lambda x: _get_player(x)) # filter `player_name` cond = self.balance_blocks['player_name'] df_filtered = df_filtered.query(f'player_name=={cond}') # figure out the actual hits. certain trials (~14%) were misses. enter the actual hit. df_filtered.loc[df_filtered['hit_target'].isnull(), 'hit_target'] = df_filtered['instructed_target'] return df_filtered def _create_new_columns(self, dataframe): def _get_condition(x): if self.manipulation=="miss_goal": easy = [1,2,7,8,9,10,15,16] hard = [3,4,5,6,11,12,13,14] elif self.manipulation=="left_right": easy = [1,2,3,4,13,14,15,16] hard = [5,6,7,8,9,10,11,12] else: print('manipulation does not exist') if x in easy: condition = "easy" elif x in hard: condition = "hard" else: condition = float("NaN") print(f'{x} not in list') return condition def _get_trial_type(x): if self.manipulation=="miss_goal": list1= [5,6,7,8,9,10,11,12] list2 = [1,2,3,4,13,14,15,16] value1 = "goal" value2 = "miss" elif self.manipulation=="left_right": list1 = [1,2,3,4,5,6,7,8] list2 = [9,10,11,12,13,14,15,16] value1 = True # 'right' value2 = False # 'left' else: print('manipulation does not exist') if x in list1: trial = value1 elif x in list2: trial = value2 else: trial = float("NaN") print(f'{x} not in list') return trial # make new image column if self.resized: dataframe['stim'] = dataframe['video_name'] + '_' + dataframe['condition_name'] + '_resized' + '.mp4' else: dataframe['stim'] = dataframe['video_name'] + '_' + dataframe['condition_name'] + '.mp4' # divide targets between easy and hard dataframe['condition_name'] = dataframe['hit_target'].apply(lambda x: _get_condition(x)) # either miss_goal or left_right based on manipulation dataframe['trial_type'] = dataframe['hit_target'].apply(lambda x: _get_trial_type(x)) # get time of extraction for video (round to two decimals) dataframe['video_start_time'] = np.round(dataframe['interact_start'] - dataframe['secs_before_interact'], 2) dataframe['video_end_time'] = np.round(dataframe['interact_start'] + dataframe['secs_after_interact'], 2) dataframe['display_trial_feedback'] = self.display_trial_feedback return dataframe def _balance_design(self, dataframe): # group the dataframe according to `balance_blocks` dataframe = dataframe.groupby([*self.balance_blocks], as_index=False).apply(lambda x: x.sample(n=self.num_stims, random_state=self.random_state, replace=self.replace)).reset_index(drop=True) # ensure that only `num_trials` are sampled dataframe = dataframe.sample(n=self.num_trials, random_state=self.random_state, replace=False).reset_index(drop=True) return dataframe def _get_block_info(self, **kwargs): # length (in secs) of the block if kwargs.get('block_dur_secs'): self.block_dur_secs = kwargs['block_dur_secs'] # repeat the target files if kwargs.get('tile_block'): self.tile_block = kwargs['tile_block'] # num of blocks (i.e. target files) to make if kwargs.get('num_blocks'): self.num_blocks = kwargs['num_blocks'] * self.tile_block # get overall number of trials self.num_trials = int(self.block_dur_secs / (self.trial_dur + self.iti_dur)) # get `num_stims` - lowest denominator across `balance_blocks` denominator = np.prod([len(stim) for stim in [*self.balance_blocks.values()]]) self.num_stims = ceil(self.num_trials / denominator) # round up to nearest int def make_targetfile(self, **kwargs): """ makes target file(s) for action observation given parameters in __init__ """ # get info about block self._get_block_info(**kwargs) # return logging file fpath = os.path.join(consts.stim_dir, self.task_name, self.logging_file) # read in stimulus dataframe df = pd.read_csv(fpath) # filter dataframe df_filtered = self._filter_dataframe(dataframe = df) # create new columns (`trial_type` etc) df_filtered = self._create_new_columns(dataframe = df_filtered) seeds = np.arange(self.num_blocks)+1 # for self.block, self.key in enumerate(self.block_design): for self.block in np.arange(self.num_blocks): # randomly sample so that conditions (easy and hard) are equally represented self.random_state = seeds[self.block] # balance the dataframe by `condition_name` and `player_num` df_target = self._balance_design(dataframe = df_filtered) # remove `df_target` rows from the main dataframe so that we're always sampling from unique rows if self.replace==False: df_filtered = df_filtered.merge(df_target, how='left', indicator=True) df_filtered = df_filtered[df_filtered['_merge'] == 'left_only'].drop('_merge', axis=1) self.target_dir = os.path.join(consts.target_dir, self.task_name) self._save_target_files(df_target) class TheoryOfMind(Utils): """ This class makes target files for Theory of Mind using parameters set in __init__ Args: task_name (str): 'theory_of_mind' logging_file (str): csv file containing info about stimuli story_dur (int): length of story (sec) question_dur (int): length of question (sec) frac (int): proportion of meaningless trials. default is .3. balance_blocks (dict): keys are 'condition_name' block_dur_secs (int): length of task_name (sec) num_blocks (int): number of blocks to make tile_block (int): determines number of repeats for task_name trial_dur (int): length of trial (sec) iti_dur (iti): length of iti (sec) instruct_dur (int): length of instruct for task_names (sec) hand (str): response hand replace (bool): sample stim with or without replacement display_trial_feedback (bool): display trial-by-trial feedback """ def __init__(self): super().__init__() self.task_name = 'theory_of_mind' self.logging_file = 'theory_of_mind.csv' self.story_dur = 10 self.question_dur = 4 self.frac = .3 self.balance_blocks = {'condition_name': ['belief','photo'],'trial_type': [True, False]} self.block_dur_secs = 15 self.num_blocks = 5 self.tile_block = 1 self.trial_dur = 14 self.iti_dur = .5 self.instruct_dur = 5 self.hand = 'left' self.replace = False self.display_trial_feedback = True def _filter_dataframe(self, dataframe): dataframe = dataframe.query(f'condition=={self.balance_blocks["condition_name"]} and response=={self.balance_blocks["trial_type"]}') return dataframe def _create_new_columns(self, dataframe): # add condition column # dataframe['condition_name'] = dataframe['condition'].apply(lambda x: self.balance_blocks['condition_name'][x]) dataframe['condition_name'] = dataframe['condition'] dataframe['story_dur'] = self.story_dur dataframe['question_dur'] = self.question_dur dataframe['trial_dur_correct'] = dataframe['story_dur'] + self.iti_dur + dataframe['question_dur'] dataframe['display_trial_feedback'] = self.display_trial_feedback responses = self.balance_blocks['trial_type'] dataframe['trial_type'] = dataframe['response'].apply(lambda x: True if x==responses[0] else False) return dataframe def _balance_design(self, dataframe): # group the dataframe according to `balance_blocks` dataframe = dataframe.groupby([*self.balance_blocks], as_index=False).apply(lambda x: x.sample(n=self.num_stims, random_state=self.random_state, replace=self.replace)).reset_index(drop=True) # ensure that only `num_trials` are sampled dataframe = dataframe.sample(n=self.num_trials, random_state=self.random_state, replace=False).reset_index(drop=True) return dataframe def _get_block_info(self, **kwargs): # length (in secs) of the block if kwargs.get('block_dur_secs'): self.block_dur_secs = kwargs['block_dur_secs'] # repeat the target files if kwargs.get('tile_block'): self.tile_block = kwargs['tile_block'] # num of blocks (i.e. target files) to make if kwargs.get('num_blocks'): self.num_blocks = kwargs['num_blocks'] * self.tile_block # get overall number of trials self.num_trials = int(self.block_dur_secs / (self.trial_dur + self.iti_dur)) # get `num_stims` - lowest denominator across `balance_blocks` denominator = np.prod([len(stim) for stim in [*self.balance_blocks.values()]]) self.num_stims = ceil(self.num_trials / denominator) # round up to nearest int def make_targetfile(self, **kwargs): """ makes target file(s) for theory of mind given parameters in __init__ """ # get info about block self._get_block_info(**kwargs) # return logging file fpath = os.path.join(consts.stim_dir, self.task_name, self.logging_file) # read in stimulus dataframe df = pd.read_csv(fpath) # filter dataframe df_filtered = self._filter_dataframe(dataframe = df) # create new columns (`condition_name` etc) df_filtered = self._create_new_columns(dataframe = df_filtered) seeds = np.arange(self.num_blocks)+1 # for self.block, self.key in enumerate(self.block_design): for self.block in np.arange(self.num_blocks): # randomly sample so that conditions (easy and hard) are equally represented self.random_state = seeds[self.block] # balance the dataframe by `condition_name` and `player_num` df_target = self._balance_design(dataframe = df_filtered) # remove `df_target` rows from the main dataframe so that we're always sampling from unique rows if self.replace==False: df_filtered = df_filtered.merge(df_target, how='left', indicator=True) df_filtered = df_filtered[df_filtered['_merge'] == 'left_only'].drop('_merge', axis=1) # save out target files self.target_dir = os.path.join(consts.target_dir, self.task_name) self._save_target_files(df_target) class VerbGeneration(Utils): """ This class makes target files for Theory of Mind using parameters set in __init__ Args: task_name (str): 'verb_generation' logging_file (str): csv file containing info about stimuli story_dur (int): length of story (sec) question_dur (int): length of question (sec) frac (int): proportion of meaningless trials. default is .3. balance_blocks (dict): keys are 'condition_name' block_dur_secs (int): length of task_name (sec) num_blocks (int): number of blocks to make tile_block (int): determines number of repeats for task_name trial_dur (int): length of trial (sec) iti_dur (iti): length of iti (sec) instruct_dur (int): length of instruct for task_names (sec) hand (str): response hand replace (bool): sample stim with or without replacement display_trial_feedback (bool): display trial-by-trial feedback """ def __init__(self): super().__init__() self.task_name = 'verb_generation' self.logging_file = 'verb_generation.csv' self.frac = .3 self.balance_blocks = {'session_list': ['1','2']} self.block_dur_secs = 15 self.num_blocks = 5 self.tile_block = 1 self.trial_dur = 1.6 self.iti_dur = .5 self.instruct_dur = 5 self.hand = 'None' self.replace = False self.display_trial_feedback = False def _filter_dataframe(self, dataframe): dataframe = dataframe.query(f'session_list=={self.balance_blocks["session_list"]}') return dataframe def _create_new_columns(self, dataframe): # add condition column dataframe['session_list'] = dataframe['session_list'] dataframe['trial_dur'] = self.trial_dur dataframe['display_trial_feedback'] = self.display_trial_feedback return dataframe def _balance_design(self, dataframe): # group the dataframe according to `balance_blocks` dataframe = dataframe.groupby([*self.balance_blocks], as_index=False).apply(lambda x: x.sample(n=self.num_stims, random_state=self.random_state, replace=self.replace)).reset_index(drop=True) # ensure that only `num_trials` are sampled dataframe = dataframe.sample(n=self.num_trials, random_state=self.random_state, replace=False).reset_index(drop=True) return dataframe def _get_block_info(self, **kwargs): # length (in secs) of the block if kwargs.get('block_dur_secs'): self.block_dur_secs = kwargs['block_dur_secs'] # repeat the target files if kwargs.get('tile_block'): self.tile_block = kwargs['tile_block'] # num of blocks (i.e. target files) to make if kwargs.get('num_blocks'): self.num_blocks = kwargs['num_blocks'] * self.tile_block # get overall number of trials self.num_trials = int(self.block_dur_secs / (self.trial_dur + self.iti_dur)) # get `num_stims` - lowest denominator across `balance_blocks` denominator = np.prod([len(stim) for stim in [*self.balance_blocks.values()]]) self.num_stims = ceil(self.num_trials / denominator) # round up to nearest int def make_targetfile(self, **kwargs): """ makes target file(s) for theory of mind given parameters in __init__ """ # get info about block self._get_block_info(**kwargs) # return logging file fpath = os.path.join(consts.stim_dir, self.task_name, self.logging_file) # read in stimulus dataframe df = pd.read_csv(fpath) # filter dataframe df_filtered = self._filter_dataframe(dataframe = df) # create new columns (`condition_name` etc) df_filtered = self._create_new_columns(dataframe = df_filtered) seeds = np.arange(self.num_blocks)+1 # for self.block, self.key in enumerate(self.block_design): for self.block in np.arange(self.num_blocks): # randomly sample so that conditions (easy and hard) are equally represented self.random_state = seeds[self.block] # balance the dataframe by `condition_name` and `player_num` df_target = self._balance_design(dataframe = df_filtered) # remove `df_target` rows from the main dataframe so that we're always sampling from unique rows if self.replace==False: df_filtered = df_filtered.merge(df_target, how ='left', indicator=True) df_filtered = df_filtered[df_filtered['_merge'] == 'left_only'].drop('_merge', axis=1) # save out target files self.target_dir = os.path.join(consts.target_dir, self.task_name) self._save_target_files(df_target) class RomanceMovie(Utils): """ This class makes target files for Social Prediction using parameters set in __init__ Args: task_name (str): 'romance_movie' logging_file (str): csv file containing info about stimuli video_name (list of str): name of video(s) to include resized (bool): resize frames of video block_dur_secs (int): length of task_name (sec) num_blocks (int): number of blocks to make tile_block (int): determines number of repeats for task_name trial_dur (int): length of trial (sec) iti_dur (iti): length of iti (sec) instruct_dur (int): length of instruct for task_names (sec) hand (str): response hand replace (bool): sample stim with or without replacement display_trial_feedback (bool): display trial-by-trial feedback """ def __init__(self): super().__init__() self.task_name = 'romance_movie' self.logging_file = 'romance_movie_logging.csv' self.video_name = ['romance'] self.balance_blocks = {'condition_name': ['romance']} self.block_dur_secs = 30 self.num_blocks = 5 self.tile_block = 1 self.trial_dur = 20 self.iti_dur = .5 self.instruct_dur = 5 self.hand = 'None' self.replace = False self.display_trial_feedback = False def _filter_dataframe(self, dataframe): # remove all filenames where any of the videos have not been extracted stims_to_remove = dataframe.query('extracted==False')["video_name"].to_list() df_filtered = dataframe[~dataframe["video_name"].isin(stims_to_remove)] return df_filtered def _create_new_columns(self, dataframe): # make new `stim` dataframe['stim'] = dataframe['video_name'] + '.mov' # set `condition name` dataframe['condition_name'] = dataframe['condition_name'] dataframe['display_trial_feedback'] = self.display_trial_feedback return dataframe def _balance_design(self, dataframe): # ensure that only `num_trials` are sampled dataframe = dataframe.sample(n=self.num_trials, random_state=self.random_state, replace=False).reset_index(drop=True) return dataframe def _get_block_info(self, **kwargs): # length (in secs) of the block if kwargs.get('block_dur_secs'): self.block_dur_secs = kwargs['block_dur_secs'] # repeat the target files if kwargs.get('tile_block'): self.tile_block = kwargs['tile_block'] # num of blocks (i.e. target files) to make if kwargs.get('num_blocks'): self.num_blocks = kwargs['num_blocks'] * self.tile_block # get overall number of trials self.num_trials = int(self.block_dur_secs / (self.trial_dur + self.iti_dur)) # get `num_stims` - lowest denominator across `balance_blocks` denominator = np.prod([len(stim) for stim in [*self.balance_blocks.values()]]) self.num_stims = ceil(self.num_trials / denominator) # round up to nearest int def make_targetfile(self, **kwargs): """ makes target file(s) for social prediction given parameters in __init__ """ # get info about block self._get_block_info(**kwargs) # return logging file fpath = os.path.join(consts.stim_dir, self.task_name, self.logging_file) # read in stimulus dataframe df = pd.read_csv(fpath) # filter dataframe df_filtered = self._filter_dataframe(dataframe = df) # create new columns (`trial_type` etc) df_filtered = self._create_new_columns(dataframe = df_filtered) seeds = np.arange(self.num_blocks)+1 # for self.block, self.key in enumerate(self.block_design): for self.block in np.arange(self.num_blocks): # randomly sample so that conditions (easy and hard) are equally represented self.random_state = seeds[self.block] # balance the dataframe by `condition_name` and `player_num` df_target = self._balance_design(dataframe = df_filtered) # remove `df_target` rows from the main dataframe so that we're always sampling from unique rows if self.replace==False: df_filtered = df_filtered.merge(df_target, how='left', indicator=True) df_filtered = df_filtered[df_filtered['_merge'] == 'left_only'].drop('_merge', axis=1) self.target_dir = os.path.join(consts.target_dir, self.task_name) self._save_target_files(df_target) class ActionObservationKnots(Utils): """ This class makes target files for Action Observation Knots using parameters set in __init__ Args: task_name (str): 'action_observation_knots' logging_file (str): csv file containing info about stimuli video_name (list of str): name of video(s) to include resized (bool): resize frames of video block_dur_secs (int): length of task_name (sec) num_blocks (int): number of blocks to make tile_block (int): determines number of repeats for task_name trial_dur (int): length of trial (sec) iti_dur (iti): length of iti (sec) instruct_dur (int): length of instruct for task_names (sec) hand (str): response hand replace (bool): sample stim with or without replacement display_trial_feedback (bool): display trial-by-trial feedback """ def __init__(self): super().__init__() self.task_name = 'act_obs_knots' self.logging_file = 'action_observation_knots_logging.csv' self.video_name_action = ['knotAction'] self.video_name_control = ['knotControl'] self.balance_blocks = {'condition_name': ['knot'], 'session_list': [1,2]} self.block_dur_secs = 30 self.num_blocks = 5 self.tile_block = 1 self.trial_dur = 15 self.iti_dur = .5 self.instruct_dur = 5 self.hand = 'None' self.replace = False self.display_trial_feedback = False def _filter_dataframe(self, dataframe): # remove all filenames where any of the videos have not been extracted stims_to_remove = dataframe.query('extracted==False')["video_name_action"].to_list() df_filtered = dataframe[~dataframe["video_name_action"].isin(stims_to_remove)] return df_filtered def _create_new_columns(self, dataframe): # make new `stim` dataframe['stim_action'] = dataframe['video_name_action'] + '.mov' dataframe['stim_control'] = dataframe['video_name_control'] + '.mov' dataframe['session_list'] = dataframe['session_list'] # set `condition name` dataframe['condition_name'] = dataframe['condition_name'] dataframe['display_trial_feedback'] = self.display_trial_feedback return dataframe def _balance_design(self, dataframe): # group the dataframe according to `balance_blocks` dataframe = dataframe.groupby([*self.balance_blocks], as_index=False).apply(lambda x: x.sample(n=self.num_stims, random_state=self.random_state, replace=self.replace)).reset_index(drop=True) # ensure that only `num_trials` are sampled dataframe = dataframe.sample(n=self.num_trials, random_state=self.random_state, replace=False).reset_index(drop=True) return dataframe def _get_block_info(self, **kwargs): # length (in secs) of the block if kwargs.get('block_dur_secs'): self.block_dur_secs = kwargs['block_dur_secs'] # repeat the target files if kwargs.get('tile_block'): self.tile_block = kwargs['tile_block'] # num of blocks (i.e. target files) to make if kwargs.get('num_blocks'): self.num_blocks = kwargs['num_blocks'] * self.tile_block # get overall number of trials self.num_trials = int(self.block_dur_secs / (self.trial_dur + self.iti_dur)) # get `num_stims` - lowest denominator across `balance_blocks` denominator = np.prod([len(stim) for stim in [*self.balance_blocks.values()]]) self.num_stims = ceil(self.num_trials / denominator) # round up to nearest int def make_targetfile(self, **kwargs): """ makes target file(s) for social prediction given parameters in __init__ """ # get info about block self._get_block_info(**kwargs) # return logging file fpath = os.path.join(consts.stim_dir, self.task_name, self.logging_file) # read in stimulus dataframe df = pd.read_csv(fpath) # filter dataframe df_filtered = self._filter_dataframe(dataframe = df) # create new columns (`trial_type` etc) df_filtered = self._create_new_columns(dataframe = df_filtered) seeds = np.arange(self.num_blocks)+1 # for self.block, self.key in enumerate(self.block_design): for self.block in np.arange(self.num_blocks): # randomly sample so that conditions (easy and hard) are equally represented self.random_state = seeds[self.block] # balance the dataframe by `condition_name` and `player_num` df_target = self._balance_design(dataframe = df_filtered) # remove `df_target` rows from the main dataframe so that we're always sampling from unique rows if self.replace==False: df_filtered = df_filtered.merge(df_target, how='left', indicator=True) df_filtered = df_filtered[df_filtered['_merge'] == 'left_only'].drop('_merge', axis=1) self.target_dir = os.path.join(consts.target_dir, self.task_name) self._save_target_files(df_target) class Rest(Utils): """ This class makes target files for Rest using parameters set in __init__ Args: task_name (str): 'rest' rest_dur_secs (int): length of rest (sec), 0 if no rest iti_dur (iti): length of iti (sec) instruct_dur (int): length of instruct for task_names (sec) hand (str): response hand num_trials (int): number of trials per block. default is 1 display_trial_feedback (bool): display trial-by-trial feedback """ def __init__(self): super().__init__() self.task_name = 'rest' self.rest_dur_secs = 10 self.iti_dur = 0 self.instruct_dur = 0 self.hand = "None" self.num_trials = 1 self.display_trial_feedback = False def _get_block_info(self, **kwargs): # length (in secs) of the block if kwargs.get('rest_dur_secs'): self.trial_dur = kwargs['rest_dur_secs'] else: self.trial_dur = self.rest_dur_secs def _create_new_columns(self): start_time = np.round(np.arange(0, self.num_trials*(self.trial_dur+self.iti_dur), self.trial_dur+self.iti_dur), 1) data = {"stim": 'fixation', "trial_dur":self.trial_dur, "iti_dur":self.iti_dur, "start_time":start_time, "hand": self.hand} dataframe = pd.DataFrame.from_records(data) dataframe['display_trial_feedback'] = self.display_trial_feedback return dataframe def make_targetfile(self, **kwargs): """ makes target file(s) for rest given parameters in __init__ """ # get info about block self._get_block_info(**kwargs) # save target file self.target_name = self.task_name + '_' + str(self.rest_dur_secs) + 'sec.csv' # create dataframe dataframe = self._create_new_columns() target_dir = os.path.join(consts.target_dir, self.task_name) if not os.path.exists(target_dir): os.makedirs(target_dir) dataframe.to_csv(os.path.join(target_dir, self.target_name), index = False, header = True) return self.target_name class MakeFiles: """ This class makes run and target files using parameters set in __init__ Args: task_names (list of str): options are 'visual_search', 'n_back', 'social_prediction', 'semantic_prediction', 'action_observation' feedback_types (list of str): options are 'rt' and 'acc' run_name_prefix (str): prefix of run name tile_run (int): determines number of block repeats within a run instruct_dur (int): length of instruct for task_names (sec) block_dur_secs (int): length of task_name (sec) rest_dur_secs (int): length of rest (sec), 0 if no rest num_runs (int): number of runs counterbalance_runs (bool): counterbalance block order across runs """ def __init__(self): self.task_names = ['visual_search', 'theory_of_mind', 'n_back', 'social_prediction', 'semantic_prediction', 'action_observation', 'verb_generation', 'romance_movie', 'act_obs_knots'] self.feedback_types = ['rt', 'acc', 'rt', 'acc', 'rt', 'acc', 'None', 'None', 'None'] self.run_name_prefix = 'run' self.tile_run = 1 self.instruct_dur = 5 self.block_dur_secs = 30 self.rest_dur_secs = 10 self.num_runs = 5 self.counterbalance_runs = True def _create_run_dataframe(self, target_files): for iter, target_file in enumerate(target_files): # load target file dataframe = pd.read_csv(target_file) start_time = dataframe.iloc[0]['start_time'] + self.cum_time end_time = dataframe.iloc[-1]['start_time'] + dataframe.iloc[-1]['trial_dur'] + self.instruct_dur + self.cum_time target_file_name = Path(target_file).name num_sec = re.findall(r'\d+(?=sec)', target_file)[0] target_num = re.findall(r'\d+(?=.csv)', target_file)[0] num_trials = len(dataframe) data = {'task_name': self.task_name, 'task_num': self.task_num+1, # 'block_iter': iter+1 'num_trials': num_trials, 'target_num': target_num, 'num_sec': num_sec, 'target_file': target_file_name, 'start_time': start_time, 'end_time': end_time, 'instruct_dur': self.instruct_dur, 'feedback_type': self.feedback_type} self.all_data.append(data) self.cum_time = end_time def _save_run_file(self, run_name): # make dataframe from a dictionary df_run = pd.DataFrame.from_dict(self.all_data) # save out to file df_run.to_csv(os.path.join(consts.run_dir, run_name), index=False, header=True) def _add_rest(self): run_files = sorted(glob.glob(os.path.join(consts.run_dir, f'*{self.run_name_prefix}*'))) # make target file BlockClass = TASK_MAP['rest'] block = BlockClass() self.target_name = block.make_targetfile(block_dur_secs = self.rest_dur_secs) for run_file in run_files: dataframe = pd.read_csv(run_file) dataframe = self._add_rest_rows(dataframe) dataframe.to_csv(run_file, index = False, header = True) def _counterbalance_runs(self): pass def _check_task_run(self): # check if task exists in dict exists_in_dict = [True for key in self.target_dict.keys() if self.task_name==key] if not exists_in_dict: self.target_dict.update({self.task_name: self.fpaths}) # create run dataframe random.seed(2) target_files_sample = [self.target_dict[self.task_name].pop(random.randrange(len(self.target_dict[self.task_name]))) for _ in np.arange(self.tile_run)] return target_files_sample def _insert_row(self, row_number, dataframe, row_value): # Slice the upper half of the dataframe df1 = dataframe[0:row_number] # Store the result of lower half of the dataframe df2 = dataframe[row_number:] # Insert the row in the upper half dataframe df1.loc[row_number]=row_value # Concat the two dataframes df_result =
pd.concat([df1, df2])
pandas.concat
# --- # jupyter: # jupytext: # formats: ipynb,../../tests/notebooks//py:percent # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.11.1 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # %% # %load_ext autoreload # %autoreload 2 import os import pickle as pkl from typing import Dict, Any import numpy as np import pandas as pd from sklearn.datasets import fetch_openml import matplotlib as mpl import matplotlib.pyplot as plt mpl.rcParams['figure.dpi'] = 250 # change working directory to project root if os.getcwd().split('/')[-1] == 'notebooks': os.chdir('../..') from experiments.notebooks import viz def get_comparison_result(path: str, estimator_name: str, test=False) -> Dict[str, Any]: if test: result_file = path + 'test/' + f'{estimator_name}_test_comparisons.pkl' else: result_file = path + 'val/' + f'{estimator_name}_comparisons.pkl' return pkl.load(open(result_file, 'rb')) MODEL_COMPARISON_PATH = 'experiments/comparison_data/' datasets = [ ("breast-cancer", 13), ("breast-w", 15), ("credit-g", 31), ("haberman", 43), ("heart", 1574), ("labor", 4), ("vote", 56), ] # %% [markdown] # # dataset stats # %% metadata = [] columns = ['name', 'samples', 'features', 'class 0 ct', 'class 1 ct', 'majority class %'] for dataset_name, data_id in datasets: dataset = fetch_openml(data_id=data_id, as_frame=False) shape = dataset.data.shape class_counts = np.unique(dataset.target, return_counts=True)[1] metadata.append([dataset_name, shape[0], shape[1], class_counts[0], class_counts[1], np.max(class_counts) / np.sum(class_counts)])
pd.DataFrame(metadata, columns=columns)
pandas.DataFrame
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import operator from itertools import product, starmap from numpy import nan, inf import numpy as np import pandas as pd from pandas import (Index, Series, DataFrame, isnull, bdate_range, NaT, date_range, timedelta_range, _np_version_under1p8) from pandas.tseries.index import Timestamp from pandas.tseries.tdi import Timedelta import pandas.core.nanops as nanops from pandas.compat import range, zip from pandas import compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from .common import TestData class TestSeriesOperators(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_comparisons(self): left = np.random.randn(10) right = np.random.randn(10) left[:3] = np.nan result = nanops.nangt(left, right) with np.errstate(invalid='ignore'): expected = (left > right).astype('O') expected[:3] = np.nan assert_almost_equal(result, expected) s = Series(['a', 'b', 'c']) s2 = Series([False, True, False]) # it works! exp = Series([False, False, False]) tm.assert_series_equal(s == s2, exp) tm.assert_series_equal(s2 == s, exp) def test_op_method(self): def check(series, other, check_reverse=False): simple_ops = ['add', 'sub', 'mul', 'floordiv', 'truediv', 'pow'] if not compat.PY3: simple_ops.append('div') for opname in simple_ops: op = getattr(Series, opname) if op == 'div': alt = operator.truediv else: alt = getattr(operator, opname) result = op(series, other) expected = alt(series, other) tm.assert_almost_equal(result, expected) if check_reverse: rop = getattr(Series, "r" + opname) result = rop(series, other) expected = alt(other, series) tm.assert_almost_equal(result, expected) check(self.ts, self.ts * 2) check(self.ts, self.ts[::2]) check(self.ts, 5, check_reverse=True) check(tm.makeFloatSeries(), tm.makeFloatSeries(), check_reverse=True) def test_neg(self): assert_series_equal(-self.series, -1 * self.series) def test_invert(self): assert_series_equal(-(self.series < 0), ~(self.series < 0)) def test_div(self): with np.errstate(all='ignore'): # no longer do integer div for any ops, but deal with the 0's p = DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = p['first'] / p['second'] expected = Series( p['first'].values.astype(float) / p['second'].values, dtype='float64') expected.iloc[0:3] = np.inf assert_series_equal(result, expected) result = p['first'] / 0 expected = Series(np.inf, index=p.index, name='first') assert_series_equal(result, expected) p = p.astype('float64') result = p['first'] / p['second'] expected = Series(p['first'].values / p['second'].values) assert_series_equal(result, expected) p = DataFrame({'first': [3, 4, 5, 8], 'second': [1, 1, 1, 1]}) result = p['first'] / p['second'] assert_series_equal(result, p['first'].astype('float64'), check_names=False) self.assertTrue(result.name is None) self.assertFalse(np.array_equal(result, p['second'] / p['first'])) # inf signing s = Series([np.nan, 1., -1.]) result = s / 0 expected = Series([np.nan, np.inf, -np.inf]) assert_series_equal(result, expected) # float/integer issue # GH 7785 p = DataFrame({'first': (1, 0), 'second': (-0.01, -0.02)}) expected = Series([-0.01, -np.inf]) result = p['second'].div(p['first']) assert_series_equal(result, expected, check_names=False) result = p['second'] / p['first'] assert_series_equal(result, expected) # GH 9144 s = Series([-1, 0, 1]) result = 0 / s expected = Series([0.0, nan, 0.0]) assert_series_equal(result, expected) result = s / 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) result = s // 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) def test_operators(self): def _check_op(series, other, op, pos_only=False, check_dtype=True): left = np.abs(series) if pos_only else series right = np.abs(other) if pos_only else other cython_or_numpy = op(left, right) python = left.combine(right, op) tm.assert_series_equal(cython_or_numpy, python, check_dtype=check_dtype) def check(series, other): simple_ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'mod'] for opname in simple_ops: _check_op(series, other, getattr(operator, opname)) _check_op(series, other, operator.pow, pos_only=True) _check_op(series, other, lambda x, y: operator.add(y, x)) _check_op(series, other, lambda x, y: operator.sub(y, x)) _check_op(series, other, lambda x, y: operator.truediv(y, x)) _check_op(series, other, lambda x, y: operator.floordiv(y, x)) _check_op(series, other, lambda x, y: operator.mul(y, x)) _check_op(series, other, lambda x, y: operator.pow(y, x), pos_only=True) _check_op(series, other, lambda x, y: operator.mod(y, x)) check(self.ts, self.ts * 2) check(self.ts, self.ts * 0) check(self.ts, self.ts[::2]) check(self.ts, 5) def check_comparators(series, other, check_dtype=True): _check_op(series, other, operator.gt, check_dtype=check_dtype) _check_op(series, other, operator.ge, check_dtype=check_dtype) _check_op(series, other, operator.eq, check_dtype=check_dtype) _check_op(series, other, operator.lt, check_dtype=check_dtype) _check_op(series, other, operator.le, check_dtype=check_dtype) check_comparators(self.ts, 5) check_comparators(self.ts, self.ts + 1, check_dtype=False) def test_operators_empty_int_corner(self): s1 = Series([], [], dtype=np.int32) s2 = Series({'x': 0.}) tm.assert_series_equal(s1 * s2, Series([np.nan], index=['x'])) def test_operators_timedelta64(self): # invalid ops self.assertRaises(Exception, self.objSeries.__add__, 1) self.assertRaises(Exception, self.objSeries.__add__, np.array(1, dtype=np.int64)) self.assertRaises(Exception, self.objSeries.__sub__, 1) self.assertRaises(Exception, self.objSeries.__sub__, np.array(1, dtype=np.int64)) # seriese ops v1 = date_range('2012-1-1', periods=3, freq='D') v2 = date_range('2012-1-2', periods=3, freq='D') rs = Series(v2) - Series(v1) xp = Series(1e9 * 3600 * 24, rs.index).astype('int64').astype('timedelta64[ns]') assert_series_equal(rs, xp) self.assertEqual(rs.dtype, 'timedelta64[ns]') df = DataFrame(dict(A=v1)) td = Series([timedelta(days=i) for i in range(3)]) self.assertEqual(td.dtype, 'timedelta64[ns]') # series on the rhs result = df['A'] - df['A'].shift() self.assertEqual(result.dtype, 'timedelta64[ns]') result = df['A'] + td self.assertEqual(result.dtype, 'M8[ns]') # scalar Timestamp on rhs maxa = df['A'].max() tm.assertIsInstance(maxa, Timestamp) resultb = df['A'] - df['A'].max() self.assertEqual(resultb.dtype, 'timedelta64[ns]') # timestamp on lhs result = resultb + df['A'] values = [Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')] expected = Series(values, name='A') assert_series_equal(result, expected) # datetimes on rhs result = df['A'] - datetime(2001, 1, 1) expected = Series( [timedelta(days=4017 + i) for i in range(3)], name='A') assert_series_equal(result, expected) self.assertEqual(result.dtype, 'm8[ns]') d = datetime(2001, 1, 1, 3, 4) resulta = df['A'] - d self.assertEqual(resulta.dtype, 'm8[ns]') # roundtrip resultb = resulta + d assert_series_equal(df['A'], resultb) # timedeltas on rhs td = timedelta(days=1) resulta = df['A'] + td resultb = resulta - td assert_series_equal(resultb, df['A']) self.assertEqual(resultb.dtype, 'M8[ns]') # roundtrip td = timedelta(minutes=5, seconds=3) resulta = df['A'] + td resultb = resulta - td assert_series_equal(df['A'], resultb) self.assertEqual(resultb.dtype, 'M8[ns]') # inplace value = rs[2] + np.timedelta64(timedelta(minutes=5, seconds=1)) rs[2] += np.timedelta64(timedelta(minutes=5, seconds=1)) self.assertEqual(rs[2], value) def test_operator_series_comparison_zerorank(self): # GH 13006 result = np.float64(0) > pd.Series([1, 2, 3]) expected = 0.0 > pd.Series([1, 2, 3]) self.assert_series_equal(result, expected) result = pd.Series([1, 2, 3]) < np.float64(0) expected = pd.Series([1, 2, 3]) < 0.0 self.assert_series_equal(result, expected) result = np.array([0, 1, 2])[0] > pd.Series([0, 1, 2]) expected = 0.0 > pd.Series([1, 2, 3]) self.assert_series_equal(result, expected) def test_timedeltas_with_DateOffset(self): # GH 4532 # operate with pd.offsets s = Series([Timestamp('20130101 9:01'), Timestamp('20130101 9:02')]) result = s + pd.offsets.Second(5) result2 = pd.offsets.Second(5) + s expected = Series([Timestamp('20130101 9:01:05'), Timestamp( '20130101 9:02:05')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s - pd.offsets.Second(5) result2 = -pd.offsets.Second(5) + s expected = Series([Timestamp('20130101 9:00:55'), Timestamp( '20130101 9:01:55')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series([Timestamp('20130101 9:01:00.005'), Timestamp( '20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Minute(5) + pd.offsets.Milli(5) expected = Series([Timestamp('20130101 9:06:00.005'), Timestamp( '20130101 9:07:00.005')]) assert_series_equal(result, expected) # operate with np.timedelta64 correctly result = s + np.timedelta64(1, 's') result2 = np.timedelta64(1, 's') + s expected = Series([Timestamp('20130101 9:01:01'), Timestamp( '20130101 9:02:01')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + np.timedelta64(5, 'ms') result2 = np.timedelta64(5, 'ms') + s expected = Series([Timestamp('20130101 9:01:00.005'), Timestamp( '20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # valid DateOffsets for do in ['Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano']: op = getattr(pd.offsets, do) s + op(5) op(5) + s def test_timedelta_series_ops(self): # GH11925 s = Series(timedelta_range('1 day', periods=3)) ts = Timestamp('2012-01-01') expected = Series(date_range('2012-01-02', periods=3)) assert_series_equal(ts + s, expected) assert_series_equal(s + ts, expected) expected2 = Series(date_range('2011-12-31', periods=3, freq='-1D')) assert_series_equal(ts - s, expected2) assert_series_equal(ts + (-s), expected2) def test_timedelta64_operations_with_DateOffset(self): # GH 10699 td = Series([timedelta(minutes=5, seconds=3)] * 3) result = td + pd.offsets.Minute(1) expected = Series([timedelta(minutes=6, seconds=3)] * 3) assert_series_equal(result, expected) result = td - pd.offsets.Minute(1) expected = Series([timedelta(minutes=4, seconds=3)] * 3) assert_series_equal(result, expected) result = td + Series([pd.offsets.Minute(1), pd.offsets.Second(3), pd.offsets.Hour(2)]) expected = Series([timedelta(minutes=6, seconds=3), timedelta( minutes=5, seconds=6), timedelta(hours=2, minutes=5, seconds=3)]) assert_series_equal(result, expected) result = td + pd.offsets.Minute(1) + pd.offsets.Second(12) expected = Series([timedelta(minutes=6, seconds=15)] * 3) assert_series_equal(result, expected) # valid DateOffsets for do in ['Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano']: op = getattr(pd.offsets, do) td + op(5) op(5) + td td - op(5) op(5) - td def test_timedelta64_operations_with_timedeltas(self): # td operate with td td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td2 = timedelta(minutes=5, seconds=4) result = td1 - td2 expected = Series([timedelta(seconds=0)] * 3) - Series([timedelta( seconds=1)] * 3) self.assertEqual(result.dtype, 'm8[ns]') assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta( seconds=0)] * 3)) assert_series_equal(result2, expected) # roundtrip assert_series_equal(result + td2, td1) # Now again, using pd.to_timedelta, which should build # a Series or a scalar, depending on input. td1 = Series(pd.to_timedelta(['00:05:03'] * 3)) td2 = pd.to_timedelta('00:05:04') result = td1 - td2 expected = Series([timedelta(seconds=0)] * 3) - Series([timedelta( seconds=1)] * 3) self.assertEqual(result.dtype, 'm8[ns]') assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta( seconds=0)] * 3)) assert_series_equal(result2, expected) # roundtrip assert_series_equal(result + td2, td1) def test_timedelta64_operations_with_integers(self): # GH 4521 # divide/multiply by integers startdate = Series(date_range('2013-01-01', '2013-01-03')) enddate = Series(date_range('2013-03-01', '2013-03-03')) s1 = enddate - startdate s1[2] = np.nan s2 = Series([2, 3, 4]) expected = Series(s1.values.astype(np.int64) / s2, dtype='m8[ns]') expected[2] = np.nan result = s1 / s2 assert_series_equal(result, expected) s2 = Series([20, 30, 40]) expected = Series(s1.values.astype(np.int64) / s2, dtype='m8[ns]') expected[2] = np.nan result = s1 / s2 assert_series_equal(result, expected) result = s1 / 2 expected = Series(s1.values.astype(np.int64) / 2, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result, expected) s2 = Series([20, 30, 40]) expected = Series(s1.values.astype(np.int64) * s2, dtype='m8[ns]') expected[2] = np.nan result = s1 * s2 assert_series_equal(result, expected) for dtype in ['int32', 'int16', 'uint32', 'uint64', 'uint32', 'uint16', 'uint8']: s2 = Series([20, 30, 40], dtype=dtype) expected = Series( s1.values.astype(np.int64) * s2.astype(np.int64), dtype='m8[ns]') expected[2] = np.nan result = s1 * s2 assert_series_equal(result, expected) result = s1 * 2 expected = Series(s1.values.astype(np.int64) * 2, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result, expected) result = s1 * -1 expected = Series(s1.values.astype(np.int64) * -1, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result, expected) # invalid ops assert_series_equal(s1 / s2.astype(float), Series([Timedelta('2 days 22:48:00'), Timedelta( '1 days 23:12:00'), Timedelta('NaT')])) assert_series_equal(s1 / 2.0, Series([Timedelta('29 days 12:00:00'), Timedelta( '29 days 12:00:00'), Timedelta('NaT')])) for op in ['__add__', '__sub__']: sop = getattr(s1, op, None) if sop is not None: self.assertRaises(TypeError, sop, 1) self.assertRaises(TypeError, sop, s2.values) def test_timedelta64_conversions(self): startdate = Series(date_range('2013-01-01', '2013-01-03')) enddate = Series(date_range('2013-03-01', '2013-03-03')) s1 = enddate - startdate s1[2] = np.nan for m in [1, 3, 10]: for unit in ['D', 'h', 'm', 's', 'ms', 'us', 'ns']: # op expected = s1.apply(lambda x: x / np.timedelta64(m, unit)) result = s1 / np.timedelta64(m, unit) assert_series_equal(result, expected) if m == 1 and unit != 'ns': # astype result = s1.astype("timedelta64[{0}]".format(unit)) assert_series_equal(result, expected) # reverse op expected = s1.apply( lambda x: Timedelta(np.timedelta64(m, unit)) / x) result = np.timedelta64(m, unit) / s1 # astype s = Series(date_range('20130101', periods=3)) result = s.astype(object) self.assertIsInstance(result.iloc[0], datetime) self.assertTrue(result.dtype == np.object_) result = s1.astype(object) self.assertIsInstance(result.iloc[0], timedelta) self.assertTrue(result.dtype == np.object_) def test_timedelta64_equal_timedelta_supported_ops(self): ser = Series([
Timestamp('20130301')
pandas.tseries.index.Timestamp
from cdo_api_py import Client import pandas as pd from datetime import datetime from pprint import pprint # initialize a client with a developer token , # note 5 calls per second and 1000 calls per day limit for each token token = "my token <PASSWORD>!" my_client = Client(token, default_units=None, default_limit=1000) # the other valid option for units is 'standard', and default_limit maxes out at 1000 # first lets see what endpoints are associated with the API # you can read more about this from NOAAs NCDC at # https://www.ncdc.noaa.gov/cdo-web/webservices/v2#gettingStarted pprint(my_client.list_endpoints()) # request a list of available datasets (about 11) with pprint(my_client.list_datasets()) # there are more than 1000 datatypes, but you can see them all with pprint(my_client.list_datatypes()) # define the extent we are interested in. in this case the DC metro area. extent = { "north": 39.14, "south": 38.68, "east": -76.65, "west": -77.35, } # lets define the date range we're interested in as well, December 2016 startdate = datetime(2016, 12, 1) enddate = datetime(2016, 12, 31) # after examining the available datasets, we decided 'GHCND' is the one we want, # and that we really want daily min and max temperatures datasetid='GHCND' datatypeid=['TMIN', 'TMAX', 'PRCP'] # lets find stations that meet all our criteria stations = my_client.find_stations( datasetid=datasetid, extent=extent, startdate=startdate, enddate=enddate, datatypeid=datatypeid, return_dataframe=True) pprint(stations) # we can get big lists of station data with big_df = pd.DataFrame() for rowid, station in stations.iterrows(): # remember this is a pandas dataframe! station_data = my_client.get_data_by_station( datasetid=datasetid, stationid=station['id'], # remember this is a pandas dataframe startdate=startdate, enddate=enddate, return_dataframe=True, # this defaults to True include_station_meta=True # flatten station metadata with ghcnd readings ) if isinstance(station_data, list): continue pprint(station_data) big_df =
pd.concat([big_df, station_data], sort=False)
pandas.concat
#!/usr/bin/env python """ Pseudo-bulk profile computation """ __author__ = "<NAME>" __copyright__ = "Copyright 2021" __credits__ = ["<NAME>"] __license__ = "MIT" __version__ = "0.1" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Development" import Catactor from .mini_catactor import run_mini_catactor import argparse import pickle import scanpy as sc import numpy as np from scipy import sparse from sklearn.preprocessing import binarize import argparse import pickle import matplotlib.pyplot as plt import os import pandas as pd import collections def genome_binning(column_ann, min_bin=1000, max_bin=10000, step_bin=1000, bin_prefix='global_index', verbose=True): if 'chr' not in column_ann.columns or \ 'start' not in column_ann.columns or \ 'end' not in column_ann.columns: return column_ann column_ann = column_ann.sort_values(by=['chr', 'start']) if verbose: print('-- Binning with different sizes', min_bin, max_bin, step_bin) index_list = [x.replace(bin_prefix, '').lstrip('_') for x in column_ann.columns if bin_prefix in x] min_data_bin = min([int(i) if i != '' else step_bin for i in index_list]) min_step = max(min_data_bin, step_bin) column_ann = column_ann.loc[~pd.isna(column_ann.loc[:,'start']),:] start_index = column_ann.loc[:,"start"] peak_flag = False if (start_index%10 != 0).any() and ((start_index-1)%10 != 0).any(): # peak data inference peak_flag = True start_index = (column_ann["end"]+column_ann["start"])/2 if verbose: print('-- Construct', 'peak_flag=', peak_flag) if len([x for x in index_list if x != '']) > 0: print('Columns already contain :', index_list) for step in range(max(min_bin, min_step), max_bin+min_step, min_step): if verbose: print(' --- Step:', step) if bin_prefix+'_'+str(step) in column_ann.columns: column_ann = column_ann.drop(columns=bin_prefix+'_'+str(step)) column_ann.loc[:, "chr_index"] = np.floor(start_index/step).astype(int).values candidates = pd.DataFrame({'chr':column_ann.loc[:,"chr"].values, "chr_index":column_ann.loc[:,"chr_index"].values}) candidates.drop_duplicates(keep='first', inplace=True) candidates.loc[:, bin_prefix+'_'+str(step)] = list(range(0, candidates.shape[0])) column_ann = column_ann.merge(candidates, how='left', on=["chr", "chr_index"]) column_ann = column_ann.drop(columns=['chr_index']) return column_ann def compute_column_conversion_matrix(column_max, gene_file, projection_mat, projection_ann): new_column_ann = pd.read_csv(re.sub('_with_bins.*.csv', projection_ann, gene_file), index_col=0, sep=' ', low_memory=False) duplicated_columns = [x for x in new_column_ann.columns if new_column_ann.index.name in x] if len(duplicated_columns) > 0: # to solve the problem of duplicated column names new_column_ann = new_column_ann.rename(columns={duplicated_columns[0]:new_column_ann.index.name}) new_column_ann.index.name = '' # original = column_ann.index.array.astype(float).astype(int) projection, row, column, data = self.read_any_matrix(self.args['adir'], re.sub('_with_bins_annot.csv', projection_mat, gene_file), 2) assert row <= column_max if row < column_max: projection.resize((column_max, column)) return projection, new_column_ann else: return projection, new_column_ann def __extract_and_fill_unique_column(data, target, max_index): otarget = None if target == '' or data.index.name == target: # copy the original index and sort by index target = data.index.name kwargs = {target: data.index.array} data = data.assign(**kwargs) data.index.name, otarget = 'raw_index', 'raw_index' assert target in data.columns data = data.loc[~data.index.isnull(),:] g = data.groupby([target]) df = data.set_index(target) df = df.loc[~df.index.isnull(),:] index = list(set(df.index.map(lambda ind: g.indices[ind][0]).tolist())) df = data.iloc[index,:] df = df.sort_values(by=target) if df.shape[0] < max_index: removed = [i for i in range(max_index) if i not in df.loc[:, target].values] assert len(removed)+df.shape[0] == max_index df = df.append(pd.DataFrame({target:removed}), sort=False) df = df.sort_values(by=target) df = df.set_index(target) df.index.name = target if otarget is not None and otarget in df.columns: df = df.drop(columns=otarget) return df def __compute_column_conversion(column_ann, column_max, gene_group, gene_original, projected=None): if projected is None: if gene_group == '': projected = column_ann.index.array.astype(float).astype(int) else: projected = column_ann[gene_group].values.astype(float).astype(int) if gene_original == '': original = column_ann.index.array.astype(float).astype(int) else: original = column_ann.index.array.astype(float).astype(int) return sparse.csr_matrix((np.ones(shape=projected.shape[0]), (original, projected)), shape=(column_max, max(projected)+1)) def __remove_nan_from_conversion(projected, original): projected, original = zip(*[(x, y) for x, y in zip(projected, original) if np.isfinite(x) and np.isfinite(y)]) projected = np.array(projected).astype(int) original = np.array(original).astype(int) return projected, original def __compute_row_conversion(row_ann, row_max, cell_group, cell_original, verbose=True): if cell_group == '': projected = row_ann.index.array.astype(float) else: projected = row_ann[cell_group].values if cell_original == '': original = row_ann.index.array.astype(float) else: original = row_ann.loc[:, cell_original].array.astype(float) projected, original = __remove_nan_from_conversion(projected, original) if verbose: print('Mapped groups:', len(set(projected)), list(set(projected))[0:20]) return sparse.csr_matrix((np.ones(shape=projected.shape[0]), (projected, original)), shape=(max(projected)+1, row_max)) def convert_row_and_column(adata, gene_group, cell_group, gene_original, cell_original, binary=False): mat = adata.X if gene_group != gene_original: conv_mat = __compute_column_conversion(adata.var, adata.shape[1], gene_group, gene_original) mat = mat.dot(conv_mat) if cell_group != cell_original: conv_mat = __compute_row_conversion(adata.obs, adata.shape[0], cell_group, cell_original) mat = conv_mat.dot(mat) rdf = __extract_and_fill_unique_column(adata.obs, cell_group, mat.shape[0]) cdf = __extract_and_fill_unique_column(adata.var, gene_group, mat.shape[1]) if binary: mat = binarize(mat, threshold=1).astype(int) new_adata = sc.AnnData(mat, var=cdf, obs=rdf) sc.pp.filter_cells(new_adata, min_counts=1, inplace=True) return new_adata def __average_profiling(mX, mX_index, all_cells, output, color=''): mX.to_csv(output+'.csv') if color != '': all_cells.obs.loc[:,color].value_counts().to_csv(output+'_count.csv') all_cells.obs.loc[~pd.isnull(all_cells.obs[color]),:].drop_duplicates(subset=color, keep='first').to_csv(output+'_obs.csv') assert mX.shape[0] <= all_cells.obs.loc[all_cells.obs.loc[:,color] == all_cells.obs.loc[:,color],:].drop_duplicates(subset=color, keep='first').shape[0] all_cells.var.to_csv(output+'_var.csv') assert mX.shape[1] == all_cells.var.shape[0] def __write_average_profiles(mX, mX_index, adata, output, cluster): mX.to_csv(output+'.csv') if cluster != '': adata.obs.loc[:, cluster].value_counts().to_csv(output+'_count.csv') adata.obs.loc[~pd.isnull(adata.obs[cluster]),:].drop_duplicates(subset=cluster, keep='first').to_csv(output+'_obs.csv') assert mX.shape[0] <= adata.obs.loc[adata.obs.loc[:, cluster] == adata.obs.loc[:, cluster],:].drop_duplicates(subset=cluster, keep='first').shape[0] adata.var.to_csv(output+'_var.csv') assert mX.shape[1] == adata.var.shape[0] def compute_each_cell_signals(self, adata, markers, max_gene=100, mode=['']): global MAX_GENE, MODE for mode in MODE: names = [mode+'_'+key for key in markers] for key, name in zip(markers, names): if mode == 'average': scaled = self.compute_agg_exp_of_markers(adata, markers[key][0:MAX_GENE], mode) elif mode == 'rankmean': scaled = self.compute_agg_exp_of_markers(adata, markers[key][0:MAX_GENE], mode) else: scaled = self.compute_agg_exp_of_markers(adata, markers[key], mode) adata.obs[name] = scaled return adata def __extract_reference_signal(reference, markers, mode='average'): if '.csv' in reference: exp_cells = pd.read_csv(reference, 'rb') else: with open(reference, 'rb') as f: exp_cell_data = pickle.load(f) exp_cell_data = mini_catactor.run_mini_catactor(exp_cell_data, markers, output_ext='', mode=mode) exp_cells = exp_cell_data.obs if str(exp_cells.index[0]).isdigit(): exp_cells.index = ['cell_'+str(x) for x in exp_cells.index] return exp_cells def average_for_top_signal_cells(adata, reference, markers, top_cells): exp_cells = __extract_reference_signal(reference, markers) adata = adata[adata.obs_names.isin(exp_cells.index),:] for signal in exp_cells.columns: if re.match(r'^(average|rankmean)_*', signal) is None: continue signal_vec = exp_cells.loc[:,signal].values order = np.argsort(signal_vec) zero = np.where(signal_vec == 0)[0] for i, x in enumerate(order): if x in zero: continue order = order[i:len(order)] break up, bottom = order[::-1][0:top_cells], order[0:top_cells] vec = pd.Series(['other' for i in range(all_cells.shape[0])], index=all_cells.obs.index) vec.iloc[up] = 'top' vec.iloc[bottom] = 'bottom' vec.iloc[zero] = 'zero' vec.name = signal all_cells.obs = pd.concat((all_cells.obs, vec), axis=1) print('Compute average profiles', signal) mX, mX_index = average_for_each_cluster_less_memory_normed(all_cells, all_cells.obs.loc[:,signal]) mX = pd.DataFrame(mX, index=mX_index, columns=all_cells.var.index) self.average_profiling(mX, mX_index, all_cells, all_cell_cluster_path+'_'+key, signal) def average_for_each_cluster(adata, y_cluster, norm=True): index = [x for x in y_cluster if x != 'Nan' and str(x) != 'nan'] index = sorted(list(set(index))) matrix = None final_index = [] for c in index: row_ind = np.where(y_cluster == c)[0] if norm: ave_prof = adata[row_ind,].X.sum(axis=0) else: ave_prof = adata[row_ind,].X.sum(axis=0)/row_ind.shape[0] if len(ave_prof.shape) == 0: continue if matrix is None: matrix = ave_prof else: matrix = np.vstack((matrix, ave_prof)) final_index.append(c) return np.squeeze(matrix), final_index def run_average_profiling(adata, markers='', output_header='output', cluster=['cluster'], top_cells=500, reference=None, verbose=True): if markers == '': markers = os.path.join(os.path.dirname(os.path.realpath(__file__)), "../marker_genes/others/marker_name_list.csv") if str(adata.obs.index[0]).isdigit(): # convert cell labels adata.obs_names = ['cell_'+str(x) for x in adata.obs_names] if str(adata.var.index[0]).isdigit(): # convert bin labels adata.var_names = ['bin_'+str(x) for x in adata.var_names] if len(cluster) > 0: for label in cluster: if verbose: print('Compute average profiles', label) if label not in adata.obs.columns: continue mX, mX_index = average_for_each_cluster(adata, adata.obs.loc[:,label]) mX =
pd.DataFrame(mX, index=mX_index, columns=adata.var.index)
pandas.DataFrame
#%matplotlib inline import pandas as pd import matplotlib.pyplot as plt raw_data = {'officer_name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'], 'jan_arrests': [4, 24, 31, 2, 3], 'feb_arrests': [25, 94, 57, 62, 70], 'march_arrests': [5, 43, 23, 23, 51]} df =
pd.DataFrame(raw_data, columns = ['officer_name', 'jan_arrests', 'feb_arrests', 'march_arrests'])
pandas.DataFrame
# ***************************************************************************** # Copyright (c) 2019-2020, Intel Corporation All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** import itertools import os import platform import string import unittest from copy import deepcopy from itertools import product import numpy as np import pandas as pd from numba.core.errors import TypingError from sdc.hiframes.rolling import supported_rolling_funcs from sdc.tests.test_base import TestCase from sdc.tests.test_series import gen_frand_array from sdc.tests.test_utils import (count_array_REPs, count_parfor_REPs, skip_numba_jit, skip_sdc_jit, test_global_input_data_float64) LONG_TEST = (int(os.environ['SDC_LONG_ROLLING_TEST']) != 0 if 'SDC_LONG_ROLLING_TEST' in os.environ else False) test_funcs = ('mean', 'max',) if LONG_TEST: # all functions except apply, cov, corr test_funcs = supported_rolling_funcs[:-3] def rolling_std_usecase(obj, window, min_periods, ddof): return obj.rolling(window, min_periods).std(ddof) def rolling_var_usecase(obj, window, min_periods, ddof): return obj.rolling(window, min_periods).var(ddof) class TestRolling(TestCase): @skip_numba_jit def test_series_rolling1(self): def test_impl(S): return S.rolling(3).sum() hpat_func = self.jit(test_impl) S = pd.Series([1.0, 2., 3., 4., 5.]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @skip_numba_jit def test_fixed1(self): # test sequentially with manually created dfs wins = (3,) if LONG_TEST: wins = (2, 3, 5) centers = (False, True) for func_name in test_funcs: func_text = "def test_impl(df, w, c):\n return df.rolling(w, center=c).{}()\n".format(func_name) loc_vars = {} exec(func_text, {}, loc_vars) test_impl = loc_vars['test_impl'] hpat_func = self.jit(test_impl) for args in itertools.product(wins, centers): df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) pd.testing.assert_frame_equal(hpat_func(df, *args), test_impl(df, *args)) df = pd.DataFrame({'B': [0, 1, 2, -2, 4]}) pd.testing.assert_frame_equal(hpat_func(df, *args), test_impl(df, *args)) @skip_numba_jit def test_fixed2(self): # test sequentially with generated dfs sizes = (121,) wins = (3,) if LONG_TEST: sizes = (1, 2, 10, 11, 121, 1000) wins = (2, 3, 5) centers = (False, True) for func_name in test_funcs: func_text = "def test_impl(df, w, c):\n return df.rolling(w, center=c).{}()\n".format(func_name) loc_vars = {} exec(func_text, {}, loc_vars) test_impl = loc_vars['test_impl'] hpat_func = self.jit(test_impl) for n, w, c in itertools.product(sizes, wins, centers): df = pd.DataFrame({'B': np.arange(n)}) pd.testing.assert_frame_equal(hpat_func(df, w, c), test_impl(df, w, c)) @skip_numba_jit def test_fixed_apply1(self): # test sequentially with manually created dfs def test_impl(df, w, c): return df.rolling(w, center=c).apply(lambda a: a.sum()) hpat_func = self.jit(test_impl) wins = (3,) if LONG_TEST: wins = (2, 3, 5) centers = (False, True) for args in itertools.product(wins, centers): df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) pd.testing.assert_frame_equal(hpat_func(df, *args), test_impl(df, *args)) df = pd.DataFrame({'B': [0, 1, 2, -2, 4]}) pd.testing.assert_frame_equal(hpat_func(df, *args), test_impl(df, *args)) @skip_numba_jit def test_fixed_apply2(self): # test sequentially with generated dfs def test_impl(df, w, c): return df.rolling(w, center=c).apply(lambda a: a.sum()) hpat_func = self.jit(test_impl) sizes = (121,) wins = (3,) if LONG_TEST: sizes = (1, 2, 10, 11, 121, 1000) wins = (2, 3, 5) centers = (False, True) for n, w, c in itertools.product(sizes, wins, centers): df = pd.DataFrame({'B': np.arange(n)}) pd.testing.assert_frame_equal(hpat_func(df, w, c), test_impl(df, w, c)) @skip_numba_jit def test_fixed_parallel1(self): def test_impl(n, w, center): df = pd.DataFrame({'B': np.arange(n)}) R = df.rolling(w, center=center).sum() return R.B.sum() hpat_func = self.jit(test_impl) sizes = (121,) wins = (5,) if LONG_TEST: sizes = (1, 2, 10, 11, 121, 1000) wins = (2, 4, 5, 10, 11) centers = (False, True) for args in itertools.product(sizes, wins, centers): self.assertEqual(hpat_func(*args), test_impl(*args), "rolling fixed window with {}".format(args)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) @skip_numba_jit def test_fixed_parallel_apply1(self): def test_impl(n, w, center): df = pd.DataFrame({'B': np.arange(n)}) R = df.rolling(w, center=center).apply(lambda a: a.sum()) return R.B.sum() hpat_func = self.jit(test_impl) sizes = (121,) wins = (5,) if LONG_TEST: sizes = (1, 2, 10, 11, 121, 1000) wins = (2, 4, 5, 10, 11) centers = (False, True) for args in itertools.product(sizes, wins, centers): self.assertEqual(hpat_func(*args), test_impl(*args), "rolling fixed window with {}".format(args)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) @skip_numba_jit def test_variable1(self): # test sequentially with manually created dfs df1 = pd.DataFrame({'B': [0, 1, 2, np.nan, 4], 'time': [pd.Timestamp('20130101 09:00:00'), pd.Timestamp('20130101 09:00:02'), pd.Timestamp('20130101 09:00:03'), pd.Timestamp('20130101 09:00:05'), pd.Timestamp('20130101 09:00:06')]}) df2 = pd.DataFrame({'B': [0, 1, 2, -2, 4], 'time': [pd.Timestamp('20130101 09:00:01'), pd.Timestamp('20130101 09:00:02'), pd.Timestamp('20130101 09:00:03'), pd.Timestamp('20130101 09:00:04'), pd.Timestamp('20130101 09:00:09')]}) wins = ('2s',) if LONG_TEST: wins = ('1s', '2s', '3s', '4s') # all functions except apply for w, func_name in itertools.product(wins, test_funcs): func_text = "def test_impl(df):\n return df.rolling('{}', on='time').{}()\n".format(w, func_name) loc_vars = {} exec(func_text, {}, loc_vars) test_impl = loc_vars['test_impl'] hpat_func = self.jit(test_impl) # XXX: skipping min/max for this test since the behavior of Pandas # is inconsistent: it assigns NaN to last output instead of 4! if func_name not in ('min', 'max'): pd.testing.assert_frame_equal(hpat_func(df1), test_impl(df1)) pd.testing.assert_frame_equal(hpat_func(df2), test_impl(df2)) @skip_numba_jit def test_variable2(self): # test sequentially with generated dfs wins = ('2s',) sizes = (121,) if LONG_TEST: wins = ('1s', '2s', '3s', '4s') sizes = (1, 2, 10, 11, 121, 1000) # all functions except apply for w, func_name in itertools.product(wins, test_funcs): func_text = "def test_impl(df):\n return df.rolling('{}', on='time').{}()\n".format(w, func_name) loc_vars = {} exec(func_text, {}, loc_vars) test_impl = loc_vars['test_impl'] hpat_func = self.jit(test_impl) for n in sizes: time = pd.date_range(start='1/1/2018', periods=n, freq='s') df = pd.DataFrame({'B': np.arange(n), 'time': time}) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) @skip_numba_jit def test_variable_apply1(self): # test sequentially with manually created dfs df1 = pd.DataFrame({'B': [0, 1, 2, np.nan, 4], 'time': [pd.Timestamp('20130101 09:00:00'), pd.Timestamp('20130101 09:00:02'), pd.Timestamp('20130101 09:00:03'), pd.Timestamp('20130101 09:00:05'), pd.Timestamp('20130101 09:00:06')]}) df2 = pd.DataFrame({'B': [0, 1, 2, -2, 4], 'time': [pd.Timestamp('20130101 09:00:01'), pd.Timestamp('20130101 09:00:02'), pd.Timestamp('20130101 09:00:03'), pd.Timestamp('20130101 09:00:04'), pd.Timestamp('20130101 09:00:09')]}) wins = ('2s',) if LONG_TEST: wins = ('1s', '2s', '3s', '4s') # all functions except apply for w in wins: func_text = "def test_impl(df):\n return df.rolling('{}', on='time').apply(lambda a: a.sum())\n".format(w) loc_vars = {} exec(func_text, {}, loc_vars) test_impl = loc_vars['test_impl'] hpat_func = self.jit(test_impl) pd.testing.assert_frame_equal(hpat_func(df1), test_impl(df1)) pd.testing.assert_frame_equal(hpat_func(df2), test_impl(df2)) @skip_numba_jit def test_variable_apply2(self): # test sequentially with generated dfs wins = ('2s',) sizes = (121,) if LONG_TEST: wins = ('1s', '2s', '3s', '4s') # TODO: this crashes on Travis (3 process config) with size 1 sizes = (2, 10, 11, 121, 1000) # all functions except apply for w in wins: func_text = "def test_impl(df):\n return df.rolling('{}', on='time').apply(lambda a: a.sum())\n".format(w) loc_vars = {} exec(func_text, {}, loc_vars) test_impl = loc_vars['test_impl'] hpat_func = self.jit(test_impl) for n in sizes: time =
pd.date_range(start='1/1/2018', periods=n, freq='s')
pandas.date_range
from python_back_end.utilities.custom_multiprocessing import DebuggablePool import numpy as np import pandas as pd from python_back_end.triangle_formatting.date_sorter import DateSorter from python_back_end.data_cleaning.date_col_identifier import DateColIdentifier from python_back_end.data_cleaning.type_col_extracter import TypeColExtracter from python_back_end.definitions import SheetTypeDefinitions from python_back_end.exceptions import NonpermissibleDateColumnDetected from python_back_end.program_settings import PROGRAM_STRINGS as ps, PROGRAM_PARAMETERS as pp from python_back_end.utilities.help_functions import strict_index, sum_unique from python_back_end.utilities.state_handling import DataHolder, DataStruct from functools import partial class TriangleFromTableBuilder: @staticmethod def build_triangle_from_table(dh): new_dh = DataHolder(dh.name) pool = DebuggablePool(pp.N_CORES) # First find all date cols and see if one of them has target structure. for dh_ind, ds in enumerate(dh.data_struct_list): id_col, hori_date_col, vert_date_col = TriangleFromTableBuilder.do_the_magic(ds, pool) # cut each id into one row cut_list = TriangleFromTableBuilder.make_cut_list(ds.df_data[id_col]) # use the cut_list to insert all elements tr_cols = pd.Series(ds.df_profiles.iloc[0, :] == SheetTypeDefinitions.TRIANGLE_ELEMENT, index=ds.df_profiles.columns) pad_header_mapping = TriangleFromTableBuilder.make_pad_header_mapping(ds, hori_date_col) vert_col_tup = (vert_date_col, ds.df_data[vert_date_col]) hori_col_tup = (hori_date_col, ds.df_data[hori_date_col]) id_col_tup = (id_col, ds.df_data[id_col]) func = partial(TriangleFromTableBuilder.apply_cuts, cut_list, vert_col_tup, hori_col_tup, id_col_tup, pad_header_mapping) tr_col_tup_list = [(col_name, ds.df_data[col_name]) for col_name in tr_cols.index[tr_cols]] out = pool.map(func, tr_col_tup_list) #for name, tr_col in ds.df_data[tr_cols.index[tr_cols]].iteritems(): for temp_df_data, temp_df_profiles, name in out: new_dh.add_sheet(name, temp_df_data, temp_df_profiles) #new_dh.add_sheet(name, temp_df_data, temp_df_profiles) pool.close() return new_dh @staticmethod def make_pad_header_mapping(ds, hori_date_col): start_pad = ds.df_data.columns[-1][:pp.N_DIGITS_HEADER_PADDING] start_pad = int(start_pad) temp = ds.df_data[hori_date_col].values temp_headers = sorted(np.unique(temp)) pad_header_mapping = {head: str(ind).zfill(pp.N_DIGITS_HEADER_PADDING) + ". " + str(head) for head, ind in zip(temp_headers, range(start_pad, len(temp_headers) + start_pad))} return pad_header_mapping @staticmethod def apply_cuts(cut_list, vert_col_tup, hori_col_tup, id_col_tup, pad_header_mapping, tr_col_tup): col_list = list() for cut in cut_list: # make unique column headers by summing temp_headers = hori_col_tup[1][cut].values temp_values = tr_col_tup[1][cut].values temp_headers, temp_values = sum_unique(temp_headers, temp_values) temp_headers = [pad_header_mapping[el] for el in temp_headers] col_df = pd.Series(temp_values, index=temp_headers) # add stuff to the series temp_num = vert_col_tup[1][cut[0]] temp_id = id_col_tup[1][cut[0]] col_df.loc[vert_col_tup[0]] = temp_num col_df.loc[id_col_tup[0]] = temp_id col_list.append(col_df) temp_df_data = pd.concat(col_list, axis=1, sort=True) temp_df_data = temp_df_data.transpose() temp_df_data = temp_df_data.fillna(0) # get the year column for sorting sorting_col = temp_df_data.loc[:, vert_col_tup[0]] temp_df_data = DateSorter.append_and_sort(temp_df_data, sorting_col) temp_df_profiles = pd.DataFrame(SheetTypeDefinitions.TRIANGLE_ELEMENT, columns=temp_df_data.columns, index=temp_df_data.index) temp_df_profiles.loc[:, vert_col_tup[0]] = SheetTypeDefinitions.STRING_DATE temp_df_profiles.loc[:, id_col_tup[0]] = SheetTypeDefinitions.ID_ELEMENT #temp_ds = DataStruct() return temp_df_data, temp_df_profiles, tr_col_tup[0] @staticmethod def make_cut_list(id_col): cut_list = [] uniques = id_col.unique() index_form = pd.Index(id_col) for id in uniques: idxs = id_col.index[index_form.get_loc(id)] if isinstance(idxs, pd.Index): idxs = idxs.tolist() else: idxs = [idxs] cut_list.append(idxs) return cut_list @staticmethod def do_the_magic(ds, pool): date_cols = DateColIdentifier.identify_marked_date_cols(ds) id_cols =
pd.Series(ds.df_profiles.iloc[0, :] == SheetTypeDefinitions.ID_ELEMENT, index=ds.df_profiles.columns)
pandas.Series
# -*- coding: utf-8 -*- import os import pandas as pd from multiprocessing import Pool import warnings import numpy as np import scipy import pybacktest as pb import matplotlib.pyplot as plt import threading import multiprocessing import tensorflow as tf import tensorflow.contrib.slim as slim import scipy.signal from random import choice from time import sleep from time import time import sys from trader_gym import environment from A3C_class import * from configs import TRAIN_DATA, LOAD_MODEL, LR, FRAMES_STACKED, NUM_WORKERS, MODEL_DIR warnings.filterwarnings("ignore") train_df =
pd.read_pickle(TRAIN_DATA)
pandas.read_pickle
import os import numpy as np import pandas as pd import time def write_analysis(path, dataset_dict, datasettype, mask_part, start_time, supervised=True): """ Creates a text file which contains a short summary of the dataset_dict data Parameters: ----------- path: string path where to save the dataframe dataset_dict: dict contains all the analysis data datasettype: string adds the name of the subset to the dataframe title e.g. 'all', 'train', 'valid', 'test' mask_part: list contains the segmentation tasks e.g. ['glomerulus', 'podocytes'], ['glomerulus'], ['podocytes'] start_time: time at the start of the script. Used to calculate the duration of the analysis supervised: (optional) Returns: -------- nothing """ for mask_el in mask_part: if mask_el == 'podocytes': filename = datasettype + '_podos.txt' filestr = 'podos images' elif mask_el == 'glomerulus': filename = datasettype + '_gloms.txt' filestr = 'gloms images' else: filename = datasettype + 'unknown.txt' filestr = 'unknown type' write_txt = open(str(os.path.join(path, filename)), "w") if supervised: dc_mean = np.sum(np.array(dataset_dict['dice_coeffs_%s' % mask_el])) / len(dataset_dict['dice_coeffs_%s' % mask_el]) dc_min = np.min(np.array(dataset_dict['dice_coeffs_%s' % mask_el])) dc_max = np.max(np.array(dataset_dict['dice_coeffs_%s' % mask_el])) object_dc_mean = np.sum(np.array(dataset_dict['object_dc_%s' % mask_el])) / len(dataset_dict['object_dc_%s' % mask_el]) object_dc_min = np.min(np.array(dataset_dict['object_dc_%s' % mask_el])) object_dc_max = np.max(np.array(dataset_dict['object_dc_%s' % mask_el])) pearson = calculate_pearson(dataset_dict['count_masks_%s' % mask_el], dataset_dict['count_preds_%s' % mask_el]) write_txt.write(str("Mean dice coefficient on pixels of " + filestr + " compared to groundtruth: ") + str(dc_mean) + '\n') write_txt.write(str("Min dice coefficient on pixels of " + filestr + " compared to groundtruth: ") + str(dc_min) + '\n') write_txt.write(str("Max dice coefficient on pixels of " + filestr + " compared to groundtruth: ") + str(dc_max) + '\n') write_txt.write(str("Pearson correlation coefficient on objects of " + filestr + " compared to groundtruth: ") + str(pearson) + '\n') write_txt.write(str("Mean dice coeff on objects of " + filestr + " compared to groundtruth: ") + str(object_dc_mean) + '\n') write_txt.write(str("Min dice coeff on objects of " + filestr + " compared to groundtruth: ") + str(object_dc_min) + '\n') write_txt.write(str("Max dice coeff on objects of " + filestr + " compared to groundtruth: ") + str(object_dc_max) + '\n') write_txt.write('\n') duration = time.time() - start_time duration_std = int(duration / 3600) duration_min = int((duration % 3600) / 60) duration_sec = int(duration % 60) write_txt.write(str("Test time: ") + str(duration_std) + "h " + str(duration_min) + "min " + str(duration_sec) + 'sec \n') write_txt.close() return def write_dataframe(path, dataset_dict, image_list, datasettype, mask_part): """ Creates a pandas dataframe containing the analysis of mask and prediction Parameters: ----------- path: string path where to save the dataframe dataset_dict: dict contains all the analysis data image_list: list contains all the image names datasettype: string adds the name of the subset to the dataframe title e.g. 'all', 'train', 'valid', 'test' mask_part: list contains the segmentation tasks e.g. ['glomerulus', 'podocytes'], ['glomerulus'], ['podocytes'] Returns: -------- nothing """ for mask_el in mask_part: titles = [] for i in range(len(image_list)): # Get rid of .tif and the path before image_name = os.path.split(image_list[i])[1] titles.append(image_name[:-4]) df = pd.DataFrame({'Sample name': pd.Series(titles), 'GT count': pd.Series(dataset_dict['count_masks_%s' % mask_el]), 'Network count': pd.Series(dataset_dict['count_preds_%s' % mask_el]), 'GT area': pd.Series(dataset_dict['area_masks_%s' % mask_el]), 'Network area': pd.Series(dataset_dict['area_preds_%s' % mask_el]), 'Network dice pixel': pd.Series(dataset_dict['dice_coeffs_%s' % mask_el]), 'Network dice object': pd.Series(dataset_dict['object_dc_%s' % mask_el]), 'Network True pos': pd.Series(dataset_dict['tp_%s' % mask_el]), 'Network False pos': pd.Series(dataset_dict['fp_%s' % mask_el]), 'Network False neg': pd.Series(dataset_dict['fn_%s' % mask_el])}) df.to_excel(str(os.path.join(path, datasettype + '_Dataframe_' + mask_el + '.xlsx'))) # df.to_csv(path + datasettype + '_Dataframe_' + mask_el + '.csv') return def write_readouts(path, dataset_dict, image_list, datasettype, mask_part, do_wt1_signal, do_dach1_signal, do_stereology_pred, do_stereology_gt): """ Creates the csv output which will be used for the classification. Dataframe contains optionally the WT1 signal of the glomerulus prediction, the DACH1 signal for the podocoyte prediction and the stereological calculations. """ titles = [] for i in range(len(image_list)): image_name = os.path.split(image_list[i])[1] titles.append(image_name[:-4]) # Segmentation of only 1 class was applied (e.g. glomerulus or podocytes) if len(mask_part) == 1: mask_el = mask_part.pop() if mask_el == "glomerulus": network_area = "glomerulus_area" # Add a column if GET_WT1_SIGNAL_FOR_GLOMERULUS = True if do_wt1_signal: df = pd.DataFrame( {'image_name': pd.Series(titles), network_area: pd.Series(dataset_dict['area_preds_%s' % mask_el]), 'mean_WT1_signal_in_glom': pd.Series(dataset_dict['mean_WT1_glom_preds']), 'var_WT1_signal_in_glom': pd.Series(dataset_dict['var_WT1_glom_preds']), 'median_WT1_signal_in_glom': pd.Series(dataset_dict['median_WT1_glom_preds']), 'min_WT1_signal_in_glom': pd.Series(dataset_dict['min_WT1_glom_preds']), 'max_WT1_signal_in_glom': pd.Series(dataset_dict['max_WT1_glom_preds']), 'perc25_WT1_signal_in_glom': pd.Series(dataset_dict['perc25_WT1_glom_preds']), 'perc75_WT1_signal_in_glom': pd.Series(dataset_dict['perc75_WT1_glom_preds'])}) else: df = pd.DataFrame({'image_name': pd.Series(titles), network_area: pd.Series(dataset_dict['area_preds_%s' % mask_el])}) elif mask_el == "podocytes": network_count = "podocyte_count" network_area = "podocyte_nuclear_area" # Add a column if GET_DACH1_SIGNAL_FOR_PODOCYTES = True if do_dach1_signal: df = pd.DataFrame({'image_name': pd.Series(titles), network_count: pd.Series(dataset_dict['count_preds_%s' % mask_el]), network_area: pd.Series(dataset_dict['area_preds_%s' % mask_el]), 'mean_DACH1_signal_in_podo': pd.Series(dataset_dict['mean_DACH1_podo_preds']), 'var_DACH1_signal_in_podo':
pd.Series(dataset_dict['var_DACH1_podo_preds'])
pandas.Series
from typing import Dict from typing import Tuple from typing import Union import numpy as np import pandas as pd import pytest from etna.datasets import TSDataset frequencies = ["D", "15min"] DistributionDict = Dict[str, pd.DataFrame] @pytest.fixture(params=frequencies, ids=frequencies) def date_range(request) -> pd.DatetimeIndex: """Create pd.Series with range of dates.""" freq = request.param dtr = pd.date_range(start="2020-01-01", end="2020-03-01", freq=freq) return dtr @pytest.fixture def all_date_present_df(date_range: pd.Series) -> pd.DataFrame: """Create pd.DataFrame that contains some target on given range of dates without gaps.""" df = pd.DataFrame({"timestamp": date_range}) df["target"] = [i for i in range(len(df))] df.set_index("timestamp", inplace=True) return df @pytest.fixture def all_date_present_df_two_segments(all_date_present_df: pd.Series) -> pd.DataFrame: """Create pd.DataFrame that contains two segments with some targets on given range of dates without gaps.""" df_1 = all_date_present_df.reset_index() df_2 = all_date_present_df.copy().reset_index() df_1["segment"] = "segment_1" df_2["segment"] = "segment_2" classic_df = pd.concat([df_1, df_2], ignore_index=True) df = TSDataset.to_dataset(classic_df) return df @pytest.fixture def df_with_missing_value_x_index(random_seed, all_date_present_df: pd.DataFrame) -> Tuple[pd.DataFrame, int]: """Create pd.DataFrame that contains some target on given range of dates with one gap.""" # index cannot be first or last value, # because Imputer should know starting and ending dates timestamps = sorted(all_date_present_df.index)[1:-1] idx = np.random.choice(timestamps) df = all_date_present_df df.loc[idx, "target"] = np.NaN return df, idx @pytest.fixture def df_with_missing_range_x_index(all_date_present_df: pd.DataFrame) -> Tuple[pd.DataFrame, list]: """Create pd.DataFrame that contains some target on given range of dates with range of gaps.""" timestamps = sorted(all_date_present_df.index) rng = timestamps[2:7] df = all_date_present_df df.loc[rng, "target"] = np.NaN return df, rng @pytest.fixture def df_with_missing_range_x_index_two_segments( df_with_missing_range_x_index: pd.DataFrame, ) -> Tuple[pd.DataFrame, list]: """Create pd.DataFrame that contains some target on given range of dates with range of gaps.""" df_one_segment, rng = df_with_missing_range_x_index df_1 = df_one_segment.reset_index() df_2 = df_one_segment.copy().reset_index() df_1["segment"] = "segment_1" df_2["segment"] = "segment_2" classic_df = pd.concat([df_1, df_2], ignore_index=True) df = TSDataset.to_dataset(classic_df) return df, rng @pytest.fixture def df_all_missing(all_date_present_df: pd.DataFrame) -> pd.DataFrame: """Create pd.DataFrame with all values set to nan.""" all_date_present_df.loc[:, :] = np.NaN return all_date_present_df @pytest.fixture def df_all_missing_two_segments(all_date_present_df_two_segments: pd.DataFrame) -> pd.DataFrame: """Create pd.DataFrame with all values set to nan.""" all_date_present_df_two_segments.loc[:, :] = np.NaN return all_date_present_df_two_segments @pytest.fixture def daily_exog_ts() -> Dict[str, Union[TSDataset, DistributionDict]]: df1 = pd.DataFrame( { "timestamp": pd.date_range(start="2020-01-05", freq="H", periods=48), "segment": "segment_1", "target": 1, } ) df2 = pd.DataFrame( { "timestamp":
pd.date_range(start="2020-01-05", freq="H", periods=48)
pandas.date_range