prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# import important libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.patches as patches import seaborn as sns import os import argparse # import machine learning libraries from sklearn.linear_model import Ridge, LogisticRegression from sklearn.svm import SVR, SVC from sklearn.metrics import f1_score from sklearn.model_selection import cross_val_predict, GridSearchCV, KFold from sklearn.metrics import confusion_matrix, classification_report,\ precision_recall_fscore_support # import custom functions for vectorizing & visualizing data import utils from process_data import get_split plt.rcParams.update({'font.size': 12}) all_props = ['bulk_modulus', 'thermal_conductivity', 'shear_modulus', 'band_gap', 'debye_temperature', 'thermal_expansion'] symbols = ['B', '$\\kappa$', 'G', 'E$_{\\mathrm{g}}$', 'D', '$\\alpha$'] prop_labels = ['Bulk Modulus (GPa)', 'Log$_{10}$ Thermal Conductivity $\\left(\\dfrac{\\mathrm{W}}' + '{\\mathrm{m}\\cdot \\mathrm{K}}\\right)$', 'Shear Modulus (GPa)', 'Band Gap (eV)', 'Log$_{10}$ Debye Temperature (K)', 'Log$_{10}$ Thermal Expansion $(\\mathrm{K}^{-1})$'] arg2prop = {'bulk_modulus': 'ael_bulk_modulus_vrh', 'thermal_conductivity': 'agl_log10_thermal_conductivity_300K', 'shear_modulus': 'ael_shear_modulus_vrh', 'band_gap': 'Egap', 'debye_temperature': 'ael_log10_debye_temperature', 'thermal_expansion': 'agl_log10_thermal_expansion_300K'} prop2label = dict([[v, k] for k, v in zip(prop_labels, arg2prop.values())]) parser_desc = 'Reproduce the results of this work' parser = argparse.ArgumentParser(description=parser_desc) group = parser.add_mutually_exclusive_group(required=True) group.add_argument('--properties', type=str, nargs='+', metavar='Property to reproduce', choices=all_props, help=('example:\n\t' + 'python reproduce.py --properties bulk_modulus\n\t')) group.add_argument('--all', action='store_true', help='Run through each property one at a time ' 'and generate results and figures.') args = parser.parse_args() if not args.all: mat_props = [] for j in args.properties: mat_props.append(arg2prop[j]) else: mat_props = list(map(lambda p: arg2prop[p], all_props)) print('Reproducing results for the following data:', mat_props) def optimize_threshold(y_train_labeled, y_train_pred): """Given a DataFrame of labels and predictions, return the optimal threshold for a high F1 score""" y_train_ = y_train_labeled.copy() y_train_pred_ = pd.Series(y_train_pred).copy() f1score_max = 0 for threshold in np.arange(0.1, 1, 0.1): diff = (max(y_train_pred) - min(y_train_pred)) threshold = min(y_train_pred) + threshold * diff y_train_pred_[y_train_pred < threshold] = 0 y_train_pred_[y_train_pred >= threshold] = 1 f1score = f1_score(y_train_, y_train_pred_) if f1score > f1score_max: f1score_max = f1score opt_thresh = threshold return opt_thresh def get_performance(mat_props, seed): metrics_dict = {} for mat_prop in mat_props: os.makedirs('figures/'+mat_prop, exist_ok=True) data = get_split(mat_prop, elem_prop='oliynyk', seed_num=seed) X_train_scaled, X_test_scaled = data[0:2] y_train, y_test = data[2:4] y_train_labeled, y_test_labeled = data[4:6] formula_train, formula_test = data[6:8] test_threshold = y_test.iloc[-y_test_labeled.sum().astype(int)] train_threshold = y_train.iloc[-y_train_labeled.sum().astype(int)] y = pd.concat([y_train, y_test]) plt.figure(1, figsize=(7, 7)) ax = sns.distplot(y, bins=50, kde=False) rect1 = patches.Rectangle((test_threshold, 0), ax.get_xlim()[1]-test_threshold, ax.get_ylim()[1], linewidth=1, edgecolor='k', facecolor='g', alpha=0.2) ax.add_patch(rect1) text_size = 18 ax.text(.1, .5, 'Ordinary\nCompounds', size=text_size, horizontalalignment='left', verticalalignment='center', transform=ax.transAxes) ax.text(.98, .15, 'Extraordinary\nCompounds', size=text_size, horizontalalignment='right', verticalalignment='center', transform=ax.transAxes) ax.tick_params(direction='in', length=5, bottom=True, top=True, left=True, right=True, labelsize=text_size) ax.set_xlabel(prop2label[mat_prop], size=text_size) ax.set_ylabel('number of occurrences'.title(), size=text_size) plt.savefig('figures/' + mat_prop + '/distplot', dpi=300, bbox_inches='tight') plt.clf() # ## Learn with a Ridge Regression (linear model) # define ridge regression object rr = Ridge() # define k-folds cv = KFold(n_splits=5, shuffle=True, random_state=1) # choose search space parameter_candidates = {'alpha': np.logspace(-5, 2, 10)} # define the grid search grid = GridSearchCV(estimator=rr, param_grid=parameter_candidates, cv=cv) # run grid search grid.fit(X_train_scaled, y_train) # plot grid search to ensure good values) utils.plot_1d_grid_search(grid, midpoint=0.75) print('best parameters:', grid.best_params_) plt.savefig('figures/' + mat_prop + '/rr_1d_search', dpi=300, bbox_inches='tight') plt.clf() best_params_rr = grid.best_params_ # best_params_rr = {'alpha': 0.0021544346900318843} rr = Ridge(**best_params_rr) rr.fit(X_train_scaled, y_train) y_test_predicted_rr = rr.predict(X_test_scaled) y_train_predicted_rr = rr.predict(X_train_scaled) # plot the data plt.figure(figsize=(6, 6)) plt.plot(y_test, y_test_predicted_rr, marker='o', mfc='none', color='#0077be', linestyle='none', label='test') plt.plot(y_train, y_train_predicted_rr, marker='o', mfc='none', color='#e34234', linestyle='none', label='train') max_val = max(y_test.max(), y_test_predicted_rr.max()) min_val = min(y_test.min(), y_test_predicted_rr.min()) plt.plot([min_val, max_val], [min_val, max_val], 'k--') limits = [min_val, max_val] plt.xlim(limits) plt.ylim(limits) plt.xlabel('actual') plt.ylabel('predicted') plt.legend(loc=4) plt.tick_params(direction='in', length=5, bottom=True, top=True, left=True, right=True) plt.savefig('figures/' + mat_prop + '/rr_act_vs_pred', dpi=300, bbox_inches='tight') plt.clf() # ## Learn with a support vector regression (non-linear model) # to speed up the grid search, optimize on a subsample of data X_train_scaled_sampled = X_train_scaled.sample(500, random_state=1) y_train_sampled = y_train.loc[X_train_scaled_sampled.index.values] # define support vector regression object (default to rbf kernel) svr = SVR() # define k-folds cv = KFold(n_splits=5, shuffle=True, random_state=1) # choose search space parameter_candidates = {'C': np.logspace(2, 4, 8), 'gamma': np.logspace(-3, 1, 8)} # define the grid search grid = GridSearchCV(estimator=svr, param_grid=parameter_candidates, cv=cv) # run grid search grid.fit(X_train_scaled_sampled, y_train_sampled) # plot grid search to ensure good values utils.plot_2d_grid_search(grid, midpoint=0.7) plt.savefig('figures/' + mat_prop + '/svr_2d_search', dpi=300, bbox_inches='tight') plt.clf() print('best parameters:', grid.best_params_) best_params_svr = grid.best_params_ svr = SVR(**best_params_svr) svr.fit(X_train_scaled, y_train) y_test_predicted_svr = svr.predict(X_test_scaled) y_train_predicted_svr = svr.predict(X_train_scaled) # plot the data plt.figure(figsize=(6, 6)) plt.plot(y_test, y_test_predicted_svr, marker='o', mfc='none', color='#0077be', linestyle='none', label='test') plt.plot(y_train, y_train_predicted_svr, marker='o', mfc='none', color='#e34234', linestyle='none', label='train') max_val = max(y_test.max(), y_test_predicted_svr.max()) min_val = min(y_test.min(), y_test_predicted_svr.min()) plt.plot([min_val, max_val], [min_val, max_val], 'k--') limits = [min_val, max_val] plt.xlim(limits) plt.ylim(limits) plt.xlabel('actual') plt.ylabel('predicted') plt.legend(loc=4) plt.tick_params(direction='in', length=5, bottom=True, top=True, left=True, right=True) plt.savefig('figures/' + mat_prop + '/svr_act_vs_pred', dpi=300, bbox_inches='tight') plt.clf() # # Approach the problem as a classification task # ## Learn with a logistic regression (linear classification) # define logistic regression object lr = LogisticRegression(solver='lbfgs') # define k-folds cv = KFold(n_splits=5, shuffle=True, random_state=1) # choose search space class_1_weight = [{0: 1, 1: weight} for weight in np.linspace(1, 50, 5)] parameter_candidates = {'C': np.logspace(-1, 4, 5), 'class_weight': class_1_weight} # define the grid search. We use log-loss to decide which # parameters to use. grid = GridSearchCV(estimator=lr, param_grid=parameter_candidates, scoring='neg_log_loss', cv=cv) # run grid search grid.fit(X_train_scaled, y_train_labeled) # plot grid search to ensure good values utils.plot_2d_grid_search(grid, midpoint=-0.05, vmin=-0.13, vmax=0) plt.savefig('figures/' + mat_prop + '/lr_2d_search', dpi=300, bbox_inches='tight') plt.clf() print('best parameters:', grid.best_params_) best_params_lr = grid.best_params_ lr = LogisticRegression(solver='lbfgs', penalty='l2', **best_params_lr) lr.fit(X_train_scaled, y_train_labeled) # define k-folds cv = KFold(n_splits=5, shuffle=True, random_state=1) y_pred_train_lr = cross_val_predict(lr, X_train_scaled, y_train_labeled, cv=cv) y_prob_train_lr = cross_val_predict(lr, X_train_scaled, y_train_labeled, cv=cv, method='predict_proba') y_probability_train_lr = [probability[1] for probability in y_prob_train_lr] y_prob_test_lr = lr.predict_proba(X_test_scaled) y_probability_test_lr = [probability[1] for probability in y_prob_test_lr] df_cm = pd.DataFrame(confusion_matrix(y_train_labeled, y_pred_train_lr)) ax = sns.heatmap(df_cm, square=True, annot=True, annot_kws={"size": 18}, cbar=False, linewidths=.5, cmap="YlGnBu", center=-10000000) ax.set_ylabel('actual') ax.set_xlabel('predicted') ax.xaxis.tick_top() plt.savefig('figures/' + mat_prop + '/lr_cm', dpi=300, bbox_inches='tight') plt.clf() threshold = 0.5 utils.plot_prob(threshold, y_train, y_probability_train_lr, threshold_x=train_threshold, mat_prop=prop2label[mat_prop]) plt.savefig('figures/' + mat_prop + '/lr_train_prob_thresh={:0.2f}.png'.format(threshold), dpi=300, bbox_inches='tight') plt.clf() # ### Check our perfromance on the test set! utils.plot_prob(threshold, y_test, y_probability_test_lr, threshold_x=test_threshold, mat_prop=prop2label[mat_prop]) plt.savefig('figures/' + mat_prop + '/lr_test_prob_thresh={:0.2f}.png'.format(threshold), dpi=300, bbox_inches='tight') plt.clf() # ### Compare this performance to regression models # # **For the same recall, we are three times more likely that predicted # compound is not actually extraordinary.** threshold = optimize_threshold(y_train_labeled, y_train_predicted_rr) utils.plot_regression(threshold, y_train, y_train_predicted_rr, threshold_x=train_threshold, mat_prop=prop2label[mat_prop]) plt.savefig('figures/' + mat_prop + '/rr_train_reg_thresh={:0.2f}.png'.format(threshold), dpi=300, bbox_inches='tight') plt.clf() utils.plot_regression(threshold, y_test, y_test_predicted_rr, threshold_x=test_threshold, mat_prop=prop2label[mat_prop]) plt.savefig('figures/' + mat_prop + '/rr_test_reg_thresh={:0.2f}.png'.format(threshold), dpi=300, bbox_inches='tight') plt.clf() threshold = optimize_threshold(y_train_labeled, y_train_predicted_svr) utils.plot_regression(threshold, y_train, y_train_predicted_svr, threshold_x=train_threshold, mat_prop=prop2label[mat_prop]) plt.savefig('figures/' + mat_prop + '/svr_train_reg_thresh={:0.02f}.png'.format(threshold), dpi=300, bbox_inches='tight') plt.clf() utils.plot_regression(threshold, y_test, y_test_predicted_svr, threshold_x=test_threshold, mat_prop=prop2label[mat_prop]) plt.savefig('figures/' + mat_prop + '/svr_test_reg_thresh={:0.02f}.png'.format(threshold), dpi=300, bbox_inches='tight') plt.clf() # ## Learn with a support vector classification (non-linear) # to speed up the grid search, optimize on a subsample of data index_location = X_train_scaled_sampled.index.values y_train_labeled_sampled = y_train_labeled.loc[index_location] # define suppor vector classification object # (need to set probability to True) svc = SVC(probability=True) # define k-folds cv = KFold(n_splits=5, shuffle=True, random_state=1) # choose search space (we will start with class_weight=1 # as that was optimal for svc) parameter_candidates = {'C': np.logspace(-1, 4, 5), 'gamma': np.logspace(-2, 2, 5)} # define the grid search. We use log-loss to decide # which parameters to use. grid = GridSearchCV(estimator=svc, param_grid=parameter_candidates, scoring='neg_log_loss', cv=cv) # run grid search grid.fit(X_train_scaled_sampled, y_train_labeled_sampled) # plot grid search to ensure good values utils.plot_2d_grid_search(grid, midpoint=-0.04, vmin=-0.13, vmax=0) plt.savefig('figures/' + mat_prop + '/svc_2d_search.png', dpi=300, bbox_inches='tight') plt.clf() print('best parameters:', grid.best_params_) best_params_svc = grid.best_params_ svc = SVC(probability=True, **best_params_svc) svc.fit(X_train_scaled, y_train_labeled) cv = KFold(n_splits=5, shuffle=True, random_state=1) y_pred_train_svc = cross_val_predict(svc, X_train_scaled, y_train_labeled, cv=cv) y_prob_train_svc = cross_val_predict(svc, X_train_scaled, y_train_labeled, cv=cv, method='predict_proba') y_probability_train_svc = [probability[1] for probability in y_prob_train_svc] y_prob_test_svc = svc.predict_proba(X_test_scaled) y_probability_test_svc = [probability[1] for probability in y_prob_test_svc] metrics = precision_recall_fscore_support(y_train_labeled, y_pred_train_svc) precision, recall, fscore, support = metrics print('precision: {:0.2f}\nrecall: {:0.2f}'.format(precision[1], recall[1])) df_cm = pd.DataFrame(confusion_matrix(y_train_labeled, y_pred_train_svc)) ax = sns.heatmap(df_cm, square=True, annot=True, annot_kws={"size": 18}, cbar=False, linewidths=0.5, cmap="YlGnBu", center=-10000000) ax.set_ylabel('actual') ax.set_xlabel('predicted') ax.xaxis.tick_top() plt.savefig('figures/' + mat_prop + '/svc_cm', dpi=300, bbox_inches='tight') plt.clf() threshold = 0.5 utils.plot_prob(threshold, y_train, y_probability_train_svc, threshold_x=train_threshold, mat_prop=prop2label[mat_prop]) plt.savefig('figures/' + mat_prop + '/svc_train_prob_thresh={:0.02f}.png'.format(threshold), dpi=300, bbox_inches='tight') plt.clf() utils.plot_prob(threshold, y_test, y_probability_test_svc, threshold_x=test_threshold, mat_prop=prop2label[mat_prop]) plt.savefig('figures/' + mat_prop + '/svc_test_prob_thresh={:0.2f}.png'.format(threshold), dpi=300, bbox_inches='tight') plt.clf() metrics_dict[mat_prop] = {'precision': [], 'recall': [], 'f1': []} threshold = optimize_threshold(y_train_labeled, y_train_predicted_rr) y_pred_rr = [1 if x >= threshold else 0 for x in y_test_predicted_rr] threshold = optimize_threshold(y_train_labeled, y_train_predicted_svr) y_pred_svr = [1 if x >= threshold else 0 for x in y_test_predicted_svr] threshold = 0.5 y_pred_lr = [1 if x >= threshold else 0 for x in y_probability_test_lr] threshold = 0.5 y_pred_svc = [1 if x >= threshold else 0 for x in y_probability_test_svc] predictions = [y_pred_rr, y_pred_svr, y_pred_lr, y_pred_svc] for prediction in predictions: print(classification_report(y_test_labeled, prediction)) metrics = precision_recall_fscore_support(y_test_labeled, prediction) precision, recall, f1, support = metrics if precision[1] == 0: if precision == 10: pass metrics_dict[mat_prop]['precision'].append(precision[1]) metrics_dict[mat_prop]['recall'].append(recall[1]) metrics_dict[mat_prop]['f1'].append(f1[1]) return metrics_dict def build_metrics(): for seed in [1]: metrics = get_performance(mat_props, seed) for prop in metrics: metric_csv = prop+'_metrics_seed_{:0.0f}.csv'.format(seed) computed_metrics = os.listdir('data/metrics/') if metric_csv in computed_metrics: continue else: df_prop_metric = pd.DataFrame(metrics[prop], index=['rr', 'svr', 'lr', 'svc']) df_prop_metric.to_csv('data/metrics/'+metric_csv) def plot_metrics(): metric_mean = {} metric_std = {} metric_mean[0] = {} metric_mean[1] = {} metric_mean[2] = {} metric_std[0] = {} metric_std[1] = {} metric_std[2] = {} for prop in mat_props: rr = [] svr = [] lr = [] svc = [] for seed in [1, 2, 3, 4, 5]: metric_csv = prop+'_metrics_seed_{:0.0f}.csv'.format(seed) df_prop_metric = pd.read_csv('data/metrics/'+metric_csv) rr.append(df_prop_metric.iloc[0, 1:].tolist()) svr.append(df_prop_metric.iloc[1, 1:].tolist()) lr.append(df_prop_metric.iloc[2, 1:].tolist()) svc.append(df_prop_metric.iloc[3, 1:].tolist()) for i in [0, 1, 2]: metric_mean[i][prop] = [pd.DataFrame(rr).mean()[i], pd.DataFrame(svr).mean()[i], pd.DataFrame(lr).mean()[i], pd.DataFrame(svc).mean()[i]] metric_std[i][prop] = [pd.DataFrame(rr).std()[i], pd.DataFrame(svr).std()[i], pd.DataFrame(lr).std()[i], pd.DataFrame(svc).std()[i]] df_p_mean = pd.DataFrame(metric_mean[0], index=['rr', 'svr', 'lr', 'svc']) df_p_std = pd.DataFrame(metric_std[0], index=['rr', 'svr', 'lr', 'svc']) df_r_mean = pd.DataFrame(metric_mean[1], index=['rr', 'svr', 'lr', 'svc']) df_r_std = pd.DataFrame(metric_std[1], index=['rr', 'svr', 'lr', 'svc']) df_f_mean = pd.DataFrame(metric_mean[2], index=['rr', 'svr', 'lr', 'svc']) df_f_std =
pd.DataFrame(metric_std[2], index=['rr', 'svr', 'lr', 'svc'])
pandas.DataFrame
# -*- coding: utf-8 -*- from datetime import timedelta import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas import (Timedelta, period_range, Period, PeriodIndex, _np_version_under1p10) import pandas.core.indexes.period as period class TestPeriodIndexArithmetic(object): def test_pi_add_offset_array(self): # GH#18849 pi = pd.PeriodIndex([pd.Period('2015Q1'), pd.Period('2016Q2')]) offs = np.array([pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12)]) res = pi + offs expected = pd.PeriodIndex([pd.Period('2015Q2'), pd.Period('2015Q4')]) tm.assert_index_equal(res, expected) unanchored = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) with pytest.raises(period.IncompatibleFrequency): pi + unanchored with pytest.raises(TypeError): unanchored + pi @pytest.mark.xfail(reason='GH#18824 radd doesnt implement this case') def test_pi_radd_offset_array(self): # GH#18849 pi = pd.PeriodIndex([pd.Period('2015Q1'), pd.Period('2016Q2')]) offs = np.array([pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12)]) res = offs + pi expected = pd.PeriodIndex([pd.Period('2015Q2'), pd.Period('2015Q4')]) tm.assert_index_equal(res, expected) def test_add_iadd(self): rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) # previously performed setop union, now raises TypeError (GH14164) with pytest.raises(TypeError): rng + other with pytest.raises(TypeError): rng += other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng + pd.offsets.YearEnd(5) expected = pd.period_range('2019', '2029', freq='A') tm.assert_index_equal(result, expected) rng += pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: msg = ('Input has different freq(=.+)? ' 'from PeriodIndex\\(freq=A-DEC\\)') with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + o rng = pd.period_range('2014-01', '2016-12', freq='M') result = rng + pd.offsets.MonthEnd(5) expected = pd.period_range('2014-06', '2017-05', freq='M') tm.assert_index_equal(result, expected) rng += pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: rng = pd.period_range('2014-01', '2016-12', freq='M') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=M\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + o # Tick offsets = [pd.offsets.Day(3), timedelta(days=3), np.timedelta64(3, 'D'), pd.offsets.Hour(72), timedelta(minutes=60 * 24 * 3), np.timedelta64(72, 'h'), Timedelta('72:00:00')] for delta in offsets: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') result = rng + delta expected = pd.period_range('2014-05-04', '2014-05-18', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23), Timedelta('23:00:00')]: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=D\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + o offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), pd.offsets.Minute(120), timedelta(minutes=120), np.timedelta64(120, 'm'), Timedelta(minutes=120)] for delta in offsets: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') result = rng + delta expected = pd.period_range('2014-01-01 12:00', '2014-01-05 12:00', freq='H') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for delta in [pd.offsets.YearBegin(2), timedelta(minutes=30), np.timedelta64(30, 's'), Timedelta(seconds=30)]: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=H\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + delta with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng += delta def test_pi_add_int(self, one): # Variants of `one` for #19012 rng = pd.period_range('2000-01-01 09:00', freq='H', periods=10) result = rng + one expected = pd.period_range('2000-01-01 10:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += one tm.assert_index_equal(rng, expected) @pytest.mark.parametrize('five', [5, np.array(5, dtype=np.int64)]) def test_sub(self, five): rng = period_range('2007-01', periods=50) result = rng - five exp = rng + (-five) tm.assert_index_equal(result, exp) def test_sub_isub(self): # previously performed setop, now raises TypeError (GH14164) # TODO needs to wait on #13077 for decision on result type rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) with pytest.raises(TypeError): rng - other with pytest.raises(TypeError): rng -= other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng - pd.offsets.YearEnd(5) expected = pd.period_range('2009', '2019', freq='A') tm.assert_index_equal(result, expected) rng -= pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: rng = pd.period_range('2014', '2024', freq='A') msg = ('Input has different freq(=.+)? ' 'from PeriodIndex\\(freq=A-DEC\\)') with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng - o rng = pd.period_range('2014-01', '2016-12', freq='M') result = rng - pd.offsets.MonthEnd(5) expected = pd.period_range('2013-08', '2016-07', freq='M') tm.assert_index_equal(result, expected) rng -= pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: rng = pd.period_range('2014-01', '2016-12', freq='M') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=M\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng - o # Tick offsets = [
pd.offsets.Day(3)
pandas.offsets.Day
''' Imputation: Helps in filling up the null values Method1: Removal of null rows Method2: Filling null values with specified values Method3: Filling null values with average values ''' import pandas as pd import numpy as np class Imputer: def __init__(self,df): self.df=df def colm_rem(self,colm): #Removes the column from the dataset print("Removing the null value rows of "+colm) temp_df=self.df[
pd.notnull(self.df[colm])
pandas.notnull
from tweepy import OAuthHandler import time import pandas as pd import json import datetime import tweepy from MarioEnterScores import MarioBoard import os from mongo import BotDB BOTENV = os.environ['BOTENV'] #Variables that contains the user credentials to access Twitter API consumer_key = os.environ['TWITTER_CONSUMER_KEY'] consumer_secret = os.environ['TWITTER_CONSUMER_SECRET'] access_token = os.environ['TWITTER_ACCESS_TOKEN'] access_token_secret = os.environ['TWITTER_ACCESS_TOKEN_SECRET'] def joinList(List,separator): st = '' for item in List: st+=item+separator #remove last separator st = st[:len(st)-1] return st def readabledate(unixdate): date = datetime.datetime.fromtimestamp(int(float(unixdate))).strftime('%Y-%m-%d %H:%M:%S') return date class MarioKeezy(tweepy.API): def __init__(self): auth = OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) super(MarioKeezy,self).__init__(auth) self.db = BotDB(BOTENV) self.userDict = self.db.getkv('marioUserDict') def convert_api_string_to_tweet_version(self,api_txt): api_list = api_txt.split(',') new_str = joinList([self.userDict[player]['code'] for player in api_list],',') return new_str def runtweetfunc(self,apistr): self.db.log.info('Mario input -- %s' % (apistr)) #reply tweet with results: resdf = self.rusFunction(apistr) #your main function if not resdf.empty: ''' not using image for this iteration on twitter ''' #imageFile = createDFImage(resdf) #tweetback = ('%s - %s - Current Standings'% (readabledate(time.time()) , (joinList([self.userDict[key]['handle'] for key in self.userDict],' ')))) #add handle and current time. time need to prevent a duplicate tweet error #self.update_with_media(filename=imageFile,status=tweetback) #for testing: #img = Image.open(imageFile) #img.show() self.db.log.info('Complete') return resdf else: tweetback = ('%s - %s - ' % (readabledate(time.time()) , 'Error - invalid tweet')) self.db.log.info('failure') #self.update_status(tweetback) self.db.log.info('Replied with - %s' % (tweetback)) def rusFunction(self,apistr): ''' mariokeezy is the twitter handle that will tweet the image your string points to. :::the bot automatically adds the handle ( tweeter['handle'] ) in the string to be returned so that borted replies to you directly so no need to include it in your string to be returned. : apistr is the string of text that was sent. : the current format is r,t,n. It works out the number of players based on the length of the string originally tweeted. run your code here and return what you want the function to return to the twitter handle as a dataFrame object csv file ''' #just as an idea to start - to save it being messy i'd just save your other.pys in the save folder # and import the main functions into here like: # from Mario import Func1, func2 etc... # userCodes = {'t':'1','n':'2','r':'3','h':'4'} try: userCodes[apistr[0]] except KeyError: self.db.log.info('Invalid tweet') return
pd.DataFrame()
pandas.DataFrame
import csv import json import operator import os import datetime # 3rd party required for core package import numpy import pandas # CSEP Imports from csep.core import regions from csep.utils.time_utils import epoch_time_to_utc_datetime, datetime_to_utc_epoch, strptime_to_utc_datetime, \ millis_to_days, parse_string_format, days_to_millis, strptime_to_utc_epoch, utc_now_datetime, create_utc_datetime from csep.utils.stats import min_or_none, max_or_none from csep.utils.calc import discretize from csep.utils.comcat import SummaryEvent from csep.core.exceptions import CSEPSchedulerException, CSEPCatalogException, CSEPIOException from csep.utils.calc import bin1d_vec from csep.utils.constants import CSEP_MW_BINS from csep.utils.log import LoggingMixin from csep.utils.readers import csep_ascii class AbstractBaseCatalog(LoggingMixin): """ Abstract catalog base class for PyCSEP catalogs. This class should not and cannot be used on its own. This just provides the interface for implementing custom catalog classes. """ dtype = None def __init__(self, filename=None, data=None, catalog_id=None, format=None, name=None, region=None, compute_stats=True, filters=None, metadata=None, date_accessed=None): """ Standard catalog format for CSEP catalogs. Primary event data are stored in structured numpy array. Additional metadata are available by the event_id in the catalog metadata information. Args: filename: location of catalog catalog (numpy.ndarray or eventlist): catalog data catalog_id: catalog id number (used for stochastic event set forecasts) format: identification used for serialization name: human readable name of catalog region: spatial and magnitude region compute_stats: whether statistics should be computed for the catalog filters (str or list): filtering operations to apply to the catalog metadata (dict): additional information for events date_accessed (str): time string when catalog was accessed """ super().__init__() self.filename = filename self.catalog_id = catalog_id self.format = format self.name = name self.region = region self.compute_stats = compute_stats self.filters = filters or [] self.date_accessed = date_accessed or utc_now_datetime() # type datetime.datetime # used to store additional event information based on the event_id key, if no event_id will default to an # integer index self.metadata = metadata or {} # cleans the catalog to set as ndarray, see setter. self.catalog = data # type: numpy.ndarray # use user defined stats if entered into catalog if data is not None and self.compute_stats: self.update_catalog_stats() def __eq__(self, other): """ Compares whether two catalogs are equal by comparing their dicts. """ return self.to_dict() == other.to_dict() def __str__(self): self.update_catalog_stats() s = f''' Name: {self.name} Start Date: {self.start_time} End Date: {self.end_time} Latitude: ({self.min_latitude}, {self.max_latitude}) Longitude: ({self.min_longitude}, {self.max_longitude}) Min Mw: {self.min_magnitude} Max Mw: {self.max_magnitude} Event Count: {self.event_count} ''' return s def to_dict(self): """ Serializes class to json dictionary. Returns: catalog as dict """ excluded = ['_catalog'] out = {} for k, v in self.__dict__.items(): # note: if 'v' is callable that implies that we have a function bound to a class-member. this happens # for the catalog forecast and requires excluding this value. if not callable(v) and k not in excluded: if hasattr(v, 'to_dict'): new_v = v.to_dict() else: new_v = v if k.startswith('_'): out[k[1:]] = new_v else: out[k] = new_v out['catalog'] = [] for line in list(self.catalog.tolist()): new_line = [] for item in line: # try to decode, if it fails just use original, we use this to handle string-based event_ids try: item = item.decode('utf-8') except: pass finally: new_line.append(item) out['catalog'].append(new_line) return out @property def event_count(self): """ Number of events in catalog """ return self.get_number_of_events() @classmethod def load_catalog(cls, filename, loader=csep_ascii, **kwargs): raise NotImplementedError("subclass should implement load_catalog funtion.") @classmethod def from_dict(cls, adict, **kwargs): """ Creates a class from the dictionary representation of the class state. The catalog is serialized into a list of tuples that contain the event information in the order defined by the dtype. This needs to handle reading in region information at some point. """ # could these be class values? can be changed later. exclude = ['_catalog'] time_members = ['date_accessed', 'start_time', 'end_time'] catalog = adict.get('catalog', None) out = cls(data=catalog, **kwargs) for k, v in out.__dict__.items(): if k not in exclude: if k not in time_members: setattr(out, k, adict[k]) else: setattr(out, k, _none_or_datetime(adict[k])) return out @classmethod def from_dataframe(cls, df, **kwargs): """ Creates catalog from dataframe. Dataframe must have columns that are equivalent to whatever fields the catalog expects in the catalog dtype. For example: cat = CSEPCatalog() df = cat.get_dataframe() new_cat = CSEPCatalog.from_dataframe(df) Args: df (pandas.DataFrame): pandas dataframe **kwargs: Returns: Catalog """ catalog_id = None try: catalog_id = df['catalog_id'].iloc[0] except KeyError: pass col_list = list(cls.dtype.names) # we want this to be a structured array not a record array and only returns core attributes listed in dtype # loses information about the region and event meta data catalog = numpy.ascontiguousarray(df[col_list].to_records(index=False), dtype=cls.dtype) out_cls = cls(data=catalog, catalog_id=catalog_id, **kwargs) return out_cls @classmethod def load_json(cls, filename, **kwargs): """ Loads catalog from JSON file """ with open(filename, 'r') as f: adict = json.load(f) return cls.from_dict(adict, **kwargs) def write_json(self, filename): """ Writes catalog to json file Args: filename (str): path to save file """ with open(filename, 'w') as f: json.dump(self.to_dict(), f, indent=4, separators=(',', ': '), sort_keys=True, default=str) @property def catalog(self): return self._catalog @property def data(self): return self._catalog @catalog.setter def catalog(self, val): """ Ensures that catalogs with formats not numpy arrray are treated as numpy.array Note: This requires that catalog classes implement the self._get_catalog_as_ndarray() function. This function should return structured numpy.ndarray. Catalog will remain None, if assigned that way in constructor. """ self._catalog = val if self._catalog is not None: self._catalog = self._get_catalog_as_ndarray() # ensure that people are behaving, somewhat non-pythonic but needed if not isinstance(self._catalog, numpy.ndarray): raise ValueError("Error: Catalog must be numpy.ndarray! Ensure that self._get_catalog_as_ndarray()" + " returns an ndarray") if self.compute_stats and self._catalog is not None: self.update_catalog_stats() def _get_catalog_as_ndarray(self): """ This function will be called anytime that a catalog is assigned to self.catalog The purpose of this function is to ensure that the catalog is being properly parsed into the correct format, and to prevent users of the catalog classes from assigning improper data types. This also acts as a convenience to allow easy assignment of different types to the catalog. The default implementation of this function expects that the data are arranged as a collection of tuples corresponding to the catalog data type. """ """ Converts eventlist into ndarray format. Note: Failure state exists if self.catalog is not bound to instance explicity. """ # short-circuit if isinstance(self.catalog, numpy.ndarray): return self.catalog # if catalog is not a numpy array, class must have dtype information catalog_length = len(self.catalog) catalog = numpy.empty(catalog_length, dtype=self.dtype) if catalog_length == 0: return catalog if isinstance(self.catalog[0], (list, tuple)): for i, event in enumerate(self.catalog): catalog[i] = tuple(event) elif isinstance(self.catalog[0], SummaryEvent): for i, event in enumerate(self.catalog): catalog[i] = (event.id, datetime_to_utc_epoch(event.time), event.latitude, event.longitude, event.depth, event.magnitude) else: raise TypeError("Catalog data must be list of events tuples with order:\n" f"{', '.join(self.dtype.names)} or \n" "list of SummaryEvent type.") return catalog def write_ascii(self, filename, write_header=True, write_empty=True, append=False, id_col='id'): """ Write catalog in csep2 ascii format. This format only uses the required variables from the catalog and should work by default. It can be overwritten if an event_id (or other columns should be used). By default, the routine will look for a column the catalog array called 'id' and will populate the event_id column with these values. If the 'id' column is not found, then it will leave this column blank Short format description (comma separated values): longitude, latitude, M, time_string format="%Y-%m-%dT%H:%M:%S.%f", depth, catalog_id, [event_id] Args: filename (str): the file location to write the the ascii catalog file write_header (bool): Write header string (default true) write_empty (bool): Write file event if no events in catalog append (bool): If true, append to the filename id_col (str): name of event_id column (if included) Returns: NoneType """ # longitude, latitude, M, epoch_time (time in millisecond since Unix epoch in GMT), depth, catalog_id, event_id header = ['lon', 'lat', 'mag', 'time_string', 'depth', 'catalog_id', 'event_id'] if append: write_string = 'a' else: write_string = 'w' with open(filename, write_string) as outfile: writer = csv.DictWriter(outfile, fieldnames=header, delimiter=',') if write_header: writer.writeheader() if write_empty and self.event_count == 0: return # create iterator from catalog columns try: event_ids = self.catalog[id_col] except ValueError: event_ids = [''] * self.event_count row_iter = zip(self.get_longitudes(), self.get_latitudes(), self.get_magnitudes(), self.get_epoch_times(), self.get_depths(), # populate list with `self.event_count` elements with val self.catalog_id [self.catalog_id] * self.event_count, event_ids) # write csv file using DictWriter interface for row in row_iter: try: event_id = row[6].decode('utf-8') except AttributeError: event_id = row[6] # create dictionary for each row adict = {'lon': row[0], 'lat': row[1], 'mag': row[2], 'time_string': str(epoch_time_to_utc_datetime(row[3]).replace(tzinfo=None)).replace(' ', 'T'), 'depth': row[4], 'catalog_id': row[5], 'event_id': event_id} writer.writerow(adict) def to_dataframe(self, with_datetime=False): """ Returns pandas Dataframe describing the catalog. Explicitly casts to pandas DataFrame. Note: The dataframe will be in the format of the original catalog. If you require that the dataframe be in the CSEP ZMAP format, you must explicitly convert the catalog. Returns: (pandas.DataFrame): This function must return a pandas DataFrame Raises: ValueError: If self._catalog cannot be passed to pandas.DataFrame constructor, this function must be overridden in the child class. """ df =
pandas.DataFrame(self.catalog)
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- # 基础模块 import os import sys import gc import json import time import functools from datetime import datetime # 数据处理 import numpy as np import pandas as pd from math import sqrt from collections import Counter # 自定义工具包 sys.path.append('../tools/') import loader import cate_encoding # 设置随机种子 SEED = 2018 np.random.seed (SEED) input_root_path = '../input/' output_root_path = '../feature/' tr_base_path = input_root_path + 'tr.ftr' te_base_path = input_root_path + 'te.ftr' cv_id_path = '../../../input/' + 'cvid.csv' postfix = 's0_0' file_type = 'ftr' # 当前特征 tr_fea_out_path = output_root_path + 'tr_fea_{}.{}'.format(postfix, file_type) te_fea_out_path = output_root_path + 'te_fea_{}.{}'.format(postfix, file_type) # 当前特征 + 之前特征 merge 之后的完整训练数据 tr_out_path = output_root_path + 'tr_{}.{}'.format(postfix, file_type) te_out_path = output_root_path + 'te_{}.{}'.format(postfix, file_type) ID_NAME = ['session_id', 'impressions'] TARGET_NAME = 'target' def feat_extract(df): df['dt'] = pd.to_datetime(df['timestamp'], unit='s') df['hour'] = df['dt'].dt.hour df.drop(['dt'], axis=1, inplace=True) cate_cols = ['city', 'device', 'platform', 'current_filters'] for col in cate_cols: df[col] = pd.factorize(df[col], sort=True)[0] # impr rank df['impr_rank'] = df.groupby(['session_id']).cumcount().values # price statistics by session df = cate_encoding.cate_num_stat(df, df, ['session_id'], 'prices', ['median','std','count']) df['price_sub'] = df['prices'] - df['session_id_by_prices_median'] df['price_div'] = df['prices'] / df['session_id_by_prices_median'] return df def gen_fea(): tr = loader.load_df(tr_base_path) te = loader.load_df(te_base_path) df_base =
pd.concat([tr, te])
pandas.concat
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2020 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from datetime import datetime from functools import wraps from pandas import DataFrame, Series from pandas import to_datetime, concat, NA class Error(Exception): """Base class for exceptions in this module.""" pass class FinnhubError(Error): def __init__(self, message): self.message = message available_kind = [ 'stock', 'forex', 'economic', 'crypto', 'indices' ] names_dict = { 'c': 'close', 'h': 'high', 'l': 'low', 'o': 'open', 'v': 'volume', 'pc': 'previous_close', 't': 'datetime' } def _check_resolution(resolution): if not str(resolution).upper() in [ "1", "5", "15", "30", "60", "D", "W", "M" ]: print('Resolution must be one of 1, 5, 15, 30, 60, D, W, M') return False else: return True def _rename_candle_columns(df): return df.rename(columns=names_dict) def _rename_quote(quotes): quotes['t'] =
to_datetime(quotes['t'], unit='s', utc=True)
pandas.to_datetime
import numpy as np import pandas as pd import dgl import torch import torch.nn as nn import torch.nn.functional as F import itertools import scipy.sparse as sp # Config relation2id_path = '../data/relation2id.csv' kg_path = '../data/kg_triplet.csv' human_sl_path = '../data/sl_data' kg_save = '../data/kg2id.txt' sl_save = '../data/sl2id.txt' entity_save = '../data/entity2id.txt' # -----------------------------------------------------Begin------------------------------------------- relation2id = pd.read_csv(relation2id_path) human_SL =
pd.read_csv(human_sl_path, sep=' ')
pandas.read_csv
import itertools import traceback import uuid from functools import partial, reduce from typing import Any, Callable, Dict, Iterable, List, Tuple, Union from pdb import set_trace as st import numpy as np import pandas as pd import os import tensorflow as tf from nninst_graph import AttrMap, Graph, GraphAttrKey import nninst_mode as mode from dataset import cifar10 from dataset.mnist_transforms import * from dataset.config import MNIST_PATH, CIFAR10_PATH # from nninst.backend.tensorflow.dataset import imagenet, imagenet_raw # from nninst.backend.tensorflow.dataset.imagenet_hierarchy import imagenet_class_tree # from nninst.backend.tensorflow.dataset.imagenet_preprocessing import ( # alexnet_preprocess_image, # ) from tf_graph import ( MaskWeightWithTraceHook, model_fn_with_fetch_hook, ) from model import LeNet from model.resnet18cifar10 import ResNet18Cifar10 from model.resnet10cifar10 import ResNet10Cifar10 # from nninst.backend.tensorflow.model import AlexNet, LeNet, ResNet50 from model.config import ModelConfig # from nninst.backend.tensorflow.model.config import ( # ALEXNET, # RESNET_50, # VGG_16, # ModelConfig, # ) from trace.common import ( get_predicted_value, get_rank, predict, reconstruct_class_trace_from_tf, reconstruct_trace_from_tf, reconstruct_trace_from_tf_brute_force, ) from trace.common import ( reconstruct_stat_from_tf, reconstruct_trace_from_tf_v2, ) # from nninst.dataset.envs import IMAGENET_RAW_DIR from nninst_op import Conv2dOp from nninst_path import ( get_trace_path_in_fc_layers, get_trace_path_intersection_in_fc_layers, ) from nninst_statistics import ( calc_trace_path_num, calc_trace_size, calc_trace_size_per_layer, ) from nninst_trace import ( TraceKey, compact_edge, compact_trace, merge_compact_trace, merge_compact_trace_diff, merge_compact_trace_intersect, ) from nninst_utils import filter_value_not_null, merge_dict from nninst_utils.fs import CsvIOAction, ImageIOAction, IOAction, abspath from nninst_utils.numpy import arg_approx, arg_sorted_topk from nninst_utils.ray import ray_iter __all__ = [ "clean_overlap_ratio", "overlap_ratio", "get_overlay_summary", "resnet_50_imagenet_overlap_ratio", "alexnet_imagenet_overlap_ratio", "resnet_50_imagenet_overlap_ratio_error", "get_overlay_summary_one_side", "resnet_50_imagenet_overlap_ratio_rand", "alexnet_imagenet_overlap_ratio_top5", "resnet_50_imagenet_overlap_ratio_top5_rand", "resnet_50_imagenet_overlap_ratio_top5", "alexnet_imagenet_overlap_ratio_error", "alexnet_imagenet_overlap_ratio_rand", "alexnet_imagenet_overlap_ratio_top5_rand", "alexnet_imagenet_overlap_ratio_top5_diff", ] def calc_all_overlap( class_trace: AttrMap, trace: AttrMap, overlap_fn: Callable[[AttrMap, AttrMap, str], float], node_name: str = None, compact: bool = False, use_intersect_size: bool = False, key: str = TraceKey.EDGE, ) -> Dict[str, float]: if node_name is None: if use_intersect_size: overlap_ratio, intersect_size = overlap_fn( class_trace, trace, key, return_size=True ) return {key + "_size": intersect_size, key: overlap_ratio} else: return { **{ key + "_size": calc_trace_size(trace, key, compact=compact) for key in [ TraceKey.EDGE, TraceKey.POINT, TraceKey.WEIGHT ] }, **{ key: overlap_fn(class_trace, trace, key) for key in [ TraceKey.EDGE, TraceKey.POINT, TraceKey.WEIGHT ] }, } else: all_overlap = { key: overlap_fn(class_trace, trace, key, node_name) for key in [ TraceKey.EDGE, TraceKey.POINT, TraceKey.WEIGHT ] } for key in [ TraceKey.EDGE, TraceKey.POINT, TraceKey.WEIGHT ]: if node_name in trace.ops: node_trace = trace.ops[node_name] if key in node_trace: if compact: all_overlap[key + "_size"] = np.count_nonzero( np.unpackbits(node_trace[key]) ) else: all_overlap[key + "_size"] = TraceKey.to_array( node_trace[key] ).size return all_overlap # Compute mnist overlap ratio between the traces of clean test images and class traces def clean_overlap_ratio( class_trace_fn: Callable[[int], IOAction[AttrMap]], select_fn: Callable[[np.ndarray], np.ndarray], overlap_fn: Callable[[AttrMap, AttrMap, str], float], path: str, per_channel: bool = False, per_node: bool = False, num_gpus:float = 0.2, images_per_class: int = 1, **kwargs, ): def get_overlap_ratio() -> pd.DataFrame: def get_row(class_id: int, image_id: int) -> Dict[str, Any]: mode.check(False) data_dir = abspath(MNIST_PATH) model_dir = abspath("result/lenet/model_dropout") create_model = lambda: LeNet(data_format="channels_first") graph = LeNet.graph().load() model_fn = partial( model_fn_with_fetch_hook, create_model=create_model, graph=graph ) predicted_label = predict( create_model=create_model, input_fn=lambda: mnist.test(data_dir) .filter( lambda image, label: tf.equal( tf.convert_to_tensor(class_id, dtype=tf.int32), label ) ) .skip(image_id) .take(1) .batch(1), model_dir=model_dir, ) # print(class_id, predicted_label) # st() if predicted_label != class_id: return [{}] if per_node else {} trace = reconstruct_trace_from_tf( class_id=class_id, model_fn=model_fn, input_fn=lambda: mnist.test(data_dir) .filter( lambda image, label: tf.equal( tf.convert_to_tensor(class_id, dtype=tf.int32), label ) ) .skip(image_id) .take(1) .batch(1), select_fn=select_fn, model_dir=model_dir, per_channel=per_channel, )[0] if trace is None: return [{}] if per_node else {} def map_prefix(map: Dict[str, Any], prefix: str) -> Dict[str, Any]: return {f"{prefix}.{key}": value for key, value in map.items()} row = { "image_id": image_id, **map_prefix( calc_all_overlap( class_trace_fn(class_id).load(), trace, overlap_fn ), "original", ), } # st() return row traces = ray_iter( get_row, ( (class_id, image_id) for image_id in range(0, images_per_class) for class_id in range(0, 10) ), chunksize=1, out_of_order=True, num_gpus=0.2, ) traces = [trace for trace in traces if len(trace) != 0] return pd.DataFrame(traces) return CsvIOAction(path, init_fn=get_overlap_ratio) # Compute transformed (translation, rotation and scale) # mnist overlap ratio between the traces of clean test images and class traces def translation_overlap_ratio( class_trace_fn: Callable[[int], IOAction[AttrMap]], select_fn: Callable[[np.ndarray], np.ndarray], overlap_fn: Callable[[AttrMap, AttrMap, str], float], path: str, per_channel: bool = False, per_node: bool = False, images_per_class: int = 1, transforms=None, name = None, num_gpus = 0.2, **kwargs, ): def get_overlap_ratio() -> pd.DataFrame: def get_row(class_id: int, image_id: int) -> Dict[str, Any]: mode.check(False) data_dir = abspath(MNIST_PATH) model_dir = abspath("result/lenet/model_augmentation") create_model = lambda: LeNet(data_format="channels_first") graph = LeNet.graph().load() model_fn = partial( model_fn_with_fetch_hook, create_model=create_model, graph=graph ) # Check the prediction on clean untransformed image, so don't need # transform predicted_label = predict( create_model=create_model, input_fn=lambda: mnist.test(data_dir) .filter( lambda image, label: tf.equal( tf.convert_to_tensor(class_id, dtype=tf.int32), label ) ) .skip(image_id) .take(1) .batch(1), model_dir=model_dir, ) # print(class_id, predicted_label) # st() if predicted_label != class_id: return [{}] if per_node else {} # Reconstruct regardless of the correctness of prediction trace = reconstruct_trace_from_tf_brute_force( class_id=class_id, model_fn=model_fn, input_fn=lambda: mnist.test(data_dir, transforms=transforms) .filter( lambda image, label: tf.equal( tf.convert_to_tensor(class_id, dtype=tf.int32), label ) ) .skip(image_id) .take(1) .batch(1), select_fn=select_fn, model_dir=model_dir, per_channel=per_channel, )[0] if trace is None: return [{}] if per_node else {} def map_prefix(map: Dict[str, Any], prefix: str) -> Dict[str, Any]: return {f"{prefix}.{key}": value for key, value in map.items()} row = calc_all_overlap( class_trace_fn(class_id).load(), trace, overlap_fn ) # row = { # "image_id": image_id, # **map_prefix( # calc_all_overlap( # class_trace_fn(class_id).load(), trace, overlap_fn # ), # "original", # ), # } # st() return row traces = ray_iter( get_row, ( (class_id, image_id) # for image_id in range(0, images_per_class) for image_id in range(0, images_per_class) for class_id in range(0, 10) ), chunksize=1, out_of_order=True, num_gpus=num_gpus, ) traces = [trace for trace in traces if len(trace) != 0] acc = len(traces) / (images_per_class * 10) traces = pd.DataFrame(traces).mean() traces.loc['accuracy'] = acc traces = traces.to_frame() traces.columns = [name] return traces return CsvIOAction(path, init_fn=get_overlap_ratio) # Compute the mean overlap ratio of attacked image def attack_overlap_ratio( attack_name: str, attack_fn, generate_adversarial_fn, class_trace_fn: Callable[[int], IOAction[AttrMap]], select_fn: Callable[[np.ndarray], np.ndarray], overlap_fn: Callable[[AttrMap, AttrMap, str], float], path: str, per_channel: bool = False, per_node: bool = False, images_per_class: int = 1, num_gpus: float = 0.2, model_dir = "result/lenet/model_augmentation", transforms = None, transform_name = "noop", **kwargs, ): def get_overlap_ratio() -> pd.DataFrame: def get_row(class_id: int, image_id: int) -> Dict[str, Any]: nonlocal model_dir mode.check(False) data_dir = abspath(MNIST_PATH) model_dir = abspath(model_dir) ckpt_dir = f"{model_dir}/ckpts" create_model = lambda: LeNet(data_format="channels_first") graph = LeNet.graph().load() model_fn = partial( model_fn_with_fetch_hook, create_model=create_model, graph=graph ) predicted_label = predict( create_model=create_model, input_fn=lambda: mnist.test(data_dir) .filter( lambda image, label: tf.equal( tf.convert_to_tensor(class_id, dtype=tf.int32), label ) ) .skip(image_id) .take(1) .batch(1), model_dir=ckpt_dir, ) if predicted_label != class_id: return [{}] if per_node else {} adversarial_example = lenet_mnist_example( attack_name=attack_name, attack_fn=attack_fn, generate_adversarial_fn=generate_adversarial_fn, class_id=class_id, image_id=image_id, # model_dir not ckpt_dir model_dir=model_dir, transforms = transforms, transform_name = transform_name, mode = "test", ).load() if adversarial_example is None: return [{}] if per_node else {} adversarial_predicted_label = predict( create_model=create_model, input_fn=lambda: tf.data.Dataset.from_tensors( mnist.normalize(adversarial_example) ), model_dir=ckpt_dir, ) if predicted_label == adversarial_predicted_label: return [{}] if per_node else {} trace = reconstruct_trace_from_tf( class_id=class_id, model_fn=model_fn, input_fn=lambda: mnist.test(data_dir, transforms=transforms) .filter( lambda image, label: tf.equal( tf.convert_to_tensor(class_id, dtype=tf.int32), label ) ) .skip(image_id) .take(1) .batch(1), select_fn=select_fn, model_dir=ckpt_dir, per_channel=per_channel, )[0] if trace is None: return [{}] if per_node else {} adversarial_trace = reconstruct_trace_from_tf_brute_force( model_fn=model_fn, input_fn=lambda: tf.data.Dataset.from_tensors( mnist.normalize(adversarial_example) ), select_fn=select_fn, model_dir=ckpt_dir, per_channel=per_channel, )[0] adversarial_label = adversarial_trace.attrs[GraphAttrKey.PREDICT] def map_prefix(map: Dict[str, Any], prefix: str) -> Dict[str, Any]: return {f"{prefix}.{key}": value for key, value in map.items()} row = { "image_id": image_id, "class_id": class_id, **map_prefix( calc_all_overlap( class_trace_fn(class_id).load(), trace, overlap_fn ), "original", ), **map_prefix( calc_all_overlap( class_trace_fn(adversarial_label).load(), adversarial_trace, overlap_fn, ), "adversarial", ), } # row = calc_all_overlap( # class_trace_fn(class_id).load(), adversarial_trace, overlap_fn # ) return row traces = ray_iter( get_row, ( (class_id, image_id) for image_id in range(0, images_per_class) for class_id in range(0, 10) ), # ((-1, image_id) for image_id in range(mnist_info.test().size)), chunksize=1, out_of_order=True, num_gpus=num_gpus, ) traces = [trace for trace in traces if len(trace) != 0] # acc = len(traces) / (images_per_class * 10) # traces = pd.DataFrame(traces).mean() # traces.loc['clean_accuracy'] = acc # traces = traces.to_frame() # traces.columns = [attack_name] # return traces return pd.DataFrame(traces) return CsvIOAction(path, init_fn=get_overlap_ratio) def lenet_mnist_example( attack_name, attack_fn, generate_adversarial_fn, class_id: int, image_id: int, model_dir: str, mode: str , transform_name: str = "noop", transforms: Transforms = None, **kwargs, ) -> IOAction[np.ndarray]: def get_example() -> np.ndarray: data_dir = abspath(MNIST_PATH) ckpt_dir = f"{model_dir}/ckpts" ckpt_dir = abspath(ckpt_dir) create_model = lambda: LeNet(data_format="channels_first") if mode == "test": dataset = mnist.test elif mode == "train": dataset = mnist.train else: raise RuntimeError("Dataset invalid") input = dataset(data_dir, normed=False, transforms=transforms, ) # st() # input = input.filter(lambda image, label: tf.equal(tf.convert_to_tensor(class_id, dtype=tf.int32), label)) adversarial_example = generate_adversarial_fn( label=class_id, create_model=create_model, input_fn=lambda: dataset(data_dir, normed=False, transforms=transforms, ) .filter( lambda image, label: tf.equal( tf.convert_to_tensor(class_id, dtype=tf.int32), label ) ) .skip(image_id) .take(1) .batch(1) .make_one_shot_iterator() .get_next()[0], attack_fn=attack_fn, model_dir=ckpt_dir, **kwargs, ) return adversarial_example name = f"{attack_name}_{transform_name}" result_dir = f"{model_dir}/attack/{mode}/{name}/{class_id}" path = os.path.join(result_dir, f"{image_id}.pkl") return IOAction(path, init_fn=get_example, cache=True, compress=True) def resnet18_cifar10_example( attack_name, attack_fn, generate_adversarial_fn, class_id: int, image_id: int, model_dir: str, dataset_mode: str , transform_name: str = "noop", transforms: Transforms = None, **kwargs, ) -> IOAction[np.ndarray]: def get_one_input_from_dataset(dataset): input = (dataset .filter( lambda image, label: tf.equal( tf.convert_to_tensor(class_id, dtype=tf.int32), label ) ) .skip(image_id) .take(1) .batch(1) .make_one_shot_iterator() .get_next()[0] ) return input def get_example() -> np.ndarray: data_dir = abspath(CIFAR10_PATH) ckpt_dir = f"{model_dir}/ckpts" ckpt_dir = abspath(ckpt_dir) # create_model = lambda: LeNet(data_format="channels_first") create_model = lambda: partial( ResNet18Cifar10(), training = False, ) from dataset.cifar10_main import input_fn_for_adversarial_examples # dataset = input_fn_for_adversarial_examples( # is_training= False, # data_dir=data_dir, # num_parallel_batches=1, # is_shuffle=False, # transform_fn=None, # ) # adversarial_example = generate_adversarial_fn( # label=class_id, # create_model=create_model, # input_fn=lambda: get_one_input_from_dataset( # dataset # ), # attack_fn=attack_fn, # model_dir=ckpt_dir, # **kwargs, # ) adversarial_example = generate_adversarial_fn( label=class_id, create_model=create_model, input_fn=lambda: ( input_fn_for_adversarial_examples( is_training= False, data_dir=data_dir, num_parallel_batches=1, is_shuffle=False, transform_fn=None, ) .filter( lambda image, label: tf.equal( tf.convert_to_tensor(class_id, dtype=tf.int32), label ) ) .skip(image_id) .take(1) .batch(1) .make_one_shot_iterator() .get_next()[0] ), attack_fn=attack_fn, model_dir=ckpt_dir, **kwargs, ) return adversarial_example name = f"{attack_name}_{transform_name}" result_dir = f"{model_dir}/attack/{dataset_mode}/{name}/{class_id}" path = os.path.join(result_dir, f"{image_id}.pkl") return IOAction(path, init_fn=get_example, cache=True, compress=True) def resnet10_cifar10_example( attack_name, attack_fn, generate_adversarial_fn, class_id: int, image_id: int, model_dir: str, dataset_mode: str , transform_name: str = "noop", transforms: Transforms = None, **kwargs, ) -> IOAction[np.ndarray]: def get_one_input_from_dataset(dataset): input = (dataset .filter( lambda image, label: tf.equal( tf.convert_to_tensor(class_id, dtype=tf.int32), label ) ) .skip(image_id) .take(1) .batch(1) .make_one_shot_iterator() .get_next()[0] ) return input def get_example() -> np.ndarray: data_dir = abspath(CIFAR10_PATH) ckpt_dir = f"{model_dir}/ckpts" ckpt_dir = abspath(ckpt_dir) # create_model = lambda: LeNet(data_format="channels_first") create_model = lambda: partial( ResNet10Cifar10(), training = False, ) from dataset.cifar10_main import input_fn_for_adversarial_examples adversarial_example = generate_adversarial_fn( label=class_id, create_model=create_model, input_fn=lambda: ( input_fn_for_adversarial_examples( is_training= (dataset_mode=="train"), data_dir=data_dir, num_parallel_batches=1, is_shuffle=False, transform_fn=None, ) .filter( lambda image, label: tf.equal( tf.convert_to_tensor(class_id, dtype=tf.int32), label ) ) .skip(image_id) .take(1) .batch(1) .make_one_shot_iterator() .get_next()[0] ), attack_fn=attack_fn, model_dir=ckpt_dir, **kwargs, ) return adversarial_example name = f"{attack_name}" result_dir = f"{model_dir}/attack/{dataset_mode}/{name}/{class_id}" path = os.path.join(result_dir, f"{image_id}.pkl") return IOAction(path, init_fn=get_example, cache=True, compress=True) def adversarial_example_image( example_io: IOAction[np.ndarray], cache: bool = True ) -> IOAction[np.ndarray]: def get_example() -> np.ndarray: example = example_io.load() if example is None: return None return (np.squeeze(example, axis=0) * 255).astype(np.uint8) path = example_io.path.replace(".pkl", ".png") return ImageIOAction(path, init_fn=get_example, cache=cache) def generate_examples( example_fn: Callable[..., IOAction[np.ndarray]], class_ids: Iterable[int], image_ids: Iterable[int], attack_name: str, transform_name: str = "noop", transforms = None, cache: bool = True, num_gpus=0.2, **kwargs, ): def generate_examples_fn( class_id: int, image_id: int ) -> Union[Tuple[int, int], Tuple[int, int, str]]: try: class_id = int(class_id) image_id = int(image_id) example_io = example_fn( attack_name=attack_name, class_id=class_id, image_id=image_id, cache=cache, transforms = transforms, transform_name = transform_name, **kwargs, ) example_io.save() adversarial_example_image(example_io, cache=cache).save() return class_id, image_id except Exception: return class_id, image_id, traceback.format_exc() name = f"{attack_name}_{transform_name}" print(f"begin {name}, num_gpu={num_gpus}") if len(image_ids) > 99: chunksize = 4 else: chunksize = 1 results = ray_iter( generate_examples_fn, [(class_id, image_id) for image_id in image_ids for class_id in class_ids], chunksize=chunksize, out_of_order=True, num_gpus=num_gpus, # huge_task=True, ) for result in results: if len(result) == 3: class_id, image_id, tb = result print(f"## raise exception from class {class_id}, image {image_id}:") print(tb) else: class_id, image_id = result # print(f"finish class {class_id} image {image_id}") print(f"finish {name}") def get_overlay_summary( overlap_ratios: pd.DataFrame, trace_key: str, threshold=1 ) -> Dict[str, int]: condition_positive = len(overlap_ratios) if condition_positive == 0: return {} original_key = f"original.{trace_key}" false_positive = np.count_nonzero(overlap_ratios[original_key] < threshold) adversarial_key = f"adversarial.{trace_key}" true_positive = np.count_nonzero(overlap_ratios[adversarial_key] < threshold) predicted_condition_positive = true_positive + false_positive recall = (true_positive / condition_positive) if condition_positive != 0 else 0 precision = ( (true_positive / predicted_condition_positive) if predicted_condition_positive != 0 else 0 ) f1 = (2 / ((1 / recall) + (1 / precision))) if recall != 0 and precision != 0 else 0 return dict( threshold=threshold, condition_positive=condition_positive, # predicted_condition_positive=predicted_condition_positive, original_is_higher=np.count_nonzero( (overlap_ratios[original_key] - overlap_ratios[adversarial_key]) > 0 ), # adversarial_is_higher=np.count_nonzero( # (overlap_ratios[adversarial_key] - overlap_ratios[original_key]) > 0), true_positive=true_positive, false_positive=false_positive, recall=recall, precision=precision, f1=f1, ) def overlap_ratio( attack_name: str, attack_fn, generate_adversarial_fn, class_trace_fn: Callable[[int], IOAction[AttrMap]], select_fn: Callable[[np.ndarray], np.ndarray], overlap_fn: Callable[[AttrMap, AttrMap, str], float], path: str, per_channel: bool = False, per_node: bool = False, **kwargs, ): def get_overlap_ratio() -> pd.DataFrame: def get_row(class_id: int, image_id: int) -> Dict[str, Any]: mode.check(False) data_dir = abspath("/home/yxqiu/data/mnist/raw") model_dir = abspath("tf/lenet/model_early") create_model = lambda: LeNet(data_format="channels_first") graph = LeNet.graph().load() model_fn = partial( model_fn_with_fetch_hook, create_model=create_model, graph=graph ) predicted_label = predict( create_model=create_model, input_fn=lambda: mnist.test(data_dir) .filter( lambda image, label: tf.equal( tf.convert_to_tensor(class_id, dtype=tf.int32), label ) ) .skip(image_id) .take(1) .batch(1), model_dir=model_dir, ) if predicted_label != class_id: return [{}] if per_node else {} # adversarial_example = generate_adversarial_fn( # label=class_id, # create_model=create_model, # input_fn=lambda: mnist.test(data_dir, normed=False) # .filter(lambda image, label: # tf.equal( # tf.convert_to_tensor(class_id, dtype=tf.int32), # label)) # .skip(image_id).take(1).batch(1) # .make_one_shot_iterator().get_next()[0], # attack_fn=attack_fn, # model_dir=model_dir, # **kwargs, # ) adversarial_example = lenet_mnist_example( attack_name=attack_name, attack_fn=attack_fn, generate_adversarial_fn=generate_adversarial_fn, class_id=class_id, image_id=image_id, ).load() if adversarial_example is None: return [{}] if per_node else {} adversarial_predicted_label = predict( create_model=create_model, input_fn=lambda: tf.data.Dataset.from_tensors( mnist.normalize(adversarial_example) ), model_dir=model_dir, ) if predicted_label == adversarial_predicted_label: return [{}] if per_node else {} trace = reconstruct_trace_from_tf( class_id=class_id, model_fn=model_fn, input_fn=lambda: mnist.test(data_dir) .filter( lambda image, label: tf.equal( tf.convert_to_tensor(class_id, dtype=tf.int32), label ) ) .skip(image_id) .take(1) .batch(1), select_fn=select_fn, model_dir=model_dir, per_channel=per_channel, )[0] # class_id = mnist_info.test().label(image_id) # # if class_id != trace.attrs[GraphAttrKey.PREDICT]: # return [{}] if per_node else {} if trace is None: return [{}] if per_node else {} # adversarial_example = generate_adversarial_fn( # label=class_id, # create_model=create_model, # input_fn=lambda: mnist.test(data_dir, normed=False) # .filter(lambda image, label: # tf.equal( # tf.convert_to_tensor(class_id, dtype=tf.int32), # label)) # .skip(image_id).take(1).batch(1) # .make_one_shot_iterator().get_next()[0], # attack_fn=attack_fn, # model_dir=model_dir, # **kwargs, # ) # # if adversarial_example is None: # return [{}] if per_node else {} adversarial_trace = reconstruct_trace_from_tf( model_fn=model_fn, input_fn=lambda: tf.data.Dataset.from_tensors( mnist.normalize(adversarial_example) ), select_fn=select_fn, model_dir=model_dir, per_channel=per_channel, )[0] adversarial_label = adversarial_trace.attrs[GraphAttrKey.PREDICT] if class_id != adversarial_label: def map_prefix(map: Dict[str, Any], prefix: str) -> Dict[str, Any]: return {f"{prefix}.{key}": value for key, value in map.items()} row = { "image_id": image_id, **map_prefix( calc_all_overlap( class_trace_fn(class_id).load(), trace, overlap_fn ), "original", ), **map_prefix( calc_all_overlap( class_trace_fn(adversarial_label).load(), adversarial_trace, overlap_fn, ), "adversarial", ), } return row else: return {} # traces = ray_iter(get_row, (image_id for image_id in range(300, 350)), # traces = ray_iter(get_row, (image_id for image_id in range(131, 300)), traces = ray_iter( get_row, ( (class_id, image_id) for image_id in range(0, 100) for class_id in range(0, 10) ), # ((-1, image_id) for image_id in range(mnist_info.test().size)), chunksize=1, out_of_order=True, num_gpus=0, ) # chunksize=1, out_of_order=False, num_gpus=1) # count = 0 # result = [] # for trace in traces: # result.append(trace) # print(count) # count += 1 # traces = [trace for trace in result if len(trace) != 0] traces = [trace for trace in traces if len(trace) != 0] return pd.DataFrame(traces) return CsvIOAction(path, init_fn=get_overlap_ratio) def resnet_50_imagenet_overlap_ratio( attack_fn, generate_adversarial_fn, class_trace_fn: Callable[[int], IOAction[AttrMap]], select_fn: Callable[[np.ndarray], np.ndarray], overlap_fn: Callable[[AttrMap, AttrMap, str], float], path: str, per_node: bool = False, per_channel: bool = False, **kwargs, ): def get_overlap_ratio() -> pd.DataFrame: def get_row(class_id: int, image_id: int) -> Dict[str, Any]: mode.check(False) data_dir = IMAGENET_RAW_DIR model_dir = abspath("tf/resnet-50-v2/model") create_model = lambda: ResNet50() graph = ResNet50.graph().load() model_fn = partial( model_fn_with_fetch_hook, create_model=create_model, graph=graph ) trace = reconstruct_class_trace_from_tf( class_id, model_fn=model_fn, input_fn=lambda: imagenet_raw.test(data_dir, class_id, image_id), model_dir=model_dir, select_fn=select_fn, per_channel=per_channel, ) if trace is None: return {} adversarial_example = generate_adversarial_fn( label=class_id, create_model=create_model, input_fn=lambda: imagenet_raw.test( data_dir, class_id, image_id, normed=False ) .make_one_shot_iterator() .get_next()[0], attack_fn=attack_fn, model_dir=model_dir, **kwargs, ) if adversarial_example is None: return {} adversarial_trace = reconstruct_trace_from_tf( model_fn=model_fn, input_fn=lambda: tf.data.Dataset.from_tensors( imagenet.normalize(adversarial_example) ), select_fn=select_fn, model_dir=model_dir, per_channel=per_channel, )[0] adversarial_label = adversarial_trace.attrs[GraphAttrKey.PREDICT] if class_id != adversarial_label: def map_prefix(map: Dict[str, Any], prefix: str) -> Dict[str, Any]: return {f"{prefix}.{key}": value for key, value in map.items()} class_trace = class_trace_fn(class_id).load() adversarial_class_trace = class_trace_fn(adversarial_label).load() trace = compact_edge(trace, graph, per_channel=per_channel) adversarial_trace = compact_edge( adversarial_trace, graph, per_channel=per_channel ) if per_node: rows = [] for node_name in class_trace.nodes: row = { "image_id": image_id, "label": class_id, "adversarial_label": adversarial_label, "node_name": node_name, **map_prefix( calc_all_overlap( class_trace, trace, overlap_fn, node_name ), "original", ), **map_prefix( calc_all_overlap( adversarial_class_trace, adversarial_trace, overlap_fn, node_name, ), "adversarial", ), } if ( row[f"original.{TraceKey.WEIGHT}"] is not None or row[f"original.{TraceKey.EDGE}"] is not None ): rows.append(row) return rows else: row = { "image_id": image_id, "label": class_id, "adversarial_label": adversarial_label, **map_prefix( calc_all_overlap(class_trace, trace, overlap_fn), "original" ), **map_prefix( calc_all_overlap( adversarial_class_trace, adversarial_trace, overlap_fn ), "adversarial", ), } print(row) return row else: return [{}] if per_node else {} # traces = ray_iter(get_row, (image_id for image_id in range(300, 350)), # traces = ray_iter(get_row, (image_id for image_id in range(131, 300)), traces = ray_iter( get_row, ( (class_id, image_id) for image_id in range(0, 1) # for image_id in range(0, 50) for class_id in range(1, 1001) ), # for class_id in range(1, 2)), chunksize=1, out_of_order=True, num_gpus=0, ) # chunksize=1, out_of_order=False, num_gpus=1) # count = 0 # result = [] # for trace in traces: # result.append(trace) # print(count) # count += 1 # traces = [trace for trace in result if len(trace) != 0] if per_node: traces = list(itertools.chain.from_iterable(traces)) traces = [trace for trace in traces if len(trace) != 0] return pd.DataFrame(traces) return CsvIOAction(path, init_fn=get_overlap_ratio) def resnet_50_imagenet_overlap_ratio_top5( attack_fn, generate_adversarial_fn, class_trace_fn: Callable[[int], IOAction[AttrMap]], select_fn: Callable[[np.ndarray], np.ndarray], overlap_fn: Callable[[AttrMap, AttrMap, str], float], path: str, per_node: bool = False, per_channel: bool = False, **kwargs, ): def get_overlap_ratio() -> pd.DataFrame: def get_row(class_id: int, image_id: int) -> Dict[str, Any]: mode.check(False) data_dir = IMAGENET_RAW_DIR model_dir = abspath("tf/resnet-50-v2/model") create_model = lambda: ResNet50() graph = ResNet50.graph().load() model_fn = partial( model_fn_with_fetch_hook, create_model=create_model, graph=graph ) trace = reconstruct_trace_from_tf( class_id=class_id, model_fn=model_fn, input_fn=lambda: imagenet_raw.test(data_dir, class_id, image_id), select_fn=select_fn, model_dir=model_dir, top_5=True, per_channel=per_channel, )[0] if trace is None: return {} label_top5 = trace.attrs[GraphAttrKey.PREDICT_TOP5] adversarial_example = generate_adversarial_fn( label=class_id, create_model=create_model, input_fn=lambda: imagenet_raw.test( data_dir, class_id, image_id, normed=False ) .make_one_shot_iterator() .get_next()[0], attack_fn=attack_fn, model_dir=model_dir, **kwargs, ) if adversarial_example is None: return {} adversarial_trace = reconstruct_trace_from_tf( model_fn=model_fn, input_fn=lambda: tf.data.Dataset.from_tensors( imagenet.normalize(adversarial_example) ), select_fn=select_fn, model_dir=model_dir, top_5=True, per_channel=per_channel, )[0] adversarial_label = adversarial_trace.attrs[GraphAttrKey.PREDICT] adversarial_label_top5 = adversarial_trace.attrs[GraphAttrKey.PREDICT_TOP5] if adversarial_label not in label_top5: # if np.intersect1d(label_top5, adversarial_label_top5).size == 0: def map_prefix(map: Dict[str, Any], prefix: str) -> Dict[str, Any]: return {f"{prefix}.{key}": value for key, value in map.items()} class_trace = merge_compact_trace( *[class_trace_fn(label).load() for label in label_top5] ) adversarial_class_trace = merge_compact_trace( *[class_trace_fn(label).load() for label in adversarial_label_top5] ) trace = compact_edge(trace, graph, per_channel=per_channel) adversarial_trace = compact_edge( adversarial_trace, graph, per_channel=per_channel ) if per_node: rows = [] for node_name in class_trace.nodes: row = { "image_id": image_id, "node_name": node_name, "label": class_id, "adversarial_label": adversarial_label, **map_prefix( calc_all_overlap( class_trace, trace, overlap_fn, node_name ), "original", ), **map_prefix( calc_all_overlap( adversarial_class_trace, adversarial_trace, overlap_fn, node_name, ), "adversarial", ), } if ( row[f"original.{TraceKey.WEIGHT}"] is not None or row[f"original.{TraceKey.EDGE}"] is not None ): rows.append(row) return rows else: row = { "image_id": image_id, "label": class_id, "adversarial_label": adversarial_label, "label_top5": label_top5, "adversarial_label_top5": adversarial_label_top5, **map_prefix( calc_all_overlap(class_trace, trace, overlap_fn), "original" ), **map_prefix( calc_all_overlap( adversarial_class_trace, adversarial_trace, overlap_fn ), "adversarial", ), } print(row) return row else: return [{}] if per_node else {} traces = ray_iter( get_row, ( (class_id, image_id) for image_id in range(0, 1) for class_id in range(1, 1001) ), chunksize=1, out_of_order=True, num_gpus=0, ) if per_node: traces = list(itertools.chain.from_iterable(traces)) traces = [trace for trace in traces if len(trace) != 0] return
pd.DataFrame(traces)
pandas.DataFrame
# Copyright 2021 The FirstOrderLp Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This script generates all the experimental results used in the paper. # It requires python 3, numpy, pandas, and matplotlib installed to run. # # `python analyze_csv_data.py` # # It reads csv files containing experimental results from ./csv, and outputs # pdf figures to ./results/figs and latex tables to ./results/tex. import itertools import os import sys import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.ticker as ticker from cycler import cycler plt.rcParams.update({"figure.max_open_warning": 0, "font.size": 16}) # The 'TkAgg' matplotlib backend fails at the default recursion limit. sys.setrecursionlimit(10000) # This is required to generate plots that are easy to read when printed: plt.rcParams["axes.prop_cycle"] = cycler( linestyle=["-", "--", ":", "-.", "-", "--", ":", "-.", "-", "--"], color=[ "#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd", "#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf", ], ) # directory where the csv files are located CSV_DIR = "./csv" # directory where all the figure pdf and table tex files are written to: OUTPUT_DIR = "./results" FIGS_DIR = os.path.join(OUTPUT_DIR, "figs") TEX_DIR = os.path.join(OUTPUT_DIR, "tex") OPT = "TERMINATION_REASON_OPTIMAL" KKT_PASSES_LIMIT = 1e5 TIME_LIMIT_SECS = 60 * 60 # 1hr TIME_LIMIT_SECS_ABLATION = 6 * 60 * 60 # 6hr # shift to use for shifted geometric mean SGM_SHIFT = int(10) # penalised average runtime: PAR = 1.0 # can be None, which removes unsolved instead of penalizing # Which scaling experiments to present SCALING_EXPS_TO_USE = [ "off,off", "off,pock_chambolle alpha=1", "10 rounds,off", "10 rounds,pock_chambolle alpha=1", ] # Which primal-weight experiments to present PRIMALWEIGHT_EXPS_TO_USE = [ "adaptive", #'Fixed 1e-0', ] # placeholder: _BEST_STR = "_best_str_" _BEST_FIXED = "_best_fixed_" # Dataset names: MITTELMANN_STR = "lp_benchmark" MIPLIB_STR = "mip_relaxations" NETLIB_STR = "netlib" # Change table font size to fit paper: LATEX_FONT_SIZE = "\\small" # Naming for improvements plots: _PDHG = "PDHG" _RESTARTS = "+restarts" _SCALING = "+scaling" _PRIMAL_WEIGHT = "+primal\nweight" _STEPSIZE = "+step\nsize" _PRESOLVE = "+presolve\n(= PDLP)" # Order in which improvements should appear: IMPROVEMENTS_ORDER = [ _PDHG, _RESTARTS, _SCALING, _PRIMAL_WEIGHT, _STEPSIZE, _PRESOLVE, ] IMPROVEMENTS_ORDER_IDX = dict( zip(IMPROVEMENTS_ORDER, range(len(IMPROVEMENTS_ORDER))) ) # Horrible HACK, but needs to be done def label_lookup(label): if "pdhg_enhanced" in label: return "PDLP" if "mirror-prox" in label: return "Enh. Extragradient" if "pdhg_vanilla" in label: return "PDHG" if "scs-indirect" in label: return "SCS (matrix-free)" if "scs-direct" in label: return "SCS" if "nopresolve" in label: return "No presolve" if "no restarts" in label: return "No restart" if "adaptive theoretical" in label: return "Adaptive restart (theory)" if "adaptive enhanced" in label: return "PDLP" if "pdhg" in label and "pdhg_mp_1h" in label: return "PDLP" if "off,off" in label: return "No scaling" if "off,pock_chambolle alpha=1" in label: return "Pock-Chambolle" if "10 rounds,off" in label: return "Ruiz" if "10 rounds,pock_chambolle alpha=1" in label: return "Ruiz + Pock-Chambolle" if "stepsize" in label: if "adaptive" in label: return "PDLP" if "fixed" in label: return "Fixed step-size" if "scaling" in label: if _BEST_STR in label: return "Best per-instance scaling" if "primalweight" in label: if "adaptive" in label: return "PDLP" if "Fixed 1e-0" in label: return r"Fixed PW ($\theta=0$)" if _BEST_STR in label: return "Best per-instance PW" if _BEST_FIXED in label: return "Best fixed PW" if "improvements" in label: if "vanilla" in label: return _PDHG st = "" if "restarts" in label: st = _RESTARTS if "scaling" in label: st = _SCALING if "primal weight" in label: st = _PRIMAL_WEIGHT if "step size" in label: st = _STEPSIZE if "pdlp_final" in label: st = _PRESOLVE return st if "malitskypock" in label: if _BEST_STR in label: return "Best per-instance MP settings" return "Best fixed MP setting" return label def sanitize_title(title): title = title.replace("_", " ").title() title = title.replace("Lp", "LP") title = title.replace("Mip", "MIP") title = title.replace("Pdlp", "PDLP") title = title.replace("Pdhg", "PDHG") title = title.replace("Scs", "SCS") title = title.replace("Sgm", "SGM") return title # Generate plots of xaxis vs fraction of solved problems def solved_problems_vs_xaxis_figs( dfs, xaxis, xlabel, prefix, num_instances, legend_location="best", xmin=0.0 ): fig = plt.figure() stats_dfs = {} for k, df_k in dfs.items(): stats_df = ( df_k.groupby(xaxis)[xaxis] .agg("count") .pipe(pd.DataFrame) .rename(columns={xaxis: "frequency"}) ) stats_df["cum_solved_count"] = ( stats_df["frequency"].cumsum() / num_instances ) stats_df = stats_df.drop(columns="frequency").reset_index() stats_dfs[k] = stats_df max_xaxis = pd.concat(stats_dfs)[xaxis].max() lines = [] labels = [] for k, df_k in stats_dfs.items(): if df_k.empty: continue df_k = df_k.append( { xaxis: max_xaxis, "cum_solved_count": df_k.iloc[-1]["cum_solved_count"], }, ignore_index=True, ) df_k.reset_index() label = label_lookup(k) lines.extend( plt.plot(df_k[xaxis], df_k["cum_solved_count"], label=label) ) labels.append(label) plt.ylabel("Fraction of problems solved") plt.xlabel(xlabel) plt.ylim((0, 1)) plt.ticklabel_format(axis="x", style="sci", scilimits=(0, 0)) plt.title(sanitize_title(prefix)) plt.xscale("log") plt.xlim(left=xmin) if legend_location == "outer": plt.legend(bbox_to_anchor=(1.04, 0.5), loc="center left") elif legend_location == "separate": figlegend = plt.figure() figlegend.legend(lines, labels, ncol=len(lines), loc="center") legendpath = os.path.join( FIGS_DIR, f"{prefix}_{xaxis}_v_solved_probs_legend.pdf" ) figlegend.savefig(legendpath, bbox_inches="tight") else: plt.legend(loc=legend_location) path = os.path.join(FIGS_DIR, f"{prefix}_{xaxis}_v_solved_probs.pdf") fig.savefig(path, bbox_inches="tight") def gen_solved_problems_plots( df, prefix, num_instances, legend_location="best" ): exps = df["experiment_label"].unique() dfs = {k: df[df["experiment_label"] == k] for k in exps} optimal_dfs = { k: v[v["termination_reason"] == OPT] for (k, v) in dfs.items() } solved_problems_vs_xaxis_figs( optimal_dfs, "cumulative_kkt_matrix_passes", f"KKT matrix passes SGM{SGM_SHIFT}", prefix, num_instances, legend_location, xmin=100, ) solved_problems_vs_xaxis_figs( optimal_dfs, "solve_time_sec", "Wall-clock time (secs)", prefix, num_instances, legend_location, xmin=1.0, ) def gen_solved_problems_plots_split_tol( df, prefix, num_instances, legend_location="best" ): tols = df["tolerance"].unique() for t in tols: gen_solved_problems_plots( df[df["tolerance"] == t], prefix + f"_tol_{t:.0E}", num_instances, legend_location, ) def shifted_geomean(x, shift): x = x[~np.isnan(x)] sgm = np.exp(np.sum(np.log(x + shift) / len(x))) - shift return sgm if sgm > 0 else np.nan def change_table_font_size(table): table = table.replace( "\\begin{table}\n", "\\begin{table}\n" + LATEX_FONT_SIZE + "\n" ) table = table.replace("\\caption{", "\\caption{" + LATEX_FONT_SIZE + " ") return table def gen_total_solved_problems_table( df, prefix, par, time_limit=TIME_LIMIT_SECS ): solved_probs = ( df[df["termination_reason"] == OPT] .groupby("experiment_label")["experiment_label"] .agg("count") .pipe(pd.DataFrame) .rename(columns={"experiment_label": "Solved count"}) ) solved_probs.index.name = "Experiment" solved_probs = solved_probs.reset_index() shift = SGM_SHIFT kkt_sgm = df.copy() if par is not None: kkt_sgm.loc[ kkt_sgm["termination_reason"] != OPT, "cumulative_kkt_matrix_passes" ] = (par * KKT_PASSES_LIMIT) else: kkt_sgm.loc[ kkt_sgm["termination_reason"] != OPT, "cumulative_kkt_matrix_passes" ] = np.nan # Hack for SCS direct kkt_sgm.loc[ kkt_sgm["experiment_label"].str.contains("scs-direct"), "cumulative_kkt_matrix_passes", ] = np.nan kkt_sgm = ( kkt_sgm.groupby("experiment_label")["cumulative_kkt_matrix_passes"] .agg(lambda _: shifted_geomean(_, shift)) .pipe(pd.DataFrame) .rename( columns={"cumulative_kkt_matrix_passes": f"KKT passes SGM{shift}"} ) ) kkt_sgm.index.name = "Experiment" kkt_sgm = kkt_sgm.reset_index() wall_clock = df.copy() if par is not None: wall_clock.loc[ wall_clock["termination_reason"] != OPT, "solve_time_sec" ] = (par * time_limit) else: wall_clock.loc[ wall_clock["termination_reason"] != OPT, "solve_time_sec" ] = np.nan wall_clock = ( wall_clock.groupby("experiment_label")["solve_time_sec"] .agg(lambda _: shifted_geomean(_, shift)) .pipe(pd.DataFrame) .rename(columns={"solve_time_sec": f"Solve time secs SGM10"}) ) wall_clock.index.name = "Experiment" wall_clock = wall_clock.reset_index() output = solved_probs.merge(kkt_sgm).merge(wall_clock) # rename the labels for e in output["Experiment"]: output.loc[output["Experiment"] == e, "Experiment"] = label_lookup(e) output = output.sort_values("Solved count", ascending=True) # HACK to fix improvements table ordering and line break if "improvements" in prefix: output["rank"] = output["Experiment"].map(IMPROVEMENTS_ORDER_IDX) output.sort_values("rank", inplace=True) output.drop(labels="rank", axis=1, inplace=True) to_write = output.copy() for e in to_write["Experiment"]: to_write.loc[to_write["Experiment"] == e, "Experiment"] = e.replace( "\n", " " ) else: to_write = output table = to_write.to_latex( float_format="%.1f", longtable=False, index=False, caption=f"Performance statistics: {sanitize_title(prefix)}", label=f"t:solved-probs-{prefix}", column_format="lccc", escape=False, na_rep="-", ) table = change_table_font_size(table) path = os.path.join(TEX_DIR, f"{prefix}_solved_probs_table.tex") with open(path, "w") as f: f.write(table) return output def gen_total_solved_problems_table_split_tol( df, prefix, par, time_limit=TIME_LIMIT_SECS ): outputs = {} tols = df["tolerance"].unique() for t in tols: outputs[t] = gen_total_solved_problems_table( df[df["tolerance"] == t], prefix + f"_tol_{t:.0E}", par, time_limit ) return outputs def plot_loghist(x, nbins): x = x[~np.isnan(x)] hist, bins = np.histogram(x, bins=nbins) logbins = np.logspace( np.log10(max(bins[0], 1e-10)), np.log10(max(bins[-1], 1e-10)), nbins ) plt.hist(x, bins=logbins) plt.xscale("log") def gen_ratio_histograms_split_tol(df, prefix, par): tols = df["tolerance"].unique() for t in tols: gen_ratio_histograms( df[df["tolerance"] == t], prefix + f"_tol_{t:.0E}", "cumulative_kkt_matrix_passes", f"KKT matrix passes SGM{SGM_SHIFT}", KKT_PASSES_LIMIT, par, ) gen_ratio_histograms( df[df["tolerance"] == t], prefix + f"_tol_{t:.0E}", "solve_time_sec", "Wall-clock time (secs)", TIME_LIMIT_SECS, par, ) def gen_ratio_histograms(df, prefix, xaxis, xlabel, limit, par): assert len(df["experiment_label"].unique()) == 2 (l0, l1) = df["experiment_label"].unique() def performance_ratio_fn(df, par): df = df.reset_index() assert len(df) <= 2 df0 = df[df["experiment_label"] == l0] df1 = df[df["experiment_label"] == l1] instance = df.instance_name.unique() if len(df0) == 1 and df0["termination_reason"].iloc[0] == OPT: kkt_passes_0 = df0[xaxis].iloc[0] else: kkt_passes_0 = par * limit if len(df1) == 1 and df1["termination_reason"].iloc[0] == OPT: kkt_passes_1 = df1[xaxis].iloc[0] else: kkt_passes_1 = par * limit # if (df['termination_reason'] != OPT).any(): # return np.nan return kkt_passes_0 / kkt_passes_1 ratios = ( df.groupby(["instance_name"]) .apply(lambda _: performance_ratio_fn(_, par)) .reset_index(name="ratio") .dropna() ) nbins = min(len(ratios) // 3, 25) if nbins > 0: plt.figure(figsize=(10, 6)) plt.title( sanitize_title( f"{prefix} {xlabel} {label_lookup(l0)}:{label_lookup(l1)}" ) ) plot_loghist(ratios["ratio"], nbins) path = os.path.join( FIGS_DIR, f"{prefix}_{label_lookup(l0)}_{label_lookup(l1)}" + f"_{xaxis}_performance_ratio.pdf", ) plt.savefig(path) table = ratios.to_latex( float_format="%.2f", longtable=False, index=False, caption=f"Performance ratio.", label=f"t:ratio-{prefix}", column_format="lc", na_rep="-", ) table = change_table_font_size(table) path = os.path.join( TEX_DIR, f"{prefix}_{label_lookup(l0)}:" f"{label_lookup(l1)}_{xaxis}_ratio_table.tex", ) with open(path, "w") as f: f.write(table) # Unsolved problems might be missing from csv, make sure all are accounted for. def fill_in_missing_problems(df, instances_list): new_index = pd.Index(instances_list, name="instance_name") experiments = df["experiment_label"].unique() dfs = [] for e in experiments: old_df = df[df["experiment_label"] == e] tol = old_df["tolerance"].unique()[0] new_df = ( old_df.set_index("instance_name").reindex(new_index).reset_index() ) # otherwise these would be nan new_df["tolerance"] = tol new_df["experiment_label"] = e dfs.append(new_df) return pd.concat(dfs) def improvements_plot(dfs, prefix, key, ascending): normalized_dfs = [] for df in dfs: df[key] /= df[df["Experiment"] == "PDHG"][key].to_numpy()[0] normalized_dfs.append(df) df = pd.concat(normalized_dfs) fig = plt.figure(figsize=(10, 6)) markers = itertools.cycle(["o", "v", "^", "<", ">", "s"]) for tol in df["tolerance"].unique(): _df = df[df["tolerance"] == tol].reset_index(drop=True) plt.plot( _df[key].to_numpy(), linestyle="--", marker=next(markers), markersize=12, label=f"tolerance {tol:.0E}", ) plt.yscale("log") plt.ylabel("Normalized " + key, fontsize=20) plt.title(sanitize_title(prefix), fontsize=20) plt.xticks(range(len(_df["Experiment"])), _df["Experiment"].to_list()) plt.tick_params(axis="both", which="both", labelsize=20) ax = plt.gca() ax.yaxis.set_major_locator(ticker.LogLocator(subs=[1, 2, 3, 5, 7])) ax.yaxis.set_major_formatter( ticker.LogFormatterSciNotation( labelOnlyBase=False, minor_thresholds=(4, 2) ) ) # ax.yaxis.set_major_formatter(ticker.FormatStrFormatter("%.2f") if len(dfs) > 1: plt.legend(loc="best", prop={"size": 20}) name = key.replace(" ", "_") path = os.path.join(FIGS_DIR, f"{prefix}_{name}.pdf") plt.savefig(path, bbox_inches="tight") def gen_all_improvement_plots(outputs, prefix): dfs = [] for tol, df in outputs.items(): df = df.copy() df["tolerance"] = tol dfs.append(df) improvements_plot(dfs, prefix, "KKT passes SGM10", ascending=False) improvements_plot(dfs, prefix, "Solve time secs SGM10", ascending=False) improvements_plot(dfs, prefix, "Solved count", ascending=True) # First, make output directories if not os.path.exists(FIGS_DIR): os.makedirs(FIGS_DIR) if not os.path.exists(TEX_DIR): os.makedirs(TEX_DIR) # Get clean list of all problems we tested on: with open("../benchmarking/mip_relaxations_instance_list") as f: miplib_instances = f.readlines() miplib_instances = [p.strip() for p in miplib_instances if p[0] != "#"] with open("../benchmarking/lp_benchmark_instance_list") as f: mittelmann_instances = f.readlines() mittelmann_instances = [p.strip() for p in mittelmann_instances if p[0] != "#"] with open("../benchmarking/netlib_benchmark_instance_list") as f: netlib_instances = f.readlines() netlib_instances = [p.strip() for p in netlib_instances if p[0] != "#"] # Pull out 'default' (ie best) pdhg implementation to compare against: df_default = pd.read_csv(os.path.join(CSV_DIR, "miplib_pdhg_enhanced_100k.csv")) df_default = fill_in_missing_problems(df_default, miplib_instances) ###################################################################### # PDLP pdhg vs vanilla pdhg (JOIN DEFAULT) df = pd.read_csv(os.path.join(CSV_DIR, "miplib_pdhg_vanilla_100k.csv")) df = fill_in_missing_problems(df, miplib_instances) df = pd.concat((df_default, df)) gen_solved_problems_plots_split_tol(df, f"{MIPLIB_STR}", len(miplib_instances)) gen_total_solved_problems_table_split_tol(df, f"{MIPLIB_STR}", PAR) gen_ratio_histograms_split_tol(df, f"{MIPLIB_STR}", PAR) ###################################################################### df = pd.read_csv(os.path.join(CSV_DIR, "mittelmann_pdhg_enhanced_100k.csv")) df = fill_in_missing_problems(df, mittelmann_instances) df_vanilla = pd.read_csv( os.path.join(CSV_DIR, "mittelmann_improvements_100k.csv") ) df_vanilla = df_vanilla[df_vanilla["enhancements"] == "vanilla"] df_vanilla = fill_in_missing_problems(df_vanilla, mittelmann_instances) df = pd.concat((df, df_vanilla)) gen_solved_problems_plots_split_tol( df, f"{MITTELMANN_STR}", len(mittelmann_instances) ) gen_total_solved_problems_table_split_tol(df, f"{MITTELMANN_STR}", PAR) gen_ratio_histograms_split_tol(df, f"{MITTELMANN_STR}", PAR) ###################################################################### df = pd.read_csv(os.path.join(CSV_DIR, "netlib_pdhg_enhanced_100k.csv")) df = fill_in_missing_problems(df, netlib_instances) df_vanilla = pd.read_csv(os.path.join(CSV_DIR, "netlib_improvements_100k.csv")) df_vanilla = df_vanilla[df_vanilla["enhancements"] == "vanilla"] df_vanilla = fill_in_missing_problems(df_vanilla, netlib_instances) df = pd.concat((df, df_vanilla)) gen_solved_problems_plots_split_tol(df, f"{NETLIB_STR}", len(netlib_instances)) gen_total_solved_problems_table_split_tol(df, f"{NETLIB_STR}", PAR) gen_ratio_histograms_split_tol(df, f"{NETLIB_STR}", PAR) ###################################################################### # Scaling results (JOIN DEFAULT) df = pd.read_csv(os.path.join(CSV_DIR, "miplib_malitskypock_100k.csv")) mp_solved = ( df[df["termination_reason"] == OPT] .groupby(["experiment_label", "tolerance"])["experiment_label"] .agg("count") .pipe(pd.DataFrame) .rename(columns={"experiment_label": "solved"}) .reset_index() ) dfs = [] for t in df["tolerance"].unique(): _df = mp_solved[mp_solved["tolerance"] == t] best_mp_run = _df.loc[_df["solved"].idxmax()]["experiment_label"] dfs.append(df[df["experiment_label"] == best_mp_run]) df_best_ind = fill_in_missing_problems(pd.concat(dfs), miplib_instances) # Pull out best performing scaling for each instance / tolerance: df_best_fixed = df[df["termination_reason"] == OPT].reset_index() best_idxs = df_best_fixed.groupby(["instance_name", "tolerance"])[ "cumulative_kkt_matrix_passes" ].idxmin() df_best_fixed = df_best_fixed.loc[best_idxs] for t in df_best_fixed["tolerance"].unique(): # rename the experiment label df_best_fixed.loc[ df_best_fixed["tolerance"] == t, "experiment_label" ] = f"malitskypock {_BEST_STR} {t}" df_best_fixed = fill_in_missing_problems(df_best_fixed, miplib_instances) df_stepsize = pd.read_csv(os.path.join(CSV_DIR, "miplib_stepsize_100k.csv")) df_stepsize = fill_in_missing_problems(df_stepsize, miplib_instances) df = pd.concat((df_stepsize, df_best_fixed, df_best_ind)) gen_solved_problems_plots_split_tol( df, f"{MIPLIB_STR}_stepsize", len(miplib_instances), False ) gen_total_solved_problems_table_split_tol( df, f"{MIPLIB_STR}_stepsize", PAR, TIME_LIMIT_SECS_ABLATION ) ###################################################################### # PDLP vs mp vs scs on MIPLIB (JOIN PDHG/MP WITH SCS) df_pdhg_mp = pd.read_csv(os.path.join(CSV_DIR, "miplib_pdhg_mp_1h.csv")) df_pdhg_mp = fill_in_missing_problems(df_pdhg_mp, miplib_instances) df_scs = pd.read_csv(os.path.join(CSV_DIR, "miplib_scs_1h.csv")) df_scs = fill_in_missing_problems(df_scs, miplib_instances) df_pdhg_vanilla = pd.read_csv( os.path.join(CSV_DIR, "miplib_pdhg_vanilla_1h.csv") ) df_pdhg_vanilla = fill_in_missing_problems(df_pdhg_vanilla, miplib_instances) df = pd.concat((df_pdhg_mp, df_pdhg_vanilla, df_scs)) gen_solved_problems_plots_split_tol( df, f"{MIPLIB_STR}_baselines", len(miplib_instances), legend_location="separate", ) gen_total_solved_problems_table_split_tol(df, f"{MIPLIB_STR}_baselines", PAR) df_pdhg_scs_dir = pd.concat( ( df_pdhg_mp[df_pdhg_mp["method"] == "pdhg"], df_scs[df_scs["method"] == "scs-direct"], ) ) df_pdhg_scs_indir = pd.concat( ( df_pdhg_mp[df_pdhg_mp["method"] == "pdhg"], df_scs[df_scs["method"] == "scs-indirect"], ) ) gen_ratio_histograms_split_tol(df_pdhg_mp, f"{MIPLIB_STR}", PAR) gen_ratio_histograms_split_tol(df_pdhg_scs_indir, f"{MIPLIB_STR}", PAR) gen_ratio_histograms_split_tol(df_pdhg_scs_dir, f"{MIPLIB_STR}", PAR) ###################################################################### # PDLP vs mp vs scs on MITTELMANN (JOIN PDHG/MP WITH SCS) df_pdhg_mp = pd.read_csv(os.path.join(CSV_DIR, "mittelmann_pdhg_mp_1h.csv")) df_pdhg_mp = fill_in_missing_problems(df_pdhg_mp, mittelmann_instances) df_pdhg_vanilla = pd.read_csv( os.path.join(CSV_DIR, "mittelmann_pdhg_vanilla_1h.csv") ) df_pdhg_vanilla = fill_in_missing_problems( df_pdhg_vanilla, mittelmann_instances ) df_scs = pd.read_csv(os.path.join(CSV_DIR, "mittelmann_scs_1h.csv")) df_scs = fill_in_missing_problems(df_scs, mittelmann_instances) df =
pd.concat((df_pdhg_mp, df_pdhg_vanilla, df_scs))
pandas.concat
# -*- coding: utf-8 -*- """Structures data in ML-friendly ways.""" import re import copy import datetime as dt import random import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler from avaml import Error, setenvironment as se, _NONE, CSV_VERSION, REGIONS, merge, REGION_ELEV from avaml.aggregatedata.download import _get_varsom_obs, _get_weather_obs, _get_regobs_obs, REG_ENG, PROBLEMS from avaml.aggregatedata.time_parameters import to_time_parameters from varsomdata import getforecastapi as gf from varsomdata import getmisc as gm __author__ = 'arwi' LABEL_PROBLEM_PRIMARY = { "ext_attr": [ "avalanche_problem_type_id", "avalanche_problem_type_name", "avalanche_type_id", "avalanche_type_name", "avalanche_ext_id", "avalanche_ext_name" ], "values": { _NONE: [0, "", 0, "", 0, ""], "new-loose": [3, "Nysnø (løssnøskred)", 20, "Løssnøskred", 10, "Tørre løssnøskred"], "wet-loose": [5, "Våt snø (løssnøskred)", 20, "Løssnøskred", 15, "Våte løssnøskred"], "new-slab": [7, "Nysnø (flakskred)", 10, "Flakskred", 20, "Tørre flakskred"], "drift-slab": [10, "Fokksnø (flakskred)", 10, "Flakskred", 20, "Tørre flakskred"], "pwl-slab": [30, "Vedvarende svakt lag (flakskred)", 10, "Flakskred", 20, "Tørre flakskred"], "wet-slab": [45, "Våt snø (flakskred)", 10, "Flakskred", 25, "Våte flakskred"], "glide": [50, "Glideskred", 10, "Flakskred", 25, "Våte flakskred"] } } LABEL_PROBLEM = { "cause": { "ext_attr": ["aval_cause_id", "aval_cause_name"], "values": { "0": [0, ""], "new-snow": [10, "Nedføyket svakt lag med nysnø"], "hoar": [11, "Nedsnødd eller nedføyket overflaterim"], "facet": [13, "Nedsnødd eller nedføyket kantkornet snø"], "crust": [14, "Dårlig binding mellom glatt skare og overliggende snø"], "snowdrift": [15, "Dårlig binding mellom lag i fokksnøen"], "ground-facet": [16, "Kantkornet snø ved bakken"], "crust-above-facet": [18, "Kantkornet snø over skarelag"], "crust-below-facet": [19, "Kantkornet snø under skarelag"], "ground-water": [20, "Vann ved bakken/smelting fra bakken"], "water-layers": [22, "Opphopning av vann i/over lag i snødekket"], "loose": [24, "Ubunden snø"] } }, "dsize": { "ext_attr": ["destructive_size_ext_id", "destructive_size_ext_name"], "values": { '0': [0, "Ikke gitt"], '1': [1, "1 - Små"], '2': [2, "2 - Middels"], '3': [3, "3 - Store"], '4': [4, "4 - Svært store"], '5': [5, "5 - Ekstremt store"] } }, "prob": { "ext_attr": ["aval_probability_id", "aval_probability_name"], "values": { '0': [0, "Ikke gitt"], '2': [2, "Lite sannsynlig"], '3': [3, "Mulig"], '5': [5, "Sannsynlig"], } }, "trig": { "ext_attr": ["aval_trigger_simple_id", "aval_trigger_simple_name"], "values": { '0': [0, "Ikke gitt"], '10': [10, "Stor tilleggsbelastning"], '21': [21, "Liten tilleggsbelastning"], '22': [22, "Naturlig utløst"] } }, "dist": { "ext_attr": ["aval_distribution_id", "aval_distribution_name"], "values": { '0': [0, "Ikke gitt"], '1': [1, "Få bratte heng"], '2': [2, "Noen bratte heng"], '3': [3, "Mange bratte heng"], '4': [4, "De fleste bratte heng"] } }, "lev_fill": { "ext_attr": ["exposed_height_fill"], "values": { '0': [0], '1': [1], '2': [2], '3': [3], '4': [4], } } } LABEL_PROBLEM_MULTI = { "aspect": { "ext_attr": "valid_expositions", } } LABEL_PROBLEM_REAL = { "lev_max": { "ext_attr": "exposed_height_1", }, "lev_min": { "ext_attr": "exposed_height_2", } } LABEL_GLOBAL = { "danger_level": { "ext_attr": ["danger_level", "danger_level_name"], "values": { '1': [1, "1 liten"], '2': [2, "2 Moderat"], '3': [3, "3 Betydelig"], '4': [4, "4 Stor"], '5': [5, "5 Meget stor"] } }, "emergency_warning": { "ext_attr": ["emergency_warning"], "values": { "Ikke gitt": ["Ikke gitt"], "Naturlig utløste skred": ["Naturlig utløste skred"], } } } COMPETENCE = [0, 110, 115, 120, 130, 150] class ForecastDataset: def __init__(self, regobs_types, seasons=('2017-18', '2018-19', '2019-20'), max_file_age=23): """ Object contains aggregated data used to generate labeled datasets. :param regobs_types: Tuple/list of string names for RegObs observation types to fetch. :param seasons: Tuple/list of string representations of avalanche seasons to fetch. """ self.seasons = sorted(list(set(seasons))) self.date = None self.regobs_types = regobs_types self.weather = {} self.regobs = {} self.varsom = {} self.labels = {} self.use_label = True for season in seasons: varsom, labels = _get_varsom_obs(year=season, max_file_age=max_file_age) self.varsom = merge(self.varsom, varsom) self.labels = merge(self.labels, labels) regobs = _get_regobs_obs(season, regobs_types, max_file_age=max_file_age) self.regobs = merge(self.regobs, regobs) weather = _get_weather_obs(season, max_file_age=max_file_age) self.weather = merge(self.weather, weather) @staticmethod def date(regobs_types, date: dt.date, days, use_label=True): """ Create a dataset containing just a given day's data. :param regobs_types: Tuple/list of string names for RegObs observation types to fetch. :param date: Date to fetch and create dataset for. :param days: How many days to fetch before date. This will be max for .label()'s days parameter. """ self = ForecastDataset(regobs_types, []) self.date = date self.use_label = use_label self.regobs = _get_regobs_obs(None, regobs_types, date=date, days=days) self.varsom, labels = _get_varsom_obs(None, date=date, days=days-1 if days > 0 else 1) self.weather = _get_weather_obs(None, date=date, days=days-2 if days > 2 else 1) self.labels = {} for label_keys, label in labels.items(): if label_keys not in self.labels: self.labels[label_keys] = {} for (label_date, label_region), label_data in label.items(): if label_date == date.isoformat(): subkey = (label_date, label_region) self.labels[label_keys][subkey] = label_data return self def label(self, days, with_varsom=True): """Creates a LabeledData containing relevant label and features formatted either in a flat structure or as a time series. :param days: How far back in time values should data be included. If 0, only weather data for the forecast day is evaluated. If 1, day 0 is used for weather, 1 for Varsom. If 2, day 0 is used for weather, 1 for Varsom, 2 for RegObs. If 3, days 0-1 is used for weather, 1-2 for Varsom, 2-3 for RegObs. If 5, days 0-3 is used for weather, 1-4 for Varsom, 2-5 for RegObs. The reason for this is to make sure that each kind of data contain the same number of data points, if we want to use some time series frameworks that are picky about such things. :param with_varsom: Whether to include previous avalanche bulletins into the indata. :return: LabeledData """ table = {} row_weight = {} df = None df_weight = None df_label = pd.DataFrame(self.labels, dtype="U") days_w = {0: 1, 1: 1, 2: 1}.get(days, days - 1) days_v = {0: 1, 1: 2, 2: 2}.get(days, days) days_r = days + 1 varsom_index = pd.DataFrame(self.varsom).index weather_index = pd.DataFrame(self.weather).index if len(df_label.index) == 0 and self.use_label: raise NoBulletinWithinRangeError() if self.date and not self.use_label: season = gm.get_season_from_date(self.date) regions = gm.get_forecast_regions(year=season, get_b_regions=True) date_region = [(self.date.isoformat(), region) for region in regions] else: date_region = df_label.index for monotonic_idx, entry_idx in enumerate(date_region): date, region_id = dt.date.fromisoformat(entry_idx[0]), entry_idx[1] def prev_key(day_dist): return (date - dt.timedelta(days=day_dist)).isoformat(), region_id # Just check that we can use this entry. try: if with_varsom: for n in range(1, days_v): if prev_key(n) not in varsom_index: raise KeyError() for n in range(0, days_w): if prev_key(n) not in weather_index: raise KeyError() add_row = True # We don't check for RegObs as it is more of the good to have type of data except KeyError: add_row = False if add_row: row = {} for region in REGIONS: row[(f"region_id_{region}", "0")] = float(region == region_id) if with_varsom: for column in self.varsom.keys(): for n in range(1, days_v): # We try/except an extra time since single dates may run without a forecast. row[(column, str(n))] = self.varsom[column][prev_key(n)] for column in self.weather.keys(): for n in range(0, days_w): try: row[(column, str(n))] = self.weather[column][prev_key(n)] except KeyError: row[(column, str(n))] = 0 for column in self.regobs.keys(): for n in range(2, days_r): try: row[(column, str(n))] = self.regobs[column][prev_key(n)] except KeyError: row[(column, str(n))] = 0 try: weight_sum = self.regobs['accuracy'][prev_key(0)] if weight_sum < 0: row_weight[entry_idx] = 1 / 2 elif weight_sum == 0: row_weight[entry_idx] = 1 elif weight_sum > 0: row_weight[entry_idx] = 2 except KeyError: row_weight[entry_idx] = 1 # Some restructuring to make DataFrame parse the dict correctly for key in row.keys(): if key not in table: table[key] = {} table[key][entry_idx] = row[key] # Build DataFrame iteratively to preserve system memory (floats in dicts are apparently expensive). if (monotonic_idx > 0 and monotonic_idx % 1000 == 0) or monotonic_idx == len(date_region) - 1: df_new = pd.DataFrame(table, dtype=np.float32).fillna(0) df_weight_new = pd.Series(row_weight) df = df_new if df is None else pd.concat([df, df_new]) df_weight = df_weight_new if df is None else pd.concat([df_weight, df_weight_new]) table = {} row_weight = {} if df is None or len(df.index) == 0: raise NoDataFoundError() if self.use_label: df_label = df_label.loc[df.index] df_label.sort_index(axis=0, inplace=True) df_label.sort_index(axis=1, inplace=True) df.sort_index(axis=0, inplace=True) df_weight.sort_index(axis=0, inplace=True) else: df_label = None return LabeledData(df, df_label, df_weight, days, self.regobs_types, with_varsom, self.seasons) class LabeledData: is_normalized = False with_regions = True elevation_class = (False, False) scaler = StandardScaler() def __init__(self, data, label, row_weight, days, regobs_types, with_varsom, seasons=False): """Holds labels and features. :param data: A DataFrame containing the features of the dataset. :param label: DataFrame of labels. :param row_weight: Series containing row weights :param days: How far back in time values should data be included. If 0, only weather data for the forecast day is evaluated. If 1, day 0 is used for weather, 1 for Varsom. If 2, day 0 is used for weather, 1 for Varsom, 2 for RegObs. If 3, days 0-1 is used for weather, 1-2 for Varsom, 2-3 for RegObs. If 5, days 0-3 is used for weather, 1-4 for Varsom, 2-5 for RegObs. The reason for this is to make sure that each kind of data contain the same number of data points, if we want to use some time series frameworks that are picky about such things. :param regobs_types: A tuple/list of strings of types of observations to fetch from RegObs., e.g., `("Faretegn")`. :param with_varsom: Whether to include previous avalanche bulletins into the indata. """ self.data = data self.row_weight = row_weight if label is not None: self.label = label self.label = self.label.replace(_NONE, 0) self.label = self.label.replace(np.nan, 0) try: self.label['CLASS', _NONE] = self.label['CLASS', _NONE].replace(0, _NONE).values except KeyError: pass try: self.label['MULTI'] = self.label['MULTI'].replace(0, "0").values except KeyError: pass try: self.label['REAL'] = self.label['REAL'].astype(np.float) except KeyError: pass self.pred = label.copy() for col in self.pred.columns: self.pred[col].values[:] = 0 try: self.pred['CLASS', _NONE] = _NONE except KeyError: pass try: self.pred['MULTI'] = "0" except KeyError: pass else: self.label = None self.pred = None self.days = days self.with_varsom = with_varsom self.regobs_types = regobs_types if self.data is not None: self.scaler.fit(self.data.values) self.single = not seasons self.seasons = sorted(list(set(seasons if seasons else []))) def normalize(self, by=None): """Normalize the data feature-wise using MinMax. :return: Normalized copy of LabeledData """ by = by if by is not None else self if not self.is_normalized: ld = self.copy() data = by.scaler.transform(self.data.values) ld.data = pd.DataFrame(data=data, index=self.data.index, columns=self.data.columns) ld.is_normalized = by return ld elif self.is_normalized != by: return self.denormalize().normalize(by=by) else: return self.copy() def denormalize(self): """Denormalize the data feature-wise using MinMax. :return: Denormalized copy of LabeledData """ if self.is_normalized: ld = self.copy() data = self.is_normalized.scaler.inverse_transform(self.data.values) ld.data = pd.DataFrame(data=data, index=self.data.index, columns=self.data.columns) ld.is_normalized = False return ld else: return self.copy() def drop_regions(self): """Remove regions from input data""" if self.with_regions: ld = self.copy() region_columns = list(filter(lambda x: re.match(r'^region_id', x[0]), ld.data.columns)) ld.data.drop(region_columns, axis=1, inplace=True) ld.with_regions = False ld.scaler.fit(ld.data.values) return ld else: return self.copy() def stretch_temperatures(self): """Stretch out temperatures near zero""" ld = self.copy() if self.data is not None: temp_cols = [bool(re.match(r"^temp_(max|min)$", title)) for title in ld.data.columns.get_level_values(0)] ld.data.loc[:, temp_cols] = np.sign(ld.data.loc[:, temp_cols]) * np.sqrt(np.abs(ld.data.loc[:, temp_cols])) ld.scaler.fit(ld.data.values) return ld def problem_graph(self): label = pd.Series(self.label["CLASS", _NONE, "problem_1"], name="label") pred1 = pd.Series(self.pred["CLASS", _NONE, "problem_1"], name="problem_1") pred2 = pd.Series(self.pred["CLASS", _NONE, "problem_2"], name="problem_2") groups = pd.concat([label, pred1, pred2], axis=1).groupby(["label", "problem_1"], dropna=False) count = groups.count()["problem_2"].rename("count") p2 = groups["problem_2"].apply(lambda x:
pd.Series.mode(x)
pandas.Series.mode
#!python import os import sys import random import time from random import seed, randint import argparse import platform from datetime import datetime import imp import subprocess import glob import re from helperFunctions.myFunctions_helper import * import numpy as np import pandas as pd import fileinput from itertools import product from Bio.PDB.PDBParser import PDBParser from Bio.PDB import PDBList from pdbfixer import PDBFixer from simtk.openmm.app import PDBFile # compute cross Q for every pdb pair in one folder # parser = argparse.ArgumentParser(description="Compute cross q") # parser.add_argument("-m", "--mode", # type=int, default=1) # args = parser.parse_args() def getFromTerminal(CMD): return subprocess.Popen(CMD,stdout=subprocess.PIPE,shell=True).communicate()[0].decode() def expand_grid(dictionary): return pd.DataFrame([row for row in product(*dictionary.values())], columns=dictionary.keys()) def duplicate_pdb(From, To, offset_x=0, offset_y=0, offset_z=0, new_chain="B"): with open(To, "w") as out: with open(From, "r") as f: for line in f: tmp = list(line) if len(tmp) < 26: out.write(line) continue atom = line[0:4] atomSerialNumber = line[6:11] atomName = line[12:16] atomResidueName = line[17:20] chain = line[21] residueNumber = line[22:26] # change chain A to B # new_chain = "B" if atom == "ATOM": x = float(line[30:38]) y = float(line[38:46]) z = float(line[46:54]) # add 40 to the x new_x = x + offset_x new_y = y + offset_y new_z = z + offset_z tmp[21] = new_chain tmp[30:38] = "{:8.3f}".format(new_x) tmp[38:46] = "{:8.3f}".format(new_y) tmp[46:54] = "{:8.3f}".format(new_z) a = "".join(tmp) out.write(a) def compute_native_contacts(coords, MAX_OFFSET=4, DISTANCE_CUTOFF=9.5): native_coords = np.array(coords) a= native_coords[:,np.newaxis] dis = np.sqrt(np.sum((a - native_coords)**2, axis=2)) n = len(dis) remove_band = np.eye(n) for i in range(1, MAX_OFFSET): remove_band += np.eye(n, k=i) remove_band += np.eye(n, k=-i) dis[remove_band==1] = np.max(dis) native_contacts = dis < DISTANCE_CUTOFF return native_contacts.astype("int") def compute_contacts(coords, native_contacts, DISTANCE_CUTOFF=9.5): native_coords = np.array(coords) a= native_coords[:,np.newaxis] dis = np.sqrt(np.sum((a - native_coords)**2, axis=2)) constacts = dis < DISTANCE_CUTOFF constacts = constacts*native_contacts # remove non native contacts return np.sum(constacts, axis=1).astype("float") def compute_localQ_init(MAX_OFFSET=4, DISTANCE_CUTOFF=9.5): from pathlib import Path home = str(Path.home()) struct_id = '2xov' filename = os.path.join(home, "opt/pulling/2xov.pdb") p = PDBParser(PERMISSIVE=1) s = p.get_structure(struct_id, filename) chains = s[0].get_list() # import pdb file native_coords = [] for chain in chains: dis = [] all_res = [] for res in chain: is_regular_res = res.has_id('CA') and res.has_id('O') res_id = res.get_id()[0] if (res.get_resname()=='GLY'): native_coords.append(res['CA'].get_coord()) elif (res_id==' ' or res_id=='H_MSE' or res_id=='H_M3L' or res_id=='H_CAS') and is_regular_res: native_coords.append(res['CB'].get_coord()) else: print('ERROR: irregular residue at %s!' % res) exit() native_contacts_table = compute_native_contacts(native_coords, MAX_OFFSET, DISTANCE_CUTOFF) return native_contacts_table def compute_localQ(native_contacts_table, pre=".", ii=-1, MAX_OFFSET=4, DISTANCE_CUTOFF=9.5): native_contacts = np.sum(native_contacts_table, axis=1).astype("float") dump = read_lammps(os.path.join(pre, f"dump.lammpstrj.{ii}"), ca=False) localQ_list = [] for atom in dump: contacts = compute_contacts(np.array(atom), native_contacts_table, DISTANCE_CUTOFF=DISTANCE_CUTOFF) c = np.divide(contacts, native_contacts, out=np.zeros_like(contacts), where=native_contacts!=0) localQ_list.append(c) data = pd.DataFrame(localQ_list) data.columns = ["Res" + str(i+1) for i in data.columns] data.to_csv(os.path.join(pre, f"localQ.{ii}.csv"), index=False) def readPMF_basic(pre): # perturbation_table = {0:"original", 1:"p_mem", # 2:"m_mem", 3:"p_lipid", # 4:"m_lipid", 5:"p_go", # 6:"m_go", 7:"p_rg", 8:"m_rg"} perturbation_table = {0:"original", 1:"m_go", 2:"p_go", 3:"m_lipid", 4:"p_lipid", 5:"m_mem", 6:"p_mem", 7:"m_rg", 8:"p_rg"} pmf_list = { "perturbation":list(perturbation_table.keys()) } pmf_list_data = expand_grid(pmf_list) all_pmf_list = [] for index, row in pmf_list_data.iterrows(): perturbation = row["perturbation"] if perturbation == 0: location = pre + f"/pmf-*.dat" pmf_list = glob.glob(location) change = "none" upOrDown = "none" else: location = pre + f"/perturbation-{perturbation}-pmf-*.dat" pmf_list = glob.glob(location) change = perturbation_table[perturbation].split("_")[-1] upOrDown = perturbation_table[perturbation].split("_")[0] # print(location) name_list = ["f", "df", "e", "s"] names = ["bin", "x"] + name_list for location in pmf_list: # print(location) temp = re.findall(r'pmf-(\d+)', location) if len(temp) != 1: raise ValueError('Not expected to see more than one or none') else: temp = temp[0] data = pd.read_table(location, skiprows=2, sep='\s+', names=names).assign(upOrDown=upOrDown, change=change, temp=temp, perturbation=perturbation_table[perturbation]) all_pmf_list.append(data) return pd.concat(all_pmf_list).dropna().reset_index() def make_metadata_3(k=1000.0, temps_list=["450"], i=-1, biasLow=None, biasHigh=None): print("make metadata") cwd = os.getcwd() files = glob.glob(f"../data_{i}/*") kconstant = k with open("metadatafile", "w") as out: for oneFile in sorted(files): tmp = oneFile.split("/")[-1].replace('.dat', '') t = tmp.split("_")[1] bias = tmp.split("_")[3] if biasLow: if float(bias) < biasLow: continue if biasHigh: if float(bias) > biasHigh: continue # print(tmp) # if int(float(dis)) > 150: # continue if t in temps_list: target = "../{} {} {} {}\n".format(oneFile, t, kconstant, bias) out.write(target) def readPMF(pre, is2d=False, force_list=["0.0", "0.1", "0.2"]): # perturbation_table = {0:"original", 1:"p_mem", # 2:"m_mem", 3:"p_lipid", # 4:"m_lipid", 5:"p_go", # 6:"m_go", 7:"p_rg", 8:"m_rg"} perturbation_table = {0:"original", 1:"m_go", 2:"p_go", 3:"m_lipid", 4:"p_lipid", 5:"m_mem", 6:"p_mem", 7:"m_rg", 8:"p_rg"} pmf_list = { "perturbation":list(perturbation_table.keys()), "force":force_list } pmf_list_data = expand_grid(pmf_list) all_pmf_list = [] for index, row in pmf_list_data.iterrows(): force = row["force"] perturbation = row["perturbation"] if perturbation == 0: location = pre + f"/force_{force}/pmf-*.dat" pmf_list = glob.glob(location) change = "none" upOrDown = "none" else: location = pre + f"/force_{force}/perturbation-{perturbation}-pmf-*.dat" pmf_list = glob.glob(location) change = perturbation_table[perturbation].split("_")[-1] upOrDown = perturbation_table[perturbation].split("_")[0] # print(pmf_list) name_list = ["f", "df", "e", "s"] if is2d: names = ["x", "y"] + name_list else: names = ["bin", "x"] + name_list for location in pmf_list: # print(location) temp = re.findall(r'pmf-(\d+)', location) if len(temp) != 1: raise ValueError('Not expected to see more than one or none') else: temp = temp[0] data = pd.read_table(location, skiprows=2, sep='\s+', names=names).assign(upOrDown=upOrDown, change=change, force=force, temp=temp, perturbation=perturbation_table[perturbation]) all_pmf_list.append(data) return pd.concat(all_pmf_list).dropna().reset_index() def readPMF_2(pre, is2d=0, force_list=["0.0", "0.1", "0.2"]): if is2d: print("reading 2d pmfs") else: print("reading 1d dis, qw and z") if is2d == 1: mode_list = ["2d_qw_dis", "2d_z_dis", "2d_z_qw"] elif is2d == 2: mode_list = ["quick"] else: mode_list = ["1d_dis", "1d_qw", "1d_z"] all_data_list =[] for mode in mode_list: tmp = readPMF(mode, is2d, force_list).assign(mode=mode) all_data_list.append(tmp) return pd.concat(all_data_list).dropna().reset_index() def shrinkage(n=552, shrink_size=6, max_frame=2000, fileName="dump.lammpstrj"): print("Shrinkage: size: {}, max_frame: {}".format(shrink_size, max_frame)) bashCommand = "wc " + fileName process = subprocess.Popen(bashCommand.split(), stdout=subprocess.PIPE) output, error = process.communicate() line_number = int(output.decode("utf-8").split()[0]) print(line_number) print(line_number/552) # number of atom = 543 n = 552 count = 0 with open("small.lammpstrj", "w") as out: with open(fileName, "r") as f: for i, line in enumerate(f): if (i // n) % shrink_size == 0: if count >= max_frame*n: break count += 1 out.write(line) def compute_theta_for_each_helix(output="angles.csv", dumpName="../dump.lammpstrj.0"): print("This is for 2xov only") helices_list = [(94,114), (147,168), (171, 192), (200, 217), (226, 241), (250, 269)] atoms_all_frames = read_lammps(dumpName) # print(atoms[0]) # print(len(atoms), len(atoms[0])) # helices_angles_all_frames = [] with open(output, "w") as out: out.write("Frame, Helix, Angle\n") for ii, frame in enumerate(atoms_all_frames): # helices_angles = [] for count, (i, j) in enumerate(helices_list): # print(i, j) i = i-91 j = j-91 # end - start a = np.array(frame[j]) - np.array(frame[i]) b = np.array([0, 0, 1]) angle = a[2]/length(a) # in form of cos theta # helices_angles.append(angle) # print(angle) out.write("{}, {}, {}\n".format(ii, count+1, angle)) # helices_angles_all_frames.append(helices_angles) def check_and_correct_fragment_memory(fragFile="fragsLAMW.mem"): with open("tmp.mem", "w") as out: with open(fragFile, "r") as f: for i in range(4): line = next(f) out.write(line) for line in f: gro, _, i, n, _ = line.split() delete = False # print(gro, i, n) # name = gro.split("/")[-1] with open(gro, "r") as one: next(one) next(one) all_residues = [] for atom in one: residue, resType, atomType, *_ = atom.split() # print(residue, resType, atomType) if atomType == "CA": all_residues.append(int(residue)) all_residues = np.array(all_residues) for test in range(int(i), int(i)+int(n)): if (test == all_residues).sum() > 1: # In rare case, one res id may have two different possible residues. # on example, pdb 3vpg. chain A, res id 220. # ATOM 1467 N ARG A 220A 9.151 -20.984 46.737 1.00 31.30 N # ATOM 1468 CA ARG A 220A 9.120 -19.710 46.027 1.00 31.52 C # ATOM 1469 C ARG A 220A 9.768 -19.832 44.650 1.00 33.58 C # ATOM 1470 O ARG A 220A 10.552 -18.973 44.240 1.00 28.91 O # ATOM 1471 CB ARG A 220A 9.853 -18.641 46.847 1.00 31.58 C # ATOM 1472 CG ARG A 220A 9.181 -18.295 48.168 1.00 33.55 C # ATOM 1473 CD ARG A 220A 7.834 -17.651 47.916 1.00 34.70 C # ATOM 1474 NE ARG A 220A 7.959 -16.526 46.994 1.00 43.05 N # ATOM 1475 CZ ARG A 220A 6.931 -15.906 46.425 1.00 46.69 C # ATOM 1476 NH1 ARG A 220A 5.691 -16.300 46.683 1.00 39.12 N # ATOM 1477 NH2 ARG A 220A 7.144 -14.898 45.590 1.00 41.15 N # ATOM 1478 N ALA A 220B 9.429 -20.901 43.936 1.00 33.78 N # ATOM 1479 CA ALA A 220B 9.979 -21.153 42.608 1.00 32.13 C # ATOM 1480 C ALA A 220B 9.944 -19.933 41.692 1.00 30.71 C # ATOM 1481 O ALA A 220B 9.050 -19.088 41.787 1.00 28.56 O # ATOM 1482 CB ALA A 220B 9.234 -22.310 41.951 1.00 35.20 C print("ATTENTION", gro, i, n, "duplicate:",test) delete = True if test not in all_residues: print("ATTENTION", gro, i, n, "missing:",test) delete = True if not delete: out.write(line) os.system(f"mv {fragFile} fragsLAMW_back") os.system(f"mv tmp.mem {fragFile}") def compute_average_z(dumpFile, outFile): # input dump, output z.dat z_list = [] with open(outFile, "w") as f: a = read_lammps(dumpFile) for atoms in a: b = np.array(atoms) z = b.mean(axis=0)[2] z_list.append(z) f.write(str(z)+"\n") def compute_average_z_2(dumpFile, outFile): # input dump, output z.dat helices_list = [(94,114), (147,168), (171, 192), (200, 217), (226, 241), (250, 269)] with open(outFile, "w") as f: a = read_lammps(dumpFile) f.write("z_average, abs_z_average, z_h1, z_h2, z_h3, z_h4, z_h5, z_h6\n") for atoms in a: b = np.array(atoms) z = b.mean(axis=0)[2] f.write(str(z)+ ", ") z = np.abs(b).mean(axis=0)[2] f.write(str(z)+ ", ") for count, (i,j) in enumerate(helices_list): i = i - 91 j = j - 91 z = np.mean(b[i:j], axis=0)[2] if count == 5: f.write(str(z)) else: f.write(str(z)+ ", ") f.write("\n") def read_folder(location, match="", **kwargs): runFolders = os.listdir(location+"/simulation") if match == "qbias": runFolders = [f for f in runFolders if re.match(r'qbias_[0-9]+', f)] else: runFolders = [f for f in runFolders if re.match(r'[0-9]+', f)] print(runFolders) data_list = [] for run in runFolders: tmp = read_simulation_2(location+"/simulation/"+run+"/0/", **kwargs).assign(Run=run) data_list.append(tmp) return pd.concat(data_list).reset_index(drop=True) def read_variable_folder(location, match="*_", **kwargs): variables = glob.glob(os.path.join(location, match)) print(variables) data_list = [] for variableFolder in variables: tmp = variableFolder.split("/")[-1] data_list.append(read_folder(variableFolder, **kwargs).assign(Folder=tmp)) data =
pd.concat(data_list)
pandas.concat
# -*- coding: utf-8 -*- """ author: zengbin93 email: <EMAIL> create_dt: 2021/12/13 21:43 describe: 概念、行业、指数等股票聚类板块感应器 三个问题: 1)如何找出引领大盘的概念、行业、指数 2)板块内股票相比于板块走势,划分强中弱 3)根据指数强弱进行账户总仓位控制 """ import os import traceback import inspect from datetime import timedelta, datetime import pandas as pd from tqdm import tqdm from typing import Callable from czsc import envs from czsc.utils import WordWriter, io from czsc.data.ts_cache import TsDataCache, Freq from czsc.sensors.utils import get_index_beta, generate_signals, turn_over_rate, max_draw_down class ThsConceptsSensor: """ 输入:同花顺概念列表;同花顺概念日线行情 输出:每一个交易日的同花顺强势概念 """ def __init__(self, results_path: str, sdt: str, edt: str, dc: TsDataCache, get_signals: Callable, get_event: Callable, ths_index_type='N'): """ :param results_path: 结果保存路径 :param sdt: 开始日期 :param edt: 结束日期 :param dc: 数据缓存对象 :param get_signals: 信号获取函数 :param get_event: 事件定义函数 :param ths_index_type: 同花顺指数类型 N-板块指数 I-行业指数 S-同花顺特色指数 """ self.name = self.__class__.__name__ self.dc = dc self.get_signals = get_signals self.get_event = get_event self.event = get_event() self.base_freq = Freq.D.value self.freqs = [Freq.W.value, Freq.M.value] self.dc = dc self.ths_index_type = ths_index_type self.verbose = envs.get_verbose() self.cache = dict() self.results_path = results_path os.makedirs(self.results_path, exist_ok=True) self.sdt = sdt self.edt = edt self.file_docx = os.path.join(results_path, f'{self.event.name}_{self.ths_index_type}_{sdt}_{edt}.docx') writer = WordWriter(self.file_docx) if not os.path.exists(self.file_docx): writer.add_title(f"同花顺指数({self.ths_index_type})感应器报告") writer.add_page_break() writer.add_heading(f"{datetime.now().strftime('%Y-%m-%d %H:%M')} {self.event.name}", level=1) writer.add_heading("参数配置", level=2) writer.add_paragraph(f"测试方法描述:{self.event.name}") writer.add_paragraph(f"测试起止日期:{sdt} ~ {edt}") writer.add_paragraph(f"信号计算函数:\n{inspect.getsource(self.get_signals)}") writer.add_paragraph(f"事件具体描述:\n{inspect.getsource(self.get_event)}") writer.save() self.writer = writer self.file_ssd = os.path.join(results_path, f'ths_all_strong_days_{self.ths_index_type}.pkl') if os.path.exists(self.file_ssd): self.ssd, self.cache = io.read_pkl(self.file_ssd) else: self.ssd = self.get_all_strong_days() io.save_pkl([self.ssd, self.cache], self.file_ssd) self.betas = get_index_beta(dc, sdt, edt, freq='D', indices=['000001.SH', '000016.SH', '000905.SH', '000300.SH', '399001.SZ', '399006.SZ']) def get_strong_days(self, ts_code, name): """获取单个概念的强势日期 :param ts_code: 同花顺概念代码 :param name: 同花顺概念名称 :return: """ dc = self.dc event = self.event sdt = self.sdt edt = self.edt start_date =
pd.to_datetime(sdt)
pandas.to_datetime
# coding: utf-8 -*- ''' GSI.py contains utility functions for GSI ''' __all__ = ['GSIstat'] import numpy as _np import pandas as _pd import re as _re class GSIstat(object): ''' Object containing the GSI statistics ''' def __init__(self,filename,adate): ''' Initialize the GSIstat object INPUT: filename = filename of the gsistat file adate = analysis date OUTPUT: GSIstat: object containing the contents of the filename ''' self.filename = filename self.analysis_date = adate fh = open(self.filename,'rb') self._lines = fh.readlines() # Keep lines private fh.close() # Initialize cache for fast parsing self._cache = {} return def extract(self,name): ''' From the gsistat file, extract information: INPUT: name = information seeked Valid options are: ps, oz, uv, t, q, gps, rad, cost OUTPUT: df = dataframe containing information ''' # If name has already been parsed, # just return it from cache if name in self._cache: df = self._cache[name] return df if name in ['ps']: df = self._get_ps() elif name in ['oz']: df = self._get_ozone() elif name in ['uv','t','q','gps']: df = self._get_conv(name) elif name in ['rad']: df = self._get_radiance() elif name in ['cost']: df = self._get_cost() else: raise IOError('option %s is not defined' % name) # Drop the o-g from the indicies list if 'o-g' in list(df.index.names): df.reset_index(level='o-g',drop=True,inplace=True) # Add datetime index df = self._add_datetime_index(df) # Cache it for faster access self._cache[name] = df return df def _add_datetime_index(self,df): ''' Add the datetime as the first index INPUT: df = dataframe without datetime index OUTPUT: df = dataframe with datetime as the 1st index ''' # If date is already present, return if 'date' in list(df.index.names): return df indices = ['date'] + list(df.index.names) df['date'] = self.analysis_date df.set_index('date', append=True, inplace=True) df = df.reorder_levels(indices) return df def extract_instrument(self,obtype,instrument): ''' From the gsistat file, extract detailed information on an instrument: INPUT: obtype = observation type to extract (rad or oz) instrument = instrument name [must be in the observation type] E.g.: amsua, mhs, iasi, hirs, etc OUTPUT: df = dataframe containing information ''' # If instrument has already been parsed, # just return it from cache if instrument in self._cache: df = self._cache[instrument] return df # Ensure obtype is already called, # if not call it and cache it if obtype in list(self._cache.keys()): otype = self._cache[obtype] else: otype = self.extract(obtype) self._cache[obtype] = otype instruments = sorted(otype.index.get_level_values('instrument').unique()) satellites = sorted(otype.index.get_level_values('satellite' ).unique()) if instrument not in instruments: print('Instrument %s not found!' % instrument) print('%s contains ...' % self.filename) print(', '.join(str(x) for x in instruments)) return None # Handle special instruments if instrument in ['iasi','iasi616']: inst = 'iasi616' elif instrument in ['airs','airs281SUBSET']: inst = 'airs281SUBSET' else: inst = instrument tmp = [] pattern = '\s+\d+\s+\d+\s+%s_\S+\s+\d+\s+\d+\s+' % (inst) for line in self._lines: if _re.match(pattern,line): tst = line.strip().split() tst = tst[:2] + tst[2].split('_') + tst[3:] tmp.append(tst) columns = ['it','channel','instrument','satellite','nassim','nrej','oberr','OmF_bc','OmF_wobc','col1','col2','col3'] df =
_pd.DataFrame(data=tmp,columns=columns)
pandas.DataFrame
import itertools import json from copy import deepcopy import networkx as nx import numpy as np import pandas as pd import syspy.assignment.raw as assignment_raw from quetzal.engine import engine from quetzal.engine.subprocesses import filepaths from quetzal.os import parallel_call from scipy.sparse import csr_matrix from scipy.sparse.csgraph import dijkstra from syspy.routing.frequency import graph as frequency_graph from syspy.skims import skims from syspy.spatial import spatial from tqdm import tqdm def get_path(predecessors, i, j): path = [j] k = j p = 0 while p != -9999: k = p = predecessors[i, k] path.append(p) return path[::-1][1:] def get_reversed_path(predecessors, i, j): path = [j] k = j p = 0 while p != -9999: k = p = predecessors[i, k] path.append(p) return path[:-1] def path_and_duration_from_graph( nx_graph, pole_set, od_set=None, sources=None, reversed_nx_graph=None, reverse=False, ntlegs_penalty=1e9, cutoff=np.inf, **kwargs ): sources = pole_set if sources is None else sources source_los = sparse_los_from_nx_graph( nx_graph, pole_set, sources=sources, cutoff=cutoff + ntlegs_penalty, od_set=od_set, **kwargs ) source_los['reversed'] = False reverse = reverse or reversed_nx_graph is not None if reverse: if reversed_nx_graph is None: reversed_nx_graph = nx_graph.reverse() try: reversed_od_set = {(d, o) for o, d in od_set} except TypeError: reversed_od_set = None target_los = sparse_los_from_nx_graph( reversed_nx_graph, pole_set, sources=sources, cutoff=cutoff + ntlegs_penalty, od_set=reversed_od_set, **kwargs) target_los['reversed'] = True target_los['path'] = target_los['path'].apply(lambda x: list(reversed(x))) target_los[['origin', 'destination']] = target_los[['destination', 'origin']] los = pd.concat([source_los, target_los]) if reverse else source_los los.loc[los['origin'] != los['destination'], 'gtime'] -= ntlegs_penalty tuples = [tuple(l) for l in los[['origin', 'destination']].values.tolist()] los = los.loc[[t in od_set for t in tuples]] return los def sparse_los_from_nx_graph( nx_graph, pole_set, sources=None, cutoff=np.inf, od_set=None, ): sources = pole_set if sources is None else sources if od_set is not None: sources = {o for o, d in od_set if o in sources} # INDEX pole_list = sorted(list(pole_set)) # fix order source_list = [zone for zone in pole_list if zone in sources] nodes = list(nx_graph.nodes) node_index = dict(zip(nodes, range(len(nodes)))) zones = [node_index[zone] for zone in source_list] source_index = dict(zip(source_list, range(len(source_list)))) zone_index = dict(zip(pole_list, range(len(pole_list)))) # SPARSE GRAPH sparse = nx.to_scipy_sparse_matrix(nx_graph) graph = csr_matrix(sparse) dist_matrix, predecessors = dijkstra( csgraph=graph, directed=True, indices=zones, return_predecessors=True, limit=cutoff ) # LOS LAYOUT df = pd.DataFrame(dist_matrix) df.index = [zone for zone in pole_list if zone in sources] df.columns = list(nx_graph.nodes) df.columns.name = 'destination' df.index.name = 'origin' stack = df[pole_list].stack() stack.name = 'gtime' los = stack.reset_index() # QUETZAL FORMAT los = los.loc[los['gtime'] < np.inf] if od_set is not None: tuples = [tuple(l) for l in los[['origin', 'destination']].values.tolist()] los = los.loc[[t in od_set for t in tuples]] # BUILD PATH FROM PREDECESSORS od_list = los[['origin', 'destination']].values.tolist() paths = [ [nodes[i] for i in get_path(predecessors, source_index[o], node_index[d])] for o, d in od_list ] los['path'] = paths return los def sparse_matrix(edges): nodelist = {e[0] for e in edges}.union({e[1] for e in edges}) nlen = len(nodelist) index = dict(zip(nodelist, range(nlen))) coefficients = zip(*((index[u], index[v], w) for u, v, w in edges)) row, col, data = coefficients return csr_matrix((data, (row, col)), shape=(nlen, nlen)), index def link_edges(links, boarding_time=None, alighting_time=None): assert not (boarding_time is not None and 'boarding_time' in links.columns) boarding_time = 0 if boarding_time is None else boarding_time assert not (alighting_time is not None and 'alighting_time' in links.columns) alighting_time = 0 if alighting_time is None else alighting_time l = links.copy() l['index'] = l.index l['next'] = l['link_sequence'] + 1 if 'cost' not in l.columns: l['cost'] = l['time'] + l['headway'] / 2 if 'boarding_time' not in l.columns: l['boarding_time'] = boarding_time if 'alighting_time' not in l.columns: l['alighting_time'] = alighting_time l['total_time'] = l['boarding_time'] + l['cost'] boarding_edges = l[['a', 'index', 'total_time']].values.tolist() alighting_edges = l[['index', 'b', 'alighting_time']].values.tolist() transit = pd.merge( l[['index', 'next', 'trip_id']], l[['index', 'link_sequence', 'trip_id', 'time']], left_on=['trip_id', 'next'], right_on=['trip_id', 'link_sequence'], ) transit_edges = transit[['index_x', 'index_y', 'time']].values.tolist() return boarding_edges + transit_edges + alighting_edges def adjacency_matrix( links, ntlegs, footpaths, ntlegs_penalty=1e9, boarding_time=None, alighting_time=None, **kwargs ): ntlegs = ntlegs.copy() # ntlegs and footpaths ntlegs.loc[ntlegs['direction'] == 'access', 'time'] += ntlegs_penalty ntleg_edges = ntlegs[['a', 'b', 'time']].values.tolist() footpaths_edges = footpaths[['a', 'b', 'time']].values.tolist() edges = link_edges(links, boarding_time, alighting_time) edges += footpaths_edges + ntleg_edges return sparse_matrix(edges) def los_from_graph( csgraph, # graph is assumed to be a scipy csr_matrix node_index=None, pole_set=None, sources=None, cutoff=np.inf, od_set=None, ntlegs_penalty=1e9 ): sources = pole_set if sources is None else sources if od_set is not None: sources = {o for o, d in od_set if o in sources} # INDEX pole_list = sorted(list(pole_set)) # fix order source_list = [zone for zone in pole_list if zone in sources] zones = [node_index[zone] for zone in source_list] source_index = dict(zip(source_list, range(len(source_list)))) zone_index = dict(zip(pole_list, range(len(pole_list)))) # SPARSE GRAPH dist_matrix, predecessors = dijkstra( csgraph=csgraph, directed=True, indices=zones, return_predecessors=True, limit=cutoff + ntlegs_penalty ) # LOS LAYOUT df = pd.DataFrame(dist_matrix) indexed_nodes = {v: k for k, v in node_index.items()} df.rename(columns=indexed_nodes, inplace=True) df.index = [zone for zone in pole_list if zone in sources] df.columns.name = 'destination' df.index.name = 'origin' stack = df[pole_list].stack() stack.name = 'gtime' los = stack.reset_index() # QUETZAL FORMAT los = los.loc[los['gtime'] < np.inf] los.loc[los['origin'] != los['destination'], 'gtime'] -= ntlegs_penalty if od_set is not None: tuples = [tuple(l) for l in los[['origin', 'destination']].values.tolist()] los = los.loc[[t in od_set for t in tuples]] # BUILD PATH FROM PREDECESSORS od_list = los[['origin', 'destination']].values.tolist() paths = [ [indexed_nodes[i] for i in get_path(predecessors, source_index[o], node_index[d])] for o, d in od_list ] los['path'] = paths return los def paths_from_graph( csgraph, node_index, sources, targets, od_set=None, cutoff=np.inf ): reverse = False if od_set: o_set = {o for o, d in od_set} d_set = {d for o, d in od_set} sources = [s for s in sources if s in o_set] targets = [t for t in targets if t in d_set] if len(sources) > len(targets): reverse = True sources, targets, csgraph = targets, sources, csgraph.T # INDEX source_indices = [node_index[s] for s in sources] target_indices = [node_index[t] for t in targets] source_index = dict(zip(sources, range(len(sources)))) index_node = {v: k for k, v in node_index.items()} # DIKSTRA dist_matrix, predecessors = dijkstra( csgraph=csgraph, directed=True, indices=source_indices, return_predecessors=True, limit=cutoff ) dist_matrix = dist_matrix.T[target_indices].T df = pd.DataFrame(dist_matrix, index=sources, columns=targets) df.columns.name = 'destination' df.index.name = 'origin' if od_set is not None: mask_series = pd.Series(0, index=pd.MultiIndex.from_tuples(list(od_set))) mask = mask_series.unstack().loc[sources, targets] df += mask stack = df.stack() stack.name = 'length' odl = stack.reset_index() od_list = odl[['origin', 'destination']].values path = get_reversed_path if reverse else get_path paths = [ [ index_node[i] for i in path(predecessors, source_index[o], node_index[d]) ] for o, d in od_list ] odl['path'] = paths if reverse: odl[['origin', 'destination']] = odl[['destination', 'origin']] return odl class PublicPathFinder: def __init__(self, model, walk_on_road=False): self.zones = model.zones.copy() self.links = engine.graph_links(model.links.copy()) if walk_on_road: road_links = model.road_links.copy() road_links['time'] = road_links['walk_time'] self.footpaths = pd.concat([model.footpaths, road_links, model.road_to_transit]) self.ntlegs = pd.concat( [model.zone_to_road, model.zone_to_transit] ) else: self.footpaths = model.footpaths.copy() self.ntlegs = model.zone_to_transit.copy() try: self.centroids = model.centroids.copy() except AttributeError: self.centroids = self.zones.copy() self.centroids['geometry'] = self.centroids['geometry'].apply( lambda g: g.centroid ) def first_link(self, path): for n in path: if n in self.links.index: return n def last_link(self, path): for n in reversed(path): if n in self.links.index: return n def build_route_zones(self, route_column): """ find origin zones that are likely to be affected by the removal each one of the routes """ los = self.best_paths.copy() los['first_link'] = los['path'].apply(self.first_link) los['last_link'] = los['path'].apply(self.last_link) right = self.links[[route_column]] merged = pd.merge(los, right, left_on='first_link', right_index=True) merged = pd.merge(merged, right, left_on='last_link', right_index=True, suffixes=['_first', '_last']) first = merged[['origin', route_column + '_first']] first.columns = ['zone', 'route'] last = merged[['destination', route_column + '_last']] last.columns = ['zone', 'route'] zone_route = pd.concat([first, last]).drop_duplicates(subset=['zone', 'route']) route_zone_sets = zone_route.groupby('route')['zone'].apply(set) self.route_zones = route_zone_sets.to_dict() def build_route_breaker(self, route_column='route_id'): self.build_route_zones(route_column=route_column) def build_mode_breaker(self, mode_column='route_type'): self.build_mode_combinations(mode_column='route_type') def build_mode_combinations(self, mode_column='route_type'): mode_list = sorted(list(set(self.links[mode_column]))) boolean_array = list(itertools.product((True, False), repeat=len(mode_list))) mode_combinations = [] for booleans in boolean_array: combination = { mode_list[i] for i in range(len(mode_list)) if booleans[i] } mode_combinations.append(combination) self.mode_combinations = mode_combinations links = self.links.copy() links.drop('index', axis=1, inplace=True, errors='ignore') links.index.name = 'index' self.mode_links = links.reset_index().groupby( [mode_column] )['index'].apply(lambda s: set(s)).to_dict() def find_best_path( self, od_set=None, cutoff=np.inf, ntlegs_penalty=1e9, boarding_time=None, **kwargs ): pole_set = set(self.zones.index) matrix, node_index = adjacency_matrix( links=self.links, ntlegs=self.ntlegs, footpaths=self.footpaths, ntlegs_penalty=ntlegs_penalty, boarding_time=boarding_time, **kwargs ) los = los_from_graph( csgraph=matrix, node_index=node_index, pole_set=pole_set, od_set=od_set, cutoff=cutoff, ntlegs_penalty=ntlegs_penalty ) los['pathfinder_session'] = 'best_path' los['reversed'] = False self.best_paths = los def find_broken_route_paths( self, od_set=None, cutoff=np.inf, route_column='route_id', ntlegs_penalty=1e9, boarding_time=None, speedup=True, **kwargs ): pole_set = set(self.zones.index) do_set = {(d, o) for o, d in od_set} if od_set is not None else None to_concat = [] iterator = tqdm(self.route_zones.items()) for route_id, zones in iterator: if not speedup: zones = set(self.zones.index).intersection(set(self.ntlegs['a'])) iterator.desc = 'breaking route: ' + str(route_id) + ' ' matrix, node_index = adjacency_matrix( links=self.links.loc[self.links[route_column] != route_id], ntlegs=self.ntlegs, footpaths=self.footpaths, ntlegs_penalty=ntlegs_penalty, boarding_time=boarding_time, **kwargs ) los = los_from_graph( csgraph=matrix, node_index=node_index, pole_set=pole_set, od_set=od_set, sources=zones, cutoff=cutoff, ntlegs_penalty=ntlegs_penalty ) los['reversed'] = False los['broken_route'] = route_id los['pathfinder_session'] = 'route_breaker' to_concat.append(los) los = los_from_graph( csgraph=matrix.transpose(), node_index=node_index, pole_set=pole_set, od_set=do_set, sources=zones, cutoff=cutoff, ntlegs_penalty=ntlegs_penalty ) los[['origin', 'destination']] = los[['destination', 'origin']] los['path'] = los['path'].apply(lambda p: list(reversed(p))) los['reversed'] = True los['broken_route'] = route_id los['pathfinder_session'] = 'route_breaker' to_concat.append(los) self.broken_route_paths = pd.concat(to_concat) def find_broken_mode_paths( self, od_set=None, cutoff=np.inf, mode_column='mode_type', ntlegs_penalty=1e9, boarding_time=None, **kwargs ): pole_set = set(self.zones.index) to_concat = [] iterator = tqdm(self.mode_combinations) for combination in iterator: iterator.desc = 'breaking modes: ' + str(combination) + ' ' matrix, node_index = adjacency_matrix( links=self.links.loc[~self.links[mode_column].isin(combination)], ntlegs=self.ntlegs, footpaths=self.footpaths, ntlegs_penalty=ntlegs_penalty, boarding_time=boarding_time, **kwargs ) los = los_from_graph( csgraph=matrix, node_index=node_index, pole_set=pole_set, od_set=od_set, cutoff=cutoff, ntlegs_penalty=ntlegs_penalty ) los['reversed'] = False los['pathfinder_session'] = 'mode_breaker' los['broken_modes'] = [combination for i in range(len(los))] to_concat.append(los) self.broken_mode_paths =
pd.concat(to_concat)
pandas.concat
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @author: <NAME> @contact: <EMAIL> @software: PyCharm @file: conf_matrix_bases_metrics.py @time: 2020/2/26 23:16 @desc: """ import numpy as np import pandas as pd import seaborn as sns from alchemy_cat.acplot import pretty_plot_confusion_matrix from alchemy_cat import quick_init from matplotlib import pyplot as plt import os from typing import Optional, Iterable from torchnet.meter import MovingAverageValueMeter from alchemy_cat.py_tools import Statistic, Tracker __all__ = ['ClassificationMetric', 'SegmentationMetric'] class ClassificationMetric(Tracker): """Multi classification metric See statistics at https://en.wikipedia.org/wiki/Confusion_matrix """ def __init__(self, class_num: Optional[int] = None, class_names: Optional[Iterable[str]]=None): # * Init attributes and save init_dict super(ClassificationMetric, self).__init__(quick_init(self, locals())) # * Check Input if class_names is None: if class_num is None: raise ValueError("class_num and class_names can not be None at the same time") else: class_names = [str(i) for i in range(class_num)] else: class_names = [str(name) for name in class_names] if class_num is not None and len(class_names) != class_num: raise ValueError(f"class_num = {class_num} should be equal to len(class_names) = {len(class_names)}") else: class_num = len(class_names) self.class_num, self.class_names = class_num, class_names self.conf_matrix = np.zeros((class_num, class_num), dtype=np.int32) self._last_conf_matrix = self.conf_matrix.copy() @staticmethod def get_conf_matrix(pred: np.ndarray, gt: np.ndarray, class_num: int) -> np.ndarray: """Get confusion matrix accroding to input pred and gt Function get pred and gt array from input, which mean predicting label and ground truth label respectively. The label can be class of the input image, or class of each pixel of the input image. As long as pred and gt have the same shape. Args: pred: Numpy array of pred label gt: Numpy array of ground truth label. class_num: number of classes Returns: confusion matrix calculated according to input pred and gt """ if pred.shape != gt.shape: raise ValueError(f"pred's shape {pred.shape} should be equal to gt's shape {gt.shape}") mask = (gt >= 0) & (gt < class_num) conf_matrix = np.bincount( class_num * gt[mask].astype(np.int) + pred[mask].astype(np.int), minlength=class_num ** 2, ).reshape(class_num, class_num) return conf_matrix def update(self, pred: np.ndarray, gt: np.ndarray): """Update confusion matrix accroding to input pred and gt Function get pred and gt array from input, which mean predicting label and ground truth label respectively. The label can be class of the input image, or class of each pixel of the input image. As long as pred and gt have the same shape. Function will use get_conf_matrix to calculate the last_conf_matrix of current input then add it to self.conf_matrix Args: pred: Numpy array of pred label gt: Numpy array of ground truth label. """ super(ClassificationMetric, self).update(pred, gt) self._last_conf_matrix = self.get_conf_matrix(pred, gt, self.class_num) self.conf_matrix += self._last_conf_matrix def _plot_conf_matrix(self, **kwargs) -> plt.Figure: df =
pd.DataFrame(self.conf_matrix, index=self.class_names, columns=self.class_names)
pandas.DataFrame
import os import keras.backend as K import numpy as np import pandas as pd import pylab as pl import matplotlib.cm as cm import math from scipy import misc import util BATCH_SIZE = 20 def img_data_generator(file_paths, batch_size): """ Data generator for the model. :param file_paths: List of paths for the images :param batch_size: Batch size to be used for prediction """ while True: x_train = [] for file_path in file_paths: img = misc.imread(file_path) x_train.append(img) if len(x_train) == batch_size: x_to_yield = np.array(x_train, dtype=np.float32) if K.image_dim_ordering() == "th": x_to_yield = x_to_yield.transpose((0, 3, 1, 2)) yield x_to_yield x_train = [] if len(x_train) > 0: x_to_yield = np.array(x_train, dtype=np.float32) if K.image_dim_ordering() == "th": x_to_yield = x_to_yield.transpose((0, 3, 1, 2)) yield x_to_yield def generate_predictions(model, img_dir, out_filepath, batch_size=BATCH_SIZE): """ Generate predictions for the model and save them to the specified path. :param model: The pretrained model object :param img_dir: The directory containing images that are to be fed to the model :param out_filepath: File path to write the predictions :param batch_size: Batch size to be used for generating predictions """ file_paths = [os.path.join(img_dir, f) for f in os.listdir(img_dir) if os.path.isfile(os.path.join(img_dir, f))] steps = int(len(file_paths) / batch_size) if len(file_paths) % batch_size > 0: steps += 1 data_generator_obj = img_data_generator(file_paths, batch_size) print("Generating predictions...") predictions = model.predict_generator(data_generator_obj, val_samples=steps * batch_size, pickle_safe=True) pd_dict = dict() order = ['village_code'] pd_dict['village_code'] = [os.path.split(f)[1].split('.')[0] for f in file_paths] for ii in range(len(predictions)): predictions[ii] = np.array(predictions[ii], dtype=np.float32) for idx in range(predictions[ii].shape[-1]): pd_dict[str(ii) + "_" + str(idx)] = np.transpose(predictions[ii])[idx] order.append(str(ii) + "_" + str(idx)) compare =
pd.DataFrame(data=pd_dict)
pandas.DataFrame
#!/usr/bin/python3 # -*- coding: utf-8 -*- """ Created on 2021/10/19 @author: <NAME>, <NAME>, <NAME>, <NAME>, <NAME> """ import os import pickle from collections import namedtuple, Counter from multiprocessing.pool import Pool from typing import Tuple, Optional, Union, Dict import numpy as np import pandas as pd from matplotlib import pyplot as plt from sklearn import svm from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score Dataset = namedtuple('Dataset', ('data', 'label', 'protect')) # Generating random seed sequence np.random.seed(1) SEEDS = list(np.random.randint(1, 1000, 50000)) def get_seed() -> int: return SEEDS.pop(0) def randomize(dataset: Dataset) -> Dataset: """ Randomly shuffle the dataset. :param dataset: Dataset Object. :return: A Dataset Object after randomize. """ _dataset = np.hstack((dataset.data, dataset.label.reshape((-1, 1)), dataset.protect.reshape((-1, 1)))) np.random.seed(get_seed()) np.random.shuffle(_dataset) return Dataset(_dataset[:, :-2], _dataset[:, -2].ravel(), _dataset[:, -1].ravel()) def mode(x: np.ndarray) -> np.ndarray: """ Mode by line. :param x: np.ndarray Object. :return: A 1-d np.ndarray. """ _res = [] for idx in range(x.shape[0]): count_dict = Counter(x[idx, :]) _label = 0 if count_dict[0] > count_dict[1] else 1 _res.append(_label) return np.array(_res) def data_utils(names_file_path: str, data_file_path: str, positive_label: Union[int, str], protect_feature_name: str, split_rate: float, *, protect_feature_values: Optional[Tuple[str, ...]] = None, protect_feature_condition: Optional[Tuple[str, Union[int, float]]] = None, data_sep: str = ',', header: bool = False, use_filter: bool = True, use_only_numeric_label: bool = False, filter_ignore_tup: Tuple[str, str] = ('continuous', 'numeric')) -> Dict[str, Dataset]: """ Load and pre-treat the dataset with custom requirements. Basic Attribute :param names_file_path: The path of the file includes features name and set of alternative labels. :param data_file_path: The path of the data file. :param positive_label: Positive sample label which corresponding to 1 in numeric label. :param protect_feature_name: The name of the protected feature. :param split_rate: Train and test dataset split rate. Optional Attribute :param protect_feature_values: Protected sample tag value list. :param protect_feature_condition: Protected sample condition. A tuple of condition + base value. eg: (>, 65) :param data_sep: The separation character of the data if not comma. :param header: Whether the data file includes header. :param use_filter: Whether to use the value filter. :param use_only_numeric_label: Use only numeric features and delete label features. :param filter_ignore_tup: The ignore tuple for the filter. :returns: Datasets include train, test and unlabeled in a dictionary. """ # Assert check assert protect_feature_values is not None or protect_feature_condition is not None, \ 'Either protect_attr_value or protect_attr_condition should be specified.' if protect_feature_condition is not None: assert protect_feature_condition[0] in ('<', '>', '<=', '>='), \ 'Protect_attr_condition only supports operation of (<, >, <=, >=).' # Pre-define the container variable info_dict = {} names_ls = [] # Load names file with open(names_file_path) as f: names = f.readlines() # Extract names for item in names: item = item.rstrip().replace(' ', '') name, labels = item.split(':') names_ls.append(name) info_dict[name] = labels.split(',') if names_ls[-1] != 'label': names_ls.append('label') # Load data file names_ls = None if header else names_ls _data = pd.read_csv(data_file_path, sep=data_sep, names=names_ls, index_col=False) # Data filter if use_filter: for name in _data.columns: try: if info_dict[name][0] not in filter_ignore_tup: _data = _data[_data[name].isin(info_dict[name])] except KeyError: del _data[name] # Get labels _label = np.zeros((_data.shape[0], 1), np.uint8) _label[_data['label'] == positive_label] = 1 _label = _label.ravel() del _data['label'] # Classify the protection group _protect = np.zeros((_data.shape[0], 1), np.uint8) if protect_feature_values is not None: _protect[_data[protect_feature_name].isin(protect_feature_values)] = 1 else: try: base_value = float(protect_feature_condition[1]) except ValueError: raise ValueError('The second value of protect_attr_condition should be in type int or float.') exec('_protect[_data[protect_feature_name]' + protect_feature_condition[0] + 'base_value] = 1') del _data[protect_feature_name] _protect = _protect.ravel() # Encode data with OneHot if use_only_numeric_label: for name in _data.columns: if info_dict[name][0] not in filter_ignore_tup: del _data[name] else: _data =
pd.get_dummies(_data)
pandas.get_dummies
# -*- coding: utf-8 -*- # Copyright (c) 2015-2020, Exa Analytics Development Team # Distributed under the terms of the Apache License 2.0 #import os import numpy as np import pandas as pd from unittest import TestCase from exatomic import gaussian from exatomic.base import resource from exatomic.gaussian import Output, Fchk class TestFchk(TestCase): def setUp(self): self.mam1 = Fchk(resource('g09-ch3nh2-631g.fchk')) self.mam2 = Fchk(resource('g09-ch3nh2-augccpvdz.fchk')) self.mam3 = Fchk(resource('g16-methyloxirane-def2tzvp-freq.fchk')) self.mam4 = Fchk(resource('g16-h2o2-def2tzvp-freq.fchk')) self.nitro_nmr = Fchk(resource('g16-nitromalonamide-6-31++g-nmr.fchk')) def test_parse_atom(self): self.mam1.parse_atom() self.assertEqual(self.mam1.atom.shape[0], 7) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.mam1.atom)))) self.mam2.parse_atom() self.assertEqual(self.mam2.atom.shape[0], 7) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.mam2.atom)))) def test_parse_basis_set(self): self.mam1.parse_basis_set() self.assertEqual(self.mam1.basis_set.shape[0], 32) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.mam1.basis_set)))) self.mam2.parse_basis_set() self.assertEqual(self.mam2.basis_set.shape[0], 53) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.mam2.basis_set)))) def test_parse_orbital(self): self.mam1.parse_orbital() self.assertEqual(self.mam1.orbital.shape[0], 28) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.mam1.orbital)))) self.mam2.parse_orbital() self.assertEqual(self.mam2.orbital.shape[0], 91) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.mam2.orbital)))) def test_parse_momatrix(self): self.mam1.parse_momatrix() self.assertEqual(self.mam1.momatrix.shape[0], 784) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.mam1.momatrix)))) self.mam2.parse_momatrix() self.assertEqual(self.mam2.momatrix.shape[0], 8281) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.mam2.momatrix)))) def test_parse_basis_set_order(self): self.mam1.parse_basis_set_order() self.assertEqual(self.mam1.basis_set_order.shape[0], 28) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.mam1.basis_set_order)))) self.mam2.parse_basis_set_order() self.assertEqual(self.mam2.basis_set_order.shape[0], 91) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.mam2.basis_set_order)))) def test_parse_frame(self): self.mam1.parse_frame() self.assertEqual(self.mam1.frame.shape[0], 1) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.mam1.frame)))) self.mam2.parse_frame() self.assertEqual(self.mam2.frame.shape[0], 1) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.mam2.frame)))) def test_parse_frequency(self): self.mam3.parse_frequency() self.assertEqual(self.mam3.frequency.shape[0], 240) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.mam3.frequency)))) self.mam4.parse_frequency() self.assertEqual(self.mam4.frequency.shape[0], 24) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.mam4.frequency)))) def test_parse_frequency_ext(self): self.mam3.parse_frequency_ext() self.assertEqual(self.mam3.frequency_ext.shape[0], 24) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.mam3.frequency_ext)))) self.mam4.parse_frequency_ext() self.assertEqual(self.mam4.frequency_ext.shape[0], 6) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.mam4.frequency_ext)))) def test_parse_gradient(self): self.mam3.parse_gradient() self.assertEqual(self.mam3.gradient.shape[0], 10) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.mam3.gradient)))) self.mam4.parse_gradient() self.assertEqual(self.mam4.gradient.shape[0], 4) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.mam4.gradient)))) def test_shielding_tensor(self): self.nitro_nmr.parse_nmr_shielding() self.assertEqual(self.nitro_nmr.nmr_shielding.shape[0], 15) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.nitro_nmr.nmr_shielding)))) def test_to_universe(self): """Test the to_universe method.""" mam1 = self.mam1.to_universe(ignore=True) mam2 = self.mam2.to_universe(ignore=True) for uni in [mam1, mam2]: # cannot add frequency and frequency_ext attributes as they require # very specific inputs for attr in ['atom', 'basis_set', 'basis_set_order', 'momatrix', 'orbital', 'frame']: self.assertTrue(hasattr(uni, attr)) class TestOutput(TestCase): """ This test ensures that the parsing functionality works on a smattering of output files that were generated with the Gaussian software package. Target syntax is for Gaussian 09. """ def setUp(self): # TODO : add some cartesian basis set files self.uo2 = Output(resource('g09-uo2.out')) self.mam3 = Output(resource('g09-ch3nh2-631g.out')) self.mam4 = Output(resource('g09-ch3nh2-augccpvdz.out')) # need two because of the current limitations in the parse_frequency code self.meth_opt = Output(resource('g16-methyloxirane-def2tzvp-opt.out')) self.meth_freq = Output(resource('g16-methyloxirane-def2tzvp-freq.out')) self.nap_tddft = Output(resource('g16-naproxen-def2tzvp-tddft.out')) self.h2o2_tddft = Output(resource('g16-h2o2-def2tzvp-tddft.out')) self.nap_opt = Output(resource('g16-naproxen-def2tzvp-opt.out')) self.nitro_nmr = Output(resource('g16-nitromalonamide-6-31++g-nmr.out')) # to test having both a geometry optimization and frequencies calculation self.meth_opt_freq_hp = Output(resource('g16-methyloxirane-def2tzvp-opt-freq.out')) def test_parse_atom(self): self.uo2.parse_atom() self.assertEqual(self.uo2.atom.shape[0], 3) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.uo2.atom)))) self.mam3.parse_atom() self.assertEqual(self.mam3.atom.shape[0], 7) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.mam3.atom)))) self.mam4.parse_atom() self.assertEqual(self.mam4.atom.shape[0], 7) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.mam4.atom)))) self.meth_opt.parse_atom() self.assertEqual(self.meth_opt.atom.shape[0], 120) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.meth_opt.atom)))) self.nap_opt.parse_atom() self.assertEqual(self.nap_opt.atom.shape[0], 806) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.nap_opt.atom)))) self.meth_opt_freq_hp.parse_atom() self.assertEqual(self.meth_opt_freq_hp.atom.shape[0], 130) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.meth_opt_freq_hp.atom)))) def test_parse_basis_set(self): self.uo2.parse_basis_set() self.assertEqual(self.uo2.basis_set.shape[0], 49) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.uo2.basis_set)))) self.mam3.parse_basis_set() self.assertEqual(self.mam3.basis_set.shape[0], 32) cols = list(set(self.mam3.basis_set._columns)) test = pd.DataFrame(self.mam3.basis_set[cols]) self.assertTrue(np.all(pd.notnull(test))) self.mam4.parse_basis_set() self.assertEqual(self.mam4.basis_set.shape[0], 53) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.mam4.basis_set)))) def test_parse_orbital(self): self.uo2.parse_orbital() self.assertEqual(self.uo2.orbital.shape[0], 141) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.uo2.orbital)))) self.mam3.parse_orbital() self.assertEqual(self.mam3.orbital.shape[0], 28) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.mam3.orbital)))) self.mam4.parse_orbital() self.assertEqual(self.mam4.orbital.shape[0], 91) self.assertTrue(np.all(pd.notnull(pd.DataFrame(self.mam4.orbital)))) self.meth_opt.parse_orbital() self.assertEqual(self.meth_opt.orbital.shape[0], 160) self.assertTrue(np.all(pd.notnull(
pd.DataFrame(self.meth_opt.orbital)
pandas.DataFrame
import os import logging import progressbar import pandas as pd from aikit.tools.helper_functions import load_pkl, save_pkl from mano.data.utils import load_data_from_dirty_json_file, chunks class DataManager: JSON_FIELDS_TO_MAP = [ { 'keys': ['delivery_offers', 'min_fee', 'as_float'], 'key': 'delivery_offers_min_fee' }, { 'keys': ['prices', 'per_item', 'unit'], 'key': 'prices_per_item_unit' } ] ## Fields tested and removed because lots of nan or high correlations with other fields JSON_FIELDS_TO_MAP_REMOVED = [ { 'keys': ['delivery_offers', 'min_time_fee', 'as_float'], 'key': 'delivery_offers_min_time_fee' }, { 'keys': ['prices', 'main_price'], 'key': 'prices_main_price' }, { 'keys': ['prices', 'secondary_price'], 'key': 'prices_secondary_price' }, { 'keys': ['prices', 'per_item', 'actual_price', 'with_vat', 'as_float'], 'key': 'prices_per_item_actual_price_with_vat' }, { 'keys': ['prices', 'per_item', 'actual_price', 'without_vat', 'as_float'], 'key': 'prices_per_item_actual_price_without_vat' }, { 'keys': ['prices', 'per_item', 'retail_price', 'with_vat', 'as_float'], 'key': 'prices_per_item_retail_price_with_vat' }, { 'keys': ['prices', 'per_item', 'retail_price', 'without_vat', 'as_float'], 'key': 'prices_per_item_retail_price_without_vat' } ] JSON_FIELDS_TO_DELETE = [ 'detail_price', 'is_seller_b2b', 'is_mmf', 'has_3x_payment', 'market', 'model_markets', 'is_sample', 'has_sample', 'image_fullpath', 'brand_image_fullpath', 'url', 'default_title', 'legacy_unit', 'attribute_facet', 'top_attributes', 'catalog_attribute', 'reranking_positions', 'reranking_positions.alternate', 'categories.l3', 'categories.l3.id', 'categories.last_id', 'category_slug', 'banner.alternate', 'experiences', 'score', 'me_id', 'energy_efficiency', 'seller_id', 'brand_id', 'categories.l0.id', 'categories.l1.id', 'categories.l2.id', 'categories.last.id' ] COLUMNS_TO_DELETE = [ 'image_path', 'brand_image_path', 'thumbnails', 'catalog_attribute_facet', 'banner.categories', 'banner.default' ] COLUMNS = [ 'objectID', 'model_id', 'article_id', 'title', 'price', 'vat_rate', 'ecopart', 'discount', 'delivery_offers_min_fee', 'ranking_score_v1', 'seller_name', 'seller_country_id', 'brand_name', 'rating', 'rating_count', 'unit_type', 'unit_price', 'min_quantity', 'models_count', 'categories.l0', 'categories.l1', 'categories.l2', 'categories.last', 'n_categories.l0', 'n_categories.l1', 'n_categories.l2', 'n_thumbnails', 'n_attributes', 'n_topsales', 'has_brand_image','has_free_delivery', 'has_relay_delivery', 'has_1day_delivery', 'on_sale', 'indexable' ] def __init__(self, path): self.path = path self.data_path = os.path.join(path, 'data') self.processed_path = os.path.join(path, 'processed') self.cache_file = os.path.join(path, 'cache.pkl') self.files = sorted(os.listdir(self.data_path)) self.mapping = {} if not os.path.exists(self.processed_path): os.mkdir(self.processed_path) def load(self): """ Process and load the scraped data to a pandas dataframe """ if os.path.exists(self.cache_file): return load_pkl(self.cache_file) self._process_files_chunks() results = self._concat_chunks() save_pkl(results, self.cache_file) return results def _process_files_chunks(self): """ Process files by chunks of ~1000 to allow fast recovery """ files_chunks = chunks(self.files, 1000) for i, files in enumerate(files_chunks): logging.info('---- Chunk {}'.format(i)) processed_file = os.path.join(self.processed_path, 'chunk_{}.pkl'.format(i)) if os.path.exists(processed_file): continue results = [] for file in progressbar.progressbar(files): r = self._process_file(file) if r is not None: results.append(r) results = pd.concat(results, sort=False) # Drop duplicates objects results = results.drop_duplicates('objectID') save_pkl(results, processed_file) def _concat_chunks(self): """ Concatenate the processed chunks into one dataset""" results = [load_pkl(os.path.join(self.processed_path, chunk)) for chunk in os.listdir(self.processed_path)] results = pd.concat(results, sort=False) results = results[self.COLUMNS] results = results.drop_duplicates('objectID') results = results.utils.to_categoricals() return results def _process_file(self, file): """ Process a single file """ file_path = os.path.join(self.data_path, file) with open(file_path, 'r', encoding='utf-8') as file_stream: data = file_stream.read() data = load_data_from_dirty_json_file(data) if data is None: return None data = data[0]['hits'] data = self._preprocess_json(data) data =
pd.json_normalize(data)
pandas.json_normalize
# -*- coding: utf-8 -*- # pylint: disable-msg=W0612,E1101 import itertools import warnings from warnings import catch_warnings from datetime import datetime from pandas.types.common import (is_integer_dtype, is_float_dtype, is_scalar) from pandas.compat import range, lrange, lzip, StringIO, lmap from pandas.tslib import NaT from numpy import nan from numpy.random import randn import numpy as np import pandas as pd from pandas import option_context from pandas.core.indexing import _non_reducing_slice, _maybe_numeric_slice from pandas.core.api import (DataFrame, Index, Series, Panel, isnull, MultiIndex, Timestamp, Timedelta, UInt64Index) from pandas.formats.printing import pprint_thing from pandas import concat from pandas.core.common import PerformanceWarning from pandas.tests.indexing.common import _mklbl import pandas.util.testing as tm from pandas import date_range _verbose = False # ------------------------------------------------------------------------ # Indexing test cases def _generate_indices(f, values=False): """ generate the indicies if values is True , use the axis values is False, use the range """ axes = f.axes if values: axes = [lrange(len(a)) for a in axes] return itertools.product(*axes) def _get_value(f, i, values=False): """ return the value for the location i """ # check agains values if values: return f.values[i] # this is equiv of f[col][row]..... # v = f # for a in reversed(i): # v = v.__getitem__(a) # return v with catch_warnings(record=True): return f.ix[i] def _get_result(obj, method, key, axis): """ return the result for this obj with this key and this axis """ if isinstance(key, dict): key = key[axis] # use an artifical conversion to map the key as integers to the labels # so ix can work for comparisions if method == 'indexer': method = 'ix' key = obj._get_axis(axis)[key] # in case we actually want 0 index slicing try: xp = getattr(obj, method).__getitem__(_axify(obj, key, axis)) except: xp = getattr(obj, method).__getitem__(key) return xp def _axify(obj, key, axis): # create a tuple accessor axes = [slice(None)] * obj.ndim axes[axis] = key return tuple(axes) class TestIndexing(tm.TestCase): _objs = set(['series', 'frame', 'panel']) _typs = set(['ints', 'uints', 'labels', 'mixed', 'ts', 'floats', 'empty', 'ts_rev']) def setUp(self): self.series_ints = Series(np.random.rand(4), index=lrange(0, 8, 2)) self.frame_ints = DataFrame(np.random.randn(4, 4), index=lrange(0, 8, 2), columns=lrange(0, 12, 3)) self.panel_ints = Panel(np.random.rand(4, 4, 4), items=lrange(0, 8, 2), major_axis=lrange(0, 12, 3), minor_axis=lrange(0, 16, 4)) self.series_uints = Series(np.random.rand(4), index=UInt64Index(lrange(0, 8, 2))) self.frame_uints = DataFrame(np.random.randn(4, 4), index=UInt64Index(lrange(0, 8, 2)), columns=UInt64Index(lrange(0, 12, 3))) self.panel_uints = Panel(np.random.rand(4, 4, 4), items=UInt64Index(lrange(0, 8, 2)), major_axis=UInt64Index(lrange(0, 12, 3)), minor_axis=UInt64Index(lrange(0, 16, 4))) self.series_labels = Series(np.random.randn(4), index=list('abcd')) self.frame_labels = DataFrame(np.random.randn(4, 4), index=list('abcd'), columns=list('ABCD')) self.panel_labels = Panel(np.random.randn(4, 4, 4), items=list('abcd'), major_axis=list('ABCD'), minor_axis=list('ZYXW')) self.series_mixed = Series(np.random.randn(4), index=[2, 4, 'null', 8]) self.frame_mixed = DataFrame(np.random.randn(4, 4), index=[2, 4, 'null', 8]) self.panel_mixed = Panel(np.random.randn(4, 4, 4), items=[2, 4, 'null', 8]) self.series_ts = Series(np.random.randn(4), index=date_range('20130101', periods=4)) self.frame_ts = DataFrame(np.random.randn(4, 4), index=date_range('20130101', periods=4)) self.panel_ts = Panel(np.random.randn(4, 4, 4), items=date_range('20130101', periods=4)) dates_rev = (date_range('20130101', periods=4) .sort_values(ascending=False)) self.series_ts_rev = Series(np.random.randn(4), index=dates_rev) self.frame_ts_rev = DataFrame(np.random.randn(4, 4), index=dates_rev) self.panel_ts_rev = Panel(np.random.randn(4, 4, 4), items=dates_rev) self.frame_empty = DataFrame({}) self.series_empty = Series({}) self.panel_empty = Panel({}) # form agglomerates for o in self._objs: d = dict() for t in self._typs: d[t] = getattr(self, '%s_%s' % (o, t), None) setattr(self, o, d) def check_values(self, f, func, values=False): if f is None: return axes = f.axes indicies = itertools.product(*axes) for i in indicies: result = getattr(f, func)[i] # check agains values if values: expected = f.values[i] else: expected = f for a in reversed(i): expected = expected.__getitem__(a) tm.assert_almost_equal(result, expected) def check_result(self, name, method1, key1, method2, key2, typs=None, objs=None, axes=None, fails=None): def _eq(t, o, a, obj, k1, k2): """ compare equal for these 2 keys """ if a is not None and a > obj.ndim - 1: return def _print(result, error=None): if error is not None: error = str(error) v = ("%-16.16s [%-16.16s]: [typ->%-8.8s,obj->%-8.8s," "key1->(%-4.4s),key2->(%-4.4s),axis->%s] %s" % (name, result, t, o, method1, method2, a, error or '')) if _verbose: pprint_thing(v) try: rs = getattr(obj, method1).__getitem__(_axify(obj, k1, a)) try: xp = _get_result(obj, method2, k2, a) except: result = 'no comp' _print(result) return detail = None try: if is_scalar(rs) and is_scalar(xp): self.assertEqual(rs, xp) elif xp.ndim == 1: tm.assert_series_equal(rs, xp) elif xp.ndim == 2: tm.assert_frame_equal(rs, xp) elif xp.ndim == 3: tm.assert_panel_equal(rs, xp) result = 'ok' except AssertionError as e: detail = str(e) result = 'fail' # reverse the checks if fails is True: if result == 'fail': result = 'ok (fail)' _print(result) if not result.startswith('ok'): raise AssertionError(detail) except AssertionError: raise except Exception as detail: # if we are in fails, the ok, otherwise raise it if fails is not None: if isinstance(detail, fails): result = 'ok (%s)' % type(detail).__name__ _print(result) return result = type(detail).__name__ raise AssertionError(_print(result, error=detail)) if typs is None: typs = self._typs if objs is None: objs = self._objs if axes is not None: if not isinstance(axes, (tuple, list)): axes = [axes] else: axes = list(axes) else: axes = [0, 1, 2] # check for o in objs: if o not in self._objs: continue d = getattr(self, o) for a in axes: for t in typs: if t not in self._typs: continue obj = d[t] if obj is not None: obj = obj.copy() k2 = key2 _eq(t, o, a, obj, key1, k2) def test_ix_deprecation(self): # GH 15114 df = DataFrame({'A': [1, 2, 3]}) with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): df.ix[1, 'A'] def test_indexer_caching(self): # GH5727 # make sure that indexers are in the _internal_names_set n = 1000001 arrays = [lrange(n), lrange(n)] index = MultiIndex.from_tuples(lzip(*arrays)) s = Series(np.zeros(n), index=index) str(s) # setitem expected = Series(np.ones(n), index=index) s = Series(np.zeros(n), index=index) s[s == 0] = 1 tm.assert_series_equal(s, expected) def test_at_and_iat_get(self): def _check(f, func, values=False): if f is not None: indicies = _generate_indices(f, values) for i in indicies: result = getattr(f, func)[i] expected = _get_value(f, i, values) tm.assert_almost_equal(result, expected) for o in self._objs: d = getattr(self, o) # iat for f in [d['ints'], d['uints']]: _check(f, 'iat', values=True) for f in [d['labels'], d['ts'], d['floats']]: if f is not None: self.assertRaises(ValueError, self.check_values, f, 'iat') # at for f in [d['ints'], d['uints'], d['labels'], d['ts'], d['floats']]: _check(f, 'at') def test_at_and_iat_set(self): def _check(f, func, values=False): if f is not None: indicies = _generate_indices(f, values) for i in indicies: getattr(f, func)[i] = 1 expected = _get_value(f, i, values) tm.assert_almost_equal(expected, 1) for t in self._objs: d = getattr(self, t) # iat for f in [d['ints'], d['uints']]: _check(f, 'iat', values=True) for f in [d['labels'], d['ts'], d['floats']]: if f is not None: self.assertRaises(ValueError, _check, f, 'iat') # at for f in [d['ints'], d['uints'], d['labels'], d['ts'], d['floats']]: _check(f, 'at') def test_at_iat_coercion(self): # as timestamp is not a tuple! dates = date_range('1/1/2000', periods=8) df = DataFrame(randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D']) s = df['A'] result = s.at[dates[5]] xp = s.values[5] self.assertEqual(result, xp) # GH 7729 # make sure we are boxing the returns s = Series(['2014-01-01', '2014-02-02'], dtype='datetime64[ns]') expected = Timestamp('2014-02-02') for r in [lambda: s.iat[1], lambda: s.iloc[1]]: result = r() self.assertEqual(result, expected) s = Series(['1 days', '2 days'], dtype='timedelta64[ns]') expected = Timedelta('2 days') for r in [lambda: s.iat[1], lambda: s.iloc[1]]: result = r() self.assertEqual(result, expected) def test_iat_invalid_args(self): pass def test_imethods_with_dups(self): # GH6493 # iat/iloc with dups s = Series(range(5), index=[1, 1, 2, 2, 3], dtype='int64') result = s.iloc[2] self.assertEqual(result, 2) result = s.iat[2] self.assertEqual(result, 2) self.assertRaises(IndexError, lambda: s.iat[10]) self.assertRaises(IndexError, lambda: s.iat[-10]) result = s.iloc[[2, 3]] expected = Series([2, 3], [2, 2], dtype='int64') tm.assert_series_equal(result, expected) df = s.to_frame() result = df.iloc[2] expected = Series(2, index=[0], name=2) tm.assert_series_equal(result, expected) result = df.iat[2, 0] expected = 2 self.assertEqual(result, 2) def test_repeated_getitem_dups(self): # GH 5678 # repeated gettitems on a dup index returing a ndarray df = DataFrame( np.random.random_sample((20, 5)), index=['ABCDE' [x % 5] for x in range(20)]) expected = df.loc['A', 0] result = df.loc[:, 0].loc['A'] tm.assert_series_equal(result, expected) def test_iloc_exceeds_bounds(self): # GH6296 # iloc should allow indexers that exceed the bounds df = DataFrame(np.random.random_sample((20, 5)), columns=list('ABCDE')) expected = df # lists of positions should raise IndexErrror! with tm.assertRaisesRegexp(IndexError, 'positional indexers are out-of-bounds'): df.iloc[:, [0, 1, 2, 3, 4, 5]] self.assertRaises(IndexError, lambda: df.iloc[[1, 30]]) self.assertRaises(IndexError, lambda: df.iloc[[1, -30]]) self.assertRaises(IndexError, lambda: df.iloc[[100]]) s = df['A'] self.assertRaises(IndexError, lambda: s.iloc[[100]]) self.assertRaises(IndexError, lambda: s.iloc[[-100]]) # still raise on a single indexer msg = 'single positional indexer is out-of-bounds' with tm.assertRaisesRegexp(IndexError, msg): df.iloc[30] self.assertRaises(IndexError, lambda: df.iloc[-30]) # GH10779 # single positive/negative indexer exceeding Series bounds should raise # an IndexError with tm.assertRaisesRegexp(IndexError, msg): s.iloc[30] self.assertRaises(IndexError, lambda: s.iloc[-30]) # slices are ok result = df.iloc[:, 4:10] # 0 < start < len < stop expected = df.iloc[:, 4:] tm.assert_frame_equal(result, expected) result = df.iloc[:, -4:-10] # stop < 0 < start < len expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:4:-1] # 0 < stop < len < start (down) expected = df.iloc[:, :4:-1] tm.assert_frame_equal(result, expected) result = df.iloc[:, 4:-10:-1] # stop < 0 < start < len (down) expected = df.iloc[:, 4::-1] tm.assert_frame_equal(result, expected) result = df.iloc[:, -10:4] # start < 0 < stop < len expected = df.iloc[:, :4] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:4] # 0 < stop < len < start expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, -10:-11:-1] # stop < start < 0 < len (down) expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:11] # 0 < len < start < stop expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) # slice bounds exceeding is ok result = s.iloc[18:30] expected = s.iloc[18:] tm.assert_series_equal(result, expected) result = s.iloc[30:] expected = s.iloc[:0] tm.assert_series_equal(result, expected) result = s.iloc[30::-1] expected = s.iloc[::-1] tm.assert_series_equal(result, expected) # doc example def check(result, expected): str(result) result.dtypes tm.assert_frame_equal(result, expected) dfl = DataFrame(np.random.randn(5, 2), columns=list('AB')) check(dfl.iloc[:, 2:3], DataFrame(index=dfl.index)) check(dfl.iloc[:, 1:3], dfl.iloc[:, [1]]) check(dfl.iloc[4:6], dfl.iloc[[4]]) self.assertRaises(IndexError, lambda: dfl.iloc[[4, 5, 6]]) self.assertRaises(IndexError, lambda: dfl.iloc[:, 4]) def test_iloc_getitem_int(self): # integer self.check_result('integer', 'iloc', 2, 'ix', {0: 4, 1: 6, 2: 8}, typs=['ints', 'uints']) self.check_result('integer', 'iloc', 2, 'indexer', 2, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_neg_int(self): # neg integer self.check_result('neg int', 'iloc', -1, 'ix', {0: 6, 1: 9, 2: 12}, typs=['ints', 'uints']) self.check_result('neg int', 'iloc', -1, 'indexer', -1, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_list_int(self): # list of ints self.check_result('list int', 'iloc', [0, 1, 2], 'ix', {0: [0, 2, 4], 1: [0, 3, 6], 2: [0, 4, 8]}, typs=['ints', 'uints']) self.check_result('list int', 'iloc', [2], 'ix', {0: [4], 1: [6], 2: [8]}, typs=['ints', 'uints']) self.check_result('list int', 'iloc', [0, 1, 2], 'indexer', [0, 1, 2], typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) # array of ints (GH5006), make sure that a single indexer is returning # the correct type self.check_result('array int', 'iloc', np.array([0, 1, 2]), 'ix', {0: [0, 2, 4], 1: [0, 3, 6], 2: [0, 4, 8]}, typs=['ints', 'uints']) self.check_result('array int', 'iloc', np.array([2]), 'ix', {0: [4], 1: [6], 2: [8]}, typs=['ints', 'uints']) self.check_result('array int', 'iloc', np.array([0, 1, 2]), 'indexer', [0, 1, 2], typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_neg_int_can_reach_first_index(self): # GH10547 and GH10779 # negative integers should be able to reach index 0 df = DataFrame({'A': [2, 3, 5], 'B': [7, 11, 13]}) s = df['A'] expected = df.iloc[0] result = df.iloc[-3] tm.assert_series_equal(result, expected) expected = df.iloc[[0]] result = df.iloc[[-3]] tm.assert_frame_equal(result, expected) expected = s.iloc[0] result = s.iloc[-3] self.assertEqual(result, expected) expected = s.iloc[[0]] result = s.iloc[[-3]] tm.assert_series_equal(result, expected) # check the length 1 Series case highlighted in GH10547 expected = pd.Series(['a'], index=['A']) result = expected.iloc[[-1]] tm.assert_series_equal(result, expected) def test_iloc_getitem_dups(self): # no dups in panel (bug?) self.check_result('list int (dups)', 'iloc', [0, 1, 1, 3], 'ix', {0: [0, 2, 2, 6], 1: [0, 3, 3, 9]}, objs=['series', 'frame'], typs=['ints', 'uints']) # GH 6766 df1 = DataFrame([{'A': None, 'B': 1}, {'A': 2, 'B': 2}]) df2 = DataFrame([{'A': 3, 'B': 3}, {'A': 4, 'B': 4}]) df = concat([df1, df2], axis=1) # cross-sectional indexing result = df.iloc[0, 0] self.assertTrue(isnull(result)) result = df.iloc[0, :] expected = Series([np.nan, 1, 3, 3], index=['A', 'B', 'A', 'B'], name=0) tm.assert_series_equal(result, expected) def test_iloc_getitem_array(self): # array like s = Series(index=lrange(1, 4)) self.check_result('array like', 'iloc', s.index, 'ix', {0: [2, 4, 6], 1: [3, 6, 9], 2: [4, 8, 12]}, typs=['ints', 'uints']) def test_iloc_getitem_bool(self): # boolean indexers b = [True, False, True, False, ] self.check_result('bool', 'iloc', b, 'ix', b, typs=['ints', 'uints']) self.check_result('bool', 'iloc', b, 'ix', b, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_slice(self): # slices self.check_result('slice', 'iloc', slice(1, 3), 'ix', {0: [2, 4], 1: [3, 6], 2: [4, 8]}, typs=['ints', 'uints']) self.check_result('slice', 'iloc', slice(1, 3), 'indexer', slice(1, 3), typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_slice_dups(self): df1 = DataFrame(np.random.randn(10, 4), columns=['A', 'A', 'B', 'B']) df2 = DataFrame(np.random.randint(0, 10, size=20).reshape(10, 2), columns=['A', 'C']) # axis=1 df = concat([df1, df2], axis=1) tm.assert_frame_equal(df.iloc[:, :4], df1) tm.assert_frame_equal(df.iloc[:, 4:], df2) df = concat([df2, df1], axis=1) tm.assert_frame_equal(df.iloc[:, :2], df2) tm.assert_frame_equal(df.iloc[:, 2:], df1) exp = concat([df2, df1.iloc[:, [0]]], axis=1) tm.assert_frame_equal(df.iloc[:, 0:3], exp) # axis=0 df = concat([df, df], axis=0) tm.assert_frame_equal(df.iloc[0:10, :2], df2) tm.assert_frame_equal(df.iloc[0:10, 2:], df1) tm.assert_frame_equal(df.iloc[10:, :2], df2) tm.assert_frame_equal(df.iloc[10:, 2:], df1) def test_iloc_setitem(self): df = self.frame_ints df.iloc[1, 1] = 1 result = df.iloc[1, 1] self.assertEqual(result, 1) df.iloc[:, 2:3] = 0 expected = df.iloc[:, 2:3] result = df.iloc[:, 2:3] tm.assert_frame_equal(result, expected) # GH5771 s = Series(0, index=[4, 5, 6]) s.iloc[1:2] += 1 expected = Series([0, 1, 0], index=[4, 5, 6]) tm.assert_series_equal(s, expected) def test_loc_setitem_slice(self): # GH10503 # assigning the same type should not change the type df1 = DataFrame({'a': [0, 1, 1], 'b': Series([100, 200, 300], dtype='uint32')}) ix = df1['a'] == 1 newb1 = df1.loc[ix, 'b'] + 1 df1.loc[ix, 'b'] = newb1 expected = DataFrame({'a': [0, 1, 1], 'b': Series([100, 201, 301], dtype='uint32')}) tm.assert_frame_equal(df1, expected) # assigning a new type should get the inferred type df2 = DataFrame({'a': [0, 1, 1], 'b': [100, 200, 300]}, dtype='uint64') ix = df1['a'] == 1 newb2 = df2.loc[ix, 'b'] df1.loc[ix, 'b'] = newb2 expected = DataFrame({'a': [0, 1, 1], 'b': [100, 200, 300]}, dtype='uint64') tm.assert_frame_equal(df2, expected) def test_ix_loc_setitem_consistency(self): # GH 5771 # loc with slice and series s = Series(0, index=[4, 5, 6]) s.loc[4:5] += 1 expected = Series([1, 1, 0], index=[4, 5, 6]) tm.assert_series_equal(s, expected) # GH 5928 # chained indexing assignment df = DataFrame({'a': [0, 1, 2]}) expected = df.copy() with catch_warnings(record=True): expected.ix[[0, 1, 2], 'a'] = -expected.ix[[0, 1, 2], 'a'] with catch_warnings(record=True): df['a'].ix[[0, 1, 2]] = -df['a'].ix[[0, 1, 2]] tm.assert_frame_equal(df, expected) df = DataFrame({'a': [0, 1, 2], 'b': [0, 1, 2]}) with catch_warnings(record=True): df['a'].ix[[0, 1, 2]] = -df['a'].ix[[0, 1, 2]].astype( 'float64') + 0.5 expected = DataFrame({'a': [0.5, -0.5, -1.5], 'b': [0, 1, 2]}) tm.assert_frame_equal(df, expected) # GH 8607 # ix setitem consistency df = DataFrame({'timestamp': [1413840976, 1413842580, 1413760580], 'delta': [1174, 904, 161], 'elapsed': [7673, 9277, 1470]}) expected = DataFrame({'timestamp': pd.to_datetime( [1413840976, 1413842580, 1413760580], unit='s'), 'delta': [1174, 904, 161], 'elapsed': [7673, 9277, 1470]}) df2 = df.copy() df2['timestamp'] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) df2 = df.copy() df2.loc[:, 'timestamp'] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) df2 = df.copy() with catch_warnings(record=True): df2.ix[:, 2] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) def test_ix_loc_consistency(self): # GH 8613 # some edge cases where ix/loc should return the same # this is not an exhaustive case def compare(result, expected): if is_scalar(expected): self.assertEqual(result, expected) else: self.assertTrue(expected.equals(result)) # failure cases for .loc, but these work for .ix df = pd.DataFrame(np.random.randn(5, 4), columns=list('ABCD')) for key in [slice(1, 3), tuple([slice(0, 2), slice(0, 2)]), tuple([slice(0, 2), df.columns[0:2]])]: for index in [tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeTimedeltaIndex]: df.index = index(len(df.index)) with catch_warnings(record=True): df.ix[key] self.assertRaises(TypeError, lambda: df.loc[key]) df = pd.DataFrame(np.random.randn(5, 4), columns=list('ABCD'), index=pd.date_range('2012-01-01', periods=5)) for key in ['2012-01-03', '2012-01-31', slice('2012-01-03', '2012-01-03'), slice('2012-01-03', '2012-01-04'), slice('2012-01-03', '2012-01-06', 2), slice('2012-01-03', '2012-01-31'), tuple([[True, True, True, False, True]]), ]: # getitem # if the expected raises, then compare the exceptions try: with catch_warnings(record=True): expected = df.ix[key] except KeyError: self.assertRaises(KeyError, lambda: df.loc[key]) continue result = df.loc[key] compare(result, expected) # setitem df1 = df.copy() df2 = df.copy() with catch_warnings(record=True): df1.ix[key] = 10 df2.loc[key] = 10 compare(df2, df1) # edge cases s = Series([1, 2, 3, 4], index=list('abde')) result1 = s['a':'c'] with catch_warnings(record=True): result2 = s.ix['a':'c'] result3 = s.loc['a':'c'] tm.assert_series_equal(result1, result2) tm.assert_series_equal(result1, result3) # now work rather than raising KeyError s = Series(range(5), [-2, -1, 1, 2, 3]) with catch_warnings(record=True): result1 = s.ix[-10:3] result2 = s.loc[-10:3] tm.assert_series_equal(result1, result2) with catch_warnings(record=True): result1 = s.ix[0:3] result2 = s.loc[0:3] tm.assert_series_equal(result1, result2) def test_loc_setitem_dups(self): # GH 6541 df_orig = DataFrame( {'me': list('rttti'), 'foo': list('aaade'), 'bar': np.arange(5, dtype='float64') * 1.34 + 2, 'bar2': np.arange(5, dtype='float64') * -.34 + 2}).set_index('me') indexer = tuple(['r', ['bar', 'bar2']]) df = df_orig.copy() df.loc[indexer] *= 2.0 tm.assert_series_equal(df.loc[indexer], 2.0 * df_orig.loc[indexer]) indexer = tuple(['r', 'bar']) df = df_orig.copy() df.loc[indexer] *= 2.0 self.assertEqual(df.loc[indexer], 2.0 * df_orig.loc[indexer]) indexer = tuple(['t', ['bar', 'bar2']]) df = df_orig.copy() df.loc[indexer] *= 2.0 tm.assert_frame_equal(df.loc[indexer], 2.0 * df_orig.loc[indexer]) def test_iloc_setitem_dups(self): # GH 6766 # iloc with a mask aligning from another iloc df1 = DataFrame([{'A': None, 'B': 1}, {'A': 2, 'B': 2}]) df2 = DataFrame([{'A': 3, 'B': 3}, {'A': 4, 'B': 4}]) df = concat([df1, df2], axis=1) expected = df.fillna(3) expected['A'] = expected['A'].astype('float64') inds = np.isnan(df.iloc[:, 0]) mask = inds[inds].index df.iloc[mask, 0] = df.iloc[mask, 2] tm.assert_frame_equal(df, expected) # del a dup column across blocks expected = DataFrame({0: [1, 2], 1: [3, 4]}) expected.columns = ['B', 'B'] del df['A'] tm.assert_frame_equal(df, expected) # assign back to self df.iloc[[0, 1], [0, 1]] = df.iloc[[0, 1], [0, 1]] tm.assert_frame_equal(df, expected) # reversed x 2 df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index( drop=True) df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index( drop=True) tm.assert_frame_equal(df, expected) def test_chained_getitem_with_lists(self): # GH6394 # Regression in chained getitem indexing with embedded list-like from # 0.12 def check(result, expected): tm.assert_numpy_array_equal(result, expected) tm.assertIsInstance(result, np.ndarray) df = DataFrame({'A': 5 * [np.zeros(3)], 'B': 5 * [np.ones(3)]}) expected = df['A'].iloc[2] result = df.loc[2, 'A'] check(result, expected) result2 = df.iloc[2]['A'] check(result2, expected) result3 = df['A'].loc[2] check(result3, expected) result4 = df['A'].iloc[2] check(result4, expected) def test_loc_getitem_int(self): # int label self.check_result('int label', 'loc', 2, 'ix', 2, typs=['ints', 'uints'], axes=0) self.check_result('int label', 'loc', 3, 'ix', 3, typs=['ints', 'uints'], axes=1) self.check_result('int label', 'loc', 4, 'ix', 4, typs=['ints', 'uints'], axes=2) self.check_result('int label', 'loc', 2, 'ix', 2, typs=['label'], fails=KeyError) def test_loc_getitem_label(self): # label self.check_result('label', 'loc', 'c', 'ix', 'c', typs=['labels'], axes=0) self.check_result('label', 'loc', 'null', 'ix', 'null', typs=['mixed'], axes=0) self.check_result('label', 'loc', 8, 'ix', 8, typs=['mixed'], axes=0) self.check_result('label', 'loc', Timestamp('20130102'), 'ix', 1, typs=['ts'], axes=0) self.check_result('label', 'loc', 'c', 'ix', 'c', typs=['empty'], fails=KeyError) def test_loc_getitem_label_out_of_range(self): # out of range label self.check_result('label range', 'loc', 'f', 'ix', 'f', typs=['ints', 'uints', 'labels', 'mixed', 'ts'], fails=KeyError) self.check_result('label range', 'loc', 'f', 'ix', 'f', typs=['floats'], fails=TypeError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['ints', 'uints', 'mixed'], fails=KeyError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['labels'], fails=TypeError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['ts'], axes=0, fails=TypeError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['floats'], axes=0, fails=TypeError) def test_loc_getitem_label_list(self): # list of labels self.check_result('list lbl', 'loc', [0, 2, 4], 'ix', [0, 2, 4], typs=['ints', 'uints'], axes=0) self.check_result('list lbl', 'loc', [3, 6, 9], 'ix', [3, 6, 9], typs=['ints', 'uints'], axes=1) self.check_result('list lbl', 'loc', [4, 8, 12], 'ix', [4, 8, 12], typs=['ints', 'uints'], axes=2) self.check_result('list lbl', 'loc', ['a', 'b', 'd'], 'ix', ['a', 'b', 'd'], typs=['labels'], axes=0) self.check_result('list lbl', 'loc', ['A', 'B', 'C'], 'ix', ['A', 'B', 'C'], typs=['labels'], axes=1) self.check_result('list lbl', 'loc', ['Z', 'Y', 'W'], 'ix', ['Z', 'Y', 'W'], typs=['labels'], axes=2) self.check_result('list lbl', 'loc', [2, 8, 'null'], 'ix', [2, 8, 'null'], typs=['mixed'], axes=0) self.check_result('list lbl', 'loc', [Timestamp('20130102'), Timestamp('20130103')], 'ix', [Timestamp('20130102'), Timestamp('20130103')], typs=['ts'], axes=0) self.check_result('list lbl', 'loc', [0, 1, 2], 'indexer', [0, 1, 2], typs=['empty'], fails=KeyError) self.check_result('list lbl', 'loc', [0, 2, 3], 'ix', [0, 2, 3], typs=['ints', 'uints'], axes=0, fails=KeyError) self.check_result('list lbl', 'loc', [3, 6, 7], 'ix', [3, 6, 7], typs=['ints', 'uints'], axes=1, fails=KeyError) self.check_result('list lbl', 'loc', [4, 8, 10], 'ix', [4, 8, 10], typs=['ints', 'uints'], axes=2, fails=KeyError) def test_loc_getitem_label_list_fails(self): # fails self.check_result('list lbl', 'loc', [20, 30, 40], 'ix', [20, 30, 40], typs=['ints', 'uints'], axes=1, fails=KeyError) self.check_result('list lbl', 'loc', [20, 30, 40], 'ix', [20, 30, 40], typs=['ints', 'uints'], axes=2, fails=KeyError) def test_loc_getitem_label_array_like(self): # array like self.check_result('array like', 'loc', Series(index=[0, 2, 4]).index, 'ix', [0, 2, 4], typs=['ints', 'uints'], axes=0) self.check_result('array like', 'loc', Series(index=[3, 6, 9]).index, 'ix', [3, 6, 9], typs=['ints', 'uints'], axes=1) self.check_result('array like', 'loc', Series(index=[4, 8, 12]).index, 'ix', [4, 8, 12], typs=['ints', 'uints'], axes=2) def test_loc_getitem_bool(self): # boolean indexers b = [True, False, True, False] self.check_result('bool', 'loc', b, 'ix', b, typs=['ints', 'uints', 'labels', 'mixed', 'ts', 'floats']) self.check_result('bool', 'loc', b, 'ix', b, typs=['empty'], fails=KeyError) def test_loc_getitem_int_slice(self): # ok self.check_result('int slice2', 'loc', slice(2, 4), 'ix', [2, 4], typs=['ints', 'uints'], axes=0) self.check_result('int slice2', 'loc', slice(3, 6), 'ix', [3, 6], typs=['ints', 'uints'], axes=1) self.check_result('int slice2', 'loc', slice(4, 8), 'ix', [4, 8], typs=['ints', 'uints'], axes=2) # GH 3053 # loc should treat integer slices like label slices from itertools import product index = MultiIndex.from_tuples([t for t in product( [6, 7, 8], ['a', 'b'])]) df = DataFrame(np.random.randn(6, 6), index, index) result = df.loc[6:8, :] with catch_warnings(record=True): expected = df.ix[6:8, :] tm.assert_frame_equal(result, expected) index = MultiIndex.from_tuples([t for t in product( [10, 20, 30], ['a', 'b'])]) df = DataFrame(np.random.randn(6, 6), index, index) result = df.loc[20:30, :] with catch_warnings(record=True): expected = df.ix[20:30, :] tm.assert_frame_equal(result, expected) # doc examples result = df.loc[10, :] with catch_warnings(record=True): expected = df.ix[10, :] tm.assert_frame_equal(result, expected) result = df.loc[:, 10] # expected = df.ix[:,10] (this fails) expected = df[10] tm.assert_frame_equal(result, expected) def test_loc_to_fail(self): # GH3449 df = DataFrame(np.random.random((3, 3)), index=['a', 'b', 'c'], columns=['e', 'f', 'g']) # raise a KeyError? self.assertRaises(KeyError, df.loc.__getitem__, tuple([[1, 2], [1, 2]])) # GH 7496 # loc should not fallback s = Series() s.loc[1] = 1 s.loc['a'] = 2 self.assertRaises(KeyError, lambda: s.loc[-1]) self.assertRaises(KeyError, lambda: s.loc[[-1, -2]]) self.assertRaises(KeyError, lambda: s.loc[['4']]) s.loc[-1] = 3 result = s.loc[[-1, -2]] expected = Series([3, np.nan], index=[-1, -2]) tm.assert_series_equal(result, expected) s['a'] = 2 self.assertRaises(KeyError, lambda: s.loc[[-2]]) del s['a'] def f(): s.loc[[-2]] = 0 self.assertRaises(KeyError, f) # inconsistency between .loc[values] and .loc[values,:] # GH 7999 df = DataFrame([['a'], ['b']], index=[1, 2], columns=['value']) def f(): df.loc[[3], :] self.assertRaises(KeyError, f) def f(): df.loc[[3]] self.assertRaises(KeyError, f) def test_at_to_fail(self): # at should not fallback # GH 7814 s = Series([1, 2, 3], index=list('abc')) result = s.at['a'] self.assertEqual(result, 1) self.assertRaises(ValueError, lambda: s.at[0]) df = DataFrame({'A': [1, 2, 3]}, index=list('abc')) result = df.at['a', 'A'] self.assertEqual(result, 1) self.assertRaises(ValueError, lambda: df.at['a', 0]) s = Series([1, 2, 3], index=[3, 2, 1]) result = s.at[1] self.assertEqual(result, 3) self.assertRaises(ValueError, lambda: s.at['a']) df = DataFrame({0: [1, 2, 3]}, index=[3, 2, 1]) result = df.at[1, 0] self.assertEqual(result, 3) self.assertRaises(ValueError, lambda: df.at['a', 0]) # GH 13822, incorrect error string with non-unique columns when missing # column is accessed df = DataFrame({'x': [1.], 'y': [2.], 'z': [3.]}) df.columns = ['x', 'x', 'z'] # Check that we get the correct value in the KeyError self.assertRaisesRegexp(KeyError, r"\['y'\] not in index", lambda: df[['x', 'y', 'z']]) def test_loc_getitem_label_slice(self): # label slices (with ints) self.check_result('lab slice', 'loc', slice(1, 3), 'ix', slice(1, 3), typs=['labels', 'mixed', 'empty', 'ts', 'floats'], fails=TypeError) # real label slices self.check_result('lab slice', 'loc', slice('a', 'c'), 'ix', slice('a', 'c'), typs=['labels'], axes=0) self.check_result('lab slice', 'loc', slice('A', 'C'), 'ix', slice('A', 'C'), typs=['labels'], axes=1) self.check_result('lab slice', 'loc', slice('W', 'Z'), 'ix', slice('W', 'Z'), typs=['labels'], axes=2) self.check_result('ts slice', 'loc', slice('20130102', '20130104'), 'ix', slice('20130102', '20130104'), typs=['ts'], axes=0) self.check_result('ts slice', 'loc', slice('20130102', '20130104'), 'ix', slice('20130102', '20130104'), typs=['ts'], axes=1, fails=TypeError) self.check_result('ts slice', 'loc', slice('20130102', '20130104'), 'ix', slice('20130102', '20130104'), typs=['ts'], axes=2, fails=TypeError) # GH 14316 self.check_result('ts slice rev', 'loc', slice('20130104', '20130102'), 'indexer', [0, 1, 2], typs=['ts_rev'], axes=0) self.check_result('mixed slice', 'loc', slice(2, 8), 'ix', slice(2, 8), typs=['mixed'], axes=0, fails=TypeError) self.check_result('mixed slice', 'loc', slice(2, 8), 'ix', slice(2, 8), typs=['mixed'], axes=1, fails=KeyError) self.check_result('mixed slice', 'loc', slice(2, 8), 'ix', slice(2, 8), typs=['mixed'], axes=2, fails=KeyError) self.check_result('mixed slice', 'loc', slice(2, 4, 2), 'ix', slice( 2, 4, 2), typs=['mixed'], axes=0, fails=TypeError) def test_loc_general(self): df = DataFrame( np.random.rand(4, 4), columns=['A', 'B', 'C', 'D'], index=['A', 'B', 'C', 'D']) # want this to work result = df.loc[:, "A":"B"].iloc[0:2, :] self.assertTrue((result.columns == ['A', 'B']).all()) self.assertTrue((result.index == ['A', 'B']).all()) # mixed type result = DataFrame({'a': [Timestamp('20130101')], 'b': [1]}).iloc[0] expected = Series([Timestamp('20130101'), 1], index=['a', 'b'], name=0) tm.assert_series_equal(result, expected) self.assertEqual(result.dtype, object) def test_loc_setitem_consistency(self): # GH 6149 # coerce similary for setitem and loc when rows have a null-slice expected = DataFrame({'date': Series(0, index=range(5), dtype=np.int64), 'val': Series(range(5), dtype=np.int64)}) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series( range(5), dtype=np.int64)}) df.loc[:, 'date'] = 0 tm.assert_frame_equal(df, expected) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = np.array(0, dtype=np.int64) tm.assert_frame_equal(df, expected) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = np.array([0, 0, 0, 0, 0], dtype=np.int64) tm.assert_frame_equal(df, expected) expected = DataFrame({'date': Series('foo', index=range(5)), 'val': Series(range(5), dtype=np.int64)}) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = 'foo' tm.assert_frame_equal(df, expected) expected = DataFrame({'date': Series(1.0, index=range(5)), 'val': Series(range(5), dtype=np.int64)}) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = 1.0 tm.assert_frame_equal(df, expected) def test_loc_setitem_consistency_empty(self): # empty (essentially noops) expected = DataFrame(columns=['x', 'y']) expected['x'] = expected['x'].astype(np.int64) df = DataFrame(columns=['x', 'y']) df.loc[:, 'x'] = 1 tm.assert_frame_equal(df, expected) df = DataFrame(columns=['x', 'y']) df['x'] = 1 tm.assert_frame_equal(df, expected) def test_loc_setitem_consistency_slice_column_len(self): # .loc[:,column] setting with slice == len of the column # GH10408 data = """Level_0,,,Respondent,Respondent,Respondent,OtherCat,OtherCat Level_1,,,Something,StartDate,EndDate,Yes/No,SomethingElse Region,Site,RespondentID,,,,, Region_1,Site_1,3987227376,A,5/25/2015 10:59,5/25/2015 11:22,Yes, Region_1,Site_1,3980680971,A,5/21/2015 9:40,5/21/2015 9:52,Yes,Yes Region_1,Site_2,3977723249,A,5/20/2015 8:27,5/20/2015 8:41,Yes, Region_1,Site_2,3977723089,A,5/20/2015 8:33,5/20/2015 9:09,Yes,No""" df = pd.read_csv(StringIO(data), header=[0, 1], index_col=[0, 1, 2]) df.loc[:, ('Respondent', 'StartDate')] = pd.to_datetime(df.loc[:, ( 'Respondent', 'StartDate')]) df.loc[:, ('Respondent', 'EndDate')] = pd.to_datetime(df.loc[:, ( 'Respondent', 'EndDate')]) df.loc[:, ('Respondent', 'Duration')] = df.loc[:, ( 'Respondent', 'EndDate')] - df.loc[:, ('Respondent', 'StartDate')] df.loc[:, ('Respondent', 'Duration')] = df.loc[:, ( 'Respondent', 'Duration')].astype('timedelta64[s]') expected = Series([1380, 720, 840, 2160.], index=df.index, name=('Respondent', 'Duration')) tm.assert_series_equal(df[('Respondent', 'Duration')], expected) def test_loc_setitem_frame(self): df = self.frame_labels result = df.iloc[0, 0] df.loc['a', 'A'] = 1 result = df.loc['a', 'A'] self.assertEqual(result, 1) result = df.iloc[0, 0] self.assertEqual(result, 1) df.loc[:, 'B':'D'] = 0 expected = df.loc[:, 'B':'D'] with catch_warnings(record=True): result = df.ix[:, 1:] tm.assert_frame_equal(result, expected) # GH 6254 # setting issue df = DataFrame(index=[3, 5, 4], columns=['A']) df.loc[[4, 3, 5], 'A'] = np.array([1, 2, 3], dtype='int64') expected = DataFrame(dict(A=Series( [1, 2, 3], index=[4, 3, 5]))).reindex(index=[3, 5, 4]) tm.assert_frame_equal(df, expected) # GH 6252 # setting with an empty frame keys1 = ['@' + str(i) for i in range(5)] val1 = np.arange(5, dtype='int64') keys2 = ['@' + str(i) for i in range(4)] val2 = np.arange(4, dtype='int64') index = list(set(keys1).union(keys2)) df = DataFrame(index=index) df['A'] = nan df.loc[keys1, 'A'] = val1 df['B'] = nan df.loc[keys2, 'B'] = val2 expected = DataFrame(dict(A=Series(val1, index=keys1), B=Series( val2, index=keys2))).reindex(index=index) tm.assert_frame_equal(df, expected) # GH 8669 # invalid coercion of nan -> int df = DataFrame({'A': [1, 2, 3], 'B': np.nan}) df.loc[df.B > df.A, 'B'] = df.A expected = DataFrame({'A': [1, 2, 3], 'B': np.nan}) tm.assert_frame_equal(df, expected) # GH 6546 # setting with mixed labels df = DataFrame({1: [1, 2], 2: [3, 4], 'a': ['a', 'b']}) result = df.loc[0, [1, 2]] expected = Series([1, 3], index=[1, 2], dtype=object, name=0) tm.assert_series_equal(result, expected) expected = DataFrame({1: [5, 2], 2: [6, 4], 'a': ['a', 'b']}) df.loc[0, [1, 2]] = [5, 6] tm.assert_frame_equal(df, expected) def test_loc_setitem_frame_multiples(self): # multiple setting df = DataFrame({'A': ['foo', 'bar', 'baz'], 'B': Series( range(3), dtype=np.int64)}) rhs = df.loc[1:2] rhs.index = df.index[0:2] df.loc[0:1] = rhs expected = DataFrame({'A': ['bar', 'baz', 'baz'], 'B': Series( [1, 2, 2], dtype=np.int64)}) tm.assert_frame_equal(df, expected) # multiple setting with frame on rhs (with M8) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series( range(5), dtype=np.int64)}) expected = DataFrame({'date': [Timestamp('20000101'), Timestamp( '20000102'), Timestamp('20000101'), Timestamp('20000102'), Timestamp('20000103')], 'val': Series( [0, 1, 0, 1, 2], dtype=np.int64)}) rhs = df.loc[0:2] rhs.index = df.index[2:5] df.loc[2:4] = rhs tm.assert_frame_equal(df, expected) def test_iloc_getitem_frame(self): df = DataFrame(np.random.randn(10, 4), index=lrange(0, 20, 2), columns=lrange(0, 8, 2)) result = df.iloc[2] with catch_warnings(record=True): exp = df.ix[4] tm.assert_series_equal(result, exp) result = df.iloc[2, 2] with catch_warnings(record=True): exp = df.ix[4, 4] self.assertEqual(result, exp) # slice result = df.iloc[4:8] with catch_warnings(record=True): expected = df.ix[8:14] tm.assert_frame_equal(result, expected) result = df.iloc[:, 2:3] with catch_warnings(record=True): expected = df.ix[:, 4:5] tm.assert_frame_equal(result, expected) # list of integers result = df.iloc[[0, 1, 3]] with catch_warnings(record=True): expected = df.ix[[0, 2, 6]] tm.assert_frame_equal(result, expected) result = df.iloc[[0, 1, 3], [0, 1]] with catch_warnings(record=True): expected = df.ix[[0, 2, 6], [0, 2]] tm.assert_frame_equal(result, expected) # neg indicies result = df.iloc[[-1, 1, 3], [-1, 1]] with catch_warnings(record=True): expected = df.ix[[18, 2, 6], [6, 2]] tm.assert_frame_equal(result, expected) # dups indicies result = df.iloc[[-1, -1, 1, 3], [-1, 1]] with catch_warnings(record=True): expected = df.ix[[18, 18, 2, 6], [6, 2]] tm.assert_frame_equal(result, expected) # with index-like s = Series(index=lrange(1, 5)) result = df.iloc[s.index] with catch_warnings(record=True): expected = df.ix[[2, 4, 6, 8]] tm.assert_frame_equal(result, expected) def test_iloc_getitem_labelled_frame(self): # try with labelled frame df = DataFrame(np.random.randn(10, 4), index=list('abcdefghij'), columns=list('ABCD')) result = df.iloc[1, 1] exp = df.loc['b', 'B'] self.assertEqual(result, exp) result = df.iloc[:, 2:3] expected = df.loc[:, ['C']] tm.assert_frame_equal(result, expected) # negative indexing result = df.iloc[-1, -1] exp = df.loc['j', 'D'] self.assertEqual(result, exp) # out-of-bounds exception self.assertRaises(IndexError, df.iloc.__getitem__, tuple([10, 5])) # trying to use a label self.assertRaises(ValueError, df.iloc.__getitem__, tuple(['j', 'D'])) def test_iloc_getitem_doc_issue(self): # multi axis slicing issue with single block # surfaced in GH 6059 arr = np.random.randn(6, 4) index = date_range('20130101', periods=6) columns = list('ABCD') df = DataFrame(arr, index=index, columns=columns) # defines ref_locs df.describe() result = df.iloc[3:5, 0:2] str(result) result.dtypes expected = DataFrame(arr[3:5, 0:2], index=index[3:5], columns=columns[0:2]) tm.assert_frame_equal(result, expected) # for dups df.columns = list('aaaa') result = df.iloc[3:5, 0:2] str(result) result.dtypes expected = DataFrame(arr[3:5, 0:2], index=index[3:5], columns=list('aa')) tm.assert_frame_equal(result, expected) # related arr = np.random.randn(6, 4) index = list(range(0, 12, 2)) columns = list(range(0, 8, 2)) df = DataFrame(arr, index=index, columns=columns) df._data.blocks[0].mgr_locs result = df.iloc[1:5, 2:4] str(result) result.dtypes expected = DataFrame(arr[1:5, 2:4], index=index[1:5], columns=columns[2:4]) tm.assert_frame_equal(result, expected) def test_setitem_ndarray_1d(self): # GH5508 # len of indexer vs length of the 1d ndarray df = DataFrame(index=Index(lrange(1, 11))) df['foo'] = np.zeros(10, dtype=np.float64) df['bar'] = np.zeros(10, dtype=np.complex) # invalid def f(): with catch_warnings(record=True): df.ix[2:5, 'bar'] = np.array([2.33j, 1.23 + 0.1j, 2.2]) self.assertRaises(ValueError, f) def f(): df.loc[df.index[2:5], 'bar'] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0]) self.assertRaises(ValueError, f) # valid df.loc[df.index[2:6], 'bar'] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0]) result = df.loc[df.index[2:6], 'bar'] expected = Series([2.33j, 1.23 + 0.1j, 2.2, 1.0], index=[3, 4, 5, 6], name='bar') tm.assert_series_equal(result, expected) # dtype getting changed? df = DataFrame(index=Index(lrange(1, 11))) df['foo'] = np.zeros(10, dtype=np.float64) df['bar'] = np.zeros(10, dtype=np.complex) def f(): df[2:5] = np.arange(1, 4) * 1j self.assertRaises(ValueError, f) def test_iloc_setitem_series(self): df = DataFrame(np.random.randn(10, 4), index=list('abcdefghij'), columns=list('ABCD')) df.iloc[1, 1] = 1 result = df.iloc[1, 1] self.assertEqual(result, 1) df.iloc[:, 2:3] = 0 expected = df.iloc[:, 2:3] result = df.iloc[:, 2:3] tm.assert_frame_equal(result, expected) s = Series(np.random.randn(10), index=lrange(0, 20, 2)) s.iloc[1] = 1 result = s.iloc[1] self.assertEqual(result, 1) s.iloc[:4] = 0 expected = s.iloc[:4] result = s.iloc[:4] tm.assert_series_equal(result, expected) s = Series([-1] * 6) s.iloc[0::2] = [0, 2, 4] s.iloc[1::2] = [1, 3, 5] result = s expected = Series([0, 1, 2, 3, 4, 5]) tm.assert_series_equal(result, expected) def test_iloc_setitem_list_of_lists(self): # GH 7551 # list-of-list is set incorrectly in mixed vs. single dtyped frames df = DataFrame(dict(A=np.arange(5, dtype='int64'), B=np.arange(5, 10, dtype='int64'))) df.iloc[2:4] = [[10, 11], [12, 13]] expected = DataFrame(dict(A=[0, 1, 10, 12, 4], B=[5, 6, 11, 13, 9])) tm.assert_frame_equal(df, expected) df = DataFrame( dict(A=list('abcde'), B=np.arange(5, 10, dtype='int64'))) df.iloc[2:4] = [['x', 11], ['y', 13]] expected = DataFrame(dict(A=['a', 'b', 'x', 'y', 'e'], B=[5, 6, 11, 13, 9])) tm.assert_frame_equal(df, expected) def test_ix_general(self): # ix general issues # GH 2817 data = {'amount': {0: 700, 1: 600, 2: 222, 3: 333, 4: 444}, 'col': {0: 3.5, 1: 3.5, 2: 4.0, 3: 4.0, 4: 4.0}, 'year': {0: 2012, 1: 2011, 2: 2012, 3: 2012, 4: 2012}} df = DataFrame(data).set_index(keys=['col', 'year']) key = 4.0, 2012 # emits a PerformanceWarning, ok with self.assert_produces_warning(PerformanceWarning): tm.assert_frame_equal(df.loc[key], df.iloc[2:]) # this is ok df.sort_index(inplace=True) res = df.loc[key] # col has float dtype, result should be Float64Index index = MultiIndex.from_arrays([[4.] * 3, [2012] * 3], names=['col', 'year']) expected = DataFrame({'amount': [222, 333, 444]}, index=index) tm.assert_frame_equal(res, expected) def test_ix_weird_slicing(self): # http://stackoverflow.com/q/17056560/1240268 df = DataFrame({'one': [1, 2, 3, np.nan, np.nan], 'two': [1, 2, 3, 4, 5]}) df.loc[df['one'] > 1, 'two'] = -df['two'] expected = DataFrame({'one': {0: 1.0, 1: 2.0, 2: 3.0, 3: nan, 4: nan}, 'two': {0: 1, 1: -2, 2: -3, 3: 4, 4: 5}}) tm.assert_frame_equal(df, expected) def test_loc_coerceion(self): # 12411 df = DataFrame({'date': [pd.Timestamp('20130101').tz_localize('UTC'), pd.NaT]}) expected = df.dtypes result = df.iloc[[0]] tm.assert_series_equal(result.dtypes, expected) result = df.iloc[[1]] tm.assert_series_equal(result.dtypes, expected) # 12045 import datetime df = DataFrame({'date': [datetime.datetime(2012, 1, 1), datetime.datetime(1012, 1, 2)]}) expected = df.dtypes result = df.iloc[[0]] tm.assert_series_equal(result.dtypes, expected) result = df.iloc[[1]] tm.assert_series_equal(result.dtypes, expected) # 11594 df = DataFrame({'text': ['some words'] + [None] * 9}) expected = df.dtypes result = df.iloc[0:2] tm.assert_series_equal(result.dtypes, expected) result = df.iloc[3:] tm.assert_series_equal(result.dtypes, expected) def test_setitem_dtype_upcast(self): # GH3216 df = DataFrame([{"a": 1}, {"a": 3, "b": 2}]) df['c'] = np.nan self.assertEqual(df['c'].dtype, np.float64) df.loc[0, 'c'] = 'foo' expected = DataFrame([{"a": 1, "c": 'foo'}, {"a": 3, "b": 2, "c": np.nan}]) tm.assert_frame_equal(df, expected) # GH10280 df = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=list('ab'), columns=['foo', 'bar', 'baz']) for val in [3.14, 'wxyz']: left = df.copy() left.loc['a', 'bar'] = val right = DataFrame([[0, val, 2], [3, 4, 5]], index=list('ab'), columns=['foo', 'bar', 'baz']) tm.assert_frame_equal(left, right) self.assertTrue(is_integer_dtype(left['foo'])) self.assertTrue(is_integer_dtype(left['baz'])) left = DataFrame(np.arange(6, dtype='int64').reshape(2, 3) / 10.0, index=list('ab'), columns=['foo', 'bar', 'baz']) left.loc['a', 'bar'] = 'wxyz' right = DataFrame([[0, 'wxyz', .2], [.3, .4, .5]], index=list('ab'), columns=['foo', 'bar', 'baz']) tm.assert_frame_equal(left, right) self.assertTrue(is_float_dtype(left['foo'])) self.assertTrue(is_float_dtype(left['baz'])) def test_setitem_iloc(self): # setitem with an iloc list df = DataFrame(np.arange(9).reshape((3, 3)), index=["A", "B", "C"], columns=["A", "B", "C"]) df.iloc[[0, 1], [1, 2]] df.iloc[[0, 1], [1, 2]] += 100 expected = DataFrame( np.array([0, 101, 102, 3, 104, 105, 6, 7, 8]).reshape((3, 3)), index=["A", "B", "C"], columns=["A", "B", "C"]) tm.assert_frame_equal(df, expected) def test_dups_fancy_indexing(self): # GH 3455 from pandas.util.testing import makeCustomDataframe as mkdf df = mkdf(10, 3) df.columns = ['a', 'a', 'b'] result = df[['b', 'a']].columns expected = Index(['b', 'a', 'a']) self.assert_index_equal(result, expected) # across dtypes df = DataFrame([[1, 2, 1., 2., 3., 'foo', 'bar']], columns=list('aaaaaaa')) df.head() str(df) result = DataFrame([[1, 2, 1., 2., 3., 'foo', 'bar']]) result.columns = list('aaaaaaa') # TODO(wesm): unused? df_v = df.iloc[:, 4] # noqa res_v = result.iloc[:, 4] # noqa tm.assert_frame_equal(df, result) # GH 3561, dups not in selected order df = DataFrame( {'test': [5, 7, 9, 11], 'test1': [4., 5, 6, 7], 'other': list('abcd')}, index=['A', 'A', 'B', 'C']) rows = ['C', 'B'] expected = DataFrame( {'test': [11, 9], 'test1': [7., 6], 'other': ['d', 'c']}, index=rows) result = df.loc[rows] tm.assert_frame_equal(result, expected) result = df.loc[Index(rows)] tm.assert_frame_equal(result, expected) rows = ['C', 'B', 'E'] expected = DataFrame( {'test': [11, 9, np.nan], 'test1': [7., 6, np.nan], 'other': ['d', 'c', np.nan]}, index=rows) result = df.loc[rows] tm.assert_frame_equal(result, expected) # see GH5553, make sure we use the right indexer rows = ['F', 'G', 'H', 'C', 'B', 'E'] expected = DataFrame({'test': [np.nan, np.nan, np.nan, 11, 9, np.nan], 'test1': [np.nan, np.nan, np.nan, 7., 6, np.nan], 'other': [np.nan, np.nan, np.nan, 'd', 'c', np.nan]}, index=rows) result = df.loc[rows] tm.assert_frame_equal(result, expected) # inconsistent returns for unique/duplicate indices when values are # missing df = DataFrame(randn(4, 3), index=list('ABCD')) expected = df.ix[['E']] dfnu = DataFrame(randn(5, 3), index=list('AABCD')) result = dfnu.ix[['E']] tm.assert_frame_equal(result, expected) # ToDo: check_index_type can be True after GH 11497 # GH 4619; duplicate indexer with missing label df = DataFrame({"A": [0, 1, 2]}) result = df.ix[[0, 8, 0]] expected = DataFrame({"A": [0, np.nan, 0]}, index=[0, 8, 0]) tm.assert_frame_equal(result, expected, check_index_type=False) df = DataFrame({"A": list('abc')}) result = df.ix[[0, 8, 0]] expected = DataFrame({"A": ['a', np.nan, 'a']}, index=[0, 8, 0]) tm.assert_frame_equal(result, expected, check_index_type=False) # non unique with non unique selector df = DataFrame({'test': [5, 7, 9, 11]}, index=['A', 'A', 'B', 'C']) expected = DataFrame( {'test': [5, 7, 5, 7, np.nan]}, index=['A', 'A', 'A', 'A', 'E']) result = df.ix[['A', 'A', 'E']] tm.assert_frame_equal(result, expected) # GH 5835 # dups on index and missing values df = DataFrame( np.random.randn(5, 5), columns=['A', 'B', 'B', 'B', 'A']) expected = pd.concat( [df.ix[:, ['A', 'B']], DataFrame(np.nan, columns=['C'], index=df.index)], axis=1) result = df.ix[:, ['A', 'B', 'C']] tm.assert_frame_equal(result, expected) # GH 6504, multi-axis indexing df = DataFrame(np.random.randn(9, 2), index=[1, 1, 1, 2, 2, 2, 3, 3, 3], columns=['a', 'b']) expected = df.iloc[0:6] result = df.loc[[1, 2]] tm.assert_frame_equal(result, expected) expected = df result = df.loc[:, ['a', 'b']] tm.assert_frame_equal(result, expected) expected = df.iloc[0:6, :] result = df.loc[[1, 2], ['a', 'b']] tm.assert_frame_equal(result, expected) def test_indexing_mixed_frame_bug(self): # GH3492 df = DataFrame({'a': {1: 'aaa', 2: 'bbb', 3: 'ccc'}, 'b': {1: 111, 2: 222, 3: 333}}) # this works, new column is created correctly df['test'] = df['a'].apply(lambda x: '_' if x == 'aaa' else x) # this does not work, ie column test is not changed idx = df['test'] == '_' temp = df.ix[idx, 'a'].apply(lambda x: '-----' if x == 'aaa' else x) df.ix[idx, 'test'] = temp self.assertEqual(df.iloc[0, 2], '-----') # if I look at df, then element [0,2] equals '_'. If instead I type # df.ix[idx,'test'], I get '-----', finally by typing df.iloc[0,2] I # get '_'. def test_multitype_list_index_access(self): # GH 10610 df = pd.DataFrame(np.random.random((10, 5)), columns=["a"] + [20, 21, 22, 23]) with self.assertRaises(KeyError): df[[22, 26, -8]] self.assertEqual(df[21].shape[0], df.shape[0]) def test_set_index_nan(self): # GH 3586 df = DataFrame({'PRuid': {17: 'nonQC', 18: 'nonQC', 19: 'nonQC', 20: '10', 21: '11', 22: '12', 23: '13', 24: '24', 25: '35', 26: '46', 27: '47', 28: '48', 29: '59', 30: '10'}, 'QC': {17: 0.0, 18: 0.0, 19: 0.0, 20: nan, 21: nan, 22: nan, 23: nan, 24: 1.0, 25: nan, 26: nan, 27: nan, 28: nan, 29: nan, 30: nan}, 'data': {17: 7.9544899999999998, 18: 8.0142609999999994, 19: 7.8591520000000008, 20: 0.86140349999999999, 21: 0.87853110000000001, 22: 0.8427041999999999, 23: 0.78587700000000005, 24: 0.73062459999999996, 25: 0.81668560000000001, 26: 0.81927080000000008, 27: 0.80705009999999999, 28: 0.81440240000000008, 29: 0.80140849999999997, 30: 0.81307740000000006}, 'year': {17: 2006, 18: 2007, 19: 2008, 20: 1985, 21: 1985, 22: 1985, 23: 1985, 24: 1985, 25: 1985, 26: 1985, 27: 1985, 28: 1985, 29: 1985, 30: 1986}}).reset_index() result = df.set_index(['year', 'PRuid', 'QC']).reset_index().reindex( columns=df.columns) tm.assert_frame_equal(result, df) def test_multi_nan_indexing(self): # GH 3588 df = DataFrame({"a": ['R1', 'R2', np.nan, 'R4'], 'b': ["C1", "C2", "C3", "C4"], "c": [10, 15, np.nan, 20]}) result = df.set_index(['a', 'b'], drop=False) expected = DataFrame({"a": ['R1', 'R2', np.nan, 'R4'], 'b': ["C1", "C2", "C3", "C4"], "c": [10, 15, np.nan, 20]}, index=[Index(['R1', 'R2', np.nan, 'R4'], name='a'), Index(['C1', 'C2', 'C3', 'C4'], name='b')]) tm.assert_frame_equal(result, expected) def test_multi_assign(self): # GH 3626, an assignement of a sub-df to a df df = DataFrame({'FC': ['a', 'b', 'a', 'b', 'a', 'b'], 'PF': [0, 0, 0, 0, 1, 1], 'col1': lrange(6), 'col2': lrange(6, 12)}) df.ix[1, 0] = np.nan df2 = df.copy() mask = ~df2.FC.isnull() cols = ['col1', 'col2'] dft = df2 * 2 dft.ix[3, 3] = np.nan expected = DataFrame({'FC': ['a', np.nan, 'a', 'b', 'a', 'b'], 'PF': [0, 0, 0, 0, 1, 1], 'col1': Series([0, 1, 4, 6, 8, 10]), 'col2': [12, 7, 16, np.nan, 20, 22]}) # frame on rhs df2.ix[mask, cols] = dft.ix[mask, cols] tm.assert_frame_equal(df2, expected) df2.ix[mask, cols] = dft.ix[mask, cols] tm.assert_frame_equal(df2, expected) # with an ndarray on rhs df2 = df.copy() df2.ix[mask, cols] = dft.ix[mask, cols].values tm.assert_frame_equal(df2, expected) df2.ix[mask, cols] = dft.ix[mask, cols].values tm.assert_frame_equal(df2, expected) # broadcasting on the rhs is required df = DataFrame(dict(A=[1, 2, 0, 0, 0], B=[0, 0, 0, 10, 11], C=[ 0, 0, 0, 10, 11], D=[3, 4, 5, 6, 7])) expected = df.copy() mask = expected['A'] == 0 for col in ['A', 'B']: expected.loc[mask, col] = df['D'] df.loc[df['A'] == 0, ['A', 'B']] = df['D'] tm.assert_frame_equal(df, expected) def test_ix_assign_column_mixed(self): # GH #1142 df = DataFrame(tm.getSeriesData()) df['foo'] = 'bar' orig = df.ix[:, 'B'].copy() df.ix[:, 'B'] = df.ix[:, 'B'] + 1 tm.assert_series_equal(df.B, orig + 1) # GH 3668, mixed frame with series value df = DataFrame({'x': lrange(10), 'y': lrange(10, 20), 'z': 'bar'}) expected = df.copy() for i in range(5): indexer = i * 2 v = 1000 + i * 200 expected.ix[indexer, 'y'] = v self.assertEqual(expected.ix[indexer, 'y'], v) df.ix[df.x % 2 == 0, 'y'] = df.ix[df.x % 2 == 0, 'y'] * 100
tm.assert_frame_equal(df, expected)
pandas.util.testing.assert_frame_equal
import pandas as pd import re import numpy as np from datetime import datetime from dateutil import parser import datefinder #type0 - 'CARD TRANSACTION ALERT' def key_extractor_0(data): card = list(data['msg']) card_subjs = list(data['subject']) trans_amts =
pd.Series(card)
pandas.Series
# -*- coding: utf-8 -*- # pylint: disable-msg=W0612,E1101 import itertools import warnings from warnings import catch_warnings from datetime import datetime from pandas.types.common import (is_integer_dtype, is_float_dtype, is_scalar) from pandas.compat import range, lrange, lzip, StringIO, lmap from pandas.tslib import NaT from numpy import nan from numpy.random import randn import numpy as np import pandas as pd from pandas import option_context from pandas.core.indexing import _non_reducing_slice, _maybe_numeric_slice from pandas.core.api import (DataFrame, Index, Series, Panel, isnull, MultiIndex, Timestamp, Timedelta, UInt64Index) from pandas.formats.printing import pprint_thing from pandas import concat from pandas.core.common import PerformanceWarning from pandas.tests.indexing.common import _mklbl import pandas.util.testing as tm from pandas import date_range _verbose = False # ------------------------------------------------------------------------ # Indexing test cases def _generate_indices(f, values=False): """ generate the indicies if values is True , use the axis values is False, use the range """ axes = f.axes if values: axes = [lrange(len(a)) for a in axes] return itertools.product(*axes) def _get_value(f, i, values=False): """ return the value for the location i """ # check agains values if values: return f.values[i] # this is equiv of f[col][row]..... # v = f # for a in reversed(i): # v = v.__getitem__(a) # return v with catch_warnings(record=True): return f.ix[i] def _get_result(obj, method, key, axis): """ return the result for this obj with this key and this axis """ if isinstance(key, dict): key = key[axis] # use an artifical conversion to map the key as integers to the labels # so ix can work for comparisions if method == 'indexer': method = 'ix' key = obj._get_axis(axis)[key] # in case we actually want 0 index slicing try: xp = getattr(obj, method).__getitem__(_axify(obj, key, axis)) except: xp = getattr(obj, method).__getitem__(key) return xp def _axify(obj, key, axis): # create a tuple accessor axes = [slice(None)] * obj.ndim axes[axis] = key return tuple(axes) class TestIndexing(tm.TestCase): _objs = set(['series', 'frame', 'panel']) _typs = set(['ints', 'uints', 'labels', 'mixed', 'ts', 'floats', 'empty', 'ts_rev']) def setUp(self): self.series_ints = Series(np.random.rand(4), index=lrange(0, 8, 2)) self.frame_ints = DataFrame(np.random.randn(4, 4), index=lrange(0, 8, 2), columns=lrange(0, 12, 3)) self.panel_ints = Panel(np.random.rand(4, 4, 4), items=lrange(0, 8, 2), major_axis=lrange(0, 12, 3), minor_axis=lrange(0, 16, 4)) self.series_uints = Series(np.random.rand(4), index=UInt64Index(lrange(0, 8, 2))) self.frame_uints = DataFrame(np.random.randn(4, 4), index=UInt64Index(lrange(0, 8, 2)), columns=UInt64Index(lrange(0, 12, 3))) self.panel_uints = Panel(np.random.rand(4, 4, 4), items=UInt64Index(lrange(0, 8, 2)), major_axis=UInt64Index(lrange(0, 12, 3)), minor_axis=UInt64Index(lrange(0, 16, 4))) self.series_labels = Series(np.random.randn(4), index=list('abcd')) self.frame_labels = DataFrame(np.random.randn(4, 4), index=list('abcd'), columns=list('ABCD')) self.panel_labels = Panel(np.random.randn(4, 4, 4), items=list('abcd'), major_axis=list('ABCD'), minor_axis=list('ZYXW')) self.series_mixed = Series(np.random.randn(4), index=[2, 4, 'null', 8]) self.frame_mixed = DataFrame(np.random.randn(4, 4), index=[2, 4, 'null', 8]) self.panel_mixed = Panel(np.random.randn(4, 4, 4), items=[2, 4, 'null', 8]) self.series_ts = Series(np.random.randn(4), index=date_range('20130101', periods=4)) self.frame_ts = DataFrame(np.random.randn(4, 4), index=date_range('20130101', periods=4)) self.panel_ts = Panel(np.random.randn(4, 4, 4), items=date_range('20130101', periods=4)) dates_rev = (date_range('20130101', periods=4) .sort_values(ascending=False)) self.series_ts_rev = Series(np.random.randn(4), index=dates_rev) self.frame_ts_rev = DataFrame(np.random.randn(4, 4), index=dates_rev) self.panel_ts_rev = Panel(np.random.randn(4, 4, 4), items=dates_rev) self.frame_empty = DataFrame({}) self.series_empty = Series({}) self.panel_empty = Panel({}) # form agglomerates for o in self._objs: d = dict() for t in self._typs: d[t] = getattr(self, '%s_%s' % (o, t), None) setattr(self, o, d) def check_values(self, f, func, values=False): if f is None: return axes = f.axes indicies = itertools.product(*axes) for i in indicies: result = getattr(f, func)[i] # check agains values if values: expected = f.values[i] else: expected = f for a in reversed(i): expected = expected.__getitem__(a) tm.assert_almost_equal(result, expected) def check_result(self, name, method1, key1, method2, key2, typs=None, objs=None, axes=None, fails=None): def _eq(t, o, a, obj, k1, k2): """ compare equal for these 2 keys """ if a is not None and a > obj.ndim - 1: return def _print(result, error=None): if error is not None: error = str(error) v = ("%-16.16s [%-16.16s]: [typ->%-8.8s,obj->%-8.8s," "key1->(%-4.4s),key2->(%-4.4s),axis->%s] %s" % (name, result, t, o, method1, method2, a, error or '')) if _verbose: pprint_thing(v) try: rs = getattr(obj, method1).__getitem__(_axify(obj, k1, a)) try: xp = _get_result(obj, method2, k2, a) except: result = 'no comp' _print(result) return detail = None try: if is_scalar(rs) and is_scalar(xp): self.assertEqual(rs, xp) elif xp.ndim == 1: tm.assert_series_equal(rs, xp) elif xp.ndim == 2: tm.assert_frame_equal(rs, xp) elif xp.ndim == 3: tm.assert_panel_equal(rs, xp) result = 'ok' except AssertionError as e: detail = str(e) result = 'fail' # reverse the checks if fails is True: if result == 'fail': result = 'ok (fail)' _print(result) if not result.startswith('ok'): raise AssertionError(detail) except AssertionError: raise except Exception as detail: # if we are in fails, the ok, otherwise raise it if fails is not None: if isinstance(detail, fails): result = 'ok (%s)' % type(detail).__name__ _print(result) return result = type(detail).__name__ raise AssertionError(_print(result, error=detail)) if typs is None: typs = self._typs if objs is None: objs = self._objs if axes is not None: if not isinstance(axes, (tuple, list)): axes = [axes] else: axes = list(axes) else: axes = [0, 1, 2] # check for o in objs: if o not in self._objs: continue d = getattr(self, o) for a in axes: for t in typs: if t not in self._typs: continue obj = d[t] if obj is not None: obj = obj.copy() k2 = key2 _eq(t, o, a, obj, key1, k2) def test_ix_deprecation(self): # GH 15114 df = DataFrame({'A': [1, 2, 3]}) with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): df.ix[1, 'A'] def test_indexer_caching(self): # GH5727 # make sure that indexers are in the _internal_names_set n = 1000001 arrays = [lrange(n), lrange(n)] index = MultiIndex.from_tuples(lzip(*arrays)) s = Series(np.zeros(n), index=index) str(s) # setitem expected = Series(np.ones(n), index=index) s = Series(np.zeros(n), index=index) s[s == 0] = 1 tm.assert_series_equal(s, expected) def test_at_and_iat_get(self): def _check(f, func, values=False): if f is not None: indicies = _generate_indices(f, values) for i in indicies: result = getattr(f, func)[i] expected = _get_value(f, i, values) tm.assert_almost_equal(result, expected) for o in self._objs: d = getattr(self, o) # iat for f in [d['ints'], d['uints']]: _check(f, 'iat', values=True) for f in [d['labels'], d['ts'], d['floats']]: if f is not None: self.assertRaises(ValueError, self.check_values, f, 'iat') # at for f in [d['ints'], d['uints'], d['labels'], d['ts'], d['floats']]: _check(f, 'at') def test_at_and_iat_set(self): def _check(f, func, values=False): if f is not None: indicies = _generate_indices(f, values) for i in indicies: getattr(f, func)[i] = 1 expected = _get_value(f, i, values) tm.assert_almost_equal(expected, 1) for t in self._objs: d = getattr(self, t) # iat for f in [d['ints'], d['uints']]: _check(f, 'iat', values=True) for f in [d['labels'], d['ts'], d['floats']]: if f is not None: self.assertRaises(ValueError, _check, f, 'iat') # at for f in [d['ints'], d['uints'], d['labels'], d['ts'], d['floats']]: _check(f, 'at') def test_at_iat_coercion(self): # as timestamp is not a tuple! dates = date_range('1/1/2000', periods=8) df = DataFrame(randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D']) s = df['A'] result = s.at[dates[5]] xp = s.values[5] self.assertEqual(result, xp) # GH 7729 # make sure we are boxing the returns s = Series(['2014-01-01', '2014-02-02'], dtype='datetime64[ns]') expected = Timestamp('2014-02-02') for r in [lambda: s.iat[1], lambda: s.iloc[1]]: result = r() self.assertEqual(result, expected) s = Series(['1 days', '2 days'], dtype='timedelta64[ns]') expected = Timedelta('2 days') for r in [lambda: s.iat[1], lambda: s.iloc[1]]: result = r() self.assertEqual(result, expected) def test_iat_invalid_args(self): pass def test_imethods_with_dups(self): # GH6493 # iat/iloc with dups s = Series(range(5), index=[1, 1, 2, 2, 3], dtype='int64') result = s.iloc[2] self.assertEqual(result, 2) result = s.iat[2] self.assertEqual(result, 2) self.assertRaises(IndexError, lambda: s.iat[10]) self.assertRaises(IndexError, lambda: s.iat[-10]) result = s.iloc[[2, 3]] expected = Series([2, 3], [2, 2], dtype='int64') tm.assert_series_equal(result, expected) df = s.to_frame() result = df.iloc[2] expected = Series(2, index=[0], name=2) tm.assert_series_equal(result, expected) result = df.iat[2, 0] expected = 2 self.assertEqual(result, 2) def test_repeated_getitem_dups(self): # GH 5678 # repeated gettitems on a dup index returing a ndarray df = DataFrame( np.random.random_sample((20, 5)), index=['ABCDE' [x % 5] for x in range(20)]) expected = df.loc['A', 0] result = df.loc[:, 0].loc['A'] tm.assert_series_equal(result, expected) def test_iloc_exceeds_bounds(self): # GH6296 # iloc should allow indexers that exceed the bounds df = DataFrame(np.random.random_sample((20, 5)), columns=list('ABCDE')) expected = df # lists of positions should raise IndexErrror! with tm.assertRaisesRegexp(IndexError, 'positional indexers are out-of-bounds'): df.iloc[:, [0, 1, 2, 3, 4, 5]] self.assertRaises(IndexError, lambda: df.iloc[[1, 30]]) self.assertRaises(IndexError, lambda: df.iloc[[1, -30]]) self.assertRaises(IndexError, lambda: df.iloc[[100]]) s = df['A'] self.assertRaises(IndexError, lambda: s.iloc[[100]]) self.assertRaises(IndexError, lambda: s.iloc[[-100]]) # still raise on a single indexer msg = 'single positional indexer is out-of-bounds' with tm.assertRaisesRegexp(IndexError, msg): df.iloc[30] self.assertRaises(IndexError, lambda: df.iloc[-30]) # GH10779 # single positive/negative indexer exceeding Series bounds should raise # an IndexError with tm.assertRaisesRegexp(IndexError, msg): s.iloc[30] self.assertRaises(IndexError, lambda: s.iloc[-30]) # slices are ok result = df.iloc[:, 4:10] # 0 < start < len < stop expected = df.iloc[:, 4:] tm.assert_frame_equal(result, expected) result = df.iloc[:, -4:-10] # stop < 0 < start < len expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:4:-1] # 0 < stop < len < start (down) expected = df.iloc[:, :4:-1] tm.assert_frame_equal(result, expected) result = df.iloc[:, 4:-10:-1] # stop < 0 < start < len (down) expected = df.iloc[:, 4::-1] tm.assert_frame_equal(result, expected) result = df.iloc[:, -10:4] # start < 0 < stop < len expected = df.iloc[:, :4] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:4] # 0 < stop < len < start expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, -10:-11:-1] # stop < start < 0 < len (down) expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:11] # 0 < len < start < stop expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) # slice bounds exceeding is ok result = s.iloc[18:30] expected = s.iloc[18:] tm.assert_series_equal(result, expected) result = s.iloc[30:] expected = s.iloc[:0] tm.assert_series_equal(result, expected) result = s.iloc[30::-1] expected = s.iloc[::-1] tm.assert_series_equal(result, expected) # doc example def check(result, expected): str(result) result.dtypes tm.assert_frame_equal(result, expected) dfl = DataFrame(np.random.randn(5, 2), columns=list('AB')) check(dfl.iloc[:, 2:3], DataFrame(index=dfl.index)) check(dfl.iloc[:, 1:3], dfl.iloc[:, [1]]) check(dfl.iloc[4:6], dfl.iloc[[4]]) self.assertRaises(IndexError, lambda: dfl.iloc[[4, 5, 6]]) self.assertRaises(IndexError, lambda: dfl.iloc[:, 4]) def test_iloc_getitem_int(self): # integer self.check_result('integer', 'iloc', 2, 'ix', {0: 4, 1: 6, 2: 8}, typs=['ints', 'uints']) self.check_result('integer', 'iloc', 2, 'indexer', 2, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_neg_int(self): # neg integer self.check_result('neg int', 'iloc', -1, 'ix', {0: 6, 1: 9, 2: 12}, typs=['ints', 'uints']) self.check_result('neg int', 'iloc', -1, 'indexer', -1, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_list_int(self): # list of ints self.check_result('list int', 'iloc', [0, 1, 2], 'ix', {0: [0, 2, 4], 1: [0, 3, 6], 2: [0, 4, 8]}, typs=['ints', 'uints']) self.check_result('list int', 'iloc', [2], 'ix', {0: [4], 1: [6], 2: [8]}, typs=['ints', 'uints']) self.check_result('list int', 'iloc', [0, 1, 2], 'indexer', [0, 1, 2], typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) # array of ints (GH5006), make sure that a single indexer is returning # the correct type self.check_result('array int', 'iloc', np.array([0, 1, 2]), 'ix', {0: [0, 2, 4], 1: [0, 3, 6], 2: [0, 4, 8]}, typs=['ints', 'uints']) self.check_result('array int', 'iloc', np.array([2]), 'ix', {0: [4], 1: [6], 2: [8]}, typs=['ints', 'uints']) self.check_result('array int', 'iloc', np.array([0, 1, 2]), 'indexer', [0, 1, 2], typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_neg_int_can_reach_first_index(self): # GH10547 and GH10779 # negative integers should be able to reach index 0 df = DataFrame({'A': [2, 3, 5], 'B': [7, 11, 13]}) s = df['A'] expected = df.iloc[0] result = df.iloc[-3] tm.assert_series_equal(result, expected) expected = df.iloc[[0]] result = df.iloc[[-3]] tm.assert_frame_equal(result, expected) expected = s.iloc[0] result = s.iloc[-3] self.assertEqual(result, expected) expected = s.iloc[[0]] result = s.iloc[[-3]] tm.assert_series_equal(result, expected) # check the length 1 Series case highlighted in GH10547 expected = pd.Series(['a'], index=['A']) result = expected.iloc[[-1]] tm.assert_series_equal(result, expected) def test_iloc_getitem_dups(self): # no dups in panel (bug?) self.check_result('list int (dups)', 'iloc', [0, 1, 1, 3], 'ix', {0: [0, 2, 2, 6], 1: [0, 3, 3, 9]}, objs=['series', 'frame'], typs=['ints', 'uints']) # GH 6766 df1 = DataFrame([{'A': None, 'B': 1}, {'A': 2, 'B': 2}]) df2 = DataFrame([{'A': 3, 'B': 3}, {'A': 4, 'B': 4}]) df = concat([df1, df2], axis=1) # cross-sectional indexing result = df.iloc[0, 0] self.assertTrue(isnull(result)) result = df.iloc[0, :] expected = Series([np.nan, 1, 3, 3], index=['A', 'B', 'A', 'B'], name=0) tm.assert_series_equal(result, expected) def test_iloc_getitem_array(self): # array like s = Series(index=lrange(1, 4)) self.check_result('array like', 'iloc', s.index, 'ix', {0: [2, 4, 6], 1: [3, 6, 9], 2: [4, 8, 12]}, typs=['ints', 'uints']) def test_iloc_getitem_bool(self): # boolean indexers b = [True, False, True, False, ] self.check_result('bool', 'iloc', b, 'ix', b, typs=['ints', 'uints']) self.check_result('bool', 'iloc', b, 'ix', b, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_slice(self): # slices self.check_result('slice', 'iloc', slice(1, 3), 'ix', {0: [2, 4], 1: [3, 6], 2: [4, 8]}, typs=['ints', 'uints']) self.check_result('slice', 'iloc', slice(1, 3), 'indexer', slice(1, 3), typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_slice_dups(self): df1 = DataFrame(np.random.randn(10, 4), columns=['A', 'A', 'B', 'B']) df2 = DataFrame(np.random.randint(0, 10, size=20).reshape(10, 2), columns=['A', 'C']) # axis=1 df = concat([df1, df2], axis=1) tm.assert_frame_equal(df.iloc[:, :4], df1) tm.assert_frame_equal(df.iloc[:, 4:], df2) df = concat([df2, df1], axis=1) tm.assert_frame_equal(df.iloc[:, :2], df2) tm.assert_frame_equal(df.iloc[:, 2:], df1) exp = concat([df2, df1.iloc[:, [0]]], axis=1) tm.assert_frame_equal(df.iloc[:, 0:3], exp) # axis=0 df = concat([df, df], axis=0) tm.assert_frame_equal(df.iloc[0:10, :2], df2) tm.assert_frame_equal(df.iloc[0:10, 2:], df1) tm.assert_frame_equal(df.iloc[10:, :2], df2) tm.assert_frame_equal(df.iloc[10:, 2:], df1) def test_iloc_setitem(self): df = self.frame_ints df.iloc[1, 1] = 1 result = df.iloc[1, 1] self.assertEqual(result, 1) df.iloc[:, 2:3] = 0 expected = df.iloc[:, 2:3] result = df.iloc[:, 2:3] tm.assert_frame_equal(result, expected) # GH5771 s = Series(0, index=[4, 5, 6]) s.iloc[1:2] += 1 expected = Series([0, 1, 0], index=[4, 5, 6]) tm.assert_series_equal(s, expected) def test_loc_setitem_slice(self): # GH10503 # assigning the same type should not change the type df1 = DataFrame({'a': [0, 1, 1], 'b': Series([100, 200, 300], dtype='uint32')}) ix = df1['a'] == 1 newb1 = df1.loc[ix, 'b'] + 1 df1.loc[ix, 'b'] = newb1 expected = DataFrame({'a': [0, 1, 1], 'b': Series([100, 201, 301], dtype='uint32')}) tm.assert_frame_equal(df1, expected) # assigning a new type should get the inferred type df2 = DataFrame({'a': [0, 1, 1], 'b': [100, 200, 300]}, dtype='uint64') ix = df1['a'] == 1 newb2 = df2.loc[ix, 'b'] df1.loc[ix, 'b'] = newb2 expected = DataFrame({'a': [0, 1, 1], 'b': [100, 200, 300]}, dtype='uint64') tm.assert_frame_equal(df2, expected) def test_ix_loc_setitem_consistency(self): # GH 5771 # loc with slice and series s = Series(0, index=[4, 5, 6]) s.loc[4:5] += 1 expected = Series([1, 1, 0], index=[4, 5, 6]) tm.assert_series_equal(s, expected) # GH 5928 # chained indexing assignment df = DataFrame({'a': [0, 1, 2]}) expected = df.copy() with catch_warnings(record=True): expected.ix[[0, 1, 2], 'a'] = -expected.ix[[0, 1, 2], 'a'] with catch_warnings(record=True): df['a'].ix[[0, 1, 2]] = -df['a'].ix[[0, 1, 2]] tm.assert_frame_equal(df, expected) df = DataFrame({'a': [0, 1, 2], 'b': [0, 1, 2]}) with catch_warnings(record=True): df['a'].ix[[0, 1, 2]] = -df['a'].ix[[0, 1, 2]].astype( 'float64') + 0.5 expected = DataFrame({'a': [0.5, -0.5, -1.5], 'b': [0, 1, 2]}) tm.assert_frame_equal(df, expected) # GH 8607 # ix setitem consistency df = DataFrame({'timestamp': [1413840976, 1413842580, 1413760580], 'delta': [1174, 904, 161], 'elapsed': [7673, 9277, 1470]}) expected = DataFrame({'timestamp': pd.to_datetime( [1413840976, 1413842580, 1413760580], unit='s'), 'delta': [1174, 904, 161], 'elapsed': [7673, 9277, 1470]}) df2 = df.copy() df2['timestamp'] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) df2 = df.copy() df2.loc[:, 'timestamp'] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) df2 = df.copy() with catch_warnings(record=True): df2.ix[:, 2] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) def test_ix_loc_consistency(self): # GH 8613 # some edge cases where ix/loc should return the same # this is not an exhaustive case def compare(result, expected): if is_scalar(expected): self.assertEqual(result, expected) else: self.assertTrue(expected.equals(result)) # failure cases for .loc, but these work for .ix df = pd.DataFrame(np.random.randn(5, 4), columns=list('ABCD')) for key in [slice(1, 3), tuple([slice(0, 2), slice(0, 2)]), tuple([slice(0, 2), df.columns[0:2]])]: for index in [tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeTimedeltaIndex]: df.index = index(len(df.index)) with catch_warnings(record=True): df.ix[key] self.assertRaises(TypeError, lambda: df.loc[key]) df = pd.DataFrame(np.random.randn(5, 4), columns=list('ABCD'), index=pd.date_range('2012-01-01', periods=5)) for key in ['2012-01-03', '2012-01-31', slice('2012-01-03', '2012-01-03'), slice('2012-01-03', '2012-01-04'), slice('2012-01-03', '2012-01-06', 2), slice('2012-01-03', '2012-01-31'), tuple([[True, True, True, False, True]]), ]: # getitem # if the expected raises, then compare the exceptions try: with catch_warnings(record=True): expected = df.ix[key] except KeyError: self.assertRaises(KeyError, lambda: df.loc[key]) continue result = df.loc[key] compare(result, expected) # setitem df1 = df.copy() df2 = df.copy() with catch_warnings(record=True): df1.ix[key] = 10 df2.loc[key] = 10 compare(df2, df1) # edge cases s = Series([1, 2, 3, 4], index=list('abde')) result1 = s['a':'c'] with catch_warnings(record=True): result2 = s.ix['a':'c'] result3 = s.loc['a':'c'] tm.assert_series_equal(result1, result2) tm.assert_series_equal(result1, result3) # now work rather than raising KeyError s = Series(range(5), [-2, -1, 1, 2, 3]) with catch_warnings(record=True): result1 = s.ix[-10:3] result2 = s.loc[-10:3] tm.assert_series_equal(result1, result2) with catch_warnings(record=True): result1 = s.ix[0:3] result2 = s.loc[0:3] tm.assert_series_equal(result1, result2) def test_loc_setitem_dups(self): # GH 6541 df_orig = DataFrame( {'me': list('rttti'), 'foo': list('aaade'), 'bar': np.arange(5, dtype='float64') * 1.34 + 2, 'bar2': np.arange(5, dtype='float64') * -.34 + 2}).set_index('me') indexer = tuple(['r', ['bar', 'bar2']]) df = df_orig.copy() df.loc[indexer] *= 2.0 tm.assert_series_equal(df.loc[indexer], 2.0 * df_orig.loc[indexer]) indexer = tuple(['r', 'bar']) df = df_orig.copy() df.loc[indexer] *= 2.0 self.assertEqual(df.loc[indexer], 2.0 * df_orig.loc[indexer]) indexer = tuple(['t', ['bar', 'bar2']]) df = df_orig.copy() df.loc[indexer] *= 2.0 tm.assert_frame_equal(df.loc[indexer], 2.0 * df_orig.loc[indexer]) def test_iloc_setitem_dups(self): # GH 6766 # iloc with a mask aligning from another iloc df1 = DataFrame([{'A': None, 'B': 1}, {'A': 2, 'B': 2}]) df2 = DataFrame([{'A': 3, 'B': 3}, {'A': 4, 'B': 4}]) df = concat([df1, df2], axis=1) expected = df.fillna(3) expected['A'] = expected['A'].astype('float64') inds = np.isnan(df.iloc[:, 0]) mask = inds[inds].index df.iloc[mask, 0] = df.iloc[mask, 2] tm.assert_frame_equal(df, expected) # del a dup column across blocks expected = DataFrame({0: [1, 2], 1: [3, 4]}) expected.columns = ['B', 'B'] del df['A'] tm.assert_frame_equal(df, expected) # assign back to self df.iloc[[0, 1], [0, 1]] = df.iloc[[0, 1], [0, 1]] tm.assert_frame_equal(df, expected) # reversed x 2 df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index( drop=True) df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index( drop=True) tm.assert_frame_equal(df, expected) def test_chained_getitem_with_lists(self): # GH6394 # Regression in chained getitem indexing with embedded list-like from # 0.12 def check(result, expected): tm.assert_numpy_array_equal(result, expected) tm.assertIsInstance(result, np.ndarray) df = DataFrame({'A': 5 * [np.zeros(3)], 'B': 5 * [np.ones(3)]}) expected = df['A'].iloc[2] result = df.loc[2, 'A'] check(result, expected) result2 = df.iloc[2]['A'] check(result2, expected) result3 = df['A'].loc[2] check(result3, expected) result4 = df['A'].iloc[2] check(result4, expected) def test_loc_getitem_int(self): # int label self.check_result('int label', 'loc', 2, 'ix', 2, typs=['ints', 'uints'], axes=0) self.check_result('int label', 'loc', 3, 'ix', 3, typs=['ints', 'uints'], axes=1) self.check_result('int label', 'loc', 4, 'ix', 4, typs=['ints', 'uints'], axes=2) self.check_result('int label', 'loc', 2, 'ix', 2, typs=['label'], fails=KeyError) def test_loc_getitem_label(self): # label self.check_result('label', 'loc', 'c', 'ix', 'c', typs=['labels'], axes=0) self.check_result('label', 'loc', 'null', 'ix', 'null', typs=['mixed'], axes=0) self.check_result('label', 'loc', 8, 'ix', 8, typs=['mixed'], axes=0) self.check_result('label', 'loc', Timestamp('20130102'), 'ix', 1, typs=['ts'], axes=0) self.check_result('label', 'loc', 'c', 'ix', 'c', typs=['empty'], fails=KeyError) def test_loc_getitem_label_out_of_range(self): # out of range label self.check_result('label range', 'loc', 'f', 'ix', 'f', typs=['ints', 'uints', 'labels', 'mixed', 'ts'], fails=KeyError) self.check_result('label range', 'loc', 'f', 'ix', 'f', typs=['floats'], fails=TypeError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['ints', 'uints', 'mixed'], fails=KeyError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['labels'], fails=TypeError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['ts'], axes=0, fails=TypeError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['floats'], axes=0, fails=TypeError) def test_loc_getitem_label_list(self): # list of labels self.check_result('list lbl', 'loc', [0, 2, 4], 'ix', [0, 2, 4], typs=['ints', 'uints'], axes=0) self.check_result('list lbl', 'loc', [3, 6, 9], 'ix', [3, 6, 9], typs=['ints', 'uints'], axes=1) self.check_result('list lbl', 'loc', [4, 8, 12], 'ix', [4, 8, 12], typs=['ints', 'uints'], axes=2) self.check_result('list lbl', 'loc', ['a', 'b', 'd'], 'ix', ['a', 'b', 'd'], typs=['labels'], axes=0) self.check_result('list lbl', 'loc', ['A', 'B', 'C'], 'ix', ['A', 'B', 'C'], typs=['labels'], axes=1) self.check_result('list lbl', 'loc', ['Z', 'Y', 'W'], 'ix', ['Z', 'Y', 'W'], typs=['labels'], axes=2) self.check_result('list lbl', 'loc', [2, 8, 'null'], 'ix', [2, 8, 'null'], typs=['mixed'], axes=0) self.check_result('list lbl', 'loc', [Timestamp('20130102'), Timestamp('20130103')], 'ix', [Timestamp('20130102'), Timestamp('20130103')], typs=['ts'], axes=0) self.check_result('list lbl', 'loc', [0, 1, 2], 'indexer', [0, 1, 2], typs=['empty'], fails=KeyError) self.check_result('list lbl', 'loc', [0, 2, 3], 'ix', [0, 2, 3], typs=['ints', 'uints'], axes=0, fails=KeyError) self.check_result('list lbl', 'loc', [3, 6, 7], 'ix', [3, 6, 7], typs=['ints', 'uints'], axes=1, fails=KeyError) self.check_result('list lbl', 'loc', [4, 8, 10], 'ix', [4, 8, 10], typs=['ints', 'uints'], axes=2, fails=KeyError) def test_loc_getitem_label_list_fails(self): # fails self.check_result('list lbl', 'loc', [20, 30, 40], 'ix', [20, 30, 40], typs=['ints', 'uints'], axes=1, fails=KeyError) self.check_result('list lbl', 'loc', [20, 30, 40], 'ix', [20, 30, 40], typs=['ints', 'uints'], axes=2, fails=KeyError) def test_loc_getitem_label_array_like(self): # array like self.check_result('array like', 'loc', Series(index=[0, 2, 4]).index, 'ix', [0, 2, 4], typs=['ints', 'uints'], axes=0) self.check_result('array like', 'loc', Series(index=[3, 6, 9]).index, 'ix', [3, 6, 9], typs=['ints', 'uints'], axes=1) self.check_result('array like', 'loc', Series(index=[4, 8, 12]).index, 'ix', [4, 8, 12], typs=['ints', 'uints'], axes=2) def test_loc_getitem_bool(self): # boolean indexers b = [True, False, True, False] self.check_result('bool', 'loc', b, 'ix', b, typs=['ints', 'uints', 'labels', 'mixed', 'ts', 'floats']) self.check_result('bool', 'loc', b, 'ix', b, typs=['empty'], fails=KeyError) def test_loc_getitem_int_slice(self): # ok self.check_result('int slice2', 'loc', slice(2, 4), 'ix', [2, 4], typs=['ints', 'uints'], axes=0) self.check_result('int slice2', 'loc', slice(3, 6), 'ix', [3, 6], typs=['ints', 'uints'], axes=1) self.check_result('int slice2', 'loc', slice(4, 8), 'ix', [4, 8], typs=['ints', 'uints'], axes=2) # GH 3053 # loc should treat integer slices like label slices from itertools import product index = MultiIndex.from_tuples([t for t in product( [6, 7, 8], ['a', 'b'])]) df = DataFrame(np.random.randn(6, 6), index, index) result = df.loc[6:8, :] with catch_warnings(record=True): expected = df.ix[6:8, :] tm.assert_frame_equal(result, expected) index = MultiIndex.from_tuples([t for t in product( [10, 20, 30], ['a', 'b'])]) df = DataFrame(np.random.randn(6, 6), index, index) result = df.loc[20:30, :] with catch_warnings(record=True): expected = df.ix[20:30, :] tm.assert_frame_equal(result, expected) # doc examples result = df.loc[10, :] with catch_warnings(record=True): expected = df.ix[10, :] tm.assert_frame_equal(result, expected) result = df.loc[:, 10] # expected = df.ix[:,10] (this fails) expected = df[10] tm.assert_frame_equal(result, expected) def test_loc_to_fail(self): # GH3449 df = DataFrame(np.random.random((3, 3)), index=['a', 'b', 'c'], columns=['e', 'f', 'g']) # raise a KeyError? self.assertRaises(KeyError, df.loc.__getitem__, tuple([[1, 2], [1, 2]])) # GH 7496 # loc should not fallback s = Series() s.loc[1] = 1 s.loc['a'] = 2 self.assertRaises(KeyError, lambda: s.loc[-1]) self.assertRaises(KeyError, lambda: s.loc[[-1, -2]]) self.assertRaises(KeyError, lambda: s.loc[['4']]) s.loc[-1] = 3 result = s.loc[[-1, -2]] expected = Series([3, np.nan], index=[-1, -2]) tm.assert_series_equal(result, expected) s['a'] = 2 self.assertRaises(KeyError, lambda: s.loc[[-2]]) del s['a'] def f(): s.loc[[-2]] = 0 self.assertRaises(KeyError, f) # inconsistency between .loc[values] and .loc[values,:] # GH 7999 df = DataFrame([['a'], ['b']], index=[1, 2], columns=['value']) def f(): df.loc[[3], :] self.assertRaises(KeyError, f) def f(): df.loc[[3]] self.assertRaises(KeyError, f) def test_at_to_fail(self): # at should not fallback # GH 7814 s = Series([1, 2, 3], index=list('abc')) result = s.at['a'] self.assertEqual(result, 1) self.assertRaises(ValueError, lambda: s.at[0]) df = DataFrame({'A': [1, 2, 3]}, index=list('abc')) result = df.at['a', 'A'] self.assertEqual(result, 1) self.assertRaises(ValueError, lambda: df.at['a', 0]) s = Series([1, 2, 3], index=[3, 2, 1]) result = s.at[1] self.assertEqual(result, 3) self.assertRaises(ValueError, lambda: s.at['a']) df = DataFrame({0: [1, 2, 3]}, index=[3, 2, 1]) result = df.at[1, 0] self.assertEqual(result, 3) self.assertRaises(ValueError, lambda: df.at['a', 0]) # GH 13822, incorrect error string with non-unique columns when missing # column is accessed df = DataFrame({'x': [1.], 'y': [2.], 'z': [3.]}) df.columns = ['x', 'x', 'z'] # Check that we get the correct value in the KeyError self.assertRaisesRegexp(KeyError, r"\['y'\] not in index", lambda: df[['x', 'y', 'z']]) def test_loc_getitem_label_slice(self): # label slices (with ints) self.check_result('lab slice', 'loc', slice(1, 3), 'ix', slice(1, 3), typs=['labels', 'mixed', 'empty', 'ts', 'floats'], fails=TypeError) # real label slices self.check_result('lab slice', 'loc', slice('a', 'c'), 'ix', slice('a', 'c'), typs=['labels'], axes=0) self.check_result('lab slice', 'loc', slice('A', 'C'), 'ix', slice('A', 'C'), typs=['labels'], axes=1) self.check_result('lab slice', 'loc', slice('W', 'Z'), 'ix', slice('W', 'Z'), typs=['labels'], axes=2) self.check_result('ts slice', 'loc', slice('20130102', '20130104'), 'ix', slice('20130102', '20130104'), typs=['ts'], axes=0) self.check_result('ts slice', 'loc', slice('20130102', '20130104'), 'ix', slice('20130102', '20130104'), typs=['ts'], axes=1, fails=TypeError) self.check_result('ts slice', 'loc', slice('20130102', '20130104'), 'ix', slice('20130102', '20130104'), typs=['ts'], axes=2, fails=TypeError) # GH 14316 self.check_result('ts slice rev', 'loc', slice('20130104', '20130102'), 'indexer', [0, 1, 2], typs=['ts_rev'], axes=0) self.check_result('mixed slice', 'loc', slice(2, 8), 'ix', slice(2, 8), typs=['mixed'], axes=0, fails=TypeError) self.check_result('mixed slice', 'loc', slice(2, 8), 'ix', slice(2, 8), typs=['mixed'], axes=1, fails=KeyError) self.check_result('mixed slice', 'loc', slice(2, 8), 'ix', slice(2, 8), typs=['mixed'], axes=2, fails=KeyError) self.check_result('mixed slice', 'loc', slice(2, 4, 2), 'ix', slice( 2, 4, 2), typs=['mixed'], axes=0, fails=TypeError) def test_loc_general(self): df = DataFrame( np.random.rand(4, 4), columns=['A', 'B', 'C', 'D'], index=['A', 'B', 'C', 'D']) # want this to work result = df.loc[:, "A":"B"].iloc[0:2, :] self.assertTrue((result.columns == ['A', 'B']).all()) self.assertTrue((result.index == ['A', 'B']).all()) # mixed type result = DataFrame({'a': [Timestamp('20130101')], 'b': [1]}).iloc[0] expected = Series([Timestamp('20130101'), 1], index=['a', 'b'], name=0) tm.assert_series_equal(result, expected) self.assertEqual(result.dtype, object) def test_loc_setitem_consistency(self): # GH 6149 # coerce similary for setitem and loc when rows have a null-slice expected = DataFrame({'date': Series(0, index=range(5), dtype=np.int64), 'val': Series(range(5), dtype=np.int64)}) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series( range(5), dtype=np.int64)}) df.loc[:, 'date'] = 0 tm.assert_frame_equal(df, expected) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = np.array(0, dtype=np.int64) tm.assert_frame_equal(df, expected) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = np.array([0, 0, 0, 0, 0], dtype=np.int64) tm.assert_frame_equal(df, expected) expected = DataFrame({'date': Series('foo', index=range(5)), 'val': Series(range(5), dtype=np.int64)}) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = 'foo' tm.assert_frame_equal(df, expected) expected = DataFrame({'date': Series(1.0, index=range(5)), 'val': Series(range(5), dtype=np.int64)}) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series(range(5), dtype=np.int64)}) df.loc[:, 'date'] = 1.0 tm.assert_frame_equal(df, expected) def test_loc_setitem_consistency_empty(self): # empty (essentially noops) expected = DataFrame(columns=['x', 'y']) expected['x'] = expected['x'].astype(np.int64) df = DataFrame(columns=['x', 'y']) df.loc[:, 'x'] = 1 tm.assert_frame_equal(df, expected) df = DataFrame(columns=['x', 'y']) df['x'] = 1 tm.assert_frame_equal(df, expected) def test_loc_setitem_consistency_slice_column_len(self): # .loc[:,column] setting with slice == len of the column # GH10408 data = """Level_0,,,Respondent,Respondent,Respondent,OtherCat,OtherCat Level_1,,,Something,StartDate,EndDate,Yes/No,SomethingElse Region,Site,RespondentID,,,,, Region_1,Site_1,3987227376,A,5/25/2015 10:59,5/25/2015 11:22,Yes, Region_1,Site_1,3980680971,A,5/21/2015 9:40,5/21/2015 9:52,Yes,Yes Region_1,Site_2,3977723249,A,5/20/2015 8:27,5/20/2015 8:41,Yes, Region_1,Site_2,3977723089,A,5/20/2015 8:33,5/20/2015 9:09,Yes,No""" df = pd.read_csv(StringIO(data), header=[0, 1], index_col=[0, 1, 2]) df.loc[:, ('Respondent', 'StartDate')] = pd.to_datetime(df.loc[:, ( 'Respondent', 'StartDate')]) df.loc[:, ('Respondent', 'EndDate')] = pd.to_datetime(df.loc[:, ( 'Respondent', 'EndDate')]) df.loc[:, ('Respondent', 'Duration')] = df.loc[:, ( 'Respondent', 'EndDate')] - df.loc[:, ('Respondent', 'StartDate')] df.loc[:, ('Respondent', 'Duration')] = df.loc[:, ( 'Respondent', 'Duration')].astype('timedelta64[s]') expected = Series([1380, 720, 840, 2160.], index=df.index, name=('Respondent', 'Duration')) tm.assert_series_equal(df[('Respondent', 'Duration')], expected) def test_loc_setitem_frame(self): df = self.frame_labels result = df.iloc[0, 0] df.loc['a', 'A'] = 1 result = df.loc['a', 'A'] self.assertEqual(result, 1) result = df.iloc[0, 0] self.assertEqual(result, 1) df.loc[:, 'B':'D'] = 0 expected = df.loc[:, 'B':'D'] with catch_warnings(record=True): result = df.ix[:, 1:] tm.assert_frame_equal(result, expected) # GH 6254 # setting issue df = DataFrame(index=[3, 5, 4], columns=['A']) df.loc[[4, 3, 5], 'A'] = np.array([1, 2, 3], dtype='int64') expected = DataFrame(dict(A=Series( [1, 2, 3], index=[4, 3, 5]))).reindex(index=[3, 5, 4]) tm.assert_frame_equal(df, expected) # GH 6252 # setting with an empty frame keys1 = ['@' + str(i) for i in range(5)] val1 = np.arange(5, dtype='int64') keys2 = ['@' + str(i) for i in range(4)] val2 = np.arange(4, dtype='int64') index = list(set(keys1).union(keys2)) df = DataFrame(index=index) df['A'] = nan df.loc[keys1, 'A'] = val1 df['B'] = nan df.loc[keys2, 'B'] = val2 expected = DataFrame(dict(A=Series(val1, index=keys1), B=Series( val2, index=keys2))).reindex(index=index) tm.assert_frame_equal(df, expected) # GH 8669 # invalid coercion of nan -> int df = DataFrame({'A': [1, 2, 3], 'B': np.nan}) df.loc[df.B > df.A, 'B'] = df.A expected = DataFrame({'A': [1, 2, 3], 'B': np.nan}) tm.assert_frame_equal(df, expected) # GH 6546 # setting with mixed labels df = DataFrame({1: [1, 2], 2: [3, 4], 'a': ['a', 'b']}) result = df.loc[0, [1, 2]] expected = Series([1, 3], index=[1, 2], dtype=object, name=0) tm.assert_series_equal(result, expected) expected = DataFrame({1: [5, 2], 2: [6, 4], 'a': ['a', 'b']}) df.loc[0, [1, 2]] = [5, 6] tm.assert_frame_equal(df, expected) def test_loc_setitem_frame_multiples(self): # multiple setting df = DataFrame({'A': ['foo', 'bar', 'baz'], 'B': Series( range(3), dtype=np.int64)}) rhs = df.loc[1:2] rhs.index = df.index[0:2] df.loc[0:1] = rhs expected = DataFrame({'A': ['bar', 'baz', 'baz'], 'B': Series( [1, 2, 2], dtype=np.int64)}) tm.assert_frame_equal(df, expected) # multiple setting with frame on rhs (with M8) df = DataFrame({'date': date_range('2000-01-01', '2000-01-5'), 'val': Series( range(5), dtype=np.int64)}) expected = DataFrame({'date': [Timestamp('20000101'), Timestamp( '20000102'), Timestamp('20000101'), Timestamp('20000102'), Timestamp('20000103')], 'val': Series( [0, 1, 0, 1, 2], dtype=np.int64)}) rhs = df.loc[0:2] rhs.index = df.index[2:5] df.loc[2:4] = rhs tm.assert_frame_equal(df, expected) def test_iloc_getitem_frame(self): df = DataFrame(np.random.randn(10, 4), index=lrange(0, 20, 2), columns=lrange(0, 8, 2)) result = df.iloc[2] with catch_warnings(record=True): exp = df.ix[4] tm.assert_series_equal(result, exp) result = df.iloc[2, 2] with catch_warnings(record=True): exp = df.ix[4, 4] self.assertEqual(result, exp) # slice result = df.iloc[4:8] with catch_warnings(record=True): expected = df.ix[8:14] tm.assert_frame_equal(result, expected) result = df.iloc[:, 2:3] with catch_warnings(record=True): expected = df.ix[:, 4:5] tm.assert_frame_equal(result, expected) # list of integers result = df.iloc[[0, 1, 3]] with catch_warnings(record=True): expected = df.ix[[0, 2, 6]] tm.assert_frame_equal(result, expected) result = df.iloc[[0, 1, 3], [0, 1]] with catch_warnings(record=True): expected = df.ix[[0, 2, 6], [0, 2]] tm.assert_frame_equal(result, expected) # neg indicies result = df.iloc[[-1, 1, 3], [-1, 1]] with catch_warnings(record=True): expected = df.ix[[18, 2, 6], [6, 2]] tm.assert_frame_equal(result, expected) # dups indicies result = df.iloc[[-1, -1, 1, 3], [-1, 1]] with catch_warnings(record=True): expected = df.ix[[18, 18, 2, 6], [6, 2]] tm.assert_frame_equal(result, expected) # with index-like s = Series(index=lrange(1, 5)) result = df.iloc[s.index] with catch_warnings(record=True): expected = df.ix[[2, 4, 6, 8]] tm.assert_frame_equal(result, expected) def test_iloc_getitem_labelled_frame(self): # try with labelled frame df = DataFrame(np.random.randn(10, 4), index=list('abcdefghij'), columns=list('ABCD')) result = df.iloc[1, 1] exp = df.loc['b', 'B'] self.assertEqual(result, exp) result = df.iloc[:, 2:3] expected = df.loc[:, ['C']] tm.assert_frame_equal(result, expected) # negative indexing result = df.iloc[-1, -1] exp = df.loc['j', 'D'] self.assertEqual(result, exp) # out-of-bounds exception self.assertRaises(IndexError, df.iloc.__getitem__, tuple([10, 5])) # trying to use a label self.assertRaises(ValueError, df.iloc.__getitem__, tuple(['j', 'D'])) def test_iloc_getitem_doc_issue(self): # multi axis slicing issue with single block # surfaced in GH 6059 arr = np.random.randn(6, 4) index = date_range('20130101', periods=6) columns = list('ABCD') df = DataFrame(arr, index=index, columns=columns) # defines ref_locs df.describe() result = df.iloc[3:5, 0:2] str(result) result.dtypes expected = DataFrame(arr[3:5, 0:2], index=index[3:5], columns=columns[0:2]) tm.assert_frame_equal(result, expected) # for dups df.columns = list('aaaa') result = df.iloc[3:5, 0:2] str(result) result.dtypes expected = DataFrame(arr[3:5, 0:2], index=index[3:5], columns=list('aa')) tm.assert_frame_equal(result, expected) # related arr = np.random.randn(6, 4) index = list(range(0, 12, 2)) columns = list(range(0, 8, 2)) df = DataFrame(arr, index=index, columns=columns) df._data.blocks[0].mgr_locs result = df.iloc[1:5, 2:4] str(result) result.dtypes expected = DataFrame(arr[1:5, 2:4], index=index[1:5], columns=columns[2:4]) tm.assert_frame_equal(result, expected) def test_setitem_ndarray_1d(self): # GH5508 # len of indexer vs length of the 1d ndarray df = DataFrame(index=Index(lrange(1, 11))) df['foo'] = np.zeros(10, dtype=np.float64) df['bar'] = np.zeros(10, dtype=np.complex) # invalid def f(): with catch_warnings(record=True): df.ix[2:5, 'bar'] = np.array([2.33j, 1.23 + 0.1j, 2.2]) self.assertRaises(ValueError, f) def f(): df.loc[df.index[2:5], 'bar'] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0]) self.assertRaises(ValueError, f) # valid df.loc[df.index[2:6], 'bar'] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0]) result = df.loc[df.index[2:6], 'bar'] expected = Series([2.33j, 1.23 + 0.1j, 2.2, 1.0], index=[3, 4, 5, 6], name='bar') tm.assert_series_equal(result, expected) # dtype getting changed? df = DataFrame(index=Index(lrange(1, 11))) df['foo'] = np.zeros(10, dtype=np.float64) df['bar'] = np.zeros(10, dtype=np.complex) def f(): df[2:5] = np.arange(1, 4) * 1j self.assertRaises(ValueError, f) def test_iloc_setitem_series(self): df = DataFrame(np.random.randn(10, 4), index=list('abcdefghij'), columns=list('ABCD')) df.iloc[1, 1] = 1 result = df.iloc[1, 1] self.assertEqual(result, 1) df.iloc[:, 2:3] = 0 expected = df.iloc[:, 2:3] result = df.iloc[:, 2:3] tm.assert_frame_equal(result, expected) s = Series(np.random.randn(10), index=lrange(0, 20, 2)) s.iloc[1] = 1 result = s.iloc[1] self.assertEqual(result, 1) s.iloc[:4] = 0 expected = s.iloc[:4] result = s.iloc[:4] tm.assert_series_equal(result, expected) s = Series([-1] * 6) s.iloc[0::2] = [0, 2, 4] s.iloc[1::2] = [1, 3, 5] result = s expected = Series([0, 1, 2, 3, 4, 5]) tm.assert_series_equal(result, expected) def test_iloc_setitem_list_of_lists(self): # GH 7551 # list-of-list is set incorrectly in mixed vs. single dtyped frames df = DataFrame(dict(A=np.arange(5, dtype='int64'), B=np.arange(5, 10, dtype='int64'))) df.iloc[2:4] = [[10, 11], [12, 13]] expected = DataFrame(dict(A=[0, 1, 10, 12, 4], B=[5, 6, 11, 13, 9])) tm.assert_frame_equal(df, expected) df = DataFrame( dict(A=list('abcde'), B=np.arange(5, 10, dtype='int64'))) df.iloc[2:4] = [['x', 11], ['y', 13]] expected = DataFrame(dict(A=['a', 'b', 'x', 'y', 'e'], B=[5, 6, 11, 13, 9])) tm.assert_frame_equal(df, expected) def test_ix_general(self): # ix general issues # GH 2817 data = {'amount': {0: 700, 1: 600, 2: 222, 3: 333, 4: 444}, 'col': {0: 3.5, 1: 3.5, 2: 4.0, 3: 4.0, 4: 4.0}, 'year': {0: 2012, 1: 2011, 2: 2012, 3: 2012, 4: 2012}} df = DataFrame(data).set_index(keys=['col', 'year']) key = 4.0, 2012 # emits a PerformanceWarning, ok with self.assert_produces_warning(PerformanceWarning): tm.assert_frame_equal(df.loc[key], df.iloc[2:]) # this is ok df.sort_index(inplace=True) res = df.loc[key] # col has float dtype, result should be Float64Index index = MultiIndex.from_arrays([[4.] * 3, [2012] * 3], names=['col', 'year']) expected = DataFrame({'amount': [222, 333, 444]}, index=index) tm.assert_frame_equal(res, expected) def test_ix_weird_slicing(self): # http://stackoverflow.com/q/17056560/1240268 df = DataFrame({'one': [1, 2, 3, np.nan, np.nan], 'two': [1, 2, 3, 4, 5]}) df.loc[df['one'] > 1, 'two'] = -df['two'] expected = DataFrame({'one': {0: 1.0, 1: 2.0, 2: 3.0, 3: nan, 4: nan}, 'two': {0: 1, 1: -2, 2: -3, 3: 4, 4: 5}}) tm.assert_frame_equal(df, expected) def test_loc_coerceion(self): # 12411 df = DataFrame({'date': [pd.Timestamp('20130101').tz_localize('UTC'), pd.NaT]}) expected = df.dtypes result = df.iloc[[0]] tm.assert_series_equal(result.dtypes, expected) result = df.iloc[[1]] tm.assert_series_equal(result.dtypes, expected) # 12045 import datetime df = DataFrame({'date': [datetime.datetime(2012, 1, 1), datetime.datetime(1012, 1, 2)]}) expected = df.dtypes result = df.iloc[[0]] tm.assert_series_equal(result.dtypes, expected) result = df.iloc[[1]] tm.assert_series_equal(result.dtypes, expected) # 11594 df = DataFrame({'text': ['some words'] + [None] * 9}) expected = df.dtypes result = df.iloc[0:2] tm.assert_series_equal(result.dtypes, expected) result = df.iloc[3:] tm.assert_series_equal(result.dtypes, expected) def test_setitem_dtype_upcast(self): # GH3216 df = DataFrame([{"a": 1}, {"a": 3, "b": 2}]) df['c'] = np.nan self.assertEqual(df['c'].dtype, np.float64) df.loc[0, 'c'] = 'foo' expected = DataFrame([{"a": 1, "c": 'foo'}, {"a": 3, "b": 2, "c": np.nan}]) tm.assert_frame_equal(df, expected) # GH10280 df = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=list('ab'), columns=['foo', 'bar', 'baz']) for val in [3.14, 'wxyz']: left = df.copy() left.loc['a', 'bar'] = val right = DataFrame([[0, val, 2], [3, 4, 5]], index=list('ab'), columns=['foo', 'bar', 'baz']) tm.assert_frame_equal(left, right) self.assertTrue(is_integer_dtype(left['foo'])) self.assertTrue(is_integer_dtype(left['baz'])) left = DataFrame(np.arange(6, dtype='int64').reshape(2, 3) / 10.0, index=list('ab'), columns=['foo', 'bar', 'baz']) left.loc['a', 'bar'] = 'wxyz' right = DataFrame([[0, 'wxyz', .2], [.3, .4, .5]], index=list('ab'), columns=['foo', 'bar', 'baz']) tm.assert_frame_equal(left, right) self.assertTrue(is_float_dtype(left['foo'])) self.assertTrue(is_float_dtype(left['baz'])) def test_setitem_iloc(self): # setitem with an iloc list df = DataFrame(np.arange(9).reshape((3, 3)), index=["A", "B", "C"], columns=["A", "B", "C"]) df.iloc[[0, 1], [1, 2]] df.iloc[[0, 1], [1, 2]] += 100 expected = DataFrame( np.array([0, 101, 102, 3, 104, 105, 6, 7, 8]).reshape((3, 3)), index=["A", "B", "C"], columns=["A", "B", "C"]) tm.assert_frame_equal(df, expected) def test_dups_fancy_indexing(self): # GH 3455 from pandas.util.testing import makeCustomDataframe as mkdf df = mkdf(10, 3) df.columns = ['a', 'a', 'b'] result = df[['b', 'a']].columns expected = Index(['b', 'a', 'a']) self.assert_index_equal(result, expected) # across dtypes df = DataFrame([[1, 2, 1., 2., 3., 'foo', 'bar']], columns=list('aaaaaaa')) df.head() str(df) result = DataFrame([[1, 2, 1., 2., 3., 'foo', 'bar']]) result.columns = list('aaaaaaa') # TODO(wesm): unused? df_v = df.iloc[:, 4] # noqa res_v = result.iloc[:, 4] # noqa tm.assert_frame_equal(df, result) # GH 3561, dups not in selected order df = DataFrame( {'test': [5, 7, 9, 11], 'test1': [4., 5, 6, 7], 'other': list('abcd')}, index=['A', 'A', 'B', 'C']) rows = ['C', 'B'] expected = DataFrame( {'test': [11, 9], 'test1': [7., 6], 'other': ['d', 'c']}, index=rows) result = df.loc[rows] tm.assert_frame_equal(result, expected) result = df.loc[Index(rows)] tm.assert_frame_equal(result, expected) rows = ['C', 'B', 'E'] expected = DataFrame( {'test': [11, 9, np.nan], 'test1': [7., 6, np.nan], 'other': ['d', 'c', np.nan]}, index=rows) result = df.loc[rows] tm.assert_frame_equal(result, expected) # see GH5553, make sure we use the right indexer rows = ['F', 'G', 'H', 'C', 'B', 'E'] expected = DataFrame({'test': [np.nan, np.nan, np.nan, 11, 9, np.nan], 'test1': [np.nan, np.nan, np.nan, 7., 6, np.nan], 'other': [np.nan, np.nan, np.nan, 'd', 'c', np.nan]}, index=rows) result = df.loc[rows] tm.assert_frame_equal(result, expected) # inconsistent returns for unique/duplicate indices when values are # missing df = DataFrame(randn(4, 3), index=list('ABCD')) expected = df.ix[['E']] dfnu = DataFrame(randn(5, 3), index=list('AABCD')) result = dfnu.ix[['E']] tm.assert_frame_equal(result, expected) # ToDo: check_index_type can be True after GH 11497 # GH 4619; duplicate indexer with missing label df = DataFrame({"A": [0, 1, 2]}) result = df.ix[[0, 8, 0]] expected = DataFrame({"A": [0, np.nan, 0]}, index=[0, 8, 0]) tm.assert_frame_equal(result, expected, check_index_type=False) df = DataFrame({"A": list('abc')}) result = df.ix[[0, 8, 0]] expected = DataFrame({"A": ['a', np.nan, 'a']}, index=[0, 8, 0]) tm.assert_frame_equal(result, expected, check_index_type=False) # non unique with non unique selector df = DataFrame({'test': [5, 7, 9, 11]}, index=['A', 'A', 'B', 'C']) expected = DataFrame( {'test': [5, 7, 5, 7, np.nan]}, index=['A', 'A', 'A', 'A', 'E']) result = df.ix[['A', 'A', 'E']] tm.assert_frame_equal(result, expected) # GH 5835 # dups on index and missing values df = DataFrame( np.random.randn(5, 5), columns=['A', 'B', 'B', 'B', 'A']) expected = pd.concat( [df.ix[:, ['A', 'B']], DataFrame(np.nan, columns=['C'], index=df.index)], axis=1) result = df.ix[:, ['A', 'B', 'C']] tm.assert_frame_equal(result, expected) # GH 6504, multi-axis indexing df = DataFrame(np.random.randn(9, 2), index=[1, 1, 1, 2, 2, 2, 3, 3, 3], columns=['a', 'b']) expected = df.iloc[0:6] result = df.loc[[1, 2]] tm.assert_frame_equal(result, expected) expected = df result = df.loc[:, ['a', 'b']] tm.assert_frame_equal(result, expected) expected = df.iloc[0:6, :] result = df.loc[[1, 2], ['a', 'b']] tm.assert_frame_equal(result, expected) def test_indexing_mixed_frame_bug(self): # GH3492 df = DataFrame({'a': {1: 'aaa', 2: 'bbb', 3: 'ccc'}, 'b': {1: 111, 2: 222, 3: 333}}) # this works, new column is created correctly df['test'] = df['a'].apply(lambda x: '_' if x == 'aaa' else x) # this does not work, ie column test is not changed idx = df['test'] == '_' temp = df.ix[idx, 'a'].apply(lambda x: '-----' if x == 'aaa' else x) df.ix[idx, 'test'] = temp self.assertEqual(df.iloc[0, 2], '-----') # if I look at df, then element [0,2] equals '_'. If instead I type # df.ix[idx,'test'], I get '-----', finally by typing df.iloc[0,2] I # get '_'. def test_multitype_list_index_access(self): # GH 10610 df = pd.DataFrame(np.random.random((10, 5)), columns=["a"] + [20, 21, 22, 23]) with self.assertRaises(KeyError): df[[22, 26, -8]] self.assertEqual(df[21].shape[0], df.shape[0]) def test_set_index_nan(self): # GH 3586 df = DataFrame({'PRuid': {17: 'nonQC', 18: 'nonQC', 19: 'nonQC', 20: '10', 21: '11', 22: '12', 23: '13', 24: '24', 25: '35', 26: '46', 27: '47', 28: '48', 29: '59', 30: '10'}, 'QC': {17: 0.0, 18: 0.0, 19: 0.0, 20: nan, 21: nan, 22: nan, 23: nan, 24: 1.0, 25: nan, 26: nan, 27: nan, 28: nan, 29: nan, 30: nan}, 'data': {17: 7.9544899999999998, 18: 8.0142609999999994, 19: 7.8591520000000008, 20: 0.86140349999999999, 21: 0.87853110000000001, 22: 0.8427041999999999, 23: 0.78587700000000005, 24: 0.73062459999999996, 25: 0.81668560000000001, 26: 0.81927080000000008, 27: 0.80705009999999999, 28: 0.81440240000000008, 29: 0.80140849999999997, 30: 0.81307740000000006}, 'year': {17: 2006, 18: 2007, 19: 2008, 20: 1985, 21: 1985, 22: 1985, 23: 1985, 24: 1985, 25: 1985, 26: 1985, 27: 1985, 28: 1985, 29: 1985, 30: 1986}}).reset_index() result = df.set_index(['year', 'PRuid', 'QC']).reset_index().reindex( columns=df.columns) tm.assert_frame_equal(result, df) def test_multi_nan_indexing(self): # GH 3588 df = DataFrame({"a": ['R1', 'R2', np.nan, 'R4'], 'b': ["C1", "C2", "C3", "C4"], "c": [10, 15, np.nan, 20]}) result = df.set_index(['a', 'b'], drop=False) expected = DataFrame({"a": ['R1', 'R2', np.nan, 'R4'], 'b': ["C1", "C2", "C3", "C4"], "c": [10, 15, np.nan, 20]}, index=[Index(['R1', 'R2', np.nan, 'R4'], name='a'), Index(['C1', 'C2', 'C3', 'C4'], name='b')]) tm.assert_frame_equal(result, expected) def test_multi_assign(self): # GH 3626, an assignement of a sub-df to a df df = DataFrame({'FC': ['a', 'b', 'a', 'b', 'a', 'b'], 'PF': [0, 0, 0, 0, 1, 1], 'col1': lrange(6), 'col2': lrange(6, 12)}) df.ix[1, 0] = np.nan df2 = df.copy() mask = ~df2.FC.isnull() cols = ['col1', 'col2'] dft = df2 * 2 dft.ix[3, 3] = np.nan expected = DataFrame({'FC': ['a', np.nan, 'a', 'b', 'a', 'b'], 'PF': [0, 0, 0, 0, 1, 1], 'col1': Series([0, 1, 4, 6, 8, 10]), 'col2': [12, 7, 16, np.nan, 20, 22]}) # frame on rhs df2.ix[mask, cols] = dft.ix[mask, cols] tm.assert_frame_equal(df2, expected) df2.ix[mask, cols] = dft.ix[mask, cols] tm.assert_frame_equal(df2, expected) # with an ndarray on rhs df2 = df.copy() df2.ix[mask, cols] = dft.ix[mask, cols].values tm.assert_frame_equal(df2, expected) df2.ix[mask, cols] = dft.ix[mask, cols].values tm.assert_frame_equal(df2, expected) # broadcasting on the rhs is required df = DataFrame(dict(A=[1, 2, 0, 0, 0], B=[0, 0, 0, 10, 11], C=[ 0, 0, 0, 10, 11], D=[3, 4, 5, 6, 7])) expected = df.copy() mask = expected['A'] == 0 for col in ['A', 'B']: expected.loc[mask, col] = df['D'] df.loc[df['A'] == 0, ['A', 'B']] = df['D'] tm.assert_frame_equal(df, expected) def test_ix_assign_column_mixed(self): # GH #1142 df = DataFrame(tm.getSeriesData()) df['foo'] = 'bar' orig = df.ix[:, 'B'].copy() df.ix[:, 'B'] = df.ix[:, 'B'] + 1 tm.assert_series_equal(df.B, orig + 1) # GH 3668, mixed frame with series value df = DataFrame({'x': lrange(10), 'y': lrange(10, 20), 'z': 'bar'}) expected = df.copy() for i in range(5): indexer = i * 2 v = 1000 + i * 200 expected.ix[indexer, 'y'] = v self.assertEqual(expected.ix[indexer, 'y'], v) df.ix[df.x % 2 == 0, 'y'] = df.ix[df.x % 2 == 0, 'y'] * 100 tm.assert_frame_equal(df, expected) # GH 4508, making sure consistency of assignments df = DataFrame({'a': [1, 2, 3], 'b': [0, 1, 2]}) df.ix[[0, 2, ], 'b'] = [100, -100] expected = DataFrame({'a': [1, 2, 3], 'b': [100, 1, -100]}) tm.assert_frame_equal(df, expected) df = pd.DataFrame({'a': lrange(4)}) df['b'] = np.nan df.ix[[1, 3], 'b'] = [100, -100] expected = DataFrame({'a': [0, 1, 2, 3], 'b': [np.nan, 100, np.nan, -100]}) tm.assert_frame_equal(df, expected) # ok, but chained assignments are dangerous # if we turn off chained assignement it will work with option_context('chained_assignment', None): df = pd.DataFrame({'a': lrange(4)}) df['b'] = np.nan df['b'].ix[[1, 3]] = [100, -100] tm.assert_frame_equal(df, expected) def test_ix_get_set_consistency(self): # GH 4544 # ix/loc get/set not consistent when # a mixed int/string index df = DataFrame(np.arange(16).reshape((4, 4)), columns=['a', 'b', 8, 'c'], index=['e', 7, 'f', 'g']) self.assertEqual(df.ix['e', 8], 2) self.assertEqual(df.loc['e', 8], 2) df.ix['e', 8] = 42 self.assertEqual(df.ix['e', 8], 42) self.assertEqual(df.loc['e', 8], 42) df.loc['e', 8] = 45 self.assertEqual(df.ix['e', 8], 45) self.assertEqual(df.loc['e', 8], 45) def test_setitem_list(self): # GH 6043 # ix with a list df = DataFrame(index=[0, 1], columns=[0]) df.ix[1, 0] = [1, 2, 3] df.ix[1, 0] = [1, 2] result = DataFrame(index=[0, 1], columns=[0]) result.ix[1, 0] = [1, 2] tm.assert_frame_equal(result, df) # ix with an object class TO(object): def __init__(self, value): self.value = value def __str__(self): return "[{0}]".format(self.value) __repr__ = __str__ def __eq__(self, other): return self.value == other.value def view(self): return self df = DataFrame(index=[0, 1], columns=[0]) df.ix[1, 0] = TO(1) df.ix[1, 0] = TO(2) result = DataFrame(index=[0, 1], columns=[0]) result.ix[1, 0] = TO(2) tm.assert_frame_equal(result, df) # remains object dtype even after setting it back df = DataFrame(index=[0, 1], columns=[0]) df.ix[1, 0] = TO(1) df.ix[1, 0] = np.nan result = DataFrame(index=[0, 1], columns=[0]) tm.assert_frame_equal(result, df) def test_iloc_mask(self): # GH 3631, iloc with a mask (of a series) should raise df = DataFrame(lrange(5), list('ABCDE'), columns=['a']) mask = (df.a % 2 == 0) self.assertRaises(ValueError, df.iloc.__getitem__, tuple([mask])) mask.index = lrange(len(mask)) self.assertRaises(NotImplementedError, df.iloc.__getitem__, tuple([mask])) # ndarray ok result = df.iloc[np.array([True] * len(mask), dtype=bool)] tm.assert_frame_equal(result, df) # the possibilities locs = np.arange(4) nums = 2 ** locs reps = lmap(bin, nums) df = DataFrame({'locs': locs, 'nums': nums}, reps) expected = { (None, ''): '0b1100', (None, '.loc'): '0b1100', (None, '.iloc'): '0b1100', ('index', ''): '0b11', ('index', '.loc'): '0b11', ('index', '.iloc'): ('iLocation based boolean indexing ' 'cannot use an indexable as a mask'), ('locs', ''): 'Unalignable boolean Series provided as indexer ' '(index of the boolean Series and of the indexed ' 'object do not match', ('locs', '.loc'): 'Unalignable boolean Series provided as indexer ' '(index of the boolean Series and of the ' 'indexed object do not match', ('locs', '.iloc'): ('iLocation based boolean indexing on an ' 'integer type is not available'), } # UserWarnings from reindex of a boolean mask with warnings.catch_warnings(record=True): result = dict() for idx in [None, 'index', 'locs']: mask = (df.nums > 2).values if idx: mask = Series(mask, list(reversed(getattr(df, idx)))) for method in ['', '.loc', '.iloc']: try: if method: accessor = getattr(df, method[1:]) else: accessor = df ans = str(bin(accessor[mask]['nums'].sum())) except Exception as e: ans = str(e) key = tuple([idx, method]) r = expected.get(key) if r != ans: raise AssertionError( "[%s] does not match [%s], received [%s]" % (key, ans, r)) def test_ix_slicing_strings(self): # GH3836 data = {'Classification': ['SA EQUITY CFD', 'bbb', 'SA EQUITY', 'SA SSF', 'aaa'], 'Random': [1, 2, 3, 4, 5], 'X': ['correct', 'wrong', 'correct', 'correct', 'wrong']} df = DataFrame(data) x = df[~df.Classification.isin(['SA EQUITY CFD', 'SA EQUITY', 'SA SSF' ])] df.ix[x.index, 'X'] = df['Classification'] expected = DataFrame({'Classification': {0: 'SA EQUITY CFD', 1: 'bbb', 2: 'SA EQUITY', 3: 'SA SSF', 4: 'aaa'}, 'Random': {0: 1, 1: 2, 2: 3, 3: 4, 4: 5}, 'X': {0: 'correct', 1: 'bbb', 2: 'correct', 3: 'correct', 4: 'aaa'}}) # bug was 4: 'bbb' tm.assert_frame_equal(df, expected) def test_non_unique_loc(self): # GH3659 # non-unique indexer with loc slice # https://groups.google.com/forum/?fromgroups#!topic/pydata/zTm2No0crYs # these are going to raise becuase the we are non monotonic df = DataFrame({'A': [1, 2, 3, 4, 5, 6], 'B': [3, 4, 5, 6, 7, 8]}, index=[0, 1, 0, 1, 2, 3]) self.assertRaises(KeyError, df.loc.__getitem__, tuple([slice(1, None)])) self.assertRaises(KeyError, df.loc.__getitem__, tuple([slice(0, None)])) self.assertRaises(KeyError, df.loc.__getitem__, tuple([slice(1, 2)])) # monotonic are ok df = DataFrame({'A': [1, 2, 3, 4, 5, 6], 'B': [3, 4, 5, 6, 7, 8]}, index=[0, 1, 0, 1, 2, 3]).sort_index(axis=0) result = df.loc[1:] expected = DataFrame({'A': [2, 4, 5, 6], 'B': [4, 6, 7, 8]}, index=[1, 1, 2, 3]) tm.assert_frame_equal(result, expected) result = df.loc[0:] tm.assert_frame_equal(result, df) result = df.loc[1:2] expected = DataFrame({'A': [2, 4, 5], 'B': [4, 6, 7]}, index=[1, 1, 2]) tm.assert_frame_equal(result, expected) def test_loc_name(self): # GH 3880 df = DataFrame([[1, 1], [1, 1]]) df.index.name = 'index_name' result = df.iloc[[0, 1]].index.name self.assertEqual(result, 'index_name') result = df.ix[[0, 1]].index.name self.assertEqual(result, 'index_name') result = df.loc[[0, 1]].index.name self.assertEqual(result, 'index_name') def test_iloc_non_unique_indexing(self): # GH 4017, non-unique indexing (on the axis) df = DataFrame({'A': [0.1] * 3000, 'B': [1] * 3000}) idx = np.array(lrange(30)) * 99 expected = df.iloc[idx] df3 = pd.concat([df, 2 * df, 3 * df]) result = df3.iloc[idx] tm.assert_frame_equal(result, expected) df2 = DataFrame({'A': [0.1] * 1000, 'B': [1] * 1000}) df2 = pd.concat([df2, 2 * df2, 3 * df2]) sidx = df2.index.to_series() expected = df2.iloc[idx[idx <= sidx.max()]] new_list = [] for r, s in expected.iterrows(): new_list.append(s) new_list.append(s * 2) new_list.append(s * 3) expected = DataFrame(new_list) expected = pd.concat([expected, DataFrame(index=idx[idx > sidx.max()]) ]) result = df2.loc[idx] tm.assert_frame_equal(result, expected, check_index_type=False) def test_string_slice(self): # GH 14424 # string indexing against datetimelike with object # dtype should properly raises KeyError df = pd.DataFrame([1], pd.Index([pd.Timestamp('2011-01-01')], dtype=object)) self.assertTrue(df.index.is_all_dates) with tm.assertRaises(KeyError): df['2011'] with tm.assertRaises(KeyError): df.loc['2011', 0] df = pd.DataFrame() self.assertFalse(df.index.is_all_dates) with tm.assertRaises(KeyError): df['2011'] with tm.assertRaises(KeyError): df.loc['2011', 0] def test_mi_access(self): # GH 4145 data = """h1 main h3 sub h5 0 a A 1 A1 1 1 b B 2 B1 2 2 c B 3 A1 3 3 d A 4 B2 4 4 e A 5 B2 5 5 f B 6 A2 6 """ df = pd.read_csv(StringIO(data), sep=r'\s+', index_col=0) df2 = df.set_index(['main', 'sub']).T.sort_index(1) index = Index(['h1', 'h3', 'h5']) columns = MultiIndex.from_tuples([('A', 'A1')], names=['main', 'sub']) expected = DataFrame([['a', 1, 1]], index=columns, columns=index).T result = df2.loc[:, ('A', 'A1')] tm.assert_frame_equal(result, expected) result = df2[('A', 'A1')] tm.assert_frame_equal(result, expected) # GH 4146, not returning a block manager when selecting a unique index # from a duplicate index # as of 4879, this returns a Series (which is similar to what happens # with a non-unique) expected = Series(['a', 1, 1], index=['h1', 'h3', 'h5'], name='A1') result = df2['A']['A1'] tm.assert_series_equal(result, expected) # selecting a non_unique from the 2nd level expected = DataFrame([['d', 4, 4], ['e', 5, 5]], index=Index(['B2', 'B2'], name='sub'), columns=['h1', 'h3', 'h5'], ).T result = df2['A']['B2'] tm.assert_frame_equal(result, expected) def test_non_unique_loc_memory_error(self): # GH 4280 # non_unique index with a large selection triggers a memory error columns = list('ABCDEFG') def gen_test(l, l2): return pd.concat([DataFrame(randn(l, len(columns)), index=lrange(l), columns=columns), DataFrame(np.ones((l2, len(columns))), index=[0] * l2, columns=columns)]) def gen_expected(df, mask): l = len(mask) return pd.concat([df.take([0], convert=False), DataFrame(np.ones((l, len(columns))), index=[0] * l, columns=columns), df.take(mask[1:], convert=False)]) df = gen_test(900, 100) self.assertFalse(df.index.is_unique) mask = np.arange(100) result = df.loc[mask] expected = gen_expected(df, mask) tm.assert_frame_equal(result, expected) df = gen_test(900000, 100000) self.assertFalse(df.index.is_unique) mask = np.arange(100000) result = df.loc[mask] expected = gen_expected(df, mask) tm.assert_frame_equal(result, expected) def test_astype_assignment(self): # GH4312 (iloc) df_orig = DataFrame([['1', '2', '3', '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) df = df_orig.copy() df.iloc[:, 0:2] = df.iloc[:, 0:2].astype(np.int64) expected = DataFrame([[1, 2, '3', '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) tm.assert_frame_equal(df, expected) df = df_orig.copy() df.iloc[:, 0:2] = df.iloc[:, 0:2]._convert(datetime=True, numeric=True) expected = DataFrame([[1, 2, '3', '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) tm.assert_frame_equal(df, expected) # GH5702 (loc) df = df_orig.copy() df.loc[:, 'A'] = df.loc[:, 'A'].astype(np.int64) expected = DataFrame([[1, '2', '3', '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc[:, ['B', 'C']] = df.loc[:, ['B', 'C']].astype(np.int64) expected = DataFrame([['1', 2, 3, '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) tm.assert_frame_equal(df, expected) # full replacements / no nans df = DataFrame({'A': [1., 2., 3., 4.]}) df.iloc[:, 0] = df['A'].astype(np.int64) expected = DataFrame({'A': [1, 2, 3, 4]}) tm.assert_frame_equal(df, expected) df = DataFrame({'A': [1., 2., 3., 4.]}) df.loc[:, 'A'] = df['A'].astype(np.int64) expected = DataFrame({'A': [1, 2, 3, 4]}) tm.assert_frame_equal(df, expected) def test_astype_assignment_with_dups(self): # GH 4686 # assignment with dups that has a dtype change cols = pd.MultiIndex.from_tuples([('A', '1'), ('B', '1'), ('A', '2')]) df = DataFrame(np.arange(3).reshape((1, 3)), columns=cols, dtype=object) index = df.index.copy() df['A'] = df['A'].astype(np.float64) self.assert_index_equal(df.index, index) # TODO(wesm): unused variables # result = df.get_dtype_counts().sort_index() # expected = Series({'float64': 2, 'object': 1}).sort_index() def test_dups_loc(self): # GH4726 # dup indexing with iloc/loc df = DataFrame([[1, 2, 'foo', 'bar', Timestamp('20130101')]], columns=['a', 'a', 'a', 'a', 'a'], index=[1]) expected = Series([1, 2, 'foo', 'bar', Timestamp('20130101')], index=['a', 'a', 'a', 'a', 'a'], name=1) result = df.iloc[0] tm.assert_series_equal(result, expected) result = df.loc[1] tm.assert_series_equal(result, expected) def test_partial_setting(self): # GH2578, allow ix and friends to partially set # series s_orig = Series([1, 2, 3]) s = s_orig.copy() s[5] = 5 expected = Series([1, 2, 3, 5], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) s = s_orig.copy() s.loc[5] = 5 expected = Series([1, 2, 3, 5], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) s = s_orig.copy() s[5] = 5. expected = Series([1, 2, 3, 5.], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) s = s_orig.copy() s.loc[5] = 5. expected = Series([1, 2, 3, 5.], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) # iloc/iat raise s = s_orig.copy() def f(): s.iloc[3] = 5. self.assertRaises(IndexError, f) def f(): s.iat[3] = 5. self.assertRaises(IndexError, f) # ## frame ## df_orig = DataFrame( np.arange(6).reshape(3, 2), columns=['A', 'B'], dtype='int64') # iloc/iat raise df = df_orig.copy() def f(): df.iloc[4, 2] = 5. self.assertRaises(IndexError, f) def f(): df.iat[4, 2] = 5. self.assertRaises(IndexError, f) # row setting where it exists expected = DataFrame(dict({'A': [0, 4, 4], 'B': [1, 5, 5]})) df = df_orig.copy() df.iloc[1] = df.iloc[2] tm.assert_frame_equal(df, expected) expected = DataFrame(dict({'A': [0, 4, 4], 'B': [1, 5, 5]})) df = df_orig.copy() df.loc[1] = df.loc[2] tm.assert_frame_equal(df, expected) # like 2578, partial setting with dtype preservation expected = DataFrame(dict({'A': [0, 2, 4, 4], 'B': [1, 3, 5, 5]})) df = df_orig.copy() df.loc[3] = df.loc[2] tm.assert_frame_equal(df, expected) # single dtype frame, overwrite expected = DataFrame(dict({'A': [0, 2, 4], 'B': [0, 2, 4]})) df = df_orig.copy() df.ix[:, 'B'] = df.ix[:, 'A'] tm.assert_frame_equal(df, expected) # mixed dtype frame, overwrite expected = DataFrame(dict({'A': [0, 2, 4], 'B': Series([0, 2, 4])})) df = df_orig.copy() df['B'] = df['B'].astype(np.float64) df.ix[:, 'B'] = df.ix[:, 'A'] tm.assert_frame_equal(df, expected) # single dtype frame, partial setting expected = df_orig.copy() expected['C'] = df['A'] df = df_orig.copy() df.ix[:, 'C'] = df.ix[:, 'A'] tm.assert_frame_equal(df, expected) # mixed frame, partial setting expected = df_orig.copy() expected['C'] = df['A'] df = df_orig.copy() df.ix[:, 'C'] = df.ix[:, 'A'] tm.assert_frame_equal(df, expected) # ## panel ## p_orig = Panel(np.arange(16).reshape(2, 4, 2), items=['Item1', 'Item2'], major_axis=pd.date_range('2001/1/12', periods=4), minor_axis=['A', 'B'], dtype='float64') # panel setting via item p_orig = Panel(np.arange(16).reshape(2, 4, 2), items=['Item1', 'Item2'], major_axis=pd.date_range('2001/1/12', periods=4), minor_axis=['A', 'B'], dtype='float64') expected = p_orig.copy() expected['Item3'] = expected['Item1'] p = p_orig.copy() p.loc['Item3'] = p['Item1'] tm.assert_panel_equal(p, expected) # panel with aligned series expected = p_orig.copy() expected = expected.transpose(2, 1, 0) expected['C'] = DataFrame({'Item1': [30, 30, 30, 30], 'Item2': [32, 32, 32, 32]}, index=p_orig.major_axis) expected = expected.transpose(2, 1, 0) p = p_orig.copy() p.loc[:, :, 'C'] = Series([30, 32], index=p_orig.items) tm.assert_panel_equal(p, expected) # GH 8473 dates = date_range('1/1/2000', periods=8) df_orig = DataFrame(np.random.randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D']) expected = pd.concat([df_orig, DataFrame( {'A': 7}, index=[dates[-1] + 1])]) df = df_orig.copy() df.loc[dates[-1] + 1, 'A'] = 7 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.at[dates[-1] + 1, 'A'] = 7 tm.assert_frame_equal(df, expected) exp_other = DataFrame({0: 7}, index=[dates[-1] + 1]) expected = pd.concat([df_orig, exp_other], axis=1) df = df_orig.copy() df.loc[dates[-1] + 1, 0] = 7 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.at[dates[-1] + 1, 0] = 7 tm.assert_frame_equal(df, expected) def test_partial_setting_mixed_dtype(self): # in a mixed dtype environment, try to preserve dtypes # by appending df = DataFrame([[True, 1], [False, 2]], columns=["female", "fitness"]) s = df.loc[1].copy() s.name = 2 expected = df.append(s) df.loc[2] = df.loc[1] tm.assert_frame_equal(df, expected) # columns will align df = DataFrame(columns=['A', 'B']) df.loc[0] = Series(1, index=range(4)) tm.assert_frame_equal(df, DataFrame(columns=['A', 'B'], index=[0])) # columns will align df = DataFrame(columns=['A', 'B']) df.loc[0] = Series(1, index=['B']) exp = DataFrame([[np.nan, 1]], columns=['A', 'B'], index=[0], dtype='float64') tm.assert_frame_equal(df, exp) # list-like must conform df = DataFrame(columns=['A', 'B']) def f(): df.loc[0] = [1, 2, 3] self.assertRaises(ValueError, f) # these are coerced to float unavoidably (as its a list-like to begin) df = DataFrame(columns=['A', 'B']) df.loc[3] = [6, 7] exp = DataFrame([[6, 7]], index=[3], columns=['A', 'B'], dtype='float64') tm.assert_frame_equal(df, exp) def test_series_partial_set(self): # partial set with new index # Regression from GH4825 ser = Series([0.1, 0.2], index=[1, 2]) # loc expected = Series([np.nan, 0.2, np.nan], index=[3, 2, 3]) result = ser.loc[[3, 2, 3]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([np.nan, 0.2, np.nan, np.nan], index=[3, 2, 3, 'x']) result = ser.loc[[3, 2, 3, 'x']] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.2, 0.2, 0.1], index=[2, 2, 1]) result = ser.loc[[2, 2, 1]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.2, 0.2, np.nan, 0.1], index=[2, 2, 'x', 1]) result = ser.loc[[2, 2, 'x', 1]] tm.assert_series_equal(result, expected, check_index_type=True) # raises as nothing in in the index self.assertRaises(KeyError, lambda: ser.loc[[3, 3, 3]]) expected = Series([0.2, 0.2, np.nan], index=[2, 2, 3]) result = ser.loc[[2, 2, 3]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.3, np.nan, np.nan], index=[3, 4, 4]) result = Series([0.1, 0.2, 0.3], index=[1, 2, 3]).loc[[3, 4, 4]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([np.nan, 0.3, 0.3], index=[5, 3, 3]) result = Series([0.1, 0.2, 0.3, 0.4], index=[1, 2, 3, 4]).loc[[5, 3, 3]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([np.nan, 0.4, 0.4], index=[5, 4, 4]) result = Series([0.1, 0.2, 0.3, 0.4], index=[1, 2, 3, 4]).loc[[5, 4, 4]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.4, np.nan, np.nan], index=[7, 2, 2]) result = Series([0.1, 0.2, 0.3, 0.4], index=[4, 5, 6, 7]).loc[[7, 2, 2]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.4, np.nan, np.nan], index=[4, 5, 5]) result = Series([0.1, 0.2, 0.3, 0.4], index=[1, 2, 3, 4]).loc[[4, 5, 5]] tm.assert_series_equal(result, expected, check_index_type=True) # iloc expected = Series([0.2, 0.2, 0.1, 0.1], index=[2, 2, 1, 1]) result = ser.iloc[[1, 1, 0, 0]] tm.assert_series_equal(result, expected, check_index_type=True) def test_series_partial_set_with_name(self): # GH 11497 idx = Index([1, 2], dtype='int64', name='idx') ser = Series([0.1, 0.2], index=idx, name='s') # loc exp_idx = Index([3, 2, 3], dtype='int64', name='idx') expected = Series([np.nan, 0.2, np.nan], index=exp_idx, name='s') result = ser.loc[[3, 2, 3]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([3, 2, 3, 'x'], dtype='object', name='idx') expected = Series([np.nan, 0.2, np.nan, np.nan], index=exp_idx, name='s') result = ser.loc[[3, 2, 3, 'x']] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([2, 2, 1], dtype='int64', name='idx') expected = Series([0.2, 0.2, 0.1], index=exp_idx, name='s') result = ser.loc[[2, 2, 1]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([2, 2, 'x', 1], dtype='object', name='idx') expected = Series([0.2, 0.2, np.nan, 0.1], index=exp_idx, name='s') result = ser.loc[[2, 2, 'x', 1]] tm.assert_series_equal(result, expected, check_index_type=True) # raises as nothing in in the index self.assertRaises(KeyError, lambda: ser.loc[[3, 3, 3]]) exp_idx = Index([2, 2, 3], dtype='int64', name='idx') expected = Series([0.2, 0.2, np.nan], index=exp_idx, name='s') result = ser.loc[[2, 2, 3]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([3, 4, 4], dtype='int64', name='idx') expected = Series([0.3, np.nan, np.nan], index=exp_idx, name='s') idx = Index([1, 2, 3], dtype='int64', name='idx') result = Series([0.1, 0.2, 0.3], index=idx, name='s').loc[[3, 4, 4]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([5, 3, 3], dtype='int64', name='idx') expected = Series([np.nan, 0.3, 0.3], index=exp_idx, name='s') idx = Index([1, 2, 3, 4], dtype='int64', name='idx') result = Series([0.1, 0.2, 0.3, 0.4], index=idx, name='s').loc[[5, 3, 3]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([5, 4, 4], dtype='int64', name='idx') expected = Series([np.nan, 0.4, 0.4], index=exp_idx, name='s') idx = Index([1, 2, 3, 4], dtype='int64', name='idx') result = Series([0.1, 0.2, 0.3, 0.4], index=idx, name='s').loc[[5, 4, 4]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([7, 2, 2], dtype='int64', name='idx') expected = Series([0.4, np.nan, np.nan], index=exp_idx, name='s') idx = Index([4, 5, 6, 7], dtype='int64', name='idx') result = Series([0.1, 0.2, 0.3, 0.4], index=idx, name='s').loc[[7, 2, 2]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([4, 5, 5], dtype='int64', name='idx') expected = Series([0.4, np.nan, np.nan], index=exp_idx, name='s') idx = Index([1, 2, 3, 4], dtype='int64', name='idx') result = Series([0.1, 0.2, 0.3, 0.4], index=idx, name='s').loc[[4, 5, 5]] tm.assert_series_equal(result, expected, check_index_type=True) # iloc exp_idx = Index([2, 2, 1, 1], dtype='int64', name='idx') expected = Series([0.2, 0.2, 0.1, 0.1], index=exp_idx, name='s') result = ser.iloc[[1, 1, 0, 0]] tm.assert_series_equal(result, expected, check_index_type=True) def test_partial_set_invalid(self): # GH 4940 # allow only setting of 'valid' values orig = tm.makeTimeDataFrame() df = orig.copy() # don't allow not string inserts def f(): df.loc[100.0, :] = df.ix[0] self.assertRaises(TypeError, f) def f(): df.loc[100, :] = df.ix[0] self.assertRaises(TypeError, f) def f(): df.ix[100.0, :] = df.ix[0] self.assertRaises(TypeError, f) def f(): df.ix[100, :] = df.ix[0] self.assertRaises(ValueError, f) # allow object conversion here df = orig.copy() df.loc['a', :] = df.ix[0] exp = orig.append(pd.Series(df.ix[0], name='a')) tm.assert_frame_equal(df, exp) tm.assert_index_equal(df.index, pd.Index(orig.index.tolist() + ['a'])) self.assertEqual(df.index.dtype, 'object') def test_partial_set_empty_series(self): # GH5226 # partially set with an empty object series s = Series() s.loc[1] = 1 tm.assert_series_equal(s, Series([1], index=[1])) s.loc[3] = 3 tm.assert_series_equal(s, Series([1, 3], index=[1, 3])) s = Series() s.loc[1] = 1. tm.assert_series_equal(s, Series([1.], index=[1])) s.loc[3] = 3. tm.assert_series_equal(s, Series([1., 3.], index=[1, 3])) s = Series() s.loc['foo'] = 1 tm.assert_series_equal(s, Series([1], index=['foo'])) s.loc['bar'] = 3 tm.assert_series_equal(s, Series([1, 3], index=['foo', 'bar'])) s.loc[3] = 4 tm.assert_series_equal(s, Series([1, 3, 4], index=['foo', 'bar', 3])) def test_partial_set_empty_frame(self): # partially set with an empty object # frame df = DataFrame() def f(): df.loc[1] = 1 self.assertRaises(ValueError, f) def f(): df.loc[1] = Series([1], index=['foo']) self.assertRaises(ValueError, f) def f(): df.loc[:, 1] = 1 self.assertRaises(ValueError, f) # these work as they don't really change # anything but the index # GH5632 expected = DataFrame(columns=['foo'], index=pd.Index( [], dtype='int64')) def f(): df = DataFrame() df['foo'] = Series([], dtype='object') return df tm.assert_frame_equal(f(), expected) def f(): df = DataFrame() df['foo'] = Series(df.index) return df tm.assert_frame_equal(f(), expected) def f(): df = DataFrame() df['foo'] = df.index return df tm.assert_frame_equal(f(), expected) expected = DataFrame(columns=['foo'], index=pd.Index([], dtype='int64')) expected['foo'] = expected['foo'].astype('float64') def f(): df = DataFrame() df['foo'] = [] return df tm.assert_frame_equal(f(), expected) def f(): df = DataFrame() df['foo'] = Series(range(len(df))) return df tm.assert_frame_equal(f(), expected) def f(): df = DataFrame() tm.assert_index_equal(df.index, pd.Index([], dtype='object')) df['foo'] = range(len(df)) return df expected = DataFrame(columns=['foo'], index=pd.Index([], dtype='int64')) expected['foo'] = expected['foo'].astype('float64') tm.assert_frame_equal(f(), expected) df = DataFrame() tm.assert_index_equal(df.columns, pd.Index([], dtype=object)) df2 = DataFrame() df2[1] = Series([1], index=['foo']) df.loc[:, 1] = Series([1], index=['foo']) tm.assert_frame_equal(df, DataFrame([[1]], index=['foo'], columns=[1])) tm.assert_frame_equal(df, df2) # no index to start expected = DataFrame({0: Series(1, index=range(4))}, columns=['A', 'B', 0]) df = DataFrame(columns=['A', 'B']) df[0] = Series(1, index=range(4)) df.dtypes str(df) tm.assert_frame_equal(df, expected) df = DataFrame(columns=['A', 'B']) df.loc[:, 0] = Series(1, index=range(4)) df.dtypes str(df) tm.assert_frame_equal(df, expected) def test_partial_set_empty_frame_row(self): # GH5720, GH5744 # don't create rows when empty expected = DataFrame(columns=['A', 'B', 'New'], index=pd.Index([], dtype='int64')) expected['A'] = expected['A'].astype('int64') expected['B'] = expected['B'].astype('float64') expected['New'] = expected['New'].astype('float64') df = DataFrame({"A": [1, 2, 3], "B": [1.2, 4.2, 5.2]}) y = df[df.A > 5] y['New'] = np.nan tm.assert_frame_equal(y, expected) # tm.assert_frame_equal(y,expected) expected = DataFrame(columns=['a', 'b', 'c c', 'd']) expected['d'] = expected['d'].astype('int64') df = DataFrame(columns=['a', 'b', 'c c']) df['d'] = 3 tm.assert_frame_equal(df, expected) tm.assert_series_equal(df['c c'], Series(name='c c', dtype=object)) # reindex columns is ok df = DataFrame({"A": [1, 2, 3], "B": [1.2, 4.2, 5.2]}) y = df[df.A > 5] result = y.reindex(columns=['A', 'B', 'C']) expected = DataFrame(columns=['A', 'B', 'C'], index=pd.Index([], dtype='int64')) expected['A'] = expected['A'].astype('int64') expected['B'] = expected['B'].astype('float64') expected['C'] = expected['C'].astype('float64') tm.assert_frame_equal(result, expected) def test_partial_set_empty_frame_set_series(self): # GH 5756 # setting with empty Series df = DataFrame(Series()) tm.assert_frame_equal(df, DataFrame({0: Series()})) df = DataFrame(Series(name='foo')) tm.assert_frame_equal(df, DataFrame({'foo': Series()})) def test_partial_set_empty_frame_empty_copy_assignment(self): # GH 5932 # copy on empty with assignment fails df = DataFrame(index=[0]) df = df.copy() df['a'] = 0 expected = DataFrame(0, index=[0], columns=['a']) tm.assert_frame_equal(df, expected) def test_partial_set_empty_frame_empty_consistencies(self): # GH 6171 # consistency on empty frames df = DataFrame(columns=['x', 'y']) df['x'] = [1, 2] expected = DataFrame(dict(x=[1, 2], y=[np.nan, np.nan])) tm.assert_frame_equal(df, expected, check_dtype=False) df = DataFrame(columns=['x', 'y']) df['x'] = ['1', '2'] expected = DataFrame( dict(x=['1', '2'], y=[np.nan, np.nan]), dtype=object) tm.assert_frame_equal(df, expected) df = DataFrame(columns=['x', 'y']) df.loc[0, 'x'] = 1 expected = DataFrame(dict(x=[1], y=[np.nan])) tm.assert_frame_equal(df, expected, check_dtype=False) def test_cache_updating(self): # GH 4939, make sure to update the cache on setitem df = tm.makeDataFrame() df['A'] # cache series df.ix["Hello Friend"] = df.ix[0] self.assertIn("Hello Friend", df['A'].index) self.assertIn("Hello Friend", df['B'].index) panel = tm.makePanel() panel.ix[0] # get first item into cache panel.ix[:, :, 'A+1'] = panel.ix[:, :, 'A'] + 1 self.assertIn("A+1", panel.ix[0].columns) self.assertIn("A+1", panel.ix[1].columns) # 5216 # make sure that we don't try to set a dead cache a = np.random.rand(10, 3) df = DataFrame(a, columns=['x', 'y', 'z']) tuples = [(i, j) for i in range(5) for j in range(2)] index = MultiIndex.from_tuples(tuples) df.index = index # setting via chained assignment # but actually works, since everything is a view df.loc[0]['z'].iloc[0] = 1. result = df.loc[(0, 0), 'z'] self.assertEqual(result, 1) # correct setting df.loc[(0, 0), 'z'] = 2 result = df.loc[(0, 0), 'z'] self.assertEqual(result, 2) # 10264 df = DataFrame(np.zeros((5, 5), dtype='int64'), columns=[ 'a', 'b', 'c', 'd', 'e'], index=range(5)) df['f'] = 0 df.f.values[3] = 1 # TODO(wesm): unused? # y = df.iloc[np.arange(2, len(df))] df.f.values[3] = 2 expected = DataFrame(np.zeros((5, 6), dtype='int64'), columns=[ 'a', 'b', 'c', 'd', 'e', 'f'], index=range(5)) expected.at[3, 'f'] = 2 tm.assert_frame_equal(df, expected) expected = Series([0, 0, 0, 2, 0], name='f') tm.assert_series_equal(df.f, expected) def test_set_ix_out_of_bounds_axis_0(self): df = pd.DataFrame( randn(2, 5), index=["row%s" % i for i in range(2)], columns=["col%s" % i for i in range(5)]) self.assertRaises(ValueError, df.ix.__setitem__, (2, 0), 100) def test_set_ix_out_of_bounds_axis_1(self): df = pd.DataFrame( randn(5, 2), index=["row%s" % i for i in range(5)], columns=["col%s" % i for i in range(2)]) self.assertRaises(ValueError, df.ix.__setitem__, (0, 2), 100) def test_iloc_empty_list_indexer_is_ok(self): from pandas.util.testing import makeCustomDataframe as mkdf df = mkdf(5, 2) # vertical empty tm.assert_frame_equal(df.iloc[:, []], df.iloc[:, :0], check_index_type=True, check_column_type=True) # horizontal empty tm.assert_frame_equal(df.iloc[[], :], df.iloc[:0, :], check_index_type=True, check_column_type=True) # horizontal empty tm.assert_frame_equal(df.iloc[[]], df.iloc[:0, :], check_index_type=True, check_column_type=True) def test_loc_empty_list_indexer_is_ok(self): from pandas.util.testing import makeCustomDataframe as mkdf df = mkdf(5, 2) # vertical empty tm.assert_frame_equal(df.loc[:, []], df.iloc[:, :0], check_index_type=True, check_column_type=True) # horizontal empty tm.assert_frame_equal(df.loc[[], :], df.iloc[:0, :], check_index_type=True, check_column_type=True) # horizontal empty tm.assert_frame_equal(df.loc[[]], df.iloc[:0, :], check_index_type=True, check_column_type=True) def test_ix_empty_list_indexer_is_ok(self): from pandas.util.testing import makeCustomDataframe as mkdf df = mkdf(5, 2) # vertical empty tm.assert_frame_equal(df.ix[:, []], df.iloc[:, :0], check_index_type=True, check_column_type=True) # horizontal empty tm.assert_frame_equal(df.ix[[], :], df.iloc[:0, :], check_index_type=True, check_column_type=True) # horizontal empty tm.assert_frame_equal(df.ix[[]], df.iloc[:0, :], check_index_type=True, check_column_type=True) def test_index_type_coercion(self): # GH 11836 # if we have an index type and set it with something that looks # to numpy like the same, but is actually, not # (e.g. setting with a float or string '0') # then we need to coerce to object # integer indexes for s in [Series(range(5)), Series(range(5), index=range(1, 6))]: self.assertTrue(s.index.is_integer()) for indexer in [lambda x: x.ix, lambda x: x.loc, lambda x: x]: s2 = s.copy() indexer(s2)[0.1] = 0 self.assertTrue(s2.index.is_floating()) self.assertTrue(indexer(s2)[0.1] == 0) s2 = s.copy() indexer(s2)[0.0] = 0 exp = s.index if 0 not in s: exp = Index(s.index.tolist() + [0]) tm.assert_index_equal(s2.index, exp) s2 = s.copy() indexer(s2)['0'] = 0 self.assertTrue(s2.index.is_object()) for s in [Series(range(5), index=np.arange(5.))]: self.assertTrue(s.index.is_floating()) for idxr in [lambda x: x.ix, lambda x: x.loc, lambda x: x]: s2 = s.copy() idxr(s2)[0.1] = 0 self.assertTrue(s2.index.is_floating()) self.assertTrue(idxr(s2)[0.1] == 0) s2 = s.copy() idxr(s2)[0.0] = 0 tm.assert_index_equal(s2.index, s.index) s2 = s.copy() idxr(s2)['0'] = 0 self.assertTrue(s2.index.is_object()) def test_float_index_to_mixed(self): df = DataFrame({0.0: np.random.rand(10), 1.0: np.random.rand(10)}) df['a'] = 10 tm.assert_frame_equal(DataFrame({0.0: df[0.0], 1.0: df[1.0], 'a': [10] * 10}), df) def test_duplicate_ix_returns_series(self): df = DataFrame(np.random.randn(3, 3), index=[0.1, 0.2, 0.2], columns=list('abc')) r = df.ix[0.2, 'a'] e = df.loc[0.2, 'a'] tm.assert_series_equal(r, e) def test_float_index_non_scalar_assignment(self): df = DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]}, index=[1., 2., 3.]) df.loc[df.index[:2]] = 1 expected = DataFrame({'a': [1, 1, 3], 'b': [1, 1, 5]}, index=df.index) tm.assert_frame_equal(expected, df) df = DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]}, index=[1., 2., 3.]) df2 = df.copy() df.loc[df.index] = df.loc[df.index] tm.assert_frame_equal(df, df2) def test_float_index_at_iat(self): s = pd.Series([1, 2, 3], index=[0.1, 0.2, 0.3]) for el, item in s.iteritems(): self.assertEqual(s.at[el], item) for i in range(len(s)): self.assertEqual(s.iat[i], i + 1) def test_rhs_alignment(self): # GH8258, tests that both rows & columns are aligned to what is # assigned to. covers both uniform data-type & multi-type cases def run_tests(df, rhs, right): # label, index, slice r, i, s = list('bcd'), [1, 2, 3], slice(1, 4) c, j, l = ['joe', 'jolie'], [1, 2], slice(1, 3) left = df.copy() left.loc[r, c] = rhs tm.assert_frame_equal(left, right) left = df.copy() left.iloc[i, j] = rhs tm.assert_frame_equal(left, right) left = df.copy() left.ix[s, l] = rhs tm.assert_frame_equal(left, right) left = df.copy() left.ix[i, j] = rhs tm.assert_frame_equal(left, right) left = df.copy() left.ix[r, c] = rhs tm.assert_frame_equal(left, right) xs = np.arange(20).reshape(5, 4) cols = ['jim', 'joe', 'jolie', 'joline'] df = pd.DataFrame(xs, columns=cols, index=list('abcde')) # right hand side; permute the indices and multiplpy by -2 rhs = -2 * df.iloc[3:0:-1, 2:0:-1] # expected `right` result; just multiply by -2 right = df.copy() right.iloc[1:4, 1:3] *= -2 # run tests with uniform dtypes run_tests(df, rhs, right) # make frames multi-type & re-run tests for frame in [df, rhs, right]: frame['joe'] = frame['joe'].astype('float64') frame['jolie'] = frame['jolie'].map('@{0}'.format) run_tests(df, rhs, right) def test_str_label_slicing_with_negative_step(self): SLC = pd.IndexSlice def assert_slices_equivalent(l_slc, i_slc): tm.assert_series_equal(s.loc[l_slc], s.iloc[i_slc]) if not idx.is_integer: # For integer indices, ix and plain getitem are position-based. tm.assert_series_equal(s[l_slc], s.iloc[i_slc]) tm.assert_series_equal(s.ix[l_slc], s.iloc[i_slc]) for idx in [_mklbl('A', 20), np.arange(20) + 100, np.linspace(100, 150, 20)]: idx = Index(idx) s = Series(np.arange(20), index=idx) assert_slices_equivalent(SLC[idx[9]::-1], SLC[9::-1]) assert_slices_equivalent(SLC[:idx[9]:-1], SLC[:8:-1]) assert_slices_equivalent(SLC[idx[13]:idx[9]:-1], SLC[13:8:-1]) assert_slices_equivalent(SLC[idx[9]:idx[13]:-1], SLC[:0]) def test_slice_with_zero_step_raises(self): s = Series(np.arange(20), index=_mklbl('A', 20)) self.assertRaisesRegexp(ValueError, 'slice step cannot be zero', lambda: s[::0]) self.assertRaisesRegexp(ValueError, 'slice step cannot be zero', lambda: s.loc[::0]) self.assertRaisesRegexp(ValueError, 'slice step cannot be zero', lambda: s.ix[::0]) def test_indexing_assignment_dict_already_exists(self): df = pd.DataFrame({'x': [1, 2, 6], 'y': [2, 2, 8], 'z': [-5, 0, 5]}).set_index('z') expected = df.copy() rhs = dict(x=9, y=99) df.loc[5] = rhs expected.loc[5] = [9, 99] tm.assert_frame_equal(df, expected) def test_indexing_dtypes_on_empty(self): # Check that .iloc and .ix return correct dtypes GH9983 df = DataFrame({'a': [1, 2, 3], 'b': ['b', 'b2', 'b3']}) df2 = df.ix[[], :] self.assertEqual(df2.loc[:, 'a'].dtype, np.int64) tm.assert_series_equal(df2.loc[:, 'a'], df2.iloc[:, 0]) tm.assert_series_equal(df2.loc[:, 'a'], df2.ix[:, 0]) def test_range_in_series_indexing(self): # range can cause an indexing error # GH 11652 for x in [5, 999999, 1000000]: s = pd.Series(index=range(x)) s.loc[range(1)] = 42 tm.assert_series_equal(s.loc[range(1)], Series(42.0, index=[0])) s.loc[range(2)] = 43 tm.assert_series_equal(s.loc[range(2)], Series(43.0, index=[0, 1])) def test_non_reducing_slice(self): df = pd.DataFrame([[0, 1], [2, 3]]) slices = [ # pd.IndexSlice[:, :], pd.IndexSlice[:, 1], pd.IndexSlice[1, :], pd.IndexSlice[[1], [1]], pd.IndexSlice[1, [1]], pd.IndexSlice[[1], 1], pd.IndexSlice[1], pd.IndexSlice[1, 1], slice(None, None, None), [0, 1], np.array([0, 1]), pd.Series([0, 1]) ] for slice_ in slices: tslice_ = _non_reducing_slice(slice_) self.assertTrue(isinstance(df.loc[tslice_], DataFrame)) def test_list_slice(self): # like dataframe getitem slices = [['A'], pd.Series(['A']), np.array(['A'])] df = pd.DataFrame({'A': [1, 2], 'B': [3, 4]}, index=['A', 'B']) expected = pd.IndexSlice[:, ['A']] for subset in slices: result = _non_reducing_slice(subset) tm.assert_frame_equal(df.loc[result], df.loc[expected]) def test_maybe_numeric_slice(self): df = pd.DataFrame({'A': [1, 2], 'B': ['c', 'd'], 'C': [True, False]}) result = _maybe_numeric_slice(df, slice_=None) expected = pd.IndexSlice[:, ['A']] self.assertEqual(result, expected) result =
_maybe_numeric_slice(df, None, include_bool=True)
pandas.core.indexing._maybe_numeric_slice
import os from pathlib import Path import pandas as pd def load_tables(): ##### LOAD THE RAW DATA ##### df = pd.DataFrame() parent = Path(__file__).parent.parent DATA_DIR = os.path.join(parent, 'data') WEEKDAYS = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] for f in os.listdir(DATA_DIR): if f.endswith('.csv') and '20210201' not in f: in_file = os.path.join(DATA_DIR, f) df = df.append(
pd.read_csv(in_file, parse_dates=['Date Time (UTC)'])
pandas.read_csv
# %% imports from datetime import datetime import numpy as np import pandas as pd import config as cfg from src.utils.data_processing import download_file, medea_path, download_energy_balance, process_energy_balance idx = pd.IndexSlice eta_hydro_storage = 0.9 # ====================================================================================================================== # %% download and process opsd time series url_opsd = 'https://data.open-power-system-data.org/time_series/latest/time_series_60min_singleindex.csv' opsd_file = medea_path('data', 'raw', 'opsd_time_series_60min.csv') download_file(url_opsd, opsd_file) ts_opsd = pd.read_csv(opsd_file) # create medea time series dataframe ts_medea = ts_opsd[ ['utc_timestamp', 'cet_cest_timestamp', 'AT_load_actual_entsoe_transparency', 'AT_solar_generation_actual', 'AT_wind_onshore_generation_actual', 'DE_load_actual_entsoe_transparency', 'DE_solar_generation_actual', 'DE_solar_capacity', 'DE_wind_onshore_generation_actual', 'DE_wind_onshore_capacity', 'DE_wind_offshore_generation_actual', 'DE_wind_offshore_capacity', 'DE_LU_price_day_ahead']] del ts_opsd ts_medea = ts_medea.copy() ts_medea.set_index(
pd.DatetimeIndex(ts_medea['utc_timestamp'])
pandas.DatetimeIndex
#!/usr/bin/env python import pandas as pd import os from pathlib import Path wd = 'c:\\Users\\dwagn\\Desktop\\' pic_folder = wd + 'poke_pics' os.chdir(wd) poke_data = pd.read_csv('pokemon.csv').iloc[:,0:3] poke_data['Name'] = poke_data['Name'].str.lower() \ .rename({'Number' : 'Pokemon_ID'}, axis=1) pic_path = Path(pic_folder) files = list(pic_path.glob('*.png')) nms = [str(x).split('\\')[5].strip('0123456789')[:-4] for x in files] # name from path pics_data = pd.DataFrame({'File' : files, 'Name' : nms}) full_data =
pd.merge(poke_data, pics_data, on='Name')
pandas.merge
""" keras data generator object for image data """ import pandas as pd import numpy as np import random from tensorflow.keras.utils import Sequence from tensorflow.keras.applications.xception import preprocess_input from data_tools.utils import append_image_data_chunk class SequentialGenerator(Sequence): """ this generator assumes the data has following format: * each data chunk has two files, a label.csv and a dataset.parquet * label columns = image_id, animal_id """ def __init__(self, base_path, chunk_nums, image_shape=(320, 320, 3), batch_size=1024): self.image_shape = image_shape self.batch_size = batch_size # read each image_data chunk into memory, # note each image was stored as a column in parquet file, # here we flip the axis to each image is a row and index of each image is it's image_id self._data = pd.DataFrame() for each_num in chunk_nums: self._data = append_image_data_chunk(self._data, f"{base_path}/dataset_{each_num}.parquet") # load labels # TODO decide whether to rely on image data and labels to have the same order # so far i say yes, but it's probably a bad idea self._labels = pd.concat([pd.read_csv(f"{base_path}/dataset_labels_{each_num}.csv", index_col=0)for each_num in chunk_nums]) def __len__(self): if self._labels.shape[0] % self.batch_size != 0: return self._labels.shape[0] // self.batch_size + 1 else: return self._labels.shape[0] // self.batch_size def __getitem__(self, index): """ :param index: :return: image(batch_size, x, y, channel), label (batch_size, ) """ x, y = self._get_block(index, self.batch_size) return self._apply_preprocessing(x), y def _apply_preprocessing(self,data): return preprocess_input(data) def _get_block(self, block_index, block_size): if (block_index + 1) * block_size < self._labels.shape[0]: block_image = self._data.values[block_index * block_size: (block_index + 1) * block_size, :] block_label = self._labels["animal_id"].values[block_index * block_size: (block_index + 1) * block_size] else: block_image = self._data.values[block_index * block_size:, :] block_label = self._labels["animal_id"].values[block_index * block_size:] # reshape batch image before returning return block_image.reshape((-1, *self.image_shape)), block_label @staticmethod def _append_image_data_chunk(image_frame: pd.DataFrame, file_to_append: str): # this function load a parquet data chunk and 'add' it to image_frame # note the data is flipped compared to the parquet file to_add = pd.read_parquet(file_to_append, engine="pyarrow") return pd.concat([image_frame, to_add.T], axis=0) class RandomBlockGenerator(SequentialGenerator): """ Pretty much the same as SequentialGenerator, instead of feeding all data row in order, the orders are shuffled somewhat, but each epoch will still only go through each row once, """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # the arrangement of each block is generated now # this helps multiprocessing and ensuring each data row is used once per epoch self.block_order = [i for i in range(len(self) * 2)] random.shuffle(self.block_order) def __getitem__(self, index): # each batch is two randomly selected blocks a_x, a_y = self._get_block(self.block_order[index], self.batch_size // 2) b_x, b_y = self._get_block(self.block_order[index + len(self)], self.batch_size // 2) # combine and preprocess batch total_x = np.concatenate((a_x, b_x), axis=0) del a_x, b_x total_x = self._apply_preprocessing(total_x) total_y = np.concatenate((a_y, b_y), axis=0) return total_x, total_y class PairedByLabelMixin: # do i actually need these useless class attributes? _data = None _labels = None batch_size = 0 def __len__(self): return self._labels.shape[0] // (self.batch_size // 2) def __getitem__(self, index): """ returns two embedding batches and a label on animal_id match this method is expected to return roughly 50/50 same/different animal_id match :param index: :return: (left embeddings, right embeddings) , animal_id match """ # first let's get our anchor data, this will be the left half block_size = self.batch_size // 2 if (index + 1) * block_size < self._labels.shape[0]: anchor = self._labels[index * block_size: (index + 1) * block_size] else: anchor = self._labels[index * block_size:] # right half - same id as anchor same = self.random_but_same_id(anchor, key="animal_id") # right half - randomly sampled from entire data set, likely to be different different = self._labels.sample(n=block_size) same_ness = np.equal(anchor["animal_id"].values, different["animal_id"].values).astype("float32").reshape((-1,1)) # get embedding data based on labels left_data = self._data.loc[anchor["image_id"]] right_same = self._data.loc[same["image_id"]] right_diff = self._data.loc[different["image_id"]] # get sameness label batch_label = np.concatenate([ np.full((block_size,1), fill_value=1.0, dtype="float32"), same_ness ], axis=0) return ( np.concatenate([left_data.values, left_data.values], axis=0), np.concatenate([right_same.values, right_diff.values]) ), batch_label @staticmethod def random_but_same_id(label_frame: pd.DataFrame, key="animal_id") -> pd.DataFrame: """ returns a dataframe with same shape as input, the order of each image is scrambled but the order of selected key column should be the same """ unique_keys = label_frame[key].unique() outputs = [] for each_key in unique_keys: outputs.append(label_frame[label_frame[key] == each_key].sample(frac=1)) return pd.concat(outputs, ignore_index=True, axis=0) class PairedEmbeddingGenerator(PairedByLabelMixin, Sequence): """ this generator expects data with each row being embedding vector for each image, indexed by image_id to select image by image_id d.T.loc[l[:50]["image_id"]] """ def __init__(self, base_path, data_nums, batch_size=256, label_nums=(0,)): self.batch_size = batch_size # read each embedding_data chunk into memory, # note each embedding was stored as a column in parquet file, # here we flip the axis to each image is a row and index of each image is it's image_id self._data =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd import os import datetime import matplotlib.pyplot as plt def loading_data(): print("\n") print("loading data function") path = "D:/Notas de Estudio/Proyectos/production_analysis__project/production_analysis/data/raw/" file = [] for (dirpath, dirnames, filenames) in os.walk("D:/Notas de Estudio/Proyectos/production_analysis__project/production_analysis/data/raw"): file.extend(filenames) print("Loading file...") print(file[1]) path = path + file[1] data = pd.read_excel(path, sheet_name="Prod. EXTR",header=0) print("cleaning data...") print("deleting unnecessary columns") data = data [['FECHA', 'TURNO', 'GRUPO', 'MÁQ.', 'CODIGO', 'PRODUCCION (PZAS)','TOTAL KG', 'SCRAP']] print("Column FECHA") data = data[data["FECHA"].notna()] data = data[data["FECHA"] != "Total"] data['FECHA'] = pd.to_datetime(data['FECHA'], format= '%Y-%m-%d') data['FECHA'].dt.day data['DIA'] = data.loc[:,'FECHA'].dt.day data['NOMBRE_DIA']=data.loc[:,'FECHA'].dt.day_name() print('Column TURNO') data['TURNO'] = data['TURNO'].astype('category') print('Column GRUPO') data['GRUPO'] = data['GRUPO'].astype('category') print('Column CODIGO') data.loc[:,'CODIGO'] = data['CODIGO'].fillna(0) print('Column PRODUCCION (PZAS)') data['PRODUCCION (PZAS)'] = data['PRODUCCION (PZAS)'].fillna(0) data['PRODUCCION (PZAS)'] = data['PRODUCCION (PZAS)'].astype('int64') print('Column TOTAL KG') df = data['TOTAL KG'].fillna(0) data.loc[:,'TOTAL KG'] = df data.loc[:,'TOTAL KG'] = data['TOTAL KG'].astype('float') print('Column SCRAP') data['SCRAP'] =
pd.to_numeric(data['SCRAP'], errors='coerce')
pandas.to_numeric
# -*- coding:utf-8 -*- """ 股票技术指标接口 Created on 2018/07/26 @author: Wangzili @group : ** @contact: <EMAIL> 所有指标中参数df为通过get_k_data获取的股票数据 """ import pandas as pd import numpy as np import itertools def ma(df, n=10): """ 移动平均线 Moving Average MA(N)=(第1日收盘价+第2日收盘价—+……+第N日收盘价)/N """ pv = pd.DataFrame() pv['date'] = df['date'] pv['v'] = df.close.rolling(n).mean() return pv def _ma(series, n): """ 移动平均 """ return series.rolling(n).mean() def md(df, n=10): """ 移动标准差 STD=S(CLOSE,N)=[∑(CLOSE-MA(CLOSE,N))^2/N]^0.5 """ _md = pd.DataFrame() _md['date'] = df.date _md["md"] = df.close.rolling(n).std(ddof=0) return _md def _md(series, n): """ 标准差MD """ return series.rolling(n).std(ddof=0) # 有时候会用ddof=1 def ema(df, n=12): """ 指数平均数指标 Exponential Moving Average 今日EMA(N)=2/(N+1)×今日收盘价+(N-1)/(N+1)×昨日EMA(N) EMA(X,N)=[2×X+(N-1)×EMA(ref(X),N]/(N+1) """ _ema = pd.DataFrame() _ema['date'] = df['date'] _ema['ema'] = df.close.ewm(ignore_na=False, span=n, min_periods=0, adjust=False).mean() return _ema def _ema(series, n): """ 指数平均数 """ return series.ewm(ignore_na=False, span=n, min_periods=0, adjust=False).mean() def macd(df, n=12, m=26, k=9): """ 平滑异同移动平均线(Moving Average Convergence Divergence) 今日EMA(N)=2/(N+1)×今日收盘价+(N-1)/(N+1)×昨日EMA(N) DIFF= EMA(N1)- EMA(N2) DEA(DIF,M)= 2/(M+1)×DIF +[1-2/(M+1)]×DEA(REF(DIF,1),M) MACD(BAR)=2×(DIF-DEA) return: osc: MACD bar / OSC 差值柱形图 DIFF - DEM diff: 差离值 dea: 讯号线 """ _macd = pd.DataFrame() _macd['date'] = df['date'] _macd['diff'] = _ema(df.close, n) - _ema(df.close, m) _macd['dea'] = _ema(_macd['diff'], k) _macd['macd'] = _macd['diff'] - _macd['dea'] return _macd def kdj(df, n=9): """ 随机指标KDJ N日RSV=(第N日收盘价-N日内最低价)/(N日内最高价-N日内最低价)×100% 当日K值=2/3前1日K值+1/3×当日RSV=SMA(RSV,M1) 当日D值=2/3前1日D值+1/3×当日K= SMA(K,M2) 当日J值=3 ×当日K值-2×当日D值 """ _kdj = pd.DataFrame() _kdj['date'] = df['date'] rsv = (df.close - df.low.rolling(n).min()) / (df.high.rolling(n).max() - df.low.rolling(n).min()) * 100 _kdj['k'] = sma(rsv, 3) _kdj['d'] = sma(_kdj.k, 3) _kdj['j'] = 3 * _kdj.k - 2 * _kdj.d return _kdj def rsi(df, n=6): """ 相对强弱指标(Relative Strength Index,简称RSI LC= REF(CLOSE,1) RSI=SMA(MAX(CLOSE-LC,0),N,1)/SMA(ABS(CLOSE-LC),N1,1)×100 SMA(C,N,M)=M/N×今日收盘价+(N-M)/N×昨日SMA(N) """ # pd.set_option('display.max_rows', 1000) _rsi = pd.DataFrame() _rsi['date'] = df['date'] px = df.close - df.close.shift(1) px[px < 0] = 0 _rsi['rsi'] = sma(px, n) / sma((df['close'] - df['close'].shift(1)).abs(), n) * 100 # def tmax(x): # if x < 0: # x = 0 # return x # _rsi['rsi'] = sma((df['close'] - df['close'].shift(1)).apply(tmax), n) / sma((df['close'] - df['close'].shift(1)).abs(), n) * 100 return _rsi def vrsi(df, n=6): """ 量相对强弱指标 VRSI=SMA(最大值(成交量-REF(成交量,1),0),N,1)/SMA(ABS((成交量-REF(成交量,1),N,1)×100% """ _vrsi = pd.DataFrame() _vrsi['date'] = df['date'] px = df['volume'] - df['volume'].shift(1) px[px < 0] = 0 _vrsi['vrsi'] = sma(px, n) / sma((df['volume'] - df['volume'].shift(1)).abs(), n) * 100 return _vrsi def boll(df, n=26, k=2): """ 布林线指标BOLL boll(26,2) MID=MA(N) 标准差MD=根号[∑(CLOSE-MA(CLOSE,N))^2/N] UPPER=MID+k×MD LOWER=MID-k×MD """ _boll = pd.DataFrame() _boll['date'] = df.date _boll['mid'] = _ma(df.close, n) _mdd = _md(df.close, n) _boll['up'] = _boll.mid + k * _mdd _boll['low'] = _boll.mid - k * _mdd return _boll def bbiboll(df, n=10, k=3): """ BBI多空布林线 bbiboll(10,3) BBI={MA(3)+ MA(6)+ MA(12)+ MA(24)}/4 标准差MD=根号[∑(BBI-MA(BBI,N))^2/N] UPR= BBI+k×MD DWN= BBI-k×MD """ # pd.set_option('display.max_rows', 1000) _bbiboll = pd.DataFrame() _bbiboll['date'] = df.date _bbiboll['bbi'] = (_ma(df.close, 3) + _ma(df.close, 6) + _ma(df.close, 12) + _ma(df.close, 24)) / 4 _bbiboll['md'] = _md(_bbiboll.bbi, n) _bbiboll['upr'] = _bbiboll.bbi + k * _bbiboll.md _bbiboll['dwn'] = _bbiboll.bbi - k * _bbiboll.md return _bbiboll def wr(df, n=14): """ 威廉指标 w&r WR=[最高值(最高价,N)-收盘价]/[最高值(最高价,N)-最低值(最低价,N)]×100% """ _wr = pd.DataFrame() _wr['date'] = df['date'] higest = df.high.rolling(n).max() _wr['wr'] = (higest - df.close) / (higest - df.low.rolling(n).min()) * 100 return _wr def bias(df, n=12): """ 乖离率 bias bias=[(当日收盘价-12日平均价)/12日平均价]×100% """ _bias = pd.DataFrame() _bias['date'] = df.date _mav = df.close.rolling(n).mean() _bias['bias'] = (np.true_divide((df.close - _mav), _mav)) * 100 # _bias["bias"] = np.vectorize(lambda x: round(Decimal(x), 4))(BIAS) return _bias def asi(df, n=5): """ 振动升降指标(累计震动升降因子) ASI # 同花顺给出的公式不完整就不贴出来了 """ _asi = pd.DataFrame() _asi['date'] = df.date _m = pd.DataFrame() _m['a'] = (df.high - df.close.shift()).abs() _m['b'] = (df.low - df.close.shift()).abs() _m['c'] = (df.high - df.low.shift()).abs() _m['d'] = (df.close.shift() - df.open.shift()).abs() _m['r'] = _m.apply(lambda x: x.a + 0.5 * x.b + 0.25 * x.d if max(x.a, x.b, x.c) == x.a else ( x.b + 0.5 * x.a + 0.25 * x.d if max(x.a, x.b, x.c) == x.b else x.c + 0.25 * x.d ), axis=1) _m['x'] = df.close - df.close.shift() + 0.5 * (df.close - df.open) + df.close.shift() - df.open.shift() _m['k'] = np.maximum(_m.a, _m.b) _asi['si'] = 16 * (_m.x / _m.r) * _m.k _asi["asi"] = _ma(_asi.si, n) return _asi def vr_rate(df, n=26): """ 成交量变异率 vr or vr_rate VR=(AVS+1/2CVS)/(BVS+1/2CVS)×100 其中: AVS:表示N日内股价上涨成交量之和 BVS:表示N日内股价下跌成交量之和 CVS:表示N日内股价不涨不跌成交量之和 """ _vr = pd.DataFrame() _vr['date'] = df['date'] _m = pd.DataFrame() _m['volume'] = df.volume _m['cs'] = df.close - df.close.shift(1) _m['avs'] = _m.apply(lambda x: x.volume if x.cs > 0 else 0, axis=1) _m['bvs'] = _m.apply(lambda x: x.volume if x.cs < 0 else 0, axis=1) _m['cvs'] = _m.apply(lambda x: x.volume if x.cs == 0 else 0, axis=1) _vr["vr"] = (_m.avs.rolling(n).sum() + 1 / 2 * _m.cvs.rolling(n).sum() ) / (_m.bvs.rolling(n).sum() + 1 / 2 * _m.cvs.rolling(n).sum()) * 100 return _vr def vr(df, n=5): """ 开市后平均每分钟的成交量与过去5个交易日平均每分钟成交量之比 量比:=V/REF(MA(V,5),1); 涨幅:=(C-REF(C,1))/REF(C,1)*100; 1)量比大于1.8,涨幅小于2%,现价涨幅在0—2%之间,在盘中选股的 选股:量比>1.8 AND 涨幅>0 AND 涨幅<2; """ _vr = pd.DataFrame() _vr['date'] = df.date _vr['vr'] = df.volume / _ma(df.volume, n).shift(1) _vr['rr'] = (df.close - df.close.shift(1)) / df.close.shift(1) * 100 return _vr def arbr(df, n=26): """ 人气意愿指标 arbr(26) N日AR=N日内(H-O)之和除以N日内(O-L)之和 其中,H为当日最高价,L为当日最低价,O为当日开盘价,N为设定的时间参数,一般原始参数日设定为26日 N日BR=N日内(H-CY)之和除以N日内(CY-L)之和 其中,H为当日最高价,L为当日最低价,CY为前一交易日的收盘价,N为设定的时间参数,一般原始参数日设定为26日。 """ _arbr = pd.DataFrame() _arbr['date'] = df.date _arbr['ar'] = (df.high - df.open).rolling(n).sum() / (df.open - df.low).rolling(n).sum() * 100 _arbr['br'] = (df.high - df.close.shift(1)).rolling(n).sum() / (df.close.shift() - df.low).rolling(n).sum() * 100 return _arbr def dpo(df, n=20, m=6): """ 区间震荡线指标 dpo(20,6) DPO=CLOSE-MA(CLOSE, N/2+1) MADPO=MA(DPO,M) """ _dpo = pd.DataFrame() _dpo['date'] = df['date'] _dpo['dpo'] = df.close - _ma(df.close, int(n / 2 + 1)) _dpo['dopma'] = _ma(_dpo.dpo, m) return _dpo def trix(df, n=12, m=20): """ 三重指数平滑平均 TRIX(12) TR= EMA(EMA(EMA(CLOSE,N),N),N),即进行三次平滑处理 TRIX=(TR-昨日TR)/ 昨日TR×100 TRMA=MA(TRIX,M) """ _trix = pd.DataFrame() _trix['date'] = df.date tr = _ema(_ema(_ema(df.close, n), n), n) _trix['trix'] = (tr - tr.shift()) / tr.shift() * 100 _trix['trma'] = _ma(_trix.trix, m) return _trix def bbi(df): """ 多空指数 BBI(3,6,12,24) BBI=(3日均价+6日均价+12日均价+24日均价)/4 """ _bbi = pd.DataFrame() _bbi['date'] = df['date'] _bbi['bbi'] = (_ma(df.close, 3) + _ma(df.close, 6) + _ma(df.close, 12) + _ma(df.close, 24)) / 4 return _bbi def mtm(df, n=6, m=5): """ 动力指标 MTM(6,5) MTM(N日)=C-REF(C,N)式中,C=当日的收盘价,REF(C,N)=N日前的收盘价;N日是只计算交易日期,剔除掉节假日。 MTMMA(MTM,N1)= MA(MTM,N1) N表示间隔天数,N1表示天数 """ _mtm = pd.DataFrame() _mtm['date'] = df.date _mtm['mtm'] = df.close - df.close.shift(n) _mtm['mtmma'] = _ma(_mtm.mtm, m) return _mtm def obv(df): """ 能量潮 On Balance Volume 多空比率净额= [(收盘价-最低价)-(最高价-收盘价)] ÷( 最高价-最低价)×V # 同花顺貌似用的下面公式 主公式:当日OBV=前一日OBV+今日成交量 1.基期OBV值为0,即该股上市的第一天,OBV值为0 2.若当日收盘价>上日收盘价,则当日OBV=前一日OBV+今日成交量 3.若当日收盘价<上日收盘价,则当日OBV=前一日OBV-今日成交量 4.若当日收盘价=上日收盘价,则当日OBV=前一日OBV """ _obv = pd.DataFrame() _obv["date"] = df['date'] # tmp = np.true_divide(((df.close - df.low) - (df.high - df.close)), (df.high - df.low)) # _obv['obvv'] = tmp * df.volume # _obv["obv"] = _obv.obvv.expanding(1).sum() / 100 _m = pd.DataFrame() _m['date'] = df.date _m['cs'] = df.close - df.close.shift() _m['v'] = df.volume _m['vv'] = _m.apply(lambda x: x.v if x.cs > 0 else (-x.v if x.cs < 0 else 0), axis=1) _obv['obv'] = _m.vv.expanding(1).sum() return _obv def cci(df, n=14): """ 顺势指标 TYP:=(HIGH+LOW+CLOSE)/3 CCI:=(TYP-MA(TYP,N))/(0.015×AVEDEV(TYP,N)) """ _cci = pd.DataFrame() _cci["date"] = df['date'] typ = (df.high + df.low + df.close) / 3 _cci['cci'] = ((typ - typ.rolling(n).mean()) / (0.015 * typ.rolling(min_periods=1, center=False, window=n).apply( lambda x: np.fabs(x - x.mean()).mean()))) return _cci def priceosc(df, n=12, m=26): """ 价格振动指数 PRICEOSC=(MA(C,12)-MA(C,26))/MA(C,12) * 100 """ _c = pd.DataFrame() _c['date'] = df['date'] man = _ma(df.close, n) _c['osc'] = (man - _ma(df.close, m)) / man * 100 return _c def sma(a, n, m=1): """ 平滑移动指标 Smooth Moving Average """ ''' # 方法一,此方法有缺陷 _sma = [] for index, value in enumerate(a): if index == 0 or pd.isna(value) or np.isnan(value): tsma = 0 else: # Y=(M*X+(N-M)*Y')/N tsma = (m * value + (n - m) * tsma) / n _sma.append(tsma) return pd.Series(_sma) ''' ''' # 方法二 results = np.nan_to_num(a).copy() # FIXME this is very slow for i in range(1, len(a)): results[i] = (m * results[i] + (n - m) * results[i - 1]) / n # results[i] = ((n - 1) * results[i - 1] + results[i]) / n # return results ''' # b = np.nan_to_num(a).copy() # return ((n - m) * a.shift(1) + m * a) / n a = a.fillna(0) b = a.ewm(min_periods=0, ignore_na=False, adjust=False, alpha=m/n).mean() return b def dbcd(df, n=5, m=16, t=76): """ 异同离差乖离率 dbcd(5,16,76) BIAS=(C-MA(C,N))/MA(C,N) DIF=(BIAS-REF(BIAS,M)) DBCD=SMA(DIF,T,1) =(1-1/T)×SMA(REF(DIF,1),T,1)+ 1/T×DIF MM=MA(DBCD,5) """ _dbcd = pd.DataFrame() _dbcd['date'] = df.date man = _ma(df.close, n) _bias = (df.close - man) / man _dif = _bias - _bias.shift(m) _dbcd['dbcd'] = sma(_dif, t) _dbcd['mm'] = _ma(_dbcd.dbcd, n) return _dbcd def roc(df, n=12, m=6): """ 变动速率 roc(12,6) ROC=(今日收盘价-N日前的收盘价)/ N日前的收盘价×100% ROCMA=MA(ROC,M) ROC:(CLOSE-REF(CLOSE,N))/REF(CLOSE,N)×100 ROCMA:MA(ROC,M) """ _roc = pd.DataFrame() _roc['date'] = df['date'] _roc['roc'] = (df.close - df.close.shift(n))/df.close.shift(n) * 100 _roc['rocma'] = _ma(_roc.roc, m) return _roc def vroc(df, n=12): """ 量变动速率 VROC=(当日成交量-N日前的成交量)/ N日前的成交量×100% """ _vroc = pd.DataFrame() _vroc['date'] = df['date'] _vroc['vroc'] = (df.volume - df.volume.shift(n)) / df.volume.shift(n) * 100 return _vroc def cr(df, n=26): """ 能量指标 CR=∑(H-PM)/∑(PM-L)×100 PM:上一交易日中价((最高、最低、收盘价的均值) H:当天最高价 L:当天最低价 """ _cr = pd.DataFrame() _cr['date'] = df.date # pm = ((df['high'] + df['low'] + df['close']) / 3).shift(1) pm = (df[['high', 'low', 'close']]).mean(axis=1).shift(1) _cr['cr'] = (df.high - pm).rolling(n).sum()/(pm - df.low).rolling(n).sum() * 100 return _cr def psy(df, n=12): """ 心理指标 PSY(12) PSY=N日内上涨天数/N×100 PSY:COUNT(CLOSE>REF(CLOSE,1),N)/N×100 MAPSY=PSY的M日简单移动平均 """ _psy = pd.DataFrame() _psy['date'] = df.date p = df.close - df.close.shift() p[p <= 0] = np.nan _psy['psy'] = p.rolling(n).count() / n * 100 return _psy def wad(df, n=30): """ 威廉聚散指标 WAD(30) TRL=昨日收盘价与今日最低价中价格最低者;TRH=昨日收盘价与今日最高价中价格最高者 如果今日的收盘价>昨日的收盘价,则今日的A/D=今日的收盘价-今日的TRL 如果今日的收盘价<昨日的收盘价,则今日的A/D=今日的收盘价-今日的TRH 如果今日的收盘价=昨日的收盘价,则今日的A/D=0 WAD=今日的A/D+昨日的WAD;MAWAD=WAD的M日简单移动平均 """ def dmd(x): if x.c > 0: y = x.close - x.trl elif x.c < 0: y = x.close - x.trh else: y = 0 return y _wad = pd.DataFrame() _wad['date'] = df['date'] _ad = pd.DataFrame() _ad['trl'] = np.minimum(df.low, df.close.shift(1)) _ad['trh'] = np.maximum(df.high, df.close.shift(1)) _ad['c'] = df.close - df.close.shift() _ad['close'] = df.close _ad['ad'] = _ad.apply(dmd, axis=1) _wad['wad'] = _ad.ad.expanding(1).sum() _wad['mawad'] = _ma(_wad.wad, n) return _wad def mfi(df, n=14): """ 资金流向指标 mfi(14) MF=TYP×成交量;TYP:当日中价((最高、最低、收盘价的均值) 如果当日TYP>昨日TYP,则将当日的MF值视为当日PMF值。而当日NMF值=0 如果当日TYP<=昨日TYP,则将当日的MF值视为当日NMF值。而当日PMF值=0 MR=∑PMF/∑NMF MFI=100-(100÷(1+MR)) """ _mfi = pd.DataFrame() _mfi['date'] = df.date _m = pd.DataFrame() _m['typ'] = df[['high', 'low', 'close']].mean(axis=1) _m['mf'] = _m.typ * df.volume _m['typ_shift'] = _m.typ - _m.typ.shift(1) _m['pmf'] = _m.apply(lambda x: x.mf if x.typ_shift > 0 else 0, axis=1) _m['nmf'] = _m.apply(lambda x: x.mf if x.typ_shift <= 0 else 0, axis=1) # _mfi['mfi'] = 100 - (100 / (1 + _m.pmf.rolling(n).sum() / _m.nmf.rolling(n).sum())) _m['mr'] = _m.pmf.rolling(n).sum() / _m.nmf.rolling(n).sum() _mfi['mfi'] = 100 * _m.mr / (1 + _m.mr) # 同花顺自己给出的公式和实际用的公式不一样,真操蛋,浪费两个小时时间 return _mfi def pvt(df): """ pvt 量价趋势指标 pvt 如果设x=(今日收盘价—昨日收盘价)/昨日收盘价×当日成交量, 那么当日PVT指标值则为从第一个交易日起每日X值的累加。 """ _pvt = pd.DataFrame() _pvt['date'] = df.date x = (df.close - df.close.shift(1)) / df.close.shift(1) * df.volume _pvt['pvt'] = x.expanding(1).sum() return _pvt def wvad(df, n=24, m=6): """ # 算法是对的,同花顺计算wvad用的n=6 威廉变异离散量 wvad(24,6) WVAD=N1日的∑ {(当日收盘价-当日开盘价)/(当日最高价-当日最低价)×成交量} MAWVAD=MA(WVAD,N2) """ _wvad = pd.DataFrame() _wvad['date'] = df.date # _wvad['wvad'] = (np.true_divide((df.close - df.open), (df.high - df.low)) * df.volume).rolling(n).sum() _wvad['wvad'] = (np.true_divide((df.close - df.open), (df.high - df.low)) * df.volume).rolling(n).sum() _wvad['mawvad'] = _ma(_wvad.wvad, m) return _wvad def cdp(df): """ 逆势操作 cdp CDP=(最高价+最低价+收盘价)/3 # 同花顺实际用的(H+L+2*c)/4 AH=CDP+(前日最高价-前日最低价) NH=CDP×2-最低价 NL=CDP×2-最高价 AL=CDP-(前日最高价-前日最低价) """ _cdp = pd.DataFrame() _cdp['date'] = df.date # _cdp['cdp'] = (df.high + df.low + df.close * 2).shift(1) / 4 _cdp['cdp'] = df[['high', 'low', 'close', 'close']].shift().mean(axis=1) _cdp['ah'] = _cdp.cdp + (df.high.shift(1) - df.low.shift()) _cdp['al'] = _cdp.cdp - (df.high.shift(1) - df.low.shift()) _cdp['nh'] = _cdp.cdp * 2 - df.low.shift(1) _cdp['nl'] = _cdp.cdp * 2 - df.high.shift(1) return _cdp def env(df, n=14): """ ENV指标 ENV(14) Upper=MA(CLOSE,N)×1.06 LOWER= MA(CLOSE,N)×0.94 """ _env = pd.DataFrame() _env['date'] = df.date _env['up'] = df.close.rolling(n).mean() * 1.06 _env['low'] = df.close.rolling(n).mean() * 0.94 return _env def mike(df, n=12): """ 麦克指标 mike(12) 初始价(TYP)=(当日最高价+当日最低价+当日收盘价)/3 HV=N日内区间最高价 LV=N日内区间最低价 初级压力线(WR)=TYP×2-LV 中级压力线(MR)=TYP+HV-LV 强力压力线(SR)=2×HV-LV 初级支撑线(WS)=TYP×2-HV 中级支撑线(MS)=TYP-HV+LV 强力支撑线(SS)=2×LV-HV """ _mike = pd.DataFrame() _mike['date'] = df.date typ = df[['high', 'low', 'close']].mean(axis=1) hv = df.high.rolling(n).max() lv = df.low.rolling(n).min() _mike['wr'] = typ * 2 - lv _mike['mr'] = typ + hv - lv _mike['sr'] = 2 * hv - lv _mike['ws'] = typ * 2 - hv _mike['ms'] = typ - hv + lv _mike['ss'] = 2 * lv - hv return _mike def vma(df, n=5): """ 量简单移动平均 VMA(5) VMA=MA(volume,N) VOLUME表示成交量;N表示天数 """ _vma = pd.DataFrame() _vma['date'] = df.date _vma['vma'] = _ma(df.volume, n) return _vma def vmacd(df, qn=12, sn=26, m=9): """ 量指数平滑异同平均 vmacd(12,26,9) 今日EMA(N)=2/(N+1)×今日成交量+(N-1)/(N+1)×昨日EMA(N) DIFF= EMA(N1)- EMA(N2) DEA(DIF,M)= 2/(M+1)×DIF +[1-2/(M+1)]×DEA(REF(DIF,1),M) MACD(BAR)=2×(DIF-DEA) """ _vmacd = pd.DataFrame() _vmacd['date'] = df.date _vmacd['diff'] = _ema(df.volume, qn) - _ema(df.volume, sn) _vmacd['dea'] = _ema(_vmacd['diff'], m) # TODO: 不能用_vmacd.diff, 不知道为什么 _vmacd['macd'] = (_vmacd['diff'] - _vmacd['dea']) return _vmacd def vosc(df, n=12, m=26): """ 成交量震荡 vosc(12,26) VOSC=(MA(VOLUME,SHORT)- MA(VOLUME,LONG))/MA(VOLUME,SHORT)×100 """ _c = pd.DataFrame() _c['date'] = df['date'] _c['osc'] = (_ma(df.volume, n) - _ma(df.volume, m)) / _ma(df.volume, n) * 100 return _c def tapi(df, n=6): """ # TODO: 由于get_k_data返回数据中没有amount,可以用get_h_data中amount,算法是正确的 加权指数成交值 tapi(6) TAPI=每日成交总值/当日加权指数=a/PI;A表示每日的成交金额,PI表示当天的股价指数即指收盘价 """ _tapi = pd.DataFrame() # _tapi['date'] = df.date _tapi['tapi'] = df.amount / df.close _tapi['matapi'] = _ma(_tapi.tapi, n) return _tapi def vstd(df, n=10): """ 成交量标准差 vstd(10) VSTD=STD(Volume,N)=[∑(Volume-MA(Volume,N))^2/N]^0.5 """ _vstd = pd.DataFrame() _vstd['date'] = df.date _vstd['vstd'] = df.volume.rolling(n).std(ddof=1) return _vstd def adtm(df, n=23, m=8): """ 动态买卖气指标 adtm(23,8) 如果开盘价≤昨日开盘价,DTM=0 如果开盘价>昨日开盘价,DTM=(最高价-开盘价)和(开盘价-昨日开盘价)的较大值 如果开盘价≥昨日开盘价,DBM=0 如果开盘价<昨日开盘价,DBM=(开盘价-最低价) STM=DTM在N日内的和 SBM=DBM在N日内的和 如果STM > SBM,ADTM=(STM-SBM)/STM 如果STM < SBM , ADTM = (STM-SBM)/SBM 如果STM = SBM,ADTM=0 ADTMMA=MA(ADTM,M) """ _adtm = pd.DataFrame() _adtm['date'] = df.date _m = pd.DataFrame() _m['cc'] = df.open - df.open.shift(1) _m['ho'] = df.high - df.open _m['ol'] = df.open - df.low _m['dtm'] = _m.apply(lambda x: max(x.ho, x.cc) if x.cc > 0 else 0, axis=1) _m['dbm'] = _m.apply(lambda x: x.ol if x.cc < 0 else 0, axis=1) _m['stm'] = _m.dtm.rolling(n).sum() _m['sbm'] = _m.dbm.rolling(n).sum() _m['ss'] = _m.stm - _m.sbm _adtm['adtm'] = _m.apply(lambda x: x.ss / x.stm if x.ss > 0 else (x.ss / x.sbm if x.ss < 0 else 0), axis=1) _adtm['adtmma'] = _ma(_adtm.adtm, m) return _adtm def mi(df, n=12): """ 动量指标 mi(12) A=CLOSE-REF(CLOSE,N) MI=SMA(A,N,1) """ _mi = pd.DataFrame() _mi['date'] = df.date _mi['mi'] = sma(df.close - df.close.shift(n), n) return _mi def micd(df, n=3, m=10, k=20): """ 异同离差动力指数 micd(3,10,20) MI=CLOSE-ref(CLOSE,1)AMI=SMA(MI,N1,1) DIF=MA(ref(AMI,1),N2)-MA(ref(AMI,1),N3) MICD=SMA(DIF,10,1) """ _micd = pd.DataFrame() _micd['date'] = df.date mi = df.close - df.close.shift(1) ami = sma(mi, n) dif = _ma(ami.shift(1), m) - _ma(ami.shift(1), k) _micd['micd'] = sma(dif, m) return _micd def rc(df, n=50): """ 变化率指数 rc(50) RC=收盘价/REF(收盘价,N)×100 ARC=EMA(REF(RC,1),N,1) """ _rc = pd.DataFrame() _rc['date'] = df.date _rc['rc'] = df.close / df.close.shift(n) * 100 _rc['arc'] = sma(_rc.rc.shift(1), n) return _rc def rccd(df, n=59, m=21, k=28): """ # TODO: 计算结果错误和同花顺不同,检查不出来为什么 异同离差变化率指数 rate of change convergence divergence rccd(59,21,28) RC=收盘价/REF(收盘价,N)×100% ARC=EMA(REF(RC,1),N,1) DIF=MA(ref(ARC,1),N1)-MA MA(ref(ARC,1),N2) RCCD=SMA(DIF,N,1) """ _rccd = pd.DataFrame() _rccd['date'] = df.date rc = df.close / df.close.shift(n) * 100 arc = sma(rc.shift(), n) dif = _ma(arc.shift(), m) - _ma(arc.shift(), k) _rccd['rccd'] = sma(dif, n) return _rccd def srmi(df, n=9): """ SRMIMI修正指标 srmi(9) 如果收盘价>N日前的收盘价,SRMI就等于(收盘价-N日前的收盘价)/收盘价 如果收盘价<N日前的收盘价,SRMI就等于(收盘价-N日签的收盘价)/N日前的收盘价 如果收盘价=N日前的收盘价,SRMI就等于0 """ _srmi = pd.DataFrame() _srmi['date'] = df.date _m = pd.DataFrame() _m['close'] = df.close _m['cp'] = df.close.shift(n) _m['cs'] = df.close - df.close.shift(n) _srmi['srmi'] = _m.apply(lambda x: x.cs/x.close if x.cs > 0 else (x.cs/x.cp if x.cs < 0 else 0), axis=1) return _srmi def dptb(df, n=7): """ 大盘同步指标 dptb(7) DPTB=(统计N天中个股收盘价>开盘价,且指数收盘价>开盘价的天数或者个股收盘价<开盘价,且指数收盘价<开盘价)/N """ ind = ts.get_k_data("sh000001", start=df.date.iloc[0], end=df.date.iloc[-1]) sd = df.copy() sd.set_index('date', inplace=True) # 可能出现停盘等情况,所以将date设为index ind.set_index('date', inplace=True) _dptb = pd.DataFrame(index=df.date) q = ind.close - ind.open _dptb['p'] = sd.close - sd.open _dptb['q'] = q _dptb['m'] = _dptb.apply(lambda x: 1 if (x.p > 0 and x.q > 0) or (x.p < 0 and x.q < 0) else np.nan, axis=1) _dptb['jdrs'] = _dptb.m.rolling(n).count() / n _dptb.drop(columns=['p', 'q', 'm'], inplace=True) _dptb.reset_index(inplace=True) return _dptb def jdqs(df, n=20): """ 阶段强势指标 jdqs(20) JDQS=(统计N天中个股收盘价>开盘价,且指数收盘价<开盘价的天数)/(统计N天中指数收盘价<开盘价的天数) """ ind = ts.get_k_data("sh000001", start=df.date.iloc[0], end=df.date.iloc[-1]) sd = df.copy() sd.set_index('date', inplace=True) # 可能出现停盘等情况,所以将date设为index ind.set_index('date', inplace=True) _jdrs = pd.DataFrame(index=df.date) q = ind.close - ind.open _jdrs['p'] = sd.close - sd.open _jdrs['q'] = q _jdrs['m'] = _jdrs.apply(lambda x: 1 if (x.p > 0 and x.q < 0) else np.nan, axis=1) q[q > 0] = np.nan _jdrs['t'] = q _jdrs['jdrs'] = _jdrs.m.rolling(n).count() / _jdrs.t.rolling(n).count() _jdrs.drop(columns=['p', 'q', 'm', 't'], inplace=True) _jdrs.reset_index(inplace=True) return _jdrs def jdrs(df, n=20): """ 阶段弱势指标 jdrs(20) JDRS=(统计N天中个股收盘价<开盘价,且指数收盘价>开盘价的天数)/(统计N天中指数收盘价>开盘价的天数) """ ind = ts.get_k_data("sh000001", start=df.date.iloc[0], end=df.date.iloc[-1]) sd = df.copy() sd.set_index('date', inplace=True) ind.set_index('date', inplace=True) _jdrs = pd.DataFrame(index=df.date) q = ind.close - ind.open _jdrs['p'] = sd.close - sd.open _jdrs['q'] = q _jdrs['m'] = _jdrs.apply(lambda x: 1 if (x.p < 0 and x.q > 0) else np.nan, axis=1) q[q < 0] = np.nan _jdrs['t'] = q _jdrs['jdrs'] = _jdrs.m.rolling(n).count() / _jdrs.t.rolling(n).count() _jdrs.drop(columns=['p', 'q', 'm', 't'], inplace=True) _jdrs.reset_index(inplace=True) return _jdrs def zdzb(df, n=125, m=5, k=20): """ 筑底指标 zdzb(125,5,20) A=(统计N1日内收盘价>=前收盘价的天数)/(统计N1日内收盘价<前收盘价的天数) B=MA(A,N2) D=MA(A,N3) """ _zdzb = pd.DataFrame() _zdzb['date'] = df.date p = df.close - df.close.shift(1) q = p.copy() p[p < 0] = np.nan q[q >= 0] = np.nan _zdzb['a'] = p.rolling(n).count() / q.rolling(n).count() _zdzb['b'] = _zdzb.a.rolling(m).mean() _zdzb['d'] = _zdzb.a.rolling(k).mean() return _zdzb def atr(df, n=14): """ 真实波幅 atr(14) TR:MAX(MAX((HIGH-LOW),ABS(REF(CLOSE,1)-HIGH)),ABS(REF(CLOSE,1)-LOW)) ATR:MA(TR,N) """ _atr = pd.DataFrame() _atr['date'] = df.date # _atr['tr'] = np.maximum(df.high - df.low, (df.close.shift(1) - df.low).abs()) # _atr['tr'] = np.maximum.reduce([df.high - df.low, (df.close.shift(1) - df.high).abs(), (df.close.shift(1) - df.low).abs()]) _atr['tr'] = np.vstack([df.high - df.low, (df.close.shift(1) - df.high).abs(), (df.close.shift(1) - df.low).abs()]).max(axis=0) _atr['atr'] = _atr.tr.rolling(n).mean() return _atr def mass(df, n=9, m=25): """ 梅丝线 mass(9,25) AHL=MA((H-L),N1) BHL= MA(AHL,N1) MASS=SUM(AHL/BHL,N2) H:表示最高价;L:表示最低价 """ _mass =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- import os import pandas as pd import plotly.graph_objects as go def file_df_to_count_df(df, ID_SUSCEPTIBLE=1, ID_INFECTED=0, ID_RECOVERED=2): pedestrian_ids = df['pedestrianId'].unique() sim_times = df['simTime'].unique() group_counts = pd.DataFrame(columns=['simTime', 'group-s', 'group-i', 'group-r']) group_counts['simTime'] = sim_times group_counts['group-s'] = 0 group_counts['group-i'] = 0 group_counts['group-r'] = 0 for pid in pedestrian_ids: simtime_group = df[df['pedestrianId'] == pid][['simTime', 'groupId-PID5']].values current_state = ID_SUSCEPTIBLE group_counts.loc[group_counts['simTime'] >= 0, 'group-s'] += 1 for (st, g) in simtime_group: if g != current_state and g == ID_INFECTED and current_state == ID_SUSCEPTIBLE: current_state = g group_counts.loc[group_counts['simTime'] > st, 'group-s'] -= 1 group_counts.loc[group_counts['simTime'] > st, 'group-i'] += 1 if g != current_state and g == ID_RECOVERED and current_state == ID_INFECTED: group_counts.loc[group_counts['simTime'] > st, 'group-i'] -= 1 group_counts.loc[group_counts['simTime'] > st, 'group-r'] += 1 break return group_counts def create_folder_data_scatter(folder): """ Create scatter plot from folder data. :param folder: :return: """ file_path = os.path.join(folder, "SIRinformation.csv") if not os.path.exists(file_path): return None data =
pd.read_csv(file_path, delimiter=" ")
pandas.read_csv
import tweepy import pandas import config import matplotlib.pyplot as plt from textblob import TextBlob # Initialization tweetDataframe = pandas.DataFrame() sentimentDataframe =
pandas.DataFrame()
pandas.DataFrame
import fileinput import glob import os from Bio import SeqIO import filelock import numpy as np import pandas as pd from utils.data_utils import is_valid_seq, seqs_to_onehot def merge_dfs(in_rgx, out_path, index_cols, groupby_cols, ignore_cols): """ Merge multiple pandas DataFrames into one and provides a summary file. Args: - in_rgx: regex for input filepath - out_path: output path - index_cols: index column names for DataFrame - groupby_cols: groupby column names in the summary step - ignore_cols: columns to be ignored in the summary step """ lock = filelock.FileLock(out_path + '.lock') with lock: frames = [] for f in glob.glob(in_rgx): try: frames.append(pd.read_csv(f)) os.remove(f) except pd.errors.EmptyDataError: continue df = pd.concat(frames, axis=0, sort=True).sort_values(index_cols) df.set_index(index_cols).to_csv(out_path, float_format='%.4f') #df = df.drop(columns=ignore_cols) #means = df.groupby(groupby_cols).mean() #stds = df.groupby(groupby_cols).std() #summary = pd.merge(means, stds, on=groupby_cols, suffixes=('_mean', '_std')) #summary = summary.sort_index(axis=1) #save_path = out_path.replace(".csv", "_summary.csv") #summary.to_csv(save_path, float_format='%.4f') #return summary def parse_var(s): """ Parse a key, value pair, separated by '=' That's the reverse of ShellArgs. On the command line (argparse) a declaration will typically look like: foo=hello or foo="hello world" """ items = s.split('=') key = items[0].strip() # we remove blanks around keys, as is logical if len(items) > 1: # rejoin the rest: value = '='.join(items[1:]) return (key, value) def parse_vars(items): """ Parse a series of key-value pairs and return a dictionary """ d = {} if items: for item in items: key, value = parse_var(item) try: d[key] = float(value) except: d[key] = value return d def load_data_split(dataset_name, split_id, seed=0, ignore_gaps=False): data_path = os.path.join('data', dataset_name, 'data.csv') # Sample shuffles the DataFrame. data_pre_split = pd.read_csv(data_path).sample(frac=1.0, random_state=seed) if not ignore_gaps: is_valid = data_pre_split['seq'].apply(is_valid_seq) data_pre_split = data_pre_split[is_valid] if split_id == -1: return data_pre_split return np.array_split(data_pre_split, 3)[split_id] def get_wt_log_fitness(dataset_name): data_path = os.path.join('data', dataset_name, 'data.csv') data = pd.read_csv(data_path) try: return data[data.n_mut == 0].log_fitness.mean() except: return data.log_fitness.mean() def get_log_fitness_cutoff(dataset_name): data_path = os.path.join('data', dataset_name, 'log_fitness_cutoff.npy') return np.loadtxt(data_path).item() def count_rows(filename_glob_pattern): cnt = 0 for f in sorted(glob.glob(filename_glob_pattern)): with open(f) as fp: for line in fp: cnt += 1 return cnt def load_rows_by_numbers(filename_glob_pattern, line_numbers): lns_sorted = sorted(line_numbers) lns_idx = np.argsort(line_numbers) n_rows = len(line_numbers) current_ln = 0 # current (accumulated) line number in opened file j = 0 # index in lns rows = None for f in sorted(glob.glob(filename_glob_pattern)): with open(f) as fp: for line in fp: while j < n_rows and lns_sorted[j] == current_ln: thisrow = np.array([float(x) for x in line.split(' ')]) if rows is None: rows = np.full((n_rows, len(thisrow)), np.nan) rows[lns_idx[j], :] = thisrow j += 1 current_ln += 1 assert j == n_rows, (f"Expected {n_rows} rows, found {j}. " f"Scanned {current_ln} lines from {filename_glob_pattern}.") return rows def load(filename_glob_pattern): files = sorted(glob.glob(filename_glob_pattern)) if len(files) == 0: print("No files found for", filename_glob_pattern) return np.loadtxt(fileinput.input(files)) def save(filename_pattern, data, entries_per_file=2000): n_files = int(data.shape[0] / entries_per_file) if data.shape[0] % entries_per_file > 0: n_files += 1 for i in range(n_files): filename = filename_pattern + f'-{i:03d}-of-{n_files:03d}' l_idx = i * entries_per_file r_idx = min(l_idx + entries_per_file, data.shape[0]) np.savetxt(filename, data[l_idx:r_idx]) def load_and_filter_seqs(data_filename): """ seqs_filename: file to write out filtered sequences """ df =
pd.read_csv(data_filename)
pandas.read_csv
import pandas as pd import dateutil from lusidtools.lpt import lse from lusidtools.lpt import stdargs from lusidtools.lpt import qry_instr_ids, lpt from .either import Either import re import urllib.parse rexp = re.compile(r".*page=([^=']{10,}).*") TOOLNAME = "instr_list" TOOLTIP = "List all instruments" def parse(extend=None, args=None): return ( stdargs.Parser("Query Instruments", ["filename", "limit", "properties"]) .add("--batch", type=int, default=2000) .add("--filter") .extend(extend) .parse(args) ) def process_args(api, args): def list_instruments(ids): id_columns = {"identifiers.KEY:{}".format(v): v for v in ids["Id"].values} def fetch_page(page_token): return api.call.list_instruments( limit=args.batch, page=page_token, instrument_property_keys=args.properties, filter=args.filter, ) results = [] def got_page(result): columns = ["lusid_instrument_id", "name"] columns.extend(sorted(id_columns.keys())) columns.extend(f"P:{c}" for c in args.properties) df = lpt.to_df(result, columns).dropna(axis=1, how="all") df.rename(columns=id_columns, inplace=True) results.append(df) links = [l for l in result.content.links if l.relation == "NextPage"] if len(links) > 0: match = rexp.match(links[0].href) if match: print("{} {}".format(len(results), match.group(1))) return urllib.parse.unquote(match.group(1)) return None page = Either(None) while True: page = fetch_page(page.right).bind(got_page) if page.is_left(): return page if page.right == None: break return lpt.trim_df(
pd.concat(results, ignore_index=True, sort=False)
pandas.concat
"""Cancer data classification Classifying the Wisconsin cancer data from UCI repository into benign and malignant classes with k Nearest Neighbors """ # -*- coding: utf-8 -*- #!/usr/bin/env python3 # File : cancer_knn.py # find whether cancer is malignant or benign using kNN import time import warnings import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from sklearn import metrics, model_selection, neighbors, preprocessing warnings.filterwarnings('ignore') # get the initial time t_init = time.time() # url for the Wisconsin Breast Cancer data from UCI url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data' # set the names of the columns as pulled from the file accompanying the dataset # which is breast-cancer-wisconsin.names names = [ "SampleCodeNumber", "ClumpThickness", "UniformityCellSize", "UniformityCellShape", "MarginalAdhesion", "SingleEpithelialCellSize", "BareNuclei", "BlandChromatin", "NormalNucleoli", "Mitoses", "Class" ] print('[INFO] gathering the {} data'.format(url.split('/')[-2])) df = pd.read_csv(url, names=names) print('[INFO] shape of the cancer data {}'.format(df.shape)) print('[INFO] information about the cancer database \n{}'.format(df.info())) print('[INFO] report of the data at a fine grained level \n{}'.format( df.describe())) # As per the documentation note of the cancer dataset, there are some # missing attribute values. There are 16 instances in Groups 1 to 6 that # contain a single missing (i.e., unavailable) attribute value, now # denoted by "?". missing_counts = df.apply(lambda x: x == '?', axis=1).sum() null_counts = df.apply(lambda x: x.isnull().values.ravel().sum()) isnull_predicate = df.isnull().values.any() print('[INFO] report of the missing attribute information \n{}'.format( missing_counts)) print('[INFO] BareNuclei attribute information details \n{}'.format( df.groupby('BareNuclei').BareNuclei.count())) print('[INFO] does the dataset has any null values ? {}'.format( isnull_predicate)) print( '[INFO] null attribute value information if any \n{}'.format(null_counts)) # As per the above result, BareNuclei has 16 values equal to "?" for which # we may either discard the rows with missing values or replace them with # the most common or frequent values in the dataset given by # df[df.BareNuclei != ‘?’] # most frequent value of BareNuclei from the table frequent_value = df['BareNuclei'].value_counts().index[0] print('[INFO] replacing the ? with most frequent value of {}'.format( frequent_value)) df['BareNuclei'] = df['BareNuclei'].replace('?', np.NaN) df['BareNuclei'] = df['BareNuclei'].fillna(frequent_value) df['BareNuclei'] = df['BareNuclei'].apply(lambda x: int(x)) # Heatmap of the correlation matrix calculated from pandas with index of # the nlargest = 10 # nlargest represents the n largest values sorted in decreasing order. plt.figure(1) fields = df.corr().nlargest(10, 'Class')['Class'].index corr = df[fields].corr() sns.heatmap(corr, annot=True, fmt=".2f", linewidths=0.4) plt.title('Heatmap of Cancer Data Correlation Matrix') plt.show() # distribute the dataset between training data and target/labels as under X = df.drop(['SampleCodeNumber', 'Class'], axis=1) y = df['Class'] # here we are representing class label 2 as 'benign' and 4 as 'malignant' df.Class.replace([2, 4], ['benign', 'malignant'], inplace=True) print('[INFO] target class labels for cancer {}'.format(np.unique(y))) print('[INFO] count of benign and malignant classes \n{}'.format( df.Class.value_counts())) plt.figure(2) sns.countplot(df['Class'], label='Count', palette=sns.color_palette("deep", 10)) plt.show() # as per the accompanying documentation, the class labels 2 and 4 correspond # to cancer states, Benign and Malignant as under # class label = 2 -> Benign # class label = 4 -> Malignant # we can encode the labels with scikit learn LabelEncoder though it's # not needed in this case as it's usually applied in the cases where the # target labels are all strings le = preprocessing.LabelEncoder() labels = le.fit_transform(df['Class']) print('[INFO] scikit encoded labels {}'.format(np.unique(labels))) # get a box plot of all the parameters plt.figure(3) df.drop('Class', axis=1).plot(kind='box', subplots=True, layout=(4, 3), sharex=False, sharey=False, figsize=(9, 9), title='Box Plot of individual cancer input variables') plt.show() # Feature Scaling - Standardization # As a part of optimization of the algorithm, we can apply feature # scaling, by standardizing features using StandardScaler class from # sklearn's preprocessing module. Scaling will ensure that the features # will have a 0 mean and standard deviation of 1. This helps in all the # features contributing equally. scaler = preprocessing.StandardScaler() print('[INFO] re-scaling the features with options {}'.format( scaler.get_params())) X_std_array = scaler.fit_transform(X.values) X_std =
pd.DataFrame(X_std_array, index=X.index, columns=X.columns)
pandas.DataFrame
"""Python module for manipulating datasets.""" from __future__ import absolute_import import random import os import os.path import logging import multiprocessing from functools import partial import pandas as pd import numpy as np from sklearn import cross_validation, preprocessing from sklearn.decomposition import PCA from . import fileutils def first(iterable): """Returns the first element of an iterable""" for element in iterable: return element class SegmentCrossValidator: """Wrapper for the scikit_learn CV generators to generate folds on a segment basis.""" def __init__(self, dataframe, base_cv=None, **cv_kwargs): # We create a copy of the dataframe with a new last level # index which is an enumeration of the rows (like proper indices) self.all_segments = pd.DataFrame({'Preictal': dataframe['Preictal'], 'i': np.arange(len(dataframe))}) self.all_segments.set_index('i', append=True, inplace=True) # Now create a series with only the segments as rows. This is what we will pass into the wrapped cross # validation generator self.segments = self.all_segments['Preictal'].groupby(level='segment').first() self.segments.sort(inplace=True) if base_cv is None: self.cv = cross_validation.StratifiedKFold(self.segments, **cv_kwargs) else: self.cv = base_cv(self.segments, **cv_kwargs) def __iter__(self): """ Return a generator object which returns a pair of indices for every iteration. """ for training_indices, test_indices in self.cv: # The indices returned from self.cv are relative to the segment name data series, we pick out the segment # names they belong to training_segments = list(self.segments[training_indices].index) test_segments = list(self.segments[test_indices].index) # Now that we have the segment names, we pick out the rows in the properly indexed dataframe all_training_indices = self.all_segments.loc[training_segments] all_test_indices = self.all_segments.loc[test_segments] # Now pick out the values for only the 'i' level index of the rows which matched the segment names original_df_training_indices = all_training_indices.index.get_level_values('i') original_df_test_indices = all_test_indices.index.get_level_values('i') yield original_df_training_indices, original_df_test_indices def __len__(self): return len(self.cv) def mean(*dataframes): """Returns the means of the given dataframe(s), calculated without concatenating the frame""" lengths = sum([len(dataframe) for dataframe in dataframes]) sums = dataframes[0].sum() for dataframe in dataframes[1:]: sums += dataframe.sum() means = sums / lengths return means def transform(transformation, interictal, preictal, test): """ Performs a transformation on the supplied *interictal*, *preictal* and *test* Pandas dataframes. :param transformation: An object that implements the fit_transform function, which applies a transformation to a numpy array. :param interictal: Pandas Dataframe containing the interictal samples :param preictal: Pandas Dataframe containing the preictal samples :param test: Pandas Dataframe containing the test samples :return: A List containing the three input Dataframes, with the *transformation* applied to them """ if not hasattr(transformation, 'fit_transform'): logging.warning( "Transformation {} has not fit_transform function, no transformation applied".format(transformation)) return [interictal, preictal, test] interictal = interictal.drop('Preictal', axis=1) preictal = preictal.drop('Preictal', axis=1) # Keep structure info as we will need to rebuild the dataframes interictal_index = interictal.index interictal_columns = interictal.columns preictal_index = preictal.index preictal_columns = preictal.columns test_index = test.index test_columns = test.columns inter_samples = interictal.shape[0] # Concatenate the training data as we will use those for # fitting the scaler # This can be quite memory intensive, especially if the # dataframes are big training_frame = pd.concat([interictal, preictal], axis=0) # Perform the transformation transformed_train = transformation.fit_transform(training_frame) transformed_test = transformation.transform(test) # Rebuild the dataframes interictal_tr_array = transformed_train[:inter_samples] preictal_tr_array = transformed_train[inter_samples:] # A transformation like PCA changes the columns so we have to # rebuild them # TODO: Is there any point in keeping the columns? # Wouldn't None work either way? if len(interictal_columns) != interictal_tr_array.shape[1]: interictal_columns = None preictal_columns = None test_columns = None new_interictal = pd.DataFrame( interictal_tr_array, index=interictal_index, columns=interictal_columns) new_preictal = pd.DataFrame( preictal_tr_array, index=preictal_index, columns=preictal_columns) new_test = pd.DataFrame( transformed_test, index=test_index, columns=test_columns) new_interictal['Preictal'] = 0 new_preictal['Preictal'] = 1 return [new_interictal, new_preictal, new_test] def pca_transform(dataframes): """Performs PCA transformation on the *dataframes*""" interictal, preictal, test = dataframes # Perform the PCA pca = PCA() return transform(pca, interictal, preictal, test) def scale(dataframes): """ Returns standardized (mean 0, standard deviation 1) versions of the given data frames. :param dataframes: A sequence containing the 3 interictal, preictal and test dataframes. Note that they should be unpacked in this exact order. :return: A list of the standardized dataframes """ interictal, preictal, test = dataframes # Perform the scaling scaler = preprocessing.StandardScaler() return transform(scaler, interictal, preictal, test) def split_experiment_data(interictal, preictal, training_ratio, do_segment_split=True, random_state=None): """ Splits the interictal and preictal training data into a training and test set. :param interictal: A data frame containing the interictal samples. :param preictal: A data frame containing the preictal samples. :param training_ratio: A value in the range (0,1) which indicates the ratio of samples to use for training. :param do_segment_split: If True, will split the dataframes based on segment names. :param random_state: A set seed to ensure reproducibility of the experiments. :return: A partition of the concatenated interictal and preictal data frames into two seperate and disjunct data frames, such that the first partition contains a ratio of *training_ratio* of all the data. """ dataset = merge_interictal_preictal(interictal, preictal) return split_dataset(dataset, training_ratio=training_ratio, do_segment_split=do_segment_split, random_state=random_state) def merge_interictal_preictal(interictal, preictal): """ Merges the *interictal* and *preictal* data frames to a single data frame. Also sorts the multilevel index. :param interictal: A data frame containing the interictal samples. :param preictal: A data frame containing the preictal samples. :return: A data frame containing both interictal and preictal data. The multilevel index of the data frame is sorted. """ logging.info("Merging interictal and preictal datasets") try: preictal.sortlevel('segment', inplace=True) if isinstance(preictal.columns, pd.MultiIndex): preictal.sortlevel(axis=1, inplace=True) interictal.sortlevel('segment', inplace=True) if isinstance(interictal.columns, pd.MultiIndex): interictal.sortlevel(axis=1, inplace=True) except TypeError: logging.warning("TypeError when trying to merge interictal and preictal sets.") dataset =
pd.concat((interictal, preictal))
pandas.concat
# -*- coding: utf-8 -*- """ Authors: <NAME> UNESCO-IHE 2016 Contact: <EMAIL> Repository: https://github.com/wateraccounting/wa Module: Sheets/sheet1 """ import os import pandas as pd import time import xml.etree.ElementTree as ET import subprocess def create_sheet3(basin, period, units, data, output, template=False): """ Keyword arguments: basin -- The name of the basin period -- The period of analysis units -- A list with the units of the data: [<water consumption>, <land productivity>, <water productivity>] data -- A csv file that contains the water data. The csv file has to follow an specific format. A sample csv is available in the link: https://github.com/wateraccounting/wa/tree/master/Sheets/csv output -- A list (length 2) with the output paths of the jpg files for the two parts of the sheet template -- A list (length 2) of the svg files of the sheet. Use False (default) to use the standard svg files. Example: from wa.Sheets import * create_sheet3(basin='Helmand', period='2007-2011', units=['km3/yr', 'kg/ha/yr', 'kg/m3'], data=[r'C:\Sheets\csv\Sample_sheet3_part1.csv', r'C:\Sheets\csv\Sample_sheet3_part2.csv'], output=[r'C:\Sheets\sheet_3_part1.jpg', r'C:\Sheets\sheet_3_part2.jpg']) """ # Read table df1 = pd.read_csv(data[0], sep=';') df2 = pd.read_csv(data[1], sep=';') # Data frames df1c = df1.loc[df1.USE == "CROP"] df1n = df1.loc[df1.USE == "NON-CROP"] df2c = df2.loc[df2.USE == "CROP"] df2n = df2.loc[df2.USE == "NON-CROP"] # Read csv file part 1 crop_r01c01 = float(df1c.loc[(df1c.TYPE == "Cereals") & (df1c.SUBCLASS == "ET")].WATER_CONSUMPTION) crop_r02c01 = float(df1c.loc[(df1c.TYPE == "Cereals") & (df1c.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) crop_r03c01 = float(df1c.loc[(df1c.TYPE == "Cereals") & (df1c.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) crop_r04c01 = crop_r02c01 + crop_r03c01 crop_r01c02 = float(df1c.loc[(df1c.SUBTYPE == "Root/tuber crops") & (df1c.SUBCLASS == "ET")].WATER_CONSUMPTION) crop_r02c02 = float(df1c.loc[(df1c.SUBTYPE == "Root/tuber crops") & (df1c.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) crop_r03c02 = float(df1c.loc[(df1c.SUBTYPE == "Root/tuber crops") & (df1c.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) crop_r04c02 = crop_r02c02 + crop_r03c02 crop_r01c03 = float(df1c.loc[(df1c.SUBTYPE == "Leguminous crops") & (df1c.SUBCLASS == "ET")].WATER_CONSUMPTION) crop_r02c03 = float(df1c.loc[(df1c.SUBTYPE == "Leguminous crops") & (df1c.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) crop_r03c03 = float(df1c.loc[(df1c.SUBTYPE == "Leguminous crops") & (df1c.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) crop_r04c03 = crop_r02c03 + crop_r03c03 crop_r01c04 = float(df1c.loc[(df1c.SUBTYPE == "Sugar crops") & (df1c.SUBCLASS == "ET")].WATER_CONSUMPTION) crop_r02c04 = float(df1c.loc[(df1c.SUBTYPE == "Sugar crops") & (df1c.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) crop_r03c04 = float(df1c.loc[(df1c.SUBTYPE == "Sugar crops") & (df1c.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) crop_r04c04 = crop_r02c04 + crop_r03c04 crop_r01c05 = float(df1c.loc[(df1c.TYPE == "Non-cereals") & (df1c.SUBCLASS == "ET") & (df1c.SUBTYPE == "Merged")].WATER_CONSUMPTION) crop_r02c05 = float(df1c.loc[(df1c.TYPE == "Non-cereals") & (df1c.SUBCLASS == "ET rainfall") & (df1c.SUBTYPE == "Merged")].WATER_CONSUMPTION) crop_r03c05 = float(df1c.loc[(df1c.TYPE == "Non-cereals") & (df1c.SUBCLASS == "Incremental ET") & (df1c.SUBTYPE == "Merged")].WATER_CONSUMPTION) crop_r04c05 = crop_r02c05 + crop_r03c05 crop_r01c06 = float(df1c.loc[(df1c.SUBTYPE == "Vegetables & melons") & (df1c.SUBCLASS == "ET")].WATER_CONSUMPTION) crop_r02c06 = float(df1c.loc[(df1c.SUBTYPE == "Vegetables & melons") & (df1c.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) crop_r03c06 = float(df1c.loc[(df1c.SUBTYPE == "Vegetables & melons") & (df1c.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) crop_r04c06 = crop_r02c06 + crop_r03c06 crop_r01c07 = float(df1c.loc[(df1c.SUBTYPE == "Fruits & nuts") & (df1c.SUBCLASS == "ET")].WATER_CONSUMPTION) crop_r02c07 = float(df1c.loc[(df1c.SUBTYPE == "Fruits & nuts") & (df1c.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) crop_r03c07 = float(df1c.loc[(df1c.SUBTYPE == "Fruits & nuts") & (df1c.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) crop_r04c07 = crop_r02c07 + crop_r03c07 crop_r01c08 = float(df1c.loc[(df1c.TYPE == "Fruit & vegetables") & (df1c.SUBCLASS == "ET") & (df1c.SUBTYPE == "Merged")].WATER_CONSUMPTION) crop_r02c08 = float(df1c.loc[(df1c.TYPE == "Fruit & vegetables") & (df1c.SUBCLASS == "ET rainfall") & (df1c.SUBTYPE == "Merged")].WATER_CONSUMPTION) crop_r03c08 = float(df1c.loc[(df1c.TYPE == "Fruit & vegetables") & (df1c.SUBCLASS == "Incremental ET") & (df1c.SUBTYPE == "Merged")].WATER_CONSUMPTION) crop_r04c08 = crop_r02c08 + crop_r03c08 crop_r01c09 = float(df1c.loc[(df1c.TYPE == "Oilseeds") & (df1c.SUBCLASS == "ET")].WATER_CONSUMPTION) crop_r02c09 = float(df1c.loc[(df1c.TYPE == "Oilseeds") & (df1c.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) crop_r03c09 = float(df1c.loc[(df1c.TYPE == "Oilseeds") & (df1c.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) crop_r04c09 = crop_r02c09 + crop_r03c09 crop_r01c10 = float(df1c.loc[(df1c.TYPE == "Feed crops") & (df1c.SUBCLASS == "ET")].WATER_CONSUMPTION) crop_r02c10 = float(df1c.loc[(df1c.TYPE == "Feed crops") & (df1c.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) crop_r03c10 = float(df1c.loc[(df1c.TYPE == "Feed crops") & (df1c.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) crop_r04c10 = crop_r02c10 + crop_r03c10 crop_r01c11 = float(df1c.loc[(df1c.TYPE == "Beverage crops") & (df1c.SUBCLASS == "ET")].WATER_CONSUMPTION) crop_r02c11 = float(df1c.loc[(df1c.TYPE == "Beverage crops") & (df1c.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) crop_r03c11 = float(df1c.loc[(df1c.TYPE == "Beverage crops") & (df1c.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) crop_r04c11 = crop_r02c11 + crop_r03c11 crop_r01c12 = float(df1c.loc[(df1c.TYPE == "Other crops") & (df1c.SUBCLASS == "ET")].WATER_CONSUMPTION) crop_r02c12 = float(df1c.loc[(df1c.TYPE == "Other crops") & (df1c.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) crop_r03c12 = float(df1c.loc[(df1c.TYPE == "Other crops") & (df1c.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) crop_r04c12 = crop_r02c12 + crop_r03c12 noncrop_r01c01 = float(df1n.loc[(df1n.TYPE == "Fish (Aquaculture)") & (df1n.SUBCLASS == "ET")].WATER_CONSUMPTION) noncrop_r02c01 = float(df1n.loc[(df1n.TYPE == "Fish (Aquaculture)") & (df1n.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) noncrop_r03c01 = float(df1n.loc[(df1n.TYPE == "Fish (Aquaculture)") & (df1n.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) noncrop_r04c01 = noncrop_r02c01 + noncrop_r03c01 noncrop_r01c02 = float(df1n.loc[(df1n.TYPE == "Timber") & (df1n.SUBCLASS == "ET")].WATER_CONSUMPTION) noncrop_r02c02 = float(df1n.loc[(df1n.TYPE == "Timber") & (df1n.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) noncrop_r03c02 = float(df1n.loc[(df1n.TYPE == "Timber") & (df1n.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) noncrop_r04c02 = noncrop_r02c02 + noncrop_r03c02 crop_r01 = pd.np.nansum([crop_r01c01, crop_r01c02, crop_r01c03, crop_r01c04, crop_r01c05, crop_r01c06, crop_r01c07, crop_r01c08, crop_r01c09, crop_r01c10, crop_r01c11, crop_r01c12]) crop_r02 = pd.np.nansum([crop_r02c01, crop_r02c02, crop_r02c03, crop_r02c04, crop_r02c05, crop_r02c06, crop_r02c07, crop_r02c08, crop_r02c09, crop_r02c10, crop_r02c11, crop_r02c12]) crop_r03 = pd.np.nansum([crop_r03c01, crop_r03c02, crop_r03c03, crop_r03c04, crop_r03c05, crop_r03c06, crop_r03c07, crop_r03c08, crop_r03c09, crop_r03c10, crop_r03c11, crop_r03c12]) crop_r04 = crop_r02 + crop_r03 noncrop_r01 = pd.np.nansum([noncrop_r01c01, noncrop_r01c02]) noncrop_r02 = pd.np.nansum([noncrop_r02c01, noncrop_r02c02]) noncrop_r03 = pd.np.nansum([noncrop_r03c01, noncrop_r03c02]) noncrop_r04 = noncrop_r02 + noncrop_r03 ag_water_cons = crop_r01 + crop_r04 + noncrop_r01 + noncrop_r04 # Read csv file part 2 # Land productivity lp_r01c01 = float(df2c.loc[(df2c.TYPE == "Cereals") & (df2c.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r02c01 = float(df2c.loc[(df2c.TYPE == "Cereals") & (df2c.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r03c01 = float(df2c.loc[(df2c.TYPE == "Cereals") & (df2c.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r04c01 = float(df2c.loc[(df2c.TYPE == "Cereals") & (df2c.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r01c02 = float(df2c.loc[(df2c.SUBTYPE == "Root/tuber crops") & (df2c.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r02c02 = float(df2c.loc[(df2c.SUBTYPE == "Root/tuber crops") & (df2c.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r03c02 = float(df2c.loc[(df2c.SUBTYPE == "Root/tuber crops") & (df2c.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r04c02 = float(df2c.loc[(df2c.SUBTYPE == "Root/tuber crops") & (df2c.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r01c03 = float(df2c.loc[(df2c.SUBTYPE == "Leguminous crops") & (df2c.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r02c03 = float(df2c.loc[(df2c.SUBTYPE == "Leguminous crops") & (df2c.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r03c03 = float(df2c.loc[(df2c.SUBTYPE == "Leguminous crops") & (df2c.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r04c03 = float(df2c.loc[(df2c.SUBTYPE == "Leguminous crops") & (df2c.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r01c04 = float(df2c.loc[(df2c.SUBTYPE == "Sugar crops") & (df2c.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r02c04 = float(df2c.loc[(df2c.SUBTYPE == "Sugar crops") & (df2c.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r03c04 = float(df2c.loc[(df2c.SUBTYPE == "Sugar crops") & (df2c.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r04c04 = float(df2c.loc[(df2c.SUBTYPE == "Sugar crops") & (df2c.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r01c05 = float(df2c.loc[(df2c.TYPE == "Non-cereals") & (df2c.SUBCLASS == "Yield") & (df2c.SUBTYPE == "Merged")].LAND_PRODUCTIVITY) lp_r02c05 = float(df2c.loc[(df2c.TYPE == "Non-cereals") & (df2c.SUBCLASS == "Yield rainfall") & (df2c.SUBTYPE == "Merged")].LAND_PRODUCTIVITY) lp_r03c05 = float(df2c.loc[(df2c.TYPE == "Non-cereals") & (df2c.SUBCLASS == "Incremental yield") & (df2c.SUBTYPE == "Merged")].LAND_PRODUCTIVITY) lp_r04c05 = float(df2c.loc[(df2c.TYPE == "Non-cereals") & (df2c.SUBCLASS == "Total yield") & (df2c.SUBTYPE == "Merged")].LAND_PRODUCTIVITY) lp_r01c06 = float(df2c.loc[(df2c.SUBTYPE == "Vegetables & melons") & (df2c.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r02c06 = float(df2c.loc[(df2c.SUBTYPE == "Vegetables & melons") & (df2c.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r03c06 = float(df2c.loc[(df2c.SUBTYPE == "Vegetables & melons") & (df2c.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r04c06 = float(df2c.loc[(df2c.SUBTYPE == "Vegetables & melons") & (df2c.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r01c07 = float(df2c.loc[(df2c.SUBTYPE == "Fruits & nuts") & (df2c.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r02c07 = float(df2c.loc[(df2c.SUBTYPE == "Fruits & nuts") & (df2c.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r03c07 = float(df2c.loc[(df2c.SUBTYPE == "Fruits & nuts") & (df2c.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r04c07 = float(df2c.loc[(df2c.SUBTYPE == "Fruits & nuts") & (df2c.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r01c08 = float(df2c.loc[(df2c.TYPE == "Fruit & vegetables") & (df2c.SUBCLASS == "Yield") & (df2c.SUBTYPE == "Merged")].LAND_PRODUCTIVITY) lp_r02c08 = float(df2c.loc[(df2c.TYPE == "Fruit & vegetables") & (df2c.SUBCLASS == "Yield rainfall") & (df2c.SUBTYPE == "Merged")].LAND_PRODUCTIVITY) lp_r03c08 = float(df2c.loc[(df2c.TYPE == "Fruit & vegetables") & (df2c.SUBCLASS == "Incremental yield") & (df2c.SUBTYPE == "Merged")].LAND_PRODUCTIVITY) lp_r04c08 = float(df2c.loc[(df2c.TYPE == "Fruit & vegetables") & (df2c.SUBCLASS == "Total yield") & (df2c.SUBTYPE == "Merged")].LAND_PRODUCTIVITY) lp_r01c09 = float(df2c.loc[(df2c.TYPE == "Oilseeds") & (df2c.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r02c09 = float(df2c.loc[(df2c.TYPE == "Oilseeds") & (df2c.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r03c09 = float(df2c.loc[(df2c.TYPE == "Oilseeds") & (df2c.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r04c09 = float(df2c.loc[(df2c.TYPE == "Oilseeds") & (df2c.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r01c10 = float(df2c.loc[(df2c.TYPE == "Feed crops") & (df2c.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r02c10 = float(df2c.loc[(df2c.TYPE == "Feed crops") & (df2c.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r03c10 = float(df2c.loc[(df2c.TYPE == "Feed crops") & (df2c.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r04c10 = float(df2c.loc[(df2c.TYPE == "Feed crops") & (df2c.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r01c11 = float(df2c.loc[(df2c.TYPE == "Beverage crops") & (df2c.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r02c11 = float(df2c.loc[(df2c.TYPE == "Beverage crops") & (df2c.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r03c11 = float(df2c.loc[(df2c.TYPE == "Beverage crops") & (df2c.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r04c11 = float(df2c.loc[(df2c.TYPE == "Beverage crops") & (df2c.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r01c12 = float(df2c.loc[(df2c.TYPE == "Other crops") & (df2c.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r02c12 = float(df2c.loc[(df2c.TYPE == "Other crops") & (df2c.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r03c12 = float(df2c.loc[(df2c.TYPE == "Other crops") & (df2c.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r04c12 = float(df2c.loc[(df2c.TYPE == "Other crops") & (df2c.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r05c01 = float(df2n.loc[(df2n.SUBTYPE == "Meat") & (df2n.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r06c01 = float(df2n.loc[(df2n.SUBTYPE == "Meat") & (df2n.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r07c01 = float(df2n.loc[(df2n.SUBTYPE == "Meat") & (df2n.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r08c01 = float(df2n.loc[(df2n.SUBTYPE == "Meat") & (df2n.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r05c02 = float(df2n.loc[(df2n.SUBTYPE == "Milk") & (df2n.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r06c02 = float(df2n.loc[(df2n.SUBTYPE == "Milk") & (df2n.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r07c02 = float(df2n.loc[(df2n.SUBTYPE == "Milk") & (df2n.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r08c02 = float(df2n.loc[(df2n.SUBTYPE == "Milk") & (df2n.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r05c03 = float(df2n.loc[(df2n.TYPE == "Fish (Aquaculture)") & (df2n.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r06c03 = float(df2n.loc[(df2n.TYPE == "Fish (Aquaculture)") & (df2n.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r07c03 = float(df2n.loc[(df2n.TYPE == "Fish (Aquaculture)") & (df2n.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r08c03 = float(df2n.loc[(df2n.TYPE == "Fish (Aquaculture)") & (df2n.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r05c04 = float(df2n.loc[(df2n.TYPE == "Timber") & (df2n.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r06c04 = float(df2n.loc[(df2n.TYPE == "Timber") & (df2n.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r07c04 = float(df2n.loc[(df2n.TYPE == "Timber") & (df2n.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r08c04 = float(df2n.loc[(df2n.TYPE == "Timber") & (df2n.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) # Water productivity wp_r01c01 = float(df2c.loc[(df2c.TYPE == "Cereals") & (df2c.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r02c01 = float(df2c.loc[(df2c.TYPE == "Cereals") & (df2c.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r03c01 = float(df2c.loc[(df2c.TYPE == "Cereals") & (df2c.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r04c01 = float(df2c.loc[(df2c.TYPE == "Cereals") & (df2c.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r01c02 = float(df2c.loc[(df2c.SUBTYPE == "Root/tuber crops") & (df2c.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r02c02 = float(df2c.loc[(df2c.SUBTYPE == "Root/tuber crops") & (df2c.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r03c02 = float(df2c.loc[(df2c.SUBTYPE == "Root/tuber crops") & (df2c.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r04c02 = float(df2c.loc[(df2c.SUBTYPE == "Root/tuber crops") & (df2c.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r01c03 = float(df2c.loc[(df2c.SUBTYPE == "Leguminous crops") & (df2c.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r02c03 = float(df2c.loc[(df2c.SUBTYPE == "Leguminous crops") & (df2c.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r03c03 = float(df2c.loc[(df2c.SUBTYPE == "Leguminous crops") & (df2c.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r04c03 = float(df2c.loc[(df2c.SUBTYPE == "Leguminous crops") & (df2c.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r01c04 = float(df2c.loc[(df2c.SUBTYPE == "Sugar crops") & (df2c.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r02c04 = float(df2c.loc[(df2c.SUBTYPE == "Sugar crops") & (df2c.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r03c04 = float(df2c.loc[(df2c.SUBTYPE == "Sugar crops") & (df2c.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r04c04 = float(df2c.loc[(df2c.SUBTYPE == "Sugar crops") & (df2c.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r01c05 = float(df2c.loc[(df2c.TYPE == "Non-cereals") & (df2c.SUBCLASS == "Yield") & (df2c.SUBTYPE == "Merged")].WATER_PRODUCTIVITY) wp_r02c05 = float(df2c.loc[(df2c.TYPE == "Non-cereals") & (df2c.SUBCLASS == "Yield rainfall") & (df2c.SUBTYPE == "Merged")].WATER_PRODUCTIVITY) wp_r03c05 = float(df2c.loc[(df2c.TYPE == "Non-cereals") & (df2c.SUBCLASS == "Incremental yield") & (df2c.SUBTYPE == "Merged")].WATER_PRODUCTIVITY) wp_r04c05 = float(df2c.loc[(df2c.TYPE == "Non-cereals") & (df2c.SUBCLASS == "Total yield") & (df2c.SUBTYPE == "Merged")].WATER_PRODUCTIVITY) wp_r01c06 = float(df2c.loc[(df2c.SUBTYPE == "Vegetables & melons") & (df2c.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r02c06 = float(df2c.loc[(df2c.SUBTYPE == "Vegetables & melons") & (df2c.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r03c06 = float(df2c.loc[(df2c.SUBTYPE == "Vegetables & melons") & (df2c.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r04c06 = float(df2c.loc[(df2c.SUBTYPE == "Vegetables & melons") & (df2c.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r01c07 = float(df2c.loc[(df2c.SUBTYPE == "Fruits & nuts") & (df2c.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r02c07 = float(df2c.loc[(df2c.SUBTYPE == "Fruits & nuts") & (df2c.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r03c07 = float(df2c.loc[(df2c.SUBTYPE == "Fruits & nuts") & (df2c.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r04c07 = float(df2c.loc[(df2c.SUBTYPE == "Fruits & nuts") & (df2c.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r01c08 = float(df2c.loc[(df2c.TYPE == "Fruit & vegetables") & (df2c.SUBCLASS == "Yield") & (df2c.SUBTYPE == "Merged")].WATER_PRODUCTIVITY) wp_r02c08 = float(df2c.loc[(df2c.TYPE == "Fruit & vegetables") & (df2c.SUBCLASS == "Yield rainfall") & (df2c.SUBTYPE == "Merged")].WATER_PRODUCTIVITY) wp_r03c08 = float(df2c.loc[(df2c.TYPE == "Fruit & vegetables") & (df2c.SUBCLASS == "Incremental yield") & (df2c.SUBTYPE == "Merged")].WATER_PRODUCTIVITY) wp_r04c08 = float(df2c.loc[(df2c.TYPE == "Fruit & vegetables") & (df2c.SUBCLASS == "Total yield") & (df2c.SUBTYPE == "Merged")].WATER_PRODUCTIVITY) wp_r01c09 = float(df2c.loc[(df2c.TYPE == "Oilseeds") & (df2c.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r02c09 = float(df2c.loc[(df2c.TYPE == "Oilseeds") & (df2c.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r03c09 = float(df2c.loc[(df2c.TYPE == "Oilseeds") & (df2c.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r04c09 = float(df2c.loc[(df2c.TYPE == "Oilseeds") & (df2c.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r01c10 = float(df2c.loc[(df2c.TYPE == "Feed crops") & (df2c.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r02c10 = float(df2c.loc[(df2c.TYPE == "Feed crops") & (df2c.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r03c10 = float(df2c.loc[(df2c.TYPE == "Feed crops") & (df2c.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r04c10 = float(df2c.loc[(df2c.TYPE == "Feed crops") & (df2c.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r01c11 = float(df2c.loc[(df2c.TYPE == "Beverage crops") & (df2c.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r02c11 = float(df2c.loc[(df2c.TYPE == "Beverage crops") & (df2c.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r03c11 = float(df2c.loc[(df2c.TYPE == "Beverage crops") & (df2c.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r04c11 = float(df2c.loc[(df2c.TYPE == "Beverage crops") & (df2c.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r01c12 = float(df2c.loc[(df2c.TYPE == "Other crops") & (df2c.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r02c12 = float(df2c.loc[(df2c.TYPE == "Other crops") & (df2c.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r03c12 = float(df2c.loc[(df2c.TYPE == "Other crops") & (df2c.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r04c12 = float(df2c.loc[(df2c.TYPE == "Other crops") & (df2c.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r05c01 = float(df2n.loc[(df2n.SUBTYPE == "Meat") & (df2n.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r06c01 = float(df2n.loc[(df2n.SUBTYPE == "Meat") & (df2n.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r07c01 = float(df2n.loc[(df2n.SUBTYPE == "Meat") & (df2n.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r08c01 = float(df2n.loc[(df2n.SUBTYPE == "Meat") & (df2n.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r05c02 = float(df2n.loc[(df2n.SUBTYPE == "Milk") & (df2n.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r06c02 = float(df2n.loc[(df2n.SUBTYPE == "Milk") & (df2n.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r07c02 = float(df2n.loc[(df2n.SUBTYPE == "Milk") & (df2n.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r08c02 = float(df2n.loc[(df2n.SUBTYPE == "Milk") & (df2n.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r05c03 = float(df2n.loc[(df2n.TYPE == "Fish (Aquaculture)") & (df2n.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r06c03 = float(df2n.loc[(df2n.TYPE == "Fish (Aquaculture)") & (df2n.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r07c03 = float(df2n.loc[(df2n.TYPE == "Fish (Aquaculture)") & (df2n.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r08c03 = float(df2n.loc[(df2n.TYPE == "Fish (Aquaculture)") & (df2n.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r05c04 = float(df2n.loc[(df2n.TYPE == "Timber") & (df2n.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r06c04 = float(df2n.loc[(df2n.TYPE == "Timber") & (df2n.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r07c04 = float(df2n.loc[(df2n.TYPE == "Timber") & (df2n.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r08c04 = float(df2n.loc[(df2n.TYPE == "Timber") & (df2n.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) # Calculations & modify svgs if not template: path = os.path.dirname(os.path.abspath(__file__)) svg_template_path_1 = os.path.join(path, 'svg', 'sheet_3_part1.svg') svg_template_path_2 = os.path.join(path, 'svg', 'sheet_3_part2.svg') else: svg_template_path_1 = os.path.abspath(template[0]) svg_template_path_2 = os.path.abspath(template[1]) tree1 = ET.parse(svg_template_path_1) tree2 = ET.parse(svg_template_path_2) #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # Titles xml_txt_box = tree1.findall('''.//*[@id='basin']''')[0] xml_txt_box.getchildren()[0].text = 'Basin: ' + basin xml_txt_box = tree1.findall('''.//*[@id='period']''')[0] xml_txt_box.getchildren()[0].text = 'Period: ' + period xml_txt_box = tree1.findall('''.//*[@id='units']''')[0] xml_txt_box.getchildren()[0].text = 'Part 1: Agricultural water consumption (' + units[0] + ')' xml_txt_box = tree2.findall('''.//*[@id='basin2']''')[0] xml_txt_box.getchildren()[0].text = 'Basin: ' + basin xml_txt_box = tree2.findall('''.//*[@id='period2']''')[0] xml_txt_box.getchildren()[0].text = 'Period: ' + period xml_txt_box = tree2.findall('''.//*[@id='units2']''')[0] xml_txt_box.getchildren()[0].text = 'Part 2: Land productivity (' + units[1] + ') and water productivity (' + units[2] + ')' # Part 1 xml_txt_box = tree1.findall('''.//*[@id='crop_r01c01']''')[0] if not pd.isnull(crop_r01c01): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c02']''')[0] if not pd.isnull(crop_r01c02): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c03']''')[0] if not pd.isnull(crop_r01c03): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c03 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c04']''')[0] if not pd.isnull(crop_r01c04): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c04 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c05']''')[0] if not pd.isnull(crop_r01c05): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c05 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c06']''')[0] if not pd.isnull(crop_r01c06): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c06 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c07']''')[0] if not pd.isnull(crop_r01c07): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c07 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c08']''')[0] if not pd.isnull(crop_r01c08): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c08 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c09']''')[0] if not pd.isnull(crop_r01c09): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c09 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c10']''')[0] if not pd.isnull(crop_r01c10): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c10 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c11']''')[0] if not pd.isnull(crop_r01c11): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c11 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c12']''')[0] if not pd.isnull(crop_r01c12): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c12 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01']''')[0] if not pd.isnull(crop_r01): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c01']''')[0] if not pd.isnull(crop_r02c01): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c02']''')[0] if not pd.isnull(crop_r02c02): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c03']''')[0] if not pd.isnull(crop_r02c03): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c03 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c04']''')[0] if not pd.isnull(crop_r02c04): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c04 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c05']''')[0] if not pd.isnull(crop_r02c05): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c05 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c06']''')[0] if not pd.isnull(crop_r02c06): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c06 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c07']''')[0] if not pd.isnull(crop_r02c07): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c07 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c08']''')[0] if not pd.isnull(crop_r02c08): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c08 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c09']''')[0] if not pd.isnull(crop_r02c09): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c09 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c10']''')[0] if not pd.isnull(crop_r02c10): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c10 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c11']''')[0] if not pd.isnull(crop_r02c11): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c11 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c12']''')[0] if not pd.isnull(crop_r02c12): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c12 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02']''')[0] if not pd.isnull(crop_r02): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03c01']''')[0] if not pd.isnull(crop_r03c01): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r03c01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03c02']''')[0] if not pd.isnull(crop_r03c02): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r03c02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03c03']''')[0] if not pd.isnull(crop_r03c03): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r03c03 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03c04']''')[0] if not pd.isnull(crop_r03c04): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r03c04 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03c05']''')[0] if not pd.isnull(crop_r03c05): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r03c05 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03c06']''')[0] if not pd.isnull(crop_r03c06): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r03c06 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03c07']''')[0] if not pd.isnull(crop_r03c07): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r03c07 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03c08']''')[0] if not pd.isnull(crop_r03c08): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r03c08 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03c09']''')[0] if not pd.isnull(crop_r03c09): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r03c09 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03c10']''')[0] if not pd.isnull(crop_r03c10): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r03c10 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03c11']''')[0] if not pd.isnull(crop_r03c11): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r03c11 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03c12']''')[0] if not pd.isnull(crop_r03c12): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r03c12 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03']''')[0] if not pd.isnull(crop_r03): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r03 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r04c01']''')[0] if not pd.isnull(crop_r04c01): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r04c01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r04c02']''')[0] if not pd.isnull(crop_r04c02): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r04c02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r04c03']''')[0] if not pd.isnull(crop_r04c03): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r04c03 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r04c04']''')[0] if not pd.isnull(crop_r04c04): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r04c04 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r04c05']''')[0] if not pd.isnull(crop_r04c05): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r04c05 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r04c06']''')[0] if not pd.isnull(crop_r04c06): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r04c06 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r04c07']''')[0] if not pd.isnull(crop_r04c07): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r04c07 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r04c08']''')[0] if not pd.isnull(crop_r04c08): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r04c08 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r04c09']''')[0] if not pd.isnull(crop_r04c09): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r04c09 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r04c10']''')[0] if not pd.isnull(crop_r04c10): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r04c10 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r04c11']''')[0] if not pd.isnull(crop_r04c11): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r04c11 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r04c12']''')[0] if not pd.isnull(crop_r04c12): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r04c12 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r04']''')[0] if not pd.isnull(crop_r04): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r04 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='noncrop_r01c01']''')[0] if not pd.isnull(noncrop_r01c01): xml_txt_box.getchildren()[0].text = '%.2f' % noncrop_r01c01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='noncrop_r01c02']''')[0] if not pd.isnull(noncrop_r01c02): xml_txt_box.getchildren()[0].text = '%.2f' % noncrop_r01c02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='noncrop_r01']''')[0] if not pd.isnull(noncrop_r01) and noncrop_r01 > 0.001: xml_txt_box.getchildren()[0].text = '%.2f' % noncrop_r01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='noncrop_r02c01']''')[0] if not pd.isnull(noncrop_r02c01): xml_txt_box.getchildren()[0].text = '%.2f' % noncrop_r02c01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='noncrop_r02c02']''')[0] if not pd.isnull(noncrop_r02c02): xml_txt_box.getchildren()[0].text = '%.2f' % noncrop_r02c02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='noncrop_r02']''')[0] if not pd.isnull(noncrop_r02) and noncrop_r02 > 0.001: xml_txt_box.getchildren()[0].text = '%.2f' % noncrop_r02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='noncrop_r03c01']''')[0] if not pd.isnull(noncrop_r03c01): xml_txt_box.getchildren()[0].text = '%.2f' % noncrop_r03c01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='noncrop_r03c02']''')[0] if not pd.isnull(noncrop_r03c02): xml_txt_box.getchildren()[0].text = '%.2f' % noncrop_r03c02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='noncrop_r03']''')[0] if not pd.isnull(noncrop_r03) and noncrop_r03 > 0.001: xml_txt_box.getchildren()[0].text = '%.2f' % noncrop_r03 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='noncrop_r04c01']''')[0] if not pd.isnull(noncrop_r04c01): xml_txt_box.getchildren()[0].text = '%.2f' % noncrop_r04c01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='noncrop_r04c02']''')[0] if not pd.isnull(noncrop_r04c02): xml_txt_box.getchildren()[0].text = '%.2f' % noncrop_r04c02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='noncrop_r04']''')[0] if not pd.isnull(noncrop_r04) and noncrop_r04 > 0.001: xml_txt_box.getchildren()[0].text = '%.2f' % noncrop_r04 else: xml_txt_box.getchildren()[0].text = '-' # Part 2 xml_txt_box = tree1.findall('''.//*[@id='ag_water_cons']''')[0] if not pd.isnull(ag_water_cons): xml_txt_box.getchildren()[0].text = '%.2f' % ag_water_cons else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r01c01']''')[0] if not pd.isnull(lp_r01c01): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r01c01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r01c02']''')[0] if not pd.isnull(lp_r01c02): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r01c02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r01c03']''')[0] if not pd.isnull(lp_r01c03): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r01c03 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r01c04']''')[0] if not pd.isnull(lp_r01c04): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r01c04 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r01c05']''')[0] if not pd.isnull(lp_r01c05): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r01c05 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r01c06']''')[0] if not pd.isnull(lp_r01c06): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r01c06 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r01c07']''')[0] if not pd.isnull(lp_r01c07): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r01c07 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r01c08']''')[0] if not pd.isnull(lp_r01c08): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r01c08 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r01c09']''')[0] if not pd.isnull(lp_r01c09): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r01c09 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r01c10']''')[0] if not pd.isnull(lp_r01c10): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r01c10 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r01c11']''')[0] if not pd.isnull(lp_r01c11): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r01c11 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r01c12']''')[0] if not pd.isnull(lp_r01c12): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r01c12 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r02c01']''')[0] if not pd.isnull(lp_r02c01): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r02c01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r02c02']''')[0] if not pd.isnull(lp_r02c02): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r02c02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r02c03']''')[0] if not pd.isnull(lp_r02c03): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r02c03 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r02c04']''')[0] if not pd.isnull(lp_r02c04): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r02c04 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r02c05']''')[0] if not pd.isnull(lp_r02c05): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r02c05 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r02c06']''')[0] if not pd.isnull(lp_r02c06): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r02c06 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r02c07']''')[0] if not pd.isnull(lp_r02c07): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r02c07 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r02c08']''')[0] if not pd.isnull(lp_r02c08): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r02c08 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r02c09']''')[0] if not pd.isnull(lp_r02c09): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r02c09 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r02c10']''')[0] if not pd.isnull(lp_r02c10): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r02c10 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r02c11']''')[0] if not pd.isnull(lp_r02c11): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r02c11 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r02c12']''')[0] if not pd.isnull(lp_r02c12): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r02c12 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r03c01']''')[0] if not pd.isnull(lp_r03c01): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r03c01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r03c02']''')[0] if not pd.isnull(lp_r03c02): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r03c02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r03c03']''')[0] if not pd.isnull(lp_r03c03): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r03c03 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r03c04']''')[0] if not pd.isnull(lp_r03c04): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r03c04 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r03c05']''')[0] if not pd.isnull(lp_r03c05): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r03c05 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r03c06']''')[0] if not pd.isnull(lp_r03c06): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r03c06 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r03c07']''')[0] if not pd.isnull(lp_r03c07): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r03c07 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r03c08']''')[0] if not pd.isnull(lp_r03c08): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r03c08 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r03c09']''')[0] if not pd.isnull(lp_r03c09): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r03c09 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r03c10']''')[0] if not pd.isnull(lp_r03c10): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r03c10 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r03c11']''')[0] if not
pd.isnull(lp_r03c11)
pandas.isnull
#!/usr/bin/env python3 """ Pre-processing pipeline for Google speech_commands """ import os import re from pathlib import Path from typing import Any, Dict import luigi import pandas as pd import soundfile as sf from tqdm import tqdm import hearpreprocess.pipeline as pipeline import hearpreprocess.util.luigi as luigi_util from hearpreprocess.pipeline import ( TRAIN_PERCENTAGE, TRAINVAL_PERCENTAGE, VALIDATION_PERCENTAGE, ) WORDS = ["down", "go", "left", "no", "off", "on", "right", "stop", "up", "yes"] BACKGROUND_NOISE = "_background_noise_" UNKNOWN = "_unknown_" SILENCE = "_silence_" generic_task_config = { "task_name": "speech_commands", "version": "v0.0.2", "embedding_type": "scene", "prediction_type": "multiclass", "split_mode": "trainvaltest", "sample_duration": 1.0, "evaluation": ["top1_acc"], "download_urls": [ { "split": "train", "url": "http://download.tensorflow.org/data/speech_commands_v0.02.tar.gz", # noqa: E501 "md5": "6b74f3901214cb2c2934e98196829835", }, { "split": "test", "url": "http://download.tensorflow.org/data/speech_commands_test_set_v0.02.tar.gz", # noqa: E501 "md5": "854c580ee90bff80c516491c84544e32", }, ], "default_mode": "5h", # Different modes for preprocessing this dataset # We use all modes EXCEPT small, unless flag "--small" used. "modes": { "5h": { # No more than 5 hours of audio (training + validation) "max_task_duration_by_split": { "train": 3600 * 5 * TRAIN_PERCENTAGE / TRAINVAL_PERCENTAGE, "valid": 3600 * 5 * VALIDATION_PERCENTAGE / TRAINVAL_PERCENTAGE, # The test set is 1.33 hours, so we use the entire thing "test": None, } }, "full": { "max_task_duration_by_split": {"test": None, "train": None, "valid": None} }, "small": { "download_urls": [ { "split": "train", "url": "https://github.com/neuralaudio/hear2021-open-tasks-downsampled/raw/main/speech_commands_v0.02-small.zip", # noqa: E501 "md5": "455123a88b8410d1f955c77ad331524f", }, { "split": "test", "url": "https://github.com/neuralaudio/hear2021-open-tasks-downsampled/raw/main/speech_commands_test_set_v0.02-small.zip", # noqa: E501 "md5": "26d08374a7abd13ca2f4a4b8424f41d0", }, ], "max_task_duration_by_split": {"train": None, "valid": None, "test": None}, }, }, } class GenerateTrainDataset(luigi_util.WorkTask): """ Silence / background samples in the train (and, after split, validation) sets need to be created by slicing up longer background samples into 1 sec slices. This is the same method used in the TensorFlow dataset generator. https://github.com/tensorflow/datasets/blob/79d56e662a15cd11e1fb3b679e0f978c8041566f/tensorflow_datasets/audio/speech_commands.py#L142 # noqa """ # Requires an extracted dataset task to be completed train_data = luigi.TaskParameter() def requires(self): return {"train": self.train_data} @property def output_path(self): return self.workdir def run(self): train_path = Path(self.requires()["train"].workdir).joinpath("train") background_audio = list(train_path.glob(f"{BACKGROUND_NOISE}/*.wav")) assert len(background_audio) > 0 # Read all the background audio files and split into 1 second segments, # save all the segments into a folder called _silence_ silence_dir = os.path.join(self.workdir, SILENCE) os.makedirs(silence_dir, exist_ok=True) print("Generating silence files from background sounds ...") for audio_path in tqdm(background_audio): audio, sr = sf.read(str(audio_path)) assert audio.ndim == 1 basename = os.path.basename(audio_path) name, ext = os.path.splitext(basename) for start in range(0, len(audio) - sr, sr // 2): audio_segment = audio[start : start + sr] filename = f"{name}-{start}{ext}" filename = os.path.join(silence_dir, filename) sf.write(filename, audio_segment, sr) # We'll also create symlinks for the dataset here too to make the next # stage of splitting into training and validation files easier. for file_obj in train_path.iterdir(): if file_obj.is_dir() and file_obj.name != BACKGROUND_NOISE: linked_folder = Path(os.path.join(self.workdir, file_obj.name)) assert not linked_folder.exists() linked_folder.symlink_to(file_obj.absolute(), target_is_directory=True) # Also need the testing and validation splits if file_obj.name in ["testing_list.txt", "validation_list.txt"]: linked_file = Path(os.path.join(self.workdir, file_obj.name)) assert not linked_file.exists() linked_file.symlink_to(file_obj.absolute()) self.mark_complete() class ExtractMetadata(pipeline.ExtractMetadata): train = luigi.TaskParameter() test = luigi.TaskParameter() def requires(self): return { "train": self.train, "test": self.test, } @staticmethod def relpath_to_unique_filestem(relpath: str) -> str: """ Include the label (parent directory) in the filestem. """ # Get the parent directory (label) and the filename name = "_".join(Path(relpath).parts[-2:]) # Remove the suffix name = os.path.splitext(name)[0] return str(name) @staticmethod def speaker_hash(unique_filestem: str) -> str: """Get the speaker hash as the Split key for speech_commands""" hsh = re.sub(r"_nohash_.*$", "", unique_filestem) return hsh @staticmethod def get_split_key(df: pd.DataFrame) -> pd.Series: """Get the speaker hash as the split key for speech_commands""" return df["unique_filestem"].apply(ExtractMetadata.speaker_hash) @staticmethod def relpath_to_label(relpath: Path): label = os.path.basename(os.path.dirname(relpath)) if label not in WORDS and label != SILENCE: label = UNKNOWN return label def get_split_paths(self): """ Splits the dataset into train/valid/test files using the same method as described in by the TensorFlow dataset: https://www.tensorflow.org/datasets/catalog/speech_commands """ # Test files test_path = Path(self.requires()["test"].workdir).joinpath("test") test_df = pd.DataFrame(test_path.glob("*/*.wav"), columns=["relpath"]).assign( split=lambda df: "test" ) # All silence paths to add to the train and validation train_path = Path(self.requires()["train"].workdir) all_silence = list(train_path.glob(f"{SILENCE}/*.wav")) # Validation files with open(os.path.join(train_path, "validation_list.txt"), "r") as fp: validation_paths = fp.read().strip().splitlines() validation_rel_paths = [os.path.join(train_path, p) for p in validation_paths] # There are no silence files marked explicitly for validation. We add all # the running_tap.wav samples to the silence class for validation. # https://github.com/tensorflow/datasets/blob/e24fe9e6b03053d9b925d299a2246ea167dc85cd/tensorflow_datasets/audio/speech_commands.py#L183 val_silence = list(train_path.glob(f"{SILENCE}/running_tap*.wav")) validation_rel_paths.extend(val_silence) validation_df =
pd.DataFrame(validation_rel_paths, columns=["relpath"])
pandas.DataFrame
import pandas as pd import numpy as np from sklearn import preprocessing import scipy.io as scio from sklearn.neighbors import KNeighborsRegressor from sklearn.svm import SVR import lightgbm as lgb from Coreg import Coreg from DBN import Deep_Believe_Network from sklearn.metrics import mean_absolute_error,mean_squared_error from noisy_regressor import lstm_network,lstm_l2_network,Nosiy_NN_regressor,Semisupervised_Nosiy_NN_regressor from ASCR import ASCR import warnings warnings.filterwarnings("ignore") def make_seqdata(data,step=10): num = data.shape[0] data_list = [] for i in range(num): seq_data = np.zeros((1,step,data.shape[1])) for k in range(step): if i-step+k+1 <= 0: seq_data[0,k,:] = data[0,:] else: seq_data[0,k,:] = data[i-step+k+1,:] data_list.append(seq_data) return np.concatenate(data_list,axis=0) data1 = scio.loadmat('/Volumes/文档/数据集/TE_process/TE_mat_data/d00.mat')['data'].T data2 = scio.loadmat('/Volumes/文档/数据集/TE_process/TE_mat_data/d00_te.mat')['data'].T dataall = np.row_stack([data1,data2]) label = dataall[:,35] data = np.delete(dataall,list(range(34,53)),axis=1) np.random.seed(2019) train_index = np.random.choice(1460,100,replace = False) test_index = np.random.choice(list(set(list(np.arange(1460)))-set(train_index)),960,replace = False) u_index = list(set(list(np.arange(1460)))-set(train_index)-set(test_index)) mi = np.min(label) di = (np.max(label)-np.min(label)) label = (label-min(label))/(max(label)-min(label)) data = preprocessing.MinMaxScaler().fit_transform(data) traindata = data[train_index,:] trainlabel = np.mat(label[train_index]).T testdata = data[test_index,:] testlabel = np.mat(label[test_index]).T testlabel = testlabel*di+mi udata = data[u_index,:] result =
pd.DataFrame(testlabel)
pandas.DataFrame
# -*- coding: utf-8 -*- from __future__ import print_function import pandas as pd import sqlite3 import xlrd as xl # if this .sqlite db doesn't already exists, this will create it # if the .sqlite db *does* already exist, this establishes the desired connection con = sqlite3.connect("sql_sample_db.sqlite") # create pandas dataframes from each .csv file: sales_table = pd.read_csv('https://github.com/NYUDataBootcamp/SQLBootcamp/blob/master/data/sales_table.csv') car_table = pd.read_csv('https://github.com/NYUDataBootcamp/SQLBootcamp/blob/master/data/car_table.csv') salesman_table = pd.read_csv('https://github.com/NYUDataBootcamp/SQLBootcamp/blob/master/data/salesman_table.csv') cust_table = pd.read_csv('https://github.com/NYUDataBootcamp/SQLBootcamp/blob/master/data/cust_table.csv') dog_table = pd.read_csv('https://github.com/NYUDataBootcamp/SQLBootcamp/blob/master/data/dog_table.csv') cat_table = pd.read_csv('https://github.com/NYUDataBootcamp/SQLBootcamp/blob/master/data/cat_table.csv') #%% # make a list of the tables (dataframes) and table names: tables = [sales_table, car_table, salesman_table, cust_table, dog_table, cat_table] table_names = ['sales_table', 'car_table', 'salesman_table', 'cust_table', 'dog_table', 'cat_table'] # drop each table name if it already exists to avoid error if you rerun this bit of code # then add it back (or add it for the first time, if the table didn't already exist) for i in range(len(tables)): table_name = table_names[i] table = tables[i] con.execute("DROP TABLE IF EXISTS {}".format(table_name)) pd.io.sql.to_sql(table, "{}".format(table_name), con, index=False) # Function to make it easy to run queries on this mini-database def run(query): results = pd.read_sql("{}".format(query), con).fillna(' ') return results # create some dataframes to act as keys to clarify differences between difference rdbms rdbms_differences = pd.DataFrame() # show describe options describe_index = ['Reading a table'] describe_differences = pd.DataFrame({'SQLite' : pd.Series(['PRAGMA TABLE_INFO(table_name)'], index=describe_index), 'MySQL' : pd.Series(['DESCRIBE table_name'], index=describe_index), 'Microsoft SQL Server' : pd.Series(['SP_HELP table_name'], index=describe_index), 'Oracle' :
pd.Series(['DESCRIBE table_table'], index=describe_index)
pandas.Series
""" Copyright 2019 Samsung SDS Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import pandas as pd from brightics.common.utils import get_default_from_parameters_if_required from brightics.common.utils import check_required_parameters from datetime import datetime, timedelta from brightics.common.exception import BrighticsFunctionException as BFE from brightics.function.extraction.shift_datetime import format_time def extend_datetime(table, **params): params = get_default_from_parameters_if_required(params, _extend_datetime) check_required_parameters(_extend_datetime, params, ['table']) return _extend_datetime(table, **params) def _extend_datetime(table, input_col, impute_unit): arr_order = [] datetime_list = [] for ind, t_str in enumerate(table[input_col]): try: if impute_unit == 'year': arr_order.append( datetime(year=int(t_str[0:4]), month=1, day=1)) elif impute_unit == 'month': arr_order.append(datetime(year=int(t_str[0:4]), month=int( t_str[4:6]), day=1)) elif impute_unit == 'day': arr_order.append(datetime(year=int(t_str[0:4]), month=int( t_str[4:6]), day=int(t_str[6:8]))) elif impute_unit == 'hour': arr_order.append(datetime(year=int(t_str[0:4]), month=int( t_str[4:6]), day=int(t_str[6:8]), hour=int(t_str[8:10]))) elif impute_unit == 'minute': arr_order.append(datetime(year=int(t_str[0:4]), month=int( t_str[4:6]), day=int(t_str[6:8]), hour=int(t_str[8:10]), minute=int(t_str[10:12]))) datetime_list.append(datetime(year=int(t_str[0:4]), month=int( t_str[4:6]), day=int(t_str[6:8]), hour=int(t_str[8:10]), minute=int(t_str[10:12]), second=int(t_str[12:14]))) except: raise BFE.from_errors( [{'0100': 'Invalid Datetime format at column {}, index {}.'.format(input_col, ind + 1)}]) # check for ascending order # If not -> log message error. tmp = check_ascending(arr_order) if not tmp[0]: log_message = 'Date time coulumn should be in strictly ascending order with the unit {}. '.format( impute_unit) log_message += 'The following is the first five invalid data: {}'.format( table[input_col][tmp[1]:tmp[1] + 5].tolist()) raise BFE.from_errors([{'0100': log_message}]) out_table = insert_datetime( table.copy(), input_col, arr_order, datetime_list, impute_unit) return {'out_table': out_table} def insert_datetime(table, input_col, arr_order, datetime_list, impute_unit): new_col = 'datetime_estimation_info' origin_cols = table.columns.tolist() input_col_index = origin_cols.index(input_col) if impute_unit == 'year': time_leap = pd.DateOffset(years=1) elif impute_unit == 'month': time_leap =
pd.DateOffset(months=1)
pandas.DateOffset
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional information regarding # copyright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. import os import pandas import numpy as np import pyarrow import pytest import re from modin.config import IsExperimental, Engine, StorageFormat from modin.pandas.test.utils import io_ops_bad_exc from .utils import eval_io, ForceOmnisciImport, set_execution_mode, run_and_compare from pandas.core.dtypes.common import is_list_like IsExperimental.put(True) Engine.put("native") StorageFormat.put("omnisci") import modin.pandas as pd from modin.pandas.test.utils import ( df_equals, bool_arg_values, to_pandas, test_data_values, test_data_keys, generate_multiindex, eval_general, df_equals_with_non_stable_indices, ) from modin.utils import try_cast_to_pandas from modin.experimental.core.execution.native.implementations.omnisci_on_native.partitioning.partition_manager import ( OmnisciOnNativeDataframePartitionManager, ) from modin.experimental.core.execution.native.implementations.omnisci_on_native.df_algebra import ( FrameNode, ) @pytest.mark.usefixtures("TestReadCSVFixture") class TestCSV: from modin import __file__ as modin_root root = os.path.dirname( os.path.dirname(os.path.abspath(modin_root)) + ".." ) # root of modin repo boston_housing_names = [ "index", "CRIM", "ZN", "INDUS", "CHAS", "NOX", "RM", "AGE", "DIS", "RAD", "TAX", "PTRATIO", "B", "LSTAT", "PRICE", ] boston_housing_dtypes = { "index": "int64", "CRIM": "float64", "ZN": "float64", "INDUS": "float64", "CHAS": "float64", "NOX": "float64", "RM": "float64", "AGE": "float64", "DIS": "float64", "RAD": "float64", "TAX": "float64", "PTRATIO": "float64", "B": "float64", "LSTAT": "float64", "PRICE": "float64", } def test_usecols_csv(self): """check with the following arguments: names, dtype, skiprows, delimiter""" csv_file = os.path.join(self.root, "modin/pandas/test/data", "test_usecols.csv") for kwargs in ( {"delimiter": ","}, {"sep": None}, {"skiprows": 1, "names": ["A", "B", "C", "D", "E"]}, {"dtype": {"a": "int32", "e": "string"}}, {"dtype": {"a": np.dtype("int32"), "b": np.dtype("int64"), "e": "string"}}, ): eval_io( fn_name="read_csv", md_extra_kwargs={"engine": "arrow"}, # read_csv kwargs filepath_or_buffer=csv_file, **kwargs, ) def test_housing_csv(self): csv_file = os.path.join(self.root, "examples/data/boston_housing.csv") for kwargs in ( { "skiprows": 1, "names": self.boston_housing_names, "dtype": self.boston_housing_dtypes, }, ): eval_io( fn_name="read_csv", md_extra_kwargs={"engine": "arrow"}, # read_csv kwargs filepath_or_buffer=csv_file, **kwargs, ) def test_time_parsing(self): csv_file = os.path.join( self.root, "modin/pandas/test/data", "test_time_parsing.csv" ) for kwargs in ( { "skiprows": 1, "names": [ "timestamp", "symbol", "high", "low", "open", "close", "spread", "volume", ], "parse_dates": ["timestamp"], "dtype": {"symbol": "string"}, }, ): rp = pandas.read_csv(csv_file, **kwargs) rm = pd.read_csv(csv_file, engine="arrow", **kwargs) with ForceOmnisciImport(rm): rm = to_pandas(rm) df_equals(rm["timestamp"].dt.year, rp["timestamp"].dt.year) df_equals(rm["timestamp"].dt.month, rp["timestamp"].dt.month) df_equals(rm["timestamp"].dt.day, rp["timestamp"].dt.day) def test_csv_fillna(self): csv_file = os.path.join(self.root, "examples/data/boston_housing.csv") for kwargs in ( { "skiprows": 1, "names": self.boston_housing_names, "dtype": self.boston_housing_dtypes, }, ): eval_io( fn_name="read_csv", md_extra_kwargs={"engine": "arrow"}, comparator=lambda df1, df2: df_equals( df1["CRIM"].fillna(1000), df2["CRIM"].fillna(1000) ), # read_csv kwargs filepath_or_buffer=csv_file, **kwargs, ) @pytest.mark.parametrize("null_dtype", ["category", "float64"]) def test_null_col(self, null_dtype): csv_file = os.path.join( self.root, "modin/pandas/test/data", "test_null_col.csv" ) ref = pandas.read_csv( csv_file, names=["a", "b", "c"], dtype={"a": "int64", "b": "int64", "c": null_dtype}, skiprows=1, ) ref["a"] = ref["a"] + ref["b"] exp = pd.read_csv( csv_file, names=["a", "b", "c"], dtype={"a": "int64", "b": "int64", "c": null_dtype}, skiprows=1, ) exp["a"] = exp["a"] + exp["b"] # df_equals cannot compare empty categories if null_dtype == "category": ref["c"] = ref["c"].astype("string") with ForceOmnisciImport(exp): exp = to_pandas(exp) exp["c"] = exp["c"].astype("string") df_equals(ref, exp) def test_read_and_concat(self): csv_file = os.path.join(self.root, "modin/pandas/test/data", "test_usecols.csv") ref1 = pandas.read_csv(csv_file) ref2 = pandas.read_csv(csv_file) ref = pandas.concat([ref1, ref2]) exp1 = pandas.read_csv(csv_file) exp2 = pandas.read_csv(csv_file) exp = pd.concat([exp1, exp2]) with ForceOmnisciImport(exp): df_equals(ref, exp) @pytest.mark.parametrize("names", [None, ["a", "b", "c", "d", "e"]]) @pytest.mark.parametrize("header", [None, 0]) def test_from_csv(self, header, names): csv_file = os.path.join(self.root, "modin/pandas/test/data", "test_usecols.csv") eval_io( fn_name="read_csv", # read_csv kwargs filepath_or_buffer=csv_file, header=header, names=names, ) @pytest.mark.parametrize("kwargs", [{"sep": "|"}, {"delimiter": "|"}]) def test_sep_delimiter(self, kwargs): csv_file = os.path.join(self.root, "modin/pandas/test/data", "test_delim.csv") eval_io( fn_name="read_csv", # read_csv kwargs filepath_or_buffer=csv_file, **kwargs, ) @pytest.mark.skip(reason="https://github.com/modin-project/modin/issues/2174") def test_float32(self): csv_file = os.path.join(self.root, "modin/pandas/test/data", "test_usecols.csv") kwargs = { "dtype": {"a": "float32", "b": "float32"}, } pandas_df = pandas.read_csv(csv_file, **kwargs) pandas_df["a"] = pandas_df["a"] + pandas_df["b"] modin_df = pd.read_csv(csv_file, **kwargs, engine="arrow") modin_df["a"] = modin_df["a"] + modin_df["b"] with ForceOmnisciImport(modin_df): df_equals(modin_df, pandas_df) # Datetime Handling tests @pytest.mark.parametrize("engine", [None, "arrow"]) @pytest.mark.parametrize( "parse_dates", [ True, False, ["col2"], ["c2"], [["col2", "col3"]], {"col23": ["col2", "col3"]}, ], ) @pytest.mark.parametrize("names", [None, [f"c{x}" for x in range(1, 7)]]) def test_read_csv_datetime( self, engine, parse_dates, names, ): parse_dates_unsupported = isinstance(parse_dates, dict) or ( isinstance(parse_dates, list) and isinstance(parse_dates[0], list) ) if parse_dates_unsupported and engine == "arrow" and not names: pytest.skip( "In these cases Modin raises `ArrowEngineException` while pandas " "doesn't raise any exceptions that causes tests fails" ) # In these cases Modin raises `ArrowEngineException` while pandas # raises `ValueError`, so skipping exception type checking skip_exc_type_check = parse_dates_unsupported and engine == "arrow" eval_io( fn_name="read_csv", md_extra_kwargs={"engine": engine}, check_exception_type=not skip_exc_type_check, raising_exceptions=None if skip_exc_type_check else io_ops_bad_exc, # read_csv kwargs filepath_or_buffer=pytest.csvs_names["test_read_csv_regular"], parse_dates=parse_dates, names=names, ) @pytest.mark.parametrize("engine", [None, "arrow"]) @pytest.mark.parametrize( "usecols", [ None, ["col1"], ["col1", "col1"], ["col1", "col2", "col6"], ["col6", "col2", "col1"], [0], [0, 0], [0, 1, 5], [5, 1, 0], lambda x: x in ["col1", "col2"], ], ) def test_read_csv_col_handling( self, engine, usecols, ): eval_io( fn_name="read_csv", check_kwargs_callable=not callable(usecols), md_extra_kwargs={"engine": engine}, # read_csv kwargs filepath_or_buffer=pytest.csvs_names["test_read_csv_regular"], usecols=usecols, ) class TestMasks: data = { "a": [1, 1, 2, 2, 3], "b": [None, None, 2, 1, 3], "c": [3, None, None, 2, 1], } cols_values = ["a", ["a", "b"], ["a", "b", "c"]] @pytest.mark.parametrize("cols", cols_values) def test_projection(self, cols): def projection(df, cols, **kwargs): return df[cols] run_and_compare(projection, data=self.data, cols=cols) def test_drop(self): def drop(df, **kwargs): return df.drop(columns="a") run_and_compare(drop, data=self.data) def test_iloc(self): def mask(df, **kwargs): return df.iloc[[0, 1]] run_and_compare(mask, data=self.data, allow_subqueries=True) def test_empty(self): def empty(df, **kwargs): return df run_and_compare(empty, data=None) def test_filter(self): def filter(df, **kwargs): return df[df["a"] == 1] run_and_compare(filter, data=self.data) def test_filter_with_index(self): def filter(df, **kwargs): df = df.groupby("a").sum() return df[df["b"] > 1] run_and_compare(filter, data=self.data) def test_filter_proj(self): def filter(df, **kwargs): df1 = df + 2 return df1[(df["a"] + df1["b"]) > 1] run_and_compare(filter, data=self.data) def test_filter_drop(self): def filter(df, **kwargs): df = df[["a", "b"]] df = df[df["a"] != 1] df["a"] = df["a"] * df["b"] return df run_and_compare(filter, data=self.data) class TestMultiIndex: data = {"a": np.arange(24), "b": np.arange(24)} @pytest.mark.parametrize("names", [None, ["", ""], ["name", "name"]]) def test_dup_names(self, names): index = pandas.MultiIndex.from_tuples( [(i, j) for i in range(3) for j in range(8)], names=names ) pandas_df = pandas.DataFrame(self.data, index=index) + 1 modin_df = pd.DataFrame(self.data, index=index) + 1 df_equals(pandas_df, modin_df) @pytest.mark.parametrize( "names", [ None, [None, "s", None], ["i1", "i2", "i3"], ["i1", "i1", "i3"], ["i1", "i2", "a"], ], ) def test_reset_index(self, names): index = pandas.MultiIndex.from_tuples( [(i, j, k) for i in range(2) for j in range(3) for k in range(4)], names=names, ) def applier(lib): df = lib.DataFrame(self.data, index=index) + 1 return df.reset_index() eval_general(pd, pandas, applier) @pytest.mark.parametrize("is_multiindex", [True, False]) @pytest.mark.parametrize( "column_names", [None, ["level1", None], ["level1", "level2"]] ) def test_reset_index_multicolumns(self, is_multiindex, column_names): index = ( pandas.MultiIndex.from_tuples( [(i, j, k) for i in range(2) for j in range(3) for k in range(4)], names=["l1", "l2", "l3"], ) if is_multiindex else pandas.Index(np.arange(len(self.data["a"])), name="index") ) columns = pandas.MultiIndex.from_tuples( [("a", "b"), ("b", "c")], names=column_names ) data = np.array(list(self.data.values())).T def applier(df, **kwargs): df = df + 1 return df.reset_index(drop=False) run_and_compare( fn=applier, data=data, constructor_kwargs={"index": index, "columns": columns}, ) def test_set_index_name(self): index = pandas.Index.__new__(pandas.Index, data=[i for i in range(24)]) pandas_df = pandas.DataFrame(self.data, index=index) pandas_df.index.name = "new_name" modin_df = pd.DataFrame(self.data, index=index) modin_df._query_compiler.set_index_name("new_name") df_equals(pandas_df, modin_df) def test_set_index_names(self): index = pandas.MultiIndex.from_tuples( [(i, j, k) for i in range(2) for j in range(3) for k in range(4)] ) pandas_df = pandas.DataFrame(self.data, index=index) pandas_df.index.names = ["new_name1", "new_name2", "new_name3"] modin_df = pd.DataFrame(self.data, index=index) modin_df._query_compiler.set_index_names( ["new_name1", "new_name2", "new_name3"] ) df_equals(pandas_df, modin_df) class TestFillna: data = {"a": [1, 1, None], "b": [None, None, 2], "c": [3, None, None]} values = [1, {"a": 1, "c": 3}, {"a": 1, "b": 2, "c": 3}] @pytest.mark.parametrize("value", values) def test_fillna_all(self, value): def fillna(df, value, **kwargs): return df.fillna(value) run_and_compare(fillna, data=self.data, value=value) def test_fillna_bool(self): def fillna(df, **kwargs): df["a"] = df["a"] == 1 df["a"] = df["a"].fillna(False) return df run_and_compare(fillna, data=self.data) class TestConcat: data = { "a": [1, 2, 3], "b": [10, 20, 30], "d": [1000, 2000, 3000], "e": [11, 22, 33], } data2 = { "a": [4, 5, 6], "c": [400, 500, 600], "b": [40, 50, 60], "f": [444, 555, 666], } data3 = { "f": [2, 3, 4], "g": [400, 500, 600], "h": [20, 30, 40], } @pytest.mark.parametrize("join", ["inner", "outer"]) @pytest.mark.parametrize("sort", bool_arg_values) @pytest.mark.parametrize("ignore_index", bool_arg_values) def test_concat(self, join, sort, ignore_index): def concat(lib, df1, df2, join, sort, ignore_index): return lib.concat( [df1, df2], join=join, sort=sort, ignore_index=ignore_index ) run_and_compare( concat, data=self.data, data2=self.data2, join=join, sort=sort, ignore_index=ignore_index, ) def test_concat_with_same_df(self): def concat(df, **kwargs): df["f"] = df["a"] return df run_and_compare(concat, data=self.data) def test_setitem_lazy(self): def applier(df, **kwargs): df = df + 1 df["a"] = df["a"] + 1 df["e"] = df["a"] + 1 df["new_int8"] = np.int8(10) df["new_int16"] = np.int16(10) df["new_int32"] = np.int32(10) df["new_int64"] = np.int64(10) df["new_int"] = 10 df["new_float"] = 5.5 df["new_float64"] = np.float64(10.1) return df run_and_compare(applier, data=self.data) def test_setitem_default(self): def applier(df, lib, **kwargs): df = df + 1 df["a"] = np.arange(3) df["b"] = lib.Series(np.arange(3)) return df run_and_compare(applier, data=self.data, force_lazy=False) def test_insert_lazy(self): def applier(df, **kwargs): df = df + 1 df.insert(2, "new_int", 10) df.insert(1, "new_float", 5.5) df.insert(0, "new_a", df["a"] + 1) return df run_and_compare(applier, data=self.data) def test_insert_default(self): def applier(df, lib, **kwargs): df = df + 1 df.insert(1, "new_range", np.arange(3)) df.insert(1, "new_series", lib.Series(np.arange(3))) return df run_and_compare(applier, data=self.data, force_lazy=False) def test_concat_many(self): def concat(df1, df2, lib, **kwargs): df3 = df1.copy() df4 = df2.copy() return lib.concat([df1, df2, df3, df4]) def sort_comparator(df1, df2): """Sort and verify equality of the passed frames.""" # We sort values because order of rows in the 'union all' result is inconsistent in OmniSci df1, df2 = ( try_cast_to_pandas(df).sort_values(df.columns[0]) for df in (df1, df2) ) return df_equals(df1, df2) run_and_compare( concat, data=self.data, data2=self.data2, comparator=sort_comparator ) def test_concat_agg(self): def concat(lib, df1, df2): df1 = df1.groupby("a", as_index=False).agg( {"b": "sum", "d": "sum", "e": "sum"} ) df2 = df2.groupby("a", as_index=False).agg( {"c": "sum", "b": "sum", "f": "sum"} ) return lib.concat([df1, df2]) run_and_compare(concat, data=self.data, data2=self.data2, allow_subqueries=True) @pytest.mark.parametrize("join", ["inner", "outer"]) @pytest.mark.parametrize("sort", bool_arg_values) @pytest.mark.parametrize("ignore_index", bool_arg_values) def test_concat_single(self, join, sort, ignore_index): def concat(lib, df, join, sort, ignore_index): return lib.concat([df], join=join, sort=sort, ignore_index=ignore_index) run_and_compare( concat, data=self.data, join=join, sort=sort, ignore_index=ignore_index, ) def test_groupby_concat_single(self): def concat(lib, df): df = lib.concat([df]) return df.groupby("a").agg({"b": "min"}) run_and_compare( concat, data=self.data, ) @pytest.mark.parametrize("join", ["inner"]) @pytest.mark.parametrize("sort", bool_arg_values) @pytest.mark.parametrize("ignore_index", bool_arg_values) def test_concat_join(self, join, sort, ignore_index): def concat(lib, df1, df2, join, sort, ignore_index, **kwargs): return lib.concat( [df1, df2], axis=1, join=join, sort=sort, ignore_index=ignore_index ) run_and_compare( concat, data=self.data, data2=self.data3, join=join, sort=sort, ignore_index=ignore_index, ) def test_concat_index_name(self): df1 = pandas.DataFrame(self.data) df1 = df1.set_index("a") df2 = pandas.DataFrame(self.data3) df2 = df2.set_index("f") ref = pandas.concat([df1, df2], axis=1, join="inner") exp = pd.concat([df1, df2], axis=1, join="inner") df_equals(ref, exp) df2.index.name = "a" ref = pandas.concat([df1, df2], axis=1, join="inner") exp = pd.concat([df1, df2], axis=1, join="inner") df_equals(ref, exp) def test_concat_index_names(self): df1 = pandas.DataFrame(self.data) df1 = df1.set_index(["a", "b"]) df2 =
pandas.DataFrame(self.data3)
pandas.DataFrame
import warnings import numpy from sklearn.utils import check_array try: from scipy.io import arff HAS_ARFF = True except: HAS_ARFF = False from .utils import check_dataset, ts_size, to_time_series_dataset def to_sklearn_dataset(dataset, dtype=numpy.float, return_dim=False): """Transforms a time series dataset so that it fits the format used in ``sklearn`` estimators. Parameters ---------- dataset : array-like The dataset of time series to be transformed. dtype : data type (default: numpy.float) Data type for the returned dataset. return_dim : boolean (optional, default: False) Whether the dimensionality (third dimension should be returned together with the transformed dataset). Returns ------- numpy.ndarray of shape (n_ts, sz * d) The transformed dataset of time series. int (optional, if return_dim=True) The dimensionality of the original tslearn dataset (third dimension) Examples -------- >>> to_sklearn_dataset([[1, 2]], return_dim=True) (array([[1., 2.]]), 1) >>> to_sklearn_dataset([[1, 2], [1, 4, 3]]) array([[ 1., 2., nan], [ 1., 4., 3.]]) See Also -------- to_time_series_dataset : Transforms a time series dataset to ``tslearn`` format. """ tslearn_dataset = to_time_series_dataset(dataset, dtype=dtype) n_ts = tslearn_dataset.shape[0] d = tslearn_dataset.shape[2] if return_dim: return tslearn_dataset.reshape((n_ts, -1)), d else: return tslearn_dataset.reshape((n_ts, -1)) def to_pyts_dataset(X): """Transform a tslearn-compatible dataset into a pyts dataset. Parameters ---------- X: array, shape = (n_ts, sz, d) tslearn-formatted dataset to be cast to pyts format Returns ------- array, shape=(n_ts, sz) if d=1, (n_ts, d, sz) otherwise pyts-formatted dataset Examples -------- >>> tslearn_arr = numpy.random.randn(10, 16, 1) >>> pyts_arr = to_pyts_dataset(tslearn_arr) >>> pyts_arr.shape (10, 16) >>> tslearn_arr = numpy.random.randn(10, 16, 2) >>> pyts_arr = to_pyts_dataset(tslearn_arr) >>> pyts_arr.shape (10, 2, 16) >>> tslearn_arr = [numpy.random.randn(16, 1), numpy.random.randn(10, 1)] >>> to_pyts_dataset(tslearn_arr) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ValueError: All the time series in the array should be of equal lengths """ X_ = check_dataset(X, force_equal_length=True) if X_.shape[2] == 1: return X_.reshape((X_.shape[0], -1)) else: return X_.transpose((0, 2, 1)) def from_pyts_dataset(X): """Transform a pyts-compatible dataset into a tslearn dataset. Parameters ---------- X: array, shape = (n_ts, sz) or (n_ts, d, sz) pyts-formatted dataset Returns ------- array, shape=(n_ts, sz, d) tslearn-formatted dataset Examples -------- >>> pyts_arr = numpy.random.randn(10, 16) >>> tslearn_arr = from_pyts_dataset(pyts_arr) >>> tslearn_arr.shape (10, 16, 1) >>> pyts_arr = numpy.random.randn(10, 2, 16) >>> tslearn_arr = from_pyts_dataset(pyts_arr) >>> tslearn_arr.shape (10, 16, 2) >>> pyts_arr = numpy.random.randn(10) >>> from_pyts_dataset(pyts_arr) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ValueError: X is not a valid input pyts array. """ X_ = check_array(X, ensure_2d=False, allow_nd=True) if X_.ndim == 2: shape = list(X_.shape) + [1] return X_.reshape(shape) elif X_.ndim == 3: return X_.transpose((0, 2, 1)) else: raise ValueError("X is not a valid input pyts array. " "Its dimensions, once cast to numpy.ndarray " "are {}".format(X_.shape)) def to_seglearn_dataset(X): """Transform a tslearn-compatible dataset into a seglearn dataset. Parameters ---------- X: array, shape = (n_ts, sz, d) tslearn-formatted dataset to be cast to seglearn format Returns ------- array of arrays, shape=(n_ts, ) seglearn-formatted dataset. i-th sub-array in the list has shape (sz_i, d) Examples -------- >>> tslearn_arr = numpy.random.randn(10, 16, 1) >>> seglearn_arr = to_seglearn_dataset(tslearn_arr) >>> seglearn_arr.shape (10, 16, 1) >>> tslearn_arr = numpy.random.randn(10, 16, 2) >>> seglearn_arr = to_seglearn_dataset(tslearn_arr) >>> seglearn_arr.shape (10, 16, 2) >>> tslearn_arr = [numpy.random.randn(16, 2), numpy.random.randn(10, 2)] >>> seglearn_arr = to_seglearn_dataset(tslearn_arr) >>> seglearn_arr.shape (2,) >>> seglearn_arr[0].shape (16, 2) >>> seglearn_arr[1].shape (10, 2) """ X_ = check_dataset(X) return numpy.array([Xi[:ts_size(Xi)] for Xi in X_]) def from_seglearn_dataset(X): """Transform a seglearn-compatible dataset into a tslearn dataset. Parameters ---------- X: list of arrays, or array of arrays, shape = (n_ts, ) seglearn-formatted dataset. i-th sub-array in the list has shape (sz_i, d) Returns ------- array, shape=(n_ts, sz, d), where sz is the maximum of all array lengths tslearn-formatted dataset Examples -------- >>> seglearn_arr = [numpy.random.randn(10, 1), numpy.random.randn(10, 1)] >>> tslearn_arr = from_seglearn_dataset(seglearn_arr) >>> tslearn_arr.shape (2, 10, 1) >>> seglearn_arr = [numpy.random.randn(10, 1), numpy.random.randn(5, 1)] >>> tslearn_arr = from_seglearn_dataset(seglearn_arr) >>> tslearn_arr.shape (2, 10, 1) >>> seglearn_arr = numpy.random.randn(2, 10, 1) >>> tslearn_arr = from_seglearn_dataset(seglearn_arr) >>> tslearn_arr.shape (2, 10, 1) """ return to_time_series_dataset(X) def to_stumpy_dataset(X): """Transform a tslearn-compatible dataset into a stumpy dataset. Parameters ---------- X: array, shape = (n_ts, sz, d) tslearn-formatted dataset to be cast to stumpy format Returns ------- list of arrays of shape=(d, sz_i) if d > 1 or (sz_i, ) otherwise stumpy-formatted dataset. Examples -------- >>> tslearn_arr = numpy.random.randn(10, 16, 1) >>> stumpy_arr = to_stumpy_dataset(tslearn_arr) >>> len(stumpy_arr) 10 >>> stumpy_arr[0].shape (16,) >>> tslearn_arr = numpy.random.randn(10, 16, 2) >>> stumpy_arr = to_stumpy_dataset(tslearn_arr) >>> len(stumpy_arr) 10 >>> stumpy_arr[0].shape (2, 16) """ X_ = check_dataset(X) def transpose_or_flatten(ts): if ts.shape[1] == 1: return ts.reshape((-1, )) else: return ts.transpose() return [transpose_or_flatten(Xi[:ts_size(Xi)]) for Xi in X_] def from_stumpy_dataset(X): """Transform a stumpy-compatible dataset into a tslearn dataset. Parameters ---------- X: list of arrays of shapes (d, sz_i) if d > 1 or (sz_i, ) otherwise stumpy-formatted dataset. Returns ------- array, shape=(n_ts, sz, d), where sz is the maximum of all array lengths tslearn-formatted dataset Examples -------- >>> stumpy_arr = [numpy.random.randn(10), numpy.random.randn(10)] >>> tslearn_arr = from_stumpy_dataset(stumpy_arr) >>> tslearn_arr.shape (2, 10, 1) >>> stumpy_arr = [numpy.random.randn(3, 10), numpy.random.randn(3, 5)] >>> tslearn_arr = from_stumpy_dataset(stumpy_arr) >>> tslearn_arr.shape (2, 10, 3) """ def transpose_or_expand(ts): if ts.ndim == 1: return ts.reshape((-1, 1)) else: return ts.transpose() return to_time_series_dataset([transpose_or_expand(Xi) for Xi in X]) def to_sktime_dataset(X): """Transform a tslearn-compatible dataset into a sktime dataset. Parameters ---------- X: array, shape = (n_ts, sz, d) tslearn-formatted dataset to be cast to sktime format Returns ------- Pandas data-frame sktime-formatted dataset (cf. `link <https://alan-turing-institute.github.io/sktime/examples/loading_data.html>`_) Examples -------- >>> tslearn_arr = numpy.random.randn(10, 16, 1) >>> sktime_arr = to_sktime_dataset(tslearn_arr) >>> sktime_arr.shape (10, 1) >>> sktime_arr["dim_0"][0].shape (16,) >>> tslearn_arr = numpy.random.randn(10, 16, 2) >>> sktime_arr = to_sktime_dataset(tslearn_arr) >>> sktime_arr.shape (10, 2) >>> sktime_arr["dim_1"][0].shape (16,) Notes ----- Conversion from/to sktime format requires pandas to be installed. """ # noqa: E501 try: import pandas as pd except ImportError: raise ImportError("Conversion from/to sktime cannot be performed " "if pandas is not installed.") X_ = check_dataset(X) X_pd = pd.DataFrame(dtype=numpy.float32) for dim in range(X_.shape[2]): X_pd['dim_' + str(dim)] = [pd.Series(data=Xi[:ts_size(Xi), dim]) for Xi in X_] return X_pd def from_sktime_dataset(X): """Transform a sktime-compatible dataset into a tslearn dataset. Parameters ---------- X: pandas data-frame sktime-formatted dataset (cf. `link <https://alan-turing-institute.github.io/sktime/examples/loading_data.html>`_) Returns ------- array, shape=(n_ts, sz, d) tslearn-formatted dataset Examples -------- >>> import pandas as pd >>> sktime_df = pd.DataFrame() >>> sktime_df["dim_0"] = [pd.Series([1, 2, 3]), pd.Series([4, 5, 6])] >>> tslearn_arr = from_sktime_dataset(sktime_df) >>> tslearn_arr.shape (2, 3, 1) >>> sktime_df = pd.DataFrame() >>> sktime_df["dim_0"] = [pd.Series([1, 2, 3]), ... pd.Series([4, 5, 6, 7])] >>> sktime_df["dim_1"] = [pd.Series([8, 9, 10]), ... pd.Series([11, 12, 13, 14])] >>> tslearn_arr = from_sktime_dataset(sktime_df) >>> tslearn_arr.shape (2, 4, 2) >>> sktime_arr = numpy.random.randn(10, 1, 16) >>> from_sktime_dataset( ... sktime_arr ... ) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ValueError: X is not a valid input sktime array. Notes ----- Conversion from/to sktime format requires pandas to be installed. """ # noqa: E501 try: import pandas as pd except ImportError: raise ImportError("Conversion from/to sktime cannot be performed " "if pandas is not installed.") if not isinstance(X, pd.DataFrame): raise ValueError("X is not a valid input sktime array. " "A pandas DataFrame is expected.") data_dimensions = [col_name for col_name in X.columns if col_name.startswith("dim_")] d = len(data_dimensions) ordered_data_dimensions = ["dim_%d" % di for di in range(d)] if sorted(ordered_data_dimensions) != sorted(data_dimensions): raise ValueError("X is not a valid input sktime array. " "Provided dimensions are not conitiguous." "{}".format(data_dimensions)) n = X["dim_0"].shape[0] max_sz = -1 for dim_name in ordered_data_dimensions: for i in range(n): if X[dim_name][i].size > max_sz: max_sz = X[dim_name][i].size tslearn_arr = numpy.empty((n, max_sz, d)) tslearn_arr[:] = numpy.nan for di in range(d): for i in range(n): sz = X["dim_%d" % di][i].size tslearn_arr[i, :sz, di] = X["dim_%d" % di][i].values.copy() return tslearn_arr def to_pyflux_dataset(X): """Transform a tslearn-compatible dataset into a pyflux dataset. Parameters ---------- X: array, shape = (n_ts, sz, d), where n_ts=1 tslearn-formatted dataset to be cast to pyflux format Returns ------- Pandas data-frame pyflux-formatted dataset (cf. `link <https://pyflux.readthedocs.io/en/latest/getting_started.html>`_) Examples -------- >>> tslearn_arr = numpy.random.randn(1, 16, 1) >>> pyflux_df = to_pyflux_dataset(tslearn_arr) >>> pyflux_df.shape (16, 1) >>> pyflux_df.columns[0] 'dim_0' >>> tslearn_arr = numpy.random.randn(1, 16, 2) >>> pyflux_df = to_pyflux_dataset(tslearn_arr) >>> pyflux_df.shape (16, 2) >>> pyflux_df.columns[1] 'dim_1' >>> tslearn_arr = numpy.random.randn(10, 16, 1) >>> to_pyflux_dataset(tslearn_arr) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ValueError: Array should be made of a single time series (10 here) Notes ----- Conversion from/to pyflux format requires pandas to be installed. """ # noqa: E501 try: import pandas as pd except ImportError: raise ImportError("Conversion from/to pyflux cannot be performed " "if pandas is not installed.") X_ = check_dataset(X, force_equal_length=True, force_single_time_series=True) X_pd = pd.DataFrame(X[0], dtype=numpy.float32) X_pd.columns = ["dim_%d" % di for di in range(X_.shape[2])] return X_pd def from_pyflux_dataset(X): """Transform a pyflux-compatible dataset into a tslearn dataset. Parameters ---------- X: pandas data-frame pyflux-formatted dataset Returns ------- array, shape=(n_ts, sz, d), where n_ts=1 tslearn-formatted dataset. Column order is kept the same as in the original data frame. Examples -------- >>> import pandas as pd >>> pyflux_df = pd.DataFrame() >>> pyflux_df["dim_0"] = numpy.random.rand(10) >>> tslearn_arr = from_pyflux_dataset(pyflux_df) >>> tslearn_arr.shape (1, 10, 1) >>> pyflux_df = pd.DataFrame() >>> pyflux_df["dim_0"] = numpy.random.rand(10) >>> pyflux_df["dim_1"] = numpy.random.rand(10) >>> pyflux_df["dim_2"] = numpy.random.rand(10) >>> tslearn_arr = from_pyflux_dataset(pyflux_df) >>> tslearn_arr.shape (1, 10, 3) >>> pyflux_arr = numpy.random.randn(10, 1, 16) >>> from_pyflux_dataset( ... pyflux_arr ... ) # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ValueError: X is not a valid input pyflux array. Notes ----- Conversion from/to pyflux format requires pandas to be installed. """ try: import pandas as pd except ImportError: raise ImportError("Conversion from/to pyflux cannot be performed " "if pandas is not installed.") if not isinstance(X, pd.DataFrame): raise ValueError("X is not a valid input pyflux array. " "A pandas DataFrame is expected.") data_dimensions = [col_name for col_name in X.columns] d = len(data_dimensions) n = 1 max_sz = -1 for dim_name in data_dimensions: if X[dim_name].size > max_sz: max_sz = X[dim_name].size tslearn_arr = numpy.empty((n, max_sz, d)) tslearn_arr[:] = numpy.nan for di, dim_name in enumerate(data_dimensions): data = X[dim_name].values.copy() sz = len(data) tslearn_arr[0, :sz, di] = data return tslearn_arr def to_tsfresh_dataset(X): """Transform a tslearn-compatible dataset into a tsfresh dataset. Parameters ---------- X: array, shape = (n_ts, sz, d) tslearn-formatted dataset to be cast to tsfresh format Returns ------- Pandas data-frame tsfresh-formatted dataset ("flat" data frame, as described `there <https://tsfresh.readthedocs.io/en/latest/text/data_formats.html#input-option-1-flat-dataframe>`_) Examples -------- >>> tslearn_arr = numpy.random.randn(1, 16, 1) >>> tsfresh_df = to_tsfresh_dataset(tslearn_arr) >>> tsfresh_df.shape (16, 3) >>> tslearn_arr = numpy.random.randn(1, 16, 2) >>> tsfresh_df = to_tsfresh_dataset(tslearn_arr) >>> tsfresh_df.shape (16, 4) Notes ----- Conversion from/to tsfresh format requires pandas to be installed. """ # noqa: E501 try: import pandas as pd except ImportError: raise ImportError("Conversion from/to tsfresh cannot be performed " "if pandas is not installed.") X_ = check_dataset(X) n, sz, d = X_.shape dataframes = [] for i, Xi in enumerate(X_): df = pd.DataFrame(columns=["id", "time"] + ["dim_%d" % di for di in range(d)]) Xi_ = Xi[:ts_size(Xi)] sz = Xi_.shape[0] df["time"] = numpy.arange(sz) df["id"] = numpy.zeros((sz, ), dtype=numpy.int32) + i for di in range(d): df["dim_%d" % di] = Xi_[:, di] dataframes.append(df) return
pd.concat(dataframes)
pandas.concat
import argparse import re import matplotlib.pyplot as plt import seaborn as sns import numpy as np import pandas as pd import os ap = argparse.ArgumentParser() ap.add_argument('-i', '--input', type=str, default='../results/logs.csv', help='Input file containing the logs') ap.add_argument('-o', '--output', type=str, default='../plots', help='Output directory for the plots') args = vars(ap.parse_args()) SAVING_DIR = args['output'] sns.set() def print_datasets(datasets: dict) -> None: for size, dataset in datasets.items(): print(size) for name, time in dataset.items(): print('\t' + name + ': ' + str(time)) def getParameterDomain(parameter: str, dataset: dict) -> dict: """Get the possible values for a given parameter ('o' or 'a')""" results = re.findall( re.compile( parameter + r"(.[\d.]*)" ), str(dataset) ) # Dictionary first to avoid duplicates return sorted(list({match for match in results})) def extract(regex: str, data: dict) -> (list, list): """Extracts data from one dataset according to the given regex. Returns a pair (domain, values). The 1st capturing group of the regex must be the varying parameter and the second the value.""" results = re.findall(re.compile(regex), str(data)) domain = [] values = [] for match in results: domain.append(float(match[0])) values.append(float(match[1])) return (domain, values) def extract_all(regex: str, data: dict) -> (list, list): """Extracts data from all the datasets according to the given regex. Returns a pair (domain, values), where domain will be the dataset's size. Assumes regex only gets one element per dataset. The 1st caputring group of the regex must be the value.""" domain = [] values = [] for length, dataset in data.items(): domain.append(length) values.append( float(re.findall( re.compile(regex), str(dataset) )[0]) ) return (domain, values) def create_plot(title: str, xlabel: str, ylabel: str, domain: list, *data): """Creates and Saves a 'Spagetti plot' with the given title, horizontal label, vertical label, domain and functions (name and values) presented in the data array. Plot saved to constant SAVING_DIR/plot_name""" agg_data = {'x': domain} agg_data.update({fn[0]: fn[1] for fn in data}) df =
pd.DataFrame(agg_data)
pandas.DataFrame
import os import datetime import pandas as pd import numpy as np import math from sklearn.model_selection import StratifiedKFold from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier from sklearn import svm from sklearn.naive_bayes import GaussianNB import tkinter as tk from tkinter import ttk from tkinter import messagebox import globals from globals import log_message from models import classifiers from data import ini_file, data_exporter, data_proccessor, data_resampling from visualisation import plot class TabTraining(ttk.Frame): def __init__(self, master): super().__init__(master) self.build_controls() self.fill_init_data_into_controls() def validate_monitoring_run(self): txtWindowStride = self.txtWindowStride_text.get() selected_monitor_window_size = int(self.txtSimulationWindowSize_text.get()) selected_monitoring_sample_rate = int(self.cboSimulationSampleRate.get()) algorithm = str(self.cboSimuAlgorithm.get()) return data_proccessor.validate_monitoring_run(txtWindowStride, selected_monitor_window_size, selected_monitoring_sample_rate, algorithm) def statics_clicked(self): if self.validate_monitoring_run(): plot.statistics_metrics_show(globals.monitoring_data_frame_resampled_monitor, globals.monitoring_data_fr, globals.curr_monitoring_sampling_rate) def monitoring_dist_clicked(self): if self.validate_monitoring_run(): plot.monitoring_show(globals.monitoring_data_fr, globals.curr_monitoring_sampling_rate) def simulation_clicked(self): if (self.rdoSimuStartTime.get() == 0) and (self.validate_monitoring_run()): plot.simulation_show(globals.label_set, globals.monitoring_data_fr, int(self.txtSimuFrameDtPoints_text.get()), int(self.txtSimuFrameStride_text.get()), int(self.txtSimuFrameDelay_text.get()), int(self.txtSimuFrameRepeat_text.get())) def models_fitting_clicked(self): print(' ') print(' ') log_message('START BUILDING NEW MODEL(S)') time_now = datetime.datetime.now() globals.timestampforCSVfiles = '%02d' % time_now.hour + 'h' + '%02d' % time_now.minute + 'm' + '%02d' % time_now.second + 's' # This step check validity of input data and set global default values valid_input_data, error_message = self.check_input_data() if not valid_input_data: messagebox.showinfo('Alert', error_message) else: # Start new db connection for experiment result updating if globals.data_from_db: connection_status = globals.start_db_connection() if not connection_status: globals.stop_app('Database connection for saving experiment result is unsuccessful') return input_training_settings = self.get_input_training_settings_from_UI() # Update input_data_setting into app.in ini_file.update_training_tab_layout_data(input_training_settings) self.convert_features_into_json_content() # Because the binary_mode will changes the non-main labels into 'Non-...' globals.label_set = self.label_set_origin.copy() if globals.monitoring_mode: globals.monitoring_data_frame = globals.monitoring_data_frame_origin.copy() if globals.binary_mode: log_message('BINARY classification with main label: ' + globals.main_label) else: log_message('MULTI-CLASS classification '+ globals.label_set.str.cat(sep=' ')) train_valid_test_data_filtered_by_selected_labels = globals.train_valid_test_data_frame.loc[ globals.train_valid_test_data_frame['label'].isin(globals.label_set)].sort_values(by=['timestamp'], ascending=True) if globals.monitoring_mode: monitoring_data_filtered_by_selected_labels = globals.monitoring_data_frame.loc[ globals.monitoring_data_frame['label'].isin(globals.label_set)].sort_values( by=['timestamp'], ascending=True) # The activity existed in monitoring data must cover the labels in training, so that the metrics are properly calculated monitoring_data_label_set = pd.Series(np.unique(np.array(monitoring_data_filtered_by_selected_labels['label']).tolist())) monitoring_data_label_set = monitoring_data_label_set.sort_values(ascending=True) globals.monitoring_mode = monitoring_data_label_set.equals(globals.label_set) if not globals.monitoring_mode: messagebox.showinfo('Alert', 'The activities (labels) list in monitoring data is not matched with that from training data. Please re-select the datasets') return else: monitoring_data_filtered_by_selected_labels = pd.DataFrame() # Reset monitoring data everytime user clickes on fitting globals.monitoring_data_fr = pd.DataFrame() # This dataframe includes test column values, grounthTruth label and predicted globals.predicted_data_fr = pd.DataFrame() # This dataframe includes data for the simulation globals.curr_monitoring_algorithm = '' globals.curr_monitoring_window_size = 0 globals.curr_monitoring_sampling_rate = 0 self.random_forest = classifiers.CLS(RandomForestClassifier(n_estimators = 100),'Random_Forest') self.decision_tree = classifiers.CLS(DecisionTreeClassifier(criterion='entropy', max_depth=10),'Decision_Tree') self.support_vector_machine = classifiers.CLS(svm.SVC(C=1.0, kernel='rbf', gamma='scale', decision_function_shape='ovo'),'SVM') self.naive_bayes = classifiers.CLS(GaussianNB(),'Naive_Bayes') self.kfold = int(self.cboKfold.get()) self.no_of_original_train_valid_test_data_points = len(train_valid_test_data_filtered_by_selected_labels.index) if self.rdoResampling.get() == 0: # User wants to keep the original sampling rates # These variables are the same in the case of keeping original sampling rate self.no_of_resampled_train_data_points = self.no_of_original_train_valid_test_data_points globals.resampling_rate = globals.original_sampling_rate log_message('--------------------------------------------------------Running with original sampling rate at ' + str(globals.resampling_rate) + 'Hz ') globals.csv_txt_file_exporter = data_exporter.CsvTxtFileExporter(globals.resampling_rate) for window_size in range(int(self.txtWindowSizeFrom_text.get()), int(self.txtWindowSizeTo_text.get()) + 1, int(self.txtWindowStep_text.get())): window_stride_in_ms = math.floor(window_size * int(self.txtWindowStride_text.get()) / 100) log_message('Begin train-valid-test processing at window size ' + str(window_size) + 'ms with stride of ' + str(window_stride_in_ms) + 'ms') log_message('Start calculating features for train data') self.process_at_window_size_stride (train_valid_test_data_filtered_by_selected_labels, monitoring_data_filtered_by_selected_labels, window_size, window_stride_in_ms) else: # User wants to resample the input data for resampling_rate in range(int(str(self.cboDownSamplingFrom.get())), int(str(self.cboDownSamplingTo.get())) + 1, int(str(self.cboDownSamplingStep.get()))): globals.resampling_rate = resampling_rate log_message('--------------------------------------------------------Running with resampled rate at ' + str(globals.resampling_rate) + 'Hz ') log_message('Sensor data is being resampled') resampling_dict = {} for axis in globals.list_axes_to_apply_functions: resampling_dict[axis] = globals.function_set_for_resampling resampled_train_valid_data = data_resampling.resampled_frame(train_valid_test_data_filtered_by_selected_labels, globals.label_set, resampling_dict, globals.list_axes_to_apply_functions, resampling_rate) self.no_of_resampled_train_data_points = len(resampled_train_valid_data.index) if globals.monitoring_mode: resampled_monitoring_data = data_resampling.resampled_frame(monitoring_data_filtered_by_selected_labels, globals.label_set, resampling_dict, globals.list_axes_to_apply_functions, resampling_rate) else: resampled_monitoring_data = pd.DataFrame() globals.csv_txt_file_exporter = data_exporter.CsvTxtFileExporter(globals.resampling_rate) for window_size in range(int(self.txtWindowSizeFrom_text.get()), int(self.txtWindowSizeTo_text.get()) + 1, int(self.txtWindowStep_text.get())): window_stride_in_ms = math.floor(window_size * int(self.txtWindowStride_text.get()) / 100) log_message('Begin train-valid-test processing at window size ' + str(window_size) + 'ms with stride of ' + str(window_stride_in_ms) + 'ms') log_message('Start calculating features for train data') self.process_at_window_size_stride (resampled_train_valid_data, resampled_monitoring_data, window_size, window_stride_in_ms) # winsound.Beep(1000, 300) if globals.data_from_db: connection_status = globals.close_db_connection() if not connection_status: log_message('Database connection closing is unsuccessful') # Monitoring window size is set to the begining window size (for the purpose of better UI experience) self.txtSimulationWindowSize_text.set(self.txtWindowSizeFrom_text.get()) if globals.monitoring_mode: self.enable_monitoring_process_buttons() else: self.disable_monitoring_process_buttons() def process_at_window_size_stride (self, train_valid_test_data_frame, monitoring_data_frame, window_size, window_stride_in_ms): main_and_non_main_labels_set = None main_and_non_main_labels_narray_temp = None if globals.binary_mode: # Because the label_set has changed into Main and Non-Main in the last window setting -> get the origin labels globals.label_set = self.label_set_origin.copy() main_and_non_main_labels_set = globals.label_set.copy() main_and_non_main_labels_narray_temp = main_and_non_main_labels_set.to_numpy(copy=True) main_and_non_main_labels_narray_temp = np.append(main_and_non_main_labels_narray_temp, 'Non-' + globals.main_label) agg_train_valid_test_unfiltered_unbalanced = data_resampling.aggregated_frame(train_valid_test_data_frame, globals.label_set, globals.features_in_dictionary, globals.list_axes_to_apply_functions, window_size, window_stride_in_ms) log_message('End calculating features for train data') globals.csv_txt_file_exporter.create_window_size_stride_folder(window_size, window_stride_in_ms) if globals.csv_saving: globals.csv_txt_file_exporter.save_into_csv_file(agg_train_valid_test_unfiltered_unbalanced,'1_train_valid_test_set','01_train_valid_test_imbalanced_set_all_instances.csv') # End calculating features for training phrase <- # Calculate the range of data points allowed in a window minimum_count_allowed = round((window_size * globals.resampling_rate / 1000) * (1 - globals.data_point_filter_rate)) maximum_count_allowed = round((window_size * globals.resampling_rate / 1000) * (1 + globals.data_point_filter_rate)) # Filtering the number of data points for each window -> agg_train_valid_test_filtered_unbalanced = agg_train_valid_test_unfiltered_unbalanced.loc[ (agg_train_valid_test_unfiltered_unbalanced['count'] >= minimum_count_allowed) & ( agg_train_valid_test_unfiltered_unbalanced['count'] <= maximum_count_allowed)] # Getting balancing Train_Valid and Test data set balanced_train_valid_dataset, test_dataset, return_status = data_proccessor.get_balanced_train_valid_test_data_set(agg_train_valid_test_filtered_unbalanced) if not return_status: globals.stop_app('Training data is insufficient, having not enough labels/activities for models fitting') return if globals.csv_saving: globals.csv_txt_file_exporter.save_into_csv_file(balanced_train_valid_dataset, '1_train_valid_test_set', '02_train_valid_balanced_dataset_with_' + str( globals.minimum_train_valid_instance_for_each_label) + '_instances_for_each_class.csv') balanced_train_valid_dataset = balanced_train_valid_dataset.drop(['cattle_id'], axis = 1) balanced_train_valid_dataset = balanced_train_valid_dataset.drop(['count'], axis = 1) balanced_train_valid_dataset = balanced_train_valid_dataset.reset_index(drop = True) # Open and write infor to a text file -> globals.csv_txt_file_exporter.create_experiment_result_txt_file() # Initialising some of metrics for the classification self.random_forest.init_metrics() self.decision_tree.init_metrics() self.support_vector_machine.init_metrics() self.naive_bayes.init_metrics() feature_cols = list(balanced_train_valid_dataset.columns.values) feature_cols.remove('timestamp_human') feature_cols.remove('label') X = balanced_train_valid_dataset[feature_cols] # Features y = balanced_train_valid_dataset['label'] # Target # Stratified k-fold kf = StratifiedKFold(n_splits=self.kfold, shuffle=True) # Considering random_state = 0?? k_fold_round = int(0) for train_index, valid_index in kf.split(X, y): k_fold_round += 1 X_train = pd.DataFrame(X, columns = feature_cols, index = train_index) X_valid = pd.DataFrame(X, columns = feature_cols, index = valid_index) y_train_df = pd.DataFrame(y, columns = ['label'], index = train_index) y_train = y_train_df['label'] y_valid_df = pd.DataFrame(y, columns = ['label'], index = valid_index) y_valid = y_valid_df['label'] if globals.csv_saving is True: globals.csv_txt_file_exporter.save_into_csv_file(X_train, '3_kfold', str(k_fold_round) + 'th_round_fold_X_train.csv') globals.csv_txt_file_exporter.save_into_csv_file(X_valid, '3_kfold', str(k_fold_round) + 'th_round_fold_X_validation.csv') globals.csv_txt_file_exporter.save_into_csv_file(y_train, '3_kfold', str(k_fold_round) + 'th_round_fold_y_train.csv') globals.csv_txt_file_exporter.save_into_csv_file(y_valid, '3_kfold', str(k_fold_round) + 'th_round_fold_y_validation.csv') globals.csv_txt_file_exporter.write_single_line('\n------------------Round ' + str(k_fold_round) + '------------------') self.random_forest.train_validate(self.RandomForestVar.get(), X_train, y_train, X_valid, y_valid) self.decision_tree.train_validate(self.DecisionTreeVar.get(), X_train, y_train, X_valid, y_valid) self.support_vector_machine.train_validate(self.SVMVar.get(), X_train, y_train, X_valid, y_valid) self.naive_bayes.train_validate(self.NaiveBayesVar.get(), X_train, y_train, X_valid, y_valid) globals.csv_txt_file_exporter.write_single_line('\n') print('-------------------------------------------------------------------------') self.random_forest.calc_and_save_train_valid_result(self.RandomForestVar.get(), self.kfold) self.decision_tree.calc_and_save_train_valid_result(self.DecisionTreeVar.get(), self.kfold) self.support_vector_machine.calc_and_save_train_valid_result(self.SVMVar.get(), self.kfold) self.naive_bayes.calc_and_save_train_valid_result(self.NaiveBayesVar.get(), self.kfold) # Begin processing the test phrase labels_narray_temp = globals.label_set.to_numpy() test_dataset = test_dataset.dropna().set_index('timestamp') if globals.csv_saving: globals.csv_txt_file_exporter.save_into_csv_file(y_valid, '1_train_valid_test_set', '03_test_dataset_counts_filtered.csv') test_dataset = test_dataset.drop(['cattle_id'], axis = 1) test_dataset = test_dataset.drop(['count'], axis = 1) test_dataset = test_dataset.reset_index(drop = True) X_test = test_dataset[feature_cols] # Features y_test = test_dataset['label'] # Target self.random_forest.predict_test_data(self.RandomForestVar.get(), X_test, y_test, labels_narray_temp, main_and_non_main_labels_set, main_and_non_main_labels_narray_temp) self.decision_tree.predict_test_data(self.DecisionTreeVar.get(), X_test, y_test, labels_narray_temp, main_and_non_main_labels_set, main_and_non_main_labels_narray_temp) self.support_vector_machine.predict_test_data(self.SVMVar.get(), X_test, y_test, labels_narray_temp, main_and_non_main_labels_set, main_and_non_main_labels_narray_temp) self.naive_bayes.predict_test_data(self.NaiveBayesVar.get(), X_test, y_test, labels_narray_temp, main_and_non_main_labels_set, main_and_non_main_labels_narray_temp) if globals.monitoring_mode: print('-------------------------------------------------------------------------') monitoring_window_stride_in_ms = math.floor(window_size * int(self.txtWindowSimuStride_text.get()) / 100) log_message('Begin calculating features for the Monitoring data with window size ' + str(window_size) + 'ms and stride of ' + str(monitoring_window_stride_in_ms) + 'ms') if globals.binary_mode: # Because the label_set has changed into Main and Non-Main in the last window setting -> get the origin labels globals.label_set = self.label_set_origin.copy() # This dataframe is for testing on unseen data (from monitoring data table) -> agg_monitor = data_resampling.aggregated_frame(monitoring_data_frame, globals.label_set, globals.features_in_dictionary, globals.list_axes_to_apply_functions, window_size, monitoring_window_stride_in_ms) globals.csv_txt_file_exporter.save_into_csv_file(agg_monitor, '2_monitoring_data', '0_unfiltered_monitoring_data_set.csv') agg_monitor_counts_filtered = agg_monitor.loc[ (agg_monitor['count'] >= minimum_count_allowed) & (agg_monitor['count'] <= maximum_count_allowed)] agg_monitor_counts_filtered = agg_monitor_counts_filtered.dropna().reset_index(drop = True) # To be deleted -> if globals.csv_saving: globals.csv_txt_file_exporter.save_into_csv_file(agg_monitor_counts_filtered, '2_monitoring_data', '1_filtered_monitoring_set.csv') if globals.binary_mode: # Get the root list of all activities in test data set before changing sub labels/activities into non-... label. This is for the confusion matrix latter. globals.main_and_non_main_labels_y_root_monitoring_temp = agg_monitor_counts_filtered['label'].to_numpy(copy=True) # Change the label set of Test dataset into Non-main label for the other non main labels for _, value in globals.sub_labels_set.items(): agg_monitor_counts_filtered.loc[ agg_monitor_counts_filtered.label == value, 'label'] = 'Non-' + globals.main_label # Change the label_set into two labels only globals.label_set =
pd.Series([globals.main_label, 'Non-' + globals.main_label])
pandas.Series
from __future__ import absolute_import, division, print_function import pytest from datetime import datetime, timedelta import numpy as np import pandas as pd import pandas.util.testing as tm from pandas import DataFrame, Series from string import ascii_lowercase from blaze.compute.core import compute from blaze import dshape, discover, transform from blaze.expr import symbol, join, by, summary, distinct, shape from blaze.expr import (merge, exp, mean, count, nunique, sum, min, max, any, var, std, concat) from blaze.compatibility import builtins, xfail, assert_series_equal t = symbol('t', 'var * {name: string, amount: int, id: int}') nt = symbol('t', 'var * {name: ?string, amount: float64, id: int}') df = DataFrame([['Alice', 100, 1], ['Bob', 200, 2], ['Alice', 50, 3]], columns=['name', 'amount', 'id']) ndf = DataFrame([['Alice', 100.0, 1], ['Bob', np.nan, 2], [np.nan, 50.0, 3]], columns=['name', 'amount', 'id']) tbig = symbol('tbig', 'var * {name: string, sex: string[1], amount: int, id: int}') dfbig = DataFrame([['Alice', 'F', 100, 1], ['Alice', 'F', 100, 3], ['Drew', 'F', 100, 4], ['Drew', 'M', 100, 5], ['Drew', 'M', 200, 5]], columns=['name', 'sex', 'amount', 'id']) def test_series_columnwise(): s = Series([1, 2, 3], name='a') t = symbol('t', 'var * {a: int64}') result = compute(t.a + 1, s) assert_series_equal(s + 1, result) def test_symbol(): tm.assert_frame_equal(compute(t, df), df) def test_projection(): tm.assert_frame_equal(compute(t[['name', 'id']], df), df[['name', 'id']]) def test_eq(): assert_series_equal(compute(t['amount'] == 100, df), df['amount'] == 100) def test_selection(): tm.assert_frame_equal(compute(t[t['amount'] == 0], df), df[df['amount'] == 0]) tm.assert_frame_equal(compute(t[t['amount'] > 150], df), df[df['amount'] > 150]) def test_arithmetic(): assert_series_equal(compute(t['amount'] + t['id'], df), df.amount + df.id) assert_series_equal(compute(t['amount'] * t['id'], df), df.amount * df.id) assert_series_equal(compute(t['amount'] % t['id'], df), df.amount % df.id) def test_join(): left = DataFrame( [['Alice', 100], ['Bob', 200]], columns=['name', 'amount']) right = DataFrame([['Alice', 1], ['Bob', 2]], columns=['name', 'id']) lsym = symbol('L', 'var * {name: string, amount: int}') rsym = symbol('R', 'var * {name: string, id: int}') joined = join(lsym, rsym, 'name') assert (dshape(joined.schema) == dshape('{name: string, amount: int, id: int}')) result = compute(joined, {lsym: left, rsym: right}) expected = DataFrame([['Alice', 100, 1], ['Bob', 200, 2]], columns=['name', 'amount', 'id']) tm.assert_frame_equal(result, expected) assert list(result.columns) == list(joined.fields) def test_multi_column_join(): left = [(1, 2, 3), (2, 3, 4), (1, 3, 5)] left = DataFrame(left, columns=['x', 'y', 'z']) right = [(1, 2, 30), (1, 3, 50), (1, 3, 150)] right = DataFrame(right, columns=['x', 'y', 'w']) lsym = symbol('lsym', 'var * {x: int, y: int, z: int}') rsym = symbol('rsym', 'var * {x: int, y: int, w: int}') j = join(lsym, rsym, ['x', 'y']) expected = [(1, 2, 3, 30), (1, 3, 5, 50), (1, 3, 5, 150)] expected = DataFrame(expected, columns=['x', 'y', 'z', 'w']) result = compute(j, {lsym: left, rsym: right}) print(result) tm.assert_frame_equal(result, expected) assert list(result.columns) == list(j.fields) def test_unary_op(): assert (compute(exp(t['amount']), df) == np.exp(df['amount'])).all() def test_abs(): assert (compute(abs(t['amount']), df) == abs(df['amount'])).all() def test_neg(): assert_series_equal(compute(-t['amount'], df), -df['amount']) @xfail(reason='Projection does not support arithmetic') def test_neg_projection(): assert_series_equal(compute(-t[['amount', 'id']], df), -df[['amount', 'id']]) def test_columns_series(): assert isinstance(compute(t['amount'], df), Series) assert isinstance(compute(t['amount'] > 150, df), Series) def test_reductions(): assert compute(mean(t['amount']), df) == 350 / 3 assert compute(count(t['amount']), df) == 3 assert compute(sum(t['amount']), df) == 100 + 200 + 50 assert compute(min(t['amount']), df) == 50 assert compute(max(t['amount']), df) == 200 assert compute(nunique(t['amount']), df) == 3 assert compute(nunique(t['name']), df) == 2 assert compute(any(t['amount'] > 150), df) is True assert compute(any(t['amount'] > 250), df) is False assert compute(var(t['amount']), df) == df.amount.var(ddof=0) assert compute(var(t['amount'], unbiased=True), df) == df.amount.var() assert compute(std(t['amount']), df) == df.amount.std(ddof=0) assert compute(std(t['amount'], unbiased=True), df) == df.amount.std() assert compute(t.amount[0], df) == df.amount.iloc[0] assert compute(t.amount[-1], df) == df.amount.iloc[-1] def test_reductions_on_dataframes(): assert compute(count(t), df) == 3 assert shape(compute(count(t, keepdims=True), df)) == (1,) def test_1d_reductions_keepdims(): series = df['amount'] for r in [sum, min, max, nunique, count, std, var]: result = compute(r(t.amount, keepdims=True), {t.amount: series}) assert type(result) == type(series) def test_distinct(): dftoobig = DataFrame([['Alice', 'F', 100, 1], ['Alice', 'F', 100, 1], ['Alice', 'F', 100, 3], ['Drew', 'F', 100, 4], ['Drew', 'M', 100, 5], ['Drew', 'F', 100, 4], ['Drew', 'M', 100, 5], ['Drew', 'M', 200, 5], ['Drew', 'M', 200, 5]], columns=['name', 'sex', 'amount', 'id']) d_t = distinct(tbig) d_df = compute(d_t, dftoobig) tm.assert_frame_equal(d_df, dfbig) # Test idempotence tm.assert_frame_equal(compute(d_t, d_df), d_df) def test_distinct_on(): cols = ['name', 'sex', 'amount', 'id'] df = DataFrame([['Alice', 'F', 100, 1], ['Alice', 'F', 100, 3], ['Drew', 'F', 100, 4], ['Drew', 'M', 100, 5], ['Drew', 'F', 100, 4], ['Drew', 'M', 100, 5], ['Drew', 'M', 200, 5]], columns=cols) s = symbol('s', discover(df)) computed = compute(s.distinct('sex'), df) tm.assert_frame_equal( computed, pd.DataFrame([['Alice', 'F', 100, 1], ['Drew', 'M', 100, 5]], columns=cols), ) def test_by_one(): result = compute(by(t['name'], total=t['amount'].sum()), df) expected = df.groupby('name')['amount'].sum().reset_index() expected.columns = ['name', 'total'] tm.assert_frame_equal(result, expected) def test_by_two(): result = compute(by(tbig[['name', 'sex']], total=sum(tbig['amount'])), dfbig) expected = DataFrame([['Alice', 'F', 200], ['Drew', 'F', 100], ['Drew', 'M', 300]], columns=['name', 'sex', 'total']) tm.assert_frame_equal(result, expected) def test_by_three(): expr = by(tbig[['name', 'sex']], total=(tbig['id'] + tbig['amount']).sum()) result = compute(expr, dfbig) expected = DataFrame([['Alice', 'F', 204], ['Drew', 'F', 104], ['Drew', 'M', 310]], columns=['name', 'sex', 'total']) expected.columns = expr.fields tm.assert_frame_equal(result, expected) def test_by_four(): t = tbig[['sex', 'amount']] expr = by(t['sex'], max=t['amount'].max()) result = compute(expr, dfbig) expected = DataFrame([['F', 100], ['M', 200]], columns=['sex', 'max']) tm.assert_frame_equal(result, expected) def test_join_by_arcs(): df_idx = DataFrame([['A', 1], ['B', 2], ['C', 3]], columns=['name', 'node_id']) df_arc = DataFrame([[1, 3], [2, 3], [3, 1]], columns=['node_out', 'node_id']) t_idx = symbol('t_idx', 'var * {name: string, node_id: int32}') t_arc = symbol('t_arc', 'var * {node_out: int32, node_id: int32}') joined = join(t_arc, t_idx, "node_id") want = by(joined['name'], count=joined['node_id'].count()) result = compute(want, {t_arc: df_arc, t_idx: df_idx}) result_pandas = pd.merge(df_arc, df_idx, on='node_id') gb = result_pandas.groupby('name') expected = gb.node_id.count().reset_index().rename(columns={ 'node_id': 'count' }) tm.assert_frame_equal(result, expected) assert list(result.columns) == ['name', 'count'] def test_join_suffixes(): df = pd.DataFrame( list(dict((k, n) for k in ascii_lowercase[:5]) for n in range(5)), ) a = symbol('a', discover(df)) b = symbol('b', discover(df)) suffixes = '_x', '_y' joined = join(a, b, 'a', suffixes=suffixes) expected = pd.merge(df, df, on='a', suffixes=suffixes) result = compute(joined, {a: df, b: df}) tm.assert_frame_equal(result, expected) def test_join_promotion(): a_data = pd.DataFrame([[0.0, 1.5], [1.0, 2.5]], columns=list('ab')) b_data = pd.DataFrame([[0, 1], [1, 2]], columns=list('ac')) a = symbol('a', discover(a_data)) b = symbol('b', discover(b_data)) joined = join(a, b, 'a') assert joined.dshape == dshape('var * {a: float64, b: ?float64, c: int64}') expected = pd.merge(a_data, b_data, on='a') result = compute(joined, {a: a_data, b: b_data}) tm.assert_frame_equal(result, expected) def test_sort(): tm.assert_frame_equal(compute(t.sort('amount'), df), df.sort('amount')) tm.assert_frame_equal(compute(t.sort('amount', ascending=True), df), df.sort('amount', ascending=True)) tm.assert_frame_equal(compute(t.sort(['amount', 'id']), df), df.sort(['amount', 'id'])) def test_sort_on_series_no_warning(recwarn): expected = df.amount.order() recwarn.clear() assert_series_equal(compute(t['amount'].sort('amount'), df), expected) # raises as assertion error if no warning occurs, same thing for below with pytest.raises(AssertionError): assert recwarn.pop(FutureWarning) assert_series_equal(compute(t['amount'].sort(), df), expected) with pytest.raises(AssertionError): assert recwarn.pop(FutureWarning) def test_field_on_series(): expr = symbol('s', 'var * int') data = Series([1, 2, 3, 4], name='s') assert_series_equal(compute(expr.s, data), data) def test_head(): tm.assert_frame_equal(compute(t.head(1), df), df.head(1)) def test_tail(): tm.assert_frame_equal(compute(t.tail(1), df), df.tail(1)) def test_label(): expected = df['amount'] * 10 expected.name = 'foo' assert_series_equal(compute((t['amount'] * 10).label('foo'), df), expected) def test_relabel(): result = compute(t.relabel({'name': 'NAME', 'id': 'ID'}), df) expected = df.rename(columns={'name': 'NAME', 'id': 'ID'}) tm.assert_frame_equal(result, expected) def test_relabel_series(): result = compute(t.relabel({'name': 'NAME'}), df.name) assert result.name == 'NAME' ts = pd.date_range('now', periods=10).to_series().reset_index(drop=True) tframe =
DataFrame({'timestamp': ts})
pandas.DataFrame
import os import random import math import numpy as np import pandas as pd import itertools from functools import lru_cache ########################## ## Compliance functions ## ########################## def delayed_ramp_fun(Nc_old, Nc_new, t, tau_days, l, t_start): """ t : timestamp current date tau : int number of days before measures start having an effect l : int number of additional days after the time delay until full compliance is reached """ return Nc_old + (Nc_new-Nc_old)/l * (t-t_start-tau_days)/pd.Timedelta('1D') def ramp_fun(Nc_old, Nc_new, t, t_start, l): """ t : timestamp current date l : int number of additional days after the time delay until full compliance is reached """ return Nc_old + (Nc_new-Nc_old)/l * (t-t_start)/pd.Timedelta('1D') ############################### ## Mobility update functions ## ############################### def load_all_mobility_data(agg, dtype='fractional', beyond_borders=False): """ Function that fetches all available mobility data and adds it to a DataFrame with dates as indices and numpy matrices as values. Make sure to regularly update the mobility data with the notebook notebooks/preprocessing/Quick-update_mobility-matrices.ipynb to get the data for the most recent days. Also returns the average mobility over all available data, which might NOT always be desirable as a back-up mobility. Input ----- agg : str Denotes the spatial aggregation at hand. Either 'prov', 'arr' or 'mun' dtype : str Choose the type of mobility data to return. Either 'fractional' (default), staytime (all available hours for region g spent in h), or visits (all unique visits from region g to h) beyond_borders : boolean If true, also include mobility abroad and mobility from foreigners Returns ------- all_mobility_data : pd.DataFrame DataFrame with datetime objects as indices ('DATE') and np.arrays ('place') as value column average_mobility_data : np.array average mobility matrix over all available dates """ ### Validate input ### if agg not in ['mun', 'arr', 'prov']: raise ValueError( "spatial stratification '{0}' is not legitimate. Possible spatial " "stratifications are 'mun', 'arr', or 'prov'".format(agg) ) if dtype not in ['fractional', 'staytime', 'visits']: raise ValueError( "data type '{0}' is not legitimate. Possible mobility matrix " "data types are 'fractional', 'staytime', or 'visits'".format(dtype) ) ### Load all available data ### # Define absolute location of this file abs_dir = os.path.dirname(__file__) # Define data location for this particular aggregation level data_location = f'../../../data/interim/mobility/{agg}/{dtype}' # Iterate over all available interim mobility data all_available_dates=[] all_available_places=[] directory=os.path.join(abs_dir, f'{data_location}') for csv in os.listdir(directory): # take YYYYMMDD information from processed CSVs. NOTE: this supposes a particular data name format! datum = csv[-12:-4] # Create list of datetime objects all_available_dates.append(pd.to_datetime(datum, format="%Y%m%d")) # Load the CSV as a np.array if beyond_borders: place = pd.read_csv(f'{directory}/{csv}', index_col='mllp_postalcode').values else: place = pd.read_csv(f'{directory}/{csv}', index_col='mllp_postalcode').drop(index='Foreigner', columns='ABROAD').values if dtype=='fractional': # make sure the rows sum up to 1 nicely again after dropping a row and a column place = place / place.sum(axis=1) # Create list of places all_available_places.append(place) # Create new empty dataframe with available dates. Load mobility later df = pd.DataFrame({'DATE' : all_available_dates, 'place' : all_available_places}).set_index('DATE') all_mobility_data = df.copy() # Take average of all available mobility data average_mobility_data = df['place'].values.mean() return all_mobility_data, average_mobility_data class make_mobility_update_function(): """ Output the time-dependent mobility function with the data loaded in cache Input ----- proximus_mobility_data : DataFrame Pandas DataFrame with dates as indices and matrices as values. Output of mobility.get_proximus_mobility_data. proximus_mobility_data_avg : np.array Average mobility matrix over all matrices """ def __init__(self, proximus_mobility_data, proximus_mobility_data_avg): self.proximus_mobility_data = proximus_mobility_data self.proximus_mobility_data_avg = proximus_mobility_data_avg @lru_cache() # Define mobility_update_func def __call__(self, t, default_mobility=None): """ time-dependent function which has a mobility matrix of type dtype for every date. Note: only works with datetime input (no integer time steps). This Input ----- t : timestamp current date as datetime object states : str formal necessity param : str formal necessity default_mobility : np.array or None If None (default), returns average mobility over all available dates. Else, return user-defined mobility Returns ------- place : np.array square matrix with mobility of type dtype (fractional, staytime or visits), dimension depending on agg """ t = pd.Timestamp(t.date()) try: # if there is data available for this date (if the key exists) place = self.proximus_mobility_data['place'][t] except: if default_mobility: # If there is no data available and a user-defined input is given place = self.default_mobility else: # No data and no user input: fall back on average mobility place = self.proximus_mobility_data_avg return place def mobility_wrapper_func(self, t, states, param, default_mobility=None): t = pd.Timestamp(t.date()) if t <= pd.Timestamp('2020-03-17'): place = self.__call__(t, default_mobility=default_mobility) return np.eye(place.shape[0]) else: return self.__call__(t, default_mobility=default_mobility) ################### ## VOC functions ## ################### class make_VOC_function(): """ Class that returns a time-dependant parameter function for COVID-19 SEIRD model parameter alpha (variant fraction). Current implementation includes the alpha - delta strains. If the class is initialized without arguments, a logistic model fitted to prelevance data of the alpha-gamma variant is used. The class can also be initialized with the alpha-gamma prelavence data provided by Prof. <NAME>. A logistic model fitted to prelevance data of the delta variant is always used. Input ----- *df_abc: pd.dataFrame (optional) Alpha, Beta, Gamma prelevance dataset by <NAME>, obtained using: `from covid19model.data import VOC` `df_abc = VOC.get_abc_data()` `VOC_function = make_VOC_function(df_abc)` Output ------ __class__ : function Default variant function """ def __init__(self, *df_abc): self.df_abc = df_abc self.data_given = False if self.df_abc != (): self.df_abc = df_abc[0] # First entry in list of optional arguments (dataframe) self.data_given = True @lru_cache() def VOC_abc_data(self,t): return self.df_abc.iloc[self.df_abc.index.get_loc(t, method='nearest')]['baselinesurv_f_501Y.V1_501Y.V2_501Y.V3'] @lru_cache() def VOC_abc_logistic(self,t): # Parameters obtained by fitting logistic model to weekly prevalence data t_sig = pd.Timestamp('2021-02-14') k = 0.07 # Function to return the fraction of the delta-variant return 1/(1+np.exp(-k*(t-t_sig)/pd.Timedelta(days=1))) @lru_cache() def VOC_delta_logistic(self,t): # Parameters obtained by fitting logistic model to weekly prevalence data t_sig = pd.Timestamp('2021-06-25') k = 0.11 # Function to return the fraction of the delta-variant return 1/(1+np.exp(-k*(t-t_sig)/pd.Timedelta(days=1))) # Default VOC function includes British and Indian variants def __call__(self, t, states, param): # Convert time to timestamp t = pd.Timestamp(t.date()) # Introduction Indian variant t1 = pd.Timestamp('2021-05-01') # Construct alpha if t <= t1: if self.data_given: return np.array([1-self.VOC_abc_data(t), self.VOC_abc_data(t), 0]) else: return np.array([1-self.VOC_abc_logistic(t), self.VOC_abc_logistic(t), 0]) else: return np.array([0, 1-self.VOC_delta_logistic(t), self.VOC_delta_logistic(t)]) ########################### ## Vaccination functions ## ########################### from covid19model.data.model_parameters import construct_initN class make_vaccination_function(): """ Class that returns a two-fold time-dependent parameter function for the vaccination strategy by default. First, first dose data by sciensano are used. In the future, a hypothetical scheme is used. If spatial data is given, the output consists of vaccination data per NIS code. Input ----- df : pd.dataFrame *either* Sciensano public dataset, obtained using: `from covid19model.data import sciensano` `df = sciensano.get_sciensano_COVID19_data(update=False)` *or* public spatial vaccination data, obtained using: `from covid19model.data import sciensano` `df = sciensano.get_public_spatial_vaccination_data(update=False,agg='arr')` spatial : Boolean True if df is spatially explicit. None by default. Output ------ __class__ : function Default vaccination function """ def __init__(self, df, age_classes=pd.IntervalIndex.from_tuples([(0,12),(12,18),(18,25),(25,35),(35,45),(45,55),(55,65),(65,75),(75,85),(85,120)], closed='left')): age_stratification_size = len(age_classes) # Assign inputs to object self.df = df self.age_agg = age_stratification_size # Check if spatial data is provided self.spatial = None if 'NIS' in self.df.index.names: self.spatial = True self.space_agg = len(self.df.index.get_level_values('NIS').unique().values) # infer aggregation (prov, arr or mun) if self.space_agg == 11: self.agg = 'prov' elif self.space_agg == 43: self.agg = 'arr' elif self.space_agg == 581: self.agg = 'mun' else: raise Exception(f"Space is {G}-fold stratified. This is not recognized as being stratification at Belgian province, arrondissement, or municipality level.") # Check if dose data is provided self.doses = None if 'dose' in self.df.index.names: self.doses = True self.dose_agg = len(self.df.index.get_level_values('dose').unique().values) # Define start- and enddate self.df_start = pd.Timestamp(self.df.index.get_level_values('date').min()) self.df_end = pd.Timestamp(self.df.index.get_level_values('date').max()) # Perform age conversion # Define dataframe with desired format iterables=[] for index_name in self.df.index.names: if index_name != 'age': iterables += [self.df.index.get_level_values(index_name).unique()] else: iterables += [age_classes] index = pd.MultiIndex.from_product(iterables, names=self.df.index.names) self.new_df = pd.Series(index=index) # Four possibilities exist: can this be sped up? if self.spatial: if self.doses: # Shorten? for date in self.df.index.get_level_values('date').unique(): for NIS in self.df.index.get_level_values('NIS').unique(): for dose in self.df.index.get_level_values('dose').unique(): data = self.df.loc[(date, NIS, slice(None), dose)] self.new_df.loc[(date, NIS, slice(None), dose)] = self.convert_age_stratified_vaccination_data(data, age_classes, self.agg, NIS).values else: for date in self.df.index.get_level_values('date').unique(): for NIS in self.df.index.get_level_values('NIS').unique(): data = self.df.loc[(date,NIS)] self.new_df.loc[(date, NIS)] = self.convert_age_stratified_vaccination_data(data, age_classes, self.agg, NIS).values else: if self.doses: for date in self.df.index.get_level_values('date').unique(): for dose in self.df.index.get_level_values('dose').unique(): data = self.df.loc[(date, slice(None), dose)] self.new_df.loc[(date, slice(None), dose)] = self.convert_age_stratified_vaccination_data(data, age_classes).values else: for date in self.df.index.get_level_values('date').unique(): data = self.df.loc[(date)] self.new_df.loc[(date)] = self.convert_age_stratified_vaccination_data(data, age_classes).values self.df = self.new_df def convert_age_stratified_vaccination_data(self, data, age_classes, agg=None, NIS=None): """ A function to convert the sciensano vaccination data to the desired model age groups Parameters ---------- data: pd.Series A series of age-stratified vaccination incidences. Index must be of type pd.Intervalindex. age_classes : pd.IntervalIndex Desired age groups of the vaccination dataframe. agg: str Spatial aggregation: prov, arr or mun NIS : str NIS code of consired spatial element Returns ------- out: pd.Series Converted data. """ # Pre-allocate new series out = pd.Series(index = age_classes, dtype=float) # Extract demographics if agg: data_n_individuals = construct_initN(data.index.get_level_values('age'), agg).loc[NIS,:].values demographics = construct_initN(None, agg).loc[NIS,:].values else: data_n_individuals = construct_initN(data.index.get_level_values('age'), agg).values demographics = construct_initN(None, agg).values # Loop over desired intervals for idx,interval in enumerate(age_classes): result = [] for age in range(interval.left, interval.right): try: result.append(demographics[age]/data_n_individuals[data.index.get_level_values('age').contains(age)]*data.iloc[np.where(data.index.get_level_values('age').contains(age))[0][0]]) except: result.append(0) out.iloc[idx] = sum(result) return out @lru_cache() def get_data(self,t): if self.spatial: if self.doses: try: # Only includes doses A, B and C (so not boosters!) for now data = np.zeros([self.space_agg, self.age_agg, self.dose_agg+1]) data[:,:,:-1] = np.array(self.df.loc[t,:,:,:].values).reshape( (self.space_agg, self.age_agg, self.dose_agg) ) return data except: return np.zeros([self.space_agg, self.age_agg, self.dose_agg+1]) else: try: return np.array(self.df.loc[t,:,:].values).reshape( (self.space_agg, self.age_agg) ) except: return np.zeros([self.space_agg, self.age_agg]) else: if self.doses: try: return np.array(self.df.loc[t,:,:].values).reshape( (self.age_agg, self.dose_agg) ) except: return np.zeros([self.age_agg, self.dose_agg]) else: try: return np.array(self.df.loc[t,:].values) except: return np.zeros(self.age_agg) def unidose_2021_vaccination_campaign(self, states, initN, daily_doses, delay_immunity, vacc_order, stop_idx, refusal): # Compute the number of vaccine eligible individuals VE = states['S'] + states['R'] # Initialize N_vacc N_vacc = np.zeros(self.age_agg) # Start vaccination loop idx = 0 while daily_doses > 0: if idx == stop_idx: daily_doses = 0 #End vaccination campaign at age 20 elif VE[vacc_order[idx]] - initN[vacc_order[idx]]*refusal[vacc_order[idx]] > daily_doses: N_vacc[vacc_order[idx]] = daily_doses daily_doses = 0 else: N_vacc[vacc_order[idx]] = VE[vacc_order[idx]] - initN[vacc_order[idx]]*refusal[vacc_order[idx]] daily_doses = daily_doses - (VE[vacc_order[idx]] - initN[vacc_order[idx]]*refusal[vacc_order[idx]]) idx = idx + 1 return N_vacc def booster_campaign(self, states, daily_doses, vacc_order, stop_idx, refusal): # Compute the number of booster eligible individuals VE = states['S'][:,2] + states['E'][:,2] + states['I'][:,2] + states['A'][:,2] + states['R'][:,2] \ + states['S'][:,3] + states['E'][:,3] + states['I'][:,3] + states['A'][:,3] + states['R'][:,3] # Initialize N_vacc N_vacc = np.zeros([self.age_agg,self.dose_agg]) # Booster vaccination strategy without refusal idx = 0 while daily_doses > 0: if idx == stop_idx: daily_doses= 0 #End vaccination campaign at age 20 elif VE[vacc_order[idx]] - self.fully_vaccinated_0[vacc_order[idx]]*refusal[vacc_order[idx]] > daily_doses: N_vacc[vacc_order[idx],3] = daily_doses daily_doses= 0 else: N_vacc[vacc_order[idx],3] = VE[vacc_order[idx]] - self.fully_vaccinated_0[vacc_order[idx]]*refusal[vacc_order[idx]] daily_doses = daily_doses - (VE[vacc_order[idx]] - self.fully_vaccinated_0[vacc_order[idx]]*refusal[vacc_order[idx]]) idx = idx + 1 return N_vacc # Default vaccination strategy = Sciensano data + hypothetical scheme after end of data collection for unidose model only (for now) def __call__(self, t, states, param, initN, daily_doses=60000, delay_immunity = 21, vacc_order = [8,7,6,5,4,3,2,1,0], stop_idx=9, refusal = [0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3]): """ time-dependent function for the Belgian vaccination strategy First, all available first-dose data from Sciensano are used. Then, the user can specify a custom vaccination strategy of "daily_first_dose" first doses per day, administered in the order specified by the vector "vacc_order" with a refusal propensity of "refusal" in every age group. This vaccination strategy does not distinguish between vaccination doses, individuals are transferred to the vaccination circuit after some time delay after the first dose. For use with the model `COVID19_SEIRD` and `COVID19_SEIRD_spatial_vacc` in `~src/models/models.py` Parameters ---------- t : int Simulation time states: dict Dictionary containing values of model states param : dict Model parameter dictionary initN : list or np.array Demographics according to the epidemiological model age bins daily_first_dose : int Number of doses administered per day. Default is 30000 doses/day. delay_immunity : int Time delay between first dose vaccination and start of immunity. Default is 21 days. vacc_order : array Vector containing vaccination prioritization preference. Default is old to young. Must be equal in length to the number of age bins in the model. stop_idx : float Index of age group at which the vaccination campaign is halted. An index of 9 corresponds to vaccinating all age groups, an index of 8 corresponds to not vaccinating the age group corresponding with vacc_order[idx]. refusal: array Vector containing the fraction of individuals refusing a vaccine per age group. Default is 30% in every age group. Must be equal in length to the number of age bins in the model. Return ------ N_vacc : np.array Number of individuals to be vaccinated at simulation time "t" per age, or per [patch,age] """ # Convert time to suitable format t = pd.Timestamp(t.date()) # Convert delay to a timedelta delay = pd.Timedelta(str(int(delay_immunity))+'D') # Compute vaccinated individuals after spring-summer 2021 vaccination campaign check_time = pd.Timestamp('2021-10-01') # Only for non-spatial multi-vaccindation dose model if not self.spatial: if self.doses: if t == check_time: self.fully_vaccinated_0 = states['S'][:,2] + states['E'][:,2] + states['I'][:,2] + states['A'][:,2] + states['R'][:,2] + \ states['S'][:,3] + states['E'][:,3] + states['I'][:,3] + states['A'][:,3] + states['R'][:,3] # Use data if t <= self.df_end + delay: return self.get_data(t-delay) # Projection into the future else: if self.spatial: if self.doses: # No projection implemented return np.zeros([self.space_agg, self.age_agg, self.dose_agg+1]) else: # No projection implemented return np.zeros([self.space_agg,self.age_agg]) else: if self.doses: return self.booster_campaign(states, daily_doses, vacc_order, stop_idx, refusal) else: return self.unidose_2021_vaccination_campaign(states, initN, daily_doses, delay_immunity, vacc_order, stop_idx, refusal) ################################### ## Google social policy function ## ################################### class make_contact_matrix_function(): """ Class that returns contact matrix based on 4 prevention parameters by default, but has other policies defined as well. Input ----- Nc_all : dictionnary contact matrices for home, schools, work, transport, leisure and others df_google : dataframe google mobility data Output ------ __class__ : default function Default output function, based on contact_matrix_4prev """ def __init__(self, df_google, Nc_all): self.df_google = df_google.astype(float) self.Nc_all = Nc_all # Compute start and endtimes of dataframe self.df_google_start = df_google.index.get_level_values('date')[0] self.df_google_end = df_google.index.get_level_values('date')[-1] # Check if provincial data is provided self.provincial = None if 'NIS' in self.df_google.index.names: self.provincial = True self.space_agg = len(self.df_google.index.get_level_values('NIS').unique().values) @lru_cache() # once the function is run for a set of parameters, it doesn't need to compile again def __call__(self, t, prev_home=1, prev_schools=1, prev_work=1, prev_rest = 1, school=None, work=None, transport=None, leisure=None, others=None, home=None): """ t : timestamp current date prev_... : float [0,1] prevention parameter to estimate school, work, transport, leisure, others : float [0,1] level of opening of these sectors if None, it is calculated from google mobility data only school cannot be None! """ if school is None: raise ValueError( "Please indicate to which extend schools are open") places_var = [work, transport, leisure, others] places_names = ['work', 'transport', 'leisure', 'others'] GCMR_names = ['work', 'transport', 'retail_recreation', 'grocery'] if self.provincial: if t < pd.Timestamp('2020-03-17'): return np.ones(self.space_agg)[:,np.newaxis,np.newaxis]*self.Nc_all['total'] elif pd.Timestamp('2020-03-17') <= t <= self.df_google_end: # Extract row at timestep t row = -self.df_google.loc[(t, slice(None)),:]/100 else: # Extract last 14 days and take the mean row = -self.df_google.loc[(self.df_google_end - pd.Timedelta(days=14)): self.df_google_end, slice(None)].mean(level='NIS')/100 # Sort NIS codes from low to high row.sort_index(level='NIS', ascending=True,inplace=True) # Extract values values_dict={} for idx,place in enumerate(places_var): if place is None: place = 1 - row[GCMR_names[idx]].values else: try: test=len(place) except: place = place*np.ones(self.space_agg) values_dict.update({places_names[idx]: place}) # Schools: try: test=len(school) except: school = school*np.ones(self.space_agg) # Construct contact matrix CM = (prev_home*np.ones(self.space_agg)[:, np.newaxis,np.newaxis]*self.Nc_all['home'] + (prev_schools*school)[:, np.newaxis,np.newaxis]*self.Nc_all['schools'] + (prev_work*values_dict['work'])[:,np.newaxis,np.newaxis]*self.Nc_all['work'] + (prev_rest*values_dict['transport'])[:,np.newaxis,np.newaxis]*self.Nc_all['transport'] + (prev_rest*values_dict['leisure'])[:,np.newaxis,np.newaxis]*self.Nc_all['leisure'] + (prev_rest*values_dict['others'])[:,np.newaxis,np.newaxis]*self.Nc_all['others']) else: if t < pd.Timestamp('2020-03-17'): return self.Nc_all['total'] elif pd.Timestamp('2020-03-17') <= t <= self.df_google_end: # Extract row at timestep t row = -self.df_google.loc[t]/100 else: # Extract last 14 days and take the mean row = -self.df_google[-14:-1].mean()/100 # Extract values values_dict={} for idx,place in enumerate(places_var): if place is None: place = 1 - row[GCMR_names[idx]] values_dict.update({places_names[idx]: place}) # Construct contact matrix CM = (prev_home*self.Nc_all['home'] + prev_schools*school*self.Nc_all['schools'] + prev_work*values_dict['work']*self.Nc_all['work'] + prev_rest*values_dict['transport']*self.Nc_all['transport'] + prev_rest*values_dict['leisure']*self.Nc_all['leisure'] + prev_rest*values_dict['others']*self.Nc_all['others']) return CM def all_contact(self): return self.Nc_all['total'] def all_contact_no_schools(self): return self.Nc_all['total'] - self.Nc_all['schools'] def ramp_fun(self, Nc_old, Nc_new, t, t_start, l): """ t : timestamp current simulation time t_start : timestamp start of policy change l : int number of additional days after the time delay until full compliance is reached """ return Nc_old + (Nc_new-Nc_old)/l * float( (t-t_start)/pd.Timedelta('1D') ) def delayed_ramp_fun(self, Nc_old, Nc_new, t, tau_days, l, t_start): """ t : timestamp current simulation time t_start : timestamp start of policy change tau : int number of days before measures start having an effect l : int number of additional days after the time delay until full compliance is reached """ return Nc_old + (Nc_new-Nc_old)/l * float( (t-t_start-tau_days)/pd.Timedelta('1D') ) #################### ## National model ## #################### def policies_all(self, t, states, param, l1, l2, prev_schools, prev_work, prev_rest_lockdown, prev_rest_relaxation, prev_home): ''' Function that returns the time-dependant social contact matrix Nc for all COVID waves. Input ----- t : Timestamp simulation time states : xarray model states param : dict model parameter dictionary l1 : float Compliance parameter for social policies during first lockdown 2020 COVID-19 wave l2 : float Compliance parameter for social policies during second lockdown 2020 COVID-19 wave prev_{location} : float Effectivity of contacts at {location} Returns ------- CM : np.array (9x9) Effective contact matrix (output of __call__ function) ''' t = pd.Timestamp(t.date()) # Convert compliance l to dates l1_days = pd.Timedelta(l1, unit='D') l2_days = pd.Timedelta(l2, unit='D') # Define key dates of first wave t1 = pd.Timestamp('2020-03-15') # start of lockdown t2 = pd.Timestamp('2020-05-15') # gradual re-opening of schools (assume 50% of nominal scenario) t3 = pd.Timestamp('2020-07-01') # start of summer holidays t4 = pd.Timestamp('2020-08-03') # Summer lockdown in Antwerp t5 = pd.Timestamp('2020-08-24') # End of summer lockdown in Antwerp t6 = pd.Timestamp('2020-09-01') # end of summer holidays t7 = pd.Timestamp('2020-09-21') # Opening universities # Define key dates of second wave t8 = pd.Timestamp('2020-10-19') # lockdown (1) t9 =
pd.Timestamp('2020-11-02')
pandas.Timestamp
# -*- coding: utf-8 -*- """ Created on Sat Aug 14 19:01:45 2021 @author: David """ from pathlib import Path from datetime import datetime as dt import zipfile import os.path import numpy as np import scipy.signal as sig import pandas as pd import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator import matplotlib.dates as mdates from matplotlib.dates import DateFormatter from matplotlib import gridspec import seaborn as sea import fig_util from IPython.display import display, Image SLATE = (0.15, 0.15, 0.15) WD_ARR = { 1: 'Montag', 2: 'Dienstag', 3: 'Mittwoch', 4: 'Donnerstag', 5: 'Freitag', 6: 'Samstag', 7: 'Sonntag' } OUTPUT_DIR = '..\\output\\RNowcast\\anim\\' OUTPUT_DIR = 'D:\\COVID-19\\output\\RNowcast\\anim\\' ARCHIVE_FPATH = '..\\data\\RKI\\Nowcasting\\Nowcast_R_{:s}.csv' ARCHIVE_ZIP_URL = 'https://github.com/robert-koch-institut/SARS-CoV-2-Nowcasting_und_-R-Schaetzung/archive/refs/heads/main.zip' #'https://github.com/robert-koch-institut/SARS-CoV-2-Nowcasting_und_-R-Schaetzung/raw/main/Archiv/Nowcast_R_{:s}.csv' SPECIFIC_DAY = None #SPECIFIC_DAY = '2021-09-24' #SPECIFIC_DAY = '2021-10-08' #SPECIFIC_DAY = '2021-11-12' INPUT_DATA_RANGE = ['2021-03-16', dt.now().strftime('%Y-%m-%d')] PLOT_MAX_DATE = '2021-12-31' DO_EXTRAPOLATION = False if not SPECIFIC_DAY is None: INPUT_DATA_RANGE[1] = SPECIFIC_DAY dataset_date_range = pd.date_range(*INPUT_DATA_RANGE) r_idx_min = dataset_date_range[0] - pd.DateOffset(days=4) r_idx = pd.date_range(r_idx_min, dataset_date_range[-5].strftime('%Y-%m-%d')) r_cols = pd.Int64Index(range(4, 4+7*6, 1)) Path(OUTPUT_DIR).mkdir(parents=True, exist_ok=True) # %% rep_tri = pd.DataFrame( data=np.zeros((r_idx.size, r_cols.size)), index=r_idx, columns=r_cols) datasets = {} for i in range(dataset_date_range.size): dataset_date = dataset_date_range[i] dataset_date_str = dataset_date.strftime('%Y-%m-%d') print(dataset_date_str) #if os.path.isfile(ARCHIVE_FPATH.format(dataset_date_str)): try: data = pd.read_csv( ARCHIVE_FPATH.format(dataset_date_str), index_col = 'Datum', parse_dates = True ) except ValueError: # two steps: data = pd.read_csv( ARCHIVE_FPATH.format(dataset_date_str), parse_dates = True, sep=';', decimal=',', skip_blank_lines=False ) extra_rows = data.index.size - data.index[data.Datum.isna()][0] data = pd.read_csv( ARCHIVE_FPATH.format(dataset_date_str), index_col = 'Datum', parse_dates = True, sep=';', decimal=',', date_parser=lambda x: dt.strptime(x, '%d.%m.%Y'), skipfooter=extra_rows, encoding='UTF-8' ) data.rename(columns={'Schätzer_Neuerkrankungen': 'PS_COVID_Faelle'}, inplace=True) last_dataset = data.loc[:,['PS_COVID_Faelle']].copy() last_dataset['Iso Weekdays'] = last_dataset.index.map(lambda d: d.isoweekday()) last_dataset['Date Offset'] = (dataset_date - last_dataset.index).days datasets[dataset_date_str] = last_dataset comm_rows = r_idx.intersection(data.index) data = data.loc[comm_rows] d_cols = (dataset_date-data.index).days data['Offset'] = d_cols comm_cols = d_cols.intersection(r_cols) max_offset = comm_cols.max() data = data.loc[data['Offset'] <= max_offset, ['Offset', 'PS_COVID_Faelle']] data = data.pivot(columns='Offset', values='PS_COVID_Faelle') data.fillna(0, inplace=True) rep_tri.loc[data.index, comm_cols] += data.loc[:, comm_cols] (na_cols, na_rows) = np.tril_indices(rep_tri.shape[0], -1) if any(na_cols >= r_cols.size): max_cols = np.nonzero(na_cols >= r_cols.size)[0][0] na_cols = na_cols[:max_cols] na_rows = na_rows[:max_cols] rep_tri2 = rep_tri.to_numpy().copy() rep_tri2[r_idx.size-1-na_rows, na_cols] = np.nan rep_tri3 = rep_tri.copy() rep_tri3.loc[:,:] = rep_tri2 rep_tri4 = rep_tri3.iloc[:-14, :].div(rep_tri3.apply(lambda s: s[pd.Series.last_valid_index(s)], axis=1), axis=0) # %% q10_dist = pd.DataFrame(index=r_cols, columns=range(1,7,1)) lq_dist = pd.DataFrame(index=r_cols, columns=range(1,7,1)) med_dist = pd.DataFrame(index=r_cols, columns=range(1,7,1)) uq_dist = pd.DataFrame(index=r_cols, columns=range(1,7,1)) q90_dist = pd.DataFrame(index=r_cols, columns=range(1,7,1)) max_days_offset = r_cols.max() for i in range(7): iwd = rep_tri4.index[i].isoweekday() rep_tri5 = rep_tri4.iloc[i::7] tri5_med = rep_tri5.median(axis=0) rep_tri5 = rep_tri5.loc[(((rep_tri5-tri5_med) > 1) | (rep_tri5-tri5_med < -1)).sum(axis=1)==0] rep_tri5 *= 100 test = rep_tri5.iloc[:,0:11].melt(var_name='Datenstand in "n Tage nach Datum des Nowcasts"', value_name='Nowcast Korrekturfaktor in %') test = test.loc[~test['Nowcast Korrekturfaktor in %'].isna()] fig = plt.figure(figsize=(16, 9)) gs = gridspec.GridSpec(2, 1, figure=fig, height_ratios = [7, 1], hspace = 0.1) ax = fig.add_subplot(gs[0, 0]) fig.suptitle('COVID-19 - Variation des RKI Nowcasts der Fallzahlen über Datenstand-Alter nach Wochentag: {:s}'.format(WD_ARR[iwd]), horizontalalignment='center', verticalalignment='center', fontsize=21, color=SLATE, y=0.91) sea.violinplot(x='Datenstand in "n Tage nach Datum des Nowcasts"', y='Nowcast Korrekturfaktor in %', data=test, scale="count") ax.set_ylim([0, 160]) ax.yaxis.set_major_locator(MultipleLocator(20)) ax.yaxis.set_minor_locator(MultipleLocator(5)) ax.set_xlim([-1, 11]) ax.tick_params(which='minor', length=0, width=0, pad=10) ax.tick_params(axis=u'both', labelsize=16, labelcolor = SLATE) ax.grid(True, which='major', axis='both', linestyle='-', color=(0.85,0.85,0.85)) ax.grid(True, which='minor', axis='both', linestyle='-', color=(0.95,0.95,0.95)) ax.set_ylabel('Nowcast Korrekturfaktor in %', fontdict={'fontsize': 18}, fontsize=18, color = SLATE, labelpad=14) ax.set_xlabel('Datenstand in "n Tage nach Datum des Nowcasts"', fontdict={'fontsize': 18}, fontsize=18, color = SLATE, labelpad=14) ax2 = fig.add_subplot(gs[1, 0]) ax2.axis('off') if dataset_date_range[0].year == dataset_date_range[-1].year: Datenstand_range_str = ( dataset_date_range[0].strftime('%d.%m.-') + dataset_date_range[-1].strftime('%d.%m.%Y') ) else: Datenstand_range_str = ( dataset_date_range[0].strftime('%d.%m.%y-') + dataset_date_range[-1].strftime('%d.%m.%Y') ) plt.text(0, 0.05, 'Datenquelle:\n' + '<NAME>-Institut (RKI), an der Heiden, Matthias (2021): SARS-CoV-2-Nowcasting und -R-Schaetzung, Berlin: Zenodo. DOI:10.5281/zenodo.4680400\n'+ 'URL: https://github.com/robert-koch-institut/SARS-CoV-2-Nowcasting_und_-R-Schaetzung ; ' + 'Abfragedatum/Datenstand: ' + Datenstand_range_str + ';\n' + 'Datenlizenz CC-BY 4.0 International; eigene Berechnung/eigene Darstellung', fontsize=11.5) if True: exp_full_fname = '{:s}{:s}_{:d}_{:s}.png'.format( OUTPUT_DIR + '..\\', 'Nowcast_Var', iwd, WD_ARR[iwd]) print('Saving ' + exp_full_fname) try: fig_util.set_size(fig, (1920.0/100.0, 1080.0/100.0), dpi=100, pad_inches=0.35) except: fig_util.force_fig_size(fig, (1920.0, 1080.0), dpi=100, pad_inches=0.35) fig.savefig(exp_full_fname, dpi=100, bbox_inches='tight', pad_inches=0.35) display(Image(filename=exp_full_fname)) plt.close() else: plt.show() q10_dist.loc[:, iwd] = 0.01 * rep_tri5.quantile(0.1, axis=0) lq_dist.loc[:, iwd] = 0.01 * rep_tri5.quantile(0.25, axis=0) med_dist.loc[:, iwd] = 0.01 * rep_tri5.median(axis=0) uq_dist.loc[:, iwd] = 0.01 * rep_tri5.quantile(0.75, axis=0) q90_dist.loc[:, iwd] = 0.01 * rep_tri5.quantile(0.9, axis=0) #input_matrix[np.tril_indices(input_matrix.shape[0], -1)] = np.nan # %% for i in range(dataset_date_range.size): dataset_date = dataset_date_range[i] dataset_date_str = dataset_date.strftime('%Y-%m-%d') print(dataset_date_str) last_dataset = datasets[dataset_date_str] last_dataset['Med NowNowcast'] = last_dataset.apply(lambda r: r['PS_COVID_Faelle'] if r['Date Offset'] > max_days_offset else r['PS_COVID_Faelle'] / med_dist[r['Iso Weekdays']][r['Date Offset']], axis=1) #last_dataset['Q1 NowNowcast'] = last_dataset.apply(lambda r: r['PS_COVID_Faelle'] if r['Date Offset'] > max_days_offset else r['PS_COVID_Faelle'] / lq_dist[r['Iso Weekdays']][r['Date Offset']], axis=1) #last_dataset['Q3 NowNowcast'] = last_dataset.apply(lambda r: r['PS_COVID_Faelle'] if r['Date Offset'] > max_days_offset else r['PS_COVID_Faelle'] / uq_dist[r['Iso Weekdays']][r['Date Offset']], axis=1) last_dataset['Med NowNowcast 7d MA'] = np.hstack(( np.full((3), np.nan), sig.correlate(last_dataset['Med NowNowcast'], np.full((7), 1.0/7), method='direct', mode='valid'), np.full((3), np.nan))) # last_dataset['Q1 NowNowcast 7d MA'] = np.hstack(( # np.full((3), np.nan), # sig.correlate(last_dataset['Q1 NowNowcast'], np.full((7), 1.0/7), method='direct', mode='valid'), # np.full((3), np.nan))) # last_dataset['Q3 NowNowcast 7d MA'] = np.hstack(( # np.full((3), np.nan), # sig.correlate(last_dataset['Q3 NowNowcast'], np.full((7), 1.0/7), method='direct', mode='valid'), # np.full((3), np.nan))) last_dataset['Nowcast 7d MA'] = np.hstack(( np.full((3), np.nan), sig.correlate(last_dataset['PS_COVID_Faelle'], np.full((7), 1.0/7), method='direct', mode='valid'), np.full((3), np.nan))) v = last_dataset['Med NowNowcast 7d MA'].to_numpy() v = v[4:] / v[:-4] v = np.hstack(( np.full((6), np.nan), v[:-2])) last_dataset['R (Med NowNowcast 7d MA)'] = v v = 2.0**(sig.correlate(np.log2(v), np.full((7), 1.0/7), method='direct', mode='valid')) v = np.hstack(( np.full((3), np.nan), v, np.full((3), np.nan))) last_dataset['Rgeom (Med NowNowcast 7d MA)'] = v # v1 = last_dataset['Q1 NowNowcast 7d MA'].to_numpy() # v3 = last_dataset['Q3 NowNowcast 7d MA'].to_numpy() # vmin = np.vstack((v1, v3)).max(axis=0) # vmax = np.vstack((v1, v3)).max(axis=0) # vlo = vmin[4:] / vmax[:-4] # vhi = vmax[4:] / vmin[:-4] # vlo = np.hstack(( # np.full((3), np.nan), # vlo, # np.full((1), np.nan))) # vhi = np.hstack(( # np.full((3), np.nan), # vhi, # np.full((1), np.nan))) # last_dataset['R (Q3 NowNowcast 7d MA)'] = vhi # last_dataset['R (Q1 NowNowcast 7d MA)'] = vlo # vlo = 2.0**(sig.correlate(np.log2(vlo), np.full((7), 1.0/7), method='direct', mode='valid')) # vhi = 2.0**(sig.correlate(np.log2(vhi), np.full((7), 1.0/7), method='direct', mode='valid')) # vlo = np.hstack(( # np.full((3), np.nan), # vlo, # np.full((3), np.nan))) # vhi = np.hstack(( # np.full((3), np.nan), # vhi, # np.full((3), np.nan))) # last_dataset['Rgeom (Q3 NowNowcast 7d MA)'] = vhi # last_dataset['Rgeom (Q1 NowNowcast 7d MA)'] = vlo v = last_dataset['Nowcast 7d MA'].to_numpy() v = v[4:] / v[:-4] v = np.hstack(( np.full((6), np.nan), v[:-2])) last_dataset['R (Nowcast 7d MA)'] = v v = 2.0**(sig.correlate(np.log2(v), np.full((7), 1.0/7), method='direct', mode='valid')) v = np.hstack(( np.full((3), np.nan), v, np.full((3), np.nan))) last_dataset['Rgeom (Nowcast 7d MA)'] = v datasets[dataset_date_str] = last_dataset # %% fidz = datasets[INPUT_DATA_RANGE[0]]['Rgeom (Med NowNowcast 7d MA)'].first_valid_index() total_idz = datasets[INPUT_DATA_RANGE[1]]['Rgeom (Med NowNowcast 7d MA)'].index[12:-4].copy() test = pd.DataFrame(index=total_idz, columns=dataset_date_range.copy()) for dataset_date in dataset_date_range: dataset_date_str = dataset_date.strftime('%Y-%m-%d') cur_dataset = datasets[dataset_date_str] comm_idz = total_idz.intersection(cur_dataset.index) test.loc[comm_idz, dataset_date] = cur_dataset.loc[comm_idz, 'Rgeom (Med NowNowcast 7d MA)'] test_s = test.subtract(test.iloc[:, -1], axis=0) # if np.isnan(test_s.iloc[0,0]): # first_nnz_idx = np.nonzero(~test_s.iloc[:,0].isna().to_numpy())[0][0] # test_s = test_s.iloc[first_nnz_idx:,:] first_nz_idx = np.nonzero(test_s.iloc[:,0].isna().to_numpy())[0][0]-1 test_s = test_s.iloc[first_nz_idx:,:-1] test_s['Datum'] = test_s.index.copy() test_s = test_s.melt(value_name='Error', var_name='Report Date', id_vars='Datum').dropna() test_s['Offset'] = (test_s['Report Date'] - test_s['Datum']).dt.days test_s.drop(columns=['Report Date'], inplace=True) test_s.loc[:, 'Error'] = pd.to_numeric(test_s.Error) test_s = -test_s.pivot(index='Datum', columns='Offset', values='Error') max_err = test_s.apply(lambda c: c.dropna().max(), axis=0) min_err = test_s.apply(lambda c: c.dropna().min(), axis=0) med_err = test_s.apply(lambda c: c.dropna().median(), axis=0) q25_err = test_s.apply(lambda c: c.dropna().quantile(0.25), axis=0) q75_err = test_s.apply(lambda c: c.dropna().quantile(0.75), axis=0) q025_err = test_s.apply(lambda c: c.dropna().quantile(0.025), axis=0) q975_err = test_s.apply(lambda c: c.dropna().quantile(0.975), axis=0) iq50_err = (q75_err - q25_err) iq95_err = (q975_err - q025_err) #test2 = test.div(test.iloc[:,-1], axis=0) #first_nz_idx = np.nonzero((test_s.iloc[:,0]!=1).to_numpy())[0][0] # test2 = test2.iloc[first_nz_idx:,:] # test2a = test2.iloc[:-(31+12), :] # test3 = pd.DataFrame(index = test2a.index, columns = range(12, 100)) # for d in test2a.index: # v = pd.DataFrame(data = test2a.loc[d, :].to_numpy().copy(), # index = (test2a.columns - d).days, # columns = ['data']) # com_cols = test3.columns.intersection(v.index) # test3.loc[d, com_cols] = v.loc[com_cols, 'data']-1 # error_band_md = test3.apply(lambda c: c.dropna().quantile(0.5) , axis=0) # error_band_q1 = test3.apply(lambda c: c.dropna().quantile(0.25) , axis=0) # error_band_q3 = test3.apply(lambda c: c.dropna().quantile(0.75) , axis=0) # error_band_max = test3.apply(lambda c: c.dropna().max(), axis=0) # error_band_min = test3.apply(lambda c: c.dropna().min(), axis=0) # error_band_lo = error_band_md - 1.5 * (error_band_q3 - error_band_q1) # error_band_hi = error_band_md + 1.5 * (error_band_q3 - error_band_q1) # %% band_data_med = pd.DataFrame(index = r_idx, columns=dataset_date_range) band_data_min = pd.DataFrame(index = r_idx, columns=dataset_date_range) band_data_max = pd.DataFrame(index = r_idx, columns=dataset_date_range) band_data_iq95_lo = pd.DataFrame(index = r_idx, columns=dataset_date_range) band_data_iq95_hi = pd.DataFrame(index = r_idx, columns=dataset_date_range) band_data_iq50_lo = pd.DataFrame(index = r_idx, columns=dataset_date_range) band_data_iq50_hi = pd.DataFrame(index = r_idx, columns=dataset_date_range) max_num_entries = (dataset_date_range[-1]-dataset_date_range[0]).days max_lut = max_err.index.max() min_lut = max_err.index.min() # max_err = test_s.apply(lambda c: c.dropna().max(), axis=0) # min_err = test_s.apply(lambda c: c.dropna().min(), axis=0) # med_err = test_s.apply(lambda c: c.dropna().median(), axis=0) # q25_err = test_s.apply(lambda c: c.dropna().quantile(0.25), axis=0) # q75_err = test_s.apply(lambda c: c.dropna().quantile(0.75), axis=0) # iq_err = 1.5 * (q75_err - q25_err) for i in range(dataset_date_range.size): dataset_date = dataset_date_range[i] dataset_date_str = dataset_date.strftime('%Y-%m-%d') v = pd.DataFrame(datasets[dataset_date_str]['Rgeom (Med NowNowcast 7d MA)'].iloc[-max_num_entries:].dropna()) v.rename(columns={'Rgeom (Med NowNowcast 7d MA)': 'Data'}, inplace=True) cur_idx = v.index com_idx = r_idx.intersection(cur_idx) if com_idx.size == 0: continue v = v.loc[com_idx] cur_idx = v.index v['Offset'] = (dataset_date - cur_idx).days cur_idx = v.index com_idx = r_idx.intersection(cur_idx) # vmed = v['Data'] vmed = v['Data'] + v.apply(lambda r: 0.0 if r['Offset'] > max_lut else med_err[r['Offset']], axis=1) vmax = v['Data'] + v.apply(lambda r: 0.0 if r['Offset'] > max_lut else max_err[r['Offset']], axis=1) vmin = v['Data'] + v.apply(lambda r: 0.0 if r['Offset'] > max_lut else min_err[r['Offset']], axis=1) vq25 = v['Data'] + v.apply(lambda r: 0.0 if r['Offset'] > max_lut else q25_err[r['Offset']], axis=1) vq75 = v['Data'] + v.apply(lambda r: 0.0 if r['Offset'] > max_lut else q75_err[r['Offset']], axis=1) vq025 = v['Data'] + v.apply(lambda r: 0.0 if r['Offset'] > max_lut else q025_err[r['Offset']], axis=1) vq975 = v['Data'] + v.apply(lambda r: 0.0 if r['Offset'] > max_lut else q975_err[r['Offset']], axis=1) band_data_med.loc[com_idx, dataset_date] = vmed.loc[com_idx] band_data_min.loc[com_idx, dataset_date] = vmin.loc[com_idx] band_data_max.loc[com_idx, dataset_date] = vmax.loc[com_idx] band_data_iq50_lo.loc[com_idx, dataset_date] = vq25.loc[com_idx] band_data_iq50_hi.loc[com_idx, dataset_date] = vq75.loc[com_idx] band_data_iq95_lo.loc[com_idx, dataset_date] = vq025.loc[com_idx] band_data_iq95_hi.loc[com_idx, dataset_date] = vq975.loc[com_idx] # %% plt.rc('axes', axisbelow=True) if False: # testX = test.subtract(test.iloc[:,-1], axis=0) # band_max = testX.apply(lambda r: r.dropna().max(), axis=1).max() # band_min = testX.apply(lambda r: r.dropna().min(), axis=1).min() # band_q75 = testX.apply(lambda r: r.dropna().quantile(0.75), axis=1) # band_q25 = testX.apply(lambda r: r.dropna().quantile(0.25), axis=1) # band_iq = 1.5 * (band_q75 - band_q25).max() # band_pm = np.max([-band_min, band_max]) fig = plt.figure(figsize=(16,9)) gs = gridspec.GridSpec(2, 1, figure=fig, height_ratios = [14, 3], hspace = 0.1) ax = fig.add_subplot(gs[0, 0]) if dataset_date_range[0].year == dataset_date_range[-1].year: Datenstand_range_str = ( dataset_date_range[0].strftime('%d.%m.-') + dataset_date_range[-1].strftime('%d.%m.%Y') ) else: Datenstand_range_str = ( dataset_date_range[0].strftime('%d.%m.%y-') + dataset_date_range[-1].strftime('%d.%m.%Y') ) fig.suptitle('COVID-19 - Original Punktschätzer des RKI 7-Tage-R nach Erkrankungsdatum - {:s}'.format( Datenstand_range_str), horizontalalignment='center', verticalalignment='center', fontsize=21, color=SLATE, y=0.91) for i in range(dataset_date_range.size): dataset_date = dataset_date_range[i] dataset_date_str = dataset_date.strftime('%Y-%m-%d') xidz = datasets[dataset_date_str].index[-max_num_entries:] v = datasets[dataset_date_str]['R (Nowcast 7d MA)'].iloc[-max_num_entries:] #y1 = v * (1 - IQmax) #y2 = v * (1 + IQmax) #y1 = datasets[dataset_date_str]['R (Q1 NowNowcast 7d MA)'].iloc[-56:] #y2 = datasets[dataset_date_str]['R (Q3 NowNowcast 7d MA)'].iloc[-56:] #plt.fill_between(xidz, y1, y2, facecolor=(0.3, 0.3, 0.3), alpha=0.5) plt.plot(v) ax.set_ylim([0.6,1.5]) ax.yaxis.set_major_locator(MultipleLocator(0.1)) ax.yaxis.set_minor_locator(MultipleLocator(0.02)) #ax.set_xlim([r_idx[0], r_idx[-1]]) ax.set_xlim([ pd.to_datetime(r_idx[0]), pd.to_datetime(PLOT_MAX_DATE) ]) date_form = DateFormatter("%d.%m.\n%Y") ax.xaxis.set_major_formatter(date_form) ax.xaxis.set_major_locator(mdates.WeekdayLocator(interval=2, byweekday=0)) ax.xaxis.set_minor_locator(mdates.DayLocator()) ax.tick_params(which='minor', length=0, width=0) ax.tick_params(axis=u'both', labelsize=16, labelcolor = SLATE) ax.grid(True, which='major', axis='both', linestyle='-', color=(0.85,0.85,0.85)) ax.grid(True, which='minor', axis='both', linestyle='-', color=(0.95,0.95,0.95)) ax.set_ylabel('7-Tage Reproduktionszahl R', fontdict={'fontsize': 18}, fontsize=18, color = SLATE, labelpad=14) ax.set_xlabel('Geschätztes Erkrankungsdatum', fontdict={'fontsize': 18}, fontsize=18, color = SLATE, labelpad=14) ax2 = fig.add_subplot(gs[1, 0]) ax2.axis('off') plt.text(0, 0.05, 'Datenquelle:\n' + '<NAME>-Institut (RKI), an der <NAME> (2021): SARS-CoV-2-Nowcasting und -R-Schaetzung, Berlin: Zenodo. DOI:10.5281/zenodo.4680400\n'+ 'URL: https://github.com/robert-koch-institut/SARS-CoV-2-Nowcasting_und_-R-Schaetzung ; ' + 'Abfragedatum/Datenstand: ' + Datenstand_range_str + '; eigene Berechnung/eigene Darstellung; \n' + 'Datenlizenz CC-BY 4.0 International', fontsize=11.5) exp_full_fname = '{:s}{:s}.png'.format( OUTPUT_DIR + '..\\', 'Nowcasts_RKI_orig') print('Saving ' + exp_full_fname) fig_util.set_size(fig, (1920.0/100.0, 1080.0/100.0), dpi=100, pad_inches=0.35) fig.savefig(exp_full_fname, dpi=100, bbox_inches='tight', pad_inches=0.35) display(Image(filename=exp_full_fname)) plt.close() # testX = test.subtract(test.iloc[:,-1], axis=0) # band_max = testX.apply(lambda r: r.dropna().max(), axis=1).max() # band_min = testX.apply(lambda r: r.dropna().min(), axis=1).min() # band_q75 = testX.apply(lambda r: r.dropna().quantile(0.75), axis=1) # band_q25 = testX.apply(lambda r: r.dropna().quantile(0.25), axis=1) # band_iq = 1.5 * (band_q75 - band_q25).max() # band_pm = np.max([-band_min, band_max]) fig = plt.figure(figsize=(16,9)) gs = gridspec.GridSpec(2, 1, figure=fig, height_ratios = [14, 3], hspace = 0.1) ax = fig.add_subplot(gs[0, 0]) if dataset_date_range[0].year == dataset_date_range[-1].year: Datenstand_range_str = ( dataset_date_range[0].strftime('%d.%m.-') + dataset_date_range[-1].strftime('%d.%m.%Y') ) else: Datenstand_range_str = ( dataset_date_range[0].strftime('%d.%m.%y-') + dataset_date_range[-1].strftime('%d.%m.%Y') ) fig.suptitle('COVID-19 - Punktschätzer$^{{*)}}$ des RKI 7-Tage-R nach Erkrankungsdatum - {:s}'.format( Datenstand_range_str), horizontalalignment='center', verticalalignment='center', fontsize=21, color=SLATE, y=0.91) for i in range(dataset_date_range.size): dataset_date = dataset_date_range[i] dataset_date_str = dataset_date.strftime('%Y-%m-%d') xidz = datasets[dataset_date_str].index[-max_num_entries:] v = datasets[dataset_date_str]['Rgeom (Nowcast 7d MA)'].iloc[-max_num_entries:] #y1 = v * (1 - IQmax) #y2 = v * (1 + IQmax) #y1 = datasets[dataset_date_str]['R (Q1 NowNowcast 7d MA)'].iloc[-56:] #y2 = datasets[dataset_date_str]['R (Q3 NowNowcast 7d MA)'].iloc[-56:] #plt.fill_between(xidz, y1, y2, facecolor=(0.3, 0.3, 0.3), alpha=0.5) plt.plot(v) ax.set_ylim([0.6,1.5]) ax.yaxis.set_major_locator(MultipleLocator(0.1)) ax.yaxis.set_minor_locator(MultipleLocator(0.02)) #ax.set_xlim([r_idx[0], r_idx[-1]]) ax.set_xlim([ pd.to_datetime(r_idx[0]), pd.to_datetime(PLOT_MAX_DATE) ]) date_form = DateFormatter("%d.%m.\n%Y") ax.xaxis.set_major_formatter(date_form) ax.xaxis.set_major_locator(mdates.WeekdayLocator(interval=2, byweekday=0)) ax.xaxis.set_minor_locator(mdates.DayLocator()) ax.tick_params(which='minor', length=0, width=0) ax.tick_params(axis=u'both', labelsize=16, labelcolor = SLATE) ax.grid(True, which='major', axis='both', linestyle='-', color=(0.85,0.85,0.85)) ax.grid(True, which='minor', axis='both', linestyle='-', color=(0.95,0.95,0.95)) ax.set_ylabel('7-Tage Reproduktionszahl R', fontdict={'fontsize': 18}, fontsize=18, color = SLATE, labelpad=14) ax.set_xlabel('Geschätztes Erkrankungsdatum', fontdict={'fontsize': 18}, fontsize=18, color = SLATE, labelpad=14) ax2 = fig.add_subplot(gs[1, 0]) ax2.axis('off') plt.text(0, 0.05, 'Datenquelle:\n' + '<NAME>-Institut (RKI), an der Heiden, Matthias (2021): SARS-CoV-2-Nowcasting und -R-Schaetzung, Berlin: Zenodo. DOI:10.5281/zenodo.4680400\n'+ 'URL: https://github.com/robert-koch-institut/SARS-CoV-2-Nowcasting_und_-R-Schaetzung ; ' + 'Abfragedatum/Datenstand: ' + Datenstand_range_str + '; eigene Berechnung/eigene Darstellung; \n' + 'Datenlizenz CC-BY 4.0 International '+ '$^{*)}$ gleitender geometrischer Mittelwert (Wurzel der Produkte)', fontsize=11.5) exp_full_fname = '{:s}{:s}.png'.format( OUTPUT_DIR + '..\\', 'Nowcasts_RKI_geom') print('Saving ' + exp_full_fname) fig_util.set_size(fig, (1920.0/100.0, 1080.0/100.0), dpi=100, pad_inches=0.35) fig.savefig(exp_full_fname, dpi=100, bbox_inches='tight', pad_inches=0.35) display(Image(filename=exp_full_fname)) plt.close() fig = plt.figure(figsize=(16,9)) gs = gridspec.GridSpec(2, 1, figure=fig, height_ratios = [14, 3], hspace = 0.1) ax = fig.add_subplot(gs[0, 0]) fig.suptitle('COVID-19 - Wochentagkorrigierter Punktschätzer$^{{*)}}$ des RKI 7-Tage-R nach Erkrankungsdatum - {:s}'.format( Datenstand_range_str), horizontalalignment='center', verticalalignment='center', fontsize=21, color=SLATE, y=0.91) # y1 = band_data_min.apply(lambda r: r.dropna().min(), axis=1).dropna() # y2 = band_data_max.apply(lambda r: r.dropna().max(), axis=1).dropna() # x = y1.index # plt.fill_between(x, y1, y2, facecolor=(0.0, 0.0, 0.0), alpha=0.2) # y1 = band_data_iq_min.apply(lambda r: r.dropna().min(), axis=1).dropna() # y2 = band_data_iq_max.apply(lambda r: r.dropna().max(), axis=1).dropna() # x = y1.index # plt.fill_between(x, y1, y2, facecolor=(1.0, 0.0, 0.0), alpha=0.8) # y1 = band_data_q25.apply(lambda r: r.dropna().min(), axis=1).dropna() # y2 = band_data_q75.apply(lambda r: r.dropna().max(), axis=1).dropna() # x = y1.index # plt.fill_between(x, y1, y2, facecolor=(0.4, 0.4, 1.0), alpha=0.8) for i in range(dataset_date_range.size): dataset_date = dataset_date_range[i] dataset_date_str = dataset_date.strftime('%Y-%m-%d') xidz = datasets[dataset_date_str].index[-max_num_entries:] v = datasets[dataset_date_str]['Rgeom (Med NowNowcast 7d MA)'].iloc[-max_num_entries:] plt.plot(v) #, 'k-') #, linewidth=0.5) ax.set_ylim([0.6,1.5]) ax.yaxis.set_major_locator(MultipleLocator(0.1)) ax.yaxis.set_minor_locator(MultipleLocator(0.02)) #ax.set_xlim([r_idx[0], r_idx[-1]]) ax.set_xlim([ pd.to_datetime(r_idx[0]), pd.to_datetime(PLOT_MAX_DATE) ]) date_form = DateFormatter("%d.%m.\n%Y") ax.xaxis.set_major_formatter(date_form) ax.xaxis.set_major_locator(mdates.WeekdayLocator(interval=2, byweekday=0)) ax.xaxis.set_minor_locator(mdates.DayLocator()) ax.tick_params(which='minor', length=0, width=0) ax.tick_params(axis=u'both', labelsize=16, labelcolor = SLATE) ax.grid(True, which='major', axis='both', linestyle='-', color=(0.85,0.85,0.85)) ax.grid(True, which='minor', axis='both', linestyle='-', color=(0.95,0.95,0.95)) ax.set_ylabel('7-Tage Reproduktionszahl R', fontdict={'fontsize': 18}, fontsize=18, color = SLATE, labelpad=14) ax.set_xlabel('Geschätztes Erkrankungsdatum', fontdict={'fontsize': 18}, fontsize=18, color = SLATE, labelpad=14) ax2 = fig.add_subplot(gs[1, 0]) ax2.axis('off') plt.text(0, 0.05, 'Datenquelle:\n' + '<NAME>och-Institut (RKI), an der Heiden, Matthias (2021): SARS-CoV-2-Nowcasting und -R-Schaetzung, Berlin: Zenodo. DOI:10.5281/zenodo.4680400\n'+ 'URL: https://github.com/robert-koch-institut/SARS-CoV-2-Nowcasting_und_-R-Schaetzung ; ' + 'Abfragedatum/Datenstand: ' + Datenstand_range_str + '; eigene Berechnung/eigene Darstellung;\n' + 'Datenlizenz CC-BY 4.0 International '+ '$^{*)}$ gleitender geometrischer Mittelwert (Wurzel der Produkte)', fontsize=11.5) exp_full_fname = '{:s}{:s}.png'.format( OUTPUT_DIR + '..\\', 'Nowcasts_RKI_korr') print('Saving ' + exp_full_fname) fig_util.set_size(fig, (1920.0/100.0, 1080.0/100.0), dpi=100, pad_inches=0.35) fig.savefig(exp_full_fname, dpi=100, bbox_inches='tight', pad_inches=0.35) display(Image(filename=exp_full_fname)) plt.close() # %% ext_r_idx = pd.date_range(r_idx[0], r_idx[-1]-
pd.DateOffset(days=1)
pandas.DateOffset
import requests import pandas as pd import json rply = [] regions = [172] for region in regions: url = "https://api.bilibili.com/x/web-interface/ranking/region?rid=" + str(region) + "&day=7&original=0&jsonp=jsonp" response = requests.get(url=url) text = response.text ob = json.loads(text) videos = ob["data"] bvid = [] aid = [] for video in videos: bvid.append(video["bvid"]) aid.append(video["aid"]) for v in range(1, 11): for i in range(1, 101): url = "https://api.bilibili.com/x/v2/reply?jsonp=jsonp&pn=" + str(i) + "&type=1&oid=" + aid[v] + "&sort=2" response = requests.get(url=url) text = response.text ob = json.loads(text) replies = ob["data"]["replies"] if replies is None: break for reply in replies: reply_line = [reply["content"]["message"], reply["like"]] rply.append(reply_line) if i % 5 == 0: print("Scanned " + str((v-1) * 100 + i) + " pages") data_rply =
pd.DataFrame(data=rply, columns=["content", "num_like"])
pandas.DataFrame
import glob import os import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np import pandas as pd import tqdm def get_table_paths(root): paths = glob.glob(os.path.join(root, "*", "*.pkl")) if len(paths) == 0: # flat, no folders for specific queries paths = glob.glob(os.path.join(root, "*.pkl")) return paths def folder_to_num(folder): return int(folder.replace("q", "")) if folder.startswith("q") else -1 def collect_results(results_root): all_tables = get_table_paths(results_root) acc = [] all_columns = set([]) for path in tqdm.tqdm(all_tables): path_parts = path.split("/") if len(path_parts) >= 2 and path_parts[-2].startswith("q"): folder_name = path_parts[-2] else: folder_name = "unk_folder" try: df = pd.read_pickle(path) df["folder"] = folder_name if len(all_columns) == 0: all_columns = all_columns.union(df.columns) else: all_columns = all_columns.intersection(df.columns) acc.append(df) except Exception as err: print(err) print("Failed to load {} results file".format(path)) # make sure only include columns all have all_columns = list(all_columns) acc = [d[all_columns] for d in acc] df = pd.concat(acc, axis=0).reset_index(drop=True) df["folder_num"] = df["folder"].map(folder_to_num) return df def performance_table(df): summary_df = df.groupby([ "folder_num", "dataset", "name", ]).score.agg(["mean", "std"]) summary_df = summary_df.reset_index() return summary_df.sort_values(["folder_num", "dataset", "name"]) def filter_incomplete(df): # remove any queries where any system failed to finish # should only compare cases where everyone finishes df = df.copy() df = df[~df["score"].isnull()] all_systems = df["name"].unique() num_systems = len(all_systems) sys_cts = df.groupby(["folder_num", "dataset"])["name"].agg(lambda x: len(set(x))) ok_entries = set(sys_cts[sys_cts == num_systems].index.values) print("Keeping {}/{} folder/dataset combinations".format(len(ok_entries), sys_cts.shape[0])) is_ok = [pair in ok_entries for pair in zip(df["folder_num"], df["dataset"])] df = df[is_ok].reset_index(drop=True) return df def count_top_scores(summary_df, complete_only=False, min_diff=None): summary_df = summary_df.sort_values("mean", ascending=False) # only consider queries where all systems completed... if complete_only: summary_df = filter_incomplete(summary_df) # top score by folder/dataset top_df = summary_df.groupby(["folder_num", "dataset"]).head(1) if min_diff is not None: diffs = summary_df.groupby( ["folder_num", "dataset"])["mean"].apply(lambda x: x.values[0] - x.values[1]) diffs = diffs >= min_diff diffs = diffs.to_frame(name="sat_min_diff").reset_index() top_df_ext = pd.merge( top_df, diffs, how="left", on=["folder_num", "dataset"]) top_df = top_df_ext[top_df_ext["sat_min_diff"]].reset_index(drop=True) # count of system entries for that folder (i..e # of datasets where it wins) top_df = top_df.groupby(["folder_num", "name"]).size().to_frame(name="ct") top_df = top_df.reset_index() top_df =
pd.pivot(top_df, index="folder_num", columns="name", values="ct")
pandas.pivot
"""Script to normalize test single cell RNA sequencing dataset and output common subset genes as in the final training set. """ import pandas as pd import sklearn from sklearn.preprocessing import StandardScaler info = {'GSE57982': {'filename': 'GSE57982_primaryFpkmMatrix.txt', 'idcol': 'geneSymbol', # column name of gene IDs 'rmcol': ['geneID']}, # columns to remove 'GSE62526': {'filename': 'GSE62526_Normalized_expression_values.txt', 'idcol': 'Gene', 'rmcol': []}, 'GSE66117': {'filename': 'GSE66117_CLL_FPKM_values.txt', 'idcol': 'Gene', 'rmcol': ['Description']} } with open('final.txt') as fp: # take the list of final deferentially expressed genes cols = fp.readline().split() cols.remove('tissue') cols.remove('batch') deg =
pd.DataFrame(data=cols, columns=['gene'])
pandas.DataFrame
# # Copyright 2020 Capital One Services, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing out the datacompy functionality """ import io import logging import sys from datetime import datetime from decimal import Decimal from unittest import mock import numpy as np import pandas as pd import pytest from pandas.util.testing import assert_series_equal from pytest import raises import datacompy logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) def test_numeric_columns_equal_abs(): data = """a|b|expected 1|1|True 2|2.1|True 3|4|False 4|NULL|False NULL|4|False NULL|NULL|True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, abs_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_numeric_columns_equal_rel(): data = """a|b|expected 1|1|True 2|2.1|True 3|4|False 4|NULL|False NULL|4|False NULL|NULL|True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_string_columns_equal(): data = """a|b|expected Hi|Hi|True Yo|Yo|True Hey|Hey |False résumé|resume|False résumé|résumé|True 💩|💩|True 💩|🤔|False | |True | |False datacompy|DataComPy|False something||False |something|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_string_columns_equal_with_ignore_spaces(): data = """a|b|expected Hi|Hi|True Yo|Yo|True Hey|Hey |True résumé|resume|False résumé|résumé|True 💩|💩|True 💩|🤔|False | |True | |True datacompy|DataComPy|False something||False |something|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2, ignore_spaces=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_string_columns_equal_with_ignore_spaces_and_case(): data = """a|b|expected Hi|Hi|True Yo|Yo|True Hey|Hey |True résumé|resume|False résumé|résumé|True 💩|💩|True 💩|🤔|False | |True | |True datacompy|DataComPy|True something||False |something|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal( df.a, df.b, rel_tol=0.2, ignore_spaces=True, ignore_case=True ) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_date_columns_equal(): data = """a|b|expected 2017-01-01|2017-01-01|True 2017-01-02|2017-01-02|True 2017-10-01|2017-10-10|False 2017-01-01||False |2017-01-01|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") # First compare just the strings actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # Then compare converted to datetime objects df["a"] = pd.to_datetime(df["a"]) df["b"] = pd.to_datetime(df["b"]) actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # and reverse actual_out_rev = datacompy.columns_equal(df.b, df.a, rel_tol=0.2) assert_series_equal(expect_out, actual_out_rev, check_names=False) def test_date_columns_equal_with_ignore_spaces(): data = """a|b|expected 2017-01-01|2017-01-01 |True 2017-01-02 |2017-01-02|True 2017-10-01 |2017-10-10 |False 2017-01-01||False |2017-01-01|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") # First compare just the strings actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2, ignore_spaces=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # Then compare converted to datetime objects df["a"] = pd.to_datetime(df["a"]) df["b"] = pd.to_datetime(df["b"]) actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2, ignore_spaces=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # and reverse actual_out_rev = datacompy.columns_equal(df.b, df.a, rel_tol=0.2, ignore_spaces=True) assert_series_equal(expect_out, actual_out_rev, check_names=False) def test_date_columns_equal_with_ignore_spaces_and_case(): data = """a|b|expected 2017-01-01|2017-01-01 |True 2017-01-02 |2017-01-02|True 2017-10-01 |2017-10-10 |False 2017-01-01||False |2017-01-01|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") # First compare just the strings actual_out = datacompy.columns_equal( df.a, df.b, rel_tol=0.2, ignore_spaces=True, ignore_case=True ) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # Then compare converted to datetime objects df["a"] = pd.to_datetime(df["a"]) df["b"] = pd.to_datetime(df["b"]) actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2, ignore_spaces=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # and reverse actual_out_rev = datacompy.columns_equal(df.b, df.a, rel_tol=0.2, ignore_spaces=True) assert_series_equal(expect_out, actual_out_rev, check_names=False) def test_date_columns_unequal(): """I want datetime fields to match with dates stored as strings """ df = pd.DataFrame([{"a": "2017-01-01", "b": "2017-01-02"}, {"a": "2017-01-01"}]) df["a_dt"] = pd.to_datetime(df["a"]) df["b_dt"] = pd.to_datetime(df["b"]) assert datacompy.columns_equal(df.a, df.a_dt).all() assert datacompy.columns_equal(df.b, df.b_dt).all() assert datacompy.columns_equal(df.a_dt, df.a).all() assert datacompy.columns_equal(df.b_dt, df.b).all() assert not datacompy.columns_equal(df.b_dt, df.a).any() assert not datacompy.columns_equal(df.a_dt, df.b).any() assert not datacompy.columns_equal(df.a, df.b_dt).any() assert not datacompy.columns_equal(df.b, df.a_dt).any() def test_bad_date_columns(): """If strings can't be coerced into dates then it should be false for the whole column. """ df = pd.DataFrame( [{"a": "2017-01-01", "b": "2017-01-01"}, {"a": "2017-01-01", "b": "217-01-01"}] ) df["a_dt"] = pd.to_datetime(df["a"]) assert not datacompy.columns_equal(df.a_dt, df.b).any() def test_rounded_date_columns(): """If strings can't be coerced into dates then it should be false for the whole column. """ df = pd.DataFrame( [ {"a": "2017-01-01", "b": "2017-01-01 00:00:00.000000", "exp": True}, {"a": "2017-01-01", "b": "2017-01-01 00:00:00.123456", "exp": False}, {"a": "2017-01-01", "b": "2017-01-01 00:00:01.000000", "exp": False}, {"a": "2017-01-01", "b": "2017-01-01 00:00:00", "exp": True}, ] ) df["a_dt"] = pd.to_datetime(df["a"]) actual = datacompy.columns_equal(df.a_dt, df.b) expected = df["exp"] assert_series_equal(actual, expected, check_names=False) def test_decimal_float_columns_equal(): df = pd.DataFrame( [ {"a": Decimal("1"), "b": 1, "expected": True}, {"a": Decimal("1.3"), "b": 1.3, "expected": True}, {"a": Decimal("1.000003"), "b": 1.000003, "expected": True}, {"a": Decimal("1.000000004"), "b": 1.000000003, "expected": False}, {"a": Decimal("1.3"), "b": 1.2, "expected": False}, {"a": np.nan, "b": np.nan, "expected": True}, {"a": np.nan, "b": 1, "expected": False}, {"a": Decimal("1"), "b": np.nan, "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_decimal_float_columns_equal_rel(): df = pd.DataFrame( [ {"a": Decimal("1"), "b": 1, "expected": True}, {"a": Decimal("1.3"), "b": 1.3, "expected": True}, {"a": Decimal("1.000003"), "b": 1.000003, "expected": True}, {"a": Decimal("1.000000004"), "b": 1.000000003, "expected": True}, {"a": Decimal("1.3"), "b": 1.2, "expected": False}, {"a": np.nan, "b": np.nan, "expected": True}, {"a": np.nan, "b": 1, "expected": False}, {"a": Decimal("1"), "b": np.nan, "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b, abs_tol=0.001) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_decimal_columns_equal(): df = pd.DataFrame( [ {"a": Decimal("1"), "b": Decimal("1"), "expected": True}, {"a": Decimal("1.3"), "b": Decimal("1.3"), "expected": True}, {"a": Decimal("1.000003"), "b": Decimal("1.000003"), "expected": True}, {"a": Decimal("1.000000004"), "b": Decimal("1.000000003"), "expected": False}, {"a": Decimal("1.3"), "b": Decimal("1.2"), "expected": False}, {"a": np.nan, "b": np.nan, "expected": True}, {"a": np.nan, "b": Decimal("1"), "expected": False}, {"a": Decimal("1"), "b": np.nan, "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_decimal_columns_equal_rel(): df = pd.DataFrame( [ {"a": Decimal("1"), "b": Decimal("1"), "expected": True}, {"a": Decimal("1.3"), "b": Decimal("1.3"), "expected": True}, {"a": Decimal("1.000003"), "b": Decimal("1.000003"), "expected": True}, {"a": Decimal("1.000000004"), "b": Decimal("1.000000003"), "expected": True}, {"a": Decimal("1.3"), "b": Decimal("1.2"), "expected": False}, {"a": np.nan, "b": np.nan, "expected": True}, {"a": np.nan, "b": Decimal("1"), "expected": False}, {"a": Decimal("1"), "b": np.nan, "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b, abs_tol=0.001) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_infinity_and_beyond(): df = pd.DataFrame( [ {"a": np.inf, "b": np.inf, "expected": True}, {"a": -np.inf, "b": -np.inf, "expected": True}, {"a": -np.inf, "b": np.inf, "expected": False}, {"a": np.inf, "b": -np.inf, "expected": False}, {"a": 1, "b": 1, "expected": True}, {"a": 1, "b": 0, "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_mixed_column(): df = pd.DataFrame( [ {"a": "hi", "b": "hi", "expected": True}, {"a": 1, "b": 1, "expected": True}, {"a": np.inf, "b": np.inf, "expected": True}, {"a": Decimal("1"), "b": Decimal("1"), "expected": True}, {"a": 1, "b": "1", "expected": False}, {"a": 1, "b": "yo", "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_mixed_column_with_ignore_spaces(): df = pd.DataFrame( [ {"a": "hi", "b": "hi ", "expected": True}, {"a": 1, "b": 1, "expected": True}, {"a": np.inf, "b": np.inf, "expected": True}, {"a": Decimal("1"), "b": Decimal("1"), "expected": True}, {"a": 1, "b": "1 ", "expected": False}, {"a": 1, "b": "yo ", "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b, ignore_spaces=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_mixed_column_with_ignore_spaces_and_case(): df = pd.DataFrame( [ {"a": "hi", "b": "hi ", "expected": True}, {"a": 1, "b": 1, "expected": True}, {"a": np.inf, "b": np.inf, "expected": True}, {"a": Decimal("1"), "b": Decimal("1"), "expected": True}, {"a": 1, "b": "1 ", "expected": False}, {"a": 1, "b": "yo ", "expected": False}, {"a": "Hi", "b": "hI ", "expected": True}, {"a": "HI", "b": "HI ", "expected": True}, {"a": "hi", "b": "hi ", "expected": True}, ] ) actual_out = datacompy.columns_equal(df.a, df.b, ignore_spaces=True, ignore_case=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_compare_df_setter_bad(): df =
pd.DataFrame([{"a": 1, "A": 2}, {"a": 2, "A": 2}])
pandas.DataFrame
"""Tabular data utils.""" import os import warnings from copy import copy from typing import Optional, List, Tuple, Dict, Sequence, Union, Iterable import numpy as np import pandas as pd from joblib import Parallel, delayed from log_calls import record_history from pandas import DataFrame ReadableToDf = Union[str, np.ndarray, DataFrame, Dict[str, np.ndarray], 'Batch'] @record_history(enabled=False) def get_filelen(fname: str) -> int: """Get length of csv file. Args: fname: file name. Returns: int. """ cnt_lines = -1 with open(fname, 'rb') as fin: for line in fin: if len(line.strip()) > 0: cnt_lines += 1 return cnt_lines @record_history(enabled=False) def get_batch_ids(arr, batch_size): """ Args: arr: Sequense. batch_size: batch size. Returns: Generator. """ n = 0 while n < len(arr): yield arr[n: n + batch_size] n += batch_size @record_history(enabled=False) def get_file_offsets(file: str, n_jobs: Optional[int] = None, batch_size: Optional[int] = None ) -> Tuple[List[int], List[int]]: """ Args: file: file path. n_jobs: number of jobs for multiprocesiing. batch_size: batch size. Returns: offsets tuple. """ assert n_jobs is not None or batch_size is not None, 'One of n_jobs or batch size should be defined' lens = [] with open(file, 'rb') as f: # skip header header_len = len(f.readline()) # get row lens length = 0 for row in f: if len(row.strip()) > 0: lens.append(length) length += len(row) lens = np.array(lens, dtype=np.int64) + header_len if batch_size: indexes = list(get_batch_ids(lens, batch_size)) else: indexes = np.array_split(lens, n_jobs) offsets = [x[0] for x in indexes] cnts = [x.shape[0] for x in indexes] return offsets, cnts @record_history(enabled=False) def _check_csv_params(read_csv_params: dict): """ Args: read_csv_params: Returns: """ for par in ['skiprows', 'nrows', 'index_col', 'header', 'names', 'chunksize']: if par in read_csv_params: read_csv_params.pop(par) warnings.warn('Parameter {0} will be ignored in parallel mode'.format(par), UserWarning) return read_csv_params @record_history(enabled=False) def read_csv_batch(file: str, offset, cnt, **read_csv_params): """ Args: file: offset: cnt: read_csv_params: Returns: """ read_csv_params = copy(read_csv_params) if read_csv_params is None: read_csv_params = {} try: usecols = read_csv_params.pop('usecols') except KeyError: usecols = None header = pd.read_csv(file, nrows=0, **read_csv_params).columns with open(file, 'rb') as f: f.seek(offset) data = pd.read_csv(f, header=None, names=header, chunksize=None, nrows=cnt, usecols=usecols, **read_csv_params) return data @record_history(enabled=False) def read_csv(file: str, n_jobs: int = 1, **read_csv_params) -> DataFrame: """ Args: file: n_jobs: **read_csv_params: Returns: """ if n_jobs == 1: return pd.read_csv(file, **read_csv_params) if n_jobs == -1: n_jobs = os.cpu_count() _check_csv_params(read_csv_params) offsets, cnts = get_file_offsets(file, n_jobs) with Parallel(n_jobs) as p: res = p(delayed(read_csv_batch)(file, offset=offset, cnt=cnt, **read_csv_params) for (offset, cnt) in zip(offsets, cnts)) res = pd.concat(res, ignore_index=True) return res @record_history(enabled=False) class Batch: """ Class to wraps batch of data in different formats. Default - batch of DataFrame. """ @property def data(self) -> DataFrame: """Get data from Batch object Returns: """ return self._data def __init__(self, data): self._data = data class FileBatch(Batch): """ Batch of csv file """ @property def data(self) -> DataFrame: """Get data from Batch object Returns: """ data_part = read_csv_batch(self.file, cnt=self.cnt, offset=self.offset, **self.read_csv_params) return data_part def __init__(self, file, offset, cnt, read_csv_params): self.file = file self.offset = offset self.cnt = cnt self.read_csv_params = read_csv_params @record_history(enabled=False) class BatchGenerator: """ Abstract - generator of batches from data """ def __init__(self, batch_size, n_jobs): """ Args: n_jobs: number of processes to handle batch_size: batch size. Default is None, split by n_jobs """ if n_jobs == -1: n_jobs = os.cpu_count() self.n_jobs = n_jobs self.batch_size = batch_size def __getitem__(self, idx) -> Batch: raise NotImplementedError def __len__(self) -> int: raise NotImplementedError @record_history(enabled=False) class DfBatchGenerator(BatchGenerator): """ Batch generator from DataFrames. """ def __init__(self, data: DataFrame, n_jobs: int = 1, batch_size: Optional[int] = None): """ Args: data: pd.DataFrame. n_jobs: number of processes to handle. batch_size: batch size. Default is None, split by n_jobs. """ super().__init__(batch_size, n_jobs) self.data = data if self.batch_size is not None: self.idxs = list(get_batch_ids(np.arange(data.shape[0]), batch_size)) else: self.idxs = [x for x in np.array_split(np.arange(data.shape[0]), n_jobs) if len(x) > 0] def __len__(self) -> int: if self.batch_size is not None: return int(np.ceil(self.data.shape[0] / self.batch_size)) return int(self.n_jobs) def __getitem__(self, idx): return Batch(self.data.iloc[self.idxs[idx]]) @record_history(enabled=False) class FileBatchGenerator(BatchGenerator): def __init__(self, file, n_jobs: int = 1, batch_size: Optional[int] = None, read_csv_params: dict = None): """ Args: file: n_jobs: number of processes to handle batch_size: batch size. Default is None, split by n_jobs read_csv_params: params of reading csv file. Look for pd.read_csv params """ super().__init__(batch_size, n_jobs) self.file = file self.offsets, self.cnts = get_file_offsets(file, n_jobs, batch_size) if read_csv_params is None: read_csv_params = {} self.read_csv_params = read_csv_params def __len__(self) -> int: return len(self.cnts) def __getitem__(self, idx): return FileBatch(self.file, self.offsets[idx], self.cnts[idx], self.read_csv_params) @record_history(enabled=False) def read_data(data: ReadableToDf, features_names: Optional[Sequence[str]] = None, n_jobs: int = 1, read_csv_params: Optional[dict] = None) -> Tuple[DataFrame, Optional[dict]]: """Get pd.DataFrame from different data formats Args: data: Dataset in formats: - pd.DataFrame - dict of np.ndarray - path to csv, feather, parquet features_names: Optional features names if np.ndarray n_jobs: number of processes to read file read_csv_params: params to read csv file Returns: """ if read_csv_params is None: read_csv_params = {} # case - new process if isinstance(data, Batch): return data.data, None if isinstance(data, DataFrame): return data, None # case - single array passed to inference if isinstance(data, np.ndarray): return DataFrame(data, columns=features_names), None # case - dict of array args passed if isinstance(data, dict): df = DataFrame(data['data'], columns=features_names) upd_roles = {} for k in data: if k != 'data': name = '__{0}__'.format(k.upper()) assert name not in df.columns, 'Not supported feature name {0}'.format(name) df[name] = data[k] upd_roles[k] = name return df, upd_roles if isinstance(data, str): if data.endswith('.feather'): # TODO: check about feather columns arg data = pd.read_feather(data) if read_csv_params['usecols'] is not None: data = data[read_csv_params['usecols']] return data, None if data.endswith('.parquet'): return
pd.read_parquet(data, columns=read_csv_params['usecols'])
pandas.read_parquet
from __future__ import print_function import unittest import sqlite3 import csv import os import nose import numpy as np from pandas import DataFrame, Series from pandas.compat import range, lrange, iteritems #from pandas.core.datetools import format as date_format import pandas.io.sql as sql import pandas.util.testing as tm try: import sqlalchemy SQLALCHEMY_INSTALLED = True except ImportError: SQLALCHEMY_INSTALLED = False SQL_STRINGS = { 'create_iris': { 'sqlite': """CREATE TABLE iris ( `SepalLength` REAL, `SepalWidth` REAL, `PetalLength` REAL, `PetalWidth` REAL, `Name` TEXT )""", 'mysql': """CREATE TABLE iris ( `SepalLength` DOUBLE, `SepalWidth` DOUBLE, `PetalLength` DOUBLE, `PetalWidth` DOUBLE, `Name` VARCHAR(200) )""", 'postgresql': """CREATE TABLE iris ( "SepalLength" DOUBLE PRECISION, "SepalWidth" DOUBLE PRECISION, "PetalLength" DOUBLE PRECISION, "PetalWidth" DOUBLE PRECISION, "Name" VARCHAR(200) )""" }, 'insert_iris': { 'sqlite': """INSERT INTO iris VALUES(?, ?, ?, ?, ?)""", 'mysql': """INSERT INTO iris VALUES(%s, %s, %s, %s, "%s");""", 'postgresql': """INSERT INTO iris VALUES(%s, %s, %s, %s, %s);""" }, 'create_test_types': { 'sqlite': """CREATE TABLE types_test_data ( `TextCol` TEXT, `DateCol` TEXT, `IntDateCol` INTEGER, `FloatCol` REAL, `IntCol` INTEGER, `BoolCol` INTEGER, `IntColWithNull` INTEGER, `BoolColWithNull` INTEGER )""", 'mysql': """CREATE TABLE types_test_data ( `TextCol` TEXT, `DateCol` DATETIME, `IntDateCol` INTEGER, `FloatCol` DOUBLE, `IntCol` INTEGER, `BoolCol` BOOLEAN, `IntColWithNull` INTEGER, `BoolColWithNull` BOOLEAN )""", 'postgresql': """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TIMESTAMP, "IntDateCol" INTEGER, "FloatCol" DOUBLE PRECISION, "IntCol" INTEGER, "BoolCol" BOOLEAN, "IntColWithNull" INTEGER, "BoolColWithNull" BOOLEAN )""" }, 'insert_test_types': { 'sqlite': """ INSERT INTO types_test_data VALUES(?, ?, ?, ?, ?, ?, ?, ?) """, 'mysql': """ INSERT INTO types_test_data VALUES("%s", %s, %s, %s, %s, %s, %s, %s) """, 'postgresql': """ INSERT INTO types_test_data VALUES(%s, %s, %s, %s, %s, %s, %s, %s) """ } } class PandasSQLTest(unittest.TestCase): """Base class with common private methods for SQLAlchemy and fallback cases. """ def drop_table(self, table_name): self._get_exec().execute("DROP TABLE IF EXISTS %s" % table_name) def _get_exec(self): if hasattr(self.conn, 'execute'): return self.conn else: return self.conn.cursor() def _load_iris_data(self): iris_csv_file = os.path.join(tm.get_data_path(), 'iris.csv') self.drop_table('iris') self._get_exec().execute(SQL_STRINGS['create_iris'][self.flavor]) with open(iris_csv_file, 'rU') as iris_csv: r = csv.reader(iris_csv) next(r) # skip header row ins = SQL_STRINGS['insert_iris'][self.flavor] for row in r: self._get_exec().execute(ins, row) def _check_iris_loaded_frame(self, iris_frame): pytype = iris_frame.dtypes[0].type row = iris_frame.iloc[0] self.assertTrue( issubclass(pytype, np.floating), 'Loaded frame has incorrect type') tm.equalContents(row.values, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) def _load_test1_data(self): columns = ['index', 'A', 'B', 'C', 'D'] data = [( '2000-01-03 00:00:00', 0.980268513777, 3.68573087906, -0.364216805298, -1.15973806169), ('2000-01-04 00:00:00', 1.04791624281, - 0.0412318367011, -0.16181208307, 0.212549316967), ('2000-01-05 00:00:00', 0.498580885705, 0.731167677815, -0.537677223318, 1.34627041952), ('2000-01-06 00:00:00', 1.12020151869, 1.56762092543, 0.00364077397681, 0.67525259227)] self.test_frame1 = DataFrame(data, columns=columns) def _load_raw_sql(self): self.drop_table('types_test_data') self._get_exec().execute(SQL_STRINGS['create_test_types'][self.flavor]) ins = SQL_STRINGS['insert_test_types'][self.flavor] data = [( 'first', '2000-01-03 00:00:00', 535852800, 10.10, 1, False, 1, False), ('first', '2000-01-04 00:00:00', 1356998400, 10.10, 1, False, None, None)] for d in data: self._get_exec().execute(ins, d) def _count_rows(self, table_name): result = self._get_exec().execute( "SELECT count(*) AS count_1 FROM %s" % table_name).fetchone() return result[0] def _read_sql_iris(self): iris_frame = self.pandasSQL.read_sql("SELECT * FROM iris") self._check_iris_loaded_frame(iris_frame) def _to_sql(self): self.drop_table('test_frame1') self.pandasSQL.to_sql(self.test_frame1, 'test_frame1') self.assertTrue(self.pandasSQL.has_table( 'test_frame1'), 'Table not written to DB') # Nuke table self.drop_table('test_frame1') def _to_sql_fail(self): self.drop_table('test_frame1') self.pandasSQL.to_sql( self.test_frame1, 'test_frame1', if_exists='fail') self.assertTrue(self.pandasSQL.has_table( 'test_frame1'), 'Table not written to DB') self.assertRaises(ValueError, self.pandasSQL.to_sql, self.test_frame1, 'test_frame1', if_exists='fail') self.drop_table('test_frame1') def _to_sql_replace(self): self.drop_table('test_frame1') self.pandasSQL.to_sql( self.test_frame1, 'test_frame1', if_exists='fail') # Add to table again self.pandasSQL.to_sql( self.test_frame1, 'test_frame1', if_exists='replace') self.assertTrue(self.pandasSQL.has_table( 'test_frame1'), 'Table not written to DB') num_entries = len(self.test_frame1) num_rows = self._count_rows('test_frame1') self.assertEqual( num_rows, num_entries, "not the same number of rows as entries") self.drop_table('test_frame1') def _to_sql_append(self): # Nuke table just in case self.drop_table('test_frame1') self.pandasSQL.to_sql( self.test_frame1, 'test_frame1', if_exists='fail') # Add to table again self.pandasSQL.to_sql( self.test_frame1, 'test_frame1', if_exists='append') self.assertTrue(self.pandasSQL.has_table( 'test_frame1'), 'Table not written to DB') num_entries = 2 * len(self.test_frame1) num_rows = self._count_rows('test_frame1') self.assertEqual( num_rows, num_entries, "not the same number of rows as entries") self.drop_table('test_frame1') def _roundtrip(self): self.drop_table('test_frame_roundtrip') self.pandasSQL.to_sql(self.test_frame1, 'test_frame_roundtrip') result = self.pandasSQL.read_sql('SELECT * FROM test_frame_roundtrip') result.set_index('pandas_index', inplace=True) # result.index.astype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def _execute_sql(self): # drop_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = self.pandasSQL.execute("SELECT * FROM iris") row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) def _tquery(self): iris_results = self.pandasSQL.tquery("SELECT * FROM iris") row = iris_results[0] tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, 'Iris-setosa']) class TestSQLApi(PandasSQLTest): """Test the public API as it would be used directly, including legacy names Notes: flavor can always be passed even in SQLAlchemy mode, should be correctly ignored. we don't use drop_table because that isn't part of the public api """ flavor = 'sqlite' def connect(self): if SQLALCHEMY_INSTALLED: return sqlalchemy.create_engine('sqlite:///:memory:') else: return sqlite3.connect(':memory:') def setUp(self): self.conn = self.connect() self._load_iris_data() self._load_test1_data() self._load_raw_sql() def test_read_sql_iris(self): iris_frame = sql.read_sql( "SELECT * FROM iris", self.conn, flavor='sqlite') self._check_iris_loaded_frame(iris_frame) def test_legacy_read_frame(self): """Test legacy name read_frame""" iris_frame = sql.read_frame( "SELECT * FROM iris", self.conn, flavor='sqlite') self._check_iris_loaded_frame(iris_frame) def test_to_sql(self): sql.to_sql(self.test_frame1, 'test_frame1', self.conn, flavor='sqlite') self.assertTrue(
sql.has_table('test_frame1', self.conn, flavor='sqlite')
pandas.io.sql.has_table
import numpy as np import pandas as pd import TrajectoryDescriptor import TrajectoryFeatures class Trajectory: def __init__(self, **kwargs): self.labels = kwargs.get('labels', ['target']) if kwargs['mood'] == 'df': self.raw_data = kwargs.get('trajectory', pd.DataFrame()) if kwargs['mood'] == 'csv': self.raw_data = self.load_data(kwargs) self.rows_ = self.raw_data.shape[0] self.stop_parameters = kwargs.get('stop_parameters', [100, 60, 60, 100]) self.has_alt = True self.duration_features = [] self.speed_features = [] self.acc_features = [] self.jerk_features = [] self.brate_rate_features = [] self.brate_features = [] self.distance_features = [] self.bearing_features = [] self.label = '' self.noise_no=0 self.polartheta = [] self.polarR = [] self.isPure = False self.isInValid = False self.filter = True # self.labels = [] # "label1:11" self.hasAlt = False # False: we do not have altitude in dataset # self.descriptor=TrajectoryDescriptor.TrajectoryDescriptor(trajectory=self.raw_data, labels=self.labels) #print("smothing..") #self.raw_data,noise=self.g_hample(self.raw_data) #self.noise_no=len(noise) #if self.noise_no>0 : # print("# noise points:",len(noise)) def rows(self): return self.rows_ def prediction_actual(self, target): self.raw_data.loc[:, target + '_prediction'] = self.stat_label() return self.raw_data.loc[:, [target, target + '_prediction']] def get_full_features_column_name(self): """ other = ['isInValid', 'isPure', 'target'] a2 = np.array(['min_', 'max_', 'mean', 'median', 'std', 'p10', 'p25', 'p50', 'p75', 'p90']) a1 = np.array(['speed_'] * len(a2)) speed_features = map(''.join, zip(a1, a2)) a2 = np.array(['min_', 'max_', 'mean', 'median', 'std', 'p10', 'p25', 'p50', 'p75', 'p90']) a1 = np.array(['distance_'] * len(a2)) distance_features = map(''.join, zip(a1, a2)) a2 = np.array(['min_', 'max_', 'mean', 'median', 'std', 'p10', 'p25', 'p50', 'p75', 'p90']) a1 = np.array(['acc_'] * len(a2)) acc_features = map(''.join, zip(a1, a2)) a2 = np.array(['min_', 'max_', 'mean', 'median', 'std', 'p10', 'p25', 'p50', 'p75', 'p90']) a1 = np.array(['bearing_'] * len(a2)) bearing_features = map(''.join, zip(a1, a2)) a2 = np.array(['min_', 'max_', 'mean', 'median', 'std', 'p10', 'p25', 'p50', 'p75', 'p90']) a1 = np.array(['jerk_'] * len(a2)) jerk_features = map(''.join, zip(a1, a2)) a2 = np.array(['min_', 'max_', 'mean', 'median', 'std', 'p10', 'p25', 'p50', 'p75', 'p90']) a1 = np.array(['brate_'] * len(a2)) brate_features = map(''.join, zip(a1, a2)) a2 = np.array(['min_', 'max_', 'mean', 'median', 'std', 'p10', 'p25', 'p50', 'p75', 'p90']) a1 = np.array(['brate_rate_'] * len(a2)) brate_rate__features = map(''.join, zip(a1, a2)) ret = map(''.join, zip(distance_features, speed_features, acc_features, bearing_features, jerk_features, brate_features, brate_rate__features, other)) """ return self.descriptor.get_full_features_column_name() def segment_features(self): # other = [self.isInValid, self.isPure, self.stat_label()] # return self.distance_features + self.speed_features + self.acc_features + self.bearing_features + self.jerk_features + self.brate_features + self.brate_rate_features + other self.descriptor = TrajectoryDescriptor.TrajectoryDescriptor(trajectory=self.raw_data, labels=self.labels, stop_parameters=self.stop_parameters) ret = self.descriptor.describe() return ret """ labels: List of labels for each point lat: name of lat column in the dataframe lon: name of lon column in the dataframe alt: name of alt column in the dataframe timeDate: name of time date column in the dataframe src: source of the csv file for raw_data """ def return_row_data(self): return self.raw_data def load_data(self, **kwargs): # lat='lat',lon='lon',alt='alt',timeDate='timeDate',labels=['label1'],src='~/gps_fe/bigdata2_8696/ex_traj/5428_walk_790.csv',seperator=',' print('loading...') lat = kwargs.get('lat', "lat") print(lat) lon = kwargs.get('lon', "lon") print(lon) alt = kwargs.get('alt', None) print(alt) time_date = kwargs.get('timeDate', "timeDate") print(time_date) labels = kwargs.get('labels', "[label]") print(labels) src = kwargs.get('src', "~/gps_fe/bigdata2_8696/ex_traj/5428_walk_790.csv") print(src) separator = kwargs.get('separator', ",") print(separator) self.labels = labels # input data needs lat,lon,alt,timeDate, [Labels] self.raw_data = pd.read_csv(src, sep=separator, parse_dates=[time_date], index_col=time_date) self.raw_data.rename(columns={lat: 'lat'}, inplace=True) self.raw_data.rename(columns={lon: 'lon'}, inplace=True) if alt is not None: self.raw_data.rename(columns={alt: 'alt'}, inplace=True) self.raw_data.rename(columns={time_date: 'timeDate'}, inplace=True) # preprocessing # removing NaN in lat and lon self.raw_data = self.raw_data.loc[pd.notnull(self.raw_data.lat), :] self.raw_data = self.raw_data.loc[pd.notnull(self.raw_data.lon), :] for label in labels: self.raw_data = self.raw_data.loc[pd.notnull(self.raw_data[label]), :] print('Data loaded.') return self.raw_data def load_data_frame(self, data_frame, labels=None): if labels is None: labels = ['target'] self.labels = labels self.raw_data = data_frame # preprocessing self.pre_processing(labels) if (self.raw_data.shape[0] < 10): return -1 return 0 def pre_processing(self, labels): # removing NaN in lat and lon self.raw_data = self.raw_data.loc[
pd.notnull(self.raw_data.lat)
pandas.notnull
# install imblearn package to a specific anaconda enviroment boston_house_price # $ conda install -n boston_house_price -c conda-forge imbalanced-learn # update imblearn package to a specific anaconda enviroment boston_house_price # $ conda update -n boston_house_price -c glemaitre imbalanced-learn # ============================================================= # Import libraries necessary for this project import numpy as np import pandas as pd from time import time # Set a random seed import random seed = 42 random.seed(seed) # Import supplementary visualization code visuals.py import scripts.visuals as vs # Load the Census dataset path = '../data/' train_data = path + 'census.csv' test_data = path + 'test_census.csv' data = pd.read_csv(train_data) print(data.head(n=1)) print(data.shape) # get the types of columns print(data.dtypes) # Pandas has a helpful select_dtypes function # which we can use to build a new dataframe containing only the object columns. obj_data = data.select_dtypes(include=['object']).copy() # Before going any further, we have to check if there are null values in the data that we need to clean up. print(obj_data[obj_data.isnull().any(axis=1)]) # TODO: Total number of records n_records = data.shape[0] # TODO: Number of records where individual's income is more than $50,000 # TODO: Number of records where individual's income is at most $50,000 # Method1: n_at_most_50k, n_greater_50k = data.income.value_counts() # Method2: (optional) --> # n2_greater_50k = data[data['income']=='>50K'].shape[0] # n2_at_most_50k = data[data['income']=='<=50K'].shape[0] n_aux = data.loc[(data['capital-gain'] > 0) & (data['capital-loss'] > 0)].shape # TODO: Percentage of individuals whose income is more than $50,000 greater_percent = (100*n_greater_50k)/n_records # Print the results print("Total number of records: {}".format(n_records)) print("Individuals making more than $50,000: {}".format(n_greater_50k)) print("Individuals making at most $50,000: {}".format(n_at_most_50k)) print("Percentage of individuals making more than $50,000: {}%".format(greater_percent)) # Split the data into features and target label income_raw = data['income'] features_raw = data.drop('income', axis = 1) # Visualize skewed continuous features of original data vs.distribution(data) # Log-transform the skewed features skewed = ['capital-gain', 'capital-loss'] features_log_transformed = pd.DataFrame(data = features_raw) features_log_transformed[skewed] = features_raw[skewed].apply(lambda x: np.log(x + 1)) # Visualize the new log distributions vs.distribution(features_log_transformed, transformed = True) # Import sklearn.preprocessing.StandardScaler from sklearn.preprocessing import MinMaxScaler, LabelEncoder # Initialize a scaler, then apply it to the features scaler = MinMaxScaler() # default=(0, 1) numerical = ['age', 'education-num', 'capital-gain', 'capital-loss', 'hours-per-week'] features_log_minmax_transform = pd.DataFrame(data = features_log_transformed) features_log_minmax_transform[numerical] = scaler.fit_transform(features_log_transformed[numerical]) # Show an example of a record with scaling applied print(features_log_minmax_transform.head(n = 5)) # TODO: One-hot encode the 'features_log_minmax_transform' data using pandas.get_dummies() features_final = pd.get_dummies(features_log_minmax_transform) # TODO: Encode the 'income_raw' data to numerical values # Method1: encoder = LabelEncoder() income = pd.Series(encoder.fit_transform(income_raw)) # Method2:(optional) --> income1 =income_raw.map({'<=50K':0, '>50K':1}) # Method3:(optional) --> income2 =pd.get_dummies(income_raw)['>50K'] # Print the number of features after one-hot encoding encoded = list(features_final.columns) print("{} total features after one-hot encoding.".format(len(encoded))) # Uncomment the following line to see the encoded feature names print(encoded) #----------------- # @Raafat: Some techniques to deal imbalanced data: # --> under sampling from imblearn.under_sampling import CondensedNearestNeighbour cnn = CondensedNearestNeighbour(random_state=42) X_res, y_res = cnn.fit_sample(features_final[0:300], income[0:300]) print('not Resampled dataset shape {}'.format(income[0:300].value_counts())) print('cnn Resampled dataset shape {}'.format(pd.Series(y_res).value_counts())) from imblearn.under_sampling import RandomUnderSampler rus = RandomUnderSampler(random_state=42) X_res, y_res = rus.fit_sample(features_final[0:300], income[0:300]) print('rus Resampled dataset shape {}'.format(pd.Series(y_res).value_counts())) from imblearn.under_sampling import TomekLinks tl = TomekLinks(random_state=42) X_res, y_res = tl.fit_sample(features_final[0:300], income[0:300]) print('tl Resampled dataset shape {}'.format(pd.Series(y_res).value_counts())) # --> over sampling from imblearn.over_sampling import SMOTE sm = SMOTE(random_state=42) X_res, y_res = sm.fit_sample(features_final[0:300], income[0:300]) print('sm Resampled dataset shape {}'.format(
pd.Series(y_res)
pandas.Series
import numpy as np import pytest import pandas as pd from pandas import DataFrame, Series, Timestamp, date_range, option_context from pandas.core import common as com from pandas.util import testing as tm class TestCaching: def test_slice_consolidate_invalidate_item_cache(self): # this is chained assignment, but will 'work' with option_context('chained_assignment', None): # #3970 df = DataFrame({"aa": np.arange(5), "bb": [2.2] * 5}) # Creates a second float block df["cc"] = 0.0 # caches a reference to the 'bb' series df["bb"] # repr machinery triggers consolidation repr(df) # Assignment to wrong series df['bb'].iloc[0] = 0.17 df._clear_item_cache() tm.assert_almost_equal(df['bb'][0], 0.17) def test_setitem_cache_updating(self): # GH 5424 cont = ['one', 'two', 'three', 'four', 'five', 'six', 'seven'] for do_ref in [False, False]: df = DataFrame({'a': cont, "b": cont[3:] + cont[:3], 'c': np.arange(7)}) # ref the cache if do_ref: df.loc[0, "c"] # set it df.loc[7, 'c'] = 1 assert df.loc[0, 'c'] == 0.0 assert df.loc[7, 'c'] == 1.0 # GH 7084 # not updating cache on series setting with slices expected = DataFrame({'A': [600, 600, 600]}, index=date_range('5/7/2014', '5/9/2014')) out = DataFrame({'A': [0, 0, 0]}, index=date_range('5/7/2014', '5/9/2014')) df = DataFrame({'C': ['A', 'A', 'A'], 'D': [100, 200, 300]}) # loop through df to update out six = Timestamp('5/7/2014') eix = Timestamp('5/9/2014') for ix, row in df.iterrows(): out.loc[six:eix, row['C']] = out.loc[six:eix, row['C']] + row['D'] tm.assert_frame_equal(out, expected)
tm.assert_series_equal(out['A'], expected['A'])
pandas.util.testing.assert_series_equal
import json from collections import defaultdict import numpy as np import pandas as pd from tqdm import tqdm from models.ease import EASE from models.knn_popular import KNNpopularity from models.mf import MatrixFactorization from utils.helpers import get_movies_by_ids, minmaxscaling from utils.metrics import relevance, unexpectedness class Chaining: def __init__(self, train_data, ease_ratings, item_ratings, ease_control_items, k, n_components, l, n=10): self.primitive_models = [] self.train_data = train_data self.ease_ratings = ease_ratings self.item_ratings = item_ratings self.ease_control_items = ease_control_items self.knn = KNNpopularity('knn', train_data, item_ratings) self.mf = MatrixFactorization('mf', train_data, item_ratings) self.ease = EASE(ease_ratings, l) self.knn.fit({'k': k}) self.mf.fit({'n_components': n_components, 'random_state': 42}) def make_recommendations(self, test_data): """ Make recommendations for users from test_data. :param test_data: pd.DataFrame with user profiles. :return: dict {user_id: recommendations}. """ # todo normalize scores -> select n depending on mean score # todo same recs from different models # todo distinct recs from different models n = [10, 10, 10] recommendations = defaultdict(list) self.ease.prepare_recommendations(self.ease_control_items) for user_id, user_profile in test_data.iterrows(): # iterate over test users, user_profile is a tuple # EASE ease_scores =
pd.Series(self.ease.pred[user_id], index=test_data.columns)
pandas.Series
# -*- coding: utf-8 -*- """ Created on Wed May 24 16:15:24 2017 Sponsors Club messaging functions @author: tkc """ import pandas as pd import smtplib import numpy as np import datetime import tkinter as tk import glob import re import math import textwrap from tkinter import filedialog from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from pkg.SC_signup_functions import findcards from openpyxl import load_workbook import pkg.SC_config as cnf def emailparent_tk(teams, season, year): ''' Inteface for non-billing email messages to parents (non-generic) Message types include: recruit - specific inquiry about player from last year not yet signed up; needs signupfile w/ recruits tab assign - notify of team assignment, optional recruit for short team, CYC card notify; teams/cards/mastersignups missinguni - ask about missing uniforms; missingunifile unireturn - generic instructions for uniform return; mastersignups w/ unis issued askforcards - check for CYC card on file and ask other -- Generic single all team+coaches message (can have $SCHOOL, $GRADERANGE,$COACHINFO, $SPORT, $PLAYERLIST) 8/9/17 works for team assignments TODO test recruit, missing unis, unireturn args: teams - df w/ active teams season -'Winter', 'Fall' or 'Spring' year - starting sport year i.e. 2019 for 2019-20 school year ''' #%% # first print out existing info in various lines root = tk.Tk() root.title('Send e-mail to parents') messageframe=tk.LabelFrame(root, text='Message options') unifilename=tk.StringVar() try: unifiles=glob.glob('missingunilist*') # find most recent uniform file name if len(unifiles)>1: unifile=findrecentfile(unifiles) # return single most recent file else: unifile=unifiles[0] # find most recent missing uni file name unifilename.set(unifile) except: # handle path error unifilename.set('missingunilist.csv') recruitbool=tk.BooleanVar() # optional recruiting for short teams emailtitle=tk.StringVar() # e-mail title mtype=tk.StringVar() # coach message type messfile=tk.StringVar() # text of e-mail message transmessfile=tk.StringVar() # text of e-mail message for transfers extravar=tk.StringVar() # use depends on message type... normally filename extraname=tk.StringVar() # name for additional text entry box (various uses mostly filenames) extraname.set('Extra_file_name.txt') # default starting choice choice=tk.StringVar() # test or send -mail def chooseFile(txtmess, ftypes): ''' tkinter file chooser (passes message string for window and expected file types as tuple e.g. ('TXT','*.txt') ''' root=tk.Tk() # creates pop-up window root.update() # necessary to close tk dialog after askopenfilename is finished # tk dialog asks for a single station file full_path = tk.filedialog.askopenfilename(title = txtmess, filetypes=[ ftypes] ) root.destroy() # closes pop up window return full_path def choose_message(): # choose existing message (.txt file) root=tk.Tk() # creates pop-up window root.update() # necessary to close tk dialog after askopenfilename is finished # tk dialog asks for a single station file full_path = tk.filedialog.askopenfilename(title = 'Choose message file', filetypes=[ ('TXT','*.txt')] ) root.destroy() # closes pop up window return full_path # Functions to enable/disable relevant checkboxes depending on radiobutton choice def Assignopts(): ''' Display relevant choices for team assignment notification/cyc card/ short team recruiting ''' recruitcheck.config(state=tk.NORMAL) extraentry.config(state=tk.DISABLED) extraname.set('n/a') messfile.set('parent_team_assignment.txt') transmessfile.set('parent_team_transfer.txt') emailtitle.set('Fall $SPORT for $FIRST') def Recruitopts(): ''' Display relevant choices for specific player recruiting''' recruitcheck.config(state=tk.NORMAL) extraentry.config(state=tk.DISABLED) messfile.set('player_recruiting.txt') transmessfile.set('n/a') extraname.set('n/a') emailtitle.set('Cabrini-Soulard sports for $FIRST this fall?') def Missingopts(): ''' Display relevant choices for ask parent for missing uniforms ''' recruitcheck.config(state=tk.DISABLED) extraentry.config(state=tk.NORMAL) messfile.set('finish_me.txt') transmessfile.set('n/a') extraname.set('Missing uni file name') extravar.set('missing_uni.csv') # TODO look up most recent uni file? emailtitle.set("Please return $FIRST's $SPORT uniform!") def Schedopts(): ''' Display relevant choices for sending schedules (game and practice) to parents ''' recruitcheck.config(state=tk.DISABLED) # Used here for name of master file schedule extraentry.config(state=tk.NORMAL) messfile.set('parent_game_schedule.txt') transmessfile.set('n/a') extraname.set('Game schedule file') extravar.set('Cabrini_2017_schedule.csv') emailtitle.set("Game schedule for Cabrini $GRADERANGE $GENDER $SPORT") def Cardopts(): ''' Display relevant choices for asking parent for missing CYC cards ''' recruitcheck.config(state=tk.DISABLED) # Used here for name of master file schedule extraentry.config(state=tk.DISABLED) messfile.set('CYCcard_needed.txt') transmessfile.set('n/a') extraname.set('') extravar.set('') emailtitle.set("CYC card needed for $FIRST") def Otheropts(): ''' Display relevant choices for other generic message to parents ''' recruitcheck.config(state=tk.DISABLED) # Used here for name of master file schedule extraentry.config(state=tk.NORMAL) messfile.set('temp_message.txt') transmessfile.set('n/a') extraname.set('') extravar.set('') emailtitle.set("Message from Cabrini Sponsors Club") def Allopts(): ''' Display relevant choices for generic message to all sports parents ''' recruitcheck.config(state=tk.DISABLED) extraentry.config(state=tk.NORMAL) messfile.set('temp_message.txt') transmessfile.set('n/a') extraname.set('') extravar.set('') emailtitle.set("Message from Cabrini Sponsors Club") # E-mail title and message file name rownum=0 tk.Label(messageframe, text='Title for e-mail').grid(row=rownum, column=0) titleentry=tk.Entry(messageframe, textvariable=emailtitle) titleentry.config(width=50) titleentry.grid(row=rownum, column=1) rownum+=1 tk.Label(messageframe, text='messagefile').grid(row=rownum, column=0) messentry=tk.Entry(messageframe, textvariable=messfile) messentry.config(width=50) messentry.grid(row=rownum, column=1) rownum+=1 tk.Label(messageframe, text='Transfer messagefile').grid(row=rownum, column=0) transmessentry=tk.Entry(messageframe, textvariable=transmessfile) transmessentry.config(width=50) transmessentry.grid(row=rownum, column=1) rownum+=1 # Choose counts, deriv, both or peaks plot tk.Radiobutton(messageframe, text='Team assignment', value='Assign', variable = mtype, command=Assignopts).grid(row=rownum, column=0) tk.Radiobutton(messageframe, text='Recruit missing', value='Recruit', variable = mtype, command=Recruitopts).grid(row=rownum, column=1) tk.Radiobutton(messageframe, text='Missing uni', value='Missing', variable = mtype, command=Missingopts).grid(row=rownum, column=2) tk.Radiobutton(messageframe, text='Send schedule', value='Schedule', variable = mtype, command=Schedopts).grid(row=rownum, column=3) rownum+=1 tk.Radiobutton(messageframe, text='Ask for cards', value='Cards', variable = mtype, command=Cardopts).grid(row=rownum, column=1) tk.Radiobutton(messageframe, text='Other team message', value='Other', variable = mtype, command=Otheropts).grid(row=rownum, column=1) tk.Radiobutton(messageframe, text='All sport parents', value='All', variable = mtype, command=Allopts).grid(row=rownum, column=2) rownum+=1 tk.Label(messageframe, text=extraname.get()).grid(row=rownum, column=0) extraentry=tk.Entry(messageframe, textvariable=extravar) extraentry.grid(row=rownum, column=1) # Extra file chooser button # button arg includes file type extension .. get from messfile try: ft = extraname.get().split('.')[-1] ftypes =("%s" %ft.upper(), "*.%s" %ft) except: ftypes =("CSV" , "*.*") # default to all files # TODO fix extra file chooser d=tk.Button(messageframe, text='Choose file', command=chooseFile('Choose extra file', ftypes) ) d.grid(row=rownum, column=2) recruitcheck=tk.Checkbutton(messageframe, variable=recruitbool, text='Recruit more players for short teams?') recruitcheck.grid(row=rownum, column=3) # can't do immediate grid or nonetype is returned rownum+=1 messageframe.grid(row=0, column=0) # Specific team selector section using checkboxes teamframe=tk.LabelFrame(root, text='Team selector') teamdict=shortnamedict(teams) teamlist=[] # list of tk bools for each team # Make set of bool/int variables for each team for i, val in enumerate(teamdict): teamlist.append(tk.IntVar()) if '#' not in val: teamlist[i].set(1) # Cabrini teams checked by default else: teamlist[i].set(0) # transfer team # make checkbuttons for each team for i, val in enumerate(teamdict): thisrow=i%5+1+rownum # three column setup thiscol=i//5 thisname=teamdict.get(val,'') tk.Checkbutton(teamframe, text=thisname, variable=teamlist[i]).grid(row=thisrow, column=thiscol) rownum+=math.ceil(len(teamlist)/5)+2 # Decision buttons bottom row def chooseall(event): ''' Select all teams ''' for i, val in enumerate(teamdict): teamlist[i].set(1) def clearall(event): ''' deselect all teams ''' for i, val in enumerate(teamdict): teamlist[i].set(0) def abort(event): choice.set('abort') root.destroy() def test(event): choice.set('test') root.destroy() def KCtest(event): choice.set('KCtest') root.destroy() def send(event): choice.set('send') root.destroy() rownum+=1 d=tk.Button(teamframe, text='All teams') d.bind('<Button-1>', chooseall) d.grid(row=rownum, column=0) d=tk.Button(teamframe, text='Clear teams') d.bind('<Button-1>', clearall) d.grid(row=rownum, column=1) teamframe.grid(row=1, column=0) choiceframe=tk.LabelFrame(root) d=tk.Button(choiceframe, text='Abort') d.bind('<Button-1>', abort) d.grid(row=rownum, column=2) d=tk.Button(choiceframe, text='Test') d.bind('<Button-1>', test) d.grid(row=rownum, column=3) d=tk.Button(choiceframe, text='KCtest') d.bind('<Button-1>', KCtest) d.grid(row=rownum, column=4) d=tk.Button(choiceframe, text='Send') d.bind('<Button-1>', send) d.grid(row=rownum, column=5) choiceframe.grid(row=2, column=0) root.mainloop() #%% mychoice=choice.get() if mychoice!='abort': kwargs={} if mychoice=='KCtest': # this is a true send test but only to me kwargs.update({'KCtest':True}) mychoice='send' kwargs.update({'choice':mychoice}) # test or send emailtitle=emailtitle.get() messagefile='messages\\'+messfile.get() # Handle selection of team subsets selteams=[] for i, val in enumerate(teamdict): if teamlist[i].get()==1: selteams.append(val) # Filter teams based on checkbox input teams=teams[teams['Team'].isin(selteams)] # drop duplicates in case of co-ed team (m and f entries) teams=teams.drop_duplicates(['Team','Sport']) # Now deal with the different types of messages #%% if mtype.get()=='Schedule': # Send practice and game schedules try: sched=pd.read_csv(extravar.get()) except: print('Problem opening schedule and other required files for sending game schedules') fname=filedialog.askopenfilename(title='Select schedule file.') sched=pd.read_csv(fname) # fields=pd.read_excel(cnf._INPUT_DIR+'\\Teams_coaches.xlsx', sheetname='Fields') fields=pd.read_csv(cnf._INPUT_DIR+'\\fields.csv') Mastersignups = pd.read_csv(cnf._INPUT_DIR+'\\master_signups.csv', encoding='cp437') #coaches=pd.read_excel('Teams_coaches.xlsx', sheetname='Coaches') coaches=pd.read_csv(cnf._INPUT_DIR+'\\coaches.csv') # INTERNAL TESTING # Mastersignups=Mastersignups[Mastersignups['Last']=='Croat'] famcontact= pd.read_csv(cnf._INPUT_DIR+'\\family_contact.csv', encoding='cp437') with open(messagefile, 'r') as file: blankmess=file.read() # open and send master CYC schedule sendschedule(teams, sched, fields, Mastersignups, coaches, year, famcontact, emailtitle, blankmess, **kwargs) if mtype.get()=='Recruit': try: famcontact= pd.read_csv(cnf._INPUT_DIR+'\\family_contact.csv', encoding='cp437') except: print('Problem loading family contacts') try: # Recruits stored in CSV Recruits=pd.read_csv(cnf._OUTPUT_DIR+'\\%s%s_recruits.csv' %(season, year)) print('Loaded possible recruits from csv file') except: fname=filedialog.askopenfilename(title='Select recruits file.') if fname.endswith('.csv'): # final move is query for file Recruits=pd.read_csv(fname) else: print('Recruits file needed in csv format.') return emailrecruits(Recruits, famcontact, emailtitle, messagefile, **kwargs) if mtype.get()=='Assign': # Notify parents needs teams, mastersignups, famcontacts if recruitbool.get(): kwargs.update({'recruit':True}) try: Mastersignups = pd.read_csv(cnf._INPUT_DIR+'\\master_signups.csv', encoding='cp437') #coaches=pd.read_excel(cnf._INPUT_DIR+'\\Teams_coaches.xlsx', sheetname='Coaches') coaches=pd.read_csv(cnf._INPUT_DIR+'\\coaches.csv', encoding='cp437') # INTERNAL TESTING # Mastersignups=Mastersignups[Mastersignups['Last']=='Croat'] famcontact= pd.read_csv(cnf._INPUT_DIR+'\\family_contact.csv', encoding='cp437') with open(messagefile, 'r') as file: blankmess=file.read() tranmessagefile='messages\\'+transmessfile.get() with open(tranmessagefile, 'r') as file: blanktransmess=file.read() except: print('Problem loading mastersignups, famcontacts') return notifyfamilies(teams, Mastersignups, coaches, year, famcontact, emailtitle, blankmess, blanktransmess, **kwargs) if mtype.get()=='Unis': try: missing=pd.read_csv(messfile.get(), encoding='cp437') oldteams=pd.read_excel(cnf._INPUT_DIR+'\\Teams_coaches.xlsx', sheetname='Oldteams') # loads all old teams in list kwargs.update({'oldteams':oldteams,'missing':missing}) except: print('Problem loading missingunis, oldteams') return # TODO Finish ask for missing uniforms script askforunis(teams, Mastersignups, year, famcontact, emailtitle, blankmess, **kwargs) if mtype.get()=='Cards': try: famcontact= pd.read_csv(cnf._INPUT_DIR+'\\family_contact.csv', encoding='cp437') Mastersignups = pd.read_csv(cnf._INPUT_DIR+'\\master_signups.csv', encoding='cp437') with open(messagefile, 'r') as file: blankmess=file.read() except: print('Problem loading famcontacts, mastersignups, or blank message') return # TODO Finish ask for missing uniforms script askforcards(teams, Mastersignups, year, famcontact, emailtitle, blankmess, **kwargs) if mtype.get()=='Other': try: famcontact= pd.read_csv(cnf._INPUT_DIR+'\\family_contact.csv', encoding='cp437') Mastersignups = pd.read_csv(cnf._INPUT_DIR+'\\master_signups.csv', encoding='cp437') coaches=pd.read_excel(cnf._INPUT_DIR+'\\Teams_coaches.xlsx', sheetname='Coaches') with open(messagefile, 'r') as file: blankmess=file.read() except: print('Problem loading mastersignups, coaches, ') return # TODO Finish ask for missing uniforms script sendteammessage(teams, year, Mastersignups, famcontact, coaches, emailtitle, blankmess, **kwargs) if mtype.get()=='All': try: famcontact= pd.read_csv(cnf._INPUT_DIR+'\\family_contact.csv', encoding='cp437') Mastersignups = pd.read_csv(cnf._INPUT_DIR+'\\master_signups.csv', encoding='cp437') #coaches=pd.read_excel(cnf._INPUT_DIR+'\\Teams_coaches.xlsx', sheetname='Coaches') coaches=pd.read_excel(cnf._INPUT_DIR+'\\coaches.csv') with open(messagefile, 'r') as file: blankmess=file.read() except: print('Problem loading mastersignups, coaches, ') return # TODO Finish ask for missing uniforms script sendallmessage(season, year, Mastersignups, famcontact, coaches, emailtitle, blankmess, **kwargs) return ''' TESTING of notifyfamilies [sport, team, graderange, coachinfo, playerlist] =cabteamlist[6] i=6 index=thisteam.index[0] row=thisteam.loc[index] ''' def readMessage(): ''' Choose text file from messages as template for email or log message (w/ find/replace of team and individual info) args: none returns: string with contents of chosen TXT file ''' def pickMessage(): root=tk.Tk() # creates pop-up window root.update() # necessary to close tk dialog after askopenfilename is finished full_path = tk.filedialog.askopenfilename(initialdir = cnf._INPUT_DIR+'\\messages\\', title = 'Choose blank email template', filetypes=[ ('txt','*.txt')] ) root.destroy() # closes pop up window return full_path full_path = pickMessage() with open(full_path,'r') as file: blankmess = file.read() return blankmess def askforunis(): # TODO finish me pass def askforcards(teams, Mastersignups, year, famcontact, emailtitle, blankmess, **kwargs): ''' Notifying players that need cards and ask for them via custom e-mail (one per player) kwargs: choice - 'send' or 'test' ''' choice=kwargs.get('choice','test') if choice=='send': smtpObj = smtplib.SMTP('smtp.gmail.com', 587) # port 587 smtpObj.ehlo() # say hello smtpObj.starttls() # enable encryption for send print('Enter password for sponsors club gmail ') passwd=input() smtpObj.login('<EMAIL>', passwd) else: # testing only... open log file logfile=open('parent_email_log.txt','w', encoding='utf-8') # this years signups only (later match for sport and team) Mastersignups=Mastersignups[Mastersignups['Year']==year] # drop non-CYC K and 1 level teams teams=teams[teams['Grade']>=2] # Make list of sport/team/school/graderange teamlist=[] for index, row in teams.iterrows(): # get school if '#' not in teams.loc[index]['Team']: school='Cabrini' else: school=teams.loc[index]['Team'].split('#')[0] # Get sport, team, graderange, coach info (first/last/e-mail), playerlist teamlist.append([teams.loc[index]['Sport'], teams.loc[index]['Team'], school, teams.loc[index]['Graderange']]) # dict. with each team and its players cards=findcards() # find all player cards if not cards: # terminate if no cards are found (path error?) print("Error opening CYC card image database") return # Drop all player nums found in cards cardslist=list(cards.keys()) cardslist=[i for i in cardslist if '-' not in i] cardslist=[int(i) for i in cardslist] # Only keep signups without cards Mastersignups=Mastersignups[~Mastersignups['Plakey'].isin(cardslist)] CYCSUs=pd.DataFrame() for i, [sport, team, school, graderange] in enumerate(teamlist): CYCSUs=CYCSUs.append(Mastersignups[(Mastersignups['Sport']==sport) & (Mastersignups['Team']==team)]) # only one notice needed per player CYCSUs=CYCSUs.drop_duplicates('Plakey') CYCSUs=pd.merge(CYCSUs, famcontact, on='Famkey' , how='left', suffixes =('','_2')) for index, row in CYCSUs.iterrows(): # Replace first name in e-mail title (default e-mail title is fall $SPORT for $FIRST) thistitle=emailtitle.replace('$FIRST', row.First) thistitle=thistitle.replace('$LAST', row.Last) # custom message for individual player on this team thismess=blankmess.replace('$FIRST', row.First) thismess=thismess.replace('$LAST', row.Last) recipients=getemailadds(row) # Create custom email message (can have multiple sports in df) if choice=='send': # add From/To/Subject to actual e-mail thisemail='From: Cabrini Sponsors Club <<EMAIL>>\nTo: ' thisemail+=', '.join(recipients)+'\nSubject: '+thistitle+'\n' thisemail+=thismess thisemail=thisemail.encode('utf-8') for i,addr in enumerate(recipients): # Send message to each valid recipient in list try: smtpObj.sendmail('<EMAIL>', addr, thisemail) print ('Message sent to ', addr) except: print('Message to ', addr, ' failed.') if not recipients: print('No email address for ', row.First, row.Last) else: # Testing mode ... just write to log w/o e-mail header and such logfile.write(thistitle+'\n') logfile.write(thismess+'\n') # close log file (if testing mode) if choice!='send': logfile.close() else: pass # TODO fix this attempted close # smtpObj.quit() # close SMTP connection return def sendallmessage(season, year, Mastersignups, famcontact, coaches, emailtitle, blankmess, **kwargs): ''' Top level messaging function for notifying families of team assignment/ CYC card + optional short-team-player-recruiting via custom e-mail; one per player currently not including SMS kwargs: choice - 'send' or 'test' ''' choice=kwargs.get('choice','test') if choice=='send': smtpObj = smtplib.SMTP('smtp.gmail.com', 587) # port 587 smtpObj.ehlo() # say hello smtpObj.starttls() # enable encryption for send print('Enter password for sponsors club gmail ') passwd=input() smtpObj.login('<EMAIL>', passwd) else: # testing only... open log file logfile=open('allparent_email_log.txt','w', encoding='utf-8') # Get all email addresses from recent parents (default last 3 seasons) recipients=makeemaillist(Mastersignups, famcontact, season, year, SMS=False) # add all coach emails coachemails=np.ndarray.tolist(coaches.Email.unique()) coachemails=[i for i in coachemails if '@' in i] recipients.extend(coachemails) recipients=set(recipients) recipients=list(recipients) # unique only # Create custom email message (can have multiple sports in df) if choice=='send': if 'KCtest' in kwargs: # internal only send test recipients=['<EMAIL>','<EMAIL>'] msg=MIMEText(blankmess,'plain') # msg = MIMEMultipart('alternative') # message container msg['Subject'] = emailtitle msg['From'] = '<NAME> <<EMAIL>>' msg['To'] = '<NAME> <<EMAIL>>' msg['Bcc']=','.join(recipients) # single e-mail or list # Simultaneous send to all in recipient list smtpObj.sendmail('<EMAIL>', recipients, msg.as_string()) print ('Message sent to ', ','.join(recipients)) else: # Testing mode tempstr='Test message to: '+', '.join(recipients) logfile.write(tempstr+'\n') logfile.write(blankmess) # close log file (if testing mode) if choice!='send': logfile.close() else: pass # smtpObj.quit() # close SMTP connection return def sendteammessage(teams, year, Mastersignups, famcontact, coaches, emailtitle, blankmess, **kwargs): ''' Top level messaging function for notifying families of team assignment/ CYC card + optional short-team-player-recruiting via custom e-mail; one per player currently not including SMS kwargs: choice - 'send' or 'test' recruit - T or F -- add recruiting statement for short teams mformat - not really yet used ... just sending as text not html ''' choice=kwargs.get('choice','test') if choice=='send': smtpObj = smtplib.SMTP('smtp.gmail.com', 587) # port 587 smtpObj.ehlo() # say hello smtpObj.starttls() # enable encryption for send print('Enter password for sponsors club gmail ') passwd=input() smtpObj.login('<EMAIL>', passwd) else: # testing only... open log file logfile=open('team_email_log.txt','w', encoding='utf-8') # this years signups only (later match for sport and team) Mastersignups=Mastersignups[Mastersignups['Year']==year] # drop extra co-ed K or other entries teams=teams.drop_duplicates(['Team']) myteams=pd.merge(teams, coaches, on='Coach ID', how='left', suffixes=('','_2')) # Make list of sport/team/school/graderange/coachinfo/playerlist teamlist=[] for index, row in myteams.iterrows(): # get school if '#' not in myteams.loc[index]['Team']: school='Cabrini' try: coachinfo=myteams.loc[index]['Fname']+' '+ myteams.loc[index]['Lname']+' ('+myteams.loc[index]['Email']+')' except: coachinfo='' else: school=myteams.loc[index]['Team'].split('#')[0] coachinfo='' # Get sport, team, graderange, coach info (first/last/e-mail), playerlist teamlist.append([row.Sport, row.Team, school, gradetostring(row.Graderange), coachinfo, row.Playerlist]) # Separate notification for each signup is OK for i, [sport, team, school, graderange, coach, playerlist] in enumerate(teamlist): thisteam=Mastersignups[(Mastersignups['Sport']==sport) & (Mastersignups['Team']==team)] thisteam=pd.merge(thisteam, famcontact, on='Famkey' , how='left', suffixes =('','_2')) # Cabrini team base message thisteammess=blankmess thistitle=emailtitle # Make team-specific replacements in message text and e-mail title for j, col in enumerate(['$SPORT', '$TEAMNAME', '$SCHOOL', '$GRADERANGE', '$COACH', '$PLAYERLIST']): thisteammess=thisteammess.replace(col, textwrap.fill(teamlist[i][j], width=100)) thistitle=thistitle.replace(col, teamlist[i][j]) # get coach emails recipients=getcoachemails(team, teams, coaches, **{'asst':True}) # Now get all unique team email addresses (single message to coach and team) recipients=getallteamemails(thisteam, recipients) # Create custom email message (can have multiple sports in df) if choice=='send': msg=MIMEText(thisteammess,'plain') # msg = MIMEMultipart('alternative') # message container msg['Subject'] = emailtitle msg['From'] = '<NAME> <<EMAIL>>' # part2=MIMEText(thismess_html,'alternate') msg['To']=','.join(recipients) # single e-mail or list # Simultaneous send to all in recipient list smtpObj.sendmail('<EMAIL>', recipients, msg.as_string()) print ('Message sent to ', ','.join(recipients)) if not recipients: print('No email addresses for team', team) else: # Testing mode ... just write to log w/o e-mail header and such logfile.write(thistitle+'\n') logfile.write(thisteammess+'\n') # close log file (if testing mode) if choice!='send': logfile.close() else: pass # TODO fix this attempted close # smtpObj.quit() # close SMTP connection return def makeemaillist(Mastersignups, famcontact, thisseason, thisyear, SMS=False): '''Return active and inactive families (mainly for e-mail contact list active if has player in 3 prior sport-seasons (includes current ) ''' # TODO generalize to n prior sports seasons thisyearSU=Mastersignups[Mastersignups['Year']==thisyear] # take all form lastyearSU=Mastersignups[Mastersignups['Year']==(thisyear-1)] lastyearSU=lastyearSU[lastyearSU['Grade']!=8] seasonlist=['Fall', 'Winter', 'Spring'] pos=seasonlist.index(thisseason) activeseasons=seasonlist[pos:] sportsdict={'Fall':['VB','Soccer'], 'Winter':['Basketball'],'Spring':['Track','Softball','Baseball','T-ball']} activesports=[] for i, season in enumerate(activeseasons): sportlist=sportsdict.get(season) activesports.extend(sportlist) lastyearSU=lastyearSU[lastyearSU['Sport'].isin(activesports)] # last year's signups incl. allSU=pd.concat([thisyearSU,lastyearSU],ignore_index=True) activefams=allSU.Famkey.unique() emaillist=[] match=famcontact[famcontact['Famkey'].isin(activefams)] emails=match.Email1.unique() emails=np.ndarray.tolist(emails) emaillist.extend(emails) emails=match.Email2.unique() emails=np.ndarray.tolist(emails) emaillist.extend(emails) emails=match.Email3.unique() emails=np.ndarray.tolist(emails) emaillist.extend(emails) emaillist=set(emaillist) # eliminate duplicates emaillist=list(emaillist) emaillist=[x for x in emaillist if str(x) != 'nan'] # remove nan emaillist=[x for x in emaillist if str(x) != 'none'] # remove nan if not SMS: # Drop SMS emaillist=[x for x in emaillist if not str(x).startswith('314')] emaillist=[x for x in emaillist if not str(x).startswith('1314')] return emaillist def getcabsch(sched, teams, coaches, fields, **kwargs): ''' Return Cabrini containing subset of teams from master schedule manual save... can then feed csv to sendschedule kwargs: sport -- Soccer, VB or whatever div--- division 5G school - Cabrini #TESTING sched=fullsched.copy() ''' if 'school' in kwargs: if kwargs.get('school','')=='Cabrini': # drop transfer teams w/ # teams=teams[~teams['Team'].str.contains('#')] if 'sport' in kwargs: sport=kwargs.get('sport','') teams=teams[teams['Sport']==sport] if 'div' in kwargs: div=kwargs.get('div','') grade=int(div[0]) if div[1].upper()=='G': gender='f' elif div[1].upper()=='B': gender='m' teams=teams[(teams['Grade']==grade) & (teams['Gender']==gender)] # perform any team filtering sched=sched.rename(columns={'Start':'Time','Venue':'Location','Sched Name':'Division', 'Visitor':'Away'}) teamdict=findschteams(sched, teams, coaches) cabsched=pd.DataFrame() for key, [div, schname] in teamdict.items(): match=sched[(sched['Division'].str.startswith(div)) & ((sched['Home'].str.contains(schname)) | (sched['Away'].str.contains(schname)))] if 'Cabrini' not in schname: newname=schname.split('/')[0]+'-Cabrini' match['Home']=match['Home'].str.replace(schname,newname) match['Away']=match['Away'].str.replace(schname,newname) # add team column via assign match=match.assign(Team=key) # Why isn't team col being copied? cabsched=cabsched.append(match, ignore_index=True) print(len(match),' games for team', str(schname)) cabsched['Home']=cabsched['Home'].str.replace('St Frances','') cabsched['Away']=cabsched['Away'].str.replace('St Frances','') cabsched=cabsched.sort_values(['Division','Date','Time']) # now sort myCols=['Date','Time','Day','Location','Division','Home','Away','Team'] # add col if missing from CYC schedule for miss in [i for i in myCols if i not in cabsched.columns]: print(miss,'column missing from full CYC schedule') cabsched[miss]='' cabsched=cabsched[myCols] # set in above preferred order flist=np.ndarray.tolist(cabsched.Location.unique()) missing=[s for s in flist if s not in fields['Location'].tolist()] if len(missing)>0: print('Address missing from fields table:',','.join(missing)) # convert to desired string format here (write-read cycle makes it a string anyway) # cabsched.Time=cabsched.Time.apply(lambda x:datetime.time.strftime(x, format='%I:%M %p')) #cabsched['Date']=cabsched['Date'].dt.strftime(date_format='%d-%b-%y') return cabsched def detectschchange(sched1, sched2): '''Compare two schedule versions and return unique rows (changed games) ''' # Convert both to datetime/timestamps if in string format (probably %m/%d/%Y) if type(sched1.iloc[0]['Date'])==str: try: sched1['Date']=sched1['Date'].apply(lambda x:datetime.datetime.strptime(x, "%m/%d/%Y")) except: print('Problem with string to datetime conversion for', sched1.iloc[0]['Date']) if type(sched2.iloc[0]['Date'])==str: try: sched2['Date']=sched2['Date'].apply(lambda x:datetime.datetime.strptime(x, "%m/%d/%Y")) except: print('Problem with string to datetime conversion for', sched2.iloc[0]['Date']) if type(sched2.iloc[0]['Time'])==str: try: # convert to timestamp sched2['Time']=sched2['Time'].apply(lambda x:datetime.datetime.strptime(x, "%H:%M:%S").time()) # convert to datetime.time sched2['Time']=sched2['Time'].apply(lambda x:datetime.time(x)) except: print('Problem with string to datetime conversion for', sched2.iloc[0]['Date']) # all columns by default, false drops both duplicates leaving unique rows bothsch=pd.concat([sched1,sched2]) alteredrows=bothsch.drop_duplicates(keep=False) alteredrows=alteredrows.sort_values(['Date','Time','Division']) return alteredrows def makefieldtable(df, fields): ''' Make separate table of field addresses for all fields in given team's schedule (called by sendschedule)''' venues=np.ndarray.tolist(df.Location.unique()) venues=[s.strip() for s in venues] ft=pd.DataFrame() ft['Location']=venues ft=pd.merge(ft, fields, how='left', on=['Location']) ft=ft[['Location','Address']] return ft def notifyfamilies(teams, Mastersignups, coaches, year, famcontact, emailtitle, blankmess, blanktransmess, **kwargs): ''' Top level messaging function for notifying families of team assignment/ CYC card + optional short-team-player-recruiting via custom e-mail; one per player currently not including SMS kwargs: choice - 'send' or 'test' recruit - T or F -- add recruiting statement for short teams ''' choice=kwargs.get('choice','test') if choice=='send': smtpObj = smtplib.SMTP('smtp.gmail.com', 587) # port 587 smtpObj.ehlo() # say hello smtpObj.starttls() # enable encryption for send print('Enter password for sponsors club gmail ') passwd=input() smtpObj.login('<EMAIL>', passwd) else: # testing only... open log file logfile=open('parent_email_log.txt','w', encoding='utf-8') # this years signups only (later match for sport and team) Mastersignups=Mastersignups[Mastersignups['Year']==year] myteams=pd.merge(teams, coaches, on='Coach ID', how='left', suffixes=('','_2')) # Make list of sport/team/school/graderange/coachinfo/playerlist teamlist=[] for index, row in myteams.iterrows(): # get school if '#' not in myteams.loc[index]['Team']: school='Cabrini' coachinfo=myteams.loc[index]['Fname']+' '+ myteams.loc[index]['Lname']+' ('+myteams.loc[index]['Email']+')' else: school=myteams.loc[index]['Team'].split('#')[0] coachinfo='' # Get sport, team, graderange, coach info (first/last/e-mail), playerlist teamlist.append([row.Sport.lower(), row.Team, school, gradetostring(row.Graderange), coachinfo, row.Playerlist]) # dict. with each team and its players cards=findcards() # find all player cards if not cards: # terminate if no cards are found (path error?) print("Error opening CYC card image database") return # Separate notification for each signup is OK for i, [sport, team, school, graderange, coachinfo, playerlist] in enumerate(teamlist): thisteam=Mastersignups[(Mastersignups['Sport']==sport) & (Mastersignups['Team']==team)] thisteam=pd.merge(thisteam, famcontact, on='Famkey' , how='left', suffixes =('','_2')) if '#' not in team: # Cabrini team base message thisteammess=blankmess else: # base message for transferred players thisteammess=blanktransmess thisteamtitle=emailtitle # Make team-specific replacements for j, col in enumerate(['$SPORT', '$TEAMNAME', '$SCHOOL', '$GRADERANGE', '$COACH', '$PLAYERLIST']): thisteammess=thisteammess.replace(col, textwrap.fill(teamlist[i][j], width=100)) thisteamtitle=thisteamtitle.replace(col, teamlist[i][j]) # Check if Cabrini team is short of players (max grade, sport, numplayers) try: recmess=makerecmess(team, thisteam['Grade'].max(), sport, len(thisteam)) except: recmess='' # handles empty teams during testing # Either blank inserted or generic needs more players request (same for whole team) thisteammess=thisteammess.replace('$RECRUIT','\n'+recmess) for index, row in thisteam.iterrows(): # Replace first name in e-mail title (default e-mail title is fall $SPORT for $FIRST) thistitle=thisteamtitle.replace('$FIRST', row.First) thistitle=thistitle.replace('$SPORT', row.Sport) # Check for each players CYC card if necessary (also for older transfer teams) thiscardmess=makecardmess(row, cards) # custom message for individual player on this team thismess=thisteammess.replace('$FIRST', row.First) thismess=thismess.replace('$LAST', row.Last) # message is blank if on file or not required and thismess=thismess.replace('$CYCCARD', '\n'+thiscardmess) recipients=getemailadds(row) # Create custom email message (can have multiple sports in df) if choice=='send': # add From/To/Subject to actual e-mail msg=MIMEText(blankmess,'plain') # msg = MIMEMultipart('alternative') # message container msg['Subject'] = thistitle msg['From'] = 'Cabrini Sponsors Club <<EMAIL>>' msg['To'] = 'Cabrini Sports Parents <<EMAIL>>' msg['Bcc']=','.join(recipients) # single e-mail or list # Simultaneous send to all in recipient list smtpObj.sendmail('<EMAIL>', recipients, msg.as_string()) print ('Message sent to ', ','.join(recipients)) thisemail='From: Cabrini Sponsors Club <<EMAIL>>\nTo: ' thisemail+=', '.join(recipients)+'\nSubject: '+thistitle+'\n' thisemail+=thismess thisemail=thisemail.encode('utf-8') for i,addr in enumerate(recipients): # Send message to each valid recipient in list try: smtpObj.sendmail('<EMAIL>', addr, thisemail) print ('Message sent to ', addr) except: print('Message to ', addr, ' failed.') if not recipients: print('No email address for ', row.First, row.Last) else: # Testing mode ... just write to log w/o e-mail header and such logfile.write(thistitle+'\n') logfile.write(thismess+'\n') # close log file (if testing mode) if choice!='send': logfile.close() else: pass # TODO fix this attempted close # smtpObj.quit() # close SMTP connection return def makecardmess(row, cards): ''' Determine if card is needed and add generic message to that effect (called by emailparent_tk, notifyparent) row is Series ''' cmess=("$FIRST $LAST needs a CYC ID card to play on this team and we do not have one in our files." "If your child already has this ID card, please take a picture of it and e-mail to <EMAIL>." "If you don't have one, you can get one online at: https://idcards.cycstl.net/ or at uniform night. " "For this you need: 1) picture of the child 2) child's birth certificate (or birth document) and 3) $5 fee") if str(row.Plakey) in cards: return '' # already on file # Now handle teams that don't need CYC cards (generally K or 1st) if '-' not in row.Team: # non-CYC level teams and transfer teams if '#' not in row.Team: # non-CYC cabrini team return '' # junior team doesn't require card else: # determine grade level for transfer team tempstr=row.Team tempstr=tempstr.split('#')[1][0:1] tempstr=tempstr.replace('K','0') try: grade=int(tempstr) if grade<2: # judge dowd or junior transfer team return '' except: print("couldn't determine grade for transfer team") return '' # all remaining players need a card cmess=cmess.replace('$FIRST',row.First) cmess=cmess.replace('$LAST',row.Last) cmess=textwrap.fill(cmess, width=100) return cmess '''TESTING makerecmess('teamname', 2, 'T-ball', 14) textwrap.fill(recmess, width=80) ''' def makerecmess(team, grade, sport, numplayers): ''' Figure out if team is short of players (based on grade level, sport, Cabteam or not) ''' recmess=('This team could use more players. If you know anyone who is interested,' 'please inform us at <EMAIL>.') recmess=textwrap.fill(recmess, width=100) if '#' in team: # no recruiting for transfer teams return '' if grade=='K': grade=0 else: grade=int(grade) if sport=='VB': # 8 for all grades if numplayers<8: return recmess if sport=='Soccer': if grade>=5: # 11v11 so need 16 if numplayers<16: return recmess elif grade<=4 and grade>=2: # 8v8 from 2nd to 4th so 12 is OK if numplayers<13: return recmess elif grade==1: # 7v7 so 11 is OK if numplayers<12: return recmess else: # k is 6v6 so 10 is OK if numplayers<11: return recmess if sport=='Basketball': # 5v5 for all grades so 10 is good if numplayers<11: return recmess if sport=='T-ball': # 9v9 ish so 13 is good if numplayers<14: return recmess if sport=='Baseball': # 9v9 ish so 13 is good if numplayers<14: return recmess if sport=='Softball': # 9v9 ish so 13 is good if numplayers<14: return recmess return '' def emailcoach_tk(teams, coaches, gdrivedict): ''' tk interface for e-mails to team coaches some required datasets (players, famcontact, mastersignups) are directly loaded depending on choice message types (mtypes) are: unis - send summary of missing uniforms to team coaches contacts - send contacts and current google drive link bills - send summary of outstanding bills ''' root = tk.Tk() root.title('Send e-mail to coaches') unifilename=tk.StringVar() try: unifiles=glob.glob('missingunilist*') # find most recent uniform file name if len(unifiles)>1: unifile=findrecentfile(unifiles) # return single most recent file else: unifile=unifiles[0] # find most recent missing uni file name unifilename.set(unifile) except: # handle path error unifilename.set('missingunilist.csv') billname=tk.StringVar() # file try: billfiles=glob.glob('billlist*') if len(billfiles)>1: billfile=findrecentfile(billfiles) # return single most recent file else: billfile=billfiles[0] # find most recent billlist file name billname.set(billfile) except: billname.set('billist.csv') asstbool=tk.BooleanVar() # optional labelling of elements emailtitle=tk.StringVar() # e-mail title mtype=tk.StringVar() # coach message type messfile=tk.StringVar() # text of e-mail message choice=tk.StringVar() # test or send -mail # Functions to enable/disable relevant checkboxes depending on radiobutton choice def Uniopts(): ''' Disable irrelevant checkboxes ''' billentry.config(state=tk.DISABLED) unientry.config(state=tk.NORMAL) messfile.set('coach_email_outstanding_unis.txt') # clear current team selector... this autoloads oldteams for i, val in enumerate(teamdict): teamlist[i].set(0) emailtitle.set('Return of uniforms for your Cabrini team') def Contactopts(): ''' Disable irrelevant checkboxes ''' billentry.config(state=tk.DISABLED) unientry.config(state=tk.DISABLED) messfile.set('coach_email_contacts.txt') emailtitle.set('Contact list for your Cabrini team') def Billopts(): ''' Disable irrelevant checkboxes ''' billentry.config(state=tk.NORMAL) unientry.config(state=tk.DISABLED) messfile.set('coach_email_outstanding_bills.txt') emailtitle.set('Fees still owed by your Cabrini team') def Otheropts(): ''' Display relevant choices for other generic message to parents ''' billentry.config(state=tk.DISABLED) unientry.config(state=tk.DISABLED) messfile.set('temp_message.txt') emailtitle.set('Message from Sponsors Club') # e-mail title and message file name rownum=0 tk.Label(root, text='Title for e-mail').grid(row=rownum, column=0) titleentry=tk.Entry(root, textvariable=emailtitle) titleentry.config(width=30) titleentry.grid(row=rownum, column=1) rownum+=1 tk.Label(root, text='messagefile').grid(row=rownum, column=0) messentry=tk.Entry(root, textvariable=messfile) messentry.config(width=30) messentry.grid(row=rownum, column=1) rownum+=1 # Choose counts, deriv, both or peaks plot (radio1) tk.Radiobutton(root, text='Missing uniforms', value='Unis', variable = mtype, command=Uniopts).grid(row=rownum, column=0) tk.Radiobutton(root, text='Send contact info', value='Contacts', variable = mtype, command=Contactopts).grid(row=rownum, column=1) tk.Radiobutton(root, text='Send bill info', value='Bills', variable = mtype, command=Billopts).grid(row=rownum, column=2) tk.Radiobutton(root, text='Other message', value='Other', variable = mtype, command=Otheropts).grid(row=rownum, column=3) rownum+=1 asstcheck=tk.Checkbutton(root, variable=asstbool, text='Email asst coaches?') asstcheck.grid(row=rownum, column=0) # can't do immediate grid or nonetype is returned rownum+=1 tk.Label(root, text='Bill_list file name').grid(row=rownum, column=0) billentry=tk.Entry(root, textvariable=billname) billentry.grid(row=rownum, column=1) rownum+=1 tk.Label(root, text='Missing uni file name').grid(row=rownum, column=0) unientry=tk.Entry(root, textvariable=unifilename) unientry.grid(row=rownum, column=1) rownum+=1 # insert team selector # Specific team selector section using checkboxes teamdict=shortnamedict(teams) teamlist=[] # list of tk bools for each team # Make set of bool/int variables for each team for i, val in enumerate(teamdict): teamlist.append(tk.IntVar()) if '#' not in val: teamlist[i].set(1) # Cabrini teams checked by default else: teamlist[i].set(0) # transfer team # make checkbuttons for each team for i, val in enumerate(teamdict): thisrow=i%5+1+rownum # three column setup thiscol=i//5 thisname=teamdict.get(val,'') tk.Checkbutton(root, text=thisname, variable=teamlist[i]).grid(row=thisrow, column=thiscol) rownum+=math.ceil(len(teamlist)/5)+2 # Decision buttons bottom row def chooseall(event): ''' Select all teams ''' for i, val in enumerate(teamdict): teamlist[i].set(1) def clearall(event): ''' deselect all teams ''' for i, val in enumerate(teamdict): teamlist[i].set(0) def abort(event): choice.set('abort') root.destroy() def test(event): choice.set('test') root.destroy() def KCtest(event): choice.set('KCtest') root.destroy() def send(event): choice.set('send') root.destroy() rownum+=1 d=tk.Button(root, text='All teams') d.bind('<Button-1>', chooseall) d.grid(row=rownum, column=0) d=tk.Button(root, text='Clear teams') d.bind('<Button-1>', clearall) d.grid(row=rownum, column=1) d=tk.Button(root, text='Abort') d.bind('<Button-1>', abort) d.grid(row=rownum, column=2) d=tk.Button(root, text='Test') d.bind('<Button-1>', test) d.grid(row=rownum, column=3) d=tk.Button(root, text='KCtest') d.bind('<Button-1>', KCtest) d.grid(row=rownum, column=4) d=tk.Button(root, text='Send') d.bind('<Button-1>', send) d.grid(row=rownum, column=5) root.mainloop() if choice.get()!='abort': kwargs={} if choice.get()=='KCtest': kwargs.update({'KCtest':True}) kwargs.update({'choice':'send'}) else: kwargs.update({'choice':choice.get()}) # send, KCtest (internal) or test (to log file) if asstbool.get()==True: kwargs.update({'asst':True}) # Optional send to asst. coaches if set to True emailtitle=emailtitle.get() messagefile='messages\\'+messfile.get() # Handle selection of team subsets selteams=[] for i, val in enumerate(teamdict): if teamlist[i].get()==1: selteams.append(val) # Filter teams based on checkbox input teams=teams[teams['Team'].isin(selteams)] teams=teams.drop_duplicates(['Team','Sport']) if mtype.get()=='Contacts': mtype='contacts' try: Mastersignups = pd.read_csv('master_signups.csv', encoding='cp437') players= pd.read_csv('players.csv', encoding='cp437') famcontact= pd.read_csv('family_contact.csv', encoding='cp437') kwargs.update({'SUs':Mastersignups,'players':players,'famcontact':famcontact}) except: print('Problem loading mastersignups, players, famcontact') return elif mtype.get()=='Bills': mtype='bills' try: Mastersignups = pd.read_csv('master_signups.csv', encoding='cp437') billlist=pd.read_csv(billfile.get(), encoding='cp437') kwargs.update({'bills':billlist, 'SUs':Mastersignups}) kwargs.update({'SUs':Mastersignups,'players':players,'famcontact':famcontact}) except: print('Problem loading billlist, mastersignups') return elif mtype.get()=='Unis': mtype='unis' try: missing=pd.read_csv(unifilename.get(), encoding='cp437') oldteams=pd.read_excel('Teams_coaches.xlsx', sheetname='Oldteams') # loads all old teams in list kwargs.update({'oldteams':oldteams,'missing':missing}) except: print('Problem loading missingunis, oldteams') return elif mtype.get()=='Other': # nothing special to load? pass emailcoaches(teams, coaches, mtype, emailtitle, messagefile, gdrivedict, **kwargs) return def maketextsched(sched,teams, coaches, fields, messagefile, logfile, **kwargs): ''' Concise textable game schedule for cell only people from extracted Cabrini schedule''' # Convert dates/ times from timestamp to desired string formats for proper output if type(sched.iloc[0]['Time'])==datetime.time: sched.Time=sched.Time.apply(lambda x:datetime.time.strftime(x, format='%I:%M %p')) else: print('Time format is', type(sched.iloc[0]['Time'])) if type(sched.iloc[0]['Date'])==datetime.time: sched['Date']=sched['Date'].dt.strftime(date_format='%d-%b-%y') else: print('Date format is', type(sched.iloc[0]['Date'])) if 'div' in kwargs: div=kwargs.get('div','') grade=int(div[0]) if div[1].upper()=='G': gender='f' elif div[1].upper()=='B': gender='m' teams=teams[(teams['Grade']==grade) & (teams['Gender']==gender)] log=open(logfile,'w', encoding='utf-8') myteams=pd.merge(teams, coaches, on='Coach ID', how='left', suffixes=('','_2')) # Make list of sport/team/school/graderange/coachinfo/playerlist teamlist=[] # Open generic message header with open('messages\\'+messagefile, 'r') as file: blankmess=file.read() for index, row in myteams.iterrows(): # get school if '#' not in myteams.loc[index]['Team']: school='Cabrini' try: coachinfo=myteams.loc[index]['Fname']+' '+ myteams.loc[index]['Lname']+' ('+myteams.loc[index]['Email']+')' except: coachinfo='' else: school=myteams.loc[index]['Team'].split('#')[0] coachinfo='' # Get gender if row.Gender.lower()=='f': gender='girls' elif row.Gender.lower()=='m': gender='boys' else: print('Problem finding team gender') grrang=str(myteams.loc[index]['Graderange']) if len(grrang)==2: grrang=grrang[0]+'-'+grrang[1] if grrang.endswith('2'): grrang+='nd' elif grrang.endswith('3'): grrang+='rd' else: grrang+='th' grrang=grrang.replace('0','K') # Get sport, team, graderange, coach info (first/last/e-mail), playerlist teamlist.append([myteams.loc[index]['Sport'], myteams.loc[index]['Team'], school, grrang, gender, coachinfo, myteams.loc[index]['Playerlist']]) # get dictionary of teams found/matched in CYC schedule for i, [sport, team, school, graderange, gender, coachinfo, playerlist] in enumerate(teamlist): # Either have cabrini only schedule or full CYC schedule if 'Team' in sched: thissched=sched[sched['Team']==team].copy() thissched=thissched[['Date','Time','Day', 'Location']] else: print("Couldn't find schedule for", school, str(graderange), sport, team) continue if len(thissched)==0: print('Games not found for ', team) continue # TODO construct textable message in log games='' for index, row in thissched.iterrows(): # output date, day, time, location games+=row.Date+' '+row.Day+' '+row.Time+' '+row.Location+'\n' thismess=blankmess.replace('$SCHEDULE', games) thismess=thismess.replace('$GRADERANGE', graderange) thismess=thismess.replace('$GENDER', gender) thismess=thismess.replace('$SPORT', sport) # now create/ insert location and address table thisft=makefieldtable(thissched, fields) myfields='' for index, row in thisft.iterrows(): # output date, day, time, location myfields+=row.Location+' '+row.Address+'\n' thismess=thismess.replace('$FIELDTABLE', myfields) log.write(thismess+'\n') log.close() return ''' TESTING teamnamedict=findschteams(sched, teams, coaches) ''' ''' TESTING sched=pd.read_csv('Cabrini_Bball2018_schedule.csv') sport, team, school, graderange, gender, coachinfo, playerlist=teamlist[0] i=0 recipients=['<EMAIL>','<EMAIL>'] ''' def sendschedule(teams, sched, fields, Mastersignups, coaches, year, famcontact, emailtitle, blankmess, **kwargs): ''' Top level messaging function for notifying families of team assignment/ CYC card + optional short-team-player-recruiting via custom e-mail; one per player currently not including SMS kwargs: choice - 'send' or 'test' (defaults to test) recruit - T or F -- add recruiting statement for short teams mformat - not really yet used ... just sending as text not html ''' # convert date- time from extracted schedule to desired str format # type will generally be string (if reloaded) or timestamp (if direct from prior script) ''' if already string just keep format the same, if timestamp or datetime then convert below if type(sched.iloc[0]['Time'])==str: sched.Time=pd.to_datetime(sched.Time, format='%H:%M:%S') # convert string to timestamp ''' if type(sched.iloc[0]['Time'])!=str: # Then convert timestamp to datetime to desired string format sched.Time=sched.Time.apply(lambda x:pd.to_datetime(x).strftime(format='%I:%M %p')) if type(sched.iloc[0]['Date'])==str: try: sched.Date=pd.to_datetime(sched.Date, format='%m/%d/%Y') except: try: sched.Date=pd.to_datetime(sched.Date, format='%Y-%m-%d') except: print('Difficulty converting date with format', type(sched.iloc[0]['Date'])) # convert to desired date string format sched['Date']=sched['Date'].dt.strftime(date_format='%d-%b-%y') choice=kwargs.get('choice','test') if choice=='send' or choice=='KCtest': smtpObj = smtplib.SMTP('smtp.gmail.com', 587) # port 587 smtpObj.ehlo() # say hello smtpObj.starttls() # enable encryption for send print('Enter password for sponsors club gmail ') passwd=input() smtpObj.login('<EMAIL>', passwd) else: # testing only... open log file logfile=open(cnf._OUTPUT_DIR+'\\parent_email_log.txt','w', encoding='utf-8') #%% # this years signups only (later match for sport and team) Mastersignups=Mastersignups[Mastersignups['Year']==year] # Should be only one entry per coach myteams=pd.merge(teams, coaches, on='Coach ID', how='left', suffixes=('','_2')) # Make list of sport/team/school/graderange/coachinfo/playerlist teamlist=[] for index, row in myteams.iterrows(): # get school if '#' not in myteams.loc[index]['Team']: school='Cabrini' try: coachinfo=row.Fname+' '+ row.Lname+' ('+row.Email+')' except: coachinfo='' else: school=row.Team.split('#')[0] coachinfo='' # Get gender if row.Gender.lower()=='f': gender='girl' elif row.Gender.lower()=='m': gender='boys' else: print('Problem finding team gender') # Get sport, team, graderange, coach info (first/last/e-mail), playerlist teamlist.append([row.Sport, row.Team, school, gradetostring(row.Graderange), gender, coachinfo, row.Playerlist]) # get dictionary of teams found/matched in CYC schedule teamnamedict=findschteams(sched, teams, coaches) # TESTING sport, team, school, graderange, gender, coachinfo, playerlist=teamlist[i] i=1 #%% for i, [sport, team, school, graderange, gender, coachinfo, playerlist] in enumerate(teamlist): # Either have cabrini only schedule or full CYC schedule if 'Team' in sched: thissched=sched[sched['Team']==team].copy() # shorten team name thissched['Home']=thissched['Home'].str.split('/').str[0] thissched['Away']=thissched['Away'].str.split('/').str[0] thissched['Home']=thissched['Home'].str.strip() thissched['Away']=thissched['Away'].str.strip() # Times/dates already reformatted thissched=thissched[['Date','Time','Day','Home','Away','Location']] else: # handle if an unsorted CYC schedule (not Cab only) if team in teamnamedict: [div,schname]=teamnamedict.get(team,'') thissched=getgameschedule(div,schname, sched) thissched=thissched[['Date','Time','Day','Division','Home','Away','Location']] else: print("Couldn't find schedule for", school, str(graderange), sport, team) continue if len(thissched)==0: print('Games not found for ', team) continue thisteam=Mastersignups[(Mastersignups['Sport']==sport) & (Mastersignups['Team']==team)] thisteam=pd.merge(thisteam, famcontact, on='Famkey' , how='left', suffixes =('','_2')) # Make all team-specific replacements in message body and email title thisteammess=blankmess thistitle=emailtitle # have to use caution due to $TEAMTABLE (common) and $TEAMNAME (rarely used) for j, col in enumerate(['$SPORT', '$TEAMNAME', '$SCHOOL', '$GRADERANGE', '$GENDER', '$COACH', '$PLAYERLIST']): if j!='$SPORT': val=teamlist[i][j] else: # lower-case sport name for replace val=teamlist[i][j].lower() try: thisteammess=thisteammess.replace(col, textwrap.fill(val, width=100)) thistitle=thistitle.replace(col, val) except: print("Problem with teamname", val) continue # Convert thissched to string table and insert into message thisteammess=thisteammess.replace('$SCHEDULE', thissched.to_string(index=False, justify='left')) #Make and insert field table thisft=makefieldtable(thissched, fields) thisteammess=thisteammess.replace('$FIELDTABLE', thisft.to_string(index=False, justify='left')) # Get coach emails recipients=getcoachemails(team, teams, coaches, **{'asst':True}) # Now get all unique team email addresses (single message to coach and team)...drops nan recipients=getallteamemails(thisteam, recipients) if choice=='KCtest': # internal send test recipients=['<EMAIL>','<EMAIL>'] choice='send' # Create custom email message (can have multiple sports in df) if choice=='send': try: # single simultaneous e-mail to all recipients msg=MIMEText(thisteammess,'plain') msg['Subject'] = thistitle msg['From'] = 'Cabrini Sponsors Club <<EMAIL>>' msg['To']=','.join(recipients) smtpObj.sendmail('<EMAIL>', recipients, msg.as_string()) print ('Message sent to ', ','.join(recipients)) except: print('Message to ', team, 'failed.') if not recipients: print('No email addresses for team ', team) else: # Testing mode ... just write to log w/o e-mail header and such logfile.write(thistitle+'\n') logfile.write(thisteammess+'\n') # close log file (if testing mode) if choice!='send': logfile.close() else: pass # TODO fix this attempted close # smtpObj.quit() # close SMTP connection #%% return # TESTING #%% def makegcals(sched, teams, coaches, fields, season, year, duration=1, **kwargs): ''' Turn standard CYC calendar into google calendar description: 1-2 girls soccer vs opponent kwargs: div - get only calendar for given division school - Cabrini ... drop transfer teams w/ # splitcals - separate calendar for each team (default True), ''' #TODO ... Test after alteration of address field if 'school' in kwargs: if kwargs.get('school','')=='Cabrini': # drop transfer teams w/ # teams=teams[~teams['Team'].str.contains('#')] if 'div' in kwargs: div=kwargs.get('div','') grade=int(div[0]) if div[1].upper()=='G': gender='f' elif div[1].upper()=='B': gender='m' teams=teams[(teams['Grade']==grade) & (teams['Gender']==gender)] # ensure correct formats for separate date and time columns if type(sched.iloc[0]['Date'])==str: try: # format could be 10/18/2018 0:00 sched.Date=sched.Date.str.split(' ').str[0] sched.Date=pd.to_datetime(sched.Date, format='%m/%d/%Y') except: pass try: sched.Date=pd.to_datetime(sched.Date, format='%m/%d/%Y') except: pass try: sched.Date=pd.to_datetime(sched.Date, format='%Y-%m-%d') except: print('Problem converting date format of ', sched.iloc[0]['Date']) # gcal needs %m/%d/%y (not zero padded) sched['Date']=sched['Date'].dt.strftime(date_format='%m/%d/%Y') ''' Reformat of time shouldn't be required i.e. 4:30 PM if type(sched.iloc[0]['Time'])==str: try: sched.Time=pd.to_datetime(sched.Time, format='%H:%M %p') except: try: sched.Time=pd.to_datetime(sched.Time, format='%H:%M:%S') # convert string to timestamp except: print('Failed conversion of time column... check format') ''' # Common reformatting of all gcals sched=sched.rename(columns={'Date':'Start Date','Time':'Start Time'}) # Calculate end time while still a timestamp sched['End Time']=pd.to_datetime(sched['Start Time']) + datetime.timedelta(hours=1) sched['End Time']=pd.to_datetime(sched['End Time']) sched['End Time']=sched['End Time'].apply(lambda x:pd.to_datetime(x).strftime('%I:%M %p')) # Then convert timestamp to datetime to desired string format sched['Start Time']=sched['Start Time'].apply(lambda x:
pd.to_datetime(x)
pandas.to_datetime
# -*- coding: utf-8 -*- """ Created on Tue Nov 20 14:13:48 2018 @author: <NAME> Read and assemble corpus annotations (phone, word, speaker, etc.) into a nice pandas dataframe with one entry per phone in the corpus. Main function is read. """ import numpy as np import pandas as pd import io import os.path as path import yaml def fix_word_column(alignment_file, out_file, verbose=False): """ There is a bug in the abkhazia code generating the "Word" column of the alignment file. We fix it post-hoc here. Input: - alignment_file: buggy file - out_file: the path where we'll save the corrected alignment file. """ # go through the lines and whenever we find a <noise> label bring # all the following word column content for the current utterance up by one line. columns = ['utt_id', 'start', 'stop', 'confidence', 'phone', 'word', 'orig_word'] d = {col : [] for col in columns} with io.open(alignment_file) as fh: curr_utt = None shift = 0 for i, line in enumerate(fh): if verbose and i % 1000000 == 0: print("Processed {} phones".format(i)) tokens = line.strip().split() assert len(tokens) >= 5, tokens utt_id = tokens[0] if curr_utt != utt_id: for _ in range(shift): d['word'].append(None) shift = 0 curr_utt = utt_id for i, col in enumerate(columns[:-2]): d[col].append(tokens[i]) if len(tokens) > 5: assert len(tokens) == 6, tokens word = tokens[5] d['orig_word'].append(word) if word == '<noise>': shift+=1 else: d['word'].append(word) else: d['word'].append(None) d['orig_word'].append(None) # print corrected version to out_file with io.open(out_file, 'w') as fh: for utt, start, stop, conf, phon, word in zip(*[d[col] for col in columns[:-1]]): if word is None: fh.write("{} {} {} {} {}\n".format(utt, start, stop, conf, phon)) else: fh.write("{} {} {} {} {} {}\n".format(utt, start, stop, conf, phon, word)) def load_silences(silence_file): with io.open(silence_file) as fh: silences = [line.strip() for line in fh] return silences def remove_trailing_silences(alignment_df, silences, verbose=0): # remove trailing silences/noise at the end of utterances if verbose: print("Looking for utterance-final silences in {} utterances".format(len(alignment_df.groupby('utt')))) trailing_sil_indices = [] for i, (utt, utt_df) in enumerate(alignment_df.groupby('utt')): if verbose and i % 10000 == 0: print("Done {} utterances".format(i)) nb_words = np.max(utt_df['word_pos']) + 1 not_last_word_df = utt_df[utt_df['word_pos'] < nb_words-1] last_word_df = utt_df[utt_df['word_pos'] == nb_words-1] last_word_df = last_word_df.sort_values('phone_pos', ascending=False) non_silences = np.where([not(e in silences) for e in last_word_df['phone']])[0] assert len(non_silences) > 0, (utt_df, last_word_df) trailing_sil_indices = trailing_sil_indices + list(last_word_df.index[:non_silences[0]]) trailing_sil_indices.sort() if verbose: print("Removing {} utterance-final silences".format(len(trailing_sil_indices))) alignment_df = alignment_df.drop(trailing_sil_indices) return alignment_df def load_alignment(alignment_file, silences, verbose=0): """Create a DataFrame containing alignment information""" # utt_position not considered because I'm not sure if the order of the utterances in the alignment file # make any particular sense in the first place alignment = {'utt': [], 'start': [], 'stop': [], 'phone': [], 'phone_pos': [], 'word': [], 'word_pos': [], 'prev_phone': [], 'next_phone': [], 'confidence': []} phone_seq = [] # collect phone sequence with utterance break markers to fill prev-phone and next-phone with io.open(alignment_file) as fh: current_utt = None for i, line in enumerate(fh): if verbose and i % 1000000 == 0: print("Processed {} phones".format(i)) tokens = line.strip().split() assert len(tokens) in [5, 6], tokens utt, tokens = tokens[0], tokens[1:] if utt != current_utt: if alignment['prev_phone']: del alignment['prev_phone'][-1] alignment['prev_phone'].append('SIL') alignment['next_phone'].append('SIL') add_next_phone = False current_utt = utt if len(tokens) == 5: word_position = 0 else: word_position = -1 # Silence or noise at utterance beginning word = None phone_position = 0 if len(tokens) == 5: tokens, word = tokens[:-1], tokens[-1] word_position = word_position + 1 phone_position = 0 else: phone_position = phone_position + 1 start, stop, confidence_score, phone = tokens start, stop, confdence_score = float(start), float(stop), float(confidence_score) alignment['utt'].append(utt) alignment['start'].append(start) alignment['stop'].append(stop) alignment['phone'].append(phone) alignment['phone_pos'].append(phone_position) alignment['word'].append(word) alignment['word_pos'].append(word_position) alignment['prev_phone'].append(phone) if add_next_phone: alignment['next_phone'].append(phone) else: add_next_phone = True alignment['confidence'].append(confidence_score) phone_seq.append(phone) alignment['prev_phone'] = alignment['prev_phone'][:-1] alignment['next_phone'] = alignment['next_phone'][1:] + ['SIL'] df = pd.DataFrame(alignment) # drop utterance-initial silences ind = df.index[[e is None for e in df['word']]] if verbose: print("Removing {} utterance-initial silences".format(len(ind))) df = df.drop(ind) # drop utterance-final silences df = remove_trailing_silences(df, silences, verbose) return df def get_utterances(segments_file): """get the list of utt_ids""" with io.open(segments_file) as fh: utts = [line.strip().split()[0] for line in fh] return utts def filter_utts(alignment_df, utts): # return relevant part of alignment alignment_df = pd.concat([df for utt, df in alignment_df.groupby('utt') if utt in utts]) return alignment_df def add_speaker_info(corpus, utt2spk_file): spk_df = {'utt': [], 'spk': []} with io.open(utt2spk_file) as fh: for line in fh: utt, spk = line.strip().split() spk_df['utt'].append(utt) spk_df['spk'].append(spk) spk_df = pd.DataFrame(spk_df) corpus =
pd.merge(corpus, spk_df, on='utt')
pandas.merge
#!/usr/bin/env python # coding: utf-8 # I'm going to share YET ANOTHER simple but working tsp solutions optimization technique. # # The idea is straightforward: if you have THREE cities in the path that are 'close' (in distance terms) to each other you can try to split the path by them and try different permutations of resulting chunks hoping that the decrease of the total penalty in this part of the path will be greater than the increase of the length caused by the permutation itself. # # Also instead of just permutating the chunks of the path you can try to revert the order of some chunks but I won't do it in this kernel. # 1. Import all that we need. # In[ ]: import numpy as np import pandas as pd import numba from sympy import isprime, primerange from math import sqrt from sklearn.neighbors import KDTree from tqdm import tqdm from itertools import combinations, permutations from functools import lru_cache # 2. Read input data and define some arrays that we'll need later. # In[ ]: cities =
pd.read_csv('../input/traveling-santa-2018-prime-paths/cities.csv', index_col=['CityId'])
pandas.read_csv
from nose.plugins.attrib import attr import os import numpy as np import pandas as pd from pandas import Series, DataFrame import trackpy from trackpy import plots from trackpy.utils import suppress_plotting, fit_powerlaw from trackpy.tests.common import StrictTestCase import nose # Quiet warnings about Axes not being compatible with tight_layout import warnings warnings.filterwarnings("ignore", message="This figure includes Axes that are not compatible with tight_layout") path, _ = os.path.split(os.path.abspath(__file__)) try: import pims except ImportError: PIMS_AVAILABLE = False else: PIMS_AVAILABLE = True def _skip_if_no_pims(): if not PIMS_AVAILABLE: raise nose.SkipTest('PIMS not installed. Skipping.') class TestPlots(StrictTestCase): def setUp(self): # older matplotlib may raise an invalid error np.seterr(invalid='ignore') self.sparse = pd.read_pickle(os.path.join(path, 'data', 'sparse_trajectories.df')) @attr('slow') def test_labeling_sparse_trajectories(self): suppress_plotting() plots.plot_traj(self.sparse, label=True) def test_ptraj_empty(self): suppress_plotting() f = lambda: plots.plot_traj(DataFrame(columns=self.sparse.columns)) self.assertRaises(ValueError, f) def test_ptraj_unicode_labels(self): # smoke test plots.plot_traj(self.sparse, mpp=0.5) def test_ptraj_t_column(self): suppress_plotting() df = self.sparse.copy() cols = list(df.columns) cols[cols.index('frame')] = 'arbitrary name' df.columns = cols plots.plot_traj(df, t_column='arbitrary name') def test_annotate(self): suppress_plotting() f = DataFrame({'x': [0, 1], 'y': [0, 1], 'frame': [0, 0], 'mass': [10, 20]}) frame = np.random.randint(0, 255, (5, 5)) # Basic usage plots.annotate(f, frame) plots.annotate(f, frame, color='r') # Coloring by threshold plots.annotate(f, frame, split_category='mass', split_thresh=15, color=['r', 'g']) plots.annotate(f, frame, split_category='mass', split_thresh=[15], color=['r', 'g']) plots.annotate(f, frame, split_category='mass', split_thresh=[15, 25], color=['r', 'g', 'b']) # Check that bad parameters raise an error. # Too many colors bad_call = lambda: plots.annotate( f, frame, split_category='mass', split_thresh=15, color=['r', 'g', 'b']) self.assertRaises(ValueError, bad_call) # Not enough colors bad_call = lambda: plots.annotate( f, frame, split_category='mass', split_thresh=15, color=['r']) self.assertRaises(ValueError, bad_call) bad_call = lambda: plots.annotate( f, frame, split_category='mass', split_thresh=15, color='r') self.assertRaises(ValueError, bad_call) # Nonexistent column name for split_category bad_call = lambda: plots.annotate( f, frame, split_category='not a column', split_thresh=15, color='r') self.assertRaises(ValueError, bad_call) # 3D image bad_call = lambda: plots.annotate(f, frame[np.newaxis, :, :]) self.assertRaises(ValueError, bad_call) def test_annotate3d(self): _skip_if_no_pims() suppress_plotting() f = DataFrame({'x': [0, 1], 'y': [0, 1], 'z': [0, 1], 'frame': [0, 0], 'mass': [10, 20]}) frame = np.random.randint(0, 255, (5, 5, 5)) plots.annotate3d(f, frame) plots.annotate3d(f, frame, color='r') # 2D image bad_call = lambda: plots.annotate3d(f, frame[0]) self.assertRaises(ValueError, bad_call) # Rest of the functionality is covered by annotate tests def test_fit_powerlaw(self): # smoke test suppress_plotting() em =
Series([1, 2, 3], index=[1, 2, 3])
pandas.Series
import json import os import random from random import sample import numpy as np import numpy.random import re from collections import Counter import inspect import pandas as pd import matplotlib.pyplot as plt import requests from IPython.display import HTML import seaborn as sns import networkx as nx from pylab import rcParams try: from wordcloud import WordCloud except ImportError: print("wordcloud er ikke installert, kan ikke lage ordskyer") #************** For defining wordbag search def dict2pd(dictionary): res = pd.DataFrame.from_dict(dictionary).fillna(0) s = (res.mean(axis=0)) s = s.rename('snitt') res = res.append(s) return res.sort_values(by='snitt', axis=1, ascending=False).transpose() def def2dict(ddef): res = dict() defs = ddef.split(';') for d in defs: lex = d.split(':') if len(lex) == 2: #print('#'.join(lex)) hyper = lex[0].strip() occurrences = [x.strip() for x in lex[1].split(',')] res[hyper] = occurrences for x in res: for y in res[x]: if y.capitalize() not in res[x]: res[x].append(y.capitalize()) return res def wordbag_eval(wordbag, urns): if type(urns) is list: if isinstance(urns[0], list): urns = [u[0] for u in urns] else: urns = urns else: urns = [urns] param = dict() param['wordbags'] = wordbag param['urns'] = urns r = requests.post("https://api.nb.no/ngram/wordbags", json = param) return dict2pd(r.json()) def wordbag_eval_para(wordbag, urns): if type(urns) is list: if isinstance(urns[0], list): urns = [u[0] for u in urns] else: urns = urns else: urns = [urns] param = dict() param['wordbags'] = wordbag param['urns'] = urns r = requests.post("https://api.nb.no/ngram/wordbags_para", json = param) return r.json() def get_paragraphs(urn, paras): """Return paragraphs for urn""" param = dict() param['paragraphs'] = paras param['urn'] = urn r = requests.get("https://api.nb.no/ngram/paragraphs", json=param) return dict2pd(r.json()) ### ******************* wordbag search end def ner(text = None, dist=False): """Analyze text for named entities - set dist = True will return the four values that go into decision""" r = [] if text != None: r = requests.post("https://api.nb.no/ngram/ner", json={'text':text,'dist':dist}) return r.json() #**** names **** def check_navn(navn, limit=2, remove='Ja Nei Nå Dem De Deres Unnskyld Ikke Ah Hmm <NAME> Jaja Jaha'.split()): """Removes all items in navn with frequency below limit and words in all case as well as all words in list 'remove'""" r = {x:navn[x] for x in navn if navn[x] > limit and x.upper() != x and not x in remove} return r def sentences(urns, num=300): if isinstance(urns[0], list): urns = [str(x[0]) for x in urns] params = {'urns':urns, 'num':num} res = requests.get("https://api.nb.no/ngram/sentences", params=params) return res.json() def names(urn, ratio = 0.3, cutoff = 2): """ Return namens in book with urn. Returns uni- , bi-, tri- and quadgrams """ if type(urn) is list: urn = urn[0] r = requests.get('https://api.nb.no/ngram/names', json={'urn':urn, 'ratio':ratio, 'cutoff':cutoff}) x = r.json() result = ( Counter(x[0][0]), Counter({tuple(x[1][i][0]):x[1][i][1] for i in range(len(x[1]))}), Counter({tuple(x[2][i][0]):x[2][i][1] for i in range(len(x[2]))}), Counter({tuple(x[3][i][0]):x[3][i][1] for i in range(len(x[3]))}) ) return result def name_graph(name_struct): m = [] for n in name_struct[0]: m.append(frozenset([n])) for n in name_struct[1:]: m += [frozenset(x) for x in n] G = [] for x in m: for y in m: if x < y: G.append((' '.join(x), ' '.join(y))) N = [] for x in m: N.append(' '.join(x)) Gg = nx.Graph() Gg.add_nodes_from(N) Gg.add_edges_from(G) return Gg def aggregate_urns(urnlist): """Sum up word frequencies across urns""" if isinstance(urnlist[0], list): urnlist = [u[0] for u in urnlist] r = requests.post("https://api.nb.no/ngram/book_aggregates", json={'urns':urnlist}) return r.json() # Norweigan word bank def word_variant(word, form): """ Find alternative form for a given word form, e.g. word_variant('spiste', 'pres-part') """ r = requests.get("https://api.nb.no/ngram/variant_form", params={'word':word, 'form':form}) return r.json() def word_paradigm(word): """ Find alternative form for a given word form, e.g. word_variant('spiste', 'pres-part') """ r = requests.get("https://api.nb.no/ngram/paradigm", params = {'word': word}) return r.json() def word_form(word): """ Find alternative form for a given word form, e.g. word_variant('spiste', 'pres-part') """ r = requests.get("https://api.nb.no/ngram/word_form", params = {'word': word}) return r.json() def word_lemma(word): """ Find lemma form for a given word form """ r = requests.get("https://api.nb.no/ngram/word_lemma", params = {'word': word}) return r.json() def word_freq(urn, words): """ Find frequency of words within urn """ params = {'urn':urn, 'words':words} r = requests.post("https://api.nb.no/ngram/freq", json=params) return dict(r.json()) def tot_freq(words): """ Find total frequency of words """ params = {'words':words} r = requests.post("https://api.nb.no/ngram/word_frequencies", json=params) return dict(r.json()) def book_count(urns): params = {'urns':urns} r = requests.post("https://api.nb.no/ngram/book_count", json=params) return dict(r.json()) def sttr(urn, chunk=5000): r = requests.get("https://api.nb.no/ngram/sttr", json = {'urn':urn, 'chunk':chunk}) return r.json() def totals(top=200): r = requests.get("https://api.nb.no/ngram/totals", json={'top':top}) return dict(r.json()) def navn(urn): if type(urn) is list: urn = urn[0] r = requests.get('https://api.nb.no/ngram/tingnavn', json={'urn':urn}) return dict(r.json()) def digibokurn_from_text(T): """Return URNs as 13 digits (any sequence of 13 digits is counted as an URN)""" return re.findall("(?<=digibok_)[0-9]{13}", T) def urn_from_text(T): """Return URNs as 13 digits (any sequence of 13 digits is counted as an URN)""" return re.findall("[0-9]{13}", T) def metadata(urn=None): urns = pure_urn(urn) #print(urns) r = requests.post("https://api.nb.no/ngram/meta", json={'urn':urns}) return r.json() def pure_urn(data): """Convert URN-lists with extra data into list of serial numbers. Args: data: May be a list of URNs, a list of lists with URNs as their initial element, or a string of raw texts containing URNs Any pandas dataframe or series. Urns must be in the first column of dataframe. Returns: List[str]: A list of URNs. Empty list if input is on the wrong format or contains no URNs """ korpus_def = [] if isinstance(data, list): if not data: # Empty list korpus_def = [] if isinstance(data[0], list): # List of lists try: korpus_def = [str(x[0]) for x in data] except IndexError: korpus_def = [] else: # Assume data is already a list of URNs korpus_def = [str(int(x)) for x in data] elif isinstance(data, str): korpus_def = [str(x) for x in urn_from_text(data)] elif isinstance(data, (int, np.integer)): korpus_def = [str(data)] elif isinstance(data, pd.DataFrame): col = data.columns[0] urns = pd.to_numeric(data[col]) korpus_def = [str(int(x)) for x in urns.dropna()] elif isinstance(data, pd.Series): korpus_def = [str(int(x)) for x in data.dropna()] return korpus_def #### N-Grams from fulltext updated def unigram(word, period=(1950, 2020), media = 'bok', ddk=None, topic=None, gender=None, publisher=None, lang=None, trans=None): r = requests.get("https://api.nb.no/ngram/unigrams", params={ 'word':word, 'ddk':ddk, 'topic':topic, 'gender':gender, 'publisher':publisher, 'lang':lang, 'trans':trans, 'period0':period[0], 'period1':period[1], 'media':media }) return frame(dict(r.json())) def bigram(first,second, period=(1950, 2020), media = 'bok', ddk=None, topic=None, gender=None, publisher=None, lang=None, trans=None): r = requests.get("https://api.nb.no/ngram/bigrams", params={ 'first':first, 'second':second, 'ddk':ddk, 'topic':topic, 'gender':gender, 'publisher':publisher, 'lang':lang, 'trans':trans, 'period0':period[0], 'period1':period[1], 'media':media }) return frame(dict(r.json())) def book_counts(period=(1800, 2050)): r = requests.get("https://api.nb.no/ngram/book_counts", params={ 'period0':period[0], 'period1':period[1], }) return frame(dict(r.json())) #### def difference(first, second, rf, rs, years=(1980, 2000),smooth=1, corpus='bok'): """Compute difference of difference (first/second)/(rf/rs)""" try: a_first = nb_ngram(first, years=years, smooth=smooth, corpus=corpus) a_second = nb_ngram(second, years=years, smooth=smooth, corpus=corpus) a = a_first.join(a_second) b_first = nb_ngram(rf, years=years, smooth=smooth, corpus=corpus) b_second = nb_ngram(rs, years=years, smooth=smooth, corpus=corpus) if rf == rs: b_second.columns = [rs + '2'] b = b_first.join(b_second) s_a = a.mean() s_b = b.mean() f1 = s_a[a.columns[0]]/s_a[a.columns[1]] f2 = s_b[b.columns[0]]/s_b[b.columns[1]] res = f1/f2 except: res = 'Mangler noen data - har bare for: ' + ', '.join([x for x in a.columns.append(b.columns)]) return res def df_combine(array_df): """Combine one columns dataframes""" import pandas as pd cols = [] for i in range(len(a)): #print(i) if array_df[i].columns[0] in cols: array_df[i].columns = [array_df[i].columns[0] + '_' + str(i)] cols.append(array_df[i].columns[0]) return pd.concat(a, axis=1, sort=True) def col_agg(df, col='sum'): c = df.sum(axis=0) c = pd.DataFrame(c) c.columns = [col] return c def row_agg(df, col='sum'): c = df.sum(axis=1) c = pd.DataFrame(c) c.columns = [col] return c def get_freq(urn, top=50, cutoff=3): """Get frequency list for urn""" if isinstance(urn, list): urn = urn[0] r = requests.get("https://api.nb.no/ngram/urnfreq", json={'urn':urn, 'top':top, 'cutoff':cutoff}) return Counter(dict(r.json())) ####=============== GET URNS ==================########## def book_corpus(words = None, author = None, title = None, subtitle = None, ddk = None, subject = None, period=(1100, 2020), gender=None, lang = None, trans= None, limit=20 ): return frame(book_urn(words, author, title, subtitle, ddk, subject, period, gender, lang, trans, limit), "urn author title year".split()) def book_urn(words = None, author = None, title = None, subtitle = None, ddk = None, subject = None, period=(1100, 2020), gender=None, lang = None, trans= None, limit=20 ): """Get URNs for books with metadata""" frame = inspect.currentframe() args, _, _, values = inspect.getargvalues(frame) query = {i:values[i] for i in args if values[i] != None and i != 'period'} query['year'] = period[0] query['next'] = period[1] - period[0] return get_urn(query) def unique_urns(korpus, newest=True): author_title = {(c[1],c[2]) for c in korpus} corpus = {(c[0], c[1]):[d for d in korpus if c[0] == d[1] and c[1]==d[2]] for c in author_title } for c in corpus: corpus[c].sort(key=lambda c: c[3]) if newest == True: res = [corpus[c][-1] for c in corpus] else: res = [corpus[c][0] for c in corpus] return res def refine_book_urn(urns = None, words = None, author = None, title = None, ddk = None, subject = None, period=(1100, 2020), gender=None, lang = None, trans= None, limit=20 ): """Refine URNs for books with metadata""" # if empty urns nothing to refine if urns is None or urns == []: return [] # check if urns is a metadata list, and pick out first elements if that is the case if isinstance(urns[0], list): urns = [x[0] for x in urns] frame = inspect.currentframe() args, _, _, values = inspect.getargvalues(frame) query = {i:values[i] for i in args if values[i] != None and i != 'period' and i != 'urns'} query['year'] = period[0] query['next'] = period[1] - period[0] #print(query) return refine_urn(urns, query) def best_book_urn(word = None, author = None, title = None, ddk = None, subject = None, period=(1100, 2020), gender=None, lang = None, trans= None, limit=20 ): """Get URNs for books with metadata""" if word is None: return [] frame = inspect.currentframe() args, _, _, values = inspect.getargvalues(frame) query = {i:values[i] for i in args if values[i] != None and i != 'period' and i != 'word'} query['year'] = period[0] query['next'] = period[1] - period[0] return get_best_urn(word, query) def get_urn(metadata=None): """Get urns from metadata""" if metadata is None: metadata = {} if not ('next' in metadata or 'neste' in metadata): metadata['next'] = 100 if not 'year' in metadata: metadata['year'] = 1900 r = requests.get('https://api.nb.no/ngram/urn', json=metadata) return r.json() def refine_urn(urns, metadata=None): """Refine a list urns using extra information""" if metadata is None: metadata = {} metadata['urns'] = urns if not ('words' in metadata): metadata['words'] = [] if not ('next' in metadata or 'neste' in metadata): metadata['next'] = 520 if not 'year' in metadata: metadata['year'] = 1500 r = requests.post('https://api.nb.no/ngram/refineurn', json=metadata) return r.json() def get_best_urn(word, metadata=None): """Get the best urns from metadata containing a specific word""" metadata['word'] = word if not ('next' in metadata or 'neste' in metadata): metadata['next'] = 600 if not 'year' in metadata: metadata['year'] = 1500 r = requests.get('https://api.nb.no/ngram/best_urn', json=metadata) return r.json() def get_papers(top=5, cutoff=5, navn='%', yearfrom=1800, yearto=2020, samplesize=100): """Get newspapers""" div = lambda x, y: (int(x/y), x % y) chunks = 20 # split samplesize into chunks, go through the chunks and then the remainder (first, second) = div(samplesize, chunks) r = [] # collect chunkwise for i in range(first): r += requests.get("https://api.nb.no/ngram/avisfreq", json={'navn':navn, 'top':top, 'cutoff':cutoff, 'yearfrom':yearfrom, 'yearto':yearto,'samplesize':chunks} ).json() # collect the remainder r += requests.get("https://api.nb.no/ngram/avisfreq", json={'navn':navn, 'top':top, 'cutoff':cutoff, 'yearfrom':yearfrom, 'yearto':yearto,'samplesize':second} ).json() return [dict(x) for x in r] def urn_coll(word, urns=[], after=5, before=5, limit=1000): """Find collocations for word in a set of book URNs. Only books at the moment""" if isinstance(urns[0], list): # urns assumed to be list of list with urn-serial as first element urns = [u[0] for u in urns] r = requests.post("https://api.nb.no/ngram/urncoll", json={'word':word, 'urns':urns, 'after':after, 'before':before, 'limit':limit}) res = pd.DataFrame.from_dict(r.json(), orient='index') if not res.empty: res = res.sort_values(by=res.columns[0], ascending = False) return res def urn_coll_words(words, urns=None, after=5, before=5, limit=1000): """Find collocations for a group of words within a set of books given by a list of URNs. Only books at the moment""" coll = pd.DataFrame() if urns != None: if isinstance(urns[0], list): # urns assumed to be list of list with urn-serial as first element urns = [u[0] for u in urns] colls = Counter() if isinstance(words, str): words = words.split() res = Counter() for word in words: try: res += Counter( requests.post( "https://api.nb.no/ngram/urncoll", json={ 'word':word, 'urns':urns, 'after':after, 'before':before, 'limit':limit} ).json() ) except: True coll = pd.DataFrame.from_dict(res, orient='index') if not coll.empty: coll = coll.sort_values(by=coll.columns[0], ascending = False) return coll def get_aggregated_corpus(urns, top=0, cutoff=0): res = Counter() if isinstance(urns[0], list): # urns assumed to be list of list with urn-serial as first element urns = [u[0] for u in urns] for u in urns: #print(u) res += get_freq(u, top = top, cutoff = cutoff) return pd.DataFrame.from_dict(res, orient='index').sort_values(by=0, ascending = False) def compare_word_bags(bag_of_words, another_bag_of_words, first_freq = 0, another_freq = 1, top=100, first_col = 0, another_col= 0): """Compare two columns taken from two or one frame. Parameters x_freq are frequency limits used to cut down candidate words from the bag of words. Compare along the columns where first_col and another_col are column numbers. Typical situation is that bag_of_words is a one column frame and another_bag_of_words is another one column frame. When the columns are all from one frame, just change column numbers to match the columns""" diff = bag_of_words[bag_of_words > first_freq][bag_of_words.columns[first_col]]/another_bag_of_words[another_bag_of_words > another_freq][another_bag_of_words.columns[another_col]] return frame(diff, 'diff').sort_values(by='diff', ascending=False)[:top] def collocation( word, yearfrom=2010, yearto=2018, before=3, after=3, limit=1000, corpus='avis', lang='nob', title='%', ddk='%', subtitle='%'): """Defined collects frequencies for a given word""" data = requests.get( "https://api.nb.no/ngram/collocation", params={ 'word':word, 'corpus':corpus, 'yearfrom':yearfrom, 'before':before, 'after':after, 'limit':limit, 'yearto':yearto, 'title':title, 'ddk':ddk, 'subtitle':subtitle}).json() return pd.DataFrame.from_dict(data['freq'], orient='index') def collocation_data(words, yearfrom = 2000, yearto = 2005, limit = 1000, before = 5, after = 5, title = '%', corpus='bok'): """Collocation for a set of words sum up all the collocations words is a list of words or a blank separated string of words""" import sys a = dict() if isinstance(words, str): words = words.split() for word in words: print(word) try: a[word] = collocation( word, yearfrom = yearfrom, yearto = yearto, limit = limit, corpus = corpus, before = before, after = after, title = title ) a[word].columns = [word] except: print(word, ' feilsituasjon', sys.exc_info()) result = pd.DataFrame() for w in a: result = result.join(a[w], how='outer') return pd.DataFrame(result.sum(axis=1)).sort_values(by=0, ascending=False) class CollocationCorpus: from random import sample def __init__(self, corpus = None, name='', maximum_texts = 500): urns = pure_urn(corpus) if len(urns) > maximum_texts: selection = random(urns, maximum_texts) else: selection = urns self.corpus_def = selection self.corpus = get_aggregated_corpus(self.corpus_def, top=0, cutoff=0) def summary(self, head=10): info = { 'corpus_definition':self.corpus[:head], 'number_of_words':len(self.corpus) } return info def collocation_old(word, yearfrom=2010, yearto=2018, before=3, after=3, limit=1000, corpus='avis'): data = requests.get( "https://api.nb.no/ngram/collocation", params={ 'word':word, 'corpus':corpus, 'yearfrom':yearfrom, 'before':before, 'after':after, 'limit':limit, 'yearto':yearto}).json() return pd.DataFrame.from_dict(data['freq'], orient='index') def heatmap(df, color='green'): return df.fillna(0).style.background_gradient(cmap=sns.light_palette(color, as_cmap=True)) def get_corpus_text(urns, top = 0, cutoff=0): k = dict() if isinstance(urns, list): # a list of urns, or a korpus with urns as first element if isinstance(urns[0], list): urns = [u[0] for u in urns] else: # assume it is a single urn, text or number urns = [urns] for u in urns: #print(u) k[u] = get_freq(u, top = top, cutoff = cutoff) df = pd.DataFrame(k) res = df.sort_values(by=df.columns[0], ascending=False) return res def normalize_corpus_dataframe(df): colsums = df.sum() for x in colsums.index: #print(x) df[x] = df[x].fillna(0)/colsums[x] return True def show_korpus(korpus, start=0, size=4, vstart=0, vsize=20, sortby = ''): """Show corpus as a panda dataframe start = 0 indicates which dokument to show first, dataframe is sorted according to this size = 4 how many documents (or columns) are shown top = 20 how many words (or rows) are shown""" if sortby != '': val = sortby else: val = korpus.columns[start] return korpus[korpus.columns[start:start+size]].sort_values(by=val, ascending=False)[vstart:vstart + vsize] def aggregate(korpus): """Make an aggregated sum of all documents across the corpus, here we use average""" return pd.DataFrame(korpus.fillna(0).mean(axis=1)) def convert_list_of_freqs_to_dataframe(referanse): """The function get_papers() returns a list of frequencies - convert it""" res = [] for x in referanse: res.append( dict(x)) result = pd.DataFrame(res).transpose() normalize_corpus_dataframe(result) return result def get_corpus(top=0, cutoff=0, navn='%', corpus='avis', yearfrom=1800, yearto=2020, samplesize=10): if corpus == 'avis': result = get_papers(top=top, cutoff=cutoff, navn=navn, yearfrom=yearfrom, yearto=yearto, samplesize=samplesize) res = convert_list_of_freqs_to_dataframe(result) else: urns = get_urn({'author':navn, 'year':yearfrom, 'neste':yearto-yearfrom, 'limit':samplesize}) res = get_corpus_text([x[0] for x in urns], top=top, cutoff=cutoff) return res class Cluster: def __init__(self, word = '', filename = '', period = (1950,1960) , before = 5, after = 5, corpus='avis', reference = 200, word_samples=1000): if word != '': self.collocates = collocation(word, yearfrom=period[0], yearto = period[1], before=before, after=after, corpus=corpus, limit=word_samples) self.collocates.columns = [word] if type(reference) is pd.core.frame.DataFrame: reference = reference elif type(reference) is int: reference = get_corpus(yearfrom=period[0], yearto=period[1], corpus=corpus, samplesize=reference) else: reference = get_corpus(yearfrom=period[0], yearto=period[1], corpus=corpus, samplesize=int(reference)) self.reference = aggregate(reference) self.reference.columns = ['reference_corpus'] self.word = word self.period = period self.corpus = corpus else: if filename != '': self.load(filename) def cluster_set(self, exponent=1.1, top = 200, aslist=True): combo_corp = self.reference.join(self.collocates, how='outer') normalize_corpus_dataframe(combo_corp) korpus = compute_assoc(combo_corp, self.word, exponent) korpus.columns = [self.word] if top <= 0: res = korpus.sort_values(by=self.word, ascending=False) else: res = korpus.sort_values(by=self.word, ascending=False).iloc[:top] if aslist == True: res = HTML(', '.join(list(res.index))) return res def add_reference(self, number=20): ref = get_corpus(yearfrom=self.period[0], yearto=self.period[1], samplesize=number) ref = aggregate(ref) ref.columns = ['add_ref'] normalize_corpus_dataframe(ref) self.reference = aggregate(self.reference.join(ref, how='outer')) return True def save(self, filename=''): if filename == '': filename = "{w}_{p}-{q}.json".format(w=self.word,p=self.period[0], q = self.period[1]) model = { 'word':self.word, 'period':self.period, 'reference':self.reference.to_dict(), 'collocates':self.collocates.to_dict(), 'corpus':self.corpus } with open(filename, 'w', encoding = 'utf-8') as outfile: print('lagrer til:', filename) outfile.write(json.dumps(model)) return True def load(self, filename): with open(filename, 'r') as infile: try: model = json.loads(infile.read()) #print(model['word']) self.word = model['word'] self.period = model['period'] self.corpus = model['corpus'] self.reference = pd.DataFrame(model['reference']) self.collocates = pd.DataFrame(model['collocates']) except: print('noe gikk galt') return True def search_words(self, words, exponent=1.1): if type(words) is str: words = [w.strip() for w in words.split()] df = self.cluster_set(exponent=exponent, top=0, aslist=False) sub= [w for w in words if w in df.index] res = df.transpose()[sub].transpose().sort_values(by=df.columns[0], ascending=False) return res def wildcardsearch(params=None): if params is None: params = {'word': '', 'freq_lim': 50, 'limit': 50, 'factor': 2} res = requests.get('https://api.nb.no/ngram/wildcards', params=params) if res.status_code == 200: result = res.json() else: result = {'status':'feil'} resultat = pd.DataFrame.from_dict(result, orient='index') if not(resultat.empty): resultat.columns = [params['word']] return resultat def sorted_wildcardsearch(params): res = wildcardsearch(params) if not res.empty: res = res.sort_values(by=params['word'], ascending=False) return res def make_newspaper_network(key, wordbag, titel='%', yearfrom='1980', yearto='1990', limit=500): if type(wordbag) is str: wordbag = wordbag.split() r = requests.post("https://api.nb.no/ngram/avisgraph", json={ 'key':key, 'words':wordbag, 'yearto':yearto, 'yearfrom':yearfrom, 'limit':limit}) G = nx.Graph() if r.status_code == 200: G.add_weighted_edges_from([(x,y,z) for (x,y,z) in r.json() if z > 0 and x != y]) else: print(r.text) return G def make_network(urn, wordbag, cutoff=0): if type(urn) is list: urn = urn[0] if type(wordbag) is str: wordbag = wordbag.split() G = make_network_graph(urn, wordbag, cutoff) return G def make_network_graph(urn, wordbag, cutoff=0): r = requests.post("https://api.nb.no/ngram/graph", json={'urn':urn, 'words':wordbag}) G = nx.Graph() G.add_weighted_edges_from([(x,y,z) for (x,y,z) in r.json() if z > cutoff and x != y]) return G def make_network_name_graph(urn, tokens, tokenmap=None, cutoff=2): if isinstance(urn, list): urn = urn[0] # tokens should be a list of list of tokens. If it is list of dicts pull out the keys (= tokens) if isinstance(tokens[0], dict): tokens = [list(x.keys()) for x in tokens] r = requests.post("https://api.nb.no/ngram/word_graph", json={'urn':urn, 'tokens':tokens, 'tokenmap':tokenmap}) #print(r.text) G = nx.Graph() G.add_weighted_edges_from([(x,y,z) for (x,y,z) in r.json() if z > cutoff and x != y]) return G def token_convert_back(tokens, sep='_'): """ convert a list of tokens to string representation""" res = [tokens[0]] for y in tokens: res.append([tuple(x.split(sep)) for x in y]) l = len(res) for x in range(1, 4-l): res.append([]) return res def token_convert(tokens, sep='_'): """ convert back to tuples """ tokens = [list(x.keys()) for x in tokens] tokens = [[(x,) for x in tokens[0]], tokens[1], tokens[2], tokens[3]] conversion = [] for x in tokens: conversion.append([sep.join(t) for t in x]) return conversion def token_map_to_tuples(tokens_as_strings, sep='_', arrow='==>'): tuples = [] for x in tokens_as_strings: token = x.split(arrow)[0].strip() mapsto = x.split(arrow)[1].strip() tuples.append((tuple(token.split(sep)), tuple(mapsto.split(sep)))) #tuples = [(tuple(x.split(arrow).strip()[0].split(sep)), tuple(x.split(arrow)[1].strip().split(sep))) for x in tokens_as_strings] return tuples def token_map(tokens, strings=False, sep='_', arrow= '==>'): """ tokens as from nb.names()""" if isinstance(tokens[0], dict): # get the keys(), otherwise it is already just a list of tokens up to length 4 tokens = [list(x.keys()) for x in tokens] # convert tokens to tuples and put them all in one list tokens = [(x,) for x in tokens[0]] + tokens[1] + tokens[2] + tokens[3] tm = [] #print(tokens) for token in tokens: if isinstance(token, str): trep = (token,) elif isinstance(token, list): trep = tuple(token) token = tuple(token) else: trep = token n = len(trep) #print(trep) if trep[-1].endswith('s'): cp = list(trep[:n-1]) cp.append(trep[-1][:-1]) cp = tuple(cp) #print('copy', cp, trep) if cp in tokens: #print(trep, cp) trep = cp larger = [ts for ts in tokens if set(ts) >= set(trep)] #print(trep, ' => ', larger) larger.sort(key=lambda x: len(x), reverse=True) tm.append((token,larger[0])) res = tm if strings == True: res = [sep.join(x[0]) + ' ' + arrow + ' ' + sep.join(x[1]) for x in tm] return res def draw_graph_centrality(G, h=15, v=10, fontsize=20, k=0.2, arrows=False, font_color='black', threshold=0.01): node_dict = nx.degree_centrality(G) subnodes = dict({x:node_dict[x] for x in node_dict if node_dict[x] >= threshold}) x, y = rcParams['figure.figsize'] rcParams['figure.figsize'] = h, v pos =nx.spring_layout(G, k=k) ax = plt.subplot() ax.set_xticks([]) ax.set_yticks([]) G = G.subgraph(subnodes) nx.draw_networkx_labels(G, pos, font_size=fontsize, font_color=font_color) nx.draw_networkx_nodes(G, pos, alpha=0.5, nodelist=subnodes.keys(), node_size=[v * 1000 for v in subnodes.values()]) nx.draw_networkx_edges(G, pos, alpha=0.7, arrows=arrows, edge_color='lightblue', width=1) rcParams['figure.figsize'] = x, y return True def combine(clusters): """Make new collocation analyses from data in clusters""" colls = [] collocates = clusters[0].collocates for c in clusters[1:]: collocates = collocates.join(c.collocates, rsuffix='-' + str(c.period[0])) return collocates def cluster_join(cluster): clusters = [cluster[i] for i in cluster] clst = clusters[0].cluster_set(aslist=False) for c in clusters[1:]: clst = clst.join(c.cluster_set(aslist=False), rsuffix = '_'+str(c.period[0])) return clst def serie_cluster(word, startår, sluttår, inkrement, before=5, after=5, reference=150, word_samples=500): tidscluster = dict() for i in range(startår, sluttår, inkrement): tidscluster[i] = Cluster( word, corpus='avis', period=(i, i + inkrement - 1), before=after, after=after, reference=reference, word_samples=word_samples) print(i, i+inkrement - 1) return tidscluster def save_serie_cluster(tidscluster): for i in tidscluster: tidscluster[i].save() return 'OK' def les_serie_cluster(word, startår, sluttår, inkrement): tcluster = dict() for i in range(startår, sluttår, inkrement): print(i, i+inkrement - 1) tcluster[i] = Cluster(filename='{w}_{f}-{t}.json'.format(w=word, f=i,t=i+inkrement - 1)) return tcluster def make_cloud(json_text, top=100, background='white', stretch=lambda x: 2**(10*x), width=500, height=500, font_path=None): pairs0 = Counter(json_text).most_common(top) pairs = {x[0]:stretch(x[1]) for x in pairs0} wc = WordCloud( font_path=font_path, background_color=background, width=width, #color_func=my_colorfunc, ranks_only=True, height=height).generate_from_frequencies(pairs) return wc def draw_cloud(sky, width=20, height=20, fil=''): plt.figure(figsize=(width,height)) plt.imshow(sky, interpolation='bilinear') figplot = plt.gcf() if fil != '': figplot.savefig(fil, format='png') return def cloud(pd, column='', top=200, width=1000, height=1000, background='black', file='', stretch=10, font_path=None): if column == '': column = pd.columns[0] data = json.loads(pd[column].to_json()) a_cloud = make_cloud(data, top=top, background=background, font_path=font_path, stretch=lambda x: 2**(stretch*x), width=width, height=height) draw_cloud(a_cloud, fil=file) return def make_a_collocation(word, period=(1990, 2000), before=5, after=5, corpus='avis', samplesize=100, limit=2000): collocates = collocation(word, yearfrom=period[0], yearto=period[1], before=before, after=after, corpus=corpus, limit=limit) collocates.columns = [word] reference = get_corpus(yearfrom=period[0], yearto=period[1], samplesize=samplesize) ref_agg = aggregate(reference) ref_agg.columns = ['reference_corpus'] return ref_agg def compute_assoc(coll_frame, column, exponent=1.1, refcolumn = 'reference_corpus'): return pd.DataFrame(coll_frame[column]**exponent/coll_frame.mean(axis=1)) class Corpus: def __init__(self, filename = '', target_urns = None, reference_urns = None, period = (1950,1960), author='%', title='%', ddk='%', gender='%', subject='%', reference = 100, max_books=100): params = { 'year':period[0], 'next': period[1]-period[0], 'subject':subject, 'ddk':ddk, 'author':author, #'gender':gender, ser ikke ut til å virke for get_urn - sjekk opp APIet 'title':title, 'limit':max_books, 'reference':reference } self.params = params self.coll = dict() self.coll_graph = dict() if filename == '': if target_urns != None: målkorpus_def = target_urns else: målkorpus_def = get_urn(params) #print("Antall bøker i målkorpus ", len(målkorpus_def)) if isinstance(målkorpus_def[0], list): målkorpus_urn = [str(x[0]) for x in målkorpus_def] #print(målkorpus_urn) else: målkorpus_urn = målkorpus_def if len(målkorpus_urn) > max_books and max_books > 0: target_urn = list(numpy.random.choice(målkorpus_urn, max_books)) else: target_urn = målkorpus_urn if reference_urns != None: referansekorpus_def = reference_urns else: # select from period, usually used only of target is by metadata referansekorpus_def = get_urn({'year':period[0], 'next':period[1]-period[0], 'limit':reference}) #print("<NAME> i referanse: ", len(referansekorpus_def)) # referansen skal være distinkt fra målkorpuset referanse_urn = [str(x[0]) for x in referansekorpus_def] self.reference_urn = referanse_urn self.target_urn = target_urn # make sure there is no overlap between target and reference # referanse_urn = list(set(referanse_urn) - set(target_urn)) målkorpus_txt = get_corpus_text(target_urn) normalize_corpus_dataframe(målkorpus_txt) if referanse_urn != []: referanse_txt = get_corpus_text(referanse_urn) normalize_corpus_dataframe(referanse_txt) combo = målkorpus_txt.join(referanse_txt) else: referanse_txt = målkorpus_txt combo = målkorpus_txt self.combo = combo self.reference = referanse_txt self.target = målkorpus_txt self.reference = aggregate(self.reference) self.reference.columns = ['reference_corpus'] ## dokumentfrekvenser mål_docf = pd.DataFrame(pd.DataFrame(målkorpus_txt/målkorpus_txt).sum(axis=1)) combo_docf = pd.DataFrame(pd.DataFrame(combo/combo).sum(axis=1)) ref_docf = pd.DataFrame(pd.DataFrame(referanse_txt/referanse_txt).sum(axis=1)) ### Normaliser dokumentfrekvensene normalize_corpus_dataframe(mål_docf) normalize_corpus_dataframe(combo_docf) normalize_corpus_dataframe(ref_docf) self.målkorpus_tot = aggregate(målkorpus_txt) self.combo_tot = aggregate(combo) self.mål_docf = mål_docf self.combo_docf = combo_docf self.lowest = self.combo_tot.sort_values(by=0)[0][0] else: self.load(filename) return def difference(self, freq_exp=1.1, doc_exp=1.1, top = 200, aslist=True): res = pd.DataFrame( (self.målkorpus_tot**freq_exp/self.combo_tot)*(self.mål_docf**doc_exp/self.combo_docf) ) res.columns = ['diff'] if top > 0: res = res.sort_values(by=res.columns[0], ascending=False).iloc[:top] else: res = res.sort_values(by=res.columns[0], ascending=False) if aslist == True: res = HTML(', '.join(list(res.index))) return res def save(self, filename): model = { 'params':self.params, 'target': self.målkorpus_tot.to_json(), 'combo': self.combo_tot.to_json(), 'target_df': self.mål_docf.to_json(), 'combo_df': self.combo_docf.to_json() } with open(filename, 'w', encoding = 'utf-8') as outfile: outfile.write(json.dumps(model)) return True def load(self, filename): with open(filename, 'r') as infile: try: model = json.loads(infile.read()) #print(model['word']) self.params = model['params'] #print(self.params) self.målkorpus_tot = pd.read_json(model['target']) #print(self.målkorpus_tot[:10]) self.combo_tot = pd.read_json(model['combo']) self.mål_docf = pd.read_json(model['target_df']) self.combo_docf = pd.read_json(model['combo_df']) except: print('noe gikk galt') return True def collocations(self, word, after=5, before=5, limit=1000): """Find collocations for word in a set of book URNs. Only books at the moment""" r = requests.post( "https://api.nb.no/ngram/urncoll", json={ 'word': word, 'urns': self.target_urn, 'after': after, 'before': before, 'limit': limit } ) temp = pd.DataFrame.from_dict(r.json(), orient='index') normalize_corpus_dataframe(temp) self.coll[word] = temp.sort_values(by = temp.columns[0], ascending = False) return True def conc(self, word, before=8, after=8, size=10, combo=0): if combo == 0: urns = self.target_urn + self.reference_urn elif combo == 1: urns = self.target_urn else: urns = self.reference_urn if len(urns) > 300: urns = list(numpy.random.choice(urns, 300, replace=False)) return get_urnkonk(word, {'urns':urns, 'before':before, 'after':after, 'limit':size}) def sort_collocations(self, word, comparison = None, exp = 1.0, above = None): if comparison == None: comparison = self.combo_tot[0] try: res = pd.DataFrame(self.coll[word][0]**exp/comparison) except KeyError: print('Constructing a collocation for {w} with default parameters.'.format(w=word)) self.collocations(word) res = pd.DataFrame(self.coll[word][0]**exp/comparison) if above == None: above = self.lowest res = res[self.combo_tot > above] return res.sort_values(by = 0, ascending = False) def search_collocations(self, word, words, comparison = None, exp = 1.0): if comparison == None: comparison = self.combo_tot[0] try: res = pd.DataFrame(self.coll[word][0]**exp/comparison) except KeyError: print('Constructing a collocation for {w} with default parameters.'.format(w=word)) self.collocations(word) res = pd.DataFrame(self.coll[word][0]**exp/comparison) search_items = list(set(res.index) & set(words)) return res.transpose()[search_items].transpose().sort_values(by = 0, ascending = False) def summary(self, head=10): info = { 'parameters':self.params, 'target_urn':self.target_urn[:head], 'reference urn':self.reference_urn[:head], } return info def search_words(self, words, freq_exp=1.1, doc_exp=1.1): if type(words) is str: words = [w.strip() for w in words.split()] df = self.difference(freq_exp = freq_exp, doc_exp=doc_exp,top=0, aslist=False) sub = [w for w in words if w in df.index] res = df.transpose()[sub].transpose().sort_values(by=df.columns[0], ascending=False) return res def make_collocation_graph(self, target_word, top = 15, before = 4, after = 4, limit = 1000, exp=1): """Make a cascaded network of collocations""" self.collocations(target_word, before=before, after=after, limit=limit) coll = self.sort_collocations(target_word, exp = exp) target_graf = dict() edges = [] for word in coll[:top].index: edges.append((target_word, word)) if word.isalpha(): self.collocations(word, before=before, after=after, limit=limit) for w in self.sort_collocations(word, exp = exp)[:top].index: if w.isalpha(): edges.append((word, w)) target_graph = nx.Graph() target_graph.add_edges_from(edges) self.coll_graph[target_word] = target_graph return target_graph def vekstdiagram(urn, params=None): if params is None: params = {} # if urn is the value of get_urn() it is a list # otherwise it just passes if type(urn) is list: urn = urn[0] para = params para['urn']= urn r = requests.post('https://api.nb.no/ngram/vekstdiagram', json = para) return pd.DataFrame(r.json()) def plot_book_wordbags(urn, wordbags, window=5000, pr = 100): """Generate a diagram of wordbags in book """ return plot_sammen_vekst(urn, wordbags, window=window, pr=pr) def plot_sammen_vekst(urn, ordlister, window=5000, pr = 100): """Plott alle seriene sammen""" rammer = [] c = dict() if isinstance(ordlister, list): if isinstance(ordlister[0], list): for l in ordlister: if l != []: c[l[0]] = l else: c[ordlister[0]] = ordlister else: c = ordlister for key in c: vekst = vekstdiagram(urn, params = {'words': c[key], 'window':window, 'pr': pr} ) vekst.columns = [key] rammer.append(vekst) return
pd.concat(rammer)
pandas.concat
import matplotlib.pyplot as plt from cycler import cycler from itertools import product # import seaborn as sns import pandas as pd import numpy as np import vg import pdb import os import dill as pickle from scipy import constants, ndimage ## from electropy.charge import Charge from electropy.volume import * with open('./paddle_solution.pickle', 'rb') as f: paddleSolution = pickle.load(f) solnPerElectrode = paddleSolution['solnPerElectrode'] activatingKernel = paddleSolution['activatingKernel'] dummySoln = solnPerElectrode[list(solnPerElectrode.keys())[0]] def solnForWaveform(eesWvf): data = potentialSolution( [], x_range=[dummySoln.xi[0], dummySoln.xi[-1]], y_range=[dummySoln.yi[0], dummySoln.yi[-1]], z_range=[0, dummySoln.zi[-1]], h=dummySoln.h, verbose=1) for rowIdx in eesWvf.index: elecName = rowIdx[0] if eesWvf[rowIdx] != 0: data.hessianPhi += eesWvf[rowIdx] * solnPerElectrode[elecName].hessianPhi data.phi += eesWvf[rowIdx] * solnPerElectrode[elecName].phi return data inputPath = 'E:\\Neural Recordings\\scratch\\202009231400-Peep\\default\\stim\\_emg_XS_export.h5' with
pd.HDFStore(inputPath, 'r')
pandas.HDFStore
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Mar 5 18:54:29 2019 @author: suvodeepmajumder """ import sys sys.path.append("..") from pygit2 import clone_repository from pygit2 import GIT_SORT_TOPOLOGICAL, GIT_SORT_REVERSE,GIT_MERGE_ANALYSIS_UP_TO_DATE,GIT_MERGE_ANALYSIS_FASTFORWARD,GIT_MERGE_ANALYSIS_NORMAL,GIT_RESET_HARD from pygit2 import Repository import shutil,os import pygit2 from git_log import git2repo import os import re import shlex import numpy as np import pandas as pd from glob2 import glob, iglob import subprocess as sp import understand as und from pathlib import Path from pdb import set_trace import sys from collections import defaultdict from utils.utils import utils import platform from os.path import dirname as up from multiprocessing import Pool, cpu_count import threading from multiprocessing import Queue from threading import Thread import random import string #from main.utils.utils.utils import printProgressBar class ThreadWithReturnValue(Thread): def __init__(self, group=None, target=None, name=None, args=(), kwargs={}, Verbose=None): Thread.__init__(self, group, target, name, args, kwargs) self._return = None def run(self): #print(type(self._target)) if self._target is not None: self._return = self._target(*self._args, **self._kwargs) def join(self, *args): Thread.join(self, *args) return self._return class MetricsGetter(object): """ Generate class, file, function, object oriented metrics for a project. Parameters ---------- sources_path: str or pathlib.PosixPath Notes ----- The class is designed to run in conjunction with a context manager. """ def __init__(self,repo_url,repo_name,repo_lang,code_path): self.repo_url = repo_url self.repo_name = repo_name self.repo_lang = repo_lang #self.repo_obj = git2repo.git2repo(self.repo_url,self.repo_name) self.root_dir = code_path print("root:",self.root_dir) if platform.system() == 'Darwin' or platform.system() == 'Linux': self.repo_path = self.root_dir+ '/commit_guru/ingester/CASRepos/git/' + self.repo_name self.file_path = up(self.root_dir) + '/data/commit_guru/' + self.repo_name + '.csv' #self.committed_file = up(os.getcwd()) + '/data/committed_files/' + self.repo_name + '_committed_file.pkl' self.und_file = up(self.root_dir) + '/data/understand_files/' + self.repo_name + '_understand.csv' else: self.repo_path = up(os.getcwd()) + '\\temp_repo\\' + self.repo_name self.file_path = up(os.getcwd()) + '\\data\\commit_guru\\' + self.repo_name + '.pkl' #self.committed_file = up(os.getcwd()) + '\\data\\committed_files\\' + self.repo_name + '_committed_file.pkl' self.buggy_clean_pairs = self.read_commits() #self.buggy_clean_pairs = self.buggy_clean_pairs[0:5] # Reference current directory, so we can go back after we are done. self.cwd = Path('/tmp/smajumd3/') #self.repo = self.clone_repo() # Generate path to store udb files #self.udb_path = self.cwd.joinpath(".temp", "udb") self.udb_path = self.cwd.joinpath("temp", "udb/"+self.repo_name) # Create a folder to hold the udb files if not self.udb_path.is_dir(): os.makedirs(self.udb_path) def read_commits(self): df = pd.read_csv(self.file_path) # print(df) df = df[df['contains_bug'] == True] df = df.reset_index('drop' == True) self.commits = [] commits = [] for i in range(df.shape[0]): try: committed_files = [] if df.loc[i,'parent_hashes'] == None: continue bug_fixing_commit = df.loc[i,'parent_hashes'] bug_existing_commit = df.loc[i,'commit_hash'] files_changed = df.loc[i,'fileschanged'] #print(files_changed) files_changed = files_changed.split(',') files_changed = list(filter(('CAS_DELIMITER').__ne__, files_changed)) self.commits.append(bug_existing_commit) #language = "Python" language = self.repo_lang if bug_fixing_commit == None: print(df.iloc[i,0]) continue for row in files_changed: if language == "Java" or language == "C++" or language == "C": if len(row.split('src/')) == 1: continue committed_files.append(row.split('src/')[1].replace('/','.').rsplit('.',1)[0]) elif language == "Python" : committed_files.append(row['file_path'].replace('/', '.').rsplit('.', 1)[0]) elif language == "Fortran" : committed_files.append(row['file_path'].replace('/', '.').rsplit('.', 1)[0]) else: print("Language under construction") commits.append([bug_existing_commit,bug_fixing_commit,committed_files]) except Exception as e: print(e) continue return commits def get_defective_pair_metrics(self): """ Use the understand tool's API to generate metrics Notes ----- + For every clean and buggy pairs of hashed, do the following: 1. Get the diff of the files changes 2. Checkout the snapshot at the buggy commit 3. Compute the metrics of the files in that commit. 4. Next, checkout the snapshot at the clean commit. 5. Compute the metrics of the files in that commit. """ metrics_dataframe = pd.DataFrame() print(len(self.buggy_clean_pairs)) for i in range(len(self.buggy_clean_pairs)): try: buggy_hash = self.buggy_clean_pairs[i][0] clean_hash = self.buggy_clean_pairs[i][1] files_changed = self.buggy_clean_pairs[i][2] # if len((files_changed)) == 0: # continue print(i,self.repo_name,(buggy_hash, clean_hash)) # Go the the cloned project path buggy_und_file = self.udb_path.joinpath("{}_{}.udb".format(self.repo_name+buggy_hash, "buggy")) #print(self.buggy_und_file) db_buggy = und.open(str(buggy_und_file)) #continue print((db_buggy.metrics())) metrics = db_buggy.metric(db_buggy.metrics()) print(metrics) break #print("Files",set(files_changed)) for file in db_buggy.ents("Class"): # print directory name # print(file,file.longname(), file.kind()) #language = "Python" language = self.repo_lang if language == "Java" or language == "C++" or language == "C": r = re.compile(str(file.longname())) newlist = list(filter(r.search, list(set(files_changed)))) elif language == "Python" : if file.library() == "Standard": continue temp_str = file.longname().split(".")[-2] r = re.compile(str(temp_str)) newlist = list(filter(r.search, list(set(files_changed)))) elif language == "Fortran" : if file.library() == "Standard": continue t3 = file.longname() t7 = file.refs() t8 = file.ref() comp = str(file).split(".")[0] # print("-------Here is the library : ",file.library()) # r = re.compile(str(file.longname())) # temp_str = file.longname().split(".")[-2] r = re.compile(comp) newlist = list(filter(r.search, list(set(files_changed)))) else: newlist = [] print("Language under construction") if len(newlist) > 0: metrics = file.metric(file.metrics()) print(len(file.metrics())) metrics["commit_hash"] = buggy_hash metrics["Name"] = file.longname() metrics["Bugs"] = 1 metrics_dataframe = metrics_dataframe.append( pd.Series(metrics), ignore_index=True) else: metrics = file.metric(file.metrics()) print(len(file.metrics())) metrics["commit_hash"] = buggy_hash metrics["Name"] = file.longname() metrics["Bugs"] = 0 metrics_dataframe = metrics_dataframe.append(
pd.Series(metrics)
pandas.Series
from scipy.sparse import csc_matrix,csr_matrix,coo_matrix from scipy.sparse.linalg import lsqr from numpy import linalg as LA import datetime import csv import numpy as np import os import matplotlib.pyplot as plt dir_path = os.path.dirname(os.path.realpath(__file__)) import time import pandas as pd from os import listdir from os.path import isfile, join from os import walk ######################## ### Plotting results ### ######################## # LSQR-CUDA data outpath = "./output/" outputspath = "../results/2021109/output" now = datetime.datetime.now() now = now.strftime('%Y-%m-%dT%H%M') inpath = "../results/2021109/input" inputs = listdir(inpath) inputs.sort() mats = [m for m in inputs if ".mat" in m] vecs = [v for v in inputs if ".vec" in v] # Sparse plotting LSQRCUDA = pd.read_csv(outputspath+"/2021-11-09T2101_LSQR-CUDA.csv") DEVICE = pd.read_csv(outputspath+"/deviceProps.csv") # python data scipylsqr = pd.read_csv(outpath + "/2021-11-10T0956_LSQR_python.csv") # Load and parse LSQR-CUDA data name = DEVICE['DEVICE_NAME'][0] implementations = ['Cpp-DENSE','CUDA-DENSE','CUDA-SPARSE','CUBLAS-DENSE','CUSPARSE-SPARSE'] dfs = [] for i in implementations: temp = LSQRCUDA[LSQRCUDA['IMPLEMENTATION']==i].drop(columns='IMPLEMENTATION').drop(columns='A_COLUMNS').drop(columns='SPARSITY') temp = temp.rename(columns={"TIME(ms)":i}) temp[i] = temp[i].mul(1/1000) dfs.append(temp) BASELINE = scipylsqr[scipylsqr['IMPLEMENTATION']=='scipy-lsqr'].drop(columns='IMPLEMENTATION').drop(columns='A_COLUMNS').drop(columns='SPARSITY') BASELINE = BASELINE.rename(columns={"TIME(ms)":"scipy-lsqr"}) BASELINE["scipy-lsqr"] = BASELINE["scipy-lsqr"].mul(1/1000) CPPDENSE = dfs[0] CUDADENSE = dfs[1] CUDASPARSE = dfs[2] CUBLASDENSE = dfs[3] CUSPARSE = dfs[4] all = pd.merge(CUBLASDENSE,CUSPARSE,on="A_ROWS") all = pd.merge(CUDASPARSE,all,on="A_ROWS") all = pd.merge(CUDADENSE,all,on="A_ROWS") all = pd.merge(CPPDENSE,all,how='right',on="A_ROWS") all = pd.merge(BASELINE,all,how='right',on="A_ROWS") #all.to_csv("../results/"+now+"_RUNTIMES.csv",index=False,float_format='%.5f') # Sparse implementation plots sparse = pd.merge(CUSPARSE,CUDASPARSE,on="A_ROWS") sparse = pd.merge(BASELINE,sparse,on="A_ROWS") fig = sparse.plot(x='A_ROWS', xlabel="# of Rows in Square Matrix A", ylabel="RUNTIME (s)",title=name+" - Sparse Inputs",grid=True).get_figure() #fig.savefig("../results/"+now+"_1000-8000_SPARSE-INPUTS.png") #csvtimes = "../results/"+now+"_SPARSETIMES.csv" #sparse.to_csv(csvtimes,index=False,float_format='%.8f') # Sparse speedups CUDASPARSE_SPEEDUP = (sparse["scipy-lsqr"]/sparse["CUDA-SPARSE"]) CUDASPARSE_SPEEDUP = CUDASPARSE_SPEEDUP.rename("CUDA-SPARSE") CUSPARSE_SPEEDUP = (sparse["scipy-lsqr"]/sparse["CUSPARSE-SPARSE"]) CUSPARSE_SPEEDUP = CUSPARSE_SPEEDUP.rename("CUSPARSE-SPARSE") ROWS_SPEEDUP = sparse["A_ROWS"] ROWS_SPEEDUP = ROWS_SPEEDUP.rename("A_ROWS") csvsparsespeedups = "../results/"+now+"_SPARSE-SPEEDUPS.csv" SPEEDUPS = pd.concat([ROWS_SPEEDUP,CUDASPARSE_SPEEDUP,CUSPARSE_SPEEDUP], axis=1) #SPEEDUPS.to_csv(csvsparsespeedups,index=False,float_format='%.8f') ## Dense implementation plots dense = pd.merge(CUDADENSE,CUBLASDENSE,on="A_ROWS") dense = pd.merge(CPPDENSE,dense,on="A_ROWS") fig = dense.plot(x='A_ROWS', xlabel="# of Rows in Square Matrix A", ylabel="RUNTIME (s)",title=name+" - Dense Inputs",grid=True).get_figure() #fig.savefig("../results/"+now+"_1000-8000_DENSE-INPUTS.png") ##################################################### ### Calculation of root mean squared error (rmse) ### ##################################################### # Baseline data PYTHONOUTS = [] for (dirpath, dirnames, filenames) in walk(outpath): PYTHONOUTS.extend(filenames) break PYTHONOUTS.sort() PYTHONOUTS = [v for v in PYTHONOUTS if ".vec" in v] LSQROUTS = [] for (dirpath, dirnames, filenames) in walk(outputspath): LSQROUTS.extend(filenames) break LSQROUTS.sort() LSQROUTS = [v for v in LSQROUTS if ".vec" in v] csvrsmepath = "../results/" + now + "_RMSE.csv" f = open(csvrsmepath, 'w') writer = csv.writer(f) writer.writerow(['IMPLEMENTATION','A_ROWS','RMSE']) f.close() maxRmse=0 for pyout in PYTHONOUTS: rows = int(float(pyout.split("_")[0])) rowsStr = str(rows) outs = [v for v in LSQROUTS if rowsStr in v] p = np.loadtxt(outpath+"/"+pyout,dtype=np.double) for o in outs: l = np.loadtxt(outputspath+"/"+o,dtype=np.double) rmse = np.sqrt(np.mean((l-p)**2)) if (rmse>maxRmse): maxRmse=rmse # write to csv implementation = o.split(".")[0].split("_")[3] rowrsmecsv = [implementation,rowsStr,f'{rmse:.8f}'] with open(csvrsmepath, 'a') as fd: writer=csv.writer(fd) writer.writerow(rowrsmecsv) errors = pd.read_csv(csvrsmepath) I0 = errors[errors['IMPLEMENTATION']=='Cpp-DENSE'].drop(columns='IMPLEMENTATION') I0=I0.rename(columns={"RMSE":"Cpp-DENSE"}) I1 = errors[errors['IMPLEMENTATION']=='CUDA-DENSE'].drop(columns='IMPLEMENTATION') I1=I1.rename(columns={"RMSE":"CUDA-DENSE"}) I2 = errors[errors['IMPLEMENTATION']=='CUDA-SPARSE-80'].drop(columns='IMPLEMENTATION') I2=I2.rename(columns={"RMSE":"CUDA-SPARSE"}) I3 = errors[errors['IMPLEMENTATION']=='CUBLAS-DENSE'].drop(columns='IMPLEMENTATION') I3=I3.rename(columns={"RMSE":"CUBLAS-DENSE"}) I4 = errors[errors['IMPLEMENTATION']=='CUSPARSE-SPARSE-80'].drop(columns='IMPLEMENTATION') I4=I4.rename(columns={"RMSE":"CUSPARSE-SPARSE"}) I = pd.merge(I3,I4,on="A_ROWS") I = pd.merge(I2,I,on="A_ROWS") I = pd.merge(I1,I,on="A_ROWS") I =
pd.merge(I0,I,how='right',on="A_ROWS")
pandas.merge
import pickle from os import path, makedirs import time import pandas as pd import numpy as np def printx(output): print(output, flush = True) def save_to_pickle(var, filename='temp', root_path='./'): ''' Save variable to pickle file defaultly in current dir ''' #fn = path.join(root_path, filename) fn = filename if path.exists(path.split(fn)[0]) == False: makedirs(path.split(fn)[0]) #printx("saving {} into {}".format(filename, root_path)) printx("saving into {}".format(filename)) f = open(fn, 'wb') pickle.dump(var, f) f.close() return var def load_from_pickle(filename='temp', root_path='./'): ''' Load pickle file defaultly from current dir ''' #printx("loading {} from {}".format(filename, root_path)) #f = open(path.join(root_path, filename), 'rb') printx("loading {}".format(filename)) f = open(filename, 'rb') var = pickle.load(f) f.close() return var def readData(file_path1, file_path2): # Read file and combine data1 =
pd.read_csv(file_path1, header=None, sep=' ', low_memory=False)
pandas.read_csv
from requests import get, exceptions from bs4 import BeautifulSoup from datetime import datetime from pandas import DataFrame, read_excel from time import sleep from pydrive.auth import GoogleAuth from pydrive.drive import GoogleDrive def get_label(soup): artist = soup.find("span", attrs={"itemprop": "byArtist"}).a.contents[0].strip() releaser = soup.find("p", attrs={"id": "band-name-location"}).find("span", attrs={"class": "title"}).contents[0].strip() label_tag = soup.find("span", attrs={"class": "back-to-label-name"}) if label_tag: return label_tag.contents[0].strip() else: return releaser if artist.lower() != releaser.lower() else None def get_tags(soup): tags = [] for tag in soup.findAll("a", attrs={"class": "tag"}): tags.append(tag.contents[0]) return tags def get_soup(url): try: release_request = get(url) return BeautifulSoup(release_request.text, "html.parser") except exceptions.ConnectionError: sleep(5.0) return get_soup(url) def parse_release(url): soup = get_soup(url) if soup.find("h2", attrs={"class": "trackTitle"}): title = soup.find("h2", attrs={"class": "trackTitle"}).contents[0].strip() artist = soup.find("span", attrs={"itemprop": "byArtist"}).a.contents[0].strip() releasedate_str = soup.find("meta", attrs={"itemprop": "datePublished"})["content"] releasedate = datetime(int(releasedate_str[0:4]), int(releasedate_str[4:6]), int(releasedate_str[6:8])).date() formats_raw = soup.findAll("li", attrs={"class": "buyItem"}) label = get_label(soup) tags = get_tags(soup) if len(soup.find("span", attrs={"class": "location"}).contents) > 0: location = soup.find("span", attrs={"class": "location"}).contents[0].strip() formats = [] for format_raw in formats_raw: if format_raw.h3.button: secondary_text = format_raw.h3.find("div", attrs={"class": "merchtype secondaryText"}) format = secondary_text.contents[0].strip() if secondary_text else format_raw.h3.button.span.contents[0] formats.append(format) return { "title": title, "artist": artist, "date": releasedate, "url": url, "formats": formats, "tags": tags, "location": location, "label": label } url = "https://bandcamp.com/tag/{0}?page={1}&sort_field=date" with open("cities.txt", "r") as f: cities = [city.lower() for city in f.read().split("\n")] start_urls = [url.format(city.lower(), i) for i in range(1, 11, 1) for city in cities] data =
read_excel("data.xlsx")
pandas.read_excel
import pandas as pd import pandas.testing as pdt import numpy as np import qiime2 from qiime2.plugin.testing import TestPluginBase from q2_types.feature_data import DNAFASTAFormat from genome_sampler.sample_neighbors import ( sample_neighbors, _clusters_from_vsearch_out, _sample_cluster, _generate_weights) class TestSubsampleNeighbors(TestPluginBase): package = 'genome_sampler.tests' _N_TEST_ITERATIONS = 50 def setUp(self): super().setUp() focal_seqs1 = self.get_data_path('focal-seqs-1.fasta') self.focal_seqs1 = DNAFASTAFormat(focal_seqs1, 'r') context_seqs1 = self.get_data_path('context-seqs-1.fasta') self.context_seqs1 = DNAFASTAFormat(context_seqs1, 'r') context_md1 = self.get_data_path('context-metadata-1.tsv') self.context_md1 = qiime2.Metadata.load(context_md1) focal_seqs2 = self.get_data_path('focal-seqs-2.fasta') self.focal_seqs2 = DNAFASTAFormat(focal_seqs2, 'r') context_seqs2 = self.get_data_path('context-seqs-2.fasta') self.context_seqs2 = DNAFASTAFormat(context_seqs2, 'r') context_md2 = self.get_data_path('context-metadata-2.tsv') self.context_md2 = qiime2.Metadata.load(context_md2) def test_sample_neighbors_no_locale(self): sel = sample_neighbors(self.focal_seqs1, self.context_seqs1, percent_id=0.98, samples_per_cluster=2) exp_inclusion = pd.Series([True, True, False, False, True, False], index=['c1', 'c2', 'c3', 'c4', 'c5', 'c6'], name='inclusion') exp_metadata = pd.DataFrame(index=['c1', 'c2', 'c3', 'c4', 'c5', 'c6']) exp_metadata.index.name = 'id' exp_metadata = qiime2.Metadata(exp_metadata)
pdt.assert_series_equal(sel.inclusion, exp_inclusion)
pandas.testing.assert_series_equal
from pythologist.measurements import Measurement import pandas as pd import numpy as np import math, sys class Cartesian(Measurement): @staticmethod def _preprocess_dataframe(cdf,subsets,step_pixels,max_distance_pixels,*args,**kwargs): def _hex_coords(frame_shape,step_pixels): halfstep = int(step_pixels/2) vstep = int(step_pixels*0.85) coordinates = [] for i,y in enumerate(range(0,frame_shape[0]+step_pixels,vstep)): #iterate over the x coords for x in range(halfstep if i%2==1 else 0,frame_shape[1]+step_pixels,step_pixels): coordinates.append((x,y)) return pd.DataFrame(coordinates,columns=['frame_x','frame_y']) frames = cdf.groupby(cdf.frame_columns).first()[['frame_shape']] frames['frame_coords'] = frames['frame_shape'].apply(lambda shape: _hex_coords(shape,step_pixels)) allcoords = [] for i,r in frames.iterrows(): #if 'verbose' in kwargs and kwargs['verbose']: sys.stderr.write("Reading frame\n"+str(r)+"\n\n") idf = pd.DataFrame([i],columns=frames.index.names) idf['_key'] = 1 coords = r['frame_coords'] coords['_key'] = 1 coords = idf.merge(coords,on='_key').drop(columns='_key') coords['frame_shape'] = 0 coords['frame_shape'] = coords['frame_shape'].apply(lambda x: r['frame_shape']) allcoords.append(coords) allcoords = pd.concat(allcoords) allcoords['step_pixels'] = step_pixels allcoords = allcoords.reset_index(drop=True) allcoords.index.name = 'coord_id' ### Capture distances full = [] for frame_id in allcoords['frame_id'].unique(): fcdf = cdf.loc[cdf['frame_id']==frame_id] fcdf = fcdf.dropna(subset=['phenotype_label']) primary = fcdf.copy() phenotypes = cdf.phenotypes # get the frame's CellDataFrame if subsets is not None: phenotypes = [] subs = [] for subset_logic in subsets: sub = fcdf.subset(subset_logic,update=True) subs.append(sub) phenotypes.append(subset_logic.label) fcdf = pd.concat(subs) # get the frame's hex coordinates coords = allcoords.loc[allcoords['frame_id']==frame_id].copy().reset_index() counts = _get_proximal_points(fcdf,coords, fcdf.frame_columns, phenotypes, max_distance_pixels) totals = _get_proximal_points(primary,coords, primary.frame_columns, cdf.phenotypes, max_distance_pixels) totals = totals.groupby(cdf.frame_columns+['coord_id','frame_x','frame_y']).sum()[['count']].rename(columns={'count':'total'}).\ reset_index() counts = counts.merge(totals,on=cdf.frame_columns+['coord_id','frame_x','frame_y']) counts['count'] = counts['count'].astype(int) counts['total'] = counts['total'].astype(int) counts['fraction'] = counts.apply(lambda x: np.nan if x['total']==0 else x['count']/x['total'],1) full.append(counts) full = pd.concat(full).reset_index(drop=True) full['max_distance_pixels'] = max_distance_pixels return full def rgb_dataframe(self,max_quantile_color=0.95,red=None,green=None,blue=None): df2 = self.copy() d1 = df2.groupby(['frame_id','phenotype_label']).\ min()[['fraction']].reset_index().rename(columns={'fraction':'minimum'}) d1['minimum'] = 0 d2 = df2.groupby(['frame_id','phenotype_label']).\ max()[['fraction']].reset_index().rename(columns={'fraction':'maximum'}) d3 = df2.groupby(['frame_id','phenotype_label']).\ apply(lambda x: x['fraction'].quantile(max_quantile_color)).reset_index().\ rename(columns={0:'p95'}) df2 = d1.merge(d2,on=['frame_id','phenotype_label'],how='outer').merge(df2,on=['frame_id','phenotype_label'],how='outer').\ merge(d3,on=['frame_id','phenotype_label'],how='outer') df2 = df2.fillna(0) df2['maximum'] = df2['p95'] df2['fraction'] = df2.apply(lambda x: x['fraction'] if x['fraction'] < x['p95'] else x['p95'],1) df2['range'] = df2['maximum'].subtract(df2['minimum']) df2.loc[df2['range']<=0,'range'] =1 df2['standardized'] = (df2['fraction'].subtract(df2['minimum'])).divide(df2['range']).multiply(255).astype(int) rangetop = df2[self.cdf.frame_columns+['phenotype_label','p95']].drop_duplicates().\ rename(columns={'p95':'range_top'}) df3 = df2.set_index(self.cdf.frame_columns+['coord_id','frame_x','frame_y','frame_shape','step_pixels'])[['phenotype_label','standardized']].\ pivot(columns='phenotype_label') df3.columns = df3.columns.droplevel(0) df3 = df3.reset_index() df3['zero'] = 0 #return df3 if red is None: red = 'zero' if green is None: green = 'zero' if blue is None: blue = 'zero' df3['color'] = df3.apply(lambda x: (x[red],x[green],x[blue]),1) df3['color_str'] = df3.apply(lambda x: '#%02x%02x%02x' % x['color'],1).astype(str) df3 = df3.sort_values(['frame_id','frame_y','frame_x']).reset_index(drop=True) dcols = df3[['color','color_str']].drop_duplicates() df3['color_str'] =
pd.Categorical(df3['color_str'],categories=dcols['color_str'])
pandas.Categorical
""" Created on Oct 7, 2013 @author: mmendez """ import pandas as pd import os def group(config_file, group_and_comparisons, group_id): header = [] genes_counts = [] group = [group for group in group_and_comparisons['group_definitions'] if group_id == group['id']][0] for dataset in config_file['datasets']: df =
pd.read_csv(dataset['summary'], sep='\t')
pandas.read_csv
import numpy as np import pandas as pd from numpy import inf, nan from numpy.testing import assert_array_almost_equal, assert_array_equal from pandas import DataFrame, Series, Timestamp from pandas.testing import assert_frame_equal, assert_series_equal from shapely.geometry.point import Point from pymove import MoveDataFrame from pymove.utils import integration from pymove.utils.constants import ( ADDRESS, CITY, DATETIME, DIST_EVENT, DIST_HOME, DIST_POI, EVENT_ID, EVENT_TYPE, GEOMETRY, HOME, ID_POI, LATITUDE, LONGITUDE, NAME_POI, POI, TRAJ_ID, TYPE_POI, VIOLATING, ) list_random_banks = [ [39.984094, 116.319236, 1, 'bank'], [39.984198, 116.319322, 2, 'randomvalue'], [39.984224, 116.319402, 3, 'bancos_postos'], [39.984211, 116.319389, 4, 'randomvalue'], [39.984217, 116.319422, 5, 'bancos_PAE'], [39.984710, 116.319865, 6, 'bancos_postos'], [39.984674, 116.319810, 7, 'bancos_agencias'], [39.984623, 116.319773, 8, 'bancos_filiais'], [39.984606, 116.319732, 9, 'banks'], [39.984555, 116.319728, 10, 'banks'] ] list_random_bus_station = [ [39.984094, 116.319236, 1, 'transit_station'], [39.984198, 116.319322, 2, 'randomvalue'], [39.984224, 116.319402, 3, 'transit_station'], [39.984211, 116.319389, 4, 'pontos_de_onibus'], [39.984217, 116.319422, 5, 'transit_station'], [39.984710, 116.319865, 6, 'randomvalue'], [39.984674, 116.319810, 7, 'bus_station'], [39.984623, 116.319773, 8, 'bus_station'], ] list_random_bar_restaurant = [ [39.984094, 116.319236, 1, 'restaurant'], [39.984198, 116.319322, 2, 'restaurant'], [39.984224, 116.319402, 3, 'randomvalue'], [39.984211, 116.319389, 4, 'bar'], [39.984217, 116.319422, 5, 'bar'], [39.984710, 116.319865, 6, 'bar-restaurant'], [39.984674, 116.319810, 7, 'random123'], [39.984623, 116.319773, 8, '123'], ] list_random_parks = [ [39.984094, 116.319236, 1, 'pracas_e_parques'], [39.984198, 116.319322, 2, 'park'], [39.984224, 116.319402, 3, 'parks'], [39.984211, 116.319389, 4, 'random'], [39.984217, 116.319422, 5, '123'], [39.984710, 116.319865, 6, 'park'], [39.984674, 116.319810, 7, 'parks'], [39.984623, 116.319773, 8, 'pracas_e_parques'], ] list_random_police = [ [39.984094, 116.319236, 1, 'distritos_policiais'], [39.984198, 116.319322, 2, 'police'], [39.984224, 116.319402, 3, 'police'], [39.984211, 116.319389, 4, 'distritos_policiais'], [39.984217, 116.319422, 5, 'random'], [39.984710, 116.319865, 6, 'randomvalue'], [39.984674, 116.319810, 7, '123'], [39.984623, 116.319773, 8, 'bus_station'], ] list_move = [ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1], [39.984559000000004, 116.326696, Timestamp('2008-10-23 10:37:26'), 1], [40.002899, 116.32151999999999, Timestamp('2008-10-23 10:50:16'), 1], [40.016238, 116.30769099999999, Timestamp('2008-10-23 11:03:06'), 1], [40.013814, 116.306525, Timestamp('2008-10-23 11:58:33'), 2], [40.009735, 116.315069, Timestamp('2008-10-23 23:50:45'), 2], [39.993527, 116.32648300000001, Timestamp('2008-10-24 00:02:14'), 2], [39.978575, 116.326975, Timestamp('2008-10-24 00:22:01'), 3], [39.981668, 116.310769, Timestamp('2008-10-24 01:57:57'), 3], ] list_pois = [ [39.984094, 116.319236, 1, 'policia', 'distrito_pol_1'], [39.991013, 116.326384, 2, 'policia', 'policia_federal'], [40.01, 116.312615, 3, 'comercio', 'supermercado_aroldo'], [40.013821, 116.306531, 4, 'show', 'forro_tropykalia'], [40.008099, 116.31771100000002, 5, 'risca-faca', 'rinha_de_galo_world_cup'], [39.985704, 116.326877, 6, 'evento', 'adocao_de_animais'], [39.979393, 116.3119, 7, 'show', 'dia_do_municipio'] ] # Testes de Unions def test_union_poi_bank(): pois_df = DataFrame( data=list_random_banks, columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] ) expected = DataFrame( data=[ [39.984094, 116.319236, 1, 'banks'], [39.984198, 116.319322, 2, 'randomvalue'], [39.984224, 116.319402, 3, 'banks'], [39.984211, 116.319389, 4, 'randomvalue'], [39.984217, 116.319422, 5, 'banks'], [39.984710, 116.319865, 6, 'banks'], [39.984674, 116.319810, 7, 'banks'], [39.984623, 116.319773, 8, 'banks'], [39.984606, 116.319732, 9, 'banks'], [39.984555, 116.319728, 10, 'banks'] ], columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] ) integration.union_poi_bank(pois_df, TYPE_POI, inplace=True) assert_frame_equal(pois_df, expected) def test_union_poi_bus_station(): pois_df = DataFrame( data=list_random_bus_station, columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7] ) expected = DataFrame( data=[ [39.984094, 116.319236, 1, 'bus_station'], [39.984198, 116.319322, 2, 'randomvalue'], [39.984224, 116.319402, 3, 'bus_station'], [39.984211, 116.319389, 4, 'bus_station'], [39.984217, 116.319422, 5, 'bus_station'], [39.984710, 116.319865, 6, 'randomvalue'], [39.984674, 116.319810, 7, 'bus_station'], [39.984623, 116.319773, 8, 'bus_station'], ], columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7] ) integration.union_poi_bus_station(pois_df, TYPE_POI, inplace=True) assert_frame_equal(pois_df, expected) def test_union_poi_bar_restaurant(): pois_df = DataFrame( data=list_random_bar_restaurant, columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7] ) expected = DataFrame( data=[ [39.984094, 116.319236, 1, 'bar-restaurant'], [39.984198, 116.319322, 2, 'bar-restaurant'], [39.984224, 116.319402, 3, 'randomvalue'], [39.984211, 116.319389, 4, 'bar-restaurant'], [39.984217, 116.319422, 5, 'bar-restaurant'], [39.984710, 116.319865, 6, 'bar-restaurant'], [39.984674, 116.319810, 7, 'random123'], [39.984623, 116.319773, 8, '123'], ], columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7] ) integration.union_poi_bar_restaurant(pois_df, TYPE_POI, inplace=True) assert_frame_equal(pois_df, expected) def test_union_poi_parks(): pois_df = DataFrame( data=list_random_parks, columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7] ) expected = DataFrame( data=[ [39.984094, 116.319236, 1, 'parks'], [39.984198, 116.319322, 2, 'parks'], [39.984224, 116.319402, 3, 'parks'], [39.984211, 116.319389, 4, 'random'], [39.984217, 116.319422, 5, '123'], [39.984710, 116.319865, 6, 'parks'], [39.984674, 116.319810, 7, 'parks'], [39.984623, 116.319773, 8, 'parks'], ], columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7] ) integration.union_poi_parks(pois_df, TYPE_POI, inplace=True) assert_frame_equal(pois_df, expected) def test_union_poi_police(): pois_df = DataFrame( data=list_random_police, columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7] ) expected = DataFrame( data=[ [39.984094, 116.319236, 1, 'police'], [39.984198, 116.319322, 2, 'police'], [39.984224, 116.319402, 3, 'police'], [39.984211, 116.319389, 4, 'police'], [39.984217, 116.319422, 5, 'random'], [39.984710, 116.319865, 6, 'randomvalue'], [39.984674, 116.319810, 7, '123'], [39.984623, 116.319773, 8, 'bus_station'], ], columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7] ) integration.union_poi_police(pois_df, TYPE_POI, inplace=True) assert_frame_equal(pois_df, expected) def test_join_colletive_areas(): move_df = MoveDataFrame( data=list_move, ) move_df['geometry'] = move_df.apply(lambda x: Point(x['lon'], x['lat']), axis=1) expected = move_df.copy() indexes_ac = np.linspace(0, move_df.shape[0], 5, dtype=int) area_c = move_df[move_df.index.isin(indexes_ac)].copy() integration.join_collective_areas(move_df, area_c, inplace=True) expected[VIOLATING] = [True, False, True, False, True, False, True, False, False] assert_frame_equal(move_df, expected) def test__reset_and_creates_id_and_lat_lon(): move_df = MoveDataFrame(list_move) pois = DataFrame( data=list_pois, columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI, NAME_POI], index=[0, 1, 2, 3, 4, 5, 6] ) dists, ids, tags, lats, lons = ( integration._reset_and_creates_id_and_lat_lon( move_df, pois, True, True ) ) id_expected = np.full(9, '', dtype='object_') tag_expected = np.full(9, '', dtype='object_') dist_expected = np.full( 9, np.Infinity, dtype=np.float64 ) lat_expected = np.full(7, np.Infinity, dtype=np.float64) lon_expected = np.full(7, np.Infinity, dtype=np.float64) assert_array_almost_equal(dists, dist_expected) assert_array_equal(ids, id_expected) assert_array_equal(tags, tag_expected) assert_array_almost_equal(lats, lat_expected) assert_array_almost_equal(lons, lon_expected) dists, ids, tags, lats, lons = ( integration._reset_and_creates_id_and_lat_lon( move_df, pois, True, False ) ) assert_array_almost_equal(dists, dist_expected) assert_array_equal(ids, id_expected) assert_array_equal(tags, tag_expected) assert_array_almost_equal(lats, lat_expected) assert_array_almost_equal(lons, lon_expected) dists, ids, tags, lats, lons = ( integration._reset_and_creates_id_and_lat_lon( move_df, pois, False, True ) ) lat_expected = np.full(9, np.Infinity, dtype=np.float64) lon_expected = np.full(9, np.Infinity, dtype=np.float64) assert_array_almost_equal(dists, dist_expected) assert_array_equal(ids, id_expected) assert_array_equal(tags, tag_expected) assert_array_almost_equal(lats, lat_expected) assert_array_almost_equal(lons, lon_expected) dists, ids, tags, lats, lons = ( integration._reset_and_creates_id_and_lat_lon( move_df, pois, False, False ) ) assert_array_almost_equal(dists, dist_expected) assert_array_equal(ids, id_expected) assert_array_equal(tags, tag_expected) assert_array_almost_equal(lats, lat_expected) assert_array_almost_equal(lons, lon_expected) def test__reset_set_window__and_creates_event_id_type(): list_events = [ [39.984094, 116.319236, 1, Timestamp('2008-10-24 01:57:57'), 'show do tropykalia'], [39.991013, 116.326384, 2, Timestamp('2008-10-24 00:22:01'), 'evento da prefeitura'], [40.01, 116.312615, 3, Timestamp('2008-10-25 00:21:01'), 'show do seu joao'], [40.013821, 116.306531, 4, Timestamp('2008-10-26 00:22:01'), 'missa'] ] move_df = MoveDataFrame(list_move) pois = DataFrame( data=list_events, columns=[LATITUDE, LONGITUDE, EVENT_ID, DATETIME, EVENT_TYPE], index=[0, 1, 2, 3] ) list_win_start = [ '2008-10-22T17:23:05.000000000', '2008-10-22T22:07:26.000000000', '2008-10-22T22:20:16.000000000', '2008-10-22T22:33:06.000000000', '2008-10-22T23:28:33.000000000', '2008-10-23T11:20:45.000000000', '2008-10-23T11:32:14.000000000', '2008-10-23T11:52:01.000000000', '2008-10-23T13:27:57.000000000' ] win_start_expected = Series(pd.to_datetime(list_win_start), name=DATETIME) list_win_end = [ '2008-10-23T18:23:05.000000000', '2008-10-23T23:07:26.000000000', '2008-10-23T23:20:16.000000000', '2008-10-23T23:33:06.000000000', '2008-10-24T00:28:33.000000000', '2008-10-24T12:20:45.000000000', '2008-10-24T12:32:14.000000000', '2008-10-24T12:52:01.000000000', '2008-10-24T14:27:57.000000000' ] win_end_expected = Series(pd.to_datetime(list_win_end), name=DATETIME) dist_expected = np.full( 9, np.Infinity, dtype=np.float64 ) type_expected = np.full(9, '', dtype='object_') id_expected = np.full(9, '', dtype='object_') window_starts, window_ends, current_distances, event_id, event_type = ( integration._reset_set_window__and_creates_event_id_type( move_df, pois, 45000, DATETIME ) ) assert_series_equal(window_starts, win_start_expected) assert_series_equal(window_ends, win_end_expected) assert_array_almost_equal(current_distances, dist_expected) assert_array_equal(event_id, id_expected) assert_array_equal(event_type, type_expected) def test_reset_set_window_and_creates_event_id_type_all(): list_move = [ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1], [39.984559000000004, 116.326696,
Timestamp('2008-10-23 10:37:26')
pandas.Timestamp
import pandas as pd import networkx as nx import numpy as np from sklearn.base import BaseEstimator, TransformerMixin #funtions def degree(G,f): """ Adds a column to the dataframe f with the degree of each node. G: a networkx graph. f: a pandas dataframe. """ if not(set(f.name) == set(G.nodes()) and len(f.name) == len(G.nodes())): raise ValueError('The number of nodes and the length of the datadrame should be the same.') degree_dic = nx.degree_centrality(G) degree_df = pd.DataFrame(data = {'name': list(degree_dic.keys()), 'degree': list(degree_dic.values()) }) f = pd.merge(f, degree_df, on='name') return f def centrality(G,f): """ Adds a column to the dataframe f with the centrality of each node. G: a networkx graph. f: a pandas dataframe. """ if not(set(f.name) == set(G.nodes()) and len(f.name) == len(G.nodes())): raise ValueError('The number of nodes and the length of the datadrame should be the same.') centrality_dic = nx.degree_centrality(G) centrality_df = pd.DataFrame(data = {'name': list(centrality_dic.keys()), 'centrality': list(centrality_dic.values()) }) f = pd.merge(f, centrality_df, on='name') return f def betweenness(G,f): """ Adds a column to the dataframe f with the betweenness of each node. G: a networkx graph. f: a pandas dataframe. """ if not(set(f.name) == set(G.nodes()) and len(f.name) == len(G.nodes())): raise ValueError('The number of nodes and the length of the datadrame should be the same.') betweenness_dic = nx.betweenness_centrality(G) betweenness_df = pd.DataFrame(data = {'name': list(betweenness_dic.keys()), 'betweenness': list(betweenness_dic.values()) }) f = pd.merge(f, betweenness_df, on='name') return f def pagerank(G,f): """ Adds a column to the dataframe f with the pagerank of each node. G: a networkx graph. f: a pandas dataframe. """ if not(set(f.name) == set(G.nodes()) and len(f.name) == len(G.nodes())): raise ValueError('The number of nodes and the length of the datadrame should be the same.') pagerank_dic = nx.pagerank(G) pagerank_df = pd.DataFrame(data = {'name': list(pagerank_dic.keys()), 'pagerank': list(pagerank_dic.values()) }) f = pd.merge(f, pagerank_df, on='name') return f def clustering(G,f): """ Adds a column to the dataframe f with the clustering coeficient of each node. G: a networkx graph. f: a pandas dataframe. """ if not(set(f.name) == set(G.nodes()) and len(f.name) == len(G.nodes())): raise ValueError('The number of nodes and the length of the datadrame should be the same.') clustering_dic = nx.clustering(G) clustering_df = pd.DataFrame(data = {'name': list(clustering_dic.keys()), 'clustering': list(clustering_dic.values()) }) f = pd.merge(f, clustering_df, on='name') return f def communities_greedy_modularity(G,f): """ Adds a column to the dataframe f with the community of each node. The communitys are detected using greedy modularity. G: a networkx graph. f: a pandas dataframe. It works with networkx vesion: '2.4rc1.dev_20190610203526' """ if not(set(f.name) == set(G.nodes()) and len(f.name) == len(G.nodes())): raise ValueError('The number of nodes and the length of the datadrame should be the same.') communities_dic = nx.algorithms.community.greedy_modularity_communities(G) communities_df = pd.DataFrame(data = {'name': [i for j in range(len(communities_dic)) for i in list(communities_dic[j])], 'communities_greedy_modularity': [j for j in range(len(communities_dic)) for i in list(communities_dic[j])] }) f =
pd.merge(f, communities_df, on='name')
pandas.merge
""" author: <NAME>, <EMAIL> date: 3/2021 This script takes in a polygon GIS feature class of 1 to X features and uses a bunch of pre-generated GIS data describing various things that are important to determining solar site suitability and spits out a table of all those things for each site, one line per input site. Those variables include: distance to transmission lines of various capacities, slope on the site, and landuse on the site. this must be run with ArcGIS python 2 build system from ESRI as installed with ArcGIS 10.8 """ import arcpy from arcpy import env from arcpy.sa import * import pandas as pan arcpy.CheckOutExtension("spatial") # environments and paths ws = "D:\\workspace\\solarSiteAnalysis" arcpy.env.workspace = ws arcpy.env.overwriteOutput = "True" # OUPUT outputTables = ws + "\\Python\\Output" targetStyle = pan.read_csv(ws + "\\Python\\SiteProfileOutputTemplateTwo.csv") tempDF = pan.DataFrame(targetStyle) temp = ws + "\\Python\\temp.gdb" # Processing variables eData = "D:\\workspace\\gis_data\\DEM_1to3" stateElev = eData + "DEM_Mosaic_WV_Statewide_1to3m_UTM17_p2020.tif" regionSlope = eData + "\\StatewideElev.gdb" counties = ws + "\\RESOURCES\\county_24k_utm83_NEW.shp" owner = '' county = '' OriginalOID = 0 regionList = { eData + "\\WV_central_region_northernPiece.shp": regionSlope + "\\CentNorthSlope", eData + "\\WV_central_region_southernPiece.shp": regionSlope + "\\CentSouthSlope", eData + "\\WV_east_region.shp": regionSlope + "\\EastSlope", eData + "\\WV_south_region_northern.shp": regionSlope + "\\SouthNorthSlope", eData + "\\WV_south_region_southern.shp": regionSlope + "\\SouthSouthSlope" } currentRegion = temp + "\\currentRegion" lulc = ws + "\\RESOURCES\\WV_LULC_NAIP.tif" lulcGood = ws + "\\RESOURCES\\WV_LULC_NAIP_2016_reclassedToGoodForSolar_correct.tif" floodMath = ws + "\\RESOURCES\\DFIRM_FloodZones_AAE_AsNoDataAndOne.tif" minePermits = ws + "\\RESOURCES\\mining_reclamation_permit_boundary.shp" # Processing storage and other references slopeAreasAllLULC = { "0-5 percent": 0, "5-10 percent": 0, "10-15 percent": 0, "15-20 percent": 0, "Over 20 percent": 0 } slopeAreasGoodLULC = { "0-5 percent": 0, "5-10 percent": 0, "10-15 percent": 0, "15-20 percent": 0, "Over 20 percent": 0 } FieldNameToSlopeCat = { "0-5 percent": "VALUE_1", "5-10 percent": "VALUE_2", "10-15 percent": "VALUE_3", "15-20 percent": "VALUE_4", "Over 20 percent": "VALUE_5" } reclassSlope = [[0, 5, 1], [5, 10, 2], [10, 15, 3], [15, 20, 4], [20, 25, 5], [25, ]] transmission = { ws + "\\RESOURCES\\TransmissionLinesWV.gdb\\TransDist_Under100KV": "Under 100 kV", ws + "\\RESOURCES\\TransmissionLinesWV.gdb\\TransDist_UnknownKV": "Unknown kV", ws + "\\RESOURCES\\TransmissionLinesWV.gdb\\TransDist_735kvAndUp": "735kV and Up", ws + "\\RESOURCES\\TransmissionLinesWV.gdb\\TransDist_500kv": "500 kV", ws + "\\RESOURCES\\TransmissionLinesWV.gdb\\TransDist_345kv_2": "345 kV", ws + "\\RESOURCES\\TransmissionLinesWV.gdb\\TransDist_100to161kv": "100 to 161 kV" } transmissionDistances = { "Unknown kV": 0, "Under 100 kV": 0, "100 to 161 kV": 0, "345 kV": 0, "500 kV": 0, "735kV and Up": 0 } whereClause = "" # would be good to have an acutal name field in future inputs rather than just a number def analysis(): outputDF =
pan.DataFrame(data=None, columns=tempDF.columns)
pandas.DataFrame
import pytest import pandas as pd import pandas._testing as tm @pytest.mark.parametrize( "values, dtype", [ ([1, 2, 3], "int64"), ([1.0, 2.0, 3.0], "float64"), (["a", "b", "c"], "object"), (["a", "b", "c"], "string"), ([1, 2, 3], "datetime64[ns]"), ([1, 2, 3], "datetime64[ns, CET]"), ([1, 2, 3], "timedelta64[ns]"), (["2000", "2001", "2002"], "Period[D]"), ([1, 0, 3], "Sparse"), ([pd.Interval(0, 1), pd.Interval(1, 2), pd.Interval(3, 4)], "interval"), ], ) @pytest.mark.parametrize( "mask", [[True, False, False], [True, True, True], [False, False, False]] ) @pytest.mark.parametrize("box_mask", [True, False]) @pytest.mark.parametrize("frame", [True, False]) def test_series_mask_boolean(values, dtype, mask, box_mask, frame): ser = pd.Series(values, dtype=dtype, index=["a", "b", "c"]) if frame: ser = ser.to_frame() mask = pd.array(mask, dtype="boolean") if box_mask: mask = pd.Series(mask, index=ser.index) expected = ser[mask.astype("bool")] result = ser[mask] tm.assert_equal(result, expected) if not box_mask: # Series.iloc[Series[bool]] isn't allowed result = ser.iloc[mask] tm.assert_equal(result, expected) result = ser.loc[mask] tm.assert_equal(result, expected) # empty mask = mask[:0] ser = ser.iloc[:0] expected = ser[mask.astype("bool")] result = ser[mask] tm.assert_equal(result, expected) if not box_mask: # Series.iloc[Series[bool]] isn't allowed result = ser.iloc[mask] tm.assert_equal(result, expected) result = ser.loc[mask] tm.assert_equal(result, expected) @pytest.mark.parametrize("frame", [True, False]) def test_na_treated_as_false(frame): # https://github.com/pandas-dev/pandas/issues/31503 s =
pd.Series([1, 2, 3], name="name")
pandas.Series
##### Works by typing recomb_to_cM.py <recomb> <mareymap> ##### import sys import pandas as pd ### Actual program ### ### Tries to read the needed columns of your recomb and mareymap tables def inputs(): try: recomb = pd.read_table(sys.argv[1], header=None, skiprows=3, sep = " ", comment="#", engine="c") except: raise print("{0} cannot be read.".format(sys.argv[1])) try: mareymap = pd.read_table(sys.argv[2], header=0, skiprows=1, sep = " ", comment="#", engine="c") except: raise print("{0} cannot be read.".format(sys.argv[2])) #print(mareymap) mareymap = mareymap[mareymap["map"] == sys.argv[3]] mareymap_gen_max = max(mareymap["gen"]) mareymap.sort_values(by=["phys"], axis=0, inplace=True) mareymap = mareymap["phys"].tolist() return recomb, mareymap, mareymap_gen_max ### Produces a gene map from recombination estimates of 1/Mb def points(recomb, mareymap, mareymap_gen_max): tuples = [] for pos in mareymap: pos_recomb = recomb.loc[((pos < recomb[1]) & (pos >= recomb[0])), 2].values[0] print(pos_recomb) tuples.append([pos, pos_recomb]) results =
pd.DataFrame(tuples)
pandas.DataFrame
""" Collection of query wrappers / abstractions to both facilitate data retrieval and to reduce dependency on DB-specific API. """ from __future__ import print_function, division from datetime import datetime, date, timedelta import warnings import itertools import numpy as np import pandas.core.common as com from pandas.compat import lzip, map, zip, raise_with_traceback, string_types from pandas.core.api import DataFrame from pandas.core.base import PandasObject from pandas.tseries.tools import to_datetime class SQLAlchemyRequired(ImportError): pass class DatabaseError(IOError): pass #------------------------------------------------------------------------------ # Helper functions def _convert_params(sql, params): """convert sql and params args to DBAPI2.0 compliant format""" args = [sql] if params is not None: args += list(params) return args def _safe_col_name(col_name): #TODO: probably want to forbid database reserved names, such as "database" return col_name.strip().replace(' ', '_') def _handle_date_column(col, format=None): if isinstance(format, dict): return to_datetime(col, **format) else: if format in ['D', 's', 'ms', 'us', 'ns']: return to_datetime(col, coerce=True, unit=format) elif issubclass(col.dtype.type, np.floating) or issubclass(col.dtype.type, np.integer): # parse dates as timestamp format = 's' if format is None else format return to_datetime(col, coerce=True, unit=format) else: return to_datetime(col, coerce=True, format=format) def _parse_date_columns(data_frame, parse_dates): """ Force non-datetime columns to be read as such. Supports both string formatted and integer timestamp columns """ # handle non-list entries for parse_dates gracefully if parse_dates is True or parse_dates is None or parse_dates is False: parse_dates = [] if not hasattr(parse_dates, '__iter__'): parse_dates = [parse_dates] for col_name in parse_dates: df_col = data_frame[col_name] try: fmt = parse_dates[col_name] except TypeError: fmt = None data_frame[col_name] = _handle_date_column(df_col, format=fmt) return data_frame def execute(sql, con, cur=None, params=None, flavor='sqlite'): """ Execute the given SQL query using the provided connection object. Parameters ---------- sql : string Query to be executed con : SQLAlchemy engine or DBAPI2 connection (legacy mode) Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, a supported SQL flavor must also be provided cur : depreciated, cursor is obtained from connection params : list or tuple, optional List of parameters to pass to execute method. flavor : string "sqlite", "mysql" Specifies the flavor of SQL to use. Ignored when using SQLAlchemy engine. Required when using DBAPI2 connection. Returns ------- Results Iterable """ pandas_sql = pandasSQL_builder(con, flavor=flavor) args = _convert_params(sql, params) return pandas_sql.execute(*args) def tquery(sql, con, cur=None, params=None, flavor='sqlite'): """ Returns list of tuples corresponding to each row in given sql query. If only one column selected, then plain list is returned. Parameters ---------- sql: string SQL query to be executed con: SQLAlchemy engine or DBAPI2 connection (legacy mode) Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object is given, a supported SQL flavor must also be provided cur: depreciated, cursor is obtained from connection params: list or tuple, optional List of parameters to pass to execute method. flavor : string "sqlite", "mysql" Specifies the flavor of SQL to use. Ignored when using SQLAlchemy engine. Required when using DBAPI2 connection. Returns ------- Results Iterable """ warnings.warn( "tquery is depreciated, and will be removed in future versions", DeprecationWarning) pandas_sql = pandasSQL_builder(con, flavor=flavor) args = _convert_params(sql, params) return pandas_sql.tquery(*args) def uquery(sql, con, cur=None, params=None, engine=None, flavor='sqlite'): """ Does the same thing as tquery, but instead of returning results, it returns the number of rows affected. Good for update queries. Parameters ---------- sql: string SQL query to be executed con: SQLAlchemy engine or DBAPI2 connection (legacy mode) Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object is given, a supported SQL flavor must also be provided cur: depreciated, cursor is obtained from connection params: list or tuple, optional List of parameters to pass to execute method. flavor : string "sqlite", "mysql" Specifies the flavor of SQL to use. Ignored when using SQLAlchemy engine. Required when using DBAPI2 connection. Returns ------- Number of affected rows """ warnings.warn( "uquery is depreciated, and will be removed in future versions", DeprecationWarning) pandas_sql = pandasSQL_builder(con, flavor=flavor) args = _convert_params(sql, params) return pandas_sql.uquery(*args) #------------------------------------------------------------------------------ # Read and write to DataFrames def read_sql(sql, con, index_col=None, flavor='sqlite', coerce_float=True, params=None, parse_dates=None): """ Returns a DataFrame corresponding to the result set of the query string. Optionally provide an `index_col` parameter to use one of the columns as the index, otherwise default integer index will be used. Parameters ---------- sql : string SQL query to be executed con : SQLAlchemy engine or DBAPI2 connection (legacy mode) Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object is given, a supported SQL flavor must also be provided index_col : string, optional column name to use for the returned DataFrame object. flavor : string, {'sqlite', 'mysql'} The flavor of SQL to use. Ignored when using SQLAlchemy engine. Required when using DBAPI2 connection. coerce_float : boolean, default True Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets cur : depreciated, cursor is obtained from connection params : list or tuple, optional List of parameters to pass to execute method. parse_dates : list or dict - List of column names to parse as dates - Dict of ``{column_name: format string}`` where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps - Dict of ``{column_name: arg dict}``, where the arg dict corresponds to the keyword arguments of :func:`pandas.to_datetime` Especially useful with databases without native Datetime support, such as SQLite Returns ------- DataFrame See also -------- read_table """ pandas_sql = pandasSQL_builder(con, flavor=flavor) return pandas_sql.read_sql(sql, index_col=index_col, params=params, coerce_float=coerce_float, parse_dates=parse_dates) def to_sql(frame, name, con, flavor='sqlite', if_exists='fail', index=True): """ Write records stored in a DataFrame to a SQL database. Parameters ---------- frame : DataFrame name : string Name of SQL table con : SQLAlchemy engine or DBAPI2 connection (legacy mode) Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object is given, a supported SQL flavor must also be provided flavor : {'sqlite', 'mysql'}, default 'sqlite' The flavor of SQL to use. Ignored when using SQLAlchemy engine. Required when using DBAPI2 connection. if_exists : {'fail', 'replace', 'append'}, default 'fail' - fail: If table exists, do nothing. - replace: If table exists, drop it, recreate it, and insert data. - append: If table exists, insert data. Create if does not exist. index : boolean, default True Write DataFrame index as a column """ pandas_sql = pandasSQL_builder(con, flavor=flavor) pandas_sql.to_sql(frame, name, if_exists=if_exists, index=index) def has_table(table_name, con, meta=None, flavor='sqlite'): """ Check if DataBase has named table. Parameters ---------- table_name: string Name of SQL table con: SQLAlchemy engine or DBAPI2 connection (legacy mode) Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object is given, a supported SQL flavor name must also be provided flavor: {'sqlite', 'mysql'}, default 'sqlite' The flavor of SQL to use. Ignored when using SQLAlchemy engine. Required when using DBAPI2 connection. Returns ------- boolean """ pandas_sql = pandasSQL_builder(con, flavor=flavor) return pandas_sql.has_table(table_name) def read_table(table_name, con, meta=None, index_col=None, coerce_float=True, parse_dates=None, columns=None): """Given a table name and SQLAlchemy engine, return a DataFrame. Type convertions will be done automatically. Parameters ---------- table_name : string Name of SQL table in database con : SQLAlchemy engine Legacy mode not supported meta : SQLAlchemy meta, optional If omitted MetaData is reflected from engine index_col : string, optional Column to set as index coerce_float : boolean, default True Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point. Can result in loss of Precision. parse_dates : list or dict - List of column names to parse as dates - Dict of ``{column_name: format string}`` where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps - Dict of ``{column_name: arg dict}``, where the arg dict corresponds to the keyword arguments of :func:`pandas.to_datetime` Especially useful with databases without native Datetime support, such as SQLite columns : list List of column names to select from sql table Returns ------- DataFrame See also -------- read_sql """ pandas_sql = PandasSQLAlchemy(con, meta=meta) table = pandas_sql.read_table(table_name, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates) if table is not None: return table else: raise ValueError("Table %s not found" % table_name, con) def pandasSQL_builder(con, flavor=None, meta=None): """ Convenience function to return the correct PandasSQL subclass based on the provided parameters """ try: import sqlalchemy if isinstance(con, sqlalchemy.engine.Engine): return PandasSQLAlchemy(con, meta=meta) else: warnings.warn( """Not an SQLAlchemy engine, attempting to use as legacy DBAPI connection""") if flavor is None: raise ValueError( """PandasSQL must be created with an SQLAlchemy engine or a DBAPI2 connection and SQL flavour""") else: return PandasSQLLegacy(con, flavor) except ImportError: warnings.warn("SQLAlchemy not installed, using legacy mode") if flavor is None: raise SQLAlchemyRequired else: return PandasSQLLegacy(con, flavor) class PandasSQLTable(PandasObject): """ For mapping Pandas tables to SQL tables. Uses fact that table is reflected by SQLAlchemy to do better type convertions. Also holds various flags needed to avoid having to pass them between functions all the time. """ # TODO: support for multiIndex def __init__(self, name, pandas_sql_engine, frame=None, index=True, if_exists='fail', prefix='pandas'): self.name = name self.pd_sql = pandas_sql_engine self.prefix = prefix self.frame = frame self.index = self._index_name(index) if frame is not None: # We want to write a frame if self.pd_sql.has_table(self.name): if if_exists == 'fail': raise ValueError("Table '%s' already exists." % name) elif if_exists == 'replace': self.pd_sql.drop_table(self.name) self.table = self._create_table_statement() self.create() elif if_exists == 'append': self.table = self.pd_sql.get_table(self.name) if self.table is None: self.table = self._create_table_statement() else: self.table = self._create_table_statement() self.create() else: # no data provided, read-only mode self.table = self.pd_sql.get_table(self.name) if self.table is None: raise ValueError("Could not init table '%s'" % name) def exists(self): return self.pd_sql.has_table(self.name) def sql_schema(self): return str(self.table.compile()) def create(self): self.table.create() def insert_statement(self): return self.table.insert() def maybe_asscalar(self, i): try: return np.asscalar(i) except AttributeError: return i def insert(self): ins = self.insert_statement() data_list = [] # to avoid if check for every row keys = self.frame.columns if self.index is not None: for t in self.frame.itertuples(): data = dict((k, self.maybe_asscalar(v)) for k, v in zip(keys, t[1:])) data[self.index] = self.maybe_asscalar(t[0]) data_list.append(data) else: for t in self.frame.itertuples(): data = dict((k, self.maybe_asscalar(v)) for k, v in zip(keys, t[1:])) data_list.append(data) self.pd_sql.execute(ins, data_list) def read(self, coerce_float=True, parse_dates=None, columns=None): if columns is not None and len(columns) > 0: from sqlalchemy import select cols = [self.table.c[n] for n in columns] if self.index is not None: cols.insert(0, self.table.c[self.index]) sql_select = select(cols) else: sql_select = self.table.select() result = self.pd_sql.execute(sql_select) data = result.fetchall() column_names = result.keys() self.frame = DataFrame.from_records( data, columns=column_names, coerce_float=coerce_float) self._harmonize_columns(parse_dates=parse_dates) if self.index is not None: self.frame.set_index(self.index, inplace=True) # Assume if the index in prefix_index format, we gave it a name # and should return it nameless if self.index == self.prefix + '_index': self.frame.index.name = None return self.frame def _index_name(self, index): if index is True: if self.frame.index.name is not None: return _safe_col_name(self.frame.index.name) else: return self.prefix + '_index' elif isinstance(index, string_types): return index else: return None def _create_table_statement(self): from sqlalchemy import Table, Column safe_columns = map(_safe_col_name, self.frame.dtypes.index) column_types = map(self._sqlalchemy_type, self.frame.dtypes) columns = [Column(name, typ) for name, typ in zip(safe_columns, column_types)] if self.index is not None: columns.insert(0, Column(self.index, self._sqlalchemy_type( self.frame.index), index=True)) return Table(self.name, self.pd_sql.meta, *columns) def _harmonize_columns(self, parse_dates=None): """ Make a data_frame's column type align with an sql_table column types Need to work around limited NA value support. Floats are always fine, ints must always be floats if there are Null values. Booleans are hard because converting bool column with None replaces all Nones with false. Therefore only convert bool if there are no NA values. Datetimes should already be converted to np.datetime if supported, but here we also force conversion if required """ # handle non-list entries for parse_dates gracefully if parse_dates is True or parse_dates is None or parse_dates is False: parse_dates = [] if not hasattr(parse_dates, '__iter__'): parse_dates = [parse_dates] for sql_col in self.table.columns: col_name = sql_col.name try: df_col = self.frame[col_name] # the type the dataframe column should have col_type = self._numpy_type(sql_col.type) if col_type is datetime or col_type is date: if not issubclass(df_col.dtype.type, np.datetime64): self.frame[col_name] = _handle_date_column(df_col) elif col_type is float: # floats support NA, can always convert! self.frame[col_name].astype(col_type, copy=False) elif len(df_col) == df_col.count(): # No NA values, can convert ints and bools if col_type is int or col_type is bool: self.frame[col_name].astype(col_type, copy=False) # Handle date parsing if col_name in parse_dates: try: fmt = parse_dates[col_name] except TypeError: fmt = None self.frame[col_name] = _handle_date_column( df_col, format=fmt) except KeyError: pass # this column not in results def _sqlalchemy_type(self, arr_or_dtype): from sqlalchemy.types import Integer, Float, Text, Boolean, DateTime, Date, Interval if arr_or_dtype is date: return Date if com.is_datetime64_dtype(arr_or_dtype): try: tz = arr_or_dtype.tzinfo return DateTime(timezone=True) except: return DateTime if com.is_timedelta64_dtype(arr_or_dtype): return Interval elif com.is_float_dtype(arr_or_dtype): return Float elif com.is_integer_dtype(arr_or_dtype): # TODO: Refine integer size. return Integer elif
com.is_bool(arr_or_dtype)
pandas.core.common.is_bool
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import DataLoader, TensorDataset import pandas as pd from sklearn.preprocessing import LabelEncoder from sklearn.metrics import confusion_matrix import numpy as np import seaborn as sn import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import os from tqdm import tqdm def get_model_torch(in_shape, out_shape): from models import model_torch return model_torch(in_shape, out_shape) def to_categorical(y, num_classes): """ 1-hot encodes a tensor """ return np.eye(num_classes, dtype='uint8')[y] def visualize_conf_matrix(matrix, class_list): df_cm = pd.DataFrame(matrix, index = [i for i in class_list], columns = [i for i in class_list]) plt.figure(figsize = (13,7)) sn.set(font_scale=1.8) sn.heatmap(df_cm, annot=True, cmap='Greys', fmt='g', annot_kws={"size": 20}) plt.show(block=False); folder = './sound_event_detection/figures/' if not os.path.exists(folder): os.makedirs(folder) plt.savefig(folder + 'confusion_matrix' + '.png', bbox_inches='tight') def get_conf_matrix(y_pred, y_test): y_pred_max = [] y_test_max = [] for j in y_pred: y_pred_max.append(np.argmax(j)) for j in y_test: y_test_max.append(np.argmax(j)) return confusion_matrix(y_test_max, y_pred_max) def get_metrics(conf_matrix): tn = 0.0 fp = 0.0 tp = 0.0 fn = 0.0 epsilon = 0.01 for it1 in range(conf_matrix.shape[0]): tp += conf_matrix[it1][it1] for it2 in range(conf_matrix.shape[1]): if it2 != it1: fp += conf_matrix[it2][it1] fn += conf_matrix[it1][it2] precision = tp / (tp + fp + epsilon) recall = tp / (tp + fn + epsilon) f1 = 2 * (precision*recall) / (precision + recall + epsilon) return tp, precision, recall, f1 print('#'*40, "\n\t\tTesting\n") token = '' test_reader =
pd.read_table('./sound_event_detection/src/test'+token+'.csv', sep='\t', encoding='utf-8')
pandas.read_table
import datetime import numpy as np import pandas as pd from sqlalchemy import sql def get_and_adjust_data(db_engine, station_id, start, end): """ Get data from the database in both the bike count format and the outage format, between the passed dates. If bike count data and outage data is available for the same time, bike count data takes precedence. If no data is available for a subset of the passed period of time, it will be left out of the returned dataset. """ data_list = [] # Create empty DateTimeIndex with frequency of five minutes, and assign it # to an empty series. # "5T" is five minutes. dti = pd.date_range(0, -1, freq="5T") data = pd.Series(None, index=dti) # Add data in the bike count format. bike_counts = pd.read_sql_query( "SELECT ts, bikes, spaces FROM bike_count " + "WHERE station_id = %(station_id)s AND " + "ts >= %(start)s AND ts <= %(end)s;", db_engine, params={ "station_id": station_id, "start": start, "end": end}) # bike_count[0] is the index, [1..3] are the columns in the order # selected in the above query for bike_count in bike_counts.itertuples(): # Do not insert counts with no bikes or spaces (inactive stations). if not (bike_count[2] == 0 and bike_count[3] == 0): ts = pd.to_datetime(bike_count[1], infer_datetime_format=True) # Round the timestamp to the nearest five minute mark. ts += datetime.timedelta(seconds=150) ts = ts.replace( minute=(ts.minute - (ts.minute % 5)), second=0, microsecond=0) # A status of np.nan means the station is neither full nor empty. status = np.nan if bike_count[2] == 0: status = "empty" elif bike_count[3] == 0: status = "full" # Create index with only one entry, ts. index = pd.date_range(ts, ts, freq="5T") data_list.append(pd.Series(status, index=index)) if len(data_list) > 0: data = pd.concat(data_list) try: data_list = [] # Add data in the outage format. outages = pd.read_sql_query( "SELECT outage_type, outage_start, outage_end FROM outage " + "WHERE station_id = %(station_id)s AND " + "outage_start >= %(start)s AND outage_end <= %(end)s;", db_engine, params={ "station_id": station_id, "start": start, "end": end}) # Merge each outage into dataframe. for outage in outages.itertuples(): ostart =
pd.to_datetime(outage[2], infer_datetime_format=True)
pandas.to_datetime
import mock import os import pandas as pd import pytest from datetime import datetime from flexmock import flexmock from sportsreference import utils from sportsreference.ncaab.roster import Player, Roster from sportsreference.ncaab.teams import Team YEAR = 2018 def read_file(filename): filepath = os.path.join(os.path.dirname(__file__), 'ncaab', filename) return open('%s.html' % filepath, 'r', encoding='utf8').read() def mock_pyquery(url): class MockPQ: def __init__(self, html_contents, status=200): self.url = url self.reason = 'Bad URL' # Used when throwing HTTPErrors self.headers = {} # Used when throwing HTTPErrors self.status_code = status self.html_contents = html_contents self.text = html_contents if 'purdue' in url: return MockPQ(read_file('2018')) if 'isaac-haas-1' in url: return MockPQ(read_file('isaac-haas-1')) if 'vince-edwards-2' in url: return MockPQ(read_file('vince-edwards-2')) if 'bad' in url: return MockPQ(None, 404) return MockPQ(read_file('carsen-edwards-1')) def mock_request(url): class MockRequest: def __init__(self, html_contents, status_code=200): self.status_code = status_code self.html_contents = html_contents self.text = html_contents if str(YEAR) in url: return MockRequest('good') else: return MockRequest('bad', status_code=404) class TestNCAABPlayer: @mock.patch('requests.get', side_effect=mock_pyquery) def setup_method(self, *args, **kwargs): self.results_career = { 'assist_percentage': 17.3, 'assists': 166, 'block_percentage': 0.6, 'blocks': 11, 'box_plus_minus': 6.1, 'conference': '', 'defensive_box_plus_minus': 1.9, 'defensive_rebound_percentage': 11.8, 'defensive_rebounds': 206, 'defensive_win_shares': 3.5, 'effective_field_goal_percentage': 0.515, 'field_goal_attempts': 835, 'field_goal_percentage': 0.428, 'field_goals': 357, 'free_throw_attempt_rate': 0.279, 'free_throw_attempts': 233, 'free_throw_percentage': 0.798, 'free_throws': 186, 'games_played': 72, 'games_started': 58, 'height': '6-1', 'minutes_played': 1905, 'name': '<NAME>', 'offensive_box_plus_minus': 4.2, 'offensive_rebound_percentage': 1.8, 'offensive_rebounds': 27, 'offensive_win_shares': 4.4, 'personal_fouls': 133, 'player_efficiency_rating': 19.9, 'points': 1046, 'points_produced': 961, 'position': 'Guard', 'season': 'Career', 'steal_percentage': 2.4, 'steals': 78, 'team_abbreviation': 'purdue', 'three_point_attempt_rate': 0.459, 'three_point_attempts': 383, 'three_point_percentage': 0.381, 'three_pointers': 146, 'total_rebound_percentage': 7.2, 'total_rebounds': 233, 'true_shooting_percentage': 0.553, 'turnover_percentage': 11.9, 'turnovers': 128, 'two_point_attempts': 452, 'two_point_percentage': 0.467, 'two_pointers': 211, 'usage_percentage': 28.9, 'weight': 190, 'win_shares': 8.0, 'win_shares_per_40_minutes': 0.167 } self.results_2018 = { 'assist_percentage': 19.5, 'assists': 104, 'block_percentage': 0.8, 'blocks': 8, 'box_plus_minus': 9.0, 'conference': 'big-ten', 'defensive_box_plus_minus': 1.5, 'defensive_rebound_percentage': 12.9, 'defensive_rebounds': 129, 'defensive_win_shares': 2.0, 'effective_field_goal_percentage': 0.555, 'field_goal_attempts': 500, 'field_goal_percentage': 0.458, 'field_goals': 229, 'free_throw_attempt_rate': 0.318, 'free_throw_attempts': 159, 'free_throw_percentage': 0.824, 'free_throws': 131, 'games_played': 37, 'games_started': 37, 'height': '6-1', 'minutes_played': 1092, 'name': '<NAME>', 'offensive_box_plus_minus': 7.6, 'offensive_rebound_percentage': 1.5, 'offensive_rebounds': 13, 'offensive_win_shares': 4.0, 'personal_fouls': 65, 'player_efficiency_rating': 25.4, 'points': 686, 'points_produced': 626, 'position': 'Guard', 'season': '2017-18', 'steal_percentage': 2.3, 'steals': 42, 'team_abbreviation': 'purdue', 'three_point_attempt_rate': 0.478, 'three_point_attempts': 239, 'three_point_percentage': 0.406, 'three_pointers': 97, 'total_rebound_percentage': 7.7, 'total_rebounds': 142, 'true_shooting_percentage': 0.596, 'turnover_percentage': 10.0, 'turnovers': 64, 'two_point_attempts': 261, 'two_point_percentage': 0.506, 'two_pointers': 132, 'usage_percentage': 30.5, 'weight': 190, 'win_shares': 6.1, 'win_shares_per_40_minutes': 0.223 } self.player = Player('carsen-edwards-1') def test_ncaab_player_returns_requested_player_career_stats(self): # Request the career stats player = self.player('') for attribute, value in self.results_career.items(): assert getattr(player, attribute) == value def test_ncaab_player_returns_requested_player_season_stats(self): # Request the 2017-18 stats player = self.player('2017-18') for attribute, value in self.results_2018.items(): assert getattr(player, attribute) == value def test_correct_initial_index_found(self): seasons = ['2017-18', 'Career', '2016-17'] mock_season = mock.PropertyMock(return_value=seasons) player = Player('carsen-edwards-1') type(player)._season = mock_season result = player._find_initial_index() assert player._index == 1 def test_dataframe_returns_dataframe(self): dataframe = [ {'assist_percentage': 17.3, 'assists': 166, 'block_percentage': 0.6, 'blocks': 11, 'box_plus_minus': 6.1, 'conference': '', 'defensive_box_plus_minus': 1.9, 'defensive_rebound_percentage': 11.8, 'defensive_rebounds': 206, 'defensive_win_shares': 3.5, 'effective_field_goal_percentage': 0.515, 'field_goal_attempts': 835, 'field_goal_percentage': 0.428, 'field_goals': 357, 'free_throw_attempt_rate': 0.279, 'free_throw_attempts': 233, 'free_throw_percentage': 0.798, 'free_throws': 186, 'games_played': 72, 'games_started': 58, 'height': '6-1', 'minutes_played': 1905, 'offensive_box_plus_minus': 4.2, 'offensive_rebound_percentage': 1.8, 'offensive_rebounds': 27, 'offensive_win_shares': 4.4, 'personal_fouls': 133, 'player_efficiency_rating': 19.9, 'player_id': 'carsen-edwards-1', 'points': 1046, 'points_produced': 961, 'position': 'Guard', 'steal_percentage': 2.4, 'steals': 78, 'team_abbreviation': 'purdue', 'three_point_attempt_rate': 0.459, 'three_point_attempts': 383, 'three_point_percentage': 0.381, 'three_pointers': 146, 'total_rebound_percentage': 7.2, 'total_rebounds': 233, 'true_shooting_percentage': 0.553, 'turnover_percentage': 11.9, 'turnovers': 128, 'two_point_attempts': 452, 'two_point_percentage': 0.467, 'two_pointers': 211, 'usage_percentage': 28.9, 'weight': 190, 'win_shares': 8.0, 'win_shares_per_40_minutes': 0.167}, {'assist_percentage': 14.3, 'assists': 62, 'block_percentage': 0.4, 'blocks': 3, 'box_plus_minus': 2.1, 'conference': 'big-ten', 'defensive_box_plus_minus': 2.4, 'defensive_rebound_percentage': 10.4, 'defensive_rebounds': 77, 'defensive_win_shares': 1.5, 'effective_field_goal_percentage': 0.455, 'field_goal_attempts': 335, 'field_goal_percentage': 0.382, 'field_goals': 128, 'free_throw_attempt_rate': 0.221, 'free_throw_attempts': 74, 'free_throw_percentage': 0.743, 'free_throws': 55, 'games_played': 35, 'games_started': 21, 'height': '6-1', 'minutes_played': 813, 'offensive_box_plus_minus': -0.3, 'offensive_rebound_percentage': 2.2, 'offensive_rebounds': 14, 'offensive_win_shares': 0.4, 'personal_fouls': 68, 'player_efficiency_rating': 12.5, 'player_id': 'carsen-edwards-1', 'points': 360, 'points_produced': 335, 'position': 'Guard', 'steal_percentage': 2.5, 'steals': 36, 'team_abbreviation': 'purdue', 'three_point_attempt_rate': 0.43, 'three_point_attempts': 144, 'three_point_percentage': 0.34, 'three_pointers': 49, 'total_rebound_percentage': 6.6, 'total_rebounds': 91, 'true_shooting_percentage': 0.486, 'turnover_percentage': 14.7, 'turnovers': 64, 'two_point_attempts': 191, 'two_point_percentage': 0.414, 'two_pointers': 79, 'usage_percentage': 26.8, 'weight': 190, 'win_shares': 1.9, 'win_shares_per_40_minutes': 0.092}, {'assist_percentage': 19.5, 'assists': 104, 'block_percentage': 0.8, 'blocks': 8, 'box_plus_minus': 9.0, 'conference': 'big-ten', 'defensive_box_plus_minus': 1.5, 'defensive_rebound_percentage': 12.9, 'defensive_rebounds': 129, 'defensive_win_shares': 2.0, 'effective_field_goal_percentage': 0.555, 'field_goal_attempts': 500, 'field_goal_percentage': 0.458, 'field_goals': 229, 'free_throw_attempt_rate': 0.318, 'free_throw_attempts': 159, 'free_throw_percentage': 0.824, 'free_throws': 131, 'games_played': 37, 'games_started': 37, 'height': '6-1', 'minutes_played': 1092, 'offensive_box_plus_minus': 7.6, 'offensive_rebound_percentage': 1.5, 'offensive_rebounds': 13, 'offensive_win_shares': 4.0, 'personal_fouls': 65, 'player_efficiency_rating': 25.4, 'player_id': 'carsen-edwards-1', 'points': 686, 'points_produced': 626, 'position': 'Guard', 'steal_percentage': 2.3, 'steals': 42, 'team_abbreviation': 'purdue', 'three_point_attempt_rate': 0.478, 'three_point_attempts': 239, 'three_point_percentage': 0.406, 'three_pointers': 97, 'total_rebound_percentage': 7.7, 'total_rebounds': 142, 'true_shooting_percentage': 0.596, 'turnover_percentage': 10.0, 'turnovers': 64, 'two_point_attempts': 261, 'two_point_percentage': 0.506, 'two_pointers': 132, 'usage_percentage': 30.5, 'weight': 190, 'win_shares': 6.1, 'win_shares_per_40_minutes': 0.223} ] indices = ['Career', '2016-17', '2017-18'] df = pd.DataFrame(dataframe, index=indices) player = self.player('') # Pandas doesn't natively allow comparisons of DataFrames. # Concatenating the two DataFrames (the one generated during the test # and the expected one above) and dropping duplicate rows leaves only # the rows that are unique between the two frames. This allows a quick # check of the DataFrame to see if it is empty - if so, all rows are # duplicates, and they are equal. frames = [df, player.dataframe] df1 =
pd.concat(frames)
pandas.concat
""" Dataset classes. """ # Authors: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # # License: BSD (3-clause) import os import json import warnings from glob import glob import pandas as pd from torch.utils.data import Dataset, ConcatDataset def _create_description(description): if description is not None: if (not isinstance(description, pd.Series) and not isinstance(description, dict)): raise ValueError(f"'{description}' has to be either a " f"pandas.Series or a dict.") if isinstance(description, dict): description = pd.Series(description) return description class BaseDataset(Dataset): """Returns samples from an mne.io.Raw object along with a target. Dataset which serves samples from an mne.io.Raw object along with a target. The target is unique for the dataset, and is obtained through the `description` attribute. Parameters ---------- raw: mne.io.Raw Continuous data. description: dict | pandas.Series | None Holds additional description about the continuous signal / subject. target_name: str | None Name of the index in `description` that should be used to provide the target (e.g., to be used in a prediction task later on). transform : callable | None On-the-fly transform applied to the example before it is returned. """ def __init__(self, raw, description=None, target_name=None, transform=None): self.raw = raw self.description = _create_description(description) self.transform = transform # save target name for load/save later self.target_name = target_name if target_name is None: self.target = None elif target_name in self.description: self.target = self.description[target_name] else: raise ValueError(f"'{target_name}' not in description.") def __getitem__(self, index): X, y = self.raw[:, index][0], self.target if self.transform is not None: X = self.transform(X) return X, y def __len__(self): return len(self.raw) @property def transform(self): return self._transform @transform.setter def transform(self, value): if value is not None and not callable(value): raise ValueError('Transform needs to be a callable.') self._transform = value class WindowsDataset(BaseDataset): """Returns windows from an mne.Epochs object along with a target. Dataset which serves windows from an mne.Epochs object along with their target and additional information. The `metadata` attribute of the Epochs object must contain a column called `target`, which will be used to return the target that corresponds to a window. Additional columns `i_window_in_trial`, `i_start_in_trial`, `i_stop_in_trial` are also required to serve information about the windowing (e.g., useful for cropped training). See `braindecode.datautil.windowers` to directly create a `WindowsDataset` from a `BaseDataset` object. Parameters ---------- windows : mne.Epochs Windows obtained through the application of a windower to a BaseDataset (see `braindecode.datautil.windowers`). description : dict | pandas.Series | None Holds additional info about the windows. transform : callable | None On-the-fly transform applied to a window before it is returned. """ def __init__(self, windows, description=None, transform=None): self.windows = windows self.description = _create_description(description) self.transform = transform self.y = self.windows.metadata.loc[:, 'target'].to_numpy() self.crop_inds = self.windows.metadata.loc[ :, ['i_window_in_trial', 'i_start_in_trial', 'i_stop_in_trial']].to_numpy() def __getitem__(self, index): X = self.windows.get_data(item=index)[0].astype('float32') if self.transform is not None: X = self.transform(X) y = self.y[index] # necessary to cast as list to get list of three tensors from batch, # otherwise get single 2d-tensor... crop_inds = self.crop_inds[index].tolist() return X, y, crop_inds def __len__(self): return len(self.windows.events) @property def transform(self): return self._transform @transform.setter def transform(self, value): if value is not None and not callable(value): raise ValueError('Transform needs to be a callable.') self._transform = value class BaseConcatDataset(ConcatDataset): """A base class for concatenated datasets. Holds either mne.Raw or mne.Epoch in self.datasets and has a pandas DataFrame with additional description. Parameters ---------- list_of_ds: list list of BaseDataset, BaseConcatDataset or WindowsDataset """ def __init__(self, list_of_ds): # if we get a list of BaseConcatDataset, get all the individual datasets if list_of_ds and isinstance(list_of_ds[0], BaseConcatDataset): list_of_ds = [d for ds in list_of_ds for d in ds.datasets] super().__init__(list_of_ds) self.description =
pd.DataFrame([ds.description for ds in list_of_ds])
pandas.DataFrame
import inspect import json import os import re from urllib.parse import quote from urllib.request import urlopen import pandas as pd import param from .configuration import DEFAULTS class TutorialData(param.Parameterized): label = param.String(allow_None=True) raw = param.Boolean() verbose = param.Boolean() return_meta = param.Boolean() use_cache = param.Boolean() _source = None _base_url = None _data_url = None _description = None def __init__(self, **kwds): super().__init__(**kwds) self._cache_dir = DEFAULTS["cache_kwds"]["directory"] self._remove_href = re.compile(r"<(a|/a).*?>") os.makedirs(self._cache_dir, exist_ok=True) self._init_owid() @property def _cache_path(self): cache_file = f"{self.label}.pkl" return os.path.join(self._cache_dir, cache_file) @property def _dataset_options(self): options = set([]) for method in dir(self): if method.startswith("_load_") and "owid" not in method: options.add(method.replace("_load_", "")) return list(options) + list(self._owid_labels_df.columns) @staticmethod def _specify_cache(cache_path, **kwds): if kwds: cache_ext = "_".join( f"{key}={val}".replace(os.sep, "") for key, val in kwds.items() ) cache_path = f"{os.path.splitext(cache_path)[0]}_{cache_ext}.pkl" return cache_path def _cache_dataset(self, df, cache_path=None, **kwds): if cache_path is None: cache_path = self._cache_path cache_path = self._specify_cache(cache_path, **kwds) df.to_pickle(cache_path) def _read_cache(self, cache_path=None, **kwds): if not self.use_cache: return None if cache_path is None: cache_path = self._cache_path cache_path = self._specify_cache(cache_path, **kwds) try: return pd.read_pickle(cache_path) except Exception: if os.path.exists(cache_path): os.remove(cache_path) return None @staticmethod def _snake_urlify(s): # Replace all hyphens with underscore s = s.replace(" - ", "_").replace("-", "_") # Remove all non-word characters (everything except numbers and letters) s = re.sub(r"[^\w\s]", "", s) # Replace all runs of whitespace with a underscore s = re.sub(r"\s+", "_", s) return s.lower() def _init_owid(self): cache_path = os.path.join(self._cache_dir, "owid_labels.pkl") self._owid_labels_df = self._read_cache(cache_path=cache_path) if self._owid_labels_df is not None: return owid_api_url = ( "https://api.github.com/" "repos/owid/owid-datasets/" "git/trees/master?recursive=1" ) with urlopen(owid_api_url) as f: sources = json.loads(f.read().decode("utf-8")) owid_labels = {} owid_raw_url = "https://raw.githubusercontent.com/owid/owid-datasets/master/" for source_tree in sources["tree"]: path = source_tree["path"] if ".csv" not in path and ".json" not in path: continue label = "owid_" + self._snake_urlify(path.split("/")[-2].strip()) if label not in owid_labels: owid_labels[label] = {} url = f"{owid_raw_url}/{quote(path)}" if ".csv" in path: owid_labels[label]["data"] = url elif ".json" in path: owid_labels[label]["meta"] = url self._owid_labels_df = pd.DataFrame(owid_labels) self._cache_dataset(self._owid_labels_df, cache_path=cache_path) def _load_owid(self, **kwds): self._data_url = self._owid_labels_df[self.label]["data"] meta_url = self._owid_labels_df[self.label]["meta"] with urlopen(meta_url) as response: meta = json.loads(response.read().decode()) self.label = meta["title"] self._source = ( " & ".join(source["dataPublishedBy"] for source in meta["sources"]) + " curated by Our World in Data (OWID)" ) self._base_url = ( " & ".join(source["link"] for source in meta["sources"]) + " through https://github.com/owid/owid-datasets" ) self._description = re.sub(self._remove_href, "", meta["description"]) df = self._read_cache(**kwds) if df is None: df = pd.read_csv(self._data_url, **kwds) self._cache_dataset(df, **kwds) if self.raw: return df df.columns = [self._snake_urlify(col) for col in df.columns] return df def _load_annual_co2(self, **kwds): self._source = "NOAA ESRL" self._base_url = "https://www.esrl.noaa.gov/" self._data_url = ( "https://www.esrl.noaa.gov/" "gmd/webdata/ccgg/trends/co2/co2_annmean_mlo.txt" ) self._description = ( "The carbon dioxide data on Mauna Loa constitute the longest record " "of direct measurements of CO2 in the atmosphere. They were started " "by <NAME> of the Scripps Institution of Oceanography in " "March of 1958 at a facility of the National Oceanic and Atmospheric " "Administration [Keeling, 1976]. NOAA started its own CO2 measurements " "in May of 1974, and they have run in parallel with those made by " "Scripps since then [Thoning, 1989]." ) df = self._read_cache(**kwds) if df is None: base_kwds = dict( header=None, comment="#", sep="\s+", # noqa names=["year", "co2_ppm", "uncertainty"], ) base_kwds.update(kwds) df =
pd.read_csv(self._data_url, **base_kwds)
pandas.read_csv
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import zipfile import os import geopy.distance import random import pandas as pd import numpy as np import csv from enum import Enum from yaml import safe_load from maro.cli.data_pipeline.utils import download_file, StaticParameter from maro.utils.logger import CliLogger from maro.cli.data_pipeline.base import DataPipeline, DataTopology logger = CliLogger(name=__name__) class CitiBikePipeline(DataPipeline): _download_file_name = "trips.zip" _station_info_file_name = "full_station.json" _clean_file_name = "trips.csv" _build_file_name = "trips.bin" _station_meta_file_name = "station_meta.csv" _distance_file_name = "distance_adj.csv" _meta_file_name = "trips.yml" def __init__(self, topology: str, source: str, station_info: str, is_temp: bool = False): """ Generate citi_bike data bin and other necessary files for the specified topology from specified source. They will be generated in ~/.maro/data/citi_bike/[topology]/_build. Folder structure: ~/.maro /data/citi_bike/[topology] /_build bin data file and other necessary files /source /_download original data files /_clean cleaned data files /temp download temp files Args: topology(str): topology name of the data files source(str): source url of original data file station_info(str): source url of station info file is_temp(bool): (optional) if the data file is temporary """ super().__init__("citi_bike", topology, source, is_temp) self._station_info = station_info self._station_info_file = os.path.join(self._download_folder, self._station_info_file_name) self._distance_file = os.path.join(self._build_folder, self._distance_file_name) self._station_meta_file = os.path.join(self._build_folder, self._station_meta_file_name) self._common_data = {} def download(self, is_force: bool = False): """download the zip file""" super().download(is_force) self._new_file_list.append(self._station_info_file) if (not is_force) and os.path.exists(self._station_info_file): logger.info_green("File already exists, skipping download.") else: logger.info_green(f"Downloading trip data from {self._station_info} to {self._station_info_file}") download_file(source=self._station_info, destination=self._station_info_file) def clean(self): """unzip the csv file and process it for building binary file""" super().clean() logger.info_green("Cleaning trip data") if os.path.exists(self._download_file): # unzip logger.info_green("Unzip start") with zipfile.ZipFile(self._download_file, "r") as zip_ref: for filename in zip_ref.namelist(): # Only one csv file is expected. if ( filename.endswith(".csv") and (not (filename.startswith("__MACOSX") or filename.startswith("."))) ): logger.info_green(f"Unzip {filename} from {self._download_file}") zip_ref.extractall(self._clean_folder, [filename]) unzip_file = os.path.join(self._clean_folder, filename) self._new_file_list.append(unzip_file) self._preprocess(unzipped_file=unzip_file) break else: logger.warning(f"Not found downloaded trip data: {self._download_file}") def _read_common_data(self): """read and full init data and existed stations""" full_stations = None with open(self._station_info_file, mode="r", encoding="utf-8") as station_file: # read station to station file raw_station_data = pd.DataFrame.from_dict(pd.read_json(station_file)["data"]["stations"]) station_data = raw_station_data.rename(columns={ "lon": "station_longitude", "lat": "station_latitude", "region_id": "region"}) # group by station to generate station init info full_stations = station_data[ ["station_id", "capacity", "station_longitude", "station_latitude"] ].reset_index(drop=True) # generate station id by index full_stations["station_id"] = pd.to_numeric(full_stations["station_id"], downcast="integer") full_stations["capacity"] = pd.to_numeric(full_stations["capacity"], downcast="integer") full_stations["station_longitude"] = pd.to_numeric(full_stations["station_longitude"], downcast="float") full_stations["station_latitude"] = pd.to_numeric(full_stations["station_latitude"], downcast="float") full_stations.drop(full_stations[full_stations["capacity"] == 0].index, axis=0, inplace=True) full_stations.dropna( subset=["station_id", "capacity", "station_longitude", "station_latitude"], inplace=True ) self._common_data["full_stations"] = full_stations self._common_data["full_station_num"] = len(self._common_data["full_stations"]) self._common_data["full_dock_num"] = self._common_data["full_stations"]["capacity"].sum() def _read_src_file(self, file: str): """read and return processed rows""" ret = [] if os.path.exists(file): # For ignoring the unimportant issues in the source file. with open(file, "r", encoding="utf-8", errors="ignore") as fp: ret = pd.read_csv(fp) ret = ret[[ "tripduration", "starttime", "start station id", "end station id", "start station latitude", "start station longitude", "end station latitude", "end station longitude", "gender", "usertype", "bikeid" ]] ret["tripduration"] = pd.to_numeric( pd.to_numeric(ret["tripduration"], downcast="integer") / 60, downcast="integer" ) ret["starttime"] = pd.to_datetime(ret["starttime"]) ret["start station id"] = pd.to_numeric(ret["start station id"], errors="coerce", downcast="integer") ret["end station id"] = pd.to_numeric(ret["end station id"], errors="coerce", downcast="integer") ret["start station latitude"] = pd.to_numeric(ret["start station latitude"], downcast="float") ret["start station longitude"] = pd.to_numeric(ret["start station longitude"], downcast="float") ret["end station latitude"] = pd.to_numeric(ret["end station latitude"], downcast="float") ret["end station longitude"] =
pd.to_numeric(ret["end station longitude"], downcast="float")
pandas.to_numeric
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jun 18 08:32:19 2021 revi take: plot time series of deal amount for SEI/P2015 clusters (5 or 10) on settelament level and then on the right a map with corohpleths with mean/median value for this, i need to prepare the muni shapefile with RC in it. @author: shlomi """ from MA_paths import work_david from shapely.geometry import * nadlan_path = work_david / 'Nadlan_deals' apts = ['דירה', 'דירה בבית קומות'] muni_path = work_david/'gis/muni_il' dis_dict = {} dis_dict['ירושלים'] = 1 dis_dict['הצפון'] = 2 dis_dict['חיפה'] = 3 dis_dict['המרכז'] = 4 dis_dict['תל אביב'] = 5 dis_dict['הדרום'] = 6 dis_dict['יו"ש'] = 7 dis_en = {1: 'Jerusalem', 2: 'North', 3: 'Haifa', 4: 'Center', 5: 'Tel-Aviv', 6: 'South', 7: 'J&S'} P2015_2_dict = {1: 1, 2: 1, 3: 2, 4: 2, 5: 3, 6: 4, 7: 4, 8: 5, 9: 5, 10: 5} P2015_2_name = {1: 'Very Peripheral', 2: 'Peripheral', 3: 'In Between', 4: 'Centralized', 5: 'Very Centralized'} SEI2_dict = {1: 1, 2: 1, 3: 2, 4: 2, 5: 3, 6: 3, 7: 4, 8: 4, 9: 5, 10: 5} def convert_df_variable_names(df, path=work_david, drop=True): import pandas as pd vlist = pd.read_csv(path/'nadlan_database_variable_list.csv', header=None) vlist.columns = ['old', 'new', 'final'] vlist['final'] = vlist['final'].fillna(vlist['new']) vlist.set_index('old', inplace=True) di = vlist['final'].to_dict() df = df.rename(di, axis=1) df = df[[x for x in df.columns if 'to_drop' not in x]] return df def extract_JS_settelments_from_stat_areas(path=work_david, muni_path=muni_path): from cbs_procedures import read_statistical_areas_gis_file from cbs_procedures import read_bycode_city_data import pandas as pd import geopandas as gpd st = read_statistical_areas_gis_file(path) print('extrcting JS big settelments...') # J&S city codes from nadlan database: js_cc = [3780, 3616, 3730, 3797, 3760, 3570, 3769, 3640, 3720, 3778] # js_st = st[st['city_code'].isin(js_cc)] ccs = st[st['city_code'].isin(js_cc)]['city_code'].unique() js = st[st['city_code'].isin(ccs)] sers = [] for cc in ccs: cols = js[js['city_code']==cc].loc[:, ['city_code', 'NameHe', 'NameEn']] ser = gpd.GeoSeries(js[js['city_code']==cc]['geometry'].unary_union) ser['city_code'] = cols['city_code'].unique()[0] ser['NameHe'] = cols['NameHe'].unique()[0] ser['NameEn'] = cols['NameEn'].unique()[0] ser = ser.rename({0: 'geometry'}) sers.append(ser) gdf = gpd.GeoDataFrame(sers, geometry='geometry') geos_to_complete = [1, 2, 4, 8, 9] city_codes_to_complete = [ccs[x] for x in geos_to_complete] bycode = read_bycode_city_data(path) names = [bycode.loc[x]['NameHe'] for x in city_codes_to_complete] js = gpd.read_file(muni_path/'JS_plans.shp') geos = [js[js['P_NAME']==x].geometry.unary_union for x in names] sers = [] for i, geo in zip(geos_to_complete, geos): ser = gpd.GeoSeries(geo) ser['city_code'] = gdf.iloc[i]['city_code'] ser['NameHe'] = gdf.iloc[i]['NameHe'] ser['NameEn'] = gdf.iloc[i]['NameEn'] ser = ser.rename({0: 'geometry'}) sers.append(ser) gdf = gdf.drop(geos_to_complete, axis=0) gdf1 = gpd.GeoDataFrame(sers, geometry='geometry') gdf = pd.concat([gdf, gdf1], axis=0) gdf['district'] = 'יו"ש' return gdf def prepare_just_city_codes_gis_areas(path=work_david, muni_path=muni_path): import geopandas as gpd import pandas as pd from cbs_procedures import read_statistical_areas_gis_file js = extract_JS_settelments_from_stat_areas(path, muni_path) js = js.drop('district', axis=1) js_ccs = js['city_code'].unique() st = read_statistical_areas_gis_file(path) ccs = st['city_code'].unique() sers = [] ccs = [x for x in ccs if x not in js_ccs] for cc in ccs: geo = st[st['city_code'] == cc]['geometry'].unary_union geo = remove_third_dimension(geo) ser = gpd.GeoSeries(geo) ser['city_code'] = cc ser['NameHe'] = st[st['city_code'] == cc]['NameHe'].unique()[0] ser['NameEn'] = st[st['city_code'] == cc]['NameEn'].unique()[0] ser = ser.rename({0: 'geometry'}) sers.append(ser) gdf_cc = gpd.GeoDataFrame(sers, geometry='geometry') gdf = pd.concat([gdf_cc, js], axis=0) gdf = gdf.set_index('city_code') filename = 'Municipal+J&S+city_code_level.shp' gdf.to_file(muni_path/filename, encoding='cp1255', index=True, na_rep='None') print('{} was saved to {}.'.format(filename, muni_path)) return gdf def prepare_municiapal_level_and_RC_gis_areas(path=work_david, muni_path=muni_path): import geopandas as gpd import pandas as pd js = extract_JS_settelments_from_stat_areas(path, muni_path) muni = gpd.read_file(path/'gis/muni_il/muni_il.shp') muni['city_code'] = pd.to_numeric(muni['CR_LAMAS']) muni['Machoz'] = muni['Machoz'].str.replace('צפון', 'הצפון') muni['Machoz'] = muni['Machoz'].str.replace('דרום', 'הדרום') muni['Machoz'] = muni['Machoz'].str.replace('מרכז', 'המרכז') muni_type_dict = {} muni_type_dict['עירייה'] = 'City' muni_type_dict['מועצה מקומית'] = 'LC' muni_type_dict['מועצה אזורית'] = 'RC' muni_type_dict['ללא שיפוט'] = 'NA' muni_type_dict['מועצה מקומית תעשייתית'] = 'ILC' muni['muni_type'] = muni['Sug_Muni'].map(muni_type_dict) muni['rc_code'] = muni[muni['muni_type'] == 'RC']['CR_PNIM'].str[2:4].astype(int) print('aggragating polygons to city/rc level...') rc = muni[muni['muni_type'] == 'RC'] non_rc = muni[muni['muni_type'] != 'RC'] sers = [] for nrc in rc['rc_code'].unique(): geo = rc[rc['rc_code'] == nrc]['geometry'].unary_union geo = remove_third_dimension(geo) ser = gpd.GeoSeries(geo) ser['rc_code'] = nrc ser['NameHe'] = rc[rc['rc_code'] == nrc]['Muni_Heb'].unique()[0] ser['NameEn'] = rc[rc['rc_code'] == nrc]['Muni_Eng'].unique()[0] ser['district'] = rc[rc['rc_code'] == nrc]['Machoz'].unique()[0] ser = ser.rename({0: 'geometry'}) sers.append(ser) gdf_rc = gpd.GeoDataFrame(sers, geometry='geometry') sers = [] ccs = non_rc[~non_rc['city_code'].isnull()]['city_code'].unique() for cc in ccs: # print(cc) geo = non_rc[non_rc['city_code'] == cc]['geometry'].unary_union geo = remove_third_dimension(geo) ser = gpd.GeoSeries(geo) ser['city_code'] = cc ser['NameHe'] = non_rc[non_rc['city_code'] == cc]['Muni_Heb'].unique()[ 0] ser['NameEn'] = non_rc[non_rc['city_code'] == cc]['Muni_Eng'].unique()[ 0] ser['district'] = non_rc[non_rc['city_code'] == cc]['Machoz'].unique()[ 0] ser = ser.rename({0: 'geometry'}) sers.append(ser) gdf_nonrc = gpd.GeoDataFrame(sers, geometry='geometry') gdf = pd.concat([gdf_rc, gdf_nonrc, js], axis=0) gdf = gdf.reset_index(drop=True) filename = 'Municipal+J&S+Regional.shp' gdf.to_file(muni_path/filename, encoding='cp1255') print('{} was saved to {}.'.format(filename, muni_path)) return gdf def remove_third_dimension(geom): if geom.is_empty: return geom if isinstance(geom, Polygon): exterior = geom.exterior new_exterior = remove_third_dimension(exterior) interiors = geom.interiors new_interiors = [] for int in interiors: new_interiors.append(remove_third_dimension(int)) return Polygon(new_exterior, new_interiors) elif isinstance(geom, LinearRing): return LinearRing([xy[0:2] for xy in list(geom.coords)]) elif isinstance(geom, LineString): return LineString([xy[0:2] for xy in list(geom.coords)]) elif isinstance(geom, Point): return Point([xy[0:2] for xy in list(geom.coords)]) elif isinstance(geom, MultiPoint): points = list(geom.geoms) new_points = [] for point in points: new_points.append(remove_third_dimension(point)) return MultiPoint(new_points) elif isinstance(geom, MultiLineString): lines = list(geom.geoms) new_lines = [] for line in lines: new_lines.append(remove_third_dimension(line)) return MultiLineString(new_lines) elif isinstance(geom, MultiPolygon): pols = list(geom.geoms) new_pols = [] for pol in pols: new_pols.append(remove_third_dimension(pol)) return MultiPolygon(new_pols) elif isinstance(geom, GeometryCollection): geoms = list(geom.geoms) new_geoms = [] for geom in geoms: new_geoms.append(remove_third_dimension(geom)) return GeometryCollection(new_geoms) else: raise RuntimeError("Currently this type of geometry is not supported: {}".format(type(geom))) def create_israel_districts(path=muni_path): import geopandas as gpd import pandas as pd from shapely.geometry import MultiPolygon, Polygon, LineString from shapely.ops import cascaded_union muni = gpd.read_file(path/'muni_il.shp') muni['Machoz'] = muni['Machoz'].str.replace('צפון', 'הצפון') muni['Machoz'] = muni['Machoz'].str.replace('דרום', 'הדרום') muni['Machoz'] = muni['Machoz'].str.replace('מרכז', 'המרכז') dists = muni['Machoz'].unique() sers = [] for dis in dists: print(dis) # print(dis) geo = muni[muni['Machoz'] == dis].geometry.unary_union if isinstance(geo, MultiPolygon): eps = 0.01 omega = cascaded_union([ Polygon(component.exterior).buffer(eps).buffer(-eps) for component in geo ]) geo = omega[0] geo = remove_third_dimension(geo) ser = gpd.GeoSeries(geo) ser = ser.rename({0: 'geometry'}) # print(type(ser)) ser['district'] = dis ser['district_EN'] = dis_en[dis_dict[dis]] ser['district_code'] = dis_dict[dis] bound = ser['geometry'].boundary if not isinstance(bound, LineString): ser['geometry'] = Polygon(bound[0]) # ser['geometry'] = ser['geometry'].simplify(0.1) # ser.crs = muni.crs sers.append(ser) # now add J&S: js = gpd.read_file(path/'J&S_matakim.geojson') js = js.to_crs(2039) js1 = gpd.GeoSeries(js.geometry.unary_union) js1 = js1.rename({0: 'geometry'}) js1['district'] = 'יו"ש' js1['district_EN'] = 'J&S' js1['district_code'] = 7 js1 = gpd.GeoDataFrame([js1]) b = js1.geometry.boundary.values[0] js1['geometry'] = Polygon(b[0]) js1.index = [6] # sers.append(js1) dgf = gpd.GeoDataFrame(sers, geometry='geometry', crs=muni.crs) dgf = pd.concat([dgf, js1], axis=0) dgf = dgf.rename( {'district': 'NameHe', 'district_EN': 'NameEn', 'district_code': 'Code'}, axis=1) dgf.geometry = dgf.geometry.simplify(10) filename = 'Israel_districts_incl_J&S.shp' dgf.to_file(path/filename) print('{} was saved to {}.'.format(filename, path)) return dgf def create_higher_group_category(df, existing_col='SEI_cluster', n_groups=2, new_col='SEI2_cluster', names=None): import pandas as pd lower_group = sorted(df[existing_col].dropna().unique()) new_group = [lower_group[i:i+n_groups+1] for i in range(0, len(lower_group), n_groups+1)] new_dict = {} if names is not None: assert len(names) == len(new_group) for i, item in enumerate(new_group): if names is not None: new_dict[names[i]] = new_group[i] else: new_dict[i+1] = new_group[i] m = pd.Series(new_dict).explode().sort_values() d = {x: y for (x, y) in zip(m.values, m.index)} df[new_col] = df[existing_col].map(d) return df # def geolocate_nadlan_deals_within_city_or_rc(df, muni_path=muni_path, # savepath=work_david): # import geopandas as gpd # import pandas as pd # # run load_nadlan_combined_deal with return_XY and without add_geo_layers: # gdf = gpd.read_file(muni_path/'Municipal+J&S+Regional.shp') # print('geolocating nadlan deals within city or RC...') # total = gdf.index.size # keys = [] # for i, row in gdf.iterrows(): # print('index: {} / {}'.format(i, total)) # within = df.geometry.within(row['geometry']) # if within.sum() == 0: # print('no deals found in {}'.format(row['NameHe'])) # continue # inds = df.loc[within].index # dff = pd.DataFrame(df.loc[inds, 'KEYVALUE']) # dff['muni_gdf_index'] = i # keys.append(dff) # filename = 'Muni_gdf_KEYVALUE_index.csv' # dff = pd.concat(keys, axis=0) # dff.to_csv(savepath/filename, na_rep='None') # print('Done!') # return dff def load_nadlan_combined_deal(path=work_david, times=['1998Q1', '2021Q1'], dealamount_iqr=2, return_XY=False, add_bgr=None, add_geo_layers=False, add_mean_salaries=False, rename_vars=True, agg_rooms_345=True): import pandas as pd from Migration_main import path_glob import geopandas as gpd from cbs_procedures import read_statistical_areas_gis_file import numpy as np from cbs_procedures import read_mean_salary def add_bgr_func(grp, bgr, rooms='Total'): import numpy as np cc_as_str = str(grp['city_code'].unique()[0]) try: gr = bgr.loc[cc_as_str][rooms] except KeyError: gr = np.nan grp['Building_Growth_Rate'] = gr return grp def add_stat_area_func(grp, stat_gdf): city_code11 = grp['city_stat_code'].unique()[0] geo = stat_gdf[stat_gdf['city_stat11']==city_code11].geometry.item() grp['stat_geo'] = [geo]*len(grp) return grp def add_district_area_func(grp, dis_df): district_code = grp['district_code'].unique()[0] geo = dis_df[dis_df['Code']==district_code].geometry.item() grp['district_geo'] = [geo]*len(grp) return grp def add_mean_salary_func(grp, sal): year = grp['year'].unique()[0] salary = sal[sal['year']==year]['mean_salary'].item() grp['mean_salary'] = [salary]*len(grp) return grp file = path_glob( path, 'Nadlan_deals_neighborhood_combined_processed_*.csv')[0] print(file) dtypes = {'FULLADRESS': 'object', 'Street': 'object', 'FLOORNO': float, 'NEWPROJECTTEXT': bool, 'PROJECTNAME': 'object', 'DEALAMOUNT': float} df = pd.read_csv(file, na_values='None', parse_dates=['DEALDATETIME'], dtype=dtypes) # filter nans: # df = df[~df['district'].isnull()] if times is not None: print('Slicing to times {} to {}.'.format(*times)) # df = df[df['year'].isin(np.arange(years[0], years[1] + 1))] df = df.set_index('DEALDATETIME') df = df.loc[times[0]:times[1]] df = df.reset_index() if dealamount_iqr is not None: print('Filtering DEALAMOUNT with IQR of {}.'.format(dealamount_iqr)) df = df[~df.groupby('year')['DEALAMOUNT'].apply( is_outlier, method='iqr', k=dealamount_iqr)] df = df.reset_index(drop=True) # print('loading gdf muni index...') df['P2015_cluster2'] = df['P2015_cluster'].map(P2015_2_dict) if return_XY: inds = df[df['X'] == 0].index df.loc[inds, 'X'] = np.nan inds = df[df['Y'] == 0].index df.loc[inds, 'Y'] = np.nan df = gpd.GeoDataFrame( df, geometry=gpd.points_from_xy(df['X'], df['Y'])) if add_mean_salaries: print('adding mean salaries.') sal = read_mean_salary() df = df.groupby('year').apply(add_mean_salary_func, sal) df['MSAL_per_ASSET'] = (df['DEALAMOUNT'] / df['mean_salary']).round() if add_bgr is not None: print('Adding Building Growth rate.') file = path_glob(path, 'Building_*_growth_rate_*.csv')[0] bgr = pd.read_csv(file, na_values='None', index_col='ID') df = df.groupby('city_code').apply(add_bgr_func, bgr, rooms=add_bgr) df.loc[df['Building_Growth_Rate'] == 0] = np.nan if add_geo_layers: print('adding statistical area geometry') stat_gdf = read_statistical_areas_gis_file(path) df = df.groupby('city_stat_code').apply(add_stat_area_func, stat_gdf) print('adding district area geometry') dis_df = gpd.read_file(path/'gis/muni_il/Israel_districts_incl_J&S.shp') df['district_code'] = df['district'].map(dis_dict) df = df.groupby('district_code').apply(add_district_area_func, dis_df) if agg_rooms_345: inds = df.loc[(df['ASSETROOMNUM']>=3) & (df['ASSETROOMNUM']<4)].index df.loc[inds, 'Rooms_345'] = 3 inds = df.loc[(df['ASSETROOMNUM']>=4) & (df['ASSETROOMNUM']<5)].index df.loc[inds, 'Rooms_345'] = 4 inds = df.loc[(df['ASSETROOMNUM']>=5) & (df['ASSETROOMNUM']<6)].index df.loc[inds, 'Rooms_345'] = 5 df['Rooms_345'] = df['Rooms_345'].astype(pd.Int64Dtype()).astype('category') if rename_vars: print('renaming vars.') var_names = pd.read_excel(path/'nadlan_database_variable_list.xls', header=None) var_di = dict(zip(var_names[0], var_names[1])) df = df.rename(var_di, axis=1) return df def load_nadlan_deals(path=work_david, csv=True, times=['1998Q1', '2021Q1'], dealamount_iqr=2, fix_new_status=True, add_SEI2_cluster=True, add_peripheri_data=True, add_bycode_data=True ): import pandas as pd import numpy as np from Migration_main import path_glob from cbs_procedures import read_periphery_index from cbs_procedures import read_bycode_city_data if csv: file = path_glob(path, 'Nadlan_deals_processed_*.csv') dtypes = {'FULLADRESS': 'object', 'Street': 'object', 'FLOORNO': 'object', 'NEWPROJECTTEXT': 'object', 'PROJECTNAME': 'object', 'DEALAMOUNT': float} df = pd.read_csv(file[0], na_values='None', parse_dates=['DEALDATETIME'], dtype=dtypes) else: file = path_glob(path, 'Nadlan_deals_processed_*.hdf') df = pd.read_hdf(file) df['year'] = df['DEALDATETIME'].dt.year df['month'] = df['DEALDATETIME'].dt.month df['quarter'] = df['DEALDATETIME'].dt.quarter df['YQ'] = df['year'].astype(str) + 'Q' + df['quarter'].astype(str) if times is not None: print('Slicing to times {} to {}.'.format(*times)) # df = df[df['year'].isin(np.arange(years[0], years[1] + 1))] df = df.set_index('DEALDATETIME') df = df.loc[times[0]:times[1]] df = df.reset_index() if dealamount_iqr is not None: print('Filtering DEALAMOUNT with IQR of {}.'.format(dealamount_iqr)) df = df[~df.groupby('year')['DEALAMOUNT'].apply( is_outlier, method='iqr', k=dealamount_iqr)] if fix_new_status: inds = df.loc[(df['Age'] < 0) & (df['Age'] > -5)].index df.loc[inds, 'New'] = True df['NEWPROJECTTEXT'] = pd.to_numeric(df['NEWPROJECTTEXT']).fillna(0) df['NEWPROJECTTEXT'] = df['NEWPROJECTTEXT'].astype(bool) if add_SEI2_cluster: SEI_cluster = [x+1 for x in range(10)] new = [SEI_cluster[i:i+2] for i in range(0, len(SEI_cluster), 2)] SEI2 = {} for i, item in enumerate(new): SEI2[i+1] = new[i] m = pd.Series(SEI2).explode().sort_values() d = {x: y for (x, y) in zip(m.values, m.index)} df['SEI2_cluster'] = df['SEI_cluster'].map(d) if add_peripheri_data: pdf = read_periphery_index() cols = ['TLV_proximity_value', 'TLV_proximity_rank', 'PAI_value', 'PAI_rank', 'P2015_value', 'P2015_rank', 'P2015_cluster'] dicts = [pdf[x].to_dict() for x in cols] series = [df['city_code'].map(x) for x in dicts] pdf1 = pd.concat(series, axis=1) pdf1.columns = cols df = pd.concat([df, pdf1], axis=1) if add_bycode_data: bdf = read_bycode_city_data() cols = ['district', 'district_EN', 'region', 'natural_area'] dicts = [bdf[x].to_dict() for x in cols] series = [df['city_code'].map(x) for x in dicts] bdf1 = pd.concat(series, axis=1) bdf1.columns = cols df = pd.concat([df, bdf1], axis=1) return df def prepare_periphery_sei_index_map(path=work_david, muni_path=muni_path): from cbs_procedures import read_periphery_index from cbs_procedures import read_social_economic_index import geopandas as gpd df = read_periphery_index(path) sei = read_social_economic_index(path, return_stat=False) muni_gdf = gpd.read_file(muni_path/'Municipal+J&S+Regional.shp') # first put RC P2015 cluster, rank and value: rc = df[df['Type'] == 'RC'] sei_rc = sei[sei['Type'] == 'RC'] for rc_n in rc['municipal_status'].unique(): ind = muni_gdf[muni_gdf['rc_code'] == rc_n].index muni_gdf.loc[ind, 'P2015_value'] = rc[rc['municipal_status'] == rc_n]['P2015_value'].mean() muni_gdf.loc[ind, 'P2015_cluster'] = rc[rc['municipal_status'] == rc_n]['RC_P2015_cluster'].unique()[0] muni_gdf.loc[ind, 'P2015_cluster2'] = rc[rc['municipal_status'] == rc_n]['RC_P2_cluster'].unique()[0] muni_gdf.loc[ind, 'SEI_value'] = sei_rc[sei_rc['muni_state'] == rc_n]['index2017'].mean() muni_gdf.loc[ind, 'SEI_cluster'] = sei_rc[sei_rc['muni_state'] == rc_n]['RC_cluster2017'].unique()[0] muni_gdf.loc[ind, 'SEI2_cluster'] = sei_rc[sei_rc['muni_state'] == rc_n]['RC_SEI2_cluster'].unique()[0] city = df[df['Type'] == 'City/LC'] sei_city = sei[sei['Type'] == 'City/LC'] for cc in city.index: ind = muni_gdf[muni_gdf['city_code'] == cc].index muni_gdf.loc[ind, 'P2015_value'] = city.loc[cc, 'P2015_value'] muni_gdf.loc[ind, 'P2015_cluster'] = city.loc[cc, 'P2015_cluster'] muni_gdf.loc[ind, 'P2015_cluster2'] = city.loc[cc, 'P2_cluster'] muni_gdf.loc[ind, 'SEI_value'] = sei_city.loc[cc, 'index2017'] muni_gdf.loc[ind, 'SEI_cluster'] = sei_city.loc[cc, 'cluster2017'] muni_gdf.loc[ind, 'SEI2_cluster'] = sei_city.loc[cc, 'SEI2_cluster'] return muni_gdf def plot_mean_salary_per_asset(df, year=2000, rooms=[3, 4]): import geopandas as gpd import seaborn as sns from pysal.viz.splot.mapping import vba_choropleth import matplotlib.pyplot as plt sns.set_theme(style='ticks', font_scale=1.5) df = df[df['DEALNATUREDESCRIPTION'].isin(apts)] print('picked {} only.'.format(apts)) df = df[df['ASSETROOMNUM'].isin(rooms)] print('picked {} rooms only.'.format(rooms)) gdf = gpd.GeoDataFrame(df, geometry='district_geo') print('picked year {}.'.format(year)) gdf = gdf[gdf['year'] == year] # return gdf fig, axs = plt.subplots(1, 2, figsize=(15, 10)) gdf['district_counts'] = gdf.groupby('district')['DEALAMOUNT'].transform('count') x = gdf['MSAL_per_ASSET'].values y = gdf['district_counts'].values gdf.plot(ax=axs[0], column="MSAL_per_ASSET", legend=True, scheme='quantiles', cmap='Blues') # vba_choropleth(x, y, gdf, rgb_mapclassify=dict(classifier='quantiles'), # alpha_mapclassify=dict(classifier='quantiles'), # cmap='RdBu', ax=axs[1]) fig.tight_layout() return fig def calculate_pct_change_by_yearly_periods_and_grps(df, period1=[1999, 2007], period2=[2017, 2019], col='DEALAMOUNT', agg='median', grp='gdf_muni_index', min_p1_deals=50): print('calculating pct change for {} col using {} grouping and {} statistic.'.format(col, grp, agg)) print('periods are: {}-{} compared to {}-{}'.format(period2[0], period2[1], period1[0], period1[1])) df1 = df.loc[(df['year']>=period1[0]) & (df['year']<=period1[1])] df2 = df.loc[(df['year']>=period2[0]) & (df['year']<=period2[1])] df1_agg = df1.groupby(grp).agg(agg) df1_cnt = df1.groupby(grp)[col].agg('count') df2_agg = df2.groupby(grp).agg(agg) df2_cnt = df2.groupby(grp)[col].agg('count') df_col = df2_agg[col] - df1_agg[col] df_col /= df1_agg[col] df_col *= 100 df_col = df_col.round() df_col = df_col.to_frame('pct_change') df_col['period1_cnt'] = df1_cnt df_col['period2_cnt'] = df2_cnt if min_p1_deals is not None: print('filtering minimum deals of {} for {}-{} period.'.format(min_p1_deals, period1[0], period1[1])) df_col = df_col[df_col['period1_cnt']>=min_p1_deals] return df_col def plot_choropleth_muni_level(df, rooms=[3, 4], muni_path=muni_path, hue='SEI2_cluster', col='Price_per_m2'): # import geopandas as gpd import seaborn as sns import matplotlib.pyplot as plt import numpy as np import pandas as pd import matplotlib.dates as mdates import contextily as ctx sns.set_theme(style='ticks', font_scale=1.5) cmap = sns.dark_palette((260, 75, 60), input="husl", n_colors=5, as_cmap=True) cmap = sns.cubehelix_palette(5, gamma = 1, as_cmap=True) cmap = sns.cubehelix_palette(5, start = .5, rot = -.75, as_cmap=True) # cmap = sns.color_palette("Greens", 5, as_cmap=True) # colors = sns.color_palette("RdPu", 10)[5:] # df = df[df['DEALNATUREDESCRIPTION'].isin(apts)] df = df[df['Type_of_asset'].isin(apts)] df = df.loc[(df['Sale_year'] >= 1999) & (df['Sale_year'] <= 2019)] print('picked {} only.'.format(apts)) if rooms is not None: df = df[(df['Rooms'] >= rooms[0]) & (df['Rooms'] <= rooms[1])] # df = df[df['ASSETROOMNUM'].isin(rooms)] print('picked {} rooms only.'.format(rooms)) if col == 'Price_per_m2': ylabel = r'Median price per M$^2$ [NIS]' if hue == 'SEI2_cluster': leg_title = 'Social-Economic cluster' if hue not in df.columns: df['SEI2_cluster'] = df['SEI_cluster_2017'].map(SEI2_dict) elif hue == 'P2015_cluster2': leg_title = 'Periphery cluster' if hue not in df.columns: df['P2015_cluster2'] = df['Periph_cluster'].map(P2015_2_dict) fig, ax = plt.subplots( 1, 2, gridspec_kw={'width_ratios': [4, 1]}, figsize=(20, 10)) # df['P2015_cluster2'] = df['P2015_cluster2'].map(P2015_2_name) # df = df.rename({'P2015_cluster2': 'Centrality level'}, axis=1) df['Sale_year'] = pd.to_datetime(df['Sale_year'], format='%Y') sns.lineplot(data=df, x='Sale_year', y=col, hue=hue, n_boot=100, palette=cmap, estimator="mean", ax=ax[0], ci=99, style=hue, lw=2, seed=1) ax[0].grid(True) ax[0].set_ylabel(ylabel) gdf = prepare_periphery_sei_index_map(work_david, muni_path) gdf.crs = 2039 gdf = gdf.to_crs(3857) gdf.plot(column=hue, categorical=True, legend=False, cmap=cmap, ax=ax[1], edgecolor='k', linewidth=0.25, alpha=0.9) handles, labels = ax[0].get_legend_handles_labels() labels = [int(float(x)) for x in labels] labels = ['{:d}'.format(x) for x in labels] ax[0].legend(handles=handles, labels=labels, title=leg_title) # leg.set_bbox_to_anchor((0.0, 1.0, 0.0, 0.0)) # ax[1].set_axis_off() ax[0].set_xlabel('') ax[1].tick_params(left=False, labelleft=False, bottom=False, labelbottom=False) ax[0].xaxis.set_major_formatter(mdates.DateFormatter('%Y')) ax[0].xaxis.set_major_locator(mdates.YearLocator(2)) ax[0].tick_params(axis='x', rotation=30) fig.tight_layout() fig.subplots_adjust(top=0.942, bottom=0.089, left=0.081, right=0.987, hspace=0.02, wspace=0.0) ctx.add_basemap(ax[1], url=ctx.providers.Stamen.TerrainBackground) # for axis in ['top','bottom','left','right']: # ax[1].spines[axis].set_linewidth(0.5) return fig # def plot_choropleth_muni_level(df, rooms=[3, 4], muni_path=muni_path, # muni_type='gdf_muni_index', min_p1=50, # agg='median', col='NIS_per_M2'): # import geopandas as gpd # import seaborn as sns # import matplotlib.pyplot as plt # import numpy as np # # def add_muni_geo_func(grp, muni_gdf): # # inds = grp['gdf_muni_index'].unique()[0] # # geo = muni_gdf.loc[inds].geometry # # grp['muni_geo'] = [geo]*len(grp) # # return grp # sns.set_theme(style='ticks', font_scale=1.5) # df = df[df['DEALNATUREDESCRIPTION'].isin(apts)] # df = df.loc[(df['year']>=1999) & (df['year']<=2019)] # print('picked {} only.'.format(apts)) # if rooms is not None: # df = df[(df['ASSETROOMNUM']>=rooms[0]) & (df['ASSETROOMNUM']<=rooms[1])] # # df = df[df['ASSETROOMNUM'].isin(rooms)] # print('picked {} rooms only.'.format(rooms)) # df_pct = calculate_pct_change_by_yearly_periods_and_grps(df, # grp=muni_type, # min_p1_deals=min_p1, # col=col, # agg=agg) # fig, ax = plt.subplots(1, 2, gridspec_kw={'width_ratios': [4, 1]}, figsize=(20, 10)) # df['P2015_cluster2'] = df['P2015_cluster2'].map(P2015_2_name) # df = df.rename({'P2015_cluster2': 'Centrality level'}, axis=1) # sns.lineplot(data=df, x='year', y=col, hue='Centrality level', n_boot=100, # palette='Set1',estimator=np.median, ax=ax[0], # hue_order=[x for x in reversed(P2015_2_name.values())]) # ax[0].grid(True) # if muni_type=='gdf_muni_index': # muni_gdf = gpd.read_file(muni_path/'Municipal+J&S+Regional.shp') # elif muni_type=='city_code': # muni_gdf = gpd.read_file(muni_path/'Municipal+J&S+city_code_level.shp') # muni_gdf = muni_gdf.set_index('city_code') # # df = df.groupby('gdf_muni_index').apply(add_muni_geo_func, muni_gdf) # # gdf = gpd.GeoDataFrame(df, geometry='muni_geo') # # inds = muni_gdf[muni_gdf.index.isin(df.index)].index # df_pct.loc[:, 'geometry'] = muni_gdf.loc[df_pct.index]['geometry'] # gdf = gpd.GeoDataFrame(df_pct, geometry='geometry') # gdf[gdf['pct_change'] >= 0].plot('pct_change', legend=True, scheme="User_Defined", # k=5, cmap='viridis', classification_kwds=dict(bins=[50, 100, 150, 200, 250]), # ax=ax[1]) # return gdf def add_city_polygons_to_nadlan_df(df, muni_path=muni_path): import geopandas as gpd muni = load_muni_il(path=muni_path) ccs = list(set(df['city_code']).intersection(set(muni['CR_LAMAS']))) muni = muni[muni['CR_LAMAS'].isin(ccs)] muni = muni.reset_index(drop=True) df = df[df['city_code'].isin(ccs)] df = df.drop('geometry', axis=1) df = df.reset_index(drop=True) # TODO: fix this: for i, row in muni.iterrows(): cc = row['CR_LAMAS'] geo = row['geometry'] inds = df[df['city_code']==cc].index df.loc[inds, 'geometry'] = [geo]*len(inds) df = gpd.GeoDataFrame(df,geometry='geometry') return df def is_outlier(s, k=3, method='std'): # add IQR if method == 'std': lower_limit = s.mean() - (s.std() * k) upper_limit = s.mean() + (s.std() * k) elif method == 'iqr': q1 = s.quantile(0.25) q3 = s.quantile(0.75) iqr = q3-q1 # Interquartile range lower_limit = q1 - k * iqr upper_limit = q3 + k * iqr return ~s.between(lower_limit, upper_limit) # df1 = df[~df.groupby('year')['DEALAMOUNT'].apply(is_outlier)] def keep_only_historic_changed_assets(df): df = df.reset_index(drop=True) grps = df.groupby('GUSH').groups inds = [] for gush, ind in grps.items(): if len(ind) > 1: inds.append([x for x in ind]) flat_list = [item for sublist in inds for item in sublist] df_slice = df.loc[flat_list] return df_slice def create_neighborhood_polygons(gdf): """ an attempt to muild neighborhoods polygons from asset points""" import numpy as np gdf = gdf.reset_index() neis = gdf['Neighborhood'].unique() gdf['neighborhood_shape'] = gdf.geometry # Must be a geodataframe: for nei in neis: gdf1 = gdf[gdf['Neighborhood'] == nei] inds = gdf1.index polygon = gdf1.geometry.unary_union.convex_hull # gdf.loc[inds, 'neighborhood_shape'] = [polygon for x in range(len(inds))] gdf.loc[inds, 'neighborhood_shape'] = polygon return gdf def convert_da_to_long_form_df(da, var_name=None, value_name=None): """ convert xarray dataarray to long form pandas df to use with seaborn""" import xarray as xr if var_name is None: var_name = 'var' if value_name is None: value_name = 'value' dims = [x for x in da.dims] if isinstance(da, xr.Dataset): value_vars = [x for x in da] elif isinstance(da, xr.DataArray): value_vars = [da.name] df = da.to_dataframe() for i, dim in enumerate(da.dims): df[dim] = df.index.get_level_values(i) df = df.melt(value_vars=value_vars, value_name=value_name, id_vars=dims, var_name=var_name) return df def plot_jointplot(df, x='mean_distance_to_28_mokdim', y='Periph_value', xlim=[30, 130], ylim=[None, None], xlabel='Distance to Employment Centers [km]', ylabel='Periphery Index'): import seaborn as sns sns.set_theme(style='ticks', font_scale=1.5) corr = df[[x,y]].corr('spearman')[y][0] n = len(df[[x,y]].dropna()) # print(corr) g = sns.JointGrid(data=df, x=x, y=y, height=7.5) g.plot_joint(sns.kdeplot, fill=True, gridsize=100) # g.plot_joint(sns.histplot, fill=True) # g.plot_joint(sns.kdeplot, zorder=-1, levels=6) g.plot_marginals(sns.histplot) g.ax_joint.set_xlim(*xlim) g.ax_joint.set_ylim(*ylim) g.ax_joint.grid(True) if xlabel is not None: g.ax_joint.set_xlabel(xlabel) if ylabel is not None: g.ax_joint.set_ylabel(ylabel) textstr = 'Spearman correlation: {:.2f}, n={}'.format(corr, n) props = dict(boxstyle='round', facecolor='wheat', alpha=0.5, edgecolor='k') print(textstr) # g.ax_joint.text(0.24, 0.9, textstr, # verticalalignment='top', horizontalalignment='center', # transform=g.ax_joint.transAxes, color='k', fontsize=18, bbox=props) g.fig.tight_layout() return g def calculate_recurrent_times_and_pct_change(df, plot=True): import seaborn as sns sns.set_theme(style='ticks', font_scale=1.5) df = df.sort_values('DEALDATETIME') dff = df.groupby('GUSH')['DEALAMOUNT'].count() dff2 = df[df['GUSH'].isin(dff[dff > 1].index)] seconds_between_deals = dff2.groupby( 'GUSH')['DEALDATETIME'].diff().dt.total_seconds() deals_pct_change = dff2.groupby('GUSH')['DEALAMOUNT'].pct_change() df['years_between_deals'] = seconds_between_deals / 60 / 60 / 24 / 365.25 df['mean_years_between_deals'] = df.groupby( 'GUSH')['years_between_deals'].transform('mean') df['deals_pct_change'] = deals_pct_change * 100 df['mean_deals_pct_change'] = df.groupby( 'GUSH')['deals_pct_change'].transform('mean') # drop duplicated dt's: deals_inds_to_drop = deals_pct_change[deals_pct_change == 0].index seconds_inds_to_drop = seconds_between_deals[seconds_between_deals == 0].index inds_to_drop = deals_inds_to_drop.union(seconds_inds_to_drop) df = df.drop(inds_to_drop, axis=0) print('Dropped {} deals'.format(len(inds_to_drop))) if plot: g = sns.JointGrid(data=df, x='years_between_deals', y='deals_pct_change', height=7.5) g.plot_joint(sns.kdeplot, fill=True, cut=1, gridsize=100) g.plot_marginals(sns.histplot) g.ax_joint.grid(True) g.ax_joint.set_xlim(-1, 21) g.ax_joint.set_ylim(-100, 260) g.ax_joint.set_ylabel('Change in recurrent deals [%]') g.ax_joint.set_xlabel('Years between recurrent deals') g.fig.tight_layout() return g else: return df def plot_recurrent_deals(df, max_number_of_sells=6, rooms=[2, 3, 4, 5]): import numpy as np import seaborn as sns import matplotlib.pyplot as plt import pandas as pd sns.set_theme(style='ticks', font_scale=1.5) if rooms is not None: df = df[df['ASSETROOMNUM'].isin(rooms)] df = df.rename({'ASSETROOMNUM': 'Number of rooms'}, axis=1) df['Number of rooms'] = df['Number of rooms'].astype(int) df = df[df['DEALNATUREDESCRIPTION'].isin(apts)] dff = df.groupby(['GUSH', 'Number of rooms'])['DEALAMOUNT'].count() dff = dff[dff <= 6] df1 = dff.groupby('Number of rooms').value_counts() f, ax = plt.subplots(figsize=(7, 7)) sns.lineplot(x='DEALAMOUNT', y=df1, data=df1, hue='Number of rooms', style='Number of rooms', palette='Set1', ax=ax, markers=True, markersize=15) ax.set(xscale="linear", yscale="log") ax.grid(True) ax.set_xlabel('Number of times an apartment is sold') ax.set_ylabel('Total deals') else: df1 = df[df['DEALNATUREDESCRIPTION'].isin(apts)].groupby('GUSH')[ 'DEALAMOUNT'].count() v = np.arange(1, max_number_of_sells + 1) n = [len(df1[df1 == x]) for x in v] dfn = pd.DataFrame(n, index=v) dfn.columns = ['Number of Deals'] f, ax = plt.subplots(figsize=(7, 7)) ax = sns.scatterplot(x=dfn.index, y='Number of Deals', data=dfn, ax=ax, s=50) p = np.polyfit(v, np.log(n), 1) fit = np.exp(np.polyval(p, v)) print(fit) dfn['Fit'] = fit ax = sns.lineplot(x=dfn.index, y='Fit', data=dfn, ax=ax, color='r') ax.set(xscale="linear", yscale="log") ax.grid(True) ax.set_xlabel('Number of times an apartment is sold') return f def plot_deal_amount_room_number(df, rooms=[2, 3, 4, 5], path=nadlan_path, yrmin='2000', yrmax='2020', just_with_historic_change=False): import seaborn as sns import matplotlib.pyplot as plt from cbs_procedures import read_bycode_city_data import numpy as np sns.set_theme(style='ticks', font_scale=1.5) # df = df.loc[(df['ASSETROOMNUM'] >= room_min) & # (df['ASSETROOMNUM'] <= room_max)] df = df[df['ASSETROOMNUM'].isin(rooms)] df.set_index('DEALDATETIME', inplace=True) df = df.loc[yrmin:yrmax] city_code = df.loc[:, 'city_code'].unique()[0] df = df.rename({'ASSETROOMNUM': 'Rooms', 'DEALAMOUNT': 'Price'}, axis=1) df['Price'] /= 1000000 fig, ax = plt.subplots(figsize=(10, 8)) ax = sns.lineplot(data=df, x=df.index.year, y='Price', hue='Rooms', ci='sd', ax=ax, palette='Set1') ax.grid(True) ax.set_xlabel('') ax.set_xticks(np.arange(int(yrmin), int(yrmax) + 1, 2)) ax.tick_params(axis='x', rotation=30) ax.set_ylabel('Price [millions of NIS]') bycode = read_bycode_city_data() city_name = bycode[bycode['city_code'] == city_code]['NameEn'].values[0] fig.suptitle('Real-Estate prices in {}'.format(city_name)) return ax def plot_groupby_m2_price_time_series(df, grps=['City', 'Neighborhood'], col='NIS_per_M2'): import matplotlib.pyplot as plt import seaborn as sns sns.set_theme(style='ticks', font_scale=1.5) groups = grps.copy() groups.append('year') dfn = df.groupby(groups, as_index=False)[col].mean().groupby('year').mean() std = df.groupby(groups, as_index=False)[ col].mean().groupby('year').std()[col].values dfn['plus_std'] = dfn[col] + std dfn['minus_std'] = dfn[col] - std fig, ax = plt.subplots(figsize=(14, 5)) dfn[col].plot(ax=ax) ax.fill_between(dfn.index, dfn['minus_std'], dfn['plus_std'], alpha=0.3) ax.set_ylabel(r'NIS per M$^2$') fig.tight_layout() ax.grid(True) return fig def plot_room_number_deals(df, rooms_range=[2, 6]): import seaborn as sns sns.set_theme(style='ticks', font_scale=1.5) if rooms_range is not None: df = df.loc[(df['ASSETROOMNUM'] >= rooms_range[0]) & (df['ASSETROOMNUM'] <= rooms_range[1])] dff = df.groupby(['ASSETROOMNUM', 'year'])['DEALAMOUNT'].count() da = dff.to_xarray() dff = convert_da_to_long_form_df(da, value_name='Deals') ax = sns.barplot(data=dff, x='year', y='Deals', hue='ASSETROOMNUM', palette='Set1') ax.grid(True) return dff def plot_price_per_m2(df, x='Sale_year', y='Price_per_m2', n_boot=100, filter_price_iqr=2, remove_P2_cluster=1): import seaborn as sns import matplotlib.pyplot as plt import numpy as np import pandas as pd sns.set_theme(style='ticks', font_scale=1.5) df = df[df['Type_of_asset'].isin(apts)] if filter_price_iqr is not None: df = df[~df.groupby('Sale_year')['Price_per_m2'].apply( is_outlier, method='iqr', k=filter_price_iqr)] # rename, remove, etc: if remove_P2_cluster is not None: inds = df[df['P2015_cluster2']==remove_P2_cluster].index df.loc[inds, 'P2015_cluster2'] = np.nan hue_order = [x for x in reversed(P2015_2_name.values())][:-1] else: hue_order = [x for x in reversed(P2015_2_name.values())] df['P2015_cluster2'] = df['P2015_cluster2'].map(P2015_2_name) df['Rooms_345'] = df['Rooms_345'].astype(pd.Int64Dtype()).astype('category') df = df.rename({'Rooms_345': 'Number of Rooms', 'P2015_cluster2': 'Periphery cluster'}, axis=1) fig, ax = plt.subplots(figsize=(15, 7)) sns.lineplot(data=df, x=x, y=y, hue='Periphery cluster', style='Number of Rooms', ci=95, n_boot=n_boot, palette='viridis', ax=ax, hue_order=hue_order) ax.grid(True) ax.set_xlabel('') ax.set_ylabel(r'Median apartment price per m$^2$') fig.tight_layout() return def plot_price_per_m2_hist(df, years=[2009, 2020], filter_price_iqr=2, P2_cluster=5): import seaborn as sns # import matplotlib.pyplot as plt sns.set_theme(style='ticks', font_scale=1.5) df = df[df['Type_of_asset'].isin(apts)] if filter_price_iqr is not None: df = df[~df.groupby('Sale_year')['Price_per_m2'].apply( is_outlier, method='iqr', k=filter_price_iqr)] df1 = df[df['P2015_cluster2']==P2_cluster] df1 = df1.rename({'Rooms_345': 'Number of Rooms', 'P2015_cluster2': 'Periphery cluster'}, axis=1) df1 = df1.loc[(df['Sale_year']>=years[0])&(df['Sale_year']<=years[-1])] fg = sns.displot(data=df1, x='Price_per_m2', hue='Number of Rooms',col='Sale_year', col_wrap=3, kde=True) # ax.grid(True) # ax.set_xlabel('') # ax.set_ylabel(r'Median apartment price per m$^2$') # fg.fig.tight_layout() fg.set_titles('Sale Year = {col_name}') fg.set_xlabels(r'Price per m$^2$') fg.fig.subplots_adjust(top=0.938, bottom=0.077, left=0.057, right=0.845, hspace=0.211, wspace=0.073) return fg def compare_kiryat_gat_israel_dealamount(df_kg, df_isr): # TODO: complete this import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set_theme(style='ticks', font_scale=1.5) df_kg = df_kg.groupby(['rooms', 'YQ'])[ 'DEALAMOUNT'].mean().to_frame().unstack().T.droplevel(0) df_isr = df_isr.groupby(['rooms', 'YQ'])[ 'DEALAMOUNT'].mean().to_frame().unstack().T.droplevel(0) # df_kg['YQ'] = df_kg.index # df_isr['YQ'] = df_isr.index # df_kg = df_kg.melt(id_vars='YQ', value_name='price_in_kg') # df_isr = df_isr.melt(id_vars='YQ', value_name='price_in_israel') # df = pd.concat([df_kg, df_isr], axis=1) df = df_kg / df_isr # df['price_diff'] = df['price_in_kg'] - df['price_in_israel'] fig, ax = plt.subplots(figsize=(15.5, 6)) df1 = df # / 1e6 df1.index = pd.to_datetime(df1.index) df1.plot(ax=ax, cmap=sns.color_palette("tab10", as_cmap=True)) ax.set_ylabel('Price difference [million NIS]') df2 = df1.rolling(4, center=True).mean() df2.columns = ['{} rolling mean'.format(x) for x in df2.columns] df2.plot(ax=ax, cmap=sns.color_palette("tab10", as_cmap=True), ls='--') ax.axvline(pd.to_datetime('2008-07-01'), color='g') ax.axvline(
pd.to_datetime('2006-01-01')
pandas.to_datetime
import os,glob import pandas as pd path = "C:/Users/jeche/Desktop/python/ML/Project_/spotifyML/" files = glob.glob(os.path.join(path, '*.csv')) df_from_each_file= (pd.read_csv(f, sep=',') for f in files) df_merged =
pd.concat(df_from_each_file, ignore_index=True)
pandas.concat
from distutils.version import LooseVersion from warnings import catch_warnings import numpy as np import pytest from pandas._libs.tslibs import Timestamp import pandas as pd from pandas import ( DataFrame, HDFStore, Index, MultiIndex, Series, _testing as tm, bdate_range, concat, date_range, isna, read_hdf, ) from pandas.tests.io.pytables.common import ( _maybe_remove, ensure_clean_path, ensure_clean_store, tables, ) from pandas.io.pytables import Term pytestmark = pytest.mark.single def test_select_columns_in_where(setup_path): # GH 6169 # recreate multi-indexes when columns is passed # in the `where` argument index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo_name", "bar_name"], ) # With a DataFrame df = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) with ensure_clean_store(setup_path) as store: store.put("df", df, format="table") expected = df[["A"]] tm.assert_frame_equal(store.select("df", columns=["A"]), expected) tm.assert_frame_equal(store.select("df", where="columns=['A']"), expected) # With a Series s = Series(np.random.randn(10), index=index, name="A") with ensure_clean_store(setup_path) as store: store.put("s", s, format="table") tm.assert_series_equal(store.select("s", where="columns=['A']"), s) def test_select_with_dups(setup_path): # single dtypes df = DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]) df.index = date_range("20130101 9:30", periods=10, freq="T") with ensure_clean_store(setup_path) as store: store.append("df", df) result = store.select("df") expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=df.columns) expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=["A"]) expected = df.loc[:, ["A"]] tm.assert_frame_equal(result, expected) # dups across dtypes df = concat( [ DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]), DataFrame( np.random.randint(0, 10, size=20).reshape(10, 2), columns=["A", "C"] ), ], axis=1, ) df.index = date_range("20130101 9:30", periods=10, freq="T") with ensure_clean_store(setup_path) as store: store.append("df", df) result = store.select("df") expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=df.columns) expected = df tm.assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ["A"]] result = store.select("df", columns=["A"]) tm.assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ["B", "A"]] result = store.select("df", columns=["B", "A"]) tm.assert_frame_equal(result, expected, by_blocks=True) # duplicates on both index and columns with ensure_clean_store(setup_path) as store: store.append("df", df) store.append("df", df) expected = df.loc[:, ["B", "A"]] expected = concat([expected, expected]) result = store.select("df", columns=["B", "A"]) tm.assert_frame_equal(result, expected, by_blocks=True) def test_select(setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): # select with columns= df = tm.makeTimeDataFrame() _maybe_remove(store, "df") store.append("df", df) result = store.select("df", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # equivalently result = store.select("df", [("columns=['A', 'B']")]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # with a data column _maybe_remove(store, "df") store.append("df", df, data_columns=["A"]) result = store.select("df", ["A > 0"], columns=["A", "B"]) expected = df[df.A > 0].reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # all a data columns _maybe_remove(store, "df") store.append("df", df, data_columns=True) result = store.select("df", ["A > 0"], columns=["A", "B"]) expected = df[df.A > 0].reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # with a data column, but different columns _maybe_remove(store, "df") store.append("df", df, data_columns=["A"]) result = store.select("df", ["A > 0"], columns=["C", "D"]) expected = df[df.A > 0].reindex(columns=["C", "D"]) tm.assert_frame_equal(expected, result) def test_select_dtypes(setup_path): with ensure_clean_store(setup_path) as store: # with a Timestamp data column (GH #2637) df = DataFrame( { "ts": bdate_range("2012-01-01", periods=300), "A": np.random.randn(300), } ) _maybe_remove(store, "df") store.append("df", df, data_columns=["ts", "A"]) result = store.select("df", "ts>=Timestamp('2012-02-01')") expected = df[df.ts >= Timestamp("2012-02-01")] tm.assert_frame_equal(expected, result) # bool columns (GH #2849) df = DataFrame(np.random.randn(5, 2), columns=["A", "B"]) df["object"] = "foo" df.loc[4:5, "object"] = "bar" df["boolv"] = df["A"] > 0 _maybe_remove(store, "df") store.append("df", df, data_columns=True) expected = df[df.boolv == True].reindex(columns=["A", "boolv"]) # noqa for v in [True, "true", 1]: result = store.select("df", f"boolv == {v}", columns=["A", "boolv"]) tm.assert_frame_equal(expected, result) expected = df[df.boolv == False].reindex(columns=["A", "boolv"]) # noqa for v in [False, "false", 0]: result = store.select("df", f"boolv == {v}", columns=["A", "boolv"]) tm.assert_frame_equal(expected, result) # integer index df = DataFrame({"A": np.random.rand(20), "B": np.random.rand(20)}) _maybe_remove(store, "df_int") store.append("df_int", df) result = store.select("df_int", "index<10 and columns=['A']") expected = df.reindex(index=list(df.index)[0:10], columns=["A"]) tm.assert_frame_equal(expected, result) # float index df = DataFrame( { "A": np.random.rand(20), "B": np.random.rand(20), "index": np.arange(20, dtype="f8"), } ) _maybe_remove(store, "df_float") store.append("df_float", df) result = store.select("df_float", "index<10.0 and columns=['A']") expected = df.reindex(index=list(df.index)[0:10], columns=["A"]) tm.assert_frame_equal(expected, result) with
ensure_clean_store(setup_path)
pandas.tests.io.pytables.common.ensure_clean_store
import datetime from collections import OrderedDict import warnings import numpy as np from numpy import array, nan import pandas as pd import pytest from numpy.testing import assert_almost_equal, assert_allclose from conftest import assert_frame_equal, assert_series_equal from pvlib import irradiance from conftest import requires_ephem, requires_numba # fixtures create realistic test input data # test input data generated at Location(32.2, -111, 'US/Arizona', 700) # test input data is hard coded to avoid dependencies on other parts of pvlib @pytest.fixture def times(): # must include night values return pd.date_range(start='20140624', freq='6H', periods=4, tz='US/Arizona') @pytest.fixture def irrad_data(times): return pd.DataFrame(np.array( [[ 0. , 0. , 0. ], [ 79.73860422, 316.1949056 , 40.46149818], [1042.48031487, 939.95469881, 118.45831879], [ 257.20751138, 646.22886049, 62.03376265]]), columns=['ghi', 'dni', 'dhi'], index=times) @pytest.fixture def ephem_data(times): return pd.DataFrame(np.array( [[124.0390863 , 124.0390863 , -34.0390863 , -34.0390863 , 352.69550699, -2.36677158], [ 82.85457044, 82.97705621, 7.14542956, 7.02294379, 66.71410338, -2.42072165], [ 10.56413562, 10.56725766, 79.43586438, 79.43274234, 144.76567754, -2.47457321], [ 72.41687122, 72.46903556, 17.58312878, 17.53096444, 287.04104128, -2.52831909]]), columns=['apparent_zenith', 'zenith', 'apparent_elevation', 'elevation', 'azimuth', 'equation_of_time'], index=times) @pytest.fixture def dni_et(times): return np.array( [1321.1655834833093, 1321.1655834833093, 1321.1655834833093, 1321.1655834833093]) @pytest.fixture def relative_airmass(times): return pd.Series([np.nan, 7.58831596, 1.01688136, 3.27930443], times) # setup for et rad test. put it here for readability timestamp = pd.Timestamp('20161026') dt_index = pd.DatetimeIndex([timestamp]) doy = timestamp.dayofyear dt_date = timestamp.date() dt_datetime = datetime.datetime.combine(dt_date, datetime.time(0)) dt_np64 = np.datetime64(dt_datetime) value = 1383.636203 @pytest.mark.parametrize('testval, expected', [ (doy, value), (np.float64(doy), value), (dt_date, value), (dt_datetime, value), (dt_np64, value), (np.array([doy]), np.array([value])), (pd.Series([doy]), np.array([value])), (dt_index, pd.Series([value], index=dt_index)), (timestamp, value) ]) @pytest.mark.parametrize('method', [ 'asce', 'spencer', 'nrel', pytest.param('pyephem', marks=requires_ephem)]) def test_get_extra_radiation(testval, expected, method): out = irradiance.get_extra_radiation(testval, method=method) assert_allclose(out, expected, atol=10) def test_get_extra_radiation_epoch_year(): out = irradiance.get_extra_radiation(doy, method='nrel', epoch_year=2012) assert_allclose(out, 1382.4926804890767, atol=0.1) @requires_numba def test_get_extra_radiation_nrel_numba(times): with warnings.catch_warnings(): # don't warn on method reload or num threads warnings.simplefilter("ignore") result = irradiance.get_extra_radiation( times, method='nrel', how='numba', numthreads=4) # and reset to no-numba state irradiance.get_extra_radiation(times, method='nrel') assert_allclose(result, [1322.332316, 1322.296282, 1322.261205, 1322.227091]) def test_get_extra_radiation_invalid(): with pytest.raises(ValueError): irradiance.get_extra_radiation(300, method='invalid') def test_grounddiffuse_simple_float(): result = irradiance.get_ground_diffuse(40, 900) assert_allclose(result, 26.32000014911496) def test_grounddiffuse_simple_series(irrad_data): ground_irrad = irradiance.get_ground_diffuse(40, irrad_data['ghi']) assert ground_irrad.name == 'diffuse_ground' def test_grounddiffuse_albedo_0(irrad_data): ground_irrad = irradiance.get_ground_diffuse( 40, irrad_data['ghi'], albedo=0) assert 0 == ground_irrad.all() def test_grounddiffuse_albedo_invalid_surface(irrad_data): with pytest.raises(KeyError): irradiance.get_ground_diffuse( 40, irrad_data['ghi'], surface_type='invalid') def test_grounddiffuse_albedo_surface(irrad_data): result = irradiance.get_ground_diffuse(40, irrad_data['ghi'], surface_type='sand') assert_allclose(result, [0, 3.731058, 48.778813, 12.035025], atol=1e-4) def test_isotropic_float(): result = irradiance.isotropic(40, 100) assert_allclose(result, 88.30222215594891) def test_isotropic_series(irrad_data): result = irradiance.isotropic(40, irrad_data['dhi']) assert_allclose(result, [0, 35.728402, 104.601328, 54.777191], atol=1e-4) def test_klucher_series_float(): # klucher inputs surface_tilt, surface_azimuth = 40.0, 180.0 dhi, ghi = 100.0, 900.0 solar_zenith, solar_azimuth = 20.0, 180.0 # expect same result for floats and pd.Series expected = irradiance.klucher( surface_tilt, surface_azimuth, pd.Series(dhi), pd.Series(ghi), pd.Series(solar_zenith), pd.Series(solar_azimuth) ) # 94.99429931664851 result = irradiance.klucher( surface_tilt, surface_azimuth, dhi, ghi, solar_zenith, solar_azimuth ) assert_allclose(result, expected[0]) def test_klucher_series(irrad_data, ephem_data): result = irradiance.klucher(40, 180, irrad_data['dhi'], irrad_data['ghi'], ephem_data['apparent_zenith'], ephem_data['azimuth']) # pvlib matlab 1.4 does not contain the max(cos_tt, 0) correction # so, these values are different assert_allclose(result, [0., 36.789794, 109.209347, 56.965916], atol=1e-4) # expect same result for np.array and pd.Series expected = irradiance.klucher( 40, 180, irrad_data['dhi'].values, irrad_data['ghi'].values, ephem_data['apparent_zenith'].values, ephem_data['azimuth'].values ) assert_allclose(result, expected, atol=1e-4) def test_haydavies(irrad_data, ephem_data, dni_et): result = irradiance.haydavies( 40, 180, irrad_data['dhi'], irrad_data['dni'], dni_et, ephem_data['apparent_zenith'], ephem_data['azimuth']) # values from matlab 1.4 code assert_allclose(result, [0, 27.1775, 102.9949, 33.1909], atol=1e-4) def test_reindl(irrad_data, ephem_data, dni_et): result = irradiance.reindl( 40, 180, irrad_data['dhi'], irrad_data['dni'], irrad_data['ghi'], dni_et, ephem_data['apparent_zenith'], ephem_data['azimuth']) # values from matlab 1.4 code assert_allclose(result, [np.nan, 27.9412, 104.1317, 34.1663], atol=1e-4) def test_king(irrad_data, ephem_data): result = irradiance.king(40, irrad_data['dhi'], irrad_data['ghi'], ephem_data['apparent_zenith']) assert_allclose(result, [0, 44.629352, 115.182626, 79.719855], atol=1e-4) def test_perez(irrad_data, ephem_data, dni_et, relative_airmass): dni = irrad_data['dni'].copy() dni.iloc[2] = np.nan out = irradiance.perez(40, 180, irrad_data['dhi'], dni, dni_et, ephem_data['apparent_zenith'], ephem_data['azimuth'], relative_airmass) expected = pd.Series(np.array( [ 0. , 31.46046871, np.nan, 45.45539877]), index=irrad_data.index) assert_series_equal(out, expected, check_less_precise=2) def test_perez_components(irrad_data, ephem_data, dni_et, relative_airmass): dni = irrad_data['dni'].copy() dni.iloc[2] = np.nan out = irradiance.perez(40, 180, irrad_data['dhi'], dni, dni_et, ephem_data['apparent_zenith'], ephem_data['azimuth'], relative_airmass, return_components=True) expected = pd.DataFrame(np.array( [[ 0. , 31.46046871, np.nan, 45.45539877], [ 0. , 26.84138589, np.nan, 31.72696071], [ 0. , 0. , np.nan, 4.47966439], [ 0. , 4.62212181, np.nan, 9.25316454]]).T, columns=['sky_diffuse', 'isotropic', 'circumsolar', 'horizon'], index=irrad_data.index ) expected_for_sum = expected['sky_diffuse'].copy() expected_for_sum.iloc[2] = 0 sum_components = out.iloc[:, 1:].sum(axis=1) sum_components.name = 'sky_diffuse' assert_frame_equal(out, expected, check_less_precise=2) assert_series_equal(sum_components, expected_for_sum, check_less_precise=2) def test_perez_arrays(irrad_data, ephem_data, dni_et, relative_airmass): dni = irrad_data['dni'].copy() dni.iloc[2] = np.nan out = irradiance.perez(40, 180, irrad_data['dhi'].values, dni.values, dni_et, ephem_data['apparent_zenith'].values, ephem_data['azimuth'].values, relative_airmass.values) expected = np.array( [ 0. , 31.46046871, np.nan, 45.45539877]) assert_allclose(out, expected, atol=1e-2) assert isinstance(out, np.ndarray) def test_perez_scalar(): # copied values from fixtures out = irradiance.perez(40, 180, 118.45831879, 939.95469881, 1321.1655834833093, 10.56413562, 144.76567754, 1.01688136) # this will fail. out is ndarry with ndim == 0. fix in future version. # assert np.isscalar(out) assert_allclose(out, 109.084332) @pytest.mark.parametrize('model', ['isotropic', 'klucher', 'haydavies', 'reindl', 'king', 'perez']) def test_sky_diffuse_zenith_close_to_90(model): # GH 432 sky_diffuse = irradiance.get_sky_diffuse( 30, 180, 89.999, 230, dni=10, ghi=51, dhi=50, dni_extra=1360, airmass=12, model=model) assert sky_diffuse < 100 def test_get_sky_diffuse_invalid(): with pytest.raises(ValueError): irradiance.get_sky_diffuse( 30, 180, 0, 180, 1000, 1100, 100, dni_extra=1360, airmass=1, model='invalid') def test_liujordan(): expected = pd.DataFrame(np.array( [[863.859736967, 653.123094076, 220.65905025]]), columns=['ghi', 'dni', 'dhi'], index=[0]) out = irradiance.liujordan( pd.Series([10]), pd.Series([0.5]), pd.Series([1.1]), dni_extra=1400) assert_frame_equal(out, expected) def test_get_total_irradiance(irrad_data, ephem_data, dni_et, relative_airmass): models = ['isotropic', 'klucher', 'haydavies', 'reindl', 'king', 'perez'] for model in models: total = irradiance.get_total_irradiance( 32, 180, ephem_data['apparent_zenith'], ephem_data['azimuth'], dni=irrad_data['dni'], ghi=irrad_data['ghi'], dhi=irrad_data['dhi'], dni_extra=dni_et, airmass=relative_airmass, model=model, surface_type='urban') assert total.columns.tolist() == ['poa_global', 'poa_direct', 'poa_diffuse', 'poa_sky_diffuse', 'poa_ground_diffuse'] @pytest.mark.parametrize('model', ['isotropic', 'klucher', 'haydavies', 'reindl', 'king', 'perez']) def test_get_total_irradiance_scalars(model): total = irradiance.get_total_irradiance( 32, 180, 10, 180, dni=1000, ghi=1100, dhi=100, dni_extra=1400, airmass=1, model=model, surface_type='urban') assert list(total.keys()) == ['poa_global', 'poa_direct', 'poa_diffuse', 'poa_sky_diffuse', 'poa_ground_diffuse'] # test that none of the values are nan assert np.isnan(np.array(list(total.values()))).sum() == 0 def test_poa_components(irrad_data, ephem_data, dni_et, relative_airmass): aoi = irradiance.aoi(40, 180, ephem_data['apparent_zenith'], ephem_data['azimuth']) gr_sand = irradiance.get_ground_diffuse(40, irrad_data['ghi'], surface_type='sand') diff_perez = irradiance.perez( 40, 180, irrad_data['dhi'], irrad_data['dni'], dni_et, ephem_data['apparent_zenith'], ephem_data['azimuth'], relative_airmass) out = irradiance.poa_components( aoi, irrad_data['dni'], diff_perez, gr_sand) expected = pd.DataFrame(np.array( [[ 0. , -0. , 0. , 0. , 0. ], [ 35.19456561, 0. , 35.19456561, 31.4635077 , 3.73105791], [956.18253696, 798.31939281, 157.86314414, 109.08433162, 48.77881252], [ 90.99624896, 33.50143401, 57.49481495, 45.45978964, 12.03502531]]), columns=['poa_global', 'poa_direct', 'poa_diffuse', 'poa_sky_diffuse', 'poa_ground_diffuse'], index=irrad_data.index) assert_frame_equal(out, expected) @pytest.mark.parametrize('pressure,expected', [ (93193, [[830.46567, 0.79742, 0.93505], [676.09497, 0.63776, 3.02102]]), (None, [[868.72425, 0.79742, 1.01664], [680.66679, 0.63776, 3.28463]]), (101325, [[868.72425, 0.79742, 1.01664], [680.66679, 0.63776, 3.28463]]) ]) def test_disc_value(pressure, expected): # see GH 449 for pressure=None vs. 101325. columns = ['dni', 'kt', 'airmass'] times = pd.DatetimeIndex(['2014-06-24T1200', '2014-06-24T1800'], tz='America/Phoenix') ghi = pd.Series([1038.62, 254.53], index=times) zenith = pd.Series([10.567, 72.469], index=times) out = irradiance.disc(ghi, zenith, times, pressure=pressure) expected_values = np.array(expected) expected = pd.DataFrame(expected_values, columns=columns, index=times) # check the pandas dataframe. check_less_precise is weird assert_frame_equal(out, expected, check_less_precise=True) # use np.assert_allclose to check values more clearly assert_allclose(out.values, expected_values, atol=1e-5) def test_disc_overirradiance(): columns = ['dni', 'kt', 'airmass'] ghi = np.array([3000]) solar_zenith = np.full_like(ghi, 0) times = pd.date_range(start='2016-07-19 12:00:00', freq='1s', periods=len(ghi), tz='America/Phoenix') out = irradiance.disc(ghi=ghi, solar_zenith=solar_zenith, datetime_or_doy=times) expected = pd.DataFrame(np.array( [[8.72544336e+02, 1.00000000e+00, 9.99493933e-01]]), columns=columns, index=times) assert_frame_equal(out, expected) def test_disc_min_cos_zenith_max_zenith(): # map out behavior under difficult conditions with various # limiting kwargs settings columns = ['dni', 'kt', 'airmass'] times = pd.DatetimeIndex(['2016-07-19 06:11:00'], tz='America/Phoenix') out = irradiance.disc(ghi=1.0, solar_zenith=89.99, datetime_or_doy=times) expected = pd.DataFrame(np.array( [[0.00000000e+00, 1.16046346e-02, 12.0]]), columns=columns, index=times) assert_frame_equal(out, expected) # max_zenith and/or max_airmass keep these results reasonable out = irradiance.disc(ghi=1.0, solar_zenith=89.99, datetime_or_doy=times, min_cos_zenith=0) expected = pd.DataFrame(np.array( [[0.00000000e+00, 1.0, 12.0]]), columns=columns, index=times) assert_frame_equal(out, expected) # still get reasonable values because of max_airmass=12 limit out = irradiance.disc(ghi=1.0, solar_zenith=89.99, datetime_or_doy=times, max_zenith=100) expected = pd.DataFrame(np.array( [[0., 1.16046346e-02, 12.0]]), columns=columns, index=times) assert_frame_equal(out, expected) # still get reasonable values because of max_airmass=12 limit out = irradiance.disc(ghi=1.0, solar_zenith=89.99, datetime_or_doy=times, min_cos_zenith=0, max_zenith=100) expected = pd.DataFrame(np.array( [[277.50185968, 1.0, 12.0]]), columns=columns, index=times) assert_frame_equal(out, expected) # max_zenith keeps this result reasonable out = irradiance.disc(ghi=1.0, solar_zenith=89.99, datetime_or_doy=times, min_cos_zenith=0, max_airmass=100) expected = pd.DataFrame(np.array( [[0.00000000e+00, 1.0, 36.39544757]]), columns=columns, index=times) assert_frame_equal(out, expected) # allow zenith to be close to 90 and airmass to be infinite # and we get crazy values out = irradiance.disc(ghi=1.0, solar_zenith=89.99, datetime_or_doy=times, max_zenith=100, max_airmass=100) expected = pd.DataFrame(np.array( [[6.68577449e+03, 1.16046346e-02, 3.63954476e+01]]), columns=columns, index=times) assert_frame_equal(out, expected) # allow min cos zenith to be 0, zenith to be close to 90, # and airmass to be very big and we get even higher DNI values out = irradiance.disc(ghi=1.0, solar_zenith=89.99, datetime_or_doy=times, min_cos_zenith=0, max_zenith=100, max_airmass=100) expected = pd.DataFrame(np.array( [[7.21238390e+03, 1., 3.63954476e+01]]), columns=columns, index=times) assert_frame_equal(out, expected) def test_dirint_value(): times = pd.DatetimeIndex(['2014-06-24T12-0700', '2014-06-24T18-0700']) ghi = pd.Series([1038.62, 254.53], index=times) zenith = pd.Series([10.567, 72.469], index=times) pressure = 93193. dirint_data = irradiance.dirint(ghi, zenith, times, pressure=pressure) assert_almost_equal(dirint_data.values, np.array([868.8, 699.7]), 1) def test_dirint_nans(): times = pd.date_range(start='2014-06-24T12-0700', periods=5, freq='6H') ghi = pd.Series([np.nan, 1038.62, 1038.62, 1038.62, 1038.62], index=times) zenith = pd.Series([10.567, np.nan, 10.567, 10.567, 10.567], index=times) pressure = pd.Series([93193., 93193., np.nan, 93193., 93193.], index=times) temp_dew = pd.Series([10, 10, 10, np.nan, 10], index=times) dirint_data = irradiance.dirint(ghi, zenith, times, pressure=pressure, temp_dew=temp_dew) assert_almost_equal(dirint_data.values, np.array([np.nan, np.nan, np.nan, np.nan, 893.1]), 1) def test_dirint_tdew(): times = pd.DatetimeIndex(['2014-06-24T12-0700', '2014-06-24T18-0700']) ghi = pd.Series([1038.62, 254.53], index=times) zenith = pd.Series([10.567, 72.469], index=times) pressure = 93193. dirint_data = irradiance.dirint(ghi, zenith, times, pressure=pressure, temp_dew=10) assert_almost_equal(dirint_data.values, np.array([882.1, 672.6]), 1) def test_dirint_no_delta_kt(): times = pd.DatetimeIndex(['2014-06-24T12-0700', '2014-06-24T18-0700']) ghi = pd.Series([1038.62, 254.53], index=times) zenith = pd.Series([10.567, 72.469], index=times) pressure = 93193. dirint_data = irradiance.dirint(ghi, zenith, times, pressure=pressure, use_delta_kt_prime=False) assert_almost_equal(dirint_data.values, np.array([861.9, 670.4]), 1) def test_dirint_coeffs(): coeffs = irradiance._get_dirint_coeffs() assert coeffs[0, 0, 0, 0] == 0.385230 assert coeffs[0, 1, 2, 1] == 0.229970 assert coeffs[3, 2, 6, 3] == 1.032260 def test_dirint_min_cos_zenith_max_zenith(): # map out behavior under difficult conditions with various # limiting kwargs settings # times don't have any physical relevance times = pd.DatetimeIndex(['2014-06-24T12-0700', '2014-06-24T18-0700']) ghi = pd.Series([0, 1], index=times) solar_zenith = pd.Series([90, 89.99], index=times) out = irradiance.dirint(ghi, solar_zenith, times) expected = pd.Series([0.0, 0.0], index=times, name='dni') assert_series_equal(out, expected) out = irradiance.dirint(ghi, solar_zenith, times, min_cos_zenith=0) expected = pd.Series([0.0, 0.0], index=times, name='dni') assert_series_equal(out, expected) out = irradiance.dirint(ghi, solar_zenith, times, max_zenith=90) expected = pd.Series([0.0, 0.0], index=times, name='dni') assert_series_equal(out, expected, check_less_precise=True) out = irradiance.dirint(ghi, solar_zenith, times, min_cos_zenith=0, max_zenith=90) expected = pd.Series([0.0, 144.264507], index=times, name='dni') assert_series_equal(out, expected, check_less_precise=True) out = irradiance.dirint(ghi, solar_zenith, times, min_cos_zenith=0, max_zenith=100) expected =
pd.Series([0.0, 144.264507], index=times, name='dni')
pandas.Series
#!/usr/bin/env python # coding: utf-8 # In[60]: import pandas as pd import requests import torch #import locale import warnings import os model = torch.hub.load('ultralytics/yolov5', 'yolov5n') # or yolov5m, yolov5l, yolov5x, custom warnings.filterwarnings('ignore') #locale.setlocale(locale.LC_TIME, 'it_IT.utf8') webcam_json_url = 'https://vit.trilogis.it/json/webcam' output_data = "data" + os.sep + "vehicles_on_trentino_webcams.parquet" last_output_data = "data" + os.sep + "last_vehicles_on_trentino_webcams.csv" # In[61]: webcams = pd.DataFrame(requests.get(webcam_json_url).json()['webcams']['webcam']) # In[62]: webcams['Id'] = webcams['Id'].astype(int) webcams['Cod'] = webcams['Cod'].astype(int) webcams['Nome'] = webcams['Nome'].astype(str) webcams['Direzione'] = webcams['Direzione'].astype(str) webcams['Url_Immagine'] = webcams['Url_Immagine'].astype(str) webcams['IP_Webcam'] = webcams['IP_Webcam'].astype(str) webcams['Km'] = webcams['Km'].astype(str) webcams['Strada'] = webcams['Strada'].astype(str) webcams['Localita'] = webcams['Localita'].astype(str) webcams['ZonaTN'] = webcams['ZonaTN'].astype(int) webcams['Lat'] = webcams['Lat'].apply(lambda x: float(x) if x!='' else 0) webcams['Lng'] = webcams['Lng'].apply(lambda x: float(x) if x!='' else 0) webcams['Monitoraggio'] = webcams['Monitoraggio'].astype(bool) webcams['Live'] = webcams['Live'].astype(bool) webcams['TS_Image'] = webcams['TS_Image'].astype(str) # In[63]: #rimozione webcam con webcam dismesse webcams = webcams[webcams['Url_Immagine'] != 'http://vit.trilogis.it/cam/webcam_outdated.jpg'] # In[64]: def to_timestamp(x): mesi = { 'gennaio': '01', 'febbraio': '02', 'marzo': '03', 'aprile': '04', 'maggio': '05', 'giugno': '06', 'luglio': '07', 'agosto': '08', 'settembre': '09', 'ottobre': '10', 'novembre': '11', 'dicembre': "12" } data = x.split(",")[1].split(" ") day = data[1] month = mesi[data[2]] year = data[3] hour = data[4] rtime = year + "-" + month + "-" + day + " " + hour + ",0" return rtime # In[65]: webcams['timestamp'] = webcams['TS_Image'].apply(lambda x: to_timestamp(x)) webcams['timestamp'] = pd.to_datetime(webcams.timestamp, format='%Y-%m-%d %H:%M:%S,%f') vehicles = ['car','truck','bus','train','motorcycle'] # In[66]: # 45 -> train 0.50 (è una staccionata) # 34 -> train 0.55 (sono in guardrail) # CAM65 -> auto in parcheggio (eliminare pixel?) # CAM100 -> auto in parcheggio (eliminare pixel?) # CAM111 -> auto in parcheggio (eliminare pixel?) # CAM125 -> auto in parcheggio (eliminare pixel?) # CAM126 -> auto in parcheggio (eliminare pixel?) ids_clean = [34] # In[67]: def identifyVehicles(id,indf): num_vehicles = 0 indf = indf[indf['Id'] == id] url = indf['Url_Immagine'].values[0] try: if (url.find("webcam_outdated.jpg") == -1): results = model([url]) #results.save("docs" + os.sep + "results") results_df = results.pandas().xyxy[0] results_df = results_df[results_df['confidence'] >= 0.4] results_df = results_df[results_df['name'].isin(vehicles)] num_vehicles = results_df.shape[0] if id in ids_clean: num_vehicles = num_vehicles - 1 if num_vehicles < 0: num_vehicles = 0 except OSError as e: pass return(num_vehicles) #['class'].sum()) # In[68]: webcams['veicoli'] = webcams['Id'].apply(lambda x: identifyVehicles(x,webcams)) # In[69]: columns = { 'Id':'id','Cod':'codice',"Nome":'nome', 'Direzione':'direzione','Url_Immagine':'url', 'Attiva': 'attiva', 'Comune':'comune','Comunita':'comunita_valle', 'IP_Webcam':'ip_webcam','Km':'km','Strada':'strada', 'Localita':'localita','ZonaTN':'zona_tn', 'Lat':'latitudine', 'Lng':'longitude','Monitoraggio':'monitoraggio', 'Live':'live','TS_Image':'data'} # In[70]: webcams.rename(columns=columns, inplace=True) # In[71]: del webcams['data'] del webcams['ip_webcam'] del webcams['monitoraggio'] del webcams['live'] del webcams['attiva'] # In[72]: if os.path.exists(output_data): last_out = pd.read_parquet(output_data) last_timestamp = last_out.timestamp.max() actual_timestamp = webcams.timestamp.max().strftime("%Y-%m-%d %H:%M:%S") if str(last_timestamp) != str(actual_timestamp): newdata =
pd.concat([last_out, webcams])
pandas.concat
import pandas as pd from tqdm import tqdm import click import numpy as np from os import listdir from os.path import splitext, join from .ingestion import ingest_file from .evaluate_config import EvaluationConfig as args class EmptyGroundTruthError(Exception): pass def get_ious(pred_df, box): X = 0 Y = 1 X2 = 2 Y2 = 3 xml_box = pred_df[["x0", "y0", "x1", "y1"]].values N, _ = xml_box.shape i_boxes = np.zeros((N,4)) i_boxes[:, X] = np.maximum(xml_box[:, X].reshape(-1), box[X].reshape(-1)) i_boxes[:, Y] = np.maximum(xml_box[:, Y].reshape(-1), box[ Y].reshape(-1)) i_boxes[:, X2] = np.minimum(xml_box[:, X2].reshape(-1), box[X2].reshape(-1)) i_boxes[:, Y2] = np.minimum(xml_box[:, Y2].reshape(-1), box[Y2].reshape(-1)) i_area = (i_boxes[:, X2] - i_boxes[:, X]) * (i_boxes[:, Y2] - i_boxes[:, Y]) i_area[i_boxes[:, X2] < i_boxes[:, X]] = 0 i_area[i_boxes[:, Y2] < i_boxes[:, Y]] = 0 xml_area = (xml_box[:, X2] - xml_box[:, X]) * (xml_box[:, Y2] - xml_box[:, Y]) box_area = (box[X2] - box[X]) * (box[Y2] - box[Y]) iou = i_area/(xml_area+ box_area - i_area) iou_df = pd.DataFrame({ "iou": iou }) return iou_df def get_confusion(combined_df, classes): cols = ["ground_truth"] + classes preds = np.zeros(len(classes)) data = [classes] + ([preds]*len(classes)) pd_dict = dict(zip(cols, data)) confusion_df = pd.DataFrame(pd_dict) confusion_df = confusion_df.set_index("ground_truth") for row in combined_df.itertuples(): confusion_df.at[row.gt_label, row.pred_label] +=1 return confusion_df def match(pred_df, gt_df, thres=0.5): if pred_df.shape[0] == 0: combined_df = pd.DataFrame(columns=[]) unmatced = gt_df return combined_df, gt_df for idx, row in enumerate(gt_df.itertuples()): box = np.array([row.x0, row.y0, row.x1, row.y1]) pred_df[f"iou_{idx}"] = get_ious(pred_df, box) overlaps = pred_df.filter(regex=("iou_*")).values matches = np.argmax(overlaps, axis=1) max_overlaps = np.array([pred_df.at[idx, f"iou_{best}"] for idx, best in enumerate(matches)]) match_labels = [gt_df.at[match, "label"] for match in matches] mask = max_overlaps < thres matches[mask] = -1.0 pred_df["gt_id"] = matches pred_df["gt_label"] = match_labels pred_df["max_overlap"] = max_overlaps combined_df = pred_df.rename(index=str, columns={"label": "pred_label"}) combined_df = combined_df[combined_df["max_overlap"]>= thres] unmatched_idxs = list(filter(lambda x: x not in matches, range(gt_df.shape[0]))) unmatched = gt_df.loc[unmatched_idxs] return combined_df, unmatched def get_tp(combined_df, cls): """ true positives have the correct label, only one tp per ground truth label """ if combined_df.shape[0] == 0: return 0.0 tp_candidates = combined_df[combined_df["pred_label"] == combined_df["gt_label"]] tp_candidates = tp_candidates[tp_candidates["pred_label"] == cls] tps = tp_candidates.shape[0] if not args.multiple_proposals: groups = tp_candidates.groupby("gt_id") tps = len(groups) return float(tps) def get_fp(combined_df, cls): if combined_df.shape[0] == 0: return 0.0 fp_candidates = combined_df[combined_df["pred_label"] == cls] fp_type_1 = fp_candidates[fp_candidates["pred_label"] != fp_candidates["gt_label"]].shape[0] fp_type_2 = 0.0 tp_candidates = combined_df[combined_df["pred_label"] == combined_df["gt_label"]] tp_candidates = tp_candidates[tp_candidates["pred_label"] == cls] groups = tp_candidates.groupby("gt_id") matches = len(groups) tot = groups.size() fp_type_2 += tot.sum() - matches if args.multiple_proposals: fn_type_2 = 0 return float(fp_type_1 + fp_type_2) def get_fn(combined_df, unmatched, cls): if combined_df.shape[0] > 0: fn_candidates = combined_df[combined_df["gt_label"] == cls] fn_type_1 = fn_candidates[fn_candidates["pred_label"] != fn_candidates["gt_label"] ].shape[0] else: fn_type_1 = 0 fn_type_2 = unmatched[unmatched["label"] == cls].shape[0] if not args.e2e: fn_type_2 = 0 return float(fn_type_1 + fn_type_2) def get_precision(combined_df, cls): tp = get_tp(combined_df, cls) fp = get_fp(combined_df, cls) if tp == 0 and fp == 0: return np.nan return tp/(tp+fp) def get_recall(combined_df, unmatched, cls): tp = get_tp(combined_df, cls) fn = get_fn(combined_df, unmatched, cls) if tp == 0 and fn == 0: return np.nan return tp / (tp +fn) def get_gt_instances(gt_df, cls): return gt_df[gt_df["label"] == cls].shape[0] def evaluate_single(pred_path, gt_path, classes=None, thres=0.5): pred_df = ingest_file(pred_path) gt_df = ingest_file(gt_path) if gt_df.shape[0] ==0: raise EmptyGroundTruthError() combined , unmatched = match(pred_df, gt_df,thres=0.5) prec_cls = {} rec_cls = {} for cls in classes: prec = get_precision(combined, cls) rec = get_recall(combined, unmatched, cls) prec_cls[cls] = prec rec_cls[cls] = rec confusion_df = get_confusion(combined, classes) prec_df =
pd.Series(prec_cls,name="precisions")
pandas.Series
#! /usr/bin/env python # -*- coding: utf-8 -*- """ @version: @author: li @file: factor_cash_flow.py @time: 2019-05-30 """ import gc, six import json import numpy as np import pandas as pd from utilities.calc_tools import CalcTools from utilities.singleton import Singleton # from basic_derivation import app # from ultron.cluster.invoke.cache_data import cache_data pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) @six.add_metaclass(Singleton) class FactorCashFlow(object): """ 现金流量 """ def __init__(self): __str__ = 'factor_cash_flow' self.name = '财务指标' self.factor_type1 = '财务指标' self.factor_type2 = '现金流量' self.description = '财务指标的二级指标-现金流量' @staticmethod def CashOfSales(tp_cash_flow, factor_cash_flow, dependencies=['net_operate_cash_flow', 'operating_revenue']): """ :name: 经验活动产生的现金流量净额/营业收入 :desc: 经营活动产生的现金流量净额/营业收入(MRQ) :unit: :view_dimension: 0.01 """ cash_flow = tp_cash_flow.loc[:, dependencies] cash_flow['CashOfSales'] = np.where(CalcTools.is_zero(cash_flow.operating_revenue.values), 0, cash_flow.net_operate_cash_flow.values / cash_flow.operating_revenue.values) cash_flow = cash_flow.drop(dependencies, axis=1) factor_cash_flow = pd.merge(factor_cash_flow, cash_flow, how='outer', on="security_code") # factor_cash_flow['CashOfSales'] = cash_flow['CashOfSales'] return factor_cash_flow @staticmethod def NOCFToOpt(tp_cash_flow, factor_cash_flow, dependencies=['net_operate_cash_flow', 'total_operating_revenue', 'total_operating_cost']): """ :name: 经营活动产生的现金流量净额/(营业总收入-营业总成本) :desc: 经营活动产生的现金流量净额/(营业总收入-营业总成本) :unit: :view_dimension: 0.01 """ cash_flow = tp_cash_flow.loc[:, dependencies] cash_flow['NOCFToOpt'] = np.where( CalcTools.is_zero((cash_flow.total_operating_revenue.values - cash_flow.total_operating_cost.values)), 0, cash_flow.net_operate_cash_flow.values / ( cash_flow.total_operating_revenue.values - cash_flow.total_operating_cost.values)) cash_flow = cash_flow.drop(dependencies, axis=1) factor_cash_flow = pd.merge(factor_cash_flow, cash_flow, how='outer', on="security_code") # factor_cash_flow['NOCFToOpt'] = cash_flow['NOCFToOpt'] return factor_cash_flow @staticmethod def SalesServCashToOR(tp_cash_flow, factor_cash_flow, dependencies=['goods_sale_and_service_render_cash', 'operating_revenue']): """ :name: 销售商品和提供劳务收到的现金/营业收入 :desc: 销售商品和提供劳务收到的现金/营业收入 :unit: :view_dimension: 0.01 """ cash_flow = tp_cash_flow.loc[:, dependencies] cash_flow['SalesServCashToOR'] = np.where(CalcTools.is_zero(cash_flow.operating_revenue.values), 0, cash_flow.goods_sale_and_service_render_cash.values / cash_flow.operating_revenue.values) cash_flow = cash_flow.drop(dependencies, axis=1) factor_cash_flow = pd.merge(factor_cash_flow, cash_flow, how='outer', on="security_code") # factor_cash_flow['SalesServCashToOR'] = cash_flow['SalesServCashToOR'] return factor_cash_flow @staticmethod def OptOnReToAssetTTM(ttm_cash_flow, factor_cash_flow, dependencies=['net_operate_cash_flow', 'net_profit', 'total_assets']): """ :name:(经营活动产生的金流量净额(TTM)-净利润(TTM)) /总资产(TTM) :desc:(经营活动产生的金流量净额(TTM) - 净利润(TTM)) /总资产(TTM) :unit: :view_dimension: 0.01 """ cash_flow = ttm_cash_flow.loc[:, dependencies] cash_flow['OptOnReToAssetTTM'] = np.where(CalcTools.is_zero(cash_flow.total_assets.values), 0, (cash_flow.net_operate_cash_flow.values - cash_flow.net_profit.values) / cash_flow.total_assets.values) cash_flow = cash_flow.drop(dependencies, axis=1) factor_cash_flow = pd.merge(factor_cash_flow, cash_flow, how='outer', on="security_code") # factor_cash_flow['OptOnReToAssetTTM'] = cash_flow['OptOnReToAssetTTM'] return factor_cash_flow @staticmethod def NetProCashCoverTTM(ttm_cash_flow, factor_cash_flow, dependencies=['net_operate_cash_flow', 'np_parent_company_owners']): """ :name: 经营活动产生的现金流量净额(TTM)/归属于母公司所有者的净利润(TTM) :desc: 经营活动产生的现金流量净额(TTM)/归属于母公司所有者的净利润(TTM) :unit: :view_dimension: 0.01 """ cash_flow = ttm_cash_flow.loc[:, dependencies] cash_flow['NetProCashCoverTTM'] = np.where( CalcTools.is_zero(cash_flow.np_parent_company_owners.values), 0, cash_flow.net_operate_cash_flow.values / cash_flow.np_parent_company_owners.values) cash_flow = cash_flow.drop(dependencies, axis=1) factor_cash_flow = pd.merge(factor_cash_flow, cash_flow, how='outer', on="security_code") # factor_cash_flow['NetProCashCoverTTM'] = cash_flow['NetProCashCoverTTM'] return factor_cash_flow @staticmethod def OptToEnterpriseTTM(ttm_cash_flow, factor_cash_flow, dependencies=['net_operate_cash_flow', 'longterm_loan', 'shortterm_loan', 'market_cap', 'cash_and_equivalents_at_end']): """ :name: 经营活动产生的现金流量净额(TTM)/企业价值(TTM) :desc: 经营活动产生的现金流量净额(TTM)/(长期借款(TTM)+ 短期借款(TTM)+ 总市值 - 期末现金及现金等价物(TTM) :unit: :view_dimension: 0.01 """ cash_flow = ttm_cash_flow.loc[:, dependencies] cash_flow['OptToEnterpriseTTM'] = np.where(CalcTools.is_zero( cash_flow.longterm_loan.values + cash_flow.shortterm_loan.values + \ cash_flow.market_cap.values - cash_flow.cash_and_equivalents_at_end.values), 0, cash_flow.net_operate_cash_flow.values / (cash_flow.longterm_loan.values + cash_flow.shortterm_loan.values + \ cash_flow.market_cap.values - cash_flow.cash_and_equivalents_at_end.values)) cash_flow = cash_flow.drop(dependencies, axis=1) factor_cash_flow = pd.merge(factor_cash_flow, cash_flow, how='outer', on="security_code") return factor_cash_flow @staticmethod def OptCFToRevTTM(ttm_cash_flow, factor_cash_flow, dependencies=['net_operate_cash_flow', 'operating_revenue']): """ :name: 经营活动产生的现金流量净额(TTM)/营业收入(TTM) :desc: 经营活动产生的现金流量净额(TTM)/营业收入(TTM) :unit: :view_dimension: 0.01 """ cash_flow = ttm_cash_flow.loc[:, dependencies] cash_flow['OptCFToRevTTM'] = np.where( CalcTools.is_zero(cash_flow.operating_revenue.values), 0, cash_flow.net_operate_cash_flow.values / cash_flow.operating_revenue.values) cash_flow = cash_flow.drop(dependencies, axis=1) factor_cash_flow = pd.merge(factor_cash_flow, cash_flow, how='outer', on="security_code") # factor_cash_flow['OptCFToRevTTM'] = cash_flow['OptCFToRevTTM'] return factor_cash_flow @staticmethod def OptToAssertTTM(ttm_cash_flow, factor_cash_flow, dependencies=['net_operate_cash_flow', 'total_assets']): """ :name: 经营活动产生的现金流量净额(TTM)/总资产(TTM) :desc: 经营活动产生的现金流量净额(TTM)/总资产(TTM) :unit: :view_dimension: 0.01 """ cash_flow = ttm_cash_flow.loc[:, dependencies] cash_flow['OptToAssertTTM'] = np.where(CalcTools.is_zero(cash_flow.total_assets.values), 0, cash_flow.net_operate_cash_flow.values / cash_flow.total_assets.values) cash_flow = cash_flow.drop(dependencies, axis=1) factor_cash_flow = pd.merge(factor_cash_flow, cash_flow, how='outer', on="security_code") # factor_cash_flow['OptToAssertTTM'] = cash_flow['OptToAssertTTM'] return factor_cash_flow @staticmethod def SaleServCashToOptReTTM(ttm_cash_flow, factor_cash_flow, dependencies=['goods_sale_and_service_render_cash', 'operating_revenue']): """ :name: 销售商品和提供劳务收到的现金(TTM)/营业收入(TTM) :desc: 销售商品提供劳务收到的现金(TTM)/营业收入(TTM) :unit: :view_dimension: 0.01 """ cash_flow = ttm_cash_flow.loc[:, dependencies] cash_flow['SaleServCashToOptReTTM'] = np.where( CalcTools.is_zero(cash_flow.operating_revenue.values), 0, cash_flow.goods_sale_and_service_render_cash.values / cash_flow.operating_revenue.values) cash_flow = cash_flow.drop(dependencies, axis=1) factor_cash_flow = pd.merge(factor_cash_flow, cash_flow, how='outer', on="security_code") return factor_cash_flow @staticmethod def NOCFTOOPftTTM(ttm_cash_flow, factor_cash_flow, dependencies=['net_operate_cash_flow', 'operating_profit']): """ :name: 经营活动产生的现金流量净额/营业利润(TTM) :desc: 经营活动产生的现金流量净额(TTM)/营业利润(TTM) :unit: :view_dimension: 0.01 """ cash_flow = ttm_cash_flow.loc[:, dependencies] func = lambda x: x[0] / x[1] if x[1] is not None and x[1] != 0 else None cash_flow['NOCFTOOPftTTM'] = cash_flow[dependencies].apply(func, axis=1) cash_flow = cash_flow.drop(dependencies, axis=1) factor_cash_flow = pd.merge(factor_cash_flow, cash_flow, how='outer', on="security_code") return factor_cash_flow @staticmethod def OptCFToNITTM(ttm_cash_flow, factor_cash_flow, dependencies=['net_operate_cash_flow', 'total_operating_revenue', 'total_operating_cost']): """ :name: 经营活动产生的现金流量净额(TTM)/经营活动净收益(TTM) :desc: 经营活动产生的现金流量净额(TTM)/经营活动净收益(TTM) :unit: :view_dimension: 0.01 """ cash_flow = ttm_cash_flow.loc[:, dependencies] func = lambda x: x[0] / (x[1] - x[2]) if x[1] is not None and x[2] is not None and (x[1] - x[2]) != 0 else None cash_flow['OptCFToNITTM'] = cash_flow[dependencies].apply(func, axis=1) cash_flow = cash_flow.drop(dependencies, axis=1) factor_cash_flow =
pd.merge(factor_cash_flow, cash_flow, how='outer', on="security_code")
pandas.merge
import json #import requests import pandas as pd import numpy as np import os from tqdm import tqdm import uuid import subprocess from datetime import datetime from bs4 import BeautifulSoup as bs import re import pysam import mysecrets import glob import tarfile from flask import Flask, request, redirect, url_for, jsonify, render_template, flash, send_file from werkzeug.utils import secure_filename from flask_sitemap import Sitemap from flask_uploads import UploadSet, configure_uploads, DATA from pymongo import MongoClient from pprint import pprint import htmltableparser #import getSimpleSumStats genomicWindowLimit = 2000000 one_sided_SS_window_size = 100000 # (100 kb on either side of the lead SNP) fileSizeLimit = 500 * 1024 * 1024 # in Bytes MYDIR = os.path.dirname(__file__) APP_STATIC = os.path.join(MYDIR, 'static') ################## # Default settings ################## default_region = "1:205500000-206000000" default_chromname = "#CHROM" default_posname = "POS" default_snpname = "ID" default_refname = "REF" default_altname = "ALT" default_pname = "P" default_betaname = "BETA" default_stderrname = "SE" default_nname = "N" default_mafname = "MAF" # Default column names for secondary datasets: CHROM = 'CHROM' BP = 'BP' SNP = 'SNP' P = 'P' coloc2colnames = ['CHR','POS','SNPID','A2','A1','BETA','SE','PVAL','MAF', 'N'] coloc2eqtlcolnames = coloc2colnames + ['ProbeID'] coloc2gwascolnames = coloc2colnames + ['type'] ################ ################ app = Flask(__name__) ext = Sitemap(app=app) app.config['UPLOAD_FOLDER'] = os.path.join(MYDIR, 'static/upload/') app.config['UPLOADED_FILES_DEST'] = os.path.join(MYDIR, 'static/upload/') app.config['MAX_CONTENT_LENGTH'] = fileSizeLimit ALLOWED_EXTENSIONS = set(['txt', 'tsv', 'ld', 'html']) app.config['UPLOADED_FILES_ALLOW'] = ALLOWED_EXTENSIONS app.secret_key = mysecrets.mysecret files = UploadSet('files', DATA) configure_uploads(app, files) collapsed_genes_df_hg19 = pd.read_csv(os.path.join(MYDIR, 'data/collapsed_gencode_v19_hg19.gz'), compression='gzip', sep='\t', encoding='utf-8') collapsed_genes_df_hg38 = pd.read_csv(os.path.join(MYDIR, 'data/collapsed_gencode_v26_hg38.gz'), compression='gzip', sep='\t', encoding='utf-8') collapsed_genes_df = collapsed_genes_df_hg19 # For now ld_mat_diag_constant = 1e-6 conn = "mongodb://localhost:27017" client = MongoClient(conn) db = client.GTEx_V7 # For now available_gtex_versions = ["V7", "V8"] valid_populations = ["EUR", "AFR","EAS", "SAS", "AMR", "ASN", "NFE"] #################################### # Helper functions #################################### def parseRegionText(regiontext, build): if build not in ['hg19', 'hg38']: raise InvalidUsage(f'Unrecognized build: {build}', status_code=410) regiontext = regiontext.strip().replace(' ','').replace(',','').replace('chr','') if not re.search("^\d+:\d+-\d+$", regiontext.replace('X','23').replace('x','23')): raise InvalidUsage(f'Invalid coordinate format. {regiontext} e.g. 1:205,000,000-206,000,000', status_code=410) chrom = regiontext.split(':')[0].lower().replace('chr','').upper() pos = regiontext.split(':')[1] startbp = pos.split('-')[0].replace(',','') endbp = pos.split('-')[1].replace(',','') chromLengths = pd.read_csv(os.path.join(MYDIR, 'data', build + '_chrom_lengths.txt'), sep="\t", encoding='utf-8') chromLengths.set_index('sequence',inplace=True) if chrom in ['X','x'] or chrom == '23': chrom = 23 maxChromLength = chromLengths.loc['chrX', 'length'] try: startbp = int(startbp) endbp = int(endbp) except: raise InvalidUsage(f"Invalid coordinates input: {regiontext}", status_code=410) else: try: chrom = int(chrom) if chrom == 23: maxChromLength = chromLengths.loc['chrX', 'length'] else: maxChromLength = chromLengths.loc['chr'+str(chrom), 'length'] startbp = int(startbp) endbp = int(endbp) except: raise InvalidUsage(f"Invalid coordinates input {regiontext}", status_code=410) if chrom < 1 or chrom > 23: raise InvalidUsage('Chromosome input must be between 1 and 23', status_code=410) elif startbp > endbp: raise InvalidUsage('Starting chromosome basepair position is greater than ending basepair position', status_code=410) elif startbp > maxChromLength or endbp > maxChromLength: raise InvalidUsage('Start or end coordinates are out of range', status_code=410) elif (endbp - startbp) > genomicWindowLimit: raise InvalidUsage(f'Entered region size is larger than {genomicWindowLimit/10**6} Mbp', status_code=410) else: return chrom, startbp, endbp def allowed_file(filenames): if type(filenames) == type('str'): return '.' in filenames and filenames.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS for filename in filenames: if not ('.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS): return False return True def writeList(alist, filename): with open(filename, 'w') as f: for item in alist: f.write("%s\n" % item) def writeMat(aMat, filename): aMat = np.matrix(aMat) with open(filename, 'w') as f: for row in np.arange(aMat.shape[0]): for col in np.arange(aMat.shape[1] - 1): f.write("%s\t" % str(aMat[row,col])) f.write("%s\n" % str(aMat[row,-1])) def genenames(genename, build): # Given either ENSG gene name or HUGO gene name, returns both HUGO and ENSG names ensg_gene = genename if build.lower() in ["hg19","grch37"]: collapsed_genes_df = collapsed_genes_df_hg19 elif build.lower() in ["hg38", "grch38"]: collapsed_genes_df = collapsed_genes_df_hg38 if genename in list(collapsed_genes_df['name']): ensg_gene = collapsed_genes_df['ENSG_name'][list(collapsed_genes_df['name']).index(genename)] if genename in list(collapsed_genes_df['ENSG_name']): genename = collapsed_genes_df['name'][list(collapsed_genes_df['ENSG_name']).index(genename)] return genename, ensg_gene def classify_files(filenames): gwas_filepath = '' ldmat_filepath = '' html_filepath = '' extensions = [] for file in filenames: filename = secure_filename(file.filename) extension = filename.split('.')[-1] if extension not in extensions: if extension in ['txt', 'tsv']: extensions.extend(['txt','tsv']) else: extensions.append(extension) else: raise InvalidUsage('Please upload up to 3 different file types as described', status_code=410) if extension in ['txt', 'tsv']: gwas_filepath = os.path.join(MYDIR, app.config['UPLOAD_FOLDER'], filename) elif extension in ['ld']: ldmat_filepath = os.path.join(MYDIR, app.config['UPLOAD_FOLDER'], filename) elif extension in ['html']: html_filepath = os.path.join(MYDIR, app.config['UPLOAD_FOLDER'], filename) return gwas_filepath, ldmat_filepath, html_filepath def isSorted(l): # l is a list # returns True if l is sorted, False otherwise return all(l[i] <= l[i+1] for i in range(len(l)-1)) def Xto23(l): newl = [] validchroms = [str(i) for i in list(np.arange(1,24))] validchroms.append('.') for x in l: if str(str(x).strip().lower().replace('chr','').upper()) == "X": newl.append(23) elif str(str(x).strip().lower().replace('chr','')) in validchroms: if x!='.': newl.append(int(str(x).strip().lower().replace('chr',''))) else: newl.append('.') else: raise InvalidUsage('Chromosome unrecognized', status_code=410) return newl def verifycol(formname, defaultname, filecolnames, error_message_): """ Checks if the user-entered column name (formname) (or the default column name if no column name was entered - defaultname) can be found in the dataset column names (ie. filecolnames list). If not, the error_message_ is output and program halted with 410 status """ theformname = formname if formname=='': theformname=str(defaultname) if theformname not in filecolnames: raise InvalidUsage(error_message_, status_code=410) return theformname def buildSNPlist(df, chromcol, poscol, refcol, altcol, build): snplist = [] if build.lower() in ["hg38","grch38"]: build = 'b38' else: build = 'b37' for i in np.arange(df.shape[0]): chrom = list(df[chromcol])[i] pos = list(df[poscol])[i] ref = list(df[refcol])[i] alt = list(df[altcol])[i] try: snplist.append(str(chrom)+"_"+str(pos)+"_"+str(ref)+"_"+str(alt)+"_"+str(build)) except: raise InvalidUsage(f'Could not convert marker at row {str(i)}') return snplist def fetchSNV(chrom, bp, ref, build): variantid = '.' if ref is None or ref=='.': ref='' # Ensure valid region: try: regiontxt = str(chrom) + ":" + str(bp) + "-" + str(int(bp)+1) except: raise InvalidUsage(f'Invalid input for {str(chrom):str(bp)}') chrom, startbp, endbp = parseRegionText(regiontxt, build) chrom = str(chrom).replace('chr','').replace('23',"X") # Load dbSNP151 SNP names from region indicated dbsnp_filepath = '' if build.lower() in ["hg38", "grch38"]: suffix = 'b38' dbsnp_filepath = os.path.join(MYDIR, 'data', 'dbSNP151', 'GRCh38p7', 'All_20180418.vcf.gz') else: suffix = 'b37' dbsnp_filepath = os.path.join(MYDIR, 'data', 'dbSNP151', 'GRCh37p13', 'All_20180423.vcf.gz') # Load variant info from dbSNP151 tbx = pysam.TabixFile(dbsnp_filepath) varlist = [] for row in tbx.fetch(str(chrom), bp-1, bp): rowlist = str(row).split('\t') chromi = rowlist[0].replace('chr','') posi = rowlist[1] idi = rowlist[2] refi = rowlist[3] alti = rowlist[4] varstr = '_'.join([chromi, posi, refi, alti, suffix]) varlist.append(varstr) # Check if there is a match to an SNV with the provided info if len(varlist) == 1: variantid = varstr elif len(varlist) > 1 and ref != '': for v in varlist: if v.split('_')[2] == ref: variantid = v break return variantid def standardizeSNPs(variantlist, regiontxt, build): """ Input: Variant names in any of these formats: rsid, chrom_pos_ref_alt, chrom:pos_ref_alt, chrom:pos_ref_alt_b37/b38 Output: chrom_pos_ref_alt_b37/b38 variant ID format, but looks at GTEx variant lookup table first. In the case of multi-allelic variants (e.g. rs2211330(T/A,C)), formats such as 1_205001063_T_A,C_b37 are accepted If variant ID format is chr:pos, and the chr:pos has a unique biallelic SNV, then it will be assigned that variant """ if all(x=='.' for x in variantlist): raise InvalidUsage('No variants provided') if np.nan in variantlist: raise InvalidUsage('Missing variant IDs detected in row(s): ' + str([ i+1 for i,x in enumerate(variantlist) if str(x) == 'nan' ])) # Ensure valid region: chrom, startbp, endbp = parseRegionText(regiontxt, build) chrom = str(chrom).replace('23',"X") # Load GTEx variant lookup table for region indicated db = client.GTEx_V7 rsid_colname = 'rs_id_dbSNP147_GRCh37p13' if build.lower() in ["hg38", "grch38"]: db = client.GTEx_V8 rsid_colname = 'rs_id_dbSNP151_GRCh38p7' collection = db['variant_table'] variants_query = collection.find( { '$and': [ { 'chr': int(chrom.replace('X','23')) }, { 'variant_pos': { '$gte': int(startbp), '$lte': int(endbp) } } ]} ) variants_list = list(variants_query) variants_df = pd.DataFrame(variants_list) variants_df = variants_df.drop(['_id'], axis=1) # Load dbSNP151 SNP names from region indicated dbsnp_filepath = '' suffix = 'b37' if build.lower() in ["hg38", "grch38"]: suffix = 'b38' dbsnp_filepath = os.path.join(MYDIR, 'data', 'dbSNP151', 'GRCh38p7', 'All_20180418.vcf.gz') else: suffix = 'b37' dbsnp_filepath = os.path.join(MYDIR, 'data', 'dbSNP151', 'GRCh37p13', 'All_20180423.vcf.gz') # Load dbSNP file #delayeddf = delayed(pd.read_csv)(dbsnp_filepath,skiprows=getNumHeaderLines(dbsnp_filepath),sep='\t') #dbsnp = dd.from_delayed(delayeddf) tbx = pysam.TabixFile(dbsnp_filepath) print('Compiling list of known variants in the region from dbSNP151') chromcol = [] poscol = [] idcol = [] refcol = [] altcol = [] variantid = [] # in chr_pos_ref_alt_build format rsids = dict({}) # a multi-allelic variant rsid (key) can be represented in several variantid formats (values) for row in tbx.fetch(str(chrom), startbp, endbp): rowlist = str(row).split('\t') chromi = rowlist[0].replace('chr','') posi = rowlist[1] idi = rowlist[2] refi = rowlist[3] alti = rowlist[4] varstr = '_'.join([chromi, posi, refi, alti, suffix]) chromcol.append(chromi) poscol.append(posi) idcol.append(idi) refcol.append(refi) altcol.append(alti) variantid.append(varstr) rsids[idi] = [varstr] altalleles = alti.split(',') # could have more than one alt allele (multi-allelic) if len(altalleles)>1: varstr = '_'.join([chromi, posi, refi, altalleles[0], suffix]) rsids[idi].append(varstr) for i in np.arange(len(altalleles)-1): varstr = '_'.join([chromi, posi, refi, altalleles[i+1], suffix]) rsids[idi].append(varstr) print('Cleaning and mapping list of variants') variantlist = [asnp.split(';')[0].replace(':','_').replace('.','') for asnp in variantlist] # cleaning up the SNP names a bit stdvariantlist = [] for variant in variantlist: if variant == '': stdvariantlist.append('.') continue variantstr = variant.replace('chr','') if re.search("^23_",variantstr): variantstr = variantstr.replace('23_','X_',1) if variantstr.startswith('rs'): try: # Here's the difference from the first function version (we look at GTEx first) if variant in list(variants_df[rsid_colname]): stdvar = variants_df['variant_id'].loc[ variants_df[rsid_colname] == variant].to_list()[0] stdvariantlist.append(stdvar) else: stdvariantlist.append(rsids[variantstr][0]) except: stdvariantlist.append('.') elif re.search("^\d+_\d+_[A,T,G,C]+_[A,T,C,G]+,*", variantstr.replace('X','23')): strlist = variantstr.split('_') strlist = list(filter(None, strlist)) # remove empty strings try: achr, astart, aend = parseRegionText(strlist[0]+":"+strlist[1]+"-"+str(int(strlist[1])+1), build) achr = str(achr).replace('23','X') if achr == str(chrom) and astart >= startbp and astart <= endbp: variantstr = variantstr.replace("_"+str(suffix),"") + "_"+str(suffix) if len(variantstr.split('_')) == 5: stdvariantlist.append(variantstr) else: raise InvalidUsage(f'Variant format not recognizable: {variant}. Is it from another coordinate build system?', status_code=410) else: stdvariantlist.append('.') except: raise InvalidUsage(f'Problem with variant {variant}', status_code=410) elif re.search("^\d+_\d+_*[A,T,G,C]*", variantstr.replace('X','23')): strlist = variantstr.split('_') strlist = list(filter(None, strlist)) # remove empty strings try: achr, astart, aend = parseRegionText(strlist[0]+":"+strlist[1]+"-"+str(int(strlist[1])+1), build) achr = str(achr).replace('23','X') if achr == str(chrom) and astart >= startbp and astart <= endbp: if len(strlist)==3: aref=strlist[2] else: aref='' stdvariantlist.append(fetchSNV(achr, astart, aref, build)) else: stdvariantlist.append('.') except: raise InvalidUsage(f'Problem with variant {variant}', status_code=410) else: raise InvalidUsage(f'Variant format not recognized: {variant}', status_code=410) return stdvariantlist def cleanSNPs(variantlist, regiontext, build): """ Parameters ---------- variantlist : list list of variant IDs in rs id or chr_pos, chr_pos_ref_alt, chr_pos_ref_alt_build, etc formats regiontext : str the region of interest in chr:start-end format build : str build.lower() in ['hg19','hg38', 'grch37', 'grch38'] must be true Returns ------- A cleaner set of SNP names rs id's are cleaned to contain only one, non-rs id formats are standardized to chr_pos_ref_alt_build format) any SNPs not in regiontext are returned as '.' """ variantlist = [asnp.split(';')[0].replace(':','_').replace('.','') for asnp in variantlist] # cleaning up the SNP names a bit std_varlist = standardizeSNPs(variantlist, regiontext, build) final_varlist = [ e if (e.startswith('rs') and std_varlist[i] != '.') else std_varlist[i] for i, e in enumerate(variantlist) ] return final_varlist def torsid(variantlist, regiontext, build): """ Parameters ---------- variantlist : list List of variants in either rs id or other chr_pos, chr_pos_ref, chr_pos_ref_alt, chr_pos_ref_alt_build format. Returns ------- rsidlist : list Corresponding rs id in the region if found. Otherwise returns '.' """ if all(x=='.' for x in variantlist): raise InvalidUsage('No variants provided') variantlist = cleanSNPs(variantlist, regiontext, build) chrom, startbp, endbp = parseRegionText(regiontext, build) chrom = str(chrom).replace('23',"X") # Load dbSNP151 SNP names from region indicated dbsnp_filepath = '' suffix = 'b37' if build.lower() in ["hg38", "grch38"]: suffix = 'b38' dbsnp_filepath = os.path.join(MYDIR, 'data', 'dbSNP151', 'GRCh38p7', 'All_20180418.vcf.gz') else: suffix = 'b37' dbsnp_filepath = os.path.join(MYDIR, 'data', 'dbSNP151', 'GRCh37p13', 'All_20180423.vcf.gz') # Load dbSNP file tbx = pysam.TabixFile(dbsnp_filepath) print('Compiling list of known variants in the region from dbSNP151') chromcol = [] poscol = [] idcol = [] refcol = [] altcol = [] rsid = dict({}) # chr_pos_ref_alt_build (keys) for rsid output (values) for row in tbx.fetch(str(chrom), startbp, endbp): rowlist = str(row).split('\t') chromi = rowlist[0].replace('chr','') posi = rowlist[1] idi = rowlist[2] refi = rowlist[3] alti = rowlist[4] varstr = '_'.join([chromi, posi, refi, alti, suffix]) chromcol.append(chromi) poscol.append(posi) idcol.append(idi) refcol.append(refi) altcol.append(alti) rsid[varstr] = idi altalleles = alti.split(',') # could have more than one alt allele (multi-allelic) if len(altalleles)>1: varstr = '_'.join([chromi, posi, refi, altalleles[0], suffix]) rsid[varstr] = idi for i in np.arange(len(altalleles)-1): varstr = '_'.join([chromi, posi, refi, altalleles[i+1], suffix]) rsid[varstr] = idi finalvarlist = [] for variant in variantlist: if not variant.startswith('rs'): try: finalvarlist.append(rsid[variant]) except: finalvarlist.append('.') else: finalvarlist.append(variant) return finalvarlist def decomposeVariant(variant_list): """ Parameters ---------- variantid_list : list list of str standardized variants in chr_pos_ref_alt_build format Returns ------- A pandas.dataframe with chromosome, pos, reference and alternate alleles columns """ chromlist = [x.split('_')[0] if len(x.split('_'))==5 else x for x in variant_list] chromlist = [int(x) if x not in ["X","."] else x for x in chromlist] poslist = [int(x.split('_')[1]) if len(x.split('_'))==5 else x for x in variant_list] reflist = [x.split('_')[2] if len(x.split('_'))==5 else x for x in variant_list] altlist = [x.split('_')[3] if len(x.split('_'))==5 else x for x in variant_list] df = pd.DataFrame({ default_chromname: chromlist ,default_posname: poslist ,default_refname: reflist ,default_altname: altlist }) return df def addVariantID(gwas_data, chromcol, poscol, refcol, altcol, build = "hg19"): """ Parameters ---------- gwas_data : pandas.DataFrame Has a minimum of chromosome, position, reference and alternate allele columns. chromcol : str chromosome column name in gwas_data poscol : str position column name in gwas_data refcol : str reference allele column name in gwas_data altcol : str alternate allele column name in gwas_data Returns ------- pandas.dataframe with list of standardized variant ID's in chrom_pos_ref_alt_build format added to gwas_data """ varlist = [] buildstr = 'b37' if build.lower() == 'hg38': buildstr = 'b38' chromlist = list(gwas_data[chromcol]) poslist = list(gwas_data[poscol]) reflist = [x.upper() for x in list(gwas_data[refcol])] altlist = [x.upper() for x in list(gwas_data[altcol])] for i in np.arange(gwas_data.shape[0]): chrom = chromlist[i] pos = poslist[i] ref = reflist[i] alt = altlist[i] varlist.append('_'.join([str(chrom),str(pos),ref,alt,buildstr])) gwas_data[default_snpname] = varlist return gwas_data def verifyStdSNPs(stdsnplist, regiontxt, build): # Ensure valid region: chrom, startbp, endbp = parseRegionText(regiontxt, build) chrom = str(chrom).replace('23',"X") # Load GTEx variant lookup table for region indicated db = client.GTEx_V7 if build.lower() in ["hg38", "grch38"]: db = client.GTEx_V8 collection = db['variant_table'] variants_query = collection.find( { '$and': [ { 'chr': int(chrom.replace('X','23')) }, { 'variant_pos': { '$gte': int(startbp), '$lte': int(endbp) } } ]} ) variants_list = list(variants_query) variants_df =
pd.DataFrame(variants_list)
pandas.DataFrame
# flake8: noqa: F841 import tempfile from pathlib import Path from typing import List from pandas._typing import Scalar, ArrayLike import pandas as pd import numpy as np from pandas.core.window import ExponentialMovingWindow def test_types_init() -> None: pd.Series(1) pd.Series((1, 2, 3)) pd.Series(np.array([1, 2, 3])) pd.Series(data=[1, 2, 3, 4], name="series") pd.Series(data=[1, 2, 3, 4], dtype=np.int8) pd.Series(data={'row1': [1, 2], 'row2': [3, 4]}) pd.Series(data=[1, 2, 3, 4], index=[4, 3, 2, 1], copy=True) def test_types_any() -> None: res1: bool = pd.Series([False, False]).any() res2: bool = pd.Series([False, False]).any(bool_only=False) res3: bool = pd.Series([np.nan]).any(skipna=False) def test_types_all() -> None: res1: bool = pd.Series([False, False]).all() res2: bool = pd.Series([False, False]).all(bool_only=False) res3: bool = pd.Series([np.nan]).all(skipna=False) def test_types_csv() -> None: s = pd.Series(data=[1, 2, 3]) csv_df: str = s.to_csv() with tempfile.NamedTemporaryFile() as file: s.to_csv(file.name) s2: pd.DataFrame = pd.read_csv(file.name) with tempfile.NamedTemporaryFile() as file: s.to_csv(Path(file.name)) s3: pd.DataFrame = pd.read_csv(Path(file.name)) # This keyword was added in 1.1.0 https://pandas.pydata.org/docs/whatsnew/v1.1.0.html with tempfile.NamedTemporaryFile() as file: s.to_csv(file.name, errors='replace') s4: pd.DataFrame = pd.read_csv(file.name) def test_types_copy() -> None: s = pd.Series(data=[1, 2, 3, 4]) s2: pd.Series = s.copy() def test_types_select() -> None: s = pd.Series(data={'row1': 1, 'row2': 2}) s[0] s[1:] def test_types_iloc_iat() -> None: s = pd.Series(data={'row1': 1, 'row2': 2}) s2 = pd.Series(data=[1, 2]) s.loc['row1'] s.iat[0] s2.loc[0] s2.iat[0] def test_types_loc_at() -> None: s = pd.Series(data={'row1': 1, 'row2': 2}) s2 = pd.Series(data=[1, 2]) s.loc['row1'] s.at['row1'] s2.loc[1] s2.at[1] def test_types_boolean_indexing() -> None: s = pd.Series([0, 1, 2]) s[s > 1] s[s] def test_types_df_to_df_comparison() -> None: s = pd.Series(data={'col1': [1, 2]}) s2 = pd.Series(data={'col1': [3, 2]}) res_gt: pd.Series = s > s2 res_ge: pd.Series = s >= s2 res_lt: pd.Series = s < s2 res_le: pd.Series = s <= s2 res_e: pd.Series = s == s2 def test_types_head_tail() -> None: s = pd.Series([0, 1, 2]) s.head(1) s.tail(1) def test_types_sample() -> None: s = pd.Series([0, 1, 2]) s.sample(frac=0.5) s.sample(n=1) def test_types_nlargest_nsmallest() -> None: s = pd.Series([0, 1, 2]) s.nlargest(1) s.nlargest(1, 'first') s.nsmallest(1, 'last') s.nsmallest(1, 'all') def test_types_filter() -> None: s = pd.Series(data=[1, 2, 3, 4], index=['cow', 'coal', 'coalesce', '']) s.filter(items=['cow']) s.filter(regex='co.*') s.filter(like='al') def test_types_setting() -> None: s = pd.Series([0, 1, 2]) s[3] = 4 s[s == 1] = 5 s[:] = 3 def test_types_drop() -> None: s = pd.Series([0, 1, 2]) res: pd.Series = s.drop(0) res2: pd.Series = s.drop([0, 1]) res3: pd.Series = s.drop(0, axis=0) res4: None = s.drop([0, 1], inplace=True, errors='raise') res5: None = s.drop([0, 1], inplace=True, errors='ignore') def test_types_drop_multilevel() -> None: index = pd.MultiIndex(levels=[['top', 'bottom'], ['first', 'second', 'third']], codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) s = pd.Series(data=[1, 2, 3, 4, 5, 6], index=index) res: pd.Series = s.drop(labels='first', level=1) def test_types_dropna() -> None: s = pd.Series([1, np.nan, np.nan]) res: pd.Series = s.dropna() res2: None = s.dropna(axis=0, inplace=True) def test_types_fillna() -> None: s = pd.Series([1, np.nan, np.nan, 3]) res: pd.Series = s.fillna(0) res2: pd.Series = s.fillna(0, axis='index') res3: pd.Series = s.fillna(method='backfill', axis=0) res4: None = s.fillna(method='bfill', inplace=True) res5: pd.Series = s.fillna(method='pad') res6: pd.Series = s.fillna(method='ffill', limit=1) def test_types_sort_index() -> None: s = pd.Series([1, 2, 3], index=[2, 3, 1]) res: pd.Series = s.sort_index() res2: None = s.sort_index(ascending=False, inplace=True) res3: pd.Series = s.sort_index(kind="mergesort") # This was added in 1.1.0 https://pandas.pydata.org/docs/whatsnew/v1.1.0.html def test_types_sort_index_with_key() -> None: s = pd.Series([1, 2, 3], index=['a', 'B', 'c']) res: pd.Series = s.sort_index(key=lambda k: k.str.lower()) def test_types_sort_values() -> None: s = pd.Series([4, 2, 1, 3]) res: pd.Series = s.sort_values(0) res2: pd.Series = s.sort_values(ascending=False) res3: None = s.sort_values(inplace=True, kind='quicksort') res4: pd.Series = s.sort_values(na_position='last') res5: pd.Series = s.sort_values(ignore_index=True) # This was added in 1.1.0 https://pandas.pydata.org/docs/whatsnew/v1.1.0.html def test_types_sort_values_with_key() -> None: s = pd.Series([1, 2, 3], index=[2, 3, 1]) res: pd.Series = s.sort_values(key=lambda k: -k) def test_types_shift() -> None: s = pd.Series([1, 2, 3]) s.shift() s.shift(axis=0, periods=1) s.shift(-1, fill_value=0) def test_types_rank() -> None: s = pd.Series([1, 1, 2, 5, 6, np.nan, 'milion']) s.rank() s.rank(axis=0, na_option='bottom') s.rank(method="min", pct=True) s.rank(method="dense", ascending=True) s.rank(method="first", numeric_only=True) def test_types_mean() -> None: s = pd.Series([1, 2, 3, np.nan]) f1: float = s.mean() s1: pd.Series = s.mean(axis=0, level=0) f2: float = s.mean(skipna=False) f3: float = s.mean(numeric_only=False) def test_types_median() -> None: s = pd.Series([1, 2, 3, np.nan]) f1: float = s.median() s1: pd.Series = s.median(axis=0, level=0) f2: float = s.median(skipna=False) f3: float = s.median(numeric_only=False) def test_types_sum() -> None: s = pd.Series([1, 2, 3, np.nan]) s.sum() s.sum(axis=0, level=0) s.sum(skipna=False) s.sum(numeric_only=False) s.sum(min_count=4) def test_types_cumsum() -> None: s = pd.Series([1, 2, 3, np.nan]) s.cumsum() s.cumsum(axis=0) s.cumsum(skipna=False) def test_types_min() -> None: s =
pd.Series([1, 2, 3, np.nan])
pandas.Series
# pice_data_db.py import datetime import os import pandas as pd import requests_cache import sqlalchemy import yfinance as yf from requests.api import get from sqlalchemy.sql.expression import table # setting some global variables equities_conn_string = str(os.environ["POSTGRES_DB_EQUITIES"]) equitiies_pricedata_conn_string = str(os.environ["POSTGRES_DB_EQUITIES_PRICEDATA"]) equities_engine = sqlalchemy.create_engine(equities_conn_string) equities_pricedata_engine = sqlalchemy.create_engine(equitiies_pricedata_conn_string) session = requests_cache.CachedSession("yfinance.cache") def load_data_from_csv(): # load .csv data for the NASDAQ exchange nasdaq_data =
pd.read_csv("nasdaq_companies.csv")
pandas.read_csv
from src.orm_model import Tweet, Author import pandas as pd from sklearn.linear_model import LogisticRegression # import pickle def get_most_likely_author(tweet_body, spacy_model): authors = Author.query.all() features = pd.DataFrame() target = pd.Series() for a in authors: for t in a.tweets: if not len(features) > 0: features = pd.DataFrame(t.vect).T else: features = pd.concat([pd.DataFrame(t.vect).T, features]) target = target.append(
pd.Series([a.name])
pandas.Series
import os os.environ["CUDA_VISIBLE_DEVICES"] = "3" import pandas as pd import numpy as np from tqdm import tqdm import time import logging from sklearn.model_selection import StratifiedKFold from keras_bert import load_trained_model_from_checkpoint, Tokenizer from keras.optimizers import Adam import pandas as pd from sklearn.metrics import mean_absolute_error, accuracy_score, f1_score from keras.layers import * from keras.models import Model import keras.backend as K from keras.callbacks import Callback, EarlyStopping, ModelCheckpoint from keras.activations import softmax learning_rate = 5e-5 min_learning_rate = 1e-5 batch_size =32 val_batch_size = 512 pred_batch_size = 512 percent_of_epoch = 0.25 * 0.05 num_epochs = 7 //percent_of_epoch patience = 4 nfolds=5 model_path= "./model" bert_path = "/home/mhxia/workspace/BDCI/chinese_wwm_ext_L-12_H-768_A-12/" config_path = bert_path + 'bert_config.json' checkpoint_path = bert_path + 'bert_model.ckpt' dict_path = bert_path + 'vocab.txt' MAX_LEN = 64 token_dict = {} with open(dict_path, 'r', encoding='utf-8') as reader: for line in reader: token = line.strip() token_dict[token] = len(token_dict) tokenizer = Tokenizer(token_dict) train= pd.read_csv('./data/train_set.csv') test=pd.read_csv('./data/dev_set.csv',sep='\t') train_achievements = train['question1'].values train_requirements = train['question2'].values labels = train['label'].values def label_process(x): if x==0: return [1,0] else: return [0,1] train['label']=train['label'].apply(label_process) labels_cat=list(train['label'].values) labels_cat=np.array(labels_cat) test_achievements = test['question1'].values test_requirements = test['question2'].values print(train.shape,test.shape) def tokenize_data(X1, X2): T,T_ = [], [] for i, _ in enumerate(X1): achievements = X1[i] requirements = X2[i] t, t_ = tokenizer.encode(first=achievements, second=requirements, max_len=MAX_LEN) T.append(t) T_.append(t_) T = np.array(T) T_ = np.array(T_) return T, T_ def apply_multiple(input_, layers): if not len(layers) > 1: raise ValueError('Layers list should contain more than 1 layer') else: agg_ = [] for layer in layers: agg_.append(layer(input_)) out_ = Concatenate()(agg_) return out_ def unchanged_shape(input_shape): return input_shape def substract(input_1, input_2): neg_input_2 = Lambda(lambda x: -x, output_shape=unchanged_shape)(input_2) out_ = Add()([input_1, neg_input_2]) return out_ def submult(input_1, input_2): mult = Multiply()([input_1, input_2]) sub = substract(input_1, input_2) out_ = Concatenate()([sub, mult]) return out_ def soft_attention_alignment(input_1, input_2): attention = Dot(axes=-1)([input_1, input_2]) w_att_1 = Lambda(lambda x: softmax(x, axis=1), ##soft max to each column output_shape=unchanged_shape)(attention) w_att_2 = Permute((2, 1))(Lambda(lambda x: softmax(x, axis=2), ## axis =2 soft max to each row output_shape=unchanged_shape)(attention)) in1_aligned = Dot(axes=1)([w_att_1, input_1]) in2_aligned = Dot(axes=1)([w_att_2, input_2]) return in1_aligned, in2_aligned def focal_loss(y_true, y_pred, alpha=0.25, gamma=2.): y_pred = K.clip(y_pred, 1e-8, 1 - 1e-8) return - alpha * y_true * K.log(y_pred) * (1 - y_pred)**gamma\ - (1 - alpha) * (1 - y_true) * K.log(1 - y_pred) * y_pred**gamma def get_model(): bert_model = load_trained_model_from_checkpoint(config_path, checkpoint_path) # for l in bert_model.layers: # l.trainable = True T1 = Input(shape=(None,)) T2 = Input(shape=(None,)) tp1 = Lambda(lambda x: K.zeros_like(x))(T1) tp2 = Lambda(lambda x: K.zeros_like(x))(T2) x1 = bert_model([T1, tp1]) x2 = bert_model([T2, tp2]) X1 = Lambda(lambda x: x[:, 0:-1])(x1) X2 = Lambda(lambda x: x[:, 0:-1])(x2) encode = Bidirectional(LSTM(200, return_sequences=True)) q1_encoded = encode(X1) q2_encoded = encode(X2) q1_aligned, q2_aligned = soft_attention_alignment(q1_encoded, q2_encoded) q1_combined = Concatenate()([q1_encoded, q2_aligned, submult(q1_encoded, q2_aligned)]) q2_combined = Concatenate()([q2_encoded, q1_aligned, submult(q2_encoded, q1_aligned)]) compose = Bidirectional(GRU(200, return_sequences=True)) q1_compare = compose(q1_combined) q2_compare = compose(q2_combined) # Aggregate q1_rep = apply_multiple(q1_compare, [GlobalAvgPool1D(), GlobalMaxPool1D()]) q2_rep = apply_multiple(q2_compare, [GlobalAvgPool1D(), GlobalMaxPool1D()]) # Classifier merged = Concatenate()([q1_rep, q2_rep]) dense = BatchNormalization()(merged) dense = Dense(30, activation='selu')(dense) dense = BatchNormalization()(dense) output = Dense(2, activation='softmax')(dense) model = Model([T1, T2], output) model.compile( # loss='categorical_crossentropy', loss=focal_loss, optimizer=Adam(1e-3), # 用足够小的学习率 metrics=['accuracy'] ) model.summary() return model skf = StratifiedKFold(n_splits=nfolds, shuffle=True, random_state=42) oof_train = np.zeros((len(train), 2), dtype=np.float32) oof_test = np.zeros((len(test), 2), dtype=np.float32) for fold, (train_index, valid_index) in enumerate(skf.split(train_achievements, labels)): x1 = train_achievements[train_index] x2 = train_requirements[train_index] x1_token, x2_token = tokenize_data(x1, x2) y = labels_cat[train_index] val_x1 = train_achievements[valid_index] val_x2 = train_requirements[valid_index] val_x1_token, val_x2_token = tokenize_data(val_x1, val_x2) val_y = labels_cat[valid_index] early_stopping = EarlyStopping(monitor='val_accuracy', patience=patience, verbose=1) model_checkpoint = ModelCheckpoint(model_path+"model_%s.w"%fold, monitor='val_accuracy', verbose=1,save_best_only=True, save_weights_only=False, mode='auto') model = get_model() model.fit(x=[x1_token, x2_token], y=y, validation_data= ([val_x1_token, val_x2_token],val_y), batch_size=batch_size, epochs=num_epochs, # steps_per_epoch= (len(x1)+ batch_size -1) // batch_size * percent_of_epoch, # validation_steps = (len(val_x1)+ batch_size -1) // batch_size * percent_of_epoch , verbose=1, callbacks=[early_stopping, model_checkpoint] ) # model.load_weights('bert{}.w'.format(fold)) test_x1, test_x2 = tokenize_data(test_achievements, test_requirements) oof_test += model.predict((test_x1, test_x2), batch_size=pred_batch_size) K.clear_session() oof_test /= nfolds test=pd.DataFrame(oof_test) test.to_csv('test_pred.csv',index=False) test.head(),test.shape train=pd.DataFrame(oof_train) train.to_csv('train_pred.csv',index=False) pred=pd.read_csv('test_pred.csv').values pred=pred.argmax(axis=1) sub=
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for `gffpandas` package.""" # standard library imports import shutil import time from pathlib import Path # first-party imports import gffpandas.gffpandas as gff3pd # third-party imports import pandas as pd # module imports from . import print_docstring # global constants REFSEQ_URL = ( "https://ftp.ncbi.nih.gov/genomes/refseq/vertebrate_mammalian" + "/Homo_sapiens/annotation_releases/109.20191205/GCF_000001405.39_GRCh38.p13/" ) HUMAN_GFF = "GCF_000001405.39_GRCh38.p13_genomic.gff" TESTFILELIST = ["test_file.gff"] written_df = pd.DataFrame( [ [ "NC_016810.1", "RefSeq", "region", 1, 4000, ".", "+", ".", "Dbxref=taxon:216597;ID=id0;gbkey=Src;genome=genomic;mol_type=" "genomic DNA;serovar=Typhimurium;strain=SL1344", ], [ "NC_016810.1", "RefSeq", "gene", 1, 20, ".", "+", ".", "ID=gene1;Name=thrL;gbkey=Gene;gene=thrL;locus_tag=SL1344_0001", ], [ "NC_016810.1", "RefSeq", "CDS", 13, 235, ".", "+", "0", "Dbxref=UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=" "cds0;Name=YP_005179941.1;Parent=gene1;gbkey=CDS;product=thr operon" " leader peptide;protein_id=YP_005179941.1;transl_table=11", ], [ "NC_016810.1", "RefSeq", "gene", 1, 20, ".", "+", ".", "ID=gene2;Name=thrA;gbkey=Gene;gene=thrA;locus_tag=SL1344_0002", ], [ "NC_016810.1", "RefSeq", "CDS", 341, 523, ".", "+", "0", "Dbxref=UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=" "cds0;Name=YP_005179941.1;Parent=gene2;gbkey=CDS;product=thr operon" " leader peptide;protein_id=YP_005179941.1;transl_table=11", ], [ "NC_016810.1", "RefSeq", "gene", 1, 600, ".", "-", ".", "ID=gene3;Name=thrX;gbkey=Gene;gene=thrX;locus_tag=SL1344_0003", ], [ "NC_016810.1", "RefSeq", "CDS", 21, 345, ".", "-", "0", "Dbxref=UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=" "cds0;Name=YP_005179941.1;Parent=gene3;gbkey=CDS;product=thr operon" " leader peptide;protein_id=YP_005179941.1;transl_table=11", ], [ "NC_016810.1", "RefSeq", "gene", 41, 255, ".", "+", ".", "ID=gene4;Name=thrB;gbkey=Gene;gene=thrB;locus_tag=SL1344_0004", ], [ "NC_016810.1", "RefSeq", "CDS", 61, 195, ".", "+", "0", "Dbxref=UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=" "cds0;Name=YP_005179941.1;Parent=gene4;gbkey=CDS;product=thr operon" " leader peptide;protein_id=YP_005179941.1;transl_table=11", ], [ "NC_016810.1", "RefSeq", "gene", 170, 546, ".", "+", ".", "ID=gene5;Name=thrC;gbkey=Gene;gene=thrC;locus_tag=SL1344_0005", ], [ "NC_016810.1", "RefSeq", "CDS", 34, 335, ".", "+", "0", "Dbxref=UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=" "cds0;Name=YP_005179941.1;Parent=gene5;gbkey=CDS;product=thr operon" " leader peptide;protein_id=YP_005179941.1;transl_table=11", ], ], columns=[ "seq_id", "source", "type", "start", "end", "score", "strand", "phase", "attributes", ], ) written_header = "##gff-version 3\n" "##sequence-region NC_016810.1 1 20\n" written_csv = ( "seq_id,source,type,start,end,score,strand,phase,attributes\n" "NC_016810.1,RefSeq,region,1,4000,.,+,.,Dbxref=taxon:216597;ID=" "id0;gbkey=Src;genome=genomic;mol_type=genomic DNA;serovar=" "Typhimurium;strain=SL1344\n" "NC_016810.1,RefSeq,gene,1,20,.,+,.,ID=gene1;Name=thrL;gbkey=" "Gene;gene=thrL;locus_tag=SL1344_0001\n" "NC_016810.1,RefSeq,CDS,13,235,.,+,0,Dbxref=UniProtKB%252FTr" "EMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=cds0;Name=YP_0051799" "41.1;Parent=gene1;gbkey=CDS;product=thr operon leader peptide;" "protein_id=YP_005179941.1;transl_table=11\n" "NC_016810.1,RefSeq,gene,1,20,.,+,.,ID=gene2;Name=thrA;gbkey=" "Gene;gene=thrA;locus_tag=SL1344_0002\n" "NC_016810.1,RefSeq,CDS,341,523,.,+,0,Dbxref=UniProtKB%252FTr" "EMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=cds0;Name=YP_0051799" "41.1;Parent=gene2;gbkey=CDS;product=thr operon leader peptide;" "protein_id=YP_005179941.1;transl_table=11\n" "NC_016810.1,RefSeq,gene,1,600,.,-,.,ID=gene3;Name=thrX;gbkey=" "Gene;gene=thrX;locus_tag=SL1344_0003\n" "NC_016810.1,RefSeq,CDS,21,345,.,-,0,Dbxref=UniProtKB%252FTr" "EMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=cds0;Name=YP_0051799" "41.1;Parent=gene3;gbkey=CDS;product=thr operon leader peptide;" "protein_id=YP_005179941.1;transl_table=11\n" "NC_016810.1,RefSeq,gene,41,255,.,+,.,ID=gene4;Name=thrB;gbkey=" "Gene;gene=thrB;locus_tag=SL1344_0004\n" "NC_016810.1,RefSeq,CDS,61,195,.,+,0,Dbxref=UniProtKB%252FTr" "EMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=cds0;Name=YP_0051799" "41.1;Parent=gene4;gbkey=CDS;product=thr operon leader peptide;" "protein_id=YP_005179941.1;transl_table=11\n" "NC_016810.1,RefSeq,gene,170,546,.,+,.,ID=gene5;Name=thrC;gbkey" "=Gene;gene=thrC;locus_tag=SL1344_0005\n" "NC_016810.1,RefSeq,CDS,34,335,.,+,0,Dbxref=UniProtKB%252FTr" "EMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=cds0;Name=YP_0051799" "41.1;Parent=gene5;gbkey=CDS;product=thr operon leader peptide;" "protein_id=YP_005179941.1;transl_table=11\n" ) written_tsv = ( "seq_id\tsource\ttype\tstart\tend\tscore\tstrand\tphase\t" "attributes\n" "NC_016810.1\tRefSeq\tregion\t1\t4000\t.\t+\t.\tDbxref=taxon:21" "6597;ID=id0;gbkey=Src;genome=genomic;mol_type=genomic DNA;" "serovar=Typhimurium;strain=SL1344\n" "NC_016810.1\tRefSeq\tgene\t1\t20\t.\t+\t.\tID=gene1;Name=thrL;" "gbkey=Gene;gene=thrL;locus_tag=SL1344_0001\n" "NC_016810.1\tRefSeq\tCDS\t13\t235\t.\t+\t0\tDbxref=UniProtKB%2" "52FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=cds0;Name=YP_0051" "79941.1;Parent=gene1;gbkey=CDS;product=thr operon leader " "peptide;protein_id=YP_005179941.1;transl_table=11\n" "NC_016810.1\tRefSeq\tgene\t1\t20\t.\t+\t.\tID=gene2;Name=thrA;" "gbkey=Gene;gene=thrA;locus_tag=SL1344_0002\n" "NC_016810.1\tRefSeq\tCDS\t341\t523\t.\t+\t0\tDbxref=UniProtKB%" "252FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=cds0;Name=YP_005" "179941.1;Parent=gene2;gbkey=CDS;product=thr operon leader " "peptide;protein_id=YP_005179941.1;transl_table=11\n" "NC_016810.1\tRefSeq\tgene\t1\t600\t.\t-\t.\tID=gene3;Name=thrX" ";gbkey=Gene;gene=thrX;locus_tag=SL1344_0003\n" "NC_016810.1\tRefSeq\tCDS\t21\t345\t.\t-\t0\tDbxref=UniProtKB%2" "52FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=cds0;Name=YP_0051" "79941.1;Parent=gene3;gbkey=CDS;product=thr operon leader " "peptide;protein_id=YP_005179941.1;transl_table=11\n" "NC_016810.1\tRefSeq\tgene\t41\t255\t.\t+\t.\tID=gene4;Name=" "thrB;gbkey=Gene;gene=thrB;locus_tag=SL1344_0004\n" "NC_016810.1\tRefSeq\tCDS\t61\t195\t.\t+\t0\tDbxref=UniProtKB%2" "52FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=cds0;Name=YP_0051" "79941.1;Parent=gene4;gbkey=CDS;product=thr operon leader " "peptide;protein_id=YP_005179941.1;transl_table=11\n" "NC_016810.1\tRefSeq\tgene\t170\t546\t.\t+\t.\tID=gene5;Name=" "thrC;gbkey=Gene;gene=thrC;locus_tag=SL1344_0005\n" "NC_016810.1\tRefSeq\tCDS\t34\t335\t.\t+\t0\tDbxref=UniProt" "KB%252FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=cds0;Name=" "YP_005179941.1;Parent=gene5;gbkey=CDS;product=thr operon " "leader peptide;protein_id=YP_005179941.1;transl_table=11\n" ) written_gff = ( "##gff-version 3\n" "##sequence-region NC_016810.1 1 20\n" "NC_016810.1 RefSeq region 1 4000 . +" " . Dbxref=taxon:216597;ID=id0;gbkey=Src;genome=ge" "nomic;mol_type=genomic DNA;serovar=Typhimurium;strain=SL1344\n" "NC_016810.1 RefSeq gene 1 20 . +" " . ID=gene1;Name=thrL;gbkey=Gene;gene=thrL;locus_" "tag=SL1344_0001\n" "NC_016810.1 RefSeq CDS 13 235 . +" " 0 Dbxref=UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:Y" "P_005179941.1;ID=cds0;Name=YP_005179941.1;Parent=gene1;gbkey=C" "DS;product=thr operon leader peptide;protein_id=YP_005179941.1" ";transl_table=11\n" "NC_016810.1 RefSeq gene 1 20 . +" " . ID=gene2;Name=thrA;gbkey=Gene;gene=thrA;locus_" "tag=SL1344_0002\n" "NC_016810.1 RefSeq CDS 341 523 . +" " 0 Dbxref=UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:Y" "P_005179941.1;ID=cds0;Name=YP_005179941.1;Parent=gene2;gbkey=C" "DS;product=thr operon leader peptide;protein_id=YP_005179941.1" ";transl_table=11\n" "NC_016810.1 RefSeq gene 1 600 . -" " . ID=gene3;Name=thrX;gbkey=Gene;gene=thrX;locus_" "tag=SL1344_0003\n" "NC_016810.1 RefSeq CDS 21 345 . -" " 0 Dbxref=UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:Y" "P_005179941.1;ID=cds0;Name=YP_005179941.1;Parent=gene3;gbkey=C" "DS;product=thr operon leader peptide;protein_id=YP_005179941.1" ";transl_table=11\n" "NC_016810.1 RefSeq gene 41 255 . +" " . ID=gene4;Name=thrB;gbkey=Gene;gene=thrB;locus_" "tag=SL1344_0004\n" "NC_016810.1 RefSeq CDS 61 195 . +" " 0 Dbxref=UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:Y" "P_005179941.1;ID=cds0;Name=YP_005179941.1;Parent=gene4;gbkey=C" "DS;product=thr operon leader peptide;protein_id=YP_005179941.1" ";transl_table=11\n" "NC_016810.1 RefSeq gene 170 546 . +" " . ID=gene5;Name=thrC;gbkey=Gene;gene=thrC;locus_" "tag=SL1344_0005\n" "NC_016810.1 RefSeq CDS 34 335 . +" " 0 Dbxref=UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:Y" "P_005179941.1;ID=cds0;Name=YP_005179941.1;Parent=gene5;gbkey=C" "DS;product=thr operon leader peptide;protein_id=YP_005179941.1" ";transl_table=11\n" ) written_filtered_length = pd.DataFrame( [ [ "NC_016810.1", "RefSeq", "gene", 1, 20, ".", "+", ".", "ID=gene1;Name=thrL;gbkey=Gene;gene=thrL;locus_tag=SL1344_0001", ], [ "NC_016810.1", "RefSeq", "CDS", 13, 235, ".", "+", "0", "Dbxref=UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=cds0;Name" "=YP_005179941.1;Parent=gene1;gbkey=CDS;product=thr operon leader peptide" ";protein_id=YP_005179941.1;transl_table=11", ], [ "NC_016810.1", "RefSeq", "gene", 1, 20, ".", "+", ".", "ID=gene2;Name=thrA;gbkey=Gene;gene=thrA;locus_tag=SL1344_0002", ], [ "NC_016810.1", "RefSeq", "CDS", 341, 523, ".", "+", "0", "Dbxref=UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=cds0;Name" "=YP_005179941.1;Parent=gene2;gbkey=CDS;product=thr operon leader peptide" ";protein_id=YP_005179941.1;transl_table=11", ], [ "NC_016810.1", "RefSeq", "gene", 41, 255, ".", "+", ".", "ID=gene4;Name=thrB;gbkey=Gene;gene=thrB;locus_tag=SL1344_0004", ], [ "NC_016810.1", "RefSeq", "CDS", 61, 195, ".", "+", "0", "Dbxref=UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=cds0;Name" "=YP_005179941.1;Parent=gene4;gbkey=CDS;product=thr operon leader peptide" ";protein_id=YP_005179941.1;transl_table=11", ], ], columns=[ "seq_id", "source", "type", "start", "end", "score", "strand", "phase", "attributes", ], index=[1, 2, 3, 4, 7, 8], ) compare_get_feature_by_attribute = pd.DataFrame( [ [ "NC_016810.1", "RefSeq", "gene", 1, 20, ".", "+", ".", "ID=gene1;Name=thrL;gbkey=Gene;gene=thrL;locus_tag=SL1344_0001", ], [ "NC_016810.1", "RefSeq", "gene", 1, 20, ".", "+", ".", "ID=gene2;Name=thrA;gbkey=Gene;gene=thrA;locus_tag=SL1344_0002", ], [ "NC_016810.1", "RefSeq", "gene", 1, 600, ".", "-", ".", "ID=gene3;Name=thrX;gbkey=Gene;gene=thrX;locus_tag=SL1344_0003", ], [ "NC_016810.1", "RefSeq", "gene", 41, 255, ".", "+", ".", "ID=gene4;Name=thrB;gbkey=Gene;gene=thrB;locus_tag=SL1344_0004", ], [ "NC_016810.1", "RefSeq", "gene", 170, 546, ".", "+", ".", "ID=gene5;Name=thrC;gbkey=Gene;gene=thrC;locus_tag=SL1344_0005", ], ], columns=[ "seq_id", "source", "type", "start", "end", "score", "strand", "phase", "attributes", ], index=[1, 3, 5, 7, 9], ) compare_get_feature_by_attribute2 = pd.DataFrame( [ [ "NC_016810.1", "RefSeq", "CDS", 341, 523, ".", "+", "0", "Dbxref=UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=cds0;Name" "=YP_005179941.1;Parent=gene2;gbkey=CDS;product=thr operon leader peptide" ";protein_id=YP_005179941.1;transl_table=11", ], [ "NC_016810.1", "RefSeq", "CDS", 21, 345, ".", "-", "0", "Dbxref=UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=" "cds0;Name=YP_005179941.1;Parent=gene3;gbkey=CDS;product=thr operon" " leader peptide;protein_id=YP_005179941.1;transl_table=11", ], [ "NC_016810.1", "RefSeq", "CDS", 61, 195, ".", "+", "0", "Dbxref=UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=" "cds0;Name=YP_005179941.1;Parent=gene4;gbkey=CDS;product=thr operon" " leader peptide;protein_id=YP_005179941.1;transl_table=11", ], ], columns=[ "seq_id", "source", "type", "start", "end", "score", "strand", "phase", "attributes", ], index=[4, 6, 8], ) written_attribute_df = pd.DataFrame( [ [ "NC_016810.1", "RefSeq", "region", 1, 4000, ".", "+", ".", "Dbxref=taxon:216597;ID=id0;gbkey=Src;genome=genomic;mol_type=genomic" " DNA;serovar=Typhimurium;strain=SL1344", "taxon:216597", "id0", None, None, "Src", None, "genomic", None, "genomic DNA", None, None, "Typhimurium", "SL1344", None, ], [ "NC_016810.1", "RefSeq", "gene", 1, 20, ".", "+", ".", "ID=gene1;Name=thrL;gbkey=Gene;gene=thrL;locus_tag=SL1344_0001", None, "gene1", "thrL", None, "Gene", "thrL", None, "SL1344_0001", None, None, None, None, None, None, ], [ "NC_016810.1", "RefSeq", "CDS", 13, 235, ".", "+", "0", "Dbxref=UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=cds0;" "Name=YP_005179941.1;Parent=gene1;gbkey=CDS;product=thr operon leader" " peptide;protein_id=YP_005179941.1;transl_table=11", "UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1", "cds0", "YP_005179941.1", "gene1", "CDS", None, None, None, None, "thr operon leader peptide", "YP_005179941.1", None, None, "11", ], [ "NC_016810.1", "RefSeq", "gene", 1, 20, ".", "+", ".", "ID=gene2;Name=thrA;gbkey=Gene;gene=thrA;locus_tag=SL1344_0002", None, "gene2", "thrA", None, "Gene", "thrA", None, "SL1344_0002", None, None, None, None, None, None, ], [ "NC_016810.1", "RefSeq", "CDS", 341, 523, ".", "+", "0", "Dbxref=UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=cds0;" "Name=YP_005179941.1;Parent=gene2;gbkey=CDS;product=thr operon leader" " peptide;protein_id=YP_005179941.1;transl_table=11", "UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1", "cds0", "YP_005179941.1", "gene2", "CDS", None, None, None, None, "thr operon leader peptide", "YP_005179941.1", None, None, "11", ], [ "NC_016810.1", "RefSeq", "gene", 1, 600, ".", "-", ".", "ID=gene3;Name=thrX;gbkey=Gene;gene=thrX;locus_tag=SL1344_0003", None, "gene3", "thrX", None, "Gene", "thrX", None, "SL1344_0003", None, None, None, None, None, None, ], [ "NC_016810.1", "RefSeq", "CDS", 21, 345, ".", "-", "0", "Dbxref=UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=cds0;" "Name=YP_005179941.1;Parent=gene3;gbkey=CDS;product=thr operon leader" " peptide;protein_id=YP_005179941.1;transl_table=11", "UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1", "cds0", "YP_005179941.1", "gene3", "CDS", None, None, None, None, "thr operon leader peptide", "YP_005179941.1", None, None, "11", ], [ "NC_016810.1", "RefSeq", "gene", 41, 255, ".", "+", ".", "ID=gene4;Name=thrB;gbkey=Gene;gene=thrB;locus_tag=SL1344_0004", None, "gene4", "thrB", None, "Gene", "thrB", None, "SL1344_0004", None, None, None, None, None, None, ], [ "NC_016810.1", "RefSeq", "CDS", 61, 195, ".", "+", "0", "Dbxref=UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=cds0;" "Name=YP_005179941.1;Parent=gene4;gbkey=CDS;product=thr operon leader" " peptide;protein_id=YP_005179941.1;transl_table=11", "UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1", "cds0", "YP_005179941.1", "gene4", "CDS", None, None, None, None, "thr operon leader peptide", "YP_005179941.1", None, None, "11", ], [ "NC_016810.1", "RefSeq", "gene", 170, 546, ".", "+", ".", "ID=gene5;Name=thrC;gbkey=Gene;gene=thrC;locus_tag=SL1344_0005", None, "gene5", "thrC", None, "Gene", "thrC", None, "SL1344_0005", None, None, None, None, None, None, ], [ "NC_016810.1", "RefSeq", "CDS", 34, 335, ".", "+", "0", "Dbxref=UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=cds0;" "Name=YP_005179941.1;Parent=gene5;gbkey=CDS;product=thr operon leader" " peptide;protein_id=YP_005179941.1;transl_table=11", "UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1", "cds0", "YP_005179941.1", "gene5", "CDS", None, None, None, None, "thr operon leader peptide", "YP_005179941.1", None, None, "11", ], ], columns=[ "seq_id", "source", "type", "start", "end", "score", "strand", "phase", "attributes", "Dbxref", "ID", "Name", "Parent", "gbkey", "gene", "genome", "locus_tag", "mol_type", "product", "protein_id", "serovar", "strain", "transl_table", ], ) strand_counts = pd.value_counts(written_df["strand"]).to_dict() type_counts = pd.value_counts(written_df["type"]).to_dict() compare_stats_dic = { "Maximal_bp_length": 599, "Minimal_bp_length": 19, "Counted_strands": strand_counts, "Counted_feature_types": type_counts, } df_empty = pd.DataFrame( {}, columns=[ "seq_id", "source", "type", "start", "end", "score", "strand", "phase", "attributes", ], index=[], ) redundant_entry = pd.DataFrame( [ [ "NC_016810.1", "RefSeq", "gene", 1, 20, ".", "+", ".", "ID=gene2;Name=thrA;gbkey=Gene;gene=thrA;locus_tag=SL1344_0002", ], ], columns=[ "seq_id", "source", "type", "start", "end", "score", "strand", "phase", "attributes", ], index=[3], ) compare_filter_feature_df = pd.DataFrame( [ [ "NC_016810.1", "RefSeq", "gene", 1, 20, ".", "+", ".", "ID=gene1;Name=thrL;gbkey=Gene;gene=thrL;locus_tag=SL1344_0001", ], [ "NC_016810.1", "RefSeq", "gene", 1, 20, ".", "+", ".", "ID=gene2;Name=thrA;gbkey=Gene;gene=thrA;locus_tag=SL1344_0002", ], [ "NC_016810.1", "RefSeq", "gene", 1, 600, ".", "-", ".", "ID=gene3;Name=thrX;gbkey=Gene;gene=thrX;locus_tag=SL1344_0003", ], [ "NC_016810.1", "RefSeq", "gene", 41, 255, ".", "+", ".", "ID=gene4;Name=thrB;gbkey=Gene;gene=thrB;locus_tag=SL1344_0004", ], [ "NC_016810.1", "RefSeq", "gene", 170, 546, ".", "+", ".", "ID=gene5;Name=thrC;gbkey=Gene;gene=thrC;locus_tag=SL1344_0005", ], ], columns=[ "seq_id", "source", "type", "start", "end", "score", "strand", "phase", "attributes", ], index=[1, 3, 5, 7, 9], ) compare_overlap_gene_1_40 = pd.DataFrame( [ [ "NC_016810.1", "RefSeq", "gene", 1, 20, ".", "+", ".", "ID=gene1;Name=thrL;gbkey=Gene;gene=thrL;locus_tag=SL1344_0001", ], [ "NC_016810.1", "RefSeq", "gene", 1, 20, ".", "+", ".", "ID=gene2;Name=thrA;gbkey=Gene;gene=thrA;locus_tag=SL1344_0002", ], ], columns=[ "seq_id", "source", "type", "start", "end", "score", "strand", "phase", "attributes", ], index=[1, 3], ) compare_overlap_40_300 = pd.DataFrame( [ [ "NC_016810.1", "RefSeq", "region", 1, 4000, ".", "+", ".", "Dbxref=taxon:216597;ID=id0;gbkey=Src;genome=genomic;mol_type=genomic DNA" ";serovar=Typhimurium;strain=SL1344", ], [ "NC_016810.1", "RefSeq", "CDS", 13, 235, ".", "+", "0", "Dbxref=UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=cds0;Name" "=YP_005179941.1;Parent=gene1;gbkey=CDS;product=thr operon leader peptide" ";protein_id=YP_005179941.1;transl_table=11", ], [ "NC_016810.1", "RefSeq", "gene", 41, 255, ".", "+", ".", "ID=gene4;Name=thrB;gbkey=Gene;gene=thrB;locus_tag=SL1344_0004", ], [ "NC_016810.1", "RefSeq", "CDS", 61, 195, ".", "+", "0", "Dbxref=UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=cds0;Name" "=YP_005179941.1;Parent=gene4;gbkey=CDS;product=thr operon leader peptide" ";protein_id=YP_005179941.1;transl_table=11", ], [ "NC_016810.1", "RefSeq", "gene", 170, 546, ".", "+", ".", "ID=gene5;Name=thrC;gbkey=Gene;gene=thrC;locus_tag=SL1344_0005", ], [ "NC_016810.1", "RefSeq", "CDS", 34, 335, ".", "+", "0", "Dbxref=UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=cds0;Name" "=YP_005179941.1;Parent=gene5;gbkey=CDS;product=thr operon leader peptide" ";protein_id=YP_005179941.1;transl_table=11", ], ], columns=[ "seq_id", "source", "type", "start", "end", "score", "strand", "phase", "attributes", ], index=[0, 2, 7, 8, 9, 10], ) compare_overlap_170_171 = pd.DataFrame( [ [ "NC_016810.1", "RefSeq", "gene", 1, 600, ".", "-", ".", "ID=gene3;Name=thrX;gbkey=Gene;gene=thrX;locus_tag=SL1344_0003", ], [ "NC_016810.1", "RefSeq", "CDS", 21, 345, ".", "-", "0", "Dbxref=UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=cds0;Name" "=YP_005179941.1;Parent=gene3;gbkey=CDS;product=thr operon leader peptide" ";protein_id=YP_005179941.1;transl_table=11", ], ], columns=[ "seq_id", "source", "type", "start", "end", "score", "strand", "phase", "attributes", ], index=[5, 6], ) compare_overlap_525_545 = pd.DataFrame( [ [ "NC_016810.1", "RefSeq", "region", 1, 4000, ".", "+", ".", "Dbxref=taxon:216597;ID=id0;gbkey=Src;genome=genomic;mol_type=genomic DNA" ";serovar=Typhimurium;strain=SL1344", ], [ "NC_016810.1", "RefSeq", "gene", 170, 546, ".", "+", ".", "ID=gene5;Name=thrC;gbkey=Gene;gene=thrC;locus_tag=SL1344_0005", ], ], columns=[ "seq_id", "source", "type", "start", "end", "score", "strand", "phase", "attributes", ], index=[0, 9], ) compare_overlap_341_500 = pd.DataFrame( [ [ "NC_016810.1", "RefSeq", "region", 1, 4000, ".", "+", ".", "Dbxref=taxon:216597;ID=id0;gbkey=Src;genome=genomic;mol_type=genomic DNA" ";serovar=Typhimurium;strain=SL1344", ], [ "NC_016810.1", "RefSeq", "CDS", 341, 523, ".", "+", "0", "Dbxref=UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=cds0;" "Name=YP_005179941.1;Parent=gene2;gbkey=CDS;product=thr operon leader pep" "tide;protein_id=YP_005179941.1;transl_table=11", ], [ "NC_016810.1", "RefSeq", "gene", 170, 546, ".", "+", ".", "ID=gene5;Name=thrC;gbkey=Gene;gene=thrC;locus_tag=SL1344_0005", ], ], columns=[ "seq_id", "source", "type", "start", "end", "score", "strand", "phase", "attributes", ], index=[0, 4, 9], ) compare_complement = pd.DataFrame( [ [ "NC_016810.1", "RefSeq", "gene", 1, 20, ".", "+", ".", "ID=gene1;Name=thrL;gbkey=Gene;gene=thrL;locus_tag=SL1344_0001", ], [ "NC_016810.1", "RefSeq", "gene", 1, 20, ".", "+", ".", "ID=gene2;Name=thrA;gbkey=Gene;gene=thrA;locus_tag=SL1344_0002", ], [ "NC_016810.1", "RefSeq", "CDS", 341, 523, ".", "+", "0", "Dbxref=UniProtKB%252FTrEMBL:E1W7M4%2CGenbank:YP_005179941.1;ID=cds0;Name" "=YP_005179941.1;Parent=gene2;gbkey=CDS;product=thr operon leader peptide" ";protein_id=YP_005179941.1;transl_table=11", ], ], columns=[ "seq_id", "source", "type", "start", "end", "score", "strand", "phase", "attributes", ], index=[1, 3, 4], ) def generate_gff3_df(): read_in_file = gff3pd.read_gff3("test_file.gff") return read_in_file @print_docstring() def test_clean_datadir(request): """Clean up datadir.""" testdir = Path(request.fspath.dirpath()) datadir = testdir / "data" if datadir.exists(): shutil.rmtree(datadir) # remove anything left in data directory @print_docstring() def test_setup_datadir(request, datadir_mgr, capsys): """Copy in and download static data.""" testdir = Path(request.fspath.dirpath()) datadir = testdir / "data" filesdir = testdir / "testdata" shutil.copytree(filesdir, datadir) with capsys.disabled(): datadir_mgr.download( download_url=REFSEQ_URL, files=[HUMAN_GFF], scope="global", md5_check=False, gunzip=True, progressbar=True, ) @print_docstring() def test_read_gff3_if_df_type(datadir_mgr): """Test basic gff3dataframe creation.""" with datadir_mgr.in_tmp_dir(inpathlist=TESTFILELIST): gff3_df = generate_gff3_df() assert type(gff3_df) == gff3pd.Gff3DataFrame pd.testing.assert_frame_equal(gff3_df.df, written_df) @print_docstring() def test_generate_gff_header(datadir_mgr): """Test GFF header generation.""" with datadir_mgr.in_tmp_dir(inpathlist=TESTFILELIST): object_header = generate_gff3_df() generate_header = object_header._read_gff_header() assert type(object_header) == gff3pd.Gff3DataFrame assert object_header.header == written_header assert generate_header == written_header @print_docstring() def test_if_df_values_equal_gff_values(datadir_mgr): """Testing whether dataframe values equal input GFF values.""" with datadir_mgr.in_tmp_dir(inpathlist=TESTFILELIST): test_df_object = generate_gff3_df() test_df = test_df_object._read_gff3_to_df() assert type(test_df_object) == gff3pd.Gff3DataFrame pd.testing.assert_frame_equal(test_df, written_df) @print_docstring() def test_to_csv(datadir_mgr): """Test CSV file creation.""" with datadir_mgr.in_tmp_dir(inpathlist=TESTFILELIST): gff3_df = generate_gff3_df() gff3_df.to_csv("temp.csv") csv_content = open("temp.csv").read() assert csv_content == written_csv @print_docstring() def test_to_tsv(datadir_mgr): """Test TSV file creation.""" with datadir_mgr.in_tmp_dir(inpathlist=TESTFILELIST): gff3_df = generate_gff3_df() gff3_df.to_tsv("temp.tsv") tsv_content = open("temp.tsv").read() assert tsv_content == written_tsv @print_docstring() def test_to_gff3(datadir_mgr): """Test GFF file creation and rereading.""" with datadir_mgr.in_tmp_dir(inpathlist=TESTFILELIST): gff3_df = generate_gff3_df() gff3_df.to_gff3("temp.gff") gff_content = open("temp.gff").read() assert gff_content == written_gff read_gff_output = gff3pd.read_gff3("temp.gff") read_in_file = gff3pd.read_gff3("test_file.gff") pd.testing.assert_frame_equal(read_in_file.df, read_gff_output.df) @print_docstring() def test_filter_feature_of_type(datadir_mgr): """Test feature filtering.""" with datadir_mgr.in_tmp_dir(inpathlist=TESTFILELIST): gff3_df = generate_gff3_df() object_type_df = gff3_df.filter_feature_of_type(["gene"]) assert type(object_type_df) == gff3pd.Gff3DataFrame assert object_type_df.df.empty == compare_filter_feature_df.empty pd.testing.assert_frame_equal(object_type_df.df, compare_filter_feature_df) assert object_type_df.header == written_header @print_docstring() def test_filter_by_length(datadir_mgr): """Test filtering by length.""" with datadir_mgr.in_tmp_dir(inpathlist=TESTFILELIST): gff3_df = generate_gff3_df() filtered_length = gff3_df.filter_by_length(min_length=10, max_length=300) assert type(filtered_length) == gff3pd.Gff3DataFrame pd.testing.assert_frame_equal(filtered_length.df, written_filtered_length) assert filtered_length.header == written_header @print_docstring() def test_get_feature_by_attribute(datadir_mgr): """Test get feature by attibute.""" with datadir_mgr.in_tmp_dir(inpathlist=TESTFILELIST): gff3_df = generate_gff3_df() filtered_gff3_df = gff3_df.get_feature_by_attribute("gbkey", ["Gene"]) filtered_gff3_df2 = gff3_df.get_feature_by_attribute( "Parent", ["gene2", "gene3", "gene4"] ) filtered_gff3_df3 = gff3_df.get_feature_by_attribute( "locus_tag", ["SL1344_0006"] ) assert type(filtered_gff3_df) == gff3pd.Gff3DataFrame assert type(filtered_gff3_df2) == gff3pd.Gff3DataFrame assert type(filtered_gff3_df3) == gff3pd.Gff3DataFrame assert filtered_gff3_df.df.shape == (5, 9) pd.testing.assert_frame_equal( filtered_gff3_df.df, compare_get_feature_by_attribute ) pd.testing.assert_frame_equal( filtered_gff3_df2.df, compare_get_feature_by_attribute2 ) assert filtered_gff3_df3.df.shape == df_empty.shape @print_docstring() def test_attributes_to_columns(datadir_mgr): """Test attributes to columns.""" with datadir_mgr.in_tmp_dir(inpathlist=TESTFILELIST): gff3_df = generate_gff3_df() gff3_df_with_attr_columns = gff3_df.attributes_to_columns() assert gff3_df_with_attr_columns.shape == (11, 23) assert gff3_df_with_attr_columns.shape == written_attribute_df.shape assert type(gff3_df_with_attr_columns) == type(written_attribute_df) pd.testing.assert_frame_equal(gff3_df_with_attr_columns, written_attribute_df) @print_docstring() def test_stats_dic(datadir_mgr): """Test stats dictionary.""" with datadir_mgr.in_tmp_dir(inpathlist=TESTFILELIST): gff3_df = generate_gff3_df() stats_dict = gff3_df.stats_dic() assert type(stats_dict) == type(compare_stats_dic) assert stats_dict.keys() == compare_stats_dic.keys() assert stats_dict["Maximal_bp_length"] == compare_stats_dic["Maximal_bp_length"] assert stats_dict["Minimal_bp_length"] == compare_stats_dic["Minimal_bp_length"] assert stats_dict["Counted_strands"] == compare_stats_dic["Counted_strands"] assert ( stats_dict["Counted_feature_types"] == compare_stats_dic["Counted_feature_types"] ) @print_docstring() def test_overlaps_with(datadir_mgr): """Test finding overlaps.""" with datadir_mgr.in_tmp_dir(inpathlist=TESTFILELIST): gff3_df = generate_gff3_df() overlap_gene_1_40 = gff3_df.overlaps_with( seq_id="NC_016810.1", type="gene", start=1, end=40, strand="+" ) overlap_40_300 = gff3_df.overlaps_with( seq_id="NC_016810.1", start=40, end=300, strand="+" ) overlap_170_171 = gff3_df.overlaps_with( seq_id="NC_016810.1", start=170, end=171, strand="-" ) overlap_525_545 = gff3_df.overlaps_with( seq_id="NC_016810.1", start=525, end=545, strand="+" ) overlap_341_500 = gff3_df.overlaps_with( seq_id="NC_016810.1", start=341, end=500, strand="+" ) complement_test = gff3_df.overlaps_with( seq_id="NC_016810.1", start=40, end=300, strand="+", complement=True ) out_of_region = gff3_df.overlaps_with( seq_id="NC_016810.1", start=1, end=4000, strand="+", complement=True ) assert type(overlap_gene_1_40) == gff3pd.Gff3DataFrame assert type(overlap_40_300) == gff3pd.Gff3DataFrame assert type(overlap_170_171) == gff3pd.Gff3DataFrame assert type(overlap_525_545) == gff3pd.Gff3DataFrame assert type(overlap_341_500) == gff3pd.Gff3DataFrame assert type(complement_test) == gff3pd.Gff3DataFrame assert type(out_of_region) == gff3pd.Gff3DataFrame pd.testing.assert_frame_equal(overlap_gene_1_40.df, compare_overlap_gene_1_40) pd.testing.assert_frame_equal(overlap_40_300.df, compare_overlap_40_300) pd.testing.assert_frame_equal(overlap_170_171.df, compare_overlap_170_171) pd.testing.assert_frame_equal(overlap_525_545.df, compare_overlap_525_545) pd.testing.assert_frame_equal(overlap_341_500.df, compare_overlap_341_500) pd.testing.assert_frame_equal(complement_test.df, compare_complement) assert out_of_region.df.shape == df_empty.shape @print_docstring() def test_find_duplicated_entries(datadir_mgr): """Test finding duplicated entries.""" with datadir_mgr.in_tmp_dir(inpathlist=TESTFILELIST): gff3_df = generate_gff3_df() redundant_df = gff3_df.find_duplicated_entries( seq_id="NC_016810.1", type="gene" ) redundant_df2 = gff3_df.find_duplicated_entries( seq_id="NC_016810.1", type="CDS" ) assert type(redundant_df) == gff3pd.Gff3DataFrame assert type(redundant_df2) == gff3pd.Gff3DataFrame
pd.testing.assert_frame_equal(redundant_df.df, redundant_entry)
pandas.testing.assert_frame_equal
# -*- coding: utf-8 -*- import csv import os import platform import codecs import re import sys from datetime import datetime import pytest import numpy as np from pandas._libs.lib import Timestamp import pandas as pd import pandas.util.testing as tm from pandas import DataFrame, Series, Index, MultiIndex from pandas import compat from pandas.compat import (StringIO, BytesIO, PY3, range, lrange, u) from pandas.errors import DtypeWarning, EmptyDataError, ParserError from pandas.io.common import URLError from pandas.io.parsers import TextFileReader, TextParser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ # Parsers support only length-1 decimals msg = 'Only length-1 decimal markers supported' with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(data), decimal='') def test_bad_stream_exception(self): # Issue 13652: # This test validates that both python engine # and C engine will raise UnicodeDecodeError instead of # c engine raising ParserError and swallowing exception # that caused read to fail. handle = open(self.csv_shiftjs, "rb") codec = codecs.lookup("utf-8") utf8 = codecs.lookup('utf-8') # stream must be binary UTF8 stream = codecs.StreamRecoder( handle, utf8.encode, utf8.decode, codec.streamreader, codec.streamwriter) if compat.PY3: msg = "'utf-8' codec can't decode byte" else: msg = "'utf8' codec can't decode byte" with tm.assert_raises_regex(UnicodeDecodeError, msg): self.read_csv(stream) stream.close() def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) self.read_csv(fname, index_col=0, parse_dates=True) def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) assert isinstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # see gh-8217 # Series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) assert not result._is_view def test_malformed(self): # see gh-6607 # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 4, saw 5' with tm.assert_raises_regex(Exception, msg): self.read_table(StringIO(data), sep=',', header=1, comment='#') # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with tm.assert_raises_regex(Exception, msg): it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) it.read(5) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with tm.assert_raises_regex(Exception, msg): it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) it.read(3) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with tm.assert_raises_regex(Exception, msg): it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) it.read() # skipfooter is not supported with the C parser yet if self.engine == 'python': # skipfooter data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ msg = 'Expected 3 fields in line 4, saw 5' with tm.assert_raises_regex(Exception, msg): self.read_table(StringIO(data), sep=',', header=1, comment='#', skipfooter=1) def test_quoting(self): bad_line_small = """printer\tresult\tvariant_name Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jacob Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jakob Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\t"Furststiftische Hofdruckerei, <Kempten"" Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tGaller, Alois Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tHochfurstliche Buchhandlung <Kempten>""" # noqa pytest.raises(Exception, self.read_table, StringIO(bad_line_small), sep='\t') good_line_small = bad_line_small + '"' df = self.read_table(StringIO(good_line_small), sep='\t') assert len(df) == 3 def test_unnamed_columns(self): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ expected = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]], dtype=np.int64) df = self.read_table(StringIO(data), sep=',') tm.assert_almost_equal(df.values, expected) tm.assert_index_equal(df.columns, Index(['A', 'B', 'C', 'Unnamed: 3', 'Unnamed: 4'])) def test_csv_mixed_type(self): data = """A,B,C a,1,2 b,3,4 c,4,5 """ expected = DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 3, 4], 'C': [2, 4, 5]}) out = self.read_csv(StringIO(data)) tm.assert_frame_equal(out, expected) def test_read_csv_dataframe(self): df = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = self.read_table(self.csv1, sep=',', index_col=0, parse_dates=True) tm.assert_index_equal(df.columns, pd.Index(['A', 'B', 'C', 'D'])) assert df.index.name == 'index' assert isinstance( df.index[0], (datetime, np.datetime64, Timestamp)) assert df.values.dtype == np.float64 tm.assert_frame_equal(df, df2) def test_read_csv_no_index_name(self): df = self.read_csv(self.csv2, index_col=0, parse_dates=True) df2 = self.read_table(self.csv2, sep=',', index_col=0, parse_dates=True) tm.assert_index_equal(df.columns, pd.Index(['A', 'B', 'C', 'D', 'E'])) assert isinstance(df.index[0], (datetime, np.datetime64, Timestamp)) assert df.loc[:, ['A', 'B', 'C', 'D']].values.dtype == np.float64 tm.assert_frame_equal(df, df2) def test_read_table_unicode(self): fin = BytesIO(u('\u0141aski, Jan;1').encode('utf-8')) df1 = self.read_table(fin, sep=";", encoding="utf-8", header=None) assert isinstance(df1[0].values[0], compat.text_type) def test_read_table_wrong_num_columns(self): # too few! data = """A,B,C,D,E,F 1,2,3,4,5,6 6,7,8,9,10,11,12 11,12,13,14,15,16 """ pytest.raises(ValueError, self.read_csv, StringIO(data)) def test_read_duplicate_index_explicit(self): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ result = self.read_csv(StringIO(data), index_col=0) expected = self.read_csv(StringIO(data)).set_index( 'index', verify_integrity=False) tm.assert_frame_equal(result, expected) result = self.read_table(StringIO(data), sep=',', index_col=0) expected = self.read_table(StringIO(data), sep=',', ).set_index( 'index', verify_integrity=False) tm.assert_frame_equal(result, expected) def test_read_duplicate_index_implicit(self): data = """A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ # make sure an error isn't thrown self.read_csv(StringIO(data)) self.read_table(StringIO(data), sep=',') def test_parse_bools(self): data = """A,B True,1 False,2 True,3 """ data = self.read_csv(StringIO(data)) assert data['A'].dtype == np.bool_ data = """A,B YES,1 no,2 yes,3 No,3 Yes,3 """ data = self.read_csv(StringIO(data), true_values=['yes', 'Yes', 'YES'], false_values=['no', 'NO', 'No']) assert data['A'].dtype == np.bool_ data = """A,B TRUE,1 FALSE,2 TRUE,3 """ data = self.read_csv(StringIO(data)) assert data['A'].dtype == np.bool_ data = """A,B foo,bar bar,foo""" result = self.read_csv(StringIO(data), true_values=['foo'], false_values=['bar']) expected = DataFrame({'A': [True, False], 'B': [False, True]}) tm.assert_frame_equal(result, expected) def test_int_conversion(self): data = """A,B 1.0,1 2.0,2 3.0,3 """ data = self.read_csv(StringIO(data)) assert data['A'].dtype == np.float64 assert data['B'].dtype == np.int64 def test_read_nrows(self): expected = self.read_csv(StringIO(self.data1))[:3] df = self.read_csv(StringIO(self.data1), nrows=3) tm.assert_frame_equal(df, expected) # see gh-10476 df = self.read_csv(StringIO(self.data1), nrows=3.0) tm.assert_frame_equal(df, expected) msg = r"'nrows' must be an integer >=0" with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), nrows=1.2) with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), nrows='foo') with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), nrows=-1) def test_read_chunksize(self): reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # with invalid chunksize value: msg = r"'chunksize' must be an integer >=1" with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), chunksize=1.3) with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), chunksize='foo') with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), chunksize=0) def test_read_chunksize_and_nrows(self): # gh-15755 # With nrows reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=2, nrows=5) df = self.read_csv(StringIO(self.data1), index_col=0, nrows=5) tm.assert_frame_equal(pd.concat(reader), df) # chunksize > nrows reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=8, nrows=5) df = self.read_csv(StringIO(self.data1), index_col=0, nrows=5) tm.assert_frame_equal(pd.concat(reader), df) # with changing "size": reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=8, nrows=5) df = self.read_csv(StringIO(self.data1), index_col=0, nrows=5) tm.assert_frame_equal(reader.get_chunk(size=2), df.iloc[:2]) tm.assert_frame_equal(reader.get_chunk(size=4), df.iloc[2:5]) with pytest.raises(StopIteration): reader.get_chunk(size=3) def test_read_chunksize_named(self): reader = self.read_csv( StringIO(self.data1), index_col='index', chunksize=2) df = self.read_csv(StringIO(self.data1), index_col='index') chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_get_chunk_passed_chunksize(self): data = """A,B,C 1,2,3 4,5,6 7,8,9 1,2,3""" result = self.read_csv(StringIO(data), chunksize=2) piece = result.get_chunk() assert len(piece) == 2 def test_read_chunksize_generated_index(self): # GH 12185 reader = self.read_csv(StringIO(self.data1), chunksize=2) df = self.read_csv(StringIO(self.data1)) tm.assert_frame_equal(pd.concat(reader), df) reader = self.read_csv(StringIO(self.data1), chunksize=2, index_col=0) df = self.read_csv(StringIO(self.data1), index_col=0) tm.assert_frame_equal(pd.concat(reader), df) def test_read_text_list(self): data = """A,B,C\nfoo,1,2,3\nbar,4,5,6""" as_list = [['A', 'B', 'C'], ['foo', '1', '2', '3'], ['bar', '4', '5', '6']] df = self.read_csv(StringIO(data), index_col=0) parser = TextParser(as_list, index_col=0, chunksize=2) chunk = parser.read(None) tm.assert_frame_equal(chunk, df) def test_iterator(self): # See gh-6607 reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True) df = self.read_csv(StringIO(self.data1), index_col=0) chunk = reader.read(3) tm.assert_frame_equal(chunk, df[:3]) last_chunk = reader.read(5) tm.assert_frame_equal(last_chunk, df[3:]) # pass list lines = list(csv.reader(StringIO(self.data1))) parser = TextParser(lines, index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # pass skiprows parser = TextParser(lines, index_col=0, chunksize=2, skiprows=[1]) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[1:3]) treader = self.read_table(StringIO(self.data1), sep=',', index_col=0, iterator=True) assert isinstance(treader, TextFileReader) # gh-3967: stopping iteration when chunksize is specified data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ reader = self.read_csv(StringIO(data), iterator=True) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) tm.assert_frame_equal(result[0], expected) # chunksize = 1 reader = self.read_csv(StringIO(data), chunksize=1) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) assert len(result) == 3 tm.assert_frame_equal(pd.concat(result), expected) # skipfooter is not supported with the C parser yet if self.engine == 'python': # test bad parameter (skipfooter) reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True, skipfooter=1) pytest.raises(ValueError, reader.read, 3) def test_pass_names_with_index(self): lines = self.data1.split('\n') no_header = '\n'.join(lines[1:]) # regular index names = ['index', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=0, names=names) expected = self.read_csv(StringIO(self.data1), index_col=0) tm.assert_frame_equal(df, expected) # multi index data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['index1', 'index2', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), index_col=['index1', 'index2']) tm.assert_frame_equal(df, expected) def test_multi_index_no_level_names(self): data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ data2 = """A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], header=None, names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected, check_names=False) # 2 implicit first cols df2 = self.read_csv(StringIO(data2)) tm.assert_frame_equal(df2, df) # reverse order of index df = self.read_csv(StringIO(no_header), index_col=[1, 0], names=names, header=None) expected = self.read_csv(StringIO(data), index_col=[1, 0]) tm.assert_frame_equal(df, expected, check_names=False) def test_multi_index_blank_df(self): # GH 14545 data = """a,b """ df = self.read_csv(StringIO(data), header=[0]) expected = DataFrame(columns=['a', 'b']) tm.assert_frame_equal(df, expected) round_trip = self.read_csv(StringIO( expected.to_csv(index=False)), header=[0]) tm.assert_frame_equal(round_trip, expected) data_multiline = """a,b c,d """ df2 = self.read_csv(StringIO(data_multiline), header=[0, 1]) cols = MultiIndex.from_tuples([('a', 'c'), ('b', 'd')]) expected2 = DataFrame(columns=cols) tm.assert_frame_equal(df2, expected2) round_trip = self.read_csv(StringIO( expected2.to_csv(index=False)), header=[0, 1]) tm.assert_frame_equal(round_trip, expected2) def test_no_unnamed_index(self): data = """ id c0 c1 c2 0 1 0 a b 1 2 0 c d 2 2 2 e f """ df = self.read_table(StringIO(data), sep=' ') assert df.index.name is None def test_read_csv_parse_simple_list(self): text = """foo bar baz qux foo foo bar""" df = self.read_csv(StringIO(text), header=None) expected = DataFrame({0: ['foo', 'bar baz', 'qux foo', 'foo', 'bar']}) tm.assert_frame_equal(df, expected) @tm.network def test_url(self): # HTTP(S) url = ('https://raw.github.com/pandas-dev/pandas/master/' 'pandas/tests/io/parser/data/salaries.csv') url_table = self.read_table(url) dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salaries.csv') local_table = self.read_table(localtable) tm.assert_frame_equal(url_table, local_table) # TODO: ftp testing @pytest.mark.slow def test_file(self): dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salaries.csv') local_table = self.read_table(localtable) try: url_table = self.read_table('file://localhost/' + localtable) except URLError: # fails on some systems pytest.skip("failing on %s" % ' '.join(platform.uname()).strip()) tm.assert_frame_equal(url_table, local_table) def test_path_pathlib(self): df = tm.makeDataFrame() result = tm.round_trip_pathlib(df.to_csv, lambda p: self.read_csv(p, index_col=0)) tm.assert_frame_equal(df, result) def test_path_localpath(self): df = tm.makeDataFrame() result = tm.round_trip_localpath( df.to_csv, lambda p: self.read_csv(p, index_col=0)) tm.assert_frame_equal(df, result) def test_nonexistent_path(self): # gh-2428: pls no segfault # gh-14086: raise more helpful FileNotFoundError path = '%s.csv' % tm.rands(10) pytest.raises(compat.FileNotFoundError, self.read_csv, path) def test_missing_trailing_delimiters(self): data = """A,B,C,D 1,2,3,4 1,3,3, 1,4,5""" result = self.read_csv(
StringIO(data)
pandas.compat.StringIO
""" Tests for scalar Timedelta arithmetic ops """ from datetime import datetime, timedelta import operator import numpy as np import pytest import pandas as pd from pandas import NaT, Timedelta, Timestamp, offsets import pandas._testing as tm from pandas.core import ops class TestTimedeltaAdditionSubtraction: """ Tests for Timedelta methods: __add__, __radd__, __sub__, __rsub__ """ @pytest.mark.parametrize( "ten_seconds", [ Timedelta(10, unit="s"), timedelta(seconds=10), np.timedelta64(10, "s"), np.timedelta64(10000000000, "ns"), offsets.Second(10), ], ) def test_td_add_sub_ten_seconds(self, ten_seconds): # GH#6808 base = Timestamp("20130101 09:01:12.123456") expected_add = Timestamp("20130101 09:01:22.123456") expected_sub = Timestamp("20130101 09:01:02.123456") result = base + ten_seconds assert result == expected_add result = base - ten_seconds assert result == expected_sub @pytest.mark.parametrize( "one_day_ten_secs", [ Timedelta("1 day, 00:00:10"), Timedelta("1 days, 00:00:10"), timedelta(days=1, seconds=10), np.timedelta64(1, "D") + np.timedelta64(10, "s"), offsets.Day() + offsets.Second(10), ], ) def test_td_add_sub_one_day_ten_seconds(self, one_day_ten_secs): # GH#6808 base = Timestamp("20130102 09:01:12.123456") expected_add = Timestamp("20130103 09:01:22.123456") expected_sub = Timestamp("20130101 09:01:02.123456") result = base + one_day_ten_secs assert result == expected_add result = base - one_day_ten_secs assert result == expected_sub @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_datetimelike_scalar(self, op): # GH#19738 td = Timedelta(10, unit="d") result = op(td, datetime(2016, 1, 1)) if op is operator.add: # datetime + Timedelta does _not_ call Timedelta.__radd__, # so we get a datetime back instead of a Timestamp assert isinstance(result, Timestamp) assert result == Timestamp(2016, 1, 11) result = op(td, Timestamp("2018-01-12 18:09")) assert isinstance(result, Timestamp) assert result == Timestamp("2018-01-22 18:09") result = op(td, np.datetime64("2018-01-12")) assert isinstance(result, Timestamp) assert result == Timestamp("2018-01-22") result = op(td, NaT) assert result is NaT @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_td(self, op): td = Timedelta(10, unit="d") result = op(td, Timedelta(days=10)) assert isinstance(result, Timedelta) assert result == Timedelta(days=20) @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_pytimedelta(self, op): td = Timedelta(10, unit="d") result = op(td, timedelta(days=9)) assert isinstance(result, Timedelta) assert result == Timedelta(days=19) @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_timedelta64(self, op): td = Timedelta(10, unit="d") result = op(td, np.timedelta64(-4, "D")) assert isinstance(result, Timedelta) assert result == Timedelta(days=6) @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_offset(self, op): td = Timedelta(10, unit="d") result = op(td, offsets.Hour(6)) assert isinstance(result, Timedelta) assert result == Timedelta(days=10, hours=6) def test_td_sub_td(self): td = Timedelta(10, unit="d") expected = Timedelta(0, unit="ns") result = td - td assert isinstance(result, Timedelta) assert result == expected def test_td_sub_pytimedelta(self): td = Timedelta(10, unit="d") expected = Timedelta(0, unit="ns") result = td - td.to_pytimedelta() assert isinstance(result, Timedelta) assert result == expected result = td.to_pytimedelta() - td assert isinstance(result, Timedelta) assert result == expected def test_td_sub_timedelta64(self): td = Timedelta(10, unit="d") expected = Timedelta(0, unit="ns") result = td - td.to_timedelta64() assert isinstance(result, Timedelta) assert result == expected result = td.to_timedelta64() - td assert isinstance(result, Timedelta) assert result == expected def test_td_sub_nat(self): # In this context pd.NaT is treated as timedelta-like td = Timedelta(10, unit="d") result = td - NaT assert result is NaT def test_td_sub_td64_nat(self): td = Timedelta(10, unit="d") td_nat = np.timedelta64("NaT") result = td - td_nat assert result is NaT result = td_nat - td assert result is NaT def test_td_sub_offset(self): td = Timedelta(10, unit="d") result = td - offsets.Hour(1) assert isinstance(result, Timedelta) assert result == Timedelta(239, unit="h") def test_td_add_sub_numeric_raises(self): td = Timedelta(10, unit="d") for other in [2, 2.0, np.int64(2), np.float64(2)]: with pytest.raises(TypeError): td + other with pytest.raises(TypeError): other + td with pytest.raises(TypeError): td - other with pytest.raises(TypeError): other - td def test_td_rsub_nat(self): td = Timedelta(10, unit="d") result = NaT - td assert result is NaT result = np.datetime64("NaT") - td assert result is NaT def test_td_rsub_offset(self): result = offsets.Hour(1) - Timedelta(10, unit="d") assert isinstance(result, Timedelta) assert result == Timedelta(-239, unit="h") def test_td_sub_timedeltalike_object_dtype_array(self): # GH#21980 arr = np.array([Timestamp("20130101 9:01"), Timestamp("20121230 9:02")]) exp = np.array([Timestamp("20121231 9:01"), Timestamp("20121229 9:02")]) res = arr - Timedelta("1D") tm.assert_numpy_array_equal(res, exp) def test_td_sub_mixed_most_timedeltalike_object_dtype_array(self): # GH#21980 now = Timestamp.now() arr = np.array([now, Timedelta("1D"), np.timedelta64(2, "h")]) exp = np.array( [ now - Timedelta("1D"), Timedelta("0D"), np.timedelta64(2, "h") - Timedelta("1D"), ] ) res = arr - Timedelta("1D") tm.assert_numpy_array_equal(res, exp) def test_td_rsub_mixed_most_timedeltalike_object_dtype_array(self): # GH#21980 now = Timestamp.now() arr = np.array([now, Timedelta("1D"), np.timedelta64(2, "h")]) with pytest.raises(TypeError): Timedelta("1D") - arr @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_timedeltalike_object_dtype_array(self, op): # GH#21980 arr = np.array([Timestamp("20130101 9:01"), Timestamp("20121230 9:02")]) exp = np.array([Timestamp("20130102 9:01"), Timestamp("20121231 9:02")]) res = op(arr, Timedelta("1D")) tm.assert_numpy_array_equal(res, exp) @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_mixed_timedeltalike_object_dtype_array(self, op): # GH#21980 now = Timestamp.now() arr = np.array([now, Timedelta("1D")]) exp = np.array([now + Timedelta("1D"), Timedelta("2D")]) res = op(arr, Timedelta("1D")) tm.assert_numpy_array_equal(res, exp) # TODO: moved from index tests following #24365, may need de-duplication def test_ops_ndarray(self): td = Timedelta("1 day") # timedelta, timedelta other = pd.to_timedelta(["1 day"]).values expected = pd.to_timedelta(["2 days"]).values tm.assert_numpy_array_equal(td + other, expected) tm.assert_numpy_array_equal(other + td, expected) msg = r"unsupported operand type\(s\) for \+: 'Timedelta' and 'int'" with pytest.raises(TypeError, match=msg): td + np.array([1]) msg = r"unsupported operand type\(s\) for \+: 'numpy.ndarray' and 'Timedelta'" with pytest.raises(TypeError, match=msg): np.array([1]) + td expected = pd.to_timedelta(["0 days"]).values tm.assert_numpy_array_equal(td - other, expected) tm.assert_numpy_array_equal(-other + td, expected) msg = r"unsupported operand type\(s\) for -: 'Timedelta' and 'int'" with pytest.raises(TypeError, match=msg): td - np.array([1]) msg = r"unsupported operand type\(s\) for -: 'numpy.ndarray' and 'Timedelta'" with pytest.raises(TypeError, match=msg): np.array([1]) - td expected = pd.to_timedelta(["2 days"]).values tm.assert_numpy_array_equal(td * np.array([2]), expected) tm.assert_numpy_array_equal(np.array([2]) * td, expected) msg = ( "ufunc '?multiply'? cannot use operands with types" r" dtype\('<m8\[ns\]'\) and dtype\('<m8\[ns\]'\)" ) with pytest.raises(TypeError, match=msg): td * other with pytest.raises(TypeError, match=msg): other * td tm.assert_numpy_array_equal(td / other, np.array([1], dtype=np.float64)) tm.assert_numpy_array_equal(other / td, np.array([1], dtype=np.float64)) # timedelta, datetime other = pd.to_datetime(["2000-01-01"]).values expected = pd.to_datetime(["2000-01-02"]).values tm.assert_numpy_array_equal(td + other, expected) tm.assert_numpy_array_equal(other + td, expected) expected = pd.to_datetime(["1999-12-31"]).values tm.assert_numpy_array_equal(-td + other, expected) tm.assert_numpy_array_equal(other - td, expected) class TestTimedeltaMultiplicationDivision: """ Tests for Timedelta methods: __mul__, __rmul__, __div__, __rdiv__, __truediv__, __rtruediv__, __floordiv__, __rfloordiv__, __mod__, __rmod__, __divmod__, __rdivmod__ """ # --------------------------------------------------------------- # Timedelta.__mul__, __rmul__ @pytest.mark.parametrize( "td_nat", [NaT, np.timedelta64("NaT", "ns"), np.timedelta64("NaT")] ) @pytest.mark.parametrize("op", [operator.mul, ops.rmul]) def test_td_mul_nat(self, op, td_nat): # GH#19819 td = Timedelta(10, unit="d") with pytest.raises(TypeError): op(td, td_nat) @pytest.mark.parametrize("nan", [np.nan, np.float64("NaN"), float("nan")]) @pytest.mark.parametrize("op", [operator.mul, ops.rmul]) def test_td_mul_nan(self, op, nan): # np.float64('NaN') has a 'dtype' attr, avoid treating as array td = Timedelta(10, unit="d") result = op(td, nan) assert result is NaT @pytest.mark.parametrize("op", [operator.mul, ops.rmul]) def test_td_mul_scalar(self, op): # GH#19738 td = Timedelta(minutes=3) result = op(td, 2) assert result == Timedelta(minutes=6) result = op(td, 1.5) assert result == Timedelta(minutes=4, seconds=30) assert op(td, np.nan) is NaT assert op(-1, td).value == -1 * td.value assert op(-1.0, td).value == -1.0 * td.value with pytest.raises(TypeError): # timedelta * datetime is gibberish op(td, Timestamp(2016, 1, 2)) with pytest.raises(TypeError): # invalid multiply with another timedelta op(td, td) # --------------------------------------------------------------- # Timedelta.__div__, __truediv__ def test_td_div_timedeltalike_scalar(self): # GH#19738 td = Timedelta(10, unit="d") result = td / offsets.Hour(1) assert result == 240 assert td / td == 1 assert td / np.timedelta64(60, "h") == 4 assert np.isnan(td / NaT) def test_td_div_numeric_scalar(self): # GH#19738 td = Timedelta(10, unit="d") result = td / 2 assert isinstance(result, Timedelta) assert result == Timedelta(days=5) result = td / 5.0 assert isinstance(result, Timedelta) assert result == Timedelta(days=2) @pytest.mark.parametrize("nan", [np.nan, np.float64("NaN"), float("nan")]) def test_td_div_nan(self, nan): # np.float64('NaN') has a 'dtype' attr, avoid treating as array td = Timedelta(10, unit="d") result = td / nan assert result is NaT result = td // nan assert result is NaT # --------------------------------------------------------------- # Timedelta.__rdiv__ def test_td_rdiv_timedeltalike_scalar(self): # GH#19738 td = Timedelta(10, unit="d") result = offsets.Hour(1) / td assert result == 1 / 240.0 assert np.timedelta64(60, "h") / td == 0.25 # --------------------------------------------------------------- # Timedelta.__floordiv__ def test_td_floordiv_timedeltalike_scalar(self): # GH#18846 td = Timedelta(hours=3, minutes=4) scalar = Timedelta(hours=3, minutes=3) assert td // scalar == 1 assert -td // scalar.to_pytimedelta() == -2 assert (2 * td) // scalar.to_timedelta64() == 2 def test_td_floordiv_null_scalar(self): # GH#18846 td = Timedelta(hours=3, minutes=4) assert td // np.nan is NaT assert np.isnan(td // NaT) assert np.isnan(td // np.timedelta64("NaT")) def test_td_floordiv_offsets(self): # GH#19738 td = Timedelta(hours=3, minutes=4) assert td // offsets.Hour(1) == 3 assert td // offsets.Minute(2) == 92 def test_td_floordiv_invalid_scalar(self): # GH#18846 td = Timedelta(hours=3, minutes=4) with pytest.raises(TypeError): td // np.datetime64("2016-01-01", dtype="datetime64[us]") def test_td_floordiv_numeric_scalar(self): # GH#18846 td = Timedelta(hours=3, minutes=4) expected = Timedelta(hours=1, minutes=32) assert td // 2 == expected assert td // 2.0 == expected assert td // np.float64(2.0) == expected assert td // np.int32(2.0) == expected assert td // np.uint8(2.0) == expected def test_td_floordiv_timedeltalike_array(self): # GH#18846 td = Timedelta(hours=3, minutes=4) scalar = Timedelta(hours=3, minutes=3) # Array-like others assert td // np.array(scalar.to_timedelta64()) == 1 res = (3 * td) // np.array([scalar.to_timedelta64()]) expected = np.array([3], dtype=np.int64) tm.assert_numpy_array_equal(res, expected) res = (10 * td) // np.array([scalar.to_timedelta64(), np.timedelta64("NaT")]) expected = np.array([10, np.nan]) tm.assert_numpy_array_equal(res, expected) def test_td_floordiv_numeric_series(self): # GH#18846 td = Timedelta(hours=3, minutes=4) ser = pd.Series([1], dtype=np.int64) res = td // ser assert res.dtype.kind == "m" # --------------------------------------------------------------- # Timedelta.__rfloordiv__ def test_td_rfloordiv_timedeltalike_scalar(self): # GH#18846 td = Timedelta(hours=3, minutes=3) scalar = Timedelta(hours=3, minutes=4) # scalar others # x // Timedelta is defined only for timedelta-like x. int-like, # float-like, and date-like, in particular, should all either # a) raise TypeError directly or # b) return NotImplemented, following which the reversed # operation will raise TypeError. assert td.__rfloordiv__(scalar) == 1 assert (-td).__rfloordiv__(scalar.to_pytimedelta()) == -2 assert (2 * td).__rfloordiv__(scalar.to_timedelta64()) == 0 def test_td_rfloordiv_null_scalar(self): # GH#18846 td = Timedelta(hours=3, minutes=3) assert np.isnan(td.__rfloordiv__(NaT)) assert np.isnan(td.__rfloordiv__(np.timedelta64("NaT"))) def test_td_rfloordiv_offsets(self): # GH#19738 assert offsets.Hour(1) // Timedelta(minutes=25) == 2 def test_td_rfloordiv_invalid_scalar(self): # GH#18846 td = Timedelta(hours=3, minutes=3) dt64 = np.datetime64("2016-01-01", "us") with pytest.raises(TypeError): td.__rfloordiv__(dt64) def test_td_rfloordiv_numeric_scalar(self): # GH#18846 td = Timedelta(hours=3, minutes=3) assert td.__rfloordiv__(np.nan) is NotImplemented assert td.__rfloordiv__(3.5) is NotImplemented assert td.__rfloordiv__(2) is NotImplemented with pytest.raises(TypeError): td.__rfloordiv__(np.float64(2.0)) with pytest.raises(TypeError): td.__rfloordiv__(np.uint8(9)) with pytest.raises(TypeError, match="Invalid dtype"): # deprecated GH#19761, enforced GH#29797 td.__rfloordiv__(np.int32(2.0)) def test_td_rfloordiv_timedeltalike_array(self): # GH#18846 td = Timedelta(hours=3, minutes=3) scalar = Timedelta(hours=3, minutes=4) # Array-like others assert td.__rfloordiv__(np.array(scalar.to_timedelta64())) == 1 res = td.__rfloordiv__(np.array([(3 * scalar).to_timedelta64()])) expected = np.array([3], dtype=np.int64) tm.assert_numpy_array_equal(res, expected) arr = np.array([(10 * scalar).to_timedelta64(), np.timedelta64("NaT")]) res = td.__rfloordiv__(arr) expected = np.array([10, np.nan]) tm.assert_numpy_array_equal(res, expected) def test_td_rfloordiv_numeric_series(self): # GH#18846 td = Timedelta(hours=3, minutes=3) ser = pd.Series([1], dtype=np.int64) res = td.__rfloordiv__(ser) assert res is NotImplemented with pytest.raises(TypeError, match="Invalid dtype"): # Deprecated GH#19761, enforced GH#29797 # TODO: GH-19761. Change to TypeError. ser // td # ---------------------------------------------------------------- # Timedelta.__mod__, __rmod__ def test_mod_timedeltalike(self): # GH#19365 td = Timedelta(hours=37) # Timedelta-like others result = td % Timedelta(hours=6) assert isinstance(result, Timedelta) assert result == Timedelta(hours=1) result = td % timedelta(minutes=60) assert isinstance(result, Timedelta) assert result == Timedelta(0) result = td % NaT assert result is NaT def test_mod_timedelta64_nat(self): # GH#19365 td = Timedelta(hours=37) result = td % np.timedelta64("NaT", "ns") assert result is NaT def test_mod_timedelta64(self): # GH#19365 td = Timedelta(hours=37) result = td % np.timedelta64(2, "h") assert isinstance(result, Timedelta) assert result == Timedelta(hours=1) def test_mod_offset(self): # GH#19365 td = Timedelta(hours=37) result = td % offsets.Hour(5) assert isinstance(result, Timedelta) assert result == Timedelta(hours=2) def test_mod_numeric(self): # GH#19365 td = Timedelta(hours=37) # Numeric Others result = td % 2 assert isinstance(result, Timedelta) assert result == Timedelta(0) result = td % 1e12 assert isinstance(result, Timedelta) assert result == Timedelta(minutes=3, seconds=20) result = td % int(1e12) assert isinstance(result, Timedelta) assert result == Timedelta(minutes=3, seconds=20) def test_mod_invalid(self): # GH#19365 td = Timedelta(hours=37) with pytest.raises(TypeError): td % Timestamp("2018-01-22") with pytest.raises(TypeError): td % [] def test_rmod_pytimedelta(self): # GH#19365 td = Timedelta(minutes=3) result = timedelta(minutes=4) % td assert isinstance(result, Timedelta) assert result == Timedelta(minutes=1) def test_rmod_timedelta64(self): # GH#19365 td = Timedelta(minutes=3) result = np.timedelta64(5, "m") % td assert isinstance(result, Timedelta) assert result == Timedelta(minutes=2) def test_rmod_invalid(self): # GH#19365 td = Timedelta(minutes=3) with pytest.raises(TypeError): Timestamp("2018-01-22") % td with pytest.raises(TypeError): 15 % td with pytest.raises(TypeError): 16.0 % td with pytest.raises(TypeError): np.array([22, 24]) % td # ---------------------------------------------------------------- # Timedelta.__divmod__, __rdivmod__ def test_divmod_numeric(self): # GH#19365 td = Timedelta(days=2, hours=6) result = divmod(td, 53 * 3600 * 1e9) assert result[0] == Timedelta(1, unit="ns") assert isinstance(result[1], Timedelta) assert result[1] == Timedelta(hours=1) assert result result = divmod(td, np.nan) assert result[0] is NaT assert result[1] is NaT def test_divmod(self): # GH#19365 td = Timedelta(days=2, hours=6) result = divmod(td, timedelta(days=1)) assert result[0] == 2 assert isinstance(result[1], Timedelta) assert result[1] == Timedelta(hours=6) result = divmod(td, 54) assert result[0] == Timedelta(hours=1) assert isinstance(result[1], Timedelta) assert result[1] == Timedelta(0) result = divmod(td, NaT) assert np.isnan(result[0]) assert result[1] is NaT def test_divmod_offset(self): # GH#19365 td = Timedelta(days=2, hours=6) result = divmod(td, offsets.Hour(-4)) assert result[0] == -14 assert isinstance(result[1], Timedelta) assert result[1] == Timedelta(hours=-2) def test_divmod_invalid(self): # GH#19365 td = Timedelta(days=2, hours=6) with pytest.raises(TypeError): divmod(td, Timestamp("2018-01-22")) def test_rdivmod_pytimedelta(self): # GH#19365 result = divmod(timedelta(days=2, hours=6), Timedelta(days=1)) assert result[0] == 2 assert isinstance(result[1], Timedelta) assert result[1] == Timedelta(hours=6) def test_rdivmod_offset(self): result = divmod(offsets.Hour(54),
Timedelta(hours=-4)
pandas.Timedelta
import os import pandas as pd import numpy as np from collections import Counter from imblearn.datasets import make_imbalance from imblearn.over_sampling import SMOTE, ADASYN from sklearn.utils import shuffle os.chdir('/content/gdrive/My Drive/training_testing_data/') train = pd.read_csv('train_data_rp_3_IMBALANCED.csv') X_train = train.iloc[:, :-1] X_train = X_train.values Y_train = train.iloc[:, -1:] Y_train = Y_train.values oversample = SMOTE() X_train_SMOTE, Y_train_SMOTE = oversample.fit_resample(X_train, Y_train) print('SMOTE:', sorted(Counter(Y_train_SMOTE).items())) X_train_SMOTE, Y_train_SMOTE = shuffle(X_train_SMOTE, Y_train_SMOTE, random_state=42) X_train_SMOTE = pd.DataFrame(X_train_SMOTE) Y_train_SMOTE = pd.DataFrame(Y_train_SMOTE) train_SMOTE =
pd.concat([X_train_SMOTE, Y_train_SMOTE], axis=1, ignore_index=True)
pandas.concat
import asyncio import itertools import pandas as pd import math import numbers def series_function(): """ Wrap a standard function to allow for a Series of values to be applied instead. """ def decorator(f): def handler(*xs): is_series = any(isinstance(x, pd.Series) for x in xs) if is_series: args = zip(*(x.array if isinstance(x, pd.Series) else itertools.repeat(x) for x in xs)) # return a series of the results return pd.Series(f(*xs) for xs in args) # just return the scalar of the function return f(*xs) return handler return decorator def parseries_function(): """ Similar to series_function, except that the wrapped function is asynchronous and will be executed in parallel using an executor. It is assumed that the first argument to the wrapped function is the executor to use. """ def decorator(f): async def handler(*xs): is_series = any(isinstance(x, pd.Series) for x in xs) loop = asyncio.get_event_loop() if is_series: args = zip(*(x.array if isinstance(x, pd.Series) else itertools.repeat(x) for x in xs)) # submit the jobs to the executor jobs = [loop.run_in_executor(xs[0], f, *xs[1:]) for xs in args] # wait for all the jobs to complete data = [await job for job in jobs] # union the results together in a series return pd.Series(rs for rs in data) # just run a single job return await loop.run_in_executor(xs[0], f, *xs[1:]) return handler return decorator def unknown_function(f): """ Simple handler for an unknown function. """ def handler(*args): raise RuntimeError(f'Unknown function {f}') return handler def is_na(x): """ Helper function, acts like a unary operator.is_na. """ return x.isna() if isinstance(x, pd.Series) else x is None or math.isnan(x) def is_not_na(x): """ Helper function, acts like a unary operator.is_not_na. """ return x.notna() if isinstance(x, pd.Series) else not (x is None or math.isnan(x)) def is_in(a, b, **kwargs): """ Test if an element is within the series. """ if not isinstance(b, pd.Series): b =
pd.Series([b])
pandas.Series
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import glob import os from collections import Counter desired_width=320 pd.set_option('display.width', desired_width) pd.set_option('display.max_columns',10) #import dataset merah path =r'C:\Users\fikri\Desktop\pyproj\komoditas bawang\komoditas' filenames = glob.glob(path + "\*.csv") dfs = [] for csv in filenames: frame =
pd.read_csv(csv)
pandas.read_csv