prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
""" <NAME>017 PanCancer Classifier scripts/pancancer_classifier.py Usage: Run in command line with required command argument: python pancancer_classifier.py --genes $GENES Where GENES is a comma separated string. There are also optional arguments: --diseases comma separated string of disease types for classifier default: Auto (will pick diseases from filter args) --folds number of cross validation folds default: 5 --drop drop the input genes from the X matrix default: False if flag omitted --copy_number optional flag to supplement copy number to define Y default: False if flag omitted --filter_count int of low count of mutation to include disease default: 15 --filter_prop float of low proportion of mutated samples per disease default: 0.05 --num_features int of number of genes to include in classifier default: 8000 --alphas comma separated string of alphas to test in pipeline default: '0.1,0.15,0.2,0.5,0.8,1' --l1_ratios comma separated string of l1 parameters to test default: '0,0.1,0.15,0.18,0.2,0.3' --alt_genes comma separated string of alternative genes to test default: None --alt_diseases comma separated string of alternative diseases to test default: Auto --alt_filter_count int of low count of mutations to include alt_diseases default: 15 --alt_filter_prop float of low proportion of mutated samples alt_disease default: 0.05 --alt_folder string of where to save the classifier figures default: Auto --remove_hyper store_true: remove hypermutated samples default: False if flag omitted --keep_intermediate store_true: keep intermediate roc curve items default: False if flag omitted --x_matrix string of which feature matrix to use default: raw Output: ROC curves, AUROC across diseases, and classifier coefficients """ import os import sys import warnings import pandas as pd import csv import argparse import matplotlib.pyplot as plt import seaborn as sns from sklearn.linear_model import SGDClassifier from sklearn.model_selection import train_test_split, cross_val_predict from dask_searchcv import GridSearchCV from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from statsmodels.robust.scale import mad sys.path.insert(0, os.path.join('scripts', 'util')) from tcga_util import get_args, get_threshold_metrics, integrate_copy_number from tcga_util import shuffle_columns # Load command arguments args = get_args() genes = args.genes.split(',') diseases = args.diseases.split(',') folds = int(args.folds) drop = args.drop drop_rasopathy = args.drop_rasopathy copy_number = args.copy_number filter_count = int(args.filter_count) filter_prop = float(args.filter_prop) num_features_kept = args.num_features alphas = [float(x) for x in args.alphas.split(',')] l1_ratios = [float(x) for x in args.l1_ratios.split(',')] alt_genes = args.alt_genes.split(',') alt_filter_count = int(args.alt_filter_count) alt_filter_prop = float(args.alt_filter_prop) alt_diseases = args.alt_diseases.split(',') alt_folder = args.alt_folder remove_hyper = args.remove_hyper keep_inter = args.keep_intermediate x_matrix = args.x_matrix shuffled = args.shuffled shuffled_before_training = args.shuffled_before_training no_mutation = args.no_mutation drop_expression = args.drop_expression drop_covariates = args.drop_covariates warnings.filterwarnings('ignore', message='Changing the shape of non-C contiguous array') # Generate file names for output genes_folder = args.genes.replace(',', '_') base_folder = os.path.join('classifiers', genes_folder) if alt_folder != 'Auto': base_folder = alt_folder if not os.path.exists(base_folder): os.makedirs(base_folder) else: warnings.warn('Classifier may have already been built! Classifier results' ' will be overwritten!', category=Warning) disease_folder = os.path.join(base_folder, 'disease') if not os.path.exists(disease_folder): os.makedirs(disease_folder) count_table_file = os.path.join(base_folder, 'summary_counts.csv') cv_heatmap_file = os.path.join(base_folder, 'cv_heatmap.pdf') full_roc_file = os.path.join(base_folder, 'all_disease_roc.pdf') full_pr_file = os.path.join(base_folder, 'all_disease_pr.pdf') disease_roc_file = os.path.join(base_folder, 'disease', 'classifier_roc_') disease_pr_file = os.path.join(base_folder, 'disease', 'classifier_pr_') dis_summary_auroc_file = os.path.join(base_folder, 'disease_auroc.pdf') dis_summary_aupr_file = os.path.join(base_folder, 'disease_aupr.pdf') classifier_file = os.path.join(base_folder, 'classifier_coefficients.tsv') roc_results_file = os.path.join(base_folder, 'pancan_roc_results.tsv') alt_gene_base = 'alt_gene_{}_alt_disease_{}'.format( args.alt_genes.replace(',', '_'), args.alt_diseases.replace(',', '_')) alt_count_table_file = os.path.join(base_folder, 'alt_summary_counts.csv') alt_gene_auroc_file = os.path.join(base_folder, '{}_auroc_bar.pdf'.format(alt_gene_base)) alt_gene_aupr_file = os.path.join(base_folder, '{}_aupr_bar.pdf'.format(alt_gene_base)) alt_gene_summary_file = os.path.join(base_folder, '{}_summary.tsv'.format(alt_gene_base)) # Load Datasets if x_matrix == 'raw': expr_file = os.path.join('data', 'pancan_rnaseq_freeze.tsv.gz') else: expr_file = x_matrix mut_file = os.path.join('data', 'pancan_mutation_freeze.tsv.gz') mut_burden_file = os.path.join('data', 'mutation_burden_freeze.tsv') sample_freeze_file = os.path.join('data', 'sample_freeze.tsv') rnaseq_full_df = pd.read_table(expr_file, index_col=0) mutation_df = pd.read_table(mut_file, index_col=0) sample_freeze = pd.read_table(sample_freeze_file, index_col=0) mut_burden = pd.read_table(mut_burden_file) # Construct data for classifier common_genes = set(mutation_df.columns).intersection(genes) if x_matrix == 'raw': common_genes = list(common_genes.intersection(rnaseq_full_df.columns)) else: common_genes = list(common_genes) y = mutation_df[common_genes] missing_genes = set(genes).difference(common_genes) if len(common_genes) != len(genes): warnings.warn('All input genes were not found in data. The missing genes ' 'are {}'.format(missing_genes), category=Warning) if drop: if x_matrix == 'raw': rnaseq_full_df.drop(common_genes, axis=1, inplace=True) if drop_rasopathy: rasopathy_genes = set(['BRAF', 'CBL', 'HRAS', 'KRAS', 'MAP2K1', 'MAP2K2', 'NF1', 'NRAS', 'PTPN11', 'RAF1', 'SHOC2', 'SOS1', 'SPRED1', 'RIT1']) rasopathy_drop = list(rasopathy_genes.intersection(rnaseq_full_df.columns)) rnaseq_full_df.drop(rasopathy_drop, axis=1, inplace=True) # Incorporate copy number for gene activation/inactivation if copy_number: # Load copy number matrices copy_loss_file = os.path.join('data', 'copy_number_loss_status.tsv.gz') copy_loss_df = pd.read_table(copy_loss_file, index_col=0) copy_gain_file = os.path.join('data', 'copy_number_gain_status.tsv.gz') copy_gain_df = pd.read_table(copy_gain_file, index_col=0) # Load cancer gene classification table vogel_file = os.path.join('data', 'vogelstein_cancergenes.tsv') cancer_genes = pd.read_table(vogel_file) y = integrate_copy_number(y=y, cancer_genes_df=cancer_genes, genes=common_genes, loss_df=copy_loss_df, gain_df=copy_gain_df, include_mutation=no_mutation) # Process y matrix y = y.assign(total_status=y.max(axis=1)) y = y.reset_index().merge(sample_freeze, how='left').set_index('SAMPLE_BARCODE') count_df = y.groupby('DISEASE').sum() prop_df = count_df.divide(y['DISEASE'].value_counts(sort=False).sort_index(), axis=0) count_table = count_df.merge(prop_df, left_index=True, right_index=True, suffixes=('_count', '_proportion')) count_table.to_csv(count_table_file) # Filter diseases mut_count = count_df['total_status'] prop = prop_df['total_status'] if diseases[0] == 'Auto': filter_disease = (mut_count > filter_count) & (prop > filter_prop) diseases = filter_disease.index[filter_disease].tolist() # Load mutation burden and process covariates y_df = y[y.DISEASE.isin(diseases)].total_status common_samples = list(set(y_df.index) & set(rnaseq_full_df.index)) y_df = y_df.loc[common_samples] rnaseq_df = rnaseq_full_df.loc[y_df.index, :] if remove_hyper: burden_filter = mut_burden['log10_mut'] < 5 * mut_burden['log10_mut'].std() mut_burden = mut_burden[burden_filter] y_matrix = mut_burden.merge(
pd.DataFrame(y_df)
pandas.DataFrame
import logging import time from logging import Logger from typing import Sequence, Dict import numpy as np import pandas as pd from pandas.core.generic import NDFrame from scipy.stats import trim_mean from active_learning_ratio_estimation.model.ratio_model import calibrated_param_scan, param_scan, exact_param_scan from active_learning_ratio_estimation.dataset import SinglyParameterizedRatioDataset, ParamGrid, ParamIterator from active_learning_ratio_estimation.model import DenseClassifier, SinglyParameterizedRatioModel, FlipoutClassifier from util.distributions import triple_mixture def create_models( theta_0: float, hyperparams: Dict, ) -> Dict[str, SinglyParameterizedRatioModel]: # regular, uncalibrated model regular_estimator = DenseClassifier(activation='tanh', **hyperparams) regular_uncalibrated = SinglyParameterizedRatioModel(theta_0=theta_0, clf=regular_estimator) # bayesian, uncalibrated model bayesian_estimator = FlipoutClassifier(activation='relu', **hyperparams) bayesian_uncalibrated = SinglyParameterizedRatioModel(theta_0=theta_0, clf=bayesian_estimator) models = { 'Regular': regular_uncalibrated, 'Bayesian': bayesian_uncalibrated, } return models def fit_models( models: Dict[str, SinglyParameterizedRatioModel], train_dataset: SinglyParameterizedRatioDataset, logger: Logger ) -> pd.DataFrame: for model_name, model in models.items(): logger.info(f'Fitting {model_name} model.') model.fit(train_dataset.x, train_dataset.theta_1s, train_dataset.y) history =
pd.DataFrame(model.clf.history_.history)
pandas.DataFrame
import os import matplotlib.pyplot as plt import numpy as np import pandas as pd from matplotlib.patches import Ellipse import matplotlib.transforms as transforms from sklearn.model_selection import train_test_split def confidence_ellipse(x, y, ax, n_std=3.0, facecolor='none', **kwargs): """ Create a plot of the covariance confidence ellipse of *x* and *y*. Parameters ---------- x, y : array-like, shape (n, ) Input data. ax : matplotlib.axes.Axes The axes object to draw the ellipse into. n_std : float The number of standard deviations to determine the ellipse's radiuses. **kwargs Forwarded to `~matplotlib.patches.Ellipse` Returns ------- matplotlib.patches.Ellipse """ if x.size != y.size: raise ValueError("x and y must be the same size") cov = np.cov(x, y) pearson = cov[0, 1] / np.sqrt(cov[0, 0] * cov[1, 1]) # Using a special case to obtain the eigenvalues of this # two-dimensionl dataset. ell_radius_x = np.sqrt(1 + pearson) ell_radius_y = np.sqrt(1 - pearson) ellipse = Ellipse((0, 0), width=ell_radius_x * 2, height=ell_radius_y * 2, facecolor=facecolor, **kwargs) # Calculating the stdandard deviation of x from # the squareroot of the variance and multiplying # with the given number of standard deviations. scale_x = np.sqrt(cov[0, 0]) * n_std mean_x = np.mean(x) # calculating the stdandard deviation of y ... scale_y = np.sqrt(cov[1, 1]) * n_std mean_y = np.mean(y) transf = transforms.Affine2D().rotate_deg(45).scale(scale_x, scale_y).translate(mean_x, mean_y) ellipse.set_transform(transf + ax.transData) return ax.add_patch(ellipse) # read data and create dataframes length = 3100 coord_list = ['all', 'x', 'y', 'z'] # create global variables to store x,y,z and xyz data for i in range(4): globals()[f'df_UR5_{coord_list[i]}'] = pd.DataFrame() home = "data/Kernels/5_7_2022" for folder in os.listdir(home): # if "_ex" in folder: if os.path.isdir(f"{home}/{folder}"): for file in os.listdir(f"{home}/{folder}"): if '.csv' in file: df =
pd.read_csv(f"{home}/{folder}/{file}")
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 import numpy as np import pandas as pd import os import _pickle as pickle import matplotlib.pyplot as plt from matplotlib import cm import seaborn as sns from scipy.signal import savgol_filter from scipy.signal import find_peaks from scipy.interpolate import interp1d def get_peak_parameters_of_ITD_curve(x,y): _ITD = x _FR = y # interp _x = _ITD _y = _FR _f = interp1d(_x, _y) _dt = 0.1 _ITD_interp = np.arange(_x.min(),_x.max()+_dt,_dt) _ITD_interp = np.clip(_ITD_interp,_x.min(),_x.max()) _FR_interp = _f(_ITD_interp) _smoothing_w_length = int(len(_FR_interp)/25)+1 _smoothed_FR = savgol_filter(_FR_interp,_smoothing_w_length, 2) # find peaks _peaks, _ = find_peaks(_smoothed_FR, prominence=1, width=20) _peak_heights = _smoothed_FR[_peaks] _peak = _peaks[_peak_heights==_peak_heights.max()] _ref_height = _smoothed_FR[_peak] * 0.5 _half_width_seg = np.arange(len(_smoothed_FR))[_smoothed_FR>_ref_height][[0,-1]] _peak_ITD = _ITD_interp[_peak][0] _peak_FR = _smoothed_FR[_peak][0] _half_width = _ITD_interp[_half_width_seg][1] -_ITD_interp[_half_width_seg][0] return _peak_ITD, _peak_FR,_half_width def interp_and_smooth_ITD_curve(x,y,scale = 25): _ITD = x _FR = y # interp _x = _ITD _y = _FR _f = interp1d(_x, _y) _dt = 0.1 _ITD_interp = np.arange(_x.min(),_x.max()+_dt,_dt) _ITD_interp = np.clip(_ITD_interp,_x.min(),_x.max()) _FR_interp = _f(_ITD_interp) _smoothing_w_length = int(len(_FR_interp)/scale)+1 _smoothed_FR = savgol_filter(_FR_interp,_smoothing_w_length, 2) return _ITD_interp,_smoothed_FR def run_data_visualization(): print('>> Compute peak parameters and plot figures') # load config _config_filename = 'config.pckl' with open(_config_filename, 'rb') as _file: _config = pickle.load(_file) import_path = _config['basic']['result_path'] export_path = _config['basic']['fig_path'] os.makedirs(export_path,exist_ok=True) os.makedirs(import_path,exist_ok=True) _dir_pckl = os.listdir(import_path) _sort_str = '.pckl' _dir_pckl = [x for x in _dir_pckl if x[-len(_sort_str):]==_sort_str] # list files df_files = pd.DataFrame(_dir_pckl,columns=['filename']) df_files['cate_name'] = df_files['filename'].apply(lambda x:x.split('.')[0]) df_files['seed'] = df_files['cate_name'].apply(lambda x:int(x.split('_')[-1])) # load ITD dataset print('> loading ITD dataset') _stimuli_dir = _config['basic']['ANF_path'] _list_input_files = os.listdir(_stimuli_dir) _list_input_files_seed = [x.split('.')[0].split('_')[-1] for x in _list_input_files] _dict_df_ITD = {} for _seed,_file in zip(_list_input_files_seed,_list_input_files): _load_filename =_stimuli_dir+_file f = open(_load_filename, 'rb') _load_profile_data = pickle.load(f) f.close() _dict_df_ITD[int(_seed)] = _load_profile_data[-1] _df_ITD = _load_profile_data[-1] fs_input_sounds = _load_profile_data[6] _sti_duration = np.mean(_df_ITD['End_R'] - _df_ITD['Start_R'] )/fs_input_sounds # overall interations for ITD curves, peaks, and accuracy print('> start computing ITD tuning curve parameters') _df_decoded = [] for _i_file,_row in list(df_files.iterrows()): # load data _load_name = import_path+_row['filename'] print('> processing file:',_load_name) with open(_load_name, 'rb') as fp: _loaded_list = pickle.load(fp) _spike_count_list,acc_set,df_sensitivity = _loaded_list _acc,_conf,_df_decoding_error,_MSE,_dict_class_info = acc_set _sensitivity_acc = df_sensitivity[df_sensitivity['ITD']==10]['Accuracy'].values[0] _df_decoding_error['Matched'] = _df_decoding_error['Target'] == _df_decoding_error['Predicted'] _acc = _df_decoding_error.Matched.mean() _df = _row.copy() _df['Accuracy'] = np.round(_acc,5) _df['MSE'] = np.round(_MSE,5) _df['PairedAcc'] = np.round(_sensitivity_acc,5) _df_info = _df.copy() ### compute peak information _seed = _row['seed'] _df_spike_count = pd.DataFrame(dict(zip(['SpikeCount','Neuron','Sequence'],_spike_count_list))) _df_ITD = _dict_df_ITD[int(_seed)].copy() _df_spike_count = _df_spike_count.merge(_df_ITD, on ='Sequence') _df_spike_count['ITD']*=1e6 _df_spike_count['Object'] = _df_spike_count['Neuron'].where(_df_spike_count['Neuron']>=10000,'MSO_L') _df_spike_count['Object'] = _df_spike_count['Object'].mask(_df_spike_count['Neuron']>=10000,'MSO_R') ## quantile for selecting neurons for curve-plotting _quantile_thres = [0.2, 0.8] _df_neuron_left = _df_spike_count[_df_spike_count['Object']=='MSO_L'].pivot_table(index = 'Neuron',values='SpikeCount') _df_neuron_left = _df_neuron_left[_df_neuron_left['SpikeCount']!=0] _lower_quantile = _df_neuron_left.SpikeCount.quantile(_quantile_thres[0]) _upper_quantile = _df_neuron_left.SpikeCount.quantile(_quantile_thres[1]) _neuron_list_left = list(_df_neuron_left[(_df_neuron_left.SpikeCount>_lower_quantile)& (_df_neuron_left.SpikeCount<_upper_quantile)].index) _df_neuron_right = _df_spike_count[_df_spike_count['Object']=='MSO_R'].pivot_table(index = 'Neuron',values='SpikeCount') _df_neuron_right = _df_neuron_right[_df_neuron_right['SpikeCount']!=0] _lower_quantile = _df_neuron_right.SpikeCount.quantile(_quantile_thres[0]) _upper_quantile = _df_neuron_right.SpikeCount.quantile(_quantile_thres[1]) _neuron_list_right = list(_df_neuron_right[(_df_neuron_right.SpikeCount>_lower_quantile)& (_df_neuron_right.SpikeCount<_upper_quantile)].index) _neuron_list = _neuron_list_left + _neuron_list_right _df_sorted = _df_spike_count[_df_spike_count['Neuron'].isin(_neuron_list)] ## get ITD-FR tunning curve _df_ITD_curve = _df_sorted.pivot_table(index = ['Object','ITD'],values='SpikeCount') _df_ITD_curve = pd.DataFrame(_df_ITD_curve.to_records()) _df_ITD_curve['FiringRate'] = _df_ITD_curve['SpikeCount']/_sti_duration for _object in _df_ITD_curve.Object.unique(): _df_sig = _df_ITD_curve[_df_ITD_curve['Object']==_object] _ITD = _df_sig['ITD'].to_numpy() _FR = _df_sig['FiringRate'].to_numpy() # compute peak parameters _peak_ITD, _peak_FR,_half_width = get_peak_parameters_of_ITD_curve(_ITD,_FR) _df_peak = _df_info.copy() _df_peak['Object'] = _object _df_peak['PeakITD'] = _peak_ITD _df_peak['PeakHeight'] = _peak_FR _df_peak['PeakWidth'] = _half_width _df_peak['ITD_v'] = _ITD _df_peak['FR_v'] = _FR _df_decoded.append(pd.DataFrame(_df_peak).T) _df_decoded =
pd.concat(_df_decoded)
pandas.concat
from datetime import datetime import pandas as pd import requests BASE_URL = "https://api.coingecko.com/api/v3/" def get_coin_market_chart(token_name): url = BASE_URL+"coins/{}/market_chart?vs_currency=usd&days=max&interval=daily".format(token_name) resp = requests.get(url) if resp.status_code == 200: result = resp.json() else: print('Request Error: {}: invalid token name'.format(resp.status_code)) result = {} return result def get_coin_market_cap(token_name): market_chart = get_coin_market_chart(token_name) market_caps = [{ 'Date':datetime.utcfromtimestamp(int(item[0]/1000)), 'mcap':item[1] } for item in market_chart['market_caps']] df =
pd.DataFrame(market_caps)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Aug 29 16:04:09 2020 @author: gabygerlach """ import numpy as np import pandas as pd #import sklearn import matplotlib.pyplot as plt import seaborn as sns ### CODE from you tube videos diamonds = pd.read_csv('data/diamonds.csv.gz') y=diamonds.pop('price') d1 =diamonds.select_dtypes(include='number') d2 = diamonds.select_dtypes(exclude = 'number') from sklearn.preprocessing import scale bl = pd.DataFrame(scale(d1)) bl.columns = d1.columns d1=bl d2 =
pd.get_dummies(d2)
pandas.get_dummies
""" MarketBeat View """ __docformat__ = "numpy" import argparse import numpy as np import pandas as pd from typing import List from gamestonk_terminal.helper_funcs import ( check_positive, parse_known_args_and_warn, ) from gamestonk_terminal.discovery import marketbeat_model def ratings_view(other_args: List[str]): """Prints top ratings updates Parameters ---------- other_args : List[str] argparse other args - ["-t", "100"] """ parser = argparse.ArgumentParser( add_help=False, prog="ratings", description="""Top ratings updates. [Source: MarketBeat]""", ) parser.add_argument( "-t", "--threshold", action="store", dest="n_threshold", type=check_positive, default=100, help="Minimum threshold in percentage change between current and target price to show ratings", ) if other_args: if "-" not in other_args[0]: other_args.insert(0, "-t") ns_parser = parse_known_args_and_warn(parser, other_args) if not ns_parser: return try: ratings = marketbeat_model.get_ratings() df_ratings =
pd.DataFrame(ratings)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Wed Jun 23 11:32:40 2021 @author: bianca """ # +++ IMPLIED GROWTH RATES +++ # import pandas as pd import os import numpy as np from datetime import datetime ## select Merge File US Equity and WRDS df_assig3 = pd.read_csv("./data/external/assignment_3_sp500_constituents_with_daily_mdata.csv") df_assig3['date'] df_assig3.head(29) df_assig3.iloc[:] # S&P 500 Index SP500_avg = df_assig3.groupby(['date']).agg({ 'prc': 'mean' }) SP500_avg SP500_index = pd.DataFrame(SP500_avg, columns= ['prc']) SP500_index SP500_index.to_csv("./data/external/assignment_3_SP500_index.csv") # summarize data df2 = df_assig3.groupby(['date', 'comnam', 'permno', 'hsiccd', 'ticker', 'gvkey']).agg({ 'prc': 'mean' }) df2 df2.to_csv("./data/external/assignment_3_sp500_summary.csv") df_CAR_UE = pd.read_csv("./data/external/assign3_summary CAR UE.csv") df_CAR_UE['hsiccd'] type(['month']) df_CAR_UE['month'].astype(int) ## create 'month' and 'year' column pd.Timestamp(df_CAR_UE['date']) ## define 'quarters' def quartal(month): if month <= 3: return(1) if month <= 6: return(2) if month <= 9: return(3) return (4) ## create 'quarter' column df_CAR_UE['quarter'] = [quartal(m) for m in df_CAR_UE['month']] print(df_CAR_UE['quarter']) df_CAR_UE.to_csv("./data/external/assignment_3_sp500_output.csv") ## sum industry df_ind = df_CAR_UE.groupby(['comnam', 'gvkey', 'hsiccd']).agg({'prc': 'mean'}) df_ind.to_csv("./data/external/assignment_3_sp500_ind.csv") df_ind2 = df_CAR_UE.groupby(['comnam', 'gvkey']).agg({'hsiccd': 'count'}) df_ind2 df_ind.to_csv("./data/external/assignment_3_sp500_ind2.csv") df_fund =
pd.read_csv("./data/external/assignment_3_cmp_fundamentals.csv")
pandas.read_csv
import pandas as pd import numpy as np import os import yfinance as yf # tags (part of statement to keep) tags = ['AssetsCurrent', 'CashAndCashEquivalentsAtCarryingValue', 'LiabilitiesCurrent', 'Liabilities', 'IncomeTaxesPaid', 'IncomeTaxesPaidNet', 'DepreciationDepletionAndAmortization', 'OperatingIncomeLoss', 'Assets', 'StockholdersEquity', 'WeightedAverageNumberOfSharesOutstandingBasic', 'NetCashProvidedByUsedInOperatingActivities', 'OtherLiabilitiesNoncurrent', 'RevenueFromContractWithCustomerExcludingAssessedTax', 'CostOfGoodsAndServicesSold', 'CostOfRevenue', 'EarningsPerShareBasic', 'Revenues', 'ResearchAndDevelopmentExpense', 'SellingGeneralAndAdministrativeExpense', 'PaymentsToAcquirePropertyPlantAndEquipment'] # the quarters the final dataframe should contain quarters = ['2017Q4', '2018Q1', '2018Q2', '2018Q3', '2018Q4', '2019Q1', '2019Q2', '2019Q3', '2019Q4', '2020Q1', '2020Q2', '2020Q3', '2020Q4', '2021Q1', '2021Q2', '2021Q3', '2021Q4'] # year of last annual statement year = 2020 def create_quarterly_data(quarters, tags): """ :param quarters: quarters for which financial statement should be considered :param tags: parts of financial statement which should be considered :return: returns quarterly data for all tags and quarters """ # final DataFrame financial_statement = pd.DataFrame() # get ticker data ticker = pd.read_json('./data/ticker.txt').T # transform ticker ticker = ticker.drop(['title'], axis=1) ticker.columns = ['cik', 'ticker'] ticker['cik'] = ticker['cik'].astype(str) # some cik's have more than one ticker ticker = ticker.drop_duplicates(subset='cik') # iterate though all the folders in data for folder in os.listdir('./data'): if folder.startswith("20"): print(folder) # import data sub = pd.read_csv(f"./data/{folder}/sub.txt", sep="\t", dtype={"cik": str}) num = pd.read_csv(f"./data/{folder}/num.txt", sep="\t") # transform sub data # filter for needed columns cols = ['adsh', 'cik', 'name', 'sic', 'form', 'filed', 'period', 'accepted', 'fy', 'fp'] sub = sub[cols] # change to datetype sub["accepted"] = pd.to_datetime(sub["accepted"]) sub["period"] = pd.to_datetime(sub["period"], format="%Y%m%d") sub["filed"] = pd.to_datetime(sub["filed"], format="%Y%m%d") # filter for quarterly and annual financial data sub = sub[sub['form'].isin(['10-K', '10-Q'])] # delete duplicates --> company handed in same file in same period --> only keep newest sub = sub.loc[sub.sort_values(by=["filed", "accepted"], ascending=False).groupby(["cik", "period"]).cumcount() == 0] # drop not needed columns sub = sub.drop(['filed', 'period', 'accepted', 'fy', 'fp'], axis=1) # merge ticker and sub data sub = sub.merge(ticker) # transform num data # change to datetype num["ddate"] = pd.to_datetime(num["ddate"], format="%Y%m%d") # filter for needed columns cols_num = ['adsh', 'tag', 'ddate', 'qtrs', 'value'] num = num[cols_num] # only select current date and quarter num = num.loc[ num.sort_values(by=["ddate", "qtrs"], ascending=(False, True)).groupby(["adsh", "tag"]).cumcount() == 0] # create quarter and year column num['quarter'] = num['ddate'].dt.quarter num['year'] = num['ddate'].dt.year # merge num and sub data num = num.merge(sub) # append to financial statement financial_statement = financial_statement.append(num) # filter for needed tags financial_statement = financial_statement[financial_statement.loc[:, 'tag'].isin(tags)] financial_statement = financial_statement.sort_values(by='ddate') # create Q4 data for idx, row in financial_statement.iterrows(): # when form is 10-K --> annual report --> change to quarterly if row['form'] == '10-K': # some companies only deliver full year numbers (qtrs = 4) if row['qtrs'] == 4: # filter for company and tag, select index of last 3 quarters idx_list = financial_statement[ (financial_statement.loc[:, 'ticker'] == row['ticker']) & (financial_statement.loc[:, 'tag'] == row['tag'])].index.values.tolist() idx_position = idx_list.index(idx) idx_list = idx_list[idx_position - 3:idx_position] # subtract sum of all quarters from full year number financial_statement.at[idx, 'value'] = financial_statement.at[idx, 'value'] - \ financial_statement.loc[idx_list, 'value'].sum() # reset index financial_statement = financial_statement.reset_index() # only keep last 16 quarters financial_statement['year-quarter'] = financial_statement['year'].astype(str) + 'Q' + financial_statement['quarter'].astype(str) financial_statement = financial_statement.loc[financial_statement['year-quarter'].isin(quarters)] financial_statement = financial_statement.drop(['index', 'adsh', 'ddate', 'qtrs', 'form'], axis=1) # save as gzip file financial_statement.to_parquet('./data/financial_statements.parquet.gzip', compression='gzip') return financial_statement def create_annual_data(tags): """ :param tags: parts of financial statement which should be considered :return: returns annual data for all tags """ # final DataFrame financial_statement =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Thu Apr 16 20:31:43 2020 @author: balajiramesh """ icd_cols=['PRINC_DIAG_CODE', 'OTH_DIAG_CODE_1', 'OTH_DIAG_CODE_2', 'OTH_DIAG_CODE_3', 'OTH_DIAG_CODE_4', 'OTH_DIAG_CODE_5', 'OTH_DIAG_CODE_6', 'OTH_DIAG_CODE_7', 'OTH_DIAG_CODE_8', 'OTH_DIAG_CODE_9', 'E_CODE_1', 'E_CODE_2', 'E_CODE_3', 'E_CODE_4', 'E_CODE_5'] icd_codes=sp.loc[:,icd_cols] icd_codes=icd_codes.values.flatten() icd_codes = icd_codes[~pd.isnull(icd_codes)] icd_codes=pd.Series(icd_codes) unique_codes=pd.Series(icd_codes.unique()) #check for icd 10 format unique_codes[~unique_codes.str.match("([A-TV-Z][0-9][A-Z0-9](\.?[A-Z0-9]{0,4})?)")] unique_codes[unique_codes.str.match("[^A-Z\d.]")] #%%group by date and censustract def groupAndCat(df): grouped_tracts=df.groupby(['STMT_PERIOD_FROM_GROUPED', 'PAT_ADDR_CENSUS_TRACT']).size().reset_index() grouped_tracts.columns = [*grouped_tracts.columns[:-1], 'Counts'] #remove zero counts groups grouped_tracts=grouped_tracts.loc[grouped_tracts['Counts']>0,] #%% merge aux files to see the counts import pandas as pd import glob import os files=glob.glob(r'Z:\Balaji\Analysis_out_IPOP\23122020\SVI_Cat_T4\*_aux.csv') x=[] for f in files: df=pd.read_csv(f) df["outcome"]=os.path.basename(f).replace("_aux.csv","") x.append(df) concat_df=pd.concat(x) concat_df['folder']='SVI_Cat_T4' concat_df.to_clipboard(index=False) #%% result_df=pd.DataFrame({'outcome':concat_df.outcome.unique()}) flood_cats=['NO','FLood_1'] for cat in flood_cats: for period in concat_df.Time.unique(): cols=concat_df.loc[concat_df.Time==period,['outcome',cat]].rename(columns={cat:cat+'_'+period}) result_df=result_df.merge(cols,on='outcome',how='left') result_df.to_clipboard(index=False) #%% #filtering zip codes #using Zipcode sp.loc[:,"ZIP5"]=sp.PAT_ZIP.str.slice(stop=5) sp=sp.loc[~sp.ZIP5.isin(['0'*i for i in range(1,6)]),:] one_var="ZIP5" #%% read and merge sys files=glob.glob('Z:\\SyS data\\*') x=[pd.read_csv(f,encoding = "ISO-8859-1") for f in files] result_df=pd.concat(x) result_df.to_csv("Z:\\Balaji\\SyS data\\merged.csv",index=None) #%%find unique tracts and counts in OP data rm_df=df.loc[:,['Outcome','floodr','Time','year','month','weekday', 'PAT_AGE_YEARS','SEX_CODE','RACE','ETHNICITY','PAT_ADDR_CENSUS_TRACT']] rm_df=rm_df.dropna() rm_df.PAT_ADDR_CENSUS_TRACT.unique() (rm_df.PAT_ADDR_CENSUS_TRACT//1000000).unique() #%% checking how glm and gee poisson models works with offset ############################### import random df=pd.DataFrame(np.random.randint(0,2,size=(1000, 2)),columns=['x','y']) df.y[df.x==1]=random.choices([0,1], [.2,.8],k= df.y[df.x==1].shape[0]) ct=pd.crosstab(df.y,df.x).values #(390/(104+390))/(263/(263+243)) print(pd.crosstab(df.x,df.y)) orr= (ct[1,1]/(ct[1,1]+ct[0,1]))/(ct[1,0]/(ct[1,0]+ct[0,0])) choices=[1000,4000] offset=np.log(random.choices(choices, [.5,.5],k= 1000)) #%% print('overall rr') print(orr) sub_df=df[offset==np.log(choices[0])] ct=pd.crosstab(sub_df.y,sub_df.x).values print('subdf 1 rr') rr= (ct[1,1]/(ct[1,1]+ct[0,1]))/(ct[1,0]/(ct[1,0]+ct[0,0])) print(rr) sub_df=df[offset==np.log(choices[1])] ct=pd.crosstab(sub_df.y,sub_df.x).values print('subdf 2 rr') rr= (ct[1,1]/(ct[1,1]+ct[0,1]))/(ct[1,0]/(ct[1,0]+ct[0,0])) print(rr) model = smf.gee(formula='y~x',groups=df.index, data=df,offset=None,family=sm.families.Poisson(link=sm.families.links.log())) results=model.fit() results_as_html = results.summary().tables[1].as_html() reg_table=pd.read_html(results_as_html, header=0, index_col=0)[0].reset_index() reg_table.loc[:,'coef']=np.exp(reg_table.coef) reg_table.loc[:,['[0.025', '0.975]']]=np.exp(reg_table.loc[:,['[0.025', '0.975]']]) print('gee---------------') print(reg_table) model = smf.glm(formula='y~x',data=df,offset=None,family=sm.families.Poisson(link=sm.families.links.log())) results=model.fit() results_as_html = results.summary().tables[1].as_html() reg_table=pd.read_html(results_as_html, header=0, index_col=0)[0].reset_index() reg_table.loc[:,'coef']=np.exp(reg_table.coef) reg_table.loc[:,['[0.025', '0.975]']]=np.exp(reg_table.loc[:,['[0.025', '0.975]']]) print('glm---------------') print(reg_table) print('with offset glm-------------') model = smf.glm(formula='y~x',data=df,offset=offset,family=sm.families.Poisson(link=sm.families.links.log())) results=model.fit() results_as_html = results.summary().tables[1].as_html() reg_table=pd.read_html(results_as_html, header=0, index_col=0)[0].reset_index() reg_table.loc[:,'coef']=np.exp(reg_table.coef) reg_table.loc[:,['[0.025', '0.975]']]=np.exp(reg_table.loc[:,['[0.025', '0.975]']]) print(reg_table) #model = smf.logit(formula=formula, data=df,missing='drop') #model = smf.glm(formula=formula, data=df,missing='drop',family=sm.families.Binomial(sm.families.links.logit())) #%%looping for automatic saving #floodr_use="DFO_R200" #['DFO_R200','DFO_R100','LIST_R20','DFO_R20','DFOuLIST_R20'] #nullAsZero="True" #null flood ratios are changed to 0 #floodZeroSep="True" # zeros are considered as seperate class #flood_data_zip=None #Dis_cats=["DEATH","Dehydration","Bite-Insect","Dialysis","Asthma_like","Respiratory_All","Infectious_and_parasitic"] Dis_cats=[ 'ALL', #'Psychiatric', 'Intestinal_infectious_diseases', 'ARI', 'Bite-Insect', #'DEATH', # #'Flood_Storms', #'CO_Exposure', #'Drowning', #'Heat_Related_But_Not_dehydration', # 'Hypothermia', # #'Dialysis', # #'Medication_Refill', # 'Asthma', 'Pregnancy_complic', 'Chest_pain', 'Dehydration', ] for exposure in ['triCloseProxDur', 'triDistMiles', 'hvyRainDur', 'totRainfall']: print(exposure) for Dis_cat in Dis_cats: try: print(Dis_cat) print("-"*50) run() except Exception as e: print(e) #%% SVI_COLS=['SVI_Cat','SVI_Cat_T1', 'SVI_Cat_T2', 'SVI_Cat_T3', 'SVI_Cat_T4'] import os for SVI_COL in SVI_COLS: for FIL_COL in [1,2,3,4]: #os.mkdir(SVI_COL) #os.chdir(SVI_COL) for Dis_cat in Dis_cats: try: print(Dis_cat) print("-"*50) run() except Exception as e: print(e) #os.chdir('..') #%% pivot table for counts and mergingt the pivot tables outcomes=['Asthma','Bite_Insect','CardiovascularDiseases','Dehydration','Diarrhea','Pregnancy_complic','Heat_Related_But_Not_dehydration'] sex=pd.pivot_table(data=df,index=['period','flood_binary'],values=outcomes,aggfunc='sum',columns=['Sex']).T.rename(columns=str).reset_index().rename(columns={'Sex':'cats'}) Ethnicity=pd.pivot_table(data=df,index=['period','flood_binary'],values=outcomes,aggfunc='sum',columns=['Ethnicity']).T.rename(columns=str).reset_index().rename(columns={'Ethnicity':'cats'}) Race=pd.pivot_table(data=df,index=['period','flood_binary'],values=outcomes,aggfunc='sum',columns=['Race']).T.rename(columns=str).reset_index().rename(columns={'Race':'cats'}) start=-1 df['AgeGrp']=pd.cut(df.Age,[start,5,17,50,64,200],labels=['0_5','6_17','18_50','51_64','gt64']) age1=pd.pivot_table(data=df,index=['period','flood_binary'],values=['Dehydration'],aggfunc='sum',columns=['AgeGrp']).T.rename(columns=str).reset_index().rename(columns={'AgeGrp':'cats'}) df['AgeGrp']=
pd.cut(df.Age,[start,5,17,50,200],labels=['0_5','6_17','18_50','gt50'])
pandas.cut
import csv import pandas as pd from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split import pandas as pd import numpy as np import statsmodels.api as sm df = pd.read_csv("./[Track1_데이터3] samp_cst_feat.csv") X = df[1:] df = df.drop(1,0) data=[] f = open('./[Track1_데이터3] samp_cst_feat.csv','r') rdr = csv.reader(f) for i in rdr: data.append(i) a=data[0] del a[0] df2 = pd.read_csv("./[Track1_데이터2] samp_train.csv") featureColumns = a df2 = df2.drop(1,0) y = df2['MRC_ID_DI'] X_train, X_test, Y_train, Y_test = train_test_split(X, y, test_size=0.3) #y.astype(int) #X.astype(int) y= list(y) X= list(X) def processSubset(x,y, feature_set): model = sm.OLS(y,x) #modeling regr = model.fit() #모델학습 AIC = regr.aic #모델의 AIC return {"model" : regr , "AIC" : AIC} print(processSubset(x=X_train,y=Y_train,feature_set= featureColumns)) #모든 조합을 다 조합해서 좋은 모델을 반환시키는 알고리즘 import time import itertools def getBest(x,y,k): tic = time.time() #시작시간 results = [] #결과저장공간 for combo in itertools.combinations(x.columns.difference(['const']),k): combo=(list(combo)+['const']) #각 변수조합을 고려한 경우의 수 results.append(processSubset(x,y,feature_set=combo))#모델링된 것들을 저장 models=pd.DataFrame(results) #데이터 프레임으로 변환 #가장 낮은 AIC를 가지는 모델 선택 및 저장 bestModel = models.loc[models['AIC'].argmin()] #index toc = time.time() #종료시간 print("Processed",models.shape[0],"models on",k,"predictors in",(toc-tic), "seconds.") return bestModel #print(getBest(x=X_train,y=Y_train,k=2)) #변수 선택에 따른 학습시간과 저장 K 반복 models = pd.DataFrame(columns=["AIC","model"]) tic = time.time() for i in range(1,4): models.loc[i] = getBest(X_train,Y_train,i) #toc = time.time() #print("Total elapsed time : ",(toc-tic),"seconds") #print(models) #전진 선택법(Step=1) def forward(x,y,predictors): remainingPredictors = [p for p in x.columns.difference(['const']) if p not in predictors] tic=time.time() results=[] for p in remainingPredictors: results.append(processSubset(x=x,y=y,feature_set=predictors+[p]+['const'])) #데이터프레임으로 변환 models = pd.DataFrame(results) #AIC가 가장 낮은 것을 선택 bestModel = models.loc[models['AIC'].argmin()] #index toc = time.time() print("Processed ", models.shape[0],"models on", len(predictors)+1, "predictors in",(toc-tic)) print("Selected predictors:",bestModel['model'].model.exog_names, 'AIC : ',bestModel[0]) return bestModel #전진선택법 모델 def forward_model(x,y): fModels =
pd.DataFrame(columns=["AIC","model"])
pandas.DataFrame
import pandas as pd import matplotlib.pyplot as plt tamano_muestra = 120 #N bandera_paso = False iter = 0 lsupAnterior = -5 linfAnterior = -5 licentAnterior = -5 datos = pd.read_csv('data.csv', header=None) articulos_defectuosos = datos outLanterior =
pd.Series()
pandas.Series
from qutip import * from ..mf import * import pandas as pd from scipy.interpolate import interp1d from copy import deepcopy import matplotlib.pyplot as plt def ham_gen_jc(params, alpha=0): sz = tensor(sigmaz(), qeye(params.c_levels)) sm = tensor(sigmam(), qeye(params.c_levels)) a = tensor(qeye(2), destroy(params.c_levels)) + alpha ham = (params.fc-params.fd)*a.dag()*a ham += params.eps*(a+a.dag()) ham += 0.5*(params.f01-params.fd)*sz ham += params.g*(a*sm.dag() + a.dag()*sm) ham *= 2*np.pi return ham def c_ops_gen_jc(params, alpha=0): c_ops = [] sm = tensor(sigmam(), qeye(params.c_levels)) a = tensor(qeye(2), destroy(params.c_levels)) + alpha if params.gamma > 0.0: c_ops.append(np.sqrt(2*np.pi*params.gamma*(1+params.n_t))*sm) if params.n_t > 0: c_ops.append(np.sqrt(2*np.pi*params.gamma*params.n_t)*sm.dag()) if params.gamma_phi > 0.0: c_ops.append(np.sqrt(2*np.pi*params.gamma_phi)*sm.dag()*sm) if params.kappa > 0.0: c_ops.append(np.sqrt(2*np.pi*params.kappa*(1+params.n_c))*a) if params.n_c > 0: c_ops.append(np.sqrt(2*np.pi*params.kappa*params.n_c)*a.dag()) return c_ops def iterative_alpha_calc(params, n_cycles=10, initial_alpha=0): alpha = initial_alpha try: for idx in range(n_cycles): ham = ham_gen_jc(params, alpha=alpha) c_ops = c_ops_gen_jc(params, alpha=alpha) rho = steadystate(ham, c_ops) a = tensor(qeye(2), destroy(params.c_levels)) + alpha a_exp = expect(a, rho) alpha = a_exp except: alpha = None return alpha class Spectrum: def __init__(self, parameters): print('hello') self.parameters = deepcopy(parameters) self.mf_amplitude = None self.me_amplitude = None self.transmission_exp = None self.hilbert_params = None def iterative_calculate(self, fd_array, initial_alpha=0, n_cycles=10, prune=True): if self.parameters.fc < self.parameters.f01: change = 'hard' else: change = 'soft' params = deepcopy(self.parameters) fd_array = np.sort(fd_array) a_array = np.zeros(fd_array.shape[0], dtype=complex) alpha = initial_alpha for fd_idx, fd in tqdm(enumerate(fd_array)): params.fd = fd alpha = iterative_alpha_calc(params, initial_alpha=alpha, n_cycles=n_cycles) a_array[fd_idx] = alpha if change is 'hard': alpha_bright_iterative = pd.Series(a_array, index=fd_array, name='alpha_bright') else: alpha_dim_iterative = pd.Series(a_array, index=fd_array, name='alpha_dim') fd_array = np.flip(fd_array) a_array = np.zeros(fd_array.shape[0], dtype=complex) alpha = initial_alpha for fd_idx, fd in tqdm(enumerate(fd_array)): params.fd = fd alpha = iterative_alpha_calc(params, initial_alpha=alpha, n_cycles=n_cycles) a_array[fd_idx] = alpha if change is 'hard': alpha_dim_iterative = pd.Series(a_array, index=fd_array, name='alpha_dim') else: alpha_bright_iterative = pd.Series(a_array, index=fd_array, name='alpha_bright') if prune: alpha_dim_iterative = alpha_dim_iterative.dropna() alpha_bright_iterative = alpha_bright_iterative.dropna() alpha_dim_iterative.sort_index(inplace=True) alpha_bright_iterative.sort_index(inplace=True) if change is 'hard': # alpha_dim_diff = np.diff(alpha_dim_iterative)/np.diff(alpha_dim_iterative.index) # first_dim_idx = np.argmax(np.abs(alpha_dim_diff)) + 1 first_dim_idx = np.argmax(alpha_dim_iterative.real) alpha_dim_iterative = alpha_dim_iterative.iloc[first_dim_idx:] # alpha_bright_diff = np.diff(alpha_bright_iterative) / np.diff(alpha_bright_iterative.index) # last_bright_idx = np.argmax(np.abs(alpha_bright_diff)) last_bright_idx = np.argmin(alpha_bright_iterative.imag) alpha_bright_iterative = alpha_bright_iterative.iloc[:last_bright_idx + 1] else: first_bright_idx = np.argmin(alpha_bright_iterative.imag) alpha_bright_iterative = alpha_bright_iterative.iloc[first_bright_idx:] last_dim_idx = np.argmin(alpha_dim_iterative.real) alpha_dim_iterative = alpha_dim_iterative.iloc[:last_dim_idx+1] self.iterative_amplitude = pd.concat([alpha_dim_iterative, alpha_bright_iterative], axis=1) def gen_raw_hilbert_params(self, fd_array, c_levels): self.hilbert_params = pd.DataFrame(np.zeros([fd_array.shape[0], 1]), index=fd_array, columns=['alpha_0']) self.hilbert_params['c_levels'] = c_levels def gen_iterative_hilbert_params(self, fd_limits, kind='linear', fill_value='extrapolate', fraction=0.5, level_scaling=1.0, max_shift=False, max_levels=True, relative='dim', relative_crossover=None, c_levels_bistable=None): if self.parameters.fc < self.parameters.f01: change = 'hard' else: change = 'soft' alpha_dim = self.iterative_amplitude['alpha_dim'].dropna() # alpha_dim.sort_index(inplace=True) # alpha_dim_diff = np.diff(alpha_dim)/np.diff(alpha_dim.index) # first_dim_idx = np.argmax(np.abs(alpha_dim_diff)) + 1 # alpha_dim = alpha_dim.iloc[first_dim_idx:] alpha_bright = self.iterative_amplitude['alpha_bright'].dropna() # alpha_bright.sort_index(inplace=True) # alpha_bright_diff = np.diff(alpha_bright) / np.diff(alpha_bright.index) # last_bright_idx = np.argmax(np.abs(alpha_bright_diff)) # alpha_bright = alpha_bright.iloc[:last_bright_idx] new_iterative_alphas = pd.concat([alpha_dim, alpha_bright], axis=1) self.iterative_amplitude = new_iterative_alphas alpha_dim_real_func = interp1d(alpha_dim.index, alpha_dim.real, kind=kind, fill_value=fill_value) alpha_dim_imag_func = interp1d(alpha_dim.index, alpha_dim.imag, kind=kind, fill_value=fill_value) def alpha_dim_func_single(fd): alpha_dim = alpha_dim_real_func(fd) + 1j * alpha_dim_imag_func(fd) return alpha_dim alpha_dim_func_vec = np.vectorize(alpha_dim_func_single) def alpha_dim_func(fd_array): alpha_dim_array = alpha_dim_func_vec(fd_array) alpha_dim_series = pd.Series(alpha_dim_array, index=fd_array, name='alpha_dim_func') return alpha_dim_series alpha_bright_real_func = interp1d(alpha_bright.index, alpha_bright.real, kind=kind, fill_value=fill_value) alpha_bright_imag_func = interp1d(alpha_bright.index, alpha_bright.imag, kind=kind, fill_value=fill_value) def alpha_bright_func_single(fd): alpha_bright = alpha_bright_real_func(fd) + 1j * alpha_bright_imag_func(fd) return alpha_bright alpha_bright_func_vec = np.vectorize(alpha_bright_func_single) def alpha_bright_func(fd_array): alpha_bright_array = alpha_bright_func_vec(fd_array) alpha_bright_series =
pd.Series(alpha_bright_array, index=fd_array, name='alpha_bright')
pandas.Series
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri May 31 09:27:49 2019 @author: jenny """ import numpy as np import matplotlib.pyplot as plt import pandas as pd import random # Spliting data to trainning and testing set from sklearn.model_selection import train_test_split, GridSearchCV # Fitting Multiple Linear Regression to the trainning set from sklearn.linear_model import LinearRegression, Lasso from sklearn.cluster import KMeans from sklearn.metrics import mean_squared_error, r2_score, classification_report from sklearn import tree # Matplotlib setting def DT_evaluation(clf,x_axis,n_folds,X_train,X_test,y_train,y_test): scores = clf.cv_results_['mean_test_score'] scores_std = clf.cv_results_['std_test_score'] std_error = scores_std / np.sqrt(n_folds) plt.figure() plt.plot(x_axis, scores + std_error, 'b--o', markersize=3) plt.plot(x_axis, scores - std_error, 'b--o', markersize=3) plt.plot(x_axis, scores,color='black', marker='o', markerfacecolor='blue', markersize=5) plt.fill_between(x_axis, scores + std_error, scores - std_error, alpha=0.2) plt.xlabel('Maximum tree depth') plt.ylabel('Cross validation score +/- std error') plt.title('Cross validation results') pred_train = clf.predict(X_train) pred_test = clf.predict(X_test) print('Classification report for training data: \n', classification_report(y_train, pred_train)) print('Classification report for test data: \n', classification_report(y_test, pred_test)) print('The best choice of depth: ' + str(clf.best_params_['max_depth'])) # source: https://scikit-learn.org/stable/auto_examples/exercises/plot_cv_diabetes.html#sphx-glr-auto-examples-exercises-plot-cv-diabetes-py if __name__ == "__main__": # DATA PREPROCESSING # Import dataset rating_dataset =
pd.read_csv('./data/ratings.csv')
pandas.read_csv
import numpy as np import pandas as pd import pytest from evalml import AutoMLSearch from evalml.objectives import CostBenefitMatrix def test_cbm_init(): with pytest.raises( ValueError, match="Parameters to CostBenefitMatrix must all be numeric values." ): CostBenefitMatrix( true_positive=None, true_negative=-1, false_positive=-7, false_negative=-2 ) with pytest.raises( ValueError, match="Parameters to CostBenefitMatrix must all be numeric values." ): CostBenefitMatrix( true_positive=1, true_negative=-1, false_positive=None, false_negative=-2 ) with pytest.raises( ValueError, match="Parameters to CostBenefitMatrix must all be numeric values." ): CostBenefitMatrix( true_positive=1, true_negative=None, false_positive=-7, false_negative=-2 ) with pytest.raises( ValueError, match="Parameters to CostBenefitMatrix must all be numeric values." ): CostBenefitMatrix( true_positive=3, true_negative=-1, false_positive=-7, false_negative=None ) @pytest.mark.parametrize("optimize_thresholds", [True, False]) def test_cbm_objective_automl(optimize_thresholds, X_y_binary): X, y = X_y_binary cbm = CostBenefitMatrix( true_positive=10, true_negative=-1, false_positive=-7, false_negative=-2 ) automl = AutoMLSearch( X_train=X, y_train=y, problem_type="binary", objective=cbm, max_iterations=2, optimize_thresholds=optimize_thresholds, ) automl.search() pipeline = automl.best_pipeline pipeline.fit(X, y) predictions = pipeline.predict(X, cbm) assert not np.isnan(predictions).values.any() assert not np.isnan(pipeline.predict_proba(X)).values.any() assert not np.isnan(pipeline.score(X, y, [cbm])["Cost Benefit Matrix"]) @pytest.mark.parametrize("data_type", ["ww", "pd"]) def test_cbm_objective_function(data_type, make_data_type): y_true = pd.Series([0, 0, 0, 1, 1, 1, 1, 1, 1, 1]) y_predicted = pd.Series([0, 0, 1, 0, 0, 0, 0, 1, 1, 1]) y_true = make_data_type(data_type, y_true) y_predicted = make_data_type(data_type, y_predicted) cbm = CostBenefitMatrix( true_positive=10, true_negative=-1, false_positive=-7, false_negative=-2 ) assert np.isclose( cbm.objective_function(y_true, y_predicted), ((3 * 10) + (-1 * 2) + (1 * -7) + (4 * -2)) / 10, ) def test_cbm_objective_function_floats(): y_true = pd.Series([0, 0, 0, 1, 1, 1, 1, 1, 1, 1]) y_predicted = pd.Series([0, 0, 1, 0, 0, 0, 0, 1, 1, 1]) cbm = CostBenefitMatrix( true_positive=5.1, true_negative=-1.2, false_positive=-6.7, false_negative=-0.1 ) assert np.isclose( cbm.objective_function(y_true, y_predicted), ((3 * 5.1) + (-1.2 * 2) + (1 * -6.7) + (4 * -0.1)) / 10, ) def test_cbm_input_contains_nan(X_y_binary): y_predicted = pd.Series([np.nan, 0, 0]) y_true = pd.Series([1, 2, 1]) cbm = CostBenefitMatrix( true_positive=10, true_negative=-1, false_positive=-7, false_negative=-2 ) with pytest.raises(ValueError, match="y_predicted contains NaN or infinity"): cbm.score(y_true, y_predicted) y_true = pd.Series([np.nan, 0, 0]) y_predicted = pd.Series([1, 2, 0]) with pytest.raises(ValueError, match="y_true contains NaN or infinity"): cbm.score(y_true, y_predicted) def test_cbm_input_contains_inf(capsys): cbm = CostBenefitMatrix( true_positive=10, true_negative=-1, false_positive=-7, false_negative=-2 ) y_predicted = np.array([np.inf, 0, 0]) y_true = np.array([1, 0, 0]) with pytest.raises(ValueError, match="y_predicted contains NaN or infinity"): cbm.score(y_true, y_predicted) y_true = pd.Series([np.inf, 0, 0]) y_predicted = pd.Series([1, 0, 0]) with pytest.raises(ValueError, match="y_true contains NaN or infinity"): cbm.score(y_true, y_predicted) def test_cbm_different_input_lengths(): cbm = CostBenefitMatrix( true_positive=10, true_negative=-1, false_positive=-7, false_negative=-2 ) y_predicted = pd.Series([0, 0]) y_true = pd.Series([1]) with pytest.raises(ValueError, match="Inputs have mismatched dimensions"): cbm.score(y_true, y_predicted) y_true =
pd.Series([0, 0])
pandas.Series
import pandas as pd import numpy as np import re from datetime import timedelta as timedelta_t from typing import Union, List, Set, Dict from dataclasses import dataclass from qlearn.core.utils import infer_series_frequency, _check_frame_columns @dataclass class DataType: # data type: multi, ticks, ohlc type: str symbols: List[str] freq: str subtypes: Set[str] def frequency(self): return
pd.Timedelta(self.freq)
pandas.Timedelta
""" This is Flask Application for ML. """ import pickle from flask import Flask, jsonify, request import pandas as pd # load model MODEL = pickle.load(open('iotmodel.pkl', 'rb')) # app APP = Flask(__name__) # routes @APP.route('/', methods=['POST']) def predict(): """ To predit the data """ # get data data = request.get_json(force=True) # convert data into dataframe data.update((x, [y]) for x, y in data.items()) data_df =
pd.DataFrame.from_dict(data)
pandas.DataFrame.from_dict
#Python 2.7.9 (default, Apr 5 2015, 22:21:35) # full env in environment.yml import sys, os ''' This is a full aggregation of the Pulsar Hunters project, including user weighting. Note it's quite a simple project - basically one Yes/No question - and there is gold-standard data, so the weighting is relatively straightforward and the aggregation is just determining a single fraction for each subject. For an example of an aggregation of a much more complex question tree, check out scripts for Galaxy Zoo. The user weighting in that project is also completely different. Hopefully this is well-enough commented below to be useful for others. --BDS ''' # file with raw classifications (csv) needed # put this way up here so if there are no inputs we exit quickly before even trying to load everything else try: classfile_in = sys.argv[1] except: #classfile_in = 'pulsar-hunters-classifications_first500k.csv' # just a shout-out to whoever changed Panoptes so that the export filenames # are human-readable instead of their previous format. Thank you #classfile_in = 'data/2e3d12a2-56ca-4d1f-930a-9ecc7fd39885.csv' print("\nUsage: %s classifications_infile [weight_class aggregations_outfile]" % sys.argv[0]) print(" classifications_infile is a Zooniverse (Panoptes) classifications data export CSV.") print(" weight_class is 1 if you want to calculate and apply user weightings, 0 otherwise.") print(" aggregations_outfile is the name of the file you want written. If you don't specify,") print(" the filename is %s by default." % outfile_default) sys.exit(0) import numpy as np # using 1.10.1 import pandas as pd # using 0.13.1 #import datetime #import dateutil.parser import json ############ Define files and settings below ############## # default outfile outfile_default = 'pulsar_aggregations.csv' rankfile_stem = 'subjects_ranked_by_weighted_class_asof_' # file with tags left in Talk, for value-added columns below talk_export_file = "helperfiles/project-764-tags_2016-01-15.json" # file with master list between Zooniverse metadata image filename (no source coords) and # original filename with source coords and additional info # also I get to have a variable that uses "filename" twice where each means a different thing # a filename for a file full of filenames #alliterationbiyotch filename_master_list_filename = "helperfiles/HTRU-N_sets_keys.csv" # this is a list of possible matches to known pulsars that was done after the fact so they # are flagged as "cand" in the database instead of "known" etc. poss_match_file = 'helperfiles/PossibleMatches.csv' # later we will select on tags by the project team and possibly weight them differently # note I've included the moderators and myself (though I didn't tag anything). # Also note it's possible to do this in a more general fashion using a file with project users and roles # However, hard-coding seemed the thing to do given our time constraints (and the fact that I don't think # you can currently export the user role file from the project builder) project_team = 'bretonr jocelynbb spindizzy Simon_Rookyard <NAME>_ilie jamesy23 <NAME> walkcr <NAME> benjamin_shaw bhaswati djchampion jwbmartin bstappers ElisabethB Capella05 vrooje'.split() # define the active workflow - we will ignore all classifications not on this workflow # we could make this an input but let's not get too fancy for a specific case. # for beta test #active_workflow_id = 1099 #active_workflow_major = 6 # for live project active_workflow_id = 1224 active_workflow_major = 4 # do we want sum(weighted vote count) = sum(raw vote count)? normalise_weights = True # do we want to write an extra file with just classification counts and usernames # (and a random color column, for treemaps)? counts_out = True counts_out_file = 'class_counts_colors.csv' ############ Set the other inputs now ############### try: apply_weight = int(sys.argv[2]) except: apply_weight = 0 try: outfile = sys.argv[3] except: outfile = outfile_default ################################################################################# ################################################################################# ################################################################################# # This is the function that actually does the aggregating def aggregate_class(grp): # translate the group to a dataframe because FML if I don't (some indexing etc is different) thegrp = pd.DataFrame(grp) # figure out what we're looping over below answers = thegrp.pulsar_classification.unique() # aggregating is a matter of grouping by different answers and summing the counts/weights byans = thegrp.groupby('pulsar_classification') ans_ct_tot = byans['count'].aggregate('sum') ans_wt_tot = byans['weight'].aggregate('sum') # we want fractions eventually, so we need denominators count_tot = np.sum(ans_ct_tot) # we could also do len(thegrp) weight_tot = np.sum(ans_wt_tot) # okay, now we should have a series of counts for each answer, one for weighted counts, and # the total votes and weighted votes for this subject. # now loop through the possible answers and create the raw and weighted vote fractions # and save the counts as well. # this is a list for now and we'll make it into a series and order the columns later class_agg = {} class_agg['count_unweighted'] = count_tot class_agg['count_weighted'] = weight_tot class_agg['subject_type'] = thegrp.subject_type.unique()[0] class_agg['filename'] = thegrp.filename.unique()[0] for a in answers: # don't be that jerk who labels things with "p0" or otherwise useless internal indices. # Use the text of the response next to this answer choice in the project builder (but strip spaces) raw_frac_label = ('p_'+a).replace(' ', '_') wt_frac_label = ('p_'+a+'_weight').replace(' ', '_') class_agg[raw_frac_label] = ans_ct_tot[a]/float(count_tot) class_agg[wt_frac_label] = ans_wt_tot[a]/float(weight_tot) # oops, this is hard-coded so that there's Yes and No as answers - sorry to those trying to generalise col_order = ["filename", "p_Yes", "p_No", "p_Yes_weight", "p_No_weight", "count_unweighted", "count_weighted", "subject_type"] return pd.Series(class_agg)[col_order] ################################################################################# ################################################################################# ################################################################################# # The new weighting assignment function allows the user to choose between different weighting schemes # though note the one in this function is not preferred for reasons explained below. def assign_weight_old(seed): # keep the two seed cases separate because we might want to use a different base for each if seed < 0.: return max([0.05, pow(1.0025, seed)]) elif seed > 0: return min([3.0, pow(1.0025, seed)]) else: return 1.0 # assigns a weight based on a seed parameter # The weight is assigned using the seed as an exponent and the number below as the base. # The number is just slightly offset from 1 so that it takes many classifications for # a user's potential weight to cap out at the max weight (3) or bottom out at the min (0.05). # Currently there are 641 "known" pulsars in the DB so the base of 1.025 is largely based on that. # Update: there are now about 5,000 simulated pulsars in the subject set as well, and they have a # much higher retirement limit, so that more people will have classified them and we have more info. # Note I'd rather this did a proper analysis with a confusion matrix etc but under a time crunch # we went with something simpler. def assign_weight(q, which_weight): # the floor weight for the case of which_weight == 2 # i.e. someone who has seed = 0 will have this # seed = 0 could either be equal numbers right & wrong, OR that we don't have any information c0 = 0.5 seed = q[1].seed n_gs = q[1].n_gs # Two possible weighting schemes: # which_weight == 1: w = 1.0025^(seed), bounded between 0.05 and 3.0 # which_weight == 2: w = (1 + log n_gs)^(seed/n_gs), bounded between 0.05 and 3.0 # # Weighting Scheme 1: # this is an okay weighting scheme, but it doesn't account for the fact that someone might be prolific # but not a very good classifier, and those classifiers shouldn't have a high weight. # Example: Bob does 10000 gold-standard classifications and gets 5100 right, 4900 wrong. # In this weighting scheme, Bob's weighting seed is +100, which means a weight of 1.0025^100 = 1.3, # despite the fact that Bob's classifications are consistent with random within 1%. # The weighting below this one would take the weight based on 100/10000, which is much better. if which_weight == 1: # keep the two seed cases separate because we might want to use a different base for each if seed < 0.: return max([0.05, pow(1.0025, seed)]) elif seed > 0: return min([3.0, pow(1.0025, seed)]) else: return 1.0 elif which_weight == 2: if n_gs < 1: # don't divide by or take the log of 0 # also if they didn't do any gold-standard classifications assume they have the default weight return c0 else: # note the max of 3 is unlikely to be reached, but someone could hit the floor. return min([3.0, max([0.05, c0*pow((1.0 + np.log10(n_gs)), (float(seed)/float(n_gs)))])]) else: # unweighted - so maybe don't even enter this function if which_weight is not 1 or 2... return 1.0 ################################################################################# ################################################################################# ################################################################################# # Get the Gini coefficient - https://en.wikipedia.org/wiki/Gini_coefficient # Typical values of the Gini for healthy Zooniverse projects (Cox et al. 2015) are # in the range of 0.7-0.9. def gini(list_of_values): sorted_list = sorted(list_of_values) height, area = 0, 0 for value in sorted_list: height += value area += height - value / 2. fair_area = height * len(list_of_values) / 2 return (fair_area - area) / fair_area ################################################################################# ################################################################################# ################################################################################# # assign a color randomly if logged in, gray otherwise def randcolor(user_label): if user_label.startswith('not-logged-in-'): # keep it confined to grays, i.e. R=G=B and not too bright, not too dark g = random.randint(25,150) return '#%02X%02X%02X' % (g,g,g) #return '#555555' else: # the lambda makes this generate a new int every time it's called, so that # in general R != G != B below. r = lambda: random.randint(0,255) return '#%02X%02X%02X' % (r(),r(),r()) ################################################################################# ################################################################################# ################################################################################# # These are functions that extract information from the various JSONs that are # included in the classification exports. To Do: optimise these so that one .apply() # call will extract them for everything without so many &^%@$ing loops. def get_subject_type(q): try: return q[1].subject_json[q[1].subject_id]['#Class'] except: return "cand" def get_filename(q): try: return q[1].subject_json[q[1].subject_id]['CandidateFile'] except: try: return q[1].subject_json[q[1].subject_id]['CandidateFileVertical'] except: try: return q[1].subject_json[q[1].subject_id]['CandidateFileHorizontal'] except: return "filenotfound.png" # get number of gold-standard classifications completed by a user (used if weighting) def get_n_gs(thegrp): return sum(pd.DataFrame(thegrp).seed != 0) # Something went weird with IP addresses, so use more info to determine unique users # Note the user_name still has the IP address in it if the user is not logged in; # it's just that for this specific project it's not that informative. def get_alternate_sessioninfo(row): # if they're logged in, save yourself all this trouble if not row[1]['user_name'].startswith('not-logged-in'): return row[1]['user_name'] else: metadata = row[1]['meta_json'] # IP + session, if it exists # (IP, agent, viewport_width, viewport_height) if session doesn't exist try: # start with "not-logged-in" so stuff later doesn't break return str(row[1]['user_name']) +"_"+ str(metadata['session']) except: try: viewport = str(metadata['viewport']) except: viewport = "NoViewport" try: user_agent = str(metadata['user_agent']) except: user_agent = "NoUserAgent" try: user_ip = str(row[1]['user_name']) except: user_ip = "NoUserIP" thesession = user_ip + user_agent + viewport return thesession ################################################################################# ################################################################################# ################################################################################# # Print out the input parameters just as a sanity check print("Computing aggregations using:") print(" infile: %s" % classfile_in) print(" weighted? %d" % apply_weight) print(" Will print to %s after processing." % outfile) ################################################################################# ################################################################################# ################################################################################# # # # # # Begin the main work # # # # print("Reading classifications from %s ..." % classfile_in) classifications = pd.read_csv(classfile_in) # this step can take a few minutes for a big file # Talk tags are not usually huge files so this doesn't usually take that long print("Parsing Talk tag file for team tags %s ..." % talk_export_file) talkjson = json.loads(open(talk_export_file).read()) talktags_all = pd.DataFrame(talkjson) # we only care about the Subject comments here, not discussions on the boards # also we only care about tags by the research team & moderators talktags = talktags_all[(talktags_all.taggable_type == "Subject") & (talktags_all.user_login.isin(project_team))].copy() # make a username-tag pair column # subject id is a string in the classifications array so force it to be one here or the match won't work talktags['subject_id'] = [str(int(q)) for q in talktags.taggable_id] talktags["user_tag"] = talktags.user_login+": #"+talktags.name+";" # when we're talking about Subject tags, taggable_id is subject_id talk_bysubj = talktags.groupby('subject_id') # this now contains all the project-team-written tags on each subject, 1 row per subject subj_tags = pd.DataFrame(talk_bysubj.user_tag.unique()) # if we need this as an explicit column #subj_tags['subject_id'] = subj_tags.index # likewise reading this matched files doesn't take long even though we have a for loop. print("Reading master list of matched filenames %s..." % filename_master_list_filename) matched_filenames = pd.read_csv(filename_master_list_filename) print("Reading from list of possible matches to known pulsars %s..." % poss_match_file) # ['Zooniverse name', 'HTRU-N name', 'Possible source'] possible_knowns = pd.read_csv(poss_match_file) possible_knowns['is_poss_known'] = [True for q in possible_knowns['Possible source']] # This section takes quite a while and it's because we have so many for loops, which I think is # in part because reading out of a dict from a column in a DataFrame needs loops when done this way # and in part because we were in a rush. # I think it's possible we could pass this to a function and reshape things there, then return # a set of new columns - but I didn't have time to figure that out under the deadlines we had. print("Making new columns and getting user labels...") # first, extract the started_at and finished_at from the annotations column classifications['meta_json'] = [json.loads(q) for q in classifications.metadata] classifications['started_at_str'] = [q['started_at'] for q in classifications.meta_json] classifications['finished_at_str'] = [q['finished_at'] for q in classifications.meta_json] # we need to set up a new user id column that's login name if the classification is while logged in, # session if not (right now "user_name" is login name or hashed IP and, well, read on...) # in this particular run of this particular project, session is a better tracer of uniqueness than IP # for anonymous users, because of a bug with some back-end stuff that someone else is fixing # but we also want to keep the user name if it exists, so let's use this function #classifications['user_label'] = [get_alternate_sessioninfo(q) for q in classifications.iterrows()] classifications['user_label'] = [get_alternate_sessioninfo(q) for q in classifications['user_name meta_json'.split()].iterrows()] classifications['created_day'] = [q[:10] for q in classifications.created_at] # Get subject info into a format we can actually use classifications['subject_json'] = [json.loads(q) for q in classifications.subject_data] ''' ALERT: I think they may have changed the format of the subject_dict such that later projects will have a different structure to this particular json. That will mean you'll have to adapt this part. Sorry - but hopefully it'll use the format that I note below I wish it had, or something similarly simple. ''' # extract the subject ID because that's needed later # Note the subject ID becomes the *index* of the dict, which is actually pretty strange versus # everything else in the export, and I'd really rather it be included here as "subject_id":"1234567" etc. # # You can isolate the keys as a new column but then it's a DictKey type, but stringifying it adds # all these other characters that you then have to take out. Thankfully all our subject IDs are numbers # this is a little weird and there must be a better way but... it works classifications['subject_id'] = [str(q.keys()).replace("dict_keys(['", "").replace("'])", '') for q in classifications.subject_json] # extract retired status, though not sure we're actually going to use it. # also, what a mess - you have to extract the subject ID first and then use it to call the subject_json. UGH # update: we didn't use it and each of these lines takes ages, so commenting it out #classifications['retired'] = [q[1].subject_json[q[1].subject_id]['retired'] for q in classifications.iterrows()] # Get annotation info into a format we can actually use # these annotations are just a single yes or no question, yay classifications['annotation_json'] = [json.loads(q) for q in classifications.annotations] classifications['pulsar_classification'] = [q[0]['value'] for q in classifications.annotation_json] # create a weight parameter but set it to 1.0 for all classifications (unweighted) - may change later classifications['weight'] = [1.0 for q in classifications.workflow_version] # also create a count parameter, because at the time of writing this .aggregate('count') was sometimes off by 1 classifications['count'] = [1 for q in classifications.workflow_version] ####################################################### # discard classifications not in the active workflow # ####################################################### print("Picking classifications from the active workflow (id %d, version %d.*)" % (active_workflow_id, active_workflow_major)) # use any workflow consistent with this major version, e.g. 6.12 and 6.23 are both 6 so they're both ok # also check it's the correct workflow id the_active_workflow = [int(q) == active_workflow_major for q in classifications.workflow_version] this_workflow = classifications.workflow_id == active_workflow_id in_workflow = this_workflow & the_active_workflow # note I haven't saved the full DF anywhere because of memory reasons, so if you're debugging: # classifications_all = classifications.copy() classifications = classifications[in_workflow] print("Extracting filenames and subject types...") # extract whether this is a known pulsar or a candidate that needs classifying - that info is in the # "#Class" column in the subject metadata (where # means it can't be seen by classifiers). # the options are "cand" for "candidate", "known" for known pulsar, "disc" for a pulsar that has been # discovered by this team but is not yet published # do this after you choose a workflow because #Class doesn't exist for the early subjects so it will break # also don't send the entirety of classifications into the function, to save memory #classifications['subject_type'] = [get_subject_type(q) for q in classifications.iterrows()] #classifications['filename'] = [get_filename(q) for q in classifications.iterrows()] classifications['subject_type'] = [get_subject_type(q) for q in classifications['subject_id subject_json'.split()].iterrows()] classifications['filename'] = [get_filename(q) for q in classifications['subject_id subject_json'.split()].iterrows()] # Let me just pause a second to rant again about the fact that subject ID is the index of the subject_json. # Because of that, because the top-level access to that was-json-now-a-dict requires the subject id rather than # just being label:value pairs, I have to do an iterrows() and send part of the entire classifications DF into # a loop so that I can simultaneously access each subject ID *and* the dict, rather than just accessing the # info from the dict directly, which would be much faster. # this might be useful for a sanity check later # first_class_day = min(classifications.created_day).replace(' ', '') # last_class_day = max(classifications.created_day).replace(' ', '') # for some reason this is reporting last-classification dates that are days after the actual last # classification. Not sure? Might be because this is a front-end reporting, so if someone has set # their computer's time wrong we could get the wrong time here. # could fix that by using created_at but ... I forgot. last_class_time = max(classifications.finished_at_str)[:16].replace(' ', '_').replace('T', '_').replace(':', 'h')+"m" ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## # ####################################################### # Apply weighting function (or don't) # ####################################################### ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## # classifications['seed'] = [0 for q in classifications.weight] classifications['is_gs'] = [0 for q in classifications.weight] if apply_weight > 0: print(" Computing user weights...") # for now this is assuming all subjects marked as "known" or "disc" are pulsars # and also "fake" are simulated pulsars is_known = (classifications.subject_type == 'known') | (classifications.subject_type == 'disc') | (classifications.subject_type == 'fake') #is_candidate = np.invert(is_known) # if it's a non-gold-standard classification, mark it classifications.loc[is_known, 'is_gs'] = 1 ok_incr = 1.0 # upweight if correct oops_incr = -2.0 # downweight more if incorrect # find the correct classifications of known pulsars ok_class = (is_known) & (classifications.pulsar_classification == 'Yes') # find the incorrect classifications of known pulsars oops_class = (is_known) & (classifications.pulsar_classification == 'No') # set the individual seeds classifications.loc[ok_class, 'seed'] = ok_incr classifications.loc[oops_class, 'seed'] = oops_incr # then group classifications by user name, which will weight logged in as well as not-logged-in (the latter by session) by_user = classifications.groupby('user_label') # get the user's summed seed, which goes into the exponent for the weight user_exp = by_user.seed.aggregate('sum') # then set up the DF that will contain the weights etc, and fill it user_weights = pd.DataFrame(user_exp) user_weights.columns = ['seed'] user_weights['user_label'] = user_weights.index user_weights['nclass_user'] = by_user['count'].aggregate('sum') user_weights['n_gs'] = by_user['is_gs'].aggregate('sum') user_weights['weight'] = [assign_weight(q, apply_weight) for q in user_weights.iterrows()] #user_weights['weight'] = [assign_weight_old(q) for q in user_exp] # if you want sum(unweighted classification count) == sum(weighted classification count), do this if normalise_weights: user_weights.weight *= float(len(classifications))/float(sum(user_weights.weight * user_weights.nclass_user)) # weights are assigned, now need to match them up to the main classifications table # making sure that this weight keeps the name 'weight' and the other gets renamed (suffixes flag) # if assign_weight == 0 then we won't enter this loop and the old "weights" will stay # as they are, i.e. == 1 uniformly. classifications_old = classifications.copy() classifications = pd.merge(classifications_old, user_weights, how='left', on='user_label', sort=False, suffixes=('_2', ''), copy=True) else: # just make a collated classification count array so we can print it to the screen by_user = classifications.groupby('user_label') user_exp = by_user.seed.aggregate('sum') user_weights = pd.DataFrame(user_exp) user_weights.columns = ['seed'] #user_weights['user_label'] = user_weights.index user_weights['nclass_user'] = by_user['count'].aggregate('sum') user_weights['n_gs'] = by_user['is_gs'].aggregate('sum') # UNWEIGHTED user_weights['weight'] = [1 for q in user_exp] # grab basic stats n_subj_tot = len(classifications.subject_data.unique()) by_subject = classifications.groupby('subject_id') subj_class = by_subject.created_at.aggregate('count') all_users = classifications.user_label.unique() n_user_tot = len(all_users) n_user_unreg = sum([q.startswith('not-logged-in-') for q in all_users]) # obviously if we didn't weight then we don't need to get stats on weights if apply_weight > 0: user_weight_mean = np.mean(user_weights.weight) user_weight_median = np.median(user_weights.weight) user_weight_25pct = np.percentile(user_weights.weight, 25) user_weight_75pct = np.percentile(user_weights.weight, 75) user_weight_min = min(user_weights.weight) user_weight_max = max(user_weights.weight) nclass_mean = np.mean(user_weights.nclass_user) nclass_median = np.median(user_weights.nclass_user) nclass_tot = len(classifications) user_weights.sort_values(['nclass_user'], ascending=False, inplace=True) # If you want to print out a file of classification counts per user, with colors for making a treemap # honestly I'm not sure why you wouldn't want to print this, as it's very little extra effort if counts_out == True: print("Printing classification counts to %s..." % counts_out_file) user_weight['color'] = [randcolor(q) for q in user_weight.index] user_weight.to_csv(counts_out_file) ## ## ## ## ## ## ## ## ## ## ## ## ## ## # ####################################################### # Print out basic project info # ####################################################### ## ## ## ## ## ## ## ## ## ## ## ## ## ## # print("%d classifications from %d users, %d registered and %d unregistered.\n" % (nclass_tot, n_user_tot, n_user_tot - n_user_unreg, n_user_unreg)) print("Mean n_class per user %.1f, median %.1f." % (nclass_mean, nclass_median)) if apply_weight > 0: print("Mean user weight %.3f, median %.3f, with the middle 50 percent of users between %.3f and %.3f." % (user_weight_mean, user_weight_median, user_weight_25pct, user_weight_75pct)) print("The min user weight is %.3f and the max user weight is %.3f.\n" % (user_weight_min, user_weight_max)) cols_print = 'nclass_user weight'.split() else: cols_print = 'nclass_user' # don't make this leaderboard public unless you want to gamify your users in ways we already know # have unintended and sometimes negative consequences. This is just for your information. print("Classification leaderboard:") print(user_weights[cols_print].head(20)) print("Gini coefficient for project: %.3f" % gini(user_weight['nclass_user'])) ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## # ####################################################### # Aggregate classifications, unweighted and weighted # ####################################################### ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## # print("\nAggregating classifications...\n") class_agg = by_subject['weight count pulsar_classification subject_type filename'.split()].apply(aggregate_class) # really ought to replace all the NaNs with 0.0 ####################################################### # Write to files # ####################################################### # # add value-added columns # # let people look up the subject on Talk directly from the aggregated file class_agg['link'] = ['https://www.zooniverse.org/projects/zooniverse/pulsar-hunters/talk/subjects/'+str(q) for q in class_agg.index] # after we do the merges below the new indices might not be linked to the subject id, so save it explicitly class_agg['subject_id'] = [str(q) for q in class_agg.index] # match up all the ancillary file data. Maybe there's a faster way to do this than with a chain but meh, # it's actually not *that* slow compared to the clusterf*ck of for loops in the column assignment part above class_agg_old = class_agg.copy() class_agg_interm = pd.merge(class_agg_old, subj_tags, how='left', left_index=True, right_index=True, sort=False, copy=True) class_agg_interm2 = pd.merge(class_agg_interm, matched_filenames, how='left', left_on='filename', right_on='Pulsar Hunters File', sort=False, copy=True) class_agg = pd.merge(class_agg_interm2, possible_knowns, how='left', left_on='filename', right_on='Zooniverse name', sort=False, copy=True) # fill in the is_poss_known column with False where it is currently NaN # currently it's either True or NaN -- with pd.isnull NaN becomes True and True becomes False, so invert that. class_agg['is_poss_known'] = np.invert(pd.isnull(class_agg['is_poss_known'])) # make the list ranked by p_Yes_weight class_agg.sort_values(['subject_type','p_Yes_weight'], ascending=False, inplace=True) print("Writing aggregated output to file %s...\n" % outfile) pd.DataFrame(class_agg).to_csv(outfile) # Now make files ranked by p_Yes, one with all subjects classified and one with only candidates # /Users/vrooje/anaconda/bin/ipython:1: FutureWarning: sort(columns=....) is deprecated, use sort_values(by=.....) # #!/bin/bash /Users/vrooje/anaconda/bin/python.app #class_agg.sort('p_Yes_weight', ascending=False, inplace=True) class_agg.sort_values(['p_Yes_weight'], ascending=False, inplace=True) # I'd rather note the last classification date than the date we happen to produce the file # rightnow = datetime.datetime.now().strftime('%Y-%M-%D_%H:%M') # rankfile_all = rankfile_stem + rightnow + ".csv" rankfile_all = 'all_'+rankfile_stem + last_class_time + ".csv" # there go those hard-coded columns again rank_cols = ['subject_id', 'filename', 'p_Yes_weight', 'count_weighted', 'p_Yes', 'count_unweighted', 'subject_type', 'link', 'user_tag', 'HTRU-N File'] print("Writing full ranked list to file %s...\n" % rankfile_all) # write just the weighted yes percentage, the weighted count, the subject type, and the link to the subject page # the subject ID is the index so it will be written anyway pd.DataFrame(class_agg[rank_cols]).to_csv(rankfile_all) rankfile = 'cand_allsubj_'+rankfile_stem + last_class_time + ".csv" print("Writing candidate-only ranked list to file %s...\n" % rankfile) # also only include entries where there were at least 5 weighted votes tallied # and only "cand" subject_type objects classified_candidate = (class_agg.count_weighted > 5) & (class_agg.subject_type == 'cand') pd.DataFrame(class_agg[rank_cols][classified_candidate]).to_csv(rankfile) rankfile_unk = 'cand_'+rankfile_stem + last_class_time + ".csv" print("Writing candidate-only, unknown-only ranked list to file %s...\n" % rankfile_unk) # also only include entries where there were at least 5 weighted votes tallied # and only "cand" subject_type objects classified_unknown_candidate = (classified_candidate) & (np.invert(class_agg.is_poss_known))
pd.DataFrame(class_agg[rank_cols][classified_unknown_candidate])
pandas.DataFrame
from pyops.utils import is_elapsed_time, parse_time, getMonth import pandas as pd from datetime import datetime import os class EVF: def __init__(self, fname): # Variable initialization self.WTF = list() self.meta = dict() self.header = list() self.ref_date = None self.init_values = list() self.include_files = list() self.propagation_delay = None # Loading the given file self.load(fname) def load(self, fname): # Storing the name of the file for editting purposes self.fname = fname # Auxiliary dictionary to speed up the data convertion into pandas aux_dict = dict(raw_time=[], time=[], event=[], experiment=[], item=[], count=[], comment=[]) # Importing the file out_ouf_metadata = False with open(fname) as f: for line in f: if '\n' in line[0]: pass # Filtering lines with comments elif '#' in line[0]: if not out_ouf_metadata: self.header.append(line) self._read_metada(line) else: self.WTF.append(line) # Storing events elif is_elapsed_time(line.split()[0]): aux_dict = self._read_events(line, aux_dict) # Useful data from the header else: # We can say we are out of the metadate here because # start_time and end_time are mandatory in the files out_ouf_metadata = True self._read_header_line(line.split()) # Closing the file f.close() # Creating the pandas dataframe self.events =
pd.DataFrame(aux_dict)
pandas.DataFrame
from collections import OrderedDict import numpy as np from numpy import nan, array import pandas as pd import pytest from .conftest import ( assert_series_equal, assert_frame_equal, fail_on_pvlib_version) from numpy.testing import assert_allclose import unittest.mock as mock from pvlib import inverter, pvsystem from pvlib import atmosphere from pvlib import iam as _iam from pvlib import irradiance from pvlib.location import Location from pvlib import temperature from pvlib._deprecation import pvlibDeprecationWarning @pytest.mark.parametrize('iam_model,model_params', [ ('ashrae', {'b': 0.05}), ('physical', {'K': 4, 'L': 0.002, 'n': 1.526}), ('martin_ruiz', {'a_r': 0.16}), ]) def test_PVSystem_get_iam(mocker, iam_model, model_params): m = mocker.spy(_iam, iam_model) system = pvsystem.PVSystem(module_parameters=model_params) thetas = 1 iam = system.get_iam(thetas, iam_model=iam_model) m.assert_called_with(thetas, **model_params) assert iam < 1. def test_PVSystem_multi_array_get_iam(): model_params = {'b': 0.05} system = pvsystem.PVSystem( arrays=[pvsystem.Array(module_parameters=model_params), pvsystem.Array(module_parameters=model_params)] ) iam = system.get_iam((1, 5), iam_model='ashrae') assert len(iam) == 2 assert iam[0] != iam[1] with pytest.raises(ValueError, match="Length mismatch for per-array parameter"): system.get_iam((1,), iam_model='ashrae') def test_PVSystem_get_iam_sapm(sapm_module_params, mocker): system = pvsystem.PVSystem(module_parameters=sapm_module_params) mocker.spy(_iam, 'sapm') aoi = 0 out = system.get_iam(aoi, 'sapm') _iam.sapm.assert_called_once_with(aoi, sapm_module_params) assert_allclose(out, 1.0, atol=0.01) def test_PVSystem_get_iam_interp(sapm_module_params, mocker): system = pvsystem.PVSystem(module_parameters=sapm_module_params) with pytest.raises(ValueError): system.get_iam(45, iam_model='interp') def test__normalize_sam_product_names(): BAD_NAMES = [' -.()[]:+/",', 'Module[1]'] NORM_NAMES = ['____________', 'Module_1_'] norm_names = pvsystem._normalize_sam_product_names(BAD_NAMES) assert list(norm_names) == NORM_NAMES BAD_NAMES = ['Module[1]', 'Module(1)'] NORM_NAMES = ['Module_1_', 'Module_1_'] with pytest.warns(UserWarning): norm_names = pvsystem._normalize_sam_product_names(BAD_NAMES) assert list(norm_names) == NORM_NAMES BAD_NAMES = ['Module[1]', 'Module[1]'] NORM_NAMES = ['Module_1_', 'Module_1_'] with pytest.warns(UserWarning): norm_names = pvsystem._normalize_sam_product_names(BAD_NAMES) assert list(norm_names) == NORM_NAMES def test_PVSystem_get_iam_invalid(sapm_module_params, mocker): system = pvsystem.PVSystem(module_parameters=sapm_module_params) with pytest.raises(ValueError): system.get_iam(45, iam_model='not_a_model') def test_retrieve_sam_raise_no_parameters(): """ Raise an exception if no parameters are provided to `retrieve_sam()`. """ with pytest.raises(ValueError) as error: pvsystem.retrieve_sam() assert 'A name or path must be provided!' == str(error.value) def test_retrieve_sam_cecmod(): """ Test the expected data is retrieved from the CEC module database. In particular, check for a known module in the database and check for the expected keys for that module. """ data = pvsystem.retrieve_sam('cecmod') keys = [ 'BIPV', 'Date', 'T_NOCT', 'A_c', 'N_s', 'I_sc_ref', 'V_oc_ref', 'I_mp_ref', 'V_mp_ref', 'alpha_sc', 'beta_oc', 'a_ref', 'I_L_ref', 'I_o_ref', 'R_s', 'R_sh_ref', 'Adjust', 'gamma_r', 'Version', 'STC', 'PTC', 'Technology', 'Bifacial', 'Length', 'Width', ] module = 'Itek_Energy_LLC_iT_300_HE' assert module in data assert set(data[module].keys()) == set(keys) def test_retrieve_sam_cecinverter(): """ Test the expected data is retrieved from the CEC inverter database. In particular, check for a known inverter in the database and check for the expected keys for that inverter. """ data = pvsystem.retrieve_sam('cecinverter') keys = [ 'Vac', 'Paco', 'Pdco', 'Vdco', 'Pso', 'C0', 'C1', 'C2', 'C3', 'Pnt', 'Vdcmax', 'Idcmax', 'Mppt_low', 'Mppt_high', 'CEC_Date', 'CEC_Type', ] inverter = 'Yaskawa_Solectria_Solar__PVI_5300_208__208V_' assert inverter in data assert set(data[inverter].keys()) == set(keys) def test_sapm(sapm_module_params): times = pd.date_range(start='2015-01-01', periods=5, freq='12H') effective_irradiance = pd.Series([-1000, 500, 1100, np.nan, 1000], index=times) temp_cell = pd.Series([10, 25, 50, 25, np.nan], index=times) out = pvsystem.sapm(effective_irradiance, temp_cell, sapm_module_params) expected = pd.DataFrame(np.array( [[ -5.0608322 , -4.65037767, nan, nan, nan, -4.91119927, -4.15367716], [ 2.545575 , 2.28773882, 56.86182059, 47.21121608, 108.00693168, 2.48357383, 1.71782772], [ 5.65584763, 5.01709903, 54.1943277 , 42.51861718, 213.32011294, 5.52987899, 3.48660728], [ nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan]]), columns=['i_sc', 'i_mp', 'v_oc', 'v_mp', 'p_mp', 'i_x', 'i_xx'], index=times) assert_frame_equal(out, expected, check_less_precise=4) out = pvsystem.sapm(1000, 25, sapm_module_params) expected = OrderedDict() expected['i_sc'] = 5.09115 expected['i_mp'] = 4.5462909092579995 expected['v_oc'] = 59.260800000000003 expected['v_mp'] = 48.315600000000003 expected['p_mp'] = 219.65677305534581 expected['i_x'] = 4.9759899999999995 expected['i_xx'] = 3.1880204359100004 for k, v in expected.items(): assert_allclose(out[k], v, atol=1e-4) # just make sure it works with Series input pvsystem.sapm(effective_irradiance, temp_cell, pd.Series(sapm_module_params)) def test_PVSystem_sapm(sapm_module_params, mocker): mocker.spy(pvsystem, 'sapm') system = pvsystem.PVSystem(module_parameters=sapm_module_params) effective_irradiance = 500 temp_cell = 25 out = system.sapm(effective_irradiance, temp_cell) pvsystem.sapm.assert_called_once_with(effective_irradiance, temp_cell, sapm_module_params) assert_allclose(out['p_mp'], 100, atol=100) def test_PVSystem_multi_array_sapm(sapm_module_params): system = pvsystem.PVSystem( arrays=[pvsystem.Array(module_parameters=sapm_module_params), pvsystem.Array(module_parameters=sapm_module_params)] ) effective_irradiance = (100, 500) temp_cell = (15, 25) sapm_one, sapm_two = system.sapm(effective_irradiance, temp_cell) assert sapm_one['p_mp'] != sapm_two['p_mp'] sapm_one_flip, sapm_two_flip = system.sapm( (effective_irradiance[1], effective_irradiance[0]), (temp_cell[1], temp_cell[0]) ) assert sapm_one_flip['p_mp'] == sapm_two['p_mp'] assert sapm_two_flip['p_mp'] == sapm_one['p_mp'] with pytest.raises(ValueError, match="Length mismatch for per-array parameter"): system.sapm(effective_irradiance, 10) with pytest.raises(ValueError, match="Length mismatch for per-array parameter"): system.sapm(500, temp_cell) @pytest.mark.parametrize('airmass,expected', [ (1.5, 1.00028714375), (np.array([[10, np.nan]]), np.array([[0.999535, 0]])), (pd.Series([5]), pd.Series([1.0387675])) ]) def test_sapm_spectral_loss(sapm_module_params, airmass, expected): out = pvsystem.sapm_spectral_loss(airmass, sapm_module_params) if isinstance(airmass, pd.Series): assert_series_equal(out, expected, check_less_precise=4) else: assert_allclose(out, expected, atol=1e-4) def test_PVSystem_sapm_spectral_loss(sapm_module_params, mocker): mocker.spy(pvsystem, 'sapm_spectral_loss') system = pvsystem.PVSystem(module_parameters=sapm_module_params) airmass = 2 out = system.sapm_spectral_loss(airmass) pvsystem.sapm_spectral_loss.assert_called_once_with(airmass, sapm_module_params) assert_allclose(out, 1, atol=0.5) def test_PVSystem_multi_array_sapm_spectral_loss(sapm_module_params): system = pvsystem.PVSystem( arrays=[pvsystem.Array(module_parameters=sapm_module_params), pvsystem.Array(module_parameters=sapm_module_params)] ) loss_one, loss_two = system.sapm_spectral_loss(2) assert loss_one == loss_two # this test could be improved to cover all cell types. # could remove the need for specifying spectral coefficients if we don't # care about the return value at all @pytest.mark.parametrize('module_parameters,module_type,coefficients', [ ({'Technology': 'mc-Si'}, 'multisi', None), ({'Material': 'Multi-c-Si'}, 'multisi', None), ({'first_solar_spectral_coefficients': ( 0.84, -0.03, -0.008, 0.14, 0.04, -0.002)}, None, (0.84, -0.03, -0.008, 0.14, 0.04, -0.002)) ]) def test_PVSystem_first_solar_spectral_loss(module_parameters, module_type, coefficients, mocker): mocker.spy(atmosphere, 'first_solar_spectral_correction') system = pvsystem.PVSystem(module_parameters=module_parameters) pw = 3 airmass_absolute = 3 out = system.first_solar_spectral_loss(pw, airmass_absolute) atmosphere.first_solar_spectral_correction.assert_called_once_with( pw, airmass_absolute, module_type, coefficients) assert_allclose(out, 1, atol=0.5) def test_PVSystem_multi_array_first_solar_spectral_loss(): system = pvsystem.PVSystem( arrays=[ pvsystem.Array( module_parameters={'Technology': 'mc-Si'}, module_type='multisi' ), pvsystem.Array( module_parameters={'Technology': 'mc-Si'}, module_type='multisi' ) ] ) loss_one, loss_two = system.first_solar_spectral_loss(1, 3) assert loss_one == loss_two @pytest.mark.parametrize('test_input,expected', [ ([1000, 100, 5, 45], 1140.0510967821877), ([np.array([np.nan, 1000, 1000]), np.array([100, np.nan, 100]), np.array([1.1, 1.1, 1.1]), np.array([10, 10, 10])], np.array([np.nan, np.nan, 1081.1574])), ([pd.Series([1000]), pd.Series([100]), pd.Series([1.1]), pd.Series([10])], pd.Series([1081.1574])) ]) def test_sapm_effective_irradiance(sapm_module_params, test_input, expected): test_input.append(sapm_module_params) out = pvsystem.sapm_effective_irradiance(*test_input) if isinstance(test_input, pd.Series): assert_series_equal(out, expected, check_less_precise=4) else: assert_allclose(out, expected, atol=1e-1) def test_PVSystem_sapm_effective_irradiance(sapm_module_params, mocker): system = pvsystem.PVSystem(module_parameters=sapm_module_params) mocker.spy(pvsystem, 'sapm_effective_irradiance') poa_direct = 900 poa_diffuse = 100 airmass_absolute = 1.5 aoi = 0 p = (sapm_module_params['A4'], sapm_module_params['A3'], sapm_module_params['A2'], sapm_module_params['A1'], sapm_module_params['A0']) f1 = np.polyval(p, airmass_absolute) expected = f1 * (poa_direct + sapm_module_params['FD'] * poa_diffuse) out = system.sapm_effective_irradiance( poa_direct, poa_diffuse, airmass_absolute, aoi) pvsystem.sapm_effective_irradiance.assert_called_once_with( poa_direct, poa_diffuse, airmass_absolute, aoi, sapm_module_params) assert_allclose(out, expected, atol=0.1) def test_PVSystem_multi_array_sapm_effective_irradiance(sapm_module_params): system = pvsystem.PVSystem( arrays=[pvsystem.Array(module_parameters=sapm_module_params), pvsystem.Array(module_parameters=sapm_module_params)] ) poa_direct = (500, 900) poa_diffuse = (50, 100) aoi = (0, 10) airmass_absolute = 1.5 irrad_one, irrad_two = system.sapm_effective_irradiance( poa_direct, poa_diffuse, airmass_absolute, aoi ) assert irrad_one != irrad_two @pytest.fixture def two_array_system(pvsyst_module_params, cec_module_params): """Two-array PVSystem. Both arrays are identical. """ temperature_model = temperature.TEMPERATURE_MODEL_PARAMETERS['sapm'][ 'open_rack_glass_glass' ] # Need u_v to be non-zero so wind-speed changes cell temperature # under the pvsyst model. temperature_model['u_v'] = 1.0 # parameter for fuentes temperature model temperature_model['noct_installed'] = 45 # parameters for noct_sam temperature model temperature_model['noct'] = 45. temperature_model['module_efficiency'] = 0.2 module_params = {**pvsyst_module_params, **cec_module_params} return pvsystem.PVSystem( arrays=[ pvsystem.Array( temperature_model_parameters=temperature_model, module_parameters=module_params ), pvsystem.Array( temperature_model_parameters=temperature_model, module_parameters=module_params ) ] ) @pytest.mark.parametrize("poa_direct, poa_diffuse, aoi", [(20, (10, 10), (20, 20)), ((20, 20), (10,), (20, 20)), ((20, 20), (10, 10), 20)]) def test_PVSystem_sapm_effective_irradiance_value_error( poa_direct, poa_diffuse, aoi, two_array_system): with pytest.raises(ValueError, match="Length mismatch for per-array parameter"): two_array_system.sapm_effective_irradiance( poa_direct, poa_diffuse, 10, aoi ) def test_PVSystem_sapm_celltemp(mocker): a, b, deltaT = (-3.47, -0.0594, 3) # open_rack_glass_glass temp_model_params = {'a': a, 'b': b, 'deltaT': deltaT} system = pvsystem.PVSystem(temperature_model_parameters=temp_model_params) mocker.spy(temperature, 'sapm_cell') temps = 25 irrads = 1000 winds = 1 out = system.sapm_celltemp(irrads, temps, winds) temperature.sapm_cell.assert_called_once_with(irrads, temps, winds, a, b, deltaT) assert_allclose(out, 57, atol=1) def test_PVSystem_sapm_celltemp_kwargs(mocker): temp_model_params = temperature.TEMPERATURE_MODEL_PARAMETERS['sapm'][ 'open_rack_glass_glass'] system = pvsystem.PVSystem(temperature_model_parameters=temp_model_params) mocker.spy(temperature, 'sapm_cell') temps = 25 irrads = 1000 winds = 1 out = system.sapm_celltemp(irrads, temps, winds) temperature.sapm_cell.assert_called_once_with(irrads, temps, winds, temp_model_params['a'], temp_model_params['b'], temp_model_params['deltaT']) assert_allclose(out, 57, atol=1) def test_PVSystem_multi_array_sapm_celltemp_different_arrays(): temp_model_one = temperature.TEMPERATURE_MODEL_PARAMETERS['sapm'][ 'open_rack_glass_glass'] temp_model_two = temperature.TEMPERATURE_MODEL_PARAMETERS['sapm'][ 'close_mount_glass_glass'] system = pvsystem.PVSystem( arrays=[pvsystem.Array(temperature_model_parameters=temp_model_one), pvsystem.Array(temperature_model_parameters=temp_model_two)] ) temp_one, temp_two = system.sapm_celltemp( (1000, 1000), 25, 1 ) assert temp_one != temp_two def test_PVSystem_pvsyst_celltemp(mocker): parameter_set = 'insulated' temp_model_params = temperature.TEMPERATURE_MODEL_PARAMETERS['pvsyst'][ parameter_set] alpha_absorption = 0.85 module_efficiency = 0.17 module_parameters = {'alpha_absorption': alpha_absorption, 'module_efficiency': module_efficiency} system = pvsystem.PVSystem(module_parameters=module_parameters, temperature_model_parameters=temp_model_params) mocker.spy(temperature, 'pvsyst_cell') irrad = 800 temp = 45 wind = 0.5 out = system.pvsyst_celltemp(irrad, temp, wind_speed=wind) temperature.pvsyst_cell.assert_called_once_with( irrad, temp, wind_speed=wind, u_c=temp_model_params['u_c'], u_v=temp_model_params['u_v'], module_efficiency=module_efficiency, alpha_absorption=alpha_absorption) assert (out < 90) and (out > 70) def test_PVSystem_faiman_celltemp(mocker): u0, u1 = 25.0, 6.84 # default values temp_model_params = {'u0': u0, 'u1': u1} system = pvsystem.PVSystem(temperature_model_parameters=temp_model_params) mocker.spy(temperature, 'faiman') temps = 25 irrads = 1000 winds = 1 out = system.faiman_celltemp(irrads, temps, winds) temperature.faiman.assert_called_once_with(irrads, temps, winds, u0, u1) assert_allclose(out, 56.4, atol=1) def test_PVSystem_noct_celltemp(mocker): poa_global, temp_air, wind_speed, noct, module_efficiency = ( 1000., 25., 1., 45., 0.2) expected = 55.230790492 temp_model_params = {'noct': noct, 'module_efficiency': module_efficiency} system = pvsystem.PVSystem(temperature_model_parameters=temp_model_params) mocker.spy(temperature, 'noct_sam') out = system.noct_sam_celltemp(poa_global, temp_air, wind_speed) temperature.noct_sam.assert_called_once_with( poa_global, temp_air, wind_speed, effective_irradiance=None, noct=noct, module_efficiency=module_efficiency) assert_allclose(out, expected) # dufferent types out = system.noct_sam_celltemp(np.array(poa_global), np.array(temp_air), np.array(wind_speed)) assert_allclose(out, expected) dr = pd.date_range(start='2020-01-01 12:00:00', end='2020-01-01 13:00:00', freq='1H') out = system.noct_sam_celltemp(pd.Series(index=dr, data=poa_global), pd.Series(index=dr, data=temp_air), pd.Series(index=dr, data=wind_speed)) assert_series_equal(out, pd.Series(index=dr, data=expected)) # now use optional arguments temp_model_params.update({'transmittance_absorptance': 0.8, 'array_height': 2, 'mount_standoff': 2.0}) expected = 60.477703576 system = pvsystem.PVSystem(temperature_model_parameters=temp_model_params) out = system.noct_sam_celltemp(poa_global, temp_air, wind_speed, effective_irradiance=1100.) assert_allclose(out, expected) def test_PVSystem_noct_celltemp_error(): poa_global, temp_air, wind_speed, module_efficiency = (1000., 25., 1., 0.2) temp_model_params = {'module_efficiency': module_efficiency} system = pvsystem.PVSystem(temperature_model_parameters=temp_model_params) with pytest.raises(KeyError): system.noct_sam_celltemp(poa_global, temp_air, wind_speed) @pytest.mark.parametrize("celltemp", [pvsystem.PVSystem.faiman_celltemp, pvsystem.PVSystem.pvsyst_celltemp, pvsystem.PVSystem.sapm_celltemp, pvsystem.PVSystem.fuentes_celltemp, pvsystem.PVSystem.noct_sam_celltemp]) def test_PVSystem_multi_array_celltemp_functions(celltemp, two_array_system): times = pd.date_range(start='2020-08-25 11:00', freq='H', periods=3) irrad_one = pd.Series(1000, index=times) irrad_two = pd.Series(500, index=times) temp_air = pd.Series(25, index=times) wind_speed = pd.Series(1, index=times) temp_one, temp_two = celltemp( two_array_system, (irrad_one, irrad_two), temp_air, wind_speed) assert (temp_one != temp_two).all() @pytest.mark.parametrize("celltemp", [pvsystem.PVSystem.faiman_celltemp, pvsystem.PVSystem.pvsyst_celltemp, pvsystem.PVSystem.sapm_celltemp, pvsystem.PVSystem.fuentes_celltemp, pvsystem.PVSystem.noct_sam_celltemp]) def test_PVSystem_multi_array_celltemp_multi_temp(celltemp, two_array_system): times = pd.date_range(start='2020-08-25 11:00', freq='H', periods=3) irrad = pd.Series(1000, index=times) temp_air_one = pd.Series(25, index=times) temp_air_two = pd.Series(5, index=times) wind_speed = pd.Series(1, index=times) temp_one, temp_two = celltemp( two_array_system, (irrad, irrad), (temp_air_one, temp_air_two), wind_speed ) assert (temp_one != temp_two).all() temp_one_swtich, temp_two_switch = celltemp( two_array_system, (irrad, irrad), (temp_air_two, temp_air_one), wind_speed ) assert_series_equal(temp_one, temp_two_switch) assert_series_equal(temp_two, temp_one_swtich) @pytest.mark.parametrize("celltemp", [pvsystem.PVSystem.faiman_celltemp, pvsystem.PVSystem.pvsyst_celltemp, pvsystem.PVSystem.sapm_celltemp, pvsystem.PVSystem.fuentes_celltemp, pvsystem.PVSystem.noct_sam_celltemp]) def test_PVSystem_multi_array_celltemp_multi_wind(celltemp, two_array_system): times = pd.date_range(start='2020-08-25 11:00', freq='H', periods=3) irrad = pd.Series(1000, index=times) temp_air = pd.Series(25, index=times) wind_speed_one = pd.Series(1, index=times) wind_speed_two = pd.Series(5, index=times) temp_one, temp_two = celltemp( two_array_system, (irrad, irrad), temp_air, (wind_speed_one, wind_speed_two) ) assert (temp_one != temp_two).all() temp_one_swtich, temp_two_switch = celltemp( two_array_system, (irrad, irrad), temp_air, (wind_speed_two, wind_speed_one) ) assert_series_equal(temp_one, temp_two_switch) assert_series_equal(temp_two, temp_one_swtich) @pytest.mark.parametrize("celltemp", [pvsystem.PVSystem.faiman_celltemp, pvsystem.PVSystem.pvsyst_celltemp, pvsystem.PVSystem.sapm_celltemp, pvsystem.PVSystem.fuentes_celltemp, pvsystem.PVSystem.noct_sam_celltemp]) def test_PVSystem_multi_array_celltemp_temp_too_short( celltemp, two_array_system): with pytest.raises(ValueError, match="Length mismatch for per-array parameter"): celltemp(two_array_system, (1000, 1000), (1,), 1) @pytest.mark.parametrize("celltemp", [pvsystem.PVSystem.faiman_celltemp, pvsystem.PVSystem.pvsyst_celltemp, pvsystem.PVSystem.sapm_celltemp, pvsystem.PVSystem.fuentes_celltemp, pvsystem.PVSystem.noct_sam_celltemp]) def test_PVSystem_multi_array_celltemp_temp_too_long( celltemp, two_array_system): with pytest.raises(ValueError, match="Length mismatch for per-array parameter"): celltemp(two_array_system, (1000, 1000), (1, 1, 1), 1) @pytest.mark.parametrize("celltemp", [pvsystem.PVSystem.faiman_celltemp, pvsystem.PVSystem.pvsyst_celltemp, pvsystem.PVSystem.sapm_celltemp, pvsystem.PVSystem.fuentes_celltemp, pvsystem.PVSystem.noct_sam_celltemp]) def test_PVSystem_multi_array_celltemp_wind_too_short( celltemp, two_array_system): with pytest.raises(ValueError, match="Length mismatch for per-array parameter"): celltemp(two_array_system, (1000, 1000), 25, (1,)) @pytest.mark.parametrize("celltemp", [pvsystem.PVSystem.faiman_celltemp, pvsystem.PVSystem.pvsyst_celltemp, pvsystem.PVSystem.sapm_celltemp, pvsystem.PVSystem.fuentes_celltemp, pvsystem.PVSystem.noct_sam_celltemp]) def test_PVSystem_multi_array_celltemp_wind_too_long( celltemp, two_array_system): with pytest.raises(ValueError, match="Length mismatch for per-array parameter"): celltemp(two_array_system, (1000, 1000), 25, (1, 1, 1)) @pytest.mark.parametrize("celltemp", [pvsystem.PVSystem.faiman_celltemp, pvsystem.PVSystem.pvsyst_celltemp, pvsystem.PVSystem.sapm_celltemp, pvsystem.PVSystem.fuentes_celltemp, pvsystem.PVSystem.noct_sam_celltemp]) def test_PVSystem_multi_array_celltemp_poa_length_mismatch( celltemp, two_array_system): with pytest.raises(ValueError, match="Length mismatch for per-array parameter"): celltemp(two_array_system, 1000, 25, 1) def test_PVSystem_fuentes_celltemp(mocker): noct_installed = 45 temp_model_params = {'noct_installed': noct_installed} system = pvsystem.PVSystem(temperature_model_parameters=temp_model_params) spy = mocker.spy(temperature, 'fuentes') index = pd.date_range('2019-01-01 11:00', freq='h', periods=3) temps = pd.Series(25, index) irrads = pd.Series(1000, index) winds = pd.Series(1, index) out = system.fuentes_celltemp(irrads, temps, winds) assert_series_equal(spy.call_args[0][0], irrads) assert_series_equal(spy.call_args[0][1], temps) assert_series_equal(spy.call_args[0][2], winds) assert spy.call_args[1]['noct_installed'] == noct_installed assert_series_equal(out, pd.Series([52.85, 55.85, 55.85], index, name='tmod')) def test_PVSystem_fuentes_celltemp_override(mocker): # test that the surface_tilt value in the cell temp calculation can be # overridden but defaults to the surface_tilt attribute of the PVSystem spy = mocker.spy(temperature, 'fuentes') noct_installed = 45 index = pd.date_range('2019-01-01 11:00', freq='h', periods=3) temps = pd.Series(25, index) irrads = pd.Series(1000, index) winds = pd.Series(1, index) # uses default value temp_model_params = {'noct_installed': noct_installed} system = pvsystem.PVSystem(temperature_model_parameters=temp_model_params, surface_tilt=20) system.fuentes_celltemp(irrads, temps, winds) assert spy.call_args[1]['surface_tilt'] == 20 # can be overridden temp_model_params = {'noct_installed': noct_installed, 'surface_tilt': 30} system = pvsystem.PVSystem(temperature_model_parameters=temp_model_params, surface_tilt=20) system.fuentes_celltemp(irrads, temps, winds) assert spy.call_args[1]['surface_tilt'] == 30 def test_Array__infer_temperature_model_params(): array = pvsystem.Array(module_parameters={}, racking_model='open_rack', module_type='glass_polymer') expected = temperature.TEMPERATURE_MODEL_PARAMETERS[ 'sapm']['open_rack_glass_polymer'] assert expected == array._infer_temperature_model_params() array = pvsystem.Array(module_parameters={}, racking_model='freestanding', module_type='glass_polymer') expected = temperature.TEMPERATURE_MODEL_PARAMETERS[ 'pvsyst']['freestanding'] assert expected == array._infer_temperature_model_params() array = pvsystem.Array(module_parameters={}, racking_model='insulated', module_type=None) expected = temperature.TEMPERATURE_MODEL_PARAMETERS[ 'pvsyst']['insulated'] assert expected == array._infer_temperature_model_params() def test_Array__infer_cell_type(): array = pvsystem.Array(module_parameters={}) assert array._infer_cell_type() is None def test_calcparams_desoto(cec_module_params): times = pd.date_range(start='2015-01-01', periods=3, freq='12H') effective_irradiance = pd.Series([0.0, 800.0, 800.0], index=times) temp_cell = pd.Series([25, 25, 50], index=times) IL, I0, Rs, Rsh, nNsVth = pvsystem.calcparams_desoto( effective_irradiance, temp_cell, alpha_sc=cec_module_params['alpha_sc'], a_ref=cec_module_params['a_ref'], I_L_ref=cec_module_params['I_L_ref'], I_o_ref=cec_module_params['I_o_ref'], R_sh_ref=cec_module_params['R_sh_ref'], R_s=cec_module_params['R_s'], EgRef=1.121, dEgdT=-0.0002677) assert_series_equal(IL, pd.Series([0.0, 6.036, 6.096], index=times), check_less_precise=3) assert_series_equal(I0, pd.Series([0.0, 1.94e-9, 7.419e-8], index=times), check_less_precise=3) assert_allclose(Rs, 0.094) assert_series_equal(Rsh, pd.Series([np.inf, 19.65, 19.65], index=times), check_less_precise=3) assert_series_equal(nNsVth, pd.Series([0.473, 0.473, 0.5127], index=times), check_less_precise=3) def test_calcparams_cec(cec_module_params): times = pd.date_range(start='2015-01-01', periods=3, freq='12H') effective_irradiance = pd.Series([0.0, 800.0, 800.0], index=times) temp_cell = pd.Series([25, 25, 50], index=times) IL, I0, Rs, Rsh, nNsVth = pvsystem.calcparams_cec( effective_irradiance, temp_cell, alpha_sc=cec_module_params['alpha_sc'], a_ref=cec_module_params['a_ref'], I_L_ref=cec_module_params['I_L_ref'], I_o_ref=cec_module_params['I_o_ref'], R_sh_ref=cec_module_params['R_sh_ref'], R_s=cec_module_params['R_s'], Adjust=cec_module_params['Adjust'], EgRef=1.121, dEgdT=-0.0002677) assert_series_equal(IL, pd.Series([0.0, 6.036, 6.0896], index=times), check_less_precise=3) assert_series_equal(I0, pd.Series([0.0, 1.94e-9, 7.419e-8], index=times), check_less_precise=3) assert_allclose(Rs, 0.094) assert_series_equal(Rsh, pd.Series([np.inf, 19.65, 19.65], index=times), check_less_precise=3) assert_series_equal(nNsVth, pd.Series([0.473, 0.473, 0.5127], index=times), check_less_precise=3) def test_calcparams_pvsyst(pvsyst_module_params): times = pd.date_range(start='2015-01-01', periods=2, freq='12H') effective_irradiance = pd.Series([0.0, 800.0], index=times) temp_cell =
pd.Series([25, 50], index=times)
pandas.Series
#!/usr/bin/env python # coding: utf-8 # In[ ]: # In[1]: import pandas as pd import numpy as np import matplotlib.pyplot as plt get_ipython().run_line_magic('matplotlib', 'inline') from glob import glob from collections import OrderedDict # In[34]: ###plot the distribution of PPA def PPAHist(chrs): x = fgwas.loc[(fgwas['chr']==chrs), "PPA"] print(max(x)) n, bins, patches = plt.hist(x, 50, density=True, facecolor='g', alpha=0.75) plt.hist(x, bins=bins) plt.xlabel('PPA') plt.ylabel('count') plt.title('Histogram of PPA of fine-mapping region #' + str(chrs)) plt.grid(True) plt.show() # In[35]: # PPAHist(12) # In[81]: #get the max PPA by each seg def rankPPA(fgwas, region): print("best fine-mappinig result") indices = fgwas.groupby('chunk')['PPA'].idxmax print(fgwas.loc[indices]) print("best GWAS result") indices = region.groupby('SEGNUMBER')['pval'].idxmin print(region.loc[indices]) # In[70]: # In[76]: fgwas_output = '/data/analysis/UKBB/result/DeepBind.bfs.gz' fgwas_nop='/data/analysis/UKBB/processed/test1.bfs.gz' regionp='/data/analysis/UKBB/processed/I10.gwas.imputed_v3.both_sexes.finemapping.full.tsv.gz' fgwas=pd.read_csv(fgwas_output,sep=' ') fgwas_no=
pd.read_csv(fgwas_nop,sep=' ')
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Sun Oct 12 13:08:12 2014 @author: Ken """ import marisa_trie import re import pandas as pd import numpy as np import sys if sys.version_info[0] == 3: basestring = str unicode = str from multiprocessing import Pool, cpu_count """ testTrie = marisa_trie.Trie([u'derpx', u'derpy', u'derpz']) testFRDict = {u'derpx': u'derp', u'derpy': u'derp', u'derpz': u'derp'} trieInput_df = pd.DataFrame(data=testFRDict, index=["Values"]).T trieInput_df["Keys"] = trieInput_df.index trieInput_df = trieInput_df.ix[:, ["Keys", "Values"]] """ class BulkFindReplacer: def __init__(self, trieInput, version="v4"): if isinstance(trieInput, basestring): trieInput = pd.read_csv(trieInput) self.frTrie = marisa_trie.Trie(list(trieInput.iloc[:, 0].apply(unicode))) self.frDict = dict(zip(trieInput.iloc[:, 0].apply(unicode), trieInput.iloc[:, 1].apply(unicode))) self.startRegex = re.compile(r'[^\w]') self.endRegex = re.compile(r'[^\w]') self.BulkFindReplace_str = self.BulkFindReplace_orig_str if version == "v3": self.BulkFindReplace_str = self.BulkFindReplace_v3_str elif version == "v4": self.BulkFindReplace_str = self.BulkFindReplace_v4_str def BulkFindReplace_orig_str(self, inString, startRegex=r'[^\w]', endRegex=r'[^\w]'): i = 0 outString = inString strLen = len(outString) while (i < strLen): if i is 0 or re.search(startRegex, outString[i - 1]): remainingStr = outString[i:] pref_list = self.frTrie.prefixes(remainingStr) if len(pref_list) > 0: # iterate backwards through list for pref in pref_list[::-1]: # make sure char after prefix is an endRegex char if (len(remainingStr) is len(pref) or re.search(endRegex, remainingStr[len(pref)])): # if there is a valid prefix, replace 1st instance mapStr = self.frDict[pref] if mapStr != pref: outString = outString[:i] + remainingStr.replace(pref, mapStr, 1) strLen = len(outString) i += len(mapStr) - 1 break i += 1 return outString def BulkFindReplace_v3_str(self, inString, startRegex=r'[^\w]', endRegex=r'[^\w]'): i = 0 outString = inString strLen = len(outString) while (i < strLen): if i is 0 or self.startRegex.search(outString[i - 1]): remainingStr = outString[i:] pref_list = self.frTrie.prefixes(remainingStr) if len(pref_list) > 0: # iterate backwards through list for pref in pref_list[::-1]: # make sure char after prefix is an endRegex char if (len(remainingStr) is len(pref) or self.endRegex.search(remainingStr[len(pref)])): # if there is a valid prefix, replace 1st instance mapStr = self.frDict[pref] if mapStr != pref: outString = outString[:i] + remainingStr.replace(pref, mapStr, 1) strLen = len(outString) i += len(mapStr) - 1 break i += 1 return outString def BulkFindReplace_v4_str(self, inString, startRegex=r'[^\w]', endRegex=r'[^\w]'): i = 0 outString = inString outString_list = [] # while (i < strLen): iSkipTo = -1 lastCut = 0 for i in [0] + [x.end() for x in self.startRegex.finditer(inString)]: if i >= iSkipTo: remainingStr = inString[i:] pref_list = self.frTrie.prefixes(remainingStr) if len(pref_list) > 0: # iterate backwards through list for pref in pref_list[::-1]: # make sure char after prefix is an endRegex char if (len(remainingStr) is len(pref) or self.endRegex.search(remainingStr[len(pref)])): # if there is a valid prefix, replace 1st instance mapStr = self.frDict[pref] if mapStr != pref: addStr = inString[lastCut:i] + mapStr outString_list.append(addStr) lastCut = i + len(pref) # outString = outString[:i] + remainingStr.replace(pref, mapStr, 1) # strLen = len(outString) iSkipTo = i + len(pref) break if len(outString_list) > 0: if lastCut < len(inString): outString_list.append(inString[lastCut:len(inString)]) outString = "".join(outString_list) else: outString = inString return outString def BulkFindReplaceToCompletion_str(self, inString, startRegex=r'[^\w]', endRegex=r'[^\w]', maxCycles=10): cycle = 0 previousStr = inString inString = self.BulkFindReplace_str(inString, startRegex, endRegex) cycle = 1 if inString == previousStr or cycle >= maxCycles: return inString # Save secondToLastStr to help prevent endless cycles secondToLastStr = previousStr previousStr = inString inString = self.BulkFindReplace_str(inString, startRegex, endRegex) cycle = 2 while (inString != previousStr and inString != secondToLastStr and cycle < maxCycles): secondToLastStr = previousStr previousStr = inString inString = self.BulkFindReplace_str(inString, startRegex, endRegex) cycle += 1 # if cycle is 10: # return "\nsecondToLastStr: " + secondToLastStr + ";\npreviousStr: " + previousStr + ";\ncurrentStr: " + inString + ";\n" return inString def BulkFindReplace(self, strSeries, startRegex=r'[^\w]', endRegex=r'[^\w]', maxCycles=10): isBaseString = isinstance(strSeries, basestring) strSeries = pd.Series(strSeries).copy() strSeries = strSeries.apply(unicode) strSeries = strSeries.apply(self.BulkFindReplaceToCompletion_str, (startRegex, endRegex, maxCycles)) if isBaseString: return strSeries.iloc[0] return strSeries def BulkFindReplaceMPHelper(self, args): strSeries, startRegex, endRegex, maxCycles = args strSeries = strSeries.apply(self.BulkFindReplaceToCompletion_str, (startRegex, endRegex, maxCycles)) return strSeries def BulkFindReplaceMultiProc(self, strSeries, startRegex=r'[^\w]', endRegex=r'[^\w]', maxCycles=10, workers=-1): isBaseString = isinstance(strSeries, basestring) strSeries = pd.Series(strSeries).copy() strSeries = strSeries.fillna("") strSeries = strSeries.apply(unicode) if workers == -1: if cpu_count() % 2 == 0: workers = int(cpu_count()/2) else: workers = cpu_count() if workers > 1: pool = Pool(processes=workers) strSeries_list = pool.map(self.BulkFindReplaceMPHelper, [(d, startRegex, endRegex, maxCycles) for d in np.array_split(strSeries, workers)]) pool.close() strSeries =
pd.concat(strSeries_list)
pandas.concat
# Python 3.5 # Script written by <NAME> (<EMAIL>), <NAME> (<EMAIL>), and <NAME> (<EMAIL>) # VERSION 0.1 - JUNE 2020 #--------TURN OFF MAGMASAT WARNING--------# import warnings warnings.filterwarnings("ignore", message="rubicon.objc.ctypes_patch has only been tested ") warnings.filterwarnings("ignore", message="The handle") #-----------------IMPORTS-----------------# import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.font_manager as font_manager from cycler import cycler from abc import ABC, abstractmethod from scipy.optimize import root_scalar from scipy.optimize import root from scipy.optimize import minimize import sys import sympy from copy import copy # import anvil_server #--------------MELTS preamble---------------# from thermoengine import equilibrate # instantiate thermoengine equilibrate MELTS instance melts = equilibrate.MELTSmodel('1.2.0') # Suppress phases not required in the melts simulation phases = melts.get_phase_names() for phase in phases: melts.set_phase_inclusion_status({phase: False}) melts.set_phase_inclusion_status({'Fluid': True, 'Liquid': True}) #----------DEFINE SOME CONSTANTS-------------# oxides = ['SiO2', 'TiO2', 'Al2O3', 'Fe2O3', 'Cr2O3', 'FeO', 'MnO', 'MgO', 'NiO', 'CoO', 'CaO', 'Na2O', 'K2O', 'P2O5', 'H2O', 'CO2'] anhydrous_oxides = ['SiO2', 'TiO2', 'Al2O3', 'Fe2O3', 'Cr2O3', 'FeO', 'MnO', 'MgO', 'NiO', 'CoO', 'CaO', 'Na2O', 'K2O', 'P2O5'] volatiles = ['H2O', 'CO2'] oxideMass = {'SiO2': 28.085+32, 'MgO': 24.305+16, 'FeO': 55.845+16, 'CaO': 40.078+16, 'Al2O3': 2*26.982+16*3, 'Na2O': 22.99*2+16, 'K2O': 39.098*2+16, 'MnO': 54.938+16, 'TiO2': 47.867+32, 'P2O5': 2*30.974+5*16, 'Cr2O3': 51.996*2+3*16, 'NiO': 58.693+16, 'CoO': 28.01+16, 'Fe2O3': 55.845*2+16*3, 'H2O': 18.02, 'CO2': 44.01} CationNum = {'SiO2': 1, 'MgO': 1, 'FeO': 1, 'CaO': 1, 'Al2O3': 2, 'Na2O': 2, 'K2O': 2, 'MnO': 1, 'TiO2': 1, 'P2O5': 2, 'Cr2O3': 2, 'NiO': 1, 'CoO': 1, 'Fe2O3': 2, 'H2O': 2, 'CO2': 1} OxygenNum = {'SiO2': 2, 'MgO': 1, 'FeO': 1, 'CaO': 1, 'Al2O3': 3, 'Na2O': 1, 'K2O': 1, 'MnO': 1, 'TiO2': 2, 'P2O5': 5, 'Cr2O3': 3, 'NiO': 1, 'CoO': 1, 'Fe2O3': 3, 'H2O': 1, 'CO2': 2} CationCharge = {'SiO2': 4, 'MgO': 2, 'FeO': 2, 'CaO': 2, 'Al2O3': 3, 'Na2O': 1, 'K2O': 1, 'MnO': 2, 'TiO2': 4, 'P2O5': 5, 'Cr2O3': 3, 'NiO': 2, 'CoO': 2, 'Fe2O3': 3, 'H2O': 1, 'CO2': 4} CationMass = {'SiO2': 28.085, 'MgO': 24.305, 'FeO': 55.845, 'CaO': 40.078, 'Al2O3': 26.982, 'Na2O': 22.990, 'K2O': 39.098, 'MnO': 54.938, 'TiO2': 47.867, 'P2O5': 30.974, 'Cr2O3': 51.996, 'NiO': 58.693, 'CoO': 28.01, 'Fe2O3': 55.845, 'H2O': 2, 'CO2': 12.01} oxides_to_cations = {'SiO2': 'Si', 'MgO': 'Mg', 'FeO': 'Fe', 'CaO': 'Ca', 'Al2O3': 'Al', 'Na2O': 'Na', 'K2O': 'K', 'MnO': 'Mn', 'TiO2': 'Ti', 'P2O5': 'P', 'Cr2O3': 'Cr', 'NiO': 'Ni', 'CoO': 'Co', 'Fe2O3': 'Fe3', 'H2O': 'H', 'CO2': 'C'} cations_to_oxides = {'Si': 'SiO2', 'Mg': 'MgO', 'Fe': 'FeO', 'Ca': 'CaO', 'Al': 'Al2O3', 'Na': 'Na2O', 'K': 'K2O', 'Mn': 'MnO', 'Ti': 'TiO2', 'P': 'P2O5', 'Cr': 'Cr2O3', 'Ni': 'NiO', 'Co': 'CoO', 'Fe3': 'Fe2O3', 'H': 'H2O', 'C': 'CO2'} #----------DEFINE SOME EXCEPTIONS--------------# class Error(Exception): """Base class for exceptions in this module.""" pass class InputError(Error): """Exception raised for errors in the input. Attributes: expression -- input expression in which the error occurred message -- explanation of the error """ def __init__(self, message): self.message = message class SaturationError(Error): """Exception raised for errors thrown when a sample does not reach saturation. Attributes: expression -- input expression in which the error occurred message -- explanation of the error """ def __init__(self, message): self.message = message #----------DEFINE CUSTOM PLOTTING FORMATTING------------# style = "seaborn-colorblind" plt.style.use(style) plt.rcParams["mathtext.default"] = "regular" plt.rcParams["mathtext.fontset"] = "dejavusans" mpl.rcParams['patch.linewidth'] = 1 mpl.rcParams['axes.linewidth'] = 1 plt.rcParams['axes.titlesize'] = 20 plt.rcParams['axes.labelsize'] = 18 plt.rcParams['xtick.labelsize'] = 14 plt.rcParams['ytick.labelsize'] = 14 plt.rcParams['legend.fontsize'] = 14 #Define color cycler based on plot style set here the_rc = plt.style.library[style] #get style formatting set by plt.style.use() color_list = the_rc['axes.prop_cycle'].by_key()['color'] #list of colors by hex code color_cyler = the_rc['axes.prop_cycle'] #get the cycler def printTable(myDict): """ Pretty print a dictionary (as pandas DataFrame) Parameters ---------- myDict: dict A dictionary Returns ------- pandas DataFrame The input dictionary converted to a pandas DataFrame """ try: oxidesum = sum(myDict[oxide] for oxide in oxides) myDict.update({"Sum oxides": oxidesum}) except: pass table = pd.DataFrame([v for v in myDict.values()], columns = ['value'], index = [k for k in myDict.keys()]) return table #----------DEFINE SOME UNIVERSAL INFORMATIVE METHODS--------------# def get_model_names(): """ Returns all available model names as a list of strings. """ model_names = [] for key, value in default_models.items(): model_names.append(key) return model_names #----------DEFINE SOME BASIC DATA TRANSFORMATION METHODS-----------# def mol_to_wtpercent(sample): """ Takes in a pandas DataFrame containing multi-sample input or a dictionary containing single-sample input and returns a pandas DataFrame object with oxide values converted from mole percent to wt percent. Parameters ---------- oxides: pandas DataFrame object or dictionary Variable name referring to the pandas DataFrame object that contains user-imported data or a dictionary for single-sample input. """ data = sample if isinstance(sample, pd.DataFrame): for key, value in oxideMass.items(): data.loc[:, key] *= value data["MPOSum"] = sum([data[oxide] for oxide in oxides]) for oxide in oxides: data.loc[:, oxide] /= data['MPOSum'] data.loc[:, oxide] *= 100 del data['MPOSum'] elif isinstance(sample, dict): for oxide in oxides: if oxide in data.keys(): pass else: data[oxide] = 0.0 data = {oxide: data[oxide] for oxide in oxides} for key, value in oxideMass.items(): data.update({key: (data[key] * value)}) MPOSum = sum(data.values()) for key, value in data.items(): data.update({key: 100 * value / MPOSum}) return data def wtpercentOxides_to_molCations(oxides): """Takes in a pandas Series containing major element oxides in wt%, and converts it to molar proportions of cations (normalised to 1). Parameters ---------- oxides dict or pandas Series Major element oxides in wt%. Returns ------- dict or pandas Series Molar proportions of cations, normalised to 1. """ molCations = {} _oxides = oxides.copy() if type(oxides) == dict: oxideslist = list(_oxides.keys()) elif type(oxides) == pd.core.series.Series: oxideslist = list(_oxides.index) else: raise InputError("The composition input must be a pandas Series or dictionary.") for ox in oxideslist: cation = oxides_to_cations[ox] molCations[cation] = CationNum[ox]*_oxides[ox]/oxideMass[ox] if type(oxides) == pd.core.series.Series: molCations = pd.Series(molCations) molCations = molCations/molCations.sum() else: total = np.sum(list(molCations.values())) for ox in oxideslist: cation = oxides_to_cations[ox] molCations[cation] = molCations[cation]/total return molCations def wtpercentOxides_to_molOxides(oxides): """ Takes in a pandas Series or dict containing major element oxides in wt%, and converts it to molar proportions (normalised to 1). Parameters ---------- oxides dict or pandas Series Major element oxides in wt% Returns ------- dict or pandas Series Molar proportions of major element oxides, normalised to 1. """ molOxides = {} _oxides = oxides.copy() if type(oxides) == dict or type(oxides) == pd.core.series.Series: if type(oxides) == dict: oxideslist = list(oxides.keys()) elif type(oxides) == pd.core.series.Series: oxideslist = list(oxides.index) for ox in oxideslist: molOxides[ox] = _oxides[ox]/oxideMass[ox] if type(oxides) == pd.core.series.Series: molOxides = pd.Series(molOxides) molOxides = molOxides/molOxides.sum() else: total = np.sum(list(molOxides.values())) for ox in oxideslist: molOxides[ox] = molOxides[ox]/total return molOxides elif isinstance(sample, pd.DataFrame): data = sample for key, value in oxideMass.items(): data.loc[:, key] /= value data["MPOSum"] = sum([data[oxide] for oxide in oxides]) for oxide in oxides: data.loc[:, oxide] /= data['MPOSum'] del data['MPOSum'] return data else: raise InputError("The composition input must be a pandas Series or dictionary.") def wtpercentOxides_to_molSingleO(oxides,exclude_volatiles=False): """ Takes in a pandas Series containing major element oxides in wt%, and constructs the chemical formula, on a single oxygen basis. Parameters ---------- oxides dict or pandas Series Major element oxides in wt% Returns ------- dict or pandas Series The chemical formula of the composition, on a single oxygen basis. Each element is a separate entry in the Series. """ molCations = {} _oxides = oxides.copy() if type(oxides) == dict: oxideslist = list(oxides.keys()) elif type(oxides) == pd.core.series.Series: oxideslist = list(oxides.index) else: raise InputError("The composition input must be a pandas Series or dictionary.") total_O = 0.0 for ox in oxideslist: if exclude_volatiles == False or (ox != 'H2O' and ox != 'CO2'): cation = oxides_to_cations[ox] molCations[cation] = CationNum[ox]*oxides[ox]/oxideMass[ox] total_O += OxygenNum[ox]*oxides[ox]/oxideMass[ox] if type(oxides) == pd.core.series.Series: molCations = pd.Series(molCations) molCations = molCations/total_O else: # total = np.sum(list(molCations.values())) for ox in oxideslist: if exclude_volatiles == False or (ox != 'H2O' and ox != 'CO2'): cation = oxides_to_cations[ox] molCations[cation] = molCations[cation]/total_O return molCations def wtpercentOxides_to_formulaWeight(sample,exclude_volatiles=False): """ Converts major element oxides in wt% to the formula weight (on a 1 oxygen basis). Parameters ---------- sample dict or pandas Series Major element oxides in wt%. exclude_volatiles bool If True H2O and CO2 will be excluded from the formula weight calculation. Returns ------- float The formula weight of the composition, on a one oxygen basis. """ if type(sample) == dict: _sample = pd.Series(sample.copy()) elif type(sample) != pd.core.series.Series: raise InputError("The composition input must be a pandas Series or dictionary.") else: _sample = sample.copy() cations = wtpercentOxides_to_molSingleO(_sample,exclude_volatiles=exclude_volatiles) if type(cations) != dict: cations = dict(cations) # if exclude_volatiles == True: # if 'C' in cations: # cations.pop('C') # if 'H' in cations: # cations.pop('H') # newsum = 0 # for cation in cations: # newsum += OxygenNum[cations_to_oxides[cation]] # for cation in cations: # cations[cation] = cations[cation]/newsum FW = 15.999 for cation in list(cations.keys()): FW += cations[cation]*CationMass[cations_to_oxides[cation]] return FW #----------DATA TRANSFORMATION FOR PANDAS DATAFRAMES---------# def fluid_molfrac_to_wt(data, H2O_colname='XH2O_fl_VESIcal', CO2_colname='XCO2_fl_VESIcal'): """ Takes in a pandas dataframe object and converts only the fluid composition from mole fraction to wt%, leaving the melt composition in tact. The user must specify the names of the XH2O_fl and XCO2_fl columns. Parameters ---------- data: pandas DataFrame Sample composition(s) containing columns for H2O and CO2 concentrations in the fluid. H2O_colname: str OPTIONAL. The default value is 'XH2O_fl', which is what is returned by ExcelFile() core calculations. String containing the name of the column corresponding to the H2O concentration in the fluid, in mol fraction. CO2_colname: str OPTIONAL. The default value is 'XCO2_fl', which is what is returned by ExcelFile() core calculations. String containing the name of the column corresponding to the CO2 concentration in the fluid, in mol fraction. Returns ------- pandas DataFrame Original data passed plus newly calculated values are returned. """ convData = data.copy() MPO_H2O_list = [] MPO_CO2_list = [] for index, row in convData.iterrows(): MPO_H2O_list.append(row[H2O_colname] * oxideMass["H2O"]) MPO_CO2_list.append(row[CO2_colname] * oxideMass["CO2"]) convData["MPO_H2O"] = MPO_H2O_list convData["MPO_CO2"] = MPO_CO2_list convData["H2O_fl_wt"] = 100 * convData["MPO_H2O"] / (convData["MPO_H2O"] + convData["MPO_CO2"]) convData["CO2_fl_wt"] = 100 * convData["MPO_CO2"] / (convData["MPO_H2O"] + convData["MPO_CO2"]) del convData["MPO_H2O"] del convData["MPO_CO2"] return convData def fluid_wt_to_molfrac(data, H2O_colname='H2O_fl_wt', CO2_colname='CO2_fl_wt'): """ Takes in a pandas dataframe object and converts only the fluid composition from wt% to mole fraction, leaving the melt composition in tact. The user must specify the names of the H2O_fl_wt and CO2_fl_wt columns. Parameters ---------- data: pandas DataFrame DataFrame containing columns for H2O and CO2 concentrations in the fluid. H2O_colname: str OPTIONAL. The default value is 'H2O_fl_wt', which is what is returned by ExcelFile() core calculations. String containing the name of the column corresponding to the H2O concentration in the fluid, in wt%. CO2_colname: str OPTIONAL. The default value is 'CO2_fl_wt', which is what is returned by ExcelFile() core calculations. String containing the name of the column corresponding to the CO2 concentration in the fluid, in wt%. Returns ------- pandas DataFrame Original data passed plus newly calculated values are returned. """ convData = data.copy() MPO_H2O_list = [] MPO_CO2_list = [] for index, row in convData.iterrows(): MPO_H2O_list.append(row[H2O_colname] / oxideMass["H2O"]) MPO_CO2_list.append(row[CO2_colname] / oxideMass["CO2"]) convData["MPO_H2O"] = MPO_H2O_list convData["MPO_CO2"] = MPO_CO2_list convData["XH2O_fl"] = convData["MPO_H2O"] / (convData["MPO_H2O"] + convData["MPO_CO2"]) convData["XCO2_fl"] = convData["MPO_CO2"] / (convData["MPO_H2O"] + convData["MPO_CO2"]) del convData["MPO_H2O"] del convData["MPO_CO2"] return convData #----------DEFINE SOME NORMALIZATION METHODS-----------# def normalize(sample): """Normalizes an input composition to 100%. This is the 'standard' normalization routine. Parameters ---------- sample: pandas Series, dictionary, pandas DataFrame, or ExcelFile object A single composition can be passed as a dictionary. Multiple compositions can be passed either as a pandas DataFrame or an ExcelFile object. Compositional information as oxides must be present. Returns ------- Sample passed as > Returned as pandas Series > pandas Series dictionary > dictionary pandas DataFrame > pandas DataFrame ExcelFile object > pandas DataFrame Normalized major element oxides. """ def single_normalize(sample): single_sample = sample return {k: 100.0 * v / sum(single_sample.values()) for k, v in single_sample.items()} def multi_normalize(sample): multi_sample = sample.copy() multi_sample["Sum"] = sum([multi_sample[oxide] for oxide in oxides]) for column in multi_sample: if column in oxides: multi_sample[column] = 100.0*multi_sample[column]/multi_sample["Sum"] del multi_sample["Sum"] return multi_sample if isinstance(sample, dict): _sample = sample.copy() return single_normalize(_sample) elif isinstance(sample, pd.core.series.Series): _sample = pd.Series(sample.copy()) sample_dict = sample.to_dict() return pd.Series(single_normalize(sample_dict)) elif isinstance(sample, ExcelFile): _sample = sample data = _sample.data return multi_normalize(data) elif isinstance(sample, pd.DataFrame): return multi_normalize(sample) def normalize_FixedVolatiles(sample): """ Normalizes major element oxides to 100 wt%, including volatiles. The volatile wt% will remain fixed, whilst the other major element oxides are reduced proportionally so that the total is 100 wt%. Parameters ---------- sample: pandas Series, dictionary, pandas DataFrame, or ExcelFile object Major element oxides in wt% Returns ------- Sample passed as > Returned as pandas Series > pandas Series dictionary > dictionary pandas DataFrame > pandas DataFrame ExcelFile object > pandas DataFrame Normalized major element oxides. """ def single_FixedVolatiles(sample): normalized = pd.Series({},dtype=float) volatiles = 0 if 'CO2' in list(_sample.index): volatiles += _sample['CO2'] if 'H2O' in list(_sample.index): volatiles += _sample['H2O'] for ox in list(_sample.index): if ox != 'H2O' and ox != 'CO2': normalized[ox] = _sample[ox] normalized = normalized/np.sum(normalized)*(100-volatiles) if 'CO2' in list(_sample.index): normalized['CO2'] = _sample['CO2'] if 'H2O' in list(_sample.index): normalized['H2O'] = _sample['H2O'] return normalized def multi_FixedVolatiles(sample): multi_sample = sample.copy() multi_sample["Sum_anhy"] = sum([multi_sample[oxide] for oxide in anhydrous_oxides]) multi_sample["Sum_vols"] = sum([multi_sample[vol] for vol in volatiles]) for column in multi_sample: if column in anhydrous_oxides: multi_sample[column] = 100.0*multi_sample[column]/multi_sample["Sum_anhy"] multi_sample[column] = multi_sample[column] / (100.0/(100.0-multi_sample["Sum_vols"])) del multi_sample["Sum_anhy"] del multi_sample["Sum_vols"] return multi_sample if isinstance(sample, dict): _sample = pd.Series(sample.copy()) return single_FixedVolatiles(_sample).to_dict() elif isinstance(sample, pd.core.series.Series): _sample = pd.Series(sample.copy()) return single_FixedVolatiles(_sample) elif isinstance(sample, ExcelFile): _sample = sample data = _sample.data return multi_FixedVolatiles(data) elif isinstance(sample, pd.DataFrame): return multi_FixedVolatiles(sample) else: raise InputError("The composition input must be a pandas Series or dictionary for single sample \ or a pandas DataFrame or ExcelFile object for multi-sample.") def normalize_AdditionalVolatiles(sample): """Normalises major element oxide wt% to 100%, assuming it is volatile-free. If H2O or CO2 are passed to the function, their un-normalized values will be retained in addition to the normalized non-volatile oxides, summing to >100%. Parameters ---------- sample: pandas Series, dictionary, pandas DataFrame, or ExcelFile object Major element oxides in wt% Returns ------- Sample passed as > Returned as pandas Series > pandas Series dictionary > dictionary pandas DataFrame > pandas DataFrame ExcelFile object > pandas DataFrame Normalized major element oxides. """ def single_AdditionalVolatiles(sample): normalized = pd.Series({}) for ox in list(_sample.index): if ox != 'H2O' and ox != 'CO2': normalized[ox] = _sample[ox] normalized = normalized/np.sum(normalized)*100 if 'H2O' in _sample.index: normalized['H2O'] = _sample['H2O'] if 'CO2' in _sample.index: normalized['CO2'] = _sample['CO2'] return normalized def multi_AdditionalVolatiles(sample): multi_sample = sample.copy() multi_sample["Sum"] = sum([multi_sample[oxide] for oxide in anhydrous_oxides]) for column in multi_sample: if column in anhydrous_oxides: multi_sample[column] = 100.0*multi_sample[column]/multi_sample["Sum"] del multi_sample["Sum"] return multi_sample if isinstance(sample, dict): _sample = pd.Series(sample.copy()) return single_AdditionalVolatiles(_sample).to_dict() elif isinstance(sample, pd.core.series.Series): _sample = pd.Series(sample.copy()) return single_AdditionalVolatiles(sample) elif isinstance(sample, ExcelFile): _sample = sample data = _sample.data return multi_AdditionalVolatiles(data) elif isinstance(sample, pd.DataFrame): return multi_AdditionalVolatiles(sample) else: raise InputError("The composition input must be a pandas Series or dictionary for single sample \ or a pandas DataFrame or ExcelFile object for multi-sample.") #------------DEFINE MAJOR CLASSES-------------------# class ExcelFile(object): """An excel file with sample names and oxide compositions Attributes ---------- filename: str Path to the excel file, e.g., "my_file.xlsx" sheet_name: str OPTIONAL. Default value is 0 which gets the first sheet in the excel spreadsheet file. This implements the pandas. read_excel() sheet_name parameter. But functionality to read in more than one sheet at a time (e.g., pandas.read_excel(sheet_name=None)) is not yet imlpemented in VESIcal. From the pandas 1.0.4 documentation: Available cases: - Defaults to 0: 1st sheet as a DataFrame - 1: 2nd sheet as a DataFrame - "Sheet1": Load sheet with name “Sheet1” input_type: str or int OPTIONAL. Default is 'wtpercent'. String defining whether the oxide composition is given in wt percent ("wtpercent", which is the default), mole percent ("molpercent"), or mole fraction ("molfrac"). label: str OPTIONAL. Default is 'Label'. Name of the column within the passed Excel file referring to sample names. """ def __init__(self, filename, sheet_name=0, input_type='wtpercent', label='Label', **kwargs): """Return an ExcelFile object whoes parameters are defined here.""" if isinstance(sheet_name, str) or isinstance(sheet_name, int): pass else: raise InputError("If sheet_name is passed, it must be of type str or int. Currently, VESIcal cannot import more than one sheet at a time.") self.input_type = input_type data = pd.read_excel(filename, sheet_name=sheet_name) data = data.fillna(0) try: data = data.set_index(label) except: raise InputError( "Imported file must contain a column of sample names. If this column is not titled 'Label' (the default value), you must pass the column name to arg label. For example: ExcelFile('myfile.xslx', label='SampleNames')") #TODO test if 'model' in kwargs: warnings.warn("You don't need to pass a model here, so it will be ignored. You can specify a model when performing calculations on your dataset (e.g., calculate_dissolved_volatiles())",RuntimeWarning) total_iron_columns = ["FeOt", "FeOT", "FeOtot", "FeOtotal", "FeOstar", "FeO*"] for name in total_iron_columns: if name in data.columns: if 'FeO' in data.columns: warnings.warn("Both " + str(name) + " and FeO columns were passed. " + str(name) + " column will be ignored.",RuntimeWarning) else: warnings.warn("Total iron column " + str(name) + " detected. This column will be treated as FeO. If Fe2O3 data are not given, Fe2O3 will be 0.0.",RuntimeWarning) data['FeO'] = data[name] for oxide in oxides: if oxide in data.columns: pass else: data[oxide] = 0.0 # TODO test all input types produce correct values if input_type == "wtpercent": pass if input_type == "molpercent": data = mol_to_wtpercent(data) if input_type == "molfrac": data = mol_to_wtpercent(data) self.data = data def preprocess_sample(self,sample): """ Adds 0.0 values to any oxide data not passed. Parameters ---------- sample: pandas DataFrame self.data composition of samples in wt% oxides Returns ------- pandas DataFrame """ for oxide in oxides: if oxide in self.data.columns: pass else: self.data[oxide] = 0.0 return sample def get_sample_oxide_comp(self, sample, norm='none'): """ Returns oxide composition of a single sample from a user-imported excel file as a dictionary Parameters ---------- sample: string Name of the desired sample norm_style: string OPTIONAL. Default value is 'standard'. This specifies the style of normalization applied to the sample. 'standard' normalizes the entire input composition (including any volatiles) to 100%. 'fixedvolatiles' normalizes oxides to 100%, including volatiles. The volatile wt% will remain fixed, whilst the other major element oxides are reduced proportionally so that the total is 100 wt%. 'additionalvolatiles' normalizes oxides to 100%, assuming it is volatile-free. If H2O or CO2 are passed to the function, their un-normalized values will be retained in addition to the normalized non-volatile oxides, summing to >100%. 'none' returns the value-for-value un-normalized composition. Returns ------- dictionary Composition of the sample as oxides """ if norm == 'none' or norm == 'standard' or norm == 'fixedvolatiles' or norm == 'additionalvolatiles': pass else: raise InputError('norm must be either none, standard, fixedvolatiles, or additionalvolatiles.') data = self.data my_sample = pd.DataFrame(data.loc[sample]) sample_dict = (my_sample.to_dict()[sample]) sample_oxides = {} for item, value in sample_dict.items(): if item in oxides: sample_oxides.update({item: value}) if norm == 'standard': return normalize(sample_oxides) if norm == 'fixedvolatiles': return normalize_FixedVolatiles(sample_oxides) if norm == 'additionalvolatiles': return normalize_AdditionalVolatiles(sample_oxides) if norm == 'none': return sample_oxides def get_XH2O_fluid(self, sample, temperature, pressure, H2O, CO2): """An internally used function to calculate fluid composition. Parameters ---------- sample: dictionary Sample composition in wt% oxides temperature: float Temperature in degrees C. pressure: float Pressure in bars H2O: float wt% H2O in the system CO2: float wt% CO2 in the system Returns ------- float Mole fraction of H2O in the H2O-CO2 fluid """ pressureMPa = pressure / 10.0 bulk_comp = {oxide: sample[oxide] for oxide in oxides} bulk_comp["H2O"] = H2O bulk_comp["CO2"] = CO2 feasible = melts.set_bulk_composition(bulk_comp) output = melts.equilibrate_tp(temperature, pressureMPa, initialize=True) (status, temperature, pressureMPa, xmlout) = output[0] fluid_comp = melts.get_composition_of_phase(xmlout, phase_name='Fluid', mode='component') #NOTE mode='component' returns endmember component keys with values in mol fraction. if "Water" in fluid_comp: H2O_fl = fluid_comp["Water"] else: H2O_fl = 0.0 # if H2O_fl == 0: # raise SaturationError("Composition not fluid saturated.") return H2O_fl def save_excelfile(self, filename, calculations, sheet_name=None): #TODO how to handle if user just wants to normalize data? """ Saves data calculated by the user in batch processing mode (using the ExcelFile class methods) to an organized excel file, with the original user data plus any calculated data. Parameters ---------- filename: string Name of the file. Extension (.xlsx) should be passed along with the name itself, all in quotes (e.g., 'myfile.xlsx'). calculations: list List of variables containing calculated outputs from any of the core ExcelFile functions: calculate_dissolved_volatiles, calculate_equilibrium_fluid_comp, and calculate_saturation_pressure. sheet_name: None or list OPTIONAL. Default value is None. Allows user to set the name of the sheet or sheets written to the Excel file. Returns ------- Excel File Creates and saves an Excel file with data from each calculation saved to its own sheet. """ if isinstance(calculations, list): if isinstance(sheet_name, list) or sheet_name is None: pass else: raise InputError("calculations and sheet_name must be type list. If you only have one calculation or sheet_name to pass, make sure they are passed in square brackets []") with pd.ExcelWriter(filename) as writer: self.data.to_excel(writer, 'Original_User_Data') if sheet_name is None: for n, df in enumerate(calculations): df.to_excel(writer, 'Calc%s' % n) elif isinstance(sheet_name, list): if len(sheet_name) == len(calculations): pass else: raise InputError("calculations and sheet_name must have the same length") for i in range(len(calculations)): if isinstance(sheet_name[i], str): calculations[i].to_excel(writer, sheet_name[i]) else: raise InputError("if sheet_name is passed, it must be list of strings") else: raise InputError("sheet_name must be type list") return print("Saved " + str(filename)) def calculate_dissolved_volatiles(self, temperature, pressure, X_fluid=1, print_status=True, model='MagmaSat', record_errors=False, **kwargs): """ Calculates the amount of H2O and CO2 dissolved in a magma at the given P/T conditions and fluid composition. Fluid composition will be matched to within 0.0001 mole fraction. Parameters ---------- temperature: float, int, or str Temperature, in degrees C. Can be passed as float, in which case the passed value is used as the temperature for all samples. Alternatively, temperature information for each individual sample may already be present in the ExcelFile object. If so, pass the str value corresponding to the column title in the ExcelFile object. presure: float, int, or str Pressure, in bars. Can be passed as float or int, in which case the passed value is used as the pressure for all samples. Alternatively, pressure information for each individual sample may already be present in the ExcelFile object. If so, pass the str value corresponding to the column title in the ExcelFile object. X_fluid: float, int, or str OPTIONAL: Default value is 1. The mole fraction of H2O in the H2O-CO2 fluid. X_fluid=1 is a pure H2O fluid. X_fluid=0 is a pure CO2 fluid. Can be passed as a float or int, in which case the passed value is used as the X_fluid for all samples. Alternatively, X_fluid information for each individual sample may already be present in the ExcelFile object. If so, pass the str value corresponding to the column title in the ExcelFile object. print_status: bool OPTIONAL: The default value is True, in which case the progress of the calculation will be printed to the terminal. If set to False, nothing will be printed. MagmaSat calculations tend to be slow, and so a value of True is recommended for most use cases. model: string The default value is 'MagmaSat'. Any other model name can be passed here as a string (in single quotes). record_errors: bool OPTIONAL: If True, any errors arising during the calculation will be recorded as a column. Returns ------- pandas DataFrame Original data passed plus newly calculated values are returned. """ data = self.preprocess_sample(self.data) dissolved_data = data.copy() if isinstance(temperature, str): file_has_temp = True temp_name = temperature elif isinstance(temperature, float) or isinstance(temperature, int): file_has_temp = False else: raise InputError("temp must be type str or float or int") if isinstance(pressure, str): file_has_press = True press_name = pressure elif isinstance(pressure, float) or isinstance(pressure, int): file_has_press = False else: raise InputError("pressure must be type str or float or int") if isinstance(X_fluid, str): file_has_X = True X_name = X_fluid elif isinstance(X_fluid, float) or isinstance(X_fluid, int): file_has_X = False if X_fluid != 0 and X_fluid !=1: if X_fluid < 0.001 or X_fluid > 0.999: raise InputError("X_fluid is calculated to a precision of 0.0001 mole fraction. \ Value for X_fluid must be between 0.0001 and 0.9999.") else: raise InputError("X_fluid must be type str or float or int") H2Ovals = [] CO2vals = [] warnings = [] errors = [] if model in get_models(models='mixed'): for index, row in dissolved_data.iterrows(): try: if file_has_temp == True: temperature = row[temp_name] if file_has_press == True: pressure = row[press_name] if file_has_X == True: X_fluid = row[X_name] bulk_comp = {oxide: row[oxide] for oxide in oxides} calc = calculate_dissolved_volatiles(sample=bulk_comp, pressure=pressure, temperature=temperature, X_fluid=(X_fluid, 1-X_fluid), model=model, silence_warnings=True, **kwargs) H2Ovals.append(calc.result['H2O_liq']) CO2vals.append(calc.result['CO2_liq']) warnings.append(calc.calib_check) errors.append('') except Exception as inst: H2Ovals.append(np.nan) CO2vals.append(np.nan) warnings.append('Calculation Failed.') errors.append(sys.exc_info()[0]) dissolved_data["H2O_liq_VESIcal"] = H2Ovals dissolved_data["CO2_liq_VESIcal"] = CO2vals if file_has_temp == False: dissolved_data["Temperature_C_VESIcal"] = temperature if file_has_press == False: dissolved_data["Pressure_bars_VESIcal"] = pressure if file_has_X == False: dissolved_data["X_fluid_input_VESIcal"] = X_fluid dissolved_data["Model"] = model dissolved_data["Warnings"] = warnings if record_errors == True: dissolved_data["Errors"] = errors return dissolved_data elif model == 'MagmaSat': XH2Ovals = [] XCO2vals = [] FluidProportionvals = [] for index, row in dissolved_data.iterrows(): if print_status == True: print("Calculating sample " + str(index)) try: if file_has_temp == True: temperature = row[temp_name] if file_has_press == True: pressure = row[press_name] if file_has_X == True: X_fluid = row[X_name] bulk_comp = {oxide: row[oxide] for oxide in oxides} calc = calculate_dissolved_volatiles(sample=bulk_comp, pressure=pressure, temperature=temperature, X_fluid=X_fluid, model=model, silence_warnings=True, verbose=True) H2Ovals.append(calc.result['H2O_liq']) CO2vals.append(calc.result['CO2_liq']) XH2Ovals.append(calc.result['XH2O_fl']) XCO2vals.append(calc.result['XCO2_fl']) FluidProportionvals.append(calc.result['FluidProportion_wt']) warnings.append(calc.calib_check) errors.append('') except Exception as inst: H2Ovals.append(np.nan) CO2vals.append(np.nan) XH2Ovals.append(np.nan) XCO2vals.append(np.nan) FluidProportionvals.append(np.nan) warnings.append('Calculation Failed.') errors.append(sys.exc_info()[0]) dissolved_data["H2O_liq_VESIcal"] = H2Ovals dissolved_data["CO2_liq_VESIcal"] = CO2vals if file_has_temp == False: dissolved_data["Temperature_C_VESIcal"] = temperature if file_has_press == False: dissolved_data["Pressure_bars_VESIcal"] = pressure if file_has_X == False: dissolved_data["X_fluid_input_VESIcal"] = X_fluid dissolved_data["Model"] = model dissolved_data["Warnings"] = warnings if record_errors == True: dissolved_data["Errors"] = errors return dissolved_data else: XH2Ovals = [] XCO2vals = [] FluidProportionvals = [] for index, row in dissolved_data.iterrows(): if file_has_temp == True: temperature = row[temp_name] if file_has_press == True: pressure = row[press_name] if file_has_X == True: X_fluid = row[X_name] bulk_comp = {oxide: row[oxide] for oxide in oxides} if 'Water' in model: try: calc = calculate_dissolved_volatiles(sample=bulk_comp, pressure=pressure, temperature=temperature, X_fluid=X_fluid, model=model, silence_warnings=True) H2Ovals.append(calc.result) warnings.append(calc.calib_check) except: H2Ovals.append(0) warnings.append('Calculation Failed #001') if 'Carbon' in model: try: calc = calculate_dissolved_volatiles(sample=bulk_comp, pressure=pressure, temperature=temperature, X_fluid=X_fluid, model=model, silence_warnings=True) CO2vals.append(calc.result) warnings.append(calc.calib_check) except: CO2vals.append(0) warnings.append('Calculation Failed #002') if 'Water' in model: dissolved_data["H2O_liq_VESIcal"] = H2Ovals if 'Carbon' in model: dissolved_data["CO2_liq_VESIcal"] = CO2vals if file_has_temp == False: dissolved_data["Temperature_C_VESIcal"] = temperature if file_has_press == False: dissolved_data["Pressure_bars_VESIcal"] = pressure if file_has_X == False: dissolved_data["X_fluid_input_VESIcal"] = X_fluid dissolved_data["Model"] = model dissolved_data["Warnings"] = warnings return dissolved_data def calculate_equilibrium_fluid_comp(self, temperature, pressure, print_status=False, model='MagmaSat', **kwargs): #TODO make molfrac the default """ Returns H2O and CO2 concentrations in wt% or mole fraction in a fluid in equilibrium with the given sample(s) at the given P/T condition. Parameters ---------- sample: ExcelFile object Compositional information on samples in oxides. temperature: float, int, or str Temperature, in degrees C. Can be passed as float, in which case the passed value is used as the temperature for all samples. Alternatively, temperature information for each individual sample may already be present in the ExcelFile object. If so, pass the str value corresponding to the column title in the ExcelFile object. presure: float, int, or str Pressure, in bars. Can be passed as float or int, in which case the passed value is used as the pressure for all samples. Alternatively, pressure information for each individual sample may already be present in the ExcelFile object. If so, pass the str value corresponding to the column title in the ExcelFile object. model: string OPTIONAL: Default is 'MagmaSat'. Any other model name can be passed here. Returns ------- pandas DataFrame Original data passed plus newly calculated values are returned. """ data = self.preprocess_sample(self.data) fluid_data = data.copy() if isinstance(temperature, str): file_has_temp = True temp_name = temperature elif isinstance(temperature, float) or isinstance(temperature, int): file_has_temp = False else: raise InputError("temp must be type str or float or int") if isinstance(pressure, str): file_has_press = True press_name = pressure elif isinstance(pressure, float) or isinstance(pressure, int): file_has_press = False else: raise InputError("pressure must be type str or float or int") H2Ovals = [] CO2vals = [] warnings = [] if model in get_models(models='mixed') or model == "MooreWater": for index, row in fluid_data.iterrows(): try: if file_has_temp == True: temperature = row[temp_name] if file_has_press == True: pressure = row[press_name] bulk_comp = {oxide: row[oxide] for oxide in oxides} calc = calculate_equilibrium_fluid_comp(sample=bulk_comp, pressure=pressure, temperature=temperature, model=model, silence_warnings=True, **kwargs) H2Ovals.append(calc.result['H2O']) CO2vals.append(calc.result['CO2']) warnings.append(calc.calib_check) except: H2Ovals.append(np.nan) CO2vals.append(np.nan) warnings.append("Calculation Failed.") fluid_data["XH2O_fl_VESIcal"] = H2Ovals fluid_data["XCO2_fl_VESIcal"] = CO2vals if file_has_temp == False: fluid_data["Temperature_C_VESIcal"] = temperature if file_has_press == False: fluid_data["Pressure_bars_VESIcal"] = pressure fluid_data["Model"] = model fluid_data["Warnings"] = warnings return fluid_data elif model == 'MagmaSat': for index, row in fluid_data.iterrows(): if print_status == True: print("Calculating sample " + str(index)) try: if file_has_temp == True: temperature = row[temp_name] if file_has_press == True: pressure = row[press_name] bulk_comp = {oxide: row[oxide] for oxide in oxides} calc = calculate_equilibrium_fluid_comp(sample=bulk_comp, pressure=pressure, temperature=temperature, model=model, silence_warnings=True) H2Ovals.append(calc.result['H2O']) CO2vals.append(calc.result['CO2']) warnings.append(calc.calib_check) except: H2Ovals.append(np.nan) CO2vals.append(np.nan) warnings.append("Calculation Failed.") fluid_data["XH2O_fl_VESIcal"] = H2Ovals fluid_data["XCO2_fl_VESIcal"] = CO2vals if file_has_temp == False: fluid_data["Temperature_C_VESIcal"] = temperature if file_has_press == False: fluid_data["Pressure_bars_VESIcal"] = pressure fluid_data["Model"] = model fluid_data["Warnings"] = warnings return fluid_data else: saturated = [] for index, row in fluid_data.iterrows(): try: if file_has_temp == True: temperature = row[temp_name] if file_has_press == True: pressure = row[press_name] bulk_comp = {oxide: row[oxide] for oxide in oxides} calc = calculate_equilibrium_fluid_comp(sample=bulk_comp, pressure=pressure, temperature=temperature, model=model, silence_warnings=True) saturated.append(calc.result) warnings.append(calc.calib_check) except: saturated.append(np.nan) warnings.append("Calculation Failed.") fluid_data["Saturated_VESIcal"] = saturated if file_has_temp == False: fluid_data["Temperature_C_VESIcal"] = temperature if file_has_press == False: fluid_data["Pressure_bars_VESIcal"] = pressure fluid_data["Model"] = model fluid_data["Warnings"] = warnings return fluid_data def calculate_saturation_pressure(self, temperature, print_status=True, model='MagmaSat', **kwargs): #TODO fix weird printing """ Calculates the saturation pressure of multiple sample compositions in the ExcelFile. Parameters ---------- temperature: float, int, or str Temperature at which to calculate saturation pressures, in degrees C. Can be passed as float or int, in which case the passed value is used as the temperature for all samples. Alternatively, temperature information for each individual sample may already be present in the passed ExcelFile object. If so, pass the str value corresponding to the column title in the passed ExcelFile object. print_status: bool OPTIONAL: The default value is True, in which case the progress of the calculation will be printed to the terminal. If set to False, nothing will be printed. MagmaSat calculations tend to be slow, and so a value of True is recommended more most use cases. model: string OPTIONAL: Default is 'MagmaSat'. Any other model name can be passed here. Returns ------- pandas DataFrame object Values returned are saturation pressure in bars, the mass of fluid present, and the composition of the fluid present. """ data = self.preprocess_sample(self.data) satp_data = data.copy() if isinstance(temperature, str): file_has_temp = True temp_name = temperature elif isinstance(temperature, float) or isinstance(temperature, int): file_has_temp = False else: raise InputError("temperature must be type str or float or int") if model != 'MagmaSat': satP = [] warnings = [] for index, row in satp_data.iterrows(): try: if file_has_temp == True: temperature = row[temp_name] bulk_comp = {oxide: row[oxide] for oxide in oxides} calc = calculate_saturation_pressure(sample=bulk_comp, temperature=temperature, model=model, silence_warnings=True, **kwargs) satP.append(calc.result) warnings.append(calc.calib_check) except: satP.append(np.nan) warnings.append("Calculation Failed") satp_data["SaturationP_bars_VESIcal"] = satP if file_has_temp == False: satp_data["Temperature_C_VESIcal"] = temperature satp_data["Model"] = model satp_data["Warnings"] = warnings return satp_data else: satP = [] flmass = [] flH2O = [] flCO2 = [] flsystem_wtper = [] warnings = [] for index, row in satp_data.iterrows(): if print_status == True: print("Calculating sample " + str(index)) try: if file_has_temp == True: temperature = row[temp_name] bulk_comp = {oxide: row[oxide] for oxide in oxides} calc = calculate_saturation_pressure(sample=bulk_comp, temperature=temperature, model=model, verbose=True, silence_warnings=True) satP.append(calc.result["SaturationP_bars"]) flmass.append(calc.result["FluidMass_grams"]) flsystem_wtper.append(calc.result["FluidProportion_wt"]) flH2O.append(calc.result["XH2O_fl"]) flCO2.append(calc.result["XCO2_fl"]) warnings.append(calc.calib_check) except: satP.append(np.nan) flmass.append(np.nan) flsystem_wtper.append(np.nan) flH2O.append(np.nan) flCO2.append(np.nan) warnings.append("Calculation Failed") satp_data["SaturationP_bars_VESIcal"] = satP if file_has_temp == False: satp_data["Temperature_C_VESIcal"] = temperature satp_data["XH2O_fl_VESIcal"] = flH2O satp_data["XCO2_fl_VESIcal"] = flCO2 satp_data["FluidMass_grams_VESIcal"] = flmass satp_data["FluidSystem_wt_VESIcal"] = flsystem_wtper satp_data["Model"] = model satp_data["Warnings"] = warnings if print_status == True: print("Done!") return satp_data class CalibrationRange(object): """ The CalibrationRange object allows the range of allowable parameters to be specified and used in checking and reporting of the results. """ def __init__(self, parameter_name, value, checkfunction=None, units='', model_name='', fail_msg='',fail_dict={}, pass_msg='', pass_dict={}, description_msg='', description_dict={}): self.parameter_name = parameter_name self.value = value self.checkfunction = checkfunction self.units = units self.model_name = model_name self.fail_msg = (copy(fail_msg), copy(fail_dict)) self.pass_msg = (copy(pass_msg), copy(pass_dict)) self.description_msg = (copy(description_msg), copy(description_dict)) def check(self,parameters): """Method for checking whether parameters satisfy the calibration range.""" if self.parameter_name in parameters: return self.checkfunction(self.value,parameters[self.parameter_name]) else: return None def string(self,parameters,report_nonexistance=True): """Returns a string statement of the calibration check""" if type(parameters) == type(None): msgdict = self.description_msg[1] if type(self.value) == float or type(self.value) == int: msgdict['calib_val'] = self.value elif type(self.value) == list or type(self.value) == tuple or type(self.value) == np.ndarray: for i in range(len(self.value)): msgdict['calib_val'+str(i)] = self.value[i] if 'param_name' not in msgdict: msgdict['param_name'] = self.parameter_name if 'units' not in msgdict: msgdict['units'] = self.units if 'model_name' not in msgdict: msgdict['model_name'] = self.model_name return self.description_msg[0].format(**msgdict) else: check = self.check(parameters) if check == True: msgdict = self.pass_msg[1] msgdict['param_val'] = parameters[self.parameter_name] if type(self.value) == float or type(self.value) == int: msgdict['calib_val'] = self.value elif type(self.value) == list or type(self.value) == tuple or type(self.value) == np.ndarray: for i in range(len(self.value)): msgdict['calib_val'+str(i)] = self.value[i] if 'param_name' not in msgdict: msgdict['param_name'] = self.parameter_name if 'units' not in msgdict: msgdict['units'] = self.units if 'model_name' not in msgdict: msgdict['model_name'] = self.model_name return self.pass_msg[0].format(**msgdict) elif check == False: msgdict = self.fail_msg[1] msgdict['param_val'] = parameters[self.parameter_name] if type(self.value) == float or type(self.value) == int: msgdict['calib_val'] = self.value elif type(self.value) == list or type(self.value) == tuple or type(self.value) == np.ndarray: for i in range(len(self.value)): msgdict['calib_val'+str(i)] = self.value[i] if 'param_name' not in msgdict: msgdict['param_name'] = self.parameter_name if 'units' not in msgdict: msgdict['units'] = self.units if 'model_name' not in msgdict: msgdict['model_name'] = self.model_name return self.fail_msg[0].format(**msgdict) else: if report_nonexistance == True: return "A value for {} was not provided.".format(self.parameter_name) else: return '' # class old_CalibrationRange(object): # """ The CalibrationRange object allows the range of allowable parameters to be specified and # used in checking and reporting of the results. # """ # def __init__(self,parameter_name,value,unit='',modelname='',explanation_string=None, # parameter_string=None,value_fmt="{:.1f}"): # self.parameter_name = parameter_name # self.value = value # self.value_fmt = value_fmt # self.model_name = modelname # self.unit = unit # self.explanation_string = explanation_string # if parameter_string is not None: # self.parameter_string = parameter_string # else: # self.parameter_string = parameter_name # # @abstractmethod # def check(self,parameters): # """Method for checking whether parameters satisfy the calibration range.""" # return True # # @abstractmethod # def string(self,parameters): # """Returns a string statement of the calibration check""" # return 'No string return defined. ' class Model(object): """The model object implements a volatile solubility model. It is composed of the methods needed to evaluate :func:`VESIcal.calculate_dissolved_volatiles`, :func:`VESIcal.calculate_equilibrium_fluid_comp`, and :func:`calculate_saturation_pressure`. The fugacity and activity models for the volatiles species must be specified, defaulting to ideal. """ def __init__(self): self.set_volatile_species(None) self.set_fugacity_model(fugacity_idealgas()) self.set_activity_model(activity_idealsolution()) self.set_calibration_ranges([]) self.set_solubility_dependence(False) def set_volatile_species(self,volatile_species): if type(volatile_species) == str: volatile_species = [volatile_species] elif type(volatile_species) != list: raise InputError("volatile_species must be a str or list.") self.volatile_species = volatile_species def set_fugacity_model(self,fugacity_model): self.fugacity_model = fugacity_model def set_activity_model(self,activity_model): self.activity_model = activity_model def set_calibration_ranges(self,calibration_ranges): self.calibration_ranges = calibration_ranges def set_solubility_dependence(self,solubility_dependence): self.solubility_dependence = solubility_dependence @abstractmethod def calculate_dissolved_volatiles(self,**kwargs): pass @abstractmethod def calculate_equilibrium_fluid_comp(self,**kwargs): pass @abstractmethod def calculate_saturation_pressure(self,**kwargs): pass @abstractmethod def preprocess_sample(self,**kwargs): pass # @abstractmethod def check_calibration_range(self,parameters,report_nonexistance=True): """ Checks whether the given parameters are within the ranges defined by the CalibrationRange objects for the model and its fugacity and activity models. An empty string will be returned if all parameters are within the calibration range. If a parameter is not within the calibration range, a description of the problem will be returned in the string. Parameters ---------- parameters dict Dictionary keys are the names of the parameters to be checked, e.g., pressure temperature, SiO2, etc. Values are the values of each parameter. A complete set need not be given. Returns ------- str String description of any parameters falling outside of the calibration range. """ s = '' for cr in self.calibration_ranges: if cr.check(parameters) == False: s += cr.string(parameters,report_nonexistance) for cr in self.fugacity_model.calibration_ranges: if cr.check(parameters) == False: s += cr.string(parameters,report_nonexistance) for cr in self.activity_model.calibration_ranges: if cr.check(parameters) == False: s += cr.string(parameters,report_nonexistance) return s def get_calibration_range(self): """ Returns a string describing the calibration ranges defined by the CalibrationRange objects for each model, and its associated fugacity and activity models. Returns ------- str String description of the calibration range objects.""" s = '' for cr in self.calibration_ranges: s += cr.string(None) for cr in self.fugacity_model.calibration_ranges: s += cr.string(None) for cr in self.activity_model.calibration_ranges: s += cr.string(None) return s class FugacityModel(object): """ The fugacity model object is for implementations of fugacity models for individual volatile species, though it may depend on the mole fraction of other volatile species. It contains all the methods required to calculate the fugacity at a given pressure and mole fraction. """ def __init__(self): self.set_calibration_ranges([]) def set_calibration_ranges(self,calibration_ranges): self.calibration_ranges = calibration_ranges @abstractmethod def fugacity(self,pressure,**kwargs): """ """ # @abstractmethod def check_calibration_range(self,parameters,report_nonexistance=True): s = '' for cr in self.calibration_ranges: if cr.check(parameters) == False: s += cr.string(parameters,report_nonexistance) return s class activity_model(object): """ The activity model object is for implementing activity models for volatile species in melts. It contains all the methods required to evaluate the activity. """ def __init__(self): self.set_calibration_ranges([]) def set_calibration_ranges(self,calibration_ranges): self.calibration_ranges = calibration_ranges @abstractmethod def activity(self,X,**kwargs): """ """ # @abstractmethod def check_calibration_range(self,parameters,report_nonexistance=True): s = '' for cr in self.calibration_ranges: if cr.check(parameters) == False: s += cr.string(parameters,report_nonexistance) return s class Calculate(object): """ The Calculate object is a template for implementing user-friendly methods for running calculations using the volatile solubility models. All Calculate methods have a common workflow- sample is read in, preprocessed, the calculation is performed, the calibration range is checked, and the results stored. """ def __init__(self,sample,model='MagmaSat',silence_warnings=False,preprocess_sample=False,**kwargs): if model == 'MagmaSat': self.model = MagmaSat() elif type(model) == str: self.model = default_models[model] else: self.model = model self.sample = sample.copy() if preprocess_sample == True: self.sample = self.model.preprocess_sample(self.sample) self.result = self.calculate(sample=self.sample,**kwargs) self.calib_check = self.check_calibration_range(sample=self.sample,**kwargs) if self.calib_check is not None and silence_warnings == False: if self.calib_check != '': warnings.warn(self.calib_check,RuntimeWarning) @abstractmethod def calculate(self): """ """ @abstractmethod def check_calibration_range(self): """ """ #-------------DEFAULT CALIBRATIONRANGE OBJECTS---------------# def crf_EqualTo(calibval,paramval): return calibval == paramval crmsg_EqualTo_pass = "The {param_name} ({param_val:.1f} {units}) is equal to {calib_val:.1f} {units} as required by the calibration range of the {model_name} model. " crmsg_EqualTo_fail = "The {param_name} is outside the calibration range of the {model_name} model, as {param_val:.1f} {units} is not equal to {calib_val:.1f} {units}. " crmsg_EqualTo_description = "The {model_name} model is calibrated for {param_name} equal to {calib_val:.1f} {units}. " def crf_GreaterThan(calibval,paramval): return paramval > calibval crmsg_GreaterThan_pass = "The {param_name} ({param_val:.1f} {units}) is greater than {calib_val:.1f} {units} as required by the calibration range of the {model_name} model. " crmsg_GreaterThan_fail = "The {param_name} is outside the calibration range of the {model_name} model, as {param_val:.1f} {units} is not greater than {calib_val:.1f} {units}. " crmsg_GreaterThan_description = "The {model_name} model is calibrated for {param_name} greater than {calib_val:.1f} {units}. " def crf_LessThan(calibval,paramval): return paramval < calibval crmsg_LessThan_pass = "The {param_name} ({param_val:.1f} {units}) is less than {calib_val:.1f} {units} as required by the calibration range of the {model_name} model. " crmsg_LessThan_fail = "The {param_name} is outside the calibration range of the {model_name} model, as {param_val:.1f} {units} is not less than {calib_val:.1f} {units}. " crmsg_LessThan_description = "The {model_name} model is calibrated for {param_name} less than {calib_val:.1f} {units}. " def crf_Between(calibval,paramval): return paramval > calibval[0] and paramval < calibval[1] crmsg_Between_pass = "The {param_name} ({param_val:.1f} {units}) is between {calib_val0:.1f} and {calib_val1:.1f} {units} as required by the calibration range of the {model_name} model. " crmsg_Between_fail = "The {param_name} is outside the calibration range of the {model_name} model, as {param_val:.1f} {units} is not between {calib_val0:.1f} and {calib_val1:.1f} {units}. " crmsg_Between_description = "The {model_name} model is calibrated for {param_name} between {calib_val0:.1f} and {calib_val1:.1f} {units}. " def crf_LiuComp(calibval=None,sample={}): SiTest = sample['SiO2'] >= 75.0 and sample['SiO2'] <= 77.0 NaTest = sample['Na2O'] >= 3.4 and sample['Na2O'] <= 4.7 KTest = sample['K2O'] >= 3.6 and sample['K2O'] <= 5.7 AlTest = sample['Al2O3'] >= 12.1 and sample['Al2O3'] <= 13.5 return all([SiTest, NaTest, KTest, AlTest]) crmsg_LiuComp_pass = "The sample appears to be similar in composition to the rhyolites and haplogranites used to calibrate the Liu et al. model." crmsg_LiuComp_fail = "As the Liu et al. model incorperates no term for compositional dependence, users must take extreme care when extrapolating this model to compositions which differ significantly from the haplogranites and rhyolites in the calibration dataset. These warnings are simply a guide; we suggest that users carefully compare their major element data to the calibration dataset to check for suitability." crmsg_LiuComp_description = "The Liu et al. model is suitable for haplogranites and rhyolites." #-------------FUGACITY MODELS--------------------------------# class fugacity_idealgas(FugacityModel): """ An instance of FugacityModel for an ideal gas. """ def fugacity(self,pressure,X_fluid=1.0,**kwargs): """ Returns the fugacity of an ideal gas, i.e., the partial pressure. Parameters ---------- pressure float Total pressure of the system, in bars. X_fluid float The mole fraction of the species in the vapour phase. Returns ------- float Fugacity (partial pressure) in bars """ return pressure*X_fluid class fugacity_KJ81_co2(FugacityModel): """ Implementation of the Kerrick and Jacobs (1981) EOS for mixed fluids. This class will return the properties of the CO2 component of the mixed fluid. """ def __init__(self): self.set_calibration_ranges([CalibrationRange('pressure',20000.0,crf_LessThan,'bar','Kerrick and Jacobs (1981) EOS', fail_msg=crmsg_LessThan_fail, pass_msg=crmsg_LessThan_pass, description_msg=crmsg_LessThan_description), CalibrationRange('temperature',1050,crf_LessThan,'oC','Kerrick and Jacobs (1981) EOS', fail_msg=crmsg_LessThan_fail, pass_msg=crmsg_LessThan_pass, description_msg=crmsg_LessThan_description)]) def fugacity(self,pressure,temperature,X_fluid,**kwargs): """ Calculates the fugacity of CO2 in a mixed CO2-H2O fluid. Above 1050C, it assumes H2O and CO2 do not interact, as the equations are not defined beyond this point. Parameters ---------- pressure float Total pressure of the system in bars. temperature float Temperature in degC X_fluid float Mole fraction of CO2 in the fluid. Returns ------- float fugacity of CO2 in bars """ if X_fluid == 0: return 0 elif temperature >= 1050.0: return pressure*np.exp(self.lnPhi_mix(pressure,temperature,1.0))*X_fluid else: return pressure*np.exp(self.lnPhi_mix(pressure,temperature,X_fluid))*X_fluid def volume(self,P,T,X_fluid): """ Calculates the volume of the mixed fluid, by solving Eq (28) of Kerrick and Jacobs (1981) using scipy.root_scalar. Parameters ---------- P float Total pressure of the system, in bars. T float Temperature in degC X_fluid float Mole fraction of CO2 in the fluid Returns ------- float Volume of the mixed fluid. """ if X_fluid != 1.0: # x0 = self.volume(P,T,1.0)*X_fluid + self.volume_h(P,T)*(1-X_fluid) # print(x0) if P >= 20000 and T<800-273.15: x0 = (X_fluid*25+(1-X_fluid)*15) else: x0 = (X_fluid*35+(1-X_fluid)*15) else: if P >= 20000 and T<800-273.15: x0 = 25 else: x0=35 return root_scalar(self.root_volume,x0=x0,x1=x0*0.9,args=(P,T,X_fluid)).root def root_volume(self,v,P,T,X_fluid): """ Returns the difference between the lhs and rhs of Eq (28) of Kerrick and Jacobs (1981). For use with a root finder to obtain the volume of the mixed fluid. Parameters ---------- v float Guess for the volume P float Total system pressure in bars. T float Temperature in degC X_fluid float Mole fraction of CO2 in the fluid. Returns ------- float Difference between lhs and rhs of Eq (28) of Kerrick and Jacobs (1981), in bars. """ T = T + 273.15 c = {} h = {} c['b'] = 58.0 c['c'] = (28.31 + 0.10721*T - 8.81e-6*T**2)*1e6 c['d'] = (9380.0 - 8.53*T + 1.189e-3*T**2)*1e6 c['e'] = (-368654.0 + 715.9*T + 0.1534*T**2)*1e6 h['b'] = 29.0 h['c'] = (290.78 - 0.30276*T + 1.4774e-4*T**2)*1e6#3 h['d'] = (-8374.0 + 19.437*T - 8.148e-3*T**2)*1e6 h['e'] = (76600.0 - 133.9*T + 0.1071*T**2)*1e6 if X_fluid == 1: bm = c['b'] cm = c['c'] c12= c['c'] dm = c['d'] d12= c['d'] em = c['e'] e12 =c['e'] else: bm = X_fluid*c['b'] + (1-X_fluid)*h['b'] c12 = (c['c']*h['c'])**0.5 cm = c['c']*X_fluid**2 + h['c']*(1-X_fluid)**2 + 2*X_fluid*(1-X_fluid)*c12 d12 = (c['d']*h['d'])**0.5 dm = c['d']*X_fluid**2 + h['d']*(1-X_fluid)**2 + 2*X_fluid*(1-X_fluid)*d12 e12 = (c['e']*h['e'])**0.5 em = c['e']*X_fluid**2 + h['e']*(1-X_fluid)**2 + 2*X_fluid*(1-X_fluid)*e12 am = cm + dm/v + em/v**2 y = bm/(4*v) pt1 = (83.14 * T * (1 + y + y**2 - y**3)) / (v*(1-y)**3) pt2 = - am / (T**0.5 * v * (v+bm)) return -(P - pt1 - pt2) def volume_h(self,P,T): """ Calculates the volume of a pure H2O fluid, by solving Eq (14) of Kerrick and Jacobs (1981). Parameters ---------- P float Total pressure in bars. T float Temperature in degC. Returns ------- Difference between lhs and rhs of Eq (14) of Kerrick and Jacobs (1981), in bars. """ return root_scalar(self.root_volume_h,x0=15,x1=35,args=(P,T)).root def root_volume_h(self,v,P,T): """ Returns the difference between the lhs and rhs of Eq (14) of Kerrick and Jacobs (1981). For use with a root solver to identify the volume of a pure H2O fluid. Parameters ---------- v float Guess for the volume P float Total pressure in bars. T float Temperature in degC. Returns ------- float The difference between the lhs and rhs of Eq (14) of Kerrick and Jacobs (1981), in bars. """ T = T + 273.15 h = {} h['b'] = 29.0 h['c'] = (290.78 - 0.30276*T + 1.4774e-4*T**2)*1e6#3 h['d'] = (-8374.0 + 19.437*T - 8.148e-3*T**2)*1e6 h['e'] = (76600.0 - 133.9*T + 0.1071*T**2)*1e6 h['a'] = h['c'] + h['d']/v + h['e']/v**2 y = h['b']/(4*v) pt1 = (83.14 * T * (1 + y + y**2 - y**3)) / (v*(1-y)**3) pt2 = - h['a'] / (T**0.5 * v * (v+h['b'])) return -(P - pt1 - pt2) def lnPhi_mix(self,P,T,X_fluid): """ Calculates the natural log of the fugacity coefficient for CO2 in a mixed CO2-H2O fluid. Uses Eq (27) of Kerrick and Jacobs (1981). Parameters ---------- P float Total pressure in bars. T float Temperature in degC X_fluid float The mole fraction of CO2 in the fluid. Returns ------- float The natural log of the fugacity coefficient for CO2 in a mixed fluid. """ T = T + 273.15 v = self.volume(P,T-273.15,X_fluid) c = {} h = {} c['b'] = 58.0 c['c'] = (28.31 + 0.10721*T - 8.81e-6*T**2)*1e6 c['d'] = (9380.0 - 8.53*T + 1.189e-3*T**2)*1e6 c['e'] = (-368654.0 + 715.9*T + 0.1534*T**2)*1e6 h['b'] = 29.0 h['c'] = (290.78 - 0.30276*T + 1.4774e-4*T**2)*1e6#3 h['d'] = (-8374.0 + 19.437*T - 8.148e-3*T**2)*1e6 h['e'] = (76600.0 - 133.9*T + 0.1071*T**2)*1e6 if X_fluid == 1: bm = c['b'] cm = c['c'] c12= c['c'] dm = c['d'] d12= c['d'] em = c['e'] e12 =c['e'] else: bm = X_fluid*c['b'] + (1-X_fluid)*h['b'] c12 = (c['c']*h['c'])**0.5 cm = c['c']*X_fluid**2 + h['c']*(1-X_fluid)**2 + 2*X_fluid*(1-X_fluid)*c12 d12 = (c['d']*h['d'])**0.5 dm = c['d']*X_fluid**2 + h['d']*(1-X_fluid)**2 + 2*X_fluid*(1-X_fluid)*d12 e12 = (c['e']*h['e'])**0.5 em = c['e']*X_fluid**2 + h['e']*(1-X_fluid)**2 + 2*X_fluid*(1-X_fluid)*e12 am = cm + dm/v + em/v**2 y = bm/(4*v) # Z = (1+y+y**2-y**3)/(1-y)**2 - am/(83.14*T**1.5*(v+bm)) Z = v*P/(83.14*T) lnPhi = 0 lnPhi += (4*y-3*y**2)/(1-y)**2 + (c['b']/bm * (4*y-2*y**2)/(1-y)**3) lnPhi += - (2*c['c']*X_fluid+2*(1-X_fluid)*c12)/(83.14*T**1.5*bm)*np.log((v+bm)/v) lnPhi += - cm*c['b']/(83.14*T**1.5*bm*(v+bm)) lnPhi += cm*c['b']/(83.14*T**1.5*bm**2)*np.log((v+bm)/v) lnPhi += - (2*c['d']*X_fluid+2*d12*(1-X_fluid)+dm)/(83.14*T**1.5*bm*v) lnPhi += (2*c['d']*X_fluid+2*(1-X_fluid)*d12+dm)/(83.14*T**1.5*bm**2)*np.log((v+bm)/v) lnPhi += c['b']*dm/(83.14*T**1.5*v*bm*(v+bm)) + 2*c['b']*dm/(83.14*T**1.5*bm**2*(v+bm)) lnPhi += - 2*c['b']*dm/(83.14*T**1.5*bm**3)*np.log((v+bm)/v) lnPhi += - (2*c['e']*X_fluid + 2*(1-X_fluid)*e12+2*em)/(83.14*T**1.5*2*bm*v**2) lnPhi += (2*c['e']*X_fluid+2*e12*(1-X_fluid)+2*em)/(83.14*T**1.5*bm**2*v) lnPhi += - (2*c['e']*X_fluid+2*e12*(1-X_fluid)+2*em)/(83.14*T**1.5*bm**3)*np.log((v+bm)/v) lnPhi += em*c['b']/(83.14*T**1.5*2*bm*v**2*(v+bm)) - 3*em*c['b']/(83.14*T**1.5*2*bm**2*v*(v+bm)) lnPhi += 3*em*c['b']/(83.14*T**1.5*bm**4)*np.log((v+bm)/v) - 3*em*c['b']/(83.14*T**1.5*bm**3*(v+bm)) lnPhi += - np.log(Z) return lnPhi class fugacity_KJ81_h2o(FugacityModel): """Implementation of the Kerrick and Jacobs (1981) EOS for mixed fluids. This class will return the properties of the H2O component of the mixed fluid. """ def __init__(self): self.set_calibration_ranges([CalibrationRange('pressure',20000.0,crf_LessThan,'bar','Kerrick and Jacobs (1981) EOS', fail_msg=crmsg_LessThan_fail, pass_msg=crmsg_LessThan_pass, description_msg=crmsg_LessThan_description), CalibrationRange('temperature',1050,crf_LessThan,'oC','Kerrick and Jacobs (1981) EOS', fail_msg=crmsg_LessThan_fail, pass_msg=crmsg_LessThan_pass, description_msg=crmsg_LessThan_description)]) def fugacity(self,pressure,temperature,X_fluid,**kwargs): """ Calculates the fugacity of H2O in a mixed CO2-H2O fluid. Above 1050C, it assumes H2O and CO2 do not interact, as the equations are not defined beyond this point. Parameters ---------- pressure float Total pressure of the system in bars. temperature float Temperature in degC X_fluid float Mole fraction of H2O in the fluid. Returns ------- float fugacity of H2O in bars """ if X_fluid == 0: return 0 elif temperature >= 1050: return pressure*np.exp(self.lnPhi_mix(pressure,temperature,1.0))*X_fluid else: return pressure*np.exp(self.lnPhi_mix(pressure,temperature,X_fluid))*X_fluid def volume(self,P,T,X_fluid): """ Calculates the volume of the mixed fluid, by solving Eq (28) of Kerrick and Jacobs (1981) using scipy.root_scalar. Parameters ---------- P float Total pressure of the system, in bars. T float Temperature in degC X_fluid float Mole fraction of H2O in the fluid Returns ------- float Volume of the mixed fluid. """ if X_fluid != 1.0: # x0 = self.volume(P,T,1.0)*X_fluid + self.volume_h(P,T)*(1-X_fluid) # print(x0) if P >= 20000 and T<800-273.15: x0 = ((1-X_fluid)*25+X_fluid*15) else: x0 = ((1-X_fluid)*35+X_fluid*15) else: if P >= 20000 and T<800-273.15: x0 = 10 else: x0=15 return root_scalar(self.root_volume,x0=x0,x1=x0*0.9,args=(P,T,X_fluid)).root def root_volume(self,v,P,T,X_fluid): """ Returns the difference between the lhs and rhs of Eq (28) of Kerrick and Jacobs (1981). For use with a root finder to obtain the volume of the mixed fluid. Parameters ---------- v float Guess for the volume P float Total system pressure in bars. T float Temperature in degC X_fluid float Mole fraction of H2O in the fluid. Returns ------- float Difference between lhs and rhs of Eq (28) of Kerrick and Jacobs (1981), in bars. """ T = T + 273.15 c = {} h = {} c['b'] = 58.0 c['c'] = (28.31 + 0.10721*T - 8.81e-6*T**2)*1e6 c['d'] = (9380.0 - 8.53*T + 1.189e-3*T**2)*1e6 c['e'] = (-368654.0 + 715.9*T + 0.1534*T**2)*1e6 h['b'] = 29.0 h['c'] = (290.78 - 0.30276*T + 1.4774e-4*T**2)*1e6#3 h['d'] = (-8374.0 + 19.437*T - 8.148e-3*T**2)*1e6 h['e'] = (76600.0 - 133.9*T + 0.1071*T**2)*1e6 if X_fluid == 1: bm = h['b'] cm = h['c'] dm = h['d'] em = h['e'] c12= h['c'] d12= h['d'] e12= h['e'] else: bm = X_fluid*h['b'] + (1-X_fluid)*c['b'] c12 = (c['c']*h['c'])**0.5 cm = h['c']*X_fluid**2 + c['c']*(1-X_fluid)**2 + 2*X_fluid*(1-X_fluid)*c12 d12 = (c['d']*h['d'])**0.5 dm = h['d']*X_fluid**2 + c['d']*(1-X_fluid)**2 + 2*X_fluid*(1-X_fluid)*d12 e12 = (c['e']*h['e'])**0.5 em = h['e']*X_fluid**2 + c['e']*(1-X_fluid)**2 + 2*X_fluid*(1-X_fluid)*e12 am = cm + dm/v + em/v**2 y = bm/(4*v) pt1 = (83.14 * T * (1 + y + y**2 - y**3)) / (v*(1-y)**3) pt2 = - am / (T**0.5 * v * (v+bm)) return -(P - pt1 - pt2) def volume_c(self,P,T): """ Calculates the volume of a pure CO2 fluid, by solving Eq (14) of Kerrick and Jacobs (1981). Parameters ---------- P float Total pressure in bars. T float Temperature in degC. Returns ------- Difference between lhs and rhs of Eq (14) of Kerrick and Jacobs (1981), in bars. """ return root_scalar(self.root_volume_c,x0=15,x1=35,args=(P,T)).root def root_volume_c(self,v,P,T): """ Returns the difference between the lhs and rhs of Eq (14) of Kerrick and Jacobs (1981). For use with a root solver to identify the volume of a pure H2O fluid. Parameters ---------- v float Guess for the volume P float Total pressure in bars. T float Temperature in degC. Returns ------- float The difference between the lhs and rhs of Eq (14) of Kerrick and Jacobs (1981), in bars. """ T = T + 273.15 c = {} c['b'] = 58.0 c['c'] = (28.31 + 0.10721*T - 8.81e-6*T**2)*1e6 c['d'] = (9380.0 - 8.53*T + 1.189e-3*T**2)*1e6 c['e'] = (-368654.0 + 715.9*T + 0.1534*T**2)*1e6 c['a'] = c['c'] + c['d']/v + c['e']/v**2 y = c['b']/(4*v) pt1 = (83.14 * T * (1 + y + y**2 - y**3)) / (v*(1-y)**3) pt2 = - c['a'] / (T**0.5 * v * (v+c['b'])) return -(P - pt1 - pt2) def lnPhi_mix(self,P,T,X_fluid): """ Calculates the natural log of the fugacity coefficient for H2O in a mixed CO2-H2O fluid. Uses Eq (27) of Kerrick and Jacobs (1981). Parameters ---------- P float Total pressure in bars. T float Temperature in degC X_fluid float The mole fraction of H2O in the fluid. Returns ------- float The natural log of the fugacity coefficient for H2O in a mixed fluid. """ T = T + 273.15 v = self.volume(P,T-273.15,X_fluid) c = {} h = {} c['b'] = 58.0 c['c'] = (28.31 + 0.10721*T - 8.81e-6*T**2)*1e6 c['d'] = (9380.0 - 8.53*T + 1.189e-3*T**2)*1e6 c['e'] = (-368654.0 + 715.9*T + 0.1534*T**2)*1e6 h['b'] = 29.0 h['c'] = (290.78 - 0.30276*T + 1.4774e-4*T**2)*1e6#3 h['d'] = (-8374.0 + 19.437*T - 8.148e-3*T**2)*1e6 h['e'] = (76600.0 - 133.9*T + 0.1071*T**2)*1e6 if X_fluid == 1: bm = h['b'] cm = h['c'] dm = h['d'] em = h['e'] c12= h['c'] d12= h['d'] e12= h['e'] else: bm = X_fluid*h['b'] + (1-X_fluid)*c['b'] c12 = (c['c']*h['c'])**0.5 cm = h['c']*X_fluid**2 + c['c']*(1-X_fluid)**2 + 2*X_fluid*(1-X_fluid)*c12 d12 = (c['d']*h['d'])**0.5 dm = h['d']*X_fluid**2 + c['d']*(1-X_fluid)**2 + 2*X_fluid*(1-X_fluid)*d12 e12 = (c['e']*h['e'])**0.5 em = h['e']*X_fluid**2 + c['e']*(1-X_fluid)**2 + 2*X_fluid*(1-X_fluid)*e12 am = cm + dm/v + em/v**2 y = bm/(4*v) # Z = (1+y+y**2-y**3)/(1-y)**2 - am/(83.14*T**1.5*(v+bm)) Z = v*P/(83.14*T) lnPhi = 0 lnPhi += (4*y-3*y**2)/(1-y)**2 + (h['b']/bm * (4*y-2*y**2)/(1-y)**3) lnPhi += - (2*h['c']*X_fluid+2*(1-X_fluid)*c12)/(83.14*T**1.5*bm)*np.log((v+bm)/v) lnPhi += - cm*h['b']/(83.14*T**1.5*bm*(v+bm)) lnPhi += cm*h['b']/(83.14*T**1.5*bm**2)*np.log((v+bm)/v) lnPhi += - (2*h['d']*X_fluid+2*d12*(1-X_fluid)+dm)/(83.14*T**1.5*bm*v) lnPhi += (2*h['d']*X_fluid+2*(1-X_fluid)*d12+dm)/(83.14*T**1.5*bm**2)*np.log((v+bm)/v) lnPhi += h['b']*dm/(83.14*T**1.5*v*bm*(v+bm)) + 2*h['b']*dm/(83.14*T**1.5*bm**2*(v+bm)) lnPhi += - 2*h['b']*dm/(83.14*T**1.5*bm**3)*np.log((v+bm)/v) lnPhi += - (2*h['e']*X_fluid + 2*(1-X_fluid)*e12+2*em)/(83.14*T**1.5*2*bm*v**2) lnPhi += (2*h['e']*X_fluid+2*e12*(1-X_fluid)+2*em)/(83.14*T**1.5*bm**2*v) lnPhi += - (2*h['e']*X_fluid+2*e12*(1-X_fluid)+2*em)/(83.14*T**1.5*bm**3)*np.log((v+bm)/v) lnPhi += em*h['b']/(83.14*T**1.5*2*bm*v**2*(v+bm)) - 3*em*h['b']/(83.14*T**1.5*2*bm**2*v*(v+bm)) lnPhi += 3*em*h['b']/(83.14*T**1.5*bm**4)*np.log((v+bm)/v) - 3*em*h['b']/(83.14*T**1.5*bm**3*(v+bm)) lnPhi += - np.log(Z) return lnPhi class fugacity_ZD09_co2(FugacityModel): """ Implementation of the Zhang and Duan (2009) fugacity model for pure CO2 fluids.""" def __init__(self): self.set_calibration_ranges([CalibrationRange('pressure',[1,1e5],crf_Between,'bar','Zhang and Duan (2009) EOS', fail_msg=crmsg_Between_fail, pass_msg=crmsg_Between_pass, description_msg=crmsg_Between_description), CalibrationRange('temperature',[200,2300],crf_Between,'oC','Zhang and Duan (2009) EOS', fail_msg=crmsg_Between_fail, pass_msg=crmsg_Between_pass, description_msg=crmsg_Between_description)]) def fugacity(self,pressure,temperature,X_fluid=1.0,**kwargs): """ Calculates the fugacity of a pure CO2 fluid, or a mixed fluid assuming ideal mixing. Implements eqn (14) of Zhang and Duan (2009). Paramters --------- pressure float Pressure in bars temperature float Temperature in degC X_fluid float Mole fraction of CO2 in the fluid. Default is 1.0. Returns ------- float Fugacity of CO2, standard state 1 bar. """ P = pressure/10 T = temperature + 273.15 a = np.array([0.0, 2.95177298930e-2, -6.33756452413e3, -2.75265428882e5, 1.29128089283e-3, -1.45797416153e2, 7.65938947237e4, 2.58661493537e-6, 0.52126532146, -1.39839523753e2, -2.36335007175e-8, 5.35026383543e-3, -0.27110649951, 2.50387836486e4, 0.73226726041, 1.5483335997e-2]) e = 235.0 s = 3.79 Pm = 3.0636*P*s**3/e Tm = 154*T/e Vm = root_scalar(self.Vm,x0=200,x1=100,args=(P,T)).root S1 = ((a[1]+a[2]/Tm**2+a[3]/Tm**3)/Vm+ (a[4]+a[5]/Tm**2+a[6]/Tm**3)/(2*Vm**2)+ (a[7]+a[8]/Tm**2+a[9]/Tm**3)/(4*Vm**4)+ (a[10]+a[11]/Tm**2+a[12]/Tm**3)/(5*Vm**5)+ (a[13]/(2*a[15]*Tm**3)*(a[14]+1-(a[14]+1+a[15]/Vm**2)* np.exp(-a[15]/Vm**2))) ) Z = Pm*Vm/(8.314*Tm) lnfc = Z - 1 - np.log(Z) + S1 return P*np.exp(lnfc)*10 def Vm(self,Vm,P,T): """ Function to use for solving for the parameter Vm, defined by eqn (8) of Zhang and Duan (2009). Called by scipy.fsolve in the fugacity method. Parameters ---------- Vm float Guessed value of Vm P float Pressure in MPa T float Temperature in K Returns ------- float Difference between (rearranged) LHS and RHS of eqn (8) of Zhang and Duan (2009). """ Pm = 3.0636*P*3.79**3/235.0 Tm = 154*T/235.0 a = np.array([0.0, 2.95177298930e-2, -6.33756452413e3, -2.75265428882e5, 1.29128089283e-3, -1.45797416153e2, 7.65938947237e4, 2.58661493537e-6, 0.52126532146, -1.39839523753e2, -2.36335007175e-8, 5.35026383543e-3, -0.27110649951, 2.50387836486e4, 0.73226726041, 1.5483335997e-2]) return ((1+(a[1]+a[2]/Tm**2+a[3]/Tm**3)/Vm+ (a[4]+a[5]/Tm**2+a[6]/Tm**3)/Vm**2+ (a[7]+a[8]/Tm**2+a[9]/Tm**3)/Vm**4)*0.08314*Tm/Pm - Vm ) class fugacity_MRK_co2(FugacityModel): """ Modified Redlick Kwong fugacity model as used by VolatileCalc. Python implementation by <NAME> (github.com/DJRgeoscience/VolatileCalcForPython), based on VB code by Newman & Lowenstern. """ def __init__(self): self.set_calibration_ranges([]) def fugacity(self,pressure,temperature,X_fluid=1.0,**kwargs): """ Calculates the fugacity of CO2 in a pure or mixed H2O-CO2 fluid (assuming ideal mixing). Parameters ---------- pressure float Total pressure of the system in bars. temperature float Temperature in degC X_fluid float Mole fraction of CO2 in the fluid. Returns ------- float fugacity of CO2 in bars """ fug = self.MRK(pressure,temperature+273.15) return fug*X_fluid def FNA(self,TK): return (166800000 - 193080 * (TK - 273.15) + 186.4 * (TK - 273.15)**2 - 0.071288 * ((TK - 273.15)**3)) * 1.01325 def FNB(self,TK): return 1.01325 * (73030000 - 71400 * (TK - 273.15) + 21.57 * (TK - 273.15)**2) def FNC(self,TK): R = 83.14321 return 1.01325 * (np.exp(-11.071 + 5953 / TK - 2746000 / TK**2 + 464600000 / TK**3) * 0.5 * R * R * TK**2.5 / 1.02668 + 40123800) def FNF(self,V,TK,A,B,P): R = 83.14321 return R * TK / (V - B) - A / ((V * V + B * V) * TK**0.5) - P def MRK(self,P,TK): #Redlich-Kwong routine to estimate endmember H2O and CO2 fugacities R = 83.14321 B_1 = 14.6 B_2 = 29.7 for X_1 in [0,1]: B = X_1 * B_1 + (1 - X_1) * B_2 A = X_1**2 * self.FNA(TK) + 2 * X_1 * (1 - X_1) * self.FNC(TK) + (1 - X_1)**2 * self.FNB(TK) Temp2 = B + 5 Q = 1 Temp1 = 0 while abs(Temp2 - Temp1) >= 0.00001: Temp1 = Temp2 F_1 = (self.FNF(Temp1 + 0.01, TK, A, B, P) - self.FNF(Temp1, TK, A, B, P)) / 0.01 Temp2 = Temp1 - Q * self.FNF(Temp1, TK, A, B, P) / F_1 F_2 = (self.FNF(Temp2 + 0.01, TK, A, B, P) - self.FNF(Temp2, TK, A, B, P)) / 0.01 if F_2 * F_1 <= 0: Q = Q / 2. if abs(Temp2 - Temp1) > 0.00001: F_1 = F_2 V = Temp2 G_1 = np.log(V / (V - B)) + B_1 / (V - B) - 2 * (X_1 * self.FNA(TK) + (1 - X_1) * self.FNC(TK)) * np.log((V + B) / V) / (R * TK**1.5 * B) G_1 = G_1 + (np.log((V + B) / V) - B / (V + B)) * A * B_1 / (R * TK**1.5 * B**2) - np.log(P * V / (R * TK)) G_1 = np.exp(G_1) G_2 = np.log(V / (V - B)) + B_2 / (V - B) - 2 * (X_1 * self.FNC(TK) + (1 - X_1) * self.FNB(TK)) * np.log((V + B) / V) / (R * TK**1.5 * B) G_2 = G_2 + (np.log((V + B) / V) - B / (V + B)) * A * B_2 / (R * TK**1.5 * B**2) - np.log(P * V / (R * TK)) G_2 = np.exp(G_2) if X_1 == 0: fCO2o = G_2 * P #The fugacity of CO2 # return fCO2o if X_1 == 1: fH2Oo = G_1 * P #The fugacity of H2O # return fH2Oo return fCO2o class fugacity_MRK_h2o(FugacityModel): """ Modified Redlick Kwong fugacity model as used by VolatileCalc. Python implementation by <NAME> (github.com/DJRgeoscience/VolatileCalcForPython), based on VB code by Newman & Lowenstern. """ def __init__(self): self.set_calibration_ranges([]) def fugacity(self,pressure,temperature,X_fluid=1.0,**kwargs): """ Calculates the fugacity of H2O in a pure or mixed H2O-CO2 fluid (assuming ideal mixing). Parameters ---------- pressure float Total pressure of the system in bars. temperature float Temperature in degC X_fluid float Mole fraction of H2O in the fluid. Returns ------- float fugacity of CO2 in bars """ fug = self.MRK(pressure,temperature+273.15) return fug*X_fluid def FNA(self,TK): return (166800000 - 193080 * (TK - 273.15) + 186.4 * (TK - 273.15)**2 - 0.071288 * ((TK - 273.15)**3)) * 1.01325 def FNB(self,TK): return 1.01325 * (73030000 - 71400 * (TK - 273.15) + 21.57 * (TK - 273.15)**2) def FNC(self,TK): R = 83.14321 return 1.01325 * (np.exp(-11.071 + 5953 / TK - 2746000 / TK**2 + 464600000 / TK**3) * 0.5 * R * R * TK**2.5 / 1.02668 + 40123800) def FNF(self,V,TK,A,B,P): R = 83.14321 return R * TK / (V - B) - A / ((V * V + B * V) * TK**0.5) - P def MRK(self,P,TK): #Redlich-Kwong routine to estimate endmember H2O and CO2 fugacities R = 83.14321 B_1 = 14.6 B_2 = 29.7 # X_1 = 1 for X_1 in [0,1]: B = X_1 * B_1 + (1 - X_1) * B_2 A = X_1**2 * self.FNA(TK) + 2 * X_1 * (1 - X_1) * self.FNC(TK) + (1 - X_1)**2 * self.FNB(TK) Temp2 = B + 5 Q = 1 Temp1 = 0 while abs(Temp2 - Temp1) >= 0.00001: Temp1 = Temp2 F_1 = (self.FNF(Temp1 + 0.01, TK, A, B, P) - self.FNF(Temp1, TK, A, B, P)) / 0.01 Temp2 = Temp1 - Q * self.FNF(Temp1, TK, A, B, P) / F_1 F_2 = (self.FNF(Temp2 + 0.01, TK, A, B, P) - self.FNF(Temp2, TK, A, B, P)) / 0.01 if F_2 * F_1 <= 0: Q = Q / 2. if abs(Temp2 - Temp1) > 0.00001: F_1 = F_2 V = Temp2 G_1 = np.log(V / (V - B)) + B_1 / (V - B) - 2 * (X_1 * self.FNA(TK) + (1 - X_1) * self.FNC(TK)) * np.log((V + B) / V) / (R * TK**1.5 * B) G_1 = G_1 + (np.log((V + B) / V) - B / (V + B)) * A * B_1 / (R * TK**1.5 * B**2) - np.log(P * V / (R * TK)) G_1 = np.exp(G_1) G_2 = np.log(V / (V - B)) + B_2 / (V - B) - 2 * (X_1 * self.FNC(TK) + (1 - X_1) * self.FNB(TK)) * np.log((V + B) / V) / (R * TK**1.5 * B) G_2 = G_2 + (np.log((V + B) / V) - B / (V + B)) * A * B_2 / (R * TK**1.5 * B**2) - np.log(P * V / (R * TK)) G_2 = np.exp(G_2) if X_1 == 0: fCO2o = G_2 * P #The fugacity of CO2 # return fCO2o if X_1 == 1: fH2Oo = G_1 * P #The fugacity of H2O # return fH2Oo return fH2Oo class fugacity_HB_co2(FugacityModel): """ Implementation of the Holloway and Blank (1994) Modified Redlich Kwong EoS for CO2. """ def __init__(self): self.set_calibration_ranges([CalibrationRange('pressure',[1,1e5],crf_Between,'bar','Redlich Kwong EOS', fail_msg=crmsg_Between_fail, pass_msg=crmsg_Between_pass, description_msg=crmsg_Between_description), CalibrationRange('temperature',500.0,crf_GreaterThan,'oC','Redlich Kwong EOS', fail_msg=crmsg_GreaterThan_fail, pass_msg=crmsg_GreaterThan_pass, description_msg=crmsg_GreaterThan_description)]) self.HBmodel = fugacity_HollowayBlank() def fugacity(self,pressure,temperature,X_fluid=1.0,**kwargs): return self.HBmodel.fugacity(pressure=pressure, temperature=temperature, species='CO2')*X_fluid class fugacity_HB_h2o(FugacityModel): """ Implementation of the Holloway and Blank (1994) Modified Redlich Kwong EoS for H2O. """ def __init__(self): self.set_calibration_ranges([CalibrationRange('pressure',[1,1e5],crf_Between,'bar','Redlich Kwong EOS', fail_msg=crmsg_Between_fail, pass_msg=crmsg_Between_pass, description_msg=crmsg_Between_description), CalibrationRange('temperature',500.0,crf_GreaterThan,'oC','Redlich Kwong EOS', fail_msg=crmsg_GreaterThan_fail, pass_msg=crmsg_GreaterThan_pass, description_msg=crmsg_GreaterThan_description)]) self.HBmodel = fugacity_HollowayBlank() def fugacity(self,pressure,temperature,X_fluid=1.0,**kwargs): return self.HBmodel.fugacity(pressure=pressure, temperature=temperature, species='H2O')*X_fluid class fugacity_HollowayBlank(FugacityModel): """ Implementation of the Modified Redlich Kwong presented in Holloway and Blank (1994) Reviews in Mineralogy and Geochemistry vol. 30. Originally written in Quickbasic. CO2 calculations translated to Matlab by <NAME> and translated to python by <NAME> for VESIcal. H2O calculations translated to VisualBasic by <NAME> and translated to python by <NAME> for VESIcal. """ def __init__(self): self.set_calibration_ranges([CalibrationRange('pressure',[1,1e5],crf_Between,'bar','MRK EOS (Holloway and Blank, 1994)', fail_msg=crmsg_Between_fail, pass_msg=crmsg_Between_pass, description_msg=crmsg_Between_description), CalibrationRange('temperature',500,crf_GreaterThan,'oC','MRK EOS (Holloway and Blank, 1994)', fail_msg=crmsg_GreaterThan_fail, pass_msg=crmsg_GreaterThan_pass, description_msg=crmsg_GreaterThan_description)]) def REDKW(self, BP, A2B): """ The RK routine. A routine to calculate compressibility factor and fugacity coefficient with the Redlich-Kwong equation following Edmister (1968). This solution for supercritical fluid. Parameters ---------- BP: float B parameter sum from RKCALC A2B: float A parameter sum from RKCALC Returns ------- float XLNFP (fugacity coefficient?) """ if A2B < 1*10**(-10): A2B = 0.001 #Define constants TH = 0.333333 RR = -A2B*BP**2 QQ = BP*(A2B-BP-1) XN = QQ*TH+RR-0.074074 XM = QQ-TH XNN = XN*XN*0.25 XMM = XM**3 / 27.0 ARG = XNN+XMM if ARG > 0: X = np.sqrt(ARG) F = 1 XN2 = -XN*0.5 iXMM = XN2+X if iXMM < 0: F = -1 XMM = F*((F*iXMM)**TH) F = 1 iXNN = XN2 - X if iXNN < 0: F = -1 XNN = F*((F*iXNN)**TH) Z = XMM+XNN+TH ZBP = Z-BP if ZBP < 0.000001: ZBP = 0.000001 BPZ = 1+BP/Z FP = Z-1-np.log(ZBP)-A2B*np.log(BPZ) if FP < -37 or FP > 37: FP = 0.000001 elif ARG <0: COSPHI = np.sqrt(-XNN/XMM) if XN > 0: COSPHI = -COSPHI TANPHI = np.sqrt(1-COSPHI**2)/COSPHI PHI = np.arctan(TANPHI)*TH FAC = 2*np.sqrt(-XM*TH) #sort for largest root R1 = np.cos(PHI) R2 = np.cos(PHI+2.0944) R3 = np.cos(PHI+4.18879) RH = R2 if R1 > R2: RH = R1 if R3 > RH: RH = R3 Z = RH*FAC+TH ZBP = Z-BP if ZBP < 0.000001: ZBP = 0.000001 BPZ = 1+BP/Z FP = Z-1-np.log(ZBP)-A2B*np.log(BPZ) if FP < -37 or FP > 37: FP = 0.000001 else: FP = 1 Z = 1 XLNFP = FP return XLNFP def Saxena(self, TK, pb): """ High pressure corresponding states routines from Saxena and Fei (1987) GCA vol. 51, 783-791. Parameters ---------- TK: float Temperature in K. pb: float Pressure in bars. Returns ------- float XLNF, Natural log of the ratio F(P)/F(4000 bar) """ #Define integration limit PO = 4000 #Critical temperatures and pressures for CO2 TR = TK/304.2 PR = pb/73.9 PC = 73.9 #Virial coeficients A = 2.0614-2.2351/TR**2 - 0.39411*np.log(TR) B = 0.055125/TR + 0.039344/TR**2 C = -1.8935*10**(-6)/TR - 1.1092*10**(-5)/TR**2 - 2.1892*10**(-5)/TR**3 D = 5.0527*10**(-11)/TR - 6.3033*10**(-21)/TR**3 #Calculate molar volume Z = A+B*PR+C*PR**2+D*PR**3 V = Z*83.0117*TK/pb #integrate from PO (4000 bars) to P to calculate ln fugacity LNF = A*np.log(pb/PO)+(B/PC)*(pb-PO)+(C/(2*PC**2))*(pb**2-PO**2) LNF = LNF+(D/(3*PC**3))*(pb**3-PO**3) XLNF = LNF return XLNF def RKCALC(self, temperature, pressure, species): """ Calculation of pure gas MRK properties following Holloway 1981, 1987 Parameters ---------- temperature: float Temperature in degrees K. pressure: float Pressure in atmospheres. Returns ------- float Natural log of the fugacity of a pure gas. """ #Define constants R = 82.05736 RR = 6732.2 pb = 1.013*pressure PBLN = np.log(pb) TCEL = temperature-273.15 RXT = R*temperature RT = R*temperature**1.5 * 10**(-6) if species == 'CO2': #Calculate T-dependent MRK A parameter CO2 ACO2M = 73.03 - 0.0714*TCEL + 2.157*10**(-5)*TCEL**2 #Define MRK B parameter for CO2 BSUM = 29.7 ASUM = ACO2M / (BSUM*RT) elif species == 'H2O': #Calculate T-dependent MRK A parameter H2O AH2OM = 115.98 - np.double(0.0016295)*temperature - 1.4984*10**(-5)*temperature**2 #Define MRK B parameter for H2O BSUM = 14.5 ASUM = AH2OM / (BSUM*RT) BSUM = pressure*BSUM/RXT XLNFP = self.REDKW(BSUM, ASUM) #Convert to ln(fugacity) PUREG = XLNFP + PBLN return PUREG def fugacity(self, pressure, temperature, species, **kwargs): """ Calculates fugacity. Parameters ---------- temperature: float Temperature in degrees C. pressure: float Pressure in bars. species: str Choose which species to calculate. Options are 'H2O' and 'CO2'. Returns ------- float Fugacity coefficient for passed species """ #convert temp and press to atmospheres and Kelvin pressureAtmo = pressure/1.013 temperatureK = temperature + 273.15 PO = 4000/1.013 #Use the MRK below 4,000 bars, Saxena above 4,000 bars if pressure > 4000 and species=='CO2': iPUREG = self.RKCALC(temperatureK, PO, species) XLNF = self.Saxena(temperatureK, pressure) PUREG = iPUREG + XLNF else: PUREG = self.RKCALC(temperatureK, pressureAtmo, species) #Convert from ln(fugacity) to fugacity stdf = np.exp(PUREG) return stdf class fugacity_RK_co2(FugacityModel): """ Implementation of the Redlich Kwong EoS for CO2. Code derived from http://people.ds.cam.ac.uk/pjb10/thermo/pure.html - <NAME> 30 October 2003. """ def __init__(self): self.set_calibration_ranges([CalibrationRange('pressure',[1,1e5],crf_Between,'bar','Redlich Kwong EOS', fail_msg=crmsg_Between_fail, pass_msg=crmsg_Between_pass, description_msg=crmsg_Between_description), CalibrationRange('temperature',[500],crf_GreaterThan,'oC','Redlich Kwong EOS', fail_msg=crmsg_GreaterThan_fail, pass_msg=crmsg_GreaterThan_pass, description_msg=crmsg_GreaterThan_description)]) # self.set_calibration_ranges([cr_Between('pressure',[1.0,1e5],'bar','Redlich Kwong EOS'), # cr_GreaterThan('temperature',500,'oC','Redlich Kwong EOS')]) self.RKmodel = fugacity_RedlichKwong() def fugacity(self,pressure,temperature,X_fluid,**kwargs): return self.RKmodel.fugacity(pressure, temperature, X_fluid, 'CO2') class fugacity_RK_h2o(FugacityModel): """ Implementation of the Redlich Kwong EoS for H2O. Code derived from http://people.ds.cam.ac.uk/pjb10/thermo/pure.html - <NAME> 30 October 2003. """ def __init__(self): self.set_calibration_ranges([CalibrationRange('pressure',[1,1e5],crf_Between,'bar','Redlich Kwong EOS', fail_msg=crmsg_Between_fail, pass_msg=crmsg_Between_pass, description_msg=crmsg_Between_description), CalibrationRange('temperature',500,crf_GreaterThan,'oC','Redlich Kwong EOS', fail_msg=crmsg_GreaterThan_fail, pass_msg=crmsg_GreaterThan_pass, description_msg=crmsg_GreaterThan_description)]) self.RKmodel = fugacity_RedlichKwong() def fugacity(self,pressure,temperature,X_fluid,**kwargs): return self.RKmodel.fugacity(pressure, temperature, X_fluid, 'H2O') class fugacity_RedlichKwong(FugacityModel): """ Implementation of the Redlich Kwong EoS Code derived from http://people.ds.cam.ac.uk/pjb10/thermo/pure.html - <NAME> 30 October 2003. """ def __init__(self): self.set_calibration_ranges([CalibrationRange('pressure',[1,1e5],crf_Between,'bar','Redlich Kwong EOS', fail_msg=crmsg_Between_fail, pass_msg=crmsg_Between_pass, description_msg=crmsg_Between_description), CalibrationRange('temperature',500,crf_GreaterThan,'oC','Redlich Kwong EOS', fail_msg=crmsg_GreaterThan_fail, pass_msg=crmsg_GreaterThan_pass, description_msg=crmsg_GreaterThan_description)]) def gamma(self, pressure, temperature, species): """ Calculates fugacity coefficients. Parameters ---------- temperature: fload Temperature in degrees C. pressure: float Pressure in bars. species: str Choose which species to calculate. Options are 'H2O' and 'CO2'. Returns ------- float Fugacity coefficient for passed species. """ temperatureK = temperature + 273.15 R = 8.3145 fluid_species_names = ['CO2', 'H2O'] critical_params = {'CO2':{ "cT": 304.15, "cP": 73.8659, "o": 0.225 }, 'H2O':{ "cT": 647.25, "cP": 221.1925, "o": 0.334 } } #Calculate a and b parameters (depend only on critical parameters)... a = 0.42748 * R**2.0 * critical_params[species]["cT"]**(2.5) / (critical_params[species]["cP"] * 10.0**5) b = 0.08664 * R * critical_params[species]["cT"] / (critical_params[species]["cP"] * 10.0**5) kappa = 0.0 #Calculate coefficients in the cubic equation of state... #coeffs: (C0, C1, C2, A, B) A = a * pressure * 10.0**5 / (np.sqrt(temperatureK) * (R * temperatureK)**2.0) B = b * pressure * 10.0**5 / (R * temperatureK) C2 = -1.0 C1 = A - B - B * B C0 = -A * B #Solve the cubic equation for Z0 - Z2, D... Q1 = C2 * C1 / 6.0 - C0 / 2.0 - C2**3.0 / 27.0 P1 = C2**2.0 / 9.0 - C1 / 3.0 D = Q1**2.0 - P1**3.0 if D >= 0: kOneThird = 1.0 / 3.0 absQ1PSqrtD = np.fabs(Q1 + np.sqrt(D)) temp1 = absQ1PSqrtD**kOneThird temp1 *= (Q1 + np.sqrt(D)) / absQ1PSqrtD absQ1MSqrtD = np.fabs(Q1 - np.sqrt(D)) temp2 = absQ1MSqrtD**kOneThird temp2 *= (Q1 - np.sqrt(D)) / absQ1MSqrtD Z0 = temp1 + temp2 - C2 / 3.0 else: temp1 = Q1**2.0 / (P1**3.0) temp2 = np.sqrt(1.0 - temp1) / np.sqrt(temp1) temp2 *= Q1 / np.fabs(Q1) gamma = np.arctan(temp2) if gamma < 0: gamma = gamma + np.pi Z0 = 2.0 * np.sqrt(P1) * np.cos(gamma/3.0) - C2 / 3.0 Z1 = 2.0 * np.sqrt(P1) * np.cos((gamma + 2.0 * np.pi) / 3.0) - C2/3.0 Z2 = 2.0 * np.sqrt(P1) * np.cos((gamma + 4.0 * np.pi) / 3.0) - C2/3.0 if Z0 < Z1: temp0 = Z0 Z0 = Z1 Z1 = temp0 if Z1 < Z2: temp0 = Z1 Z1 = Z2 Z2 = temp0 if Z0 < Z1: temp0 = Z0 Z0 = Z1 Z1 = temp0 #Calculate Departure Functions gamma = np.exp(Z0 - 1.0 - np.log(Z0-B) - A * np.log(1.0+B/Z0)/B) Hdep = R * temperatureK * (Z0 - 1.0 - 1.5*A*np.log(1.0+B/Z0)/B) Sdep = R * (np.log(Z0-B) - 0.5*A*np.log(1.0+B/Z0)/B) return gamma def fugacity(self, pressure, temperature, X_fluid=1.0, species='H2O', **kwargs): """ Calculates the fugacity of H2O in a mixed H2O-CO2 fluid using the universal relationships: P_i = f_i/gamma_i = (fpure_i * Xfluid_i) / gamma_i See Iacovino (2015) EPSL for further explanation. """ gammaH2O = self.gamma(pressure, temperature, 'H2O') gammaCO2 = self.gamma(pressure, temperature, 'CO2') fugacityH2Opure = pressure * gammaH2O fugacityCO2pure = pressure * gammaCO2 if species == 'H2O': return fugacityH2Opure * X_fluid elif species == 'CO2': return fugacityCO2pure * X_fluid else: raise InputError("Species must be H2O or CO2.") #---------------ACTVITY MODELS-------------------------------# class activity_idealsolution(activity_model): """ Implements an ideal solution activity model, i.e. it will always return the mole fraction. """ def activity(self,X): """ The activity of the component in an ideal solution, i.e., it will return the mole fraction. Parameters ---------- X float The mole fraction of the species in the solution. Returns ------- float The activity of the species in the solution, i.e., the mole fraction. """ return X #------------PURE FLUID MODELS-------------------------------# class ShishkinaCarbon(Model): """ Implementation of the Shishkina et al. (2014) carbon solubility model, as a Model class. """ def __init__(self): self.set_volatile_species(['CO2']) self.set_fugacity_model(fugacity_idealgas()) self.set_activity_model(activity_idealsolution()) self.set_solubility_dependence(False) self.set_calibration_ranges([CalibrationRange('pressure',[500.0,5000.0],crf_Between,'bar','Shishkina et al. carbon', fail_msg=crmsg_Between_fail, pass_msg=crmsg_Between_pass, description_msg=crmsg_Between_description), CalibrationRange('temperature',[1200.0,1250.0],crf_Between,'oC','Shishkina et al. carbon', fail_msg=crmsg_Between_fail, pass_msg=crmsg_Between_pass, description_msg=crmsg_Between_description)]) def preprocess_sample(self,sample): """ Returns sample, unmodified. The Pi* compositional parameter is a ratio of cations, therefore the value is not affected by the normalization of the sample. Shishkina et al. imply the accuracy of the calculations are little affected whether Fe(tot) or Fe2+ is used. Parameters ---------- sample: dict or pandas Series The major element oxides in wt%. Returns ------- dict or pandas Series The major element oxides in wt%. """ if type(sample) != dict and type(sample) != pd.core.series.Series: raise InputError("sample must be a dict or a pandas Series.") return sample def PiStar(self,sample): """Shishkina et al. (2014) Eq (11) Calculates the Pi* parameter for use in calculating CO2 solubility. Parameters ---------- sample: pandas Series or dict Major element oxides in wt%. Returns ------- float The value of the Pi* compositional parameter. """ _mols = wtpercentOxides_to_molCations(sample) if all(cation in _mols for cation in ['Ca','K','Na','Mg','Fe','Si','Al']) == False: raise InputError("To calculate PiStar, values for CaO, K2O, Na2O, MgO, FeO, SiO2, and Al2O3\ must be provided in sample.") _pi = (_mols['Ca'] + 0.8*_mols['K'] + 0.7*_mols['Na'] + 0.4*_mols['Mg'] + 0.4*_mols['Fe'])/\ (_mols['Si']+_mols['Al']) return _pi def calculate_dissolved_volatiles(self,pressure,sample,X_fluid=1,**kwargs): """ Calculates the dissolved CO2 concentration in wt%, using equation (13) of Shishkina et al. (2014). Parameters ---------- pressure: float (Total) pressure in bars. sample: dict or pandas Series Major element concentrations in wt%. Normalization does not matter. X_fluid: float The mol-fraction of the fluid that is CO2. Default is 1, i.e. a pure CO2 fluid. Returns ------- float The dissolved CO2 concentration in wt%. """ if X_fluid < 0 or X_fluid > 1: raise InputError("X_fluid must have a value between 0 and 1.") if pressure < 0: raise InputError("pressure must be a positive value.") PiStar = self.PiStar(sample) fugacity = self.fugacity_model.fugacity(pressure=pressure,X_fluid=X_fluid,**kwargs) A = 1.150 B = 6.71 C= -1.345 if fugacity == 0: return 0 else: return np.exp(A*np.log(fugacity/10)+B*PiStar+C)/1e4 def calculate_equilibrium_fluid_comp(self,pressure,sample,**kwargs): """ Returns 1.0 if a pure CO2 fluid is saturated. Returns 0.0 if a pure CO2 fluid is undersaturated. Parameters ---------- pressure float The total pressure of the system in bars. sample dict or pandas Series Major element oxides in wt% Returns ------- float 1.0 if CO2-fluid saturated, 0.0 otherwise. """ if self.calculate_saturation_pressure(sample=sample,**kwargs) < pressure: return 0.0 else: return 1.0 def calculate_saturation_pressure(self,sample,**kwargs): """ Calculates the pressure at which a pure CO2 fluid is saturated, for the given sample composition and CO2 concentration. Calls the scipy.root_scalar routine, which makes repeated calls to the calculate_dissolved_volatiles method. Parameters ---------- sample dict or pandas Series Major elements in wt%, including CO2 (also in wt%). Returns ------- float Saturation pressure in bar """ if 'CO2' not in sample: raise InputError("sample must contain CO2.") if sample['CO2'] < 0: raise InputError("CO2 concentration must be greater than 0 wt%.") try: satP = root_scalar(self.root_saturation_pressure,bracket=[1e-15,1e5],args=(sample,kwargs)).root except: warnings.warn("Saturation pressure not found.",RuntimeWarning) satP = np.nan return satP def root_saturation_pressure(self,pressure,sample,kwargs): """ Function called by scipy.root_scalar when finding the saturation pressure using calculate_saturation_pressure. Parameters ---------- pressure float Pressure guess in bars sample dict or pandas Series Major element oxides in wt%, including CO2 (also in wt%). kwargs dictionary Additional keyword arguments supplied to calculate_saturation_pressure. Might be required for the fugacity or activity models. Returns ------- float The differece between the dissolved CO2 at the pressure guessed, and the CO2 concentration passed in the sample variable. """ return self.calculate_dissolved_volatiles(pressure=pressure,sample=sample,**kwargs)-sample['CO2'] class ShishkinaWater(Model): """ Implementation of the Shishkina et al. (2014) H2O solubility model as a Model class. """ def __init__(self): self.set_volatile_species(['H2O']) self.set_fugacity_model(fugacity_idealgas()) self.set_activity_model(activity_idealsolution()) self.set_solubility_dependence(False) self.set_calibration_ranges([CalibrationRange('pressure',[500.0,5000.0],crf_Between,'bar','Shishkina et al. water', fail_msg=crmsg_Between_fail, pass_msg=crmsg_Between_pass, description_msg=crmsg_Between_description), CalibrationRange('temperature',[1200.0,1250.0],crf_Between,'oC','Shishkina et al. water', fail_msg=crmsg_Between_fail, pass_msg=crmsg_Between_pass, description_msg=crmsg_Between_description)]) def preprocess_sample(self,sample): """ Returns sample, renormlized so that the major element oxides (excluding volatiles) sum to 100%. Normalization must be done this way as the compositional dependence of the solubility takes the mole fractions of Na2O and K2O as inputs, presumably assuming no volatiles in the bulk composition. Volatile concentrations are left unchanged. Parameters ---------- sample: dict or pandas Series The major element oxides in wt%. Returns ------- dict or pandas Series The major element oxides in wt%. """ return normalize_AdditionalVolatiles(sample) def calculate_dissolved_volatiles(self,pressure,sample,X_fluid=1.0,**kwargs): """Calculates the dissolved H2O concentration using Eqn (9) of Shishkina et al. (2014). Parameters ---------- pressure float Total pressure in bars sample pandas Series or dict Major element oxides in wt%. Normalized to zero-volatiles so that the total-alkalis mol fraction can be determined accurately. X_fluid float The mol fraction of H2O in the fluid Returns ------- float The H2O concentration in wt% """ if type(sample) != dict and type(sample) != pd.core.series.Series: raise InputError("sample must be a dict or pandas Series.") if all(ox in sample for ox in ['Na2O','K2O']) == False: raise InputError("Na2O and K2O must be present in sample.") if pressure < 0: raise InputError("Pressure must be positive.") _mols = wtpercentOxides_to_molCations(sample) _mol_volatiles = 0 if 'H' in _mols: _mol_volatiles += _mols['H'] if 'C' in _mols: _mol_volatiles += _mols['C'] total_alkalis = (_mols['Na'] + _mols['K'])/(1-_mol_volatiles) fugacity = self.fugacity_model.fugacity(pressure,X_fluid=X_fluid,**kwargs) a = 3.36e-7 * (fugacity/10)**3 - 2.33e-4*(fugacity/10)**2 + 0.0711*(fugacity/10) - 1.1309 b = -1.2e-5*(fugacity/10)**2 + 0.0196*(fugacity/10)+1.1297 return a*total_alkalis + b def calculate_equilibrium_fluid_comp(self,pressure,sample,**kwargs): """ Returns 1.0 if a pure H2O fluid is saturated. Returns 0.0 if a pure H2O fluid is undersaturated. Parameters ---------- pressure float The total pressure of the system in bars. sample pandas Series or dict Major element oxides in wt%, normalized on the basis of no volatiles. Returns ------- float 1.0 if H2O-fluid saturated, 0.0 otherwise. """ if self.calculate_saturation_pressure(sample=sample,**kwargs) < pressure: return 0.0 else: return 1.0 def calculate_saturation_pressure(self,sample,**kwargs): """ Calculates the pressure at which a pure H2O fluid is saturated, for the given sample composition and H2O concentration. Calls the scipy.root_scalar routine, which makes repeated calls to the calculate_dissolved_volatiles method. Parameters ---------- sample pandas Series or dict Major elements in wt% (normalized to 100%), including H2O (also in wt%, not included in normalization). Returns ------- float Saturation pressure in bar """ if 'H2O' not in sample: raise InputError("sample must contain H2O") if sample['H2O'] < 0: raise InputError("H2O concentration must be greater than 0 wt%.") if sample['H2O'] < self.calculate_dissolved_volatiles(sample=sample,pressure=0,**kwargs): return np.nan try: satP = root_scalar(self.root_saturation_pressure,bracket=[1e-15,1e5],args=(sample,kwargs)).root except: warnings.warn("Saturation pressure not found.",RuntimeWarning) satP = np.nan return satP def root_saturation_pressure(self,pressure,sample,kwargs): """ Function called by scipy.root_scalar when finding the saturation pressure using calculate_saturation_pressure. Parameters ---------- pressure float Pressure guess in bars sample pandas Series or dict Major elements in wt% (normalized to 100%), including H2O (also in wt%, not included in normalization). kwargs dictionary Additional keyword arguments supplied to calculate_saturation_pressure. Might be required for the fugacity or activity models. Returns ------- float The differece between the dissolved H2O at the pressure guessed, and the H2O concentration passed in the sample variable. """ return self.calculate_dissolved_volatiles(pressure=pressure,sample=sample,**kwargs)-sample['H2O'] class DixonCarbon(Model): """ Implementation of the Dixon (1997) carbon solubility model, as a Model class. """ def __init__(self): self.set_volatile_species(['CO2']) self.set_fugacity_model(fugacity_MRK_co2()) self.set_activity_model(activity_idealsolution()) self.set_calibration_ranges([]) self.set_solubility_dependence(False) def preprocess_sample(self,sample): """ Returns sample, normalized, keep volatiles unchanged. Parameters ---------- sample: pandas Series or dict The major element oxides in wt%. Returns ------- pandas Series or dict The major element oxides in wt%. """ return normalize_FixedVolatiles(sample) def calculate_dissolved_volatiles(self,pressure,sample,X_fluid=1.0,**kwargs): """Calculates the dissolved CO2 concentration using Eqn (3) of Dixon (1997). Parameters ---------- pressure float Total pressure in bars. sample pandas Series or dict Major element oxides in wt%. X_fluid float The mol fraction of CO2 in the fluid. Returns ------- float The CO2 concentration in wt%. """ if X_fluid < 0 or X_fluid > 1: raise InputError("X_fluid must have a value between 0 and 1.") if pressure < 0: raise InputError("Pressure must be positive.") if type(sample) != dict and type(sample) != pd.core.series.Series: raise InputError("sample must be a dict or pandas Series") if 'SiO2' not in sample: raise InputError("sample must contain SiO2.") if pressure == 0: return 0 Mr = wtpercentOxides_to_formulaWeight(sample) XCO3 = self.molfrac_molecular(pressure=pressure,sample=sample,X_fluid=X_fluid,**kwargs) # return (4400 * XCO3) / (36.6 - 44*XCO3) return (4400 * XCO3) / (Mr - 44*XCO3) def calculate_equilibrium_fluid_comp(self,pressure,sample,**kwargs): """ Returns 1.0 if a pure H2O fluid is saturated. Returns 0.0 if a pure H2O fluid is undersaturated. Parameters ---------- pressure float The total pressure of the system in bars. sample pandas Series or dict Major element oxides in wt% (including CO2). Returns ------- float 1.0 if CO2-fluid saturated, 0.0 otherwise. """ if self.calculate_saturation_pressure(sample=sample,**kwargs) < pressure: return 0.0 else: return 1.0 def calculate_saturation_pressure(self,sample,X_fluid=1.0,**kwargs): """ Calculates the pressure at which a pure CO2 fluid is saturated, for the given sample composition and CO2 concentration. Calls the scipy.root_scalar routine, which makes repeated called to the calculate_dissolved_volatiles method. Parameters ---------- sample pandas Series or dict Major element oxides in wt% (including CO2). X_fluid float The mole fraction of CO2 in the fluid. Default is 1.0. Returns ------- float Calculated saturation pressure in bars. """ if type(sample) != dict and type(sample) != pd.core.series.Series: raise InputError("sample must be a dict or pandas Series.") if 'CO2' not in sample: raise InputError("sample must contain CO2.") if sample['CO2'] < 0: raise InputError("Dissolved CO2 concentration must be greater than 0 wt%.") try: satP = root_scalar(self.root_saturation_pressure,x0=100.0,x1=1000.0,args=(sample,kwargs)).root except: warnings.warn("Saturation pressure not found.",RuntimeWarning) satP = np.nan return np.real(satP) def molfrac_molecular(self,pressure,sample,X_fluid=1.0,**kwargs): """Calculates the mole fraction of CO3(-2) dissolved when in equilibrium with a pure CO2 fluid at 1200C, using Eqn (1) of Dixon (1997). Parameters ---------- pressure float Total pressure in bars. sample pandas Series or dict Major element oxides in wt%. X_fluid float Mole fraction of CO2 in the fluid. Returns ------- float Mole fraction of CO3(2-) dissolved.""" DeltaVr = 23.14 #cm3 mole-1 P0 = 1 R = 83.15 T0 = 1473.15 fugacity = self.fugacity_model.fugacity(pressure=pressure,X_fluid=X_fluid,**kwargs) XCO3Std = self.XCO3_Std(sample) return XCO3Std * fugacity * np.exp(-DeltaVr * (pressure-P0)/(R*T0)) def XCO3_Std(self,sample): """ Calculates the mole fraction of CO3(2-) dissolved when in equilibrium with pure CO2 vapour at 1200C and 1 bar, using Eq (8) of Dixon (1997). Parameters ---------- sample pandas Series or dict Major element oxides in wt%. Returns ------- float Mole fraction of CO3(2-) dissolved at 1 bar and 1200C. """ if sample['SiO2'] > 48.9: return 3.817e-7 else: return 8.697e-6 - 1.697e-7*sample['SiO2'] def root_saturation_pressure(self,pressure,sample,kwargs): """ The function called by scipy.root_scalar when finding the saturation pressure using calculate_saturation_pressure. Parameters ---------- pressure float Total pressure in bars. sample pandas Series or dict Major element oxides in wt% (including CO2). Returns ------- float The difference between the dissolved CO2 the pressure guessed, and the CO2 concentration passed in the sample variable. """ return self.calculate_dissolved_volatiles(pressure=pressure,sample=sample,**kwargs) - sample['CO2'] class DixonWater(Model): """ Implementation of the Dixon (1997) water solubility model, as a Model class. """ def __init__(self): self.set_volatile_species(['H2O']) self.set_fugacity_model(fugacity_MRK_h2o()) self.set_activity_model(activity_idealsolution()) self.set_calibration_ranges([]) self.set_solubility_dependence(False) def preprocess_sample(self,sample): """ Returns sample, normalized, holding volatile concentrations constant. Parameters ---------- sample: pandas Series or dict The major element oxides in wt%. Returns ------- pandas Series or dict The major element oxides in wt%. """ return normalize_FixedVolatiles(sample) def calculate_dissolved_volatiles(self,pressure,sample,X_fluid=1.0,**kwargs): """Calculates the dissolved H2O concentration using Eqns (5) and (6) of Dixon (1997). Parameters ---------- pressure float Total pressure in bars. sample pandas Series or dict Major element oxides in wt%. X_fluid float The mol fraction of H2O in the fluid. Returns ------- float The H2O concentration in wt%. """ if type(sample) != dict and type(sample) != pd.core.series.Series: raise InputError("sample must be a dict or a pandas Series.") if 'SiO2' not in sample: raise InputError("sample must contain SiO2.") if pressure < 0: raise InputError("Pressure must be positive") if X_fluid < 0 or X_fluid > 1: raise InputError("X_fluid must have a value between 0 and 1.") if pressure == 0: return 0 XH2O = self.molfrac_molecular(pressure=pressure,sample=sample,X_fluid=X_fluid,**kwargs) XOH = self.XOH(pressure=pressure,sample=sample,X_fluid=X_fluid,**kwargs) Mr = wtpercentOxides_to_formulaWeight(sample) XB = XH2O + 0.5*XOH # return 1801.5*XB/(36.6-18.6*XB) return 1801.5*XB/(Mr-18.6*XB) def calculate_equilibrium_fluid_comp(self,pressure,sample,**kwargs): """ Returns 1.0 if a pure H2O fluid is saturated. Returns 0.0 if a pure H2O fluid is undersaturated. Parameters ---------- pressure float The total pressure of the system in bars. sample pandas Series or dict Major element oxides in wt% (including H2O). Returns ------- float 1.0 if H2O-fluid saturated, 0.0 otherwise. """ if self.calculate_saturation_pressure(sample=sample,**kwargs) < pressure: return 0.0 else: return 1.0 def calculate_saturation_pressure(self,sample,X_fluid=1.0,**kwargs): """ Calculates the pressure at which a pure H2O fluid is saturated, for the given sample composition and H2O concentration. Calls the scipy.root_scalar routine, which makes repeated called to the calculate_dissolved_volatiles method. Parameters ---------- sample pandas Series or dict Major element oxides in wt% (including H2O). X_fluid float The mole fraction of H2O in the fluid. Default is 1.0. Returns ------- float Calculated saturation pressure in bars. """ if 'H2O' not in sample: raise InputError("sample must contain H2O") if sample['H2O'] < 0: raise InputError("H2O concentration must be greater than 0 wt%.") try: satP = root_scalar(self.root_saturation_pressure,x0=100.0,x1=1000.0,args=(sample,kwargs)).root except: warnings.warn("Saturation pressure not found.",RuntimeWarning) satP = np.nan return np.real(satP) def molfrac_molecular(self,pressure,sample,X_fluid=1.0,**kwargs): """Calculates the mole fraction of molecular H2O dissolved when in equilibrium with a pure H2O fluid at 1200C, using Eqn (2) of Dixon (1997). Parameters ---------- pressure float Total pressure in bars. sample pandas Series or dict Major element oxides in wt%. X_fluid float Mole fraction of H2O in the fluid. Returns ------- float Mole fraction of molecular H2O dissolved. """ VH2O = 12 #cm3 mole-1 P0 = 1 R = 83.15 T0 = 1473.15 XH2OStd = self.XH2O_Std(sample) fugacity = self.fugacity_model.fugacity(pressure=pressure,X_fluid=X_fluid,**kwargs) return XH2OStd * fugacity * np.exp(-VH2O * (pressure-P0)/(R*T0)) def XH2O_Std(self,sample): """ Calculates the mole fraction of molecular H2O dissolved when in equilibrium with pure H2O vapour at 1200C and 1 bar, using Eq (9) of Dixon (1997). Parameters ---------- sample pandas Series or dict Major element oxides in wt%. Returns ------- float Mole fraction of molecular water dissolved at 1 bar and 1200C. """ if sample['SiO2'] > 48.9: return 3.28e-5 else: return -3.04e-5 + 1.29e-6*sample['SiO2'] def XOH(self,pressure,sample,X_fluid=1.0,**kwargs): """ Calculates the mole fraction of hydroxyl groups dissolved by solving Eq (4) of Dixon (1997). Calls scipy.root_scalar to find the root of the XOH_root method. Parameters ---------- pressure float Total pressure in bars. sample pandas Series or dict Major element oxides in wt%. X_fluid float Mole fraction of H2O in the fluid. Returns ------- float Mole fraction of hydroxyl groups dissolved. """ XH2O = self.molfrac_molecular(pressure=pressure,sample=sample,X_fluid=X_fluid,**kwargs) if XH2O < 1e-14: return 0 return np.exp(root_scalar(self.XOH_root,x0=np.log(0.5),x1=np.log(0.1),args=(XH2O)).root) def XOH_root(self,XOH,XH2O): """ Method called by scipy.root_scalar when finding the saturation pressure using the calculate_saturation_pressure method. Implements Eq (4) of Dixon (1997). Parameters ---------- XOH float Guess for the mole fraction of hydroxyl groups dissolved in melt. XH2O float Mole fraction of molecular water dissolved in melt. Returns ------- float The difference between the RHS and LHS of Eq (4) of Dixon (1997) for the guessed value of XOH. """ A = 0.403 B = 15.333 C = 10.894 XOH = np.exp(XOH) term = (XOH)**2.0/(XH2O*(1.0-XOH-XH2O)) lhs = - np.log(term) rhs = A + B*XOH + C*XH2O return rhs - lhs def root_saturation_pressure(self,pressure,sample,kwargs): """ Function called by scipy.root_scalar when finding the saturation pressure using calculate_saturation_pressure. Parameters ---------- pressure float Pressure guess in bars sample pandas Series or dict Major elements in wt% (normalized to 100%), including H2O. kwargs dictionary Additional keyword arguments supplied to calculate_saturation_pressure. Might be required for the fugacity or activity models. Returns ------- float The differece between the dissolved H2O at the pressure guessed, and the H2O concentration passed in the sample variable. """ return self.calculate_dissolved_volatiles(pressure=pressure,sample=sample,**kwargs) - sample['H2O'] class IaconoMarzianoWater(Model): """ Implementation of the Iacono-Marziano et al. (2012) water solubility model, as a Model class. Two calibrations are provided- the one incorporating the H2O content as a parameter (hydrous), and the one that does not (anhydrous). Specify which should be used when initialising the model, with the bool variable hydrous. """ def __init__(self,hydrous=True): """ Initialise the model. Parameters ---------- hydrous bool Whether to use the hydrous parameterization, or not. """ self.set_volatile_species(['H2O']) self.set_fugacity_model(fugacity_idealgas()) self.set_activity_model(activity_idealsolution()) self.hydrous = hydrous self.set_calibration_ranges([]) self.set_solubility_dependence(False) #Not dependent on CO2 conc, H2O dependence dealt with within model. def preprocess_sample(self,sample): """ Returns sample, normalized to 100 wt%, without changing the wt% of H2O and CO2 if the hydrous parameterization is being used (default). If the anhydrous parameterization is used, it will normalize without including H2O and CO2. Parameters ---------- sample pandas Series or dict Major element oxides in wt%. Returns ------- pandas Series or dict Major element oxides normalized to wt%. """ if self.hydrous == True: return normalize_FixedVolatiles(sample) else: return normalize_AdditionalVolatiles(sample) def calculate_dissolved_volatiles(self,pressure,temperature,sample,X_fluid=1.0, hydrous_coeffs=True,webapp_coeffs=False,**kwargs): """ Calculates the dissolved H2O concentration, using Eq (13) of Iacono-Marziano et al. (2012). If using the hydrous parameterization, it will use the scipy.root_scalar routine to find the root of the root_dissolved_volatiles method. Parameters ---------- pressure float Total pressure in bars. temperature float Temperature in C sample pandas Series or dict Major element oxides in wt%. X_fluid float Mole fraction of H2O in the fluid. Default is 1.0. hydrous_coeffs bool Use the hydrous or anhydrous NBO/O paramterisation (True for hydrous). Default is True. webapp_coeffs bool If True, use the pre-review hydrous coefficients, as implemented in the IM webapp. Default is False. Returns ------- float Dissolved H2O concentration in wt%. """ temperature = temperature + 273.15 #translate T from C to K if type(sample) != dict and type(sample) != pd.core.series.Series: raise InputError("sample must be a dict or a pandas Series.") if pressure < 0: raise InputError("Pressure must be positive.") if X_fluid < 0 or X_fluid > 1: raise InputError("X_fluid must have a value between 0 and 1.") if pressure == 0: return 0 if hydrous_coeffs == True: if X_fluid==0: return 0 H2O = root_scalar(self.root_dissolved_volatiles,args=(pressure,temperature,sample,X_fluid,hydrous_coeffs,kwargs), x0=1.0,x1=2.0).root return H2O else: a = 0.54 b = 1.24 B = -2.95 C = 0.02 fugacity = self.fugacity_model.fugacity(pressure=pressure,X_fluid=X_fluid,temperature=temperature-273.15,**kwargs) if fugacity == 0: return 0 NBO_O = self.NBO_O(sample=sample,hydrous_coeffs=False) H2O = np.exp(a*np.log(fugacity) + b*NBO_O + B + C*pressure/temperature) return H2O def calculate_equilibrium_fluid_comp(self,pressure,temperature,sample,**kwargs): """ Returns 1.0 if a pure H2O fluid is saturated. Returns 0.0 if a pure H2O fluid is undersaturated. Parameters ---------- pressure float The total pressure of the system in bars. temperature float The temperature of the system in C. sample pandas Series or dict Major element oxides in wt% (including H2O). Returns ------- float 1.0 if H2O-fluid saturated, 0.0 otherwise. """ if pressure > self.calculate_saturation_pressure(temperature=temperature,sample=sample,**kwargs): return 0.0 else: return 1.0 def calculate_saturation_pressure(self,temperature,sample,**kwargs): """ Calculates the pressure at which a pure H2O fluid is saturated, for the given sample composition and H2O concentration. Calls the scipy.root_scalar routine, which makes repeated called to the calculate_dissolved_volatiles method. Parameters ---------- temperature float The temperature of the system in C. sample pandas Series or dict Major element oxides in wt% (including H2O). X_fluid float The mole fraction of H2O in the fluid. Default is 1.0. Returns ------- float Calculated saturation pressure in bars. """ if type(sample) != dict and type(sample) != pd.core.series.Series: raise InputError("sample must be a dict or a pandas Series.") if 'H2O' not in sample: raise InputError("sample must contain H2O.") if sample['H2O'] < 0.0: raise InputError("Dissolved H2O must be greater than 0 wt%.") try: satP = root_scalar(self.root_saturation_pressure,args=(temperature,sample,kwargs), bracket=[1e-15,1e5]).root except: warnings.warn("Saturation pressure not found.",RuntimeWarning) satP = np.nan return satP def root_saturation_pressure(self,pressure,temperature,sample,kwargs): """ Function called by scipy.root_scalar when finding the saturation pressure using calculate_saturation_pressure. Parameters ---------- pressure float Pressure guess in bars temperature float The temperature of the system in C. sample pandas Series or dict Major elements in wt% (normalized to 100%), including H2O. kwargs dictionary Additional keyword arguments supplied to calculate_saturation_pressure. Might be required for the fugacity or activity models. Returns ------- float The differece between the dissolved H2O at the pressure guessed, and the H2O concentration passed in the sample variable. """ return sample['H2O'] - self.calculate_dissolved_volatiles(pressure=pressure,temperature=temperature,sample=sample,**kwargs) def root_dissolved_volatiles(self,h2o,pressure,temperature,sample,X_fluid,webapp_coeffs,kwargs): """ Function called by calculate_dissolved_volatiles method when the hydrous parameterization is being used. Parameters ---------- h2o float Guess for the H2O concentration in wt%. pressure float Total pressure in bars. temperature float Temperature in K. sample pandas Series or dict Major element oxides in wt%. X_fluid float Mole fraction of H2O in the fluid. kwargs dictionary Keyword arguments Returns ------- float Difference between H2O guessed and the H2O calculated. """ if webapp_coeffs == False: a = 0.53 b = 2.35 B = -3.37 C = -0.02 else: a = 0.52096846 b = 2.11575907 B = -3.24443335 C = -0.02238884 sample_copy = sample.copy() sample_copy['H2O'] = h2o NBO_O = self.NBO_O(sample=sample_copy,hydrous_coeffs=True) fugacity = self.fugacity_model.fugacity(pressure=pressure,X_fluid=X_fluid,temperature=temperature-273.15,**kwargs) return h2o - np.exp(a*np.log(fugacity) + b*NBO_O + B + C*pressure/temperature) def NBO_O(self,sample,hydrous_coeffs=True): """ Calculates NBO/O according to Appendix A.1. of Iacono-Marziano et al. (2012). NBO/O is calculated on either a hydrous or anhyrous basis, as set when initialising the Model class. Parameters ---------- sample pandas Series or dict Major element oxides in wt% (including H2O if using the hydrous parameterization). Returns ------- float NBO/O. """ if all(ox in sample for ox in ['K2O','Na2O','CaO','MgO','FeO','Al2O3','SiO2','TiO2','Al2O3']) == False: raise InputError("sample must contain K2O, Na2O, CaO, MgO, FeO, Al2O3, SiO2, TiO2 and Al2O3.") X = wtpercentOxides_to_molOxides(sample) NBO = 2*(X['K2O']+X['Na2O']+X['CaO']+X['MgO']+X['FeO']-X['Al2O3']) O = 2*X['SiO2']+2*X['TiO2']+3*X['Al2O3']+X['MgO']+X['FeO']+X['CaO']+X['Na2O']+X['K2O'] if hydrous_coeffs == True: if 'H2O' not in sample: raise InputError("sample must contain H2O.") NBO = NBO + 2*X['H2O'] O = O + X['H2O'] return NBO/O class IaconoMarzianoCarbon(Model): """ Implementation of the Iacono-Marziano et al. (2012) carbon solubility model, as a Model class. Two calibrations are provided- the one incorporating the H2O content as a parameter (hydrous), and the one that does not (anhydrous). Specify which should be used when initialising the model, with the bool variable hydrous. """ def __init__(self): """ Initialise the model. Parameters ---------- hydrous bool Whether to use the hydrous parameterization, or not. """ self.set_volatile_species(['CO2']) self.set_fugacity_model(fugacity_idealgas()) self.set_activity_model(activity_idealsolution()) self.set_calibration_ranges([]) self.set_solubility_dependence(True) def preprocess_sample(self,sample): """ Returns sample, normalized to 100 wt%, without changing the wt% of H2O and CO2 if the hydrous parameterization is being used (default). If the anhydrous parameterization is used, it will normalize without including H2O and CO2. Parameters ---------- sample pandas Series or dict Major element oxides in wt%. Returns ------- pandas Series or dict Major element oxides normalized to wt%. """ if self.hydrous == True: return normalize_FixedVolatiles(sample) else: return normalize_AdditionalVolatiles(sample) def calculate_dissolved_volatiles(self,pressure,temperature,sample,X_fluid=1, hydrous_coeffs=True, **kwargs): """ Calculates the dissolved CO2 concentration, using Eq (12) of Iacono-Marziano et al. (2012). If using the hydrous parameterization, it will use the scipy.root_scalar routine to find the root of the root_dissolved_volatiles method. Parameters ---------- pressure float Total pressure in bars. temperature float Temperature in C sample pandas Series or dict Major element oxides in wt%. X_fluid float Mole fraction of H2O in the fluid. Default is 1.0. hydrous_coeffs bool Use the hydrous or anhydrous NBO/O paramterisation (True for hydrous). Default is True. Returns ------- float Dissolved H2O concentration in wt%. """ temperature = temperature + 273.15 #translate T from C to K if type(sample) != dict and type(sample) != pd.core.series.Series: raise InputError("sample must be a dict or a pandas Series.") if pressure < 0: raise InputError("Pressure must be positive.") if temperature <= 0: raise InputError("Temperature must be greater than 0K.") if X_fluid < 0 or X_fluid > 1: raise InputError("X_fluid must have a value between 0 and 1.") if pressure == 0: return 0 if hydrous_coeffs == True: if 'H2O' not in sample: raise InputError("sample must contain H2O if using the hydrous parameterization.") if sample['H2O'] < 0: raise InputError("Dissolved H2O must be positive.") im_h2o_model = IaconoMarzianoWater() h2o = im_h2o_model.calculate_dissolved_volatiles(pressure=pressure,temperature=temperature-273.15, sample=sample,X_fluid=1-X_fluid,**kwargs) sample_h2o = sample.copy() sample_h2o['H2O'] = h2o d = np.array([-16.4,4.4,-17.1,22.8]) a = 1.0 b = 17.3 B = -6.0 C = 0.12 NBO_O = self.NBO_O(sample=sample_h2o,hydrous_coeffs=True) molarProps = wtpercentOxides_to_molOxides(sample_h2o) else: d = np.array([2.3,3.8,-16.3,20.1]) a = 1.0 b = 15.8 B = -5.3 C = 0.14 NBO_O = self.NBO_O(sample=sample,hydrous_coeffs=False) molarProps = wtpercentOxides_to_molOxides(sample) fugacity = self.fugacity_model.fugacity(pressure=pressure,X_fluid=X_fluid,temperature=temperature-273.15,**kwargs) if fugacity == 0: return 0 if all(ox in molarProps for ox in ['Al2O3','CaO','K2O','Na2O','FeO','MgO','Na2O','K2O']) == False: raise InputError("sample must contain Al2O3, CaO, K2O, Na2O, FeO, MgO, Na2O, and K2O.") x = list() if 'H2O' in molarProps: x.append(molarProps['H2O']) else: x.append(0.0) x.append(molarProps['Al2O3']/(molarProps['CaO']+molarProps['K2O']+molarProps['Na2O'])) x.append((molarProps['FeO']+molarProps['MgO'])) x.append((molarProps['Na2O']+molarProps['K2O'])) x = np.array(x) CO3 = np.exp(np.sum(x*d) + a*np.log(fugacity) + b*NBO_O + B + C*pressure/temperature) CO2 = CO3/1e4#/(12+16*3)*(12+16*2)/1e4 return CO2 def calculate_equilibrium_fluid_comp(self,pressure,temperature,sample,**kwargs): """ Returns 1.0 if a pure CO2 fluid is saturated. Returns 0.0 if a pure CO2 fluid is undersaturated. Parameters ---------- pressure float The total pressure of the system in bars. temperature float The temperature of the system in C. sample pandas Series or dict Major element oxides in wt% (including H2O). Returns ------- float 1.0 if CO2-fluid saturated, 0.0 otherwise. """ if pressure > self.calculate_saturation_pressure(temperature=temperature,sample=sample,**kwargs): return 0.0 else: return 1.0 def calculate_saturation_pressure(self,temperature,sample,**kwargs): """ Calculates the pressure at which a pure CO2 fluid is saturated, for the given sample composition and CO2 concentration. Calls the scipy.root_scalar routine, which makes repeated called to the calculate_dissolved_volatiles method. Parameters ---------- temperature float The temperature of the system in C. sample pandas Series or dict Major element oxides in wt% (including CO2). Returns ------- float Calculated saturation pressure in bars. """ if temperature <= 0: raise InputError("Temperature must be greater than 0K.") if type(sample) != dict and type(sample) != pd.core.series.Series: raise InputError("sample must be a dict or a pandas Series.") if 'CO2' not in sample: raise InputError("sample must contain CO2") if sample['CO2'] < 0: raise InputError("Dissolved CO2 must be greater than 0 wt%.") try: satP = root_scalar(self.root_saturation_pressure,args=(temperature,sample,kwargs), bracket=[1e-15,1e5]).root except: warnings.warn("Saturation pressure not found.",RuntimeWarning) satP = np.nan return satP def root_saturation_pressure(self,pressure,temperature,sample,kwargs): """ Function called by scipy.root_scalar when finding the saturation pressure using calculate_saturation_pressure. Parameters ---------- pressure float Pressure guess in bars temperature float The temperature of the system in C. sample pandas Series or dict Major elements in wt% (normalized to 100%), including CO2. kwargs dictionary Additional keyword arguments supplied to calculate_saturation_pressure. Might be required for the fugacity or activity models. Returns ------- float The differece between the dissolved CO2 at the pressure guessed, and the CO2 concentration passed in the sample variable. """ return sample['CO2'] - self.calculate_dissolved_volatiles(pressure=pressure,temperature=temperature,sample=sample,**kwargs) def NBO_O(self,sample,hydrous_coeffs=True): """ Calculates NBO/O according to Appendix A.1. of Iacono-Marziano et al. (2012). NBO/O is calculated on either a hydrous or anhyrous basis, as set when initialising the Model class. Parameters ---------- sample pandas Series or dict Major element oxides in wt% (including H2O if using the hydrous parameterization). Returns ------- float NBO/O. """ if type(sample) != dict and type(sample) != pd.core.series.Series: raise InputError("sample must be a dict or a pandas Series,") if all(ox in sample for ox in ['K2O','Na2O','CaO','MgO','FeO','Al2O3','SiO2','TiO2']) == False: raise InputError("sample must contain K2O, Na2O, CaO, MgO, FeO, Al2O3, SiO2, and TiO2.") X = wtpercentOxides_to_molOxides(sample) NBO = 2*(X['K2O']+X['Na2O']+X['CaO']+X['MgO']+X['FeO']-X['Al2O3']) O = 2*X['SiO2']+2*X['TiO2']+3*X['Al2O3']+X['MgO']+X['FeO']+X['CaO']+X['Na2O']+X['K2O'] if hydrous_coeffs == True: if 'H2O' not in X: raise InputError("sample must contain H2O if using the hydrous parameterization.") NBO = NBO + 2*X['H2O'] O = O + X['H2O'] return NBO/O class EguchiCarbon(Model): """ Implementation of the Eguchi and Dasgupta (2018) CO2 solubility model for andesitic melts. Uses the Zhang and Duan (2009) CO2 EOS for fugacity calculations, assuming a pure CO2 fluid, or ideal mixing for mixed fluids. """ def __init__(self): warnings.warn("Eguchi model is not working correctly. Do not use any results calculated.") self.set_volatile_species(['CO2']) self.set_fugacity_model(fugacity_ZD09_co2()) self.set_activity_model(activity_idealsolution()) self.set_solubility_dependence(False) self.set_calibration_ranges([CalibrationRange('pressure',[500.0,50000.0],crf_Between,'bar','Eguchi & Dasgupta (2018) carbon', fail_msg=crmsg_Between_fail, pass_msg=crmsg_Between_pass, description_msg=crmsg_Between_description), CalibrationRange('temperature',[950.0,1600],crf_Between,'oC','Eguchi & Dasgupta (2018) carbon', fail_msg=crmsg_Between_fail, pass_msg=crmsg_Between_pass, description_msg=crmsg_Between_description)]) def preprocess_sample(self,sample,ferric_total=0.15): """ Returns normalized sample composition, with ferric iron. Where a sample already contains ferric iron, the composition will be normalized to 100 wt% (excluding H2O and CO2). Where a sample contains only FeO, ferric iron will be calculated using the ferric/total iron ratio provided. Parameters ---------- sample pandas Series or dict Major element oxides in wt%. ferric_total float Mole ratio of ferric to total iron to be used for calculating Fe2O3 and FeO when only FeO is provided. Default is 0.15. Returns ------- pandas Series or dict Normalized major element oxides in wt%. """ if type(sample) != dict and type(sample) != pd.core.series.Series: raise InputError("sample must be a dict or a pandas Series.") if 'FeO' not in sample: raise InputError("sample must contain FeO.") _sample = sample.copy() for ox in ['TiO2','P2O5']: if ox not in _sample: _sample[ox] = 0.0 if 'Fe2O3' not in _sample: Fe_t = _sample['FeO']/oxideMass['FeO'] Fe3 = ferric_total*Fe_t Fe2 = Fe_t - Fe3 _sample['FeO'] = Fe2*oxideMass['FeO'] _sample['Fe2O3'] = Fe3*oxideMass['Fe2O3']/2 return normalize_AdditionalVolatiles(_sample) def calculate_dissolved_volatiles(self,pressure,temperature,sample,X_fluid=1.0,**kwargs): """ Calculates the dissolved (total) CO2 using eqs (9) and (10) of Eguchi and Dasgupta (2018). Parameters ---------- pressure float Pressure in bars temperature float Temperature in C sample pandas Series or dict Major element oxides in wt%. X_fluid float The mole fraction of CO2 in the fluid. Returns ------- float Dissolved CO2 concentration. """ if pressure < 0: raise InputError("Pressure must be greater than 0 bar.") if pressure == 0: return 0 XCO3 = self.Xi_melt(pressure=pressure,temperature=temperature,sample=sample,X_fluid=X_fluid,species='CO3') XCO2 = self.Xi_melt(pressure=pressure,temperature=temperature,sample=sample,X_fluid=X_fluid,species='CO2') FW_one = wtpercentOxides_to_formulaWeight(sample) CO2_CO2 = ((44.01*XCO2)/(44.01*XCO2+(1-(XCO2+XCO3))*FW_one))*100 CO2_CO3 = ((44.01*XCO3)/(44.01*XCO3+(1-(XCO2+XCO3))*FW_one))*100 return CO2_CO2 + CO2_CO3 def calculate_equilibrium_fluid_comp(self,pressure,temperature,sample,**kwargs): """ Returns 1.0 if a pure CO2 fluid is saturated. Returns 0.0 if a pure CO2 fluid is undersaturated. Parameters ---------- pressure float The total pressure of the system in bars. temperature float The temperature of the system in C. sample pandas Series or dict Major element oxides in wt% (including H2O). Returns ------- float 1.0 if CO2-fluid saturated, 0.0 otherwise. """ satP = self.calculate_saturation_pressure(temperature=temperature,sample=sample,X_fluid=1.0,**kwargs) if pressure < satP: return 1.0 else: return 0.0 def calculate_saturation_pressure(self,temperature,sample,X_fluid=1.0,**kwargs): """ Calculates the pressure at which a pure CO2 fluid is saturated, for the given sample composition and CO2 concentration. Calls the scipy.root_scalar routine, which makes repeated called to the calculate_dissolved_volatiles method. Parameters ---------- temperature float The temperature of the system in C. sample pandas Series or dict Major element oxides in wt% (including CO2). X_fluid float The mole fraction of H2O in the fluid. Default is 1.0. Returns ------- float Calculated saturation pressure in bars. """ if 'CO2' not in sample: raise InputError("sample must contain CO2.") if sample['CO2'] < 0.0: raise InputError("Concentration of CO2 must be greater than 0 wt%.") try: satP = root_scalar(self.root_saturation_pressure,x0=1000.0,x1=2000.0, args=(temperature,sample,X_fluid,kwargs)).root except: warnings.warn("Saturation pressure not found.",RuntimeWarning) satP = np.nan return satP def root_saturation_pressure(self,pressure,temperature,sample,X_fluid,kwargs): """ Function called by scipy.root_scalar when finding the saturation pressure using calculate_saturation_pressure. Parameters ---------- pressure float Pressure guess in bars temperature float The temperature of the system in C. sample pandas Series or dict Major elements in wt% (normalized to 100%), including CO2. kwargs dictionary Additional keyword arguments supplied to calculate_saturation_pressure. Might be required for the fugacity or activity models. Returns ------- float The differece between the dissolved CO2 at the pressure guessed, and the CO2 concentration passed in the sample variable. """ return sample['CO2'] - self.calculate_dissolved_volatiles(pressure=pressure,temperature=temperature,sample=sample,X_fluid=X_fluid,**kwargs) def Xi_melt(self,pressure,temperature,sample,species,X_fluid=1.0,**kwargs): """ Calculates the mole fraction of dissolved molecular CO2 or carbonate CO3(2-), using eqn (9) of Eguchi and Dasgupta (2018). Parameters ---------- pressure float Pressure in bars. temperature float Temperature in C. sample pandas Series or dict Major element oxides in wt%. species str Which species to calculate, molecular CO2 'CO2' or carbonate ion 'CO3'. X_fluid float The mole fraction of CO2 in the fluid. Default is 1.0. Returns ------- float Mole fraction of selected species in the melt """ temperature = temperature + 273.15 #translate T from C to K if all(ox in sample for ox in ['MgO','CaO','FeO','Na2O','K2O','MnO','Al2O3','Fe2O3','SiO2','TiO2','P2O5']) == False: raise InputError("sample must contain MgO, CaO, FeO, Na2O, K2O, MnO, Al2O3, Fe2O3, SiO3, TiO2, and P2O5.") if X_fluid < 0 or X_fluid > 1: raise InputError("X_fluid must have a value between 0 and 1.") if pressure < 0: raise InputError("Pressure must be positive.") if temperature <= 0: raise InputError("Temperature must be greater than 0K.") if species == 'CO3': DH = -1.65e5 DV = 2.38e-5 DS = -43.64 B = 1.47e3 yNBO = 3.29 A_CaO = 1.68e5 A_Na2O = 1.76e5 A_K2O = 2.11e5 elif species == 'CO2': DH = -9.02e4 DV = 1.92e-5 DS = -43.08 B = 1.12e3 yNBO = -7.09 A_CaO = 0 A_Na2O = 0 A_K2O = 0 else: raise InputError("species variable must be either 'CO2' or 'CO3'.") R = 8.314 # Calculate NBO term cations = wtpercentOxides_to_molSingleO(sample) oxides = wtpercentOxides_to_molOxides(sample) NM = (cations['Mg'] + cations['Ca'] + cations['Fe'] + cations['Na'] + cations['K'] + cations['Mn']) Al = cations['Al'] - NM if Al > 0: Al = NM else: Al = cations['Al'] Fe = cations['Fe3'] + Al if Al > 0: Fe = 0 if Al < 0 and Fe > 0: Fe = - Al if Al < 0 and Fe < 0: Fe = cations['Fe3'] Tet = cations['Si'] + cations['Ti'] + cations['P'] + Al + Fe NBO = 2 - 4*Tet lnfCO2 = np.log(self.fugacity_model.fugacity(pressure=pressure,temperature=temperature-273.15,X_fluid=X_fluid)) lnXi = ((DH/(R*temperature)-(pressure*1e5*DV)/(R*temperature)+DS/R) + (A_CaO*oxides['CaO']+A_Na2O*oxides['Na2O']+A_K2O*oxides['K2O'])/(R*temperature) + (B*lnfCO2/temperature) + yNBO*NBO ) return np.exp(lnXi) class MooreWater(Model): """ Implementation of the Moore et al. (1998) H2O solubility model for magmas up to 3,000 bars. """ def __init__(self): """ Initialize the model. """ self.set_volatile_species(['H2O']) self.set_fugacity_model(fugacity_HB_h2o()) self.set_activity_model(activity_idealsolution()) self.set_solubility_dependence(False) self.set_calibration_ranges([CalibrationRange('pressure',[1.0,3000.0],crf_Between,'bar','Moore et al. (1998) water', fail_msg=crmsg_Between_fail, pass_msg=crmsg_Between_pass, description_msg=crmsg_Between_description), CalibrationRange('temperature',[700.0,1200],crf_Between,'oC','Moore et al. (1998) water', fail_msg=crmsg_Between_fail, pass_msg=crmsg_Between_pass, description_msg=crmsg_Between_description)]) # self.set_calibration_ranges([cr_Between('pressure',[1.0,3000.0],'bar','Moore et al. (1998) water'), # cr_Between('temperature',[700.0+273.15,1200+273.15],'oC','Moore et al. (1998) water')]) def preprocess_sample(self, sample): """ Returns sample with extranneous (non oxide) information removed and any missing oxides given a value of 0.0. """ for oxide in oxides: if oxide in sample.keys(): pass else: sample[oxide] = 0.0 bulk_comp = {oxide: sample[oxide] for oxide in oxides} self.bulk_comp_orig = sample return bulk_comp def calculate_dissolved_volatiles(self, sample, pressure, temperature, X_fluid=1.0, **kwargs): """ Parameters ---------- sample dict Composition of sample in wt% oxides. pressure float Pressure in bars. temperature float Temperature in degrees C. X_fluid float OPTIONAL. Default is 1.0. Mole fraction of H2O in the H2O-CO2 fluid. Returns ------- float Calculated dissolved H2O concentration in wt%. """ _sample = sample.copy() _sample['H2O'] = 0.0 _sample['CO2'] = 0.0 _sample = normalize(_sample) fH2O = self.fugacity_model.fugacity(pressure=pressure,temperature=temperature,X_fluid=X_fluid,**kwargs) aParam = 2565.0 bParam_Al2O3 = -1.997 bParam_FeOt = -0.9275 bParam_Na2O = 2.736 cParam = 1.171 dParam = -14.21 temperatureK = temperature + 273.15 sample_molfrac = wtpercentOxides_to_molOxides(_sample) FeOtot = sample_molfrac['FeO'] + sample_molfrac['Fe2O3']*0.8998 b_x_sum = (bParam_Al2O3 * sample_molfrac['Al2O3']) + (bParam_FeOt * FeOtot) + (bParam_Na2O * sample_molfrac['Na2O']) two_ln_XH2Omelt = (aParam / temperatureK) + b_x_sum * (pressure/temperatureK) + cParam * np.log(fH2O) + dParam ln_XH2Omelt = two_ln_XH2Omelt / 2.0 XH2Omelt = np.exp(ln_XH2Omelt) sample_molfrac['H2O'] = XH2Omelt #Normalize mol fractions to sum to 1, while preserving XH2O for key, value in sample_molfrac.items(): if key != 'H2O': sample_molfrac.update({key: value/((1/(1-sample_molfrac['H2O'])))}) sample_wtper = mol_to_wtpercent(sample_molfrac) return sample_wtper['H2O'] def calculate_equilibrium_fluid_comp(self, sample, pressure, temperature, **kwargs): """ Parameters ---------- sample dict Composition of sample in wt% oxides. pressure float Pressure in bars. temperature float Temperature in degrees C. Returns ------- float Calculated equilibrium fluid concentration in XH2Ofluid mole fraction. """ _sample = sample.copy() sample_anhy = sample.copy() sample_anhy["H2O"] = 0.0 sample_anhy["CO2"] = 0.0 aParam = 2565.0 bParam_Al2O3 = -1.997 bParam_FeOt = -0.9275 bParam_Na2O = 2.736 cParam = 1.171 dParam = -14.21 temperatureK = temperature + 273.15 sample_molfrac_anhy = wtpercentOxides_to_molOxides(sample_anhy) sample_molfrac_hy = wtpercentOxides_to_molOxides(_sample) FeOtot = sample_molfrac_anhy['FeO'] + sample_molfrac_anhy['Fe2O3']*0.8998 b_x_sum = (bParam_Al2O3 * sample_molfrac_anhy['Al2O3']) + (bParam_FeOt * FeOtot) + (bParam_Na2O * sample_molfrac_anhy['Na2O']) ln_fH2O = (2 * np.log(sample_molfrac_hy['H2O']) - (aParam/temperatureK) - b_x_sum * (pressure/temperatureK) - dParam) / cParam fH2O = np.exp(ln_fH2O) XH2O_fl = fH2O / pressure # SM: I've changed this to return X_H2O only, as otherwise it doesn't conform to other single-volatile # models. I'm not sure this is the best solution though. # return (XCO2_fl, XH2O_fl) return XH2O_fl def calculate_saturation_pressure(self,temperature,sample,X_fluid=1.0,**kwargs): """ Calculates the pressure at which a an H2O-bearing fluid is saturated. Calls the scipy.root_scalar routine, which makes repeated called to the calculate_dissolved_volatiles method. Parameters ---------- sample dict Composition of sample in wt% oxides. temperature float Temperature in degrees C. X_fluid float OPTIONAL. Default is 1.0. Mole fraction of H2O in the H2O-CO2 fluid. Returns ------- float Calculated saturation pressure in bars. """ _sample = sample.copy() temperatureK = temperature + 273.15 if temperatureK <= 0.0: raise InputError("Temperature must be greater than 0K.") if X_fluid < 0 or X_fluid > 1: raise InputError("X_fluid must have a value between 0 and 1.") if type(sample) != dict and type(sample) != pd.core.series.Series: raise InputError("sample must be a dict or a pandas Series.") if 'H2O' not in sample: raise InputError("sample must contain H2O.") if sample['H2O'] < 0.0: raise InputError("Dissolved H2O concentration must be greater than 0 wt%.") try: satP = root_scalar(self.root_saturation_pressure,args=(temperature,_sample,X_fluid,kwargs), x0=100.0,x1=2000.0).root except: warnings.warn("Saturation pressure not found.",RuntimeWarning) satP = np.nan return np.real(satP) def root_saturation_pressure(self,pressure,temperature,sample,X_fluid,kwargs): """ Function called by scipy.root_scalar when finding the saturation pressure using calculate_saturation_pressure. Parameters ---------- pressure float Pressure guess in bars temperature float The temperature of the system in C. sample pandas Series or dict Major elements in wt% (normalized to 100%), including H2O. kwargs dictionary Additional keyword arguments supplied to calculate_saturation_pressure. Might be required for the fugacity or activity models. Returns ------- float The differece between the dissolved H2O at the pressure guessed, and the H2O concentration passed in the sample variable. """ return self.calculate_dissolved_volatiles(pressure=pressure,temperature=temperature,sample=sample,X_fluid=X_fluid,**kwargs) - sample['H2O'] class LiuWater(Model): """ Implementation of the Liu et al. (2005) H2O solubility model for metaluminous high-silica rhyolitic melts. """ def __init__(self): """ Initialize the model. """ self.set_volatile_species(['H2O']) self.set_fugacity_model(fugacity_idealgas()) self.set_activity_model(activity_idealsolution()) self.set_solubility_dependence(False) self.set_calibration_ranges([CalibrationRange('pressure',[1.0,5000.0],crf_Between,'bar','Liu et al. (2005) water', fail_msg=crmsg_Between_fail, pass_msg=crmsg_Between_pass, description_msg=crmsg_Between_description), CalibrationRange('temperature',[700.0,1200],crf_Between,'oC','Liu et al. (2005) water', fail_msg=crmsg_Between_fail, pass_msg=crmsg_Between_pass, description_msg=crmsg_Between_description), CalibrationRange('sample',None,crf_LiuComp,None,None, fail_msg=crmsg_LiuComp_fail, pass_msg=crmsg_LiuComp_pass, description_msg=crmsg_LiuComp_description)]) # self.set_calibration_ranges([cr_Between('pressure',[1.0,5000.0],'bar','Liu et al. (2005) water'), # cr_Between('temperature',[700.0,1200],'oC','Liu et al. (2005) water')]) def preprocess_sample(self, sample): """ Returns sample with extranneous (non oxide) information removed and any missing oxides given a value of 0.0. """ for oxide in oxides: if oxide in sample.keys(): pass else: sample[oxide] = 0.0 bulk_comp = {oxide: sample[oxide] for oxide in oxides} self.bulk_comp_orig = sample return bulk_comp def calculate_dissolved_volatiles(self, sample, pressure, temperature, X_fluid=1.0, **kwargs): """ Parameters ---------- sample dict Composition of sample in wt% oxides. pressure float Pressure in bars. temperature float Temperature in degrees C. X_fluid float OPTIONAL. Default is 1.0. Mole fraction of H2O in the H2O-CO2 fluid. Returns ------- float Calculated dissolved H2O concentration in wt%. """ pressureMPa = pressure / 10.0 Pw = pressureMPa * X_fluid PCO2 = pressureMPa * (1 - X_fluid) temperatureK = temperature + 273.15 H2Ot = ((354.94*Pw**(0.5) + 9.623*Pw - 1.5223*Pw**(1.5)) / temperatureK + 0.0012439*Pw**(1.5) + PCO2*(-1.084*10**(-4)*Pw**(0.5) - 1.362*10**(-5)*Pw)) return H2Ot def calculate_equilibrium_fluid_comp(self, sample, pressure, temperature, **kwargs): """ Parameters ---------- sample dict Composition of sample in wt% oxides. pressure float Pressure in bars. temperature float Temperature in degrees C. Returns ------- float Calculated equilibrium fluid concentration in XH2Ofluid mole fraction. """ temperatureK = temperature + 273.15 pressureMPa = pressure / 10.0 _sample = sample.copy() H2Ot = _sample["H2O"] #calculate saturation pressure and assert that input P <= SatP satP = self.calculate_saturation_pressure(temperature,sample) is_saturated = satP - pressure if is_saturated >= 0: pass else: warnings.warn("{:.1f} bars is above the saturation pressure ({:.1f} bars) for this sample. Results from this calculation may be nonsensical.".format(pressure,satP)) #Use sympy to solve solubility equation for XH2Ofluid XH2Ofluid = sympy.symbols('XH2Ofluid') #XH2Ofluid is the variable to solve for equation = ((354.94*(XH2Ofluid*pressureMPa)**(0.5) + 9.623*(XH2Ofluid*pressureMPa) - 1.5223*(XH2Ofluid*pressureMPa)**(1.5)) / temperatureK + 0.0012439*(XH2Ofluid*pressureMPa)**(1.5) + pressureMPa*(1-XH2Ofluid)*(-1.084*10**(-4)*(XH2Ofluid*pressureMPa)**(0.5) - 1.362*10**(-5)*(XH2Ofluid*pressureMPa)) - H2Ot) XH2Ofluid = sympy.solve(equation, XH2Ofluid)[0] if XH2Ofluid > 1: XH2Ofluid = 1 if XH2Ofluid < 0: XH2Ofluid = 0 return XH2Ofluid def calculate_saturation_pressure(self,temperature,sample,X_fluid=1.0,**kwargs): """ Calculates the pressure at which a an H2O-bearing fluid is saturated. Calls the scipy.root_scalar routine, which makes repeated called to the calculate_dissolved_volatiles method. Parameters ---------- sample dict Composition of sample in wt% oxides. temperature float Temperature in degrees C. X_fluid float OPTIONAL. Default is 1.0. Mole fraction of H2O in the H2O-CO2 fluid. Returns ------- float Calculated saturation pressure in bars. """ _sample = sample.copy() temperatureK = temperature + 273.15 if temperatureK <= 0.0: raise InputError("Temperature must be greater than 0K.") if X_fluid < 0 or X_fluid > 1: raise InputError("X_fluid must have a value between 0 and 1.") if type(sample) != dict and type(sample) != pd.core.series.Series: raise InputError("sample must be a dict or a pandas Series.") if 'H2O' not in sample: raise InputError("sample must contain H2O.") if sample['H2O'] < 0.0: raise InputError("Dissolved H2O concentration must be greater than 0 wt%.") try: satP = root_scalar(self.root_saturation_pressure,args=(temperature,_sample,X_fluid,kwargs), x0=10.0,x1=200.0).root except: warnings.warn("Saturation pressure not found.",RuntimeWarning) satP = np.nan return np.real(satP) def root_saturation_pressure(self,pressure,temperature,sample,X_fluid,kwargs): """ Function called by scipy.root_scalar when finding the saturation pressure using calculate_saturation_pressure. Parameters ---------- pressure float Pressure guess in bars temperature float The temperature of the system in C. sample pandas Series or dict Major elements in wt% (normalized to 100%), including H2O. kwargs dictionary Additional keyword arguments supplied to calculate_saturation_pressure. Might be required for the fugacity or activity models. Returns ------- float The differece between the dissolved H2O at the pressure guessed, and the H2O concentration passed in the sample variable. """ return self.calculate_dissolved_volatiles(pressure=pressure,temperature=temperature,sample=sample,X_fluid=X_fluid,**kwargs) - sample['H2O'] class LiuCarbon(Model): """ Implementation of the Liu et al. (2005) H2O-CO2 solubility model for metaluminous high-silica rhyolitic melts. """ def __init__(self): """ Initialize the model. """ self.set_volatile_species(['CO2']) self.set_fugacity_model(fugacity_idealgas()) self.set_activity_model(activity_idealsolution()) self.set_solubility_dependence(False) self.set_calibration_ranges([CalibrationRange('pressure',[1.0,5000.0],crf_Between,'bar','Liu et al. (2005) carbon', fail_msg=crmsg_Between_fail, pass_msg=crmsg_Between_pass, description_msg=crmsg_Between_description), CalibrationRange('temperature',[700.0,1200],crf_Between,'oC','Liu et al. (2005) carbon', fail_msg=crmsg_Between_fail, pass_msg=crmsg_Between_pass, description_msg=crmsg_Between_description), CalibrationRange('sample',None,crf_LiuComp,None,None, fail_msg=crmsg_LiuComp_fail, pass_msg=crmsg_LiuComp_pass, description_msg=crmsg_LiuComp_description)]) def preprocess_sample(self, sample): """ Returns sample with extranneous (non oxide) information removed and any missing oxides given a value of 0.0. """ for oxide in oxides: if oxide in sample.keys(): pass else: sample[oxide] = 0.0 bulk_comp = {oxide: sample[oxide] for oxide in oxides} self.bulk_comp_orig = sample return bulk_comp def calculate_dissolved_volatiles(self, sample, pressure, temperature, X_fluid=1, **kwargs): """ Parameters ---------- sample dict Composition of sample in wt% oxides. pressure float Pressure in bars. temperature float Temperature in degrees C. X_fluid float OPTIONAL. Default is 1. Mole fraction of CO2 in the H2O-CO2 fluid. Returns ------- float Calculated dissolved CO2 concentration in wt%. """ pressureMPa = pressure / 10.0 Pw = pressureMPa * (1 - X_fluid) PCO2 = pressureMPa * X_fluid #(1 - X_fluid) temperatureK = temperature + 273.15 CO2melt_ppm = (PCO2*(5668 - 55.99*Pw)/temperatureK + PCO2*(0.4133*Pw**(0.5) + 2.041*10**(-3)*Pw**(1.5))) CO2melt = CO2melt_ppm / 10000 return CO2melt def calculate_equilibrium_fluid_comp(self, sample, pressure, temperature, **kwargs): """ Parameters ---------- sample dict Composition of sample in wt% oxides. pressure float Pressure in bars. temperature float Temperature in degrees C. Returns ------- float Calculated equilibrium fluid concentration in XCO2fluid mole fraction. """ temperatureK = temperature + 273.15 pressureMPa = pressure / 10.0 if temperatureK <= 0.0: raise InputError("Temperature must be greater than 0K.") if type(sample) != dict and type(sample) != pd.core.series.Series: raise InputError("sample must be a dict or a pandas Series.") if 'CO2' not in sample: raise InputError("sample must contain CO2.") if sample['CO2'] < 0.0: raise InputError("Dissolved CO2 concentration must be greater than 0 wt%.") _sample = sample.copy() CO2melt_wt = _sample["CO2"] CO2melt_ppm = CO2melt_wt * 10000 #calculate saturation pressure and assert that input P <= SatP satP = self.calculate_saturation_pressure(temperature,sample) is_saturated = satP - pressure if is_saturated >= 0: pass else: warnings.warn(str(pressure) + " bars is above the saturation pressure (" + str(satP) + " bars) for this sample. Results from this calculation may be nonsensical.") #Use sympy to solve solubility equation for XH2Ofluid XCO2fluid = sympy.symbols('XCO2fluid') #XCO2fluid is the variable to solve for equation = (((XCO2fluid*pressureMPa)*(5668 - 55.99*(pressureMPa*(1-XCO2fluid)))/temperatureK + (XCO2fluid*pressureMPa)*(0.4133*(pressureMPa*(1-XCO2fluid))**(0.5) + 2.041*10**(-3)*(pressureMPa*(1-XCO2fluid))**(1.5))) - CO2melt_ppm) XCO2fluid = sympy.solve(equation, XCO2fluid)[0] if XCO2fluid > 1: XCO2fluid = 1 if XCO2fluid < 0: XCO2fluid = 0 return XCO2fluid #1 - XCO2fluid def calculate_saturation_pressure(self,temperature,sample,X_fluid=1.0,**kwargs): """ Calculates the pressure at which a an CO2-bearing fluid is saturated. Calls the scipy.root_scalar routine, which makes repeated called to the calculate_dissolved_volatiles method. Parameters ---------- sample dict Composition of sample in wt% oxides. temperature float Temperature in degrees C. X_fluid float OPTIONAL. Default is 0. Mole fraction of CO2 in the H2O-CO2 fluid. Returns ------- float Calculated saturation pressure in bars. """ _sample = sample.copy() temperatureK = temperature + 273.15 if temperatureK <= 0.0: raise InputError("Temperature must be greater than 0K.") if X_fluid < 0 or X_fluid > 1: raise InputError("X_fluid must have a value between 0 and 1.") if type(sample) != dict and type(sample) != pd.core.series.Series: raise InputError("sample must be a dict or a pandas Series.") if 'CO2' not in sample: raise InputError("sample must contain CO2.") if sample['CO2'] < 0.0: raise InputError("Dissolved CO2 concentration must be greater than 0 wt%.") try: satP = root_scalar(self.root_saturation_pressure,args=(temperature,_sample,X_fluid,kwargs), x0=10.0,x1=2000.0).root except: warnings.warn("Saturation pressure not found.",RuntimeWarning) satP = np.nan return np.real(satP) def root_saturation_pressure(self,pressure,temperature,sample,X_fluid,kwargs): """ Function called by scipy.root_scalar when finding the saturation pressure using calculate_saturation_pressure. Parameters ---------- pressure float Pressure guess in bars temperature float The temperature of the system in C. sample pandas Series or dict Major elements in wt% (normalized to 100%), including H2O. kwargs dictionary Additional keyword arguments supplied to calculate_saturation_pressure. Might be required for the fugacity or activity models. Returns ------- float The differece between the dissolved H2O at the pressure guessed, and the H2O concentration passed in the sample variable. """ return self.calculate_dissolved_volatiles(pressure=pressure,temperature=temperature,sample=sample,X_fluid=X_fluid,**kwargs) - sample['CO2'] class AllisonCarbon(Model): """ Implementation of the Allison et al. (2019) CO2 solubility model. Which type of fit, and which composition must be selected when the Model is initialized. The fit may be either thermodynamic or power-law. The composition may be chosen from sunset, sfvf, erebus, vesuvius, etna, or stromboli. Default is the power-law fit to sunset. """ def __init__(self): """ Initialize the model. """ self.set_volatile_species(['CO2']) self.set_fugacity_model(fugacity_HB_co2()) self.set_activity_model(activity_idealsolution()) self.set_calibration_ranges([CalibrationRange('pressure',[0.0,6000.0],crf_Between,'bar','Allison et al. (2019) carbon', fail_msg=crmsg_Between_fail, pass_msg=crmsg_Between_pass, description_msg=crmsg_Between_description), CalibrationRange('temperature',1200,crf_EqualTo,'oC','Allison et al. (2019) carbon', fail_msg=crmsg_EqualTo_fail, pass_msg=crmsg_EqualTo_pass, description_msg=crmsg_EqualTo_description)]) self.set_solubility_dependence(False) def preprocess_sample(self,sample): """ Returns sample normalized to 100wt%, keeping the concentrations of H2O and CO2 constant. Parameters ---------- sample pandas Series or dict Major element oxides in wt%. Returns ------- pandas Series Normalized major element oxides in wt%. """ return normalize_AdditionalVolatiles(sample) def calculate_dissolved_volatiles(self,pressure,temperature,sample=None,X_fluid=1.0, model_loc='sunset',model_fit='thermodynamic',**kwargs): """ Calclates the dissolved CO2 concentration using (Eqns) 2-7 or 10-11 from Allison et al. (2019). Parameters ---------- pressure float Pressure in bars. temperature float Temperature in C. sample pandas Series, dict or None Major element oxides in wt%. Required if using the thermodynamic fits, need not be provided if using the power law fits. Default is None. X_fluid float The mole fraction of CO2 in the fluid. Default is 1.0. model_fit str Either 'power' for the power-law fits, or 'thermodynamic' for the thermodynamic fits. model_loc str One of 'sunset', 'sfvf', 'erebus', 'vesuvius', 'etna', 'stromboli'. Returns ------- float Dissolved CO2 concentration in wt%. """ temperature = temperature + 273.15 #translate T from C to K if temperature <= 0.0: raise InputError("Temperature must be greater than 0K.") if pressure < 0.0: raise InputError("Pressure must be positive.") if X_fluid < 0 or X_fluid > 1: raise InputError("X_fluid must have a value between 0 and 1.") if model_fit not in ['power','thermodynamic']: raise InputError("model_fit must be one of 'power', or 'thermodynamic'.") if model_loc not in ['sunset','sfvf','erebus','vesuvius','etna','stromboli']: raise InputError("model_loc must be one of 'sunset', 'sfvf', 'erebus', 'vesuvius', 'etna', or 'stromboli'.") if pressure == 0: return 0 if model_fit == 'thermodynamic': if type(sample) != dict and type(sample) != pd.core.series.Series: raise InputError("Thermodynamic fit requires sample to be a dict or a pandas Series.") P0 = 1000 # bar params = dict({'sunset':[16.4,-14.67], 'sfvf':[15.02,-14.87], 'erebus':[15.83,-14.65], 'vesuvius':[24.42,-14.04], 'etna':[21.59,-14.28], 'stromboli':[14.93,-14.68]}) DV = params[model_loc][0] lnK0 = params[model_loc][1] lnK = lnK0 - (pressure-P0)*DV/(10*8.3141*temperature) fCO2 = self.fugacity_model.fugacity(pressure=pressure,temperature=temperature-273.15,X_fluid=X_fluid,**kwargs) Kf = np.exp(lnK)*fCO2 XCO3 = Kf/(1-Kf) # FWone = wtpercentOxides_to_formulaWeight(sample)#,exclude_volatiles=True) FWone = 36.594 wtCO2 = (44.01*XCO3)/((44.01*XCO3)+(1-XCO3)*FWone)*100 return wtCO2 if model_fit == 'power': params = dict({'stromboli':[1.05,0.883], 'etna':[2.831,0.797], 'vesuvius':[4.796,0.754], 'sfvf':[3.273,0.74], 'sunset':[4.32,0.728], 'erebus':[5.145,0.713]}) fCO2 = self.fugacity_model.fugacity(pressure=pressure,temperature=temperature-273.15,X_fluid=X_fluid,**kwargs) return params[model_loc][0]*fCO2**params[model_loc][1]/1e4 def calculate_equilibrium_fluid_comp(self,pressure,temperature,sample,**kwargs): """ Returns 1.0 if a pure CO2 fluid is saturated. Returns 0.0 if a pure CO2 fluid is undersaturated. Parameters ---------- pressure float The total pressure of the system in bars. temperature float The temperature of the system in C. sample pandas Series or dict Major element oxides in wt% (including H2O). Returns ------- float 1.0 if CO2-fluid saturated, 0.0 otherwise. """ satP = self.calculate_saturation_pressure(temperature=temperature,sample=sample,X_fluid=1.0,**kwargs) if pressure < satP: return 1.0 else: return 0.0 def calculate_saturation_pressure(self,temperature,sample,X_fluid=1.0,**kwargs): """ Calculates the pressure at which a pure CO2 fluid is saturated, for the given sample composition and CO2 concentration. Calls the scipy.root_scalar routine, which makes repeated called to the calculate_dissolved_volatiles method. Parameters ---------- temperature float The temperature of the system in C. sample pandas Series Major element oxides in wt% (including CO2). X_fluid float The mole fraction of H2O in the fluid. Default is 1.0. Returns ------- float Calculated saturation pressure in bars. """ if temperature <= 0.0: raise InputError("Temperature must be greater than 0K.") if X_fluid < 0 or X_fluid > 1: raise InputError("X_fluid must have a value between 0 and 1.") if type(sample) != dict and type(sample) != pd.core.series.Series: raise InputError("sample must be a dict or a pandas Series.") if 'CO2' not in sample: raise InputError("sample must contain CO2.") if sample['CO2'] < 0.0: raise InputError("Dissolved CO2 concentration must be greater than 0 wt%.") try: satP = root_scalar(self.root_saturation_pressure,args=(temperature,sample,X_fluid,kwargs), x0=1000.0,x1=2000.0).root except: warnings.warn("Saturation pressure not found.",RuntimeWarning) satP = np.nan return satP def root_saturation_pressure(self,pressure,temperature,sample,X_fluid,kwargs): """ Function called by scipy.root_scalar when finding the saturation pressure using calculate_saturation_pressure. Parameters ---------- pressure float Pressure guess in bars temperature float The temperature of the system in C. sample pandas Series or dict Major elements in wt% (normalized to 100%), including CO2. kwargs dictionary Additional keyword arguments supplied to calculate_saturation_pressure. Might be required for the fugacity or activity models. Returns ------- float The differece between the dissolved CO2 at the pressure guessed, and the CO2 concentration passed in the sample variable. """ return sample['CO2'] - self.calculate_dissolved_volatiles(pressure=pressure,temperature=temperature,sample=sample,X_fluid=X_fluid,**kwargs) #------------MIXED FLUID MODELS-------------------------------# class MixedFluid(Model): """ Implements the generic framework for mixed fluid solubility. Any set of pure fluid solubility models may be specified. """ def __init__(self,models): """ Initializes the mixed fluid model. Parameters ---------- models dictionary Dictionary with names of volatile species as keys, and the model objects as values. """ self.models = tuple(model for model in models.values()) self.set_volatile_species(list(models.keys())) def preprocess_sample(self,sample): """ Returns sample, unmodified. Parameters ---------- sample pandas Series or dict Major element oxides in wt%. Returns ------- pandas Series or dict Major element oxides in wt%. """ if type(sample) != dict and type(sample) != pd.core.series.Series: raise InputError("sample must be a dict or a pandas Series.") _sample = sample.copy() _sample = self.models[0].preprocess_sample(_sample) return _sample def calculate_dissolved_volatiles(self,pressure,X_fluid,returndict=False,**kwargs): """ Calculates the dissolved volatile concentrations in wt%, using each model's calculate_dissolved_volatiles method. At present the volatile concentrations are not propagated through. Parameters ---------- pressure float The total pressure in bars. X_fluid float, numpy.ndarry, dict, pandas Series The mole fraction of each species in the fluid. If the mixed fluid model contains only two species (e.g. CO2 and H2O), the value of the first species in self.volatile_species may be passed on its own as a float. returndict bool If True, the results will be returned in a dict, otherwise they will be returned as a tuple. Returns ------- tuple Dissolved volatile concentrations of each species in the model, in the order set by self.volatile_species. """ if (type(X_fluid) == float or type(X_fluid) == int) and len(self.volatile_species) == 2: X_fluid = (X_fluid,1-X_fluid) elif len(X_fluid) != len(self.volatile_species): raise InputError("X_fluid must have the same length as the number of volatile species\ in the MixedFluids Model class, or it may have length 1 if two species are present\ in the MixedFluids Model class.") if np.sum(X_fluid) != 1.0: raise InputError("X_fluid must sum to 1.0") if any(val<0 for val in X_fluid) or any(val>1 for val in X_fluid): raise InputError("Each mole fraction in X_fluid must have a value between 0 and 1.") if type(X_fluid) == dict or type(X_fluid) == pd.core.series.Series: X_fluid = tuple(X_fluid[species] for species in self.volatile_species) # If the models don't depend on the concentration of volatiles, themselves. if all(model.solubility_dependence == False for model in self.models): result = tuple(model.calculate_dissolved_volatiles(pressure=pressure,X_fluid=Xi,**kwargs) for model, Xi in zip(self.models,X_fluid)) # If one of the models depends on the other volatile concentration elif len(self.models) == 2 and self.models[0].solubility_dependence == False and 'sample' in kwargs: result0 = self.models[0].calculate_dissolved_volatiles(pressure=pressure,X_fluid=X_fluid[0],**kwargs) samplecopy = kwargs['sample'].copy() samplecopy[self.volatile_species[0]] = result0 kwargs['sample'] = samplecopy result1 = self.models[1].calculate_dissolved_volatiles(pressure=pressure,X_fluid=X_fluid[1],**kwargs) result = (result0,result1) elif len(self.models) == 2 and self.models[1].solubility_dependence == False and 'sample' in kwargs: result1 = self.models[1].calculate_dissolved_volatiles(pressure=pressure,X_fluid=X_fluid[1],**kwargs) samplecopy = kwargs['sample'].copy() samplecopy[self.volatile_species[1]] = result1 kwargs['sample'] = samplecopy result0 = self.models[0].calculate_dissolved_volatiles(pressure=pressure,X_fluid=X_fluid[0],**kwargs) result = (result0,result1) else: raise InputError("The solubility dependence of the models is not currently supported by the MixedFluid model.") if returndict == True: resultsdict = {} for i,v in zip(range(len(self.volatile_species)),self.volatile_species): resultsdict.update({v+'_liq':result[i]}) return resultsdict else: return result def calculate_equilibrium_fluid_comp(self,pressure,sample,return_dict=True,**kwargs): """ Calculates the composition of the fluid in equilibrium with the dissolved volatile concentrations passed. If a fluid phase is undersaturated at the chosen pressure (0,0) will be returned. Note, this currently assumes the given H2O and CO2 concentrations are the system total, not the total dissolved. If one of the volatile species has a zero or negative concentration, the pure fluid model for the other volatile species will be used. Parameters ---------- pressure float The total pressure in bars. sample pandas Series or dict Major element oxides in wt% (including volatiles). return_dict bool Set the return type, if true a dict will be returned, if False two floats will be returned. Default is True. Returns ------- dict or floats Mole fractions of the volatile species in the fluid, in the order given by self.volatile_species if floats. """ if len(self.volatile_species) != 2: raise InputError("Currently equilibrium fluid compositions can only be calculated when\ two volatile species are present.") dissolved_at_0bar = [self.models[0].calculate_dissolved_volatiles(sample=sample,pressure=0.0,**kwargs), self.models[1].calculate_dissolved_volatiles(sample=sample,pressure=0.0,**kwargs)] if sample[self.volatile_species[0]] <= 0.0 or sample[self.volatile_species[0]] <= dissolved_at_0bar[0]: Xv0 = 0.0 Xv1 = self.models[1].calculate_equilibrium_fluid_comp(pressure=pressure,sample=sample,**kwargs) elif sample[self.volatile_species[1]] <= 0.0 or sample[self.volatile_species[1]] <= dissolved_at_0bar[1]: Xv1 = 0.0 Xv0 = self.models[0].calculate_equilibrium_fluid_comp(pressure=pressure,sample=sample,**kwargs) else: satP = self.calculate_saturation_pressure(sample,**kwargs) if satP < pressure: if return_dict == True: return {self.volatile_species[0]:0,self.volatile_species[1]:0} else: return (0,0) molfracs = wtpercentOxides_to_molOxides(sample) (Xt0, Xt1) = (molfracs[self.volatile_species[0]],molfracs[self.volatile_species[1]]) try: Xv0 = root_scalar(self.root_for_fluid_comp,bracket=[1e-15,1-1e-15],args=(pressure,Xt0,Xt1,sample,kwargs)).root Xv1 = 1 - Xv0 except: try: Xv0 = root_scalar(self.root_for_fluid_comp,x0=0.5,x1=0.1,args=(pressure,Xt0,Xt1,sample,kwargs)).root Xv1 = 1 - Xv0 except: raise SaturationError("Equilibrium fluid not found. Likely an issue with the numerical solver.") if return_dict == True: return {self.volatile_species[0]:Xv0,self.volatile_species[1]:Xv1} else: return Xv0, Xv1 def calculate_saturation_pressure(self,sample,**kwargs): """ Calculates the pressure at which a fluid will be saturated, given the dissolved volatile concentrations. If one of the volatile species has a zero or negative concentration the pure fluid model for the other species will be used. If one of the volatile species has a concentration lower than the concentration dissolved at 0 bar, the pure fluid model for the other species will be used. Parameters ---------- sample pandas Series or dict Major element oxides in wt% (including volatiles). Returns ------- float The saturation pressure in bars. """ dissolved_at_0bar = [self.models[0].calculate_dissolved_volatiles(sample=sample,pressure=0.0,**kwargs), self.models[1].calculate_dissolved_volatiles(sample=sample,pressure=0.0,**kwargs)] if sample[self.volatile_species[0]] <= 0.0 or sample[self.volatile_species[0]] <= dissolved_at_0bar[0]: satP = self.models[1].calculate_saturation_pressure(sample=sample,**kwargs) elif sample[self.volatile_species[1]] <= 0.0 or sample[self.volatile_species[1]] <= dissolved_at_0bar[1]: satP = self.models[0].calculate_saturation_pressure(sample=sample,**kwargs) else: volatile_concs = np.array(tuple(sample[species] for species in self.volatile_species)) x0 = 0 for model in self.models: xx0 = model.calculate_saturation_pressure(sample=sample,**kwargs) if np.isnan(xx0) == False: x0 += xx0 try: satP = root(self.root_saturation_pressure,x0=[x0,0.5],args=(volatile_concs,sample,kwargs)).x[0] except: warnings.warn("Saturation pressure not found.",RuntimeWarning) satP = np.nan return satP def calculate_isobars_and_isopleths(self,pressure_list,isopleth_list=[0,1],points=51, return_dfs=True,extend_to_zero=True,**kwargs): """ Calculates isobars and isopleths. Isobars can be calculated for any number of pressures. Variables required by each of the pure fluid models must be passed, e.g. sample, temperature, etc. Parameters ---------- pressure_list list List of all pressure values at which to calculate isobars, in bars. isopleth_list list Default value is None, in which case only isobars will be calculated. List of all fluid compositions in mole fraction (of the first species in self.volatile_species) at which to calcualte isopleths. Values can range from 0 to 1. points int The number of points in each isobar and isopleth. Default value is 101. return_dfs bool If True, the results will be returned as two pandas DataFrames, as produced by the MagmaSat method. If False the results will be returned as lists of numpy arrays. Returns ------- pandas DataFrame object(s) or list(s) If isopleth_list is not None, two objects will be returned, one with the isobars and the second with the isopleths. If return_dfs is True, two pandas DataFrames will be returned with column names 'Pressure' or 'XH2O_fl', 'H2O_liq', and 'CO2_liq'. If return_dfs is False, two lists of numpy arrays will be returned. Each array is an individual isobar or isopleth, in the order passed via pressure_list or isopleth_list. The arrays are the concentrations of H2O and CO2 in the liquid, in the order of the species in self.volatile_species. """ if len(self.volatile_species) != 2 or 'H2O' not in self.volatile_species or 'CO2' not in self.volatile_species: raise InputError("calculate_isobars_and_isopleths may only be used with a H2O-CO2 fluid.") H2O_id = self.volatile_species.index('H2O') CO2_id = self.volatile_species.index('CO2') has_isopleths = True if isopleth_list is None: has_isopleths = False isobars_df =
pd.DataFrame(columns=['Pressure','H2O_liq','CO2_liq'])
pandas.DataFrame
import nose import os import string from distutils.version import LooseVersion from datetime import datetime, date, timedelta from pandas import Series, DataFrame, MultiIndex, PeriodIndex, date_range from pandas.compat import range, lrange, StringIO, lmap, lzip, u, zip import pandas.util.testing as tm from pandas.util.testing import ensure_clean from pandas.core.config import set_option import numpy as np from numpy import random from numpy.random import randn from numpy.testing import assert_array_equal from numpy.testing.decorators import slow import pandas.tools.plotting as plotting def _skip_if_no_scipy(): try: import scipy except ImportError: raise nose.SkipTest("no scipy") @tm.mplskip class TestSeriesPlots(tm.TestCase): def setUp(self): import matplotlib as mpl self.mpl_le_1_2_1 = str(mpl.__version__) <= LooseVersion('1.2.1') self.ts = tm.makeTimeSeries() self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series' self.iseries = tm.makePeriodSeries() self.iseries.name = 'iseries' def tearDown(self): tm.close() @slow def test_plot(self): _check_plot_works(self.ts.plot, label='foo') _check_plot_works(self.ts.plot, use_index=False) _check_plot_works(self.ts.plot, rot=0) _check_plot_works(self.ts.plot, style='.', logy=True) _check_plot_works(self.ts.plot, style='.', logx=True) _check_plot_works(self.ts.plot, style='.', loglog=True) _check_plot_works(self.ts[:10].plot, kind='bar') _check_plot_works(self.iseries.plot) _check_plot_works(self.series[:5].plot, kind='bar') _check_plot_works(self.series[:5].plot, kind='line') _check_plot_works(self.series[:5].plot, kind='barh') _check_plot_works(self.series[:10].plot, kind='barh') _check_plot_works(Series(randn(10)).plot, kind='bar', color='black') @slow def test_plot_figsize_and_title(self): # figsize and title import matplotlib.pyplot as plt ax = self.series.plot(title='Test', figsize=(16, 8)) self.assertEqual(ax.title.get_text(), 'Test') assert_array_equal(np.round(ax.figure.get_size_inches()), np.array((16., 8.))) @slow def test_bar_colors(self): import matplotlib.pyplot as plt import matplotlib.colors as colors default_colors = plt.rcParams.get('axes.color_cycle') custom_colors = 'rgcby' df = DataFrame(randn(5, 5)) ax = df.plot(kind='bar') rects = ax.patches conv = colors.colorConverter for i, rect in enumerate(rects[::5]): xp = conv.to_rgba(default_colors[i % len(default_colors)]) rs = rect.get_facecolor() self.assertEqual(xp, rs) tm.close() ax = df.plot(kind='bar', color=custom_colors) rects = ax.patches conv = colors.colorConverter for i, rect in enumerate(rects[::5]): xp = conv.to_rgba(custom_colors[i]) rs = rect.get_facecolor() self.assertEqual(xp, rs) tm.close() from matplotlib import cm # Test str -> colormap functionality ax = df.plot(kind='bar', colormap='jet') rects = ax.patches rgba_colors = lmap(cm.jet, np.linspace(0, 1, 5)) for i, rect in enumerate(rects[::5]): xp = rgba_colors[i] rs = rect.get_facecolor() self.assertEqual(xp, rs) tm.close() # Test colormap functionality ax = df.plot(kind='bar', colormap=cm.jet) rects = ax.patches rgba_colors = lmap(cm.jet, np.linspace(0, 1, 5)) for i, rect in enumerate(rects[::5]): xp = rgba_colors[i] rs = rect.get_facecolor() self.assertEqual(xp, rs) tm.close() df.ix[:, [0]].plot(kind='bar', color='DodgerBlue') @slow def test_bar_linewidth(self): df = DataFrame(randn(5, 5)) # regular ax = df.plot(kind='bar', linewidth=2) for r in ax.patches: self.assertEqual(r.get_linewidth(), 2) # stacked ax = df.plot(kind='bar', stacked=True, linewidth=2) for r in ax.patches: self.assertEqual(r.get_linewidth(), 2) # subplots axes = df.plot(kind='bar', linewidth=2, subplots=True) for ax in axes: for r in ax.patches: self.assertEqual(r.get_linewidth(), 2) @slow def test_bar_log(self): expected = np.array([1., 10., 100., 1000.]) if not self.mpl_le_1_2_1: expected = np.hstack((.1, expected, 1e4)) ax = Series([200, 500]).plot(log=True, kind='bar') assert_array_equal(ax.yaxis.get_ticklocs(), expected) def test_rotation(self): df = DataFrame(randn(5, 5)) ax = df.plot(rot=30) for l in ax.get_xticklabels(): self.assertEqual(l.get_rotation(), 30) def test_irregular_datetime(self): rng = date_range('1/1/2000', '3/1/2000') rng = rng[[0, 1, 2, 3, 5, 9, 10, 11, 12]] ser = Series(randn(len(rng)), rng) ax = ser.plot() xp = datetime(1999, 1, 1).toordinal() ax.set_xlim('1/1/1999', '1/1/2001') self.assertEqual(xp, ax.get_xlim()[0]) @slow def test_hist(self): _check_plot_works(self.ts.hist) _check_plot_works(self.ts.hist, grid=False) _check_plot_works(self.ts.hist, figsize=(8, 10)) _check_plot_works(self.ts.hist, by=self.ts.index.month) import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1) _check_plot_works(self.ts.hist, ax=ax) _check_plot_works(self.ts.hist, ax=ax, figure=fig) _check_plot_works(self.ts.hist, figure=fig) tm.close() fig, (ax1, ax2) = plt.subplots(1, 2) _check_plot_works(self.ts.hist, figure=fig, ax=ax1) _check_plot_works(self.ts.hist, figure=fig, ax=ax2) with tm.assertRaises(ValueError): self.ts.hist(by=self.ts.index, figure=fig) @slow def test_hist_layout(self): n = 10 gender = tm.choice(['Male', 'Female'], size=n) df = DataFrame({'gender': gender, 'height': random.normal(66, 4, size=n), 'weight': random.normal(161, 32, size=n)}) with tm.assertRaises(ValueError): df.height.hist(layout=(1, 1)) with tm.assertRaises(ValueError): df.height.hist(layout=[1, 1]) @slow def test_hist_layout_with_by(self): import matplotlib.pyplot as plt n = 10 gender = tm.choice(['Male', 'Female'], size=n) df = DataFrame({'gender': gender, 'height': random.normal(66, 4, size=n), 'weight': random.normal(161, 32, size=n), 'category': random.randint(4, size=n)}) _check_plot_works(df.height.hist, by=df.gender, layout=(2, 1)) tm.close() _check_plot_works(df.height.hist, by=df.gender, layout=(1, 2)) tm.close() _check_plot_works(df.weight.hist, by=df.category, layout=(1, 4))
tm.close()
pandas.util.testing.close
""" Original data:公司股市代號對照表.csv Conditions: 1.單月營收歷月排名 1高 from 月營收創新高.xlsx 2.負債比 < 40% 季度 https://goodinfo.tw/StockInfo/StockList.asp?RPT_TIME=&MARKET_CAT=%E7%86%B1%E9%96%80%E6%8E%92%E8%A1%8C&INDUSTRY_CAT=%E8%B2%A0%E5%82%B5%E7%B8%BD%E9%A1%8D%E4%BD%94%E7%B8%BD%E8%B3%87%E7%94%A2%E6%AF%94%E6%9C%80%E9%AB%98%40%40%E8%B2%A0%E5%82%B5%E7%B8%BD%E9%A1%8D%40%40%E8%B2%A0%E5%82%B5%E7%B8%BD%E9%A1%8D%E4%BD%94%E7%B8%BD%E8%B3%87%E7%94%A2%E6%AF%94%E6%9C%80%E9%AB%98 3.全體董監持股 + 本國法人持股 > 30% 全體董監 https://goodinfo.tw/StockInfo/StockList.asp?RPT_TIME=&MARKET_CAT=%E7%86%B1%E9%96%80%E6%8E%92%E8%A1%8C&INDUSTRY_CAT=%E5%85%A8%E9%AB%94%E8%91%A3%E7%9B%A3%E6%8C%81%E8%82%A1%E6%AF%94%E4%BE%8B%28%25%29%40%40%E5%85%A8%E9%AB%94%E8%91%A3%E7%9B%A3%40%40%E6%8C%81%E8%82%A1%E6%AF%94%E4%BE%8B%28%25%29 本國法人 https://goodinfo.tw/StockInfo/StockList.asp?RPT_TIME=&MARKET_CAT=%E7%86%B1%E9%96%80%E6%8E%92%E8%A1%8C&INDUSTRY_CAT=%E6%9C%AC%E5%9C%8B%E6%B3%95%E4%BA%BA%E6%8C%81%E8%82%A1%E6%AF%94%E4%BE%8B%28%25%29%40%40%E6%9C%AC%E5%9C%8B%E6%B3%95%E4%BA%BA%40%40%E6%8C%81%E8%82%A1%E6%AF%94%E4%BE%8B%28%25%29 4.全體董監質押比 < 10% https://goodinfo.tw/StockInfo/StockList.asp?RPT_TIME=&MARKET_CAT=%E7%86%B1%E9%96%80%E6%8E%92%E8%A1%8C&INDUSTRY_CAT=%E5%85%A8%E9%AB%94%E8%91%A3%E7%9B%A3%E8%B3%AA%E6%8A%BC%E6%AF%94%E4%BE%8B%28%25%29%40%40%E5%85%A8%E9%AB%94%E8%91%A3%E7%9B%A3%40%40%E8%B3%AA%E6%8A%BC%E6%AF%94%E4%BE%8B%28%25%29 和全體董監持股是相同的資料,僅排序不同 5.毛利率, 營益率, 稅後淨利率上升(三率三升) 毛利率歷季排名 1 (第一名) 營益率歷季排名 1 淨利率歷季排名 1 6.殖利率 > 1% 現金殖利率 https://goodinfo.tw/StockInfo/StockList.asp?RPT_TIME=&MARKET_CAT=%E7%86%B1%E9%96%80%E6%8E%92%E8%A1%8C&INDUSTRY_CAT=%E7%8F%BE%E9%87%91%E6%AE%96%E5%88%A9%E7%8E%87+%28%E6%9C%80%E6%96%B0%E5%B9%B4%E5%BA%A6%29%40%40%E7%8F%BE%E9%87%91%E6%AE%96%E5%88%A9%E7%8E%87%40%40%E6%9C%80%E6%96%B0%E5%B9%B4%E5%BA%A6 7.多項排列(均線) 均線 向上 8.現金流量比率 > 0 or 營業現金流量 > 0(skip) https://goodinfo.tw/StockInfo/StockList.asp?RPT_TIME=&MARKET_CAT=%E6%99%BA%E6%85%A7%E9%81%B8%E8%82%A1&INDUSTRY_CAT=%E6%9C%88K%E7%B7%9A%E7%AA%81%E7%A0%B4%E5%AD%A3%E7%B7%9A%40%40%E6%9C%88K%E7%B7%9A%E5%90%91%E4%B8%8A%E7%AA%81%E7%A0%B4%E5%9D%87%E5%83%B9%E7%B7%9A%40%40%E5%AD%A3%E7%B7%9A 9.股票尚未經歷大漲大跌(skip) """ import sys import pdb import time import pandas as pd import random from datetime import datetime import global_vars from stock_web_crawler import stock_crawler, delete_header, excel_formatting from stock_info import stock_ID_name_mapping # global variables DEBT_RATIO = 40 # 負債比 STAKEHOLDING = 30 # 持股 PLEDGE_RATIO = 10 # 質押比 GROSS_MARGIN = 20 # 毛利率 OPERATING_MARGIN = 20 # 營益率 NET_PROFIT_MARGIN = 20 # 稅後淨利率 DIVIDEND_YIELD = 1 # 現金殖利率 def main(): file_path = global_vars.DIR_PATH + "公司股市代號對照表.csv" stock_ID = list() stock_name = list() with open(file_path, 'r', encoding="UTF-8") as file_r: file_r.readline() # skip the first row for line in file_r: line = line.split(",") stock_ID.append(line[0]) stock_name.append(line[1]) df_combine = pd.DataFrame(list(zip(stock_ID, stock_name)), columns=["代號", "名稱"]) file_path = global_vars.DIR_PATH + "月營收創新高.xlsx" try: last_month = datetime.now().month-1 if last_month <= 0: last_month = 12 df = pd.read_excel(file_path, sheet_name=f"{last_month}月") except ValueError as ve: print("ValueError:", ve) sys.stderr.write("Please excute stock_web_crawler.py first.\n") sys.exit(0) df["代號"] = df["代號"].astype(str) df = df[["代號", "單月營收歷月排名"]] df_combine = pd.merge(df_combine, df, on=["代號"], how="left") file_path = global_vars.DIR_PATH + "stock_crawler.xlsx" dfs =
pd.read_excel(file_path, sheet_name=None)
pandas.read_excel
import os import math import copy import random import calendar import csv import pandas as pd import numpy as np import networkx as nx import matplotlib import matplotlib.pyplot as plt import matplotlib.dates as mdates import matplotlib.ticker as ticker import sqlite3 import seaborn as sns #from atnresilience import atn_analysis as atn import atn_analysis import db_tools # Set global styles for plots plt.rcParams["font.family"] = "Times New Roman" sns.set_palette("colorblind") matplotlib.rc('xtick', labelsize=8) matplotlib.rc('ytick', labelsize=8) line_type = {1:'-',2:'--',3:':',4:'-.'} def remove_frequency(db_path, file, airline, include_data, can_limit, zs_limit, processed_direc): """ Creates a dictionary of airports and their removal frequency for a given airline Parameters ---------- file: int Year of selected data airline: string Airline to get data from include_data: string Type of airline data to query from csv can_limit: int Cancellation limit zs_limit: int The z-score limit Returns ------- Returns a dictionary containing airport removal frequency values Notes ----- """ df_net_tuple = pd.DataFrame() df_net = atn_analysis.raw_query(db_path, file, airline) df_net_tuple["Origin"] = df_net.Origin_Airport_Code df_net_tuple["Destination"] = df_net.Destination_Airport_Code graph = [tuple(x) for x in df_net_tuple.to_records(index=False)] G = nx.Graph() G.add_edges_from(graph) tempG = G.copy() Airport_Dict = {} for i in G.nodes(): Airport_Dict[i] = 0 Total_List = get_remove_list(db_path, file,include_data, airline, can_limit, zs_limit, processed_direc) if int(file)%4 == 0: total_day = 366 else: total_day = 365 for j in range(total_day): airport_list = Total_List[j] for l in airport_list: tempG.remove_node(l) Airport_Dict[l] = Airport_Dict[l] + 1 tempG = G.copy() return(Airport_Dict) def weighted_edge(db_path, file, airline): """ Creates a data frame of origin airports, destination airports and weights for each route Parameters ---------- file: int Year of selected data airline: string Airline to get data from include_data: string Type of airline data to query from csv can_limit: int Cancellation limit zs_limit: int The z-score limit Returns ------- Returns a data frame containing each respective weighted route from an origin airport to a destination Notes ----- """ df = atn_analysis.raw_query(db_path, file, airline) by_origin = df.groupby([df.Origin_Airport_Code]).Can_Status.count() airport_list = by_origin.index.tolist() df = df[df['Destination_Airport_Code'].isin(airport_list)] df_tuple = pd.DataFrame() df_weighted = df.groupby([df.Origin_Airport_Code, df.Destination_Airport_Code]).Can_Status.count().reset_index() df_tuple["Origin"] = df_weighted.Origin_Airport_Code df_tuple["Destination"] = df_weighted.Destination_Airport_Code file_str = int(str(file)[:4]) if calendar.isleap(file_str) == 1: days = 366 else: days = 365 df_tuple["Weight"] = df_weighted.Can_Status weight_values = [math.log(y, 10) for y in df_tuple.Weight.values] for i in range(0, len(weight_values)): df_tuple.Weight.values[i] = weight_values[i] return(df_tuple) def get_remove_list(db_path, file, include_data, airline, can_limit, zs_limit, processed_direc): """ Return a remove_list in a year (airline specific, include_data specific) based on cancelation limit and z_score limit. Parameters ---------- file: int Year of selected data include_data: string Specify what kind of data to include in processed flight data. See drop_flights in M-D File. Possible parameters are: CC: Cancellations only ADD: Arrival delays including diversions ADM: Purely arrival delays excluding cancellations or diversions DCC: Combined delay. If arrival delay is greater than a set threshold, the flight is considered cancelled DD: Departure delays. Does not include cancelled or diverted flights. airline: string Airline to get data from. This is the 2 letter airline code (ex: AA, UA, DL, WN) can_limit: float Cancellation Limit. Between 0 and 1 zs_limit: float z-score limit. Between 0 and 1 Returns ------- Pandas df Notes ----- """ z_score_path = '%s%s_%s_Zdata_%s.csv'%(processed_direc, file,airline,include_data) #df_score = pd.read_csv(raw_file_drop, index_col="Date") df_score = pd.read_csv(z_score_path, index_col = "Day_of_Year") df_score.index = pd.to_datetime(df_score.index) airport_list = df_score.columns.tolist() df = atn_analysis.raw_query(db_path,file,airline) df = df[df['Origin_Airport_Code'].isin(airport_list)] # Filtering to make sure airports are equal in both directions df = df[df['Destination_Airport_Code'].isin(airport_list)] by_origin_count = df.groupby(['Flight_Date', 'Origin_Airport_Code'], as_index=False)[['Can_Status']].count() by_origin = df.groupby(['Flight_Date', 'Origin_Airport_Code'], as_index=False)[['Can_Status']].sum() by_origin.Can_Status = by_origin.Can_Status / by_origin_count.Can_Status #print(by_origin) df_score["idx"] = df_score.index df_score = pd.melt(df_score, id_vars='idx', value_vars=airport_list) df_score = df_score.sort_values(['idx', 'variable'], ascending=[True, True]) df_score.columns = ["Date", "Airports", "Z_Score"] df_score.set_index('Date') df_score["Cancellations"] = by_origin.Can_Status ### Creating the or conditions. First is the percentage of delayed flights and the second is the z-score df_score["Z_score_9901"] = np.where((df_score['Cancellations'] > can_limit) | (df_score['Z_Score'] > zs_limit), 1, 0) #print(df_score) ### Creating pivot table for easy manipulation. This creates the date as the index with the properties corresponding to ### it and finally repeats this trend for all airports being considered. df_pivot = df_score.pivot_table('Z_score_9901', ['Date'], 'Airports') #print(df_pivot) s = np.asarray(np.where(df_pivot == 1, ['{}'.format(x) for x in df_pivot.columns], '')).tolist() s_nested = [] for k in s: p = list(filter(None,k)) #p = filter(None,k) s_nested.append(p) #s_nested.extend(p) return s_nested def inv_average_shortest_path_length(graph, weight=None): """ Creates an unweight inverse average path length graph Parameters ---------- graph: python graph object weight: default Returns ------- Returns the IAPL unweighted graph Notes ----- """ avg = 0.0 if weight is None: for node in graph: avg_path_length = nx.single_source_shortest_path_length(graph, node) # get the shortest path lengths from source to all reachable nodes (unweighted) del avg_path_length[node] # Deletes source node from the list to avoid division by 0 inv_avg_path_length = copy.deepcopy(avg_path_length) inv_avg_path_length.update((x, 1/y) for x, y in avg_path_length.items()) avg += sum(inv_avg_path_length.values()) n = len(graph) if n == 1 or n == 0: return 0 else: return avg/(n*(n-1)) def inv_average_shortest_path_length_W(graph, weight=None): """ Creates the table atn_performance in the database at the specified input location if one does not exist. Parameters ---------- graph: python graph object weight: default Returns ------- Returns the inverse average path length weighted graph Notes ----- """ avg = 0.0 if weight is None: for node in graph: avg_path_length = nx.single_source_dijkstra_path_length(graph, node) # get the shortest path lengths from source to all reachable nodes (weighted) del avg_path_length[node] # Deletes source node from the list to avoid division by 0 inv_avg_path_length = copy.deepcopy(avg_path_length) inv_avg_path_length.update((x, 1/y) for x, y in avg_path_length.items()) avg += sum(inv_avg_path_length.values()) n = len(graph) if n == 1 or n == 0: return 0 else: return avg/(n*(n-1)) def Data_Driven_W(file_list, airline_list, include_data, can_limit, zs_limit, processed_direc, graph_direc): """ Calculate the cluster size and IAPL for each day in a year after removal based on data-driven method. Parameters ---------- file_list: list List contaning years to process airline_list: list List contaning airlines to process include_data: string Specify what kind of data to include in processed flight data. See drop_flights in M-D File. Possible parameters are: CC: Cancellations only ADD: Arrival delays including diversions ADM: Purely arrival delays excluding cancellations or diversions DCC: Combined delay. If arrival delay is greater than a set threshold, the flight is considered cancelled DD: Departure delays. Does not include cancelled or diverted flights. can_limit: float Cancellation threshold zs_limit: float z-score threshold Returns ------- The cluster size and IAPL for each day of the year after removal based on data-driven method. Notes ----- """ for file in file_list: ## iteration of years first figure_num = 1 CSV_df = pd.DataFrame(columns = airline_list) for airline in airline_list: # CSV_df[airline] = [1,2,3,4] # CSV_file = "%s_DD_IAPL.csv" %(file) # CSV_df.to_csv(CSV_file, index=False) ## Get the directory path script_dir = os.path.dirname(os.getcwd()) db_local_path = "data/processed/atn_db.sqlite" ## df set up from Keshav (NO CHANGE) (Weighted Graph) df = pd.DataFrame() db_path = os.path.join(script_dir, db_local_path) fields = ["Origin_Airport_Code", "Destination_Airport_Code", "Can_Status"] df_net = atn_analysis.raw_query(db_path,file,airline) df["Origin_Airport_Code"] = df_net.Origin_Airport_Code df["Destination_Airport_Code"] = df_net.Destination_Airport_Code df["Can_Status"] = df_net.Can_Status by_origin = df.groupby([df.Origin_Airport_Code]).Can_Status.count() airport_list = by_origin.index.tolist() df = df[df['Destination_Airport_Code'].isin(airport_list)] #print(df) df_tuple = pd.DataFrame() df_weighted = df.groupby([df.Origin_Airport_Code, df.Destination_Airport_Code]).Can_Status.count().reset_index() df_tuple["Origin"] = df_weighted.Origin_Airport_Code df_tuple["Destination"] = df_weighted.Destination_Airport_Code if int(file)%4 == 0: days = 366 else: days = 365 df_tuple["Weight"] = df_weighted.Can_Status/days df_tuple.Weight = 1/df_tuple.Weight ## Output lists initialization: #day_IAPL = 0 day_CS = 0 #output_IAPL = [] output_CS = [] NoD = [] ## Graph object initialization graph = [tuple(x) for x in df_tuple.to_records(index=False)] G = nx.Graph() ## Set up the weighted graph G.add_weighted_edges_from(graph) #print(G.nodes()) tempG = G.copy() #use temporary graph for the loop ## Remove list for the whole year Total_Remove_List = get_remove_list(db_path,file,include_data, airline, can_limit, zs_limit,processed_direc) if int(file)%4 == 0: total_day = 366 else: total_day = 365 for j in range(total_day): ## Remove the nodes in each day and get the CS and IAPL data #day_IAPL = 0 Day_Remove_List = Total_Remove_List[j] NoD.append(j) for l in Day_Remove_List: tempG.remove_node(l) #largest_component_b = max(nx.connected_components(tempG), key=len) #day_IAPL =(inv_average_shortest_path_length_W(tempG)) largest_component_b = max(nx.connected_components(tempG), key=len) day_CS = len(largest_component_b) #len(largest_component_b) = cluster size #cluster fraction = cluster size/number of nodes #output_IAPL.append(day_IAPL) output_CS.append(day_CS) #sum_IAPL = sum_IAPL + (inv_average_shortest_path_length(tempG)) tempG = G.copy() ## plotting command plt.figure(figure_num) #line = plt.plot(NoD,output_IAPL, label="{}".format(airline)) line = plt.plot(NoD,output_CS, label="{}".format(airline)) plt.legend() #CSV_df[airline] = output_IAPL CSV_df[airline] = output_CS #CSV_file = "%s_DD_IAPL.csv" %(file) CSV_file = "%s%s_DD_CS.csv" %(graph_direc,file) CSV_df.to_csv(CSV_file, index=False) #plt.title("{} Data Driven IAPL".format(str(file))) plt.xlabel("Day") #plt.ylabel("IAPL") plt.ylabel("Cluster Size") #plt.savefig("{}_Data_Driven_IAPL.png".format(str(file))) plt.savefig("%s%s_Data_Driven_CS.png"%(graph_direc,file)) plt.show() figure_num = figure_num + 1 def Pure_Graph_W_Shu(file_list, airline_list, include_data, processed_direc, rep_num): """ Calculate the linear algebraic connectivity, cluster size and IAPL for each day in a year after random removal based on Pure Graph method. Random Removal set up by shuffle function Parameters ---------- file_list: list List contaning years to process airline_list: list List contaning airlines to process include_data: string Specify what kind of data to include in processed flight data. See drop_flights in M-D File. Possible parameters are: CC: Cancellations only ADD: Arrival delays including diversions ADM: Purely arrival delays excluding cancellations or diversions DCC: Combined delay. If arrival delay is greater than a set threshold, the flight is considered cancelled DD: Departure delays. Does not include cancelled or diverted flights. rep_num: int Number of repititions Returns ------- csv with the cluster size and IAPL for each day of the year after removal based on data-driven method. Notes ----- """ for airline in airline_list: rep_ite = 1 Total_AC = [] Total_Cluster_Size = [] Total_IAPL = [] for i in range(len(file_list)): ## initialize the output lists Total_AC.append(0) Total_Cluster_Size.append(0) Total_IAPL.append(0) ## Save the data in csv filename1 = "%s%s_ACR.csv" %(processed_direc,airline) with open(filename1, 'w') as myfile1: wr1 = csv.writer(myfile1, quoting=csv.QUOTE_ALL) wr1.writerow(file_list) filename2 = "%s%s_IAPLR.csv" %(processed_direc,airline) with open(filename2, 'w') as myfile2: wr2 = csv.writer(myfile2, quoting=csv.QUOTE_ALL) wr2.writerow(file_list) filename3 = "%s%s_CSR.csv" %(processed_direc,airline) with open(filename3, 'w') as myfile3: wr3 = csv.writer(myfile3, quoting=csv.QUOTE_ALL) wr3.writerow(file_list) while rep_ite < rep_num+1: ## start the reptition year_IAPL = [] year_Cluster_Size = [] year_AC = [] for file in file_list: ## Get the directory path script_dir = os.path.dirname(os.getcwd()) db_local_path = "data/processed/atn_db.sqlite" ## df set up from Keshav (NO CHANGE) df = pd.DataFrame() db_path = os.path.join(script_dir, db_local_path) fields = ["Origin_Airport_Code", "Destination_Airport_Code", "Can_Status"] #df_net = pd.read_csv(comb_file, usecols=fields) df_net = atn_analysis.raw_query(db_path,file,airline) df["Origin_Airport_Code"] = df_net.Origin_Airport_Code df["Destination_Airport_Code"] = df_net.Destination_Airport_Code df["Can_Status"] = df_net.Can_Status by_origin = df.groupby([df.Origin_Airport_Code]).Can_Status.count() airport_list = by_origin.index.tolist() df = df[df['Destination_Airport_Code'].isin(airport_list)] #print(df) df_tuple = pd.DataFrame() df_weighted = df.groupby([df.Origin_Airport_Code, df.Destination_Airport_Code]).Can_Status.count().reset_index() df_tuple["Origin"] = df_weighted.Origin_Airport_Code df_tuple["Destination"] = df_weighted.Destination_Airport_Code if int(file)%4 == 0: days = 366 else: days = 365 df_tuple["Weight"] = df_weighted.Can_Status/days df_tuple.Weight = 1/df_tuple.Weight ## Output lists initialization: ## Graph object initialization graph = [tuple(x) for x in df_tuple.to_records(index=False)] G = nx.Graph() G.add_weighted_edges_from(graph) NodeNum = G.number_of_nodes() #print('Weighted Alebraic Connectivity: ', nx.algebraic_connectivity(G)) year_AC.append(nx.algebraic_connectivity(G)) sum_IAPL = 0 sum_Cluster_Size = 0 IAPL_list = [] Cluster_Size_list = [] Remove_List = [] for node in G.nodes(): ## Get the list of the airports Remove_List.append(node) ## Shuffle the lists random.shuffle(Remove_List) for l in Remove_List: G.remove_node(l) if len(G.nodes()) != 0: ## Add up the data after removing each node largest_component_b = max(nx.connected_components(G), key=len) IAPL_list.append(inv_average_shortest_path_length_W(G)) Cluster_Size_list.append(len(largest_component_b)/NodeNum) sum_IAPL = sum_IAPL + (inv_average_shortest_path_length_W(G)) sum_Cluster_Size = sum_Cluster_Size + len(largest_component_b)/NodeNum ## Save the data of the year year_IAPL.append(sum_IAPL) year_Cluster_Size.append(sum_Cluster_Size) with open(filename1, 'a') as myfile1: wr1 = csv.writer(myfile1, quoting=csv.QUOTE_ALL) wr1.writerow(year_AC) with open(filename2, 'a') as myfile2: wr2 = csv.writer(myfile2, quoting=csv.QUOTE_ALL) wr2.writerow(year_IAPL) with open(filename3, 'a') as myfile3: wr3 = csv.writer(myfile3, quoting=csv.QUOTE_ALL) wr3.writerow(year_Cluster_Size) # print('Unweighted Summation of IAPL: ', sum_IAPL) # print('Unweighted Summation of Cluster Size: ', sum_Cluster_Size) # print('Unweighted IAPL list', IAPL_list) for i in range(len(file_list)): ## Get the sum for the average Total_AC[i] = Total_AC[i] + year_AC[i] Total_IAPL[i] = Total_AC[i] + year_IAPL[i] Total_Cluster_Size[i] = Total_Cluster_Size[i] + year_Cluster_Size[i] rep_ite = rep_ite + 1 for i in range(len(file_list)): ## Get the average Total_AC[i] = Total_AC[i]/rep_num Total_IAPL[i] = Total_IAPL[i]/rep_num Total_Cluster_Size[i] = Total_Cluster_Size[i]/rep_num ## Plotting Command: plt.figure(num=1,figsize=(2.8,2.0),dpi=300) # line1 = plt.plot(file_list,Total_IAPL, label="{}".format(airline)) plt.plot(file_list,Total_IAPL, label="{}".format(airline)) plt.legend() plt.figure(num=2,figsize=(2.8,2.0),dpi=300) # line2 = plt.plot(file_list,Total_Cluster_Size, label="{}".format(airline)) plt.plot(file_list,Total_Cluster_Size, label="{}".format(airline)) plt.legend() plt.figure(num=3,figsize=(2.8,2.0),dpi=300) # line3 = plt.plot(file_list,Total_AC, label="{}".format(airline)) plt.plot(file_list,Total_AC, label="{}".format(airline)) plt.legend() plt.figure(1) plt.title("IAPL (Random)") plt.xlabel("Year") plt.ylabel("IAPL") plt.savefig("Pure_Graph_IAPLR.png") plt.figure(2) plt.title("Cluster Size (Random)") plt.xlabel("Year") plt.ylabel("Cluster Size") plt.savefig("Pure_Graph_CSR.png") plt.figure(3) plt.title("Algebraic Connectivity (Random)") plt.xlabel("Year") plt.ylabel("Algebraic Connectivity") plt.savefig("Pure_Graph_ACR.png") plt.show() def Pure_Graph_W_Tar(file_list,airline_list,processed_direc,graph_direc): """ Calculate the linear algebraic connectivity, cluster size and IAPL for each day in a year after targeted removal based on Pure Graph method. Targeted removal set up by the degree of the nodes. (Remove the node with higher node first, degree calculated when the weight is set as flight frequency) Parameters ---------- file_list: list List contaning years to process airline_list: list List contaning airlines to process Returns ------- Graph with the removels. Notes ----- """ line_type_iter = 0 for airline in airline_list: line_type_iter += 1 year_IAPL = [] year_Cluster_Size = [] year_AC = [] for file in file_list: ## Get the directory path script_dir = os.path.dirname(os.getcwd()) #comb_path = "data/processed/%s_%s_combined.csv" % (file,airline) db_local_path = "data/processed/atn_db.sqlite" ## df set up from Keshav (NO CHANGE) df =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- import os import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow as tf from data import read_marcap, load_datas_scaled from model import build_model_rnn data_dir = './data' if not os.path.exists(data_dir): data_dir = '../data' print(os.listdir(data_dir)) marcap_dir = os.path.join(data_dir, 'marcap') marcap_data = os.path.join(marcap_dir, 'data') os.listdir(marcap_data) train_start = pd.to_datetime('2000-01-01') train_end = pd.to_datetime('2020-06-30') test_start = pd.to_datetime('2020-08-01') test_end = pd.to_datetime('2020-10-31') train_start, test_end # 삼성전기 code '009150' df_sem = read_marcap(train_start, test_end, ['009150'], marcap_data) df_sem.drop(df_sem[df_sem['Marcap'] == 0].index, inplace=True) df_sem.drop(df_sem[df_sem['Amount'] == 0].index, inplace=True) df_sem['LogMarcap'] = np.log(df_sem['Marcap']) df_sem['LogAmount'] = np.log(df_sem['Amount']) df_sem n_seq = 10 x_cols = ['LogMarcap', 'LogAmount', 'Open', 'High', 'Low', 'Close'] y_col = 'LogMarcap' train_inputs, train_labels, test_inputs, test_labels, scaler_dic = load_datas_scaled(df_sem, x_cols, y_col, train_start, train_end, test_start, test_end, n_seq) train_inputs.shape, train_labels.shape, test_inputs.shape, test_labels.shape model = build_model_rnn(n_seq, len(x_cols)) model.summary() model.compile(loss=tf.losses.MeanSquaredError(), optimizer=tf.optimizers.Adam()) # early stopping early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=10) # save weights save_weights = tf.keras.callbacks.ModelCheckpoint(os.path.join('1corp_scaled_logmarcap_logamount_prices.hdf5'), monitor='val_loss', verbose=1, save_best_only=True, mode='min', save_freq='epoch', save_weights_only=True) # save weights csv_log = tf.keras.callbacks.CSVLogger(os.path.join('1corp_scaled_logmarcap_logamount_prices.csv'), separator=',', append=False) # train history = model.fit(train_inputs, train_labels, epochs=100, batch_size=32, validation_data=(test_inputs, test_labels), callbacks=[early_stopping, save_weights, csv_log]) model = build_model_rnn(n_seq, len(x_cols)) model.summary() model.load_weights(save_weights.filepath) # # train eval # n_batch = 32 train_preds = [] for i in range(0, len(train_inputs), n_batch): batch_inputs = train_inputs[i:i + n_batch] y_pred = model.predict(batch_inputs) y_pred = y_pred.squeeze(axis=-1) train_preds.extend(y_pred) train_preds = np.array(train_preds) assert len(train_labels) == len(train_preds) train_labels.shape, train_preds.shape scaler = scaler_dic[y_col] train_labels_scaled = [scaler.inv_scale_value(v) for v in train_labels] train_preds_scaled = [scaler.inv_scale_value(v) for v in train_preds] train_labels_log = np.array(train_labels_scaled) train_preds_log = np.array(train_preds_scaled) plt.figure(figsize=(16, 4)) plt.plot(train_labels_log, 'b-', label='y_true') plt.plot(train_preds_log, 'r--', label='y_pred') plt.legend() plt.show() plt.figure(figsize=(16, 4)) plt.plot(train_labels_log - train_preds_log, 'g-', label='y_diff') plt.legend() plt.show() # https://bkshin.tistory.com/entry/%EB%A8%B8%EC%8B%A0%EB%9F%AC%EB%8B%9D-17-%ED%9A%8C%EA%B7%80-%ED%8F%89%EA%B0%80-%EC%A7%80%ED%91%9C # https://m.blog.naver.com/PostView.nhn?blogId=limitsinx&logNo=221578145366&proxyReferer=https:%2F%2Fwww.google.com%2F rmse = tf.sqrt(tf.keras.losses.MSE(train_labels_log, train_preds_log)) mae = tf.keras.losses.MAE(train_labels_log, train_preds_log) mape = tf.keras.losses.MAPE(train_labels_log, train_preds_log) print(
pd.DataFrame([rmse, mae, mape], index=['RMSE', 'MAE', 'MAPE'])
pandas.DataFrame
import numpy as np import pandas as pd import os from preprocessor import Preprocessor import keras_tuner as kt import tensorflow as tf from trainer import build_model def get_x_train() -> pd.DataFrame: return pd.read_csv("data/X_train.csv") def get_y_train() -> pd.DataFrame: return pd.read_csv("data/y_train.csv") def get_x_test() -> pd.DataFrame: return
pd.read_csv("data/X_test.csv")
pandas.read_csv
"""Tests for dynamic validator.""" from datetime import date, datetime import numpy as np import pandas as pd from delphi_validator.report import ValidationReport from delphi_validator.dynamic import DynamicValidator class TestCheckRapidChange: params = {"data_source": "", "span_length": 1, "end_date": "2020-09-02", "expected_lag": {}} def test_same_df(self): validator = DynamicValidator(self.params) report = ValidationReport([]) test_df = pd.DataFrame([date.today()] * 5, columns=["time_value"]) ref_df = pd.DataFrame([date.today()] * 5, columns=["time_value"]) validator.check_rapid_change_num_rows( test_df, ref_df, date.today(), "geo", "signal", report) assert len(report.raised_errors) == 0 def test_0_vs_many(self): validator = DynamicValidator(self.params) report = ValidationReport([]) time_value = datetime.combine(date.today(), datetime.min.time()) test_df = pd.DataFrame([time_value] * 5, columns=["time_value"]) ref_df = pd.DataFrame([time_value] * 1, columns=["time_value"]) validator.check_rapid_change_num_rows( test_df, ref_df, time_value, "geo", "signal", report) assert len(report.raised_errors) == 1 assert "check_rapid_change_num_rows" in [ err.check_data_id[0] for err in report.raised_errors] class TestCheckAvgValDiffs: params = {"data_source": "", "span_length": 1, "end_date": "2020-09-02", "expected_lag": {}} def test_same_val(self): validator = DynamicValidator(self.params) report = ValidationReport([]) data = {"val": [1, 1, 1, 2, 0, 1], "se": [np.nan] * 6, "sample_size": [np.nan] * 6, "geo_id": ["1"] * 6} test_df = pd.DataFrame(data) ref_df = pd.DataFrame(data) validator.check_avg_val_vs_reference( test_df, ref_df, date.today(), "geo", "signal", report) assert len(report.raised_errors) == 0 def test_same_se(self): validator = DynamicValidator(self.params) report = ValidationReport([]) data = {"val": [np.nan] * 6, "se": [1, 1, 1, 2, 0, 1], "sample_size": [np.nan] * 6, "geo_id": ["1"] * 6} test_df = pd.DataFrame(data) ref_df = pd.DataFrame(data) validator.check_avg_val_vs_reference( test_df, ref_df, date.today(), "geo", "signal", report) assert len(report.raised_errors) == 0 def test_same_n(self): validator = DynamicValidator(self.params) report = ValidationReport([]) data = {"val": [np.nan] * 6, "se": [np.nan] * 6, "sample_size": [1, 1, 1, 2, 0, 1], "geo_id": ["1"] * 6} test_df = pd.DataFrame(data) ref_df = pd.DataFrame(data) validator.check_avg_val_vs_reference( test_df, ref_df, date.today(), "geo", "signal", report) assert len(report.raised_errors) == 0 def test_same_val_se_n(self): validator = DynamicValidator(self.params) report = ValidationReport([]) data = {"val": [1, 1, 1, 2, 0, 1], "se": [1, 1, 1, 2, 0, 1], "sample_size": [1, 1, 1, 2, 0, 1], "geo_id": ["1"] * 6} test_df = pd.DataFrame(data) ref_df = pd.DataFrame(data) validator.check_avg_val_vs_reference( test_df, ref_df, date.today(), "geo", "signal", report) assert len(report.raised_errors) == 0 def test_10x_val(self): validator = DynamicValidator(self.params) report = ValidationReport([]) test_data = {"val": [1, 1, 1, 20, 0, 1], "se": [np.nan] * 6, "sample_size": [np.nan] * 6, "geo_id": ["1"] * 6} ref_data = {"val": [1, 1, 1, 2, 0, 1], "se": [np.nan] * 6, "sample_size": [np.nan] * 6, "geo_id": ["1"] * 6} test_df = pd.DataFrame(test_data) ref_df = pd.DataFrame(ref_data) validator.check_avg_val_vs_reference( test_df, ref_df, datetime.combine(date.today(), datetime.min.time()), "geo", "signal", report) assert len(report.raised_errors) == 0 def test_100x_val(self): validator = DynamicValidator(self.params) report = ValidationReport([]) test_data = {"val": [1, 1, 1, 200, 0, 1], "se": [np.nan] * 6, "sample_size": [np.nan] * 6, "geo_id": ["1"] * 6} ref_data = {"val": [1, 1, 1, 2, 0, 1], "se": [np.nan] * 6, "sample_size": [np.nan] * 6, "geo_id": ["1"] * 6} test_df = pd.DataFrame(test_data) ref_df = pd.DataFrame(ref_data) validator.check_avg_val_vs_reference( test_df, ref_df, datetime.combine(date.today(), datetime.min.time()), "geo", "signal", report) assert len(report.raised_errors) == 1 assert "check_test_vs_reference_avg_changed" in [ err.check_data_id[0] for err in report.raised_errors] def test_1000x_val(self): validator = DynamicValidator(self.params) report = ValidationReport([]) test_data = {"val": [1, 1, 1, 2000, 0, 1], "se": [np.nan] * 6, "sample_size": [np.nan] * 6, "geo_id": ["1"] * 6} ref_data = {"val": [1, 1, 1, 2, 0, 1], "se": [np.nan] * 6, "sample_size": [np.nan] * 6, "geo_id": ["1"] * 6} test_df = pd.DataFrame(test_data) ref_df = pd.DataFrame(ref_data) validator.check_avg_val_vs_reference( test_df, ref_df, datetime.combine(date.today(), datetime.min.time()), "geo", "signal", report) assert len(report.raised_errors) == 1 assert "check_test_vs_reference_avg_changed" in [ err.check_data_id[0] for err in report.raised_errors] class TestDataOutlier: params = {"data_source": "", "span_length": 1, "end_date": "2020-09-02", "expected_lag": {}} pd.set_option("display.max_rows", None, "display.max_columns", None) # Test to determine outliers based on the row data, has lead and lag outlier def test_pos_outlier(self): validator = DynamicValidator(self.params) report = ValidationReport([]) ref_val = [30, 30.28571429, 30.57142857, 30.85714286, 31.14285714, 31.42857143, 31.71428571, 32, 32, 32.14285714, 32.28571429, 32.42857143, 32.57142857, 32.71428571, 32.85714286, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33.28571429, 33.57142857, 33.85714286, 34.14285714] test_val = [100, 100, 100] ref_data = {"val": ref_val , "se": [np.nan] * len(ref_val), "sample_size": [np.nan] * len(ref_val), "geo_id": ["1"] * len(ref_val), "time_value": pd.date_range(start="2020-09-24", end="2020-10-23")} test_data = {"val": test_val , "se": [np.nan] * len(test_val), "sample_size": [np.nan] * len(test_val), "geo_id": ["1"] * len(test_val), "time_value": pd.date_range(start="2020-10-24", end="2020-10-26")} ref_data2 = {"val": ref_val , "se": [np.nan] * len(ref_val), "sample_size": [np.nan] * len(ref_val), "geo_id": ["2"] * len(ref_val), "time_value": pd.date_range(start="2020-09-24", end="2020-10-23")} test_data2 = {"val": test_val , "se": [np.nan] * len(test_val), "sample_size": [np.nan] * len(test_val), "geo_id": ["2"] * len(test_val), "time_value": pd.date_range(start="2020-10-24",end="2020-10-26")} ref_df = pd.concat([pd.DataFrame(ref_data), pd.DataFrame(ref_data2)]).reset_index(drop=True) test_df = pd.concat([pd.DataFrame(test_data), pd.DataFrame(test_data2)]). \ reset_index(drop=True) validator.check_positive_negative_spikes( test_df, ref_df, "state", "signal", report) assert len(report.raised_errors) == 1 assert "check_positive_negative_spikes" in [ err.check_data_id[0] for err in report.raised_errors] def test_neg_outlier(self): validator = DynamicValidator(self.params) report = ValidationReport([]) ref_val = [100, 101, 100, 101, 100, 100, 100, 100, 100, 100, 100, 102, 100, 100, 100, 100, 100, 101, 100, 100, 100, 100, 100, 99, 100, 100, 98, 100, 100, 100] test_val = [10, 10, 10] ref_data = {"val": ref_val , "se": [np.nan] * len(ref_val), "sample_size": [np.nan] * len(ref_val), "geo_id": ["1"] * len(ref_val), "time_value": pd.date_range(start="2020-09-24",end="2020-10-23")} test_data = {"val": test_val , "se": [np.nan] * len(test_val), "sample_size": [np.nan] * len(test_val), "geo_id": ["1"] * len(test_val), "time_value": pd.date_range(start="2020-10-24",end="2020-10-26")} ref_data2 = {"val": ref_val , "se": [np.nan] * len(ref_val), "sample_size": [np.nan] * len(ref_val), "geo_id": ["2"] * len(ref_val), "time_value": pd.date_range(start="2020-09-24",end="2020-10-23")} test_data2 = {"val": test_val , "se": [np.nan] * len(test_val), "sample_size": [np.nan] * len(test_val), "geo_id": ["2"] * len(test_val), "time_value": pd.date_range(start="2020-10-24",end="2020-10-26")} ref_df = pd.concat([pd.DataFrame(ref_data), pd.DataFrame(ref_data2)]). \ reset_index(drop=True) test_df = pd.concat([pd.DataFrame(test_data), pd.DataFrame(test_data2)]). \ reset_index(drop=True) validator.check_positive_negative_spikes( test_df, ref_df, "state", "signal", report) assert len(report.raised_errors) == 1 assert "check_positive_negative_spikes" in [ err.check_data_id[0] for err in report.raised_errors] def test_zero_outlier(self): validator = DynamicValidator(self.params) report = ValidationReport([]) ref_val = [30, 30.28571429, 30.57142857, 30.85714286, 31.14285714, 31.42857143, 31.71428571, 32, 32, 32.14285714, 32.28571429, 32.42857143, 32.57142857, 32.71428571, 32.85714286, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33.28571429, 33.57142857, 33.85714286, 34.14285714] test_val = [0, 0, 0] ref_data = {"val": ref_val , "se": [np.nan] * len(ref_val), "sample_size": [np.nan] * len(ref_val), "geo_id": ["1"] * len(ref_val), "time_value": pd.date_range(start="2020-09-24",end="2020-10-23")} test_data = {"val": test_val , "se": [np.nan] * len(test_val), "sample_size": [np.nan] * len(test_val), "geo_id": ["1"] * len(test_val), "time_value": pd.date_range(start="2020-10-24",end="2020-10-26")} ref_data2 = {"val": ref_val , "se": [np.nan] * len(ref_val), "sample_size": [np.nan] * len(ref_val), "geo_id": ["2"] * len(ref_val), "time_value": pd.date_range(start="2020-09-24",end="2020-10-23")} test_data2 = {"val": test_val , "se": [np.nan] * len(test_val), "sample_size": [np.nan] * len(test_val), "geo_id": ["2"] * len(test_val), "time_value": pd.date_range(start="2020-10-24",end="2020-10-26")} ref_df = pd.concat([pd.DataFrame(ref_data), pd.DataFrame(ref_data2)]). \ reset_index(drop=True) test_df = pd.concat([pd.DataFrame(test_data), pd.DataFrame(test_data2)]). \ reset_index(drop=True) validator.check_positive_negative_spikes( test_df, ref_df, "state", "signal", report) assert len(report.raised_errors) == 1 assert "check_positive_negative_spikes" in [ err.check_data_id[0] for err in report.raised_errors] def test_no_outlier(self): validator = DynamicValidator(self.params) report = ValidationReport([]) #Data from 51580 between 9/24 and 10/26 (10/25 query date) ref_val = [30, 30.28571429, 30.57142857, 30.85714286, 31.14285714, 31.42857143, 31.71428571, 32, 32, 32.14285714, 32.28571429, 32.42857143, 32.57142857, 32.71428571, 32.85714286, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33] test_val = [33, 33, 33] ref_data = {"val": ref_val , "se": [np.nan] * len(ref_val), "sample_size": [np.nan] * len(ref_val), "geo_id": ["1"] * len(ref_val), "time_value": pd.date_range(start="2020-09-24",end="2020-10-23")} test_data = {"val": test_val , "se": [np.nan] * len(test_val), "sample_size": [np.nan] * len(test_val), "geo_id": ["1"] * len(test_val), "time_value": pd.date_range(start="2020-10-24",end="2020-10-26")} ref_data2 = {"val": ref_val , "se": [np.nan] * len(ref_val), "sample_size": [np.nan] * len(ref_val), "geo_id": ["2"] * len(ref_val), "time_value": pd.date_range(start="2020-09-24",end="2020-10-23")} test_data2 = {"val": test_val , "se": [np.nan] * len(test_val), "sample_size": [np.nan] * len(test_val), "geo_id": ["2"] * len(test_val), "time_value": pd.date_range(start="2020-10-24",end="2020-10-26")} ref_df = pd.concat([pd.DataFrame(ref_data), pd.DataFrame(ref_data2)]). \ reset_index(drop=True) test_df = pd.concat([pd.DataFrame(test_data), pd.DataFrame(test_data2)]). \ reset_index(drop=True) validator.check_positive_negative_spikes( test_df, ref_df, "state", "signal", report) assert len(report.raised_errors) == 0 def test_source_api_overlap(self): validator = DynamicValidator(self.params) report = ValidationReport([]) #Data from 51580 between 9/24 and 10/26 (10/25 query date) ref_val = [30, 30.28571429, 30.57142857, 30.85714286, 31.14285714, 31.42857143, 31.71428571, 32, 32, 32.14285714, 32.28571429, 32.42857143, 32.57142857, 32.71428571, 32.85714286, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33] test_val = [100, 100, 100] ref_data = {"val": ref_val , "se": [np.nan] * len(ref_val), "sample_size": [np.nan] * len(ref_val), "geo_id": ["1"] * len(ref_val), "time_value": pd.date_range(start="2020-09-24",end="2020-10-26")} test_data = {"val": test_val , "se": [np.nan] * len(test_val), "sample_size": [np.nan] * len(test_val), "geo_id": ["1"] * len(test_val), "time_value": pd.date_range(start="2020-10-24",end="2020-10-26")} ref_data2 = {"val": ref_val , "se": [np.nan] * len(ref_val), "sample_size": [np.nan] * len(ref_val), "geo_id": ["2"] * len(ref_val), "time_value": pd.date_range(start="2020-09-24",end="2020-10-26")} test_data2 = {"val": test_val , "se": [np.nan] * len(test_val), "sample_size": [np.nan] * len(test_val), "geo_id": ["2"] * len(test_val), "time_value": pd.date_range(start="2020-10-24",end="2020-10-26")} ref_df = pd.concat([
pd.DataFrame(ref_data)
pandas.DataFrame
#functions for data processing should include: # a function for getting the epochs # a function for making a spectrogram import re import glob import numpy as np import matplotlib.pyplot as plt import pandas as pd import mne from sklearn.svm import LinearSVC, SVC import scipy.signal as spsig from tkinter import filedialog from tkinter import * from sklearn.model_selection import ShuffleSplit, cross_val_score from mne.decoding import CSP from sklearn.pipeline import Pipeline from sklearn.discriminant_analysis import LinearDiscriminantAnalysis import pycaret.classification as pyclf SAMS_PATH = r"C:\Users\Owner\OneDrive - Regis University\laryngeal_bci\data\fifs\\" NATES_PATH = r"C:\Users\words\OneDrive - Regis University\laryngeal_bci\data\fifs\\" # make a class to hold information from get epochs class spectrogramData: # It would be good to add in a way of storing an annotation description # for each spectrogram so we can confirm the type of trial being represented def __init__(self, spectrograms, frequencies, times): self.spectrograms = spectrograms self.frequencies = frequencies self.times = times class eegData: def __init__(self, path): """ Path sould be 'Nates', 'Sams', or the actual filepath to the data. """ if path == 'Nates': self.path = r"C:\Users\words\OneDrive - Regis University\laryngeal_bci\data\fifs\\" elif path == 'Sams': self.path = r"C:\Users\Owner\OneDrive - Regis University\laryngeal_bci\data\fifs\\" else: self.path = path self.alpha_spectrograms_true = None self.alpha_spectrograms_false = None self.SSVEP_spectrograms_true = None self.SSVEP_spectrograms_false = None self.MA_spectrograms_true = None self.MA_spectrograms_false = None self.MI_spectrograms_true = None self.MI_spectrograms_false = None self.LA_spectrograms_true = None self.LA_spectrograms_false = None self.LI_spectrograms_true = None self.LI_spectrograms_false = None self.MA_epochs = None self.MI_epochs = None self.LA_epochs = None self.LI_epochs = None self.viz_channels = ['O1', 'O2', 'P3', 'P4'] def load_data(self, filename): return mne.io.read_raw_fif(filename, preload=True, verbose=0) def clean_data(self, data, first_seconds_remove=2, bandpass_range=(5, 50)): """ Removes first 2 seconds and bandpass filters data. Takes MNE data object and tuple for bandpass filter range. """ # bandpass filter data = data.filter(*bandpass_range) data = data.notch_filter(np.arange(60, 241, 60)) # print(f'removing first {first_seconds_remove} seconds') data.crop(first_seconds_remove) return data def flatten_bad_channels(self, data, channels): """ Sets bad channels to 0s. Operates on data in-place. data - MNE data object channels - string or list of strings with channel names """ data.apply_function(lambda x: x * 0, channels) def standardize_all_channels(self, data): """ Subtracts the mean from each channel, divide by the standard deviation. """ for channel in data.ch_names: # get mean and std, subtract mean, divide by std mean = data.get_data(channel) std = np.std(data.get_data(channel)) mean = np.mean(data.get_data(channel)) data.apply_function(lambda x: (x - mean)/std, channel) return data def load_clean_all_data(self, flatten=False, standardize=True): """ Loads and cleans all current data. """ filenames = [f for f in glob.glob(self.path + '*_raw.fif.gz')] self.filenames = filenames list_of_data = [] for f in filenames: data = self.load_data(f) data = self.clean_data(data) if flatten: if re.search('N-\d\.2-22-2021', f) is not None: clean_bad_channels(data, 'P3') elif f == 'BCIproject_trial-S-1.3-4-2021_raw.fif.gz': clean_bad_channels(data, 'F8') elif f == 'BCIproject_trial-S-2.3-8-2021_raw.fif.gz': clean_bad_channels(data, 'Cz') elif f == 'BCIproject_trial-S-3.3-25-2021_raw.fif.gz': pass # clean_bad_channels(data, ['Cz', 'C1']) if standardize: self.standardize_all_channels(data) list_of_data.append(data) all_data = mne.concatenate_raws(list_of_data) self.annotation_descriptions = [i["description"] for i in all_data.annotations] self.data = all_data self.get_all_epochs() self.get_all_spectrograms() def load_clean_one_dataset(self, filename, flatten=False, standardize=True): """ Loads and cleans one dataset """ self.data = self.load_data(filename) self.data = self.clean_data(self.data) if flatten: # clean_bad_channels(data, 'P3') if re.search('N-\d\.2-22-2021', f) is not None: clean_bad_channels(data, 'P3') elif filename == 'BCIproject_trial-S-1.3-4-2021_raw.fif.gz': clean_bad_channels(data, 'F8') elif filename == 'BCIproject_trial-S-2.3-8-2021_raw.fif.gz': clean_bad_channels(data, 'Cz') elif filename == 'BCIproject_trial-S-3.3-25-2021_raw.fif.gz': pass # clean_bad_channels(data, ['Cz', 'C1']) pass if standardize: self.standardize_all_channels(self.data) self.annotation_descriptions = self.data.annotations self.get_all_epochs() self.get_all_spectrograms() def get_epochs(self, annotation_regexp): """ Retrieves epochs with a label via the annotation_regexp (regular expression). """ events, eventid = mne.events_from_annotations(self.data, regexp=annotation_regexp, verbose=0) picks = mne.pick_types(self.data.info, eeg=True) epochs = mne.Epochs(self.data, events, tmin=0, tmax=5, picks=picks, preload=True, baseline=None, verbose=0) return epochs def get_all_epochs(self): """ Stores all epochs for separate events in attributes. """ epochs_variables = ['alpha_epochs', 'SSVEP_epochs', 'MA_epochs', 'MI_epochs', 'LA_epochs', 'LI_epochs'] epochs_regexps = ['.*alpha', '.*SSVEP.*', '.*-TMI-a', '.*-TMI-i', '.*-LMI-a', '.*-LMI-i'] for var, regexp in zip(epochs_variables, epochs_regexps): try: epochs = self.get_epochs(regexp) setattr(self, var, epochs) except: print(f'no epochs found for {regexp}') def get_spectrograms(self, annotation_regexp, variable_for_storing_spectrogram, nperseg=2000, noverlap=1000, channels=None): if channels is None: channels = self.viz_channels elif channels is 'all': channels = self.data.ch_names epochs = self.get_epochs(annotation_regexp=annotation_regexp) spectData = [] # adjusts times so they match the spectrograms time_add = nperseg / self.data.info['sfreq'] - 1 for i in range(len(epochs)): spectrograms = [] channel_data = epochs[i].pick_channels(channels).get_data()[0] for k in range(channel_data.shape[0]): # frequency, time, intensity (shape f*t) frequencies, times, spectrogram = spsig.spectrogram(channel_data[k, :], fs=int(self.data.info['sfreq']), nperseg=nperseg, noverlap=noverlap) spectrograms.append(spectrogram) average_spectogram = np.mean(np.array(spectrograms), axis=0) spectData.append(spectrogramData(average_spectogram, frequencies, times)) setattr(self, variable_for_storing_spectrogram, spectData) def get_all_spectrograms(self): spectrogram_variables = ['alpha_spectrograms_true', 'alpha_spectrograms_false', 'MA_spectrograms_true', 'MA_spectrograms_false', 'MI_spectrograms_true', 'MI_spectrograms_false', 'LA_spectrograms_true', 'LA_spectrograms_false', 'LI_spectrograms_true', 'LI_spectrograms_false'] annotation_regular_expressions = ['True-alpha-', 'False-alpha-', 'True-SSVEP-.*', 'False-SSVEP-.*', 'True-TMI-a-', 'False-TMI-a-', 'True-TMI-i-', 'False-TMI-i-', 'True-LMI-a-', 'False-LMI-a-', 'True-LMI-i-', 'False-LMI-i-'] motor_channels = self.data.ch_names channels = [self.viz_channels] * 4 + [motor_channels] * 8 for annot_regex, spect_var, chans in zip(annotation_regular_expressions, spectrogram_variables, channels): try: self.get_spectrograms(annot_regex, spect_var, channels=chans) except: print(f'no epochs found for {annot_regex}') def create_alpha_spectrograms(self, nperseg=2000, noverlap=1000, channels=None): """ Create the false_epochs and true_epochs to be used in displaying an alpha wave spectrogram. """ if channels is None: channels = self.viz_channels self.get_spectrograms('True-alpha-', 'alpha_spectrograms_true', nperseg=nperseg, noverlap=noverlap, channels=channels) self.get_spectrograms('False-alpha-', 'alpha_spectrograms_false', nperseg=nperseg, noverlap=noverlap, channels=channels) def plot_spectrogram(self, spectrogram_data, savefig=False, filename=None, ylim=[5, 50], vmax=None): """Plots a spectrogram of FFT. Parameters ---------- spectrogram_data : spectrogramData object savefig : boolean Whether to save the figure to disk. filename : str File name of the saved image. """ f = plt.figure(figsize=(5, 5)) plt.pcolormesh(spectrogram_data.times, spectrogram_data.frequencies, spectrogram_data.spectrograms, shading='gouraud', vmax=vmax) plt.ylabel('Frequency [Hz]') plt.xlabel('Time [sec]') plt.ylim(ylim) plt.colorbar() plt.tight_layout() plt.show() if savefig: if filename is None: filename = 'saved_plot.png' plt.savefig(filename, dpi=300) def plot_spectrograms_2d_comparison(self, spectrogram_data_1, spectrogram_data_2, labels, filename=None): """ Compares spectrograms from two different epoch types. """ frequencies = spectrogram_data_1[0].frequencies avg_spec_1 = np.array([s.spectrograms.mean(axis=1) for s in spectrogram_data_1]).mean(axis=0) avg_spec_2 = np.array([s.spectrograms.mean(axis=1) for s in spectrogram_data_2]).mean(axis=0) f = plt.figure(figsize=(5.5, 5.5)) plt.plot(frequencies, avg_spec_1, label=labels[0]) plt.plot(frequencies, avg_spec_2, linestyle='--', label=labels[1]) plt.legend() plt.xlim([0, 50]) plt.xlabel('Frequency (Hz)') plt.ylabel('Intensity (a.u.)') plt.tight_layout() if filename is not None: plt.savefig(filename, dpi=300) plt.show() def plot_all_alpha_spectrograms(self, channels=None, reset_spectrograms=False, vmax=50): """ Plots all alpha spectrograms. """ if channels is None: channels = self.viz_channels if self.alpha_spectrograms_true is None or reset_spectrograms: self.create_alpha_spectrograms(channels=channels) for i in range(len(self.alpha_spectrograms_false)): print("False Alpha : " + str(i)) self.plot_spectrogram(self.alpha_spectrograms_false[i], vmax=vmax) for i in range(len(self.alpha_spectrograms_true)): print("True Alpha : " + str(i)) self.plot_spectrogram(self.alpha_spectrograms_true[i], vmax=vmax) def create_SSVEP_spectrograms(self, nperseg=2000, noverlap=1000, channels=None): """ Create the ssvep spectrograms """ self.get_spectrograms('True-SSVEP-.*', 'SSVEP_spectrograms_true', nperseg=nperseg, noverlap=noverlap, channels=channels) self.get_spectrograms('False-SSVEP-.*', 'SSVEP_spectrograms_false', nperseg=nperseg, noverlap=noverlap, channels=channels) def create_LMI_a_spectrograms(self, nperseg=2000, noverlap=1000, channels='all'): """ Create the laryngeal activity based spectrograms """ self.get_spectrograms('True-LMI-a-', 'LMI_a_spectrograms_true', nperseg=nperseg, noverlap=noverlap, channels=channels) self.get_spectrograms('False-LMI-a-', 'LMI_a_spectrograms_false', nperseg=nperseg, noverlap=noverlap, channels=channels) def create_LMI_i_spectrograms(self, nperseg=2000, noverlap=1000, channels='all'): """ Create the laryngeal activity based spectrograms """ self.get_spectrograms('True-LMI-i-', 'LMI_i_spectrograms_true', nperseg=nperseg, noverlap=noverlap, channels=channels) self.get_spectrograms('False-LMI-i-', 'LMI_i_spectrograms_false', nperseg=nperseg, noverlap=noverlap, channels=channels) def plot_all_SSVEP_spectrograms(self, channels=None, reset_spectrograms=False, vmax=5): """ Plot the SSVEP spectrograms """ if channels is None: channels = self.viz_channels if self.SSVEP_spectrograms_false is None or reset_spectrograms: self.create_SSVEP_spectrograms(channels=channels) for i in range(len(self.SSVEP_spectrograms_false)): print("False SSVEP : " + str(i)) self.plot_spectrogram(self.SSVEP_spectrograms_false[i], vmax=vmax) for i in range(len(self.SSVEP_spectrograms_false)): print("True SSVEP : " + str(i)) self.plot_spectrogram(self.SSVEP_spectrograms_true[i], vmax=vmax) def prepare_SSVEP_data_for_ml(self, f1=None, f2=None, train_fraction=0.8, num_groups=3): # indices for trimming data; frequencies are in 0.5Hz increments from 0 to 500 freq_idxs = (10, 101) np.random.seed(42) self.SSVEP_test_df = None if f1 is None or f2 is None: if self.SSVEP_spectrograms_true is None: self.create_SSVEP_spectrograms() f1_spectrograms, f1_frequencies, f1_times, f1_groups = [], [], [], [] f2_spectrograms, f2_frequencies, f2_times, f2_groups = [], [], [], [] for i in range(len(self.SSVEP_spectrograms_false)): f1_spectrograms.append(self.SSVEP_spectrograms_true[i].spectrograms[freq_idxs[0]:freq_idxs[1]]) f1_frequencies.append(self.SSVEP_spectrograms_true[i].frequencies[freq_idxs[0]:freq_idxs[1]]) f1_times.append(self.SSVEP_spectrograms_true[i].times) f1_groups.append(len(self.SSVEP_spectrograms_true[i].times) * [i]) f2_spectrograms.append(self.SSVEP_spectrograms_false[i].spectrograms[freq_idxs[0]:freq_idxs[1]]) f2_frequencies.append(self.SSVEP_spectrograms_false[i].frequencies[freq_idxs[0]:freq_idxs[1]]) f2_times.append(self.SSVEP_spectrograms_false[i].times) f2_groups.append(len(self.SSVEP_spectrograms_false[i].times) * [i]) f1 = spectrogramData(f1_spectrograms, f1_frequencies, f1_times) f2 = spectrogramData(f2_spectrograms, f2_frequencies, f2_times) num_train_samples = int(train_fraction * len(f1.spectrograms)) idxs = list(range(len(f1.spectrograms))) train_idxs = np.random.choice(idxs, num_train_samples, replace=False) train_f1s = np.concatenate([f1.spectrograms[i] for i in train_idxs], axis=1) train_f2s = np.concatenate([f2.spectrograms[i] for i in train_idxs], axis=1) train_f1_groups = np.concatenate([f1_groups[i] for i in train_idxs]) train_f2_groups = np.concatenate([f2_groups[i] for i in train_idxs]) if train_fraction < 1: test_idxs = list(set(idxs).difference(set(train_idxs))) test_f1s = np.concatenate([f1.spectrograms[i] for i in test_idxs], axis=1) test_f2s = np.concatenate([f2.spectrograms[i] for i in test_idxs], axis=1) test_f1_groups = np.concatenate([f1_groups[i] for i in test_idxs]) test_f2_groups = np.concatenate([f1_groups[i] for i in test_idxs]) train_features = np.concatenate((train_f1s, train_f2s), axis=-1) train_features = train_features.T train_targets = np.array([1] * train_f1s.shape[1] + [0] * train_f2s.shape[1]) train_groups = np.concatenate((train_f1_groups, train_f2_groups)) if train_fraction < 1: test_features = np.concatenate((test_f1s, test_f2s), axis=-1) test_targets = np.array([1] * test_f1s.shape[1] + [0] * test_f2s.shape[1]) test_groups = np.concatenate((test_f1_groups, test_f2_groups)) test_features = test_features.T self.SSVEP_train_df = pd.DataFrame(train_features) self.SSVEP_train_df['target'] = train_targets self.SSVEP_train_df['group'] = train_groups # required for pycaret to work if targets are the actual frequencies # self.SSVEP_train_df['target'] = self.SSVEP_train_df['target'].astype('category') if train_fraction < 1: self.SSVEP_test_df = pd.DataFrame(test_features) self.SSVEP_test_df['target'] = test_targets # self.SSVEP_test_df['target'] = self.SSVEP_test_df['target'].astype('category') self.SSVEP_test_df['group'] = test_groups experiments_per_group = self.SSVEP_train_df['group'].unique().shape[0] // num_groups unique_groups = self.SSVEP_train_df['group'].unique() np.random.shuffle(unique_groups) group_idxs = [] for i in range(num_groups): if i == num_groups - 1: # if last group experiments = unique_groups[i * experiments_per_group:] else: experiments = unique_groups[i * experiments_per_group:(i + 1) * experiments_per_group] group_idxs.append(self.SSVEP_train_df.loc[self.SSVEP_train_df['group'].isin(experiments)].index) for i, idxs in enumerate(group_idxs): self.SSVEP_train_df.loc[idxs, 'group'] = i def prepare_LMI_a_data_for_ml(self, f1=None, f2=None, train_fraction=0.8, num_groups=3): # indices for trimming data; frequencies are in 0.5Hz increments from 0 to 500 freq_idxs = (10, 101) np.random.seed(42) self.LMI_a_test_df = None if f1 is None or f2 is None: if self.LMI_a_spectrograms_true is None: self.create_LMI_a_spectrograms() f1_spectrograms, f1_frequencies, f1_times, f1_groups = [], [], [], [] f2_spectrograms, f2_frequencies, f2_times, f2_groups = [], [], [], [] for i in range(len(self.LMI_a_spectrograms_false)): f1_spectrograms.append(self.LMI_a_spectrograms_true[i].spectrograms[freq_idxs[0]:freq_idxs[1]]) f1_frequencies.append(self.LMI_a_spectrograms_true[i].frequencies[freq_idxs[0]:freq_idxs[1]]) f1_times.append(self.LMI_a_spectrograms_true[i].times) f1_groups.append(len(self.LMI_a_spectrograms_true[i].times) * [i]) f2_spectrograms.append(self.LMI_a_spectrograms_false[i].spectrograms[freq_idxs[0]:freq_idxs[1]]) f2_frequencies.append(self.LMI_a_spectrograms_false[i].frequencies[freq_idxs[0]:freq_idxs[1]]) f2_times.append(self.LMI_a_spectrograms_false[i].times) f2_groups.append(len(self.LMI_a_spectrograms_false[i].times) * [i]) f1 = spectrogramData(np.array(f1_spectrograms), np.array(f1_frequencies), np.array(f1_times)) f2 = spectrogramData(np.array(f2_spectrograms), np.array(f2_frequencies), np.array(f2_times)) f1 = spectrogramData(f1_spectrograms, f1_frequencies, f1_times) f2 = spectrogramData(f2_spectrograms, f2_frequencies, f2_times) num_train_samples = int(train_fraction * len(f1.spectrograms)) idxs = list(range(len(f1.spectrograms))) train_idxs = np.random.choice(idxs, num_train_samples, replace=False) train_f1s = np.concatenate([f1.spectrograms[i] for i in train_idxs], axis=1) train_f2s = np.concatenate([f2.spectrograms[i] for i in train_idxs], axis=1) train_f1_groups = np.concatenate([f1_groups[i] for i in train_idxs]) train_f2_groups = np.concatenate([f2_groups[i] for i in train_idxs]) if train_fraction < 1: test_idxs = list(set(idxs).difference(set(train_idxs))) test_f1s = np.concatenate([f1.spectrograms[i] for i in test_idxs], axis=1) test_f2s = np.concatenate([f2.spectrograms[i] for i in test_idxs], axis=1) test_f1_groups = np.concatenate([f1_groups[i] for i in test_idxs]) test_f2_groups = np.concatenate([f1_groups[i] for i in test_idxs]) train_features = np.concatenate((train_f1s, train_f2s), axis=-1) train_features = train_features.T train_targets = np.array([1] * train_f1s.shape[1] + [0] * train_f2s.shape[1]) train_groups = np.concatenate((train_f1_groups, train_f2_groups)) self.LMI_a_train_df = pd.DataFrame(train_features) self.LMI_a_train_df['target'] = train_targets self.LMI_a_train_df['group'] = train_groups if train_fraction < 1: test_features = np.concatenate((test_f1s, test_f2s), axis=-1) test_targets = np.array([1] * test_f1s.shape[1] + [0] * test_f2s.shape[1]) test_groups = np.concatenate((test_f1_groups, test_f2_groups)) test_features = test_features.T self.LMI_a_test_df = pd.DataFrame(test_features) self.LMI_a_test_df['target'] = test_targets self.LMI_a_test_df['group'] = test_groups experiments_per_group = self.LMI_a_train_df['group'].unique().shape[0] // num_groups unique_groups = self.LMI_a_train_df['group'].unique() np.random.shuffle(unique_groups) group_idxs = [] for i in range(num_groups): if i == num_groups - 1: # if last group experiments = unique_groups[i * experiments_per_group:] else: experiments = unique_groups[i * experiments_per_group:(i + 1) * experiments_per_group] group_idxs.append(self.LMI_a_train_df.loc[self.LMI_a_train_df['group'].isin(experiments)].index) for i, idxs in enumerate(group_idxs): self.LMI_a_train_df.loc[idxs, 'group'] = i def prepare_LMI_i_data_for_ml(self, f1=None, f2=None, train_fraction=0.8, num_groups=3): # indices for trimming data; frequencies are in 0.5Hz increments from 0 to 500 freq_idxs = (10, 101) np.random.seed(42) self.LMI_i_test_df = None if f1 is None or f2 is None: if self.LMI_i_spectrograms_true is None: self.create_LMI_i_spectrograms() f1_spectrograms, f1_frequencies, f1_times, f1_groups = [], [], [], [] f2_spectrograms, f2_frequencies, f2_times, f2_groups = [], [], [], [] for i in range(len(self.LMI_i_spectrograms_false)): f1_spectrograms.append(self.LMI_i_spectrograms_true[i].spectrograms[freq_idxs[0]:freq_idxs[1]]) f1_frequencies.append(self.LMI_i_spectrograms_true[i].frequencies[freq_idxs[0]:freq_idxs[1]]) f1_times.append(self.LMI_i_spectrograms_true[i].times) f1_groups.append(len(self.LMI_i_spectrograms_true[i].times) * [i]) f2_spectrograms.append(self.LMI_i_spectrograms_false[i].spectrograms[freq_idxs[0]:freq_idxs[1]]) f2_frequencies.append(self.LMI_i_spectrograms_false[i].frequencies[freq_idxs[0]:freq_idxs[1]]) f2_times.append(self.LMI_i_spectrograms_false[i].times) f2_groups.append(len(self.LMI_i_spectrograms_false[i].times) * [i]) f1 = spectrogramData(f1_spectrograms, f1_frequencies, f1_times) f2 = spectrogramData(f2_spectrograms, f2_frequencies, f2_times) num_train_samples = int(train_fraction * len(f1.spectrograms)) idxs = list(range(len(f1.spectrograms))) train_idxs = np.random.choice(idxs, num_train_samples, replace=False) train_f1s = np.concatenate([f1.spectrograms[i] for i in train_idxs], axis=1) train_f2s = np.concatenate([f2.spectrograms[i] for i in train_idxs], axis=1) train_f1_groups = np.concatenate([f1_groups[i] for i in train_idxs]) train_f2_groups = np.concatenate([f2_groups[i] for i in train_idxs]) if train_fraction < 1: test_idxs = list(set(idxs).difference(set(train_idxs))) test_f1s = np.concatenate([f1.spectrograms[i] for i in test_idxs], axis=1) test_f2s = np.concatenate([f2.spectrograms[i] for i in test_idxs], axis=1) test_f1_groups = np.concatenate([f1_groups[i] for i in test_idxs]) test_f2_groups = np.concatenate([f1_groups[i] for i in test_idxs]) train_features = np.concatenate((train_f1s, train_f2s), axis=-1) train_features = train_features.T train_targets = np.array([1] * train_f1s.shape[1] + [0] * train_f2s.shape[1]) train_groups = np.concatenate((train_f1_groups, train_f2_groups)) self.LMI_i_train_df = pd.DataFrame(train_features) self.LMI_i_train_df['target'] = train_targets self.LMI_i_train_df['group'] = train_groups if train_fraction < 1: test_features = np.concatenate((test_f1s, test_f2s), axis=-1) test_targets = np.array([1] * test_f1s.shape[1] + [0] * test_f2s.shape[1]) test_groups = np.concatenate((test_f1_groups, test_f2_groups)) test_features = test_features.T self.LMI_i_test_df = pd.DataFrame(test_features) self.LMI_i_test_df['target'] = test_targets self.LMI_i_test_df['group'] = test_groups experiments_per_group = self.LMI_i_train_df['group'].unique().shape[0] // num_groups unique_groups = self.LMI_i_train_df['group'].unique() np.random.shuffle(unique_groups) group_idxs = [] for i in range(num_groups): if i == num_groups - 1: # if last group experiments = unique_groups[i * experiments_per_group:] else: experiments = unique_groups[i * experiments_per_group:(i + 1) * experiments_per_group] group_idxs.append(self.LMI_i_train_df.loc[self.LMI_i_train_df['group'].isin(experiments)].index) for i, idxs in enumerate(group_idxs): self.LMI_i_train_df.loc[idxs, 'group'] = i def fit_LMI_a_ML_and_report(self, num_groups=3, use_gpu=False): groups = self.LMI_a_train_df.group if self.LMI_a_test_df is None: self.LMI_a_pycaret_setup = pyclf.setup(data=self.LMI_a_train_df.drop('group', axis=1), target='target', use_gpu=use_gpu, fold_strategy='groupkfold', fold_groups=groups, fold=num_groups, silent=True) else: self.LMI_a_pycaret_setup = pyclf.setup(data=self.LMI_a_train_df.drop('group', axis=1), test_data=self.LMI_a_test_df.drop('group', axis=1), target='target', use_gpu=use_gpu, fold_strategy='groupkfold', fold_groups=groups, fold=num_groups, silent=True) models = pyclf.models() fit_models = pyclf.compare_models(groups=groups, n_select=models.shape[0]) # now tune and select top model tuned = [pyclf.tune_model(model, search_library='scikit-optimize', groups=groups) for model in fit_models] self.best_LMI_a_clf = pyclf.compare_models(tuned, groups=groups) self.LMI_a_score_grid = pyclf.pull() def fit_LMI_i_ML_and_report(self, num_groups=3, use_gpu=False): groups = self.LMI_i_train_df.group if self.LMI_i_test_df is None: self.LMI_i_pycaret_setup = pyclf.setup(data=self.LMI_i_train_df.drop('group', axis=1), target='target', use_gpu=use_gpu, fold_strategy='groupkfold', fold_groups=groups, fold=num_groups, silent=True) else: self.LMI_i_pycaret_setup = pyclf.setup(data=self.LMI_i_train_df.drop('group', axis=1), test_data=self.LMI_i_test_df.drop('group', axis=1), target='target', use_gpu=use_gpu, fold_strategy='groupkfold', fold_groups=groups, fold=num_groups, silent=True) models = pyclf.models() fit_models = pyclf.compare_models(groups=groups, n_select=models.shape[0]) # now tune and select top model tuned = [pyclf.tune_model(model, search_library='scikit-optimize', groups=groups) for model in fit_models] self.best_LMI_i_clf = pyclf.compare_models(tuned, groups=groups) self.LMI_i_score_grid = pyclf.pull() def fit_SSVEP_ML_and_report(self, num_groups=3, use_gpu=False): groups = self.SSVEP_train_df.group if self.SSVEP_test_df is None: self.SSVEP_pycaret_setup = pyclf.setup(data=self.SSVEP_train_df.drop('group', axis=1), target='target', use_gpu=use_gpu, fold_strategy='groupkfold', fold_groups=groups, fold=num_groups, silent=True) else: self.SSVEP_pycaret_setup = pyclf.setup(data=self.SSVEP_train_df.drop('group', axis=1), test_data=self.SSVEP_test_df.drop('group', axis=1), target='target', use_gpu=use_gpu, fold_strategy='groupkfold', fold_groups=groups, fold=num_groups, silent=True) models = pyclf.models() fit_models = pyclf.compare_models(groups=groups, n_select=models.shape[0]) # now tune and select top model tuned = [pyclf.tune_model(model, search_library='scikit-optimize', groups=groups) for model in fit_models] self.best_SSVEP_clf = pyclf.compare_models(tuned, groups=groups) self.SSVEP_score_grid = pyclf.pull() def fit_motor_imagery_and_report(self, train_fraction=0.8, num_groups=3): np.random.seed(42) # True is 2, False 1 labels = self.MI_epochs.events[:, -1] == 2 # throw away last point so number of points is 5000 epochs_data = self.MI_epochs.get_data()[:, :, :-1] # create extra expochs by splitting them into fifths split_arrs = [] for i in range(epochs_data.shape[0]): split_arrs.extend(np.split(epochs_data[i], 5, -1)) extra_epochs = np.stack(split_arrs) extra_labels = [] for l in labels: extra_labels.extend([int(l)] * 5) extra_labels = np.array(extra_labels) true_counter = 0 false_counter = 0 groups = [] for event in labels == 2: if event is True: groups.extend([true_counter] * 5) true_counter += 1 else: groups.extend([false_counter] * 5) false_counter += 1 groups = np.array(groups) unique_groups = np.unique(groups) np.random.shuffle(unique_groups) train_groups = np.random.choice(unique_groups, size=int(train_fraction * unique_groups.shape[0])) train_idxs = np.where(np.isin(groups, train_groups)) test_idxs = np.where(np.isin(groups, train_groups, invert=True)) self.MI_csp = CSP() csp_data_train = self.MI_csp.fit_transform(extra_epochs[train_idxs], extra_labels[train_idxs]) csp_data_test = self.MI_csp.transform(extra_epochs[test_idxs]) self.mi_csp_df_train = pd.DataFrame(csp_data_train) self.mi_csp_df_train['target'] = extra_labels[train_idxs] self.mi_csp_df_train['group'] = groups[train_idxs] self.mi_csp_df_test = pd.DataFrame(csp_data_test) self.mi_csp_df_test['target'] = extra_labels[test_idxs] self.mi_csp_df_test['group'] = groups[test_idxs] experiments_per_group = train_groups.shape[0] // num_groups unique_train_groups = self.mi_csp_df_train['group'].unique() group_idxs = [] for i in range(num_groups): if i == num_groups - 1: # if last group experiments = unique_train_groups[i * experiments_per_group:] else: experiments = unique_train_groups[i * experiments_per_group:(i + 1) * experiments_per_group] group_idxs.append(self.mi_csp_df_train.loc[self.mi_csp_df_train['group'].isin(experiments)].index) for i, idxs in enumerate(group_idxs): self.mi_csp_df_train.loc[idxs, 'group'] = i self.mi_csp_df_test['group'] = num_groups groups = self.mi_csp_df_train.group self.mi_setup = pyclf.setup(data=self.mi_csp_df_train.drop('group', axis=1), test_data=self.mi_csp_df_test.drop('group', axis=1), target='target', use_gpu=True, fold_strategy='groupkfold', fold_groups=groups, fold=num_groups, silent=True) models = pyclf.models() fit_models = pyclf.compare_models(groups=groups, n_select=models.shape[0]) # now tune and select top model tuned = [pyclf.tune_model(model, search_library='scikit-optimize', groups=groups) for model in fit_models] self.best_mi_clf = pyclf.compare_models(tuned, groups=groups) self.mi_score_grid = pyclf.pull() def fit_motor_actual_and_report(self, train_fraction=0.8, num_groups=3): np.random.seed(42) # True is 2, False 1 labels = self.MA_epochs.events[:, -1] == 2 # throw away last point so number of points is 5000 epochs_data = self.MA_epochs.get_data()[:, :, :-1] # create extra expochs by splitting them into fifths split_arrs = [] for i in range(epochs_data.shape[0]): split_arrs.extend(np.split(epochs_data[i], 5, -1)) extra_epochs = np.stack(split_arrs) extra_labels = [] for l in labels: extra_labels.extend([int(l)] * 5) extra_labels = np.array(extra_labels) true_counter = 0 false_counter = 0 groups = [] for event in labels == 2: if event is True: groups.extend([true_counter] * 5) true_counter += 1 else: groups.extend([false_counter] * 5) false_counter += 1 groups = np.array(groups) unique_groups = np.unique(groups) np.random.shuffle(unique_groups) train_groups = np.random.choice(unique_groups, size=int(train_fraction * unique_groups.shape[0])) train_idxs = np.where(np.isin(groups, train_groups)) test_idxs = np.where(np.isin(groups, train_groups, invert=True)) self.MA_csp = CSP() csp_data_train = self.MA_csp.fit_transform(extra_epochs[train_idxs], extra_labels[train_idxs]) csp_data_test = self.MA_csp.transform(extra_epochs[test_idxs]) self.ma_csp_df_train =
pd.DataFrame(csp_data_train)
pandas.DataFrame
from collections import deque from datetime import datetime import operator import numpy as np import pytest import pytz import pandas as pd import pandas._testing as tm from pandas.tests.frame.common import _check_mixed_float, _check_mixed_int # ------------------------------------------------------------------- # Comparisons class TestFrameComparisons: # Specifically _not_ flex-comparisons def test_frame_in_list(self): # GH#12689 this should raise at the DataFrame level, not blocks df = pd.DataFrame(np.random.randn(6, 4), columns=list("ABCD")) msg = "The truth value of a DataFrame is ambiguous" with pytest.raises(ValueError, match=msg): df in [None] def test_comparison_invalid(self): def check(df, df2): for (x, y) in [(df, df2), (df2, df)]: # we expect the result to match Series comparisons for # == and !=, inequalities should raise result = x == y expected = pd.DataFrame( {col: x[col] == y[col] for col in x.columns}, index=x.index, columns=x.columns, ) tm.assert_frame_equal(result, expected) result = x != y expected = pd.DataFrame( {col: x[col] != y[col] for col in x.columns}, index=x.index, columns=x.columns, ) tm.assert_frame_equal(result, expected) with pytest.raises(TypeError): x >= y with pytest.raises(TypeError): x > y with pytest.raises(TypeError): x < y with pytest.raises(TypeError): x <= y # GH4968 # invalid date/int comparisons df = pd.DataFrame(np.random.randint(10, size=(10, 1)), columns=["a"]) df["dates"] = pd.date_range("20010101", periods=len(df)) df2 = df.copy() df2["dates"] = df["a"] check(df, df2) df = pd.DataFrame(np.random.randint(10, size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame( { "a": pd.date_range("20010101", periods=len(df)), "b": pd.date_range("20100101", periods=len(df)), } ) check(df, df2) def test_timestamp_compare(self): # make sure we can compare Timestamps on the right AND left hand side # GH#4982 df = pd.DataFrame( { "dates1": pd.date_range("20010101", periods=10), "dates2": pd.date_range("20010102", periods=10), "intcol": np.random.randint(1000000000, size=10), "floatcol": np.random.randn(10), "stringcol": list(tm.rands(10)), } ) df.loc[np.random.rand(len(df)) > 0.5, "dates2"] = pd.NaT ops = {"gt": "lt", "lt": "gt", "ge": "le", "le": "ge", "eq": "eq", "ne": "ne"} for left, right in ops.items(): left_f = getattr(operator, left) right_f = getattr(operator, right) # no nats if left in ["eq", "ne"]: expected = left_f(df, pd.Timestamp("20010109")) result = right_f(pd.Timestamp("20010109"), df) tm.assert_frame_equal(result, expected) else: with pytest.raises(TypeError): left_f(df, pd.Timestamp("20010109")) with pytest.raises(TypeError): right_f(pd.Timestamp("20010109"), df) # nats expected = left_f(df, pd.Timestamp("nat")) result = right_f(pd.Timestamp("nat"), df) tm.assert_frame_equal(result, expected) def test_mixed_comparison(self): # GH#13128, GH#22163 != datetime64 vs non-dt64 should be False, # not raise TypeError # (this appears to be fixed before GH#22163, not sure when) df = pd.DataFrame([["1989-08-01", 1], ["1989-08-01", 2]]) other = pd.DataFrame([["a", "b"], ["c", "d"]]) result = df == other assert not result.any().any() result = df != other assert result.all().all() def test_df_boolean_comparison_error(self): # GH#4576, GH#22880 # comparing DataFrame against list/tuple with len(obj) matching # len(df.columns) is supported as of GH#22800 df = pd.DataFrame(np.arange(6).reshape((3, 2))) expected = pd.DataFrame([[False, False], [True, False], [False, False]]) result = df == (2, 2) tm.assert_frame_equal(result, expected) result = df == [2, 2] tm.assert_frame_equal(result, expected) def test_df_float_none_comparison(self): df = pd.DataFrame( np.random.randn(8, 3), index=range(8), columns=["A", "B", "C"] ) result = df.__eq__(None) assert not result.any().any() def test_df_string_comparison(self): df = pd.DataFrame([{"a": 1, "b": "foo"}, {"a": 2, "b": "bar"}]) mask_a = df.a > 1 tm.assert_frame_equal(df[mask_a], df.loc[1:1, :]) tm.assert_frame_equal(df[-mask_a], df.loc[0:0, :]) mask_b = df.b == "foo" tm.assert_frame_equal(df[mask_b], df.loc[0:0, :]) tm.assert_frame_equal(df[-mask_b], df.loc[1:1, :]) class TestFrameFlexComparisons: # TODO: test_bool_flex_frame needs a better name def test_bool_flex_frame(self): data = np.random.randn(5, 3) other_data = np.random.randn(5, 3) df = pd.DataFrame(data) other = pd.DataFrame(other_data) ndim_5 = np.ones(df.shape + (1, 3)) # Unaligned def _check_unaligned_frame(meth, op, df, other): part_o = other.loc[3:, 1:].copy() rs = meth(part_o) xp = op(df, part_o.reindex(index=df.index, columns=df.columns)) tm.assert_frame_equal(rs, xp) # DataFrame assert df.eq(df).values.all() assert not df.ne(df).values.any() for op in ["eq", "ne", "gt", "lt", "ge", "le"]: f = getattr(df, op) o = getattr(operator, op) # No NAs tm.assert_frame_equal(f(other), o(df, other)) _check_unaligned_frame(f, o, df, other) # ndarray tm.assert_frame_equal(f(other.values), o(df, other.values)) # scalar tm.assert_frame_equal(f(0), o(df, 0)) # NAs msg = "Unable to coerce to Series/DataFrame" tm.assert_frame_equal(f(np.nan), o(df, np.nan)) with pytest.raises(ValueError, match=msg): f(ndim_5) # Series def _test_seq(df, idx_ser, col_ser): idx_eq = df.eq(idx_ser, axis=0) col_eq = df.eq(col_ser) idx_ne = df.ne(idx_ser, axis=0) col_ne = df.ne(col_ser) tm.assert_frame_equal(col_eq, df == pd.Series(col_ser)) tm.assert_frame_equal(col_eq, -col_ne) tm.assert_frame_equal(idx_eq, -idx_ne) tm.assert_frame_equal(idx_eq, df.T.eq(idx_ser).T) tm.assert_frame_equal(col_eq, df.eq(list(col_ser))) tm.assert_frame_equal(idx_eq, df.eq(pd.Series(idx_ser), axis=0)) tm.assert_frame_equal(idx_eq, df.eq(list(idx_ser), axis=0)) idx_gt = df.gt(idx_ser, axis=0) col_gt = df.gt(col_ser) idx_le = df.le(idx_ser, axis=0) col_le = df.le(col_ser) tm.assert_frame_equal(col_gt, df > pd.Series(col_ser)) tm.assert_frame_equal(col_gt, -col_le) tm.assert_frame_equal(idx_gt, -idx_le) tm.assert_frame_equal(idx_gt, df.T.gt(idx_ser).T) idx_ge = df.ge(idx_ser, axis=0) col_ge = df.ge(col_ser) idx_lt = df.lt(idx_ser, axis=0) col_lt = df.lt(col_ser) tm.assert_frame_equal(col_ge, df >= pd.Series(col_ser)) tm.assert_frame_equal(col_ge, -col_lt) tm.assert_frame_equal(idx_ge, -idx_lt) tm.assert_frame_equal(idx_ge, df.T.ge(idx_ser).T) idx_ser = pd.Series(np.random.randn(5)) col_ser = pd.Series(np.random.randn(3)) _test_seq(df, idx_ser, col_ser) # list/tuple _test_seq(df, idx_ser.values, col_ser.values) # NA df.loc[0, 0] = np.nan rs = df.eq(df) assert not rs.loc[0, 0] rs = df.ne(df) assert rs.loc[0, 0] rs = df.gt(df) assert not rs.loc[0, 0] rs = df.lt(df) assert not rs.loc[0, 0] rs = df.ge(df) assert not rs.loc[0, 0] rs = df.le(df) assert not rs.loc[0, 0] def test_bool_flex_frame_complex_dtype(self): # complex arr = np.array([np.nan, 1, 6, np.nan]) arr2 = np.array([2j, np.nan, 7, None]) df = pd.DataFrame({"a": arr}) df2 = pd.DataFrame({"a": arr2}) msg = "|".join( [ "'>' not supported between instances of '.*' and 'complex'", r"unorderable types: .*complex\(\)", # PY35 ] ) with pytest.raises(TypeError, match=msg): # inequalities are not well-defined for complex numbers df.gt(df2) with pytest.raises(TypeError, match=msg): # regression test that we get the same behavior for Series df["a"].gt(df2["a"]) with pytest.raises(TypeError, match=msg): # Check that we match numpy behavior here df.values > df2.values rs = df.ne(df2) assert rs.values.all() arr3 = np.array([2j, np.nan, None]) df3 = pd.DataFrame({"a": arr3}) with pytest.raises(TypeError, match=msg): # inequalities are not well-defined for complex numbers df3.gt(2j) with pytest.raises(TypeError, match=msg): # regression test that we get the same behavior for Series df3["a"].gt(2j) with pytest.raises(TypeError, match=msg): # Check that we match numpy behavior here df3.values > 2j def test_bool_flex_frame_object_dtype(self): # corner, dtype=object df1 = pd.DataFrame({"col": ["foo", np.nan, "bar"]}) df2 = pd.DataFrame({"col": ["foo", datetime.now(), "bar"]}) result = df1.ne(df2) exp = pd.DataFrame({"col": [False, True, False]}) tm.assert_frame_equal(result, exp) def test_flex_comparison_nat(self): # GH 15697, GH 22163 df.eq(pd.NaT) should behave like df == pd.NaT, # and _definitely_ not be NaN df = pd.DataFrame([pd.NaT]) result = df == pd.NaT # result.iloc[0, 0] is a np.bool_ object assert result.iloc[0, 0].item() is False result = df.eq(pd.NaT) assert result.iloc[0, 0].item() is False result = df != pd.NaT assert result.iloc[0, 0].item() is True result = df.ne(pd.NaT) assert result.iloc[0, 0].item() is True @pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"]) def test_df_flex_cmp_constant_return_types(self, opname): # GH 15077, non-empty DataFrame df = pd.DataFrame({"x": [1, 2, 3], "y": [1.0, 2.0, 3.0]}) const = 2 result = getattr(df, opname)(const).dtypes.value_counts() tm.assert_series_equal(result, pd.Series([2], index=[np.dtype(bool)])) @pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"]) def test_df_flex_cmp_constant_return_types_empty(self, opname): # GH 15077 empty DataFrame df = pd.DataFrame({"x": [1, 2, 3], "y": [1.0, 2.0, 3.0]}) const = 2 empty = df.iloc[:0] result = getattr(empty, opname)(const).dtypes.value_counts() tm.assert_series_equal(result, pd.Series([2], index=[np.dtype(bool)])) # ------------------------------------------------------------------- # Arithmetic class TestFrameFlexArithmetic: def test_floordiv_axis0(self): # make sure we df.floordiv(ser, axis=0) matches column-wise result arr = np.arange(3) ser = pd.Series(arr) df = pd.DataFrame({"A": ser, "B": ser}) result = df.floordiv(ser, axis=0) expected = pd.DataFrame({col: df[col] // ser for col in df.columns}) tm.assert_frame_equal(result, expected) result2 = df.floordiv(ser.values, axis=0) tm.assert_frame_equal(result2, expected) @pytest.mark.slow @pytest.mark.parametrize("opname", ["floordiv", "pow"]) def test_floordiv_axis0_numexpr_path(self, opname): # case that goes through numexpr and has to fall back to masked_arith_op op = getattr(operator, opname) arr = np.arange(10 ** 6).reshape(100, -1) df = pd.DataFrame(arr) df["C"] = 1.0 ser = df[0] result = getattr(df, opname)(ser, axis=0) expected = pd.DataFrame({col: op(df[col], ser) for col in df.columns}) tm.assert_frame_equal(result, expected) result2 = getattr(df, opname)(ser.values, axis=0) tm.assert_frame_equal(result2, expected) def test_df_add_td64_columnwise(self): # GH 22534 Check that column-wise addition broadcasts correctly dti = pd.date_range("2016-01-01", periods=10) tdi = pd.timedelta_range("1", periods=10) tser = pd.Series(tdi) df = pd.DataFrame({0: dti, 1: tdi}) result = df.add(tser, axis=0) expected = pd.DataFrame({0: dti + tdi, 1: tdi + tdi}) tm.assert_frame_equal(result, expected) def test_df_add_flex_filled_mixed_dtypes(self): # GH 19611 dti = pd.date_range("2016-01-01", periods=3) ser = pd.Series(["1 Day", "NaT", "2 Days"], dtype="timedelta64[ns]") df = pd.DataFrame({"A": dti, "B": ser}) other = pd.DataFrame({"A": ser, "B": ser}) fill = pd.Timedelta(days=1).to_timedelta64() result = df.add(other, fill_value=fill) expected = pd.DataFrame( { "A": pd.Series( ["2016-01-02", "2016-01-03", "2016-01-05"], dtype="datetime64[ns]" ), "B": ser * 2, } ) tm.assert_frame_equal(result, expected) def test_arith_flex_frame( self, all_arithmetic_operators, float_frame, mixed_float_frame ): # one instance of parametrized fixture op = all_arithmetic_operators def f(x, y): # r-versions not in operator-stdlib; get op without "r" and invert if op.startswith("__r"): return getattr(operator, op.replace("__r", "__"))(y, x) return getattr(operator, op)(x, y) result = getattr(float_frame, op)(2 * float_frame) expected = f(float_frame, 2 * float_frame) tm.assert_frame_equal(result, expected) # vs mix float result = getattr(mixed_float_frame, op)(2 * mixed_float_frame) expected = f(mixed_float_frame, 2 * mixed_float_frame) tm.assert_frame_equal(result, expected) _check_mixed_float(result, dtype=dict(C=None)) @pytest.mark.parametrize("op", ["__add__", "__sub__", "__mul__"]) def test_arith_flex_frame_mixed( self, op, int_frame, mixed_int_frame, mixed_float_frame ): f = getattr(operator, op) # vs mix int result = getattr(mixed_int_frame, op)(2 + mixed_int_frame) expected = f(mixed_int_frame, 2 + mixed_int_frame) # no overflow in the uint dtype = None if op in ["__sub__"]: dtype = dict(B="uint64", C=None) elif op in ["__add__", "__mul__"]: dtype = dict(C=None) tm.assert_frame_equal(result, expected) _check_mixed_int(result, dtype=dtype) # vs mix float result = getattr(mixed_float_frame, op)(2 * mixed_float_frame) expected = f(mixed_float_frame, 2 * mixed_float_frame) tm.assert_frame_equal(result, expected) _check_mixed_float(result, dtype=dict(C=None)) # vs plain int result = getattr(int_frame, op)(2 * int_frame) expected = f(int_frame, 2 * int_frame) tm.assert_frame_equal(result, expected) def test_arith_flex_frame_raise(self, all_arithmetic_operators, float_frame): # one instance of parametrized fixture op = all_arithmetic_operators # Check that arrays with dim >= 3 raise for dim in range(3, 6): arr = np.ones((1,) * dim) msg = "Unable to coerce to Series/DataFrame" with pytest.raises(ValueError, match=msg): getattr(float_frame, op)(arr) def test_arith_flex_frame_corner(self, float_frame): const_add = float_frame.add(1) tm.assert_frame_equal(const_add, float_frame + 1) # corner cases result = float_frame.add(float_frame[:0]) tm.assert_frame_equal(result, float_frame * np.nan) result = float_frame[:0].add(float_frame) tm.assert_frame_equal(result, float_frame * np.nan) with pytest.raises(NotImplementedError, match="fill_value"): float_frame.add(float_frame.iloc[0], fill_value=3) with pytest.raises(NotImplementedError, match="fill_value"): float_frame.add(float_frame.iloc[0], axis="index", fill_value=3) def test_arith_flex_series(self, simple_frame): df = simple_frame row = df.xs("a") col = df["two"] # after arithmetic refactor, add truediv here ops = ["add", "sub", "mul", "mod"] for op in ops: f = getattr(df, op) op = getattr(operator, op) tm.assert_frame_equal(f(row), op(df, row)) tm.assert_frame_equal(f(col, axis=0), op(df.T, col).T) # special case for some reason tm.assert_frame_equal(df.add(row, axis=None), df + row) # cases which will be refactored after big arithmetic refactor tm.assert_frame_equal(df.div(row), df / row) tm.assert_frame_equal(df.div(col, axis=0), (df.T / col).T) # broadcasting issue in GH 7325 df = pd.DataFrame(np.arange(3 * 2).reshape((3, 2)), dtype="int64") expected = pd.DataFrame([[np.nan, np.inf], [1.0, 1.5], [1.0, 1.25]]) result = df.div(df[0], axis="index") tm.assert_frame_equal(result, expected) df = pd.DataFrame(np.arange(3 * 2).reshape((3, 2)), dtype="float64") expected = pd.DataFrame([[np.nan, np.inf], [1.0, 1.5], [1.0, 1.25]]) result = df.div(df[0], axis="index") tm.assert_frame_equal(result, expected) def test_arith_flex_zero_len_raises(self): # GH 19522 passing fill_value to frame flex arith methods should # raise even in the zero-length special cases ser_len0 = pd.Series([], dtype=object) df_len0 = pd.DataFrame(columns=["A", "B"]) df = pd.DataFrame([[1, 2], [3, 4]], columns=["A", "B"]) with pytest.raises(NotImplementedError, match="fill_value"): df.add(ser_len0, fill_value="E") with pytest.raises(NotImplementedError, match="fill_value"): df_len0.sub(df["A"], axis=None, fill_value=3) class TestFrameArithmetic: def test_td64_op_nat_casting(self): # Make sure we don't accidentally treat timedelta64(NaT) as datetime64 # when calling dispatch_to_series in DataFrame arithmetic ser = pd.Series(["NaT", "NaT"], dtype="timedelta64[ns]") df = pd.DataFrame([[1, 2], [3, 4]]) result = df * ser expected = pd.DataFrame({0: ser, 1: ser}) tm.assert_frame_equal(result, expected) def test_df_add_2d_array_rowlike_broadcasts(self): # GH#23000 arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) rowlike = arr[[1], :] # shape --> (1, ncols) assert rowlike.shape == (1, df.shape[1]) expected = pd.DataFrame( [[2, 4], [4, 6], [6, 8]], columns=df.columns, index=df.index, # specify dtype explicitly to avoid failing # on 32bit builds dtype=arr.dtype, ) result = df + rowlike tm.assert_frame_equal(result, expected) result = rowlike + df tm.assert_frame_equal(result, expected) def test_df_add_2d_array_collike_broadcasts(self): # GH#23000 arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) collike = arr[:, [1]] # shape --> (nrows, 1) assert collike.shape == (df.shape[0], 1) expected = pd.DataFrame( [[1, 2], [5, 6], [9, 10]], columns=df.columns, index=df.index, # specify dtype explicitly to avoid failing # on 32bit builds dtype=arr.dtype, ) result = df + collike tm.assert_frame_equal(result, expected) result = collike + df tm.assert_frame_equal(result, expected) def test_df_arith_2d_array_rowlike_broadcasts(self, all_arithmetic_operators): # GH#23000 opname = all_arithmetic_operators arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) rowlike = arr[[1], :] # shape --> (1, ncols) assert rowlike.shape == (1, df.shape[1]) exvals = [ getattr(df.loc["A"], opname)(rowlike.squeeze()), getattr(df.loc["B"], opname)(rowlike.squeeze()), getattr(df.loc["C"], opname)(rowlike.squeeze()), ] expected = pd.DataFrame(exvals, columns=df.columns, index=df.index) if opname in ["__rmod__", "__rfloordiv__"]: # exvals will have dtypes [f8, i8, i8] so expected will be # all-f8, but the DataFrame operation will return mixed dtypes # use exvals[-1].dtype instead of "i8" for compat with 32-bit # systems/pythons expected[False] = expected[False].astype(exvals[-1].dtype) result = getattr(df, opname)(rowlike) tm.assert_frame_equal(result, expected) def test_df_arith_2d_array_collike_broadcasts(self, all_arithmetic_operators): # GH#23000 opname = all_arithmetic_operators arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) collike = arr[:, [1]] # shape --> (nrows, 1) assert collike.shape == (df.shape[0], 1) exvals = { True: getattr(df[True], opname)(collike.squeeze()), False: getattr(df[False], opname)(collike.squeeze()), } dtype = None if opname in ["__rmod__", "__rfloordiv__"]: # Series ops may return mixed int/float dtypes in cases where # DataFrame op will return all-float. So we upcast `expected` dtype = np.common_type(*[x.values for x in exvals.values()]) expected = pd.DataFrame(exvals, columns=df.columns, index=df.index, dtype=dtype) result = getattr(df, opname)(collike) tm.assert_frame_equal(result, expected) def test_df_bool_mul_int(self): # GH 22047, GH 22163 multiplication by 1 should result in int dtype, # not object dtype df = pd.DataFrame([[False, True], [False, False]]) result = df * 1 # On appveyor this comes back as np.int32 instead of np.int64, # so we check dtype.kind instead of just dtype kinds = result.dtypes.apply(lambda x: x.kind) assert (kinds == "i").all() result = 1 * df kinds = result.dtypes.apply(lambda x: x.kind) assert (kinds == "i").all() def test_arith_mixed(self): left = pd.DataFrame({"A": ["a", "b", "c"], "B": [1, 2, 3]}) result = left + left expected = pd.DataFrame({"A": ["aa", "bb", "cc"], "B": [2, 4, 6]}) tm.assert_frame_equal(result, expected) def test_arith_getitem_commute(self): df = pd.DataFrame({"A": [1.1, 3.3], "B": [2.5, -3.9]}) def _test_op(df, op): result = op(df, 1) if not df.columns.is_unique: raise ValueError("Only unique columns supported by this test") for col in result.columns: tm.assert_series_equal(result[col], op(df[col], 1)) _test_op(df, operator.add) _test_op(df, operator.sub) _test_op(df, operator.mul) _test_op(df, operator.truediv) _test_op(df, operator.floordiv) _test_op(df, operator.pow) _test_op(df, lambda x, y: y + x) _test_op(df, lambda x, y: y - x) _test_op(df, lambda x, y: y * x) _test_op(df, lambda x, y: y / x) _test_op(df, lambda x, y: y ** x) _test_op(df, lambda x, y: x + y) _test_op(df, lambda x, y: x - y) _test_op(df, lambda x, y: x * y) _test_op(df, lambda x, y: x / y) _test_op(df, lambda x, y: x ** y) @pytest.mark.parametrize( "values", [[1, 2], (1, 2), np.array([1, 2]), range(1, 3), deque([1, 2])] ) def test_arith_alignment_non_pandas_object(self, values): # GH#17901 df = pd.DataFrame({"A": [1, 1], "B": [1, 1]}) expected = pd.DataFrame({"A": [2, 2], "B": [3, 3]}) result = df + values tm.assert_frame_equal(result, expected) def test_arith_non_pandas_object(self): df = pd.DataFrame( np.arange(1, 10, dtype="f8").reshape(3, 3), columns=["one", "two", "three"], index=["a", "b", "c"], ) val1 = df.xs("a").values added = pd.DataFrame(df.values + val1, index=df.index, columns=df.columns) tm.assert_frame_equal(df + val1, added) added = pd.DataFrame((df.values.T + val1).T, index=df.index, columns=df.columns) tm.assert_frame_equal(df.add(val1, axis=0), added) val2 = list(df["two"]) added = pd.DataFrame(df.values + val2, index=df.index, columns=df.columns) tm.assert_frame_equal(df + val2, added) added = pd.DataFrame((df.values.T + val2).T, index=df.index, columns=df.columns) tm.assert_frame_equal(df.add(val2, axis="index"), added) val3 = np.random.rand(*df.shape) added = pd.DataFrame(df.values + val3, index=df.index, columns=df.columns) tm.assert_frame_equal(df.add(val3), added) def test_operations_with_interval_categories_index(self, all_arithmetic_operators): # GH#27415 op = all_arithmetic_operators ind = pd.CategoricalIndex(pd.interval_range(start=0.0, end=2.0)) data = [1, 2] df = pd.DataFrame([data], columns=ind) num = 10 result = getattr(df, op)(num) expected = pd.DataFrame([[getattr(n, op)(num) for n in data]], columns=ind) tm.assert_frame_equal(result, expected) def test_frame_with_frame_reindex(self): # GH#31623 df = pd.DataFrame( { "foo": [pd.Timestamp("2019"), pd.Timestamp("2020")], "bar": [pd.Timestamp("2018"), pd.Timestamp("2021")], }, columns=["foo", "bar"], ) df2 = df[["foo"]] result = df - df2 expected = pd.DataFrame( {"foo": [pd.Timedelta(0), pd.Timedelta(0)], "bar": [np.nan, np.nan]}, columns=["bar", "foo"], ) tm.assert_frame_equal(result, expected) def test_frame_with_zero_len_series_corner_cases(): # GH#28600 # easy all-float case df = pd.DataFrame(np.random.randn(6).reshape(3, 2), columns=["A", "B"]) ser = pd.Series(dtype=np.float64) result = df + ser expected = pd.DataFrame(df.values * np.nan, columns=df.columns) tm.assert_frame_equal(result, expected) result = df == ser expected =
pd.DataFrame(False, index=df.index, columns=df.columns)
pandas.DataFrame
import numpy as np import jinja2 import bokeh import pandas as pd from astropy.table import Table import bokeh import bokeh.plotting as bk import bokeh.palettes as bp from bokeh.models import TapTool, HelpTool, OpenURL from bokeh.models import ColumnDataSource from ..plots.fiber import plot_fibers_focalplane, plot_fibernums # from ..plots.core import get_colors def plot_camfib_focalplane(cds, attribute, cameras, percentiles={}, zmaxs={}, zmins={}, titles={}, tools='pan,box_zoom,reset'): ''' ARGS: cds : ColumnDataSource of data attribute : string corresponding to column name in DATA cameras : list of string representing unique camera values Options: percentiles : dictionary of cameras corresponding to (min,max) to clip data for histogram zmaxs : dictionary of cameras corresponding to hardcoded max values to clip data for histogram zmins : dictionary of cameras corresponding to hardcoded min values to clip data for histogram titles : dictionary of titles per camera for a group of camfiber plots where key-value pairs represent a camera-attribute plot title tools, tooltips : supported plot interactivity features ''' if attribute not in list(cds.data.keys()): raise ValueError('{} not in cds.data.keys'.format(attribute)) metric = np.array(cds.data.get(attribute), copy=True) #- for hover tool attr_formatted_str = "@" + attribute + '{(0.00 a)}' tooltips = [("FIBER", "@FIBER"), ("(X, Y)", "(@X, @Y)"), (attribute, attr_formatted_str)] figs_list = [] hfigs_list = [] for i in range(len(cameras)): c = cameras[i] first_x_range = bokeh.models.Range1d(-420, 420) first_y_range = bokeh.models.Range1d(-420, 420) #- shared ranges to support linked features if not figs_list: fig_x_range = first_x_range fig_y_range = first_y_range else: fig_x_range = figs_list[0].x_range fig_y_range = figs_list[0].y_range colorbar = True # adjusts for outliers on the scale of the camera in_cam = np.char.upper(np.array(cds.data['CAM']).astype(str)) == c.upper() cam_metric = metric[in_cam] pmin, pmax = np.percentile(cam_metric, (2.5, 97.5)) hist_x_range = (pmin * 0.99, pmax * 1.01) fig, hfig = plot_fibers_focalplane(cds, attribute, cam=c, percentile=percentiles.get(c), zmin=zmins.get(c), zmax=zmaxs.get(c), title=titles.get(c, {}).get(attribute), tools=tools, hist_x_range=hist_x_range, fig_x_range=fig_x_range, fig_y_range=fig_y_range, colorbar=colorbar) # Add HelpTool redirection to the DESI wiki. fig.add_tools(HelpTool(help_tooltip='See the DESI wiki for details\non Focalplane QA', redirect='https://desi.lbl.gov/trac/wiki/DESIOperations/NightWatch/NightWatchDescription#Focalplane')) figs_list.append(fig) hfigs_list.append(hfig) return figs_list, hfigs_list def plot_camfib_fot(cds, attribute, cameras, percentiles={}, zmaxs={}, zmins={}, titles={}, tools='pan,box_zoom,reset'): ''' ARGS: cds : ColumnDataSource of data attribute : string corresponding to column name in DATA cameras : list of string representing unique camera values Options: percentiles : dictionary of cameras corresponding to (min,max) to clip data for histogram zmaxs : dictionary of cameras corresponding to hardcoded max values to clip data for histogram zmins : dictionary of cameras corresponding to hardcoded min values to clip data for histogram titles : dictionary of titles per camera for a group of camfiber plots where key-value pairs represent a camera-attribute plot title tools, tooltips : supported plot interactivity features ''' if attribute not in list(cds.data.keys()): raise ValueError('{} not in cds.data.keys'.format(attribute)) metric = np.array(cds.data.get(attribute), copy=True) #- for hover tool attr_formatted_str = "@" + attribute + '{(0.00 a)}' tooltips = [("FIBER", "@FIBER"), ("(X, Y)", "(@X, @Y)"), (attribute, attr_formatted_str)] figs_list = [] for i in range(len(cameras)): c = cameras[i] first_x_range = bokeh.models.Range1d(-420, 420) first_y_range = bokeh.models.Range1d(-420, 420) #- shared ranges to support linked features if not figs_list: fig_x_range = first_x_range fig_y_range = first_y_range else: fig_x_range = figs_list[0].x_range fig_y_range = figs_list[0].y_range # adjusts for outliers on the scale of the camera in_cam = np.char.upper(np.array(cds.data['CAM']).astype(str)) == c.upper() cam_metric = metric[in_cam] fig, hfig = plot_fibers_focalplane(cds, attribute, cam=c, percentile=percentiles.get(c), zmin=zmins.get(c), zmax=zmaxs.get(c), title=titles.get(c, {}).get(attribute), palette = list(np.flip(bp.YlGnBu[5])), tools=tools, fig_x_range=fig_x_range, fig_y_range=fig_y_range, colorbar=False, on_target=True) # Add HelpTool redirection to the DESI wiki. fig.add_tools(HelpTool(help_tooltip='See the DESI wiki for details\non Fiber positioning', redirect='https://desi.lbl.gov/trac/wiki/DESIOperations/NightWatch/NightWatchDescription#Positioning')) figs_list.append(fig) return figs_list def plot_camfib_posacc(pcd,attribute,percentiles={}, tools='pan,box_zoom,reset'): figs_list = [] hfigs_list = [] metric = pd.DataFrame(pcd.data.get(attribute)) pmin, pmax = np.percentile(metric, (2.5, 97.5)) if attribute == 'BLIND': disabled_data = np.array(pd.DataFrame(pcd.data.get('DISABLED_0'))) disabled = disabled_data[disabled_data == True] metric = np.array(metric)[disabled_data == False] metric = metric[(metric>0) & (metric<200)] pcd_data = pd.DataFrame(pcd.data) pcd_data = pcd_data[pcd_data['BLIND']>0] pcd = ColumnDataSource(data=pcd_data) title = "Blind Move: Max {:.2f}um; RMS {:.2f}um; Disabled {}".format(np.max(list(metric)),np.sqrt(np.square(list(metric)).mean()),len(disabled)) zmax = 200 elif attribute == 'FINAL_MOVE': disabled_data = np.array(pd.DataFrame(pcd.data.get('DISABLED_1'))) disabled = disabled_data[disabled_data == True] metric = np.array(metric)[disabled_data == False] metric = metric[(metric>0) & (metric<50)] pcd_data =
pd.DataFrame(pcd.data)
pandas.DataFrame
from __future__ import division import pytest import numpy as np from datetime import timedelta from pandas import ( Interval, IntervalIndex, Index, isna, notna, interval_range, Timestamp, Timedelta, compat, date_range, timedelta_range, DateOffset) from pandas.compat import lzip from pandas.tseries.offsets import Day from pandas._libs.interval import IntervalTree from pandas.tests.indexes.common import Base import pandas.util.testing as tm import pandas as pd @pytest.fixture(scope='class', params=['left', 'right', 'both', 'neither']) def closed(request): return request.param @pytest.fixture(scope='class', params=[None, 'foo']) def name(request): return request.param class TestIntervalIndex(Base): _holder = IntervalIndex def setup_method(self, method): self.index = IntervalIndex.from_arrays([0, 1], [1, 2]) self.index_with_nan = IntervalIndex.from_tuples( [(0, 1), np.nan, (1, 2)]) self.indices = dict(intervalIndex=tm.makeIntervalIndex(10)) def create_index(self, closed='right'): return IntervalIndex.from_breaks(range(11), closed=closed) def create_index_with_nan(self, closed='right'): mask = [True, False] + [True] * 8 return IntervalIndex.from_arrays( np.where(mask, np.arange(10), np.nan), np.where(mask, np.arange(1, 11), np.nan), closed=closed) def test_constructors(self, closed, name): left, right = Index([0, 1, 2, 3]), Index([1, 2, 3, 4]) ivs = [Interval(l, r, closed=closed) for l, r in lzip(left, right)] expected = IntervalIndex._simple_new( left=left, right=right, closed=closed, name=name) result = IntervalIndex(ivs, name=name)
tm.assert_index_equal(result, expected)
pandas.util.testing.assert_index_equal
import numpy as np import pytest from pandas import ( DataFrame, Index, MultiIndex, Series, Timestamp, date_range, to_datetime, ) import pandas._testing as tm import pandas.tseries.offsets as offsets class TestRollingTS: # rolling time-series friendly # xref GH13327 def setup_method(self, method): self.regular = DataFrame( {"A": date_range("20130101", periods=5, freq="s"), "B": range(5)} ).set_index("A") self.ragged = DataFrame({"B": range(5)}) self.ragged.index = [ Timestamp("20130101 09:00:00"), Timestamp("20130101 09:00:02"), Timestamp("20130101 09:00:03"), Timestamp("20130101 09:00:05"), Timestamp("20130101 09:00:06"), ] def test_doc_string(self): df = DataFrame( {"B": [0, 1, 2, np.nan, 4]}, index=[ Timestamp("20130101 09:00:00"), Timestamp("20130101 09:00:02"), Timestamp("20130101 09:00:03"), Timestamp("20130101 09:00:05"), Timestamp("20130101 09:00:06"), ], ) df df.rolling("2s").sum() def test_invalid_window_non_int(self): # not a valid freq msg = "passed window foobar is not compatible with a datetimelike index" with pytest.raises(ValueError, match=msg): self.regular.rolling(window="foobar") # not a datetimelike index msg = "window must be an integer" with pytest.raises(ValueError, match=msg): self.regular.reset_index().rolling(window="foobar") @pytest.mark.parametrize("freq", ["2MS", offsets.MonthBegin(2)]) def test_invalid_window_nonfixed(self, freq): # non-fixed freqs msg = "\\<2 \\* MonthBegins\\> is a non-fixed frequency" with pytest.raises(ValueError, match=msg): self.regular.rolling(window=freq) @pytest.mark.parametrize("freq", ["1D", offsets.Day(2), "2ms"]) def test_valid_window(self, freq): self.regular.rolling(window=freq) @pytest.mark.parametrize("minp", [1.0, "foo", np.array([1, 2, 3])]) def test_invalid_minp(self, minp): # non-integer min_periods msg = ( r"local variable 'minp' referenced before assignment|" "min_periods must be an integer" ) with pytest.raises(ValueError, match=msg): self.regular.rolling(window="1D", min_periods=minp) def test_invalid_center_datetimelike(self): # center is not implemented msg = "center is not implemented for datetimelike and offset based windows" with pytest.raises(NotImplementedError, match=msg): self.regular.rolling(window="1D", center=True) def test_on(self): df = self.regular # not a valid column msg = ( r"invalid on specified as foobar, must be a column " "\\(of DataFrame\\), an Index or None" ) with pytest.raises(ValueError, match=msg): df.rolling(window="2s", on="foobar") # column is valid df = df.copy() df["C"] = date_range("20130101", periods=len(df)) df.rolling(window="2d", on="C").sum() # invalid columns msg = "window must be an integer" with pytest.raises(ValueError, match=msg): df.rolling(window="2d", on="B") # ok even though on non-selected df.rolling(window="2d", on="C").B.sum() def test_monotonic_on(self): # on/index must be monotonic df = DataFrame( {"A": date_range("20130101", periods=5, freq="s"), "B": range(5)} ) assert df.A.is_monotonic df.rolling("2s", on="A").sum() df = df.set_index("A") assert df.index.is_monotonic df.rolling("2s").sum() def test_non_monotonic_on(self): # GH 19248 df = DataFrame( {"A": date_range("20130101", periods=5, freq="s"), "B": range(5)} ) df = df.set_index("A") non_monotonic_index = df.index.to_list() non_monotonic_index[0] = non_monotonic_index[3] df.index = non_monotonic_index assert not df.index.is_monotonic msg = "index must be monotonic" with pytest.raises(ValueError, match=msg): df.rolling("2s").sum() df = df.reset_index() msg = ( r"invalid on specified as A, must be a column " "\\(of DataFrame\\), an Index or None" ) with pytest.raises(ValueError, match=msg): df.rolling("2s", on="A").sum() def test_frame_on(self): df = DataFrame( {"B": range(5), "C": date_range("20130101 09:00:00", periods=5, freq="3s")} ) df["A"] = [ Timestamp("20130101 09:00:00"), Timestamp("20130101 09:00:02"), Timestamp("20130101 09:00:03"), Timestamp("20130101 09:00:05"), Timestamp("20130101 09:00:06"), ] # we are doing simulating using 'on' expected = df.set_index("A").rolling("2s").B.sum().reset_index(drop=True) result = df.rolling("2s", on="A").B.sum() tm.assert_series_equal(result, expected) # test as a frame # we should be ignoring the 'on' as an aggregation column # note that the expected is setting, computing, and resetting # so the columns need to be switched compared # to the actual result where they are ordered as in the # original expected = ( df.set_index("A").rolling("2s")[["B"]].sum().reset_index()[["B", "A"]] ) result = df.rolling("2s", on="A")[["B"]].sum() tm.assert_frame_equal(result, expected) def test_frame_on2(self): # using multiple aggregation columns df = DataFrame( { "A": [0, 1, 2, 3, 4], "B": [0, 1, 2, np.nan, 4], "C": Index( [ Timestamp("20130101 09:00:00"), Timestamp("20130101 09:00:02"), Timestamp("20130101 09:00:03"), Timestamp("20130101 09:00:05"), Timestamp("20130101 09:00:06"), ] ), }, columns=["A", "C", "B"], ) expected1 = DataFrame( {"A": [0.0, 1, 3, 3, 7], "B": [0, 1, 3, np.nan, 4], "C": df["C"]}, columns=["A", "C", "B"], ) result = df.rolling("2s", on="C").sum() expected = expected1 tm.assert_frame_equal(result, expected) expected = Series([0, 1, 3, np.nan, 4], name="B") result = df.rolling("2s", on="C").B.sum() tm.assert_series_equal(result, expected) expected = expected1[["A", "B", "C"]] result = df.rolling("2s", on="C")[["A", "B", "C"]].sum() tm.assert_frame_equal(result, expected) def test_basic_regular(self): df = self.regular.copy() df.index = date_range("20130101", periods=5, freq="D") expected = df.rolling(window=1, min_periods=1).sum() result = df.rolling(window="1D").sum() tm.assert_frame_equal(result, expected) df.index = date_range("20130101", periods=5, freq="2D") expected = df.rolling(window=1, min_periods=1).sum() result = df.rolling(window="2D", min_periods=1).sum() tm.assert_frame_equal(result, expected) expected = df.rolling(window=1, min_periods=1).sum() result = df.rolling(window="2D", min_periods=1).sum() tm.assert_frame_equal(result, expected) expected = df.rolling(window=1).sum() result = df.rolling(window="2D").sum() tm.assert_frame_equal(result, expected) def test_min_periods(self): # compare for min_periods df = self.regular # these slightly different expected = df.rolling(2, min_periods=1).sum() result = df.rolling("2s").sum() tm.assert_frame_equal(result, expected) expected = df.rolling(2, min_periods=1).sum() result = df.rolling("2s", min_periods=1).sum() tm.assert_frame_equal(result, expected) def test_closed(self): # xref GH13965 df = DataFrame( {"A": [1] * 5}, index=[ Timestamp("20130101 09:00:01"), Timestamp("20130101 09:00:02"), Timestamp("20130101 09:00:03"), Timestamp("20130101 09:00:04"), Timestamp("20130101 09:00:06"), ], ) # closed must be 'right', 'left', 'both', 'neither' msg = "closed must be 'right', 'left', 'both' or 'neither'" with pytest.raises(ValueError, match=msg): self.regular.rolling(window="2s", closed="blabla") expected = df.copy() expected["A"] = [1.0, 2, 2, 2, 1] result = df.rolling("2s", closed="right").sum() tm.assert_frame_equal(result, expected) # default should be 'right' result = df.rolling("2s").sum() tm.assert_frame_equal(result, expected) expected = df.copy() expected["A"] = [1.0, 2, 3, 3, 2] result = df.rolling("2s", closed="both").sum() tm.assert_frame_equal(result, expected) expected = df.copy() expected["A"] = [np.nan, 1.0, 2, 2, 1] result = df.rolling("2s", closed="left").sum() tm.assert_frame_equal(result, expected) expected = df.copy() expected["A"] = [np.nan, 1.0, 1, 1, np.nan] result = df.rolling("2s", closed="neither").sum() tm.assert_frame_equal(result, expected) def test_ragged_sum(self): df = self.ragged result = df.rolling(window="1s", min_periods=1).sum() expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=1).sum() expected = df.copy() expected["B"] = [0.0, 1, 3, 3, 7] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=2).sum() expected = df.copy() expected["B"] = [np.nan, np.nan, 3, np.nan, 7] tm.assert_frame_equal(result, expected) result = df.rolling(window="3s", min_periods=1).sum() expected = df.copy() expected["B"] = [0.0, 1, 3, 5, 7] tm.assert_frame_equal(result, expected) result = df.rolling(window="3s").sum() expected = df.copy() expected["B"] = [0.0, 1, 3, 5, 7] tm.assert_frame_equal(result, expected) result = df.rolling(window="4s", min_periods=1).sum() expected = df.copy() expected["B"] = [0.0, 1, 3, 6, 9] tm.assert_frame_equal(result, expected) result = df.rolling(window="4s", min_periods=3).sum() expected = df.copy() expected["B"] = [np.nan, np.nan, 3, 6, 9] tm.assert_frame_equal(result, expected) result = df.rolling(window="5s", min_periods=1).sum() expected = df.copy() expected["B"] = [0.0, 1, 3, 6, 10] tm.assert_frame_equal(result, expected) def test_ragged_mean(self): df = self.ragged result = df.rolling(window="1s", min_periods=1).mean() expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=1).mean() expected = df.copy() expected["B"] = [0.0, 1, 1.5, 3.0, 3.5] tm.assert_frame_equal(result, expected) def test_ragged_median(self): df = self.ragged result = df.rolling(window="1s", min_periods=1).median() expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=1).median() expected = df.copy() expected["B"] = [0.0, 1, 1.5, 3.0, 3.5] tm.assert_frame_equal(result, expected) def test_ragged_quantile(self): df = self.ragged result = df.rolling(window="1s", min_periods=1).quantile(0.5) expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=1).quantile(0.5) expected = df.copy() expected["B"] = [0.0, 1, 1.5, 3.0, 3.5] tm.assert_frame_equal(result, expected) def test_ragged_std(self): df = self.ragged result = df.rolling(window="1s", min_periods=1).std(ddof=0) expected = df.copy() expected["B"] = [0.0] * 5 tm.assert_frame_equal(result, expected) result = df.rolling(window="1s", min_periods=1).std(ddof=1) expected = df.copy() expected["B"] = [np.nan] * 5 tm.assert_frame_equal(result, expected) result = df.rolling(window="3s", min_periods=1).std(ddof=0) expected = df.copy() expected["B"] = [0.0] + [0.5] * 4 tm.assert_frame_equal(result, expected) result = df.rolling(window="5s", min_periods=1).std(ddof=1) expected = df.copy() expected["B"] = [np.nan, 0.707107, 1.0, 1.0, 1.290994] tm.assert_frame_equal(result, expected) def test_ragged_var(self): df = self.ragged result = df.rolling(window="1s", min_periods=1).var(ddof=0) expected = df.copy() expected["B"] = [0.0] * 5 tm.assert_frame_equal(result, expected) result = df.rolling(window="1s", min_periods=1).var(ddof=1) expected = df.copy() expected["B"] = [np.nan] * 5 tm.assert_frame_equal(result, expected) result = df.rolling(window="3s", min_periods=1).var(ddof=0) expected = df.copy() expected["B"] = [0.0] + [0.25] * 4 tm.assert_frame_equal(result, expected) result = df.rolling(window="5s", min_periods=1).var(ddof=1) expected = df.copy() expected["B"] = [np.nan, 0.5, 1.0, 1.0, 1 + 2 / 3.0] tm.assert_frame_equal(result, expected) def test_ragged_skew(self): df = self.ragged result = df.rolling(window="3s", min_periods=1).skew() expected = df.copy() expected["B"] = [np.nan] * 5 tm.assert_frame_equal(result, expected) result = df.rolling(window="5s", min_periods=1).skew() expected = df.copy() expected["B"] = [np.nan] * 2 + [0.0, 0.0, 0.0] tm.assert_frame_equal(result, expected) def test_ragged_kurt(self): df = self.ragged result = df.rolling(window="3s", min_periods=1).kurt() expected = df.copy() expected["B"] = [np.nan] * 5 tm.assert_frame_equal(result, expected) result = df.rolling(window="5s", min_periods=1).kurt() expected = df.copy() expected["B"] = [np.nan] * 4 + [-1.2] tm.assert_frame_equal(result, expected) def test_ragged_count(self): df = self.ragged result = df.rolling(window="1s", min_periods=1).count() expected = df.copy() expected["B"] = [1.0, 1, 1, 1, 1] tm.assert_frame_equal(result, expected) df = self.ragged result = df.rolling(window="1s").count() tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=1).count() expected = df.copy() expected["B"] = [1.0, 1, 2, 1, 2] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=2).count() expected = df.copy() expected["B"] = [np.nan, np.nan, 2, np.nan, 2] tm.assert_frame_equal(result, expected) def test_regular_min(self): df = DataFrame( {"A": date_range("20130101", periods=5, freq="s"), "B": [0.0, 1, 2, 3, 4]} ).set_index("A") result = df.rolling("1s").min() expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) df = DataFrame( {"A":
date_range("20130101", periods=5, freq="s")
pandas.date_range
import os import copy import pytest import numpy as np import pandas as pd import pyarrow as pa from pyarrow import feather as pf from pyarrow import parquet as pq from time_series_transform.io.base import io_base from time_series_transform.io.numpy import ( from_numpy, to_numpy ) from time_series_transform.io.pandas import ( from_pandas, to_pandas ) from time_series_transform.io.arrow import ( from_arrow_record_batch, from_arrow_table, to_arrow_record_batch, to_arrow_table ) from time_series_transform.transform_core_api.base import ( Time_Series_Data, Time_Series_Data_Collection ) from time_series_transform.io.parquet import ( from_parquet, to_parquet ) from time_series_transform.io.feather import ( from_feather, to_feather ) @pytest.fixture(scope = 'class') def dictList_single(): return { 'time': [1, 2], 'data': [1, 2] } @pytest.fixture(scope = 'class') def dictList_collection(): return { 'time': [1,2,1,3], 'data':[1,2,1,2], 'category':[1,1,2,2] } @pytest.fixture(scope = 'class') def expect_single_expandTime(): return { 'data_1':[1], 'data_2':[2] } @pytest.fixture(scope = 'class') def expect_single_seperateLabel(): return [{ 'time': [1, 2], 'data': [1, 2] }, { 'data_label': [1, 2] }] @pytest.fixture(scope = 'class') def expect_collection_seperateLabel(): return [{ 'time': [1,2,1,3], 'data':[1,2,1,2], 'category':[1,1,2,2] }, { 'data_label':[1,2,1,2] } ] @pytest.fixture(scope = 'class') def expect_collection_expandTime(): return { 'pad': { 'data_1':[1,1], 'data_2':[2,np.nan], 'data_3':[np.nan,2], 'category':[1,2] }, 'remove': { 'data_1':[1,1], 'category':[1,2] } } @pytest.fixture(scope = 'class') def expect_collection_expandCategory(): return { 'pad': { 'time':[1,2,3], 'data_1':[1,2,np.nan], 'data_2':[1,np.nan,2] }, 'remove': { 'time':[1], 'data_1':[1], 'data_2':[1] } } @pytest.fixture(scope = 'class') def expect_collection_expandFull(): return { 'pad': { 'data_1_1':[1], 'data_2_1':[1], 'data_1_2':[2], 'data_2_2':[np.nan], 'data_1_3':[np.nan], 'data_2_3':[2] }, 'remove': { 'data_1_1':[1], 'data_2_1':[1], } } @pytest.fixture(scope = 'class') def expect_collection_noExpand(): return { 'ignore':{ 'time': [1,2,1,3], 'data':[1,2,1,2], 'category':[1,1,2,2] }, 'pad': { 'time': [1,2,3,1,2,3], 'data':[1,2,np.nan,1,np.nan,2], 'category':[1,1,1,2,2,2] }, 'remove': { 'time': [1,1], 'data':[1,1], 'category':[1,2] } } @pytest.fixture(scope = 'class') def seq_single(): return { 'time':[1,2,3], 'data':[[1,2,3],[11,12,13],[21,22,23]] } @pytest.fixture(scope = 'class') def seq_collection(): return { 'time':[1,2,1,2], 'data':[[1,2],[1,2],[2,2],[2,2]], 'category':[1,1,2,2] } @pytest.fixture(scope = 'class') def expect_seq_collection(): return { 'data_1_1':[[1,2]], 'data_2_1':[[2,2]], 'data_1_2':[[1,2]], 'data_2_2':[[2,2]] } class Test_base_io: def test_base_io_from_single(self, dictList_single,expect_single_expandTime): ExpandTimeAns = expect_single_expandTime data = dictList_single ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') io = io_base(ts, 'time', None) timeSeries = io.from_single(False) for i in timeSeries: assert timeSeries[i].tolist() == data[i] timeSeries = io.from_single(True) for i in timeSeries: assert timeSeries[i] == ExpandTimeAns[i] def test_base_io_to_single(self, dictList_single): data = dictList_single ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') io = io_base(data, 'time', None) assert io.to_single() == ts def test_base_io_from_collection_expandTime(self, dictList_collection,expect_collection_expandTime): noChange = dictList_collection expand = expect_collection_expandTime fullExpand = [] data = dictList_collection ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') ts = ts.set_data(data['category'],'category') tsc = Time_Series_Data_Collection(ts,'time','category') io = io_base(tsc, 'time', 'category') with pytest.raises(ValueError): timeSeries = io.from_collection(False,True,'ignore') timeSeries = io.from_collection(False,True,'pad') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['pad'][i]) timeSeries = io.from_collection(False,True,'remove') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['remove'][i]) def test_base_io_from_collection_expandCategory(self, dictList_collection,expect_collection_expandCategory): noChange = dictList_collection expand = expect_collection_expandCategory fullExpand = [] data = dictList_collection ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') ts = ts.set_data(data['category'],'category') tsc = Time_Series_Data_Collection(ts,'time','category') io = io_base(tsc, 'time', 'category') with pytest.raises(ValueError): timeSeries = io.from_collection(True,False,'ignore') timeSeries = io.from_collection(True,False,'pad') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['pad'][i]) timeSeries = io.from_collection(True,False,'remove') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['remove'][i]) def test_base_io_from_collection_expandFull(self, dictList_collection,expect_collection_expandFull): noChange = dictList_collection expand = expect_collection_expandFull fullExpand = [] data = dictList_collection ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') ts = ts.set_data(data['category'],'category') tsc = Time_Series_Data_Collection(ts,'time','category') io = io_base(tsc, 'time', 'category') timeSeries = io.from_collection(True,True,'pad') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['pad'][i]) timeSeries = io.from_collection(True,True,'remove') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['remove'][i]) def test_base_io_to_collection(self, dictList_collection): dataList = dictList_collection io = io_base(dataList, 'time', 'category') testData = io.to_collection() tsd = Time_Series_Data(dataList,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') assert testData== tsc def test_base_io_from_collection_no_expand(self,dictList_collection,expect_collection_noExpand): noChange = dictList_collection expand = expect_collection_noExpand data = dictList_collection ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') ts = ts.set_data(data['category'],'category') tsc = Time_Series_Data_Collection(ts,'time','category') io = io_base(tsc, 'time', 'category') timeSeries = io.from_collection(False,False,'ignore') for i in timeSeries: np.testing.assert_array_equal(timeSeries[i],expand['ignore'][i]) timeSeries = io.from_collection(False,False,'pad') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['pad'][i]) timeSeries = io.from_collection(False,False,'remove') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['remove'][i]) class Test_Pandas_IO: def test_from_pandas_single(self,dictList_single): data = dictList_single df = pd.DataFrame(dictList_single) tsd = Time_Series_Data(data,'time') testData = from_pandas(df,'time',None) assert tsd == testData def test_from_pandas_collection(self,dictList_collection): data = dictList_collection df = pd.DataFrame(dictList_collection) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = from_pandas(df,'time','category') assert tsc == testData def test_to_pandas_single(self,dictList_single,expect_single_expandTime): data = dictList_single df = pd.DataFrame(data) expandTime = pd.DataFrame(expect_single_expandTime) tsd = Time_Series_Data(data,'time') testData = to_pandas( tsd, expandCategory= None, expandTime=False, preprocessType= None ) pd.testing.assert_frame_equal(testData,df,check_dtype=False) testData = to_pandas( tsd, expandCategory= None, expandTime=True, preprocessType= None ) pd.testing.assert_frame_equal(testData,expandTime,check_dtype=False) def test_to_pandas_collection_expandTime(self,dictList_collection,expect_collection_expandTime): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandTime['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandTime['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_pandas( tsc, expandCategory= False, expandTime=True, preprocessType= 'pad' ) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_pandas( tsc, expandCategory= False, expandTime=True, preprocessType= 'remove' ) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) with pytest.raises(ValueError): timeSeries = to_pandas(tsc,False,True,'ignore') def test_to_pandas_collection_expandCategory(self,dictList_collection,expect_collection_expandCategory): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandCategory['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandCategory['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_pandas( tsc, expandCategory= True, expandTime=False, preprocessType= 'pad' ) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_pandas( tsc, expandCategory= True, expandTime=False, preprocessType= 'remove' ) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) with pytest.raises(ValueError): timeSeries = to_pandas(tsc,True,False,'ignore') def test_to_pandas_collection_expandFull(self,dictList_collection,expect_collection_expandFull): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandFull['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandFull['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_pandas( tsc, expandCategory= True, expandTime=True, preprocessType= 'pad' ) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_pandas( tsc, expandCategory= True, expandTime=True, preprocessType= 'remove' ) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) def test_to_pandas_collection_noExpand(self,dictList_collection,expect_collection_noExpand): data = dictList_collection expandTime_ignore = pd.DataFrame(expect_collection_noExpand['ignore']) expandTime_pad = pd.DataFrame(expect_collection_noExpand['pad']) expandTime_remove = pd.DataFrame(expect_collection_noExpand['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_pandas( tsc, expandCategory= False, expandTime=False, preprocessType= 'pad' ) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_pandas( tsc, expandCategory= False, expandTime=False, preprocessType= 'remove' ) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) testData = to_pandas( tsc, expandCategory= False, expandTime=False, preprocessType= 'ignore' ) pd.testing.assert_frame_equal(testData,expandTime_ignore,check_dtype=False) def test_to_pandas_seperateLabels_single(self,dictList_single,expect_single_seperateLabel): data = dictList_single expectedX, expectedY = expect_single_seperateLabel expectedX = pd.DataFrame(expectedX) expectedY = pd.DataFrame(expectedY) tsd = Time_Series_Data(data,'time') tsd.set_labels([1,2],'data_label') x, y = to_pandas(tsd,False,False,'ignore',True) print(x) print(y) pd.testing.assert_frame_equal(x,expectedX,check_dtype=False) pd.testing.assert_frame_equal(y,expectedY,check_dtype=False) def test_to_pandas_seperateLabels_collection(self,dictList_collection,expect_collection_seperateLabel): data = dictList_collection expectedX, expectedY = expect_collection_seperateLabel expectedX = pd.DataFrame(expectedX) expectedY = pd.DataFrame(expectedY) tsd = Time_Series_Data(data,'time') tsd = tsd.set_labels([1,2,1,2],'data_label') tsc = Time_Series_Data_Collection(tsd,'time','category') x, y = to_pandas(tsc,False,False,'ignore',True) print(y) pd.testing.assert_frame_equal(x,expectedX,check_dtype=False) pd.testing.assert_frame_equal(y,expectedY,check_dtype=False) def test_to_pandas_single_sequence(self,seq_single): data = seq_single df= pd.DataFrame(data) tsd = Time_Series_Data(data,'time') test = to_pandas(tsd,False,False,'ignore',False) pd.testing.assert_frame_equal(test,df,False) def test_to_pandas_collection_sequence(self,seq_collection,expect_seq_collection): data = seq_collection df = pd.DataFrame(data) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') test = to_pandas(tsc,False,False,'ignore') pd.testing.assert_frame_equal(df,test,False) test = to_pandas(tsc,True,True,'ignore') full = pd.DataFrame(expect_seq_collection) print(test) print(full) test = test.reindex(sorted(df.columns), axis=1) full = full.reindex(sorted(df.columns), axis=1) pd.testing.assert_frame_equal(test,full,False) class Test_Numpy_IO: def test_from_numpy_single(self,dictList_single): data = dictList_single tsd = Time_Series_Data() tsd.set_time_index(data['time'],0) tsd.set_data(data['data'],1) numpydata = pd.DataFrame(dictList_single).values testData = from_numpy(numpydata,0,None) assert tsd == testData def test_from_numpy_collection(self,dictList_collection): data = dictList_collection numpyData = pd.DataFrame(data).values numpyDataDict = pd.DataFrame(pd.DataFrame(data).values).to_dict('list') testData = from_numpy(numpyData,0,2) tsd = Time_Series_Data(numpyDataDict,0) assert testData == Time_Series_Data_Collection(tsd,0,2) def test_to_numpy_single(self,dictList_single,expect_single_expandTime): data = dictList_single numpyData = pd.DataFrame(data).values expandTime = pd.DataFrame(expect_single_expandTime).values tsd = Time_Series_Data() tsd.set_time_index(data['time'],0) tsd.set_data(data['data'],1) testData = to_numpy( tsd, expandCategory= None, expandTime=False, preprocessType= None ) np.testing.assert_equal(testData,numpyData) testData = to_numpy( tsd, expandCategory= None, expandTime=True, preprocessType= None ) np.testing.assert_equal(testData,expandTime) def test_to_numpy_collection_expandTime(self,dictList_collection,expect_collection_expandTime): data = dictList_collection results = expect_collection_expandTime numpyData = pd.DataFrame(data).values tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') pad_numpy = to_numpy( tsc, expandCategory = False, expandTime = True, preprocessType='pad' ) remove_numpy = to_numpy( tsc, expandCategory = False, expandTime = True, preprocessType='remove' ) np.testing.assert_equal(pad_numpy,pd.DataFrame(results['pad']).values) np.testing.assert_equal(remove_numpy,pd.DataFrame(results['remove']).values) with pytest.raises(ValueError): timeSeries = to_numpy(tsc,False,True,'ignore') def test_to_numpy_collection_expandCategory(self,dictList_collection,expect_collection_expandCategory): data = dictList_collection results = expect_collection_expandCategory numpyData = pd.DataFrame(data).values tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') pad_numpy = to_numpy( tsc, expandCategory = True, expandTime = False, preprocessType='pad' ) remove_numpy = to_numpy( tsc, expandCategory = True, expandTime = False, preprocessType='remove' ) np.testing.assert_equal(pad_numpy,pd.DataFrame(results['pad']).values) np.testing.assert_equal(remove_numpy,pd.DataFrame(results['remove']).values) with pytest.raises(ValueError): timeSeries = to_numpy(tsc,False,True,'ignore') def test_to_numpy_collection_expandFull(self,dictList_collection,expect_collection_expandFull): data = dictList_collection results = expect_collection_expandFull numpyData = pd.DataFrame(data).values tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') pad_numpy = to_numpy( tsc, expandCategory = True, expandTime = True, preprocessType='pad' ) np.testing.assert_equal(pad_numpy,pd.DataFrame(results['pad']).values) remove_numpy = to_numpy( tsc, expandCategory = True, expandTime = True, preprocessType='remove' ) np.testing.assert_equal(remove_numpy,pd.DataFrame(results['remove']).values) def test_to_numpy_collection_noExpand(self,dictList_collection,expect_collection_noExpand): data = dictList_collection results = expect_collection_noExpand numpyData = pd.DataFrame(data).values tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') pad_numpy = to_numpy( tsc, expandCategory = False, expandTime = False, preprocessType='pad' ) np.testing.assert_equal(pad_numpy,pd.DataFrame(results['pad']).values) remove_numpy = to_numpy( tsc, expandCategory = False, expandTime = False, preprocessType='remove' ) np.testing.assert_equal(remove_numpy,pd.DataFrame(results['remove']).values) ignore_numpy = to_numpy( tsc, expandCategory = False, expandTime = False, preprocessType='ignore' ) np.testing.assert_equal(ignore_numpy,pd.DataFrame(results['ignore']).values) def test_to_numpy_seperateLabel_single(self,dictList_single,expect_single_seperateLabel): data = dictList_single expectedX, expectedY = expect_single_seperateLabel expectedX = pd.DataFrame(expectedX).values expectedY = pd.DataFrame(expectedY).values tsd = Time_Series_Data(data,'time') tsd.set_labels([1,2],'data_label') x, y = to_numpy(tsd,False,False,'ignore',True) print(x) print(y) np.testing.assert_equal(x,expectedX) np.testing.assert_equal(y,expectedY) def test_to_numpy_seperateLabel_collection(self,dictList_collection,expect_collection_seperateLabel): data = dictList_collection expectedX, expectedY = expect_collection_seperateLabel expectedX = pd.DataFrame(expectedX).values expectedY = pd.DataFrame(expectedY).values tsd = Time_Series_Data(data,'time') tsd = tsd.set_labels([1,2,1,2],'data_label') tsc = Time_Series_Data_Collection(tsd,'time','category') x, y = to_numpy(tsc,False,False,'ignore',True) np.testing.assert_equal(x,expectedX) np.testing.assert_equal(y,expectedY) def test_to_numpy_single_sequence(self,seq_single): data = seq_single df= pd.DataFrame(data).values tsd = Time_Series_Data(data,'time') test = to_numpy(tsd,False,False,'ignore',False) np.testing.assert_equal(df,test) def test_to_numpy_collection_sequence(self,seq_collection,expect_seq_collection): data = seq_collection df = pd.DataFrame(data).values tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') test = to_numpy(tsc,False,False,'ignore') for i in range(len(test)): if isinstance(test[i][1],np.ndarray): test[i][1] = test[i][1].tolist() np.testing.assert_equal(df,test) test = to_numpy(tsc,True,True,'ignore') full = pd.DataFrame(expect_seq_collection).values for i in range(len(test[0])): if isinstance(test[0][i],np.ndarray): test[0][i] = test[0][i].tolist() np.testing.assert_equal(full,test) class Test_Arrow_IO: def test_from_arrow_table_single(self,dictList_single): data = dictList_single df = pd.DataFrame(dictList_single) table = pa.Table.from_pandas(df) testData = from_arrow_table(table,'time',None) tsd = Time_Series_Data(data,'time') assert tsd == testData def test_from_arrow_table_collection(self,dictList_collection): data = dictList_collection df = pd.DataFrame(dictList_collection) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') table = pa.Table.from_pandas(df) testData = from_arrow_table(table,'time','category') assert tsc == testData def test_from_arrow_batch_single(self,dictList_single): data = dictList_single df = pd.DataFrame(dictList_single) table = pa.RecordBatch.from_pandas(df,preserve_index = False) testData = from_arrow_record_batch(table,'time',None) tsd = Time_Series_Data(data,'time') assert tsd == testData def test_from_arrow_batch_collection(self,dictList_collection): data = dictList_collection df = pd.DataFrame(dictList_collection) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') table = pa.RecordBatch.from_pandas(df,preserve_index = False) testData = from_arrow_record_batch(table,'time','category') assert tsc == testData def test_to_arrow_table_single(self,dictList_single,expect_single_expandTime): data = dictList_single df = pd.DataFrame(data) expandTime = pd.DataFrame(expect_single_expandTime) tsd = Time_Series_Data(data,'time') testData = to_arrow_table( tsd, expandCategory= None, expandTime=False, preprocessType= None ).to_pandas() pd.testing.assert_frame_equal(testData,df,check_dtype=False) testData = to_arrow_table( tsd, expandCategory= None, expandTime=True, preprocessType= None ).to_pandas() pd.testing.assert_frame_equal(testData,expandTime,check_dtype=False) def test_to_arrow_table_collection_expandTime(self,dictList_collection,expect_collection_expandTime): data = dictList_collection expandTime_pad =
pd.DataFrame(expect_collection_expandTime['pad'])
pandas.DataFrame
import datetime import streamlit as st import pandas as pd import plotly.express as px import numpy as np from plotly.subplots import make_subplots import plotly.graph_objects as go import requests as rs import json import random import webbrowser import yfinance as yf from sys_var import api_list,indicator_symbol_list,graph_type_list class MyError(Exception) : # Constructor or Initializer def __init__(self, value) : self.value = value # __str__ is to print() the value def __str__(self) : return (repr(self.value)) st.set_page_config(layout='wide') st.sidebar.title('Financial Analysis Dashboard') radio_select = st.sidebar.radio('Select from below options', [ 'Indian Stocks','Crypto', 'US Stocks', 'Forex', "Global stocks and more(Alpha Vantage)", "Global stocks and more(Yahoo Finance)"]) if radio_select == 'Crypto' : st.title("CRYPTOCURRENCIES") col1, col2 = st.columns(2) with col1 : digital_data = pd.read_csv("digital_currency_list.csv") dictio = digital_data.set_index('currency name').T.to_dict('list') digital_list = digital_data['currency name'].dropna().unique().tolist() crypto_select1 = st.selectbox("Select a Cryptocurrency", digital_list) input_value = dictio[crypto_select1][0] with col2 : currency_data = pd.read_csv("physical_currency_list.csv") dictio2 = currency_data.set_index('currency name').T.to_dict('list') currency_list = currency_data['currency name'].dropna().unique().tolist() currency_select = st.selectbox("Select Currency Pair", currency_list) currency_select = dictio2[currency_select][0] with st.expander('Show Options'): col3, col4 = st.columns(2) col5, col6 = st.columns(2) with col3 : interval_list = ["1 Minute", "5 Minutes", "15 Minutes", "30 Minutes", "60 Minutes", "1 Day", "1 Week", "1 Month"] interval_list1 = ["1 Minute", "5 Minutes", "15 Minutes", "30 Minutes", "60 Minutes"] interval_list2 = ["1 Day", "1 Week", "1 Month"] interval_list1_dict = {"1 Minute" : "1min", "5 Minutes" : "5min", "15 Minutes" : "15min", "30 Minutes" : "30min", "60 Minutes" : "60min"} interval_list2_dict = {"1 Day" : "DAILY", "1 Week" : "WEEKLY", "1 Month" : "MONTHLY"} interval_list21_dict = {"1 Day" : "Daily", "1 Week" : "Weekly", "1 Month" : "Monthly"} indicator_dict = {"1 Minute" : "1min", "5 Minutes" : "5min", "15 Minutes" : "15min", "30 Minutes" : "30min", "60 Minutes" : "60min", "1 Day" : "daily", "1 Week" : "weekly", "1 Month" : "monthly"} interval_select = st.selectbox("Select Interval", interval_list) with col4 : graph_type = st.selectbox('Select Graph type', graph_type_list) flag = 0 if interval_select in interval_list1 : flag = 1 try : y_arr = ['Rate'] data = None if flag == 1 : data = rs.get("https://www.alphavantage.co/query?function=CRYPTO_INTRADAY&symbol=" + str( input_value) + "&market=" + str(currency_select) + "&interval=" + interval_list1_dict[ interval_select] + "&apikey=" + random.choice(api_list)) print("jello") data = data.json() data = json.dumps(data["Time Series Crypto (" + str(interval_list1_dict[interval_select]) + ")"]) data = pd.read_json(data) data = data.T.reset_index() data.rename(columns={'1. open' : 'Open'}, inplace=True) data.rename(columns={'2. high' : 'High'}, inplace=True) data.rename(columns={'3. low' : 'Low'}, inplace=True) data.rename(columns={'4. close' : 'Rate'}, inplace=True) st.markdown( "<h1 style='text-align: center; color: red;'>Chart of " + crypto_select1 + "&nbsp;&nbsp;<sub style='font-size: 25px;'>" + input_value + "/" + currency_select + "</sub></h1>", unsafe_allow_html=True) if graph_type == 'Line' : # fig = px.line(data, x="index", y=y_arr, template="ggplot2", labels={"index" : "Date"}) fig = make_subplots(specs=[[{"secondary_y" : True}]]) fig.add_trace(go.Scatter(x=data['index'], y=data['Rate'], name='Rate'), secondary_y=True) fig.add_trace(go.Bar(x=data['index'], y=data['5. volume'], name='Volume', opacity=0.5), secondary_y=False) fig.update_layout(autosize=False, width=1600, height=800, legend_title="Indicators", font=dict( family="Courier New, monospace", size=18, color="RebeccaPurple" )) fig.layout.yaxis2.showgrid = False st.plotly_chart(fig) if graph_type == 'Candlesticks' or graph_type == 'OHLC' : data.rename(columns={'Rate' : 'Close'}, inplace=True) fig = make_subplots(specs=[[{"secondary_y" : True}]]) # include candlestick with rangeselector if graph_type == 'Candlesticks': fig.add_trace(go.Candlestick(x=data['index'], open=data['Open'], high=data['High'], low=data['Low'], close=data['Close'], name='Rate'), secondary_y=True) if graph_type == 'OHLC': fig.add_trace(go.Ohlc(x=data['index'], open=data['Open'], high=data['High'], low=data['Low'], close=data['Close'], name='Rate'), secondary_y=True) # include a go.Bar trace for volumes fig.add_trace(go.Bar(x=data['index'], y=data['5. volume'], name='Volume', opacity=0.5), secondary_y=False) fig.update_layout(autosize=False, width=1600, height=800, legend_title="Indicators", font=dict( family="Courier New, monospace", size=18, color="RebeccaPurple" )) fig.layout.yaxis2.showgrid = False st.plotly_chart(fig) if graph_type == 'Filled Area' : fig = px.area(data, x='index', y='Rate', template="ggplot2", labels={"index" : "Date"}) fig.update_layout(autosize=False, width=1600, height=800, legend_title="Indicators", font=dict( family="Courier New, monospace", size=18, color="RebeccaPurple" )) st.plotly_chart(fig) if flag == 0 : data = rs.get("https://www.alphavantage.co/query?function=DIGITAL_CURRENCY_" + interval_list2_dict[ interval_select] + "&symbol=" + str( input_value) + "&market=" + str(currency_select) + "&apikey=" + random.choice(api_list)) data = data.json() data = json.dumps(data["Time Series (Digital Currency " + str(interval_list21_dict[interval_select]) + ")"]) data = pd.read_json(data) data = data.T.reset_index() data.rename(columns={'4a. close (' + str(currency_select) + ')' : 'Rate'}, inplace=True) data.rename(columns={'1a. open (' + str(currency_select) + ')' : 'Open'}, inplace=True) data.rename(columns={'2a. high (' + str(currency_select) + ')' : 'High'}, inplace=True) data.rename(columns={'3a. low (' + str(currency_select) + ')' : 'Low'}, inplace=True) if graph_type != 'Filled Area' : with col5 : indicate_select = st.multiselect('Add Indicators', indicator_symbol_list) interval_sel = indicate_select with col6 : time_select = st.number_input('Select indicator time period', max_value=30, min_value=5, step=1) for i in range(len(interval_sel)) : data2 = rs.get("https://www.alphavantage.co/query?function=" + interval_sel[i] + "&symbol=" + str( input_value) + str(currency_select) + "&interval=" + indicator_dict[ interval_select] + "&time_period=" + str( time_select) + "&series_type=open&apikey=" + random.choice(api_list)) data2 = data2.json() data2 = json.dumps(data2["Technical Analysis: " + interval_sel[i]]) data2 = pd.read_json(data2) data2 = data2.T.reset_index() data = pd.merge(data, data2, on="index", how="left") y_arr = y_arr + interval_sel st.markdown( "<h1 style='text-align: center; color: red;'>Chart of " + crypto_select1 + "&nbsp;&nbsp;<sub style='font-size: 25px;'>" + input_value + "/" + currency_select + "</sub></h1>", unsafe_allow_html=True) # fig = px.line(data, x="index", y=y_arr, template="ggplot2", labels={"index" : "Date"}) if graph_type == 'Line' : fig = make_subplots(specs=[[{"secondary_y" : True}]]) fig.add_trace(go.Scatter(x=data['index'], y=data['Rate'], name='Rate'), secondary_y=True) for i in range(len(interval_sel)) : fig.add_trace(go.Scatter(x=data['index'], y=data[interval_sel[i]], name=interval_sel[i]), secondary_y=True) fig.add_trace(go.Bar(x=data['index'], y=data['5. volume'], name='Volume', opacity=0.5), secondary_y=False) fig.update_layout(autosize=False, width=1600, height=800, legend_title="Indicators", font=dict( family="Courier New, monospace", size=18, color="RebeccaPurple" )) fig.layout.yaxis2.showgrid = False st.plotly_chart(fig) if graph_type == 'Candlesticks' or graph_type == 'OHLC' : data.rename(columns={'Rate' : 'Close'}, inplace=True) fig = make_subplots(specs=[[{"secondary_y" : True}]]) # include candlestick with rangeselector if graph_type == 'Candlesticks' : fig.add_trace(go.Candlestick(x=data['index'], open=data['Open'], high=data['High'], low=data['Low'], close=data['Close'], name='Rate'), secondary_y=True) if graph_type == 'OHLC' : fig.add_trace(go.Ohlc(x=data['index'], open=data['Open'], high=data['High'], low=data['Low'], close=data['Close'], name='Rate'), secondary_y=True) # include a go.Bar trace for volumes fig.add_trace(go.Bar(x=data['index'], y=data['5. volume'], name='Volume', opacity=0.5), secondary_y=False) fig.update_layout(autosize=False, width=1600, height=800, legend_title="Indicators", font=dict( family="Courier New, monospace", size=18, color="RebeccaPurple" )) fig.layout.yaxis2.showgrid = False st.plotly_chart(fig) if graph_type == 'Filled Area' : fig = px.area(data, x='index', y='Rate', template="ggplot2", labels={"index" : "Date"}) fig.update_layout(autosize=False, width=1600, height=500, legend_title="Indicators", font=dict( family="Courier New, monospace", size=18, color="RebeccaPurple" )) st.plotly_chart(fig) except Exception as e : st.info( "The selected cryptocurrency data is currently unavailable please check your connection or choose any other cryptocurrency(like Bitcoin)") if radio_select == 'Forex' : st.title("FOREX") size_select = st.sidebar.radio('Select output size', ['compact', 'full(uses more data)']) size_select = size_select.split('(')[0] col1, col2 = st.columns(2) with col1 : digital_data = pd.read_csv("physical_currency_list1.csv") dictio = digital_data.set_index('currency name').T.to_dict('list') digital_list = digital_data['currency name'].dropna().unique().tolist() crypto_select1 = st.selectbox("Select the Currency", digital_list) input_value = dictio[crypto_select1][0] with col2 : currency_data = pd.read_csv("physical_currency_list.csv") dictio2 = currency_data.set_index('currency name').T.to_dict('list') currency_list = currency_data['currency name'].dropna().unique().tolist() currency_select = st.selectbox("Select currency pair", currency_list) currency_select = dictio2[currency_select][0] with st.expander('Show Options') : col3, col4 = st.columns(2) col5, col6 = st.columns(2) with col3 : interval_list = ["1 Day", "1 Week", "1 Month"] interval_list2_dict = {"1 Day" : "DAILY", "1 Week" : "WEEKLY", "1 Month" : "MONTHLY"} interval_list21_dict = {"1 Day" : "Daily", "1 Week" : "Weekly", "1 Month" : "Monthly"} indicator_dict = {"1 Minute" : "1min", "5 Minutes" : "5min", "15 Minutes" : "15min", "30 Minutes" : "30min", "60 Minutes" : "60min", "1 Day" : "daily", "1 Week" : "weekly", "1 Month" : "monthly"} interval_select = st.selectbox("Select Interval", interval_list) with col4 : graph_type = st.selectbox('Select Graph type', graph_type_list) flag = 0 try : y_arr = ['Rate'] data = None if flag == 0 : print("https://www.alphavantage.co/query?function=FX_" + interval_list2_dict[ interval_select] + "&from_symbol=" + str( input_value) + "&to_symbol=" + str(currency_select) + "&apikey=" + random.choice(api_list)) data = rs.get("https://www.alphavantage.co/query?function=FX_" + interval_list2_dict[ interval_select] + "&from_symbol=" + str( input_value) + "&to_symbol=" + str( currency_select) + "&outputsize=" + size_select + "&apikey=" + random.choice(api_list)) data = data.json() print(data) data = json.dumps(data["Time Series FX (" + str(interval_list21_dict[interval_select]) + ")"]) data = pd.read_json(data) data = data.T.reset_index() data.rename(columns={'4. close' : 'Rate'}, inplace=True) data.rename(columns={'1. open' : 'Open'}, inplace=True) data.rename(columns={'2. high' : 'High'}, inplace=True) data.rename(columns={'3. low' : 'Low'}, inplace=True) if graph_type != 'Filled Area' : with col5 : indicate_select = st.multiselect('Add Indicators', indicator_symbol_list) interval_sel = indicate_select with col6 : time_select = st.number_input('Select indicator time period', max_value=30, min_value=5, step=1) for i in range(len(interval_sel)) : data2 = rs.get("https://www.alphavantage.co/query?function=" + interval_sel[i] + "&symbol=" + str( input_value) + str(currency_select) + "&interval=" + indicator_dict[ interval_select] + "&time_period=" + str( time_select) + "&series_type=open&outputsize=" + size_select + "&apikey=" + random.choice( api_list)) data2 = data2.json() data2 = json.dumps(data2["Technical Analysis: " + interval_sel[i]]) data2 = pd.read_json(data2) data2 = data2.T.reset_index() data = pd.merge(data, data2, on="index", how="left") y_arr = y_arr + interval_sel st.markdown( "<h1 style='text-align: center; color: red;'>Chart of " + crypto_select1 + "&nbsp;&nbsp;<sub style='font-size: 25px;'>" + input_value + "/" + currency_select + "</sub></h1>", unsafe_allow_html=True) # fig = px.line(data, x="index", y=y_arr, template="ggplot2", labels={"index" : "Date"}) if graph_type == 'Line' : fig = make_subplots(specs=[[{"secondary_y" : True}]]) fig.add_trace(go.Scatter(x=data['index'], y=data['Rate'], name='Rate'), secondary_y=True) for i in range(len(interval_sel)) : fig.add_trace(go.Scatter(x=data['index'], y=data[interval_sel[i]], name=interval_sel[i]), secondary_y=True) fig.update_layout(autosize=False, width=1600, height=800, legend_title="Indicators", font=dict( family="Courier New, monospace", size=18, color="RebeccaPurple" )) fig.layout.yaxis2.showgrid = False st.plotly_chart(fig) if graph_type == 'Candlesticks' or graph_type == 'OHLC' : data.rename(columns={'Rate' : 'Close'}, inplace=True) fig = make_subplots(specs=[[{"secondary_y" : True}]]) # include candlestick with rangeselector if graph_type == 'Candlesticks' : fig.add_trace(go.Candlestick(x=data['index'], open=data['Open'], high=data['High'], low=data['Low'], close=data['Close'], name='Rate'), secondary_y=True) if graph_type == 'OHLC' : fig.add_trace(go.Ohlc(x=data['index'], open=data['Open'], high=data['High'], low=data['Low'], close=data['Close'], name='Rate'), secondary_y=True) for i in range(len(interval_sel)) : fig.add_trace(go.Scatter(x=data['index'], y=data[interval_sel[i]], name=interval_sel[i]), secondary_y=True) # include a go.Bar trace for volumes fig.update_layout(autosize=False, width=1600, height=800, legend_title="Indicators", font=dict( family="Courier New, monospace", size=18, color="RebeccaPurple" )) fig.layout.yaxis2.showgrid = False st.plotly_chart(fig) if graph_type == 'Filled Area' : fig = px.area(data, x='index', y='Rate', template="ggplot2", labels={"index" : "Date"}) fig.update_layout(autosize=False, width=1600, height=500, legend_title="Indicators", font=dict( family="Courier New, monospace", size=18, color="RebeccaPurple" )) st.plotly_chart(fig) except Exception as e : st.info( "The selected forex pair data is currently unavailable please check your connection or choose any other pair") if radio_select == "Global stocks and more(Alpha Vantage)" : st.title(radio_select) size_select = st.sidebar.radio('Select output size', ['compact', 'full(uses more data)']) size_select = size_select.split('(')[0] keyword = st.text_input("Search by symbol,name or keyword") if keyword != '' : print(keyword) print('https://www.alphavantage.co/query?function=SYMBOL_SEARCH&keywords=' + str( keyword) + '&apikey=' + random.choice(api_list)) data = rs.get('https://www.alphavantage.co/query?function=SYMBOL_SEARCH&keywords=' + str( keyword) + '&apikey=' + random.choice(api_list)) data = data.json() # data = pd.read_json(data) try : if data["bestMatches"] == [] : raise (MyError('No financial entity with this name found in our system')) data = json.dumps(data["bestMatches"]) data = pd.read_json(data) data.rename(columns={'1. symbol' : 'Symbol'}, inplace=True) data.rename(columns={'2. name' : 'Name'}, inplace=True) data.rename(columns={'3. type' : 'Type'}, inplace=True) data.rename(columns={'4. region' : 'Region'}, inplace=True) data.rename(columns={'5. marketOpen' : 'Market Open'}, inplace=True) data.rename(columns={'6. marketClose' : 'Market Close'}, inplace=True) data.rename(columns={'7. timezone' : 'Timezone'}, inplace=True) data.rename(columns={'8. currency' : 'Currency'}, inplace=True) data_ticker = data['Symbol'].tolist() data_name = data['Name'].tolist() data_type = data['Type'].tolist() data_region = data['Region'].tolist() new_list = [] for i in range(len(data_ticker)) : s = data_name[i] + "----" + data_ticker[i] + "----" + data_type[i] + "----" + data_region[i] new_list.append(s) new_list.insert(0, '--Select from options--') col1, col2 = st.columns(2) with col1 : new_box = st.selectbox("Select from below options", new_list) if (new_box != '--Select from options--') : input_value = new_box.split("----")[1] crypto_select1 = new_box.split("----")[0] currency_select = data[data['Symbol'] == input_value]['Currency'].tolist() currency_select1 = currency_select[0] print(currency_select) currency_data =
pd.read_csv("physical_currency_list.csv")
pandas.read_csv
import re from inspect import isclass import numpy as np import pandas as pd import pytest from mock import patch import woodwork as ww from woodwork.accessor_utils import ( _is_dask_dataframe, _is_dask_series, _is_koalas_dataframe, _is_koalas_series, init_series, ) from woodwork.exceptions import ( ColumnNotPresentError, IndexTagRemovedWarning, ParametersIgnoredWarning, TypeConversionError, TypingInfoMismatchWarning, WoodworkNotInitError, ) from woodwork.logical_types import ( URL, Address, Age, AgeFractional, AgeNullable, Boolean, BooleanNullable, Categorical, CountryCode, Datetime, Double, EmailAddress, Filepath, Integer, IntegerNullable, IPAddress, LatLong, NaturalLanguage, Ordinal, PersonFullName, PhoneNumber, PostalCode, SubRegionCode, Unknown, ) from woodwork.table_accessor import ( WoodworkTableAccessor, _check_index, _check_logical_types, _check_partial_schema, _check_time_index, _check_unique_column_names, _check_use_standard_tags, _infer_missing_logical_types, ) from woodwork.table_schema import TableSchema from woodwork.tests.testing_utils import ( is_property, is_public_method, to_pandas, validate_subset_schema, ) from woodwork.tests.testing_utils.table_utils import assert_schema_equal from woodwork.utils import import_or_none dd = import_or_none("dask.dataframe") ks = import_or_none("databricks.koalas") def test_check_index_errors(sample_df): error_message = "Specified index column `foo` not found in dataframe" with pytest.raises(ColumnNotPresentError, match=error_message): _check_index(dataframe=sample_df, index="foo") if isinstance(sample_df, pd.DataFrame): # Does not check for index uniqueness with Dask error_message = "Index column must be unique" with pytest.raises(LookupError, match=error_message): _check_index(sample_df, index="age") def test_check_logical_types_errors(sample_df): error_message = "logical_types must be a dictionary" with pytest.raises(TypeError, match=error_message): _check_logical_types(sample_df, logical_types="type") bad_logical_types_keys = { "full_name": None, "age": None, "birthday": None, "occupation": None, } error_message = re.escape( "logical_types contains columns that are not present in dataframe: ['birthday', 'occupation']" ) with pytest.raises(ColumnNotPresentError, match=error_message): _check_logical_types(sample_df, bad_logical_types_keys) def test_check_time_index_errors(sample_df): error_message = "Specified time index column `foo` not found in dataframe" with pytest.raises(ColumnNotPresentError, match=error_message): _check_time_index(dataframe=sample_df, time_index="foo") def test_check_unique_column_names_errors(sample_df): if _is_koalas_dataframe(sample_df): pytest.skip("Koalas enforces unique column names") duplicate_cols_df = sample_df.copy() if _is_dask_dataframe(sample_df): duplicate_cols_df = dd.concat( [duplicate_cols_df, duplicate_cols_df["age"]], axis=1 ) else: duplicate_cols_df.insert(0, "age", [18, 21, 65, 43], allow_duplicates=True) with pytest.raises( IndexError, match="Dataframe cannot contain duplicate columns names" ): _check_unique_column_names(duplicate_cols_df) def test_check_use_standard_tags_errors(): error_message = "use_standard_tags must be a dictionary or a boolean" with pytest.raises(TypeError, match=error_message): _check_use_standard_tags(1) def test_accessor_init(sample_df): assert sample_df.ww.schema is None sample_df.ww.init() assert isinstance(sample_df.ww.schema, TableSchema) def test_accessor_schema_property(sample_df): sample_df.ww.init() assert sample_df.ww._schema is not sample_df.ww.schema assert sample_df.ww._schema == sample_df.ww.schema def test_set_accessor_name(sample_df): df = sample_df.copy() error = re.escape( "Woodwork not initialized for this DataFrame. Initialize by calling DataFrame.ww.init" ) with pytest.raises(WoodworkNotInitError, match=error): df.ww.name with pytest.raises(WoodworkNotInitError, match=error): df.ww.name = "name" df.ww.init() assert df.ww.name is None df.ww.name = "name" assert df.ww.schema.name == "name" assert df.ww.name == "name" def test_rename_init_with_name(sample_df): df = sample_df.copy() df.ww.init(name="name") assert df.ww.name == "name" df.ww.name = "new_name" assert df.ww.schema.name == "new_name" assert df.ww.name == "new_name" def test_name_error_on_init(sample_df): err_msg = "Table name must be a string" with pytest.raises(TypeError, match=err_msg): sample_df.ww.init(name=123) def test_name_error_on_update(sample_df): sample_df.ww.init() err_msg = "Table name must be a string" with pytest.raises(TypeError, match=err_msg): sample_df.ww.name = 123 def test_name_persists_after_drop(sample_df): df = sample_df.copy() df.ww.init() df.ww.name = "name" assert df.ww.name == "name" dropped_df = df.ww.drop(["id"]) assert dropped_df.ww.name == "name" assert dropped_df.ww.schema.name == "name" def test_set_accessor_metadata(sample_df): df = sample_df.copy() error = re.escape( "Woodwork not initialized for this DataFrame. Initialize by calling DataFrame.ww.init" ) with pytest.raises(WoodworkNotInitError, match=error): df.ww.metadata with pytest.raises(WoodworkNotInitError, match=error): df.ww.metadata = {"new": "metadata"} df.ww.init() assert df.ww.metadata == {} df.ww.metadata = {"new": "metadata"} assert df.ww.schema.metadata == {"new": "metadata"} assert df.ww.metadata == {"new": "metadata"} def test_set_metadata_after_init_with_metadata(sample_df): df = sample_df.copy() df.ww.init(table_metadata={"new": "metadata"}) assert df.ww.metadata == {"new": "metadata"} df.ww.metadata = {"new": "new_metadata"} assert df.ww.schema.metadata == {"new": "new_metadata"} assert df.ww.metadata == {"new": "new_metadata"} def test_metadata_persists_after_drop(sample_df): df = sample_df.copy() df.ww.init() df.ww.metadata = {"new": "metadata"} assert df.ww.metadata == {"new": "metadata"} dropped_df = df.ww.drop(["id"]) assert dropped_df.ww.metadata == {"new": "metadata"} assert dropped_df.ww.schema.metadata == {"new": "metadata"} def test_metadata_error_on_init(sample_df): err_msg = "Table metadata must be a dictionary." with pytest.raises(TypeError, match=err_msg): sample_df.ww.init(table_metadata=123) def test_metadata_error_on_update(sample_df): sample_df.ww.init() err_msg = "Table metadata must be a dictionary." with pytest.raises(TypeError, match=err_msg): sample_df.ww.metadata = 123 def test_accessor_physical_types_property(sample_df): sample_df.ww.init(logical_types={"age": "Categorical"}) assert isinstance(sample_df.ww.physical_types, dict) assert set(sample_df.ww.physical_types.keys()) == set(sample_df.columns) for k, v in sample_df.ww.physical_types.items(): logical_type = sample_df.ww.columns[k].logical_type if _is_koalas_dataframe(sample_df) and logical_type.backup_dtype is not None: assert v == logical_type.backup_dtype else: assert v == logical_type.primary_dtype def test_accessor_separation_of_params(sample_df): # mix up order of acccessor and schema params schema_df = sample_df.copy() schema_df.ww.init( name="test_name", index="id", semantic_tags={"id": "test_tag"}, time_index="signup_date", ) assert schema_df.ww.semantic_tags["id"] == {"index", "test_tag"} assert schema_df.ww.index == "id" assert schema_df.ww.time_index == "signup_date" assert schema_df.ww.name == "test_name" def test_init_with_full_schema(sample_df): schema_df = sample_df.copy() schema_df.ww.init(name="test_schema", semantic_tags={"id": "test_tag"}, index="id") schema = schema_df.ww._schema head_df = schema_df.head(2) assert head_df.ww.schema is None head_df.ww.init_with_full_schema(schema=schema) assert head_df.ww._schema is schema assert head_df.ww.name == "test_schema" assert head_df.ww.semantic_tags["id"] == {"index", "test_tag"} iloc_df = schema_df.loc[[2, 3]] assert iloc_df.ww.schema is None iloc_df.ww.init_with_full_schema(schema=schema) assert iloc_df.ww._schema is schema assert iloc_df.ww.name == "test_schema" assert iloc_df.ww.semantic_tags["id"] == {"index", "test_tag"} # Extra parameters do not take effect assert isinstance(iloc_df.ww.logical_types["id"], Integer) def test_accessor_init_errors_methods(sample_df): methods_to_exclude = ["init", "init_with_full_schema", "init_with_partial_schema"] public_methods = [ method for method in dir(sample_df.ww) if is_public_method(WoodworkTableAccessor, method) ] public_methods = [ method for method in public_methods if method not in methods_to_exclude ] method_args_dict = { "add_semantic_tags": [{"id": "new_tag"}], "describe": None, "pop": ["id"], "describe": None, "describe_dict": None, "drop": ["id"], "get_valid_mi_columns": None, "mutual_information": None, "mutual_information_dict": None, "remove_semantic_tags": [{"id": "new_tag"}], "rename": [{"id": "new_id"}], "reset_semantic_tags": None, "select": [["Double"]], "set_index": ["id"], "set_time_index": ["signup_date"], "set_types": [{"id": "Integer"}], "to_disk": ["dir"], "to_dictionary": None, "value_counts": None, "infer_temporal_frequencies": None, } error = re.escape( "Woodwork not initialized for this DataFrame. Initialize by calling DataFrame.ww.init" ) for method in public_methods: func = getattr(sample_df.ww, method) method_args = method_args_dict[method] with pytest.raises(WoodworkNotInitError, match=error): if method_args: func(*method_args) else: func() def test_accessor_init_errors_properties(sample_df): props_to_exclude = ["iloc", "loc", "schema", "_dataframe"] props = [ prop for prop in dir(sample_df.ww) if is_property(WoodworkTableAccessor, prop) and prop not in props_to_exclude ] error = re.escape( "Woodwork not initialized for this DataFrame. Initialize by calling DataFrame.ww.init" ) for prop in props: with pytest.raises(WoodworkNotInitError, match=error): getattr(sample_df.ww, prop) def test_init_accessor_with_schema_errors(sample_df): schema_df = sample_df.copy() schema_df.ww.init() schema = schema_df.ww.schema iloc_df = schema_df.iloc[:, :-1] assert iloc_df.ww.schema is None error = "Provided schema must be a Woodwork.TableSchema object." with pytest.raises(TypeError, match=error): iloc_df.ww.init_with_full_schema(schema=int) error = ( "Woodwork typing information is not valid for this DataFrame: " "The following columns in the typing information were missing from the DataFrame: {'ip_address'}" ) with pytest.raises(ValueError, match=error): iloc_df.ww.init_with_full_schema(schema=schema) def test_accessor_with_schema_parameter_warning(sample_df): schema_df = sample_df.copy() schema_df.ww.init(name="test_schema", semantic_tags={"id": "test_tag"}, index="id") schema = schema_df.ww.schema head_df = schema_df.head(2) warning = ( "A schema was provided and the following parameters were ignored: index, " "time_index, logical_types, already_sorted, semantic_tags, use_standard_tags" ) with pytest.warns(ParametersIgnoredWarning, match=warning): head_df.ww.init_with_full_schema( index="ignored_id", time_index="ignored_time_index", logical_types={"ignored": "ltypes"}, already_sorted=True, semantic_tags={"ignored_id": "ignored_test_tag"}, use_standard_tags={"id": True, "age": False}, schema=schema, ) assert head_df.ww.name == "test_schema" assert head_df.ww.semantic_tags["id"] == {"index", "test_tag"} def test_accessor_getattr(sample_df): schema_df = sample_df.copy() # We can access attributes on the Accessor class before the schema is initialized assert schema_df.ww.schema is None error = re.escape( "Woodwork not initialized for this DataFrame. Initialize by calling DataFrame.ww.init" ) with pytest.raises(WoodworkNotInitError, match=error): schema_df.ww.index schema_df.ww.init() assert schema_df.ww.name is None assert schema_df.ww.index is None assert schema_df.ww.time_index is None assert set(schema_df.ww.columns.keys()) == set(sample_df.columns) error = re.escape("Woodwork has no attribute 'not_present'") with pytest.raises(AttributeError, match=error): sample_df.ww.init() sample_df.ww.not_present def test_getitem(sample_df): df = sample_df df.ww.init( time_index="signup_date", index="id", name="df_name", logical_types={"age": "Double"}, semantic_tags={"age": {"custom_tag"}}, ) assert list(df.columns) == list(df.ww.schema.columns) subset = ["id", "signup_date"] df_subset = df.ww[subset] pd.testing.assert_frame_equal(to_pandas(df[subset]), to_pandas(df_subset)) assert subset == list(df_subset.ww._schema.columns) assert df_subset.ww.index == "id" assert df_subset.ww.time_index == "signup_date" subset = ["age", "email"] df_subset = df.ww[subset] pd.testing.assert_frame_equal(to_pandas(df[subset]), to_pandas(df_subset)) assert subset == list(df_subset.ww._schema.columns) assert df_subset.ww.index is None assert df_subset.ww.time_index is None assert isinstance(df_subset.ww.logical_types["age"], Double) assert df_subset.ww.semantic_tags["age"] == {"custom_tag", "numeric"} subset = df.ww[[]] assert len(subset.ww.columns) == 0 assert subset.ww.index is None assert subset.ww.time_index is None series = df.ww["age"] pd.testing.assert_series_equal(to_pandas(series), to_pandas(df["age"])) assert isinstance(series.ww.logical_type, Double) assert series.ww.semantic_tags == {"custom_tag", "numeric"} series = df.ww["id"] pd.testing.assert_series_equal(to_pandas(series), to_pandas(df["id"])) assert isinstance(series.ww.logical_type, Integer) assert series.ww.semantic_tags == {"index"} def test_getitem_init_error(sample_df): error = re.escape( "Woodwork not initialized for this DataFrame. Initialize by calling DataFrame.ww.init" ) with pytest.raises(WoodworkNotInitError, match=error): sample_df.ww["age"] def test_getitem_invalid_input(sample_df): df = sample_df df.ww.init() error_msg = r"Column\(s\) '\[1, 2\]' not found in DataFrame" with pytest.raises(ColumnNotPresentError, match=error_msg): df.ww[["email", 2, 1]] error_msg = "Column with name 'invalid_column' not found in DataFrame" with pytest.raises(ColumnNotPresentError, match=error_msg): df.ww["invalid_column"] def test_accessor_equality(sample_df): # Confirm equality with same schema and same data schema_df = sample_df.copy() schema_df.ww.init() copy_df = schema_df.ww.copy() assert schema_df.ww == copy_df.ww # Confirm not equal with different schema but same data copy_df.ww.set_time_index("signup_date") assert schema_df.ww != copy_df.ww # Confirm not equal with same schema but different data - only pandas loc_df = schema_df.ww.loc[:2, :] if isinstance(sample_df, pd.DataFrame): assert schema_df.ww != loc_df else: assert schema_df.ww == loc_df def test_accessor_shallow_equality(sample_df): metadata_table = sample_df.copy() metadata_table.ww.init(table_metadata={"user": "user0"}) diff_metadata_table = sample_df.copy() diff_metadata_table.ww.init(table_metadata={"user": "user2"}) assert diff_metadata_table.ww.__eq__(metadata_table, deep=False) assert not diff_metadata_table.ww.__eq__(metadata_table, deep=True) schema = metadata_table.ww.schema diff_data_table = metadata_table.ww.loc[:2, :] same_data_table = metadata_table.ww.copy() assert diff_data_table.ww.schema.__eq__(schema, deep=True) assert same_data_table.ww.schema.__eq__(schema, deep=True) assert same_data_table.ww.__eq__(metadata_table.ww, deep=False) assert same_data_table.ww.__eq__(metadata_table.ww, deep=True) assert diff_data_table.ww.__eq__(metadata_table.ww, deep=False) if isinstance(sample_df, pd.DataFrame): assert not diff_data_table.ww.__eq__(metadata_table.ww, deep=True) def test_accessor_init_with_valid_string_time_index(time_index_df): time_index_df.ww.init(name="schema", index="id", time_index="times") assert time_index_df.ww.name == "schema" assert time_index_df.ww.index == "id" assert time_index_df.ww.time_index == "times" assert isinstance( time_index_df.ww.columns[time_index_df.ww.time_index].logical_type, Datetime ) def test_accessor_init_with_numeric_datetime_time_index(time_index_df): schema_df = time_index_df.copy() schema_df.ww.init(time_index="ints", logical_types={"ints": Datetime}) error_msg = "Time index column must contain datetime or numeric values" with pytest.raises(TypeError, match=error_msg): time_index_df.ww.init( name="schema", time_index="strs", logical_types={"strs": Datetime} ) assert schema_df.ww.time_index == "ints" assert schema_df["ints"].dtype == "datetime64[ns]" def test_accessor_with_numeric_time_index(time_index_df): # Set a numeric time index on init schema_df = time_index_df.copy() schema_df.ww.init(time_index="ints") date_col = schema_df.ww.columns["ints"] assert schema_df.ww.time_index == "ints" assert isinstance(date_col.logical_type, Integer) assert date_col.semantic_tags == {"time_index", "numeric"} # Specify logical type for time index on init schema_df = time_index_df.copy() schema_df.ww.init(time_index="ints", logical_types={"ints": "Double"}) date_col = schema_df.ww.columns["ints"] assert schema_df.ww.time_index == "ints" assert isinstance(date_col.logical_type, Double) assert date_col.semantic_tags == {"time_index", "numeric"} schema_df = time_index_df.copy() schema_df.ww.init(time_index="strs", logical_types={"strs": "Double"}) date_col = schema_df.ww.columns["strs"] assert schema_df.ww.time_index == "strs" assert isinstance(date_col.logical_type, Double) assert date_col.semantic_tags == {"time_index", "numeric"} error_msg = "Time index column must contain datetime or numeric values" with pytest.raises(TypeError, match=error_msg): time_index_df.ww.init(time_index="ints", logical_types={"ints": "Categorical"}) error_msg = "Time index column must contain datetime or numeric values" with pytest.raises(TypeError, match=error_msg): time_index_df.ww.init(time_index="letters", logical_types={"strs": "Integer"}) # Set numeric time index after init schema_df = time_index_df.copy() schema_df.ww.init(logical_types={"ints": "Double"}) assert schema_df.ww.time_index is None schema_df.ww.set_time_index("ints") date_col = schema_df.ww.columns["ints"] assert schema_df.ww.time_index == "ints" assert isinstance(date_col.logical_type, Double) assert date_col.semantic_tags == {"numeric", "time_index"} def test_numeric_time_index_dtypes(numeric_time_index_df): numeric_time_index_df.ww.init(time_index="ints") assert numeric_time_index_df.ww.time_index == "ints" assert isinstance(numeric_time_index_df.ww.logical_types["ints"], Integer) assert numeric_time_index_df.ww.semantic_tags["ints"] == {"time_index", "numeric"} numeric_time_index_df.ww.set_time_index("floats") assert numeric_time_index_df.ww.time_index == "floats" assert isinstance(numeric_time_index_df.ww.logical_types["floats"], Double) assert numeric_time_index_df.ww.semantic_tags["floats"] == {"time_index", "numeric"} numeric_time_index_df.ww.set_time_index("with_null") assert numeric_time_index_df.ww.time_index == "with_null" assert isinstance( numeric_time_index_df.ww.logical_types["with_null"], IntegerNullable ) assert numeric_time_index_df.ww.semantic_tags["with_null"] == { "time_index", "numeric", } def test_accessor_init_with_invalid_string_time_index(sample_df): error_msg = "Time index column must contain datetime or numeric values" with pytest.raises(TypeError, match=error_msg): sample_df.ww.init(name="schema", time_index="full_name") def test_accessor_init_with_string_logical_types(sample_df): logical_types = {"full_name": "natural_language", "age": "Double"} schema_df = sample_df.copy() schema_df.ww.init(name="schema", logical_types=logical_types) assert isinstance(schema_df.ww.columns["full_name"].logical_type, NaturalLanguage) assert isinstance(schema_df.ww.columns["age"].logical_type, Double) logical_types = { "full_name": "NaturalLanguage", "age": "IntegerNullable", "signup_date": "Datetime", } schema_df = sample_df.copy() schema_df.ww.init( name="schema", logical_types=logical_types, time_index="signup_date" ) assert isinstance(schema_df.ww.columns["full_name"].logical_type, NaturalLanguage) assert isinstance(schema_df.ww.columns["age"].logical_type, IntegerNullable) assert schema_df.ww.time_index == "signup_date" def test_int_dtype_inference_on_init(): df = pd.DataFrame( { "ints_no_nans": pd.Series([1, 2]), "ints_nan": pd.Series([1, np.nan]), "ints_NA": pd.Series([1, pd.NA]), "ints_NA_specified": pd.Series([1, pd.NA], dtype="Int64"), } ) df = df.loc[df.index.repeat(5)].reset_index(drop=True) df.ww.init() assert df["ints_no_nans"].dtype == "int64" assert df["ints_nan"].dtype == "float64" assert df["ints_NA"].dtype == "category" assert df["ints_NA_specified"].dtype == "Int64" def test_bool_dtype_inference_on_init(): df = pd.DataFrame( { "bools_no_nans": pd.Series([True, False]), "bool_nan": pd.Series([True, np.nan]), "bool_NA": pd.Series([True, pd.NA]), "bool_NA_specified": pd.Series([True, pd.NA], dtype="boolean"), } ) df = df.loc[df.index.repeat(5)].reset_index(drop=True) df.ww.init() assert df["bools_no_nans"].dtype == "bool" assert df["bool_nan"].dtype == "category" assert df["bool_NA"].dtype == "category" assert df["bool_NA_specified"].dtype == "boolean" def test_str_dtype_inference_on_init(): df = pd.DataFrame( { "str_no_nans": pd.Series(["a", "b"]), "str_nan": pd.Series(["a", np.nan]), "str_NA": pd.Series(["a", pd.NA]), "str_NA_specified": pd.Series([1, pd.NA], dtype="string"), } ) df = df.loc[df.index.repeat(5)].reset_index(drop=True) df.ww.init() assert df["str_no_nans"].dtype == "category" assert df["str_nan"].dtype == "category" assert df["str_NA"].dtype == "category" assert df["str_NA_specified"].dtype == "category" def test_float_dtype_inference_on_init(): df = pd.DataFrame( { "floats_no_nans": pd.Series([1.1, 2.2]), "floats_nan": pd.Series([1.1, np.nan]), "floats_NA": pd.Series([1.1, pd.NA]), "floats_nan_specified": pd.Series([1.1, np.nan], dtype="float"), } ) df = df.loc[df.index.repeat(5)].reset_index(drop=True) df.ww.init() assert df["floats_no_nans"].dtype == "float64" assert df["floats_nan"].dtype == "float64" assert df["floats_NA"].dtype == "category" assert df["floats_nan_specified"].dtype == "float64" def test_datetime_dtype_inference_on_init(): df = pd.DataFrame( { "date_no_nans": pd.Series([pd.to_datetime("2020-09-01")] * 2), "date_nan": pd.Series([pd.to_datetime("2020-09-01"), np.nan]), "date_NA": pd.Series([pd.to_datetime("2020-09-01"), pd.NA]), "date_NaT": pd.Series([pd.to_datetime("2020-09-01"), pd.NaT]), "date_NA_specified": pd.Series( [pd.to_datetime("2020-09-01"), pd.NA], dtype="datetime64[ns]" ), } ) df.ww.init() assert df["date_no_nans"].dtype == "datetime64[ns]" assert df["date_nan"].dtype == "datetime64[ns]" assert df["date_NA"].dtype == "datetime64[ns]" assert df["date_NaT"].dtype == "datetime64[ns]" assert df["date_NA_specified"].dtype == "datetime64[ns]" def test_datetime_inference_with_format_param(): df = pd.DataFrame( { "index": [0, 1, 2], "dates": ["2019/01/01", "2019/01/02", "2019/01/03"], "ymd_special": ["2019~01~01", "2019~01~02", "2019~01~03"], "mdy_special": pd.Series( ["3~11~2000", "3~12~2000", "3~13~2000"], dtype="string" ), } ) df.ww.init( name="df_name", logical_types={ "ymd_special": Datetime(datetime_format="%Y~%m~%d"), "mdy_special": Datetime(datetime_format="%m~%d~%Y"), "dates": Datetime, }, time_index="ymd_special", ) assert df["dates"].dtype == "datetime64[ns]" assert df["ymd_special"].dtype == "datetime64[ns]" assert df["mdy_special"].dtype == "datetime64[ns]" assert df.ww.time_index == "ymd_special" assert isinstance(df.ww["dates"].ww.logical_type, Datetime) assert isinstance(df.ww["ymd_special"].ww.logical_type, Datetime) assert isinstance(df.ww["mdy_special"].ww.logical_type, Datetime) df.ww.set_time_index("mdy_special") assert df.ww.time_index == "mdy_special" df = pd.DataFrame( { "mdy_special": pd.Series( ["3&11&2000", "3&12&2000", "3&13&2000"], dtype="string" ), } ) df = df.loc[df.index.repeat(5)].reset_index(drop=True) df.ww.init() assert df["mdy_special"].dtype == "category" df.ww.set_types(logical_types={"mdy_special": Datetime(datetime_format="%m&%d&%Y")}) assert df["mdy_special"].dtype == "datetime64[ns]" df.ww.set_time_index("mdy_special") assert isinstance(df.ww["mdy_special"].ww.logical_type, Datetime) assert df.ww.time_index == "mdy_special" def test_timedelta_dtype_inference_on_init(): df = pd.DataFrame( { "delta_no_nans": ( pd.Series([pd.to_datetime("2020-09-01")] * 2) - pd.to_datetime("2020-07-01") ), "delta_nan": ( pd.Series([pd.to_datetime("2020-09-01"), np.nan]) - pd.to_datetime("2020-07-01") ), "delta_NaT": ( pd.Series([pd.to_datetime("2020-09-01"), pd.NaT]) - pd.to_datetime("2020-07-01") ), "delta_NA_specified": ( pd.Series([pd.to_datetime("2020-09-01"), pd.NA], dtype="datetime64[ns]") - pd.to_datetime("2020-07-01") ), } ) df.ww.init() assert df["delta_no_nans"].dtype == "timedelta64[ns]" assert df["delta_nan"].dtype == "timedelta64[ns]" assert df["delta_NaT"].dtype == "timedelta64[ns]" assert df["delta_NA_specified"].dtype == "timedelta64[ns]" def test_sets_category_dtype_on_init(): column_name = "test_series" series_list = [ pd.Series(["a", "b", "c"], name=column_name), pd.Series(["a", None, "c"], name=column_name),
pd.Series(["a", np.nan, "c"], name=column_name)
pandas.Series
"""A script for getting institution details.""" import pandas as pd from . import linkParse from urllib.parse import urljoin, urlparse from lxml import etree import re from selenium import webdriver from lxml import html import time import os from .utilityfunc import Xpath, Image class InstituteData: """docstring for InstituteData.""" def __init__(self, weblink=None): super(InstituteData, self).__init__() self.weblink = weblink self._tree = linkParse.get_html_as_tree(self.weblink) self._xpaths = { "atags": ( f"//a[contains(@href, '{'.'.join(urlparse(weblink).netloc.split('.')[-2:])}') " + "or (not(starts-with(@href,'http')) " + "and not(starts-with(@href, 'javascript')) " + "and not(starts-with(@href, '#')))]" ), "fb": "//a[contains(@href, 'facebook.com/')]", "fb_first": "//div[contains(@class, 'fb-page') and contains(@data-href,'facebook.com')]/@data-href", "logo_else": "(//img[attribute::*[contains(., 'logo')]])[position()=1]/@src", "logo_png": "(//img[attribute::*[contains(., 'logo')] and " # below substring xpath function checks if the src ends with .png extension "substring(attribute::*, string-length(attribute::*) - string-length('png') +1) = 'png'])" "[position()=1]/@src" } self.atags_df = self.__a_data__().drop_duplicates() def __a_data__(self, link=None): """Gets a tags and corresponding text.""" structure = pd.DataFrame(columns=["Text", "Hyperlink"]) if not link: link = self.weblink tree = self._tree else: try: tree = linkParse.get_html_as_tree(link) except ConnectionRefusedError: return None if tree is None: return structure elements = tree.xpath(self._xpaths['atags']) if elements: atags = [x.xpath("./@href")[0] if x.xpath("./@href") else "" for x in elements] atags = [urljoin(link, url=x) for x in atags] atags_text = [x.text for x in elements] atags_text = [x.strip() if x else '' for x in atags_text] atags_df = pd.DataFrame({ "Text": atags_text, "Hyperlink": atags }) atags_df = atags_df.loc[atags_df["Text"].apply(lambda x: True if x else False)] return atags_df else: return structure def edu_web_filter(self): if self.atags_df.empty: return False keywords = self.atags_df.Text.str.contains( (r"Gallery|Contact US|Home|About[.\s]?Us|History" r"|Vision|Mission|Scholarship" r"|Anti[\-\s]?Ragging|Ragging" r"|Syllabus|Contact[.\s]?Us|Admission|Placements" r"|Facilities|Library|Hostel|Sports|Wi[-\s]?Fi|Education" r"|Institution|Academic|Exam|Campus|Graduate|Under[\s\-]?graduate" r"|Alumni|Research|career|Fees|Engineering|University"), case=False) if sum(keywords) >= 4: return True else: print(f"The link {self.weblink} does not seem to be an education institution website.") return False def fb_link(self): """Gets you the facebook link.""" fb_page_links = self._tree.xpath(self._xpaths["fb_first"]) if not fb_page_links: fb_page_links = self._tree.xpath(self._xpaths['fb'] + '/@href') if len(fb_page_links) == 1: # if just one page is found check for page == True fb_page_link = fb_page_links[0] tree = linkParse.get_html_as_tree(fb_page_link) if tree is not None: if len(tree.xpath("//a[contains(@href, 'ref=page_internal')]")) > 3: return fb_page_link else: print(f"facebook link {fb_page_link} seems to be broken.") return None elif len(fb_page_links) > 1: # if more than one page is found if len(fb_page_links) > 3: fb_page_links = fb_page_links[0:3] # check first three page for fb_page_link in fb_page_links: tree = linkParse.get_html_as_tree(fb_page_link) if tree is not None: if len(tree.xpath("//a[contains(@href, 'ref=page_internal')]")) > 3: return fb_page_link else: continue else: continue else: print("No facebook link found.") return None def fb_logo_cover(self): fb_link = self.fb_link() if fb_link: with webdriver.Chrome() as driver: driver.get(fb_link) time.sleep(1) tree = driver.page_source tree = html.fromstring(tree) fb_logo_link = tree.xpath("//a[@aria-label='Profile picture']/img/@src") fb_cover_link = tree.xpath( '(//*[contains(text(), "Drag to Reposition")]/following::*/img)[position()=1]/@src') locals()["fb_logo_link"] = fb_logo_link locals()["fb_cover_link"] = fb_cover_link if locals()['fb_logo_link'] and locals()['fb_cover_link']: return ", ".join([fb_logo_link[0], fb_cover_link[0]]) elif locals()['fb_logo_link']: return locals()['fb_logo_link'] elif locals()['fb_cover_link']: return locals()['fb_cover_link'] else: print("No cover or profile found.") return None else: return None def gallery_link(self): gallery_link = self.atags_df.loc[ self.atags_df["Text"].str.contains("gallery|photos", case=False) | self.atags_df["Hyperlink"].str.contains("gallery|photos", case=False) ] if not gallery_link.empty: return gallery_link.iloc[0, 1] else: print("No gallery link found.") return None def gallery_images(self): gallery_link = self.gallery_link() if gallery_link: tree = linkParse.get_html_as_tree(gallery_link) if tree is not None: elements = tree.xpath("//img[not(ancestor::footer) and attribute::*[contains(name(), 'src')]]") if len(elements) >= 3: xpaths = [etree.ElementTree(tree).getpath(x) for x in elements] xpath_gallery = Xpath.get_group(pd.Series(xpaths)) if xpath_gallery is None: return None xpath_gallery["firstimgXpath"] = xpath_gallery[1].apply(lambda x: '(' + x + ')[1]') attribute_extract = lambda x: tree.xpath(x)[0].attrib if tree.xpath(x) else None xpath_gallery["attribs"] = xpath_gallery["firstimgXpath"].apply(attribute_extract) xpath_gallery = xpath_gallery.loc[~xpath_gallery.attribs.isna()] xpath_gallery = xpath_gallery.loc[xpath_gallery[0] >= 3] xpath_gallery["size"] = xpath_gallery["attribs"].apply( lambda x: Image.get_image_size(x, gallery_link)) xpath_gallery = xpath_gallery.sort_values("size", ascending=False) if not xpath_gallery.empty: xpath_gallery = xpath_gallery.iloc[0, 0] else: print(f"The gallery section of {gallery_link} does not seem to contain at least 3 images.") return None elements = tree.xpath(xpath_gallery) images = [x.xpath('./@*[contains(name(), "src")]')[0] for x in elements] images = [x.replace(' ', "%20") for x in images] images = [urljoin(self.weblink, x) if x else '' for x in images] return ", ".join(images) else: print(f"The page {gallery_link} does not seem to contain at least 3 images.") else: print(f"The gallery link {gallery_link} cannot be parsed.") return None else: return None def logo_link(self): """Gets you the logo link""" logo_link = self._tree.xpath(self._xpaths["logo_png"]) if logo_link: return urljoin(self.weblink, logo_link[0]) logo_link = self._tree.xpath(self._xpaths["logo_else"]) if logo_link: return urljoin(self.weblink, logo_link[0]) print("No logo found.") return None def contact_link(self): """gets you the contact link mentioned on the page.""" contact_links = self.atags_df if contact_links.empty: return None contact_links = contact_links.loc[contact_links['Text'].str.contains( r'contact', case=False)] contact_links = contact_links['Hyperlink'].tolist() if contact_links: return contact_links[0] else: print("No contact link found.") return None def blog(self): """Gets you the blog/news/article present in the link.""" blog_links = self.atags_df.loc[ self.atags_df['Text'].str.contains(r'blog|news|article', case=False) ] blog_links = [urlparse(x) for x in blog_links["Hyperlink"]] blog_links = ["{0}://{1}{2}".format(x.scheme, x.netloc, x.path) for x in blog_links] blog_links = ", ".join(blog_links) if not blog_links: print("No blogs or newsletters found.") return None else: return blog_links def __filter__(self, contact_text_list): s = pd.Series(contact_text_list) # rules if not s.empty: less_than_80_char = (s.str.count(r'\w') < 80) contains_email_pattern = s.str.contains(r"(?:\b[A-z0-9\._%+\-]+@[A-z0-9\.\-]+\.[A-z]{2,4}\b)" r"|(?:\b[A-z0-9\._%+\-]+\[at\][A-z0-9\.\-]+\.[A-z]{2,4}\b)", case=False) contains_tel_pattern = s.str.contains( r'(?:\+?\s?(?:\d{0,3})?\-?\(?(?:\d{3})\)?[\s\-\.]?)?(?:\d{3})[\s\-\.]?(?:\d{4})[\s\-]?') does_not_contain_session = ~s.str.contains(r'(?:19|20)\d{2}\-(?:19|20)\d{2}') contains_keywords = s.str.contains(r'tel\s?\:|phone\s?\:|telephone|mobile', case=False) contains_pair_of_digits = s.str.count(r'\d{2}') > 2 contains_fax_keyword = s.str.contains(r'fax', case=False) s = s.loc[ (less_than_80_char & (contains_email_pattern | ((contains_tel_pattern & does_not_contain_session) | (contains_keywords & contains_pair_of_digits)) & ((contains_keywords & contains_fax_keyword) | (~contains_fax_keyword)) )) ].tolist() return s else: return [] def contact_extract(self): """Extracts the contact detail on the contact page.""" structure = pd.DataFrame(columns=['Category', 'Details', 'ParentText']) contact_link = self.contact_link() if not contact_link: return structure else: xpath_to_target = '//*[not(name()="script")' \ 'and not(name()="meta")' \ 'and not(name()="head")' \ 'and not(name()="html")]' tree = linkParse.get_html_as_tree(contact_link) if tree is None: print(f"Contact link {contact_link} does not seem to be valid.") return structure elements = tree.xpath(xpath_to_target) xpath_address = [etree.ElementTree(tree).getpath(x) for x in elements] text = [x.xpath('./text()') for x in elements] text = [[x.strip().replace("\xa0", "") for x in y if y] for y in text] text_xpath_df = pd.DataFrame({ "Xpath": xpath_address, "Text": text }) email_pattern = r"\b[A-z0-9\._%+\-]+@[A-z0-9\.\-]+\.[A-z]{2,4}\b" text_xpath_df['Text'] = text_xpath_df['Text'].apply(self.__filter__) text_xpath_df = text_xpath_df.loc[text_xpath_df["Text"].apply(lambda x: bool(x))] if text_xpath_df.empty: tel_nodes_elements = tree.xpath('//a[starts-with(@href, "tel:")]') tel_nodes_xpath = [etree.ElementTree(tree).getpath(x) for x in tel_nodes_elements] tel_nodes_text = [x.attrib.get("href") for x in tel_nodes_elements] tel_nodes_text = [x.replace('tel:', "") for x in tel_nodes_text if re.search(r"\d", x)] if not tel_nodes_text: return structure tel_nodes = pd.DataFrame({ "Xpath": tel_nodes_xpath, "Text": tel_nodes_text }) text_xpath_df = text_xpath_df.append(tel_nodes) if text_xpath_df.empty: return structure text_xpath_df = pd.concat([text_xpath_df["Xpath"], text_xpath_df["Text"].apply("sep_here".join).str.split("sep_here", expand=True)], axis=1) text_xpath_df = text_xpath_df.melt(['Xpath'], var_name='Category', value_name="Details").dropna() text_xpath_df["Details"] = text_xpath_df["Details"].apply( lambda x: re.findall(email_pattern, x)[0] if re.findall(email_pattern, x) else x) text_xpath_df["Category"] = text_xpath_df["Details"].str.contains(email_pattern).apply( lambda x: "Email" if x else "Phone") parent_text_all_elements = [] for i in text_xpath_df["Xpath"].tolist(): if tree.xpath(i): parent_node = tree.xpath(i)[0] parent_text = parent_node.xpath(".//text()") parent_text = [x.strip() for x in parent_text] parent_text = "\n".join(parent_text) parent_text_all_elements.append(parent_text) else: parent_text_all_elements.append("") text_xpath_df["ParentText"] = parent_text_all_elements return text_xpath_df.iloc[:, 1:] def get_institution_data(weblink): institute_data = InstituteData(weblink) if institute_data.edu_web_filter(): scraped_data = dict( Website=institute_data.weblink, Logo=institute_data.logo_link(), FacebookLink=institute_data.fb_link(), FacebookImages=institute_data.fb_logo_cover(), GalleryLink=institute_data.gallery_link(), GalleryImages=institute_data.gallery_images(), Blog=institute_data.blog() ) scraped_data =
pd.DataFrame(scraped_data, index=[0])
pandas.DataFrame
import os import pandas as pd import numpy as np SETS = ['ADP-morph_tuning_VGG16', 'ADP-morph_tuning_X1.7', 'ADP-morph_segtest_VGG16', 'ADP-morph_segtest_X1.7', 'ADP-func_tuning_VGG16', 'ADP-func_tuning_X1.7', 'ADP-func_segtest_VGG16', 'ADP-func_segtest_X1.7', 'VOC2012_VGG16', 'VOC2012_M7', 'DeepGlobe_VGG16', 'DeepGlobe_M7', 'DeepGlobe_balanced_VGG16', 'DeepGlobe_balanced_M7'] # SEC/DSRG def to_underscore(x): return x.replace('-VGG16', '_VGG16').replace('-X1.7', '_X1.7').replace('-M7', '_M7') def to_dash(x): return x.replace('_VGG16', '-VGG16').replace('_X1.7', '-X1.7').replace('_M7', '-M7') DIR = '../03a_sec-dsrg/eval' eval_sec_dsrg = {'SEC': {}, 'DSRG': {}} def get_miou(fpath): if not os.path.exists(fpath): return np.nan else: df = pd.read_excel(fpath) return df['IoU'][df['Class'] == 'Mean'].values[0] for method in ['SEC', 'DSRG']: folders = os.listdir(os.path.join(DIR, method)) for folder in folders: if 'ADP' in folder: for s in [to_dash(folder.replace('train', 'tuning')), to_dash(folder.replace('train', 'segtest'))]: fpath = os.path.join(DIR, method, folder, 'metrics_%s.xlsx' % s) key = to_underscore(s) eval_sec_dsrg[method][key] = get_miou(fpath) elif 'DeepGlobe' in folder: s = to_dash(folder.replace('train_', 'test_')) fpath = os.path.join(DIR, method, folder, 'metrics_%s.xlsx' % s) key = folder.replace('_train_', '_') eval_sec_dsrg[method][key] = get_miou(fpath) else: s = to_dash(folder.replace('train_', 'val_')) fpath = os.path.join(DIR, method, folder, 'metrics_%s.xlsx' % s) key = to_underscore(s).replace('val_', '') eval_sec_dsrg[method][key] = get_miou(fpath) # Grad-CAM/IRNet DIR = '../03b_irn/eval' folders = os.listdir(DIR) eval_cam = {} eval_irn = {} def irn_folder_to_key(folder): if folder.startswith('adp_morph'): key = 'ADP-morph' elif folder.startswith('adp_func'): key = 'ADP-func' elif folder.startswith('voc12'): key = 'VOC2012' elif folder.startswith('deepglobe_balanced'): key = 'DeepGlobe_balanced' elif folder.startswith('deepglobe'): key = 'DeepGlobe' if folder.endswith('tuning'): key += '_tuning' elif folder.endswith('evaluation'): key += '_segtest' if 'vgg16' in folder: key += '_VGG16' elif 'x1.7' in folder: key += '_X1.7' elif 'm7' in folder: key += '_M7' return key for folder in folders: key = irn_folder_to_key(folder) if 'cam' in folder: fname = folder + '_cam_iou.csv' df = pd.read_csv(os.path.join(DIR, folder, fname)) eval_cam[key] = df[df['Unnamed: 0'] == 'mean']['iou'].values[0] else: fname = folder + '_iou.csv' df = pd.read_csv(os.path.join(DIR, folder, fname)) eval_irn[key] = df[df['Unnamed: 0'] == 'miou']['iou'].values[0] # HistoSegNet DIR = '../03c_hsn/eval' folders = os.listdir(DIR) eval_hsn = {} for folder in folders: assert folder in SETS fnames = [x for x in os.listdir(os.path.join(DIR, folder)) if x.endswith('.xlsx') and not x.startswith('~')] assert len(fnames) == 1 fname = fnames[0] df = pd.read_excel(os.path.join(DIR, folder, fname)) eval_hsn[folder] = df['IoU'][df['Class'] == 'Mean'].values[0] df_eval = pd.DataFrame({'Grad-CAM': eval_cam, 'SEC': eval_sec_dsrg['SEC'], 'DSRG': eval_sec_dsrg['DSRG'], 'IRNet': eval_irn, 'HistoSegNet': eval_hsn})
pd.set_option('display.max_columns', None)
pandas.set_option
# Predicting Heart Disease from sklearn.tree import DecisionTreeClassifier, export_graphviz from sklearn.metrics import accuracy_score, confusion_matrix, classification_report, make_scorer from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score import numpy as np import matplotlib.pyplot as plt import seaborn as sns import pandas as pd df = pd.read_csv('data/mlbootcamp5_train.csv', index_col='id', sep=';') df.head() # Convert `age` to be in years df['age'] = round(df['age'] / 365) # One-Hot encoding for `cholesterol` and `gluc` ## Unique values for each df.gluc.unique() df.cholesterol.unique() ## Using get_dummies from pandas [umm... should you use dropfirst?]
pd.get_dummies(df.cholesterol, prefix='chol', prefix_sep='_')
pandas.get_dummies
import streamlit as st import pandas as pd from plotly import graph_objs as go from plotly.subplots import make_subplots import plotly.express as px from PIL import Image # Use the full page instead of a narrow central column st.set_page_config( page_title = 'Pakistan Textile Exports', page_icon = '✅', layout = 'wide' ) # ---- HIDE STREAMLIT STYLE ---- hide_st_style = """ <style> #MainMenu {visibility: hidden;} footer {visibility: hidden;} header {visibility: hidden;} </style> """ st.markdown(hide_st_style, unsafe_allow_html=True) #from pages import garments, knitwear, textile # import your app modules here st.sidebar.header('Pakistan Textile Exports') page_names = ['Dashboard', #index =0 'Total Textile Exports', #index=1 'Raw Cotton Exports', #'Carded/Combed Cotton Exports', 'Cotton Yarn Exports', 'Non-Cotton Yarn Exports', 'Cotton Cloth Exports', 'Knitwear Exports', 'Bedwear Exports', 'Readymade Garments Exports', 'Towel Exports', 'Tents & Tarpaulines Exports', 'Made-ups excluding Bedwear & Towels', 'Artifical Silk & Synthetics Exports', 'Other Textiles Exports', 'Overall Pakistan Trade', 'Cotton Statistics', ] page = st.sidebar.radio('Navigation', page_names, index=0) #st.write("**The variable 'page' returns:**", page) ######################################## ######################################## if page == 'Cotton Statistics': #importing csv file as dataframe df = pd.read_csv('cotton_districts.csv') #shorten name of a district for better display on chart #df['District'] = df['District'].replace('Shaheed Benazirabad', 'Benazirabad') ######################################## ######################################## #yearly trend chart ######################################## #creating new colum 'Bales_sum' of yearly sum of bales df_yearly = df.groupby(['Year']).agg(Bales_sum=('Bales', 'sum')).reset_index() ############################## ############################## fig_cd = go.Figure() # Add traces fig_cd.add_trace(go.Bar(x=df_yearly['Year'], y=df_yearly['Bales_sum'], name='<NAME>', text=df_yearly['Bales_sum'], #text on bars textfont_size=24, #text on bars textfont_family='roboto', textposition='auto', texttemplate='%{text:.3s}', # to text shorten into 3 digits, use '%{text:.3s}' marker_color='#006BA2', #bar colors hovertemplate='%{x} <br><NAME>: %{y}' )) from PIL import Image image = Image.open('logo.png') #st.image(logo.png) fig_cd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=1, #image postion on chart sizex=0.15, sizey=0.15, #image size on chart xanchor="right", yanchor="bottom" )) fig_cd.update_layout( autosize=False, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=40, l=40, r=40), #title="Cotton Production in Pakistan", #title_font=dict(size=30, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="No. of Bales", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', ) fig_cd.update_xaxes(showline=True, linewidth=2, linecolor='black') fig_cd.update_yaxes(showline=True, linewidth=2, linecolor='black') fig_cd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_cd.update_yaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_cd.update_yaxes(title_font=dict(family='Roboto', color='black', size=24)) #fig_cd.update_xaxes(font=dict(color='#111111', size=24, family="roboto, sans-serif")) fig_cd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') #title fig_cd.add_annotation( text="Cotton Production", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="x domain", yref="y domain", x=0, y=1.15, showarrow=False, arrowhead=1) #subtitle fig_cd.add_annotation( text="in Pakistan over the last few years of the closing season", font=dict(family='roboto', color='black', size=24), xref="x domain", yref="y domain", x=0, y=1.08, showarrow=False, arrowhead=1) #datasource fig_cd.add_annotation( text="Source: Pakistan Cotton Ginners Association/National Textile University, Pakistan", font=dict(family='Roboto', color='#758D99', size=20), xref="x domain", yref="y domain", x=0, y=-0.13, showarrow=False, arrowhead=1) st.plotly_chart(fig_cd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ### ####################################### ############################### #cotton exports and imports ############################## df_e = pd.read_csv('yearly_cotton_imports_pbs.csv') df_e['year'] = df_e['year'].astype(str) ############################## fig = go.Figure() # Add traces fig.add_trace(go.Bar( x=df_e["year"], y=df_e["imp_bales"], text=df_e["imp_bales"], marker_color='#ff6b6c', name='Imports' #name on legend )) fig.add_trace(go.Bar( x=df_e["year"], y=df_e["exp_bales"], text=df_e["exp_bales"], marker_color='#3ebcd2', name='Exports' )) fig.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=1, #image postion on chart sizex=0.15, sizey=0.15, #image size on chart xanchor="right", yanchor="bottom" )) fig.update_traces(texttemplate='%{text:.2s}', textposition='auto', textfont_size=24, textfont_family='roboto', textfont_color="#111111") fig.update_layout( autosize=False, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=40, l=40, r=40), xaxis_title='', yaxis_title="No. of Bales", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', ) fig.update_xaxes(showline=True, linewidth=2, linecolor='black') fig.update_yaxes(showline=True, linewidth=2, linecolor='black') fig.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig.update_yaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig.update_yaxes(title_font=dict(family='Roboto', color='black', size=24)) #fig_cd.update_xaxes(font=dict(color='#111111', size=24, family="roboto, sans-serif")) fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') #title fig.add_annotation( text="Cotton Exports & Imports", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="x domain", yref="y domain", x=0, y=1.15, showarrow=False, arrowhead=1) #subtitle fig.add_annotation( text="in Pakistan over the last few years of the closing season", font=dict(family='roboto', color='black', size=24), xref="x domain", yref="y domain", x=0, y=1.08, showarrow=False, arrowhead=1) #datasource fig.add_annotation( text="Source: Pakistan Bureau of Statistics/National Textile University, Pakistan", font=dict(family='Roboto', color='#758D99', size=20), xref="x domain", yref="y domain", x=0, y=-0.13, showarrow=False, arrowhead=1) fig.update_layout(legend=dict( orientation="h", font=dict(family='Roboto', color='#758D99', size=16), yanchor="bottom", y=1.02, xanchor="right", x=0.8)) st.plotly_chart(fig, use_container_width=True) # to show Figure; container width true makes fig. size responsive ############################### ################################ #monthly cotton imports #importing csv file as dataframe df_m = pd.read_csv('monthly_cotton_imports_pbs.csv') #calculating year-to-date YTD bales and adding new column for the same df_m['bales_ytd'] = df_m['bales'].cumsum() df_m['usd_ytd'] = df_m['USD'].cumsum() ############## fig = go.Figure() ############### # Add traces fig.add_trace(go.Bar(x=df_m['month'], y=df_m['bales_ytd'], name='<NAME>', text=df_m['bales_ytd'], #text on bars textfont_size=24, #text on bars textfont_family='roboto', textposition='auto', texttemplate='%{text:.3s}', # to text shorten into 3 digits, use '%{text:.3s}' marker_color='#006BA2', #bar colors )) fig.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=1, #image postion on chart sizex=0.15, sizey=0.15, #image size on chart xanchor="right", yanchor="bottom" )) ############### #layout fig.update_layout( autosize=False, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=90, l=90, r=40), plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', ) ############### #updates axes fig.update_xaxes(showline=True, linewidth=2, linecolor='black') fig.update_yaxes(showline=True, linewidth=2, linecolor='black') fig.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig.update_yaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig.update_yaxes(title='Cumulative No. of Bales', title_font=dict(family='Roboto', color='black', size=24)) fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig.add_annotation( text="<NAME>", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="x domain", yref="y domain", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig.add_annotation( text="in Pakistan in the current financial year 2021-22", font=dict(family='roboto', color='black', size=24), xref="x domain", yref="y domain", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig.add_annotation( text="Source: Pakistan Bureau of Statistics/National Textile University, Pakistan", font=dict(family='Roboto', color='#758D99', size=20), xref="x domain", yref="y domain", x=0, y=-0.18, showarrow=False, arrowhead=1) ###################### #show figure in streamlit web app st.plotly_chart(fig, use_container_width=True) # to show Figure; container width true makes fig. size responsive ############################## ############################## ############## fig = go.Figure() ############### # Add traces fig.add_trace(go.Bar(x=df_m['month'], y=df_m['usd_ytd'], name='<NAME>', text=df_m['usd_ytd'], #text on bars textfont_size=24, #text on bars textfont_family='roboto', textposition='auto', texttemplate='%{text:.3s}', # to text shorten into 3 digits, use '%{text:.3s}' marker_color='#ff6b6c', #bar colors )) fig.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=1, #image postion on chart sizex=0.15, sizey=0.15, #image size on chart xanchor="right", yanchor="bottom" )) ############### #layout fig.update_layout( autosize=False, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=90, l=90, r=40), plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', ) ############### #updates axes fig.update_xaxes(showline=True, linewidth=2, linecolor='black') fig.update_yaxes(showline=True, linewidth=2, linecolor='black') fig.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig.update_yaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig.update_yaxes(title='Cumulative US$', title_font=dict(family='Roboto', color='black', size=24)) fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig.add_annotation( text="Cost of Cotton Imports", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="x domain", yref="y domain", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig.add_annotation( text="Cumulative price paid for cotton imports till recent month)", font=dict(family='roboto', color='black', size=24), xref="x domain", yref="y domain", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig.add_annotation( text="Source: Pakistan Bureau of Statistics/National Textile University, Pakistan", font=dict(family='Roboto', color='#758D99', size=20), xref="x domain", yref="y domain", x=0, y=-0.18, showarrow=False, arrowhead=1) ###################### #show figure in streamlit web app st.plotly_chart(fig, use_container_width=True) # to show Figure; container width true makes fig. size responsive ############################## ############################## ############################## #grouping by province ############################### df_punjab = df[df['Province'] == 'Punjab'] df_punjab = df_punjab.groupby(['Year']).agg({'Bales':'sum'}).reset_index() df_sindh = df[df['Province'] == 'Sindh'] df_sindh = df_sindh.groupby(['Year']).agg({'Bales':'sum'}).reset_index() df_baluchistan = df[df['Province'] == 'Baluchistan'] df_baluchistan = df_baluchistan.groupby(['Year']).agg({'Bales':'sum'}).reset_index() fig = go.Figure() fig.add_trace(go.Bar( x=df_punjab["Year"], y=df_punjab["Bales"], text=df_punjab["Bales"], marker_color='#ff6b6c', name='Punjab' #name on legend )) fig.add_trace(go.Bar( x=df_sindh["Year"], y=df_sindh["Bales"], text=df_sindh["Bales"], marker_color='#3ebcd2', name='Sindh' )) fig.add_trace(go.Bar( x=df_baluchistan["Year"], y=df_baluchistan["Bales"], text=df_baluchistan["Bales"], marker_color='#006BA2', name='Baluchistan' )) fig.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=1, #image postion on chart sizex=0.15, sizey=0.15, #image size on chart xanchor="right", yanchor="bottom" )) fig.update_traces(texttemplate='%{text:.2s}', textposition='auto', textfont_size=24, textfont_family='roboto', textfont_color="#111111") fig.update_layout( autosize=True, height=650, width=1050, margin=dict(t=100, b=120, l=40, r=40), plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', bargap=0.2, #value can be An int or float in the interval [0, 1] ) fig.update_xaxes(showline=True, linewidth=2, linecolor='black') fig.update_yaxes(showline=True, linewidth=2, linecolor='black') fig.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig.update_yaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig.update_yaxes(title_font=dict(family='Roboto', color='black', size=24)) #fig_cd.update_xaxes(font=dict(color='#111111', size=24, family="roboto, sans-serif")) fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') fig.update_yaxes(title="No. of Bales", title_font=dict(size=25, color='#111111', family="roboto"), ) #title fig.add_annotation( text="Cotton Production", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="x domain", yref="y domain", x=0, y=1.19, showarrow=False, arrowhead=1) #subtitle fig.add_annotation( text=f"in different Pakistani provinces over the last few years", font=dict(family='roboto', color='black', size=24), xref="x domain", yref="y domain", x=0, y=1.11, showarrow=False, arrowhead=1) fig.add_annotation( text="Source: Pakistan Cotton Ginners Association/National Textile University, Pakistan", font=dict(family='Roboto', color='#758D99', size=20), xref="x domain", yref="y domain", x=0, y=-0.24, showarrow=False, arrowhead=1) fig.update_layout(legend=dict( orientation="h", font=dict(family='Roboto', color='#758D99', size=16), yanchor="bottom", y=1.08, xanchor="right", x=0.8)) st.plotly_chart(fig, use_container_width=True) # to show Figure; container width true makes fig. size responsive ############################ ############################ # district-wise chart ########################### #year = df["Year"] #latest_year = year.max() #filter data for latest_year df_latest_year = df[df['Period'] == '2021-22'] fig = go.Figure() # Add traces fig.add_trace(go.Bar(x=df_latest_year['District'], y=df_latest_year['Bales'], name='<NAME>', text=df_latest_year['Bales'], #text on bars textfont_size=24, #text on bars textfont_family='roboto', texttemplate='%{text:.3s}', # to text shorten into 3 digits, use '%{text:.3s}' marker_color='#006BA2', #bar colors )) fig.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=1, #image postion on chart sizex=0.15, sizey=0.15, #image size on chart xanchor="right", yanchor="bottom" )) fig.update_layout( autosize=False, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=40, l=40, r=40), #title="Cotton Production in Pakistan", #title_font=dict(size=30, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="No. of Bales", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', ) fig.update_xaxes(showline=True, linewidth=2, linecolor='black') fig.update_yaxes(showline=True, linewidth=2, linecolor='black') fig.update_xaxes(tickangle=90, tickfont=dict(family='Roboto', color='black', size=24)) fig.update_yaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig.update_yaxes(title_font=dict(family='Roboto', color='black', size=24)) #fig_cd.update_xaxes(font=dict(color='#111111', size=24, family="roboto, sans-serif")) fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') fig.update_xaxes({'categoryorder':'total descending'}) #title fig.add_annotation( text="Cotton Production", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="x domain", yref="y domain", x=0, y=1.22, showarrow=False, arrowhead=1) #subtitle fig.add_annotation( text=f"in different Pakistani districts during 2020-21 season", font=dict(family='roboto', color='black', size=24), xref="x domain", yref="y domain", x=0, y=1.11, showarrow=False, arrowhead=1) fig.add_annotation( text="Source: Pakistan Cotton Ginners Association/National Textile University, Pakistan", font=dict(family='Roboto', color='#758D99', size=20), xref="x domain", yref="y domain", x=0, y=-0.75, showarrow=False, arrowhead=1) st.plotly_chart(fig, use_container_width=True) # to show Figure; container width true makes fig. size responsive ######################## ######################## # montlhy cotton arrivals chart ########################### ################# df_cotton_arrivals = pd.read_csv('cotton_arrivals.csv') fig = go.Figure() fig.add_trace(go.Scatter( x=df_cotton_arrivals["Date"], y=df_cotton_arrivals["2018-19"], name="2018-19", text=df_cotton_arrivals['2018-19'], texttemplate='%{text:.3s}', #text shorten into 3 digits mode="markers+lines", textposition="bottom right", textfont=dict(family="roboto, sans-serif", size=18, color="#eca220"), marker=dict(size=8, color="#eca220"), line=dict(width=2, color="#eca220"), )) fig.add_trace(go.Scatter( x=df_cotton_arrivals["Date"], y=df_cotton_arrivals["2019-20"], name="2019-20", text=df_cotton_arrivals['2019-20'], texttemplate='%{text:.3s}', #text shorten into 3 digits mode="markers+lines", textposition="bottom right", textfont=dict(family="roboto, sans-serif", size=18, color="#b4bb3b"), marker=dict(size=8, color="#b4bb3b"), line=dict(width=2, color="#b4bb3b"), )) fig.add_trace(go.Scatter( x=df_cotton_arrivals["Date"], y=df_cotton_arrivals["2020-21"], name="2020-21", text=df_cotton_arrivals['2020-21'], texttemplate='%{text:.3s}', #text shorten into 3 digits mode="markers+lines", textposition="bottom right", textfont=dict(family="roboto, sans-serif", color="#963c4c", size=18), marker=dict(size=8, color="#963c4c"), line=dict(width=2, color="#963c4c"), )) fig.add_trace(go.Scatter( x=df_cotton_arrivals["Date"], y=df_cotton_arrivals["2021-22"], name="2021-22", text=df_cotton_arrivals['2021-22'], texttemplate='%{text:.3s}', # to text shorten into 3 digits, use '%{text:.3s}' mode="markers+lines+text", textposition="bottom right", textfont=dict(family="fjalla one, sans-serif", color="#106ea0", size=20), marker=dict(size=12, color="#106ea0"), line=dict(width=5, color="#106ea0") )) fig.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=1, #image postion on chart sizex=0.15, sizey=0.15, #image size on chart xanchor="right", yanchor="bottom" )) fig.update_layout( autosize=True, height=650, width=1050, margin=dict(t=90, b=120, l=40, r=40), plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', bargap=0.2, #value can be An int or float in the interval [0, 1] ) fig.update_xaxes(showline=True, linewidth=2, linecolor='black') fig.update_yaxes(showline=True, linewidth=2, linecolor='black') fig.update_xaxes(tickangle=90, tickfont=dict(family='Roboto', color='black', size=24)) fig.update_yaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig.update_yaxes(title_font=dict(family='Roboto', color='black', size=24)) #fig_cd.update_xaxes(font=dict(color='#111111', size=24, family="roboto, sans-serif")) fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') fig.update_yaxes(title="Cumulative number of bales", title_font=dict(size=25, color='#111111', family="roboto"), ) #title fig.add_annotation( text="Monthly Cotton Arrival", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="x domain", yref="y domain", x=0, y=1.19, showarrow=False, arrowhead=1) #subtitle fig.add_annotation( text=f"in Pakistani factories", font=dict(family='roboto', color='black', size=24), xref="x domain", yref="y domain", x=0, y=1.11, showarrow=False, arrowhead=1) fig.add_annotation( text="Source: Pakistan Cotton Ginners Association/National Textile University, Pakistan", font=dict(family='Roboto', color='#758D99', size=20), xref="x domain", yref="y domain", x=0, y=-0.24, showarrow=False, arrowhead=1) fig.update_layout(legend=dict( orientation="h", font=dict(family='Roboto', color='#758D99', size=16), yanchor="bottom", y=1.02, xanchor="right", x=0.75)) st.plotly_chart(fig, use_container_width=True) # to show Figure; container width true makes fig. size responsive ############################### ############################## #Historical cotton data ######################### ############################## df_h = pd.read_csv('cotton_historical.csv') df_a = pd.read_csv('cotton_area.csv') fig = go.Figure() # Add traces fig.add_trace(go.Scatter( x=df_h["Year"], y=df_h["Bales"], name="", #text=df_cotton_arrivals['2021-22'], #texttemplate='%{text:.3s}', # to text shorten into 3 digits, use '%{text:.3s}' mode="markers+lines", #textposition="bottom right", #textfont=dict(family="fjalla one, sans-serif", color="#106ea0", size=20), marker=dict(size=12, color="#106ea0"), line=dict(width=5, color="#106ea0"), showlegend=False )) fig.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=1, #image postion on chart sizex=0.15, sizey=0.15, #image size on chart xanchor="right", yanchor="bottom" )) fig.update_layout( autosize=False, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=40, l=40, r=40), #title="Cotton Production in Pakistan", #title_font=dict(size=30, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="No. of Bales", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', ) fig.update_xaxes(showline=True, linewidth=2, linecolor='black') fig.update_yaxes(showline=True, linewidth=2, linecolor='black') fig.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig.update_yaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig.update_yaxes(title_font=dict(family='Roboto', color='black', size=24)) #fig_cd.update_xaxes(font=dict(color='#111111', size=24, family="roboto, sans-serif")) fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') #adding range buttons fig.update_xaxes( rangeslider_visible = False, rangeselector = dict( buttons = list([ dict(count = 1, label = '1Y', step = 'year', stepmode = 'backward'), dict(count = 2, label = '2Y', step = 'year', stepmode = 'backward'), dict(count = 5, label = '5Y', step = 'year', stepmode = 'backward'), #dict(step = 'all') ]))) #title fig.add_annotation( text="Cotton Production in Pakistan", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="x domain", yref="y domain", x=0, y=1.15, showarrow=False, arrowhead=1) #subtitle fig.add_annotation( text="since 1947-48 season", font=dict(family='roboto', color='black', size=24), xref="x domain", yref="y domain", x=0, y=1.08, showarrow=False, arrowhead=1) #datasource fig.add_annotation( text="Source: Pakistan Cotton Ginners Association/Karachi Cotton Association/National Textile University, Pakistan", font=dict(family='Roboto', color='#758D99', size=20), xref="x domain", yref="y domain", x=0, y=-0.13, showarrow=False, arrowhead=1) #Adding only the last date point value/text fig.add_trace(go.Scatter(x=[df_h['Year'].iloc[-1]], y=[df_h['Bales'].iloc[-1]], text=[df_h['Bales'].iloc[-1]], name='', mode='markers+text', marker=dict(color='red', size=14), textposition='top right', textfont=dict(family="fjalla one, sans-serif", color="#006BA2", size=18), texttemplate='%{text:.3s}', #text shorten into 3 digits showlegend=False)) #Adding value/text at year 2005, which is at index number 57 fig.add_trace(go.Scatter(x=[df_h['Year'].iloc[57]], y=[df_h['Bales'].iloc[57]], text=[df_h['Bales'].iloc[57]], name='', mode='markers+text', marker=dict(color='red', size=14), textposition='middle right', textfont=dict(family="fjalla one, sans-serif", color="#006BA2", size=18), texttemplate='%{text:.3s}', #text shorten into 3 digits showlegend=False)) st.plotly_chart(fig, use_container_width=True) # to show Figure; container width true makes fig. size responsive ########################################## ############################################ #cotton area df_a = pd.read_csv('cotton_area.csv') fig = go.Figure() # Add traces fig.add_trace(go.Scatter( x=df_a["year"], y=df_a["total_acres"], name="", line=dict(width=2, color="red"), fill='tozeroy', showlegend=False )) fig.add_trace(go.Scatter( x=df_a["year"], y=df_a["punjab_acres"], name="", line=dict(width=2, color="#106ea0"), fill='tozeroy', showlegend=False )) fig.add_trace(go.Scatter( x=df_a["year"], y=df_a["sindh_acres"], name="", line=dict(width=2, color="green"), fill='tozeroy', showlegend=False )) fig.add_trace(go.Scatter( x=df_a["year"], y=df_a["kpk_acres"], name="", line=dict(width=2, color="#106ea0"), fill='tozeroy', showlegend=False )) fig.add_trace(go.Scatter( x=df_a["year"], y=df_a["baluchistan_acres"], name="", line=dict(width=2, color="yellow"), fill='tozeroy', showlegend=False )) fig.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=1, #image postion on chart sizex=0.15, sizey=0.15, #image size on chart xanchor="right", yanchor="bottom" )) fig.update_layout( autosize=False, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=40, l=40, r=40), #title="Cotton Production in Pakistan", #title_font=dict(size=30, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="No. of Acres", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', ) fig.update_xaxes(showline=True, linewidth=2, linecolor='black') fig.update_yaxes(showline=True, linewidth=2, linecolor='black') fig.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig.update_yaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig.update_yaxes(title_font=dict(family='Roboto', color='black', size=24)) #fig_cd.update_xaxes(font=dict(color='#111111', size=24, family="roboto, sans-serif")) fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') #adding range buttons #title fig.add_annotation( text="Cotton Production Area in Pakistan", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="x domain", yref="y domain", x=0, y=1.15, showarrow=False, arrowhead=1) #subtitle fig.add_annotation( text="since 1947-48 season", font=dict(family='roboto', color='black', size=24), xref="x domain", yref="y domain", x=0, y=1.08, showarrow=False, arrowhead=1) #datasource fig.add_annotation( text="Source: Agriculture Statistics of Pakistan/Agriculture Marketing Information Service, Punjab", font=dict(family='Roboto', color='#758D99', size=20), xref="x domain", yref="y domain", x=0, y=-0.13, showarrow=False, arrowhead=1) #Adding only the last date point value/text fig.add_trace(go.Scatter(x=[df_a['year'].iloc[-1]], y=[df_a['total_acres'].iloc[-1]], text=[df_a['total_acres'].iloc[-1]], name='', mode='markers+text', marker=dict(color='red', size=14), textposition='bottom left', textfont=dict(family="fjalla one, sans-serif", color="white", size=18), texttemplate='Total:%{text:.3s}', #text shorten into 3 digits showlegend=False)) fig.add_trace(go.Scatter(x=[df_a['year'].iloc[-1]], y=[df_a['punjab_acres'].iloc[-1]], text=[df_a['punjab_acres'].iloc[-1]], name='', mode='markers+text', marker=dict(color='red', size=14), textposition='bottom left', textfont=dict(family="fjalla one, sans-serif", color="white", size=18), texttemplate='Punjab:%{text:.3s}', #text shorten into 3 digits showlegend=False)) fig.add_trace(go.Scatter(x=[df_a['year'].iloc[-1]], y=[df_a['sindh_acres'].iloc[-1]], text=[df_a['sindh_acres'].iloc[-1]], name='', mode='markers+text', marker=dict(color='red', size=14), textposition='bottom left', textfont=dict(family="fjalla one, sans-serif", color="white", size=18), texttemplate='Sindh:%{text:.3s}', #text shorten into 3 digits showlegend=False)) fig.add_trace(go.Scatter(x=[df_a['year'].iloc[-1]], y=[df_a['baluchistan_acres'].iloc[-1]], text=[df_a['baluchistan_acres'].iloc[-1]], name='', mode='markers+text', marker=dict(color='red', size=14), textposition='middle left', textfont=dict(family="fjalla one, sans-serif", color="white", size=18), texttemplate='Baluchistan:%{text:.3s}', #text shorten into 3 digits showlegend=False)) fig.add_trace(go.Scatter(x=[df_a['year'].iloc[-1]], y=[df_a['kpk_acres'].iloc[-1]], text=[df_a['kpk_acres'].iloc[-1]], name='', mode='markers+text', marker=dict(color='red', size=14), textposition='bottom left', textfont=dict(family="fjalla one, sans-serif", color="black", size=18), texttemplate='kpk:%{text:.3s}', #text shorten into 3 digits showlegend=False)) st.plotly_chart(fig, use_container_width=True) # to show Figure; container width true makes fig. size responsive ############################### ############################## #correlation matric df_cor = pd.read_csv('crops_area_correlation_data.csv') corr = df_cor.corr() trace = go.Heatmap(z=corr.values, x=corr.index.values, y=corr.columns.values, xgap = 1, # Sets the horizontal gap (in pixels) between bricks ygap = 1, ) title = 'Crop Correlation Matrix' layout = go.Layout( title_text=title, title_x=0.5, xaxis_showgrid=False, yaxis_showgrid=False, yaxis_autorange='reversed', autosize=False, height=650, width=1050, margin=dict(t=90, b=40, l=40, r=40), plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(family="fjalla one, sans-serif", color="black", size=18), ) fig=go.Figure(data=[trace], layout=layout) fig.update_xaxes(tickangle=90, tickfont=dict(family='Roboto', color='black', size=24)) #st.plotly_chart(fig, use_container_width=True) # to show Figure; container width true makes fig. size responsive ################## import seaborn as sns import seaborn as sns import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(16, 8)) sns.set(font_scale=1) # font size 2 set size for all seaborn graph labels heatmap = sns.heatmap(df_cor.corr(), ax=ax, vmin=-1, vmax=1, annot=True, annot_kws={"size": 20}, cmap='BrBG') heatmap.set_title('Correlation Heatmap', fontdict={'fontsize':24}, pad=12); st.write(fig) ########################### ############################ fig = plt.figure(figsize=(16, 8)) heatmap = sns.heatmap(df_cor.corr(), vmin=-1, vmax=1, annot=True) heatmap.set_title('Correlation Heatmap', fontdict={'fontsize':18}, pad=12); # save heatmap as .png file # dpi - sets the resolution of the saved image in dots/inches # bbox_inches - when set to 'tight' - does not allow the labels to be cropped plt.savefig('heatmap.png', dpi=300, bbox_inches='tight') #st.write(fig) ############# ########################### ######################## #monthly cotton imports ############################## #Cotton prices ############################# import yfinance as yf from datetime import datetime, timedelta #data = yf.download(tickers=stock_price, period = ‘how_many_days’, interval = ‘how_long_between_each_check’, rounding= bool) #data = yf.download(tickers='CT=F', period = '5Y', interval = '1D', rounding= True) data = yf.download(tickers='CT=F', start = '2017-01-01', end = datetime.now().date(), rounding= True) #data data= data.reset_index() # to show date as column header #data ## getting the live ticker price # import stock_info module from yahoo_fin from yahoo_fin import stock_info as si #to get live price of ticker/cotton CT=F price = si.get_live_price('CT=F') prev_close = data.Close.iloc[-2] #iloc[-2] is second last row of res_df ; iloc[0] is first row ## fig = go.Figure() fig.add_trace(go.Scatter(x=data['Date'], y=data['Close'], name = '', texttemplate='%{text:.2s}', # to shorten text into 3 digits, use '%{text:.3s}' )) fig.update_traces(hovertemplate='Date: %{x} <br>Price: %{y} cents per pound') #<br> adds space or shifts to next line; x & y is repected axis value; fig.add_trace(go.Indicator( domain={"x": [0, 1], "y": [0.6, 1]}, value=price, mode="number+delta", number={"font":{"size":50, "color":'#111111', "family":"roboto"}}, title={"text": "Current Price in cents per pound"}, title_font=dict(size=25, color='#111111', family="roboto"), delta={"reference": prev_close}, )) fig.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=1, #image postion on chart sizex=0.15, sizey=0.15, #image size on chart xanchor="right", yanchor="bottom" )) fig.update_yaxes(title_text = 'Cents Per Pound', tickprefix = '') #fig.update_xaxes(showspikes=True, spikecolor="red", spikesnap="cursor", spikemode="across", spikethickness=3) #xaxis spike on hover #fig.update_yaxes(showspikes=True, spikecolor="red", spikesnap="cursor", spikemode="across", spikethickness=3) #yais spike on hover fig.update_layout( autosize=True, height=650, width=1050, margin=dict(t=90, b=120, l=40, r=40), plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=20, family="roboto, sans-serif"), bargap=0.2, #value can be An int or float in the interval [0, 1] ) fig.update_xaxes(showline=True, linewidth=2, linecolor='black') fig.update_yaxes(showline=True, linewidth=2, linecolor='black') fig.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig.update_yaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig.update_yaxes(title_font=dict(family='Roboto', color='black', size=24)) #fig_cd.update_xaxes(font=dict(color='#111111', size=24, family="roboto, sans-serif")) fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') fig.update_yaxes(title="Cents Per Pound", title_font=dict(size=25, color='#111111', family="roboto"), ) fig.update_xaxes( rangeslider_visible = False, rangeselector = dict( buttons = list([ dict(count = 1, label = '1W', step = 'day', stepmode = 'backward'), dict(count = 1, label = '1M', step = 'month', stepmode = 'backward'), dict(count = 6, label = '6M', step = 'month', stepmode = 'backward'), dict(count = 1, label = 'YTD', step = 'year', stepmode = 'todate'), dict(count = 1, label = '1Y', step = 'year', stepmode = 'backward'), dict(count = 2, label = '2Y', step = 'year', stepmode = 'backward'), dict(count = 5, label = '5Y', step = 'year', stepmode = 'backward'), #dict(step = 'all') ]))) #title fig.add_annotation( text="Cotton Rates/ICE Futures", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="x domain", yref="y domain", x=0, y=1.19, showarrow=False, arrowhead=1) fig.add_annotation( text="Source: Yahoo Finance/National Textile University", font=dict(family='Roboto', color='#111111', size=20), xref="x domain", yref="y domain", x=0, y=-0.24, showarrow=False, arrowhead=1) st.plotly_chart(fig, use_container_width=True) # to show Figure; container width true makes fig. size responsive ########################### ########################### #cotton map of Pakistan ########################### import json pak_districts = json.load(open("pakistan_districts.geojson", 'r')) district_id_map = {} for feature in pak_districts["features"]: feature["id"] = feature["properties"]["objectid"] district_id_map[feature['properties']['districts']] = feature['id'] df['id']=df['District'].apply(lambda x:district_id_map[x]) #st.title("Cotton Map of Pakistan") fig = go.Figure(go.Choroplethmapbox(geojson=pak_districts, locations=df.id, z=df.Bales, text= df['District'], hoverinfo= 'text+z', reversescale=True, )) fig.update_layout(mapbox_style="stamen-terrain", mapbox_zoom=5.0, mapbox_center = {"lat": 30.3753, "lon": 69.3451}) fig.update_traces(text=df['District']) fig.update_layout( autosize=True, height=650, width=1400, ) fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0}) ##### #st.plotly_chart(fig) ###################### ####################### st.title("Cotton Map of Pakistan") #satellite-streets ############# fig = px.scatter_mapbox(df, lat="Lat", lon="Long", hover_name="District", hover_data=["District", "Bales"], color_discrete_sequence=["Red"], size="Bales", animation_frame="Year", zoom=5, height=300 ) fig.update_layout(mapbox_style="open-street-map") fig.update_layout( autosize=True, height=700, width=1400, ) fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0}) st.plotly_chart(fig, use_container_width=True) ######################################## elif page == 'Overall Pakistan Trade': df = pd.read_csv('paktrade_pbs.csv') ############## fig = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.65,0.35]) ############### # Add traces fig.add_trace(go.Scatter( x=df["year"], y=df["export_US$B"], name="Exports", text=df['export_US$B'], texttemplate='%{text:.3s}', # to text shorten into 3 digits, use '%{text:.3s}' mode="markers+lines", textposition="bottom right", textfont=dict(family="fjalla one, sans-serif", color="green", size=20), marker=dict(size=12, color="green"), line=dict(width=5, color="green")), row=1, col=1) # Add traces fig.add_trace(go.Scatter( x=df["year"], y=df["import_US$B"], name="Imports", text=df['import_US$B'], texttemplate='%{text:.3s}', # to text shorten into 3 digits, use '%{text:.3s}' mode="markers+lines", textposition="bottom right", textfont=dict(family="fjalla one, sans-serif", color="red", size=20), marker=dict(size=12, color="red"), line=dict(width=5, color="red")), row=1, col=1) # Plot MACD trace on 3rd row #val = df['balance_US$B'] #colors = ['green' if val >= 0 # else 'red' for val in df['balance_US$B']] fig.add_trace(go.Bar(x=df['year'], y=df['balance_US$B'], name='Trade Balance', #text=df['balance_US$B'], #text on bars #textfont_size=24, #text on bars #textfont_family='roboto', #texttemplate='%{text:.3s}', # to text shorten into 3 digits, use '%{text:.3s}' marker_color='red', #bar colors ), row=2, col=1) ############### image = Image.open('logo.png') #st.image(logo.png) fig.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) #layout fig.update_layout( autosize=False, height=650, width=1050, #legend_traceorder="reversed", margin=dict(t=60, b=120, l=40, r=40), plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', ) ############### #updates axes fig.update_xaxes(showline=True, linewidth=8, linecolor='black', row=1, col=1) fig.update_yaxes(showline=True, linewidth=2, linecolor='black', row=1, col=1) fig.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1) fig.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig.update_yaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig.update_yaxes(side='right', title='US$ Billion', title_font=dict(family='Roboto', color='black', size=20), row=1, col=1) fig.update_yaxes(side='right', title='Trade Balance', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99', row=1, col=1) fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99', row=2, col=1) ############### #title fig.add_annotation( text="Pakistan Exports and Imports", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="x domain", yref="y domain", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig.add_annotation( text="1950-51 to 2020-21", font=dict(family='roboto', color='black', size=24), xref="x domain", yref="y domain", x=0, y=1.06, showarrow=False, arrowhead=1) #data reference fig.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="x domain", yref="y domain", x=0, y=-0.9, showarrow=False, arrowhead=1) #Adding only the last date point value/text fig.add_trace(go.Scatter(x=[df['year'].iloc[-1]], y=[df['export_US$B'].iloc[-1]], text=[df['export_US$B'].iloc[-1]], name='', mode='markers+text', marker=dict(color='green', size=14), textposition='top center', textfont=dict(family="fjalla one, sans-serif", color="green", size=20), texttemplate='$%{text:.3s}B', #text shorten into 3 digits showlegend=False)) #Adding only the last date point value/text fig.add_trace(go.Scatter(x=[df['year'].iloc[-1]], y=[df['import_US$B'].iloc[-1]], text=[df['import_US$B'].iloc[-1]], name='', mode='markers+text', marker=dict(color='red', size=14), textposition='top center', textfont=dict(family="fjalla one, sans-serif", color="red", size=20), texttemplate='$%{text:.3s}B', #text shorten into 3 digits showlegend=False)) #Adding only the last date point value/text fig.add_trace(go.Scatter(x=[df['year'].iloc[-1]], y=[df['balance_US$B'].iloc[-1]], text=[df['balance_US$B'].iloc[-1]], name='', mode='markers+text', marker=dict(color='red', size=14), textposition='bottom center', textfont=dict(family="fjalla one, sans-serif", color="red", size=20), texttemplate='$%{text:.3s}B', #text shorten into 3 digits showlegend=False), row=2, col=1) #legend fig.update_layout(legend=dict( orientation="h", font=dict(family='Roboto', color='#758D99', size=16), yanchor="bottom", y=1.02, xanchor="right", x=1)) ###################### #show figure in streamlit web app st.plotly_chart(fig, use_container_width=True) # to show Figure; container width true makes fig. size responsive #config={'responsive': True} ############################## ############################## ####################################### ######################################## ######################################## #data df1 = pd.read_csv('monthly_trade.csv') #calculating year-to-date YTD bales and adding new column for the same df1['imports_ytd_21_22'] = df1['imports_21_22B'].cumsum() df1['imports_ytd_20_21'] = df1['imports_20_21B'].cumsum() df1['exports_ytd_20_21'] = df1['exports_20_21B'].cumsum() df1['exports_ytd_21_22'] = df1['exports_21_22B'].cumsum() df1['balance_ytd_20_21'] = df1['balance_20_21B'].cumsum() df1['balance_ytd_21_22'] = df1['balance_21_22B'].cumsum() ############## #fig = go.Figure() # add subplot properties when initializing fig variable fig = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.65,0.35]) ############### # Add traces fig.add_trace(go.Scatter( x=df1["month"], y=df1["imports_ytd_21_22"], name="Imports 21-22", text=df1['imports_ytd_21_22'], texttemplate='%{text:.3s}B', # to text shorten into 3 digits, use '%{text:.3s}' mode="markers+lines+text", textposition="bottom right", textfont=dict(family="fjalla one, sans-serif", color="red", size=20), marker=dict(size=12, color="red"), line=dict(width=5, color="red")), row=1, col=1) fig.add_trace(go.Scatter( x=df1["month"], y=df1["imports_ytd_20_21"], name="Imports 20-21", text=df1['imports_ytd_20_21'], texttemplate='%{text:.3s}B', # to text shorten into 3 digits, use '%{text:.3s}' mode="markers+lines+text", textposition="bottom right", textfont=dict(family="fjalla one, sans-serif", color="brown", size=20), marker=dict(size=12, color="brown"), line=dict(width=5, color="brown")), row=1, col=1) fig.add_trace(go.Scatter( x=df1["month"], y=df1["exports_ytd_20_21"], name="Exports 20-21", text=df1['exports_ytd_20_21'], texttemplate='%{text:.3s}B', # to text shorten into 3 digits, use '%{text:.3s}' mode="markers+lines+text", textposition="bottom right", textfont=dict(family="fjalla one, sans-serif", color="lightgreen", size=20), marker=dict(size=12, color="lightgreen"), line=dict(width=5, color="lightgreen")), row=1, col=1) fig.add_trace(go.Scatter( x=df1["month"], y=df1["exports_ytd_21_22"], name="Exports 21-22", text=df1['exports_ytd_21_22'], texttemplate='%{text:.3s}B', # to text shorten into 3 digits, use '%{text:.3s}' mode="markers+lines+text", textposition="bottom right", textfont=dict(family="fjalla one, sans-serif", color="green", size=20), marker=dict(size=12, color="green"), line=dict(width=5, color="green")), row=1, col=1) # Plot MACD trace on 3rd row #val = df['balance_US$B'] #colors = ['green' if val >= 0 # else 'red' for val in df['balance_US$B']] fig.add_trace(go.Scatter(x=df1['month'], y=df1['balance_ytd_20_21'], name='Trade Balance 20-21', text=df1['balance_ytd_20_21'], texttemplate='%{text:.3s}B', # to text shorten into 3 digits, use '%{text:.3s}' mode="markers+lines+text", textposition="top right", textfont=dict(family="fjalla one, sans-serif", color="lightblue", size=20), marker=dict(size=12, color="lightblue"), line=dict(width=5, color="lightblue")), row=2, col=1) fig.add_trace(go.Scatter(x=df1['month'], y=df1['balance_ytd_21_22'], name='Trade Balance 21-22', text=df1['balance_ytd_21_22'], texttemplate='%{text:.3s}B', # to text shorten into 3 digits, use '%{text:.3s}' mode="markers+lines+text", textposition="top right", textfont=dict(family="fjalla one, sans-serif", color="orange", size=20), marker=dict(size=12, color="orange"), line=dict(width=5, color="orange")), row=2, col=1) ############### image = Image.open('logo.png') #st.image(logo.png) fig.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=1, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) #layout fig.update_layout( autosize=False, height=650, width=1050, #legend_traceorder="reversed", margin=dict(t=80, b=110, l=40, r=40), plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', ) ############### #updates axes fig.update_xaxes(showline=True, linewidth=8, linecolor='black', row=1, col=1) fig.update_yaxes(showline=True, linewidth=2, linecolor='black', row=1, col=1) fig.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1) fig.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig.update_yaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig.update_yaxes(side='right', title='US$ Billion', title_font=dict(family='Roboto', color='black', size=20), row=1, col=1) fig.update_yaxes(side='right', title='Trade Balance', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99', row=1, col=1) fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99', row=2, col=1) ############### #title fig.add_annotation( text="Pakistan Exports and Imports", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="x domain", yref="y domain", x=0, y=1.21, showarrow=False, arrowhead=1) #subtitle fig.add_annotation( text="2020-21 vs. 2021-22 (cumulative figures till recent month)", font=dict(family='roboto', color='black', size=24), xref="x domain", yref="y domain", x=0, y=1.09, showarrow=False, arrowhead=1) #data reference fig.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="x domain", yref="y domain", x=0, y=-0.9, showarrow=False, arrowhead=1) #legend fig.update_layout(legend=dict( orientation="h", font=dict(family='Roboto', color='#758D99', size=16), yanchor="bottom", y=-0.16, xanchor="right", x=1)) ###################### #show figure in streamlit web app st.plotly_chart(fig, use_container_width=True) # to show Figure; container width true makes fig. size responsive ############################## ############################## elif page == 'Raw Cotton Exports': ##################################### ##################################### # cotton chart US$ df = pd.read_csv('monthly_textile_exports_pbs.csv') df['date'] = pd.to_datetime(df['date'], infer_datetime_format=True) df['year'] = df['date'].dt.year #creates a year column out of datetime columns df['month'] = df['date'].dt.month #creates a month column out of datetime columns df['year'] = df['year'].astype('string') #converting year column into string for filtering df['month'] = df['month'].astype('string') #converting year column into string for filtering df['Fiscal Year'] = df['date'].dt.to_period('Q-JUN').dt.qyear.apply(lambda x: str(x-1) + "-" + str(x)) #adding month column df['month'] = df['date'].dt.strftime('%b') #creating month names column #filtering data of fiscal year 2021-22 df_cotton = df.loc[df['category'].isin(['Raw Cotton'])] #calculating year-to-date YTD exports df_cotton['Exports_YTD'] = df_cotton.groupby(['Fiscal Year'])['Exports_US$'].cumsum() df_cotton['pct_change_yoy'] = df_cotton.groupby(['month'])['Exports_YTD'].pct_change()*100 #filtering data of fiscal year 2020-21 df_cotton_2020_21 = df_cotton.loc[df_cotton['Fiscal Year'].isin(['2020-2021'])] df_cotton_2021_22 = df_cotton.loc[df_cotton['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_cotton_2020_21['month'], y=df_cotton_2020_21['Exports_YTD'], name='Exports in 2020-21', text=df_cotton_2020_21['Exports_YTD'], textposition='auto', texttemplate='%{text:,}', hovertemplate='Exports to date: %{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_cotton_2021_22['month'], y=df_cotton_2021_22['Exports_YTD'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Exports in 2021-22', text=df_cotton_2021_22['Exports_YTD'], textposition='bottom right', texttemplate="%{text:,}", line=dict(color='Green', width=4), hovertemplate='Exports to date: %{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_cotton_2021_22['month'], y=df_cotton_2021_22['pct_change_yoy'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_cotton_2021_22['pct_change_yoy'], textposition='middle right', texttemplate="%{text:.3s}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='Cumulative Exports (US$)', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Pakistan Raw Cotton Exports by Value", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ##################################### ##################################### # raw cotton chart volume #filtering data of fiscal year 2021-22 #df_yarn = df.loc[df['category'].isin(['Cotton Yarn'])] #calculating year-to-date YTD exports df_cotton['vol_YTD'] = df_cotton.groupby(['Fiscal Year'])['volume'].cumsum() df_cotton['pct_change_yoy_vol'] = df_cotton.groupby(['month'])['vol_YTD'].pct_change()*100 #filtering data of fiscal year 2020-21 df_cotton_2020_21 = df_cotton.loc[df_cotton['Fiscal Year'].isin(['2020-2021'])] df_cotton_2021_22 = df_cotton.loc[df_cotton['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_cotton_2020_21['month'], y=df_cotton_2020_21['vol_YTD'], name='Exports in 2020-21', text=df_cotton_2020_21['vol_YTD'], textposition='auto', texttemplate='%{text:,}', hovertemplate='Exports to date: %{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_cotton_2021_22['month'], y=df_cotton_2021_22['vol_YTD'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Exports in 2021-22', text=df_cotton_2021_22['vol_YTD'], textposition='bottom right', texttemplate="%{text:,}", line=dict(color='Green', width=4), hovertemplate='Exports to date: %{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_cotton_2021_22['month'], y=df_cotton_2021_22['pct_change_yoy_vol'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_cotton_2021_22['pct_change_yoy_vol'], textposition='middle right', texttemplate="%{text:.2s}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='Cumulative Exports (Metric Tons)', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Pakistan Raw Cotton Exports by Volume", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ##################################### ##################################### # cotton chart export price df_cotton['pct_change_yoy_price'] = df_cotton.groupby(['month'])['unit_price'].pct_change()*100 df_cotton_2020_21 = df_cotton.loc[df_cotton['Fiscal Year'].isin(['2020-2021'])] df_cotton_2021_22 = df_cotton.loc[df_cotton['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_cotton_2020_21['month'], y=df_cotton_2020_21['unit_price'], name='Price in 2020-21', text=df_cotton_2020_21['unit_price'], textposition='auto', texttemplate='$%{text:.2f}', hovertemplate='Exports price:$%{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_cotton_2021_22['month'], y=df_cotton_2021_22['unit_price'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Price in 2021-22', text=df_cotton_2021_22['unit_price'], textposition='bottom right', texttemplate="$%{text:.2f}", line=dict(color='Green', width=4), hovertemplate='Exports price:$%{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_cotton_2021_22['month'], y=df_cotton_2021_22['pct_change_yoy_price'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_cotton_2021_22['pct_change_yoy_price'], textposition='middle right', texttemplate="%{text:.2}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='US$ per Kg', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Pakistan Raw Cotton Average Export Price", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) #st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive elif page == 'Cotton Yarn Exports': ##################################### ##################################### # yarn chart US$ df = pd.read_csv('monthly_textile_exports_pbs.csv') df['date'] = pd.to_datetime(df['date'], infer_datetime_format=True) df['year'] = df['date'].dt.year #creates a year column out of datetime columns df['month'] = df['date'].dt.month #creates a month column out of datetime columns df['year'] = df['year'].astype('string') #converting year column into string for filtering df['month'] = df['month'].astype('string') #converting year column into string for filtering df['Fiscal Year'] = df['date'].dt.to_period('Q-JUN').dt.qyear.apply(lambda x: str(x-1) + "-" + str(x)) #adding month column df['month'] = df['date'].dt.strftime('%b') #creating month names column #filtering data of fiscal year 2021-22 df_yarn = df.loc[df['category'].isin(['Cotton Yarn'])] #calculating year-to-date YTD exports df_yarn['Exports_YTD'] = df_yarn.groupby(['Fiscal Year'])['Exports_US$'].cumsum() df_yarn['pct_change_yoy'] = df_yarn.groupby(['month'])['Exports_YTD'].pct_change()*100 #filtering data of fiscal year 2020-21 df_yarn_2020_21 = df_yarn.loc[df_yarn['Fiscal Year'].isin(['2020-2021'])] df_yarn_2021_22 = df_yarn.loc[df_yarn['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_yarn_2020_21['month'], y=df_yarn_2020_21['Exports_YTD'], name='Exports in 2020-21', text=df_yarn_2020_21['Exports_YTD'], textposition='auto', texttemplate='%{text:,}', hovertemplate='Exports to date: %{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_yarn_2021_22['month'], y=df_yarn_2021_22['Exports_YTD'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Exports in 2021-22', text=df_yarn_2021_22['Exports_YTD'], textposition='top center', texttemplate="%{text:,}", line=dict(color='Green', width=4), hovertemplate='Exports to date: %{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_yarn_2021_22['month'], y=df_yarn_2021_22['pct_change_yoy'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_yarn_2021_22['pct_change_yoy'], textposition='middle right', texttemplate="%{text:.2s}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='Cumulative Exports (US$ Billion)', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Pakistan Cotton Yarn Exports by Value", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ##################################### ##################################### # yarn chart volume #filtering data of fiscal year 2021-22 #df_yarn = df.loc[df['category'].isin(['Cotton Yarn'])] #calculating year-to-date YTD exports df_yarn['vol_YTD'] = df_yarn.groupby(['Fiscal Year'])['volume'].cumsum() df_yarn['pct_change_yoy_vol'] = df_yarn.groupby(['month'])['vol_YTD'].pct_change()*100 #filtering data of fiscal year 2020-21 df_yarn_2020_21 = df_yarn.loc[df_yarn['Fiscal Year'].isin(['2020-2021'])] df_yarn_2021_22 = df_yarn.loc[df_yarn['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_yarn_2020_21['month'], y=df_yarn_2020_21['vol_YTD'], name='Exports in 2020-21', text=df_yarn_2020_21['vol_YTD'], textposition='auto', texttemplate='%{text:,}', hovertemplate='Exports to date: %{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_yarn_2021_22['month'], y=df_yarn_2021_22['vol_YTD'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Exports in 2021-22', text=df_yarn_2021_22['vol_YTD'], textposition='top center', texttemplate="%{text:,}", line=dict(color='Green', width=4), hovertemplate='Exports to date: %{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_yarn_2021_22['month'], y=df_yarn_2021_22['pct_change_yoy_vol'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_yarn_2021_22['pct_change_yoy_vol'], textposition='middle right', texttemplate="%{text:.2s}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='Cumulative Exports (Metric Tons)', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Pakistan Cotton Yarn Exports by Volume", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ##################################### ##################################### # yarn chart export price df_yarn['pct_change_yoy_price'] = df_yarn.groupby(['month'])['unit_price'].pct_change()*100 df_yarn_2020_21 = df_yarn.loc[df_yarn['Fiscal Year'].isin(['2020-2021'])] df_yarn_2021_22 = df_yarn.loc[df_yarn['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_yarn_2020_21['month'], y=df_yarn_2020_21['unit_price'], name='Price in 2020-21', text=df_yarn_2020_21['unit_price'], textposition='auto', texttemplate='$%{text:.2f}', hovertemplate='Exports price:$%{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_yarn_2021_22['month'], y=df_yarn_2021_22['unit_price'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Price in 2021-22', text=df_yarn_2021_22['unit_price'], textposition='bottom right', texttemplate="$%{text:.2f}", line=dict(color='Green', width=4), hovertemplate='Exports price:$%{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_yarn_2021_22['month'], y=df_yarn_2021_22['pct_change_yoy_price'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_yarn_2021_22['pct_change_yoy_price'], textposition='middle right', texttemplate="%{text:.2s}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='US$ per Kg', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Pakistan Cotton Yarn Average Export Price", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive elif page == 'Cotton Cloth Exports': ##################################### ##################################### # cloth chart US$ df = pd.read_csv('monthly_textile_exports_pbs.csv') df['date'] = pd.to_datetime(df['date'], infer_datetime_format=True) df['year'] = df['date'].dt.year #creates a year column out of datetime columns df['month'] = df['date'].dt.month #creates a month column out of datetime columns df['year'] = df['year'].astype('string') #converting year column into string for filtering df['month'] = df['month'].astype('string') #converting year column into string for filtering df['Fiscal Year'] = df['date'].dt.to_period('Q-JUN').dt.qyear.apply(lambda x: str(x-1) + "-" + str(x)) #adding month column df['month'] = df['date'].dt.strftime('%b') #creating month names column #filtering data of fiscal year 2021-22 df_cloth = df.loc[df['category'].isin(['Cotton Cloth'])] #calculating year-to-date YTD exports df_cloth['Exports_YTD'] = df_cloth.groupby(['Fiscal Year'])['Exports_US$'].cumsum() df_cloth['pct_change_yoy'] = df_cloth.groupby(['month'])['Exports_YTD'].pct_change()*100 #filtering data of fiscal year 2020-21 df_cloth_2020_21 = df_cloth.loc[df_cloth['Fiscal Year'].isin(['2020-2021'])] df_cloth_2021_22 = df_cloth.loc[df_cloth['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_cloth_2020_21['month'], y=df_cloth_2020_21['Exports_YTD'], name='Exports in 2020-21', text=df_cloth_2020_21['Exports_YTD'], textposition='auto', texttemplate='%{text:,}', hovertemplate='Exports to date: %{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_cloth_2021_22['month'], y=df_cloth_2021_22['Exports_YTD'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Exports in 2021-22', text=df_cloth_2021_22['Exports_YTD'], textposition='top center', texttemplate="%{text:,}", line=dict(color='Green', width=4), hovertemplate='Exports to date: %{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_cloth_2021_22['month'], y=df_cloth_2021_22['pct_change_yoy'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_cloth_2021_22['pct_change_yoy'], textposition='middle right', texttemplate="%{text:.2s}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='Cumulative Exports (US$)', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Pakistan Cotton Cloth Exports by Value", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ##################################### ##################################### # cloth chart volume #filtering data of fiscal year 2021-22 #df_yarn = df.loc[df['category'].isin(['Cotton Yarn'])] #calculating year-to-date YTD exports df_cloth['vol_YTD'] = df_cloth.groupby(['Fiscal Year'])['volume'].cumsum() df_cloth['pct_change_yoy_vol'] = df_cloth.groupby(['month'])['vol_YTD'].pct_change()*100 #filtering data of fiscal year 2020-21 df_cloth_2020_21 = df_cloth.loc[df_cloth['Fiscal Year'].isin(['2020-2021'])] df_cloth_2021_22 = df_cloth.loc[df_cloth['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_cloth_2020_21['month'], y=df_cloth_2020_21['vol_YTD'], name='Exports in 2020-21', text=df_cloth_2020_21['vol_YTD'], textposition='auto', texttemplate='%{text:,}', hovertemplate='Exports to date: %{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_cloth_2021_22['month'], y=df_cloth_2021_22['vol_YTD'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Exports in 2021-22', text=df_cloth_2021_22['vol_YTD'], textposition='top center', texttemplate="%{text:,}", line=dict(color='Green', width=4), hovertemplate='Exports to date: %{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_cloth_2021_22['month'], y=df_cloth_2021_22['pct_change_yoy_vol'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_cloth_2021_22['pct_change_yoy_vol'], textposition='middle right', texttemplate="%{text:.2s}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='Cumulative Exports (Metric Tons)', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Pakistan Cotton Cloth Exports by Volume", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ##################################### ##################################### # cloth chart export price df_cloth['pct_change_yoy_price'] = df_cloth.groupby(['month'])['unit_price'].pct_change()*100 df_cloth_2020_21 = df_cloth.loc[df_cloth['Fiscal Year'].isin(['2020-2021'])] df_cloth_2021_22 = df_cloth.loc[df_cloth['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_cloth_2020_21['month'], y=df_cloth_2020_21['unit_price'], name='Price in 2020-21', text=df_cloth_2020_21['unit_price'], textposition='auto', texttemplate='$%{text:.2f}', hovertemplate='Exports price:$%{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_cloth_2021_22['month'], y=df_cloth_2021_22['unit_price'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Price in 2021-22', text=df_cloth_2021_22['unit_price'], textposition='bottom right', texttemplate="$%{text:.2f}", line=dict(color='Green', width=4), hovertemplate='Exports price:$%{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_cloth_2021_22['month'], y=df_cloth_2021_22['pct_change_yoy_price'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_cloth_2021_22['pct_change_yoy_price'], textposition='middle right', texttemplate="%{text:.2s}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='US$ per Kg', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Pakistan Cotton Cloth Average Export Price", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ##################################### elif page == 'Readymade Garments Exports': ##################################### ##################################### # garment chart value #importing csv file as dataframe df = pd.read_csv('monthly_textile_exports_pbs.csv') df['date'] = pd.to_datetime(df['date'], infer_datetime_format=True) df['year'] = df['date'].dt.year #creates a year column out of datetime columns df['month'] = df['date'].dt.month #creates a month column out of datetime columns df['year'] = df['year'].astype('string') #converting year column into string for filtering df['month'] = df['month'].astype('string') #converting year column into string for filtering df['Fiscal Year'] = df['date'].dt.to_period('Q-JUN').dt.qyear.apply(lambda x: str(x-1) + "-" + str(x)) #adding month column df['month'] = df['date'].dt.strftime('%b') #creating month names column df_garment = df.loc[df['category'].isin(['Garments'])] ################################## ################################## #calculating year-to-date YTD exports df_garment['Exports_YTD'] = df_garment.groupby(['Fiscal Year'])['Exports_US$'].cumsum() df_garment['pct_change_yoy'] = df_garment.groupby(['month'])['Exports_YTD'].pct_change()*100 #filtering data of fiscal year 2020-21 df_garment_2020_21 = df_garment.loc[df_garment['Fiscal Year'].isin(['2020-2021'])] df_garment_2021_22 = df_garment.loc[df_garment['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_garment_2020_21['month'], y=df_garment_2020_21['Exports_YTD'], name='Exports in 2020-21', text=df_garment_2020_21['Exports_YTD'], textposition='auto', texttemplate='%{text:,}', hovertemplate='Exports to date: %{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_garment_2021_22['month'], y=df_garment_2021_22['Exports_YTD'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Exports in 2021-22', text=df_garment_2021_22['Exports_YTD'], textposition='top center', texttemplate="%{text:,}", line=dict(color='Green', width=4), hovertemplate='Exports to date: %{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_garment_2021_22['month'], y=df_garment_2021_22['pct_change_yoy'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_garment_2021_22['pct_change_yoy'], textposition='middle right', texttemplate="%{text:.2s}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") from PIL import Image image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='Cumulative Exports (US$ Billion)', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Pakistan Garment Exports by Value", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ################################## #calculating year-to-date YTD exports df_garment['Exports_YTD_vol'] = df_garment.groupby(['Fiscal Year'])['volume'].cumsum() df_garment['pct_change_yoy_vol'] = df_garment.groupby(['month'])['Exports_YTD_vol'].pct_change()*100 #filtering data of fiscal year 2020-21 df_garment_2020_21 = df_garment.loc[df_garment['Fiscal Year'].isin(['2020-2021'])] df_garment_2021_22 = df_garment.loc[df_garment['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_garment_2020_21['month'], y=df_garment_2020_21['Exports_YTD_vol'], name='Exports in 2020-21', text=df_garment_2020_21['Exports_YTD_vol'], textposition='auto', texttemplate='%{text:,}', hovertemplate='Exports to date: %{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_garment_2021_22['month'], y=df_garment_2021_22['Exports_YTD_vol'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Exports in 2021-22', text=df_garment_2021_22['Exports_YTD_vol'], textposition='top center', texttemplate="%{text:,}", line=dict(color='Green', width=4), hovertemplate='Exports to date: %{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_garment_2021_22['month'], y=df_garment_2021_22['pct_change_yoy_vol'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_garment_2021_22['pct_change_yoy_vol'], textposition='middle right', texttemplate="%{text:.2s}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='Cumulative Exports (Dozens)', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Pakistan Garments Exports by Volume", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ##################################### # garment chart export price df_garment['pct_change_yoy_price'] = df_garment.groupby(['month'])['unit_price'].pct_change()*100 df_garment_2020_21 = df_garment.loc[df_garment['Fiscal Year'].isin(['2020-2021'])] df_garment_2021_22 = df_garment.loc[df_garment['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_garment_2020_21['month'], y=df_garment_2020_21['unit_price'], name='Price in 2020-21', text=df_garment_2020_21['unit_price'], textposition='auto', texttemplate='$%{text:.2f}', hovertemplate='Exports price:$%{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_garment_2021_22['month'], y=df_garment_2021_22['unit_price'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Price in 2021-22', text=df_garment_2021_22['unit_price'], textposition='bottom right', texttemplate="$%{text:.2f}", line=dict(color='Green', width=4), hovertemplate='Exports price:$%{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_garment_2021_22['month'], y=df_garment_2021_22['pct_change_yoy_price'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_garment_2021_22['pct_change_yoy_price'], textposition='middle right', texttemplate="%{text:.2s}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='US$ per Dozen', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Pakistan Garments Average Export Price", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ##################################### elif page == 'Knitwear Exports': ##################################### ##################################### #importing csv file as dataframe df = pd.read_csv('monthly_textile_exports_pbs.csv') df['date'] = pd.to_datetime(df['date'], infer_datetime_format=True) df['year'] = df['date'].dt.year #creates a year column out of datetime columns df['month'] = df['date'].dt.month #creates a month column out of datetime columns df['year'] = df['year'].astype('string') #converting year column into string for filtering df['month'] = df['month'].astype('string') #converting year column into string for filtering df['Fiscal Year'] = df['date'].dt.to_period('Q-JUN').dt.qyear.apply(lambda x: str(x-1) + "-" + str(x)) #adding month column df['month'] = df['date'].dt.strftime('%b') #creating month names column # knitwear chart value df_knitwear = df.loc[df['category'].isin(['Knitwear'])] #calculating year-to-date YTD exports df_knitwear['Exports_YTD'] = df_knitwear.groupby(['Fiscal Year'])['Exports_US$'].cumsum() df_knitwear['pct_change_yoy'] = df_knitwear.groupby(['month'])['Exports_YTD'].pct_change()*100 #filtering data of fiscal year 2020-21 df_knitwear_2020_21 = df_knitwear.loc[df_knitwear['Fiscal Year'].isin(['2020-2021'])] df_knitwear_2021_22 = df_knitwear.loc[df_knitwear['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_knitwear_2020_21['month'], y=df_knitwear_2020_21['Exports_YTD'], name='Exports in 2020-21', text=df_knitwear_2020_21['Exports_YTD'], textposition='auto', texttemplate='%{text:,}', hovertemplate='Exports to date: %{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_knitwear_2021_22['month'], y=df_knitwear_2021_22['Exports_YTD'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Exports in 2021-22', text=df_knitwear_2021_22['Exports_YTD'], textposition='top center', texttemplate="%{text:,}", line=dict(color='Green', width=4), hovertemplate='Exports to date: %{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_knitwear_2021_22['month'], y=df_knitwear_2021_22['pct_change_yoy'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_knitwear_2021_22['pct_change_yoy'], textposition='middle right', texttemplate="%{text:.2s}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") from PIL import Image image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='Cumulative Exports (US$ Billion)', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Pakistan Knitwear Exports by Value", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ############################################### ############################################# #calculating year-to-date YTD exports by volume df_knitwear['Exports_YTD_vol'] = df_knitwear.groupby(['Fiscal Year'])['volume'].cumsum() df_knitwear['pct_change_yoy_vol'] = df_knitwear.groupby(['month'])['Exports_YTD_vol'].pct_change()*100 #filtering data of fiscal year 2020-21 df_knitwear_2020_21 = df_knitwear.loc[df_knitwear['Fiscal Year'].isin(['2020-2021'])] df_knitwear_2021_22 = df_knitwear.loc[df_knitwear['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_knitwear_2020_21['month'], y=df_knitwear_2020_21['Exports_YTD_vol'], name='Exports in 2020-21', text=df_knitwear_2020_21['Exports_YTD_vol'], textposition='auto', texttemplate='%{text:,}', hovertemplate='Exports to date: %{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_knitwear_2021_22['month'], y=df_knitwear_2021_22['Exports_YTD_vol'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Exports in 2021-22', text=df_knitwear_2021_22['Exports_YTD_vol'], textposition='top center', texttemplate="%{text:,}", line=dict(color='Green', width=4), hovertemplate='Exports to date: %{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_knitwear_2021_22['month'], y=df_knitwear_2021_22['pct_change_yoy_vol'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_knitwear_2021_22['pct_change_yoy_vol'], textposition='middle right', texttemplate="%{text:.2f}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='Cumulative Exports (Dozens)', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Pakistan Knitwear Exports by Volume", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ##################################### # garment chart export price df_knitwear['pct_change_yoy_price'] = df_knitwear.groupby(['month'])['unit_price'].pct_change()*100 df_knitwear_2020_21 = df_knitwear.loc[df_knitwear['Fiscal Year'].isin(['2020-2021'])] df_knitwear_2021_22 = df_knitwear.loc[df_knitwear['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_knitwear_2020_21['month'], y=df_knitwear_2020_21['unit_price'], name='Price in 2020-21', text=df_knitwear_2020_21['unit_price'], textposition='auto', texttemplate='$%{text:.2f}', hovertemplate='Exports price:$%{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_knitwear_2021_22['month'], y=df_knitwear_2021_22['unit_price'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Price in 2021-22', text=df_knitwear_2021_22['unit_price'], textposition='bottom right', texttemplate="$%{text:.2f}", line=dict(color='Green', width=4), hovertemplate='Exports price:$%{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_knitwear_2021_22['month'], y=df_knitwear_2021_22['pct_change_yoy_price'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_knitwear_2021_22['pct_change_yoy_price'], textposition='middle right', texttemplate="%{text:.2s}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='US$ per Dozen', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Pakistan Knitwear Average Export Price", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ##################################### ################# elif page == 'Artifical Silk & Synthetics Exports': ##################################### ##################################### #importing csv file as dataframe df = pd.read_csv('monthly_textile_exports_pbs.csv') df['date'] = pd.to_datetime(df['date'], infer_datetime_format=True) df['year'] = df['date'].dt.year #creates a year column out of datetime columns df['month'] = df['date'].dt.month #creates a month column out of datetime columns df['year'] = df['year'].astype('string') #converting year column into string for filtering df['month'] = df['month'].astype('string') #converting year column into string for filtering df['Fiscal Year'] = df['date'].dt.to_period('Q-JUN').dt.qyear.apply(lambda x: str(x-1) + "-" + str(x)) #adding month column df['month'] = df['date'].dt.strftime('%b') #creating month names column # knitwear chart value df_s = df.loc[df['category'].isin(['Artificial Silk & Synthetics'])] #calculating year-to-date YTD exports df_s['Exports_YTD'] = df_s.groupby(['Fiscal Year'])['Exports_US$'].cumsum() df_s['pct_change_yoy'] = df_s.groupby(['month'])['Exports_YTD'].pct_change()*100 #filtering data of fiscal year 2020-21 df_s_2020_21 = df_s.loc[df_s['Fiscal Year'].isin(['2020-2021'])] df_s_2021_22 = df_s.loc[df_s['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_s_2020_21['month'], y=df_s_2020_21['Exports_YTD'], name='Exports in 2020-21', text=df_s_2020_21['Exports_YTD'], textposition='auto', texttemplate='%{text:,}', hovertemplate='Exports to date: %{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_s_2021_22['month'], y=df_s_2021_22['Exports_YTD'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Exports in 2021-22', text=df_s_2021_22['Exports_YTD'], textposition='top center', texttemplate="%{text:,}", line=dict(color='Green', width=4), hovertemplate='Exports to date: %{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_s_2021_22['month'], y=df_s_2021_22['pct_change_yoy'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_s_2021_22['pct_change_yoy'], textposition='middle right', texttemplate="%{text:.2s}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") from PIL import Image image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='Cumulative Exports (US$ Billion)', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Art. Silk & Sythetics Exports by Value", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ############################################### ############################################# #calculating year-to-date YTD exports by volume df_s['Exports_YTD_vol'] = df_s.groupby(['Fiscal Year'])['volume'].cumsum() df_s['pct_change_yoy_vol'] = df_s.groupby(['month'])['Exports_YTD_vol'].pct_change()*100 #filtering data of fiscal year 2020-21 df_s_2020_21 = df_s.loc[df_s['Fiscal Year'].isin(['2020-2021'])] df_s_2021_22 = df_s.loc[df_s['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_s_2020_21['month'], y=df_s_2020_21['Exports_YTD_vol'], name='Exports in 2020-21', text=df_s_2020_21['Exports_YTD_vol'], textposition='auto', texttemplate='%{text:,}', hovertemplate='Exports to date: %{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_s_2021_22['month'], y=df_s_2021_22['Exports_YTD_vol'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Exports in 2021-22', text=df_s_2021_22['Exports_YTD_vol'], textposition='top center', texttemplate="%{text:,}", line=dict(color='Green', width=4), hovertemplate='Exports to date: %{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_s_2021_22['month'], y=df_s_2021_22['pct_change_yoy_vol'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_s_2021_22['pct_change_yoy_vol'], textposition='middle right', texttemplate="%{text:.2f}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='Cumulative Exports (Metric Tons)', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Art. Silk & Synthetics Exports by Volume", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ##################################### # tents yarn chart export price df_s['pct_change_yoy_price'] = df_s.groupby(['month'])['unit_price'].pct_change()*100 df_s_2020_21 = df_s.loc[df_s['Fiscal Year'].isin(['2020-2021'])] df_s_2021_22 = df_s.loc[df_s['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_s_2020_21['month'], y=df_s_2020_21['unit_price'], name='Price in 2020-21', text=df_s_2020_21['unit_price'], textposition='auto', texttemplate='$%{text:.2f}', hovertemplate='Exports price:$%{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_s_2021_22['month'], y=df_s_2021_22['unit_price'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Price in 2021-22', text=df_s_2021_22['unit_price'], textposition='bottom right', texttemplate="$%{text:.2f}", line=dict(color='Green', width=4), hovertemplate='Exports price:$%{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_s_2021_22['month'], y=df_s_2021_22['pct_change_yoy_price'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_s_2021_22['pct_change_yoy_price'], textposition='middle right', texttemplate="%{text:.2s}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='US$ per Kg', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Pakistan Art. Silk & Synthetics Average Export Price", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ################# ################# elif page == 'Other Textiles Exports': ##################################### ##################################### #importing csv file as dataframe df = pd.read_csv('monthly_textile_exports_pbs.csv') df['date'] = pd.to_datetime(df['date'], infer_datetime_format=True) df['year'] = df['date'].dt.year #creates a year column out of datetime columns df['month'] = df['date'].dt.month #creates a month column out of datetime columns df['year'] = df['year'].astype('string') #converting year column into string for filtering df['month'] = df['month'].astype('string') #converting year column into string for filtering df['Fiscal Year'] = df['date'].dt.to_period('Q-JUN').dt.qyear.apply(lambda x: str(x-1) + "-" + str(x)) #adding month column df['month'] = df['date'].dt.strftime('%b') #creating month names column # knitwear chart value df_o = df.loc[df['category'].isin(['Other Textiles'])] #calculating year-to-date YTD exports df_o['Exports_YTD'] = df_o.groupby(['Fiscal Year'])['Exports_US$'].cumsum() df_o['pct_change_yoy'] = df_o.groupby(['month'])['Exports_YTD'].pct_change()*100 #filtering data of fiscal year 2020-21 df_o_2020_21 = df_o.loc[df_o['Fiscal Year'].isin(['2020-2021'])] df_o_2021_22 = df_o.loc[df_o['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_o_2020_21['month'], y=df_o_2020_21['Exports_YTD'], name='Exports in 2020-21', text=df_o_2020_21['Exports_YTD'], textposition='auto', texttemplate='%{text:,}', hovertemplate='Exports to date: %{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_o_2021_22['month'], y=df_o_2021_22['Exports_YTD'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Exports in 2021-22', text=df_o_2021_22['Exports_YTD'], textposition='top center', texttemplate="%{text:,}", line=dict(color='Green', width=4), hovertemplate='Exports to date: %{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_o_2021_22['month'], y=df_o_2021_22['pct_change_yoy'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_o_2021_22['pct_change_yoy'], textposition='middle right', texttemplate="%{text:.2s}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") from PIL import Image image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='Cumulative Exports (US$ Billion)', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Other Textiles Exports by Value", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ############################################### ################# ################# elif page == 'Made-ups excluding Bedwear & Towels': ##################################### ##################################### #importing csv file as dataframe df = pd.read_csv('monthly_textile_exports_pbs.csv') df['date'] = pd.to_datetime(df['date'], infer_datetime_format=True) df['year'] = df['date'].dt.year #creates a year column out of datetime columns df['month'] = df['date'].dt.month #creates a month column out of datetime columns df['year'] = df['year'].astype('string') #converting year column into string for filtering df['month'] = df['month'].astype('string') #converting year column into string for filtering df['Fiscal Year'] = df['date'].dt.to_period('Q-JUN').dt.qyear.apply(lambda x: str(x-1) + "-" + str(x)) #adding month column df['month'] = df['date'].dt.strftime('%b') #creating month names column # knitwear chart value df_m = df.loc[df['category'].isin(['Madeups'])] #calculating year-to-date YTD exports df_m['Exports_YTD'] = df_m.groupby(['Fiscal Year'])['Exports_US$'].cumsum() df_m['pct_change_yoy'] = df_m.groupby(['month'])['Exports_YTD'].pct_change()*100 #filtering data of fiscal year 2020-21 df_m_2020_21 = df_m.loc[df_m['Fiscal Year'].isin(['2020-2021'])] df_m_2021_22 = df_m.loc[df_m['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_m_2020_21['month'], y=df_m_2020_21['Exports_YTD'], name='Exports in 2020-21', text=df_m_2020_21['Exports_YTD'], textposition='auto', texttemplate='%{text:,}', hovertemplate='Exports to date: %{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_m_2021_22['month'], y=df_m_2021_22['Exports_YTD'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Exports in 2021-22', text=df_m_2021_22['Exports_YTD'], textposition='top center', texttemplate="%{text:,}", line=dict(color='Green', width=4), hovertemplate='Exports to date: %{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_m_2021_22['month'], y=df_m_2021_22['pct_change_yoy'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_m_2021_22['pct_change_yoy'], textposition='middle right', texttemplate="%{text:.2s}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") from PIL import Image image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='Cumulative Exports (US$ Billion)', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Madeups Exports by Value", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ############################################### ############################################# #calculating year-to-date YTD exports by volume df_m['Exports_YTD_vol'] = df_m.groupby(['Fiscal Year'])['volume'].cumsum() df_m['pct_change_yoy_vol'] = df_m.groupby(['month'])['Exports_YTD_vol'].pct_change()*100 #filtering data of fiscal year 2020-21 df_m_2020_21 = df_m.loc[df_m['Fiscal Year'].isin(['2020-2021'])] df_m_2021_22 = df_m.loc[df_m['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_m_2020_21['month'], y=df_m_2020_21['Exports_YTD_vol'], name='Exports in 2020-21', text=df_m_2020_21['Exports_YTD_vol'], textposition='auto', texttemplate='%{text:,}', hovertemplate='Exports to date: %{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_m_2021_22['month'], y=df_m_2021_22['Exports_YTD_vol'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Exports in 2021-22', text=df_m_2021_22['Exports_YTD_vol'], textposition='top center', texttemplate="%{text:,}", line=dict(color='Green', width=4), hovertemplate='Exports to date: %{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_m_2021_22['month'], y=df_m_2021_22['pct_change_yoy_vol'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_m_2021_22['pct_change_yoy_vol'], textposition='middle right', texttemplate="%{text:.2f}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='Cumulative Exports (Metric Tons)', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Madeup Exports by Volume", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) #st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ################# elif page == 'Tents & Tarpaulines Exports': ##################################### ##################################### #importing csv file as dataframe df = pd.read_csv('monthly_textile_exports_pbs.csv') df['date'] = pd.to_datetime(df['date'], infer_datetime_format=True) df['year'] = df['date'].dt.year #creates a year column out of datetime columns df['month'] = df['date'].dt.month #creates a month column out of datetime columns df['year'] = df['year'].astype('string') #converting year column into string for filtering df['month'] = df['month'].astype('string') #converting year column into string for filtering df['Fiscal Year'] = df['date'].dt.to_period('Q-JUN').dt.qyear.apply(lambda x: str(x-1) + "-" + str(x)) #adding month column df['month'] = df['date'].dt.strftime('%b') #creating month names column # knitwear chart value df_tents = df.loc[df['category'].isin(['Tents, Tarpaulines'])] #calculating year-to-date YTD exports df_tents['Exports_YTD'] = df_tents.groupby(['Fiscal Year'])['Exports_US$'].cumsum() df_tents['pct_change_yoy'] = df_tents.groupby(['month'])['Exports_YTD'].pct_change()*100 #filtering data of fiscal year 2020-21 df_tents_2020_21 = df_tents.loc[df_tents['Fiscal Year'].isin(['2020-2021'])] df_tents_2021_22 = df_tents.loc[df_tents['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_tents_2020_21['month'], y=df_tents_2020_21['Exports_YTD'], name='Exports in 2020-21', text=df_tents_2020_21['Exports_YTD'], textposition='auto', texttemplate='%{text:,}', hovertemplate='Exports to date: %{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_tents_2021_22['month'], y=df_tents_2021_22['Exports_YTD'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Exports in 2021-22', text=df_tents_2021_22['Exports_YTD'], textposition='top center', texttemplate="%{text:,}", line=dict(color='Green', width=4), hovertemplate='Exports to date: %{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_tents_2021_22['month'], y=df_tents_2021_22['pct_change_yoy'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_tents_2021_22['pct_change_yoy'], textposition='middle right', texttemplate="%{text:.2s}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") from PIL import Image image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='Cumulative Exports (US$ Billion)', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Tents & Tarpaulines Exports by Value", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ############################################### ############################################# #calculating year-to-date YTD exports by volume df_tents['Exports_YTD_vol'] = df_tents.groupby(['Fiscal Year'])['volume'].cumsum() df_tents['pct_change_yoy_vol'] = df_tents.groupby(['month'])['Exports_YTD_vol'].pct_change()*100 #filtering data of fiscal year 2020-21 df_tents_2020_21 = df_tents.loc[df_tents['Fiscal Year'].isin(['2020-2021'])] df_tents_2021_22 = df_tents.loc[df_tents['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_tents_2020_21['month'], y=df_tents_2020_21['Exports_YTD_vol'], name='Exports in 2020-21', text=df_tents_2020_21['Exports_YTD_vol'], textposition='auto', texttemplate='%{text:,}', hovertemplate='Exports to date: %{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_tents_2021_22['month'], y=df_tents_2021_22['Exports_YTD_vol'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Exports in 2021-22', text=df_tents_2021_22['Exports_YTD_vol'], textposition='top center', texttemplate="%{text:,}", line=dict(color='Green', width=4), hovertemplate='Exports to date: %{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_tents_2021_22['month'], y=df_tents_2021_22['pct_change_yoy_vol'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_tents_2021_22['pct_change_yoy_vol'], textposition='middle right', texttemplate="%{text:.2f}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='Cumulative Exports (Metric Tons)', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Tents & Tarpaulines Exports by Volume", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ##################################### # tents yarn chart export price df_tents['pct_change_yoy_price'] = df_tents.groupby(['month'])['unit_price'].pct_change()*100 df_tents_2020_21 = df_tents.loc[df_tents['Fiscal Year'].isin(['2020-2021'])] df_tents_2021_22 = df_tents.loc[df_tents['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_tents_2020_21['month'], y=df_tents_2020_21['unit_price'], name='Price in 2020-21', text=df_tents_2020_21['unit_price'], textposition='auto', texttemplate='$%{text:.2f}', hovertemplate='Exports price:$%{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_tents_2021_22['month'], y=df_tents_2021_22['unit_price'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Price in 2021-22', text=df_tents_2021_22['unit_price'], textposition='bottom right', texttemplate="$%{text:.2f}", line=dict(color='Green', width=4), hovertemplate='Exports price:$%{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_tents_2021_22['month'], y=df_tents_2021_22['pct_change_yoy_price'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_tents_2021_22['pct_change_yoy_price'], textposition='middle right', texttemplate="%{text:.2s}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='US$ per Kg', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Pakistan Tents & Tarpaulines Average Export Price", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ################### elif page == 'Non-Cotton Yarn Exports': ##################################### ##################################### #importing csv file as dataframe df = pd.read_csv('monthly_textile_exports_pbs.csv') df['date'] = pd.to_datetime(df['date'], infer_datetime_format=True) df['year'] = df['date'].dt.year #creates a year column out of datetime columns df['month'] = df['date'].dt.month #creates a month column out of datetime columns df['year'] = df['year'].astype('string') #converting year column into string for filtering df['month'] = df['month'].astype('string') #converting year column into string for filtering df['Fiscal Year'] = df['date'].dt.to_period('Q-JUN').dt.qyear.apply(lambda x: str(x-1) + "-" + str(x)) #adding month column df['month'] = df['date'].dt.strftime('%b') #creating month names column # knitwear chart value df_ncyarn = df.loc[df['category'].isin(['Non-Cotton Yarn'])] #calculating year-to-date YTD exports df_ncyarn['Exports_YTD'] = df_ncyarn.groupby(['Fiscal Year'])['Exports_US$'].cumsum() df_ncyarn['pct_change_yoy'] = df_ncyarn.groupby(['month'])['Exports_YTD'].pct_change()*100 #filtering data of fiscal year 2020-21 df_ncyarn_2020_21 = df_ncyarn.loc[df_ncyarn['Fiscal Year'].isin(['2020-2021'])] df_ncyarn_2021_22 = df_ncyarn.loc[df_ncyarn['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_ncyarn_2020_21['month'], y=df_ncyarn_2020_21['Exports_YTD'], name='Exports in 2020-21', text=df_ncyarn_2020_21['Exports_YTD'], textposition='auto', texttemplate='%{text:,}', hovertemplate='Exports to date: %{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_ncyarn_2021_22['month'], y=df_ncyarn_2021_22['Exports_YTD'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Exports in 2021-22', text=df_ncyarn_2021_22['Exports_YTD'], textposition='top center', texttemplate="%{text:,}", line=dict(color='Green', width=4), hovertemplate='Exports to date: %{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_ncyarn_2021_22['month'], y=df_ncyarn_2021_22['pct_change_yoy'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_ncyarn_2021_22['pct_change_yoy'], textposition='middle right', texttemplate="%{text:.2s}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") from PIL import Image image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='Cumulative Exports (US$ Billion)', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Non-Cotton Yarn Exports by Value", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ############################################### ############################################# #calculating year-to-date YTD exports by volume df_ncyarn['Exports_YTD_vol'] = df_ncyarn.groupby(['Fiscal Year'])['volume'].cumsum() df_ncyarn['pct_change_yoy_vol'] = df_ncyarn.groupby(['month'])['Exports_YTD_vol'].pct_change()*100 #filtering data of fiscal year 2020-21 df_ncyarn_2020_21 = df_ncyarn.loc[df_ncyarn['Fiscal Year'].isin(['2020-2021'])] df_ncyarn_2021_22 = df_ncyarn.loc[df_ncyarn['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_ncyarn_2020_21['month'], y=df_ncyarn_2020_21['Exports_YTD_vol'], name='Exports in 2020-21', text=df_ncyarn_2020_21['Exports_YTD_vol'], textposition='auto', texttemplate='%{text:,}', hovertemplate='Exports to date: %{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_ncyarn_2021_22['month'], y=df_ncyarn_2021_22['Exports_YTD_vol'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Exports in 2021-22', text=df_ncyarn_2021_22['Exports_YTD_vol'], textposition='top center', texttemplate="%{text:,}", line=dict(color='Green', width=4), hovertemplate='Exports to date: %{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_ncyarn_2021_22['month'], y=df_ncyarn_2021_22['pct_change_yoy_vol'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_ncyarn_2021_22['pct_change_yoy_vol'], textposition='middle right', texttemplate="%{text:.2f}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='Cumulative Exports (Metric Tons)', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Non-Cotton Exports by Volume", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ##################################### # non-cotton yarn chart export price df_ncyarn['pct_change_yoy_price'] = df_ncyarn.groupby(['month'])['unit_price'].pct_change()*100 df_ncyarn_2020_21 = df_ncyarn.loc[df_ncyarn['Fiscal Year'].isin(['2020-2021'])] df_ncyarn_2021_22 = df_ncyarn.loc[df_ncyarn['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_ncyarn_2020_21['month'], y=df_ncyarn_2020_21['unit_price'], name='Price in 2020-21', text=df_ncyarn_2020_21['unit_price'], textposition='auto', texttemplate='$%{text:.2f}', hovertemplate='Exports price:$%{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_ncyarn_2021_22['month'], y=df_ncyarn_2021_22['unit_price'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Price in 2021-22', text=df_ncyarn_2021_22['unit_price'], textposition='bottom right', texttemplate="$%{text:.2f}", line=dict(color='Green', width=4), hovertemplate='Exports price:$%{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_ncyarn_2021_22['month'], y=df_ncyarn_2021_22['pct_change_yoy_price'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_ncyarn_2021_22['pct_change_yoy_price'], textposition='middle right', texttemplate="%{text:.2s}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='US$ per Kg', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Pakistan Non-Cotton Yarn Average Export Price", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ################ elif page == 'Bedwear Exports': ##################################### ##################################### #importing csv file as dataframe df = pd.read_csv('monthly_textile_exports_pbs.csv') df['date'] = pd.to_datetime(df['date'], infer_datetime_format=True) df['year'] = df['date'].dt.year #creates a year column out of datetime columns df['month'] = df['date'].dt.month #creates a month column out of datetime columns df['year'] = df['year'].astype('string') #converting year column into string for filtering df['month'] = df['month'].astype('string') #converting year column into string for filtering df['Fiscal Year'] = df['date'].dt.to_period('Q-JUN').dt.qyear.apply(lambda x: str(x-1) + "-" + str(x)) #adding month column df['month'] = df['date'].dt.strftime('%b') #creating month names column ##################################### # bedwear chart value df_bedwear = df.loc[df['category'].isin(['Bedwear'])] #calculating year-to-date YTD exports df_bedwear['Exports_YTD'] = df_bedwear.groupby(['Fiscal Year'])['Exports_US$'].cumsum() df_bedwear['pct_change_yoy'] = df_bedwear.groupby(['month'])['Exports_YTD'].pct_change()*100 #filtering data of fiscal year 2020-21 df_bedwear_2020_21 = df_bedwear.loc[df_bedwear['Fiscal Year'].isin(['2020-2021'])] df_bedwear_2021_22 = df_bedwear.loc[df_bedwear['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_bedwear_2020_21['month'], y=df_bedwear_2020_21['Exports_YTD'], name='Exports in 2020-21', text=df_bedwear_2020_21['Exports_YTD'], textposition='auto', texttemplate='%{text:,}', hovertemplate='Exports to date: %{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_bedwear_2021_22['month'], y=df_bedwear_2021_22['Exports_YTD'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Exports in 2021-22', text=df_bedwear_2021_22['Exports_YTD'], textposition='top center', texttemplate="%{text:,}", line=dict(color='Green', width=4), hovertemplate='Exports to date: %{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_bedwear_2021_22['month'], y=df_bedwear_2021_22['pct_change_yoy'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_bedwear_2021_22['pct_change_yoy'], textposition='middle right', texttemplate="%{text:.2s}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='Cumulative Exports (US$ Billion)', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Pakistan Bedwear Exports by Value", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ##################################### ##################################### # bedwear chart volume df_bedwear = df.loc[df['category'].isin(['Bedwear'])] #calculating year-to-date YTD exports df_bedwear['Exports_YTD_vol'] = df_bedwear.groupby(['Fiscal Year'])['volume'].cumsum() df_bedwear['pct_change_yoy_vol'] = df_bedwear.groupby(['month'])['Exports_YTD_vol'].pct_change()*100 #filtering data of fiscal year 2020-21 df_bedwear_2020_21 = df_bedwear.loc[df_bedwear['Fiscal Year'].isin(['2020-2021'])] df_bedwear_2021_22 = df_bedwear.loc[df_bedwear['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_bedwear_2020_21['month'], y=df_bedwear_2020_21['Exports_YTD_vol'], name='Exports in 2020-21', text=df_bedwear_2020_21['Exports_YTD_vol'], textposition='auto', texttemplate='%{text:,}', hovertemplate='Exports to date: %{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_bedwear_2021_22['month'], y=df_bedwear_2021_22['Exports_YTD_vol'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Exports in 2021-22', text=df_bedwear_2021_22['Exports_YTD_vol'], textposition='top center', texttemplate="%{text:,}", line=dict(color='Green', width=4), hovertemplate='Exports to date: %{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_bedwear_2021_22['month'], y=df_bedwear_2021_22['pct_change_yoy_vol'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_bedwear_2021_22['pct_change_yoy_vol'], textposition='middle right', texttemplate="%{text:.2f}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='Cumulative Exports (Metric Tons)', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Pakistan Bedwear Exports by Volume", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ##################################### # garment chart export price df_bedwear['pct_change_yoy_price'] = df_bedwear.groupby(['month'])['unit_price'].pct_change()*100 df_bedwear_2020_21 = df_bedwear.loc[df_bedwear['Fiscal Year'].isin(['2020-2021'])] df_bedwear_2021_22 = df_bedwear.loc[df_bedwear['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_bedwear_2020_21['month'], y=df_bedwear_2020_21['unit_price'], name='Price in 2020-21', text=df_bedwear_2020_21['unit_price'], textposition='auto', texttemplate='$%{text:.2f}', hovertemplate='Exports price:$%{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_bedwear_2021_22['month'], y=df_bedwear_2021_22['unit_price'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Price in 2021-22', text=df_bedwear_2021_22['unit_price'], textposition='bottom right', texttemplate="$%{text:.2f}", line=dict(color='Green', width=4), hovertemplate='Exports price:$%{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_bedwear_2021_22['month'], y=df_bedwear_2021_22['pct_change_yoy_price'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_bedwear_2021_22['pct_change_yoy_price'], textposition='middle right', texttemplate="%{text:.2s}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='US$ per Kg', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Pakistan Bedwear Average Export Price", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ##################################### ################ elif page == 'Towel Exports': ##################################### ##################################### #importing csv file as dataframe df = pd.read_csv('monthly_textile_exports_pbs.csv') df['date'] = pd.to_datetime(df['date'], infer_datetime_format=True) df['year'] = df['date'].dt.year #creates a year column out of datetime columns df['month'] = df['date'].dt.month #creates a month column out of datetime columns df['year'] = df['year'].astype('string') #converting year column into string for filtering df['month'] = df['month'].astype('string') #converting year column into string for filtering df['Fiscal Year'] = df['date'].dt.to_period('Q-JUN').dt.qyear.apply(lambda x: str(x-1) + "-" + str(x)) #adding month column df['month'] = df['date'].dt.strftime('%b') #creating month names column ##################################### # bedwear chart value df_towels = df.loc[df['category'].isin(['Towels'])] #calculating year-to-date YTD exports df_towels['Exports_YTD'] = df_towels.groupby(['Fiscal Year'])['Exports_US$'].cumsum() df_towels['pct_change_yoy'] = df_towels.groupby(['month'])['Exports_YTD'].pct_change()*100 #filtering data of fiscal year 2020-21 df_towels_2020_21 = df_towels.loc[df_towels['Fiscal Year'].isin(['2020-2021'])] df_towels_2021_22 = df_towels.loc[df_towels['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_towels_2020_21['month'], y=df_towels_2020_21['Exports_YTD'], name='Exports in 2020-21', text=df_towels_2020_21['Exports_YTD'], textposition='auto', texttemplate='%{text:,}', hovertemplate='Exports to date: %{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_towels_2021_22['month'], y=df_towels_2021_22['Exports_YTD'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Exports in 2021-22', text=df_towels_2021_22['Exports_YTD'], textposition='top center', texttemplate="%{text:,}", line=dict(color='Green', width=4), hovertemplate='Exports to date: %{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_towels_2021_22['month'], y=df_towels_2021_22['pct_change_yoy'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_towels_2021_22['pct_change_yoy'], textposition='middle right', texttemplate="%{text:.2s}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='Cumulative Exports (US$)', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Pakistan Towels Exports by Value", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ##################################### ##################################### # bedwear chart volume #calculating year-to-date YTD exports df_towels['Exports_YTD_vol'] = df_towels.groupby(['Fiscal Year'])['volume'].cumsum() df_towels['pct_change_yoy_vol'] = df_towels.groupby(['month'])['Exports_YTD_vol'].pct_change()*100 #filtering data of fiscal year 2020-21 df_towels_2020_21 = df_towels.loc[df_towels['Fiscal Year'].isin(['2020-2021'])] df_towels_2021_22 = df_towels.loc[df_towels['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_towels_2020_21['month'], y=df_towels_2020_21['Exports_YTD_vol'], name='Exports in 2020-21', text=df_towels_2020_21['Exports_YTD_vol'], textposition='auto', texttemplate='%{text:,}', hovertemplate='Exports to date: %{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_towels_2021_22['month'], y=df_towels_2021_22['Exports_YTD_vol'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Exports in 2021-22', text=df_towels_2021_22['Exports_YTD_vol'], textposition='top center', texttemplate="%{text:,}", line=dict(color='Green', width=4), hovertemplate='Exports to date: %{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_towels_2021_22['month'], y=df_towels_2021_22['pct_change_yoy_vol'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_towels_2021_22['pct_change_yoy_vol'], textposition='middle right', texttemplate="%{text:.2f}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='Cumulative Exports (Metric Tons)', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Pakistan Towels Exports by Volume", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ##################################### # towels chart export price df_towels['pct_change_yoy_price'] = df_towels.groupby(['month'])['unit_price'].pct_change()*100 df_towels_2020_21 = df_towels.loc[df_towels['Fiscal Year'].isin(['2020-2021'])] df_towels_2021_22 = df_towels.loc[df_towels['Fiscal Year'].isin(['2021-2022'])] fig_ytd = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01, row_heights=[0.20,0.80]) #fig_ytd = go.Figure() #fig_ytd = make_subplots(specs=[[{'secondary_y': True}]], rows=1, cols=1) # to make subplot with 1 row and 1 col # Add traces fig_ytd.add_trace(go.Bar(x=df_towels_2020_21['month'], y=df_towels_2020_21['unit_price'], name='Price in 2020-21', text=df_towels_2020_21['unit_price'], textposition='auto', texttemplate='$%{text:.2f}', hovertemplate='Exports price:$%{y}' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_towels_2021_22['month'], y=df_towels_2021_22['unit_price'], mode='markers+lines+text', marker=dict(size=16, color="Green"), name='Price in 2021-22', text=df_towels_2021_22['unit_price'], textposition='bottom right', texttemplate="$%{text:.2f}", line=dict(color='Green', width=4), hovertemplate='Exports price:$%{y}B' ), row=2, col=1) fig_ytd.add_trace(go.Scatter(x=df_towels_2021_22['month'], y=df_towels_2021_22['pct_change_yoy_price'], mode="lines+markers+text", marker=dict(size=16, color="Red"), name="%Change from previous year", text=df_towels_2021_22['pct_change_yoy_price'], textposition='middle right', texttemplate="%{text:.2s}%", line=dict(color='Red', width=1, dash='dash'), hovertemplate='%{y}', ), row=1, col=1 ) #fig_ytd.update_yaxes(title_text="Cumulative Exports in US$") image = Image.open('logo.png') #st.image(logo.png) fig_ytd.add_layout_image( dict( source=image, xref="paper", yref="paper", x=1, y=-0.2, #image postion on chart sizex=0.1, sizey=0.1, #image size on chart xanchor="right", yanchor="bottom" )) fig_ytd.update_layout( autosize=True, height=650, width=1050, legend_traceorder="reversed", margin=dict(t=90, b=110, l=90, r=40), title_font=dict(size=25, color='#111111', family="fjalla one, sans-serif"), xaxis_title='', yaxis_title="", plot_bgcolor='#ffffff', paper_bgcolor='#ffffff', font=dict(color='#111111', size=18, family="roboto, sans-serif"), #font of lablels of axises ) #updates axes fig_ytd.update_xaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_yaxes(visible=False, row=1, col=1 ) #range=[0, 100] if need to set y-axis range fig_ytd.update_yaxes(showline=True, linewidth=2, linecolor='black', row=2, col=1 ) fig_ytd.update_xaxes(tickangle=0, tickfont=dict(family='Roboto', color='black', size=24)) fig_ytd.update_yaxes(title='US$ per Kg', title_font=dict(family='Roboto', color='black', size=20), row=2, col=1) fig_ytd.update_yaxes(showgrid=True, gridwidth=1, gridcolor='#758D99') ############### #title fig_ytd.add_annotation( text="Pakistan Towels Average Export Price", font=dict(family='Fjalla one', color='#006BA2', size=36), xref="paper", yref="paper", x=0, y=1.18, showarrow=False, arrowhead=1) #subtitle fig_ytd.add_annotation( text="current year vs. previous year", font=dict(family='roboto', color='black', size=24), xref="paper", yref="paper", x=0, y=1.10, showarrow=False, arrowhead=1) #data reference fig_ytd.add_annotation( text="Source: Pakistan Bureau of Statistics", font=dict(family='Fjalla one', color='#758D99', size=20), xref="paper", yref="paper", x=0, y=-0.2, showarrow=False, arrowhead=1) fig_ytd.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) st.plotly_chart(fig_ytd, use_container_width=True) # to show Figure; container width true makes fig. size responsive ##################################### elif page == 'Total Textile Exports': #st.title("Pakistan Textile Exports") #importing csv file as dataframe df =
pd.read_csv('monthly_textile_exports_pbs.csv')
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Wed Jan 13 14:39:19 2021 @author: <NAME> """ from multiprocessing import freeze_support import pickle import numpy as np import pandas as pd from evaluate_utils import sklearn_pipeline_evaluator, get_cv from ml_models import svc_selector_pipeline, svc_selector_grid from ml_models import lr_selector_pipeline, lr_selector_grid from ml_models import qda_selector_pipeline, qda_selector_grid from ml_models import gpr_selector_pipeline, gpr_selector_grid from constants import RANDOM_STATE, N_SPLITS import warnings warnings.filterwarnings("ignore", message="The objective has been evaluated at this point before.") warnings.simplefilter('always', category=UserWarning) N_SPLITS_OUTER = 25 SHUFFLE_SPLIT = True def drop_the_right_rows(df, output_covariate, covariates_to_check): # first drop the rows where there is no output df = df.copy() df = df.loc[~
pd.isnull(df[output_covariate])
pandas.isnull
""" This file creates benchmarks that are used to evaluate the various generators. A benchmark consists of one or more DNN models (in keras format) for which we have one or more tuples of <images, labels>. Date: July 5, 2020 Project: ECE653 Final Project: Check Your Perturbations Authors: name: <NAME>, <NAME>, <NAME> contact: <EMAIL> """ from enum import Enum from tensorflow import keras import numpy as np import pandas as pd class BenchmarkEnums(Enum): """ This is an enum that contains all the different benchmarks. """ Demo = { "models": ["./../src/data/models/MNIST/regularCNN"], "images": "./../src/data/images/MNIST/demo.npy", "similarityType": "l2", "similarityMeasure": 10, "timeLimit": 50 } Main = { "models": ["./../src/data/models/MNIST/regularFCNN", "./../src/data/models/MNIST/robustFCNN"], "images": "./../src/data/images/MNIST/demo.npy", "similarityType": "l2", "similarityMeasure": 10, "timeLimit": 600 } MainSimilar = { "models": ["./../src/data/models/MNIST/regularFCNN", "./../src/data/models/MNIST/robustFCNN"], "images": "./../src/data/images/MNIST/demo.npy", "similarityType": "l2", "similarityMeasure": 5, "timeLimit": 600 } Thermometer = { "models": ["./../src/data/models/MNIST/thermometerCNN"], "images": "./../src/data/images/MNIST/demo.npy", "similarityType": "l2", "similarityMeasure": 10, "timeLimit": 50 } MainCNN = { "models": ["./../src/data/models/MNIST/regularCNN", "./../src/data/models/MNIST/robustCNN"], "images": "./../src/data/images/MNIST/demo.npy", "similarityType": "l2", "similarityMeasure": 10, "timeLimit": 600 } def __str__(self): return self.value class Benchmark: """ This class contains a given benchmark. """ def __init__(self, benchmarkType, similarityType=None, similarityMeasure=None, verbose=False): """ Standard init function. :param benchmarkType: Enum that is found in BenchmarkEnums. """ if benchmarkType not in BenchmarkEnums: raise Exception(f"type: {benchmarkType} not in benchmark.") self.name = benchmarkType.name self.type = benchmarkType.value self.data =
pd.DataFrame(columns=['modelName', 'model', 'image', 'label'])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Fri Mar 1 13:37:10 2019 @author:Imarticus Machine Learning Team """ import numpy as np import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns color = sns.color_palette() pd.options.mode.chained_assignment = None # default='warn' order_products_test_df=
pd.read_csv("order_products_test.csv")
pandas.read_csv
import pandas as pd from sklearn.ensemble import BaggingRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import GradientBoostingRegressor from xgboost import XGBRegressor from sklearn.preprocessing import PolynomialFeatures as pf from sklearn import linear_model as lm from sklearn.model_selection import RepeatedKFold rkf = RepeatedKFold(n_splits=10, n_repeats=10) data = pd.read_csv('C:\\Users\\<NAME>\\Documents\\Research Projects\\Forecast of Rainfall Quantity and its variation using Envrionmental Features\\Data\\Normalized & Combined Data\\All Districts.csv') data = data.drop(columns=['Index', 'District']) base = [RandomForestRegressor(n_estimators=100, max_depth=10), ExtraTreesRegressor(n_estimators=90, max_depth=15), GradientBoostingRegressor(n_estimators=60, max_depth=5), XGBRegressor(n_estimators=50, max_depth=5), BaggingRegressor(n_estimators=50, base_estimator=lm.LinearRegression())] name = ['RFR', 'ETR', 'GBR', 'XGBR', 'BAR'] df1 = pd.DataFrame() c = 0 for tr_i, ts_i in rkf.split(data): train, test = data.iloc[tr_i], data.iloc[ts_i] train_x = train.drop(columns=['Rainfall']) train_y = train['Rainfall'] test_x = test.drop(columns=['Rainfall']) test_y = test['Rainfall'] d1 = {} for i, j in zip(base, name): print(j, c) if j == 'BAR': poly = pf(degree=4) train_x = poly.fit_transform(train_x) test_x = poly.fit_transform(test_x) model = i model.fit(train_x, train_y) ts_p = model.predict(test_x) d1[j] = list(ts_p) d1['Actual'] = list(test_y) df_ts =
pd.DataFrame(d1, columns=['RFR', 'ETR', 'GBR', 'XGBR', 'BAR', 'Actual'])
pandas.DataFrame
import argparse from argparse import Namespace from pathlib import Path from omegaconf import OmegaConf import pandas as pd from sklearn.model_selection import train_test_split def create_dataset(filepath: Path) -> pd.DataFrame: with open(filepath, mode="rb") as io: list_of_sentences = io.readlines() data = [] for sentence in list_of_sentences: try: decoded_sentence = sentence.strip().decode("utf-8") label = int(decoded_sentence[0]) document = decoded_sentence[2:] data.append({"document": document, "label": label}) except UnicodeDecodeError: continue return
pd.DataFrame(data)
pandas.DataFrame
import pandas as pd import os import csv import gdal import numpy as np import re def ad_industry_profiles_dict(dicts): dict_names = ["load_profile_industry_chemicals_and_petrochemicals_yearlong_2018", "load_profile_industry_food_and_tobacco_yearlong_2018", "load_profile_industry_iron_and_steel_yearlong_2018", "load_profile_industry_non_metalic_minerals_yearlong_2018", "load_profile_industry_paper_yearlong_2018"] data = [] for name, dictionary in zip(dict_names, dicts): raw_data = pd.DataFrame(dictionary[name]) raw_data = raw_data.loc[:, ("NUTS0_code", "process", "hour", "load")] raw_data["load"] = pd.to_numeric(raw_data["load"]) raw_data["hour"] =
pd.to_numeric(raw_data["hour"])
pandas.to_numeric
#!/usr/bin/env python3 import glob from math import log import os, os.path import scipy.stats import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy def cognate_class_count_plot(): # Actual class counts cognate_counts = [] with open("uralex_counts.csv","r") as fp: for line in fp: meaning, cognates = line.strip().split(",") cognate_counts.append(int(cognates)) # Best fitting distribution nbinom_support = range(0,max(cognate_counts)+2) nbinom_probs = [scipy.stats.nbinom(9,0.49).pmf(n) for n in nbinom_support] plt.figure(figsize=(12,6)) fig, ax1 = plt.subplots() ax2 = ax1.twinx() ax1.hist(cognate_counts,bins=range(1,max(cognate_counts)+2), align="left") ax1.set_xticks([5,10,15,20]) ax1.set_xlim(0,max(cognate_counts)+1.5) ax1.set_xlabel("Cognate classes", fontsize=12) ax1.set_ylabel("Meanings in UraLex", fontsize=12) ax2.stem(nbinom_support,nbinom_probs, linefmt="C1-", markerfmt="C1o") a, b = ax2.get_ylim() ax2.set_ylim(0.0,b) ax2.set_ylabel("Negative binomial probability", fontsize=12) plt.tight_layout() plt.savefig("plots/cognate_dist.png") def tiger_rate_dist_plot(): rates = [] with open("analyses/uralex/uralex_rates.txt","r") as fp: for line in fp: rates.extend([float(line.strip().split()[-1])]) fig, ax = plt.subplots() ax.hist(rates,19) ax.set_xlabel("TIGER value") ax.set_ylabel("Number of meanings") plt.tight_layout() plt.savefig("plots/uralex_rates_dist.png") def tiger_rate_plot(): dfs = [] data_models = glob.glob("analyses/*") data_names = [] for model in data_models: name = os.path.split(model)[-1] data_names.append(name) rates_files = glob.glob(os.path.join(model, "*rates.txt")) rates = [] for rates_file in rates_files: with open(rates_file, "r") as fp: rates.extend([float(x.strip().split()[-1]) for x in fp.readlines()]) df =
pd.DataFrame({name: rates})
pandas.DataFrame
import pytest from pandas import DataFrame from tests.utils import assert_dataframes_equals from weaverbird.backends.pandas_executor.steps.filter import execute_filter from weaverbird.pipeline.conditions import ComparisonCondition from weaverbird.pipeline.steps import FilterStep @pytest.fixture def sample_df(): return DataFrame({'colA': ['toto', 'tutu', 'tata'], 'colB': [1, 2, 3], 'colC': [100, 50, 25]}) @pytest.mark.parametrize('value', [0, False, True, 0.0, 1, 1.5, '', '0', None, [], [0], '0.0']) def test_simple_condition_valid_values(value) -> None: # Ensure pydantic cast does not change types for `value` field: sc = ComparisonCondition(column='x', operator='eq', value=value) result_value = sc.value assert value == result_value assert type(value) == type(result_value) def test_simple_eq_filter(sample_df): step = FilterStep( name='filter', condition={ 'column': 'colA', 'operator': 'eq', 'value': 'tutu', }, ) df_result = execute_filter(step, sample_df) assert_dataframes_equals(df_result, DataFrame({'colA': ['tutu'], 'colB': [2], 'colC': [50]})) def test_simple_ne_filter(sample_df): step = FilterStep( name='filter', condition={ 'column': 'colA', 'operator': 'ne', 'value': 'tutu', }, ) df_result = execute_filter(step, sample_df) assert_dataframes_equals( df_result, DataFrame({'colA': ['toto', 'tata'], 'colB': [1, 3], 'colC': [100, 25]}) ) def test_simple_gt_filter(sample_df): step = FilterStep( name='filter', condition={ 'column': 'colB', 'operator': 'gt', 'value': 2, }, ) df_result = execute_filter(step, sample_df) assert_dataframes_equals(df_result, DataFrame({'colA': ['tata'], 'colB': [3], 'colC': [25]})) def test_simple_ge_filter(sample_df): step = FilterStep( name='filter', condition={ 'column': 'colB', 'operator': 'ge', 'value': 2, }, ) df_result = execute_filter(step, sample_df) assert_dataframes_equals( df_result, DataFrame({'colA': ['tutu', 'tata'], 'colB': [2, 3], 'colC': [50, 25]}) ) def test_simple_lt_filter(sample_df): step = FilterStep( name='filter', condition={ 'column': 'colB', 'operator': 'lt', 'value': 2, }, ) df_result = execute_filter(step, sample_df) assert_dataframes_equals(df_result, DataFrame({'colA': ['toto'], 'colB': [1], 'colC': [100]})) def test_simple_le_filter(sample_df): step = FilterStep( name='filter', condition={ 'column': 'colB', 'operator': 'le', 'value': 2, }, ) df_result = execute_filter(step, sample_df) assert_dataframes_equals( df_result, DataFrame({'colA': ['toto', 'tutu'], 'colB': [1, 2], 'colC': [100, 50]}) ) def test_simple_in_filter(sample_df): step = FilterStep( name='filter', condition={ 'column': 'colA', 'operator': 'in', 'value': ['toto', 'tutu'], }, ) df_result = execute_filter(step, sample_df) assert_dataframes_equals( df_result, DataFrame({'colA': ['toto', 'tutu'], 'colB': [1, 2], 'colC': [100, 50]}) ) def test_simple_nin_filter(sample_df): step = FilterStep( name='filter', condition={ 'column': 'colA', 'operator': 'nin', 'value': ['toto', 'tutu'], }, ) df_result = execute_filter(step, sample_df) assert_dataframes_equals(df_result,
DataFrame({'colA': ['tata'], 'colB': [3], 'colC': [25]})
pandas.DataFrame
import numpy as np import pandas as pd import os from collections import Counter from scipy.stats import hypergeom fdr_threshold = 0.05 def main(): os.makedirs('results/enrichment', exist_ok=True) os.makedirs('results/GO', exist_ok=True) # LOAD # single cell gene data all_gene_data = pd.read_csv('data/gene_lists/all-scRNA-data.csv') # normalised RPKM bulk data corrected for age, sex, etc bulk_data = pd.read_csv('data/processed_psychencode/PsychENCODE-prenatal-bulk-RPKM-data-scRNA-filtered-Winsor-log2-residualised.csv') # gene-wise correlation with PC components correlation_results = pd.read_csv('results/gene_correlations/PCA_correlations-KendallTau-residualisedRPKM.csv') # fetal background geneset = all filtered genes in bulk data background_genes =
pd.read_csv('data/gene_lists/background_genes.txt', header=None)
pandas.read_csv
import os import json import random import pandas as pd import numpy as np from split_otus import split_otus, write_kmer_out, calc_kmer_feat from config import cfg def create_lsa_from_sparcc(sparcc_thresh): path = os.path.join(cfg.DATA_DIR, cfg.SPARCC_FILE) sparcc_data = pd.read_csv(path, sep='\t', index_col=0) cols = sparcc_data.columns.values.tolist() rows = sparcc_data.index.values.tolist() col_otu_idx = list(map(lambda x: int(x[4:]), cols)) row_otu_idx = list(map(lambda x: int(x[4:]), rows)) sparcc_mat = sparcc_data.to_numpy() edge_idx = np.where((sparcc_mat >= sparcc_thresh)|(sparcc_mat<=-sparcc_thresh) ) row_otu_idx = np.array(row_otu_idx) col_otu_idx = np.array(col_otu_idx) otu_src_idx = row_otu_idx[edge_idx[0]] otu_dst_idx = col_otu_idx[edge_idx[1]] # write like lsa format edge_data = pd.DataFrame({'index1': otu_src_idx, 'index2': otu_dst_idx}) edge_data.to_csv(os.path.join(cfg.DATA_DIR, cfg.LSA_EDGE_FILE), sep='\t') def create_id_map(): # to avoid otu not in kmer feats feats = calc_kmer_feat(cfg.KMER_LENGH) path = os.path.join(cfg.DATA_DIR, cfg.SPARCC_FILE) sparcc_data = pd.read_csv(path, sep='\t', index_col=0) cols = sparcc_data.columns.values.tolist() otu_idx = list(map(lambda x: int(x[4:]), cols)) nodes=list(set(otu_idx)) random.shuffle(nodes) id_map = {} i = 0 for idx in nodes: key = 'OTU_'+str(idx) if key not in feats.keys(): continue id_map[key] = i i += 1 if not os.path.isdir(cfg.OUTPUT_DIR): os.makedirs(cfg.OUTPUT_DIR) with open(os.path.join(cfg.OUTPUT_DIR, cfg.ID_MAP_FILE), 'w') as f: json.dump(id_map, f) def load_id_map(): with open(os.path.join(cfg.OUTPUT_DIR, cfg.ID_MAP_FILE), 'r') as f: map = json.load(f) return map def create_edge_from_lsa(): path = os.path.join(cfg.DATA_DIR, cfg.LSA_EDGE_FILE) lsa_data = pd.read_csv(path, sep='\t') src_nodes = lsa_data.loc[:, 'index1'].values.tolist() dst_nodes = lsa_data.loc[:, 'index2'].values.tolist() edges = [] id_map = load_id_map() for src_node, dst_node in zip(src_nodes, dst_nodes): src_node = 'OTU_' + str(src_node) dst_node = 'OTU_'+str(dst_node) # to avoid not in if src_node not in id_map.keys() or dst_node not in id_map.keys(): continue src_idx = id_map[src_node] dst_idx = id_map[dst_node] edges.append([src_idx, dst_idx]) return edges def create_graph(id2idx, edges): graph = {} graph["directed"] = False graph['graph'] = {"name": "disjoint_union( , )"} nodes = [] train_num = int(len(id2idx) * 0.7) val_num = int(len(id2idx) * 0.2) # features=read_kmer_feat() # TODO: the label is not used? # labels=create_class_map() for i, (id, idx) in enumerate(id2idx.items()): is_test = False is_val = False if i > train_num and i < (train_num + val_num): is_val = True elif i >= (train_num + val_num): is_test = True # feature = features[id] # label=labels[id] node = {"test": is_test, 'id': id, 'feature': None, 'val': is_val, 'label': None } nodes.append(node) links = [] for src, dst in edges: link = {'test_removed': False, 'train_removed': False, 'target': dst, 'source': src } links.append(link) graph['nodes'] = nodes graph['links'] = links graph['multigraph'] = False with open(os.path.join(cfg.OUTPUT_DIR, cfg.GRAPH_FILE), 'w') as f: json.dump(graph, f) def create_features(): features = calc_kmer_feat(cfg.KMER_LENGH) id_map = load_id_map() filter_features = [] for id in id_map.keys(): filter_features.append(features[id]) np.save(os.path.join(cfg.OUTPUT_DIR, cfg.FEATURE_FILE), filter_features) def create_class_map(low_thresh=None,high_thresh=None): id_map = load_id_map() path = os.path.join(cfg.DATA_DIR, cfg.KO_PREDICTED_FILE) # need index_col parameter label_data =
pd.read_csv(path, sep='\t', index_col=0)
pandas.read_csv
import pandas as pd import seaborn as sb from sklearn.linear_model import LinearRegression from statsmodels.graphics.tsaplots import plot_acf from statsmodels.graphics.tsaplots import plot_pacf from statsmodels.tsa.seasonal import seasonal_decompose import numpy as np import pmdarima import matplotlib.pyplot as plt import seaborn as sb import matplotlib.colors import math from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from sklearn.metrics import mean_squared_error import sklearn.metrics as metrics from sklearn.cluster import KMeans from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import silhouette_score import tsfel #MAIN size=(7,5) plt.style.use('seaborn') sb.set_style("darkgrid") color_list = ['blue','red','green'] #cmap = matplotlib.colors.LinearSegmentedColormap.from_list(cluster_values, color_list) #IMPORT df=pd.read_csv('Data kategorier.csv',skiprows=2,index_col=['READ_TIME_Date']) df.index = pd.to_datetime(df.index) # 1) Weekday vs Weekend for apartments and houses Houses=df.iloc[:,5:8] Houses.columns=['sum','antal','average'] Houses['Type']='House' Apartments=df.iloc[:,92:95] Apartments.columns=['sum','antal','average'] Apartments['Type']='Apartment' data=pd.concat([Houses,Apartments]) data['dayn']=data.index.weekday data['Day']=data.dayn.apply(lambda x: 'weekend' if x>=5 else 'weekday') plt.figure(figsize=size) ax=sb.lineplot(data.index.hour,data.average,hue=data.Type,style=data.Day) ax.set(xlabel='Hour', ylabel='Average household consumption [kW]') plt.xlabel=('Hour') plt.ylabel=('Average household consumption [kW]') plt.show() # 2) Age over months A1 = df.loc[:,df.columns.isin(k for k in df.columns if 'Average' in k and 'a1' in k)] A1['Average']=A1.mean(axis=1) A1['Age']='18-30' A2 = df.loc[:,df.columns.isin(k for k in df.columns if 'Average' in k and 'a2' in k)] A2['Average']=A2.mean(axis=1) A2['Age']='30-65' A3 = df.loc[:,df.columns.isin(k for k in df.columns if 'Average' in k and 'a3' in k)] A3['Average']=A3.mean(axis=1) A3['Age']='65+' data=pd.concat([A1.iloc[:,-2:],A2.iloc[:,-2:],A3.iloc[:,-2:]]) data['Month']=data.index.month_name(locale='French') data['Monthn']=data.index.month data['Season']=data.Monthn.apply(lambda x: 'Winter' if x in [12,1,2] else('Spring' if x in [3,4,5] else('Summer' if x in [6,7,8] else ('Fall')))) plt.figure(figsize=size) ax=sb.lineplot(data.index.hour,data.Average,hue=data.Age,style=data.Season, ci=None) ax.set(xlabel='Hour', ylabel='Average household consumption [kW]') plt.show() # 3) Number of children vs Weekend and age 30-64 C0 = df.loc[:,df.columns.isin(k for k in df.columns if 'Average' in k and '0b' in k and 'a2' in k)] C0['Average']=C0.mean(axis=1) C0['Children']='No' C1 = df.loc[:,df.columns.isin(k for k in df.columns if 'Average' in k and 'mb' in k and 'a2' in k)] C1['Average']=C1.mean(axis=1) C1['Children']='Yes' data=pd.concat([C0.iloc[:,-2:],C1.iloc[:,-2:]]) data['dayn']=data.index.weekday data['Day']=data.dayn.apply(lambda x: 'weekend' if x>=5 else 'weekday') plt.figure(figsize=(10,5)) ax = plt.subplot(122) ax.xaxis.set_major_locator(plt.MaxNLocator(6)) ax = sb.lineplot(data.index.hour,data.Average,hue=data.Children,style=data.Day, ci=None) ax.set(xlabel='Hour', ylabel='') plt.axvline(x=18) ax.title.set_text('Age: 30-64') plt.show() #Age 18-30 C0 = df.loc[:,df.columns.isin(k for k in df.columns if 'Average' in k and '0b' in k and 'a1' in k)] C0['Average']=C0.mean(axis=1) C0['Children']='No' C1 = df.loc[:,df.columns.isin(k for k in df.columns if 'Average' in k and 'mb' in k and 'a1' in k)] C1['Average']=C1.mean(axis=1) C1['Children']='Yes' data1=
pd.concat([C0.iloc[:,-2:],C1.iloc[:,-2:]])
pandas.concat
# code inspired from: https://keras.io/examples/generative/vae/ import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from keras.callbacks import EarlyStopping from keras.callbacks import ModelCheckpoint import os import pandas as pd from collections import Counter from imblearn.datasets import make_imbalance from keras.models import load_model from keras.utils import to_categorical from sklearn.utils import shuffle class Sampling(layers.Layer): def call(self, inputs): z_mean, z_log_var = inputs batch = tf.shape(z_mean)[0] dim = tf.shape(z_mean)[1] epsilon = tf.keras.backend.random_normal(shape=(batch, dim)) return z_mean + tf.exp(0.5 * z_log_var) * epsilon latent_dim = 2 encoder_inputs = keras.Input(shape=(30, 30, 1)) x = layers.Conv2D(8, 4, activation="relu", strides=2, padding="same")(encoder_inputs) x = layers.Conv2D(16, 4, activation="relu", strides=2, padding="same")(x) x = layers.Flatten()(x) x = layers.Dense(8, activation="relu")(x) z_mean = layers.Dense(latent_dim, name="z_mean")(x) z_log_var = layers.Dense(latent_dim, name="z_log_var")(x) z = Sampling()([z_mean, z_log_var]) encoder = keras.Model(encoder_inputs, [z_mean, z_log_var, z], name="encoder") encoder.summary() latent_inputs = keras.Input(shape=(latent_dim,)) x = layers.Dense(8 * 8 * 16, activation="relu")(latent_inputs) x = layers.Reshape((8, 8, 16))(x) x = layers.Conv2DTranspose(16, 4, activation="relu", strides=2, padding="same", output_padding=1)(x) x = layers.Conv2DTranspose(8, 4, activation="relu", strides=2, padding="same")(x) decoder_outputs = layers.Conv2DTranspose(1, 3, activation="sigmoid", padding="same")(x) decoder = keras.Model(latent_inputs, decoder_outputs, name="decoder") decoder.summary() class VAE(keras.Model): def __init__(self, encoder, decoder, **kwargs): super(VAE, self).__init__(**kwargs) self.encoder = encoder self.decoder = decoder self.total_loss_tracker = keras.metrics.Mean(name="total_loss") self.reconstruction_loss_tracker = keras.metrics.Mean( name="reconstruction_loss" ) self.kl_loss_tracker = keras.metrics.Mean(name="kl_loss") @property def metrics(self): return [ self.total_loss_tracker, self.reconstruction_loss_tracker, self.kl_loss_tracker, ] def train_step(self, data): with tf.GradientTape() as tape: z_mean, z_log_var, z = self.encoder(data) reconstruction = self.decoder(z) reconstruction_loss = tf.reduce_mean( tf.reduce_sum( keras.losses.binary_crossentropy(data, reconstruction), axis=(1, 2) ) ) kl_loss = -0.5 * (1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var)) kl_loss = tf.reduce_mean(tf.reduce_sum(kl_loss, axis=1)) total_loss = reconstruction_loss + kl_loss grads = tape.gradient(total_loss, self.trainable_weights) self.optimizer.apply_gradients(zip(grads, self.trainable_weights)) self.total_loss_tracker.update_state(total_loss) self.reconstruction_loss_tracker.update_state(reconstruction_loss) self.kl_loss_tracker.update_state(kl_loss) return { "loss": self.total_loss_tracker.result(), "reconstruction_loss": self.reconstruction_loss_tracker.result(), "kl_loss": self.kl_loss_tracker.result(), } def test_step(self, data): if isinstance(data, tuple): data = data[0] z_mean, z_log_var, z = encoder(data) reconstruction = decoder(z) reconstruction_loss = tf.reduce_mean( keras.losses.binary_crossentropy(data, reconstruction) ) reconstruction_loss *= 30 * 30 kl_loss = 1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var) kl_loss = tf.reduce_mean(kl_loss) kl_loss *= -0.5 total_loss = reconstruction_loss + kl_loss return { "loss": total_loss, "reconstruction_loss": reconstruction_loss, "kl_loss": kl_loss, } minorities = [int(0), int(4), int(5)] for minority in minorities: os.chdir('/content/gdrive/My Drive/training_testing_data/') train = pd.read_csv('train_data_rp_3_IMBALANCED.csv') train.columns = [*train.columns[:-1], 'zone'] train = train[train['zone'] == minority] train = train.sample(frac=1).reset_index(drop=True) x_train = train.iloc[:, :-1] x_train = x_train.values Y_train = train.iloc[:, -1:] Y_train = Y_train.values x_train = x_train.reshape((x_train.shape[0], 30, 30, 1)) vae = VAE(encoder, decoder) vae.compile(optimizer=keras.optimizers.Adam(learning_rate=0.0001)) my_callbacks = [EarlyStopping(patience=3000), ModelCheckpoint('model_vae.h5', monitor='val_loss', verbose=2, save_best_only=True)] vae.fit(x_train, epochs=30000, batch_size=23, verbose=2, callbacks=my_callbacks, shuffle='TRUE', validation_split=0.1) decoder.save('VAE_DECODER_model_900_CNN_' + str(minority) + '.h5') print(str(minority) + "DONE...") os.chdir('/content/gdrive/My Drive/training_testing_data/') n_pixels = 900 train = pd.read_csv('train_data_rp_3_IMBALANCED.csv') x_train = train.iloc[:, :-1] x_train = x_train.values y_train = train.iloc[:, -1:] y_train = y_train.values train_imbalanced = np.hstack([x_train, y_train]) def sample_latent_space(minority): print("working on minority: ", minority) n_sample = 6732 mu, sigma = 0.0, 1.0 z1 = np.random.normal(mu, sigma, n_sample) z2 = np.random.normal(mu, sigma, n_sample) decoder = load_model('VAE_DECODER_model_900_CNN_' + str(minority) + '.h5') decoded_all = np.zeros((1, n_pixels)) for i in range(len(z1)): z_sample = np.array([[z1[i], z2[i]]]) x_decoded = decoder.predict(z_sample) decoded = x_decoded.reshape((1, n_pixels)) decoded_all = np.vstack([decoded_all, decoded]) decoded_all = np.delete(decoded_all, (0), axis=0) zones = np.ones((6732, 1)) zones = zones * minority decoded_all = np.hstack([decoded_all, zones]) decoded_all =
pd.DataFrame(decoded_all)
pandas.DataFrame
import tarfile import logging import os import pandas as pd import shutil import torch import tqdm import urllib.request import numpy as np from pathlib import Path from sklearn.model_selection import train_test_split from torch.utils.data import Dataset, DataLoader from typing import List, Dict from collections.abc import Iterable pd.options.mode.chained_assignment = None # ignore annoying pandas warnings DATASETS = ['apparel', 'baby', 'books', 'camera_photo', 'electronics', 'health_personal_care', 'imdb', 'kitchen_housewares', 'magazines', 'music', 'software', 'sports_outdoors', 'toys_games', 'video', 'MR', 'dvd'] class SingleTaskDataset(Dataset): def __init__(self, data): """Simple wrapper dataset around a DataFrame.""" self.data = data def __getitem__(self, idx): return self.data.loc[idx, :].to_dict() def __len__(self): return len(self.data) class MultiTaskDataset(Dataset): def __init__(self, tokenizer, data_dir='data/mtl-dataset/', split: str = 'train', collapse_domains: bool = True, keep_datasets: List[str] = DATASETS, validation_size: float = 0.2, min_count: int = 0, random_state: int = 42, load: bool=True, save: bool=True, const_len: bool = False): """ Dataset class for multi task learning. Reads data from Fudan review dataset, containing data for sentiment classification in different domains. Parameters --- tokenizer: huggingface bert tokenizer data_dir: Union[str, Path] Directory for Fudan valdata. split: str in {'train', 'val', 'test', 'all'} Indicate which datasplit we want. This is not a split over domain, but over samples. collapse_domains: bool. Not used at the moment, since we have methods to return individual domains anyway. If True, make one big iterator from all datasets. This means that different domains will be present in the same batch. keep_datasets: List[str] Which domains to keep in memory. Specify domain such as ['apparel', 'baby']. By default, all known datasets (found in DATASETS) are read in and tokenized, so that we can save them and not have to tokenize again. We then filter on keep_datasets. validation_size: should be in [0, 1]. Fraction of validation samples in train set. min_count: NOT IMPLEMENTED Token should appear min_count times to be counted in vocabulary. random_state: Used for validation split. load: Flag indicating whether to load set from a file if it exists. TODO: implement different filename for different datasets loaded. save: Whether to save processed data to a file. Currently always saves to data_dir / 'processed_data.pt' """ assert split in ('train', 'val', 'test', 'all'), 'provide correct data split' self.data_dir = Path(data_dir) self.split = split self.collapse_domains = collapse_domains self.keep_datasets = keep_datasets self.random_state = random_state # load and process data store_processed = self.data_dir / ( self.split + f'_random-{random_state}' + f'_valsize-{validation_size}' + '_processed_data.pt') if store_processed.exists() and load: logging.info(f'loading data from file: {store_processed}') self.data = torch.load(store_processed) else: self.data = self._read_datasets(validation_size=validation_size) self.data['tokenized'] = self._tokenize_data(self.data['text'], tokenizer) if save: torch.save(self.data, store_processed) # filter rows with domain in keep_datasets self.data = self.data.loc[self.data['domain'].isin(keep_datasets), :].reset_index(drop=True) self.collator = MultiTaskCollator(tokenizer, const_len) def _read_datasets(self, validation_size: float = 0.2): """ Read datasets from file. If data directory does not exist, downloads data. Parameters ---------- validation_size: float in [0, 1] Returns --- pd.DataFrame Appropriate datasplit with fields 'label', 'text', and 'domain'. """ dfs = [] col_names = ['label', 'text'] if not self.data_dir.exists(): download_and_extract_fudan(self.data_dir) for idx, dataset in enumerate(DATASETS): logging.info(f'processing dataset: {dataset}') train_set, val_set, test_set = None, None, None if self.split in ('train', 'val', 'all'): train_file = dataset + '.task.train' train_val_set = pd.read_csv(self.data_dir / train_file, sep='\t', header=None, names=col_names, engine='python') if validation_size == 0: # only do split when validation_size > 0 train_set = train_val_set else: train_set, val_set = train_test_split(train_val_set, test_size=validation_size, random_state=self.random_state) val_set['domain'] = dataset train_set['domain'] = dataset # record which domain it is in dataframe elif self.split in ('test', 'all'): test_file = dataset + '.task.test' test_set =
pd.read_csv(self.data_dir / test_file, sep='\t', header=None, names=col_names, engine='python')
pandas.read_csv
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional information regarding # copyright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. from contextlib import nullcontext import glob import json import numpy as np import pandas import pytest import modin.experimental.pandas as pd from modin.config import Engine from modin.utils import get_current_execution from modin.pandas.test.utils import ( df_equals, get_unique_filename, teardown_test_files, test_data, ) from modin.test.test_utils import warns_that_defaulting_to_pandas from modin.pandas.test.utils import parse_dates_values_by_id, time_parsing_csv_path @pytest.mark.skipif( Engine.get() == "Dask", reason="Dask does not have experimental API", ) def test_from_sql_distributed(make_sql_connection): # noqa: F811 if Engine.get() == "Ray": filename = "test_from_sql_distributed.db" table = "test_from_sql_distributed" conn = make_sql_connection(filename, table) query = "select * from {0}".format(table) pandas_df = pandas.read_sql(query, conn) modin_df_from_query = pd.read_sql( query, conn, partition_column="col1", lower_bound=0, upper_bound=6, max_sessions=2, ) modin_df_from_table = pd.read_sql( table, conn, partition_column="col1", lower_bound=0, upper_bound=6, max_sessions=2, ) df_equals(modin_df_from_query, pandas_df) df_equals(modin_df_from_table, pandas_df) @pytest.mark.skipif( Engine.get() == "Dask", reason="Dask does not have experimental API", ) def test_from_sql_defaults(make_sql_connection): # noqa: F811 filename = "test_from_sql_distributed.db" table = "test_from_sql_distributed" conn = make_sql_connection(filename, table) query = "select * from {0}".format(table) pandas_df = pandas.read_sql(query, conn) with pytest.warns(UserWarning): modin_df_from_query = pd.read_sql(query, conn) with pytest.warns(UserWarning): modin_df_from_table = pd.read_sql(table, conn) df_equals(modin_df_from_query, pandas_df) df_equals(modin_df_from_table, pandas_df) @pytest.mark.usefixtures("TestReadGlobCSVFixture") @pytest.mark.skipif( Engine.get() != "Ray", reason="Currently only support Ray engine for glob paths." ) class TestCsvGlob: def test_read_multiple_small_csv(self): # noqa: F811 pandas_df = pandas.concat([pandas.read_csv(fname) for fname in pytest.files]) modin_df = pd.read_csv_glob(pytest.glob_path) # Indexes get messed up when concatting so we reset both. pandas_df = pandas_df.reset_index(drop=True) modin_df = modin_df.reset_index(drop=True) df_equals(modin_df, pandas_df) @pytest.mark.parametrize("nrows", [35, 100]) def test_read_multiple_csv_nrows(self, request, nrows): # noqa: F811 pandas_df = pandas.concat([
pandas.read_csv(fname)
pandas.read_csv
import builtins import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, Index, Series, isna, ) import pandas._testing as tm @pytest.mark.parametrize("agg_func", ["any", "all"]) @pytest.mark.parametrize("skipna", [True, False]) @pytest.mark.parametrize( "vals", [ ["foo", "bar", "baz"], ["foo", "", ""], ["", "", ""], [1, 2, 3], [1, 0, 0], [0, 0, 0], [1.0, 2.0, 3.0], [1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [True, True, True], [True, False, False], [False, False, False], [np.nan, np.nan, np.nan], ], ) def test_groupby_bool_aggs(agg_func, skipna, vals): df = DataFrame({"key": ["a"] * 3 + ["b"] * 3, "val": vals * 2}) # Figure out expectation using Python builtin exp = getattr(builtins, agg_func)(vals) # edge case for missing data with skipna and 'any' if skipna and all(isna(vals)) and agg_func == "any": exp = False exp_df = DataFrame([exp] * 2, columns=["val"], index=Index(["a", "b"], name="key")) result = getattr(df.groupby("key"), agg_func)(skipna=skipna) tm.assert_frame_equal(result, exp_df) def test_any(): df = DataFrame( [[1, 2, "foo"], [1, np.nan, "bar"], [3, np.nan, "baz"]], columns=["A", "B", "C"], ) expected = DataFrame( [[True, True], [False, True]], columns=["B", "C"], index=[1, 3] ) expected.index.name = "A" result = df.groupby("A").any() tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("bool_agg_func", ["any", "all"]) def test_bool_aggs_dup_column_labels(bool_agg_func): # 21668 df = DataFrame([[True, True]], columns=["a", "a"]) grp_by = df.groupby([0]) result = getattr(grp_by, bool_agg_func)() expected = df tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("bool_agg_func", ["any", "all"]) @pytest.mark.parametrize("skipna", [True, False]) @pytest.mark.parametrize( "data", [ [False, False, False], [True, True, True], [pd.NA, pd.NA, pd.NA], [False, pd.NA, False], [True, pd.NA, True], [True, pd.NA, False], ], ) def test_masked_kleene_logic(bool_agg_func, skipna, data): # GH#37506 ser = Series(data, dtype="boolean") # The result should match aggregating on the whole series. Correctness # there is verified in test_reductions.py::test_any_all_boolean_kleene_logic expected_data = getattr(ser, bool_agg_func)(skipna=skipna) expected = Series(expected_data, dtype="boolean") result = ser.groupby([0, 0, 0]).agg(bool_agg_func, skipna=skipna) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "dtype1,dtype2,exp_col1,exp_col2", [ ( "float", "Float64", np.array([True], dtype=bool), pd.array([pd.NA], dtype="boolean"), ), ( "Int64", "float", pd.array([pd.NA], dtype="boolean"), np.array([True], dtype=bool), ), ( "Int64", "Int64", pd.array([pd.NA], dtype="boolean"), pd.array([pd.NA], dtype="boolean"), ), ( "Float64", "boolean", pd.array([pd.NA], dtype="boolean"), pd.array([pd.NA], dtype="boolean"), ), ], ) def test_masked_mixed_types(dtype1, dtype2, exp_col1, exp_col2): # GH#37506 data = [1.0, np.nan] df = DataFrame( {"col1": pd.array(data, dtype=dtype1), "col2": pd.array(data, dtype=dtype2)} ) result = df.groupby([1, 1]).agg("all", skipna=False) expected =
DataFrame({"col1": exp_col1, "col2": exp_col2}, index=[1])
pandas.DataFrame
import copy import itertools import re import operator from datetime import datetime, timedelta from collections import defaultdict import numpy as np from pandas.core.base import PandasObject from pandas.core.common import (_possibly_downcast_to_dtype, isnull, _NS_DTYPE, _TD_DTYPE, ABCSeries, is_list_like, ABCSparseSeries, _infer_dtype_from_scalar, is_null_datelike_scalar, _maybe_promote, is_timedelta64_dtype, is_datetime64_dtype, array_equivalent, _maybe_convert_string_to_object, is_categorical, needs_i8_conversion, is_datetimelike_v_numeric) from pandas.core.index import Index, MultiIndex, _ensure_index from pandas.core.indexing import maybe_convert_indices, length_of_indexer from pandas.core.categorical import Categorical, maybe_to_categorical import pandas.core.common as com from pandas.sparse.array import _maybe_to_sparse, SparseArray import pandas.lib as lib import pandas.tslib as tslib import pandas.computation.expressions as expressions from pandas.util.decorators import cache_readonly from pandas.tslib import Timestamp, Timedelta from pandas import compat from pandas.compat import range, map, zip, u from pandas.tseries.timedeltas import _coerce_scalar_to_timedelta_type from pandas.lib import BlockPlacement class Block(PandasObject): """ Canonical n-dimensional unit of homogeneous dtype contained in a pandas data structure Index-ignorant; let the container take care of that """ __slots__ = ['_mgr_locs', 'values', 'ndim'] is_numeric = False is_float = False is_integer = False is_complex = False is_datetime = False is_timedelta = False is_bool = False is_object = False is_categorical = False is_sparse = False _can_hold_na = False _downcast_dtype = None _can_consolidate = True _verify_integrity = True _validate_ndim = True _ftype = 'dense' _holder = None def __init__(self, values, placement, ndim=None, fastpath=False): if ndim is None: ndim = values.ndim elif values.ndim != ndim: raise ValueError('Wrong number of dimensions') self.ndim = ndim self.mgr_locs = placement self.values = values if len(self.mgr_locs) != len(self.values): raise ValueError('Wrong number of items passed %d,' ' placement implies %d' % ( len(self.values), len(self.mgr_locs))) @property def _consolidate_key(self): return (self._can_consolidate, self.dtype.name) @property def _is_single_block(self): return self.ndim == 1 @property def is_view(self): """ return a boolean if I am possibly a view """ return self.values.base is not None @property def is_datelike(self): """ return True if I am a non-datelike """ return self.is_datetime or self.is_timedelta def is_categorical_astype(self, dtype): """ validate that we have a astypeable to categorical, returns a boolean if we are a categorical """ if com.is_categorical_dtype(dtype): if dtype == com.CategoricalDtype(): return True # this is a pd.Categorical, but is not # a valid type for astypeing raise TypeError("invalid type {0} for astype".format(dtype)) return False def to_dense(self): return self.values.view() @property def fill_value(self): return np.nan @property def mgr_locs(self): return self._mgr_locs @property def array_dtype(self): """ the dtype to return if I want to construct this block as an array """ return self.dtype def make_block_same_class(self, values, placement, copy=False, fastpath=True, **kwargs): """ Wrap given values in a block of same type as self. `kwargs` are used in SparseBlock override. """ if copy: values = values.copy() return make_block(values, placement, klass=self.__class__, fastpath=fastpath, **kwargs) @mgr_locs.setter def mgr_locs(self, new_mgr_locs): if not isinstance(new_mgr_locs, BlockPlacement): new_mgr_locs = BlockPlacement(new_mgr_locs) self._mgr_locs = new_mgr_locs def __unicode__(self): # don't want to print out all of the items here name = com.pprint_thing(self.__class__.__name__) if self._is_single_block: result = '%s: %s dtype: %s' % ( name, len(self), self.dtype) else: shape = ' x '.join([com.pprint_thing(s) for s in self.shape]) result = '%s: %s, %s, dtype: %s' % ( name, com.pprint_thing(self.mgr_locs.indexer), shape, self.dtype) return result def __len__(self): return len(self.values) def __getstate__(self): return self.mgr_locs.indexer, self.values def __setstate__(self, state): self.mgr_locs = BlockPlacement(state[0]) self.values = state[1] self.ndim = self.values.ndim def _slice(self, slicer): """ return a slice of my values """ return self.values[slicer] def reshape_nd(self, labels, shape, ref_items): """ Parameters ---------- labels : list of new axis labels shape : new shape ref_items : new ref_items return a new block that is transformed to a nd block """ return _block2d_to_blocknd( values=self.get_values().T, placement=self.mgr_locs, shape=shape, labels=labels, ref_items=ref_items) def getitem_block(self, slicer, new_mgr_locs=None): """ Perform __getitem__-like, return result as block. As of now, only supports slices that preserve dimensionality. """ if new_mgr_locs is None: if isinstance(slicer, tuple): axis0_slicer = slicer[0] else: axis0_slicer = slicer new_mgr_locs = self.mgr_locs[axis0_slicer] new_values = self._slice(slicer) if self._validate_ndim and new_values.ndim != self.ndim: raise ValueError("Only same dim slicing is allowed") return self.make_block_same_class(new_values, new_mgr_locs) @property def shape(self): return self.values.shape @property def itemsize(self): return self.values.itemsize @property def dtype(self): return self.values.dtype @property def ftype(self): return "%s:%s" % (self.dtype, self._ftype) def merge(self, other): return _merge_blocks([self, other]) def reindex_axis(self, indexer, method=None, axis=1, fill_value=None, limit=None, mask_info=None): """ Reindex using pre-computed indexer information """ if axis < 1: raise AssertionError('axis must be at least 1, got %d' % axis) if fill_value is None: fill_value = self.fill_value new_values = com.take_nd(self.values, indexer, axis, fill_value=fill_value, mask_info=mask_info) return make_block(new_values, ndim=self.ndim, fastpath=True, placement=self.mgr_locs) def get(self, item): loc = self.items.get_loc(item) return self.values[loc] def iget(self, i): return self.values[i] def set(self, locs, values, check=False): """ Modify Block in-place with new item value Returns ------- None """ self.values[locs] = values def delete(self, loc): """ Delete given loc(-s) from block in-place. """ self.values = np.delete(self.values, loc, 0) self.mgr_locs = self.mgr_locs.delete(loc) def apply(self, func, **kwargs): """ apply the function to my values; return a block if we are not one """ result = func(self.values, **kwargs) if not isinstance(result, Block): result = make_block(values=_block_shape(result), placement=self.mgr_locs,) return result def fillna(self, value, limit=None, inplace=False, downcast=None): if not self._can_hold_na: if inplace: return [self] else: return [self.copy()] mask = isnull(self.values) if limit is not None: if self.ndim > 2: raise NotImplementedError("number of dimensions for 'fillna' " "is currently limited to 2") mask[mask.cumsum(self.ndim-1) > limit] = False value = self._try_fill(value) blocks = self.putmask(mask, value, inplace=inplace) return self._maybe_downcast(blocks, downcast) def _maybe_downcast(self, blocks, downcast=None): # no need to downcast our float # unless indicated if downcast is None and self.is_float: return blocks elif downcast is None and (self.is_timedelta or self.is_datetime): return blocks result_blocks = [] for b in blocks: result_blocks.extend(b.downcast(downcast)) return result_blocks def downcast(self, dtypes=None): """ try to downcast each item to the dict of dtypes if present """ # turn it off completely if dtypes is False: return [self] values = self.values # single block handling if self._is_single_block: # try to cast all non-floats here if dtypes is None: dtypes = 'infer' nv = _possibly_downcast_to_dtype(values, dtypes) return [make_block(nv, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] # ndim > 1 if dtypes is None: return [self] if not (dtypes == 'infer' or isinstance(dtypes, dict)): raise ValueError("downcast must have a dictionary or 'infer' as " "its argument") # item-by-item # this is expensive as it splits the blocks items-by-item blocks = [] for i, rl in enumerate(self.mgr_locs): if dtypes == 'infer': dtype = 'infer' else: raise AssertionError("dtypes as dict is not supported yet") dtype = dtypes.get(item, self._downcast_dtype) if dtype is None: nv = _block_shape(values[i], ndim=self.ndim) else: nv = _possibly_downcast_to_dtype(values[i], dtype) nv = _block_shape(nv, ndim=self.ndim) blocks.append(make_block(nv, ndim=self.ndim, fastpath=True, placement=[rl])) return blocks def astype(self, dtype, copy=False, raise_on_error=True, values=None, **kwargs): return self._astype(dtype, copy=copy, raise_on_error=raise_on_error, values=values, **kwargs) def _astype(self, dtype, copy=False, raise_on_error=True, values=None, klass=None, **kwargs): """ Coerce to the new type (if copy=True, return a new copy) raise on an except if raise == True """ # may need to convert to categorical # this is only called for non-categoricals if self.is_categorical_astype(dtype): return make_block(Categorical(self.values, **kwargs), ndim=self.ndim, placement=self.mgr_locs) # astype processing dtype = np.dtype(dtype) if self.dtype == dtype: if copy: return self.copy() return self if klass is None: if dtype == np.object_: klass = ObjectBlock try: # force the copy here if values is None: # _astype_nansafe works fine with 1-d only values = com._astype_nansafe(self.values.ravel(), dtype, copy=True) values = values.reshape(self.values.shape) newb = make_block(values, ndim=self.ndim, placement=self.mgr_locs, fastpath=True, dtype=dtype, klass=klass) except: if raise_on_error is True: raise newb = self.copy() if copy else self if newb.is_numeric and self.is_numeric: if newb.shape != self.shape: raise TypeError("cannot set astype for copy = [%s] for dtype " "(%s [%s]) with smaller itemsize that current " "(%s [%s])" % (copy, self.dtype.name, self.itemsize, newb.dtype.name, newb.itemsize)) return newb def convert(self, copy=True, **kwargs): """ attempt to coerce any object types to better types return a copy of the block (if copy = True) by definition we are not an ObjectBlock here! """ return [self.copy()] if copy else [self] def _can_hold_element(self, value): raise NotImplementedError() def _try_cast(self, value): raise NotImplementedError() def _try_cast_result(self, result, dtype=None): """ try to cast the result to our original type, we may have roundtripped thru object in the mean-time """ if dtype is None: dtype = self.dtype if self.is_integer or self.is_bool or self.is_datetime: pass elif self.is_float and result.dtype == self.dtype: # protect against a bool/object showing up here if isinstance(dtype, compat.string_types) and dtype == 'infer': return result if not isinstance(dtype, type): dtype = dtype.type if issubclass(dtype, (np.bool_, np.object_)): if issubclass(dtype, np.bool_): if isnull(result).all(): return result.astype(np.bool_) else: result = result.astype(np.object_) result[result == 1] = True result[result == 0] = False return result else: return result.astype(np.object_) return result # may need to change the dtype here return _possibly_downcast_to_dtype(result, dtype) def _try_operate(self, values): """ return a version to operate on as the input """ return values def _try_coerce_args(self, values, other): """ provide coercion to our input arguments """ return values, other def _try_coerce_result(self, result): """ reverse of try_coerce_args """ return result def _try_coerce_and_cast_result(self, result, dtype=None): result = self._try_coerce_result(result) result = self._try_cast_result(result, dtype=dtype) return result def _try_fill(self, value): return value def to_native_types(self, slicer=None, na_rep='', quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = isnull(values) if not self.is_object and not quoting: values = values.astype(str) else: values = np.array(values, dtype='object') values[mask] = na_rep return values # block actions #### def copy(self, deep=True): values = self.values if deep: values = values.copy() return make_block(values, ndim=self.ndim, klass=self.__class__, fastpath=True, placement=self.mgr_locs) def replace(self, to_replace, value, inplace=False, filter=None, regex=False): """ replace the to_replace value with value, possible to create new blocks here this is just a call to putmask. regex is not used here. It is used in ObjectBlocks. It is here for API compatibility.""" mask = com.mask_missing(self.values, to_replace) if filter is not None: filtered_out = ~self.mgr_locs.isin(filter) mask[filtered_out.nonzero()[0]] = False if not mask.any(): if inplace: return [self] return [self.copy()] return self.putmask(mask, value, inplace=inplace) def setitem(self, indexer, value): """ set the value inplace; return a new block (of a possibly different dtype) indexer is a direct slice/positional indexer; value must be a compatible shape """ # coerce None values, if appropriate if value is None: if self.is_numeric: value = np.nan # coerce args values, value = self._try_coerce_args(self.values, value) arr_value = np.array(value) # cast the values to a type that can hold nan (if necessary) if not self._can_hold_element(value): dtype, _ = com._maybe_promote(arr_value.dtype) values = values.astype(dtype) transf = (lambda x: x.T) if self.ndim == 2 else (lambda x: x) values = transf(values) l = len(values) # length checking # boolean with truth values == len of the value is ok too if isinstance(indexer, (np.ndarray, list)): if is_list_like(value) and len(indexer) != len(value): if not (isinstance(indexer, np.ndarray) and indexer.dtype == np.bool_ and len(indexer[indexer]) == len(value)): raise ValueError("cannot set using a list-like indexer " "with a different length than the value") # slice elif isinstance(indexer, slice): if is_list_like(value) and l: if len(value) != length_of_indexer(indexer, values): raise ValueError("cannot set using a slice indexer with a " "different length than the value") try: def _is_scalar_indexer(indexer): # return True if we are all scalar indexers if arr_value.ndim == 1: if not isinstance(indexer, tuple): indexer = tuple([indexer]) return all([ np.isscalar(idx) for idx in indexer ]) return False def _is_empty_indexer(indexer): # return a boolean if we have an empty indexer if arr_value.ndim == 1: if not isinstance(indexer, tuple): indexer = tuple([indexer]) return any(isinstance(idx, np.ndarray) and len(idx) == 0 for idx in indexer) return False # empty indexers # 8669 (empty) if _is_empty_indexer(indexer): pass # setting a single element for each dim and with a rhs that could be say a list # GH 6043 elif _is_scalar_indexer(indexer): values[indexer] = value # if we are an exact match (ex-broadcasting), # then use the resultant dtype elif len(arr_value.shape) and arr_value.shape[0] == values.shape[0] and np.prod(arr_value.shape) == np.prod(values.shape): values[indexer] = value values = values.astype(arr_value.dtype) # set else: values[indexer] = value # coerce and try to infer the dtypes of the result if np.isscalar(value): dtype, _ = _infer_dtype_from_scalar(value) else: dtype = 'infer' values = self._try_coerce_and_cast_result(values, dtype) block = make_block(transf(values), ndim=self.ndim, placement=self.mgr_locs, fastpath=True) # may have to soft convert_objects here if block.is_object and not self.is_object: block = block.convert(numeric=False) return block except (ValueError, TypeError) as detail: raise except Exception as detail: pass return [self] def putmask(self, mask, new, align=True, inplace=False): """ putmask the data to the block; it is possible that we may create a new dtype of block return the resulting block(s) Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False Returns ------- a new block(s), the result of the putmask """ new_values = self.values if inplace else self.values.copy() # may need to align the new if hasattr(new, 'reindex_axis'): new = new.values.T # may need to align the mask if hasattr(mask, 'reindex_axis'): mask = mask.values.T # if we are passed a scalar None, convert it here if not is_list_like(new) and isnull(new) and not self.is_object: new = self.fill_value if self._can_hold_element(new): new = self._try_cast(new) # pseudo-broadcast if isinstance(new, np.ndarray) and new.ndim == self.ndim - 1: new = np.repeat(new, self.shape[-1]).reshape(self.shape) np.putmask(new_values, mask, new) # maybe upcast me elif mask.any(): # need to go column by column new_blocks = [] if self.ndim > 1: for i, ref_loc in enumerate(self.mgr_locs): m = mask[i] v = new_values[i] # need a new block if m.any(): n = new[i] if isinstance( new, np.ndarray) else np.array(new) # type of the new block dtype, _ = com._maybe_promote(n.dtype) # we need to exiplicty astype here to make a copy n = n.astype(dtype) nv = _putmask_smart(v, m, n) else: nv = v if inplace else v.copy() # Put back the dimension that was taken from it and make # a block out of the result. block = make_block(values=nv[np.newaxis], placement=[ref_loc], fastpath=True) new_blocks.append(block) else: nv = _putmask_smart(new_values, mask, new) new_blocks.append(make_block(values=nv, placement=self.mgr_locs, fastpath=True)) return new_blocks if inplace: return [self] return [make_block(new_values, placement=self.mgr_locs, fastpath=True)] def interpolate(self, method='pad', axis=0, index=None, values=None, inplace=False, limit=None, fill_value=None, coerce=False, downcast=None, **kwargs): def check_int_bool(self, inplace): # Only FloatBlocks will contain NaNs. # timedelta subclasses IntBlock if (self.is_bool or self.is_integer) and not self.is_timedelta: if inplace: return self else: return self.copy() # a fill na type method try: m = com._clean_fill_method(method) except: m = None if m is not None: r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate_with_fill(method=m, axis=axis, inplace=inplace, limit=limit, fill_value=fill_value, coerce=coerce, downcast=downcast) # try an interp method try: m = com._clean_interp_method(method, **kwargs) except: m = None if m is not None: r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate(method=m, index=index, values=values, axis=axis, limit=limit, fill_value=fill_value, inplace=inplace, downcast=downcast, **kwargs) raise ValueError("invalid method '{0}' to interpolate.".format(method)) def _interpolate_with_fill(self, method='pad', axis=0, inplace=False, limit=None, fill_value=None, coerce=False, downcast=None): """ fillna but using the interpolate machinery """ # if we are coercing, then don't force the conversion # if the block can't hold the type if coerce: if not self._can_hold_na: if inplace: return [self] else: return [self.copy()] fill_value = self._try_fill(fill_value) values = self.values if inplace else self.values.copy() values = self._try_operate(values) values = com.interpolate_2d(values, method=method, axis=axis, limit=limit, fill_value=fill_value, dtype=self.dtype) values = self._try_coerce_result(values) blocks = [make_block(values, ndim=self.ndim, klass=self.__class__, fastpath=True, placement=self.mgr_locs)] return self._maybe_downcast(blocks, downcast) def _interpolate(self, method=None, index=None, values=None, fill_value=None, axis=0, limit=None, inplace=False, downcast=None, **kwargs): """ interpolate using scipy wrappers """ data = self.values if inplace else self.values.copy() # only deal with floats if not self.is_float: if not self.is_integer: return self data = data.astype(np.float64) if fill_value is None: fill_value = self.fill_value if method in ('krogh', 'piecewise_polynomial', 'pchip'): if not index.is_monotonic: raise ValueError("{0} interpolation requires that the " "index be monotonic.".format(method)) # process 1-d slices in the axis direction def func(x): # process a 1-d slice, returning it # should the axis argument be handled below in apply_along_axis? # i.e. not an arg to com.interpolate_1d return com.interpolate_1d(index, x, method=method, limit=limit, fill_value=fill_value, bounds_error=False, **kwargs) # interp each column independently interp_values = np.apply_along_axis(func, axis, data) blocks = [make_block(interp_values, ndim=self.ndim, klass=self.__class__, fastpath=True, placement=self.mgr_locs)] return self._maybe_downcast(blocks, downcast) def take_nd(self, indexer, axis, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block.bb """ if fill_tuple is None: fill_value = self.fill_value new_values = com.take_nd(self.get_values(), indexer, axis=axis, allow_fill=False) else: fill_value = fill_tuple[0] new_values = com.take_nd(self.get_values(), indexer, axis=axis, allow_fill=True, fill_value=fill_value) if new_mgr_locs is None: if axis == 0: slc = lib.indexer_as_slice(indexer) if slc is not None: new_mgr_locs = self.mgr_locs[slc] else: new_mgr_locs = self.mgr_locs[indexer] else: new_mgr_locs = self.mgr_locs if new_values.dtype != self.dtype: return make_block(new_values, new_mgr_locs) else: return self.make_block_same_class(new_values, new_mgr_locs) def get_values(self, dtype=None): return self.values def diff(self, n, axis=1): """ return block for the diff of the values """ new_values = com.diff(self.values, n, axis=axis) return [make_block(values=new_values, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] def shift(self, periods, axis=0): """ shift the block by periods, possibly upcast """ # convert integer to float if necessary. need to do a lot more than # that, handle boolean etc also new_values, fill_value = com._maybe_upcast(self.values) # make sure array sent to np.roll is c_contiguous f_ordered = new_values.flags.f_contiguous if f_ordered: new_values = new_values.T axis = new_values.ndim - axis - 1 if np.prod(new_values.shape): new_values = np.roll(new_values, com._ensure_platform_int(periods), axis=axis) axis_indexer = [ slice(None) ] * self.ndim if periods > 0: axis_indexer[axis] = slice(None,periods) else: axis_indexer[axis] = slice(periods,None) new_values[tuple(axis_indexer)] = fill_value # restore original order if f_ordered: new_values = new_values.T return [make_block(new_values, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] def eval(self, func, other, raise_on_error=True, try_cast=False): """ evaluate the block; return result block from the result Parameters ---------- func : how to combine self, other other : a ndarray/object raise_on_error : if True, raise when I can't perform the function, False by default (and just return the data that we had coming in) Returns ------- a new block, the result of the func """ values = self.values if hasattr(other, 'reindex_axis'): other = other.values # make sure that we can broadcast is_transposed = False if hasattr(other, 'ndim') and hasattr(values, 'ndim'): if values.ndim != other.ndim: is_transposed = True else: if values.shape == other.shape[::-1]: is_transposed = True elif values.shape[0] == other.shape[-1]: is_transposed = True else: # this is a broadcast error heree raise ValueError("cannot broadcast shape [%s] with block " "values [%s]" % (values.T.shape, other.shape)) transf = (lambda x: x.T) if is_transposed else (lambda x: x) # coerce/transpose the args if needed values, other = self._try_coerce_args(transf(values), other) # get the result, may need to transpose the other def get_result(other): return self._try_coerce_result(func(values, other)) # error handler if we have an issue operating with the function def handle_error(): if raise_on_error: raise TypeError('Could not operate %s with block values %s' % (repr(other), str(detail))) else: # return the values result = np.empty(values.shape, dtype='O') result.fill(np.nan) return result # get the result try: result = get_result(other) # if we have an invalid shape/broadcast error # GH4576, so raise instead of allowing to pass through except ValueError as detail: raise except Exception as detail: result = handle_error() # technically a broadcast error in numpy can 'work' by returning a # boolean False if not isinstance(result, np.ndarray): if not isinstance(result, np.ndarray): # differentiate between an invalid ndarray-ndarray comparison # and an invalid type comparison if isinstance(values, np.ndarray) and is_list_like(other): raise ValueError('Invalid broadcasting comparison [%s] ' 'with block values' % repr(other)) raise TypeError('Could not compare [%s] with block values' % repr(other)) # transpose if needed result = transf(result) # try to cast if requested if try_cast: result = self._try_cast_result(result) return [make_block(result, ndim=self.ndim, fastpath=True, placement=self.mgr_locs)] def where(self, other, cond, align=True, raise_on_error=True, try_cast=False): """ evaluate the block; return result block(s) from the result Parameters ---------- other : a ndarray/object cond : the condition to respect align : boolean, perform alignment on other/cond raise_on_error : if True, raise when I can't perform the function, False by default (and just return the data that we had coming in) Returns ------- a new block(s), the result of the func """ values = self.values # see if we can align other if hasattr(other, 'reindex_axis'): other = other.values # make sure that we can broadcast is_transposed = False if hasattr(other, 'ndim') and hasattr(values, 'ndim'): if values.ndim != other.ndim or values.shape == other.shape[::-1]: # if its symmetric are ok, no reshaping needed (GH 7506) if (values.shape[0] == np.array(values.shape)).all(): pass # pseodo broadcast (its a 2d vs 1d say and where needs it in a # specific direction) elif (other.ndim >= 1 and values.ndim - 1 == other.ndim and values.shape[0] != other.shape[0]): other = _block_shape(other).T else: values = values.T is_transposed = True # see if we can align cond if not hasattr(cond, 'shape'): raise ValueError( "where must have a condition that is ndarray like") if hasattr(cond, 'reindex_axis'): cond = cond.values # may need to undo transpose of values if hasattr(values, 'ndim'): if values.ndim != cond.ndim or values.shape == cond.shape[::-1]: values = values.T is_transposed = not is_transposed other = _maybe_convert_string_to_object(other) # our where function def func(c, v, o): if c.ravel().all(): return v v, o = self._try_coerce_args(v, o) try: return self._try_coerce_result( expressions.where(c, v, o, raise_on_error=True) ) except Exception as detail: if raise_on_error: raise TypeError('Could not operate [%s] with block values ' '[%s]' % (repr(o), str(detail))) else: # return the values result = np.empty(v.shape, dtype='float64') result.fill(np.nan) return result # see if we can operate on the entire block, or need item-by-item # or if we are a single block (ndim == 1) result = func(cond, values, other) if self._can_hold_na or self.ndim == 1: if not isinstance(result, np.ndarray): raise TypeError('Could not compare [%s] with block values' % repr(other)) if is_transposed: result = result.T # try to cast if requested if try_cast: result = self._try_cast_result(result) return make_block(result, ndim=self.ndim, placement=self.mgr_locs) # might need to separate out blocks axis = cond.ndim - 1 cond = cond.swapaxes(axis, 0) mask = np.array([cond[i].all() for i in range(cond.shape[0])], dtype=bool) result_blocks = [] for m in [mask, ~mask]: if m.any(): r = self._try_cast_result( result.take(m.nonzero()[0], axis=axis)) result_blocks.append(make_block(r.T, placement=self.mgr_locs[m])) return result_blocks def equals(self, other): if self.dtype != other.dtype or self.shape != other.shape: return False return array_equivalent(self.values, other.values) class NonConsolidatableMixIn(object): """ hold methods for the nonconsolidatable blocks """ _can_consolidate = False _verify_integrity = False _validate_ndim = False _holder = None def __init__(self, values, placement, ndim=None, fastpath=False,): # Placement must be converted to BlockPlacement via property setter # before ndim logic, because placement may be a slice which doesn't # have a length. self.mgr_locs = placement # kludgetastic if ndim is None: if len(self.mgr_locs) != 1: ndim = 1 else: ndim = 2 self.ndim = ndim if not isinstance(values, self._holder): raise TypeError("values must be {0}".format(self._holder.__name__)) self.values = values def get_values(self, dtype=None): """ need to to_dense myself (and always return a ndim sized object) """ values = self.values.to_dense() if values.ndim == self.ndim - 1: values = values.reshape((1,) + values.shape) return values def iget(self, col): if self.ndim == 2 and isinstance(col, tuple): col, loc = col if col != 0: raise IndexError("{0} only contains one item".format(self)) return self.values[loc] else: if col != 0: raise IndexError("{0} only contains one item".format(self)) return self.values def should_store(self, value): return isinstance(value, self._holder) def set(self, locs, values, check=False): assert locs.tolist() == [0] self.values = values def get(self, item): if self.ndim == 1: loc = self.items.get_loc(item) return self.values[loc] else: return self.values def _slice(self, slicer): """ return a slice of my values (but densify first) """ return self.get_values()[slicer] def _try_cast_result(self, result, dtype=None): return result class NumericBlock(Block): __slots__ = () is_numeric = True _can_hold_na = True class FloatOrComplexBlock(NumericBlock): __slots__ = () def equals(self, other): if self.dtype != other.dtype or self.shape != other.shape: return False left, right = self.values, other.values return ((left == right) | (np.isnan(left) & np.isnan(right))).all() class FloatBlock(FloatOrComplexBlock): __slots__ = () is_float = True _downcast_dtype = 'int64' def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) tipo = element.dtype.type return issubclass(tipo, (np.floating, np.integer)) and not issubclass( tipo, (np.datetime64, np.timedelta64)) return isinstance(element, (float, int, np.float_, np.int_)) and not isinstance( element, (bool, np.bool_, datetime, timedelta, np.datetime64, np.timedelta64)) def _try_cast(self, element): try: return float(element) except: # pragma: no cover return element def to_native_types(self, slicer=None, na_rep='', float_format=None, decimal='.', quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = isnull(values) formatter = None if float_format and decimal != '.': formatter = lambda v : (float_format % v).replace('.',decimal,1) elif decimal != '.': formatter = lambda v : ('%g' % v).replace('.',decimal,1) elif float_format: formatter = lambda v : float_format % v if formatter is None and not quoting: values = values.astype(str) else: values = np.array(values, dtype='object') values[mask] = na_rep if formatter: imask = (~mask).ravel() values.flat[imask] = np.array( [formatter(val) for val in values.ravel()[imask]]) return values def should_store(self, value): # when inserting a column should not coerce integers to floats # unnecessarily return (issubclass(value.dtype.type, np.floating) and value.dtype == self.dtype) class ComplexBlock(FloatOrComplexBlock): __slots__ = () is_complex = True def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) return issubclass(element.dtype.type, (np.floating, np.integer, np.complexfloating)) return (isinstance(element, (float, int, complex, np.float_, np.int_)) and not isinstance(bool, np.bool_)) def _try_cast(self, element): try: return complex(element) except: # pragma: no cover return element def should_store(self, value): return issubclass(value.dtype.type, np.complexfloating) class IntBlock(NumericBlock): __slots__ = () is_integer = True _can_hold_na = False def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) tipo = element.dtype.type return issubclass(tipo, np.integer) and not issubclass(tipo, (np.datetime64, np.timedelta64)) return com.is_integer(element) def _try_cast(self, element): try: return int(element) except: # pragma: no cover return element def should_store(self, value): return com.is_integer_dtype(value) and value.dtype == self.dtype class TimeDeltaBlock(IntBlock): __slots__ = () is_timedelta = True _can_hold_na = True is_numeric = False @property def fill_value(self): return tslib.iNaT def _try_fill(self, value): """ if we are a NaT, return the actual fill value """ if isinstance(value, type(tslib.NaT)) or np.array(isnull(value)).all(): value = tslib.iNaT elif isinstance(value, Timedelta): value = value.value elif isinstance(value, np.timedelta64): pass elif com.is_integer(value): # coerce to seconds of timedelta value = np.timedelta64(int(value * 1e9)) elif isinstance(value, timedelta): value = np.timedelta64(value) return value def _try_coerce_args(self, values, other): """ Coerce values and other to float64, with null values converted to NaN. values is always ndarray-like, other may not be """ def masker(v): mask = isnull(v) v = v.astype('float64') v[mask] = np.nan return v values = masker(values) if is_null_datelike_scalar(other): other = np.nan elif isinstance(other, (np.timedelta64, Timedelta, timedelta)): other = _coerce_scalar_to_timedelta_type(other, unit='s', box=False).item() if other == tslib.iNaT: other = np.nan elif lib.isscalar(other): other = np.float64(other) else: other = masker(other) return values, other def _try_operate(self, values): """ return a version to operate on """ return values.view('i8') def _try_coerce_result(self, result): """ reverse of try_coerce_args / try_operate """ if isinstance(result, np.ndarray): mask = isnull(result) if result.dtype.kind in ['i', 'f', 'O']: result = result.astype('m8[ns]') result[mask] = tslib.iNaT elif isinstance(result, np.integer): result = lib.Timedelta(result) return result def should_store(self, value): return issubclass(value.dtype.type, np.timedelta64) def to_native_types(self, slicer=None, na_rep=None, quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = isnull(values) rvalues = np.empty(values.shape, dtype=object) if na_rep is None: na_rep = 'NaT' rvalues[mask] = na_rep imask = (~mask).ravel() #### FIXME #### # should use the core.format.Timedelta64Formatter here # to figure what format to pass to the Timedelta # e.g. to not show the decimals say rvalues.flat[imask] = np.array([Timedelta(val)._repr_base(format='all') for val in values.ravel()[imask]], dtype=object) return rvalues def get_values(self, dtype=None): # return object dtypes as Timedelta if dtype == object: return lib.map_infer(self.values.ravel(), lib.Timedelta ).reshape(self.values.shape) return self.values class BoolBlock(NumericBlock): __slots__ = () is_bool = True _can_hold_na = False def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) return issubclass(element.dtype.type, np.integer) return isinstance(element, (int, bool)) def _try_cast(self, element): try: return bool(element) except: # pragma: no cover return element def should_store(self, value): return issubclass(value.dtype.type, np.bool_) def replace(self, to_replace, value, inplace=False, filter=None, regex=False): to_replace_values = np.atleast_1d(to_replace) if not np.can_cast(to_replace_values, bool): return self return super(BoolBlock, self).replace(to_replace, value, inplace=inplace, filter=filter, regex=regex) class ObjectBlock(Block): __slots__ = () is_object = True _can_hold_na = True def __init__(self, values, ndim=2, fastpath=False, placement=None): if issubclass(values.dtype.type, compat.string_types): values = np.array(values, dtype=object) super(ObjectBlock, self).__init__(values, ndim=ndim, fastpath=fastpath, placement=placement) @property def is_bool(self): """ we can be a bool if we have only bool values but are of type object """ return lib.is_bool_array(self.values.ravel()) def convert(self, datetime=True, numeric=True, timedelta=True, coerce=False, copy=True, by_item=True): """ attempt to coerce any object types to better types return a copy of the block (if copy = True) by definition we ARE an ObjectBlock!!!!! can return multiple blocks! """ # attempt to create new type blocks blocks = [] if by_item and not self._is_single_block: for i, rl in enumerate(self.mgr_locs): values = self.iget(i) values = com._possibly_convert_objects( values.ravel(), datetime=datetime, numeric=numeric, timedelta=timedelta, coerce=coerce, copy=copy ).reshape(values.shape) values = _block_shape(values, ndim=self.ndim) newb = make_block(values, ndim=self.ndim, placement=[rl]) blocks.append(newb) else: values = com._possibly_convert_objects( self.values.ravel(), datetime=datetime, numeric=numeric, timedelta=timedelta, coerce=coerce, copy=copy ).reshape(self.values.shape) blocks.append(make_block(values, ndim=self.ndim, placement=self.mgr_locs)) return blocks def set(self, locs, values, check=False): """ Modify Block in-place with new item value Returns ------- None """ # GH6026 if check: try: if (self.values[locs] == values).all(): return except: pass try: self.values[locs] = values except (ValueError): # broadcasting error # see GH6171 new_shape = list(values.shape) new_shape[0] = len(self.items) self.values = np.empty(tuple(new_shape),dtype=self.dtype) self.values.fill(np.nan) self.values[locs] = values def _maybe_downcast(self, blocks, downcast=None): if downcast is not None: return blocks # split and convert the blocks result_blocks = [] for blk in blocks: result_blocks.extend(blk.convert(datetime=True, numeric=False)) return result_blocks def _can_hold_element(self, element): return True def _try_cast(self, element): return element def should_store(self, value): return not (issubclass(value.dtype.type, (np.integer, np.floating, np.complexfloating, np.datetime64, np.bool_)) or com.is_categorical_dtype(value)) def replace(self, to_replace, value, inplace=False, filter=None, regex=False): blk = [self] to_rep_is_list = com.is_list_like(to_replace) value_is_list = com.is_list_like(value) both_lists = to_rep_is_list and value_is_list either_list = to_rep_is_list or value_is_list if not either_list and com.is_re(to_replace): blk[0], = blk[0]._replace_single(to_replace, value, inplace=inplace, filter=filter, regex=True) elif not (either_list or regex): blk = super(ObjectBlock, self).replace(to_replace, value, inplace=inplace, filter=filter, regex=regex) elif both_lists: for to_rep, v in zip(to_replace, value): blk[0], = blk[0]._replace_single(to_rep, v, inplace=inplace, filter=filter, regex=regex) elif to_rep_is_list and regex: for to_rep in to_replace: blk[0], = blk[0]._replace_single(to_rep, value, inplace=inplace, filter=filter, regex=regex) else: blk[0], = blk[0]._replace_single(to_replace, value, inplace=inplace, filter=filter, regex=regex) return blk def _replace_single(self, to_replace, value, inplace=False, filter=None, regex=False): # to_replace is regex compilable to_rep_re = regex and com.is_re_compilable(to_replace) # regex is regex compilable regex_re = com.is_re_compilable(regex) # only one will survive if to_rep_re and regex_re: raise AssertionError('only one of to_replace and regex can be ' 'regex compilable') # if regex was passed as something that can be a regex (rather than a # boolean) if regex_re: to_replace = regex regex = regex_re or to_rep_re # try to get the pattern attribute (compiled re) or it's a string try: pattern = to_replace.pattern except AttributeError: pattern = to_replace # if the pattern is not empty and to_replace is either a string or a # regex if regex and pattern: rx = re.compile(to_replace) else: # if the thing to replace is not a string or compiled regex call # the superclass method -> to_replace is some kind of object result = super(ObjectBlock, self).replace(to_replace, value, inplace=inplace, filter=filter, regex=regex) if not isinstance(result, list): result = [result] return result new_values = self.values if inplace else self.values.copy() # deal with replacing values with objects (strings) that match but # whose replacement is not a string (numeric, nan, object) if isnull(value) or not isinstance(value, compat.string_types): def re_replacer(s): try: return value if rx.search(s) is not None else s except TypeError: return s else: # value is guaranteed to be a string here, s can be either a string # or null if it's null it gets returned def re_replacer(s): try: return rx.sub(value, s) except TypeError: return s f = np.vectorize(re_replacer, otypes=[self.dtype]) if filter is None: filt = slice(None) else: filt = self.mgr_locs.isin(filter).nonzero()[0] new_values[filt] = f(new_values[filt]) return [self if inplace else make_block(new_values, fastpath=True, placement=self.mgr_locs)] class CategoricalBlock(NonConsolidatableMixIn, ObjectBlock): __slots__ = () is_categorical = True _can_hold_na = True _holder = Categorical def __init__(self, values, placement, fastpath=False, **kwargs): # coerce to categorical if we can super(CategoricalBlock, self).__init__(maybe_to_categorical(values), fastpath=True, placement=placement, **kwargs) @property def is_view(self): """ I am never a view """ return False def to_dense(self): return self.values.to_dense().view() def convert(self, copy=True, **kwargs): return [self.copy() if copy else self] @property def shape(self): return (len(self.mgr_locs), len(self.values)) @property def array_dtype(self): """ the dtype to return if I want to construct this block as an array """ return np.object_ def _slice(self, slicer): """ return a slice of my values """ # slice the category # return same dims as we currently have return self.values._slice(slicer) def fillna(self, value, limit=None, inplace=False, downcast=None): # we may need to upcast our fill to match our dtype if limit is not None: raise NotImplementedError("specifying a limit for 'fillna' has " "not been implemented yet") values = self.values if inplace else self.values.copy() return [self.make_block_same_class(values=values.fillna(value=value, limit=limit), placement=self.mgr_locs)] def interpolate(self, method='pad', axis=0, inplace=False, limit=None, fill_value=None, **kwargs): values = self.values if inplace else self.values.copy() return self.make_block_same_class(values=values.fillna(fill_value=fill_value, method=method, limit=limit), placement=self.mgr_locs) def shift(self, periods, axis=0): return self.make_block_same_class(values=self.values.shift(periods), placement=self.mgr_locs) def take_nd(self, indexer, axis=0, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block.bb """ if fill_tuple is None: fill_value = None else: fill_value = fill_tuple[0] # axis doesn't matter; we are really a single-dim object # but are passed the axis depending on the calling routing # if its REALLY axis 0, then this will be a reindex and not a take new_values = self.values.take_nd(indexer, fill_value=fill_value) # if we are a 1-dim object, then always place at 0 if self.ndim == 1: new_mgr_locs = [0] else: if new_mgr_locs is None: new_mgr_locs = self.mgr_locs return self.make_block_same_class(new_values, new_mgr_locs) def putmask(self, mask, new, align=True, inplace=False): """ putmask the data to the block; it is possible that we may create a new dtype of block return the resulting block(s) Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False Returns ------- a new block(s), the result of the putmask """ new_values = self.values if inplace else self.values.copy() new_values[mask] = new return [self.make_block_same_class(values=new_values, placement=self.mgr_locs)] def _astype(self, dtype, copy=False, raise_on_error=True, values=None, klass=None): """ Coerce to the new type (if copy=True, return a new copy) raise on an except if raise == True """ if self.is_categorical_astype(dtype): values = self.values else: values = np.asarray(self.values).astype(dtype, copy=False) if copy: values = values.copy() return make_block(values, ndim=self.ndim, placement=self.mgr_locs) def to_native_types(self, slicer=None, na_rep='', quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: # Categorical is always one dimension values = values[slicer] mask = isnull(values) values = np.array(values, dtype='object') values[mask] = na_rep # we are expected to return a 2-d ndarray return values.reshape(1,len(values)) class DatetimeBlock(Block): __slots__ = () is_datetime = True _can_hold_na = True def __init__(self, values, placement, fastpath=False, **kwargs): if values.dtype != _NS_DTYPE: values = tslib.cast_to_nanoseconds(values) super(DatetimeBlock, self).__init__(values, fastpath=True, placement=placement, **kwargs) def _can_hold_element(self, element): if is_list_like(element): element = np.array(element) return element.dtype == _NS_DTYPE or element.dtype == np.int64 return (com.is_integer(element) or isinstance(element, datetime) or isnull(element)) def _try_cast(self, element): try: return int(element) except: return element def _try_operate(self, values): """ return a version to operate on """ return values.view('i8') def _try_coerce_args(self, values, other): """ Coerce values and other to dtype 'i8'. NaN and NaT convert to the smallest i8, and will correctly round-trip to NaT if converted back in _try_coerce_result. values is always ndarray-like, other may not be """ values = values.view('i8') if is_null_datelike_scalar(other): other = tslib.iNaT elif isinstance(other, datetime): other = lib.Timestamp(other).asm8.view('i8') elif hasattr(other, 'dtype') and com.is_integer_dtype(other): other = other.view('i8') else: other = np.array(other, dtype='i8') return values, other def _try_coerce_result(self, result): """ reverse of try_coerce_args """ if isinstance(result, np.ndarray): if result.dtype.kind in ['i', 'f', 'O']: result = result.astype('M8[ns]') elif isinstance(result, (np.integer, np.datetime64)): result = lib.Timestamp(result) return result @property def fill_value(self): return tslib.iNaT def _try_fill(self, value): """ if we are a NaT, return the actual fill value """ if isinstance(value, type(tslib.NaT)) or np.array(isnull(value)).all(): value = tslib.iNaT return value def fillna(self, value, limit=None, inplace=False, downcast=None): # straight putmask here values = self.values if inplace else self.values.copy() mask = isnull(self.values) value = self._try_fill(value) if limit is not None: if self.ndim > 2: raise NotImplementedError("number of dimensions for 'fillna' " "is currently limited to 2") mask[mask.cumsum(self.ndim-1)>limit]=False np.putmask(values, mask, value) return [self if inplace else make_block(values, fastpath=True, placement=self.mgr_locs)] def to_native_types(self, slicer=None, na_rep=None, date_format=None, quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] from pandas.core.format import _get_format_datetime64_from_values format = _get_format_datetime64_from_values(values, date_format) result = tslib.format_array_from_datetime(values.view('i8').ravel(), tz=None, format=format, na_rep=na_rep).reshape(values.shape) return result def should_store(self, value): return issubclass(value.dtype.type, np.datetime64) def set(self, locs, values, check=False): """ Modify Block in-place with new item value Returns ------- None """ if values.dtype != _NS_DTYPE: # Workaround for numpy 1.6 bug values = tslib.cast_to_nanoseconds(values) self.values[locs] = values def get_values(self, dtype=None): # return object dtype as Timestamps if dtype == object: return lib.map_infer(self.values.ravel(), lib.Timestamp)\ .reshape(self.values.shape) return self.values class SparseBlock(NonConsolidatableMixIn, Block): """ implement as a list of sparse arrays of the same dtype """ __slots__ = () is_sparse = True is_numeric = True _can_hold_na = True _ftype = 'sparse' _holder = SparseArray @property def shape(self): return (len(self.mgr_locs), self.sp_index.length) @property def itemsize(self): return self.dtype.itemsize @property def fill_value(self): #return np.nan return self.values.fill_value @fill_value.setter def fill_value(self, v): # we may need to upcast our fill to match our dtype if issubclass(self.dtype.type, np.floating): v = float(v) self.values.fill_value = v @property def sp_values(self): return self.values.sp_values @sp_values.setter def sp_values(self, v): # reset the sparse values self.values = SparseArray(v, sparse_index=self.sp_index, kind=self.kind, dtype=v.dtype, fill_value=self.values.fill_value, copy=False) @property def sp_index(self): return self.values.sp_index @property def kind(self): return self.values.kind def __len__(self): try: return self.sp_index.length except: return 0 def copy(self, deep=True): return self.make_block_same_class(values=self.values, sparse_index=self.sp_index, kind=self.kind, copy=deep, placement=self.mgr_locs) def make_block_same_class(self, values, placement, sparse_index=None, kind=None, dtype=None, fill_value=None, copy=False, fastpath=True): """ return a new block """ if dtype is None: dtype = self.dtype if fill_value is None: fill_value = self.values.fill_value # if not isinstance(values, SparseArray) and values.ndim != self.ndim: # raise ValueError("ndim mismatch") if values.ndim == 2: nitems = values.shape[0] if nitems == 0: # kludgy, but SparseBlocks cannot handle slices, where the # output is 0-item, so let's convert it to a dense block: it # won't take space since there's 0 items, plus it will preserve # the dtype. return make_block(np.empty(values.shape, dtype=dtype), placement, fastpath=True,) elif nitems > 1: raise ValueError("Only 1-item 2d sparse blocks are supported") else: values = values.reshape(values.shape[1]) new_values = SparseArray(values, sparse_index=sparse_index, kind=kind or self.kind, dtype=dtype, fill_value=fill_value, copy=copy) return make_block(new_values, ndim=self.ndim, fastpath=fastpath, placement=placement) def interpolate(self, method='pad', axis=0, inplace=False, limit=None, fill_value=None, **kwargs): values = com.interpolate_2d( self.values.to_dense(), method, axis, limit, fill_value) return self.make_block_same_class(values=values, placement=self.mgr_locs) def fillna(self, value, limit=None, inplace=False, downcast=None): # we may need to upcast our fill to match our dtype if limit is not None: raise NotImplementedError("specifying a limit for 'fillna' has " "not been implemented yet") if issubclass(self.dtype.type, np.floating): value = float(value) values = self.values if inplace else self.values.copy() return [self.make_block_same_class(values=values.get_values(value), fill_value=value, placement=self.mgr_locs)] def shift(self, periods, axis=0): """ shift the block by periods """ N = len(self.values.T) indexer = np.zeros(N, dtype=int) if periods > 0: indexer[periods:] = np.arange(N - periods) else: indexer[:periods] = np.arange(-periods, N) new_values = self.values.to_dense().take(indexer) # convert integer to float if necessary. need to do a lot more than # that, handle boolean etc also new_values, fill_value = com._maybe_upcast(new_values) if periods > 0: new_values[:periods] = fill_value else: new_values[periods:] = fill_value return [self.make_block_same_class(new_values, placement=self.mgr_locs)] def reindex_axis(self, indexer, method=None, axis=1, fill_value=None, limit=None, mask_info=None): """ Reindex using pre-computed indexer information """ if axis < 1: raise AssertionError('axis must be at least 1, got %d' % axis) # taking on the 0th axis always here if fill_value is None: fill_value = self.fill_value return self.make_block_same_class(self.values.take(indexer), fill_value=fill_value, placement=self.mgr_locs) def sparse_reindex(self, new_index): """ sparse reindex and return a new block current reindex only works for float64 dtype! """ values = self.values values = values.sp_index.to_int_index().reindex( values.sp_values.astype('float64'), values.fill_value, new_index) return self.make_block_same_class(values, sparse_index=new_index, placement=self.mgr_locs) def make_block(values, placement, klass=None, ndim=None, dtype=None, fastpath=False): if klass is None: dtype = dtype or values.dtype vtype = dtype.type if isinstance(values, SparseArray): klass = SparseBlock elif issubclass(vtype, np.floating): klass = FloatBlock elif (issubclass(vtype, np.integer) and issubclass(vtype, np.timedelta64)): klass = TimeDeltaBlock elif (issubclass(vtype, np.integer) and not issubclass(vtype, np.datetime64)): klass = IntBlock elif dtype == np.bool_: klass = BoolBlock elif issubclass(vtype, np.datetime64): klass = DatetimeBlock elif issubclass(vtype, np.complexfloating): klass = ComplexBlock elif is_categorical(values): klass = CategoricalBlock else: klass = ObjectBlock return klass(values, ndim=ndim, fastpath=fastpath, placement=placement) # TODO: flexible with index=None and/or items=None class BlockManager(PandasObject): """ Core internal data structure to implement DataFrame Manage a bunch of labeled 2D mixed-type ndarrays. Essentially it's a lightweight blocked set of labeled data to be manipulated by the DataFrame public API class Attributes ---------- shape ndim axes values items Methods ------- set_axis(axis, new_labels) copy(deep=True) get_dtype_counts get_ftype_counts get_dtypes get_ftypes apply(func, axes, block_filter_fn) get_bool_data get_numeric_data get_slice(slice_like, axis) get(label) iget(loc) get_scalar(label_tup) take(indexer, axis) reindex_axis(new_labels, axis) reindex_indexer(new_labels, indexer, axis) delete(label) insert(loc, label, value) set(label, value) Parameters ---------- Notes ----- This is *not* a public API class """ __slots__ = ['axes', 'blocks', '_ndim', '_shape', '_known_consolidated', '_is_consolidated', '_blknos', '_blklocs'] def __init__(self, blocks, axes, do_integrity_check=True, fastpath=True): self.axes = [_ensure_index(ax) for ax in axes] self.blocks = tuple(blocks) for block in blocks: if block.is_sparse: if len(block.mgr_locs) != 1: raise AssertionError("Sparse block refers to multiple items") else: if self.ndim != block.ndim: raise AssertionError(('Number of Block dimensions (%d) must ' 'equal number of axes (%d)') % (block.ndim, self.ndim)) if do_integrity_check: self._verify_integrity() self._consolidate_check() self._rebuild_blknos_and_blklocs() def make_empty(self, axes=None): """ return an empty BlockManager with the items axis of len 0 """ if axes is None: axes = [_ensure_index([])] + [ _ensure_index(a) for a in self.axes[1:] ] # preserve dtype if possible if self.ndim == 1: blocks = np.array([], dtype=self.array_dtype) else: blocks = [] return self.__class__(blocks, axes) def __nonzero__(self): return True # Python3 compat __bool__ = __nonzero__ @property def shape(self): return tuple(len(ax) for ax in self.axes) @property def ndim(self): return len(self.axes) def set_axis(self, axis, new_labels): new_labels =
_ensure_index(new_labels)
pandas.core.index._ensure_index
import pandas as pd import numpy as np from pandas.api.types import is_numeric_dtype, is_categorical, infer_dtype def dataset_profile(data: pd.DataFrame): """A simple function to get you a simple dataset variables overview Args: data (pd.DataFrame): the dataset to be profiled Returns: pd.DataFrame: containing the report """ report = {} for col in data.columns: col_dict = {} col_dict['feature_name'] = col col_dict['inferred_type'] = infer_dtype(data[col]) col_dict['current_type'] = data[col].dtype col_dict['missing_values_sum'] = data[col].isna().sum() col_dict['missing_values_perc'] = data[col].isna().mean() if infer_dtype(data[col]) in ["string", 'categorical', 'mixed']: col_dict['n_unique_values'] = data[col].nunique() col_dict['biggest_category'] = data[col].value_counts(normalize=True).nlargest(1).index[0] col_dict['biggest_category_perc'] = data[col].value_counts(normalize=True, dropna=False).nlargest(1).values[0] col_dict['smallest_category'] = data[col].value_counts(normalize=True).nsmallest(1).index[0] col_dict['smallest_category_perc'] = data[col].value_counts(normalize=True, dropna=False).nsmallest(1).values[0] else: col_dict['n_unique_values'] = np.nan col_dict['biggest_category'] = np.nan col_dict['biggest_category_perc'] = np.nan col_dict['smallest_category'] = np.nan col_dict['smallest_category_perc'] = np.nan if infer_dtype(data[col]) in ['floating', 'integer', 'mixed-integer', 'mixed-integer-float', 'decimal']: col_dict['mean'] = pd.to_numeric(data[col], errors='coerce').mean() col_dict['std'] = pd.to_numeric(data[col], errors='coerce').std() col_dict['min'] = pd.to_numeric(data[col], errors='coerce').min() col_dict['max'] = pd.to_numeric(data[col], errors='coerce').max() else: col_dict['mean'] = np.nan col_dict['std'] = np.nan col_dict['min'] = np.nan col_dict['max'] = np.nan report[col] = col_dict results =
pd.DataFrame.from_dict(report)
pandas.DataFrame.from_dict
from datetime import datetime, timedelta import dateutil import numpy as np import pytest import pytz from pandas._libs.tslibs.ccalendar import DAYS, MONTHS from pandas._libs.tslibs.period import IncompatibleFrequency from pandas.compat import lrange, range, zip import pandas as pd from pandas import DataFrame, Series, Timestamp from pandas.core.indexes.base import InvalidIndexError from pandas.core.indexes.datetimes import date_range from pandas.core.indexes.period import Period, PeriodIndex, period_range from pandas.core.resample import _get_period_range_edges import pandas.util.testing as tm from pandas.util.testing import ( assert_almost_equal, assert_frame_equal, assert_series_equal) import pandas.tseries.offsets as offsets @pytest.fixture() def _index_factory(): return period_range @pytest.fixture def _series_name(): return 'pi' class TestPeriodIndex(object): @pytest.mark.parametrize('freq', ['2D', '1H', '2H']) @pytest.mark.parametrize('kind', ['period', None, 'timestamp']) def test_asfreq(self, series_and_frame, freq, kind): # GH 12884, 15944 # make sure .asfreq() returns PeriodIndex (except kind='timestamp') obj = series_and_frame if kind == 'timestamp': expected = obj.to_timestamp().resample(freq).asfreq() else: start = obj.index[0].to_timestamp(how='start') end = (obj.index[-1] + obj.index.freq).to_timestamp(how='start') new_index = date_range(start=start, end=end, freq=freq, closed='left') expected = obj.to_timestamp().reindex(new_index).to_period(freq) result = obj.resample(freq, kind=kind).asfreq() assert_almost_equal(result, expected) def test_asfreq_fill_value(self, series): # test for fill value during resampling, issue 3715 s = series new_index = date_range(s.index[0].to_timestamp(how='start'), (s.index[-1]).to_timestamp(how='start'), freq='1H') expected = s.to_timestamp().reindex(new_index, fill_value=4.0) result = s.resample('1H', kind='timestamp').asfreq(fill_value=4.0) assert_series_equal(result, expected) frame = s.to_frame('value') new_index = date_range(frame.index[0].to_timestamp(how='start'), (frame.index[-1]).to_timestamp(how='start'), freq='1H') expected = frame.to_timestamp().reindex(new_index, fill_value=3.0) result = frame.resample('1H', kind='timestamp').asfreq(fill_value=3.0) assert_frame_equal(result, expected) @pytest.mark.parametrize('freq', ['H', '12H', '2D', 'W']) @pytest.mark.parametrize('kind', [None, 'period', 'timestamp']) @pytest.mark.parametrize('kwargs', [dict(on='date'), dict(level='d')]) def test_selection(self, index, freq, kind, kwargs): # This is a bug, these should be implemented # GH 14008 rng = np.arange(len(index), dtype=np.int64) df = DataFrame({'date': index, 'a': rng}, index=pd.MultiIndex.from_arrays([rng, index], names=['v', 'd'])) msg = ("Resampling from level= or on= selection with a PeriodIndex is" r" not currently supported, use \.set_index\(\.\.\.\) to" " explicitly set index") with pytest.raises(NotImplementedError, match=msg): df.resample(freq, kind=kind, **kwargs) @pytest.mark.parametrize('month', MONTHS) @pytest.mark.parametrize('meth', ['ffill', 'bfill']) @pytest.mark.parametrize('conv', ['start', 'end']) @pytest.mark.parametrize('targ', ['D', 'B', 'M']) def test_annual_upsample_cases(self, targ, conv, meth, month, simple_period_range_series): ts = simple_period_range_series( '1/1/1990', '12/31/1991', freq='A-%s' % month) result = getattr(ts.resample(targ, convention=conv), meth)() expected = result.to_timestamp(targ, how=conv) expected = expected.asfreq(targ, meth).to_period() assert_series_equal(result, expected) def test_basic_downsample(self, simple_period_range_series): ts = simple_period_range_series('1/1/1990', '6/30/1995', freq='M') result = ts.resample('a-dec').mean() expected = ts.groupby(ts.index.year).mean() expected.index = period_range('1/1/1990', '6/30/1995', freq='a-dec') assert_series_equal(result, expected) # this is ok assert_series_equal(ts.resample('a-dec').mean(), result) assert_series_equal(ts.resample('a').mean(), result) @pytest.mark.parametrize('rule,expected_error_msg', [ ('a-dec', '<YearEnd: month=12>'), ('q-mar', '<QuarterEnd: startingMonth=3>'), ('M', '<MonthEnd>'), ('w-thu', '<Week: weekday=3>') ]) def test_not_subperiod( self, simple_period_range_series, rule, expected_error_msg): # These are incompatible period rules for resampling ts = simple_period_range_series('1/1/1990', '6/30/1995', freq='w-wed') msg = ("Frequency <Week: weekday=2> cannot be resampled to {}, as they" " are not sub or super periods").format(expected_error_msg) with pytest.raises(IncompatibleFrequency, match=msg): ts.resample(rule).mean() @pytest.mark.parametrize('freq', ['D', '2D']) def test_basic_upsample(self, freq, simple_period_range_series): ts = simple_period_range_series('1/1/1990', '6/30/1995', freq='M') result = ts.resample('a-dec').mean() resampled = result.resample(freq, convention='end').ffill() expected = result.to_timestamp(freq, how='end') expected = expected.asfreq(freq, 'ffill').to_period(freq) assert_series_equal(resampled, expected) def test_upsample_with_limit(self): rng = period_range('1/1/2000', periods=5, freq='A') ts = Series(np.random.randn(len(rng)), rng) result = ts.resample('M', convention='end').ffill(limit=2) expected = ts.asfreq('M').reindex(result.index, method='ffill', limit=2) assert_series_equal(result, expected) def test_annual_upsample(self, simple_period_range_series): ts = simple_period_range_series('1/1/1990', '12/31/1995', freq='A-DEC') df =
DataFrame({'a': ts})
pandas.DataFrame
import pandas as pd from matplotlib import pyplot as plt from matplotlib import dates as mdates from matplotlib.ticker import (AutoMinorLocator, MultipleLocator, MaxNLocator) import matplotlib as mpl import datetime print("-----------") print("Plotting Vaccination Data") d_raw = pd.read_csv("data/csv/vax.csv") d = d_raw.tail(720) d = d.iloc[1:] # fig.subplots_adjust(hspace=0.46, top=0.85, bottom=0) fig, axs = plt.subplots(4, 1, sharex=True, figsize=(8,8)) x = d["Date"] x = pd.to_datetime(d["Date"]) SpecPcr = d["jumlah_spesimen_pcr_tcm"] SpecAntigen = d["jumlah_spesimen_antigen"] SpecTotal = d["jumlah_spesimen_total"] PplPcr = d["jumlah_orang_pcr_tcm"] PplAntigen = d["jumlah_orang_antigen"] PplTotal = d["jumlah_orang_total"] SpecTotalCum = d["jumlah_spesimen_total_kum"] PplTotalCum = d["jumlah_orang_total_kum"] Vax1 = d["jumlah_vaksinasi_1"] Vax2 = d["jumlah_vaksinasi_2"] Vax1Cum = d["jumlah_jumlah_vaksinasi_1_kum"] Vax2Cum = d["jumlah_jumlah_vaksinasi_2_kum"] cc = ["#7eca9c","#d0af84","#b8b5ff","#8ac4d0","#4b778d","#206a5d","#91c788","#e2703a","#9e9d89","#f39189"] df = pd.DataFrame({"Date":
pd.to_datetime(d["Date"])
pandas.to_datetime
""" Class for creating datasets for training a supervised translation classifier and for crosslingual information retrieval. """ import pandas as pd from tqdm import tqdm from src.features.embedding_features import cosine_similarity_vector from src.utils.timer import timer class DataSet: """ Class for creating datasets for training a supervised translation classifier and for crosslingual information retrieval. Attributes: preprocessed_dataframe (dataframe): Preprocessed parallel translations dataframe. model_subset (dataframe): Subset of preprocessed_dataframe for training a supervised translation classifier. retrieval_subset (dataframe): Subset of preprocessed_datafram for testing crosslingual retrieval models. model_dataset (dataframe):Generated dataset for training a supervised translation classifier. retrieval_dataset (dataframe): Dataset for testing crosslingual retrieval models. """ @timer def __init__(self, preprocessed_data): """ Initialize class by importing preprocessed data. Args: preprocessed_data (dataframe): Preprocessed dataframe of parallel translations. """ self.preprocessed_dataframe = preprocessed_data self.model_subset = pd.DataFrame() self.retrieval_subset = pd.DataFrame() self.model_dataset_index = pd.DataFrame() self.model_dataset =
pd.DataFrame()
pandas.DataFrame
# -*- coding: UTF-8 -*- # ******************************************************** # * Author : <NAME> # * Email : <EMAIL> # * Create time : 2021-07-26 17:03 # * Last modified : 2021-07-27 13:17 # * Filename : quant.py # * Description : # ********************************************************* import pandas as pd import os import json from datetime import timedelta, datetime from dplearn.tools import tick_start, tick_end # ============================================================================= # ##### K Line Wrapping ##### # ============================================================================= def wrapKLine(data, open_c, close_c, high_c, low_c, vol_c, ts_c, ts_format, wrap): """ This is a function of wrapping K-Line dataframe into longer-duration one. Input: data: [pandas dataframe] K-Line dataframe open_c: [string] Column name of open price close_c: [string] Column name of close price high_c: [string] Column name of highest price low_c: [string] Column name of lowest price vol_c: [string] Column name of lowest price ts_c: [string] Column name of timestamp ts_format: [string] Format of timestamp in input data (eg: "%Y-%m-%d %H:%M:%S") wrap: [string] Time range that you want to wrap Output: Pandas dataframe """ tick_start("Wraping K Line data") col_list = [open_c, close_c, high_c, low_c, vol_c, ts_c] df = data[col_list] df[ts_c] = pd.to_datetime(df[ts_c], format=ts_format) # df["time_group"] = df[ts_c].dt.strftime("%Y-%m-%d@%H") vol_new = df.groupby(pd.Grouper(key=ts_c, freq=wrap))[vol_c].agg('sum') open_new = df.groupby(pd.Grouper(key=ts_c, freq=wrap))[open_c].first() close_new = df.groupby(
pd.Grouper(key=ts_c, freq=wrap)
pandas.Grouper
#!Python3 #Automated batch email program (Addresses.xlsx) #by <NAME> import os, glob, win32com.client, logging, smtplib import pandas as pd from email.utils import parseaddr from email_validator import validate_email, EmailNotValidError emailCount = 0 logging.basicConfig(filename = 'log.txt', level=logging.DEBUG, format=' %(asctime)s - %(levelname)s - %(message)s') templateFolder = os.getcwd()+ '\\Email template\\' #set the run folder path attachmentFolder = os.getcwd()+ '\\Attachments\\' #set attachment folder # TODO get email template from folder file = pd.ExcelFile('Email addresses.xlsx') #Establishes the excel file you wish to import into Pandas logging.debug(file.sheet_names) #--- Validate Email addresses excel file --- print("Do you wish to:") print("1.Validate spreadsheet 2.Test run/draft emails 3.Send emails") testflag= input() try: testflag=int(testflag) except: print("Invalid input") print("reading spreedsheet...") for s in file.sheet_names: df = file.parse(s) #Uploads Sheet1 from the Excel file into a dataframe #--- Iterate through all sheets --- if testflag >= 1: for index, row in df.iterrows(): #Loops through each row in the dataframe email = (row['Email Address']) #Sets dataframe variable, 'email' to cells in column 'Email Addresss' subject = (row['Subject']) #Sets dataframe variable, 'subject' to cells in column 'Subject' body = (row['Email HTML Body']) #Sets dataframe variable, 'body' to cells in column 'Email HTML Body' #--- Print warnings --- if
pd.isnull(email)
pandas.isnull
import unittest from setup.settings import * from numpy.testing import * from pandas.util.testing import * import numpy as np import dolphindb_numpy as dnp import pandas as pd import orca class FunctionStdTest(unittest.TestCase): @classmethod def setUpClass(cls): # connect to a DolphinDB server orca.connect(HOST, PORT, "admin", "123456") def test_function_math_std_scalar(self): self.assertEqual(dnp.std(0.5), np.std(0.5)) self.assertEqual(dnp.std(1), np.std(1)) self.assertEqual(dnp.std(-1), np.std(-1)) self.assertEqual(dnp.std(0), np.std(0)) self.assertEqual(dnp.isnan(dnp.std(dnp.nan)), True) self.assertEqual(np.isnan(np.std(np.nan)), True) def test_function_math_std_list(self): npa = np.std([1, 8, 27, -27, 0, 5, np.nan]) dnpa = dnp.std([1, 8, 27, -27, 0, 5, dnp.nan]) assert_array_equal(dnpa, npa) def test_function_math_std_array(self): npa = np.std(np.array([1, 8, 27, -27, 0, 5, np.nan])) dnpa = dnp.std(dnp.array([1, 8, 27, -27, 0, 5, dnp.nan])) assert_array_equal(dnpa, npa) def test_function_math_std_series(self): ps =
pd.Series([-1, 8, 27, -27, 0, 5, np.nan])
pandas.Series
# -*- coding: utf-8 -*- """ Created on Fri Sep 1 10:10:01 2017 @author: belinkov """ import sys assert sys.version_info[0] == 3, 'Must run with Python 3' import os import numpy as np import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt import matplotlib.gridspec as gridspec #plt.style.use('ggplot') import pandas as pd import seaborn as sns sns.set_style('darkgrid') # put all result files here RESULTS_DIR = '../results' langs = ['ar', 'es', 'fr', 'ru', 'zh', 'en'] pairs = [['en', 'ar'], ['en', 'es'], ['en', 'fr'], ['en', 'ru'], ['en', 'zh'], ['en', 'en'], ['ar', 'en'], ['es', 'en'], ['fr', 'en'], ['ru', 'en'], ['zh', 'en']] pairs_en = [['en', 'ar'], ['en', 'es'], ['en', 'fr'], ['en', 'ru'], ['en', 'zh'], ['en', 'en']] pretty_lang_names = {'en': 'English', 'ar':'Arabic', 'es':'Spanish', 'fr':'French', 'es':'Spanish', 'ru':'Russian', 'zh':'Chinese'} pretty_dist_names = {'dist1': '1', 'dist2': '2', 'dist3': '3', 'dist4': '4', 'dist5': '5', 'dist6-7': '6-7', 'dist8-10': '8-10', 'dist10-': '>10' } pretty_dist_names_list = ('1', '2', '3', '4', '5', '6-7', '8-10', '>10') en_maj, en_mfl = 0.1332812025*100, 0.4047091533*100 ar_maj, ar_mfl = 0.2256017981*100, 0.5023926914*100 es_maj, es_mfl = 0.1499913599*100, 0.4269051322*100 fr_maj, fr_mfl = 0.1334860475*100, 0.4328404831*100 ru_maj, ru_mfl = 0.1876313145*100, 0.3099479309*100 zh_maj, zh_mfl = 0.1468902015*100, 0.3564107019*100 majs = [en_maj]*6 + [ar_maj, es_maj, fr_maj, ru_maj, zh_maj] mfls = [en_mfl]*6 + [ar_mfl, es_mfl, fr_mfl, ru_mfl, zh_mfl] def get_accs_from_df(df, col_pref='acc'): accs = [df[col].values for col in df.columns if col.startswith(col_pref)] return accs def load_data(filename, sep='\t'): df = pd.read_csv(filename, sep=sep) df['mean'] = np.mean([df['acc1'], df['acc2'], df['acc3']], axis=0) df['std'] = np.std([df['acc1'], df['acc2'], df['acc3']], axis=0) return df def load_data_by_distance(filename, sep='\t', scale=100): df = pd.read_csv(filename, sep=sep) dists = [col for col in df.columns if col.startswith('dist')] for dist in dists: df[dist] *= scale # for source in df.source.unique(): # for target in df.target.unique(): # for layer in df.layer.unique(): # df_source_target_layer = df[(df['source'] == source) & (df['target'] == target) & (df['layer'] == layer)] # df_mean = df_source_target_layer.mean() # df_std = df_source_target_layer.std() # mean_dists = [df_mean[d] for d in dists] # std_dists = [df_std[d] for d in dists] # series_mean = pd.Series([layer, source, target, 'mean'] + mean_dists, index=df.columns) # series_std = pd.Series([layer, source, target, 'std'] + std_dists, index=df.columns) # df.append(series_mean, ignore_index=True) # df.append(series_std, ignore_index=True) return df def load_data_by_type(filename, sep='\t', scale=100): df = pd.read_csv(filename, sep=sep) types = df.columns[4:] for t in types: df[t] = df[t] df[t] *= scale return df def load_data_by_type_all(filename, sep='\t', scale=100): """ Load data for all language pairs by type Convert types from column to values of a "relation" column Empty cells are possible and they are non-existing types in the language, so they will not have corresponding rows """ layers, sources, targets, runs, relations, accs = [], [], [], [], [], [] header, types = None, None with open(filename) as f: for line in f: splt = line.strip('\n').split('\t') if header == None: header = splt types = splt[4:] continue layer, source, target, run = splt[:4] for relation, acc in zip(types, splt[4:]): if acc != '': layers.append(layer) sources.append(source) targets.append(target) runs.append(run) relations.append(relation) accs.append(float(acc)*scale) df =
pd.DataFrame({'layer': layers, 'source': sources, 'target': targets, 'run': runs, 'relation': relations, 'accuracy': accs})
pandas.DataFrame
''' MIT License Copyright (c) 2020 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import time import pandas as pd from model.auxiliary import parse_scenario_name, percentile from model.constants import MODEL_NAME from pointers import METADATA_FILE_PATH, INTERMEDIATE_RESULT_FILE_PATH, FINAL_RESULT_FILE_PATH def main(): # local variables intermediate_result = INTERMEDIATE_RESULT_FILE_PATH output_path = FINAL_RESULT_FILE_PATH scenarios_array =
pd.read_excel(METADATA_FILE_PATH, sheet_name='SCENARIOS')
pandas.read_excel
from contextlib import contextmanager from unittest.mock import patch from zipfile import ZipFile from pandas import DataFrame, read_csv from pandas.util.testing import assert_frame_equal from pytest import raises, fixture, warns, mark from IPython import get_ipython from data_vault import Vault, parse_arguments, VaultMagics from data_vault.frames import frame_manager @contextmanager def file_from_storage(archive_path, file_path, pwd: str = None, mode='r'): if pwd: pwd = pwd.encode() with ZipFile(archive_path) as archive: yield archive.open( file_path, mode=mode, pwd=pwd ) ipython = get_ipython() EXAMPLE_DATA_FRAME = DataFrame([{'a': 1, 'b': 1}, {'a': 1, 'b': 2}]) def patch_ipython_globals(dummy_globals): return patch.object(frame_manager, 'get_ipython_globals', return_value=dummy_globals) @fixture def mock_key(monkeypatch): monkeypatch.setenv('KEY', 'a_strong_password') def test_open_vault_message(): with raises(Exception, match='Please setup the storage with %open_vault first'): ipython.magic('vault del x') def test_vault_security_alert(tmpdir): # should warn if not encryption key provided with warns(UserWarning, match='Encryption variable not set - no encryption will be used..*'): ipython.magic(f'open_vault --path {tmpdir}/archive.zip') # should not warn if secure explicitly toggled off with warns(None) as record: ipython.magic(f'open_vault --path {tmpdir}/archive.zip --secure False') assert not record.list # should not warn if encryption key provided with warns(None) as record: ipython.magic(f'open_vault --path {tmpdir}/archive.zip -e SOME_KEY') assert not record.list def test_usage_help(tmpdir, mock_key): ipython.magic(f'open_vault --path {tmpdir}/archive.zip -e KEY') x = EXAMPLE_DATA_FRAME with patch_ipython_globals(locals()): with raises(ValueError, match='No command matched. Did you mean:\n\t - store .*?'): ipython.magic('vault store x') def test_variable_not_defined(tmpdir, mock_key): ipython.magic(f'open_vault --path {tmpdir}/archive.zip -e KEY') with patch_ipython_globals(locals()): with raises(ValueError, match=".*variable 'x' is not defined in the global namespace.*"): ipython.magic('vault store x') def test_function_not_defined(tmpdir, mock_key): ipython.magic(f'open_vault --path {tmpdir}/archive.zip -e KEY') x = EXAMPLE_DATA_FRAME with patch_ipython_globals(locals()): with raises(NameError, match="function 'pipe_delimited' is not defined in the global namespace"): ipython.magic('vault store x in my_frames with pipe_delimited') def test_store(tmpdir): ipython.magic(f'open_vault --path {tmpdir}/archive.zip --secure False') x = EXAMPLE_DATA_FRAME with patch_ipython_globals(locals()): ipython.magic('vault store x in my_frames') with file_from_storage(f'{tmpdir}/archive.zip', 'my_frames/x') as f: data = read_csv(f, sep='\t', index_col=0) assert x.equals(data) def test_store_with_encryption(tmpdir, mock_key): ipython.magic(f'open_vault --path {tmpdir}/archive.zip -e KEY') x = EXAMPLE_DATA_FRAME with patch_ipython_globals(locals()): ipython.magic('vault store x in my_frames') with raises(RuntimeError, match="File 'my_frames/x' is encrypted, password required for extraction"): with file_from_storage(f'{tmpdir}/archive.zip', 'my_frames/x') as f: data =
read_csv(f, sep='\t', index_col=0)
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # General imports import numpy as np import pandas as pd import os, sys, gc, time, warnings, pickle, psutil, random from math import ceil from sklearn.preprocessing import LabelEncoder #warnings.filterwarnings('ignore') import json with open('SETTINGS.json', 'r') as myfile: datafile=myfile.read() SETTINGS = json.loads(datafile) data_path = SETTINGS['RAW_DATA_DIR'] save_data_path = SETTINGS['PROCESSED_DATA_DIR'] def get_memory_usage(): return np.round(psutil.Process(os.getpid()).memory_info()[0]/2.**30, 2) def sizeof_fmt(num, suffix='B'): for unit in ['','Ki','Mi','Gi','Ti','Pi','Ei','Zi']: if abs(num) < 1024.0: return "%3.1f%s%s" % (num, unit, suffix) num /= 1024.0 return "%.1f%s%s" % (num, 'Yi', suffix) def reduce_mem_usage(df, verbose=True): numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] start_mem = df.memory_usage().sum() / 1024**2 for col in df.columns: col_type = df[col].dtypes if col_type in numerics: c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == 'int': if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) end_mem = df.memory_usage().sum() / 1024**2 if verbose: print('Mem. usage decreased to {:5.2f} Mb ({:.1f}% reduction)'.format(end_mem, 100 * (start_mem - end_mem) / start_mem)) return df ## Merging by concat to not lose dtypes def merge_by_concat(df1, df2, merge_on): merged_gf = df1[merge_on] merged_gf = merged_gf.merge(df2, on=merge_on, how='left') new_columns = [col for col in list(merged_gf) if col not in merge_on] df1 = pd.concat([df1, merged_gf[new_columns]], axis=1) return df1 ################################### FE ############################################################### ########################### Vars ################################################################################# TARGET = 'sales' # Our main target END_TRAIN = 1941 #1913 + 28 # Last day in train set MAIN_INDEX = ['id','d'] # We can identify item by these columns ########################### Load Data ################################################################################# print('Load Main Data') # Here are reafing all our data # without any limitations and dtype modification train_df = pd.read_csv(data_path+'sales_train_evaluation.csv') # train_df = pd.read_csv(data_path+'sales_train_validation.csv') prices_df = pd.read_csv(data_path+'sell_prices.csv') calendar_df = pd.read_csv(data_path+'calendar.csv') ########################### Make Grid ################################################################################# print('Create Grid') # We can tranform horizontal representation # to vertical "view" # Our "index" will be 'id','item_id','dept_id','cat_id','store_id','state_id' # and labels are 'd_' coulmns index_columns = ['id','item_id','dept_id','cat_id','store_id','state_id'] grid_df = pd.melt(train_df, id_vars = index_columns, var_name = 'd', value_name = TARGET) # If we look on train_df we se that # we don't have a lot of traning rows # but each day can provide more train data print('Train rows:', len(train_df), len(grid_df)) # To be able to make predictions # we need to add "test set" to our grid add_grid = pd.DataFrame() for i in range(1,29): temp_df = train_df[index_columns] temp_df = temp_df.drop_duplicates() temp_df['d'] = 'd_'+ str(END_TRAIN+i) temp_df[TARGET] = np.nan add_grid = pd.concat([add_grid,temp_df]) grid_df = pd.concat([grid_df,add_grid]) grid_df = grid_df.reset_index(drop=True) # Remove some temoprary DFs del temp_df, add_grid # We will not need original train_df # anymore and can remove it del train_df # You don't have to use df = df construction # you can use inplace=True instead. # like this # grid_df.reset_index(drop=True, inplace=True) # Let's check our memory usage print("{:>20}: {:>8}".format('Original grid_df',sizeof_fmt(grid_df.memory_usage(index=True).sum()))) # We can free some memory # by converting "strings" to categorical # it will not affect merging and # we will not lose any valuable data for col in index_columns: grid_df[col] = grid_df[col].astype('category') # Let's check again memory usage print("{:>20}: {:>8}".format('Reduced grid_df',sizeof_fmt(grid_df.memory_usage(index=True).sum()))) ########################### Product Release date ################################################################################# print('Release week') # It seems that leadings zero values # in each train_df item row # are not real 0 sales but mean # absence for the item in the store # we can safe some memory by removing # such zeros # Prices are set by week # so it we will have not very accurate release week release_df = prices_df.groupby(['store_id','item_id'])['wm_yr_wk'].agg(['min']).reset_index() release_df.columns = ['store_id','item_id','release'] # Now we can merge release_df grid_df = merge_by_concat(grid_df, release_df, ['store_id','item_id']) del release_df # We want to remove some "zeros" rows # from grid_df # to do it we need wm_yr_wk column # let's merge partly calendar_df to have it grid_df = merge_by_concat(grid_df, calendar_df[['wm_yr_wk','d']], ['d']) # Now we can cutoff some rows # and safe memory grid_df = grid_df[grid_df['wm_yr_wk']>=grid_df['release']] grid_df = grid_df.reset_index(drop=True) # Let's check our memory usage print("{:>20}: {:>8}".format('Original grid_df',sizeof_fmt(grid_df.memory_usage(index=True).sum()))) # Should we keep release week # as one of the features? # Only good CV can give the answer. # Let's minify the release values. # Min transformation will not help here # as int16 -> Integer (-32768 to 32767) # and our grid_df['release'].max() serves for int16 # but we have have an idea how to transform # other columns in case we will need it grid_df['release'] = grid_df['release'] - grid_df['release'].min() grid_df['release'] = grid_df['release'].astype(np.int16) # Let's check again memory usage print("{:>20}: {:>8}".format('Reduced grid_df',sizeof_fmt(grid_df.memory_usage(index=True).sum()))) ########################### Save part 1 ################################################################################# print('Save Part 1') # We have our BASE grid ready # and can save it as pickle file # for future use (model training) grid_df.to_pickle(save_data_path+'grid_part_1_eval.pkl') print('Size:', grid_df.shape) ########################### Prices ################################################################################# print('Prices') # We can do some basic aggregations prices_df['price_max'] = prices_df.groupby(['store_id','item_id'])['sell_price'].transform('max') prices_df['price_min'] = prices_df.groupby(['store_id','item_id'])['sell_price'].transform('min') prices_df['price_std'] = prices_df.groupby(['store_id','item_id'])['sell_price'].transform('std') prices_df['price_mean'] = prices_df.groupby(['store_id','item_id'])['sell_price'].transform('mean') # and do price normalization (min/max scaling) prices_df['price_norm'] = prices_df['sell_price']/prices_df['price_max'] # Some items are can be inflation dependent # and some items are very "stable" prices_df['price_nunique'] = prices_df.groupby(['store_id','item_id'])['sell_price'].transform('nunique') prices_df['item_nunique'] = prices_df.groupby(['store_id','sell_price'])['item_id'].transform('nunique') # I would like some "rolling" aggregations # but would like months and years as "window" calendar_prices = calendar_df[['wm_yr_wk','month','year']] calendar_prices = calendar_prices.drop_duplicates(subset=['wm_yr_wk']) prices_df = prices_df.merge(calendar_prices[['wm_yr_wk','month','year']], on=['wm_yr_wk'], how='left') del calendar_prices # Now we can add price "momentum" (some sort of) # Shifted by week # by month mean # by year mean prices_df['price_momentum'] = prices_df['sell_price']/prices_df.groupby(['store_id','item_id'])['sell_price'].transform(lambda x: x.shift(1)) prices_df['price_momentum_m'] = prices_df['sell_price']/prices_df.groupby(['store_id','item_id','month'])['sell_price'].transform('mean') prices_df['price_momentum_y'] = prices_df['sell_price']/prices_df.groupby(['store_id','item_id','year'])['sell_price'].transform('mean') del prices_df['month'], prices_df['year'] ########################### Merge prices and save part 2 ################################################################################# print('Merge prices and save part 2') # Merge Prices original_columns = list(grid_df) grid_df = grid_df.merge(prices_df, on=['store_id','item_id','wm_yr_wk'], how='left') keep_columns = [col for col in list(grid_df) if col not in original_columns] grid_df = grid_df[MAIN_INDEX+keep_columns] grid_df = reduce_mem_usage(grid_df) # Safe part 2 grid_df.to_pickle(save_data_path+'grid_part_2_eval.pkl') print('Size:', grid_df.shape) # We don't need prices_df anymore del prices_df # We can remove new columns # or just load part_1 grid_df = pd.read_pickle(save_data_path+'grid_part_1_eval.pkl') ########################### Merge calendar ################################################################################# grid_df = grid_df[MAIN_INDEX] # Merge calendar partly icols = ['date', 'd', 'event_name_1', 'event_type_1', 'event_name_2', 'event_type_2', 'snap_CA', 'snap_TX', 'snap_WI'] grid_df = grid_df.merge(calendar_df[icols], on=['d'], how='left') # Minify data # 'snap_' columns we can convert to bool or int8 icols = ['event_name_1', 'event_type_1', 'event_name_2', 'event_type_2', 'snap_CA', 'snap_TX', 'snap_WI'] for col in icols: grid_df[col] = grid_df[col].astype('category') # Convert to DateTime grid_df['date'] = pd.to_datetime(grid_df['date']) # Make some features from date grid_df['tm_d'] = grid_df['date'].dt.day.astype(np.int8) grid_df['tm_w'] = grid_df['date'].dt.week.astype(np.int8) grid_df['tm_m'] = grid_df['date'].dt.month.astype(np.int8) grid_df['tm_y'] = grid_df['date'].dt.year grid_df['tm_y'] = (grid_df['tm_y'] - grid_df['tm_y'].min()).astype(np.int8) grid_df['tm_wm'] = grid_df['tm_d'].apply(lambda x: ceil(x/7)).astype(np.int8) grid_df['tm_dw'] = grid_df['date'].dt.dayofweek.astype(np.int8) grid_df['tm_w_end'] = (grid_df['tm_dw']>=5).astype(np.int8) # Remove date del grid_df['date'] ########################### Save part 3 (Dates) ################################################################################# print('Save part 3') # Safe part 3 grid_df.to_pickle(save_data_path+'grid_part_3_eval.pkl') print('Size:', grid_df.shape) # We don't need calendar_df anymore del calendar_df del grid_df ########################### Some additional cleaning ################################################################################# ## Part 1 # Convert 'd' to int grid_df = pd.read_pickle(save_data_path+'grid_part_1_eval.pkl') grid_df['d'] = grid_df['d'].apply(lambda x: x[2:]).astype(np.int16) # Remove 'wm_yr_wk' # as test values are not in train set del grid_df['wm_yr_wk'] grid_df.to_pickle(save_data_path+'grid_part_1_eval.pkl') del grid_df ########################### Summary ################################################################################# # Now we have 3 sets of features grid_df = pd.concat([pd.read_pickle(save_data_path+'grid_part_1_eval.pkl'), pd.read_pickle(save_data_path+'grid_part_2_eval.pkl').iloc[:,2:], pd.read_pickle(save_data_path+'grid_part_3_eval.pkl').iloc[:,2:]], axis=1) # Let's check again memory usage print("{:>20}: {:>8}".format('Full Grid',sizeof_fmt(grid_df.memory_usage(index=True).sum()))) print('Size:', grid_df.shape) # 2.5GiB + is is still too big to train our model # (on kaggle with its memory limits) # and we don't have lag features yet # But what if we can train by state_id or shop_id? state_id = 'CA' grid_df = grid_df[grid_df['state_id']==state_id] print("{:>20}: {:>8}".format('Full Grid',sizeof_fmt(grid_df.memory_usage(index=True).sum()))) # Full Grid: 1.2GiB store_id = 'CA_1' grid_df = grid_df[grid_df['store_id']==store_id] print("{:>20}: {:>8}".format('Full Grid',sizeof_fmt(grid_df.memory_usage(index=True).sum()))) # Full Grid: 321.2MiB # Seems its good enough now # In other kernel we will talk about LAGS features # Thank you. ########################### Final list of features ################################################################################# #grid_df.info() ###################################################################################################### ################################### LAG FEATRES ###################################################### # We will need only train dataset # to show lags concept train_df =
pd.read_csv(data_path+'sales_train_evaluation.csv')
pandas.read_csv
import os from os import listdir from os.path import isfile, join import re from path import Path import numpy as np import pandas as pd from poor_trader import utils from poor_trader.utils import quotes_range from poor_trader.config import INDICATORS_OUTPUT_PATH def _true_range(df_quotes, indices): cur = df_quotes.iloc[indices[1]] prev = df_quotes.iloc[indices[0]] high, low, prev_close = cur.High, cur.Low, prev.Close a = utils.roundn(high - low, 4) b = utils.roundn(abs(high - prev_close), 4) c = utils.roundn(abs(low - prev_close), 4) return max(a, b, c) def true_range(df_quotes): df = pd.DataFrame(index=df_quotes.index) df['n_index'] = range(len(df_quotes)) _trf = lambda x: _true_range(df_quotes, [int(i) for i in x]) df['true_range'] = df.n_index.rolling(2).apply(_trf) return df.filter(like='true_range') def SMA(df_quotes, period, field='Close', symbol=None): if symbol: outpath = INDICATORS_OUTPUT_PATH / '{}/{}_{}_SMA_{}.pkl'.format(symbol, quotes_range(df_quotes), field, period) if os.path.exists(outpath): return pd.read_pickle(outpath) df = pd.DataFrame(index=df_quotes.index) df['SMA'] = df_quotes[field].rolling(period).mean() df = utils.round_df(df) if symbol: if not os.path.exists(outpath.parent): os.makedirs(outpath.parent) df.to_pickle(outpath) return df def STDEV(df_quotes, period, field='Close', symbol=None): if symbol: outpath = INDICATORS_OUTPUT_PATH / '{}/{}_{}_STDEV_{}.pkl'.format(symbol, quotes_range(df_quotes), field, period) if os.path.exists(outpath): return pd.read_pickle(outpath) df =
pd.DataFrame(index=df_quotes.index)
pandas.DataFrame
from functools import partial import json import numpy as np import pandas as pd import pandas.testing as pdt import pytest from solarforecastarbiter.io import utils # data for test Dataframe TEST_DICT = {'value': [2.0, 43.9, 338.0, -199.7, 0.32], 'quality_flag': [1, 1, 9, 5, 2]} DF_INDEX = pd.date_range(start=pd.Timestamp('2019-01-24T00:00'), freq='1min', periods=5, tz='UTC', name='timestamp') DF_INDEX.freq = None TEST_DATA = pd.DataFrame(TEST_DICT, index=DF_INDEX) EMPTY_SERIES = pd.Series(dtype=float) EMPTY_TIMESERIES = pd.Series([], name='value', index=pd.DatetimeIndex( [], name='timestamp', tz='UTC'), dtype=float) EMPTY_DATAFRAME = pd.DataFrame(dtype=float) EMPTY_TIME_DATAFRAME = pd.DataFrame([], index=pd.DatetimeIndex( [], name='timestamp', tz='UTC'), dtype=float) TEST_DATAFRAME = pd.DataFrame({ '25.0': [0.0, 1, 2, 3, 4, 5], '50.0': [1.0, 2, 3, 4, 5, 6], '75.0': [2.0, 3, 4, 5, 6, 7]}, index=pd.date_range(start='20190101T0600', end='20190101T1100', freq='1h', tz='America/Denver', name='timestamp')).tz_convert('UTC') @pytest.mark.parametrize('dump_quality,default_flag,flag_value', [ (False, None, 1), (True, 2, 2) ]) def test_obs_df_to_json(dump_quality, default_flag, flag_value): td = TEST_DATA.copy() if dump_quality: del td['quality_flag'] converted = utils.observation_df_to_json_payload(td, default_flag) converted_dict = json.loads(converted) assert 'values' in converted_dict values = converted_dict['values'] assert len(values) == 5 assert values[0]['timestamp'] == '2019-01-24T00:00:00Z' assert values[0]['quality_flag'] == flag_value assert isinstance(values[0]['value'], float) def test_obs_df_to_json_no_quality(): td = TEST_DATA.copy() del td['quality_flag'] with pytest.raises(KeyError): utils.observation_df_to_json_payload(td) def test_obs_df_to_json_no_values(): td = TEST_DATA.copy().rename(columns={'value': 'val1'}) with pytest.raises(KeyError): utils.observation_df_to_json_payload(td) def test_forecast_series_to_json(): series = pd.Series([0, 1, 2, 3, 4], index=pd.date_range( start='2019-01-01T12:00Z', freq='5min', periods=5)) expected = [{'value': 0.0, 'timestamp': '2019-01-01T12:00:00Z'}, {'value': 1.0, 'timestamp': '2019-01-01T12:05:00Z'}, {'value': 2.0, 'timestamp': '2019-01-01T12:10:00Z'}, {'value': 3.0, 'timestamp': '2019-01-01T12:15:00Z'}, {'value': 4.0, 'timestamp': '2019-01-01T12:20:00Z'}] json_out = utils.forecast_object_to_json(series) assert json.loads(json_out)['values'] == expected def test_json_payload_to_observation_df(observation_values, observation_values_text): out = utils.json_payload_to_observation_df( json.loads(observation_values_text)) pdt.assert_frame_equal(out, observation_values) def test_json_payload_to_forecast_series(forecast_values, forecast_values_text): out = utils.json_payload_to_forecast_series( json.loads(forecast_values_text))
pdt.assert_series_equal(out, forecast_values)
pandas.testing.assert_series_equal
"""SDV Sampler.""" import itertools import exrex import numpy as np import pandas as pd class Sampler: """Sampler class. Args: metadata (Metadata): Dataset Metadata. models (dict): Fitted table models. model (SDVModel): Model class to use to sample data. model_kwargs (dict): Additional arguments to create the ``SDVModel``. table_sizes (dict): Dict indicating the sizes of the tables in the orignal dataset. """ metadata = None models = None primary_key = None remaining_primary_key = None def __init__(self, metadata, models, model, model_kwargs, table_sizes): self.metadata = metadata self.models = models self.primary_key = dict() self.remaining_primary_key = dict() self.model = model self.model_kwargs = model_kwargs self.table_sizes = table_sizes def _reset_primary_keys_generators(self): """Reset the primary key generators.""" self.primary_key = dict() self.remaining_primary_key = dict() def _finalize(self, sampled_data): """Do the final touches to the generated data. This method reverts the previous transformations to go back to values in the original space and also adds the parent keys in case foreign key relationships exist between the tables. Args: sampled_data (dict): Generated data Return: pandas.DataFrame: Formatted synthesized data. """ final_data = dict() for table_name, table_rows in sampled_data.items(): parents = self.metadata.get_parents(table_name) if parents: for parent_name in parents: foreign_key = self.metadata.get_foreign_key(parent_name, table_name) if foreign_key not in table_rows: parent_ids = self._find_parent_ids(table_name, parent_name, sampled_data) table_rows[foreign_key] = parent_ids reversed_data = self.metadata.reverse_transform(table_name, table_rows) fields = self.metadata.get_fields(table_name) final_data[table_name] = reversed_data[list(fields.keys())] return final_data def _get_primary_keys(self, table_name, num_rows): """Return the primary key and amount of values for the requested table. Args: table_name (str): Name of the table to get the primary keys from. num_rows (str): Number of ``primary_keys`` to generate. Returns: tuple (str, pandas.Series): primary key name and primary key values. If the table has no primary key, ``(None, None)`` is returned. Raises: ValueError: If the ``metadata`` contains invalid types or subtypes, or if there are not enough primary keys left on any of the generators. NotImplementedError: If the primary key subtype is a ``datetime``. """ primary_key = self.metadata.get_primary_key(table_name) primary_key_values = None if primary_key: field = self.metadata.get_fields(table_name)[primary_key] generator = self.primary_key.get(table_name) if generator is None: if field['type'] != 'id': raise ValueError('Only columns with type `id` can be primary keys') subtype = field.get('subtype', 'integer') if subtype == 'integer': generator = itertools.count() remaining = np.inf elif subtype == 'string': regex = field.get('regex', r'^[a-zA-Z]+$') generator = exrex.generate(regex) remaining = exrex.count(regex) elif subtype == 'datetime': raise NotImplementedError('Datetime ids are not yet supported') else: raise ValueError('Only `integer` or `string` id columns are supported.') self.primary_key[table_name] = generator self.remaining_primary_key[table_name] = remaining else: remaining = self.remaining_primary_key[table_name] if remaining < num_rows: raise ValueError( 'Not enough unique values for primary key of table {}' ' to generate {} samples.'.format(table_name, num_rows) ) self.remaining_primary_key[table_name] -= num_rows primary_key_values = pd.Series([x for i, x in zip(range(num_rows), generator)]) return primary_key, primary_key_values def _extract_parameters(self, parent_row, table_name): """Get the params from a generated parent row. Args: parent_row (pandas.Series): A generated parent row. table_name (str): Name of the table to make the model for. """ prefix = '__{}__'.format(table_name) keys = [key for key in parent_row.keys() if key.startswith(prefix)] new_keys = {key: key[len(prefix):] for key in keys} flat_parameters = parent_row[keys] return flat_parameters.rename(new_keys).to_dict() def _sample_rows(self, model, num_rows, table_name): """Sample ``num_rows`` from ``model``. Args: model (copula.multivariate.base): Fitted model. num_rows (int): Number of rows to sample. table_name (str): Name of the table to sample from. Returns: pandas.DataFrame: Sampled rows, shape (, num_rows) """ primary_key_name, primary_key_values = self._get_primary_keys(table_name, num_rows) sampled = model.sample(num_rows) if primary_key_name: sampled[primary_key_name] = primary_key_values return sampled def _sample_children(self, table_name, sampled_data, table_rows=None): if table_rows is None: table_rows = sampled_data[table_name] for child_name in self.metadata.get_children(table_name): for _, row in table_rows.iterrows(): self._sample_child_rows(child_name, table_name, row, sampled_data) def _sample_child_rows(self, table_name, parent_name, parent_row, sampled_data): parameters = self._extract_parameters(parent_row, table_name) model = self.model(**self.model_kwargs) model.set_parameters(parameters) num_rows = max(round(parameters['child_rows']), 0) table_rows = self._sample_rows(model, num_rows, table_name) parent_key = self.metadata.get_primary_key(parent_name) foreign_key = self.metadata.get_foreign_key(parent_name, table_name) table_rows[foreign_key] = parent_row[parent_key] previous = sampled_data.get(table_name) if previous is None: sampled_data[table_name] = table_rows else: sampled_data[table_name] = pd.concat([previous, table_rows]).reset_index(drop=True) self._sample_children(table_name, sampled_data, table_rows) @staticmethod def _find_parent_id(likelihoods, num_rows): mean = likelihoods.mean() if (likelihoods == 0).all(): # All rows got 0 likelihood, fallback to num_rows likelihoods = num_rows elif pd.isnull(mean) or mean == 0: # Some rows got singlar matrix error and the rest were 0 # Fallback to num_rows on the singular matrix rows and # keep 0s on the rest. likelihoods = likelihoods.fillna(num_rows) else: # at least one row got a valid likelihood, so fill the # rows that got a singular matrix error with the mean likelihoods = likelihoods.fillna(mean) weights = likelihoods.values / likelihoods.sum() return np.random.choice(likelihoods.index, p=weights) def _get_likelihoods(self, table_rows, parent_rows, table_name): likelihoods = dict() for parent_id, row in parent_rows.iterrows(): parameters = self._extract_parameters(row, table_name) model = self.model(**self.model_kwargs) model.set_parameters(parameters) try: likelihoods[parent_id] = model.model.probability_density(table_rows) except np.linalg.LinAlgError: likelihoods[parent_id] = None return
pd.DataFrame(likelihoods, index=table_rows.index)
pandas.DataFrame
# coding=utf-8 """ Graph - the name of the current project. instrument.py - the name of the new file which you specify in the New File dialog box during the file creation. Hossein - the login name of the current user. 6 / 15 / 18 - the current system date. 8: 03 AM - the current system time. PyCharm - the name of the IDE in which the file will be created. """ import tensorflow as tf import pandas as pd import datetime from price_fetcher.bigquery import GoogleQuery chunck_size = 72 n_chuncks = 10 sess = tf.Session() # First let's load meta graph and restore weights saver = tf.train.import_meta_graph('../ttp_model/my_model.meta') saver.restore(sess, tf.train.latest_checkpoint('../ttp_model')) # Now, let's access and create placeholders variables and # create feed-dict to feed new data def get_raw_data(ticker): """ gets the data for the list of tickers :return: dataframe """ google = GoogleQuery(ticker, dataset_id='my_dataset') query = google.query(last=3600) query = query.sort_index() if query.empty: return query dates = list(set(query.index.date)) print(ticker) result =
pd.DataFrame(columns=['Price', 'Volume'])
pandas.DataFrame
""" @brief test log(time=4s) """ import unittest from logging import getLogger import warnings import numpy from pandas import DataFrame from pyquickhelper.pycode import ExtTestCase from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.svm import SVR, SVC from mlprodict.onnx_conv import register_converters, to_onnx from mlprodict.onnxrt import OnnxInference from mlprodict.tools.asv_options_helper import get_ir_version_from_onnx class TestOnnxConvSVM(ExtTestCase): def setUp(self): logger = getLogger('skl2onnx') logger.disabled = True def test_register_converters(self): with warnings.catch_warnings(): warnings.simplefilter("ignore", ResourceWarning) res = register_converters(True) self.assertGreater(len(res), 2) def onnx_test_svm_single_classreg(self, dtype, n_targets=1, debug=False, add_noise=False, runtime='python', target_opset=None, kind='reg', level=1, **kwargs): iris = load_iris() X, y = iris.data, iris.target if add_noise: X += numpy.random.randn(X.shape[0], X.shape[1]) * 10 if kind == 'reg': y = y.astype(dtype) elif kind == 'bin': y = (y % 2).astype(numpy.int64) elif kind == 'mcl': y = y.astype(numpy.int64) else: raise AssertionError("unknown '{}'".format(kind)) if n_targets != 1: yn = numpy.empty((y.shape[0], n_targets), dtype=dtype) for i in range(n_targets): yn[:, i] = y + i y = yn X_train, X_test, y_train, _ = train_test_split(X, y, random_state=11) X_test = X_test.astype(dtype) if kind in ('bin', 'mcl'): clr = SVC(**kwargs) elif kind == 'reg': clr = SVR(**kwargs) clr.fit(X_train, y_train) model_def = to_onnx(clr, X_train.astype(dtype), rewrite_ops=True, target_opset=target_opset) if 'onnxruntime' in runtime: model_def.ir_version = get_ir_version_from_onnx() try: oinf = OnnxInference(model_def, runtime=runtime) except RuntimeError as e: if debug: raise RuntimeError( "Unable to create a model\n{}".format(model_def)) from e raise e if debug: y = oinf.run({'X': X_test}, verbose=level, fLOG=print) else: y = oinf.run({'X': X_test}) lexp = clr.predict(X_test) if kind == 'reg': self.assertEqual(list(sorted(y)), ['variable']) if dtype == numpy.float32: self.assertEqualArray( lexp.ravel(), y['variable'].ravel(), decimal=5) else: self.assertEqualArray(lexp, y['variable'], decimal=5) else: self.assertEqual(list(sorted(y)), ['output_label', 'output_probability']) self.assertEqualArray(lexp, y['output_label']) lprob = clr.predict_proba(X_test) self.assertEqualArray( lprob,
DataFrame(y['output_probability'])
pandas.DataFrame
from pandas.compat import range, lrange import numpy as np import pandas as pd import pandas.core.common as com from pandas.core.frame import DataFrame import pandas.core.nanops as nanops def pivot_annual(series, freq=None): """ Group a series by years, taking leap years into account. The output has as many rows as distinct years in the original series, and as many columns as the length of a leap year in the units corresponding to the original frequency (366 for daily frequency, 366*24 for hourly...). The fist column of the output corresponds to Jan. 1st, 00:00:00, while the last column corresponds to Dec, 31st, 23:59:59. Entries corresponding to Feb. 29th are masked for non-leap years. For example, if the initial series has a daily frequency, the 59th column of the output always corresponds to Feb. 28th, the 61st column to Mar. 1st, and the 60th column is masked for non-leap years. With a hourly initial frequency, the (59*24)th column of the output always correspond to Feb. 28th 23:00, the (61*24)th column to Mar. 1st, 00:00, and the 24 columns between (59*24) and (61*24) are masked. If the original frequency is less than daily, the output is equivalent to ``series.convert('A', func=None)``. Parameters ---------- series : TimeSeries freq : string or None, default None Returns ------- annual : DataFrame """ index = series.index year = index.year years = nanops.unique1d(year) if freq is not None: freq = freq.upper() else: freq = series.index.freq if freq == 'D': width = 366 offset = index.dayofyear - 1 # adjust for leap year offset[(~isleapyear(year)) & (offset >= 59)] += 1 columns = lrange(1, 367) # todo: strings like 1/1, 1/25, etc.? elif freq in ('M', 'BM'): width = 12 offset = index.month - 1 columns = lrange(1, 13) elif freq == 'H': width = 8784 grouped = series.groupby(series.index.year) defaulted = grouped.apply(lambda x: x.reset_index(drop=True)) defaulted.index = defaulted.index.droplevel(0) offset = np.asarray(defaulted.index) offset[~isleapyear(year) & (offset >= 1416)] += 24 columns = lrange(1, 8785) else: raise NotImplementedError(freq) flat_index = (year - years.min()) * width + offset flat_index =
com._ensure_platform_int(flat_index)
pandas.core.common._ensure_platform_int
""" After extracting skills by clustering skill sentences, in this script names and examples are given to each skill. The skills_data outputed is a dictionary with the following fields for each skill number: 'Skills name' : The closest ngram to the centroid of all the sentence embeddings which were clustered to create the skill using cosine similarity, or the shortest skill cluster description. 'Examples': The original sentences which are closest to the centroid of the skill cluster. 'Texts': All the cleaned sentences that went into creating the skill cluster. Usage: python -i skills_taxonomy_v2/pipeline/skills_extraction/skills_naming.py --config_path 'skills_taxonomy_v2/config/skills_extraction/2021.11.05.yaml' """ from argparse import ArgumentParser import logging import yaml import pandas as pd from tqdm import tqdm import boto3 from skills_taxonomy_v2.getters.s3_data import load_s3_data, save_to_s3, get_s3_data_paths from skills_taxonomy_v2 import BUCKET_NAME from skills_taxonomy_v2.pipeline.skills_extraction.skills_naming_utils import ( get_skill_info, ) from skills_taxonomy_v2.pipeline.skills_extraction.extract_skills_utils import ( get_output_config_stamped, ) logger = logging.getLogger(__name__) def load_process_sentence_data(s3, reduced_embeddings_paths): sentences_data = pd.DataFrame() for reduced_embeddings_path in tqdm(reduced_embeddings_paths): sentences_data_i = load_s3_data( s3, BUCKET_NAME, reduced_embeddings_path ) sentences_data = pd.concat([sentences_data, pd.DataFrame(sentences_data_i)]) sentences_data.reset_index(drop=True, inplace=True) logger.info(f"{len(sentences_data)} sentences loaded") return sentences_data def parse_arguments(parser): parser.add_argument( "--config_path", help="Path to config file", default="skills_taxonomy_v2/config/skills_extraction/2021.11.05.yaml", ) return parser.parse_args() if __name__ == "__main__": parser = ArgumentParser() args = parse_arguments(parser) with open(args.config_path, "r") as f: config = yaml.load(f, Loader=yaml.FullLoader) FLOW_ID = "name_skills" flow_config = config["flows"][FLOW_ID] params = flow_config["params"] s3 = boto3.resource("s3") # Load data skill_sentences = load_s3_data(s3, BUCKET_NAME, params["skill_sentences_path"]) reduced_embeddings_paths = get_s3_data_paths( s3, BUCKET_NAME, params["skills_embeds_path"], file_types=["*sentences_data_*.json"] ) skills_embeds_df = load_process_sentence_data(s3, reduced_embeddings_paths) sent_cluster_embeds = load_s3_data( s3, BUCKET_NAME, params["mean_skills_embeds_path"] ) skills = load_s3_data(s3, BUCKET_NAME, params["skills_path"]) # wrangle data in the format needed skill_sentences_df = pd.DataFrame(skill_sentences)[ ["job id", "sentence id", "Cluster number predicted"] ] merged_sents_embeds = pd.merge( skills_embeds_df, skill_sentences_df, on=["job id", "sentence id"], how='left' ) merged_sents_embeds = merged_sents_embeds[ merged_sents_embeds["Cluster number predicted"] != -2 ] skills_df =
pd.DataFrame(skills)
pandas.DataFrame
import csv import shutil import io import math import os import tempfile import time from builtins import zip import pandas as pd import pytest from unittest.mock import call, MagicMock from tests.unit.test_utils.unit_utils import StringIOContextManager from synapseclient import client, Entity, Synapse from synapseclient.core.exceptions import SynapseError, SynapseTimeoutError from synapseclient.entity import split_entity_namespaces import synapseclient.table from synapseclient.table import Column, Schema, CsvFileTable, TableQueryResult, cast_values, \ as_table_columns, Table, build_table, RowSet, SelectColumn, EntityViewSchema, RowSetTable, Row, PartialRow, \ PartialRowset, SchemaBase, _get_view_type_mask_for_deprecated_type, EntityViewType, _get_view_type_mask, \ MAX_NUM_TABLE_COLUMNS, SubmissionViewSchema, escape_column_name, join_column_names from synapseclient.core.utils import from_unix_epoch_time from unittest.mock import patch from collections import OrderedDict def test_cast_values(): selectColumns = [{'id': '353', 'name': 'name', 'columnType': 'STRING'}, {'id': '354', 'name': 'foo', 'columnType': 'STRING'}, {'id': '355', 'name': 'x', 'columnType': 'DOUBLE'}, {'id': '356', 'name': 'n', 'columnType': 'INTEGER'}, {'id': '357', 'name': 'bonk', 'columnType': 'BOOLEAN'}, {'id': '358', 'name': 'boom', 'columnType': 'LINK'}] row = ('Finklestein', 'bat', '3.14159', '65535', 'true', 'https://www.synapse.org/') assert ( cast_values(row, selectColumns) == ['Finklestein', 'bat', 3.14159, 65535, True, 'https://www.synapse.org/'] ) # group by selectColumns = [{'name': 'bonk', 'columnType': 'BOOLEAN'}, {'name': 'COUNT(name)', 'columnType': 'INTEGER'}, {'name': 'AVG(x)', 'columnType': 'DOUBLE'}, {'name': 'SUM(n)', 'columnType': 'INTEGER'}] row = ('true', '211', '1.61803398875', '1421365') assert cast_values(row, selectColumns) == [True, 211, 1.61803398875, 1421365] def test_cast_values__unknown_column_type(): selectColumns = [{'id': '353', 'name': 'name', 'columnType': 'INTEGER'}, {'id': '354', 'name': 'foo', 'columnType': 'DEFINTELY_NOT_A_EXISTING_TYPE'}, ] row = ('123', 'othervalue') assert ( cast_values(row, selectColumns) == [123, 'othervalue'] ) def test_cast_values__list_type(): selectColumns = [{'id': '354', 'name': 'foo', 'columnType': 'STRING_LIST'}, {'id': '356', 'name': 'n', 'columnType': 'INTEGER_LIST'}, {'id': '357', 'name': 'bonk', 'columnType': 'BOOLEAN_LIST'}, {'id': '358', 'name': 'boom', 'columnType': 'DATE_LIST'}] now_millis = int(round(time.time() * 1000)) row = ('["foo", "bar"]', '[1,2,3]', '[true, false]', '[' + str(now_millis) + ']') assert ( cast_values(row, selectColumns) == [["foo", "bar"], [1, 2, 3], [True, False], [from_unix_epoch_time(now_millis)]] ) def test_schema(): schema = Schema(name='My Table', parent="syn1000001") assert not schema.has_columns() schema.addColumn(Column(id='1', name='Name', columnType='STRING')) assert schema.has_columns() assert schema.properties.columnIds == ['1'] schema.removeColumn('1') assert not schema.has_columns() assert schema.properties.columnIds == [] schema = Schema(name='Another Table', parent="syn1000001") schema.addColumns([ Column(name='Name', columnType='STRING'), Column(name='Born', columnType='INTEGER'), Column(name='Hipness', columnType='DOUBLE'), Column(name='Living', columnType='BOOLEAN')]) assert schema.has_columns() assert len(schema.columns_to_store) == 4 assert Column(name='Name', columnType='STRING') in schema.columns_to_store assert Column(name='Born', columnType='INTEGER') in schema.columns_to_store assert Column(name='Hipness', columnType='DOUBLE') in schema.columns_to_store assert Column(name='Living', columnType='BOOLEAN') in schema.columns_to_store schema.removeColumn(Column(name='Living', columnType='BOOLEAN')) assert schema.has_columns() assert len(schema.columns_to_store) == 3 assert Column(name='Living', columnType='BOOLEAN') not in schema.columns_to_store assert Column(name='Hipness', columnType='DOUBLE') in schema.columns_to_store def test_RowSetTable(): row_set_json = { 'etag': 'aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee', 'headers': [ {'columnType': 'STRING', 'id': '353', 'name': 'name'}, {'columnType': 'DOUBLE', 'id': '355', 'name': 'x'}, {'columnType': 'DOUBLE', 'id': '3020', 'name': 'y'}, {'columnType': 'INTEGER', 'id': '891', 'name': 'n'}], 'rows': [{ 'rowId': 5, 'values': ['foo', '1.23', '2.2', '101'], 'versionNumber': 3}, {'rowId': 6, 'values': ['bar', '1.34', '2.4', '101'], 'versionNumber': 3}, {'rowId': 7, 'values': ['foo', '1.23', '2.2', '101'], 'versionNumber': 4}, {'rowId': 8, 'values': ['qux', '1.23', '2.2', '102'], 'versionNumber': 3}], 'tableId': 'syn2976298'} row_set = RowSet.from_json(row_set_json) assert row_set.etag == 'aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee' assert row_set.tableId == 'syn2976298' assert len(row_set.headers) == 4 assert len(row_set.rows) == 4 schema = Schema(id="syn2976298", name="Bogus Schema", columns=[353, 355, 3020, 891], parent="syn1000001") table = Table(schema, row_set) assert table.etag == 'aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee' assert table.tableId == 'syn2976298' assert len(table.headers) == 4 assert len(table.asRowSet().rows) == 4 df = table.asDataFrame() assert df.shape == (4, 4) assert list(df['name']) == ['foo', 'bar', 'foo', 'qux'] def test_as_table_columns__with_pandas_DataFrame(): df = pd.DataFrame({ 'foobar': ("foo", "bar", "baz", "qux", "asdf"), 'x': tuple(math.pi*i for i in range(5)), 'n': (101, 202, 303, 404, 505), 'really': (False, True, False, True, False), 'size': ('small', 'large', 'medium', 'medium', 'large')}, columns=['foobar', 'x', 'n', 'really', 'size']) cols = as_table_columns(df) expected_columns = [ {'defaultValue': '', 'columnType': 'STRING', 'name': 'foobar', 'maximumSize': 30, 'concreteType': 'org.sagebionetworks.repo.model.table.ColumnModel'}, {'columnType': 'DOUBLE', 'name': 'x', u'concreteType': 'org.sagebionetworks.repo.model.table.ColumnModel'}, {'columnType': 'INTEGER', 'name': 'n', 'concreteType': 'org.sagebionetworks.repo.model.table.ColumnModel'}, {'columnType': 'BOOLEAN', 'name': 'really', 'concreteType': 'org.sagebionetworks.repo.model.table.ColumnModel'}, {'defaultValue': '', 'columnType': 'STRING', 'name': 'size', 'maximumSize': 30, 'concreteType': 'org.sagebionetworks.repo.model.table.ColumnModel'} ] assert expected_columns == cols def test_as_table_columns__with_non_supported_input_type(): pytest.raises(ValueError, as_table_columns, dict(a=[1, 2, 3], b=["c", "d", "e"])) def test_as_table_columns__with_csv_file(): string_io = StringIOContextManager( 'ROW_ID,ROW_VERSION,Name,Born,Hipness,Living\n' '"1", "1", "<NAME>", 1926, 8.65, False\n' '"2", "1", "<NAME>", 1926, 9.87, False' ) cols = as_table_columns(string_io) assert cols[0]['name'] == 'Name' assert cols[0]['columnType'] == 'STRING' assert cols[1]['name'] == 'Born' assert cols[1]['columnType'] == 'INTEGER' assert cols[2]['name'] == 'Hipness' assert cols[2]['columnType'] == 'DOUBLE' assert cols[3]['name'] == 'Living' assert cols[3]['columnType'] == 'STRING' def test_dict_to_table(): d = dict(a=[1, 2, 3], b=["c", "d", "e"]) df = pd.DataFrame(d) schema = Schema(name="Baz", parent="syn12345", columns=as_table_columns(df)) with patch.object(CsvFileTable, "from_data_frame") as mocked_from_data_frame: Table(schema, d) # call_agrs is a tuple with values and name agrs_list = mocked_from_data_frame.call_args[0] # getting the second argument df_agr = agrs_list[1] assert df_agr.equals(df) def test_pandas_to_table(): df = pd.DataFrame(dict(a=[1, 2, 3], b=["c", "d", "e"])) schema = Schema(name="Baz", parent="syn12345", columns=as_table_columns(df)) # A dataframe with no row id and version table = Table(schema, df) for i, row in enumerate(table): assert row[0] == (i + 1) assert row[1] == ["c", "d", "e"][i] assert len(table) == 3 # If includeRowIdAndRowVersion=True, include empty row id an versions # ROW_ID,ROW_VERSION,a,b # ,,1,c # ,,2,d # ,,3,e table = Table(schema, df, includeRowIdAndRowVersion=True) for i, row in enumerate(table): assert row[0] is None assert row[1] is None assert row[2] == (i + 1) # A dataframe with no row id and version df = pd.DataFrame(index=["1_7", "2_7", "3_8"], data=dict(a=[100, 200, 300], b=["c", "d", "e"])) table = Table(schema, df) for i, row in enumerate(table): assert row[0] == ["1", "2", "3"][i] assert row[1] == ["7", "7", "8"][i] assert row[2] == (i + 1) * 100 assert row[3] == ["c", "d", "e"][i] # A dataframe with row id and version in columns df = pd.DataFrame(dict(ROW_ID=["0", "1", "2"], ROW_VERSION=["8", "9", "9"], a=[100, 200, 300], b=["c", "d", "e"])) table = Table(schema, df) for i, row in enumerate(table): assert row[0] == ["0", "1", "2"][i] assert row[1] == ["8", "9", "9"][i] assert row[2] == (i + 1) * 100 assert row[3] == ["c", "d", "e"][i] def test_csv_table(): # Maybe not truly a unit test, but here because it doesn't do # network IO to synapse data = [["1", "1", "<NAME>", 1926, 8.65, False], ["2", "1", "<NAME>", 1926, 9.87, False], ["3", "1", "<NAME>", 1929, 7.65, False], ["4", "1", "<NAME>", 1935, 5.14, False], ["5", "1", "<NAME>", 1929, 5.78, True], ["6", "1", "<NAME>", 1936, 4.21, False], ["7", "1", "<NAME>", 1930, 8.99, True], ["8", "1", "<NAME>", 1931, 4.37, True]] filename = None cols = [Column(id='1', name='Name', columnType='STRING'), Column(id='2', name='Born', columnType='INTEGER'), Column(id='3', name='Hipness', columnType='DOUBLE'), Column(id='4', name='Living', columnType='BOOLEAN')] schema1 = Schema(id='syn1234', name='<NAME>', columns=cols, parent="syn1000001") # TODO: use StringIO.StringIO(data) rather than writing files try: # create CSV file with tempfile.NamedTemporaryFile(delete=False) as temp: filename = temp.name with io.open(filename, mode='w', encoding="utf-8", newline='') as temp: writer = csv.writer(temp, quoting=csv.QUOTE_NONNUMERIC, lineterminator=str(os.linesep)) headers = ['ROW_ID', 'ROW_VERSION'] + [col.name for col in cols] writer.writerow(headers) for row in data: writer.writerow(row) table = Table(schema1, filename) assert isinstance(table, CsvFileTable) # need to set column headers to read a CSV file table.setColumnHeaders( [SelectColumn(name="ROW_ID", columnType="STRING"), SelectColumn(name="ROW_VERSION", columnType="STRING")] + [SelectColumn.from_column(col) for col in cols]) # test iterator for table_row, expected_row in zip(table, data): assert table_row == expected_row # test asRowSet rowset = table.asRowSet() for rowset_row, expected_row in zip(rowset.rows, data): assert rowset_row['values'] == expected_row[2:] assert rowset_row['rowId'] == expected_row[0] assert rowset_row['versionNumber'] == expected_row[1] df = table.asDataFrame() assert list(df['Name']) == [row[2] for row in data] assert list(df['Born']) == [row[3] for row in data] assert list(df['Living']) == [row[5] for row in data] assert list(df.index) == ['%s_%s' % tuple(row[0:2]) for row in data] assert df.shape == (8, 4) except Exception: if filename: try: if os.path.isdir(filename): shutil.rmtree(filename) else: os.remove(filename) except Exception as ex: print(ex) raise def test_list_of_rows_table(): data = [["<NAME>", 1926, 8.65, False], ["<NAME>", 1926, 9.87, False], ["<NAME>", 1929, 7.65, False], ["<NAME>", 1935, 5.14, False], ["<NAME>", 1929, 5.78, True], ["<NAME>", 1936, 4.21, False], ["<NAME>", 1930, 8.99, True], ["<NAME>", 1931, 4.37, True]] cols = [Column(id='1', name='Name', columnType='STRING'), Column(id='2', name='Born', columnType='INTEGER'), Column(id='3', name='Hipness', columnType='DOUBLE'), Column(id='4', name='Living', columnType='BOOLEAN')] schema1 = Schema(name='Jazz Guys', columns=cols, id="syn1000002", parent="syn1000001") # need columns to do cast_values w/o storing table = Table(schema1, data, headers=[SelectColumn.from_column(col) for col in cols]) for table_row, expected_row in zip(table, data): assert table_row == expected_row rowset = table.asRowSet() for rowset_row, expected_row in zip(rowset.rows, data): assert rowset_row['values'] == expected_row table.columns = cols df = table.asDataFrame() assert list(df['Name']) == [r[0] for r in data] def test_aggregate_query_result_to_data_frame(): class MockSynapse(object): def _queryTable(self, query, limit=None, offset=None, isConsistent=True, partMask=None): return {'concreteType': 'org.sagebionetworks.repo.model.table.QueryResultBundle', 'maxRowsPerPage': 2, 'queryCount': 4, 'queryResult': { 'concreteType': 'org.sagebionetworks.repo.model.table.QueryResult', 'nextPageToken': 'aaaaaaaa', 'queryResults': {'etag': 'aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee', 'headers': [ {'columnType': 'STRING', 'name': 'State'}, {'columnType': 'INTEGER', 'name': 'MIN(Born)'}, {'columnType': 'INTEGER', 'name': 'COUNT(State)'}, {'columnType': 'DOUBLE', 'name': 'AVG(Hipness)'}], 'rows': [ {'values': ['PA', '1935', '2', '1.1']}, {'values': ['MO', '1928', '3', '2.38']}], 'tableId': 'syn2757980'}}, 'selectColumns': [{ 'columnType': 'STRING', 'id': '1387', 'name': 'State'}]} def _queryTableNext(self, nextPageToken, tableId): return {'concreteType': 'org.sagebionetworks.repo.model.table.QueryResult', 'queryResults': {'etag': 'aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee', 'headers': [ {'columnType': 'STRING', 'name': 'State'}, {'columnType': 'INTEGER', 'name': 'MIN(Born)'}, {'columnType': 'INTEGER', 'name': 'COUNT(State)'}, {'columnType': 'DOUBLE', 'name': 'AVG(Hipness)'}], 'rows': [ {'values': ['DC', '1929', '1', '3.14']}, {'values': ['NC', '1926', '1', '4.38']}], 'tableId': 'syn2757980'}} result = TableQueryResult(synapse=MockSynapse(), query="select State, min(Born), count(State), avg(Hipness) from syn2757980 " "group by Living") assert result.etag == 'aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee' assert result.tableId == 'syn2757980' assert len(result.headers) == 4 rs = result.asRowSet() assert len(rs.rows) == 4 result = TableQueryResult(synapse=MockSynapse(), query="select State, min(Born), count(State), avg(Hipness) from syn2757980" " group by Living") df = result.asDataFrame() assert df.shape == (4, 4) assert list(df['State'].values) == ['PA', 'MO', 'DC', 'NC'] # check integer, double and boolean types after PLFM-3073 is fixed assert list(df['MIN(Born)'].values) == [1935, 1928, 1929, 1926], "Unexpected values" + str(df['MIN(Born)'].values) assert list(df['COUNT(State)'].values) == [2, 3, 1, 1] assert list(df['AVG(Hipness)'].values) == [1.1, 2.38, 3.14, 4.38] def test_waitForAsync(): syn = Synapse(debug=True, skip_checks=True) syn.table_query_timeout = 0.05 syn.table_query_max_sleep = 0.001 syn.restPOST = MagicMock(return_value={"token": "<PASSWORD>"}) # return a mocked http://docs.synapse.org/rest/org/sagebionetworks/repo/model/asynch/AsynchronousJobStatus.html syn.restGET = MagicMock(return_value={ "jobState": "PROCESSING", "progressMessage": "Test progress message", "progressCurrent": 10, "progressTotal": 100, "errorMessage": "Totally fubared error", "errorDetails": "Totally fubared error details"}) pytest.raises(SynapseTimeoutError, syn._waitForAsync, uri="foo/bar", request={"foo": "bar"}) def _insert_dataframe_column_if_not_exist__setup(): df = pd.DataFrame() column_name = "panda" data = ["pandas", "are", "alive", ":)"] return df, column_name, data def test_insert_dataframe_column_if_not_exist__nonexistent_column(): df, column_name, data = _insert_dataframe_column_if_not_exist__setup() # method under test CsvFileTable._insert_dataframe_column_if_not_exist(df, 0, column_name, data) # make sure the data was inserted assert data == df[column_name].tolist() def test_insert_dataframe_column_if_not_exist__existing_column_matching(): df, column_name, data = _insert_dataframe_column_if_not_exist__setup() # add the same data to the DataFrame prior to calling our method df.insert(0, column_name, data) # method under test CsvFileTable._insert_dataframe_column_if_not_exist(df, 0, column_name, data) # make sure the data has not changed assert data == df[column_name].tolist() def test_insert_dataframe_column_if_not_exist__existing_column_not_matching(): df, column_name, data = _insert_dataframe_column_if_not_exist__setup() # add different data to the DataFrame prior to calling our method df.insert(0, column_name, ['mercy', 'main', 'btw']) # make sure the data is different assert data != df[column_name].tolist() # method under test should raise exception with pytest.raises(SynapseError): CsvFileTable._insert_dataframe_column_if_not_exist(df, 0, column_name, data) @pytest.mark.parametrize('downloadLocation', [None, '/tmp/download']) def test_downloadTableColumns(syn, downloadLocation): header = MagicMock() header.name = 'id' table = MagicMock( tableId='abc', headers=[header], __iter__=MagicMock( return_value=iter([[1], [2], [3]]) ) ) mock_async_response = { 'resultZipFileHandleId': 4, 'fileSummary': [ { 'status': 'SUCCESS', 'fileHandleId': 1, 'zipEntryName': 'entry1', }, { 'status': 'SUCCESS', 'fileHandleId': 3, 'zipEntryName': 'entry2', }, ] } zip_file_path = '/tmp/foo/bar.csv' zip_entry_file_paths = [ '/tmp/foo/entry1', '/tmp/foo/entry2', ] cached_paths = [ None, '/tmp/foo', None ] expected_result = { 1: zip_entry_file_paths[0], 2: cached_paths[1], 3: zip_entry_file_paths[1], } with patch.object(syn, 'cache') as mock_cache, \ patch.object(syn, '_waitForAsync') as mock_async, \ patch.object(syn, '_ensure_download_location_is_directory') as mock_ensure_dir, \ patch.object(syn, '_downloadFileHandle') as mock_download_file_handle, \ patch.object(client, 'zipfile'), \ patch.object(client, 'extract_zip_file_to_directory') as mock_extract_zip_file_to_directory: mock_cache.get.side_effect = cached_paths mock_async.return_value = mock_async_response mock_ensure_dir.return_value = mock_cache.get_cache_dir.return_value = '/tmp/download' mock_download_file_handle.return_value = zip_file_path mock_extract_zip_file_to_directory.side_effect = zip_entry_file_paths result = syn.downloadTableColumns(table, ['id'], downloadLocation=downloadLocation) if downloadLocation: mock_ensure_dir.assert_called_once_with(downloadLocation) else: assert [call(1), call(3)] == mock_cache.get_cache_dir.call_args_list assert expected_result == result def test_build_table_download_file_handle_list__repeated_file_handles(syn): # patch the cache so we don't look there in case FileHandle ids actually exist there patch.object(syn.cache, "get", return_value=None) cols = [ Column(name='Name', columnType='STRING', maximumSize=50), Column(name='filehandle', columnType='FILEHANDLEID')] schema = Schema(name='FileHandleTest', columns=cols, parent='syn420') # using some large filehandle numbers so i don data = [["ayy lmao", 5318008], ["large numberino", 0x5f3759df], ["repeated file handle", 5318008], ["repeated file handle also", 0x5f3759df]] # need columns to do cast_values w/o storing table = Table(schema, data, headers=[SelectColumn.from_column(col) for col in cols]) file_handle_associations, file_handle_to_path_map = syn._build_table_download_file_handle_list(table, ['filehandle'], None) # verify only 2 file_handles are added (repeats were ignored) assert 2 == len(file_handle_associations) assert 0 == len(file_handle_to_path_map) def test_SubmissionViewSchema__default_params(): submission_view = SubmissionViewSchema(parent="idk") assert [] == submission_view.scopeIds assert submission_view.addDefaultViewColumns def test_SubmissionViewSchema__before_synapse_store(syn): syn = Synapse(debug=True, skip_checks=True) with patch.object(syn, '_get_default_view_columns') as mocked_get_default,\ patch.object(syn, '_get_annotation_view_columns') as mocked_get_annotations,\ patch.object(SchemaBase, "_before_synapse_store"): submission_view = SubmissionViewSchema(scopes=['123'], parent="idk") submission_view._before_synapse_store(syn) mocked_get_default.assert_called_once_with("submissionview", view_type_mask=None) mocked_get_annotations.assert_called_once_with(['123'], "submissionview", view_type_mask=None) def test_EntityViewSchema__before_synapse_store(syn): syn = Synapse(debug=True, skip_checks=True) with patch.object(syn, '_get_default_view_columns') as mocked_get_default,\ patch.object(syn, '_get_annotation_view_columns') as mocked_get_annotations,\ patch.object(SchemaBase, "_before_synapse_store"): submission_view = EntityViewSchema(scopes=['syn123'], parent="idk") submission_view._before_synapse_store(syn) mocked_get_default.assert_called_once_with("entityview", view_type_mask=1) mocked_get_annotations.assert_called_once_with(['syn123'], "entityview", view_type_mask=1) def test_EntityViewSchema__default_params(): entity_view = EntityViewSchema(parent="idk") assert EntityViewType.FILE.value == entity_view.viewTypeMask assert [] == entity_view.scopeIds assert entity_view.addDefaultViewColumns is True def test_entityViewSchema__specified_deprecated_type(): view_type = 'project' entity_view = EntityViewSchema(parent="idk", type=view_type) assert EntityViewType.PROJECT.value == entity_view.viewTypeMask assert entity_view.get('type') is None def test_entityViewSchema__specified_deprecated_type_in_properties(): view_type = 'project' properties = {'type': view_type} entity_view = EntityViewSchema(parent="idk", properties=properties) assert EntityViewType.PROJECT.value == entity_view.viewTypeMask assert entity_view.get('type') is None def test_entityViewSchema__specified_viewTypeMask(): entity_view = EntityViewSchema(parent="idk", includeEntityTypes=[EntityViewType.PROJECT]) assert EntityViewType.PROJECT.value == entity_view.viewTypeMask assert entity_view.get('type') is None def test_entityViewSchema__specified_both_type_and_viewTypeMask(): entity_view = EntityViewSchema(parent="idk", type='folder', includeEntityTypes=[EntityViewType.PROJECT]) assert EntityViewType.PROJECT.value == entity_view.viewTypeMask assert entity_view.get('type') is None def test_entityViewSchema__sepcified_scopeId(): scopeId = ["123"] entity_view = EntityViewSchema(parent="idk", scopeId=scopeId) assert scopeId == entity_view.scopeId def test_entityViewSchema__sepcified_add_default_columns(): entity_view = EntityViewSchema(parent="idk", addDefaultViewColumns=False) assert not entity_view.addDefaultViewColumns def test_entityViewSchema__add_default_columns_when_from_Synapse(): properties = {u'concreteType': u'org.sagebionetworks.repo.model.table.EntityView'} entity_view = EntityViewSchema(parent="idk", addDefaultViewColumns=True, properties=properties) assert not entity_view.addDefaultViewColumns def test_entityViewSchema__add_scope(): entity_view = EntityViewSchema(parent="idk") entity_view.add_scope(Entity(parent="also idk", id=123)) entity_view.add_scope(456) entity_view.add_scope("789") assert [str(x) for x in ["123", "456", "789"]] == entity_view.scopeIds def test_Schema__max_column_check(syn): table = Schema(name="someName", parent="idk") table.addColumns(Column(name="colNum%s" % i, columnType="STRING") for i in range(MAX_NUM_TABLE_COLUMNS + 1)) pytest.raises(ValueError, syn.store, table) def test_EntityViewSchema__ignore_column_names_set_info_preserved(): """ tests that ignoredAnnotationColumnNames will be preserved after creating a new EntityViewSchema from properties, local_state, and annotations """ ignored_names = {'a', 'b', 'c'} entity_view = EntityViewSchema("someName", parent="syn123", ignoredAnnotationColumnNames={'a', 'b', 'c'}) properties, annotations, local_state = split_entity_namespaces(entity_view) entity_view_copy = Entity.create(properties, annotations, local_state) assert ignored_names == entity_view.ignoredAnnotationColumnNames assert ignored_names == entity_view_copy.ignoredAnnotationColumnNames def test_EntityViewSchema__ignore_annotation_column_names(syn): syn = Synapse(debug=True, skip_checks=True) scopeIds = ['123'] entity_view = EntityViewSchema("someName", scopes=scopeIds, parent="syn123", ignoredAnnotationColumnNames={'long1'}, addDefaultViewColumns=False, addAnnotationColumns=True) mocked_annotation_result1 = [Column(name='long1', columnType='INTEGER'), Column(name='long2', columnType='INTEGER')] with patch.object(syn, '_get_annotation_view_columns', return_value=mocked_annotation_result1)\ as mocked_get_annotations,\ patch.object(syn, 'getColumns') as mocked_get_columns,\ patch.object(SchemaBase, "_before_synapse_store"): entity_view._before_synapse_store(syn) mocked_get_columns.assert_called_once_with([]) mocked_get_annotations.assert_called_once_with(scopeIds, "entityview", view_type_mask=EntityViewType.FILE.value) assert [Column(name='long2', columnType='INTEGER')] == entity_view.columns_to_store def test_EntityViewSchema__repeated_columnName_different_type(syn): syn = Synapse(debug=True, skip_checks=True) scopeIds = ['123'] entity_view = EntityViewSchema("someName", scopes=scopeIds, parent="syn123") columns = [Column(name='annoName', columnType='INTEGER'), Column(name='annoName', columnType='DOUBLE')] with patch.object(syn, 'getColumns') as mocked_get_columns: filtered_results = entity_view._filter_duplicate_columns(syn, columns) mocked_get_columns.assert_called_once_with([]) assert 2 == len(filtered_results) assert columns == filtered_results def test_EntityViewSchema__repeated_columnName_same_type(syn): syn = Synapse(debug=True, skip_checks=True) entity_view = EntityViewSchema("someName", parent="syn123") columns = [Column(name='annoName', columnType='INTEGER'), Column(name='annoName', columnType='INTEGER')] with patch.object(syn, 'getColumns') as mocked_get_columns: filtered_results = entity_view._filter_duplicate_columns(syn, columns) mocked_get_columns.assert_called_once_with([]) assert 1 == len(filtered_results) assert Column(name='annoName', columnType='INTEGER') == filtered_results[0] def test_rowset_asDataFrame__with_ROW_ETAG_column(syn): query_result = { 'concreteType': 'org.sagebionetworks.repo.model.table.QueryResultBundle', 'maxRowsPerPage': 6990, 'selectColumns': [ {'id': '61770', 'columnType': 'STRING', 'name': 'annotationColumn1'}, {'id': '61771', 'columnType': 'STRING', 'name': 'annotationColumn2'} ], 'queryCount': 1, 'queryResult': { 'concreteType': 'org.sagebionetworks.repo.model.table.QueryResult', 'nextPageToken': 'sometoken', 'queryResults': { 'headers': [ {'id': '61770', 'columnType': 'STRING', 'name': 'annotationColumn1'}, {'id': '61771', 'columnType': 'STRING', 'name': 'annotationColumn2'}], 'concreteType': 'org.sagebionetworks.repo.model.table.RowSet', 'etag': 'DEFAULT', 'tableId': 'syn11363411', 'rows': [{'values': ['initial_value1', 'initial_value2'], 'etag': '7de0f326-9ef7-4fde-9e4a-ac0babca73f6', 'rowId': 123, 'versionNumber':456}] } } } query_result_next_page = {'concreteType': 'org.sagebionetworks.repo.model.table.QueryResult', 'queryResults': { 'etag': 'DEFAULT', 'headers': [ {'id': '61770', 'columnType': 'STRING', 'name': 'annotationColumn1'}, {'id': '61771', 'columnType': 'STRING', 'name': 'annotationColumn2'}], 'rows': [{'values': ['initial_value3', 'initial_value4'], 'etag': '7de0f326-9ef7-4fde-9e4a-ac0babca73f7', 'rowId': 789, 'versionNumber': 101112}], 'tableId': 'syn11363411'}} with patch.object(syn, "_queryTable", return_value=query_result),\ patch.object(syn, "_queryTableNext", return_value=query_result_next_page): table = syn.tableQuery("select something from syn123", resultsAs='rowset') dataframe = table.asDataFrame() assert "ROW_ETAG" not in dataframe.columns expected_indicies = ['123_456_7de0f326-9ef7-4fde-9e4a-ac0babca73f6', '789_101112_7de0f326-9ef7-4fde-9e4a-ac0babca73f7'] assert expected_indicies == dataframe.index.values.tolist() def test_RowSetTable_len(): schema = Schema(parentId="syn123", id='syn456', columns=[Column(name='column_name', id='123')]) rowset = RowSet(schema=schema, rows=[Row(['first row']), Row(['second row'])]) row_set_table = RowSetTable(schema, rowset) assert 2 == len(row_set_table) def test_build_table__with_pandas_DataFrame(): df = pd.DataFrame(dict(a=[1, 2, 3], b=["c", "d", "e"])) table = build_table("test", "syn123", df) for i, row in enumerate(table): assert row[0] == (i + 1) assert row[1] == ["c", "d", "e"][i] assert len(table) == 3 headers = [ {'name': 'a', 'columnType': 'INTEGER'}, {'name': 'b', 'columnType': 'STRING'} ] assert headers == table.headers def test_build_table__with_csv(): string_io = StringIOContextManager('a,b\n' '1,c\n' '2,d\n' '3,e') with patch.object(synapseclient.table, "as_table_columns", return_value=[Column(name="a", columnType="INTEGER"), Column(name="b", columnType="STRING")]),\ patch.object(io, "open", return_value=string_io): table = build_table("test", "syn123", "some_file_name") for col, row in enumerate(table): assert row[0] == (col + 1) assert row[1] == ["c", "d", "e"][col] assert len(table) == 3 headers = [ {'name': 'a', 'columnType': 'INTEGER'}, {'name': 'b', 'columnType': 'STRING'} ] assert headers == table.headers def test_build_table__with_dict(): pytest.raises(ValueError, build_table, "test", "syn123", dict(a=[1, 2, 3], b=["c", "d", "e"])) class TestTableQueryResult: @pytest.fixture(autouse=True, scope='function') def init_syn(self, syn): self.syn = syn def setup(self): self.rows = [{'rowId': 1, 'versionNumber': 2, 'values': ['first_row']}, {'rowId': 5, 'versionNumber': 1, 'values': ['second_row']}] self.query_result_dict = {'queryResult': { 'queryResults': { 'headers': [ {'columnType': 'STRING', 'name': 'col_name'}], 'rows': self.rows, 'tableId': 'syn123'}}, 'selectColumns': [{ 'columnType': 'STRING', 'id': '1337', 'name': 'col_name'}]} self.query_string = "SELECT whatever FROM some_table WHERE sky=blue" def test_len(self): with patch.object(self.syn, "_queryTable", return_value=self.query_result_dict) as mocked_table_query: query_result_table = TableQueryResult(self.syn, self.query_string) args, kwargs = mocked_table_query.call_args assert self.query_string == kwargs['query'] assert 2 == len(query_result_table) def test_iter_metadata__no_etag(self): with patch.object(self.syn, "_queryTable", return_value=self.query_result_dict): query_result_table = TableQueryResult(self.syn, self.query_string) metadata = [x for x in query_result_table.iter_row_metadata()] assert 2 == len(metadata) assert (1, 2, None) == metadata[0] assert (5, 1, None) == metadata[1] def test_iter_metadata__has_etag(self): self.rows[0].update({'etag': 'etag1'}) self.rows[1].update({'etag': 'etag2'}) with patch.object(self.syn, "_queryTable", return_value=self.query_result_dict): query_result_table = TableQueryResult(self.syn, self.query_string) metadata = [x for x in query_result_table.iter_row_metadata()] assert 2 == len(metadata) assert (1, 2, 'etag1') == metadata[0] assert (5, 1, 'etag2') == metadata[1] class TestPartialRow: """ Testing PartialRow class """ def test_constructor__value_not_dict(self): with pytest.raises(ValueError): PartialRow([], 123) def test_constructor__row_id_string_not_castable_to_int(self): with pytest.raises(ValueError): PartialRow({}, "fourty-two") def test_constructor__row_id_is_int_castable_string(self): partial_row = PartialRow({}, "350") assert [] == partial_row.values assert 350 == partial_row.rowId assert 'etag' not in partial_row def test_constructor__values_translation(self): values = OrderedDict([("12345", "rowValue"), ("09876", "otherValue")]) partial_row = PartialRow(values, 711) expected_values = [{"key": "12345", "value": "rowValue"}, {"key": "09876", "value": "otherValue"}] assert expected_values == partial_row.values assert 711 == partial_row.rowId assert 'etag' not in partial_row def test_constructor__with_etag(self): partial_row = PartialRow({}, 420, "my etag") assert [] == partial_row.values assert 420 == partial_row.rowId assert "my etag" == partial_row.etag def test_constructor__name_to_col_id(self): values = OrderedDict([("row1", "rowValue"), ("row2", "otherValue")]) names_to_col_id = {"row1": "12345", "row2": "09876"} partial_row = PartialRow(values, 711, nameToColumnId=names_to_col_id) expected_values = [{"key": "12345", "value": "rowValue"}, {"key": "09876", "value": "otherValue"}] assert expected_values == partial_row.values assert 711 == partial_row.rowId class TestPartialRowSet: def test_constructor__not_all_rows_of_type_PartialRow(self): rows = [PartialRow({}, 123), "some string instead"] with pytest.raises(ValueError): PartialRowset("syn123", rows) def test_constructor__single_PartialRow(self): partial_row = PartialRow({}, 123) partial_rowset = PartialRowset("syn123", partial_row) assert [partial_row] == partial_rowset.rows class TestCsvFileTable: def test_iter_metadata__has_etag(self): string_io = StringIOContextManager("ROW_ID,ROW_VERSION,ROW_ETAG,asdf\n" "1,2,etag1,\"I like trains\"\n" "5,1,etag2,\"weeeeeeeeeeee\"\n") with patch.object(io, "open", return_value=string_io): csv_file_table = CsvFileTable("syn123", "/fake/file/path") metadata = [x for x in csv_file_table.iter_row_metadata()] assert 2 == len(metadata) assert (1, 2, "etag1") == metadata[0] assert (5, 1, "etag2") == metadata[1] def test_iter_metadata__no_etag(self): string_io = StringIOContextManager("ROW_ID,ROW_VERSION,asdf\n" "1,2,\"I like trains\"\n" "5,1,\"weeeeeeeeeeee\"\n") with patch.object(io, "open", return_value=string_io): csv_file_table = CsvFileTable("syn123", "/fake/file/path") metadata = [x for x in csv_file_table.iter_row_metadata()] assert 2 == len(metadata) assert (1, 2, None) == metadata[0] assert (5, 1, None) == metadata[1] # test __iter__ def test_iter_with_no_headers(self): # self.headers is None string_io = StringIOContextManager("ROW_ID,ROW_VERSION,ROW_ETAG,col\n" "1,2,etag1,\"I like trains\"\n" "5,1,etag2,\"weeeeeeeeeeee\"\n") with patch.object(io, "open", return_value=string_io): table = CsvFileTable("syn123", "/fake/file/path") iter = table.__iter__() pytest.raises(ValueError, next, iter) def test_iter_with_no_headers_in_csv(self): # csv file does not have headers string_io = StringIOContextManager("1,2,etag1,\"I like trains\"\n" "5,1,etag2,\"weeeeeeeeeeee\"\n") with patch.object(io, "open", return_value=string_io): table = CsvFileTable("syn123", "/fake/file/path", header=False) iter = table.__iter__() pytest.raises(ValueError, next, iter) def test_iter_row_metadata_mismatch_in_headers(self): # csv file does not contain row metadata, self.headers does data = "col1,col2\n" \ "1,2\n" \ "2,1\n" cols = as_table_columns(StringIOContextManager(data)) headers = [SelectColumn(name="ROW_ID", columnType="STRING"), SelectColumn(name="ROW_VERSION", columnType="STRING")] + \ [SelectColumn.from_column(col) for col in cols] with patch.object(io, "open", return_value=StringIOContextManager(data)): table = CsvFileTable("syn123", "/fake/file/path", headers=headers) iter = table.__iter__() pytest.raises(ValueError, next, iter) def test_iter_with_table_row_metadata(self): # csv file has row metadata, self.headers does not data = "ROW_ID,ROW_VERSION,col\n" \ "1,2,\"I like trains\"\n" \ "5,1,\"weeeeeeeeeeee\"\n" cols = as_table_columns(StringIOContextManager(data)) headers = [SelectColumn.from_column(col) for col in cols] with patch.object(io, "open", return_value=StringIOContextManager(data)): table = CsvFileTable("syn123", "/fake/file/path", headers=headers) expected_rows = [["I like trains"], ["weeeeeeeeeeee"]] for expected_row, table_row in zip(expected_rows, table): assert expected_row == table_row def test_iter_with_mismatch_row_metadata(self): # self.headers and csv file headers contains mismatch row metadata data = "ROW_ID,ROW_VERSION,ROW_ETAG,col\n" \ "1,2,etag1,\"I like trains\"\n" \ "5,1,etag2,\"weeeeeeeeeeee\"\n" cols = as_table_columns(StringIOContextManager(data)) headers = [SelectColumn(name="ROW_ID", columnType="STRING"), SelectColumn(name="ROW_VERSION", columnType="STRING")] + \ [SelectColumn.from_column(col) for col in cols] with patch.object(io, "open", return_value=StringIOContextManager(data)): table = CsvFileTable("syn123", "/fake/file/path", headers=headers) iter = table.__iter__() pytest.raises(ValueError, next, iter) def test_iter_no_row_metadata(self): # both csv headers and self.headers do not contains row metadata data = "col1,col2\n" \ "1,2\n" \ "2,1\n" cols = as_table_columns(StringIOContextManager(data)) headers = [SelectColumn.from_column(col) for col in cols] with patch.object(io, "open", return_value=StringIOContextManager(data)): table = CsvFileTable("syn123", "/fake/file/path", headers=headers) expected_rows = [[1, 2], [2, 1]] for expected_row, table_row in zip(expected_rows, table): assert expected_row == table_row def test_iter_with_file_view_row_metadata(self): # csv file and self.headers contain matching row metadata data = "ROW_ID,ROW_VERSION,ROW_ETAG,col\n" \ "1,2,etag1,\"I like trains\"\n" \ "5,1,etag2,\"weeeeeeeeeeee\"\n" cols = as_table_columns(StringIOContextManager(data)) headers = [SelectColumn(name="ROW_ID", columnType="STRING"), SelectColumn(name="ROW_VERSION", columnType="STRING"), SelectColumn(name="ROW_ETAG", columnType="STRING")] + \ [SelectColumn.from_column(col) for col in cols] with patch.object(io, "open", return_value=StringIOContextManager(data)): table = CsvFileTable("syn123", "/fake/file/path", headers=headers) expected_rows = [['1', '2', "etag1", "I like trains"], ['5', '1', "etag2", "weeeeeeeeeeee"]] for expected_row, table_row in zip(expected_rows, table): assert expected_row == table_row def test_as_data_frame__no_headers(self): """Verify we don't assume a schema has defined headers when converting to a Pandas data frame""" data = { 'ROW_ID': ['1', '5'], 'ROW_VERSION': ['2', '1'], 'ROW_ETAG': ['etag1', 'etag2'], 'col': ['I like trains', 'weeeeeeeeeeee'] } pd_df = pd.DataFrame(data) expected_df = pd.DataFrame( index=['1_2_etag1', '5_1_etag2'], columns=['col'], data=data['col'], ) with patch.object(pd, 'read_csv') as mock_read_csv: mock_read_csv.return_value = pd_df table = CsvFileTable('syn123', '/fake/file/path') df = table.asDataFrame() pd.testing.assert_frame_equal(expected_df, df) def test_as_data_frame__list_columns(self): """Verify list columns are represented as expected when converted to a Pandas dataframe""" data = { 'string_list': ['["foo", "bar"]', '["wizzle", "wozzle"]'], 'integer_list': ['[1, 5]', '[2, 1]'], 'boolean_list': ['[true, false]', '[false, true]'], 'fill': [None, None], } pd_df =
pd.DataFrame(data)
pandas.DataFrame
# -*- coding: utf-8 -*- from datetime import timedelta from distutils.version import LooseVersion import numpy as np import pytest import pandas as pd import pandas.util.testing as tm from pandas import ( DatetimeIndex, Int64Index, Series, Timedelta, TimedeltaIndex, Timestamp, date_range, timedelta_range ) from pandas.errors import NullFrequencyError @pytest.fixture(params=[pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)], ids=str) def delta(request): # Several ways of representing two hours return request.param @pytest.fixture(params=['B', 'D']) def freq(request): return request.param class TestTimedeltaIndexArithmetic(object): # Addition and Subtraction Operations # ------------------------------------------------------------- # TimedeltaIndex.shift is used by __add__/__sub__ def test_tdi_shift_empty(self): # GH#9903 idx = pd.TimedeltaIndex([], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) def test_tdi_shift_hours(self): # GH#9903 idx = pd.TimedeltaIndex(['5 hours', '6 hours', '9 hours'], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.TimedeltaIndex(['8 hours', '9 hours', '12 hours'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.TimedeltaIndex(['2 hours', '3 hours', '6 hours'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='H'), exp) def test_tdi_shift_minutes(self): # GH#9903 idx = pd.TimedeltaIndex(['5 hours', '6 hours', '9 hours'], name='xxx') tm.assert_index_equal(idx.shift(0, freq='T'), idx) exp = pd.TimedeltaIndex(['05:03:00', '06:03:00', '9:03:00'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='T'), exp) exp = pd.TimedeltaIndex(['04:57:00', '05:57:00', '8:57:00'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='T'), exp) def test_tdi_shift_int(self): # GH#8083 trange = pd.to_timedelta(range(5), unit='d') + pd.offsets.Hour(1) result = trange.shift(1) expected = TimedeltaIndex(['1 days 01:00:00', '2 days 01:00:00', '3 days 01:00:00', '4 days 01:00:00', '5 days 01:00:00'], freq='D') tm.assert_index_equal(result, expected) def test_tdi_shift_nonstandard_freq(self): # GH#8083 trange = pd.to_timedelta(range(5), unit='d') + pd.offsets.Hour(1) result = trange.shift(3, freq='2D 1s') expected = TimedeltaIndex(['6 days 01:00:03', '7 days 01:00:03', '8 days 01:00:03', '9 days 01:00:03', '10 days 01:00:03'], freq='D') tm.assert_index_equal(result, expected) def test_shift_no_freq(self): # GH#19147 tdi = TimedeltaIndex(['1 days 01:00:00', '2 days 01:00:00'], freq=None) with pytest.raises(NullFrequencyError): tdi.shift(2) # ------------------------------------------------------------- def test_ufunc_coercions(self): # normal ops are also tested in tseries/test_timedeltas.py idx = TimedeltaIndex(['2H', '4H', '6H', '8H', '10H'], freq='2H', name='x') for result in [idx * 2, np.multiply(idx, 2)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['4H', '8H', '12H', '16H', '20H'], freq='4H', name='x') tm.assert_index_equal(result, exp) assert result.freq == '4H' for result in [idx / 2, np.divide(idx, 2)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['1H', '2H', '3H', '4H', '5H'], freq='H', name='x') tm.assert_index_equal(result, exp) assert result.freq == 'H' idx = TimedeltaIndex(['2H', '4H', '6H', '8H', '10H'], freq='2H', name='x') for result in [-idx, np.negative(idx)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['-2H', '-4H', '-6H', '-8H', '-10H'], freq='-2H', name='x') tm.assert_index_equal(result, exp) assert result.freq == '-2H' idx = TimedeltaIndex(['-2H', '-1H', '0H', '1H', '2H'], freq='H', name='x') for result in [abs(idx), np.absolute(idx)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['2H', '1H', '0H', '1H', '2H'], freq=None, name='x') tm.assert_index_equal(result, exp) assert result.freq is None # ------------------------------------------------------------- # Binary operations TimedeltaIndex and integer def test_tdi_add_int(self, one): # Variants of `one` for #19012 rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng + one expected = timedelta_range('1 days 10:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) def test_tdi_iadd_int(self, one): rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) expected = timedelta_range('1 days 10:00:00', freq='H', periods=10) rng += one tm.assert_index_equal(rng, expected) def test_tdi_sub_int(self, one): rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng - one expected = timedelta_range('1 days 08:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) def test_tdi_isub_int(self, one): rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) expected = timedelta_range('1 days 08:00:00', freq='H', periods=10) rng -= one tm.assert_index_equal(rng, expected) # ------------------------------------------------------------- # __add__/__sub__ with integer arrays @pytest.mark.parametrize('box', [np.array, pd.Index]) def test_tdi_add_integer_array(self, box): # GH#19959 rng = timedelta_range('1 days 09:00:00', freq='H', periods=3) other = box([4, 3, 2]) expected = TimedeltaIndex(['1 day 13:00:00'] * 3) result = rng + other tm.assert_index_equal(result, expected) result = other + rng tm.assert_index_equal(result, expected) @pytest.mark.parametrize('box', [np.array, pd.Index]) def test_tdi_sub_integer_array(self, box): # GH#19959 rng = timedelta_range('9H', freq='H', periods=3) other = box([4, 3, 2]) expected = TimedeltaIndex(['5H', '7H', '9H']) result = rng - other tm.assert_index_equal(result, expected) result = other - rng tm.assert_index_equal(result, -expected) @pytest.mark.parametrize('box', [np.array, pd.Index]) def test_tdi_addsub_integer_array_no_freq(self, box): # GH#19959 tdi = TimedeltaIndex(['1 Day', 'NaT', '3 Hours']) other = box([14, -1, 16]) with pytest.raises(NullFrequencyError): tdi + other with pytest.raises(NullFrequencyError): other + tdi with pytest.raises(NullFrequencyError): tdi - other with pytest.raises(NullFrequencyError): other - tdi # ------------------------------------------------------------- # Binary operations TimedeltaIndex and timedelta-like # Note: add and sub are tested in tests.test_arithmetic def test_tdi_iadd_timedeltalike(self, delta): # only test adding/sub offsets as + is now numeric rng = timedelta_range('1 days', '10 days') expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') rng += delta tm.assert_index_equal(rng, expected) def test_tdi_isub_timedeltalike(self, delta): # only test adding/sub offsets as - is now numeric rng = timedelta_range('1 days', '10 days') expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') rng -= delta tm.assert_index_equal(rng, expected) # ------------------------------------------------------------- def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') pytest.raises(TypeError, lambda: tdi - dt) pytest.raises(TypeError, lambda: tdi - dti) pytest.raises(TypeError, lambda: td - dt) pytest.raises(TypeError, lambda: td - dti) result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): assert result == expected assert isinstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches pytest.raises(TypeError, lambda: dt_tz - ts) pytest.raises(TypeError, lambda: dt_tz - dt) pytest.raises(TypeError, lambda: dt_tz - ts_tz2) pytest.raises(TypeError, lambda: dt - dt_tz) pytest.raises(TypeError, lambda: ts - dt_tz) pytest.raises(TypeError, lambda: ts_tz2 - ts) pytest.raises(TypeError, lambda: ts_tz2 - dt) pytest.raises(TypeError, lambda: ts_tz - ts_tz2) # with dti pytest.raises(TypeError, lambda: dti - ts_tz) pytest.raises(TypeError, lambda: dti_tz - ts) pytest.raises(TypeError, lambda: dti_tz - ts_tz2) result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length pytest.raises(ValueError, lambda: tdi + dti[0:1]) pytest.raises(ValueError, lambda: tdi[0:1] + dti) # random indexes pytest.raises(NullFrequencyError, lambda: tdi + Int64Index([1, 2, 3])) # this is a union! # pytest.raises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') assert result == expected result = td + dt expected = Timestamp('20130102') assert result == expected def test_ops_ndarray(self): td = Timedelta('1 day') # timedelta, timedelta other = pd.to_timedelta(['1 day']).values expected = pd.to_timedelta(['2 days']).values tm.assert_numpy_array_equal(td + other, expected) if LooseVersion(np.__version__) >= LooseVersion('1.8'): tm.assert_numpy_array_equal(other + td, expected) pytest.raises(TypeError, lambda: td + np.array([1])) pytest.raises(TypeError, lambda: np.array([1]) + td) expected = pd.to_timedelta(['0 days']).values tm.assert_numpy_array_equal(td - other, expected) if LooseVersion(np.__version__) >= LooseVersion('1.8'): tm.assert_numpy_array_equal(-other + td, expected) pytest.raises(TypeError, lambda: td - np.array([1])) pytest.raises(TypeError, lambda: np.array([1]) - td) expected = pd.to_timedelta(['2 days']).values tm.assert_numpy_array_equal(td * np.array([2]), expected) tm.assert_numpy_array_equal(np.array([2]) * td, expected) pytest.raises(TypeError, lambda: td * other) pytest.raises(TypeError, lambda: other * td) tm.assert_numpy_array_equal(td / other, np.array([1], dtype=np.float64)) if LooseVersion(np.__version__) >= LooseVersion('1.8'): tm.assert_numpy_array_equal(other / td, np.array([1], dtype=np.float64)) # timedelta, datetime other = pd.to_datetime(['2000-01-01']).values expected = pd.to_datetime(['2000-01-02']).values tm.assert_numpy_array_equal(td + other, expected) if LooseVersion(np.__version__) >= LooseVersion('1.8'): tm.assert_numpy_array_equal(other + td, expected) expected = pd.to_datetime(['1999-12-31']).values tm.assert_numpy_array_equal(-td + other, expected) if LooseVersion(np.__version__) >= LooseVersion('1.8'): tm.assert_numpy_array_equal(other - td, expected) def test_timedelta_ops_with_missing_values(self): # setup s1 = pd.to_timedelta(Series(['00:00:01'])) s2 = pd.to_timedelta(Series(['00:00:02'])) sn = pd.to_timedelta(Series([pd.NaT])) df1 = pd.DataFrame(['00:00:01']).apply(pd.to_timedelta) df2 = pd.DataFrame(['00:00:02']).apply(pd.to_timedelta) dfn = pd.DataFrame([pd.NaT]).apply(pd.to_timedelta) scalar1 = pd.to_timedelta('00:00:01') scalar2 = pd.to_timedelta('00:00:02') timedelta_NaT = pd.to_timedelta('NaT') actual = scalar1 + scalar1 assert actual == scalar2 actual = scalar2 - scalar1 assert actual == scalar1 actual = s1 + s1 tm.assert_series_equal(actual, s2) actual = s2 - s1 tm.assert_series_equal(actual, s1) actual = s1 + scalar1 tm.assert_series_equal(actual, s2) actual = scalar1 + s1 tm.assert_series_equal(actual, s2) actual = s2 - scalar1 tm.assert_series_equal(actual, s1) actual = -scalar1 + s2 tm.assert_series_equal(actual, s1) actual = s1 + timedelta_NaT tm.assert_series_equal(actual, sn) actual = timedelta_NaT + s1 tm.assert_series_equal(actual, sn) actual = s1 - timedelta_NaT tm.assert_series_equal(actual, sn) actual = -timedelta_NaT + s1 tm.assert_series_equal(actual, sn) with pytest.raises(TypeError): s1 + np.nan with pytest.raises(TypeError): np.nan + s1 with pytest.raises(TypeError): s1 - np.nan with pytest.raises(TypeError): -np.nan + s1 actual = s1 + pd.NaT tm.assert_series_equal(actual, sn) actual = s2 - pd.NaT tm.assert_series_equal(actual, sn) actual = s1 + df1 tm.assert_frame_equal(actual, df2) actual = s2 - df1 tm.assert_frame_equal(actual, df1) actual = df1 + s1 tm.assert_frame_equal(actual, df2) actual = df2 - s1 tm.assert_frame_equal(actual, df1) actual = df1 + df1 tm.assert_frame_equal(actual, df2) actual = df2 - df1 tm.assert_frame_equal(actual, df1) actual = df1 + scalar1 tm.assert_frame_equal(actual, df2) actual = df2 - scalar1 tm.assert_frame_equal(actual, df1) actual = df1 + timedelta_NaT tm.assert_frame_equal(actual, dfn) actual = df1 - timedelta_NaT tm.assert_frame_equal(actual, dfn) with pytest.raises(TypeError): df1 + np.nan with pytest.raises(TypeError): df1 - np.nan actual = df1 + pd.NaT # NaT is datetime, not timedelta tm.assert_frame_equal(actual, dfn) actual = df1 - pd.NaT tm.assert_frame_equal(actual, dfn) def test_tdi_ops_attributes(self): rng = timedelta_range('2 days', periods=5, freq='2D', name='x') result = rng + 1 exp = timedelta_range('4 days', periods=5, freq='2D', name='x') tm.assert_index_equal(result, exp) assert result.freq == '2D' result = rng - 2 exp = timedelta_range('-2 days', periods=5, freq='2D', name='x') tm.assert_index_equal(result, exp) assert result.freq == '2D' result = rng * 2 exp = timedelta_range('4 days', periods=5, freq='4D', name='x') tm.assert_index_equal(result, exp) assert result.freq == '4D' result = rng / 2 exp = timedelta_range('1 days', periods=5, freq='D', name='x') tm.assert_index_equal(result, exp) assert result.freq == 'D' result = -rng exp =
timedelta_range('-2 days', periods=5, freq='-2D', name='x')
pandas.timedelta_range
#Import all packages needed import pandas as pd import numpy as np from config import username, password from progressbar import progressbar from webull import webull # https://github.com/tedchou12/webull/wiki/MFA #login to webull-API/authenticate with API wb = webull() wb.login(username, password) #Grab all active stocks on webull-API data = wb.get_active_gainer_loser('active', 9999) #Convert to dataframe data =
pd.DataFrame(data)
pandas.DataFrame
# # Copyright 2018 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations from datetime import time from os.path import abspath, dirname, join from unittest import TestCase import typing import re import functools import itertools import pathlib from collections import abc import pytest import numpy as np import pandas as pd import pandas.testing as tm from pandas import Timedelta, read_csv from parameterized import parameterized import pytz from pytz import UTC from toolz import concat from exchange_calendars import get_calendar from exchange_calendars.calendar_utils import ( ExchangeCalendarDispatcher, _default_calendar_aliases, _default_calendar_factories, ) from exchange_calendars.errors import ( CalendarNameCollision, InvalidCalendarName, NoSessionsError, ) from exchange_calendars.exchange_calendar import ExchangeCalendar, days_at_time from .test_utils import T class FakeCalendar(ExchangeCalendar): name = "DMY" tz = "Asia/Ulaanbaatar" open_times = ((None, time(11, 13)),) close_times = ((None, time(11, 49)),) class CalendarRegistrationTestCase(TestCase): def setup_method(self, method): self.dummy_cal_type = FakeCalendar self.dispatcher = ExchangeCalendarDispatcher({}, {}, {}) def teardown_method(self, method): self.dispatcher.clear_calendars() def test_register_calendar(self): # Build a fake calendar dummy_cal = self.dummy_cal_type() # Try to register and retrieve the calendar self.dispatcher.register_calendar("DMY", dummy_cal) retr_cal = self.dispatcher.get_calendar("DMY") self.assertEqual(dummy_cal, retr_cal) # Try to register again, expecting a name collision with self.assertRaises(CalendarNameCollision): self.dispatcher.register_calendar("DMY", dummy_cal) # Deregister the calendar and ensure that it is removed self.dispatcher.deregister_calendar("DMY") with self.assertRaises(InvalidCalendarName): self.dispatcher.get_calendar("DMY") def test_register_calendar_type(self): self.dispatcher.register_calendar_type("DMY", self.dummy_cal_type) retr_cal = self.dispatcher.get_calendar("DMY") self.assertEqual(self.dummy_cal_type, type(retr_cal)) def test_both_places_are_checked(self): dummy_cal = self.dummy_cal_type() # if instance is registered, can't register type with same name self.dispatcher.register_calendar("DMY", dummy_cal) with self.assertRaises(CalendarNameCollision): self.dispatcher.register_calendar_type("DMY", type(dummy_cal)) self.dispatcher.deregister_calendar("DMY") # if type is registered, can't register instance with same name self.dispatcher.register_calendar_type("DMY", type(dummy_cal)) with self.assertRaises(CalendarNameCollision): self.dispatcher.register_calendar("DMY", dummy_cal) def test_force_registration(self): self.dispatcher.register_calendar("DMY", self.dummy_cal_type()) first_dummy = self.dispatcher.get_calendar("DMY") # force-register a new instance self.dispatcher.register_calendar("DMY", self.dummy_cal_type(), force=True) second_dummy = self.dispatcher.get_calendar("DMY") self.assertNotEqual(first_dummy, second_dummy) class DefaultsTestCase(TestCase): def test_default_calendars(self): dispatcher = ExchangeCalendarDispatcher( calendars={}, calendar_factories=_default_calendar_factories, aliases=_default_calendar_aliases, ) # These are ordered aliases first, so that we can deregister the # canonical factories when we're done with them, and we'll be done with # them after they've been used by all aliases and by canonical name. for name in concat([_default_calendar_aliases, _default_calendar_factories]): self.assertIsNotNone( dispatcher.get_calendar(name), "get_calendar(%r) returned None" % name ) dispatcher.deregister_calendar(name) class DaysAtTimeTestCase(TestCase): @parameterized.expand( [ # NYSE standard day ( "2016-07-19", 0, time(9, 31), pytz.timezone("America/New_York"), "2016-07-19 9:31", ), # CME standard day ( "2016-07-19", -1, time(17, 1), pytz.timezone("America/Chicago"), "2016-07-18 17:01", ), # CME day after DST start ( "2004-04-05", -1, time(17, 1), pytz.timezone("America/Chicago"), "2004-04-04 17:01", ), # ICE day after DST start ( "1990-04-02", -1, time(19, 1), pytz.timezone("America/Chicago"), "1990-04-01 19:01", ), ] ) def test_days_at_time(self, day, day_offset, time_offset, tz, expected): days = pd.DatetimeIndex([pd.Timestamp(day, tz=tz)]) result = days_at_time(days, time_offset, tz, day_offset)[0] expected = pd.Timestamp(expected, tz=tz).tz_convert(UTC) self.assertEqual(result, expected) class ExchangeCalendarTestBase(object): # Override in subclasses. answer_key_filename = None calendar_class = None # Affects test_start_bound. Should be set to earliest date for which # calendar can be instantiated, or None if no start bound. START_BOUND: pd.Timestamp | None = None # Affects test_end_bound. Should be set to latest date for which # calendar can be instantiated, or None if no end bound. END_BOUND: pd.Timestamp | None = None # Affects tests that care about the empty periods between sessions. Should # be set to False for 24/7 calendars. GAPS_BETWEEN_SESSIONS = True # Affects tests that care about early closes. Should be set to False for # calendars that don't have any early closes. HAVE_EARLY_CLOSES = True # Affects tests that care about late opens. Since most do not, defaulting # to False. HAVE_LATE_OPENS = False # Affects test_for_breaks. True if one or more calendar sessions has a # break. HAVE_BREAKS = False # Affects test_session_has_break. SESSION_WITH_BREAK = None # None if no session has a break SESSION_WITHOUT_BREAK = T("2011-06-15") # None if all sessions have breaks # Affects test_sanity_check_session_lengths. Should be set to the largest # number of hours that ever appear in a single session. MAX_SESSION_HOURS = 0 # Affects test_minute_index_to_session_labels. # Change these if the start/end dates of your test suite don't contain the # defaults. MINUTE_INDEX_TO_SESSION_LABELS_START = pd.Timestamp("2011-01-04", tz=UTC) MINUTE_INDEX_TO_SESSION_LABELS_END = pd.Timestamp("2011-04-04", tz=UTC) # Affects tests around daylight savings. If possible, should contain two # dates that are not both in the same daylight savings regime. DAYLIGHT_SAVINGS_DATES = ["2004-04-05", "2004-11-01"] # Affects test_start_end. Change these if your calendar start/end # dates between 2010-01-03 and 2010-01-10 don't match the defaults. TEST_START_END_FIRST = pd.Timestamp("2010-01-03", tz=UTC) TEST_START_END_LAST = pd.Timestamp("2010-01-10", tz=UTC) TEST_START_END_EXPECTED_FIRST = pd.Timestamp("2010-01-04", tz=UTC) TEST_START_END_EXPECTED_LAST = pd.Timestamp("2010-01-08", tz=UTC) @staticmethod def load_answer_key(filename): """ Load a CSV from tests/resources/{filename}.csv """ fullpath = join( dirname(abspath(__file__)), "./resources", filename + ".csv", ) return read_csv( fullpath, index_col=0, # NOTE: Merely passing parse_dates=True doesn't cause pandas to set # the dtype correctly, and passing all reasonable inputs to the # dtype kwarg cause read_csv to barf. parse_dates=[0, 1, 2], date_parser=lambda x: pd.Timestamp(x, tz=UTC), ) @classmethod def setup_class(cls): cls.answers = cls.load_answer_key(cls.answer_key_filename) cls.start_date = cls.answers.index[0] cls.end_date = cls.answers.index[-1] cls.calendar = cls.calendar_class(cls.start_date, cls.end_date) cls.one_minute = pd.Timedelta(1, "T") cls.one_hour = pd.Timedelta(1, "H") cls.one_day = pd.Timedelta(1, "D") cls.today = pd.Timestamp.now(tz="UTC").floor("D") @classmethod def teardown_class(cls): cls.calendar = None cls.answers = None def test_bound_start(self): if self.START_BOUND is not None: cal = self.calendar_class(self.START_BOUND, self.today) self.assertIsInstance(cal, ExchangeCalendar) start = self.START_BOUND - pd.DateOffset(days=1) with pytest.raises(ValueError, match=re.escape(f"{start}")): self.calendar_class(start, self.today) else: # verify no bound imposed cal = self.calendar_class(pd.Timestamp("1902-01-01", tz="UTC"), self.today) self.assertIsInstance(cal, ExchangeCalendar) def test_bound_end(self): if self.END_BOUND is not None: cal = self.calendar_class(self.today, self.END_BOUND) self.assertIsInstance(cal, ExchangeCalendar) end = self.END_BOUND + pd.DateOffset(days=1) with pytest.raises(ValueError, match=re.escape(f"{end}")): self.calendar_class(self.today, end) else: # verify no bound imposed cal = self.calendar_class(self.today, pd.Timestamp("2050-01-01", tz="UTC")) self.assertIsInstance(cal, ExchangeCalendar) def test_sanity_check_session_lengths(self): # make sure that no session is longer than self.MAX_SESSION_HOURS hours for session in self.calendar.all_sessions: o, c = self.calendar.open_and_close_for_session(session) delta = c - o self.assertLessEqual(delta.seconds / 3600, self.MAX_SESSION_HOURS) def test_calculated_against_csv(self): tm.assert_index_equal(self.calendar.schedule.index, self.answers.index) def test_adhoc_holidays_specification(self): """adhoc holidays should be tz-naive (#33, #39).""" dti = pd.DatetimeIndex(self.calendar.adhoc_holidays) assert dti.tz is None def test_is_open_on_minute(self): one_minute = pd.Timedelta(minutes=1) m = self.calendar.is_open_on_minute for market_minute in self.answers.market_open[1:]: market_minute_utc = market_minute # The exchange should be classified as open on its first minute self.assertTrue(m(market_minute_utc, _parse=False)) if self.GAPS_BETWEEN_SESSIONS: # Decrement minute by one, to minute where the market was not # open pre_market = market_minute_utc - one_minute self.assertFalse(m(pre_market, _parse=False)) for market_minute in self.answers.market_close[:-1]: close_minute_utc = market_minute # should be open on its last minute self.assertTrue(m(close_minute_utc, _parse=False)) if self.GAPS_BETWEEN_SESSIONS: # increment minute by one minute, should be closed post_market = close_minute_utc + one_minute self.assertFalse(m(post_market, _parse=False)) def _verify_minute( self, calendar, minute, next_open_answer, prev_open_answer, next_close_answer, prev_close_answer, ): next_open = calendar.next_open(minute, _parse=False) self.assertEqual(next_open, next_open_answer) prev_open = self.calendar.previous_open(minute, _parse=False) self.assertEqual(prev_open, prev_open_answer) next_close = self.calendar.next_close(minute, _parse=False) self.assertEqual(next_close, next_close_answer) prev_close = self.calendar.previous_close(minute, _parse=False) self.assertEqual(prev_close, prev_close_answer) def test_next_prev_open_close(self): # for each session, check: # - the minute before the open (if gaps exist between sessions) # - the first minute of the session # - the second minute of the session # - the minute before the close # - the last minute of the session # - the first minute after the close (if gaps exist between sessions) opens = self.answers.market_open.iloc[1:-2] closes = self.answers.market_close.iloc[1:-2] previous_opens = self.answers.market_open.iloc[:-1] previous_closes = self.answers.market_close.iloc[:-1] next_opens = self.answers.market_open.iloc[2:] next_closes = self.answers.market_close.iloc[2:] for ( open_minute, close_minute, previous_open, previous_close, next_open, next_close, ) in zip( opens, closes, previous_opens, previous_closes, next_opens, next_closes ): minute_before_open = open_minute - self.one_minute # minute before open if self.GAPS_BETWEEN_SESSIONS: self._verify_minute( self.calendar, minute_before_open, open_minute, previous_open, close_minute, previous_close, ) # open minute self._verify_minute( self.calendar, open_minute, next_open, previous_open, close_minute, previous_close, ) # second minute of session self._verify_minute( self.calendar, open_minute + self.one_minute, next_open, open_minute, close_minute, previous_close, ) # minute before the close self._verify_minute( self.calendar, close_minute - self.one_minute, next_open, open_minute, close_minute, previous_close, ) # the close self._verify_minute( self.calendar, close_minute, next_open, open_minute, next_close, previous_close, ) # minute after the close if self.GAPS_BETWEEN_SESSIONS: self._verify_minute( self.calendar, close_minute + self.one_minute, next_open, open_minute, next_close, close_minute, ) def test_next_prev_minute(self): all_minutes = self.calendar.all_minutes # test 20,000 minutes because it takes too long to do the rest. for idx, minute in enumerate(all_minutes[1:20000]): self.assertEqual( all_minutes[idx + 2], self.calendar.next_minute(minute, _parse=False) ) self.assertEqual( all_minutes[idx], self.calendar.previous_minute(minute, _parse=False) ) # test a couple of non-market minutes if self.GAPS_BETWEEN_SESSIONS: for open_minute in self.answers.market_open[1:]: hour_before_open = open_minute - self.one_hour self.assertEqual( open_minute, self.calendar.next_minute(hour_before_open, _parse=False), ) for close_minute in self.answers.market_close[1:]: hour_after_close = close_minute + self.one_hour self.assertEqual( close_minute, self.calendar.previous_minute(hour_after_close, _parse=False), ) def test_date_to_session_label(self): m = self.calendar.date_to_session_label sessions = self.answers.index[:30] # first 30 sessions # test for error if request session prior to first calendar session. date = self.answers.index[0] - self.one_day error_msg = ( "Cannot get a session label prior to the first calendar" f" session ('{self.answers.index[0]}'). Consider passing" " `direction` as 'next'." ) with pytest.raises(ValueError, match=re.escape(error_msg)): m(date, "previous", _parse=False) # direction as "previous" dates = pd.date_range(sessions[0], sessions[-1], freq="D") last_session = None for date in dates: session_label = m(date, "previous", _parse=False) if date in sessions: assert session_label == date last_session = session_label else: assert session_label == last_session # direction as "next" last_session = None for date in dates.sort_values(ascending=False): session_label = m(date, "next", _parse=False) if date in sessions: assert session_label == date last_session = session_label else: assert session_label == last_session # test for error if request session after last calendar session. date = self.answers.index[-1] + self.one_day error_msg = ( "Cannot get a session label later than the last calendar" f" session ('{self.answers.index[-1]}'). Consider passing" " `direction` as 'previous'." ) with pytest.raises(ValueError, match=re.escape(error_msg)): m(date, "next", _parse=False) if self.GAPS_BETWEEN_SESSIONS: not_sessions = dates[~dates.isin(sessions)][:5] for not_session in not_sessions: error_msg = ( f"`date` '{not_session}' does not represent a session. Consider" " passing a `direction`." ) with pytest.raises(ValueError, match=re.escape(error_msg)): m(not_session, "none", _parse=False) # test default behaviour with pytest.raises(ValueError, match=re.escape(error_msg)): m(not_session, _parse=False) # non-valid direction (can only be thrown if gaps between sessions) error_msg = ( "'not a direction' is not a valid `direction`. Valid `direction`" ' values are "next", "previous" and "none".' ) with pytest.raises(ValueError, match=re.escape(error_msg)): m(not_session, "not a direction", _parse=False) def test_minute_to_session_label(self): m = self.calendar.minute_to_session_label # minute is prior to first session's open minute_before_first_open = self.answers.iloc[0].market_open - self.one_minute session_label = self.answers.index[0] minutes_that_resolve_to_this_session = [ m(minute_before_first_open, _parse=False), m(minute_before_first_open, direction="next", _parse=False), ] unique_session_labels = set(minutes_that_resolve_to_this_session) self.assertTrue(len(unique_session_labels) == 1) self.assertIn(session_label, unique_session_labels) with self.assertRaises(ValueError): m(minute_before_first_open, direction="previous", _parse=False) with self.assertRaises(ValueError): m(minute_before_first_open, direction="none", _parse=False) # minute is between first session's open and last session's close for idx, (session_label, open_minute, close_minute, _, _) in enumerate( self.answers.iloc[1:-2].itertuples(name=None) ): hour_into_session = open_minute + self.one_hour minute_before_session = open_minute - self.one_minute minute_after_session = close_minute + self.one_minute next_session_label = self.answers.index[idx + 2] previous_session_label = self.answers.index[idx] # verify that minutes inside a session resolve correctly minutes_that_resolve_to_this_session = [ m(open_minute, _parse=False), m(open_minute, direction="next", _parse=False), m(open_minute, direction="previous", _parse=False), m(open_minute, direction="none", _parse=False), m(hour_into_session, _parse=False), m(hour_into_session, direction="next", _parse=False), m(hour_into_session, direction="previous", _parse=False), m(hour_into_session, direction="none", _parse=False), m(close_minute), m(close_minute, direction="next", _parse=False), m(close_minute, direction="previous", _parse=False), m(close_minute, direction="none", _parse=False), session_label, ] if self.GAPS_BETWEEN_SESSIONS: minutes_that_resolve_to_this_session.append( m(minute_before_session, _parse=False) ) minutes_that_resolve_to_this_session.append( m(minute_before_session, direction="next", _parse=False) ) minutes_that_resolve_to_this_session.append( m(minute_after_session, direction="previous", _parse=False) ) self.assertTrue( all( x == minutes_that_resolve_to_this_session[0] for x in minutes_that_resolve_to_this_session ) ) minutes_that_resolve_to_next_session = [ m(minute_after_session, _parse=False), m(minute_after_session, direction="next", _parse=False), next_session_label, ] self.assertTrue( all( x == minutes_that_resolve_to_next_session[0] for x in minutes_that_resolve_to_next_session ) ) self.assertEqual( m(minute_before_session, direction="previous", _parse=False), previous_session_label, ) if self.GAPS_BETWEEN_SESSIONS: # Make sure we use the cache correctly minutes_that_resolve_to_different_sessions = [ m(minute_after_session, direction="next", _parse=False), m(minute_after_session, direction="previous", _parse=False), m(minute_after_session, direction="next", _parse=False), ] self.assertEqual( minutes_that_resolve_to_different_sessions, [next_session_label, session_label, next_session_label], ) # make sure that exceptions are raised at the right time with self.assertRaises(ValueError): m(open_minute, "asdf", _parse=False) if self.GAPS_BETWEEN_SESSIONS: with self.assertRaises(ValueError): m(minute_before_session, direction="none", _parse=False) # minute is later than last session's close minute_after_last_close = self.answers.iloc[-1].market_close + self.one_minute session_label = self.answers.index[-1] minute_that_resolves_to_session_label = m( minute_after_last_close, direction="previous", _parse=False ) self.assertEqual(session_label, minute_that_resolves_to_session_label) with self.assertRaises(ValueError): m(minute_after_last_close, _parse=False) with self.assertRaises(ValueError): m(minute_after_last_close, direction="next", _parse=False) with self.assertRaises(ValueError): m(minute_after_last_close, direction="none", _parse=False) @parameterized.expand( [ (1, 0), (2, 0), (2, 1), ] ) def test_minute_index_to_session_labels(self, interval, offset): minutes = self.calendar.minutes_for_sessions_in_range( self.MINUTE_INDEX_TO_SESSION_LABELS_START, self.MINUTE_INDEX_TO_SESSION_LABELS_END, ) minutes = minutes[range(offset, len(minutes), interval)] np.testing.assert_array_equal( pd.DatetimeIndex(minutes.map(self.calendar.minute_to_session_label)), self.calendar.minute_index_to_session_labels(minutes), ) def test_next_prev_session(self): session_labels = self.answers.index[1:-2] max_idx = len(session_labels) - 1 # the very first session first_session_label = self.answers.index[0] with self.assertRaises(ValueError): self.calendar.previous_session_label(first_session_label, _parse=False) # all the sessions in the middle for idx, session_label in enumerate(session_labels): if idx < max_idx: self.assertEqual( self.calendar.next_session_label(session_label, _parse=False), session_labels[idx + 1], ) if idx > 0: self.assertEqual( self.calendar.previous_session_label(session_label, _parse=False), session_labels[idx - 1], ) # the very last session last_session_label = self.answers.index[-1] with self.assertRaises(ValueError): self.calendar.next_session_label(last_session_label, _parse=False) @staticmethod def _find_full_session(calendar): for session_label in calendar.schedule.index: if session_label not in calendar.early_closes: return session_label return None def test_minutes_for_period(self): # full session # find a session that isn't an early close. start from the first # session, should be quick. full_session_label = self._find_full_session(self.calendar) if full_session_label is None: raise ValueError("Cannot find a full session to test!") minutes = self.calendar.minutes_for_session(full_session_label) _open, _close = self.calendar.open_and_close_for_session(full_session_label) _break_start, _break_end = self.calendar.break_start_and_end_for_session( full_session_label ) if not pd.isnull(_break_start): constructed_minutes = np.concatenate( [ pd.date_range(start=_open, end=_break_start, freq="min"),
pd.date_range(start=_break_end, end=_close, freq="min")
pandas.date_range
import pytest from pysqlgui import core_database from pysqlgui.core_table import Table import pandas as pd def test_init_no_parameters(): db = core_database.Database() assert hasattr(db, "connection") assert hasattr(db, "cursor") assert hasattr(db, "name") assert hasattr(db, "tables") assert db.name is None assert db.tables == [] def test_init_with_name_parameter_only(): db = core_database.Database(None, None, "name_of_db") assert db.name == "name_of_db" assert isinstance(db.name, str) assert db.tables == [] def test_get_table_check_table_type(): db = core_database.Database([pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age'])],['example_table']) assert isinstance(db.get_table('example_table'), Table) def test_get_table_on_non_existent_table(): db = core_database.Database() with pytest.raises(ValueError): db.get_table('some_table_name_that_doesnt_exist') def test_remove_on_non_existent_table(): db = core_database.Database() with pytest.raises(ValueError): db.remove(Table(pd.DataFrame(), 'some_table_name_that_doesnt_exist')) def test_remove_on_existent_table(): db = core_database.Database([pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age'])],['example_table']) t = db.get_table('example_table') assert isinstance(t, Table) assert db.remove(t) is None assert len(db.tables) == 0 def test_summary_on_existent_table(): example_df = [pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age'])] db = core_database.Database(example_df, ['example_table']) df = db.summary() assert isinstance(df, pd.DataFrame) assert not df.empty assert list(df.columns.values) == ['Table Name', 'Rows', 'Columns'] assert any(df['Table Name'] == 'example_table') assert df[df['Table Name'] == 'example_table']['Rows'].values[0] == 3 assert df[df['Table Name'] == 'example_table']['Columns'].values[0] == 2 def test_info_on_existent_table_but_called_with_wrong_name(): db = core_database.Database([pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age'])],['example_table']) t = db.get_table('example_table') assert isinstance(t, Table) with pytest.raises(ValueError): db.info('table_does_not_exist') def test_info_on_existent_table(): db = core_database.Database([pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age'])],['example_table']) t = db.get_table('example_table') assert isinstance(t, Table) df = db.info('example_table') assert isinstance(df, pd.DataFrame) assert set(list(df.columns.values)) == {'Column ID', 'Column Name', 'Type', 'Not NULL?', 'Default Value', 'Primary Key?'} assert all(df[df['Column Name'] == 'Primary Key?']) assert any(df[df['Column Name'] == 'age']) def test_run_query_simple_select(): db = core_database.Database([pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age'])],['example_table']) assert isinstance(db.run_query('SELECT * FROM example_table'), pd.DataFrame) assert not db.run_query('SELECT * FROM example_table').empty def test_run_query_with_pragma(): db = core_database.Database([pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age'])],['example_table']) assert isinstance(db.run_query('''PRAGMA TABLE_INFO('example_table')'''), pd.DataFrame) assert not db.run_query('''PRAGMA TABLE_INFO('example_table')''').empty def test_run_query_wrong_syntax(): db = core_database.Database([pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age'])],['example_table']) with pytest.raises(ValueError): db.run_query('SELECT * FROMMMMM example_table') def test_select_simple_query(): db = core_database.Database([pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age'])],['example_table']) assert not db.select('''SELECT * FROM example_table''').empty def test_select_wrong_syntax(): db = core_database.Database([pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age'])],['example_table']) with pytest.raises(ValueError): db.select('SELECT * FROMMMMM example_table') def test_add_table_valid_data_in_list_but_no_table_name(): df = pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age']) db = core_database.Database() with pytest.raises(ValueError): db.add_table([df]) def test_add_table_empty_data_no_table_name(): db = core_database.Database() num_of_tables = len(db.tables) db.add_table(None, None) assert num_of_tables == len(db.tables) def test_add_table_empty_data_with_table_name(): db = core_database.Database() num_of_tables = len(db.tables) db.add_table(None, ['example_table']) assert num_of_tables == len(db.tables) def test_add_table_but_wrong_agrument_types_1(): df = pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age']) db = core_database.Database() with pytest.raises(TypeError): db.add_table([df], 'example_table') def test_add_table_but_wrong_agrument_types_2(): df = pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age']) db = core_database.Database() with pytest.raises(TypeError): db.add_table(df, 'example_table') def test_add_table_but_wrong_agrument_types_3(): df = pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age']) db = core_database.Database() with pytest.raises(TypeError): db.add_table(df, ['example_table']) def test_add_table_valid_data_in_list_and_table_name_in_list(): df = pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age']) db = core_database.Database() num_of_tables = len(db.tables) db.add_table([df], ['example_table']) assert num_of_tables == len(db.tables) - 1 def test_add_table_valid_data_in_dict(): df = pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age']) db = core_database.Database() num_of_tables = len(db.tables) db.add_table({'example_table': df}) assert num_of_tables == len(db.tables) - 1 def test_add_table_valid_data_in_dict_but_wrong_key_value_order(): df = pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age']) db = core_database.Database() with pytest.raises(TypeError): db.add_table({df: 'example_table'}) def test_rename_table(): df = pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age']) db = core_database.Database([df], ['table_1']) assert db.rename_table('table_1', 'table_1_new_name') is None assert db.get_table('table_1_new_name').name == 'table_1_new_name' def test_rename_table_empty_string(): df = pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age']) db = core_database.Database([df], ['table_1']) with pytest.raises(ValueError): db.rename_table('table_1', '') def test_rename_table_not_a_string(): df = pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age']) db = core_database.Database([df], ['table_1']) with pytest.raises(TypeError): db.rename_table('table_1', ['a_list']) def test_rename_table_which_doesnt_exist(): df = pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age']) db = core_database.Database([df], ['table_1']) with pytest.raises(ValueError): db.rename_table('some_table_name_that_doesnt_exist', 'new_name') def test_drop_table_when_no_tables_exist(): db = core_database.Database() with pytest.raises(ValueError): db.drop_table("this_table_doesnt_exist") def test_drop_table_when_no_tables_exist_empty_string(): db = core_database.Database() with pytest.raises(ValueError): db.drop_table("") def test_drop_table(): df = pd.DataFrame([['tom', 10], ['bob', 15], ['juli', 14]], columns=['name', 'age']) db = core_database.Database([df], ['table_1']) num_of_tables = len(db.tables) db.drop_table('table_1') assert num_of_tables == len(db.tables) + 1 with pytest.raises(ValueError): db.get_table('table_1') def test_create_table_empty_string(): db = core_database.Database() with pytest.raises(ValueError): db.create_table('', {'user_id': 'INT'}) def test_create_table_incorrect_table_name_format(): db = core_database.Database() with pytest.raises(ValueError): db.create_table(['not_a_string'], {'user_id': 'INT'}) def test_create_table_incorrect_column_data_format(): db = core_database.Database() with pytest.raises(ValueError): db.create_table('not_a_string', [{'user_id': 'INT'}]) def test_create_table(): db = core_database.Database() num_of_tables = len(db.tables) db.create_table('example_table', {'user_id': 'INTEGER', 'first_name': 'TEXT', 'join_date': 'DATE', 'score': 'FLOAT' }) assert num_of_tables == len(db.tables) - 1 assert db.get_table('example_table').name == 'example_table' assert db.info().shape[0] == 1 def test_create_table_with_primary_key(): db = core_database.Database() num_of_tables = len(db.tables) db.create_table('example_table', {'user_id': 'INTEGER PRIMARY KEY AUTOINCREMENT', 'first_name': 'TEXT', 'join_date': 'DATE', 'score': 'FLOAT' }) assert num_of_tables == len(db.tables) - 1 assert db.get_table('example_table').name == 'example_table' assert db.info().shape[0] == 1 def test_create_table_with_primary_key_and_foreign_key(): db = core_database.Database() num_of_tables = len(db.tables) db.create_table('example_table_1', {'user_id': 'INTEGER PRIMARY KEY AUTOINCREMENT', 'first_name': 'TEXT', 'join_date': 'DATE', 'score': 'FLOAT' }) db.create_table('example_table_2', {'food_id': 'INTEGER', 'user_id': 'INTEGER REFERENCES example_table_1(user_id)' }) assert num_of_tables == len(db.tables) - 2 assert db.info().shape[0] == 2 def test_insert_data_pandas_dataframe(): my_db = core_database.Database([pd.DataFrame({'name': ['John', 'Mary'], 'age': [32, 18]})], ['USERS']) more_data = pd.DataFrame({'name': ['Bob', 'Simram'], 'age': [22, 5]}) my_db.insert_data('USERS', more_data) assert my_db.show('USERS').shape[0] == 4 def test_insert_data_dict(): my_db = core_database.Database([pd.DataFrame({'name': ['John', 'Mary'], 'age': [32, 18]})], ['USERS']) my_db.insert_data('USERS', {'name': 'Bob', 'age': 22}) assert my_db.show('USERS').shape[0] == 3 def test_insert_data_wrong_data_type(): my_db = core_database.Database([
pd.DataFrame({'name': ['John', 'Mary'], 'age': [32, 18]})
pandas.DataFrame
"""Parse Tecan files, group lists and fit titrations. (Titrations are described in list.pH or list.cl file. Builds 96 titrations and export them in txt files. In the case of 2 labelblocks performs a global fit saving a png and printing the fitting results.) :ref:`prtecan parse`: * Labelblock * Tecanfile :ref:`prtecan group`: * LabelblocksGroup * TecanfilesGroup * Titration * TitrationAnalysis Functions --------- .. autofunction:: fit_titration .. autofunction:: fz_Kd_singlesite .. autofunction:: fz_pK_singlesite .. autofunction:: extract_metadata .. autofunction:: strip_lines """ import copy import hashlib import itertools import os import warnings from typing import Any, Dict, List, Optional, Tuple, Union # , overload import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy import scipy.stats import seaborn as sb from matplotlib.backends.backend_pdf import PdfPages list_of_lines = List[List] # bug xdoctest-3.7 #import numpy.typing as npt def strip_lines(lines: list_of_lines) -> list_of_lines: """Remove empty fields/cells from lines read from a csv file. ([a,,b,,,]-->[a,b]) Parameters ---------- lines Lines that are a list of fields, typically from a csv/xls file. Returns ------- Lines removed from blank cells. """ stripped_lines = [] for line in lines: sl = [line[i] for i in range(len(line)) if line[i] != ''] stripped_lines.append(sl) return stripped_lines # def extract_metadata(lines: list_of_lines) -> Dict[str, Union[str, float, List[Any]]]: def extract_metadata(lines: list_of_lines) -> Dict[str, Any]: """Extract metadata from a list of stripped lines. First field is the *key*, remaining fields goes into a list of values:: ['', 'key', '', '', 'value1', '', ..., 'valueN', ''] --> {key: [value1, ..., valueN]} *Label* and *Temperature* are two exceptions:: ['Label: labelXX', '', '', '', '', '', '', ''] ['', 'Temperature: XX °C', '', '', '', '', '', ''] Parameters ---------- lines Lines that are a list of fields, typically from a csv/xls file. Returns ------- Metadata for Tecanfile or Labelblock. """ stripped_lines = strip_lines(lines) temp = { 'Temperature': float(line[0].split(':')[1].split('°C')[0]) for line in stripped_lines if len(line) == 1 and 'Temperature' in line[0] } labl = { 'Label': line[0].split(':')[1].strip() for line in stripped_lines if len(line) == 1 and 'Label' in line[0] } m1 = { line[0]: line[0] for line in stripped_lines if len(line) == 1 and 'Label' not in line[0] and 'Temperature' not in line[0] } m2: Dict[str, Union[str, float, List[str]]] = { line[0]: line[1:] for line in stripped_lines if len(line) > 1 } m2.update(m1) m2.update(temp) m2.update(labl) return m2 def fz_Kd_singlesite(K: float, p: np.ndarray, x: np.ndarray) -> np.ndarray: """Fit function for Cl titration.""" return (p[0] + p[1] * x / K) / (1 + x / K) def fz_pK_singlesite(K: float, p: np.ndarray, x: np.ndarray) -> np.ndarray: """Fit function for pH titration.""" return (p[1] + p[0] * 10 ** (K - x)) / (1 + 10 ** (K - x)) def fit_titration( kind: str, x: np.ndarray, y: np.ndarray, y2: Optional[np.ndarray] = None, residue: Optional[np.ndarray] = None, residue2: Optional[np.ndarray] = None, tval_conf: float = 0.95, ) -> pd.DataFrame: """Fit pH or Cl titration using a single-site binding model. Returns confidence interval (default=0.95) for fitting params (cov*tval), rather than standard error of the fit. Use scipy leastsq. Determine 3 fitting parameters: - binding constant *K* - and 2 plateau *SA* and *SB*. Parameters ---------- kind Titration type {'pH'|'Cl'} x, y Main dataset. y2 Second dataset (share x with main dataset). residue Residues for main dataset. residue2 Residues for second dataset. tval_conf Confidence level (default 0.95) for parameter estimations. Returns ------- Fitting results. Raises ------ NameError When kind is different than "pH" or "Cl". Examples -------- >>> fit_titration("Cl", [1, 10, 30, 100, 200], [10, 8, 5, 1, 0.1])[["K", "sK"]] K sK 0 38.955406 30.201929 """ if kind == 'pH': fz = fz_pK_singlesite elif kind == 'Cl': fz = fz_Kd_singlesite else: raise NameError('kind= pH or Cl') def compute_p0(x: np.ndarray, y: np.ndarray) -> np.ndarray: df = pd.DataFrame({'x': x, 'y': y}) SA = df.y[df.x == min(df.x)].values[0] SB = df.y[df.x == max(df.x)].values[0] K = np.average([max(y), min(y)]) try: x1, y1 = df[df['y'] >= K].values[0] except IndexError: x1 = np.nan y1 = np.nan try: x2, y2 = df[df['y'] <= K].values[0] except IndexError: x2 = np.nan y2 = np.nan K = (x2 - x1) / (y2 - y1) * (K - y1) + x1 return np.r_[K, SA, SB] x = np.array(x) y = np.array(y) if y2 is None: def ssq1(p: np.ndarray, x: np.ndarray, y1: np.ndarray) -> np.ndarray: return np.r_[y1 - fz(p[0], p[1:3], x)] p0 = compute_p0(x, y) p, cov, info, msg, success = scipy.optimize.leastsq( ssq1, p0, args=(x, y), full_output=True, xtol=1e-11 ) else: def ssq2( p: np.ndarray, x: np.ndarray, y1: np.ndarray, y2: np.ndarray, rd1: np.ndarray, rd2: np.ndarray, ) -> np.ndarray: return np.r_[ (y1 - fz(p[0], p[1:3], x)) / rd1**2, (y2 - fz(p[0], p[3:5], x)) / rd2**2, ] p1 = compute_p0(x, y) p2 = compute_p0(x, y2) ave = np.average([p1[0], p2[0]]) p0 = np.r_[ave, p1[1], p1[2], p2[1], p2[2]] tmp = scipy.optimize.leastsq( ssq2, p0, full_output=True, xtol=1e-11, args=(x, y, y2, residue, residue2) ) p, cov, info, msg, success = tmp res = pd.DataFrame({'ss': [success]}) res['msg'] = msg if 1 <= success <= 4: try: tval = (tval_conf + 1) / 2 chisq = sum(info['fvec'] * info['fvec']) res['df'] = len(y) - len(p) res['tval'] = scipy.stats.distributions.t.ppf(tval, res.df) res['chisqr'] = chisq / res.df res['K'] = p[0] res['SA'] = p[1] res['SB'] = p[2] if y2 is not None: res['df'] += len(y2) res['tval'] = scipy.stats.distributions.t.ppf(tval, res.df) res['chisqr'] = chisq / res.df res['SA2'] = p[3] res['SB2'] = p[4] res['sSA2'] = np.sqrt(cov[3][3] * res.chisqr) * res.tval res['sSB2'] = np.sqrt(cov[4][4] * res.chisqr) * res.tval res['sK'] = np.sqrt(cov[0][0] * res.chisqr) * res.tval res['sSA'] = np.sqrt(cov[1][1] * res.chisqr) * res.tval res['sSB'] = np.sqrt(cov[2][2] * res.chisqr) * res.tval except TypeError: pass # if some params are not successfully determined. return res class Labelblock: """Parse a label block within a Tecan file. Parameters ---------- tecanfile : Object containing (has-a) this Labelblock. lines : Lines for this Labelblock. Attributes ---------- tecanfile metadata : dict Metadata specific for this Labelblock. data : Dict[str, float] The 96 data values as {'well_name': value}. Raises ------ Exception When data do not correspond to a complete 96-well plate. Warns ----- Warning When it replaces "OVER" with ``np.nan`` for any saturated value. """ def __init__( self, tecanfile: Optional['Tecanfile'], lines: list_of_lines, ) -> None: try: assert lines[14][0] == '<>' and lines[23] == lines[24] == [ '', '', '', '', '', '', '', '', '', '', '', '', '', ] except AssertionError as err: raise Exception('Cannot build Labelblock: not 96 wells?') from err stripped = strip_lines(lines) stripped[14:23] = [] self.tecanfile = tecanfile self.metadata = extract_metadata(stripped) self.data = self._extract_data(lines[15:23]) def _extract_data(self, lines: list_of_lines) -> Dict[str, float]: """Convert data into a dictionary. {'A01' : value} : {'H12' : value} Parameters ---------- lines xls file read into lines. Returns ------- dict Data from a label block. Raises ------ Exception When something went wrong. Possibly because not 96-well. Warns ----- When a cell contains saturated signal (converted into np.nan). """ rownames = tuple('ABCDEFGH') data = {} try: assert len(lines) == 8 for i, row in enumerate(rownames): assert lines[i][0] == row # e.g. "A" == "A" for col in range(1, 13): try: data[row + "{0:0>2}".format(col)] = float(lines[i][col]) except ValueError: data[row + "{0:0>2}".format(col)] = np.nan path = self.tecanfile.path if self.tecanfile else "" warnings.warn( "OVER value in {0}{1:0>2} well for {2} of tecanfile: {3}".format( row, col, self.metadata['Label'], path ) ) except AssertionError as err: raise Exception("Cannot extract data in Labelblock: not 96 wells?") from err return data KEYS = [ 'Emission Bandwidth', 'Emission Wavelength', 'Excitation Bandwidth', 'Excitation Wavelength', 'Integration Time', 'Mode', 'Number of Flashes', ] def __eq__(self, other: object) -> bool: """Two labelblocks are equal when metadata KEYS are identical.""" # Identical labelblocks can be grouped safely into the same titration; otherwise # some kind of normalization (# of flashes, gain, etc.) would be # necessary. if not isinstance(other, Labelblock): return NotImplemented eq: bool = True for k in Labelblock.KEYS: eq *= self.metadata[k] == other.metadata[k] # 'Gain': [81.0, 'Manual'] = 'Gain': [81.0, 'Optimal'] They are equal eq *= self.metadata['Gain'][0] == other.metadata['Gain'][0] # annotation error: Value of type "Union[str, float, List[str]]" is not indexable return eq class Tecanfile: """Parse a .xls file as exported from Tecan. Parameters ---------- path Name of the xls file. Attributes ---------- path metadata : dict General metadata for Tecanfile e.g. 'Date:' or 'Shaking Duration:'. labelblocks : List[Labelblock] All labelblocks contained in the file. Methods ------- read_xls(path) : Read xls file at path. lookup_csv_lines(csvl, pattern='Label: Label', col=0) : Return row index for pattern found at col. Raises ------ FileNotFoundError When path does not exist. Exception When no Labelblock is found. """ def __init__(self, path: str) -> None: csvl = Tecanfile.read_xls(path) idxs = Tecanfile.lookup_csv_lines(csvl, pattern='Label: Label', col=0) if len(idxs) == 0: raise Exception('No Labelblock found.') # path self.path = path # metadata self.metadata = extract_metadata(csvl[: idxs[0]]) # labelblocks labelblocks = [] n_labelblocks = len(idxs) idxs.append(len(csvl)) for i in range(n_labelblocks): labelblocks.append(Labelblock(self, csvl[idxs[i] : idxs[i + 1]])) self.labelblocks = labelblocks def __eq__(self, other: object) -> bool: """Two Tecanfile are equal if their attributes are.""" # never used thus far. # https://izziswift.com/compare-object-instances-for-equality-by-their-attributes/ return self.__dict__ == other.__dict__ def __hash__(self) -> int: """Define hash (related to __eq__) using self.path.""" return hash(self.path) @classmethod def read_xls(cls, path: str) -> list_of_lines: """Read first sheet of an xls file. Parameters ---------- path Path to .xls file. Returns ------- Lines. """ df = pd.read_excel(path) n0 = pd.DataFrame([[np.nan] * len(df.columns)], columns=df.columns) df = pd.concat([n0, df], ignore_index=True) df.fillna('', inplace=True) return df.values.tolist() @classmethod def lookup_csv_lines( cls, csvl: list_of_lines, pattern: str = 'Label: Label', col: int = 0, ) -> List[int]: """Lookup the line number where given pattern occurs. If nothing found return empty list. Parameters ---------- csvl Lines of a csv/xls file. pattern Pattern to be searched for., default="Label: Label" col Column to search (line-by-line). Returns ------- Row/line index for all occurrences of pattern. """ idxs = [] for i, line in enumerate(csvl): if pattern in line[col]: idxs.append(i) return idxs class LabelblocksGroup: """Group of labelblocks with 'equal' metadata. Parameters ---------- labelblocks List of labelblocks with 'equal' metadata. Attributes ---------- metadata : dict The common metadata. temperatures : List[float] The temperatire value for each Labelblock. data : Dict[str, List[float]] The usual dict for data (see Labelblock) with well name as key but with list of values as value. Raises ------ Exception If metadata are not all 'equal'. """ buffer: Dict[str, List[float]] data: Dict[str, List[float]] def __init__(self, labelblocks: List[Labelblock]) -> None: try: for lb in labelblocks[1:]: assert labelblocks[0] == lb except AssertionError as err: raise AssertionError('Creation of labelblock group failed.') from err # build common metadata only metadata = {} for k in Labelblock.KEYS: metadata[k] = labelblocks[0].metadata[k] # list with first element don't care about Manual/Optimal metadata['Gain'] = [labelblocks[0].metadata['Gain'][0]] self.metadata = metadata # temperatures temperatures = [] for lb in labelblocks: temperatures.append(lb.metadata['Temperature']) self.temperatures = temperatures # data datagrp: Dict[str, List[float]] = {} for key in labelblocks[0].data.keys(): datagrp[key] = [] for lb in labelblocks: datagrp[key].append(lb.data[key]) self.data = datagrp class TecanfilesGroup: """Group of Tecanfiles containing at least one common Labelblock. Parameters ---------- filenames List of xls (paths) filenames. Attributes ---------- labelblocksgroups : List[LabelblocksGroup] Each group contains its own data like a titration. Raises ------ Exception When is not possible to build any LabelblocksGroup because nothing in common between files (listed in filenames). Warns ----- Warning The Tecanfiles listed in *filenames* are suppossed to contain the "same" list (of length N) of Labelblocks. So, N labelblocksgroups will be normally created. A warn will raise if not all Tecanfiles contains the same number of Labelblocks ('equal' mergeable) in the same order, but a number M < N of groups can be built. """ def __init__(self, filenames: List[str]) -> None: tecanfiles = [] for f in filenames: tecanfiles.append(Tecanfile(f)) tf0 = tecanfiles[0] grps = [] if all([tf0.labelblocks == tf.labelblocks for tf in tecanfiles[1:]]): # expected behaviour for i, _lb in enumerate(tf0.labelblocks): gr = LabelblocksGroup([tf.labelblocks[i] for tf in tecanfiles]) grps.append(gr) else: # Try to creates as many as possible groups of labelblocks # with length=len(tecanfiles). # Not for 'equal' labelblocks within the same tecanfile. n_tecanfiles = len(tecanfiles) nmax_labelblocks = max([len(tf.labelblocks) for tf in tecanfiles]) for idx in itertools.product(range(nmax_labelblocks), repeat=n_tecanfiles): try: for i, tf in enumerate(tecanfiles): tf.labelblocks[idx[i]] except IndexError: continue # if all labelblocks exhist else: try: gr = LabelblocksGroup( [tf.labelblocks[idx[i]] for i, tf in enumerate(tecanfiles)] ) except AssertionError: continue # if labelblocks are all 'equal' else: grps.append(gr) if len(grps) == 0: raise Exception('No common labelblock in filenames' + str(filenames)) else: warnings.warn( 'Different LabelblocksGroup among filenames.' + str(filenames) ) self.metadata = tecanfiles[0].metadata self.labelblocksgroups = grps class Titration(TecanfilesGroup): """Group tecanfiles into a Titration as indicated by a listfile. The script will work from any directory: list.pH list filenames relative to its position. Parameters ---------- listfile File path to the listfile ([tecan_file_path conc]). Attributes ---------- conc : List[float] Concentration values common to all 96 titrations. labelblocksgroups: List[LabelblocksGroup] List of labelblocksgroups. """ def __init__(self, listfile: str) -> None: try: df = pd.read_table(listfile, names=['filenames', 'conc']) except FileNotFoundError as err: raise FileNotFoundError('Cannot find: ' + listfile) from err try: assert df["filenames"].count() == df["conc"].count() except AssertionError as err: msg = 'Check format [filenames conc] for listfile: ' raise Exception(msg + listfile) from err self.conc = df["conc"].tolist() dirname = os.path.dirname(listfile) filenames = [os.path.join(dirname, fn) for fn in df["filenames"]] super().__init__(filenames) def export_dat(self, path: str) -> None: """Export dat files [x,y1,..,yN] from labelblocksgroups. Parameters ---------- path Path to output folder. """ if not os.path.isdir(path): os.makedirs(path) for key, dy1 in self.labelblocksgroups[0].data.items(): df = pd.DataFrame({'x': self.conc, 'y1': dy1}) for n, lb in enumerate(self.labelblocksgroups[1:], start=2): dy = lb.data[key] df['y' + str(n)] = dy df.to_csv(os.path.join(path, key + '.dat'), index=False) class TitrationAnalysis(Titration): """Perform analysis of a titration. Parameters ---------- titration Titration object. schemefile File path to the schemefile (e.g. {"C01: 'V224Q'"}). Attributes ---------- scheme : pd.DataFrame or pd.Series FIXME e.g. {'buffer': ['H12']} conc : List[float] Concentration values common to all 96 titrations. labelblocksgroups : List[LabelblocksGroup] Deepcopy from titration. Methods ------- subtract_bg dilution_correction metadata_normalization calculate_conc fit """ def __init__(self, titration: Titration, schemefile: Optional[str] = None) -> None: if schemefile is None: self.scheme = pd.Series({'well': []}) else: df =
pd.read_table(schemefile)
pandas.read_table
# -*- coding: utf-8 -*- """ Created on Tue Nov 2 22:43:12 2021 @author: obnit """ import pandas as pd , matplotlib.pyplot as plt , numpy as np df = pd.read_csv('Export/tested.csv') df.Date = pd.to_datetime(df.Date) df.set_index('Date', inplace=True) df = df.resample('MS').sum() df['Percent'] = ((df['Positive']/df['Negative'])*100) df1 =
pd.read_csv('Export/reported.csv')
pandas.read_csv
#! /usr/bin/env python # -*- coding: utf-8 -*- """ @version: @author: zzh @file: factor_earning_expectation.py @time: 2019-9-19 """ import pandas as pd class FactorEarningExpectation(): """ 盈利预期 """ def __init__(self): __str__ = 'factor_earning_expectation' self.name = '盈利预测' self.factor_type1 = '盈利预测' self.factor_type2 = '盈利预测' self.description = '个股盈利预测因子' @staticmethod def NPFY1(tp_earning, factor_earning_expect, trade_date, dependencies=['net_profit_fy1']): """ :name: 一致预期净利润(FY1) :desc: 一致预期净利润的未来第一年度的预测 :unit: 元 :view_dimension: 10000 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'net_profit_fy1': 'NPFY1'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY2(tp_earning, factor_earning_expect, trade_date, dependencies=['net_profit_fy2']): """ :name: 一致预期净利润(FY2) :desc: 一致预期净利润的未来第二年度的预测 :unit: 元 :view_dimension: 10000 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'net_profit_fy2': 'NPFY2'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY1(tp_earning, factor_earning_expect, trade_date, dependencies=['eps_fy1']): """ :name: 一致预期每股收益(FY1) :desc: 一致预期每股收益未来第一年度的预测均值 :unit: 元 :view_dimension: 1 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'eps_fy1': 'EPSFY1'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY2(tp_earning, factor_earning_expect, trade_date, dependencies=['eps_fy2']): """ :name: 一致预期每股收益(FY2) :desc: 一致预期每股收益未来第二年度的预测均值 :unit: 元 :view_dimension: 1 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'eps_fy2': 'EPSFY2'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def OptIncFY1(tp_earning, factor_earning_expect, trade_date, dependencies=['operating_revenue_fy1']): """ :name: 一致预期营业收入(FY1) :desc: 一致预期营业收入未来第一年度的预测均值 :unit: 元 :view_dimension: 10000 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'operating_revenue_fy1': 'OptIncFY1'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def OptIncFY2(tp_earning, factor_earning_expect, trade_date, dependencies=['operating_revenue_fy2']): """ :name: 一致预期营业收入(FY2) :desc: 一致预期营业收入未来第二年度的预测均值 :unit: 元 :view_dimension: 10000 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'operating_revenue_fy2': 'OptIncFY2'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def CEPEFY1(tp_earning, factor_earning_expect, trade_date, dependencies=['pe_fy1']): """ :name: 一致预期市盈率(PE)(FY1) :desc: 一致预期市盈率未来第一年度的预测均值 :unit: 倍 :view_dimension: 1 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'pe_fy1': 'CEPEFY1'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def CEPEFY2(tp_earning, factor_earning_expect, trade_date, dependencies=['pe_fy2']): """ :name: 一致预期市盈率(PE)(FY2) :desc: 一致预期市盈率未来第二年度的预测均值 :unit: 倍 :view_dimension: 1 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'pe_fy2': 'CEPEFY2'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def CEPBFY1(tp_earning, factor_earning_expect, trade_date, dependencies=['pb_fy1']): """ :name: 一致预期市净率(PB)(FY1) :desc: 一致预期市净率未来第一年度的预测均值 :unit: 倍 :view_dimension: 1 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'pb_fy1': 'CEPBFY1'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def CEPBFY2(tp_earning, factor_earning_expect, trade_date, dependencies=['pb_fy2']): """ :name: 一致预期市净率(PB)(FY2) :desc: 一致预期市净率未来第二年度的预测均值 :unit: 倍 :view_dimension: 1 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'pb_fy2': 'CEPBFY2'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def CEPEGFY1(tp_earning, factor_earning_expect, trade_date, dependencies=['peg_fy1']): """ :name: 市盈率相对盈利增长比率(FY1) :desc: 未来第一年度市盈率相对盈利增长比率 :unit: :view_dimension: 0.01 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'peg_fy1': 'CEPEGFY1'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def CEPEGFY2(tp_earning, factor_earning_expect, trade_date, dependencies=['peg_fy2']): """ :name: 市盈率相对盈利增长比率(FY2) :desc: 未来第二年度市盈率相对盈利增长比率 :unit: :view_dimension: 0.01 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'peg_fy2': 'CEPEGFY2'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def _change_rate(tp_earning, trade_date, pre_trade_date, colunm, factor_name): earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, colunm] earning_expect_pre = tp_earning[tp_earning['publish_date'] == pre_trade_date].loc[:, colunm] earning_expect = pd.merge(earning_expect, earning_expect_pre, on='security_code', how='left') earning_expect[factor_name] = (earning_expect[colunm + '_x'] - earning_expect[colunm + '_y']) / \ earning_expect[colunm + '_y'] earning_expect.drop(columns=[colunm + '_x', colunm + '_y'], inplace=True) return earning_expect @staticmethod def _change_value(tp_earning, trade_date, pre_trade_date, colunm, factor_name): earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, colunm] earning_expect_pre = tp_earning[tp_earning['publish_date'] == pre_trade_date].loc[:, colunm] earning_expect = pd.merge(earning_expect, earning_expect_pre, on='security_code', how='left') earning_expect[factor_name] = (earning_expect[colunm + '_x'] - earning_expect[colunm + '_y']) earning_expect.drop(columns=[colunm + '_x', colunm + '_y'], inplace=True) return earning_expect @staticmethod def NPFY11WRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化率_一周 :desc: 未来第一年度一致预测净利润一周内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 2: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[1], 'net_profit_fy1', 'NPFY11WRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY11MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化率_一月 :desc: 未来第一年度一致预测净利润一月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 3: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[2], 'net_profit_fy1', 'NPFY11MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY13MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化率_三月 :desc: 未来第一年度一致预测净利润三月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 4: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[3], 'net_profit_fy1', 'NPFY13MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY16MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化率_六月 :desc: 未来第一年度一致预测净利润六月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 5: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[4], 'net_profit_fy1', 'NPFY16MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY11WChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化_一周 :desc: 未来第一年度一致预测每股收益一周内预测值变化 :unit: 元 :view_dimension: 1 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 2: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[1], 'eps_fy1', 'EPSFY11WChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY11MChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化_一月 :desc: 未来第一年度一致预测每股收益一月内预测值变化 :unit: 元 :view_dimension: 1 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 3: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[2], 'eps_fy1', 'EPSFY11MChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY13MChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化_三月 :desc: 未来第一年度一致预测每股收益三月内预测值变化 :unit: 元 :view_dimension: 1 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 4: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[3], 'eps_fy1', 'EPSFY13MChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY16MChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化_六月 :desc: 未来第一年度一致预测每股收益六月内预测值变化 :unit: 元 :view_dimension: 1 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 5: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[4], 'eps_fy1', 'EPSFY16MChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY11WRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化率_一周 :desc: 未来第一年度一致预测每股收益一周内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 2: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[1], 'eps_fy1', 'EPSFY11WRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY11MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化率_一月 :desc: 未来第一年度一致预测每股收益一月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 3: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[2], 'eps_fy1', 'EPSFY11MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY13MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化率_三月 :desc: 未来第一年度一致预测每股收益三月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 4: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[3], 'eps_fy1', 'EPSFY13MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY16MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化率_六月 :desc: 未来第一年度一致预测每股收益六月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 5: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[4], 'eps_fy1', 'EPSFY16MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY11WChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化_一周 :desc: 未来第一年度一致预测净利润一周内预测值变化 :unit: 元 :view_dimension: 10000 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 2: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[1], 'net_profit_fy1', 'NPFY11WChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY11MChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化_一月 :desc: 未来第一年度一致预测净利润一月内预测值变化 :unit: 元 :view_dimension: 10000 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 3: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[2], 'net_profit_fy1', 'NPFY11MChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY13MChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化_三月 :desc: 未来第一年度一致预测净利润三月内预测值变化 :unit: 元 :view_dimension: 10000 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 4: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[3], 'net_profit_fy1', 'NPFY13MChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY16MChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化_六月 :desc: 未来第一年度一致预测净利润六月内预测值变化 :unit: 元 :view_dimension: 10000 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 5: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[4], 'net_profit_fy1', 'NPFY16MChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def ChgNPFY1FY2(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY2)与一致预期净利润(FY1)的变化率 :desc: 未来第二年度一致预测净利润与未来第一年度一致预测净利润变化率 :unit: :view_dimension: 0.01 """ factor_earning_expect['ChgNPFY1FY2'] = factor_earning_expect['NPFY2'] - factor_earning_expect['NPFY1'] / abs( factor_earning_expect['NPFY1']) * 100 return factor_earning_expect @staticmethod def ChgEPSFY1FY2(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY2)与一致预期每股收益(FY1)的变化率 :desc: 未来第二年度一致预测每股收益与未来第一年度一致预测每股收益变化率 :unit: :view_dimension: 0.01 """ factor_earning_expect['ChgEPSFY1FY2'] = factor_earning_expect['EPSFY2'] - factor_earning_expect['EPSFY1'] / abs( factor_earning_expect['EPSFY1']) * 100 return factor_earning_expect @staticmethod def OptIncFY11WRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测营业收入(FY1)变化_一周 :desc: 未来第一年度一致预测营业收入一周内预测值变化 :unit: 元 :view_dimension: 10000 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 2: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[1], 'operating_revenue_fy1', 'OptIncFY11WRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def OptIncFY11MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测营业收入(FY1)变化_一月 :desc: 未来第一年度一致预测营业收入一月内预测值变化 :unit: 元 :view_dimension: 10000 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 3: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[2], 'operating_revenue_fy1', 'OptIncFY11MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def OptIncFY13MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测营业收入(FY1)变化_三月 :desc: 未来第一年度一致预测营业收入三月内预测值变化 :unit: 元 :view_dimension: 10000 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 4: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[3], 'operating_revenue_fy1', 'OptIncFY13MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def OptIncFY16MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测营业收入(FY1)变化_六月 :desc: 未来第一年度一致预测营业收入六月内预测值变化 :unit: 元 :view_dimension: 10000 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 5: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[4], 'operating_revenue_fy1', 'OptIncFY16MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def OptIncFY11WChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测营业收入(FY1)变化率_一周 :desc: 未来第一年度一致预测营业收入一周内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 2: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[1], 'operating_revenue_fy1', 'OptIncFY11WChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def OptIncFY11MChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测营业收入(FY1)变化率_一月 :desc: 未来第一年度一致预测营业收入一月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 3: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[2], 'operating_revenue_fy1', 'OptIncFY11MChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def OptIncFY13MChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测营业收入(FY1)变化率_三月 :desc: 未来第一年度一致预测营业收入三月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 4: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[3], 'operating_revenue_fy1', 'OptIncFY13MChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def OptIncFY16MChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测营业收入(FY1)变化率_六月 :desc: 未来第一年度一致预测营业收入六月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 5: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[4], 'operating_revenue_fy1', 'OptIncFY16MChg') factor_earning_expect =
pd.merge(factor_earning_expect, earning_expect, on='security_code')
pandas.merge
import logging import pandas as pd import core.artificial_signal_generators as carsigen import helpers.hprint as hprint import helpers.hunit_test as hunitest _LOG = logging.getLogger(__name__) class TestArmaProcess(hunitest.TestCase): def test1(self) -> None: ar_params = [0.75, -0.25] ma_params = [0.65, 0.35] arma_process = carsigen.ArmaProcess(ar_params, ma_params) realization = arma_process.generate_sample( {"start": "2000-01-01", "periods": 40, "freq": "B"}, scale=1, burnin=10, ) self.check_string( hunitest.convert_df_to_string( realization, title=realization.name, index=True ) ) def test2(self) -> None: ar_params = [0.5] ma_params = [-0.5] arma_process = carsigen.ArmaProcess(ar_params, ma_params) realization = arma_process.generate_sample( {"start": "2000-01-01", "periods": 40, "freq": "B"}, scale=1, burnin=5, ) self.check_string( hunitest.convert_df_to_string( realization, title=realization.name, index=True ) ) def test3(self) -> None: ar_params = [] ma_params = [] arma_process = carsigen.ArmaProcess(ar_params, ma_params) realization = arma_process.generate_sample( {"start": "2000-01-01", "periods": 40, "freq": "B"}, scale=1, burnin=5, ) self.check_string( hunitest.convert_df_to_string( realization, title=realization.name, index=True ) ) class TestMultivariateNormalProcess(hunitest.TestCase): def test1(self) -> None: mn_process = carsigen.MultivariateNormalProcess() mn_process.set_cov_from_inv_wishart_draw(dim=4, seed=0) realization = mn_process.generate_sample( {"start": "2000-01-01", "periods": 40, "freq": "B"}, seed=0 ) self.check_string(hunitest.convert_df_to_string(realization, index=True)) def test2(self) -> None: mean =
pd.Series([1, 2])
pandas.Series
import pandas import sqlite3 database_file_name = "data.db" filename = "LIWC2015 Results (users (52235 files)).csv" def number(n): return float(n.replace(",", ".")) def put_personality_to_database(row, cursor): sql_query = f'INSERT INTO personality (author, WC, C, A, O, E, N) values ("{row.Filename}", {row.WC}, {row.C}, {row.A}, {row.O}, {row.E}, {row.N})' cursor.execute(sql_query) with open(filename) as f: data = f.readlines() data_split = [v.replace(",", ";", 2).replace("\n", "").split(";") for v in data] pandas_data =
pandas.DataFrame(data_split[1:], columns=data_split[0])
pandas.DataFrame
"""Survival dataset preview or pre-processing functionality. """ import pandas as pd from sklearn.model_selection import ShuffleSplit from .vision import plot_km_survf from .simulator import SimulatedData def survival_stats(data, t_col="t", e_col="e", plot=False): """ Print statistics of survival data. Parameters ---------- data: pandas.DataFrame Survival data you specified. t_col: str Column name of data indicating time. e_col: str Column name of data indicating events or status. plot: boolean Whether plot survival curve. """ print("--------------- Survival Data Statistics ---------------") N = len(data) print("# Rows:", N) print("# Columns: %d + %s + %s" % (len(data.columns) - 2, e_col, t_col)) print("# Event Percentage: %.2f%%" % (100.0 * data[e_col].sum() / N)) print("# Min Time:", data[t_col].min()) print("# Max Time:", data[t_col].max()) print("") if plot: plot_km_survf(data, t_col=t_col, e_col=e_col) def survival_df(data, t_col="t", e_col="e", label_col="Y", exclude_col=[]): """ Transform original DataFrame to survival dataframe that would be used in model training or predicting. Parameters ---------- data: DataFrame Survival data to be transformed. t_col: str Column name of data indicating time. e_col: str Column name of data indicating events or status. label_col: str Name of new label in transformed survival data. exclude_col: list Columns to be excluded. Returns ------- DataFrame: Transformed survival data. Negtive values in label are taken as right censored. """ x_cols = [c for c in data.columns if c not in [t_col, e_col] + exclude_col] # Negtive values are taken as right censored data.loc[:, label_col] = data.loc[:, t_col] data.loc[data[e_col] == 0, label_col] = - data.loc[data[e_col] == 0, label_col] return data[x_cols + [label_col]] def load_simulated_data(hr_ratio, N=1000, num_features=10, num_var=2, average_death=5, end_time=15, method="gaussian", gaussian_config={}, seed=42): """ Load simulated data generated by the exponentional distribution. Parameters ---------- hr_ratio: int or float `lambda_max` hazard ratio. N: int The number of observations. average_death: int or float Average death time that is the mean of the Exponentional distribution. end_time: int or float Censoring time that represents an 'end of study'. Any death time greater than end_time will be censored. num_features: int Size of observation vector. Default: 10. num_var: int Number of varaibles simulated data depends on. Default: 2. method: string The type of simulated data. 'linear' or 'gaussian'. gaussian_config: dict Dictionary of additional parameters for gaussian simulation. seed: int Random state. Returns ------- pandas.DataFrame A simulated survival dataset following the given args. Notes ----- <NAME>. Generating survival times to simulate cox proportional hazards models with time-varying covariates. Statistics in medicine, 31(29):3946-3958, 2012. """ generator = SimulatedData(hr_ratio, average_death=average_death, end_time=end_time, num_features=num_features, num_var=num_var) raw_data = generator.generate_data(N, method=method, gaussian_config=gaussian_config, seed=seed) # Transform to DataFrame df = pd.DataFrame(raw_data['x'], columns=['x_' + str(i) for i in range(num_features)]) df['e'] = raw_data['e'] df['t'] = raw_data['t'] return df def load_data(file_path, t_col='t', e_col='e', excluded_cols=[], split_ratio=1.0, normalize=False, seed=42): """ load csv file and return a standard survival data for traning or testing. Parameters ---------- file_path: str File path. Only support for csv file. t_col: str Column name of observed time in your data. e_col: str Column name of observed status in your data. excluded_cols: list Columns will not be included in the final data. split_ratio: float If `split_ratio` is set to 1.0, then full data will be obtained. Otherwise, the splitted data will be returned. normalize: bool If true, then data will be normalized by Min-Max scale. seed: int Random seed for splitting data. Returns ------ pandas.DataFrame Or tuple of two DataFrames if split_ratio is less than 1.0. """ # Read csv data data_all = pd.read_csv(file_path) # list columns out Y_cols = [t_col, e_col] _not_int_x_cols = Y_cols + excluded_cols X_cols = [x for x in data_all.columns if x not in _not_int_x_cols] X = data_all[X_cols] y = data_all[Y_cols] # Normalized data if normalize: for col in X_cols: X[col + "_norm"] = (X[col] - X[col].mean()) / (X[col].max() - X[col].min()) X.drop(columns=X_cols, inplace=True) # Split data if split_ratio == 1.0: train_X, train_y = X, y return pd.concat([train_X, train_y], axis=1) else: sss = ShuffleSplit(n_splits=1, test_size=1 - split_ratio, random_state=seed) for train_index, test_index in sss.split(X, y): train_X, test_X = X.loc[train_index, :], X.loc[test_index, :] train_y, test_y = y.loc[train_index, :], y.loc[test_index, :] return
pd.concat([train_X, train_y], axis=1)
pandas.concat
import os import time import glob import pandas as pd from dateutil import parser import dask.dataframe as dd #%% directories and files data_root = os.path.normpath('/home/andreas/data') dia_dir = os.path.join(data_root, 'TXT', 'DIA') dia_files = glob.glob(dia_dir + '/*.txt') parquet_file = os.path.join(data_root, 'dia.parquet') #%% Helper functions def get_field_names(txt_file): df = pd.read_csv(txt_file, sep = '|', nrows = 10) return list(df.columns) field_names = get_field_names(dia_files[0]) #%% Diagnosis reports # New dask data frame ddf = dd.from_pandas(pd.DataFrame(), npartitions = 10) # Loop over all text files start = time.time() for t, txt_file in enumerate(dia_files): # Read the entire text into a single string with open(txt_file) as fd: next(fd) data = fd.read() # Split rows by \n data_split = data.split('\n') print('Number of rows in file', len(data_split)) # Loop over all reports in this file series_list = [] for row in range(len(data_split)): # split report by field and remove \n row_text = data_split[row].split('|') if len(row_text) >= len(field_names): ser_dict = dict(zip(field_names, row_text[0:len(field_names)])) # Convert datetime datetime_field = 'Date' timestamp = parser.parse(ser_dict[datetime_field]) year = timestamp.year ser_dict[datetime_field] = timestamp ser_dict['Report_Year'] = year ser_dict['Report_File'] = os.path.basename(txt_file) # Create pandas series object series = pd.Series(ser_dict) # Add series to list series_list.append(series) if (row+1)%100000==0: print('File {file}/{total_files}, Note {note}/{total_notes}'.format(file = t+1, total_files = len(dia_files), note = row+1, total_notes = len(data_split))) print('Time {0:.2f} minutes.'.format((time.time()-start)/60)) # Data frame for this file from list of pd.series objects df =
pd.DataFrame(series_list)
pandas.DataFrame
import pandas as pd # type: ignore import numpy as np # type: ignore import tqdm # type: ignore import json import os ############################################### # Convert wyscout json files to wyscout.h5 ############################################### def jsonfiles_to_h5(jsonfiles, h5file): matches = [] players : list = [] teams: list = [] with pd.HDFStore(h5file) as store: for jsonfile in jsonfiles: with open(jsonfile, "r", encoding="utf-8") as fh: root = json.load(fh) matches.append(get_match(root)) teams += get_teams(root) players += get_players(root) events = get_events(root) store[f"events/match_{get_match_id(root)}"] = pd.DataFrame(events) store["matches"] = pd.DataFrame(matches).drop_duplicates("wyId") store["teams"] = pd.DataFrame(teams).drop_duplicates("wyId") store["players"] = pd.DataFrame(players).drop_duplicates("wyId") def get_match(root): return root["match"] def get_match_id(root): return root["match"]["wyId"] def get_teams(root): return [t["team"] for t in root["teams"].values() if t.get("team")] def get_players(root): return [ player["player"] for team in root["players"].values() for player in team if player.get("player") ] def get_events(root): return root["events"] ################################### # Convert wyscout.h5 to spadl.h5 # WARNING: HERE BE DRAGONS # This code for converting wyscout data was organically grown over a long period of time. # It works for now, but needs to be cleaned up in the future. # Enter at your own risk. ################################### import socceraction.spadl.config as spadlcfg spadl_length = spadlcfg.field_length spadl_width = spadlcfg.field_width bodyparts = spadlcfg.bodyparts results = spadlcfg.results actiontypes = spadlcfg.actiontypes min_dribble_length = 3 max_dribble_length = 60 max_dribble_duration = 10 def convert_to_spadl(wyscouth5, spadlh5): with pd.HDFStore(wyscouth5) as wyscoutstore, pd.HDFStore(spadlh5) as spadlstore: print("...Inserting actiontypes") spadlstore["actiontypes"] = pd.DataFrame( list(enumerate(actiontypes)), columns=["type_id", "type_name"] ) print("...Inserting bodyparts") spadlstore["bodyparts"] = pd.DataFrame( list(enumerate(bodyparts)), columns=["bodypart_id", "bodypart_name"] ) print("...Inserting results") spadlstore["results"] = pd.DataFrame( list(enumerate(results)), columns=["result_id", "result_name"] ) print("...Converting games") matches = wyscoutstore["matches"] games = convert_games(matches) spadlstore["games"] = games print("...Converting players") spadlstore["players"] = convert_players(wyscoutstore["players"]) print("...Converting teams") spadlstore["teams"] = convert_teams(wyscoutstore["teams"]) print("...Generating player_games") player_games = [] for match in tqdm.tqdm(list(matches.itertuples()), unit="game"): events = wyscoutstore[f"events/match_{match.wyId}"] pg = get_player_games(match, events) player_games.append(pg) player_games = pd.concat(player_games) spadlstore["player_games"] = player_games print("...Converting events to actions") for game in tqdm.tqdm(list(games.itertuples()), unit="game"): events = wyscoutstore[f"events/match_{game.game_id}"] actions = convert_actions(events, game.home_team_id) spadlstore[f"actions/game_{game.game_id}"] = actions gamesmapping = { "wyId": "game_id", "dateutc": "game_date", "competitionId": "competition_id", "seasonId": "season_id", } def convert_games(matches): cols = ["game_id", "competition_id", "season_id", "game_date"] games = matches.rename(columns=gamesmapping)[cols] games["home_team_id"] = matches.teamsData.apply(lambda x: get_team_id(x, "home")) games["away_team_id"] = matches.teamsData.apply(lambda x: get_team_id(x, "away")) return games def get_team_id(teamsData, side): for team_id, data in teamsData.items(): if data["side"] == side: return int(team_id) playermapping = { "wyId": "player_id", "shortName": "short_name", "firstName": "first_name", "lastName": "last_name", "birthDate": "birth_date", } def convert_players(players): cols = ["player_id", "short_name", "first_name", "last_name", "birth_date"] return players.rename(columns=playermapping)[cols] teammapping = { "wyId": "team_id", "name": "short_team_name", "officialName": "team_name", } def convert_teams(teams): cols = ["team_id", "short_team_name", "team_name"] return teams.rename(columns=teammapping)[cols] def get_player_games(match, events): game_id = match.wyId teamsData = match.teamsData duration = 45 + events[events.matchPeriod == "2H"].eventSec.max() / 60 playergames : dict = {} for team_id, teamData in teamsData.items(): formation = teamData.get("formation", {}) pg = { player["playerId"]: { "game_id": game_id, "team_id": team_id, "player_id": player["playerId"], "minutes_played": duration, } for player in formation.get("lineup", []) } substitutions = formation.get("substitutions", []) if substitutions != "null": for substitution in substitutions: substitute = { "game_id": game_id, "team_id": team_id, "player_id": substitution["playerIn"], "minutes_played": duration - substitution["minute"], } pg[substitution["playerIn"]] = substitute pg[substitution["playerOut"]]["minutes_played"] = substitution["minute"] playergames = {**playergames, **pg} return pd.DataFrame(playergames.values()) def convert_actions(events, home_team_id): events = augment_events(events) events = fix_wyscout_events(events) actions = create_df_actions(events) actions = fix_actions(actions) actions = fix_direction_of_play(actions, home_team_id) actions = fix_clearances(actions) actions = add_dribbles(actions) return actions def augment_events(events_df): events_df = pd.concat([events_df, get_tagsdf(events_df)], axis=1) events_df = make_new_positions(events_df) events_df["type_id"] = ( events_df["eventId"] if "eventId" in events_df.columns else events_df.eventName ) events_df["subtype_id"] = ( events_df["subEventId"] if "subEventId" in events_df.columns else events_df.subEventName ) events_df["period_id"] = events_df.matchPeriod.apply(lambda x: wyscout_periods[x]) events_df["player_id"] = events_df["playerId"] events_df["team_id"] = events_df["teamId"] events_df["game_id"] = events_df["matchId"] events_df["milliseconds"] = events_df.eventSec * 1000 return events_df def get_tag_set(tags): return {tag["id"] for tag in tags} def get_tagsdf(events): tags = events.tags.apply(get_tag_set) tagsdf = pd.DataFrame() for (tag_id, column) in wyscout_tags: tagsdf[column] = tags.apply(lambda x: tag_id in x) return tagsdf wyscout_periods = {"1H": 1, "2H": 2, "E1": 3, "E2": 4, "P": 5} wyscout_tags = [ (101, "goal"), (102, "own_goal"), (301, "assist"), (302, "key_pass"), (1901, "counter_attack"), (401, "left_foot"), (402, "right_foot"), (403, "head/body"), (1101, "direct"), (1102, "indirect"), (2001, "dangerous_ball_lost"), (2101, "blocked"), (801, "high"), (802, "low"), (1401, "interception"), (1501, "clearance"), (201, "opportunity"), (1301, "feint"), (1302, "missed_ball"), (501, "free_space_right"), (502, "free_space_left"), (503, "take_on_left"), (504, "take_on_right"), (1601, "sliding_tackle"), (601, "anticipated"), (602, "anticipation"), (1701, "red_card"), (1702, "yellow_card"), (1703, "second_yellow_card"), (1201, "position_goal_low_center"), (1202, "position_goal_low_right"), (1203, "position_goal_mid_center"), (1204, "position_goal_mid_left"), (1205, "position_goal_low_left"), (1206, "position_goal_mid_right"), (1207, "position_goal_high_center"), (1208, "position_goal_high_left"), (1209, "position_goal_high_right"), (1210, "position_out_low_right"), (1211, "position_out_mid_left"), (1212, "position_out_low_left"), (1213, "position_out_mid_right"), (1214, "position_out_high_center"), (1215, "position_out_high_left"), (1216, "position_out_high_right"), (1217, "position_post_low_right"), (1218, "position_post_mid_left"), (1219, "position_post_low_left"), (1220, "position_post_mid_right"), (1221, "position_post_high_center"), (1222, "position_post_high_left"), (1223, "position_post_high_right"), (901, "through"), (1001, "fairplay"), (701, "lost"), (702, "neutral"), (703, "won"), (1801, "accurate"), (1802, "not_accurate"), ] def make_position_vars(event_id, positions): if len(positions) == 2: # if less than 2 then action is removed start_x = positions[0]["x"] start_y = positions[0]["y"] end_x = positions[1]["x"] end_y = positions[1]["y"] elif len(positions) == 1: start_x = positions[0]["x"] start_y = positions[0]["y"] end_x = start_x end_y = start_y else: start_x = None start_y = None end_x = None end_y = None return
pd.Series([event_id, start_x, start_y, end_x, end_y])
pandas.Series
import os import re import json import numpy as np import pandas as pd import operator import base64 os.environ['DJANGO_SETTINGS_MODULE'] = 'zazz_site.settings' import django django.setup() from django.core.exceptions import ObjectDoesNotExist from django.core import serializers from zazz import models from time import gmtime, strftime from functools import reduce from itertools import product from collections import OrderedDict, defaultdict from zazz.models import Samples print ('OFFLINE:') g = { } import_errors = defaultdict(int) ''' class Mutations(models.Model): vep = models.ManyToManyField(to="VEP") name = models.CharField(null=False, max_length=100) alternative = models.CharField(null=True, max_length=100) reference = models.CharField(null=True, max_length=100) this_type = models.CharField(null=False, choices=[('name', 'GENERIC'), ('rs_name', 'rs'), ('hgvs_name', 'hgvs')], max_length=100) ''' class ZazzException(Exception): def set_info(self, info): self.info = info def convert_to_base64(s): return base64.b64encode(bytes(s, encoding='ascii')).decode() def decode_base64_json(s): return json.loads(base64.b64decode(s.replace('_', '='))) def print_now(): return strftime("%Y-%m-%d %H:%M:%S", gmtime()) def get_model(name): return getattr(models, name) def create_field_parameters(parameters): return ', '.join(['{k} = {v}'.format(k=k,v=v) for k,v in parameters.items()]) def create_field(field): # if field['type'] in ['MultiSelectField']: # this_models = '' # else: # this_models = 'models.' this_models = 'models.' return ' {name} = {this_models}{type_}({parameters})'.format( name=field['name'].replace(' ', '_'), this_models=this_models, type_ = field['type'], parameters = create_field_parameters(field['parameters']), ) def create_fields(fields): return '\n'.join([create_field(field) for field in fields]) def get_table_pattern(): table_pattern = ''' class {table}(models.Model): {meta_val} {fields_val} ''' return table_pattern def table_pattern_f(table, fields_val, meta_val=''): table_pattern = get_table_pattern() return table_pattern.format(table=table, fields_val=fields_val, meta_val=meta_val) def create_external(external): #Create main table = external['name'] #fields_keys = [x for x in external['fields'] if x['name'] in external['keys']] fields_keys = external['fields'] fields_val = create_fields(fields_keys) ret = table_pattern_f(table=table, fields_val=fields_val) #Create secondary return ret def create_externals(externals): ''' externals = [ {'name': 'Clinvar', 'filename': 'clinvar.csv', 'type': 'csv', 'fields': [ {'name': 'Chromosome', 'type': 'CharField', 'parameters': {'max_length': '100'}}, {'name': 'Position', 'type': 'IntegerField', 'parameters': {}}, {'name': 'Clinical Significance', 'type': 'CharField', 'parameters': {'max_length': '100'}}, ], 'keys': ['Chromosome', 'Position'], }, ] ''' return '\n'.join(map(create_external, externals)) def create_table(table, fields, externals): ''' table: Name of main table fields: list fields that describe the database ''' Many2ManyTables = {} for field in fields: #if field.get('table', False): if field.get('database', False) == 'multi_1': f_table = field['table'] if not f_table in Many2ManyTables: Many2ManyTables[f_table] = [] Many2ManyTables[f_table].append(field) ''' Many2ManyTables is a dictionary. keys: are name of tables that we group fields together values is a list of these fields ''' # Transform Many2ManyTables to django tables format Many2ManyTables_text = '\n'.join([table_pattern_f(k,create_fields(v)) for k,v in Many2ManyTables.items()]) # Add the "normal" fields (not Many2Many) new_fields = [field for field in fields if field.get('database', False) != 'multi_1'] #Add fields for ManyToMany #The main table needs to have a ManytoMany relationship with the Samples table new_fields += [{'name': k, 'type': 'ManyToManyField', 'parameters': {'to': k}} for k,v in Many2ManyTables.items()] #We also need to add a "raw" field for each many2many relationship #We may have to remove this on the furture! for k,v in Many2ManyTables.items(): for f in v: # f = {'name': 'Sift', 'col_name': 'sift', 'type': 'FloatField', 'parameters': {'null': 'True'}, 'xUnits': 20, 'database': 'multi', 'l': <function import_annotated_vcf.<locals>.<lambda> at 0x116418488>, 'l_multi': <function splitUnique.<locals>.f at 0x116418510>, 'table': 'Transcripts', 'order': 21} #print (f) field_to_add = dict(f) # All raw fields should be CharFields ! if field_to_add['type'] != 'CharField': field_to_add['type'] = 'CharField' field_to_add['parameters']['max_length'] = '200' field_to_add['name'] += '_raw' new_fields.append(field_to_add) # Create a multi field index meta_val = ''' class Meta: indexes = [ models.Index( fields=['Chromosome', 'Position', 'Reference', 'Alternative'], name='sample_idx', ), ] ''' table_text = table_pattern_f(table=table, fields_val = create_fields(new_fields), meta_val=meta_val) # print (table_text) # a=1/0 models_pattern = ''' from django.db import models # from multiselectfield import MultiSelectField # Create your models here. {Many2ManyTables} class Data(models.Model): field = models.CharField(null=True, max_length=200) {table} {externals} ''' externals_text = create_externals(externals) models_text = models_pattern.format(table=table_text, Many2ManyTables=Many2ManyTables_text, externals=externals_text) print ('NEW MODELS:') print (models_text) print ('Saving to zazz/models.py..') with open('zazz/models.py', 'w') as f: f.write(models_text) print ('..DONE') print ('Running: python manage.py makemigrations ...') command = 'python manage.py makemigrations zazz' os.system(command) print (' ..DONE') print ('Running: python manage.py migrate') command = 'python manage.py migrate' os.system(command) print(' ..DONE') #print (Data.objects.all()) #df = pd.read_excel('annotations_zaganas.xlsx') #print (df[:3]) #print () #print ("python manage.py makemigrations") #print ("python manage.py migrate") def create_js_field(field): ''' IGNORE = DO NOT SHOW IN UI ''' pattern = "{{'name': '{name}', 'type': '{type}', 'selected': false, 'e_order': -1, 'database': '{database}', {special}{renderer}{table}{xUnits}{order}{include} }}" database = field.get('database', 'normal'); xUnits = '' if field.get('component') == 'freetext': type_ = 'freetext' special = "'text' : ''" # The ng-model elif field.get('component') == 'ignore': type_ = 'ignore' special = "'text' : ''" # The ng-model elif field['type'] in ['CharField', 'ManyToManyField']: type_ = 'checkbox' special = "'itemArray': [], 'selected2': ['ALL']" elif field['type'] in ['IntegerField', 'FloatField']: type_ = 'slider' special = ''''slider': { 'min': 30, 'max': 70, 'options': { 'floor': 1, 'ceil': 100, 'disabled': true, 'onEnd' : function (sliderId, modelValue, highValue, pointerType) { console.log('Slider changed'); //console.log(modelValue); // This the min //console.log(highValue); // This is the max $scope.update_table(); } }, }''' if field['type'] == 'IntegerField': if not 'xUnits' in field: raise ZazzException('xUnit missing from IntegerField') xUnits = ", 'xUnits': " + str(field['xUnits']) elif field['type'] == 'ForeignKey': type_ = 'checkbox' special = "'itemArray': [], 'selected2': ['ALL']" else: raise ZazzException('Unknown field: {}'.format(field['type'])) if 'renderer' in field: renderer = ", 'renderer': " + field['renderer'] else: renderer = '' if 'table' in field: table = ", 'table': '" + field['table'] + "'" else: table = '' if 'order' in field: order = ", 'order': " + str(field['order']) else: order = '' if 'include' in field: include = ", 'include': " + str(field['include']) else: include = '' values = { 'name': field['name'], 'type': type_, 'special': special, 'database': database, 'renderer': renderer, 'table': table, 'order': order, 'include': include, 'xUnits': xUnits, } return pattern.format(**values) def create_js_fields(fields): return ',\n'.join([create_js_field(x) for x in fields]) def create_js(fields): ''' $scope.fields = [ //{'name': 'sample', 'type': 'checkbox', 'selected': false, 'itemArray': [{id: 1, name: ''}], 'selected2': {'value': {id: 1, name: ''}} }, {'name': 'sample', 'type': 'checkbox', 'selected': false, 'itemArray': [], 'selected2': ['ALL'], 'e_order': -1 }, {'name': 'Bases', 'type': 'slider', 'selected': false, 'slider': { 'min': 30, 'max': 70, 'options': { 'floor': 1, 'ceil': 100, 'disabled': true, 'onEnd' : function (sliderId, modelValue, highValue, pointerType) { console.log('Slider changed'); //console.log(modelValue); // This the min //console.log(highValue); // This is the max $scope.update_table(); } }, }, 'e_order': -1}, {'name':'Barcode_Name', 'type':'checkbox', 'selected': false, 'itemArray': [], 'selected2': ['ALL'], 'e_order': -1 } ]; ''' print ('JAVASCRIPT:') fields_val = f'$scope.fields=[{create_js_fields(fields)}];' print (fields_val) # Add fields javascript object in angular controller z_zazz_ctrl_fn = 'zazz/static/zazz/zazz_Ctrl.js' with open(z_zazz_ctrl_fn) as f: z_zazz_ctrl = f.read() z_zazz_ctrl_new = re.sub( r'// FIELDS BEGIN\n.+\n// FIELDS END\n', f'// FIELDS BEGIN\n{fields_val}\n// FIELDS END\n', z_zazz_ctrl, flags=re.DOTALL ) with open(z_zazz_ctrl_fn, 'w') as f: f.write(z_zazz_ctrl_new + '\n') print ('Javed javascript at:', z_zazz_ctrl_fn) def is_dataframe(data): ''' Return true if data is a pandas dataFrame ''' return type(data) is pd.DataFrame def chromosome_unifier(chromosome): ''' All chromosome input should pass from this function. Chromosome can be declared in multiple ways.. "1", chr1, chr01, ... Here we make sure that all chromosome values are in the form chr1, chr2, chrX, chrY ''' # "15" --> chr15 if re.match(r'^\d+$', chromosome): return 'chr' + chromosome if re.match(r'^chr[\dXY]+$', chromosome): return chromosome if chromosome.upper() in ['X', 'Y']: return 'chr' + chromosome.lower() raise ZazzException(f'Unknown Chromosome value: ->{chromosome}<-') def get_value_from_record(field, record, line_index): ''' Extract the value that is present in the record and is described in the field field : Any item in fields list. field is a dictionary record: Any item in input data. DUPLICATE CODE!! FIX ME!! ''' if not field['col_name'] in record: message = '{} does not exist in record\n'.format(field['col_name']) message += 'Available columns:\n' message += '\n'.join(record.keys()) + '\n' raise ZazzException(message) try: if 'line_l' in field: value = field['line_l'](record) elif 'l' in field: value = field['l'](record[field['col_name']]) else: value = record[field['col_name']] except ZazzException as t_exception: e_message = str(t_exception) e_info = t_exception.info import_errors[e_message] += 1 value = None except Exception as e: print ('Record:') print (record) print ('Index:', line_index) raise e return value def get_key_from_record(field): ''' Get the name of the key of the record ''' key = field['name'] if field.get('database', '') == 'multi_2': pass elif field.get('database', '') == 'multi_1': key = field['name'] + '_raw' return key def create_m2m_table(schema, table): ''' Create a dictionary with all the Many2Many tables. Example: {'phylop', 'pfam', 'drugbank', 'go', 'dbsnp', 'omim', 'cosmic', 'Transcripts'} key: multi_1 table values: list with all column names. ''' m2m_tables = defaultdict(list) for field in schema: if field.get('database', '') == 'multi_1': #m2m_tables.add(field.get('table', table)) m2m_tables[field.get('table', table)].append(field) return m2m_tables def get_multi_1_records(m2m_tables, record, ): ''' example of field: {'name': 'ANN_GeneDetail_refGene', 'col_name': 'GeneDetail.refGene', 'type': 'CharField', 'parameters': {'max_length': '500', 'null': 'True'}, 'database': 'multi_1', 'table': 'ANN_GeneDetail_refGene', 'l_multi': lambda x : x.replace('\\x3d', '=').split('\\x3b'), 'order': 38}, Returns: ret: { 'nameof_m2m_tale' : { m2m_field_1: [list of values], m2m_field_2: [list of values], } } ret_raw: { 'nameof_m2m_tale' : { m2m_field_1: raw_values, m2m_field_2: raw_values, } } ''' ret = defaultdict(dict) ret_raw = defaultdict(dict) for m2m_table_key, m2m_table_value in m2m_tables.items(): for field in m2m_table_value: #print ('*** FIELD: ***') #print (field) unsplitted = record[field['col_name']] splited_values = field['l_multi'](unsplitted) ret[m2m_table_key][field['name']] = splited_values if 'l_raw_multi' in field: ret_raw[m2m_table_key][field['name'] + '_raw'] = field['l_raw_multi'](splited_values) else: ret_raw[m2m_table_key][field['name'] + '_raw'] = unsplitted #print (ret) #a=1/0 return ret, ret_raw def create_attribute_records(record_list): ''' record_list: {'k': [1,2,3], 'l': [4,5,6]} RETURNS: [{'k': 1, 'l': 4}, {'k': 2, 'l': 5}, {'k':3, 'l': 6}] ''' return [dict(zip(record_list.keys(), x)) for x in zip(*record_list.values())] def import_data_append(input_data, schema, table, externals, **kwargs): ''' Append new data kwargs: to_append_re : Regular expression to match new field names ''' # Get kwargs to_append_re = kwargs.get('to_append_re', None) assert to_append_re # Get table table_db = getattr(models, table) # Check type of input data if is_dataframe(input_data): data = input_data.to_dict('records') elif type(input_data) is dict: data = input_data else: raise ZazzException('input_data is not a pandas dataframe or a dictionary') #Get the new fields that we will add. print ('Selecting only fields according to regexp: {}'.format(to_append_re)) print ('Total fields: {}'.format(len(schema))) fields = [field for field in schema if re.match(to_append_re, field['name'])] print ('Fields after selection: {}'.format(len(fields))) assert len(fields) print ('APPENDING NEW FIELDS:') for field in fields: print (' ' + field['name']) # Get m2m_table: m2m_tables = create_m2m_table(fields, table) #print (m2m_tables) #a=1/0 this_error = defaultdict(int) for line_index, record in enumerate(data): #print (line_index, record['# locus']) if (line_index+1) % 1000 == 0: print ('{} Imported records: {}/{} {:.1%}'.format(print_now(), line_index+1, len(data), line_index/len(data))) try: database_record = table_db.objects.get(Position=record['Position'], Chromosome=record['Chromosome'], Reference=record['Reference'], Alternative=record['Alternative']) except ObjectDoesNotExist as e: this_error['Could not find chromosome/position in db'] += 1 continue for field in fields: value = get_value_from_record(field, record, line_index) key = get_key_from_record(field) #print ('{}={}'.format(field['name'], value)) setattr(database_record, key, value) #database_record.save() # Get multi_1 records: #print ('GeneDetail.refGene = ', record['GeneDetail.refGene']) multi_1_records, multi_1_records_raw = get_multi_1_records(m2m_tables, record) #print ('*** multi_1_records: ***') #print (multi_1_records) #print ('*** multi_1_records_raw: ***') #print (multi_1_records_raw) # Store multi records for m2m_table_key, m2m_table_value in m2m_tables.items(): for field in m2m_table_value: # Add raw multi_1 records setattr(database_record, field['name'] + '_raw', multi_1_records_raw[m2m_table_key][field['name'] + '_raw']) #print (database_record) #print (field['name'] + '_raw') #print (multi_1_records[m2m_table_key][field['name'] + '_raw']) #Create attribute dictionary attribute_records = create_attribute_records(multi_1_records[m2m_table_key]) #print ('*** attribute_records ***') #print (attribute_records) m2m_objects = [getattr(models, m2m_table_key).objects.get_or_create(**attribute_record)[0] for attribute_record in attribute_records] getattr(getattr(database_record, m2m_table_key), 'set')(m2m_objects) database_record.save() print ('IMPORT ERRORS ERRORS:') print (json.dumps(this_error, indent=4)) def import_data(input_data, schema, table, externals, delete=True, **kwargs): ''' model_instances = [MyModel( field_1=record['field_1'], field_2=record['field_2'], ) for record in df_records] ''' # Make sure that there is one and only one of the basic keys chromosome_field = [x for x in schema if x['name'] == 'Chromosome'] position_field = [x for x in schema if x['name'] == 'Position'] reference_field = [x for x in schema if x['name'] == 'Reference'] alternative_field = [x for x in schema if x['name'] == 'Alternative'] assert len(chromosome_field) == 1 assert len(position_field) == 1 assert len(reference_field) == 1 assert len(alternative_field) == 1 chromosome_field = chromosome_field[0] position_field = position_field[0] reference_field = reference_field[0] alternative_field = alternative_field[0] errors_1 = 0 print ('Importing externals..') if delete: print ('Deleting external --> internal') for external in externals: if external['type'] == 'internal': print (' Deleting external --> internal table: {}'.format(external['name'])) get_model(external['name']).objects.all().delete() print (' Done') print ('Deleting externals') for external in externals: if external['type'] == 'csv': print (' Deleting external table: {}'.format(external['name'])) get_model(external['name']).objects.all().delete() print (' Done') if False: ''' This is an initial effort. It is too slow. It stores all info in DB. This is inefficient if we only need a fraction of information ''' print ('Importing External Data') for external in externals: if external['type'] == 'csv': print (' Name: {}'.format(external['name'])) print (' Loading file: {}'.format(external['filename'])) csv = pd.read_csv(external['filename']) csv_dict = csv.to_dict('index') print (' Length: {}'.format(len(csv_dict))) c = 0 for index, d in csv_dict.items(): c += 1 if c % 1000 == 0: print (' {}, Records: {}'.format(print_now(), c)) if c > 1000: break #Build a dictionary with the fields. NO M2M item_fields_no_m2m = {field['name']:field['l'](d) for field in external['fields'] if not field['type'] == 'ManyToManyField'} new_item = get_model(external['name']).objects.get_or_create(**item_fields_no_m2m)[0] #new_item.save() # Build a dictionary with fields. WITH M2M for field in external['fields']: if field['type'] != 'ManyToManyField': continue item_fields_m2m = {field['name']:field['l'](d) for field in external['fields'] if field['type'] == 'ManyToManyField'} for m2m_k, m2m_v in item_fields_m2m.items(): getattr(new_item, m2m_k).add(m2m_v) new_item.save() elif external['type'] == 'internal': continue print (' Done') if is_dataframe(input_data): df = input_data elif type(input_data) is str: input_data_ext = os.path.splitext(input_data)[1] if input_data_ext == '.xlsx': print ('Reading MAIN Excel: {}'.format(input_filename)) df = pd.read_excel(input_filename) else: raise Exception('Unknown file type: ', input_data_ext ) else: raise Exception('Unknown input type', type(input_data).__name__) if False: print ('Keeping only 1000 records') df = df[:1000] data = df.to_dict('records') table_db = getattr(models, table) if delete: print ('Deleting all..') print ('Deleting table.. ', table) table_db.objects.all().delete() # Get the new fields that we will add. to_append_re = kwargs.get('to_append_re') if to_append_re: print ('Adding only fields that match regexp: {}'.format(to_append_re)) print ('Total fields: {}'.format(len(schema))) schema = [field for field in schema if re.match(to_append_re, field['name'])] # Add basic fields as well schema.extend([chromosome_field, position_field, reference_field, alternative_field]) print ('After regexp: {}'.format(len(schema))) m2m_tables = set() for field in schema: if field.get('database', '') == 'multi_1': m2m_tables.add(field.get('table', table)) if delete: for m2m_table in m2m_tables: print ('Deleting table.. ', m2m_table) mm_db = getattr(models, m2m_table) mm_db.objects.all().delete() #(field['line_l'](record)) if 'line_l' in field else (field.get('l', lambda l:l)(record[field['col_name']])) print ('Building instances..') if False: instances = [ table_db(**{ field['name'] + ('_raw' if field.get('table', table) != table else ''): (field['line_l'](record)) if 'line_l' in field else (field.get('l', lambda l:l)(record[field['col_name']])) #(field['l'] if 'l' in field else lambda x:x)(record[field['col_name']]) for field in schema if 'col_name' in field # Add only fields that have col_name. }) for record in data] # for field in schema if not field['type'] == 'ManyToManyField'}) for record in data] def create_multi_dictionary(): ''' Create multi dictionary for multi_2 ''' multi_dictionary = defaultdict(list) for field in schema: if field.get('database', False) == 'multi_2': multi_dictionary[field['table']].append(field) return multi_dictionary multi_dictionary = create_multi_dictionary() def create_multi_record(index, record): all_multi_value_lists = [] for multi_key, multi_fields in multi_dictionary.items(): #Get the values of each multi field multi_values_values = [] multi_values_keys = [] for multi_field in multi_fields: field_value = record[multi_field['col_name']] field_value_splitted = multi_field['l_multi'](field_value) multi_values_keys.append(multi_field['name']) multi_values_values.append(field_value_splitted) # Make sure that all lists has the same number of values set_of_the_length_of_all_values = set(map(len, multi_values_values)) if len(set_of_the_length_of_all_values) != 1: #error_message = 'Index: {} . Fields do not have the same size..'.format(index) error_message = 'Multi fields do not have the same size..' import_errors[error_message] += 1 print (error_message) return None #print ('multi_values_values:') #print (multi_values_values) #print ('multi_values_keys') #print (multi_values_keys) multi_values_list_of_dicts = [dict(zip(multi_values_keys,x)) for x in zip(*multi_values_values)] # [{'gene': 'NBPF9', 'transcript': 'NM_001037675.3', 'location': 'exonic', 'function': 'missense', 'codon': 'CGC', 'exon': '7', 'protein': 'p.His295Arg', 'coding': 'c.885A>G', 'sift': None}, {'gene': 'NBPF8', 'transcript': 'NM_001037501.2', 'location': 'exonic', 'function': 'missense', 'codon': 'CGC', 'exon': '6', 'protein': 'p.His295Arg', 'coding': 'c.885A>G', 'sift': None}, {'gene': 'NBPF8', 'transcript': 'NR_102404.1', 'location': 'exonic_nc', 'function': None, 'codon': None, 'exon': '6', 'protein': None, 'coding': None, 'sift': None}, {'gene': 'NBPF8', 'transcript': 'NR_102405.1', 'location': 'exonic_nc', 'function': None, 'codon': None, 'exon': '5', 'protein': None, 'coding': None, 'sift': None}, {'gene': 'NBPF9', 'transcript': 'NM_001277444.1', 'location': 'exonic', 'function': 'missense', 'codon': 'CGC', 'exon': '7', 'protein': 'p.His295Arg', 'coding': 'c.885A>G', 'sift': None}] #print (multi_values_list_of_dicts) all_multi_value_lists.append(multi_values_list_of_dicts) # Combine multiple values #print (reduce(lambda x,y: x*y, all_multi_value_lists)) if not all_multi_value_lists: return None ret = [dict(reduce(operator.or_, [y.items() for y in x])) for x in product(*all_multi_value_lists)] #print ('Multivalues:', len(ret)) #print (ret) return ret if True: instances = [] for line_index, record in enumerate(data): #print (line_index, record['# locus']) if (line_index+1) % 1000 == 0: print ('{} Imported records: {}/{} {:.1%}'.format(print_now(), line_index+1, len(data), line_index/len(data))) table_db_options = {} for field in schema: if not 'col_name' in field: # Add only fields that have col_name. continue key = field['name'] if field.get('database', '') == 'multi_2': continue # Later add multi_2 fields elif field.get('database', '') == 'multi_1': key = field['name'] + '_raw' try: if 'line_l' in field: value = field['line_l'](record) elif 'l' in field: # col_name might not exist in record! Data is not supposed to contain all fields! if not field['col_name'] in record: continue value = field['l'](record[field['col_name']]) else: # col_name might not exist in record! Data is not supposed to contain all fields! if not field['col_name'] in record: continue value = record[field['col_name']] except ZazzException as t_exception: e_message = str(t_exception) e_info = t_exception.info import_errors[e_message] += 1 value = None except Exception as e: print ('Record:') print (record) print ('Index:', line_index) raise e if pd.isnull(value): value = None # np.nan confuses django when attempting: int(np.nan) table_db_options[key] = value multi_records = create_multi_record(line_index, record) if multi_records: for multi_record in multi_records: table_db_options = {**table_db_options, **multi_record} instances.append(table_db(**table_db_options)) else: #print (table_db_options) instances.append(table_db(**table_db_options)) count = len(instances) print ('Adding IDs..') for i, instance in enumerate(instances): instance.id = i print ('{} Bulk creating main objects..'.format(print_now())) # bulk_create does not work with many-to-many relationships. ..sniff... # https://docs.djangoproject.com/en/2.0/ref/models/querysets/ if False: ''' For testing ''' print (serializers.serialize("json", instances, indent=4)) for inst in instances: inst.save() print (inst.pk) if True: table_db.objects.bulk_create(instances) print (' {} Done'.format(print_now())) print ('Indexing main objects..') querySet = table_db.objects.filter(id__gte=0, id__lt=count) assert querySet.count() == count index = {x.id:x for x in querySet} m2m_index = {} print ('Creating many to many relationships..') #errors_1 = 0 def process_multi_1(store): errors_1 = 0 # m2m_objects: store in memory ALL m2m object, so that we can bulk import them later m2m_objects = defaultdict(list) # For each record store which many to many has m2m_object_references = defaultdict(dict) for id_, record in enumerate(data): instance = index[id_] if id_ % 1000 == 0: print ('{} Entries: {}/{}'.format(print_now(), id_+1, count)) #l_multi is obligatory for m2m_table in m2m_tables: try: # field['col_name'] in record : col_name does not have to be present in record! m2m_fields = OrderedDict({field['name']: field['l_multi'](record[field['col_name']]) for field in schema if field.get('table', None) == m2m_table and field['col_name'] in record}) except ZazzException as e: import_errors[str(e)] += 1 print (str(e)) m2m_fields = {} #assert that all have the same length if not len(set(len(x) for x in m2m_fields.values())) == 1: print ('Index: {} . Fields do not have the same size..'.format(id_)) debug = {field['name']: record[field['col_name']] for field in schema if field.get('table', None) == m2m_table and field['col_name'] in record} #print (debug) #print (m2m_fields) errors_1 += 1 m2m_fields = {} #raise Exception() #Create database objects # {a: [1,2] , b: [3,4]} --> [{a:1, b:3} , {a:2, b:4}]. See also create_attribute_records() m2m_fields = [dict(zip(m2m_fields.keys(), x)) for x in zip(*m2m_fields.values())] current_length = len(m2m_objects[m2m_table]) m2m_objects[m2m_table].extend(m2m_fields) m2m_object_references[id_][m2m_table] = (current_length, current_length+len(m2m_fields)) # m2m_fields: [{'Gene': 'CLCNKB', 'Transcript': 'NM_000085.4'}, {'Gene': 'CLCNKB', 'Transcript': 'NM_001165945.2'}] if not m2m_fields: # Do nothing. #getattr(getattr(instance, m2m_table), 'set')(None) #instance.save() continue if False: ''' Always create new multi object ''' m2m_objects = [getattr(models, m2m_table)(**m2m_field) for m2m_field in m2m_fields] #Save objects for o in m2m_objects: o.save() if False: ''' Create only if they don't exist ''' m2m_objects = [getattr(models, m2m_table).objects.get_or_create(**m2m_field)[0] for m2m_field in m2m_fields] if store: ''' Create only if they don't exist ''' m2m_objects = [getattr(models, m2m_table).objects.get(**m2m_field)[0] for m2m_field in m2m_fields] #print (m2m_table, m2m_fields) #Add it to the main instance if False: getattr(getattr(instance, m2m_table), 'set')(m2m_objects) if store: #Save instance instance.save() return m2m_objects, m2m_object_references m2m_objects, m2m_object_references = process_multi_1(store=False) print ('Bulk creating Many2Many Objects') table_insance_objects = {} for m2m_table, m2m_values in m2m_objects.items(): print (' Bulk creating:', m2m_table) table_instance = getattr(models, m2m_table) table_insance_objects[m2m_table]= [table_instance(**x) for x in m2m_values] getattr(models, m2m_table).objects.bulk_create(table_insance_objects[m2m_table]) print (' Getting Primary Key of:', m2m_table) table_insance_objects[m2m_table] = table_instance.objects.all().order_by('pk') print ('Connecting main instance with m2m..') #Create through objects through_objects = {m2m_table: getattr(Samples, m2m_table).through for m2m_table in m2m_tables} for id_, record in enumerate(data): if id_ % 1000 == 0: print ('{} {}/{}'.format(print_now(), id_, len(data))) instance = index[id_] # if not id_ in m2m_object_references: continue for table_name, table_indexes in m2m_object_references[id_].items(): #print (table_insance_objects[table_name][table_indexes[0]: table_indexes[1]+1]) if True: ''' 2019-04-18 16:09:42 0/10000 2019-04-18 16:10:15 1000/10000 --> 33 2019-04-18 16:10:48 2000/10000 --> 33 2019-04-18 16:11:22 3000/10000 --> 34 2019-04-18 16:11:57 4000/10000 --> 35 2019-04-18 16:12:33 5000/10000 --> 36 ''' getattr(getattr(instance, table_name), 'set')(table_insance_objects[table_name][table_indexes[0]: table_indexes[1]+1]) if False: ''' 2019-04-18 16:05:47 0/10000 2019-04-18 16:06:14 1000/10000 --> 27 2019-04-18 16:06:43 2000/10000 --> 29 2019-04-18 16:07:13 3000/10000 --> 30 2019-04-18 16:07:48 4000/10000 --> 35 2019-04-18 16:08:27 5000/10000 --> 39 ''' tmp1 = [{table_name.lower() + '_id': table_insance_objects[table_name][i].pk, 'samples_id': instance.pk} for i in range(table_indexes[0], table_indexes[1]+1)] #print (tmp1) tmp2 = [through_objects[table_name](**x) for x in tmp1] #print (tmp2) through_objects[table_name].objects.bulk_create(tmp2) instance.save() #a=1/0 print ('Errors 1:', errors_1) print ('Annotating with external CSVs') #Index external_internals external_internals = {external['name']:external for external in externals if external['type'] == 'internal'} for external in externals: if external['type'] == 'csv': external_name = external['name'] print (' Name: {}'.format(external_name)) print (' Loading file: {}'.format(external['filename'])) csv = pd.read_csv(external['filename'], **external['read_csv_options']) csv_dict = csv.to_dict('index') print (' DONE. Length: {}'.format(len(csv_dict))) #Take the central table object all_objects = table_db.objects.all() print (' Annotating {} main records'.format(all_objects.count())) o_counter = 0 o_annotated = 0 for o in all_objects: o_counter += 1 if o_counter % 100 == 0: print (' {}. Objects: {} Annotated: {}'.format(print_now(), o_counter, o_annotated)) matched = external['matcher'](csv, o) # THIS IS VERY SLOW!! if matched.empty: continue o_annotated += 1 # This is not empty # Create foreign object # Create not M2M not_m2m = {field['name']:fields['l'](matched) for field in external['fields'] if not field['type'] == 'ManyToManyField'} foreign_object = get_model(external_name)(**not_m2m) # Save model foreign_object.save() # Create M2M objects m2m = {field['name']: field['l_m2m'](matched) for field in external['fields'] if field['type'] == 'ManyToManyField'} #print (m2m) # {'Clinical_Significance': [{'Clinical Significance': 'Benign'}]} m2m_objects = {k: [get_model(k).objects.get_or_create(**x)[0] for x in v] for k,v in m2m.items()} #print (m2m_objects) #Connect with foreign_object for k, v in m2m_objects.items(): getattr(foreign_object, k).set(v) #Save foreign_object foreign_object.save() #Now that we have the foreign_object stored, we can connect it with the foreign key of the main object setattr(o, external_name, foreign_object) # o.external_name = foreign_object #Update main object o.save() print ('Annotated {} out of {} records'.format(o_annotated, o_counter)) print ('DONE!') if False: # This is legacy code. To be removed... for field in schema: if not field['type'] == 'ManyToManyField': continue if instance is None: instance = index[id_] values = field['l_multi'](record[field['col_name']]) #Store the values m2m_db = getattr(models, field['name']) if not field['name'] in m2m_index: m2m_index[field['name']] = {} #Perform as little as possible queries to the database for value in values: if not value in m2m_index[field['name']]: m2m_index[field['name']][value] = m2m_db.objects.get_or_create(**{field['name']:value})[0] values_obj = [m2m_index[field['name']][value] for value in values] #Create M2M relationship getattr(getattr(instance, field['name']+'_multi'), 'set')(values_obj) instance.save() print ('IMPORT ERRROS') print (json.dumps(import_errors, indent=4)) print ('DONE') def comma_int(x): return int(x.replace(',', '')) def isNone(x): return None if pd.isnull(x) else x def splitUnique(field_name, sep, t=str): ''' t = type ''' def f(x): if pd.isnull(x): return [None] if not hasattr(x, 'split'): if t == str: return [str(x)] elif t == int: return [int(x)] elif t == float: return [float(x)] raise ZazzException(f'Invalid type: {type(x).__name__} in field: {field_name}') return [y if y else None for y in x.split(sep)] return f def join_set_sep(sep): def f(x): if
pd.isnull(x)
pandas.isnull
""" Generate features for most relevant EBM risk functions directly from MIMIC-IV database. """ import argparse import datetime import json import numpy as np import os import pandas as pd from joblib import Parallel, delayed from helper.io import read_item_processing_descriptions_from_excel from helper.util import output_wrapper from preprocessing.step5_generate_features_for_stays import decode_feature_time_span, feat_func_map, \ feat_func_interval_map, feat_func_interval_start_end_map, feat_func_with_times_map, feat_func_with_times_span_map, \ decode_func_and_feat_name, feat_methods from research_database.research_database_communication import ResearchDBConnection, resolve_data_column_name, \ MIMICDBConnection # Min/max values derived from concept creation routines and when necessary as seen during RF review. mimic_features_ebm = [ # Variable name, interval, function, min, max, imputation, MIMIC mimic_icu.d_items item id # own min/max # removed after inspections # ('CK', '7d', 'median', 1., 10000., 201., [225634]), ('CK', '7d', 'min', 1., 10000., 201., [225634]), ('CK-MB', '3d', 'median', 1., 10000., None, [227445]), ('CK-MB', '3d', 'max', 1., 10000., None, [227445]), # own min/max ('Chloride', '3d', 'trend', 1., 200., 103., [220602]), ('Chloride', '1d', 'min', 1., 200., 103., [220602]), # own min/max # removed after inspections # ('PTT', '3d', 'min', 1., 500., 34.3, [227466]), # ('PTT', '3d', 'max', 1., 500., 34.3, [227466]), # ('PTT', '1d', 'max', 1., 500., 34.3, [227466]), # ('PTT', '7d', 'min', 1., 500., 34.3, [227466]), # ('PTT', '7d', 'max', 1., 500., 34.3, [227466]), # Used both arterial and venous BGA together as in original cohort. Use own min/max against artifacts. ('pH', '1d', 'median', 7.0, 7.8, 7.39, [220274, 223830]), ('pH', '3d', 'median', 7.0, 7.8, 7.39, [220274, 223830]), ('pH', '3d', 'trend', 7.0, 7.8, 7.39, [220274, 223830]), ('pH', '1d', 'iqr', 7.0, 7.8, 7.39, [220274, 223830]), ('Blood volume out', '7d', 'extrapolate', None, None, None, [226626, 226629]), ('Blood volume out', '3d', 'extrapolate', None, None, None, [226626, 226629]), # own min/max ('Hematocrit', '3d', 'max', 1., 100., 28.7, [220545]), ('Hematocrit', '12h', 'median', 1., 100., 28.7, [220545]), # Only "Arterial Base Excess" ('BE', '12h', 'median', -25., 25., 0.0, [220545]), ('BE', '3d', 'trend', -25., 25., 0.0, [220545]), # removed after inspections # ('BE', '3d', 'iqr', -25., 25., 0.0, [220545]), ('BE', '12h', 'min', -25., 25., 0.0, [220545]), ('BE', '1d', 'iqr', -25., 25., 0.0, [220545]), # own min/max ('Phosphate', '1d', 'max', 0.01, 500., None, [225677]), ('Phosphate', '7d', 'min', 0.01, 500., None, [225677]), ('Potassium', '1d', 'median', None, None, None, [227442]), # Use endtime of invasive and non-invasive ventilation. ('Is on automatic ventilation', 'per-icu-stay', 'true-until-discharge', None, None, None, [225792, 225794]), ('RAS scale', '3d', 'max', None, None, 0.0, [228096]), # removed after inspections # ('RAS scale', '12h', 'trend', None, None, 0.0, [228096]), ('RAS scale', '1d', 'max', None, None, 0.0, [228096]), # Arterial, Venous, Mixed Venous, own min/max ('pO2', '12h', 'min', 1., 200., 102., [220224, 226063, 227516]), ('pO2', '12h', 'iqr', 1., 200., 102., [220224, 226063, 227516]), # Arterial, mixed venous, central venous, pulseoxymetry, ('O2 saturation', '12h', 'min', 0.1, 100., 97., [220227, 225674, 227686, 220277]), # Ionized as for original cohort. own min/max # removed after inspections # ('Calcium', '3d', 'trend', 0.1, 30., 1.12, [225667]), ('Calcium', '1d', 'max', 0.1, 30., 1.12, [225667]), # Min/max from derived vital signs ('Heart rate', '4h', 'min', 1, 299, None, [220045]), ('Heart rate', '1d', 'min', 1, 299, None, [220045]), ('Heart rate', '4h', 'iqr', 1, 299, None, [220045]), # In contrast to original cohort only two items (Temp. celcius, Blood temperature) and no complex merging procedure. # removed after inspections # ('Body core temperature', '1d', 'min', 10.1, 49.9, 37., [223762, 226329]), # ('Body core temperature', '4h', 'min', 10.1, 49.9, 37., [223762, 226329]), ('Body core temperature', '1d', 'median', 10.1, 49.9, 37., [223762, 226329]), ('Body core temperature', '1d', 'trend', 10.1, 49.9, 37., [223762, 226329]), # Arterial, Venous, own min/max ('pCO2', '1d', 'median', 1., 100., 41., [220235, 226062]), ('pCO2', '1d', 'iqr', 1., 100., 41., [220235, 226062]), ('pCO2', '3d', 'min', 1., 100., 41., [220235, 226062]), # own min/max # removed after inspections # ('Leucocytes', '3d', 'trend', 0.1, 100., 10.8, [220546]), ('Leucocytes', '1d', 'median', 0.1, 100., 10.8, [220546]), ('Leucocytes', '3d', 'iqr', 0.1, 100., 10.8, [220546]), ('Blood Urea Nitrogen', '3d', 'min', None, None, None, [225624]), # Urine and GU Irrigant Out, GU Irrigant/Urine Volume Out, OR, PACU ('Urine volume out', '1d', 'extrapolate', None, None, None, [226566, 227489, 226627, 226631]), ('Urine volume out', '7d', 'extrapolate', None, None, None, [226566, 227489, 226627, 226631]), ('Bilirubin total', '7d', 'max', None, None, None, [225690]), # own min/max ('Lactate', '3d', 'max', 0.01, 50., 1.8, [225668]), ('Lactate', '12h', 'min', 0.01, 50., 1.8, [225668]), # own min/max ('Sodium', '3d', 'trend', 1., 300., 139., [220645]), ('Sodium', '3d', 'median', 1., 300., 139., [220645]), # own min/max ('Hemoglobin', '3d', 'max', 1., 30., 9.5, [220228]), # Used all BP values of category "Routine Vital Signs" ('Diastolic blood pressure', '1d', 'median', None, None, 61, [227242, 224643, 225310, 220180, 220051]), ('Mean blood pressure', '4h', 'median', None, None, 77, [225312, 220181, 220052]), ('Mean blood pressure', '12h', 'median', None, None, 77, [225312, 220181, 220052]), ('Systolic blood pressure', '12h', 'iqr', None, None, 117, [227243, 224167, 225309, 220179, 220050]), # Used "Respiratory Rate", "RR spontaneous" and "RR total" ('Estimated respiratory rate', '1d', 'median', None, None, None, [220210, 224689, 224690]), # own min/max ('Thrombocytes', '7d', 'trend', 1., 1000., 176., [227457]), ('Glucose', '3d', 'median', 10., 1200., 127., [220621]), # Used "Invasive ventilation" ('Tubus exists', 'per-icu-stay', 'true-until-discharge', None, None, None, [225792]), # own min/max ('C-reactive protein', '3d', 'max', 0.01, 60., None, [225792]), # No drugs for constipation in icu medications and also only few identified in emar(_detail) # Hence, use "Elimination NCP - Interventions" (229134) instead as an indicator for constipation. ('Drugs for constipation', '1d', 'last', None, None, None, [229134]), # Special routines necessary: ('Age', 'per-patient', 'last', None, None, None, []), ('Length of stay before ICU', 'per-patient', 'last', None, None, None, []), ('paO2/FiO2', '1d', 'median', None, None, 210., []), ('paO2/FiO2', '3d', 'trend', None, None, 210., []), ('paO2/FiO2', '3d', 'median', None, None, 210., []), # In MIMIC cohort always 1. ('MetHb', '12h', 'min', None, None, 1., []), ('GCS score', '3d', 'min', None, None, 15, []), # own min/max ('eGFR', '7d', 'trend', 0., 300., 68.4, []), ('Gamma-GT', '7d', 'median', None, None, None, []), ('Antithrombotic agents prophylactic dosage', 'per-icu-stay', 'true-until-discharge', None, None, None, []), # Not in MIMIC DB # 'Procalcitonin (max 7d) [ng/mL]' # 'RHb (median 12h)' ] mimic_variables_gbm = [ 'Age', 'Antithrombotic agents prophylactic dosage', 'BE', 'Bilirubin total', 'Blood Urea Nitrogen', 'Blood volume out', 'Body core temperature', 'C-reactive protein', 'CK', 'CK-MB', 'Calcium', 'Chloride', 'Diastolic blood pressure', 'Drugs for constipation', 'Estimated respiratory rate', 'GCS score', 'Gamma-GT', 'Glucose', 'Heart rate', 'Hematocrit', 'Hemoglobin', 'Is on automatic ventilation', 'Lactate', 'Length of stay before ICU', 'Leucocytes', 'Mean blood pressure', 'MetHb', 'O2 saturation', 'Phosphate', 'Potassium', 'RAS scale', 'Sodium', 'Systolic blood pressure', 'Thrombocytes', 'Tubus exists', 'Urine volume out', 'eGFR', 'pCO2', 'pH', 'pO2', 'paO2/FiO2' ] def main(): parser = argparse.ArgumentParser(description='Extract features.') parser.add_argument('password', type=str, help='Database password.') parser.add_argument('item_overview', type=str, help='Description of all PDMS items and generated variables.') parser.add_argument('output_file', type=str, help='File to store output data.') parser.add_argument('--gbm', action='store_true', help='Create all features for included variables.') parser.add_argument('--force', action='store_true', help='Force to override output file.') args, _ = parser.parse_known_args() db_conn = ResearchDBConnection(args.password) mimic_stays = db_conn.read_table_from_db('mimic_stays') # Add anchor year to stays to use it for the output. mimic_db_conn = MIMICDBConnection(args.password) mimic_patients = mimic_db_conn.read_table_from_db('mimic_core', 'patients')[['subject_id', 'anchor_year_group']] old_num_mimic_stays = mimic_stays.shape[0] mimic_stays = pd.merge(mimic_stays, mimic_patients, how='left', on='subject_id') mimic_stays['anchor_year_group'] = mimic_stays['anchor_year_group'].map( {'2008 - 2010':
pd.to_datetime('2008', format='%Y')
pandas.to_datetime
from collections import defaultdict import pandas as pd import random from anytree import Node, NodeMixin, LevelOrderIter, RenderTree #This is the maximum size of the prefix, suffix and substring that will be counted MAX_STR_SIZE = 8 #Class to denote the node for a generic summary data structure. class SummaryDSNode(NodeMixin): def __init__(self, name, parent=None, children=None): super(SummaryDSNode, self).__init__() self.name = name self.frequency = 1 self.parent = parent self.char_to_children_dict = {} self.transition_probabilities = {} #Compute transition probabilities based on Eq 5 of the paper def update_transition_probabilities(self, root_node): k = len(self.children) total_frequency = sum([child.frequency for child in self.children]) numerator, denominator = k , k+1 if self.parent == root_node: numerator = k + 1 else: self.transition_probabilities[self.parent] = 1.0 / denominator fraction = (numerator / denominator ) for child in self.children: probability = 0.0 if total_frequency > 0: probability = (child.frequency / total_frequency) * fraction self.transition_probabilities[child] = probability #This class represents the entire generic summary data structure. #Using a common for ease of coding. #It can be replaced with more performant ones such as prefix trees, suffix trees etc. class SummaryDataStructure: #string_generator_fn is a function that takes a string as input #and outputs a list of "substrings" of interest. #for e.g. all prefixes, suffixes, #max_str_size: will be the largest prefix, substring, suffix string that will be created #split_words: whether to ignore spaces in a string. #if split_words is true, then "a b" will be inserted as two words a b .. else one word with space. def __init__(self, string_generator_fn, max_str_size=MAX_STR_SIZE, split_words=True): self.string_generator_fn = string_generator_fn self.max_str_size = max_str_size self.split_words = split_words self.root_node = SummaryDSNode('') def insert_string(self, string): substrings_of_interest = self.string_generator_fn(string) for substring in substrings_of_interest: cur_node = self.root_node for index, char in enumerate(substring): if char in cur_node.char_to_children_dict: cur_node = cur_node.char_to_children_dict[char] else: new_node = SummaryDSNode(substring[:index+1], parent=cur_node) cur_node.char_to_children_dict[char] = new_node cur_node = new_node #Increment the frequency of the last node cur_node.frequency = cur_node.frequency + 1 def update_summary_ds_from_file(self, input_file_name): with open(input_file_name) as f: for line in f: strings = [line.strip()] if self.split_words: strings = line.strip().split() for string in strings: self.insert_string(string) #returns a data frame with all the strings in the summary data structure and its frequencies def get_selectivities(self): string_frequency_dict = defaultdict(int) for node in LevelOrderIter(self.root_node): if node.is_root == False: string_frequency_dict[node.name] = max(1, node.frequency - 1) df =
pd.DataFrame.from_dict(string_frequency_dict, orient='index')
pandas.DataFrame.from_dict
from django.http import JsonResponse, HttpResponse, HttpResponseRedirect from django.template.loader import render_to_string from django.contrib.messages.views import SuccessMessageMixin from django.urls import reverse_lazy, reverse from django.views import generic, View from django.shortcuts import render, redirect from webdriver_manager.chrome import ChromeDriverManager from naver_book_crawling.generic import ( BSModalLoginView, BSModalFormView, BSModalCreateView, BSModalUpdateView, BSModalReadView, BSModalDeleteView ) from .forms import ( BookModelForm, CustomUserCreationForm, CustomAuthenticationForm, BookFilterForm, CrawlingForm, isbnCrawlingForm, bidCrawlingForm ) from .models import Book, BookCrawling, BidCrawling # 크롤링 라이브러리 import re from bs4 import BeautifulSoup import pandas as pd from urllib.request import urlopen, HTTPError, URLError from urllib.parse import quote_plus from selenium import webdriver import time from sqlalchemy import create_engine import pymysql from webdriver_manager.chrome import ChromeDriverManager import datetime import numpy as np from selenium.webdriver.common.alert import Alert from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.firefox.firefox_profile import FirefoxProfile from selenium.webdriver.firefox.firefox_binary import FirefoxBinary import os # 검색 from django.contrib import messages from django.db.models import Q class Index(generic.ListView): model = BookCrawling paginate_by = 20 context_object_name = 'books' template_name = 'index.html' def get_queryset(self): qs = super().get_queryset() if 'type' in self.request.GET: qs = qs.filter(boot_type=int(self.request.GET['type'])) return qs # 페이징 def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) paginator = context['paginator'] page_number_range = 10 max_index = len(paginator.page_range) page = self.request.GET.get('page') current_page = int(page) if page else 1 start_index = int((current_page - 1) / page_number_range) * page_number_range end_index = start_index + page_number_range if end_index >= max_index: end_index = max_index page_range = paginator.page_range[start_index:end_index] context['page_range'] = page_range return context def Detail(request, id): bookCrawling = BookCrawling.objects.get(pk=id) context = { 'bookCrawling': bookCrawling, } return render(request, 'book/detail_book.html', context) def BidDetail(request, bid): bidCrawling = BidCrawling.objects.get(pk=bid) context = { 'bidCrawling': bidCrawling, } return render(request, 'book/bid_detail_book.html', context) def get_text_list(tag_list): return [tag.text for tag in tag_list] def crawling(request): return render(request, 'book/crawling_book.html') def bidCrawler(request): return render(request, 'book/bidCrawling_book.html') class bidIndex(generic.ListView): model = BidCrawling paginate_by = 20 context_object_name = 'bids' template_name = 'bid_index.html' def get_queryset(self): qs = super().get_queryset() if 'type' in self.request.GET: qs = qs.filter(boot_type=int(self.request.GET['type'])) return qs # 페이징 def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) paginator = context['paginator'] page_number_range = 10 max_index = len(paginator.page_range) page = self.request.GET.get('page') current_page = int(page) if page else 1 start_index = int((current_page - 1) / page_number_range) * page_number_range end_index = start_index + page_number_range if end_index >= max_index: end_index = max_index page_range = paginator.page_range[start_index:end_index] context['page_range'] = page_range return context def crawlingBook(request): if request.method == 'POST': form = CrawlingForm(request.POST) if form.is_valid(): plusUrl = form.cleaned_data['searchsubject'] searchStartPage = form.cleaned_data['searchstartpage'] searchEndPage = form.cleaned_data['searchendpage'] baseUrl = 'https://book.naver.com/search/search_in.nhn?query=' searchSubject = quote_plus(plusUrl) url = baseUrl + searchSubject + "&&" html = urlopen(url) # url = requests.get(baseUrl + searchSubject + "&&") # html = url.content soup = BeautifulSoup(html, "html.parser") # book_crawling 테이블 column search_list = [] title_list = [] intro_list = [] author_intro_list = [] category_top_list = [] category_middle_list = [] category_bottom_list = [] ISBN_list = [] writer_list = [] translator_list = [] painter_list = [] publisher_list = [] publish_date_list = [] content_list = [] bid_list = [] image_list = [] grade_list = [] review_list = [] # writer_info 테이블 column writer_name = [] writer_link = [] writer_num = [] writer_book_title = [] writer_bid = [] writer_isbn = [] options = webdriver.ChromeOptions() options.add_argument('headless') driver = webdriver.Chrome(ChromeDriverManager().install(), options=options) driver.implicitly_wait(time_to_wait=5) # searchStartPage = "" # searchEndPage = "" searchStart = int(searchStartPage) searchEnd = int(searchEndPage) for k in range(searchStart, searchEnd+1): url_pre = (url+'pattern=0&orderType=rel.desc&viewType=list&searchType=bookSearch&serviceSm=service.basic&title=&author=&publisher=&isbn=&toc=&subject=&publishStartDay=&publishEndDay=&categoryId=&qdt=1&filterType=0&filterValue=&serviceIc=service.author&buyAllow=0&ebook=0&abook=0&page='+str(k)) html_pre = urlopen(url_pre) # url_pre = requests.get(baseUrl + searchSubject + '&&'+'pattern=0&orderType=rel.desc&viewType=list&searchType=bookSearch&serviceSm=service.basic&title=&author=&publisher=&isbn=&toc=&subject=&publishStartDay=&publishEndDay=&categoryId=&qdt=1&filterType=0&filterValue=&serviceIc=service.author&buyAllow=0&ebook=0&abook=0&page='+str(k)) # html_pre = url_pre.content soup_pre = BeautifulSoup(html_pre, "html.parser") title = '' title = get_text_list(soup_pre.select('dt'))[0:20] for i in range(0, len(title)): if '\xa0' in title[i]: title[i] = title[i][0:title[i].find( '\xa0')].replace('\n', '') title_list.append(title[i]) link_list = [] try: for href in soup_pre.find("ul", id="searchBiblioList").find_all("dt"): link = href.find("a")["href"] bid = href.find("a")["href"].split('=')[1] link_list.append(link) bid_list.append(bid) except AttributeError: print('검색어에 대한 도서' + str(len(ISBN_list)) + '권 크롤링이 완료되었습니다.') driver.quit() for i in range(0, len(link_list)): # driver.get(link_list[i]) url_det = link_list[i] html_det = urlopen(url_det) # url_det = requests.get(link_list[i]) # html_det = url_det.content soup_det = BeautifulSoup(html_det, "html.parser") search_list.append(plusUrl) try: book_intro = soup_det.find('div', id='bookIntroContent') book_intro_text = book_intro.get_text().replace('\n', '') intro_list.append(book_intro_text) except AttributeError: book_intro_text = '없음' intro_list.append(book_intro_text) try: author_intro = soup_det.find( 'div', id='authorIntroContent') author_intro_text = author_intro.get_text().replace('\n', '') author_intro_list.append(author_intro_text) except AttributeError: author_intro_text = '없음' author_intro_list.append(author_intro_text) try: category_top = soup_det.find('li', class_='select') category_top_text = category_top.get_text().replace('\n', '') category_top_list.append(category_top_text) except AttributeError: category_top_text = '없음' category_top_list.append(category_top_text) try: category_middle = soup_det.find('li', class_='select2') category_middle_text = category_middle.get_text().replace('\n', '') category_middle_list.append(category_middle_text) except AttributeError: category_middle_text = '없음' category_middle_list.append(category_middle_text) try: category_bottom = soup_det.find('li', class_='select3') category_bottom_text = category_bottom.get_text().replace('\n', '') category_bottom_list.append(category_bottom_text) except AttributeError: category_bottom_text = '없음' category_bottom_list.append(category_bottom_text) grade = soup_det.find("div", class_="txt_desc").find( "strong").text[:-1] grade_list.append(grade) review = soup_det.find( "a", id="txt_desc_point").find_all("strong")[1].text review_list.append(review) book_info = soup_det.find('div', class_='book_info_inner') book_info_text = book_info.get_text() editor_exist = soup_det.find( "div", class_="book_info_inner").find_all("em")[0:3] if '저자' in book_info_text: writer_str = book_info_text.find('저자')+3 writer_end = book_info_text.find('|', writer_str) writer = book_info_text[writer_str:writer_end] else: writer_str = book_info_text.find('글')+2 writer_end = book_info_text.find('|', writer_str) writer = book_info_text[writer_str:writer_end] if '\xa0' in writer: writer = writer[0:int(writer.find('\xa0'))] writer_list.append(writer) if '편집' not in book_info_text: if ('그림' in book_info_text) and ('역자' in book_info_text): painter_str = book_info_text.find('그림')+3 painter_end = book_info_text.find('|', painter_str) painter = book_info_text[painter_str:painter_end] painter_list.append(painter) translator_str = book_info_text.find('역자')+3 translator_end = book_info_text.find( '|', translator_str) translator = book_info_text[translator_str:translator_end] translator_list.append(translator) publisher_str = translator_end+1 publisher_end = book_info_text.find( '\n', publisher_str) publisher = book_info_text[publisher_str:publisher_end] publisher_list.append(publisher) publish_date_str = publisher_end+2 publish_date_end = book_info_text.find( '\n', publish_date_str) publish_date = book_info_text[publish_date_str:publish_date_end] publish_date_list.append(publish_date) elif ('그림' in book_info_text) and ('역자' not in book_info_text): translator = '없음' translator_list.append(translator) painter_str = book_info_text.find('그림')+3 painter_end = book_info_text.find('|', painter_str) painter = book_info_text[painter_str:painter_end] painter_list.append(painter) publisher_str = painter_end+1 publisher_end = book_info_text.find( '\n', publisher_str) publisher = book_info_text[publisher_str:publisher_end] publisher_list.append(publisher) publish_date_str = publisher_end+2 publish_date_end = book_info_text.find( '\n', publish_date_str) publish_date = book_info_text[publish_date_str:publish_date_end] publish_date_list.append(publish_date) elif ('그림' not in book_info_text) and ('역자' in book_info_text): painter = '없음' painter_list.append(painter) translator_str = book_info_text.find('역자')+3 translator_end = book_info_text.find( '|', translator_str) translator = book_info_text[translator_str:translator_end] translator_list.append(translator) publisher_str = translator_end+1 publisher_end = book_info_text.find( '\n', publisher_str) publisher = book_info_text[publisher_str:publisher_end] publisher_list.append(publisher) publish_date_str = publisher_end+2 publish_date_end = book_info_text.find( '\n', publish_date_str) publish_date = book_info_text[publish_date_str:publish_date_end] publish_date_list.append(publish_date) elif '그림' and '역자' not in book_info_text: translator = '없음' translator_list.append(translator) painter = '없음' painter_list.append(painter) publisher_str = writer_end+1 publisher_end = book_info_text.find( '\n', publisher_str) publisher = book_info_text[publisher_str:publisher_end] publisher_list.append(publisher) publish_date_str = publisher_end+2 publish_date_end = book_info_text.find( '\n', publish_date_str) publish_date = book_info_text[publish_date_str:publish_date_end] publish_date_list.append(publish_date) elif '편집' in editor_exist: if ('그림' in book_info_text) and ('편집' in book_info_text): painter_str = book_info_text.find('그림')+3 painter_end = book_info_text.find('|', painter_str) painter = book_info_text[painter_str:painter_end] painter_list.append(painter) translator_str = book_info_text.find('편집')+3 translator_end = book_info_text.find( '|', translator_str) translator = book_info_text[translator_str:translator_end] translator_list.append(translator) publisher_str = translator_end+1 publisher_end = book_info_text.find( '\n', publisher_str) publisher = book_info_text[publisher_str:publisher_end] publisher_list.append(publisher) publish_date_str = publisher_end+2 publish_date_end = book_info_text.find( '\n', publish_date_str) publish_date = book_info_text[publish_date_str:publish_date_end] publish_date_list.append(publish_date) elif ('그림' not in book_info_text) and ('편집' in book_info_text): painter = '없음' painter_list.append(painter) translator_str = book_info_text.find('편집')+3 translator_end = book_info_text.find( '|', translator_str) translator = book_info_text[translator_str:translator_end] translator_list.append(translator) publisher_str = translator_end+1 publisher_end = book_info_text.find( '\n', publisher_str) publisher = book_info_text[publisher_str:publisher_end] publisher_list.append(publisher) publish_date_str = publisher_end+2 publish_date_end = book_info_text.find( '\n', publish_date_str) publish_date = book_info_text[publish_date_str:publish_date_end] publish_date_list.append(publish_date) ISBN_str = book_info_text.find('ISBN')+6 ISBN_end = book_info_text.find('|', ISBN_str) if ISBN_end == -1: ISBN_end = book_info_text.find('\n', ISBN_str) ISBN = book_info_text[ISBN_str:ISBN_end] if '\n' in ISBN: ISBN = ISBN[0:int(ISBN.find('\n'))] ISBN_list.append(ISBN) content = '' content = get_text_list(soup_det.select("div.book_cnt")) if content == []: content = ["없음"] content_list.append(content) else: content_list.append(content) for src in soup_det.find("div", class_="thumb_type").find_all("a"): bookImage = src.find("img")["src"] image_list.append(bookImage) writer_a = soup_det.find("div", class_="book_info_inner").find_all("div")[ 2].find_all("a")[:-1] writer_book = soup_det.find( "div", class_="book_info").find("a").text writer_book_bid = soup_det.find("div", class_="book_info").find("a")[ "href"].split("=")[1] for w in range(0, len(writer_a)): writer_n = writer_a[w].text writer_name.append(writer_n) writer_href = writer_a[w]["href"] writer_link.append(writer_href) writer_split = writer_a[w]["href"].split("=")[3] writer_num.append(writer_split) writer_book_title.append(writer_book) writer_bid.append(writer_book_bid) writer_isbn.append(ISBN) if i == 19: break if k == searchEnd: print('검색어에 대한 도서 '+str(len(content_list))+'권 크롤링이 완료되었습니다.') driver.quit() break book_list = [] for searchSubject, title, writer, translator, painter, publisher, publishDate, intro, content, authorIntro, categoryTop, categoryMiddle, categoryBottom, bid, ISBN, grade, review, image in zip(search_list, title_list, writer_list, translator_list, painter_list, publisher_list, publish_date_list, intro_list, content_list, author_intro_list, category_top_list, category_middle_list, category_bottom_list, bid_list, ISBN_list, grade_list, review_list, image_list): book = {"searchSubject": searchSubject, "title": title, "writer": writer, "translator": translator, "painter": painter, "publisher": publisher, "publishDate": publishDate, "intro": intro, "content": content, "authorIntro": authorIntro, "categoryTop": categoryTop, "categoryMiddle": categoryMiddle, "categoryBottom": categoryBottom, "bid": bid, "ISBN": ISBN, "grade": grade, "review": review, "image": image} book_list.append(book) writer_info_list = [] for num, name, bookTitle, bid, isbn, link in zip(writer_num, writer_name, writer_book_title, writer_bid, writer_isbn, writer_link): writer_info = {"num": num, "name": name, "bookTitle": bookTitle, "bid": bid, "isbn": isbn, "link": link} writer_info_list.append(writer_info) book_DF = pd.DataFrame(book_list) writer_DF = pd.DataFrame(writer_info_list) engine = create_engine( "mysql+pymysql://root:[email protected]:3306/book?charset=utf8mb4", encoding='utf8') conn = engine.connect() book_DF.to_sql(name='book_crawling', con=engine, if_exists='append', index=False) writer_DF.to_sql(name='writer_info', con=engine, if_exists='append', index=False) conn.close() return HttpResponseRedirect(reverse_lazy('index')) def bidCrawling(request): if request.method == 'POST': form = bidCrawlingForm(request.POST) if form.is_valid(): searchStartBid = form.cleaned_data['searchstartbid'] searchEndBid = form.cleaned_data['searchendbid'] bidSearchStart = int(searchStartBid) bidSearchEnd = int(searchEndBid) engine = create_engine( "mysql+pymysql://root:[email protected]:3306/book?charset=utf8mb4", encoding='utf8') torexe = os.popen(r'C:\Dev_program\Tor Browser\Browser\firefox.exe') profile = FirefoxProfile( r'C:\Dev_program\Tor Browser\Browser\TorBrowser\Data\Browser\profile.default') profile.set_preference('network.proxy.type', 1) profile.set_preference('network.proxy.socks', '127.0.0.1') profile.set_preference('network.proxy.socks_port', 9050) profile.set_preference("network.proxy.socks_remote_dns", False) profile.update_preferences() driver = webdriver.Firefox( firefox_profile=profile, executable_path=r'C:\Dev_program\geckodriver.exe') driver.implicitly_wait(time_to_wait=5) searchCount = bidSearchEnd-bidSearchStart+1 searchMok = int(np.ceil((bidSearchEnd-bidSearchStart+1)/50)) taskId = 1 while searchMok > 0: title_list = [] intro_list = [] author_intro_list = [] category_top_list = [] category_middle_list = [] category_bottom_list = [] ISBN_list = [] writer_list = [] translator_list = [] painter_list = [] publisher_list = [] publish_date_list = [] content_list = [] bid_list = [] image_list = [] grade_list = [] review_list = [] writer_name = [] writer_link = [] writer_num = [] writer_book_title = [] writer_bid = [] writer_isbn = [] taskId_list = [] taskContent_list = [] str_list = [] end_list = [] complete_list = [] errorDetail_list = [] crawlerNum_list = [] taskId_list.append(taskId) if (bidSearchStart+49) < bidSearchEnd: taskContent = str(bidSearchStart)+'~'+str(bidSearchStart+49) else: taskContent = str(bidSearchStart)+'~'+str(bidSearchEnd) taskContent_list.append(taskContent) str_now = datetime.datetime.now() str_time = str_now.strftime('%Y-%m-%d %H:%M:%S') str_list.append(str_time) for i in range(bidSearchStart, bidSearchStart+50): url_det = 'https://book.naver.com/bookdb/book_detail.nhn?bid=' + \ str(i) try: html_det = urlopen(url_det) except (HTTPError, URLError, IndexError) as e: errorDetail_list.append(e) end_now = datetime.datetime.now() end_time = end_now.strftime('%Y-%m-%d %H:%M:%S') end_list.append(end_time) complete_list.append('error') crawlerNum_list.append(11) task_list = [] for taskId, taskContent, str_time, end_time, complete, errorDetail, crawlerNum in zip(taskId_list, taskContent_list, str_list, end_list, complete_list, errorDetail_list, crawlerNum_list): task = {"taskId": taskId, "taskContent": taskContent, "str_time": str_time, "end_time": end_time, "complete": complete, "errorDetail": errorDetail, "crawlerNum": crawlerNum} task_list.append(task) task_DF = '' task_DF = pd.DataFrame(task_list) conn = engine.connect() task_DF.to_sql(name='task', con=engine, if_exists='append', index=False) conn.close() print(e) print('에러로 크롤링 종료') time.sleep(3) if bidSearchStart+50 > bidSearchEnd: driver.quit() else: continue else: soup_det = BeautifulSoup(html_det, "html.parser") if '책정보, :' in soup_det.text: print(str(i), "번 제외(삭제 서지)") continue else: pass book_info = soup_det.find('div', class_='book_info_inner') try: book_info_text = book_info.get_text() except AttributeError: print(str(i), "번 제외(Attr 에러)") continue if driver.current_url == 'https://nid.naver.com/nidlogin.login?svctype=128&a_version=2&viewtype=2&url=http://book.naver.com&surl=http://book.naver.com': continue else: pass try: book_intro = soup_det.find('div', id='bookIntroContent') book_intro_text = book_intro.get_text().replace('\n', '') intro_list.append(book_intro_text) except AttributeError: book_intro_text = '' intro_list.append(book_intro_text) try: author_intro = soup_det.find('div', id='authorIntroContent') author_intro_text = author_intro.get_text().replace('\n', '') author_intro_list.append(author_intro_text) except AttributeError: author_intro_text = '' author_intro_list.append(author_intro_text) try: category_top = soup_det.find('li', class_='select') category_top_text = category_top.get_text().replace('\n', '') category_top_list.append(category_top_text) except AttributeError: category_top_text = '' category_top_list.append(category_top_text) try: category_middle = soup_det.find('li', class_='select2') category_middle_text = category_middle.get_text().replace('\n', '') category_middle_list.append(category_middle_text) except AttributeError: category_middle_text = '' category_middle_list.append(category_middle_text) try: category_bottom = soup_det.find('li', class_='select3') category_bottom_text = category_bottom.get_text().replace('\n', '') category_bottom_list.append(category_bottom_text) except AttributeError: category_bottom_text = '' category_bottom_list.append(category_bottom_text) try: grade = soup_det.find("div", class_="txt_desc").find( "strong").text[:-1] except AttributeError: grade = '' grade_list.append(grade) try: review = soup_det.find( "a", id="txt_desc_point").find_all("strong")[1].text except AttributeError: review = '' review_list.append(review) bookinfo_line1 = book_info.find_all("div")[2] rel_name = bookinfo_line1.text rel_list = [] for rel in bookinfo_line1.find_all("em"): rel_cate = rel.text rel_list.append(rel_cate) for r in range(0, len(rel_list)): rel_name = rel_name.replace(rel_list[r], '') rel_name = rel_name.split('|') publish_date = rel_name[-1] if len(publish_date) == 4: publish_date = publish_date + ".01.01" elif len(publish_date) == 6: publish_date = publish_date[:4]+"."+publish_date[4:]+".01" elif publish_date == '': publish_date = '2025.01.01' if publish_date[0] != '1' and publish_date[0] != '2': publish_date = '2025.01.01' publish_date_list.append(publish_date) publisher = rel_name[-2] publisher_list.append(publisher) rel_name = rel_name[1:-2] rel_list = rel_list[1:] if (len(rel_list) and len(rel_name)) == 2: painter = rel_name[0].replace('\n', '') translator = rel_name[1].replace('\n', '') elif (len(rel_list) and len(rel_name)) == 1: if '역자' in rel_list: translator = rel_name[0].replace('\n', '') painter = '' else: translator = '' painter = rel_name[0].replace('\n', '') else: translator = '' painter = '' translator_list.append(translator) painter_list.append(painter) ISBN_str = book_info_text.find('ISBN')+6 ISBN_end = book_info_text.find('|', ISBN_str) if ISBN_end == -1: ISBN_end = book_info_text.find('\n', ISBN_str) ISBN = book_info_text[ISBN_str:ISBN_end] if '\n' in ISBN: ISBN = ISBN[0:int(ISBN.find('\n'))] ISBN_list.append(ISBN) content = '' content = get_text_list(soup_det.select("div.book_cnt")) if content == []: content = [""] content_list.append(content) else: content_list.append(content) for src in soup_det.find("div", class_="thumb_type").find_all("a"): bookImage = src.find("img")["src"] image_list.append(bookImage) writer_a = soup_det.find("div", class_="book_info_inner").find_all("div")[ 2].find_all("a")[:-1] writer_book = soup_det.find( "div", class_="book_info").find("a").text writer_book_bid = soup_det.find("div", class_="book_info").find("a")[ "href"].split("=")[1] bid_list.append(writer_book_bid) title_list.append(writer_book) writer = soup_det.find("div", class_="book_info_inner").find_all("div")[ 2].text.split("|")[0][3:].strip() writer_list.append(writer) for w in range(0, len(writer_a)): writer_n = writer_a[w].text writer_name.append(writer_n) writer_href = writer_a[w]["href"] writer_link.append(writer_href) writer_split = writer_a[w]["href"].split("=")[3] writer_num.append(writer_split) writer_book_title.append(writer_book) writer_bid.append(writer_book_bid) writer_isbn.append(ISBN) time.sleep(round(np.random.uniform(0.5, 1.4), 2)) if i == bidSearchEnd: print('bid 번호에 대한 도서 '+str(searchCount)+'권 크롤링이 완료되었습니다.') driver.quit() break book_list = [] book_DF = '' for title, writer, translator, painter, publisher, publishDate, intro, content, authorIntro, categoryTop, categoryMiddle, categoryBottom, bid, ISBN, grade, review, image in zip(title_list, writer_list, translator_list, painter_list, publisher_list, publish_date_list, intro_list, content_list, author_intro_list, category_top_list, category_middle_list, category_bottom_list, bid_list, ISBN_list, grade_list, review_list, image_list): book = {"title": title, "writer": writer, "translator": translator, "painter": painter, "publisher": publisher, "publishDate": publishDate, "intro": intro, "content": content, "authorIntro": authorIntro, "categoryTop": categoryTop, "categoryMiddle": categoryMiddle, "categoryBottom": categoryBottom, "bid": bid, "ISBN": ISBN, "grade": grade, "review": review, "image": image} book_list.append(book) book_DF =
pd.DataFrame(book_list)
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- import datetime import math import os import random import sys import threading import pandas as pd cmd_subfolder = os.path.dirname(os.path.abspath(__file__)) while not cmd_subfolder .endswith('pydeepgenomics'): cmd_subfolder = os.path.dirname(cmd_subfolder) cmd_subfolder = os.path.dirname(cmd_subfolder) try: from pydeepgenomics.tools import generaltools as gt from pydeepgenomics.preprocess import settings except ImportError: if cmd_subfolder not in sys.path: sys.path.append(cmd_subfolder) from pydeepgenomics.tools import generaltools as gt from pydeepgenomics.preprocess import settings # def write_encoded_output( # path_data, # chromosome, # dataframe, # sve, # liste_names, # namedir="floatfiles"): # for i in range(len(liste_names)): # # First allele encoding # # REF # dataframe.loc[ # ((dataframe.REF == "A") & # (dataframe.loc[:, liste_names[i]].str[0] == "0")), # "output" + liste_names[i]] = sve[0] # dataframe.loc[ # ((dataframe.REF == "T") & # (dataframe.loc[:, liste_names[i]].str[0] == "0")), # "output" + liste_names[i]] = sve[1] # dataframe.loc[ # ((dataframe.REF == "G") & # (dataframe.loc[:, liste_names[i]].str[0] == "0")), # "output" + liste_names[i]] = sve[2] # dataframe.loc[ # ((dataframe.REF == "C") & # (dataframe.loc[:, liste_names[i]].str[0] == "0")), # "output" + liste_names[i]] = sve[3] # # ALT # dataframe.loc[ # ((dataframe.ALT == "A") & # (dataframe.loc[:, liste_names[i]].str[0] == "1")), # "output" + liste_names[i]] = sve[0] # dataframe.loc[ # ((dataframe.ALT == "T") & # (dataframe.loc[:, liste_names[i]].str[0] == "1")), # "output" + liste_names[i]] = sve[1] # dataframe.loc[ # ((dataframe.ALT == "G") & # (dataframe.loc[:, liste_names[i]].str[0] == "1")), # "output" + liste_names[i]] = sve[2] # dataframe.loc[ # ((dataframe.ALT == "C") & # (dataframe.loc[:, liste_names[i]].str[0] == "1")), # "output" + liste_names[i]] = sve[3] # # # Second allele encoding # # REF # dataframe.loc[ # ((dataframe.REF == "A") & # (dataframe.loc[:, liste_names[i]].str[-1] == "0")), # "output" + liste_names[i]] += sve[4] # dataframe.loc[ # ((dataframe.REF == "T") & # (dataframe.loc[:, liste_names[i]].str[-1] == "0")), # "output" + liste_names[i]] += sve[5] # dataframe.loc[ # ((dataframe.REF == "G") & # (dataframe.loc[:, liste_names[i]].str[-1] == "0")), # "output" + liste_names[i]] += sve[6] # dataframe.loc[ # ((dataframe.REF == "C") & # (dataframe.loc[:, liste_names[i]].str[-1] == "0")), # "output" + liste_names[i]] += sve[7] # # ALT # dataframe.loc[ # ((dataframe.ALT == "A") & # (dataframe.loc[:, liste_names[i]].str[-1] == "1")), # "output" + liste_names[i]] += sve[4] # dataframe.loc[ # ((dataframe.ALT == "T") & # (dataframe.loc[:, liste_names[i]].str[-1] == "1")), # "output" + liste_names[i]] += sve[5] # dataframe.loc[ # ((dataframe.ALT == "G") & # (dataframe.loc[:, liste_names[i]].str[-1] == "1")), # "output" + liste_names[i]] += sve[6] # dataframe.loc[ # ((dataframe.ALT == "C") & # (dataframe.loc[:, liste_names[i]].str[-1] == "1")), # "output" + liste_names[i]] += sve[7] # # # Add position # dataframe.loc[:, "output" + liste_names[i]] += dataframe.POS # # # Write files # # if len(liste_names) > 1: # jobs = [] # for i in range(len(liste_names)): # thread = threading.Thread(target=save_samples( # path_data, # chromosome, # dataframe, # liste_names, # i, # name_dir=namedir)) # jobs.append(thread) # for j in jobs: # j.start() # for j in jobs: # j.join() # else: # save_samples( # path_data, # chromosome, # dataframe, # liste_names, # 0, # name_dir=namedir) # def do_conversion(dataframe, list_names, encoding_dict=settings.NUCLEOTIDE_LABELS_bin, output_conversion="to_int"): for i in range(len(list_names)): # To put it in a nutshell from left to right --> # # Two bits to tell if first allele is A, T, C or G # two bits as above but for the second allele # The following bits are dedicated to the position # First allele encoding for nucleotide, bit_value in encoding_dict.items(): if output_conversion == "to_int": dataframe.loc[:, "output" + list_names[i]] = "1" else: dataframe.loc[:, "output" + list_names[i]] = "" # REF dataframe.loc[ ( (dataframe.REF == nucleotide) & (dataframe.loc[:, list_names[i]].str[0] == "0") ), "output" + list_names[i]] += bit_value # ALT dataframe.loc[ ( (dataframe.ALT == nucleotide) & (dataframe.loc[:, list_names[i]].str[0] == "1") ), "output" + list_names[i]] += bit_value # Second allele encoding for nucleotide, bit_value in encoding_dict.items(): # REF dataframe.loc[ ( (dataframe.REF == nucleotide) & (dataframe.loc[:, list_names[i]].str[-1] == "0") ), "output" + list_names[i]] += bit_value # ALT dataframe.loc[ ( (dataframe.ALT == nucleotide) & (dataframe.loc[:, list_names[i]].str[-1] == "1") ), "output" + list_names[i]] += bit_value # Add position dataframe.loc[:, "output" + list_names[i]] += \ dataframe.POS.apply(lambda x: "{0:01b}".format(x)) if output_conversion == "to_int": dataframe.loc[:, "output" + list_names[i]] = \ dataframe.loc[ :, "output" + list_names[i] ].apply(lambda x: int(x, 2)) return dataframe def write_encoded_output( path_data, chromosome, dataframe, list_names, namedir="floatfiles"): # Write files if len(list_names) > 1: jobs = [] for i in range(len(list_names)): thread = threading.Thread(target=save_samples( path_data, chromosome, dataframe, list_names, i, name_dir=namedir)) jobs.append(thread) for j in jobs: j.start() for j in jobs: j.join() else: save_samples( path_data, chromosome, dataframe, list_names, 0, name_dir=namedir) #def decode_position(to_test, ln=settings.LN, fbp=settings.FBP): # # enc_al1 = fbp # enc_al2 = fbp * math.pow(2, 4) # position = 0 # _iter = 20 # al1 = al2 = "N" # # print("to_test", to_test) # print("ln", ln) # print("fbp", fbp) # while ( # (to_test - enc_al2 - enc_al1 - position != 0) and # (enc_al1 <= math.pow(2, 33) and (enc_al2 <= math.pow(2, 37))) and # (_iter > 0) # ): # # if ( # (enc_al2 * 2 < to_test) and # (enc_al1 == math.pow(2, 28)) and # (position == 0) # ): # # enc_al2 *= 2 # al2 = ln[enc_al2] # elif (enc_al1 * 2 + enc_al2 < to_test) and (position == 0): # enc_al1 *= 2 # al1 = ln[enc_al1] # elif to_test - enc_al1 - enc_al2 < fbp: # position = int(to_test - enc_al1 - enc_al2) # _iter -= 1 # # if _iter <= 0: # position = -1 # return al1[0], al2[0], position def decode_position( to_test, decoding_dict=settings.LN, fbp=settings.FBP, snps_value_encoded=settings.SVE, max_iter=20): enc_al1 = snps_value_encoded[0] enc_al2 = snps_value_encoded[4] position = 0 al1 = al2 = "N" while ( (to_test - enc_al2 - enc_al1 - position != 0) and (enc_al1 <= math.pow(2, 33) and (enc_al2 <= math.pow(2, 37))) and (max_iter > 0) ): if ( (enc_al2 * 2 < to_test) and (enc_al1 == math.pow(2, 28)) and (position == 0) ): enc_al2 *= 2 al2 = decoding_dict[enc_al2] elif (enc_al1 * 2 + enc_al2 < to_test) and (position == 0): enc_al1 *= 2 al1 = decoding_dict[enc_al1] elif to_test - enc_al1 - enc_al2 < fbp: position = int(to_test - enc_al1 - enc_al2) max_iter -= 1 if max_iter <= 0: position = -1 return al1[0], al2[0], position def decode_position_int( to_test, decoding_dict=settings.REVERSE_NUCLEOTIDE_LABELS_bin): al1 = decoding_dict['{0:01b}'.format(to_test)[1:3]] al2 = decoding_dict['{0:01b}'.format(to_test)[3: 5]] position = int('{0:01b}'.format(to_test)[5:], 2) return al1, al2, position def decode_position_bin( to_test, decoding_dict=settings.REVERSE_NUCLEOTIDE_LABELS_bin): al1 = decoding_dict[to_test[:2]] al2 = decoding_dict[to_test[2: 4]] position = int(to_test[4:], 2) return al1, al2, position def save_samples( path_data, chromosome, dataframe, list_names, i, name_dir="floatfiles"): # Save dataframe.loc[:, ["output" + list_names[0]]].to_csv( os.path.join(path_data, name_dir, chromosome, list_names[i]+".txt.gz"), index=False, header=False, compression="gzip") def _build_output_tree_structure( path_to_output, name_output_dir, chromosome_name): if not os.path.isdir(os.path.join(path_to_output, name_output_dir)): os.mkdir(os.path.join(path_to_output, name_output_dir)) if not os.path.isdir( os.path.join(path_to_output, name_output_dir, chromosome_name)): os.mkdir( os.path.join(path_to_output, name_output_dir, chromosome_name)) def encode_file_positions( chr_to_be_processed, path_to_data, path_to_output, name_output_dir="encoded_files", verbose=True, printing=True, logging=False): # Start timer timer = gt.time_since_first_call() next(timer) print_parameters = { "verbose": verbose, "printing": printing, "logging": logging, "in_loop": False } gt.custom_output( "Function {0} started at {1}".format( encode_file_positions.__name__, str(datetime.datetime.now())) + "\nProcessing files in {0}:".format(path_to_data), **print_parameters) chromosome_name = str(chr_to_be_processed) _build_output_tree_structure( path_to_output, name_output_dir, chromosome_name) # load the meta data in a pandas data frame _meta = pd.read_csv( os.path.join(path_to_data, "_meta.txt.gz"), sep="\t", index_col=False) list_files = gt.list_elements( path_to_data, extension=".txt.gz", exception=[ os.path.join(path_to_data, "_meta.txt.gz"), os.path.join(path_to_data, "_comments.txt.gz")]) nb_processed_files = 0 batch_iter = 0 list_ = [] df = _meta.drop(["#CHROM", "ID", "QUAL", "FILTER", "INFO", "FORMAT"], 1) for files in list_files: print_parameters["in_loop"] = True sample_name = files.split("/")[-1].split(".")[0].split("_")[-1] list_.append(sample_name) df[sample_name] =
pd.read_csv(files, index_col=None, header=None)
pandas.read_csv
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Utilities to deal with types. This is mostly focused on python3. """ import datetime import decimal import sys import typing from collections.abc import Iterable from distutils.version import LooseVersion from inspect import isclass from typing import Any, Callable, Generic, List, Tuple, Union, Type, get_type_hints import numpy as np import pandas as pd from pandas.api.types import CategoricalDtype, pandas_dtype # type: ignore[attr-defined] from pandas.api.extensions import ExtensionDtype extension_dtypes: Tuple[type, ...] try: from pandas import Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype extension_dtypes_available = True extension_dtypes = (Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype) try: from pandas import BooleanDtype, StringDtype extension_object_dtypes_available = True extension_dtypes += (BooleanDtype, StringDtype) except ImportError: extension_object_dtypes_available = False try: from pandas import Float32Dtype, Float64Dtype extension_float_dtypes_available = True extension_dtypes += (Float32Dtype, Float64Dtype) except ImportError: extension_float_dtypes_available = False except ImportError: extension_dtypes_available = False extension_object_dtypes_available = False extension_float_dtypes_available = False extension_dtypes = () import pyarrow as pa import pyspark.sql.types as types from pyspark.sql.pandas.types import to_arrow_type, from_arrow_type # For running doctests and reference resolution in PyCharm. from pyspark import pandas as ps # noqa: F401 from pyspark.pandas._typing import Dtype, T if typing.TYPE_CHECKING: from pyspark.pandas.internal import InternalField # A column of data, with the data type. class SeriesType(Generic[T]): def __init__(self, dtype: Dtype, spark_type: types.DataType): self.dtype = dtype self.spark_type = spark_type def __repr__(self) -> str: return "SeriesType[{}]".format(self.spark_type) class DataFrameType: def __init__( self, index_fields: List["InternalField"], data_fields: List["InternalField"], ): self.index_fields = index_fields self.data_fields = data_fields self.fields = index_fields + data_fields @property def dtypes(self) -> List[Dtype]: return [field.dtype for field in self.fields] @property def spark_type(self) -> types.StructType: return types.StructType([field.struct_field for field in self.fields]) def __repr__(self) -> str: return "DataFrameType[{}]".format(self.spark_type) # The type is a scalar type that is furthermore understood by Spark. class ScalarType: def __init__(self, dtype: Dtype, spark_type: types.DataType): self.dtype = dtype self.spark_type = spark_type def __repr__(self) -> str: return "ScalarType[{}]".format(self.spark_type) # The type is left unspecified or we do not know about this type. class UnknownType: def __init__(self, tpe: Any): self.tpe = tpe def __repr__(self) -> str: return "UnknownType[{}]".format(self.tpe) class IndexNameTypeHolder: name = None tpe = None short_name = "IndexNameType" class NameTypeHolder: name = None tpe = None short_name = "NameType" def as_spark_type( tpe: Union[str, type, Dtype], *, raise_error: bool = True, prefer_timestamp_ntz: bool = False ) -> types.DataType: """ Given a Python type, returns the equivalent spark type. Accepts: - the built-in types in Python - the built-in types in numpy - list of pairs of (field_name, type) - dictionaries of field_name -> type - Python3's typing system """ # For NumPy typing, NumPy version should be 1.21+ and Python version should be 3.8+ if sys.version_info >= (3, 8) and LooseVersion(np.__version__) >= LooseVersion("1.21"): if ( hasattr(tpe, "__origin__") and tpe.__origin__ is np.ndarray # type: ignore[union-attr] and hasattr(tpe, "__args__") and len(tpe.__args__) > 1 # type: ignore[union-attr] ): # numpy.typing.NDArray return types.ArrayType( as_spark_type( tpe.__args__[1].__args__[0], raise_error=raise_error # type: ignore[union-attr] ) ) if isinstance(tpe, np.dtype) and tpe == np.dtype("object"): pass # ArrayType elif tpe in (np.ndarray,): return types.ArrayType(types.StringType()) elif hasattr(tpe, "__origin__") and issubclass( tpe.__origin__, list # type: ignore[union-attr] ): element_type = as_spark_type( tpe.__args__[0], raise_error=raise_error # type: ignore[union-attr] ) if element_type is None: return None return types.ArrayType(element_type) # BinaryType elif tpe in (bytes, np.character, np.bytes_, np.string_): return types.BinaryType() # BooleanType elif tpe in (bool, np.bool_, "bool", "?"): return types.BooleanType() # DateType elif tpe in (datetime.date,): return types.DateType() # NumericType elif tpe in (np.int8, np.byte, "int8", "byte", "b"): return types.ByteType() elif tpe in (decimal.Decimal,): # TODO: considering about the precision & scale for decimal type. return types.DecimalType(38, 18) elif tpe in (float, np.float_, np.float64, "float", "float64", "double"): return types.DoubleType() elif tpe in (np.float32, "float32", "f"): return types.FloatType() elif tpe in (np.int32, "int32", "i"): return types.IntegerType() elif tpe in (int, np.int64, "int", "int64", "long"): return types.LongType() elif tpe in (np.int16, "int16", "short"): return types.ShortType() # StringType elif tpe in (str, np.unicode_, "str", "U"): return types.StringType() # TimestampType or TimestampNTZType if timezone is not specified. elif tpe in (datetime.datetime, np.datetime64, "datetime64[ns]", "M"): return types.TimestampNTZType() if prefer_timestamp_ntz else types.TimestampType() # DayTimeIntervalType elif tpe in (datetime.timedelta, np.timedelta64, "timedelta64[ns]"): return types.DayTimeIntervalType() # categorical types elif isinstance(tpe, CategoricalDtype) or (isinstance(tpe, str) and type == "category"): return types.LongType() # extension types elif extension_dtypes_available: # IntegralType if isinstance(tpe, Int8Dtype) or (isinstance(tpe, str) and tpe == "Int8"): return types.ByteType() elif isinstance(tpe, Int16Dtype) or (isinstance(tpe, str) and tpe == "Int16"): return types.ShortType() elif isinstance(tpe, Int32Dtype) or (isinstance(tpe, str) and tpe == "Int32"): return types.IntegerType() elif isinstance(tpe, Int64Dtype) or (isinstance(tpe, str) and tpe == "Int64"): return types.LongType() if extension_object_dtypes_available: # BooleanType if isinstance(tpe, BooleanDtype) or (isinstance(tpe, str) and tpe == "boolean"): return types.BooleanType() # StringType elif isinstance(tpe, StringDtype) or (isinstance(tpe, str) and tpe == "string"): return types.StringType() if extension_float_dtypes_available: # FractionalType if isinstance(tpe, Float32Dtype) or (isinstance(tpe, str) and tpe == "Float32"): return types.FloatType() elif isinstance(tpe, Float64Dtype) or (isinstance(tpe, str) and tpe == "Float64"): return types.DoubleType() if raise_error: raise TypeError("Type %s was not understood." % tpe) else: return None def spark_type_to_pandas_dtype( spark_type: types.DataType, *, use_extension_dtypes: bool = False ) -> Dtype: """Return the given Spark DataType to pandas dtype.""" if use_extension_dtypes and extension_dtypes_available: # IntegralType if isinstance(spark_type, types.ByteType): return Int8Dtype() elif isinstance(spark_type, types.ShortType): return Int16Dtype() elif isinstance(spark_type, types.IntegerType): return Int32Dtype() elif isinstance(spark_type, types.LongType): return Int64Dtype() if extension_object_dtypes_available: # BooleanType if isinstance(spark_type, types.BooleanType): return BooleanDtype() # StringType elif isinstance(spark_type, types.StringType): return StringDtype() # FractionalType if extension_float_dtypes_available: if isinstance(spark_type, types.FloatType): return
Float32Dtype()
pandas.Float32Dtype
""" Test output formatting for Series/DataFrame, including to_string & reprs """ from datetime import datetime from io import StringIO import itertools from operator import methodcaller import os from pathlib import Path import re from shutil import get_terminal_size import sys import textwrap import dateutil import numpy as np import pytest import pytz from pandas.compat import ( IS64, is_platform_windows, ) import pandas.util._test_decorators as td import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, NaT, Series, Timestamp, date_range, get_option, option_context, read_csv, reset_option, set_option, ) import pandas._testing as tm import pandas.io.formats.format as fmt import pandas.io.formats.printing as printing use_32bit_repr = is_platform_windows() or not IS64 @pytest.fixture(params=["string", "pathlike", "buffer"]) def filepath_or_buffer_id(request): """ A fixture yielding test ids for filepath_or_buffer testing. """ return request.param @pytest.fixture def filepath_or_buffer(filepath_or_buffer_id, tmp_path): """ A fixture yielding a string representing a filepath, a path-like object and a StringIO buffer. Also checks that buffer is not closed. """ if filepath_or_buffer_id == "buffer": buf = StringIO() yield buf assert not buf.closed else: assert isinstance(tmp_path, Path) if filepath_or_buffer_id == "pathlike": yield tmp_path / "foo" else: yield str(tmp_path / "foo") @pytest.fixture def assert_filepath_or_buffer_equals( filepath_or_buffer, filepath_or_buffer_id, encoding ): """ Assertion helper for checking filepath_or_buffer. """ def _assert_filepath_or_buffer_equals(expected): if filepath_or_buffer_id == "string": with open(filepath_or_buffer, encoding=encoding) as f: result = f.read() elif filepath_or_buffer_id == "pathlike": result = filepath_or_buffer.read_text(encoding=encoding) elif filepath_or_buffer_id == "buffer": result = filepath_or_buffer.getvalue() assert result == expected return _assert_filepath_or_buffer_equals def curpath(): pth, _ = os.path.split(os.path.abspath(__file__)) return pth def has_info_repr(df): r = repr(df) c1 = r.split("\n")[0].startswith("<class") c2 = r.split("\n")[0].startswith(r"&lt;class") # _repr_html_ return c1 or c2 def has_non_verbose_info_repr(df): has_info = has_info_repr(df) r = repr(df) # 1. <class> # 2. Index # 3. Columns # 4. dtype # 5. memory usage # 6. trailing newline nv = len(r.split("\n")) == 6 return has_info and nv def has_horizontally_truncated_repr(df): try: # Check header row fst_line = np.array(repr(df).splitlines()[0].split()) cand_col = np.where(fst_line == "...")[0][0] except IndexError: return False # Make sure each row has this ... in the same place r = repr(df) for ix, l in enumerate(r.splitlines()): if not r.split()[cand_col] == "...": return False return True def has_vertically_truncated_repr(df): r = repr(df) only_dot_row = False for row in r.splitlines(): if re.match(r"^[\.\ ]+$", row): only_dot_row = True return only_dot_row def has_truncated_repr(df): return has_horizontally_truncated_repr(df) or has_vertically_truncated_repr(df) def has_doubly_truncated_repr(df): return has_horizontally_truncated_repr(df) and has_vertically_truncated_repr(df) def has_expanded_repr(df): r = repr(df) for line in r.split("\n"): if line.endswith("\\"): return True return False @pytest.mark.filterwarnings("ignore::FutureWarning:.*format") class TestDataFrameFormatting: def test_eng_float_formatter(self, float_frame): df = float_frame df.loc[5] = 0 fmt.set_eng_float_format() repr(df) fmt.set_eng_float_format(use_eng_prefix=True) repr(df) fmt.set_eng_float_format(accuracy=0) repr(df) tm.reset_display_options() def test_show_null_counts(self): df = DataFrame(1, columns=range(10), index=range(10)) df.iloc[1, 1] = np.nan def check(show_counts, result): buf = StringIO() df.info(buf=buf, show_counts=show_counts) assert ("non-null" in buf.getvalue()) is result with option_context( "display.max_info_rows", 20, "display.max_info_columns", 20 ): check(None, True) check(True, True) check(False, False) with option_context("display.max_info_rows", 5, "display.max_info_columns", 5): check(None, False) check(True, False) check(False, False) # GH37999 with tm.assert_produces_warning( FutureWarning, match="null_counts is deprecated.+" ): buf = StringIO() df.info(buf=buf, null_counts=True) assert "non-null" in buf.getvalue() # GH37999 with pytest.raises(ValueError, match=r"null_counts used with show_counts.+"): df.info(null_counts=True, show_counts=True) def test_repr_truncation(self): max_len = 20 with option_context("display.max_colwidth", max_len): df = DataFrame( { "A": np.random.randn(10), "B": [ tm.rands(np.random.randint(max_len - 1, max_len + 1)) for i in range(10) ], } ) r = repr(df) r = r[r.find("\n") + 1 :] adj = fmt.get_adjustment() for line, value in zip(r.split("\n"), df["B"]): if adj.len(value) + 1 > max_len: assert "..." in line else: assert "..." not in line with option_context("display.max_colwidth", 999999): assert "..." not in repr(df) with option_context("display.max_colwidth", max_len + 2): assert "..." not in repr(df) def test_repr_deprecation_negative_int(self): # TODO(2.0): remove in future version after deprecation cycle # Non-regression test for: # https://github.com/pandas-dev/pandas/issues/31532 width = get_option("display.max_colwidth") with tm.assert_produces_warning(FutureWarning): set_option("display.max_colwidth", -1) set_option("display.max_colwidth", width) def test_repr_chop_threshold(self): df = DataFrame([[0.1, 0.5], [0.5, -0.1]]) reset_option("display.chop_threshold") # default None assert repr(df) == " 0 1\n0 0.1 0.5\n1 0.5 -0.1" with option_context("display.chop_threshold", 0.2): assert repr(df) == " 0 1\n0 0.0 0.5\n1 0.5 0.0" with option_context("display.chop_threshold", 0.6): assert repr(df) == " 0 1\n0 0.0 0.0\n1 0.0 0.0" with option_context("display.chop_threshold", None): assert repr(df) == " 0 1\n0 0.1 0.5\n1 0.5 -0.1" def test_repr_chop_threshold_column_below(self): # GH 6839: validation case df = DataFrame([[10, 20, 30, 40], [8e-10, -1e-11, 2e-9, -2e-11]]).T with option_context("display.chop_threshold", 0): assert repr(df) == ( " 0 1\n" "0 10.0 8.000000e-10\n" "1 20.0 -1.000000e-11\n" "2 30.0 2.000000e-09\n" "3 40.0 -2.000000e-11" ) with option_context("display.chop_threshold", 1e-8): assert repr(df) == ( " 0 1\n" "0 10.0 0.000000e+00\n" "1 20.0 0.000000e+00\n" "2 30.0 0.000000e+00\n" "3 40.0 0.000000e+00" ) with option_context("display.chop_threshold", 5e-11): assert repr(df) == ( " 0 1\n" "0 10.0 8.000000e-10\n" "1 20.0 0.000000e+00\n" "2 30.0 2.000000e-09\n" "3 40.0 0.000000e+00" ) def test_repr_obeys_max_seq_limit(self): with option_context("display.max_seq_items", 2000): assert len(printing.pprint_thing(list(range(1000)))) > 1000 with option_context("display.max_seq_items", 5): assert len(printing.pprint_thing(list(range(1000)))) < 100 with option_context("display.max_seq_items", 1): assert len(printing.pprint_thing(list(range(1000)))) < 9 def test_repr_set(self): assert printing.pprint_thing({1}) == "{1}" def test_repr_is_valid_construction_code(self): # for the case of Index, where the repr is traditional rather than # stylized idx = Index(["a", "b"]) res = eval("pd." + repr(idx)) tm.assert_series_equal(Series(res), Series(idx)) def test_repr_should_return_str(self): # https://docs.python.org/3/reference/datamodel.html#object.__repr__ # "...The return value must be a string object." # (str on py2.x, str (unicode) on py3) data = [8, 5, 3, 5] index1 = ["\u03c3", "\u03c4", "\u03c5", "\u03c6"] cols = ["\u03c8"] df = DataFrame(data, columns=cols, index=index1) assert type(df.__repr__()) == str # both py2 / 3 def test_repr_no_backslash(self): with option_context("mode.sim_interactive", True): df = DataFrame(np.random.randn(10, 4)) assert "\\" not in repr(df) def test_expand_frame_repr(self): df_small = DataFrame("hello", index=[0], columns=[0]) df_wide = DataFrame("hello", index=[0], columns=range(10)) df_tall = DataFrame("hello", index=range(30), columns=range(5)) with option_context("mode.sim_interactive", True): with option_context( "display.max_columns", 10, "display.width", 20, "display.max_rows", 20, "display.show_dimensions", True, ): with option_context("display.expand_frame_repr", True): assert not has_truncated_repr(df_small) assert not has_expanded_repr(df_small) assert not has_truncated_repr(df_wide) assert has_expanded_repr(df_wide) assert has_vertically_truncated_repr(df_tall) assert has_expanded_repr(df_tall) with option_context("display.expand_frame_repr", False): assert not has_truncated_repr(df_small) assert not has_expanded_repr(df_small) assert not has_horizontally_truncated_repr(df_wide) assert not has_expanded_repr(df_wide) assert has_vertically_truncated_repr(df_tall) assert not has_expanded_repr(df_tall) def test_repr_non_interactive(self): # in non interactive mode, there can be no dependency on the # result of terminal auto size detection df = DataFrame("hello", index=range(1000), columns=range(5)) with option_context( "mode.sim_interactive", False, "display.width", 0, "display.max_rows", 5000 ): assert not has_truncated_repr(df) assert not has_expanded_repr(df) def test_repr_truncates_terminal_size(self, monkeypatch): # see gh-21180 terminal_size = (118, 96) monkeypatch.setattr( "pandas.io.formats.format.get_terminal_size", lambda: terminal_size ) index = range(5) columns = MultiIndex.from_tuples( [ ("This is a long title with > 37 chars.", "cat"), ("This is a loooooonger title with > 43 chars.", "dog"), ] ) df = DataFrame(1, index=index, columns=columns) result = repr(df) h1, h2 = result.split("\n")[:2] assert "long" in h1 assert "loooooonger" in h1 assert "cat" in h2 assert "dog" in h2 # regular columns df2 = DataFrame({"A" * 41: [1, 2], "B" * 41: [1, 2]}) result = repr(df2) assert df2.columns[0] in result.split("\n")[0] def test_repr_truncates_terminal_size_full(self, monkeypatch): # GH 22984 ensure entire window is filled terminal_size = (80, 24) df = DataFrame(np.random.rand(1, 7)) monkeypatch.setattr( "pandas.io.formats.format.get_terminal_size", lambda: terminal_size ) assert "..." not in str(df) def test_repr_truncation_column_size(self): # dataframe with last column very wide -> check it is not used to # determine size of truncation (...) column df = DataFrame( { "a": [108480, 30830], "b": [12345, 12345], "c": [12345, 12345], "d": [12345, 12345], "e": ["a" * 50] * 2, } ) assert "..." in str(df) assert " ... " not in str(df) def test_repr_max_columns_max_rows(self): term_width, term_height = get_terminal_size() if term_width < 10 or term_height < 10: pytest.skip(f"terminal size too small, {term_width} x {term_height}") def mkframe(n): index = [f"{i:05d}" for i in range(n)] return DataFrame(0, index, index) df6 = mkframe(6) df10 = mkframe(10) with option_context("mode.sim_interactive", True): with option_context("display.width", term_width * 2): with option_context("display.max_rows", 5, "display.max_columns", 5): assert not has_expanded_repr(mkframe(4)) assert not has_expanded_repr(mkframe(5)) assert not has_expanded_repr(df6) assert has_doubly_truncated_repr(df6) with option_context("display.max_rows", 20, "display.max_columns", 10): # Out off max_columns boundary, but no extending # since not exceeding width assert not has_expanded_repr(df6) assert not has_truncated_repr(df6) with option_context("display.max_rows", 9, "display.max_columns", 10): # out vertical bounds can not result in expanded repr assert not has_expanded_repr(df10) assert has_vertically_truncated_repr(df10) # width=None in terminal, auto detection with option_context( "display.max_columns", 100, "display.max_rows", term_width * 20, "display.width", None, ): df = mkframe((term_width // 7) - 2) assert not has_expanded_repr(df) df = mkframe((term_width // 7) + 2) printing.pprint_thing(df._repr_fits_horizontal_()) assert has_expanded_repr(df) def test_repr_min_rows(self): df = DataFrame({"a": range(20)}) # default setting no truncation even if above min_rows assert ".." not in repr(df) assert ".." not in df._repr_html_() df = DataFrame({"a": range(61)}) # default of max_rows 60 triggers truncation if above assert ".." in repr(df) assert ".." in df._repr_html_() with option_context("display.max_rows", 10, "display.min_rows", 4): # truncated after first two rows assert ".." in repr(df) assert "2 " not in repr(df) assert "..." in df._repr_html_() assert "<td>2</td>" not in df._repr_html_() with option_context("display.max_rows", 12, "display.min_rows", None): # when set to None, follow value of max_rows assert "5 5" in repr(df) assert "<td>5</td>" in df._repr_html_() with option_context("display.max_rows", 10, "display.min_rows", 12): # when set value higher as max_rows, use the minimum assert "5 5" not in repr(df) assert "<td>5</td>" not in df._repr_html_() with option_context("display.max_rows", None, "display.min_rows", 12): # max_rows of None -> never truncate assert ".." not in repr(df) assert ".." not in df._repr_html_() def test_str_max_colwidth(self): # GH 7856 df = DataFrame( [ { "a": "foo", "b": "bar", "c": "uncomfortably long line with lots of stuff", "d": 1, }, {"a": "foo", "b": "bar", "c": "stuff", "d": 1}, ] ) df.set_index(["a", "b", "c"]) assert str(df) == ( " a b c d\n" "0 foo bar uncomfortably long line with lots of stuff 1\n" "1 foo bar stuff 1" ) with option_context("max_colwidth", 20): assert str(df) == ( " a b c d\n" "0 foo bar uncomfortably lo... 1\n" "1 foo bar stuff 1" ) def test_auto_detect(self): term_width, term_height = get_terminal_size() fac = 1.05 # Arbitrary large factor to exceed term width cols = range(int(term_width * fac)) index = range(10) df = DataFrame(index=index, columns=cols) with option_context("mode.sim_interactive", True): with option_context("display.max_rows", None): with option_context("display.max_columns", None): # Wrap around with None assert has_expanded_repr(df) with option_context("display.max_rows", 0): with option_context("display.max_columns", 0): # Truncate with auto detection. assert has_horizontally_truncated_repr(df) index = range(int(term_height * fac)) df = DataFrame(index=index, columns=cols) with option_context("display.max_rows", 0): with option_context("display.max_columns", None): # Wrap around with None assert has_expanded_repr(df) # Truncate vertically assert has_vertically_truncated_repr(df) with option_context("display.max_rows", None): with option_context("display.max_columns", 0): assert has_horizontally_truncated_repr(df) def test_to_string_repr_unicode(self): buf = StringIO() unicode_values = ["\u03c3"] * 10 unicode_values = np.array(unicode_values, dtype=object) df = DataFrame({"unicode": unicode_values}) df.to_string(col_space=10, buf=buf) # it works! repr(df) idx = Index(["abc", "\u03c3a", "aegdvg"]) ser = Series(np.random.randn(len(idx)), idx) rs = repr(ser).split("\n") line_len = len(rs[0]) for line in rs[1:]: try: line = line.decode(get_option("display.encoding")) except AttributeError: pass if not line.startswith("dtype:"): assert len(line) == line_len # it works even if sys.stdin in None _stdin = sys.stdin try: sys.stdin = None repr(df) finally: sys.stdin = _stdin def test_east_asian_unicode_false(self): # not aligned properly because of east asian width # mid col df = DataFrame( {"a": ["あ", "いいい", "う", "ええええええ"], "b": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na あ 1\n" "bb いいい 222\nc う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # last col df = DataFrame( {"a": [1, 222, 33333, 4], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na 1 あ\n" "bb 222 いいい\nc 33333 う\n" "ddd 4 ええええええ" ) assert repr(df) == expected # all col df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na あああああ あ\n" "bb い いいい\nc う う\n" "ddd えええ ええええええ" ) assert repr(df) == expected # column name df = DataFrame( {"b": ["あ", "いいい", "う", "ええええええ"], "あああああ": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " b あああああ\na あ 1\n" "bb いいい 222\nc う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # index df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["あああ", "いいいいいい", "うう", "え"], ) expected = ( " a b\nあああ あああああ あ\n" "いいいいいい い いいい\nうう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # index name df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=Index(["あ", "い", "うう", "え"], name="おおおお"), ) expected = ( " a b\n" "おおおお \n" "あ あああああ あ\n" "い い いいい\n" "うう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # all df = DataFrame( {"あああ": ["あああ", "い", "う", "えええええ"], "いいいいい": ["あ", "いいい", "う", "ええ"]}, index=Index(["あ", "いいい", "うう", "え"], name="お"), ) expected = ( " あああ いいいいい\n" "お \n" "あ あああ あ\n" "いいい い いいい\n" "うう う う\n" "え えええええ ええ" ) assert repr(df) == expected # MultiIndex idx = MultiIndex.from_tuples( [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] ) df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=idx, ) expected = ( " a b\n" "あ いい あああああ あ\n" "う え い いいい\n" "おおお かかかか う う\n" "き くく えええ ええええええ" ) assert repr(df) == expected # truncate with option_context("display.max_rows", 3, "display.max_columns", 3): df = DataFrame( { "a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"], "c": ["お", "か", "ききき", "くくくくくく"], "ああああ": ["さ", "し", "す", "せ"], }, columns=["a", "b", "c", "ああああ"], ) expected = ( " a ... ああああ\n0 あああああ ... さ\n" ".. ... ... ...\n3 えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected df.index = ["あああ", "いいいい", "う", "aaa"] expected = ( " a ... ああああ\nあああ あああああ ... さ\n" ".. ... ... ...\naaa えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected def test_east_asian_unicode_true(self): # Enable Unicode option ----------------------------------------- with option_context("display.unicode.east_asian_width", True): # mid col df = DataFrame( {"a": ["あ", "いいい", "う", "ええええええ"], "b": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na あ 1\n" "bb いいい 222\nc う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # last col df = DataFrame( {"a": [1, 222, 33333, 4], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na 1 あ\n" "bb 222 いいい\nc 33333 う\n" "ddd 4 ええええええ" ) assert repr(df) == expected # all col df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\n" "a あああああ あ\n" "bb い いいい\n" "c う う\n" "ddd えええ ええええええ" ) assert repr(df) == expected # column name df = DataFrame( {"b": ["あ", "いいい", "う", "ええええええ"], "あああああ": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " b あああああ\n" "a あ 1\n" "bb いいい 222\n" "c う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # index df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["あああ", "いいいいいい", "うう", "え"], ) expected = ( " a b\n" "あああ あああああ あ\n" "いいいいいい い いいい\n" "うう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # index name df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=Index(["あ", "い", "うう", "え"], name="おおおお"), ) expected = ( " a b\n" "おおおお \n" "あ あああああ あ\n" "い い いいい\n" "うう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # all df = DataFrame( {"あああ": ["あああ", "い", "う", "えええええ"], "いいいいい": ["あ", "いいい", "う", "ええ"]}, index=Index(["あ", "いいい", "うう", "え"], name="お"), ) expected = ( " あああ いいいいい\n" "お \n" "あ あああ あ\n" "いいい い いいい\n" "うう う う\n" "え えええええ ええ" ) assert repr(df) == expected # MultiIndex idx = MultiIndex.from_tuples( [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] ) df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=idx, ) expected = ( " a b\n" "あ いい あああああ あ\n" "う え い いいい\n" "おおお かかかか う う\n" "き くく えええ ええええええ" ) assert repr(df) == expected # truncate with option_context("display.max_rows", 3, "display.max_columns", 3): df = DataFrame( { "a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"], "c": ["お", "か", "ききき", "くくくくくく"], "ああああ": ["さ", "し", "す", "せ"], }, columns=["a", "b", "c", "ああああ"], ) expected = ( " a ... ああああ\n" "0 あああああ ... さ\n" ".. ... ... ...\n" "3 えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected df.index = ["あああ", "いいいい", "う", "aaa"] expected = ( " a ... ああああ\n" "あああ あああああ ... さ\n" "... ... ... ...\n" "aaa えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected # ambiguous unicode df = DataFrame( {"b": ["あ", "いいい", "¡¡", "ええええええ"], "あああああ": [1, 222, 33333, 4]}, index=["a", "bb", "c", "¡¡¡"], ) expected = ( " b あああああ\n" "a あ 1\n" "bb いいい 222\n" "c ¡¡ 33333\n" "¡¡¡ ええええええ 4" ) assert repr(df) == expected def test_to_string_buffer_all_unicode(self): buf = StringIO() empty = DataFrame({"c/\u03c3": Series(dtype=object)}) nonempty = DataFrame({"c/\u03c3": Series([1, 2, 3])}) print(empty, file=buf) print(nonempty, file=buf) # this should work buf.getvalue() def test_to_string_with_col_space(self): df = DataFrame(np.random.random(size=(1, 3))) c10 = len(df.to_string(col_space=10).split("\n")[1]) c20 = len(df.to_string(col_space=20).split("\n")[1]) c30 = len(df.to_string(col_space=30).split("\n")[1]) assert c10 < c20 < c30 # GH 8230 # col_space wasn't being applied with header=False with_header = df.to_string(col_space=20) with_header_row1 = with_header.splitlines()[1] no_header = df.to_string(col_space=20, header=False) assert len(with_header_row1) == len(no_header) def test_to_string_with_column_specific_col_space_raises(self): df = DataFrame(np.random.random(size=(3, 3)), columns=["a", "b", "c"]) msg = ( "Col_space length\\(\\d+\\) should match " "DataFrame number of columns\\(\\d+\\)" ) with pytest.raises(ValueError, match=msg): df.to_string(col_space=[30, 40]) with pytest.raises(ValueError, match=msg): df.to_string(col_space=[30, 40, 50, 60]) msg = "unknown column" with pytest.raises(ValueError, match=msg): df.to_string(col_space={"a": "foo", "b": 23, "d": 34}) def test_to_string_with_column_specific_col_space(self): df = DataFrame(np.random.random(size=(3, 3)), columns=["a", "b", "c"]) result = df.to_string(col_space={"a": 10, "b": 11, "c": 12}) # 3 separating space + each col_space for (id, a, b, c) assert len(result.split("\n")[1]) == (3 + 1 + 10 + 11 + 12) result = df.to_string(col_space=[10, 11, 12]) assert len(result.split("\n")[1]) == (3 + 1 + 10 + 11 + 12) def test_to_string_truncate_indices(self): for index in [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex, ]: for column in [tm.makeStringIndex]: for h in [10, 20]: for w in [10, 20]: with option_context("display.expand_frame_repr", False): df = DataFrame(index=index(h), columns=column(w)) with option_context("display.max_rows", 15): if h == 20: assert has_vertically_truncated_repr(df) else: assert not has_vertically_truncated_repr(df) with option_context("display.max_columns", 15): if w == 20: assert has_horizontally_truncated_repr(df) else: assert not (has_horizontally_truncated_repr(df)) with option_context( "display.max_rows", 15, "display.max_columns", 15 ): if h == 20 and w == 20: assert has_doubly_truncated_repr(df) else: assert not has_doubly_truncated_repr(df) def test_to_string_truncate_multilevel(self): arrays = [ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] df = DataFrame(index=arrays, columns=arrays) with option_context("display.max_rows", 7, "display.max_columns", 7): assert has_doubly_truncated_repr(df) def test_truncate_with_different_dtypes(self): # 11594, 12045 # when truncated the dtypes of the splits can differ # 11594 import datetime s = Series( [datetime.datetime(2012, 1, 1)] * 10 + [datetime.datetime(1012, 1, 2)] + [datetime.datetime(2012, 1, 3)] * 10 ) with option_context("display.max_rows", 8): result = str(s) assert "object" in result # 12045 df = DataFrame({"text": ["some words"] + [None] * 9}) with option_context("display.max_rows", 8, "display.max_columns", 3): result = str(df) assert "None" in result assert "NaN" not in result def test_truncate_with_different_dtypes_multiindex(self): # GH#13000 df = DataFrame({"Vals": range(100)}) frame = pd.concat([df], keys=["Sweep"], names=["Sweep", "Index"]) result = repr(frame) result2 = repr(frame.iloc[:5]) assert result.startswith(result2) def test_datetimelike_frame(self): # GH 12211 df = DataFrame({"date": [Timestamp("20130101").tz_localize("UTC")] + [NaT] * 5}) with option_context("display.max_rows", 5): result = str(df) assert "2013-01-01 00:00:00+00:00" in result assert "NaT" in result assert "..." in result assert "[6 rows x 1 columns]" in result dts = [Timestamp("2011-01-01", tz="US/Eastern")] * 5 + [NaT] * 5 df = DataFrame({"dt": dts, "x": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}) with option_context("display.max_rows", 5): expected = ( " dt x\n" "0 2011-01-01 00:00:00-05:00 1\n" "1 2011-01-01 00:00:00-05:00 2\n" ".. ... ..\n" "8 NaT 9\n" "9 NaT 10\n\n" "[10 rows x 2 columns]" ) assert repr(df) == expected dts = [NaT] * 5 + [Timestamp("2011-01-01", tz="US/Eastern")] * 5 df = DataFrame({"dt": dts, "x": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}) with option_context("display.max_rows", 5): expected = ( " dt x\n" "0 NaT 1\n" "1 NaT 2\n" ".. ... ..\n" "8 2011-01-01 00:00:00-05:00 9\n" "9 2011-01-01 00:00:00-05:00 10\n\n" "[10 rows x 2 columns]" ) assert repr(df) == expected dts = [Timestamp("2011-01-01", tz="Asia/Tokyo")] * 5 + [ Timestamp("2011-01-01", tz="US/Eastern") ] * 5 df = DataFrame({"dt": dts, "x": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}) with option_context("display.max_rows", 5): expected = ( " dt x\n" "0 2011-01-01 00:00:00+09:00 1\n" "1 2011-01-01 00:00:00+09:00 2\n" ".. ... ..\n" "8 2011-01-01 00:00:00-05:00 9\n" "9 2011-01-01 00:00:00-05:00 10\n\n" "[10 rows x 2 columns]" ) assert repr(df) == expected @pytest.mark.parametrize( "start_date", [ "2017-01-01 23:59:59.999999999", "2017-01-01 23:59:59.99999999", "2017-01-01 23:59:59.9999999", "2017-01-01 23:59:59.999999", "2017-01-01 23:59:59.99999", "2017-01-01 23:59:59.9999", ], ) def test_datetimeindex_highprecision(self, start_date): # GH19030 # Check that high-precision time values for the end of day are # included in repr for DatetimeIndex df = DataFrame({"A": date_range(start=start_date, freq="D", periods=5)}) result = str(df) assert start_date in result dti = date_range(start=start_date, freq="D", periods=5) df = DataFrame({"A": range(5)}, index=dti) result = str(df.index) assert start_date in result def test_nonunicode_nonascii_alignment(self): df = DataFrame([["aa\xc3\xa4\xc3\xa4", 1], ["bbbb", 2]]) rep_str = df.to_string() lines = rep_str.split("\n") assert len(lines[1]) == len(lines[2]) def test_unicode_problem_decoding_as_ascii(self): dm = DataFrame({"c/\u03c3": Series({"test": np.nan})}) str(dm.to_string()) def test_string_repr_encoding(self, datapath): filepath = datapath("io", "parser", "data", "unicode_series.csv") df = read_csv(filepath, header=None, encoding="latin1") repr(df) repr(df[1]) def test_repr_corner(self): # representing infs poses no problems df = DataFrame({"foo": [-np.inf, np.inf]}) repr(df) def test_frame_info_encoding(self): index = ["'Til There Was You (1997)", "ldum klaka (Cold Fever) (1994)"] fmt.set_option("display.max_rows", 1) df = DataFrame(columns=["a", "b", "c"], index=index) repr(df) repr(df.T) fmt.set_option("display.max_rows", 200) def test_wide_repr(self): with option_context( "mode.sim_interactive", True, "display.show_dimensions", True, "display.max_columns", 20, ): max_cols = get_option("display.max_columns") df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1))) set_option("display.expand_frame_repr", False) rep_str = repr(df) assert f"10 rows x {max_cols - 1} columns" in rep_str set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 120): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) reset_option("display.expand_frame_repr") def test_wide_repr_wide_columns(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): df = DataFrame( np.random.randn(5, 3), columns=["a" * 90, "b" * 90, "c" * 90] ) rep_str = repr(df) assert len(rep_str.splitlines()) == 20 def test_wide_repr_named(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): max_cols = get_option("display.max_columns") df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1))) df.index.name = "DataFrame Index" set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) for line in wide_repr.splitlines()[1::13]: assert "DataFrame Index" in line reset_option("display.expand_frame_repr") def test_wide_repr_multiindex(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): midx = MultiIndex.from_arrays(tm.rands_array(5, size=(2, 10))) max_cols = get_option("display.max_columns") df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1)), index=midx) df.index.names = ["Level 0", "Level 1"] set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) for line in wide_repr.splitlines()[1::13]: assert "Level 0 Level 1" in line reset_option("display.expand_frame_repr") def test_wide_repr_multiindex_cols(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): max_cols = get_option("display.max_columns") midx = MultiIndex.from_arrays(tm.rands_array(5, size=(2, 10))) mcols = MultiIndex.from_arrays(tm.rands_array(3, size=(2, max_cols - 1))) df = DataFrame( tm.rands_array(25, (10, max_cols - 1)), index=midx, columns=mcols ) df.index.names = ["Level 0", "Level 1"] set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150, "display.max_columns", 20): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) reset_option("display.expand_frame_repr") def test_wide_repr_unicode(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): max_cols = 20 df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1))) set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) reset_option("display.expand_frame_repr") def test_wide_repr_wide_long_columns(self): with option_context("mode.sim_interactive", True): df = DataFrame({"a": ["a" * 30, "b" * 30], "b": ["c" * 70, "d" * 80]}) result = repr(df) assert "ccccc" in result assert "ddddd" in result def test_long_series(self): n = 1000 s = Series( np.random.randint(-50, 50, n), index=[f"s{x:04d}" for x in range(n)], dtype="int64", ) import re str_rep = str(s) nmatches = len(re.findall("dtype", str_rep)) assert nmatches == 1 def test_index_with_nan(self): # GH 2850 df = DataFrame( { "id1": {0: "1a3", 1: "9h4"}, "id2": {0: np.nan, 1: "d67"}, "id3": {0: "78d", 1: "79d"}, "value": {0: 123, 1: 64}, } ) # multi-index y = df.set_index(["id1", "id2", "id3"]) result = y.to_string() expected = ( " value\nid1 id2 id3 \n" "1a3 NaN 78d 123\n9h4 d67 79d 64" ) assert result == expected # index y = df.set_index("id2") result = y.to_string() expected = ( " id1 id3 value\nid2 \n" "NaN 1a3 78d 123\nd67 9h4 79d 64" ) assert result == expected # with append (this failed in 0.12) y = df.set_index(["id1", "id2"]).set_index("id3", append=True) result = y.to_string() expected = ( " value\nid1 id2 id3 \n" "1a3 NaN 78d 123\n9h4 d67 79d 64" ) assert result == expected # all-nan in mi df2 = df.copy() df2.loc[:, "id2"] = np.nan y = df2.set_index("id2") result = y.to_string() expected = ( " id1 id3 value\nid2 \n" "NaN 1a3 78d 123\nNaN 9h4 79d 64" ) assert result == expected # partial nan in mi df2 = df.copy() df2.loc[:, "id2"] = np.nan y = df2.set_index(["id2", "id3"]) result = y.to_string() expected = ( " id1 value\nid2 id3 \n" "NaN 78d 1a3 123\n 79d 9h4 64" ) assert result == expected df = DataFrame( { "id1": {0: np.nan, 1: "9h4"}, "id2": {0: np.nan, 1: "d67"}, "id3": {0: np.nan, 1: "79d"}, "value": {0: 123, 1: 64}, } ) y = df.set_index(["id1", "id2", "id3"]) result = y.to_string() expected = ( " value\nid1 id2 id3 \n" "NaN NaN NaN 123\n9h4 d67 79d 64" ) assert result == expected def test_to_string(self): # big mixed biggie = DataFrame( {"A": np.random.randn(200), "B": tm.makeStringIndex(200)}, index=np.arange(200), ) biggie.loc[:20, "A"] = np.nan biggie.loc[:20, "B"] = np.nan s = biggie.to_string() buf = StringIO() retval = biggie.to_string(buf=buf) assert retval is None assert buf.getvalue() == s assert isinstance(s, str) # print in right order result = biggie.to_string( columns=["B", "A"], col_space=17, float_format="%.5f".__mod__ ) lines = result.split("\n") header = lines[0].strip().split() joined = "\n".join([re.sub(r"\s+", " ", x).strip() for x in lines[1:]]) recons = read_csv(StringIO(joined), names=header, header=None, sep=" ") tm.assert_series_equal(recons["B"], biggie["B"]) assert recons["A"].count() == biggie["A"].count() assert (np.abs(recons["A"].dropna() - biggie["A"].dropna()) < 0.1).all() # expected = ['B', 'A'] # assert header == expected result = biggie.to_string(columns=["A"], col_space=17) header = result.split("\n")[0].strip().split() expected = ["A"] assert header == expected biggie.to_string(columns=["B", "A"], formatters={"A": lambda x: f"{x:.1f}"}) biggie.to_string(columns=["B", "A"], float_format=str) biggie.to_string(columns=["B", "A"], col_space=12, float_format=str) frame = DataFrame(index=np.arange(200)) frame.to_string() def test_to_string_no_header(self): df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) df_s = df.to_string(header=False) expected = "0 1 4\n1 2 5\n2 3 6" assert df_s == expected def test_to_string_specified_header(self): df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) df_s = df.to_string(header=["X", "Y"]) expected = " X Y\n0 1 4\n1 2 5\n2 3 6" assert df_s == expected msg = "Writing 2 cols but got 1 aliases" with pytest.raises(ValueError, match=msg): df.to_string(header=["X"]) def test_to_string_no_index(self): # GH 16839, GH 13032 df = DataFrame({"x": [11, 22], "y": [33, -44], "z": ["AAA", " "]}) df_s = df.to_string(index=False) # Leading space is expected for positive numbers. expected = " x y z\n11 33 AAA\n22 -44 " assert df_s == expected df_s = df[["y", "x", "z"]].to_string(index=False) expected = " y x z\n 33 11 AAA\n-44 22 " assert df_s == expected def test_to_string_line_width_no_index(self): # GH 13998, GH 22505 df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) df_s = df.to_string(line_width=1, index=False) expected = " x \\\n 1 \n 2 \n 3 \n\n y \n 4 \n 5 \n 6 " assert df_s == expected df = DataFrame({"x": [11, 22, 33], "y": [4, 5, 6]}) df_s = df.to_string(line_width=1, index=False) expected = " x \\\n11 \n22 \n33 \n\n y \n 4 \n 5 \n 6 " assert df_s == expected df = DataFrame({"x": [11, 22, -33], "y": [4, 5, -6]}) df_s = df.to_string(line_width=1, index=False) expected = " x \\\n 11 \n 22 \n-33 \n\n y \n 4 \n 5 \n-6 " assert df_s == expected def test_to_string_float_formatting(self): tm.reset_display_options() fmt.set_option( "display.precision", 5, "display.column_space", 12, "display.notebook_repr_html", False, ) df = DataFrame( {"x": [0, 0.25, 3456.000, 12e45, 1.64e6, 1.7e8, 1.253456, np.pi, -1e6]} ) df_s = df.to_string() if _three_digit_exp(): expected = ( " x\n0 0.00000e+000\n1 2.50000e-001\n" "2 3.45600e+003\n3 1.20000e+046\n4 1.64000e+006\n" "5 1.70000e+008\n6 1.25346e+000\n7 3.14159e+000\n" "8 -1.00000e+006" ) else: expected = ( " x\n0 0.00000e+00\n1 2.50000e-01\n" "2 3.45600e+03\n3 1.20000e+46\n4 1.64000e+06\n" "5 1.70000e+08\n6 1.25346e+00\n7 3.14159e+00\n" "8 -1.00000e+06" ) assert df_s == expected df = DataFrame({"x": [3234, 0.253]}) df_s = df.to_string() expected = " x\n0 3234.000\n1 0.253" assert df_s == expected tm.reset_display_options() assert get_option("display.precision") == 6 df = DataFrame({"x": [1e9, 0.2512]}) df_s = df.to_string() if _three_digit_exp(): expected = " x\n0 1.000000e+009\n1 2.512000e-001" else: expected = " x\n0 1.000000e+09\n1 2.512000e-01" assert df_s == expected def test_to_string_float_format_no_fixed_width(self): # GH 21625 df = DataFrame({"x": [0.19999]}) expected = " x\n0 0.200" assert df.to_string(float_format="%.3f") == expected # GH 22270 df = DataFrame({"x": [100.0]}) expected = " x\n0 100" assert df.to_string(float_format="%.0f") == expected def test_to_string_small_float_values(self): df = DataFrame({"a": [1.5, 1e-17, -5.5e-7]}) result = df.to_string() # sadness per above if _three_digit_exp(): expected = ( " a\n" "0 1.500000e+000\n" "1 1.000000e-017\n" "2 -5.500000e-007" ) else: expected = ( " a\n" "0 1.500000e+00\n" "1 1.000000e-17\n" "2 -5.500000e-07" ) assert result == expected # but not all exactly zero df = df * 0 result = df.to_string() expected = " 0\n0 0\n1 0\n2 -0" def test_to_string_float_index(self): index = Index([1.5, 2, 3, 4, 5]) df = DataFrame(np.arange(5), index=index) result = df.to_string() expected = " 0\n1.5 0\n2.0 1\n3.0 2\n4.0 3\n5.0 4" assert result == expected def test_to_string_complex_float_formatting(self): # GH #25514, 25745 with option_context("display.precision", 5): df = DataFrame( { "x": [ (0.4467846931321966 + 0.0715185102060818j), (0.2739442392974528 + 0.23515228785438969j), (0.26974928742135185 + 0.3250604054898979j), (-1j), ] } ) result = df.to_string() expected = ( " x\n0 0.44678+0.07152j\n" "1 0.27394+0.23515j\n" "2 0.26975+0.32506j\n" "3 -0.00000-1.00000j" ) assert result == expected def test_to_string_ascii_error(self): data = [ ( "0 ", " .gitignore ", " 5 ", " \xe2\x80\xa2\xe2\x80\xa2\xe2\x80\xa2\xe2\x80\xa2\xe2\x80\xa2", ) ] df = DataFrame(data) # it works! repr(df) def test_to_string_int_formatting(self): df = DataFrame({"x": [-15, 20, 25, -35]}) assert issubclass(df["x"].dtype.type, np.integer) output = df.to_string() expected = " x\n0 -15\n1 20\n2 25\n3 -35" assert output == expected def test_to_string_index_formatter(self): df = DataFrame([range(5), range(5, 10), range(10, 15)]) rs = df.to_string(formatters={"__index__": lambda x: "abc"[x]}) xp = """\ 0 1 2 3 4 a 0 1 2 3 4 b 5 6 7 8 9 c 10 11 12 13 14\ """ assert rs == xp def test_to_string_left_justify_cols(self): tm.reset_display_options() df = DataFrame({"x": [3234, 0.253]}) df_s = df.to_string(justify="left") expected = " x \n0 3234.000\n1 0.253" assert df_s == expected def test_to_string_format_na(self): tm.reset_display_options() df = DataFrame( { "A": [np.nan, -1, -2.1234, 3, 4], "B": [np.nan, "foo", "foooo", "fooooo", "bar"], } ) result = df.to_string() expected = ( " A B\n" "0 NaN NaN\n" "1 -1.0000 foo\n" "2 -2.1234 foooo\n" "3 3.0000 fooooo\n" "4 4.0000 bar" ) assert result == expected df = DataFrame( { "A": [np.nan, -1.0, -2.0, 3.0, 4.0], "B": [np.nan, "foo", "foooo", "fooooo", "bar"], } ) result = df.to_string() expected = ( " A B\n" "0 NaN NaN\n" "1 -1.0 foo\n" "2 -2.0 foooo\n" "3 3.0 fooooo\n" "4 4.0 bar" ) assert result == expected def test_to_string_format_inf(self): # Issue #24861 tm.reset_display_options() df = DataFrame( { "A": [-np.inf, np.inf, -1, -2.1234, 3, 4], "B": [-np.inf, np.inf, "foo", "foooo", "fooooo", "bar"], } ) result = df.to_string() expected = ( " A B\n" "0 -inf -inf\n" "1 inf inf\n" "2 -1.0000 foo\n" "3 -2.1234 foooo\n" "4 3.0000 fooooo\n" "5 4.0000 bar" ) assert result == expected df = DataFrame( { "A": [-np.inf, np.inf, -1.0, -2.0, 3.0, 4.0], "B": [-np.inf, np.inf, "foo", "foooo", "fooooo", "bar"], } ) result = df.to_string() expected = ( " A B\n" "0 -inf -inf\n" "1 inf inf\n" "2 -1.0 foo\n" "3 -2.0 foooo\n" "4 3.0 fooooo\n" "5 4.0 bar" ) assert result == expected def test_to_string_decimal(self): # Issue #23614 df = DataFrame({"A": [6.0, 3.1, 2.2]}) expected = " A\n0 6,0\n1 3,1\n2 2,2" assert df.to_string(decimal=",") == expected def test_to_string_line_width(self): df = DataFrame(123, index=range(10, 15), columns=range(30)) s = df.to_string(line_width=80) assert max(len(line) for line in s.split("\n")) == 80 def test_show_dimensions(self): df = DataFrame(123, index=range(10, 15), columns=range(30)) with option_context( "display.max_rows", 10, "display.max_columns", 40, "display.width", 500, "display.expand_frame_repr", "info", "display.show_dimensions", True, ): assert "5 rows" in str(df) assert "5 rows" in df._repr_html_() with option_context( "display.max_rows", 10, "display.max_columns", 40, "display.width", 500, "display.expand_frame_repr", "info", "display.show_dimensions", False, ): assert "5 rows" not in str(df) assert "5 rows" not in df._repr_html_() with option_context( "display.max_rows", 2, "display.max_columns", 2, "display.width", 500, "display.expand_frame_repr", "info", "display.show_dimensions", "truncate", ): assert "5 rows" in str(df) assert "5 rows" in df._repr_html_() with option_context( "display.max_rows", 10, "display.max_columns", 40, "display.width", 500, "display.expand_frame_repr", "info", "display.show_dimensions", "truncate", ): assert "5 rows" not in str(df) assert "5 rows" not in df._repr_html_() def test_repr_html(self, float_frame): df = float_frame df._repr_html_() fmt.set_option("display.max_rows", 1, "display.max_columns", 1) df._repr_html_() fmt.set_option("display.notebook_repr_html", False) df._repr_html_() tm.reset_display_options() df =
DataFrame([[1, 2], [3, 4]])
pandas.DataFrame
# coding: utf-8 from __future__ import division import numpy as np import pandas as pd from sklearn import metrics import lightgbm as lgb import time from multiprocessing import cpu_count import warnings warnings.filterwarnings('ignore') # Constants define ROOT_PATH = '../' ONLINE = 1 target = 'label' train_len = 4999 threshold = 0.5 ########################################### Helper function ########################################### def log(info): print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ' ' + str(info)) def merge_feat_count(df, df_feat, columns_groupby, new_column_name, type='int'): df_count = pd.DataFrame(df_feat.groupby(columns_groupby).size()).fillna(0).astype(type).reset_index() df_count.columns = columns_groupby + [new_column_name] df = df.merge(df_count, on=columns_groupby, how='left') return df, [new_column_name] def merge_feat_onehot_count(df, df_feat, columns_groupby, prefix, type='int'): df_count = df_feat.groupby(columns_groupby).size().unstack().fillna(0).astype(type).reset_index() df_count.columns = [i if i == columns_groupby[0] else prefix + '_' + str(i) for i in df_count.columns] df = df.merge(df_count, on=columns_groupby[0], how='left') return df, list(np.delete(df_count.columns.values, 0)) def merge_feat_nunique(df, df_feat, columns_groupby, column, new_column_name, type='int'): df_nunique = pd.DataFrame(df_feat.groupby(columns_groupby)[column].nunique()).fillna(0).astype(type).reset_index() df_nunique.columns = columns_groupby + [new_column_name] df = df.merge(df_nunique, on=columns_groupby, how='left') return df, [new_column_name] def merge_feat_min(df, df_feat, columns_groupby, column, new_column_name, type='float'): df_min = pd.DataFrame(df_feat.groupby(columns_groupby)[column].min()).fillna(0).astype(type).reset_index() df_min.columns = columns_groupby + [new_column_name] df = df.merge(df_min, on=columns_groupby, how='left') return df, [new_column_name] def merge_feat_max(df, df_feat, columns_groupby, column, new_column_name, type='float'): df_max = pd.DataFrame(df_feat.groupby(columns_groupby)[column].max()).fillna(0).astype(type).reset_index() df_max.columns = columns_groupby + [new_column_name] df = df.merge(df_max, on=columns_groupby, how='left') return df, [new_column_name] def merge_feat_mean(df, df_feat, columns_groupby, column, new_column_name, type='float'): df_mean = pd.DataFrame(df_feat.groupby(columns_groupby)[column].mean()).fillna(0).astype(type).reset_index() df_mean.columns = columns_groupby + [new_column_name] df = df.merge(df_mean, on=columns_groupby, how='left') return df, [new_column_name] def eval_auc_f1(preds, dtrain): df = pd.DataFrame({'y_true': dtrain.get_label(), 'y_score': preds}) df['y_pred'] = df['y_score'].apply(lambda x: 1 if x >= threshold else 0) auc = metrics.roc_auc_score(df.y_true, df.y_score) f1 = metrics.f1_score(df.y_true, df.y_pred) return 'feval', (auc * 0.6 + f1 * 0.4), True def lgb_cv(train_x, train_y, params, rounds, folds): start = time.clock() log(str(train_x.columns)) dtrain = lgb.Dataset(train_x, label=train_y) log('run cv: ' + 'round: ' + str(rounds)) res = lgb.cv(params, dtrain, rounds, nfold=folds, metrics=['eval_auc_f1', 'auc'], feval=eval_auc_f1, early_stopping_rounds=200, verbose_eval=5) elapsed = (time.clock() - start) log('Time used:' + str(elapsed) + 's') return len(res['feval-mean']), res['feval-mean'][len(res['feval-mean']) - 1], res['auc-mean'][len(res['auc-mean']) - 1] def lgb_train_predict(train_x, train_y, test_x, params, rounds): start = time.clock() log(str(train_x.columns)) dtrain = lgb.Dataset(train_x, label=train_y) valid_sets = [dtrain] model = lgb.train(params, dtrain, rounds, valid_sets, feval=eval_auc_f1, verbose_eval=5) pred = model.predict(test_x) elapsed = (time.clock() - start) log('Time used:' + str(elapsed) + 's') return model, pred def store_result(test_index, pred, threshold, name): result = pd.DataFrame({'uid': test_index, 'prob': pred}) result = result.sort_values('prob', ascending=False) result['label'] = 0 result.loc[result.prob > threshold, 'label'] = 1 result.to_csv('../data/output/sub/' + name + '.csv', index=0, header=0, columns=['uid', 'label']) return result ########################################### Read data ########################################### train = pd.read_csv(ROOT_PATH + 'data/input/train/uid_train.txt', header=None, sep='\t') train.columns = ['uid', 'label'] train_voice =
pd.read_csv(ROOT_PATH + 'data/input/train/voice_train.txt', header=None, sep='\t')
pandas.read_csv
##### file path ### input # data_set keys and lebels path_df_part_1_uic_label = "df_part_1_uic_label.csv" path_df_part_2_uic_label = "df_part_2_uic_label.csv" path_df_part_3_uic = "df_part_3_uic.csv" # data_set features path_df_part_1_U = "df_part_1_U.csv" path_df_part_1_I = "df_part_1_I.csv" path_df_part_1_C = "df_part_1_C.csv" path_df_part_1_IC = "df_part_1_IC.csv" path_df_part_1_UI = "df_part_1_UI.csv" path_df_part_1_UC = "df_part_1_UC.csv" path_df_part_2_U = "df_part_2_U.csv" path_df_part_2_I = "df_part_2_I.csv" path_df_part_2_C = "df_part_2_C.csv" path_df_part_2_IC = "df_part_2_IC.csv" path_df_part_2_UI = "df_part_2_UI.csv" path_df_part_2_UC = "df_part_2_UC.csv" path_df_part_3_U = "df_part_3_U.csv" path_df_part_3_I = "df_part_3_I.csv" path_df_part_3_C = "df_part_3_C.csv" path_df_part_3_IC = "df_part_3_IC.csv" path_df_part_3_UI = "df_part_3_UI.csv" path_df_part_3_UC = "df_part_3_UC.csv" ### out file ### intermediate file # data partition with diffferent label path_df_part_1_uic_label_0 = "df_part_1_uic_label_0.csv" path_df_part_1_uic_label_1 = "df_part_1_uic_label_1.csv" path_df_part_2_uic_label_0 = "df_part_2_uic_label_0.csv" path_df_part_2_uic_label_1 = "df_part_2_uic_label_1.csv" # training set keys uic-label with k_means clusters' label path_df_part_1_uic_label_cluster = "df_part_1_uic_label_cluster.csv" path_df_part_2_uic_label_cluster = "df_part_2_uic_label_cluster.csv" # scalers for data standardization store as python pickle # for each part's features path_df_part_1_scaler = "df_part_1_scaler" path_df_part_2_scaler = "df_part_2_scaler" import pandas as pd import numpy as np def df_read(path, mode='r'): '''the definition of dataframe loading function ''' path_df = open(path, mode) try: df = pd.read_csv(path_df, index_col=False) finally: path_df.close() return df def subsample(df, sub_size): '''the definition of sub-sampling function @param df: dataframe @param sub_size: sub_sample set size @return sub-dataframe with the same formation of df ''' if sub_size >= len(df): return df else: return df.sample(n=sub_size) ######################################################################## '''Step 1: dividing of positive and negative sub-set by u-i-c-label keys p.s. we first generate u-i-C key, then merging for data set and operation by chunk such strange operation designed for saving my poor PC-MEM. ''' df_part_1_uic_label = df_read(path_df_part_1_uic_label) # loading total keys df_part_2_uic_label = df_read(path_df_part_2_uic_label) df_part_1_uic_label_0 = df_part_1_uic_label[df_part_1_uic_label['label'] == 0] df_part_1_uic_label_1 = df_part_1_uic_label[df_part_1_uic_label['label'] == 1] df_part_2_uic_label_0 = df_part_2_uic_label[df_part_2_uic_label['label'] == 0] df_part_2_uic_label_1 = df_part_2_uic_label[df_part_2_uic_label['label'] == 1] df_part_1_uic_label_0.to_csv(path_df_part_1_uic_label_0, index=False) df_part_1_uic_label_1.to_csv(path_df_part_1_uic_label_1, index=False) df_part_2_uic_label_0.to_csv(path_df_part_2_uic_label_0, index=False) df_part_2_uic_label_1.to_csv(path_df_part_2_uic_label_1, index=False) ####################################################################### '''Step 2: clustering on negative sub-set clusters number ~ 35, using mini-batch-k-means ''' # clustering based on sklearn from sklearn import preprocessing from sklearn.cluster import MiniBatchKMeans import pickle ##### part_1 ##### # loading features df_part_1_U = df_read(path_df_part_1_U) df_part_1_I = df_read(path_df_part_1_I) df_part_1_C = df_read(path_df_part_1_C) df_part_1_IC = df_read(path_df_part_1_IC) df_part_1_UI = df_read(path_df_part_1_UI) df_part_1_UC = df_read(path_df_part_1_UC) # process by chunk as ui-pairs size is too big # for get scale transform mechanism to large scale of data scaler_1 = preprocessing.StandardScaler() batch = 0 for df_part_1_uic_label_0 in pd.read_csv(open(path_df_part_1_uic_label_0, 'r'), chunksize=150000): try: # construct of part_1's sub-training set train_data_df_part_1 = pd.merge(df_part_1_uic_label_0, df_part_1_U, how='left', on=['user_id']) train_data_df_part_1 = pd.merge(train_data_df_part_1, df_part_1_I, how='left', on=['item_id']) train_data_df_part_1 = pd.merge(train_data_df_part_1, df_part_1_C, how='left', on=['item_category']) train_data_df_part_1 = pd.merge(train_data_df_part_1, df_part_1_IC, how='left', on=['item_id', 'item_category']) train_data_df_part_1 = pd.merge(train_data_df_part_1, df_part_1_UI, how='left', on=['user_id', 'item_id', 'item_category', 'label']) train_data_df_part_1 = pd.merge(train_data_df_part_1, df_part_1_UC, how='left', on=['user_id', 'item_category']) # getting all the complete features for clustering train_X_1 = train_data_df_part_1.as_matrix( ['u_b1_count_in_6', 'u_b2_count_in_6', 'u_b3_count_in_6', 'u_b4_count_in_6', 'u_b_count_in_6', 'u_b1_count_in_3', 'u_b2_count_in_3', 'u_b3_count_in_3', 'u_b4_count_in_3', 'u_b_count_in_3', 'u_b1_count_in_1', 'u_b2_count_in_1', 'u_b3_count_in_1', 'u_b4_count_in_1', 'u_b_count_in_1', 'u_b4_rate', 'i_u_count_in_6', 'i_u_count_in_3', 'i_u_count_in_1', 'i_b1_count_in_6', 'i_b2_count_in_6', 'i_b3_count_in_6', 'i_b4_count_in_6', 'i_b_count_in_6', 'i_b1_count_in_3', 'i_b2_count_in_3', 'i_b3_count_in_3', 'i_b4_count_in_3', 'i_b_count_in_3', 'i_b1_count_in_1', 'i_b2_count_in_1', 'i_b3_count_in_1', 'i_b4_count_in_1', 'i_b_count_in_1', 'i_b4_rate', 'c_b1_count_in_6', 'c_b2_count_in_6', 'c_b3_count_in_6', 'c_b4_count_in_6', 'c_b_count_in_6', 'c_b1_count_in_3', 'c_b2_count_in_3', 'c_b3_count_in_3', 'c_b4_count_in_3', 'c_b_count_in_3', 'c_b1_count_in_1', 'c_b2_count_in_1', 'c_b3_count_in_1', 'c_b4_count_in_1', 'c_b_count_in_1', 'c_b4_rate', 'ic_u_rank_in_c', 'ic_b_rank_in_c', 'ic_b4_rank_in_c', 'ui_b1_count_in_6', 'ui_b2_count_in_6', 'ui_b3_count_in_6', 'ui_b4_count_in_6', 'ui_b_count_in_6', 'ui_b1_count_in_3', 'ui_b2_count_in_3', 'ui_b3_count_in_3', 'ui_b4_count_in_3', 'ui_b_count_in_3', 'ui_b1_count_in_1', 'ui_b2_count_in_1', 'ui_b3_count_in_1', 'ui_b4_count_in_1', 'ui_b_count_in_1', 'ui_b_count_rank_in_u', 'ui_b_count_rank_in_uc', 'uc_b1_count_in_6', 'uc_b2_count_in_6', 'uc_b3_count_in_6', 'uc_b4_count_in_6', 'uc_b_count_in_6', 'uc_b1_count_in_3', 'uc_b2_count_in_3', 'uc_b3_count_in_3', 'uc_b4_count_in_3', 'uc_b_count_in_3', 'uc_b1_count_in_1', 'uc_b2_count_in_1', 'uc_b3_count_in_1', 'uc_b4_count_in_1', 'uc_b_count_in_1', 'uc_b_count_rank_in_u']) # feature standardization scaler_1.partial_fit(train_X_1) batch += 1 print('chunk %d done.' % batch) except StopIteration: print("finish.") break # initial clusters mbk_1 = MiniBatchKMeans(init='k-means++', n_clusters=1000, batch_size=500, reassignment_ratio=10 ** -4) classes_1 = [] batch = 0 for df_part_1_uic_label_0 in pd.read_csv(open(path_df_part_1_uic_label_0, 'r'), chunksize=15000): try: # construct of part_1's sub-training set train_data_df_part_1 = pd.merge(df_part_1_uic_label_0, df_part_1_U, how='left', on=['user_id']) train_data_df_part_1 = pd.merge(train_data_df_part_1, df_part_1_I, how='left', on=['item_id']) train_data_df_part_1 = pd.merge(train_data_df_part_1, df_part_1_C, how='left', on=['item_category']) train_data_df_part_1 = pd.merge(train_data_df_part_1, df_part_1_IC, how='left', on=['item_id', 'item_category']) train_data_df_part_1 = pd.merge(train_data_df_part_1, df_part_1_UI, how='left', on=['user_id', 'item_id', 'item_category', 'label']) train_data_df_part_1 = pd.merge(train_data_df_part_1, df_part_1_UC, how='left', on=['user_id', 'item_category']) train_X_1 = train_data_df_part_1.as_matrix( ['u_b1_count_in_6', 'u_b2_count_in_6', 'u_b3_count_in_6', 'u_b4_count_in_6', 'u_b_count_in_6', 'u_b1_count_in_3', 'u_b2_count_in_3', 'u_b3_count_in_3', 'u_b4_count_in_3', 'u_b_count_in_3', 'u_b1_count_in_1', 'u_b2_count_in_1', 'u_b3_count_in_1', 'u_b4_count_in_1', 'u_b_count_in_1', 'u_b4_rate', 'i_u_count_in_6', 'i_u_count_in_3', 'i_u_count_in_1', 'i_b1_count_in_6', 'i_b2_count_in_6', 'i_b3_count_in_6', 'i_b4_count_in_6', 'i_b_count_in_6', 'i_b1_count_in_3', 'i_b2_count_in_3', 'i_b3_count_in_3', 'i_b4_count_in_3', 'i_b_count_in_3', 'i_b1_count_in_1', 'i_b2_count_in_1', 'i_b3_count_in_1', 'i_b4_count_in_1', 'i_b_count_in_1', 'i_b4_rate', 'c_b1_count_in_6', 'c_b2_count_in_6', 'c_b3_count_in_6', 'c_b4_count_in_6', 'c_b_count_in_6', 'c_b1_count_in_3', 'c_b2_count_in_3', 'c_b3_count_in_3', 'c_b4_count_in_3', 'c_b_count_in_3', 'c_b1_count_in_1', 'c_b2_count_in_1', 'c_b3_count_in_1', 'c_b4_count_in_1', 'c_b_count_in_1', 'c_b4_rate', 'ic_u_rank_in_c', 'ic_b_rank_in_c', 'ic_b4_rank_in_c', 'ui_b1_count_in_6', 'ui_b2_count_in_6', 'ui_b3_count_in_6', 'ui_b4_count_in_6', 'ui_b_count_in_6', 'ui_b1_count_in_3', 'ui_b2_count_in_3', 'ui_b3_count_in_3', 'ui_b4_count_in_3', 'ui_b_count_in_3', 'ui_b1_count_in_1', 'ui_b2_count_in_1', 'ui_b3_count_in_1', 'ui_b4_count_in_1', 'ui_b_count_in_1', 'ui_b_count_rank_in_u', 'ui_b_count_rank_in_uc', 'uc_b1_count_in_6', 'uc_b2_count_in_6', 'uc_b3_count_in_6', 'uc_b4_count_in_6', 'uc_b_count_in_6', 'uc_b1_count_in_3', 'uc_b2_count_in_3', 'uc_b3_count_in_3', 'uc_b4_count_in_3', 'uc_b_count_in_3', 'uc_b1_count_in_1', 'uc_b2_count_in_1', 'uc_b3_count_in_1', 'uc_b4_count_in_1', 'uc_b_count_in_1', 'uc_b_count_rank_in_u']) # feature standardization standardized_train_X_1 = scaler_1.transform(train_X_1) # fit clustering model mbk_1.partial_fit(standardized_train_X_1) classes_1 = np.append(classes_1, mbk_1.labels_) batch += 1 print('chunk %d done.' % batch) except StopIteration: print(" ------------ k-means finished on part 1 ------------.") break del (df_part_1_U) del (df_part_1_I) del (df_part_1_C) del (df_part_1_IC) del (df_part_1_UI) del (df_part_1_UC) ##### part_2 ##### # loading features df_part_2_U = df_read(path_df_part_2_U) df_part_2_I = df_read(path_df_part_2_I) df_part_2_C = df_read(path_df_part_2_C) df_part_2_IC = df_read(path_df_part_2_IC) df_part_2_UI = df_read(path_df_part_2_UI) df_part_2_UC = df_read(path_df_part_2_UC) # process by chunk as ui-pairs size is too big # for get scale transform mechanism to large scale of data scaler_2 = preprocessing.StandardScaler() batch = 0 for df_part_2_uic_label_0 in pd.read_csv(open(path_df_part_2_uic_label_0, 'r'), chunksize=150000): try: # construct of part_1's sub-training set train_data_df_part_2 = pd.merge(df_part_2_uic_label_0, df_part_2_U, how='left', on=['user_id']) train_data_df_part_2 = pd.merge(train_data_df_part_2, df_part_2_I, how='left', on=['item_id']) train_data_df_part_2 = pd.merge(train_data_df_part_2, df_part_2_C, how='left', on=['item_category']) train_data_df_part_2 = pd.merge(train_data_df_part_2, df_part_2_IC, how='left', on=['item_id', 'item_category']) train_data_df_part_2 = pd.merge(train_data_df_part_2, df_part_2_UI, how='left', on=['user_id', 'item_id', 'item_category', 'label']) train_data_df_part_2 = pd.merge(train_data_df_part_2, df_part_2_UC, how='left', on=['user_id', 'item_category']) train_X_2 = train_data_df_part_2.as_matrix( ['u_b1_count_in_6', 'u_b2_count_in_6', 'u_b3_count_in_6', 'u_b4_count_in_6', 'u_b_count_in_6', 'u_b1_count_in_3', 'u_b2_count_in_3', 'u_b3_count_in_3', 'u_b4_count_in_3', 'u_b_count_in_3', 'u_b1_count_in_1', 'u_b2_count_in_1', 'u_b3_count_in_1', 'u_b4_count_in_1', 'u_b_count_in_1', 'u_b4_rate', 'i_u_count_in_6', 'i_u_count_in_3', 'i_u_count_in_1', 'i_b1_count_in_6', 'i_b2_count_in_6', 'i_b3_count_in_6', 'i_b4_count_in_6', 'i_b_count_in_6', 'i_b1_count_in_3', 'i_b2_count_in_3', 'i_b3_count_in_3', 'i_b4_count_in_3', 'i_b_count_in_3', 'i_b1_count_in_1', 'i_b2_count_in_1', 'i_b3_count_in_1', 'i_b4_count_in_1', 'i_b_count_in_1', 'i_b4_rate', 'c_b1_count_in_6', 'c_b2_count_in_6', 'c_b3_count_in_6', 'c_b4_count_in_6', 'c_b_count_in_6', 'c_b1_count_in_3', 'c_b2_count_in_3', 'c_b3_count_in_3', 'c_b4_count_in_3', 'c_b_count_in_3', 'c_b1_count_in_1', 'c_b2_count_in_1', 'c_b3_count_in_1', 'c_b4_count_in_1', 'c_b_count_in_1', 'c_b4_rate', 'ic_u_rank_in_c', 'ic_b_rank_in_c', 'ic_b4_rank_in_c', 'ui_b1_count_in_6', 'ui_b2_count_in_6', 'ui_b3_count_in_6', 'ui_b4_count_in_6', 'ui_b_count_in_6', 'ui_b1_count_in_3', 'ui_b2_count_in_3', 'ui_b3_count_in_3', 'ui_b4_count_in_3', 'ui_b_count_in_3', 'ui_b1_count_in_1', 'ui_b2_count_in_1', 'ui_b3_count_in_1', 'ui_b4_count_in_1', 'ui_b_count_in_1', 'ui_b_count_rank_in_u', 'ui_b_count_rank_in_uc', 'uc_b1_count_in_6', 'uc_b2_count_in_6', 'uc_b3_count_in_6', 'uc_b4_count_in_6', 'uc_b_count_in_6', 'uc_b1_count_in_3', 'uc_b2_count_in_3', 'uc_b3_count_in_3', 'uc_b4_count_in_3', 'uc_b_count_in_3', 'uc_b1_count_in_1', 'uc_b2_count_in_1', 'uc_b3_count_in_1', 'uc_b4_count_in_1', 'uc_b_count_in_1', 'uc_b_count_rank_in_u']) # fit the scaler scaler_2.partial_fit(train_X_2) batch += 1 print('chunk %d done.' % batch) except StopIteration: print("finish.") break # initial clusters mbk_2 = MiniBatchKMeans(init='k-means++', n_clusters=1000, batch_size=500, reassignment_ratio=10 ** -4) # process by chunk as ui-pairs size is too big batch = 0 classes_2 = [] for df_part_2_uic_label_0 in pd.read_csv(open(path_df_part_2_uic_label_0, 'r'), chunksize=15000): try: # construct of part_1's sub-training set train_data_df_part_2 = pd.merge(df_part_2_uic_label_0, df_part_2_U, how='left', on=['user_id']) train_data_df_part_2 =
pd.merge(train_data_df_part_2, df_part_2_I, how='left', on=['item_id'])
pandas.merge
""" Tests the coalescence tree object. """ import os import random import shutil import sqlite3 import sys import unittest import numpy as np import pandas as pd from pandas.testing import assert_frame_equal from setup_tests import setUpAll, tearDownAll, skipLongTest from pycoalescence import Simulation from pycoalescence.coalescence_tree import CoalescenceTree, get_parameter_description from pycoalescence.sqlite_connection import check_sql_table_exist def setUpModule(): """ Creates the output directory and moves logging files """ setUpAll() t = CoalescenceTree("sample/sample.db") t.clear_calculations() def tearDownModule(): """ Removes the output directory """ tearDownAll() class TestNullSimulationErrors(unittest.TestCase): """ Tests that simulations that are not linked raise the correct error. """ def testRaisesError(self): """ Tests that a null simulation will raise an error when any operation is performed. """ t = CoalescenceTree() with self.assertRaises(RuntimeError): t.get_species_richness() with self.assertRaises(RuntimeError): t.calculate_fragment_richness() with self.assertRaises(RuntimeError): t.calculate_alpha_diversity() with self.assertRaises(RuntimeError): t.calculate_beta_diversity() with self.assertRaises(RuntimeError): t.calculate_fragment_abundances() with self.assertRaises(RuntimeError): t.calculate_fragment_octaves() with self.assertRaises(RuntimeError): t.calculate_octaves() with self.assertRaises(RuntimeError): t.get_fragment_list() with self.assertRaises(RuntimeError): t.get_alpha_diversity() with self.assertRaises(RuntimeError): t.get_beta_diversity() with self.assertRaises(RuntimeError): t.get_community_references() with self.assertRaises(RuntimeError): t.get_metacommunity_references() with self.assertRaises(RuntimeError): t.get_species_locations() with self.assertRaises(RuntimeError): t.get_species_abundances() with self.assertRaises(RuntimeError): t.get_species_list() with self.assertRaises(RuntimeError): _ = t.get_simulation_parameters() with self.assertRaises(RuntimeError): t.get_fragment_abundances("null", 1) with self.assertRaises(RuntimeError): t.get_species_richness() with self.assertRaises(RuntimeError): t.get_octaves(1) class TestParameterDescriptions(unittest.TestCase): """ Tests that program correctly reads from the parameter_descriptions.json dictionary. """ def testReadsCorrectly(self): """ Tests that the dictionary is read correctly. """ tmp_dict = { "habitat_change_rate": "the rate of change from present density maps to historic density maps", "sample_file": "the sample area map for spatially selective sampling. Can be null to sample all " "cells", "sample_x": "the sample map x dimension", "sample_y": "the sample map y dimension", "sample_x_offset": "the sample x map offset from the grid", "sample_y_offset": "the sample y map offset from the grid", "output_dir": "the output directory for the simulation database", "seed": "the random seed to start the simulation, for repeatability", "coarse_map_x": "the coarse density map x dimension", "fine_map_file": "the density map file location at the finer resolution, covering a smaller area", "tau": "the tau dispersal value for fat-tailed dispersal", "grid_y": "the simulated grid y dimension", "dispersal_relative_cost": "the relative rate of moving through non-habitat compared to habitat", "fine_map_y_offset": "the number of cells the fine map is offset from the sample map in the y " "dimension, at the fine resolution", "gen_since_historical": "the number of generations that occur before the historical, or historic," " state is reached", "dispersal_method": "the dispersal method used. Can be one of 'normal', 'norm-uniform' or " "'fat-tail'.", "historical_fine_map": "the historical, or historic, coarse density map file location", "coarse_map_scale": "the scale of the coarse density map compared to the fine density map. 1 " "means equal density", "grid_x": "the simulated grid x dimension", "coarse_map_file": "the density map file location at the coarser resolution, covering a larger " "area", "min_num_species": "the minimum number of species known to exist (currently has no effect)", "historical_coarse_map": "the historical, or historic, coarse density map file location", "m_probability": "the probability of choosing from the uniform dispersal kernel in normal-uniform" " dispersal", "sigma": "the sigma dispersal value for normal, fat-tailed and normal-uniform dispersals", "deme": "the number of individuals inhabiting a cell at a map density of 1", "time_config_file": "will be 'set' if temporal sampling is used, 'null' otherwise", "coarse_map_y": "the coarse density map y dimension", "fine_map_x": "the fine density map x dimension", "coarse_map_y_offset": "the number of cells the coarse map is offset from the fine map in the y " "dimension, at the fine resolution", "cutoff": "the maximal dispersal distance possible, for normal-uniform dispersal", "fine_map_y": "the fine density map y dimension", "sample_size": "the proportion of individuals to sample from each cell (0-1)", "fine_map_x_offset": "the number of cells the fine map is offset from the sample map in the x " "dimension, at the fine resolution", "speciation_rate": "the minimum speciation rate the simulation was run with", "task": "the job or task reference number given to this simulation", "coarse_map_x_offset": "the number of cells the coarse map is offset from the fine map in the x " "dimension, at the fine resolution", "landscape_type": "if false, landscapes have hard boundaries. Otherwise, can be infinite, " "with 1s everywhere, or tiled_coarse or tiled_fine for repeated units of tiled " "maps", "max_time": "the maximum simulation time to run for (in seconds)", "sim_complete": "set to true upon simulation completion, false for incomplete simulations", "protracted": "if true, the simulation was run with protracted speciation.", "min_speciation_gen": "the minimum number of generations required before speciation can occur", "max_speciation_gen": "the maximum number of generations a lineage can exist before it is " "speciated", "dispersal_map": "a tif file where rows represent cumulative dispersal probability to every other " "cell, using the row number = x + (y * x_max)", } t = CoalescenceTree("sample/sample.db") sim_output = t.get_simulation_parameters() for key in sim_output.keys(): self.assertIn(key, get_parameter_description().keys()) self.assertEqual(get_parameter_description(key), t.get_parameter_description(key)) for key in get_parameter_description().keys(): self.assertIn(key, sim_output.keys()) for key in tmp_dict.keys(): self.assertEqual(tmp_dict[key], get_parameter_description(key)) self.assertDictEqual(tmp_dict, get_parameter_description()) with self.assertRaises(KeyError): get_parameter_description(key="notakey") dispersal_parameters = t.dispersal_parameters() expected_disp_dict = { "dispersal_method": "normal", "sigma": 3.55, "tau": 0.470149, "m_probability": 0, "cutoff": 0, } for key in dispersal_parameters.keys(): self.assertIn(key, tmp_dict.keys()) self.assertIn(key, expected_disp_dict.keys()) for key, val in expected_disp_dict.items(): self.assertIn(key, dispersal_parameters.keys()) if isinstance(val, float): self.assertAlmostEqual(val, dispersal_parameters[key]) else: self.assertEqual(val, dispersal_parameters[key]) class TestCoalescenceTreeSettingSpeciationParameters(unittest.TestCase): """Tests that the correct errors are raised when speciation parameters are supplied incorrectly.""" @classmethod def setUpClass(cls): """Generates the temporary databases to attempt analysis on.""" src = [os.path.join("sample", "sample{}.db".format(x)) for x in [2, 3]] cls.dst = [os.path.join("output", "sample{}.db".format(x)) for x in [2, 3]] for tmp_src, tmp_dst in zip(src, cls.dst): if os.path.exists(tmp_dst): os.remove(tmp_dst) shutil.copy(tmp_src, tmp_dst) def testSetSpeciationRates(self): """Tests setting speciation rates works as intended and raises appropriate errors""" ct = CoalescenceTree(self.dst[0]) for attempt in ["a string", ["a", "string"], [["list", "list2"], 0.2, 0.1], [None]]: with self.assertRaises(TypeError): ct._set_speciation_rates(attempt) with self.assertRaises(RuntimeError): ct._set_speciation_rates(None) for attempt in [-10, -2.0, 1.1, 100, [-1, 0.1, 0.2], [0.2, 0.8, 1.1]]: with self.assertRaises(ValueError): ct._set_speciation_rates(attempt) expected_list = [0.1, 0.2, 0.3] ct._set_speciation_rates(expected_list) self.assertEqual(expected_list, ct.applied_speciation_rates_list) ct._set_speciation_rates(0.2) self.assertEqual([0.2], ct.applied_speciation_rates_list) def testSetRecordFragments(self): """Tests that setting the record_fragments flag works as expected.""" ct = CoalescenceTree(self.dst[0]) ct._set_record_fragments(True) self.assertEqual("null", ct.record_fragments) ct._set_record_fragments(False) self.assertEqual("F", ct.record_fragments) for each in ["PlotBiodiversityMetrics.db", "doesntexist.csv"]: config_path = os.path.join("sample", each) with self.assertRaises(IOError): ct._set_record_fragments(config_path) expected = os.path.join("sample", "FragmentsTest.csv") ct._set_record_fragments(expected) self.assertEqual(expected, ct.record_fragments) def testSetRecordSpatial(self): """Tests that the setting the record_spatial flag works as expected""" ct = CoalescenceTree(self.dst[0]) ct._set_record_spatial("T") self.assertTrue(ct.record_spatial) ct._set_record_spatial("F") self.assertFalse(ct.record_spatial) with self.assertRaises(TypeError): ct._set_record_spatial("nota bool") ct._set_record_spatial(True) self.assertTrue(ct.record_spatial) def testSetMetacommunityParameters(self): """Tests that setting the metacommunity parameters works as expected.""" ct = CoalescenceTree(self.dst[0]) for size, spec in [[-10, 0.1], [10, -0.1], [10, 1.1]]: with self.assertRaises(ValueError): ct.fragments = "F" ct._set_record_fragments(False) ct._set_record_spatial(False) ct.times = [0.0] ct._set_metacommunity_parameters(size, spec) ct._set_metacommunity_parameters() self.assertEqual(0.0, ct.metacommunity_size) self.assertEqual(0.0, ct.metacommunity_speciation_rate) ct._set_metacommunity_parameters(10, 0.1, "simulated") self.assertEqual(10, ct.metacommunity_size) self.assertEqual(0.1, ct.metacommunity_speciation_rate) def testSetProtractedParameters(self): """Tests that setting the protracted parameters works as expected.""" ct = CoalescenceTree(self.dst[0]) with self.assertRaises(ValueError): ct._set_protracted_parameters(0.1, 100) ct = CoalescenceTree(self.dst[1]) ct._set_protracted_parameters(10, 100) self.assertEqual((10.0, 100.0), ct.protracted_parameters[0]) ct.protracted_parameters = [] for min_proc, max_proc in [[200, 5000], [80, 50], [200, 11000]]: with self.assertRaises(ValueError): ct._check_protracted_parameters(min_proc, max_proc) with self.assertRaises(ValueError): ct._set_protracted_parameters(min_proc, max_proc) with self.assertRaises(ValueError): ct.add_protracted_parameters(min_proc, max_proc) ct._set_protracted_parameters(50, 5000) self.assertEqual((50.0, 5000.0), ct.protracted_parameters[0]) ct.protracted_parameters = [] ct._set_protracted_parameters() self.assertEqual((0.0, 0.0), ct.protracted_parameters[0]) def testSetSampleFile(self): """Tests that the sample file is correctly set.""" ct = CoalescenceTree(self.dst[0]) for file in ["notafile.tif", os.path.join("sample", "sample.db")]: with self.assertRaises(IOError): ct._set_sample_file(file) ct._set_sample_file() self.assertEqual("null", ct.sample_file) expected_file = os.path.join("sample", "SA_sample_coarse.tif") ct._set_sample_file(expected_file) self.assertEqual(expected_file, ct.sample_file) def testSetTimes(self): """Tests that times are correctly set.""" ct = CoalescenceTree(self.dst[0]) ct._set_times(None) self.assertEqual(0.0, ct.times[0]) with self.assertRaises(TypeError): ct.add_times(0.5) with self.assertRaises(TypeError): ct.add_times([0.2, 0.5, "string"]) ct.times = None ct.add_times([0.2, 0.5, 10]) self.assertEqual([0.0, 0.2, 0.5, 10.0], ct.times) ct.times = None ct._set_times(0.2) self.assertEqual([0.0, 0.2], ct.times) ct.times = None ct._set_times([0.1, 0.5, 10.0]) self.assertEqual([0.0, 0.1, 0.5, 10.0], ct.times) class TestCoalescenceTreeParameters(unittest.TestCase): """Tests that parameters are correctly obtained from the databases and the relevant errors are raised.""" def testCommunityParameters1(self): """Tests the community parameters make sense in a very simple community.""" shutil.copyfile(os.path.join("sample", "sample3.db"), os.path.join("output", "temp_sample3.db")) t = CoalescenceTree(os.path.join("output", "temp_sample3.db"), logging_level=50) self.assertEqual([], t.get_metacommunity_references()) self.assertEqual([1], t.get_community_references()) params = t.get_community_parameters(1) expected_dict = { "speciation_rate": 0.001, "time": 0.0, "fragments": 0, "metacommunity_reference": 0, "min_speciation_gen": 100.0, "max_speciation_gen": 10000.0, } self.assertEqual(expected_dict, params) with self.assertRaises(sqlite3.Error): t.get_metacommunity_parameters(1) with self.assertRaises(KeyError): t.get_community_parameters(2) with self.assertRaises(KeyError): t.get_community_reference(0.1, 0.0, 0, 0, 0.0, min_speciation_gen=100.0, max_speciation_gen=10000.0) with self.assertRaises(KeyError): _ = t.get_community_reference(speciation_rate=0.001, time=0.0, fragments=False) ref = t.get_community_reference( speciation_rate=0.001, time=0.0, fragments=False, min_speciation_gen=100.0, max_speciation_gen=10000.0 ) self.assertEqual(1, ref) self.assertEqual(expected_dict, t.get_community_parameters(ref)) t.wipe_data() with self.assertRaises(IOError): t.get_community_parameters_pd() def testCommunityParameters2(self): """Tests the community parameters make sense in a very simple community.""" t = CoalescenceTree(os.path.join("sample", "sample4.db")) self.assertEqual([1, 2, 3, 4, 5], t.get_community_references()) expected_params1 = {"speciation_rate": 0.1, "time": 0.0, "fragments": 0, "metacommunity_reference": 0} expected_params2 = {"speciation_rate": 0.1, "time": 0.0, "fragments": 0, "metacommunity_reference": 1} expected_params3 = {"speciation_rate": 0.2, "time": 0.0, "fragments": 0, "metacommunity_reference": 1} expected_params4 = {"speciation_rate": 0.1, "time": 0.0, "fragments": 0, "metacommunity_reference": 2} expected_params5 = {"speciation_rate": 0.2, "time": 0.0, "fragments": 0, "metacommunity_reference": 2} expected_meta_params1 = { "speciation_rate": 0.001, "metacommunity_size": 10000.0, "option": "simulated", "external_reference": 0, } expected_meta_params2 = { "speciation_rate": 0.001, "metacommunity_size": 10000.0, "option": "analytical", "external_reference": 0, } params1 = t.get_community_parameters(1) params2 = t.get_community_parameters(2) params3 = t.get_community_parameters(3) params4 = t.get_community_parameters(4) params5 = t.get_community_parameters(5) params6 = t.get_metacommunity_parameters(1) params7 = t.get_metacommunity_parameters(2) self.assertEqual([1, 2], t.get_metacommunity_references()) self.assertEqual(expected_params1, params1) self.assertEqual(expected_params2, params2) self.assertEqual(expected_params3, params3) self.assertEqual(expected_params4, params4) self.assertEqual(expected_params5, params5) self.assertEqual(expected_meta_params1, params6) self.assertEqual(expected_meta_params2, params7) with self.assertRaises(KeyError): t.get_community_parameters(6) with self.assertRaises(KeyError): t.get_metacommunity_parameters(3) ref1 = t.get_community_reference(speciation_rate=0.1, time=0.0, fragments=False) with self.assertRaises(KeyError): t.get_community_reference( speciation_rate=0.1, time=0.0, fragments=False, min_speciation_gen=0.1, max_speciation_gen=10000.0 ) ref2 = t.get_community_reference( speciation_rate=0.1, time=0.0, fragments=False, metacommunity_size=10000.0, metacommunity_speciation_rate=0.001, metacommunity_option="simulated", ) with self.assertRaises(KeyError): t.get_community_reference( speciation_rate=0.1, time=0.0, fragments=False, metacommunity_size=10000.0, metacommunity_speciation_rate=0.01, metacommunity_option="simulated", ) ref3 = t.get_community_reference( speciation_rate=0.2, time=0.0, fragments=False, metacommunity_size=10000.0, metacommunity_speciation_rate=0.001, metacommunity_option="simulated", ) ref4 = t.get_community_reference( speciation_rate=0.1, time=0.0, fragments=False, metacommunity_size=10000.0, metacommunity_speciation_rate=0.001, metacommunity_option="analytical", ) ref5 = t.get_community_reference( speciation_rate=0.2, time=0.0, fragments=False, metacommunity_size=10000.0, metacommunity_speciation_rate=0.001, metacommunity_option="analytical", ) self.assertEqual(1, ref1) self.assertEqual(2, ref2) self.assertEqual(3, ref3) self.assertEqual(4, ref4) self.assertEqual(5, ref5) expected_community_params_list = [] for reference in t.get_community_references(): params = t.get_community_parameters(reference) params["reference"] = reference expected_community_params_list.append(params) expected_community_params = pd.DataFrame(expected_community_params_list) actual_output = t.get_community_parameters_pd() assert_frame_equal(expected_community_params, actual_output, check_like=True) def testIsComplete(self): """Tests sims are correctly identified as complete.""" t = CoalescenceTree(os.path.join("sample", "sample4.db")) self.assertTrue(t.is_complete) class TestCoalescenceTreeAnalysis(unittest.TestCase): """Tests analysis is performed correctly""" @classmethod def setUpClass(cls): """Sets up the Coalescence object test case.""" dst1 = os.path.join("output", "sampledb0.db") for i in range(0, 11): dst = os.path.join("output", "sampledb{}.db".format(i)) if os.path.exists(dst): os.remove(dst) shutil.copyfile(os.path.join("sample", "sample.db"), dst) shutil.copyfile(os.path.join("sample", "nse_reference.db"), os.path.join("output", "nse_reference1.db")) random.seed(2) cls.test = CoalescenceTree(dst1, logging_level=50) cls.test.clear_calculations() cls.test.import_comparison_data(os.path.join("sample", "PlotBiodiversityMetrics.db")) cls.test.calculate_fragment_richness() cls.test.calculate_fragment_octaves() cls.test.calculate_octaves_error() cls.test.calculate_alpha_diversity() cls.test.calculate_beta_diversity() cls.test2 = CoalescenceTree() cls.test2.set_database(os.path.join("sample", "sample_nofrag.db")) dstx = os.path.join("output", "sampledbx.db") shutil.copyfile(dst1, dstx) c = CoalescenceTree(dstx) c.import_comparison_data(os.path.join("sample", "PlotBiodiversityMetrics.db")) c.calculate_goodness_of_fit() @classmethod def tearDownClass(cls): """ Removes the files from output." """ cls.test.clear_calculations() def testComparisonDataNoExistError(self): c = CoalescenceTree(os.path.join("sample", "sample.db")) with self.assertRaises(IOError): c.import_comparison_data(os.path.join("sample", "doesnotexist.db")) def testFragmentOctaves(self): num = self.test.cursor.execute( "SELECT richness FROM FRAGMENT_OCTAVES WHERE fragment == 'P09' AND octave == 0" " AND community_reference == 1" ).fetchall()[0][0] self.assertEqual(num, 7, msg="Fragment octaves not correctly calculated.") num = self.test.cursor.execute( "SELECT richness FROM FRAGMENT_OCTAVES WHERE fragment == 'P09' AND octave == 0 " " AND community_reference == 2" ).fetchall()[0][0] self.assertEqual(num, 7, msg="Fragment octaves not correctly calculated.") num = self.test.cursor.execute( "SELECT richness FROM FRAGMENT_OCTAVES WHERE fragment == 'cerrogalera' AND octave == 1 " " AND community_reference == 1" ).fetchall()[0][0] self.assertEqual(num, 3, msg="Fragment octaves not correctly calculated.") num = self.test.cursor.execute( "SELECT richness FROM FRAGMENT_OCTAVES WHERE fragment == 'whole' AND octave == 1 " " AND community_reference == 2" ).fetchall()[0][0] self.assertEqual(num, 221, msg="Fragment octaves not correctly calculated.") def testFragmentAbundances(self): """ Tests that fragment abundances are produced properly by the fragment detection functions. """ num = self.test.cursor.execute( "SELECT COUNT(fragment) FROM FRAGMENT_ABUNDANCES WHERE fragment == 'P09' " " AND community_reference == 1" ).fetchall()[0][0] self.assertEqual(num, 9, msg="Fragment abundances not correctly calculated.") num = self.test.cursor.execute( "SELECT COUNT(fragment) FROM FRAGMENT_ABUNDANCES WHERE fragment == 'P09' " " AND community_reference == 2" ).fetchall()[0][0] self.assertEqual(num, 9, msg="Fragment abundances not correctly calculated.") num = self.test.cursor.execute( "SELECT COUNT(fragment) FROM FRAGMENT_ABUNDANCES WHERE fragment == 'cerrogalera' " " AND community_reference == 1" ).fetchall()[0][0] self.assertEqual(num, 9, msg="Fragment abundances not correctly calculated.") def testSpeciesAbundances(self): """Tests that the produced species abundances are correct by comparing species richness.""" num = self.test.cursor.execute( "SELECT COUNT(species_id) FROM SPECIES_ABUNDANCES WHERE community_reference == 2" ).fetchall()[0][0] self.assertEqual(num, 1029, msg="Species abundances not correctly calculated.") num = self.test.cursor.execute( "SELECT COUNT(species_id) FROM SPECIES_ABUNDANCES WHERE community_reference == 1" ).fetchall()[0][0] self.assertEqual(num, 884, msg="Species abundances not correctly calculated.") def testGetOctaves(self): """Tests getting the octaves.""" c = CoalescenceTree(os.path.join("output", "sampledb4.db")) c.clear_calculations() c.import_comparison_data(os.path.join("sample", "PlotBiodiversityMetrics.db")) c.calculate_richness() self.assertEqual([[0, 585], [1, 231], [2, 59], [3, 5]], c.get_octaves(1)) c = CoalescenceTree(os.path.join("output", "sampledb4.db")) c.clear_calculations() c.import_comparison_data(os.path.join("sample", "PlotBiodiversityMetrics.db")) c.calculate_richness() actual = c.get_octaves_pd().head() expected = pd.DataFrame( [[1, 0, 585], [1, 1, 231], [1, 2, 59], [1, 3, 5], [2, 0, 760]], columns=["community_reference", "octave", "richness"], ) assert_frame_equal(actual, expected, check_like=True) def testSpeciesLocations(self): """ Tests that species locations have been correctly assigned. """ num = self.test.cursor.execute( "SELECT species_id FROM SPECIES_LOCATIONS WHERE x==1662 AND y==4359 " " AND community_reference == 1" ).fetchall() self.assertEqual(len(set(num)), 2, msg="Species locations not correctly assigned") all_list = self.test.get_species_locations() select_list = self.test.get_species_locations(community_reference=1) self.assertListEqual([1, 1662, 4359, 1], all_list[0]) self.assertListEqual([1, 1662, 4359], select_list[0]) def testAlphaDiversity(self): """ Tests that alpha diversity is correctly calculated and fetched for each parameter reference """ c = CoalescenceTree(os.path.join("sample", "sample.db")) with self.assertRaises(IOError): c.get_alpha_diversity_pd() self.assertEqual(9, self.test.get_alpha_diversity(1)) self.assertEqual(10, self.test.get_alpha_diversity(2)) expected_alphas_list = [] for reference in self.test.get_community_references(): expected_alphas_list.append( {"community_reference": reference, "alpha_diversity": self.test.get_alpha_diversity(reference)} ) expected_alphas = pd.DataFrame(expected_alphas_list).reset_index(drop=True) actual_alphas = self.test.get_alpha_diversity_pd().reset_index(drop=True) assert_frame_equal(expected_alphas, actual_alphas, check_like=True) def testBetaDiversity(self): """ Tests that beta diversity is correctly calculated and fetched for the reference """ c = CoalescenceTree(os.path.join("sample", "sample.db")) with self.assertRaises(IOError): c.get_beta_diversity_pd() self.assertAlmostEqual(98.111111111, self.test.get_beta_diversity(1), places=5) self.assertAlmostEqual(102.8, self.test.get_beta_diversity(2), places=5) expected_betas_list = [] for reference in self.test.get_community_references(): expected_betas_list.append( {"community_reference": reference, "beta_diversity": self.test.get_beta_diversity(reference)} ) expected_betas = pd.DataFrame(expected_betas_list).reset_index(drop=True) actual_betas = self.test.get_beta_diversity_pd().reset_index(drop=True) assert_frame_equal(expected_betas, actual_betas, check_like=True) def testGetNumberIndividuals(self): """Tests that the number of individuals is obtained correctly.""" c = CoalescenceTree(os.path.join("output", "sampledb7.db")) self.assertEqual(1504, c.get_number_individuals(community_reference=1)) self.assertEqual(12, c.get_number_individuals(fragment="P09", community_reference=1)) c.wipe_data() c.import_comparison_data(os.path.join("sample", "PlotBiodiversityMetrics.db")) with self.assertRaises(IOError): c.get_number_individuals(fragment="none") with self.assertRaises(IOError): c.get_number_individuals() def testGetFragmentAbundances(self): """Tests that fragment abundances are correctly obtained.""" c = CoalescenceTree(os.path.join("sample", "sample3.db")) with self.assertRaises(IOError): c.get_fragment_abundances(fragment="P09", reference=1) with self.assertRaises(IOError): c.get_fragment_abundances_pd() abundances = self.test.get_fragment_abundances(fragment="P09", reference=1) expected_abundances = [[302, 1], [303, 1], [304, 1], [305, 1], [306, 1], [307, 1], [546, 2], [693, 1], [732, 3]] self.assertEqual(expected_abundances, abundances[:10]) all_abundances = self.test.get_all_fragment_abundances() expected_abundances2 = [ [1, "P09", 302, 1], [1, "P09", 303, 1], [1, "P09", 304, 1], [1, "P09", 305, 1], [1, "P09", 306, 1], [1, "P09", 307, 1], [1, "P09", 546, 2], [1, "P09", 693, 1], [1, "P09", 732, 3], [1, "cerrogalera", 416, 1], ] self.assertEqual(expected_abundances2, all_abundances[:10]) df = pd.DataFrame( expected_abundances2, columns=["community_reference", "fragment", "species_id", "no_individuals"] ) actual_df = self.test.get_fragment_abundances_pd().head(n=10) assert_frame_equal(df, actual_df, check_like=True) def testGetFragmentListErrors(self): """Tests the error is raised when obtaining fragment list.""" c = CoalescenceTree(os.path.join("output", "sampledb8.db")) c.wipe_data() with self.assertRaises(IOError): c.get_fragment_list() def testClearGoodnessFit(self): """Tests that goodness of fit are correctly cleared.""" c = CoalescenceTree(os.path.join("output", "sampledbx.db")) exec_command = "SELECT * FROM BIODIVERSITY_METRICS WHERE metric LIKE 'goodness_%'" self.assertTrue(len(c.cursor.execute(exec_command).fetchall()) >= 1) c._clear_goodness_of_fit() self.assertFalse(len(c.cursor.execute(exec_command).fetchall()) >= 1) def testGetBiodiversityMetrics(self): """Tests that biodiversity metrics are correctly obtained from the database.""" c1 = CoalescenceTree(os.path.join("sample", "sample.db")) with self.assertRaises(IOError): c1.get_biodiversity_metrics() c2 = CoalescenceTree(os.path.join("sample", "sample2.db")) expected_biodiversity_metrics = pd.DataFrame( [ [1, "fragment_richness", "fragment2", 129.0, np.NaN, np.NaN], [2, "fragment_richness", "fragment2", 130.0, np.NAN, np.NaN], [1, "fragment_richness", "fragment1", 174.0, np.NaN, np.NaN], [2, "fragment_richness", "fragment1", 175.0, np.NaN, np.NaN], [1, "fragment_richness", "whole", 1163.0, np.NaN, np.NaN], [2, "fragment_richness", "whole", 1170.0, np.NaN, np.NaN], ], columns=["community_reference", "metric", "fragment", "value", "simulated", "actual"], ).reset_index(drop=True) actual_biodiversity_metrics = c2.get_biodiversity_metrics().reset_index(drop=True).fillna(value=np.nan) assert_frame_equal(expected_biodiversity_metrics, actual_biodiversity_metrics) def testRaisesErrorNoFragmentsAlpha(self): """ Tests that an error is raised when alpha diversity is calculated without any fragment abundance data """ with self.assertRaises(IOError): self.test2.calculate_alpha_diversity() def testRaisesErrorNoFragmentsBeta(self): """ Tests that an error is raised when alpha diversity is calculated without any fragment abundance data """ with self.assertRaises(IOError): self.test2.calculate_beta_diversity() def testRaisesErrorNoFragmentsRichness(self): """ Tests that an error is raised when fragment richness is calculated without any fragment abundance data """ with self.assertRaises(IOError): self.test2.calculate_fragment_richness() def testRaisesErrorNoFragmentsOctaves(self): """ Tests that an error is raised when fragment richness is calculated without any fragment abundance data """ with self.assertRaises(IOError): self.test2.calculate_fragment_octaves() @unittest.skipIf(sys.version[0] != "3", "Skipping Python 3.x tests") def testModelFitting2(self): """ Tests that the goodness-of-fit calculations are correctly performed. """ random.seed(2) self.test.calculate_goodness_of_fit() self.assertAlmostEqual(self.test.get_goodness_of_fit(), 0.30140801329929373, places=6) self.assertAlmostEqual(self.test.get_goodness_of_fit_fragment_octaves(), 0.0680205429120108, places=6) self.assertAlmostEqual(self.test.get_goodness_of_fit_fragment_richness(), 0.9244977999898334, places=6) @unittest.skipIf(sys.version[0] == "3", "Skipping Python 2.x tests") def testModelFitting3(self): """ Tests that the goodness-of-fit calculations are correctly performed. """ random.seed(2) self.test.calculate_goodness_of_fit() self.assertAlmostEqual(self.test.get_goodness_of_fit(), 0.30140801329929373, places=6) self.assertAlmostEqual(self.test.get_goodness_of_fit_fragment_octaves(), 0.0680205429120108, places=6) self.assertAlmostEqual(self.test.get_goodness_of_fit_fragment_richness(), 0.9244977999898334, places=6) def testErrorIfNotApplied(self): """Tests that an error is raised if outputting is attempted without applying any community parameters.""" c = CoalescenceTree(os.path.join("sample", "sample.db")) with self.assertRaises(RuntimeError): c.output() def testFragmentNumbersMatching(self): """Checks behaviour when matching fragment numbers.""" test = CoalescenceTree(os.path.join("output", "sampledb1.db"), logging_level=50) test.clear_calculations() with self.assertRaises(RuntimeError): test._check_fragment_numbers_match() with self.assertRaises(ValueError): test.calculate_fragment_abundances() test._check_fragment_numbers_match() test.comparison_file = os.path.join("sample", "PlotBiodiversityMetrics.db") self.assertTrue(test._check_fragment_numbers_match()) test.fragment_abundances.pop(0) self.assertFalse(test._check_fragment_numbers_match()) def testFragmentNumbersEqualisation(self): """Checks behaviour when equalising fragment numbers.""" test = CoalescenceTree(os.path.join("output", "sampledb2.db"), logging_level=50) test.clear_calculations() test.import_comparison_data(os.path.join("sample", "PlotBiodiversityMetrics.db")) test.calculate_fragment_richness() self.test._equalise_fragment_number("notafrag", 1) test.fragment_abundances[0][2] += 1000 test._equalise_fragment_number("P09", 1) self.assertTrue(test._check_fragment_numbers_match()) def testFragmentNumbersErrors(self): """Checks behaviour when equalising fragment numbers.""" test = CoalescenceTree(os.path.join("output", "sampledb3.db"), logging_level=50) test.clear_calculations() test.import_comparison_data(os.path.join("sample", "PlotBiodiversityMetrics.db")) test.comparison_abundances = None with self.assertRaises(ValueError): test._equalise_all_fragment_numbers() def testAdjustBiodiversityMetrics(self): """Checks that biodiversity metrics are correctly adjusted.""" test = CoalescenceTree(os.path.join("output", "sampledb5.db"), logging_level=50) test.clear_calculations() test.import_comparison_data(os.path.join("sample", "PlotBiodiversityMetrics.db")) test.adjust_data() def testComparisonOctavesModification(self): """Tests that the comparison database is modified.""" test = CoalescenceTree(os.path.join("output", "sampledb6.db"), logging_level=50) dst = os.path.join("output", "PlotBiodiversityMetricsNoAlpha2.db") shutil.copy(os.path.join("sample", "PlotBiodiversityMetricsNoAlpha.db"), dst) test.import_comparison_data(dst) test.calculate_comparison_octaves(store=True) self.assertTrue(os.path.exists(dst)) @unittest.skipIf(sys.version[0] == "2", "Skipping Python 3.x tests") def testDownsamplingAndRevert(self): """Tests that downsampling works as intended and can be reverted.""" c = CoalescenceTree(os.path.join("output", "sampledb9.db")) random.seed(a=10, version=3) original_individuals = c.get_number_individuals() original_richness = c.get_species_richness_pd() c.wipe_data() with self.assertRaises(ValueError): c.downsample(sample_proportion=2.0) c.downsample(sample_proportion=0.1) c.set_speciation_parameters([0.1, 0.2]) c.apply() new_individuals = c.get_number_individuals() self.assertEqual(1452, new_individuals) self.assertTrue(check_sql_table_exist(c.database, "SPECIES_LIST")) self.assertTrue(check_sql_table_exist(c.database, "SPECIES_LIST_ORIGINAL")) c = CoalescenceTree(os.path.join("output", "sampledb9.db")) c.revert_downsample() c.wipe_data() c.set_speciation_parameters([0.1, 0.2]) c.apply() final_individuals = c.get_number_individuals() assert_frame_equal(original_richness, c.get_species_richness_pd()) self.assertEqual(original_individuals, final_individuals) self.assertTrue(check_sql_table_exist(c.database, "SPECIES_LIST")) self.assertFalse(check_sql_table_exist(c.database, "SPECIES_LIST_ORIGINAL")) # Now test with NSE sim to ensure correct sampling c = CoalescenceTree(os.path.join("output", "nse_reference1.db")) nse_richness = c.get_species_richness_pd() nse_no_individuals = c.get_number_individuals() c.wipe_data() c.downsample(sample_proportion=0.1) c.set_speciation_parameters([0.000001, 0.999999]) c.apply() new_no_individuals = c.get_number_individuals() self.assertAlmostEqual(new_no_individuals / nse_no_individuals, 0.1, 5) self.assertEqual(1000, c.get_species_richness(reference=2)) self.assertTrue(check_sql_table_exist(c.database, "SPECIES_LIST")) self.assertTrue(check_sql_table_exist(c.database, "SPECIES_LIST_ORIGINAL")) c = CoalescenceTree(os.path.join("output", "nse_reference1.db")) c.revert_downsample() c.wipe_data() c.set_speciation_parameters([0.000001, 0.999999]) c.apply_incremental() c.set_speciation_parameters([0.5]) c.apply() actual_richness = c.get_species_richness_pd() assert_frame_equal(nse_richness, actual_richness) self.assertEqual(nse_no_individuals, c.get_number_individuals()) self.assertTrue(check_sql_table_exist(c.database, "SPECIES_LIST")) self.assertFalse(check_sql_table_exist(c.database, "SPECIES_LIST_ORIGINAL")) with self.assertRaises(IOError): c.revert_downsample() @unittest.skipIf(sys.version[0] == "2", "Skipping Python 3.x tests") def testDownsamplingByLocationAndRevert(self): """Tests that downsampling works as intended and can be reverted.""" c = CoalescenceTree(os.path.join("output", "sampledb10.db")) random.seed(a=10, version=3) original_individuals = c.get_number_individuals() original_richness = c.get_species_richness_pd() c.wipe_data() with self.assertRaises(ValueError): c.downsample_at_locations(fragment_csv=os.path.join("sample", "FragmentsTestFail1.csv")) with self.assertRaises(IOError): c.downsample_at_locations(fragment_csv="not_a_file.csv") c.downsample_at_locations(fragment_csv=os.path.join("sample", "FragmentsTest3.csv")) c.set_speciation_parameters([0.1, 0.2]) c.apply() new_individuals = c.get_number_individuals() self.assertEqual(2, new_individuals) self.assertTrue(check_sql_table_exist(c.database, "SPECIES_LIST")) self.assertTrue(check_sql_table_exist(c.database, "SPECIES_LIST_ORIGINAL")) c = CoalescenceTree(os.path.join("output", "sampledb10.db")) c.revert_downsample() c.wipe_data() c.set_speciation_parameters([0.1, 0.2]) c.apply() final_individuals = c.get_number_individuals() assert_frame_equal(original_richness, c.get_species_richness_pd()) self.assertEqual(original_individuals, final_individuals) self.assertTrue(check_sql_table_exist(c.database, "SPECIES_LIST")) self.assertFalse(check_sql_table_exist(c.database, "SPECIES_LIST_ORIGINAL")) c = CoalescenceTree(os.path.join("output", "sampledb10.db")) c.wipe_data() c.downsample_at_locations(fragment_csv=os.path.join("sample", "FragmentsTest4.csv"), ignore_errors=True) c.set_speciation_parameters([0.1, 0.2]) c.apply() new_individuals = c.get_number_individuals() self.assertEqual(3, new_individuals) class TestCoalescenceTreeWriteCsvs(unittest.TestCase): """Tests that csvs are correctly outputted.""" @classmethod def setUpClass(cls): """Creates the CoalescenceTree object.""" cls.c = CoalescenceTree(os.path.join("sample", "nse_reference.db")) def testWriteCommunityParameterToCsv(self): """Tests that community parameters are correctly written to a csv.""" output_csv = os.path.join("output", "community_parameters1.csv") self.c.write_to_csv(output_csv, "COMMUNITY_PARAMETERS") self.assertTrue(os.path.exists(output_csv)) import csv if sys.version_info[0] < 3: # pragma: no cover infile = open(output_csv, "rb") else: infile = open(output_csv, "r") expected_output = [ ["reference", "speciation_rate", "time", "fragments", "metacommunity_reference"], ["1", "1e-06", "0.0", "0", "0"], ["2", "0.99999", "0.0", "0", "0"], ["3", "0.5", "0.0", "0", "0"], ] actual_output = [] with infile as csv_file: csv_reader = csv.reader(csv_file) for row in csv_reader: actual_output.append(row) self.assertEqual(expected_output, actual_output) with self.assertRaises(IOError): self.c.write_to_csv(output_csv, "COMMUNITY_PARAMETERS") with self.assertRaises(KeyError): self.c.write_to_csv("notacsv.csv", "NOTATABLE") def testWritesAllCsvs(self): """Tests that all csvs write to the output correctly.""" output_dir = os.path.join("output", "csvdir") if os.path.exists(output_dir): os.remove(output_dir) self.c.write_all_to_csvs(output_dir, "out1") expected_tables = ["COMMUNITY_PARAMETERS", "SIMULATION_PARAMETERS", "SPECIES_ABUNDANCES", "SPECIES_LIST"] for table in expected_tables: self.assertTrue(os.path.exists(os.path.join(output_dir, "out1_{}.csv".format(table)))) for file in os.listdir(output_dir): if ".csv" in file: self.assertIn(file, ["out1_{}.csv".format(x) for x in expected_tables]) self.c.write_all_to_csvs(output_dir, "out2.csv") for table in expected_tables: self.assertTrue(os.path.exists(os.path.join(output_dir, "out2_{}.csv".format(table)))) self.c.write_all_to_csvs(output_dir, "out3.") for table in expected_tables: self.assertTrue(os.path.exists(os.path.join(output_dir, "out3_{}.csv".format(table)))) class TestCoalescenceTreeSpeciesDistances(unittest.TestCase): """Tests analysis is performed correctly.""" @classmethod def setUpClass(cls): """ Sets up the Coalescence object test case. """ dst = os.path.join("output", "sampledb1.db") if os.path.exists(dst): os.remove(dst) shutil.copyfile(os.path.join("sample", "sample.db"), dst) cls.test = CoalescenceTree(dst) cls.test.clear_calculations() cls.test.import_comparison_data(os.path.join("sample", "PlotBiodiversityMetrics.db")) cls.test.calculate_species_distance_similarity() def testSpeciesDistanceSimilarity(self): """ Tests that the species distance similarity function works as intended. """ mean = self.test.cursor.execute( "SELECT value FROM BIODIVERSITY_METRICS WHERE community_reference == 1 AND " "metric == 'mean_distance_between_individuals'" ).fetchone()[0] self.assertAlmostEqual(mean, 5.423769507803121, places=5) species_distances = self.test.get_species_distance_similarity(community_reference=1) # for distance, similar in species_distances: # self.assertLessEqual(similar, dissimilar) self.assertListEqual(species_distances[0], [0, 11]) self.assertListEqual(species_distances[1], [1, 274]) self.assertListEqual(species_distances[2], [2, 289]) class TestCoalescenceTreeAnalyseIncorrectComparison(unittest.TestCase): """ Tests errors are raised correctly for incorrect comparison data. """ @classmethod def setUpClass(cls): """ Sets up the Coalescence object test case. """ random.seed(10) dst = os.path.join("output", "sampledb2.db") if os.path.exists(dst): os.remove(dst) shutil.copyfile(os.path.join("sample", "sample.db"), dst) cls.test = CoalescenceTree(logging_level=40) cls.test.set_database(dst) cls.test.import_comparison_data(os.path.join("sample", "PlotBiodiversityMetricsNoAlpha.db")) cls.test.calculate_comparison_octaves(False) cls.test.clear_calculations() cls.test.calculate_fragment_richness() cls.test.calculate_fragment_octaves() cls.test.calculate_octaves_error() cls.test.calculate_alpha_diversity() cls.test.calculate_alpha_diversity() cls.test.calculate_beta_diversity() cls.test2 = CoalescenceTree() cls.test2.set_database(os.path.join("sample", "sample_nofrag.db")) @classmethod def tearDownClass(cls): """ Removes the files from output." """ cls.test.clear_calculations() def testRaisesErrorMismatchParameters(self): """ Tests that an error is raised when there is a parameter mismatch """ with self.assertRaises(ValueError): self.test.calculate_goodness_of_fit() class TestSimulationAnalysisTemporal(unittest.TestCase): """Tests that applying multiple times works as expected.""" @classmethod def setUpClass(cls): """Generates the analysis object.""" src = os.path.join("sample", "sample2.db") dst = os.path.join("output", "sample2.db") if not os.path.exists(dst): shutil.copy(src, dst) cls.tree = CoalescenceTree() cls.tree.set_database(dst) cls.tree.wipe_data() def testTimesWrongFormatError(self): """Tests that an error is raised when the times are in the wrong format.""" with self.assertRaises(TypeError): self.tree.set_speciation_parameters([0.4, 0.6], times=[0.1, 0.2, "notafloat"]) with self.assertRaises(TypeError): # noinspection PyTypeChecker self.tree.set_speciation_parameters([0.4, 0.6], times="notafloat") self.tree.times = [] self.tree.set_speciation_parameters([0.4, 0.6], times=[0, 1, 10]) self.assertEqual([0.0, 1.0, 10.0], self.tree.times) class TestSimulationAnalysis(unittest.TestCase): """ Tests that the simulation can perform all required analyses, and that the correct errors are thrown if the object does not exist. """ @classmethod def setUpClass(cls): """Copies the sample databases and applies a basic set of community parameters.""" src = os.path.join("sample", "sample2.db") dst = os.path.join("output", "sample2.db") if os.path.exists(dst): os.remove(dst) shutil.copy(src, dst) cls.tree = CoalescenceTree(logging_level=50) cls.tree.set_database(dst) cls.tree.wipe_data() cls.tree.set_speciation_parameters( speciation_rates=[0.5, 0.7], record_spatial="T", record_fragments=os.path.join("sample", "FragmentsTest.csv"), sample_file=os.path.join("sample", "SA_samplemaskINT.tif"), ) cls.tree.apply() cls.tree.calculate_fragment_richness() cls.tree.calculate_fragment_octaves() np.random.seed(100) def testSetDatabaseErrors(self): """Tests that the set database errors are correctly raised.""" sim = Simulation() c = CoalescenceTree() with self.assertRaises(RuntimeError): c.set_database(sim) c = CoalescenceTree() with self.assertRaises(IOError): c.set_database(os.path.join("sample", "failsampledoesntexist.db")) def testFragmentConfigNoExistError(self): """Tests that an error is raised if the fragment config file does not exist.""" tree = CoalescenceTree(self.tree.file) with self.assertRaises(IOError): tree.set_speciation_parameters( speciation_rates=[0.5, 0.7], record_spatial="T", record_fragments=os.path.join("sample", "notafragmentconfig.csv"), sample_file=os.path.join("sample", "SA_samplemaskINT.tif"), ) with self.assertRaises(IOError): tree.set_speciation_parameters( speciation_rates=[0.5, 0.7], record_spatial="T", record_fragments=os.path.join("sample", "example_historical_fine.tif"), sample_file=os.path.join("sample", "SA_samplemaskINT.tif"), ) def testReadsFragmentsRichness(self): """ Tests that the fragment richness can be read correctly """ sim_params = self.tree.get_simulation_parameters() expected_params = dict( seed=9, task=1, output_dir="output", speciation_rate=0.5, sigma=2.828427, tau=2.0, deme=1, sample_size=0.1, max_time=2.0, dispersal_relative_cost=1.0, min_num_species=1, habitat_change_rate=0.0, gen_since_historical=200.0, time_config_file="null", coarse_map_file="sample/SA_sample_coarse.tif", coarse_map_x=35, coarse_map_y=41, coarse_map_x_offset=11, coarse_map_y_offset=14, coarse_map_scale=1.0, fine_map_file="sample/SA_sample_fine.tif", fine_map_x=13, fine_map_y=13, fine_map_x_offset=0, fine_map_y_offset=0, sample_file="sample/SA_samplemaskINT.tif", grid_x=13, grid_y=13, sample_x=13, sample_y=13, sample_x_offset=0, sample_y_offset=0, historical_coarse_map="none", historical_fine_map="none", sim_complete=1, dispersal_method="normal", m_probability=0.0, cutoff=0.0, landscape_type="closed", protracted=0, min_speciation_gen=0.0, max_speciation_gen=0.0, dispersal_map="none", ) for key in sim_params.keys(): self.assertEqual( sim_params[key], expected_params[key], msg="Error in {}: {} != {}".format(key, sim_params[key], expected_params[key]), ) fragment2_richness = ["fragment2", 1, 129] self.assertEqual(self.tree.get_fragment_richness(fragment="fragment2", reference=1), 129) self.assertEqual(self.tree.get_fragment_richness(fragment="fragment1", reference=2), 175) octaves = self.tree.get_fragment_richness() self.assertListEqual(fragment2_richness, [list(x) for x in octaves if x[0] == "fragment2" and x[1] == 1][0]) expected_fragment_richness = [] for reference in self.tree.get_community_references(): for fragment in self.tree.get_fragment_list(reference): fragment_richness = self.tree.get_fragment_richness(fragment=fragment, reference=reference) expected_fragment_richness.append( {"fragment": fragment, "community_reference": reference, "fragment_richness": fragment_richness} ) expected_fragment_richness_df = ( pd.DataFrame(expected_fragment_richness) .sort_values(by=["fragment", "community_reference"]) .reset_index(drop=True) ) actual_fragment_richness = self.tree.get_fragment_richness_pd().reset_index(drop=True) assert_frame_equal(expected_fragment_richness_df, actual_fragment_richness, check_like=True) def testGetsFragmentList(self): """ Tests that fetching the list of fragments from FRAGMENT_ABUNDANCES is as expected """ fragment_list = self.tree.get_fragment_list() expected_list = ["fragment1", "fragment2"] self.assertListEqual(expected_list, fragment_list) def testReadsFragmentAbundances(self): """ Tests that the fragment abundances are correctly read """ expected_abundances = [ [610, 1], [611, 1], [612, 1], [613, 1], [614, 1], [615, 1], [616, 1], [617, 1], [618, 1], [619, 1], ] actual_abundances = self.tree.get_species_abundances(fragment="fragment2", reference=1) for i, each in enumerate(expected_abundances): self.assertListEqual(actual_abundances[i], each) with self.assertRaises(ValueError): self.tree.get_species_abundances(fragment="fragment2") expected_fragment_abundances_list = [] for reference in self.tree.get_community_references(): for fragment in self.tree.get_fragment_list(reference): fragment_abundances = self.tree.get_fragment_abundances(fragment=fragment, reference=reference) for species_id, abundance in fragment_abundances: expected_fragment_abundances_list.append( { "fragment": fragment, "community_reference": reference, "species_id": species_id, "no_individuals": abundance, } ) expected_fragment_abundances = ( pd.DataFrame(expected_fragment_abundances_list) .sort_values(by=["fragment", "community_reference", "species_id"]) .reset_index(drop=True) ) actual_fragment_abundances = ( self.tree.get_fragment_abundances_pd() .sort_values(by=["fragment", "community_reference", "species_id"]) .reset_index(drop=True) ) assert_frame_equal(expected_fragment_abundances, actual_fragment_abundances, check_like=True) def testFragmentRichnessRaiseError(self): """ Tests that the correct errors are raised when no fragment exists with that name, or with the specified speciation rate, or time. Also checks SyntaxErrors and sqlite3.Errors when no FRAGMENT_RICHNESS table exists. """ failtree = CoalescenceTree() failtree.set_database(os.path.join("sample", "failsample.db")) with self.assertRaises(IOError): failtree.get_fragment_richness() with self.assertRaises(IOError): failtree.get_fragment_richness_pd() with self.assertRaises(IOError): self.tree.get_fragment_richness(fragment="fragment4", reference=1) with self.assertRaises(SyntaxError): self.tree.get_fragment_richness(fragment="fragment4") with self.assertRaises(SyntaxError): self.tree.get_fragment_richness(reference=1) def testReadsFragmentOctaves(self): """ Tests that the fragment octaves can be read correctly. """ octaves = self.tree.get_fragment_octaves(fragment="fragment2", reference=1) octaves2 = self.tree.get_fragment_octaves(fragment="fragment1", reference=1) all_octaves = self.tree.get_fragment_octaves() desired = ["fragment1", 1, 0, 173] self.assertListEqual([0, 128], octaves[0]) self.assertListEqual([0, 173], octaves2[0]) self.assertListEqual(desired, [x for x in all_octaves if x[0] == "fragment1" and x[1] == 1 and x[2] == 0][0]) expected_fragment_octaves_list = [] for reference in self.tree.get_community_references(): fragment_list = self.tree.get_fragment_list(reference) fragment_list.append("whole") for fragment in fragment_list: try: octaves = self.tree.get_fragment_octaves(fragment=fragment, reference=reference) for octave, richness in octaves: expected_fragment_octaves_list.append( { "fragment": fragment, "community_reference": reference, "octave": octave, "richness": richness, } ) except RuntimeError: continue expected_fragment_octaves = ( pd.DataFrame(expected_fragment_octaves_list) .sort_values(["fragment", "community_reference", "octave"], axis=0) .reset_index(drop=True) ) actual_fragment_octaves = ( self.tree.get_fragment_octaves_pd() .sort_values(["fragment", "community_reference", "octave"], axis=0) .reset_index(drop=True) ) assert_frame_equal(expected_fragment_octaves, actual_fragment_octaves, check_like=True) def testFragmentOctavesRaiseError(self): """ Tests that the correct errors are raised for different situations for reading fragment octaves """ failtree = CoalescenceTree() try: failtree.set_database("sample/failsample.db") except sqlite3.Error: pass with self.assertRaises(sqlite3.Error): failtree.get_fragment_octaves(fragment="fragment4", reference=100) with self.assertRaises(RuntimeError): self.tree.get_fragment_octaves(fragment="fragment4", reference=100) with self.assertRaises(SyntaxError): self.tree.get_fragment_octaves(fragment="fragment4") with self.assertRaises(SyntaxError): self.tree.get_fragment_octaves(reference=100) def testFragmentSampling(self): """ Tests that sampling from fragments is accurate. """ self.assertEqual( 10, self.tree.sample_fragment_richness( fragment="fragment1", number_of_individuals=10, n=1, community_reference=2 ), ) self.assertEqual( 10, self.tree.sample_fragment_richness( fragment="fragment2", number_of_individuals=10, n=10, community_reference=2 ), ) def testLandscapeSampling(self): """Tests that the sampling from the landscape works as intended.""" number_dict = {"fragment1": 3, "fragment2": 10} np.random.seed(100) self.assertEqual( 13, self.tree.sample_landscape_richness(number_of_individuals=number_dict, n=1, community_reference=2) ) self.assertAlmostEqual( 99.9, self.tree.sample_landscape_richness(number_of_individuals=100, n=10, community_reference=1), places=3 ) def testRaisesSamplingErrors(self): """Tests that sampling errors are correctly raised""" number_dict = {"fragment1": 3000000, "fragment2": 10} with self.assertRaises(KeyError): self.assertEqual( 13, self.tree.sample_landscape_richness(number_of_individuals=number_dict, n=1, community_reference=2) ) number_dict2 = {"fragment": 10, "fragment2": 10} with self.assertRaises(KeyError): self.assertEqual( 13, self.tree.sample_landscape_richness(number_of_individuals=number_dict2, n=1, community_reference=2) ) def testSpeciesRichness(self): """Tests that the simulation species richness is read correctly.""" actual_species_richness = ( self.tree.get_species_richness_pd().sort_values(by=["community_reference"]).reset_index(drop=True) ) expected_species_richness_list = [] for reference in self.tree.get_community_references(): expected_species_richness_list.append( {"community_reference": reference, "richness": self.tree.get_species_richness(reference=reference)} ) expected_species_richness = pd.DataFrame(expected_species_richness_list) assert_frame_equal(actual_species_richness, expected_species_richness, check_like=True) def testOctaves(self): """Tests that the simulation octave classes are correctly calculated.""" actual_species_octaves = ( self.tree.get_octaves_pd().sort_values(by=["community_reference", "octave"]).reset_index(drop=True) ) expected_species_octaves_list = [] for reference in self.tree.get_community_references(): for octave, richness in self.tree.get_octaves(reference): expected_species_octaves_list.append( {"community_reference": reference, "octave": octave, "richness": richness} ) expected_species_octaves =
pd.DataFrame(expected_species_octaves_list)
pandas.DataFrame
# -*- coding: utf-8 -*- import pdb,importlib,inspect,time,datetime,json # from PyFin.api import advanceDateByCalendar # from data.polymerize import DBPolymerize from data.storage_engine import StorageEngine import time import pandas as pd import numpy as np from datetime import timedelta, datetime from financial import factor_earning from data.model import BalanceMRQ, BalanceTTM, BalanceReport from data.model import CashFlowTTM, CashFlowReport from data.model import IndicatorReport from data.model import IncomeReport, IncomeTTM from vision.db.signletion_engine import * from data.sqlengine import sqlEngine # pd.set_option('display.max_columns', None) # pd.set_option('display.max_rows', None) # from ultron.cluster.invoke.cache_data import cache_data class CalcEngine(object): def __init__(self, name, url, methods=[{'packet':'financial.factor_earning','class':'FactorEarning'},]): self._name = name self._methods = methods self._url = url def get_trade_date(self, trade_date, n, days=365): """ 获取当前时间前n年的时间点,且为交易日,如果非交易日,则往前提取最近的一天。 :param days: :param trade_date: 当前交易日 :param n: :return: """ syn_util = SyncUtil() trade_date_sets = syn_util.get_all_trades('001002', '19900101', trade_date) trade_date_sets = trade_date_sets['TRADEDATE'].values time_array = datetime.strptime(str(trade_date), "%Y%m%d") time_array = time_array - timedelta(days=days) * n date_time = int(datetime.strftime(time_array, "%Y%m%d")) if str(date_time) < min(trade_date_sets): # print('date_time %s is out of trade_date_sets' % date_time) return str(date_time) else: while str(date_time) not in trade_date_sets: date_time = date_time - 1 # print('trade_date pre %s year %s' % (n, date_time)) return str(date_time) def _func_sets(self, method): # 私有函数和保护函数过滤 return list(filter(lambda x: not x.startswith('_') and callable(getattr(method,x)), dir(method))) def loading_data(self, trade_date): """ 获取基础数据 按天获取当天交易日所有股票的基础数据 :param trade_date: 交易日 :return: """ # 转换时间格式 time_array = datetime.strptime(trade_date, "%Y-%m-%d") trade_date = datetime.strftime(time_array, '%Y%m%d') # 读取目前涉及到的因子 trade_date_pre_year = self.get_trade_date(trade_date, 1) trade_date_pre_year_2 = self.get_trade_date(trade_date, 2) trade_date_pre_year_3 = self.get_trade_date(trade_date, 3) trade_date_pre_year_4 = self.get_trade_date(trade_date, 4) trade_date_pre_year_5 = self.get_trade_date(trade_date, 5) engine = sqlEngine() columns = ['COMPCODE', 'PUBLISHDATE', 'ENDDATE', 'symbol', 'company_id', 'trade_date'] # Report Data cash_flow_sets = engine.fetch_fundamentals_pit_extend_company_id(CashFlowReport, [CashFlowReport.LABORGETCASH, CashFlowReport.FINALCASHBALA, ], dates=[trade_date]) for column in columns: if column in list(cash_flow_sets.keys()): cash_flow_sets = cash_flow_sets.drop(column, axis=1) cash_flow_sets = cash_flow_sets.rename( columns={'LABORGETCASH': 'goods_sale_and_service_render_cash', # 销售商品、提供劳务收到的现金 'FINALCASHBALA': 'cash_and_equivalents_at_end', # 期末现金及现金等价物余额 }) income_sets = engine.fetch_fundamentals_pit_extend_company_id(IncomeReport, [IncomeReport.BIZTOTINCO, IncomeReport.BIZINCO, IncomeReport.PERPROFIT, IncomeReport.PARENETP, IncomeReport.NETPROFIT, ], dates=[trade_date]) for column in columns: if column in list(income_sets.keys()): income_sets = income_sets.drop(column, axis=1) income_sets = income_sets.rename(columns={'NETPROFIT': 'net_profit', # 净利润 'BIZTOTINCO': 'total_operating_revenue', # 营业总收入 'BIZINCO': 'operating_revenue', # 营业收入 'PERPROFIT': 'operating_profit', # 营业利润 'PARENETP': 'np_parent_company_owners', # 归属于母公司所有者的净利润 }) indicator_sets = engine.fetch_fundamentals_pit_extend_company_id(IndicatorReport, [ IndicatorReport.NETPROFITCUT, # 扣除非经常损益后的净利润 IndicatorReport.MGTEXPRT ], dates=[trade_date]) for column in columns: if column in list(indicator_sets.keys()): indicator_sets = indicator_sets.drop(column, axis=1) indicator_sets = indicator_sets.rename(columns={'NETPROFITCUT': 'adjusted_profit', # 扣除非经常损益后的净利润 }) balance_sets = engine.fetch_fundamentals_pit_extend_company_id(BalanceReport, [BalanceReport.PARESHARRIGH, ], dates=[trade_date]) for column in columns: if column in list(balance_sets.keys()): balance_sets = balance_sets.drop(column, axis=1) balance_sets = balance_sets.rename(columns={'PARESHARRIGH': 'equities_parent_company_owners', # 归属于母公司股东权益合计 }) income_sets_pre_year_1 = engine.fetch_fundamentals_pit_extend_company_id(IncomeReport, [IncomeReport.BIZINCO, # 营业收入 IncomeReport.NETPROFIT, # 净利润 ], dates=[trade_date_pre_year]) for column in columns: if column in list(income_sets_pre_year_1.keys()): income_sets_pre_year_1 = income_sets_pre_year_1.drop(column, axis=1) income_sets_pre_year_1 = income_sets_pre_year_1.rename(columns={'NETPROFIT': 'net_profit_pre_year_1', # 净利润 'BIZINCO': 'operating_revenue_pre_year_1', # 营业收入 }) income_sets_pre_year_2 = engine.fetch_fundamentals_pit_extend_company_id(IncomeReport, [IncomeReport.BIZINCO, IncomeReport.NETPROFIT, ], dates=[trade_date_pre_year_2]) for column in columns: if column in list(income_sets_pre_year_2.keys()): income_sets_pre_year_2 = income_sets_pre_year_2.drop(column, axis=1) income_sets_pre_year_2 = income_sets_pre_year_2.rename(columns={'NETPROFIT': 'net_profit_pre_year_2', # 净利润 'BIZINCO': 'operating_revenue_pre_year_2', # 营业收入 }) income_sets_pre_year_3 = engine.fetch_fundamentals_pit_extend_company_id(IncomeReport, [IncomeReport.BIZINCO, IncomeReport.NETPROFIT, ], dates=[trade_date_pre_year_3]) for column in columns: if column in list(income_sets_pre_year_3.keys()): income_sets_pre_year_3 = income_sets_pre_year_3.drop(column, axis=1) income_sets_pre_year_3 = income_sets_pre_year_3.rename(columns={'NETPROFIT': 'net_profit_pre_year_3', # 净利润 'BIZINCO': 'operating_revenue_pre_year_3', # 营业收入 }) income_sets_pre_year_4 = engine.fetch_fundamentals_pit_extend_company_id(IncomeReport, [IncomeReport.BIZINCO, IncomeReport.NETPROFIT, ], dates=[trade_date_pre_year_4]) for column in columns: if column in list(income_sets_pre_year_4.keys()): income_sets_pre_year_4 = income_sets_pre_year_4.drop(column, axis=1) income_sets_pre_year_4 = income_sets_pre_year_4.rename(columns={'NETPROFIT': 'net_profit_pre_year_4', # 净利润 'BIZINCO': 'operating_revenue_pre_year_4', # 营业收入 }) tp_earning = pd.merge(cash_flow_sets, income_sets, how='outer', on='security_code') tp_earning = pd.merge(indicator_sets, tp_earning, how='outer', on='security_code') tp_earning = pd.merge(balance_sets, tp_earning, how='outer', on='security_code') tp_earning = pd.merge(income_sets_pre_year_1, tp_earning, how='outer', on='security_code') tp_earning = pd.merge(income_sets_pre_year_2, tp_earning, how='outer', on='security_code') tp_earning = pd.merge(income_sets_pre_year_3, tp_earning, how='outer', on='security_code') tp_earning =
pd.merge(income_sets_pre_year_4, tp_earning, how='outer', on='security_code')
pandas.merge
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Apr 25 2020 @author: <NAME> https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122960 """ #%% import scipy.sparse as sp_sparse import tables import pandas as pd import os import glob import scanpy as sc from matplotlib import pyplot as plt import matplotlib as mpl import numpy as np #%% sc.settings.figdir = 'data/cluster-plots/gse1229560_ipf/' sc.settings.verbosity = 4 mpl.rcParams.update(mpl.rcParamsDefault) mpl.rcParams.update({ 'font.sans-serif': 'Arial', 'font.family': 'sans-serif', 'axes.titlesize': 18, 'axes.labelsize': 14, }) #%% def get_series_from_h5(filename): with tables.open_file(filename, 'r') as f: mat_group = f.get_node(f.root, 'GRCh38') barcodes = f.get_node(mat_group, 'barcodes').read().astype(str) gene_names = f.get_node(mat_group, 'gene_names').read().astype(str) data = getattr(mat_group, 'data').read() indices = getattr(mat_group, 'indices').read() indptr = getattr(mat_group, 'indptr').read() shape = getattr(mat_group, 'shape').read() matrix = sp_sparse.csc_matrix((data, indices, indptr), shape=shape) return matrix, barcodes, gene_names.tolist() #%% p = 'data/raw-data/GSE122960_RAW/*filtered_*.h5' dfs = [] genes = [] cells = [] donors = [] globs = [i for i in glob.glob(p) if 'IPF' in i or 'Cryobiopsy' in i] for f in globs: print(f) matrix, barcodes, gene_names = get_series_from_h5(f) donor_id = '_'.join(f.split('/')[-1].split('_')[0:3]) dfs.append(matrix) cells.append(barcodes) donors.append([donor_id]*barcodes.shape[0]) genes.append(gene_names) #%% #Verifies all gene names are present, in the same order, for each matrix def verify_genes(gene_names): gene_names_df = pd.DataFrame(genes) assert (np.array([gene_names_df[i].value_counts().iloc[0] for i in gene_names_df]) < len(gene_names)).sum() == 0 verify_genes(genes) #%% Smoker v. Non #Never = 0, Former = 1, Active = 2 smoker_v_non_donor_table = { 'Donor_01': 0, 'Donor_02': 1, 'Donor_03': 0, 'Donor_04': 0, 'Donor_05': 2, 'Donor_06': 0, 'Donor_07': 2, 'Donor_08': 0 } smoker_v_non_disease_table = { 'IPF_01': 1, 'IPF_02': 0, 'IPF_03': 1, 'IPF_04': 0, 'HP_01': 0, 'SSc-ILD_01': 0, 'SSc-ILD_02': 0, 'Myositis-ILD_01': 0, 'Cryobiopsy_01': 1 } #%% Collect into AnnData object adata = sc.AnnData(sp_sparse.hstack(dfs).T) adata.var = pd.DataFrame(genes[0], index=genes[0], columns=['name']) adata.var_names_make_unique() obs = pd.DataFrame({'barcodes': np.hstack(cells), 'donor_id': np.hstack(donors)}) obs['donor-barcode'] = obs['barcodes'] + '_' + obs['donor_id'] obs = obs.set_index('donor-barcode') adata.obs = obs adata.obs['donor'] = adata.obs.donor_id.str.split('_', n=1, expand=True)[1] #%% adata.obs['smoker'] = adata.obs.donor.map(smoker_v_non_donor_table) active_smokers = adata[adata.obs['smoker'] == 2].copy() never_smokers = adata[adata.obs['smoker'] == 0].copy() #%% Normalize data sc.pp.normalize_total(adata, target_sum=1e6) sc.pp.log1p(adata, base=2) #%% def exploratory_plots(adata): # Check normalization num_non_int = (adata.to_df().applymap(float.is_integer) == False).sum().sum() print('Num non-int: ', num_non_int) plt.figure() sc.pp.filter_cells(adata, min_genes=0) sc.pp.filter_genes(adata, min_cells=0) plt.hist(adata.obs.n_genes, bins=500) plt.title('IPF per cell') print('Min:', adata.obs['n_genes'].min()) minimum = adata.obs['n_genes'].min() maximum = adata.obs['n_genes'].max() print('Max:', maximum) plt.xlabel('# Genes. Min:' + str(minimum)) plt.ylabel('# Cells') plt.figure() plt.hist(adata.var.n_cells, bins=500) plt.title('IPF per gene') print('Min:', adata.var['n_cells'].min()) sc.pl.pca_variance_ratio(adata, log=True) exploratory_plots(adata) #%% sc.pp.filter_cells(adata, min_genes=500) sc.pp.highly_variable_genes(adata) sc.tl.pca(adata) sc.pp.neighbors(adata) #%% LEARNING_RATE = 1000 EARLY_EXAGGERATION = 12 RESOLUTION = 1.25 PERPLEXITY=130 sc.tl.tsne(adata, learning_rate=LEARNING_RATE, n_jobs=8, early_exaggeration=EARLY_EXAGGERATION, perplexity=PERPLEXITY) sc.tl.leiden(adata, resolution=RESOLUTION) params = {'learning_rate': LEARNING_RATE, 'early_exaggeration':EARLY_EXAGGERATION, 'resolution': RESOLUTION, 'perplexity': PERPLEXITY, 'genes': 'all', 'files': globs} pd.Series(params).to_csv(os.path.join(sc.settings.figdir, 'params.txt')) adata.write(os.path.join(sc.settings.figdir, 'adata.h5ad')) #%% adata = sc.read_h5ad(os.path.join(sc.settings.figdir, 'adata.h5ad')) params = pd.read_csv(os.path.join(sc.settings.figdir, 'params.txt'), index_col=0).to_dict('dict')['0'] #%% markers = pd.read_csv('data/highlighted_genes.csv', header=None, names=['gene', 'cluster']) markers['gene'] = markers['gene'].str.upper() markers = markers[markers['gene'].isin(gene_names)] markers['title'] = markers['gene'] + '+: ' + markers['cluster'] markers = markers.set_index('gene') markers.loc['PTPRC']['title'] = 'PTPRC (CD45)+: Immune Cells' markers.loc['leiden'] = ['Leiden', 'Clusters'] addl_genes = pd.read_csv('data/additional_ipf_genes.csv', header=None) addl_genes['title'] = addl_genes[0] addl_genes = addl_genes.set_index(0) markers = markers.append(addl_genes) #%% for i, g in markers.iterrows(): sc.pl.tsne(adata, color=i, title=g['title'], color_map='plasma', size=25, save='_' + i + '_all.pdf', show=False) #%% sc.tl.rank_genes_groups(adata, 'leiden', method='t-test', n_genes=20)
pd.DataFrame(adata.uns['rank_genes_groups']['names'])
pandas.DataFrame