prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
""" Import necessary libraries """ from itertools import chain import sqlalchemy as db import pandas as pd from bs4 import BeautifulSoup from urllib.request import urlopen import re import json from time import sleep # Few component's idea adapted from/Reference from - # https://github.com/erilu/web-scraping-NBA-statistics def build_team() -> dict[str, str]: """ This function access espn's nba page and extract names of each roster. For each roster name, URL of the team page is created. :return: """ f = urlopen('https://www.espn.com/nba/teams') teams_source = f.read().decode('utf-8') teams = dict(re.findall("www\.espn\.com/nba/team/_/name/(\w+)/(.+?)\",", teams_source)) roster_urls = [] for key in teams.keys(): roster_urls.append('https://www.espn.com/nba/team/roster/_/name/' + key + '/' + teams[key]) teams[key] = str(teams[key]) return dict(zip(teams.values(), roster_urls)) def get_info_players(roster_url) -> dict: """ Function retrieves info such as age, height salary etc for each player within a roster. :param roster_url: :return: """ f = urlopen(roster_url) roster_source = f.read().decode('utf-8') sleep(0.6) player_regex = '\{\"name\"\:\"(\w+\s\w+)\",\"href\"\:\"https?\://www\.espn\.com/nba/player/.*?\",(.*?)\}' player_info = re.findall(player_regex, roster_source) player_dict = dict() for player in player_info: player_dict[player[0]] = json.loads("{" + player[1] + "}") return player_dict def career_stats(all_players_df) -> pd.DataFrame: """ Steps involved in this function: 1. Data Frame created for storing stats for each player 2. For each player, espn webpage is parsed and career stats average is retrieved 3.Some of the stats contain non-numerical symbols ( example: - 3PT means 3-Point Field Goals Made-Attempted Per Game, so 5.3-12.7 is split as 3PTM - 5.3 and 3PTA - 12.7 similarly is done for FG and FT as well. :return: """ career_stats_df = pd.DataFrame( columns=["GP", "GS", "MIN", "FGM", "FGA", "FG%", "3PTM", "3PTA", "3P%", "FTM", "FTA", "FT%", "OR", "DR", "REB", "AST", "BLK", "STL", "PF", "TO", "PTS"]) for player_index in all_players_df.index: url = "https://www.espn.com/nba/player/stats/_/id/" + str(all_players_df.loc[player_index]['id']) f = urlopen(url) soup = BeautifulSoup(f, 'html.parser') sleep(0.5) try: content = soup.find_all('div', class_='ResponsiveTable ResponsiveTable--fixed-left pt4')[0] year = [] scores = [] tr = content.find_all('tr', class_='Table__TR Table__TR--sm Table__even') for i, point in enumerate(tr): td = point.find_all('td') i = 0 scr = [] for element in td: if len(td) <= 2: year.append(td[i].text) elif len(td) >= 2: scr.append(td[i].text) i += 1 scores.append(scr) career_info = list(chain.from_iterable([i.split("-") for i in scores[-2]])) career_info = list(map(float, career_info)) career_stats_df = career_stats_df.append(
pd.Series(career_info, index=career_stats_df.columns, name=player_index)
pandas.Series
# -------------------------------------------------- ML 02/10/2019 ----------------------------------------------------# # # This is the class for poisson process # # -------------------------------------------------------------------------------------------------------------------- # import numpy as np import pandas as pd import math from handles.data_hand import get_slotted_data from sklearn.linear_model import LinearRegression from scipy.stats import kstest import statsmodels.api as sm import statsmodels.formula.api as smf from modeling.stat.models import fit_neg_binom from scipy.stats import expon,gamma,nbinom import random random.seed( 30 ) class poisson_process: def __init__(self,events,x,slotmin=60,sesonality=24.00,x_meta=None,combine=None,variablity_lambda=True): # x is the numeric features lambda depends on. # x_meta are catagorical features that lambda depends on # Sesonality is when to loop the ts back. i.e. like 24 hours # x can be any factor levels. with _ in between each category. however, each catogory # should be defined by a numeric indicator self.x_names = np.array( x.columns ) self.ts = np.array(events) self.x = np.array(x) self.x_meta=x_meta self.slotmin = slotmin self.sesonality = float( sesonality ) self.processed_data = self.get_combined_ts_data(combine=combine) self.def_scale_multiplier() self._variablity_lambda = variablity_lambda def combine_timeslots(self,x,combine): p = x.copy() p[np.in1d(x, combine)] = combine[0] return p def poles_fun(self,d): return pd.DataFrame(d).apply(lambda x: 1/(x**3)) def def_scale_multiplier(self): # this is based on emperical data average_mat = pd.DataFrame({'2014':[0.237053898,0.23033784,0.22646637,0.224855127,0.22145071,0.22017719,0.219680942], '2015':[0.190591233,0.185363899,0.183113651,0.180825924,0.179276851,0.179478113,0.17919847]}).T average_mat.columns = [1000,1100,1200,1300,1400,1500,1600] average_mat=average_mat.reset_index() average_mat=average_mat.melt(id_vars=["index"],var_name="Poles",value_name="Value") cols = ['year','poles','scale'] average_mat.columns = cols average_mat[cols] = average_mat[cols].apply(pd.to_numeric, errors='coerce') average_mat['poles']=self.poles_fun(average_mat['poles']) regressor = LinearRegression() regressor.fit(average_mat[['year','poles']], average_mat['scale']) self.scale_multiplier_predictor = regressor self.reset_scale_multiplier() def reset_scale_multiplier(self): self._scale_multiplier = 1 def avg_scale_pred(self,year,poles): return self.scale_multiplier_predictor.predict(np.array([year, np.array(self.poles_fun([poles]))]).reshape(1, -1)) def get_processed_data(self): diff_col_name = 'Aarrival_diff' delta_t = np.diff(self.ts, n=1).reshape(-1, 1) fin_d = pd.DataFrame(np.concatenate((delta_t, self.x[:-1, :]), axis=1)) fin_d.columns = np.concatenate( (np.array(diff_col_name).reshape(-1, 1), np.array(self.x_names).reshape(-1, 1)), axis=0).flatten() fin_d[diff_col_name] = pd.to_numeric(fin_d[diff_col_name]) # split the values in the factor that was provided to us split = fin_d[self.x_names[0]].str.split("_", -1) n = [] for i in range(0, len(split[0])): fin_d['f' + str(i)] = split.str.get(i)#.astype(float) # update this if code breaks n.append('f' + str(i)) n.append(self.x_names[1]) self.all_names = n fin_d = fin_d.sort_values(by=n) return fin_d def get_combined_ts_data(self,combine): # combine timeslots # if given argument = combine -- array of time slots to combine. we will replace these with # the first element of the combine array # start time internal is the timeslots to model the data on self.processed_data = self.get_processed_data() self.combine = combine if combine is None: self.combined_slots = False combined_timeslots = self.processed_data[self.x_names[1]] else: self.combined_slots = True combined_timeslots = self.combine_timeslots(self.processed_data[self.x_names[1]], combine=combine) self.processed_data['Start_time_internal'] = combined_timeslots return self.processed_data def get_slotted_data(self,data, slot_secs): return get_slotted_data(data=data,slot_secs=slot_secs) # ------------------------------------------- FITTING -------------------------------------------------------------- def daywise_training_data(self,d,combine,fac1,fac2,f1,days,orignal_start_slot): # fac2 is out internal slots that are combined # it is also worth noting that we calculate the average for combined slots and then put them for # all the slots for that given duration if self.combined_slots: x = fac2[(fac1 == f1)] day = days[(fac1 == f1)] model_d = [] for day_i in np.unique(day): model_d_temp = [] for t_i in np.unique(x): try: model_d_temp.append([[t_i, expon.fit(pd.to_numeric(d[(x == t_i) & (day == day_i)]))[1], day_i]]) except: continue model_d_temp = np.vstack(model_d_temp) scale_val = model_d_temp[(model_d_temp[:, 0] == combine[0])].flatten()[1] add = [[i, scale_val, day_i] for i in combine[1:]] model_d_temp = np.concatenate((model_d_temp, add)) model_d.append(model_d_temp) model_d = np.vstack(model_d) else: x = orignal_start_slot[(fac1 == f1)] day = days[(fac1 == f1)] model_d = [] for day_i in np.unique(day): model_d_temp = [] for t_i in np.unique(x): try: model_d_temp.append([[t_i, expon.fit(pd.to_numeric(d[(x == t_i) & (day == day_i)]))[1], day_i]]) except: continue model_d_temp = np.vstack(model_d_temp) model_d.append(model_d_temp) model_d = np.vstack(model_d) return model_d def discreet_fit_model(self,data,x): data_gamma = pd.DataFrame({'days':data, 'arrivalslot':x,'indicator':1}) data_gamma = data_gamma.groupby(['days','arrivalslot']).agg(['count']).reset_index() data_gamma.columns = ['days', 'arrivalslot','count'] data_save = data_gamma['count'] x_save = data_gamma['arrivalslot'] ks_t_D = pd.DataFrame() ks_t_pval = pd.DataFrame() t_t_pval = pd.DataFrame() exp_loc = pd.DataFrame() exp_scale = pd.DataFrame() exp_shape = pd.DataFrame() time_slot = pd.DataFrame() pos_l = pd.DataFrame() neg_bio_r = pd.DataFrame() neg_bio_p = pd.DataFrame() for f2 in np.unique(data_gamma['arrivalslot']): d = pd.to_numeric( data_gamma[data_gamma['arrivalslot'] == f2]['count'] ) # poission lam = np.mean(d) # gamma alpha,loc, beta = gamma.fit(d,loc=0) # ks test D , kspval = kstest(d,'gamma', args=(alpha,loc,beta)) # ttest - one sided # sample2 = gamma.rvs(a = alpha, loc=loc, scale=beta, size=d.shape[0]) val , pval = 0,0 #ttest_ind(d,sample2) # neg_binom r,p = fit_neg_binom(vec=np.array(d).flatten(),init=0.0000001) # if we have combined data then add same model to all combined timeslots if self.combined_slots and f2 == self.combine[0]: for var in self.combine: pos_l = pos_l.append(pd.DataFrame([lam])) exp_loc = exp_loc.append(pd.DataFrame([loc])) exp_shape = exp_shape.append(pd.DataFrame([alpha])) exp_scale = exp_scale.append(pd.DataFrame([beta])) neg_bio_r = neg_bio_r.append(pd.DataFrame([r])) neg_bio_p = neg_bio_p.append(pd.DataFrame([p])) ks_t_D = ks_t_D.append(pd.DataFrame([D])) ks_t_pval = ks_t_pval.append(pd.DataFrame([kspval])) t_t_pval = t_t_pval.append(pd.DataFrame([pval / 2])) # add timeslot time_slot = time_slot.append([var]) else: pos_l = pos_l.append(pd.DataFrame([lam])) exp_loc = exp_loc.append(pd.DataFrame([loc])) exp_shape = exp_shape.append(pd.DataFrame([alpha])) exp_scale = exp_scale.append(pd.DataFrame([beta])) neg_bio_r = neg_bio_r.append(pd.DataFrame([r])) neg_bio_p = neg_bio_p.append(pd.DataFrame([p])) ks_t_D = ks_t_D.append(pd.DataFrame([D])) ks_t_pval = ks_t_pval.append(pd.DataFrame([kspval])) t_t_pval = t_t_pval.append(pd.DataFrame([pval / 2])) # add timeslot time_slot = time_slot.append([f2]) # this is the final fit fit = pd.DataFrame() fit[[self.x_names[1]]] = time_slot fit['gamma_loc'] = np.array(exp_loc).flatten() fit['gamma_scale'] = np.array(exp_scale).flatten() fit['gamma_shape'] = np.array(exp_shape).flatten() fit['KS_D'] = np.array(ks_t_D).flatten() fit['KS_PVal'] = np.array(ks_t_pval).flatten() fit['Ttest_PVal'] = np.array(t_t_pval).flatten() fit['Poisson_lam'] = np.array(pos_l).flatten() fit['Negbio_r'] = np.array(neg_bio_r).flatten() fit['Negbio_p'] = np.array(neg_bio_p).flatten() return fit,data_save,x_save def neg_bio_reg_fit_model(self,data,x): data_gamma = pd.DataFrame({'days': data, 'arrivalslot': x, 'indicator': 1}) data_gamma = data_gamma.groupby(['days', 'arrivalslot']).agg(['count']).reset_index() data_gamma.columns = ['days', 'arrivalslot', 'count'] data_save = data_gamma['count'] x_save = data_gamma['arrivalslot'] nb_mu = pd.DataFrame() nb_p =
pd.DataFrame()
pandas.DataFrame
import random import pandas as pd from tqdm import tqdm from shared.utils import make_dirs from shared.utils import load_from_json import sys class Training_Data_Generator(object): """ Class for generating ground-truth dataset used for feature learning :param random_seed: parameter used for reproducibility :param num_samples: total number of negative samples :param neg_type: negative samples type (simple or hard) :param query_type: query type (faq or user_query) :param loss_type: the loss type as method used for BERT Fine-tuning (softmax or triplet loss) :param hard_filepath: the absolut path to hard negatives filepath """ def __init__(self, random_seed=5, num_samples=24, neg_type='simple', query_type='faq', loss_type='triplet', hard_filepath=''): self.random_seed = random_seed self.num_samples = num_samples self.hard_filepath = hard_filepath self.neg_type = neg_type self.query_type = query_type self.loss_type = loss_type self.pos_labels = [] self.neg_labels = [] self.num_pos_labels = 0 self.num_neg_labels = 0 self.id2qa = dict() self.id2negids = dict() self.df = pd.DataFrame() self.seq_len_df = pd.DataFrame() self.df_pos = pd.DataFrame() self.df_neg = pd.DataFrame() if self.query_type == 'faq': self.hard_filepath = self.hard_filepath + "/hard_negatives_faq.json" elif self.query_type == "user_query": self.hard_filepath = self.hard_filepath + "/hard_negatives_user_query.json" else: raise ValueError('error, no query_type found for {}'.format(query_type)) def generate_pos_labels(self, query_answer_pairs): """ Generate positive labels from qa pairs :param qa_pairs: list of dicts :return: list of positive labels """ qap_df =
pd.DataFrame.from_records(query_answer_pairs)
pandas.DataFrame.from_records
import pandas as pd import numpy as np import re import os from pandas import json_normalize import json from alive_progress import alive_bar class PrepareNSMCLogs: def __init__(self, config): self.raw_logs_dir = config.raw_logs_dir self.prepared_logs_dir = config.prepared_logs_dir self.filename = config.filename @staticmethod def starts_with_timestamp(line): pattern = re.compile("^(\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2})") return bool(pattern.match(line)) def multiline_logs_processing(self, fpath): dfs = [] with open(fpath) as f: logs = f.readlines() with alive_bar(len(logs), title="Parsing json to csv") as bar: for log in logs: json_log = json.loads(log) df =
json_normalize(json_log)
pandas.json_normalize
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import functools import math import warnings from typing import Callable, Dict, List, Optional, Tuple import numpy as np import pandas as pd import plotly from beanmachine.ppl.inference.monte_carlo_samples import MonteCarloSamples from beanmachine.ppl.model.rv_identifier import RVIdentifier from plotly.subplots import make_subplots from torch import Tensor from . import common_plots, common_statistics as common_stats class BaseDiagnostics: def __init__(self, samples: MonteCarloSamples): self.samples = samples self.statistics_dict = {} self.plots_dict = {} def _prepare_query_list( self, query_list: Optional[List[RVIdentifier]] = None ) -> List[RVIdentifier]: if query_list is None: return list(self.samples.keys()) for query in query_list: if not (query in self.samples): raise ValueError(f"query {self._stringify_query(query)} does not exist") return query_list def summaryfn(self, func: Callable, display_names: List[str]) -> Callable: """ this function keeps a directory of all summary-related functions, so it could handle the overridden functions and new ones that user defines :param func: method which is going to be executed when summary() is called. :param display_name: the name appears in the summary() output dataframe :returns: user-visible function that can be called over a list of queries """ statistics_name = func.__name__ self.statistics_dict[statistics_name] = (func, display_names) return self._standalone_summary_stat_function(statistics_name, func) def _prepare_summary_stat_input( self, query: RVIdentifier, chain: Optional[int] = None ): query_samples = self.samples[query] if query_samples.shape[0] != 1: # squeeze out non-chain singleton dims query_samples = query_samples.squeeze() if chain is not None: query_samples = query_samples[chain].unsqueeze(0) return query_samples def _create_table( self, query: RVIdentifier, results: List[Tensor], func_list: List[str] ) -> pd.DataFrame: """ this function turns output of each summary stat function to a dataframe """ out_pd = pd.DataFrame() if len(results) > 0: single_result_set = results[0] if single_result_set is not None and len(single_result_set) > 0: for flattened_index in range(single_result_set[0].numel()): index = np.unravel_index( flattened_index, tuple(single_result_set[0].size()) ) row_data = [] rowname = f"{self._stringify_query(query)}{list(index)}" for result in results: num_of_sets = result.size()[0] for set_num in range(num_of_sets): row_data.append(result[set_num][index].item()) cur = pd.DataFrame([row_data], columns=func_list, index=[rowname]) if out_pd.empty: out_pd = cur else: out_pd = pd.concat([out_pd, cur]) return out_pd def _stringify_query(self, query: RVIdentifier) -> str: return f"{query.function.__name__}{query.arguments}" def _execute_summary_stat_funcs( self, query: RVIdentifier, func_dict: Dict[str, Tuple[Callable, str]], chain: Optional[int] = None, raise_warning: bool = False, ): frames = pd.DataFrame() query_results = [] func_list = [] queried_samples = self._prepare_summary_stat_input(query, chain) for _k, (func, display_names) in func_dict.items(): result = func(queried_samples) if result is None: # in the case of r hat and other algorithms, they may return None # if the samples do not have enough chains or have the wrong shape if raise_warning: warnings.warn( f"{display_names} cannot be calculated for the provided samples" ) continue # the first dimension is equivalant to the size of the display_names if len(display_names) <= 1: result = result.unsqueeze(0) query_results.append(result) func_list.extend(display_names) out_df = self._create_table(query, query_results, func_list) if frames.empty: frames = out_df else: frames = pd.concat([frames, out_df]) return frames def summary( self, query_list: Optional[List[RVIdentifier]] = None, chain: Optional[int] = None, ) -> pd.DataFrame: """ this function outputs a table summarizing results of registered functions in self.statistics_dict for requested queries in query_list, if chain is None, results correspond to the aggreagated chains """ frames = pd.DataFrame() query_list = self._prepare_query_list(query_list) for query in query_list: out_df = self._execute_summary_stat_funcs( query, self.statistics_dict, chain ) frames = pd.concat([frames, out_df]) frames.sort_index(inplace=True) return frames def _prepare_plots_input( self, query: RVIdentifier, chain: Optional[int] = None ) -> Tensor: """ :param query: the query for which registered plot functions are called :param chain: the chain that query samples are extracted from :returns: tensor of query samples """ query_samples = self.samples[query] if chain is not None: return query_samples[chain].unsqueeze(0) return query_samples def plotfn(self, func: Callable, display_name: str) -> Callable: """ this function keeps a directory of all plot-related functions so it could handle the overridden functions and new ones that user defines :param func: method which is going to be executed when plot() is called. :param display_name: appears as part of the plot title for func :returns: user-visible function that can be called over a list of queries """ self.plots_dict[func.__name__] = (func, display_name) return self._standalone_plot_function(func.__name__, func) def _execute_plot_funcs( self, query: RVIdentifier, func_dict: Dict[str, Tuple[Callable, str]], chain: Optional[int] = None, display: Optional[bool] = False, ): # task T57168727 to add type figs = [] queried_samples = self._prepare_plots_input(query, chain) for _k, (func, display_name) in func_dict.items(): trace, labels = common_plots.plot_helper(queried_samples, func) title = f"{self._stringify_query(query)} {display_name}" fig = self._display_results( trace, [title + label for label in labels], # pyre-fixme[6]: Expected `bool` for 3rd param but got `Optional[bool]`. display, ) figs.append(fig) return figs def plot( self, query_list: Optional[List[RVIdentifier]] = None, display: Optional[bool] = False, chain: Optional[int] = None, ): # task T57168727 to add type """ this function outputs plots related to registered functions in self.plots_dict for requested queries in query_list :param query_list: list of queries for which plot functions will be called :param chain: the chain that query samples are extracted from :returns: plotly object holding the results from registered plot functions """ figs = [] query_list = self._prepare_query_list(query_list) for query in query_list: fig = self._execute_plot_funcs(query, self.plots_dict, chain, display) figs.extend(fig) return figs def _display_results( self, traces, labels: List[str], display: bool ): # task T57168727 to add type """ :param traces: a list of plotly objects :param labels: plot labels :returns: a plotly subplot object """ fig = make_subplots( rows=math.ceil(len(traces) / 2), cols=2, subplot_titles=tuple(labels) ) r = 1 for trace in traces: for data in trace: fig.add_trace(data, row=math.ceil(r / 2), col=((r - 1) % 2) + 1) r += 1 if display: plotly.offline.iplot(fig) return fig def _standalone_plot_function(self, func_name: str, func: Callable) -> Callable: """ this function makes each registered plot function directly callable by the user """ @functools.wraps(func) def _wrapper( query_list: List[RVIdentifier], chain: Optional[int] = None, display: Optional[bool] = False, ): figs = [] query_list = self._prepare_query_list(query_list) for query in query_list: fig = self._execute_plot_funcs( query, {func_name: self.plots_dict[func_name]}, chain, display ) figs.extend(fig) return figs return _wrapper def _standalone_summary_stat_function( self, func_name: str, func: Callable ) -> Callable: """ this function makes each registered summary-stat related function directly callable by the user """ @functools.wraps(func) def _wrapper(query_list: List[RVIdentifier], chain: Optional[int] = None): frames = pd.DataFrame() query_list = self._prepare_query_list(query_list) for query in query_list: out_df = self._execute_summary_stat_funcs( query, {func_name: self.statistics_dict[func_name]}, chain, True ) frames =
pd.concat([frames, out_df])
pandas.concat
# Copyright (c) 2019-2021 - for information on the respective copyright owner # see the NOTICE file and/or the repository # https://github.com/boschresearch/pylife # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __author__ = "<NAME>" __maintainer__ = __author__ import pytest import numpy as np import pandas as pd from pylife.core import * foo_bar_baz = pd.DataFrame({'foo': [1.0, 1.0], 'bar': [1.0, 1.0], 'baz': [1.0, 1.0]}) def test_keys_dataframe(): pd.testing.assert_index_equal(foo_bar_baz.test_accessor_none.keys(), pd.Index(['foo', 'bar', 'baz'])) def test_keys_series(): pd.testing.assert_index_equal(foo_bar_baz.iloc[0].test_accessor_none.keys(),
pd.Index(['foo', 'bar', 'baz'])
pandas.Index
import pandas from msdss_models_api.models import Model def create_init_method(can_input=True, can_output=True, can_update=True): """ Create model init method for scikit-learn models to be compatible with :class:`msdss_models_api:msdss_models_api.models.Model`. See :class:`msdss_models_api:msdss_models_api.models.Model`. Parameters ---------- can_input : bool Whether the method ``.input`` is defined and available. This is useful for controlling route requests in an API. can_output : bool Whether the method ``.output`` is defined and available. This is useful for controlling route requests in an API. can_update : bool Whether the method ``.update`` is defined and available. This is useful for controlling route requests in an API. Author ------ <NAME> <<EMAIL>> Example ------- .. jupyter-execute:: from msdss_models_sklearn.tools import * from sklearn.linear_model import LinearRegression input = create_input_method(LinearRegression) """ def init(self, can_input=can_input, can_output=can_output, can_update=can_update, *args, **kwargs): Model.__init__(self, can_input=can_input, can_output=can_output, can_update=can_update, *args, **kwargs) return init def create_input_method(model): """ Create model input method for scikit-learn models to be compatible with :class:`msdss_models_api:msdss_models_api.models.Model`. See :meth:`msdss_models_api:msdss_models_api.models.Model.input`. Parameters ---------- model : class Scikit-learn model class to create machine learning models. Author ------ <NAME> <<EMAIL>> Example ------- .. jupyter-execute:: from msdss_models_sklearn.tools import * from sklearn.linear_model import LinearRegression input = create_input_method(LinearRegression) """ def input(self, data, x=None, y=None, _fit={}, *args, **kwargs): # (create_input_method_vars) Set default vars x = x if x else self.settings['x'] if 'x' in self.settings else x y = y if y else self.settings['y'] if 'y' in self.settings else y # (create_input_method_data) Format data for model instance input data = pandas.DataFrame(data) data_x = data[x] if x else data data_y = data[y] if y else None # (create_input_method_set) Train model instance self.instance = model(*args, **kwargs).fit(data_x, data_y, **_fit) return input def create_output_method(): """ Create model output method for scikit-learn models to be compatible with :class:`msdss_models_api:msdss_models_api.models.Model`. See :meth:`msdss_models_api:msdss_models_api.models.Model.output`. Author ------ <NAME> <<EMAIL>> Example ------- .. jupyter-execute:: from msdss_models_sklearn.tools import * output = create_output_method() """ def output(self, data, x=None, y=None, *args, **kwargs): # (create_output_method_vars) Set default vars x = x if x else self.settings['x'] if 'x' in self.settings else x y = y if y else self.settings['y'] if 'y' in self.settings else y y = [y] if y and not isinstance(y, list) else y # (create_output_method_data) Format data for model instance output data =
pandas.DataFrame(data)
pandas.DataFrame
# -*- coding: utf-8 -*- """Functions from market data""" __author__ = "<NAME>" __version__ = "1" import pandas as pd import numpy as np from pyquanttrade.engine.utils import ( max_drawdown_ratio, max_drawdown_value, safe_div, safe_min, safe_sum, safe_mean, ) class DailyStats: def __init__(self, data_sim, ticker, capital): self.trade_list = None self.tickers = [ticker] self.tickers_capital = {} self.tickers_capital[ticker] = capital self.long_ticker = {} self.short_ticker = {} self.global_ticker = {} (l, s, t) = self._initDataframe(data_sim.index, ticker, data_sim, capital) self.long_ticker[ticker] = l self.short_ticker[ticker] = s self.global_ticker[ticker] = t self.long_all = None self.short_all = None self.global_all = None self.last_closed_profit = {} self.last_closed_inversion = {} self._last_trades_len = {} self.last_closed_profit[ticker] = {"long": 0.0, "short": 0.0, "all": 0.0} self.last_closed_inversion[ticker] = {"long": 0.0, "short": 0.0, "all": 0.0} self._last_trades_len[ticker] = {"long": 0.0, "short": 0.0, "all": 0.0} # Init dataframes stats values for a ticker data. def _initDataframe(self, index_data, ticker, data_sim, capital): long_system_results =
pd.DataFrame(index=index_data)
pandas.DataFrame
import osmnx as ox import networkx as nx import geopandas import pandas as pd from pylab import * print('EXECUTING') # Get graph g = ox.graph_from_place( 'Brentwood - Darlington, Portland, Oregon, USA', network_type='all') # tranfer to GDF g_gdf_nodes, g_gdf_edges = ox.graph_to_gdfs(g) # transfer to data fram g_dataframe_nodes =
pd.DataFrame(g_gdf_nodes)
pandas.DataFrame
""" NetSQL is a network query tool which helps to collect and filter data about your network. Requires access to network devices, but also can process raw command output. """ from __future__ import print_function, unicode_literals import json import re import csv import getpass import ipaddress import argparse import sys import numpy import textfsm import os import pandas as pd from netmiko import ConnectHandler from netmiko.ssh_exception import ( NetMikoTimeoutException, NetMikoAuthenticationException, SSHException, ) from colorama import init, Fore, Style DEVICE_TYPE = "cisco_ios" REPORT_DIR = "reports\\" RAW_OUTPUT_DIR = "raw_data\\" class CustomParser(argparse.ArgumentParser): """ Overrides default CLI parser's print_help and error methods """ def print_help(self): # Print default help from argparse.ArgumentParser class super().print_help() # print our help messages print( "\n Usage examples:" + '\n python netsql.py --query="select * from interfaces where Last_Input = never" --source 10.74.41.73 --user aupuser3 --screen-output --html-output' + '\n python netsql.py --query="select Interface,Name,Last_Input from interfaces where Last_Input = never" --source cleveland_st.txt --user azyuzin1 --screen-output --html-output' + '\n python netsql.py --query="select * from neighbours where Platform=Polycom" --source device_ip_addresses.txt --screen-output --user azyuzin1 --html-output' + "\n\n Query should be in the following format: " + '\n -query="select <fields to select or * > from <source> where <condition>"' + "\n <fields to select or * > and <source> are required, <condition> is onptional " + "\n\n Query examples: " + "\n - List ports which never been used:" + '\n --query="select * from interfaces where Last_Input = never"' + "\n - Find switch port where a device located by its MAC" + '\n --query="select * from mac-addresses where MAC=3348"' + "\n - Get device details from L3 switch: IP, VLAN, port:" '\n --query="select * from mac-addresses where MAC=b19f"' + "\n - Get device details from L2 switch:" + '\n --query="select * from addresses where MAC=b19f"' + "\n - Get neighbours details:" + '\n --query="select Host,Management_ip,Platform,Remote_Port,Local_port from neighbours"' + "\n - Get number of Polcycom devices in building:" + '\n --query="select * from neighbours where Platform=Polycom"' ) print("\n The following data sources are allowed in queries: \n") with open("command_definitions.json", "r") as f: command_definitions = json.load(f) with open("data_source_definitions.json", "r") as f: source_definitions = json.load(f) for source in source_definitions: print( "Data source: {:<15} Actual commands {}".format( source["data_source_name"], source["commands"] ) ) def error(self, message): print("error: %s\n" % message) print("Use --help or -h for help") sys.exit(2) # ------------------------------------------------------------------------------------------- def parse_args(args=sys.argv[1:]): """Parse arguments.""" parser = CustomParser() parser._action_groups.pop() required = parser.add_argument_group("required arguments") optional = parser.add_argument_group("optional arguments") # Required arguments required.add_argument( "-q", "--query", help="Query, see usage examples", type=str, required=True ) required.add_argument( "-s", "--source", help="Source of IP addresses to process. Can be a file, or a single IP address", required=True, ) required.add_argument( "-u", "--user", help="Username to connect to network devices", required=True ) # Optional arguments optional.add_argument( "--no-connect", "-nc", default=False, action="store_true", help="Run without connecting to network devices, uses the output previously collected. Impoves query processing speed", ) optional.add_argument( "--screen-output", default=True, required=False, action="store_true", help="Prints report to screen. CVS reports are always generated", ) optional.add_argument( "--screen-lines", default=10, type=int, required=False, help="Number of lines to output for each device", ) optional.add_argument( "--html-output", "-html", default=False, action="store_true", help="Prints report to HTML. CVS reports are always generated", ) return parser.parse_args(args) # ------------------------------------------------------------------------------------------- def command_analysis(text): """ :param text: SQL string, for example: select first_name,last_name from students where id = 5 select * from students where first_name = "Mike" or "Andrew" and last_name = "Brown" select last_name from students where math_score = "90" or "80" and last_name = "Smith" and year = 7 or 8 :return: Dictionary built from the input string, for example: {'conditions': [{'cond_field': 'math_score', 'cond_value': ['"90"', '"80"']}, {'cond_field': 'last_name', 'cond_value': '"Smith"'}, {'cond_field': 'year', 'cond_value': ['7', '8']}], 'fields': ['*'], 'source': 'students'} Written by <NAME>, McKinnon Secondary College, 07K. 2019. """ fields = [] source = "" conditions = [] conditions_list = [] result = {} command = text.split() if command[0] == "select": # field analysis if "," in command[1]: morefields = command[1].split(",") for item in morefields: fields.append(item) else: fields.append(command[1]) # checking whether 'from' exists if command[2] == "from": # source source = command[3] else: print("Error: 'from' not found!") try: if command[4] == "where": tempcond = " ".join(command[5:]) # split conditions by keyword 'and' condition = tempcond.split("and") # loop until everything has been sorted for element in condition: condition_dic = {} # split every condition by keyword '=' val = element.split("=") condition_dic["cond_field"] = val[0].strip() conditions_list.append(val[0].strip()) if "or" in val[1]: # if there is an 'or' in the request tempvalue = ("").join(val[1]) values = tempvalue.split("or") condition_dic["cond_value"] = [] for value in values: if value != " ": condition_dic["cond_value"].append(value.strip()) else: condition_dic["cond_value"] = val[1].strip() conditions.append(condition_dic) except: pass else: print("Invalid Format or Command!") # if * is in list, return all fields anyway, so ignore all other selected fields if "*" in fields: fields[0] = "*" del fields[1:] else: # add 'conditions' fields to the list of fields selected fields.extend(conditions_list) # remove duplicates fields_no_duplicates = [] [fields_no_duplicates.append(item) for item in fields if item not in fields_no_duplicates] fields = fields_no_duplicates result["fields"] = fields[0:] result["source"] = source result["conditions"] = conditions[0:] return result # ------------------------------------------------------------------------------------------- def run_command_and_write_to_txt(commands, a_device, no_connect, get_metadata_items): """ Executes IOS commands using Netmiko. Writes raw output to a report file. :param commands: list of commands :param a_device: device IP :param no_connect: whether to connect, if False the script exits without trying to connect :return: False if any errors occurred, otherwise True """ # If Do Not Connect flag is set, do not connect to any devices, just return True # The script uses the output .txt files previously collected if no_connect: return True try: remote_conn = ConnectHandler(**a_device) except NetMikoAuthenticationException as error: print("Authentication Exception - terminating program \n", str(error)) exit(1) except NetMikoTimeoutException as error: print( " ===> WARNING : Timeout while connecting to: {}, error: {} Skipping.".format( a_device["host"], str(error) ) ) except SSHException as error: print( " ===> WARNING : SSH2 protocol negotiation or logic errors while connecting to: {}, error: {} Skipping.".format( a_device["host"], str(error) ) ) except Exception as error: # raise ValueError(' ===> Skipping - Failed to execute due to %s', error) print( " ===> WARNING : Unhandled exception while connecting to: {}, error: {} Skipping.".format( a_device["host"], str(error) ) ) else: # no exceptions happened - ssh connection established, OK to run commands for command in commands: file_name = get_file_path(a_device["host"], command, "raw_output") + ".txt" print("Writing output to file: ", file_name) os.makedirs(os.path.dirname(file_name), exist_ok=True) with open(file_name, "w") as f: # execute command on a device and write to a file f.write(remote_conn.send_command_expect(command)) if get_metadata_items: # Get device metadata - hostname and location print("Writing metadata to file: ", file_name) metadata_item = "" for item in get_metadata_items.keys(): file_name = get_file_path(a_device["host"], "_metadata", "raw_output") + ".txt" os.makedirs(os.path.dirname(file_name), exist_ok=True) metadata_item = metadata_item + item + ":" + remote_conn.send_command_expect(get_metadata_items[item]) + "\n" with open(file_name, "w") as f: # execute command on a device and write to a file f.write(metadata_item) # sucessful command execution - return True return True # failure during command execution - return False print("-" * 80) return False # ------------------------------------------------------------------------------------------- def find_command(command, all_commands): """ Looks up a command in a list of dictioraries, returns a dictionary from a list :param command: Command to look up :param all_commands: list of all commands :return: dictionary """ for item in all_commands: if item["command"] == command: return item # ------------------------------------------------------------------------------------------- def get_file_path(host, command, file_type): """ Builds file name from input arguments :param host: Host ip address :param command: Command to run :param file_type: report or raw output :return: full path with filename """ if file_type == "report": file_name = REPORT_DIR + host + "\\" + command.replace(" ", "_") else: file_name = RAW_OUTPUT_DIR + host + "\\" + command.replace(" ", "_") return file_name # ------------------------------------------------------------------------------------------- def normalise_file(file_name): """ Replaces strings to match different command output, for example, changes all interface names from GigabitEnternet to Gi Add any other normalisation here :param file_name: File Name to load and replace strings :return: none """ # Issue - when regexes are stored as strings, they are treated as special characters dict = { "(GigabitEthernet)(\d{1})\/(\d{1})\/(\d{1,2})": "Gi\2/\3/\4", "(Te)(\d{1})\/(\d{1})\/(\d{1,2})": "TenGi\2/\3/\4" } with open(file_name, "r+") as f: content = f.read() # needs to be fixed to read from dict # for key in dict: # print(key) # print(dict[key]) # subs = "r"+ "\"" +(dict[key])+ "\"" # content_new = re.sub( # key, # #r dict[key], # subs, # text, # flags=re.M, # ) # text = content_new content_new = re.sub( "(TenGigabitEthernet)(\d{1})\/(\d{1})\/(\d{1,2})", r"TenGi\2/\3/\4", content, flags=re.M, ) content = content_new content_new = re.sub( "(GigabitEthernet)(\d{1})\/(\d{1})\/(\d{1,2})", r"Gi\2/\3/\4", content, flags=re.M, ) content = content_new content_new = re.sub( "(Te)(\d{1})\/(\d{1})\/(\d{1,2})", r"TenGi\2/\3/\4", content, flags=re.M, ) # rewriting file f.seek(0) f.truncate() f.write(content_new) # ------------------------------------------------------------------------------------------- def print_to_csv_file(headers, content, file_name): """ Prints text to CSV files, also changes command output where necessary, such as Gi -> GigabitEthernet :param headers: CSV headers :param content: CSV text :param file_name: output file name :return: None """ try: with open(file_name, "w", newline="") as out_csv: csvwriter = csv.writer(out_csv, delimiter=",") csvwriter.writerow(headers) for item in content: csvwriter.writerow(item) # Replace strings to match different command output, for example, make all interface names from GigabitEnternet # to Gi normalise_file(file_name) print("Writing CSV", file_name) except Exception as e: print("Error while opening file", e) # ------------------------------------------------------------------------------------------- def convert_output_to_csv(commands, a_device): """ Pasres raw test with TextFSM, Converts text file to CSV and writes CSV :param commands: List of commands to execute :param a_device: Dictionary - Netmiko device format :return: none """ for command in commands: # build file names - directory + host IP + command name + .txt file_name = get_file_path(a_device["host"], command, "raw_output") + ".txt" # Read the whole file try: with open(file_name, "r") as content_file: raw_command_output = content_file.read() except Exception as e: # Could open file, skip the remaining processing print("Error while opening file", e) return False # Get headers and NTC templates for a given command - should be defined as global variables try: headers = find_command(command, command_definitions)["headers"] template = find_command(command, command_definitions)["template"] except: print("template not yet defined for ", command, " - skipping") continue # Parse raw output with text FSM text_fsm_template = textfsm.TextFSM(open(template)) parsed_command_output = text_fsm_template.ParseText(raw_command_output) # print to CSV print_to_csv_file( headers, parsed_command_output, file_name.replace(".txt", ".csv") ) return True # ------------------------------------------------------------------------------------------- def process_csv_files( join_dataframes, common_column, fields_to_select, filter, file1, file2, result_file ): """ Joins two dataframes. Input parameters: - common_column - two csv files to join Writes raw output to a report file """ # If "join_dataframes": true is source_definition.json if join_dataframes: pd1 = pd.read_csv(file1) pd2 = pd.read_csv(file2) if fields_to_select[0] == "*": #result_pd = pd.merge(pd1, pd2, on=common_column) result_pd = pd.merge(pd1, pd2, left_on=common_column[0], right_on=common_column[1]) else: result_pd = pd.merge(pd1, pd2, left_on=common_column[0], right_on=common_column[1]).filter(fields_to_select) #result_pd = pd.merge(pd1, pd2, left_on=common_column[0], right_on=common_column[1]) #result_pd = pd.merge(pd1, pd2, on=common_column).filter(fields_to_select) else: # If "join_dataframes": false is source_definition.json pd1 =
pd.read_csv(file1)
pandas.read_csv
import numpy as np import pandas as pd from bach import Series, DataFrame from bach.operations.cut import CutOperation, QCutOperation from sql_models.util import quote_identifier from tests.functional.bach.test_data_and_utils import assert_equals_data PD_TESTING_SETTINGS = { 'check_dtype': False, 'check_exact': False, 'atol': 1e-3, } def compare_boundaries(expected: pd.Series, result: Series) -> None: for exp, res in zip(expected.to_numpy(), result.to_numpy()): if not isinstance(exp, pd.Interval): assert res is None or np.isnan(res) continue np.testing.assert_almost_equal(exp.left, float(res.left), decimal=2) np.testing.assert_almost_equal(exp.right, float(res.right), decimal=2) if exp.closed_left: assert res.closed_left if exp.closed_right: assert res.closed_right def test_cut_operation_pandas(engine) -> None: p_series = pd.Series(range(100), name='a') series = DataFrame.from_pandas(engine=engine, df=p_series.to_frame(), convert_objects=True).a expected = pd.cut(p_series, bins=10) result = CutOperation(series=series, bins=10)() compare_boundaries(expected, result) expected_wo_right = pd.cut(p_series, bins=10, right=False) result_wo_right = CutOperation(series, bins=10, right=False)() compare_boundaries(expected_wo_right, result_wo_right) def test_cut_operation_bach(engine) -> None: p_series = pd.Series(range(100), name='a') series = DataFrame.from_pandas(engine=engine, df=p_series.to_frame(), convert_objects=True).a ranges = [ pd.Interval(0, 9.9, closed='both'), pd.Interval(9.9, 19.8, closed='right'), pd.Interval(19.8, 29.7, closed='right'), pd.Interval(29.7, 39.6, closed='right'), pd.Interval(39.6, 49.5, closed='right'), pd.Interval(49.5, 59.4, closed='right'), pd.Interval(59.4, 69.3, closed='right'), pd.Interval(69.3, 79.2, closed='right'),
pd.Interval(79.2, 89.1, closed='right')
pandas.Interval
#!/usr/bin/env python3 import os import functools import subprocess import numpy as np import pandas as pd from multiprocessing import Pool from sklearn.model_selection import train_test_split import deepmp.utils as ut import deepmp.merge_h5s as mh5 names_all = ['chrom', 'pos', 'strand', 'pos_in_strand', 'readname', 'read_strand', 'kmer', 'signal_means', 'signal_stds', 'signal_median', 'signal_diff', 'qual', 'mis', 'ins', 'del', 'methyl_label'] names_seq = ['chrom', 'pos', 'strand', 'pos_in_strand', 'readname', 'read_strand', 'kmer', 'signal_means', 'signal_stds', 'signal_median', 'signal_diff', 'methyl_label'] names_err =['readname', 'pos', 'chrom', 'kmer', 'qual', 'mis', 'ins', 'del', 'methyl_label'] # ------------------------------------------------------------------------------ # PREPROCESS INCUDING TRAIN-TEST-VAL SPLITS # ------------------------------------------------------------------------------ def get_training_test_val(df): train, test = train_test_split(df, test_size=0.05, random_state=0) train, val = train_test_split(train, test_size=test.shape[0], random_state=0) return [(train, 'train'), (test, 'test'), (val, 'val')] def get_training_test_val_chr(df): test = df[df['chrom'] == 'chr1'] df_red = df[df['chrom'] != 'chr1'] train, val = train_test_split(df_red, test_size=0.05, random_state=0) return [(train, 'train'), (test, 'test'), (val, 'val')] def get_training_test_val_pos(df): test = df[(df['pos_in_strand'] >= 1000000) & (df['pos_in_strand'] <= 2000000)] df_red = pd.concat( [df[df['pos_in_strand'] < 1000000], df[df['pos_in_strand'] > 2000000]] ) train, val = train_test_split(df_red, test_size=0.05, random_state=0) return [(train, 'train'), (test, 'test'), (val, 'val')] def save_tsv(df, output, file, mode='w'): file_name = os.path.join(output, '{}.tsv'.format(file)) if mode == 'a': df.to_csv(file_name, sep='\t', index=None, mode=mode, header=None) else: df.to_csv(file_name, sep='\t', index=None, mode=mode) def get_positions_only(df, positions): df = pd.merge( df, positions, right_on=['chr', 'start', 'strand'], left_on=['chrom', 'pos', 'strand'] ) label = np.zeros(len(df), dtype=int) label[np.argwhere(df['status'].values == 'mod')] = 1 df = df[df.columns[:19]] df['methyl_label'] = label return df def get_data(df, split_type): if split_type == 'read': return get_training_test_val(df) elif split_type == 'chr': return get_training_test_val_chr(df) else: return get_training_test_val_pos(df) def save_data_in_h5(data, feature_type, tmps, file): for el in data: if el[0].shape[0] > 0: if feature_type == 'combined': ut.preprocess_combined(el[0], tmps, el[1], file) elif feature_type == 'seq': ut.preprocess_sequence(el[0], tmps, el[1], file) else: ut.preprocess_errors(el[0], tmps, el[1], file) def split_sets_files(file, tmp_folder, counter, tsv_flag, output, tmps, split_type, positions, feature_type): df = pd.read_csv(os.path.join(tmp_folder, file), sep='\t', names=names_all) if isinstance(positions, pd.DataFrame): df = get_positions_only(df, positions) data = get_data(df, split_type) if tsv_flag: for el in data: if counter == 0: mode = 'w' else: mode = 'a' save_tsv(el[0], output, el[1], 'a') save_data_in_h5(data, feature_type, tmps, file) def split_preprocess(features, output, tsv_flag, cpus, split_type, positions, feature_type): tmp_folder = os.path.join(os.path.dirname(features), 'tmp_all/') tmp_train = os.path.join(os.path.dirname(features), 'train/') tmp_test = os.path.join(os.path.dirname(features), 'test/') tmp_val = os.path.join(os.path.dirname(features), 'val/') print('Splitting original file...') os.mkdir(tmp_folder); os.mkdir(tmp_train); os.mkdir(tmp_test); os.mkdir(tmp_val) cmd = 'split -l {} {} {}'.format(20000, features, tmp_folder) subprocess.call(cmd, shell=True) if positions: print('Getting position file...') positions =
pd.read_csv(positions, sep='\t')
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Wed Aug 20 12:06:23 2019 Elexon Data API @author: <NAME> """ ######################### Libraries ########################### from datetime import date, timedelta, datetime import requests import os from io import StringIO import pandas as pd import fnmatch ######################### Functions ########################### class API: def __init__(self, APIKEY): self.APIKEY = APIKEY def gen_url(self, report,start_date = '',end_date = '',\ period = '*', rtype = 0): server = 'https://api.bmreports.com/BMRS/' service = '&ServiceType=csv' api = '/V1?APIKey=' + self.APIKEY if rtype == 0: fdate = "&FromDate=" tdate = "&ToDate=" try: start_date = start_date.strftime('%Y-%m-%d') end_date = end_date.strftime('%Y-%m-%d') url = server+report+api+fdate+start_date+tdate+end_date+service except: print('Date range not provided. Default data for yesterday and today ({} to {})'\ .format(date.today() - timedelta(days=1),date.today())) url = server+report+api+service elif rtype == 1: sdate = '&SettlementDate=' speriod = '&Period=' try: start_date = start_date.strftime('%Y-%m-%d') url = server+report+api+sdate+start_date+speriod+period+service except: print('Date range not provided. Default data for latest period({} p {})'\ .format(date.today(), datetime.now().hour*2\ + int(datetime.now().minute/30)-1)) url = server+report+api+service elif rtype == 2: fdate = "&FromSettlementDate=" tdate = "&ToSettlementDate=" speriod = '&Period=' try: start_date = start_date.strftime('%Y-%m-%d') end_date = end_date.strftime('%Y-%m-%d') url = server+report+api+fdate+start_date+tdate\ +end_date+speriod+period+service except: print('Date range not provided. Default data for yesterday and today ({} to {})'\ .format(date.today() - timedelta(days=1),date.today())) url = server+report+api+service elif rtype == 3: year = "&Year=" + str(start_date) try: url = server+report+api+year+service except: print('Year not provided. Default data current year ({})'\ .format(date.today().year)) url = server+report+api+service elif rtype == 4: sdate = '&SettlementDate=' speriod = '&SettlementPeriod=' try: start_date = start_date.strftime('%Y-%m-%d') url = server+report+api+sdate+start_date+speriod+period+service except: print('Date range not provided. Default data for latest period({} p {})'\ .format(date.today(), datetime.now().hour*2\ + int(datetime.now().minute/30)-1)) url = server+report+api+service return url def get_generation__by_fuel(self, start_date = '',end_date =''): # BMRS Half Hourly Outturn Generation by Fuel Type # 5.2.17 of API Guide pg. 84 rtype = 0 report = 'FUELHH' names = ['Record Type', 'Settlement Date', 'Settlement Period',\ 'CCGT', 'OIL', 'COAL', 'NUCLEAR', 'WIND', 'PS', 'NPSHYD',\ 'OCGT', 'OTHER', 'INTFR', 'INTIRL', 'INTNED', 'INTEW',\ 'BIOMASS', 'INTNEM'] #Generate URL url = self.gen_url(report,start_date = start_date,\ end_date = end_date, rtype = rtype) r = requests.get(url) data = pd.read_csv(StringIO(r.text), header=None,\ names = names, skiprows=1) solar = self.get_solar(start_date = start_date, end_date = end_date) # Format data data = data.iloc[:-1] data['Time'] = data['Settlement Period'].apply(lambda x:\ pd.Timedelta(str((x-1)*30)+' min')) data.index = pd.to_datetime(data['Settlement Date'],\ format = '%Y%m%d') + data['Time'] data.drop(['Record Type', 'Time'], axis = 1, inplace = True) data['SOLAR'] = solar return data def get_solar(self, start_date = '', end_date = ''): sdate = start_date.strftime('%Y-%m-%dT%H:%M:%S') edate = end_date.strftime('%Y-%m-%dT%H:%M:%S') names = ['PES ID', 'DATETIME', 'SOLAR'] url = 'https://api0.solar.sheffield.ac.uk/pvlive/v2?start='\ + sdate +'&end=' + edate + '&data_format=csv' r = requests.get(url) data = pd.read_csv(StringIO(r.text), names = names, skiprows = 1) data.index = pd.to_datetime(data['DATETIME']) data.drop(['PES ID', 'DATETIME'], axis = 1, inplace = True) data['SOLAR'] = data['SOLAR'] return data def get_actual_demand(self, start_date = '',period ='*'): # BMRS Actual Total Load per Bidding Zone # 5.1.12 of API Guide pg. 24 rtype = 1 report = 'B0610' names = ['TimeSeriesID','Settlement Date','Settlement Period',\ 'Quantity','Secondary Quantity(MAW)','Document Type',\ 'Business Type', 'Process Type', 'Object Aggregation',\ 'Curve Type','Resolution','Unit Of Measure',\ 'Document ID','Document RevNum','ActiveFlag'] #Generate URL url = self.gen_url(report,start_date = start_date,\ period = period, rtype = rtype) r = requests.get(url) data = pd.read_csv(StringIO(r.text), header=None,\ names = names, skiprows=1) # Format data data = data.iloc[4:-1] data = data[['Settlement Date','Settlement Period','Quantity']] data['Quantity'] = pd.to_numeric(data['Quantity']) data['Settlement Period'] = pd.to_numeric(data['Settlement Period']) data = data.sort_values('Settlement Period') data['Time'] = data['Settlement Period'].apply(lambda x:\ pd.Timedelta(str((x-1)*30)+' min')) data.index = pd.to_datetime(data['Settlement Date'],\ format = '%Y-%m-%d') + data['Time'] data.drop('Time',axis = 1, inplace = True) data.rename({'Quantity': 'Actual'}, axis = 'columns', inplace = True) return data def get_dayahead_demand(self, start_date = '',period ='*'): # BMRS Day-Ahead Total Load Forecast per Bidding Zone # 5.1.13 of API Guide pg. 25 rtype = 1 report = 'B0620' names = ['TimeSeriesID','Settlement Date','Settlement Period',\ 'Quantity','Document Type', 'Business Type',\ 'Process Type', 'Object Aggregation','Resolution',\ 'Curve Type','Unit Of Measure', 'ActiveFlag',\ 'Document ID','Document RevNum','Secondary Quantity(MAW)'] #Generate URL url = self.gen_url(report,start_date = start_date,\ period = period, rtype = rtype) r = requests.get(url) data = pd.read_csv(StringIO(r.text), header=None,\ names = names, skiprows=1) # Format data data = data.iloc[4:-1] data = data[['Settlement Date','Settlement Period','Quantity']] data['Settlement Period'] =\ pd.to_numeric(data['Settlement Period']) data = data.sort_values('Settlement Period') data['Quantity'] = pd.to_numeric(data['Quantity']) data['Time'] = data['Settlement Period'].apply(lambda x:\ pd.Timedelta(str((x-1)*30)+' min')) data.index = pd.to_datetime(data['Settlement Date'],\ format = '%Y-%m-%d') + data['Time'] data.drop('Time',axis = 1, inplace = True) data.rename({'Quantity': 'Forecast'},\ axis = 'columns', inplace = True) return data def get_system_prices(self, start_date = '',end_date =''): # BMRS Derived System Wide Data # 5.2.51 of API Guide pg. 169 rtype = 2 report = 'DERSYSDATA' names = ['Record Type', 'Settlement Date', 'Settlement Period',\ 'SSP', 'SBP', 'BD', 'PDC', 'RSP', 'NIV', 'SPA', 'BPA',\ 'RP', 'RPRV', 'OV', 'BV', 'TOV', 'TBV','ASV','ABV',\ 'TASV','TABV'] #Generate URL url = self.gen_url(report, start_date = start_date,\ end_date = end_date, period = '*', rtype = rtype) r = requests.get(url) data = pd.read_csv(StringIO(r.text), header=None, names = names) # Format data data = data.iloc[1:-1] data['Time'] = data['Settlement Period'].apply(lambda x:\ pd.Timedelta(str((x-1)*30)+' min')) data.index = pd.to_datetime(data['Settlement Date'],\ format = '%Y%m%d') + data['Time'] data.drop(['Record Type', 'Time'], axis = 1, inplace = True) return data def get_bo_stack(self, start_date = '',period =''): # BMRS Detailed System Price Data # 5.2.52 of API Guide pg. 177 rtype = 4 report = 'DETSYSPRICES' names = ['Record Type', 'Settlement Date', 'Settlement Period',\ 'INDEX', 'ID','Acc ID', 'BOP ID', 'CADL Flag', 'SO Flag',\ 'STOR Flag', 'Reprice', 'RSP','BO Price', 'BO Volume',\ 'DMAT Vol', 'Arb Vol', 'NIV Vol', 'PAR Vol',\ 'Final Price', 'TLM', 'TLM Adj Vol', 'TLM Adj Price'] #Generate URL url = self.gen_url(report,start_date = start_date,\ period = str(period), rtype = rtype) try: r = requests.get(url) data = pd.read_csv(StringIO(r.text), header=None, names = names) #Format data data = data.iloc[1:-1] data['Time'] = data['Settlement Period'].apply(lambda x:\ pd.Timedelta(str((x-1)*30)+' min')) data.index = pd.to_datetime(data['Settlement Date'],\ format = '%Y%m%d') + data['Time'] data = data[['Settlement Date', 'Settlement Period','BO Price',\ 'BO Volume', 'Arb Vol', 'NIV Vol','Final Price']] except: names = ['Settlement Date', 'Settlement Period','BO Price',\ 'BO Volume', 'Arb Vol', 'NIV Vol','Final Price'] data = pd.DataFrame(data = [], columns = names) return data def get_market_prices(self, start_date = '', end_date = '',\ period ='*'): # BMRS Market Index Data # 5.2.8 of API Guide pg. 69 rtype = 2 report = 'MID' names = ['Record Type', 'Data Provider', 'Settlement Date',\ 'Settlement Period','Price', 'Volume'] #Generate URL url = self.gen_url(report,start_date = start_date,\ end_date=end_date, period = str(period), rtype = rtype) r = requests.get(url) data = pd.read_csv(StringIO(r.text), header=None, names = names) #Format data data = data.iloc[1:-1] data['Time'] = data['Settlement Period'].apply(lambda x:\ pd.Timedelta(str((x-1)*30)+' min')) data.index = pd.to_datetime(data['Settlement Date'],\ format = '%Y%m%d') + data['Time'] data = data[data['Data Provider'] == 'APXMIDP'] # Only keep APXMIDP data.drop(['Record Type','Data Provider', 'Time'],\ axis = 1, inplace = True) return data def get_temperature(self,start_date = '',end_date =''): # BMRS Derived System Wide Data # 5.2.51 of API Guide pg. 169 rtype = 0 report = 'TEMP' names = ['Record Type', 'Settlement Date', 'Temp', 'Temp_Norm',\ 'Temp_Low', 'Temp_High'] #Generate URL url = self.gen_url(report,start_date = start_date,\ end_date = end_date, rtype = rtype) r = requests.get(url) data = pd.read_csv(StringIO(r.text), header=None, names = names) # Format data data = data.iloc[1:-1].copy(deep = True) data.index = pd.to_datetime(data['Settlement Date'],\ format = '%Y%m%d') data.drop(['Record Type'], axis = 1, inplace = True) return data def get_installed_cap(self, year = ''): # BMRS Installed Generation Capacity Aggregated # 5.1.18 of API Guide pg. 31 rtype = 3 report = 'B1410' names = ['Document Type', 'Business Type', 'Process Type', 'TimeSeriesID',\ 'Quantity', 'Resolution', 'Year', 'Power System Resource Type',\ 'ActiveFlag','DocumentID', 'Document RevNum'] #Generate URL url = self.gen_url(report,start_date = year, rtype = rtype) r = requests.get(url) data = pd.read_csv(StringIO(r.text), header=None, names = names) # Format data data = data[['Year','Power System Resource Type','Quantity',]].iloc[5:-1].copy(deep = True) data['Quantity'] =
pd.to_numeric(data['Quantity'])
pandas.to_numeric
# License: Apache-2.0 import databricks.koalas as ks import numpy as np import pandas as pd import pytest from pandas.testing import assert_frame_equal, assert_series_equal from gators.model_building.train_test_split import TrainTestSplit @pytest.fixture() def data_ordered(): X = pd.DataFrame(np.arange(40).reshape(8, 5), columns=list("ABCDE")) y_name = "TARGET" y = pd.Series([0, 1, 2, 0, 1, 2, 0, 1], name=y_name) test_ratio = 0.5 obj = TrainTestSplit(test_ratio=test_ratio, strategy="ordered") X_train_expected = pd.DataFrame( { "A": {0: 0, 1: 5, 2: 10, 3: 15}, "B": {0: 1, 1: 6, 2: 11, 3: 16}, "C": {0: 2, 1: 7, 2: 12, 3: 17}, "D": {0: 3, 1: 8, 2: 13, 3: 18}, "E": {0: 4, 1: 9, 2: 14, 3: 19}, } ) X_test_expected = pd.DataFrame( { "A": {4: 20, 5: 25, 6: 30, 7: 35}, "B": {4: 21, 5: 26, 6: 31, 7: 36}, "C": {4: 22, 5: 27, 6: 32, 7: 37}, "D": {4: 23, 5: 28, 6: 33, 7: 38}, "E": {4: 24, 5: 29, 6: 34, 7: 39}, } ) y_train_expected = pd.Series({0: 0, 1: 1, 2: 2, 3: 0}, name=y_name) y_test_expected = pd.Series({4: 1, 5: 2, 6: 0, 7: 1}, name=y_name) return ( obj, X, y, X_train_expected, X_test_expected, y_train_expected, y_test_expected, ) @pytest.fixture() def data_random(): X = pd.DataFrame(np.arange(40).reshape(8, 5), columns=list("ABCDE")) y_name = "TARGET" y = pd.Series([0, 1, 2, 0, 1, 2, 0, 1], name=y_name) test_ratio = 0.5 obj = TrainTestSplit(test_ratio=test_ratio, strategy="random", random_state=0) X_train_expected = pd.DataFrame( { "A": {0: 0, 3: 15, 4: 20, 5: 25}, "B": {0: 1, 3: 16, 4: 21, 5: 26}, "C": {0: 2, 3: 17, 4: 22, 5: 27}, "D": {0: 3, 3: 18, 4: 23, 5: 28}, "E": {0: 4, 3: 19, 4: 24, 5: 29}, } ) X_test_expected = pd.DataFrame( { "A": {6: 30, 2: 10, 1: 5, 7: 35}, "B": {6: 31, 2: 11, 1: 6, 7: 36}, "C": {6: 32, 2: 12, 1: 7, 7: 37}, "D": {6: 33, 2: 13, 1: 8, 7: 38}, "E": {6: 34, 2: 14, 1: 9, 7: 39}, } ) y_train_expected = pd.Series({0: 0, 3: 0, 4: 1, 5: 2}, name=y_name) y_test_expected = pd.Series({6: 0, 2: 2, 1: 1, 7: 1}, name=y_name) return ( obj, X, y, X_train_expected, X_test_expected, y_train_expected, y_test_expected, ) @pytest.fixture() def data_stratified(): X = pd.DataFrame(np.arange(40).reshape(8, 5), columns=list("ABCDE")) y_name = "TARGET" y =
pd.Series([0, 1, 2, 0, 1, 2, 0, 1], name=y_name)
pandas.Series
#!/usr/bin/env python """Given rows from a parse job script, generates tables/figures for certain performance metrics. Each output from the parse job script is expected to have one header row and one metrics row. The first 5 columns are expected to be the task profile information. """ import argparse from common import fileopen, parse_size import csv import os import pandas as pd class Metrics(): def __init__(self, header, rows, output, formats, template_path): self.header = header self.rows = rows self.output = output self.formats = formats self.template_path = template_path def show(self, name, column, **kwargs): table = self._get_table(column) prefix = "{}.{}".format(self.output, name) for fmt in self.formats: outfile = "{}.{}".format(prefix, fmt) if fmt == 'txt': table.to_csv(outfile, sep="\t", index=False) elif fmt == 'pickle': import pickle with fileopen(outfile, 'wb') as out: pickle.dump(table, out) else: fn = getattr(self, "{}_{}".format(name, fmt)) fn(table, column, outfile) def mem_tex(self, table, column, outfile, name=None, caption=None): texdat = (table. drop('Program', 1). rename(columns={ 'Program2' : 'Program', column : 'Memory' }). groupby(['Dataset', 'Threads', 'Program']). agg({ 'Memory' : max })) texdat = texdat.assign(MemoryMB=round(texdat['Memory'] / 1000000, 1)) from mako.template import Template table_template = Template(filename=os.path.join( self.template_path, "job_memory_table.tex")) with fileopen(outfile, "wt") as o: o.write(table_template.render( name=name, caption=caption, table=texdat)) def mem_svg(self, table, column, outfile): import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import seaborn as sb sb.set(style="whitegrid") svgdat = (table. rename(columns={ column : 'Memory' }). groupby(['Dataset', 'Threads', 'Program']). agg({ 'Memory' : max }). reset_index()) svgdat = svgdat.assign(MemoryMB=svgdat['Memory'] / 1000000) threads = svgdat.Threads.unique() if len(threads) == 1: plot = sb.factorplot( x='Program', y='MemoryMB', col="Dataset", data=svgdat, kind="bar", ci=None, sharey=True) else: plot = sb.factorplot( x='Threads', y='MemoryMB', col="Dataset", hue="Program", data=svgdat, kind="bar", ci=None, sharey=True) if len(threads) == 1: plot = plot.set_titles('') plot = plot.set_xlabels('Threads') plot = plot.set_ylabels('Memory (MB)') plot = plot.set_xticklabels(rotation=90) plot.fig.subplots_adjust(wspace=0.35) plot.savefig(outfile) def _get_table(self, column, is_size=True): cols = list(range(5)) cols.append(self.header.index(column)) header = [self.header[c] for c in cols] rows = [ [row[c] for c in cols] for row in self.rows ] if is_size: for row in rows: row[5] = parse_size(row[5]) table = pd.DataFrame.from_records(rows, columns=header) table = table.rename(columns={ 'prog' : 'Program', 'prog2' : 'Program2', 'threads' : 'Threads', 'dataset' : 'Dataset', 'qcut' : 'Quality', }) table['Threads'] = pd.to_numeric(table['Threads']) table['Dataset'] = pd.Categorical(table['Dataset']) table['Program'] =
pd.Categorical(table['Program'])
pandas.Categorical
import pandas as pd from pattern.en import conjugate import global_variables as v from generic_operations import print_to_file def detect_activities(transformed_text_list, dictionary_list): tagged_records = [] try: conjugate('hello', 'inf') # dirty fix to python 3.7 / pattern error except: pass for sentence in transformed_text_list: if type(sentence) != float: # skip if nan? tokens = sentence.split(' ') for idx, token in enumerate(tokens): if v.symptom_state_tag_symbol not in token: # if it has not already been tagged as a symptom/state conjugated_current_word = conjugate(token, 'inf') if conjugated_current_word in dictionary_list: tokens[idx] = token + v.maintenance_activity_tag_symbol tagged_records.append(' '.join(tokens)) else: tagged_records.append('') print_to_file(v.maintenance_activity_output_path, tagged_records, v.output_headings) def main(): print("Starting tagging: maintenance_activity") preprocessed_data = pd.read_excel(v.symptom_state_output_path, sheet_name=v.input_file_sheet_name) selected_data = pd.DataFrame(preprocessed_data, columns=v.output_headings) transformed_text_list = list(selected_data[v.output_heading]) dict_data = pd.read_excel(v.maint_activity_dict_path, sheet_name=v.input_file_sheet_name) selected_data =
pd.DataFrame(dict_data, columns=v.dictionary_headings)
pandas.DataFrame
# importar panda import numpy as np # importar metodos de tabela from pandas import Series, DataFrame # gerar uma array(uma lista que é uma tupla) dados = np.arange(6) linha = ['linha1', 'linha2', 'linha3', 'linha4', 'linha5', 'linha6'] coluna = ['coluna1', 'coluna2', 'coluna3'] # indexar(numerar) o array serie =
Series(dados, index=linha)
pandas.Series
""" conjoin_tables.py. Bring together two tables: - Reading times by subject by token - Surprisal by token This should be the final step before R analysis. Ideally, this process would be included in the R analysis to lower the number of steps needed to get data visualizations, but this Python script will fill that role for now. <NAME> """ import argparse from functools import cache import pandas as pd parser = argparse.ArgumentParser() DATADIR = '../data' parser.add_argument('--id_file', default=f'{DATADIR}/ids.tsv') parser.add_argument('--rnng_file', default=f'{DATADIR}/naturalstories_rnng.output') parser.add_argument('--rts_file', default=f'{DATADIR}/processed_RTs.tsv') parser.add_argument('--lstm_file') parser.add_argument('--id_file', default=f'{DATADIR}/ids.tsv') parser.add_argument('--save_file', default=f'{DATADIR}/final.csv') def get_rts(rts_file) -> pd.DataFrame: """Load reading times from a file. Returns a pandas Dataframe with the following columns: * worker_id (str) - Unique identifier for the reader. * work_time_total (int) - Total time the reader took. * story (int) - Story index. * story_pos (int) - Token index. * rt (int) - Reading time in milliseconds. """ df =
pd.read_csv(rts_file, sep='\t', header=0)
pandas.read_csv
import pandas as pd import plotly.graph_objects as go import plotly.express as px import plotly.io as pio import plotly as pl import re import requests from .DataFrameUtil import DataFrameUtil as dfUtil class CreateDataFrame(): """Classe de serviços para a criação de dataframes utilizados para a construção dos gráficos""" def __init__(self): self.dfTimeSeriesCases = pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv') self.dfTimeSeriesRecover = pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv') self.dfTimeSeriesDeath = pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv') url = 'https://covid19.who.int/WHO-COVID-19-global-table-data.csv' self.dfRegioes = pd.read_csv(url) def DataFrameMensal(): pd.options.display.float_format = '{:.0f}'.format # Sem Virgula # Motando Dataframes # Coletando dados através de arquivos CSV, disponibilizados online. url = 'https://covid19.who.int/WHO-COVID-19-global-table-data.csv' dfRegioes = pd.read_csv(url) dfTimeSeriesCases = pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv') dfTimeSeriesRecover = pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv') dfTimeSeriesDeath = pd.read_csv('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv') # Coletando dados através de web scrapping html_source = requests.get("https://www.worldometers.info/coronavirus/").text html_source = re.sub(r'<.*?>', lambda g: g.group(0).upper(), html_source) table_MN2 = pd.read_html(html_source) dfWorldMeters = table_MN2[0] dfWorldMeters.columns = [column.replace(" ", "_").replace(",", "_").replace("-","").replace("__","_") for column in dfWorldMeters.columns] # Renomeando colunas, padronização dfTimeSeriesCases.rename(columns={'Country/Region':'Name'}, inplace=True) dfTimeSeriesRecover.rename(columns={'Country/Region':'Name'}, inplace=True) dfTimeSeriesDeath.rename(columns={'Country/Region':'Name'}, inplace=True) # Normalização de nome de países dfTimeSeriesCases.loc[249,'Name'] = "United States of America" dfTimeSeriesRecover.loc[249,'Name'] = "United States of America" dfTimeSeriesDeath.loc[249,'Name'] = "United States of America" dfWorldMeters.loc[8, 'Country_Other']= "United States of America" dfWorldMeters.loc[13, 'Country_Other']= "United Kingdom" dfRegioes.loc[6, 'Name'] ="United Kingdom" # Filtrando Dataframes dfRegioes.columns =[column.replace(" ", "_").replace("-","") for column in dfRegioes.columns] dfRegioes.query('Name != "Global" and Name != "World" and Cases__cumulative_total > 0 and WHO_Region != "NaN"', inplace=True) dfWorldMeters.query('Country_Other != "Total: " and Country_Other != "World" and ' + ' Country_Other != "North America" and Country_Other != "South America" and Country_Other != "Asia" and Country_Other != "Europe" ' + 'and Country_Other != "Africa" and Country_Other != "Oceania" and Country_Other != "Total:" and Country_Other != "NaN" and Population != "nan" and Population != "NaN"', inplace=True) # Ordenando Dataframes dfRegioes.sort_values(['Name'], inplace=True) dfWorldMeters.sort_values(['Country_Other'], inplace=True) # Criando novos dataframes manipulados selected_columns = dfRegioes[["Name", "WHO_Region"]] dfRegioesNew = selected_columns.copy() dfRegioesNew.sort_values(['Name'], inplace=True) listMonth = ['Jan', 'Fev', 'Mar', 'Abr','Mai','Jun', 'Jul', 'Ago','Set','Out','Nov', 'Dez', 'Jan 21', 'Fev 21', 'Mar 21', 'Abr 21'] dfTimeSeriesCases.drop(['Province/State', 'Lat','Long'], axis=1,inplace=True) dfTimeSeriesRecover.drop(['Province/State', 'Lat','Long'], axis=1,inplace=True) dfTimeSeriesDeath.drop(['Province/State', 'Lat','Long'], axis=1,inplace=True) selected_columns = dfTimeSeriesCases[dfUtil.SelectColumnsMensal()] dfTimeSeriesCases = selected_columns.copy() selected_columns = dfTimeSeriesRecover[dfUtil.SelectColumnsMensal()] dfTimeSeriesRecover = selected_columns.copy() selected_columns = dfTimeSeriesDeath[dfUtil.SelectColumnsMensal()] dfTimeSeriesDeath = selected_columns.copy() selected_columns = dfWorldMeters[["Country_Other", "Population"]] dfWorldMetersNew = selected_columns.copy() dfWorldMetersNew.sort_values(['Country_Other'], inplace=True) dfTimeSeriesCases = dfUtil.RenameColsMesAno(dfTimeSeriesCases) dfTimeSeriesRecover = dfUtil.RenameColsMesAno(dfTimeSeriesRecover) dfTimeSeriesDeath = dfUtil.RenameColsMesAno(dfTimeSeriesDeath) # Renomeando colunas, padronização para merge final dos dataframes dfRegioesNew.rename(columns={'WHO_Region':'Regiao'}, inplace=True) dfWorldMetersNew.rename(columns={'Country_Other': 'Name'}, inplace=True) dfWorldMetersNew.rename(columns={'Population': 'Populacao'}, inplace=True) dfAux = dfTimeSeriesCases mapping = dfUtil.CreateMappingMensal(dfTimeSeriesCases) dfTimeSeriesCases = dfAux.rename(columns=mapping) dfAux = dfTimeSeriesRecover mapping = dfUtil.CreateMappingMensal(dfTimeSeriesRecover) dfTimeSeriesRecover = dfAux.rename(columns=mapping) dfAux = dfTimeSeriesDeath mapping = dfUtil.CreateMappingMensal(dfTimeSeriesDeath) dfTimeSeriesDeath = dfAux.rename(columns=mapping) #Somando resultados montados através das linhas do Dataframe dfTimeSeriesCasesSomado = dfUtil.SumRows(dfTimeSeriesCases) dfTimeSeriesRecoverSomado = dfUtil.SumRows(dfTimeSeriesRecover) dfTimeSeriesDeathSomado = dfUtil.SumRows(dfTimeSeriesDeath) # Resetando index dos dataframes dfRegioesNew.reset_index(drop=True) dfWorldMetersNew.reset_index(drop=True) dfTimeSeriesCasesSomado.reset_index(drop=True) dfTimeSeriesRecoverSomado.reset_index(drop=True) dfTimeSeriesDeathSomado.reset_index(drop=True) dfTimeSeriesCasesSomado.sort_values(['Name'], inplace=True) dfTimeSeriesRecoverSomado.sort_values(['Name'], inplace=True) dfTimeSeriesDeathSomado.sort_values(['Name'], inplace=True) dfRegioesNew.sort_values(['Name'], inplace=True) dfWorldMetersNew.sort_values(['Name'], inplace=True) # Merge dataframe dfFinalCases = pd.merge(dfTimeSeriesCasesSomado, dfRegioesNew, on="Name") dfFinalCases.rename(columns={'WHO_Region': 'Regiao'}, inplace=True) dfFinalRecover =
pd.merge(dfTimeSeriesRecoverSomado, dfRegioesNew, on="Name")
pandas.merge
from datetime import datetime, timedelta import warnings import operator from textwrap import dedent import numpy as np from pandas._libs import (lib, index as libindex, tslib as libts, algos as libalgos, join as libjoin, Timedelta) from pandas._libs.lib import is_datetime_array from pandas.compat import range, u, set_function_name from pandas.compat.numpy import function as nv from pandas import compat from pandas.core.accessor import CachedAccessor from pandas.core.arrays import ExtensionArray from pandas.core.dtypes.generic import ( ABCSeries, ABCDataFrame, ABCMultiIndex, ABCPeriodIndex, ABCTimedeltaIndex, ABCDateOffset) from pandas.core.dtypes.missing import isna, array_equivalent from pandas.core.dtypes.common import ( _ensure_int64, _ensure_object, _ensure_categorical, _ensure_platform_int, is_integer, is_float, is_dtype_equal, is_dtype_union_equal, is_object_dtype, is_categorical, is_categorical_dtype, is_interval_dtype, is_period_dtype, is_bool, is_bool_dtype, is_signed_integer_dtype, is_unsigned_integer_dtype, is_integer_dtype, is_float_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_timedelta64_dtype, is_hashable, needs_i8_conversion, is_iterator, is_list_like, is_scalar) from pandas.core.base import PandasObject, IndexOpsMixin import pandas.core.common as com from pandas.core import ops from pandas.util._decorators import ( Appender, Substitution, cache_readonly, deprecate_kwarg) from pandas.core.indexes.frozen import FrozenList import pandas.core.dtypes.concat as _concat import pandas.core.missing as missing import pandas.core.algorithms as algos import pandas.core.sorting as sorting from pandas.io.formats.printing import ( pprint_thing, default_pprint, format_object_summary, format_object_attrs) from pandas.core.ops import make_invalid_op from pandas.core.strings import StringMethods __all__ = ['Index'] _unsortable_types = frozenset(('mixed', 'mixed-integer')) _index_doc_kwargs = dict(klass='Index', inplace='', target_klass='Index', unique='Index', duplicated='np.ndarray') _index_shared_docs = dict() def _try_get_item(x): try: return x.item() except AttributeError: return x def _make_comparison_op(op, cls): def cmp_method(self, other): if isinstance(other, (np.ndarray, Index, ABCSeries)): if other.ndim > 0 and len(self) != len(other): raise ValueError('Lengths must match to compare') # we may need to directly compare underlying # representations if needs_i8_conversion(self) and needs_i8_conversion(other): return self._evaluate_compare(other, op) if is_object_dtype(self) and self.nlevels == 1: # don't pass MultiIndex with np.errstate(all='ignore'): result = ops._comp_method_OBJECT_ARRAY(op, self.values, other) else: # numpy will show a DeprecationWarning on invalid elementwise # comparisons, this will raise in the future with warnings.catch_warnings(record=True): with np.errstate(all='ignore'): result = op(self.values, np.asarray(other)) # technically we could support bool dtyped Index # for now just return the indexing array directly if is_bool_dtype(result): return result try: return Index(result) except TypeError: return result name = '__{name}__'.format(name=op.__name__) # TODO: docstring? return set_function_name(cmp_method, name, cls) def _make_arithmetic_op(op, cls): def index_arithmetic_method(self, other): if isinstance(other, (ABCSeries, ABCDataFrame)): return NotImplemented elif isinstance(other, ABCTimedeltaIndex): # Defer to subclass implementation return NotImplemented other = self._validate_for_numeric_binop(other, op) # handle time-based others if isinstance(other, (ABCDateOffset, np.timedelta64, timedelta)): return self._evaluate_with_timedelta_like(other, op) elif isinstance(other, (datetime, np.datetime64)): return self._evaluate_with_datetime_like(other, op) values = self.values with np.errstate(all='ignore'): result = op(values, other) result = missing.dispatch_missing(op, values, other, result) attrs = self._get_attributes_dict() attrs = self._maybe_update_attributes(attrs) if op is divmod: result = (Index(result[0], **attrs), Index(result[1], **attrs)) else: result = Index(result, **attrs) return result name = '__{name}__'.format(name=op.__name__) # TODO: docstring? return set_function_name(index_arithmetic_method, name, cls) class InvalidIndexError(Exception): pass _o_dtype = np.dtype(object) _Identity = object def _new_Index(cls, d): """ This is called upon unpickling, rather than the default which doesn't have arguments and breaks __new__ """ # required for backward compat, because PI can't be instantiated with # ordinals through __new__ GH #13277 if issubclass(cls, ABCPeriodIndex): from pandas.core.indexes.period import _new_PeriodIndex return _new_PeriodIndex(cls, **d) return cls.__new__(cls, **d) class Index(IndexOpsMixin, PandasObject): """ Immutable ndarray implementing an ordered, sliceable set. The basic object storing axis labels for all pandas objects Parameters ---------- data : array-like (1-dimensional) dtype : NumPy dtype (default: object) If dtype is None, we find the dtype that best fits the data. If an actual dtype is provided, we coerce to that dtype if it's safe. Otherwise, an error will be raised. copy : bool Make a copy of input ndarray name : object Name to be stored in the index tupleize_cols : bool (default: True) When True, attempt to create a MultiIndex if possible Notes ----- An Index instance can **only** contain hashable objects Examples -------- >>> pd.Index([1, 2, 3]) Int64Index([1, 2, 3], dtype='int64') >>> pd.Index(list('abc')) Index(['a', 'b', 'c'], dtype='object') See Also --------- RangeIndex : Index implementing a monotonic integer range CategoricalIndex : Index of :class:`Categorical` s. MultiIndex : A multi-level, or hierarchical, Index IntervalIndex : an Index of :class:`Interval` s. DatetimeIndex, TimedeltaIndex, PeriodIndex Int64Index, UInt64Index, Float64Index """ # To hand over control to subclasses _join_precedence = 1 # Cython methods _left_indexer_unique = libjoin.left_join_indexer_unique_object _left_indexer = libjoin.left_join_indexer_object _inner_indexer = libjoin.inner_join_indexer_object _outer_indexer = libjoin.outer_join_indexer_object _typ = 'index' _data = None _id = None name = None asi8 = None _comparables = ['name'] _attributes = ['name'] _is_numeric_dtype = False _can_hold_na = True # would we like our indexing holder to defer to us _defer_to_indexing = False # prioritize current class for _shallow_copy_with_infer, # used to infer integers as datetime-likes _infer_as_myclass = False _engine_type = libindex.ObjectEngine _accessors = set(['str']) str = CachedAccessor("str", StringMethods) def __new__(cls, data=None, dtype=None, copy=False, name=None, fastpath=False, tupleize_cols=True, **kwargs): if name is None and hasattr(data, 'name'): name = data.name if fastpath: return cls._simple_new(data, name) from .range import RangeIndex # range if isinstance(data, RangeIndex): return RangeIndex(start=data, copy=copy, dtype=dtype, name=name) elif isinstance(data, range): return RangeIndex.from_range(data, copy=copy, dtype=dtype, name=name) # categorical if is_categorical_dtype(data) or is_categorical_dtype(dtype): from .category import CategoricalIndex return CategoricalIndex(data, dtype=dtype, copy=copy, name=name, **kwargs) # interval if is_interval_dtype(data) or is_interval_dtype(dtype): from .interval import IntervalIndex closed = kwargs.get('closed', None) return IntervalIndex(data, dtype=dtype, name=name, copy=copy, closed=closed) # index-like elif isinstance(data, (np.ndarray, Index, ABCSeries)): if (is_datetime64_any_dtype(data) or (dtype is not None and is_datetime64_any_dtype(dtype)) or 'tz' in kwargs): from pandas.core.indexes.datetimes import DatetimeIndex result = DatetimeIndex(data, copy=copy, name=name, dtype=dtype, **kwargs) if dtype is not None and is_dtype_equal(_o_dtype, dtype): return Index(result.to_pydatetime(), dtype=_o_dtype) else: return result elif (is_timedelta64_dtype(data) or (dtype is not None and is_timedelta64_dtype(dtype))): from pandas.core.indexes.timedeltas import TimedeltaIndex result = TimedeltaIndex(data, copy=copy, name=name, **kwargs) if dtype is not None and _o_dtype == dtype: return Index(result.to_pytimedelta(), dtype=_o_dtype) else: return result if dtype is not None: try: # we need to avoid having numpy coerce # things that look like ints/floats to ints unless # they are actually ints, e.g. '0' and 0.0 # should not be coerced # GH 11836 if is_integer_dtype(dtype): inferred = lib.infer_dtype(data) if inferred == 'integer': try: data = np.array(data, copy=copy, dtype=dtype) except OverflowError: # gh-15823: a more user-friendly error message raise OverflowError( "the elements provided in the data cannot " "all be casted to the dtype {dtype}" .format(dtype=dtype)) elif inferred in ['floating', 'mixed-integer-float']: if isna(data).any(): raise ValueError('cannot convert float ' 'NaN to integer') # If we are actually all equal to integers, # then coerce to integer. try: return cls._try_convert_to_int_index( data, copy, name, dtype) except ValueError: pass # Return an actual float index. from .numeric import Float64Index return Float64Index(data, copy=copy, dtype=dtype, name=name) elif inferred == 'string': pass else: data = data.astype(dtype) elif is_float_dtype(dtype): inferred = lib.infer_dtype(data) if inferred == 'string': pass else: data = data.astype(dtype) else: data = np.array(data, dtype=dtype, copy=copy) except (TypeError, ValueError) as e: msg = str(e) if 'cannot convert float' in msg: raise # maybe coerce to a sub-class from pandas.core.indexes.period import ( PeriodIndex, IncompatibleFrequency) if isinstance(data, PeriodIndex): return PeriodIndex(data, copy=copy, name=name, **kwargs) if is_signed_integer_dtype(data.dtype): from .numeric import Int64Index return Int64Index(data, copy=copy, dtype=dtype, name=name) elif is_unsigned_integer_dtype(data.dtype): from .numeric import UInt64Index return UInt64Index(data, copy=copy, dtype=dtype, name=name) elif is_float_dtype(data.dtype): from .numeric import Float64Index return Float64Index(data, copy=copy, dtype=dtype, name=name) elif issubclass(data.dtype.type, np.bool) or is_bool_dtype(data): subarr = data.astype('object') else: subarr = com._asarray_tuplesafe(data, dtype=object) # _asarray_tuplesafe does not always copy underlying data, # so need to make sure that this happens if copy: subarr = subarr.copy() if dtype is None: inferred = lib.infer_dtype(subarr) if inferred == 'integer': try: return cls._try_convert_to_int_index( subarr, copy, name, dtype) except ValueError: pass return Index(subarr, copy=copy, dtype=object, name=name) elif inferred in ['floating', 'mixed-integer-float']: from .numeric import Float64Index return Float64Index(subarr, copy=copy, name=name) elif inferred == 'interval': from .interval import IntervalIndex return IntervalIndex(subarr, name=name, copy=copy) elif inferred == 'boolean': # don't support boolean explicitly ATM pass elif inferred != 'string': if inferred.startswith('datetime'): if (lib.is_datetime_with_singletz_array(subarr) or 'tz' in kwargs): # only when subarr has the same tz from pandas.core.indexes.datetimes import ( DatetimeIndex) try: return DatetimeIndex(subarr, copy=copy, name=name, **kwargs) except libts.OutOfBoundsDatetime: pass elif inferred.startswith('timedelta'): from pandas.core.indexes.timedeltas import ( TimedeltaIndex) return TimedeltaIndex(subarr, copy=copy, name=name, **kwargs) elif inferred == 'period': try: return PeriodIndex(subarr, name=name, **kwargs) except IncompatibleFrequency: pass return cls._simple_new(subarr, name) elif hasattr(data, '__array__'): return Index(np.asarray(data), dtype=dtype, copy=copy, name=name, **kwargs) elif data is None or is_scalar(data): cls._scalar_data_error(data) else: if tupleize_cols and is_list_like(data) and data: if is_iterator(data): data = list(data) # we must be all tuples, otherwise don't construct # 10697 if all(isinstance(e, tuple) for e in data): from .multi import MultiIndex return MultiIndex.from_tuples( data, names=name or kwargs.get('names')) # other iterable of some kind subarr = com._asarray_tuplesafe(data, dtype=object) return Index(subarr, dtype=dtype, copy=copy, name=name, **kwargs) """ NOTE for new Index creation: - _simple_new: It returns new Index with the same type as the caller. All metadata (such as name) must be provided by caller's responsibility. Using _shallow_copy is recommended because it fills these metadata otherwise specified. - _shallow_copy: It returns new Index with the same type (using _simple_new), but fills caller's metadata otherwise specified. Passed kwargs will overwrite corresponding metadata. - _shallow_copy_with_infer: It returns new Index inferring its type from passed values. It fills caller's metadata otherwise specified as the same as _shallow_copy. See each method's docstring. """ @classmethod def _simple_new(cls, values, name=None, dtype=None, **kwargs): """ we require the we have a dtype compat for the values if we are passed a non-dtype compat, then coerce using the constructor Must be careful not to recurse. """ if not hasattr(values, 'dtype'): if (values is None or not len(values)) and dtype is not None: values = np.empty(0, dtype=dtype) else: values = np.array(values, copy=False) if is_object_dtype(values): values = cls(values, name=name, dtype=dtype, **kwargs)._ndarray_values result = object.__new__(cls) result._data = values result.name = name for k, v in compat.iteritems(kwargs): setattr(result, k, v) return result._reset_identity() _index_shared_docs['_shallow_copy'] = """ create a new Index with the same class as the caller, don't copy the data, use the same object attributes with passed in attributes taking precedence *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ @Appender(_index_shared_docs['_shallow_copy']) def _shallow_copy(self, values=None, **kwargs): if values is None: values = self.values attributes = self._get_attributes_dict() attributes.update(kwargs) if not len(values) and 'dtype' not in kwargs: attributes['dtype'] = self.dtype return self._simple_new(values, **attributes) def _shallow_copy_with_infer(self, values=None, **kwargs): """ create a new Index inferring the class with passed value, don't copy the data, use the same object attributes with passed in attributes taking precedence *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ if values is None: values = self.values attributes = self._get_attributes_dict() attributes.update(kwargs) attributes['copy'] = False if not len(values) and 'dtype' not in kwargs: attributes['dtype'] = self.dtype if self._infer_as_myclass: try: return self._constructor(values, **attributes) except (TypeError, ValueError): pass return Index(values, **attributes) def _deepcopy_if_needed(self, orig, copy=False): """ .. versionadded:: 0.19.0 Make a copy of self if data coincides (in memory) with orig. Subclasses should override this if self._base is not an ndarray. Parameters ---------- orig : ndarray other ndarray to compare self._data against copy : boolean, default False when False, do not run any check, just return self Returns ------- A copy of self if needed, otherwise self : Index """ if copy: # Retrieve the "base objects", i.e. the original memory allocations if not isinstance(orig, np.ndarray): # orig is a DatetimeIndex orig = orig.values orig = orig if orig.base is None else orig.base new = self._data if self._data.base is None else self._data.base if orig is new: return self.copy(deep=True) return self def _update_inplace(self, result, **kwargs): # guard when called from IndexOpsMixin raise TypeError("Index can't be updated inplace") def _sort_levels_monotonic(self): """ compat with MultiIndex """ return self _index_shared_docs['_get_grouper_for_level'] = """ Get index grouper corresponding to an index level Parameters ---------- mapper: Group mapping function or None Function mapping index values to groups level : int or None Index level Returns ------- grouper : Index Index of values to group on labels : ndarray of int or None Array of locations in level_index uniques : Index or None Index of unique values for level """ @Appender(_index_shared_docs['_get_grouper_for_level']) def _get_grouper_for_level(self, mapper, level=None): assert level is None or level == 0 if mapper is None: grouper = self else: grouper = self.map(mapper) return grouper, None, None def is_(self, other): """ More flexible, faster check like ``is`` but that works through views Note: this is *not* the same as ``Index.identical()``, which checks that metadata is also the same. Parameters ---------- other : object other object to compare against. Returns ------- True if both have same underlying data, False otherwise : bool """ # use something other than None to be clearer return self._id is getattr( other, '_id', Ellipsis) and self._id is not None def _reset_identity(self): """Initializes or resets ``_id`` attribute with new object""" self._id = _Identity() return self # ndarray compat def __len__(self): """ return the length of the Index """ return len(self._data) def __array__(self, dtype=None): """ the array interface, return my values """ return self._data.view(np.ndarray) def __array_wrap__(self, result, context=None): """ Gets called after a ufunc """ if is_bool_dtype(result): return result attrs = self._get_attributes_dict() attrs = self._maybe_update_attributes(attrs) return Index(result, **attrs) @cache_readonly def dtype(self): """ return the dtype object of the underlying data """ return self._data.dtype @cache_readonly def dtype_str(self): """ return the dtype str of the underlying data """ return str(self.dtype) @property def values(self): """ return the underlying data as an ndarray """ return self._data.view(np.ndarray) @property def _values(self): # type: () -> Union[ExtensionArray, Index] # TODO(EA): remove index types as they become extension arrays """The best array representation. This is an ndarray, ExtensionArray, or Index subclass. This differs from ``_ndarray_values``, which always returns an ndarray. Both ``_values`` and ``_ndarray_values`` are consistent between ``Series`` and ``Index``. It may differ from the public '.values' method. index | values | _values | _ndarray_values | ----------------- | -------------- -| ----------- | --------------- | CategoricalIndex | Categorical | Categorical | codes | DatetimeIndex[tz] | ndarray[M8ns] | DTI[tz] | ndarray[M8ns] | For the following, the ``._values`` is currently ``ndarray[object]``, but will soon be an ``ExtensionArray`` index | values | _values | _ndarray_values | ----------------- | --------------- | ------------ | --------------- | PeriodIndex | ndarray[object] | ndarray[obj] | ndarray[int] | IntervalIndex | ndarray[object] | ndarray[obj] | ndarray[object] | See Also -------- values _ndarray_values """ return self.values def get_values(self): """ Return `Index` data as an `numpy.ndarray`. Returns ------- numpy.ndarray A one-dimensional numpy array of the `Index` values. See Also -------- Index.values : The attribute that get_values wraps. Examples -------- Getting the `Index` values of a `DataFrame`: >>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], ... index=['a', 'b', 'c'], columns=['A', 'B', 'C']) >>> df A B C a 1 2 3 b 4 5 6 c 7 8 9 >>> df.index.get_values() array(['a', 'b', 'c'], dtype=object) Standalone `Index` values: >>> idx = pd.Index(['1', '2', '3']) >>> idx.get_values() array(['1', '2', '3'], dtype=object) `MultiIndex` arrays also have only one dimension: >>> midx = pd.MultiIndex.from_arrays([[1, 2, 3], ['a', 'b', 'c']], ... names=('number', 'letter')) >>> midx.get_values() array([(1, 'a'), (2, 'b'), (3, 'c')], dtype=object) >>> midx.get_values().ndim 1 """ return self.values @Appender(IndexOpsMixin.memory_usage.__doc__) def memory_usage(self, deep=False): result = super(Index, self).memory_usage(deep=deep) # include our engine hashtable result += self._engine.sizeof(deep=deep) return result # ops compat @deprecate_kwarg(old_arg_name='n', new_arg_name='repeats') def repeat(self, repeats, *args, **kwargs): """ Repeat elements of an Index. Returns a new index where each element of the current index is repeated consecutively a given number of times. Parameters ---------- repeats : int The number of repetitions for each element. **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. Returns ------- pandas.Index Newly created Index with repeated elements. See Also -------- Series.repeat : Equivalent function for Series numpy.repeat : Underlying implementation Examples -------- >>> idx = pd.Index([1, 2, 3]) >>> idx Int64Index([1, 2, 3], dtype='int64') >>> idx.repeat(2) Int64Index([1, 1, 2, 2, 3, 3], dtype='int64') >>> idx.repeat(3) Int64Index([1, 1, 1, 2, 2, 2, 3, 3, 3], dtype='int64') """ nv.validate_repeat(args, kwargs) return self._shallow_copy(self._values.repeat(repeats)) _index_shared_docs['where'] = """ .. versionadded:: 0.19.0 Return an Index of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other. Parameters ---------- cond : boolean array-like with the same length as self other : scalar, or array-like """ @Appender(_index_shared_docs['where']) def where(self, cond, other=None): if other is None: other = self._na_value dtype = self.dtype values = self.values if is_bool(other) or is_bool_dtype(other): # bools force casting values = values.astype(object) dtype = None values = np.where(cond, values, other) if self._is_numeric_dtype and np.any(isna(values)): # We can't coerce to the numeric dtype of "self" (unless # it's float) if there are NaN values in our output. dtype = None return self._shallow_copy_with_infer(values, dtype=dtype) def ravel(self, order='C'): """ return an ndarray of the flattened values of the underlying data See also -------- numpy.ndarray.ravel """ return self._ndarray_values.ravel(order=order) # construction helpers @classmethod def _try_convert_to_int_index(cls, data, copy, name, dtype): """ Attempt to convert an array of data into an integer index. Parameters ---------- data : The data to convert. copy : Whether to copy the data or not. name : The name of the index returned. Returns ------- int_index : data converted to either an Int64Index or a UInt64Index Raises ------ ValueError if the conversion was not successful. """ from .numeric import Int64Index, UInt64Index if not is_unsigned_integer_dtype(dtype): # skip int64 conversion attempt if uint-like dtype is passed, as # this could return Int64Index when UInt64Index is what's desrired try: res = data.astype('i8', copy=False) if (res == data).all(): return Int64Index(res, copy=copy, name=name) except (OverflowError, TypeError, ValueError): pass # Conversion to int64 failed (possibly due to overflow) or was skipped, # so let's try now with uint64. try: res = data.astype('u8', copy=False) if (res == data).all(): return UInt64Index(res, copy=copy, name=name) except (OverflowError, TypeError, ValueError): pass raise ValueError @classmethod def _scalar_data_error(cls, data): raise TypeError('{0}(...) must be called with a collection of some ' 'kind, {1} was passed'.format(cls.__name__, repr(data))) @classmethod def _string_data_error(cls, data): raise TypeError('String dtype not supported, you may need ' 'to explicitly cast to a numeric type') @classmethod def _coerce_to_ndarray(cls, data): """coerces data to ndarray, raises on scalar data. Converts other iterables to list first and then to array. Does not touch ndarrays. """ if not isinstance(data, (np.ndarray, Index)): if data is None or is_scalar(data): cls._scalar_data_error(data) # other iterable of some kind if not isinstance(data, (ABCSeries, list, tuple)): data = list(data) data = np.asarray(data) return data def _get_attributes_dict(self): """ return an attributes dict for my class """ return {k: getattr(self, k, None) for k in self._attributes} def view(self, cls=None): # we need to see if we are subclassing an # index type here if cls is not None and not hasattr(cls, '_typ'): result = self._data.view(cls) else: result = self._shallow_copy() if isinstance(result, Index): result._id = self._id return result def _coerce_scalar_to_index(self, item): """ we need to coerce a scalar to a compat for our index type Parameters ---------- item : scalar item to coerce """ dtype = self.dtype if self._is_numeric_dtype and isna(item): # We can't coerce to the numeric dtype of "self" (unless # it's float) if there are NaN values in our output. dtype = None return Index([item], dtype=dtype, **self._get_attributes_dict()) _index_shared_docs['copy'] = """ Make a copy of this object. Name and dtype sets those attributes on the new object. Parameters ---------- name : string, optional deep : boolean, default False dtype : numpy dtype or pandas type Returns ------- copy : Index Notes ----- In most cases, there should be no functional difference from using ``deep``, but if ``deep`` is passed it will attempt to deepcopy. """ @Appender(_index_shared_docs['copy']) def copy(self, name=None, deep=False, dtype=None, **kwargs): if deep: new_index = self._shallow_copy(self._data.copy()) else: new_index = self._shallow_copy() names = kwargs.get('names') names = self._validate_names(name=name, names=names, deep=deep) new_index = new_index.set_names(names) if dtype: new_index = new_index.astype(dtype) return new_index def __copy__(self, **kwargs): return self.copy(**kwargs) def __deepcopy__(self, memo=None): if memo is None: memo = {} return self.copy(deep=True) def _validate_names(self, name=None, names=None, deep=False): """ Handles the quirks of having a singular 'name' parameter for general Index and plural 'names' parameter for MultiIndex. """ from copy import deepcopy if names is not None and name is not None: raise TypeError("Can only provide one of `names` and `name`") elif names is None and name is None: return deepcopy(self.names) if deep else self.names elif names is not None: if not is_list_like(names): raise TypeError("Must pass list-like as `names`.") return names else: if not is_list_like(name): return [name] return name def __unicode__(self): """ Return a string representation for this object. Invoked by unicode(df) in py2 only. Yields a Unicode String in both py2/py3. """ klass = self.__class__.__name__ data = self._format_data() attrs = self._format_attrs() space = self._format_space() prepr = (u(",%s") % space).join(u("%s=%s") % (k, v) for k, v in attrs) # no data provided, just attributes if data is None: data = '' res = u("%s(%s%s)") % (klass, data, prepr) return res def _format_space(self): # using space here controls if the attributes # are line separated or not (the default) # max_seq_items = get_option('display.max_seq_items') # if len(self) > max_seq_items: # space = "\n%s" % (' ' * (len(klass) + 1)) return " " @property def _formatter_func(self): """ Return the formatter function """ return default_pprint def _format_data(self, name=None): """ Return the formatted data as a unicode string """ # do we want to justify (only do so for non-objects) is_justify = not (self.inferred_type in ('string', 'unicode') or (self.inferred_type == 'categorical' and
is_object_dtype(self.categories)
pandas.core.dtypes.common.is_object_dtype
__author__ = "<NAME>" __copyright__ = "Sprace.org.br" __version__ = "1.0.0" import os import numpy as np import pandas as pd #from torch.utils.data import Dataset, DataLoader from sklearn.preprocessing import MinMaxScaler, StandardScaler from enum import Enum from pickle import dump, load class FeatureType(Enum): Divided = 1, # indica as caracteristicas estao divididas em posiciones e outras informacoes Mixed = 2, # indica que todas as caracteristicas estao juntas Positions = 3 # indica que so tem posicoes dos hits class KindNormalization(Enum): Scaling = 1, Zscore = 2, Polar = 3, Nothing = 4 class Dataset(): def __init__(self, input_path, train_size, cylindrical, hits, kind_normalization, points_3d=True): #np.set_printoptions(suppress=True) # com index_col ja nao inclui a coluna index dataframe = pd.read_csv(input_path, header=0, engine='python') print("[Data] Data loaded from ", input_path) self.kind = kind_normalization if self.kind == KindNormalization.Scaling: self.x_scaler = MinMaxScaler(feature_range=(-1, 1)) self.y_scaler = MinMaxScaler(feature_range=(-1, 1)) elif self.kind == KindNormalization.Zscore: self.x_scaler = StandardScaler() # mean and standart desviation self.y_scaler = StandardScaler() # mean and standart desviation self.y_scaler_test = StandardScaler() ''' if normalise: data = self.scaler.fit_transform(dataframe.values) data = pd.DataFrame(data, columns=columns) else: data = pd.DataFrame(dataframe.values, columns=columns) ''' self.start_hits = 9 self.interval = 11 self.decimals = 4 self.data = dataframe.iloc[:, self.start_hits:] #self.self = 0 if cylindrical: self.coord_name = 'cylin' else: self.coord_name = 'xyz' self.cylindrical = cylindrical begin_coord = 0 end_coord = 0 begin_val = 10 end_val = 11 if self.cylindrical == False: # if we choose points_3d = true then the filter is 3d data points : rho, eta, phi # else then 2d data eta and phi if points_3d: begin_coord = 1 else: begin_coord = 2 end_coord = 4 # cilyndrical coordinates elif self.cylindrical == True: if points_3d: begin_coord = 4 else: begin_coord = 5 end_coord = 7 begin_cols = [begin_coord+(self.interval*hit) for hit in range(0, hits)] end_cols = [end_coord+(self.interval*hit) for hit in range(0, hits)] new_df = pd.DataFrame() for c in range(0,len(begin_cols)): frame = self.data.iloc[:,np.r_[begin_cols[c]:end_cols[c]]] new_df = pd.concat([new_df, frame], axis=1) self.data = new_df # we nee remove data for avoid problems res = len(self.data) % 10 if res != 0: # this is a big bug. the easy solution was removing some values non divided with 10. print('\t We have removed %s unuseful tracks. We believe you need to know. ' % res) self.data = self.data.iloc[:-res,:] i_split = int(len(self.data) * train_size) self.data_train = self.data.iloc[0:i_split,0:] self.data_test = self.data.iloc[i_split:,0:] print("[Data] Data set shape ", self.data.shape) print("[Data] Data train shape ", self.data_train.shape) print("[Data] Data test shape ", self.data_test.shape) print("[Data] Data coordinates ", self.coord_name) print("[Data] Data normalization type ", self.kind) def prepare_training_data(self, feature_type, normalise=True, cylindrical=False): if not isinstance(feature_type, FeatureType): raise TypeError('direction must be an instance of FeatureType Enum') self.cylindrical = cylindrical interval = self.interval # x, y, z coordinates if cylindrical == False: bp=1 ep=4 bpC=10 epC=11 # cilyndrical coordinates elif cylindrical == True: bp=4 ep=7 bpC=10 epC=11 df_hits_values = None df_hits_positions = None if feature_type==FeatureType.Divided: # get hits positions p1(X1,Y1,Z1) p2(X2,Y2,Z2) p3(X3,Y3,Z3) p4(X4,Y4,Z4) df_hits_positions = self.data.iloc[:, np.r_[ bp:ep, bp+(interval*1):ep+(interval*1), bp+(interval*2):ep+(interval*2), bp+(interval*3):ep+(interval*3)]] # get hits values p1(V1,V2,V3,V4) df_hits_values = self.data.iloc[:, np.r_[ bpC:epC, bpC+(interval*1):epC+(interval*1), bpC+(interval*2):epC+(interval*2), bpC+(interval*3):epC+(interval*3)]] frames = [df_hits_positions, df_hits_values] df_hits_positions = pd.concat(frames, axis=1) if feature_type==FeatureType.Mixed: df_hits_positions = self.data.iloc[:, np.r_[ bp:ep, bpC:epC, bp+(interval*1):ep+(interval*1), bpC+(interval*1):epC+(interval*1), bp+(interval*2):ep+(interval*2), bpC+(interval*2):epC+(interval*2), bp+(interval*3):ep+(interval*3), bpC+(interval*3):epC+(interval*3)]] elif feature_type==FeatureType.Positions: df_hits_positions = self.data.iloc[:, np.r_[ bp:ep, bp+(interval*1):ep+(interval*1), bp+(interval*2):ep+(interval*2), bp+(interval*3):ep+(interval*3)]] self.x_data = df_hits_positions self.y_data = self.data.iloc[:, np.r_[bp+(interval*4):(bp+(interval*4)+3)]] self.len = len(self.data) xcolumns = self.x_data.columns ycolumns = self.y_data.columns # normalization just of features. if normalise: xscaled = self.x_scaler.fit_transform(self.x_data.values) self.x_data = pd.DataFrame(xscaled, columns=xcolumns) yscaled = self.y_scaler.fit_transform(self.y_data.values) self.y_data = pd.DataFrame(yscaled, columns=ycolumns) print("[Data] shape datas X: ", self.x_data.shape) print("[Data] shape data y: ", self.y_data.shape) print('[Data] len data total:', self.len) #y_hit_info = self.getitem_by_hit(hit_id) if feature_type==FeatureType.Divided: # return x_data, y_data normalizated with data splited return (self.x_data.iloc[:,0:12], self.x_data.iloc[:,-4:], self.y_data) else: # return x_data, y_data normalizated with no data splited return (self.x_data, self.y_data) def get_training_data(self, n_hit_in, n_hit_out, n_features, normalise=False): ''' n_hit_in : 4 number of hits n_hit_out: 1 number of future hits n_features 3 ''' X , Y = [],[] sequences = self.data_train.values rows = sequences.shape[0] cols = sequences.shape[1] for i in range(0, rows): end_idx = 0 out_end_idx = 0 for j in range(0, cols, n_features): end_ix = j + n_hit_in*n_features out_end_idx = end_ix + n_hit_out*n_features if out_end_idx > cols+1: #print('corta ', out_end_idx) break #if i < 5: # print('[%s,%s:%s][%s,%s:%s]' % (i, j, end_ix, i, end_ix, out_end_idx)) #seq_x, seq_y = sequences.iloc[i, j:end_ix], sequences.iloc[i, end_ix:out_end_idx] seq_x, seq_y = sequences[i, j:end_ix], sequences[i, end_ix:out_end_idx] X.append(seq_x) Y.append(seq_y) x_data, y_data = 0,0 # normalization just of features. if normalise: xscaled = self.x_scaler.fit_transform(X) x_data = pd.DataFrame(xscaled) yscaled = self.y_scaler.fit_transform(Y) y_data = pd.DataFrame(yscaled) #if save_params: # self.save_scale_param() else: x_data = pd.DataFrame(X) y_data = pd.DataFrame(Y) #return pd.DataFrame(x_data).round(self.decimals) , pd.DataFrame(y_data).round(self.decimals) return pd.DataFrame(x_data) ,
pd.DataFrame(y_data)
pandas.DataFrame
# Import packages import os import pandas as pd import scipy from scipy.optimize import curve_fit import hplib as hpl # Functions def import_heating_data(): # read in keymark data from *.txt files in /input/txt/ # save a dataframe to database_heating.csv in folder /output/ Modul = [] Manufacturer = [] Date = [] Refrigerant = [] Mass = [] Poff = [] Psb = [] Prated = [] SPLindoor = [] SPLoutdoor = [] Type = [] Climate = [] Guideline = [] T_in = [] T_out = [] P_th = [] COP = [] df = pd.DataFrame() os.chdir('../') root = os.getcwd() Scanordner = (root + '/input/txt') os.chdir(Scanordner) Scan = os.scandir(os.getcwd()) with Scan as dir1: for file in dir1: with open(file, 'r', encoding='utf-8') as f: contents = f.readlines() date = 'NaN' modul = 'NaN' prated_low = 'NaN' prated_medium = 'NaN' heatpumpType = 'NaN' refrigerant = 'NaN' splindoor_low = 'NaN' splindoor_medium = 'NaN' sploutdoor_low = 'NaN' sploutdoor_medium = 'NaN' poff = 'NaN' climate = 'NaN' NumberOfTestsPerNorm = [] NumberOfTestsPerModule = [] i = 1 # indicator for the line wich is read d = 0 # indicator if only medium Temperature is given p = 0 # -15° yes or no date = contents[1] date = date[61:] if (date == '17 Dec 2020\n'): date = '17.12.2020\n' if (date == '18 Dec 2020\n'): date = '18.12.2020\n' if (date.startswith('5 Mar 2021')): date = '05.03.2021\n' if (date.startswith('15 Feb 2021')): date = '15.02.2021\n' if (date.startswith('22 Feb 2021')): date = '22.02.2021\n' for lines in contents: i = i + 1 if (lines.startswith('Name\n') == 1): manufacturer = (contents[i]) if (manufacturer.find('(') > 0): manufacturer = manufacturer.split('(', 1)[1].split('\n')[0] if manufacturer.endswith('GmbH\n'): manufacturer = manufacturer[:-5] if manufacturer.endswith('S.p.A.\n'): manufacturer = manufacturer[:-6] if manufacturer.endswith('s.p.a.\n'): manufacturer = manufacturer[:-6] if manufacturer.endswith('S.p.A\n'): manufacturer = manufacturer[:-5] if manufacturer.endswith('S.L.U.\n'): manufacturer = manufacturer[:-6] if manufacturer.endswith('s.r.o.\n'): manufacturer = manufacturer[:-6] if manufacturer.endswith('S.A.\n'): manufacturer = manufacturer[:-4] if manufacturer.endswith('S.L.\n'): manufacturer = manufacturer[:-4] if manufacturer.endswith('B.V.\n'): manufacturer = manufacturer[:-4] if manufacturer.endswith('N.V.\n'): manufacturer = manufacturer[:-4] if manufacturer.endswith('GmbH & Co KG\n'): manufacturer = manufacturer[:-12] elif manufacturer.startswith('NIBE'): manufacturer = 'Nibe\n' elif manufacturer.startswith('Nibe'): manufacturer = 'Nibe\n' elif manufacturer.startswith('Mitsubishi'): manufacturer = 'Mitsubishi\n' elif manufacturer.startswith('Ochsner'): manufacturer = 'Ochsner\n' elif manufacturer.startswith('OCHSNER'): manufacturer = 'Ochsner\n' elif manufacturer.startswith('Viessmann'): manufacturer = 'Viessmann\n' elif (lines.endswith('Date\n') == 1): date = (contents[i]) if (date == 'basis\n'): date = contents[i - 3] date = date[14:] elif (lines.startswith('Model') == 1): modul = (contents[i - 2]) splindoor_low = 'NaN' splindoor_medium = 'NaN' sploutdoor_low = 'NaN' sploutdoor_medium = 'NaN' elif lines.endswith('Type\n'): heatpumpType = contents[i][:-1] if heatpumpType.startswith('A'): heatpumpType = 'Outdoor Air/Water' if heatpumpType.startswith('Eau glycol'): heatpumpType = 'Brine/Water' elif (lines.startswith('Sound power level indoor')): SPL = 1 if (contents[i].startswith('Low')): if contents[i + 2].startswith('Medium'): splindoor_low = contents[i + 4][:-7] splindoor_medium = contents[i + 6][:-7] if contents[i].startswith('Medium'): splindoor_medium = contents[i + 4][:-7] splindoor_low = contents[i + 6][:-7] elif (contents[i].endswith('dB(A)\n')): if (contents[i - 3].startswith('Low')): splindoor_low = contents[i][:-7] if (contents[i - 3].startswith('Medium')): splindoor_medium = contents[i][:-7] if (contents[i - 6].startswith('Low')): splindoor_low = contents[i][:-7] if (contents[i - 6].startswith('Medium')): splindoor_medium = contents[i + 2][:-7] if (contents[i - 4].startswith('Low')): splindoor_low = contents[i][:-7] if (contents[i - 4].startswith('Medium')): splindoor_medium = contents[i + 2][:-7] else: splindoor_low = contents[i][:-7] splindoor_medium = contents[i][:-7] elif (lines.startswith('Sound power level outdoor')): SPL = 1 if (contents[i].startswith('Low')): if contents[i + 2].startswith('Medium'): sploutdoor_low = contents[i + 4][:-7] sploutdoor_medium = contents[i + 6][:-7] if contents[i].startswith('Medium'): sploutdoor_medium = contents[i + 4][:-7] sploutdoor_low = contents[i + 6][:-7] elif (contents[i].endswith('dB(A)\n')): if (contents[i - 3].startswith('Low')): sploutdoor_low = contents[i][:-7] if (contents[i - 3].startswith('Medium')): sploutdoor_medium = contents[i][:-7] if (contents[i - 6].startswith('Low')): sploutdoor_low = contents[i][:-7] if (contents[i - 6].startswith('Medium')): sploutdoor_medium = contents[i + 2][:-7] if (contents[i - 4].startswith('Low')): sploutdoor_low = contents[i][:-7] if (contents[i - 4].startswith('Medium')): sploutdoor_medium = contents[i + 2][:-7] else: sploutdoor_low = contents[i][:-7] sploutdoor_medium = contents[i][:-7] elif (lines.startswith('Puissance acoustique extérieure')): b = 1 if (contents[i].startswith('Low')): if contents[i + 2].startswith('Medium'): sploutdoor_low = contents[i + 4][:-7] sploutdoor_medium = contents[i + 6][:-7] if contents[i].startswith('Medium'): sploutdoor_medium = contents[i + 4][:-7] sploutdoor_low = contents[i + 6][:-7] elif (contents[i].endswith('dB(A)\n')): if (contents[i - 3].startswith('Low')): sploutdoor_low = contents[i][:-7] if (contents[i - 3].startswith('Medium')): sploutdoor_medium = contents[i][:-7] if (contents[i - 6].startswith('Low')): sploutdoor_low = contents[i][:-7] if (contents[i - 6].startswith('Medium')): sploutdoor_medium = contents[i + 2][:-7] if (contents[i - 4].startswith('Low')): sploutdoor_low = contents[i][:-7] if (contents[i - 4].startswith('Medium')): sploutdoor_medium = contents[i + 2][:-7] else: sploutdoor_low = contents[i][:-7] sploutdoor_medium = contents[i][:-7] elif (lines.startswith('Potencia sonora de la unidad interior')): SPL = 1 if (contents[i].startswith('Low')): if contents[i + 2].startswith('Medium'): splindoor_low = contents[i + 4][:-7] splindoor_medium = contents[i + 6][:-7] if contents[i].startswith('Medium'): splindoor_medium = contents[i + 4][:-7] splindoor_low = contents[i + 6][:-7] elif (contents[i].endswith('dB(A)\n')): if (contents[i - 3].startswith('Low')): splindoor_low = contents[i][:-7] if (contents[i - 3].startswith('Medium')): splindoor_medium = contents[i][:-7] if (contents[i - 6].startswith('Low')): splindoor_low = contents[i][:-7] if (contents[i - 6].startswith('Medium')): splindoor_medium = contents[i + 2][:-7] if (contents[i - 4].startswith('Low')): splindoor_low = contents[i][:-7] if (contents[i - 4].startswith('Medium')): splindoor_medium = contents[i + 2][:-7] else: splindoor_low = contents[i][:-7] splindoor_medium = contents[i][:-7] elif (lines.startswith('Potencia sonora de la unidad exterior')): SPL = 1 if (contents[i].startswith('Low')): if contents[i + 2].startswith('Medium'): sploutdoor_low = contents[i + 4][:-7] sploutdoor_medium = contents[i + 6][:-7] if contents[i].startswith('Medium'): sploutdoor_medium = contents[i + 4][:-7] sploutdoor_low = contents[i + 6][:-7] elif (contents[i].endswith('dB(A)\n')): if (contents[i - 3].startswith('Low')): sploutdoor_low = contents[i][:-7] if (contents[i - 3].startswith('Medium')): sploutdoor_medium = contents[i][:-7] if (contents[i - 6].startswith('Low')): sploutdoor_low = contents[i][:-7] if (contents[i - 6].startswith('Medium')): sploutdoor_medium = contents[i + 2][:-7] if (contents[i - 4].startswith('Low')): sploutdoor_low = contents[i][:-7] if (contents[i - 4].startswith('Medium')): sploutdoor_medium = contents[i + 2][:-7] else: sploutdoor_low = contents[i][:-7] sploutdoor_medium = contents[i][:-7] elif (lines.startswith('Nivel de Potência sonora interior')): SPL = 1 if (contents[i].startswith('Low')): if contents[i + 2].startswith('Medium'): splindoor_low = contents[i + 4][:-7] splindoor_medium = contents[i + 6][:-7] if contents[i].startswith('Medium'): splindoor_medium = contents[i + 4][:-7] splindoor_low = contents[i + 6][:-7] elif (contents[i].endswith('dB(A)\n')): if (contents[i - 3].startswith('Low')): splindoor_low = contents[i][:-7] if (contents[i - 3].startswith('Medium')): splindoor_medium = contents[i][:-7] if (contents[i - 6].startswith('Low')): splindoor_low = contents[i][:-7] if (contents[i - 6].startswith('Medium')): splindoor_medium = contents[i + 2][:-7] if (contents[i - 4].startswith('Low')): splindoor_low = contents[i][:-7] if (contents[i - 4].startswith('Medium')): splindoor_medium = contents[i + 2][:-7] else: splindoor_low = contents[i][:-7] splindoor_medium = contents[i][:-7] elif (lines.startswith('Nivel de Potência sonora exterior')): SPL = 1 if (contents[i].startswith('Low')): if contents[i + 2].startswith('Medium'): sploutdoor_low = contents[i + 4][:-7] sploutdoor_medium = contents[i + 6][:-7] if contents[i].startswith('Medium'): sploutdoor_medium = contents[i + 4][:-7] sploutdoor_low = contents[i + 6][:-7] elif (contents[i].endswith('dB(A)\n')): if (contents[i - 3].startswith('Low')): sploutdoor_low = contents[i][:-7] if (contents[i - 3].startswith('Medium')): sploutdoor_medium = contents[i][:-7] if (contents[i - 6].startswith('Low')): sploutdoor_low = contents[i][:-7] if (contents[i - 6].startswith('Medium')): sploutdoor_medium = contents[i + 2][:-7] if (contents[i - 4].startswith('Low')): sploutdoor_low = contents[i][:-7] if (contents[i - 4].startswith('Medium')): sploutdoor_medium = contents[i + 2][:-7] else: sploutdoor_low = contents[i][:-7] sploutdoor_medium = contents[i][:-7] elif (lines.startswith('Livello di potenza acustica interna')): SPL = 1 if (contents[i].startswith('Low')): if contents[i + 2].startswith('Medium'): splindoor_low = contents[i + 4][:-7] splindoor_medium = contents[i + 6][:-7] if contents[i].startswith('Medium'): splindoor_medium = contents[i + 4][:-7] splindoor_low = contents[i + 6][:-7] elif (contents[i].endswith('dB(A)\n')): if (contents[i - 3].startswith('Low')): splindoor_low = contents[i][:-7] if (contents[i - 3].startswith('Medium')): splindoor_medium = contents[i][:-7] if (contents[i - 6].startswith('Low')): splindoor_low = contents[i][:-7] if (contents[i - 6].startswith('Medium')): splindoor_medium = contents[i + 2][:-7] if (contents[i - 4].startswith('Low')): splindoor_low = contents[i][:-7] if (contents[i - 4].startswith('Medium')): splindoor_medium = contents[i + 2][:-7] else: splindoor_low = contents[i][:-7] splindoor_medium = contents[i][:-7] elif (lines.startswith('Livello di potenza acustica externa')): SPL = 1 if (contents[i].startswith('Low')): if contents[i + 2].startswith('Medium'): sploutdoor_low = contents[i + 4][:-7] sploutdoor_medium = contents[i + 6][:-7] if contents[i].startswith('Medium'): sploutdoor_medium = contents[i + 4][:-7] sploutdoor_low = contents[i + 6][:-7] elif (contents[i].endswith('dB(A)\n')): if (contents[i - 3].startswith('Low')): sploutdoor_low = contents[i][:-7] if (contents[i - 3].startswith('Medium')): sploutdoor_medium = contents[i][:-7] if (contents[i - 6].startswith('Low')): sploutdoor_low = contents[i][:-7] if (contents[i - 6].startswith('Medium')): sploutdoor_medium = contents[i + 2][:-7] if (contents[i - 4].startswith('Low')): sploutdoor_low = contents[i][:-7] if (contents[i - 4].startswith('Medium')): sploutdoor_medium = contents[i + 2][:-7] else: sploutdoor_low = contents[i][:-7] sploutdoor_medium = contents[i][:-7] elif (lines == 'Refrigerant\n'): if (contents[i - 3] == 'Mass Of\n'): continue refrigerant = (contents[i]) elif (lines.startswith('Mass Of') == 1): if (lines == 'Mass Of\n'): mass = contents[i + 1] elif (lines.endswith('kg\n') == 1): mass = contents[i - 2] mass = mass[20:] else: mass = contents[i] elif lines.startswith('Average'): climate = 'average' elif lines.startswith('Cold'): climate = 'cold' elif lines.startswith('Warmer Climate'): climate = 'warm' elif (lines.startswith('EN') == 1): if (p == 1): Poff.append(poff) Psb.append(psb) if (p == 2): Poff.append(poff) Poff.append(poff) Psb.append(psb) Psb.append(psb_medium) guideline = (contents[i - 2]) d = 0 # Medium or Low Content p = 0 # -15 yes or no NumberOfTestsPerNorm = [] if (contents[i - 1].startswith('Low') == 1): d = 0 continue if (contents[i - 1] == '\n'): continue if (contents[i - 1].startswith('Medium')): d = 1 else: d = 0 if lines.startswith('Prated'): prated_low = contents[i][:-4] if (contents[i + 2].endswith('kW\n')): prated_medium = contents[i + 2][:-4] elif (lines.startswith('Pdh Tj = -15°C') == 1): # check if (contents[i].endswith('Cdh\n') == 1): # wrong content continue if (contents[i] == '\n'): # no content continue else: minusfifteen_low = contents[i] P_th.append(minusfifteen_low[:-4]) T_in.append('-15') if d == 0: # first low than medium Temperatur if (climate == 'average'): T_out.append('35') elif (climate == 'cold'): T_out.append('32') elif (climate == 'warm'): T_out.append('35') if d == 1: # first medium Temperature if (climate == 'average'): T_out.append('55') elif (climate == 'cold'): T_out.append('49') elif (climate == 'warm'): T_out.append('55') Modul.append(modul[7:-1]) Manufacturer.append(manufacturer[:-1]) Date.append(date[:-1]) Refrigerant.append(refrigerant[:-1]) Mass.append(mass[:-4]) Prated.append(prated_low) SPLindoor.append(splindoor_low) # SPLindoor.append(splindoor_medium) SPLoutdoor.append(sploutdoor_low) # SPLoutdoor.append(sploutdoor_medium) Guideline.append(guideline[:-1]) Climate.append(climate) Type.append(heatpumpType) if (contents[i + 2].startswith('COP')): # for PDF without medium heat continue if (contents[i + 2].startswith('Disclaimer')): # for PDF without medium heat continue if (contents[i + 2].startswith('EHPA')): # End of page if (contents[i + 8].startswith('COP')): # end of page plus no medium heat continue minusfifteen_medium = contents[i + 2] P_th.append(minusfifteen_medium[:-4]) T_in.append('-15') if (climate == 'average'): T_out.append('55') elif (climate == 'cold'): T_out.append('49') elif (climate == 'warm'): T_out.append('55') Modul.append(modul[7:-1]) Manufacturer.append(manufacturer[:-1]) Date.append(date[:-1]) Refrigerant.append(refrigerant[:-1]) Mass.append(mass[:-4]) Prated.append(prated_medium) # SPLindoor.append(splindoor_low) SPLindoor.append(splindoor_medium) # SPLoutdoor.append(sploutdoor_low) SPLoutdoor.append(sploutdoor_medium) Type.append(heatpumpType) Guideline.append(guideline[:-1]) Climate.append(climate) elif (lines.startswith('COP Tj = -15°C')): if (contents[i] == '\n'): continue if (contents[i].startswith('EHPA')): continue COP.append(contents[i][:-1]) NumberOfTestsPerModule.append(i) p = 1 if (contents[i + 2].startswith('Pdh')): # no medium Climate continue if (contents[i + 2].startswith('Cdh')): # no medium Climate continue if (contents[i + 2].startswith('EHPA')): # no medium Climate continue COP.append(contents[i + 2][:-1]) NumberOfTestsPerModule.append(i) p = 2 elif (lines.startswith('Pdh Tj = -7°C') == 1): # check minusseven_low = contents[i] P_th.append(minusseven_low[:-4]) T_in.append('-7') if d == 0: # first low than medium Temperatur if (climate == 'average'): T_out.append('34') elif (climate == 'cold'): T_out.append('30') elif (climate == 'warm'): T_out.append('35') if d == 1: # first medium Temperature if (climate == 'average'): T_out.append('52') elif (climate == 'cold'): T_out.append('44') elif (climate == 'warm'): T_out.append('55') Modul.append(modul[7:-1]) Manufacturer.append(manufacturer[:-1]) Date.append(date[:-1]) Refrigerant.append(refrigerant[:-1]) Mass.append(mass[:-4]) Prated.append(prated_low) SPLindoor.append(splindoor_low) # SPLindoor.append(splindoor_medium) SPLoutdoor.append(sploutdoor_low) # SPLoutdoor.append(sploutdoor_medium) Type.append(heatpumpType) Guideline.append(guideline[:-1]) Climate.append(climate) if (contents[i + 2].startswith('COP') == 1): continue else: minusseven_medium = contents[i + 2] P_th.append(minusseven_medium[:-4]) T_in.append('-7') if (climate == 'average'): T_out.append('52') elif (climate == 'cold'): T_out.append('44') elif (climate == 'warm'): T_out.append('55') Modul.append(modul[7:-1]) Manufacturer.append(manufacturer[:-1]) Date.append(date[:-1]) Refrigerant.append(refrigerant[:-1]) # SPLindoor.append(splindoor_low) SPLindoor.append(splindoor_medium) # SPLoutdoor.append(sploutdoor_low) SPLoutdoor.append(sploutdoor_medium) Mass.append(mass[:-4]) Prated.append(prated_medium) Type.append(heatpumpType) Guideline.append(guideline[:-1]) Climate.append(climate) elif (lines.startswith('COP Tj = -7°C')): COP.append(contents[i][:-1]) NumberOfTestsPerNorm.append(i) NumberOfTestsPerModule.append(i) if (contents[i + 2].startswith('Pdh')): # no medium Climate continue if (contents[i + 2].startswith('Cdh')): # no medium Climate continue COP.append(contents[i + 2][:-1]) NumberOfTestsPerNorm.append(i) NumberOfTestsPerModule.append(i) elif (lines.startswith('Pdh Tj = +2°C') == 1): if (contents[i].endswith('Cdh\n') == 1): # wrong content continue if (contents[i] == '\n'): # no content continue else: plustwo_low = contents[i] P_th.append(plustwo_low[:-4]) T_in.append('2') if d == 0: # first low than medium Temperatur if (climate == 'average'): T_out.append('30') elif (climate == 'cold'): T_out.append('27') elif (climate == 'warm'): T_out.append('35') if d == 1: # first medium Temperature if (climate == 'average'): T_out.append('42') elif (climate == 'cold'): T_out.append('37') elif (climate == 'warm'): T_out.append('55') Modul.append(modul[7:-1]) Manufacturer.append(manufacturer[:-1]) Date.append(date[:-1]) Refrigerant.append(refrigerant[:-1]) SPLindoor.append(splindoor_low) # SPLindoor.append(splindoor_medium) SPLoutdoor.append(sploutdoor_low) # SPLoutdoor.append(sploutdoor_medium) Mass.append(mass[:-4]) Prated.append(prated_low) Type.append(heatpumpType) Guideline.append(guideline[:-1]) Climate.append(climate) if (contents[i + 2].startswith('COP')): # for PDF without medium heat continue if (contents[i + 2].startswith('Disclaimer')): # for PDF without medium heat continue if (contents[i + 2].startswith('EHPA')): # End of page if (contents[i + 8].startswith('COP')): # end of page plus no medium heat continue plustwo_medium = contents[i + 2] # if(plustwo_low[:-1].endswith('kW')==0):#test # print(plustwo_low[:-1]) # if(plustwo_medium[:-1].endswith('kW')==0):#test # print(file.name)#plustwo_medium[:-1] P_th.append(plustwo_medium[:-4]) T_in.append('2') if (climate == 'average'): T_out.append('42') elif (climate == 'cold'): T_out.append('37') elif (climate == 'warm'): T_out.append('55') Modul.append(modul[7:-1]) Manufacturer.append(manufacturer[:-1]) Date.append(date[:-1]) Refrigerant.append(refrigerant[:-1]) # SPLindoor.append(splindoor_low) SPLindoor.append(splindoor_medium) # SPLoutdoor.append(sploutdoor_low) SPLoutdoor.append(sploutdoor_medium) Mass.append(mass[:-4]) Prated.append(prated_medium) Type.append(heatpumpType) Guideline.append(guideline[:-1]) Climate.append(climate) elif (lines.startswith('COP Tj = +2°C')): # check if (contents[i] == '\n'): # no infos continue if (contents[i].startswith('EHPA')): # end of page print(file.name) continue if (contents[i + 2].startswith('Warmer')): # usless infos continue if (contents[i] == 'n/a\n'): # usless infos continue COP.append(contents[i][:-1]) NumberOfTestsPerNorm.append(i) NumberOfTestsPerModule.append(i) if (contents[i + 2].startswith('Pdh')): # no medium Climate continue if (contents[i + 2].startswith('Cdh')): # no medium Climate continue if (contents[i + 2].startswith('EHPA')): # no medium Climate continue COP.append(contents[i + 2][:-1]) NumberOfTestsPerNorm.append(i) NumberOfTestsPerModule.append(i) elif (lines.startswith('Pdh Tj = +7°C') == 1): if (contents[i].endswith('Cdh\n') == 1): # wrong content continue if (contents[i] == '\n'): # no content continue else: plusseven_low = contents[i] P_th.append(plusseven_low[:-4]) T_in.append('7') if d == 0: # first low than medium Temperatur if (climate == 'average'): T_out.append('27') elif (climate == 'cold'): T_out.append('25') elif (climate == 'warm'): T_out.append('31') if d == 1: # first medium Temperature if (climate == 'average'): T_out.append('36') elif (climate == 'cold'): T_out.append('32') elif (climate == 'warm'): T_out.append('46') Modul.append(modul[7:-1]) Manufacturer.append(manufacturer[:-1]) Date.append(date[:-1]) Refrigerant.append(refrigerant[:-1]) SPLindoor.append(splindoor_low) # SPLindoor.append(splindoor_medium) SPLoutdoor.append(sploutdoor_low) # SPLoutdoor.append(sploutdoor_medium) Mass.append(mass[:-4]) Prated.append(prated_low) Type.append(heatpumpType) Guideline.append(guideline[:-1]) Climate.append(climate) if (contents[i + 2].startswith('COP')): # for PDF without medium heat continue if (contents[i + 2].startswith('Disclaimer')): # for PDF without medium heat continue if (contents[i + 2].startswith('EHPA')): # End of page if (contents[i + 8].startswith('COP')): # end of page plus no medium heat continue plusseven_medium = contents[i + 2] P_th.append(plusseven_medium[:-4]) T_in.append('7') if (climate == 'average'): T_out.append('36') elif (climate == 'cold'): T_out.append('32') elif (climate == 'warm'): T_out.append('46') Modul.append(modul[7:-1]) Manufacturer.append(manufacturer[:-1]) Date.append(date[:-1]) Refrigerant.append(refrigerant[:-1]) # SPLindoor.append(splindoor_low) SPLindoor.append(splindoor_medium) # SPLoutdoor.append(sploutdoor_low) SPLoutdoor.append(sploutdoor_medium) Mass.append(mass[:-4]) Prated.append(prated_medium) Type.append(heatpumpType) Guideline.append(guideline[:-1]) Climate.append(climate) elif (lines.startswith('COP Tj = +7°C')): # check if (contents[i] == '\n'): # no infos continue if (contents[i].startswith('EHPA')): # end of page continue if (contents[i + 2].startswith('Warmer')): # usless infos continue if (contents[i] == 'n/a\n'): # usless infos continue COP.append(contents[i][:-1]) NumberOfTestsPerNorm.append(i) NumberOfTestsPerModule.append(i) if (contents[i + 2].startswith('Pdh')): # no medium Climate continue if (contents[i + 2].startswith('Cdh')): # no medium Climate continue if (contents[i + 2].startswith('EHPA')): # no medium Climate continue COP.append(contents[i + 2][:-1]) NumberOfTestsPerNorm.append(i) NumberOfTestsPerModule.append(i) elif (lines.startswith('Pdh Tj = 12°C') == 1): if (contents[i].endswith('Cdh\n') == 1): # wrong content continue if (contents[i] == '\n'): # no content continue if (contents[i].startswith('EHPA Secretariat') == 1): plustwelfe_low = (contents[i - 11]) P_th.append(plustwelfe_low[:-4]) T_in.append('12') if (climate == 'average'): T_out.append('24') elif (climate == 'cold'): T_out.append('24') elif (climate == 'warm'): T_out.append('26') Modul.append(modul[7:-1]) Manufacturer.append(manufacturer[:-1]) Date.append(date[:-1]) Refrigerant.append(refrigerant[:-1]) SPLindoor.append(splindoor_low) # SPLindoor.append(splindoor_medium) SPLoutdoor.append(sploutdoor_low) # SPLoutdoor.append(sploutdoor_medium) Mass.append(mass[:-4]) Prated.append(prated_low) Type.append(heatpumpType) Guideline.append(guideline[:-1]) Climate.append(climate) plustwelfe_medium = (contents[i - 9]) P_th.append(plustwelfe_medium[:-4]) T_in.append('12') if (climate == 'average'): T_out.append('30') elif (climate == 'cold'): T_out.append('28') elif (climate == 'warm'): T_out.append('34') Modul.append(modul[7:-1]) Manufacturer.append(manufacturer[:-1]) Date.append(date[:-1]) Refrigerant.append(refrigerant[:-1]) # SPLindoor.append(splindoor_low) SPLindoor.append(splindoor_medium) # SPLoutdoor.append(sploutdoor_low) SPLoutdoor.append(sploutdoor_medium) Mass.append(mass[:-4]) Prated.append(prated_medium) Type.append(heatpumpType) Guideline.append(guideline[:-1]) Climate.append(climate) else: plustwelfe_low = contents[i] P_th.append(plustwelfe_low[:-4]) T_in.append('12') if d == 0: # first low than medium Temperatur if (climate == 'average'): T_out.append('24') elif (climate == 'cold'): T_out.append('24') elif (climate == 'warm'): T_out.append('26') if d == 1: # first medium Temperature if (climate == 'average'): T_out.append('30') elif (climate == 'cold'): T_out.append('28') elif (climate == 'warm'): T_out.append('34') Modul.append(modul[7:-1]) Manufacturer.append(manufacturer[:-1]) Date.append(date[:-1]) Refrigerant.append(refrigerant[:-1]) SPLindoor.append(splindoor_low) SPLoutdoor.append(sploutdoor_low) Mass.append(mass[:-4]) Prated.append(prated_low) Type.append(heatpumpType) Guideline.append(guideline[:-1]) Climate.append(climate) if (contents[i + 2].startswith('COP')): # for PDF without medium heat continue if (contents[i + 2].startswith('Disclaimer')): # for PDF without medium heat continue if (contents[i + 2].startswith('EHPA')): # End of page if (contents[i + 8].startswith('COP')): # end of page plus no medium heat continue plustwelfe_medium = contents[i + 2] P_th.append(plustwelfe_medium[:-4]) T_in.append('12') if (climate == 'average'): T_out.append('30') elif (climate == 'cold'): T_out.append('28') elif (climate == 'warm'): T_out.append('34') Modul.append(modul[7:-1]) Manufacturer.append(manufacturer[:-1]) Date.append(date[:-1]) Refrigerant.append(refrigerant[:-1]) # SPLindoor.append(splindoor_low) SPLindoor.append(splindoor_medium) SPLoutdoor.append(sploutdoor_medium) Mass.append(mass[:-4]) Prated.append(prated_medium) Type.append(heatpumpType) Guideline.append(guideline[:-1]) Climate.append(climate) elif (lines.startswith('COP Tj = 12°C')): # check if (contents[i] == '\n'): # no infos continue if (contents[i].startswith('EHPA')): # end of page print('W') continue if (contents[i + 2].startswith('Warmer')): # usless infos continue if (contents[i] == 'n/a\n'): # usless infos continue COP.append(contents[i][:-1]) NumberOfTestsPerNorm.append(i) NumberOfTestsPerModule.append(i) if (contents[i + 2].startswith('Pdh')): # no medium Climate continue if (contents[i + 2].startswith('Cdh')): # no medium Climate continue if (contents[i + 2].startswith('EHPA')): # no medium Climate continue COP.append(contents[i + 2][:-1]) NumberOfTestsPerNorm.append(i) NumberOfTestsPerModule.append(i) elif (lines.startswith('Poff')): l = 0 # l shows if Poff Medium is different to Poff Low Temperature c = 2 # c is just an iterator to print every second Poff poff = contents[i][:-2] if poff.endswith(' '): poff = poff[:-1] if poff.endswith('.00'): poff = poff[:-3] second_poff = contents[i + 2][:-2] if second_poff.endswith(' '): second_poff = second_poff[:-1] if second_poff.endswith('.00'): second_poff = second_poff[:-3] if (poff != second_poff): # see if Poff Medium to Poff low if (contents[i + 2].endswith('W\n')): if (contents[i + 2] != 'W\n'): l = 1 for Tests in NumberOfTestsPerNorm: if l == 0: Poff.append(poff) if l == 1: c += 1 if c % 2 == 1: Poff.append(poff) if c % 2 == 0: Poff.append(second_poff) elif (lines.startswith('PSB')): l = 0 # l shows if Poff Medium is different to Poff Low Temperature c = 2 # c is just an iterator to print every second Poff psb = contents[i][:-2] if psb.endswith(' '): psb = psb[:-1] if psb.endswith('.00'): psb = psb[:-3] psb_medium = contents[i + 2][:-2] if psb_medium.endswith(' '): psb_medium = psb_medium[:-1] if psb_medium.endswith('.00'): psb_medium = psb_medium[:-3] if (psb != psb_medium): # see if Poff Medium to Poff low if (contents[i + 2].endswith('W\n')): if (contents[i + 2] != 'W\n'): l = 1 for Tests in NumberOfTestsPerNorm: if l == 0: Psb.append(psb) if l == 1: c += 1 if c % 2 == 1: Psb.append(psb) if c % 2 == 0: Psb.append(psb_medium) if p == 1: Poff.append(poff) Psb.append(psb) if p == 2: Poff.append(poff) Poff.append(second_poff) Psb.append(psb) Psb.append(psb_medium) df['Manufacturer'] = Manufacturer df['Model'] = Modul df['Date'] = Date df['Date'] = pd.to_datetime(df['Date'], format='%d.%m.%Y') df['Type'] = Type df['SPL indoor [dBA]'] = SPLindoor df['SPL outdoor [dBA]'] = SPLoutdoor df['Refrigerant'] = Refrigerant df['Mass of Refrigerant [kg]'] = Mass df['Poff [W]'] = Poff df['Poff [W]'] = df['Poff [W]'].astype(int) df['PSB [W]'] = Psb df['PSB [W]'] = df['PSB [W]'].astype(int) df['Prated [W]'] = Prated df['Guideline'] = Guideline df['Climate'] = Climate df['T_in [°C]'] = T_in df['T_in [°C]'] = df['T_in [°C]'].astype(int) df['T_out [°C]'] = T_out df['T_out [°C]'] = df['T_out [°C]'].astype(int) """ T_out for Low Temperature T-in: -15 -7 2 7 12 Cold Climate 32 30 27 25 24 Average Climate 35 34 30 27 24 Warm Climate 35 35 35 31 26 T_out for Medium Temperature T-in: -15 -7 2 7 12 Cold Climate 49 44 37 32 28 Average Climate 55 52 42 36 30 Warm Climate 55 55 55 46 34 """ df['P_th [W]'] = P_th df['P_th [W]'] = ((df['P_th [W]'].astype(float)) * 1000).astype(int) df['COP'] = COP df['COP'] = round(df['COP'].astype(float), 2) df['P_el [W]'] = round(df['P_th [W]'] / df['COP']) df['P_el [W]'] = df['P_el [W]'].fillna(0).astype(int) df['PSB [W]'] = df['PSB [W]'].where(df['PSB [W]'] > df['Poff [W]'], df['Poff [W]']) # Poff should not be bigger than PSB df.drop(columns=['Poff [W]'], inplace=True) # not needed anymore filt = df['P_th [W]'] < 50 # P_th too small df.drop(index=df[filt].index, inplace=True) # add T_amb and change T_in to right values df['T_amb [°C]'] = df['T_in [°C]'] filt = df['Type'] == 'Brine/Water' df.loc[filt, 'T_in [°C]'] = 0 filt = df['Type'] == 'Water/Water' df.loc[filt, 'T_in [°C]'] = 10 df = df[ ['Manufacturer', 'Model', 'Date', 'Type', 'Refrigerant', 'Mass of Refrigerant [kg]', 'PSB [W]', 'Prated [W]', 'SPL indoor [dBA]', 'SPL outdoor [dBA]', 'Climate', 'T_amb [°C]', 'T_in [°C]', 'T_out [°C]', 'P_th [W]', 'P_el [W]', 'COP']] df.sort_values(by=['Manufacturer', 'Model'], inplace=True) os.chdir("../") df.to_csv(r'../output/database_heating.csv', index=False) os.chdir('../src/') def import_cooling_data(): # read in keymark data from *.txt files in /input/txt/ # save a dataframe to database_heating.csv in folder /output/ Modul = [] Manufacturer = [] Date = [] Refrigerant = [] Mass = [] Type = [] Pdesignc = [] Temperatur = [] T_outside = [] PDC = [] EER = [] df = pd.DataFrame() os.chdir('../') root = os.getcwd() Scanordner = (root + '/input/txt') os.chdir(Scanordner) Scan = os.scandir(os.getcwd()) with Scan as dir1: for file in dir1: with open(file, 'r', encoding='utf-8') as f: contents = f.readlines() T = 0 i = 1 # indicator for the line wich is read date = contents[1] date = date[61:] if (date == '17 Dec 2020\n'): date = '17.12.2020\n' if (date == '18 Dec 2020\n'): date = '18.12.2020\n' if (date.startswith('5 Mar 2021')): date = '05.03.2021\n' if (date.startswith('15 Feb 2021')): date = '15.02.2021\n' if (date.startswith('22 Feb 2021')): date = '22.02.2021\n' for lines in contents: i = i + 1 if (lines.startswith('Name\n') == 1): manufacturer = (contents[i][:-1]) if (manufacturer.find('(') > 0): manufacturer = manufacturer.split('(', 1)[1].split(')')[0] elif manufacturer.startswith('NIBE'): manufacturer = 'Nibe' elif manufacturer.startswith('Nibe'): manufacturer = 'Nibe' elif manufacturer.startswith('Mitsubishi'): manufacturer = 'Mitsubishi' elif manufacturer.startswith('Ochsner'): manufacturer = 'Ochsner' elif manufacturer.startswith('OCHSNER'): manufacturer = 'Ochsner' elif manufacturer.startswith('Viessmann'): manufacturer = 'Viessmann' elif (lines.endswith('Date\n') == 1): date = (contents[i]) if (date == 'basis\n'): date = contents[i - 3] date = date[14:] elif (lines.startswith('Model') == 1): modul = (contents[i - 2][7:-1]) temperatur2 = '' elif lines.endswith('Type\n'): heatpumpType = contents[i][:-1] if heatpumpType.startswith('A'): heatpumpType = 'Outdoor Air/Water' if heatpumpType.startswith('Eau glycol'): heatpumpType = 'Brine/Water' elif (lines == 'Refrigerant\n'): if (contents[i - 3] == 'Mass Of\n'): continue refrigerant = (contents[i][:-1]) elif (lines.startswith('Mass Of') == 1): if (lines == 'Mass Of\n'): mass = contents[i + 1][:-4] elif (lines.endswith('kg\n') == 1): mass = contents[i - 2] mass = mass[20:-4] else: mass = contents[i][:-4] elif lines.startswith('+'): if T == 0: temperatur1 = contents[i - 2][:-1] if (contents[i].startswith('+')): temperatur2 = contents[i][:-1] T = 1 temperatur2 = (temperatur2[1:3]) temperatur1 = (temperatur1[1:2]) else: T = 0 elif lines.startswith('Pdesignc'): pdesignc1 = contents[i][:-4] if temperatur2 != '': pdesignc2 = contents[i + 2][:-4] elif lines.startswith('Pdc Tj = 30°C'): pdcT1_30 = contents[i][:-4] if contents[i + 2].endswith('W\n'): pdcT2_30 = contents[i + 2][:-4] elif lines.startswith('EER Tj = 30°C'): eerT1_30 = (contents[i][:-1]) EER.append(eerT1_30) PDC.append(pdcT1_30) T_outside.append('30') Pdesignc.append(pdesignc1) Temperatur.append(temperatur1) Modul.append(modul) Manufacturer.append(manufacturer) Date.append(date) Refrigerant.append(refrigerant) Mass.append(mass) Type.append(heatpumpType) if temperatur2 != '': eerT2_30 = contents[i + 2][:-1] EER.append(eerT2_30) PDC.append(pdcT2_30) T_outside.append('30') Pdesignc.append(pdesignc2) Temperatur.append(temperatur2) Modul.append(modul) Manufacturer.append(manufacturer) Date.append(date) Refrigerant.append(refrigerant) Mass.append(mass) Type.append(heatpumpType) elif lines.startswith('Pdc Tj = 35°C'): pdcT1_35 = contents[i][:-4] if contents[i + 2].endswith('W\n'): pdcT2_35 = contents[i + 2][:-4] elif lines.startswith('EER Tj = 35°C'): eerT1_35 = (contents[i][:-1]) EER.append(eerT1_35) PDC.append(pdcT1_35) T_outside.append('35') Pdesignc.append(pdesignc1) Temperatur.append(temperatur1) Modul.append(modul) Manufacturer.append(manufacturer) Date.append(date) Refrigerant.append(refrigerant) Mass.append(mass) Type.append(heatpumpType) if temperatur2 != '': eerT2_35 = contents[i + 2][:-1] EER.append(eerT2_35) PDC.append(pdcT2_35) T_outside.append('35') Pdesignc.append(pdesignc2) Temperatur.append(temperatur2) Modul.append(modul) Manufacturer.append(manufacturer) Date.append(date) Refrigerant.append(refrigerant) Mass.append(mass) Type.append(heatpumpType) elif lines.startswith('Pdc Tj = 25°C'): pdcT1_25 = contents[i][:-4] if contents[i + 2].endswith('W\n'): pdcT2_25 = contents[i + 2][:-4] elif lines.startswith('EER Tj = 25°C'): eerT1_25 = (contents[i][:-1]) EER.append(eerT1_25) PDC.append(pdcT1_25) T_outside.append('25') Pdesignc.append(pdesignc1) Temperatur.append(temperatur1) Modul.append(modul) Manufacturer.append(manufacturer) Date.append(date) Refrigerant.append(refrigerant) Mass.append(mass) Type.append(heatpumpType) if temperatur2 != '': eerT2_25 = contents[i + 2][:-1] EER.append(eerT2_25) PDC.append(pdcT2_25) T_outside.append('25') Pdesignc.append(pdesignc2) Temperatur.append(temperatur2) Modul.append(modul) Manufacturer.append(manufacturer) Date.append(date) Refrigerant.append(refrigerant) Mass.append(mass) Type.append(heatpumpType) elif lines.startswith('Pdc Tj = 20°C'): pdcT1_20 = contents[i][:-4] if contents[i + 2].endswith('W\n'): pdcT2_20 = contents[i + 2][:-4] elif lines.startswith('EER Tj = 20°C'): eerT1_20 = (contents[i][:-1]) EER.append(eerT1_20) PDC.append(pdcT1_20) T_outside.append('20') Pdesignc.append(pdesignc1) Temperatur.append(temperatur1) Modul.append(modul) Manufacturer.append(manufacturer) Date.append(date) Refrigerant.append(refrigerant) Mass.append(mass) Type.append(heatpumpType) if temperatur2 != '': eerT2_20 = contents[i + 2][:-1] EER.append(eerT2_20) PDC.append(pdcT2_20) T_outside.append('20') Pdesignc.append(pdesignc2) Temperatur.append(temperatur2) Modul.append(modul) Manufacturer.append(manufacturer) Date.append(date) Refrigerant.append(refrigerant) Mass.append(mass) Type.append(heatpumpType) df['Manufacturer'] = Manufacturer df['Model'] = Modul df['Date'] = Date df['Date'] = pd.to_datetime(df['Date'], format='%d.%m.%Y\n') df['Type'] = Type df['Refrigerant'] = Refrigerant df['Mass of Refrigerant [kg]'] = Mass df['Pdesignc'] = Pdesignc df['T_outside [°C]'] = T_outside df['T_out [°C]'] = Temperatur df['Pdc [kW]'] = PDC df['EER'] = EER filt = df['EER'] == 'Cdc' # P_th too small df.drop(index=df[filt].index, inplace=True) filt = df['EER'] == 'Pdc Tj = 30°C' # P_th too small df.drop(index=df[filt].index, inplace=True) os.chdir("../..") df.to_csv(os.getcwd() + r'/output/database_cooling.csv', index=False) os.chdir("src") def reduce_heating_data(filename, climate): # reduce the hplib_database_heating to a specific climate measurement series (average, warm, cold) # delete redundant entries # climate = average, warm or cold df = pd.read_csv(r'../output/' + filename) data_key = df.loc[df['Climate'] == climate] delete = [] Models = data_key['Model'].values.tolist() Models = list(dict.fromkeys(Models)) for model in Models: Modeldf = data_key.loc[data_key['Model'] == model, :] if Modeldf.shape[0] != 8: # Models with more ar less than 8 datapoints are deleted delete.append('delete') else: delete.append('keep') deletemodels = pd.DataFrame() deletemodels['delete'] = delete deletemodels['Model'] = Models data_key = data_key.merge(deletemodels, how='inner', on='Model') data_key = data_key.loc[data_key['delete'] == 'keep'] data_key.drop(columns=['delete'], inplace=True) data_key.to_csv(r'../output/database_heating_' + climate + '.csv', index=False) def normalize_heating_data(filename): data_key = pd.read_csv(r'../output/' + filename) # read Dataframe of all models Models = data_key['Model'].values.tolist() Models = list(dict.fromkeys(Models)) new_df = pd.DataFrame() for model in Models: data_key = pd.read_csv(r'../output/' + filename) # read Dataframe of all models data = data_key.loc[((data_key['Model'] == model) & ( data_key['T_out [°C]'] == 52))] # only use data of model and ref point -7/52 Pel_ref = data['P_el [W]'].array[0] # ref Point Pel Pth_ref = data['P_th [W]'].array[0] # ref Point Pth data_key = data_key.loc[data_key['Model'] == model] # only use data of model data_key.loc[:, ['P_th_n']] = data_key['P_th [W]'] / Pth_ref # get normalized Value P_th_n data_key.loc[:, ['P_el_n']] = data_key['P_el [W]'] / Pel_ref # get normalized Value P_el_n new_df = pd.concat([new_df, data_key]) # merge new Dataframe with old one filt1 = (new_df['P_th_n'] >= 2) & (new_df['T_out [°C]'] == 34) deletemodels = new_df.loc[filt1, ['Model']].values.tolist() for model in deletemodels: new_df = new_df.loc[new_df['Model'] != model[0]] new_df.to_csv(r'../output/' + filename[:-4] + '_normalized.csv', encoding='utf-8', index=False) def get_subtype(P_th_minus7_34, P_th_2_30, P_th_7_27, P_th_12_24): if (P_th_minus7_34 <= P_th_2_30): if (P_th_2_30 <= P_th_7_27): if (P_th_7_27 <= P_th_12_24): modus = 'On-Off' else: modus = 'Regulated' # Inverter, 2-Stages, etc. else: modus = 'Regulated' # Inverter, 2-Stages, etc. else: modus = 'Regulated' # Inverter, 2-Stages, etc. return modus def identify_subtypes(filename): # Identify Subtype like On-Off or Regulated by comparing the thermal Power output at different temperature levels: # -7/34 | 2/30 | 7/27 | 12/24 # assumptions for On-Off Heatpump: if temperature difference is bigger, thermal Power output is smaller # assumptions for Regulated: everythin else data_key = pd.read_csv(r'../output/' + filename) # read Dataframe of all models Models = data_key['Model'].values.tolist() Models = list(dict.fromkeys(Models)) data_keymark = data_key.rename( columns={'P_el [W]': 'P_el', 'P_th [W]': 'P_th', 'T_in [°C]': 'T_in', 'T_out [°C]': 'T_out'}) data_keymark['deltaT'] = data_keymark['T_out'] - data_keymark['T_in'] Subtypelist = [] for model in Models: try: P_thermal = [] filt1 = data_keymark['T_out'] == 34 Tin_minus_seven = data_keymark.loc[filt1] filt2 = Tin_minus_seven['Model'] == model Model_minus_seven = Tin_minus_seven[filt2] P_th_minus_seven = Model_minus_seven['P_th'].array[0] P_thermal.append(P_th_minus_seven) filt1 = data_keymark['T_out'] == 30 T_in_plus_two = data_keymark.loc[filt1] filt2 = T_in_plus_two['Model'] == model Model_plus_two = T_in_plus_two[filt2] P_th_plus_two = Model_plus_two['P_th'].array[0] P_thermal.append(P_th_plus_two) filt1 = data_keymark['T_out'] == 27 Tin_plus_seven = data_keymark.loc[filt1] filt2 = Tin_plus_seven['Model'] == model Model_plus_seven = Tin_plus_seven[filt2] P_th_plus_seven = Model_plus_seven['P_th'].array[0] P_thermal.append(P_th_plus_seven) filt1 = data_keymark['T_out'] == 24 Tin_plus_twelfe = data_keymark.loc[filt1] filt2 = Tin_plus_twelfe['Model'] == model Model_plus_twelfe = Tin_plus_twelfe[filt2] P_th_plus_twelfe = Model_plus_twelfe['P_th'].array[0] P_thermal.append(P_th_plus_twelfe) P_thermal Modus = get_subtype(P_thermal[0], P_thermal[1], P_thermal[2], P_thermal[3]) except: print(model) Subtypelist.append(Modus) Subtype_df = pd.DataFrame() Subtype_df['Model'] = Models Subtype_df['Subtype'] = Subtypelist Subtype_df data_key = pd.read_csv(r'../output/' + filename) # read Dataframe of all models data_key = data_key.merge(Subtype_df, how='inner', on='Model') ##assign group: filt1 = (data_key['Type'] == 'Outdoor Air/Water') & (data_key['Subtype'] == 'Regulated') data_key.loc[filt1, 'Group'] = 1 filt1 = (data_key['Type'] == 'Exhaust Air/Water') & (data_key['Subtype'] == 'Regulated') data_key.loc[filt1, 'Group'] = 7 filt1 = (data_key['Type'] == 'Brine/Water') & (data_key['Subtype'] == 'Regulated') data_key.loc[filt1, 'Group'] = 2 filt1 = (data_key['Type'] == 'Water/Water') & (data_key['Subtype'] == 'Regulated') data_key.loc[filt1, 'Group'] = 3 filt1 = (data_key['Type'] == 'Outdoor Air/Water') & (data_key['Subtype'] == 'On-Off') data_key.loc[filt1, 'Group'] = 4 filt1 = (data_key['Type'] == 'Exhaust Air/Water') & (data_key['Subtype'] == 'On-Off') data_key.loc[filt1, 'Group'] = 7 filt1 = (data_key['Type'] == 'Brine/Water') & (data_key['Subtype'] == 'On-Off') data_key.loc[filt1, 'Group'] = 5 filt1 = (data_key['Type'] == 'Water/Water') & (data_key['Subtype'] == 'On-Off') data_key.loc[filt1, 'Group'] = 6 data_key = data_key[ ['Manufacturer', 'Model', 'Date', 'Type', 'Subtype', 'Group', 'Refrigerant', 'Mass of Refrigerant [kg]', 'SPL indoor [dBA]', 'SPL outdoor [dBA]', 'PSB [W]', 'Climate', 'T_amb [°C]', 'T_in [°C]', 'T_out [°C]', 'P_th [W]', 'P_el [W]', 'COP', 'P_th_n', 'P_el_n']] filt1 = data_key['Group'] != 7 data_key = data_key.loc[filt1] data_key.to_csv(r'../output/' + filename[:-4] + '_subtypes.csv', encoding='utf-8', index=False) def fit_simple(w, x, y, z): p0 = [0.1, 0.001, 0.1, 1.] # starting values a = (w, x, y, z) para, _ = scipy.optimize.leastsq(func_simple_zero, p0, args=a) return para def func_simple_zero(para, w, x, y, z): k1, k2, k3, k4 = para z_calc = k1 * w + k2 * x + k3 + k4 * y z_diff = z_calc - z return z_diff def func_simple(para, w, x, y): # Function to calculate z using parameters and any x and y: k1, k2, k3, k4 = para z = k1 * w + k2 * x + k3 + k4 * y return z def calculate_heating_parameters(filename): # Calculate function parameters from normalized values data_key = pd.read_csv('../output/' + filename) Models = data_key['Model'].values.tolist() Models = list(dict.fromkeys(Models)) # get models Group = [] Pel_ref = [] Pth_ref = [] p1_P_th = [] p2_P_th = [] p3_P_th = [] p4_P_th = [] p1_P_el = [] p2_P_el = [] p3_P_el = [] p4_P_el = [] p1_COP = [] p2_COP = [] p3_COP = [] p4_COP = [] for model in Models: data_key = pd.read_csv('../output/' + filename) data_key = data_key.rename( columns={'P_el [W]': 'P_el', 'P_th [W]': 'P_th', 'T_in [°C]': 'T_in', 'T_out [°C]': 'T_out', 'T_amb [°C]': 'T_amb'}) data_key = data_key.loc[data_key['Model'] == model] # get data of model group = data_key.Group.array[0] # get Group of model if group > 1 and group != 4: # give another point at different Temperature of Brine/Water data_key1 = data_key.loc[data_key['Model'] == model] data_key1['T_in'] = data_key1['T_in'] + 1 data_key1['T_out'] = data_key1['T_out'] + 1 data_key = pd.concat([data_key, data_key1]) Pel_REF = data_key.loc[data_key['P_el_n'] == 1, ['P_el']].values.tolist()[0][0] Pth_REF = data_key.loc[data_key['P_th_n'] == 1, ['P_th']].values.tolist()[0][0] data_key.fillna(0, inplace=True) if group == 1 or group == 2 or group == 3: data = data_key.loc[((data_key['T_amb'] != 12) & (data_key['T_amb'] != 7))] P_el_n_para_key = fit_simple(data['T_in'], data['T_out'], data['T_amb'], data['P_el_n']) P_th_n_para_key = fit_simple(data_key['T_in'], data_key['T_out'], data_key['T_amb'], data_key['P_th_n']) COP_para_key = fit_simple(data_key['T_in'], data_key['T_out'], data_key['T_amb'], data_key['COP']) else: P_el_n_para_key = fit_simple(data_key['T_in'], data_key['T_out'], data_key['T_amb'], data_key['P_el_n']) P_th_n_para_key = fit_simple(data_key['T_in'], data_key['T_out'], data_key['T_amb'], data_key['P_th_n']) COP_para_key = fit_simple(data_key['T_in'], data_key['T_out'], data_key['T_amb'], data_key['COP']) # write Parameters in List p1_P_th.append(P_th_n_para_key[0]) p2_P_th.append(P_th_n_para_key[1]) p3_P_th.append(P_th_n_para_key[2]) p4_P_th.append(P_th_n_para_key[3]) p1_P_el.append(P_el_n_para_key[0]) p2_P_el.append(P_el_n_para_key[1]) p3_P_el.append(P_el_n_para_key[2]) p4_P_el.append(P_el_n_para_key[3]) p1_COP.append(COP_para_key[0]) p2_COP.append(COP_para_key[1]) p3_COP.append(COP_para_key[2]) p4_COP.append(COP_para_key[3]) Group.append(group) Pel_ref.append(Pel_REF) Pth_ref.append(Pth_REF) # write List in Dataframe paradf = pd.DataFrame() paradf['Model'] = Models paradf['p1_P_th [1/°C]'] = p1_P_th paradf['p2_P_th [1/°C]'] = p2_P_th paradf['p3_P_th [-]'] = p3_P_th paradf['p4_P_th [1/°C]'] = p4_P_th paradf['p1_P_el_h [1/°C]'] = p1_P_el paradf['p2_P_el_h [1/°C]'] = p2_P_el paradf['p3_P_el_h [-]'] = p3_P_el paradf['p4_P_el_h [1/°C]'] = p4_P_el paradf['p1_COP [-]'] = p1_COP paradf['p2_COP [-]'] = p2_COP paradf['p3_COP [-]'] = p3_COP paradf['p4_COP [-]'] = p4_COP paradf['Group'] = Group paradf['P_el_ref'] = Pel_ref paradf['P_th_ref'] = Pth_ref para = paradf key = pd.read_csv('../output/' + filename) key = key.loc[key['T_out [°C]'] == 52] parakey = para.merge(key, how='left', on='Model') parakey = parakey.rename(columns={'Group_x': 'Group', 'P_el_ref': 'P_el_h_ref [W]', 'P_th_ref': 'P_th_h_ref [W]'}) parakey['COP_ref'] = parakey['P_th_h_ref [W]'] / parakey['P_el_h_ref [W]'] table = parakey[ ['Manufacturer', 'Model', 'Date', 'Type', 'Subtype', 'Group', 'Refrigerant', 'Mass of Refrigerant [kg]', 'SPL indoor [dBA]', 'SPL outdoor [dBA]', 'PSB [W]', 'Climate', 'P_el_h_ref [W]', 'P_th_h_ref [W]', 'COP_ref', 'p1_P_th [1/°C]', 'p2_P_th [1/°C]', 'p3_P_th [-]', 'p4_P_th [1/°C]', 'p1_P_el_h [1/°C]', 'p2_P_el_h [1/°C]', 'p3_P_el_h [-]', 'p4_P_el_h [1/°C]', 'p1_COP [-]', 'p2_COP [-]', 'p3_COP [-]', 'p4_COP [-]']] table.to_csv('hplib_database.csv', encoding='utf-8', index=False) table.to_csv('../output/hplib_database_heating.csv', encoding='utf-8', index=False) def validation_relative_error_heating(): # Simulate every set point for every heat pump and save csv file df=pd.read_csv('../output/database_heating_average_normalized_subtypes.csv') i=0 prev_model='first Model' while i<len(df): Model=df.iloc[i,1] T_amb=df.iloc[i,12] T_in=df.iloc[i,13] T_out=df.iloc[i,14] P_th=df.iloc[i,15] P_el=df.iloc[i,16] COP=df.iloc[i,17] try: if prev_model!=Model: para=hpl.get_parameters(Model) results=hpl.simulate(T_in,T_out-5,para,T_amb) df.loc[i,'P_th_sim']=results.P_th[0] df.loc[i,'P_el_sim']=results.P_el[0] df.loc[i,'COP_sim']=results.COP[0] prev_model=Model i=i+1 except: i=i+1 pass # Relative error (RE) for every set point df['RE_P_th']=(df['P_th_sim']/df['P_th [W]']-1)*100 df['RE_P_el']=(df['P_el_sim']/df['P_el [W]']-1)*100 df['RE_COP']=(df['COP_sim']/df['COP']-1)*100 df.to_csv('../output/database_heating_average_normalized_subtypes_validation.csv', encoding='utf-8', index=False) def validation_mape_heating(): #calculate the mean absolute percentage error for every heat pump and save in hplib_database.csv df=pd.read_csv('../output/database_heating_average_normalized_subtypes_validation.csv') para=pd.read_csv('../output/hplib_database_heating.csv', delimiter=',') para=para.loc[para['Model']!='Generic'] Models = para['Model'].values.tolist() Models = list(dict.fromkeys(Models)) mape_cop=[] mape_pel=[] mape_pth=[] for model in Models: df_model=df.loc[df['Model']==model] mape_pth.append((((df_model['P_th [W]']-df_model['P_th_sim']).abs())/df_model['P_th [W]']*100).mean()) mape_pel.append((((df_model['P_el [W]']-df_model['P_el_sim']).abs())/df_model['P_el [W]']*100).mean()) mape_cop.append((((df_model['COP']-df_model['COP_sim']).abs())/df_model['COP']*100).mean()) para['MAPE_P_el']=mape_pel para['MAPE_COP']=mape_cop para['MAPE_P_th']=mape_pth para.to_csv('../output/hplib_database_heating.csv', encoding='utf-8', index=False) def add_generic(): data_key = pd.read_csv('hplib_database.csv', delimiter=',') data_key = data_key.loc[data_key['Model'] != 'Generic'] Groups = [1, 2, 3, 4, 5, 6] for group in Groups: if group == 1: Type = 'Outdoor Air/Water' modus = 'Regulated' elif group == 2: Type = 'Brine/Water' modus = 'Regulated' elif group == 3: Type = 'Water/Water' modus = 'Regulated' elif group == 4: Type = 'Outdoor Air/Water' modus = 'On-Off' elif group == 5: Type = 'Brine/Water' modus = 'On-Off' elif group == 6: Type = 'Water/Water' modus = 'On-Off' Group1 = data_key.loc[data_key['Group'] == group] Group1=Group1.loc[Group1['MAPE_P_el']<=25] p1_P_th_average = pd.unique(Group1['p1_P_th [1/°C]']).mean(0) p2_P_th_average = pd.unique(Group1['p2_P_th [1/°C]']).mean(0) p3_P_th_average = pd.unique(Group1['p3_P_th [-]']).mean(0) p4_P_th_average = pd.unique(Group1['p4_P_th [1/°C]']).mean(0) p1_P_el_average = pd.unique(Group1['p1_P_el_h [1/°C]']).mean(0) p2_P_el_average = pd.unique(Group1['p2_P_el_h [1/°C]']).mean(0) p3_P_el_average = pd.unique(Group1['p3_P_el_h [-]']).mean(0) p4_P_el_average = pd.unique(Group1['p4_P_el_h [1/°C]']).mean(0) p1_COP_average = pd.unique(Group1['p1_COP [-]']).mean(0) p2_COP_average = pd.unique(Group1['p2_COP [-]']).mean(0) p3_COP_average = pd.unique(Group1['p3_COP [-]']).mean(0) p4_COP_average = pd.unique(Group1['p4_COP [-]']).mean(0) p1_Pdc_average = Group1['p1_Pdc [1/°C]'].mean(0) p2_Pdc_average = Group1['p2_Pdc [1/°C]'].mean(0) p3_Pdc_average = Group1['p3_Pdc [-]'].mean(0) p4_Pdc_average = Group1['p4_Pdc [1/°C]'].mean(0) p5_P_el_average = Group1['p1_P_el_c [1/°C]'].mean(0) p6_P_el_average = Group1['p2_P_el_c [1/°C]'].mean(0) p7_P_el_average = Group1['p3_P_el_c [-]'].mean(0) p8_P_el_average = Group1['p4_P_el_c [1/°C]'].mean(0) p1_EER_average = Group1['p1_EER [-]'].mean(0) p2_EER_average = Group1['p2_EER [-]'].mean(0) p3_EER_average = Group1['p3_EER [-]'].mean(0) p4_EER_average = Group1['p4_EER [-]'].mean(0) if group == 1 or group == 4: COP_ref = -7 * p1_COP_average + 52 * p2_COP_average + p3_COP_average - 7 * p4_COP_average elif group == 2 or group == 5: COP_ref = 0 * p1_COP_average + 52 * p2_COP_average + p3_COP_average - 7 * p4_COP_average elif group == 3 or group == 6: COP_ref = 10 * p1_COP_average + 52 * p2_COP_average + p3_COP_average - 7 * p4_COP_average data_key.loc[len(data_key.index)] = ['Generic', 'Generic', '', Type, modus, group, '', '', '', '', '', 'average', '', '', COP_ref,'', '', p1_P_th_average, p2_P_th_average, p3_P_th_average, p4_P_th_average, p1_P_el_average, p2_P_el_average, p3_P_el_average, p4_P_el_average, p1_COP_average, p2_COP_average, p3_COP_average, p4_COP_average, '', '', '', p1_Pdc_average, p2_Pdc_average, p3_Pdc_average, p4_Pdc_average, p5_P_el_average,p6_P_el_average ,p7_P_el_average ,p8_P_el_average , p1_EER_average,p2_EER_average ,p3_EER_average ,p4_EER_average, '', '', ''] data_key['COP_ref'] = data_key['COP_ref'].round(2) data_key.to_csv('hplib_database.csv', encoding='utf-8', index=False) def reduce_to_unique(): # Many heat pump models have several entries # because of different controller or storage configurations. # Reduce to unique heat pump models. df = pd.read_csv('../output/hplib_database_heating.csv', delimiter=',') df_cool=pd.read_csv('../output/database_cooling.csv') cooling_Models=df_cool['Model'].unique() Models = [] unique_values = pd.unique(df['p3_P_el_h [-]']).tolist() for values in unique_values: modelnames = df.loc[df['p3_P_el_h [-]'] == values, ['Model']] for model in (modelnames.Model.values): for cooling_model in cooling_Models: if model==cooling_model: modelnames.Model.values[0]=model Models.append(modelnames.Model.values[0]) new_df = pd.DataFrame() new_df1 =
pd.DataFrame()
pandas.DataFrame
""" Initial population ====== This module generates initial population for the genetic algorithm. """ from BOFdat.util.update import _import_csv_file,_import_base_biomass,_import_model,_import_essentiality from BOFdat.util.update import _get_biomass_objective_function, determine_coefficients import warnings import random from random import shuffle, randint import cobra import pandas as pd import numpy as np from itertools import repeat from deap import creator, base, tools from deap.tools import History, HallOfFame from cobra import Reaction from cobra.flux_analysis import single_gene_deletion from cobra.util.solver import linear_reaction_coefficients from sklearn.metrics import matthews_corrcoef # Parallel import multiprocessing # Timeout imports and definitions from concurrent.futures import TimeoutError from pebble import ProcessPool, ProcessExpired class Individual: biomass_name = '' biomass = {} solvability = True """ DEPRECATED --> FUNCTIONS MOVED TO BOFdat.util.update def _get_biomass_objective_function(model): from cobra.util.solver import linear_reaction_coefficients return list(linear_reaction_coefficients(model).keys())[0] def _import_model(path_to_model): extension = path_to_model.split('.')[-1] if extension == 'json': return cobra.io.load_json_model(path_to_model) elif extension == 'xml': return cobra.io.read_sbml_model(path_to_model) else: raise Exception('Model format not compatible, provide xml or json') def _import_csv_file(path): csv_file = pd.read_csv(path) # 1- Verify number of columns if len(csv_file.columns) > 2: raise Exception("Your file format is not appropriate, more than 2 columns") # 2- Verify presence of header if type(csv_file.iloc[0:0, 0]) == str and type(csv_file.iloc[0:0, 1]) == str: csv_file = csv_file.iloc[1:] # 3- Remove null data if csv_file.isnull().values.any(): csv_file = csv_file.dropna() return csv_file def _import_base_biomass(path): two_col_df = _import_csv_file(path) metabolites = [str(i) for i in two_col_df.iloc[0:, 0]] coefficients = [float(i) for i in two_col_df.iloc[0:, 1]] base_biomass_df = pd.DataFrame({'Metabolites':metabolites,'Coefficients':coefficients}, columns=['Metabolites','Coefficients']) return base_biomass_df DEPRECATED --> function not used anymore def _make_metab_ind(m,metab_index): # Generates an individual with metabolites ind_dict = {} for i in metab_index: if i.id == m.id: ind_dict[i.id] = 1 else: ind_dict[i.id] = 0 return ind_dict """ def _branching_analysis(model): metab, number_of_rxn = [], [] for m in model.metabolites: metab.append(m.id) number_of_rxn.append(len(m.reactions)) branching_df =
pd.DataFrame({'Metab': metab, 'Number of metab': number_of_rxn})
pandas.DataFrame
import streamlit as st import streamlit.components.v1 as components import pandas as pd import numpy as np import yfinance as yf from datetime import datetime, date import matplotlib.pyplot as plt import talib #import ta import numpy as np import matplotlib.ticker as mticker import pandas as pd import requests from bs4 import BeautifulSoup as soup from urllib.request import Request, urlopen import plotly.graph_objects as go yf.pdr_override() from pytrends.request import TrendReq import nltk nltk.downloader.download('vader_lexicon') import time from finvizfinance.quote import finvizfinance def user_input_features(): today = date.today() ticker = st.sidebar.text_input("Ticker", 'AAPL') start_date = st.sidebar.text_input("Start Date", '2021-01-01') end_date = st.sidebar.text_input("End Date", f'{today}') return ticker, start_date, end_date def get_symbol(symbol): try: stock = finvizfinance(symbol) company_name = stock.ticker_fundament() com = list(company_name.values())[0] return com #url = "http://d.yimg.com/autoc.finance.yahoo.com/autoc?query={}&region=1&lang=en".format(symbol) #result = requests.get(url).json() #for x in result['ResultSet']['Result']: #if x['symbol'] == symbol: #return x['name'] except Exception as e: return e def get_fundamentals(symbol): try: #symbol, start, end = user_input_features() # ##Fundamentals url2 = ("http://finviz.com/quote.ashx?t=" + symbol.lower()) req = Request(url2, headers={'User-Agent': 'Mozilla/5.0'}) webpage = urlopen(req).read() html = soup(webpage, "html.parser") # Find fundamentals table fundamentals = pd.read_html(str(html), attrs = {'class': 'snapshot-table2'})[0] # Clean up fundamentals dataframe fundamentals.columns = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11'] colOne = [] colLength = len(fundamentals) for k in np.arange(0, colLength, 2): colOne.append(fundamentals[f'{k}']) attrs =
pd.concat(colOne, ignore_index=True)
pandas.concat
""" oil price data source: https://www.ppac.gov.in/WriteReadData/userfiles/file/PP_9_a_DailyPriceMSHSD_Metro.pdf """ import pandas as pd import numpy as np import tabula import requests import plotly.express as px import plotly.graph_objects as go import time from pandas.tseries.offsets import MonthEnd import re import xmltodict def process_table(table_df): print("processing the downloaded PDF from PPAC website.") cols = ['Date', 'Delhi_Petrol', 'Mumbai_Petrol', 'Chennai_Petrol', 'Kolkata_Petrol', 'Date_D', 'Delhi_Diesel', 'Mumbai_Diesel','Chennai_Diesel', 'Kolkata_Diesel'] table_df.columns = cols table_df.drop(table_df.index[[0,3]],inplace=True) table_df.drop('Date_D',axis=1,inplace=True) table_df.dropna(how='any',inplace=True) table_df = table_df.astype(str) table_df = table_df.apply(lambda x: x.str.replace(" ", "")) table_df[['Delhi_Petrol', 'Mumbai_Petrol', 'Chennai_Petrol', 'Kolkata_Petrol', 'Delhi_Diesel', 'Mumbai_Diesel','Chennai_Diesel', 'Kolkata_Diesel']] = table_df[['Delhi_Petrol', 'Mumbai_Petrol', 'Chennai_Petrol', 'Kolkata_Petrol', 'Delhi_Diesel', 'Mumbai_Diesel','Chennai_Diesel', 'Kolkata_Diesel']].astype(float) table_df['Date'] = pd.to_datetime(table_df['Date']) table_petrol = table_df[['Date','Delhi_Petrol', 'Mumbai_Petrol', 'Chennai_Petrol','Kolkata_Petrol']] table_diesel = table_df[['Date','Delhi_Diesel', 'Mumbai_Diesel','Chennai_Diesel', 'Kolkata_Diesel']] new_cols = [i.replace("_Petrol", "") for i in list(table_petrol.columns)] table_petrol.columns = new_cols table_diesel.columns = new_cols return table_petrol, table_diesel def get_international_exchange_rates(start_date,end_date): print("sending request for international exchange rates.") exchange_dates_url = "https://api.exchangeratesapi.io/history?" params = {"start_at": start_date, "end_at":end_date, "base":"USD", "symbols":"INR"} try: req = requests.get(exchange_dates_url,params=params) except Exception as e: print(e) print("request failed. using the saved data.") dollar_exchange_rates = pd.read_csv("dollar_exhange_rates.csv") dollar_exchange_rates['Date'] = pd.to_datetime(dollar_exchange_rates) dollar_exchange_rates.set_index('Date').sort_index(ascending=False) return dollar_exchange_rates else: print("request successful. processing the data.") dollar_exchange_rates = pd.DataFrame(req.json()['rates']).T.reset_index() dollar_exchange_rates['index'] = pd.to_datetime(dollar_exchange_rates['index']) dollar_exchange_rates.set_index('index').sort_index(ascending=False) dollar_exchange_rates.to_csv("dollar_exhange_rates.csv") return dollar_exchange_rates # def merge_data(dollar_exchange_rates, international_oil_prices, oil_price_data): # print("merging the international oil price data, international exchange rate data and domestic oil price data.") # trim_int = international_oil_prices.loc[international_oil_prices.index.isin(oil_price_data.index)].dropna() # oil_price_data = oil_price_data.merge(trim_int, left_index=True, right_index=True).sort_index(ascending=False) # oil_price_data = oil_price_data.merge(dollar_exchange_rates, left_index=True, right_index=True).sort_index(ascending=False) # oil_price_data['INR'] = oil_price_data['INR'].round(2) # oil_price_data['INR_pc'] = (((oil_price_data['INR'] - oil_price_data['INR'].iloc[-1])/oil_price_data['INR'].iloc[-1])*100).round(2) # oil_price_data['rup_lit_crude'] = (oil_price_data['Price'] / 159) * oil_price_data['INR'] # oil_price_data['int_pc'] = (((oil_price_data['Price'] - oil_price_data['Price'].iloc[-1])/oil_price_data['Price'].iloc[-1])*100).round(2) # oil_price_data['rup_lit_crude_pc'] = (((oil_price_data['rup_lit_crude'] - oil_price_data['rup_lit_crude'].iloc[-1])/oil_price_data['rup_lit_crude'].iloc[-1])*100).round(2) # return oil_price_data def download_ppac(): print("sending request for domestic oil price data from PPAC website.") ppac_url = r"https://www.ppac.gov.in/WriteReadData/userfiles/file/PP_9_a_DailyPriceMSHSD_Metro.pdf" try: req = requests.get(ppac_url) except Exception as e: print(e) print("Request unsuccessful. The saved file will be used.") else: with open('DATA/price_data.pdf', 'wb') as file: file.write(req.content) print('file saved successfully.') def prepare_downloaded_file(): print("preparing downloaded file for analysis.") oil_prices = 'DATA/price_data.pdf' tables = tabula.read_pdf(oil_prices, pages="all") proc_dfs = [process_table(i) for i in tables] petrol_df = pd.concat(i[0] for i in proc_dfs) diesel_df = pd.concat(i[1] for i in proc_dfs) print(f"Success. Length of Petrol prices {len(petrol_df)}------ diesel prices {len(diesel_df)}") petrol_df['mean_price'] = (petrol_df['Delhi']+petrol_df['Mumbai']+petrol_df['Chennai']+petrol_df['Kolkata'])/4 diesel_df['mean_price'] = (diesel_df['Delhi']+diesel_df['Mumbai']+diesel_df['Chennai']+diesel_df['Kolkata'])/4 print("Adding percent change columns") for i in petrol_df.columns[1:]: petrol_df[f'{i}_pc'] = (((petrol_df[i] - petrol_df[i].iloc[-1])/petrol_df[i].iloc[-1]) * 100).round(2) for i in diesel_df.columns[1:]: diesel_df[f'{i}_pc'] = (((diesel_df[i] - diesel_df[i].iloc[-1])/diesel_df[i].iloc[-1]) * 100).round(2) petrol_df.set_index("Date",inplace=True) diesel_df.set_index("Date",inplace=True) return petrol_df, diesel_df def prep_consumption_df(consumption_df,year): consumption_df.reset_index(inplace=True) consumption_df.dropna(how='any',inplace=True) consumption_df.drop('index',axis=1,inplace=True) #print(consumption_df) cols = ['products', 'April','May','June','July','August','September','October','November','December','January','February','March','Total'] consumption_df.drop(consumption_df.index[0],inplace=True) consumption_df.columns = cols consumption_df = consumption_df.loc[(consumption_df['products']=='MS')|(consumption_df['products']=='HSD')].reset_index().drop(['index','Total'],axis=1) melt_df = pd.melt(consumption_df, id_vars = 'products',var_name='month',value_name='average_cons') melt_df.sort_values('products',inplace=True) melt_df = melt_df.reset_index().drop('index',axis=1) melt_df['year'] = year melt_df['year'] = melt_df['year'].apply(lambda x: x.split('-')[0]).astype(int) melt_df['year'] = np.where((melt_df['month'].isin(['January','February','March'])),melt_df['year']+1,melt_df['year']) melt_df['average_cons'] = melt_df['average_cons'].astype(float).round(2) return melt_df def prep_consumption_df_present(consumption_df,year): consumption_df.reset_index().drop('index',inplace=True,axis=1) consumption_df.drop(consumption_df.index[range(0,6)],inplace=True) consumption_df.reset_index(inplace=True) consumption_df.drop('index',axis=1,inplace=True) print(consumption_df) consumption_df.drop(consumption_df.index[range(14,20)],inplace=True) consumption_df.reset_index(inplace=True) consumption_df.drop('index',axis=1,inplace=True) #print(consumption_df) cols = ['products', 'April','May','June','July','August','September','October','November','December','January','February','March','Total'] consumption_df.drop(consumption_df.index[0],inplace=True) consumption_df.columns = cols consumption_df = consumption_df.loc[(consumption_df['products']=='MS')|(consumption_df['products']=='HSD')].reset_index().drop(['index','Total'],axis=1) melt_df = pd.melt(consumption_df, id_vars = 'products',var_name='month',value_name='average_cons') melt_df.sort_values('products',inplace=True) melt_df = melt_df.reset_index().drop('index',axis=1) melt_df['year'] = year melt_df['year'] = melt_df['year'].apply(lambda x: x.split('-')[0]).astype(int) melt_df['year'] = np.where((melt_df['month'].isin(['January','February','March'])),melt_df['year']+1,melt_df['year']) melt_df['average_cons'] = melt_df['average_cons'].astype(float).round(2) return melt_df def prep_historical_crude(hist_crude_df,year): cols = ['year', 'April','May','June','July','August','September','October','November','December','January','February','March','Average','Ratio'] hist_crude_df = hist_crude_df.dropna(how='any').reset_index().drop('index',axis=1) hist_crude_df.columns = cols hist_crude_df.drop(hist_crude_df.index[0],inplace=True) hist_crude_df.drop(['Average','Ratio'],axis=1,inplace=True) melt_df = pd.melt(hist_crude_df, id_vars = 'year',var_name='month',value_name='import_bbl_usd') melt_df['year'] = melt_df['year'].apply(lambda x: x.split('-')[0]).astype(int) melt_df['year'] = np.where((melt_df['month'].isin(['January','February','March'])),melt_df['year']+1,melt_df['year']) melt_df['import_bbl_usd'] = melt_df['import_bbl_usd'].astype(float).round(2) melt_df = melt_df.loc[melt_df['year']>=year].sort_values(['year','month']).reset_index().drop('index',axis=1) return melt_df def prep_current_crude(current_crude_df): current_crude_df.drop(current_crude_df.index[[i for i in range(0,12)]],inplace=True) current_crude_df.reset_index(inplace=True) current_crude_df.drop('index',inplace=True,axis=1) current_crude_df.drop(current_crude_df.index[[2,3,4]],inplace=True) cols = ['year', 'April','May','June','July','August','September','October','November','December','January','February','March'] current_crude_df.columns = cols current_crude_df.drop(current_crude_df.index[0],inplace=True) melt_df = pd.melt(current_crude_df, id_vars = 'year',var_name='month',value_name='import_bbl_usd') melt_df['year'] = melt_df['year'].apply(lambda x: x.split('-')[0]).astype(int) melt_df['year'] = np.where((melt_df['month'].isin(['January','February','March'])),melt_df['year']+1,melt_df['year']) melt_df.dropna(inplace=True,how='any') melt_df['import_bbl_usd'] = melt_df['import_bbl_usd'].astype(float).round(2) return melt_df def prep_historical_import(historical_import_df, year): cols = ['product', 'April','May','June','July','August','September','October','November','December','January','February','March','Total'] print(historical_import_df) historical_import_df.dropna(how='all',inplace=True,axis=1) historical_import_df.columns = cols historical_import_df = historical_import_df.dropna(how='any').reset_index().drop('index',axis=1) historical_import_df = historical_import_df.loc[historical_import_df['product'].str.contains('import oil|ms|hsd|total',flags=re.I)].reset_index() historical_import_df.drop('index',axis=1,inplace=True) historical_import_df = historical_import_df[:4] historical_import_df = historical_import_df.melt(id_vars='product',var_name='month',value_name='import_rs_cr') historical_import_df['sheetname'] = year historical_import_df['year'] = historical_import_df['sheetname'].str.extract("(\d+)").astype(int) historical_import_df['year'] = np.where((historical_import_df['month'].isin(['January','February','March'])),historical_import_df['year']+1,historical_import_df['year']) historical_import_df.drop('sheetname',axis=1,inplace=True) return historical_import_df def get_opec_crude(dmin): opec_url = "https://www.opec.org/basket/basketDayArchives.xml" req = requests.get(opec_url) xml_dict = xmltodict.parse(req.content) opec_df = pd.DataFrame(xml_dict['Basket']['BasketList'],columns=['Date','Price']) opec_df['Date'] = pd.to_datetime(opec_df["Date"]) return opec_df.loc[opec_df['Date']>=dmin] #Downloading the PDF file from PPAC website, saving the file and returning the final dataframes. # if __name__ == "__main__" download_ppac() petrol_df, diesel_df = prepare_downloaded_file() # int_oil_prices = pd.read_csv(r'oil-prices-master\oil-prices-master\data\brent-daily.csv') # print(f'loaded international oil prices. Length {len(int_oil_prices)}') # int_oil_prices["Date"] = pd.to_datetime(int_oil_prices['Date']) # int_oil_prices.set_index("Date",inplace=True) # Saving the merged petrol and diesel data petrol_df['Type'], diesel_df['Type'] = 'Petrol', 'Diesel' merged_price_data = pd.concat([petrol_df, diesel_df]) merged_price_data.to_csv('price_df_merged.csv') #Getting the international exchange rates. start_date = str(petrol_df.index.min())[:10] end_date = str(petrol_df.index.max())[:10] dollar_exchange_rates = get_international_exchange_rates(start_date, end_date) dollar_exchange_rates.set_index('index',inplace=True) month_avg_dol = dollar_exchange_rates.resample('M').mean() month_avg_dol['month'] = month_avg_dol.index.month_name() month_avg_dol['year'] = month_avg_dol.index.year #creating merged dataframes for international section analysis. # petrol_df_merged = merge_data(dollar_exchange_rates, int_oil_prices, petrol_df) # diesel_df_merged = merge_data(dollar_exchange_rates, int_oil_prices, diesel_df) #loading the monthly average crude prices dataset consumption_dict = pd.read_excel("DATA/consumption_historical_original.xls", sheet_name=["2017-18","2018-19","2019-20"]) consumption_hist = pd.concat([prep_consumption_df(df,year) for year,df in consumption_dict.items()]).reset_index() consumption_hist.drop('index',axis=1,inplace=True) consumption_present = pd.read_excel("DATA/PT_consumption.xls") consumption_present = prep_consumption_df_present(consumption_present,"2020-21") consumption_data = pd.concat([consumption_present,consumption_hist]).reset_index().drop('index',axis=1) consumption_data['merge_col'] = consumption_data['year'].astype(str) + " " +consumption_data['month'] consumption_data['type'] = np.where((consumption_data['products']=='MS'),'Petrol','Diesel') #1 metric ton = 1210 liters for diesel #1 metric ton Petrol (MS) = 1411 litres of diesel [http://petroleum.nic.in/sites/default/files/readyrecknor_Oct14.pdf] #Handling the historical crude and current crude files. Returns a dataframe with total imports in price_rs_billion_lit crude_import_bbl = pd.read_excel("DATA/historical_crude_bbl.xls") crude_import_bbl = prep_historical_crude(crude_import_bbl,2017) current_crude_bbl = pd.read_excel("DATA/current_crude_bbl.xls") current_crude_bbl = prep_current_crude(current_crude_bbl) month_avg_dol['merge_col'] = month_avg_dol['year'].astype(str) + " " +month_avg_dol['month'] crude_bbl = pd.concat([crude_import_bbl, current_crude_bbl]).reset_index().drop('index',axis=1) crude_bbl['merge_col'] = crude_bbl['year'].astype(str) + " " +crude_bbl['month'] crude_bbl = crude_bbl.merge(month_avg_dol) crude_bbl['INR'] = crude_bbl['INR'].round(2) crude_bbl['price_rs_lit_crude'] = crude_bbl['import_bbl_usd'] * crude_bbl['INR'] / 159 #calculating price in Rs per litre from dollars per barrel #Handling the historical and current crude import data req_sheets = ['PT_Import_Val_Rs 2019-20', 'PT_Import_Val_2018-19', 'PT_Import_Val_2017-18'] crude_import = pd.read_excel('DATA/import_historical_original.xls',sheet_name=req_sheets) crude_import = pd.concat([prep_historical_import(i,filename) for filename,i in crude_import.items()]).reset_index() crude_import.drop('index',axis=1,inplace=True) #Calculating monthly average prices for petrol and diesel petrol_monthly_average = petrol_df.resample('M').mean() to_drop = [i for i in petrol_monthly_average if 'pc' in i] petrol_monthly_average.drop(to_drop, inplace=True,axis=1) petrol_monthly_average['month'] = petrol_monthly_average.index.month_name() petrol_monthly_average['year'] = petrol_monthly_average.index.year petrol_monthly_average['merge_col'] = petrol_monthly_average['year'].astype(str) + " " + petrol_monthly_average['month'] petrol_monthly_average = petrol_monthly_average.merge(crude_bbl) petrol_monthly_average['type'] = 'Petrol' petrol_monthly_average['Date'] = pd.to_datetime(petrol_monthly_average['merge_col'])+MonthEnd(1) diesel_monthly_average = diesel_df.resample('M').mean() to_drop = [i for i in diesel_monthly_average if 'pc' in i] diesel_monthly_average.drop(to_drop, inplace=True,axis=1) diesel_monthly_average['month'] = diesel_monthly_average.index.month_name() diesel_monthly_average['year'] = diesel_monthly_average.index.year diesel_monthly_average['merge_col'] = diesel_monthly_average['year'].astype(str) + " " + diesel_monthly_average['month'] diesel_monthly_average = diesel_monthly_average.merge(crude_bbl) diesel_monthly_average['type'] = 'Diesel' diesel_monthly_average['Date'] = pd.to_datetime(diesel_monthly_average['merge_col'])+MonthEnd(1) #creating merge_col to merge with the monthly average crude oil import price data merged_monthly_average =
pd.concat([petrol_monthly_average,diesel_monthly_average])
pandas.concat
# -*- coding: utf-8 -*- import copy import os import shutil from builtins import range from datetime import datetime import numpy as np import pandas as pd import pytest from ..testing_utils import make_ecommerce_entityset import featuretools as ft from featuretools import variable_types from featuretools.entityset import EntitySet, Relationship from featuretools.tests import integration_data @pytest.fixture() def entityset(): return make_ecommerce_entityset() def test_operations_invalidate_metadata(entityset): new_es = ft.EntitySet(id="test") # test metadata gets created on access assert new_es._metadata is None assert new_es.metadata is not None # generated after access assert new_es._metadata is not None new_es.entity_from_dataframe("customers", entityset["customers"].df, index=entityset["customers"].index) new_es.entity_from_dataframe("sessions", entityset["sessions"].df, index=entityset["sessions"].index) assert new_es._metadata is None assert new_es.metadata is not None assert new_es._metadata is not None r = ft.Relationship(new_es["customers"]["id"], new_es["sessions"]["customer_id"]) new_es = new_es.add_relationship(r) assert new_es._metadata is None assert new_es.metadata is not None assert new_es._metadata is not None new_es = new_es.normalize_entity("customers", "cohort", "cohort") assert new_es._metadata is None assert new_es.metadata is not None assert new_es._metadata is not None new_es.add_last_time_indexes() assert new_es._metadata is None assert new_es.metadata is not None assert new_es._metadata is not None new_es.add_interesting_values() assert new_es._metadata is None assert new_es.metadata is not None assert new_es._metadata is not None def test_reset_metadata(entityset): assert entityset.metadata is not None assert entityset._metadata is not None entityset.reset_metadata() assert entityset._metadata is None def test_cannot_readd_relationships_that_already_exists(entityset): before_len = len(entityset.relationships) entityset.add_relationship(entityset.relationships[0]) after_len = len(entityset.relationships) assert before_len == after_len def test_add_relationships_convert_type(entityset): for r in entityset.relationships: parent_e = entityset[r.parent_entity.id] child_e = entityset[r.child_entity.id] assert type(r.parent_variable) == variable_types.Index assert type(r.child_variable) == variable_types.Id assert parent_e.df[r.parent_variable.id].dtype == child_e.df[r.child_variable.id].dtype def test_add_relationship_errors_on_dtype_mismatch(entityset): log_2_df = entityset['log'].df.copy() log_variable_types = { 'id': variable_types.Categorical, 'session_id': variable_types.Id, 'product_id': variable_types.Id, 'datetime': variable_types.Datetime, 'value': variable_types.Numeric, 'value_2': variable_types.Numeric, 'latlong': variable_types.LatLong, 'latlong2': variable_types.LatLong, 'value_many_nans': variable_types.Numeric, 'priority_level': variable_types.Ordinal, 'purchased': variable_types.Boolean, 'comments': variable_types.Text } entityset.entity_from_dataframe(entity_id='log2', dataframe=log_2_df, index='id', variable_types=log_variable_types, time_index='datetime', encoding='utf-8') error_text = u'Unable to add relationship because id in customers is Pandas dtype category and session_id in log2 is Pandas dtype int64.' with pytest.raises(ValueError, match=error_text): mismatch = Relationship(entityset[u'customers']['id'], entityset['log2']['session_id']) entityset.add_relationship(mismatch) def test_query_by_id(entityset): df = entityset['log'].query_by_values(instance_vals=[0]) assert df['id'].values[0] == 0 def test_query_by_id_with_time(entityset): df = entityset['log'].query_by_values( instance_vals=[0, 1, 2, 3, 4], time_last=datetime(2011, 4, 9, 10, 30, 2 * 6)) assert df['id'].get_values().tolist() == [0, 1, 2] def test_get_forward_entities_deep(entityset): entities = entityset.get_forward_entities('log', 'deep') assert entities == set(['sessions', 'customers', 'products', u'régions', 'cohorts']) def test_query_by_variable_with_time(entityset): df = entityset['log'].query_by_values( instance_vals=[0, 1, 2], variable_id='session_id', time_last=datetime(2011, 4, 9, 10, 50, 0)) true_values = [ i * 5 for i in range(5)] + [i * 1 for i in range(4)] + [0] assert df['id'].get_values().tolist() == list(range(10)) assert df['value'].get_values().tolist() == true_values def test_query_by_variable_with_training_window(entityset): df = entityset['log'].query_by_values( instance_vals=[0, 1, 2], variable_id='session_id', time_last=datetime(2011, 4, 9, 10, 50, 0), training_window='15m') assert df['id'].get_values().tolist() == [9] assert df['value'].get_values().tolist() == [0] def test_query_by_indexed_variable(entityset): df = entityset['log'].query_by_values( instance_vals=['taco clock'], variable_id='product_id') assert df['id'].get_values().tolist() == [15, 16] def test_check_variables_and_dataframe(): # matches df = pd.DataFrame({'id': [0, 1, 2], 'category': ['a', 'b', 'a']}) vtypes = {'id': variable_types.Categorical, 'category': variable_types.Categorical} entityset = EntitySet(id='test') entityset.entity_from_dataframe('test_entity', df, index='id', variable_types=vtypes) assert entityset.entity_dict['test_entity'].variable_types['category'] == variable_types.Categorical def test_make_index_variable_ordering(): df = pd.DataFrame({'id': [0, 1, 2], 'category': ['a', 'b', 'a']}) vtypes = {'id': variable_types.Categorical, 'category': variable_types.Categorical} entityset = EntitySet(id='test') entityset.entity_from_dataframe(entity_id='test_entity', index='id1', make_index=True, variable_types=vtypes, dataframe=df) assert entityset.entity_dict['test_entity'].df.columns[0] == 'id1' def test_extra_variable_type(): # more variables df = pd.DataFrame({'id': [0, 1, 2], 'category': ['a', 'b', 'a']}) vtypes = {'id': variable_types.Categorical, 'category': variable_types.Categorical, 'category2': variable_types.Categorical} error_text = "Variable ID category2 not in DataFrame" with pytest.raises(LookupError, match=error_text): entityset = EntitySet(id='test') entityset.entity_from_dataframe(entity_id='test_entity', index='id', variable_types=vtypes, dataframe=df) def test_add_parent_not_index_varible(entityset): error_text = "Parent variable.*is not the index of entity Entity.*" with pytest.raises(AttributeError, match=error_text): entityset.add_relationship(Relationship(entityset[u'régions']['language'], entityset['customers'][u'région_id'])) def test_unknown_index(): # more variables df = pd.DataFrame({'category': ['a', 'b', 'a']}) vtypes = {'category': variable_types.Categorical} entityset = EntitySet(id='test') entityset.entity_from_dataframe(entity_id='test_entity', index='id', variable_types=vtypes, dataframe=df) assert entityset['test_entity'].index == 'id' assert entityset['test_entity'].df['id'].tolist() == list(range(3)) def test_doesnt_remake_index(): # more variables df = pd.DataFrame({'id': [0, 1, 2], 'category': ['a', 'b', 'a']}) error_text = "Cannot make index: index variable already present" with pytest.raises(RuntimeError, match=error_text): entityset = EntitySet(id='test') entityset.entity_from_dataframe(entity_id='test_entity', index='id', make_index=True, dataframe=df) def test_bad_time_index_variable(): df = pd.DataFrame({'category': ['a', 'b', 'a']}) error_text = "Time index not found in dataframe" with pytest.raises(LookupError, match=error_text): entityset = EntitySet(id='test') entityset.entity_from_dataframe(entity_id='test_entity', index="id", dataframe=df, time_index='time') def test_converts_variable_types_on_init(): df = pd.DataFrame({'id': [0, 1, 2], 'category': ['a', 'b', 'a'], 'category_int': [1, 2, 3], 'ints': ['1', '2', '3'], 'floats': ['1', '2', '3.0']}) df["category_int"] = df["category_int"].astype("category") vtypes = {'id': variable_types.Categorical, 'ints': variable_types.Numeric, 'floats': variable_types.Numeric} entityset = EntitySet(id='test') entityset.entity_from_dataframe(entity_id='test_entity', index='id', variable_types=vtypes, dataframe=df) entity_df = entityset['test_entity'].df assert entity_df['ints'].dtype.name in variable_types.PandasTypes._pandas_numerics assert entity_df['floats'].dtype.name in variable_types.PandasTypes._pandas_numerics # this is infer from pandas dtype e = entityset["test_entity"] assert isinstance(e['category_int'], variable_types.Categorical) def test_converts_variable_type_after_init(): df = pd.DataFrame({'id': [0, 1, 2], 'category': ['a', 'b', 'a'], 'ints': ['1', '2', '1']}) df["category"] = df["category"].astype("category") entityset = EntitySet(id='test') entityset.entity_from_dataframe(entity_id='test_entity', index='id', dataframe=df) e = entityset['test_entity'] df = entityset['test_entity'].df e.convert_variable_type('ints', variable_types.Numeric) assert isinstance(e['ints'], variable_types.Numeric) assert df['ints'].dtype.name in variable_types.PandasTypes._pandas_numerics e.convert_variable_type('ints', variable_types.Categorical) assert isinstance(e['ints'], variable_types.Categorical) e.convert_variable_type('ints', variable_types.Ordinal) assert isinstance(e['ints'], variable_types.Ordinal) e.convert_variable_type('ints', variable_types.Boolean, true_val=1, false_val=2) assert isinstance(e['ints'], variable_types.Boolean) assert df['ints'].dtype.name == 'bool' def test_converts_datetime(): # string converts to datetime correctly # This test fails without defining vtypes. Entityset # infers time column should be numeric type times = pd.date_range('1/1/2011', periods=3, freq='H') time_strs = times.strftime('%Y-%m-%d') df = pd.DataFrame({'id': [0, 1, 2], 'time': time_strs}) vtypes = {'id': variable_types.Categorical, 'time': variable_types.Datetime} entityset = EntitySet(id='test') entityset._import_from_dataframe(entity_id='test_entity', index='id', time_index="time", variable_types=vtypes, dataframe=df) pd_col = entityset['test_entity'].df['time'] # assert type(entityset['test_entity']['time']) == variable_types.Datetime assert type(pd_col[0]) == pd.Timestamp def test_handles_datetime_format(): # check if we load according to the format string # pass in an ambigious date datetime_format = "%d-%m-%Y" actual = pd.Timestamp('Jan 2, 2011') time_strs = [actual.strftime(datetime_format)] * 3 df = pd.DataFrame( {'id': [0, 1, 2], 'time_format': time_strs, 'time_no_format': time_strs}) vtypes = {'id': variable_types.Categorical, 'time_format': (variable_types.Datetime, {"format": datetime_format}), 'time_no_format': variable_types.Datetime} entityset = EntitySet(id='test') entityset._import_from_dataframe(entity_id='test_entity', index='id', variable_types=vtypes, dataframe=df) col_format = entityset['test_entity'].df['time_format'] col_no_format = entityset['test_entity'].df['time_no_format'] # without formatting pandas gets it wrong assert (col_no_format != actual).all() # with formatting we correctly get jan2 assert (col_format == actual).all() def test_handles_datetime_mismatch(): # can't convert arbitrary strings df = pd.DataFrame({'id': [0, 1, 2], 'time': ['a', 'b', 'tomorrow']}) vtypes = {'id': variable_types.Categorical, 'time': variable_types.Datetime} error_text = "Given date string not likely a datetime." with pytest.raises(ValueError, match=error_text): entityset = EntitySet(id='test') entityset.entity_from_dataframe('test_entity', df, 'id', time_index='time', variable_types=vtypes) def test_entity_init(entityset): # Note: to convert the time column directly either the variable type # or convert_date_columns must be specifie df = pd.DataFrame({'id': [0, 1, 2], 'time': [datetime(2011, 4, 9, 10, 31, 3 * i) for i in range(3)], 'category': ['a', 'b', 'a'], 'number': [4, 5, 6]}) vtypes = {'time': variable_types.Datetime} entityset.entity_from_dataframe('test_entity', df, index='id', time_index='time', variable_types=vtypes) assert entityset['test_entity'].df.shape == df.shape assert entityset['test_entity'].index == 'id' assert entityset['test_entity'].time_index == 'time' assert set([v.id for v in entityset['test_entity'].variables]) == set(df.columns) assert entityset['test_entity'].df['time'].dtype == df['time'].dtype assert set(entityset['test_entity'].df['id']) == set(df['id']) def test_nonstr_column_names(): df =
pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6], 3: ['a', 'b', 'c']})
pandas.DataFrame
from datetime import datetime, timedelta import unittest from pandas.core.datetools import ( bday, BDay, BQuarterEnd, BMonthEnd, BYearEnd, MonthEnd, DateOffset, Week, YearBegin, YearEnd, Hour, Minute, Second, format, ole2datetime, to_datetime, normalize_date, getOffset, getOffsetName, inferTimeRule, hasOffsetName) from nose.tools import assert_raises #### ## Misc function tests #### def test_format(): actual = format(datetime(2008, 1, 15)) assert actual == '20080115' def test_ole2datetime(): actual = ole2datetime(60000) assert actual == datetime(2064, 4, 8) assert_raises(Exception, ole2datetime, 60) def test_to_datetime1(): actual = to_datetime(datetime(2008, 1, 15)) assert actual == datetime(2008, 1, 15) actual = to_datetime('20080115') assert actual == datetime(2008, 1, 15) # unparseable s = 'Month 1, 1999' assert to_datetime(s) == s def test_normalize_date(): actual = normalize_date(datetime(2007, 10, 1, 1, 12, 5, 10)) assert actual == datetime(2007, 10, 1) ##### ### DateOffset Tests ##### class TestDateOffset(object): def setUp(self): self.d = datetime(2008, 1, 2) def test_repr(self): repr(DateOffset()) repr(DateOffset(2)) repr(2 * DateOffset()) repr(2 * DateOffset(months=2)) def test_mul(self): assert DateOffset(2) == 2 * DateOffset(1) assert DateOffset(2) == DateOffset(1) * 2 def test_constructor(self): assert((self.d + DateOffset(months=2)) == datetime(2008, 3, 2)) assert((self.d - DateOffset(months=2)) == datetime(2007, 11, 2)) assert((self.d + DateOffset(2)) == datetime(2008, 1, 4)) assert not DateOffset(2).isAnchored() assert DateOffset(1).isAnchored() d = datetime(2008, 1, 31) assert((d + DateOffset(months=1)) == datetime(2008, 2, 29)) def test_copy(self): assert(DateOffset(months=2).copy() == DateOffset(months=2)) class TestBusinessDay(unittest.TestCase): def setUp(self): self.d = datetime(2008, 1, 1) self.offset = BDay() self.offset2 = BDay(2) def test_repr(self): assert repr(self.offset) == '<1 BusinessDay>' assert repr(self.offset2) == '<2 BusinessDays>' expected = '<1 BusinessDay: offset=datetime.timedelta(1)>' assert repr(self.offset + timedelta(1)) == expected def test_with_offset(self): offset = self.offset + timedelta(hours=2) assert (self.d + offset) == datetime(2008, 1, 2, 2) def testEQ(self): self.assertEqual(self.offset2, self.offset2) def test_mul(self): pass def test_hash(self): self.assertEqual(hash(self.offset2), hash(self.offset2)) def testCall(self): self.assertEqual(self.offset2(self.d), datetime(2008, 1, 3)) def testRAdd(self): self.assertEqual(self.d + self.offset2, self.offset2 + self.d) def testSub(self): off = self.offset2 self.assertRaises(Exception, off.__sub__, self.d) self.assertEqual(2 * off - off, off) self.assertEqual(self.d - self.offset2, self.d + BDay(-2)) def testRSub(self): self.assertEqual(self.d - self.offset2, (-self.offset2).apply(self.d)) def testMult1(self): self.assertEqual(self.d + 10*self.offset, self.d + BDay(10)) def testMult2(self): self.assertEqual(self.d + (-5*BDay(-10)), self.d + BDay(50)) def testRollback1(self): self.assertEqual(BDay(10).rollback(self.d), self.d) def testRollback2(self): self.assertEqual(BDay(10).rollback(datetime(2008, 1, 5)), datetime(2008, 1, 4)) def testRollforward1(self): self.assertEqual(BDay(10).rollforward(self.d), self.d) def testRollforward2(self): self.assertEqual(BDay(10).rollforward(datetime(2008, 1, 5)), datetime(2008, 1, 7)) def test_onOffset(self): tests = [(BDay(), datetime(2008, 1, 1), True), (BDay(), datetime(2008, 1, 5), False)] for offset, date, expected in tests: assertOnOffset(offset, date, expected) def test_apply(self): tests = [] tests.append((bday, {datetime(2008, 1, 1): datetime(2008, 1, 2), datetime(2008, 1, 4): datetime(2008, 1, 7), datetime(2008, 1, 5): datetime(2008, 1, 7), datetime(2008, 1, 6): datetime(2008, 1, 7), datetime(2008, 1, 7): datetime(2008, 1, 8)})) tests.append((2*bday, {datetime(2008, 1, 1): datetime(2008, 1, 3), datetime(2008, 1, 4): datetime(2008, 1, 8), datetime(2008, 1, 5): datetime(2008, 1, 8), datetime(2008, 1, 6): datetime(2008, 1, 8), datetime(2008, 1, 7): datetime(2008, 1, 9)})) tests.append((-bday, {datetime(2008, 1, 1): datetime(2007, 12, 31), datetime(2008, 1, 4): datetime(2008, 1, 3), datetime(2008, 1, 5): datetime(2008, 1, 4), datetime(2008, 1, 6): datetime(2008, 1, 4), datetime(2008, 1, 7): datetime(2008, 1, 4), datetime(2008, 1, 8): datetime(2008, 1, 7)})) tests.append((-2*bday, {datetime(2008, 1, 1): datetime(2007, 12, 28), datetime(2008, 1, 4): datetime(2008, 1, 2), datetime(2008, 1, 5): datetime(2008, 1, 3), datetime(2008, 1, 6): datetime(2008, 1, 3), datetime(2008, 1, 7): datetime(2008, 1, 3), datetime(2008, 1, 8): datetime(2008, 1, 4), datetime(2008, 1, 9): datetime(2008, 1, 7)})) tests.append((BDay(0), {datetime(2008, 1, 1): datetime(2008, 1, 1), datetime(2008, 1, 4): datetime(2008, 1, 4), datetime(2008, 1, 5): datetime(2008, 1, 7), datetime(2008, 1, 6): datetime(2008, 1, 7), datetime(2008, 1, 7): datetime(2008, 1, 7)})) for dateOffset, cases in tests: for baseDate, expected in cases.iteritems(): assertEq(dateOffset, baseDate, expected) def test_apply_corner(self): self.assertRaises(Exception, BDay().apply, BMonthEnd()) def assertOnOffset(offset, date, expected): actual = offset.onOffset(date) assert actual == expected class TestWeek(unittest.TestCase): def test_corner(self): self.assertRaises(Exception, Week, weekday=7) self.assertRaises(Exception, Week, weekday=-1) def test_isAnchored(self): self.assert_(Week(weekday=0).isAnchored()) self.assert_(not Week().isAnchored()) self.assert_(not Week(2, weekday=2).isAnchored()) self.assert_(not Week(2).isAnchored()) def test_offset(self): tests = [] tests.append((Week(), # not business week {datetime(2008, 1, 1): datetime(2008, 1, 8), datetime(2008, 1, 4): datetime(2008, 1, 11), datetime(2008, 1, 5): datetime(2008, 1, 12), datetime(2008, 1, 6): datetime(2008, 1, 13), datetime(2008, 1, 7): datetime(2008, 1, 14)})) tests.append((Week(weekday=0), # Mon {datetime(2007, 12, 31): datetime(2008, 1, 7), datetime(2008, 1, 4): datetime(2008, 1, 7), datetime(2008, 1, 5): datetime(2008, 1, 7), datetime(2008, 1, 6): datetime(2008, 1, 7), datetime(2008, 1, 7): datetime(2008, 1, 14)})) tests.append((Week(0, weekday=0), # n=0 -> roll forward. Mon {datetime(2007, 12, 31): datetime(2007, 12, 31), datetime(2008, 1, 4): datetime(2008, 1, 7), datetime(2008, 1, 5): datetime(2008, 1, 7), datetime(2008, 1, 6): datetime(2008, 1, 7), datetime(2008, 1, 7): datetime(2008, 1, 7)})) tests.append((Week(-2, weekday=1), # n=0 -> roll forward. Mon {datetime(2010, 4, 6): datetime(2010, 3, 23), datetime(2010, 4, 8): datetime(2010, 3, 30), datetime(2010, 4, 5): datetime(2010, 3, 23)})) for dateOffset, cases in tests: for baseDate, expected in cases.iteritems(): assertEq(dateOffset, baseDate, expected) def test_onOffset(self): tests = [(Week(weekday=0), datetime(2008, 1, 1), False), (Week(weekday=0), datetime(2008, 1, 2), False), (Week(weekday=0), datetime(2008, 1, 3), False), (Week(weekday=0), datetime(2008, 1, 4), False), (Week(weekday=0), datetime(2008, 1, 5), False), (Week(weekday=0), datetime(2008, 1, 6), False), (Week(weekday=0), datetime(2008, 1, 7), True), (Week(weekday=1), datetime(2008, 1, 1), True), (Week(weekday=1), datetime(2008, 1, 2), False), (Week(weekday=1), datetime(2008, 1, 3), False), (Week(weekday=1), datetime(2008, 1, 4), False), (Week(weekday=1), datetime(2008, 1, 5), False), (Week(weekday=1), datetime(2008, 1, 6), False), (Week(weekday=1), datetime(2008, 1, 7), False), (Week(weekday=2), datetime(2008, 1, 1), False), (Week(weekday=2), datetime(2008, 1, 2), True), (Week(weekday=2), datetime(2008, 1, 3), False), (Week(weekday=2), datetime(2008, 1, 4), False), (Week(weekday=2), datetime(2008, 1, 5), False), (Week(weekday=2), datetime(2008, 1, 6), False), (Week(weekday=2), datetime(2008, 1, 7), False), (Week(weekday=3), datetime(2008, 1, 1), False), (Week(weekday=3), datetime(2008, 1, 2), False), (Week(weekday=3), datetime(2008, 1, 3), True), (Week(weekday=3), datetime(2008, 1, 4), False), (Week(weekday=3), datetime(2008, 1, 5), False), (Week(weekday=3), datetime(2008, 1, 6), False), (Week(weekday=3), datetime(2008, 1, 7), False), (Week(weekday=4), datetime(2008, 1, 1), False), (Week(weekday=4), datetime(2008, 1, 2), False), (Week(weekday=4), datetime(2008, 1, 3), False), (Week(weekday=4), datetime(2008, 1, 4), True), (Week(weekday=4), datetime(2008, 1, 5), False), (Week(weekday=4), datetime(2008, 1, 6), False), (Week(weekday=4), datetime(2008, 1, 7), False), (Week(weekday=5), datetime(2008, 1, 1), False), (Week(weekday=5), datetime(2008, 1, 2), False), (Week(weekday=5), datetime(2008, 1, 3), False), (Week(weekday=5), datetime(2008, 1, 4), False), (Week(weekday=5), datetime(2008, 1, 5), True), (Week(weekday=5), datetime(2008, 1, 6), False), (Week(weekday=5), datetime(2008, 1, 7), False), (Week(weekday=6), datetime(2008, 1, 1), False), (Week(weekday=6), datetime(2008, 1, 2), False), (Week(weekday=6), datetime(2008, 1, 3), False), (Week(weekday=6), datetime(2008, 1, 4), False), (Week(weekday=6), datetime(2008, 1, 5), False), (Week(weekday=6), datetime(2008, 1, 6), True), (Week(weekday=6), datetime(2008, 1, 7), False), ] for offset, date, expected in tests: assertOnOffset(offset, date, expected) class TestBMonthEnd(unittest.TestCase): def test_offset(self): tests = [] tests.append((BMonthEnd(), {datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 2, 29), datetime(2006, 12, 29): datetime(2007, 1, 31), datetime(2006, 12, 31): datetime(2007, 1, 31), datetime(2007, 1, 1): datetime(2007, 1, 31), datetime(2006, 12, 1): datetime(2006, 12, 29)})) tests.append((BMonthEnd(0), {datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 1, 31), datetime(2006, 12, 29): datetime(2006, 12, 29), datetime(2006, 12, 31): datetime(2007, 1, 31), datetime(2007, 1, 1): datetime(2007, 1, 31)})) tests.append((BMonthEnd(2), {datetime(2008, 1, 1): datetime(2008, 2, 29), datetime(2008, 1, 31): datetime(2008, 3, 31), datetime(2006, 12, 29): datetime(2007, 2, 28), datetime(2006, 12, 31): datetime(2007, 2, 28), datetime(2007, 1, 1): datetime(2007, 2, 28), datetime(2006, 11, 1): datetime(2006, 12, 29)})) tests.append((BMonthEnd(-1), {datetime(2007, 1, 1): datetime(2006, 12, 29), datetime(2008, 6, 30): datetime(2008, 5, 30), datetime(2008, 12, 31): datetime(2008, 11, 28), datetime(2006, 12, 29): datetime(2006, 11, 30), datetime(2006, 12, 30): datetime(2006, 12, 29), datetime(2007, 1, 1): datetime(2006, 12, 29)})) for dateOffset, cases in tests: for baseDate, expected in cases.iteritems(): assertEq(dateOffset, baseDate, expected) def test_onOffset(self): tests = [(BMonthEnd(), datetime(2007, 12, 31), True), (BMonthEnd(), datetime(2008, 1, 1), False)] for offset, date, expected in tests: assertOnOffset(offset, date, expected) class TestMonthEnd(unittest.TestCase): def test_offset(self): tests = [] tests.append((MonthEnd(), {datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 2, 29), datetime(2006, 12, 29): datetime(2006, 12, 31), datetime(2006, 12, 31): datetime(2007, 1, 31), datetime(2007, 1, 1): datetime(2007, 1, 31), datetime(2006, 12, 1): datetime(2006, 12, 31)})) tests.append((MonthEnd(0), {datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 1, 31), datetime(2006, 12, 29): datetime(2006, 12, 31), datetime(2006, 12, 31): datetime(2006, 12, 31), datetime(2007, 1, 1): datetime(2007, 1, 31)})) tests.append((MonthEnd(2), {datetime(2008, 1, 1): datetime(2008, 2, 29), datetime(2008, 1, 31): datetime(2008, 3, 31), datetime(2006, 12, 29): datetime(2007, 1, 31), datetime(2006, 12, 31): datetime(2007, 2, 28), datetime(2007, 1, 1): datetime(2007, 2, 28), datetime(2006, 11, 1): datetime(2006, 12, 31)})) tests.append((MonthEnd(-1), {datetime(2007, 1, 1): datetime(2006, 12, 31), datetime(2008, 6, 30): datetime(2008, 5, 31), datetime(2008, 12, 31): datetime(2008, 11, 30), datetime(2006, 12, 29): datetime(2006, 11, 30), datetime(2006, 12, 30): datetime(2006, 11, 30), datetime(2007, 1, 1): datetime(2006, 12, 31)})) for dateOffset, cases in tests: for baseDate, expected in cases.iteritems(): assertEq(dateOffset, baseDate, expected) def test_onOffset(self): tests = [(MonthEnd(), datetime(2007, 12, 31), True), (MonthEnd(), datetime(2008, 1, 1), False)] for offset, date, expected in tests: assertOnOffset(offset, date, expected) class TestBQuarterEnd(unittest.TestCase): def test_corner(self): self.assertRaises(Exception, BQuarterEnd, startingMonth=4) self.assertRaises(Exception, BQuarterEnd, startingMonth=-1) def test_isAnchored(self): self.assert_(
BQuarterEnd(startingMonth=1)
pandas.core.datetools.BQuarterEnd
import pandas as pd from telethon import TelegramClient, sync, events import json import re pd.set_option('display.max_rows', None) pd.set_option('display.max_columns', None) pd.set_option('display.width', None) pd.set_option('display.max_colwidth', None) api_id = 'your api_id' api_hash = 'yout api hash' group_username = 'fradpro'#It's temporary off client = TelegramClient('session_name', api_id, api_hash) client.start() @client.on(events.NewMessage(chats=group_username, incoming=True)) async def my_event_handler(event): chats = await client.get_messages(group_username, 1) message =[] time = [] if len(chats): for chat in chats: message.append(chat.message) time.append(chat.date) data = {'time':time,'message':message} df =
pd.DataFrame(data)
pandas.DataFrame
import csv import sys import plotly.express as px import plotly.graph_objects as go from plotly.subplots import make_subplots import pandas as pd import json from os import listdir from os.path import isfile, join import re monnomdistances={'C':0,'I':0,'D':1,'J':1,'K':2,'L':1,'M':2,'S':1,'T':2} markersize=8 linewidth=3 markerstyles = {'MonNom':{'color':'#000000', 'symbol':'x','size':markersize+2}, 'Nom':{'color':'#00B050', 'symbol':'cross','size':markersize}, 'Proxied Grift':{'color':'#ED7D31', 'symbol':'arrow-up','size':markersize}, 'Monotonic Grift':{'color':'#ED7D31', 'symbol':'diamond-open','size':markersize}, 'Racket':{'color':'#4472C4', 'symbol':'circle-open','size':markersize}, 'C#':{'color':'#264478', 'symbol':'diamond','size':markersize}, 'Java':{'color':'#7030A0', 'symbol':'diamond-wide','size':markersize+3}, 'NodeJS':{'color':'#9E480E', 'symbol':'circle','size':markersize}, 'HiggsCheck':{'color':'#C00000', 'symbol':'arrow-up','size':markersize}, 'Reticulated':{'color':'#B21E6F', 'symbol':'circle-open','size':markersize}} linestyles = {'MonNom':{'color':'#000000', 'width':linewidth}, 'Nom':{'color':'#00aa00', 'dash':'dash', 'width':linewidth}, 'Proxied Grift':{'color':'#ED7D31', 'dash':'longdash', 'width':linewidth}, 'Monotonic Grift':{'color':'#ED7D31', 'dash':'dashdot', 'width':linewidth}, 'Racket':{'color':'#4472C4', 'dash':'dot', 'width':linewidth}, 'C#':{'color':'#264478', 'dash':'dot', 'width':linewidth}, 'Java':{'color':'#7030A0', 'dash':'dot', 'width':linewidth}, 'NodeJS':{'color':'#9E480E', 'dash':'dot', 'width':linewidth}, 'HiggsCheck':{'color':'#C00000', 'dash':'dot', 'width':linewidth}, 'Reticulated':{'color':'#B21E6F', 'dash':'dot', 'width':linewidth}} def distance_to_fully_typed(config): ret=0 for c in config: ret+=monnomdistances[c] return ret def combine_funcs(f1,f2): return lambda x: f2(f1(x)) def cut_dotbm(str): return str[4:] def fetch_key(key,data): try: if(key.isdigit()): return data.loc[int(key)][0] else: return data.loc[key][0] except KeyError: return "REMOVE" def load_converter(path): data=pd.read_csv(path,index_col=0) return lambda k: fetch_key(str(k),data) def check_key(key,data): try: if(key.isdigit()): return data.loc[int(key)][0] is None else: return data.loc[key][0] is None except KeyError: return True def load_skipper(path,results): data=pd.read_csv(path,index_col=0) actualdata=pd.read_csv(results,header=None) return lambda i: check_key(cut_dotbm(actualdata.iat[i,0]),data) def load_benchmark(path): config=json.load(open(path+"/plotconfig.json","rt")) if(config.get("version")!=None): if(config.get("version")=="v2"): return load_newbenchmark(path,config) if(config.get("version")=="v3"): return load_benchmarkv3(path,config) if(config.get("version")=="v1"): return load_oldbenchmark(path,config) return load_newbenchmark(path,config) def load_newbenchmark(path,config): converter=cut_dotbm skipper=lambda x : False if(config.get("mapping")!=None): converter=combine_funcs(cut_dotbm,load_converter(path+"/"+config["mapping"])) skipper=load_skipper(path+"/"+config["mapping"],path+"/results.csv") data=pd.read_csv(path+"/results.csv",header=None,converters={0:converter},skiprows=skipper,index_col=0) datacolumns=len(data.columns) linesperprog=config["lines"] resultcolumns=[[] for i in range(0,linesperprog-1)] timescolumns=[] if(datacolumns%linesperprog!=0): raise Exception("Invalid number of columns: "+path) rightvalues=[] for i in range(0,linesperprog): if i!=config["time"]: rightvalues.append(data.iat[0,i]) for i in range(0,datacolumns): if i%linesperprog==config["time"]: timescolumns.append(i) else: if i%linesperprog<config["time"]: resultcolumns[i%linesperprog].append(i) else: resultcolumns[(i-1)%linesperprog].append(i) for i in range(0,linesperprog-1): if not data.take(resultcolumns[i],axis=1).applymap(lambda x : x==rightvalues[i]).all(axis=None): print(data.take(resultcolumns[i],axis=1)) raise Exception("not all result values match!") times=data.take(timescolumns,axis=1) times=times.rename(columns={0:'Configuration'}) dists=pd.Series(times.index.map(distance_to_fully_typed), name='Distance to Fully Typed/Nominal') means=times.mean(axis=1,numeric_only=True).rename("Running Time in Seconds") stdevs=times.std(axis=1,numeric_only=True).rename("Running Time Standard Deviation") extended=pd.concat([pd.Series(times.index),dists],join="inner",axis=1) extended=extended.set_index([0]) dtable=
pd.DataFrame(extended)
pandas.DataFrame
import pytest import os from mapping import util from pandas.util.testing import assert_frame_equal, assert_series_equal import pandas as pd from pandas import Timestamp as TS import numpy as np @pytest.fixture def price_files(): cdir = os.path.dirname(__file__) path = os.path.join(cdir, 'data/') files = ["CME-FVU2014.csv", "CME-FVZ2014.csv"] return [os.path.join(path, f) for f in files] def assert_dict_of_frames(dict1, dict2): assert dict1.keys() == dict2.keys() for key in dict1: assert_frame_equal(dict1[key], dict2[key]) def test_read_price_data(price_files): # using default name_func in read_price_data() df = util.read_price_data(price_files) dt1 = TS("2014-09-30") dt2 = TS("2014-10-01") idx = pd.MultiIndex.from_tuples([(dt1, "CME-FVU2014"), (dt1, "CME-FVZ2014"), (dt2, "CME-FVZ2014")], names=["date", "contract"]) df_exp = pd.DataFrame([119.27344, 118.35938, 118.35938], index=idx, columns=["Open"]) assert_frame_equal(df, df_exp) def name_func(fstr): file_name = os.path.split(fstr)[-1] name = file_name.split('-')[1].split('.')[0] return name[-4:] + name[:3] df = util.read_price_data(price_files, name_func) dt1 = TS("2014-09-30") dt2 = TS("2014-10-01") idx = pd.MultiIndex.from_tuples([(dt1, "2014FVU"), (dt1, "2014FVZ"), (dt2, "2014FVZ")], names=["date", "contract"]) df_exp = pd.DataFrame([119.27344, 118.35938, 118.35938], index=idx, columns=["Open"]) assert_frame_equal(df, df_exp) def test_calc_rets_one_generic(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (
TS('2015-01-05')
pandas.Timestamp
from bs4 import BeautifulSoup as Bt4 import requests import json import datetime import pandas as pd import urllib import time import re import random import platform from datetime import datetime import platform import shutil from lxml import etree # ---------- 爬取 主幹航線準班率 ---------- # 顯卡網址 website = f"https://www.sse.net.cn/index/singleIndex?indexType=gcspi" source = requests.get(website).text soup = Bt4(source, "lxml") form = soup.find_all('tbody') upper_form = form[0].find_all('td') man_index = [] # 主幹航線準班率 for num in range(4,11,3): man_index.append(float(upper_form[num].get_text())) lower_form = form[1].find_all('td') arrive_harbor = [] #到離港服務準班率 logistic = [] #收發或服務準班率 #從第8個開始到58個 step:5 for num in range(8,58,5): arrive_harbor.append(float(lower_form[num].get_text())) for num in range(10,60,5): logistic.append(float(lower_form[num].get_text())) col1 = ['綜合準班率指數(%)', '到離港服務準班率指數(%)', '收发貨服務準班率指數(%)'] col2 = ['亞洲-歐洲', '亞洲-地中海-到', '亞洲-美西-到', '亞洲-美東-到', '亞洲-波斯灣-到', '亞洲-澳新-到', '亞洲-西非-到', '亞洲-南非-到', '亞洲-南美-到', '歐洲-美東-到'] col3 = ['亞洲-歐洲-收', '亞洲-地中海-收', '亞洲-美西-收', '亞洲-美東-收', '亞洲-波斯灣-收', '亞洲-澳新-收', '亞洲-西非-收', '亞洲-南非-收', '亞洲-南美-收', '歐洲-美東-收'] main_index = pd.DataFrame({0:man_index}) main_index = main_index.T main_index.columns = col1 arrive_harbor = pd.DataFrame({0:arrive_harbor}) arrive_harbor = arrive_harbor.T arrive_harbor.columns = col2 logistic =
pd.DataFrame({0:logistic})
pandas.DataFrame
# Copyright 2019 <NAME>. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # Plot Service will make use of appropriately decorated functions in this module. import datetime import logging import re import time from collections import namedtuple from enum import auto from numbers import Real from dateutil import tz import cachetools.func import numpy as np import pandas as pd from pandas import Series from pandas.tseries.holiday import Holiday, AbstractHolidayCalendar, USMemorialDay, USLaborDay, USThanksgivingDay, \ nearest_workday from gs_quant.api.gs.assets import GsIdType from gs_quant.api.gs.data import GsDataApi from gs_quant.api.gs.data import QueryType from gs_quant.data.core import DataContext from gs_quant.data.fields import Fields from gs_quant.datetime.gscalendar import GsCalendar from gs_quant.datetime.point import relative_days_add from gs_quant.errors import MqTypeError, MqValueError from gs_quant.markets.securities import * from gs_quant.markets.securities import Asset, AssetIdentifier, SecurityMaster from gs_quant.target.common import AssetClass, FieldFilterMap, AssetType, Currency from gs_quant.timeseries.helper import log_return, plot_measure GENERIC_DATE = Union[datetime.date, str] TD_ONE = datetime.timedelta(days=1) _logger = logging.getLogger(__name__) MeasureDependency: namedtuple = namedtuple("MeasureDependency", ["id_provider", "query_type"]) # TODO: get NERC Calendar from SecDB class NercCalendar(AbstractHolidayCalendar): rules = [ Holiday('New Years Day', month=1, day=1, observance=nearest_workday), USMemorialDay, Holiday('July 4th', month=7, day=4, observance=nearest_workday), USLaborDay, USThanksgivingDay, Holiday('Christmas', month=12, day=25, observance=nearest_workday) ] def _to_fx_strikes(strikes): out = [] for strike in strikes: if strike == 50: out.append('ATMS') elif strike < 50: out.append(f'{round(strike)}DC') else: out.append(f'{round(abs(100 - strike))}DP') return out class SkewReference(Enum): DELTA = 'delta' NORMALIZED = 'normalized' SPOT = 'spot' FORWARD = 'forward' class VolReference(Enum): DELTA_CALL = 'delta_call' DELTA_PUT = 'delta_put' DELTA_NEUTRAL = 'delta_neutral' NORMALIZED = 'normalized' SPOT = 'spot' FORWARD = 'forward' class VolSmileReference(Enum): SPOT = 'spot' FORWARD = 'forward' class EdrDataReference(Enum): DELTA_CALL = 'delta_call' DELTA_PUT = 'delta_put' FORWARD = 'forward' class ForeCastHorizon(Enum): THREE_MONTH = '3m' SIX_MONTH = '6m' ONE_YEAR = '1y' EOY1 = 'EOY1' EOY2 = 'EOY2' EOY3 = 'EOY3' EOY4 = 'EOY4' class BenchmarkType(Enum): LIBOR = 'LIBOR' EURIBOR = 'EURIBOR' STIBOR = 'STIBOR' OIS = 'OIS' class RatesConversionType(Enum): DEFAULT_BENCHMARK_RATE = auto() INFLATION_BENCHMARK_RATE = auto() CROSS_CURRENCY_BASIS = auto() CURRENCY_TO_DEFAULT_RATE_BENCHMARK = { 'USD': 'USD-LIBOR-BBA', 'EUR': 'EUR-EURIBOR-Telerate', 'GBP': 'GBP-LIBOR-BBA', 'JPY': 'JPY-LIBOR-BBA' } CURRENCY_TO_INFLATION_RATE_BENCHMARK = { 'GBP': 'CPI-UKRPI', 'EUR': 'CPI-CPXTEMU' } CROSS_TO_CROSS_CURRENCY_BASIS = { 'JPYUSD': 'USD-3m/JPY-3m', 'USDJPY': 'USD-3m/JPY-3m', 'USDEUR': 'EUR-3m/USD-3m', 'EURUSD': 'EUR-3m/USD-3m', 'USDGBP': 'GBP-3m/USD-3m', 'GBPUSD': 'GBP-3m/USD-3m' } def cross_stored_direction_for_fx_vol(asset_id: str) -> str: result_id = asset_id try: asset = SecurityMaster.get_asset(asset_id, AssetIdentifier.MARQUEE_ID) if asset.asset_class is AssetClass.FX: bbid = asset.get_identifier(AssetIdentifier.BLOOMBERG_ID) if bbid is not None: legit_usd_cross = str.startswith(bbid, "USD") and not str.endswith(bbid, ("EUR", "GBP", "NZD", "AUD")) legit_eur_cross = str.startswith(bbid, "EUR") legit_jpy_cross = str.endswith(bbid, "JPY") and not str.startswith(bbid, ("KRW", "IDR", "CLP", "COP")) odd_cross = bbid in ("EURUSD", "GBPUSD", "NZDUSD", "AUDUSD", "JPYKRW", "JPYIDR", "JPYCLP", "JPYCOP") if not legit_usd_cross and not legit_eur_cross and not legit_jpy_cross and not odd_cross: cross = bbid[3:] + bbid[:3] cross_asset = SecurityMaster.get_asset(cross, AssetIdentifier.BLOOMBERG_ID) result_id = cross_asset.get_marquee_id() except TypeError: result_id = asset_id return result_id def cross_to_usd_based_cross(asset_id: str) -> str: result_id = asset_id try: asset = SecurityMaster.get_asset(asset_id, AssetIdentifier.MARQUEE_ID) if asset.asset_class is AssetClass.FX: bbid = asset.get_identifier(AssetIdentifier.BLOOMBERG_ID) if bbid is not None and not str.startswith(bbid, "USD"): cross = bbid[3:] + bbid[:3] cross_asset = SecurityMaster.get_asset(cross, AssetIdentifier.BLOOMBERG_ID) result_id = cross_asset.get_marquee_id() except TypeError: result_id = asset_id return result_id def currency_to_default_benchmark_rate(asset_id: str) -> str: try: asset = SecurityMaster.get_asset(asset_id, AssetIdentifier.MARQUEE_ID) result = convert_asset_for_rates_data_set(asset, RatesConversionType.DEFAULT_BENCHMARK_RATE) except TypeError: result = asset_id return result def currency_to_inflation_benchmark_rate(asset_id: str) -> str: try: asset = SecurityMaster.get_asset(asset_id, AssetIdentifier.MARQUEE_ID) result = convert_asset_for_rates_data_set(asset, RatesConversionType.INFLATION_BENCHMARK_RATE) except TypeError: result = asset_id return result def cross_to_basis(asset_id: str) -> str: try: asset = SecurityMaster.get_asset(asset_id, AssetIdentifier.MARQUEE_ID) result = convert_asset_for_rates_data_set(asset, RatesConversionType.CROSS_CURRENCY_BASIS) except TypeError: result = asset_id return result def convert_asset_for_rates_data_set(from_asset: Asset, c_type: RatesConversionType) -> str: try: bbid = from_asset.get_identifier(AssetIdentifier.BLOOMBERG_ID) if bbid is None: return from_asset.get_marquee_id() if c_type is RatesConversionType.DEFAULT_BENCHMARK_RATE: to_asset = CURRENCY_TO_DEFAULT_RATE_BENCHMARK[bbid] elif c_type is RatesConversionType.INFLATION_BENCHMARK_RATE: to_asset = CURRENCY_TO_INFLATION_RATE_BENCHMARK[bbid] else: to_asset = CROSS_TO_CROSS_CURRENCY_BASIS[bbid] return GsAssetApi.map_identifiers(GsIdType.mdapi, GsIdType.id, [to_asset])[to_asset] except KeyError: logging.info(f'Unsupported currency or cross ${bbid}') raise from_asset.get_marquee_id() def _get_custom_bd(exchange): from pandas.tseries.offsets import CustomBusinessDay calendar = GsCalendar.get(exchange).business_day_calendar() return CustomBusinessDay(calendar=calendar) @log_return(_logger, 'trying pricing dates') def _range_from_pricing_date(exchange, pricing_date: Optional[GENERIC_DATE] = None): if isinstance(pricing_date, datetime.date): return pricing_date, pricing_date today = pd.Timestamp.today().normalize() if pricing_date is None: t1 = today - _get_custom_bd(exchange) return t1, t1 assert isinstance(pricing_date, str) matcher = re.fullmatch('(\\d+)b', pricing_date) if matcher: start = end = today - _get_custom_bd(exchange) * int(matcher.group(1)) else: end = today - datetime.timedelta(days=relative_days_add(pricing_date, True)) start = end - _get_custom_bd(exchange) return start, end def _to_offset(tenor: str) -> pd.DateOffset: import re matcher = re.fullmatch('(\\d+)([dwmy])', tenor) if not matcher: raise ValueError('invalid tenor ' + tenor) ab = matcher.group(2) if ab == 'd': name = 'days' elif ab == 'w': name = 'weeks' elif ab == 'm': name = 'months' else: assert ab == 'y' name = 'years' kwarg = {name: int(matcher.group(1))} return pd.DateOffset(**kwarg) def _market_data_timed(q): start = time.perf_counter() df = GsDataApi.get_market_data(q) _logger.debug('market data query ran in %.3f ms', (time.perf_counter() - start) * 1000) return df @plot_measure((AssetClass.FX, AssetClass.Equity), None, [MeasureDependency( id_provider=cross_stored_direction_for_fx_vol, query_type=QueryType.IMPLIED_VOLATILITY)]) def skew(asset: Asset, tenor: str, strike_reference: SkewReference, distance: Real, *, location: str = 'NYC', source: str = None, real_time: bool = False) -> Series: """ Difference in implied volatility of equidistant out-of-the-money put and call options. :param asset: asset object loaded from security master :param tenor: relative date representation of expiration date e.g. 1m :param strike_reference: reference for strike level (for equities) :param distance: distance from at-the-money option :param location: location at which a price fixing has been taken (for FX assets) :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: skew curve """ if real_time: raise MqValueError('real-time skew not supported') if strike_reference in (SkewReference.DELTA, None): b = 50 elif strike_reference == SkewReference.NORMALIZED: b = 0 else: b = 100 kwargs = {} if strike_reference in (SkewReference.DELTA, None): # using delta call strikes so X DP is represented as (100 - X) DC q_strikes = [100 - distance, distance, b] else: q_strikes = [b - distance, b + distance, b] asset_id = asset.get_marquee_id() if asset.asset_class == AssetClass.FX: asset_id = cross_stored_direction_for_fx_vol(asset_id) q_strikes = _to_fx_strikes(q_strikes) kwargs['location'] = location column = 'deltaStrike' # should use SkewReference.DELTA for FX else: assert asset.asset_class == AssetClass.Equity if not strike_reference: raise MqTypeError('strike reference required for equities') if strike_reference != SkewReference.NORMALIZED: q_strikes = [x / 100 for x in q_strikes] kwargs['strikeReference'] = strike_reference.value column = 'relativeStrike' kwargs[column] = q_strikes _logger.debug('where tenor=%s and %s', tenor, kwargs) where = FieldFilterMap(tenor=tenor, **kwargs) q = GsDataApi.build_market_data_query([asset_id], QueryType.IMPLIED_VOLATILITY, where=where, source=source) _logger.debug('q %s', q) df = _market_data_timed(q) if df.empty: return pd.Series() curves = {k: v for k, v in df.groupby(column)} if len(curves) < 3: raise MqValueError('skew not available for given inputs') series = [curves[qs]['impliedVolatility'] for qs in q_strikes] return (series[0] - series[1]) / series[2] @plot_measure((AssetClass.Equity, AssetClass.Commod, AssetClass.FX,), None, [MeasureDependency(id_provider=cross_stored_direction_for_fx_vol, query_type=QueryType.IMPLIED_VOLATILITY)]) def implied_volatility(asset: Asset, tenor: str, strike_reference: VolReference, relative_strike: Real = None, *, source: str = None, real_time: bool = False) -> Series: """ Volatility of an asset implied by observations of market prices. :param asset: asset object loaded from security master :param tenor: relative date representation of expiration date e.g. 1m :param strike_reference: reference for strike level :param relative_strike: strike relative to reference :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: implied volatility curve """ if relative_strike is None and strike_reference != VolReference.DELTA_NEUTRAL: raise MqValueError('Relative strike must be provided if your strike reference is not delta_neutral') if asset.asset_class == AssetClass.FX: if strike_reference == VolReference.DELTA_NEUTRAL: delta_strike = 'DN' elif strike_reference == VolReference.DELTA_CALL: delta_strike = f'{relative_strike}DC' elif strike_reference == VolReference.DELTA_PUT: delta_strike = f'{relative_strike}DP' elif strike_reference == VolReference.FORWARD: if relative_strike == 100: delta_strike = 'ATMF' else: raise MqValueError('Relative strike must be 100 for Forward strike reference') elif strike_reference == VolReference.SPOT: if relative_strike == 100: delta_strike = 'ATMS' else: raise MqValueError('Relative strike must be 100 for Spot strike reference') else: raise MqValueError('strikeReference: ' + strike_reference.value + ' not supported for FX') asset_id = cross_stored_direction_for_fx_vol(asset.get_marquee_id()) _logger.debug('where tenor=%s, deltaStrike=%s, location=NYC', tenor, delta_strike) q = GsDataApi.build_market_data_query( [asset_id], QueryType.IMPLIED_VOLATILITY, where=FieldFilterMap(tenor=tenor, deltaStrike=delta_strike, location='NYC'), source=source, real_time=real_time ) _logger.debug('q %s', q) df = _market_data_timed(q) else: if strike_reference == VolReference.DELTA_NEUTRAL: raise NotImplementedError('delta_neutral strike reference is not supported for equities.') if strike_reference == VolReference.DELTA_PUT: relative_strike = abs(100 - relative_strike) relative_strike = relative_strike if strike_reference == VolReference.NORMALIZED else relative_strike / 100 ref_string = "delta" if strike_reference in (VolReference.DELTA_CALL, VolReference.DELTA_PUT) else strike_reference.value _logger.debug('where tenor=%s, strikeReference=%s, relativeStrike=%s', tenor, ref_string, relative_strike) where = FieldFilterMap(tenor=tenor, strikeReference=ref_string, relativeStrike=relative_strike) q = GsDataApi.build_market_data_query([asset.get_marquee_id()], QueryType.IMPLIED_VOLATILITY, where=where, source=source, real_time=real_time) _logger.debug('q %s', q) df = _market_data_timed(q) return Series() if df.empty else df['impliedVolatility'] @plot_measure((AssetClass.Equity,), (AssetType.Index, AssetType.ETF,), [QueryType.IMPLIED_CORRELATION]) def implied_correlation(asset: Asset, tenor: str, strike_reference: EdrDataReference, relative_strike: Real, *, source: str = None, real_time: bool = False) -> Series: """ Correlation of an asset implied by observations of market prices. :param asset: asset object loaded from security master :param tenor: relative date representation of expiration date e.g. 1m :param strike_reference: reference for strike level :param relative_strike: strike relative to reference :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: implied correlation curve """ if real_time: raise NotImplementedError('realtime implied_correlation not implemented') if strike_reference == EdrDataReference.DELTA_PUT: relative_strike = abs(100 - relative_strike) relative_strike = relative_strike / 100 delta_types = (EdrDataReference.DELTA_CALL, EdrDataReference.DELTA_PUT) strike_ref = "delta" if strike_reference in delta_types else strike_reference.value _logger.debug('where tenor=%s, strikeReference=%s, relativeStrike=%s', tenor, strike_ref, relative_strike) mqid = asset.get_marquee_id() where = FieldFilterMap(tenor=tenor, strikeReference=strike_ref, relativeStrike=relative_strike) q = GsDataApi.build_market_data_query([mqid], QueryType.IMPLIED_CORRELATION, where=where, source=source, real_time=real_time) _logger.debug('q %s', q) df = _market_data_timed(q) return Series() if df.empty else df['impliedCorrelation'] @plot_measure((AssetClass.Equity,), (AssetType.Index, AssetType.ETF,), [QueryType.AVERAGE_IMPLIED_VOLATILITY]) def average_implied_volatility(asset: Asset, tenor: str, strike_reference: EdrDataReference, relative_strike: Real, *, source: str = None, real_time: bool = False) -> Series: """ Historic weighted average implied volatility for the underlying assets of an equity index. :param asset: asset object loaded from security master :param tenor: relative date representation of expiration date e.g. 1m :param strike_reference: reference for strike level :param relative_strike: strike relative to reference :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: average implied volatility curve """ if real_time: raise NotImplementedError('realtime average_implied_volatility not implemented') if strike_reference == EdrDataReference.DELTA_PUT: relative_strike = abs(100 - relative_strike) relative_strike = relative_strike / 100 delta_types = (EdrDataReference.DELTA_CALL, EdrDataReference.DELTA_PUT) strike_ref = "delta" if strike_reference in delta_types else strike_reference.value _logger.debug('where tenor=%s, strikeReference=%s, relativeStrike=%s', tenor, strike_ref, relative_strike) mqid = asset.get_marquee_id() where = FieldFilterMap(tenor=tenor, strikeReference=strike_ref, relativeStrike=relative_strike) q = GsDataApi.build_market_data_query([mqid], QueryType.AVERAGE_IMPLIED_VOLATILITY, where=where, source=source, real_time=real_time) _logger.debug('q %s', q) df = _market_data_timed(q) return
Series()
pandas.Series
# import modules ---------------------- import nba_py import nba_py.game import nba_py.player import nba_py.team import pandas as pd import numpy as np import datetime import pytz old_settings = np.seterr(all='print') np.geterr() print('modules imported') # define functions ---------------------- def get_games(date): """ :param date: datetime.date, the match day :return: df, all the games on the given day """ return nba_py.Scoreboard(month=date.month, day=date.day, year=date.year, league_id='00', offset=0).game_header()[['GAME_ID', 'HOME_TEAM_ID', 'VISITOR_TEAM_ID']] def get_players(games, all_players): """ :param games: df, some games :param all_players: df, all players list of this season :return: df, all players of the given games """ home_team_player = all_players[all_players['TEAM_ID'].isin(games['HOME_TEAM_ID'])][['PERSON_ID', 'TEAM_ID']] home_team_player['Location'] = 'HOME' away_team_player = all_players[all_players['TEAM_ID'].isin(games['VISITOR_TEAM_ID'])][['PERSON_ID', 'TEAM_ID']] away_team_player['Location'] = 'AWAY' players = pd.concat([home_team_player, away_team_player]) game_team = pd.concat([games[['HOME_TEAM_ID', 'GAME_ID']].rename(columns={'HOME_TEAM_ID': 'TEAM_ID'}), games[['VISITOR_TEAM_ID', 'GAME_ID']].rename(columns={'VISITOR_TEAM_ID': 'TEAM_ID'})]) players = pd.merge(players, game_team, on='TEAM_ID') team_team = pd.concat( [games[['HOME_TEAM_ID', 'VISITOR_TEAM_ID']].rename(columns={'HOME_TEAM_ID': 'TEAM_ID', 'VISITOR_TEAM_ID': 'Against_Team_ID'}), games[['VISITOR_TEAM_ID', 'HOME_TEAM_ID']].rename(columns={'VISITOR_TEAM_ID': 'TEAM_ID', 'HOME_TEAM_ID': 'Against_Team_ID'})]) players =
pd.merge(players, team_team, on='TEAM_ID')
pandas.merge
""" Functions for data cleaning. :author: <NAME> """ # Imports import itertools import numpy as np import pandas as pd import re from sklearn.base import BaseEstimator, TransformerMixin from typing import List, Optional, Union from klib.describe import corr_mat from klib.utils import ( _diff_report, _drop_duplicates, _missing_vals, _validate_input_bool, _validate_input_range, ) __all__ = [ "clean_column_names", "convert_datatypes", "data_cleaning", "drop_missing", "mv_col_handling", ] def optimize_ints(data: Union[pd.Series, pd.DataFrame]) -> pd.DataFrame: data = pd.DataFrame(data).copy() ints = data.select_dtypes(include=["int64"]).columns.tolist() data[ints] = data[ints].apply(pd.to_numeric, downcast="integer") return data def optimize_floats(data: Union[pd.Series, pd.DataFrame]) -> pd.DataFrame: data = pd.DataFrame(data).copy() floats = data.select_dtypes(include=["float64"]).columns.tolist() data[floats] = data[floats].apply(pd.to_numeric, downcast="float") return data def clean_column_names(data: pd.DataFrame, hints: bool = True) -> pd.DataFrame: """ Cleans the column names of the provided Pandas Dataframe and optionally \ provides hints on duplicate and long column names. Parameters ---------- data : pd.DataFrame Original Dataframe with columns to be cleaned hints : bool, optional Print out hints on column name duplication and colum name length, by default \ True Returns ------- pd.DataFrame Pandas DataFrame with cleaned column names """ _validate_input_bool(hints, "hints") # Handle CamelCase for i, col in enumerate(data.columns): matches = re.findall(re.compile("[a-z][A-Z]"), col) column = col for match in matches: column = column.replace(match, match[0] + "_" + match[1]) data.rename(columns={data.columns[i]: column}, inplace=True) data.columns = ( data.columns.str.replace("\n", "_") .str.replace("(", "_") .str.replace(")", "_") .str.replace("'", "_") .str.replace('"', "_") .str.replace(".", "_") .str.replace("-", "_") .str.replace(r"[!?:;/]", "_", regex=True) .str.replace("+", "_plus_") .str.replace("*", "_times_") .str.replace("<", "_smaller") .str.replace(">", "_larger_") .str.replace("=", "_equal_") .str.replace("ä", "ae") .str.replace("ö", "oe") .str.replace("ü", "ue") .str.replace("ß", "ss") .str.replace("%", "_percent_") .str.replace("$", "_dollar_") .str.replace("€", "_euro_") .str.replace("@", "_at_") .str.replace("#", "_hash_") .str.replace("&", "_and_") .str.replace(r"\s+", "_", regex=True) .str.replace(r"_+", "_", regex=True) .str.strip("_") .str.lower() ) dupl_idx = [i for i, x in enumerate(data.columns.duplicated()) if x] if len(dupl_idx) > 0: dupl_before = data.columns[dupl_idx].tolist() data.columns = [ col if col not in data.columns[:i] else col + "_" + str(i) for i, col in enumerate(data.columns) ] if hints: print( f"Duplicate column names detected! Columns with index {dupl_idx} and " f"names {dupl_before}) have been renamed to " f"{data.columns[dupl_idx].tolist()}." ) long_col_names = [x for x in data.columns if len(x) > 25] if len(long_col_names) > 0 and hints: print( "Long column names detected (>25 characters). Consider renaming the " f"following columns {long_col_names}." ) return data def convert_datatypes( data: pd.DataFrame, category: bool = True, cat_threshold: float = 0.05, cat_exclude: Optional[List[Union[str, int]]] = None, ) -> pd.DataFrame: """ Converts columns to best possible dtypes using dtypes supporting pd.NA. Temporarily not converting to integers due to an issue in pandas. This is expected \ to be fixed in pandas 1.1. See https://github.com/pandas-dev/pandas/issues/33803 Parameters ---------- data : pd.DataFrame 2D dataset that can be coerced into Pandas DataFrame category : bool, optional Change dtypes of columns with dtype "object" to "category". Set threshold \ using cat_threshold or exclude columns using cat_exclude, by default True cat_threshold : float, optional Ratio of unique values below which categories are inferred and column dtype is \ changed to categorical, by default 0.05 cat_exclude : Optional[List[Union[str, int]]], optional List of columns to exclude from categorical conversion, by default None Returns ------- pd.DataFrame Pandas DataFrame with converted Datatypes """ # Validate Inputs _validate_input_bool(category, "Category") _validate_input_range(cat_threshold, "cat_threshold", 0, 1) cat_exclude = [] if cat_exclude is None else cat_exclude.copy() data = pd.DataFrame(data).copy() for col in data.columns: unique_vals_ratio = data[col].nunique(dropna=False) / data.shape[0] if ( category and unique_vals_ratio < cat_threshold and col not in cat_exclude and data[col].dtype == "object" ): data[col] = data[col].astype("category") # convert_ints = True if int(pd.__version__.replace(".", "")) >= 110 else False # convert_integer does not work as expected until pandas 1.1.0 while # convert_string is still experimental data[col] = data[col].convert_dtypes( infer_objects=True, convert_string=True, convert_integer=False, convert_boolean=True, ) data = optimize_ints(data) data = optimize_floats(data) return data def drop_missing( data: pd.DataFrame, drop_threshold_cols: float = 1, drop_threshold_rows: float = 1, col_exclude: Optional[List[str]] = None, ) -> pd.DataFrame: """ Drops completely empty columns and rows by default and optionally provides \ flexibility to loosen restrictions to drop additional non-empty columns and \ rows based on the fraction of NA-values. Parameters ---------- data : pd.DataFrame 2D dataset that can be coerced into Pandas DataFrame drop_threshold_cols : float, optional Drop columns with NA-ratio equal to or above the specified threshold, by \ default 1 drop_threshold_rows : float, optional Drop rows with NA-ratio equal to or above the specified threshold, by default 1 col_exclude : Optional[List[str]], optional Specify a list of columns to exclude from dropping. The excluded columns do \ not affect the drop thresholds, by default None Returns ------- pd.DataFrame Pandas DataFrame without any empty columns or rows Notes ----- Columns are dropped first """ # Validate Inputs _validate_input_range(drop_threshold_cols, "drop_threshold_cols", 0, 1) _validate_input_range(drop_threshold_rows, "drop_threshold_rows", 0, 1) col_exclude = [] if col_exclude is None else col_exclude.copy() data_exclude = data[col_exclude] data = pd.DataFrame(data).copy() data_dropped = data.drop(columns=col_exclude, errors="ignore") data_dropped = data_dropped.drop( columns=data_dropped.loc[ :, _missing_vals(data)["mv_cols_ratio"] > drop_threshold_cols ].columns ).dropna(axis=1, how="all") data = pd.concat([data_dropped, data_exclude], axis=1) data_cleaned = data.drop( index=data.loc[ _missing_vals(data)["mv_rows_ratio"] > drop_threshold_rows, : ].index ).dropna(axis=0, how="all") return data_cleaned def data_cleaning( data: pd.DataFrame, drop_threshold_cols: float = 0.9, drop_threshold_rows: float = 0.9, drop_duplicates: bool = True, convert_dtypes: bool = True, col_exclude: Optional[List[str]] = None, category: bool = True, cat_threshold: float = 0.03, cat_exclude: Optional[List[Union[str, int]]] = None, clean_col_names: bool = True, show: str = "changes", ) -> pd.DataFrame: """ Perform initial data cleaning tasks on a dataset, such as dropping single \ valued and empty rows, empty columns as well as optimizing the datatypes. Parameters ---------- data : pd.DataFrame 2D dataset that can be coerced into Pandas DataFrame drop_threshold_cols : float, optional Drop columns with NA-ratio equal to or above the specified threshold, by \ default 0.9 drop_threshold_rows : float, optional Drop rows with NA-ratio equal to or above the specified threshold, by \ default 0.9 drop_duplicates : bool, optional Drop duplicate rows, keeping the first occurence. This step comes after the \ dropping of missing values, by default True convert_dtypes : bool, optional Convert dtypes using pd.convert_dtypes(), by default True col_exclude : Optional[List[str]], optional Specify a list of columns to exclude from dropping, by default None category : bool, optional Enable changing dtypes of "object" columns to "category". Set threshold using \ cat_threshold. Requires convert_dtypes=True, by default True cat_threshold : float, optional Ratio of unique values below which categories are inferred and column dtype is \ changed to categorical, by default 0.03 cat_exclude : Optional[List[str]], optional List of columns to exclude from categorical conversion, by default None clean_column_names: bool, optional Cleans the column names and provides hints on duplicate and long names, by \ default True show : str, optional {"all", "changes", None}, by default "changes" Specify verbosity of the output: * "all": Print information about the data before and after cleaning as \ well as information about changes and memory usage (deep). Please be \ aware, that this can slow down the function by quite a bit. * "changes": Print out differences in the data before and after cleaning. * None: No information about the data and the data cleaning is printed. Returns ------- pd.DataFrame Cleaned Pandas DataFrame See also -------- convert_datatypes: Convert columns to best possible dtypes. drop_missing : Flexibly drop columns and rows. _memory_usage: Gives the total memory usage in megabytes. _missing_vals: Metrics about missing values in the dataset. Notes ----- The category dtype is not grouped in the summary, unless it contains exactly the \ same categories. """ # Validate Inputs _validate_input_range(drop_threshold_cols, "drop_threshold_cols", 0, 1) _validate_input_range(drop_threshold_rows, "drop_threshold_rows", 0, 1) _validate_input_bool(drop_duplicates, "drop_duplicates") _validate_input_bool(convert_dtypes, "convert_datatypes") _validate_input_bool(category, "category") _validate_input_range(cat_threshold, "cat_threshold", 0, 1) data = pd.DataFrame(data).copy() data_cleaned = drop_missing( data, drop_threshold_cols, drop_threshold_rows, col_exclude=col_exclude ) if clean_col_names: data_cleaned = clean_column_names(data_cleaned) single_val_cols = data_cleaned.columns[ data_cleaned.nunique(dropna=False) == 1 ].tolist() data_cleaned = data_cleaned.drop(columns=single_val_cols) dupl_rows = None if drop_duplicates: data_cleaned, dupl_rows = _drop_duplicates(data_cleaned) if convert_dtypes: data_cleaned = convert_datatypes( data_cleaned, category=category, cat_threshold=cat_threshold, cat_exclude=cat_exclude, ) _diff_report( data, data_cleaned, dupl_rows=dupl_rows, single_val_cols=single_val_cols, show=show, ) return data_cleaned class DataCleaner(BaseEstimator, TransformerMixin): """ Wrapper for data_cleaning(). Allows data_cleaning() to be put into a pipeline \ with similar functions (e.g. using MVColHandler() or SubsetPooler()). Parameters: ---------´ drop_threshold_cols: float, default 0.9 Drop columns with NA-ratio equal to or above the specified threshold. drop_threshold_rows: float, default 0.9 Drop rows with NA-ratio equal to or above the specified threshold. drop_duplicates: bool, default True Drop duplicate rows, keeping the first occurence. This step comes after the \ dropping of missing values. convert_dtypes: bool, default True Convert dtypes using pd.convert_dtypes(). col_exclude: list, default None Specify a list of columns to exclude from dropping. category: bool, default True Change dtypes of columns to "category". Set threshold using cat_threshold. \ Requires convert_dtypes=True cat_threshold: float, default 0.03 Ratio of unique values below which categories are inferred and column dtype is \ changed to categorical. cat_exclude: list, default None List of columns to exclude from categorical conversion. clean_column_names: bool, optional Cleans the column names and provides hints on duplicate and long names, by \ default True show: str, optional {"all", "changes", None}, by default "changes" Specify verbosity of the output: * "all": Print information about the data before and after cleaning as \ well as information about changes and memory usage (deep). Please be \ aware, that this can slow down the function by quite a bit. * "changes": Print out differences in the data before and after cleaning. * None: No information about the data and the data cleaning is printed. Returns ------- data_cleaned: Pandas DataFrame """ def __init__( self, drop_threshold_cols: float = 0.9, drop_threshold_rows: float = 0.9, drop_duplicates: bool = True, convert_dtypes: bool = True, col_exclude: Optional[List[str]] = None, category: bool = True, cat_threshold: float = 0.03, cat_exclude: Optional[List[Union[str, int]]] = None, clean_col_names: bool = True, show: str = "changes", ): self.drop_threshold_cols = drop_threshold_cols self.drop_threshold_rows = drop_threshold_rows self.drop_duplicates = drop_duplicates self.convert_dtypes = convert_dtypes self.col_exclude = col_exclude self.category = category self.cat_threshold = cat_threshold self.cat_exclude = cat_exclude self.clean_col_names = clean_col_names self.show = show def fit(self, data, target=None): return self def transform(self, data, target=None): data_cleaned = data_cleaning( data, drop_threshold_cols=self.drop_threshold_cols, drop_threshold_rows=self.drop_threshold_rows, drop_duplicates=self.drop_duplicates, convert_dtypes=self.convert_dtypes, col_exclude=self.col_exclude, category=self.category, cat_threshold=self.cat_threshold, cat_exclude=self.cat_exclude, clean_col_names=self.clean_col_names, show=self.show, ) return data_cleaned def mv_col_handling( data: pd.DataFrame, target: Optional[Union[str, pd.Series, List]] = None, mv_threshold: float = 0.1, corr_thresh_features: float = 0.5, corr_thresh_target: float = 0.3, return_details: bool = False, ) -> pd.DataFrame: """ Converts columns with a high ratio of missing values into binary features and \ eventually drops them based on their correlation with other features and the \ target variable. This function follows a three step process: - 1) Identify features with a high ratio of missing values (above 'mv_threshold'). - 2) Identify high correlations of these features among themselves and with \ other features in the dataset (above 'corr_thresh_features'). - 3) Features with high ratio of missing values and high correlation among each \ other are dropped unless they correlate reasonably well with the target \ variable (above 'corr_thresh_target'). Note: If no target is provided, the process exits after step two and drops columns \ identified up to this point. Parameters ---------- data : pd.DataFrame 2D dataset that can be coerced into Pandas DataFrame target : Optional[Union[str, pd.Series, List]], optional Specify target for correlation. I.e. label column to generate only the \ correlations between each feature and the label, by default None mv_threshold : float, optional Value between 0 <= threshold <= 1. Features with a missing-value-ratio larger \ than mv_threshold are candidates for dropping and undergo further analysis, by \ default 0.1 corr_thresh_features : float, optional Value between 0 <= threshold <= 1. Maximum correlation a previously identified \ features (with a high mv-ratio) is allowed to have with another feature. If \ this threshold is overstepped, the feature undergoes further analysis, by \ default 0.5 corr_thresh_target : float, optional Value between 0 <= threshold <= 1. Minimum required correlation of a remaining \ feature (i.e. feature with a high mv-ratio and high correlation to another \ existing feature) with the target. If this threshold is not met the feature is \ ultimately dropped, by default 0.3 return_details : bool, optional Provdies flexibility to return intermediary results, by default False Returns ------- pd.DataFrame Updated Pandas DataFrame optional: cols_mv: Columns with missing values included in the analysis drop_cols: List of dropped columns """ # Validate Inputs _validate_input_range(mv_threshold, "mv_threshold", 0, 1) _validate_input_range(corr_thresh_features, "corr_thresh_features", 0, 1) _validate_input_range(corr_thresh_target, "corr_thresh_target", 0, 1) data = pd.DataFrame(data).copy() data_local = data.copy() mv_ratios = _missing_vals(data_local)["mv_cols_ratio"] cols_mv = mv_ratios[mv_ratios > mv_threshold].index.tolist() data_local[cols_mv] = ( data_local[cols_mv].applymap(lambda x: 1 if not pd.isnull(x) else x).fillna(0) ) high_corr_features = [] data_temp = data_local.copy() for col in cols_mv: corrmat = corr_mat(data_temp, colored=False) if abs(corrmat[col]).nlargest(2)[1] > corr_thresh_features: high_corr_features.append(col) data_temp = data_temp.drop(columns=[col]) drop_cols = [] if target is None: data = data.drop(columns=high_corr_features) else: corrs = corr_mat(data_local, target=target, colored=False).loc[ high_corr_features ] drop_cols = corrs.loc[abs(corrs.iloc[:, 0]) < corr_thresh_target].index.tolist() data = data.drop(columns=drop_cols) if return_details: return data, cols_mv, drop_cols return data class MVColHandler(BaseEstimator, TransformerMixin): """ Wrapper for mv_col_handling(). Allows mv_col_handling() to be put into a \ pipeline with similar functions (e.g. using DataCleaner() or SubsetPooler()). Parameters ---------- target: string, list, np.array or pd.Series, default None Specify target for correlation. E.g. label column to generate only the \ correlations between each feature and the label. mv_threshold: float, default 0.1 Value between 0 <= threshold <= 1. Features with a missing-value-ratio larger \ than mv_threshold are candidates for dropping and undergo further analysis. corr_thresh_features: float, default 0.6 Value between 0 <= threshold <= 1. Maximum correlation a previously identified \ features with a high mv-ratio is allowed to have with another feature. If this \ threshold is overstepped, the feature undergoes further analysis. corr_thresh_target: float, default 0.3 Value between 0 <= threshold <= 1. Minimum required correlation of a remaining \ feature (i.e. feature with a high mv-ratio and high correlation to another \ existing feature) with the target. If this threshold is not met the feature is \ ultimately dropped. return_details: bool, default True Provdies flexibility to return intermediary results. Returns ------- data: Updated Pandas DataFrame """ def __init__( self, target: Optional[Union[str, pd.Series, List]] = None, mv_threshold: float = 0.1, corr_thresh_features: float = 0.6, corr_thresh_target: float = 0.3, return_details: bool = True, ): self.target = target self.mv_threshold = mv_threshold self.corr_thresh_features = corr_thresh_features self.corr_thresh_target = corr_thresh_target self.return_details = return_details def fit(self, data, target=None): return self def transform(self, data, target=None): data, cols_mv, dropped_cols = mv_col_handling( data, target=self.target, mv_threshold=self.mv_threshold, corr_thresh_features=self.corr_thresh_features, corr_thresh_target=self.corr_thresh_target, return_details=self.return_details, ) print(f"\nFeatures with MV-ratio > {self.mv_threshold}: {len(cols_mv)}") print("Features dropped:", len(dropped_cols), dropped_cols) return data def pool_duplicate_subsets( data: pd.DataFrame, col_dupl_thresh: float = 0.2, subset_thresh: float = 0.2, min_col_pool: int = 3, exclude: Optional[List[str]] = None, return_details=False, ) -> pd.DataFrame: """ Checks for duplicates in subsets of columns and pools them. This can reduce \ the number of columns in the data without loosing much information. Suitable \ columns are combined to subsets and tested for duplicates. In case sufficient \ duplicates can be found, the respective columns are aggregated into a \ "pooled_var" column. Identical numbers in the "pooled_var" column indicate \ identical information in the respective rows. Note: It is advised to exclude features that provide sufficient informational \ content by themselves as well as the target column by using the "exclude" \ setting. Parameters ---------- data : pd.DataFrame 2D dataset that can be coerced into Pandas DataFrame col_dupl_thresh : float, optional Columns with a ratio of duplicates higher than "col_dupl_thresh" are \ considered in the further analysis. Columns with a lower ratio are not \ considered for pooling, by default 0.2 subset_thresh : float, optional The first subset with a duplicate threshold higher than "subset_thresh" is \ chosen and aggregated. If no subset reaches the threshold, the algorithm \ continues with continuously smaller subsets until "min_col_pool" is reached, \ by default 0.2 min_col_pool : int, optional Minimum number of columns to pool. The algorithm attempts to combine as many \ columns as possible to suitable subsets and stops when "min_col_pool" is \ reached, by default 3 exclude : Optional[List[str]], optional List of column names to be excluded from the analysis. These columns are \ passed through without modification, by default None return_details : bool, optional Provdies flexibility to return intermediary results, by default False Returns ------- pd.DataFrame DataFrame with low cardinality columns pooled optional: subset_cols: List of columns used as subset """ # Input validation _validate_input_range(col_dupl_thresh, "col_dupl_thresh", 0, 1) _validate_input_range(subset_thresh, "subset_thresh", 0, 1) _validate_input_range(min_col_pool, "min_col_pool", 0, data.shape[1]) excluded_cols = [] if exclude is not None: excluded_cols = data[exclude] data = data.drop(columns=exclude) subset_cols = [] for i in range(data.shape[1] + 1 - min_col_pool): check_list = [ col for col in data.columns if data.duplicated(subset=col).mean() > col_dupl_thresh ] if len(check_list) > 0: combinations = itertools.combinations(check_list, len(check_list) - i) else: continue ratios = [ *map(lambda comb: data.duplicated(subset=list(comb)).mean(), combinations) ] max_ratio = max(ratios) max_idx = np.argmax(ratios) if max_ratio > subset_thresh: best_subset = itertools.islice( itertools.combinations(check_list, len(check_list) - i), max_idx, max_idx + 1, ) best_subset = data[list(list(best_subset)[0])] subset_cols = best_subset.columns.tolist() unique_subset = ( best_subset.drop_duplicates() .reset_index() .rename(columns={"index": "pooled_vars"}) ) data = data.merge( unique_subset, how="left", on=best_subset.columns.tolist() ).drop(columns=best_subset.columns.tolist()) data.index = pd.RangeIndex(len(data)) break data = pd.concat([data,
pd.DataFrame(excluded_cols)
pandas.DataFrame
""" Folium operations. save_map, create_base_map, heatmap, heatmap_with_time, cluster, faster_cluster, plot_markers, plot_trajectories_with_folium, plot_trajectory_by_id_folium, plot_trajectory_by_period, plot_trajectory_by_day_week, plot_trajectory_by_date, plot_trajectory_by_hour, plot_stops, plot_bbox, plot_points_folium, plot_poi_folium, plot_event_folium, show_trajs_with_event, show_traj_id_with_event, plot_traj_timestamp_geo_json """ from typing import Any, Dict, List, Optional, Text, Tuple, Union import folium import numpy as np import pandas as pd from folium import Map, plugins from folium.plugins import FastMarkerCluster, HeatMap, HeatMapWithTime, MarkerCluster from pandas import DataFrame from pymove.preprocessing import filters from pymove.utils import distances from pymove.utils.constants import ( COUNT, DATE, DATETIME, DAY, EVENT_ID, EVENT_POINT, HOUR, LATITUDE, LINE_COLOR, LONGITUDE, PERIOD, POI_POINT, SITUATION, STOP, TILES, TRAJ_ID, UID, USER_POINT, ) from pymove.utils.datetime import str_to_datetime from pymove.utils.log import progress_bar from pymove.utils.visual import add_map_legend, cmap_hex_color, get_cmap def save_map( move_data: DataFrame, filename: Text, tiles: Optional[Text] = TILES[0], label_id: Optional[Text] = TRAJ_ID, cmap: Optional[Text] = 'Set1', return_map: Optional[bool] = False ) -> Optional[Map]: """ Save a visualization in a map in a new file. Parameters ---------- move_data : DataFrame Input trajectory data filename : Text Represents the filename path tiles : str, optional Represents the type_ of tile that will be used on the map, by default TILES[0] label_id : str, optional Represents column name of trajectory id, by default TRAJ_ID cmap : str, optional Color map to use, by default 'Set1' return_map : bool, optional Represents the Colormap, by default False Returns ------- Map folium map or None """ map_ = folium.Map(tiles=tiles) map_.fit_bounds( [ [move_data[LATITUDE].min(), move_data[LONGITUDE].min()], [move_data[LATITUDE].max(), move_data[LONGITUDE].max()], ] ) ids = move_data[label_id].unique() cmap_ = get_cmap(cmap) num = cmap_.N for id_ in ids: id_index = np.where(ids == id_)[0][0] move_df = move_data[move_data[label_id] == id_] points_ = [ (point[0], point[1]) for point in move_df[[LATITUDE, LONGITUDE]].values ] color_ = cmap_hex_color(cmap_, (id_index % num)) folium.PolyLine(points_, weight=3, color=color_).add_to(map_) map_.save(filename) if return_map: return map_ def create_base_map( move_data: DataFrame, lat_origin: Optional[float] = None, lon_origin: Optional[float] = None, tile: Optional[Text] = TILES[0], default_zoom_start: Optional[float] = 12, ) -> Map: """ Generates a folium map. Parameters ---------- move_data : DataFrame Input trajectory data lat_origin : float, optional Represents the latitude which will be the center of the map, by default None lon_origin : float, optional Represents the longitude which will be the center of the map, by default None tile : str, optional Represents the map tiles, by default TILES[0] default_zoom_start : float, optional Represents the zoom which will be the center of the map, by default 12 Returns ------- Map a folium map """ if lat_origin is None and lon_origin is None: lat_origin = move_data[LATITUDE].median() lon_origin = move_data[LONGITUDE].median() base_map = folium.Map( location=[lat_origin, lon_origin], control_scale=True, zoom_start=default_zoom_start, tiles=tile ) return base_map def heatmap( move_data: DataFrame, n_rows: Optional[int] = None, lat_origin: Optional[float] = None, lon_origin: Optional[float] = None, zoom_start: Optional[float] = 12, radius: Optional[float] = 8, base_map: Optional[Map] = None, tile: Optional[Text] = TILES[0], save_as_html: Optional[bool] = False, filename: Optional[Text] = 'heatmap.html', ) -> Map: """ Generate visualization of Heat Map using folium plugin. Parameters ---------- move_data : DataFrame Input trajectory data n_rows : int, optional Represents number of data rows that are will plot, by default None lat_origin : float, optional Represents the latitude which will be the center of the map, by default None lon_origin : float, optional Represents the longitude which will be the center of the map, by default None zoom_start : float, optional Initial zoom level for the map, by default 12 radius : float, optional Radius of each “point” of the heatmap, by default 8 base_map : Map, optional Represents the folium map. If not informed, a new map is generated using the function create_base_map(), with the lat_origin, lon_origin and zoom_start, by default None tile : str, optional Represents the map tiles, by default TILES[0] save_as_html : bool, optional Represents if want save this visualization in a new file .html, by default False filename : str, optional Represents the file name of new file .html, by default 'heatmap.html' Returns ------- Map folium Map """ if base_map is None: base_map = create_base_map( move_data, lat_origin, lon_origin, tile=tile, default_zoom_start=zoom_start, ) if n_rows is None: n_rows = move_data.shape[0] move_data[COUNT] = 1 HeatMap( data=move_data.iloc[:n_rows][[LATITUDE, LONGITUDE, COUNT]] .groupby([LATITUDE, LONGITUDE]) .sum() .reset_index() .values.tolist(), radius=radius ).add_to(base_map) move_data.drop(columns=COUNT, inplace=True) if save_as_html: base_map.save(outfile=filename) return base_map def heatmap_with_time( move_data: DataFrame, n_rows: Optional[int] = None, lat_origin: Optional[float] = None, lon_origin: Optional[float] = None, zoom_start: Optional[float] = 12, radius: Optional[float] = 8, min_opacity: Optional[float] = 0.5, max_opacity: Optional[float] = 0.8, base_map: Optional[Map] = None, tile: Optional[Text] = TILES[0], save_as_html: Optional[bool] = False, filename: Optional[Text] = 'heatmap_time.html', ) -> Map: """ Generate visualization of Heat Map using folium plugin. Parameters ---------- move_data : DataFrame Input trajectory data n_rows : int, optional Represents number of data rows that are will plot, by default None lat_origin : float, optional Represents the latitude which will be the center of the map, by default None lon_origin : float, optional Represents the longitude which will be the center of the map, by default None zoom_start : float, optional Initial zoom level for the map, by default 12 radius : float, optional Radius of each “point” of the heatmap, by default 8 min_opacity: float, optional Minimum heat opacity, by default 0.5. max_opacity: float, optional Maximum heat opacity, by default 0.8. base_map : Map, optional Represents the folium map. If not informed, a new map is generated using the function create_base_map(), with the lat_origin, lon_origin and zoom_start, by default None tile : str, optional Represents the map tiles, by default TILES[0] save_as_html : bool, optional Represents if want save this visualization in a new file .html, by default False filename : str, optional Represents the file name of new file .html, by default 'heatmap_time.html' Returns ------- Map folium Map """ if base_map is None: base_map = create_base_map( move_data, lat_origin, lon_origin, tile=tile, default_zoom_start=zoom_start, ) if n_rows is None: n_rows = move_data.shape[0] move_data = move_data.iloc[:n_rows].copy() move_data[COUNT] = 1 move_data[HOUR] = move_data[DATETIME].apply(lambda x: x.hour) move_data_hour_list = [] for hour in move_data[HOUR].sort_values().unique(): move_data_hour_list.append( move_data.loc[move_data.hour == hour, [LATITUDE, LONGITUDE, COUNT]] .groupby([LATITUDE, LONGITUDE]) .sum() .reset_index() .values.tolist() ) HeatMapWithTime( move_data_hour_list, radius=radius, gradient={0.2: 'blue', 0.4: 'lime', 0.6: USER_POINT, 1: 'red'}, min_opacity=min_opacity, max_opacity=max_opacity, use_local_extrema=True ).add_to(base_map) move_data.drop(columns=[COUNT, HOUR], inplace=True) if save_as_html: base_map.save(outfile=filename) return base_map def cluster( move_data: DataFrame, n_rows: Optional[int] = None, lat_origin: Optional[float] = None, lon_origin: Optional[float] = None, zoom_start: Optional[float] = 12, base_map: Optional[Map] = None, tile: Optional[Text] = TILES[0], save_as_html: Optional[bool] = False, filename: Optional[Text] = 'cluster.html', ) -> Map: """ Generate visualization of Heat Map using folium plugin. Parameters ---------- move_data : DataFrame Input trajectory data n_rows : int, optional Represents number of data rows that are will plot, by default None lat_origin : float, optional Represents the latitude which will be the center of the map, by default None lon_origin : float, optional Represents the longitude which will be the center of the map, by default None zoom_start : float, optional Initial zoom level for the map, by default 12 radius : float, optional Radius of each “point” of the heatmap, by default 8 base_map : Map, optional Represents the folium map. If not informed, a new map is generated using the function create_base_map(), with the lat_origin, lon_origin and zoom_start, by default None tile : str, optional Represents the map tiles, by default TILES[0] save_as_html : bool, optional Represents if want save this visualization in a new file .html, by default False filename : str, optional Represents the file name of new file .html, by default 'cluster.html' Returns ------- Map folium Map """ if base_map is None: base_map = create_base_map( move_data, lat_origin, lon_origin, tile=tile, default_zoom_start=zoom_start, ) if n_rows is None: n_rows = move_data.shape[0] mc = MarkerCluster() for row in move_data.iloc[:n_rows].iterrows(): pop = ( '<b>Latitude:</b> ' + str(row[1][LATITUDE]) + '\n<b>Longitude:</b> ' + str(row[1][LONGITUDE]) + '\n<b>Datetime:</b> ' + str(row[1][DATETIME]) ) mc.add_child( folium.Marker( location=[row[1][LATITUDE], row[1][LONGITUDE]], popup=pop ) ) base_map.add_child(mc) if save_as_html: base_map.save(outfile=filename) return base_map def faster_cluster( move_data: DataFrame, n_rows: Optional[int] = None, lat_origin: Optional[float] = None, lon_origin: Optional[float] = None, zoom_start: Optional[float] = 12, base_map: Optional[Map] = None, tile: Optional[Text] = TILES[0], save_as_html: Optional[bool] = False, filename: Optional[Text] = 'faster_cluster.html', ) -> Map: """ Generate visualization of Heat Map using folium plugin. Parameters ---------- move_data : DataFrame Input trajectory data n_rows : int, optional Represents number of data rows that are will plot, by default None lat_origin : float, optional Represents the latitude which will be the center of the map, by default None lon_origin : float, optional Represents the longitude which will be the center of the map, by default None zoom_start : float, optional Initial zoom level for the map, by default 12 radius : float, optional Radius of each “point” of the heatmap, by default 8 base_map : Map, optional Represents the folium map. If not informed, a new map is generated using the function create_base_map(), with the lat_origin, lon_origin and zoom_start, by default None tile : str, optional Represents the map tiles, by default TILES[0] save_as_html : bool, optional Represents if want save this visualization in a new file .html, by default False filename : str, optional Represents the file name of new file .html, by default 'faster_cluster.html' Returns ------- Map folium Map """ if base_map is None: base_map = create_base_map( move_data, lat_origin, lon_origin, tile=tile, default_zoom_start=zoom_start, ) if n_rows is None: n_rows = move_data.shape[0] callback = """\ function (row) { var marker; marker = L.circle(new L.LatLng(row[0], row[1]), {color:'red'}); return marker; }; """ FastMarkerCluster( move_data.iloc[:n_rows][[LATITUDE, LONGITUDE]].values.tolist(), callback=callback, ).add_to(base_map) if save_as_html: base_map.save(outfile=filename) return base_map def plot_markers( move_data: DataFrame, n_rows: Optional[int] = None, lat_origin: Optional[float] = None, lon_origin: Optional[float] = None, zoom_start: Optional[float] = 12, base_map: Optional[Map] = None, tile: Optional[Text] = TILES[0], save_as_html: Optional[bool] = False, filename: Optional[Text] = 'markers.html', ) -> Map: """ Generate visualization of Heat Map using folium plugin. Parameters ---------- move_data : DataFrame Input trajectory data n_rows : int, optional Represents number of data rows that are will plot, by default None lat_origin : float, optional Represents the latitude which will be the center of the map, by default None lon_origin : float, optional Represents the longitude which will be the center of the map, by default None zoom_start : float, optional Initial zoom level for the map, by default 12 radius : float, optional Radius of each “point” of the heatmap, by default 8 base_map : Map, optional Represents the folium map. If not informed, a new map is generated using the function create_base_map(), with the lat_origin, lon_origin and zoom_start, by default None tile : str, optional Represents the map tiles, by default TILES[0] save_as_html : bool, optional Represents if want save this visualization in a new file .html, by default False filename : str, optional Represents the file name of new file .html, by default 'markers.html' Returns ------- Map folium Map """ if base_map is None: base_map = create_base_map( move_data, lat_origin, lon_origin, tile=tile, default_zoom_start=zoom_start, ) if n_rows is None: n_rows = move_data.shape[0] for i, row in enumerate(move_data.iloc[:n_rows].iterrows()): if i == 0: se = '<b>START</b>\n' color = 'green' elif i == n_rows - 1: se = '<b>END\ns</b>\n' color = 'red' else: se = '' color = 'blue' pop = ( se + '<b>Latitude:</b> ' + str(row[1][LATITUDE]) + '\n<b>Longitude:</b> ' + str(row[1][LONGITUDE]) + '\n<b>Datetime:</b> ' + str(row[1][DATETIME]) ) folium.Marker( location=[row[1][LATITUDE], row[1][LONGITUDE]], color=color, clustered_marker=True, popup=pop, icon=folium.Icon(color=color) ).add_to(base_map) if save_as_html: base_map.save(outfile=filename) return base_map def _filter_and_generate_colors( move_data: DataFrame, id_: Optional[int] = None, n_rows: Optional[int] = None, color: Optional[Text] = None, color_by_id: Optional[Dict] = None ) -> Tuple[DataFrame, List[Tuple]]: """ Filters the dataframe and generate colors for folium map. Parameters ---------- move_data : DataFrame Input trajectory data. id_: int, optional The TRAJ_ID's to be plotted, by default None n_rows : int, optional Represents number of data rows that are will plot, by default None. color: str, optional The color of the trajectory, of each trajectory or a colormap, by default None color_by_id: dict, optional A dictionary where the key is the trajectory id and value is a color(str), by default None. Returns ------- DataFrame Filtered trajectories list of tuples list containing a combination of id and color """ if n_rows is None: n_rows = move_data.shape[0] if id_ is not None: mv_df = move_data[move_data[TRAJ_ID] == id_].iloc[:n_rows][ [LATITUDE, LONGITUDE, DATETIME, TRAJ_ID] ] if not len(mv_df): raise IndexError('No user with id %s in dataframe' % id_) else: mv_df = move_data.iloc[:n_rows][ [LATITUDE, LONGITUDE, DATETIME, TRAJ_ID] ] if id_ is not None: if color is None: color = 'black' items = [(id_, color)] else: if color is None: color = 'Set1' ids = mv_df[TRAJ_ID].unique() if isinstance(color, str): try: cmap_ = get_cmap(color) num = cmap_.N colors = [ cmap_hex_color(cmap_, (i % num)) for i, _ in enumerate(ids) ] diff = (len(ids) // len(colors)) + 1 colors *= diff except ValueError: colors = [color] else: colors = color[:] items = [*zip(ids, colors)] if color_by_id is not None: keys = color_by_id.keys() for key in keys: for count, item in enumerate(items): if str(key) == str(item[0]): items[count] = (item[0], color_by_id[key]) return mv_df, items def _filter_generated_feature( move_data: DataFrame, feature: Text, values: Any ) -> DataFrame: """ Filters the values from the dataframe. Parameters ---------- move_data : DataFrame Input trajectory data. feature: str Name of the feature value: any value of the feature Returns ------- dataframe filtered dataframe """ if len(values) == 1: mv_df = move_data[move_data[feature] == values[0]] else: mv_df = move_data[ (move_data[feature] >= values[0]) & (move_data[feature] <= values[1]) ] if not len(mv_df): raise KeyError('No %s found in dataframe' % feature) return mv_df def _add_begin_end_markers_to_folium_map( move_data: DataFrame, base_map: Map, color: Optional[Text] = None, _id: Optional[int] = None ): """ Adds markers to the beggining and end of a trajectory. Adds a green marker to beginning of the trajectory and a red marker to the end of the trajectory. Parameters ---------- move_data : DataFrane Input trajectory data. base_map : Map, optional Represents the folium map. If not informed, a new map is generated. color : str, optional Color of the markers, by default None id: int, optional Id of the trajectory, by default None """ points = folium.map.FeatureGroup( 'The start and end points of trajectory {}'.format(_id or '') ) folium.Marker( location=[move_data.iloc[0][LATITUDE], move_data.iloc[0][LONGITUDE]], color='green', clustered_marker=True, popup='Início', icon=plugins.BeautifyIcon( icon='play', icon_shape='marker', background_color=color or 'green' ) ).add_to(points) folium.Marker( location=[move_data.iloc[-1][LATITUDE], move_data.iloc[-1][LONGITUDE]], color='red', clustered_marker=True, popup='Fim', icon=plugins.BeautifyIcon( icon='times-circle', icon_shape='marker', background_color=color or 'red' ) ).add_to(points) base_map.add_child(points) def _add_trajectories_to_folium_map( move_data: DataFrame, items: Tuple, base_map: Map, legend: Optional[bool] = True, save_as_html: Optional[bool] = True, filename: Optional[Text] = 'map.html', ): """ Adds a trajectory to a folium map with begin and end markers. Parameters ---------- move_data : DataFrame Input trajectory data. base_map : Map Represents the folium map. If not informed, a new map is generated. legend: bool Whether to add a legend to the map, by default True save_as_html : bool, optional Represents if want save this visualization in a new file .html, by default False. filename : str, optional Represents the file name of new file .html, by default 'map.html'. """ for _id, color in items: mv = move_data[move_data[TRAJ_ID] == _id] _add_begin_end_markers_to_folium_map(mv, base_map, color, _id) folium.PolyLine( mv[[LATITUDE, LONGITUDE]], color=color, weight=2.5, opacity=1 ).add_to(base_map) if legend: add_map_legend(base_map, 'Color by user ID', items) folium.map.LayerControl().add_to(base_map) if save_as_html: base_map.save(outfile=filename) def plot_trajectories_with_folium( move_data: DataFrame, n_rows: Optional[int] = None, lat_origin: Optional[float] = None, lon_origin: Optional[float] = None, zoom_start: Optional[float] = 12, legend: Optional[bool] = True, base_map: Optional[Map] = None, tile: Optional[Text] = TILES[0], save_as_html: Optional[bool] = False, color: Optional[Union[Text, List[Text]]] = None, color_by_id: Optional[Dict] = None, filename: Optional[Text] = 'plot_trajectories_with_folium.html', ) -> Map: """ Generate visualization of all trajectories with folium. Parameters ---------- move_data : DataFrame Input trajectory data. n_rows : int, optional Represents number of data rows that are will plot, by default None. lat_origin : float, optional Represents the latitude which will be the center of the map. If not entered, the first data from the dataset is used, by default None. lon_origin : float, optional Represents the longitude which will be the center of the map. If not entered, the first data from the dataset is used, by default None. zoom_start : int, optional Initial zoom level for the map, by default 12. legend: boolean Whether to add a legend to the map, by default True base_map : folium.folium.Map, optional Represents the folium map. If not informed, a new map is generated using the function create_base_map(), with the lat_origin, lon_origin and zoom_start, by default None. tile : str, optional Represents the map tiles, by default TILES[0] save_as_html : bool, optional Represents if want save this visualization in a new file .html, by default False. color : str, list, optional Represents line colors of visualization. Can be a single color name, a list of colors or a colormap name, by default None. color_by_id: dict, optional A dictionary where the key is the trajectory id and value is a color(str), by default None. filename : str, optional Represents the file name of new file .html, by default 'plot_trajectory_with_folium.html'. Returns ------- Map a folium map with visualization. """ if base_map is None: base_map = create_base_map( move_data, lat_origin, lon_origin, tile=tile, default_zoom_start=zoom_start, ) mv_df, items = _filter_and_generate_colors( move_data, n_rows=n_rows, color=color, color_by_id=color_by_id ) _add_trajectories_to_folium_map( mv_df, items, base_map, legend, save_as_html, filename ) return base_map def plot_trajectory_by_id_folium( move_data: DataFrame, id_: int, n_rows: Optional[int] = None, lat_origin: Optional[float] = None, lon_origin: Optional[float] = None, zoom_start: Optional[float] = 12, legend: Optional[bool] = True, base_map: Optional[Map] = None, tile: Optional[Text] = TILES[0], save_as_html: Optional[bool] = False, color: Optional[Union[Text, List[Text]]] = None, filename: Optional[Text] = 'plot_trajectories_with_folium.html', ) -> Map: """ Generate visualization of all trajectories with folium. Parameters ---------- move_data : DataFrame Input trajectory data id_: int Trajectory id to plot n_rows : int, optional Represents number of data rows that are will plot, by default None. lat_origin : float, optional Represents the latitude which will be the center of the map. If not entered, the first data from the dataset is used, by default None. lon_origin : float, optional Represents the longitude which will be the center of the map. If not entered, the first data from the dataset is used, by default None. zoom_start : int, optional Initial zoom level for the map, by default 12. legend: boolean Whether to add a legend to the map, by default True base_map : folium.folium.Map, optional Represents the folium map. If not informed, a new map is generated using the function create_base_map(), with the lat_origin, lon_origin and zoom_start, by default None. tile : str, optional Represents the map tiles, by default TILES[0] save_as_html : bool, optional Represents if want save this visualization in a new file .html, by default False. color : str, list, optional Represents line colors of visualization. Can be a single color name, a list of colors or a colormap name, by default None. filename : str, optional Represents the file name of new file .html, by default 'plot_trajectory_by_id_with_folium.html'. Returns ------- Map a folium map with visualization Raises ------ IndexError If there is no user with the id passed """ if base_map is None: base_map = create_base_map( move_data, lat_origin, lon_origin, tile=tile, default_zoom_start=zoom_start, ) mv_df, items = _filter_and_generate_colors(move_data, id_, n_rows, color) _add_trajectories_to_folium_map( mv_df, items, base_map, legend, save_as_html, filename ) return base_map def plot_trajectory_by_period( move_data: DataFrame, period: Text, id_: Optional[int] = None, n_rows: Optional[int] = None, lat_origin: Optional[float] = None, lon_origin: Optional[float] = None, zoom_start: Optional[float] = 12, legend: Optional[bool] = True, base_map: Optional[Map] = None, tile: Optional[Text] = TILES[0], save_as_html: Optional[bool] = False, color: Optional[Union[Text, List[Text]]] = None, color_by_id: Optional[Dict] = None, filename: Optional[Text] = 'plot_trajectories_by_period.html', ) -> Map: """ Generate visualization of all trajectories with folium. Parameters ---------- move_data : DataFrame Input trajectory data period: str Period of the day id_: int Trajectory id to plot, by default None n_rows : int, optional Represents number of data rows that are will plot, by default None. lat_origin : float, optional Represents the latitude which will be the center of the map. If not entered, the first data from the dataset is used, by default None. lon_origin : float, optional Represents the longitude which will be the center of the map. If not entered, the first data from the dataset is used, by default None. zoom_start : int, optional Initial zoom level for the map, by default 12. legend: boolean Whether to add a legend to the map, by default True base_map : folium.folium.Map, optional Represents the folium map. If not informed, a new map is generated using the function create_base_map(), with the lat_origin, lon_origin and zoom_start, by default None. tile : str, optional Represents the map tiles, by default TILES[0] save_as_html : bool, optional Represents if want save this visualization in a new file .html, by default False. color : str, list, optional Represents line colors of visualization. Can be a single color name, a list of colors or a colormap name, by default None. color_by_id: dict, optional A dictionary where the key is the trajectory id and value is a color, by default None. filename : str, optional Represents the file name of new file .html, by default 'plot_trajectories_by_period.html'. Returns ------- Map a folium map with visualization Raises ------ KeyError If period value is not found in dataframe IndexError If there is no user with the id passed """ if base_map is None: base_map = create_base_map( move_data, lat_origin, lon_origin, tile=tile, default_zoom_start=zoom_start, ) if PERIOD not in move_data: move_data.generate_time_of_day_features() mv_df = _filter_generated_feature(move_data, PERIOD, [period]) mv_df, items = _filter_and_generate_colors(mv_df, id_, n_rows, color, color_by_id) _add_trajectories_to_folium_map( mv_df, items, base_map, legend, save_as_html, filename ) return base_map def plot_trajectory_by_day_week( move_data: DataFrame, day_week: Text, id_: Optional[int] = None, n_rows: Optional[int] = None, lat_origin: Optional[float] = None, lon_origin: Optional[float] = None, zoom_start: Optional[float] = 12, legend: Optional[bool] = True, base_map: Optional[Map] = None, tile: Optional[Text] = TILES[0], save_as_html: Optional[bool] = False, color: Optional[Union[Text, List[Text]]] = None, color_by_id: Optional[Dict] = None, filename: Optional[Text] = 'plot_trajectories_by_day_week.html', ) -> Map: """ Generate visualization of all trajectories with folium. Parameters ---------- move_data : DataFrame Input trajectory data day_week: str Day of the week id_: int Trajectory id to plot, by default None n_rows : int, optional Represents number of data rows that are will plot, by default None. lat_origin : float, optional Represents the latitude which will be the center of the map. If not entered, the first data from the dataset is used, by default None. lon_origin : float, optional Represents the longitude which will be the center of the map. If not entered, the first data from the dataset is used, by default None. zoom_start : int, optional Initial zoom level for the map, by default 12. legend: boolean Whether to add a legend to the map, by default True base_map : folium.folium.Map, optional Represents the folium map. If not informed, a new map is generated using the function create_base_map(), with the lat_origin, lon_origin and zoom_start, by default None. tile : str, optional Represents the map tiles, by default TILES[0] save_as_html : bool, optional Represents if want save this visualization in a new file .html, by default False. color : str, list, optional Represents line colors of visualization. Can be a single color name, a list of colors or a colormap name, by default None. color_by_id: dict, optional A dictionary where the key is the trajectory id and value is a color, by default None. filename : str, optional Represents the file name of new file .html, by default 'plot_trajectories_by_day_week.html'. Returns ------- Map a folium map with visualization Raises ------ KeyError If period value is not found in dataframe IndexError If there is no user with the id passed """ if base_map is None: base_map = create_base_map( move_data, lat_origin, lon_origin, tile=tile, default_zoom_start=zoom_start, ) if DAY not in move_data: move_data.generate_day_of_the_week_features() mv_df = _filter_generated_feature(move_data, DAY, [day_week]) mv_df, items = _filter_and_generate_colors(mv_df, id_, n_rows, color, color_by_id) _add_trajectories_to_folium_map( mv_df, items, base_map, legend, save_as_html, filename ) return base_map def plot_trajectory_by_date( move_data: DataFrame, start_date: Text, end_date: Text, id_: Optional[int] = None, n_rows: Optional[int] = None, lat_origin: Optional[float] = None, lon_origin: Optional[float] = None, zoom_start: Optional[float] = 12, legend: Optional[bool] = True, base_map: Optional[Map] = None, tile: Optional[Text] = TILES[0], save_as_html: Optional[bool] = False, color: Optional[Union[Text, List[Text]]] = None, color_by_id: Optional[Dict] = None, filename: Optional[Text] = 'plot_trajectories_by_date.html', ) -> Map: """ Generate visualization of all trajectories with folium. Parameters ---------- move_data : DataFrame Input trajectory data start_date : str Represents start date of time period. end_date : str Represents end date of time period. id_: int, optional Trajectory id to plot, by default None n_rows : int, optional Represents number of data rows that are will plot, by default None. lat_origin : float, optional Represents the latitude which will be the center of the map. If not entered, the first data from the dataset is used, by default None. lon_origin : float, optional Represents the longitude which will be the center of the map. If not entered, the first data from the dataset is used, by default None. zoom_start : int, optional Initial zoom level for the map, by default 12. legend: boolean Whether to add a legend to the map, by default True base_map : folium.folium.Map, optional Represents the folium map. If not informed, a new map is generated using the function create_base_map(), with the lat_origin, lon_origin and zoom_start, by default None. tile : str, optional Represents the map tiles, by default TILES[0] save_as_html : bool, optional Represents if want save this visualization in a new file .html, by default False. color : str, list, optional Represents line colors of visualization. Can be a single color name, a list of colors or a colormap name, by default None. color_by_id: dict, optional A dictionary where the key is the trajectory id and value is a color, by default None. filename : str, optional Represents the file name of new file .html, by default 'plot_trajectories_by_date.html'. Returns ------- Map a folium map with visualization Raises ------ KeyError If period value is not found in dataframe IndexError If there is no user with the id passed """ if base_map is None: base_map = create_base_map( move_data, lat_origin, lon_origin, tile=tile, default_zoom_start=zoom_start, ) if isinstance(start_date, str): start_date = str_to_datetime(start_date).date() if isinstance(end_date, str): end_date = str_to_datetime(end_date).date() if DATE not in move_data: move_data.generate_date_features() mv_df = _filter_generated_feature(move_data, DATE, [start_date, end_date]) mv_df, items = _filter_and_generate_colors(mv_df, id_, n_rows, color, color_by_id) _add_trajectories_to_folium_map( mv_df, items, base_map, legend, save_as_html, filename ) return base_map def plot_trajectory_by_hour( move_data: DataFrame, start_hour: Text, end_hour: Text, id_: Optional[int] = None, n_rows: Optional[int] = None, lat_origin: Optional[float] = None, lon_origin: Optional[float] = None, zoom_start: Optional[float] = 12, legend: Optional[bool] = True, base_map: Optional[Map] = None, tile: Optional[Text] = TILES[0], save_as_html: Optional[bool] = False, color: Optional[Union[Text, List[Text]]] = None, color_by_id: Optional[Dict] = None, filename: Optional[Text] = 'plot_trajectories_by_hour.html', ) -> Map: """ Generate visualization of all trajectories with folium. Parameters ---------- move_data : DataFrame Input trajectory data start_hour : str Represents start hour of time period. end_hour : str Represents end hour of time period. id_: int, optional Trajectory id to plot, by default None n_rows : int, optional Represents number of data rows that are will plot, by default None. lat_origin : float, optional Represents the latitude which will be the center of the map. If not entered, the first data from the dataset is used, by default None. lon_origin : float, optional Represents the longitude which will be the center of the map. If not entered, the first data from the dataset is used, by default None. zoom_start : int, optional Initial zoom level for the map, by default 12. legend: boolean Whether to add a legend to the map, by default True base_map : folium.folium.Map, optional Represents the folium map. If not informed, a new map is generated using the function create_base_map(), with the lat_origin, lon_origin and zoom_start, by default None. tile : str, optional Represents the map tiles, by default TILES[0] save_as_html : bool, optional Represents if want save this visualization in a new file .html, by default False. color : str, list, optional Represents line colors of visualization. Can be a single color name, a list of colors or a colormap name, by default None. color_by_id: dict, optional A dictionary where the key is the trajectory id and value is a color, by default None. filename : str, optional Represents the file name of new file .html, by default 'plot_trajectories_by_hour.html'. Returns ------- Map a folium map with visualization Raises ------ KeyError If period value is not found in dataframe IndexError If there is no user with the id passed """ if base_map is None: base_map = create_base_map( move_data, lat_origin, lon_origin, tile=tile, default_zoom_start=zoom_start, ) if HOUR not in move_data: move_data.generate_hour_features() mv_df = _filter_generated_feature(move_data, HOUR, [start_hour, end_hour]) mv_df, items = _filter_and_generate_colors(mv_df, id_, n_rows, color, color_by_id) _add_trajectories_to_folium_map( mv_df, items, base_map, legend, save_as_html, filename ) return base_map def plot_stops( move_data: DataFrame, radius: Optional[float] = 0, weight: Optional[float] = 3, id_: Optional[int] = None, n_rows: Optional[int] = None, lat_origin: Optional[float] = None, lon_origin: Optional[float] = None, zoom_start: Optional[float] = 12, legend: Optional[bool] = True, base_map: Optional[Map] = None, tile: Optional[Text] = TILES[0], save_as_html: Optional[bool] = False, color: Optional[Union[Text, List[Text]]] = None, filename: Optional[Text] = 'plot_stops.html', ) -> Map: """ Generate visualization of all trajectories with folium. Parameters ---------- move_data : DataFrame Input trajectory data radius : float, optional The radius value is used to determine if a segment is a stop. If the value of the point in target_label is greater than radius, the segment is a stop, by default 0 weight: float, optional Stroke width in pixels, by default 3 id_: int, optional Trajectory id to plot, by default None n_rows : int, optional Represents number of data rows that are will plot, by default None. lat_origin : float, optional Represents the latitude which will be the center of the map. If not entered, the first data from the dataset is used, by default None. lon_origin : float, optional Represents the longitude which will be the center of the map. If not entered, the first data from the dataset is used, by default None. zoom_start : int, optional Initial zoom level for the map, by default 12. legend: boolean Whether to add a legend to the map, by default True base_map : folium.folium.Map, optional Represents the folium map. If not informed, a new map is generated using the function create_base_map(), with the lat_origin, lon_origin and zoom_start, by default None. tile : str, optional Represents the map tiles, by default TILES[0] save_as_html : bool, optional Represents if want save this visualization in a new file .html, by default False. color : str, list, optional Represents line colors of visualization. Can be a single color name, a list of colors or a colormap name, by default None. filename : str, optional Represents the file name of new file .html, by default 'plot_stops.html'. Returns ------- Map a folium map with visualization Raises ------ KeyError If period value is not found in dataframe IndexError If there is no user with the id passed """ if base_map is None: base_map = create_base_map( move_data, lat_origin, lon_origin, tile=tile, default_zoom_start=zoom_start, ) if SITUATION not in move_data: move_data.generate_move_and_stop_by_radius(radius=radius) mv_df = _filter_generated_feature(move_data, SITUATION, STOP) mv_df, items = _filter_and_generate_colors(mv_df, id_, n_rows, color) for _id, color in items: for stop in mv_df[mv_df[TRAJ_ID] == _id].iterrows(): base_map.add_child( folium.Circle( (stop[1][LATITUDE], stop[1][LONGITUDE]), color=color, weight=weight, radius=40, opacity=0.5, popup=stop[1][DATETIME], fill_color=color, fill_opacity=0.5, ) ) if legend: add_map_legend(base_map, 'Color by user ID', items) if save_as_html: base_map.save(outfile=filename) return base_map def plot_bbox( bbox_tuple: Tuple[float, float, float, float], base_map: Optional[Map] = None, tiles: Optional[Text] = TILES[0], color: Optional[Text] = 'red', save_as_html: Optional[bool] = False, filename: Optional[Text] = 'bbox.html' ) -> Map: """ Plots a bbox using Folium. Parameters ---------- bbox_tuple : tuple. Represents a bound box, that is a tuple of 4 values with the min and max limits of latitude e longitude. base_map: Folium map, optional A folium map to plot the trajectories. If None a map will be created, by default None. tiles : str, optional by default TILES[0] color : str, optional Represents color of lines on map, by default 'red'. file : str, optional Represents filename, by default 'bbox.html'. save_map: Boolean, optional Wether to save the bbox folium map, by default False. Returns ------- Map folium map with bounding box """ if base_map is None: base_map = folium.Map(tiles=tiles) base_map.fit_bounds( [[bbox_tuple[0], bbox_tuple[1]], [bbox_tuple[2], bbox_tuple[3]]] ) points_ = [ (bbox_tuple[0], bbox_tuple[1]), (bbox_tuple[0], bbox_tuple[3]), (bbox_tuple[2], bbox_tuple[3]), (bbox_tuple[2], bbox_tuple[1]), (bbox_tuple[0], bbox_tuple[1]), ] polygon = folium.PolyLine(points_, weight=3, color=color) polygon.add_to(base_map) if save_as_html: base_map.save(filename) return base_map def _format_tags(line, slice_): """ Create or format tags. Parameters ---------- line: Line to add a tag. slice_: Tag interval. Returns ------- str: formatted html tag """ map_formated_tags = map(lambda tag: '{}: {}'.format(tag, line[tag]), slice_) return '<br/>'.join(map_formated_tags) def _circle_maker( iter_tuple, user_lat, user_lon, slice_tags, user_point, radius, map_ ): """ Return a circle. Parameters ---------- iter_tuple: DataFrame iter_tuple. user_lat: str. Latitude column name. user_lon: str. Longitude column name. slice_tags: user_point: str. Point color. radius: float. radius size. map_: Folium map. """ _, line = iter_tuple x = line[user_lat] y = line[user_lon] tags_formated = _format_tags(line, slice_tags) folium.Circle( radius=radius, location=[x, y], popup=tags_formated, color=user_point, fill=False ).add_to(map_) def plot_points_folium( move_data: DataFrame, user_lat: Optional[Text] = LATITUDE, user_lon: Optional[Text] = LONGITUDE, user_point: Optional[Text] = USER_POINT, radius: Optional[float] = 2, base_map: Optional[Map] = None, slice_tags: Optional[List] = None, tiles: Optional[Text] = TILES[0], save_as_html: Optional[bool] = False, filename: Optional[Text] = 'points.html' ) -> Map: """ Generates a folium map with the trajectories plots and a point. Parameters ---------- move_data: Dataframe Trajectory data. user_lat: str, optional Latitude column name, by default LATITUDE. user_lon: str, optional Longitude column name, by default LONGITUDE. user_point: str, optional The point color, by default USER_POINT. radius: float, optional radius size, by default 2. sort:Boolean, optional If True the data will be sorted, by default False. base_map: Folium map, optional A folium map to plot the trajectories. If None a map will be created, by default None. slice_tags: optional, by default None. tiles: str, optional, by default TILES[0] The map type. save_as_html : bool, optional Represents if want save this visualization in a new file .html, by default False. filename : str, optional Represents the file name of new file .html, by default 'points.html'. Returns ------- Map A folium map """ if not slice_tags: slice_tags = move_data.columns # If not have a map a map is create with mean to lat and lon if not base_map: initial_lat = move_data[user_lat].mean() initial_lon = move_data[user_lon].mean() base_map = create_base_map( move_data=move_data, lat_origin=initial_lat, lon_origin=initial_lon, tile=tiles ) list( map( lambda x: _circle_maker( x, user_lat, user_lon, slice_tags, user_point, radius, base_map ), move_data.iterrows() ) ) if save_as_html: base_map.save(outfile=filename) return base_map def plot_poi_folium( move_data, poi_lat=LATITUDE, poi_lon=LONGITUDE, poi_point=POI_POINT, radius=2, base_map=None, slice_tags=None, tiles=TILES[0], save_as_html: Optional[bool] = False, filename: Optional[Text] = 'pois.html' ) -> Map: """ Receives a MoveDataFrame and returns a folium map with poi points. Parameters ---------- move_data: DataFrame Trajectory input data poi_lat: str, optional Latitude column name, by default LATITUDE. poi_lon: str, optional Longitude column name, by default LONGITUDE. poi_point: str, optional Poi point color, by default POI_POINT. radius: float, optional radius size, by default 2. base_map: Folium map, optional A folium map to plot. If None a map. If None a map will be created, by default None. slice_tags: optional, by default None. tiles: str, optional, by default TILES[0] The map type. save_as_html : bool, optional Represents if want save this visualization in a new file .html, by default False. filename : str, optional Represents the file name of new file .html, by default 'pois.html'. Returns ------- folium.folium.Map. Represents a folium map with visualization. """ return plot_points_folium( move_data, user_lat=poi_lat, user_lon=poi_lon, user_point=poi_point, radius=radius, base_map=base_map, slice_tags=slice_tags, tiles=tiles, save_as_html=save_as_html, filename=filename ) def plot_event_folium( move_data, event_lat=LATITUDE, event_lon=LONGITUDE, event_point=EVENT_POINT, radius=2, base_map=None, slice_tags=None, tiles=TILES[0], save_as_html: Optional[bool] = False, filename: Optional[Text] = 'events.html' ) -> Map: """ Receives a MoveDataFrame and returns a folium map with events. Parameters ---------- move_data: DataFrame Trajectory input data event_lat: str, optional Latitude column name, by default LATITUDE. event_lon: str, optional Longitude column name, by default LONGITUDE. event_point: str, optional Event color, by default EVENT_POI radius: float, optional radius size, by default 2. base_map: Folium map, optional A folium map to plot. If None a map. If None a map will be created, by default None. tiles: str, optional, by default TILES[0] save_as_html : bool, optional Represents if want save this visualization in a new file .html, by default False. filename : str, optional Represents the file name of new file .html, by default 'events.html'. Returns ------- A folium map. """ return plot_points_folium( move_data, user_lat=event_lat, user_lon=event_lon, user_point=event_point, radius=radius, base_map=base_map, slice_tags=slice_tags, tiles=tiles, save_as_html=save_as_html, filename=filename ) def show_trajs_with_event( move_data: DataFrame, window_time_subject: float, df_event: DataFrame, window_time_event: float, radius: float, event_lat: Optional[Text] = LATITUDE, event_lon: Optional[Text] = LONGITUDE, event_datetime: Optional[Text] = DATETIME, user_lat: Optional[Text] = LATITUDE, user_lon: Optional[Text] = LONGITUDE, user_datetime: Optional[Text] = DATETIME, event_id: Optional[Text] = EVENT_ID, event_point: Optional[Text] = EVENT_POINT, user_id: Optional[Text] = UID, user_point: Optional[Text] = USER_POINT, line_color: Optional[Text] = LINE_COLOR, slice_event_show: Optional[int] = None, slice_subject_show: Optional[int] = None, ) -> List[Map]: """ Plot a trajectory, including your user_points lat lon and your tags. Parameters ---------- move_data: DataFrame. Trajectory input data. window_time_subject: float. The subject time window. window_time_event: float. The event time window. radius: float. The radius to use. event_lat: str, optional Event latitude column name, by default LATITUDE. event_lon: str, optional Event longitude column name, by default LONGITUDE. event_datetime: str, optional Event datetime column name, by default DATETIME. user_lat: str, optional User latitude column name, by default LATITUDE. user_lon: str, optional User longitude column name, by default LONGITUDE. user_datetime: str, optional User datetime column name, by default DATETIME. event_id_: str, optional Event id column name, by default TRAJ_ID. event_point: str, optional Event color, by default EVENT_POI. user_id: str, optional User id column name, by default TRAJ_ID. user_point: str, optional User point color, by default USER_POINT. line_color: str, optional Line color, by default 'blue'. slice_event_show: int, optional by default None. slice_subject_show: int, optional by default None. Returns ------- list of Map A list of folium maps. """ # building structure for deltas delta_event = pd.to_timedelta(window_time_event, unit='s') delta_user = pd.to_timedelta(window_time_subject, unit='s') # length of df_user len_df_user = move_data.shape[0] # building structure for lat and lon array lat_arr = np.zeros(len_df_user) lon_arr = np.zeros(len_df_user) # folium map list folium_maps = [] # for each event in df_event for _, line in df_event.iterrows(): e_lat = line[event_lat] e_lon = line[event_lon] e_datetime = line[event_datetime] e_id = line[event_id] # building time window for event search start_time = pd.to_datetime(e_datetime - delta_event) end_time =
pd.to_datetime(e_datetime + delta_event)
pandas.to_datetime
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay from sklearn.metrics import accuracy_score from sklearn.model_selection import TimeSeriesSplit from keras.layers import Dropout from keras.layers import Dense, LSTM from keras.models import Sequential import numpy as np from sklearn.preprocessing import StandardScaler from matplotlib import pyplot as plt from datetime import timedelta from datetime import datetime import pandas as pd import datetime from dateutil.relativedelta import relativedelta from pandas_datareader import data as pdr from sklearn.metrics import r2_score, mean_squared_error # pandasのインポート # データの読み込み #df = pd.read_csv('finance_dataset.csv') # データフレームの表示 #df code = '6976' # '6976'#6758 #2021年から今日までの1年間のデータを取得しましょう。期日を決めて行きます。 # (2021, 1, 1) # 教師データ(今までのデータ) #start_train = datetime.date(2022, 1, 1) # 教師データ(今までのデータ) start_train=datetime.date.today() + relativedelta(days=-700) #dowstart_train = datetime.date(2022, 1, 5)#start_train + relativedelta(days=+3) # 昨日分(today-1日)まで取得できる(当日分は変動しているため) end_train = datetime.date.today() + relativedelta(days=-1) data = pdr.get_data_yahoo(f'{code}.T', start_train, end_train) # 教師データを読み込む。 Dow_df = pdr.get_data_yahoo('^DJI', start_train, end_train) # 試験データのcsvファイルを読み込む。 Nikkei_df = pdr.get_data_yahoo('^N225', start_train, end_train) # 試験データのcsvファイルを読み込む。 #データの前処理 #欠損データがあるので、欠損値NaNを除外する #df_NikkeiAll_drop = df_NikkeiAll.dropna() #df_NikkeiAll_drop.head() # 先頭の5行を表形式で表示 print(data.head()) ''' png インデックスが0から13966までの連番で、カラムに 日付('Date')、最高値('High')、最安値('Low')、始値('Open')、終値('Close')が設定されたデータフレームである事が確認できます。 日付('Date)は1965年1月5日から2021年10月21日までとなっています。 後に詳しく説明を行いますが、予測モデル作成に対して、目的変数の追加や、週ごとにデータを纏める必要があります。 そのために、曜日情報や初めの週を基準として何週目となるか等の情報と、今回の目的変数である木曜日の終値から翌日金曜日の始値が上がるかどうかの’Up’(上がる場合は'1', 同じ又は下がる場合は'0')を追加していきます。 次に、infoメソッドを用いて、欠損値の有無やカラムのデータ型の確認を行います。 ''' # 各カラムの詳細確認 data.info() ''' png 各カラム欠損値なしである事がわかります。 日付('Date')が’object'型となっています。今回の様な時系列データを用いる際には、'datetime64'型を用いる方が利便性が高い為、pandasの'to_datetime'メソッドを用いてデータ型の変換を行います。 ''' # 日付インデックスをりセット data.reset_index(drop=False,inplace=True) Dow_df.reset_index(drop=False,inplace=True) Nikkei_df.reset_index(drop=False, inplace=True) # Dateのデータ型をを'datetime'型へ変更 data['Date'] = pd.to_datetime(data['Date']) Dow_df['Date'] = pd.to_datetime(Dow_df['Date']) Nikkei_df['Date'] =
pd.to_datetime(Nikkei_df['Date'])
pandas.to_datetime
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jul 17 09:11:58 2020 @author: ets """ import datetime as dt import logging import re import warnings from pathlib import Path from typing import List, Tuple # import climpred import numpy as np import pandas as pd import xarray as xr from climpred import HindcastEnsemble from . import gis_import_error_message try: import rioxarray from clisops.core import subset except (ImportError, ModuleNotFoundError) as e: msg = gis_import_error_message.format(Path(__file__).stem) raise ImportError(msg) from e from ravenpy.models import get_model LOGGER = logging.getLogger("PYWPS") # TODO: Complete docstrings # This function gets model states after running the model (i.e. states at the end of the run). def get_raven_states(model, workdir=None, **kwds): """Get the RAVEN states file (.rvc file) after a model run. Parameters ---------- model : {'HMETS', 'GR4JCN', 'MOHYSE', 'HBVEC'} Model name. kwds : {} Model configuration parameters, including the forcing files (ts). Returns ------- rvc : {} Raven model forcing file """ # Run the model and get the rvc file for future hotstart. m = get_model(model)(workdir=workdir) m(overwrite=True, **kwds) rvc = m.outputs["solution"] return rvc # Do the actual forecasting step def perform_forecasting_step(rvc, model, workdir=None, **kwds): """ Function that might be useful eventually to do a forecast from a model setup. """ # kwds includes 'ts', the forecast timeseries data # Setup the model m = get_model(model)(workdir=workdir) # Force the initial conditions m.resume(rvc) # Set the parameters, start dates, etc. required to run the model and run m(overwrite=True, **kwds) return m.q_sim def perform_climatology_esp( model_name, forecast_date, forecast_duration, workdir=None, **kwds ): """ This function takes the model setup and name as well as forecast data and duration and returns an ESP forecast netcdf. The data comes from the climatology data and thus there is a mechanism to get the correct data from the time series and exclude the current year. Parameters ---------- model_name : {'HMETS', 'MOHYSE', 'GR4JCN', 'HBVEC'} Model name to instantiate Raven model. forecast_date : datetime.datetime Date of the forecast issue. forecast_duration : int Number of days of forecast, forward looking. kwds : dict Raven model configuration parameters. Returns ------- qsims Array of streamflow values from the ESP method along with list of member years """ # Get the timeseries tsnc = xr.open_dataset(kwds["ts"]) # Prepare model instance m = get_model(model_name)(workdir=workdir) # Now find the periods of time for warm-up and forecast and add to the model keywords as the defaults are failing # (nanoseconds datetimes do not like the year 0001...) start_date = pd.to_datetime(tsnc["time"][0].values) start_date = start_date.to_pydatetime() kwds["start_date"] = start_date # Forecasting from Feb 29th is not ideal, we will replace with Feb 28th. # Should not change much in a climatological forecast. if forecast_date.month == 2 and forecast_date.day == 29: forecast_date.replace(day=28) # Check to make sure forecast date is not in the first year as we need model warm-up. # We cannot use timedelta because if the dataset happens to start on a leap # year, then the timedelta=365 days will not be robust. (and we cannot use timedelta(years=1)...) dateLimit = start_date.replace(year=start_date.year + 1) if dateLimit > forecast_date: msg = ( "Forecast date is within the warm-up period. Select another forecast date." ) warnings.warn(msg) # initialize the array of forecast variables qsims = [] # list of unique years in the dataset: avail_years = list(np.unique(tsnc["time.year"].data)) # Take a copy of the forecast initial date before overwriting in the forecast step. forecast_date_main = forecast_date # Remove the year that we are forecasting. Or else it's cheating! avail_years.remove(forecast_date.year) # Update the forecast end-date, which will be the day prior to the forecast date. # So forecasts warm-up will be from day 1 in the dataset to the forecast date. kwds["end_date"] = forecast_date - dt.timedelta(days=1) # Get RVC file if it exists, else compute it. if len(kwds['rvc']) > 0: rvc=kwds.pop('rvc') else: # Run model to get rvc file after warm-up using base meteo rvc = get_raven_states(model_name, workdir=workdir, **kwds) # We need to check which years are long enough (ex: wrapping years, 365-day forecast starting in # September 2015 will need data up to August 2016 at least) for years in avail_years: if forecast_date.replace(year=years) + dt.timedelta( days=forecast_duration - 1 ) >
pd.to_datetime(tsnc["time"][-1].values)
pandas.to_datetime
# -*- coding: utf-8 -*- import csv import os import platform import codecs import re import sys from datetime import datetime import pytest import numpy as np from pandas._libs.lib import Timestamp import pandas as pd import pandas.util.testing as tm from pandas import DataFrame, Series, Index, MultiIndex from pandas import compat from pandas.compat import (StringIO, BytesIO, PY3, range, lrange, u) from pandas.errors import DtypeWarning, EmptyDataError, ParserError from pandas.io.common import URLError from pandas.io.parsers import TextFileReader, TextParser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ # Parsers support only length-1 decimals msg = 'Only length-1 decimal markers supported' with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(data), decimal='') def test_bad_stream_exception(self): # Issue 13652: # This test validates that both python engine # and C engine will raise UnicodeDecodeError instead of # c engine raising ParserError and swallowing exception # that caused read to fail. handle = open(self.csv_shiftjs, "rb") codec = codecs.lookup("utf-8") utf8 = codecs.lookup('utf-8') # stream must be binary UTF8 stream = codecs.StreamRecoder( handle, utf8.encode, utf8.decode, codec.streamreader, codec.streamwriter) if compat.PY3: msg = "'utf-8' codec can't decode byte" else: msg = "'utf8' codec can't decode byte" with tm.assert_raises_regex(UnicodeDecodeError, msg): self.read_csv(stream) stream.close() def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) self.read_csv(fname, index_col=0, parse_dates=True) def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) assert isinstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # see gh-8217 # Series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) assert not result._is_view def test_malformed(self): # see gh-6607 # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 4, saw 5' with tm.assert_raises_regex(Exception, msg): self.read_table(StringIO(data), sep=',', header=1, comment='#') # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with tm.assert_raises_regex(Exception, msg): it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) it.read(5) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with tm.assert_raises_regex(Exception, msg): it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) it.read(3) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with tm.assert_raises_regex(Exception, msg): it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) it.read() # skipfooter is not supported with the C parser yet if self.engine == 'python': # skipfooter data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ msg = 'Expected 3 fields in line 4, saw 5' with tm.assert_raises_regex(Exception, msg): self.read_table(StringIO(data), sep=',', header=1, comment='#', skipfooter=1) def test_quoting(self): bad_line_small = """printer\tresult\tvariant_name Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jacob Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jakob Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\t"Furststiftische Hofdruckerei, <Kempten"" Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tGaller, Alois Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tHochfurstliche Buchhandlung <Kempten>""" # noqa pytest.raises(Exception, self.read_table, StringIO(bad_line_small), sep='\t') good_line_small = bad_line_small + '"' df = self.read_table(StringIO(good_line_small), sep='\t') assert len(df) == 3 def test_unnamed_columns(self): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ expected = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]], dtype=np.int64) df = self.read_table(StringIO(data), sep=',') tm.assert_almost_equal(df.values, expected) tm.assert_index_equal(df.columns, Index(['A', 'B', 'C', 'Unnamed: 3', 'Unnamed: 4'])) def test_csv_mixed_type(self): data = """A,B,C a,1,2 b,3,4 c,4,5 """ expected = DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 3, 4], 'C': [2, 4, 5]}) out = self.read_csv(StringIO(data)) tm.assert_frame_equal(out, expected) def test_read_csv_dataframe(self): df = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = self.read_table(self.csv1, sep=',', index_col=0, parse_dates=True) tm.assert_index_equal(df.columns, pd.Index(['A', 'B', 'C', 'D'])) assert df.index.name == 'index' assert isinstance( df.index[0], (datetime, np.datetime64, Timestamp)) assert df.values.dtype == np.float64 tm.assert_frame_equal(df, df2) def test_read_csv_no_index_name(self): df = self.read_csv(self.csv2, index_col=0, parse_dates=True) df2 = self.read_table(self.csv2, sep=',', index_col=0, parse_dates=True) tm.assert_index_equal(df.columns, pd.Index(['A', 'B', 'C', 'D', 'E'])) assert isinstance(df.index[0], (datetime, np.datetime64, Timestamp)) assert df.loc[:, ['A', 'B', 'C', 'D']].values.dtype == np.float64 tm.assert_frame_equal(df, df2) def test_read_table_unicode(self): fin = BytesIO(u('\u0141aski, Jan;1').encode('utf-8')) df1 = self.read_table(fin, sep=";", encoding="utf-8", header=None) assert isinstance(df1[0].values[0], compat.text_type) def test_read_table_wrong_num_columns(self): # too few! data = """A,B,C,D,E,F 1,2,3,4,5,6 6,7,8,9,10,11,12 11,12,13,14,15,16 """ pytest.raises(ValueError, self.read_csv, StringIO(data)) def test_read_duplicate_index_explicit(self): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ result = self.read_csv(StringIO(data), index_col=0) expected = self.read_csv(StringIO(data)).set_index( 'index', verify_integrity=False) tm.assert_frame_equal(result, expected) result = self.read_table(StringIO(data), sep=',', index_col=0) expected = self.read_table(StringIO(data), sep=',', ).set_index( 'index', verify_integrity=False) tm.assert_frame_equal(result, expected) def test_read_duplicate_index_implicit(self): data = """A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ # make sure an error isn't thrown self.read_csv(StringIO(data)) self.read_table(StringIO(data), sep=',') def test_parse_bools(self): data = """A,B True,1 False,2 True,3 """ data = self.read_csv(StringIO(data)) assert data['A'].dtype == np.bool_ data = """A,B YES,1 no,2 yes,3 No,3 Yes,3 """ data = self.read_csv(StringIO(data), true_values=['yes', 'Yes', 'YES'], false_values=['no', 'NO', 'No']) assert data['A'].dtype == np.bool_ data = """A,B TRUE,1 FALSE,2 TRUE,3 """ data = self.read_csv(StringIO(data)) assert data['A'].dtype == np.bool_ data = """A,B foo,bar bar,foo""" result = self.read_csv(StringIO(data), true_values=['foo'], false_values=['bar']) expected = DataFrame({'A': [True, False], 'B': [False, True]}) tm.assert_frame_equal(result, expected) def test_int_conversion(self): data = """A,B 1.0,1 2.0,2 3.0,3 """ data = self.read_csv(StringIO(data)) assert data['A'].dtype == np.float64 assert data['B'].dtype == np.int64 def test_read_nrows(self): expected = self.read_csv(StringIO(self.data1))[:3] df = self.read_csv(StringIO(self.data1), nrows=3) tm.assert_frame_equal(df, expected) # see gh-10476 df = self.read_csv(StringIO(self.data1), nrows=3.0) tm.assert_frame_equal(df, expected) msg = r"'nrows' must be an integer >=0" with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), nrows=1.2) with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), nrows='foo') with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), nrows=-1) def test_read_chunksize(self): reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # with invalid chunksize value: msg = r"'chunksize' must be an integer >=1" with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), chunksize=1.3) with
tm.assert_raises_regex(ValueError, msg)
pandas.util.testing.assert_raises_regex
import numpy as np import pandas as pd import scanpy as sc from termcolor import colored import time import matplotlib import matplotlib.pyplot as plt from sklearn.metrics.pairwise import euclidean_distances import umap import phate import seaborn as sns from pyVIA.core import * def cellrank_Human(ncomps=80, knn=30, v0_random_seed=7): import scvelo as scv dict_abb = {'Basophils': 'BASO1', 'CD4+ Effector Memory': 'TCEL7', 'Colony Forming Unit-Granulocytes': 'GRAN1', 'Colony Forming Unit-Megakaryocytic': 'MEGA1', 'Colony Forming Unit-Monocytes': 'MONO1', 'Common myeloid progenitors': "CMP", 'Early B cells': "PRE_B2", 'Eosinophils': "EOS2", 'Erythroid_CD34- CD71+ GlyA-': "ERY2", 'Erythroid_CD34- CD71+ GlyA+': "ERY3", 'Erythroid_CD34+ CD71+ GlyA-': "ERY1", 'Erythroid_CD34- CD71lo GlyA+': 'ERY4', 'Granulocyte/monocyte progenitors': "GMP", 'Hematopoietic stem cells_CD133+ CD34dim': "HSC1", 'Hematopoietic stem cells_CD38- CD34+': "HSC2", 'Mature B cells class able to switch': "B_a2", 'Mature B cells class switched': "B_a4", 'Mature NK cells_CD56- CD16- CD3-': "Nka3", 'Monocytes': "MONO2", 'Megakaryocyte/erythroid progenitors': "MEP", 'Myeloid Dendritic Cells': 'mDC', 'Naïve B cells': "B_a1", 'Plasmacytoid Dendritic Cells': "pDC", 'Pro B cells': 'PRE_B3'} string_ = 'ncomp =' + str(ncomps) + ' knn=' + str(knn) + ' randseed=' + str(v0_random_seed) # print('ncomp =', ncomps, ' knn=', knn, ' randseed=', v0_random_seed) print(colored(string_, 'blue')) nover_labels = pd.read_csv('/home/shobi/Trajectory/Datasets/HumanCD34/Nover_Cor_PredFine_notLogNorm.csv')[ 'x'].values.tolist() nover_labels = [dict_abb[i] for i in nover_labels] for i in list(set(nover_labels)): print('the population of ', i, 'is ', nover_labels.count(i)) ad = scv.read_loom('/home/shobi/Downloads/Human Hematopoietic Profiling homo_sapiens 2019-11-08 16.12.loom') print(ad) # ad = sc.read('/home/shobi/Trajectory/Datasets/HumanCD34/human_cd34_bm_rep1.h5ad') # ad.obs['nover_label'] = nover_labels print('start cellrank pipeline', time.ctime()) # scv.utils.show_proportions(ad) scv.pl.proportions(ad) scv.pp.filter_and_normalize(ad, min_shared_counts=20, n_top_genes=2000) sc.tl.pca(ad, n_comps=ncomps) n_pcs = ncomps print('npcs', n_pcs, 'knn', knn) sc.pp.neighbors(ad, n_pcs=n_pcs, n_neighbors=knn) sc.tl.louvain(ad, key_added='clusters', resolution=1) scv.pp.moments(ad, n_pcs=n_pcs, n_neighbors=knn) scv.tl.velocity(ad) scv.tl.velocity_graph(ad) scv.pl.velocity_embedding_stream(ad, basis='umap', color='nover_label') def adata_preprocess(adata, n_top_genes=1000, log=True): # this is a lot like the steps for scvelo.pp.filter_and_normalize() which also allows selection of top genes (see Pancreas) sc.pp.filter_genes(adata, min_counts=1) # only consider genes with more than 1 count#1 # print(adata) sc.pp.normalize_per_cell( # normalize with total UMI count per cell #same as normalize_total() adata, key_n_counts='n_counts_all' ) # select highly-variable genes filter_result = sc.pp.filter_genes_dispersion(adata.X, flavor='cell_ranger', n_top_genes=n_top_genes, log=False) adata = adata[:, filter_result.gene_subset] # subset the genes sc.pp.normalize_per_cell(adata) # renormalize after filtering if log: sc.pp.log1p(adata) # log transform: adata.X = log(adata.X + 1) ''' total = adata.X total = total.sum(axis=0).transpose() total = pd.DataFrame(total.transpose()) print('total') print(total.shape) #total = total.sum(axis=0).transpose() total.columns = [i for i in adata.var_names] print(total) total.to_csv('/home/shobi/Trajectory/Datasets/HumanCD34/library_counts_500hvg.csv') sc.pp.scale(adata, max_value=10) from sklearn.decomposition import PCA pca = PCA(n_components=499) # estimate only 2 PCs X_new = pca.fit_transform(adata.X) print('variance explained') print(pca.explained_variance_ratio_) print('pca.components_ shape ncomp x nfeat') print() df = pd.DataFrame(abs(pca.components_)) df.to_csv('/home/shobi/Trajectory/Datasets/HumanCD34/pca_components_importance_500hvg.csv') print('done saving') ''' # sc.pp.scale(adata, max_value=10)zheng scales after the log, but this doesnt work well and is also not used in scvelo.pp.filter_and_normalize return adata def main_Human(ncomps=80, knn=30, v0_random_seed=7, run_palantir_func=False): ''' df = pd.read_csv('/home/shobi/Trajectory/Datasets/HumanCD34/pca_components_importance_500hvg.csv') print(df) df = df.set_index('Unnamed: 0') print(df) df = df.sort_values(by='totals', axis=1, ascending = False) df.to_csv('/home/shobi/Trajectory/Datasets/HumanCD34/pca_components_importance_sorted_500hvg.csv') print('saved') ''' import random random.seed(100) dict_abb = {'Basophils': 'BASO1', 'CD4+ Effector Memory': 'TCEL7', 'Colony Forming Unit-Granulocytes': 'GRAN1', 'Colony Forming Unit-Megakaryocytic': 'MEGA1', 'Colony Forming Unit-Monocytes': 'MONO1', 'Common myeloid progenitors': "CMP", 'Early B cells': "PRE_B2", 'Eosinophils': "EOS2", 'Erythroid_CD34- CD71+ GlyA-': "ERY2", 'Erythroid_CD34- CD71+ GlyA+': "ERY3", 'Erythroid_CD34+ CD71+ GlyA-': "ERY1", 'Erythroid_CD34- CD71lo GlyA+': 'ERY4', 'Granulocyte/monocyte progenitors': "GMP", 'Hematopoietic stem cells_CD133+ CD34dim': "HSC1", 'Hematopoietic stem cells_CD38- CD34+': "HSC2", 'Mature B cells class able to switch': "B_a2", 'Mature B cells class switched': "B_a4", 'Mature NK cells_CD56- CD16- CD3-': "Nka3", 'Monocytes': "MONO2", 'Megakaryocyte/erythroid progenitors': "MEP", 'Myeloid Dendritic Cells': 'mDC (cDC)', 'Naïve B cells': "B_a1", 'Plasmacytoid Dendritic Cells': "pDC", 'Pro B cells': 'PRE_B3'} # NOTE: Myeloid DCs are now called Conventional Dendritic Cells cDCs string_ = 'ncomp =' + str(ncomps) + ' knn=' + str(knn) + ' randseed=' + str(v0_random_seed) # print('ncomp =', ncomps, ' knn=', knn, ' randseed=', v0_random_seed) print(colored(string_, 'blue')) nover_labels = pd.read_csv('/home/shobi/Trajectory/Datasets/HumanCD34/Nover_Cor_PredFine_notLogNorm.csv')[ 'x'].values.tolist() nover_labels = [dict_abb[i] for i in nover_labels] df_nover = pd.DataFrame(nover_labels) # df_nover.to_csv('/home/shobi/Trajectory/Datasets/HumanCD34/noverLabelsforMonocle.csv') print('save nover') for i in list(set(nover_labels)): print('the population of ', i, 'is ', nover_labels.count(i)) parc53_labels = pd.read_csv('/home/shobi/Trajectory/Datasets/HumanCD34/Nover_Cor_Parc53_set1.csv')[ 'x'].values.tolist() parclabels_all = pd.read_csv('/home/shobi/Trajectory/Datasets/HumanCD34/parclabels_all_set1.csv')[ 'parc'].values.tolist() parc_dict_nover = {} for i, c in enumerate(parc53_labels): parc_dict_nover[i] = dict_abb[c] parclabels_all = [parc_dict_nover[ll] for ll in parclabels_all] # print('all', len(parclabels_all)) ad = sc.read( '/home/shobi/Trajectory/Datasets/HumanCD34/human_cd34_bm_rep1.h5ad') # 5780 cells x 14651 genes Human Replicate 1. Male african american, 38 years print('h5ad ad size', ad) colors = pd.Series(ad.uns['cluster_colors']) colors['10'] = '#0b128f' ct_colors = pd.Series(ad.uns['ct_colors']) list_var_names = ad.var_names # print(list_var_names) ad.uns['iroot'] = np.flatnonzero(ad.obs_names == ad.obs['palantir_pseudotime'].idxmin())[0] print('iroot', np.flatnonzero(ad.obs_names == ad.obs['palantir_pseudotime'].idxmin())[0]) tsne = pd.DataFrame(ad.obsm['tsne'], index=ad.obs_names, columns=['x', 'y']) tsnem = ad.obsm['tsne'] palantir_tsne_df = pd.DataFrame(tsnem) # palantir_tsne_df.to_csv('/home/shobi/Trajectory/Datasets/HumanCD34/palantir_tsne.csv') revised_clus = ad.obs['clusters'].values.tolist().copy() loc_DCs = [i for i in range(5780) if ad.obs['clusters'].values.tolist()[i] == '7'] for loc_i in loc_DCs: if ad.obsm['palantir_branch_probs'][loc_i, 5] > ad.obsm['palantir_branch_probs'][ loc_i, 2]: # if prob that cDC > pDC, then relabel as cDC revised_clus[loc_i] = '10' revised_clus = [int(i) for i in revised_clus] # magic_df = ad.obsm['MAGIC_imputed_data'] # ad.X: Filtered, normalized and log transformed count matrix # ad.raw.X: Filtered raw count matrix # print('before extra filtering' ,ad.shape) # sc.pp.filter_genes(ad, min_cells=10) # print('after extra filtering', ad.shape) adata_counts = sc.AnnData(ad.X) print(ad.raw.X.shape) # df_X = pd.DataFrame(ad.raw.X.todense(), columns = ad.var_names) # df_X.columns = [i for i in ad.var_names] # print('starting to save .X') # df_X.to_csv("/home/shobi/Trajectory/Datasets/HumanCD34/expression_matrix_raw.csv") print('finished save .X') # (ad.X) # ad.X is filtered, lognormalized,scaled// ad.raw.X is the filtered but not pre-processed adata_counts.obs_names = ad.obs_names adata_counts.var_names = ad.var_names adata_counts_raw = sc.AnnData(ad.raw.X) adata_counts_raw.var_names = [i for i in ad.var_names] # adata_counts_raw = adata_preprocess(adata_counts_raw, n_top_genes=500, log=True) # when using HVG and no PCA # sc.tl.pca(adata_counts_raw,svd_solver='arpack', n_comps=ncomps) sc.tl.pca(adata_counts, svd_solver='arpack', n_comps=ncomps) marker = ['x', '+', (5, 0), '>', 'o', (5, 2)] import colorcet as cc # tsnem = TSNE().fit_transform(adata_counts.obsm['X_pca']) ''' f, (ax1, ax2, ax3) = plt.subplots(1, 3, sharey=True) line = np.linspace(0, 1, len(set(revised_clus))) for color, group in zip(line, set(revised_clus)): where = np.where(np.array(revised_clus) == group)[0] ax1.scatter(tsnem[where, 0], tsnem[where, 1], label=group, c=np.asarray(plt.cm.jet(color)).reshape(-1, 4)) ax1.legend() ax1.set_title('Palantir Phenograph Labels') import colorcet as cc marker = ['x', '+', (5, 0), '>', 'o', (5, 2)] line_nover = np.linspace(0, 1, len(set(nover_labels))) col_i = 0 for color, group in zip(line_nover, set(nover_labels)): where = np.where(np.array(nover_labels) == group)[0] marker_x = marker[random.randint(0, 5)] # ax2.scatter(tsnem[where, 0],tsnem[where, 1], label=group, c=plt.cm.nipy_spectral(color), marker = marker_x, alpha=0.5) ax2.scatter(tsnem[where, 0], tsnem[where, 1], label=group, c=cc.glasbey_dark[col_i], marker=marker_x, alpha=0.5) col_i = col_i + 1 ax2.legend(fontsize=6) ax2.set_title('Novershtern Corr. Labels') line = np.linspace(0, 1, len(set(parclabels_all))) col_i = 0 for color, group in zip(line, set(parclabels_all)): where = np.where(np.array(parclabels_all) == group)[0] ax3.scatter(tsnem[where, 0], tsnem[where, 1], label=group, c=cc.glasbey_dark[col_i], alpha=0.5) col_i = col_i + 1 ax3.legend() ax3.set_title('Parc53 Nover Labels') # plt.show() ''' ''' plt.figure(figsize=[5, 5]) plt.title('palantir, ncomps = ' + str(ncomps) + ' knn' + str(knn)) for group in set(revised_clus): loc_group = np.where(np.asarray(revised_clus) == group)[0] plt.scatter(tsnem[loc_group, 0], tsnem[loc_group, 1], s=5, color=colors[group], label=group) ax = plt.gca() ax.set_axis_off() ax.legend(fontsize=6) ''' gene_list = [ 'ITGAX'] # ['GATA1', 'GATA2', 'ITGA2B', 'CSF1R', 'MPO', 'CD79B', 'SPI1', 'IRF8', 'CD34', 'IL3RA', 'ITGAX', 'IGHD', # 'CD27', 'CD14', 'CD22', 'ITGAM', 'CLC', 'MS4A3', 'FCGR3A', 'CSF1R'] true_label = nover_labels # revised_clus root_user = [4823] print('v0 random seed', v0_random_seed) # df_temp_write = pd.DataFrame(adata_counts.obsm['X_pca'][:, 0:200]) # df_temp_write.to_csv("/home/shobi/Trajectory/Datasets/HumanCD34/Human_CD34_200PCA.csv") Xin = adata_counts.obsm['X_pca'][:, 0:ncomps] # Xin = adata_counts_raw.obsm['X_pca'][:, 0:ncomps] # Xin = adata_counts_raw.X.todense() print(time.ctime()) print(time.ctime()) v0 = VIA(Xin, true_label, jac_std_global=0.15, dist_std_local=1, knn=knn, too_big_factor=0.2, root_user=root_user, dataset='humanCD34', preserve_disconnected=True, random_seed=v0_random_seed, do_impute_bool=True, is_coarse=True, pseudotime_threshold_TS=10, neighboring_terminal_states_threshold=3) # *.4 root=1, v0.run_VIA() v0.make_JSON(filename='scRNA_Hema_temp.js') super_labels = v0.labels print('starting to save selected genes') genes_save = ['ITGAX', 'GATA1', 'GATA2', 'ITGA2B', 'CSF1R', 'MPO', 'CD79B', 'SPI1', 'IRF8', 'CD34', 'IL3RA', 'ITGAX', 'IGHD', 'CD27', 'CD14', 'CD22', 'ITGAM', 'CLC', 'MS4A3', 'FCGR3A', 'CSF1R'] df_selected_genes = pd.DataFrame(adata_counts.X, columns=[cc for cc in adata_counts.var_names]) df_selected_genes = df_selected_genes[genes_save] # df_selected_genes.to_csv("/home/shobi/Trajectory/Datasets/HumanCD34/selected_genes.csv") df_ = pd.DataFrame(ad.X) df_.columns = [i for i in ad.var_names] print('start magic') gene_list_magic = ['IL3RA', 'IRF8', 'GATA1', 'GATA2', 'ITGA2B', 'MPO', 'CD79B', 'SPI1', 'CD34', 'CSF1R', 'ITGAX'] df_magic = v0.do_impute(df_, magic_steps=3, gene_list=gene_list_magic) df_magic_cluster = df_magic.copy() df_magic_cluster['parc'] = v0.labels df_magic_cluster = df_magic_cluster.groupby('parc', as_index=True).mean() print('end magic', df_magic.shape) f, ((ax, ax1)) = plt.subplots(1, 2, sharey=True) v0.draw_piechart_graph(ax, ax1, type_pt='gene', gene_exp=df_magic_cluster['GATA1'].values, title='GATA1') plt.show() super_clus_ds_PCA_loc = sc_loc_ofsuperCluster_PCAspace(v0, v0, np.arange(0, len(true_label))) draw_trajectory_gams(tsnem, super_clus_ds_PCA_loc, super_labels, super_labels, v0.edgelist_maxout, v0.x_lazy, v0.alpha_teleport, v0.single_cell_pt_markov, true_label, knn=v0.knn, final_super_terminal=v0.terminal_clusters, sub_terminal_clusters=v0.terminal_clusters, title_str='Markov Hitting Times (Gams)', ncomp=str(Xin.shape[1])) plt.show() print('super labels', set(super_labels)) ad.obs['via0_label'] = [str(i) for i in super_labels] magic_ad = ad.obsm['MAGIC_imputed_data'] magic_ad = sc.AnnData(magic_ad) magic_ad.obs_names = ad.obs_names magic_ad.var_names = ad.var_names magic_ad.obs['via0_label'] = [str(i) for i in super_labels] marker_genes = {"ERY": ['GATA1', 'GATA2', 'ITGA2B'], "BCell": ['IGHD', 'CD22'], "DC": ['IRF8', 'IL3RA', 'IRF4', 'CSF2RA', 'ITGAX'], "MONO": ['CD14', 'SPI1', 'MPO', 'IL12RB1', 'IL13RA1', 'C3AR1', 'FCGR3A'], 'HSC': ['CD34']} sc.pl.matrixplot(magic_ad, marker_genes, groupby='via0_label', dendrogram=True) ''' sc.tl.rank_genes_groups(ad, groupby='via0_label', use_raw=True, method='wilcoxon', n_genes=10) # compute differential expression sc.pl.rank_genes_groups_heatmap(ad, n_genes=10, groupby="via0_label", show_gene_labels=True, use_raw=False) sc.pl.rank_genes_groups_tracksplot(ad, groupby='via0_label', n_genes = 3) # plot the result ''' loaded_magic_df = pd.read_csv('/home/shobi/Trajectory/Datasets/HumanCD34/MAGIC_palantir_knn30ncomp100_subset.csv') # loaded_magic_df.head() for gene_name in ['ITGA2B', 'IL3RA', 'IRF8', 'MPO', 'CSF1R', 'GATA2', 'CD79B', 'CD34', 'GATA1', 'IL3RA']: # ,'SPI1', 'CD34','CSF1R','IL3RA','IRF4', 'CSF2RA','ITGAX']: print('gene name', gene_name) # DC markers https://www.cell.com/pb-assets/products/nucleus/nucleus-phagocytes/rnd-systems-dendritic-cells-br.pdf gene_name_dict = {'GATA1': 'GATA1', 'GATA2': 'GATA2', 'ITGA2B': 'CD41 (Mega)', 'MPO': 'MPO (Mono)', 'CD79B': 'CD79B (B)', 'IRF8': 'IRF8 (DC)', 'SPI1': 'PU.1', 'CD34': 'CD34', 'CSF1R': 'CSF1R (cDC Up. Up then Down in pDC)', 'IL3RA': 'CD123 (pDC)', 'IRF4': 'IRF4 (pDC)', 'ITGAX': 'ITGAX (cDCs)', 'CSF2RA': 'CSF2RA (cDC)'} loc_gata = np.where(np.asarray(ad.var_names) == gene_name)[0][0] magic_ad = ad.obsm['MAGIC_imputed_data'][:, loc_gata] magic_ad = loaded_magic_df[gene_name] # subset_ = magic_ad subset_ = df_magic[gene_name].values print(subset_.shape) # print('shapes of magic_ad 1 and 2', magic_ad.shape,subset_.shape) # v1.get_gene_expression(magic_ad,title_gene = gene_name_dict[gene_name]) v0.get_gene_expression(subset_, title_gene=gene_name_dict[gene_name]) plt.show() super_edges = v0.edgelist_maxout # v0.edgelist tsi_list = get_loc_terminal_states(v0, Xin) v1 = VIA(Xin, true_label, jac_std_global=0.15, dist_std_local=1, knn=knn, too_big_factor=0.05, super_cluster_labels=super_labels, super_node_degree_list=v0.node_degree_list, super_terminal_cells=tsi_list, root_user=root_user, x_lazy=0.95, alpha_teleport=0.99, dataset='humanCD34', preserve_disconnected=True, super_terminal_clusters=v0.terminal_clusters, is_coarse=False, full_neighbor_array=v0.full_neighbor_array, ig_full_graph=v0.ig_full_graph, full_distance_array=v0.full_distance_array, csr_array_locally_pruned=v0.csr_array_locally_pruned, random_seed=v0_random_seed, pseudotime_threshold_TS=10) # *.4super_terminal_cells = tsi_list #3root=1, v1.run_VIA() labels = v1.labels v1.make_JSON(filename='scRNA_Hema_via1_temp.js') df_magic_cluster = df_magic.copy() df_magic_cluster['via1'] = v1.labels df_magic_cluster = df_magic_cluster.groupby('via1', as_index=True).mean() # print('df_magic_cluster', df_magic_cluster) ''' #Get the clustsergraph gene expression on topology for gene_i in gene_list_magic: f, ((ax, ax1)) = plt.subplots(1, 2, sharey=True) v1.draw_piechart_graph(ax,ax1,type_pt='gene', gene_exp = df_magic_cluster[gene_i].values, title = gene_i) plt.show() ''' ad.obs['parc1_label'] = [str(i) for i in labels] ''' tsi_list = [] # find the single-cell which is nearest to the average-location of a terminal cluster for tsi in v1.revised_super_terminal_clusters: loc_i = np.where(super_labels == tsi)[0] temp = np.mean(adata_counts.obsm['X_pca'][:, 0:ncomps][loc_i], axis=0) labelsq, distances = v0.knn_struct.knn_query(temp, k=1) tsi_list.append(labelsq[0][0]) sc.tl.rank_genes_groups(ad, groupby='parc1_label', use_raw=True, method='wilcoxon', n_genes=10) # compute differential expression sc.pl.matrixplot(ad, marker_genes, groupby='parc1_label', use_raw=False) sc.pl.rank_genes_groups_heatmap(ad, n_genes=3, groupby="parc1_label", show_gene_labels=True, use_raw=False) ''' label_df = pd.DataFrame(labels, columns=['parc']) # label_df.to_csv('/home/shobi/Trajectory/Datasets/HumanCD34/parclabels.csv', index=False) gene_ids = adata_counts.var_names obs = ad.raw.X.toarray() print('shape obs', obs.shape) obs = pd.DataFrame(obs, columns=gene_ids) # obs['parc']=v1.labels obs['louvain'] = revised_clus # obs_average = obs.groupby('parc', as_index=True).mean() obs_average = obs.groupby('louvain', as_index=True).mean() # print(obs_average.head()) # obs_average.to_csv('/home/shobi/Trajectory/Datasets/HumanCD34/louvain_palantir_average.csv', index=False) ad_obs = sc.AnnData(obs_average) ad_obs.var_names = gene_ids ad_obs.obs['parc'] = [i for i in range(len(set(revised_clus)))] # v1.labels instaed of revised_clus # sc.write('/home/shobi/Trajectory/Datasets/HumanCD34/louvain_palantir_average.h5ad',ad_obs) # fig_0, ax_0 = plt.subplots() loaded_magic_df = pd.read_csv('/home/shobi/Trajectory/Datasets/HumanCD34/MAGIC_palantir_knn30ncomp100_subset.csv') # loaded_magic_df.head() for gene_name in ['ITGA2B', 'IL3RA', 'IRF8', 'MPO', 'CSF1R', 'GATA2', 'CD79B', 'CD34']: # ['GATA1', 'GATA2', 'ITGA2B', 'MPO', 'CD79B','IRF8','SPI1', 'CD34','CSF1R','IL3RA','IRF4', 'CSF2RA','ITGAX']: print('gene name', gene_name) # DC markers https://www.cell.com/pb-assets/products/nucleus/nucleus-phagocytes/rnd-systems-dendritic-cells-br.pdf gene_name_dict = {'GATA1': 'GATA1', 'GATA2': 'GATA2', 'ITGA2B': 'CD41 (Mega)', 'MPO': 'MPO (Mono)', 'CD79B': 'CD79B (B)', 'IRF8': 'IRF8 (DC)', 'SPI1': 'PU.1', 'CD34': 'CD34', 'CSF1R': 'CSF1R (cDC Up. Up then Down in pDC)', 'IL3RA': 'CD123 (pDC)', 'IRF4': 'IRF4 (pDC)', 'ITGAX': 'ITGAX (cDCs)', 'CSF2RA': 'CSF2RA (cDC)'} loc_gata = np.where(np.asarray(ad.var_names) == gene_name)[0][0] magic_ad = ad.obsm['MAGIC_imputed_data'][:, loc_gata] magic_ad = loaded_magic_df[gene_name] # subset_ = magic_ad subset_ = df_magic[gene_name].values print(subset_.shape) # print('shapes of magic_ad 1 and 2', magic_ad.shape,subset_.shape) # v1.get_gene_expression(magic_ad,title_gene = gene_name_dict[gene_name]) v1.get_gene_expression(subset_, title_gene=gene_name_dict[gene_name]) # v0.get_gene_expression(subset_, title_gene=gene_name_dict[gene_name] + 'VIA MAGIC') print('start tsne') n_downsample = 4000 if len(labels) > n_downsample: # idx = np.random.randint(len(labels), size=4000) np.random.seed(2357) idx = np.random.choice(a=np.arange(0, len(labels)), size=5780, replace=False, p=None) super_labels = np.asarray(super_labels)[idx] labels = list(np.asarray(labels)[idx]) print('labels p1', len(labels), set(labels)) true_label = list(np.asarray(true_label)[idx]) sc_pt_markov = list(np.asarray(v1.single_cell_pt_markov)[idx]) # graph_hnsw = v0.knngraph_visual() embedding = tsnem[idx, :] # TSNE().fit_transform(adata_counts.obsm['X_pca'][idx, :]) # phate_op = phate.PHATE() # embedding = phate_op.fit_transform(adata_counts.obsm['X_pca'][:, 0:20]) # embedding = embedding[idx, :] # embedding = umap.UMAP().fit_transform(adata_counts.obsm['X_pca'][idx, 0:20]) print('size of downsampled embedding', embedding.shape) else: embedding = tsnem # umap.UMAP().fit_transform(adata_counts.obsm['X_pca'][:,0:20]) idx = np.random.randint(len(labels), size=len(labels)) print('end tsne') super_clus_ds_PCA_loc = sc_loc_ofsuperCluster_PCAspace(v0, v1, idx) draw_trajectory_gams(embedding, super_clus_ds_PCA_loc, labels, super_labels, super_edges, v1.x_lazy, v1.alpha_teleport, sc_pt_markov, true_label, knn=v0.knn, final_super_terminal=v1.revised_super_terminal_clusters, sub_terminal_clusters=v1.terminal_clusters, title_str='Hitting times: Markov Simulation on biased edges', ncomp=ncomps) plt.show() # DRAW EVOLUTION PATHS knn_hnsw = make_knn_embeddedspace(embedding) draw_sc_evolution_trajectory_dijkstra(v1, embedding, knn_hnsw, v0.full_graph_shortpath, idx) plt.show() def main_Toy_comparisons(ncomps=10, knn=30, random_seed=42, dataset='Toy3', root_user='M1', foldername="/home/shobi/Trajectory/Datasets/Toy3/"): print('dataset, ncomps, knn, seed', dataset, ncomps, knn, random_seed) # root_user = ["T1_M1", "T2_M1"] # "M1" # #'M1' # "T1_M1", "T2_M1"] #"T1_M1" if dataset == "Toy3": print('dataset Toy3') df_counts = pd.read_csv(foldername + "toy_multifurcating_M8_n1000d1000.csv", delimiter=",") #df_counts = pd.read_csv(foldername + "Toy3_noise_100genes_thinfactor8.csv", delimiter=",") df_ids = pd.read_csv(foldername + "toy_multifurcating_M8_n1000d1000_ids_with_truetime.csv", delimiter=",") #counts = palantir.io.from_csv("/home/shobi/Trajectory/Datasets/Toy3/toy_multifurcating_M8_n1000d1000.csv") print('df_ids', df_ids.columns) root_user = ['M1'] paga_root = "M1" palantir_root = 'C107' if dataset == "Toy4": # 2 disconnected components df_counts = pd.read_csv(foldername + "toy_disconnected_M9_n1000d1000.csv", delimiter=",") # df_counts = pd.read_csv(foldername + "Toy4_noise_500genes.csv", delimiter=",") df_ids = pd.read_csv(foldername + "toy_disconnected_M9_n1000d1000_ids_with_truetime.csv", delimiter=",") #counts = palantir.io.from_csv("/home/shobi/Trajectory/Datasets/Toy4/toy_disconnected_M9_n1000d1000.csv") print(df_counts.shape, 'df_counts shape') root_user = ['T1_M1', 'T2_M1'] # 'T1_M1' paga_root = 'T2_M1' palantir_root = 'C107' if dataset == "Connected": df_counts = pd.read_csv(foldername + "ToyConnected_M9_n2000d1000.csv", delimiter=",") # df_counts = pd.read_csv(foldername + "ToyConnected_noise_500genes.csv", delimiter=",") df_ids = pd.read_csv(foldername + "ToyConnected_M9_n2000d1000_ids_with_truetime.csv", delimiter=",") #counts = palantir.io.from_csv("/home/shobi/Trajectory/Datasets/ToyConnected/ToyConnected_M9_n2000d1000.csv") root_user = ['M1'] paga_root = "M1" palantir_root = 'C1' if dataset == "Connected2": df_counts = pd.read_csv(foldername + "Connected2_n1000d1000.csv", delimiter=",") # df_counts = pd.read_csv(foldername + "ToyConnected2_noise_500genes.csv", 'rt',delimiter=",") df_ids = pd.read_csv(foldername + "Connected2_n1000d1000_ids_with_truetime.csv", delimiter=",") #counts = palantir.io.from_csv("/home/shobi/Trajectory/Datasets/ToyConnected2/Connected2_n1000d1000.csv") root_user = ['M1'] paga_root = "M1" palantir_root = 'C11' # suggest to use visual jaccard pruning of 1 (this doesnt alter underlying graph, just the display. can also use "M2" as the starting root, if dataset == "ToyMultiM11": df_counts = pd.read_csv(foldername + "Toymulti_M11_n3000d1000.csv", delimiter=",") # df_counts = pd.read_csv(foldername + "ToyMulti_M11_noised.csv", delimiter=",") df_ids = pd.read_csv(foldername + "Toymulti_M11_n3000d1000_ids_with_truetime.csv", delimiter=",") #counts = palantir.io.from_csv( "/home/shobi/Trajectory/Datasets/ToyMultifurcating_M11/Toymulti_M11_n3000d1000.csv") root_user = ['M1'] paga_root = "M1" palantir_root = 'C1005' if dataset == "Cyclic": # 4 milestones df_counts = pd.read_csv("/home/shobi/Trajectory/Datasets/ToyCyclic/ToyCyclic_M4_n1000d1000.csv", delimiter=",") df_counts = pd.read_csv("/home/shobi/Trajectory/Datasets/ToyCyclic/ToyCyclic_noise_100genes_thinfactor3.csv", delimiter=",") df_ids = pd.read_csv("/home/shobi/Trajectory/Datasets/ToyCyclic/ToyCyclic_M4_n1000d1000_ids_with_truetime.csv", delimiter=",") #counts = palantir.io.from_csv("/home/shobi/Trajectory/Datasets/ToyCyclic/ToyCyclic_M4_n1000d1000.csv") root_user = ['M1'] # 'T1_M1' paga_root = 'M1' palantir_root = 'C1' if dataset == "Cyclic2": # 4 milestones df_counts = pd.read_csv("/home/shobi/Trajectory/Datasets/ToyCyclic2/Cyclic2_n1000d1000.csv", delimiter=",") # df_counts = pd.read_csv("/home/shobi/Trajectory/Datasets/ToyCyclic2/ToyCyclic2_noise_500genes.csv", delimiter=",") df_ids = pd.read_csv("/home/shobi/Trajectory/Datasets/ToyCyclic2/Cyclic2_n1000d1000_ids_with_truetime.csv", delimiter=",") #counts = palantir.io.from_csv("/home/shobi/Trajectory/Datasets/ToyCyclic2/Cyclic2_n1000d1000.csv") root_user = ['M1'] # 'T1_M1' paga_root = 'M1' palantir_root = 'C107' if dataset == 'Bifurc2': df_counts = pd.read_csv("/home/shobi/Trajectory/Datasets/ToyBifurcating2/Bifurc2_M4_n2000d1000.csv", delimiter=",") df_counts = pd.read_csv("/home/shobi/Trajectory/Datasets/ToyBifurcating2/ToyBifurc2_noised.csv", delimiter=",") df_ids = pd.read_csv( "/home/shobi/Trajectory/Datasets/ToyBifurcating2/Bifurc2_M4_n2000d1000_ids_with_truetime.csv",delimiter=",") #counts = palantir.io.from_csv("/home/shobi/Trajectory/Datasets/ToyBifurcating2/Bifurc2_M4_n2000d1000.csv") root_user = ['M1'] # 'T1_M1' paga_root = 'M1' palantir_root = 'C1006' if dataset == 'Disconnected2': df_counts = pd.read_csv("/home/shobi/Trajectory/Datasets/ToyDisconnected2/Disconnected2_n1000d1000.csv", delimiter=",") df_counts = pd.read_csv("/home/shobi/Trajectory/Datasets/ToyDisconnected2/ToyDisconnected2_noise_500genes.csv", delimiter=",") df_ids = pd.read_csv( "/home/shobi/Trajectory/Datasets/ToyDisconnected2/Disconnected2_n1000d1000_ids_with_truetime.csv", delimiter=",") #counts = palantir.io.from_csv("/home/shobi/Trajectory/Datasets/ToyDisconnected2/Disconnected2_n1000d1000.csv") root_user = ['T1_M1', 'T1_M2', 'T1_M3'] # 'T1_M1' paga_root = 'T1_M1' palantir_root = 'C125' df_ids['cell_id_num'] = [int(s[1::]) for s in df_ids['cell_id']] print("shape", df_counts.shape, df_ids.shape) df_counts = df_counts.drop('Unnamed: 0', 1) df_ids = df_ids.sort_values(by=['cell_id_num']) df_ids = df_ids.reset_index(drop=True) # df_ids.to_csv("/home/shobi/Trajectory/Datasets/ToyConnected2/Connected2_n1000d1000_ids_sorted_with_truetime.csv") # df_counts['group_id'] = df_ids['group_id']#to split Toy4 # df_counts['main_Traj'] = [i[0:2] for i in df_ids['group_id']]#to split Toy4 # df_ids['main_Traj'] = [i[0:2] for i in df_ids['group_id']]#to split Toy4 # df_counts = df_counts[df_counts['main_Traj']=='T2']#to split Toy4 # df_ids = df_ids[df_ids['main_Traj'] == 'T2']#to split Toy4 #true_time = df_ids['true_time'] true_label = df_ids['group_id'].tolist() # df_counts = df_counts.drop('main_Traj', 1)#to split Toy4 # df_counts = df_counts.drop('group_id', 1)#to split Toy4 # df_ids = df_ids.reset_index(drop=True)#to split Toy4 # df_counts = df_counts.reset_index(drop=True)#to split Toy4 # true_label = df_ids['group_id'] #to split Toy4 print("shape", df_counts.index, df_ids.index) adata_counts = sc.AnnData(df_counts, obs=df_ids) sc.tl.pca(adata_counts, svd_solver='arpack', n_comps=ncomps) # comparisons adata_counts.uns['iroot'] = np.flatnonzero(adata_counts.obs['group_id'] == paga_root)[0] # 'T1_M1'#'M1' do_paga = False # do_palantir = False # # comparisons if do_paga == True: sc.pp.neighbors(adata_counts, n_neighbors=knn, use_rep='X', ) # n_pcs=ncomps) # 4 sc.tl.draw_graph(adata_counts) # sc.pl.draw_graph(adata_counts, color='group_id', legend_loc='on data') # force-directed layout start_dfmap = time.time() # sc.tl.diffmap(adata_counts, n_comps=ncomps) sc.tl.diffmap(adata_counts, n_comps=200) # default retains n_comps = 15 print('time taken to get diffmap given knn', time.time() - start_dfmap) sc.pp.neighbors(adata_counts, n_neighbors=knn, use_rep='X_diffmap') # 4 sc.tl.draw_graph(adata_counts) sc.pl.draw_graph(adata_counts, color='group_id', legend_loc='on data') sc.tl.leiden(adata_counts, resolution=1.0, random_state=10) sc.tl.paga(adata_counts, groups='leiden') # sc.pl.paga(adata_counts, color=['leiden','group_id']) sc.tl.dpt(adata_counts, n_dcs=ncomps) df_paga = pd.DataFrame() df_paga['paga_dpt'] = adata_counts.obs['dpt_pseudotime'].values correlation = df_paga['paga_dpt'].corr(df_ids['true_time']) print('corr paga knn', knn, correlation) sc.pl.paga(adata_counts, color=['leiden', 'group_id', 'dpt_pseudotime'], title=['leiden (knn:' + str(knn) + ' ncomps:' + str(ncomps) + ')', 'group_id (ncomps:' + str(ncomps) + ')', 'pseudotime (ncomps:' + str(ncomps) + ')']) # X = df_counts.values ''' # palantir if do_palantir == True: print(palantir.__file__) # location of palantir source code str_true_label = true_label.tolist() str_true_label = [(i[1:]) for i in str_true_label] str_true_label = pd.Series(str_true_label, index=counts.index) norm_df = counts # palantir.preprocess.normalize_counts(counts) # pca_projections, _ = palantir.utils.run_pca(norm_df, n_components=ncomps) #normally use pca_projections = counts dm_res = palantir.utils.run_diffusion_maps(pca_projections, knn=knn, n_components=300) ## n_components=ncomps, knn=knn) ms_data = palantir.utils.determine_multiscale_space(dm_res) # n_eigs is determined using eigengap tsne = palantir.utils.run_tsne(ms_data) palantir.plot.plot_cell_clusters(tsne, str_true_label) # C108 for M12 connected' #M8n1000d1000 start - c107 #c1001 for bifurc n2000d1000 #disconnected n1000 c108, "C1 for M10 connected" # c10 for bifurcating_m4_n2000d1000 # c107 for T1_M1, C42 for T2_M1 disconnected # C1 for M8_connected, C1005 for multi_M11 , 'C1006 for bifurc2' pr_res = palantir.core.run_palantir(ms_data, early_cell=palantir_root, num_waypoints=500, knn=knn) df_palantir = pd.read_csv( '/home/shobi/Trajectory/Datasets/Toy3/palantir_pt.csv') # /home/shobi/anaconda3/envs/ViaEnv/lib/python3.7/site-packages/palantir pt = df_palantir['pt'] correlation = pt.corr(true_time) print('corr Palantir', correlation) print('') palantir.plot.plot_palantir_results(pr_res, tsne, n_knn=knn, n_comps=pca_projections.shape[1]) plt.show() ''' # from sklearn.decomposition import PCA # pca = PCA(n_components=ncomps) # pc = pca.fit_transform(df_counts) Xin = adata_counts.obsm['X_pca'][:, 0:ncomps] # Xin = adata_counts.X if dataset == 'Toy4': jac_std_global = .15 # .15 else: jac_std_global = 0.15 # .15#0.15 #bruge 1 til cyclic2, ellers 0.15 # v0 = VIA(Xin, true_label, jac_std_global=jac_std_global, dist_std_local=1, knn=knn, too_big_factor=0.3, root_user=root_user, preserve_disconnected=True, dataset='toy', visual_cluster_graph_pruning=1, max_visual_outgoing_edges=2, random_seed=random_seed) # *.4 root=2, v0.run_VIA() super_labels = v0.labels df_ids['pt'] = v0.single_cell_pt_markov correlation = df_ids['pt'].corr(df_ids['true_time']) print('corr via knn', knn, correlation) super_edges = v0.edgelist # v0.make_JSON(filename = 'Toy3_ViaOut_temp.js') p = hnswlib.Index(space='l2', dim=adata_counts.obsm['X_pca'][:, 0:ncomps].shape[1]) p.init_index(max_elements=adata_counts.obsm['X_pca'][:, 0:ncomps].shape[0], ef_construction=200, M=16) p.add_items(adata_counts.obsm['X_pca'][:, 0:ncomps]) p.set_ef(50) tsi_list = [] # find the single-cell which is nearest to the average-location of a terminal cluster in PCA space ( for tsi in v0.terminal_clusters: loc_i = np.where(np.asarray(v0.labels) == tsi)[0] val_pt = [v0.single_cell_pt_markov[i] for i in loc_i] th_pt = np.percentile(val_pt, 50) # 50 loc_i = [loc_i[i] for i in range(len(val_pt)) if val_pt[i] >= th_pt] temp = np.mean(adata_counts.obsm['X_pca'][:, 0:ncomps][loc_i], axis=0) labelsq, distances = p.knn_query(temp, k=1) tsi_list.append(labelsq[0][0]) print('Granular VIA iteration') v1 = VIA(Xin, true_label, jac_std_global=jac_std_global, dist_std_local=1, knn=knn, too_big_factor=0.1, super_cluster_labels=super_labels, super_node_degree_list=v0.node_degree_list, super_terminal_cells=tsi_list, root_user=root_user, is_coarse=False, x_lazy=0.95, alpha_teleport=0.99, preserve_disconnected=True, dataset='toy', visual_cluster_graph_pruning=1, max_visual_outgoing_edges=2, super_terminal_clusters=v0.terminal_clusters, full_neighbor_array=v0.full_neighbor_array, ig_full_graph=v0.ig_full_graph, full_distance_array=v0.full_distance_array, csr_array_locally_pruned=v0.csr_array_locally_pruned, random_seed=random_seed) # root=1, v1.run_VIA() df_ids['pt1'] = v1.single_cell_pt_markov correlation = df_ids['pt1'].corr(df_ids['true_time']) print('corr via1 knn', knn, correlation) labels = v1.labels # v1 = PARC(adata_counts.obsm['X_pca'], true_label, jac_std_global=1, knn=5, too_big_factor=0.05, anndata= adata_counts, small_pop=2) # v1.run_VIA() # labels = v1.labels print('start tsne') n_downsample = 500 if len(labels) > n_downsample: # idx = np.random.randint(len(labels), size=900) np.random.seed(2357) idx = np.random.choice(a=np.arange(0, len(labels)), size=len(labels), replace=False, p=None) print('len idx', len(idx)) super_labels = np.asarray(super_labels)[idx] labels = list(np.asarray(labels)[idx]) true_label = list(np.asarray(true_label)[idx]) sc_pt_markov = list(np.asarray(v1.single_cell_pt_markov[idx])) # embedding = v0.run_umap_hnsw(adata_counts.obsm['X_pca'][idx, :], graph) embedding = adata_counts.obsm['X_pca'][idx, 0:2] # umap.UMAP().fit_transform(adata_counts.obsm['X_pca'][idx, 0:5]) # embedding = TSNE().fit_transform(adata_counts.obsm['X_pca'][idx, :]) print('tsne downsampled size', embedding.shape) else: embedding = umap.UMAP().fit_transform(Xin) # (adata_counts.obsm['X_pca']) print('tsne input size', adata_counts.obsm['X_pca'].shape) # embedding = umap.UMAP().fit_transform(adata_counts.obsm['X_pca']) idx = np.random.randint(len(labels), size=len(labels)) print('end tsne') super_clus_ds_PCA_loc = sc_loc_ofsuperCluster_PCAspace(v0, v1, idx) print('super terminal and sub terminal', v0.super_terminal_cells, v1.terminal_clusters) knn_hnsw, ci_list = sc_loc_ofsuperCluster_embeddedspace(embedding, v0, v1, idx) draw_trajectory_gams(embedding, super_clus_ds_PCA_loc, labels, super_labels, super_edges, v1.x_lazy, v1.alpha_teleport, sc_pt_markov, true_label, knn=v0.knn, final_super_terminal=v1.revised_super_terminal_clusters, sub_terminal_clusters=v1.terminal_clusters, title_str='Hitting times: Markov Simulation on biased edges', ncomp=ncomps) plt.show() ''' draw_trajectory_dimred(embedding, ci_list, labels, super_labels, super_edges, v1.x_lazy, v1.alpha_teleport, sc_pt_markov, true_label, knn=v0.knn, final_super_terminal=v0.terminal_clusters, title_str='Hitting times: Markov Simulation on biased edges', ncomp=ncomps) ''' plt.show() num_group = len(set(true_label)) line = np.linspace(0, 1, num_group) f, (ax1, ax3) = plt.subplots(1, 2, sharey=True) for color, group in zip(line, set(true_label)): where = np.where(np.asarray(true_label) == group)[0] ax1.scatter(embedding[where, 0], embedding[where, 1], label=group, c=np.asarray(plt.cm.jet(color)).reshape(-1, 4)) ax1.legend(fontsize=6) ax1.set_title('true labels') ax3.set_title("Markov Sim PT ncomps:" + str(Xin.shape[1]) + '. knn:' + str(knn)) ax3.scatter(embedding[:, 0], embedding[:, 1], c=sc_pt_markov, cmap='viridis_r') plt.show() df_subset = pd.DataFrame(adata_counts.obsm['X_pca'][:, 0:5], columns=['Gene0', 'Gene1', 'Gene2', 'Gene3', 'Gene4']) for gene_i in ['Gene0', 'Gene1', 'Gene2']: # , 'Gene3', 'Gene4']: subset_ = df_subset[gene_i].values print(subset_.shape) # print('shapes of magic_ad 1 and 2', magic_ad.shape,subset_.shape) # v1.get_gene_expression(magic_ad,title_gene = gene_name_dict[gene_name]) v1.get_gene_expression(subset_, title_gene=gene_i) # knn_hnsw = make_knn_embeddedspace(embedding) draw_sc_evolution_trajectory_dijkstra(v1, embedding, knn_hnsw, v0.full_graph_shortpath, idx, adata_counts.obsm['X_pca'][:, 0:ncomps]) plt.show() def main_Toy(ncomps=10, knn=30, random_seed=41, dataset='Toy3', root_user=['M1'], cluster_graph_pruning_std=1., foldername="/home/shobi/Trajectory/Datasets/"): print('dataset, ncomps, knn, seed', dataset, ncomps, knn, random_seed) if dataset == "Toy3": df_counts = pd.read_csv(foldername + "toy_multifurcating_M8_n1000d1000.csv", delimiter=",") df_ids = pd.read_csv(foldername + "toy_multifurcating_M8_n1000d1000_ids_with_truetime.csv", delimiter=",") root_user = ['M1'] paga_root = "M1" if dataset == "Toy4": # 2 disconnected components print('inside toy4') df_counts = pd.read_csv(foldername + "toy_disconnected_M9_n1000d1000.csv", delimiter=",") df_ids = pd.read_csv(foldername + "toy_disconnected_M9_n1000d1000_ids_with_truetime.csv", delimiter=",") root_user = ['T1_M1', 'T2_M1'] # 'T1_M1' paga_root = 'T1_M1' df_ids['cell_id_num'] = [int(s[1::]) for s in df_ids['cell_id']] # print("shape", df_counts.shape, df_ids.shape) df_counts = df_counts.drop('Unnamed: 0', 1) df_ids = df_ids.sort_values(by=['cell_id_num']) df_ids = df_ids.reset_index(drop=True) true_label = df_ids['group_id'].tolist() #true_time = df_ids['true_time'] adata_counts = sc.AnnData(df_counts, obs=df_ids) sc.tl.pca(adata_counts, svd_solver='arpack', n_comps=ncomps) # true_label =['a' for i in true_label] #testing dummy true_label adata_counts.uns['iroot'] = np.flatnonzero(adata_counts.obs['group_id'] == paga_root)[0] # 'T1_M1'#'M1' # via_wrapper(adata_counts, true_label, embedding= adata_counts.obsm['X_pca'][:,0:2], root=[1], knn=30, ncomps=10,cluster_graph_pruning_std = 1) # print('starting via wrapper disconn') # via_wrapper_disconnected(adata_counts, true_label, embedding=adata_counts.obsm['X_pca'][:, 0:2], root=[23,902], preserve_disconnected=True, knn=10, ncomps=10, cluster_graph_pruning_std=1 ,random_seed=41) # print('end via wrapper disconn') if dataset == 'Toy4': jac_std_global = 0.15 # 1 else: jac_std_global = 0.15 import umap embedding = umap.UMAP().fit_transform(adata_counts.obsm['X_pca'][:, 0:10]) # 50 # embedding = adata_counts.obsm['X_pca'][:, 0:2] # plt.scatter(embedding[:,0],embedding[:,1]) # plt.show() print('root user', root_user) v0 = VIA(adata_counts.obsm['X_pca'][:, 0:ncomps], true_label, jac_std_global=jac_std_global, dist_std_local=1, knn=knn, cluster_graph_pruning_std=cluster_graph_pruning_std, too_big_factor=0.3, root_user=root_user, preserve_disconnected=True, dataset='toy', visual_cluster_graph_pruning=1, max_visual_outgoing_edges=2, random_seed=random_seed, piegraph_arrow_head_width=0.4, piegraph_edgeweight_scalingfactor=1.0) # *.4 root=2, v0.run_VIA() super_labels = v0.labels print('super labels', type(super_labels)) df_ids['pt'] = v0.single_cell_pt_markov correlation = df_ids['pt'].corr(df_ids['true_time']) print('corr via knn', knn, correlation) super_edges = v0.edgelist # v0.make_JSON(filename = 'Toy3_ViaOut_temp.js') p = hnswlib.Index(space='l2', dim=adata_counts.obsm['X_pca'][:, 0:ncomps].shape[1]) p.init_index(max_elements=adata_counts.obsm['X_pca'][:, 0:ncomps].shape[0], ef_construction=200, M=16) p.add_items(adata_counts.obsm['X_pca'][:, 0:ncomps]) p.set_ef(50) tsi_list = [] # find the single-cell which is nearest to the average-location of a terminal cluster in PCA space ( for tsi in v0.terminal_clusters: loc_i = np.where(np.asarray(v0.labels) == tsi)[0] val_pt = [v0.single_cell_pt_markov[i] for i in loc_i] th_pt = np.percentile(val_pt, 50) # 50 loc_i = [loc_i[i] for i in range(len(val_pt)) if val_pt[i] >= th_pt] temp = np.mean(adata_counts.obsm['X_pca'][:, 0:ncomps][loc_i], axis=0) labelsq, distances = p.knn_query(temp, k=1) tsi_list.append(labelsq[0][0]) print('Granular VIA iteration') v1 = VIA(adata_counts.obsm['X_pca'][:, 0:ncomps], true_label, jac_std_global=jac_std_global, dist_std_local=1, knn=knn, too_big_factor=0.1, cluster_graph_pruning_std=cluster_graph_pruning_std, super_cluster_labels=super_labels, super_node_degree_list=v0.node_degree_list, super_terminal_cells=tsi_list, root_user=root_user, is_coarse=False, x_lazy=0.95, alpha_teleport=0.99, preserve_disconnected=True, dataset='toy', visual_cluster_graph_pruning=1, max_visual_outgoing_edges=2, super_terminal_clusters=v0.terminal_clusters, full_neighbor_array=v0.full_neighbor_array, ig_full_graph=v0.ig_full_graph, full_distance_array=v0.full_distance_array, csr_array_locally_pruned=v0.csr_array_locally_pruned, random_seed=random_seed) # root=1, v1.run_VIA() labels = v1.labels df_ids['pt1'] = v1.single_cell_pt_markov correlation = df_ids['pt1'].corr(df_ids['true_time']) print('corr via knn', knn, correlation) n_downsample = 50 if len(labels) > n_downsample: # just testing the downsampling and indices. Not actually downsampling # idx = np.random.randint(len(labels), size=900) np.random.seed(2357) idx = np.random.choice(a=np.arange(0, len(labels)), size=len(labels), replace=False, p=None) print('len idx', len(idx)) super_labels = np.asarray(super_labels)[idx] labels = list(np.asarray(labels)[idx]) true_label = list(np.asarray(true_label)[idx]) sc_pt_markov = list(np.asarray(v1.single_cell_pt_markov[idx])) embedding = embedding[idx, :] # embedding = v0.run_umap_hnsw(adata_counts.obsm['X_pca'][idx, :], graph) # embedding = adata_counts.obsm['X_pca'][idx, 0:2] # umap.UMAP().fit_transform(adata_counts.obsm['X_pca'][idx, 0:5]) super_clus_ds_PCA_loc = sc_loc_ofsuperCluster_PCAspace(v0, v1, idx) print('super terminal and sub terminal', v0.super_terminal_cells, v1.terminal_clusters) draw_trajectory_gams(embedding, super_clus_ds_PCA_loc, labels, super_labels, super_edges, v1.x_lazy, v1.alpha_teleport, sc_pt_markov, true_label, knn=v0.knn, final_super_terminal=v1.revised_super_terminal_clusters, sub_terminal_clusters=v1.terminal_clusters, title_str='Hitting times: Markov Simulation on biased edges', ncomp=ncomps) plt.show() num_group = len(set(true_label)) line = np.linspace(0, 1, num_group) ''' f, (ax1, ax2) = plt.subplots(1, 2, sharey=True) for color, group in zip(line, set(true_label)): where = np.where(np.asarray(true_label) == group)[0] ax1.scatter(embedding[where, 0], embedding[where, 1], label=group, c=np.asarray(plt.cm.jet(color)).reshape(-1, 4)) ax1.legend(fontsize=6) ax1.set_title('true labels') ax2.set_title("Markov Sim PT ncomps:" + str(ncomps) + '. knn:' + str(knn)) ax2.scatter(embedding[:, 0], embedding[:, 1], c=sc_pt_markov, cmap='viridis_r') plt.show() ''' df_subset = pd.DataFrame(adata_counts.obsm['X_pca'][:, 0:5], columns=['Gene0', 'Gene1', 'Gene2', 'Gene3', 'Gene4']) for gene_i in ['Gene0', 'Gene1', 'Gene2']: # , 'Gene3', 'Gene4']: subset_ = df_subset[gene_i].values v1.get_gene_expression(subset_, title_gene=gene_i) knn_hnsw = make_knn_embeddedspace(embedding) draw_sc_evolution_trajectory_dijkstra(v1, embedding, knn_hnsw, v0.full_graph_shortpath, idx) plt.show() def main_Bcell(ncomps=50, knn=20, random_seed=0, cluster_graph_pruning_std=.15,path='/home/shobi/Trajectory/Datasets/Bcell/'): print('Input params: ncomp, knn, random seed', ncomps, knn, random_seed) # https://github.com/STATegraData/STATegraData def run_zheng_Bcell(adata, min_counts=3, n_top_genes=500, do_HVG=True): sc.pp.filter_genes(adata, min_counts=min_counts) # sc.pp.filter_genes(adata, min_cells=3)# only consider genes with more than 1 count ''' sc.pp.normalize_per_cell( # normalize with total UMI count per cell adata, key_n_counts='n_counts_all') ''' sc.pp.normalize_total(adata, target_sum=1e4) if do_HVG == True: sc.pp.log1p(adata) ''' filter_result = sc.pp.filter_genes_dispersion( # select highly-variable genes adata.X, flavor='cell_ranger', n_top_genes=n_top_genes, log=False ) adata = adata[:, filter_result.gene_subset] # subset the genes ''' sc.pp.highly_variable_genes(adata, n_top_genes=n_top_genes, min_mean=0.0125, max_mean=3, min_disp=0.5) # this function expects logarithmized data print('len hvg ', sum(adata.var.highly_variable)) adata = adata[:, adata.var.highly_variable] sc.pp.normalize_per_cell(adata) # renormalize after filtering # if do_log: sc.pp.log1p(adata) # log transform: adata.X = log(adata.X + 1) if do_HVG == False: sc.pp.log1p(adata) sc.pp.scale(adata, max_value=10) # scale to unit variance and shift to zero mean return adata ''' def run_palantir_func_Bcell(ad1, ncomps, knn, tsne_X, true_label): ad = ad1.copy() tsne = pd.DataFrame(tsne_X, index=ad.obs_names, columns=['x', 'y']) norm_df_pal = pd.DataFrame(ad.X) new = ['c' + str(i) for i in norm_df_pal.index] norm_df_pal.columns = [i for i in ad.var_names] # print('norm df', norm_df_pal) norm_df_pal.index = new pca_projections, _ = palantir.utils.run_pca(norm_df_pal, n_components=ncomps) sc.tl.pca(ad, svd_solver='arpack') dm_res = palantir.utils.run_diffusion_maps(pca_projections, n_components=ncomps, knn=knn) ms_data = palantir.utils.determine_multiscale_space(dm_res) # n_eigs is determined using eigengap print('ms data shape: determined using eigengap', ms_data.shape) # tsne = pd.DataFrame(tsnem)#palantir.utils.run_tsne(ms_data) tsne.index = new # print(type(tsne)) str_true_label = pd.Series(true_label, index=norm_df_pal.index) palantir.plot.plot_cell_clusters(tsne, str_true_label) start_cell = 'c42' # '#C108 for M12 connected' #M8n1000d1000 start - c107 #c1001 for bifurc n2000d1000 #disconnected n1000 c108, "C1 for M10 connected" # c10 for bifurcating_m4_n2000d1000 pr_res = palantir.core.run_palantir(ms_data, early_cell=start_cell, num_waypoints=1200, knn=knn) palantir.plot.plot_palantir_results(pr_res, tsne, n_knn=knn, n_comps=ncomps) imp_df = palantir.utils.run_magic_imputation(norm_df_pal, dm_res) Bcell_marker_gene_list = ['Igll1', 'Myc', 'Ldha', 'Foxo1', 'Lig4'] # , 'Slc7a5']#,'Slc7a5']#,'Sp7','Zfp629'] gene_trends = palantir.presults.compute_gene_trends(pr_res, imp_df.loc[:, Bcell_marker_gene_list]) palantir.plot.plot_gene_trends(gene_trends) plt.show() ''' def run_paga_func_Bcell(adata_counts1, ncomps, knn, embedding): # print('npwhere',np.where(np.asarray(adata_counts.obs['group_id']) == '0')[0][0]) adata_counts = adata_counts1.copy() sc.tl.pca(adata_counts, svd_solver='arpack', n_comps=ncomps) adata_counts.uns['iroot'] = 33 # np.where(np.asarray(adata_counts.obs['group_id']) == '0')[0][0] sc.pp.neighbors(adata_counts, n_neighbors=knn, n_pcs=ncomps) # 4 sc.tl.draw_graph(adata_counts) sc.pl.draw_graph(adata_counts, color='group_id', legend_loc='on data') # force-directed layout start_dfmap = time.time() sc.tl.diffmap(adata_counts, n_comps=ncomps) print('time taken to get diffmap given knn', time.time() - start_dfmap) sc.pp.neighbors(adata_counts, n_neighbors=knn, use_rep='X_diffmap') # 4 sc.tl.draw_graph(adata_counts) sc.pl.draw_graph(adata_counts, color='group_id', legend_loc='on data') sc.tl.leiden(adata_counts, resolution=1.0) sc.tl.paga(adata_counts, groups='leiden') # sc.pl.paga(adata_counts, color=['louvain','group_id']) sc.tl.dpt(adata_counts, n_dcs=ncomps) sc.pl.paga(adata_counts, color=['leiden', 'group_id', 'dpt_pseudotime'], title=['leiden (knn:' + str(knn) + ' ncomps:' + str(ncomps) + ')', 'group_id (ncomps:' + str(ncomps) + ')', 'pseudotime (ncomps:' + str(ncomps) + ')']) sc.pl.draw_graph(adata_counts, color='dpt_pseudotime', legend_loc='on data') print('dpt format', adata_counts.obs['dpt_pseudotime']) plt.scatter(embedding[:, 0], embedding[:, 1], c=adata_counts.obs['dpt_pseudotime'].values, cmap='viridis') plt.title('PAGA DPT') plt.show() def find_time_Bcell(s): start = s.find("Ik") + len("Ik") end = s.find("h") return int(s[start:end]) def find_cellID_Bcell(s): start = s.find("h") + len("h") end = s.find("_") return s[start:end] Bcell = pd.read_csv(path + 'genes_count_table.txt', sep='\t') gene_name = pd.read_csv(path + 'genes_attr_table.txt', sep='\t') Bcell_columns = [i for i in Bcell.columns] adata_counts = sc.AnnData(Bcell.values[:, 1:].T) Bcell_columns.remove('tracking_id') print(gene_name.shape, gene_name.columns) Bcell['gene_short_name'] = gene_name['gene_short_name'] adata_counts.var_names = gene_name['gene_short_name'] adata_counts.obs['TimeCellID'] = Bcell_columns time_list = [find_time_Bcell(s) for s in Bcell_columns] print('time list set', set(time_list)) adata_counts.obs['TimeStamp'] = [str(tt) for tt in time_list] ID_list = [find_cellID_Bcell(s) for s in Bcell_columns] adata_counts.obs['group_id'] = [str(i) for i in time_list] ID_dict = {} color_dict = {} for j, i in enumerate(list(set(ID_list))): ID_dict.update({i: j}) print('timelist', list(set(time_list))) for j, i in enumerate(list(set(time_list))): color_dict.update({i: j}) print('shape of raw data', adata_counts.shape) adata_counts_unfiltered = adata_counts.copy() Bcell_marker_gene_list = ['Myc', 'Igll1', 'Slc7a5', 'Ldha', 'Foxo1', 'Lig4'] small_large_gene_list = ['Kit', 'Pcna', 'Ptprc', 'Il2ra', 'Vpreb1', 'Cd24a', 'Igll1', 'Cd79a', 'Cd79b', 'Mme', 'Spn'] list_var_names = [s for s in adata_counts_unfiltered.var_names] matching = [s for s in list_var_names if "IgG" in s] for gene_name in Bcell_marker_gene_list: print('gene name', gene_name) loc_gata = np.where(np.asarray(adata_counts_unfiltered.var_names) == gene_name)[0][0] for gene_name in small_large_gene_list: print('looking at small-big list') print('gene name', gene_name) loc_gata = np.where(np.asarray(adata_counts_unfiltered.var_names) == gene_name)[0][0] # diff_list = [i for i in diff_list if i in list_var_names] #based on paper STable1 https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2006506#pbio.2006506.s007 # adata_counts = adata_counts[:,diff_list] #if using these, then set do-HVG to False print('adata counts difflisted', adata_counts.shape) adata_counts = run_zheng_Bcell(adata_counts, n_top_genes=5000, min_counts=30, do_HVG=True) # 5000 for better ordering print('adata counts shape', adata_counts.shape) # sc.pp.recipe_zheng17(adata_counts) # (ncomp=50, knn=20 gives nice results. use 10PCs for visualizing) marker_genes = {"small": ['Rag2', 'Rag1', 'Pcna', 'Myc', 'Ccnd2', 'Cdkn1a', 'Smad4', 'Smad3', 'Cdkn2a'], # B220 = Ptprc, PCNA negative for non cycling "large": ['Ighm', 'Kit', 'Ptprc', 'Cd19', 'Il2ra', 'Vpreb1', 'Cd24a', 'Igll1', 'Cd79a', 'Cd79b'], "Pre-B2": ['Mme', 'Spn']} # 'Cd19','Cxcl13',,'Kit' print('make the v0 matrix plot') mplot_adata = adata_counts_unfiltered.copy() # mplot_adata is for heatmaps so that we keep all genes mplot_adata = run_zheng_Bcell(mplot_adata, n_top_genes=25000, min_counts=1, do_HVG=False) # mplot_adata.X[mplot_adata.X>10] =10 # mplot_adata.X[mplot_adata.X< -1] = -1 # sc.pl.matrixplot(mplot_adata, marker_genes, groupby='TimeStamp', dendrogram=True) sc.tl.pca(adata_counts, svd_solver='arpack', n_comps=200) # ncomps # df_bcell_pc = pd.DataFrame(adata_counts.obsm['X_pca']) # print('df_bcell_pc.shape',df_bcell_pc.shape) # df_bcell_pc['time'] = [str(i) for i in time_list] # df_bcell_pc.to_csv('/home/shobi/Trajectory/Datasets/Bcell/Bcell_200PCs.csv') # sc.pl.pca_variance_ratio(adata_counts, log=True) jet = cm.get_cmap('viridis', len(set(time_list))) cmap_ = jet(range(len(set(time_list)))) jet2 = cm.get_cmap('jet', len(set(ID_list))) cmap2_ = jet2(range(len(set(ID_list)))) # color_dict = {"0": [0], "2": [1], "6": [2], "12": [3], "18": [4], "24": [5]} # sc.pl.heatmap(mplot_adata, var_names = small_large_gene_list,groupby = 'TimeStamp', dendrogram = True) embedding = umap.UMAP(random_state=42, n_neighbors=15, init='random').fit_transform( adata_counts.obsm['X_pca'][:, 0:5]) df_umap = pd.DataFrame(embedding) # df_umap.to_csv('/home/shobi/Trajectory/Datasets/Bcell/Bcell_umap.csv') f, (ax1, ax2, ax3, ax4) = plt.subplots(1, 4, sharey=True) for i in list(set(time_list)): loc = np.where(np.asarray(time_list) == i)[0] ax4.scatter(embedding[loc, 0], embedding[loc, 1], c=cmap_[color_dict[i]], alpha=1, label=str(i)) if i == 0: for xx in range(len(loc)): poss = loc[xx] ax4.text(embedding[poss, 0], embedding[poss, 1], 'c' + str(xx)) ax4.legend() ax1.scatter(embedding[:, 0], embedding[:, 1], c=mplot_adata[:, 'Pcna'].X.flatten(), alpha=1) ax1.set_title('Pcna, cycling') ax2.scatter(embedding[:, 0], embedding[:, 1], c=mplot_adata[:, 'Vpreb1'].X.flatten(), alpha=1) ax2.set_title('Vpreb1') ax3.scatter(embedding[:, 0], embedding[:, 1], c=mplot_adata[:, 'Cd24a'].X.flatten(), alpha=1) ax3.set_title('Cd24a') # ax2.text(embedding[i, 0], embedding[i, 1], str(i)) ''' for i, j in enumerate(list(set(ID_list))): loc = np.where(np.asarray(ID_list) == j) if 'r'in j: ax2.scatter(embedding[loc, 0], embedding[loc, 1], c=cmap2_[i], alpha=1, label=str(j), edgecolors = 'black' ) else: ax2.scatter(embedding[loc, 0], embedding[loc, 1], c=cmap2_[i], alpha=1, label=str(j)) ''' # plt.show() true_label = time_list # run_paga_func_Bcell(adata_counts, ncomps, knn, embedding) #run_palantir_func_Bcell(adata_counts, ncomps, knn, embedding, true_label) print('input has shape', adata_counts.obsm['X_pca'].shape) input_via = adata_counts.obsm['X_pca'][:, 0:ncomps] df_input = pd.DataFrame(adata_counts.obsm['X_pca'][:, 0:200]) df_annot = pd.DataFrame(['t' + str(i) for i in true_label]) # df_input.to_csv('/home/shobi/Trajectory/Datasets/Bcell/Bcell_200PC_5000HVG.csv') # df_annot.to_csv('/home/shobi/Trajectory/Datasets/Bcell/Bcell_annots.csv') root_user = [42] v0 = VIA(input_via, true_label, jac_std_global=0.15, dist_std_local=1, knn=knn, too_big_factor=0.3, dataset='bcell', cluster_graph_pruning_std=cluster_graph_pruning_std, root_user=root_user, preserve_disconnected=True, random_seed=random_seed, do_impute_bool=True) # *.4#root_user = 34 v0.run_VIA() super_labels = v0.labels tsi_list = get_loc_terminal_states(via0=v0, X_input=adata_counts.obsm['X_pca'][:, 0:ncomps]) v1 = VIA(adata_counts.obsm['X_pca'][:, 0:ncomps], true_label, jac_std_global=0.15, dist_std_local=1, knn=knn, too_big_factor=0.05, is_coarse=False, cluster_graph_pruning_std=cluster_graph_pruning_std, super_cluster_labels=super_labels, super_node_degree_list=v0.node_degree_list, super_terminal_cells=tsi_list, root_user=root_user, full_neighbor_array=v0.full_neighbor_array, full_distance_array=v0.full_distance_array, ig_full_graph=v0.ig_full_graph, csr_array_locally_pruned=v0.csr_array_locally_pruned, x_lazy=0.99, alpha_teleport=0.99, preserve_disconnected=True, dataset='bcell', super_terminal_clusters=v0.terminal_clusters, random_seed=random_seed) v1.run_VIA() labels = v1.labels super_edges = v0.edgelist # plot gene expression vs. pseudotime Bcell_marker_gene_list = ['Igll1', 'Myc', 'Slc7a5', 'Ldha', 'Foxo1', 'Lig4', 'Sp7', 'Zfp629'] # irf4 down-up df_ = pd.DataFrame(adata_counts_unfiltered.X) # no normalization, or scaling of the gene count values df_.columns = [i for i in adata_counts_unfiltered.var_names] df_Bcell_marker = df_[Bcell_marker_gene_list] print(df_Bcell_marker.shape, 'df_Bcell_marker.shape') df_Bcell_marker.to_csv('/home/shobi/Trajectory/Datasets/Bcell/Bcell_markergenes.csv') # v0 is run with "do_impute" = true, hence it stores the full graph (in subsequent iterations we dont recompute and store the full unpruned knn graph) df_magic = v0.do_impute(df_, magic_steps=3, gene_list=Bcell_marker_gene_list) for gene_name in Bcell_marker_gene_list: # loc_gata = np.where(np.asarray(adata_counts_unfiltered.var_names) == gene_name)[0][0] subset_ = df_magic[gene_name].values v1.get_gene_expression(subset_, title_gene=gene_name) # magic_ad = adata_counts_unfiltered.X[:, loc_gata] # v1.get_gene_expression(magic_ad, gene_name) n_downsample = 100 if len(labels) > n_downsample: # idx = np.random.randint(len(labels), size=900) np.random.seed(2357) # idx = np.random.choice(a=np.arange(0, len(labels)), size=len(labels), replace=False, p=None) idx = np.arange(0, len(labels)) super_labels = np.asarray(super_labels)[idx] labels = list(np.asarray(labels)[idx]) true_label = list((np.asarray(true_label)[idx])) sc_pt_markov = list(np.asarray(v1.single_cell_pt_markov[idx])) # embedding = TSNE().fit_transform(adata_counts.obsm['X_pca'][idx, :]) graph_embedding = v0.knngraph_visual(input_via[idx, 0:5], knn_umap=10, downsampled=True) embedding_hnsw = v0.run_umap_hnsw(input_via[idx, 0:5], graph_embedding) # embedding = embedding_hnsw # loc0 = np.where(np.asarray(true_label)==0)[0] # for item in loc0: # print(item, 'at', embedding[item,:]) embedding = embedding[idx, :] print('tsne downsampled size', embedding.shape) else: # embedding = TSNE().fit_transform(adata_counts.obsm['X_pca'][:,0:5]) # (adata_counts.obsm['X_pca']) print('tsne input size', adata_counts.obsm['X_pca'].shape) # embedding = umap.UMAP().fit_transform(adata_counts.obsm['X_pca']) idx = np.arange(0, len(labels)) # np.random.randint(len(labels), size=len(labels)) sc_pt_markov = v1.single_cell_pt_markov # embedding = umap.UMAP(random_state=42, n_neighbors=15, init=umap_init).fit_transform( adata_counts.obsm['X_pca'][:, 0:5]) super_clus_ds_PCA_loc = sc_loc_ofsuperCluster_PCAspace(v0, v1, idx) draw_trajectory_gams(embedding, super_clus_ds_PCA_loc, labels, super_labels, super_edges, v1.x_lazy, v1.alpha_teleport, sc_pt_markov, true_label, knn=v0.knn, final_super_terminal=v1.revised_super_terminal_clusters, sub_terminal_clusters=v1.terminal_clusters, title_str='Markov Hitting Times (Gams)', ncomp=ncomps) plt.show() knn_hnsw = make_knn_embeddedspace(embedding) draw_sc_evolution_trajectory_dijkstra(v1, embedding, knn_hnsw, v0.full_graph_shortpath, idx, adata_counts.obsm['X_pca'][:, 0:ncomps]) plt.show() def plot_EB(): # genes along lineage cluster path df_groupby_p1 = pd.read_csv( '/home/shobi/Trajectory/Datasets/EB_Phate/df_groupbyParc1_knn20_pc100_seed20_allgenes.csv') path_clusters = [43, 38, 42, 56, 7, 3] # NC[43,41,16,2,3,6]#SMP[43,41,16,14,11,18]#C[43,41,16,14,12,15]#NS3[43,38,42,56,7,3] target = "NS 3" # 'NC 6' #'SMP 18'#' Cardiac 15' marker_genes_dict = {'Hermang': ['TAL1', 'HOXB4', 'SOX17', 'CD34', 'PECAM1'], 'NP': ['NES', 'MAP2'], 'NS': ['LHX2', 'NR2F1', 'DMRT3', 'LMX1A', # 'KLF7', 'ISL1', 'DLX1', 'ONECUT1', 'ONECUT2', 'OLIG1','PAX6', 'ZBTB16','NPAS1', 'SOX1' 'NKX2-8', 'EN2'], 'NC': ['PAX3', 'FOXD3', 'SOX9', 'SOX10'], 'PostEn': ['CDX2', 'ASCL2', 'KLF5', 'NKX2-1'], 'EN': ['ARID3A', 'GATA3', 'SATB1', 'SOX15', 'SOX17', 'FOXA2'], 'Pre-NE': ['POU5F1', 'OTX2'], 'SMP': ['TBX18', 'SIX2', 'TBX15', 'PDGFRA'], 'Cardiac': ['TNNT2', 'HAND1', 'F3', 'CD82', 'LIFR'], 'EpiCard': ['WT1', 'TBX5', 'HOXD9', 'MYC', 'LOX'], 'PS/ME': ['T', 'EOMES', 'MIXL1', 'CER1', 'SATB1'], 'NE': ['GBX2', 'GLI3', 'LHX2', 'LHX5', 'SIX3', 'SIX6'], # 'OLIG3','HOXD1', 'ZIC2', 'ZIC5','HOXA2','HOXB2' 'ESC': ['NANOG', 'POU5F1'], 'Pre-NE': ['POU5F1', 'OTX2'], 'Lat-ME': ['TBX5', 'HOXD9', 'MYC']} relevant_genes = [] relevant_keys = ['ESC', 'Pre-NE', 'NE', 'NP', 'NS'] # NC['ESC', 'Pre-NE', 'NE', 'NC']#SMP['ESC','PS/ME','Lat-ME','SMP']#NS['ESC', 'Pre-NE', 'NE', 'NP', 'NS'] dict_subset = {key: value for key, value in marker_genes_dict.items() if key in relevant_keys} print('dict subset', dict_subset) for key in relevant_keys: relevant_genes.append(marker_genes_dict[key]) relevant_genes = [item for sublist in relevant_genes for item in sublist] print(relevant_genes) df_groupby_p1 = df_groupby_p1.set_index('parc1') df_groupby_p1 = df_groupby_p1.loc[path_clusters] df_groupby_p1 = df_groupby_p1[relevant_genes] df_groupby_p1 = df_groupby_p1.transpose() # print( df_groupby_p1.head) # print(df_groupby_p1) ax = sns.heatmap(df_groupby_p1, vmin=-1, vmax=1, yticklabels=True) ax.set_title('target ' + str(target)) plt.show() # df_groupby_p1 = pd.concat([df_groupby_p1,df_groupby_p1]) # adata = sc.AnnData(df_groupby_p1) # adata.var_names = df_groupby_p1.columns # print(adata.var_names) # adata.obs['parc1'] = ['43','38','42','56','7','3','43','38','42','56','7','3'] # print(adata.obs['parc1']) # sc.pl.matrixplot(adata, dict_subset, groupby='parc1', vmax=1, vmin=-1, dendrogram=False) def main_EB_clean(ncomps=30, knn=20, v0_random_seed=24, cluster_graph_pruning_std=.15, foldername='/home/shobi/Trajectory/Datasets/EB_Phate/'): marker_genes_dict = {'Hermang': ['TAL1', 'HOXB4', 'SOX17', 'CD34', 'PECAM1'], 'NP': ['NES', 'MAP2'], 'NS': ['KLF7', 'ISL1', 'DLX1', 'ONECUT1', 'ONECUT2', 'OLIG1', 'NPAS1', 'LHX2', 'NR2F1', 'NPAS1', 'DMRT3', 'LMX1A', 'NKX2-8', 'EN2', 'SOX1', 'PAX6', 'ZBTB16'], 'NC': ['PAX3', 'FOXD3', 'SOX9', 'SOX10'], 'PostEn': ['CDX2', 'ASCL2', 'KLF5', 'NKX2-1'], 'EN': ['ARID3A', 'GATA3', 'SATB1', 'SOX15', 'SOX17', 'FOXA2'], 'Pre-NE': ['POU5F1', 'OTX2'], 'SMP': ['TBX18', 'SIX2', 'TBX15', 'PDGFRA'], 'Cardiac': ['TNNT2', 'HAND1', 'F3', 'CD82', 'LIFR'], 'EpiCard': ['WT1', 'TBX5', 'HOXD9', 'MYC', 'LOX'], 'PS/ME': ['T', 'EOMES', 'MIXL1', 'CER1', 'SATB1'], 'NE': ['GBX2', 'OLIG3', 'HOXD1', 'ZIC2', 'ZIC5', 'GLI3', 'LHX2', 'LHX5', 'SIX3', 'SIX6', 'HOXA2', 'HOXB2'], 'ESC': ['NANOG', 'POU5F1', 'OTX2'], 'Pre-NE': ['POU5F1', 'OTX2']} marker_genes_list = [] for key in marker_genes_dict: for item in marker_genes_dict[key]: marker_genes_list.append(item) v0_too_big = 0.3 v1_too_big = 0.05 n_var_genes = 'no filtering for HVG' # 15000 print('ncomps, knn, n_var_genes, v0big, p1big, randomseed, time', ncomps, knn, n_var_genes, v0_too_big, v1_too_big, v0_random_seed, time.ctime()) # TI_pcs = pd.read_csv(foldername+'PCA_TI_200_final.csv') # TI_pcs is PCA run on data that has been: filtered (remove cells with too large or small library count - can directly use all cells in EBdata.mat), library normed, sqrt transform, scaled to unit variance/zero mean # TI_pcs = TI_pcs.values[:, 1:] from scipy.io import loadmat annots = loadmat( foldername + 'EBdata.mat') # has been filtered but not yet normed (by library size) nor other subsequent pre-processing steps # print('annots', annots) data = annots['data'].toarray() # (16825, 17580) (cells and genes have been filtered) # print('data min max', np.max(data), np.min(data), data[1, 0:20], data[5, 250:270], data[1000, 15000:15050]) loc_ = np.where((data < 1) & (data > 0)) temp = data[(data < 1) & (data > 0)] # print('temp non int', temp) time_labels = annots['cells'].flatten().tolist() # df_timelabels = pd.DataFrame(time_labels, columns=['true_time_labels']) # df_timelabels.to_csv(foldername+'EB_true_time_labels.csv') gene_names_raw = annots['EBgenes_name'] # (17580, 1) genes adata = sc.AnnData(data) gene_names = [] for i in gene_names_raw: gene_names.append(i[0][0]) adata.var_names = gene_names adata.obs['time'] = ['Day' + str(i) for i in time_labels] adata.X = sc.pp.normalize_total(adata, inplace=False)['X'] # normalize by library after filtering adata.X = np.sqrt(adata.X) # follow Phate paper which doesnt take log1() but instead does sqrt() transformation Y_phate = pd.read_csv(foldername + 'EB_phate_embedding.csv') Y_phate = Y_phate.values # phate_operator = phate.PHATE(n_jobs=-1) # Y_phate = phate_operator.fit_transform(adata.X) # before scaling. as done in PHATE scale = False # scaling mostly improves the cluster-graph heatmap of genes vs clusters. doesnt sway VIA performance if scale == True: # we scale before VIA. scaling not needed for PHATE print('pp scaled') adata.X = (adata.X - np.mean(adata.X, axis=0)) / np.std(adata.X, axis=0) print('data max min after SCALED', np.max(adata.X), np.min(adata.X)) else: print('not pp scaled') sc.tl.pca(adata, svd_solver='arpack', n_comps=200, random_state=0) # adata.obsm['X_pca'] = TI_pcs input_data = adata.obsm['X_pca'][:, 0:ncomps] print('do v0') root_user = [1] v0 = VIA(input_data, time_labels, jac_std_global=0.15, dist_std_local=1, knn=knn, cluster_graph_pruning_std=cluster_graph_pruning_std, too_big_factor=v0_too_big, root_user=root_user, dataset='EB', random_seed=v0_random_seed, do_impute_bool=True, is_coarse=True, preserve_disconnected=True) # *.4 root=1, v0.run_VIA() tsi_list = get_loc_terminal_states(v0, input_data) v1 = VIA(input_data, time_labels, jac_std_global=0.15, dist_std_local=1, knn=knn, cluster_graph_pruning_std=cluster_graph_pruning_std, too_big_factor=v1_too_big, super_cluster_labels=v0.labels, super_node_degree_list=v0.node_degree_list, super_terminal_cells=tsi_list, root_user=root_user, is_coarse=False, full_neighbor_array=v0.full_neighbor_array, full_distance_array=v0.full_distance_array, ig_full_graph=v0.ig_full_graph, csr_array_locally_pruned=v0.csr_array_locally_pruned, x_lazy=0.95, alpha_teleport=0.99, preserve_disconnected=True, dataset='EB', super_terminal_clusters=v0.terminal_clusters, random_seed=21) v1.run_VIA() f, (ax1, ax2) = plt.subplots(1, 2, sharey=True) ax1.scatter(Y_phate[:, 0], Y_phate[:, 1], c=time_labels, s=5, cmap='viridis', alpha=0.5) ax2.scatter(Y_phate[:, 0], Y_phate[:, 1], c=v1.single_cell_pt_markov, s=5, cmap='viridis', alpha=0.5) ax1.set_title('Embryoid: Annotated Days') ax2.set_title('Embryoid VIA Pseudotime (Randomseed' + str(v0_random_seed) + ')') plt.show() super_clus_ds_PCA_loc = sc_loc_ofsuperCluster_PCAspace(v0, v1, np.arange(0, len(v1.labels))) draw_trajectory_gams(Y_phate, super_clus_ds_PCA_loc, v1.labels, v0.labels, v0.edgelist_maxout, v1.x_lazy, v1.alpha_teleport, v1.single_cell_pt_markov, time_labels, knn=v0.knn, final_super_terminal=v1.revised_super_terminal_clusters, sub_terminal_clusters=v1.terminal_clusters, title_str='Markov Hitting Times and Paths', ncomp=ncomps) knn_hnsw = make_knn_embeddedspace(Y_phate) draw_sc_evolution_trajectory_dijkstra(v1, Y_phate, knn_hnsw, v0.full_graph_shortpath, idx=np.arange(0, input_data.shape[0])) plt.show() adata.obs['via0'] = [str(i) for i in v0.labels] adata.obs['parc1'] = [str(i) for i in v1.labels] adata.obs['terminal_state'] = ['True' if i in v1.terminal_clusters else 'False' for i in v1.labels] adata.X = (adata.X - np.mean(adata.X, axis=0)) / np.std(adata.X, axis=0) # to improve scale of the matrix plot we will scale sc.pl.matrixplot(adata, marker_genes_dict, groupby='parc1', vmax=1, vmin=-1, dendrogram=True, figsize=[20, 10]) def main_EB(ncomps=30, knn=20, v0_random_seed=24): marker_genes_dict = {'Hermang': ['TAL1', 'HOXB4', 'SOX17', 'CD34', 'PECAM1'], 'NP': ['NES', 'MAP2'], 'NS': ['KLF7', 'ISL1', 'DLX1', 'ONECUT1', 'ONECUT2', 'OLIG1', 'NPAS1', 'LHX2', 'NR2F1', 'NPAS1', 'DMRT3', 'LMX1A', 'NKX2-8', 'EN2', 'SOX1', 'PAX6', 'ZBTB16'], 'NC': ['PAX3', 'FOXD3', 'SOX9', 'SOX10'], 'PostEn': ['CDX2', 'ASCL2', 'KLF5', 'NKX2-1'], 'EN': ['ARID3A', 'GATA3', 'SATB1', 'SOX15', 'SOX17', 'FOXA2'], 'Pre-NE': ['POU5F1', 'OTX2'], 'SMP': ['TBX18', 'SIX2', 'TBX15', 'PDGFRA'], 'Cardiac': ['TNNT2', 'HAND1', 'F3', 'CD82', 'LIFR'], 'EpiCard': ['WT1', 'TBX5', 'HOXD9', 'MYC', 'LOX'], 'PS/ME': ['T', 'EOMES', 'MIXL1', 'CER1', 'SATB1'], 'NE': ['GBX2', 'OLIG3', 'HOXD1', 'ZIC2', 'ZIC5', 'GLI3', 'LHX2', 'LHX5', 'SIX3', 'SIX6', 'HOXA2', 'HOXB2'], 'ESC': ['NANOG', 'POU5F1', 'OTX2'], 'Pre-NE': ['POU5F1', 'OTX2']} marker_genes_list = [] for key in marker_genes_dict: for item in marker_genes_dict[key]: marker_genes_list.append(item) v0_too_big = 0.3 v1_too_big = 0.05 root_user = 1 n_var_genes = 'no filtering for HVG' # 15000 print('ncomps, knn, n_var_genes, v0big, p1big, randomseed, time', ncomps, knn, n_var_genes, v0_too_big, v1_too_big, v0_random_seed, time.ctime()) # data = data.drop(['Unnamed: 0'], axis=1) TI_pcs = pd.read_csv( '/home/shobi/Trajectory/Datasets/EB_Phate/PCA_TI_200_final.csv') # filtered, library normed, sqrt transform, scaled to unit variance/zero mean TI_pcs = TI_pcs.values[:, 1:] umap_pcs = pd.read_csv('/home/shobi/Trajectory/Datasets/EB_Phate/PCA_umap_200_TuesAM.csv') umap_pcs = umap_pcs.values[:, 1:] # print('TI PC shape', TI_pcs.shape) from scipy.io import loadmat annots = loadmat( '/home/shobi/Trajectory/Datasets/EB_Phate/EBdata.mat') # has been filtered but not yet normed (by library s data = annots['data'].toarray() # (16825, 17580) (cells and genes have been filtered) # print('data min max', np.max(data), np.min(data), data[1, 0:20], data[5, 250:270], data[1000, 15000:15050]) # loc_ = np.where((data < 1) & (data > 0)) temp = data[(data < 1) & (data > 0)] # print('temp non int', temp) time_labels = annots['cells'].flatten().tolist() import scprep dict_labels = {'Day 00-03': 0, 'Day 06-09': 2, 'Day 12-15': 4, 'Day 18-21': 6, 'Day 24-27': 8} # print(annots.keys()) # (['__header__', '__version__', '__globals__', 'EBgenes_name', 'cells', 'data']) gene_names_raw = annots['EBgenes_name'] # (17580, 1) genes print(data.shape) adata = sc.AnnData(data) # time_labels = pd.read_csv('/home/shobi/Trajectory/Datasets/EB_Phate/labels_1.csv') # time_labels = time_labels.drop(['Unnamed: 0'], axis=1) # time_labels = time_labels['time'] # adata.obs['time'] = [str(i) for i in time_labels] gene_names = [] for i in gene_names_raw: gene_names.append(i[0][0]) adata.var_names = gene_names adata.obs['time'] = [str(i) for i in time_labels] # filter_result = sc.pp.filter_genes_dispersion(adata.X, flavor='cell_ranger', n_top_genes=5000, log=False) #dont take log adata_umap = adata.copy() # adata = adata[:, filter_result.gene_subset] # subset the genes # sc.pp.normalize_per_cell(adata, min_counts=2) # renormalize after filtering print('data max min BEFORE NORM', np.max(adata.X), np.min(adata.X), adata.X[1, 0:20]) rowsums = adata.X.sum(axis=1) # adata.X = adata.X / rowsums[:, np.newaxis] # adata.X = sc.pp.normalize_total(adata, exclude_highly_expressed=True, max_fraction=0.05, inplace=False)['X'] #normalize after filtering adata.X = sc.pp.normalize_total(adata, inplace=False)['X'] # normalize after filtering print('data max min after NORM', np.max(adata.X), np.min(adata.X), adata.X[1, 0:20]) adata.X = np.sqrt(adata.X) # follow Phate paper which doesnt take log1() but instead does sqrt() transformation adata_umap.X = np.sqrt(adata_umap.X) print('data max min after SQRT', np.max(adata.X), np.min(adata.X), adata.X[1, 0:20]) # sc.pp.log1p(adata) # log transform: adata.X = log(adata.X + 1) ''' phate_operator = phate.PHATE(n_jobs=-1) Y_phate = phate_operator.fit_transform(adata.X) scprep.plot.scatter2d(Y_phate, c=time_labels, figsize=(12, 8), cmap="Spectral", ticks=False, label_prefix="PHATE") plt.show() ''' Y_phate = pd.read_csv('/home/shobi/Trajectory/Datasets/EB_Phate/EB_phate_embedding.csv') Y_phate = Y_phate.values scale = True if scale == True: print('pp scaled') # sc.pp.scale(adata) adata.X = (adata.X - np.mean(adata.X, axis=0)) / np.std(adata.X, axis=0) sc.pp.scale(adata_umap) print('data max min after SCALED', np.max(adata.X), np.min(adata.X)) else: print('not pp scaled') print('sqrt transformed') # sc.pp.recipe_zheng17(adata, n_top_genes=15000) #expects non-log data # g = sc.tl.rank_genes_groups(adata, groupby='time', use_raw=True, n_genes=10)#method='t-test_overestim_var' # sc.pl.rank_genes_groups_heatmap(adata, n_genes=3, standard_scale='var') ''' pcs = pd.read_csv('/home/shobi/Trajectory/Datasets/EB_Phate/umap_200_matlab.csv') pcs = pcs.drop(['Unnamed: 0'], axis=1) pcs = pcs.values print(time.ctime()) ncomps = 50 input_data =pcs[:, 0:ncomps] ''' print('v0_toobig, p1_toobig, v0randomseed', v0_too_big, v1_too_big, v0_random_seed) print('do pca') # sc.tl.pca(adata, svd_solver='arpack', n_comps=200, random_state = 0) # sc.tl.pca(adata_umap, svd_solver='arpack', n_comps=200) # df_pca_TI_200 = pd.DataFrame(adata.obsm['X_pca']) # df_pca_TI_200.to_csv('/home/shobi/Trajectory/Datasets/EB_Phate/PCA_TI_200_TuesAM.csv') # df_pca_umap_200 = pd.DataFrame(adata_umap.obsm['X_pca']) # df_pca_umap_200.to_csv('/home/shobi/Trajectory/Datasets/EB_Phate/PCA_umap_200_TuesAM.csv') adata.obsm['X_pca'] = TI_pcs adata_umap.obsm['X_pca'] = umap_pcs input_data = adata.obsm['X_pca'][:, 0:ncomps] ''' #plot genes vs clusters for each trajectory df_plot_gene = pd.DataFrame(adata.X, columns=[i for i in adata.var_names]) df_plot_gene = df_plot_gene[marker_genes_list] previous_p1_labels = pd.read_csv('/home/shobi/Trajectory/Datasets/EB_Phate/df_labels_knn20_pc100_seed20.csv') title_str = 'Terminal state 27 (Cardiac)' gene_groups = ['ESC', 'PS/ME','EN','Cardiac'] clusters = [43,41,16,14,12,27] ''' u_knn = 15 repulsion_strength = 1 n_pcs = 10 print('knn and repel', u_knn, repulsion_strength) U = pd.read_csv('/home/shobi/Trajectory/Datasets/EB_Phate/umap_pc10_knn15.csv') U = U.values[:, 1:] U = Y_phate # U = umap.UMAP(n_neighbors=u_knn, random_state=1, repulsion_strength=repulsion_strength).fit_transform(adata_umap.obsm['X_pca'][:, 0:n_pcs]) #print('start palantir', time.ctime()) # run_palantir_EB(adata, knn=knn, ncomps=ncomps, tsne=U, str_true_label=[str(i) for i in time_labels]) #print('end palantir', time.ctime()) # df_U = pd.DataFrame(U) # df_U.to_csv('/home/shobi/Trajectory/Datasets/EB_Phate/umap_pc10_knn15.csv') print('do v0') v0 = VIA(input_data, time_labels, jac_std_global=0.15, dist_std_local=1, knn=knn, too_big_factor=v0_too_big, root_user=root_user, dataset='EB', random_seed=v0_random_seed, do_impute_bool=True, is_coarse=True, preserve_disconnected=True) # *.4 root=1, v0.run_VIA() super_labels = v0.labels v0_labels_df = pd.DataFrame(super_labels, columns=['v0_labels']) v0_labels_df.to_csv('/home/shobi/Trajectory/Datasets/EB_Phate/p0_labels.csv') adata.obs['via0'] = [str(i) for i in super_labels] ''' df_temp1 = pd.DataFrame(adata.X, columns = [i for i in adata.var_names]) df_temp1 = df_temp1[marker_genes_list] df_temp1['via0']=[str(i) for i in super_labels] df_temp1 = df_temp1.groupby('via0').mean() ''' # sns.clustermap(df_temp1, vmin=-1, vmax=1,xticklabels=True, yticklabels=True, row_cluster= False, col_cluster=True) # sc.pl.matrixplot(adata, marker_genes_dict, groupby='via0', vmax=1, vmin =-1, dendrogram=True) ''' sc.tl.rank_genes_groups(adata, groupby='via0', use_raw=True, method='t-test_overestim_var', n_genes=5) # compute differential expression sc.pl.rank_genes_groups_heatmap(adata, groupby='via0',vmin=-3, vmax=3) # plot the result ''' p = hnswlib.Index(space='l2', dim=input_data.shape[1]) p.init_index(max_elements=input_data.shape[0], ef_construction=100, M=16) p.add_items(input_data) p.set_ef(30) tsi_list = get_loc_terminal_states(v0, input_data) v1 = VIA(input_data, time_labels, jac_std_global=0.15, dist_std_local=1, knn=knn, too_big_factor=v1_too_big, is_coarse=False, super_cluster_labels=super_labels, super_node_degree_list=v0.node_degree_list, super_terminal_cells=tsi_list, root_user=root_user, ig_full_graph=v0.ig_full_graph, csr_array_locally_pruned=v0.csr_array_locally_pruned, full_distance_array=v0.full_distance_array, full_neighbor_array=v0.full_neighbor_array, x_lazy=0.95, alpha_teleport=0.99, preserve_disconnected=True, dataset='EB', super_terminal_clusters=v0.terminal_clusters, random_seed=v0_random_seed) v1.run_VIA() # adata.obs['parc1'] = [str(i) for i in v1.labels] # sc.pl.matrixplot(adata, marker_genes, groupby='parc1', dendrogram=True) labels = v1.labels ''' df_labels = pd.DataFrame({'v0_labels':v0.labels,'p1_labels':v1.labels}) df_labels['sub_TS'] = [1 if i in v1.terminal_clusters else 0 for i in v1.labels] df_labels['super_TS'] = [1 if i in v0.terminal_clusters else 0 for i in v0.labels] df_labels.to_csv('/home/shobi/Trajectory/Datasets/EB_Phate/df_labels_knn20_pc100_seed20.csv') df_temp2 = pd.DataFrame(adata.X, columns=[i for i in adata.var_names]) df_temp2 = df_temp2[marker_genes_list] df_temp2['parc1'] = [str(i) for i in labels] df_temp2 = df_temp2.groupby('parc1').mean() df_temp2.to_csv('/home/shobi/Trajectory/Datasets/EB_Phate/df_groupbyParc1_knn20_pc100_seed20.csv') ''' adata.obs['parc1'] = [str(i) for i in labels] # df_ts = pd.DataFrame(adata.X, columns = [i for i in adata.var_names]) # df_ts = df_ts[marker_genes_list] # df_ts['parc1'] = [str(i) for i in labels] adata.obs['terminal_state'] = ['True' if i in v1.terminal_clusters else 'False' for i in labels] # df_ts = df_ts[df_ts['terminal_state']=='True'] adata_TS = adata[adata.obs['terminal_state'] == 'True'] # sns.clustermap(df_temp1, vmin=-1, vmax=1, xticklabels=True, yticklabels=True, row_cluster=False, col_cluster=True) sc.pl.matrixplot(adata, marker_genes_dict, groupby='parc1', vmax=1, vmin=-1, dendrogram=True) # sc.pl.matrixplot(adata_TS, marker_genes_dict, groupby='parc1', vmax=1, vmin=-1, dendrogram=True) # U = umap.UMAP(n_neighbors=10, random_state=0, repulsion_strength=repulsion_strength).fit_transform(input_data[:, 0:n_pcs]) f, (ax1, ax2) = plt.subplots(1, 2, sharey=True) ax1.scatter(U[:, 0], U[:, 1], c=time_labels, s=5, cmap='viridis', alpha=0.5) ax2.scatter(U[:, 0], U[:, 1], c=v1.single_cell_pt_markov, s=5, cmap='viridis', alpha=0.5) plt.title('repulsion and knn and pcs ' + str(repulsion_strength) + ' ' + str(u_knn) + ' ' + str( n_pcs) + ' randseed' + str(v0_random_seed)) plt.show() super_clus_ds_PCA_loc = sc_loc_ofsuperCluster_PCAspace(v0, v1, np.arange(0, len(labels))) draw_trajectory_gams(U, super_clus_ds_PCA_loc, labels, super_labels, v0.edgelist_maxout, v1.x_lazy, v1.alpha_teleport, v1.single_cell_pt_markov, time_labels, knn=v0.knn, final_super_terminal=v1.revised_super_terminal_clusters, sub_terminal_clusters=v1.terminal_clusters, title_str='Markov Hitting Times (Gams)', ncomp=ncomps) plt.show() knn_hnsw = make_knn_embeddedspace(U) draw_sc_evolution_trajectory_dijkstra(v1, U, knn_hnsw, v0.full_graph_shortpath, idx=np.arange(0, input_data.shape[0])) plt.show() def main_mESC(knn=30, v0_random_seed=42, cluster_graph_pruning_std=.0, run_palantir_func=False): import random rand_str = 950 # random.randint(1, 999) print('rand string', rand_str) print('knn', knn) data_random_seed = 20 root = '0.0' type_germ = 'Meso' normalize = True data = pd.read_csv('/home/shobi/Trajectory/Datasets/mESC/mESC_' + type_germ + '_markers.csv') print('counts', data.groupby('day').count()) # print(data.head()) print(data.shape) n_sub = 7000 print('type,', type_germ, 'nelements', n_sub, 'v0 randseed', v0_random_seed) title_string = 'randstr:' + str(rand_str) + ' Knn' + str(knn) + ' nelements:' + str(n_sub) + ' ' + 'meso' # data = data[data['day']!=0] v0_too_big = 0.3 p1_too_big = 0.15 # .15 print('v0 and p1 too big', v0_too_big, p1_too_big) data_sub = data[data['day'] == 0.0] np.random.seed(data_random_seed) idx_sub = np.random.choice(a=np.arange(0, data_sub.shape[0]), size=min(n_sub, data_sub.shape[0]), replace=False, p=None) # len(true_label) data_sub = data_sub.values[idx_sub, :] data_sub =
pd.DataFrame(data_sub, columns=data.columns)
pandas.DataFrame
# authors: <NAME>, <NAME>, <NAME> # date: 2020-01-25 '''The script loads previously trained model and performs validation on test data. It then stores sample excerpt in data folder Usage: test_model.py [--TEST_FILE_PATH=<TEST_FILE_PATH>] [--MODEL_DUMP_PATH=<MODEL_DUMP_PATH>] [--TEST_SIZE=<TEST_SIZE>] Options: --TEST_FILE_PATH=<TEST_FILE_PATH> Test data file path [default: data/vehicles_test.csv] --MODEL_DUMP_PATH=<MODEL_DUMP_PATH> Path to load the model to test. [default: results/model.pic] --TEST_SIZE=<TEST_SIZE> Percentage of test set to use (from 0 to 1). [default: 1] ''' import numpy as np import pandas as pd import altair as alt import altair as alt from sklearn import tree from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import RobustScaler from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.compose import ColumnTransformer from sklearn.preprocessing import OneHotEncoder from sklearn.pipeline import Pipeline from sklearn import linear_model from sklearn.model_selection import GridSearchCV from sklearn.svm import SVC, SVR, LinearSVC from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor from sklearn.model_selection import KFold from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import mean_squared_error from sklearn.multiclass import OneVsRestClassifier from sklearn.multiclass import OneVsOneClassifier from sklearn.ensemble import VotingClassifier, AdaBoostClassifier, GradientBoostingClassifier, RandomForestRegressor from sklearn.tree import DecisionTreeRegressor from sklearn import datasets from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_absolute_error import statsmodels.api as sm from statsmodels.stats.outliers_influence import variance_inflation_factor import pickle import os import sys from docopt import docopt opt = docopt(__doc__) # Excerpt for the report path TEST_EXCERPT_PATH = 'results/test_results_sample.csv' def main(test_file_path, model_dump_path, test_size=1): """ Main entry for script to load data and test the model. Arguments --------- test_file_path : str Path to test dataset. model_dump_path : str Path to dump the resulting model. test_size : float Percentage of test dataset to use, from 0 to 1 (Default = 1) """ if (not os.path.isfile(test_file_path)): print('ERROR - No test file. Run scripts/wrangling.R first') sys.exit() if (not os.path.isfile(model_dump_path)): print('ERROR - No model file. Run scripts/train_model.py first') sys.exit() if test_size <= 0 or test_size > 1: print('ERROR - Invalid TEST_SIZE. Should be between 0 and 1') sys.exit() # Read the model from Pickle dump print("Loading model...") model = pickle.load(open(model_dump_path, 'rb')) # Read master test data print("Loading test data...") test_data =
pd.read_csv(test_file_path)
pandas.read_csv
""" Tests for statistical pipeline terms. """ from numpy import ( arange, full, full_like, nan, where, ) from pandas import ( DataFrame, date_range, Int64Index, Timestamp, ) from pandas.util.testing import assert_frame_equal from scipy.stats import linregress, pearsonr, spearmanr from catalyst.assets import Equity from catalyst.errors import IncompatibleTerms, NonExistentAssetInTimeFrame from catalyst.pipeline import CustomFactor, Pipeline from catalyst.pipeline.data import USEquityPricing from catalyst.pipeline.data.testing import TestingDataSet from catalyst.pipeline.engine import SimplePipelineEngine from catalyst.pipeline.factors.equity import ( Returns, RollingLinearRegressionOfReturns, RollingPearsonOfReturns, RollingSpearmanOfReturns, ) from catalyst.pipeline.loaders.frame import DataFrameLoader from catalyst.pipeline.sentinels import NotSpecified from catalyst.testing import ( AssetID, AssetIDPlusDay, check_arrays, make_alternating_boolean_array, make_cascading_boolean_array, parameter_space, ) from catalyst.testing.fixtures import ( WithSeededRandomPipelineEngine, WithTradingEnvironment, CatalystTestCase, ) from catalyst.utils.numpy_utils import ( bool_dtype, datetime64ns_dtype, float64_dtype, ) class StatisticalBuiltInsTestCase(WithTradingEnvironment, CatalystTestCase): sids = ASSET_FINDER_EQUITY_SIDS = Int64Index([1, 2, 3]) START_DATE = Timestamp('2015-01-31', tz='UTC') END_DATE = Timestamp('2015-03-01', tz='UTC') @classmethod def init_class_fixtures(cls): super(StatisticalBuiltInsTestCase, cls).init_class_fixtures() day = cls.trading_calendar.day cls.dates = dates = date_range( '2015-02-01', '2015-02-28', freq=day, tz='UTC', ) # Using these start and end dates because they are a contigous span of # 5 days (Monday - Friday) and they allow for plenty of days to look # back on when computing correlations and regressions. cls.start_date_index = start_date_index = 14 cls.end_date_index = end_date_index = 18 cls.pipeline_start_date = dates[start_date_index] cls.pipeline_end_date = dates[end_date_index] cls.num_days = num_days = end_date_index - start_date_index + 1 sids = cls.sids cls.assets = assets = cls.asset_finder.retrieve_all(sids) cls.my_asset_column = my_asset_column = 0 cls.my_asset = assets[my_asset_column] cls.num_assets = num_assets = len(assets) cls.raw_data = raw_data = DataFrame( data=arange(len(dates) * len(sids), dtype=float64_dtype).reshape( len(dates), len(sids), ), index=dates, columns=assets, ) # Using mock 'close' data here because the correlation and regression # built-ins use USEquityPricing.close as the input to their `Returns` # factors. Since there is no way to change that when constructing an # instance of these built-ins, we need to test with mock 'close' data # to most accurately reflect their true behavior and results. close_loader = DataFrameLoader(USEquityPricing.close, raw_data) cls.run_pipeline = SimplePipelineEngine( {USEquityPricing.close: close_loader}.__getitem__, dates, cls.asset_finder, ).run_pipeline cls.cascading_mask = \ AssetIDPlusDay() < (sids[-1] + dates[start_date_index].day) cls.expected_cascading_mask_result = make_cascading_boolean_array( shape=(num_days, num_assets), ) cls.alternating_mask = (AssetIDPlusDay() % 2).eq(0) cls.expected_alternating_mask_result = make_alternating_boolean_array( shape=(num_days, num_assets), ) cls.expected_no_mask_result = full( shape=(num_days, num_assets), fill_value=True, dtype=bool_dtype, ) @parameter_space(returns_length=[2, 3], correlation_length=[3, 4]) def _test_correlation_factors(self, returns_length, correlation_length): """ Tests for the built-in factors `RollingPearsonOfReturns` and `RollingSpearmanOfReturns`. """ assets = self.assets my_asset = self.my_asset my_asset_column = self.my_asset_column dates = self.dates start_date = self.pipeline_start_date end_date = self.pipeline_end_date start_date_index = self.start_date_index end_date_index = self.end_date_index num_days = self.num_days run_pipeline = self.run_pipeline returns = Returns(window_length=returns_length) masks = (self.cascading_mask, self.alternating_mask, NotSpecified) expected_mask_results = ( self.expected_cascading_mask_result, self.expected_alternating_mask_result, self.expected_no_mask_result, ) for mask, expected_mask in zip(masks, expected_mask_results): pearson_factor = RollingPearsonOfReturns( target=my_asset, returns_length=returns_length, correlation_length=correlation_length, mask=mask, ) spearman_factor = RollingSpearmanOfReturns( target=my_asset, returns_length=returns_length, correlation_length=correlation_length, mask=mask, ) columns = { 'pearson_factor': pearson_factor, 'spearman_factor': spearman_factor, } pipeline = Pipeline(columns=columns) if mask is not NotSpecified: pipeline.add(mask, 'mask') results = run_pipeline(pipeline, start_date, end_date) pearson_results = results['pearson_factor'].unstack() spearman_results = results['spearman_factor'].unstack() if mask is not NotSpecified: mask_results = results['mask'].unstack() check_arrays(mask_results.values, expected_mask) # Run a separate pipeline that calculates returns starting # (correlation_length - 1) days prior to our start date. This is # because we need (correlation_length - 1) extra days of returns to # compute our expected correlations. results = run_pipeline( Pipeline(columns={'returns': returns}), dates[start_date_index - (correlation_length - 1)], dates[end_date_index], ) returns_results = results['returns'].unstack() # On each day, calculate the expected correlation coefficients # between the asset we are interested in and each other asset. Each # correlation is calculated over `correlation_length` days. expected_pearson_results = full_like(pearson_results, nan) expected_spearman_results = full_like(spearman_results, nan) for day in range(num_days): todays_returns = returns_results.iloc[ day:day + correlation_length ] my_asset_returns = todays_returns.iloc[:, my_asset_column] for asset, other_asset_returns in todays_returns.iteritems(): asset_column = int(asset) - 1 expected_pearson_results[day, asset_column] = pearsonr( my_asset_returns, other_asset_returns, )[0] expected_spearman_results[day, asset_column] = spearmanr( my_asset_returns, other_asset_returns, )[0] expected_pearson_results = DataFrame( data=where(expected_mask, expected_pearson_results, nan), index=dates[start_date_index:end_date_index + 1], columns=assets, )
assert_frame_equal(pearson_results, expected_pearson_results)
pandas.util.testing.assert_frame_equal
import operator import re import warnings import numpy as np import pytest from pandas._libs.sparse import IntIndex import pandas.util._test_decorators as td import pandas as pd from pandas import isna from pandas.core.sparse.api import SparseArray, SparseDtype, SparseSeries import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal @pytest.fixture(params=["integer", "block"]) def kind(request): return request.param class TestSparseArray: def setup_method(self, method): self.arr_data = np.array([np.nan, np.nan, 1, 2, 3, np.nan, 4, 5, np.nan, 6]) self.arr = SparseArray(self.arr_data) self.zarr = SparseArray([0, 0, 1, 2, 3, 0, 4, 5, 0, 6], fill_value=0) def test_constructor_dtype(self): arr = SparseArray([np.nan, 1, 2, np.nan]) assert arr.dtype == SparseDtype(np.float64, np.nan) assert arr.dtype.subtype == np.float64 assert np.isnan(arr.fill_value) arr = SparseArray([np.nan, 1, 2, np.nan], fill_value=0) assert arr.dtype == SparseDtype(np.float64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], dtype=np.float64) assert arr.dtype == SparseDtype(np.float64, np.nan) assert np.isnan(arr.fill_value) arr = SparseArray([0, 1, 2, 4], dtype=np.int64) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], fill_value=0, dtype=np.int64) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], dtype=None) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], fill_value=0, dtype=None) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 def test_constructor_dtype_str(self): result = SparseArray([1, 2, 3], dtype='int') expected = SparseArray([1, 2, 3], dtype=int) tm.assert_sp_array_equal(result, expected) def test_constructor_sparse_dtype(self): result = SparseArray([1, 0, 0, 1], dtype=SparseDtype('int64', -1)) expected = SparseArray([1, 0, 0, 1], fill_value=-1, dtype=np.int64) tm.assert_sp_array_equal(result, expected) assert result.sp_values.dtype == np.dtype('int64') def test_constructor_sparse_dtype_str(self): result = SparseArray([1, 0, 0, 1], dtype='Sparse[int32]') expected = SparseArray([1, 0, 0, 1], dtype=np.int32) tm.assert_sp_array_equal(result, expected) assert result.sp_values.dtype == np.dtype('int32') def test_constructor_object_dtype(self): # GH 11856 arr = SparseArray(['A', 'A', np.nan, 'B'], dtype=np.object) assert arr.dtype == SparseDtype(np.object) assert np.isnan(arr.fill_value) arr = SparseArray(['A', 'A', np.nan, 'B'], dtype=np.object, fill_value='A') assert arr.dtype == SparseDtype(np.object, 'A') assert arr.fill_value == 'A' # GH 17574 data = [False, 0, 100.0, 0.0] arr = SparseArray(data, dtype=np.object, fill_value=False) assert arr.dtype == SparseDtype(np.object, False) assert arr.fill_value is False arr_expected = np.array(data, dtype=np.object) it = (type(x) == type(y) and x == y for x, y in zip(arr, arr_expected)) assert np.fromiter(it, dtype=np.bool).all() @pytest.mark.parametrize("dtype", [SparseDtype(int, 0), int]) def test_constructor_na_dtype(self, dtype): with pytest.raises(ValueError, match="Cannot convert"): SparseArray([0, 1, np.nan], dtype=dtype) def test_constructor_spindex_dtype(self): arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2])) # XXX: Behavior change: specifying SparseIndex no longer changes the # fill_value expected = SparseArray([0, 1, 2, 0], kind='integer') tm.assert_sp_array_equal(arr, expected) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=[1, 2, 3], sparse_index=IntIndex(4, [1, 2, 3]), dtype=np.int64, fill_value=0) exp = SparseArray([0, 1, 2, 3], dtype=np.int64, fill_value=0) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2]), fill_value=0, dtype=np.int64) exp = SparseArray([0, 1, 2, 0], fill_value=0, dtype=np.int64) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=[1, 2, 3], sparse_index=IntIndex(4, [1, 2, 3]), dtype=None, fill_value=0) exp = SparseArray([0, 1, 2, 3], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 @pytest.mark.parametrize("sparse_index", [ None, IntIndex(1, [0]), ]) def test_constructor_spindex_dtype_scalar(self, sparse_index): # scalar input arr = SparseArray(data=1, sparse_index=sparse_index, dtype=None) exp = SparseArray([1], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=1, sparse_index=IntIndex(1, [0]), dtype=None) exp = SparseArray([1], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 def test_constructor_spindex_dtype_scalar_broadcasts(self): arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2]), fill_value=0, dtype=None) exp = SparseArray([0, 1, 2, 0], fill_value=0, dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 @pytest.mark.parametrize('data, fill_value', [ (np.array([1, 2]), 0), (np.array([1.0, 2.0]), np.nan), ([True, False], False), ([pd.Timestamp('2017-01-01')], pd.NaT), ]) def test_constructor_inferred_fill_value(self, data, fill_value): result = SparseArray(data).fill_value if pd.isna(fill_value): assert pd.isna(result) else: assert result == fill_value @pytest.mark.parametrize('format', ['coo', 'csc', 'csr']) @pytest.mark.parametrize('size', [ pytest.param(0, marks=td.skip_if_np_lt("1.16", reason='NumPy-11383')), 10 ]) @td.skip_if_no_scipy def test_from_spmatrix(self, size, format): import scipy.sparse mat = scipy.sparse.random(size, 1, density=0.5, format=format) result = SparseArray.from_spmatrix(mat) result = np.asarray(result) expected = mat.toarray().ravel() tm.assert_numpy_array_equal(result, expected) @td.skip_if_no_scipy def test_from_spmatrix_raises(self): import scipy.sparse mat = scipy.sparse.eye(5, 4, format='csc') with pytest.raises(ValueError, match="not '4'"): SparseArray.from_spmatrix(mat) @pytest.mark.parametrize('scalar,dtype', [ (False, SparseDtype(bool, False)), (0.0, SparseDtype('float64', 0)), (1, SparseDtype('int64', 1)), ('z', SparseDtype('object', 'z'))]) def test_scalar_with_index_infer_dtype(self, scalar, dtype): # GH 19163 arr = SparseArray(scalar, index=[1, 2, 3], fill_value=scalar) exp = SparseArray([scalar, scalar, scalar], fill_value=scalar) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == dtype assert exp.dtype == dtype @pytest.mark.parametrize("fill", [1, np.nan, 0]) @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") def test_sparse_series_round_trip(self, kind, fill): # see gh-13999 arr = SparseArray([np.nan, 1, np.nan, 2, 3], kind=kind, fill_value=fill) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) arr = SparseArray([0, 0, 0, 1, 1, 2], dtype=np.int64, kind=kind, fill_value=fill) res = SparseArray(SparseSeries(arr), dtype=np.int64) tm.assert_sp_array_equal(arr, res) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) @pytest.mark.parametrize("fill", [True, False, np.nan]) @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") def test_sparse_series_round_trip2(self, kind, fill): # see gh-13999 arr = SparseArray([True, False, True, True], dtype=np.bool, kind=kind, fill_value=fill) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) def test_get_item(self): assert np.isnan(self.arr[1]) assert self.arr[2] == 1 assert self.arr[7] == 5 assert self.zarr[0] == 0 assert self.zarr[2] == 1 assert self.zarr[7] == 5 errmsg = re.compile("bounds") with pytest.raises(IndexError, match=errmsg): self.arr[11] with pytest.raises(IndexError, match=errmsg): self.arr[-11] assert self.arr[-1] == self.arr[len(self.arr) - 1] def test_take_scalar_raises(self): msg = "'indices' must be an array, not a scalar '2'." with pytest.raises(ValueError, match=msg): self.arr.take(2) def test_take(self): exp = SparseArray(np.take(self.arr_data, [2, 3])) tm.assert_sp_array_equal(self.arr.take([2, 3]), exp) exp = SparseArray(np.take(self.arr_data, [0, 1, 2])) tm.assert_sp_array_equal(self.arr.take([0, 1, 2]), exp) def test_take_fill_value(self): data = np.array([1, np.nan, 0, 3, 0]) sparse = SparseArray(data, fill_value=0) exp = SparseArray(np.take(data, [0]), fill_value=0) tm.assert_sp_array_equal(sparse.take([0]), exp) exp = SparseArray(np.take(data, [1, 3, 4]), fill_value=0) tm.assert_sp_array_equal(sparse.take([1, 3, 4]), exp) def test_take_negative(self): exp = SparseArray(np.take(self.arr_data, [-1])) tm.assert_sp_array_equal(self.arr.take([-1]), exp) exp = SparseArray(np.take(self.arr_data, [-4, -3, -2])) tm.assert_sp_array_equal(self.arr.take([-4, -3, -2]), exp) @pytest.mark.parametrize('fill_value', [0, None, np.nan]) def test_shift_fill_value(self, fill_value): # GH #24128 sparse = SparseArray(np.array([1, 0, 0, 3, 0]), fill_value=8.0) res = sparse.shift(1, fill_value=fill_value) if isna(fill_value): fill_value = res.dtype.na_value exp = SparseArray(np.array([fill_value, 1, 0, 0, 3]), fill_value=8.0) tm.assert_sp_array_equal(res, exp) def test_bad_take(self): with pytest.raises(IndexError, match="bounds"): self.arr.take([11]) def test_take_filling(self): # similar tests as GH 12631 sparse = SparseArray([np.nan, np.nan, 1, np.nan, 4]) result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([np.nan, np.nan, 4]) tm.assert_sp_array_equal(result, expected) # XXX: test change: fill_value=True -> allow_fill=True result = sparse.take(np.array([1, 0, -1]), allow_fill=True) expected = SparseArray([np.nan, np.nan, np.nan]) tm.assert_sp_array_equal(result, expected) # allow_fill=False result = sparse.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = SparseArray([np.nan, np.nan, 4]) tm.assert_sp_array_equal(result, expected) msg = "Invalid value in 'indices'" with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -2]), allow_fill=True) with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -5]), allow_fill=True) with pytest.raises(IndexError): sparse.take(np.array([1, -6])) with pytest.raises(IndexError): sparse.take(np.array([1, 5])) with pytest.raises(IndexError): sparse.take(np.array([1, 5]), allow_fill=True) def test_take_filling_fill_value(self): # same tests as GH 12631 sparse = SparseArray([np.nan, 0, 1, 0, 4], fill_value=0) result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([0, np.nan, 4], fill_value=0) tm.assert_sp_array_equal(result, expected) # fill_value result = sparse.take(np.array([1, 0, -1]), allow_fill=True) # XXX: behavior change. # the old way of filling self.fill_value doesn't follow EA rules. # It's supposed to be self.dtype.na_value (nan in this case) expected = SparseArray([0, np.nan, np.nan], fill_value=0) tm.assert_sp_array_equal(result, expected) # allow_fill=False result = sparse.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = SparseArray([0, np.nan, 4], fill_value=0) tm.assert_sp_array_equal(result, expected) msg = ("Invalid value in 'indices'.") with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -2]), allow_fill=True) with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -5]), allow_fill=True) with pytest.raises(IndexError): sparse.take(np.array([1, -6])) with pytest.raises(IndexError): sparse.take(np.array([1, 5])) with pytest.raises(IndexError): sparse.take(np.array([1, 5]), fill_value=True) def test_take_filling_all_nan(self): sparse = SparseArray([np.nan, np.nan, np.nan, np.nan, np.nan]) # XXX: did the default kind from take change? result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([np.nan, np.nan, np.nan], kind='block')
tm.assert_sp_array_equal(result, expected)
pandas.util.testing.assert_sp_array_equal
import pandas as pd import numpy as np import pdb import sys import os from sklearn.ensemble import GradientBoostingRegressor from joblib import dump, load import re ##################################################################3 # (Sept 2020 - Jared) - PG-MTL training script on 145 source lake # Features and hyperparamters must be manually specified below # (e.g. feats = ['dif_max_depth', ....]; n_estimators = 5500, etc) ####################################################################3 #file to save model to save_file_path = '../../models/metamodel_pgdl_RMSE_GBR.joblib' ######################################################################################### #paste features found in "pbmtl_feature_selection.py" here feats = ['n_obs_sp', 'n_obs_su', 'dif_max_depth', 'dif_surface_area', 'dif_glm_strat_perc', 'perc_dif_max_depth', 'perc_dif_surface_area', 'perc_dif_sqrt_surface_area'] ################################################################################### #######################################################################3 #paste hyperparameters found in "pbmtl_hyperparameter_search.py" here # n_estimators = 5500 lr = .05 ##################################################################### ids = pd.read_csv('../../metadata/pball_site_ids.csv', header=None) ids = ids[0].values glm_all_f = pd.read_csv("../../results/glm_transfer/RMSE_transfer_glm_pball.csv") train_lakes = [re.search('nhdhr_(.*)', x).group(1) for x in np.unique(glm_all_f['target_id'].values)] train_lakes_wp = np.unique(glm_all_f['target_id'].values) #with prefix #compile training data train_df = pd.DataFrame() for _, lake_id in enumerate(train_lakes): new_df = pd.DataFrame() #get performance results (metatargets), filter out target as source lake_df_res = pd.read_csv("../../results/transfer_learning/target_"+lake_id+"/resultsPGRNNbasic_pball",header=None,names=['source_id','rmse']) lake_df_res = lake_df_res[lake_df_res.source_id != 'source_id'] #get metadata differences between target and all the sources lake_df =
pd.read_feather("../../metadata/diffs/target_nhdhr_"+lake_id+".feather")
pandas.read_feather
import pandas as pd import re import ijson import json import numpy as np import csv class jsonData: percent_critical = 0 percent_high = 0 percent_medium = 0 percent_low = 0 total = 0 def __init__(self): pass def print_full(self, x): # function that prints full dataframe for display/debugging purposes pd.set_option('display.max_rows', len(x)) pd.set_option('display.max_columns', None) pd.set_option('display.width', 2000) pd.set_option('display.float_format', '{:20,.2f}'.format) pd.set_option('display.max_colwidth', -1) print(x) pd.reset_option('display.max_rows') pd.reset_option('display.max_columns') pd.reset_option('display.width') pd.reset_option('display.float_format') pd.reset_option('display.max_colwidth') def flatten_json(self, y): # function to flatten jsons out = {} def flatten(x, name=''): if type(x) is dict: for a in x: flatten(x[a], name + a + '_') elif type(x) is list: i = 0 for a in x: flatten(a, name + str(i) + '_') i += 1 else: out[name[:-1]] = x flatten(y) return out def search_dicts(self, key, list_of_dicts): for item in list_of_dicts: if key in item.keys(): return item def json_to_dataframe(self, filename): # function to turn flsttened json into a pandas dataframe jsonObj = json.load(filename) flat = self.flatten_json(jsonObj) results =
pd.DataFrame()
pandas.DataFrame
import os from os.path import join import numpy as np import pandas as pd from collections import OrderedDict from itertools import chain from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import ShuffleSplit from sklearn.model_selection import GridSearchCV from sklearn.metrics import roc_auc_score from ukbb_variables import (brain_dmri_fa, brain_dmri_icvf, brain_dmri_isovf, brain_dmri_l1, brain_dmri_l2, brain_dmri_l3, brain_dmri_md, brain_dmri_mo, brain_dmri_od, brain_smri_plus, fluid_intelligence, neuroticism, education, primary_demographics, lifestyle, mental_health, earlylife) path_to_csv = '/storage/local/kdadi/work/rs_study/experiments/UKBB/ukb9543.csv' path_to_matrices = '/storage/local/kdadi/work/data/UKBB/rfMRI_tangent_matrix_dim100' path_to_merge_brain = '/storage/local/kdadi/work/rs_study/experiments/UKBB/para/roadmap/ukb_add1_merge_brain.csv' X_iterate = zip([brain_dmri_fa, brain_dmri_icvf, brain_dmri_isovf, brain_dmri_l1, brain_dmri_l2, brain_dmri_l3, brain_dmri_md, brain_dmri_mo, brain_dmri_od, brain_smri_plus, fluid_intelligence, neuroticism, education, primary_demographics, lifestyle, mental_health, earlylife], ['fa', 'icvf', 'isovf', 'l1', 'l2', 'l3', 'md', 'mo', 'od', 'smri', 'Fluid \n intelligence', 'Neuroticism', 'Edu', 'Age', 'Lifestyle', 'MH', 'EL']) columns = [] for i in X_iterate: columns.extend(i[0].keys()) columns.extend(['eid']) ukbb = pd.read_csv(path_to_csv, usecols=['20016-2.0', 'eid', '20127-0.0']) y = ukbb['20016-2.0'].dropna() new_ukbb = pd.DataFrame(ukbb, index=y.index) new_ukbb = new_ukbb.drop(columns=['20016-2.0'], errors='ignore') # Random splitting of data to train our model X_train, X_test, y_train, y_test = train_test_split( new_ukbb, y, test_size=0.5, random_state=0) y_train = X_train['20127-0.0'].dropna() y_test = X_test['20127-0.0'].dropna() X_train = pd.DataFrame(X_train, index=y_train.index) X_test =
pd.DataFrame(X_test, index=y_test.index)
pandas.DataFrame
import pandas as pd import numpy as np from web.pickle_helper import * import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt from django.http import HttpResponse import io from io import BytesIO import random import base64 from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure def get_null_count(df): return df[df.isnull().any(axis=1)].shape[0] def get_zero_count(df): return (df == 0).sum().sum() def get_row_count(df): return df.shape[0] def get_column_count(df): return df.shape[1] def get_duplicated_count(df): return df.duplicated().sum() def get_dtype_count(df): temp_df = df.dtypes.to_frame() temp_df.index.names = ['Column Name'] temp_df.columns = ['Type'] return temp_df.to_html() def get_dtypes_as_dict(df): return df.dtypes.apply(lambda x: x.name).to_dict() def get_null_rows_as_html(pk): df = get_or_save_dataframe(pk) return df[pd.isnull(df).any(axis=1)].to_html() def get_zero_rows_as_html(pk): df = get_or_save_dataframe(pk) return df.loc[~(df==0).all(axis=1)].to_html() def get_column_as_html(pk, column_name): df = get_or_save_dataframe(pk) return df[[column_name]].to_html() def get_df_column_as_html(pk, count=200): df = get_or_save_dataframe(pk) return df.head(count).to_html() def get_df_as_html(df, count=200): return df.head(count).to_html(classes='preview-table table table-striped table-bordered display compact nowrap') def change_column_name(df, old_column, new_column): df.rename(columns={old_column: new_column}, inplace=True) #lets update pickle update_dataframe(df) return df def drop_column(df, column_name): df.drop(column_name, axis=1, inplace=True) #lets update pickle update_dataframe(df) return df def get_dummy_value_list(df, column_name): return df[column_name].value_counts().to_frame().to_html(classes="table") def get_categorical_value_list(df, column_name): dummy, mapping_index =
pd.Series(df[column_name])
pandas.Series
""" Format data """ from __future__ import division, print_function import pandas as pd import numpy as np import re from os.path import dirname, join from copy import deepcopy import lawstructural.lawstructural.constants as lc import lawstructural.lawstructural.utils as lu #TODO: Take out entrant stuff from lawData class Format(object): """ Basic class for formatting dataset """ def __init__(self): self.dpath = join(dirname(dirname(__file__)), 'data') self.data_sets = self.data_imports() self.data = self.data_sets['usn'] self.ent_data = pd.DataFrame([]) @staticmethod def _col_fix(col): """ Fix column strings to be R-readable as well and to be consistent with older datasets. Think about changing name through rest of program instead. """ col = re.sub('%', 'Percent', col) col = re.sub('[() -/]', '', col) if col[0].isdigit(): col = re.sub('thpercentile', '', col) col = 'p' + col if col == 'Name': col = 'school' if col == 'Issueyear': col = 'year' if col == 'Overallrank': col = 'OverallRank' return col @staticmethod def _fix_bad_values(data): """ Fix known USN data typos """ data.loc[(data['school'] == 'University of Miami') & (data['year'] == 2000), 'Tuitionandfeesfulltime'] = 21000 data.loc[(data['school'] == 'Emory University') & (data['year'] == 2006), 'Employmentrateatgraduation'] = 72.4 data.loc[(data['school'] == 'Northwestern University') & (data['year'] == 2006), 'EmploymentRate9MonthsafterGraduation'] = 99.5 data.loc[(data['school'] == 'Michigan State University') & (data['year'] == 2001), 'BarpassageRateinJurisdiction'] = 75 data.loc[(data['school'] == 'Mississippi College') & (data['year'] == 2001), 'BarpassageRateinJurisdiction'] = 80 return data def usn_format(self): """ Basic USN import and format """ #data = pd.read_csv(join(self.dpath, 'usn2015.csv')) data = pd.read_csv(join(self.dpath, 'Law1988-2015.csv')) data = data[['Name', 'Value', 'Metric description', 'Issue year']] data = pd.pivot_table(data, values='Value', index=['Name', 'Issue year'], columns='Metric description') data = data.reset_index() names = data.columns.tolist() data.columns = [self._col_fix(el) for el in names] data = self._fix_bad_values(data) data = data.sort(['school', 'year']) data['year'] = data['year'].astype(int) return data def cpi_format(self): """ Basic CPI import and format """ data = pd.read_csv(join(self.dpath, 'lawCPI.csv')) # Make up for reporting vs data year in USNews and BLS data['year'] = data['year'] + 2 data = data[data['year'] <= 2015] data = data.reset_index(drop=True) return data @staticmethod def _id_name_fix(col): """ Fix outdated names of schools from id dataset """ #FIXME: Find out why this doesn't work for Drexel, Cath U old = ['Phoenix School of Law', 'Chapman University', 'Drexel University (Mack)', 'Indiana University--Indianapolis', 'Texas Wesleyan University', 'Catholic University of America (Columbus)', 'John Marshall Law School'] new = ['Arizona Summit Law School', 'Chapman University (Fowler)', 'Drexel University', 'Indiana University--Indianapolis (McKinney)', 'Texas A&M University', 'The Catholic University of America', 'The John Marshall Law School'] for i in xrange(len(old)): col = re.sub(old[i], new[i], col) return col def id_format(self): """ Import LSAC id's. Note that Irvine doesn't have an id. """ data = pd.read_csv(join(self.dpath, 'USNewsNameStateID.csv')) data['name'] = [self._id_name_fix(col) for col in data['name']] return data def elec_format(self): """ Import yearly electricity prices """ data = pd.read_csv(join(self.dpath, 'lawElectricity.csv')) states = pd.read_csv(join(self.dpath, 'lawStateAbbr.csv')) # Change state names to abbreviations data = pd.merge(data, states) data = data.drop('state', 1) columns = data.columns.tolist() index = columns.index('abbr') columns[index] = 'state' data.columns = columns data['year'] = data['year'] + 2 return data def data_imports(self): """ Import dictionary of initially formatted datasets Datasets are as follows with corresponding sources/scrapers usn --- - Data: US News and World Report - Source: ai.usnews.com cpi --- - Data: CPI data from BLS - Source: http://data.bls.gov/cgi-bin/dsrv?cu Series Id: CUUR0000SA0,CUUS0000SA0 Not Seasonally Adjusted Area: U.S. city average Item: All items Base Period: 1982-84=100 Years: 1986 to 2015 - Used to be data.bls.gov/timeseries/LNS14000000 wage ---- - Data: Market wages for lawyers from BLS - Source: bls.gov/oes states ------ - Data: US News name/state combinations - Source: US News Top Law Schools - Scraper: StateScraper.py id -- - Data: US News names and LSAC ID combinations - Source: http://www.lsac.org/lsacresources/publications/ official-guide-archives - Scraper: NameScraperLSAC.py entrants -------- - Data: School entrants, with id's and dates - Source: http://www.americanbar.org/groups/legal_education/ resources/aba_approved_law_schools/in_alphabetical_order.html via http://en.wikipedia.org/ wiki/List_of_law_schools_in_the_United_States - Scraper: entryscraper.py electricity ----------- - Data: State/Country level electricity prices - Source: eia.gov/electricity/monthly/backissues.html - Scraper: ElecScraper.py Returns ------- data_sets: dict; data sets from specified sources """ data_sets = { 'usn': self.usn_format(), 'cpi': self.cpi_format(), 'states': pd.read_csv(join(self.dpath, 'lawNameState.csv')), 'id': self.id_format(), 'entrants': pd.read_csv(join(self.dpath, 'lawEntrants.csv')), 'electricity': self.elec_format(), 'stateregions': pd.read_csv(join(self.dpath, 'StateRegions.csv')), 'aaup_comp_region': pd.read_csv(join(self.dpath, 'aaup_comp_region.csv')), 'aaup_comp': pd.read_csv(join(self.dpath, 'aaup_comp.csv')), 'aaup_salary_region': pd.read_csv(join(self.dpath, 'aaup_salary_region.csv')), 'aaup_salary': pd.read_csv(join(self.dpath, 'aaup_salary.csv')) } return data_sets def fill_ranks(self): """ Generate top/bottom/inside/squared rank variables, fill in unranked schools """ # Indicate top/bottom ranked schools self.data['TopRanked'] = 1 * (self.data['OverallRank'] == 1) self.data['BottomRanked'] = 1 * (self.data['OverallRank'] == np.nanmax(self.data['OverallRank'])) self.data['InsideRanked'] = 1 * ((self.data['OverallRank'] > 1) & (self.data['OverallRank'] < np.nanmax(self.data['OverallRank']))) # Squared rank self.data['OverallRankSquared'] = self.data['OverallRank']**2 # Fill in un-ranked schools as max(rank) + 1 or lc.UNRANKED mask = pd.isnull(self.data['OverallRank']) #unranked = np.nanmax(self.data['OverallRank']) + 1 unranked = lc.UNRANKED self.data['OverallRank'][mask] = unranked self.data['Ranked'] = 1 * (self.data['OverallRank'] != unranked) def combine_tuition(self): """ Combine Full-time and Out-of-State Tuitions """ self.data['Tuition'] = self.data['Tuitionandfeesfulltime'] self.data['Tuition'] = self.data['Tuition'].fillna( value=self.data['Outofstatetuitionandfeesfulltime'] ) def lags(self): """ Generate various lags (including tuition alignment) """ lag_vars = ['OverallRank', 'Ranked'] lag_vars = [lag_vars, lu.reaction_spec('full')[0]] lag_vars.append(lag_vars[1]) lag_vars[2] = [el + '_comp' for el in lag_vars[2]] lag_vars = [el for sublist in lag_vars for el in sublist] for lvar in lag_vars: self.data[lvar + 'L'] = self.data.groupby('school').apply( pd.DataFrame.shift)[lvar] def add_entrants(self): """ Add indicators for when schools entered """ self.data_sets['entrants']['Founded'] = \ self.data_sets['entrants']['Founded'] + 2 self.data['entry'] = 0 zipped = zip(self.data_sets['entrants']['Founded'], self.data_sets['entrants']['SchoolUS']) for enter in zipped: self.data.loc[(self.data['school'] == enter[1]) & (self.data['year'] == enter[0]), 'entry'] = 1 def combine_dsets(self): """ Add in other members of self.data_sets to self.data """ # Location and id self.data['id'] = 0 for name in self.data['school'].unique(): self.data.ix[self.data['school'] == name, 'state'] = \ self.data_sets['states']['place'].where( self.data_sets['states']['name'] == name).max() self.data.ix[self.data['school'] == name, 'id'] = \ self.data_sets['id']['id'].where( self.data_sets['id']['name'] == name).max() # Electricity self.data = pd.merge(self.data, self.data_sets['electricity'], how='outer', sort=True) # CPI self.data = pd.merge(self.data, self.data_sets['cpi']) # Regions self.data = pd.merge(self.data, self.data_sets['stateregions']) # AAUP data sets aaup_dsets = ['aaup_salary_region', 'aaup_salary'] for dset in aaup_dsets: self.data = pd.merge(self.data, self.data_sets[dset], how='outer') def price_adjust(self): """ Convert nominal to real prices (base year is 2000 - remember, using USNews dating convention at this point, will be adjusted later) and change some to thousands """ dollar_vars = [ 'Tuition', 'p25privatesectorstartingsalary', 'p75privatesectorstartingsalary', 'Averageindebtednessofgraduateswhoincurredlawschooldebt', 'Medianpublicservicestartingsalary', 'Roomboardbooksmiscellaneousexpenses' ] for dvar in dollar_vars: self.data[dvar] = self.data[dvar] / 1000.0 dollar_vars.append('p_elec_state') dollar_vars.append('p_elec_us') base = self.data_sets['cpi'].loc[ self.data_sets['cpi']['year'] == 2002, 'cpi'] base = base.reset_index(drop=True)[0] for dvar in dollar_vars: self.data[dvar + '_nominal'] = self.data[dvar] self.data[dvar] = self.data[dvar] * (base / self.data['cpi']) def competition(self): """ Generate averages in competition sets """ # Generate competition variables reac_vars = lu.reaction_spec('full')[0] comp_vars = ['OverallRank'] comp_vars = [reac_vars, comp_vars] comp_vars = [el for sublist in comp_vars for el in sublist] comp_vars_comp = [el + '_comp' for el in comp_vars] comp_add = pd.DataFrame( np.zeros((self.data.shape[0], len(comp_vars_comp))), columns=comp_vars_comp) self.data = self.data.join(comp_add) for year in self.data['year'].unique(): for cvar in comp_vars: mask = (1 - np.isnan(self.data[cvar])).astype(bool) mdata = deepcopy(self.data[mask]) comp_mat = lu.comp_mat_gen(mdata.loc[ mdata['year'] == year, 'OverallRank']) mdata.loc[mdata['year'] == year, cvar + '_comp'] = \ np.dot(comp_mat, mdata.loc[mdata['year'] == year, cvar]) self.data[mask] = mdata def treatment(self): """ Generate treatment variables """ self.data['treat'] = 1 * (self.data['year'] >= 2012) self.data['RankTreat'] = self.data['OverallRank'] * self.data['treat'] self.data['RankTreat_comp'] = (self.data['OverallRank_comp'] * self.data['treat']) self.data['GPATreat'] = (self.data['UndergraduatemedianGPA'] * self.data['treat']) self.data['LSATTreat'] = (self.data['MedianLSAT'] * self.data['treat']) self.data['TuitionTreat'] = (self.data['Tuition'] * self.data['treat']) def ratios(self): """ Generate transparency ratios """ emp = EmploymentData(self.data, self.dpath) emp.id_extend() emp.ratio_gen() self.data = emp.data_merge() # Currently next line drops Drexel, Catholic U of Amer., and UC Irvine self.data = self.data[pd.notnull(self.data['id'])] self.data = self.data[pd.notnull(self.data['school'])] for name in np.unique(self.data['school']): # Find earliest year with calculated ratio, and reverse impute selection = self.data.loc[ self.data['school'] == name, ['year', 'ratio'] ].reset_index(drop=True) year = np.min( selection['year'][np.where(selection['ratio'].notnull())[0]] ) self.data.loc[ (self.data['school'] == name) & (self.data['year'] < year), 'ratio' ] = self.data.loc[ (self.data['school'] == name) & (self.data['year'] == year), 'ratio' ].reset_index(drop=True)[0] def dummies(self): """ Generate state dummies """ dummies = pd.get_dummies(self.data['state']) self.data = self.data.join(dummies) self.data = self.data.reset_index(drop=True) def var_name_change(self): """ Change names of variables to match previous data dump """ previous = [ 'p25LSATfulltime', 'MedianLSATfulltime', 'p75LSATfulltime', 'p25undergraduateGPAfulltime', 'MedianundergraduateGPAfulltime', 'p75undergraduateGPAfulltime', 'Enrollmentfulltime' ] new = [ 'p25LSATScore', 'MedianLSAT', 'p75LSATScore', 'p25UndergraduateGPA', 'UndergraduatemedianGPA', 'p75UndergraduateGPA', 'FreshmanEnrolled' ] columns = self.data.columns.tolist() for i in xrange(len(previous)): columns = [re.sub(previous[i], new[i], el) for el in columns] self.data.columns = columns def format(self): """ Driver function """ print(" * Formatting primary dataset.") self.var_name_change() self.fill_ranks() self.combine_dsets() self.combine_tuition() self.price_adjust() self.competition() self.lags() self.treatment() #FIXME: Find out why ratios not keeping Atlanta's John Marshall self.ratios() self.dummies() self.data['const'] = 1 self.data['year'] = self.data['year'] - 2 self.data = self.data.sort(['school', 'year']).reset_index(drop=True) self.data = self.data.drop_duplicates(subset=['school', 'year']) n_applicants_format(self.dpath) def entrance_format(self): """ Generate dataset for entrance estimates """ print(" * Formatting entrance dataset.") data = self.data[[ 'year', 'Numberofmatriculantsfulltime', 'Tuition' ]] data['Revenue'] = (data['Numberofmatriculantsfulltime'] * data['Tuition']) grouped = data.groupby('year') self.ent_data = pd.DataFrame(grouped.mean()) data = pd.read_csv(join(self.dpath, 'lawEntrants.csv')) #pylint: disable=maybe-no-member data = data.loc[data['Founded'] >= min(self.data['year']), 'Founded'] summed = pd.DataFrame(data.value_counts(), columns=['entry']) summed = summed.sort().reset_index() summed.columns = ['year', 'entry'] for year in xrange(int(min(self.data['year'])), int(max(self.data['year']))+1): if year not in summed.year.values: summed = summed.append({'year': year, 'entry': 0}, ignore_index=True) summed = summed.sort('year').reset_index(drop=True) self.ent_data = pd.merge(self.ent_data.reset_index(), summed.reset_index()) diffed = self.ent_data.set_index('year').diff() diffed.columns = [el + '_d' for el in diffed.columns] self.ent_data['treat'] = 1 * (self.ent_data['year'] >= 2010) self.ent_data = pd.merge(self.ent_data, diffed.reset_index()) def data_out(self): """ Save dataset as .csv file """ self.data.to_csv(join(self.dpath, 'lawData.csv'), encoding='utf-8', index=False) self.ent_data.to_csv(join(self.dpath, 'entData.csv'), index=False) def lsn_format(self): """ Format Law School Numbers dataset. Must be run AFTER data_out """ print(" * Formatting Law School Numbers dataset.") data = pd.read_csv(join(self.dpath, 'lawschoolnumbersSCHOOLS.csv')) ranks = pd.read_csv(join(self.dpath, 'lawData.csv')) lsn = LawSchoolNumbers(self.dpath, data, ranks) lsn.gen() lsn.save() def n_applicants_format(dpath): """ Format end-of-year ABA Volume summary for yearly number of applicants Source: http://www.lsac.org/lsacresources/data/lsac-volume-summary """ print(" * Formatting ABA year-end summary") data = pd.read_excel(join(dpath, 'eoy-spreadsheet.xlsx'), index_col=None) data = data.ix[1, :].reset_index() data.columns = ['year', 'n_apps'] data['year'] = data['year'].str.replace(r'\D+', '').astype('int') def sub_format(arg): """ Sub-function to clean out unicode """ try: return int(re.sub(',', '', re.sub(u'\xa0', '', arg))) except TypeError: return arg data['n_apps'] = data['n_apps'].map(sub_format) data.to_csv(join(dpath, 'abaeoy.csv')) class EmploymentData(object): """ Construct and merge transparency ratios. Note that each year in raw data corresponds to the previous year's graduating class. Example: 2011 data was reported in 2011 about the 2010 graduating class associated with the 2009 entering class. This is adjusted by one year with respect to the "master data" set to correspond to students using last year's placement to make decisions for the current year. This is equivalent to Ranking being based on previous year's school attributes. """ def __init__(self, master_data, path): self.max_year = 2014 self.master_data = master_data self.data = self.data_import(path) self.weights = self.weight_gen() self.ratios = None @staticmethod def col_filter(col): """ Filter column names from 2011 data """ col = re.sub('university', 'SchoolName', col) col = re.sub('Emp Solo', 'Solo', col) col = re.sub('Emp 501', '501-PLUS', col) col = re.sub('Emp Type Unk', 'Unknown', col) col = re.sub('Emp ', '', col) col = re.sub('\+', '', col) col = col.strip() return col def data_import(self, path): """ Import employment datasets, format 2011 columns to math other years, and export as dictionary Parameters ---------- path: string, directory with data files """ data = {} for year in xrange(2011, (self.max_year + 1)): dpath = join(path, 'EmploymentSummary-' + str(year) + '.csv') data[str(year)] = pd.read_csv(dpath) data['2011'].columns = [ self.col_filter(col) for col in data['2011'].columns ] return data @staticmethod def weight_gen(): """ Generate weights for different employment types. Weights taken from expected salaries for new law graduates by firm size reported at http://www.nalp.org/new_associate_sal_oct2011 Returns ------- dictionary: types of employment with corresponding weights """ types = ['Solo', '2-10', '11-25', '26-50', '51-100', '101-250', '251-500', '501-PLUS', 'Unknown'] salaries = np.array([73, 73, 73, 86, 91, 110, 130, 130, 0]) salaries = salaries / salaries[-2] return dict(zip(types, salaries)) def id_extend(self): """ Extend LSAC ids to all schools to facilitate merger with US News dataset. Previously only associated with 2011-2012. """ idvars = ['SchoolName', 'id'] nameid = pd.concat([self.data['2011'][idvars], self.data['2012'][idvars]]) nameid = nameid.drop_duplicates() for name in nameid['SchoolName']: for year in xrange(2013, (self.max_year + 1)): self.data[str(year)].loc[ self.data[str(year)]['SchoolName'] == name, 'id' ] = nameid.loc[nameid['SchoolName'] == name, 'id'].tolist()[0] def ratio_gen(self): """ Generate transparency ratios """ ratios = [] for year in xrange(2011, (self.max_year + 1)): data_weight = deepcopy(self.data[str(year)][self.weights.keys()]) denominator = data_weight.sum(1) for column in data_weight.columns: data_weight[column] = (data_weight[column] * self.weights[column]) numerator = data_weight.sum(1) ratio = numerator / denominator ratio = pd.DataFrame({ 'id': self.data[str(year)]['id'], 'year': year, 'ratio': ratio }) ratios.append(ratio) self.ratios = pd.concat(ratios, ignore_index=True) def data_merge(self): """ Merge ratios with master dataset and return """ self.ratios['year'] = self.ratios['year'] + 1 data_out = pd.merge(self.master_data, self.ratios, on=['id', 'year'], how='outer') return data_out class LawSchoolNumbers(object): """ Primary class. Keeps updated dataset as attribute """ def __init__(self, dpath, data, ranks): self.dpath = dpath self.data = data self.ranks = ranks[['school', 'year', 'OverallRank', 'Tuition']] initial_vars = ['year', 'user', 'state', 'LSAT', 'LSDAS_GPA', 'Degree_GPA'] self.school_names = np.array(self.data.columns) self.school_names = self.get_school_names(initial_vars) self.data = self.data.loc[ ~(data[self.school_names] == 0).all(axis=1) ].reset_index(drop=True) self.new_data = deepcopy(self.data[initial_vars]) def get_school_names(self, initial_vars): """ Isolate school names from column names in data """ self.school_names = np.delete(self.school_names, 0) original_indices = self.school_names.argsort() remove = original_indices[ np.searchsorted(self.school_names[original_indices], initial_vars) ] return np.delete(self.school_names, remove) def get_not_applied(self, year): """ For a given year, return boolean mask of schools not applied to. Returned mask is a pandas dataframe object. """ not_applied = ( self.data.loc[self.data.year == year, self.school_names] == 0 ).reset_index(drop=True) return not_applied def get_not_admitted(self, year): """ For a given year, return boolean mask of schools not admitting applicant. Returned mask is a pandas dataframe object. """ not_admitted = ( self.data.loc[self.data.year == year, self.school_names] < 4 ).reset_index(drop=True) return not_admitted def get_not_matric(self, year): """ For a given year, return boolean mask of schools not matriculating applicant. Returned mask is a pandas dataframe object. """ not_matric = ( self.data.loc[self.data.year == year, self.school_names] != 5 ).reset_index(drop=True) return not_matric def max_applied(self, rank, data_schools, year): """ Select maximum (worst) rank of applied-to schools """ data_applied = deepcopy(data_schools) not_applied = self.get_not_applied(year) data_applied[not_applied] = 0 worst_schools = np.array(data_applied.idxmax(1)) self.new_data.loc[self.new_data['year'] == year, 'app_worst'] = \ np.array( rank.loc[worst_schools, 'OverallRank'] ) def min_applied(self, rank, data_schools, year): """ Select minimum (best) rank of applied-to schools""" data_applied = deepcopy(data_schools) not_applied = self.get_not_applied(year) data_applied[not_applied] = 500 best_schools = np.array(data_applied.idxmin(1)) self.new_data.loc[self.new_data['year'] == year, 'app_best'] = \ np.array( rank.loc[best_schools, 'OverallRank'] ) def max_admitted(self, rank, data_schools, year): """ Select maximum (worst) rank of admitted-to schools """ data_admitted = deepcopy(data_schools) not_admitted = self.get_not_admitted(year) data_admitted[not_admitted] = np.nan worst_schools = np.array(data_admitted.idxmax(1)) was_admitted = True -
pd.isnull(worst_schools)
pandas.isnull
# -*- coding: utf-8 -*- import pytest import numpy as np import pandas as pd import pandas.util.testing as tm import pandas.compat as compat ############################################################### # Index / Series common tests which may trigger dtype coercions ############################################################### class CoercionBase(object): klasses = ['index', 'series'] dtypes = ['object', 'int64', 'float64', 'complex128', 'bool', 'datetime64', 'datetime64tz', 'timedelta64', 'period'] @property def method(self): raise NotImplementedError(self) def _assert(self, left, right, dtype): # explicitly check dtype to avoid any unexpected result if isinstance(left, pd.Series): tm.assert_series_equal(left, right) elif isinstance(left, pd.Index): tm.assert_index_equal(left, right) else: raise NotImplementedError self.assertEqual(left.dtype, dtype) self.assertEqual(right.dtype, dtype) def test_has_comprehensive_tests(self): for klass in self.klasses: for dtype in self.dtypes: method_name = 'test_{0}_{1}_{2}'.format(self.method, klass, dtype) if not hasattr(self, method_name): msg = 'test method is not defined: {0}, {1}' raise AssertionError(msg.format(type(self), method_name)) class TestSetitemCoercion(CoercionBase, tm.TestCase): method = 'setitem' def _assert_setitem_series_conversion(self, original_series, loc_value, expected_series, expected_dtype): """ test series value's coercion triggered by assignment """ temp = original_series.copy() temp[1] = loc_value tm.assert_series_equal(temp, expected_series) # check dtype explicitly for sure self.assertEqual(temp.dtype, expected_dtype) # .loc works different rule, temporary disable # temp = original_series.copy() # temp.loc[1] = loc_value # tm.assert_series_equal(temp, expected_series) def test_setitem_series_object(self): obj = pd.Series(list('abcd')) self.assertEqual(obj.dtype, np.object) # object + int -> object exp = pd.Series(['a', 1, 'c', 'd']) self._assert_setitem_series_conversion(obj, 1, exp, np.object) # object + float -> object exp = pd.Series(['a', 1.1, 'c', 'd']) self._assert_setitem_series_conversion(obj, 1.1, exp, np.object) # object + complex -> object exp = pd.Series(['a', 1 + 1j, 'c', 'd']) self._assert_setitem_series_conversion(obj, 1 + 1j, exp, np.object) # object + bool -> object exp = pd.Series(['a', True, 'c', 'd']) self._assert_setitem_series_conversion(obj, True, exp, np.object) def test_setitem_series_int64(self): obj = pd.Series([1, 2, 3, 4]) self.assertEqual(obj.dtype, np.int64) # int + int -> int exp = pd.Series([1, 1, 3, 4]) self._assert_setitem_series_conversion(obj, 1, exp, np.int64) # int + float -> float # TODO_GH12747 The result must be float # tm.assert_series_equal(temp, pd.Series([1, 1.1, 3, 4])) # self.assertEqual(temp.dtype, np.float64) exp = pd.Series([1, 1, 3, 4]) self._assert_setitem_series_conversion(obj, 1.1, exp, np.int64) # int + complex -> complex exp = pd.Series([1, 1 + 1j, 3, 4]) self._assert_setitem_series_conversion(obj, 1 + 1j, exp, np.complex128) # int + bool -> int exp = pd.Series([1, 1, 3, 4]) self._assert_setitem_series_conversion(obj, True, exp, np.int64) def test_setitem_series_float64(self): obj = pd.Series([1.1, 2.2, 3.3, 4.4]) self.assertEqual(obj.dtype, np.float64) # float + int -> float exp = pd.Series([1.1, 1.0, 3.3, 4.4]) self._assert_setitem_series_conversion(obj, 1, exp, np.float64) # float + float -> float exp = pd.Series([1.1, 1.1, 3.3, 4.4]) self._assert_setitem_series_conversion(obj, 1.1, exp, np.float64) # float + complex -> complex exp = pd.Series([1.1, 1 + 1j, 3.3, 4.4]) self._assert_setitem_series_conversion(obj, 1 + 1j, exp, np.complex128) # float + bool -> float exp = pd.Series([1.1, 1.0, 3.3, 4.4]) self._assert_setitem_series_conversion(obj, True, exp, np.float64) def test_setitem_series_complex128(self): obj = pd.Series([1 + 1j, 2 + 2j, 3 + 3j, 4 + 4j]) self.assertEqual(obj.dtype, np.complex128) # complex + int -> complex exp = pd.Series([1 + 1j, 1, 3 + 3j, 4 + 4j]) self._assert_setitem_series_conversion(obj, True, exp, np.complex128) # complex + float -> complex exp = pd.Series([1 + 1j, 1.1, 3 + 3j, 4 + 4j]) self._assert_setitem_series_conversion(obj, 1.1, exp, np.complex128) # complex + complex -> complex exp = pd.Series([1 + 1j, 1 + 1j, 3 + 3j, 4 + 4j]) self._assert_setitem_series_conversion(obj, 1 + 1j, exp, np.complex128) # complex + bool -> complex exp = pd.Series([1 + 1j, 1, 3 + 3j, 4 + 4j]) self._assert_setitem_series_conversion(obj, True, exp, np.complex128) def test_setitem_series_bool(self): obj = pd.Series([True, False, True, False]) self.assertEqual(obj.dtype, np.bool) # bool + int -> int # TODO_GH12747 The result must be int # tm.assert_series_equal(temp, pd.Series([1, 1, 1, 0])) # self.assertEqual(temp.dtype, np.int64) exp = pd.Series([True, True, True, False]) self._assert_setitem_series_conversion(obj, 1, exp, np.bool) # TODO_GH12747 The result must be int # assigning int greater than bool # tm.assert_series_equal(temp, pd.Series([1, 3, 1, 0])) # self.assertEqual(temp.dtype, np.int64) exp = pd.Series([True, True, True, False]) self._assert_setitem_series_conversion(obj, 3, exp, np.bool) # bool + float -> float # TODO_GH12747 The result must be float # tm.assert_series_equal(temp, pd.Series([1., 1.1, 1., 0.])) # self.assertEqual(temp.dtype, np.float64) exp = pd.Series([True, True, True, False]) self._assert_setitem_series_conversion(obj, 1.1, exp, np.bool) # bool + complex -> complex (buggy, results in bool) # TODO_GH12747 The result must be complex # tm.assert_series_equal(temp, pd.Series([1, 1 + 1j, 1, 0])) # self.assertEqual(temp.dtype, np.complex128) exp = pd.Series([True, True, True, False]) self._assert_setitem_series_conversion(obj, 1 + 1j, exp, np.bool) # bool + bool -> bool exp = pd.Series([True, True, True, False]) self._assert_setitem_series_conversion(obj, True, exp, np.bool) def test_setitem_series_datetime64(self): obj = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02'), pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) self.assertEqual(obj.dtype, 'datetime64[ns]') # datetime64 + datetime64 -> datetime64 exp = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-01'), pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) self._assert_setitem_series_conversion(obj, pd.Timestamp('2012-01-01'), exp, 'datetime64[ns]') # datetime64 + int -> object # ToDo: The result must be object exp = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp(1), pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) self._assert_setitem_series_conversion(obj, 1, exp, 'datetime64[ns]') # ToDo: add more tests once the above issue has been fixed def test_setitem_series_datetime64tz(self): tz = 'US/Eastern' obj = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2011-01-02', tz=tz), pd.Timestamp('2011-01-03', tz=tz), pd.Timestamp('2011-01-04', tz=tz)]) self.assertEqual(obj.dtype, 'datetime64[ns, US/Eastern]') # datetime64tz + datetime64tz -> datetime64tz exp = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz), pd.Timestamp('2011-01-03', tz=tz), pd.Timestamp('2011-01-04', tz=tz)]) value = pd.Timestamp('2012-01-01', tz=tz) self._assert_setitem_series_conversion(obj, value, exp, 'datetime64[ns, US/Eastern]') # datetime64 + int -> object # ToDo: The result must be object exp = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp(1, tz=tz), pd.Timestamp('2011-01-03', tz=tz), pd.Timestamp('2011-01-04', tz=tz)]) self._assert_setitem_series_conversion(obj, 1, exp, 'datetime64[ns, US/Eastern]') # ToDo: add more tests once the above issue has been fixed def test_setitem_series_timedelta64(self): pass def test_setitem_series_period(self): pass def _assert_setitem_index_conversion(self, original_series, loc_key, expected_index, expected_dtype): """ test index's coercion triggered by assign key """ temp = original_series.copy() temp[loc_key] = 5 exp = pd.Series([1, 2, 3, 4, 5], index=expected_index) tm.assert_series_equal(temp, exp) # check dtype explicitly for sure self.assertEqual(temp.index.dtype, expected_dtype) temp = original_series.copy() temp.loc[loc_key] = 5 exp = pd.Series([1, 2, 3, 4, 5], index=expected_index) tm.assert_series_equal(temp, exp) # check dtype explicitly for sure self.assertEqual(temp.index.dtype, expected_dtype) def test_setitem_index_object(self): obj = pd.Series([1, 2, 3, 4], index=list('abcd')) self.assertEqual(obj.index.dtype, np.object) # object + object -> object exp_index = pd.Index(list('abcdx')) self._assert_setitem_index_conversion(obj, 'x', exp_index, np.object) # object + int -> IndexError, regarded as location temp = obj.copy() with tm.assertRaises(IndexError): temp[5] = 5 # object + float -> object exp_index = pd.Index(['a', 'b', 'c', 'd', 1.1]) self._assert_setitem_index_conversion(obj, 1.1, exp_index, np.object) def test_setitem_index_int64(self): # tests setitem with non-existing numeric key obj = pd.Series([1, 2, 3, 4]) self.assertEqual(obj.index.dtype, np.int64) # int + int -> int exp_index = pd.Index([0, 1, 2, 3, 5]) self._assert_setitem_index_conversion(obj, 5, exp_index, np.int64) # int + float -> float exp_index = pd.Index([0, 1, 2, 3, 1.1]) self._assert_setitem_index_conversion(obj, 1.1, exp_index, np.float64) # int + object -> object exp_index = pd.Index([0, 1, 2, 3, 'x']) self._assert_setitem_index_conversion(obj, 'x', exp_index, np.object) def test_setitem_index_float64(self): # tests setitem with non-existing numeric key obj = pd.Series([1, 2, 3, 4], index=[1.1, 2.1, 3.1, 4.1]) self.assertEqual(obj.index.dtype, np.float64) # float + int -> int temp = obj.copy() # TODO_GH12747 The result must be float with tm.assertRaises(IndexError): temp[5] = 5 # float + float -> float exp_index = pd.Index([1.1, 2.1, 3.1, 4.1, 5.1]) self._assert_setitem_index_conversion(obj, 5.1, exp_index, np.float64) # float + object -> object exp_index = pd.Index([1.1, 2.1, 3.1, 4.1, 'x']) self._assert_setitem_index_conversion(obj, 'x', exp_index, np.object) def test_setitem_index_complex128(self): pass def test_setitem_index_bool(self): pass def test_setitem_index_datetime64(self): pass def test_setitem_index_datetime64tz(self): pass def test_setitem_index_timedelta64(self): pass def test_setitem_index_period(self): pass class TestInsertIndexCoercion(CoercionBase, tm.TestCase): klasses = ['index'] method = 'insert' def _assert_insert_conversion(self, original, value, expected, expected_dtype): """ test coercion triggered by insert """ target = original.copy() res = target.insert(1, value) tm.assert_index_equal(res, expected) self.assertEqual(res.dtype, expected_dtype) def test_insert_index_object(self): obj = pd.Index(list('abcd')) self.assertEqual(obj.dtype, np.object) # object + int -> object exp = pd.Index(['a', 1, 'b', 'c', 'd']) self._assert_insert_conversion(obj, 1, exp, np.object) # object + float -> object exp = pd.Index(['a', 1.1, 'b', 'c', 'd']) self._assert_insert_conversion(obj, 1.1, exp, np.object) # object + bool -> object res = obj.insert(1, False) tm.assert_index_equal(res, pd.Index(['a', False, 'b', 'c', 'd'])) self.assertEqual(res.dtype, np.object) # object + object -> object exp = pd.Index(['a', 'x', 'b', 'c', 'd']) self._assert_insert_conversion(obj, 'x', exp, np.object) def test_insert_index_int64(self): obj = pd.Int64Index([1, 2, 3, 4]) self.assertEqual(obj.dtype, np.int64) # int + int -> int exp = pd.Index([1, 1, 2, 3, 4]) self._assert_insert_conversion(obj, 1, exp, np.int64) # int + float -> float exp = pd.Index([1, 1.1, 2, 3, 4]) self._assert_insert_conversion(obj, 1.1, exp, np.float64) # int + bool -> int exp = pd.Index([1, 0, 2, 3, 4]) self._assert_insert_conversion(obj, False, exp, np.int64) # int + object -> object exp = pd.Index([1, 'x', 2, 3, 4]) self._assert_insert_conversion(obj, 'x', exp, np.object) def test_insert_index_float64(self): obj = pd.Float64Index([1., 2., 3., 4.]) self.assertEqual(obj.dtype, np.float64) # float + int -> int exp =
pd.Index([1., 1., 2., 3., 4.])
pandas.Index
import numpy as np import py2neo import pandas as pd import networkx as nx from scipy import sparse DATA_DIR = "data/mag" def get_db(): username = "neo4j" password = "<PASSWORD>" uri = "http://localhost:7474" graph = py2neo.Graph(uri=uri, user=username, password=password) return graph def construct_adjacency_matrix(nodes, edges): # Compute the mapping from node ids to id max_node_id = np.max(nodes) node2id = -np.ones(max_node_id + 1) node2id[nodes] = np.arange(nodes.size) max_edge_id = np.max(edges[:, :2]) # Remove edges that do not exist in nodes list edges = edges[(np.max(edges[:, :2], axis=1) <= max_node_id), :] edges[:, :2] = node2id[edges[:, :2].reshape(-1)].reshape((edges.shape[0], 2)) # Remove edges that do not exist in nodes list again edges = edges[(np.min(edges[:, :2], axis=1) >= 0), :] # Adjacency matrix N = len(nodes) A = sparse.csr_matrix((edges[:, 2], (edges[:, 0], edges[:, 1])), shape=(N, N)) return A def load_network(years, net_data_dir=None): if hasattr(years, "__len__") == False: years = [years] if net_data_dir is None: net_data_dir = "%s/networks/" % DATA_DIR # Load the node and edge files df_nodes = [] df_edges = [] df_raw_edges = [] for year in years: node_file = "{root}/nodes-{year}.csv".format( root=net_data_dir, year=year ) edge_file = "{root}/edges-{year}.csv".format( root=net_data_dir, year=year ) raw_edge_file = "{root}/raw-edges-{year}.csv".format( root=net_data_dir, year=year ) _df_nodes = pd.read_csv(node_file, sep="\t") _df_edges = pd.read_csv(edge_file, sep="\t") _df_raw_edges = pd.read_csv(raw_edge_file, sep="\t") df_nodes += [_df_nodes] df_edges += [_df_edges] df_raw_edges += [_df_raw_edges] df_nodes = pd.concat(df_nodes, ignore_index=True) df_edges = pd.concat(df_edges, ignore_index=True) df_raw_edges = pd.concat(df_raw_edges, ignore_index=True) # Nodes nodes = np.unique(df_edges[["source", "target"]].values.reshape(-1)) # Edges edges = df_edges[["source", "target", "w"]].values raw_edges = df_raw_edges[["source", "target", "w"]].values # Construct networks A = construct_adjacency_matrix(nodes, edges) Araw = construct_adjacency_matrix(nodes, raw_edges) return A, Araw, nodes def neo4jid2mag_journalid(neo4jids): graph = get_db() query = """ match (j:Journal) where ID(j) in [{neo4jids}] return ID(j) as neo4jid, j.JournalId as journal_id """.format(neo4jids = ",".join(["%d" % x for x in neo4jids])) df = graph.run(query).to_data_frame() return df.set_index("neo4jid").loc[neo4jids,"journal_id"].values def to_networkx_graph(A, nodes, create_using=nx.DiGraph): """ Parameters ---------- A : scipy sparse matrix Adjacency matrix nodes : list or numpy array List of node names in order of nodes in A Returns ------ G : networkx.Graph """ G = nx.from_scipy_sparse_matrix(A, create_using=create_using) return nx.relabel_nodes(G, dict(zip(np.arange(nodes.size), nodes))) def load_detected_cartels(years, cartel_dir): cartel_table_list = [] group_id_offset = 0 for year in years: cartel_table = pd.read_csv( "{root}/cartels-{year}.csv".format(root=cartel_dir, year=year), sep="\t" ) cartel_table["year"] = year #cartel_table["group_id"] += group_id_offset cartel_table["gross_group_id"] = cartel_table["group_id"] cartel_table["gross_group_id"] += group_id_offset group_id_offset = np.max(cartel_table["gross_group_id"].values) + 1 cartel_table_list += [cartel_table] cartel_table =
pd.concat(cartel_table_list, ignore_index=True)
pandas.concat
import numpy as np import pandas as pd import pytest from src.policies.single_policy_functions import ( _identify_who_attends_because_of_a_b_schooling, ) from src.policies.single_policy_functions import mixed_educ_policy @pytest.fixture def fake_states(): states = pd.DataFrame(index=np.arange(10)) states["state"] = ["Bayern", "Berlin"] * 5 # date at which schools are open in Berlin but closed in Bavaria # date with uneven week number, i.e. where group a attends school states["date"] = pd.Timestamp("2020-04-23") states["educ_a_b_identifier"] = [False, True] * 5 states["occupation"] = pd.Categorical( ["school"] * 8 + ["preschool_teacher", "school_teacher"] ) states["school_group_id_0"] = [-1] + [22] * 9 states["educ_worker"] = [False] * 8 + [True] * 2 states["age"] = np.arange(10) return states @pytest.fixture def contacts(fake_states): return pd.Series(True, index=fake_states.index) def test_a_b_school_system_above_age_0(fake_states, contacts): calculated = mixed_educ_policy( states=fake_states, contacts=contacts, seed=123, group_id_column="school_group_id_0", a_b_query="occupation == 'school'", non_a_b_attend=True, hygiene_multiplier=1.0, always_attend_query="state == 'Niedersachsen'", # no one params=None, ) expected = pd.Series([False, True] * 4 + [True, True]) pd.testing.assert_series_equal(calculated, expected) def test_a_b_school_system_above_age_5(fake_states, contacts): calculated = mixed_educ_policy( states=fake_states, contacts=contacts, seed=123, group_id_column="school_group_id_0", a_b_query="occupation == 'school' & age > 5", non_a_b_attend=True, hygiene_multiplier=1.0, always_attend_query="state == 'Niedersachsen'", # no one params=None, ) expected = pd.Series([True] * 6 + [False] + [True] * 3) pd.testing.assert_series_equal(calculated, expected) def test_a_b_school_system_below_age_5(fake_states, contacts): calculated = mixed_educ_policy( states=fake_states, contacts=contacts, seed=123, group_id_column="school_group_id_0", a_b_query="occupation == 'school' & age < 5", non_a_b_attend=False, hygiene_multiplier=1.0, always_attend_query="state == 'Niedersachsen'", # no one params=None, ) expected = pd.Series( [False, True, False, True, False, False, False, False, True, True] ) pd.testing.assert_series_equal(calculated, expected) def test_mixed_educ_policy_others_home_no_hygiene(): states = pd.DataFrame() states["county"] = [1, 1, 2, 2, 2, 2, 2, 2] states["educ_worker"] = [True, False, True, False, False, False, False, False] states["school_group_id_0"] = [11, 11, 22, 22, 22, 22, 22, -1] states["educ_a_b_identifier"] = [False, True, True, True, False, True, False, True] states["date"] = pd.Timestamp("2021-01-04") # week 1 contacts = pd.Series([True] * 6 + [False] * 2, index=states.index) seed = 333 res = mixed_educ_policy( states=states, contacts=contacts, seed=seed, group_id_column="school_group_id_0", a_b_query="county == 2", non_a_b_attend=False, hygiene_multiplier=1.0, always_attend_query="county == 55", # no one params=None, ) # zero class, closed county, teacher despite wrong week, # wrong week, right week, wrong week, right week but not attending, not in school expected = pd.Series([True, False, True, True, False, True, False, False]) pd.testing.assert_series_equal(res, expected) def test_mixed_educ_policy_no_contacts(): states = pd.DataFrame() states["educ_worker"] = [True, False, True, False, False, False, False] states["educ_a_b_identifier"] = [False, True, False, True, False, True, False] states["school_group_id_0"] = [11, 11, 22, 22, 22, 22, -1] states["date"] = pd.Timestamp("2021-01-04") # week 1 states["county"] = 33 contacts = pd.Series(False, index=states.index) seed = 333 res = mixed_educ_policy( states=states, contacts=contacts, seed=seed, group_id_column="school_group_id_0", a_b_query=True, non_a_b_attend=True, hygiene_multiplier=1.0, always_attend_query="county == 55", # no one params=None, ) pd.testing.assert_series_equal(res, contacts) def test_identify_who_attends_because_of_a_b_schooling(): states = pd.DataFrame() states["county"] = [1, 1, 2, 2, 2] states["educ_a_b_identifier"] = [False, True, False, True, False] states["date"] = pd.Timestamp("2021-01-04") # week number 1 # wrong county, wrong county, wrong week, right week, wrong week expected = pd.Series([False, False, False, True, False]) a_b_query = "county == 2" res = _identify_who_attends_because_of_a_b_schooling( states, a_b_query=a_b_query, a_b_rhythm="weekly", ) pd.testing.assert_series_equal(res, expected) def test_identify_who_attends_because_of_a_b_schooling_daily(): states = pd.DataFrame() states["educ_a_b_identifier"] = [False, True, False, True, False] states["county"] = 2 states["date"] = pd.Timestamp("2021-01-05") expected = states["educ_a_b_identifier"].astype(bool) a_b_query = "county == 2" res = _identify_who_attends_because_of_a_b_schooling( states=states, a_b_query=a_b_query, a_b_rhythm="daily", ) pd.testing.assert_series_equal(res, expected, check_names=False) def test_idenfy_who_attends_because_of_a_b_schooling_daily2(): states = pd.DataFrame() states["educ_worker"] = [False, False, True, False, False] states["county"] = 2 states["educ_a_b_identifier"] = [False, True, False, True, False] states["date"] = pd.Timestamp("2021-01-12") expected = ~states["educ_a_b_identifier"].astype(bool) a_b_query = "county == 2" res = _identify_who_attends_because_of_a_b_schooling( states=states, a_b_query=a_b_query, a_b_rhythm="daily", ) pd.testing.assert_series_equal(res, expected, check_names=False) def test_emergency_care(): states = pd.DataFrame() states["educ_worker"] = [True, False, True, False, False] states["always_attend"] = [False, False, True, True, False] states["school_group_id_0"] = [1, 1, 2, 2, -1] contacts = pd.Series([True, True, True, True, False], index=states.index) res = mixed_educ_policy( contacts=contacts, states=states, seed=333, group_id_column="school_group_id_0", always_attend_query="always_attend", a_b_query=False, non_a_b_attend=False, hygiene_multiplier=1.0, params=None, ) # educ_worker, child not in emergency care, educ_worker with class, # attends, outside educ system expected = pd.Series([True, False, True, True, False])
pd.testing.assert_series_equal(res, expected)
pandas.testing.assert_series_equal
import luigi import os import pandas as pd from db import extract from db import sql from forecast import util import shutil import luigi.contrib.hadoop from sqlalchemy import create_engine from pysandag.database import get_connection_string from pysandag import database from db import log class EmpPopulation(luigi.Task): econ_id = luigi.Parameter() dem_id = luigi.Parameter() def requires(self): return None def output(self): return luigi.LocalTarget('temp/data.h5') def run(self): engine = create_engine(get_connection_string("model_config.yml", 'output_database')) db_connection_string = database.get_connection_string('model_config.yml', 'in_db') sql_in_engine = create_engine(db_connection_string) in_query = getattr(sql, 'max_run_id') db_run_id = pd.read_sql(in_query, engine, index_col=None) # db_run_id = log.new_run(name='emp_run_log', run_id=db_run_id['max'].iloc[0]) run_id = pd.Series([db_run_id['id'].iloc[0]]) run_id.to_hdf('temp/data.h5', 'run_id', mode='a') tables = util.yaml_to_dict('model_config.yml', 'db_tables') dem_sim_rates = extract.create_df('dem_sim_rates', 'dem_sim_rates_table', rate_id=self.dem_id, index=None) dem_sim_rates.to_hdf('temp/data.h5', 'dem_sim_rates', mode='a') econ_sim_rates = extract.create_df('econ_sim_rates', 'econ_sim_rates_table', rate_id=self.econ_id, index=None) econ_sim_rates.to_hdf('temp/data.h5', 'econ_sim_rates', mode='a') in_query = getattr(sql, 'inc_pop') % (tables['inc_pop_table'], run_id[0]) in_query2 = getattr(sql, 'inc_mil_hh_pop') % (tables['population_table'], dem_sim_rates.base_population_id[0]) pop = pd.read_sql(in_query, engine, index_col=['age', 'race_ethn', 'sex', 'mildep']) pop_mil = pd.read_sql(in_query2, sql_in_engine, index_col=['age', 'race_ethn', 'sex', 'mildep']) pop = pop.join(pop_mil) pop['persons'] = (pop['persons'] - pop['mil_mildep']) pop = pop.reset_index(drop=False) pop['age_cat'] = '' pop.loc[pop['age'].isin(list(range(0, 5))), ['age_cat']] = '00_04' pop.loc[pop['age'].isin(list(range(5, 10))), ['age_cat']] = '05_09' pop.loc[pop['age'].isin(list(range(10, 15))), ['age_cat']] = '10_14' pop.loc[pop['age'].isin(list(range(15, 18))), ['age_cat']] = '15_17' pop.loc[pop['age'].isin(list(range(18, 20))), ['age_cat']] = '18_19' pop.loc[pop['age'].isin(list(range(20, 21))), ['age_cat']] = '20_20' pop.loc[pop['age'].isin(list(range(21, 22))), ['age_cat']] = '21_21' pop.loc[pop['age'].isin(list(range(22, 25))), ['age_cat']] = '22_24' pop.loc[pop['age'].isin(list(range(25, 30))), ['age_cat']] = '25_29' pop.loc[pop['age'].isin(list(range(30, 35))), ['age_cat']] = '30_34' pop.loc[pop['age'].isin(list(range(35, 40))), ['age_cat']] = '35_39' pop.loc[pop['age'].isin(list(range(40, 45))), ['age_cat']] = '40_44' pop.loc[pop['age'].isin(list(range(45, 50))), ['age_cat']] = '45_49' pop.loc[pop['age'].isin(list(range(50, 55))), ['age_cat']] = '50_54' pop.loc[pop['age'].isin(list(range(55, 60))), ['age_cat']] = '55_59' pop.loc[pop['age'].isin(list(range(60, 62))), ['age_cat']] = '60_61' pop.loc[pop['age'].isin(list(range(62, 65))), ['age_cat']] = '62_64' pop.loc[pop['age'].isin(list(range(65, 67))), ['age_cat']] = '65_66' pop.loc[pop['age'].isin(list(range(67, 70))), ['age_cat']] = '67_69' pop.loc[pop['age'].isin(list(range(70, 75))), ['age_cat']] = '70_74' pop.loc[pop['age'].isin(list(range(75, 80))), ['age_cat']] = '75_79' pop.loc[pop['age'].isin(list(range(80, 85))), ['age_cat']] = '80_84' pop.loc[pop['age'].isin(list(range(85, 103))), ['age_cat']] = '85_99' pop = pd.DataFrame(pop['persons'].groupby([pop['yr'], pop['age_cat'], pop['sex'], pop['race_ethn']]).sum()) pop.to_hdf('temp/data.h5', 'pop', mode='a') class MilPopulation(luigi.Task): econ_id = luigi.Parameter() dem_id = luigi.Parameter() def requires(self): return EmpPopulation(econ_id=self.econ_id, dem_id=self.dem_id) def output(self): return luigi.LocalTarget('temp/data.h5') def run(self): engine = create_engine(get_connection_string("model_config.yml", 'output_database')) db_connection_string = database.get_connection_string('model_config.yml', 'in_db') sql_in_engine = create_engine(db_connection_string) in_query = getattr(sql, 'max_run_id') db_run_id = pd.read_sql(in_query, engine, index_col=None) run_id = pd.Series([db_run_id['id'].iloc[0]]) run_id.to_hdf('temp/data.h5', 'run_id', mode='a') tables = util.yaml_to_dict('model_config.yml', 'db_tables') dem_sim_rates = pd.read_hdf('temp/data.h5', 'dem_sim_rates') in_query = getattr(sql, 'inc_mil_gc_pop') % (tables['inc_pop_table'], run_id[0]) in_query2 = getattr(sql, 'inc_mil_hh_pop') % (tables['population_table'], dem_sim_rates.base_population_id[0]) pop = pd.read_sql(in_query, engine, index_col=['age', 'race_ethn', 'sex']) pop_mil = pd.read_sql(in_query2, sql_in_engine, index_col=['age', 'race_ethn', 'sex']) pop_mil = pop_mil.loc[pop_mil['mildep'] == 'Y'] pop = pop.join(pop_mil) pop.rename(columns={'persons': 'mil_gc_pop'}, inplace=True) pop.rename(columns={'mil_mildep': 'mil_hh_pop'}, inplace=True) pop = pop.reset_index(drop=False) pop = pd.DataFrame(pop[['mil_gc_pop', 'mil_hh_pop']].groupby([pop['yr']]).sum()) pop.to_hdf('temp/data.h5', 'mil_pop', mode='a') class LaborForceParticipationRates(luigi.Task): econ_id = luigi.Parameter() dem_id = luigi.Parameter() def requires(self): return EmpPopulation(econ_id=self.econ_id, dem_id=self.dem_id) def output(self): return luigi.LocalTarget('temp/data.h5') def run(self): econ_sim_rates = pd.read_hdf('temp/data.h5', 'econ_sim_rates') lfpr = extract.create_df('lfp_rates', 'lfp_rates_table', rate_id=econ_sim_rates.lfpr_id[0], index=['yr', 'age_cat', 'sex', 'race_ethn']) lfpr.to_hdf('temp/data.h5', 'lfpr', mode='a') class LaborForce(luigi.Task): econ_id = luigi.Parameter() dem_id = luigi.Parameter() def requires(self): return LaborForceParticipationRates(econ_id=self.econ_id, dem_id=self.dem_id) def output(self): return luigi.LocalTarget('temp/data.h5') def run(self): pop = pd.read_hdf('temp/data.h5', 'pop') lfpr = pd.read_hdf('temp/data.h5', 'lfpr') labor_force = pop.join(lfpr) labor_force['labor_force'] = (labor_force['persons'] * labor_force['lfpr']).round() labor_force = labor_force.iloc[~labor_force.index.get_level_values('age_cat').isin(['00_04', '05_09', '10_14'])] labor_force.to_hdf('temp/data.h5', 'labor_force', mode='a') class CohortUrRate(luigi.Task): econ_id = luigi.Parameter() dem_id = luigi.Parameter() def requires(self): return LaborForce(econ_id=self.econ_id, dem_id=self.dem_id) def output(self): return luigi.LocalTarget('temp/data.h5') def run(self): econ_sim_rates = pd.read_hdf('temp/data.h5', 'econ_sim_rates') cohort_ur = extract.create_df('cohort_ur', 'cohort_ur_table', rate_id=econ_sim_rates.ur1_id[0], index=['yr', 'age_cat', 'sex', 'race_ethn']) cohort_ur.to_hdf('temp/data.h5', 'cohort_ur', mode='a') yearly_ur = extract.create_df('yearly_ur', 'yearly_ur_table', rate_id=econ_sim_rates.ur2_id[0], index=['yr']) yearly_ur.to_hdf('temp/data.h5', 'yearly_ur', mode='a') class WorkForce(luigi.Task): econ_id = luigi.Parameter() dem_id = luigi.Parameter() def requires(self): return CohortUrRate(econ_id=self.econ_id, dem_id=self.dem_id) def output(self): return luigi.LocalTarget('temp/data.h5') def run(self): labor_force = pd.read_hdf('temp/data.h5', 'labor_force') cohort_ur = pd.read_hdf('temp/data.h5', 'cohort_ur') yearly_ur = pd.read_hdf('temp/data.h5', 'yearly_ur') work_force = labor_force.join(cohort_ur) work_force['unemployed'] = (work_force['labor_force'] * work_force['ur2']).round() computed_ur = work_force.reset_index(drop=False) computed_ur = pd.DataFrame(computed_ur[['labor_force', 'unemployed']].groupby([computed_ur['yr']]).sum()) computed_ur['computed_ur'] = (computed_ur['unemployed'] / computed_ur['labor_force']) computed_ur = computed_ur.join(yearly_ur) computed_ur['adjustment'] = (computed_ur['ur1'] / computed_ur['computed_ur']) work_force = work_force.join(computed_ur['adjustment']) work_force['unemployed'] = (work_force['unemployed'] * work_force['adjustment']).round() work_force['work_force'] = (work_force['labor_force'] - work_force['unemployed']) work_force.to_hdf('temp/data.h5', 'work_force', mode='a') # Code to check if after adjustment ur matches target ''' computed_ur = work_force.reset_index(drop=False) computed_ur = pd.DataFrame(computed_ur[['labor_force', 'unemployed']].groupby([computed_ur['yr']]).sum()) computed_ur['computed_ur'] = (computed_ur['unemployed'] / computed_ur['labor_force']) print computed_ur ''' class LocalWorkForce(luigi.Task): econ_id = luigi.Parameter() dem_id = luigi.Parameter() def requires(self): return WorkForce(econ_id=self.econ_id, dem_id=self.dem_id) def output(self): return luigi.LocalTarget('temp/data.h5') def run(self): econ_sim_rates = pd.read_hdf('temp/data.h5', 'econ_sim_rates') out_commuting = extract.create_df('out_commuting', 'out_commuting_table', rate_id=econ_sim_rates.oc_id[0], index=['yr']) work_force = pd.read_hdf('temp/data.h5', 'work_force') work_force = work_force.reset_index(drop=False) work_force = pd.DataFrame(work_force[['labor_force', 'unemployed', 'work_force']].groupby([work_force['yr']]).sum()) work_force = work_force.join(out_commuting) work_force['work_force_outside'] = (work_force['work_force'] * work_force['wtlh_lh']).round() work_force['work_force_local'] = (work_force['work_force'] - work_force['work_force_outside']).round() work_force.to_hdf('temp/data.h5', 'work_force_local', mode='a') class Jobs(luigi.Task): econ_id = luigi.Parameter() dem_id = luigi.Parameter() def requires(self): return LocalWorkForce(econ_id=self.econ_id, dem_id=self.dem_id) def output(self): return luigi.LocalTarget('temp/data.h5') def run(self): econ_sim_rates = pd.read_hdf('temp/data.h5', 'econ_sim_rates') local_jobs = extract.create_df('local_jobs', 'local_jobs_table', rate_id=econ_sim_rates.lj_id[0], index=['yr']) in_commuting = extract.create_df('in_commuting', 'in_commuting_table',rate_id=econ_sim_rates.ic_id[0], index=['yr']) work_force_local = pd.read_hdf('temp/data.h5', 'work_force_local') work_force_local = work_force_local.join(local_jobs) work_force_local['jobs_local'] = (work_force_local['work_force_local'] * work_force_local['jlw']).round() work_force_local = work_force_local.join(in_commuting) work_force_local['jobs_total'] = (work_force_local['jobs_local'] * work_force_local['wh_whlh']).round() work_force_local['jobs_external'] = (work_force_local['jobs_total'] - work_force_local['jobs_local']).round() # pull information from here work_force_local.to_hdf('temp/data.h5', 'jobs', mode='a') class SectoralPay(luigi.Task): econ_id = luigi.Parameter() dem_id = luigi.Parameter() def requires(self): return Jobs(econ_id=self.econ_id, dem_id=self.dem_id) def output(self): return luigi.LocalTarget('temp/data.h5') def run(self): engine = create_engine(get_connection_string("model_config.yml", 'output_database')) econ_sim_rates = pd.read_hdf('temp/data.h5', 'econ_sim_rates') sectoral_share = extract.create_df('sectoral_share', 'sectoral_share_table', rate_id=econ_sim_rates.ss_id[0], index=['yr', 'sandag_sector']) sectoral_pay = extract.create_df('sectoral_pay', 'sectoral_pay_table', rate_id=econ_sim_rates.sp_id[0], index=['yr', 'sandag_sector']) jobs = pd.read_hdf('temp/data.h5', 'jobs') jobs = jobs[['jobs_total']] jobs = jobs.join(sectoral_share, how='right') jobs['sector_jobs'] = (jobs['jobs_total'] * jobs['share']).round() jobs = jobs.drop(['jobs_total'], 1) jobs = jobs.join(sectoral_pay) jobs['tot_ann_job_pay'] = (jobs['sector_jobs'] * jobs['annual_pay']).round() jobs.to_hdf('temp/data.h5', 'sectoral', mode='a') run_table = pd.read_hdf('temp/data.h5', 'run_id') run_id = run_table[0] jobs['run_id'] = run_id jobs.to_sql(name='sectors', con=engine, schema='defm', if_exists='append', index=True) class MilPay(luigi.Task): econ_id = luigi.Parameter() dem_id = luigi.Parameter() def requires(self): return MilPopulation(econ_id=self.econ_id, dem_id=self.dem_id) def output(self): return luigi.LocalTarget('temp/data.h5') def run(self): econ_sim_rates =
pd.read_hdf('temp/data.h5', 'econ_sim_rates')
pandas.read_hdf
""" Module contains tools for processing files into DataFrames or other objects """ from collections import abc, defaultdict import csv import datetime from io import StringIO import itertools import re import sys from textwrap import fill from typing import ( Any, Dict, Iterable, Iterator, List, Optional, Sequence, Set, Type, cast, ) import warnings import numpy as np import pandas._libs.lib as lib import pandas._libs.ops as libops import pandas._libs.parsers as parsers from pandas._libs.parsers import STR_NA_VALUES from pandas._libs.tslibs import parsing from pandas._typing import FilePathOrBuffer, StorageOptions, Union from pandas.errors import ( AbstractMethodError, EmptyDataError, ParserError, ParserWarning, ) from pandas.util._decorators import Appender from pandas.core.dtypes.cast import astype_nansafe from pandas.core.dtypes.common import ( ensure_object, ensure_str, is_bool_dtype, is_categorical_dtype, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_file_like, is_float, is_integer, is_integer_dtype, is_list_like, is_object_dtype, is_scalar, is_string_dtype, pandas_dtype, ) from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.dtypes.missing import isna from pandas.core import algorithms, generic from pandas.core.arrays import Categorical from pandas.core.frame import DataFrame from pandas.core.indexes.api import ( Index, MultiIndex, RangeIndex, ensure_index_from_sequences, ) from pandas.core.series import Series from pandas.core.tools import datetimes as tools from pandas.io.common import IOHandles, get_handle, validate_header_arg from pandas.io.date_converters import generic_parser # BOM character (byte order mark) # This exists at the beginning of a file to indicate endianness # of a file (stream). Unfortunately, this marker screws up parsing, # so we need to remove it if we see it. _BOM = "\ufeff" _doc_read_csv_and_table = ( r""" {summary} Also supports optionally iterating or breaking of the file into chunks. Additional help can be found in the online docs for `IO Tools <https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html>`_. Parameters ---------- filepath_or_buffer : str, path object or file-like object Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is expected. A local file could be: file://localhost/path/to/table.csv. If you want to pass in a path object, pandas accepts any ``os.PathLike``. By file-like object, we refer to objects with a ``read()`` method, such as a file handle (e.g. via builtin ``open`` function) or ``StringIO``. sep : str, default {_default_sep} Delimiter to use. If sep is None, the C engine cannot automatically detect the separator, but the Python parsing engine can, meaning the latter will be used and automatically detect the separator by Python's builtin sniffer tool, ``csv.Sniffer``. In addition, separators longer than 1 character and different from ``'\s+'`` will be interpreted as regular expressions and will also force the use of the Python parsing engine. Note that regex delimiters are prone to ignoring quoted data. Regex example: ``'\r\t'``. delimiter : str, default ``None`` Alias for sep. header : int, list of int, default 'infer' Row number(s) to use as the column names, and the start of the data. Default behavior is to infer the column names: if no names are passed the behavior is identical to ``header=0`` and column names are inferred from the first line of the file, if column names are passed explicitly then the behavior is identical to ``header=None``. Explicitly pass ``header=0`` to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns e.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this parameter ignores commented lines and empty lines if ``skip_blank_lines=True``, so ``header=0`` denotes the first line of data rather than the first line of the file. names : array-like, optional List of column names to use. If the file contains a header row, then you should explicitly pass ``header=0`` to override the column names. Duplicates in this list are not allowed. index_col : int, str, sequence of int / str, or False, default ``None`` Column(s) to use as the row labels of the ``DataFrame``, either given as string name or column index. If a sequence of int / str is given, a MultiIndex is used. Note: ``index_col=False`` can be used to force pandas to *not* use the first column as the index, e.g. when you have a malformed file with delimiters at the end of each line. usecols : list-like or callable, optional Return a subset of the columns. If list-like, all elements must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in `names` or inferred from the document header row(s). For example, a valid list-like `usecols` parameter would be ``[0, 1, 2]`` or ``['foo', 'bar', 'baz']``. Element order is ignored, so ``usecols=[0, 1]`` is the same as ``[1, 0]``. To instantiate a DataFrame from ``data`` with element order preserved use ``pd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']]`` for columns in ``['foo', 'bar']`` order or ``pd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']]`` for ``['bar', 'foo']`` order. If callable, the callable function will be evaluated against the column names, returning names where the callable function evaluates to True. An example of a valid callable argument would be ``lambda x: x.upper() in ['AAA', 'BBB', 'DDD']``. Using this parameter results in much faster parsing time and lower memory usage. squeeze : bool, default False If the parsed data only contains one column then return a Series. prefix : str, optional Prefix to add to column numbers when no header, e.g. 'X' for X0, X1, ... mangle_dupe_cols : bool, default True Duplicate columns will be specified as 'X', 'X.1', ...'X.N', rather than 'X'...'X'. Passing in False will cause data to be overwritten if there are duplicate names in the columns. dtype : Type name or dict of column -> type, optional Data type for data or columns. E.g. {{'a': np.float64, 'b': np.int32, 'c': 'Int64'}} Use `str` or `object` together with suitable `na_values` settings to preserve and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion. engine : {{'c', 'python'}}, optional Parser engine to use. The C engine is faster while the python engine is currently more feature-complete. converters : dict, optional Dict of functions for converting values in certain columns. Keys can either be integers or column labels. true_values : list, optional Values to consider as True. false_values : list, optional Values to consider as False. skipinitialspace : bool, default False Skip spaces after delimiter. skiprows : list-like, int or callable, optional Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file. If callable, the callable function will be evaluated against the row indices, returning True if the row should be skipped and False otherwise. An example of a valid callable argument would be ``lambda x: x in [0, 2]``. skipfooter : int, default 0 Number of lines at bottom of file to skip (Unsupported with engine='c'). nrows : int, optional Number of rows of file to read. Useful for reading pieces of large files. na_values : scalar, str, list-like, or dict, optional Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: '""" + fill("', '".join(sorted(STR_NA_VALUES)), 70, subsequent_indent=" ") + """'. keep_default_na : bool, default True Whether or not to include the default NaN values when parsing the data. Depending on whether `na_values` is passed in, the behavior is as follows: * If `keep_default_na` is True, and `na_values` are specified, `na_values` is appended to the default NaN values used for parsing. * If `keep_default_na` is True, and `na_values` are not specified, only the default NaN values are used for parsing. * If `keep_default_na` is False, and `na_values` are specified, only the NaN values specified `na_values` are used for parsing. * If `keep_default_na` is False, and `na_values` are not specified, no strings will be parsed as NaN. Note that if `na_filter` is passed in as False, the `keep_default_na` and `na_values` parameters will be ignored. na_filter : bool, default True Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file. verbose : bool, default False Indicate number of NA values placed in non-numeric columns. skip_blank_lines : bool, default True If True, skip over blank lines rather than interpreting as NaN values. parse_dates : bool or list of int or names or list of lists or dict, \ default False The behavior is as follows: * boolean. If True -> try parsing the index. * list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column. * list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column. * dict, e.g. {{'foo' : [1, 3]}} -> parse columns 1, 3 as date and call result 'foo' If a column or index cannot be represented as an array of datetimes, say because of an unparsable value or a mixture of timezones, the column or index will be returned unaltered as an object data type. For non-standard datetime parsing, use ``pd.to_datetime`` after ``pd.read_csv``. To parse an index or column with a mixture of timezones, specify ``date_parser`` to be a partially-applied :func:`pandas.to_datetime` with ``utc=True``. See :ref:`io.csv.mixed_timezones` for more. Note: A fast-path exists for iso8601-formatted dates. infer_datetime_format : bool, default False If True and `parse_dates` is enabled, pandas will attempt to infer the format of the datetime strings in the columns, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by 5-10x. keep_date_col : bool, default False If True and `parse_dates` specifies combining multiple columns then keep the original columns. date_parser : function, optional Function to use for converting a sequence of string columns to an array of datetime instances. The default uses ``dateutil.parser.parser`` to do the conversion. Pandas will try to call `date_parser` in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by `parse_dates`) as arguments; 2) concatenate (row-wise) the string values from the columns defined by `parse_dates` into a single array and pass that; and 3) call `date_parser` once for each row using one or more strings (corresponding to the columns defined by `parse_dates`) as arguments. dayfirst : bool, default False DD/MM format dates, international and European format. cache_dates : bool, default True If True, use a cache of unique, converted dates to apply the datetime conversion. May produce significant speed-up when parsing duplicate date strings, especially ones with timezone offsets. .. versionadded:: 0.25.0 iterator : bool, default False Return TextFileReader object for iteration or getting chunks with ``get_chunk()``. .. versionchanged:: 1.2 ``TextFileReader`` is a context manager. chunksize : int, optional Return TextFileReader object for iteration. See the `IO Tools docs <https://pandas.pydata.org/pandas-docs/stable/io.html#io-chunking>`_ for more information on ``iterator`` and ``chunksize``. .. versionchanged:: 1.2 ``TextFileReader`` is a context manager. compression : {{'infer', 'gzip', 'bz2', 'zip', 'xz', None}}, default 'infer' For on-the-fly decompression of on-disk data. If 'infer' and `filepath_or_buffer` is path-like, then detect compression from the following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no decompression). If using 'zip', the ZIP file must contain only one data file to be read in. Set to None for no decompression. thousands : str, optional Thousands separator. decimal : str, default '.' Character to recognize as decimal point (e.g. use ',' for European data). lineterminator : str (length 1), optional Character to break file into lines. Only valid with C parser. quotechar : str (length 1), optional The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored. quoting : int or csv.QUOTE_* instance, default 0 Control field quoting behavior per ``csv.QUOTE_*`` constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3). doublequote : bool, default ``True`` When quotechar is specified and quoting is not ``QUOTE_NONE``, indicate whether or not to interpret two consecutive quotechar elements INSIDE a field as a single ``quotechar`` element. escapechar : str (length 1), optional One-character string used to escape other characters. comment : str, optional Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as ``skip_blank_lines=True``), fully commented lines are ignored by the parameter `header` but not by `skiprows`. For example, if ``comment='#'``, parsing ``#empty\\na,b,c\\n1,2,3`` with ``header=0`` will result in 'a,b,c' being treated as the header. encoding : str, optional Encoding to use for UTF when reading/writing (ex. 'utf-8'). `List of Python standard encodings <https://docs.python.org/3/library/codecs.html#standard-encodings>`_ . dialect : str or csv.Dialect, optional If provided, this parameter will override values (default or not) for the following parameters: `delimiter`, `doublequote`, `escapechar`, `skipinitialspace`, `quotechar`, and `quoting`. If it is necessary to override values, a ParserWarning will be issued. See csv.Dialect documentation for more details. error_bad_lines : bool, default True Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these "bad lines" will dropped from the DataFrame that is returned. warn_bad_lines : bool, default True If error_bad_lines is False, and warn_bad_lines is True, a warning for each "bad line" will be output. delim_whitespace : bool, default False Specifies whether or not whitespace (e.g. ``' '`` or ``'\t'``) will be used as the sep. Equivalent to setting ``sep='\\s+'``. If this option is set to True, nothing should be passed in for the ``delimiter`` parameter. low_memory : bool, default True Internally process the file in chunks, resulting in lower memory use while parsing, but possibly mixed type inference. To ensure no mixed types either set False, or specify the type with the `dtype` parameter. Note that the entire file is read into a single DataFrame regardless, use the `chunksize` or `iterator` parameter to return the data in chunks. (Only valid with C parser). memory_map : bool, default False If a filepath is provided for `filepath_or_buffer`, map the file object directly onto memory and access the data directly from there. Using this option can improve performance because there is no longer any I/O overhead. float_precision : str, optional Specifies which converter the C engine should use for floating-point values. The options are ``None`` or 'high' for the ordinary converter, 'legacy' for the original lower precision pandas converter, and 'round_trip' for the round-trip converter. .. versionchanged:: 1.2 {storage_options} .. versionadded:: 1.2 Returns ------- DataFrame or TextParser A comma-separated values (csv) file is returned as two-dimensional data structure with labeled axes. See Also -------- DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file. read_csv : Read a comma-separated values (csv) file into DataFrame. read_fwf : Read a table of fixed-width formatted lines into DataFrame. Examples -------- >>> pd.{func_name}('data.csv') # doctest: +SKIP """ ) def validate_integer(name, val, min_val=0): """ Checks whether the 'name' parameter for parsing is either an integer OR float that can SAFELY be cast to an integer without losing accuracy. Raises a ValueError if that is not the case. Parameters ---------- name : string Parameter name (used for error reporting) val : int or float The value to check min_val : int Minimum allowed value (val < min_val will result in a ValueError) """ msg = f"'{name:s}' must be an integer >={min_val:d}" if val is not None: if is_float(val): if int(val) != val: raise ValueError(msg) val = int(val) elif not (is_integer(val) and val >= min_val): raise ValueError(msg) return val def _validate_names(names): """ Raise ValueError if the `names` parameter contains duplicates or has an invalid data type. Parameters ---------- names : array-like or None An array containing a list of the names used for the output DataFrame. Raises ------ ValueError If names are not unique or are not ordered (e.g. set). """ if names is not None: if len(names) != len(set(names)): raise ValueError("Duplicate names are not allowed.") if not ( is_list_like(names, allow_sets=False) or isinstance(names, abc.KeysView) ): raise ValueError("Names should be an ordered collection.") def _read(filepath_or_buffer: FilePathOrBuffer, kwds): """Generic reader of line files.""" if kwds.get("date_parser", None) is not None: if isinstance(kwds["parse_dates"], bool): kwds["parse_dates"] = True # Extract some of the arguments (pass chunksize on). iterator = kwds.get("iterator", False) chunksize = validate_integer("chunksize", kwds.get("chunksize", None), 1) nrows = kwds.get("nrows", None) # Check for duplicates in names. _validate_names(kwds.get("names", None)) # Create the parser. parser = TextFileReader(filepath_or_buffer, **kwds) if chunksize or iterator: return parser with parser: return parser.read(nrows) _parser_defaults = { "delimiter": None, "escapechar": None, "quotechar": '"', "quoting": csv.QUOTE_MINIMAL, "doublequote": True, "skipinitialspace": False, "lineterminator": None, "header": "infer", "index_col": None, "names": None, "prefix": None, "skiprows": None, "skipfooter": 0, "nrows": None, "na_values": None, "keep_default_na": True, "true_values": None, "false_values": None, "converters": None, "dtype": None, "cache_dates": True, "thousands": None, "comment": None, "decimal": ".", # 'engine': 'c', "parse_dates": False, "keep_date_col": False, "dayfirst": False, "date_parser": None, "usecols": None, # 'iterator': False, "chunksize": None, "verbose": False, "encoding": None, "squeeze": False, "compression": None, "mangle_dupe_cols": True, "infer_datetime_format": False, "skip_blank_lines": True, } _c_parser_defaults = { "delim_whitespace": False, "na_filter": True, "low_memory": True, "memory_map": False, "error_bad_lines": True, "warn_bad_lines": True, "float_precision": None, } _fwf_defaults = {"colspecs": "infer", "infer_nrows": 100, "widths": None} _c_unsupported = {"skipfooter"} _python_unsupported = {"low_memory", "float_precision"} _deprecated_defaults: Dict[str, Any] = {} _deprecated_args: Set[str] = set() @Appender( _doc_read_csv_and_table.format( func_name="read_csv", summary="Read a comma-separated values (csv) file into DataFrame.", _default_sep="','", storage_options=generic._shared_docs["storage_options"], ) ) def read_csv( filepath_or_buffer: FilePathOrBuffer, sep=lib.no_default, delimiter=None, # Column and Index Locations and Names header="infer", names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, # General Parsing Configuration dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None, # NA and Missing Data Handling na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, # Datetime Handling parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, cache_dates=True, # Iteration iterator=False, chunksize=None, # Quoting, Compression, and File Format compression="infer", thousands=None, decimal: str = ".", lineterminator=None, quotechar='"', quoting=csv.QUOTE_MINIMAL, doublequote=True, escapechar=None, comment=None, encoding=None, dialect=None, # Error Handling error_bad_lines=True, warn_bad_lines=True, # Internal delim_whitespace=False, low_memory=_c_parser_defaults["low_memory"], memory_map=False, float_precision=None, storage_options: StorageOptions = None, ): kwds = locals() del kwds["filepath_or_buffer"] del kwds["sep"] kwds_defaults = _refine_defaults_read( dialect, delimiter, delim_whitespace, engine, sep, defaults={"delimiter": ","} ) kwds.update(kwds_defaults) return _read(filepath_or_buffer, kwds) @Appender( _doc_read_csv_and_table.format( func_name="read_table", summary="Read general delimited file into DataFrame.", _default_sep=r"'\\t' (tab-stop)", storage_options=generic._shared_docs["storage_options"], ) ) def read_table( filepath_or_buffer: FilePathOrBuffer, sep=lib.no_default, delimiter=None, # Column and Index Locations and Names header="infer", names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, # General Parsing Configuration dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None, # NA and Missing Data Handling na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, # Datetime Handling parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, cache_dates=True, # Iteration iterator=False, chunksize=None, # Quoting, Compression, and File Format compression="infer", thousands=None, decimal: str = ".", lineterminator=None, quotechar='"', quoting=csv.QUOTE_MINIMAL, doublequote=True, escapechar=None, comment=None, encoding=None, dialect=None, # Error Handling error_bad_lines=True, warn_bad_lines=True, # Internal delim_whitespace=False, low_memory=_c_parser_defaults["low_memory"], memory_map=False, float_precision=None, ): kwds = locals() del kwds["filepath_or_buffer"] del kwds["sep"] kwds_defaults = _refine_defaults_read( dialect, delimiter, delim_whitespace, engine, sep, defaults={"delimiter": "\t"} ) kwds.update(kwds_defaults) return _read(filepath_or_buffer, kwds) def read_fwf( filepath_or_buffer: FilePathOrBuffer, colspecs="infer", widths=None, infer_nrows=100, **kwds, ): r""" Read a table of fixed-width formatted lines into DataFrame. Also supports optionally iterating or breaking of the file into chunks. Additional help can be found in the `online docs for IO Tools <https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html>`_. Parameters ---------- filepath_or_buffer : str, path object or file-like object Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. A local file could be: ``file://localhost/path/to/table.csv``. If you want to pass in a path object, pandas accepts any ``os.PathLike``. By file-like object, we refer to objects with a ``read()`` method, such as a file handle (e.g. via builtin ``open`` function) or ``StringIO``. colspecs : list of tuple (int, int) or 'infer'. optional A list of tuples giving the extents of the fixed-width fields of each line as half-open intervals (i.e., [from, to[ ). String value 'infer' can be used to instruct the parser to try detecting the column specifications from the first 100 rows of the data which are not being skipped via skiprows (default='infer'). widths : list of int, optional A list of field widths which can be used instead of 'colspecs' if the intervals are contiguous. infer_nrows : int, default 100 The number of rows to consider when letting the parser determine the `colspecs`. .. versionadded:: 0.24.0 **kwds : optional Optional keyword arguments can be passed to ``TextFileReader``. Returns ------- DataFrame or TextParser A comma-separated values (csv) file is returned as two-dimensional data structure with labeled axes. See Also -------- DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file. read_csv : Read a comma-separated values (csv) file into DataFrame. Examples -------- >>> pd.read_fwf('data.csv') # doctest: +SKIP """ # Check input arguments. if colspecs is None and widths is None: raise ValueError("Must specify either colspecs or widths") elif colspecs not in (None, "infer") and widths is not None: raise ValueError("You must specify only one of 'widths' and 'colspecs'") # Compute 'colspecs' from 'widths', if specified. if widths is not None: colspecs, col = [], 0 for w in widths: colspecs.append((col, col + w)) col += w kwds["colspecs"] = colspecs kwds["infer_nrows"] = infer_nrows kwds["engine"] = "python-fwf" return _read(filepath_or_buffer, kwds) class TextFileReader(abc.Iterator): """ Passed dialect overrides any of the related parser options """ def __init__(self, f, engine=None, **kwds): self.f = f if engine is not None: engine_specified = True else: engine = "python" engine_specified = False self.engine = engine self._engine_specified = kwds.get("engine_specified", engine_specified) _validate_skipfooter(kwds) dialect = _extract_dialect(kwds) if dialect is not None: kwds = _merge_with_dialect_properties(dialect, kwds) if kwds.get("header", "infer") == "infer": kwds["header"] = 0 if kwds.get("names") is None else None self.orig_options = kwds # miscellanea self._currow = 0 options = self._get_options_with_defaults(engine) options["storage_options"] = kwds.get("storage_options", None) self.chunksize = options.pop("chunksize", None) self.nrows = options.pop("nrows", None) self.squeeze = options.pop("squeeze", False) self._check_file_or_buffer(f, engine) self.options, self.engine = self._clean_options(options, engine) if "has_index_names" in kwds: self.options["has_index_names"] = kwds["has_index_names"] self._engine = self._make_engine(self.engine) def close(self): self._engine.close() def _get_options_with_defaults(self, engine): kwds = self.orig_options options = {} for argname, default in _parser_defaults.items(): value = kwds.get(argname, default) # see gh-12935 if argname == "mangle_dupe_cols" and not value: raise ValueError("Setting mangle_dupe_cols=False is not supported yet") else: options[argname] = value for argname, default in _c_parser_defaults.items(): if argname in kwds: value = kwds[argname] if engine != "c" and value != default: if "python" in engine and argname not in _python_unsupported: pass elif value == _deprecated_defaults.get(argname, default): pass else: raise ValueError( f"The {repr(argname)} option is not supported with the " f"{repr(engine)} engine" ) else: value = _deprecated_defaults.get(argname, default) options[argname] = value if engine == "python-fwf": # pandas\io\parsers.py:907: error: Incompatible types in assignment # (expression has type "object", variable has type "Union[int, str, # None]") [assignment] for argname, default in _fwf_defaults.items(): # type: ignore[assignment] options[argname] = kwds.get(argname, default) return options def _check_file_or_buffer(self, f, engine): # see gh-16530 if is_file_like(f) and engine != "c" and not hasattr(f, "__next__"): # The C engine doesn't need the file-like to have the "__next__" # attribute. However, the Python engine explicitly calls # "__next__(...)" when iterating through such an object, meaning it # needs to have that attribute raise ValueError( "The 'python' engine cannot iterate through this file buffer." ) def _clean_options(self, options, engine): result = options.copy() fallback_reason = None # C engine not supported yet if engine == "c": if options["skipfooter"] > 0: fallback_reason = "the 'c' engine does not support skipfooter" engine = "python" sep = options["delimiter"] delim_whitespace = options["delim_whitespace"] if sep is None and not delim_whitespace: if engine == "c": fallback_reason = ( "the 'c' engine does not support " "sep=None with delim_whitespace=False" ) engine = "python" elif sep is not None and len(sep) > 1: if engine == "c" and sep == r"\s+": result["delim_whitespace"] = True del result["delimiter"] elif engine not in ("python", "python-fwf"): # wait until regex engine integrated fallback_reason = ( "the 'c' engine does not support " "regex separators (separators > 1 char and " r"different from '\s+' are interpreted as regex)" ) engine = "python" elif delim_whitespace: if "python" in engine: result["delimiter"] = r"\s+" elif sep is not None: encodeable = True encoding = sys.getfilesystemencoding() or "utf-8" try: if len(sep.encode(encoding)) > 1: encodeable = False except UnicodeDecodeError: encodeable = False if not encodeable and engine not in ("python", "python-fwf"): fallback_reason = ( f"the separator encoded in {encoding} " "is > 1 char long, and the 'c' engine " "does not support such separators" ) engine = "python" quotechar = options["quotechar"] if quotechar is not None and isinstance(quotechar, (str, bytes)): if ( len(quotechar) == 1 and ord(quotechar) > 127 and engine not in ("python", "python-fwf") ): fallback_reason = ( "ord(quotechar) > 127, meaning the " "quotechar is larger than one byte, " "and the 'c' engine does not support such quotechars" ) engine = "python" if fallback_reason and self._engine_specified: raise ValueError(fallback_reason) if engine == "c": for arg in _c_unsupported: del result[arg] if "python" in engine: for arg in _python_unsupported: if fallback_reason and result[arg] != _c_parser_defaults[arg]: raise ValueError( "Falling back to the 'python' engine because " f"{fallback_reason}, but this causes {repr(arg)} to be " "ignored as it is not supported by the 'python' engine." ) del result[arg] if fallback_reason: warnings.warn( ( "Falling back to the 'python' engine because " f"{fallback_reason}; you can avoid this warning by specifying " "engine='python'." ), ParserWarning, stacklevel=5, ) index_col = options["index_col"] names = options["names"] converters = options["converters"] na_values = options["na_values"] skiprows = options["skiprows"] validate_header_arg(options["header"]) for arg in _deprecated_args: parser_default = _c_parser_defaults[arg] depr_default = _deprecated_defaults[arg] if result.get(arg, depr_default) != depr_default: msg = ( f"The {arg} argument has been deprecated and will be " "removed in a future version.\n\n" ) warnings.warn(msg, FutureWarning, stacklevel=2) else: result[arg] = parser_default if index_col is True: raise ValueError("The value of index_col couldn't be 'True'") if _is_index_col(index_col): if not isinstance(index_col, (list, tuple, np.ndarray)): index_col = [index_col] result["index_col"] = index_col names = list(names) if names is not None else names # type conversion-related if converters is not None: if not isinstance(converters, dict): raise TypeError( "Type converters must be a dict or subclass, " f"input was a {type(converters).__name__}" ) else: converters = {} # Converting values to NA keep_default_na = options["keep_default_na"] na_values, na_fvalues = _clean_na_values(na_values, keep_default_na) # handle skiprows; this is internally handled by the # c-engine, so only need for python parsers if engine != "c": if is_integer(skiprows): skiprows = list(range(skiprows)) if skiprows is None: skiprows = set() elif not callable(skiprows): skiprows = set(skiprows) # put stuff back result["names"] = names result["converters"] = converters result["na_values"] = na_values result["na_fvalues"] = na_fvalues result["skiprows"] = skiprows return result, engine def __next__(self): try: return self.get_chunk() except StopIteration: self.close() raise def _make_engine(self, engine="c"): mapping: Dict[str, Type[ParserBase]] = { "c": CParserWrapper, "python": PythonParser, "python-fwf": FixedWidthFieldParser, } if engine not in mapping: raise ValueError( f"Unknown engine: {engine} (valid options are {mapping.keys()})" ) # error: Too many arguments for "ParserBase" return mapping[engine](self.f, **self.options) # type: ignore[call-arg] def _failover_to_python(self): raise AbstractMethodError(self) def read(self, nrows=None): nrows = validate_integer("nrows", nrows) index, columns, col_dict = self._engine.read(nrows) if index is None: if col_dict: # Any column is actually fine: new_rows = len(next(iter(col_dict.values()))) index = RangeIndex(self._currow, self._currow + new_rows) else: new_rows = 0 else: new_rows = len(index) df = DataFrame(col_dict, columns=columns, index=index) self._currow += new_rows if self.squeeze and len(df.columns) == 1: return df[df.columns[0]].copy() return df def get_chunk(self, size=None): if size is None: size = self.chunksize if self.nrows is not None: if self._currow >= self.nrows: raise StopIteration size = min(size, self.nrows - self._currow) return self.read(nrows=size) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def _is_index_col(col): return col is not None and col is not False def _is_potential_multi_index( columns, index_col: Optional[Union[bool, Sequence[int]]] = None ): """ Check whether or not the `columns` parameter could be converted into a MultiIndex. Parameters ---------- columns : array-like Object which may or may not be convertible into a MultiIndex index_col : None, bool or list, optional Column or columns to use as the (possibly hierarchical) index Returns ------- boolean : Whether or not columns could become a MultiIndex """ if index_col is None or isinstance(index_col, bool): index_col = [] return ( len(columns) and not isinstance(columns, MultiIndex) and all(isinstance(c, tuple) for c in columns if c not in list(index_col)) ) def _evaluate_usecols(usecols, names): """ Check whether or not the 'usecols' parameter is a callable. If so, enumerates the 'names' parameter and returns a set of indices for each entry in 'names' that evaluates to True. If not a callable, returns 'usecols'. """ if callable(usecols): return {i for i, name in enumerate(names) if usecols(name)} return usecols def _validate_usecols_names(usecols, names): """ Validates that all usecols are present in a given list of names. If not, raise a ValueError that shows what usecols are missing. Parameters ---------- usecols : iterable of usecols The columns to validate are present in names. names : iterable of names The column names to check against. Returns ------- usecols : iterable of usecols The `usecols` parameter if the validation succeeds. Raises ------ ValueError : Columns were missing. Error message will list them. """ missing = [c for c in usecols if c not in names] if len(missing) > 0: raise ValueError( f"Usecols do not match columns, columns expected but not found: {missing}" ) return usecols def _validate_skipfooter_arg(skipfooter): """ Validate the 'skipfooter' parameter. Checks whether 'skipfooter' is a non-negative integer. Raises a ValueError if that is not the case. Parameters ---------- skipfooter : non-negative integer The number of rows to skip at the end of the file. Returns ------- validated_skipfooter : non-negative integer The original input if the validation succeeds. Raises ------ ValueError : 'skipfooter' was not a non-negative integer. """ if not is_integer(skipfooter): raise ValueError("skipfooter must be an integer") if skipfooter < 0: raise ValueError("skipfooter cannot be negative") return skipfooter def _validate_usecols_arg(usecols): """ Validate the 'usecols' parameter. Checks whether or not the 'usecols' parameter contains all integers (column selection by index), strings (column by name) or is a callable. Raises a ValueError if that is not the case. Parameters ---------- usecols : list-like, callable, or None List of columns to use when parsing or a callable that can be used to filter a list of table columns. Returns ------- usecols_tuple : tuple A tuple of (verified_usecols, usecols_dtype). 'verified_usecols' is either a set if an array-like is passed in or 'usecols' if a callable or None is passed in. 'usecols_dtype` is the inferred dtype of 'usecols' if an array-like is passed in or None if a callable or None is passed in. """ msg = ( "'usecols' must either be list-like of all strings, all unicode, " "all integers or a callable." ) if usecols is not None: if callable(usecols): return usecols, None if not is_list_like(usecols): # see gh-20529 # # Ensure it is iterable container but not string. raise ValueError(msg) usecols_dtype = lib.infer_dtype(usecols, skipna=False) if usecols_dtype not in ("empty", "integer", "string"): raise ValueError(msg) usecols = set(usecols) return usecols, usecols_dtype return usecols, None def _validate_parse_dates_arg(parse_dates): """ Check whether or not the 'parse_dates' parameter is a non-boolean scalar. Raises a ValueError if that is the case. """ msg = ( "Only booleans, lists, and dictionaries are accepted " "for the 'parse_dates' parameter" ) if parse_dates is not None: if is_scalar(parse_dates): if not lib.is_bool(parse_dates): raise TypeError(msg) elif not isinstance(parse_dates, (list, dict)): raise TypeError(msg) return parse_dates class ParserBase: def __init__(self, kwds): self.names = kwds.get("names") self.orig_names: Optional[List] = None self.prefix = kwds.pop("prefix", None) self.index_col = kwds.get("index_col", None) self.unnamed_cols: Set = set() self.index_names: Optional[List] = None self.col_names = None self.parse_dates = _validate_parse_dates_arg(kwds.pop("parse_dates", False)) self.date_parser = kwds.pop("date_parser", None) self.dayfirst = kwds.pop("dayfirst", False) self.keep_date_col = kwds.pop("keep_date_col", False) self.na_values = kwds.get("na_values") self.na_fvalues = kwds.get("na_fvalues") self.na_filter = kwds.get("na_filter", False) self.keep_default_na = kwds.get("keep_default_na", True) self.true_values = kwds.get("true_values") self.false_values = kwds.get("false_values") self.mangle_dupe_cols = kwds.get("mangle_dupe_cols", True) self.infer_datetime_format = kwds.pop("infer_datetime_format", False) self.cache_dates = kwds.pop("cache_dates", True) self._date_conv = _make_date_converter( date_parser=self.date_parser, dayfirst=self.dayfirst, infer_datetime_format=self.infer_datetime_format, cache_dates=self.cache_dates, ) # validate header options for mi self.header = kwds.get("header") if isinstance(self.header, (list, tuple, np.ndarray)): if not all(map(is_integer, self.header)): raise ValueError("header must be integer or list of integers") if any(i < 0 for i in self.header): raise ValueError( "cannot specify multi-index header with negative integers" ) if kwds.get("usecols"): raise ValueError( "cannot specify usecols when specifying a multi-index header" ) if kwds.get("names"): raise ValueError( "cannot specify names when specifying a multi-index header" ) # validate index_col that only contains integers if self.index_col is not None: is_sequence = isinstance(self.index_col, (list, tuple, np.ndarray)) if not ( is_sequence and all(map(is_integer, self.index_col)) or is_integer(self.index_col) ): raise ValueError( "index_col must only contain row numbers " "when specifying a multi-index header" ) elif self.header is not None: # GH 27394 if self.prefix is not None: raise ValueError( "Argument prefix must be None if argument header is not None" ) # GH 16338 elif not is_integer(self.header): raise ValueError("header must be integer or list of integers") # GH 27779 elif self.header < 0: raise ValueError( "Passing negative integer to header is invalid. " "For no header, use header=None instead" ) self._name_processed = False self._first_chunk = True self.handles: Optional[IOHandles] = None def _open_handles(self, src: FilePathOrBuffer, kwds: Dict[str, Any]) -> None: """ Let the readers open IOHanldes after they are done with their potential raises. """ self.handles = get_handle( src, "r", encoding=kwds.get("encoding", None), compression=kwds.get("compression", None), memory_map=kwds.get("memory_map", False), storage_options=kwds.get("storage_options", None), ) def _validate_parse_dates_presence(self, columns: List[str]) -> None: """ Check if parse_dates are in columns. If user has provided names for parse_dates, check if those columns are available. Parameters ---------- columns : list List of names of the dataframe. Raises ------ ValueError If column to parse_date is not in dataframe. """ cols_needed: Iterable if is_dict_like(self.parse_dates): cols_needed = itertools.chain(*self.parse_dates.values()) elif is_list_like(self.parse_dates): # a column in parse_dates could be represented # ColReference = Union[int, str] # DateGroups = List[ColReference] # ParseDates = Union[DateGroups, List[DateGroups], # Dict[ColReference, DateGroups]] cols_needed = itertools.chain.from_iterable( col if is_list_like(col) else [col] for col in self.parse_dates ) else: cols_needed = [] # get only columns that are references using names (str), not by index missing_cols = ", ".join( sorted( { col for col in cols_needed if isinstance(col, str) and col not in columns } ) ) if missing_cols: raise ValueError( f"Missing column provided to 'parse_dates': '{missing_cols}'" ) def close(self): if self.handles is not None: self.handles.close() @property def _has_complex_date_col(self): return isinstance(self.parse_dates, dict) or ( isinstance(self.parse_dates, list) and len(self.parse_dates) > 0 and isinstance(self.parse_dates[0], list) ) def _should_parse_dates(self, i): if isinstance(self.parse_dates, bool): return self.parse_dates else: if self.index_names is not None: name = self.index_names[i] else: name = None j = self.index_col[i] if is_scalar(self.parse_dates): return (j == self.parse_dates) or ( name is not None and name == self.parse_dates ) else: return (j in self.parse_dates) or ( name is not None and name in self.parse_dates ) def _extract_multi_indexer_columns( self, header, index_names, col_names, passed_names=False ): """ extract and return the names, index_names, col_names header is a list-of-lists returned from the parsers """ if len(header) < 2: return header[0], index_names, col_names, passed_names # the names are the tuples of the header that are not the index cols # 0 is the name of the index, assuming index_col is a list of column # numbers ic = self.index_col if ic is None: ic = [] if not isinstance(ic, (list, tuple, np.ndarray)): ic = [ic] sic = set(ic) # clean the index_names index_names = header.pop(-1) index_names, names, index_col = _clean_index_names( index_names, self.index_col, self.unnamed_cols ) # extract the columns field_count = len(header[0]) def extract(r): return tuple(r[i] for i in range(field_count) if i not in sic) columns = list(zip(*(extract(r) for r in header))) names = ic + columns # If we find unnamed columns all in a single # level, then our header was too long. for n in range(len(columns[0])): if all(ensure_str(col[n]) in self.unnamed_cols for col in columns): header = ",".join(str(x) for x in self.header) raise ParserError( f"Passed header=[{header}] are too many rows " "for this multi_index of columns" ) # Clean the column names (if we have an index_col). if len(ic): col_names = [ r[0] if ((r[0] is not None) and r[0] not in self.unnamed_cols) else None for r in header ] else: col_names = [None] * len(header) passed_names = True return names, index_names, col_names, passed_names def _maybe_dedup_names(self, names): # see gh-7160 and gh-9424: this helps to provide # immediate alleviation of the duplicate names # issue and appears to be satisfactory to users, # but ultimately, not needing to butcher the names # would be nice! if self.mangle_dupe_cols: names = list(names) # so we can index # pandas\io\parsers.py:1559: error: Need type annotation for # 'counts' [var-annotated] counts = defaultdict(int) # type: ignore[var-annotated] is_potential_mi = _is_potential_multi_index(names, self.index_col) for i, col in enumerate(names): cur_count = counts[col] while cur_count > 0: counts[col] = cur_count + 1 if is_potential_mi: col = col[:-1] + (f"{col[-1]}.{cur_count}",) else: col = f"{col}.{cur_count}" cur_count = counts[col] names[i] = col counts[col] = cur_count + 1 return names def _maybe_make_multi_index_columns(self, columns, col_names=None): # possibly create a column mi here if _is_potential_multi_index(columns): columns = MultiIndex.from_tuples(columns, names=col_names) return columns def _make_index(self, data, alldata, columns, indexnamerow=False): if not _is_index_col(self.index_col) or not self.index_col: index = None elif not self._has_complex_date_col: index = self._get_simple_index(alldata, columns) index = self._agg_index(index) elif self._has_complex_date_col: if not self._name_processed: (self.index_names, _, self.index_col) = _clean_index_names( list(columns), self.index_col, self.unnamed_cols ) self._name_processed = True index = self._get_complex_date_index(data, columns) index = self._agg_index(index, try_parse_dates=False) # add names for the index if indexnamerow: coffset = len(indexnamerow) - len(columns) # pandas\io\parsers.py:1604: error: Item "None" of "Optional[Any]" # has no attribute "set_names" [union-attr] index = index.set_names(indexnamerow[:coffset]) # type: ignore[union-attr] # maybe create a mi on the columns columns = self._maybe_make_multi_index_columns(columns, self.col_names) return index, columns _implicit_index = False def _get_simple_index(self, data, columns): def ix(col): if not isinstance(col, str): return col raise ValueError(f"Index {col} invalid") to_remove = [] index = [] for idx in self.index_col: i = ix(idx) to_remove.append(i) index.append(data[i]) # remove index items from content and columns, don't pop in # loop for i in sorted(to_remove, reverse=True): data.pop(i) if not self._implicit_index: columns.pop(i) return index def _get_complex_date_index(self, data, col_names): def _get_name(icol): if isinstance(icol, str): return icol if col_names is None: raise ValueError(f"Must supply column order to use {icol!s} as index") for i, c in enumerate(col_names): if i == icol: return c to_remove = [] index = [] for idx in self.index_col: name = _get_name(idx) to_remove.append(name) index.append(data[name]) # remove index items from content and columns, don't pop in # loop for c in sorted(to_remove, reverse=True): data.pop(c) col_names.remove(c) return index def _agg_index(self, index, try_parse_dates=True) -> Index: arrays = [] for i, arr in enumerate(index): if try_parse_dates and self._should_parse_dates(i): arr = self._date_conv(arr) if self.na_filter: col_na_values = self.na_values col_na_fvalues = self.na_fvalues else: col_na_values = set() col_na_fvalues = set() if isinstance(self.na_values, dict): # pandas\io\parsers.py:1678: error: Value of type # "Optional[Any]" is not indexable [index] col_name = self.index_names[i] # type: ignore[index] if col_name is not None: col_na_values, col_na_fvalues = _get_na_values( col_name, self.na_values, self.na_fvalues, self.keep_default_na ) arr, _ = self._infer_types(arr, col_na_values | col_na_fvalues) arrays.append(arr) names = self.index_names index = ensure_index_from_sequences(arrays, names) return index def _convert_to_ndarrays( self, dct, na_values, na_fvalues, verbose=False, converters=None, dtypes=None ): result = {} for c, values in dct.items(): conv_f = None if converters is None else converters.get(c, None) if isinstance(dtypes, dict): cast_type = dtypes.get(c, None) else: # single dtype or None cast_type = dtypes if self.na_filter: col_na_values, col_na_fvalues = _get_na_values( c, na_values, na_fvalues, self.keep_default_na ) else: col_na_values, col_na_fvalues = set(), set() if conv_f is not None: # conv_f applied to data before inference if cast_type is not None: warnings.warn( ( "Both a converter and dtype were specified " f"for column {c} - only the converter will be used" ), ParserWarning, stacklevel=7, ) try: values = lib.map_infer(values, conv_f) except ValueError: mask = algorithms.isin(values, list(na_values)).view(np.uint8) values =
lib.map_infer_mask(values, conv_f, mask)
pandas._libs.lib.map_infer_mask
""" This module handles data and provides convenient and efficient access to it. """ from __future__ import annotations import os import pickle import sys from typing import Dict, List, Optional, Tuple, Union import numpy as np import pandas as pd from bs4 import BeautifulSoup from scipy import sparse import util.tamer as tamer from util import utils from util.constants import * from util.groups import Groups from util.utils import GitUtil, SearchOptions, Settings log = utils.get_logger(__name__) settings = Settings.get_settings() class DataHandler: manuscripts: pd.DataFrame """Manuscripts A dataframe containing all manuscripts with their respective metadata. The dataframe will have the following structure: Per row, there will be metadata to one manuscript. The row indices are integers 0..n. The dataframe contains the following columns: - 'shelfmark' - 'shorttitle' - 'country' - 'settlement' - 'repository' - 'origin' - 'date' - 'Terminus post quem' - 'Terminus ante quem' - 'meandate' - 'yearrange' - 'support' - 'folio' - 'height' - 'width' - 'extent' - 'description' - 'creator' - 'id' - 'full_id' - 'filename' """ person_names: Dict[str, str] """Name lookup dictionary Lookup dictionary mapping person IDs to the full name of the person """ person_names_inverse: Dict[str, List[str]] """Inverted name lookup dictionary Dictionary mapping person names to a list of IDs of persons with said name""" text_matrix: pd.DataFrame """Text-Manuscript-Matrix Sparse matrix with a row per manuscript and a column per text name. True, if the manuscript contains the text. Allows for lookups, which manuscripts a particular text is connected to. """ # TODO: Document the type of ID used for MSs in index/row label person_matrix: pd.DataFrame """Person-Manuscript-Matrix Sparse matrix with a row per manuscript and a column per person ID. True, if the manuscript is connected to the person (i.e. the description has the person tagged). Allows for lookups, which manuscripts a particular person is connected to. """ groups: Groups # CHORE: document def __init__(self) -> None: """DataHandler constructor. Returns a new instance of a DataHandler. Should not be called directly, but rather through the factory method `DataHandler.get_handler()`. """ log.info("Creating new handler") self.person_names, self.person_names_inverse = DataHandler._load_persons() log.info("Loaded Person Info") self.manuscripts = DataHandler._load_ms_info(persons=self.person_names) log.info("Loaded MS Info") self.text_matrix = DataHandler._load_text_matrix(self.manuscripts) log.info("Loaded Text Info") self.person_matrix = DataHandler._load_person_matrix(self.manuscripts) log.info("Loaded Person-MSS-Matrix Info") self.groups = Groups.from_cache() or Groups() log.debug(f"Groups loaded: {self.groups}") self.manuscripts.drop(columns=["content", "soup"], inplace=True) log.info("Successfully created a Datahandler instance.") GitUtil.update_handler_state() # Static Methods # ============== @staticmethod def _from_pickle() -> Optional[DataHandler]: """Load datahandler from pickle, if available. Returns None otherwise.""" if os.path.exists(HANDLER_PATH_PICKLE): try: prev = sys.getrecursionlimit() with open(HANDLER_PATH_PICKLE, mode='rb') as file: sys.setrecursionlimit(prev * 100) obj = pickle.load(file) sys.setrecursionlimit(prev) if isinstance(obj, DataHandler): obj.groups = Groups.from_cache() or Groups() log.debug(f"Groups loaded: {obj.groups}") return obj except Exception: log.exception("Cound not load handler from pickle") return None @staticmethod def _load_ms_info(persons: Dict[str, str]) -> pd.DataFrame: """Load manuscript metadata""" df = tamer.deliver_handler_data() df['soup'] = df['content'].apply(lambda x: BeautifulSoup(x, 'xml', from_encoding='utf-8')) msinfo = df['soup'].apply(lambda x: tamer.get_msinfo(x, persons)) log.info("Loaded MS Info") df = df.join(msinfo) return df @staticmethod def _load_text_matrix(df: pd.DataFrame) -> pd.DataFrame: """Load the text-manuscript-matrix""" mss_ids, text_names, coords = tamer.get_text_mss_matrix_coordinatres(df) r, c = map(list, zip(*coords)) row = np.array(r) col = np.array(c) data = np.array([True]*len(row)) matrix = sparse.coo_matrix((data, (row, col))) df =
pd.DataFrame.sparse.from_spmatrix(matrix, index=mss_ids, columns=text_names)
pandas.DataFrame.sparse.from_spmatrix
""" pandaspyomo: read data from coopr.pyomo models to pandas DataFrames Pyomo is a GAMS-like model description language for mathematical optimization problems. This module provides functions to read data from Pyomo model instances and result objects. Use list_entities to get a list of all entities (sets, params, variables, objectives or constraints) inside a pyomo instance, before get its contents by get_entity (or get_entities). Usage: import pandaspyomo as pdpo pdpo.list_entities(instance, 'var') [('EprOut', ['time', 'process', 'commodity', 'commodity']), ... ('EprIn', ['time', 'process', 'commodity', 'commodity'])] epr = pdpo.get_entities(instance, ['EprOut', 'EprInt']) ... """ import coopr.pyomo as pyomo import pandas as pd def get_entity(instance, name): """ Return a DataFrame for an entity in model instance. Args: instance: a Pyomo ConcreteModel instance name: name of a Set, Param, Var, Constraint or Objective Returns: a single-columned Pandas DataFrame with domain as index """ # retrieve entity, its type and its onset names entity = instance.__getattribute__(name) labels = _get_onset_names(entity) # extract values if isinstance(entity, pyomo.Set): # Pyomo sets don't have values, only elements results = pd.DataFrame([(v, 1) for v in entity.value]) # for unconstrained sets, the column label is identical to their index # hence, make index equal to entity name and append underscore to name # (=the later column title) to preserve identical index names for both # unconstrained supersets if not labels: labels = [name] name = name+'_' elif isinstance(entity, pyomo.Param): if entity.dim() > 1: results = pd.DataFrame([v[0]+(v[1],) for v in entity.iteritems()]) else: results = pd.DataFrame(entity.iteritems()) else: # create DataFrame if entity.dim() > 1: # concatenate index tuples with value if entity has # multidimensional indices v[0] results = pd.DataFrame( [v[0]+(v[1].value,) for v in entity.iteritems()]) else: # otherwise, create tuple from scalar index v[0] results = pd.DataFrame( [(v[0], v[1].value) for v in entity.iteritems()]) # check for duplicate onset names and append one to several "_" to make # them unique, e.g. ['sit', 'sit', 'com'] becomes ['sit', 'sit_', 'com'] for k, label in enumerate(labels): if label in labels[:k]: labels[k] = labels[k] + "_" if not results.empty: # name columns according to labels + entity name results.columns = labels + [name] results.set_index(labels, inplace=True) return results def get_entities(instance, names): """ Return one DataFrame with entities in columns and a common index. Works only on entities that share a common domain (set or set_tuple), which is used as index of the returned DataFrame. Args: instance: a Pyomo ConcreteModel instance names: list of entity names (as returned by list_entities) Returns: a Pandas DataFrame with entities as columns and domains as index """ df = pd.DataFrame() for name in names: other = get_entity(instance, name) if df.empty: df = other else: index_names_before = df.index.names df = df.join(other, how='outer') if index_names_before != df.index.names: df.index.names = index_names_before return df def list_entities(instance, entity_type): """ Return list of sets, params, variables, constraints or objectives Args: instance: a Pyomo ConcreteModel object entity_type: "set", "par", "var", "con" or "obj" Returns: DataFrame of entities Example: >>> data = read_excel('mimo-example.xlsx') >>> model = create_model(data, range(1,25)) >>> list_entities(model, 'obj') #doctest: +NORMALIZE_WHITESPACE Description Domain Name obj minimize(cost = sum of all cost types) [] """ # helper function to discern entities by type def filter_by_type(entity, entity_type): if entity_type == 'set': return isinstance(entity, pyomo.Set) and not entity.virtual elif entity_type == 'par': return isinstance(entity, pyomo.Param) elif entity_type == 'var': return isinstance(entity, pyomo.Var) elif entity_type == 'con': return isinstance(entity, pyomo.Constraint) elif entity_type == 'obj': return isinstance(entity, pyomo.Objective) else: raise ValueError("Unknown entity_type '{}'".format(entity_type)) # iterate through all model components and keep only iter_entities = instance.__dict__.iteritems() entities = sorted( (name, entity.doc, _get_onset_names(entity)) for (name, entity) in iter_entities if filter_by_type(entity, entity_type)) # if something was found, wrap tuples in DataFrame, otherwise return empty if entities: entities = pd.DataFrame(entities, columns=['Name', 'Description', 'Domain']) entities.set_index('Name', inplace=True) else: entities =
pd.DataFrame()
pandas.DataFrame
import re import pandas as pd import numpy as np from datasets.constants import signal_types from datasets.sources.source_base import SourceBase import logging logger = logging.getLogger(__name__) class EverionSource(SourceBase): FILES = { 'signals': r'^CsvData_signals_EV-[A-Z0-9-]{14}\.csv$', 'sensors': r'^CsvData_sensor_data_EV-[A-Z0-9-]{14}\.csv$', 'features': r'^CsvData_features_EV-[A-Z0-9-]{14}\.csv$', # 'aggregates': r'^CsvData_aggregates_EV-[A-Z0-9-]{14}\.csv$', # 'analytics': r'^CsvData_analytics_events_EV-[A-Z0-9-]{14}\.csv$', # 'events': r'^CsvData_everion_events_EV-[A-Z0-9-]{14}\.csv$', } META = { 'inter_pulse_interval': { 'type': signal_types.RR_INTERVAL, 'unit': 'Milliseconds' }, 'heart_rate': { 'unit': 'BPM' }, 'heart_rate_variability': { 'unit': 'Milliseconds' }, 'gsr_electrode': { 'unit': 'Microsiemens' }, 'ctemp': { 'unit': 'Celsius' }, 'temperature_object': { 'unit': 'Celsius' }, 'temperature_barometer': { 'unit': 'Celsius' }, 'temperature_local': { 'unit': 'Celsius' }, 'barometer_pressure': { 'unit': 'Millibar' }, 'respiration_rate': { 'unit': 'BPM' }, 'oxygen_saturation': { 'unit': 'Percent' }, } SIGNAL_TAGS = { 6: ['heart_rate'], 7: ['oxygen_saturation'], #8: ['perfusion_index'], #9: ['motion_activity'], #10: ['activity_classification'], 11: ['heart_rate_variability', 'heart_rate_variability_quality'], 12: ['respiration_rate'], #13: ['energy'], 15: ['ctemp'], 19: ['temperature_local'], 20: ['barometer_pressure'], 21: ['gsr_electrode'], #22: ['health_score'], #23: ['relax_stress_intensity_score'], #24: ['sleep_quality_index_score'], #25: ['training_effect_score'], #26: ['activity_score'], #66: ['richness_score'], #68: ['heart_rate_quality'], #69: ['oxygen_saturation_quality'], #70: ['blood_pulse_wave', 'blood_pulse_wave_quality'], #71: ['number_of_steps'], #72: ['activity_classification_quality'], #73: ['energy_quality'], #74: ['heart_rate_variability_quality'], #75: ['respiration_rate_quality'], #76: ['ctemp_quality'], 118: ['temperature_object'], 119: ['temperature_barometer'], #133: ['perfusion_index_quality'], #134: ['blood_pulse_wave_quality'] } SENSOR_TAGS = { 80: ['led1_data'], 81: ['led2_data'], 82: ['led3_data'], 83: ['led4_data'], 84: ['accx_data'], 85: ['accy_data'], 86: ['accz_data'], #88: ['led2_current'], #89: ['led3_current'], #90: ['led4_current'], #91: ['current_offset'], #92: ['compressed_data'] } FEATURE_TAGS = { 14: ['inter_pulse_interval', 'inter_pulse_interval_deviation'], #17: ['pis'], #18: ['pid'], #77: ['inter_pulse_deviation'], #78: ['pis_quality'], #79: ['pid_quality'] } @classmethod def name(cls): return "Biovotion Everion" @classmethod def fileOptions(cls): return [ { 'label': 'Signals Data', 'pattern': '^CsvData_signals_EV-[A-Z0-9-]{14}\.csv$', 'required': True, 'multiple': False, 'timestamp': False }, { 'label': 'Sensor Data', 'pattern': '^CsvData_sensor_data_EV-[A-Z0-9-]{14}\.csv$', 'required': False, 'multiple': False, 'timestamp': False }, { 'label': 'Features Data', 'pattern': '^CsvData_features_EV-[A-Z0-9-]{14}\.csv$', 'required': False, 'multiple': False, 'timestamp': False }, ] @staticmethod def extend_values(df, dtype='float64'): values_extended = df['values'].str.extract(r'(?P<value>[\d.]+);?(?P<value2>[\d.]+)?') \ .astype({ 'value': dtype, 'value2': dtype }, copy=False) df_extended = pd.concat([df, values_extended], axis=1) df_extended.drop(columns='values', inplace=True) return df_extended @staticmethod def get_dataframe_iterator(path, cols=['count', 'tag', 'time', 'values']): parse_dates = ['time'] if 'time' in cols else None return pd.read_csv( path, usecols=cols, dtype={ 'count': 'uint32', 'streamType': 'int8', 'tag': 'int8', 'values': 'object' }, parse_dates=parse_dates, date_parser=lambda x: pd.to_datetime(x, unit='s', utc=True), chunksize=100000 ) @staticmethod def split_data(df, predicate): df = df.copy() df_split = [] split_at = df[predicate(df)]['count'].unique() for index, count in enumerate(split_at): selected = df['count'] <= count if index > 0: selected = selected & (df['count'] > split_at[index - 1]) df_split.append(df[selected]) # If it was splitted append last segment, else whole dataframe if split_at.size == 0: df_split.append(df) else: df_split.append(df[df['count'] > split_at[-1]]) assert np.sum([len(part) for part in df_split]) == len(df) return [part for part in df_split if not part.empty] @classmethod def create_time_lookup_for_ibi(cls, path, max_deviation=15, threshold=600): df = pd.DataFrame() df_iterator = cls.get_dataframe_iterator(path, ['tag', 'count', 'time', 'values']) # append data from csv in chunks and drop duplicates for chunk in df_iterator: chunk.drop_duplicates(subset=['count', 'tag'], inplace=True) chunk = chunk[chunk['tag'] == 14] chunk = cls.extend_values(chunk) chunk = chunk[chunk['value2'] <= max_deviation] chunk.drop('value2', axis='columns', inplace=True) chunk['value'] = chunk['value'].astype('uint16') df = pd.concat([df, chunk], sort=False) df.drop_duplicates(subset=['count', 'tag'], inplace=True) df.sort_values(['tag', 'count'], inplace=True) df.reset_index(drop=True, inplace=True) # split dataframes in consecutive parts df_split = cls.split_data( df, lambda x: x['time'].shift(-1, fill_value=x['time'].max()) - x['time'] - pd.to_timedelta(x['value'].shift(-1, fill_value=0), 'ms') > pd.to_timedelta(x['value'] + threshold, 'ms') ) # calculate correct time and concatenate split dataframes df = pd.DataFrame() for each in df_split: start_time = each['time'].min() each['seconds'] = pd.Series(each['value'].cumsum(), dtype='uint32') each['seconds'] = each['seconds'].shift(1, fill_value=0) each['seconds'] = pd.to_timedelta(each['seconds'], unit='ms') each['time'] = each['seconds'] + start_time each.drop(['seconds'], axis='columns', inplace=True) df = pd.concat([df, each]) df.reset_index(drop=True, inplace=True) return df[['tag', 'count', 'time']] @classmethod def create_time_lookup(cls, path, tag): if isinstance(tag, int): tag = [tag] elif not isinstance(tag, list): raise TypeError(f'Expected tag to be int or list, but got {type(tag)}') includes_interbeat_interval = 14 in tag if includes_interbeat_interval: tag = [value for value in tag if value != 14] df = pd.DataFrame(columns=['tag', 'count', 'time']) if tag: df_iterator = cls.get_dataframe_iterator(path, ['tag', 'count', 'time']) # append data from csv in chunks and drop duplicates for chunk in df_iterator: chunk.drop_duplicates(subset=['count', 'tag'], inplace=True) subset = chunk['tag'].isin(tag) df = pd.concat([df, chunk[subset]], sort=False) # drop missed duplicates df.drop_duplicates(subset=['count', 'tag'], inplace=True) df.sort_values(['tag', 'count'], inplace=True) df.reset_index(inplace=True, drop=True) # calculate number of samples per second precision timestamp samples_per_ts = df.reset_index().groupby(['tag', 'time']).count() mean_spt = samples_per_ts.groupby('tag').mean()['count'] mean_spt.rename('mean_spt', inplace=True) mean_spt = mean_spt.round(1) high_freq_tags = list(mean_spt[mean_spt > 1].index) # Calculate timestamps for signals with frequency higher than 1 Hz if high_freq_tags: df_split = cls.split_data( df, lambda x: x['time'].shift(-1, fill_value=x['time'].max()) - x['time'] > pd.Timedelta(1, 's') ) df =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ ################################################## Extract Active Entries from ChEMBL SQLite Database ################################################## *Created on Tue Feb 02, 2022 by <NAME>* Extract active molecule entries from the SQLite version of the ChEMBL database. Copy the result file to oracle-server with: $ scp chembl_29_active_entries_with_smiles.tsv pahl@oracle-server:/mnt/data/PipelinePilot-data/public/users/pahl/chembl/ """ import sys import sqlite3 import pandas as pd from rdkit.Chem.Scaffolds import MurckoScaffold if __name__ == "__main__": query = """ select md.chembl_id, act.standard_type as std_type, act.standard_value as act, docs.journal, docs.year, docs.volume, docs.issue, docs.first_page, docs.doi, pfc.l1 as pfc_l1, pfc.l2 as pfc_l2, pfc.l3 as pfc_l3, pfc.l4 as pfc_l4, pfc.l5 as pfc_l5 from activities act, molecule_dictionary md, assays, target_dictionary td, component_class cc, target_components tc, protein_family_classification pfc, docs where act.molregno = md.molregno and assays.doc_id = docs.doc_id and assays.assay_id = act.assay_id and td.tid = assays.tid and tc.tid = assays.tid and tc.component_id = cc.component_id and cc.protein_class_id = pfc.protein_class_id and act.standard_units = 'nM' and act.standard_type in ('IC50', 'EC50', 'Ki', 'Kd') and act.standard_relation in ('=', '<', '<=') and assays.confidence_score = 9 and assays.assay_type = 'B' and td.target_type = 'SINGLE PROTEIN' and (act.data_validity_comment is Null or act.data_validity_comment = 'Manually validated');""" print("Extract active entries from ChEMBL.") assert len(sys.argv) == 2, "Usage: extract_nps_from_sqlite.py <chembl version>" VERSION = sys.argv[1] print(f"Extracting active entries from ChEMBL {VERSION} (SQLite)...") conn = sqlite3.connect(f"./chembl_{VERSION}.db") df = pd.read_sql(query, conn) conn.close() df.to_csv(f"chembl_{VERSION}_active_entries.tsv", sep="\t", index=False) # df = pd.read_csv(f"chembl_{VERSION}_active_entries.tsv", sep="\t", low_memory=False) print(f"{df.shape[0]} active entries extracted.") print("Merging Smiles from medchem data...") df_mc = pd.read_csv(f"./chembl_{VERSION}_medchem.tsv", sep="\t") df =
pd.merge(df, df_mc, how="inner", on="chembl_id")
pandas.merge
import pandas as pd import path_utils from Evolve import Evolve, replot_evo_dict_from_dir import traceback as tb import os, json, shutil import numpy as np import matplotlib.pyplot as plt import itertools from copy import deepcopy import pprint as pp from tabulate import tabulate import seaborn as sns import shutil import psutil, time import ray ''' This is very similar to Benchmark.py, but that one was designed (when I had a previous setup in mind) to run a set of parameters MULTIPLE times each. I.e., it would create an Evolve object and do evo_obj.evolve() several times to create a distribution. Now, there's no "time dependence", so we really just want to be able to look at separate parameter settings, but only running them once each. I'm also getting rid of the whole "solved" aspect for now because it's based on numbers that are hard to explain, making it a bit pointless. run_param_dict() is the most basic function, just doing an evolution for a passed param_dict. Other functions basically involve calling it given various inputs. ''' ################################ Statistics functions @path_utils.timer def run_param_dict(param_dict, N_gen, N_trials, base_dir): ''' Pass a single params dict to run an evolve() of, including the env_name. Also pass an output_dir, or it will use the default output folder. This only runs each setting ONCE. ''' # deepcopy, just to be safer params = deepcopy(param_dict) assert 'env_name' in params.keys(), 'Must supply an env_name!' env_name = params['env_name'] params.pop('env_name') params['base_dir'] = base_dir try: # Run a single parameters setting e = Evolve(env_name, **params) evo_dict = e.evolve(N_gen, N_trials=N_trials, print_gen=True) e.save_all_evo_stats(evo_dict, save_plots=True) return evo_dict except: print(f'\n\nError in evolve with params: {params}. Traceback:\n') print(tb.format_exc()) print('\n\nAttempting to continue...\n\n') return {} @ray.remote def run_param_dict_wrapper(param_dict, N_gen, N_trials, base_dir): # If a run_fname_label is provided, use that to create a more informative dir name. # Otherwise, just use the date. if 'run_fname_label' in param_dict.keys(): run_fname_label = param_dict['run_fname_label'] else: run_fname_label = 'vary_params' # Make plots for this params set if 'run_plot_label' in param_dict.keys(): run_plot_label = param_dict['run_plot_label'] else: run_plot_label = run_fname_label # Run dir for this set of params params_dir = os.path.join(base_dir, '{}_{}'.format(run_fname_label, path_utils.get_date_str())) os.mkdir(params_dir) # Doing this so it just saves directly to this dir, which has a more # informative name than Evolve.__init__() would create. param_dict['run_dir'] = params_dir print('\n\nNow running with params:') pp.pprint(param_dict, width=1) print('\n\n') stats_dict = run_param_dict(param_dict, N_gen, N_trials, base_dir) return stats_dict @path_utils.timer def run_multi_envs(env_list, **kwargs): ''' Iterates over a list of env names you give it, running them and recording info. ''' N_gen = kwargs.get('N_gen', 1000) N_trials = kwargs.get('N_trials', 1000) # Create dir for the results of this stats set. stats_dir = os.path.join(path_utils.get_output_dir(), 'Stats_{}'.format(path_utils.get_date_str())) os.mkdir(stats_dir) # Dict to hold results on timing, etc. stats_dict = {} for env_name in env_list: print(f'\nGetting stats for env {env_name} now...\n') param_dict = deepcopy(kwargs) param_dict['env_name'] = env_name stats_dict[env_name] = run_param_dict(param_dict, N_gen, N_trials, stats_dir) # Save distributions to file with open(os.path.join(stats_dir, 'multi_env_stats.json'), 'w+') as f: json.dump(stats_dict, f, indent=4) def run_classic_control_envs(**kwargs): ''' Loads gym_envs_info.json. This contains info about the envs we want to analyze. It then calls run_multi_envs() for the classic control envs. ''' with open(os.path.join(path_utils.get_src_dir(), 'gym_envs_info.json'), 'r') as f: envs_dict = json.load(f) env_list = [k for k,v in envs_dict.items() if v['env_type']=='classic_control'] print(f'Getting stats for: {env_list}') run_multi_envs(env_list, **kwargs) def run_param_dict_list(params_dict_list, **kwargs): ''' Pass this a list of dicts, where each has the different parameters you want to gather stats for. It then iterates through this list, doing a run for each dict. Note that it modifies the passed params_dict_list to add the results to it. ''' # Create dir for the results of this stats run if one isn't provided. stats_dir = kwargs.get('stats_dir', None) if stats_dir is None: stats_dir = os.path.join(path_utils.get_output_dir(), 'Stats_{}'.format(path_utils.get_date_str())) os.mkdir(stats_dir) # Produce results in parallel for d in params_dict_list: # For non-ray use '''d['result'] = run_param_dict_wrapper( d, kwargs.get('N_gen', 100), kwargs.get('N_trials', 10), stats_dir)''' # For use with ray d['result_ID'] = run_param_dict_wrapper.remote( d, kwargs.get('N_gen', 100), kwargs.get('N_trials', 10), stats_dir) # Retrieve results from ID for d in params_dict_list: d['stats_dict'] = ray.get(d['result_ID']) d.pop('result_ID') #d['stats_dict'] = d['result'] # for non-ray use #d.pop('result') # Return passed list, which should have dicts # modified with the results return params_dict_list @path_utils.timer def run_vary_params(constant_params_dict, vary_params_dict, **kwargs): ''' This is a convenience function to easily vary parameters for analysis. You pass it constant_params_dict, which is a dict with the values that you want to remain constant between runs. Then, pass it vary_params_dict, which should have each parameter that you want to vary as a list of the values it should take. Example: constant_params_dict = { 'env_name' : 'CartPole-v0', 'N_gen' : 1000, 'N_dist' : 100, 'NN' : 'FFNN_multilayer' } vary_params_dict = { 'N_hidden_units' : [2, 4, 8], 'act_fn' : ['tanh', 'relu'] } This will do 3*2 = 6 runs, for each of the combinations of varying parameters. ''' # Create informative dir name vary_params = list(vary_params_dict.keys()) stats_dir = os.path.join( path_utils.get_output_dir(), 'Stats_vary_{}_{}'.format('_'.join(vary_params), path_utils.get_date_str())) print(f'\nSaving statistics run to {stats_dir}') os.mkdir(stats_dir) # Create runs dir all_runs_dir = os.path.join(stats_dir, 'all_runs') print(f'\nSaving all runs to {all_runs_dir}') os.mkdir(all_runs_dir) # Create dict of const and vary params, as separate items all_params = { 'const_params' : constant_params_dict, 'vary_params' : vary_params_dict } other_run_params = ['N_gen', 'N_trials'] for p in other_run_params: if p in kwargs.keys(): all_params[p] = kwargs.get(p, None) # Save params to file with open(os.path.join(stats_dir, 'all_params.json'), 'w+') as f: json.dump(all_params, f, indent=4) # Flatten list, pass to other function flat_param_list = vary_params_cross_products(constant_params_dict, vary_params_dict) flat_param_list = run_param_dict_list(flat_param_list, stats_dir=all_runs_dir, **kwargs) # Parse results for d in flat_param_list: # For now I'll still keep vary_params_stats.csv, but I think it's not # actually necessary. # Get rid of this now d.pop('stats_dict') # Save results to csv for later parsing/plotting df = pd.DataFrame(flat_param_list) print(tabulate(df, headers=df.columns.values, tablefmt='psql')) df_fname = os.path.join(stats_dir, 'vary_params_stats.csv') df.to_csv(df_fname, index=False) ################################# Plotting functions def plot_all_agg_stats(stats_dir): ''' For plotting all the heatmaps/etc for a stats_dir. ''' agg_stats_dir = os.path.join(stats_dir, 'agg_stats') if os.path.exists(agg_stats_dir): shutil.rmtree(agg_stats_dir) print(f'\nSaving all aggregate stats to {agg_stats_dir}') os.mkdir(agg_stats_dir) all_params_fname = os.path.join(stats_dir, 'all_params.json') with open(all_params_fname, 'r') as f: all_params_dict = json.load(f) # Import all scores all_scores_fname = os.path.join(stats_dir, 'all_scores.csv') df =
pd.read_csv(all_scores_fname)
pandas.read_csv
import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeClassifier from brightics.common.report import ReportBuilder, strip_margin, pandasDF2MD, plt2MD, dict2MD from brightics.function.utils import _model_dict from sklearn.tree.export import export_graphviz from brightics.common.groupby import _function_by_group from brightics.common.utils import check_required_parameters def decision_tree_classification_train(table, group_by=None, **params): check_required_parameters(_decision_tree_classification_train, params, ['table']) if group_by is not None: return _function_by_group(_decision_tree_classification_train, table, group_by=group_by, **params) else: return _decision_tree_classification_train(table, **params) def _decision_tree_classification_train(table, feature_cols, label_col, # fig_size=np.array([6.4, 4.8]), criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, presort=False, sample_weight=None, check_input=True, X_idx_sorted=None): classifier = DecisionTreeClassifier(criterion, splitter, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_features, random_state, max_leaf_nodes, min_impurity_decrease, min_impurity_split, class_weight, presort) classifier.fit(table[feature_cols], table[label_col], sample_weight, check_input, X_idx_sorted) try: from sklearn.externals.six import StringIO from sklearn.tree import export_graphviz import pydotplus dot_data = StringIO() export_graphviz(classifier, out_file=dot_data, feature_names=feature_cols, class_names=table[label_col].astype('str').unique(), filled=True, rounded=True, special_characters=True) graph = pydotplus.graph_from_dot_data(dot_data.getvalue()) from brightics.common.report import png2MD fig_tree = png2MD(graph.create_png()) except: fig_tree = "Graphviz is needed to draw a Decision Tree graph. Please download it from http://graphviz.org/download/ and install it to your computer." # json model = _model_dict('decision_tree_classification_model') model['feature_cols'] = feature_cols model['label_col'] = label_col model['classes'] = classifier.classes_ feature_importance = classifier.feature_importances_ model['feature_importance'] = feature_importance model['max_features'] = classifier.max_features_ model['n_classes'] = classifier.n_classes_ model['n_features'] = classifier.n_features_ model['n_outputs'] = classifier.n_outputs_ model['tree'] = classifier.tree_ get_param = classifier.get_params() model['parameters'] = get_param model['classifier'] = classifier # report indices = np.argsort(feature_importance) sorted_feature_cols = np.array(feature_cols)[indices] plt.title('Feature Importances') plt.barh(range(len(indices)), feature_importance[indices], color='b', align='center') for i, v in enumerate(feature_importance[indices]): plt.text(v, i, " {:.2f}".format(v), color='b', va='center', fontweight='bold') plt.yticks(range(len(indices)), sorted_feature_cols) plt.xlabel('Relative Importance') plt.xlim(0, 1.1) plt.tight_layout() fig_feature_importances = plt2MD(plt) plt.clf() params = dict2MD(get_param) feature_importance_df =
pd.DataFrame(data=feature_importance, index=feature_cols)
pandas.DataFrame
def hover(x): index=x.find(".") if index==-1: return x else: return x[:index] def morph(x): index=x.find(".") if index==-1: return "" else: return x[index+1:] def stransform(inputw): if len(inputw)>0 and inputw[0]=="[": return " ʔăḏōnāy" elif len(inputw)>1 and inputw[0]==inputw[1]: return "-"+inputw[0]+"-"+inputw[1:] else: return inputw def septransform(inputw): if inputw=="": return "" if inputw=="־": return "" if inputw==" ": return " " if inputw=="׃ ": return "" else: return """<span style="font-size: 157%;padding:15px;background: blueviolet;">{}</span>""".format(inputw) def beautify(phon): return phon.replace("ḏ","d").replace("ḡ","g").replace("ṯ","t").replace("ḵ","x").replace("ʔ","ʾ").replace("ʕ","ʿ").replace("ₐ","a").replace("î","ī").replace("ê","ē").replace("ô","ō").replace("û","ū").replace("ᵒ","ŏ").replace("ᵉ","ĕ").replace("ᵃ","ă").replace("ᵊ","ᵉ").replace("ʸ","").replace("ˈ",'<sub id="s">́</sub>').replace(" "," ").replace(" -","-") def repl(inputw): text=beautify(inputw) return text import pandas as pd print('Loading verses...\r',end="") df=pd.read_csv("../_data/bible.csv",sep="\t") ixv=pd.read_csv("../_data/indexv.csv",sep="\t",header=None) print('Loading words...\r',end="") dfw=pd.read_csv("../_data/byword.csv",sep="\t").fillna(" ") dfw["trans1"]=dfw["trans1"].apply(beautify) #dfw["wordcat"]=dfwt +dfw["separ"].apply(septransform) #words=dfw.fillna("").groupby("WLCverse")["wordcat"].apply(list).apply("".join).apply(repl) glosstr0=
pd.DataFrame()
pandas.DataFrame
# Copyright 2017 Regents of the University of Colorado. All Rights Reserved. # Released under the MIT license. # This software was developed at the University of Colorado's Laboratory for Atmospheric and Space Physics. # Verify current version before use at: https://github.com/MAVENSDC/Pydivide import calendar import numpy as np from .utilities import kp_regex from .utilities import param_dict from .utilities import remove_inst_tag from .utilities import get_latest_files_from_date_range, read_iuvs_file, get_latest_iuvs_files_from_date_range from .utilities import get_header_info from .utilities import orbit_time import pytplot from _collections import OrderedDict import builtins import os def maven_kp_to_tplot(filename=None, input_time=None, instruments=None, insitu_only=False, specified_files_only=False, ancillary_only=False): ''' Read in a given filename in situ file into a dictionary object Optional keywords maybe used to downselect instruments returned and the time windows. Input: filename: Name of the in situ KP file(s) to read in. input_time: Set a time bounds/filter on the data (this will be necessary when this is called by a wrapper that seeks to ingest all data within a range of dates that may be allowed to span multiple days (files) ). instruments: Optional keyword listing the instruments to include in the returned dictionary/structure. insitu_only: Optional keyword that allows you to specify that you only want to download insitu files. specified_files_only: Optional keyword that allows you to specify you only want filenames given in 'filename' to be read in, not other files close in date/time as well. ancillary_only: Will only load in the spacecraft and APP info Output: A dictionary (data structure) containing up to all of the columns included in a MAVEN in-situ Key parameter data file. ''' import pandas as pd import re from datetime import datetime, timedelta from dateutil.parser import parse filenames = [] iuvs_filenames = [] if instruments is not None: if not isinstance(instruments, builtins.list): instruments = [instruments] if filename is None and input_time is None: print('You must specify either a set of filenames to read in, or a time frame in which ' 'you want to search for downloaded files.') if ancillary_only: instruments=['SPACECRAFT'] if filename is not None: if not isinstance(filename, builtins.list): filename = [filename] dates = [] for file in filename: date = re.findall(r'_(\d{8})', file)[0] dates.append(date) if 'iuvs' in file: iuvs_filenames.append(file) else: filenames.append(file) dates.sort() # To keep the rest of the code consistent, if someone gave a files, or files, to load, but no input_time, # go ahead and create an 'input_time' if input_time is None: if len(dates) == 1: input_time = str(dates[0][:4]) + '-' + str(dates[0][4:6]) + '-' + str(dates[0][6:]) else: beg_date = min(dates) end_date = max(dates) input_time = [str(beg_date[:4]) + '-' + str(beg_date[4:6]) + '-' + str(beg_date[6:]), str(end_date[:4]) + '-' + str(end_date[4:6]) + '-' + str(end_date[6:])] # Check for orbit num rather than time string if isinstance(input_time, builtins.list): if isinstance(input_time[0], int): input_time = orbit_time(input_time[0], input_time[1]) elif isinstance(input_time, int): input_time = orbit_time(input_time) # Turn string input into datetime objects if isinstance(input_time, list): if len(input_time[0]) <= 10: input_time[0] = input_time[0] + ' 00:00:00' if len(input_time[1]) <= 10: input_time[1] = input_time[1] + ' 23:59:59' date1 = parse(input_time[0]) date2 = parse(input_time[1]) else: if len(input_time) <= 10: input_time += ' 00:00:00' date1 = parse(input_time) date2 = date1 + timedelta(days=1) date1_unix = calendar.timegm(date1.timetuple()) date2_unix = calendar.timegm(date2.timetuple()) # Grab insitu and iuvs files for the specified/created date ranges date_range_filenames = get_latest_files_from_date_range(date1, date2) date_range_iuvs_filenames = get_latest_iuvs_files_from_date_range(date1, date2) # Add date range files to respective file lists if desired if not specified_files_only: filenames.extend(date_range_filenames) iuvs_filenames.extend(date_range_iuvs_filenames) if not date_range_filenames and not date_range_iuvs_filenames: if not filenames and not iuvs_filenames: print("No files found for the input date range, and no specific filenames were given. Exiting.") return # Going to look for files between time frames, but as we might have already specified # certain files to load in, we don't want to load them in 2x... so doing a check for that here filenames = list(set(filenames)) iuvs_filenames = list(set(iuvs_filenames)) kp_insitu = [] if filenames: # Get column names names, inst = [], [] crus_name, crus_inst = [], [] c_found = False r_found = False for f in filenames: if kp_regex.match(os.path.basename(f)).group('description') == '_crustal' and not c_found: name, inss = get_header_info(f) # Strip off the first name for now (Time), and use that as the dataframe index. # Seems to make sense for now, but will it always? crus_name.extend(name[1:]) crus_inst.extend(inss[1:]) c_found = True elif kp_regex.match(os.path.basename(f)).group('description') == '' and not r_found: name, ins = get_header_info(f) # Strip off the first name for now (Time), and use that as the dataframe index. # Seems to make sense for now, but will it always? names.extend(name[1:]) inst.extend(ins[1:]) r_found = True all_names = names + crus_name all_inst = inst + crus_inst # Break up dictionary into instrument groups lpw_group, euv_group, swe_group, swi_group, sta_group, sep_group, mag_group, ngi_group, app_group, sc_group, \ crus_group = [], [], [], [], [], [], [], [], [], [], [] for i, j in zip(all_inst, all_names): if re.match('^LPW$', i.strip()): lpw_group.append(j) elif re.match('^LPW-EUV$', i.strip()): euv_group.append(j) elif re.match('^SWEA$', i.strip()): swe_group.append(j) elif re.match('^SWIA$', i.strip()): swi_group.append(j) elif re.match('^STATIC$', i.strip()): sta_group.append(j) elif re.match('^SEP$', i.strip()): sep_group.append(j) elif re.match('^MAG$', i.strip()): mag_group.append(j) elif re.match('^NGIMS$', i.strip()): ngi_group.append(j) elif re.match('^MODELED_MAG$', i.strip()): crus_group.append(j) elif re.match('^SPICE$', i.strip()): # NB Need to split into APP and SPACECRAFT if re.match('(.+)APP(.+)', j): app_group.append(j) else: # Everything not APP is SC in SPICE # But do not include Orbit Num, or IO Flag # Could probably stand to clean this line up a bit if not re.match('(.+)(Orbit Number|Inbound Outbound Flag)', j): sc_group.append(j) else: pass delete_groups = [] if instruments is not None: if 'LPW' not in instruments and 'lpw' not in instruments: delete_groups += lpw_group if 'MAG' not in instruments and 'mag' not in instruments: delete_groups += mag_group if 'EUV' not in instruments and 'euv' not in instruments: delete_groups += euv_group if 'SWI' not in instruments and 'swi' not in instruments: delete_groups += swi_group if 'SWE' not in instruments and 'swe' not in instruments: delete_groups += swe_group if 'NGI' not in instruments and 'ngi' not in instruments: delete_groups += ngi_group if 'SEP' not in instruments and 'sep' not in instruments: delete_groups += sep_group if 'STA' not in instruments and 'sta' not in instruments: delete_groups += sta_group if 'MODELED_MAG' not in instruments and 'modeled_mag' not in instruments: delete_groups += crus_group # Read in all relavent data into a pandas dataframe called "temp" temp_data = [] filenames.sort() for filename in filenames: # Determine number of header lines nheader = 0 with open(filename) as f: for line in f: if line.startswith('#'): nheader += 1 if kp_regex.match(os.path.basename(filename)).group('description') == '_crustal': temp_data.append(pd.read_fwf(filename, skiprows=nheader, index_col=0, widths=[19] + len(crus_name) * [16], names=crus_name)) else: temp_data.append(pd.read_fwf(filename, skiprows=nheader, index_col=0, widths=[19] + len(names) * [16], names=names)) for i in delete_groups: del temp_data[-1][i] temp_unconverted =
pd.concat(temp_data, axis=0, sort=True)
pandas.concat
import os from urllib.request import urlretrieve import pandas as pd Fremont_URL = 'https://data.seattle.gov/api/views/65db-xm6k/rows.csv?accessType=DOWNLOAD' def get_fremont_data(filename="Fremont.csv",url=Fremont_URL ,force_download=False): """ Download and cache the fremont data Parameters ---------- filename: string(optinal) location to save the data url: string(oprinal) web location of the data force_download: bool (optinal) if True, force redownload of the data Returns ------- data: pandas.DataFrame The fremont bridge data """ if force_download or not os.path.exists(filename): urlretrieve(url,filename) data = pd.read_csv("Fremont.csv",index_col = "Date").drop("Fremont Bridge Total",axis=1) try: data.index = pd.to_datetime(data.index, format='%m/%d/%Y %I:%M:%S %p') except: data.index =
pd.to_datetime(data.index)
pandas.to_datetime
import os, sys, json, warnings, logging as log import pandas as pd, tqdm, dpath import annotate, collect from pprint import pprint def make_items(iter_labeled_meta, iter_all_meta, n_unlabeled, read_rows): '''Generate metadata from gold-standard and unlabled''' labeled_items = [(meta, read_rows(meta['url'])) for meta in iter_labeled_meta] annotated_table_urls = set([meta['url'] for meta, _ in labeled_items]) unlabeled_meta = [] for meta in iter_all_meta: if (n_unlabeled is not None) and len(unlabeled_meta) >= n_unlabeled: break if meta['url'] not in annotated_table_urls: unlabeled_meta.append(meta) unlabeled_items = [(meta, read_rows(meta['url'])) for meta in unlabeled_meta] return labeled_items, unlabeled_items def make_labelquery(args): querytype, template, slots, value, templates, namespace, kbdomain, name = args return querytype, name, annotate.make_labelquery(*args) def parallel_query(labelqueries, templates, namespace, kbdomain, max_workers=1): import tqdm, multiprocessing with multiprocessing.Pool(max_workers) as p: stream_args = [(q['label'], q['template'], q['slots'], q['value'], templates, namespace, kbdomain, name) for name, q in labelqueries.items()] t = len(stream_args) # yield from tqdm.tqdm(p.imap_unordered(make_labelquery, stream_args), total=t) yield from p.imap_unordered(make_labelquery, stream_args) def cache_labelquery_results(modeldir, namespace, kbdomain, selected_queries=[], results_fname=None, parallel=False, verbose=False): labelqueries, templates = annotate.load_labelqueries_templates(modeldir) if not results_fname: os.makedirs(os.path.join(modeldir, 'labelqueries', 'cache'), exist_ok=True) results_fname = os.path.join(modeldir, 'labelqueries', 'cache', 'results.json') labelquery_results = load_labelquery_results(modeldir, results_fname=results_fname) l = len(labelqueries) if parallel: if selected_queries: labelqueries = { name: q for name, q in labelqueries.items() if name in selected_queries } lqs = parallel_query(labelqueries, templates, namespace, kbdomain, max_workers=parallel) for qt, name, lq in lqs: labelquery_results.setdefault(qt, {})[name] = lq else: for i, (name, q) in enumerate(labelqueries.items()): if selected_queries and (name not in selected_queries): continue lq = annotate.make_labelquery(q['label'], q['template'], q['slots'], q['value'], templates, namespace, kbdomain=kbdomain, name=name) if verbose: print(len(lq.transformations), 'results') labelquery_results.setdefault(q['label'], {})[name] = lq with open(results_fname, 'w') as fw: results_json = { label: {name: vars(lq) for name, lq in lqs.items()} for label, lqs in labelquery_results.items() } json.dump(results_json, fw, indent=2) with open(results_fname.replace('.json', '.stats.json'), 'w') as fw: results_json = { name: len(lq.transformations) for label, lqs in labelquery_results.items() for name, lq in lqs.items() } json.dump(results_json, fw, indent=2) return labelquery_results def load_labelquery_results(modeldir, results_fname=None): typed_labelqueries = {} if not results_fname: os.makedirs(os.path.join(modeldir, 'labelqueries', 'cache'), exist_ok=True) results_fname = os.path.join(modeldir, 'labelqueries', 'cache', 'results.json') if os.path.exists(results_fname): typed_labelqueries = json.load(open(results_fname)) for lq_type, labelqueries in typed_labelqueries.items(): for name, lq_params in labelqueries.items(): labelqueries[name] = annotate.LabelQuery(**lq_params) return typed_labelqueries def transform_all(labelqueries, unlabeled_items, model, **kwargs): with warnings.catch_warnings(): warnings.simplefilter("ignore", category=RuntimeWarning) id_items = {m['@id']: (m, r) for m, r in unlabeled_items} lX = [] lq_labels = {} l = len(labelqueries) for i, (name, lq) in enumerate(labelqueries.items()): print(f'Transforming using query {name:>4s} [{i+1:3d}/{l:3d}] ...', end='\r', file=sys.stderr) # Get corresponding metadata for query results selected_items = [ id_items[i] for i in lq.transformations if i in id_items ] transformed_items = tuple( zip(*[(lq.transform(m, r, **kwargs), r) for m, r in selected_items])) if transformed_items: recs = tuple( zip(*model.__class__.make_records(*transformed_items))) if recs: qlX, qly = recs qlX = pd.DataFrame.from_records(list(qlX)).set_index('@id') lX.append(qlX) lq_labels[name] = pd.Series(qly, index=qlX.index) print(file=sys.stderr) lX = pd.concat(lX).drop_duplicates().replace([pd.np.nan], 0) L = pd.DataFrame(index=lX.index) # rows: n_labelqueries x cols: labels for lqname, qly in lq_labels.items(): L[lqname] = qly return lX, L def get_query_labelings(labeled_metas, labelqueries): item_query_label = {} for meta in labeled_metas: for qid, lq in labelqueries.items(): for p, v in lq.transformations.get(meta['@id'], {}).items(): if v: item_query_label.setdefault((meta['url'], p), {})[qid] = v L = pd.DataFrame.from_dict(item_query_label, orient='index') return L def get_true_labelings(labeled_metas, eval_path): item_truelabel = {} for meta in labeled_metas: for p, v in dpath.util.search(meta, eval_path, yielded=True): if not meta.get('karma:isBad'): item_truelabel[(meta['url'], p)] = v or None return pd.Series(item_truelabel) def to_numbered(L, y_true): # Replace class labels by integers (nan => -1) label_values = sorted(set(['']) | set(y_true.fillna('').values.flatten())) value_repl = {v: i - 1 for i, v in enumerate(label_values)} value_repl['UNK'] = -1 L = L.fillna(-1).replace(value_repl).astype('int32').values y_true = y_true.fillna(-1).replace(value_repl).astype('int32').values return L, y_true def from_numbered(L, y_true, y_pred): label_values = sorted(set(['']) | set(y_true.fillna('').values.flatten())) repl_value = {i - 1: v for i, v in enumerate(label_values)} y_pred = pd.Series(y_pred, index=L.index) return y_pred.replace(repl_value).replace({'': pd.np.nan}) def labelmodel_predict(L_train, y_true, L_test, return_probs=False, **kwargs): kwargs.setdefault('n_epochs', 500) kwargs.setdefault('log_freq', 100) from snorkel.labeling.model import LabelModel n = len(set(y_true[~y_true.isna()].values)) log.info('y_true values: %s', set(y_true[~y_true.isna()].values)) label_model = LabelModel(cardinality=n, verbose=True) L_train_val = set(L_train.values.flatten()) y_true_val = set(y_true.values.flatten()) log.info('Values in L_train but not y_true: %s', L_train_val - y_true_val) log.info('Values in y_true but not L_train: %s', y_true_val - L_train_val) L_train, Y_dev = to_numbered(L_train, y_true) log.info('L_train values: %s, %s', set(L_train.flatten()), type(L_train)) log.info('Y_dev values: %s, %s', set(Y_dev.flatten()), type(Y_dev)) log.info('kwargs: %s', kwargs) label_model.fit(L_train=L_train, Y_dev=Y_dev[Y_dev != -1], **kwargs) y_pred = label_model.predict(to_numbered(L_test, y_true)[0], return_probs=return_probs) if return_probs: y_pred, y_score = y_pred y_pred = from_numbered(L_test, y_true, y_pred) return (y_pred, y_score) if return_probs else y_pred def save_query_analysis(modeldir, labeled_metas, labelquery_type): os.makedirs(os.path.join(modeldir, 'labelqueries', 'cache'), exist_ok=True) results_fname = os.path.join(modeldir, 'labelqueries', 'cache', 'gold.json') typed_labelqueries = load_labelquery_results(modeldir, results_fname=results_fname) eval_path = annotate.labelquery_types[labelquery_type]['eval_path'] y_true = get_true_labelings(labeled_metas, eval_path) L = get_query_labelings(labeled_metas, typed_labelqueries[labelquery_type]) L = L.reindex(index=y_true.index) unk_value = annotate.labelquery_types[labelquery_type]['UNK'] L['-1'] = unk_value L = L.replace({'UNK': unk_value}) y_true = y_true.replace({None: unk_value}).fillna(unk_value) for modelname in ['-majority', '']: import importlib if importlib.util.find_spec("snorkel") is None: y_pred = L.mode(axis=1)[0] modelname = '' else: if modelname: y_pred = L.mode(axis=1)[0] else: log.info(f'Fitting label model for {labelquery_type}...') y_pred = labelmodel_predict(L, y_true, L) name = f'{labelquery_type}{modelname}' y = pd.DataFrame({'true': y_true, 'pred': y_pred}).fillna(unk_value) y.to_csv( os.path.join(modeldir, 'labelqueries', 'cache', f'{name}-labeling.csv')) target_names = [ x.split('/')[-1] for x in sorted(set(y.true) | set(y.pred)) ] import analyse report = analyse.pd_report(y.true, y.pred, target_names) log.info('Accuracy (%s): %.2f', name, report.loc['accuracy', 'f1-score']) report.index.name = 'label' report.to_csv( os.path.join(modeldir, 'labelqueries', 'cache', f'{name}-report.csv')) confusion = analyse.pd_confusion(y.true, y.pred, target_names, stack=True) confusion.to_csv( os.path.join(modeldir, 'labelqueries', 'cache', f'{name}-confusion.csv')) def sample_match_dist(y, y_match, subsample=1, **kwargs): y, y_match = pd.Series(y),
pd.Series(y_match)
pandas.Series
""" merge predictions and generate submission. """ import os import sys import glob from pathlib import Path import argparse import cv2 import numpy as np import pandas as pd from tqdm import tqdm import torch from torch.utils.data import DataLoader from torch.nn import functional as F from albumentations import Compose, Normalize from albumentations import HorizontalFlip, PadIfNeeded from metric import iou_metric import dataset import models import utils from super_pool import SuperPool def load_train_mask(image_id): mask = cv2.imread(os.path.join('../input/train/masks', '%s.png' % image_id), 0) return (mask / 255.0).astype(np.uint8) def iou_metric_batch(y_true_in, y_pred_in): batch_size = y_true_in.shape[0] metric = [] for batch in range(batch_size): value = iou_metric(y_true_in[batch], y_pred_in[batch]) metric.append(value) return np.mean(metric) # ref.: https://www.kaggle.com/stainsby/fast-tested-rle def rle_encode(img): ''' img: numpy array, 1 - mask, 0 - background Returns run length as string formated ''' pixels = img.flatten() pixels = np.concatenate([[0], pixels, [0]]) runs = np.where(pixels[1:] != pixels[:-1])[0] + 1 runs[1::2] -= runs[::2] return ' '.join(str(x) for x in runs) def generate_submission(out_csv, preds): pool = SuperPool() sample_df =
pd.read_csv('../input/sample_submission.csv')
pandas.read_csv
import random import math import numpy as np import pygeos import pandas as pd # Smallest enclosing circle - Library (Python) # Copyright (c) 2017 Project Nayuki # https://www.nayuki.io/page/smallest-enclosing-circle # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # You should have received a copy of the GNU Lesser General Public License # along with this program (see COPYING.txt and COPYING.LESSER.txt). # If not, see <http://www.gnu.org/licenses/>. # Data conventions: A point is a pair of floats (x, y). A circle is a triple of floats (center x, center y, radius). # Returns the smallest circle that encloses all the given points. Runs in expected O(n) time, randomized. # Input: A sequence of pairs of floats or ints, e.g. [(0,5), (3.1,-2.7)]. # Output: A triple of floats representing a circle. # Note: If 0 points are given, None is returned. If 1 point is given, a circle of radius 0 is returned. # # Initially: No boundary points known def _make_circle(points): # Convert to float and randomize order shuffled = [(float(x), float(y)) for (x, y) in points] random.shuffle(shuffled) # Progressively add points to circle or recompute circle c = None for (i, p) in enumerate(shuffled): if c is None or not _is_in_circle(c, p): c = _make_circle_one_point(shuffled[: i + 1], p) return c # One boundary point known def _make_circle_one_point(points, p): c = (p[0], p[1], 0.0) for (i, q) in enumerate(points): if not _is_in_circle(c, q): if c[2] == 0.0: c = _make_diameter(p, q) else: c = _make_circle_two_points(points[: i + 1], p, q) return c # Two boundary points known def _make_circle_two_points(points, p, q): circ = _make_diameter(p, q) left = None right = None px, py = p qx, qy = q # For each point not in the two-point circle for r in points: if _is_in_circle(circ, r): continue # Form a circumcircle and classify it on left or right side cross = _cross_product(px, py, qx, qy, r[0], r[1]) c = _make_circumcircle(p, q, r) if c is None: continue elif cross > 0.0 and ( left is None or _cross_product(px, py, qx, qy, c[0], c[1]) > _cross_product(px, py, qx, qy, left[0], left[1]) ): left = c elif cross < 0.0 and ( right is None or _cross_product(px, py, qx, qy, c[0], c[1]) < _cross_product(px, py, qx, qy, right[0], right[1]) ): right = c # Select which circle to return if left is None and right is None: return circ if left is None: return right if right is None: return left if left[2] <= right[2]: return left return right def _make_circumcircle(p0, p1, p2): # Mathematical algorithm from Wikipedia: Circumscribed circle ax, ay = p0 bx, by = p1 cx, cy = p2 ox = (min(ax, bx, cx) + max(ax, bx, cx)) / 2.0 oy = (min(ay, by, cy) + max(ay, by, cy)) / 2.0 ax -= ox ay -= oy bx -= ox by -= oy cx -= ox cy -= oy d = (ax * (by - cy) + bx * (cy - ay) + cx * (ay - by)) * 2.0 if d == 0.0: return None x = ( ox + ( (ax * ax + ay * ay) * (by - cy) + (bx * bx + by * by) * (cy - ay) + (cx * cx + cy * cy) * (ay - by) ) / d ) y = ( oy + ( (ax * ax + ay * ay) * (cx - bx) + (bx * bx + by * by) * (ax - cx) + (cx * cx + cy * cy) * (bx - ax) ) / d ) ra = math.hypot(x - p0[0], y - p0[1]) rb = math.hypot(x - p1[0], y - p1[1]) rc = math.hypot(x - p2[0], y - p2[1]) return (x, y, max(ra, rb, rc)) def _make_diameter(p0, p1): cx = (p0[0] + p1[0]) / 2.0 cy = (p0[1] + p1[1]) / 2.0 r0 = math.hypot(cx - p0[0], cy - p0[1]) r1 = math.hypot(cx - p1[0], cy - p1[1]) return (cx, cy, max(r0, r1)) _MULTIPLICATIVE_EPSILON = 1 + 1e-14 def _is_in_circle(c, p): return ( c is not None and math.hypot(p[0] - c[0], p[1] - c[1]) <= c[2] * _MULTIPLICATIVE_EPSILON ) # Returns twice the signed area of the triangle defined by (x0, y0), (x1, y1), (x2, y2). def _cross_product(x0, y0, x1, y1, x2, y2): return (x1 - x0) * (y2 - y0) - (y1 - y0) * (x2 - x0) # end of Nayuiki script to define the smallest enclosing circle # calculate the area of circumcircle def _circle_area(points): if len(points[0]) == 3: points = [x[:2] for x in points] circ = _make_circle(points) return math.pi * circ[2] ** 2 def _circle_radius(points): if len(points[0]) == 3: points = [x[:2] for x in points] circ = _make_circle(points) return circ[2] def _true_angle(a, b, c): # calculate angle between points, return true or false if real corner ba = a - b bc = c - b cosine_angle = np.dot(ba, bc) / (np.linalg.norm(ba) * np.linalg.norm(bc)) angle = np.arccos(cosine_angle) if np.degrees(angle) <= 170: return True if np.degrees(angle) >= 190: return True return False def get_corners(geom): # count corners of geom if geom is None: return None corners = 0 # define empty variables points = list(geom.exterior.coords) # get points of a shape stop = len(points) - 1 # define where to stop for i in np.arange( len(points) ): # for every point, calculate angle and add 1 if True angle if i == 0: continue elif i == stop: a = np.asarray(points[i - 1]) b = np.asarray(points[i]) c = np.asarray(points[1]) if _true_angle(a, b, c) is True: corners = corners + 1 else: continue else: a = np.asarray(points[i - 1]) b = np.asarray(points[i]) c = np.asarray(points[i + 1]) if _true_angle(a, b, c) is True: corners = corners + 1 else: continue return corners def squareness(geom): if geom is None: return None def _angle(a, b, c): ba = a - b bc = c - b cosine_angle = np.dot(ba, bc) / (np.linalg.norm(ba) * np.linalg.norm(bc)) angle = np.degrees(np.arccos(cosine_angle)) return angle angles = [] points = list(geom.exterior.coords) # get points of a shape stop = len(points) - 1 # define where to stop for i in np.arange( len(points) ): # for every point, calculate angle and add 1 if True angle if i == 0: continue elif i == stop: a = np.asarray(points[i - 1]) b = np.asarray(points[i]) c = np.asarray(points[1]) ang = _angle(a, b, c) if ang <= 175: angles.append(ang) elif _angle(a, b, c) >= 185: angles.append(ang) else: continue else: a = np.asarray(points[i - 1]) b = np.asarray(points[i]) c = np.asarray(points[i + 1]) ang = _angle(a, b, c) if _angle(a, b, c) <= 175: angles.append(ang) elif _angle(a, b, c) >= 185: angles.append(ang) else: continue deviations = [abs(90 - i) for i in angles] return np.mean(deviations) def elongation(bbox): a = bbox.area p = bbox.length cond1 = p ** 2 cond2 = 16 * a bigger = cond1 >= cond2 sqrt = np.empty(len(a)) sqrt[bigger] = cond1[bigger] - cond2[bigger] sqrt[~bigger] = 0 elo1 = ((p - np.sqrt(sqrt)) / 4) / ((p / 2) - ((p - np.sqrt(sqrt)) / 4)) elo2 = ((p + np.sqrt(sqrt)) / 4) / ((p / 2) - ((p + np.sqrt(sqrt)) / 4)) # use the smaller one (e.g. shorter/longer) res = np.empty(len(a)) res[elo1 <= elo2] = elo1[elo1 <= elo2] res[~(elo1 <= elo2)] = elo2[~(elo1 <= elo2)] return res def centroid_corner(geom): '''all these characters working with corners could be merged and cleaned ''' from shapely.geometry import Point if geom is None: return (None, None) distances = [] # set empty list of distances centroid = geom.centroid # define centroid points = list(geom.exterior.coords) # get points of a shape stop = len(points) - 1 # define where to stop for i in np.arange( len(points) ): # for every point, calculate angle and add 1 if True angle if i == 0: continue elif i == stop: a = np.asarray(points[i - 1]) b = np.asarray(points[i]) c = np.asarray(points[1]) p = Point(points[i]) if _true_angle(a, b, c) is True: distance = centroid.distance( p ) # calculate distance point - centroid distances.append(distance) # add distance to the list else: continue else: a = np.asarray(points[i - 1]) b = np.asarray(points[i]) c = np.asarray(points[i + 1]) p = Point(points[i]) if _true_angle(a, b, c) is True: distance = centroid.distance(p) distances.append(distance) else: continue if not distances: # circular buildings from momepy.dimension import _longest_axis if geom.has_z: coords = [ (coo[0], coo[1]) for coo in geom.convex_hull.exterior.coords ] else: coords = geom.convex_hull.exterior.coords return (_longest_axis(coords) / 2, 0) return (np.mean(distances), np.std(distances)) def _azimuth(point1, point2): """azimuth between 2 shapely points (interval 0 - 180)""" angle = np.arctan2(point2[0] - point1[0], point2[1] - point1[1]) return np.degrees(angle) if angle > 0 else np.degrees(angle) + 180 def _dist(a, b): return math.hypot(b[0] - a[0], b[1] - a[1]) def solar_orientation_poly(bbox): if bbox is None: return None bbox = list(bbox.exterior.coords) axis1 = _dist(bbox[0], bbox[3]) axis2 = _dist(bbox[0], bbox[1]) if axis1 <= axis2: az = _azimuth(bbox[0], bbox[1]) else: az = _azimuth(bbox[0], bbox[3]) if 90 > az >= 45: diff = az - 45 az = az - 2 * diff elif 135 > az >= 90: diff = az - 90 az = az - 2 * diff diff = az - 45 az = az - 2 * diff elif 181 > az >= 135: diff = az - 135 az = az - 2 * diff diff = az - 90 az = az - 2 * diff diff = az - 45 az = az - 2 * diff return az def street_profile(streets, buildings, distance=3, tick_length=50): pygeos_lines = streets.geometry.values.data list_points = np.empty((0, 2)) ids = [] lengths = pygeos.length(pygeos_lines) for ix, (line, length) in enumerate(zip(pygeos_lines, lengths)): pts = pygeos.line_interpolate_point( line, np.linspace(0, length, num=int((length) // distance)) ) # .1 offset to keep a gap between two segments list_points = np.append(list_points, pygeos.get_coordinates(pts), axis=0) ids += [ix] * len(pts) * 2 ticks = [] for num, pt in enumerate(list_points, 1): # start chainage 0 if num == 1: angle = _getAngle(pt, list_points[num]) line_end_1 = _getPoint1(pt, angle, tick_length / 2) angle = _getAngle(line_end_1, pt) line_end_2 = _getPoint2(line_end_1, angle, tick_length) ticks.append([line_end_1, pt]) ticks.append([line_end_2, pt]) # everything in between if num < len(list_points) - 1: angle = _getAngle(pt, list_points[num]) line_end_1 = _getPoint1( list_points[num], angle, tick_length / 2 ) angle = _getAngle(line_end_1, list_points[num]) line_end_2 = _getPoint2(line_end_1, angle, tick_length) ticks.append([line_end_1, list_points[num]]) ticks.append([line_end_2, list_points[num]]) # end chainage if num == len(list_points): angle = _getAngle(list_points[num - 2], pt) line_end_1 = _getPoint1(pt, angle, tick_length / 2) angle = _getAngle(line_end_1, pt) line_end_2 = _getPoint2(line_end_1, angle, tick_length) ticks.append([line_end_1, pt]) ticks.append([line_end_2, pt]) ticks = pygeos.linestrings(ticks) inp, res = pygeos.STRtree(ticks).query_bulk(buildings.geometry.values.data, predicate='intersects') intersections = pygeos.intersection(ticks[res], buildings.geometry.values.data[inp]) distances = pygeos.distance(intersections, pygeos.points(list_points[res // 2])) dists = np.zeros((len(ticks),)) dists[:] = np.nan dists[res] = distances ids = np.array(ids) widths = [] openness = [] deviations = [] for i in range(len(streets)): f = ids == i s = dists[f] lefts = s[::2] rights = s[1::2] left_mean = np.nanmean(lefts) if ~np.isnan(lefts).all() else tick_length / 2 right_mean = np.nanmean(rights) if ~np.isnan(rights).all() else tick_length / 2 widths.append(np.mean([left_mean, right_mean]) * 2) openness.append(np.isnan(s).sum() / (f).sum()) deviations.append(np.nanstd(s)) return (widths, deviations, openness) # http://wikicode.wikidot.com/get-angle-of-line-between-two-points # https://glenbambrick.com/tag/perpendicular/ # angle between two points def _getAngle(pt1, pt2): """ pt1, pt2 : tuple """ x_diff = pt2[0] - pt1[0] y_diff = pt2[1] - pt1[1] return math.degrees(math.atan2(y_diff, x_diff)) # start and end points of chainage tick # get the first end point of a tick def _getPoint1(pt, bearing, dist): """ pt : tuple """ angle = bearing + 90 bearing = math.radians(angle) x = pt[0] + dist * math.cos(bearing) y = pt[1] + dist * math.sin(bearing) return (x, y) # get the second end point of a tick def _getPoint2(pt, bearing, dist): """ pt : tuple """ bearing = math.radians(bearing) x = pt[0] + dist * math.cos(bearing) y = pt[1] + dist * math.sin(bearing) return (x, y) def get_edge_ratios(df, edges): """ df: cells/buildngs edges: network """ # intersection-based join buff = edges.buffer(0.01) # to avoid floating point error inp, res = buff.sindex.query_bulk(df.geometry, predicate='intersects') intersections = df.iloc[inp].reset_index(drop=True).intersection(buff.iloc[res].reset_index(drop=True)) mask = intersections.area > 0.0001 intersections = intersections[mask] inp = inp[mask] lengths = intersections.area grouped = lengths.groupby(inp) totals = grouped.sum() ints_vect = [] for name, group in grouped: ratios = group / totals.loc[name] ints_vect.append({res[item[0]]: item[1] for item in ratios.iteritems()}) edge_dicts = pd.Series(ints_vect, index=totals.index) # nearest neighbor join nans = df.index[~df.index.isin(edge_dicts.index)] buffered = df.loc[nans].buffer(500) additional = [] for i in range(len(buffered)): geom = buffered.geometry.iloc[i] query = edges.sindex.query(geom) b = 500 while query.size == 0: query = edges.sindex.query(geom.buffer(b)) b += 500 additional.append({edges.iloc[query].distance(geom).idxmin(): 1}) additional = pd.Series(additional, index=nans) return pd.concat([edge_dicts, additional]).sort_index() def get_nodes(df, nodes, edges, node_id, edge_id, startID, endID): nodes = nodes.set_index('nodeID') node_ids = [] for edge_dict, geom in zip(df[edge_id], df.geometry): edge = edges.iloc[max(edge_dict, key=edge_dict.get)] startID = edge.node_start start = nodes.loc[startID].geometry sd = geom.distance(start) endID = edge.node_end end = nodes.loc[endID].geometry ed = geom.distance(end) if sd > ed: node_ids.append(endID) else: node_ids.append(startID) return
pd.Series(node_ids, index=df.index)
pandas.Series
# This file is part of GridCal. # # GridCal is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # GridCal is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GridCal. If not, see <http://www.gnu.org/licenses/>. # AUTHORS: <NAME> and <NAME> # CONTACT: <EMAIL>, <EMAIL> # thanks to <NAME> for his help at coding # --------------------------- LIBRARIES import numpy as np import pandas as pd import numba as nb import time from warnings import warn from scipy.sparse import coo_matrix, csc_matrix from scipy.sparse import hstack as hs, vstack as vs from scipy.sparse.linalg import factorized, spsolve from matplotlib import pyplot as plt np.set_printoptions(linewidth=2000, edgeitems=1000) pd.set_option('display.max_rows', 500)
pd.set_option('display.max_columns', 500)
pandas.set_option
from sklearn.metrics import confusion_matrix, classification_report from matplotlib.colors import LinearSegmentedColormap import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib.pyplot import figure import os import warnings warnings.filterwarnings("ignore") def heatconmat(y_true, y_pred, homepath, mode="binary"): cmap_reds = plt.get_cmap("Reds") num_colors = 50 colors = ["white", "grey"] + [cmap_reds(i / num_colors) for i in range(2, num_colors)] cmap2 = LinearSegmentedColormap.from_list('', colors, num_colors) sns.set_context('talk') df =
pd.Series(y_true)
pandas.Series
#!/usr/bin/env python3 import argparse import collections import copy import datetime import functools import glob import json import logging import math import operator import os import os.path import re import sys import typing import warnings import matplotlib import matplotlib.cm import matplotlib.dates import matplotlib.pyplot import matplotlib.ticker import networkx import numpy import pandas import tabulate import tqdm import rows.console import rows.load import rows.location_finder import rows.model.area import rows.model.carer import rows.model.datetime import rows.model.historical_visit import rows.model.history import rows.model.json import rows.model.location import rows.model.metadata import rows.model.past_visit import rows.model.problem import rows.model.rest import rows.model.schedule import rows.model.service_user import rows.model.visit import rows.parser import rows.plot import rows.routing_server import rows.settings import rows.sql_data_source def handle_exception(exc_type, exc_value, exc_traceback): """Logs uncaught exceptions""" if issubclass(exc_type, KeyboardInterrupt): sys.__excepthook__(exc_type, exc_value, exc_traceback) else: logging.error("Uncaught exception", exc_info=(exc_type, exc_value, exc_traceback)) __COMMAND = 'command' __PULL_COMMAND = 'pull' __INFO_COMMAND = 'info' __SHOW_WORKING_HOURS_COMMAND = 'show-working-hours' __COMPARE_BOX_PLOTS_COMMAND = 'compare-box-plots' __COMPARE_DISTANCE_COMMAND = 'compare-distance' __COMPARE_WORKLOAD_COMMAND = 'compare-workload' __COMPARE_QUALITY_COMMAND = 'compare-quality' __COMPARE_COST_COMMAND = 'compare-cost' __CONTRAST_WORKLOAD_COMMAND = 'contrast-workload' __COMPARE_PREDICTION_ERROR_COMMAND = 'compare-prediction-error' __COMPARE_BENCHMARK_COMMAND = 'compare-benchmark' __COMPARE_BENCHMARK_TABLE_COMMAND = 'compare-benchmark-table' __COMPARE_LITERATURE_TABLE_COMMAND = 'compare-literature-table' __COMPARE_THIRD_STAGE_PLOT_COMMAND = 'compare-third-stage-plot' __COMPARE_THIRD_STAGE_TABLE_COMMAND = 'compare-third-stage-table' __COMPARE_THIRD_STAGE_SUMMARY_COMMAND = 'compare-third-stage-summary' __COMPARE_QUALITY_OPTIMIZER_COMMAND = 'compare-quality-optimizer' __COMPUTE_RISKINESS_COMMAND = 'compute-riskiness' __COMPARE_DELAY_COMMAND = 'compare-delay' __TYPE_ARG = 'type' __ACTIVITY_TYPE = 'activity' __VISITS_TYPE = 'visits' __COMPARE_TRACE_COMMAND = 'compare-trace' __CONTRAST_TRACE_COMMAND = 'contrast-trace' __COST_FUNCTION_TYPE = 'cost_function' __DEBUG_COMMAND = 'debug' __AREA_ARG = 'area' __FROM_ARG = 'from' __TO_ARG = 'to' __FILE_ARG = 'file' __DATE_ARG = 'date' __BASE_FILE_ARG = 'base-file' __CANDIDATE_FILE_ARG = 'candidate-file' __SOLUTION_FILE_ARG = 'solution' __PROBLEM_FILE_ARG = 'problem' __OUTPUT_PREFIX_ARG = 'output_prefix' __OPTIONAL_ARG_PREFIX = '--' __BASE_SCHEDULE_PATTERN = 'base_schedule_pattern' __CANDIDATE_SCHEDULE_PATTERN = 'candidate_schedule_pattern' __SCHEDULE_PATTERNS = 'schedule_patterns' __LABELS = 'labels' __OUTPUT = 'output' __ARROWS = 'arrows' __FILE_FORMAT_ARG = 'output_format' __color_map = matplotlib.pyplot.get_cmap('tab20c') FOREGROUND_COLOR = __color_map.colors[0] FOREGROUND_COLOR2 = 'black' def get_or_raise(obj, prop): value = getattr(obj, prop) if not value: raise ValueError('{0} not set'.format(prop)) return value def get_date_time(value): date_time = datetime.datetime.strptime(value, '%Y-%m-%d') return date_time def get_date(value): value_to_use = get_date_time(value) return value_to_use.date() def configure_parser(): parser = argparse.ArgumentParser(prog=sys.argv[0], description='Robust Optimization ' 'for Workforce Scheduling command line utility') subparsers = parser.add_subparsers(dest=__COMMAND) pull_parser = subparsers.add_parser(__PULL_COMMAND) pull_parser.add_argument(__AREA_ARG) pull_parser.add_argument(__OPTIONAL_ARG_PREFIX + __FROM_ARG) pull_parser.add_argument(__OPTIONAL_ARG_PREFIX + __TO_ARG) pull_parser.add_argument(__OPTIONAL_ARG_PREFIX + __OUTPUT_PREFIX_ARG) info_parser = subparsers.add_parser(__INFO_COMMAND) info_parser.add_argument(__FILE_ARG) compare_distance_parser = subparsers.add_parser(__COMPARE_DISTANCE_COMMAND) compare_distance_parser.add_argument(__OPTIONAL_ARG_PREFIX + __PROBLEM_FILE_ARG, required=True) compare_distance_parser.add_argument(__OPTIONAL_ARG_PREFIX + __SCHEDULE_PATTERNS, nargs='+', required=True) compare_distance_parser.add_argument(__OPTIONAL_ARG_PREFIX + __LABELS, nargs='+', required=True) compare_distance_parser.add_argument(__OPTIONAL_ARG_PREFIX + __OUTPUT) compare_distance_parser.add_argument(__OPTIONAL_ARG_PREFIX + __FILE_FORMAT_ARG, default=rows.plot.FILE_FORMAT) compare_workload_parser = subparsers.add_parser(__COMPARE_WORKLOAD_COMMAND) compare_workload_parser.add_argument(__PROBLEM_FILE_ARG) compare_workload_parser.add_argument(__BASE_SCHEDULE_PATTERN) compare_workload_parser.add_argument(__CANDIDATE_SCHEDULE_PATTERN) compare_workload_parser.add_argument(__OPTIONAL_ARG_PREFIX + __FILE_FORMAT_ARG, default=rows.plot.FILE_FORMAT) debug_parser = subparsers.add_parser(__DEBUG_COMMAND) # debug_parser.add_argument(__PROBLEM_FILE_ARG) # debug_parser.add_argument(__SOLUTION_FILE_ARG) compare_trace_parser = subparsers.add_parser(__COMPARE_TRACE_COMMAND) compare_trace_parser.add_argument(__PROBLEM_FILE_ARG) compare_trace_parser.add_argument(__FILE_ARG) compare_trace_parser.add_argument(__OPTIONAL_ARG_PREFIX + __COST_FUNCTION_TYPE, required=True) compare_trace_parser.add_argument(__OPTIONAL_ARG_PREFIX + __DATE_ARG, type=get_date) compare_trace_parser.add_argument(__OPTIONAL_ARG_PREFIX + __OUTPUT) compare_trace_parser.add_argument(__OPTIONAL_ARG_PREFIX + __ARROWS, type=bool, default=False) contrast_workload_parser = subparsers.add_parser(__CONTRAST_WORKLOAD_COMMAND) contrast_workload_parser.add_argument(__PROBLEM_FILE_ARG) contrast_workload_parser.add_argument(__BASE_FILE_ARG) contrast_workload_parser.add_argument(__CANDIDATE_FILE_ARG) contrast_workload_parser.add_argument(__OPTIONAL_ARG_PREFIX + __TYPE_ARG) compare_prediction_error_parser = subparsers.add_parser(__COMPARE_PREDICTION_ERROR_COMMAND) compare_prediction_error_parser.add_argument(__BASE_FILE_ARG) compare_prediction_error_parser.add_argument(__CANDIDATE_FILE_ARG) contrast_trace_parser = subparsers.add_parser(__CONTRAST_TRACE_COMMAND) contrast_trace_parser.add_argument(__PROBLEM_FILE_ARG) contrast_trace_parser.add_argument(__BASE_FILE_ARG) contrast_trace_parser.add_argument(__CANDIDATE_FILE_ARG) contrast_trace_parser.add_argument(__OPTIONAL_ARG_PREFIX + __DATE_ARG, type=get_date, required=True) contrast_trace_parser.add_argument(__OPTIONAL_ARG_PREFIX + __COST_FUNCTION_TYPE, required=True) contrast_trace_parser.add_argument(__OPTIONAL_ARG_PREFIX + __OUTPUT) show_working_hours_parser = subparsers.add_parser(__SHOW_WORKING_HOURS_COMMAND) show_working_hours_parser.add_argument(__FILE_ARG) show_working_hours_parser.add_argument(__OPTIONAL_ARG_PREFIX + __OUTPUT) compare_quality_parser = subparsers.add_parser(__COMPARE_QUALITY_COMMAND) compare_quality_optimizer_parser = subparsers.add_parser(__COMPARE_QUALITY_OPTIMIZER_COMMAND) compare_quality_optimizer_parser.add_argument(__FILE_ARG) subparsers.add_parser(__COMPARE_COST_COMMAND) compare_benchmark_parser = subparsers.add_parser(__COMPARE_BENCHMARK_COMMAND) compare_benchmark_parser.add_argument(__FILE_ARG) subparsers.add_parser(__COMPARE_LITERATURE_TABLE_COMMAND) subparsers.add_parser(__COMPARE_BENCHMARK_TABLE_COMMAND) subparsers.add_parser(__COMPUTE_RISKINESS_COMMAND) subparsers.add_parser(__COMPARE_DELAY_COMMAND) subparsers.add_parser(__COMPARE_THIRD_STAGE_TABLE_COMMAND) subparsers.add_parser(__COMPARE_THIRD_STAGE_PLOT_COMMAND) compare_box_parser = subparsers.add_parser(__COMPARE_BOX_PLOTS_COMMAND) compare_box_parser.add_argument(__PROBLEM_FILE_ARG) compare_box_parser.add_argument(__BASE_FILE_ARG) compare_box_parser.add_argument(__OPTIONAL_ARG_PREFIX + __OUTPUT) third_stage_summary_parser = subparsers.add_parser(__COMPARE_THIRD_STAGE_SUMMARY_COMMAND) third_stage_summary_parser.add_argument(__OPTIONAL_ARG_PREFIX + __OUTPUT) return parser def split_delta(delta: datetime.timedelta) -> typing.Tuple[int, int, int, int]: days = int(delta.days) hours = int((delta.total_seconds() - 24 * 3600 * days) // 3600) minutes = int((delta.total_seconds() - 24 * 3600 * days - 3600 * hours) // 60) seconds = int(delta.total_seconds() - 24 * 3600 * days - 3600 * hours - 60 * minutes) assert hours < 24 assert minutes < 60 assert seconds < 60 return days, hours, minutes, seconds def get_time_delta_label(total_travel_time: datetime.timedelta) -> str: days, hours, minutes, seconds = split_delta(total_travel_time) time = '{0:02d}:{1:02d}:{2:02d}'.format(hours, minutes, seconds) if days == 0: return time elif days == 1: return '1 day ' + time else: return '{0} days '.format(days) + time def pull(args, settings): area_code = get_or_raise(args, __AREA_ARG) from_raw_date = get_or_raise(args, __FROM_ARG) to_raw_date = get_or_raise(args, __TO_ARG) output_prefix = get_or_raise(args, __OUTPUT_PREFIX_ARG) console = rows.console.Console() user_tag_finder = rows.location_finder.UserLocationFinder(settings) location_cache = rows.location_finder.FileSystemCache(settings) location_finder = rows.location_finder.MultiModeLocationFinder(location_cache, user_tag_finder, timeout=5.0) data_source = rows.sql_data_source.SqlDataSource(settings, console, location_finder) from_date_time = get_date_time(from_raw_date) to_date_time = get_date_time(to_raw_date) current_date_time = from_date_time while current_date_time <= to_date_time: schedule = data_source.get_past_schedule(rows.model.area.Area(code=area_code), current_date_time.date()) for visit in schedule.visits: visit.visit.address = None output_file = '{0}_{1}.json'.format(output_prefix, current_date_time.date().strftime('%Y%m%d')) with open(output_file, 'w') as output_stream: json.dump(schedule, output_stream, cls=rows.model.json.JSONEncoder) current_date_time += datetime.timedelta(days=1) def get_travel_time(schedule, user_tag_finder): routes = schedule.routes() total_travel_time = datetime.timedelta() with rows.plot.create_routing_session() as session: for route in routes: visit_it = iter(route.visits) current_visit = next(visit_it, None) current_location = user_tag_finder.find(int(current_visit.visit.service_user)) while current_visit: prev_location = current_location current_visit = next(visit_it, None) if not current_visit: break current_location = user_tag_finder.find(int(current_visit.visit.service_user)) travel_time_sec = session.distance(prev_location, current_location) if travel_time_sec: total_travel_time += datetime.timedelta(seconds=travel_time_sec) return total_travel_time def info(args, settings): user_tag_finder = rows.location_finder.UserLocationFinder(settings) user_tag_finder.reload() schedule_file = get_or_raise(args, __FILE_ARG) schedule_file_to_use = os.path.realpath(os.path.expandvars(schedule_file)) schedule = rows.load.load_schedule(schedule_file_to_use) carers = {visit.carer for visit in schedule.visits} print(get_travel_time(schedule, user_tag_finder), len(carers), len(schedule.visits)) def compare_distance(args, settings): schedule_patterns = getattr(args, __SCHEDULE_PATTERNS) labels = getattr(args, __LABELS) output_file = getattr(args, __OUTPUT, 'distance') output_file_format = getattr(args, __FILE_FORMAT_ARG) data_frame_file = 'data_frame_cache.bin' if os.path.isfile(data_frame_file): data_frame = pandas.read_pickle(data_frame_file) else: problem = rows.load.load_problem(get_or_raise(args, __PROBLEM_FILE_ARG)) store = [] with rows.plot.create_routing_session() as routing_session: distance_estimator = rows.plot.DistanceEstimator(settings, routing_session) for label, schedule_pattern in zip(labels, schedule_patterns): for schedule_path in glob.glob(schedule_pattern): schedule = rows.load.load_schedule(schedule_path) duration_estimator = rows.plot.DurationEstimator.create_expected_visit_duration(schedule) frame = rows.plot.get_schedule_data_frame(schedule, problem, duration_estimator, distance_estimator) visits = frame['Visits'].sum() carers = len(frame.where(frame['Visits'] > 0)) idle_time = frame['Availability'] - frame['Travel'] - frame['Service'] idle_time[idle_time < pandas.Timedelta(0)] = pandas.Timedelta(0) overtime = frame['Travel'] + frame['Service'] - frame['Availability'] overtime[overtime < pandas.Timedelta(0)] = pandas.Timedelta(0) store.append({'Label': label, 'Date': schedule.metadata.begin, 'Availability': frame['Availability'].sum(), 'Travel': frame['Travel'].sum(), 'Service': frame['Service'].sum(), 'Idle': idle_time.sum(), 'Overtime': overtime.sum(), 'Carers': carers, 'Visits': visits}) data_frame = pandas.DataFrame(store) data_frame.sort_values(by=['Date'], inplace=True) data_frame.to_pickle(data_frame_file) condensed_frame = pandas.pivot(data_frame, columns='Label', values='Travel', index='Date') condensed_frame['Improvement'] = condensed_frame['2nd Stage'] - condensed_frame['3rd Stage'] condensed_frame['RelativeImprovement'] = condensed_frame['Improvement'] / condensed_frame['2nd Stage'] color_map = matplotlib.cm.get_cmap('Set1') matplotlib.pyplot.set_cmap(color_map) figure, ax = matplotlib.pyplot.subplots(1, 1, sharex=True) try: width = 0.20 dates = data_frame['Date'].unique() time_delta_convert = rows.plot.TimeDeltaConverter() indices = numpy.arange(1, len(dates) + 1, 1) handles = [] position = 0 for color_number, label in enumerate(labels): data_frame_to_use = data_frame[data_frame['Label'] == label] handle = ax.bar(indices + position * width, time_delta_convert(data_frame_to_use['Travel']), width, color=color_map.colors[color_number], bottom=time_delta_convert.zero) handles.append(handle) position += 1 ax.yaxis_date() yaxis_converter = rows.plot.CumulativeHourMinuteConverter() ax.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(yaxis_converter)) ax.set_ylabel('Total Travel Time [hh:mm:ss]') ax.set_yticks([time_delta_convert.zero + datetime.timedelta(seconds=seconds) for seconds in range(0, 30 * 3600, 4 * 3600 + 1)]) ax.set_xlabel('Day of October 2017') translate_labels = { '3rd Stage': '3rd Stage', 'Human Planners': 'Human Planners' } labels_to_use = [translate_labels[label] if label in translate_labels else label for label in labels] rows.plot.add_legend(ax, handles, labels_to_use, ncol=3, loc='lower center', bbox_to_anchor=(0.5, -0.25)) # , bbox_to_anchor=(0.5, -1.1) figure.tight_layout() figure.subplots_adjust(bottom=0.20) rows.plot.save_figure(output_file, output_file_format) finally: matplotlib.pyplot.cla() matplotlib.pyplot.close(figure) # figure, (ax1, ax2, ax3) = matplotlib.pyplot.subplots(3, 1, sharex=True) # try: # width = 0.20 # dates = data_frame['Date'].unique() # time_delta_convert = rows.plot.TimeDeltaConverter() # indices = numpy.arange(1, len(dates) + 1, 1) # # handles = [] # position = 0 # for label in labels: # data_frame_to_use = data_frame[data_frame['Label'] == label] # # handle = ax1.bar(indices + position * width, # time_delta_convert(data_frame_to_use['Travel']), # width, # bottom=time_delta_convert.zero) # # ax2.bar(indices + position * width, # time_delta_convert(data_frame_to_use['Idle']), # width, # bottom=time_delta_convert.zero) # # ax3.bar(indices + position * width, # time_delta_convert(data_frame_to_use['Overtime']), # width, # bottom=time_delta_convert.zero) # # handles.append(handle) # position += 1 # # ax1.yaxis_date() # ax1.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(rows.plot.CumulativeHourMinuteConverter())) # ax1.set_ylabel('Travel Time') # # ax2.yaxis_date() # ax2.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(rows.plot.CumulativeHourMinuteConverter())) # ax2.set_ylabel('Idle Time') # # ax3.yaxis_date() # ax3.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(rows.plot.CumulativeHourMinuteConverter())) # ax3.set_ylabel('Total Overtime') # ax3.set_xlabel('Day of October 2017') # # translate_labels = { # '3rd Stage': 'Optimizer', # 'Human Planners': 'Human Planners' # } # labels_to_use = [translate_labels[label] if label in translate_labels else label for label in labels] # # rows.plot.add_legend(ax3, handles, labels_to_use, ncol=3, loc='lower center', bbox_to_anchor=(0.5, -1.1)) # figure.tight_layout() # figure.subplots_adjust(bottom=0.20) # # rows.plot.save_figure(output_file, output_file_format) # finally: # matplotlib.pyplot.cla() # matplotlib.pyplot.close(figure) def calculate_forecast_visit_duration(problem): forecast_visit_duration = rows.plot.VisitDict() for recurring_visits in problem.visits: for local_visit in recurring_visits.visits: forecast_visit_duration[local_visit] = local_visit.duration return forecast_visit_duration def compare_workload(args, settings): problem = rows.load.load_problem(get_or_raise(args, __PROBLEM_FILE_ARG)) diary_by_date_by_carer = collections.defaultdict(dict) for carer_shift in problem.carers: for diary in carer_shift.diaries: diary_by_date_by_carer[diary.date][carer_shift.carer.sap_number] = diary base_schedules = {rows.load.load_schedule(file_path): file_path for file_path in glob.glob(getattr(args, __BASE_SCHEDULE_PATTERN))} base_schedule_by_date = {schedule.metadata.begin: schedule for schedule in base_schedules} candidate_schedules = {rows.load.load_schedule(file_path): file_path for file_path in glob.glob(getattr(args, __CANDIDATE_SCHEDULE_PATTERN))} candidate_schedule_by_date = {schedule.metadata.begin: schedule for schedule in candidate_schedules} location_finder = rows.location_finder.UserLocationFinder(settings) location_finder.reload() output_file_format = getattr(args, __FILE_FORMAT_ARG) dates = set(candidate_schedule_by_date.keys()) for date in base_schedule_by_date.keys(): dates.add(date) dates = list(dates) dates.sort() with rows.plot.create_routing_session() as routing_session: distance_estimator = rows.plot.DistanceEstimator(settings, routing_session) for date in dates: base_schedule = base_schedule_by_date.get(date, None) if not base_schedule: logging.error('No base schedule is available for %s', date) continue duration_estimator = rows.plot.DurationEstimator.create_expected_visit_duration(base_schedule) candidate_schedule = candidate_schedule_by_date.get(date, None) if not candidate_schedule: logging.error('No candidate schedule is available for %s', date) continue base_schedule_file = base_schedules[base_schedule] base_schedule_data_frame = rows.plot.get_schedule_data_frame(base_schedule, problem, duration_estimator, distance_estimator) base_schedule_stem, base_schedule_ext = os.path.splitext(os.path.basename(base_schedule_file)) rows.plot.save_workforce_histogram(base_schedule_data_frame, base_schedule_stem, output_file_format) candidate_schedule_file = candidate_schedules[candidate_schedule] candidate_schedule_data_frame = rows.plot.get_schedule_data_frame(candidate_schedule, problem, duration_estimator, distance_estimator) candidate_schedule_stem, candidate_schedule_ext \ = os.path.splitext(os.path.basename(candidate_schedule_file)) rows.plot.save_workforce_histogram(candidate_schedule_data_frame, candidate_schedule_stem, output_file_format) rows.plot.save_combined_histogram(candidate_schedule_data_frame, base_schedule_data_frame, ['2nd Stage', '3rd Stage'], 'contrast_workforce_{0}_combined'.format(date), output_file_format) def contrast_workload(args, settings): __WIDTH = 0.35 __FORMAT = 'svg' plot_type = getattr(args, __TYPE_ARG, None) if plot_type != __ACTIVITY_TYPE and plot_type != __VISITS_TYPE: raise ValueError( 'Unknown plot type: {0}. Use either {1} or {2}.'.format(plot_type, __ACTIVITY_TYPE, __VISITS_TYPE)) problem_file = get_or_raise(args, __PROBLEM_FILE_ARG) problem = rows.load.load_problem(problem_file) base_schedule = rows.load.load_schedule(get_or_raise(args, __BASE_FILE_ARG)) candidate_schedule = rows.load.load_schedule(get_or_raise(args, __CANDIDATE_FILE_ARG)) if base_schedule.metadata.begin != candidate_schedule.metadata.begin: raise ValueError('Schedules begin at a different date: {0} vs {1}' .format(base_schedule.metadata.begin, candidate_schedule.metadata.begin)) if base_schedule.metadata.end != candidate_schedule.metadata.end: raise ValueError('Schedules end at a different date: {0} vs {1}' .format(base_schedule.metadata.end, candidate_schedule.metadata.end)) location_finder = rows.location_finder.UserLocationFinder(settings) location_finder.reload() diary_by_date_by_carer = collections.defaultdict(dict) for carer_shift in problem.carers: for diary in carer_shift.diaries: diary_by_date_by_carer[diary.date][carer_shift.carer.sap_number] = diary date = base_schedule.metadata.begin problem_file_base = os.path.basename(problem_file) problem_file_name, problem_file_ext = os.path.splitext(problem_file_base) with rows.plot.create_routing_session() as routing_session: observed_duration_by_visit = calculate_expected_visit_duration(candidate_schedule) base_schedule_frame = rows.plot.get_schedule_data_frame(base_schedule, routing_session, location_finder, diary_by_date_by_carer[date], observed_duration_by_visit) candidate_schedule_frame = rows.plot.get_schedule_data_frame(candidate_schedule, routing_session, location_finder, diary_by_date_by_carer[date], observed_duration_by_visit) color_map = matplotlib.cm.get_cmap('tab20') matplotlib.pyplot.set_cmap(color_map) figure, axis = matplotlib.pyplot.subplots() matplotlib.pyplot.tight_layout() try: contrast_frame = pandas.DataFrame.merge(base_schedule_frame, candidate_schedule_frame, on='Carer', how='left', suffixes=['_Base', '_Candidate']) contrast_frame['Visits_Candidate'] = contrast_frame['Visits_Candidate'].fillna(0) contrast_frame['Availability_Candidate'] \ = contrast_frame['Availability_Candidate'].mask(pandas.isnull, contrast_frame['Availability_Base']) contrast_frame['Travel_Candidate'] \ = contrast_frame['Travel_Candidate'].mask(pandas.isnull, datetime.timedelta()) contrast_frame['Service_Candidate'] \ = contrast_frame['Service_Candidate'].mask(pandas.isnull, datetime.timedelta()) contrast_frame = contrast_frame.sort_values( by=['Availability_Candidate', 'Service_Candidate', 'Travel_Candidate'], ascending=False) if plot_type == __VISITS_TYPE: indices = numpy.arange(len(contrast_frame.index)) base_handle = axis.bar(indices, contrast_frame['Visits_Base'], __WIDTH) candidate_handle = axis.bar(indices + __WIDTH, contrast_frame['Visits_Candidate'], __WIDTH) axis.legend((base_handle, candidate_handle), ('Human Planners', 'Constraint Programming'), loc='best') output_file = problem_file_name + '_contrast_visits_' + date.isoformat() + '.' + __FORMAT elif plot_type == __ACTIVITY_TYPE: indices = numpy.arange(len(base_schedule_frame.index)) def plot_activity_stacked_histogram(availability, travel, service, axis, width=0.35, initial_width=0.0, color_offset=0): time_delta_converter = rows.plot.TimeDeltaConverter() travel_series = numpy.array(time_delta_converter(travel)) service_series = numpy.array(time_delta_converter(service)) idle_overtime_series = list(availability - travel - service) idle_series = numpy.array(time_delta_converter( map(lambda value: value if value.days >= 0 else datetime.timedelta(), idle_overtime_series))) overtime_series = numpy.array(time_delta_converter( map(lambda value: datetime.timedelta( seconds=abs(value.total_seconds())) if value.days < 0 else datetime.timedelta(), idle_overtime_series))) service_handle = axis.bar(indices + initial_width, service_series, width, bottom=time_delta_converter.zero, color=color_map.colors[0 + color_offset]) travel_handle = axis.bar(indices + initial_width, travel_series, width, bottom=service_series + time_delta_converter.zero_num, color=color_map.colors[2 + color_offset]) idle_handle = axis.bar(indices + initial_width, idle_series, width, bottom=service_series + travel_series + time_delta_converter.zero_num, color=color_map.colors[4 + color_offset]) overtime_handle = axis.bar(indices + initial_width, overtime_series, width, bottom=idle_series + service_series + travel_series + time_delta_converter.zero_num, color=color_map.colors[6 + color_offset]) return service_handle, travel_handle, idle_handle, overtime_handle travel_candidate_handle, service_candidate_handle, idle_candidate_handle, overtime_candidate_handle \ = plot_activity_stacked_histogram(contrast_frame.Availability_Candidate, contrast_frame.Travel_Candidate, contrast_frame.Service_Candidate, axis, __WIDTH) travel_base_handle, service_base_handle, idle_base_handle, overtime_base_handle \ = plot_activity_stacked_histogram(contrast_frame.Availability_Base, contrast_frame.Travel_Base, contrast_frame.Service_Base, axis, __WIDTH, __WIDTH, 1) axis.yaxis_date() axis.yaxis.set_major_formatter(matplotlib.dates.DateFormatter("%H:%M:%S")) axis.legend( (travel_candidate_handle, service_candidate_handle, idle_candidate_handle, overtime_candidate_handle, travel_base_handle, service_base_handle, idle_base_handle, overtime_base_handle), ('', '', '', '', 'Service', 'Travel', 'Idle', 'Overtime'), loc='best', ncol=2, columnspacing=0) output_file = problem_file_name + '_contrast_activity_' + date.isoformat() + '.' + __FORMAT bottom, top = axis.get_ylim() axis.set_ylim(bottom, top + 0.025) else: raise ValueError('Unknown plot type {0}'.format(plot_type)) matplotlib.pyplot.subplots_adjust(left=0.125) matplotlib.pyplot.savefig(output_file, format=__FORMAT, dpi=300) finally: matplotlib.pyplot.cla() matplotlib.pyplot.close(figure) def parse_time_delta(text): if text: time = datetime.datetime.strptime(text, '%H:%M:%S').time() return datetime.timedelta(hours=time.hour, minutes=time.minute, seconds=time.second) return None class TraceLog: __STAGE_PATTERN = re.compile('^\w+(?P<number>\d+)(:?\-Patch)?$') __PENALTY_PATTERN = re.compile('^MissedVisitPenalty:\s+(?P<penalty>\d+)$') __CARER_USED_PATTERN = re.compile('^CarerUsedPenalty:\s+(?P<penalty>\d+)$') class ProgressMessage: def __init__(self, **kwargs): self.__branches = kwargs.get('branches', None) self.__cost = kwargs.get('cost', None) self.__dropped_visits = kwargs.get('dropped_visits', None) self.__memory_usage = kwargs.get('memory_usage', None) self.__solutions = kwargs.get('solutions', None) self.__wall_time = parse_time_delta(kwargs.get('wall_time', None)) @property def cost(self): return self.__cost @property def solutions(self): return self.__solutions @property def dropped_visits(self): return self.__dropped_visits class ProblemMessage: def __init__(self, **kwargs): self.__carers = kwargs.get('carers', None) self.__visits = kwargs.get('visits', None) self.__date = kwargs.get('date', None) if self.__date: self.__date = datetime.datetime.strptime(self.__date, '%Y-%b-%d').date() self.__visit_time_windows = parse_time_delta(kwargs.get('visit_time_windows', None)) self.__break_time_windows = parse_time_delta(kwargs.get('break_time_windows', None)) self.__shift_adjustment = parse_time_delta(kwargs.get('shift_adjustment', None)) self.__area = kwargs.get('area', None) self.__missed_visit_penalty = kwargs.get('missed_visit_penalty', None) self.__carer_used_penalty = kwargs.get('carer_used_penalty', None) @property def date(self): return self.__date @property def carers(self): return self.__carers @property def visits(self): return self.__visits @property def visit_time_window(self): return self.__visit_time_windows @property def carer_used_penalty(self): return self.__carer_used_penalty @carer_used_penalty.setter def carer_used_penalty(self, value): self.__carer_used_penalty = value @property def missed_visit_penalty(self): return self.__missed_visit_penalty @missed_visit_penalty.setter def missed_visit_penalty(self, value): self.__missed_visit_penalty = value @property def shift_adjustment(self): return self.__shift_adjustment StageSummary = collections.namedtuple('StageSummary', ['duration', 'final_cost', 'final_dropped_visits']) def __init__(self, time_point): self.__start = time_point self.__events = [] self.__current_stage = None self.__current_strategy = None self.__problem = TraceLog.ProblemMessage() @staticmethod def __parse_stage_number(body): comment = body.get('comment', None) if comment: match = TraceLog.__STAGE_PATTERN.match(comment) if match: return int(match.group('number')) return None def append(self, time_point, body): if 'branches' in body: body_to_use = TraceLog.ProgressMessage(**body) elif 'type' in body: if body['type'] == 'started': self.__current_stage = self.__parse_stage_number(body) elif body['type'] == 'finished': self.__current_stage = None self.__current_strategy = None elif body['type'] == 'unknown': if 'comment' in body: if 'MissedVisitPenalty' in body['comment']: match = re.match(self.__PENALTY_PATTERN, body['comment']) assert match is not None missed_visit_penalty = int(match.group('penalty')) self.__problem.missed_visit_penalty = missed_visit_penalty elif 'CarerUsedPenalty' in body['comment']: match = re.match(self.__CARER_USED_PATTERN, body['comment']) assert match is not None carer_used_penalty = int(match.group('penalty')) self.__problem.carer_used_penalty = carer_used_penalty body_to_use = body elif 'area' in body: body_to_use = TraceLog.ProblemMessage(**body) if body_to_use.missed_visit_penalty is None and self.__problem.missed_visit_penalty is not None: body_to_use.missed_visit_penalty = self.__problem.missed_visit_penalty if body_to_use.carer_used_penalty is None and self.__problem.carer_used_penalty is not None: body_to_use.carer_used_penalty = self.__problem.carer_used_penalty self.__problem = body_to_use else: body_to_use = body # quick fix to prevent negative computation time if the time frame crosses midnight if self.__start < time_point: computation_time = time_point - self.__start else: computation_time = time_point + datetime.timedelta(hours=24) - self.__start self.__events.append([computation_time, self.__current_stage, self.__current_strategy, time_point, body_to_use]) def compute_stages(self) -> typing.List[StageSummary]: groups = dict() for delta, stage, topic, time, message in self.__events: if isinstance(message, TraceLog.ProgressMessage): if stage not in groups: groups[stage] = [] groups[stage].append([delta, topic, message]) result = [] def create_stage_summary(group): duration = group[-1][0] - group[0][0] cost = group[-1][2].cost dropped_visits = group[-1][2].dropped_visits return TraceLog.StageSummary(duration=duration, final_cost=cost, final_dropped_visits=dropped_visits) if len(groups) == 1: result.append(create_stage_summary(groups[None])) else: for stage in range(1, max(filter(lambda s: s is not None, groups)) + 1): result.append(create_stage_summary(groups[stage])) return result def has_stages(self): for relative_time, stage, strategy, absolute_time, event in self.__events: if isinstance(event, TraceLog.ProblemMessage) or isinstance(event, TraceLog.ProgressMessage): continue if 'type' in event and event['type'] == 'started': return True return False def best_cost(self, stage: int): best_cost, _ = self.__best_cost_and_time(stage) return best_cost def best_cost_time(self, stage: int): _, best_cost_time = self.__best_cost_and_time(stage) return best_cost_time def last_cost(self): last_cost, _ = self.__last_cost_and_time() return last_cost def last_cost_time(self): _, last_cost_time = self.__last_cost_and_time() return last_cost_time def computation_time(self): computation_time = datetime.timedelta.max for relative_time, stage, strategy, absolute_time, event in self.__events: computation_time = relative_time return computation_time def __best_cost_and_time(self, stage: int): best_cost = float('inf') best_time = datetime.timedelta.max for relative_time, event_stage, strategy, absolute_time, event in self.__filtered_events(): if event_stage > stage: continue if best_cost > event.cost: best_cost = event.cost best_time = relative_time return best_cost, best_time def __last_cost_and_time(self): last_cost = float('inf') last_time = datetime.timedelta.max for relative_time, stage, strategy, absolute_time, event in self.__filtered_events(): last_cost = event.cost last_time = relative_time return last_cost, last_time def __filtered_events(self): for relative_time, stage, strategy, absolute_time, event in self.__events: if stage != 2 and stage != 3: continue if strategy == 'DELAY_RISKINESS_REDUCTION': continue if not isinstance(event, TraceLog.ProgressMessage): continue yield relative_time, stage, strategy, absolute_time, event @property def strategy(self): return self.__current_strategy @strategy.setter def strategy(self, value): self.__current_strategy = value @property def visits(self): return self.__problem.visits @property def carers(self): return self.__problem.carers @property def date(self): return self.__problem.date @property def visit_time_window(self): return self.__problem.visit_time_window @property def carer_used_penalty(self): return self.__problem.carer_used_penalty @property def missed_visit_penalty(self): return self.__problem.missed_visit_penalty @property def shift_adjustment(self): return self.__problem.shift_adjustment @property def events(self): return self.__events def read_traces(trace_file) -> typing.List[TraceLog]: log_line_pattern = re.compile('^\w+\s+(?P<time>\d+:\d+:\d+\.\d+).*?]\s+(?P<body>.*)$') other_line_pattern = re.compile('^.*?\[\w+\s+(?P<time>\d+:\d+:\d+\.\d+).*?\]\s+(?P<body>.*)$') strategy_line_pattern = re.compile('^Solving the (?P<stage_name>\w+) stage using (?P<strategy_name>\w+) strategy$') loaded_visits_pattern = re.compile('^Loaded past visits in \d+ seconds$') trace_logs = [] has_preambule = False with open(trace_file, 'r') as input_stream: current_log = None for line in input_stream: match = log_line_pattern.match(line) if not match: match = other_line_pattern.match(line) if match: raw_time = match.group('time') time = datetime.datetime.strptime(raw_time, '%H:%M:%S.%f') try: raw_body = match.group('body') body = json.loads(raw_body) if 'comment' in body and (body['comment'] == 'All' or 'MissedVisitPenalty' in body['comment'] or 'CarerUsedPenalty' in body['comment']): if body['comment'] == 'All': if 'type' in body: if body['type'] == 'finished': has_preambule = False current_log.strategy = None elif body['type'] == 'started': has_preambule = True current_log = TraceLog(time) current_log.append(time, body) trace_logs.append(current_log) else: current_log.append(time, body) elif 'area' in body and not has_preambule: current_log = TraceLog(time) current_log.append(time, body) trace_logs.append(current_log) else: current_log.append(time, body) except json.decoder.JSONDecodeError: strategy_match = strategy_line_pattern.match(match.group('body')) if strategy_match: current_log.strategy = strategy_match.group('strategy_name') continue loaded_visits_match = loaded_visits_pattern.match(match.group('body')) if loaded_visits_match: continue warnings.warn('Failed to parse line: ' + line) elif 'GUIDED_LOCAL_SEARCH specified without sane timeout: solve may run forever.' in line: continue else: warnings.warn('Failed to match line: ' + line) return trace_logs def traces_to_data_frame(trace_logs): columns = ['relative_time', 'cost', 'dropped_visits', 'solutions', 'stage', 'stage_started', 'date', 'carers', 'visits'] has_stages = [trace.has_stages() for trace in trace_logs] if all(has_stages) != any(has_stages): raise ValueError('Some traces have stages while others do not') has_stages = all(has_stages) data = [] if has_stages: for trace in trace_logs: current_carers = None current_visits = None current_stage_started = None current_stage_name = None for rel_time, stage, strategy, abs_time, event in trace.events: if isinstance(event, TraceLog.ProblemMessage): current_carers = event.carers current_visits = event.visits elif isinstance(event, TraceLog.ProgressMessage): if not current_stage_name: continue data.append([rel_time, event.cost, event.dropped_visits, event.solutions, current_stage_name, current_stage_started, trace.date, current_carers, current_visits]) elif 'type' in event: if 'comment' in event and event['type'] == 'unknown': continue if event['type'] == 'finished': current_carers = None current_visits = None current_stage_started = None current_stage_name = None continue if event['type'] == 'started': current_stage_started = rel_time current_stage_name = event['comment'] else: for trace in trace_logs: current_carers = None current_visits = None for rel_time, stage, strategy, abs_time, event in trace.events: if isinstance(event, TraceLog.ProblemMessage): current_carers = event.carers current_visits = event.visits elif isinstance(event, TraceLog.ProgressMessage): data.append([rel_time, event.cost, event.dropped_visits, event.solutions, None, None, trace.date, current_carers, current_visits]) return pandas.DataFrame(data=data, columns=columns) def parse_pandas_duration(value): raw_hours, raw_minutes, raw_seconds = value.split(':') return datetime.timedelta(hours=int(raw_hours), minutes=int(raw_minutes), seconds=int(raw_seconds)) class DateTimeFormatter: def __init__(self, format): self.__format = format def __call__(self, x, pos=None): if x < 0: return None x_to_use = x if isinstance(x, numpy.int64): x_to_use = x.item() delta = datetime.timedelta(seconds=x_to_use) time_point = datetime.datetime(2017, 1, 1) + delta return time_point.strftime(self.__format) class AxisSettings: def __init__(self, minutes_per_step, format_pattern, units_label, right_xlimit, xticks): self.__minutes_per_step = minutes_per_step self.__format_pattern = format_pattern self.__formatter = matplotlib.ticker.FuncFormatter(DateTimeFormatter(self.__format_pattern)) self.__units_label = units_label self.__right_xlimit = right_xlimit self.__xticks = xticks @property def formatter(self): return self.__formatter @property def units_label(self): return self.__units_label @property def right_xlimit(self): return self.__right_xlimit @property def xticks(self): return self.__xticks @staticmethod def infer(max_relative_time): if datetime.timedelta(minutes=30) < max_relative_time < datetime.timedelta(hours=1): minutes_step = 10 format = '%H:%M' units = '[hh:mm]' elif datetime.timedelta(hours=1) <= max_relative_time: minutes_step = 60 format = '%H:%M' units = '[hh:mm]' else: assert max_relative_time <= datetime.timedelta(minutes=30) minutes_step = 5 format = '%M:%S' units = '[mm:ss]' right_xlimit = (max_relative_time + datetime.timedelta(minutes=1)).total_seconds() // 60 * 60 xticks = numpy.arange(0, max_relative_time.total_seconds() + minutes_step * 60, minutes_step * 60) return AxisSettings(minutes_step, format, units, right_xlimit, xticks) def format_timedelta_pandas(x, pos=None): if x < 0: return None time_delta = pandas.to_timedelta(x) hours = int(time_delta.total_seconds() / matplotlib.dates.SEC_PER_HOUR) minutes = int(time_delta.total_seconds() / matplotlib.dates.SEC_PER_MIN) - 60 * hours return '{0:02d}:{1:02d}'.format(hours, minutes) def format_time(x, pos=None): if isinstance(x, numpy.int64): x = x.item() delta = datetime.timedelta(seconds=x) time_point = datetime.datetime(2017, 1, 1) + delta return time_point.strftime('%H:%M') __SCATTER_POINT_SIZE = 1 __Y_AXIS_EXTENSION = 1.2 def add_trace_legend(axis, handles, bbox_to_anchor=(0.5, -0.23), ncol=3): first_row = handles[0] def legend_single_stage(row): handle, multi_visits, visits, carers, cost_function, date = row date_time = datetime.datetime.combine(date, datetime.time()) return 'V{0:02}/{1:03} C{2:02} {3} {4}'.format(multi_visits, visits, carers, cost_function, date_time.strftime('%d-%m')) def legend_multi_stage(row): handle, multi_visits, visits, multi_carers, carers, cost_function, date = row date_time = datetime.datetime.combine(date, datetime.time()) return 'V{0:02}/{1:03} C{2:02}/{3:02} {4} {5}' \ .format(multi_visits, visits, multi_carers, carers, cost_function, date_time.strftime('%d-%m')) if len(first_row) == 6: legend_formatter = legend_single_stage elif len(first_row) == 7: legend_formatter = legend_multi_stage else: raise ValueError('Expecting row of either 6 or 7 elements') return rows.plot.add_legend(axis, list(map(operator.itemgetter(0), handles)), list(map(legend_formatter, handles)), ncol, bbox_to_anchor) def scatter_cost(axis, data_frame, color): return axis.scatter( [time_delta.total_seconds() for time_delta in data_frame['relative_time']], data_frame['cost'], s=__SCATTER_POINT_SIZE, c=color) def scatter_dropped_visits(axis, data_frame, color): axis.scatter( [time_delta.total_seconds() for time_delta in data_frame['relative_time']], data_frame['dropped_visits'], s=__SCATTER_POINT_SIZE, c=color) def draw_avline(axis, point, color='lightgrey', linestyle='--'): axis.axvline(point, color=color, linestyle=linestyle, linewidth=0.8, alpha=0.8) def get_problem_stats(problem, date): problem_visits = [visit for carer_visits in problem.visits for visit in carer_visits.visits if visit.date == date] return len(problem_visits), len([visit for visit in problem_visits if visit.carer_count > 1]) def compare_trace(args, settings): problem = rows.load.load_problem(get_or_raise(args, __PROBLEM_FILE_ARG)) cost_function = get_or_raise(args, __COST_FUNCTION_TYPE) trace_file = get_or_raise(args, __FILE_ARG) trace_file_base_name = os.path.basename(trace_file) trace_file_stem, trace_file_ext = os.path.splitext(trace_file_base_name) output_file_stem = getattr(args, __OUTPUT, trace_file_stem) trace_logs = read_traces(trace_file) data_frame = traces_to_data_frame(trace_logs) current_date = getattr(args, __DATE_ARG, None) dates = data_frame['date'].unique() if current_date and current_date not in dates: raise ValueError('Date {0} is not present in the data set'.format(current_date)) color_numbers = [0, 2, 4, 6, 8, 10, 12, 1, 3, 5, 7, 9, 11, 13] color_number_it = iter(color_numbers) color_map = matplotlib.cm.get_cmap('tab20') matplotlib.pyplot.set_cmap(color_map) figure, (ax1, ax2) = matplotlib.pyplot.subplots(2, 1, sharex=True) max_relative_time = datetime.timedelta() try: if current_date: current_color = color_map.colors[next(color_number_it)] total_problem_visits, total_multiple_carer_visits = get_problem_stats(problem, current_date) current_date_frame = data_frame[data_frame['date'] == current_date] max_relative_time = max(current_date_frame['relative_time'].max(), max_relative_time) ax_settings = AxisSettings.infer(max_relative_time) stages = current_date_frame['stage'].unique() if len(stages) > 1: handles = [] for stage in stages: time_delta = current_date_frame[current_date_frame['stage'] == stage]['stage_started'].iloc[0] current_stage_data_frame = current_date_frame[current_date_frame['stage'] == stage] draw_avline(ax1, time_delta.total_seconds()) draw_avline(ax2, time_delta.total_seconds()) total_stage_visits = current_stage_data_frame['visits'].iloc[0] carers = current_stage_data_frame['carers'].iloc[0] handle = scatter_cost(ax1, current_date_frame, current_color) scatter_dropped_visits(ax2, current_stage_data_frame, current_color) handles.append([handle, total_multiple_carer_visits, total_stage_visits, carers, cost_function, current_date]) ax2.set_xlim(left=0) ax2.set_ylim(bottom=-10) ax2.xaxis.set_major_formatter(ax_settings.formatter) else: total_visits = current_date_frame['visits'].iloc[0] if total_visits != (total_problem_visits + total_multiple_carer_visits): raise ValueError('Number of visits in problem and solution does not match: {0} vs {1}' .format(total_visits, (total_problem_visits + total_multiple_carer_visits))) carers = current_date_frame['carers'].iloc[0] handle = ax1.scatter( [time_delta.total_seconds() for time_delta in current_date_frame['relative_time']], current_date_frame['cost'], s=1) add_trace_legend(ax1, [[handle, total_multiple_carer_visits, total_problem_visits, carers, cost_function]]) scatter_dropped_visits(ax2, current_date_frame, current_color) ax1_y_bottom, ax1_y_top = ax1.get_ylim() ax1.set_ylim(bottom=0, top=ax1_y_top * __Y_AXIS_EXTENSION) ax1.set_ylabel('Cost Function [s]') ax2_y_bottom, ax2_y_top = ax2.get_ylim() ax2.set_ylim(bottom=-10, top=ax2_y_top * __Y_AXIS_EXTENSION) ax2.xaxis.set_major_formatter(ax_settings.formatter) ax2.set_ylabel('Declined Visits') ax2.set_xlabel('Computation Time ' + ax_settings.units_label) rows.plot.save_figure(output_file_stem + '_' + current_date.isoformat()) else: handles = [] for current_date in dates: current_color = color_map.colors[next(color_number_it)] current_date_frame = data_frame[data_frame['date'] == current_date] max_relative_time = max(current_date_frame['relative_time'].max(), max_relative_time) total_problem_visits, total_multiple_carer_visits = get_problem_stats(problem, current_date) stages = current_date_frame['stage'].unique() if len(stages) > 1: stage_linestyles = [None, 'dotted', 'dashed'] for stage, linestyle in zip(stages, stage_linestyles): time_delta = current_date_frame[current_date_frame['stage'] == stage]['stage_started'].iloc[0] draw_avline(ax1, time_delta.total_seconds(), color=current_color, linestyle=linestyle) draw_avline(ax2, time_delta.total_seconds(), color=current_color, linestyle=linestyle) total_carers = current_date_frame['carers'].max() multi_carers = current_date_frame['carers'].min() if multi_carers == total_carers: multi_carers = 0 total_visits = current_date_frame['visits'].max() multi_visits = current_date_frame['visits'].min() if multi_visits == total_visits: multi_visits = 0 handle = scatter_cost(ax1, current_date_frame, current_color) scatter_dropped_visits(ax2, current_date_frame, current_color) handles.append([handle, multi_visits, total_visits, multi_carers, total_carers, cost_function, current_date]) else: total_visits = current_date_frame['visits'].iloc[0] if total_visits != (total_problem_visits + total_multiple_carer_visits): raise ValueError('Number of visits in problem and solution does not match: {0} vs {1}' .format(total_visits, (total_problem_visits + total_multiple_carer_visits))) carers = current_date_frame['carers'].iloc[0] handle = scatter_cost(ax1, current_date_frame, current_color) handles.append([handle, total_multiple_carer_visits, total_problem_visits, carers, cost_function, current_date]) scatter_dropped_visits(ax2, current_date_frame, current_color) ax_settings = AxisSettings.infer(max_relative_time) ax1.ticklabel_format(style='sci', axis='y', scilimits=(-2, 2)) ax1.xaxis.set_major_formatter(ax_settings.formatter) # if add_arrows: # ax1.arrow(950, 200000, 40, -110000, head_width=10, head_length=20000, fc='k', ec='k') # ax2.arrow(950, 60, 40, -40, head_width=10, head_length=10, fc='k', ec='k') ax1_y_bottom, ax1_y_top = ax1.get_ylim() ax1.set_ylim(bottom=0, top=ax1_y_top * __Y_AXIS_EXTENSION) ax1.set_xlim(left=0, right=ax_settings.right_xlimit) ax1.set_ylabel('Cost Function [s]') ax2_y_bottom, ax2_y_top = ax2.get_ylim() ax2.set_ylim(bottom=-10, top=ax2_y_top * __Y_AXIS_EXTENSION) ax2.set_xlim(left=0, right=ax_settings.right_xlimit) ax2.set_ylabel('Declined Visits') ax2.set_xlabel('Computation Time ' + ax_settings.units_label) ax2.set_xticks(ax_settings.xticks) ax2.xaxis.set_major_formatter(ax_settings.formatter) matplotlib.pyplot.tight_layout() rows.plot.save_figure(output_file_stem) finally: matplotlib.pyplot.cla() matplotlib.pyplot.close(figure) def get_schedule_stats(data_frame): def get_stage_stats(stage): if stage and (isinstance(stage, str) or (isinstance(stage, float) and not numpy.isnan(stage))): stage_frame = data_frame[data_frame['stage'] == stage] else: stage_frame = data_frame[data_frame['stage'].isnull()] min_carers, max_carers = stage_frame['carers'].min(), stage_frame['carers'].max() if min_carers != max_carers: raise ValueError( 'Numbers of carer differs within stage in range [{0}, {1}]'.format(min_carers, max_carers)) min_visits, max_visits = stage_frame['visits'].min(), stage_frame['visits'].max() if min_visits != max_visits: raise ValueError( 'Numbers of carer differs within stage in range [{0}, {1}]'.format(min_visits, max_visits)) return min_carers, min_visits stages = data_frame['stage'].unique() if len(stages) > 1: data = [] for stage in stages: carers, visits = get_stage_stats(stage) data.append([stage, carers, visits]) return data else: stage_to_use = None if len(stages) == 1: stage_to_use = stages[0] carers, visits = get_stage_stats(stage_to_use) return [[None, carers, visits]] def contrast_trace(args, settings): problem_file = get_or_raise(args, __PROBLEM_FILE_ARG) problem = rows.load.load_problem(problem_file) problem_file_base = os.path.basename(problem_file) problem_file_name, problem_file_ext = os.path.splitext(problem_file_base) output_file_stem = getattr(args, __OUTPUT, problem_file_name + '_contrast_traces') cost_function = get_or_raise(args, __COST_FUNCTION_TYPE) base_trace_file = get_or_raise(args, __BASE_FILE_ARG) candidate_trace_file = get_or_raise(args, __CANDIDATE_FILE_ARG) base_frame = traces_to_data_frame(read_traces(base_trace_file)) candidate_frame = traces_to_data_frame(read_traces(candidate_trace_file)) current_date = get_or_raise(args, __DATE_ARG) if current_date not in base_frame['date'].unique(): raise ValueError('Date {0} is not present in the base data set'.format(current_date)) if current_date not in candidate_frame['date'].unique(): raise ValueError('Date {0} is not present in the candidate data set'.format(current_date)) max_relative_time = datetime.timedelta() max_relative_time = max(base_frame[base_frame['date'] == current_date]['relative_time'].max(), max_relative_time) max_relative_time = max(candidate_frame[candidate_frame['date'] == current_date]['relative_time'].max(), max_relative_time) max_relative_time = datetime.timedelta(minutes=20) ax_settings = AxisSettings.infer(max_relative_time) color_map = matplotlib.cm.get_cmap('Set1') matplotlib.pyplot.set_cmap(color_map) figure, (ax1, ax2) = matplotlib.pyplot.subplots(2, 1, sharex=True) try: def plot(data_frame, color): stages = data_frame['stage'].unique() if len(stages) > 1: for stage, linestyle in zip(stages, [None, 'dotted', 'dashed']): time_delta = data_frame[data_frame['stage'] == stage]['stage_started'].iloc[0] draw_avline(ax1, time_delta.total_seconds(), linestyle=linestyle) draw_avline(ax2, time_delta.total_seconds(), linestyle=linestyle) scatter_dropped_visits(ax2, data_frame, color=color) return scatter_cost(ax1, data_frame, color=color) base_current_data_frame = base_frame[base_frame['date'] == current_date] base_handle = plot(base_current_data_frame, color_map.colors[0]) base_stats = get_schedule_stats(base_current_data_frame) candidate_current_data_frame = candidate_frame[candidate_frame['date'] == current_date] candidate_handle = plot(candidate_current_data_frame, color_map.colors[1]) candidate_stats = get_schedule_stats(candidate_current_data_frame) labels = [] for stages in [base_stats, candidate_stats]: if len(stages) == 1: labels.append('Direct') elif len(stages) > 1: labels.append('Multistage') else: raise ValueError() ax1.set_ylim(bottom=0.0) ax1.set_ylabel('Cost Function [s]') ax1.ticklabel_format(style='sci', axis='y', scilimits=(-2, 2)) ax1.xaxis.set_major_formatter(ax_settings.formatter) ax1.set_xlim(left=0.0, right=max_relative_time.total_seconds()) legend1 = ax1.legend([base_handle, candidate_handle], labels) for handle in legend1.legendHandles: handle._sizes = [25] ax2.set_xlim(left=0.0, right=max_relative_time.total_seconds()) ax2.set_ylim(bottom=0.0) ax2.set_ylabel('Declined Visits') ax2.set_xlabel('Computation Time ' + ax_settings.units_label) ax1.set_xticks(ax_settings.xticks) ax2.set_xticks(ax_settings.xticks) ax2.xaxis.set_major_formatter(ax_settings.formatter) legend2 = ax2.legend([base_handle, candidate_handle], labels) for handle in legend2.legendHandles: handle._sizes = [25] figure.tight_layout() matplotlib.pyplot.tight_layout() rows.plot.save_figure(output_file_stem + '_' + current_date.isoformat()) finally: matplotlib.pyplot.cla() matplotlib.pyplot.close(figure) figure, (ax1, ax2) = matplotlib.pyplot.subplots(2, 1, sharex=True) try: candidate_current_data_frame = candidate_frame[candidate_frame['date'] == current_date] scatter_dropped_visits(ax2, candidate_current_data_frame, color=color_map.colors[1]) scatter_cost(ax1, candidate_current_data_frame, color=color_map.colors[1]) stage2_started = \ candidate_current_data_frame[candidate_current_data_frame['stage'] == 'Stage2']['stage_started'].iloc[0] ax1.set_ylim(bottom=0, top=6 * 10 ** 4) ax1.set_ylabel('Cost Function [s]') ax1.ticklabel_format(style='sci', axis='y', scilimits=(-2, 2)) ax1.xaxis.set_major_formatter(ax_settings.formatter) ax1.set_xlim(left=0, right=12) ax2.set_xlim(left=0, right=12) x_ticks_positions = range(0, 12 + 1, 2) # matplotlib.pyplot.locator_params(axis='x', nbins=6) ax2.set_ylim(bottom=-10.0, top=120) ax2.set_ylabel('Declined Visits') ax2.set_xlabel('Computation Time ' + ax_settings.units_label) ax2.set_xticks(x_ticks_positions) ax2.xaxis.set_major_formatter(ax_settings.formatter) matplotlib.pyplot.tight_layout() # rows.plot.save_figure(output_file_stem + '_first_stage_' + current_date.isoformat()) finally: matplotlib.pyplot.cla() matplotlib.pyplot.close(figure) def compare_box_plots(args, settings): problem_file = get_or_raise(args, __PROBLEM_FILE_ARG) problem = rows.load.load_problem(problem_file) problem_file_base = os.path.basename(problem_file) problem_file_name, problem_file_ext = os.path.splitext(problem_file_base) base_trace_file = get_or_raise(args, __BASE_FILE_ARG) output_file_stem = getattr(args, __OUTPUT, problem_file_name) traces = read_traces(base_trace_file) figure, (ax1, ax2, ax3) = matplotlib.pyplot.subplots(1, 3) stages = [trace.compute_stages() for trace in traces] num_stages = max(len(s) for s in stages) durations = [[getattr(local_stage[num_stage], 'duration').total_seconds() for local_stage in stages] for num_stage in range(num_stages)] max_duration = max(max(stage_durations) for stage_durations in durations) axis_settings = AxisSettings.infer(datetime.timedelta(seconds=max_duration)) try: ax1.boxplot(durations, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) ax1.set_yticks(axis_settings.xticks) ax1.yaxis.set_major_formatter(axis_settings.formatter) ax1.set_xlabel('Stage') ax1.set_ylabel('Duration [hh:mm]') costs = [[getattr(local_stage[num_stage], 'final_cost') for local_stage in stages] for num_stage in range(num_stages)] ax2.boxplot(costs, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) formatter = matplotlib.ticker.ScalarFormatter() formatter.set_scientific(True) formatter.set_powerlimits((-3, 3)) ax2.yaxis.set_major_formatter(formatter) ax2.set_xlabel('Stage') ax2.set_ylabel('Cost') declined_visits = [[getattr(local_stage[num_stage], 'final_dropped_visits') for local_stage in stages] for num_stage in range(num_stages)] ax3.boxplot(declined_visits, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) max_declined_visits = max(max(declined_visits)) ax3.set_xlabel('Stage') ax3.set_ylabel('Declined Visits') dropped_visit_ticks = None if max_declined_visits < 100: dropped_visit_ticks = range(0, max_declined_visits + 1) else: dropped_visit_ticks = range(0, max_declined_visits + 100, 100) ax3.set_yticks(dropped_visit_ticks) figure.tight_layout() rows.plot.save_figure(output_file_stem) finally: matplotlib.pyplot.cla() matplotlib.pyplot.close(figure) def compare_prediction_error(args, settings): base_schedule = rows.plot.load_schedule(get_or_raise(args, __BASE_FILE_ARG)) candidate_schedule = rows.plot.load_schedule(get_or_raise(args, __CANDIDATE_FILE_ARG)) observed_duration_by_visit = rows.plot.calculate_observed_visit_duration(base_schedule) expected_duration_by_visit = calculate_expected_visit_duration(candidate_schedule) data = [] for visit in base_schedule.visits: observed_duration = observed_duration_by_visit[visit.visit] expected_duration = expected_duration_by_visit[visit.visit] data.append([visit.key, observed_duration.total_seconds(), expected_duration.total_seconds()]) frame = pandas.DataFrame(columns=['Visit', 'ObservedDuration', 'ExpectedDuration'], data=data) frame['Error'] = (frame.ObservedDuration - frame.ExpectedDuration) / frame.ObservedDuration figure, axis = matplotlib.pyplot.subplots() try: axis.plot(frame['Error'], label='(Observed - Expected)/Observed)') axis.legend() axis.set_ylim(-20, 2) axis.grid() matplotlib.pyplot.show() finally: matplotlib.pyplot.cla() matplotlib.pyplot.close(figure) def remove_violated_visits(rough_schedule: rows.model.schedule.Schedule, metadata: TraceLog, problem: rows.model.problem.Problem, duration_estimator: rows.plot.DurationEstimator, distance_estimator: rows.plot.DistanceEstimator) -> rows.model.schedule.Schedule: max_delay = metadata.visit_time_window min_delay = -metadata.visit_time_window dropped_visits = 0 allowed_visits = [] for route in rough_schedule.routes: carer_diary = problem.get_diary(route.carer, metadata.date) if not carer_diary: continue for visit in route.visits: if visit.check_in is not None: check_in_delay = visit.check_in - datetime.datetime.combine(metadata.date, visit.time) if check_in_delay > max_delay: # or check_in_delay < min_delay: dropped_visits += 1 continue allowed_visits.append(visit) # schedule does not have visits which exceed time windows first_improved_schedule = rows.model.schedule.Schedule(carers=rough_schedule.carers, visits=allowed_visits) allowed_visits = [] for route in first_improved_schedule.routes: if not route.visits: continue diary = problem.get_diary(route.carer, metadata.date) assert diary is not None # shift adjustment is added twice because it is allowed to extend the time before and after the working hours max_shift_end = max(event.end for event in diary.events) + metadata.shift_adjustment + metadata.shift_adjustment first_visit = route.visits[0] current_time = datetime.datetime.combine(metadata.date, first_visit.time) if current_time <= max_shift_end: allowed_visits.append(first_visit) visits_made = [] total_slack = datetime.timedelta() if len(route.visits) == 1: visit = route.visits[0] visit_duration = duration_estimator(visit.visit) if visit_duration is None: visit_duration = visit.duration current_time += visit_duration if current_time <= max_shift_end: visits_made.append(visit) else: dropped_visits += 1 else: for prev_visit, next_visit in route.edges(): visit_duration = duration_estimator(prev_visit.visit) if visit_duration is None: visit_duration = prev_visit.duration current_time += visit_duration current_time += distance_estimator(prev_visit, next_visit) start_time = max(current_time, datetime.datetime.combine(metadata.date, next_visit.time) - max_delay) total_slack += start_time - current_time current_time = start_time if current_time <= max_shift_end: visits_made.append(next_visit) else: dropped_visits += 1 if current_time <= max_shift_end: total_slack += max_shift_end - current_time total_break_duration = datetime.timedelta() for carer_break in diary.breaks: total_break_duration += carer_break.duration if total_slack + datetime.timedelta(hours=2) < total_break_duration: # route is not respecting contractual breaks visits_made.pop() for visit in visits_made: allowed_visits.append(visit) # schedule does not contain visits which exceed overtime of the carer return rows.model.schedule.Schedule(carers=rough_schedule.carers, visits=allowed_visits) class ScheduleCost: CARER_COST = datetime.timedelta(seconds=60 * 60 * 4) def __init__(self, travel_time: datetime.timedelta, carers_used: int, visits_missed: int, missed_visit_penalty: int): self.__travel_time = travel_time self.__carers_used = carers_used self.__visits_missed = visits_missed self.__missed_visit_penalty = missed_visit_penalty @property def travel_time(self) -> datetime.timedelta: return self.__travel_time @property def visits_missed(self) -> int: return self.__visits_missed @property def missed_visit_penalty(self) -> int: return self.__missed_visit_penalty @property def carers_used(self) -> int: return self.__carers_used def total_cost(self, include_vehicle_cost: bool) -> datetime.timedelta: cost = self.__travel_time.total_seconds() + self.__missed_visit_penalty * self.__visits_missed if include_vehicle_cost: cost += self.CARER_COST.total_seconds() * self.__carers_used return cost def get_schedule_cost(schedule: rows.model.schedule.Schedule, metadata: TraceLog, problem: rows.model.problem.Problem, distance_estimator: rows.plot.DistanceEstimator) -> ScheduleCost: carer_used_ids = set() visit_made_ids = set() travel_time = datetime.timedelta() for route in schedule.routes: if not route.visits: continue carer_used_ids.add(route.carer.sap_number) for visit in route.visits: visit_made_ids.add(visit.visit.key) for source, destination in route.edges(): travel_time += distance_estimator(source, destination) available_visit_ids = {visit.key for visit in problem.requested_visits(schedule.date)} return ScheduleCost(travel_time, len(carer_used_ids), len(available_visit_ids.difference(visit_made_ids)), metadata.missed_visit_penalty) def compare_schedule_cost(args, settings): ProblemConfig = collections.namedtuple('ProblemConfig', ['ProblemPath', 'HumanSolutionPath', 'SolverSecondSolutionPath', 'SolverThirdSolutionPath']) simulation_dir = '/home/pmateusz/dev/cordia/simulations/current_review_simulations' solver_log_file = os.path.join(simulation_dir, 'solutions/c350past_distv90b90e30m1m1m5.err.log') problem_data = [ProblemConfig(os.path.join(simulation_dir, 'problems/C350_past.json'), os.path.join(simulation_dir, 'planner_schedules/C350_planners_201710{0:02d}.json'.format(day)), os.path.join(simulation_dir, 'solutions/second_stage_c350past_distv90b90e30m1m1m5_201710{0:02d}.gexf'.format(day)), os.path.join(simulation_dir, 'solutions/c350past_distv90b90e30m1m1m5_201710{0:02d}.gexf'.format(day))) for day in range(1, 15, 1)] solver_traces = read_traces(solver_log_file) assert len(solver_traces) == len(problem_data) results = [] include_vehicle_cost = False with rows.plot.create_routing_session() as routing_session: distance_estimator = rows.plot.DistanceEstimator(settings, routing_session) def normalize_cost(value) -> float: if isinstance(value, datetime.timedelta): value_to_use = value.total_seconds() elif isinstance(value, float) or isinstance(value, int): value_to_use = value else: return float('inf') return round(value_to_use / 3600, 2) for solver_trace, problem_data in list(zip(solver_traces, problem_data)): problem = rows.load.load_problem(os.path.join(simulation_dir, problem_data.ProblemPath)) human_schedule = rows.load.load_schedule(os.path.join(simulation_dir, problem_data.HumanSolutionPath)) solver_second_schedule = rows.load.load_schedule(os.path.join(simulation_dir, problem_data.SolverSecondSolutionPath)) solver_third_schedule = rows.load.load_schedule(os.path.join(simulation_dir, problem_data.SolverThirdSolutionPath)) assert solver_second_schedule.date == human_schedule.date assert solver_third_schedule.date == human_schedule.date available_carers = problem.available_carers(human_schedule.date) requested_visits = problem.requested_visits(human_schedule.date) one_carer_visits = [visit for visit in requested_visits if visit.carer_count == 1] two_carer_visits = [visit for visit in requested_visits if visit.carer_count == 2] duration_estimator = rows.plot.DurationEstimator.create_expected_visit_duration(solver_third_schedule) human_schedule_to_use = remove_violated_visits(human_schedule, solver_trace, problem, duration_estimator, distance_estimator) solver_second_schedule_to_use = remove_violated_visits(solver_second_schedule, solver_trace, problem, duration_estimator, distance_estimator) solver_third_schedule_to_use = remove_violated_visits(solver_third_schedule, solver_trace, problem, duration_estimator, distance_estimator) human_cost = get_schedule_cost(human_schedule_to_use, solver_trace, problem, distance_estimator) solver_second_cost = get_schedule_cost(solver_second_schedule_to_use, solver_trace, problem, distance_estimator) solver_third_cost = get_schedule_cost(solver_third_schedule_to_use, solver_trace, problem, distance_estimator) results.append(collections.OrderedDict(date=solver_trace.date, day=solver_trace.date.day, carers=len(available_carers), one_carer_visits=len(one_carer_visits), two_carer_visits=2 * len(two_carer_visits), missed_visit_penalty=normalize_cost(solver_trace.missed_visit_penalty), carer_used_penalty=normalize_cost(solver_trace.carer_used_penalty), planner_missed_visits=human_cost.visits_missed, solver_second_missed_visits=solver_second_cost.visits_missed, solver_third_missed_visits=solver_third_cost.visits_missed, planner_travel_time=normalize_cost(human_cost.travel_time), solver_second_travel_time=normalize_cost(solver_second_cost.travel_time), solver_third_travel_time=normalize_cost(solver_third_cost.travel_time), planner_carers_used=human_cost.carers_used, solver_second_carers_used=solver_second_cost.carers_used, solver_third_carers_used=solver_third_cost.carers_used, planner_total_cost=normalize_cost(human_cost.total_cost(include_vehicle_cost)), solver_second_total_cost=normalize_cost(solver_second_cost.total_cost(include_vehicle_cost)), solver_third_total_cost=normalize_cost(solver_third_cost.total_cost(include_vehicle_cost)), solver_second_time=int(math.ceil(solver_trace.best_cost_time(2).total_seconds())), solver_third_time=int(math.ceil(solver_trace.best_cost_time(3).total_seconds())))) data_frame = pandas.DataFrame(data=results) print(tabulate.tabulate(data_frame, tablefmt='psql', headers='keys')) print(tabulate.tabulate(data_frame[['day', 'carers', 'one_carer_visits', 'two_carer_visits', 'missed_visit_penalty', 'planner_total_cost', 'solver_second_total_cost', 'solver_third_total_cost', 'planner_missed_visits', 'solver_second_missed_visits', 'solver_third_missed_visits', 'planner_travel_time', 'solver_second_travel_time', 'solver_third_travel_time', 'solver_second_time', 'solver_third_time']], tablefmt='latex', headers='keys', showindex=False)) def get_consecutive_visit_time_span(schedule: rows.model.schedule.Schedule, start_time_estimator): client_visits = collections.defaultdict(list) for visit in schedule.visits: client_visits[visit.visit.service_user].append(visit) for client in client_visits: visits = client_visits[client] used_keys = set() unique_visits = [] for visit in visits: date_time = start_time_estimator(visit) if date_time.hour == 0 and date_time.minute == 0: continue if visit.visit.key not in used_keys: used_keys.add(visit.visit.key) unique_visits.append(visit) unique_visits.sort(key=start_time_estimator) client_visits[client] = unique_visits client_span = collections.defaultdict(datetime.timedelta) for client in client_visits: if len(client_visits[client]) < 2: continue last_visit = client_visits[client][0] total_span = datetime.timedelta() for next_visit in client_visits[client][1:]: total_span += start_time_estimator(next_visit) - start_time_estimator(last_visit) last_visit = next_visit client_span[client] = total_span return client_span def get_carer_client_frequency(schedule: rows.model.schedule.Schedule): client_assigned_carers = collections.defaultdict(collections.Counter) for visit in schedule.visits: client_assigned_carers[int(visit.visit.service_user)][int(visit.carer.sap_number)] += 1 return client_assigned_carers def get_visits(problem: rows.model.problem.Problem, date: datetime.date): visits = set() for local_visits in problem.visits: for visit in local_visits.visits: if date != visit.date: continue visit.service_user = local_visits.service_user visits.add(visit) return visits def get_teams(problem: rows.model.problem.Problem, schedule: rows.model.schedule.Schedule): multiple_carer_visit_keys = set() for visit in get_visits(problem, schedule.date): if visit.carer_count > 1: multiple_carer_visit_keys.add(visit.key) client_visit_carers = collections.defaultdict(lambda: collections.defaultdict(list)) for visit in schedule.visits: if visit.visit.key not in multiple_carer_visit_keys: continue client_visit_carers[visit.visit.service_user][visit.visit.key].append(int(visit.carer.sap_number)) for client in client_visit_carers: for visit_key in client_visit_carers[client]: client_visit_carers[client][visit_key].sort() teams = set() for client in client_visit_carers: for visit_key in client_visit_carers[client]: teams.add(tuple(client_visit_carers[client][visit_key])) return teams def compare_schedule_quality(args, settings): ProblemConfig = collections.namedtuple('ProblemConfig', ['ProblemPath', 'HumanSolutionPath', 'SolverSolutionPath']) def compare_quality(solver_trace, problem, human_schedule, solver_schedule, duration_estimator, distance_estimator): visits = get_visits(problem, solver_trace.date) multiple_carer_visit_keys = {visit.key for visit in visits if visit.carer_count > 1} clients = list({int(visit.service_user) for visit in visits}) # number of different carers assigned throughout the day human_carer_frequency = get_carer_client_frequency(human_schedule) solver_carer_frequency = get_carer_client_frequency(solver_schedule) def median_carer_frequency(client_counters): total_counters = [] for client in client_counters: # total_counters += len(client_counters[client]) total_counters.append(len(client_counters[client])) # return total_counters / len(client_counters) return numpy.median(total_counters) human_schedule_squared = [] solver_schedule_squared = [] for client in clients: if client in human_carer_frequency: human_schedule_squared.append(sum(human_carer_frequency[client][carer] ** 2 for carer in human_carer_frequency[client])) else: human_schedule_squared.append(0) if client in solver_carer_frequency: solver_schedule_squared.append(sum(solver_carer_frequency[client][carer] ** 2 for carer in solver_carer_frequency[client])) else: solver_schedule_squared.append(0) human_matching_dominates = 0 solver_matching_dominates = 0 for index in range(len(clients)): if human_schedule_squared[index] > solver_schedule_squared[index]: human_matching_dominates += 1 elif human_schedule_squared[index] < solver_schedule_squared[index]: solver_matching_dominates += 1 matching_no_diff = len(clients) - human_matching_dominates - solver_matching_dominates assert matching_no_diff >= 0 human_schedule_span = get_consecutive_visit_time_span(human_schedule, lambda visit: visit.check_in) solver_schedule_span = get_consecutive_visit_time_span(solver_schedule, lambda visit: datetime.datetime.combine(visit.date, visit.time)) human_span_dominates = 0 solver_span_dominates = 0 for client in clients: if human_schedule_span[client] > solver_schedule_span[client]: human_span_dominates += 1 elif human_schedule_span[client] < solver_schedule_span[client]: solver_span_dominates += 1 span_no_diff = len(clients) - human_span_dominates - solver_span_dominates assert span_no_diff > 0 human_teams = get_teams(problem, human_schedule) solver_teams = get_teams(problem, solver_schedule) human_schedule_frame = rows.plot.get_schedule_data_frame(human_schedule, problem, duration_estimator, distance_estimator) solver_schedule_frame = rows.plot.get_schedule_data_frame(solver_schedule, problem, duration_estimator, distance_estimator) human_visits = human_schedule_frame['Visits'].median() solver_visits = solver_schedule_frame['Visits'].median() human_total_overtime = compute_overtime(human_schedule_frame).sum() solver_total_overtime = compute_overtime(solver_schedule_frame).sum() return {'problem': str(human_schedule.date), 'visits': len(visits), 'clients': len(clients), 'human_overtime': human_total_overtime, 'solver_overtime': solver_total_overtime, 'human_visits_median': human_visits, 'solver_visits_median': solver_visits, 'human_visit_span_dominates': human_span_dominates, 'solver_visit_span_dominates': solver_span_dominates, 'visit_span_indifferent': span_no_diff, 'human_matching_dominates': human_matching_dominates, 'solver_matching_dominates': solver_matching_dominates, 'human_carer_frequency': median_carer_frequency(human_carer_frequency), 'solver_carer_frequency': median_carer_frequency(solver_carer_frequency), 'matching_indifferent': matching_no_diff, 'human_teams': len(human_teams), 'solver_teams': len(solver_teams)} simulation_dir = '/home/pmateusz/dev/cordia/simulations/current_review_simulations' solver_log_file = os.path.join(simulation_dir, 'solutions/c350past_distv90b90e30m1m1m5.err.log') problem_data = [ProblemConfig(os.path.join(simulation_dir, 'problems/C350_past.json'), os.path.join(simulation_dir, 'planner_schedules/C350_planners_201710{0:02d}.json'.format(day)), os.path.join(simulation_dir, 'solutions/c350past_distv90b90e30m1m1m5_201710{0:02d}.gexf'.format(day))) for day in range(1, 15, 1)] solver_traces = read_traces(solver_log_file) assert len(solver_traces) == len(problem_data) results = [] with rows.plot.create_routing_session() as routing_session: distance_estimator = rows.plot.DistanceEstimator(settings, routing_session) for solver_trace, problem_data in zip(solver_traces, problem_data): problem = rows.load.load_problem(os.path.join(simulation_dir, problem_data.ProblemPath)) human_schedule = rows.load.load_schedule(os.path.join(simulation_dir, problem_data.HumanSolutionPath)) solver_schedule = rows.load.load_schedule(os.path.join(simulation_dir, problem_data.SolverSolutionPath)) assert solver_trace.date == human_schedule.date assert solver_trace.date == solver_schedule.date duration_estimator = rows.plot.DurationEstimator.create_expected_visit_duration(solver_schedule) human_schedule_to_use = remove_violated_visits(human_schedule, solver_trace, problem, duration_estimator, distance_estimator) solver_schedule_to_use = remove_violated_visits(solver_schedule, solver_trace, problem, duration_estimator, distance_estimator) row = compare_quality(solver_trace, problem, human_schedule_to_use, solver_schedule_to_use, duration_estimator, distance_estimator) results.append(row) data_frame = pandas.DataFrame(data=results) data_frame['human_visit_span_dominates_rel'] = data_frame['human_visit_span_dominates'] / data_frame['clients'] data_frame['human_visit_span_dominates_rel_label'] = data_frame['human_visit_span_dominates_rel'].apply(lambda v: '{0:.2f}'.format(v * 100.0)) data_frame['solver_visit_span_dominates_rel'] = data_frame['solver_visit_span_dominates'] / data_frame['clients'] data_frame['solver_visit_span_dominates_rel_label'] = data_frame['solver_visit_span_dominates_rel'].apply(lambda v: '{0:.2f}'.format(v * 100.0)) data_frame['visit_span_indifferent_rel'] = data_frame['visit_span_indifferent'] / data_frame['clients'] data_frame['human_matching_dominates_rel'] = data_frame['human_matching_dominates'] / data_frame['clients'] data_frame['human_matching_dominates_rel_label'] = data_frame['human_matching_dominates_rel'].apply(lambda v: '{0:.2f}'.format(v * 100.0)) data_frame['solver_matching_dominates_rel'] = data_frame['solver_matching_dominates'] / data_frame['clients'] data_frame['solver_matching_dominates_rel_label'] = data_frame['solver_matching_dominates_rel'].apply(lambda v: '{0:.2f}'.format(v * 100.0)) data_frame['matching_indifferent_rel'] = data_frame['matching_indifferent'] / data_frame['clients'] data_frame['day'] = data_frame['problem'].apply(lambda label: datetime.datetime.strptime(label, '%Y-%m-%d').date().day) data_frame['human_overtime_label'] = data_frame['human_overtime'].apply(get_time_delta_label) data_frame['solver_overtime_label'] = data_frame['solver_overtime'].apply(get_time_delta_label) print(tabulate.tabulate(data_frame, tablefmt='psql', headers='keys')) print(tabulate.tabulate(data_frame[['day', 'human_visits_median', 'solver_visits_median', 'human_overtime_label', 'solver_overtime_label', 'human_carer_frequency', 'solver_carer_frequency', 'human_matching_dominates_rel_label', 'solver_matching_dominates_rel_label', 'human_teams', 'solver_teams']], tablefmt='latex', showindex=False, headers='keys')) BenchmarkData = collections.namedtuple('BenchmarkData', ['BestCost', 'BestCostTime', 'BestBound', 'ComputationTime']) class MipTrace: __MIP_HEADER_PATTERN = re.compile('^\s*Expl\s+Unexpl\s+|\s+Obj\s+Depth\s+IntInf\s+|\s+Incumbent\s+BestBd\s+Gap\s+|\s+It/Node\s+Time\s*$') __MIP_LINE_PATTERN = re.compile('^(?P<solution_flag>[\w\*]?)\s*' '(?P<explored_nodes>\d+)\s+' '(?P<nodes_to_explore>\d+)\s+' '(?P<node_relaxation>[\w\.]*)\s+' '(?P<node_depth>\d*)\s+' '(?P<fractional_variables>\w*)\s+' '(?P<incumbent>[\d\.\-]*)\s+' '(?P<lower_bound>[\d\.\-]*)\s+' '(?P<gap>[\d\.\%\-]*)\s+' '(?P<simplex_it_per_node>[\d\.\-]*)\s+' '(?P<elapsed_time>\d+)s$') __SUMMARY_PATTERN = re.compile('^Best\sobjective\s(?P<objective>[e\d\.\+]+),\s' 'best\sbound\s(?P<bound>[e\d\.\+]+),\s' 'gap\s(?P<gap>[e\d\.\+]+)\%$') class MipProgressMessage: def __init__(self, has_solution, best_cost, lower_bound, elapsed_time): self.__has_solution = has_solution self.__best_cost = best_cost self.__lower_bound = lower_bound self.__elapsed_time = elapsed_time @property def has_solution(self): return self.__has_solution @property def best_cost(self): return self.__best_cost @property def lower_bound(self): return self.__lower_bound @property def elapsed_time(self): return self.__elapsed_time def __init__(self, best_objective: float, best_bound: float, events: typing.List[MipProgressMessage]): self.__best_objective = best_objective self.__best_bound = best_bound self.__events = events @staticmethod def read_from_file(path) -> 'MipTrace': events = [] best_objective = float('inf') best_bound = float('-inf') with open(path, 'r') as fp: lines = fp.readlines() lines_it = iter(lines) for line in lines_it: if re.match(MipTrace.__MIP_HEADER_PATTERN, line): break next(lines_it, None) # read the empty line for line in lines_it: line_match = re.match(MipTrace.__MIP_LINE_PATTERN, line) if not line_match: break raw_solution_flag = line_match.group('solution_flag') raw_incumbent = line_match.group('incumbent') raw_lower_bound = line_match.group('lower_bound') raw_elapsed_time = line_match.group('elapsed_time') has_solution = raw_solution_flag == 'H' or raw_solution_flag == '*' incumbent = float(raw_incumbent) if raw_incumbent and raw_incumbent != '-' else float('inf') lower_bound = float(raw_lower_bound) if raw_lower_bound else float('-inf') elapsed_time = datetime.timedelta(seconds=int(raw_elapsed_time)) if raw_elapsed_time else datetime.timedelta() events.append(MipTrace.MipProgressMessage(has_solution, incumbent, lower_bound, elapsed_time)) next(lines_it, None) for line in lines_it: line_match = re.match(MipTrace.__SUMMARY_PATTERN, line) if line_match: raw_objective = line_match.group('objective') if raw_objective: best_objective = float(raw_objective) raw_bound = line_match.group('bound') if raw_bound: best_bound = float(raw_bound) return MipTrace(best_objective, best_bound, events) def best_cost(self): return self.__best_objective def best_cost_time(self): for event in reversed(self.__events): if event.has_solution: return event.elapsed_time return datetime.timedelta.max def best_bound(self): return self.__best_bound def computation_time(self): if self.__events: return self.__events[-1].elapsed_time return datetime.timedelta.max class DummyTrace: def __init__(self): pass def best_cost(self): return float('inf') def best_bound(self): return 0 def best_cost_time(self): return datetime.timedelta(hours=23, minutes=59, seconds=59) def compare_benchmark_table(args, settings): ProblemConfig = collections.namedtuple('ProblemConfig', ['ProblemPath', 'Carers', 'Visits', 'Visits2', 'MipSolutionLog', 'CpTeamSolutionLog', 'CpWindowsSolutionLog']) simulation_dir = '/home/pmateusz/dev/cordia/simulations/current_review_simulations' old_simulation_dir = '/home/pmateusz/dev/cordia/simulations/review_simulations_old' dummy_log = DummyTrace() problem_configs = [ProblemConfig(os.path.join(simulation_dir, 'benchmark/25/problem_201710{0:02d}_v25m0c3.json'.format(day_number)), 3, 25, 0, os.path.join(simulation_dir, 'benchmark/25/solutions/problem_201710{0:02d}_v25m0c3_mip.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/25/solutions/problem_201710{0:02d}_v25m0c3.err.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/25/solutions/problem_201710{0:02d}_v25m0c3.err.log'.format(day_number))) for day_number in range(1, 15, 1)] problem_configs.extend( [ProblemConfig(os.path.join(simulation_dir, 'benchmark/25/problem_201710{0:02d}_v25m5c3.json'.format(day_number)), 3, 20, 5, os.path.join(simulation_dir, 'benchmark/25/solutions/problem_201710{0:02d}_v25m5c3_mip.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/25/solutions/problem_201710{0:02d}_teams_v25m5c3.err.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/25/solutions/problem_201710{0:02d}_windows_v25m5c3.err.log'.format(day_number))) for day_number in range(1, 15, 1)]) problem_configs.extend( [ProblemConfig(os.path.join(simulation_dir, 'benchmark/50/problem_201710{0:02d}_v50m0c5.json'.format(day_number)), 5, 50, 0, os.path.join(simulation_dir, 'benchmark/50/solutions/problem_201710{0:02d}_v50m0c5_mip.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/50/solutions/problem_201710{0:02d}_v50m0c5.err.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/50/solutions/problem_201710{0:02d}_v50m0c5.err.log'.format(day_number))) for day_number in range(1, 15, 1)]) problem_configs.extend( [ProblemConfig(os.path.join(simulation_dir, 'benchmark/50/problem_201710{0:02d}_v50m10c5.json'.format(day_number)), 5, 40, 10, os.path.join(simulation_dir, 'benchmark/50/solutions/problem_201710{0:02d}_v50m10c5_mip.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/50/solutions/problem_201710{0:02d}_teams_v50m10c5.err.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/50/solutions/problem_201710{0:02d}_windows_v50m10c5.err.log'.format(day_number))) for day_number in range(1, 15, 1)]) logs = [] for problem_config in problem_configs: with warnings.catch_warnings(): warnings.simplefilter('ignore') if os.path.exists(problem_config.CpTeamSolutionLog): cp_team_logs = read_traces(problem_config.CpTeamSolutionLog) if not cp_team_logs: warnings.warn('File {0} is empty'.format(problem_config.CpTeamSolutionLog)) cp_team_logs = dummy_log else: cp_team_log = cp_team_logs[0] else: cp_team_logs = dummy_log if os.path.exists(problem_config.CpWindowsSolutionLog): cp_window_logs = read_traces(problem_config.CpWindowsSolutionLog) if not cp_window_logs: warnings.warn('File {0} is empty'.format(problem_config.CpWindowsSolutionLog)) cp_window_logs = dummy_log else: cp_window_log = cp_window_logs[0] else: cp_window_logs = dummy_log if os.path.exists(problem_config.MipSolutionLog): mip_log = MipTrace.read_from_file(problem_config.MipSolutionLog) if not mip_log: warnings.warn('File {0} is empty'.format(problem_config.MipSolutionLog)) mip_log = dummy_log else: mip_log = dummy_log logs.append([problem_config, mip_log, cp_team_log, cp_window_log]) def get_gap(cost: float, lower_bound: float) -> float: if lower_bound == 0.0: return float('inf') return (cost - lower_bound) * 100.0 / lower_bound def get_delta(cost, cost_to_compare): return (cost - cost_to_compare) * 100.0 / cost_to_compare def get_computation_time_label(time: datetime.timedelta) -> str: return str(time.total_seconds()) data = [] for problem_config, mip_log, cp_team_log, cp_window_log in logs: data.append(collections.OrderedDict( date=cp_team_log.date, visits=problem_config.Visits, visits_of_two=problem_config.Visits2, carers=cp_team_log.carers, penalty=cp_team_log.missed_visit_penalty, lower_bound=mip_log.best_bound(), mip_best_cost=mip_log.best_cost(), mip_best_gap=get_gap(mip_log.best_cost(), mip_log.best_bound()), mip_best_time=get_computation_time_label(mip_log.best_cost_time()), team_best_cost=cp_team_log.best_cost(), team_best_gap=get_gap(cp_team_log.best_cost(), mip_log.best_bound()), team_best_delta=get_gap(cp_team_log.best_cost(), mip_log.best_cost()), team_best_time=get_computation_time_label(cp_team_log.best_cost_time()), windows_best_cost=cp_window_log.best_cost(), windows_best_gap=get_gap(cp_window_log.best_cost(), mip_log.best_bound()), windows_best_delta=get_gap(cp_window_log.best_cost(), mip_log.best_cost()), windows_best_time=get_computation_time_label(cp_window_log.best_cost_time()))) data_frame = pandas.DataFrame(data=data) def get_duration_label(time_delta: datetime.timedelta) -> str: assert time_delta.days == 0 hours = int(time_delta.total_seconds() / 3600) minutes = int(time_delta.total_seconds() / 60 - hours * 60) seconds = int(time_delta.total_seconds() - 3600 * hours - 60 * minutes) # return '{0:02d}:{1:02d}:{2:02d}'.format(hours, minutes, seconds) return '{0:,.0f}'.format(time_delta.total_seconds()) def get_cost_label(cost: float) -> str: return '{0:,.0f}'.format(cost) def get_gap_label(gap: float) -> str: return '{0:,.2f}'.format(gap) def get_problem_label(problem, date: datetime.date): label = '{0:2d} {1}'.format(date.day, problem.Visits) if problem.Visits2 == 0: return label return label + '/' + str(problem.Visits2) print_data = [] for problem_config, mip_log, cp_team_log, cp_window_log in logs: best_cost = min([mip_log.best_cost(), cp_team_log.best_cost(), cp_window_log.best_cost()]) print_data.append(collections.OrderedDict(Problem=get_problem_label(problem_config, cp_team_log.date), Penalty=get_cost_label(cp_team_log.missed_visit_penalty), LB=get_cost_label(mip_log.best_bound()), MIP_COST=get_cost_label(mip_log.best_cost()), MIP_GAP=get_gap_label(get_gap(mip_log.best_cost(), mip_log.best_bound())), MIP_DELTA=get_gap_label(get_delta(mip_log.best_cost(), best_cost)), MIP_TIME=get_duration_label(mip_log.best_cost_time()), TEAMS_GAP=get_gap_label(get_gap(cp_team_log.best_cost(), mip_log.best_bound())), TEAMS_DELTA=get_gap_label(get_delta(cp_team_log.best_cost(), best_cost)), TEAMS_COST=get_cost_label(cp_team_log.best_cost()), TEAMS_Time=get_duration_label(cp_team_log.best_cost_time()), WINDOWS_COST=get_cost_label(cp_window_log.best_cost()), WINDOWS_GAP=get_gap_label(get_gap(cp_window_log.best_cost(), mip_log.best_bound())), WINDOWS_DELTA=get_gap_label(get_delta(cp_window_log.best_cost(), best_cost)), WINDOWS_TIME=get_duration_label(cp_window_log.best_cost_time()) )) data_frame = pandas.DataFrame(data=print_data) print(tabulate.tabulate( data_frame[['Problem', 'Penalty', 'LB', 'MIP_COST', 'MIP_TIME', 'TEAMS_COST', 'TEAMS_Time', 'WINDOWS_COST', 'WINDOWS_TIME']], tablefmt='latex', headers='keys', showindex=False)) print(tabulate.tabulate( data_frame[['Problem', 'MIP_GAP', 'MIP_DELTA', 'MIP_TIME', 'TEAMS_GAP', 'TEAMS_DELTA', 'TEAMS_Time', 'WINDOWS_GAP', 'WINDOWS_DELTA', 'WINDOWS_TIME']], tablefmt='latex', headers='keys', showindex=False)) @functools.total_ordering class ProblemMetadata: WINDOW_LABELS = ['', 'F', 'S', 'M', 'L', 'A'] def __init__(self, case: int, visits: int, windows: int): assert visits == 20 or visits == 50 or visits == 80 assert 0 <= windows < len(ProblemMetadata.WINDOW_LABELS) self.__case = case self.__visits = visits self.__windows = windows def __eq__(self, other) -> bool: if isinstance(other, ProblemMetadata): return self.case == other.case and self.visits == other.visits and self.__windows == other.windows return False def __neq__(self, other) -> bool: return not (self == other) def __lt__(self, other) -> bool: assert isinstance(other, ProblemMetadata) if self.windows != other.windows: return self.windows < other.windows if self.visits != other.visits: return self.visits < other.visits if self.case != other.case: return self.case < other.case return False @property def label(self) -> str: return '{0:>2}{1}'.format(self.instance_number, self.windows_label) @property def windows(self) -> int: return self.__windows @property def windows_label(self) -> str: return ProblemMetadata.WINDOW_LABELS[self.__windows] @property def visits(self) -> int: return self.__visits @property def case(self) -> int: return self.__case @property def instance_number(self) -> int: if self.__visits == 20: return self.__case if self.__visits == 50: return 5 + self.__case return 8 + self.__case def compare_literature_table(args, settings): LIU2019 = 'liu2019' AFIFI2016 = 'afifi2016' DECERLE2018 = 'decerle2018' GAYRAUD2015 = 'gayraud2015' PARRAGH2018 = 'parragh2018' BREDSTROM2008 = 'bredstrom2008combined' BREDSTROM2007 = 'bredstrom2007branchandprice' InstanceConfig = collections.namedtuple('InstanceConfig', ['name', 'nickname', 'result', 'who', 'is_optimal']) instance_data = [ InstanceConfig(name='case_1_20_4_2_1', nickname='1N', result=5.13, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_2_20_4_2_1', nickname='2N', result=4.98, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_3_20_4_2_1', nickname='3N', result=5.19, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_4_20_4_2_1', nickname='4N', result=7.21, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_5_20_4_2_1', nickname='5N', result=5.37, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_1_50_10_5_1', nickname='6N', result=14.45, who=DECERLE2018, is_optimal=True), InstanceConfig(name='case_2_50_10_5_1', nickname='7N', result=13.02, who=DECERLE2018, is_optimal=True), InstanceConfig(name='case_3_50_10_5_1', nickname='8N', result=34.94, who=PARRAGH2018, is_optimal=True), InstanceConfig(name='case_1_80_16_8_1', nickname='9N', result=43.48, who=PARRAGH2018, is_optimal=True), InstanceConfig(name='case_2_80_16_8_1', nickname='10N', result=12.08, who=PARRAGH2018, is_optimal=True), InstanceConfig(name='case_1_20_4_2_2', nickname='1S', result=3.55, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_2_20_4_2_2', nickname='2S', result=4.27, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_3_20_4_2_2', nickname='3S', result=3.63, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_4_20_4_2_2', nickname='4S', result=6.14, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_5_20_4_2_2', nickname='5S', result=3.93, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_1_50_10_5_2', nickname='6S', result=8.14, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_2_50_10_5_2', nickname='7S', result=8.39, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_3_50_10_5_2', nickname='8S', result=9.54, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_1_80_16_8_2', nickname='9S', result=11.93, who=AFIFI2016, is_optimal=False), InstanceConfig(name='case_2_80_16_8_2', nickname='10S', result=8.54, who=LIU2019, is_optimal=False), InstanceConfig(name='case_1_20_4_2_3', nickname='1M', result=3.55, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_2_20_4_2_3', nickname='2M', result=3.58, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_3_20_4_2_3', nickname='3M', result=3.33, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_4_20_4_2_3', nickname='4M', result=5.67, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_5_20_4_2_3', nickname='5M', result=3.53, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_1_50_10_5_3', nickname='6M', result=7.7, who=AFIFI2016, is_optimal=False), InstanceConfig(name='case_2_50_10_5_3', nickname='7M', result=7.48, who=AFIFI2016, is_optimal=False), InstanceConfig(name='case_3_50_10_5_3', nickname='8M', result=8.54, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_1_80_16_8_3', nickname='9M', result=10.92, who=AFIFI2016, is_optimal=False), InstanceConfig(name='case_2_80_16_8_3', nickname='10M', result=7.62, who=AFIFI2016, is_optimal=False), InstanceConfig(name='case_1_20_4_2_4', nickname='1L', result=3.39, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_2_20_4_2_4', nickname='2L', result=3.42, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_3_20_4_2_4', nickname='3L', result=3.29, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_4_20_4_2_4', nickname='4L', result=5.13, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_5_20_4_2_4', nickname='5L', result=3.34, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_1_50_10_5_4', nickname='6L', result=7.14, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_2_50_10_5_4', nickname='7L', result=6.88, who=BREDSTROM2007, is_optimal=False), InstanceConfig(name='case_3_50_10_5_4', nickname='8L', result=8, who=AFIFI2016, is_optimal=False), InstanceConfig(name='case_1_80_16_8_4', nickname='9L', result=10.43, who=LIU2019, is_optimal=False), InstanceConfig(name='case_2_80_16_8_4', nickname='10L', result=7.36, who=LIU2019, is_optimal=False), InstanceConfig(name='case_1_20_4_2_5', nickname='1H', result=2.95, who=PARRAGH2018, is_optimal=False), InstanceConfig(name='case_2_20_4_2_5', nickname='2H', result=2.88, who=PARRAGH2018, is_optimal=False), InstanceConfig(name='case_3_20_4_2_5', nickname='3H', result=2.74, who=PARRAGH2018, is_optimal=False), InstanceConfig(name='case_4_20_4_2_5', nickname='4H', result=4.29, who=GAYRAUD2015, is_optimal=False), InstanceConfig(name='case_5_20_4_2_5', nickname='5H', result=2.81, who=PARRAGH2018, is_optimal=False), InstanceConfig(name='case_1_50_10_5_5', nickname='6H', result=6.48, who=DECERLE2018, is_optimal=False), InstanceConfig(name='case_2_50_10_5_5', nickname='7H', result=5.71, who=PARRAGH2018, is_optimal=False), InstanceConfig(name='case_3_50_10_5_5', nickname='8H', result=6.52, who=PARRAGH2018, is_optimal=False), InstanceConfig(name='case_1_80_16_8_5', nickname='9H', result=8.51, who=PARRAGH2018, is_optimal=False), InstanceConfig(name='case_2_80_16_8_5', nickname='10H', result=6.31, who=PARRAGH2018, is_optimal=False) ] instance_dirs = ['/home/pmateusz/dev/cordia/simulations/current_review_simulations/hc/solutions/case20', '/home/pmateusz/dev/cordia/simulations/current_review_simulations/hc/solutions/case50', '/home/pmateusz/dev/cordia/simulations/current_review_simulations/hc/solutions/case80'] instance_dict = {instance.name: instance for instance in instance_data} print_data = [] instance_pattern = re.compile(r'case_(?P<case>\d+)_(?P<visits>\d+)_(?P<carers>\d+)_(?P<synchronized_visits>\d+)_(?P<windows>\d+)') instance_counter = 1 last_visits = None with warnings.catch_warnings(): warnings.filterwarnings('ignore') for instance_dir in instance_dirs: for instance in instance_data: instance_log_path = os.path.join(instance_dir, instance.name + '.dat.err.log') if not os.path.exists(instance_log_path): continue solver_logs = read_traces(instance_log_path) if not solver_logs: continue instance = instance_dict[instance.name] name_match = instance_pattern.match(instance.name) if not name_match: continue first_solver_logs = solver_logs[0] case = int(name_match.group('case')) visits = int(name_match.group('visits')) carers = int(name_match.group('carers')) synchronized_visits = int(name_match.group('synchronized_visits')) windows_configuration = int(name_match.group('windows')) problem_meta = ProblemMetadata(case, visits, windows_configuration) if last_visits and last_visits != visits: instance_counter = 1 normalized_result = float('inf') if first_solver_logs.best_cost(3) < 100: normalized_result = round(first_solver_logs.best_cost(3), 2) delta = round((instance.result - normalized_result) / instance.result * 100, 2) printable_literature_result = str(instance.result) if instance.is_optimal: printable_literature_result += '*' printable_literature_result += 'cite{{{0}}}'.format(instance.who) print_data.append(collections.OrderedDict( metadata=problem_meta, problem=problem_meta.label, case=instance_counter, v1=visits - 2 * synchronized_visits, v2=synchronized_visits, carers=carers, time_windows=problem_meta.windows_label, literature_result=printable_literature_result, result=normalized_result, delta=delta, time=round(first_solver_logs.best_cost_time(3).total_seconds(), 2) if normalized_result != float('inf') else float('inf') )) last_visits = visits instance_counter += 1 print_data.sort(key=lambda dict_obj: dict_obj['metadata']) print(tabulate.tabulate( pandas.DataFrame(data=print_data)[['problem', 'carers', 'v1', 'v2', 'literature_result', 'result', 'time', 'delta']], showindex=False, tablefmt='latex', headers='keys')) def compare_planner_optimizer_quality(args, settings): data_file = getattr(args, __FILE_ARG) data_frame = pandas.read_csv(data_file) figsize = (2.5, 5) labels = ['Planners', 'Algorithm'] data_frame['travel_time'] = data_frame['Travel Time'].apply(parse_pandas_duration) data_frame['span'] = data_frame['Span'].apply(parse_pandas_duration) data_frame['overtime'] = data_frame['Overtime'].apply(parse_pandas_duration) data_frame_planners = data_frame[data_frame['Type'] == 'Planners'] data_frame_solver = data_frame[data_frame['Type'] == 'Solver'] overtime_per_carer = [list((data_frame_planners['overtime'] / data_frame_planners['Carers']).values), list((data_frame_solver['overtime'] / data_frame_solver['Carers']).values)] def to_matplotlib_minutes(value): return value * 60 * 1000000000 fig, ax = matplotlib.pyplot.subplots(1, 1, figsize=figsize) ax.boxplot(overtime_per_carer, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) ax.set_xticklabels(labels, rotation=45) ax.set_ylabel('Overtime per Carer [HH:MM]') ax.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(format_timedelta_pandas)) ax.set_yticks([0, to_matplotlib_minutes(10), to_matplotlib_minutes(20), to_matplotlib_minutes(30)]) fig.tight_layout() rows.plot.save_figure('quality_boxplot_overtime') travel_time_per_carer = [list((data_frame_planners['travel_time'] / data_frame_planners['Carers']).values), list((data_frame_solver['travel_time'] / data_frame_solver['Carers']).values)] fig, ax = matplotlib.pyplot.subplots(1, 1, figsize=figsize) ax.boxplot(travel_time_per_carer, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) ax.set_xticklabels(labels, rotation=45) ax.set_ylabel('Travel Time per Carer [HH:MM]') ax.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(format_timedelta_pandas)) ax.set_yticks([0, to_matplotlib_minutes(30), to_matplotlib_minutes(60), to_matplotlib_minutes(90), to_matplotlib_minutes(120)]) fig.tight_layout() rows.plot.save_figure('quality_boxplot_travel_time') span_per_client = [list((data_frame_planners['span'] / data_frame_planners['Clients']).values), list((data_frame_solver['span'] / data_frame_solver['Clients']).values)] fig, ax = matplotlib.pyplot.subplots(1, 1, figsize=figsize) ax.boxplot(span_per_client, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) ax.set_xticklabels(labels, rotation=45) ax.set_ylabel('Visit Span per Client [HH:MM]') ax.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(format_timedelta_pandas)) ax.set_yticks([0, to_matplotlib_minutes(6 * 60), to_matplotlib_minutes(7 * 60), to_matplotlib_minutes(8 * 60), to_matplotlib_minutes(9 * 60)]) ax.set_ylim(bottom=6 * 60 * 60 * 1000000000) fig.tight_layout() rows.plot.save_figure('quality_span') teams = [list(data_frame_planners['Teams'].values), list(data_frame_solver['Teams'].values)] fig, ax = matplotlib.pyplot.subplots(1, 1, figsize=figsize) ax.boxplot(teams, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) ax.set_xticklabels(labels, rotation=45) ax.set_ylabel('Teams of 2 Carers') fig.tight_layout() rows.plot.save_figure('quality_teams') better_matching = [list(data_frame_planners['Better Matching'].values), list(data_frame_solver['Better Matching'].values)] fig, ax = matplotlib.pyplot.subplots(1, 1, figsize=figsize) ax.boxplot(better_matching, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) ax.set_xticklabels(labels, rotation=45) ax.set_ylabel('Better Client-Carer Matching') fig.tight_layout() rows.plot.save_figure('quality_matching') def parse_percent(value): value_to_use = value.replace('%', '') return float(value_to_use) / 100.0 def parse_duration_seconds(value): return datetime.timedelta(seconds=value) def compare_benchmark(args, settings): data_file_path = getattr(args, __FILE_ARG) data_frame =
pandas.read_csv(data_file_path)
pandas.read_csv
import unittest import os from collections import defaultdict from unittest import mock import warnings import pandas as pd import numpy as np from dataprofiler.profilers import FloatColumn from dataprofiler.profilers.profiler_options import FloatOptions test_root_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) class TestFloatColumn(unittest.TestCase): def test_base_case(self): data = pd.Series([], dtype=object) profiler = FloatColumn(data.name) profiler.update(data) self.assertEqual(profiler.match_count, 0) self.assertEqual(profiler.min, None) self.assertEqual(profiler.max, None) self.assertEqual(profiler.sum, 0) self.assertEqual(profiler.mean, 0) self.assertTrue(profiler.median is np.nan) self.assertEqual([np.nan], profiler.mode) self.assertTrue(profiler.variance is np.nan) self.assertTrue(profiler.skewness is np.nan) self.assertTrue(profiler.kurtosis is np.nan) self.assertTrue(profiler.stddev is np.nan) self.assertIsNone(profiler.histogram_selection) self.assertEqual(len(profiler.quantiles), 999) self.assertIsNone(profiler.data_type_ratio) def test_single_data_variance_case(self): data = pd.Series([1.5]).apply(str) profiler = FloatColumn(data.name) profiler.update(data) self.assertEqual(profiler.match_count, 1.0) self.assertEqual(profiler.mean, 1.5) self.assertTrue(profiler.variance is np.nan) data = pd.Series([2.5]).apply(str) profiler.update(data) self.assertEqual(profiler.match_count, 2) self.assertEqual(profiler.mean, 2.0) self.assertEqual(profiler.variance, 0.5) def test_profiled_precision(self): """ Checks whether the precision for the profiler is correct. :return: """ df_1 = pd.Series([0.4, 0.3, 0.1, 0.1, 0.1]).apply(str) df_2 = pd.Series([0.11, 0.11, 0.12, 2.11]).apply(str) df_3 = pd.Series([4.114, 3.161, 2.512, 2.131]).apply(str) df_mix = pd.Series([4.1, '3.', 2.52, 2.13143]).apply(str) float_profiler = FloatColumn("Name") float_profiler.update(df_3) self.assertEqual(4, float_profiler.precision['min']) self.assertEqual(4, float_profiler.precision['max']) float_profiler.update(df_2) self.assertEqual(2, float_profiler.precision['min']) self.assertEqual(4, float_profiler.precision['max']) float_profiler.update(df_1) self.assertEqual(1, float_profiler.precision['min']) self.assertEqual(4, float_profiler.precision['max']) float_profiler = FloatColumn("Name") float_profiler.update(df_mix) self.assertEqual(1, float_profiler.precision['min']) self.assertEqual(6, float_profiler.precision['max']) # edge cases # # integer with 0s on right and left side df_ints = pd.Series(['0013245678', '123456700', '0012345600']) float_profiler = FloatColumn("Name") float_profiler.update(df_ints) self.assertEqual(6, float_profiler.precision['min']) self.assertEqual(8, float_profiler.precision['max']) # scientific df_scientific = pd.Series(['1.23e-3', '2.2344', '1.244e4']) float_profiler = FloatColumn("Name") float_profiler.update(df_scientific) self.assertEqual(3, float_profiler.precision['min']) self.assertEqual(5, float_profiler.precision['max']) # plus df_plus = pd.Series(['+1.3e-3', '+2.244', '+1.3324e4']) float_profiler = FloatColumn("Name") float_profiler.update(df_plus) self.assertEqual(2, float_profiler.precision['min']) self.assertEqual(5, float_profiler.precision['max']) # minus df_minus = pd.Series(['-1.3234e-3', '-0.244', '-1.3324e4']) float_profiler = FloatColumn("Name") float_profiler.update(df_minus) self.assertEqual(3, float_profiler.precision['min']) self.assertEqual(5, float_profiler.precision['max']) # spaces around values df_spaces = pd.Series([' -1.3234e-3 ', ' -0.244 ']) float_profiler = FloatColumn("Name") float_profiler.update(df_spaces) self.assertEqual(3, float_profiler.precision['min']) self.assertEqual(5, float_profiler.precision['max']) # constant precision df_constant = pd.Series(['1.34', '+1.23e-4', '00101', '+100.', '0.234', '-432', '.954', '+.342', '-123e1', '23.1']) float_profiler = FloatColumn("Name") float_profiler.update(df_constant) self.assertEqual(3, float_profiler.precision['min']) self.assertEqual(3, float_profiler.precision['max']) self.assertEqual(3, float_profiler.precision['mean']) self.assertEqual(10, float_profiler.precision['sample_size']) self.assertEqual(0, float_profiler.precision['var']) self.assertEqual(0, float_profiler.precision['std']) # random precision df_random = pd.Series(['+ 9', '-.3', '-1e-3', '3.2343', '0', '1230', '0.33', '4.3', '302.1', '-4.322']) float_profiler = FloatColumn("Name") float_profiler.update(df_random) self.assertEqual(0, float_profiler.precision['min']) self.assertEqual(5, float_profiler.precision['max']) self.assertEqual(2.4444, float_profiler.precision['mean']) self.assertEqual(9, float_profiler.precision['sample_size']) self.assertEqual(2.7778, float_profiler.precision['var']) self.assertEqual(1.6667, float_profiler.precision['std']) # Ensure order doesn't change anything df_random_order = pd.Series(['1230', '0.33', '4.3', '302.1', '-4.322', '+ 9', '-.3', '-1e-3', '3.2343', '0']) float_profiler_order = FloatColumn("Name") float_profiler_order.update(df_random) self.assertDictEqual( float_profiler.precision, float_profiler_order.precision ) # check to make sure all formats of precision are correctly predicted samples = [ # value, min expected precision ['10.01', 4], ['.01', 1], ['0.01', 1], ['-0.01', 1], ['+0.01', 1], [' +0.013', 2], [' -1.3234e-3 ', 5], [' 0012345600 ', 6], [' 0012345600. ', 8], [' -0012345600. ', 8], ] for sample in samples: df_series = pd.Series([sample[0]]) min_expected_precision = sample[1] precision = FloatColumn._get_float_precision(df_series) self.assertEqual(min_expected_precision, precision['min'], msg='Errored for: {}'.format(sample[0])) def test_profiled_min(self): # test with multiple values data = np.linspace(-5, 5, 11) df = pd.Series(data).apply(str) profiler = FloatColumn(df.name) profiler.update(df[1:]) self.assertEqual(profiler.min, -4) profiler.update(df) self.assertEqual(profiler.min, -5) profiler.update(pd.Series(['-4'])) self.assertEqual(profiler.min, -5) # empty data data = pd.Series([], dtype=object) profiler = FloatColumn(data.name) profiler.update(data) self.assertEqual(profiler.min, None) # data with None value df = pd.Series([2.0, 3.0, None, np.nan]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) self.assertEqual(profiler.min, 2.0) # data with one value df = pd.Series([2.0]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) self.assertEqual(profiler.min, 2.0) # data with unique value df = pd.Series([2.0, 2.0, 2.0, 2.0, 2.0]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) self.assertEqual(profiler.min, 2.0) # data with unique value as zero df = pd.Series([0.0, 0.0, 0.0, 0.0, 0.0]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) self.assertEqual(profiler.min, 0.0) def test_profiled_max(self): data = np.linspace(-5, 5, 11) df = pd.Series(data).apply(str) profiler = FloatColumn(df.name) profiler.update(df[:-1]) self.assertEqual(profiler.max, 4) profiler.update(df) self.assertEqual(profiler.max, 5) profiler.update(pd.Series(['4'])) self.assertEqual(profiler.max, 5) # empty data data = pd.Series([], dtype=object) profiler = FloatColumn(data.name) profiler.update(data) self.assertEqual(profiler.max, None) # data with None value df = pd.Series([2.0, 3.0, None, np.nan]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) self.assertEqual(profiler.max, 3.0) # data with one value df = pd.Series([2.0]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) self.assertEqual(profiler.max, 2.0) # data with unique value df = pd.Series([2.0, 2.0, 2.0, 2.0, 2.0]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) self.assertEqual(profiler.max, 2.0) # data with unique value as zero df = pd.Series([0.0, 0.0, 0.0, 0.0, 0.0]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) self.assertEqual(profiler.max, 0.0) def test_profiled_mode(self): # disabled mode df = pd.Series([1, 1, 1, 1, 1, 1, 1]).apply(str) options = FloatOptions() options.mode.is_enabled = False profiler = FloatColumn(df.name, options) profiler.update(df) self.assertListEqual([np.nan], profiler.mode) # same values df = pd.Series([1, 1, 1, 1, 1, 1, 1]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) self.assertListEqual([1], profiler.mode) # multiple modes df = pd.Series([1.5, 1.5, 2.5, 2.5, 3.5, 3.5, 4.1, 4.1]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) np.testing.assert_array_almost_equal([1.5, 2.5, 3.5, 4.1], profiler.mode, decimal=2) # with different values df = pd.Series([1.25, 1.25, 1.25, 1.25, 2.9]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) np.testing.assert_array_almost_equal([1.25], profiler.mode, decimal=2) # with negative values df = pd.Series([-1.1, 1.9, 1.9, 1.9, 2.1, 2.01, 2.01, 2.01]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) np.testing.assert_array_almost_equal([1.9, 2.01], profiler.mode, decimal=2) # all unique values df = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) # By default, returns 5 of the possible modes np.testing.assert_array_almost_equal([1, 2, 3, 4, 5], profiler.mode, decimal=2) # Edge case where mode appears later in the dataset df = pd.Series([1, 2, 3, 4, 5, 6.2, 6.2]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) np.testing.assert_array_almost_equal([6.2], profiler.mode, decimal=2) df = pd.Series([2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7.1, 7.1, 7.1]).apply(str) profiler = FloatColumn(df.name) profiler.update(df) np.testing.assert_array_almost_equal([7.1], profiler.mode, decimal=2) def test_top_k_modes(self): # Default options options = FloatOptions() df = pd.Series([1, 1, 2, 2, 3, 3, 4, 4, 5, 5]).apply(str) profiler = FloatColumn(df.name, options) profiler.update(df) self.assertEqual(5, len(profiler.mode)) # Test if top_k_modes is less than the number of modes options = FloatOptions() options.mode.top_k_modes = 2 df = pd.Series([1, 1, 2, 2, 3, 3, 4, 4, 5, 5]).apply(str) profiler = FloatColumn(df.name, options) profiler.update(df) self.assertEqual(2, len(profiler.mode)) # Test if top_k_mode is greater than the number of modes options = FloatOptions() options.mode.top_k_modes = 8 df = pd.Series([1, 1, 2, 2, 3, 3, 4, 4, 5, 5]).apply(str) profiler = FloatColumn(df.name, options) profiler.update(df) # Only 5 possible modes so return 5 self.assertEqual(5, len(profiler.mode)) def test_profiled_median(self): # disabled median df = pd.Series([1, 1, 1, 1, 1, 1, 1]).apply(str) options = FloatOptions() options.median.is_enabled = False profiler = FloatColumn(df.name, options) profiler.update(df) self.assertTrue(profiler.median is np.nan) # same values df =
pd.Series([1, 1, 1, 1, 1, 1, 1])
pandas.Series
# Licensed to Elasticsearch B.V. under one or more contributor # license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright # ownership. Elasticsearch B.V. licenses this file to you under # the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import warnings from typing import ( TYPE_CHECKING, Any, Dict, List, Mapping, NamedTuple, Optional, Set, TextIO, Tuple, Union, ) import numpy as np import pandas as pd # type: ignore from pandas.core.dtypes.common import ( # type: ignore is_bool_dtype, is_datetime_or_timedelta_dtype, is_float_dtype, is_integer_dtype, is_string_dtype, ) from pandas.core.dtypes.inference import is_list_like if TYPE_CHECKING: from elasticsearch import Elasticsearch from numpy.typing import DTypeLike ES_FLOAT_TYPES: Set[str] = {"double", "float", "half_float", "scaled_float"} ES_INTEGER_TYPES: Set[str] = {"long", "integer", "short", "byte"} ES_COMPATIBLE_TYPES: Dict[str, Set[str]] = { "double": ES_FLOAT_TYPES, "scaled_float": ES_FLOAT_TYPES, "float": ES_FLOAT_TYPES, "half_float": ES_FLOAT_TYPES, "long": ES_INTEGER_TYPES, "integer": ES_INTEGER_TYPES, "short": ES_INTEGER_TYPES, "byte": ES_INTEGER_TYPES, "date": {"date_nanos"}, "date_nanos": {"date"}, "keyword": {"text"}, } class Field(NamedTuple): """Holds all information on a particular field in the mapping""" column: str es_field_name: str is_source: bool es_dtype: str es_date_format: Optional[str] pd_dtype: type is_searchable: bool is_aggregatable: bool is_scripted: bool aggregatable_es_field_name: str @property def is_numeric(self) -> bool: return is_integer_dtype(self.pd_dtype) or is_float_dtype(self.pd_dtype) @property def is_timestamp(self) -> bool: return
is_datetime_or_timedelta_dtype(self.pd_dtype)
pandas.core.dtypes.common.is_datetime_or_timedelta_dtype
from __future__ import division from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS from sklearn.pipeline import Pipeline from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction.text import CountVectorizer from sklearn.ensemble import RandomForestClassifier from sklearn import preprocessing,svm from sklearn.model_selection import GridSearchCV,cross_validate from sklearn.naive_bayes import MultinomialNB from wordcloud import WordCloud from tempfile import mkdtemp from shutil import rmtree from KNN import KNN from textblob import TextBlob import scipy.sparse as sp import warnings import pandas as pd import numpy as np def textblob_tokenizer(str_input): blob=TextBlob(str_input.lower()) tokens=blob.words words=[token.stem() for token in tokens] return words def cleanPrep(data): prep_list=['that','as','about','above','across','after','against','along','among','around','at','before','behind','below','beneath','beside','between','by','down','during','except','for','from','in','in front of','inside','instead of','into','like','near','of','off','on','onto','on top of','out of','outside','over','past','since','through','to','toward','under','underneath','until','up','upon','with','within','without','according to','because of','by way of','in addition to','front of','in place of','regard to','in spite of','instead of','on account of','out of'] for index,row in data.iteritems(): dataWords=row.split() Words=[word for word in dataWords if word.lower() not in prep_list] result=' '.join(Words) data.replace(to_replace=row,value=result) return data def grid(X,y,pipe): Cs=[0.001,0.01,0.1,1,10,100,1000] gammas=[0.001,0.01,0.1,1,10,100,1000] kernels=['linear','rbf'] nfolds=None param_grid={'C':Cs,'gamma':gammas,'kernel':kernels} grid=GridSearchCV(pipe,param_grid,scoring='accuracy',cv=nfolds,n_jobs=-1) grid.fit(X,y) return grid.best_params_ def wordcloud(train_data): wordcloud_list={} for cat in np.unique(train_data["Category"]): lst=train_data.loc[(train_data["Category"]==cat),["Content"]] s=[] for val in lst.values: s.append(val) g=''.join(str(x).encode('utf-8') for x in s) g.encode('utf-8') stop=set(ENGLISH_STOP_WORDS) stop.add("now") stop.add("said") stop.add("like") stop.add("u2013") stop.add("u201") stop.add("u201d") stop.add("u2019") stop.add("u2019s") wordcloud=WordCloud(stopwords=stop).generate(g) wordcloud_list[cat]=wordcloud image=wordcloud.to_image() image.show() return wordcloud_list if __name__=='__main__': #That is for ignoring all the warnings from the sklearn "library" warnings.filterwarnings(module='sklearn*',action='ignore') #Here starts the main code train_data = pd.read_csv('train_set.csv', sep="\t",index_col=False,encoding='utf-8') test_data = pd.read_csv('test_set.csv', sep="\t",index_col=False,encoding='utf-8') le = preprocessing.LabelEncoder() le.fit(train_data["Category"]) y = le.transform(train_data["Category"]) count_vectorizer= CountVectorizer(stop_words=ENGLISH_STOP_WORDS,min_df=0.02,max_df=0.7,analyzer='word',tokenizer=textblob_tokenizer) #This is for title X = count_vectorizer.fit_transform(train_data['Content']) Test= count_vectorizer.transform(test_data['Content']) X_Title = count_vectorizer.fit_transform(train_data['Title']) Test_Title=count_vectorizer.transform(test_data['Title']) #count_vectorizer= count_vectorizer.fit(train_data['Content']) #X=count_vectorizer.transform(train_data['Content']) #Test= count_vectorizer.transform(test_data['Content']) #X_Title=count_vectorizer.transform(train_data['Title']) #Test_Title=count_vectorizer.transform(test_data['Title']) X1=sp.hstack((X,X_Title)) Test1=sp.hstack((Test,Test_Title)) #Here is the transformer and the classifiers cachedir=mkdtemp() svd=TruncatedSVD(n_components=100) Rf=RandomForestClassifier() MyMethod=svm.SVC(C=0.001,gamma=0.001,kernel='linear') Svm=svm.SVC() Mult_NB=MultinomialNB() k=int(raw_input("Give me k for neighbors:")) Knn=KNN(n_neighbors=k) scoring={'acc':'accuracy','prec_macro':'precision_macro','rec_macro':'recall_macro','f1_mac':'f1_macro'} mv={'Random_Forest':[],'Naive_Bayes':[],'KNN':[],'SVM':[],'My Method':[]} clf_list={'Random_Forest':Rf,'SVM':Svm,'My Method':MyMethod,'KNN':Knn} for (nm,clf) in clf_list.iteritems(): estimators=[('svd',svd),('clf',clf)] pipe=Pipeline(steps=estimators) pipe.fit(X1,y) if nm=='My Method': y_pred = pipe.predict(Test1) predicted_categories = le.inverse_transform(y_pred) scores=cross_validate(pipe,X1,y,scoring=scoring,cv=10,n_jobs=-1,return_train_score=False) mv[nm].append(scores['test_acc'].mean()) mv[nm].append(scores['test_prec_macro'].mean()) mv[nm].append(scores['test_rec_macro'].mean()) mv[nm].append(scores['test_f1_mac'].mean()) Mult_NB.fit(X1,y) scores=cross_validate(Mult_NB,X1,y,scoring=scoring,cv=10,return_train_score=False) mv['Naive_Bayes'].append(scores['test_acc'].mean()) mv['Naive_Bayes'].append(scores['test_prec_macro'].mean()) mv['Naive_Bayes'].append(scores['test_rec_macro'].mean()) mv['Naive_Bayes'].append(scores['test_f1_mac'].mean()) id_data=test_data['Id'] dictio={'ID':[],'Predicted_Category':[]} for i in range(len(predicted_categories)): dictio['ID'].append(id_data[i]) dictio['Predicted_Category'].append(predicted_categories[i]) out=pd.DataFrame(data=dictio) df=
pd.DataFrame(data=mv,index=['Accuracy','Precision','Recall','F-Measure'])
pandas.DataFrame
#-*-coding=utf-8-*- from emotion import emo from collections import OrderedDict from eval import getCNNDaata import pandas as pd from DBHandler import getStockList from TuHandler import TuHandler from datetime import date class dataFetcher: codeList = [] def __init__(self, listName): self.codeList = getStockList(listName) def get_emotion(self, source , start, end): try: return pd.read_csv('emo.csv') except: pass start_str = str(start) end_str = str(end) posData, negData = getCNNDaata(True, "1472610048" ,source, start_str , end_str) em = emo("mergedResult") for stock in posData: for date in posData[stock]: name = "%s %s"%(stock, date) emoV = em.getEmo(posData[stock][date], name) if emoV['wnum']: expo = emoV['totalV']/emoV['wnum'] posData[stock][date] = [posData[stock][date], expo] else: posData[stock][date] = [posData[stock][date], 5] em.clear() for stock in negData: for date in negData[stock]: name = "%s %s"%(stock, date) emoV = em.getEmo(negData[stock][date], name) if emoV['wnum']: expo = emoV['totalV']/emoV['wnum'] negData[stock][date] = [negData[stock][date], expo] else: negData[stock][date] = [negData[stock][date], 5] FinalData = OrderedDict() for stock in negData: for date in negData[stock]: FinalData.setdefault(stock, OrderedDict()).setdefault(date, -1) expo = 0.0 try: expo = 0.6*posData[stock][date][1] + 0.4*negData[stock][date][1] except KeyError: expo = negData[stock][date][1] FinalData[stock][date] = expo for stock in posData: for date in posData[stock]: FinalData.setdefault(stock, OrderedDict()).setdefault(date, -1) expo = FinalData[stock][date] if FinalData[stock][date] == -1: try: expo = 0.6*posData[stock][date][1] + 0.4*negData[stock][date][1] except KeyError: expo = posData[stock][date][1] FinalData[stock][date] = expo list = [] for stock in FinalData: # FinalData[stock].setdefault('code', stock) for date in FinalData[stock]: if date=='code': continue d = pd.DataFrame({'emo':FinalData[stock][date], 'code' : stock, 'date' : date}, index=[0]) list.append(d) emo_df = pd.concat(list, axis=0) print(emo_df) return emo_df def get_train_data(self, source = "", start = date.today(), end = date.today()): pre_list = [] turnover_list = [] tu = TuHandler(self.codeList, start, end) self.codeList = tu.stockList emo_df = pd.read_csv('emo.csv') SMB_df =
pd.read_csv('SMB.csv')
pandas.read_csv
# -*- coding: utf-8 -*- from datetime import timedelta import operator from string import ascii_lowercase import warnings import numpy as np import pytest from pandas.compat import lrange import pandas.util._test_decorators as td import pandas as pd from pandas import ( Categorical, DataFrame, MultiIndex, Series, Timestamp, date_range, isna, notna, to_datetime, to_timedelta) import pandas.core.algorithms as algorithms import pandas.core.nanops as nanops import pandas.util.testing as tm def assert_stat_op_calc(opname, alternative, frame, has_skipna=True, check_dtype=True, check_dates=False, check_less_precise=False, skipna_alternative=None): """ Check that operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame alternative : function Function that opname is tested against; i.e. "frame.opname()" should equal "alternative(frame)". frame : DataFrame The object that the tests are executed on has_skipna : bool, default True Whether the method "opname" has the kwarg "skip_na" check_dtype : bool, default True Whether the dtypes of the result of "frame.opname()" and "alternative(frame)" should be checked. check_dates : bool, default false Whether opname should be tested on a Datetime Series check_less_precise : bool, default False Whether results should only be compared approximately; passed on to tm.assert_series_equal skipna_alternative : function, default None NaN-safe version of alternative """ f = getattr(frame, opname) if check_dates: df = DataFrame({'b': date_range('1/1/2001', periods=2)}) result = getattr(df, opname)() assert isinstance(result, Series) df['a'] = lrange(len(df)) result = getattr(df, opname)() assert isinstance(result, Series) assert len(result) if has_skipna: def wrapper(x): return alternative(x.values) skipna_wrapper = tm._make_skipna_wrapper(alternative, skipna_alternative) result0 = f(axis=0, skipna=False) result1 = f(axis=1, skipna=False) tm.assert_series_equal(result0, frame.apply(wrapper), check_dtype=check_dtype, check_less_precise=check_less_precise) # HACK: win32 tm.assert_series_equal(result1, frame.apply(wrapper, axis=1), check_dtype=False, check_less_precise=check_less_precise) else: skipna_wrapper = alternative result0 = f(axis=0) result1 = f(axis=1) tm.assert_series_equal(result0, frame.apply(skipna_wrapper), check_dtype=check_dtype, check_less_precise=check_less_precise) if opname in ['sum', 'prod']: expected = frame.apply(skipna_wrapper, axis=1) tm.assert_series_equal(result1, expected, check_dtype=False, check_less_precise=check_less_precise) # check dtypes if check_dtype: lcd_dtype = frame.values.dtype assert lcd_dtype == result0.dtype assert lcd_dtype == result1.dtype # bad axis with pytest.raises(ValueError, match='No axis named 2'): f(axis=2) # all NA case if has_skipna: all_na = frame * np.NaN r0 = getattr(all_na, opname)(axis=0) r1 = getattr(all_na, opname)(axis=1) if opname in ['sum', 'prod']: unit = 1 if opname == 'prod' else 0 # result for empty sum/prod expected = pd.Series(unit, index=r0.index, dtype=r0.dtype) tm.assert_series_equal(r0, expected) expected = pd.Series(unit, index=r1.index, dtype=r1.dtype) tm.assert_series_equal(r1, expected) def assert_stat_op_api(opname, float_frame, float_string_frame, has_numeric_only=False): """ Check that API for operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame float_frame : DataFrame DataFrame with columns of type float float_string_frame : DataFrame DataFrame with both float and string columns has_numeric_only : bool, default False Whether the method "opname" has the kwarg "numeric_only" """ # make sure works on mixed-type frame getattr(float_string_frame, opname)(axis=0) getattr(float_string_frame, opname)(axis=1) if has_numeric_only: getattr(float_string_frame, opname)(axis=0, numeric_only=True) getattr(float_string_frame, opname)(axis=1, numeric_only=True) getattr(float_frame, opname)(axis=0, numeric_only=False) getattr(float_frame, opname)(axis=1, numeric_only=False) def assert_bool_op_calc(opname, alternative, frame, has_skipna=True): """ Check that bool operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame alternative : function Function that opname is tested against; i.e. "frame.opname()" should equal "alternative(frame)". frame : DataFrame The object that the tests are executed on has_skipna : bool, default True Whether the method "opname" has the kwarg "skip_na" """ f = getattr(frame, opname) if has_skipna: def skipna_wrapper(x): nona = x.dropna().values return alternative(nona) def wrapper(x): return alternative(x.values) result0 = f(axis=0, skipna=False) result1 = f(axis=1, skipna=False) tm.assert_series_equal(result0, frame.apply(wrapper)) tm.assert_series_equal(result1, frame.apply(wrapper, axis=1), check_dtype=False) # HACK: win32 else: skipna_wrapper = alternative wrapper = alternative result0 = f(axis=0) result1 = f(axis=1) tm.assert_series_equal(result0, frame.apply(skipna_wrapper)) tm.assert_series_equal(result1, frame.apply(skipna_wrapper, axis=1), check_dtype=False) # bad axis with pytest.raises(ValueError, match='No axis named 2'): f(axis=2) # all NA case if has_skipna: all_na = frame * np.NaN r0 = getattr(all_na, opname)(axis=0) r1 = getattr(all_na, opname)(axis=1) if opname == 'any': assert not r0.any() assert not r1.any() else: assert r0.all() assert r1.all() def assert_bool_op_api(opname, bool_frame_with_na, float_string_frame, has_bool_only=False): """ Check that API for boolean operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame float_frame : DataFrame DataFrame with columns of type float float_string_frame : DataFrame DataFrame with both float and string columns has_bool_only : bool, default False Whether the method "opname" has the kwarg "bool_only" """ # make sure op works on mixed-type frame mixed = float_string_frame mixed['_bool_'] = np.random.randn(len(mixed)) > 0.5 getattr(mixed, opname)(axis=0) getattr(mixed, opname)(axis=1) if has_bool_only: getattr(mixed, opname)(axis=0, bool_only=True) getattr(mixed, opname)(axis=1, bool_only=True) getattr(bool_frame_with_na, opname)(axis=0, bool_only=False) getattr(bool_frame_with_na, opname)(axis=1, bool_only=False) class TestDataFrameAnalytics(object): # --------------------------------------------------------------------- # Correlation and covariance @td.skip_if_no_scipy def test_corr_pearson(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'pearson') @td.skip_if_no_scipy def test_corr_kendall(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'kendall') @td.skip_if_no_scipy def test_corr_spearman(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'spearman') def _check_method(self, frame, method='pearson'): correls = frame.corr(method=method) expected = frame['A'].corr(frame['C'], method=method) tm.assert_almost_equal(correls['A']['C'], expected) @td.skip_if_no_scipy def test_corr_non_numeric(self, float_frame, float_string_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan # exclude non-numeric types result = float_string_frame.corr() expected = float_string_frame.loc[:, ['A', 'B', 'C', 'D']].corr() tm.assert_frame_equal(result, expected) @td.skip_if_no_scipy @pytest.mark.parametrize('meth', ['pearson', 'kendall', 'spearman']) def test_corr_nooverlap(self, meth): # nothing in common df = DataFrame({'A': [1, 1.5, 1, np.nan, np.nan, np.nan], 'B': [np.nan, np.nan, np.nan, 1, 1.5, 1], 'C': [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]}) rs = df.corr(meth) assert isna(rs.loc['A', 'B']) assert isna(rs.loc['B', 'A']) assert rs.loc['A', 'A'] == 1 assert rs.loc['B', 'B'] == 1 assert isna(rs.loc['C', 'C']) @td.skip_if_no_scipy @pytest.mark.parametrize('meth', ['pearson', 'spearman']) def test_corr_constant(self, meth): # constant --> all NA df = DataFrame({'A': [1, 1, 1, np.nan, np.nan, np.nan], 'B': [np.nan, np.nan, np.nan, 1, 1, 1]}) rs = df.corr(meth) assert isna(rs.values).all() def test_corr_int(self): # dtypes other than float64 #1761 df3 = DataFrame({"a": [1, 2, 3, 4], "b": [1, 2, 3, 4]}) df3.cov() df3.corr() @td.skip_if_no_scipy def test_corr_int_and_boolean(self): # when dtypes of pandas series are different # then ndarray will have dtype=object, # so it need to be properly handled df = DataFrame({"a": [True, False], "b": [1, 0]}) expected = DataFrame(np.ones((2, 2)), index=[ 'a', 'b'], columns=['a', 'b']) for meth in ['pearson', 'kendall', 'spearman']: with warnings.catch_warnings(record=True): warnings.simplefilter("ignore", RuntimeWarning) result = df.corr(meth) tm.assert_frame_equal(result, expected) def test_corr_cov_independent_index_column(self): # GH 14617 df = pd.DataFrame(np.random.randn(4 * 10).reshape(10, 4), columns=list("abcd")) for method in ['cov', 'corr']: result = getattr(df, method)() assert result.index is not result.columns assert result.index.equals(result.columns) def test_corr_invalid_method(self): # GH 22298 df = pd.DataFrame(np.random.normal(size=(10, 2))) msg = ("method must be either 'pearson', " "'spearman', 'kendall', or a callable, ") with pytest.raises(ValueError, match=msg): df.corr(method="____") def test_cov(self, float_frame, float_string_frame): # min_periods no NAs (corner case) expected = float_frame.cov() result = float_frame.cov(min_periods=len(float_frame)) tm.assert_frame_equal(expected, result) result = float_frame.cov(min_periods=len(float_frame) + 1) assert isna(result.values).all() # with NAs frame = float_frame.copy() frame['A'][:5] = np.nan frame['B'][5:10] = np.nan result = float_frame.cov(min_periods=len(float_frame) - 8) expected = float_frame.cov() expected.loc['A', 'B'] = np.nan expected.loc['B', 'A'] = np.nan # regular float_frame['A'][:5] = np.nan float_frame['B'][:10] = np.nan cov = float_frame.cov() tm.assert_almost_equal(cov['A']['C'], float_frame['A'].cov(float_frame['C'])) # exclude non-numeric types result = float_string_frame.cov() expected = float_string_frame.loc[:, ['A', 'B', 'C', 'D']].cov() tm.assert_frame_equal(result, expected) # Single column frame df = DataFrame(np.linspace(0.0, 1.0, 10)) result = df.cov() expected = DataFrame(np.cov(df.values.T).reshape((1, 1)), index=df.columns, columns=df.columns) tm.assert_frame_equal(result, expected) df.loc[0] = np.nan result = df.cov() expected = DataFrame(np.cov(df.values[1:].T).reshape((1, 1)), index=df.columns, columns=df.columns) tm.assert_frame_equal(result, expected) def test_corrwith(self, datetime_frame): a = datetime_frame noise = Series(np.random.randn(len(a)), index=a.index) b = datetime_frame.add(noise, axis=0) # make sure order does not matter b = b.reindex(columns=b.columns[::-1], index=b.index[::-1][10:]) del b['B'] colcorr = a.corrwith(b, axis=0) tm.assert_almost_equal(colcorr['A'], a['A'].corr(b['A'])) rowcorr = a.corrwith(b, axis=1) tm.assert_series_equal(rowcorr, a.T.corrwith(b.T, axis=0)) dropped = a.corrwith(b, axis=0, drop=True) tm.assert_almost_equal(dropped['A'], a['A'].corr(b['A'])) assert 'B' not in dropped dropped = a.corrwith(b, axis=1, drop=True) assert a.index[-1] not in dropped.index # non time-series data index = ['a', 'b', 'c', 'd', 'e'] columns = ['one', 'two', 'three', 'four'] df1 = DataFrame(np.random.randn(5, 4), index=index, columns=columns) df2 = DataFrame(np.random.randn(4, 4), index=index[:4], columns=columns) correls = df1.corrwith(df2, axis=1) for row in index[:4]: tm.assert_almost_equal(correls[row], df1.loc[row].corr(df2.loc[row])) def test_corrwith_with_objects(self): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame() cols = ['A', 'B', 'C', 'D'] df1['obj'] = 'foo' df2['obj'] = 'bar' result = df1.corrwith(df2) expected = df1.loc[:, cols].corrwith(df2.loc[:, cols]) tm.assert_series_equal(result, expected) result = df1.corrwith(df2, axis=1) expected = df1.loc[:, cols].corrwith(df2.loc[:, cols], axis=1) tm.assert_series_equal(result, expected) def test_corrwith_series(self, datetime_frame): result = datetime_frame.corrwith(datetime_frame['A']) expected = datetime_frame.apply(datetime_frame['A'].corr) tm.assert_series_equal(result, expected) def test_corrwith_matches_corrcoef(self): df1 = DataFrame(np.arange(10000), columns=['a']) df2 = DataFrame(np.arange(10000) ** 2, columns=['a']) c1 = df1.corrwith(df2)['a'] c2 = np.corrcoef(df1['a'], df2['a'])[0][1] tm.assert_almost_equal(c1, c2) assert c1 < 1 def test_corrwith_mixed_dtypes(self): # GH 18570 df = pd.DataFrame({'a': [1, 4, 3, 2], 'b': [4, 6, 7, 3], 'c': ['a', 'b', 'c', 'd']}) s = pd.Series([0, 6, 7, 3]) result = df.corrwith(s) corrs = [df['a'].corr(s), df['b'].corr(s)] expected = pd.Series(data=corrs, index=['a', 'b']) tm.assert_series_equal(result, expected) def test_corrwith_index_intersection(self): df1 = pd.DataFrame(np.random.random(size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame(np.random.random(size=(10, 3)), columns=["a", "b", "c"]) result = df1.corrwith(df2, drop=True).index.sort_values() expected = df1.columns.intersection(df2.columns).sort_values() tm.assert_index_equal(result, expected) def test_corrwith_index_union(self): df1 = pd.DataFrame(np.random.random(size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame(np.random.random(size=(10, 3)), columns=["a", "b", "c"]) result = df1.corrwith(df2, drop=False).index.sort_values() expected = df1.columns.union(df2.columns).sort_values() tm.assert_index_equal(result, expected) def test_corrwith_dup_cols(self): # GH 21925 df1 = pd.DataFrame(np.vstack([np.arange(10)] * 3).T) df2 = df1.copy() df2 = pd.concat((df2, df2[0]), axis=1) result = df1.corrwith(df2) expected = pd.Series(np.ones(4), index=[0, 0, 1, 2]) tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_corrwith_spearman(self): # GH 21925 df = pd.DataFrame(np.random.random(size=(100, 3))) result = df.corrwith(df**2, method="spearman") expected = Series(np.ones(len(result))) tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_corrwith_kendall(self): # GH 21925 df = pd.DataFrame(np.random.random(size=(100, 3))) result = df.corrwith(df**2, method="kendall") expected = Series(np.ones(len(result))) tm.assert_series_equal(result, expected) # --------------------------------------------------------------------- # Describe def test_bool_describe_in_mixed_frame(self): df = DataFrame({ 'string_data': ['a', 'b', 'c', 'd', 'e'], 'bool_data': [True, True, False, False, False], 'int_data': [10, 20, 30, 40, 50], }) # Integer data are included in .describe() output, # Boolean and string data are not. result = df.describe() expected = DataFrame({'int_data': [5, 30, df.int_data.std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) tm.assert_frame_equal(result, expected) # Top value is a boolean value that is False result = df.describe(include=['bool']) expected = DataFrame({'bool_data': [5, 2, False, 3]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) def test_describe_bool_frame(self): # GH 13891 df = pd.DataFrame({ 'bool_data_1': [False, False, True, True], 'bool_data_2': [False, True, True, True] }) result = df.describe() expected = DataFrame({'bool_data_1': [4, 2, True, 2], 'bool_data_2': [4, 2, True, 3]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) df = pd.DataFrame({ 'bool_data': [False, False, True, True, False], 'int_data': [0, 1, 2, 3, 4] }) result = df.describe() expected = DataFrame({'int_data': [5, 2, df.int_data.std(), 0, 1, 2, 3, 4]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) tm.assert_frame_equal(result, expected) df = pd.DataFrame({ 'bool_data': [False, False, True, True], 'str_data': ['a', 'b', 'c', 'a'] }) result = df.describe() expected = DataFrame({'bool_data': [4, 2, True, 2], 'str_data': [4, 3, 'a', 2]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) def test_describe_categorical(self): df = DataFrame({'value': np.random.randint(0, 10000, 100)}) labels = ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)] cat_labels = Categorical(labels, labels) df = df.sort_values(by=['value'], ascending=True) df['value_group'] = pd.cut(df.value, range(0, 10500, 500), right=False, labels=cat_labels) cat = df # Categoricals should not show up together with numerical columns result = cat.describe() assert len(result.columns) == 1 # In a frame, describe() for the cat should be the same as for string # arrays (count, unique, top, freq) cat = Categorical(["a", "b", "b", "b"], categories=['a', 'b', 'c'], ordered=True) s = Series(cat) result = s.describe() expected = Series([4, 2, "b", 3], index=['count', 'unique', 'top', 'freq']) tm.assert_series_equal(result, expected) cat = Series(Categorical(["a", "b", "c", "c"])) df3 = DataFrame({"cat": cat, "s": ["a", "b", "c", "c"]}) result = df3.describe() tm.assert_numpy_array_equal(result["cat"].values, result["s"].values) def test_describe_categorical_columns(self): # GH 11558 columns = pd.CategoricalIndex(['int1', 'int2', 'obj'], ordered=True, name='XXX') df = DataFrame({'int1': [10, 20, 30, 40, 50], 'int2': [10, 20, 30, 40, 50], 'obj': ['A', 0, None, 'X', 1]}, columns=columns) result = df.describe() exp_columns = pd.CategoricalIndex(['int1', 'int2'], categories=['int1', 'int2', 'obj'], ordered=True, name='XXX') expected = DataFrame({'int1': [5, 30, df.int1.std(), 10, 20, 30, 40, 50], 'int2': [5, 30, df.int2.std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'], columns=exp_columns) tm.assert_frame_equal(result, expected) tm.assert_categorical_equal(result.columns.values, expected.columns.values) def test_describe_datetime_columns(self): columns = pd.DatetimeIndex(['2011-01-01', '2011-02-01', '2011-03-01'], freq='MS', tz='US/Eastern', name='XXX') df = DataFrame({0: [10, 20, 30, 40, 50], 1: [10, 20, 30, 40, 50], 2: ['A', 0, None, 'X', 1]}) df.columns = columns result = df.describe() exp_columns = pd.DatetimeIndex(['2011-01-01', '2011-02-01'], freq='MS', tz='US/Eastern', name='XXX') expected = DataFrame({0: [5, 30, df.iloc[:, 0].std(), 10, 20, 30, 40, 50], 1: [5, 30, df.iloc[:, 1].std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) expected.columns = exp_columns tm.assert_frame_equal(result, expected) assert result.columns.freq == 'MS' assert result.columns.tz == expected.columns.tz def test_describe_timedelta_values(self): # GH 6145 t1 = pd.timedelta_range('1 days', freq='D', periods=5) t2 = pd.timedelta_range('1 hours', freq='H', periods=5) df = pd.DataFrame({'t1': t1, 't2': t2}) expected = DataFrame({'t1': [5, pd.Timedelta('3 days'), df.iloc[:, 0].std(), pd.Timedelta('1 days'), pd.Timedelta('2 days'), pd.Timedelta('3 days'), pd.Timedelta('4 days'), pd.Timedelta('5 days')], 't2': [5, pd.Timedelta('3 hours'), df.iloc[:, 1].std(), pd.Timedelta('1 hours'), pd.Timedelta('2 hours'), pd.Timedelta('3 hours'), pd.Timedelta('4 hours'), pd.Timedelta('5 hours')]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) result = df.describe() tm.assert_frame_equal(result, expected) exp_repr = (" t1 t2\n" "count 5 5\n" "mean 3 days 00:00:00 0 days 03:00:00\n" "std 1 days 13:56:50.394919 0 days 01:34:52.099788\n" "min 1 days 00:00:00 0 days 01:00:00\n" "25% 2 days 00:00:00 0 days 02:00:00\n" "50% 3 days 00:00:00 0 days 03:00:00\n" "75% 4 days 00:00:00 0 days 04:00:00\n" "max 5 days 00:00:00 0 days 05:00:00") assert repr(result) == exp_repr def test_describe_tz_values(self, tz_naive_fixture): # GH 21332 tz = tz_naive_fixture s1 = Series(range(5)) start = Timestamp(2018, 1, 1) end = Timestamp(2018, 1, 5) s2 = Series(date_range(start, end, tz=tz)) df = pd.DataFrame({'s1': s1, 's2': s2}) expected = DataFrame({'s1': [5, np.nan, np.nan, np.nan, np.nan, np.nan, 2, 1.581139, 0, 1, 2, 3, 4], 's2': [5, 5, s2.value_counts().index[0], 1, start.tz_localize(tz), end.tz_localize(tz), np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]}, index=['count', 'unique', 'top', 'freq', 'first', 'last', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'] ) result = df.describe(include='all') tm.assert_frame_equal(result, expected) # --------------------------------------------------------------------- # Reductions def test_stat_op_api(self, float_frame, float_string_frame): assert_stat_op_api('count', float_frame, float_string_frame, has_numeric_only=True) assert_stat_op_api('sum', float_frame, float_string_frame, has_numeric_only=True) assert_stat_op_api('nunique', float_frame, float_string_frame) assert_stat_op_api('mean', float_frame, float_string_frame) assert_stat_op_api('product', float_frame, float_string_frame) assert_stat_op_api('median', float_frame, float_string_frame) assert_stat_op_api('min', float_frame, float_string_frame) assert_stat_op_api('max', float_frame, float_string_frame) assert_stat_op_api('mad', float_frame, float_string_frame) assert_stat_op_api('var', float_frame, float_string_frame) assert_stat_op_api('std', float_frame, float_string_frame) assert_stat_op_api('sem', float_frame, float_string_frame) assert_stat_op_api('median', float_frame, float_string_frame) try: from scipy.stats import skew, kurtosis # noqa:F401 assert_stat_op_api('skew', float_frame, float_string_frame) assert_stat_op_api('kurt', float_frame, float_string_frame) except ImportError: pass def test_stat_op_calc(self, float_frame_with_na, mixed_float_frame): def count(s): return notna(s).sum() def nunique(s): return len(algorithms.unique1d(s.dropna())) def mad(x): return np.abs(x - x.mean()).mean() def var(x): return np.var(x, ddof=1) def std(x): return np.std(x, ddof=1) def sem(x): return np.std(x, ddof=1) / np.sqrt(len(x)) def skewness(x): from scipy.stats import skew # noqa:F811 if len(x) < 3: return np.nan return skew(x, bias=False) def kurt(x): from scipy.stats import kurtosis # noqa:F811 if len(x) < 4: return np.nan return kurtosis(x, bias=False) assert_stat_op_calc('nunique', nunique, float_frame_with_na, has_skipna=False, check_dtype=False, check_dates=True) # mixed types (with upcasting happening) assert_stat_op_calc('sum', np.sum, mixed_float_frame.astype('float32'), check_dtype=False, check_less_precise=True) assert_stat_op_calc('sum', np.sum, float_frame_with_na, skipna_alternative=np.nansum) assert_stat_op_calc('mean', np.mean, float_frame_with_na, check_dates=True) assert_stat_op_calc('product', np.prod, float_frame_with_na) assert_stat_op_calc('mad', mad, float_frame_with_na) assert_stat_op_calc('var', var, float_frame_with_na) assert_stat_op_calc('std', std, float_frame_with_na) assert_stat_op_calc('sem', sem, float_frame_with_na) assert_stat_op_calc('count', count, float_frame_with_na, has_skipna=False, check_dtype=False, check_dates=True) try: from scipy import skew, kurtosis # noqa:F401 assert_stat_op_calc('skew', skewness, float_frame_with_na) assert_stat_op_calc('kurt', kurt, float_frame_with_na) except ImportError: pass # TODO: Ensure warning isn't emitted in the first place @pytest.mark.filterwarnings("ignore:All-NaN:RuntimeWarning") def test_median(self, float_frame_with_na, int_frame): def wrapper(x): if isna(x).any(): return np.nan return np.median(x) assert_stat_op_calc('median', wrapper, float_frame_with_na, check_dates=True) assert_stat_op_calc('median', wrapper, int_frame, check_dtype=False, check_dates=True) @pytest.mark.parametrize('method', ['sum', 'mean', 'prod', 'var', 'std', 'skew', 'min', 'max']) def test_stat_operators_attempt_obj_array(self, method): # GH#676 data = { 'a': [-0.00049987540199591344, -0.0016467257772919831, 0.00067695870775883013], 'b': [-0, -0, 0.0], 'c': [0.00031111847529610595, 0.0014902627951905339, -0.00094099200035979691] } df1 =
DataFrame(data, index=['foo', 'bar', 'baz'], dtype='O')
pandas.DataFrame
import pandas as pd #import openpyxl from openpyxl import workbook from openpyxl import load_workbook import numpy as np from scipy.stats import spearmanr from .general_functions import * class Abundances(): def __init__(self): self.abundance_df = pd.DataFrame(index=[], columns=[]) self.corr_matrix = None self.corr_signature = None self.sample_names = [] self.header_present = False self.abundance_raw_df = None def addMasking(self): """ merges abundance dataframe and taxonomy dataframe """ self.abundance_df['masked'] = [False]*len(self.abundance_df.index) self.abundance_df['colour'] = ['undefined']*len(self.abundance_df.index) def addSample(self, sample_name, filename): """ adds a sample (as one column) to the dataframes for relative and raw counts""" tax_levels = None if len(self.abundance_df.columns) == 0: self.abundance_df = pd.read_csv(filename, header=0, sep='\t') #krona (no header, no index) cols = list(self.abundance_df.columns) self.abundance_df = self.abundance_df[cols[0:2] + cols[:1:-1]] self.tax_levels = self.abundance_df.columns.tolist()[2:] self.abundance_df = self.abundance_df[self.abundance_df.columns.tolist()[0:2] + self.tax_levels] self.abundance_df.rename(columns={self.abundance_df.columns[0]:sample_name}, inplace=True) self.abundance_df.index = self.abundance_df[self.tax_levels[0]]+'_' self.abundance_df.index.name = None self.abundance_raw_df = self.abundance_df.loc[:,[self.abundance_df.columns[1]] + self.tax_levels] self.abundance_raw_df.rename(columns={self.abundance_raw_df.columns[0]:sample_name}, inplace=True) self.abundance_raw_df.index = self.abundance_raw_df[self.tax_levels[0]]+'_' self.abundance_raw_df.index.name = None self.abundance_df = self.abundance_df.loc[:,[self.abundance_df.columns[0]] + self.tax_levels] else: sample_df = pd.read_csv(filename, header=0, sep='\t') sample_raw_df = sample_df.loc[:,[sample_df.columns[1]]+self.tax_levels] sample_raw_df.rename(columns={sample_raw_df.columns[0]:sample_name}, inplace=True) sample_raw_df.index = sample_raw_df[self.tax_levels[0]]+'_' sample_raw_df.index.name = None sample_df.rename(columns={sample_df.columns[0]:sample_name}, inplace=True) sample_df.index = sample_df[self.tax_levels[0]]+'_' sample_df.index.name = None self.abundance_df = pd.merge(self.abundance_df, sample_df, how='outer', on=self.tax_levels) self.abundance_df.index = self.abundance_df[self.tax_levels[0]]+'_' self.abundance_df.index.name = None self.abundance_df.fillna(value=0, inplace=True) self.abundance_raw_df = pd.merge(self.abundance_raw_df, sample_raw_df, how='outer', on=self.tax_levels) self.abundance_raw_df.index = self.abundance_raw_df[self.tax_levels[0]]+'_' self.abundance_raw_df.index.name = None self.abundance_raw_df.fillna(value=0, inplace=True) self.abundance_df[sample_name] = self.abundance_df[sample_name].astype(float) self.abundance_raw_df[sample_name] = self.abundance_raw_df[sample_name].astype(float) self.sample_names.append(sample_name.strip()) self.abundance_df = self.abundance_df[self.sample_names + self.tax_levels] self.abundance_raw_df = self.abundance_raw_df[self.sample_names + self.tax_levels] myindex = list(self.abundance_df.index) newlist = sorted(set([i for i in myindex if myindex.count(i)>1])) #problems with the ncbi taxonomy (typos?) for i in newlist: self.abundance_df.loc[i,self.sample_names] = self.abundance_df.loc[i].sum(numeric_only=True) self.abundance_df.drop(i, inplace=True) self.abundance_raw_df.loc[i,self.sample_names] = self.abundance_raw_df.loc[i].sum(numeric_only=True) self.abundance_raw_df.drop(i, inplace=True) return self.tax_levels def addRelSample(self, sample_name, filename): """ adds a sample (as one column) to the dataframes for relative counts """ tax_levels = None if len(self.abundance_df.columns) == 0: self.abundance_df =
pd.read_csv(filename, header=0, sep='\t')
pandas.read_csv
from argparse import ArgumentParser import pandas as pd from fyne import heston from utils import years_to_expiry def get_heston_greeks(date, bbo, underlying, discount, vols, params): _, kappa, theta, nu, rho = params mid = bbo.mean(axis=1).unstack(['Class', 'Expiry', 'Strike']) mid.name = 'Mid' properties = mid.columns.to_frame(index=False) strikes = discount[properties['Expiry']].values*properties['Strike'].values expiries = years_to_expiry(date, properties['Expiry']) put = (properties['Class'] == 'P') deltas = pd.DataFrame(heston.delta(underlying.values[:, None], strikes, expiries, vols.values[:, None], kappa, theta, nu, rho, put), mid.index, mid.columns).unstack('Time') vegas = pd.DataFrame(heston.vega(underlying.values[:, None], strikes, expiries, vols.values[:, None], kappa, theta, nu, rho), mid.index, mid.columns).unstack('Time') return pd.concat([deltas, vegas], keys=['Delta', 'Vega'], axis=1) if __name__ == '__main__': cli = ArgumentParser() cli.add_argument('date') cli.add_argument('bbo_filename') cli.add_argument('underlying_filename') cli.add_argument('discount_filename') cli.add_argument('params_filename') cli.add_argument('vols_filename') cli.add_argument('dest_filename') args = cli.parse_args() date = pd.to_datetime(args.date) bbo = pd.read_parquet(args.bbo_filename) underlying = pd.read_parquet(args.underlying_filename).mean(axis=1) discount =
pd.read_parquet(args.discount_filename)
pandas.read_parquet
import lightgbm as lgb import pandas as pd import pytest import shap from pyspark.ml.classification import RandomForestClassifier from pyspark.sql import SparkSession from sklearn.datasets import make_classification from shapicant import PandasSelector, SparkSelector, SparkUdfSelector @pytest.fixture def data(): return make_classification( n_samples=1000, n_features=25, n_informative=3, n_redundant=2, n_repeated=0, n_classes=3, n_clusters_per_class=1, shuffle=False, random_state=42, ) def test_pandas_selector(data): X = pd.DataFrame(data[0]) y = data[1] model = lgb.LGBMClassifier( boosting_type="rf", subsample_freq=1, subsample=0.632, n_estimators=100, n_jobs=-1, random_state=42 ) explainer_type = shap.TreeExplainer selector = PandasSelector(model, explainer_type, n_iter=50, random_state=42) selector.fit(X, y) X_selected = selector.transform(X, alpha=0.05) assert selector.p_values_.between(0, 1).all() assert X_selected.columns.tolist() == [0, 1, 2, 3, 4] def test_spark_selector(data): spark = SparkSession.builder.config("spark.sql.shuffle.partitions", "10").getOrCreate() sdf = spark.createDataFrame(pd.DataFrame(data[0]).assign(label=data[1])) model = RandomForestClassifier(featureSubsetStrategy="all", numTrees=20, seed=42) explainer_type = shap.TreeExplainer selector = SparkSelector(model, explainer_type, n_iter=10, random_state=42) selector.fit(sdf, label_col="label") sdf_selected = selector.transform(sdf, label_col="label", alpha=0.10) assert selector.p_values_.between(0, 1).all() assert sdf_selected.columns == ["0", "1", "2", "3", "4", "label"] def test_spark_udf_selector(data): spark = SparkSession.builder.config("spark.sql.shuffle.partitions", "10").getOrCreate() sdf = spark.createDataFrame(
pd.DataFrame(data[0])
pandas.DataFrame
import os # disable tensorflow debugging information os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import warnings # suppress warnings: warnings.filterwarnings("ignore") from deep_utils import tf_set_seed from utils.utils import save_params from datetime import datetime import tensorflow as tf import numpy as np from data.load_data import load_data from models import load_model from utils.callbacks import get_callbacks from sklearn.metrics import classification_report, confusion_matrix from argparse import ArgumentParser from deep_utils import remove_create import pandas as pd import matplotlib.pyplot as plt import seaborn as sn parser = ArgumentParser() parser.add_argument('--seed', default=1234, type=int, help="Set random seed for reproducibility") parser.add_argument('--model-name', default='FFTCustom', help="Choose the model to train. The default is FFTCustom") parser.add_argument('--data-path', default='./data/DATA.mat', help="Path to the Data. The default is ./data/DATA.mat") parser.add_argument('--epochs', default=2, type=int, help="Number of training epochs, default is set to 200") parser.add_argument('--batch-size', default=4, type=int, help="batch size, default is set to 4") parser.add_argument('--checkpoints', default="./checkpoints", type=str, help="Path to checkpoints, default is ./checkpoints") parser.add_argument("--early-stopping", default=100, type=int, help="early stopping patience epoch number, default is 15") parser.add_argument("--reduce-lr", default=50, type=int, help="reduce lr patience, default is 10") parser.add_argument("--dir-name", default='', type=str, help="directory name of outputs, default is ''. If provided will overwrite existing files") args = parser.parse_args() # set seed for reproducibility tf_set_seed(args.seed) def main(): # load model model = load_model(model_name=args.model_name) print(f"[INFO] Model:{args.model_name} is loaded ...") model.summary() # load data (x_train, y_train), (x_test, y_test) = load_data(model_name=args.model_name, data_path=args.data_path, seed=args.seed) # train the model print(f"[INFO] Started the training for model: {args.model_name} ...") if args.dir_name: dir_ = args.checkpoints + '/' + args.model_name + '/' + args.dir_name if os.path.exists(dir_): print(f"[INFO] {dir_} exists, removing it ...") remove_create(dir_) else: os.makedirs(dir_, exist_ok=False) else: dir_ = args.checkpoints + '/' + args.model_name + "/" + '_{}'.format( str(datetime.now()).replace(':', '_').replace(' ', '_')) os.makedirs(dir_, exist_ok=False) # save params save_params(dir_ + "/params.txt", args) callbacks = get_callbacks(dir_, early_stopping_p=args.early_stopping, reduce_lr_patience=args.reduce_lr) print(f"[INFO] Training with the following arguments {args}") model.fit(x_train, y_train, epochs=args.epochs, batch_size=args.batch_size, verbose=1, validation_data=(x_test, y_test), callbacks=callbacks, shuffle=False) print("[INFO] confusion matrix:!") print("[INFO] Loading best model:") model = tf.keras.models.load_model(dir_ + '/model_best') y_pred = np.around(model.predict(x_test)) rep = classification_report(y_test, y_pred) with open(dir_ + "/classification_report.txt", mode='w') as f: f.write(rep) print(rep) print("[INFO] Computing Confusion matrix") conf_matrix = confusion_matrix(y_test, y_pred) df_cm =
pd.DataFrame(conf_matrix, index=["healthy", "schizophrenia"], columns=["healthy", "schizophrenia"])
pandas.DataFrame
import warnings import pandas as pd from sklearn.base import BaseEstimator, RegressorMixin from sklearn.utils import check_array, check_X_y from sklearn.utils.validation import check_is_fitted class TimeSynchronousDownscaler(BaseEstimator): def _check_X_y(self, X, y, **kwargs): if isinstance(X, pd.DataFrame) and isinstance(X, pd.DataFrame): assert X.index.equals(y.index) check_X_y(X, y) # this may be inefficient else: X, y = check_X_y(X, y) warnings.warn('X and y do not have pandas DateTimeIndexes, making one up...') index = pd.date_range(periods=len(X), start='1950', freq='MS') X = pd.DataFrame(X, index=index) y =
pd.DataFrame(y, index=index)
pandas.DataFrame
#!/usr/bin/env python ''' ---------------- About the script ---------------- Assignment 3: Sentiment Analysis This script calculates sentiment scores of over a million headlines taken from the Australian news source ABC (Start Date: 2003-02-19 ; End Date: 2020-12-31) using the spaCyTextBlob approach, creates and saves two plots of sentiment over time with a 1-week and a 1-month rolling averages. Also, it creates one plot with 1-day, 1-week, 1-month and 1-year rolling averages together for a better comparison. Example: $ python sentiment.py ''' """---------------- Importing libraries ---------------- """ # importing libraries import spacy import os import sys import pandas as pd import matplotlib.pyplot as plt import numpy as np sys.path.append(os.path.join("..")) from spacytextblob.spacytextblob import SpacyTextBlob # initialising spacy nlp = spacy.load("en_core_web_sm") # initialising spaCyTextBlob and adding it as a new component to spaCy nlp pipeline. spacy_text_blob = SpacyTextBlob() nlp.add_pipe(spacy_text_blob) """---------------- Main script ---------------- """ def main(): """------ Reading data and preparation ------ """ # Defining path to the csv file in_file = os.path.join("..", "data", "abcnews-date-text", "abcnews-date-text.csv") # Reading the csv file and saving into a variable abc_news =
pd.read_csv(in_file)
pandas.read_csv
'''Report for the entire Project. Run this report with: `streamlit run 09-1_project-report.py` This should provide an interactive mechanism to query the recommender system. ''' import streamlit as st import pandas as pd import numpy as np import sys sys.path.insert(1, '..') import recommender as rcmd from recommender.contrib import fmp_api as fmp import sklearn_recommender as skr import tensorflow as tf from sklearn.metrics.pairwise import cosine_similarity # -- Setup -- st.title("Stock Recommender System") @st.cache def load_data(): '''Load all data and setup the system.''' # retrieve all relevant symbols stocks = fmp.profile.list_symbols() cache = rcmd.stocks.Cache() # load the relevant profile informations df_profile = cache.load_profile_data() # generate glove embeddings skr.glove.download('twitter') gt = skr.glove.GloVeTransformer('twitter', 25, 'sent', tokenizer=skr.nlp.tokenize_clean) embs = gt.transform(df_profile['description'].fillna("")) df_embs = pd.concat([df_profile[['symbol']],
pd.DataFrame(embs)
pandas.DataFrame
import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.metrics import confusion_matrix from mpl_toolkits.mplot3d import Axes3D plt.rc('font', family='serif') class Plots(): def boxcar(data): f, (ax) = plt.subplots(1, 1, figsize=(12, 4)) f.suptitle('Boxcar', fontsize=14) sns.boxplot(x=data.columns[1], y=data.columns[0], data=data, ax=ax) def Pairplot(X,y): pp = sns.pairplot(X, size=1.5, aspect=1.5, plot_kws=dict(edgecolor="k", linewidth=0.5), diag_kind="kde", diag_kws=dict(shade=True),hue=y) plt.show() def Corrmatrix(self,X): f, ax = plt.subplots(figsize=(10, 6)) corr = X.corr() hm = sns.heatmap(round(corr,2), annot=True, ax=ax, cmap="coolwarm",fmt='.2f', linewidths=.05) f.subplots_adjust(top=0.93) t= f.suptitle('Log Attributes Correlation Heatmap', fontsize=14) plt.show() def Frequencies(X): title = fig.suptitle("Frequencies", fontsize=14) fig.subplots_adjust(top=0.85, wspace=0.3) ax = fig.add_subplot(1,1, 1) ax.set_xlabel("") ax.set_ylabel("Frequency") ax.tick_params(axis='both', which='major', labelsize=8.5) sns.kdeplot(X, color='steelblue', ax=ax,shade=True) plt.show() def Barplot(X): fig = plt.figure(figsize = (6, 4)) fig.suptitle("", fontsize=14) sns.barplot(data=X,palette=sns.xkcd_palette(['windows blue'])) def confusion(y,yp,n_classes): confusion_1 = confusion_matrix(y, yp) confusion_1.dtype=float for i in range(0,n_classes,1): confusion_1[i,:]=confusion_1[i,:]/sum(confusion_1[i,:]) confusion_1=
pd.DataFrame(confusion_1,columns=['Shale','Brine Sands','Gas Sands'], index=['Shale',' Brine Sands','Gas Sands'] )
pandas.DataFrame
""" Tests for character matrix formation. """ import unittest import numpy as np import pandas as pd import cassiopeia as cas class TestCharacterMatrixFormation(unittest.TestCase): def setUp(self): at_dict = { "cellBC": ["cellA", "cellA", "cellA", "cellB", "cellC"], "intBC": ["A", "B", "C", "A", "C"], "r1": ["None", "ATC", "GGG", "None", "GAA"], "r2": ["None", "AAA", "GAA", "None", "GAA"], "r3": ["ATC", "TTT", "ATA", "ATA", "ATA"], "UMI": [5, 10, 1, 30, 30], } self.alleletable_basic = pd.DataFrame.from_dict(at_dict) self.mutation_priors = pd.DataFrame.from_dict( { "ATC": 0.5, "GGG": 0.2, "GAA": 0.1, "AAA": 0.05, "TTT": 0.05, "ATA": 0.1, }, orient="index", columns=["freq"], ) ## setup complicated allele table at_dict = { "cellBC": [ "cellA", "cellA", "cellA", "cellB", "cellB", "cellC", "cellD", "cellD", ], "intBC": ["A", "B", "C", "B", "C", "A", "A", "B"], "r1": ["AAA", "AAB", "AAC", "AAD", "ABA", "ABB", "AAA", "AAB"], "r2": ["BAA", "BAB", "BAC", "BAD", "BBA", "BBB", "BAA", "BAB"], "r3": ["CAA", "CAB", "CAC", "CAD", "CBA", "CBB", "CAA", "CAB"], "UMI": [5, 10, 30, 30, 10, 10, 3, 3], "Mouse": ["M1", "M1", "M1", "M1", "M1", "M1", "M2", "M2"], } self.allele_table_mouse = pd.DataFrame(at_dict) ## set up non-cassiopeia allele table self.noncassiopeia_alleletable = self.alleletable_basic.copy() self.noncassiopeia_alleletable.rename( columns={"r1": "cs1", "r2": "cs2", "r3": "cs3"}, inplace=True ) # allele table with conflicts at_dict = { "cellBC": ["cellA", "cellA", "cellA", "cellB", "cellC", "cellA"], "intBC": ["A", "B", "C", "A", "C", "A"], "r1": ["None", "ATC", "GGG", "None", "GAA", "None"], "r2": ["None", "AAA", "GAA", "None", "GAA", "ACT"], "r3": ["ATC", "TTT", "ATA", "ATA", "ATA", "None"], "UMI": [5, 10, 1, 30, 30, 5], } self.alleletable_conflict = pd.DataFrame.from_dict(at_dict) def test_basic_character_matrix_formation(self): ( character_matrix, priors, indel_states, ) = cas.pp.convert_alleletable_to_character_matrix( self.alleletable_basic ) self.assertEqual(character_matrix.shape[0], 3) self.assertEqual(character_matrix.shape[1], 9) expected_df = pd.DataFrame.from_dict( { "cellA": [0, 0, 1, 1, 1, 1, 1, 1, 1], "cellB": [0, 0, 2, -1, -1, -1, -1, -1, -1], "cellC": [-1, -1, -1, -1, -1, -1, 2, 1, 1], }, orient="index", columns=[f"r{i}" for i in range(1, 10)], ) pd.testing.assert_frame_equal(character_matrix, expected_df) def test_character_matrix_formation_custom_missing_data(self): self.alleletable_basic.loc[0, "r1"] = "missing" ( character_matrix, priors, indel_states, ) = cas.pp.convert_alleletable_to_character_matrix( self.alleletable_basic, missing_data_allele="missing", missing_data_state=-3, ) self.assertEqual(character_matrix.shape[0], 3) self.assertEqual(character_matrix.shape[1], 9) expected_df = pd.DataFrame.from_dict( { "cellA": [-3, 0, 1, 1, 1, 1, 1, 1, 1], "cellB": [0, 0, 2, -3, -3, -3, -3, -3, -3], "cellC": [-3, -3, -3, -3, -3, -3, 2, 1, 1], }, orient="index", columns=[f"r{i}" for i in range(1, 10)], ) pd.testing.assert_frame_equal(character_matrix, expected_df) def test_character_matrix_formation_with_conflicts(self): ( character_matrix, priors, indel_states, ) = cas.pp.convert_alleletable_to_character_matrix( self.alleletable_conflict ) self.assertEqual(character_matrix.shape[0], 3) self.assertEqual(character_matrix.shape[1], 9) expected_df = pd.DataFrame.from_dict( { "cellA": [0, (0, 1), (0, 1), 1, 1, 1, 1, 1, 1], "cellB": [0, 0, 2, -1, -1, -1, -1, -1, -1], "cellC": [-1, -1, -1, -1, -1, -1, 2, 1, 1], }, orient="index", columns=[f"r{i}" for i in range(1, 10)], ) pd.testing.assert_frame_equal(character_matrix, expected_df) def test_character_matrix_formation_with_conflicts_no_collapse(self): ( character_matrix, priors, indel_states, ) = cas.pp.convert_alleletable_to_character_matrix( self.alleletable_conflict, collapse_duplicates=False ) self.assertEqual(character_matrix.shape[0], 3) self.assertEqual(character_matrix.shape[1], 9) expected_df = pd.DataFrame.from_dict( { "cellA": [(0, 0), (0, 1), (1, 0), 1, 1, 1, 1, 1, 1], "cellB": [0, 0, 2, -1, -1, -1, -1, -1, -1], "cellC": [-1, -1, -1, -1, -1, -1, 2, 1, 1], }, orient="index", columns=[f"r{i}" for i in range(1, 10)], ) pd.testing.assert_frame_equal(character_matrix, expected_df) def test_ignore_intbc(self): ( character_matrix, priors, indel_states, ) = cas.pp.convert_alleletable_to_character_matrix( self.alleletable_basic, ignore_intbcs=["B"] ) self.assertEqual(character_matrix.shape[0], 3) self.assertEqual(character_matrix.shape[1], 6) expected_df = pd.DataFrame.from_dict( { "cellA": [0, 0, 1, 1, 1, 1], "cellB": [0, 0, 2, -1, -1, -1], "cellC": [-1, -1, -1, 2, 1, 1], }, orient="index", columns=[f"r{i}" for i in range(1, 7)], ) pd.testing.assert_frame_equal(character_matrix, expected_df) def test_filter_out_low_diversity_intbcs(self): ( character_matrix, priors, indel_states, ) = cas.pp.convert_alleletable_to_character_matrix( self.alleletable_basic, allele_rep_thresh=0.99 ) self.assertEqual(character_matrix.shape[0], 3) self.assertEqual(character_matrix.shape[1], 2) expected_df = pd.DataFrame.from_dict( {"cellA": [1, 1], "cellB": [2, -1], "cellC": [-1, 2]}, orient="index", columns=[f"r{i}" for i in range(1, 3)], )
pd.testing.assert_frame_equal(character_matrix, expected_df)
pandas.testing.assert_frame_equal
#!/usr/bin/env python3 # # - import a csv table of score files (and possibly edf files) # - strip out spaces in column names # - consolidate into trial datablocks (with consensus) # TODO: use relative paths in csv? #====================================== import pdb import os import argparse import pandas as pd import numpy as np import scoreblock as sb raise Exception('deprecated, replaced by scoreloader.py') #============================================================================== pp = argparse.ArgumentParser() pp.add_argument('-c', required=True, default=None, type=str, help='csv table of score files') pp.add_argument('--dest', type=str, default='ANL-load-scores', help='output folder') args = pp.parse_args() os.makedirs(args.dest, exist_ok=True) # import table of score files df = pd.read_csv(args.c, index_col=0) # for the case for a csv with 'humanScores' and 'edf' files stacked together if 'filetype' in df.columns: df = df[df['filetype'] == 'humanScores'] # load scores for each trial/day/scorer ydata = [] for i, row in df.iterrows(): print(row['trial'], row['genotype'], row['day'], row['scorer']) dfi = pd.read_csv(row['file']) dfi.columns = [col.replace(" ","") for col in list(dfi.columns)] ydata.append(dfi['Score'].values) # combine all score vectors into a single stacked dataframe ydata = np.asarray(ydata) index_cols = ['trial', 'genotype', 'day', 'scorer'] data_cols = ['Epoch-%5.5i' % (i+1) for i in range(ydata.shape[1])] df_data = pd.DataFrame(ydata, columns=data_cols) df_index = df[index_cols] df_scores =
pd.concat([df_index, df_data], axis=1)
pandas.concat
import numpy as np import pandas as pd from pathlib import Path import bw2data as bd import bw_processing as bwp from fs.zipfs import ZipFS from consumption_model_ch.utils import get_habe_filepath # Local files from .sensitivity_analysis import get_mask DATA_DIR = Path(__file__).parent.resolve() / "data" KONSUMGUETER_DICT = { "anzahlneuwagen11": "cg_nonewcars", "anzahlgebrauchtwagen11": "cg_nousedcars", "anzahlmotorraeder11": "cg_nomotorbikes", "anzahlfahrraeder11": "cg_nobicycles", "anzahltiefkuehler11": "cg_nofreezers", "anzahlgeschirrspueler11": "cg_nodishwashers", "anzahlwaschmaschinen11": "cg_nowashmachines", "anzahlwaeschetrockner11": "cg_nodriers", "anzahlroehrenfernseher11": "cg_nocrttvs", "anzahllcdfernseher11": "cg_nolcdtvs", "anzahlparabolantennen11": "cg_nosat", "anzahlvideokameras11": "cg_nocams", "anzahlvideorecorder11": "cg_novideorecs", "anzahlspielkonsolen11": "cg_novieogames", "anzahldesktopcomputer11": "cg_nodesktoppcs", "anzahllaptopcomputer11": "cg_nolaptops", "anzahldrucker11": "cg_noprinters", "anzahlmobiltelefone11": "cg_nomobilephones", "anzahlmp3player11": "cg_nomp3players", "anzahlgpsgeraete11": "cg_nogps", } def get_household_data(indices, co_name="swiss consumption 1.0"): # 1. Get some metadata from the consumption database co = bd.Database(co_name) year_habe = co.metadata['year_habe'] dir_habe = co.metadata['dir_habe'] # 2. Extract total demand from HABE path_ausgaben = get_habe_filepath(dir_habe, year_habe, 'Ausgaben') path_mengen = get_habe_filepath(dir_habe, year_habe, 'Mengen') path_konsumgueter = get_habe_filepath(dir_habe, year_habe, 'Konsumgueter') # change codes to be consistent with consumption database and Andi's codes ausgaben =
pd.read_csv(path_ausgaben, sep='\t')
pandas.read_csv
def getMetroStatus(): import http.client, urllib.request, urllib.parse, urllib.error, base64, time headers = { # Request headers 'api_key': '6b700f7ea9db408e9745c207da7ca827',} params = urllib.parse.urlencode({}) try: conn = http.client.HTTPSConnection('api.wmata.com') conn.request("GET", "/StationPrediction.svc/json/GetPrediction/All?%s" % params, "{body}", headers) response = conn.getresponse() data = response.read() return str(data) #returns the data as a string rather than raw bytes conn.close() except Exception as e: print("[Errno {0}] {1}".format(e.errno, e.strerror)) def JSONfromMetro(trainString): #converts the string into a dictionary file import json, re fixSlash=re.compile(r'\\') #this line and the next remove triple-slashes, which screw up the json module fixedTrainString=fixSlash.sub('',trainString) trainJSON=json.loads(fixedTrainString[2:-2]+"}") #slightly adjusts the string to put it in json form if isinstance(trainJSON,dict) and 'Trains' in trainJSON.keys(): return trainJSON['Trains'] else: return None def saveWMATASQL(trainData, engine): #saves the current WMATA data to open engine import datetime, pandas as pd #the line below creates a table name starting with WMATA and then containing the date and time information, with each day/hour/minute/second taking two characters if not isinstance(trainData, list): return None DTstring=str(datetime.datetime.now().month)+str(datetime.datetime.now().day).rjust(2,'0')+str(datetime.datetime.now().hour).rjust(2,'0')+str(datetime.datetime.now().minute).rjust(2,'0')+str(datetime.datetime.now().second).rjust(2,'0') trainFrame=pd.DataFrame('-', index=range(len(trainData)), columns=['DT','Car','Loc','Lin','Des','Min','Gro']) #creates trainFrame, the DataFrame to send to the SQL server for iter in range(len(trainData)): #for all the trains in trainData trainFrame.loc[iter]['DT']=DTstring for colName in ['Car','LocationCode','Line','DestinationCode','Min','Group']: #select the six relevant fields trainFrame.loc[iter][colName[:3]]=trainData[iter][colName] #and fill in the relevant data trainFrame.to_sql('WMATAFull', engine, if_exists='append') #send trainFrame to the SQL server return trainFrame def lineNextDF(line, destList, arrData): import pandas as pd timeString=arrData.DT.iloc[0] rowName=pd.to_datetime('2016-'+timeString[0]+'-'+timeString[1:3]+' '+timeString[3:5]+':'+timeString[5:7]+':'+timeString[7:]) # names the row as a timestamp with the month day hour minute second lineStat=pd.DataFrame('-',index=[rowName],columns=line) for station in line: #repeat the below process for every station on the line trains2consider=arrData.loc[lambda df: df.Loc==station].loc[lambda df: df.Des.isin(destList)] #pull out the trains at that station heading toward the destinations if len(trains2consider.index)>0: #If you found a train if trains2consider.Des.iloc[0] in ['A11','B08','E01','K04']: #the next few lines set the station status to the color and ETA of the first arriving train lineStat.loc[rowName,station]=trains2consider.Lin.iloc[0].lower()+':'+trains2consider.Min.iloc[0] #if the train is terminating early (at Grovesnor, Silver Spring or Mt Vernon), use lowercase elif trains2consider.Des.iloc[0]=='E06': lineStat.loc[rowName,station]='Yl:'+trains2consider.Min.iloc[0] elif trains2consider.Des.iloc[0]=='A13': lineStat.loc[rowName,station]='Rd:'+trains2consider.Min.iloc[0] else: lineStat.loc[rowName,station]=trains2consider.Lin.iloc[0]+':'+trains2consider.Min.iloc[0] #otherwise use upper return lineStat def allLNtoNE(arrData, surgeNum): #all of the lines to the North and East during Surge 4 import pandas as pd LNlist=[] for num in range(len(lineList[surgeNum])): LNlist.append(lineNextDF(lineList[surgeNum][num], NEdestList[surgeNum][num], arrData)) #run for each line and destination return pd.concat(LNlist, axis=1, join='outer') #then join them all together def allLNtoSW(arrData, surgeNum): #all of the lines to the South and West during Surge 4 import pandas as pd LNlist=[] for num in range(1,1+len(lineList[surgeNum])): LNlist.append(lineNextDF(lineList[surgeNum][-num][::-1], SWdestList[surgeNum][-num][::-1], arrData)) #run for each line and destination return pd.concat(LNlist, axis=1, join='outer') #then join them all together def WMATAtableSQL(timeMin,intervalSec, surgeNum): #records for timeMin minutes, about ever intervalSec seconds import time, pandas as pd from sqlalchemy import create_engine engine = create_engine('postgresql+psycopg2://Original:tolistbtGU!@team<EMAIL>:5432/WmataData') #opens the engine to WmataData #creates a list of the table we're creating to add to the index isStart=True startTime=time.time() while time.time()<(startTime+60*timeMin): #runs for timeMin minutes stepStart=time.time() WMATAdf=saveWMATASQL(JSONfromMetro(getMetroStatus()),engine) #save the current train data and appends the name to tableList if isinstance(WMATAdf,pd.DataFrame) and len(WMATAdf.index)>0: #if you got data back if isStart: #and it's the first row allLN2NE=allLNtoNE(WMATAdf,surgeNum) #set allLNtoNE equal to the all LineNext to NE data allLN2SW=allLNtoSW(WMATAdf,surgeNum) #set allLNtoSW equal to the all LineNext to SW data isStart=False #and the next row will not be the first row else: #for other rows allLN2NE=allLN2NE.append(allLNtoNE(WMATAdf,surgeNum)) #append the data allLN2SW=allLN2SW.append(allLNtoSW(WMATAdf,surgeNum)) stepTime=time.time()-stepStart #calculates the time this step took if stepTime<intervalSec: #if intervalSec seconds have not passed, time.sleep(intervalSec-stepTime) #wait until a total of intervalSec have passed engine.connect().close() return [allLN2NE, allLN2SW] def lineNextSQL(line, timeString,destList, engine): #reads the next train to arrive at the stations in line heading toward destList and returns it as a Data Frame import pandas as pd from sqlalchemy import create_engine isEngineNone=(engine is None) if isEngineNone: #if there's not an engine, make one engine = create_engine('postgresql+psycopg2://Original:tolistbtGU!@teamoriginal.ccc95gjlnnnc.us-east-1.rds.amazonaws.com:5432/WmataData') query='SELECT * FROM "WMATAFull" WHERE "DT"='+"'"+timeString+"';" arrData=pd.read_sql(query,engine) if isEngineNone: engine.connect().close() return lineNextDF(line, destList, arrData) def lineNextTableSQL(line, firstTime, lastTime, destList): #saves the next train arrivals for a line and destList over time import time, pandas as pd from sqlalchemy import create_engine print(time.strftime("%a, %d %b %Y %H:%M:%S")) engine = create_engine('postgresql+psycopg2://Original:tolistbtGU!<EMAIL>:5432/WmataData') query='SELECT * FROM "WMATAFull" WHERE "DT">='+"'"+firstTime+"' AND "+'"DT"<='+"'"+lastTime+"';" arrData=pd.read_sql(query,engine) print(time.strftime("%a, %d %b %Y %H:%M:%S")) if len(arrData.index)==0: return None timesPD=arrData.DT.value_counts().sort_index().index #pull out each time and call it timesPD lineStats=lineNextDF(line, destList, arrData.loc[lambda df: df.DT==timesPD[0]]) #save the first status for num in range(1,len(timesPD)): #for each time lineStats=lineStats.append(lineNextDF(line, destList, arrData.loc[lambda df: df.DT==timesPD[num]])) #add the data for that time engine.connect().close() print(time.strftime("%a, %d %b %Y %H:%M:%S")) return lineStats def allLNtoNEtable(firstTime, lastTime, surgeNum): #saves the next train arrivals for a line and destList over time import pandas as pd from sqlalchemy import create_engine engine = create_engine('postgresql+psycopg2://Original:tolistbtGU!@<EMAIL>:5432/WmataData') query='SELECT * FROM "WMATAFull" WHERE "DT">='+"'"+firstTime+"' AND "+'"DT"<='+"'"+lastTime+"';" arrData=pd.read_sql(query,engine) if len(arrData.index)==0: #if you didn't get any data, return None #return nothing timesPD=arrData.DT.value_counts().sort_index().index #pull out each time and call it timesPD lineStats=allLNtoNE(arrData.loc[lambda df: df.DT==timesPD[0]],surgeNum) #save the first status for num in range(1,len(timesPD)): #for each time lineStats=lineStats.append(allLNtoNE(arrData.loc[lambda df: df.DT==timesPD[num]],surgeNum)) #add the data for that time engine.connect().close() return lineStats def allLNtoSWtable(firstTime, lastTime, surgeNum): #saves the next train arrivals for a line and destList over time import pandas as pd from sqlalchemy import create_engine engine = create_engine('postgresql+psycopg2://Original:tolistbtGU!@teamoriginal.ccc95gjlnnnc.us-east-1.rds.amazonaws.com:5432/WmataData') query='SELECT * FROM "WMATAFull" WHERE "DT">='+"'"+firstTime+"' AND "+'"DT"<='+"'"+lastTime+"';" arrData=pd.read_sql(query,engine) if len(arrData.index)==0: #if you didn't get any data, return None #return nothing timesPD=arrData.DT.value_counts().sort_index().index #pull out each time and call it timesPD lineStats=allLNtoSW(arrData.loc[lambda df: df.DT==timesPD[0]],surgeNum) #save the first status for num in range(1,len(timesPD)): #for each time lineStats=lineStats.append(allLNtoSW(arrData.loc[lambda df: df.DT==timesPD[num]],surgeNum)) #add the data for that time engine.connect().close() return lineStats def trainBuild(lineStat,startTime): #determines how long it took the train arriving after startTime to reach every station and returns it as one row data frame import pandas as pd timeRow=list(lineStat.index).index(startTime) #finds the row number from lineStat labeled startTime and calls it timeRow specTrain=pd.concat([pd.DataFrame('-',index=[startTime],columns=['Col']),pd.DataFrame(0,index=[startTime],columns=list(lineStat.columns))], axis=1, join='outer') while timeRow<len(lineStat.index)-1 and (not isinstance(lineStat.iloc[timeRow][0], str) or len(lineStat.iloc[timeRow][0])<6 or lineStat.iloc[timeRow][0][-3:]!='BRD'): #while timeRow is in bounds and no train is boarding, timeRow+=1 #go to the next line skipRows=timeRow-list(lineStat.index).index(startTime) #skipRows is the number of rows to skip the next time it looks for a train if timeRow>=len(lineStat.index): #if you get to the end, return [specTrain, skipRows] #just return what you have specTrain.loc[startTime,'Col']=lineStat.iloc[timeRow][0][:2] #fills in the color, which is stored as the first two letters in the status timeDif=lineStat.index[timeRow]-startTime #set timeDif to the diffence between arrival at this station and startTime specTrain.loc[startTime,lineStat.columns[0]]=timeDif.seconds #store timeDif as seconds for stationNum in range(1,len(lineStat.columns)): #this fills in the difference arrival time for every station isTrainBoarding=False while timeRow<(len(lineStat.index)-1) and not isTrainBoarding: #while timeRow is in bounds and the train is not boarding #The line below says that a train is boarding if either it has status "BRD" or it has status "ARR" and 20 seconds later the station is waiting for a different train isTrainBoarding=lineStat.iloc[timeRow][stationNum]==(specTrain.loc[startTime,'Col']+":BRD") or (lineStat.iloc[timeRow][stationNum]==(specTrain.loc[startTime,'Col']+":ARR") and (lineStat.iloc[timeRow+1][stationNum][:2]!=specTrain.loc[startTime,'Col'])) timeRow+=1 #go to the next line if timeRow>=len(lineStat.index)-1: #if you get to the end, return [specTrain, skipRows] #just return what you have timeDif=lineStat.index[timeRow]-startTime #set timeDif to the diffence between arrival at this station and startTime specTrain.loc[startTime,lineStat.columns[stationNum]]=timeDif.seconds #store timeDif as seconds (converted into a string) if stationNum<len(lineStat.columns)-1: #if you found a trains, go down a certain number of rows before checking the next station if lineStat.columns[stationNum] in minDist.keys() and lineStat.columns[stationNum+1] in minDist.keys(): #if both stations are in minDist timeRow+=minDist[lineStat.columns[stationNum]][lineStat.columns[stationNum+1]]['weight'] #go down the number of rows recorded in minDist else: timeRow+=2 #if the connection isn't in minDist, go down two rows if (specTrain.loc[startTime,'Col'].islower() and lineStat.columns[stationNum] in ['A11','B08','E01','K04']) or (specTrain.loc[startTime,'Col']=='Yl' and lineStat.columns[stationNum]=='E05') or (specTrain.loc[startTime,'Col']=='Rd' and lineStat.columns[stationNum]=='A13'): break return [specTrain, skipRows] def trainTable(lineStat): #returns a table listing the trains by start time, color and the time they took to reach a given station import pandas as pd [masterTable,rowNum]=trainBuild(lineStat,lineStat.index[0]) #builds the first row and lets it now how many rows to go forward to get to the next train arrival currentColor=masterTable.iloc[0][0] #record the color of the first train as currentColor newTrain=masterTable #newTrain just needs to be something for when it's referenced in the if statement while rowNum<len(lineStat.index):# and newTrain.iloc[0][-1]!=0: #keep going as long as there's data to analyze and each train gets to the end while rowNum<len(lineStat.index)-1 and lineStat.iloc[rowNum][0]==currentColor+':BRD': #while the train (with currentColor) is boarding, rowNum+=1 #go to the next row [newTrain, skipRows]=trainBuild(lineStat,lineStat.index[rowNum]) #once you've gotten to a new train arrival, record it as newTrain and note the rows to skip masterTable=masterTable.append(newTrain) #append newTrain to the masterTable currentColor=masterTable.iloc[-1][0] #xchange currentColor to the color of the train that just boarded rowNum+=skipRows+1 #skip ahead to the next train return masterTable def lastBRDtime(newTrainBRDtime, lineStat, stationNum): #finds the last time a train boarded at a given station before newTrainBRDtime import pandas as pd timeRow=list(lineStat.index).index(newTrainBRDtime)-2 #start with a time two rows before the train reaches the station isTrainBoarding=False # the next few lines just say keep moving backwards in time until you get to a train board while timeRow>0 and not isTrainBoarding: #if you haven't hit the beginning and a train isn't boarding isTrainBoarding=isinstance(lineStat.iloc[timeRow,stationNum], str) and len(lineStat.iloc[timeRow, stationNum])==6 and lineStat.iloc[timeRow,stationNum][-3:]=='BRD' #a train is boarding if it's a string of length 6 with BRD as the last three letters timeRow-=1 return lineStat.index[timeRow] #return that time def trainTableIntermediate(lineStat, stationList): #returns a table listing the trains by start time, color and the time they took to reach a given station, with the possibility that a train started at an intermediary station import pandas as pd staNumList=[] for station in stationList: #turn the list of stations into a list of numbers corresponding to the stations' location in lineStat's columns staNumList.append(list(lineStat.columns).index(station)) [masterTable,rowNum]=trainBuild(lineStat,lineStat.index[0]) #builds the first row and lets it now how many rows to go forward to get to the next train arrival currentColor=masterTable.iloc[0][0] #record the color of the first train as currentColor newTrain=masterTable #newTrain just needs to be something for when it's referenced in the if statement while rowNum<len(lineStat.index):# and newTrain.iloc[0][-1]!=0: #keep going as long as there's data to analyze and each train gets to the end while rowNum<len(lineStat.index)-1 and lineStat.iloc[rowNum,0]==currentColor+':BRD': #while the train (with currentColor) is boarding, rowNum+=1 #go to the next row [newTrain, skipRows]=trainBuild(lineStat,lineStat.index[rowNum]) #once you've gotten to a new train arrival, record it as newTrain and note the rows to skip for staNum in staNumList: #for all the intermediary stations in stationList mostRecentBRDtime=lastBRDtime(newTrain.index[0]+pd.to_timedelta(newTrain.iloc[0,staNum],unit='s'), lineStat, staNum) #find the last train to board at this station if mostRecentBRDtime>=masterTable.index[-1]+pd.to_timedelta(masterTable.iloc[-1,staNum]+42,unit='s'): #if that train left more than 42 seconds after the last train in the table intermedTrain=trainBuild(lineStat.iloc[:,staNum:],mostRecentBRDtime)[0] #it's a different train, so figure out how long it took to arrive for colNum in range(staNum): #for all the stations before the intermediary station, intermedTrain.insert(colNum+1,lineStat.columns[colNum],0) #insert a column with value 0 and the correct station masterTable=masterTable.append(intermedTrain) #append the intermediary train to masterTable break masterTable=masterTable.append(newTrain) #append newTrain to the masterTable currentColor=newTrain.iloc[0,0] #change currentColor to the color of the train that just boarded rowNum+=skipRows+1 #skip ahead to the next train masterTable.index+=pd.to_timedelta(masterTable.iloc[:,staNum],unit='s') #normalize the index so that the time in each row is when the train arrived at the first station to include all trains, i.e., the last intermediary station return masterTable def trainTableMerge(innerTrainTable, outerTrainTable): #this function merges two sets of train tables, where all the stations in innerTrainTable are also in outerTrainTable import pandas as pd centralTrainTable=innerTrainTable.loc[lambda df: df.Col>'ZZ'] #only worry about the trains that are lowercase numLeftStations=list(outerTrainTable.columns).index(centralTrainTable.columns[1]) #numLeftStations is the number of stations in outerTrainTable before the first one in innerTrainTable numRightStations=len(outerTrainTable.columns)-list(outerTrainTable.columns).index(centralTrainTable.columns[-1])-1 #numRightStations is the number of stations in outerTrainTable after the last one in innerTrainTable if numLeftStations>1: for staNum in range(numLeftStations-1): #insert the left stations from outerTrainTable with 0 as the value centralTrainTable.insert(1+staNum,outerTrainTable.columns[1+staNum],0) if numRightStations>0: for staNum in range(-numRightStations,0): #insert the right stations from outerTrainTable with 0 as the value centralTrainTable.insert(len(centralTrainTable.columns),outerTrainTable.columns[staNum],0) newTrainTable=pd.concat([outerTrainTable,centralTrainTable]) #join the two tables together newTrainTable.index+=pd.to_timedelta(newTrainTable.iloc[:,numLeftStations],unit='s') #normalize the index so that the time in each row is when the train arrived at the first station to include all trains, i.e., the last intermediary station return newTrainTable.sort_index() #return the combined table sorted by when the trains arrived at the first station in innerTrainTable def allTrainsNE(allLN2NE, surgeNum): #returns all trains heading toward the North and East (Glenmont, Greenbelt, New Carrollton, Largo) as a dictioanry of panda dataframes GRtrains=trainTable(allLN2NE.loc[:, sGLine+cGYLine+nGYEnd]) #produces all green line trains if surgeNum in [3,4]: #if it's surge 3 or 4 YLtrains=trainTable(allLN2NE.loc[:, ['C07']+cGYLine+nGYEnd]).loc[lambda df: df.Col.isin(['YL','yl'])] #return yellow line trains starting at the Pentagon BLtrains=trainTable(allLN2NE.loc[:, ['C07']+BArlCem+SOBLine+SBLine]) #return blue line trains starting at the Pentagon else: YLtrains=trainTable(allLN2NE.loc[:,wBEnd+BYLine+cGYLine+nGYEnd]).loc[lambda df: df.Col=='YL'] #otherwise, return yellow line Rush Plus trains from Van Dorn onward yltrains=trainTable(allLN2NE.loc[:, sYEnd+BYLine+cGYLine+nGYEnd[:6]]).loc[lambda df: df.Col.isin(['Yl','yl'])] #return normal yellow line trains if surgeNum==2: BLtrains=trainTable(allLN2NE.loc[:, wBEnd+BYLine]).loc[lambda df: df.Col=='BL'] #for surge 2, return trains that run to the Pentagon else: BLtrains=trainTable(allLN2NE.loc[:, wBEnd+BYLine+BArlCem+SOBLine+SBLine]).loc[lambda df: df.Col=='BL'] #otherwise, blue lines run all the way if surgeNum==2: SVtrains=trainTable(allLN2NE.loc[:, wSEnd+SOLine+SOBLine[:-3]]) #for surge 2, return trains that run to Eastern Market ORtrains=trainTable(allLN2NE.loc[:, wOEnd+SOLine+SOBLine[:-3]]) #for surge 2, return trains that run to Eastern Market else: SVtrains=trainTable(allLN2NE.loc[:, wSEnd+SOLine+SOBLine+SBLine]) #otherwise, silver line trains run all the way if surgeNum in [1,5]: #during surges 1 and 5, there are intermediate orange line trains ORtrains=trainTableIntermediate(allLN2NE.loc[:, wOEnd+SOLine+SOBLine+eOLine], ['K04']) #that start at Ballston (K04) else: ORtrains=trainTable(allLN2NE.loc[:, wOEnd+SOLine+SOBLine[:-1]]) RDtrains=trainTableIntermediate(allLN2NE.loc[:,wRedEnd+cRedLine+eRedEnd],['A13','A11']) #for red line trains, produce trains that run all the way and trains that run from Grovesnor to Silver Spring if surgeNum in [3,4]: return {'GR':GRtrains,'YL':YLtrains,'BL':BLtrains,'SV':SVtrains,'OR':ORtrains,'RD':RDtrains} #combine them all into a dictionary else: return {'GR':GRtrains,'YL':YLtrains,'yl':yltrains,'BL':BLtrains,'SV':SVtrains,'OR':ORtrains,'RD':RDtrains} #combine them all into a dictionary #note: [::-1] reverses the direction of a list without affecting how it's called later def allTrainsSW(allLN2SW,surgeNum): #returns all trains heading toward the South and West (Branch Ave, Huntington, Franconia-Springfield, Vienna, Wiehle, Shady Grove) as a dictionary of panda dataframes GRtrains=trainTable(allLN2SW.loc[:, (sGLine+cGYLine+nGYEnd)[::-1]]).loc[lambda df: df.Col=='GR'] #produces all green line trains if surgeNum in [3,4]: #if it's surge 3 or 4 YLtrains=trainTableIntermediate(allLN2SW.loc[:, (['C07']+cGYLine+nGYEnd)[::-1]],['E06','E01']).loc[lambda df: df.Col.isin(['YL','Yl','yl'])] #run the yellow line to the Pentagon BLtrains=trainTable(allLN2SW.loc[:, (['C07']+BArlCem+SOBLine+SBLine)[::-1]]).loc[lambda df: df.Col=='BL'] #run the blue line to the Pentagon else: YLtrains=trainTable(allLN2SW.loc[:, (wBEnd+BYLine+cGYLine+nGYEnd)[::-1]]).loc[lambda df: df.Col=='YL'] #otherwise, produce yellow line Rush Plus trains to Franconia-Springfied yltrains=trainTableIntermediate(allLN2SW.loc[:, (sYEnd+BYLine+cGYLine+nGYEnd[:6])[::-1]],['E06','E01']).loc[lambda df: df.Col.isin(['yl','YL'])] #return normal yellow line trains if surgeNum==2: BLtrains=trainTable(allLN2SW.loc[:, (wBEnd+BYLine)[::-1]])[lambda df: df.Col=='BL'] #for surge 2, produce trains from the Pentagon to Van Dorn else: BLtrains=trainTable(allLN2SW.loc[:, (wBEnd+BYLine+BArlCem+SOBLine+SBLine)[::-1]]).loc[lambda df: df.Col=='BL'] if surgeNum==2: SVtrains=trainTable(allLN2SW.loc[:, (wSEnd+SOLine+SOBLine[:-3])[::-1]]).loc[lambda df: df.Col=='SV'] #for surge 2, produce trains that run to Eastern Market ORtrains=trainTable(allLN2SW.loc[:, (wOEnd+SOLine+SOBLine[:-3])[::-1]]).loc[lambda df: df.Col=='OR'] #for surge 2, produce trains that run to Eastern Market else: SVtrains=trainTable(allLN2SW.loc[:, (wSEnd+SOLine+SOBLine+SBLine)[::-1]]).loc[lambda df: df.Col=='SV'] #produce silver line trains ORtrains=trainTable(allLN2SW.loc[:, (wOEnd+SOLine+SOBLine+eOLine)[::-1]]) #produce orange line trains RDtrains=trainTableIntermediate(allLN2SW.loc[:,(wRedEnd+cRedLine+eRedEnd)[::-1]],['B08','B35']) #for red line trains, return trains that run all the way and trains that run from Grovesnor to Silver Spring if surgeNum in [3,4]: return {'GR':GRtrains,'YL':YLtrains,'BL':BLtrains,'SV':SVtrains,'OR':ORtrains,'RD':RDtrains} #combine them all into a dictionary else: return {'GR':GRtrains,'YL':YLtrains,'yl':yltrains,'BL':BLtrains,'SV':SVtrains,'OR':ORtrains,'RD':RDtrains} #combine them all into a dictionary def trainTableErrHandling(lineStat): #returns a table listing the trains by start time, color and the time they took to reach a given station, removing trains that arrive at the same time or before the train that started before them import pandas as pd [masterTable,rowNum]=trainBuild(lineStat,lineStat.index[0]) #builds the first row and lets it now how many rows to go forward to get to the next train arrival currentColor=masterTable.iloc[0][0] #record the color of the first train as currentColor newTrain=masterTable #newTrain just needs to be something for when it's referenced in the if statement while rowNum<len(lineStat.index) and newTrain.iloc[0][-1]!=0: #keep going as long as there's data to analyze and each train gets to the end while rowNum<len(lineStat.index)-1 and lineStat.iloc[rowNum][0]==currentColor+':BRD': #while the train (with currentColor) is boarding, rowNum+=1 #go to the next row [newTrain, skipRows]=trainBuild(lineStat,lineStat.index[rowNum]) #once you've gotten to a new train arrival, record it as newTrain and note the rows to skip if newTrain.iloc[0][-1]==0 or (newTrain.index[0]-masterTable.index[-1]).seconds>int(masterTable.iloc[-1][-1])-int(newTrain.iloc[0][-1]): #if you've reached the end or newTrain arrived at the last station after the last train masterTable=masterTable.append(newTrain) #append newTrain to the masterTable else: #but if that's not the case, something went wrong with the last train masterTable=pd.concat([masterTable.iloc[:][:-1],newTrain]) #replace the last row of masterTable with the data for newTrain currentColor=masterTable.iloc[-1][0] #exchange currentColor to the color of the train that just boarded rowNum+=skipRows+1 #skip ahead to the next train return masterTable def trainTableSurgeNE(month, dayList, surgeNum): #this code asssembles all the trains moving toward the North and East during a surge import pandas as pd isFirst=True for day in dayList: #for all the days on the list tempLN=allLNtoNEtable(str(month)+str(day).rjust(2,'0')+'045000',str(month)+str(day).rjust(2,'0')+'101000',surgeNum) #form the lineNext for the morning if isinstance(tempLN, pd.DataFrame) and len(tempLN.index)>200: #if there's more than 200 lines (over an hour) of data if isFirst: #if it's the first time you found data trainsSurge=allTrainsNE(tempLN,surgeNum) #set the data to the trains of that set isFirst=False else: #if it's not the first time you found data tempTrains=allTrainsNE(tempLN,surgeNum) for color in trainsSurge.keys(): #for each color trainsSurge[color]=trainsSurge[color].append(tempTrains[color]) #append the new data to the existing data #this is the same as above, but for the afternoon instead of the morning tempLN=allLNtoNEtable(str(month)+str(day).rjust(2,'0')+'165000',str(month)+str(day)+'221000',surgeNum) if isinstance(tempLN, pd.DataFrame) and len(tempLN.index)>200: if isFirst: trainsSurge=allTrainsNE(tempLN,surgeNum) isFirst=False else: tempTrains=allTrainsNE(tempLN,surgeNum) for color in trainsSurge.keys(): trainsSurge[color]=trainsSurge[color].append(tempTrains[color]) return trainsSurge #this is the same as above, but for trains heading to the South and West instead def trainTableSurgeSW(month, dayList, surgeNum): import pandas as pd isFirst=True for day in dayList: tempLN=allLNtoSWtable(str(month)+str(day).rjust(2,'0')+'045000',str(month)+str(day).rjust(2,'0')+'101000',surgeNum) if isinstance(tempLN, pd.DataFrame) and len(tempLN.index)>200: if isFirst: trainsSurge=allTrainsSW(tempLN,surgeNum) isFirst=False else: tempTrains=allTrainsSW(tempLN,surgeNum) for color in trainsSurge.keys(): trainsSurge[color]=trainsSurge[color].append(tempTrains[color]) tempLN=allLNtoSWtable(str(month)+str(day).rjust(2,'0')+'165000',str(month)+str(day).rjust(2,'0')+'221000',surgeNum) if isinstance(tempLN, pd.DataFrame) and len(tempLN.index)>200: if isFirst: trainsSurge=allTrainsSW(tempLN,surgeNum) isFirst=False else: tempTrains=allTrainsSW(tempLN,surgeNum) for color in trainsSurge.keys(): trainsSurge[color]=trainsSurge[color].append(tempTrains[color]) return trainsSurge def saveWMATAtrainSQL(timeList, duration, surgeNum): #saves the data from WMATA and the train instances to the SQL database import time, pandas as pd from sqlalchemy import create_engine for hour2wake in timeList: #run at timeList while int(time.strftime('%H'))<hour2wake or int(time.strftime('%H'))>timeList[-1]: #while it's not yet time to run time.sleep(180) #wait 3 minutes [allLN2NE,allLN2SW]=WMATAtableSQL(duration,20,5) #then run for duration period, recording data every 20 seconds allLN2NE.to_csv('LNtoNE'+time.strftime("%d%H%M%S")+'.csv') #this saves a copy of the lineNext, so I can reconstruct the trainBuild if there's a problem allLN2SW.to_csv('LNtoSW'+time.strftime("%d%H%M%S")+'.csv') #ditto trains2NE=allTrainsNE(allLN2NE, surgeNum) #this creates the train dictionary trains2SW=allTrainsNE(allLN2SW, surgeNum) #ditto engine = create_engine('postgresql+psycopg2://Original:tolistbtGU!@<EMAIL>:5432/WmataData') #opens the engine to WmataData for color in trains2NE.keys(): #for all the colors if color=='YL': #for rush plus yellow lines, save them as YLP and the surge number trains2NE['YL'].to_sql('NEtrainsYLP'+str(surgeNum), engine, if_exists='append') trains2SW['YL'].to_sql('SWtrainsYLP', engine, if_exists='append') else: #for other colors, save them by the color and the surge number trains2NE[color].to_sql('NEtrains'+color+str(surgeNum), engine, if_exists='append') trains2SW[color].to_sql('SWtrains'+color+str(surgeNum), engine, if_exists='append') engine.connect().close() return def trainData(line,destList,month,dayList): #gets all the train arrival data for a specific line for specific dates import pandas as pd isFirst=True for day in dayList: #for all the days on the list tempLN=lineNextTableSQL(line,str(month)+str(day).rjust(2,'0')+'045000',str(month)+str(day).rjust(2,'0')+'101000',destList) #form the lineNext for the morning if isinstance(tempLN, pd.DataFrame) and len(tempLN.index)>200: #if there's more than 200 lines (over an hour) of data if isFirst: #if it's the first time you found data trains=trainTable(tempLN) #set the data to the trains of that set isFirst=False else: #if it's not the first time you found data tempTrains=trainTable(tempLN) trains=trains.append(tempTrains) #append the new data to the existing data #the code below is the same concept, but for the afternoon tempLN=lineNextTableSQL(line,str(month)+str(day).rjust(2,'0')+'165000',str(month)+str(day).rjust(2,'0')+'221000',destList) #form the lineNext for the afternoon if isinstance(tempLN, pd.DataFrame) and len(tempLN.index)>200: #if there's more than 200 lines (over an hour) of data if isFirst: #if it's the first time you found data trains=trainTable(tempLN) #set the data to the trains of that set isFirst=False else: #if it's not the first time you found data tempTrains=trainTable(tempLN) trains=trains.append(tempTrains) #append the new data to the existing data return trains def trainDataCSV(fileName): #converts data from a csv file into our standard format import pandas as pd rawData=pd.read_csv(fileName) #reads the file return rawData.rename(index=pd.to_datetime(rawData.iloc[:,0])).drop(rawData.columns[0],axis=1) #renames the indices as the first column (converted into dateTimes), then drops the first column def getRidersTrans(): #gets the ridership data and the station RTU/name translator import pandas as pd from sqlalchemy import create_engine engine = create_engine('postgresql+psycopg2://Original:tolistbtGU!@teamoriginal.ccc95gjlnnnc.us-east-1.rds.amazonaws.com:5432/SHSTUFF') query1='SELECT * FROM "WMATARidershipExtract";' ridershipDF=pd.read_sql(query1,engine) query2='SELECT * FROM "RTUname";' RTUname=pd.read_sql(query2,engine) return [ridershipDF,RTUname.rename(index=RTUname.loc[:,'index']).drop('index',axis=1)] def dateQH(DTinput): #given a panda datetime, it outputs the date and quarter hour string for pulling ridership data import pandas as pd startMinute=DTinput.minute-DTinput.minute%15 if startMinute==45: endHour=DTinput.hour%12+1 endMinute=0 else: endHour=DTinput.hour%12 endMinute=startMinute+15 if DTinput.hour>11: ampm=' PM' else: ampm=' AM' QHstring=str(DTinput.hour%12)+':'+str(startMinute).rjust(2,'0')+ampm+' to '+str(endHour)+':'+str(endMinute).rjust(2,'0')+ampm return [DTinput.date(),QHstring] #returns the date and quarter hour string, e.g., '5:00 PM to 5:15 PM' def tripTimes(trainsData, stationSplits): #divides the train trips for the purpose of predictions, splitting the trains at the stations in stationSplits import pandas as pd [ridershipDF,stationTrans]=getRidersTrans() #gets the ridership data and station name/translator #the next few lines creates the columns: leg1riders, leg2riders,... lastLegRiders,leg1,leg2,...lastLeg legList=['lastLeg'] riderList=['lastLegRiders'] for num in range(len(stationSplits),0,-1): legList.insert(0,'leg'+str(num)) riderList.insert(0,'leg'+str(num)+'Riders') trips=pd.DataFrame(0,index=trainsData.index,columns=riderList+legList) #the stations are the first station, the station splits and the last station stations=[trainsData.columns[1]]+stationSplits+[trainsData.columns[-1]] for row in trainsData.index: #for all the rows [date,QHstring]=dateQH(row) #gets the date and quarter hour for colNum in range(len(legList)): # and columns trips.loc[row,legList[colNum]]=trainsData.loc[row,stations[colNum+1]]-trainsData.loc[row,stations[colNum]] #make the trip elements the difference between the station arrival data legStations=(trainsData.loc[:,stations[colNum]:stations[colNum+1]]).columns #legStations are the station in this leg trips.loc[row,legList[colNum]+'Riders']=ridershipDF[lambda df:df.station.isin(stationTrans.loc[legStations,'Station Name'])][lambda df:df.dateday==date][lambda df:df.hour_interval==QHstring].entries.sum() return trips def headerTimes(trainsData): #turns the date/time information into numbers that machine learning tools can use import pandas as pd headerInfo=pd.DataFrame(0,index=trainsData.index,columns=['secSince5','weekday','evening','lastTrain','lastTrainColor']) for time in trainsData.index: headerInfo.loc[time,'weekday']=time.weekday() if time.hour>11: #if it's past 11 headerInfo.loc[time,'evening']=1 #set evening to 1 headerInfo.loc[time,'secSince5']=(time-pd.to_datetime('2016-'+str(time.month)+'-'+str(time.day)+' 17:00')).seconds #set secSince5 to seconds since 5pm else: headerInfo.loc[time,'secSince5']=(time-pd.to_datetime('2016-'+str(time.month)+'-'+str(time.day)+' 5:00')).seconds #set secSince5 to seconds since 5am for timeRow in range(1,len(headerInfo.index)): headerInfo.iloc[timeRow,3]=(headerInfo.index[timeRow]-headerInfo.index[timeRow-1]).seconds for color in trainsData.Col.value_counts().index: if color>'-': for timeRow in range(1,len(trainsData[lambda df:df.Col==color].index)): headerInfo.loc[trainsData[lambda df:df.Col==color].index[timeRow],'lastTrainColor']=(trainsData[lambda df:df.Col==color].index[timeRow]-trainsData[lambda df:df.Col==color].index[timeRow-1]).seconds return headerInfo def trainTestSet(oldTrainsData, stationSplits): import pandas as pd, numpy as ny trainsData=oldTrainsData.reset_index().drop_duplicates(subset='index', keep='last').set_index('index').sort_index() #removes duplicated index tripTimeTable=tripTimes(trainsData, stationSplits) headerInfo= headerTimes(trainsData) secSince5B4=pd.Series(headerInfo.secSince5.iloc[:-1],index=trainsData.index[1:],name='secSince5B4') tripB4Table=tripTimeTable.iloc[1:] #this line and the next few lines make a new table with the data from the trip before tripB4Table=tripB4Table.rename_axis((lambda name:name+'B4'),axis='columns') for rowNum in range(len(tripB4Table.index)): for colNum in range(len(tripB4Table.columns)): tripB4Table.iloc[rowNum,colNum]=tripTimeTable.iloc[rowNum,colNum] colorSeries=trainsData.iloc[1:,0].map({'OR':1,'or':2,'SV':3,'BL':5,'yl':10,'Yl':11,'YL':12,'GR':15,'RD':20,'rd':21}) #remapping strings into numbers using the subjective numbering system I just made up stations2NE=[] #list of stations in order from south/west to north/east for line in lineList[0]: stations2NE+=line NEdirection=pd.Series(ny.sign(stations2NE.index(trainsData.columns[-1])-stations2NE.index(trainsData.columns[1])),index=trainsData.index, name='NEdirection') #NE direction is 1 if the train is headed to the north or east, -1 otherwise testTable=
pd.concat([colorSeries, NEdirection, headerInfo.iloc[1:],secSince5B4,tripB4Table,tripTimeTable.iloc[1:]],axis=1)
pandas.concat
# -*- coding: utf-8 -*- """Core logic for computing subtrees.""" # standard library imports import contextlib import os import sys from collections import Counter from collections import OrderedDict from itertools import chain from itertools import combinations from pathlib import Path # third-party imports import networkx as nx import numpy as np import pandas as pd from Bio import SeqIO # first-party imports import sh # module imports from .common import CLUSTER_HIST_FILE from .common import NAME from .common import SEARCH_PATHS from .common import cluster_set_name from .common import fasta_records from .common import get_paths_from_file from .common import homo_degree_dist_filename from .common import logger from .common import protein_properties_filename from .common import write_tsv_or_parquet from .protein import Sanitizer # global constants STATFILE_SUFFIX = f"-{NAME}_stats.tsv" ANYFILE_SUFFIX = f"-{NAME}_ids-any.tsv" ALLFILE_SUFFIX = f"-{NAME}_ids-all.tsv" CLUSTFILE_SUFFIX = f"-{NAME}_clusts.tsv" SEQ_FILE_TYPE = "fasta" UNITS = { "Mb": {"factor": 1, "outunits": "MB"}, "Gb": {"factor": 1024, "outunits": "MB"}, "s": {"factor": 1, "outunits": "s"}, "m": {"factor": 60, "outunits": "s"}, "h": {"factor": 3600, "outunits": "s"}, } SEQ_IN_LINE = 6 IDENT_STATS_LINE = 7 FIRST_LOG_LINE = 14 LAST_LOG_LINE = 23 STAT_SUFFIXES = ["size", "mem", "time", "memory"] RENAME_STATS = { "throughput": "throughput_seq_s", "time": "CPU_time", "max_size": "max_cluster_size", "avg_size": "avg_cluster_size", "min_size": "min_cluster_size", "seqs": "unique_seqs", "singletons": "singleton_clusters", } ID_SEPARATOR = "." IDENT_LOG_MIN = -3 IDENT_LOG_MAX = 0 FASTA_EXT_LIST = [".faa", ".fa", ".fasta"] FAA_EXT = "faa" # helper functions def read_synonyms(filepath): """Read a file of synonymous IDs into a dictionary.""" synonym_dict = {} try: synonym_frame = pd.read_csv(filepath, sep="\t") except FileNotFoundError: logger.error(f'Synonym tsv file "{filepath}" does not exist') sys.exit(1) except pd.errors.EmptyDataError: logger.error(f'Synonym tsv "{filepath}" is empty') sys.exit(1) if len(synonym_frame) > 0: if "#file" in synonym_frame: synonym_frame.drop("#file", axis=1, inplace=True) key = list({("Substr", "Dups")}.intersection({synonym_frame.columns}))[ 0 ] for group in synonym_frame.groupby("id"): synonym_dict[group[0]] = group[1][key] return synonym_dict def parse_usearch_log(filepath, rundict): """Parse the usearch log file into a stats dictionary.""" with filepath.open() as logfile: for lineno, line in enumerate(logfile): if lineno < FIRST_LOG_LINE: if lineno == SEQ_IN_LINE: split = line.split() rundict["seqs_in"] = int(split[0]) rundict["singleton_seqs_in"] = int(split[4]) if lineno == IDENT_STATS_LINE: split = line.split() rundict["max_identical_seqs"] = int(split[6].rstrip(",")) rundict["avg_identical_seqs"] = float(split[8]) continue if lineno > LAST_LOG_LINE: break split = line.split() if split: stat = split[0].lower() if split[1] in STAT_SUFFIXES: stat += "_" + split[1] val = split[2] else: val = split[1].rstrip(",") # rename poorly-named stats stat = RENAME_STATS.get(stat, stat) # strip stats with units at the end conversion_factor = 1 for unit in UNITS: if val.endswith(unit): val = val.rstrip(unit) conversion_factor = UNITS[unit]["factor"] stat += "_" + UNITS[unit]["outunits"] break # convert string values to int or float where possible try: val = int(val) val *= conversion_factor except ValueError: try: val = float(val) val *= conversion_factor except ValueError: pass rundict[stat] = val @contextlib.contextmanager def in_working_directory(path): """Change working directory and return to previous wd on exit.""" original_cwd = Path.cwd() os.chdir(path) try: yield finally: os.chdir(original_cwd) def get_fasta_ids(fasta): """Get the IDS from a FASTA file.""" idset = set() with fasta.open() as fasta_fh: for line in fasta_fh: if line.startswith(">"): idset.add(line.split()[0][1:]) return list(idset) def parse_chromosome(ident): """Parse chromosome identifiers.""" # If ident contains an underscore, work on the # last part only (e.g., MtrunA17_Chr4g0009691) undersplit = ident.split("_") if len(undersplit) > 1: ident = undersplit[-1].upper() if ident.startswith("CHR"): ident = ident[3:] # Chromosome numbers are integers suffixed by 'G' try: chromosome = "Chr" + str(int(ident[: ident.index("G")])) except ValueError: chromosome = None return chromosome def parse_subids(ident): """Parse the subidentifiers from identifiers.""" subids = ident.split(ID_SEPARATOR) subids += [ chromosome for chromosome in [parse_chromosome(ident) for ident in subids] if chromosome is not None ] return subids def parse_clusters(outdir, delete=True, count_clusters=True, synonyms=None): """Parse clusters, counting occurrances.""" if synonyms is None: synonyms = {} cluster_list = [] id_list = [] degree_list = [] size_list = [] degree_counter = Counter() any_counter = Counter() all_counter = Counter() graph = nx.Graph() for fasta in outdir.glob("*"): cluster_id = int(fasta.name) ids = get_fasta_ids(fasta) if len(synonyms) > 0: syn_ids = set(ids).intersection(synonyms.keys()) for i in syn_ids: ids.extend(synonyms[i]) n_ids = len(ids) degree_list.append(n_ids) degree_counter.update({n_ids: 1}) id_list += ids cluster_list += [cluster_id] * n_ids size_list += [n_ids] * n_ids # Do 'any' and 'all' counters id_counter = Counter() id_counter.update( chain.from_iterable( [parse_subids(cluster_id) for cluster_id in ids] ) ) if count_clusters: any_counter.update(id_counter.keys()) all_counter.update( [ cluster_id for cluster_id in id_counter.keys() if id_counter[cluster_id] == n_ids ] ) elif n_ids > 1: any_counter.update({s: n_ids for s in id_counter.keys()}) all_counter.update( { cluster_id: n_ids for cluster_id in id_counter.keys() if id_counter[cluster_id] == n_ids } ) # Do graph components graph.add_nodes_from(ids) if n_ids > 1: edges = combinations(ids, 2) graph.add_edges_from(edges, weight=n_ids) if delete: fasta.unlink() if delete: outdir.rmdir() return ( graph, cluster_list, id_list, size_list, degree_list, degree_counter, any_counter, all_counter, ) def prettyprint_float(val, digits): """Print a floating-point value in a nice way.""" format_string = "%." + f"{digits:d}" + "f" return (format_string % val).rstrip("0").rstrip(".") def homology_cluster( seqfile, identity, delete=True, write_ids=False, do_calc=True, min_id_freq=0, substrs=None, dups=None, cluster_stats=True, outname=None, click_loguru=None, ): """Cluster at a global sequence identity threshold.""" try: usearch = sh.Command("usearch", search_paths=SEARCH_PATHS) except sh.CommandNotFound: logger.error("usearch must be installed first.") sys.exit(1) try: inpath, dirpath = get_paths_from_file(seqfile) except FileNotFoundError: logger.error(f'Input file "{seqfile}" does not exist!') sys.exit(1) stem = inpath.stem dirpath = inpath.parent if outname is None: outname = cluster_set_name(stem, identity) outdir = f"{outname}/" logfile = f"{outname}.log" outfilepath = dirpath / outdir logfilepath = dirpath / logfile histfilepath = dirpath / homo_degree_dist_filename(outname) gmlfilepath = dirpath / f"{outname}.gml" statfilepath = dirpath / f"{outname}-stats.tsv" anyfilepath = dirpath / f"{outname}-anyhist.tsv" allfilepath = dirpath / f"{outname}-allhist.tsv" idpath = dirpath / f"{outname}-ids.tsv" if identity == 0.0: identity_string = "Minimum" else: identity_string = f"{prettyprint_float(identity *100, 2)}%" logger.info(f'{identity_string} sequence identity cluster "{outname}":') if not delete: logger.debug(f"Cluster files will be kept in {logfile} and {outdir}") if cluster_stats and write_ids: logger.debug( f"File of cluster ID usage will be written to {anyfilepath} and" f" {allfilepath}" ) if not do_calc: if not logfilepath.exists(): logger.error("Previous results must exist, rerun with --do_calc") sys.exit(1) logger.debug("Using previous results for calculation") if min_id_freq: logger.debug( "Minimum number of times ID's must occur to be counted:" f" {min_id_freq}" ) synonyms = {} if substrs is not None: logger.debug(f"using duplicates in {dirpath / dups}") synonyms.update(read_synonyms(dirpath / substrs)) if dups is not None: logger.debug(f"using duplicates in {dirpath/dups}") synonyms.update(read_synonyms(dirpath / dups)) click_loguru.elapsed_time("Clustering") if do_calc: # # Delete previous results, if any. # if outfilepath.exists() and outfilepath.is_file(): outfilepath.unlink() elif outfilepath.exists() and outfilepath.is_dir(): for file in outfilepath.glob("*"): file.unlink() else: outfilepath.mkdir() # # Do the calculation. # with in_working_directory(dirpath): output = usearch( [ "-cluster_fast", seqfile, "-id", identity, "-clusters", outdir, "-log", logfile, ] ) logger.debug(output) run_stat_dict = OrderedDict([("divergence", 1.0 - identity)]) parse_usearch_log(logfilepath, run_stat_dict) run_stats = pd.DataFrame( list(run_stat_dict.items()), columns=["stat", "val"] ) run_stats.set_index("stat", inplace=True) write_tsv_or_parquet(run_stats, statfilepath) if delete: logfilepath.unlink() if not cluster_stats: file_sizes = [] file_names = [] record_counts = [] logger.debug("Ordering clusters by number of records and size.") for fasta_path in outfilepath.glob("*"): records, size = fasta_records(fasta_path) if records == 1: fasta_path.unlink() continue file_names.append(fasta_path.name) file_sizes.append(size) record_counts.append(records) file_frame = pd.DataFrame( list(zip(file_names, file_sizes, record_counts)), columns=["name", "size", "seqs"], ) file_frame.sort_values( by=["seqs", "size"], ascending=False, inplace=True ) file_frame["idx"] = range(len(file_frame)) for unused_id, row in file_frame.iterrows(): (outfilepath / row["name"]).rename( outfilepath / f'{row["idx"]}.fa' ) file_frame.drop(["name"], axis=1, inplace=True) file_frame.set_index("idx", inplace=True) # write_tsv_or_parquet(file_frame, "clusters.tsv") # cluster histogram cluster_hist = pd.DataFrame(file_frame["seqs"].value_counts()) cluster_hist.rename(columns={"seqs": "clusters"}, inplace=True) cluster_hist.index.name = "n" cluster_hist.sort_index(inplace=True) total_seqs = sum(file_frame["seqs"]) n_clusters = len(file_frame) cluster_hist["pct_clusts"] = ( cluster_hist["clusters"] * 100.0 / n_clusters ) cluster_hist["pct_seqs"] = ( cluster_hist["clusters"] * cluster_hist.index * 100.0 / total_seqs ) cluster_hist.to_csv(CLUSTER_HIST_FILE, sep="\t", float_format="%06.3f") return n_clusters, run_stats, cluster_hist ( cluster_graph, clusters, ids, sizes, unused_degrees, degree_counts, any_counts, all_counts, ) = parse_clusters( # pylint: disable=unused-variable outfilepath, delete=delete, synonyms=synonyms ) # # Write out list of clusters and ids. # id_frame = pd.DataFrame.from_dict( { "id": ids, "hom.cluster": pd.array(clusters, dtype=pd.UInt32Dtype()), "siz": sizes, } ) id_frame.sort_values("siz", ascending=False, inplace=True) id_frame = id_frame.reindex( ["hom.cluster", "siz", "id"], axis=1, ) id_frame.reset_index(inplace=True) id_frame.drop(["index"], axis=1, inplace=True) id_frame.to_csv(idpath, sep="\t") del ids, clusters, sizes, id_frame click_loguru.elapsed_time("graph") # # Write out degree distribution. # cluster_hist = pd.DataFrame( list(degree_counts.items()), columns=["degree", "clusters"] ) cluster_hist.sort_values(["degree"], inplace=True) cluster_hist.set_index("degree", inplace=True) total_clusters = cluster_hist["clusters"].sum() cluster_hist["pct_total"] = ( cluster_hist["clusters"] * 100.0 / total_clusters ) cluster_hist.to_csv(histfilepath, sep="\t", float_format="%06.3f") del degree_counts # # Do histograms of "any" and "all" id usage in cluster # hist_value = f"{identity:f}" any_hist = pd.DataFrame( list(any_counts.items()), columns=["id", hist_value] ) any_hist.set_index("id", inplace=True) any_hist.sort_values(hist_value, inplace=True, ascending=False) all_hist = pd.DataFrame( list(all_counts.items()), columns=["id", hist_value] ) all_hist.set_index("id", inplace=True) all_hist.sort_values(hist_value, inplace=True, ascending=False) if min_id_freq: any_hist = any_hist[any_hist[hist_value] > min_id_freq] all_hist = all_hist[all_hist[hist_value] > min_id_freq] if write_ids: any_hist.to_csv(anyfilepath, sep="\t") all_hist.to_csv(allfilepath, sep="\t") # # Compute cluster stats # # degree_sequence = sorted([d for n, d in cluster_graph.degree()], reverse=True) # degreeCount = Counter(degree_sequence) # degree_hist = pd.DataFrame(list(degreeCount.items()), # columns=['degree', 'count']) # degree_hist.set_index('degree', inplace=True) # degree_hist.sort_values('degree', inplace=True) # degree_hist.to_csv(histfilepath, sep='\t') nx.write_gml(cluster_graph, gmlfilepath) click_loguru.elapsed_time("final") return run_stats, cluster_graph, cluster_hist, any_hist, all_hist def cluster_in_steps(seqfile, steps, min_id_freq=0, substrs=None, dups=None): """Cluster in steps from low to 100% identity.""" try: inpath, dirpath = get_paths_from_file(seqfile) except FileNotFoundError: logger.error('Input file "%s" does not exist!', seqfile) sys.exit(1) stat_path = dirpath / (inpath.stem + STATFILE_SUFFIX) any_path = dirpath / (inpath.stem + ANYFILE_SUFFIX) all_path = dirpath / (inpath.stem + ALLFILE_SUFFIX) logsteps = [1.0] + list( 1.0 - np.logspace(IDENT_LOG_MIN, IDENT_LOG_MAX, num=steps) ) min_fmt = prettyprint_float(min(logsteps) * 100.0, 2) max_fmt = prettyprint_float(max(logsteps) * 100.0, 2) logger.info( f"Clustering at {steps} levels from {min_fmt}% to {max_fmt}% global" " sequence identity" ) stat_list = [] all_frames = [] any_frames = [] for id_level in logsteps: ( stats, unused_graph, unused_hist, any_, all_, ) = homology_cluster( # pylint: disable=unused-variable seqfile, id_level, min_id_freq=min_id_freq, substrs=substrs, dups=dups, ) stat_list.append(stats) any_frames.append(any_) all_frames.append(all_) logger.info(f"Collating results on {seqfile}.") # # Concatenate and write stats # stats =
pd.DataFrame(stat_list)
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import random as rm import pandas as pd import matplotlib.pyplot as plt import matplotlib.font_manager as fm import os import matplotlib.colors as colors import matplotlib #----------------------------------------------------------------------------- # Rutas para las fuentes ----------------------------------------------------- prop = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Heavy.otf' ) prop_1 = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Book.otf') prop_2 = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Black.otf') ###################################################################################### ## ----------------------LECTURA DE LOS ARRAY CONDICIONALES----------------------- ## ###################################################################################### Prob_Condicional_morning_JJA= np.load('/home/nacorreasa/Maestria/Datos_Tesis/Arrays/Array_Mark_Trans_MorningJJAmanianaCon.npy') Prob_Condicional_noon_JJA = np.load('/home/nacorreasa/Maestria/Datos_Tesis/Arrays/Array_Mark_Trans_NoonJJAnoonCon.npy') Prob_Condicional_tarde_JJA = np.load('/home/nacorreasa/Maestria/Datos_Tesis/Arrays/Array_Mark_Trans_TardeJJAtardeCon.npy') Prob_Condicional_morning_SON= np.load('/home/nacorreasa/Maestria/Datos_Tesis/Arrays/Array_Mark_Trans_MorningSONmanianaCon.npy') Prob_Condicional_noon_SON = np.load('/home/nacorreasa/Maestria/Datos_Tesis/Arrays/Array_Mark_Trans_NoonSONnoonCon.npy') Prob_Condicional_tarde_SON = np.load('/home/nacorreasa/Maestria/Datos_Tesis/Arrays/Array_Mark_Trans_TardeSONtardeCon.npy') Prob_Condicional_morning_DEF= np.load('/home/nacorreasa/Maestria/Datos_Tesis/Arrays/Array_Mark_Trans_MorningDEFmanianaCon.npy') Prob_Condicional_noon_DEF = np.load('/home/nacorreasa/Maestria/Datos_Tesis/Arrays/Array_Mark_Trans_NoonDEFnoonCon.npy') Prob_Condicional_tarde_DEF = np.load('/home/nacorreasa/Maestria/Datos_Tesis/Arrays/Array_Mark_Trans_TardeDEFtardeCon.npy') Prob_Condicional_morning_MAM= np.load('/home/nacorreasa/Maestria/Datos_Tesis/Arrays/Array_Mark_Trans_MorningMAMmanianaCon.npy') Prob_Condicional_noon_MAM = np.load('/home/nacorreasa/Maestria/Datos_Tesis/Arrays/Array_Mark_Trans_NoonMAMnoonCon.npy') Prob_Condicional_tarde_MAM = np.load('/home/nacorreasa/Maestria/Datos_Tesis/Arrays/Array_Mark_Trans_TardeMAMtardeCon.npy') ###################################################################################### ## ----------SIMULACION DE LAS REFLECTANCIAS CON LAS CADENAS DE MARKOV------------- ## ###################################################################################### import random as rm def Markov_forecast(initial_state, steps, transitionMatrix): """ Do Markov chain forecasting INPUTS initial_state : The initial state steps : number of predictions transitionMatrix : Array of states conditional probability OUTPUTS states : array of forecasting states """ states = np.zeros((steps), dtype=int) n = transitionMatrix.shape[0] s = np.arange(1,n+1) states[0] = initial_state for i in range(steps-1): states[i+1] = np.random.choice(s,p=transitionMatrix[states[i]-1]) return states EI_List = [1, 2, 3, 4, 5] steps_time = 10 ##--> 2 y media Horas, el array final es de estos pasos Simu_E1_JJA_Morning = Markov_forecast(EI_List[0], steps_time, Prob_Condicional_morning_JJA/100) Simu_E1_JJA_Noon = Markov_forecast(EI_List[0], steps_time, Prob_Condicional_noon_JJA /100) Simu_E1_JJA_Tarde = Markov_forecast(EI_List[0], steps_time, Prob_Condicional_tarde_JJA /100) Simu_E1_MAM_Morning = Markov_forecast(EI_List[0], steps_time, Prob_Condicional_morning_MAM/100) Simu_E1_MAM_Noon = Markov_forecast(EI_List[0], steps_time, Prob_Condicional_noon_MAM /100) Simu_E1_MAM_Tarde = Markov_forecast(EI_List[0], steps_time, Prob_Condicional_tarde_MAM /100) Simu_E1_SON_Morning = Markov_forecast(EI_List[0], steps_time, Prob_Condicional_morning_SON/100) Simu_E1_SON_Noon = Markov_forecast(EI_List[0], steps_time, Prob_Condicional_noon_SON /100) Simu_E1_SON_Tarde = Markov_forecast(EI_List[0], steps_time, Prob_Condicional_tarde_SON /100) Simu_E1_DEF_Morning = Markov_forecast(EI_List[0], steps_time, Prob_Condicional_morning_DEF/100) Simu_E1_DEF_Noon = Markov_forecast(EI_List[0], steps_time, Prob_Condicional_noon_DEF /100) Simu_E1_DEF_Tarde = Markov_forecast(EI_List[0], steps_time, Prob_Condicional_tarde_DEF /100) ###------------------------GRAFICA DE LAS SIMULACIONES---------------------------## Maniana_time = pd.date_range("06:00", "08:30", freq="15min").time[1:] Noon_time = pd.date_range("10:00", "12:30", freq="15min").time[1:] Tarde_time = pd.date_range("15:00", "17:30", freq="15min").time[1:] Maniana_time = [now.strftime("%H:%M") for now in Maniana_time] Noon_time = [now.strftime("%H:%M") for now in Noon_time] Tarde_time = [now.strftime("%H:%M") for now in Tarde_time] fig = plt.figure(figsize=[14, 6]) plt.rc('axes', edgecolor='gray') ax1 = fig.add_subplot(1,3,1) ax1.spines['top'].set_visible(False) ax1.spines['right'].set_visible(False) ax1.plot(np.arange(0,10,1), Simu_E1_JJA_Morning, color='#b2df8a', label = 'JJA') ax1.plot(np.arange(0,10,1), Simu_E1_DEF_Morning, color='#33a02c', label = 'DEF') ax1.plot(np.arange(0,10,1), Simu_E1_MAM_Morning, color='#a6cee3', label = 'MAM') ax1.plot(np.arange(0,10,1), Simu_E1_SON_Morning, color='#1f78b4', label = 'SON') ax1.scatter(np.arange(0,10,1), Simu_E1_JJA_Morning, marker='.', color = '#b2df8a', s=30) ax1.scatter(np.arange(0,10,1), Simu_E1_DEF_Morning, marker='.', color = '#33a02c', s=30) ax1.scatter(np.arange(0,10,1), Simu_E1_MAM_Morning, marker='.', color = '#a6cee3', s=30) ax1.scatter(np.arange(0,10,1), Simu_E1_SON_Morning, marker='.', color = '#1f78b4', s=30) ax1.set_title(u'Simulación de irradiancia 2h 15 min \n adelante en la mañana', fontproperties=prop, fontsize = 14) ax1.set_xticks(np.arange(0,len(Maniana_time), 1), minor=False) ax1.set_xticklabels(np.array(Maniana_time), minor=False, rotation = 23) ax1.set_ylabel(u'Estado', fontproperties=prop_1, fontsize = 13) ax1.set_xlabel(u'Tiempo', fontproperties=prop_1, fontsize = 13) ax1.set_ylim(0.5, 5.5) ax1.set_yticks(np.arange(1,6,1), minor=False) ax1.grid(which='major', linestyle=':', linewidth=0.5, alpha=0.7) #ax1.legend() ax2 = fig.add_subplot(1,3,2) ax2.spines['top'].set_visible(False) ax2.spines['right'].set_visible(False) ax2.plot(np.arange(0,10,1), Simu_E1_JJA_Noon, color='#b2df8a', label = 'JJA') ax2.plot(np.arange(0,10,1), Simu_E1_DEF_Noon, color='#33a02c', label = 'DEF') ax2.plot(np.arange(0,10,1), Simu_E1_MAM_Noon, color='#a6cee3', label = 'MAM') ax2.plot(np.arange(0,10,1), Simu_E1_SON_Noon, color='#1f78b4', label = 'SON') ax2.scatter(np.arange(0,10,1), Simu_E1_JJA_Noon, marker='.', color = '#b2df8a', s=30) ax2.scatter(np.arange(0,10,1), Simu_E1_DEF_Noon, marker='.', color = '#33a02c', s=30) ax2.scatter(np.arange(0,10,1), Simu_E1_MAM_Noon, marker='.', color = '#a6cee3', s=30) ax2.scatter(np.arange(0,10,1), Simu_E1_SON_Noon, marker='.', color = '#1f78b4', s=30) ax2.set_title(u'Simulación de irradiancia 2h 15 min \n adelante al medio dia', fontproperties=prop, fontsize = 14) ax2.set_xticks(np.arange(0,len(Noon_time), 1), minor=False) ax2.set_xticklabels(np.array(Noon_time), minor=False, rotation = 23) ax2.set_ylabel(u'Estado', fontproperties=prop_1, fontsize = 13) ax2.set_xlabel(u'Tiempo', fontproperties=prop_1, fontsize = 13) ax2.set_ylim(0.5, 5.5) ax2.set_yticks(np.arange(1,6,1), minor=False) ax2.grid(which='major', linestyle=':', linewidth=0.5, alpha=0.7) #ax2.legend() ax3 = fig.add_subplot(1,3,3) ax3.spines['top'].set_visible(False) ax3.spines['right'].set_visible(False) ax3.plot(np.arange(0,10,1), Simu_E1_JJA_Tarde, color='#b2df8a', label = 'JJA') ax3.plot(np.arange(0,10,1), Simu_E1_DEF_Tarde, color='#33a02c', label = 'DEF') ax3.plot(np.arange(0,10,1), Simu_E1_MAM_Tarde, color='#a6cee3', label = 'MAM') ax3.plot(np.arange(0,10,1), Simu_E1_SON_Tarde, color='#1f78b4', label = 'SON') ax3.scatter(np.arange(0,10,1), Simu_E1_JJA_Tarde, marker='.', color = '#b2df8a', s=30) ax3.scatter(np.arange(0,10,1), Simu_E1_DEF_Tarde, marker='.', color = '#33a02c', s=30) ax3.scatter(np.arange(0,10,1), Simu_E1_MAM_Tarde, marker='.', color = '#a6cee3', s=30) ax3.scatter(np.arange(0,10,1), Simu_E1_SON_Tarde, marker='.', color = '#1f78b4', s=30) ax3.set_title(u'Simulación de irradiancia 2h 15 min \n adelante en la tarde', fontproperties=prop, fontsize = 14) ax3.set_xticks(np.arange(0,len(Tarde_time), 1), minor=False) ax3.set_xticklabels(np.array(Tarde_time), minor=False, rotation = 23) ax3.set_ylabel(u'Estado', fontproperties=prop_1, fontsize = 13) ax3.set_xlabel(u'Tiempo', fontproperties=prop_1, fontsize = 13) ax3.set_ylim(0.5, 5.5) ax3.set_yticks(np.arange(1,6,1), minor=False) ax3.grid(which='major', linestyle=':', linewidth=0.5, alpha=0.7) ax3.legend() plt.savefig('/home/nacorreasa/Escritorio/Figuras/Simulation_States_Radiacion.pdf', format = 'pdf') plt.close('all') os.system('scp /home/nacorreasa/Escritorio/Figuras/Simulation_States_Radiacion.pdf [email protected]:/var/www/nacorreasa/Graficas_Resultados/Estudio') ################################################################################ ##--------------------LECTURA DE LOS DATOS ORIGINALES ------------------------## ################################################################################ df = pd.read_csv('/home/nacorreasa/Maestria/Datos_Tesis/Experimentos_Panel/Panel975.txt', sep=',', index_col =0) df = df[df['radiacion'] > 0] df = df[(df['NI'] >= 0) & (df['strength'] >= 0)& (df['strength'] <= 80)] #df = df[df['calidad']<100] df.index = pd.to_datetime(df.index, format="%Y-%m-%d %H:%M", errors='coerce') df = df.between_time('06:00', '17:00') Histo_pot, Bins_pot = np.histogram(df['strength'][np.isfinite(df['strength'])] , bins= df['strength'].quantile([.1, .5, .7, .75, .8, .85,.9, 0.95, 0.98, 0.99, 1]).values , density=True) ############################################################################################### ##--PRONOSTICO DE LA DISTRIBUCIÓN.POTENCIA POR LA RELACIÓN DE LOS ESTADOS DE LOS BORDES --- ## ############################################################################################### def FDP_Simulations(Simulacion, df, field, trimestre, etapa, ajuste): """ It obtains the bivariate histogram of probability of a variable, based on the states siutation. It takes the bins down and above of solar radiation. It has 20 bins and 10 steps of time INPUTS Simulacion : Array with the simulated states df : DataFrame with the original values for computting the histogram field : Str of field name of interes of the DataFrame with the data trimestre : 0 DEF, 1 MAM, 2 JJA, 3 SON etapa : 0 Morning, 1 Noon, 2 Afernoon ajuste : 0 lineal, 1 cuadratico, 2 cubico OUTPUTS Histos : 2D array with FDP for each simulation time """ Coeficientes = np.load('/home/nacorreasa/Maestria/Datos_Tesis/Arrays/CoeficientesAjuste.npy') Coef = Coeficientes[trimestre, etapa, ajuste] Ref_Bins_dwn = [ 1, 271, 542, 813, 1084] Ref_Bins_abv = [ 271, 542, 813, 1084, 1355] Histos=[] for j in range(len(Simulacion)): for i in range(len(Ref_Bins_dwn)): if i+1 == Simulacion[j]: Pot_dwn = (Ref_Bins_dwn[i]**Coef[2])*(np.e**Coef[3]) Pot_abv = (Ref_Bins_abv[i]**Coef[2])*(np.e**Coef[3]) print(i+1) if Pot_abv > 0 and Pot_abv <1: Pot_abv = 1 if Pot_dwn <0 : Pot_dwn = 0 if Pot_abv > 80 : Pot_abv = 80 else: pass df_temp = df[(df[field].values >= Pot_dwn) & (df[field].values <= Pot_abv)] Histo_temp, Bins_temp = np.histogram(df_temp[field][np.isfinite(df_temp[field])] , bins=Bins_pot, density=True) Histos.append(Histo_temp) else: pass Histos = np.array(Histos).T return Histos # def FDP_Simulations(Simulacion, df, field): # """ # It obtains the bivariate histogram of probability of a variable, # based on the states siutation. It takes the bins down and above # of solar radiation. It has 20 bins and 10 steps of time # # INPUTS # Simulacion : Array with the simulated states # df : DataFrame with the original values for computting the histogram # field : Str of field name of interes of the DataFrame with the data # # OUTPUTS # Histos : 2D array with FDP for each simulation time # """ # Ref_Bins_dwn = [ 1, 271, 542, 813, 1084] # Ref_Bins_abv = [ 271, 542, 813, 1084, 1355] # Histos=[] # for j in range(len(Simulacion)): # for i in range(len(Ref_Bins_dwn)): # if i+1 == Simulacion[j]: # """ # A continuación la ecuación de la relación, hay q cambiarla # """ # Pot_dwn = 0.063*(Ref_Bins_dwn[i])-11.295 # Pot_abv = 0.063*(Ref_Bins_abv[i])-11.295 # print(i+1) # if Pot_dwn <0: # Pot_dwn = 0 # else: # pass # df_temp = df[(df[field] >= Pot_dwn) & (df[field] <= Pot_abv)] # Histo_temp, Bins_temp = np.histogram(df_temp[field][np.isfinite(df_temp[field])] , bins=Bins_pot, density=True) # Histos.append(Histo_temp) # else: # pass # Histos = np.array(Histos).T # return Histos Histo_JJA_Morning = FDP_Simulations(Simu_E1_JJA_Morning, df, 'strength', 2, 0, 0) Histo_JJA_Noon = FDP_Simulations(Simu_E1_JJA_Noon, df, 'strength', 2, 1, 0) Histo_JJA_Tarde = FDP_Simulations(Simu_E1_JJA_Tarde, df, 'strength', 2, 2, 0) Histo_DEF_Morning = FDP_Simulations(Simu_E1_DEF_Morning, df, 'strength', 0, 0, 0) Histo_DEF_Noon = FDP_Simulations(Simu_E1_DEF_Noon, df, 'strength', 0, 1, 0) Histo_DEF_Tarde = FDP_Simulations(Simu_E1_DEF_Tarde, df, 'strength', 0, 2, 0) Histo_SON_Morning = FDP_Simulations(Simu_E1_SON_Morning, df, 'strength', 3, 0, 0) Histo_SON_Noon = FDP_Simulations(Simu_E1_SON_Noon, df, 'strength', 3, 1, 0) Histo_SON_Tarde = FDP_Simulations(Simu_E1_SON_Tarde, df, 'strength', 3, 2, 0) Histo_MAM_Morning = FDP_Simulations(Simu_E1_MAM_Morning, df, 'strength', 1, 0, 0) Histo_MAM_Noon = FDP_Simulations(Simu_E1_MAM_Noon, df, 'strength', 1, 1, 0) Histo_MAM_Tarde = FDP_Simulations(Simu_E1_MAM_Tarde, df, 'strength', 1, 2, 0) ################################################################################ ## -----------------------------------GRAFICA-------------------------------- ## ################################################################################ class MidpointNormalize(colors.Normalize): """ Normalise the colorbar so that diverging bars work there way either side from a prescribed midpoint value) e.g. im=ax1.imshow(array, norm=MidpointNormalize(midpoint=0.,vmin=-100, vmax=100)) """ def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False): self.midpoint = midpoint colors.Normalize.__init__(self, vmin, vmax, clip) def __call__(self, value, clip=None): x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1] return np.ma.masked_array(np.interp(value, x, y), np.isnan(value)) cmap = matplotlib.cm.hot_r # cmap = matplotlib.cm.Spectral_r data = np.array([Histo_DEF_Morning, Histo_MAM_Morning, Histo_JJA_Morning, Histo_SON_Morning, Histo_DEF_Noon, Histo_MAM_Noon, Histo_JJA_Noon, Histo_SON_Noon, Histo_DEF_Tarde, Histo_MAM_Tarde, Histo_JJA_Tarde, Histo_SON_Tarde]) titles = [ u'DEF Mañana', u'MAM Mañana', u'JJA Mañana',u'SON Mañana', 'DEF Medio dia', 'MAM Medio dia', 'JJA Medio dia','SON Medio dia', 'DEF Tarde', 'MAM Tarde', 'JJA Tarde','SON Tarde'] x_arrays = [Maniana_time, Maniana_time, Maniana_time, Maniana_time, Noon_time ,Noon_time, Noon_time, Noon_time, Tarde_time, Tarde_time, Tarde_time, Tarde_time ] plt.close('all') fig = plt.figure(figsize=(13,10)) for i in range(0, 12): ax = fig.add_subplot(3, 4, i+1) # mapa = ax.imshow(data[i][::-1], interpolation = 'hamming', cmap=cmap, mapa = ax.imshow(data[i][::-1], interpolation = None, cmap=cmap, # clim=(data.min()), vmin=Histo_pot.min(), vmax=Histo_pot.max()) clim=(data.min()), vmin=data.min(), vmax=data.max()) ax.set_yticks(range(0,data[i].shape[0]), minor=False) ax.set_yticklabels(Bins_pot[1:][::-1], minor=False) ax.set_xticks(range(0,data[i].shape[1]), minor=False) ax.set_xticklabels(np.array(x_arrays[i]), minor=False, rotation = 31) ax.set_ylabel(u'Potencia $[W]$', fontproperties = prop_1, fontsize=12) # ax.set_xlabel('Tiempo', fontproperties = prop_1, fontsize=12) ax.set_title(titles[i], fontproperties = prop, fontsize =15) cbar_ax = fig.add_axes([0.11, 0.06, 0.78, 0.008]) cbar = fig.colorbar(mapa, cax=cbar_ax, orientation='horizontal', format="%.2f") cbar.set_label(u"Probabilidad", fontsize=13, fontproperties=prop) plt.subplots_adjust(left=0.125, bottom=0.085, right=0.9, top=0.95, wspace=0.4, hspace=0.003) plt.savefig('/home/nacorreasa/Escritorio/Figuras/MarkovSimulation_Radiacion.pdf', format='pdf', transparent=True) plt.close('all') os.system('scp /home/nacorreasa/Escritorio/Figuras/MarkovSimulation_Radiacion.pdf [email protected]:/var/www/nacorreasa/Graficas_Resultados/Estudio') # OTRO CODE #----------------------------------------------------------------------------- # Rutas para las fuentes ----------------------------------------------------- prop = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Heavy.otf' ) prop_1 = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Book.otf') prop_2 = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Black.otf') ########################################################################################## ## ----------------LECTURA DE LOS DATOS DE LOS EXPERIMENTOS Y RADIACION---------------- ## ########################################################################################## df_P975 = pd.read_csv('/home/nacorreasa/Maestria/Datos_Tesis/Experimentos_Panel/Panel975.txt', sep=',', index_col =0) df_P350 = pd.read_csv('/home/nacorreasa/Maestria/Datos_Tesis/Experimentos_Panel/Panel350.txt', sep=',', index_col =0) df_P348 = pd.read_csv('/home/nacorreasa/Maestria/Datos_Tesis/Experimentos_Panel/Panel348.txt', sep=',', index_col =0) df_P975['Fecha_hora'] = df_P975.index df_P350['Fecha_hora'] = df_P350.index df_P348['Fecha_hora'] = df_P348.index df_P975.index = pd.to_datetime(df_P975.index, format="%Y-%m-%d %H:%M:%S", errors='coerce') df_P350.index = pd.to_datetime(df_P350.index, format="%Y-%m-%d %H:%M:%S", errors='coerce') df_P348.index = pd.to_datetime(df_P348.index, format="%Y-%m-%d %H:%M:%S", errors='coerce') ## ----------------ACOTANDO LOS DATOS A VALORES VÁLIDOS---------------- ## df_P975 = df_P975[(df_P975['NI'] > 0) & (df_P975['strength'] > 0)] df_P350 = df_P350[(df_P350['NI'] > 0) & (df_P350['strength'] > 0)] df_P348 = df_P348[(df_P348['NI'] > 0) & (df_P348['strength'] > 0)] df_P975 = df_P975[df_P975['radiacion'] > 0] df_P350 = df_P350[df_P350['radiacion'] > 0] df_P348 = df_P348[df_P348['radiacion'] > 0] df_P975 = df_P975[df_P975['strength'] <=80] df_P350 = df_P350[df_P350['strength'] <=100] df_P348 = df_P348[df_P348['strength'] <=100] df_P975_h = df_P975.groupby(pd.Grouper(freq="H")).mean() df_P350_h = df_P350.groupby(pd.Grouper(freq="H")).mean() df_P348_h = df_P348.groupby(
pd.Grouper(freq="H")
pandas.Grouper
import numpy as np import scipy as sp from scipy import stats as spstats import pandas as pd from six.moves import range from numpy.testing import assert_array_equal, assert_array_almost_equal import numpy.testing as npt import nose.tools import nose.tools as nt from nose.tools import assert_equal, assert_almost_equal, raises import pandas.util.testing as pdt from .. import statistical as stat rs = np.random.RandomState(sum(map(ord, "moss_stats"))) a_norm = rs.randn(100) a_range = np.arange(101) datasets = [dict(X=spstats.norm(0, 1).rvs((24, 12)), y=spstats.bernoulli(.5).rvs(24), runs=np.repeat([0, 1], 12)) for i in range(3)] datasets_3d = [dict(X=spstats.norm(0, 1).rvs((4, 24, 12)), y=spstats.bernoulli(.5).rvs(24), runs=np.repeat([0, 1], 12)) for i in range(3)] def test_bootstrap(): """Test that bootstrapping gives the right answer in dumb cases.""" a_ones = np.ones(10) n_boot = 5 out1 = stat.bootstrap(a_ones, n_boot=n_boot) assert_array_equal(out1, np.ones(n_boot)) out2 = stat.bootstrap(a_ones, n_boot=n_boot, func=np.median) assert_array_equal(out2, np.ones(n_boot)) def test_bootstrap_length(): """Test that we get a bootstrap array of the right shape.""" out = stat.bootstrap(a_norm) assert_equal(len(out), 10000) n_boot = 100 out = stat.bootstrap(a_norm, n_boot=n_boot) assert_equal(len(out), n_boot) def test_bootstrap_range(): """Test that boostrapping a random array stays within the right range.""" min, max = a_norm.min(), a_norm.max() out = stat.bootstrap(a_norm) nose.tools.assert_less(min, out.min()) nose.tools.assert_greater_equal(max, out.max()) def test_bootstrap_multiarg(): """Test that bootstrap works with multiple input arrays.""" x = np.vstack([[1, 10] for i in range(10)]) y = np.vstack([[5, 5] for i in range(10)]) def test_func(x, y): return np.vstack((x, y)).max(axis=0) out_actual = stat.bootstrap(x, y, n_boot=2, func=test_func) out_wanted = np.array([[5, 10], [5, 10]]) assert_array_equal(out_actual, out_wanted) def test_bootstrap_axis(): """Test axis kwarg to bootstrap function.""" x = rs.randn(10, 20) n_boot = 100 out_default = stat.bootstrap(x, n_boot=n_boot) assert_equal(out_default.shape, (n_boot,)) out_axis = stat.bootstrap(x, n_boot=n_boot, axis=0) assert_equal(out_axis.shape, (n_boot, 20)) def test_bootstrap_random_seed(): """Test that we can get reproducible resamples by seeding the RNG.""" data = rs.randn(50) seed = 42 boots1 = stat.bootstrap(data, random_seed=seed) boots2 = stat.bootstrap(data, random_seed=seed) assert_array_equal(boots1, boots2) def test_smooth_bootstrap(): """Test smooth bootstrap.""" x = rs.randn(15) n_boot = 100 out_normal = stat.bootstrap(x, n_boot=n_boot, func=np.median) out_smooth = stat.bootstrap(x, n_boot=n_boot, smooth=True, func=np.median) assert(np.median(out_normal) in x) assert(not np.median(out_smooth) in x) def test_bootstrap_ols(): """Test bootstrap of OLS model fit.""" def ols_fit(X, y): return np.dot(np.dot(np.linalg.inv(np.dot(X.T, X)), X.T), y) X = np.column_stack((rs.randn(50, 4), np.ones(50))) w = [2, 4, 0, 3, 5] y_noisy = np.dot(X, w) + rs.randn(50) * 20 y_lownoise = np.dot(X, w) + rs.randn(50) n_boot = 500 w_boot_noisy = stat.bootstrap(X, y_noisy, n_boot=n_boot, func=ols_fit) w_boot_lownoise = stat.bootstrap(X, y_lownoise, n_boot=n_boot, func=ols_fit) assert_equal(w_boot_noisy.shape, (n_boot, 5)) assert_equal(w_boot_lownoise.shape, (n_boot, 5)) nose.tools.assert_greater(w_boot_noisy.std(), w_boot_lownoise.std()) def test_bootstrap_units(): """Test that results make sense when passing unit IDs to bootstrap.""" data = rs.randn(50) ids = np.repeat(range(10), 5) bwerr = rs.normal(0, 2, 10) bwerr = bwerr[ids] data_rm = data + bwerr seed = 77 boots_orig = stat.bootstrap(data_rm, random_seed=seed) boots_rm = stat.bootstrap(data_rm, units=ids, random_seed=seed) nose.tools.assert_greater(boots_rm.std(), boots_orig.std()) @raises(ValueError) def test_bootstrap_arglength(): """Test that different length args raise ValueError.""" stat.bootstrap(np.arange(5), np.arange(10)) @raises(TypeError) def test_bootstrap_noncallable(): """Test that we get a TypeError with noncallable statfunc.""" non_func = "mean" stat.bootstrap(a_norm, 100, non_func) def test_percentiles(): """Test function to return sequence of percentiles.""" single_val = 5 single = stat.percentiles(a_range, single_val) assert_equal(single, single_val) multi_val = [10, 20] multi = stat.percentiles(a_range, multi_val) assert_array_equal(multi, multi_val) array_val = rs.randint(0, 101, 5).astype(float) array = stat.percentiles(a_range, array_val) assert_array_almost_equal(array, array_val) def test_percentiles_acc(): """Test accuracy of calculation.""" # First a basic case data = np.array([10, 20, 30]) val = 20 perc = stat.percentiles(data, 50) assert_equal(perc, val) # Now test against scoreatpercentile percentiles = rs.randint(0, 101, 10) out = stat.percentiles(a_norm, percentiles) for score, pct in zip(out, percentiles): assert_equal(score, sp.stats.scoreatpercentile(a_norm, pct)) def test_percentiles_axis(): """Test use of axis argument to percentils.""" data = rs.randn(10, 10) # Test against the median with 50th percentile median1 = np.median(data) out1 = stat.percentiles(data, 50) assert_array_almost_equal(median1, out1) for axis in range(2): median2 = np.median(data, axis=axis) out2 = stat.percentiles(data, 50, axis=axis) assert_array_almost_equal(median2, out2) median3 = np.median(data, axis=0) out3 = stat.percentiles(data, [50, 95], axis=0) assert_array_almost_equal(median3, out3[0]) assert_equal(2, len(out3)) def test_ci(): """Test ci against percentiles.""" a = rs.randn(100) p = stat.percentiles(a, [2.5, 97.5]) c = stat.ci(a, 95) assert_array_equal(p, c) def test_vector_reject(): """Test vector rejection function.""" x = rs.randn(30) y = x + rs.randn(30) / 2 x_ = stat.vector_reject(x, y) assert_almost_equal(np.dot(x_, y), 0) def test_add_constant(): """Test the add_constant function.""" a = rs.randn(10, 5) wanted = np.column_stack((a, np.ones(10))) got = stat.add_constant(a) assert_array_equal(wanted, got) def test_randomize_onesample(): """Test performance of randomize_onesample.""" a_zero = rs.normal(0, 1, 50) t_zero, p_zero = stat.randomize_onesample(a_zero) nose.tools.assert_greater(p_zero, 0.05) a_five = rs.normal(5, 1, 50) t_five, p_five = stat.randomize_onesample(a_five) nose.tools.assert_greater(0.05, p_five) t_scipy, p_scipy = sp.stats.ttest_1samp(a_five, 0) nose.tools.assert_almost_equal(t_scipy, t_five) def test_randomize_onesample_range(): """Make sure that output is bounded between 0 and 1.""" for i in range(100): a = rs.normal(rs.randint(-10, 10), rs.uniform(.5, 3), 100) t, p = stat.randomize_onesample(a, 100) nose.tools.assert_greater_equal(1, p) nose.tools.assert_greater_equal(p, 0) def test_randomize_onesample_getdist(): """Test that we can get the null distribution if we ask for it.""" a = rs.normal(0, 1, 20) out = stat.randomize_onesample(a, return_dist=True) assert_equal(len(out), 3) def test_randomize_onesample_iters(): """Make sure we get the right number of samples.""" a = rs.normal(0, 1, 20) t, p, samples = stat.randomize_onesample(a, return_dist=True) assert_equal(len(samples), 10000) for n in rs.randint(5, 1e4, 5): t, p, samples = stat.randomize_onesample(a, n, return_dist=True) assert_equal(len(samples), n) def test_randomize_onesample_seed(): """Test that we can seed the random state and get the same distribution.""" a = rs.normal(0, 1, 20) seed = 42 t_a, p_a, samples_a = stat.randomize_onesample(a, 1000, random_seed=seed, return_dist=True) t_b, t_b, samples_b = stat.randomize_onesample(a, 1000, random_seed=seed, return_dist=True) assert_array_equal(samples_a, samples_b) def test_randomize_onesample_multitest(): """Test that randomizing over multiple tests works.""" a = rs.normal(0, 1, (20, 5)) t, p = stat.randomize_onesample(a, 1000) assert_equal(len(t), 5) assert_equal(len(p), 5) t, p, dist = stat.randomize_onesample(a, 1000, return_dist=True) assert_equal(dist.shape, (5, 1000)) def test_randomize_onesample_correction(): """Test that maximum based correction (seems to) work.""" a = rs.normal(0, 1, (100, 10)) t_un, p_un = stat.randomize_onesample(a, 1000, corrected=False) t_corr, p_corr = stat.randomize_onesample(a, 1000, corrected=True) assert_array_equal(t_un, t_corr) npt.assert_array_less(p_un, p_corr) def test_randomize_onesample_h0(): """Test that we can supply a null hypothesis for the group mean.""" a = rs.normal(4, 1, 100) t, p = stat.randomize_onesample(a, 1000, h_0=0) assert p < 0.01 t, p = stat.randomize_onesample(a, 1000, h_0=4) assert p > 0.01 def test_randomize_onesample_scalar(): """Single values returned from randomize_onesample should be scalars.""" a = rs.randn(40) t, p = stat.randomize_onesample(a) assert np.isscalar(t) assert np.isscalar(p) a = rs.randn(40, 3) t, p = stat.randomize_onesample(a) assert not np.isscalar(t) assert not np.isscalar(p) def test_randomize_corrmat(): """Test the correctness of the correlation matrix p values.""" a = rs.randn(30) b = a + rs.rand(30) * 3 c = rs.randn(30) d = [a, b, c] p_mat, dist = stat.randomize_corrmat(d, tail="upper", corrected=False, return_dist=True) nose.tools.assert_greater(p_mat[2, 0], p_mat[1, 0]) corrmat = np.corrcoef(d) pctile = 100 - spstats.percentileofscore(dist[2, 1], corrmat[2, 1]) nose.tools.assert_almost_equal(p_mat[2, 1] * 100, pctile) d[1] = -a + rs.rand(30) p_mat = stat.randomize_corrmat(d) nose.tools.assert_greater(0.05, p_mat[1, 0]) def test_randomize_corrmat_dist(): """Test that the distribution looks right.""" a = rs.randn(3, 20) for n_i in [5, 10]: p_mat, dist = stat.randomize_corrmat(a, n_iter=n_i, return_dist=True) assert_equal(n_i, dist.shape[-1]) p_mat, dist = stat.randomize_corrmat(a, n_iter=10000, return_dist=True) diag_mean = dist[0, 0].mean() assert_equal(diag_mean, 1) off_diag_mean = dist[0, 1].mean() nose.tools.assert_greater(0.05, off_diag_mean) def test_randomize_corrmat_correction(): """Test that FWE correction works.""" a = rs.randn(3, 20) p_mat = stat.randomize_corrmat(a, "upper", False) p_mat_corr = stat.randomize_corrmat(a, "upper", True) triu = np.triu_indices(3, 1) npt.assert_array_less(p_mat[triu], p_mat_corr[triu]) def test_randimoize_corrmat_tails(): """Test that the tail argument works.""" a = rs.randn(30) b = a + rs.rand(30) * 8 c = rs.randn(30) d = [a, b, c] p_mat_b = stat.randomize_corrmat(d, "both", False, random_seed=0) p_mat_u = stat.randomize_corrmat(d, "upper", False, random_seed=0) p_mat_l = stat.randomize_corrmat(d, "lower", False, random_seed=0) assert_equal(p_mat_b[0, 1], p_mat_u[0, 1] * 2) assert_equal(p_mat_l[0, 1], 1 - p_mat_u[0, 1]) def test_randomise_corrmat_seed(): """Test that we can seed the corrmat randomization.""" a = rs.randn(3, 20) _, dist1 = stat.randomize_corrmat(a, random_seed=0, return_dist=True) _, dist2 = stat.randomize_corrmat(a, random_seed=0, return_dist=True) assert_array_equal(dist1, dist2) @raises(ValueError) def test_randomize_corrmat_tail_error(): """Test that we are strict about tail paramete.""" a = rs.randn(3, 30) stat.randomize_corrmat(a, "hello") # def test_randomize_classifier(): # """Test basic functions of randomize_classifier.""" # data = dict(X=spstats.norm(0, 1).rvs((100, 12)), # y=spstats.bernoulli(.5).rvs(100), # runs=np.repeat([0, 1], 50)) # model = GaussianNB() # p_vals, perm_vals = stat.randomize_classifier(data, model, # return_dist=True) # p_min, p_max = p_vals.min(), p_vals.max() # perm_mean = perm_vals.mean() # # # Test that the p value are well behaved # nose.tools.assert_greater_equal(1, p_max) # nose.tools.assert_greater_equal(p_min, 0) # # # Test that the mean is close to chance (this is probabilistic) # nose.tools.assert_greater(.1, np.abs(perm_mean - 0.5)) # # # Test that the distribution looks normal (this is probabilistic) # val, p = spstats.normaltest(perm_vals) # nose.tools.assert_greater(p, 0.001) # # # def test_randomize_classifier_dimension(): # """Test that we can have a time dimension and it's where we expect.""" # data = datasets_3d[0] # n_perm = 30 # model = GaussianNB() # p_vals, perm_vals = stat.randomize_classifier(data, model, n_perm, # return_dist=True) # nose.tools.assert_equal(len(p_vals), len(data["X"])) # nose.tools.assert_equal(perm_vals.shape, (n_perm, len(data["X"]))) # # # def test_randomize_classifier_seed(): # """Test that we can give a particular random seed to the permuter.""" # data = datasets[0] # model = GaussianNB() # seed = 1 # out_a = stat.randomize_classifier(data, model, random_seed=seed) # out_b = stat.randomize_classifier(data, model, random_seed=seed) # assert_array_equal(out_a, out_b) # # # def test_randomize_classifier_number(): # """Test size of randomize_classifier vectors.""" # data = datasets[0] # model = GaussianNB() # for n_iter in rs.randint(10, 250, 5): # p_vals, perm_dist = stat.randomize_classifier(data, model, n_iter, # return_dist=True) # nose.tools.assert_equal(len(perm_dist), n_iter) def test_transition_probabilities(): # Test basic sched = [0, 1, 0, 1] expected = pd.DataFrame([[0, 1], [1, 0]]) actual = stat.transition_probabilities(sched) npt.assert_array_equal(expected, actual) sched = [0, 0, 1, 1] expected = pd.DataFrame([[.5, .5], [0, 1]]) actual = stat.transition_probabilities(sched) npt.assert_array_equal(expected, actual) a = rs.rand(100) < .5 a = np.where(a, "foo", "bar") out = stat.transition_probabilities(a) npt.assert_array_equal(out.columns.tolist(), ["bar", "foo"]) npt.assert_array_equal(out.columns, out.index) def test_upsample(): y = np.cumsum(rs.randn(100)) yy1 = stat.upsample(y, 1) assert_equal(len(yy1), 100) npt.assert_array_almost_equal(y, yy1) yy2 = stat.upsample(y, 2) assert_equal(len(yy2), 199) npt.assert_array_almost_equal(y, yy2[::2]) class TestRemoveUnitVariance(object): rs = np.random.RandomState(93) df = pd.DataFrame(dict(value=rs.rand(8), group=np.repeat(np.tile(["m", "n"], 2), 2), cond=np.tile(["x", "y"], 4), unit=np.repeat(["a", "b"], 4))) def test_remove_all(self): df = stat.remove_unit_variance(self.df, "value", "unit") nt.assert_in("value_within", df) nt.assert_equal(self.df.value.mean(), self.df.value_within.mean()) nt.assert_equal(self.df.groupby("unit").value_within.mean().var(), 0) def test_remove_by_group(self): df = stat.remove_unit_variance(self.df, "value", "unit", "group") grp = df.groupby("group") pdt.assert_series_equal(grp.value.mean(), grp.value_within.mean(), check_names=False) for _, g in grp: nt.assert_equal(g.groupby("unit").value_within.mean().var(), 0) def test_suffix(self): df = stat.remove_unit_variance(self.df, "value", "unit", suffix="_foo") nt.assert_in("value_foo", df) class TestVectorizedCorrelation(object): rs = np.random.RandomState() a = rs.randn(50) b = rs.randn(50) c = rs.randn(5, 50) d = rs.randn(5, 50) def test_vector_to_vector(self): r_got = stat.vectorized_correlation(self.a, self.b) r_want, _ = spstats.pearsonr(self.a, self.b) npt.assert_almost_equal(r_got, r_want) def test_vector_to_matrix(self): r_got = stat.vectorized_correlation(self.a, self.c) nt.assert_equal(r_got.shape, (self.c.shape[0],)) for i, r_got_i in enumerate(r_got): r_want_i, _ = spstats.pearsonr(self.a, self.c[i]) npt.assert_almost_equal(r_got_i, r_want_i) def test_matrix_to_matrix(self): r_got = stat.vectorized_correlation(self.c, self.d) nt.assert_equal(r_got.shape, (self.c.shape[0],)) for i, r_got_i in enumerate(r_got): r_want_i, _ = spstats.pearsonr(self.c[i], self.d[i]) npt.assert_almost_equal(r_got_i, r_want_i) class TestPercentChange(object): ts_array = np.arange(6).reshape(1, 6) ts = pd.DataFrame(ts_array) def test_df(self): out = stat.percent_change(self.ts) want = pd.DataFrame([[-100, -60, -20, 20, 60, 100]], dtype=np.float) pdt.assert_frame_equal(out, want) def test_df_multirun(self): out = stat.percent_change(self.ts, 2) want = pd.DataFrame([[-100, 0, 100, -25, 0, 25]], dtype=np.float)
pdt.assert_frame_equal(out, want)
pandas.util.testing.assert_frame_equal
import numpy as np import pandas as pd import rasterio import statsmodels.formula.api as smf from scipy.sparse import coo_matrix import scipy.spatial import patsy from statsmodels.api import add_constant, OLS from .utils import transform_coord def test_linearity(x, y, n_knots=5, verbose=True): """Test linearity between two variables. Run a linear regression of y on x, and take the residuals. Fit the residuals with a natural spline with `n_knots` knots. Conduct a joint F-test for all columns in the natural spline basis matrix. Example: >>> import numpy as np >>> rng = np.random.default_rng(0) >>> x = np.linspace(0., 1., 101) >>> y = 5 * x + 3 + rng.random(size=101) / 5 >>> test_linearity(x, y, n_knots=5, verbose=False) 0.194032 """ residuals = OLS(y, add_constant(x)).fit().resid basis_matrix = patsy.dmatrix( f"cr(x, df={n_knots - 1}, constraints='center') - 1", {'x': x}, return_type='dataframe') results = OLS(residuals, basis_matrix).fit() results.summary() nobs = results.nobs f_value = results.fvalue p_value = np.round(results.f_pvalue, 6) print('Test for Linearity: ' f'N = {nobs:.0f}; df={nobs - n_knots - 1:.0f}; ' f'F = {f_value:.3f}; p = {p_value:.6f}.') return p_value def winsorize(s, lower, upper, verbose=False): """Winsorizes a pandas series. Args: s (pandas.Series): the series to be winsorized lower, upper (int): number between 0 to 100 """ lower_value = np.nanpercentile(s.values, lower) upper_value = np.nanpercentile(s.values, upper) if verbose: print(f'Winsorizing to {lower_value} - {upper_value}') return s.clip(lower_value, upper_value) def demean(df, column, by): """Demean a column in a pandas DataFrame. Args: df (pandas.DataFrame): data column (str): the column to be demeaned by (list of str): the column names """ return ( df[column].values - (df.loc[:, by + [column]] .groupby(by).transform(np.nanmean).values.squeeze())) def load_gd_census(GPS_FILE, MASTER_FILE): # read GPS coords + treatment status df = pd.read_csv( GPS_FILE, usecols=['village_code', 'ge', 'hi_sat', 'treat', 'latitude', 'longitude', 'elevation', 'accuracy', 'eligible', 'GPS_imputed'], dtype={ 'village_code': 'Int64', 'ge': 'Int32', 'hi_sat': 'Int32', 'treat': 'Int32', 'eligible': 'Int32', 'GPS_imputed': 'Int32'}) # drop non GE households df = df.loc[df['ge'] == 1, :].copy() # treat x eligible = cash inflow df.loc[:, 'treat_eligible'] = ( df.loc[:, 'treat'].values * df.loc[:, 'eligible'].values) # read sat level identifiers df_master = pd.read_stata( MASTER_FILE, columns=['village_code', 'satlevel_name'] ).astype({'village_code': 'Int64'}) df_master = df_master.drop_duplicates() # merge treatment df = pd.merge( df, df_master, on='village_code', how='left') assert df['satlevel_name'].notna().all(), ( 'Missing saturation level identifier') return df.drop(columns=['ge']) def snap_to_grid(df, lon_col, lat_col, min_lon, max_lon, min_lat, max_lat, step, **kwargs): """Collapses variables in a data frame onto a grid. Args: df (pandas.DataFrame) lon_col, lat_col (str): name of lon, lat columns min_lon, max_lon, min_lat, max_lat, step (float) **kwargs: passed to pandas agg() function after grouping by lat, lon Returns: (numpy.ndarray, numpy.ndarray): lon and lat grids pandas.DataFrame: output data frame """ df_copy = df.copy() # snap to grid df_copy.loc[:, 'grid_lon'] = np.round( (df[lon_col].values - min_lon - step / 2) / step ).astype(np.int32) df_copy.loc[:, 'grid_lat'] = np.round( (df[lat_col].values - min_lat - step / 2) / step ).astype(np.int32) # construct the grid grid_lon, grid_lat = np.meshgrid( np.arange(0, np.round((max_lon - min_lon) / step).astype(np.int32)), np.arange(0, np.round((max_lat - min_lat) / step).astype(np.int32))) df_grid = pd.DataFrame({'grid_lon': grid_lon.flatten(), 'grid_lat': grid_lat.flatten()}) # collapse df_output = pd.merge( df_grid.assign(is_in_grid=True), df_copy.groupby(['grid_lon', 'grid_lat']).agg(**kwargs), how='outer', on=['grid_lon', 'grid_lat']) print(f"Dropping {df_output['is_in_grid'].isna().sum()} observations;\n" f"Keeping {df_output['is_in_grid'].notna().sum()} observations") df_output = df_output.loc[df_output['is_in_grid'].notna(), :].copy() return (grid_lon, grid_lat), df_output.drop(columns=['is_in_grid']) def control_for_spline(x, y, z, cr_df=3): # handle nan's is_na = np.any((np.isnan(x), np.isnan(y), np.isnan(z)), axis=0) df = pd.DataFrame({'x': x[~is_na], 'y': y[~is_na], 'z': z[~is_na]}) mod = smf.ols(formula=f"z ~ 1 + cr(x, df={cr_df}) + cr(y, df={cr_df})", data=df) res = mod.fit() # return nan's for cases where any one of x, y, z is nan z_out = np.full_like(z, np.nan) z_out[~is_na] = z[~is_na] - res.fittedvalues return z_out def load_nightlight_from_point(df, NL_IN_DIR, lon_col='lon', lat_col='lat'): # extract nightlight values ds = rasterio.open(NL_IN_DIR) band = ds.read().squeeze(0) idx = np.round(transform_coord( transform=ds.transform, to='colrow', xy=df.loc[:, [lon_col, lat_col]].values)).astype(np.int) df.loc[:, 'nightlight'] = [band[i[1], i[0]] for i in idx] # winsorize + normalize # df.loc[:, 'nightlight_winsnorm'] = winsorize( # df['nightlight'], 0, 99) # df.loc[:, 'nightlight_winsnorm'] = ( # (df['nightlight_winsnorm'].values - # np.nanmean(df['nightlight_winsnorm'].values)) / # np.nanstd(df['nightlight_winsnorm'].values)) return df # def load_nightlight_asis(input_dir): # """Loads nightlight data, keeping its raster grid as is. # Args: # input_dir (str) # Returns: # dict {str: float}: with the following keys # min_lon, max_lon, min_lat, max_lat, step # pandas.DataFrame # """ # # load satellite data # print('Loading nightlight data') # ds = rasterio.open(input_dir) # band = ds.read().squeeze(0) # # define the grid # grid = { # 'min_lon': ds.bounds[0], # 'min_lat': ds.bounds[1], # 'max_lon': ds.bounds[2], # 'max_lat': ds.bounds[3], # 'step': ds.transform[0], # } # # construct the grid # grid_lon, grid_lat = np.meshgrid( # np.arange(0, ds.width), # np.arange(0, ds.height)) # # convert to data frame # df = pd.DataFrame({ # 'grid_lon': grid_lon.flatten(), # 'grid_lat': grid_lat[::-1].flatten(), # 'nightlight': band.flatten(), # }) # # recover lon, lat # df.loc[:, 'lon'] = ( # df['grid_lon'] * grid['step'] + grid['min_lon'] + grid['step'] / 2) # df.loc[:, 'lat'] = ( # df['grid_lat'] * grid['step'] + grid['min_lat'] + grid['step'] / 2) # # winsorize + normalize # df.loc[:, 'nightlight'] = winsorize( # df['nightlight'], 0, 99) # df.loc[:, 'nightlight'] = ( # (df['nightlight'].values - # np.nanmean(df['nightlight'].values)) / # np.nanstd(df['nightlight'].values)) # return grid, df def load_building(input_dir, grid, agg=True): """Loads building polygons. Args: input_dir (str): file to load grid (dict {str: float}): dict with the following keys: min_lon, max_lon, min_lat, max_lat, step agg (bool): whether to perform aggregation Returns: tuple of numpy.ndarray: (grid_lon, grid_lat) pandas.DataFrame: gridded dataframe """ tin_roofs = [0, 1, 5] thatched_roofs = [2, 3, 6] # load satellite predictions # print('Loading building polygon data') df = pd.read_csv(input_dir) n_clusters = df['color_group'].max() + 1 for i in range(n_clusters): df.loc[:, f'color_group_{i}'] = (df['color_group'].values == i) df.loc[:, 'color_tin'] = df['color_group'].isin(tin_roofs) df.loc[:, 'color_thatched'] = df['color_group'].isin(thatched_roofs) # tin roof area df.loc[:, 'color_tin_area'] = ( df['color_tin'].values * df['area'].values) # thatched roof area df.loc[:, 'color_thatched_area'] = ( df['color_thatched'].values * df['area'].values) # create new var: luminosity # df.loc[:, 'RGB_mean'] = ( # df.loc[:, ['R_mean', 'G_mean', 'B_mean']].mean(axis=1)) # control for lat lon cubic spline # df.loc[:, 'RGB_mean_spline'] = control_for_spline( # x=df['centroid_lon'].values, # y=df['centroid_lat'].values, # z=df['RGB_mean'].values, # ) # normalize # df.loc[:, 'RGB_mean_spline'] = ( # (df['RGB_mean_spline'].values - # np.nanmean(df['RGB_mean_spline'].values)) / # np.nanstd(df['RGB_mean_spline'].values)) if not agg: return df # snap to grid # color_group_agg = { # f'color_group_{i}': pd.NamedAgg( # column=f'color_group_{i}', aggfunc='mean') # for i in range(n_clusters)} (grid_lon, grid_lat), df = snap_to_grid( df, lon_col='centroid_lon', lat_col='centroid_lat', **grid, # house_count=pd.NamedAgg(column='area', aggfunc='count'), area_sum=pd.NamedAgg(column='area', aggfunc='sum'), # RGB_mean=pd.NamedAgg(column='RGB_mean', aggfunc='mean'), # RGB_mean_spline=pd.NamedAgg(column='RGB_mean_spline', # aggfunc='mean'), tin_area_sum=pd.NamedAgg(column='color_tin_area', aggfunc='sum'), # thatched_area_sum=pd.NamedAgg(column='color_thatched_area', # aggfunc='sum'), # tin_count=pd.NamedAgg(column='color_tin', aggfunc='sum'), # thatched_count=pd.NamedAgg(column='color_thatched', aggfunc='sum'), # **color_group_agg, ) df.fillna(0, inplace=True) # df.loc[:, 'house_count_0'] = ( # df['house_count'] == 0).values.astype(np.float) # df.loc[:, 'area_sum_pct'] = ( # df['area_sum'].values / ((grid['step'] * 111000) ** 2)) # df.loc[:, 'tin_count_pct'] = ( # df['tin_count'].values / df['house_count'].values) # df.loc[:, 'tin_area_pct'] = ( # df['tin_area_sum'].values / df['area_sum'].values) # df.loc[:, 'tin_area_sum_pct'] = ( # df['tin_area_sum'].values / ((grid['step'] * 111000) ** 2)) # recover lon, lat df.loc[:, 'lon'] = ( df['grid_lon'] * grid['step'] + grid['min_lon'] + grid['step'] / 2) df.loc[:, 'lat'] = ( df['grid_lat'] * grid['step'] + grid['min_lat'] + grid['step'] / 2) return (grid_lon, grid_lat), df def load_survey(SVY_IN_DIR): # load survey data df_svy =
pd.read_stata(SVY_IN_DIR)
pandas.read_stata
import pandas as pd from pandas.io.json import json_normalize def venues_explore(client,lat,lng, limit=100, verbose=0, sort='popular', radius=2000, offset=1, day='any',query=''): '''funtion to get n-places using explore in foursquare, where n is the limit when calling the function. This returns a pandas dataframe with name, city ,country, lat, long, address and main category as columns Arguments: *client, *lat, *long, limit (defaults to 100), radius (defaults to 2000), verbose (defaults to 0), offset (defaults to 1), day (defaults to any)''' # create a dataframe df_a = pd.DataFrame(columns=['Name', 'City', 'Latitude', 'Longitude', 'Category', 'Address']) ll=lat+','+lng if offset<=50: for i_offset in range(0,offset): #get venues using client https://github.com/mLewisLogic/foursquare venues = client.venues.explore(params={'ll':ll, 'limit':limit, 'intent' : 'browse', 'sort':sort, 'radius':radius, 'offset':i_offset, 'day':day, 'query':query }) venues=venues['groups'][0]['items'] df_venues = pd.DataFrame.from_dict(venues) df_venues['venue'][0] #print('limit', limit, 'sort', sort, 'radius', radius) for i, value in df_venues['venue'].items(): if verbose==1: print('i', i, 'name', value['name']) venueName=value['name'] try: venueCity=value['location']['city'] except: venueCity='' venueCountry=value['location']['country'] venueLat=value['location']['lat'] venueLng=value['location']['lng'] venueCountry=value['location']['country'] try: venueAddress=value['location']['address'] except: venueAddress='' venueCategory=value['categories'][0]['name'] df_a=df_a.append([{'Name':venueName, 'City':venueCity, 'Country':venueCountry, 'Latitude':venueLat, 'Longitude':venueLng, 'Category':venueCategory, 'Address':venueAddress }]) else: print('ERROR: offset value per Foursquare API is up to 50. Please use a lower value.') return df_a.reset_index() def venues_explore_near(client,near, limit=100, verbose=0, sort='popular', radius=100000, offset=1, day='any',query=''): '''funtion to get n-places using explore in foursquare, where n is the limit when calling the function. This returns a pandas dataframe with name, city ,country, near, address and main category as columns. "near" argument searches within the bounds of the geocode for a string naming a place in the world. Arguments: *client, *near, limit (defaults to 100), radius (defaults to 100000, max according to api docs), verbose (defaults to 0), offset (defaults to 1), day (defaults to any)''' # create a dataframe df_a = pd.DataFrame(columns=['Name', 'City', 'Latitude', 'Longitude', 'Category', 'Address']) if offset<=50: for i_offset in range(0,offset): #get venues using client https://github.com/mLewisLogic/foursquare venues = client.venues.explore(params={'near':near, 'limit':limit, 'intent' : 'browse', 'sort':sort, 'radius':radius, 'offset':i_offset, 'day':day, 'query':query }) venues=venues['groups'][0]['items'] df_venues = pd.DataFrame.from_dict(venues) df_venues['venue'][0] #print('limit', limit, 'sort', sort, 'radius', radius) for i, value in df_venues['venue'].items(): if verbose==1: print('i', i, 'name', value['name']) venueName=value['name'] try: venueCity=value['location']['city'] except: venueCity='' venueCountry=value['location']['country'] venueLat=value['location']['lat'] venueLng=value['location']['lng'] venueCountry=value['location']['country'] try: venueAddress=value['location']['address'] except: venueAddress='' venueCategory=value['categories'][0]['name'] df_a=df_a.append([{'Name':venueName, 'City':venueCity, 'Country':venueCountry, 'Latitude':venueLat, 'Longitude':venueLng, 'Category':venueCategory, 'Address':venueAddress }]) else: print('ERROR: offset value according to Foursquare API is up to 50. Please use a lower value.') return df_a.reset_index() def get_categories(): '''Function to get a Pandas DataFrame of all categories in Foursquare as listed in https://developer.foursquare.com/docs/resources/categories It uses json_normalize to get nested information and return a DataFrame with main, sub and sub-sub categories name and ID''' df1 = pd.read_json('https://api.foursquare.com/v2/venues/categories?v=20170211&oauth_token=QEJ4AQPTMMNB413HGNZ5YDMJSHTOHZHMLZCAQCCLXIX41OMP&includeSupportedCC=true') df1=df1.iloc[0,1] df1 =
json_normalize(df1)
pandas.io.json.json_normalize
import datetime as dt import unittest from unittest.mock import patch import numpy as np import numpy.testing as npt import pandas as pd from pandas.util.testing import assert_frame_equal, assert_series_equal, assert_index_equal import seaice.timeseries.warp as warp from seaice.timeseries.common import SeaIceTimeseriesInvalidArgument class Test_filter_failed_qa(unittest.TestCase): def test_failed_qa_set_to_na(self): columns = ['Foo', 'Bar', 'failed_qa', 'filename'] actual = pd.DataFrame([[1, 2, True, '/foo'], [1, 2, False, '/foo'], [1, 2, True, '/foo']], columns=columns) expected = pd.DataFrame([[np.nan, np.nan, True, ''], [1, 2, False, '/foo'], [np.nan, np.nan, True, '']], columns=columns) actual = warp.filter_failed_qa(actual) assert_frame_equal(expected, actual) class Test_climatologyMeans(unittest.TestCase): def test_means(self): index = pd.period_range(start='2000-05', end='2016-05', freq='12M') values = np.array([10, 20, 30, 40, 50, 50, 50, 50, 90, 99, 100, 100, 100, 100, 100, 100, 10]) climatology_years = (2010, 2015) series = pd.Series(values, index=index) expected = pd.Series(100, index=[5]) actual = warp.climatology_means(series, climatology_years) assert_series_equal(expected, actual) def test_multiple_months_in_series(self): anything = 3.14159 index = pd.PeriodIndex(['2000-05', '2000-11', '2001-05', '2001-11', '2002-05', '2002-11', '2003-05', '2003-11', '2004-05', '2004-11', '2005-05'], freq='6M') climatology_years = (2000, 2001) values = [15., 99., 15., 99., anything, anything, anything, anything, anything, anything, anything] series = pd.Series(values, index=index) actual = warp.climatology_means(series, climatology_years) expected = pd.Series([15., 99], index=[5, 11]) assert_series_equal(expected, actual) class TestFilterHemisphere(unittest.TestCase): def setUp(self): datetimes = pd.to_datetime(['1990-01-01', '1995-01-01', '2000-01-01', '2010-01-01']) daily_period_index = datetimes.to_period(freq='D') monthly_period_index = datetimes.to_period(freq='M') self.daily_df = pd.DataFrame({ 'hemisphere': ['S', 'N', 'S', 'N'], 'total_extent_km2': [19900000.0, 1995000.0, 2000000.0, 2010000.0], 'total_area_km2': [1990.0, 1995.0, 2000.0, 2010.0] }, index=daily_period_index) self.monthly_df = pd.DataFrame({ 'hemisphere': ['S', 'N', 'S', 'N'], 'total_extent_km2': [19900000.0, 1995000.0, 2000000.0, 2010000.0], 'total_area_km2': [1990.0, 1995.0, 2000.0, 2010.0] }, index=monthly_period_index) def test_daily_works_with_hemisphere(self): expected = self.daily_df.copy().ix[[0, 2]] actual = warp.filter_hemisphere(self.daily_df, 'S') assert_frame_equal(expected, actual) def test_daily_raises_error_with_none(self): with self.assertRaises(SeaIceTimeseriesInvalidArgument): warp.filter_hemisphere(self.daily_df, None) def test_monthly_works_with_hemisphere(self): expected = self.monthly_df.copy().ix[[1, 3]] actual = warp.filter_hemisphere(self.monthly_df, 'N') assert_frame_equal(expected, actual) def test_monthly_works_with_none(self): with self.assertRaises(SeaIceTimeseriesInvalidArgument): warp.filter_hemisphere(self.monthly_df, None) class TestCollapseHemisphereFilter(unittest.TestCase): def test_frame_collapses(self): frame_length = 10 index = pd.MultiIndex.from_tuples([('foo', 'N')]*frame_length, names=('date', 'hemisphere')) df = pd.DataFrame({'data': [5]*frame_length}, index=index) expected = df.reset_index(level='hemisphere', drop=False) actual = warp.collapse_hemisphere_index(df) assert_frame_equal(expected, actual) class TestFilterBeforeAndFilterAfter(unittest.TestCase): def setUp(self): datetimes = pd.to_datetime(['1990-01-01', '1995-01-01', '2000-01-01', '2010-01-01']) daily_period_index = datetimes.to_period(freq='D') monthly_period_index = datetimes.to_period(freq='M') self.daily_df = pd.DataFrame({ 'total_extent_km2': [19900000.0, 1995000.0, 2000000.0, 2010000.0], 'total_area_km2': [1990.0, 1995.0, 2000.0, 2010.0] }, index=daily_period_index) self.daily_df_with_datetimeindex = pd.DataFrame({ 'total_extent_km2': [19900000.0, 1995000.0, 2000000.0, 2010000.0], 'total_area_km2': [1990.0, 1995.0, 2000.0, 2010.0] }, index=datetimes) self.monthly_df = pd.DataFrame({ 'total_extent_km2': [19900000.0, 1995000.0, 2000000.0, 2010000.0], 'total_area_km2': [1990.0, 1995.0, 2000.0, 2010.0] }, index=monthly_period_index) self.monthly_df_with_datetimeindex = pd.DataFrame({ 'total_extent_km2': [19900000.0, 1995000.0, 2000000.0, 2010000.0], 'total_area_km2': [1990.0, 1995.0, 2000.0, 2010.0] }, index=monthly_period_index.to_timestamp()) def test_filter_before_works_with_daily_df_and_none(self): expected = self.daily_df.copy() actual = warp.filter_before(self.daily_df, None) assert_frame_equal(expected, actual) def test_filter_before_works_with_daily_df_and_none_and_DateTimeIndex(self): expected = self.daily_df_with_datetimeindex.copy() actual = warp.filter_before(self.daily_df_with_datetimeindex, None) assert_frame_equal(expected, actual) def test_filter_before_works_with_daily_df(self): expected = self.daily_df.copy().ix[1:] actual = warp.filter_before(self.daily_df, dt.datetime(1990, 5, 21)) assert_frame_equal(expected, actual) def test_filter_before_works_with_monthly_df_and_none(self): expected = self.monthly_df.copy() actual = warp.filter_before(self.monthly_df, None) assert_frame_equal(expected, actual) def test_filter_before_works_with_monthly_df_and_none_and_DateTimeIndex(self): expected = self.monthly_df_with_datetimeindex.copy() actual = warp.filter_before(self.monthly_df_with_datetimeindex, None) assert_frame_equal(expected, actual) def test_filter_before_works_with_monthly_df(self): expected = self.monthly_df.copy().ix[1:] actual = warp.filter_before(self.monthly_df, dt.datetime(1990, 5, 21)) assert_frame_equal(expected, actual) def test_filter_after_works_with_daily_df_and_none(self): expected = self.daily_df.copy() actual = warp.filter_after(self.daily_df, None) assert_frame_equal(expected, actual) def test_filter_after_works_with_daily_df_and_none_and_DateTimeIndex(self): expected = self.daily_df_with_datetimeindex.copy() actual = warp.filter_after(self.daily_df_with_datetimeindex, None) assert_frame_equal(expected, actual) def test_filter_after_works_with_daily_df(self): expected = self.daily_df.copy().ix[0:1] actual = warp.filter_after(self.daily_df, dt.datetime(1990, 5, 21)) assert_frame_equal(expected, actual) def test_filter_after_works_with_monthly_df_and_none(self): expected = self.monthly_df.copy() actual = warp.filter_after(self.monthly_df, None)
assert_frame_equal(expected, actual)
pandas.util.testing.assert_frame_equal
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Investing.com API - Market and historical data downloader # https://github.com/crapher/pyinvesting.git # # Copyright 2020 <NAME> # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from . import __user_agent__ from pyquery import PyQuery as pq import re import requests as rq import pandas as pd import numpy as np import threading import time class OnlineScrapping: def __init__(self, proxy_url=None): """ Class constructor Parameters ---------- proxy_url : str, optional The proxy URL with one of the following formats: - scheme://user:pass@hostname:port - scheme://user:pass@ip:port - scheme://hostname:port - scheme://ip:port Ex. https://john:[email protected]:3128 """ if proxy_url: self._proxies = {'http': proxy_url, 'https': proxy_url} else: self._proxies = None self._stream_server = None self._stream_server_lock = threading.Lock() ######################## #### PUBLIC METHODS #### ######################## def get_stream_server(self): """ Returns a stream server to be used for the websocket to retrive quotes. """ with self._stream_server_lock: if not self._stream_server: content = self._get_page_content('https://www.investing.com/indices/us-30') self._stream_server = self._get_stream_server_from_page(content) return self._stream_server def get_quotes_from_link(self, pair_id, link): """ Parses and returns a dataframe with the quotes for the specified pair_id. Parameters ---------- pair_id : int The pair_id value received in the search ticker query. link : str The link value received in the search ticker query. """ content = self._get_page_content(link) with self._stream_server_lock: if not self._stream_server: self._stream_server = self._get_stream_server_from_page(content) return self._get_quotes_from_page(content, pair_id) ######################### #### PRIVATE METHODS #### ######################### def _get_page_content(self, url): if url.startswith('/'): # relative URL url = 'https://www.investing.com{}'.format(url) headers = { 'User-Agent': __user_agent__, 'Accept-Encoding': 'gzip, deflate' } response = rq.get(url = url, headers = headers, proxies = self._proxies) response.raise_for_status() return response.text def _get_stream_server_from_page(self, text): result = re.search('//stream(\d+).forexpros', text) return result.group(1) if result else None def _get_quotes_from_page(self, text, pair_id): data = {'pair_id': pair_id, 'bid': np.NAN, 'ask': np.NAN, 'last': np.NAN, 'high': np.NAN, 'low': np.NAN, 'pcp': np.NAN, 'turnover': np.NAN, 'pc': np.NAN, 'timestamp': int(time.time())} keys = list(data) doc = pq(text) spans = doc("span[class*='{}']".format(pair_id)) for span in spans: classes = span.attrib['class'] for key in keys: if '{}-{}'.format(pair_id, key) in classes: try: data[key] = float(span.text.replace(',','').replace('%','').strip()) keys.remove(key) except: pass break if data['last'] and data['pc']: data['pc'] = data['last'] - data['pc'] elif data['pc']: # There is no last value data['pc'] = np.NAN result = pd.DataFrame(data, index=[0]) result.columns = ['pair_id', 'bid', 'ask', 'last', 'high', 'low', 'change', 'turnover', 'previous_close', 'timestamp'] result['datetime'] =
pd.to_datetime(result['timestamp'], unit='s')
pandas.to_datetime
from datetime import datetime import operator import numpy as np import pytest from pandas import DataFrame, Index, Series, bdate_range import pandas._testing as tm from pandas.core import ops class TestSeriesLogicalOps: @pytest.mark.parametrize("bool_op", [operator.and_, operator.or_, operator.xor]) def test_bool_operators_with_nas(self, bool_op): # boolean &, |, ^ should work with object arrays and propagate NAs ser = Series(bdate_range("1/1/2000", periods=10), dtype=object) ser[::2] = np.nan mask = ser.isna() filled = ser.fillna(ser[0]) result = bool_op(ser < ser[9], ser > ser[3]) expected = bool_op(filled < filled[9], filled > filled[3]) expected[mask] = False tm.assert_series_equal(result, expected) def test_logical_operators_bool_dtype_with_empty(self): # GH#9016: support bitwise op for integer types index = list("bca") s_tft = Series([True, False, True], index=index) s_fff = Series([False, False, False], index=index) s_empty = Series([], dtype=object) res = s_tft & s_empty expected = s_fff tm.assert_series_equal(res, expected) res = s_tft | s_empty expected = s_tft tm.assert_series_equal(res, expected) def test_logical_operators_int_dtype_with_int_dtype(self): # GH#9016: support bitwise op for integer types # TODO: unused # s_0101 = Series([0, 1, 0, 1]) s_0123 = Series(range(4), dtype="int64") s_3333 = Series([3] * 4) s_4444 = Series([4] * 4) res = s_0123 & s_3333 expected = Series(range(4), dtype="int64") tm.assert_series_equal(res, expected) res = s_0123 | s_4444 expected = Series(range(4, 8), dtype="int64") tm.assert_series_equal(res, expected) s_1111 = Series([1] * 4, dtype="int8") res = s_0123 & s_1111 expected = Series([0, 1, 0, 1], dtype="int64") tm.assert_series_equal(res, expected) res = s_0123.astype(np.int16) | s_1111.astype(np.int32) expected = Series([1, 1, 3, 3], dtype="int32") tm.assert_series_equal(res, expected) def test_logical_operators_int_dtype_with_int_scalar(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") res = s_0123 & 0 expected = Series([0] * 4) tm.assert_series_equal(res, expected) res = s_0123 & 1 expected = Series([0, 1, 0, 1]) tm.assert_series_equal(res, expected) def test_logical_operators_int_dtype_with_float(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") msg = "Cannot perform.+with a dtyped.+array and scalar of type" with pytest.raises(TypeError, match=msg): s_0123 & np.NaN with pytest.raises(TypeError, match=msg): s_0123 & 3.14 msg = "unsupported operand type.+for &:" with pytest.raises(TypeError, match=msg): s_0123 & [0.1, 4, 3.14, 2] with pytest.raises(TypeError, match=msg): s_0123 & np.array([0.1, 4, 3.14, 2]) with pytest.raises(TypeError, match=msg): s_0123 & Series([0.1, 4, -3.14, 2]) def test_logical_operators_int_dtype_with_str(self): s_1111 = Series([1] * 4, dtype="int8") msg = "Cannot perform 'and_' with a dtyped.+array and scalar of type" with pytest.raises(TypeError, match=msg): s_1111 & "a" with pytest.raises(TypeError, match="unsupported operand.+for &"): s_1111 & ["a", "b", "c", "d"] def test_logical_operators_int_dtype_with_bool(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") expected = Series([False] * 4) result = s_0123 & False tm.assert_series_equal(result, expected) result = s_0123 & [False] tm.assert_series_equal(result, expected) result = s_0123 & (False,) tm.assert_series_equal(result, expected) result = s_0123 ^ False expected = Series([False, True, True, True]) tm.assert_series_equal(result, expected) def test_logical_operators_int_dtype_with_object(self): # GH#9016: support bitwise op for integer types s_0123 = Series(range(4), dtype="int64") result = s_0123 & Series([False, np.NaN, False, False]) expected = Series([False] * 4) tm.assert_series_equal(result, expected) s_abNd = Series(["a", "b", np.NaN, "d"]) with pytest.raises(TypeError, match="unsupported.* 'int' and 'str'"): s_0123 & s_abNd def test_logical_operators_bool_dtype_with_int(self): index = list("bca") s_tft = Series([True, False, True], index=index) s_fff = Series([False, False, False], index=index) res = s_tft & 0 expected = s_fff tm.assert_series_equal(res, expected) res = s_tft & 1 expected = s_tft tm.assert_series_equal(res, expected) def test_logical_ops_bool_dtype_with_ndarray(self): # make sure we operate on ndarray the same as Series left = Series([True, True, True, False, True]) right = [True, False, None, True, np.nan] expected = Series([True, False, False, False, False]) result = left & right tm.assert_series_equal(result, expected) result = left & np.array(right) tm.assert_series_equal(result, expected) result = left & Index(right) tm.assert_series_equal(result, expected) result = left & Series(right) tm.assert_series_equal(result, expected) expected = Series([True, True, True, True, True]) result = left | right tm.assert_series_equal(result, expected) result = left | np.array(right) tm.assert_series_equal(result, expected) result = left | Index(right) tm.assert_series_equal(result, expected) result = left | Series(right) tm.assert_series_equal(result, expected) expected = Series([False, True, True, True, True]) result = left ^ right tm.assert_series_equal(result, expected) result = left ^ np.array(right) tm.assert_series_equal(result, expected) result = left ^ Index(right) tm.assert_series_equal(result, expected) result = left ^ Series(right) tm.assert_series_equal(result, expected) def test_logical_operators_int_dtype_with_bool_dtype_and_reindex(self): # GH#9016: support bitwise op for integer types # with non-matching indexes, logical operators will cast to object # before operating index = list("bca") s_tft =
Series([True, False, True], index=index)
pandas.Series
# Copyright 2020 The SQLFlow Authors. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 from __future__ import absolute_import, division, print_function import warnings import numpy as np import pandas as pd from sklearn import preprocessing warnings.filterwarnings('ignore') ### Loding raw data raw =
pd.read_csv('household_power_consumption.csv')
pandas.read_csv
# Authors: <NAME> (<EMAIL>), <NAME> (<EMAIL>) import pandas as pd import numpy as np from datetime import datetime, timedelta from typing import Union from copy import deepcopy from itertools import compress import json time_dict = {0: "Now", 7: "One Week", 14: "Two Weeks", 28: "Four Weeks", 42: "Six Weeks"} class DELPHIDataSaver: def __init__( self, path_to_folder_danger_map: str, path_to_website_predicted: str, df_global_parameters: Union[pd.DataFrame, None], df_global_predictions_since_today: pd.DataFrame, df_global_predictions_since_100_cases: pd.DataFrame, ): self.PATH_TO_FOLDER_DANGER_MAP = path_to_folder_danger_map self.PATH_TO_WEBSITE_PREDICTED = path_to_website_predicted self.df_global_parameters = df_global_parameters self.df_global_predictions_since_today = df_global_predictions_since_today self.df_global_predictions_since_100_cases = df_global_predictions_since_100_cases def save_all_datasets(self, save_since_100_cases=False, website=False): today_date_str = "".join(str(datetime.now().date()).split("-")) # Save parameters self.df_global_parameters.to_csv( self.PATH_TO_FOLDER_DANGER_MAP + f"/predicted/Parameters_Global_{today_date_str}.csv", index=False ) self.df_global_parameters.to_csv( self.PATH_TO_WEBSITE_PREDICTED + f"/predicted/Parameters_Global_{today_date_str}.csv", index=False ) # Save predictions since today self.df_global_predictions_since_today.to_csv( self.PATH_TO_FOLDER_DANGER_MAP + f"/predicted/Global_{today_date_str}.csv", index=False ) self.df_global_predictions_since_today.to_csv( self.PATH_TO_WEBSITE_PREDICTED + f"/predicted/Global_{today_date_str}.csv", index=False ) if website: self.df_global_parameters.to_csv( self.PATH_TO_WEBSITE_PREDICTED + f"/predicted/Parameters_Global_Python_{today_date_str}.csv", index=False ) self.df_global_predictions_since_today.to_csv( self.PATH_TO_WEBSITE_PREDICTED + f"/predicted/Global_Python_{today_date_str}_Scenarios.csv", index=False ) self.df_global_predictions_since_today.to_csv( self.PATH_TO_WEBSITE_PREDICTED + f"/predicted/Global_Python_Scenarios.csv", index=False ) if save_since_100_cases: # Save predictions since 100 cases self.df_global_predictions_since_100_cases.to_csv( self.PATH_TO_FOLDER_DANGER_MAP + f"/predicted/Global_since100_{today_date_str}.csv", index=False ) self.df_global_predictions_since_100_cases.to_csv( self.PATH_TO_WEBSITE_PREDICTED + f"/predicted/Global_since100_{today_date_str}.csv", index=False ) if website: self.df_global_predictions_since_100_cases.to_csv( self.PATH_TO_WEBSITE_PREDICTED + f"/predicted/Global_since100_{today_date_str}_Scenarios.csv", index=False ) self.df_global_predictions_since_100_cases.to_csv( self.PATH_TO_WEBSITE_PREDICTED + f"/predicted/Global_since100_Scenarios.csv", index=False ) @staticmethod def create_nested_dict_from_final_dataframe(df_predictions: pd.DataFrame) -> dict: dict_all_results = {} default_policy = "Lockdown" default_policy_enaction_time = "Now" for province in df_predictions.Province.unique(): df_predictions_province = df_predictions[df_predictions.Province == province].reset_index(drop=True) dict_all_results[province] = { "Day": sorted(list(df_predictions_province.Day.unique())), "Total Detected True": df_predictions_province[ (df_predictions_province.Policy == default_policy) & (df_predictions_province.Time == default_policy_enaction_time) ].sort_values("Day")["Total Detected True"].tolist(), "Total Detected Deaths True": df_predictions_province[ (df_predictions_province.Policy == default_policy) & (df_predictions_province.Time == default_policy_enaction_time) ].sort_values("Day")["Total Detected Deaths True"].tolist(), } dict_all_results[province].update({ policy: { policy_enaction_time: { "Total Detected": df_predictions_province[ (df_predictions_province.Policy == policy) & (df_predictions_province.Time == policy_enaction_time) ].sort_values("Day")["Total Detected"].tolist(), "Total Detected Deaths": df_predictions_province[ (df_predictions_province.Policy == policy) & (df_predictions_province.Time == policy_enaction_time) ].sort_values("Day")["Total Detected Deaths"].tolist(), } for policy_enaction_time in df_predictions_province.Time.unique() } for policy in df_predictions_province.Policy.unique() }) return dict_all_results def save_policy_predictions_to_dict_pickle(self, website=False): today_date_str = "".join(str(datetime.now().date()).split("-")) dict_predictions_policies_US_since_100_cases = DELPHIDataSaver.create_nested_dict_from_final_dataframe( self.df_global_predictions_since_100_cases ) with open( self.PATH_TO_FOLDER_DANGER_MAP + f'/predicted/US_Python_{today_date_str}_Scenarios_since_100_cases.json', 'w' ) as handle: json.dump(dict_predictions_policies_US_since_100_cases, handle) with open( self.PATH_TO_FOLDER_DANGER_MAP + f'/predicted/US_Python_Scenarios_since_100_cases.json', 'w' ) as handle: json.dump(dict_predictions_policies_US_since_100_cases, handle) if website: with open( self.PATH_TO_WEBSITE_PREDICTED + f'/predicted/US_Python_{today_date_str}_Scenarios_since_100_cases.json', 'w' ) as handle: json.dump(dict_predictions_policies_US_since_100_cases, handle) with open( self.PATH_TO_WEBSITE_PREDICTED + f'/predicted/US_Python_Scenarios_since_100_cases.json', 'w' ) as handle: json.dump(dict_predictions_policies_US_since_100_cases, handle) class DELPHIDataCreator: def __init__( self, x_sol_final: np.array, date_day_since100: datetime, best_params: np.array, continent: str, country: str, province: str, ): assert len(best_params) == 7, f"Expected 7 best parameters, got {len(best_params)}" self.x_sol_final = x_sol_final self.date_day_since100 = date_day_since100 self.best_params = best_params self.continent = continent self.country = country self.province = province def create_dataset_parameters(self, mape) -> pd.DataFrame: df_parameters = pd.DataFrame({ "Continent": [self.continent], "Country": [self.country], "Province": [self.province], "Data Start Date": [self.date_day_since100], "MAPE": [mape], "Infection Rate": [self.best_params[0]], "Median Day of Action": [self.best_params[1]], "Rate of Action": [self.best_params[2]], "Rate of Death": [self.best_params[3]], "Mortality Rate": [self.best_params[4]], "Internal Parameter 1": [self.best_params[5]], "Internal Parameter 2": [self.best_params[6]], }) return df_parameters def create_datasets_predictions(self) -> (pd.DataFrame, pd.DataFrame): n_days_btw_today_since_100 = (datetime.now() - self.date_day_since100).days n_days_since_today = self.x_sol_final.shape[1] - n_days_btw_today_since_100 all_dates_since_today = [ str((datetime.now() + timedelta(days=i)).date()) for i in range(n_days_since_today) ] # Predictions total_detected = self.x_sol_final[15, :] # DT total_detected = [round(x, 0) for x in total_detected] active_cases = ( self.x_sol_final[4, :] + self.x_sol_final[5, :] + self.x_sol_final[7, :] + self.x_sol_final[8, :] ) # DHR + DQR + DHD + DQD active_cases = [round(x, 0) for x in active_cases] active_hospitalized = self.x_sol_final[4, :] + self.x_sol_final[7, :] # DHR + DHD active_hospitalized = [round(x, 0) for x in active_hospitalized] cumulative_hospitalized = self.x_sol_final[11, :] # TH cumulative_hospitalized = [round(x, 0) for x in cumulative_hospitalized] total_detected_deaths = self.x_sol_final[14, :] # DD total_detected_deaths = [round(x, 0) for x in total_detected_deaths] active_ventilated = self.x_sol_final[12, :] + self.x_sol_final[13, :] # DVR + DVD active_ventilated = [round(x, 0) for x in active_ventilated] # Generation of the dataframe since today df_predictions_since_today_cont_country_prov = pd.DataFrame({ "Continent": [self.continent for _ in range(n_days_since_today)], "Country": [self.country for _ in range(n_days_since_today)], "Province": [self.province for _ in range(n_days_since_today)], "Day": all_dates_since_today, "Total Detected": total_detected[n_days_btw_today_since_100:], "Active": active_cases[n_days_btw_today_since_100:], "Active Hospitalized": active_hospitalized[n_days_btw_today_since_100:], "Cumulative Hospitalized": cumulative_hospitalized[n_days_btw_today_since_100:], "Total Detected Deaths": total_detected_deaths[n_days_btw_today_since_100:], "Active Ventilated": active_ventilated[n_days_btw_today_since_100:], }) # Generation of the dataframe from the day since 100th case all_dates_since_100 = [ str((self.date_day_since100 + timedelta(days=i)).date()) for i in range(self.x_sol_final.shape[1]) ] df_predictions_since_100_cont_country_prov = pd.DataFrame({ "Continent": [self.continent for _ in range(len(all_dates_since_100))], "Country": [self.country for _ in range(len(all_dates_since_100))], "Province": [self.province for _ in range(len(all_dates_since_100))], "Day": all_dates_since_100, "Total Detected": total_detected, "Active": active_cases, "Active Hospitalized": active_hospitalized, "Cumulative Hospitalized": cumulative_hospitalized, "Total Detected Deaths": total_detected_deaths, "Active Ventilated": active_ventilated, }) return df_predictions_since_today_cont_country_prov, df_predictions_since_100_cont_country_prov def create_datasets_predictions_scenario( self, policy="Lockdown", time=0, totalcases=None, ) -> (pd.DataFrame, pd.DataFrame): n_days_btw_today_since_100 = (datetime.now() - self.date_day_since100).days n_days_since_today = self.x_sol_final.shape[1] - n_days_btw_today_since_100 all_dates_since_today = [ str((datetime.now() + timedelta(days=i)).date()) for i in range(n_days_since_today) ] # Predictions total_detected = self.x_sol_final[15, :] # DT total_detected = [round(x, 0) for x in total_detected] active_cases = ( self.x_sol_final[4, :] + self.x_sol_final[5, :] + self.x_sol_final[7, :] + self.x_sol_final[8, :] ) # DHR + DQR + DHD + DQD active_cases = [round(x, 0) for x in active_cases] active_hospitalized = self.x_sol_final[4, :] + self.x_sol_final[7, :] # DHR + DHD active_hospitalized = [round(x, 0) for x in active_hospitalized] cumulative_hospitalized = self.x_sol_final[11, :] # TH cumulative_hospitalized = [round(x, 0) for x in cumulative_hospitalized] total_detected_deaths = self.x_sol_final[14, :] # DD total_detected_deaths = [round(x, 0) for x in total_detected_deaths] active_ventilated = self.x_sol_final[12, :] + self.x_sol_final[13, :] # DVR + DVD active_ventilated = [round(x, 0) for x in active_ventilated] # Generation of the dataframe since today df_predictions_since_today_cont_country_prov = pd.DataFrame({ "Policy": [policy for _ in range(n_days_since_today)], "Time": [time_dict[time] for _ in range(n_days_since_today)], "Continent": [self.continent for _ in range(n_days_since_today)], "Country": [self.country for _ in range(n_days_since_today)], "Province": [self.province for _ in range(n_days_since_today)], "Day": all_dates_since_today, "Total Detected": total_detected[n_days_btw_today_since_100:], "Active": active_cases[n_days_btw_today_since_100:], "Active Hospitalized": active_hospitalized[n_days_btw_today_since_100:], "Cumulative Hospitalized": cumulative_hospitalized[n_days_btw_today_since_100:], "Total Detected Deaths": total_detected_deaths[n_days_btw_today_since_100:], "Active Ventilated": active_ventilated[n_days_btw_today_since_100:], }) # Generation of the dataframe from the day since 100th case all_dates_since_100 = [ str((self.date_day_since100 + timedelta(days=i)).date()) for i in range(self.x_sol_final.shape[1]) ] df_predictions_since_100_cont_country_prov = pd.DataFrame({ "Policy": [policy for _ in range(len(all_dates_since_100))], "Time": [time_dict[time] for _ in range(len(all_dates_since_100))], "Continent": [self.continent for _ in range(len(all_dates_since_100))], "Country": [self.country for _ in range(len(all_dates_since_100))], "Province": [self.province for _ in range(len(all_dates_since_100))], "Day": all_dates_since_100, "Total Detected": total_detected, "Active": active_cases, "Active Hospitalized": active_hospitalized, "Cumulative Hospitalized": cumulative_hospitalized, "Total Detected Deaths": total_detected_deaths, "Active Ventilated": active_ventilated, }) if totalcases is not None: # Merging the historical values to both dataframes when available df_predictions_since_today_cont_country_prov = df_predictions_since_today_cont_country_prov.merge( totalcases[["country", "province", "date", "case_cnt", "death_cnt"]], left_on=["Country", "Province", "Day"], right_on=["country", "province", "date"], how="left", ) df_predictions_since_today_cont_country_prov.rename( columns={"case_cnt": "Total Detected True", "death_cnt": "Total Detected Deaths True"}, inplace=True, ) df_predictions_since_today_cont_country_prov.drop( ["country", "province", "date"], axis=1, inplace=True ) df_predictions_since_100_cont_country_prov = df_predictions_since_100_cont_country_prov.merge( totalcases[["country", "province", "date", "case_cnt", "death_cnt"]], left_on=["Country", "Province", "Day"], right_on=["country", "province", "date"], how="left", ) df_predictions_since_100_cont_country_prov.rename( columns={"case_cnt": "Total Detected True", "death_cnt": "Total Detected Deaths True"}, inplace=True, ) df_predictions_since_100_cont_country_prov.drop( ["country", "province", "date"], axis=1, inplace=True ) return df_predictions_since_today_cont_country_prov, df_predictions_since_100_cont_country_prov class DELPHIAggregations: @staticmethod def get_aggregation_per_country(df: pd.DataFrame) -> pd.DataFrame: df = df[df["Province"] != "None"] df_agg_country = df.groupby(["Continent", "Country", "Day"]).sum().reset_index() df_agg_country["Province"] = "None" df_agg_country = df_agg_country[[ 'Continent', 'Country', 'Province', 'Day', 'Total Detected', 'Active', 'Active Hospitalized', 'Cumulative Hospitalized', 'Total Detected Deaths', 'Active Ventilated' ]] return df_agg_country @staticmethod def get_aggregation_per_continent(df: pd.DataFrame) -> pd.DataFrame: df_agg_continent = df.groupby(["Continent", "Day"]).sum().reset_index() df_agg_continent["Country"] = "None" df_agg_continent["Province"] = "None" df_agg_continent = df_agg_continent[[ 'Continent', 'Country', 'Province', 'Day', 'Total Detected', 'Active', 'Active Hospitalized', 'Cumulative Hospitalized', 'Total Detected Deaths', 'Active Ventilated' ]] return df_agg_continent @staticmethod def get_aggregation_world(df: pd.DataFrame) -> pd.DataFrame: df_agg_world = df.groupby("Day").sum().reset_index() df_agg_world["Continent"] = "None" df_agg_world["Country"] = "None" df_agg_world["Province"] = "None" df_agg_world = df_agg_world[[ 'Continent', 'Country', 'Province', 'Day', 'Total Detected', 'Active', 'Active Hospitalized', 'Cumulative Hospitalized', 'Total Detected Deaths', 'Active Ventilated' ]] return df_agg_world @staticmethod def append_all_aggregations(df: pd.DataFrame) -> pd.DataFrame: df_agg_since_today_per_country = DELPHIAggregations.get_aggregation_per_country(df) df_agg_since_today_per_continent = DELPHIAggregations.get_aggregation_per_continent(df) df_agg_since_today_world = DELPHIAggregations.get_aggregation_world(df) df = pd.concat([ df, df_agg_since_today_per_country, df_agg_since_today_per_continent, df_agg_since_today_world ]) df.sort_values(["Continent", "Country", "Province", "Day"], inplace=True) return df class DELPHIAggregations: @staticmethod def get_aggregation_per_country(df: pd.DataFrame) -> pd.DataFrame: df = df[df["Province"] != "None"] df_agg_country = df.groupby(["Continent", "Country", "Day"]).sum().reset_index() df_agg_country["Province"] = "None" df_agg_country = df_agg_country[[ 'Continent', 'Country', 'Province', 'Day', 'Total Detected', 'Active', 'Active Hospitalized', 'Cumulative Hospitalized', 'Total Detected Deaths', 'Active Ventilated' ]] return df_agg_country @staticmethod def get_aggregation_per_continent(df: pd.DataFrame) -> pd.DataFrame: df_agg_continent = df.groupby(["Continent", "Day"]).sum().reset_index() df_agg_continent["Country"] = "None" df_agg_continent["Province"] = "None" df_agg_continent = df_agg_continent[[ 'Continent', 'Country', 'Province', 'Day', 'Total Detected', 'Active', 'Active Hospitalized', 'Cumulative Hospitalized', 'Total Detected Deaths', 'Active Ventilated' ]] return df_agg_continent @staticmethod def get_aggregation_world(df: pd.DataFrame) -> pd.DataFrame: df_agg_world = df.groupby("Day").sum().reset_index() df_agg_world["Continent"] = "None" df_agg_world["Country"] = "None" df_agg_world["Province"] = "None" df_agg_world = df_agg_world[[ 'Continent', 'Country', 'Province', 'Day', 'Total Detected', 'Active', 'Active Hospitalized', 'Cumulative Hospitalized', 'Total Detected Deaths', 'Active Ventilated' ]] return df_agg_world @staticmethod def append_all_aggregations(df: pd.DataFrame) -> pd.DataFrame: df_agg_since_today_per_country = DELPHIAggregations.get_aggregation_per_country(df) df_agg_since_today_per_continent = DELPHIAggregations.get_aggregation_per_continent(df) df_agg_since_today_world = DELPHIAggregations.get_aggregation_world(df) df = pd.concat([ df, df_agg_since_today_per_country, df_agg_since_today_per_continent, df_agg_since_today_world ]) df.sort_values(["Continent", "Country", "Province", "Day"], inplace=True) return df class DELPHIAggregationsPolicies: @staticmethod def get_aggregation_per_country(df: pd.DataFrame) -> pd.DataFrame: df = df[df["Province"] != "None"] df_agg_country = df.groupby(["Policy", "Time", "Continent", "Country", "Day"]).sum().reset_index() df_agg_country["Province"] = "None" df_agg_country = df_agg_country[[ 'Policy', 'Time', 'Continent', 'Country', 'Province', 'Day', 'Total Detected', 'Active', 'Active Hospitalized', 'Cumulative Hospitalized', 'Total Detected Deaths', 'Active Ventilated' ]] return df_agg_country @staticmethod def get_aggregation_per_continent(df: pd.DataFrame) -> pd.DataFrame: df_agg_continent = df.groupby(["Policy", "Time", "Continent", "Day"]).sum().reset_index() df_agg_continent["Country"] = "None" df_agg_continent["Province"] = "None" df_agg_continent = df_agg_continent[[ 'Policy', 'Time', 'Continent', 'Country', 'Province', 'Day', 'Total Detected', 'Active', 'Active Hospitalized', 'Cumulative Hospitalized', 'Total Detected Deaths', 'Active Ventilated' ]] return df_agg_continent @staticmethod def get_aggregation_world(df: pd.DataFrame) -> pd.DataFrame: df_agg_world = df.groupby(["Policy", "Time", "Day"]).sum().reset_index() df_agg_world["Continent"] = "None" df_agg_world["Country"] = "None" df_agg_world["Province"] = "None" df_agg_world = df_agg_world[[ 'Policy', 'Time', 'Continent', 'Country', 'Province', 'Day', 'Total Detected', 'Active', 'Active Hospitalized', 'Cumulative Hospitalized', 'Total Detected Deaths', 'Active Ventilated' ]] return df_agg_world @staticmethod def append_all_aggregations(df: pd.DataFrame) -> pd.DataFrame: df_agg_since_today_per_country = DELPHIAggregations.get_aggregation_per_country(df) df_agg_since_today_per_continent = DELPHIAggregations.get_aggregation_per_continent(df) df_agg_since_today_world = DELPHIAggregations.get_aggregation_world(df) df = pd.concat([ df, df_agg_since_today_per_country, df_agg_since_today_per_continent, df_agg_since_today_world ]) df.sort_values(["Policy", "Time", "Continent", "Country", "Province", "Day"], inplace=True) return df def get_initial_conditions(params_fitted, global_params_fixed): alpha, days, r_s, r_dth, p_dth, k1, k2 = params_fitted N, PopulationCI, PopulationR, PopulationD, PopulationI, p_d, p_h, p_v = global_params_fixed S_0 = ( (N - PopulationCI / p_d) - (PopulationCI / p_d * (k1 + k2)) - (PopulationR / p_d) - (PopulationD / p_d) ) E_0 = PopulationCI / p_d * k1 I_0 = PopulationCI / p_d * k2 AR_0 = (PopulationCI / p_d - PopulationCI) * (1 - p_dth) DHR_0 = (PopulationCI * p_h) * (1 - p_dth) DQR_0 = PopulationCI * (1 - p_h) * (1 - p_dth) AD_0 = (PopulationCI / p_d - PopulationCI) * p_dth DHD_0 = PopulationCI * p_h * p_dth DQD_0 = PopulationCI * (1 - p_h) * p_dth R_0 = PopulationR / p_d D_0 = PopulationD / p_d TH_0 = PopulationCI * p_h DVR_0 = (PopulationCI * p_h * p_v) * (1 - p_dth) DVD_0 = (PopulationCI * p_h * p_v) * p_dth DD_0 = PopulationD DT_0 = PopulationI x_0_cases = [ S_0, E_0, I_0, AR_0, DHR_0, DQR_0, AD_0, DHD_0, DQD_0, R_0, D_0, TH_0, DVR_0, DVD_0, DD_0, DT_0 ] return x_0_cases def create_fitting_data_from_validcases(validcases): validcases_nondeath = validcases["case_cnt"].tolist() validcases_death = validcases["death_cnt"].tolist() balance = validcases_nondeath[-1] / max(validcases_death[-1], 10) / 3 fitcasesnd = validcases_nondeath fitcasesd = validcases_death return balance, fitcasesnd, fitcasesd def mape(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred)[y_true > 0] / y_true[y_true > 0])) * 100 def convert_dates_us_policies(x): if x == "Not implemented": return np.nan else: x_long = x + "20" return pd.to_datetime(x_long, format="%d-%b-%Y") def read_policy_data_us_only(): data_path = ( "E:/Github/DELPHI/data_sandbox" # "/Users/hamzatazi/Desktop/MIT/999.1 Research Assistantship/" + # "4. COVID19_Global/DELPHI/data_sandbox" ) df = pd.read_csv(data_path + "/25042020_raw_policy_data_US_only.csv") df.State = df.State.apply(lambda x: x[0].upper() + x[1:]) concat_data = [] for i, measure in enumerate(df.Measure.unique()): df_temp = df[df.Measure == measure].reset_index(drop=True) df_concat = pd.DataFrame({ f"province_{i}": df_temp.State, f"{measure}": df_temp.Date }) concat_data.append(df_concat) df_format = pd.concat(concat_data, axis=1) df_format.drop( [f"province_{i}" for i in range(1, len(df.Measure.unique()))], axis=1, inplace=True ) df_format.columns = ["province"] + list(df_format.columns)[1:] for col in list(df_format.columns)[1:]: df_format[col] = df_format[col].apply( lambda x: convert_dates_us_policies(x) ) n_dates = (datetime.now() - datetime(2020, 3, 1)).days + 1 list_all_dates = [ datetime(2020, 3, 1) + timedelta(days=i) for i in range(n_dates) ] df_format["province"] = df_format.province.replace({ "District-of-columbia": "District of Columbia", "New-york": "New York", "North-carolina": "North Carolina", "North-dakota": "North Dakota", "Rhode-island": "Rhode Island", "South-carolina": "South Carolina", "South-dakota": "South Dakota", "West-virginia": "West Virginia", "New-jersey": "New Jersey", "New-hampshire": "New Hampshire", "New-mexico": "New Mexico", }) df_to_concat_final = [] for i, province in enumerate(df_format.province.unique()): df_temp = df_format[ df_format.province == province ].reset_index(drop=True) columns_to_iter = [ "Mass_Gathering_Restrictions", "Initial_Business_Closure", "Educational_Facilities_Closed", "Non_Essential_Services_Closed", "Stay_at_home_order" ] df_i = pd.DataFrame({ "province": [province for _ in range(n_dates)], "date": list_all_dates, "Mass_Gathering_Restrictions": [0 for _ in range(n_dates)], "Initial_Business_Closure": [0 for _ in range(n_dates)], "Educational_Facilities_Closed": [0 for _ in range(n_dates)], "Non_Essential_Services_Closed": [0 for _ in range(n_dates)], "Stay_at_home_order": [0 for _ in range(n_dates)], "Travel_severely_limited": [0 for _ in range(n_dates)], }) date_mgr = df_temp.iloc[0, 1] date_ibc = df_temp.iloc[0, 2] date_efc = df_temp.iloc[0, 3] date_nesc = df_temp.iloc[0, 4] date_saho = df_temp.iloc[0, 5] # No date_tsl as no state actually implemented it for col, date_col in zip( columns_to_iter, [date_mgr, date_ibc, date_efc, date_nesc, date_saho] ): df_i.loc[df_i["date"] >= date_col, col] = 1 df_to_concat_final.append(df_i) df_final = pd.concat(df_to_concat_final) df_final.reset_index(drop=True, inplace=True) output = deepcopy(df_final) msr = ['No_Measure', 'Restrict_Mass_Gatherings', 'Mass_Gatherings_Authorized_But_Others_Restricted', 'Restrict_Mass_Gatherings_and_Schools', 'Authorize_Schools_but_Restrict_Mass_Gatherings_and_Others', 'Restrict_Mass_Gatherings_and_Schools_and_Others', 'Lockdown'] output['No_Measure'] = (df_final.sum(axis=1) == 0).apply(lambda x: int(x)) output['Restrict_Mass_Gatherings'] = [int(a and b) for a, b in zip(df_final.sum(axis=1) == 1, df_final['Mass_Gathering_Restrictions'] == 1)] output['Mass_Gatherings_Authorized_But_Others_Restricted'] = [ int(a and b and c) for a, b, c in zip( df_final.sum(axis=1) > 0, df_final['Mass_Gathering_Restrictions'] == 0, df_final['Stay_at_home_order'] == 0, ) ] output['Restrict_Mass_Gatherings_and_Schools'] = [ int(a and b and c) for a, b, c in zip( df_final.sum(axis=1) == 2, df_final['Educational_Facilities_Closed'] == 1, df_final['Mass_Gathering_Restrictions'] == 1, ) ] output['Authorize_Schools_but_Restrict_Mass_Gatherings_and_Others'] = [ int(a and b and c and d) for a, b, c, d in zip( df_final.sum(axis=1) > 1, df_final['Educational_Facilities_Closed'] == 0, df_final['Mass_Gathering_Restrictions'] == 1, df_final['Stay_at_home_order'] == 0, ) ] output['Restrict_Mass_Gatherings_and_Schools_and_Others'] = [ int(a and b and c and d) for a, b, c, d in zip( df_final.sum(axis=1) > 2, df_final['Educational_Facilities_Closed'] == 1, df_final['Mass_Gathering_Restrictions'] == 1, df_final['Stay_at_home_order'] == 0, ) ] output['Lockdown'] = (df_final['Stay_at_home_order'] == 1).apply(lambda x: int(x)) output['country'] = "US" output = output.loc[:, ['country', 'province', 'date'] + msr] return output def read_measures_oxford_data(): measures = pd.read_csv('https://ocgptweb.azurewebsites.net/CSVDownload') filtr = ['CountryName', 'CountryCode', 'Date'] target = ['ConfirmedCases', 'ConfirmedDeaths'] msr = ['S1_School closing', 'S2_Workplace closing', 'S3_Cancel public events', 'S4_Close public transport', 'S5_Public information campaigns', 'S6_Restrictions on internal movement', 'S7_International travel controls', 'S8_Fiscal measures', 'S9_Monetary measures', 'S10_Emergency investment in health care', 'S11_Investment in Vaccines'] measures = measures.loc[:, filtr + msr + target] measures['Date'] = measures['Date'].apply(lambda x: datetime.strptime(str(x), '%Y%m%d')) for col in target: measures[col] = measures[col].fillna(0) measures = measures.loc[:, measures.isnull().mean() < 0.1] msr = set(measures.columns).intersection(set(msr)) measures = measures.fillna(0) for col in msr: measures[col] = measures[col].apply(lambda x: int(x > 0)) measures = measures[[ 'CountryName', 'Date', 'S1_School closing', 'S2_Workplace closing', 'S3_Cancel public events', 'S4_Close public transport', 'S5_Public information campaigns', 'S6_Restrictions on internal movement', 'S7_International travel controls' ]] measures["CountryName"] = measures.CountryName.replace({ "United States": "US", "South Korea": "Korea, South", "Democratic Republic of Congo": "Congo (Kinshasa)", "Czech Republic": "Czechia", "Slovak Republic": "Slovakia", }) return measures def gamma_t(day, state, params_dic): dsd, median_day_of_action, rate_of_action = params_dic[state] t = (day -
pd.to_datetime(dsd)
pandas.to_datetime
############################################################################## #######################bibliotecas ############################################################################## import pandas as pd import numpy as np # from eod_historical_data import (get_api_key, # get_eod_data, # get_dividends, # get_exchange_symbols, # get_exchanges, get_currencies, get_indexes) import datetime as dt import requests_cache # from io import StringIO import requests import io import yfinance as yf # from datetime import timedelta, datetime ############################################################################## ################Cache session (to avoid too much data consumption) ############################################################################## expire_after = dt.timedelta(days=1) session = requests_cache.CachedSession(cache_name='cache', backend='sqlite', expire_after=expire_after) # verificar a ultima data com dados inicio = '2020-08-27' fim = '2020-08-31' ############################################################################## ##################pega os preços mais recentes ############################################################################## # pega a listad das novas datas prices = yf.download(tickers="MGLU3.SA", start=inicio,end=fim, rounding=True)[['Open', 'High','Low','Adj Close', 'Volume']].reset_index() datas = pd.DataFrame(prices['Date']) datas_lista = datas['Date'].to_list() # loop para pegar os prices new do eod prices = [] for i in range(len(datas_lista)): url="https://eodhistoricaldata.com/api/eod-bulk-last-day/SA?api_token=60<PASSWORD>1<PASSWORD>.3<PASSWORD>&date={}" .format(datas_lista[i]) r = session.get(url) s = requests.get(url).content df_temp = pd.read_csv(io.StringIO(s.decode('utf-8'))) df_temp = df_temp[df_temp.Open.notnull()] prices.append(df_temp) prices =
pd.concat(prices)
pandas.concat
# ---------------------------------------------------------------------------- # File name: NumericalEng.py # # Created on: Aug. 11 2020 # # by <NAME> # # Description: # # 1) This module to engineer numerical features # # # # ----------------------------------------------------------------------------- #first load in all necessary librares import pandas as pd import numpy as np import datetime from sklearn.base import BaseEstimator, TransformerMixin #Custom transformer we wrote to engineer features ( bathrooms per bedroom and/or how old the house is in 2019 ) #passed as boolen arguements to its constructor class NumericalTransformer(BaseEstimator, TransformerMixin): #Class Constructor def __init__( self, outlier_1099=True,site0_corr=True, zone_corr=True, floor_cal=True, square_log=True,time_process=True, years_old=True): self._outlier_1099 = outlier_1099 self._site0_corr = site0_corr self._zone_corr = zone_corr self._floor_cal = floor_cal self._square_log = square_log self._time_process = time_process self._years_old = years_old #Return self, nothing else to do here def fit( self, X, y = None ): return self #Custom transform method we wrote that creates aformentioned features and drops redundant ones def transform(self, X, y = None): #Check if needed if self._outlier_1099: # Remove outliers X = X [ ~(X['building_id'] == 1099) ] if self._site0_corr: #X = X.query('not (building_id <= 104 & meter == 0 & timestamp <= "2016-05-20")') X = X[~((X['building_id']<=104) & (X['meter']==0) & (X['timestamp'] <= "2016-05-20"))] X.loc[:,'timestamp'] =
pd.to_datetime(X['timestamp'])
pandas.to_datetime
''' Import modules for reidentification attack''' import pandas as pd import numpy as np import random import requests import string import uuid import time from faker import Faker from datetime import datetime import scipy.stats as ss import matplotlib.pyplot as plt import zipcodes as zc from tqdm import tqdm import logging diseases = { 9:"High Blood Pressure", 8:"Alzheimer", 7:"Heart Disease", 6:"Depression", 5:"Arthritis", 4:"Osteoporosis", 3:"Diabetes", 2:"COPD", 1:"Cancer", 0:"Stroke" } disease_numbers = { 9: 0, 8: -1, 7: 1, 6: -2, 5: 2, 4: -3, 3: 3, 2: -4, 1: 4, 0: -5 } def do_encode(df, cols, diseases): """ Encodes variables to be compatible with smartnoise Args: df = df cols = columns to be encoded diseases = dictionary of potential diseases Returns: df_enc = new data frame with encoded variables """ df_enc = df.copy() for _ in cols: if _ == "Diagnosis": df_enc[f'{_}_encoded'] = df_enc[_].map({v: k for k, v in diseases.items()}) df_enc[f'{_}_encoded'] = df_enc[f'{_}_encoded'].astype(int) elif _ == "Gender": df_enc[f'{_}_encoded'] = df_enc[_].replace({"F": 0, "M": 1}) df_enc[f'{_}_encoded'] = df_enc[f'{_}_encoded'].astype(int) else: df_enc[f'{_}_encoded'] = df_enc[_].astype(int) return df_enc[[f'{_}_encoded' for _ in cols]] def get_medical_data(n, lang, disease_numbers, k, logger): """ Create medical data set Args: n = amount of data to be created (non-anonymized) lang = language for personal data, such as names k = level of anonymization logger = pass a custom logger Returns: df = returns medical data set """ custodian_id = [] age = [] gender = [] zipcode = [] diagnosis = [] treatment = [] severity = [] duplicate_test = 0 fake = Faker(lang) logging.info('Generating demographic examples') for n in tqdm(range(n)): valid=False while valid == False: # Generate values and append it to lists gender_select = random.choice(["M", "F"]) age_select = random.choice(['10-19', '20-29', '30-39', '40-49', '50-59', '60-69', '70-79', '80-89']) if lang == "de-DE": zipcode_select = f"{random.choice([_ for _ in list(zips['zipcode']) if len(str(_)) > 4])[0:3]}**" else: zipcode_select = f"{fake.address()[-5:][0:3]}**" df_temp = pd.DataFrame([gender, age, zipcode]).transpose() if len(df_temp[(df_temp[0]==gender_select) & (df_temp[1]==age_select) & (df_temp[2]==zipcode_select)]) > 0: duplicate_test += 1 continue else: valid=True gender.append(gender_select) zipcode.append(zipcode_select) age.append(age_select) custodian_id = [uuid.uuid4().hex for i in range(len(gender) * k)] treatment = [f'0{str(random.randint(20,50))}' for i in range(len(gender) * k)] severity = [random.choice(['recovered', 'unchanged', 'intensive care']) for i in range(len(gender) * k)] if k > 0: gender = [item for item in gender for i in range(k)] age = [item for item in age for i in range(k)] zipcode = [item for item in zipcode for i in range(k)] diagnosis = assign_ndis(len(zipcode), diseases, disease_numbers, True) df =
pd.DataFrame([custodian_id, gender, age, zipcode, diagnosis, treatment, severity])
pandas.DataFrame
# -*- coding: utf-8 -*- """ @author: <NAME> - https://www.linkedin.com/in/adamrvfisher/ """ #BTC strategy model with brute force optimization, need BTC data set to run #BTC/USD time series can be found for free on Investing.com #Import modules import numpy as np import random as rand import pandas as pd import time as t from pandas import read_csv #Number of iterations for brute force optimization iterations = range(0, 2000) #Can access BTC/USD time series for free on Investing.com df = read_csv('BTCUSD.csv', sep = ',') #Variable assignments Empty = [] Counter = 0 Dataset = pd.DataFrame() Portfolio = pd.DataFrame() #Start timer Start = t.time() #Formatting df = df.set_index('Date') df = df.iloc[::-1] df['Adj Close'] = df['Adj Close'].str.replace(',', '') df['Adj Close'] = pd.to_numeric(df['Adj Close'], errors='coerce') df['High'] = df['High'].str.replace(',', '') df['High'] = pd.to_numeric(df['High'], errors='coerce') df['Open'] = df['Open'].str.replace(',', '') df['Open'] = pd.to_numeric(df['Open'], errors='coerce') df['Low'] = df['Low'].str.replace(',', '') df['Low'] = pd.to_numeric(df['Low'], errors='coerce') #Return calculation df['LogRet'] = np.log(df['Adj Close']/df['Adj Close'].shift(1)) df['LogRet'] = df['LogRet'].fillna(0) #Multiplier calculation df['BTCmult'] = df['LogRet'].cumsum().apply(np.exp) #Performance metrics dailyreturn = df['LogRet'].mean() dailyvol = df['LogRet'].std() sharpe =(dailyreturn/dailyvol) #Brute force optimization for i in iterations: #Hi/Low window a = rand.randint(4,15) #Threshold b = .85 + rand.random() * .3 df['ndayhi'] = df['Adj Close'].shift(1).rolling(window = a).max() df['ndaylo'] = df['Adj Close'].shift(1).rolling(window = a).min() #If Adj Close higher than scaled Nday High, then long otherwise flat df['Signal'] = np.where(df['Adj Close'].shift(1) > (df['ndayhi'].shift(1) * b), 1, 0) #Apply returns to position df['Pass'] = df['Signal'].shift(1) * df['LogRet'] #Strategy returns on $1 df['StratReturns'] = df['Pass'].cumsum().apply(np.exp) #Performance metrics stratdailyreturn = df['Pass'].mean() stratdailyvol = df['Pass'].std() #Iteration counter Counter = Counter + 1 #Performance constraint if stratdailyvol == 0: continue #Performance metrics stratsharpe =(stratdailyreturn/stratdailyvol) #Performance constraint if stratsharpe < sharpe: continue #Max drawdown calculation MultiplierMax = Portfolio['Multiplier'].cummax() Drawdown = (Portfolio['Multiplier']/MultiplierMax) - 1 Drawdown = Drawdown.fillna(0) MaxDD = abs(min(Drawdown.cummin())) #Counter display print(Counter) #Save params and metrics Empty.append(a) Empty.append(b) Empty.append(stratsharpe) Empty.append(stratsharpe/MaxDD) Empty.append(stratdailyreturn/MaxDD) Empty.append(MaxDD) #List to Series Emptyseries =
pd.Series(Empty)
pandas.Series
import pandas as pd import numpy as np import pytest import unittest import datetime import sys import context from fastbt.utils import * def equation(a,b,c,x,y): return a*x**2 + b*y + c def test_multiargs_simple(): seq = pd.Series([equation(1,2,3,4,y) for y in range(20, 30)]).sort_index() seq.index = range(20,30) constants = {'a':1, 'b':2, 'c':3, 'x':4} variables = {'y': range(20, 30)} par = multi_args(equation, constants=constants, variables=variables).sort_index() # Check both values and indexes for x,y in zip(seq, par): assert x == y for x,y in zip (seq.index, par.index): assert (x,) == y def test_multiargs_product(): seq = [] for x in range(0,10): for y in range(10,15): seq.append(equation(1,2,3,x,y)) index = pd.MultiIndex.from_product([range(0, 10), range(10, 15)]) seq = pd.Series(seq) seq.index = index seq = seq.sort_index() constants = {'a':1, 'b':2, 'c':3} variables = {'x': range(0, 10), 'y': range(10,15)} par = multi_args(equation, constants=constants, variables=variables, isProduct=True).sort_index() # Check both values and indexes for x,y in zip(seq, par): assert x == y for x,y in zip (seq.index, par.index): assert x == y def test_multiargs_max_limit(): seq = [] for x in range(0,100): for y in range(100, 150): seq.append(equation(1,2,3,x,y)) index = pd.MultiIndex.from_product([range(0, 100), range(100, 150)]) seq = pd.Series(seq) seq.index = index seq = seq.sort_index() constants = {'a':1, 'b':2, 'c':3} variables = {'x': range(0, 100), 'y': range(100,150)} par = multi_args(equation, constants=constants, variables=variables, isProduct=True).sort_index() assert len(par) == 1000 assert len(seq) == 5000 # Check both values and indexes for x,y in zip(seq, par): assert x == y for x,y in zip (seq.index, par.index): assert x == y @pytest.mark.parametrize("maxLimit", [2000, 3000, 5000, 10000]) def test_multiargs_max_limit_adjust(maxLimit): seq = [] for x in range(0,100): for y in range(100, 150): seq.append(equation(1,2,3,x,y)) index = pd.MultiIndex.from_product([range(0, 100), range(100, 150)]) seq = pd.Series(seq) seq.index = index seq = seq.sort_index() constants = {'a':1, 'b':2, 'c':3} variables = {'x': range(0, 100), 'y': range(100,150)} par = multi_args(equation, constants=constants, variables=variables, isProduct=True, maxLimit=maxLimit).sort_index() assert len(par) == min(maxLimit, 5000) assert len(seq) == 5000 # Check both values and indexes for x,y in zip(seq, par): assert x == y for x,y in zip (seq.index, par.index): assert x == y def test_tick(): assert tick(112.71) == 112.7 assert tick(112.73) == 112.75 assert tick(1054.85, tick_size=0.1) == 1054.8 assert tick(1054.851, tick_size=0.1) == 1054.9 assert tick(104.73, 1) == 105 assert tick(103.2856, 0.01) == 103.29 assert tick(0.007814, 0.001) == 0.008 assert tick(0.00003562, 0.000001) == 0.000036 assert tick(0.000035617, 0.00000002) == 0.00003562 def test_tick_series(): s = pd.Series([100.43, 200.32, 300.32]) result = [100.45, 200.3, 300.3] for x,y in zip(tick(s), result): assert x==y def test_stop_loss(): assert stop_loss(100, 3) == 97 assert stop_loss(100, 3, order='S') == 103 assert stop_loss(1013, 2.5, order='B', tick_size=0.1) == 987.7 assert stop_loss(100, -3) == 103 # This should be depreceated assert stop_loss(100, -3, order='S') == 97 def test_stop_loss_error(): with pytest.raises(ValueError): assert stop_loss(100, 3, 'BS') def test_stop_loss_series(): p = pd.Series([100.75, 150.63, 180.32]) result = [95.71, 143.1, 171.3] for x,y in zip(stop_loss(p, 5, tick_size=0.01), result): assert pytest.approx(x, rel=0.001, abs=0.001) == y # Test for sell result = [105.79, 158.16, 189.34] for x,y in zip(stop_loss(p, 5, order='S', tick_size=0.01), result): assert pytest.approx(x, rel=0.001, abs=0.001) == y def test_create_orders_simple(): df = pd.DataFrame(np.arange(20).reshape(5,4), columns=list('ABCD')) orders = create_orders(df, {'A': 'one', 'B': 'two', 'C': 'three', 'D': 'four'}, exchange='NSE', num=range(5)) df['exchange'] = 'NSE' df['num'] = [0,1,2,3,4] assert list(orders.columns) == ['one', 'two', 'three', 'four', 'exchange', 'num'] assert list(df.exchange) == ['NSE'] * 5 class TestRecursiveMerge(unittest.TestCase): def setUp(self): df1 = pd.DataFrame(np.random.randn(6,3), columns=list('ABC')) df2 = pd.DataFrame(np.random.randn(10,3), columns=list('DEF')) df3 = pd.DataFrame(np.random.randn(7,4), columns=list('GHIJ')) df4 = pd.DataFrame(np.random.randn(10,7), columns=list('AMNDXYZ')) df1['idx'] = range(100,106) df2['idx'] = range(100, 110) df3['idx'] = range(100, 107) df4['idx'] = range(100, 110) self.dfs = [df1, df2, df3, df4] def test_recursive_merge_simple(self): df = recursive_merge(self.dfs) assert len(df) == 6 assert df.shape == (6, 21) assert df.loc[3, 'X'] == self.dfs[3].loc[3, 'X'] assert df.iloc[2, 11] == self.dfs[2].iloc[2, 3] def test_recursive_on(self): df = recursive_merge(self.dfs, on=['idx']) assert df.shape == (6, 18) assert df.loc[3, 'X'] == self.dfs[3].loc[3, 'X'] assert df.iloc[2, 11] == self.dfs[3].iloc[2, 0] def test_recursive_on(self): dct = {'1': 'D', '2': 'G', '3': 'X'} df = recursive_merge(self.dfs, on=['idx'], columns=dct) assert df.shape == (6, 7) assert list(sorted(df.columns)) == ['A', 'B', 'C', 'D', 'G', 'X', 'idx'] assert df.loc[3, 'X'] == self.dfs[3].loc[3, 'X'] def test_get_nearest_option(): assert get_nearest_option(23120) == [23100] assert get_nearest_option(23120, opt='P') == [23100] assert get_nearest_option(28427, n=3) == [28400, 28500, 28600] assert get_nearest_option(28400, n=3) == [28400, 28500, 28600] assert get_nearest_option(28495, n=5, opt='P') == [28400, 28300, 28200, 28100, 28000] assert get_nearest_option(3000, n=3, step=30) == [3000, 3030, 3060] def test_calendar_simple(): s,e = '2019-01-01', '2019-01-10' for a,b in zip(calendar(s,e), pd.bdate_range(s,e)): assert a == b for a,b in zip(calendar(s,e,alldays=True), pd.date_range(s,e)): assert a == b def test_calendar_holidays(): s,e,h = '2019-01-01', '2019-01-07', ['2019-01-03', '2019-01-07'] bdays = [pd.to_datetime(dt) for dt in [ '2019-01-01', '2019-01-02', '2019-01-04' ]] for a,b in zip(calendar(s,e,h), bdays): assert a == b days = [pd.to_datetime(dt) for dt in [ '2019-01-01', '2019-01-02', '2019-01-04', '2019-01-05', '2019-01-06' ]] for a,b in zip(calendar(s,e,h,True), days): assert a == b def test_calendar_bdate_timestamp(): s,e,st,et = '2019-01-01', '2019-01-01', '04:00', '18:00' for a,b in zip(calendar(s,e,start_time=st, end_time=et), pd.date_range('2019-01-01 04:00', '2019-01-01 18:00', freq='H')): assert a == b def test_calendar_timestamp_length(): s,e,st = '2019-01-01', '2019-01-01', '04:00' assert len(calendar(s,e,start_time=st, freq='1min')) == 1200 assert len(calendar(s,e,start_time=st, freq='H')) == 20 et = '16:00' assert len(calendar(s,e,end_time=et, freq='1min')) == 961 assert len(calendar(s,e,end_time=et, freq='H')) == 17 assert len(calendar(s,e,start_time=st, end_time=et, freq='1min')) == 721 assert len(calendar(s,e,start_time=st, end_time=et, freq='H')) == 13 def test_calendar_timestamp_position(): s,e,st,et = '2019-01-01', '2019-01-04', '10:00', '18:00' ts = calendar(s,e,start_time=st, end_time=et, freq='1min') assert str(ts[721]) == '2019-01-02 14:00:00' assert str(ts[1000]) == '2019-01-03 10:38:00' def test_calendar_multiple_days(): s,e,st,et = '2019-01-01', '2019-01-10', '10:00:00', '21:59:59' kwargs = {'start': s, 'end': e, 'start_time': st, 'end_time': et} holidays = ['2019-01-04', '2019-01-05', '2019-01-06'] assert len(calendar(**kwargs)) == 8 assert len(calendar(alldays=True, **kwargs)) == 10 assert len(calendar(holidays=holidays, alldays=True, **kwargs)) == 7 assert len(calendar(holidays=holidays, alldays=True, **kwargs, freq='H')) == 7*12 assert len(calendar(holidays=holidays, alldays=True, **kwargs, freq='10min')) == 7*12*6 assert len(calendar(holidays=holidays, alldays=True, **kwargs, freq='s')) == 7*12*3600 class TestGetOHLCIntraday(unittest.TestCase): def setUp(self): timestamp = pd.date_range('2019-01-01', freq='15min', periods=480) dfs = [] for i,s in zip(range(1,4), ['A', 'B', 'C']): df =
pd.DataFrame()
pandas.DataFrame
from argparse import ArgumentParser from pathlib import Path import pandas as pd from tqdm.auto import tqdm def run() -> None: parser = ArgumentParser() parser.add_argument('input_file', type=Path) parser.add_argument('output_file', type=Path) parser.add_argument('--no-finding-class', type=int, default=14) parser.add_argument('--add-fake-box-for-no-findings', action='store_true') parser.add_argument('--threshold', type=float, default=0.5) args = parser.parse_args() train_data = pd.read_csv(args.input_file) image_ids = pd.unique(train_data['image_id']) new_image_info = [] for image_id in tqdm(image_ids): image_info = train_data[train_data['image_id'] == image_id].reset_index() no_finding_image_info = image_info[image_info['class_id'] == args.no_finding_class] if len(no_finding_image_info) > 1: if len(image_info) != len(no_finding_image_info): raise ValueError(f'Image {image_id} has both finding and no findings') image_info = image_info.drop(columns='rad_id').drop_duplicates(['image_id']) if args.add_fake_box_for_no_findings: image_info['x_min'] = 0.0 image_info['y_min'] = 0.0 image_info['x_max'] = 1.0 image_info['y_max'] = 1.0 image_info_averaged = averageCoordinates(image_info, args.threshold) new_image_info.append(image_info_averaged) train_with_averaged_coordinates = pd.concat(new_image_info) train_with_averaged_coordinates.to_csv(args.output_file, index=False) if __name__ == '__main__': run() # Code below is taken from https://etrain.xyz/en/posts/vinbigdata-chest-x-ray-abnormalities-detection # Only modification is that I don't use width and height info def bb_iou(boxA, boxB): # determine the (x, y)-coordinates of the intersection rectangle xA = max(boxA[0], boxB[0]) yA = max(boxA[1], boxB[1]) xB = min(boxA[2], boxB[2]) yB = min(boxA[3], boxB[3]) # compute the area of intersection rectangle interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1) # compute the area of both the prediction and ground-truth # rectangles boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1) boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1) # compute the intersection over union by taking the intersection # area and dividing it by the sum of prediction + ground-truth # areas - the interesection area iou = interArea / float(boxAArea + boxBArea - interArea) # return the intersection over union value return iou def averageCoordinates(df, threshold): tmp_df = df.reset_index() duplicate = {} for index1, row1 in tmp_df.iterrows(): if index1 < len(tmp_df) - 1: next_index = index1 + 1 for index2, row2 in tmp_df.loc[next_index:,:].iterrows(): if row1["class_id"] == row2["class_id"]: boxA = [row1['x_min'], row1['y_min'], row1['x_max'], row1['y_max']] boxB = [row2['x_min'], row2['y_min'], row2['x_max'], row2['y_max']] iou = bb_iou(boxA, boxB) if iou > threshold: if row1["index"] not in duplicate: duplicate[row1["index"]] = [] duplicate[row1["index"]].append(row2["index"]) remove_keys = [] for k in duplicate: for i in duplicate[k]: if i in duplicate: for id in duplicate[i]: if id not in duplicate[k]: duplicate[k].append(id) if i not in remove_keys: remove_keys.append(i) for i in remove_keys: del duplicate[i] rows = [] removed_index = [] for k in duplicate: row = tmp_df[tmp_df['index'] == k].iloc[0] X_min = [row['x_min']] X_max = [row['x_max']] Y_min = [row['y_min']] Y_max = [row['y_max']] removed_index.append(k) for i in duplicate[k]: removed_index.append(i) row = tmp_df[tmp_df['index'] == i].iloc[0] X_min.append(row['x_min']) X_max.append(row['x_max']) Y_min.append(row['y_min']) Y_max.append(row['y_max']) X_min_avg = sum(X_min) / len(X_min) X_max_avg = sum(X_max) / len(X_max) Y_min_avg = sum(Y_min) / len(Y_min) Y_max_avg = sum(Y_max) / len(Y_max) new_row = [row['image_id'], row['class_name'], row['class_id'], X_min_avg, Y_min_avg, X_max_avg, Y_max_avg] rows.append(new_row) for index, row in tmp_df.iterrows(): if row['index'] not in removed_index: new_row = [row['image_id'], row['class_name'], row['class_id'], row['x_min'], row['y_min'], row['x_max'], row['y_max']] rows.append(new_row) new_df =
pd.DataFrame(rows, columns =['image_id', 'class_name', 'class_id', 'x_min', 'y_min', 'x_max', 'y_max'])
pandas.DataFrame