prompt
stringlengths
94
42.6k
completion
stringlengths
6
120
api
stringlengths
14
68
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import bisect import copy import os import time import megengine as mge import megengine.distributed as dist from megengine.autodiff import GradManager from megengine.data import DataLoader, Infinite, RandomSampler from megengine.data import transform as T from megengine.optimizer import AdamW, SGD import math from megengine.core._imperative_rt.utils import _set_defrag _set_defrag(True) from layers.tools.data_mapper import data_mapper from layers.tools.utils import ( AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file ) logger = mge.get_logger(__name__) logger.setLevel("INFO") mge.device.set_prealloc_config(1024, 1024, 256 * 1024 * 1024, 4.0) def make_parser(): parser = argparse.ArgumentParser() parser.add_argument( "-f", "--file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-df", "--distill_file", default="distill_configs/ICD.py", type=str, help="distill description file" ) parser.add_argument( "-tf", "--teacher_file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-w", "--weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-tw", "--teacher_weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-n", "--devices", default=1, type=int, help="total number of gpus for training", ) parser.add_argument( "-b", "--batch_size", default=2, type=int, help="batch size for training", ) parser.add_argument( "-d", "--dataset_dir", default="/data/datasets", type=str, ) parser.add_argument( "-l", "--load_head", action='store_true' ) parser.add_argument( "-sp", "--save_path", type=str, ) return parser def main(): parser = make_parser() args = parser.parse_args() # ------------------------ begin training -------------------------- # logger.info("Device Count = %d", args.devices) from datetime import datetime now = datetime.now() log_dir = "log-of-ICD-{}-{}".format(os.path.basename(args.file).split(".")[0], now.strftime('%H:%M') + ('-Inherent' if args.load_head else '')) if not os.path.isdir(log_dir): os.makedirs(log_dir) args.save_path = log_dir if args.devices > 1: trainer = dist.launcher(worker, n_gpus=args.devices) trainer(args) else: worker(args) def worker(args): mge.dtr.eviction_threshold = "6GB" # set the eviction threshold to 5 GB
mge.dtr.enable()
megengine.dtr.enable
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import bisect import copy import os import time import megengine as mge import megengine.distributed as dist from megengine.autodiff import GradManager from megengine.data import DataLoader, Infinite, RandomSampler from megengine.data import transform as T from megengine.optimizer import AdamW, SGD import math from megengine.core._imperative_rt.utils import _set_defrag _set_defrag(True) from layers.tools.data_mapper import data_mapper from layers.tools.utils import ( AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file ) logger = mge.get_logger(__name__) logger.setLevel("INFO") mge.device.set_prealloc_config(1024, 1024, 256 * 1024 * 1024, 4.0) def make_parser(): parser = argparse.ArgumentParser() parser.add_argument( "-f", "--file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-df", "--distill_file", default="distill_configs/ICD.py", type=str, help="distill description file" ) parser.add_argument( "-tf", "--teacher_file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-w", "--weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-tw", "--teacher_weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-n", "--devices", default=1, type=int, help="total number of gpus for training", ) parser.add_argument( "-b", "--batch_size", default=2, type=int, help="batch size for training", ) parser.add_argument( "-d", "--dataset_dir", default="/data/datasets", type=str, ) parser.add_argument( "-l", "--load_head", action='store_true' ) parser.add_argument( "-sp", "--save_path", type=str, ) return parser def main(): parser = make_parser() args = parser.parse_args() # ------------------------ begin training -------------------------- # logger.info("Device Count = %d", args.devices) from datetime import datetime now = datetime.now() log_dir = "log-of-ICD-{}-{}".format(os.path.basename(args.file).split(".")[0], now.strftime('%H:%M') + ('-Inherent' if args.load_head else '')) if not os.path.isdir(log_dir): os.makedirs(log_dir) args.save_path = log_dir if args.devices > 1: trainer = dist.launcher(worker, n_gpus=args.devices) trainer(args) else: worker(args) def worker(args): mge.dtr.eviction_threshold = "6GB" # set the eviction threshold to 5 GB mge.dtr.enable() # enable the DTR optimization current_network = import_from_file(args.file) model = current_network.Net(current_network.Cfg()) model.train() ########### BUILD TEACHER MODEL ############ current_teacher = import_from_file(args.teacher_file) cfg_tea = current_teacher.Cfg() cfg_tea.backbone_pretrained = False model_tea = current_teacher.Net(cfg_tea) model_tea.train() # model_tea.training = True # run in train mod state_dict_tea =
mge.load(args.teacher_weight_file)
megengine.load
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import bisect import copy import os import time import megengine as mge import megengine.distributed as dist from megengine.autodiff import GradManager from megengine.data import DataLoader, Infinite, RandomSampler from megengine.data import transform as T from megengine.optimizer import AdamW, SGD import math from megengine.core._imperative_rt.utils import _set_defrag _set_defrag(True) from layers.tools.data_mapper import data_mapper from layers.tools.utils import ( AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file ) logger = mge.get_logger(__name__) logger.setLevel("INFO") mge.device.set_prealloc_config(1024, 1024, 256 * 1024 * 1024, 4.0) def make_parser(): parser = argparse.ArgumentParser() parser.add_argument( "-f", "--file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-df", "--distill_file", default="distill_configs/ICD.py", type=str, help="distill description file" ) parser.add_argument( "-tf", "--teacher_file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-w", "--weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-tw", "--teacher_weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-n", "--devices", default=1, type=int, help="total number of gpus for training", ) parser.add_argument( "-b", "--batch_size", default=2, type=int, help="batch size for training", ) parser.add_argument( "-d", "--dataset_dir", default="/data/datasets", type=str, ) parser.add_argument( "-l", "--load_head", action='store_true' ) parser.add_argument( "-sp", "--save_path", type=str, ) return parser def main(): parser = make_parser() args = parser.parse_args() # ------------------------ begin training -------------------------- # logger.info("Device Count = %d", args.devices) from datetime import datetime now = datetime.now() log_dir = "log-of-ICD-{}-{}".format(os.path.basename(args.file).split(".")[0], now.strftime('%H:%M') + ('-Inherent' if args.load_head else '')) if not os.path.isdir(log_dir): os.makedirs(log_dir) args.save_path = log_dir if args.devices > 1: trainer = dist.launcher(worker, n_gpus=args.devices) trainer(args) else: worker(args) def worker(args): mge.dtr.eviction_threshold = "6GB" # set the eviction threshold to 5 GB mge.dtr.enable() # enable the DTR optimization current_network = import_from_file(args.file) model = current_network.Net(current_network.Cfg()) model.train() ########### BUILD TEACHER MODEL ############ current_teacher = import_from_file(args.teacher_file) cfg_tea = current_teacher.Cfg() cfg_tea.backbone_pretrained = False model_tea = current_teacher.Net(cfg_tea) model_tea.train() # model_tea.training = True # run in train mod state_dict_tea = mge.load(args.teacher_weight_file) if "state_dict" in state_dict_tea: state_dict_tea = state_dict_tea["state_dict"] model_tea.load_state_dict(state_dict_tea) ############### LOADED #################### ################## DISTILLER ############## distiller_cfg = import_from_file(args.distill_file) distiller = distiller_cfg.Net() ############### END #################### if dist.get_rank() == 0: logger.info(get_config_info(model.cfg)) logger.info(repr(model)) params_with_grad = [] for name, param in model.named_parameters(): if "bottom_up.conv1" in name and model.cfg.backbone_freeze_at >= 1: continue if "bottom_up.layer1" in name and model.cfg.backbone_freeze_at >= 2: continue params_with_grad.append(param) opt = SGD( params_with_grad, lr=model.cfg.basic_lr * args.batch_size * dist.get_world_size(), momentum=model.cfg.momentum, weight_decay=model.cfg.weight_decay, ) opt_d = AdamW( distiller.parameters(), lr=1e-4, weight_decay=1e-4, ) params_with_grad.extend(distiller.parameters()) gm =
GradManager()
megengine.autodiff.GradManager
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import bisect import copy import os import time import megengine as mge import megengine.distributed as dist from megengine.autodiff import GradManager from megengine.data import DataLoader, Infinite, RandomSampler from megengine.data import transform as T from megengine.optimizer import AdamW, SGD import math from megengine.core._imperative_rt.utils import _set_defrag _set_defrag(True) from layers.tools.data_mapper import data_mapper from layers.tools.utils import ( AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file ) logger = mge.get_logger(__name__) logger.setLevel("INFO") mge.device.set_prealloc_config(1024, 1024, 256 * 1024 * 1024, 4.0) def make_parser(): parser = argparse.ArgumentParser() parser.add_argument( "-f", "--file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-df", "--distill_file", default="distill_configs/ICD.py", type=str, help="distill description file" ) parser.add_argument( "-tf", "--teacher_file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-w", "--weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-tw", "--teacher_weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-n", "--devices", default=1, type=int, help="total number of gpus for training", ) parser.add_argument( "-b", "--batch_size", default=2, type=int, help="batch size for training", ) parser.add_argument( "-d", "--dataset_dir", default="/data/datasets", type=str, ) parser.add_argument( "-l", "--load_head", action='store_true' ) parser.add_argument( "-sp", "--save_path", type=str, ) return parser def main(): parser = make_parser() args = parser.parse_args() # ------------------------ begin training -------------------------- # logger.info("Device Count = %d", args.devices) from datetime import datetime now = datetime.now() log_dir = "log-of-ICD-{}-{}".format(os.path.basename(args.file).split(".")[0], now.strftime('%H:%M') + ('-Inherent' if args.load_head else '')) if not os.path.isdir(log_dir): os.makedirs(log_dir) args.save_path = log_dir if args.devices > 1: trainer =
dist.launcher(worker, n_gpus=args.devices)
megengine.distributed.launcher
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import bisect import copy import os import time import megengine as mge import megengine.distributed as dist from megengine.autodiff import GradManager from megengine.data import DataLoader, Infinite, RandomSampler from megengine.data import transform as T from megengine.optimizer import AdamW, SGD import math from megengine.core._imperative_rt.utils import _set_defrag _set_defrag(True) from layers.tools.data_mapper import data_mapper from layers.tools.utils import ( AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file ) logger = mge.get_logger(__name__) logger.setLevel("INFO") mge.device.set_prealloc_config(1024, 1024, 256 * 1024 * 1024, 4.0) def make_parser(): parser = argparse.ArgumentParser() parser.add_argument( "-f", "--file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-df", "--distill_file", default="distill_configs/ICD.py", type=str, help="distill description file" ) parser.add_argument( "-tf", "--teacher_file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-w", "--weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-tw", "--teacher_weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-n", "--devices", default=1, type=int, help="total number of gpus for training", ) parser.add_argument( "-b", "--batch_size", default=2, type=int, help="batch size for training", ) parser.add_argument( "-d", "--dataset_dir", default="/data/datasets", type=str, ) parser.add_argument( "-l", "--load_head", action='store_true' ) parser.add_argument( "-sp", "--save_path", type=str, ) return parser def main(): parser = make_parser() args = parser.parse_args() # ------------------------ begin training -------------------------- # logger.info("Device Count = %d", args.devices) from datetime import datetime now = datetime.now() log_dir = "log-of-ICD-{}-{}".format(os.path.basename(args.file).split(".")[0], now.strftime('%H:%M') + ('-Inherent' if args.load_head else '')) if not os.path.isdir(log_dir): os.makedirs(log_dir) args.save_path = log_dir if args.devices > 1: trainer = dist.launcher(worker, n_gpus=args.devices) trainer(args) else: worker(args) def worker(args): mge.dtr.eviction_threshold = "6GB" # set the eviction threshold to 5 GB mge.dtr.enable() # enable the DTR optimization current_network = import_from_file(args.file) model = current_network.Net(current_network.Cfg()) model.train() ########### BUILD TEACHER MODEL ############ current_teacher = import_from_file(args.teacher_file) cfg_tea = current_teacher.Cfg() cfg_tea.backbone_pretrained = False model_tea = current_teacher.Net(cfg_tea) model_tea.train() # model_tea.training = True # run in train mod state_dict_tea = mge.load(args.teacher_weight_file) if "state_dict" in state_dict_tea: state_dict_tea = state_dict_tea["state_dict"] model_tea.load_state_dict(state_dict_tea) ############### LOADED #################### ################## DISTILLER ############## distiller_cfg = import_from_file(args.distill_file) distiller = distiller_cfg.Net() ############### END #################### if
dist.get_rank()
megengine.distributed.get_rank
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import bisect import copy import os import time import megengine as mge import megengine.distributed as dist from megengine.autodiff import GradManager from megengine.data import DataLoader, Infinite, RandomSampler from megengine.data import transform as T from megengine.optimizer import AdamW, SGD import math from megengine.core._imperative_rt.utils import _set_defrag _set_defrag(True) from layers.tools.data_mapper import data_mapper from layers.tools.utils import ( AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file ) logger = mge.get_logger(__name__) logger.setLevel("INFO") mge.device.set_prealloc_config(1024, 1024, 256 * 1024 * 1024, 4.0) def make_parser(): parser = argparse.ArgumentParser() parser.add_argument( "-f", "--file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-df", "--distill_file", default="distill_configs/ICD.py", type=str, help="distill description file" ) parser.add_argument( "-tf", "--teacher_file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-w", "--weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-tw", "--teacher_weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-n", "--devices", default=1, type=int, help="total number of gpus for training", ) parser.add_argument( "-b", "--batch_size", default=2, type=int, help="batch size for training", ) parser.add_argument( "-d", "--dataset_dir", default="/data/datasets", type=str, ) parser.add_argument( "-l", "--load_head", action='store_true' ) parser.add_argument( "-sp", "--save_path", type=str, ) return parser def main(): parser = make_parser() args = parser.parse_args() # ------------------------ begin training -------------------------- # logger.info("Device Count = %d", args.devices) from datetime import datetime now = datetime.now() log_dir = "log-of-ICD-{}-{}".format(os.path.basename(args.file).split(".")[0], now.strftime('%H:%M') + ('-Inherent' if args.load_head else '')) if not os.path.isdir(log_dir): os.makedirs(log_dir) args.save_path = log_dir if args.devices > 1: trainer = dist.launcher(worker, n_gpus=args.devices) trainer(args) else: worker(args) def worker(args): mge.dtr.eviction_threshold = "6GB" # set the eviction threshold to 5 GB mge.dtr.enable() # enable the DTR optimization current_network = import_from_file(args.file) model = current_network.Net(current_network.Cfg()) model.train() ########### BUILD TEACHER MODEL ############ current_teacher = import_from_file(args.teacher_file) cfg_tea = current_teacher.Cfg() cfg_tea.backbone_pretrained = False model_tea = current_teacher.Net(cfg_tea) model_tea.train() # model_tea.training = True # run in train mod state_dict_tea = mge.load(args.teacher_weight_file) if "state_dict" in state_dict_tea: state_dict_tea = state_dict_tea["state_dict"] model_tea.load_state_dict(state_dict_tea) ############### LOADED #################### ################## DISTILLER ############## distiller_cfg = import_from_file(args.distill_file) distiller = distiller_cfg.Net() ############### END #################### if dist.get_rank() == 0: logger.info(get_config_info(model.cfg)) logger.info(repr(model)) params_with_grad = [] for name, param in model.named_parameters(): if "bottom_up.conv1" in name and model.cfg.backbone_freeze_at >= 1: continue if "bottom_up.layer1" in name and model.cfg.backbone_freeze_at >= 2: continue params_with_grad.append(param) opt = SGD( params_with_grad, lr=model.cfg.basic_lr * args.batch_size * dist.get_world_size(), momentum=model.cfg.momentum, weight_decay=model.cfg.weight_decay, ) opt_d = AdamW( distiller.parameters(), lr=1e-4, weight_decay=1e-4, ) params_with_grad.extend(distiller.parameters()) gm = GradManager() if
dist.get_world_size()
megengine.distributed.get_world_size
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import bisect import copy import os import time import megengine as mge import megengine.distributed as dist from megengine.autodiff import GradManager from megengine.data import DataLoader, Infinite, RandomSampler from megengine.data import transform as T from megengine.optimizer import AdamW, SGD import math from megengine.core._imperative_rt.utils import _set_defrag _set_defrag(True) from layers.tools.data_mapper import data_mapper from layers.tools.utils import ( AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file ) logger = mge.get_logger(__name__) logger.setLevel("INFO") mge.device.set_prealloc_config(1024, 1024, 256 * 1024 * 1024, 4.0) def make_parser(): parser = argparse.ArgumentParser() parser.add_argument( "-f", "--file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-df", "--distill_file", default="distill_configs/ICD.py", type=str, help="distill description file" ) parser.add_argument( "-tf", "--teacher_file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-w", "--weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-tw", "--teacher_weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-n", "--devices", default=1, type=int, help="total number of gpus for training", ) parser.add_argument( "-b", "--batch_size", default=2, type=int, help="batch size for training", ) parser.add_argument( "-d", "--dataset_dir", default="/data/datasets", type=str, ) parser.add_argument( "-l", "--load_head", action='store_true' ) parser.add_argument( "-sp", "--save_path", type=str, ) return parser def main(): parser = make_parser() args = parser.parse_args() # ------------------------ begin training -------------------------- # logger.info("Device Count = %d", args.devices) from datetime import datetime now = datetime.now() log_dir = "log-of-ICD-{}-{}".format(os.path.basename(args.file).split(".")[0], now.strftime('%H:%M') + ('-Inherent' if args.load_head else '')) if not os.path.isdir(log_dir): os.makedirs(log_dir) args.save_path = log_dir if args.devices > 1: trainer = dist.launcher(worker, n_gpus=args.devices) trainer(args) else: worker(args) def worker(args): mge.dtr.eviction_threshold = "6GB" # set the eviction threshold to 5 GB mge.dtr.enable() # enable the DTR optimization current_network = import_from_file(args.file) model = current_network.Net(current_network.Cfg()) model.train() ########### BUILD TEACHER MODEL ############ current_teacher = import_from_file(args.teacher_file) cfg_tea = current_teacher.Cfg() cfg_tea.backbone_pretrained = False model_tea = current_teacher.Net(cfg_tea) model_tea.train() # model_tea.training = True # run in train mod state_dict_tea = mge.load(args.teacher_weight_file) if "state_dict" in state_dict_tea: state_dict_tea = state_dict_tea["state_dict"] model_tea.load_state_dict(state_dict_tea) ############### LOADED #################### ################## DISTILLER ############## distiller_cfg = import_from_file(args.distill_file) distiller = distiller_cfg.Net() ############### END #################### if dist.get_rank() == 0: logger.info(get_config_info(model.cfg)) logger.info(repr(model)) params_with_grad = [] for name, param in model.named_parameters(): if "bottom_up.conv1" in name and model.cfg.backbone_freeze_at >= 1: continue if "bottom_up.layer1" in name and model.cfg.backbone_freeze_at >= 2: continue params_with_grad.append(param) opt = SGD( params_with_grad, lr=model.cfg.basic_lr * args.batch_size * dist.get_world_size(), momentum=model.cfg.momentum, weight_decay=model.cfg.weight_decay, ) opt_d = AdamW( distiller.parameters(), lr=1e-4, weight_decay=1e-4, ) params_with_grad.extend(distiller.parameters()) gm = GradManager() if dist.get_world_size() > 1: gm.attach( params_with_grad, callbacks=[dist.make_allreduce_cb("mean", dist.WORLD)] ) else: gm.attach(params_with_grad) if args.weight_file is not None: weights =
mge.load(args.weight_file)
megengine.load
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import bisect import copy import os import time import megengine as mge import megengine.distributed as dist from megengine.autodiff import GradManager from megengine.data import DataLoader, Infinite, RandomSampler from megengine.data import transform as T from megengine.optimizer import AdamW, SGD import math from megengine.core._imperative_rt.utils import _set_defrag _set_defrag(True) from layers.tools.data_mapper import data_mapper from layers.tools.utils import ( AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file ) logger = mge.get_logger(__name__) logger.setLevel("INFO") mge.device.set_prealloc_config(1024, 1024, 256 * 1024 * 1024, 4.0) def make_parser(): parser = argparse.ArgumentParser() parser.add_argument( "-f", "--file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-df", "--distill_file", default="distill_configs/ICD.py", type=str, help="distill description file" ) parser.add_argument( "-tf", "--teacher_file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-w", "--weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-tw", "--teacher_weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-n", "--devices", default=1, type=int, help="total number of gpus for training", ) parser.add_argument( "-b", "--batch_size", default=2, type=int, help="batch size for training", ) parser.add_argument( "-d", "--dataset_dir", default="/data/datasets", type=str, ) parser.add_argument( "-l", "--load_head", action='store_true' ) parser.add_argument( "-sp", "--save_path", type=str, ) return parser def main(): parser = make_parser() args = parser.parse_args() # ------------------------ begin training -------------------------- # logger.info("Device Count = %d", args.devices) from datetime import datetime now = datetime.now() log_dir = "log-of-ICD-{}-{}".format(os.path.basename(args.file).split(".")[0], now.strftime('%H:%M') + ('-Inherent' if args.load_head else '')) if not os.path.isdir(log_dir): os.makedirs(log_dir) args.save_path = log_dir if args.devices > 1: trainer = dist.launcher(worker, n_gpus=args.devices) trainer(args) else: worker(args) def worker(args): mge.dtr.eviction_threshold = "6GB" # set the eviction threshold to 5 GB mge.dtr.enable() # enable the DTR optimization current_network = import_from_file(args.file) model = current_network.Net(current_network.Cfg()) model.train() ########### BUILD TEACHER MODEL ############ current_teacher = import_from_file(args.teacher_file) cfg_tea = current_teacher.Cfg() cfg_tea.backbone_pretrained = False model_tea = current_teacher.Net(cfg_tea) model_tea.train() # model_tea.training = True # run in train mod state_dict_tea = mge.load(args.teacher_weight_file) if "state_dict" in state_dict_tea: state_dict_tea = state_dict_tea["state_dict"] model_tea.load_state_dict(state_dict_tea) ############### LOADED #################### ################## DISTILLER ############## distiller_cfg = import_from_file(args.distill_file) distiller = distiller_cfg.Net() ############### END #################### if dist.get_rank() == 0: logger.info(get_config_info(model.cfg)) logger.info(repr(model)) params_with_grad = [] for name, param in model.named_parameters(): if "bottom_up.conv1" in name and model.cfg.backbone_freeze_at >= 1: continue if "bottom_up.layer1" in name and model.cfg.backbone_freeze_at >= 2: continue params_with_grad.append(param) opt = SGD( params_with_grad, lr=model.cfg.basic_lr * args.batch_size * dist.get_world_size(), momentum=model.cfg.momentum, weight_decay=model.cfg.weight_decay, ) opt_d = AdamW( distiller.parameters(), lr=1e-4, weight_decay=1e-4, ) params_with_grad.extend(distiller.parameters()) gm = GradManager() if dist.get_world_size() > 1: gm.attach( params_with_grad, callbacks=[dist.make_allreduce_cb("mean", dist.WORLD)] ) else: gm.attach(params_with_grad) if args.weight_file is not None: weights = mge.load(args.weight_file) model.backbone.bottom_up.load_state_dict(weights, strict=False) if args.load_head: print('Loading Prameters Besides from Backbones.') res = model.load_state_dict({k:v for k, v in model_tea.state_dict().items() if 'bottom_up' not in k}, strict=False) if
dist.get_world_size()
megengine.distributed.get_world_size
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import bisect import copy import os import time import megengine as mge import megengine.distributed as dist from megengine.autodiff import GradManager from megengine.data import DataLoader, Infinite, RandomSampler from megengine.data import transform as T from megengine.optimizer import AdamW, SGD import math from megengine.core._imperative_rt.utils import _set_defrag _set_defrag(True) from layers.tools.data_mapper import data_mapper from layers.tools.utils import ( AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file ) logger = mge.get_logger(__name__) logger.setLevel("INFO") mge.device.set_prealloc_config(1024, 1024, 256 * 1024 * 1024, 4.0) def make_parser(): parser = argparse.ArgumentParser() parser.add_argument( "-f", "--file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-df", "--distill_file", default="distill_configs/ICD.py", type=str, help="distill description file" ) parser.add_argument( "-tf", "--teacher_file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-w", "--weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-tw", "--teacher_weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-n", "--devices", default=1, type=int, help="total number of gpus for training", ) parser.add_argument( "-b", "--batch_size", default=2, type=int, help="batch size for training", ) parser.add_argument( "-d", "--dataset_dir", default="/data/datasets", type=str, ) parser.add_argument( "-l", "--load_head", action='store_true' ) parser.add_argument( "-sp", "--save_path", type=str, ) return parser def main(): parser = make_parser() args = parser.parse_args() # ------------------------ begin training -------------------------- # logger.info("Device Count = %d", args.devices) from datetime import datetime now = datetime.now() log_dir = "log-of-ICD-{}-{}".format(os.path.basename(args.file).split(".")[0], now.strftime('%H:%M') + ('-Inherent' if args.load_head else '')) if not os.path.isdir(log_dir): os.makedirs(log_dir) args.save_path = log_dir if args.devices > 1: trainer = dist.launcher(worker, n_gpus=args.devices) trainer(args) else: worker(args) def worker(args): mge.dtr.eviction_threshold = "6GB" # set the eviction threshold to 5 GB mge.dtr.enable() # enable the DTR optimization current_network = import_from_file(args.file) model = current_network.Net(current_network.Cfg()) model.train() ########### BUILD TEACHER MODEL ############ current_teacher = import_from_file(args.teacher_file) cfg_tea = current_teacher.Cfg() cfg_tea.backbone_pretrained = False model_tea = current_teacher.Net(cfg_tea) model_tea.train() # model_tea.training = True # run in train mod state_dict_tea = mge.load(args.teacher_weight_file) if "state_dict" in state_dict_tea: state_dict_tea = state_dict_tea["state_dict"] model_tea.load_state_dict(state_dict_tea) ############### LOADED #################### ################## DISTILLER ############## distiller_cfg = import_from_file(args.distill_file) distiller = distiller_cfg.Net() ############### END #################### if dist.get_rank() == 0: logger.info(get_config_info(model.cfg)) logger.info(repr(model)) params_with_grad = [] for name, param in model.named_parameters(): if "bottom_up.conv1" in name and model.cfg.backbone_freeze_at >= 1: continue if "bottom_up.layer1" in name and model.cfg.backbone_freeze_at >= 2: continue params_with_grad.append(param) opt = SGD( params_with_grad, lr=model.cfg.basic_lr * args.batch_size * dist.get_world_size(), momentum=model.cfg.momentum, weight_decay=model.cfg.weight_decay, ) opt_d = AdamW( distiller.parameters(), lr=1e-4, weight_decay=1e-4, ) params_with_grad.extend(distiller.parameters()) gm = GradManager() if dist.get_world_size() > 1: gm.attach( params_with_grad, callbacks=[dist.make_allreduce_cb("mean", dist.WORLD)] ) else: gm.attach(params_with_grad) if args.weight_file is not None: weights = mge.load(args.weight_file) model.backbone.bottom_up.load_state_dict(weights, strict=False) if args.load_head: print('Loading Prameters Besides from Backbones.') res = model.load_state_dict({k:v for k, v in model_tea.state_dict().items() if 'bottom_up' not in k}, strict=False) if dist.get_world_size() > 1: dist.bcast_list_(model.parameters()) # sync parameters dist.bcast_list_(distiller.parameters()) # sync parameters dist.bcast_list_(model.buffers()) # sync buffers dist.bcast_list_(distiller.buffers()) # sync parameters if
dist.get_rank()
megengine.distributed.get_rank
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import bisect import copy import os import time import megengine as mge import megengine.distributed as dist from megengine.autodiff import GradManager from megengine.data import DataLoader, Infinite, RandomSampler from megengine.data import transform as T from megengine.optimizer import AdamW, SGD import math from megengine.core._imperative_rt.utils import _set_defrag _set_defrag(True) from layers.tools.data_mapper import data_mapper from layers.tools.utils import ( AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file ) logger = mge.get_logger(__name__) logger.setLevel("INFO") mge.device.set_prealloc_config(1024, 1024, 256 * 1024 * 1024, 4.0) def make_parser(): parser = argparse.ArgumentParser() parser.add_argument( "-f", "--file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-df", "--distill_file", default="distill_configs/ICD.py", type=str, help="distill description file" ) parser.add_argument( "-tf", "--teacher_file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-w", "--weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-tw", "--teacher_weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-n", "--devices", default=1, type=int, help="total number of gpus for training", ) parser.add_argument( "-b", "--batch_size", default=2, type=int, help="batch size for training", ) parser.add_argument( "-d", "--dataset_dir", default="/data/datasets", type=str, ) parser.add_argument( "-l", "--load_head", action='store_true' ) parser.add_argument( "-sp", "--save_path", type=str, ) return parser def main(): parser = make_parser() args = parser.parse_args() # ------------------------ begin training -------------------------- # logger.info("Device Count = %d", args.devices) from datetime import datetime now = datetime.now() log_dir = "log-of-ICD-{}-{}".format(os.path.basename(args.file).split(".")[0], now.strftime('%H:%M') + ('-Inherent' if args.load_head else '')) if not os.path.isdir(log_dir): os.makedirs(log_dir) args.save_path = log_dir if args.devices > 1: trainer = dist.launcher(worker, n_gpus=args.devices) trainer(args) else: worker(args) def worker(args): mge.dtr.eviction_threshold = "6GB" # set the eviction threshold to 5 GB mge.dtr.enable() # enable the DTR optimization current_network = import_from_file(args.file) model = current_network.Net(current_network.Cfg()) model.train() ########### BUILD TEACHER MODEL ############ current_teacher = import_from_file(args.teacher_file) cfg_tea = current_teacher.Cfg() cfg_tea.backbone_pretrained = False model_tea = current_teacher.Net(cfg_tea) model_tea.train() # model_tea.training = True # run in train mod state_dict_tea = mge.load(args.teacher_weight_file) if "state_dict" in state_dict_tea: state_dict_tea = state_dict_tea["state_dict"] model_tea.load_state_dict(state_dict_tea) ############### LOADED #################### ################## DISTILLER ############## distiller_cfg = import_from_file(args.distill_file) distiller = distiller_cfg.Net() ############### END #################### if dist.get_rank() == 0: logger.info(get_config_info(model.cfg)) logger.info(repr(model)) params_with_grad = [] for name, param in model.named_parameters(): if "bottom_up.conv1" in name and model.cfg.backbone_freeze_at >= 1: continue if "bottom_up.layer1" in name and model.cfg.backbone_freeze_at >= 2: continue params_with_grad.append(param) opt = SGD( params_with_grad, lr=model.cfg.basic_lr * args.batch_size * dist.get_world_size(), momentum=model.cfg.momentum, weight_decay=model.cfg.weight_decay, ) opt_d = AdamW( distiller.parameters(), lr=1e-4, weight_decay=1e-4, ) params_with_grad.extend(distiller.parameters()) gm = GradManager() if dist.get_world_size() > 1: gm.attach( params_with_grad, callbacks=[dist.make_allreduce_cb("mean", dist.WORLD)] ) else: gm.attach(params_with_grad) if args.weight_file is not None: weights = mge.load(args.weight_file) model.backbone.bottom_up.load_state_dict(weights, strict=False) if args.load_head: print('Loading Prameters Besides from Backbones.') res = model.load_state_dict({k:v for k, v in model_tea.state_dict().items() if 'bottom_up' not in k}, strict=False) if dist.get_world_size() > 1: dist.bcast_list_(model.parameters()) # sync parameters dist.bcast_list_(distiller.parameters()) # sync parameters dist.bcast_list_(model.buffers()) # sync buffers dist.bcast_list_(distiller.buffers()) # sync parameters if dist.get_rank() == 0: logger.info("Prepare dataset") train_loader = iter(build_dataloader(args.batch_size, args.dataset_dir, model.cfg)) ############## REGISTER ############### # To get intermediate representations holder = [None, None] def register_tea_hooker(m, i, o): holder[0] = o return model_tea.backbone.register_forward_hook(register_tea_hooker) def register_stu_hooker(m, i, o): holder[1] = o return model.backbone.register_forward_hook(register_stu_hooker) for epoch in range(model.cfg.max_epoch): train_one_epoch(model, model_tea, distiller, holder, train_loader, opt, opt_d, gm, epoch, args) if
dist.get_rank()
megengine.distributed.get_rank
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import bisect import copy import os import time import megengine as mge import megengine.distributed as dist from megengine.autodiff import GradManager from megengine.data import DataLoader, Infinite, RandomSampler from megengine.data import transform as T from megengine.optimizer import AdamW, SGD import math from megengine.core._imperative_rt.utils import _set_defrag _set_defrag(True) from layers.tools.data_mapper import data_mapper from layers.tools.utils import ( AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file ) logger = mge.get_logger(__name__) logger.setLevel("INFO") mge.device.set_prealloc_config(1024, 1024, 256 * 1024 * 1024, 4.0) def make_parser(): parser = argparse.ArgumentParser() parser.add_argument( "-f", "--file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-df", "--distill_file", default="distill_configs/ICD.py", type=str, help="distill description file" ) parser.add_argument( "-tf", "--teacher_file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-w", "--weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-tw", "--teacher_weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-n", "--devices", default=1, type=int, help="total number of gpus for training", ) parser.add_argument( "-b", "--batch_size", default=2, type=int, help="batch size for training", ) parser.add_argument( "-d", "--dataset_dir", default="/data/datasets", type=str, ) parser.add_argument( "-l", "--load_head", action='store_true' ) parser.add_argument( "-sp", "--save_path", type=str, ) return parser def main(): parser = make_parser() args = parser.parse_args() # ------------------------ begin training -------------------------- # logger.info("Device Count = %d", args.devices) from datetime import datetime now = datetime.now() log_dir = "log-of-ICD-{}-{}".format(os.path.basename(args.file).split(".")[0], now.strftime('%H:%M') + ('-Inherent' if args.load_head else '')) if not os.path.isdir(log_dir): os.makedirs(log_dir) args.save_path = log_dir if args.devices > 1: trainer = dist.launcher(worker, n_gpus=args.devices) trainer(args) else: worker(args) def worker(args): mge.dtr.eviction_threshold = "6GB" # set the eviction threshold to 5 GB mge.dtr.enable() # enable the DTR optimization current_network = import_from_file(args.file) model = current_network.Net(current_network.Cfg()) model.train() ########### BUILD TEACHER MODEL ############ current_teacher = import_from_file(args.teacher_file) cfg_tea = current_teacher.Cfg() cfg_tea.backbone_pretrained = False model_tea = current_teacher.Net(cfg_tea) model_tea.train() # model_tea.training = True # run in train mod state_dict_tea = mge.load(args.teacher_weight_file) if "state_dict" in state_dict_tea: state_dict_tea = state_dict_tea["state_dict"] model_tea.load_state_dict(state_dict_tea) ############### LOADED #################### ################## DISTILLER ############## distiller_cfg = import_from_file(args.distill_file) distiller = distiller_cfg.Net() ############### END #################### if dist.get_rank() == 0: logger.info(get_config_info(model.cfg)) logger.info(repr(model)) params_with_grad = [] for name, param in model.named_parameters(): if "bottom_up.conv1" in name and model.cfg.backbone_freeze_at >= 1: continue if "bottom_up.layer1" in name and model.cfg.backbone_freeze_at >= 2: continue params_with_grad.append(param) opt = SGD( params_with_grad, lr=model.cfg.basic_lr * args.batch_size * dist.get_world_size(), momentum=model.cfg.momentum, weight_decay=model.cfg.weight_decay, ) opt_d = AdamW( distiller.parameters(), lr=1e-4, weight_decay=1e-4, ) params_with_grad.extend(distiller.parameters()) gm = GradManager() if dist.get_world_size() > 1: gm.attach( params_with_grad, callbacks=[dist.make_allreduce_cb("mean", dist.WORLD)] ) else: gm.attach(params_with_grad) if args.weight_file is not None: weights = mge.load(args.weight_file) model.backbone.bottom_up.load_state_dict(weights, strict=False) if args.load_head: print('Loading Prameters Besides from Backbones.') res = model.load_state_dict({k:v for k, v in model_tea.state_dict().items() if 'bottom_up' not in k}, strict=False) if dist.get_world_size() > 1: dist.bcast_list_(model.parameters()) # sync parameters dist.bcast_list_(distiller.parameters()) # sync parameters dist.bcast_list_(model.buffers()) # sync buffers dist.bcast_list_(distiller.buffers()) # sync parameters if dist.get_rank() == 0: logger.info("Prepare dataset") train_loader = iter(build_dataloader(args.batch_size, args.dataset_dir, model.cfg)) ############## REGISTER ############### # To get intermediate representations holder = [None, None] def register_tea_hooker(m, i, o): holder[0] = o return model_tea.backbone.register_forward_hook(register_tea_hooker) def register_stu_hooker(m, i, o): holder[1] = o return model.backbone.register_forward_hook(register_stu_hooker) for epoch in range(model.cfg.max_epoch): train_one_epoch(model, model_tea, distiller, holder, train_loader, opt, opt_d, gm, epoch, args) if dist.get_rank() == 0: save_path = "{}/epoch_{}.pkl".format( args.save_path, epoch ) mge.save( {"epoch": epoch, "state_dict": model.state_dict()}, save_path, ) logger.info("dump weights to %s", save_path) def train_one_epoch(model, model_tea, distiller, feat_holder, data_queue, opt, opt_d, gm, epoch, args): def train_func(image, im_info, gt_boxes, **args): model_tea(image=image, im_info=im_info, gt_boxes=gt_boxes) with gm: loss_dict = model(image=image, im_info=im_info, gt_boxes=gt_boxes) loss_distill = distiller(feat_holder[0], feat_holder[1], image, gt_boxes, im_info, distill_flag=0 if args['cur_step'] < 1000 else 1) loss_dict.update(loss_distill) loss_dict["total_loss"] = loss_dict["total_loss"] + sum(loss_distill.values()) gm.backward(loss_dict["total_loss"]) loss_list = list(loss_dict.values()) mge.optimizer.clip_grad_norm( distiller.parameters(), 0.01) opt.step().clear_grad() opt_d.step().clear_grad() return loss_list meter = AverageMeter(record_len=model.cfg.num_losses + distiller.num_losses) time_meter = AverageMeter(record_len=2) log_interval = model.cfg.log_interval tot_step = model.cfg.nr_images_epoch // (args.batch_size *
dist.get_world_size()
megengine.distributed.get_world_size
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import bisect import copy import os import time import megengine as mge import megengine.distributed as dist from megengine.autodiff import GradManager from megengine.data import DataLoader, Infinite, RandomSampler from megengine.data import transform as T from megengine.optimizer import AdamW, SGD import math from megengine.core._imperative_rt.utils import _set_defrag _set_defrag(True) from layers.tools.data_mapper import data_mapper from layers.tools.utils import ( AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file ) logger = mge.get_logger(__name__) logger.setLevel("INFO") mge.device.set_prealloc_config(1024, 1024, 256 * 1024 * 1024, 4.0) def make_parser(): parser = argparse.ArgumentParser() parser.add_argument( "-f", "--file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-df", "--distill_file", default="distill_configs/ICD.py", type=str, help="distill description file" ) parser.add_argument( "-tf", "--teacher_file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-w", "--weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-tw", "--teacher_weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-n", "--devices", default=1, type=int, help="total number of gpus for training", ) parser.add_argument( "-b", "--batch_size", default=2, type=int, help="batch size for training", ) parser.add_argument( "-d", "--dataset_dir", default="/data/datasets", type=str, ) parser.add_argument( "-l", "--load_head", action='store_true' ) parser.add_argument( "-sp", "--save_path", type=str, ) return parser def main(): parser = make_parser() args = parser.parse_args() # ------------------------ begin training -------------------------- # logger.info("Device Count = %d", args.devices) from datetime import datetime now = datetime.now() log_dir = "log-of-ICD-{}-{}".format(os.path.basename(args.file).split(".")[0], now.strftime('%H:%M') + ('-Inherent' if args.load_head else '')) if not os.path.isdir(log_dir): os.makedirs(log_dir) args.save_path = log_dir if args.devices > 1: trainer = dist.launcher(worker, n_gpus=args.devices) trainer(args) else: worker(args) def worker(args): mge.dtr.eviction_threshold = "6GB" # set the eviction threshold to 5 GB mge.dtr.enable() # enable the DTR optimization current_network = import_from_file(args.file) model = current_network.Net(current_network.Cfg()) model.train() ########### BUILD TEACHER MODEL ############ current_teacher = import_from_file(args.teacher_file) cfg_tea = current_teacher.Cfg() cfg_tea.backbone_pretrained = False model_tea = current_teacher.Net(cfg_tea) model_tea.train() # model_tea.training = True # run in train mod state_dict_tea = mge.load(args.teacher_weight_file) if "state_dict" in state_dict_tea: state_dict_tea = state_dict_tea["state_dict"] model_tea.load_state_dict(state_dict_tea) ############### LOADED #################### ################## DISTILLER ############## distiller_cfg = import_from_file(args.distill_file) distiller = distiller_cfg.Net() ############### END #################### if dist.get_rank() == 0: logger.info(get_config_info(model.cfg)) logger.info(repr(model)) params_with_grad = [] for name, param in model.named_parameters(): if "bottom_up.conv1" in name and model.cfg.backbone_freeze_at >= 1: continue if "bottom_up.layer1" in name and model.cfg.backbone_freeze_at >= 2: continue params_with_grad.append(param) opt = SGD( params_with_grad, lr=model.cfg.basic_lr * args.batch_size * dist.get_world_size(), momentum=model.cfg.momentum, weight_decay=model.cfg.weight_decay, ) opt_d = AdamW( distiller.parameters(), lr=1e-4, weight_decay=1e-4, ) params_with_grad.extend(distiller.parameters()) gm = GradManager() if dist.get_world_size() > 1: gm.attach( params_with_grad, callbacks=[dist.make_allreduce_cb("mean", dist.WORLD)] ) else: gm.attach(params_with_grad) if args.weight_file is not None: weights = mge.load(args.weight_file) model.backbone.bottom_up.load_state_dict(weights, strict=False) if args.load_head: print('Loading Prameters Besides from Backbones.') res = model.load_state_dict({k:v for k, v in model_tea.state_dict().items() if 'bottom_up' not in k}, strict=False) if dist.get_world_size() > 1: dist.bcast_list_(model.parameters()) # sync parameters dist.bcast_list_(distiller.parameters()) # sync parameters dist.bcast_list_(model.buffers()) # sync buffers dist.bcast_list_(distiller.buffers()) # sync parameters if dist.get_rank() == 0: logger.info("Prepare dataset") train_loader = iter(build_dataloader(args.batch_size, args.dataset_dir, model.cfg)) ############## REGISTER ############### # To get intermediate representations holder = [None, None] def register_tea_hooker(m, i, o): holder[0] = o return model_tea.backbone.register_forward_hook(register_tea_hooker) def register_stu_hooker(m, i, o): holder[1] = o return model.backbone.register_forward_hook(register_stu_hooker) for epoch in range(model.cfg.max_epoch): train_one_epoch(model, model_tea, distiller, holder, train_loader, opt, opt_d, gm, epoch, args) if dist.get_rank() == 0: save_path = "{}/epoch_{}.pkl".format( args.save_path, epoch ) mge.save( {"epoch": epoch, "state_dict": model.state_dict()}, save_path, ) logger.info("dump weights to %s", save_path) def train_one_epoch(model, model_tea, distiller, feat_holder, data_queue, opt, opt_d, gm, epoch, args): def train_func(image, im_info, gt_boxes, **args): model_tea(image=image, im_info=im_info, gt_boxes=gt_boxes) with gm: loss_dict = model(image=image, im_info=im_info, gt_boxes=gt_boxes) loss_distill = distiller(feat_holder[0], feat_holder[1], image, gt_boxes, im_info, distill_flag=0 if args['cur_step'] < 1000 else 1) loss_dict.update(loss_distill) loss_dict["total_loss"] = loss_dict["total_loss"] + sum(loss_distill.values()) gm.backward(loss_dict["total_loss"]) loss_list = list(loss_dict.values()) mge.optimizer.clip_grad_norm( distiller.parameters(), 0.01) opt.step().clear_grad() opt_d.step().clear_grad() return loss_list meter = AverageMeter(record_len=model.cfg.num_losses + distiller.num_losses) time_meter = AverageMeter(record_len=2) log_interval = model.cfg.log_interval tot_step = model.cfg.nr_images_epoch // (args.batch_size * dist.get_world_size()) full_step = tot_step * model.cfg.max_epoch for step in range(tot_step): cur_step = tot_step * epoch + step adjust_learning_rate(opt, epoch, step, model.cfg, args) adjust_learning_rate_cos(opt_d, cur_step, full_step) data_tik = time.time() mini_batch = next(data_queue) data_tok = time.time() tik = time.time() loss_list = train_func( image=mge.tensor(mini_batch["data"]), im_info=mge.tensor(mini_batch["im_info"]), gt_boxes=mge.tensor(mini_batch["gt_boxes"]), cur_step=cur_step, full_step=full_step ) tok = time.time() time_meter.update([tok - tik, data_tok - data_tik]) if
dist.get_rank()
megengine.distributed.get_rank
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import bisect import copy import os import time import megengine as mge import megengine.distributed as dist from megengine.autodiff import GradManager from megengine.data import DataLoader, Infinite, RandomSampler from megengine.data import transform as T from megengine.optimizer import AdamW, SGD import math from megengine.core._imperative_rt.utils import _set_defrag _set_defrag(True) from layers.tools.data_mapper import data_mapper from layers.tools.utils import ( AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file ) logger = mge.get_logger(__name__) logger.setLevel("INFO") mge.device.set_prealloc_config(1024, 1024, 256 * 1024 * 1024, 4.0) def make_parser(): parser = argparse.ArgumentParser() parser.add_argument( "-f", "--file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-df", "--distill_file", default="distill_configs/ICD.py", type=str, help="distill description file" ) parser.add_argument( "-tf", "--teacher_file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-w", "--weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-tw", "--teacher_weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-n", "--devices", default=1, type=int, help="total number of gpus for training", ) parser.add_argument( "-b", "--batch_size", default=2, type=int, help="batch size for training", ) parser.add_argument( "-d", "--dataset_dir", default="/data/datasets", type=str, ) parser.add_argument( "-l", "--load_head", action='store_true' ) parser.add_argument( "-sp", "--save_path", type=str, ) return parser def main(): parser = make_parser() args = parser.parse_args() # ------------------------ begin training -------------------------- # logger.info("Device Count = %d", args.devices) from datetime import datetime now = datetime.now() log_dir = "log-of-ICD-{}-{}".format(os.path.basename(args.file).split(".")[0], now.strftime('%H:%M') + ('-Inherent' if args.load_head else '')) if not os.path.isdir(log_dir): os.makedirs(log_dir) args.save_path = log_dir if args.devices > 1: trainer = dist.launcher(worker, n_gpus=args.devices) trainer(args) else: worker(args) def worker(args): mge.dtr.eviction_threshold = "6GB" # set the eviction threshold to 5 GB mge.dtr.enable() # enable the DTR optimization current_network = import_from_file(args.file) model = current_network.Net(current_network.Cfg()) model.train() ########### BUILD TEACHER MODEL ############ current_teacher = import_from_file(args.teacher_file) cfg_tea = current_teacher.Cfg() cfg_tea.backbone_pretrained = False model_tea = current_teacher.Net(cfg_tea) model_tea.train() # model_tea.training = True # run in train mod state_dict_tea = mge.load(args.teacher_weight_file) if "state_dict" in state_dict_tea: state_dict_tea = state_dict_tea["state_dict"] model_tea.load_state_dict(state_dict_tea) ############### LOADED #################### ################## DISTILLER ############## distiller_cfg = import_from_file(args.distill_file) distiller = distiller_cfg.Net() ############### END #################### if dist.get_rank() == 0: logger.info(get_config_info(model.cfg)) logger.info(repr(model)) params_with_grad = [] for name, param in model.named_parameters(): if "bottom_up.conv1" in name and model.cfg.backbone_freeze_at >= 1: continue if "bottom_up.layer1" in name and model.cfg.backbone_freeze_at >= 2: continue params_with_grad.append(param) opt = SGD( params_with_grad, lr=model.cfg.basic_lr * args.batch_size * dist.get_world_size(), momentum=model.cfg.momentum, weight_decay=model.cfg.weight_decay, ) opt_d = AdamW( distiller.parameters(), lr=1e-4, weight_decay=1e-4, ) params_with_grad.extend(distiller.parameters()) gm = GradManager() if dist.get_world_size() > 1: gm.attach( params_with_grad, callbacks=[dist.make_allreduce_cb("mean", dist.WORLD)] ) else: gm.attach(params_with_grad) if args.weight_file is not None: weights = mge.load(args.weight_file) model.backbone.bottom_up.load_state_dict(weights, strict=False) if args.load_head: print('Loading Prameters Besides from Backbones.') res = model.load_state_dict({k:v for k, v in model_tea.state_dict().items() if 'bottom_up' not in k}, strict=False) if dist.get_world_size() > 1: dist.bcast_list_(model.parameters()) # sync parameters dist.bcast_list_(distiller.parameters()) # sync parameters dist.bcast_list_(model.buffers()) # sync buffers dist.bcast_list_(distiller.buffers()) # sync parameters if dist.get_rank() == 0: logger.info("Prepare dataset") train_loader = iter(build_dataloader(args.batch_size, args.dataset_dir, model.cfg)) ############## REGISTER ############### # To get intermediate representations holder = [None, None] def register_tea_hooker(m, i, o): holder[0] = o return model_tea.backbone.register_forward_hook(register_tea_hooker) def register_stu_hooker(m, i, o): holder[1] = o return model.backbone.register_forward_hook(register_stu_hooker) for epoch in range(model.cfg.max_epoch): train_one_epoch(model, model_tea, distiller, holder, train_loader, opt, opt_d, gm, epoch, args) if dist.get_rank() == 0: save_path = "{}/epoch_{}.pkl".format( args.save_path, epoch ) mge.save( {"epoch": epoch, "state_dict": model.state_dict()}, save_path, ) logger.info("dump weights to %s", save_path) def train_one_epoch(model, model_tea, distiller, feat_holder, data_queue, opt, opt_d, gm, epoch, args): def train_func(image, im_info, gt_boxes, **args): model_tea(image=image, im_info=im_info, gt_boxes=gt_boxes) with gm: loss_dict = model(image=image, im_info=im_info, gt_boxes=gt_boxes) loss_distill = distiller(feat_holder[0], feat_holder[1], image, gt_boxes, im_info, distill_flag=0 if args['cur_step'] < 1000 else 1) loss_dict.update(loss_distill) loss_dict["total_loss"] = loss_dict["total_loss"] + sum(loss_distill.values()) gm.backward(loss_dict["total_loss"]) loss_list = list(loss_dict.values()) mge.optimizer.clip_grad_norm( distiller.parameters(), 0.01) opt.step().clear_grad() opt_d.step().clear_grad() return loss_list meter = AverageMeter(record_len=model.cfg.num_losses + distiller.num_losses) time_meter = AverageMeter(record_len=2) log_interval = model.cfg.log_interval tot_step = model.cfg.nr_images_epoch // (args.batch_size * dist.get_world_size()) full_step = tot_step * model.cfg.max_epoch for step in range(tot_step): cur_step = tot_step * epoch + step adjust_learning_rate(opt, epoch, step, model.cfg, args) adjust_learning_rate_cos(opt_d, cur_step, full_step) data_tik = time.time() mini_batch = next(data_queue) data_tok = time.time() tik = time.time() loss_list = train_func( image=mge.tensor(mini_batch["data"]), im_info=mge.tensor(mini_batch["im_info"]), gt_boxes=mge.tensor(mini_batch["gt_boxes"]), cur_step=cur_step, full_step=full_step ) tok = time.time() time_meter.update([tok - tik, data_tok - data_tik]) if dist.get_rank() == 0: info_str = "e%d, %d/%d, lr:%f, " loss_str = ", ".join( ["{}:%f".format(loss) for loss in model.cfg.losses_keys] + ["{}:%f".format(loss) for loss in distiller.loss_keys] ) time_str = ", train_time:%.3fs, data_time:%.3fs" log_info_str = info_str + loss_str + time_str meter.update([loss.numpy() for loss in loss_list]) if step % log_interval == 0: logger.info( log_info_str, epoch, step, tot_step, opt.param_groups[0]["lr"], *meter.average(), *time_meter.average() ) meter.reset() time_meter.reset() def adjust_learning_rate_cos(optimizer, cur_iter, total_iter): base_lr = 1e-4 # Warm up lr = 0.5 * base_lr * (1 + math.cos(cur_iter / total_iter * math.pi)) for param_group in optimizer.param_groups: param_group["lr"] = lr def adjust_learning_rate(optimizer, epoch, step, cfg, args): base_lr = ( cfg.basic_lr * args.batch_size *
dist.get_world_size()
megengine.distributed.get_world_size
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import bisect import copy import os import time import megengine as mge import megengine.distributed as dist from megengine.autodiff import GradManager from megengine.data import DataLoader, Infinite, RandomSampler from megengine.data import transform as T from megengine.optimizer import AdamW, SGD import math from megengine.core._imperative_rt.utils import _set_defrag _set_defrag(True) from layers.tools.data_mapper import data_mapper from layers.tools.utils import ( AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file ) logger = mge.get_logger(__name__) logger.setLevel("INFO") mge.device.set_prealloc_config(1024, 1024, 256 * 1024 * 1024, 4.0) def make_parser(): parser = argparse.ArgumentParser() parser.add_argument( "-f", "--file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-df", "--distill_file", default="distill_configs/ICD.py", type=str, help="distill description file" ) parser.add_argument( "-tf", "--teacher_file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-w", "--weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-tw", "--teacher_weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-n", "--devices", default=1, type=int, help="total number of gpus for training", ) parser.add_argument( "-b", "--batch_size", default=2, type=int, help="batch size for training", ) parser.add_argument( "-d", "--dataset_dir", default="/data/datasets", type=str, ) parser.add_argument( "-l", "--load_head", action='store_true' ) parser.add_argument( "-sp", "--save_path", type=str, ) return parser def main(): parser = make_parser() args = parser.parse_args() # ------------------------ begin training -------------------------- # logger.info("Device Count = %d", args.devices) from datetime import datetime now = datetime.now() log_dir = "log-of-ICD-{}-{}".format(os.path.basename(args.file).split(".")[0], now.strftime('%H:%M') + ('-Inherent' if args.load_head else '')) if not os.path.isdir(log_dir): os.makedirs(log_dir) args.save_path = log_dir if args.devices > 1: trainer = dist.launcher(worker, n_gpus=args.devices) trainer(args) else: worker(args) def worker(args): mge.dtr.eviction_threshold = "6GB" # set the eviction threshold to 5 GB mge.dtr.enable() # enable the DTR optimization current_network = import_from_file(args.file) model = current_network.Net(current_network.Cfg()) model.train() ########### BUILD TEACHER MODEL ############ current_teacher = import_from_file(args.teacher_file) cfg_tea = current_teacher.Cfg() cfg_tea.backbone_pretrained = False model_tea = current_teacher.Net(cfg_tea) model_tea.train() # model_tea.training = True # run in train mod state_dict_tea = mge.load(args.teacher_weight_file) if "state_dict" in state_dict_tea: state_dict_tea = state_dict_tea["state_dict"] model_tea.load_state_dict(state_dict_tea) ############### LOADED #################### ################## DISTILLER ############## distiller_cfg = import_from_file(args.distill_file) distiller = distiller_cfg.Net() ############### END #################### if dist.get_rank() == 0: logger.info(get_config_info(model.cfg)) logger.info(repr(model)) params_with_grad = [] for name, param in model.named_parameters(): if "bottom_up.conv1" in name and model.cfg.backbone_freeze_at >= 1: continue if "bottom_up.layer1" in name and model.cfg.backbone_freeze_at >= 2: continue params_with_grad.append(param) opt = SGD( params_with_grad, lr=model.cfg.basic_lr * args.batch_size * dist.get_world_size(), momentum=model.cfg.momentum, weight_decay=model.cfg.weight_decay, ) opt_d = AdamW( distiller.parameters(), lr=1e-4, weight_decay=1e-4, ) params_with_grad.extend(distiller.parameters()) gm = GradManager() if dist.get_world_size() > 1: gm.attach( params_with_grad, callbacks=[dist.make_allreduce_cb("mean", dist.WORLD)] ) else: gm.attach(params_with_grad) if args.weight_file is not None: weights = mge.load(args.weight_file) model.backbone.bottom_up.load_state_dict(weights, strict=False) if args.load_head: print('Loading Prameters Besides from Backbones.') res = model.load_state_dict({k:v for k, v in model_tea.state_dict().items() if 'bottom_up' not in k}, strict=False) if dist.get_world_size() > 1: dist.bcast_list_(model.parameters()) # sync parameters dist.bcast_list_(distiller.parameters()) # sync parameters dist.bcast_list_(model.buffers()) # sync buffers dist.bcast_list_(distiller.buffers()) # sync parameters if dist.get_rank() == 0: logger.info("Prepare dataset") train_loader = iter(build_dataloader(args.batch_size, args.dataset_dir, model.cfg)) ############## REGISTER ############### # To get intermediate representations holder = [None, None] def register_tea_hooker(m, i, o): holder[0] = o return model_tea.backbone.register_forward_hook(register_tea_hooker) def register_stu_hooker(m, i, o): holder[1] = o return model.backbone.register_forward_hook(register_stu_hooker) for epoch in range(model.cfg.max_epoch): train_one_epoch(model, model_tea, distiller, holder, train_loader, opt, opt_d, gm, epoch, args) if dist.get_rank() == 0: save_path = "{}/epoch_{}.pkl".format( args.save_path, epoch ) mge.save( {"epoch": epoch, "state_dict": model.state_dict()}, save_path, ) logger.info("dump weights to %s", save_path) def train_one_epoch(model, model_tea, distiller, feat_holder, data_queue, opt, opt_d, gm, epoch, args): def train_func(image, im_info, gt_boxes, **args): model_tea(image=image, im_info=im_info, gt_boxes=gt_boxes) with gm: loss_dict = model(image=image, im_info=im_info, gt_boxes=gt_boxes) loss_distill = distiller(feat_holder[0], feat_holder[1], image, gt_boxes, im_info, distill_flag=0 if args['cur_step'] < 1000 else 1) loss_dict.update(loss_distill) loss_dict["total_loss"] = loss_dict["total_loss"] + sum(loss_distill.values()) gm.backward(loss_dict["total_loss"]) loss_list = list(loss_dict.values()) mge.optimizer.clip_grad_norm( distiller.parameters(), 0.01) opt.step().clear_grad() opt_d.step().clear_grad() return loss_list meter = AverageMeter(record_len=model.cfg.num_losses + distiller.num_losses) time_meter = AverageMeter(record_len=2) log_interval = model.cfg.log_interval tot_step = model.cfg.nr_images_epoch // (args.batch_size * dist.get_world_size()) full_step = tot_step * model.cfg.max_epoch for step in range(tot_step): cur_step = tot_step * epoch + step adjust_learning_rate(opt, epoch, step, model.cfg, args) adjust_learning_rate_cos(opt_d, cur_step, full_step) data_tik = time.time() mini_batch = next(data_queue) data_tok = time.time() tik = time.time() loss_list = train_func( image=mge.tensor(mini_batch["data"]), im_info=mge.tensor(mini_batch["im_info"]), gt_boxes=mge.tensor(mini_batch["gt_boxes"]), cur_step=cur_step, full_step=full_step ) tok = time.time() time_meter.update([tok - tik, data_tok - data_tik]) if dist.get_rank() == 0: info_str = "e%d, %d/%d, lr:%f, " loss_str = ", ".join( ["{}:%f".format(loss) for loss in model.cfg.losses_keys] + ["{}:%f".format(loss) for loss in distiller.loss_keys] ) time_str = ", train_time:%.3fs, data_time:%.3fs" log_info_str = info_str + loss_str + time_str meter.update([loss.numpy() for loss in loss_list]) if step % log_interval == 0: logger.info( log_info_str, epoch, step, tot_step, opt.param_groups[0]["lr"], *meter.average(), *time_meter.average() ) meter.reset() time_meter.reset() def adjust_learning_rate_cos(optimizer, cur_iter, total_iter): base_lr = 1e-4 # Warm up lr = 0.5 * base_lr * (1 + math.cos(cur_iter / total_iter * math.pi)) for param_group in optimizer.param_groups: param_group["lr"] = lr def adjust_learning_rate(optimizer, epoch, step, cfg, args): base_lr = ( cfg.basic_lr * args.batch_size * dist.get_world_size() * ( cfg.lr_decay_rate ** bisect.bisect_right(cfg.lr_decay_stages, epoch) ) ) # Warm up lr_factor = 1.0 if epoch == 0 and step < cfg.warm_iters: lr_factor = (step + 1.0) / cfg.warm_iters for param_group in optimizer.param_groups: param_group["lr"] = base_lr * lr_factor def build_dataset(dataset_dir, cfg): data_cfg = copy.deepcopy(cfg.train_dataset) data_name = data_cfg.pop("name") data_cfg["root"] = os.path.join(dataset_dir, data_name, data_cfg["root"]) if "ann_file" in data_cfg: data_cfg["ann_file"] = os.path.join(dataset_dir, data_name, data_cfg["ann_file"]) data_cfg["order"] = ["image", "boxes", "boxes_category", "info"] return data_mapper[data_name](**data_cfg) # pylint: disable=dangerous-default-value def build_sampler(train_dataset, batch_size, aspect_grouping=[1]): def _compute_aspect_ratios(dataset): aspect_ratios = [] for i in range(len(dataset)): info = dataset.get_img_info(i) aspect_ratios.append(info["height"] / info["width"]) return aspect_ratios def _quantize(x, bins): return list(map(lambda y: bisect.bisect_right(sorted(bins), y), x)) if len(aspect_grouping) == 0: return Infinite(
RandomSampler(train_dataset, batch_size, drop_last=True)
megengine.data.RandomSampler
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import bisect import copy import os import time import megengine as mge import megengine.distributed as dist from megengine.autodiff import GradManager from megengine.data import DataLoader, Infinite, RandomSampler from megengine.data import transform as T from megengine.optimizer import AdamW, SGD import math from megengine.core._imperative_rt.utils import _set_defrag _set_defrag(True) from layers.tools.data_mapper import data_mapper from layers.tools.utils import ( AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file ) logger = mge.get_logger(__name__) logger.setLevel("INFO") mge.device.set_prealloc_config(1024, 1024, 256 * 1024 * 1024, 4.0) def make_parser(): parser = argparse.ArgumentParser() parser.add_argument( "-f", "--file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-df", "--distill_file", default="distill_configs/ICD.py", type=str, help="distill description file" ) parser.add_argument( "-tf", "--teacher_file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-w", "--weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-tw", "--teacher_weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-n", "--devices", default=1, type=int, help="total number of gpus for training", ) parser.add_argument( "-b", "--batch_size", default=2, type=int, help="batch size for training", ) parser.add_argument( "-d", "--dataset_dir", default="/data/datasets", type=str, ) parser.add_argument( "-l", "--load_head", action='store_true' ) parser.add_argument( "-sp", "--save_path", type=str, ) return parser def main(): parser = make_parser() args = parser.parse_args() # ------------------------ begin training -------------------------- # logger.info("Device Count = %d", args.devices) from datetime import datetime now = datetime.now() log_dir = "log-of-ICD-{}-{}".format(os.path.basename(args.file).split(".")[0], now.strftime('%H:%M') + ('-Inherent' if args.load_head else '')) if not os.path.isdir(log_dir): os.makedirs(log_dir) args.save_path = log_dir if args.devices > 1: trainer = dist.launcher(worker, n_gpus=args.devices) trainer(args) else: worker(args) def worker(args): mge.dtr.eviction_threshold = "6GB" # set the eviction threshold to 5 GB mge.dtr.enable() # enable the DTR optimization current_network = import_from_file(args.file) model = current_network.Net(current_network.Cfg()) model.train() ########### BUILD TEACHER MODEL ############ current_teacher = import_from_file(args.teacher_file) cfg_tea = current_teacher.Cfg() cfg_tea.backbone_pretrained = False model_tea = current_teacher.Net(cfg_tea) model_tea.train() # model_tea.training = True # run in train mod state_dict_tea = mge.load(args.teacher_weight_file) if "state_dict" in state_dict_tea: state_dict_tea = state_dict_tea["state_dict"] model_tea.load_state_dict(state_dict_tea) ############### LOADED #################### ################## DISTILLER ############## distiller_cfg = import_from_file(args.distill_file) distiller = distiller_cfg.Net() ############### END #################### if dist.get_rank() == 0: logger.info(get_config_info(model.cfg)) logger.info(repr(model)) params_with_grad = [] for name, param in model.named_parameters(): if "bottom_up.conv1" in name and model.cfg.backbone_freeze_at >= 1: continue if "bottom_up.layer1" in name and model.cfg.backbone_freeze_at >= 2: continue params_with_grad.append(param) opt = SGD( params_with_grad, lr=model.cfg.basic_lr * args.batch_size *
dist.get_world_size()
megengine.distributed.get_world_size
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import bisect import copy import os import time import megengine as mge import megengine.distributed as dist from megengine.autodiff import GradManager from megengine.data import DataLoader, Infinite, RandomSampler from megengine.data import transform as T from megengine.optimizer import AdamW, SGD import math from megengine.core._imperative_rt.utils import _set_defrag _set_defrag(True) from layers.tools.data_mapper import data_mapper from layers.tools.utils import ( AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file ) logger = mge.get_logger(__name__) logger.setLevel("INFO") mge.device.set_prealloc_config(1024, 1024, 256 * 1024 * 1024, 4.0) def make_parser(): parser = argparse.ArgumentParser() parser.add_argument( "-f", "--file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-df", "--distill_file", default="distill_configs/ICD.py", type=str, help="distill description file" ) parser.add_argument( "-tf", "--teacher_file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-w", "--weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-tw", "--teacher_weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-n", "--devices", default=1, type=int, help="total number of gpus for training", ) parser.add_argument( "-b", "--batch_size", default=2, type=int, help="batch size for training", ) parser.add_argument( "-d", "--dataset_dir", default="/data/datasets", type=str, ) parser.add_argument( "-l", "--load_head", action='store_true' ) parser.add_argument( "-sp", "--save_path", type=str, ) return parser def main(): parser = make_parser() args = parser.parse_args() # ------------------------ begin training -------------------------- # logger.info("Device Count = %d", args.devices) from datetime import datetime now = datetime.now() log_dir = "log-of-ICD-{}-{}".format(os.path.basename(args.file).split(".")[0], now.strftime('%H:%M') + ('-Inherent' if args.load_head else '')) if not os.path.isdir(log_dir): os.makedirs(log_dir) args.save_path = log_dir if args.devices > 1: trainer = dist.launcher(worker, n_gpus=args.devices) trainer(args) else: worker(args) def worker(args): mge.dtr.eviction_threshold = "6GB" # set the eviction threshold to 5 GB mge.dtr.enable() # enable the DTR optimization current_network = import_from_file(args.file) model = current_network.Net(current_network.Cfg()) model.train() ########### BUILD TEACHER MODEL ############ current_teacher = import_from_file(args.teacher_file) cfg_tea = current_teacher.Cfg() cfg_tea.backbone_pretrained = False model_tea = current_teacher.Net(cfg_tea) model_tea.train() # model_tea.training = True # run in train mod state_dict_tea = mge.load(args.teacher_weight_file) if "state_dict" in state_dict_tea: state_dict_tea = state_dict_tea["state_dict"] model_tea.load_state_dict(state_dict_tea) ############### LOADED #################### ################## DISTILLER ############## distiller_cfg = import_from_file(args.distill_file) distiller = distiller_cfg.Net() ############### END #################### if dist.get_rank() == 0: logger.info(get_config_info(model.cfg)) logger.info(repr(model)) params_with_grad = [] for name, param in model.named_parameters(): if "bottom_up.conv1" in name and model.cfg.backbone_freeze_at >= 1: continue if "bottom_up.layer1" in name and model.cfg.backbone_freeze_at >= 2: continue params_with_grad.append(param) opt = SGD( params_with_grad, lr=model.cfg.basic_lr * args.batch_size * dist.get_world_size(), momentum=model.cfg.momentum, weight_decay=model.cfg.weight_decay, ) opt_d = AdamW( distiller.parameters(), lr=1e-4, weight_decay=1e-4, ) params_with_grad.extend(distiller.parameters()) gm = GradManager() if dist.get_world_size() > 1: gm.attach( params_with_grad, callbacks=[dist.make_allreduce_cb("mean", dist.WORLD)] ) else: gm.attach(params_with_grad) if args.weight_file is not None: weights = mge.load(args.weight_file) model.backbone.bottom_up.load_state_dict(weights, strict=False) if args.load_head: print('Loading Prameters Besides from Backbones.') res = model.load_state_dict({k:v for k, v in model_tea.state_dict().items() if 'bottom_up' not in k}, strict=False) if dist.get_world_size() > 1: dist.bcast_list_(model.parameters()) # sync parameters dist.bcast_list_(distiller.parameters()) # sync parameters dist.bcast_list_(model.buffers()) # sync buffers dist.bcast_list_(distiller.buffers()) # sync parameters if dist.get_rank() == 0: logger.info("Prepare dataset") train_loader = iter(build_dataloader(args.batch_size, args.dataset_dir, model.cfg)) ############## REGISTER ############### # To get intermediate representations holder = [None, None] def register_tea_hooker(m, i, o): holder[0] = o return model_tea.backbone.register_forward_hook(register_tea_hooker) def register_stu_hooker(m, i, o): holder[1] = o return model.backbone.register_forward_hook(register_stu_hooker) for epoch in range(model.cfg.max_epoch): train_one_epoch(model, model_tea, distiller, holder, train_loader, opt, opt_d, gm, epoch, args) if dist.get_rank() == 0: save_path = "{}/epoch_{}.pkl".format( args.save_path, epoch ) mge.save( {"epoch": epoch, "state_dict": model.state_dict()}, save_path, ) logger.info("dump weights to %s", save_path) def train_one_epoch(model, model_tea, distiller, feat_holder, data_queue, opt, opt_d, gm, epoch, args): def train_func(image, im_info, gt_boxes, **args): model_tea(image=image, im_info=im_info, gt_boxes=gt_boxes) with gm: loss_dict = model(image=image, im_info=im_info, gt_boxes=gt_boxes) loss_distill = distiller(feat_holder[0], feat_holder[1], image, gt_boxes, im_info, distill_flag=0 if args['cur_step'] < 1000 else 1) loss_dict.update(loss_distill) loss_dict["total_loss"] = loss_dict["total_loss"] + sum(loss_distill.values()) gm.backward(loss_dict["total_loss"]) loss_list = list(loss_dict.values()) mge.optimizer.clip_grad_norm( distiller.parameters(), 0.01) opt.step().clear_grad() opt_d.step().clear_grad() return loss_list meter = AverageMeter(record_len=model.cfg.num_losses + distiller.num_losses) time_meter = AverageMeter(record_len=2) log_interval = model.cfg.log_interval tot_step = model.cfg.nr_images_epoch // (args.batch_size * dist.get_world_size()) full_step = tot_step * model.cfg.max_epoch for step in range(tot_step): cur_step = tot_step * epoch + step adjust_learning_rate(opt, epoch, step, model.cfg, args) adjust_learning_rate_cos(opt_d, cur_step, full_step) data_tik = time.time() mini_batch = next(data_queue) data_tok = time.time() tik = time.time() loss_list = train_func( image=
mge.tensor(mini_batch["data"])
megengine.tensor
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import bisect import copy import os import time import megengine as mge import megengine.distributed as dist from megengine.autodiff import GradManager from megengine.data import DataLoader, Infinite, RandomSampler from megengine.data import transform as T from megengine.optimizer import AdamW, SGD import math from megengine.core._imperative_rt.utils import _set_defrag _set_defrag(True) from layers.tools.data_mapper import data_mapper from layers.tools.utils import ( AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file ) logger = mge.get_logger(__name__) logger.setLevel("INFO") mge.device.set_prealloc_config(1024, 1024, 256 * 1024 * 1024, 4.0) def make_parser(): parser = argparse.ArgumentParser() parser.add_argument( "-f", "--file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-df", "--distill_file", default="distill_configs/ICD.py", type=str, help="distill description file" ) parser.add_argument( "-tf", "--teacher_file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-w", "--weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-tw", "--teacher_weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-n", "--devices", default=1, type=int, help="total number of gpus for training", ) parser.add_argument( "-b", "--batch_size", default=2, type=int, help="batch size for training", ) parser.add_argument( "-d", "--dataset_dir", default="/data/datasets", type=str, ) parser.add_argument( "-l", "--load_head", action='store_true' ) parser.add_argument( "-sp", "--save_path", type=str, ) return parser def main(): parser = make_parser() args = parser.parse_args() # ------------------------ begin training -------------------------- # logger.info("Device Count = %d", args.devices) from datetime import datetime now = datetime.now() log_dir = "log-of-ICD-{}-{}".format(os.path.basename(args.file).split(".")[0], now.strftime('%H:%M') + ('-Inherent' if args.load_head else '')) if not os.path.isdir(log_dir): os.makedirs(log_dir) args.save_path = log_dir if args.devices > 1: trainer = dist.launcher(worker, n_gpus=args.devices) trainer(args) else: worker(args) def worker(args): mge.dtr.eviction_threshold = "6GB" # set the eviction threshold to 5 GB mge.dtr.enable() # enable the DTR optimization current_network = import_from_file(args.file) model = current_network.Net(current_network.Cfg()) model.train() ########### BUILD TEACHER MODEL ############ current_teacher = import_from_file(args.teacher_file) cfg_tea = current_teacher.Cfg() cfg_tea.backbone_pretrained = False model_tea = current_teacher.Net(cfg_tea) model_tea.train() # model_tea.training = True # run in train mod state_dict_tea = mge.load(args.teacher_weight_file) if "state_dict" in state_dict_tea: state_dict_tea = state_dict_tea["state_dict"] model_tea.load_state_dict(state_dict_tea) ############### LOADED #################### ################## DISTILLER ############## distiller_cfg = import_from_file(args.distill_file) distiller = distiller_cfg.Net() ############### END #################### if dist.get_rank() == 0: logger.info(get_config_info(model.cfg)) logger.info(repr(model)) params_with_grad = [] for name, param in model.named_parameters(): if "bottom_up.conv1" in name and model.cfg.backbone_freeze_at >= 1: continue if "bottom_up.layer1" in name and model.cfg.backbone_freeze_at >= 2: continue params_with_grad.append(param) opt = SGD( params_with_grad, lr=model.cfg.basic_lr * args.batch_size * dist.get_world_size(), momentum=model.cfg.momentum, weight_decay=model.cfg.weight_decay, ) opt_d = AdamW( distiller.parameters(), lr=1e-4, weight_decay=1e-4, ) params_with_grad.extend(distiller.parameters()) gm = GradManager() if dist.get_world_size() > 1: gm.attach( params_with_grad, callbacks=[dist.make_allreduce_cb("mean", dist.WORLD)] ) else: gm.attach(params_with_grad) if args.weight_file is not None: weights = mge.load(args.weight_file) model.backbone.bottom_up.load_state_dict(weights, strict=False) if args.load_head: print('Loading Prameters Besides from Backbones.') res = model.load_state_dict({k:v for k, v in model_tea.state_dict().items() if 'bottom_up' not in k}, strict=False) if dist.get_world_size() > 1: dist.bcast_list_(model.parameters()) # sync parameters dist.bcast_list_(distiller.parameters()) # sync parameters dist.bcast_list_(model.buffers()) # sync buffers dist.bcast_list_(distiller.buffers()) # sync parameters if dist.get_rank() == 0: logger.info("Prepare dataset") train_loader = iter(build_dataloader(args.batch_size, args.dataset_dir, model.cfg)) ############## REGISTER ############### # To get intermediate representations holder = [None, None] def register_tea_hooker(m, i, o): holder[0] = o return model_tea.backbone.register_forward_hook(register_tea_hooker) def register_stu_hooker(m, i, o): holder[1] = o return model.backbone.register_forward_hook(register_stu_hooker) for epoch in range(model.cfg.max_epoch): train_one_epoch(model, model_tea, distiller, holder, train_loader, opt, opt_d, gm, epoch, args) if dist.get_rank() == 0: save_path = "{}/epoch_{}.pkl".format( args.save_path, epoch ) mge.save( {"epoch": epoch, "state_dict": model.state_dict()}, save_path, ) logger.info("dump weights to %s", save_path) def train_one_epoch(model, model_tea, distiller, feat_holder, data_queue, opt, opt_d, gm, epoch, args): def train_func(image, im_info, gt_boxes, **args): model_tea(image=image, im_info=im_info, gt_boxes=gt_boxes) with gm: loss_dict = model(image=image, im_info=im_info, gt_boxes=gt_boxes) loss_distill = distiller(feat_holder[0], feat_holder[1], image, gt_boxes, im_info, distill_flag=0 if args['cur_step'] < 1000 else 1) loss_dict.update(loss_distill) loss_dict["total_loss"] = loss_dict["total_loss"] + sum(loss_distill.values()) gm.backward(loss_dict["total_loss"]) loss_list = list(loss_dict.values()) mge.optimizer.clip_grad_norm( distiller.parameters(), 0.01) opt.step().clear_grad() opt_d.step().clear_grad() return loss_list meter = AverageMeter(record_len=model.cfg.num_losses + distiller.num_losses) time_meter = AverageMeter(record_len=2) log_interval = model.cfg.log_interval tot_step = model.cfg.nr_images_epoch // (args.batch_size * dist.get_world_size()) full_step = tot_step * model.cfg.max_epoch for step in range(tot_step): cur_step = tot_step * epoch + step adjust_learning_rate(opt, epoch, step, model.cfg, args) adjust_learning_rate_cos(opt_d, cur_step, full_step) data_tik = time.time() mini_batch = next(data_queue) data_tok = time.time() tik = time.time() loss_list = train_func( image=mge.tensor(mini_batch["data"]), im_info=
mge.tensor(mini_batch["im_info"])
megengine.tensor
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import bisect import copy import os import time import megengine as mge import megengine.distributed as dist from megengine.autodiff import GradManager from megengine.data import DataLoader, Infinite, RandomSampler from megengine.data import transform as T from megengine.optimizer import AdamW, SGD import math from megengine.core._imperative_rt.utils import _set_defrag _set_defrag(True) from layers.tools.data_mapper import data_mapper from layers.tools.utils import ( AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file ) logger = mge.get_logger(__name__) logger.setLevel("INFO") mge.device.set_prealloc_config(1024, 1024, 256 * 1024 * 1024, 4.0) def make_parser(): parser = argparse.ArgumentParser() parser.add_argument( "-f", "--file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-df", "--distill_file", default="distill_configs/ICD.py", type=str, help="distill description file" ) parser.add_argument( "-tf", "--teacher_file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-w", "--weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-tw", "--teacher_weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-n", "--devices", default=1, type=int, help="total number of gpus for training", ) parser.add_argument( "-b", "--batch_size", default=2, type=int, help="batch size for training", ) parser.add_argument( "-d", "--dataset_dir", default="/data/datasets", type=str, ) parser.add_argument( "-l", "--load_head", action='store_true' ) parser.add_argument( "-sp", "--save_path", type=str, ) return parser def main(): parser = make_parser() args = parser.parse_args() # ------------------------ begin training -------------------------- # logger.info("Device Count = %d", args.devices) from datetime import datetime now = datetime.now() log_dir = "log-of-ICD-{}-{}".format(os.path.basename(args.file).split(".")[0], now.strftime('%H:%M') + ('-Inherent' if args.load_head else '')) if not os.path.isdir(log_dir): os.makedirs(log_dir) args.save_path = log_dir if args.devices > 1: trainer = dist.launcher(worker, n_gpus=args.devices) trainer(args) else: worker(args) def worker(args): mge.dtr.eviction_threshold = "6GB" # set the eviction threshold to 5 GB mge.dtr.enable() # enable the DTR optimization current_network = import_from_file(args.file) model = current_network.Net(current_network.Cfg()) model.train() ########### BUILD TEACHER MODEL ############ current_teacher = import_from_file(args.teacher_file) cfg_tea = current_teacher.Cfg() cfg_tea.backbone_pretrained = False model_tea = current_teacher.Net(cfg_tea) model_tea.train() # model_tea.training = True # run in train mod state_dict_tea = mge.load(args.teacher_weight_file) if "state_dict" in state_dict_tea: state_dict_tea = state_dict_tea["state_dict"] model_tea.load_state_dict(state_dict_tea) ############### LOADED #################### ################## DISTILLER ############## distiller_cfg = import_from_file(args.distill_file) distiller = distiller_cfg.Net() ############### END #################### if dist.get_rank() == 0: logger.info(get_config_info(model.cfg)) logger.info(repr(model)) params_with_grad = [] for name, param in model.named_parameters(): if "bottom_up.conv1" in name and model.cfg.backbone_freeze_at >= 1: continue if "bottom_up.layer1" in name and model.cfg.backbone_freeze_at >= 2: continue params_with_grad.append(param) opt = SGD( params_with_grad, lr=model.cfg.basic_lr * args.batch_size * dist.get_world_size(), momentum=model.cfg.momentum, weight_decay=model.cfg.weight_decay, ) opt_d = AdamW( distiller.parameters(), lr=1e-4, weight_decay=1e-4, ) params_with_grad.extend(distiller.parameters()) gm = GradManager() if dist.get_world_size() > 1: gm.attach( params_with_grad, callbacks=[dist.make_allreduce_cb("mean", dist.WORLD)] ) else: gm.attach(params_with_grad) if args.weight_file is not None: weights = mge.load(args.weight_file) model.backbone.bottom_up.load_state_dict(weights, strict=False) if args.load_head: print('Loading Prameters Besides from Backbones.') res = model.load_state_dict({k:v for k, v in model_tea.state_dict().items() if 'bottom_up' not in k}, strict=False) if dist.get_world_size() > 1: dist.bcast_list_(model.parameters()) # sync parameters dist.bcast_list_(distiller.parameters()) # sync parameters dist.bcast_list_(model.buffers()) # sync buffers dist.bcast_list_(distiller.buffers()) # sync parameters if dist.get_rank() == 0: logger.info("Prepare dataset") train_loader = iter(build_dataloader(args.batch_size, args.dataset_dir, model.cfg)) ############## REGISTER ############### # To get intermediate representations holder = [None, None] def register_tea_hooker(m, i, o): holder[0] = o return model_tea.backbone.register_forward_hook(register_tea_hooker) def register_stu_hooker(m, i, o): holder[1] = o return model.backbone.register_forward_hook(register_stu_hooker) for epoch in range(model.cfg.max_epoch): train_one_epoch(model, model_tea, distiller, holder, train_loader, opt, opt_d, gm, epoch, args) if dist.get_rank() == 0: save_path = "{}/epoch_{}.pkl".format( args.save_path, epoch ) mge.save( {"epoch": epoch, "state_dict": model.state_dict()}, save_path, ) logger.info("dump weights to %s", save_path) def train_one_epoch(model, model_tea, distiller, feat_holder, data_queue, opt, opt_d, gm, epoch, args): def train_func(image, im_info, gt_boxes, **args): model_tea(image=image, im_info=im_info, gt_boxes=gt_boxes) with gm: loss_dict = model(image=image, im_info=im_info, gt_boxes=gt_boxes) loss_distill = distiller(feat_holder[0], feat_holder[1], image, gt_boxes, im_info, distill_flag=0 if args['cur_step'] < 1000 else 1) loss_dict.update(loss_distill) loss_dict["total_loss"] = loss_dict["total_loss"] + sum(loss_distill.values()) gm.backward(loss_dict["total_loss"]) loss_list = list(loss_dict.values()) mge.optimizer.clip_grad_norm( distiller.parameters(), 0.01) opt.step().clear_grad() opt_d.step().clear_grad() return loss_list meter = AverageMeter(record_len=model.cfg.num_losses + distiller.num_losses) time_meter = AverageMeter(record_len=2) log_interval = model.cfg.log_interval tot_step = model.cfg.nr_images_epoch // (args.batch_size * dist.get_world_size()) full_step = tot_step * model.cfg.max_epoch for step in range(tot_step): cur_step = tot_step * epoch + step adjust_learning_rate(opt, epoch, step, model.cfg, args) adjust_learning_rate_cos(opt_d, cur_step, full_step) data_tik = time.time() mini_batch = next(data_queue) data_tok = time.time() tik = time.time() loss_list = train_func( image=mge.tensor(mini_batch["data"]), im_info=mge.tensor(mini_batch["im_info"]), gt_boxes=
mge.tensor(mini_batch["gt_boxes"])
megengine.tensor
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import bisect import copy import os import time import megengine as mge import megengine.distributed as dist from megengine.autodiff import GradManager from megengine.data import DataLoader, Infinite, RandomSampler from megengine.data import transform as T from megengine.optimizer import AdamW, SGD import math from megengine.core._imperative_rt.utils import _set_defrag _set_defrag(True) from layers.tools.data_mapper import data_mapper from layers.tools.utils import ( AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file ) logger = mge.get_logger(__name__) logger.setLevel("INFO") mge.device.set_prealloc_config(1024, 1024, 256 * 1024 * 1024, 4.0) def make_parser(): parser = argparse.ArgumentParser() parser.add_argument( "-f", "--file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-df", "--distill_file", default="distill_configs/ICD.py", type=str, help="distill description file" ) parser.add_argument( "-tf", "--teacher_file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-w", "--weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-tw", "--teacher_weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-n", "--devices", default=1, type=int, help="total number of gpus for training", ) parser.add_argument( "-b", "--batch_size", default=2, type=int, help="batch size for training", ) parser.add_argument( "-d", "--dataset_dir", default="/data/datasets", type=str, ) parser.add_argument( "-l", "--load_head", action='store_true' ) parser.add_argument( "-sp", "--save_path", type=str, ) return parser def main(): parser = make_parser() args = parser.parse_args() # ------------------------ begin training -------------------------- # logger.info("Device Count = %d", args.devices) from datetime import datetime now = datetime.now() log_dir = "log-of-ICD-{}-{}".format(os.path.basename(args.file).split(".")[0], now.strftime('%H:%M') + ('-Inherent' if args.load_head else '')) if not os.path.isdir(log_dir): os.makedirs(log_dir) args.save_path = log_dir if args.devices > 1: trainer = dist.launcher(worker, n_gpus=args.devices) trainer(args) else: worker(args) def worker(args): mge.dtr.eviction_threshold = "6GB" # set the eviction threshold to 5 GB mge.dtr.enable() # enable the DTR optimization current_network = import_from_file(args.file) model = current_network.Net(current_network.Cfg()) model.train() ########### BUILD TEACHER MODEL ############ current_teacher = import_from_file(args.teacher_file) cfg_tea = current_teacher.Cfg() cfg_tea.backbone_pretrained = False model_tea = current_teacher.Net(cfg_tea) model_tea.train() # model_tea.training = True # run in train mod state_dict_tea = mge.load(args.teacher_weight_file) if "state_dict" in state_dict_tea: state_dict_tea = state_dict_tea["state_dict"] model_tea.load_state_dict(state_dict_tea) ############### LOADED #################### ################## DISTILLER ############## distiller_cfg = import_from_file(args.distill_file) distiller = distiller_cfg.Net() ############### END #################### if dist.get_rank() == 0: logger.info(get_config_info(model.cfg)) logger.info(repr(model)) params_with_grad = [] for name, param in model.named_parameters(): if "bottom_up.conv1" in name and model.cfg.backbone_freeze_at >= 1: continue if "bottom_up.layer1" in name and model.cfg.backbone_freeze_at >= 2: continue params_with_grad.append(param) opt = SGD( params_with_grad, lr=model.cfg.basic_lr * args.batch_size * dist.get_world_size(), momentum=model.cfg.momentum, weight_decay=model.cfg.weight_decay, ) opt_d = AdamW( distiller.parameters(), lr=1e-4, weight_decay=1e-4, ) params_with_grad.extend(distiller.parameters()) gm = GradManager() if dist.get_world_size() > 1: gm.attach( params_with_grad, callbacks=[
dist.make_allreduce_cb("mean", dist.WORLD)
megengine.distributed.make_allreduce_cb
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import bisect import copy import os import time import megengine as mge import megengine.distributed as dist from megengine.autodiff import GradManager from megengine.data import DataLoader, Infinite, RandomSampler from megengine.data import transform as T from megengine.optimizer import AdamW, SGD import math from megengine.core._imperative_rt.utils import _set_defrag _set_defrag(True) from layers.tools.data_mapper import data_mapper from layers.tools.utils import ( AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file ) logger = mge.get_logger(__name__) logger.setLevel("INFO") mge.device.set_prealloc_config(1024, 1024, 256 * 1024 * 1024, 4.0) def make_parser(): parser = argparse.ArgumentParser() parser.add_argument( "-f", "--file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-df", "--distill_file", default="distill_configs/ICD.py", type=str, help="distill description file" ) parser.add_argument( "-tf", "--teacher_file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-w", "--weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-tw", "--teacher_weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-n", "--devices", default=1, type=int, help="total number of gpus for training", ) parser.add_argument( "-b", "--batch_size", default=2, type=int, help="batch size for training", ) parser.add_argument( "-d", "--dataset_dir", default="/data/datasets", type=str, ) parser.add_argument( "-l", "--load_head", action='store_true' ) parser.add_argument( "-sp", "--save_path", type=str, ) return parser def main(): parser = make_parser() args = parser.parse_args() # ------------------------ begin training -------------------------- # logger.info("Device Count = %d", args.devices) from datetime import datetime now = datetime.now() log_dir = "log-of-ICD-{}-{}".format(os.path.basename(args.file).split(".")[0], now.strftime('%H:%M') + ('-Inherent' if args.load_head else '')) if not os.path.isdir(log_dir): os.makedirs(log_dir) args.save_path = log_dir if args.devices > 1: trainer = dist.launcher(worker, n_gpus=args.devices) trainer(args) else: worker(args) def worker(args): mge.dtr.eviction_threshold = "6GB" # set the eviction threshold to 5 GB mge.dtr.enable() # enable the DTR optimization current_network = import_from_file(args.file) model = current_network.Net(current_network.Cfg()) model.train() ########### BUILD TEACHER MODEL ############ current_teacher = import_from_file(args.teacher_file) cfg_tea = current_teacher.Cfg() cfg_tea.backbone_pretrained = False model_tea = current_teacher.Net(cfg_tea) model_tea.train() # model_tea.training = True # run in train mod state_dict_tea = mge.load(args.teacher_weight_file) if "state_dict" in state_dict_tea: state_dict_tea = state_dict_tea["state_dict"] model_tea.load_state_dict(state_dict_tea) ############### LOADED #################### ################## DISTILLER ############## distiller_cfg = import_from_file(args.distill_file) distiller = distiller_cfg.Net() ############### END #################### if dist.get_rank() == 0: logger.info(get_config_info(model.cfg)) logger.info(repr(model)) params_with_grad = [] for name, param in model.named_parameters(): if "bottom_up.conv1" in name and model.cfg.backbone_freeze_at >= 1: continue if "bottom_up.layer1" in name and model.cfg.backbone_freeze_at >= 2: continue params_with_grad.append(param) opt = SGD( params_with_grad, lr=model.cfg.basic_lr * args.batch_size * dist.get_world_size(), momentum=model.cfg.momentum, weight_decay=model.cfg.weight_decay, ) opt_d = AdamW( distiller.parameters(), lr=1e-4, weight_decay=1e-4, ) params_with_grad.extend(distiller.parameters()) gm = GradManager() if dist.get_world_size() > 1: gm.attach( params_with_grad, callbacks=[dist.make_allreduce_cb("mean", dist.WORLD)] ) else: gm.attach(params_with_grad) if args.weight_file is not None: weights = mge.load(args.weight_file) model.backbone.bottom_up.load_state_dict(weights, strict=False) if args.load_head: print('Loading Prameters Besides from Backbones.') res = model.load_state_dict({k:v for k, v in model_tea.state_dict().items() if 'bottom_up' not in k}, strict=False) if dist.get_world_size() > 1: dist.bcast_list_(model.parameters()) # sync parameters dist.bcast_list_(distiller.parameters()) # sync parameters dist.bcast_list_(model.buffers()) # sync buffers dist.bcast_list_(distiller.buffers()) # sync parameters if dist.get_rank() == 0: logger.info("Prepare dataset") train_loader = iter(build_dataloader(args.batch_size, args.dataset_dir, model.cfg)) ############## REGISTER ############### # To get intermediate representations holder = [None, None] def register_tea_hooker(m, i, o): holder[0] = o return model_tea.backbone.register_forward_hook(register_tea_hooker) def register_stu_hooker(m, i, o): holder[1] = o return model.backbone.register_forward_hook(register_stu_hooker) for epoch in range(model.cfg.max_epoch): train_one_epoch(model, model_tea, distiller, holder, train_loader, opt, opt_d, gm, epoch, args) if dist.get_rank() == 0: save_path = "{}/epoch_{}.pkl".format( args.save_path, epoch ) mge.save( {"epoch": epoch, "state_dict": model.state_dict()}, save_path, ) logger.info("dump weights to %s", save_path) def train_one_epoch(model, model_tea, distiller, feat_holder, data_queue, opt, opt_d, gm, epoch, args): def train_func(image, im_info, gt_boxes, **args): model_tea(image=image, im_info=im_info, gt_boxes=gt_boxes) with gm: loss_dict = model(image=image, im_info=im_info, gt_boxes=gt_boxes) loss_distill = distiller(feat_holder[0], feat_holder[1], image, gt_boxes, im_info, distill_flag=0 if args['cur_step'] < 1000 else 1) loss_dict.update(loss_distill) loss_dict["total_loss"] = loss_dict["total_loss"] + sum(loss_distill.values()) gm.backward(loss_dict["total_loss"]) loss_list = list(loss_dict.values()) mge.optimizer.clip_grad_norm( distiller.parameters(), 0.01) opt.step().clear_grad() opt_d.step().clear_grad() return loss_list meter = AverageMeter(record_len=model.cfg.num_losses + distiller.num_losses) time_meter = AverageMeter(record_len=2) log_interval = model.cfg.log_interval tot_step = model.cfg.nr_images_epoch // (args.batch_size * dist.get_world_size()) full_step = tot_step * model.cfg.max_epoch for step in range(tot_step): cur_step = tot_step * epoch + step adjust_learning_rate(opt, epoch, step, model.cfg, args) adjust_learning_rate_cos(opt_d, cur_step, full_step) data_tik = time.time() mini_batch = next(data_queue) data_tok = time.time() tik = time.time() loss_list = train_func( image=mge.tensor(mini_batch["data"]), im_info=mge.tensor(mini_batch["im_info"]), gt_boxes=mge.tensor(mini_batch["gt_boxes"]), cur_step=cur_step, full_step=full_step ) tok = time.time() time_meter.update([tok - tik, data_tok - data_tik]) if dist.get_rank() == 0: info_str = "e%d, %d/%d, lr:%f, " loss_str = ", ".join( ["{}:%f".format(loss) for loss in model.cfg.losses_keys] + ["{}:%f".format(loss) for loss in distiller.loss_keys] ) time_str = ", train_time:%.3fs, data_time:%.3fs" log_info_str = info_str + loss_str + time_str meter.update([loss.numpy() for loss in loss_list]) if step % log_interval == 0: logger.info( log_info_str, epoch, step, tot_step, opt.param_groups[0]["lr"], *meter.average(), *time_meter.average() ) meter.reset() time_meter.reset() def adjust_learning_rate_cos(optimizer, cur_iter, total_iter): base_lr = 1e-4 # Warm up lr = 0.5 * base_lr * (1 + math.cos(cur_iter / total_iter * math.pi)) for param_group in optimizer.param_groups: param_group["lr"] = lr def adjust_learning_rate(optimizer, epoch, step, cfg, args): base_lr = ( cfg.basic_lr * args.batch_size * dist.get_world_size() * ( cfg.lr_decay_rate ** bisect.bisect_right(cfg.lr_decay_stages, epoch) ) ) # Warm up lr_factor = 1.0 if epoch == 0 and step < cfg.warm_iters: lr_factor = (step + 1.0) / cfg.warm_iters for param_group in optimizer.param_groups: param_group["lr"] = base_lr * lr_factor def build_dataset(dataset_dir, cfg): data_cfg = copy.deepcopy(cfg.train_dataset) data_name = data_cfg.pop("name") data_cfg["root"] = os.path.join(dataset_dir, data_name, data_cfg["root"]) if "ann_file" in data_cfg: data_cfg["ann_file"] = os.path.join(dataset_dir, data_name, data_cfg["ann_file"]) data_cfg["order"] = ["image", "boxes", "boxes_category", "info"] return data_mapper[data_name](**data_cfg) # pylint: disable=dangerous-default-value def build_sampler(train_dataset, batch_size, aspect_grouping=[1]): def _compute_aspect_ratios(dataset): aspect_ratios = [] for i in range(len(dataset)): info = dataset.get_img_info(i) aspect_ratios.append(info["height"] / info["width"]) return aspect_ratios def _quantize(x, bins): return list(map(lambda y: bisect.bisect_right(sorted(bins), y), x)) if len(aspect_grouping) == 0: return Infinite(RandomSampler(train_dataset, batch_size, drop_last=True)) aspect_ratios = _compute_aspect_ratios(train_dataset) group_ids = _quantize(aspect_ratios, aspect_grouping) return Infinite(GroupedRandomSampler(train_dataset, batch_size, group_ids)) def build_dataloader(batch_size, dataset_dir, cfg): train_dataset = build_dataset(dataset_dir, cfg) train_sampler = build_sampler(train_dataset, batch_size) train_dataloader = DataLoader( train_dataset, sampler=train_sampler, transform=T.Compose( transforms=[ T.ShortestEdgeResize( cfg.train_image_short_size, cfg.train_image_max_size, sample_style="choice", ),
T.RandomHorizontalFlip()
megengine.data.transform.RandomHorizontalFlip
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import bisect import copy import os import time import megengine as mge import megengine.distributed as dist from megengine.autodiff import GradManager from megengine.data import DataLoader, Infinite, RandomSampler from megengine.data import transform as T from megengine.optimizer import AdamW, SGD import math from megengine.core._imperative_rt.utils import _set_defrag _set_defrag(True) from layers.tools.data_mapper import data_mapper from layers.tools.utils import ( AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file ) logger = mge.get_logger(__name__) logger.setLevel("INFO") mge.device.set_prealloc_config(1024, 1024, 256 * 1024 * 1024, 4.0) def make_parser(): parser = argparse.ArgumentParser() parser.add_argument( "-f", "--file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-df", "--distill_file", default="distill_configs/ICD.py", type=str, help="distill description file" ) parser.add_argument( "-tf", "--teacher_file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-w", "--weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-tw", "--teacher_weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-n", "--devices", default=1, type=int, help="total number of gpus for training", ) parser.add_argument( "-b", "--batch_size", default=2, type=int, help="batch size for training", ) parser.add_argument( "-d", "--dataset_dir", default="/data/datasets", type=str, ) parser.add_argument( "-l", "--load_head", action='store_true' ) parser.add_argument( "-sp", "--save_path", type=str, ) return parser def main(): parser = make_parser() args = parser.parse_args() # ------------------------ begin training -------------------------- # logger.info("Device Count = %d", args.devices) from datetime import datetime now = datetime.now() log_dir = "log-of-ICD-{}-{}".format(os.path.basename(args.file).split(".")[0], now.strftime('%H:%M') + ('-Inherent' if args.load_head else '')) if not os.path.isdir(log_dir): os.makedirs(log_dir) args.save_path = log_dir if args.devices > 1: trainer = dist.launcher(worker, n_gpus=args.devices) trainer(args) else: worker(args) def worker(args): mge.dtr.eviction_threshold = "6GB" # set the eviction threshold to 5 GB mge.dtr.enable() # enable the DTR optimization current_network = import_from_file(args.file) model = current_network.Net(current_network.Cfg()) model.train() ########### BUILD TEACHER MODEL ############ current_teacher = import_from_file(args.teacher_file) cfg_tea = current_teacher.Cfg() cfg_tea.backbone_pretrained = False model_tea = current_teacher.Net(cfg_tea) model_tea.train() # model_tea.training = True # run in train mod state_dict_tea = mge.load(args.teacher_weight_file) if "state_dict" in state_dict_tea: state_dict_tea = state_dict_tea["state_dict"] model_tea.load_state_dict(state_dict_tea) ############### LOADED #################### ################## DISTILLER ############## distiller_cfg = import_from_file(args.distill_file) distiller = distiller_cfg.Net() ############### END #################### if dist.get_rank() == 0: logger.info(get_config_info(model.cfg)) logger.info(repr(model)) params_with_grad = [] for name, param in model.named_parameters(): if "bottom_up.conv1" in name and model.cfg.backbone_freeze_at >= 1: continue if "bottom_up.layer1" in name and model.cfg.backbone_freeze_at >= 2: continue params_with_grad.append(param) opt = SGD( params_with_grad, lr=model.cfg.basic_lr * args.batch_size * dist.get_world_size(), momentum=model.cfg.momentum, weight_decay=model.cfg.weight_decay, ) opt_d = AdamW( distiller.parameters(), lr=1e-4, weight_decay=1e-4, ) params_with_grad.extend(distiller.parameters()) gm = GradManager() if dist.get_world_size() > 1: gm.attach( params_with_grad, callbacks=[dist.make_allreduce_cb("mean", dist.WORLD)] ) else: gm.attach(params_with_grad) if args.weight_file is not None: weights = mge.load(args.weight_file) model.backbone.bottom_up.load_state_dict(weights, strict=False) if args.load_head: print('Loading Prameters Besides from Backbones.') res = model.load_state_dict({k:v for k, v in model_tea.state_dict().items() if 'bottom_up' not in k}, strict=False) if dist.get_world_size() > 1: dist.bcast_list_(model.parameters()) # sync parameters dist.bcast_list_(distiller.parameters()) # sync parameters dist.bcast_list_(model.buffers()) # sync buffers dist.bcast_list_(distiller.buffers()) # sync parameters if dist.get_rank() == 0: logger.info("Prepare dataset") train_loader = iter(build_dataloader(args.batch_size, args.dataset_dir, model.cfg)) ############## REGISTER ############### # To get intermediate representations holder = [None, None] def register_tea_hooker(m, i, o): holder[0] = o return model_tea.backbone.register_forward_hook(register_tea_hooker) def register_stu_hooker(m, i, o): holder[1] = o return model.backbone.register_forward_hook(register_stu_hooker) for epoch in range(model.cfg.max_epoch): train_one_epoch(model, model_tea, distiller, holder, train_loader, opt, opt_d, gm, epoch, args) if dist.get_rank() == 0: save_path = "{}/epoch_{}.pkl".format( args.save_path, epoch ) mge.save( {"epoch": epoch, "state_dict": model.state_dict()}, save_path, ) logger.info("dump weights to %s", save_path) def train_one_epoch(model, model_tea, distiller, feat_holder, data_queue, opt, opt_d, gm, epoch, args): def train_func(image, im_info, gt_boxes, **args): model_tea(image=image, im_info=im_info, gt_boxes=gt_boxes) with gm: loss_dict = model(image=image, im_info=im_info, gt_boxes=gt_boxes) loss_distill = distiller(feat_holder[0], feat_holder[1], image, gt_boxes, im_info, distill_flag=0 if args['cur_step'] < 1000 else 1) loss_dict.update(loss_distill) loss_dict["total_loss"] = loss_dict["total_loss"] + sum(loss_distill.values()) gm.backward(loss_dict["total_loss"]) loss_list = list(loss_dict.values()) mge.optimizer.clip_grad_norm( distiller.parameters(), 0.01) opt.step().clear_grad() opt_d.step().clear_grad() return loss_list meter = AverageMeter(record_len=model.cfg.num_losses + distiller.num_losses) time_meter = AverageMeter(record_len=2) log_interval = model.cfg.log_interval tot_step = model.cfg.nr_images_epoch // (args.batch_size * dist.get_world_size()) full_step = tot_step * model.cfg.max_epoch for step in range(tot_step): cur_step = tot_step * epoch + step adjust_learning_rate(opt, epoch, step, model.cfg, args) adjust_learning_rate_cos(opt_d, cur_step, full_step) data_tik = time.time() mini_batch = next(data_queue) data_tok = time.time() tik = time.time() loss_list = train_func( image=mge.tensor(mini_batch["data"]), im_info=mge.tensor(mini_batch["im_info"]), gt_boxes=mge.tensor(mini_batch["gt_boxes"]), cur_step=cur_step, full_step=full_step ) tok = time.time() time_meter.update([tok - tik, data_tok - data_tik]) if dist.get_rank() == 0: info_str = "e%d, %d/%d, lr:%f, " loss_str = ", ".join( ["{}:%f".format(loss) for loss in model.cfg.losses_keys] + ["{}:%f".format(loss) for loss in distiller.loss_keys] ) time_str = ", train_time:%.3fs, data_time:%.3fs" log_info_str = info_str + loss_str + time_str meter.update([loss.numpy() for loss in loss_list]) if step % log_interval == 0: logger.info( log_info_str, epoch, step, tot_step, opt.param_groups[0]["lr"], *meter.average(), *time_meter.average() ) meter.reset() time_meter.reset() def adjust_learning_rate_cos(optimizer, cur_iter, total_iter): base_lr = 1e-4 # Warm up lr = 0.5 * base_lr * (1 + math.cos(cur_iter / total_iter * math.pi)) for param_group in optimizer.param_groups: param_group["lr"] = lr def adjust_learning_rate(optimizer, epoch, step, cfg, args): base_lr = ( cfg.basic_lr * args.batch_size * dist.get_world_size() * ( cfg.lr_decay_rate ** bisect.bisect_right(cfg.lr_decay_stages, epoch) ) ) # Warm up lr_factor = 1.0 if epoch == 0 and step < cfg.warm_iters: lr_factor = (step + 1.0) / cfg.warm_iters for param_group in optimizer.param_groups: param_group["lr"] = base_lr * lr_factor def build_dataset(dataset_dir, cfg): data_cfg = copy.deepcopy(cfg.train_dataset) data_name = data_cfg.pop("name") data_cfg["root"] = os.path.join(dataset_dir, data_name, data_cfg["root"]) if "ann_file" in data_cfg: data_cfg["ann_file"] = os.path.join(dataset_dir, data_name, data_cfg["ann_file"]) data_cfg["order"] = ["image", "boxes", "boxes_category", "info"] return data_mapper[data_name](**data_cfg) # pylint: disable=dangerous-default-value def build_sampler(train_dataset, batch_size, aspect_grouping=[1]): def _compute_aspect_ratios(dataset): aspect_ratios = [] for i in range(len(dataset)): info = dataset.get_img_info(i) aspect_ratios.append(info["height"] / info["width"]) return aspect_ratios def _quantize(x, bins): return list(map(lambda y: bisect.bisect_right(sorted(bins), y), x)) if len(aspect_grouping) == 0: return Infinite(RandomSampler(train_dataset, batch_size, drop_last=True)) aspect_ratios = _compute_aspect_ratios(train_dataset) group_ids = _quantize(aspect_ratios, aspect_grouping) return Infinite(GroupedRandomSampler(train_dataset, batch_size, group_ids)) def build_dataloader(batch_size, dataset_dir, cfg): train_dataset = build_dataset(dataset_dir, cfg) train_sampler = build_sampler(train_dataset, batch_size) train_dataloader = DataLoader( train_dataset, sampler=train_sampler, transform=T.Compose( transforms=[ T.ShortestEdgeResize( cfg.train_image_short_size, cfg.train_image_max_size, sample_style="choice", ), T.RandomHorizontalFlip(),
T.ToMode()
megengine.data.transform.ToMode
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import copy import numpy as np import megengine.functional as F from megengine.core import Function, tensor from megengine.jit import trace from megengine.test import assertTensorClose def test_a_plus_b(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a =
tensor(av)
megengine.core.tensor
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import copy import numpy as np import megengine.functional as F from megengine.core import Function, tensor from megengine.jit import trace from megengine.test import assertTensorClose def test_a_plus_b(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b =
tensor(bv)
megengine.core.tensor
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import copy import numpy as np import megengine.functional as F from megengine.core import Function, tensor from megengine.jit import trace from megengine.test import assertTensorClose def test_a_plus_b(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) class MulFunc(Function): def forward(self, a, b): return a * b def backward(self, grad_o): return (grad_o * b * 2, grad_o * a * 3) c = MulFunc()(a, b).sum() assertTensorClose(c.numpy(), (av * bv).sum()) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), bv * 2) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), av * 3) def test_skip_invalid_grad(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a =
tensor(av)
megengine.core.tensor
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import copy import numpy as np import megengine.functional as F from megengine.core import Function, tensor from megengine.jit import trace from megengine.test import assertTensorClose def test_a_plus_b(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) class MulFunc(Function): def forward(self, a, b): return a * b def backward(self, grad_o): return (grad_o * b * 2, grad_o * a * 3) c = MulFunc()(a, b).sum() assertTensorClose(c.numpy(), (av * bv).sum()) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), bv * 2) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), av * 3) def test_skip_invalid_grad(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b =
tensor(bv)
megengine.core.tensor
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import copy import numpy as np import megengine.functional as F from megengine.core import Function, tensor from megengine.jit import trace from megengine.test import assertTensorClose def test_a_plus_b(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) class MulFunc(Function): def forward(self, a, b): return a * b def backward(self, grad_o): return (grad_o * b * 2, grad_o * a * 3) c = MulFunc()(a, b).sum() assertTensorClose(c.numpy(), (av * bv).sum()) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), bv * 2) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), av * 3) def test_skip_invalid_grad(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) cookie = tensor(np.random.random(data_shape).astype(np.float32)) class EqWithFakeGrad(Function): def forward(self, a, b): return a == b def backward(self, grad_o): _ = grad_o return cookie, cookie c = EqWithFakeGrad()(a, b).sum() assertTensorClose(c.numpy(), (av == bv).sum().astype(np.float32)) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), cookie) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), cookie) def test_ste(): class STE(Function): def forward(self, x): maxv, minv = x.max(), x.min() scale = F.maximum(maxv, -minv) / 127 return F.round(x / scale) * scale def backward(self, grad_y): return grad_y data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) a =
tensor(av)
megengine.core.tensor
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import copy import numpy as np import megengine.functional as F from megengine.core import Function, tensor from megengine.jit import trace from megengine.test import assertTensorClose def test_a_plus_b(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) class MulFunc(Function): def forward(self, a, b): return a * b def backward(self, grad_o): return (grad_o * b * 2, grad_o * a * 3) c = MulFunc()(a, b).sum() assertTensorClose(c.numpy(), (av * bv).sum()) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), bv * 2) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), av * 3) def test_skip_invalid_grad(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) cookie = tensor(np.random.random(data_shape).astype(np.float32)) class EqWithFakeGrad(Function): def forward(self, a, b): return a == b def backward(self, grad_o): _ = grad_o return cookie, cookie c = EqWithFakeGrad()(a, b).sum() assertTensorClose(c.numpy(), (av == bv).sum().astype(np.float32)) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), cookie) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), cookie) def test_ste(): class STE(Function): def forward(self, x): maxv, minv = x.max(), x.min() scale = F.maximum(maxv, -minv) / 127 return F.round(x / scale) * scale def backward(self, grad_y): return grad_y data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) a = tensor(av) q = STE()(a) q_2 = (q * 2.0).sum() assertTensorClose( F.grad(q_2, a, use_virtual_grad=False).numpy(), np.broadcast_to(np.array([2.0], dtype=np.float32), data_shape), ) def test_deepcopy(): class Sigmoid(Function): def __init__(self, param): super().__init__() self.param = param def forward(self, x): y = 1 / (1 + F.exp(-x)) self.save_for_backward(y) return y def backward(self, grad_y): (y,) = self.saved_tensors return grad_y * y * (1 - y) origin = Sigmoid(0) new = copy.deepcopy(Sigmoid(0)) assert new.param == origin.param def test_save_context(): class Sigmoid(Function): def forward(self, x): y = 1 / (1 + F.exp(-x)) self.save_for_backward(y) return y def backward(self, grad_y): (y,) = self.saved_tensors return grad_y * y * (1 - y) def run_saved_context(a, net=None): return net(a) def run(use_trace, symbolic): a = tensor(np.array([1926.0817], dtype=np.float32)) net = Sigmoid() func_run = run_saved_context if use_trace: func_run = trace(run_saved_context, symbolic=symbolic) s = func_run(a, net=net) s2 =
F.sigmoid(a)
megengine.functional.sigmoid
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import copy import numpy as np import megengine.functional as F from megengine.core import Function, tensor from megengine.jit import trace from megengine.test import assertTensorClose def test_a_plus_b(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) class MulFunc(Function): def forward(self, a, b): return a * b def backward(self, grad_o): return (grad_o * b * 2, grad_o * a * 3) c = MulFunc()(a, b).sum() assertTensorClose(c.numpy(), (av * bv).sum()) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), bv * 2) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), av * 3) def test_skip_invalid_grad(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) cookie = tensor(np.random.random(data_shape).astype(np.float32)) class EqWithFakeGrad(Function): def forward(self, a, b): return a == b def backward(self, grad_o): _ = grad_o return cookie, cookie c = EqWithFakeGrad()(a, b).sum() assertTensorClose(c.numpy(), (av == bv).sum().astype(np.float32)) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), cookie) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), cookie) def test_ste(): class STE(Function): def forward(self, x): maxv, minv = x.max(), x.min() scale = F.maximum(maxv, -minv) / 127 return F.round(x / scale) * scale def backward(self, grad_y): return grad_y data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) a = tensor(av) q = STE()(a) q_2 = (q * 2.0).sum() assertTensorClose( F.grad(q_2, a, use_virtual_grad=False).numpy(), np.broadcast_to(np.array([2.0], dtype=np.float32), data_shape), ) def test_deepcopy(): class Sigmoid(Function): def __init__(self, param): super().__init__() self.param = param def forward(self, x): y = 1 / (1 + F.exp(-x)) self.save_for_backward(y) return y def backward(self, grad_y): (y,) = self.saved_tensors return grad_y * y * (1 - y) origin = Sigmoid(0) new = copy.deepcopy(Sigmoid(0)) assert new.param == origin.param def test_save_context(): class Sigmoid(Function): def forward(self, x): y = 1 / (1 + F.exp(-x)) self.save_for_backward(y) return y def backward(self, grad_y): (y,) = self.saved_tensors return grad_y * y * (1 - y) def run_saved_context(a, net=None): return net(a) def run(use_trace, symbolic): a = tensor(np.array([1926.0817], dtype=np.float32)) net = Sigmoid() func_run = run_saved_context if use_trace: func_run =
trace(run_saved_context, symbolic=symbolic)
megengine.jit.trace
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import copy import numpy as np import megengine.functional as F from megengine.core import Function, tensor from megengine.jit import trace from megengine.test import assertTensorClose def test_a_plus_b(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) class MulFunc(Function): def forward(self, a, b): return a * b def backward(self, grad_o): return (grad_o * b * 2, grad_o * a * 3) c = MulFunc()(a, b).sum() assertTensorClose(c.numpy(), (av * bv).sum()) assertTensorClose(
F.grad(c, a, use_virtual_grad=False)
megengine.functional.grad
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import copy import numpy as np import megengine.functional as F from megengine.core import Function, tensor from megengine.jit import trace from megengine.test import assertTensorClose def test_a_plus_b(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) class MulFunc(Function): def forward(self, a, b): return a * b def backward(self, grad_o): return (grad_o * b * 2, grad_o * a * 3) c = MulFunc()(a, b).sum() assertTensorClose(c.numpy(), (av * bv).sum()) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), bv * 2) assertTensorClose(
F.grad(c, b, use_virtual_grad=False)
megengine.functional.grad
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import copy import numpy as np import megengine.functional as F from megengine.core import Function, tensor from megengine.jit import trace from megengine.test import assertTensorClose def test_a_plus_b(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) class MulFunc(Function): def forward(self, a, b): return a * b def backward(self, grad_o): return (grad_o * b * 2, grad_o * a * 3) c = MulFunc()(a, b).sum() assertTensorClose(c.numpy(), (av * bv).sum()) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), bv * 2) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), av * 3) def test_skip_invalid_grad(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) cookie = tensor(np.random.random(data_shape).astype(np.float32)) class EqWithFakeGrad(Function): def forward(self, a, b): return a == b def backward(self, grad_o): _ = grad_o return cookie, cookie c = EqWithFakeGrad()(a, b).sum() assertTensorClose(c.numpy(), (av == bv).sum().astype(np.float32)) assertTensorClose(
F.grad(c, a, use_virtual_grad=False)
megengine.functional.grad
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import copy import numpy as np import megengine.functional as F from megengine.core import Function, tensor from megengine.jit import trace from megengine.test import assertTensorClose def test_a_plus_b(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) class MulFunc(Function): def forward(self, a, b): return a * b def backward(self, grad_o): return (grad_o * b * 2, grad_o * a * 3) c = MulFunc()(a, b).sum() assertTensorClose(c.numpy(), (av * bv).sum()) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), bv * 2) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), av * 3) def test_skip_invalid_grad(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) cookie = tensor(np.random.random(data_shape).astype(np.float32)) class EqWithFakeGrad(Function): def forward(self, a, b): return a == b def backward(self, grad_o): _ = grad_o return cookie, cookie c = EqWithFakeGrad()(a, b).sum() assertTensorClose(c.numpy(), (av == bv).sum().astype(np.float32)) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), cookie) assertTensorClose(
F.grad(c, b, use_virtual_grad=False)
megengine.functional.grad
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import copy import numpy as np import megengine.functional as F from megengine.core import Function, tensor from megengine.jit import trace from megengine.test import assertTensorClose def test_a_plus_b(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) class MulFunc(Function): def forward(self, a, b): return a * b def backward(self, grad_o): return (grad_o * b * 2, grad_o * a * 3) c = MulFunc()(a, b).sum() assertTensorClose(c.numpy(), (av * bv).sum()) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), bv * 2) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), av * 3) def test_skip_invalid_grad(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) cookie = tensor(np.random.random(data_shape).astype(np.float32)) class EqWithFakeGrad(Function): def forward(self, a, b): return a == b def backward(self, grad_o): _ = grad_o return cookie, cookie c = EqWithFakeGrad()(a, b).sum() assertTensorClose(c.numpy(), (av == bv).sum().astype(np.float32)) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), cookie) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), cookie) def test_ste(): class STE(Function): def forward(self, x): maxv, minv = x.max(), x.min() scale =
F.maximum(maxv, -minv)
megengine.functional.maximum
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import copy import numpy as np import megengine.functional as F from megengine.core import Function, tensor from megengine.jit import trace from megengine.test import assertTensorClose def test_a_plus_b(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) class MulFunc(Function): def forward(self, a, b): return a * b def backward(self, grad_o): return (grad_o * b * 2, grad_o * a * 3) c = MulFunc()(a, b).sum() assertTensorClose(c.numpy(), (av * bv).sum()) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), bv * 2) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), av * 3) def test_skip_invalid_grad(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) cookie = tensor(np.random.random(data_shape).astype(np.float32)) class EqWithFakeGrad(Function): def forward(self, a, b): return a == b def backward(self, grad_o): _ = grad_o return cookie, cookie c = EqWithFakeGrad()(a, b).sum() assertTensorClose(c.numpy(), (av == bv).sum().astype(np.float32)) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), cookie) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), cookie) def test_ste(): class STE(Function): def forward(self, x): maxv, minv = x.max(), x.min() scale = F.maximum(maxv, -minv) / 127 return
F.round(x / scale)
megengine.functional.round
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import copy import numpy as np import megengine.functional as F from megengine.core import Function, tensor from megengine.jit import trace from megengine.test import assertTensorClose def test_a_plus_b(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) class MulFunc(Function): def forward(self, a, b): return a * b def backward(self, grad_o): return (grad_o * b * 2, grad_o * a * 3) c = MulFunc()(a, b).sum() assertTensorClose(c.numpy(), (av * bv).sum()) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), bv * 2) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), av * 3) def test_skip_invalid_grad(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) cookie = tensor(np.random.random(data_shape).astype(np.float32)) class EqWithFakeGrad(Function): def forward(self, a, b): return a == b def backward(self, grad_o): _ = grad_o return cookie, cookie c = EqWithFakeGrad()(a, b).sum() assertTensorClose(c.numpy(), (av == bv).sum().astype(np.float32)) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), cookie) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), cookie) def test_ste(): class STE(Function): def forward(self, x): maxv, minv = x.max(), x.min() scale = F.maximum(maxv, -minv) / 127 return F.round(x / scale) * scale def backward(self, grad_y): return grad_y data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) a = tensor(av) q = STE()(a) q_2 = (q * 2.0).sum() assertTensorClose(
F.grad(q_2, a, use_virtual_grad=False)
megengine.functional.grad
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import copy import numpy as np import megengine.functional as F from megengine.core import Function, tensor from megengine.jit import trace from megengine.test import assertTensorClose def test_a_plus_b(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) class MulFunc(Function): def forward(self, a, b): return a * b def backward(self, grad_o): return (grad_o * b * 2, grad_o * a * 3) c = MulFunc()(a, b).sum() assertTensorClose(c.numpy(), (av * bv).sum()) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), bv * 2) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), av * 3) def test_skip_invalid_grad(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) cookie = tensor(np.random.random(data_shape).astype(np.float32)) class EqWithFakeGrad(Function): def forward(self, a, b): return a == b def backward(self, grad_o): _ = grad_o return cookie, cookie c = EqWithFakeGrad()(a, b).sum() assertTensorClose(c.numpy(), (av == bv).sum().astype(np.float32)) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), cookie) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), cookie) def test_ste(): class STE(Function): def forward(self, x): maxv, minv = x.max(), x.min() scale = F.maximum(maxv, -minv) / 127 return F.round(x / scale) * scale def backward(self, grad_y): return grad_y data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) a = tensor(av) q = STE()(a) q_2 = (q * 2.0).sum() assertTensorClose( F.grad(q_2, a, use_virtual_grad=False).numpy(), np.broadcast_to(np.array([2.0], dtype=np.float32), data_shape), ) def test_deepcopy(): class Sigmoid(Function): def __init__(self, param): super().__init__() self.param = param def forward(self, x): y = 1 / (1 + F.exp(-x)) self.save_for_backward(y) return y def backward(self, grad_y): (y,) = self.saved_tensors return grad_y * y * (1 - y) origin = Sigmoid(0) new = copy.deepcopy(Sigmoid(0)) assert new.param == origin.param def test_save_context(): class Sigmoid(Function): def forward(self, x): y = 1 / (1 + F.exp(-x)) self.save_for_backward(y) return y def backward(self, grad_y): (y,) = self.saved_tensors return grad_y * y * (1 - y) def run_saved_context(a, net=None): return net(a) def run(use_trace, symbolic): a = tensor(np.array([1926.0817], dtype=np.float32)) net = Sigmoid() func_run = run_saved_context if use_trace: func_run = trace(run_saved_context, symbolic=symbolic) s = func_run(a, net=net) s2 = F.sigmoid(a) assertTensorClose(s.numpy(), s2.numpy()) assertTensorClose( F.grad(s, a, use_virtual_grad=False).numpy(), F.grad(s2, a, use_virtual_grad=False).numpy(), ) run(False, False) run(True, False) run(True, True) def test_none_in_out_grad(): class Test(Function): def forward(self, a, b): return a, b def backward(self, grad_a, grad_b): assert grad_b is None return (grad_a, 0) a = tensor(np.array([1.0], dtype=np.float32)) b = tensor(np.array([2.0], dtype=np.float32)) aa, bb = Test()(a, b) assertTensorClose(
F.grad(aa, a, use_virtual_grad=False)
megengine.functional.grad
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import copy import numpy as np import megengine.functional as F from megengine.core import Function, tensor from megengine.jit import trace from megengine.test import assertTensorClose def test_a_plus_b(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) class MulFunc(Function): def forward(self, a, b): return a * b def backward(self, grad_o): return (grad_o * b * 2, grad_o * a * 3) c = MulFunc()(a, b).sum() assertTensorClose(c.numpy(), (av * bv).sum()) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), bv * 2) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), av * 3) def test_skip_invalid_grad(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) cookie = tensor(np.random.random(data_shape).astype(np.float32)) class EqWithFakeGrad(Function): def forward(self, a, b): return a == b def backward(self, grad_o): _ = grad_o return cookie, cookie c = EqWithFakeGrad()(a, b).sum() assertTensorClose(c.numpy(), (av == bv).sum().astype(np.float32)) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), cookie) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), cookie) def test_ste(): class STE(Function): def forward(self, x): maxv, minv = x.max(), x.min() scale = F.maximum(maxv, -minv) / 127 return F.round(x / scale) * scale def backward(self, grad_y): return grad_y data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) a = tensor(av) q = STE()(a) q_2 = (q * 2.0).sum() assertTensorClose( F.grad(q_2, a, use_virtual_grad=False).numpy(), np.broadcast_to(np.array([2.0], dtype=np.float32), data_shape), ) def test_deepcopy(): class Sigmoid(Function): def __init__(self, param): super().__init__() self.param = param def forward(self, x): y = 1 / (1 + F.exp(-x)) self.save_for_backward(y) return y def backward(self, grad_y): (y,) = self.saved_tensors return grad_y * y * (1 - y) origin = Sigmoid(0) new = copy.deepcopy(Sigmoid(0)) assert new.param == origin.param def test_save_context(): class Sigmoid(Function): def forward(self, x): y = 1 / (1 + F.exp(-x)) self.save_for_backward(y) return y def backward(self, grad_y): (y,) = self.saved_tensors return grad_y * y * (1 - y) def run_saved_context(a, net=None): return net(a) def run(use_trace, symbolic): a = tensor(np.array([1926.0817], dtype=np.float32)) net = Sigmoid() func_run = run_saved_context if use_trace: func_run = trace(run_saved_context, symbolic=symbolic) s = func_run(a, net=net) s2 = F.sigmoid(a) assertTensorClose(s.numpy(), s2.numpy()) assertTensorClose( F.grad(s, a, use_virtual_grad=False).numpy(), F.grad(s2, a, use_virtual_grad=False).numpy(), ) run(False, False) run(True, False) run(True, True) def test_none_in_out_grad(): class Test(Function): def forward(self, a, b): return a, b def backward(self, grad_a, grad_b): assert grad_b is None return (grad_a, 0) a = tensor(np.array([1.0], dtype=np.float32)) b = tensor(np.array([2.0], dtype=np.float32)) aa, bb = Test()(a, b) assertTensorClose( F.grad(aa, a, use_virtual_grad=False).numpy(), np.array([1.0], dtype=np.float32) ) assertTensorClose(
F.grad(aa, b, use_virtual_grad=False)
megengine.functional.grad
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import copy import numpy as np import megengine.functional as F from megengine.core import Function, tensor from megengine.jit import trace from megengine.test import assertTensorClose def test_a_plus_b(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) class MulFunc(Function): def forward(self, a, b): return a * b def backward(self, grad_o): return (grad_o * b * 2, grad_o * a * 3) c = MulFunc()(a, b).sum() assertTensorClose(c.numpy(), (av * bv).sum()) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), bv * 2) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), av * 3) def test_skip_invalid_grad(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) cookie = tensor(np.random.random(data_shape).astype(np.float32)) class EqWithFakeGrad(Function): def forward(self, a, b): return a == b def backward(self, grad_o): _ = grad_o return cookie, cookie c = EqWithFakeGrad()(a, b).sum() assertTensorClose(c.numpy(), (av == bv).sum().astype(np.float32)) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), cookie) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), cookie) def test_ste(): class STE(Function): def forward(self, x): maxv, minv = x.max(), x.min() scale = F.maximum(maxv, -minv) / 127 return F.round(x / scale) * scale def backward(self, grad_y): return grad_y data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) a = tensor(av) q = STE()(a) q_2 = (q * 2.0).sum() assertTensorClose( F.grad(q_2, a, use_virtual_grad=False).numpy(), np.broadcast_to(np.array([2.0], dtype=np.float32), data_shape), ) def test_deepcopy(): class Sigmoid(Function): def __init__(self, param): super().__init__() self.param = param def forward(self, x): y = 1 / (1 + F.exp(-x)) self.save_for_backward(y) return y def backward(self, grad_y): (y,) = self.saved_tensors return grad_y * y * (1 - y) origin = Sigmoid(0) new = copy.deepcopy(Sigmoid(0)) assert new.param == origin.param def test_save_context(): class Sigmoid(Function): def forward(self, x): y = 1 / (1 + F.exp(-x)) self.save_for_backward(y) return y def backward(self, grad_y): (y,) = self.saved_tensors return grad_y * y * (1 - y) def run_saved_context(a, net=None): return net(a) def run(use_trace, symbolic): a = tensor(np.array([1926.0817], dtype=np.float32)) net = Sigmoid() func_run = run_saved_context if use_trace: func_run = trace(run_saved_context, symbolic=symbolic) s = func_run(a, net=net) s2 = F.sigmoid(a) assertTensorClose(s.numpy(), s2.numpy()) assertTensorClose( F.grad(s, a, use_virtual_grad=False).numpy(), F.grad(s2, a, use_virtual_grad=False).numpy(), ) run(False, False) run(True, False) run(True, True) def test_none_in_out_grad(): class Test(Function): def forward(self, a, b): return a, b def backward(self, grad_a, grad_b): assert grad_b is None return (grad_a, 0) a = tensor(np.array([1.0], dtype=np.float32)) b = tensor(np.array([2.0], dtype=np.float32)) aa, bb = Test()(a, b) assertTensorClose( F.grad(aa, a, use_virtual_grad=False).numpy(), np.array([1.0], dtype=np.float32) ) assertTensorClose( F.grad(aa, b, use_virtual_grad=False).numpy(), np.array([0.0], dtype=np.float32) ) def test_zero_grad(): class StopGradient(Function): def forward(self, a): return a def backward(self, *_): return None a = tensor(np.array([1.0], dtype=np.float32)) b = a * 3.0 c = a * 4.0 loss = StopGradient()(b) + c assertTensorClose(
F.grad(loss, a, use_virtual_grad=False)
megengine.functional.grad
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import copy import numpy as np import megengine.functional as F from megengine.core import Function, tensor from megengine.jit import trace from megengine.test import assertTensorClose def test_a_plus_b(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) class MulFunc(Function): def forward(self, a, b): return a * b def backward(self, grad_o): return (grad_o * b * 2, grad_o * a * 3) c = MulFunc()(a, b).sum() assertTensorClose(c.numpy(), (av * bv).sum()) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), bv * 2) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), av * 3) def test_skip_invalid_grad(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) cookie = tensor(np.random.random(data_shape).astype(np.float32)) class EqWithFakeGrad(Function): def forward(self, a, b): return a == b def backward(self, grad_o): _ = grad_o return cookie, cookie c = EqWithFakeGrad()(a, b).sum() assertTensorClose(c.numpy(), (av == bv).sum().astype(np.float32)) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), cookie) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), cookie) def test_ste(): class STE(Function): def forward(self, x): maxv, minv = x.max(), x.min() scale = F.maximum(maxv, -minv) / 127 return F.round(x / scale) * scale def backward(self, grad_y): return grad_y data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) a = tensor(av) q = STE()(a) q_2 = (q * 2.0).sum() assertTensorClose( F.grad(q_2, a, use_virtual_grad=False).numpy(), np.broadcast_to(np.array([2.0], dtype=np.float32), data_shape), ) def test_deepcopy(): class Sigmoid(Function): def __init__(self, param): super().__init__() self.param = param def forward(self, x): y = 1 / (1 +
F.exp(-x)
megengine.functional.exp
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import copy import numpy as np import megengine.functional as F from megengine.core import Function, tensor from megengine.jit import trace from megengine.test import assertTensorClose def test_a_plus_b(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) class MulFunc(Function): def forward(self, a, b): return a * b def backward(self, grad_o): return (grad_o * b * 2, grad_o * a * 3) c = MulFunc()(a, b).sum() assertTensorClose(c.numpy(), (av * bv).sum()) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), bv * 2) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), av * 3) def test_skip_invalid_grad(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) cookie = tensor(np.random.random(data_shape).astype(np.float32)) class EqWithFakeGrad(Function): def forward(self, a, b): return a == b def backward(self, grad_o): _ = grad_o return cookie, cookie c = EqWithFakeGrad()(a, b).sum() assertTensorClose(c.numpy(), (av == bv).sum().astype(np.float32)) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), cookie) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), cookie) def test_ste(): class STE(Function): def forward(self, x): maxv, minv = x.max(), x.min() scale = F.maximum(maxv, -minv) / 127 return F.round(x / scale) * scale def backward(self, grad_y): return grad_y data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) a = tensor(av) q = STE()(a) q_2 = (q * 2.0).sum() assertTensorClose( F.grad(q_2, a, use_virtual_grad=False).numpy(), np.broadcast_to(np.array([2.0], dtype=np.float32), data_shape), ) def test_deepcopy(): class Sigmoid(Function): def __init__(self, param): super().__init__() self.param = param def forward(self, x): y = 1 / (1 + F.exp(-x)) self.save_for_backward(y) return y def backward(self, grad_y): (y,) = self.saved_tensors return grad_y * y * (1 - y) origin = Sigmoid(0) new = copy.deepcopy(Sigmoid(0)) assert new.param == origin.param def test_save_context(): class Sigmoid(Function): def forward(self, x): y = 1 / (1 +
F.exp(-x)
megengine.functional.exp
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import copy import numpy as np import megengine.functional as F from megengine.core import Function, tensor from megengine.jit import trace from megengine.test import assertTensorClose def test_a_plus_b(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) class MulFunc(Function): def forward(self, a, b): return a * b def backward(self, grad_o): return (grad_o * b * 2, grad_o * a * 3) c = MulFunc()(a, b).sum() assertTensorClose(c.numpy(), (av * bv).sum()) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), bv * 2) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), av * 3) def test_skip_invalid_grad(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) cookie = tensor(np.random.random(data_shape).astype(np.float32)) class EqWithFakeGrad(Function): def forward(self, a, b): return a == b def backward(self, grad_o): _ = grad_o return cookie, cookie c = EqWithFakeGrad()(a, b).sum() assertTensorClose(c.numpy(), (av == bv).sum().astype(np.float32)) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), cookie) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), cookie) def test_ste(): class STE(Function): def forward(self, x): maxv, minv = x.max(), x.min() scale = F.maximum(maxv, -minv) / 127 return F.round(x / scale) * scale def backward(self, grad_y): return grad_y data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) a = tensor(av) q = STE()(a) q_2 = (q * 2.0).sum() assertTensorClose( F.grad(q_2, a, use_virtual_grad=False).numpy(), np.broadcast_to(np.array([2.0], dtype=np.float32), data_shape), ) def test_deepcopy(): class Sigmoid(Function): def __init__(self, param): super().__init__() self.param = param def forward(self, x): y = 1 / (1 + F.exp(-x)) self.save_for_backward(y) return y def backward(self, grad_y): (y,) = self.saved_tensors return grad_y * y * (1 - y) origin = Sigmoid(0) new = copy.deepcopy(Sigmoid(0)) assert new.param == origin.param def test_save_context(): class Sigmoid(Function): def forward(self, x): y = 1 / (1 + F.exp(-x)) self.save_for_backward(y) return y def backward(self, grad_y): (y,) = self.saved_tensors return grad_y * y * (1 - y) def run_saved_context(a, net=None): return net(a) def run(use_trace, symbolic): a = tensor(np.array([1926.0817], dtype=np.float32)) net = Sigmoid() func_run = run_saved_context if use_trace: func_run = trace(run_saved_context, symbolic=symbolic) s = func_run(a, net=net) s2 = F.sigmoid(a) assertTensorClose(s.numpy(), s2.numpy()) assertTensorClose(
F.grad(s, a, use_virtual_grad=False)
megengine.functional.grad
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import copy import numpy as np import megengine.functional as F from megengine.core import Function, tensor from megengine.jit import trace from megengine.test import assertTensorClose def test_a_plus_b(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) class MulFunc(Function): def forward(self, a, b): return a * b def backward(self, grad_o): return (grad_o * b * 2, grad_o * a * 3) c = MulFunc()(a, b).sum() assertTensorClose(c.numpy(), (av * bv).sum()) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), bv * 2) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), av * 3) def test_skip_invalid_grad(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) cookie = tensor(np.random.random(data_shape).astype(np.float32)) class EqWithFakeGrad(Function): def forward(self, a, b): return a == b def backward(self, grad_o): _ = grad_o return cookie, cookie c = EqWithFakeGrad()(a, b).sum() assertTensorClose(c.numpy(), (av == bv).sum().astype(np.float32)) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), cookie) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), cookie) def test_ste(): class STE(Function): def forward(self, x): maxv, minv = x.max(), x.min() scale = F.maximum(maxv, -minv) / 127 return F.round(x / scale) * scale def backward(self, grad_y): return grad_y data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) a = tensor(av) q = STE()(a) q_2 = (q * 2.0).sum() assertTensorClose( F.grad(q_2, a, use_virtual_grad=False).numpy(), np.broadcast_to(np.array([2.0], dtype=np.float32), data_shape), ) def test_deepcopy(): class Sigmoid(Function): def __init__(self, param): super().__init__() self.param = param def forward(self, x): y = 1 / (1 + F.exp(-x)) self.save_for_backward(y) return y def backward(self, grad_y): (y,) = self.saved_tensors return grad_y * y * (1 - y) origin = Sigmoid(0) new = copy.deepcopy(Sigmoid(0)) assert new.param == origin.param def test_save_context(): class Sigmoid(Function): def forward(self, x): y = 1 / (1 + F.exp(-x)) self.save_for_backward(y) return y def backward(self, grad_y): (y,) = self.saved_tensors return grad_y * y * (1 - y) def run_saved_context(a, net=None): return net(a) def run(use_trace, symbolic): a = tensor(np.array([1926.0817], dtype=np.float32)) net = Sigmoid() func_run = run_saved_context if use_trace: func_run = trace(run_saved_context, symbolic=symbolic) s = func_run(a, net=net) s2 = F.sigmoid(a) assertTensorClose(s.numpy(), s2.numpy()) assertTensorClose( F.grad(s, a, use_virtual_grad=False).numpy(),
F.grad(s2, a, use_virtual_grad=False)
megengine.functional.grad
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import copy import time from typing import Iterable import megengine as mge import megengine.amp as amp import megengine.distributed as dist import megengine.functional as F import megengine.module as M import megengine.optimizer as optim from basecore.config import ConfigDict from basecore.engine import BaseHook, BaseTrainer from basecore.utils import MeterBuffer from megengine import jit from basecls.data import DataLoaderType from basecls.layers import Preprocess, build_loss from basecls.solver import Solver from basecls.utils import registers __all__ = ["ClsTrainer"] @registers.trainers.register() class ClsTrainer(BaseTrainer): """Classification trainer. Args: cfg: config for training. model: model for training. dataloader: dataloader for training. solver: solver for training. hooks: hooks for training. Attributes: cfg: config for training. model: model for training. ema: model exponential moving average. dataloader: dataloader for training. solver: solver for training. progress: object for recording training process. loss: loss function for training. meter : object for recording metrics. """ def __init__( self, cfg: ConfigDict, model: M.Module, dataloader: DataLoaderType, solver: Solver, hooks: Iterable[BaseHook] = None, ): super().__init__(model, dataloader, solver, hooks) self.cfg = cfg self.ema = copy.deepcopy(model) if cfg.model_ema.enabled else None self.preprocess = Preprocess(cfg.preprocess.img_mean, cfg.preprocess.img_std) self.loss = build_loss(cfg) self.meter = MeterBuffer(cfg.log_every_n_iter) if cfg.trace: # FIXME: tracing makes the training slower than before, why? self.model_step = jit.trace(self.model_step, symbolic=True) def train(self): start_training_info = (1, 1) max_iter = len(self.dataloader) max_training_info = (self.cfg.solver.max_epoch, max_iter) super().train(start_training_info, max_training_info) def before_train(self): super().before_train() def before_epoch(self): super().before_epoch() self.dataloader_iter = iter(self.dataloader) def after_epoch(self): del self.dataloader_iter super().after_epoch() def train_one_iter(self): """Basic logic of training one iteration.""" data_tik = time.perf_counter() data = next(self.dataloader_iter) samples, targets = self.preprocess(data)
mge._full_sync()
megengine._full_sync
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import copy import time from typing import Iterable import megengine as mge import megengine.amp as amp import megengine.distributed as dist import megengine.functional as F import megengine.module as M import megengine.optimizer as optim from basecore.config import ConfigDict from basecore.engine import BaseHook, BaseTrainer from basecore.utils import MeterBuffer from megengine import jit from basecls.data import DataLoaderType from basecls.layers import Preprocess, build_loss from basecls.solver import Solver from basecls.utils import registers __all__ = ["ClsTrainer"] @registers.trainers.register() class ClsTrainer(BaseTrainer): """Classification trainer. Args: cfg: config for training. model: model for training. dataloader: dataloader for training. solver: solver for training. hooks: hooks for training. Attributes: cfg: config for training. model: model for training. ema: model exponential moving average. dataloader: dataloader for training. solver: solver for training. progress: object for recording training process. loss: loss function for training. meter : object for recording metrics. """ def __init__( self, cfg: ConfigDict, model: M.Module, dataloader: DataLoaderType, solver: Solver, hooks: Iterable[BaseHook] = None, ): super().__init__(model, dataloader, solver, hooks) self.cfg = cfg self.ema = copy.deepcopy(model) if cfg.model_ema.enabled else None self.preprocess = Preprocess(cfg.preprocess.img_mean, cfg.preprocess.img_std) self.loss = build_loss(cfg) self.meter = MeterBuffer(cfg.log_every_n_iter) if cfg.trace: # FIXME: tracing makes the training slower than before, why? self.model_step = jit.trace(self.model_step, symbolic=True) def train(self): start_training_info = (1, 1) max_iter = len(self.dataloader) max_training_info = (self.cfg.solver.max_epoch, max_iter) super().train(start_training_info, max_training_info) def before_train(self): super().before_train() def before_epoch(self): super().before_epoch() self.dataloader_iter = iter(self.dataloader) def after_epoch(self): del self.dataloader_iter super().after_epoch() def train_one_iter(self): """Basic logic of training one iteration.""" data_tik = time.perf_counter() data = next(self.dataloader_iter) samples, targets = self.preprocess(data) mge._full_sync() # use full_sync func to sync launch queue for dynamic execution data_tok = time.perf_counter() train_tik = time.perf_counter() losses, accs = self.model_step(samples, targets)
mge._full_sync()
megengine._full_sync
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import copy import time from typing import Iterable import megengine as mge import megengine.amp as amp import megengine.distributed as dist import megengine.functional as F import megengine.module as M import megengine.optimizer as optim from basecore.config import ConfigDict from basecore.engine import BaseHook, BaseTrainer from basecore.utils import MeterBuffer from megengine import jit from basecls.data import DataLoaderType from basecls.layers import Preprocess, build_loss from basecls.solver import Solver from basecls.utils import registers __all__ = ["ClsTrainer"] @registers.trainers.register() class ClsTrainer(BaseTrainer): """Classification trainer. Args: cfg: config for training. model: model for training. dataloader: dataloader for training. solver: solver for training. hooks: hooks for training. Attributes: cfg: config for training. model: model for training. ema: model exponential moving average. dataloader: dataloader for training. solver: solver for training. progress: object for recording training process. loss: loss function for training. meter : object for recording metrics. """ def __init__( self, cfg: ConfigDict, model: M.Module, dataloader: DataLoaderType, solver: Solver, hooks: Iterable[BaseHook] = None, ): super().__init__(model, dataloader, solver, hooks) self.cfg = cfg self.ema = copy.deepcopy(model) if cfg.model_ema.enabled else None self.preprocess = Preprocess(cfg.preprocess.img_mean, cfg.preprocess.img_std) self.loss = build_loss(cfg) self.meter = MeterBuffer(cfg.log_every_n_iter) if cfg.trace: # FIXME: tracing makes the training slower than before, why? self.model_step =
jit.trace(self.model_step, symbolic=True)
megengine.jit.trace
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import copy import time from typing import Iterable import megengine as mge import megengine.amp as amp import megengine.distributed as dist import megengine.functional as F import megengine.module as M import megengine.optimizer as optim from basecore.config import ConfigDict from basecore.engine import BaseHook, BaseTrainer from basecore.utils import MeterBuffer from megengine import jit from basecls.data import DataLoaderType from basecls.layers import Preprocess, build_loss from basecls.solver import Solver from basecls.utils import registers __all__ = ["ClsTrainer"] @registers.trainers.register() class ClsTrainer(BaseTrainer): """Classification trainer. Args: cfg: config for training. model: model for training. dataloader: dataloader for training. solver: solver for training. hooks: hooks for training. Attributes: cfg: config for training. model: model for training. ema: model exponential moving average. dataloader: dataloader for training. solver: solver for training. progress: object for recording training process. loss: loss function for training. meter : object for recording metrics. """ def __init__( self, cfg: ConfigDict, model: M.Module, dataloader: DataLoaderType, solver: Solver, hooks: Iterable[BaseHook] = None, ): super().__init__(model, dataloader, solver, hooks) self.cfg = cfg self.ema = copy.deepcopy(model) if cfg.model_ema.enabled else None self.preprocess = Preprocess(cfg.preprocess.img_mean, cfg.preprocess.img_std) self.loss = build_loss(cfg) self.meter = MeterBuffer(cfg.log_every_n_iter) if cfg.trace: # FIXME: tracing makes the training slower than before, why? self.model_step = jit.trace(self.model_step, symbolic=True) def train(self): start_training_info = (1, 1) max_iter = len(self.dataloader) max_training_info = (self.cfg.solver.max_epoch, max_iter) super().train(start_training_info, max_training_info) def before_train(self): super().before_train() def before_epoch(self): super().before_epoch() self.dataloader_iter = iter(self.dataloader) def after_epoch(self): del self.dataloader_iter super().after_epoch() def train_one_iter(self): """Basic logic of training one iteration.""" data_tik = time.perf_counter() data = next(self.dataloader_iter) samples, targets = self.preprocess(data) mge._full_sync() # use full_sync func to sync launch queue for dynamic execution data_tok = time.perf_counter() train_tik = time.perf_counter() losses, accs = self.model_step(samples, targets) mge._full_sync() # use full_sync func to sync launch queue for dynamic execution train_tok = time.perf_counter() # TODO: stats and accs loss_meters = {"loss": losses.item()} stat_meters = {"stat_acc@1": accs[0].item() * 100, "stat_acc@5": accs[1].item() * 100} time_meters = {"train_time": train_tok - train_tik, "data_time": data_tok - data_tik} self.meter.update(**loss_meters, **stat_meters, **time_meters) def model_step(self, samples, targets): optimizer = self.solver.optimizer grad_manager = self.solver.grad_manager grad_scaler = self.solver.grad_scaler with grad_manager: with amp.autocast(enabled=self.cfg.amp.enabled): outputs = self.model(samples) losses = self.loss(outputs, targets) if isinstance(losses, mge.Tensor): total_loss = losses elif isinstance(losses, dict): if "total_loss" in losses: total_loss = losses["total_loss"] else: # only key contains "loss" will be calculated. total_loss = sum([v for k, v in losses.items() if "loss" in k]) losses["total_loss"] = total_loss else: # list or tuple total_loss = sum(losses) total_loss = total_loss / self.cfg.solver.accumulation_steps # this is made compatible with one hot labels if targets.ndim == 2: targets = F.argmax(targets, axis=1) accs =
F.metric.topk_accuracy(outputs, targets, (1, 5))
megengine.functional.metric.topk_accuracy
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import copy import time from typing import Iterable import megengine as mge import megengine.amp as amp import megengine.distributed as dist import megengine.functional as F import megengine.module as M import megengine.optimizer as optim from basecore.config import ConfigDict from basecore.engine import BaseHook, BaseTrainer from basecore.utils import MeterBuffer from megengine import jit from basecls.data import DataLoaderType from basecls.layers import Preprocess, build_loss from basecls.solver import Solver from basecls.utils import registers __all__ = ["ClsTrainer"] @registers.trainers.register() class ClsTrainer(BaseTrainer): """Classification trainer. Args: cfg: config for training. model: model for training. dataloader: dataloader for training. solver: solver for training. hooks: hooks for training. Attributes: cfg: config for training. model: model for training. ema: model exponential moving average. dataloader: dataloader for training. solver: solver for training. progress: object for recording training process. loss: loss function for training. meter : object for recording metrics. """ def __init__( self, cfg: ConfigDict, model: M.Module, dataloader: DataLoaderType, solver: Solver, hooks: Iterable[BaseHook] = None, ): super().__init__(model, dataloader, solver, hooks) self.cfg = cfg self.ema = copy.deepcopy(model) if cfg.model_ema.enabled else None self.preprocess = Preprocess(cfg.preprocess.img_mean, cfg.preprocess.img_std) self.loss = build_loss(cfg) self.meter = MeterBuffer(cfg.log_every_n_iter) if cfg.trace: # FIXME: tracing makes the training slower than before, why? self.model_step = jit.trace(self.model_step, symbolic=True) def train(self): start_training_info = (1, 1) max_iter = len(self.dataloader) max_training_info = (self.cfg.solver.max_epoch, max_iter) super().train(start_training_info, max_training_info) def before_train(self): super().before_train() def before_epoch(self): super().before_epoch() self.dataloader_iter = iter(self.dataloader) def after_epoch(self): del self.dataloader_iter super().after_epoch() def train_one_iter(self): """Basic logic of training one iteration.""" data_tik = time.perf_counter() data = next(self.dataloader_iter) samples, targets = self.preprocess(data) mge._full_sync() # use full_sync func to sync launch queue for dynamic execution data_tok = time.perf_counter() train_tik = time.perf_counter() losses, accs = self.model_step(samples, targets) mge._full_sync() # use full_sync func to sync launch queue for dynamic execution train_tok = time.perf_counter() # TODO: stats and accs loss_meters = {"loss": losses.item()} stat_meters = {"stat_acc@1": accs[0].item() * 100, "stat_acc@5": accs[1].item() * 100} time_meters = {"train_time": train_tok - train_tik, "data_time": data_tok - data_tik} self.meter.update(**loss_meters, **stat_meters, **time_meters) def model_step(self, samples, targets): optimizer = self.solver.optimizer grad_manager = self.solver.grad_manager grad_scaler = self.solver.grad_scaler with grad_manager: with
amp.autocast(enabled=self.cfg.amp.enabled)
megengine.amp.autocast
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import copy import time from typing import Iterable import megengine as mge import megengine.amp as amp import megengine.distributed as dist import megengine.functional as F import megengine.module as M import megengine.optimizer as optim from basecore.config import ConfigDict from basecore.engine import BaseHook, BaseTrainer from basecore.utils import MeterBuffer from megengine import jit from basecls.data import DataLoaderType from basecls.layers import Preprocess, build_loss from basecls.solver import Solver from basecls.utils import registers __all__ = ["ClsTrainer"] @registers.trainers.register() class ClsTrainer(BaseTrainer): """Classification trainer. Args: cfg: config for training. model: model for training. dataloader: dataloader for training. solver: solver for training. hooks: hooks for training. Attributes: cfg: config for training. model: model for training. ema: model exponential moving average. dataloader: dataloader for training. solver: solver for training. progress: object for recording training process. loss: loss function for training. meter : object for recording metrics. """ def __init__( self, cfg: ConfigDict, model: M.Module, dataloader: DataLoaderType, solver: Solver, hooks: Iterable[BaseHook] = None, ): super().__init__(model, dataloader, solver, hooks) self.cfg = cfg self.ema = copy.deepcopy(model) if cfg.model_ema.enabled else None self.preprocess = Preprocess(cfg.preprocess.img_mean, cfg.preprocess.img_std) self.loss = build_loss(cfg) self.meter = MeterBuffer(cfg.log_every_n_iter) if cfg.trace: # FIXME: tracing makes the training slower than before, why? self.model_step = jit.trace(self.model_step, symbolic=True) def train(self): start_training_info = (1, 1) max_iter = len(self.dataloader) max_training_info = (self.cfg.solver.max_epoch, max_iter) super().train(start_training_info, max_training_info) def before_train(self): super().before_train() def before_epoch(self): super().before_epoch() self.dataloader_iter = iter(self.dataloader) def after_epoch(self): del self.dataloader_iter super().after_epoch() def train_one_iter(self): """Basic logic of training one iteration.""" data_tik = time.perf_counter() data = next(self.dataloader_iter) samples, targets = self.preprocess(data) mge._full_sync() # use full_sync func to sync launch queue for dynamic execution data_tok = time.perf_counter() train_tik = time.perf_counter() losses, accs = self.model_step(samples, targets) mge._full_sync() # use full_sync func to sync launch queue for dynamic execution train_tok = time.perf_counter() # TODO: stats and accs loss_meters = {"loss": losses.item()} stat_meters = {"stat_acc@1": accs[0].item() * 100, "stat_acc@5": accs[1].item() * 100} time_meters = {"train_time": train_tok - train_tik, "data_time": data_tok - data_tik} self.meter.update(**loss_meters, **stat_meters, **time_meters) def model_step(self, samples, targets): optimizer = self.solver.optimizer grad_manager = self.solver.grad_manager grad_scaler = self.solver.grad_scaler with grad_manager: with amp.autocast(enabled=self.cfg.amp.enabled): outputs = self.model(samples) losses = self.loss(outputs, targets) if isinstance(losses, mge.Tensor): total_loss = losses elif isinstance(losses, dict): if "total_loss" in losses: total_loss = losses["total_loss"] else: # only key contains "loss" will be calculated. total_loss = sum([v for k, v in losses.items() if "loss" in k]) losses["total_loss"] = total_loss else: # list or tuple total_loss = sum(losses) total_loss = total_loss / self.cfg.solver.accumulation_steps # this is made compatible with one hot labels if targets.ndim == 2: targets =
F.argmax(targets, axis=1)
megengine.functional.argmax
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import copy import time from typing import Iterable import megengine as mge import megengine.amp as amp import megengine.distributed as dist import megengine.functional as F import megengine.module as M import megengine.optimizer as optim from basecore.config import ConfigDict from basecore.engine import BaseHook, BaseTrainer from basecore.utils import MeterBuffer from megengine import jit from basecls.data import DataLoaderType from basecls.layers import Preprocess, build_loss from basecls.solver import Solver from basecls.utils import registers __all__ = ["ClsTrainer"] @registers.trainers.register() class ClsTrainer(BaseTrainer): """Classification trainer. Args: cfg: config for training. model: model for training. dataloader: dataloader for training. solver: solver for training. hooks: hooks for training. Attributes: cfg: config for training. model: model for training. ema: model exponential moving average. dataloader: dataloader for training. solver: solver for training. progress: object for recording training process. loss: loss function for training. meter : object for recording metrics. """ def __init__( self, cfg: ConfigDict, model: M.Module, dataloader: DataLoaderType, solver: Solver, hooks: Iterable[BaseHook] = None, ): super().__init__(model, dataloader, solver, hooks) self.cfg = cfg self.ema = copy.deepcopy(model) if cfg.model_ema.enabled else None self.preprocess = Preprocess(cfg.preprocess.img_mean, cfg.preprocess.img_std) self.loss = build_loss(cfg) self.meter = MeterBuffer(cfg.log_every_n_iter) if cfg.trace: # FIXME: tracing makes the training slower than before, why? self.model_step = jit.trace(self.model_step, symbolic=True) def train(self): start_training_info = (1, 1) max_iter = len(self.dataloader) max_training_info = (self.cfg.solver.max_epoch, max_iter) super().train(start_training_info, max_training_info) def before_train(self): super().before_train() def before_epoch(self): super().before_epoch() self.dataloader_iter = iter(self.dataloader) def after_epoch(self): del self.dataloader_iter super().after_epoch() def train_one_iter(self): """Basic logic of training one iteration.""" data_tik = time.perf_counter() data = next(self.dataloader_iter) samples, targets = self.preprocess(data) mge._full_sync() # use full_sync func to sync launch queue for dynamic execution data_tok = time.perf_counter() train_tik = time.perf_counter() losses, accs = self.model_step(samples, targets) mge._full_sync() # use full_sync func to sync launch queue for dynamic execution train_tok = time.perf_counter() # TODO: stats and accs loss_meters = {"loss": losses.item()} stat_meters = {"stat_acc@1": accs[0].item() * 100, "stat_acc@5": accs[1].item() * 100} time_meters = {"train_time": train_tok - train_tik, "data_time": data_tok - data_tik} self.meter.update(**loss_meters, **stat_meters, **time_meters) def model_step(self, samples, targets): optimizer = self.solver.optimizer grad_manager = self.solver.grad_manager grad_scaler = self.solver.grad_scaler with grad_manager: with amp.autocast(enabled=self.cfg.amp.enabled): outputs = self.model(samples) losses = self.loss(outputs, targets) if isinstance(losses, mge.Tensor): total_loss = losses elif isinstance(losses, dict): if "total_loss" in losses: total_loss = losses["total_loss"] else: # only key contains "loss" will be calculated. total_loss = sum([v for k, v in losses.items() if "loss" in k]) losses["total_loss"] = total_loss else: # list or tuple total_loss = sum(losses) total_loss = total_loss / self.cfg.solver.accumulation_steps # this is made compatible with one hot labels if targets.ndim == 2: targets = F.argmax(targets, axis=1) accs = F.metric.topk_accuracy(outputs, targets, (1, 5)) if self.cfg.amp.enabled: grad_scaler.backward(grad_manager, total_loss) else: grad_manager.backward(total_loss) if self.progress.iter % self.cfg.solver.accumulation_steps == 0: self.modify_grad() optimizer.step().clear_grad() self.model_ema_step() return losses, accs def modify_grad(self): grad_cfg = self.cfg.solver.grad_clip # TODO: support advanced params for grad clip in the future params = self.model.parameters() if grad_cfg.name is None: return elif grad_cfg.name == "norm":
optim.clip_grad_norm(params, grad_cfg.max_norm)
megengine.optimizer.clip_grad_norm
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import copy import time from typing import Iterable import megengine as mge import megengine.amp as amp import megengine.distributed as dist import megengine.functional as F import megengine.module as M import megengine.optimizer as optim from basecore.config import ConfigDict from basecore.engine import BaseHook, BaseTrainer from basecore.utils import MeterBuffer from megengine import jit from basecls.data import DataLoaderType from basecls.layers import Preprocess, build_loss from basecls.solver import Solver from basecls.utils import registers __all__ = ["ClsTrainer"] @registers.trainers.register() class ClsTrainer(BaseTrainer): """Classification trainer. Args: cfg: config for training. model: model for training. dataloader: dataloader for training. solver: solver for training. hooks: hooks for training. Attributes: cfg: config for training. model: model for training. ema: model exponential moving average. dataloader: dataloader for training. solver: solver for training. progress: object for recording training process. loss: loss function for training. meter : object for recording metrics. """ def __init__( self, cfg: ConfigDict, model: M.Module, dataloader: DataLoaderType, solver: Solver, hooks: Iterable[BaseHook] = None, ): super().__init__(model, dataloader, solver, hooks) self.cfg = cfg self.ema = copy.deepcopy(model) if cfg.model_ema.enabled else None self.preprocess = Preprocess(cfg.preprocess.img_mean, cfg.preprocess.img_std) self.loss = build_loss(cfg) self.meter = MeterBuffer(cfg.log_every_n_iter) if cfg.trace: # FIXME: tracing makes the training slower than before, why? self.model_step = jit.trace(self.model_step, symbolic=True) def train(self): start_training_info = (1, 1) max_iter = len(self.dataloader) max_training_info = (self.cfg.solver.max_epoch, max_iter) super().train(start_training_info, max_training_info) def before_train(self): super().before_train() def before_epoch(self): super().before_epoch() self.dataloader_iter = iter(self.dataloader) def after_epoch(self): del self.dataloader_iter super().after_epoch() def train_one_iter(self): """Basic logic of training one iteration.""" data_tik = time.perf_counter() data = next(self.dataloader_iter) samples, targets = self.preprocess(data) mge._full_sync() # use full_sync func to sync launch queue for dynamic execution data_tok = time.perf_counter() train_tik = time.perf_counter() losses, accs = self.model_step(samples, targets) mge._full_sync() # use full_sync func to sync launch queue for dynamic execution train_tok = time.perf_counter() # TODO: stats and accs loss_meters = {"loss": losses.item()} stat_meters = {"stat_acc@1": accs[0].item() * 100, "stat_acc@5": accs[1].item() * 100} time_meters = {"train_time": train_tok - train_tik, "data_time": data_tok - data_tik} self.meter.update(**loss_meters, **stat_meters, **time_meters) def model_step(self, samples, targets): optimizer = self.solver.optimizer grad_manager = self.solver.grad_manager grad_scaler = self.solver.grad_scaler with grad_manager: with amp.autocast(enabled=self.cfg.amp.enabled): outputs = self.model(samples) losses = self.loss(outputs, targets) if isinstance(losses, mge.Tensor): total_loss = losses elif isinstance(losses, dict): if "total_loss" in losses: total_loss = losses["total_loss"] else: # only key contains "loss" will be calculated. total_loss = sum([v for k, v in losses.items() if "loss" in k]) losses["total_loss"] = total_loss else: # list or tuple total_loss = sum(losses) total_loss = total_loss / self.cfg.solver.accumulation_steps # this is made compatible with one hot labels if targets.ndim == 2: targets = F.argmax(targets, axis=1) accs = F.metric.topk_accuracy(outputs, targets, (1, 5)) if self.cfg.amp.enabled: grad_scaler.backward(grad_manager, total_loss) else: grad_manager.backward(total_loss) if self.progress.iter % self.cfg.solver.accumulation_steps == 0: self.modify_grad() optimizer.step().clear_grad() self.model_ema_step() return losses, accs def modify_grad(self): grad_cfg = self.cfg.solver.grad_clip # TODO: support advanced params for grad clip in the future params = self.model.parameters() if grad_cfg.name is None: return elif grad_cfg.name == "norm": optim.clip_grad_norm(params, grad_cfg.max_norm) elif grad_cfg.name == "value":
optim.clip_grad_value(params, grad_cfg.lower, grad_cfg.upper)
megengine.optimizer.clip_grad_value
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import copy import time from typing import Iterable import megengine as mge import megengine.amp as amp import megengine.distributed as dist import megengine.functional as F import megengine.module as M import megengine.optimizer as optim from basecore.config import ConfigDict from basecore.engine import BaseHook, BaseTrainer from basecore.utils import MeterBuffer from megengine import jit from basecls.data import DataLoaderType from basecls.layers import Preprocess, build_loss from basecls.solver import Solver from basecls.utils import registers __all__ = ["ClsTrainer"] @registers.trainers.register() class ClsTrainer(BaseTrainer): """Classification trainer. Args: cfg: config for training. model: model for training. dataloader: dataloader for training. solver: solver for training. hooks: hooks for training. Attributes: cfg: config for training. model: model for training. ema: model exponential moving average. dataloader: dataloader for training. solver: solver for training. progress: object for recording training process. loss: loss function for training. meter : object for recording metrics. """ def __init__( self, cfg: ConfigDict, model: M.Module, dataloader: DataLoaderType, solver: Solver, hooks: Iterable[BaseHook] = None, ): super().__init__(model, dataloader, solver, hooks) self.cfg = cfg self.ema = copy.deepcopy(model) if cfg.model_ema.enabled else None self.preprocess = Preprocess(cfg.preprocess.img_mean, cfg.preprocess.img_std) self.loss = build_loss(cfg) self.meter = MeterBuffer(cfg.log_every_n_iter) if cfg.trace: # FIXME: tracing makes the training slower than before, why? self.model_step = jit.trace(self.model_step, symbolic=True) def train(self): start_training_info = (1, 1) max_iter = len(self.dataloader) max_training_info = (self.cfg.solver.max_epoch, max_iter) super().train(start_training_info, max_training_info) def before_train(self): super().before_train() def before_epoch(self): super().before_epoch() self.dataloader_iter = iter(self.dataloader) def after_epoch(self): del self.dataloader_iter super().after_epoch() def train_one_iter(self): """Basic logic of training one iteration.""" data_tik = time.perf_counter() data = next(self.dataloader_iter) samples, targets = self.preprocess(data) mge._full_sync() # use full_sync func to sync launch queue for dynamic execution data_tok = time.perf_counter() train_tik = time.perf_counter() losses, accs = self.model_step(samples, targets) mge._full_sync() # use full_sync func to sync launch queue for dynamic execution train_tok = time.perf_counter() # TODO: stats and accs loss_meters = {"loss": losses.item()} stat_meters = {"stat_acc@1": accs[0].item() * 100, "stat_acc@5": accs[1].item() * 100} time_meters = {"train_time": train_tok - train_tik, "data_time": data_tok - data_tik} self.meter.update(**loss_meters, **stat_meters, **time_meters) def model_step(self, samples, targets): optimizer = self.solver.optimizer grad_manager = self.solver.grad_manager grad_scaler = self.solver.grad_scaler with grad_manager: with amp.autocast(enabled=self.cfg.amp.enabled): outputs = self.model(samples) losses = self.loss(outputs, targets) if isinstance(losses, mge.Tensor): total_loss = losses elif isinstance(losses, dict): if "total_loss" in losses: total_loss = losses["total_loss"] else: # only key contains "loss" will be calculated. total_loss = sum([v for k, v in losses.items() if "loss" in k]) losses["total_loss"] = total_loss else: # list or tuple total_loss = sum(losses) total_loss = total_loss / self.cfg.solver.accumulation_steps # this is made compatible with one hot labels if targets.ndim == 2: targets = F.argmax(targets, axis=1) accs = F.metric.topk_accuracy(outputs, targets, (1, 5)) if self.cfg.amp.enabled: grad_scaler.backward(grad_manager, total_loss) else: grad_manager.backward(total_loss) if self.progress.iter % self.cfg.solver.accumulation_steps == 0: self.modify_grad() optimizer.step().clear_grad() self.model_ema_step() return losses, accs def modify_grad(self): grad_cfg = self.cfg.solver.grad_clip # TODO: support advanced params for grad clip in the future params = self.model.parameters() if grad_cfg.name is None: return elif grad_cfg.name == "norm": optim.clip_grad_norm(params, grad_cfg.max_norm) elif grad_cfg.name == "value": optim.clip_grad_value(params, grad_cfg.lower, grad_cfg.upper) else: raise ValueError(f"Grad clip type '{grad_cfg.name}' not supported") def model_ema_step(self): """Implement momentum based Exponential Moving Average (EMA) for model states https://github.com/rwightman/pytorch-image-models/blob/master/timm/utils/model_ema.py Also inspired by Pycls https://github.com/facebookresearch/pycls/pull/138/, which is more flexible and efficient Heuristically, one can use a momentum of 0.9999 as used by Tensorflow and 0.9998 as used by timm, which updates model ema every iter. To be more efficient, one can set ``update_period`` to e.g. 8 or 32 to speed up your training, and decrease your momentum at scale: set ``momentum=0.9978`` from 0.9999 (32 times) when you ``update_period=32``. Also, to make model EMA really work (improve generalization), one should carefully tune the momentum based on various factors, e.g. the learning rate scheduler, the total batch size, the training epochs, e.t.c. To initialize a momentum in Pycls style, one set ``model_ema.alpha = 1e-5`` instead. Momentum will be calculated through ``_calculate_pycls_momentum``. """ if self.ema is None: return ema_cfg = self.cfg.model_ema cur_iter, cur_epoch = self.progress.iter, self.progress.epoch if cur_iter % ema_cfg.update_period == 0: if cur_epoch > (ema_cfg.start_epoch or self.cfg.solver.warmup_epochs): momentum = ( ema_cfg.momentum if ema_cfg.alpha is None else _calculate_pycls_momentum( alpha=ema_cfg.alpha, total_batch_size=self.cfg.batch_size *
dist.get_world_size()
megengine.distributed.get_world_size
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io import numpy as np import pytest import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, Tensor from megengine.core.tensor import megbrain_graph as G from megengine.jit.tracing import trace from megengine.quantization.quantize import quantize, quantize_qat from megengine.utils.naming import AutoNaming def _dump_and_load(func, symbolic, keep_opr_name=True):
AutoNaming.clear()
megengine.utils.naming.AutoNaming.clear
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io import numpy as np import pytest import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, Tensor from megengine.core.tensor import megbrain_graph as G from megengine.jit.tracing import trace from megengine.quantization.quantize import quantize, quantize_qat from megengine.utils.naming import AutoNaming def _dump_and_load(func, symbolic, keep_opr_name=True): AutoNaming.clear() func =
trace(func, symbolic=symbolic, capture_as_const=True)
megengine.jit.tracing.trace
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io import numpy as np import pytest import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, Tensor from megengine.core.tensor import megbrain_graph as G from megengine.jit.tracing import trace from megengine.quantization.quantize import quantize, quantize_qat from megengine.utils.naming import AutoNaming def _dump_and_load(func, symbolic, keep_opr_name=True): AutoNaming.clear() func = trace(func, symbolic=symbolic, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3))) func(x).numpy() file = io.BytesIO() func.dump( file, optimize_for_inference=False, arg_names=("x",), keep_opr_name=keep_opr_name, keep_var_name=2, ) file.seek(0) outputs = G.load_graph(file).output_vars_list ops =
cgtools.get_oprs_seq(outputs)
megengine.utils.comp_graph_tools.get_oprs_seq
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io import numpy as np import pytest import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, Tensor from megengine.core.tensor import megbrain_graph as G from megengine.jit.tracing import trace from megengine.quantization.quantize import quantize, quantize_qat from megengine.utils.naming import AutoNaming def _dump_and_load(func, symbolic, keep_opr_name=True): AutoNaming.clear() func = trace(func, symbolic=symbolic, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3))) func(x).numpy() file = io.BytesIO() func.dump( file, optimize_for_inference=False, arg_names=("x",), keep_opr_name=keep_opr_name, keep_var_name=2, ) file.seek(0) outputs = G.load_graph(file).output_vars_list ops = cgtools.get_oprs_seq(outputs) return ops @pytest.mark.parametrize("symbolic", [False, True]) def test_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): return x + x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "simple.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_tensor(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(1.0, name="k") def forward(self, x): x = x + x x.name = "o_x" return x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "o_x" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_param(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(2.0, name="k") def forward(self, x): return self.k * x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.inputs[0].name == "x" assert op.inputs[1].name == "simple.k" @pytest.mark.parametrize("symbolic", [False, True]) def test_without_module(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic)[-1] assert op.name == "MUL" @pytest.mark.parametrize("symbolic", [False, True]) def test_ignore_top_module(symbolic): class Simple(M.Module): def forward(self, x): return x + x m = Simple() op = _dump_and_load(m, symbolic)[-1] assert op.name == "ADD" assert op.outputs[0].name == "ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3) def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.linear.ADD" assert ops[-2].name == "simple.linear.MatrixMul" assert ops[-1].outputs[0].name == "simple.linear.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule_in_container(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.l0 = [M.Linear(3, 3) for _ in range(2)] self.l1 = tuple(self.l0) self.l2 = dict(zip(["l2-0", "l2-1"], self.l0)) def forward(self, x): for i in range(2): x = self.l0[i](x) x = self.l1[i](x) x = self.l2["l2-%d" % i](x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].outputs[0].name == "simple.l0.1.ADD[2]" assert ops[-1].name == "simple.l0.1.ADD[2]" assert ops[-2].name == "simple.l0.1.MatrixMul[2]" assert ops[-3].name == "simple.l0.1.ADD[1]" assert ops[-4].name == "simple.l0.1.MatrixMul[1]" assert ops[-5].name == "simple.l0.1.ADD[0]" assert ops[-6].name == "simple.l0.1.MatrixMul[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_named_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3, name="x") def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.x.ADD" assert ops[-2].name == "simple.x.MatrixMul" assert ops[-1].outputs[0].name == "simple.x.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_same_operators(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): x = F.relu(x) x = F.relu(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.RELU[1]" assert ops[-2].name == "simple.RELU[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_not_keep_opr_name(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic, False)[-1] assert op.name == "MUL(x,const<2>[2])[4]" @pytest.mark.parametrize("tensor_name, var_name", [("data", "data"), (None, "arg_0")]) def test_catch_input_name(tensor_name, var_name): def f(x): return 2 * x func =
trace(f, symbolic=True, capture_as_const=True)
megengine.jit.tracing.trace
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io import numpy as np import pytest import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, Tensor from megengine.core.tensor import megbrain_graph as G from megengine.jit.tracing import trace from megengine.quantization.quantize import quantize, quantize_qat from megengine.utils.naming import AutoNaming def _dump_and_load(func, symbolic, keep_opr_name=True): AutoNaming.clear() func = trace(func, symbolic=symbolic, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3))) func(x).numpy() file = io.BytesIO() func.dump( file, optimize_for_inference=False, arg_names=("x",), keep_opr_name=keep_opr_name, keep_var_name=2, ) file.seek(0) outputs = G.load_graph(file).output_vars_list ops = cgtools.get_oprs_seq(outputs) return ops @pytest.mark.parametrize("symbolic", [False, True]) def test_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): return x + x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "simple.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_tensor(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(1.0, name="k") def forward(self, x): x = x + x x.name = "o_x" return x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "o_x" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_param(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(2.0, name="k") def forward(self, x): return self.k * x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.inputs[0].name == "x" assert op.inputs[1].name == "simple.k" @pytest.mark.parametrize("symbolic", [False, True]) def test_without_module(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic)[-1] assert op.name == "MUL" @pytest.mark.parametrize("symbolic", [False, True]) def test_ignore_top_module(symbolic): class Simple(M.Module): def forward(self, x): return x + x m = Simple() op = _dump_and_load(m, symbolic)[-1] assert op.name == "ADD" assert op.outputs[0].name == "ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3) def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.linear.ADD" assert ops[-2].name == "simple.linear.MatrixMul" assert ops[-1].outputs[0].name == "simple.linear.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule_in_container(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.l0 = [M.Linear(3, 3) for _ in range(2)] self.l1 = tuple(self.l0) self.l2 = dict(zip(["l2-0", "l2-1"], self.l0)) def forward(self, x): for i in range(2): x = self.l0[i](x) x = self.l1[i](x) x = self.l2["l2-%d" % i](x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].outputs[0].name == "simple.l0.1.ADD[2]" assert ops[-1].name == "simple.l0.1.ADD[2]" assert ops[-2].name == "simple.l0.1.MatrixMul[2]" assert ops[-3].name == "simple.l0.1.ADD[1]" assert ops[-4].name == "simple.l0.1.MatrixMul[1]" assert ops[-5].name == "simple.l0.1.ADD[0]" assert ops[-6].name == "simple.l0.1.MatrixMul[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_named_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3, name="x") def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.x.ADD" assert ops[-2].name == "simple.x.MatrixMul" assert ops[-1].outputs[0].name == "simple.x.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_same_operators(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): x = F.relu(x) x = F.relu(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.RELU[1]" assert ops[-2].name == "simple.RELU[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_not_keep_opr_name(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic, False)[-1] assert op.name == "MUL(x,const<2>[2])[4]" @pytest.mark.parametrize("tensor_name, var_name", [("data", "data"), (None, "arg_0")]) def test_catch_input_name(tensor_name, var_name): def f(x): return 2 * x func = trace(f, symbolic=True, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3)), name=tensor_name) func(x).numpy() file = io.BytesIO() func.dump(file, optimize_for_inference=False, keep_opr_name=True, keep_var_name=2) file.seek(0) outputs = G.load_graph(file).output_vars_list op = cgtools.get_oprs_seq(outputs)[-1] assert op.inputs[0].name == var_name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant = M.QuantStub() self.linear = M.Linear(3, 3, bias=True) self.dequant = M.DequantStub() def forward(self, x): out = self.quant(x) out = self.linear(out) out = self.dequant(out) return out m = Simple("simple")
quantize_qat(m)
megengine.quantization.quantize.quantize_qat
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io import numpy as np import pytest import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, Tensor from megengine.core.tensor import megbrain_graph as G from megengine.jit.tracing import trace from megengine.quantization.quantize import quantize, quantize_qat from megengine.utils.naming import AutoNaming def _dump_and_load(func, symbolic, keep_opr_name=True): AutoNaming.clear() func = trace(func, symbolic=symbolic, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3))) func(x).numpy() file = io.BytesIO() func.dump( file, optimize_for_inference=False, arg_names=("x",), keep_opr_name=keep_opr_name, keep_var_name=2, ) file.seek(0) outputs = G.load_graph(file).output_vars_list ops = cgtools.get_oprs_seq(outputs) return ops @pytest.mark.parametrize("symbolic", [False, True]) def test_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): return x + x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "simple.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_tensor(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(1.0, name="k") def forward(self, x): x = x + x x.name = "o_x" return x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "o_x" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_param(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(2.0, name="k") def forward(self, x): return self.k * x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.inputs[0].name == "x" assert op.inputs[1].name == "simple.k" @pytest.mark.parametrize("symbolic", [False, True]) def test_without_module(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic)[-1] assert op.name == "MUL" @pytest.mark.parametrize("symbolic", [False, True]) def test_ignore_top_module(symbolic): class Simple(M.Module): def forward(self, x): return x + x m = Simple() op = _dump_and_load(m, symbolic)[-1] assert op.name == "ADD" assert op.outputs[0].name == "ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3) def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.linear.ADD" assert ops[-2].name == "simple.linear.MatrixMul" assert ops[-1].outputs[0].name == "simple.linear.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule_in_container(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.l0 = [M.Linear(3, 3) for _ in range(2)] self.l1 = tuple(self.l0) self.l2 = dict(zip(["l2-0", "l2-1"], self.l0)) def forward(self, x): for i in range(2): x = self.l0[i](x) x = self.l1[i](x) x = self.l2["l2-%d" % i](x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].outputs[0].name == "simple.l0.1.ADD[2]" assert ops[-1].name == "simple.l0.1.ADD[2]" assert ops[-2].name == "simple.l0.1.MatrixMul[2]" assert ops[-3].name == "simple.l0.1.ADD[1]" assert ops[-4].name == "simple.l0.1.MatrixMul[1]" assert ops[-5].name == "simple.l0.1.ADD[0]" assert ops[-6].name == "simple.l0.1.MatrixMul[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_named_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3, name="x") def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.x.ADD" assert ops[-2].name == "simple.x.MatrixMul" assert ops[-1].outputs[0].name == "simple.x.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_same_operators(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): x = F.relu(x) x = F.relu(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.RELU[1]" assert ops[-2].name == "simple.RELU[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_not_keep_opr_name(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic, False)[-1] assert op.name == "MUL(x,const<2>[2])[4]" @pytest.mark.parametrize("tensor_name, var_name", [("data", "data"), (None, "arg_0")]) def test_catch_input_name(tensor_name, var_name): def f(x): return 2 * x func = trace(f, symbolic=True, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3)), name=tensor_name) func(x).numpy() file = io.BytesIO() func.dump(file, optimize_for_inference=False, keep_opr_name=True, keep_var_name=2) file.seek(0) outputs = G.load_graph(file).output_vars_list op = cgtools.get_oprs_seq(outputs)[-1] assert op.inputs[0].name == var_name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant = M.QuantStub() self.linear = M.Linear(3, 3, bias=True) self.dequant = M.DequantStub() def forward(self, x): out = self.quant(x) out = self.linear(out) out = self.dequant(out) return out m = Simple("simple") quantize_qat(m)
quantize(m)
megengine.quantization.quantize.quantize
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io import numpy as np import pytest import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, Tensor from megengine.core.tensor import megbrain_graph as G from megengine.jit.tracing import trace from megengine.quantization.quantize import quantize, quantize_qat from megengine.utils.naming import AutoNaming def _dump_and_load(func, symbolic, keep_opr_name=True): AutoNaming.clear() func = trace(func, symbolic=symbolic, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3))) func(x).numpy() file = io.BytesIO() func.dump( file, optimize_for_inference=False, arg_names=("x",), keep_opr_name=keep_opr_name, keep_var_name=2, ) file.seek(0) outputs = G.load_graph(file).output_vars_list ops = cgtools.get_oprs_seq(outputs) return ops @pytest.mark.parametrize("symbolic", [False, True]) def test_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): return x + x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "simple.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_tensor(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(1.0, name="k") def forward(self, x): x = x + x x.name = "o_x" return x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "o_x" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_param(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(2.0, name="k") def forward(self, x): return self.k * x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.inputs[0].name == "x" assert op.inputs[1].name == "simple.k" @pytest.mark.parametrize("symbolic", [False, True]) def test_without_module(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic)[-1] assert op.name == "MUL" @pytest.mark.parametrize("symbolic", [False, True]) def test_ignore_top_module(symbolic): class Simple(M.Module): def forward(self, x): return x + x m = Simple() op = _dump_and_load(m, symbolic)[-1] assert op.name == "ADD" assert op.outputs[0].name == "ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3) def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.linear.ADD" assert ops[-2].name == "simple.linear.MatrixMul" assert ops[-1].outputs[0].name == "simple.linear.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule_in_container(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.l0 = [M.Linear(3, 3) for _ in range(2)] self.l1 = tuple(self.l0) self.l2 = dict(zip(["l2-0", "l2-1"], self.l0)) def forward(self, x): for i in range(2): x = self.l0[i](x) x = self.l1[i](x) x = self.l2["l2-%d" % i](x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].outputs[0].name == "simple.l0.1.ADD[2]" assert ops[-1].name == "simple.l0.1.ADD[2]" assert ops[-2].name == "simple.l0.1.MatrixMul[2]" assert ops[-3].name == "simple.l0.1.ADD[1]" assert ops[-4].name == "simple.l0.1.MatrixMul[1]" assert ops[-5].name == "simple.l0.1.ADD[0]" assert ops[-6].name == "simple.l0.1.MatrixMul[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_named_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3, name="x") def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.x.ADD" assert ops[-2].name == "simple.x.MatrixMul" assert ops[-1].outputs[0].name == "simple.x.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_same_operators(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): x = F.relu(x) x = F.relu(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.RELU[1]" assert ops[-2].name == "simple.RELU[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_not_keep_opr_name(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic, False)[-1] assert op.name == "MUL(x,const<2>[2])[4]" @pytest.mark.parametrize("tensor_name, var_name", [("data", "data"), (None, "arg_0")]) def test_catch_input_name(tensor_name, var_name): def f(x): return 2 * x func = trace(f, symbolic=True, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3)), name=tensor_name) func(x).numpy() file = io.BytesIO() func.dump(file, optimize_for_inference=False, keep_opr_name=True, keep_var_name=2) file.seek(0) outputs = G.load_graph(file).output_vars_list op = cgtools.get_oprs_seq(outputs)[-1] assert op.inputs[0].name == var_name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant = M.QuantStub() self.linear = M.Linear(3, 3, bias=True) self.dequant = M.DequantStub() def forward(self, x): out = self.quant(x) out = self.linear(out) out = self.dequant(out) return out m = Simple("simple") quantize_qat(m) quantize(m) m.eval() ops = _dump_and_load(m, symbolic) ops_name = ( "x", "simple.quant.TypeCvt", "simple.linear.MatrixMul", "simple.linear.ADD", "simple.linear.TypeCvt", "simple.dequant.TypeCvt", ) for op, name in zip(ops, ops_name): assert op.name == name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_user_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant = M.QuantStub() self.linear = M.Linear(3, 3, bias=True, name="user-linear") self.dequant = M.DequantStub() def forward(self, x): out = self.quant(x) out = self.linear(out) out = self.dequant(out) return out m = Simple("simple")
quantize_qat(m)
megengine.quantization.quantize.quantize_qat
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io import numpy as np import pytest import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, Tensor from megengine.core.tensor import megbrain_graph as G from megengine.jit.tracing import trace from megengine.quantization.quantize import quantize, quantize_qat from megengine.utils.naming import AutoNaming def _dump_and_load(func, symbolic, keep_opr_name=True): AutoNaming.clear() func = trace(func, symbolic=symbolic, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3))) func(x).numpy() file = io.BytesIO() func.dump( file, optimize_for_inference=False, arg_names=("x",), keep_opr_name=keep_opr_name, keep_var_name=2, ) file.seek(0) outputs = G.load_graph(file).output_vars_list ops = cgtools.get_oprs_seq(outputs) return ops @pytest.mark.parametrize("symbolic", [False, True]) def test_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): return x + x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "simple.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_tensor(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(1.0, name="k") def forward(self, x): x = x + x x.name = "o_x" return x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "o_x" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_param(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(2.0, name="k") def forward(self, x): return self.k * x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.inputs[0].name == "x" assert op.inputs[1].name == "simple.k" @pytest.mark.parametrize("symbolic", [False, True]) def test_without_module(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic)[-1] assert op.name == "MUL" @pytest.mark.parametrize("symbolic", [False, True]) def test_ignore_top_module(symbolic): class Simple(M.Module): def forward(self, x): return x + x m = Simple() op = _dump_and_load(m, symbolic)[-1] assert op.name == "ADD" assert op.outputs[0].name == "ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3) def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.linear.ADD" assert ops[-2].name == "simple.linear.MatrixMul" assert ops[-1].outputs[0].name == "simple.linear.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule_in_container(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.l0 = [M.Linear(3, 3) for _ in range(2)] self.l1 = tuple(self.l0) self.l2 = dict(zip(["l2-0", "l2-1"], self.l0)) def forward(self, x): for i in range(2): x = self.l0[i](x) x = self.l1[i](x) x = self.l2["l2-%d" % i](x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].outputs[0].name == "simple.l0.1.ADD[2]" assert ops[-1].name == "simple.l0.1.ADD[2]" assert ops[-2].name == "simple.l0.1.MatrixMul[2]" assert ops[-3].name == "simple.l0.1.ADD[1]" assert ops[-4].name == "simple.l0.1.MatrixMul[1]" assert ops[-5].name == "simple.l0.1.ADD[0]" assert ops[-6].name == "simple.l0.1.MatrixMul[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_named_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3, name="x") def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.x.ADD" assert ops[-2].name == "simple.x.MatrixMul" assert ops[-1].outputs[0].name == "simple.x.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_same_operators(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): x = F.relu(x) x = F.relu(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.RELU[1]" assert ops[-2].name == "simple.RELU[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_not_keep_opr_name(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic, False)[-1] assert op.name == "MUL(x,const<2>[2])[4]" @pytest.mark.parametrize("tensor_name, var_name", [("data", "data"), (None, "arg_0")]) def test_catch_input_name(tensor_name, var_name): def f(x): return 2 * x func = trace(f, symbolic=True, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3)), name=tensor_name) func(x).numpy() file = io.BytesIO() func.dump(file, optimize_for_inference=False, keep_opr_name=True, keep_var_name=2) file.seek(0) outputs = G.load_graph(file).output_vars_list op = cgtools.get_oprs_seq(outputs)[-1] assert op.inputs[0].name == var_name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant = M.QuantStub() self.linear = M.Linear(3, 3, bias=True) self.dequant = M.DequantStub() def forward(self, x): out = self.quant(x) out = self.linear(out) out = self.dequant(out) return out m = Simple("simple") quantize_qat(m) quantize(m) m.eval() ops = _dump_and_load(m, symbolic) ops_name = ( "x", "simple.quant.TypeCvt", "simple.linear.MatrixMul", "simple.linear.ADD", "simple.linear.TypeCvt", "simple.dequant.TypeCvt", ) for op, name in zip(ops, ops_name): assert op.name == name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_user_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant = M.QuantStub() self.linear = M.Linear(3, 3, bias=True, name="user-linear") self.dequant = M.DequantStub() def forward(self, x): out = self.quant(x) out = self.linear(out) out = self.dequant(out) return out m = Simple("simple") quantize_qat(m)
quantize(m)
megengine.quantization.quantize.quantize
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io import numpy as np import pytest import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, Tensor from megengine.core.tensor import megbrain_graph as G from megengine.jit.tracing import trace from megengine.quantization.quantize import quantize, quantize_qat from megengine.utils.naming import AutoNaming def _dump_and_load(func, symbolic, keep_opr_name=True): AutoNaming.clear() func = trace(func, symbolic=symbolic, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3))) func(x).numpy() file = io.BytesIO() func.dump( file, optimize_for_inference=False, arg_names=("x",), keep_opr_name=keep_opr_name, keep_var_name=2, ) file.seek(0) outputs = G.load_graph(file).output_vars_list ops = cgtools.get_oprs_seq(outputs) return ops @pytest.mark.parametrize("symbolic", [False, True]) def test_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): return x + x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "simple.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_tensor(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(1.0, name="k") def forward(self, x): x = x + x x.name = "o_x" return x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "o_x" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_param(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(2.0, name="k") def forward(self, x): return self.k * x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.inputs[0].name == "x" assert op.inputs[1].name == "simple.k" @pytest.mark.parametrize("symbolic", [False, True]) def test_without_module(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic)[-1] assert op.name == "MUL" @pytest.mark.parametrize("symbolic", [False, True]) def test_ignore_top_module(symbolic): class Simple(M.Module): def forward(self, x): return x + x m = Simple() op = _dump_and_load(m, symbolic)[-1] assert op.name == "ADD" assert op.outputs[0].name == "ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3) def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.linear.ADD" assert ops[-2].name == "simple.linear.MatrixMul" assert ops[-1].outputs[0].name == "simple.linear.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule_in_container(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.l0 = [M.Linear(3, 3) for _ in range(2)] self.l1 = tuple(self.l0) self.l2 = dict(zip(["l2-0", "l2-1"], self.l0)) def forward(self, x): for i in range(2): x = self.l0[i](x) x = self.l1[i](x) x = self.l2["l2-%d" % i](x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].outputs[0].name == "simple.l0.1.ADD[2]" assert ops[-1].name == "simple.l0.1.ADD[2]" assert ops[-2].name == "simple.l0.1.MatrixMul[2]" assert ops[-3].name == "simple.l0.1.ADD[1]" assert ops[-4].name == "simple.l0.1.MatrixMul[1]" assert ops[-5].name == "simple.l0.1.ADD[0]" assert ops[-6].name == "simple.l0.1.MatrixMul[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_named_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3, name="x") def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.x.ADD" assert ops[-2].name == "simple.x.MatrixMul" assert ops[-1].outputs[0].name == "simple.x.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_same_operators(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): x = F.relu(x) x = F.relu(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.RELU[1]" assert ops[-2].name == "simple.RELU[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_not_keep_opr_name(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic, False)[-1] assert op.name == "MUL(x,const<2>[2])[4]" @pytest.mark.parametrize("tensor_name, var_name", [("data", "data"), (None, "arg_0")]) def test_catch_input_name(tensor_name, var_name): def f(x): return 2 * x func = trace(f, symbolic=True, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3)), name=tensor_name) func(x).numpy() file = io.BytesIO() func.dump(file, optimize_for_inference=False, keep_opr_name=True, keep_var_name=2) file.seek(0) outputs = G.load_graph(file).output_vars_list op = cgtools.get_oprs_seq(outputs)[-1] assert op.inputs[0].name == var_name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant = M.QuantStub() self.linear = M.Linear(3, 3, bias=True) self.dequant = M.DequantStub() def forward(self, x): out = self.quant(x) out = self.linear(out) out = self.dequant(out) return out m = Simple("simple") quantize_qat(m) quantize(m) m.eval() ops = _dump_and_load(m, symbolic) ops_name = ( "x", "simple.quant.TypeCvt", "simple.linear.MatrixMul", "simple.linear.ADD", "simple.linear.TypeCvt", "simple.dequant.TypeCvt", ) for op, name in zip(ops, ops_name): assert op.name == name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_user_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant = M.QuantStub() self.linear = M.Linear(3, 3, bias=True, name="user-linear") self.dequant = M.DequantStub() def forward(self, x): out = self.quant(x) out = self.linear(out) out = self.dequant(out) return out m = Simple("simple") quantize_qat(m) quantize(m) m.eval() ops = _dump_and_load(m, symbolic) ops_name = ( "x", "simple.quant.TypeCvt", "simple.user-linear.MatrixMul", "simple.user-linear.ADD", "simple.user-linear.TypeCvt", "simple.dequant.TypeCvt", ) for op, name in zip(ops, ops_name): assert op.name == name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_user_naming_param(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant = M.QuantStub() self.linear = M.Linear(3, 3, bias=True) self.dequant = M.DequantStub() self.linear.weight.name = "user-weight" self.linear.bias.name = "user-bias" def forward(self, x): out = self.quant(x) out = self.linear(out) out = self.dequant(out) return out m = Simple("simple")
quantize_qat(m)
megengine.quantization.quantize.quantize_qat
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io import numpy as np import pytest import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, Tensor from megengine.core.tensor import megbrain_graph as G from megengine.jit.tracing import trace from megengine.quantization.quantize import quantize, quantize_qat from megengine.utils.naming import AutoNaming def _dump_and_load(func, symbolic, keep_opr_name=True): AutoNaming.clear() func = trace(func, symbolic=symbolic, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3))) func(x).numpy() file = io.BytesIO() func.dump( file, optimize_for_inference=False, arg_names=("x",), keep_opr_name=keep_opr_name, keep_var_name=2, ) file.seek(0) outputs = G.load_graph(file).output_vars_list ops = cgtools.get_oprs_seq(outputs) return ops @pytest.mark.parametrize("symbolic", [False, True]) def test_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): return x + x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "simple.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_tensor(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(1.0, name="k") def forward(self, x): x = x + x x.name = "o_x" return x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "o_x" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_param(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(2.0, name="k") def forward(self, x): return self.k * x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.inputs[0].name == "x" assert op.inputs[1].name == "simple.k" @pytest.mark.parametrize("symbolic", [False, True]) def test_without_module(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic)[-1] assert op.name == "MUL" @pytest.mark.parametrize("symbolic", [False, True]) def test_ignore_top_module(symbolic): class Simple(M.Module): def forward(self, x): return x + x m = Simple() op = _dump_and_load(m, symbolic)[-1] assert op.name == "ADD" assert op.outputs[0].name == "ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3) def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.linear.ADD" assert ops[-2].name == "simple.linear.MatrixMul" assert ops[-1].outputs[0].name == "simple.linear.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule_in_container(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.l0 = [M.Linear(3, 3) for _ in range(2)] self.l1 = tuple(self.l0) self.l2 = dict(zip(["l2-0", "l2-1"], self.l0)) def forward(self, x): for i in range(2): x = self.l0[i](x) x = self.l1[i](x) x = self.l2["l2-%d" % i](x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].outputs[0].name == "simple.l0.1.ADD[2]" assert ops[-1].name == "simple.l0.1.ADD[2]" assert ops[-2].name == "simple.l0.1.MatrixMul[2]" assert ops[-3].name == "simple.l0.1.ADD[1]" assert ops[-4].name == "simple.l0.1.MatrixMul[1]" assert ops[-5].name == "simple.l0.1.ADD[0]" assert ops[-6].name == "simple.l0.1.MatrixMul[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_named_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3, name="x") def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.x.ADD" assert ops[-2].name == "simple.x.MatrixMul" assert ops[-1].outputs[0].name == "simple.x.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_same_operators(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): x = F.relu(x) x = F.relu(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.RELU[1]" assert ops[-2].name == "simple.RELU[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_not_keep_opr_name(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic, False)[-1] assert op.name == "MUL(x,const<2>[2])[4]" @pytest.mark.parametrize("tensor_name, var_name", [("data", "data"), (None, "arg_0")]) def test_catch_input_name(tensor_name, var_name): def f(x): return 2 * x func = trace(f, symbolic=True, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3)), name=tensor_name) func(x).numpy() file = io.BytesIO() func.dump(file, optimize_for_inference=False, keep_opr_name=True, keep_var_name=2) file.seek(0) outputs = G.load_graph(file).output_vars_list op = cgtools.get_oprs_seq(outputs)[-1] assert op.inputs[0].name == var_name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant = M.QuantStub() self.linear = M.Linear(3, 3, bias=True) self.dequant = M.DequantStub() def forward(self, x): out = self.quant(x) out = self.linear(out) out = self.dequant(out) return out m = Simple("simple") quantize_qat(m) quantize(m) m.eval() ops = _dump_and_load(m, symbolic) ops_name = ( "x", "simple.quant.TypeCvt", "simple.linear.MatrixMul", "simple.linear.ADD", "simple.linear.TypeCvt", "simple.dequant.TypeCvt", ) for op, name in zip(ops, ops_name): assert op.name == name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_user_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant = M.QuantStub() self.linear = M.Linear(3, 3, bias=True, name="user-linear") self.dequant = M.DequantStub() def forward(self, x): out = self.quant(x) out = self.linear(out) out = self.dequant(out) return out m = Simple("simple") quantize_qat(m) quantize(m) m.eval() ops = _dump_and_load(m, symbolic) ops_name = ( "x", "simple.quant.TypeCvt", "simple.user-linear.MatrixMul", "simple.user-linear.ADD", "simple.user-linear.TypeCvt", "simple.dequant.TypeCvt", ) for op, name in zip(ops, ops_name): assert op.name == name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_user_naming_param(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant = M.QuantStub() self.linear = M.Linear(3, 3, bias=True) self.dequant = M.DequantStub() self.linear.weight.name = "user-weight" self.linear.bias.name = "user-bias" def forward(self, x): out = self.quant(x) out = self.linear(out) out = self.dequant(out) return out m = Simple("simple") quantize_qat(m)
quantize(m)
megengine.quantization.quantize.quantize
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io import numpy as np import pytest import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, Tensor from megengine.core.tensor import megbrain_graph as G from megengine.jit.tracing import trace from megengine.quantization.quantize import quantize, quantize_qat from megengine.utils.naming import AutoNaming def _dump_and_load(func, symbolic, keep_opr_name=True): AutoNaming.clear() func = trace(func, symbolic=symbolic, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3))) func(x).numpy() file = io.BytesIO() func.dump( file, optimize_for_inference=False, arg_names=("x",), keep_opr_name=keep_opr_name, keep_var_name=2, ) file.seek(0) outputs =
G.load_graph(file)
megengine.core.tensor.megbrain_graph.load_graph
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io import numpy as np import pytest import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, Tensor from megengine.core.tensor import megbrain_graph as G from megengine.jit.tracing import trace from megengine.quantization.quantize import quantize, quantize_qat from megengine.utils.naming import AutoNaming def _dump_and_load(func, symbolic, keep_opr_name=True): AutoNaming.clear() func = trace(func, symbolic=symbolic, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3))) func(x).numpy() file = io.BytesIO() func.dump( file, optimize_for_inference=False, arg_names=("x",), keep_opr_name=keep_opr_name, keep_var_name=2, ) file.seek(0) outputs = G.load_graph(file).output_vars_list ops = cgtools.get_oprs_seq(outputs) return ops @pytest.mark.parametrize("symbolic", [False, True]) def test_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): return x + x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "simple.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_tensor(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(1.0, name="k") def forward(self, x): x = x + x x.name = "o_x" return x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "o_x" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_param(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(2.0, name="k") def forward(self, x): return self.k * x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.inputs[0].name == "x" assert op.inputs[1].name == "simple.k" @pytest.mark.parametrize("symbolic", [False, True]) def test_without_module(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic)[-1] assert op.name == "MUL" @pytest.mark.parametrize("symbolic", [False, True]) def test_ignore_top_module(symbolic): class Simple(M.Module): def forward(self, x): return x + x m = Simple() op = _dump_and_load(m, symbolic)[-1] assert op.name == "ADD" assert op.outputs[0].name == "ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3) def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.linear.ADD" assert ops[-2].name == "simple.linear.MatrixMul" assert ops[-1].outputs[0].name == "simple.linear.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule_in_container(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.l0 = [M.Linear(3, 3) for _ in range(2)] self.l1 = tuple(self.l0) self.l2 = dict(zip(["l2-0", "l2-1"], self.l0)) def forward(self, x): for i in range(2): x = self.l0[i](x) x = self.l1[i](x) x = self.l2["l2-%d" % i](x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].outputs[0].name == "simple.l0.1.ADD[2]" assert ops[-1].name == "simple.l0.1.ADD[2]" assert ops[-2].name == "simple.l0.1.MatrixMul[2]" assert ops[-3].name == "simple.l0.1.ADD[1]" assert ops[-4].name == "simple.l0.1.MatrixMul[1]" assert ops[-5].name == "simple.l0.1.ADD[0]" assert ops[-6].name == "simple.l0.1.MatrixMul[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_named_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3, name="x") def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.x.ADD" assert ops[-2].name == "simple.x.MatrixMul" assert ops[-1].outputs[0].name == "simple.x.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_same_operators(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): x = F.relu(x) x = F.relu(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.RELU[1]" assert ops[-2].name == "simple.RELU[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_not_keep_opr_name(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic, False)[-1] assert op.name == "MUL(x,const<2>[2])[4]" @pytest.mark.parametrize("tensor_name, var_name", [("data", "data"), (None, "arg_0")]) def test_catch_input_name(tensor_name, var_name): def f(x): return 2 * x func = trace(f, symbolic=True, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3)), name=tensor_name) func(x).numpy() file = io.BytesIO() func.dump(file, optimize_for_inference=False, keep_opr_name=True, keep_var_name=2) file.seek(0) outputs =
G.load_graph(file)
megengine.core.tensor.megbrain_graph.load_graph
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io import numpy as np import pytest import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, Tensor from megengine.core.tensor import megbrain_graph as G from megengine.jit.tracing import trace from megengine.quantization.quantize import quantize, quantize_qat from megengine.utils.naming import AutoNaming def _dump_and_load(func, symbolic, keep_opr_name=True): AutoNaming.clear() func = trace(func, symbolic=symbolic, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3))) func(x).numpy() file = io.BytesIO() func.dump( file, optimize_for_inference=False, arg_names=("x",), keep_opr_name=keep_opr_name, keep_var_name=2, ) file.seek(0) outputs = G.load_graph(file).output_vars_list ops = cgtools.get_oprs_seq(outputs) return ops @pytest.mark.parametrize("symbolic", [False, True]) def test_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): return x + x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "simple.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_tensor(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(1.0, name="k") def forward(self, x): x = x + x x.name = "o_x" return x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "o_x" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_param(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(2.0, name="k") def forward(self, x): return self.k * x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.inputs[0].name == "x" assert op.inputs[1].name == "simple.k" @pytest.mark.parametrize("symbolic", [False, True]) def test_without_module(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic)[-1] assert op.name == "MUL" @pytest.mark.parametrize("symbolic", [False, True]) def test_ignore_top_module(symbolic): class Simple(M.Module): def forward(self, x): return x + x m = Simple() op = _dump_and_load(m, symbolic)[-1] assert op.name == "ADD" assert op.outputs[0].name == "ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3) def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.linear.ADD" assert ops[-2].name == "simple.linear.MatrixMul" assert ops[-1].outputs[0].name == "simple.linear.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule_in_container(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.l0 = [M.Linear(3, 3) for _ in range(2)] self.l1 = tuple(self.l0) self.l2 = dict(zip(["l2-0", "l2-1"], self.l0)) def forward(self, x): for i in range(2): x = self.l0[i](x) x = self.l1[i](x) x = self.l2["l2-%d" % i](x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].outputs[0].name == "simple.l0.1.ADD[2]" assert ops[-1].name == "simple.l0.1.ADD[2]" assert ops[-2].name == "simple.l0.1.MatrixMul[2]" assert ops[-3].name == "simple.l0.1.ADD[1]" assert ops[-4].name == "simple.l0.1.MatrixMul[1]" assert ops[-5].name == "simple.l0.1.ADD[0]" assert ops[-6].name == "simple.l0.1.MatrixMul[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_named_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3, name="x") def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.x.ADD" assert ops[-2].name == "simple.x.MatrixMul" assert ops[-1].outputs[0].name == "simple.x.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_same_operators(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): x = F.relu(x) x = F.relu(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.RELU[1]" assert ops[-2].name == "simple.RELU[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_not_keep_opr_name(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic, False)[-1] assert op.name == "MUL(x,const<2>[2])[4]" @pytest.mark.parametrize("tensor_name, var_name", [("data", "data"), (None, "arg_0")]) def test_catch_input_name(tensor_name, var_name): def f(x): return 2 * x func = trace(f, symbolic=True, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3)), name=tensor_name) func(x).numpy() file = io.BytesIO() func.dump(file, optimize_for_inference=False, keep_opr_name=True, keep_var_name=2) file.seek(0) outputs = G.load_graph(file).output_vars_list op =
cgtools.get_oprs_seq(outputs)
megengine.utils.comp_graph_tools.get_oprs_seq
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io import numpy as np import pytest import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, Tensor from megengine.core.tensor import megbrain_graph as G from megengine.jit.tracing import trace from megengine.quantization.quantize import quantize, quantize_qat from megengine.utils.naming import AutoNaming def _dump_and_load(func, symbolic, keep_opr_name=True): AutoNaming.clear() func = trace(func, symbolic=symbolic, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3))) func(x).numpy() file = io.BytesIO() func.dump( file, optimize_for_inference=False, arg_names=("x",), keep_opr_name=keep_opr_name, keep_var_name=2, ) file.seek(0) outputs = G.load_graph(file).output_vars_list ops = cgtools.get_oprs_seq(outputs) return ops @pytest.mark.parametrize("symbolic", [False, True]) def test_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): return x + x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "simple.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_tensor(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k =
Parameter(1.0, name="k")
megengine.Parameter
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io import numpy as np import pytest import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, Tensor from megengine.core.tensor import megbrain_graph as G from megengine.jit.tracing import trace from megengine.quantization.quantize import quantize, quantize_qat from megengine.utils.naming import AutoNaming def _dump_and_load(func, symbolic, keep_opr_name=True): AutoNaming.clear() func = trace(func, symbolic=symbolic, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3))) func(x).numpy() file = io.BytesIO() func.dump( file, optimize_for_inference=False, arg_names=("x",), keep_opr_name=keep_opr_name, keep_var_name=2, ) file.seek(0) outputs = G.load_graph(file).output_vars_list ops = cgtools.get_oprs_seq(outputs) return ops @pytest.mark.parametrize("symbolic", [False, True]) def test_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): return x + x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "simple.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_tensor(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(1.0, name="k") def forward(self, x): x = x + x x.name = "o_x" return x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "o_x" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_param(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k =
Parameter(2.0, name="k")
megengine.Parameter
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io import numpy as np import pytest import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, Tensor from megengine.core.tensor import megbrain_graph as G from megengine.jit.tracing import trace from megengine.quantization.quantize import quantize, quantize_qat from megengine.utils.naming import AutoNaming def _dump_and_load(func, symbolic, keep_opr_name=True): AutoNaming.clear() func = trace(func, symbolic=symbolic, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3))) func(x).numpy() file = io.BytesIO() func.dump( file, optimize_for_inference=False, arg_names=("x",), keep_opr_name=keep_opr_name, keep_var_name=2, ) file.seek(0) outputs = G.load_graph(file).output_vars_list ops = cgtools.get_oprs_seq(outputs) return ops @pytest.mark.parametrize("symbolic", [False, True]) def test_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): return x + x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "simple.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_tensor(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(1.0, name="k") def forward(self, x): x = x + x x.name = "o_x" return x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "o_x" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_param(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(2.0, name="k") def forward(self, x): return self.k * x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.inputs[0].name == "x" assert op.inputs[1].name == "simple.k" @pytest.mark.parametrize("symbolic", [False, True]) def test_without_module(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic)[-1] assert op.name == "MUL" @pytest.mark.parametrize("symbolic", [False, True]) def test_ignore_top_module(symbolic): class Simple(M.Module): def forward(self, x): return x + x m = Simple() op = _dump_and_load(m, symbolic)[-1] assert op.name == "ADD" assert op.outputs[0].name == "ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear =
M.Linear(3, 3)
megengine.module.Linear
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io import numpy as np import pytest import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, Tensor from megengine.core.tensor import megbrain_graph as G from megengine.jit.tracing import trace from megengine.quantization.quantize import quantize, quantize_qat from megengine.utils.naming import AutoNaming def _dump_and_load(func, symbolic, keep_opr_name=True): AutoNaming.clear() func = trace(func, symbolic=symbolic, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3))) func(x).numpy() file = io.BytesIO() func.dump( file, optimize_for_inference=False, arg_names=("x",), keep_opr_name=keep_opr_name, keep_var_name=2, ) file.seek(0) outputs = G.load_graph(file).output_vars_list ops = cgtools.get_oprs_seq(outputs) return ops @pytest.mark.parametrize("symbolic", [False, True]) def test_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): return x + x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "simple.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_tensor(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(1.0, name="k") def forward(self, x): x = x + x x.name = "o_x" return x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "o_x" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_param(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(2.0, name="k") def forward(self, x): return self.k * x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.inputs[0].name == "x" assert op.inputs[1].name == "simple.k" @pytest.mark.parametrize("symbolic", [False, True]) def test_without_module(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic)[-1] assert op.name == "MUL" @pytest.mark.parametrize("symbolic", [False, True]) def test_ignore_top_module(symbolic): class Simple(M.Module): def forward(self, x): return x + x m = Simple() op = _dump_and_load(m, symbolic)[-1] assert op.name == "ADD" assert op.outputs[0].name == "ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3) def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.linear.ADD" assert ops[-2].name == "simple.linear.MatrixMul" assert ops[-1].outputs[0].name == "simple.linear.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule_in_container(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.l0 = [M.Linear(3, 3) for _ in range(2)] self.l1 = tuple(self.l0) self.l2 = dict(zip(["l2-0", "l2-1"], self.l0)) def forward(self, x): for i in range(2): x = self.l0[i](x) x = self.l1[i](x) x = self.l2["l2-%d" % i](x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].outputs[0].name == "simple.l0.1.ADD[2]" assert ops[-1].name == "simple.l0.1.ADD[2]" assert ops[-2].name == "simple.l0.1.MatrixMul[2]" assert ops[-3].name == "simple.l0.1.ADD[1]" assert ops[-4].name == "simple.l0.1.MatrixMul[1]" assert ops[-5].name == "simple.l0.1.ADD[0]" assert ops[-6].name == "simple.l0.1.MatrixMul[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_named_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear =
M.Linear(3, 3, name="x")
megengine.module.Linear
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io import numpy as np import pytest import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, Tensor from megengine.core.tensor import megbrain_graph as G from megengine.jit.tracing import trace from megengine.quantization.quantize import quantize, quantize_qat from megengine.utils.naming import AutoNaming def _dump_and_load(func, symbolic, keep_opr_name=True): AutoNaming.clear() func = trace(func, symbolic=symbolic, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3))) func(x).numpy() file = io.BytesIO() func.dump( file, optimize_for_inference=False, arg_names=("x",), keep_opr_name=keep_opr_name, keep_var_name=2, ) file.seek(0) outputs = G.load_graph(file).output_vars_list ops = cgtools.get_oprs_seq(outputs) return ops @pytest.mark.parametrize("symbolic", [False, True]) def test_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): return x + x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "simple.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_tensor(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(1.0, name="k") def forward(self, x): x = x + x x.name = "o_x" return x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "o_x" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_param(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(2.0, name="k") def forward(self, x): return self.k * x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.inputs[0].name == "x" assert op.inputs[1].name == "simple.k" @pytest.mark.parametrize("symbolic", [False, True]) def test_without_module(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic)[-1] assert op.name == "MUL" @pytest.mark.parametrize("symbolic", [False, True]) def test_ignore_top_module(symbolic): class Simple(M.Module): def forward(self, x): return x + x m = Simple() op = _dump_and_load(m, symbolic)[-1] assert op.name == "ADD" assert op.outputs[0].name == "ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3) def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.linear.ADD" assert ops[-2].name == "simple.linear.MatrixMul" assert ops[-1].outputs[0].name == "simple.linear.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule_in_container(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.l0 = [M.Linear(3, 3) for _ in range(2)] self.l1 = tuple(self.l0) self.l2 = dict(zip(["l2-0", "l2-1"], self.l0)) def forward(self, x): for i in range(2): x = self.l0[i](x) x = self.l1[i](x) x = self.l2["l2-%d" % i](x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].outputs[0].name == "simple.l0.1.ADD[2]" assert ops[-1].name == "simple.l0.1.ADD[2]" assert ops[-2].name == "simple.l0.1.MatrixMul[2]" assert ops[-3].name == "simple.l0.1.ADD[1]" assert ops[-4].name == "simple.l0.1.MatrixMul[1]" assert ops[-5].name == "simple.l0.1.ADD[0]" assert ops[-6].name == "simple.l0.1.MatrixMul[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_named_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3, name="x") def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.x.ADD" assert ops[-2].name == "simple.x.MatrixMul" assert ops[-1].outputs[0].name == "simple.x.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_same_operators(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): x =
F.relu(x)
megengine.functional.relu
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io import numpy as np import pytest import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, Tensor from megengine.core.tensor import megbrain_graph as G from megengine.jit.tracing import trace from megengine.quantization.quantize import quantize, quantize_qat from megengine.utils.naming import AutoNaming def _dump_and_load(func, symbolic, keep_opr_name=True): AutoNaming.clear() func = trace(func, symbolic=symbolic, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3))) func(x).numpy() file = io.BytesIO() func.dump( file, optimize_for_inference=False, arg_names=("x",), keep_opr_name=keep_opr_name, keep_var_name=2, ) file.seek(0) outputs = G.load_graph(file).output_vars_list ops = cgtools.get_oprs_seq(outputs) return ops @pytest.mark.parametrize("symbolic", [False, True]) def test_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): return x + x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "simple.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_tensor(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(1.0, name="k") def forward(self, x): x = x + x x.name = "o_x" return x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "o_x" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_param(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(2.0, name="k") def forward(self, x): return self.k * x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.inputs[0].name == "x" assert op.inputs[1].name == "simple.k" @pytest.mark.parametrize("symbolic", [False, True]) def test_without_module(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic)[-1] assert op.name == "MUL" @pytest.mark.parametrize("symbolic", [False, True]) def test_ignore_top_module(symbolic): class Simple(M.Module): def forward(self, x): return x + x m = Simple() op = _dump_and_load(m, symbolic)[-1] assert op.name == "ADD" assert op.outputs[0].name == "ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3) def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.linear.ADD" assert ops[-2].name == "simple.linear.MatrixMul" assert ops[-1].outputs[0].name == "simple.linear.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule_in_container(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.l0 = [M.Linear(3, 3) for _ in range(2)] self.l1 = tuple(self.l0) self.l2 = dict(zip(["l2-0", "l2-1"], self.l0)) def forward(self, x): for i in range(2): x = self.l0[i](x) x = self.l1[i](x) x = self.l2["l2-%d" % i](x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].outputs[0].name == "simple.l0.1.ADD[2]" assert ops[-1].name == "simple.l0.1.ADD[2]" assert ops[-2].name == "simple.l0.1.MatrixMul[2]" assert ops[-3].name == "simple.l0.1.ADD[1]" assert ops[-4].name == "simple.l0.1.MatrixMul[1]" assert ops[-5].name == "simple.l0.1.ADD[0]" assert ops[-6].name == "simple.l0.1.MatrixMul[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_named_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3, name="x") def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.x.ADD" assert ops[-2].name == "simple.x.MatrixMul" assert ops[-1].outputs[0].name == "simple.x.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_same_operators(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): x = F.relu(x) x =
F.relu(x)
megengine.functional.relu
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io import numpy as np import pytest import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, Tensor from megengine.core.tensor import megbrain_graph as G from megengine.jit.tracing import trace from megengine.quantization.quantize import quantize, quantize_qat from megengine.utils.naming import AutoNaming def _dump_and_load(func, symbolic, keep_opr_name=True): AutoNaming.clear() func = trace(func, symbolic=symbolic, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3))) func(x).numpy() file = io.BytesIO() func.dump( file, optimize_for_inference=False, arg_names=("x",), keep_opr_name=keep_opr_name, keep_var_name=2, ) file.seek(0) outputs = G.load_graph(file).output_vars_list ops = cgtools.get_oprs_seq(outputs) return ops @pytest.mark.parametrize("symbolic", [False, True]) def test_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): return x + x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "simple.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_tensor(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(1.0, name="k") def forward(self, x): x = x + x x.name = "o_x" return x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "o_x" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_param(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(2.0, name="k") def forward(self, x): return self.k * x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.inputs[0].name == "x" assert op.inputs[1].name == "simple.k" @pytest.mark.parametrize("symbolic", [False, True]) def test_without_module(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic)[-1] assert op.name == "MUL" @pytest.mark.parametrize("symbolic", [False, True]) def test_ignore_top_module(symbolic): class Simple(M.Module): def forward(self, x): return x + x m = Simple() op = _dump_and_load(m, symbolic)[-1] assert op.name == "ADD" assert op.outputs[0].name == "ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3) def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.linear.ADD" assert ops[-2].name == "simple.linear.MatrixMul" assert ops[-1].outputs[0].name == "simple.linear.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule_in_container(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.l0 = [M.Linear(3, 3) for _ in range(2)] self.l1 = tuple(self.l0) self.l2 = dict(zip(["l2-0", "l2-1"], self.l0)) def forward(self, x): for i in range(2): x = self.l0[i](x) x = self.l1[i](x) x = self.l2["l2-%d" % i](x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].outputs[0].name == "simple.l0.1.ADD[2]" assert ops[-1].name == "simple.l0.1.ADD[2]" assert ops[-2].name == "simple.l0.1.MatrixMul[2]" assert ops[-3].name == "simple.l0.1.ADD[1]" assert ops[-4].name == "simple.l0.1.MatrixMul[1]" assert ops[-5].name == "simple.l0.1.ADD[0]" assert ops[-6].name == "simple.l0.1.MatrixMul[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_named_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3, name="x") def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.x.ADD" assert ops[-2].name == "simple.x.MatrixMul" assert ops[-1].outputs[0].name == "simple.x.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_same_operators(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): x = F.relu(x) x = F.relu(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.RELU[1]" assert ops[-2].name == "simple.RELU[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_not_keep_opr_name(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic, False)[-1] assert op.name == "MUL(x,const<2>[2])[4]" @pytest.mark.parametrize("tensor_name, var_name", [("data", "data"), (None, "arg_0")]) def test_catch_input_name(tensor_name, var_name): def f(x): return 2 * x func = trace(f, symbolic=True, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3)), name=tensor_name) func(x).numpy() file = io.BytesIO() func.dump(file, optimize_for_inference=False, keep_opr_name=True, keep_var_name=2) file.seek(0) outputs = G.load_graph(file).output_vars_list op = cgtools.get_oprs_seq(outputs)[-1] assert op.inputs[0].name == var_name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant =
M.QuantStub()
megengine.module.QuantStub
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io import numpy as np import pytest import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, Tensor from megengine.core.tensor import megbrain_graph as G from megengine.jit.tracing import trace from megengine.quantization.quantize import quantize, quantize_qat from megengine.utils.naming import AutoNaming def _dump_and_load(func, symbolic, keep_opr_name=True): AutoNaming.clear() func = trace(func, symbolic=symbolic, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3))) func(x).numpy() file = io.BytesIO() func.dump( file, optimize_for_inference=False, arg_names=("x",), keep_opr_name=keep_opr_name, keep_var_name=2, ) file.seek(0) outputs = G.load_graph(file).output_vars_list ops = cgtools.get_oprs_seq(outputs) return ops @pytest.mark.parametrize("symbolic", [False, True]) def test_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): return x + x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "simple.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_tensor(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(1.0, name="k") def forward(self, x): x = x + x x.name = "o_x" return x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "o_x" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_param(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(2.0, name="k") def forward(self, x): return self.k * x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.inputs[0].name == "x" assert op.inputs[1].name == "simple.k" @pytest.mark.parametrize("symbolic", [False, True]) def test_without_module(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic)[-1] assert op.name == "MUL" @pytest.mark.parametrize("symbolic", [False, True]) def test_ignore_top_module(symbolic): class Simple(M.Module): def forward(self, x): return x + x m = Simple() op = _dump_and_load(m, symbolic)[-1] assert op.name == "ADD" assert op.outputs[0].name == "ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3) def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.linear.ADD" assert ops[-2].name == "simple.linear.MatrixMul" assert ops[-1].outputs[0].name == "simple.linear.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule_in_container(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.l0 = [M.Linear(3, 3) for _ in range(2)] self.l1 = tuple(self.l0) self.l2 = dict(zip(["l2-0", "l2-1"], self.l0)) def forward(self, x): for i in range(2): x = self.l0[i](x) x = self.l1[i](x) x = self.l2["l2-%d" % i](x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].outputs[0].name == "simple.l0.1.ADD[2]" assert ops[-1].name == "simple.l0.1.ADD[2]" assert ops[-2].name == "simple.l0.1.MatrixMul[2]" assert ops[-3].name == "simple.l0.1.ADD[1]" assert ops[-4].name == "simple.l0.1.MatrixMul[1]" assert ops[-5].name == "simple.l0.1.ADD[0]" assert ops[-6].name == "simple.l0.1.MatrixMul[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_named_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3, name="x") def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.x.ADD" assert ops[-2].name == "simple.x.MatrixMul" assert ops[-1].outputs[0].name == "simple.x.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_same_operators(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): x = F.relu(x) x = F.relu(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.RELU[1]" assert ops[-2].name == "simple.RELU[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_not_keep_opr_name(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic, False)[-1] assert op.name == "MUL(x,const<2>[2])[4]" @pytest.mark.parametrize("tensor_name, var_name", [("data", "data"), (None, "arg_0")]) def test_catch_input_name(tensor_name, var_name): def f(x): return 2 * x func = trace(f, symbolic=True, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3)), name=tensor_name) func(x).numpy() file = io.BytesIO() func.dump(file, optimize_for_inference=False, keep_opr_name=True, keep_var_name=2) file.seek(0) outputs = G.load_graph(file).output_vars_list op = cgtools.get_oprs_seq(outputs)[-1] assert op.inputs[0].name == var_name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant = M.QuantStub() self.linear =
M.Linear(3, 3, bias=True)
megengine.module.Linear
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io import numpy as np import pytest import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, Tensor from megengine.core.tensor import megbrain_graph as G from megengine.jit.tracing import trace from megengine.quantization.quantize import quantize, quantize_qat from megengine.utils.naming import AutoNaming def _dump_and_load(func, symbolic, keep_opr_name=True): AutoNaming.clear() func = trace(func, symbolic=symbolic, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3))) func(x).numpy() file = io.BytesIO() func.dump( file, optimize_for_inference=False, arg_names=("x",), keep_opr_name=keep_opr_name, keep_var_name=2, ) file.seek(0) outputs = G.load_graph(file).output_vars_list ops = cgtools.get_oprs_seq(outputs) return ops @pytest.mark.parametrize("symbolic", [False, True]) def test_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): return x + x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "simple.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_tensor(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(1.0, name="k") def forward(self, x): x = x + x x.name = "o_x" return x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "o_x" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_param(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(2.0, name="k") def forward(self, x): return self.k * x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.inputs[0].name == "x" assert op.inputs[1].name == "simple.k" @pytest.mark.parametrize("symbolic", [False, True]) def test_without_module(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic)[-1] assert op.name == "MUL" @pytest.mark.parametrize("symbolic", [False, True]) def test_ignore_top_module(symbolic): class Simple(M.Module): def forward(self, x): return x + x m = Simple() op = _dump_and_load(m, symbolic)[-1] assert op.name == "ADD" assert op.outputs[0].name == "ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3) def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.linear.ADD" assert ops[-2].name == "simple.linear.MatrixMul" assert ops[-1].outputs[0].name == "simple.linear.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule_in_container(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.l0 = [M.Linear(3, 3) for _ in range(2)] self.l1 = tuple(self.l0) self.l2 = dict(zip(["l2-0", "l2-1"], self.l0)) def forward(self, x): for i in range(2): x = self.l0[i](x) x = self.l1[i](x) x = self.l2["l2-%d" % i](x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].outputs[0].name == "simple.l0.1.ADD[2]" assert ops[-1].name == "simple.l0.1.ADD[2]" assert ops[-2].name == "simple.l0.1.MatrixMul[2]" assert ops[-3].name == "simple.l0.1.ADD[1]" assert ops[-4].name == "simple.l0.1.MatrixMul[1]" assert ops[-5].name == "simple.l0.1.ADD[0]" assert ops[-6].name == "simple.l0.1.MatrixMul[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_named_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3, name="x") def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.x.ADD" assert ops[-2].name == "simple.x.MatrixMul" assert ops[-1].outputs[0].name == "simple.x.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_same_operators(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): x = F.relu(x) x = F.relu(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.RELU[1]" assert ops[-2].name == "simple.RELU[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_not_keep_opr_name(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic, False)[-1] assert op.name == "MUL(x,const<2>[2])[4]" @pytest.mark.parametrize("tensor_name, var_name", [("data", "data"), (None, "arg_0")]) def test_catch_input_name(tensor_name, var_name): def f(x): return 2 * x func = trace(f, symbolic=True, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3)), name=tensor_name) func(x).numpy() file = io.BytesIO() func.dump(file, optimize_for_inference=False, keep_opr_name=True, keep_var_name=2) file.seek(0) outputs = G.load_graph(file).output_vars_list op = cgtools.get_oprs_seq(outputs)[-1] assert op.inputs[0].name == var_name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant = M.QuantStub() self.linear = M.Linear(3, 3, bias=True) self.dequant =
M.DequantStub()
megengine.module.DequantStub
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io import numpy as np import pytest import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, Tensor from megengine.core.tensor import megbrain_graph as G from megengine.jit.tracing import trace from megengine.quantization.quantize import quantize, quantize_qat from megengine.utils.naming import AutoNaming def _dump_and_load(func, symbolic, keep_opr_name=True): AutoNaming.clear() func = trace(func, symbolic=symbolic, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3))) func(x).numpy() file = io.BytesIO() func.dump( file, optimize_for_inference=False, arg_names=("x",), keep_opr_name=keep_opr_name, keep_var_name=2, ) file.seek(0) outputs = G.load_graph(file).output_vars_list ops = cgtools.get_oprs_seq(outputs) return ops @pytest.mark.parametrize("symbolic", [False, True]) def test_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): return x + x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "simple.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_tensor(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(1.0, name="k") def forward(self, x): x = x + x x.name = "o_x" return x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "o_x" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_param(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(2.0, name="k") def forward(self, x): return self.k * x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.inputs[0].name == "x" assert op.inputs[1].name == "simple.k" @pytest.mark.parametrize("symbolic", [False, True]) def test_without_module(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic)[-1] assert op.name == "MUL" @pytest.mark.parametrize("symbolic", [False, True]) def test_ignore_top_module(symbolic): class Simple(M.Module): def forward(self, x): return x + x m = Simple() op = _dump_and_load(m, symbolic)[-1] assert op.name == "ADD" assert op.outputs[0].name == "ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3) def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.linear.ADD" assert ops[-2].name == "simple.linear.MatrixMul" assert ops[-1].outputs[0].name == "simple.linear.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule_in_container(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.l0 = [M.Linear(3, 3) for _ in range(2)] self.l1 = tuple(self.l0) self.l2 = dict(zip(["l2-0", "l2-1"], self.l0)) def forward(self, x): for i in range(2): x = self.l0[i](x) x = self.l1[i](x) x = self.l2["l2-%d" % i](x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].outputs[0].name == "simple.l0.1.ADD[2]" assert ops[-1].name == "simple.l0.1.ADD[2]" assert ops[-2].name == "simple.l0.1.MatrixMul[2]" assert ops[-3].name == "simple.l0.1.ADD[1]" assert ops[-4].name == "simple.l0.1.MatrixMul[1]" assert ops[-5].name == "simple.l0.1.ADD[0]" assert ops[-6].name == "simple.l0.1.MatrixMul[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_named_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3, name="x") def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.x.ADD" assert ops[-2].name == "simple.x.MatrixMul" assert ops[-1].outputs[0].name == "simple.x.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_same_operators(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): x = F.relu(x) x = F.relu(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.RELU[1]" assert ops[-2].name == "simple.RELU[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_not_keep_opr_name(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic, False)[-1] assert op.name == "MUL(x,const<2>[2])[4]" @pytest.mark.parametrize("tensor_name, var_name", [("data", "data"), (None, "arg_0")]) def test_catch_input_name(tensor_name, var_name): def f(x): return 2 * x func = trace(f, symbolic=True, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3)), name=tensor_name) func(x).numpy() file = io.BytesIO() func.dump(file, optimize_for_inference=False, keep_opr_name=True, keep_var_name=2) file.seek(0) outputs = G.load_graph(file).output_vars_list op = cgtools.get_oprs_seq(outputs)[-1] assert op.inputs[0].name == var_name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant = M.QuantStub() self.linear = M.Linear(3, 3, bias=True) self.dequant = M.DequantStub() def forward(self, x): out = self.quant(x) out = self.linear(out) out = self.dequant(out) return out m = Simple("simple") quantize_qat(m) quantize(m) m.eval() ops = _dump_and_load(m, symbolic) ops_name = ( "x", "simple.quant.TypeCvt", "simple.linear.MatrixMul", "simple.linear.ADD", "simple.linear.TypeCvt", "simple.dequant.TypeCvt", ) for op, name in zip(ops, ops_name): assert op.name == name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_user_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant =
M.QuantStub()
megengine.module.QuantStub
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io import numpy as np import pytest import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, Tensor from megengine.core.tensor import megbrain_graph as G from megengine.jit.tracing import trace from megengine.quantization.quantize import quantize, quantize_qat from megengine.utils.naming import AutoNaming def _dump_and_load(func, symbolic, keep_opr_name=True): AutoNaming.clear() func = trace(func, symbolic=symbolic, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3))) func(x).numpy() file = io.BytesIO() func.dump( file, optimize_for_inference=False, arg_names=("x",), keep_opr_name=keep_opr_name, keep_var_name=2, ) file.seek(0) outputs = G.load_graph(file).output_vars_list ops = cgtools.get_oprs_seq(outputs) return ops @pytest.mark.parametrize("symbolic", [False, True]) def test_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): return x + x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "simple.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_tensor(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(1.0, name="k") def forward(self, x): x = x + x x.name = "o_x" return x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "o_x" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_param(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(2.0, name="k") def forward(self, x): return self.k * x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.inputs[0].name == "x" assert op.inputs[1].name == "simple.k" @pytest.mark.parametrize("symbolic", [False, True]) def test_without_module(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic)[-1] assert op.name == "MUL" @pytest.mark.parametrize("symbolic", [False, True]) def test_ignore_top_module(symbolic): class Simple(M.Module): def forward(self, x): return x + x m = Simple() op = _dump_and_load(m, symbolic)[-1] assert op.name == "ADD" assert op.outputs[0].name == "ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3) def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.linear.ADD" assert ops[-2].name == "simple.linear.MatrixMul" assert ops[-1].outputs[0].name == "simple.linear.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule_in_container(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.l0 = [M.Linear(3, 3) for _ in range(2)] self.l1 = tuple(self.l0) self.l2 = dict(zip(["l2-0", "l2-1"], self.l0)) def forward(self, x): for i in range(2): x = self.l0[i](x) x = self.l1[i](x) x = self.l2["l2-%d" % i](x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].outputs[0].name == "simple.l0.1.ADD[2]" assert ops[-1].name == "simple.l0.1.ADD[2]" assert ops[-2].name == "simple.l0.1.MatrixMul[2]" assert ops[-3].name == "simple.l0.1.ADD[1]" assert ops[-4].name == "simple.l0.1.MatrixMul[1]" assert ops[-5].name == "simple.l0.1.ADD[0]" assert ops[-6].name == "simple.l0.1.MatrixMul[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_named_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3, name="x") def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.x.ADD" assert ops[-2].name == "simple.x.MatrixMul" assert ops[-1].outputs[0].name == "simple.x.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_same_operators(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): x = F.relu(x) x = F.relu(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.RELU[1]" assert ops[-2].name == "simple.RELU[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_not_keep_opr_name(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic, False)[-1] assert op.name == "MUL(x,const<2>[2])[4]" @pytest.mark.parametrize("tensor_name, var_name", [("data", "data"), (None, "arg_0")]) def test_catch_input_name(tensor_name, var_name): def f(x): return 2 * x func = trace(f, symbolic=True, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3)), name=tensor_name) func(x).numpy() file = io.BytesIO() func.dump(file, optimize_for_inference=False, keep_opr_name=True, keep_var_name=2) file.seek(0) outputs = G.load_graph(file).output_vars_list op = cgtools.get_oprs_seq(outputs)[-1] assert op.inputs[0].name == var_name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant = M.QuantStub() self.linear = M.Linear(3, 3, bias=True) self.dequant = M.DequantStub() def forward(self, x): out = self.quant(x) out = self.linear(out) out = self.dequant(out) return out m = Simple("simple") quantize_qat(m) quantize(m) m.eval() ops = _dump_and_load(m, symbolic) ops_name = ( "x", "simple.quant.TypeCvt", "simple.linear.MatrixMul", "simple.linear.ADD", "simple.linear.TypeCvt", "simple.dequant.TypeCvt", ) for op, name in zip(ops, ops_name): assert op.name == name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_user_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant = M.QuantStub() self.linear =
M.Linear(3, 3, bias=True, name="user-linear")
megengine.module.Linear
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io import numpy as np import pytest import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, Tensor from megengine.core.tensor import megbrain_graph as G from megengine.jit.tracing import trace from megengine.quantization.quantize import quantize, quantize_qat from megengine.utils.naming import AutoNaming def _dump_and_load(func, symbolic, keep_opr_name=True): AutoNaming.clear() func = trace(func, symbolic=symbolic, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3))) func(x).numpy() file = io.BytesIO() func.dump( file, optimize_for_inference=False, arg_names=("x",), keep_opr_name=keep_opr_name, keep_var_name=2, ) file.seek(0) outputs = G.load_graph(file).output_vars_list ops = cgtools.get_oprs_seq(outputs) return ops @pytest.mark.parametrize("symbolic", [False, True]) def test_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): return x + x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "simple.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_tensor(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(1.0, name="k") def forward(self, x): x = x + x x.name = "o_x" return x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "o_x" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_param(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(2.0, name="k") def forward(self, x): return self.k * x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.inputs[0].name == "x" assert op.inputs[1].name == "simple.k" @pytest.mark.parametrize("symbolic", [False, True]) def test_without_module(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic)[-1] assert op.name == "MUL" @pytest.mark.parametrize("symbolic", [False, True]) def test_ignore_top_module(symbolic): class Simple(M.Module): def forward(self, x): return x + x m = Simple() op = _dump_and_load(m, symbolic)[-1] assert op.name == "ADD" assert op.outputs[0].name == "ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3) def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.linear.ADD" assert ops[-2].name == "simple.linear.MatrixMul" assert ops[-1].outputs[0].name == "simple.linear.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule_in_container(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.l0 = [M.Linear(3, 3) for _ in range(2)] self.l1 = tuple(self.l0) self.l2 = dict(zip(["l2-0", "l2-1"], self.l0)) def forward(self, x): for i in range(2): x = self.l0[i](x) x = self.l1[i](x) x = self.l2["l2-%d" % i](x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].outputs[0].name == "simple.l0.1.ADD[2]" assert ops[-1].name == "simple.l0.1.ADD[2]" assert ops[-2].name == "simple.l0.1.MatrixMul[2]" assert ops[-3].name == "simple.l0.1.ADD[1]" assert ops[-4].name == "simple.l0.1.MatrixMul[1]" assert ops[-5].name == "simple.l0.1.ADD[0]" assert ops[-6].name == "simple.l0.1.MatrixMul[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_named_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3, name="x") def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.x.ADD" assert ops[-2].name == "simple.x.MatrixMul" assert ops[-1].outputs[0].name == "simple.x.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_same_operators(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): x = F.relu(x) x = F.relu(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.RELU[1]" assert ops[-2].name == "simple.RELU[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_not_keep_opr_name(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic, False)[-1] assert op.name == "MUL(x,const<2>[2])[4]" @pytest.mark.parametrize("tensor_name, var_name", [("data", "data"), (None, "arg_0")]) def test_catch_input_name(tensor_name, var_name): def f(x): return 2 * x func = trace(f, symbolic=True, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3)), name=tensor_name) func(x).numpy() file = io.BytesIO() func.dump(file, optimize_for_inference=False, keep_opr_name=True, keep_var_name=2) file.seek(0) outputs = G.load_graph(file).output_vars_list op = cgtools.get_oprs_seq(outputs)[-1] assert op.inputs[0].name == var_name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant = M.QuantStub() self.linear = M.Linear(3, 3, bias=True) self.dequant = M.DequantStub() def forward(self, x): out = self.quant(x) out = self.linear(out) out = self.dequant(out) return out m = Simple("simple") quantize_qat(m) quantize(m) m.eval() ops = _dump_and_load(m, symbolic) ops_name = ( "x", "simple.quant.TypeCvt", "simple.linear.MatrixMul", "simple.linear.ADD", "simple.linear.TypeCvt", "simple.dequant.TypeCvt", ) for op, name in zip(ops, ops_name): assert op.name == name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_user_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant = M.QuantStub() self.linear = M.Linear(3, 3, bias=True, name="user-linear") self.dequant =
M.DequantStub()
megengine.module.DequantStub
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io import numpy as np import pytest import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, Tensor from megengine.core.tensor import megbrain_graph as G from megengine.jit.tracing import trace from megengine.quantization.quantize import quantize, quantize_qat from megengine.utils.naming import AutoNaming def _dump_and_load(func, symbolic, keep_opr_name=True): AutoNaming.clear() func = trace(func, symbolic=symbolic, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3))) func(x).numpy() file = io.BytesIO() func.dump( file, optimize_for_inference=False, arg_names=("x",), keep_opr_name=keep_opr_name, keep_var_name=2, ) file.seek(0) outputs = G.load_graph(file).output_vars_list ops = cgtools.get_oprs_seq(outputs) return ops @pytest.mark.parametrize("symbolic", [False, True]) def test_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): return x + x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "simple.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_tensor(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(1.0, name="k") def forward(self, x): x = x + x x.name = "o_x" return x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "o_x" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_param(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(2.0, name="k") def forward(self, x): return self.k * x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.inputs[0].name == "x" assert op.inputs[1].name == "simple.k" @pytest.mark.parametrize("symbolic", [False, True]) def test_without_module(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic)[-1] assert op.name == "MUL" @pytest.mark.parametrize("symbolic", [False, True]) def test_ignore_top_module(symbolic): class Simple(M.Module): def forward(self, x): return x + x m = Simple() op = _dump_and_load(m, symbolic)[-1] assert op.name == "ADD" assert op.outputs[0].name == "ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3) def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.linear.ADD" assert ops[-2].name == "simple.linear.MatrixMul" assert ops[-1].outputs[0].name == "simple.linear.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule_in_container(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.l0 = [M.Linear(3, 3) for _ in range(2)] self.l1 = tuple(self.l0) self.l2 = dict(zip(["l2-0", "l2-1"], self.l0)) def forward(self, x): for i in range(2): x = self.l0[i](x) x = self.l1[i](x) x = self.l2["l2-%d" % i](x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].outputs[0].name == "simple.l0.1.ADD[2]" assert ops[-1].name == "simple.l0.1.ADD[2]" assert ops[-2].name == "simple.l0.1.MatrixMul[2]" assert ops[-3].name == "simple.l0.1.ADD[1]" assert ops[-4].name == "simple.l0.1.MatrixMul[1]" assert ops[-5].name == "simple.l0.1.ADD[0]" assert ops[-6].name == "simple.l0.1.MatrixMul[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_named_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3, name="x") def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.x.ADD" assert ops[-2].name == "simple.x.MatrixMul" assert ops[-1].outputs[0].name == "simple.x.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_same_operators(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): x = F.relu(x) x = F.relu(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.RELU[1]" assert ops[-2].name == "simple.RELU[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_not_keep_opr_name(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic, False)[-1] assert op.name == "MUL(x,const<2>[2])[4]" @pytest.mark.parametrize("tensor_name, var_name", [("data", "data"), (None, "arg_0")]) def test_catch_input_name(tensor_name, var_name): def f(x): return 2 * x func = trace(f, symbolic=True, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3)), name=tensor_name) func(x).numpy() file = io.BytesIO() func.dump(file, optimize_for_inference=False, keep_opr_name=True, keep_var_name=2) file.seek(0) outputs = G.load_graph(file).output_vars_list op = cgtools.get_oprs_seq(outputs)[-1] assert op.inputs[0].name == var_name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant = M.QuantStub() self.linear = M.Linear(3, 3, bias=True) self.dequant = M.DequantStub() def forward(self, x): out = self.quant(x) out = self.linear(out) out = self.dequant(out) return out m = Simple("simple") quantize_qat(m) quantize(m) m.eval() ops = _dump_and_load(m, symbolic) ops_name = ( "x", "simple.quant.TypeCvt", "simple.linear.MatrixMul", "simple.linear.ADD", "simple.linear.TypeCvt", "simple.dequant.TypeCvt", ) for op, name in zip(ops, ops_name): assert op.name == name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_user_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant = M.QuantStub() self.linear = M.Linear(3, 3, bias=True, name="user-linear") self.dequant = M.DequantStub() def forward(self, x): out = self.quant(x) out = self.linear(out) out = self.dequant(out) return out m = Simple("simple") quantize_qat(m) quantize(m) m.eval() ops = _dump_and_load(m, symbolic) ops_name = ( "x", "simple.quant.TypeCvt", "simple.user-linear.MatrixMul", "simple.user-linear.ADD", "simple.user-linear.TypeCvt", "simple.dequant.TypeCvt", ) for op, name in zip(ops, ops_name): assert op.name == name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_user_naming_param(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant =
M.QuantStub()
megengine.module.QuantStub
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io import numpy as np import pytest import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, Tensor from megengine.core.tensor import megbrain_graph as G from megengine.jit.tracing import trace from megengine.quantization.quantize import quantize, quantize_qat from megengine.utils.naming import AutoNaming def _dump_and_load(func, symbolic, keep_opr_name=True): AutoNaming.clear() func = trace(func, symbolic=symbolic, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3))) func(x).numpy() file = io.BytesIO() func.dump( file, optimize_for_inference=False, arg_names=("x",), keep_opr_name=keep_opr_name, keep_var_name=2, ) file.seek(0) outputs = G.load_graph(file).output_vars_list ops = cgtools.get_oprs_seq(outputs) return ops @pytest.mark.parametrize("symbolic", [False, True]) def test_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): return x + x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "simple.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_tensor(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(1.0, name="k") def forward(self, x): x = x + x x.name = "o_x" return x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "o_x" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_param(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(2.0, name="k") def forward(self, x): return self.k * x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.inputs[0].name == "x" assert op.inputs[1].name == "simple.k" @pytest.mark.parametrize("symbolic", [False, True]) def test_without_module(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic)[-1] assert op.name == "MUL" @pytest.mark.parametrize("symbolic", [False, True]) def test_ignore_top_module(symbolic): class Simple(M.Module): def forward(self, x): return x + x m = Simple() op = _dump_and_load(m, symbolic)[-1] assert op.name == "ADD" assert op.outputs[0].name == "ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3) def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.linear.ADD" assert ops[-2].name == "simple.linear.MatrixMul" assert ops[-1].outputs[0].name == "simple.linear.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule_in_container(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.l0 = [M.Linear(3, 3) for _ in range(2)] self.l1 = tuple(self.l0) self.l2 = dict(zip(["l2-0", "l2-1"], self.l0)) def forward(self, x): for i in range(2): x = self.l0[i](x) x = self.l1[i](x) x = self.l2["l2-%d" % i](x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].outputs[0].name == "simple.l0.1.ADD[2]" assert ops[-1].name == "simple.l0.1.ADD[2]" assert ops[-2].name == "simple.l0.1.MatrixMul[2]" assert ops[-3].name == "simple.l0.1.ADD[1]" assert ops[-4].name == "simple.l0.1.MatrixMul[1]" assert ops[-5].name == "simple.l0.1.ADD[0]" assert ops[-6].name == "simple.l0.1.MatrixMul[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_named_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3, name="x") def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.x.ADD" assert ops[-2].name == "simple.x.MatrixMul" assert ops[-1].outputs[0].name == "simple.x.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_same_operators(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): x = F.relu(x) x = F.relu(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.RELU[1]" assert ops[-2].name == "simple.RELU[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_not_keep_opr_name(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic, False)[-1] assert op.name == "MUL(x,const<2>[2])[4]" @pytest.mark.parametrize("tensor_name, var_name", [("data", "data"), (None, "arg_0")]) def test_catch_input_name(tensor_name, var_name): def f(x): return 2 * x func = trace(f, symbolic=True, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3)), name=tensor_name) func(x).numpy() file = io.BytesIO() func.dump(file, optimize_for_inference=False, keep_opr_name=True, keep_var_name=2) file.seek(0) outputs = G.load_graph(file).output_vars_list op = cgtools.get_oprs_seq(outputs)[-1] assert op.inputs[0].name == var_name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant = M.QuantStub() self.linear = M.Linear(3, 3, bias=True) self.dequant = M.DequantStub() def forward(self, x): out = self.quant(x) out = self.linear(out) out = self.dequant(out) return out m = Simple("simple") quantize_qat(m) quantize(m) m.eval() ops = _dump_and_load(m, symbolic) ops_name = ( "x", "simple.quant.TypeCvt", "simple.linear.MatrixMul", "simple.linear.ADD", "simple.linear.TypeCvt", "simple.dequant.TypeCvt", ) for op, name in zip(ops, ops_name): assert op.name == name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_user_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant = M.QuantStub() self.linear = M.Linear(3, 3, bias=True, name="user-linear") self.dequant = M.DequantStub() def forward(self, x): out = self.quant(x) out = self.linear(out) out = self.dequant(out) return out m = Simple("simple") quantize_qat(m) quantize(m) m.eval() ops = _dump_and_load(m, symbolic) ops_name = ( "x", "simple.quant.TypeCvt", "simple.user-linear.MatrixMul", "simple.user-linear.ADD", "simple.user-linear.TypeCvt", "simple.dequant.TypeCvt", ) for op, name in zip(ops, ops_name): assert op.name == name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_user_naming_param(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant = M.QuantStub() self.linear =
M.Linear(3, 3, bias=True)
megengine.module.Linear
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io import numpy as np import pytest import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, Tensor from megengine.core.tensor import megbrain_graph as G from megengine.jit.tracing import trace from megengine.quantization.quantize import quantize, quantize_qat from megengine.utils.naming import AutoNaming def _dump_and_load(func, symbolic, keep_opr_name=True): AutoNaming.clear() func = trace(func, symbolic=symbolic, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3))) func(x).numpy() file = io.BytesIO() func.dump( file, optimize_for_inference=False, arg_names=("x",), keep_opr_name=keep_opr_name, keep_var_name=2, ) file.seek(0) outputs = G.load_graph(file).output_vars_list ops = cgtools.get_oprs_seq(outputs) return ops @pytest.mark.parametrize("symbolic", [False, True]) def test_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): return x + x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "simple.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_tensor(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(1.0, name="k") def forward(self, x): x = x + x x.name = "o_x" return x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "o_x" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_param(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(2.0, name="k") def forward(self, x): return self.k * x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.inputs[0].name == "x" assert op.inputs[1].name == "simple.k" @pytest.mark.parametrize("symbolic", [False, True]) def test_without_module(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic)[-1] assert op.name == "MUL" @pytest.mark.parametrize("symbolic", [False, True]) def test_ignore_top_module(symbolic): class Simple(M.Module): def forward(self, x): return x + x m = Simple() op = _dump_and_load(m, symbolic)[-1] assert op.name == "ADD" assert op.outputs[0].name == "ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3) def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.linear.ADD" assert ops[-2].name == "simple.linear.MatrixMul" assert ops[-1].outputs[0].name == "simple.linear.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule_in_container(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.l0 = [M.Linear(3, 3) for _ in range(2)] self.l1 = tuple(self.l0) self.l2 = dict(zip(["l2-0", "l2-1"], self.l0)) def forward(self, x): for i in range(2): x = self.l0[i](x) x = self.l1[i](x) x = self.l2["l2-%d" % i](x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].outputs[0].name == "simple.l0.1.ADD[2]" assert ops[-1].name == "simple.l0.1.ADD[2]" assert ops[-2].name == "simple.l0.1.MatrixMul[2]" assert ops[-3].name == "simple.l0.1.ADD[1]" assert ops[-4].name == "simple.l0.1.MatrixMul[1]" assert ops[-5].name == "simple.l0.1.ADD[0]" assert ops[-6].name == "simple.l0.1.MatrixMul[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_named_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3, name="x") def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.x.ADD" assert ops[-2].name == "simple.x.MatrixMul" assert ops[-1].outputs[0].name == "simple.x.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_same_operators(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): x = F.relu(x) x = F.relu(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.RELU[1]" assert ops[-2].name == "simple.RELU[0]" @pytest.mark.parametrize("symbolic", [False, True]) def test_not_keep_opr_name(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic, False)[-1] assert op.name == "MUL(x,const<2>[2])[4]" @pytest.mark.parametrize("tensor_name, var_name", [("data", "data"), (None, "arg_0")]) def test_catch_input_name(tensor_name, var_name): def f(x): return 2 * x func = trace(f, symbolic=True, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3)), name=tensor_name) func(x).numpy() file = io.BytesIO() func.dump(file, optimize_for_inference=False, keep_opr_name=True, keep_var_name=2) file.seek(0) outputs = G.load_graph(file).output_vars_list op = cgtools.get_oprs_seq(outputs)[-1] assert op.inputs[0].name == var_name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant = M.QuantStub() self.linear = M.Linear(3, 3, bias=True) self.dequant = M.DequantStub() def forward(self, x): out = self.quant(x) out = self.linear(out) out = self.dequant(out) return out m = Simple("simple") quantize_qat(m) quantize(m) m.eval() ops = _dump_and_load(m, symbolic) ops_name = ( "x", "simple.quant.TypeCvt", "simple.linear.MatrixMul", "simple.linear.ADD", "simple.linear.TypeCvt", "simple.dequant.TypeCvt", ) for op, name in zip(ops, ops_name): assert op.name == name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_user_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant = M.QuantStub() self.linear = M.Linear(3, 3, bias=True, name="user-linear") self.dequant = M.DequantStub() def forward(self, x): out = self.quant(x) out = self.linear(out) out = self.dequant(out) return out m = Simple("simple") quantize_qat(m) quantize(m) m.eval() ops = _dump_and_load(m, symbolic) ops_name = ( "x", "simple.quant.TypeCvt", "simple.user-linear.MatrixMul", "simple.user-linear.ADD", "simple.user-linear.TypeCvt", "simple.dequant.TypeCvt", ) for op, name in zip(ops, ops_name): assert op.name == name @pytest.mark.parametrize("symbolic", [False, True]) def test_quantized_module_user_naming_param(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__(name=name) self.quant = M.QuantStub() self.linear = M.Linear(3, 3, bias=True) self.dequant =
M.DequantStub()
megengine.module.DequantStub
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import io import numpy as np import pytest import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, Tensor from megengine.core.tensor import megbrain_graph as G from megengine.jit.tracing import trace from megengine.quantization.quantize import quantize, quantize_qat from megengine.utils.naming import AutoNaming def _dump_and_load(func, symbolic, keep_opr_name=True): AutoNaming.clear() func = trace(func, symbolic=symbolic, capture_as_const=True) x = Tensor(np.ones(shape=(2, 3))) func(x).numpy() file = io.BytesIO() func.dump( file, optimize_for_inference=False, arg_names=("x",), keep_opr_name=keep_opr_name, keep_var_name=2, ) file.seek(0) outputs = G.load_graph(file).output_vars_list ops = cgtools.get_oprs_seq(outputs) return ops @pytest.mark.parametrize("symbolic", [False, True]) def test_auto_naming(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name def forward(self, x): return x + x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "simple.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_tensor(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(1.0, name="k") def forward(self, x): x = x + x x.name = "o_x" return x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.name == "simple.ADD" assert op.outputs[0].name == "o_x" @pytest.mark.parametrize("symbolic", [False, True]) def test_user_named_param(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.k = Parameter(2.0, name="k") def forward(self, x): return self.k * x m = Simple("simple") op = _dump_and_load(m, symbolic)[-1] assert op.inputs[0].name == "x" assert op.inputs[1].name == "simple.k" @pytest.mark.parametrize("symbolic", [False, True]) def test_without_module(symbolic): def f(x): return 2 * x op = _dump_and_load(f, symbolic)[-1] assert op.name == "MUL" @pytest.mark.parametrize("symbolic", [False, True]) def test_ignore_top_module(symbolic): class Simple(M.Module): def forward(self, x): return x + x m = Simple() op = _dump_and_load(m, symbolic)[-1] assert op.name == "ADD" assert op.outputs[0].name == "ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.linear = M.Linear(3, 3) def forward(self, x): x = self.linear(x) return x m = Simple("simple") ops = _dump_and_load(m, symbolic) assert ops[-1].name == "simple.linear.ADD" assert ops[-2].name == "simple.linear.MatrixMul" assert ops[-1].outputs[0].name == "simple.linear.ADD" @pytest.mark.parametrize("symbolic", [False, True]) def test_with_submodule_in_container(symbolic): class Simple(M.Module): def __init__(self, name): super().__init__() self.name = name self.l0 = [
M.Linear(3, 3)
megengine.module.Linear
import megengine import megengine.module as M import megengine.functional as F def default_init_weights(module, scale=1, nonlinearity="relu"): """ nonlinearity: leaky_relu """ for m in module.modules(): if isinstance(m, M.Conv2d):
M.init.msra_normal_(m.weight, mode="fan_in", nonlinearity=nonlinearity)
megengine.module.init.msra_normal_
import megengine import megengine.module as M import megengine.functional as F def default_init_weights(module, scale=1, nonlinearity="relu"): """ nonlinearity: leaky_relu """ for m in module.modules(): if isinstance(m, M.Conv2d): M.init.msra_normal_(m.weight, mode="fan_in", nonlinearity=nonlinearity) m.weight *= scale if m.bias is not None:
M.init.zeros_(m.bias)
megengine.module.init.zeros_
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine.functional as F from megengine import Parameter from .init import ones_, zeros_ from .module import Module class GroupNorm(Module): """ Simple implementation of GroupNorm. Only support 4d tensor now. Reference: https://arxiv.org/pdf/1803.08494.pdf. """ def __init__(self, num_groups, num_channels, eps=1e-5, affine=True, **kwargs): super().__init__(**kwargs) assert num_channels % num_groups == 0 self.num_groups = num_groups self.num_channels = num_channels self.eps = eps self.affine = affine if self.affine: self.weight = Parameter(np.ones(num_channels, dtype=np.float32)) self.bias = Parameter(np.zeros(num_channels, dtype=np.float32)) else: self.weight = None self.bias = None self.reset_parameters() def reset_parameters(self): if self.affine: ones_(self.weight) zeros_(self.bias) def forward(self, x): N, C, H, W = x.shape assert C == self.num_channels x = x.reshape(N, self.num_groups, -1) mean = x.mean(axis=2, keepdims=True) var = (x * x).mean(axis=2, keepdims=True) - mean * mean x = (x - mean) /
F.sqrt(var + self.eps)
megengine.functional.sqrt
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine.functional as F from megengine import Parameter from .init import ones_, zeros_ from .module import Module class GroupNorm(Module): """ Simple implementation of GroupNorm. Only support 4d tensor now. Reference: https://arxiv.org/pdf/1803.08494.pdf. """ def __init__(self, num_groups, num_channels, eps=1e-5, affine=True, **kwargs): super().__init__(**kwargs) assert num_channels % num_groups == 0 self.num_groups = num_groups self.num_channels = num_channels self.eps = eps self.affine = affine if self.affine: self.weight = Parameter(np.ones(num_channels, dtype=np.float32)) self.bias = Parameter(np.zeros(num_channels, dtype=np.float32)) else: self.weight = None self.bias = None self.reset_parameters() def reset_parameters(self): if self.affine: ones_(self.weight) zeros_(self.bias) def forward(self, x): N, C, H, W = x.shape assert C == self.num_channels x = x.reshape(N, self.num_groups, -1) mean = x.mean(axis=2, keepdims=True) var = (x * x).mean(axis=2, keepdims=True) - mean * mean x = (x - mean) / F.sqrt(var + self.eps) x = x.reshape(N, C, H, W) if self.affine: x = self.weight.reshape(1, -1, 1, 1) * x + self.bias.reshape(1, -1, 1, 1) return x def _module_info_string(self) -> str: s = ( "groups={num_groups}, channels={num_channels}, " "eps={eps}, affine={affine}" ) return s.format(**self.__dict__) class InstanceNorm(Module): """ Simple implementation of InstanceNorm. Only support 4d tensor now. Reference: https://arxiv.org/abs/1607.08022. Note that InstanceNorm equals using GroupNome with num_groups=num_channels. """ def __init__(self, num_channels, eps=1e-05, affine=True, **kwargs): super().__init__(**kwargs) self.num_channels = num_channels self.eps = eps self.affine = affine if self.affine: self.weight = Parameter(np.ones(num_channels, dtype="float32")) self.bias = Parameter(np.zeros(num_channels, dtype="float32")) else: self.weight = None self.bias = None self.reset_parameters() def reset_parameters(self): if self.affine: ones_(self.weight) zeros_(self.bias) def forward(self, x): N, C, H, W = x.shape assert C == self.num_channels x = x.reshape(N, C, -1) mean = x.mean(axis=2, keepdims=True) var = (x ** 2).mean(axis=2, keepdims=True) - mean * mean x = (x - mean) /
F.sqrt(var + self.eps)
megengine.functional.sqrt
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine.functional as F from megengine import Parameter from .init import ones_, zeros_ from .module import Module class GroupNorm(Module): """ Simple implementation of GroupNorm. Only support 4d tensor now. Reference: https://arxiv.org/pdf/1803.08494.pdf. """ def __init__(self, num_groups, num_channels, eps=1e-5, affine=True, **kwargs): super().__init__(**kwargs) assert num_channels % num_groups == 0 self.num_groups = num_groups self.num_channels = num_channels self.eps = eps self.affine = affine if self.affine: self.weight = Parameter(np.ones(num_channels, dtype=np.float32)) self.bias = Parameter(np.zeros(num_channels, dtype=np.float32)) else: self.weight = None self.bias = None self.reset_parameters() def reset_parameters(self): if self.affine: ones_(self.weight) zeros_(self.bias) def forward(self, x): N, C, H, W = x.shape assert C == self.num_channels x = x.reshape(N, self.num_groups, -1) mean = x.mean(axis=2, keepdims=True) var = (x * x).mean(axis=2, keepdims=True) - mean * mean x = (x - mean) / F.sqrt(var + self.eps) x = x.reshape(N, C, H, W) if self.affine: x = self.weight.reshape(1, -1, 1, 1) * x + self.bias.reshape(1, -1, 1, 1) return x def _module_info_string(self) -> str: s = ( "groups={num_groups}, channels={num_channels}, " "eps={eps}, affine={affine}" ) return s.format(**self.__dict__) class InstanceNorm(Module): """ Simple implementation of InstanceNorm. Only support 4d tensor now. Reference: https://arxiv.org/abs/1607.08022. Note that InstanceNorm equals using GroupNome with num_groups=num_channels. """ def __init__(self, num_channels, eps=1e-05, affine=True, **kwargs): super().__init__(**kwargs) self.num_channels = num_channels self.eps = eps self.affine = affine if self.affine: self.weight = Parameter(np.ones(num_channels, dtype="float32")) self.bias = Parameter(np.zeros(num_channels, dtype="float32")) else: self.weight = None self.bias = None self.reset_parameters() def reset_parameters(self): if self.affine: ones_(self.weight) zeros_(self.bias) def forward(self, x): N, C, H, W = x.shape assert C == self.num_channels x = x.reshape(N, C, -1) mean = x.mean(axis=2, keepdims=True) var = (x ** 2).mean(axis=2, keepdims=True) - mean * mean x = (x - mean) / F.sqrt(var + self.eps) x = x.reshape(N, C, H, W) if self.affine: x = self.weight.reshape(1, -1, 1, 1) * x + self.bias.reshape(1, -1, 1, 1) return x def _module_info_string(self) -> str: s = "channels={num_channels}, eps={eps}, affine={affine}" return s.format(**self.__dict__) class LayerNorm(Module): """ Simple implementation of LayerNorm. Support tensor of any shape as input. Reference: https://arxiv.org/pdf/1803.08494.pdf. """ def __init__(self, normalized_shape, eps=1e-05, affine=True, **kwargs): super().__init__(**kwargs) if isinstance(normalized_shape, int): normalized_shape = (normalized_shape,) self.normalized_shape = tuple(normalized_shape) self.eps = eps self.affine = affine if self.affine: self.weight = Parameter(np.ones(self.normalized_shape, dtype="float32")) self.bias = Parameter(np.zeros(self.normalized_shape, dtype="float32")) else: self.weight = None self.bias = None self.reset_parameters() def reset_parameters(self): if self.affine: ones_(self.weight) zeros_(self.bias) def forward(self, x): x_shape = x.shape dim_delta = len(x_shape) - len(self.normalized_shape) non_flatten_shape = x_shape[:dim_delta] x = x.reshape(*non_flatten_shape, -1) mean = x.mean(axis=-1, keepdims=True) var = (x ** 2).mean(axis=-1, keepdims=True) - mean * mean x = (x - mean) /
F.sqrt(var + self.eps)
megengine.functional.sqrt
import io import pickle import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine.core._trace_option import set_symbolic_shape from megengine.jit import trace from megengine.traced_module import trace_module
set_symbolic_shape(True)
megengine.core._trace_option.set_symbolic_shape
import io import pickle import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine.core._trace_option import set_symbolic_shape from megengine.jit import trace from megengine.traced_module import trace_module set_symbolic_shape(True) class Main(M.Module): def forward(self, x): return x["data"] class PreProcess(M.Module): def __init__(self): super().__init__() self.A = F.zeros((1,)) self.I = F.ones((1,)) self.bb_out = mge.tensor( np.array([[[0, 0], [160, 0], [160, 48], [0, 48]]], dtype="float32") ) def forward(self, data, quad): """ data: (1, 3, 48, 160) quad: (1, 4, 2) """ N = quad.shape[0] dst = F.repeat(self.bb_out, N, axis=0).reshape(-1, 4, 2) I = F.broadcast_to(self.I, quad.shape) A = F.broadcast_to(self.A, (N, 8, 8)) A[:, 0:4, 0:2] = quad A[:, 4:8, 5:6] = I[:, :, 0:1] A[:, 0:4, 6:8] = -quad * dst[:, :, 0:1] A[:, 4:8, 3:5] = quad A[:, 0:4, 2:3] = I[:, :, 0:1] A[:, 4:8, 6:8] = -quad * dst[:, :, 1:2] B = dst.transpose(0, 2, 1).reshape(-1, 8, 1) M = F.concat([F.matmul(F.matinv(A), B)[:, :, 0], I[:, 0:1, 0]], axis=1).reshape( -1, 3, 3 ) new_data = F.warp_perspective(data, M, (48, 160)) # (N, 3, 48, 160) return {"data": new_data} class Net(M.Module): def __init__(self, traced_module): super().__init__() self.pre_process = PreProcess() self.traced_module = traced_module def forward(self, data, quad): x = self.pre_process(data, quad) x = self.traced_module(x) return x def test_preprocess(): batch_size = 2 module = Main() data = mge.tensor( np.random.randint(0, 256, size=(batch_size, 3, 48, 160)), dtype=np.float32 ) traced_module =
trace_module(module, {"data": data})
megengine.traced_module.trace_module
import io import pickle import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine.core._trace_option import set_symbolic_shape from megengine.jit import trace from megengine.traced_module import trace_module set_symbolic_shape(True) class Main(M.Module): def forward(self, x): return x["data"] class PreProcess(M.Module): def __init__(self): super().__init__() self.A = F.zeros((1,)) self.I = F.ones((1,)) self.bb_out = mge.tensor( np.array([[[0, 0], [160, 0], [160, 48], [0, 48]]], dtype="float32") ) def forward(self, data, quad): """ data: (1, 3, 48, 160) quad: (1, 4, 2) """ N = quad.shape[0] dst = F.repeat(self.bb_out, N, axis=0).reshape(-1, 4, 2) I = F.broadcast_to(self.I, quad.shape) A = F.broadcast_to(self.A, (N, 8, 8)) A[:, 0:4, 0:2] = quad A[:, 4:8, 5:6] = I[:, :, 0:1] A[:, 0:4, 6:8] = -quad * dst[:, :, 0:1] A[:, 4:8, 3:5] = quad A[:, 0:4, 2:3] = I[:, :, 0:1] A[:, 4:8, 6:8] = -quad * dst[:, :, 1:2] B = dst.transpose(0, 2, 1).reshape(-1, 8, 1) M = F.concat([F.matmul(F.matinv(A), B)[:, :, 0], I[:, 0:1, 0]], axis=1).reshape( -1, 3, 3 ) new_data = F.warp_perspective(data, M, (48, 160)) # (N, 3, 48, 160) return {"data": new_data} class Net(M.Module): def __init__(self, traced_module): super().__init__() self.pre_process = PreProcess() self.traced_module = traced_module def forward(self, data, quad): x = self.pre_process(data, quad) x = self.traced_module(x) return x def test_preprocess(): batch_size = 2 module = Main() data = mge.tensor( np.random.randint(0, 256, size=(batch_size, 3, 48, 160)), dtype=np.float32 ) traced_module = trace_module(module, {"data": data}) obj = pickle.dumps(traced_module) traced_module = pickle.loads(obj) module = Net(traced_module) module.eval() quad = mge.tensor(np.random.normal(size=(batch_size, 4, 2)), dtype=np.float32) expect = module(data, quad) traced_module =
trace_module(module, data, quad)
megengine.traced_module.trace_module
import io import pickle import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine.core._trace_option import set_symbolic_shape from megengine.jit import trace from megengine.traced_module import trace_module set_symbolic_shape(True) class Main(M.Module): def forward(self, x): return x["data"] class PreProcess(M.Module): def __init__(self): super().__init__() self.A = F.zeros((1,)) self.I = F.ones((1,)) self.bb_out = mge.tensor( np.array([[[0, 0], [160, 0], [160, 48], [0, 48]]], dtype="float32") ) def forward(self, data, quad): """ data: (1, 3, 48, 160) quad: (1, 4, 2) """ N = quad.shape[0] dst = F.repeat(self.bb_out, N, axis=0).reshape(-1, 4, 2) I = F.broadcast_to(self.I, quad.shape) A = F.broadcast_to(self.A, (N, 8, 8)) A[:, 0:4, 0:2] = quad A[:, 4:8, 5:6] = I[:, :, 0:1] A[:, 0:4, 6:8] = -quad * dst[:, :, 0:1] A[:, 4:8, 3:5] = quad A[:, 0:4, 2:3] = I[:, :, 0:1] A[:, 4:8, 6:8] = -quad * dst[:, :, 1:2] B = dst.transpose(0, 2, 1).reshape(-1, 8, 1) M = F.concat([F.matmul(F.matinv(A), B)[:, :, 0], I[:, 0:1, 0]], axis=1).reshape( -1, 3, 3 ) new_data = F.warp_perspective(data, M, (48, 160)) # (N, 3, 48, 160) return {"data": new_data} class Net(M.Module): def __init__(self, traced_module): super().__init__() self.pre_process = PreProcess() self.traced_module = traced_module def forward(self, data, quad): x = self.pre_process(data, quad) x = self.traced_module(x) return x def test_preprocess(): batch_size = 2 module = Main() data = mge.tensor( np.random.randint(0, 256, size=(batch_size, 3, 48, 160)), dtype=np.float32 ) traced_module = trace_module(module, {"data": data}) obj = pickle.dumps(traced_module) traced_module = pickle.loads(obj) module = Net(traced_module) module.eval() quad = mge.tensor(np.random.normal(size=(batch_size, 4, 2)), dtype=np.float32) expect = module(data, quad) traced_module = trace_module(module, data, quad) actual = traced_module(data, quad) for i, j in zip(expect, actual): np.testing.assert_array_equal(i, j) func =
trace(traced_module, capture_as_const=True)
megengine.jit.trace
import io import pickle import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine.core._trace_option import set_symbolic_shape from megengine.jit import trace from megengine.traced_module import trace_module set_symbolic_shape(True) class Main(M.Module): def forward(self, x): return x["data"] class PreProcess(M.Module): def __init__(self): super().__init__() self.A = F.zeros((1,)) self.I = F.ones((1,)) self.bb_out = mge.tensor( np.array([[[0, 0], [160, 0], [160, 48], [0, 48]]], dtype="float32") ) def forward(self, data, quad): """ data: (1, 3, 48, 160) quad: (1, 4, 2) """ N = quad.shape[0] dst = F.repeat(self.bb_out, N, axis=0).reshape(-1, 4, 2) I = F.broadcast_to(self.I, quad.shape) A = F.broadcast_to(self.A, (N, 8, 8)) A[:, 0:4, 0:2] = quad A[:, 4:8, 5:6] = I[:, :, 0:1] A[:, 0:4, 6:8] = -quad * dst[:, :, 0:1] A[:, 4:8, 3:5] = quad A[:, 0:4, 2:3] = I[:, :, 0:1] A[:, 4:8, 6:8] = -quad * dst[:, :, 1:2] B = dst.transpose(0, 2, 1).reshape(-1, 8, 1) M = F.concat([F.matmul(F.matinv(A), B)[:, :, 0], I[:, 0:1, 0]], axis=1).reshape( -1, 3, 3 ) new_data = F.warp_perspective(data, M, (48, 160)) # (N, 3, 48, 160) return {"data": new_data} class Net(M.Module): def __init__(self, traced_module): super().__init__() self.pre_process = PreProcess() self.traced_module = traced_module def forward(self, data, quad): x = self.pre_process(data, quad) x = self.traced_module(x) return x def test_preprocess(): batch_size = 2 module = Main() data = mge.tensor( np.random.randint(0, 256, size=(batch_size, 3, 48, 160)), dtype=np.float32 ) traced_module = trace_module(module, {"data": data}) obj = pickle.dumps(traced_module) traced_module = pickle.loads(obj) module = Net(traced_module) module.eval() quad = mge.tensor(np.random.normal(size=(batch_size, 4, 2)), dtype=np.float32) expect = module(data, quad) traced_module = trace_module(module, data, quad) actual = traced_module(data, quad) for i, j in zip(expect, actual): np.testing.assert_array_equal(i, j) func = trace(traced_module, capture_as_const=True) actual = func(data, quad) for i, j in zip(expect, actual): np.testing.assert_array_equal(i, j) model = io.BytesIO() func.dump(model, arg_names=("data", "quad")) model.seek(0) infer_cg =
cgtools.GraphInference(model)
megengine.utils.comp_graph_tools.GraphInference
import io import pickle import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine.core._trace_option import set_symbolic_shape from megengine.jit import trace from megengine.traced_module import trace_module set_symbolic_shape(True) class Main(M.Module): def forward(self, x): return x["data"] class PreProcess(M.Module): def __init__(self): super().__init__() self.A =
F.zeros((1,))
megengine.functional.zeros
import io import pickle import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine.core._trace_option import set_symbolic_shape from megengine.jit import trace from megengine.traced_module import trace_module set_symbolic_shape(True) class Main(M.Module): def forward(self, x): return x["data"] class PreProcess(M.Module): def __init__(self): super().__init__() self.A = F.zeros((1,)) self.I =
F.ones((1,))
megengine.functional.ones
import io import pickle import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine.core._trace_option import set_symbolic_shape from megengine.jit import trace from megengine.traced_module import trace_module set_symbolic_shape(True) class Main(M.Module): def forward(self, x): return x["data"] class PreProcess(M.Module): def __init__(self): super().__init__() self.A = F.zeros((1,)) self.I = F.ones((1,)) self.bb_out = mge.tensor( np.array([[[0, 0], [160, 0], [160, 48], [0, 48]]], dtype="float32") ) def forward(self, data, quad): """ data: (1, 3, 48, 160) quad: (1, 4, 2) """ N = quad.shape[0] dst = F.repeat(self.bb_out, N, axis=0).reshape(-1, 4, 2) I =
F.broadcast_to(self.I, quad.shape)
megengine.functional.broadcast_to
import io import pickle import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine.core._trace_option import set_symbolic_shape from megengine.jit import trace from megengine.traced_module import trace_module set_symbolic_shape(True) class Main(M.Module): def forward(self, x): return x["data"] class PreProcess(M.Module): def __init__(self): super().__init__() self.A = F.zeros((1,)) self.I = F.ones((1,)) self.bb_out = mge.tensor( np.array([[[0, 0], [160, 0], [160, 48], [0, 48]]], dtype="float32") ) def forward(self, data, quad): """ data: (1, 3, 48, 160) quad: (1, 4, 2) """ N = quad.shape[0] dst = F.repeat(self.bb_out, N, axis=0).reshape(-1, 4, 2) I = F.broadcast_to(self.I, quad.shape) A =
F.broadcast_to(self.A, (N, 8, 8))
megengine.functional.broadcast_to
import io import pickle import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine.core._trace_option import set_symbolic_shape from megengine.jit import trace from megengine.traced_module import trace_module set_symbolic_shape(True) class Main(M.Module): def forward(self, x): return x["data"] class PreProcess(M.Module): def __init__(self): super().__init__() self.A = F.zeros((1,)) self.I = F.ones((1,)) self.bb_out = mge.tensor( np.array([[[0, 0], [160, 0], [160, 48], [0, 48]]], dtype="float32") ) def forward(self, data, quad): """ data: (1, 3, 48, 160) quad: (1, 4, 2) """ N = quad.shape[0] dst = F.repeat(self.bb_out, N, axis=0).reshape(-1, 4, 2) I = F.broadcast_to(self.I, quad.shape) A = F.broadcast_to(self.A, (N, 8, 8)) A[:, 0:4, 0:2] = quad A[:, 4:8, 5:6] = I[:, :, 0:1] A[:, 0:4, 6:8] = -quad * dst[:, :, 0:1] A[:, 4:8, 3:5] = quad A[:, 0:4, 2:3] = I[:, :, 0:1] A[:, 4:8, 6:8] = -quad * dst[:, :, 1:2] B = dst.transpose(0, 2, 1).reshape(-1, 8, 1) M = F.concat([F.matmul(F.matinv(A), B)[:, :, 0], I[:, 0:1, 0]], axis=1).reshape( -1, 3, 3 ) new_data =
F.warp_perspective(data, M, (48, 160))
megengine.functional.warp_perspective
import io import pickle import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine.core._trace_option import set_symbolic_shape from megengine.jit import trace from megengine.traced_module import trace_module set_symbolic_shape(True) class Main(M.Module): def forward(self, x): return x["data"] class PreProcess(M.Module): def __init__(self): super().__init__() self.A = F.zeros((1,)) self.I = F.ones((1,)) self.bb_out = mge.tensor( np.array([[[0, 0], [160, 0], [160, 48], [0, 48]]], dtype="float32") ) def forward(self, data, quad): """ data: (1, 3, 48, 160) quad: (1, 4, 2) """ N = quad.shape[0] dst =
F.repeat(self.bb_out, N, axis=0)
megengine.functional.repeat
import io import pickle import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine.core._trace_option import set_symbolic_shape from megengine.jit import trace from megengine.traced_module import trace_module set_symbolic_shape(True) class Main(M.Module): def forward(self, x): return x["data"] class PreProcess(M.Module): def __init__(self): super().__init__() self.A = F.zeros((1,)) self.I = F.ones((1,)) self.bb_out = mge.tensor( np.array([[[0, 0], [160, 0], [160, 48], [0, 48]]], dtype="float32") ) def forward(self, data, quad): """ data: (1, 3, 48, 160) quad: (1, 4, 2) """ N = quad.shape[0] dst = F.repeat(self.bb_out, N, axis=0).reshape(-1, 4, 2) I = F.broadcast_to(self.I, quad.shape) A = F.broadcast_to(self.A, (N, 8, 8)) A[:, 0:4, 0:2] = quad A[:, 4:8, 5:6] = I[:, :, 0:1] A[:, 0:4, 6:8] = -quad * dst[:, :, 0:1] A[:, 4:8, 3:5] = quad A[:, 0:4, 2:3] = I[:, :, 0:1] A[:, 4:8, 6:8] = -quad * dst[:, :, 1:2] B = dst.transpose(0, 2, 1).reshape(-1, 8, 1) M = F.concat([F.matmul(
F.matinv(A)
megengine.functional.matinv
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine.functional as F import megengine.functional.elemwise as elemwise from megengine import tensor from megengine.core.tensor import dtype from megengine.functional.elemwise import Elemwise from megengine.jit import trace def test_abs(): np.testing.assert_allclose( F.abs(tensor([-3.0, -4.0, -5.0])).numpy(), np.abs(np.array([-3.0, -4.0, -5.0], dtype=np.float32)), ) np.testing.assert_allclose(F.abs(-3.0).numpy(), np.abs(np.float32(-3.0))) def test_elemwise_mode_string(): for key, mode in vars(Elemwise.Mode).items(): if isinstance(mode, Elemwise.Mode): assert key == mode assert Elemwise(mode=key) == Elemwise(mode=mode) def test_multiply(): np.testing.assert_allclose( F.mul(-3.0, -4.0).numpy(), np.multiply(np.float32(-3.0), np.float32(-4.0)) ) np.testing.assert_allclose( F.mul(tensor([3.0, 4.0]), 4.0).numpy(), np.multiply(np.array([3.0, 4.0], dtype=np.float32), 4.0), ) np.testing.assert_allclose( F.mul(4.0, tensor([3.0, 4.0])).numpy(), np.multiply(4.0, np.array([3.0, 4.0], dtype=np.float32)), ) np.testing.assert_allclose( F.mul(tensor([3.0, 4.0]), tensor([3.0, 4.0])).numpy(), np.multiply( np.array([3.0, 4.0], dtype=np.float32), np.array([3.0, 4.0], dtype=np.float32), ), ) def test_div(): np.testing.assert_allclose( F.div(tensor([3.0, 4.0]), 2).numpy(), np.divide(np.array([3, 4], dtype=np.float32), 2), ) np.testing.assert_allclose( (tensor([3, 4]) / 2).numpy(), np.divide(np.array([3, 4], dtype=np.float32), 2), ) np.testing.assert_allclose( F.floor_div(tensor([-5.0, -7.0]), 2).numpy(), np.floor_divide(np.array([-5.0, -7.0], dtype=np.float32), 2), ) np.testing.assert_allclose( (tensor([-5, -7]) // 2).numpy(), np.floor_divide(np.array([-5, -7], dtype=np.int32), 2), ) def test_clamp(): """Fix an issue when `lower` or `upper` is 0, it will be recognized as `False` and `F.clip` will fall into wrong conditions unexpectedly. """ x = np.linspace(-6, 6, dtype="float32") np.testing.assert_allclose( F.clip(tensor(x) + 3, 0, 6).numpy(), np.clip(x + 3, 0, 6) ) np.testing.assert_allclose( F.clip(tensor(x) - 3, -6, 0).numpy(), np.clip(x - 3, -6, 0) ) def test_isnan(): for case in [[1, float("nan"), 0]]: np.testing.assert_allclose(F.isnan(tensor(case)).numpy(), np.isnan(case)) def test_isinf(): for case in [[1, float("inf"), 0]]: np.testing.assert_allclose(F.isinf(tensor(case)).numpy(), np.isinf(case)) def test_sign(): for case in [[1, -1, 0]]: x = tensor(case) np.testing.assert_allclose(F.sign(x).numpy(), np.sign(case).astype(x.dtype)) def test_cosh(): np.random.seed(42) x = np.random.randn(100).astype("float32") y_np = np.cosh(x) y_mge = F.cosh(tensor(x)).numpy() np.testing.assert_allclose(y_np, y_mge, rtol=1e-5) def test_sinh(): np.random.seed(42) x = np.random.randn(100).astype("float32") y_np = np.sinh(x) y_mge = F.sinh(tensor(x)).numpy() np.testing.assert_allclose(y_np, y_mge, rtol=1e-5) def test_asinh(): np.random.seed(42) x = np.random.randn(100).astype("float32") y_np = np.arcsinh(x) y_mge = F.asinh(tensor(x)).numpy() np.testing.assert_almost_equal(y_np, y_mge, decimal=5) def test_acosh(): x = np.arange(0, 10000).astype("float32") / 100 + 1 y_np = np.arccosh(x) y_mge = F.acosh(tensor(x)).numpy() np.testing.assert_almost_equal(y_np, y_mge, decimal=6) def test_atanh(): np.random.seed(42) x = np.random.rand(100).astype("float32") * 2 - 1 y_np = np.arctanh(x) y_mge = F.atanh(tensor(x)).numpy() np.testing.assert_almost_equal(y_np, y_mge, decimal=5) def test_hswish(): np.random.seed(42) x = np.random.randn(100).astype("float32") y_np = x * np.minimum(np.maximum(x + 3, 0), 6) / 6 y_mge = F.hswish(tensor(x)).numpy() np.testing.assert_almost_equal(y_np, y_mge, decimal=6) def test_silu(): x = np.array([-1.5, 0.0, 1.0, 1.5]).astype("float32") y_np = x / (1 + np.exp(-x)) y_mge = F.silu(tensor(x)).numpy() np.testing.assert_almost_equal(y_np, y_mge, decimal=6) def test_hsigmoid(): np.random.seed(42) x = np.random.randn(100).astype("float32") y_np = np.minimum(np.maximum(x + 3, 0), 6) / 6 y_mge = F.hsigmoid(tensor(x)).numpy() np.testing.assert_almost_equal(y_np, y_mge, decimal=6) def test_logical_oprs(): x = np.array([[True, False], [False, True]]) y = np.array([[True, True], [False, False]]) xx =
tensor(x)
megengine.tensor
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine.functional as F import megengine.functional.elemwise as elemwise from megengine import tensor from megengine.core.tensor import dtype from megengine.functional.elemwise import Elemwise from megengine.jit import trace def test_abs(): np.testing.assert_allclose( F.abs(tensor([-3.0, -4.0, -5.0])).numpy(), np.abs(np.array([-3.0, -4.0, -5.0], dtype=np.float32)), ) np.testing.assert_allclose(F.abs(-3.0).numpy(), np.abs(np.float32(-3.0))) def test_elemwise_mode_string(): for key, mode in vars(Elemwise.Mode).items(): if isinstance(mode, Elemwise.Mode): assert key == mode assert Elemwise(mode=key) == Elemwise(mode=mode) def test_multiply(): np.testing.assert_allclose( F.mul(-3.0, -4.0).numpy(), np.multiply(np.float32(-3.0), np.float32(-4.0)) ) np.testing.assert_allclose( F.mul(tensor([3.0, 4.0]), 4.0).numpy(), np.multiply(np.array([3.0, 4.0], dtype=np.float32), 4.0), ) np.testing.assert_allclose( F.mul(4.0, tensor([3.0, 4.0])).numpy(), np.multiply(4.0, np.array([3.0, 4.0], dtype=np.float32)), ) np.testing.assert_allclose( F.mul(tensor([3.0, 4.0]), tensor([3.0, 4.0])).numpy(), np.multiply( np.array([3.0, 4.0], dtype=np.float32), np.array([3.0, 4.0], dtype=np.float32), ), ) def test_div(): np.testing.assert_allclose( F.div(tensor([3.0, 4.0]), 2).numpy(), np.divide(np.array([3, 4], dtype=np.float32), 2), ) np.testing.assert_allclose( (tensor([3, 4]) / 2).numpy(), np.divide(np.array([3, 4], dtype=np.float32), 2), ) np.testing.assert_allclose( F.floor_div(tensor([-5.0, -7.0]), 2).numpy(), np.floor_divide(np.array([-5.0, -7.0], dtype=np.float32), 2), ) np.testing.assert_allclose( (tensor([-5, -7]) // 2).numpy(), np.floor_divide(np.array([-5, -7], dtype=np.int32), 2), ) def test_clamp(): """Fix an issue when `lower` or `upper` is 0, it will be recognized as `False` and `F.clip` will fall into wrong conditions unexpectedly. """ x = np.linspace(-6, 6, dtype="float32") np.testing.assert_allclose( F.clip(tensor(x) + 3, 0, 6).numpy(), np.clip(x + 3, 0, 6) ) np.testing.assert_allclose( F.clip(tensor(x) - 3, -6, 0).numpy(), np.clip(x - 3, -6, 0) ) def test_isnan(): for case in [[1, float("nan"), 0]]: np.testing.assert_allclose(F.isnan(tensor(case)).numpy(), np.isnan(case)) def test_isinf(): for case in [[1, float("inf"), 0]]: np.testing.assert_allclose(F.isinf(tensor(case)).numpy(), np.isinf(case)) def test_sign(): for case in [[1, -1, 0]]: x = tensor(case) np.testing.assert_allclose(F.sign(x).numpy(), np.sign(case).astype(x.dtype)) def test_cosh(): np.random.seed(42) x = np.random.randn(100).astype("float32") y_np = np.cosh(x) y_mge = F.cosh(tensor(x)).numpy() np.testing.assert_allclose(y_np, y_mge, rtol=1e-5) def test_sinh(): np.random.seed(42) x = np.random.randn(100).astype("float32") y_np = np.sinh(x) y_mge = F.sinh(tensor(x)).numpy() np.testing.assert_allclose(y_np, y_mge, rtol=1e-5) def test_asinh(): np.random.seed(42) x = np.random.randn(100).astype("float32") y_np = np.arcsinh(x) y_mge = F.asinh(tensor(x)).numpy() np.testing.assert_almost_equal(y_np, y_mge, decimal=5) def test_acosh(): x = np.arange(0, 10000).astype("float32") / 100 + 1 y_np = np.arccosh(x) y_mge = F.acosh(tensor(x)).numpy() np.testing.assert_almost_equal(y_np, y_mge, decimal=6) def test_atanh(): np.random.seed(42) x = np.random.rand(100).astype("float32") * 2 - 1 y_np = np.arctanh(x) y_mge = F.atanh(tensor(x)).numpy() np.testing.assert_almost_equal(y_np, y_mge, decimal=5) def test_hswish(): np.random.seed(42) x = np.random.randn(100).astype("float32") y_np = x * np.minimum(np.maximum(x + 3, 0), 6) / 6 y_mge = F.hswish(tensor(x)).numpy() np.testing.assert_almost_equal(y_np, y_mge, decimal=6) def test_silu(): x = np.array([-1.5, 0.0, 1.0, 1.5]).astype("float32") y_np = x / (1 + np.exp(-x)) y_mge = F.silu(tensor(x)).numpy() np.testing.assert_almost_equal(y_np, y_mge, decimal=6) def test_hsigmoid(): np.random.seed(42) x = np.random.randn(100).astype("float32") y_np = np.minimum(np.maximum(x + 3, 0), 6) / 6 y_mge = F.hsigmoid(tensor(x)).numpy() np.testing.assert_almost_equal(y_np, y_mge, decimal=6) def test_logical_oprs(): x = np.array([[True, False], [False, True]]) y = np.array([[True, True], [False, False]]) xx = tensor(x) yy =
tensor(y)
megengine.tensor
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine.functional as F import megengine.functional.elemwise as elemwise from megengine import tensor from megengine.core.tensor import dtype from megengine.functional.elemwise import Elemwise from megengine.jit import trace def test_abs(): np.testing.assert_allclose( F.abs(tensor([-3.0, -4.0, -5.0])).numpy(), np.abs(np.array([-3.0, -4.0, -5.0], dtype=np.float32)), ) np.testing.assert_allclose(F.abs(-3.0).numpy(), np.abs(np.float32(-3.0))) def test_elemwise_mode_string(): for key, mode in vars(Elemwise.Mode).items(): if isinstance(mode, Elemwise.Mode): assert key == mode assert Elemwise(mode=key) == Elemwise(mode=mode) def test_multiply(): np.testing.assert_allclose( F.mul(-3.0, -4.0).numpy(), np.multiply(np.float32(-3.0), np.float32(-4.0)) ) np.testing.assert_allclose( F.mul(tensor([3.0, 4.0]), 4.0).numpy(), np.multiply(np.array([3.0, 4.0], dtype=np.float32), 4.0), ) np.testing.assert_allclose( F.mul(4.0, tensor([3.0, 4.0])).numpy(), np.multiply(4.0, np.array([3.0, 4.0], dtype=np.float32)), ) np.testing.assert_allclose( F.mul(tensor([3.0, 4.0]), tensor([3.0, 4.0])).numpy(), np.multiply( np.array([3.0, 4.0], dtype=np.float32), np.array([3.0, 4.0], dtype=np.float32), ), ) def test_div(): np.testing.assert_allclose( F.div(tensor([3.0, 4.0]), 2).numpy(), np.divide(np.array([3, 4], dtype=np.float32), 2), ) np.testing.assert_allclose( (tensor([3, 4]) / 2).numpy(), np.divide(np.array([3, 4], dtype=np.float32), 2), ) np.testing.assert_allclose( F.floor_div(tensor([-5.0, -7.0]), 2).numpy(), np.floor_divide(np.array([-5.0, -7.0], dtype=np.float32), 2), ) np.testing.assert_allclose( (tensor([-5, -7]) // 2).numpy(), np.floor_divide(np.array([-5, -7], dtype=np.int32), 2), ) def test_clamp(): """Fix an issue when `lower` or `upper` is 0, it will be recognized as `False` and `F.clip` will fall into wrong conditions unexpectedly. """ x = np.linspace(-6, 6, dtype="float32") np.testing.assert_allclose( F.clip(tensor(x) + 3, 0, 6).numpy(), np.clip(x + 3, 0, 6) ) np.testing.assert_allclose( F.clip(tensor(x) - 3, -6, 0).numpy(), np.clip(x - 3, -6, 0) ) def test_isnan(): for case in [[1, float("nan"), 0]]: np.testing.assert_allclose(F.isnan(tensor(case)).numpy(), np.isnan(case)) def test_isinf(): for case in [[1, float("inf"), 0]]: np.testing.assert_allclose(F.isinf(tensor(case)).numpy(), np.isinf(case)) def test_sign(): for case in [[1, -1, 0]]: x = tensor(case) np.testing.assert_allclose(F.sign(x).numpy(), np.sign(case).astype(x.dtype)) def test_cosh(): np.random.seed(42) x = np.random.randn(100).astype("float32") y_np = np.cosh(x) y_mge = F.cosh(tensor(x)).numpy() np.testing.assert_allclose(y_np, y_mge, rtol=1e-5) def test_sinh(): np.random.seed(42) x = np.random.randn(100).astype("float32") y_np = np.sinh(x) y_mge = F.sinh(tensor(x)).numpy() np.testing.assert_allclose(y_np, y_mge, rtol=1e-5) def test_asinh(): np.random.seed(42) x = np.random.randn(100).astype("float32") y_np = np.arcsinh(x) y_mge = F.asinh(tensor(x)).numpy() np.testing.assert_almost_equal(y_np, y_mge, decimal=5) def test_acosh(): x = np.arange(0, 10000).astype("float32") / 100 + 1 y_np = np.arccosh(x) y_mge = F.acosh(tensor(x)).numpy() np.testing.assert_almost_equal(y_np, y_mge, decimal=6) def test_atanh(): np.random.seed(42) x = np.random.rand(100).astype("float32") * 2 - 1 y_np = np.arctanh(x) y_mge = F.atanh(tensor(x)).numpy() np.testing.assert_almost_equal(y_np, y_mge, decimal=5) def test_hswish(): np.random.seed(42) x = np.random.randn(100).astype("float32") y_np = x * np.minimum(np.maximum(x + 3, 0), 6) / 6 y_mge = F.hswish(tensor(x)).numpy() np.testing.assert_almost_equal(y_np, y_mge, decimal=6) def test_silu(): x = np.array([-1.5, 0.0, 1.0, 1.5]).astype("float32") y_np = x / (1 + np.exp(-x)) y_mge = F.silu(tensor(x)).numpy() np.testing.assert_almost_equal(y_np, y_mge, decimal=6) def test_hsigmoid(): np.random.seed(42) x = np.random.randn(100).astype("float32") y_np = np.minimum(np.maximum(x + 3, 0), 6) / 6 y_mge = F.hsigmoid(tensor(x)).numpy() np.testing.assert_almost_equal(y_np, y_mge, decimal=6) def test_logical_oprs(): x = np.array([[True, False], [False, True]]) y = np.array([[True, True], [False, False]]) xx = tensor(x) yy = tensor(y) np.testing.assert_equal(~x, (F.logical_not(xx)).numpy()) np.testing.assert_equal(x & y, F.logical_and(xx, yy).numpy()) np.testing.assert_equal(x | y, F.logical_or(xx, yy).numpy()) np.testing.assert_equal(x ^ y, F.logical_xor(xx, yy).numpy()) def test_logaddexp(): x = np.random.randn(2, 100) y = np.random.randn(2, 100) xx =
tensor(x)
megengine.tensor