hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
7947ccf32fb9b43a6a088063d161ba3ceb96ad8d
5,481
py
Python
search/query.py
FmasterofU/OISISI_HTMLSE
fe893dcae93cec93163d04242c08adc8cc7ecbe8
[ "MIT" ]
null
null
null
search/query.py
FmasterofU/OISISI_HTMLSE
fe893dcae93cec93163d04242c08adc8cc7ecbe8
[ "MIT" ]
null
null
null
search/query.py
FmasterofU/OISISI_HTMLSE
fe893dcae93cec93163d04242c08adc8cc7ecbe8
[ "MIT" ]
null
null
null
from structures.set import Set def validate_query(query: str): """ Checking validation for normal(not advanced) search :param query: input query for normal(not advanced) search :return: True if query is valid """ query = get_correct_query(query) if query == 'and' or query == 'not' or query == 'or': return False elif ' ' not in query: return True else: parts = query.split(' ') if 'and' not in parts and 'or' not in parts and 'not' not in parts: return True if len(parts) != 3: return False elif parts[0] == 'and' or parts[0] == 'not' or parts[0] == 'or' or parts[2] == 'and' or parts[2] == 'not' or \ parts[2] == 'or': return False elif parts[1] != 'and' and parts[1] != 'not' and parts[1] != 'or': return False return True def execute_query(query, trie): """ Method executes normal search query and returns proper data structures :param query: input string :param trie: populated trie :return: positive_query: string with searched words(excluding words after NOT operator) hard_result_set: dict with file paths that satisfies constraints in query as keys and numbers of appearances for every searched word in positive_query broad_positive_res_set: dict with file paths as keys and numbers of appearances for every searched word present in positive_query (sites present in hard_result_set are not included) """ query = get_correct_query(query) flag = None words = [] ret_string = "" broad_search = {} hard_search = {} if ' ' not in query: paths = trie.word_exists(query) ret_string = query if paths is not False: result_set = Set() for p in paths.keys(): result_set.add(p) broad_search[p] = [] broad_search[p].append(paths[p]) """ hard and broad search are same for 1 word """ return ret_string, broad_search, broad_search print("'" + query + "' doesn't exist in trie") return ret_string, hard_search, broad_search elif ' and ' not in query and ' or ' not in query and ' not ' not in query: flag = 'or' words = query.split(' ') else: parts = query.split(' ') words.append(parts[0]) words.append(parts[2]) if parts[1] == 'and': flag = 'and' elif parts[1] == 'not': flag = 'not' elif parts[1] == 'or': flag = 'or' if flag is not None: if flag == 'and' or flag == 'or': for i in range(0, len(words)): ret_string += words[i] + " " else: ret_string += words[0] ret_string = ret_string.strip() if flag == 'and' or flag == 'not': first = Set() second = Set() paths = trie.word_exists(words[0]) if paths is not False: for p in paths.keys(): first.add(p) broad_search[p] = [] broad_search[p].append(paths[p]) if flag != 'not': broad_search[p].append(0) paths = trie.word_exists(words[1]) if paths is not False: for p in paths.keys(): second.add(p) if flag != 'not' and p not in broad_search.keys(): broad_search[p] = [] broad_search[p].append(0) broad_search[p].append(paths[p]) elif flag != 'not' and p in broad_search.keys(): broad_search[p][1] = paths[p] if flag == 'and': result_set = first & second elif flag == 'not': result_set = first - second for i in result_set.get_list(): hard_search[i] = broad_search[i] return ret_string, hard_search, broad_search elif flag == 'or': sets = [] for i in range(len(words)): new_set = Set() paths = trie.word_exists(words[i]) if paths is not False: for p in paths: new_set.add(p) if p not in broad_search.keys(): broad_search[p] = [0] * len(words) broad_search[p][i] = paths[p] elif p in broad_search.keys(): broad_search[p][i] = paths[p] sets.append(new_set) result_set = sets[0] for i in range(1, len(words)): result_set = result_set | sets[i] for i in result_set.get_list(): hard_search[i] = broad_search[i] return ret_string, hard_search, broad_search def get_correct_query(input_query: str): """ Ignoring multiple whitespaces in input string :param input_query: string :return: same query with 1 whitespace between words """ correct_words = [] words = input_query.split(' ') for w in words: w = w.strip() if w != '': correct_words.append(w) ret = "" for w in correct_words: ret += w + " " return ret.strip()
37.033784
118
0.509031
7947cd61409b65c09b5c3b08469a198ca232fe2d
22,692
py
Python
vol2/vol2-python-examples/examples/capstone_titanic/titanic_milestone1.py
Sun-Joong/aifh
1b6363d26f54b77348020ce88ced0670568ed736
[ "Apache-2.0" ]
777
2015-01-17T22:48:26.000Z
2022-03-31T01:10:07.000Z
vol2/vol2-python-examples/examples/capstone_titanic/titanic_milestone1.py
Sun-Joong/aifh
1b6363d26f54b77348020ce88ced0670568ed736
[ "Apache-2.0" ]
17
2015-01-02T14:41:24.000Z
2017-09-02T02:57:09.000Z
vol2/vol2-python-examples/examples/capstone_titanic/titanic_milestone1.py
Sun-Joong/aifh
1b6363d26f54b77348020ce88ced0670568ed736
[ "Apache-2.0" ]
445
2015-01-26T17:01:49.000Z
2022-03-24T07:16:58.000Z
#!/usr/bin/env python """ Artificial Intelligence for Humans Volume 2: Nature-Inspired Algorithms Python Version http://www.aifh.org http://www.jeffheaton.com Code repository: https://github.com/jeffheaton/aifh Copyright 2014 by Jeff Heaton Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. For more information on Heaton Research copyrights, licenses and trademarks visit: http://www.heatonresearch.com/copyright """ import csv class TitanicConfig: """ Configuration data for the Titanic project. """ # The name of the training data. (that we are to train on) TrainingFilename = "train.csv" # The name of the test data. (that Kaggle evaluates us on) TestFilename = "test.csv" # Dump the normalized data to this file. This file is not actually used, but rather can be viewed to see # the normalization. NormDumpFilename = "normalized_dump.csv" # The number of input features used. InputFeatureCount = 13 # The low range of the normalization. InputNormalizeLow = -1 # The high range of the normalization. InputNormalizeHigh = 1 # The value used for a prediction of survival. PredictSurvive = 1 # The value used for a prediction of perish. PredictPerish = 0 # The number of folds to use. FoldCount = 5 # The number of particles to use. ParticleCount = 30 # The number of RBF functions to use in each network. RBF_COUNT = 5 # The number of iterations to allow with no improvement. AllowNoImprovement = 100 class CalcHistogram: def __init__(self): self.histogram = {} def update(self, key): # See if we already have an entry if key in self.histogram: count = self.histogram[key] self.histogram[key] = count + 1 else: self.histogram[key] = 1 def get_max(self): max_count = 0 result = None for key in self.histogram.keys(): count = self.histogram[key] if result == None or max_count < count or (max_count == count and result < key): result = key max_count = count return result def get_min(self): min_count = 0 result = None for key in self.histogram.keys(): count = self.histogram[key] if result == None or min_count > count or (min_count == count and result < key): result = key min_count = count return result class CalcMean: def __init__(self): # How many values have we encountered so far. self.count = 0 # What is the sum of values. self.sum = 0 def update(self, d): """ Update mean for a new value. @param d The next value. """ self.sum = self.sum + d self.count = self.count + 1 def calculate(self): """ @return The calculated mean. """ return self.sum / self.count class CalcSurvival: def __init__(self): # The count of males. self.count_male = 0 # The count of females. self.count_female = 0 # The count of male survivors. self.male_survive = 0 # The count of female survivors. self.female_survive = 0 def update(self, male, survived): """ Update for a passenger. @param male True, if passenger was male. @param survived True, if passenger survived. """ if male: self.count_male = self.count_male + 1 else: self.count_female = self.count_female + 1 if survived: if male: self.male_survive = self.male_survive + 1 else: self.female_survive = self.female_survive + 1 def __str__(self): count = self.count_male + self.count_female result = "(Count: " result = result + str(count) if count > 0: pct = (self.female_survive + self.male_survive) / float(count) result = result + ", survived: " result = result + str(pct) if self.count_male > 0: pct = self.male_survive / float(self.count_male) result = result + ", male.survived: " result = result + str(pct) if self.count_female > 0: pct = self.female_survive / float(self.count_female) result = result + ", female.survived: " result = result + str(pct) result = result + ")" return result class TitanicStats: def __init__(self): # Passengers with the title "master", mean age. self.mean_master = CalcMean() # Passengers with the title "mr", mean age. self.mean_mr = CalcMean() # Passengers with the title "miss", mean age. self.mean_miss = CalcMean() # Passengers with the title "mrs", mean age. self.mean_mrs = CalcMean() # Passengers with a military title, mean age. self.mean_military = CalcMean() # Passengers with a nobility title, mean age. self.mean_nobility = CalcMean() # Passengers with the title "dr". self.mean_dr = CalcMean() # Passengers with the title "rev". self.mean_clergy = CalcMean() # Total passengers. self.mean_total = CalcMean() # Total male passengers. self.mean_male = CalcMean() # Total female passengers. self.mean_female = CalcMean() # Passengers in 1st class, average fare. self.mean_fare1 = CalcMean() # Passengers in 2st class, average fare. self.mean_fare2 = CalcMean() # Passengers in 3rd class, average fare. self.mean_fare3 = CalcMean() # Survival stats for passengers with a title of "master". self.survival_master = CalcSurvival() # Survival stats for passengers with a title of "mr". self.survival_mr = CalcSurvival() # Survival stats for passengers with a title of "miss". self.survival_miss = CalcSurvival() # Survival stats for passengers with a title of "mrs". self.survival_mrs = CalcSurvival() # Survival stats for passengers with a military title. self.survival_military = CalcSurvival() # Survival stats for passengers with a nobility title. self.survival_nobility = CalcSurvival() # Survival stats for passengers with a title of "dr". self.survival_dr = CalcSurvival() # Survival stats for passengers with a title of "rev". self.survival_clergy = CalcSurvival() # Survival stats for all passengers. self.survival_total = CalcSurvival() # Survival stats for passengers that embarked from Southampton, England. self.embarked_s = CalcSurvival() # Survival stats for passengers that embarked from Cherbourg, France. self.embarked_c = CalcSurvival() # Survival stats for passengers that embarked from Queenstown, England. self.embarked_q = CalcSurvival() # Histogram of embark locations. self.embarked_histo = CalcHistogram() def dump(self): """ Dump all stats to stdout. """ print("Mean Master: Mean Age: " + str(self.mean_master.calculate()) + " " + str(self.survival_master)) print("Mr.: Mean Age: " + str(self.mean_mr.calculate()) + " " + str(self.survival_mr)) print("Miss.: Mean Age: " + str(self.mean_miss.calculate()) + " " + str(self.survival_miss)) print("Mrs.: Mean Age: " + str(self.mean_mrs.calculate()) + " " + str(self.survival_mrs)) print("Military: Mean Age: " + str(self.mean_mrs.calculate()) + " " + str(self.survival_military)) print("Clergy: Mean Age: " + str(self.mean_clergy.calculate()) + " " + str(self.survival_clergy)) print("Nobility: Mean Age: " + str(self.mean_nobility.calculate()) + " " + str(self.survival_nobility)) print("Dr: Mean Age: " + str(self.mean_dr.calculate()) + " " + str(self.survival_dr)) print("Total known survival: Mean Age: " + str(self.mean_total.calculate()) + " " + str(self.survival_total)) print("") print("Embarked Queenstown: Mean Age: " + str(self.embarked_q)) print("Embarked Southampton: Mean Age: " + str(self.embarked_s)) print("Embarked Cherbourg: Mean Age: " + str(self.embarked_c)) print("Most common embarked: " + str(self.embarked_histo.get_max())) print("") print("Mean Age Male: " + str(self.mean_male.calculate())) print("Mean Age Female: " + str(self.mean_female.calculate())) print("") print("Mean Fair 1st Class: " + str(self.mean_fare1.calculate())) print("Mean Fair 2st Class: " + str(self.mean_fare2.calculate())) print("Mean Fair 3st Class: " + str(self.mean_fare3.calculate())) class NormalizeTitanic: def analyze(self, stats, filename): """ Analyze and generate stats for titanic data. @param stats The stats for titanic. @param filename The file to analyze. @return The passenger count. @throws IOException Errors reading file. """ count = 0 headerMap = {} with open(filename, 'rb') as f: reader = csv.reader(f) header_map = {} header = reader.next() for i in range(0, len(header)): header_map[header[i].lower()] = i age_index = header_map["age"] name_index = header_map["name"] sex_index = header_map["sex"] index_embarked = header_map["embarked"] index_fare = header_map["fare"] index_pclass = header_map["pclass"] survived_index = -1 # test data does not have survived if "survived" in header_map: survived_index = header_map["survived"] for next_line in reader: count = count + 1 name = next_line[name_index] age_str = next_line[age_index] sex_str = next_line[sex_index] embarked_str = next_line[index_embarked] # test data does not have survived, do not use survived boolean if using test data! survived = False if survived_index != -1: survived_str = next_line[survived_index] survived = (survived_str == "1") if index_embarked != -1: embarked_str = next_line[index_embarked] # calculate average fare per class str_fare = next_line[index_fare] if len(str_fare) > 0: fare = float(str_fare) pclass = next_line[index_pclass] if pclass == "1": stats.mean_fare1.update(fare) elif pclass == "2": stats.mean_fare2.update(fare) elif pclass == "3": stats.mean_fare3.update(fare) is_male = (sex_str == "male") # Only compute survival stats on training data if survived_index != -1: if embarked_str == "Q": stats.embarked_q.update(is_male, survived) elif embarked_str == "S": stats.embarked_s.update(is_male, survived) elif embarked_str == "C": stats.embarked_c.update(is_male, survived) stats.embarked_histo.update(embarked_str) # Only compute survival stats on training data. if survived_index != -1: stats.survival_total.update(is_male, survived) if survived_index != -1: if "Master." in name: stats.survival_master.update(is_male, survived) elif "Mr." in name: stats.survival_mr.update(is_male, survived) elif "Miss." in name or "Mlle." in name: stats.survival_miss.update(is_male, survived) elif "Mrs." in name or "Mme." in name: stats.survival_mrs.update(is_male, survived) elif "Col." in name or "Capt." in name or "Major." in name: stats.survival_military.update(is_male, survived) elif "Countess." in name or "Lady." in name or "Sir." in name or "Don." in name or "Dona." in name or "Jonkheer." in name: stats.survival_nobility.update(is_male, survived) elif "Dr." in name: stats.survival_dr.update(is_male, survived) elif "Rev." in name: stats.survival_clergy.update(is_male, survived) if len(age_str) > 0: age = float(age_str) # Update general mean age for male/female if is_male: stats.mean_male.update(age) else: stats.mean_female.update(age) # Update the total average age stats.mean_total.update(age) if "Master." in name: stats.mean_master.update(age) # Only compute survival stats on training data. if survived_index != -1: stats.survival_master.update(is_male, survived) elif "Mr." in name: stats.mean_mr.update(age) # Only compute survival stats on training data. if survived_index != -1: stats.survival_mr.update(is_male, survived) elif "Miss." in name or "Mlle." in name: stats.mean_miss.update(age) # Only compute survival stats on training data. if survived_index != -1: stats.survival_miss.update(is_male, survived) elif "Mrs." in name or "Mme." in name: stats.mean_mrs.update(age) # Only compute survival stats on training data. if survived_index != -1: stats.survival_mrs.update(is_male, survived) elif "Col." in name or "Capt." in name or "Major." in name: stats.mean_military.update(age) # Only compute survival stats on training data. if survived_index != -1: stats.survival_military.update(is_male, survived) elif "Countess." in name or "Lady." in name or "Sir." in name or "Don." in name or "Dona." in name or "Jonkheer." in name: stats.mean_nobility.update(age) # Only compute survival stats on training data. if survived_index != -1: stats.survival_nobility.update(is_male, survived) elif "Dr." in name: stats.mean_dr.update(age) # Only compute survival stats on training data. if survived_index != -1: stats.survival_dr.update(is_male, survived) elif "Rev." in name: stats.mean_clergy.update(age) # Only compute survival stats on training data. if survived_index != -1: stats.survival_clergy.update(is_male, survived) return count def range_normalize(self, x, data_low, data_high, normalized_low, normalized_high): """ Normalize to a range. @param x The value to normalize. @param dataLow The low end of the range of the data. @param dataHigh The high end of the range of the data. @param normalizedLow The normalized low end of the range of data. @param normalizedHigh The normalized high end of the range of data. @return The normalized value. """ return ((x - data_low) / (data_high - data_low)) \ * (normalized_high - normalized_low) + normalized_low def normalize(self, stats, filename, ids, input_low, input_high, predict_survive, predict_perish): self.result_input = [] self.result_ideal = [] headerMap = {} with open(filename, 'rb') as f: reader = csv.reader(f) header_map = {} header = reader.next() for i in range(0, len(header)): header_map[header[i].lower()] = i age_index = header_map["age"] name_index = header_map["name"] sex_index = header_map["sex"] index_embarked = header_map["embarked"] index_pclass = header_map["pclass"] index_sibsp = header_map["sibsp"] index_parch = header_map["parch"] index_fare = header_map["fare"] index_id = header_map["passengerid"] survived_index = -1 # test data does not have survived if "survived" in header_map: survived_index = header_map["survived"] for next_line in reader: name = next_line[name_index] sex = next_line[sex_index] embarked = next_line[index_embarked] id = next_line[index_id] # Add record the passenger id, if requested if ids != None: ids.append(id) is_male = (sex.lower() == "male") # do we have an age for this person? if len(next_line[age_index]) == 0: # age is missing, interpolate using name if "Master." in name: age = stats.mean_master.calculate() elif "Mr." in name: age = stats.mean_mr.calculate() elif "Miss." in name or "Mlle." in name: age = stats.mean_miss.calculate() elif "Mrs." in name or "Mme." in name: age = stats.mean_mrs.calculate() elif "Col." in name or "Capt." in name or "Major." in name: age = stats.mean_military.calculate() elif "Countess." in name or "Lady." in name or "Sir." in name or "Don." in name or "Dona." in name or "Jonkheer." in name: age = stats.mean_nobility.calculate() elif "Dr." in name: age = stats.mean_dr.calculate() elif "Rev." in name: age = stats.mean_clergy.calculate() else: if is_male: age = stats.mean_male.calculate() else: age = stats.mean_female.calculate() else: age = float(next_line[age_index]) input = [0] * TitanicConfig.InputFeatureCount input[0] = self.range_normalize(age, 0, 100, input_low, input_high) # sex-male input[1] = input_high if is_male else input_low # pclass pclass = float(next_line[index_pclass]) input[2] = self.range_normalize(pclass, 1, 3, input_low, input_high) # sibsp sibsp = float(next_line[index_sibsp]) input[3] = self.range_normalize(sibsp, 0, 10, input_low, input_high) # parch parch = float(next_line[index_parch]) input[4] = self.range_normalize(parch, 0, 10, input_low, input_high) # fare str_fare = next_line[index_fare] if len(str_fare) == 0: if int(pclass) == 1: fare = stats.mean_fare1.calculate() elif int(pclass) == 2: fare = stats.getMeanFare2().calculate() elif int(pclass) == 3: fare = stats.getMeanFare3().calculate(); else: # should not happen, we would have a class other than 1,2,3. # however, if that DID happen, use the median class (2). fare = stats.mean_Fare2.calculate() else: fare = float(next_line[index_fare]) input[5] = self.range_normalize(fare, 0, 500, input_low, input_high) # embarked-c input[6] = input_high if embarked.strip() == "c" else input_low # embarked-q input[7] = input_high if embarked.strip() == "q" else input_low # embarked-s input[8] = input_high if embarked.strip() == "s" else input_low # name-mil input[9] = input_high if ("Col." in name or "Capt." in name or "Major." in name) else input_low # name-nobility input[10] = input_high if ( "Countess." in name or "Lady." in name or "Sir." in name or "Don." in name or "Dona." in name or "Jonkheer.") else input_low # name-dr input[11] = input_high if ("Dr." in name) else input_low # name-clergy input[12] = input_high if ("Rev." in name) else input_low # add the new row self.result_input.append(input) # add survived, if it exists if survived_index != -1: survived = int(next_line[survived_index]) ideal = [predict_survive if survived == 1 else predict_perish] self.result_ideal.append(ideal)
37.139116
142
0.545082
7947cd7d7fbf4b1e274716ab8443429cd36ae33f
14,634
py
Python
flask/lib/python2.7/site-packages/sqlalchemy/orm/base.py
ccellis/WHACK2016
5ef4ddadaa60ef8ca07702a0a82df8a9776b9741
[ "BSD-3-Clause" ]
1
2018-04-09T07:37:54.000Z
2018-04-09T07:37:54.000Z
flask/lib/python2.7/site-packages/sqlalchemy/orm/base.py
ccellis/WHACK2016
5ef4ddadaa60ef8ca07702a0a82df8a9776b9741
[ "BSD-3-Clause" ]
1
2016-05-25T15:38:50.000Z
2016-05-25T15:38:50.000Z
flask/lib/python2.7/site-packages/sqlalchemy/orm/base.py
ccellis/WHACK2016
5ef4ddadaa60ef8ca07702a0a82df8a9776b9741
[ "BSD-3-Clause" ]
null
null
null
# orm/base.py # Copyright (C) 2005-2016 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """Constants and rudimental functions used throughout the ORM. """ from .. import util, inspection, exc as sa_exc from ..sql import expression from . import exc import operator PASSIVE_NO_RESULT = util.symbol( 'PASSIVE_NO_RESULT', """Symbol returned by a loader callable or other attribute/history retrieval operation when a value could not be determined, based on loader callable flags. """ ) ATTR_WAS_SET = util.symbol( 'ATTR_WAS_SET', """Symbol returned by a loader callable to indicate the retrieved value, or values, were assigned to their attributes on the target object. """ ) ATTR_EMPTY = util.symbol( 'ATTR_EMPTY', """Symbol used internally to indicate an attribute had no callable.""" ) NO_VALUE = util.symbol( 'NO_VALUE', """Symbol which may be placed as the 'previous' value of an attribute, indicating no value was loaded for an attribute when it was modified, and flags indicated we were not to load it. """ ) NEVER_SET = util.symbol( 'NEVER_SET', """Symbol which may be placed as the 'previous' value of an attribute indicating that the attribute had not been assigned to previously. """ ) NO_CHANGE = util.symbol( "NO_CHANGE", """No callables or SQL should be emitted on attribute access and no state should change """, canonical=0 ) CALLABLES_OK = util.symbol( "CALLABLES_OK", """Loader callables can be fired off if a value is not present. """, canonical=1 ) SQL_OK = util.symbol( "SQL_OK", """Loader callables can emit SQL at least on scalar value attributes.""", canonical=2 ) RELATED_OBJECT_OK = util.symbol( "RELATED_OBJECT_OK", """Callables can use SQL to load related objects as well as scalar value attributes. """, canonical=4 ) INIT_OK = util.symbol( "INIT_OK", """Attributes should be initialized with a blank value (None or an empty collection) upon get, if no other value can be obtained. """, canonical=8 ) NON_PERSISTENT_OK = util.symbol( "NON_PERSISTENT_OK", """Callables can be emitted if the parent is not persistent.""", canonical=16 ) LOAD_AGAINST_COMMITTED = util.symbol( "LOAD_AGAINST_COMMITTED", """Callables should use committed values as primary/foreign keys during a load. """, canonical=32 ) NO_AUTOFLUSH = util.symbol( "NO_AUTOFLUSH", """Loader callables should disable autoflush.""", canonical=64 ) # pre-packaged sets of flags used as inputs PASSIVE_OFF = util.symbol( "PASSIVE_OFF", "Callables can be emitted in all cases.", canonical=(RELATED_OBJECT_OK | NON_PERSISTENT_OK | INIT_OK | CALLABLES_OK | SQL_OK) ) PASSIVE_RETURN_NEVER_SET = util.symbol( "PASSIVE_RETURN_NEVER_SET", """PASSIVE_OFF ^ INIT_OK""", canonical=PASSIVE_OFF ^ INIT_OK ) PASSIVE_NO_INITIALIZE = util.symbol( "PASSIVE_NO_INITIALIZE", "PASSIVE_RETURN_NEVER_SET ^ CALLABLES_OK", canonical=PASSIVE_RETURN_NEVER_SET ^ CALLABLES_OK ) PASSIVE_NO_FETCH = util.symbol( "PASSIVE_NO_FETCH", "PASSIVE_OFF ^ SQL_OK", canonical=PASSIVE_OFF ^ SQL_OK ) PASSIVE_NO_FETCH_RELATED = util.symbol( "PASSIVE_NO_FETCH_RELATED", "PASSIVE_OFF ^ RELATED_OBJECT_OK", canonical=PASSIVE_OFF ^ RELATED_OBJECT_OK ) PASSIVE_ONLY_PERSISTENT = util.symbol( "PASSIVE_ONLY_PERSISTENT", "PASSIVE_OFF ^ NON_PERSISTENT_OK", canonical=PASSIVE_OFF ^ NON_PERSISTENT_OK ) DEFAULT_MANAGER_ATTR = '_sa_class_manager' DEFAULT_STATE_ATTR = '_sa_instance_state' _INSTRUMENTOR = ('mapper', 'instrumentor') EXT_CONTINUE = util.symbol('EXT_CONTINUE') EXT_STOP = util.symbol('EXT_STOP') ONETOMANY = util.symbol( 'ONETOMANY', """Indicates the one-to-many direction for a :func:`.relationship`. This symbol is typically used by the internals but may be exposed within certain API features. """) MANYTOONE = util.symbol( 'MANYTOONE', """Indicates the many-to-one direction for a :func:`.relationship`. This symbol is typically used by the internals but may be exposed within certain API features. """) MANYTOMANY = util.symbol( 'MANYTOMANY', """Indicates the many-to-many direction for a :func:`.relationship`. This symbol is typically used by the internals but may be exposed within certain API features. """) NOT_EXTENSION = util.symbol( 'NOT_EXTENSION', """Symbol indicating an :class:`InspectionAttr` that's not part of sqlalchemy.ext. Is assigned to the :attr:`.InspectionAttr.extension_type` attibute. """) _never_set = frozenset([NEVER_SET]) _none_set = frozenset([None, NEVER_SET, PASSIVE_NO_RESULT]) _SET_DEFERRED_EXPIRED = util.symbol("SET_DEFERRED_EXPIRED") _DEFER_FOR_STATE = util.symbol("DEFER_FOR_STATE") def _generative(*assertions): """Mark a method as generative, e.g. method-chained.""" @util.decorator def generate(fn, *args, **kw): self = args[0]._clone() for assertion in assertions: assertion(self, fn.__name__) fn(self, *args[1:], **kw) return self return generate # these can be replaced by sqlalchemy.ext.instrumentation # if augmented class instrumentation is enabled. def manager_of_class(cls): return cls.__dict__.get(DEFAULT_MANAGER_ATTR, None) instance_state = operator.attrgetter(DEFAULT_STATE_ATTR) instance_dict = operator.attrgetter('__dict__') def instance_str(instance): """Return a string describing an instance.""" return state_str(instance_state(instance)) def state_str(state): """Return a string describing an instance via its InstanceState.""" if state is None: return "None" else: return '<%s at 0x%x>' % (state.class_.__name__, id(state.obj())) def state_class_str(state): """Return a string describing an instance's class via its InstanceState. """ if state is None: return "None" else: return '<%s>' % (state.class_.__name__, ) def attribute_str(instance, attribute): return instance_str(instance) + "." + attribute def state_attribute_str(state, attribute): return state_str(state) + "." + attribute def object_mapper(instance): """Given an object, return the primary Mapper associated with the object instance. Raises :class:`sqlalchemy.orm.exc.UnmappedInstanceError` if no mapping is configured. This function is available via the inspection system as:: inspect(instance).mapper Using the inspection system will raise :class:`sqlalchemy.exc.NoInspectionAvailable` if the instance is not part of a mapping. """ return object_state(instance).mapper def object_state(instance): """Given an object, return the :class:`.InstanceState` associated with the object. Raises :class:`sqlalchemy.orm.exc.UnmappedInstanceError` if no mapping is configured. Equivalent functionality is available via the :func:`.inspect` function as:: inspect(instance) Using the inspection system will raise :class:`sqlalchemy.exc.NoInspectionAvailable` if the instance is not part of a mapping. """ state = _inspect_mapped_object(instance) if state is None: raise exc.UnmappedInstanceError(instance) else: return state @inspection._inspects(object) def _inspect_mapped_object(instance): try: return instance_state(instance) # TODO: whats the py-2/3 syntax to catch two # different kinds of exceptions at once ? except exc.UnmappedClassError: return None except exc.NO_STATE: return None def _class_to_mapper(class_or_mapper): insp = inspection.inspect(class_or_mapper, False) if insp is not None: return insp.mapper else: raise exc.UnmappedClassError(class_or_mapper) def _mapper_or_none(entity): """Return the :class:`.Mapper` for the given class or None if the class is not mapped. """ insp = inspection.inspect(entity, False) if insp is not None: return insp.mapper else: return None def _is_mapped_class(entity): """Return True if the given object is a mapped class, :class:`.Mapper`, or :class:`.AliasedClass`. """ insp = inspection.inspect(entity, False) return insp is not None and \ not insp.is_clause_element and \ ( insp.is_mapper or insp.is_aliased_class ) def _attr_as_key(attr): if hasattr(attr, 'key'): return attr.key else: return expression._column_as_key(attr) def _orm_columns(entity): insp = inspection.inspect(entity, False) if hasattr(insp, 'selectable'): return [c for c in insp.selectable.c] else: return [entity] def _is_aliased_class(entity): insp = inspection.inspect(entity, False) return insp is not None and \ getattr(insp, "is_aliased_class", False) def _entity_descriptor(entity, key): """Return a class attribute given an entity and string name. May return :class:`.InstrumentedAttribute` or user-defined attribute. """ insp = inspection.inspect(entity) if insp.is_selectable: description = entity entity = insp.c elif insp.is_aliased_class: entity = insp.entity description = entity elif hasattr(insp, "mapper"): description = entity = insp.mapper.class_ else: description = entity try: return getattr(entity, key) except AttributeError: raise sa_exc.InvalidRequestError( "Entity '%s' has no property '%s'" % (description, key) ) _state_mapper = util.dottedgetter('manager.mapper') @inspection._inspects(type) def _inspect_mapped_class(class_, configure=False): try: class_manager = manager_of_class(class_) if not class_manager.is_mapped: return None mapper = class_manager.mapper except exc.NO_STATE: return None else: if configure and mapper._new_mappers: mapper._configure_all() return mapper def class_mapper(class_, configure=True): """Given a class, return the primary :class:`.Mapper` associated with the key. Raises :exc:`.UnmappedClassError` if no mapping is configured on the given class, or :exc:`.ArgumentError` if a non-class object is passed. Equivalent functionality is available via the :func:`.inspect` function as:: inspect(some_mapped_class) Using the inspection system will raise :class:`sqlalchemy.exc.NoInspectionAvailable` if the class is not mapped. """ mapper = _inspect_mapped_class(class_, configure=configure) if mapper is None: if not isinstance(class_, type): raise sa_exc.ArgumentError( "Class object expected, got '%r'." % (class_, )) raise exc.UnmappedClassError(class_) else: return mapper class InspectionAttr(object): """A base class applied to all ORM objects that can be returned by the :func:`.inspect` function. The attributes defined here allow the usage of simple boolean checks to test basic facts about the object returned. While the boolean checks here are basically the same as using the Python isinstance() function, the flags here can be used without the need to import all of these classes, and also such that the SQLAlchemy class system can change while leaving the flags here intact for forwards-compatibility. """ __slots__ = () is_selectable = False """Return True if this object is an instance of :class:`.Selectable`.""" is_aliased_class = False """True if this object is an instance of :class:`.AliasedClass`.""" is_instance = False """True if this object is an instance of :class:`.InstanceState`.""" is_mapper = False """True if this object is an instance of :class:`.Mapper`.""" is_property = False """True if this object is an instance of :class:`.MapperProperty`.""" is_attribute = False """True if this object is a Python :term:`descriptor`. This can refer to one of many types. Usually a :class:`.QueryableAttribute` which handles attributes events on behalf of a :class:`.MapperProperty`. But can also be an extension type such as :class:`.AssociationProxy` or :class:`.hybrid_property`. The :attr:`.InspectionAttr.extension_type` will refer to a constant identifying the specific subtype. .. seealso:: :attr:`.Mapper.all_orm_descriptors` """ is_clause_element = False """True if this object is an instance of :class:`.ClauseElement`.""" extension_type = NOT_EXTENSION """The extension type, if any. Defaults to :data:`.interfaces.NOT_EXTENSION` .. versionadded:: 0.8.0 .. seealso:: :data:`.HYBRID_METHOD` :data:`.HYBRID_PROPERTY` :data:`.ASSOCIATION_PROXY` """ class InspectionAttrInfo(InspectionAttr): """Adds the ``.info`` attribute to :class:`.InspectionAttr`. The rationale for :class:`.InspectionAttr` vs. :class:`.InspectionAttrInfo` is that the former is compatible as a mixin for classes that specify ``__slots__``; this is essentially an implementation artifact. """ @util.memoized_property def info(self): """Info dictionary associated with the object, allowing user-defined data to be associated with this :class:`.InspectionAttr`. The dictionary is generated when first accessed. Alternatively, it can be specified as a constructor argument to the :func:`.column_property`, :func:`.relationship`, or :func:`.composite` functions. .. versionadded:: 0.8 Added support for .info to all :class:`.MapperProperty` subclasses. .. versionchanged:: 1.0.0 :attr:`.MapperProperty.info` is also available on extension types via the :attr:`.InspectionAttrInfo.info` attribute, so that it can apply to a wider variety of ORM and extension constructs. .. seealso:: :attr:`.QueryableAttribute.info` :attr:`.SchemaItem.info` """ return {} class _MappedAttribute(object): """Mixin for attributes which should be replaced by mapper-assigned attributes. """ __slots__ = ()
27.049908
79
0.681768
7947cdd41e5180be90c1ac87e55af355f5a99242
7,976
py
Python
IMU/VTK-6.2.0/ThirdParty/Twisted/twisted/names/common.py
timkrentz/SunTracker
9a189cc38f45e5fbc4e4c700d7295a871d022795
[ "MIT" ]
4
2016-03-30T14:31:52.000Z
2019-02-02T05:01:32.000Z
IMU/VTK-6.2.0/ThirdParty/Twisted/twisted/names/common.py
timkrentz/SunTracker
9a189cc38f45e5fbc4e4c700d7295a871d022795
[ "MIT" ]
1
2020-03-06T04:49:42.000Z
2020-03-06T04:49:42.000Z
IMU/VTK-6.2.0/ThirdParty/Twisted/twisted/names/common.py
timkrentz/SunTracker
9a189cc38f45e5fbc4e4c700d7295a871d022795
[ "MIT" ]
2
2019-08-30T23:36:13.000Z
2019-11-08T16:52:01.000Z
# -*- test-case-name: twisted.names.test -*- # Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Base functionality useful to various parts of Twisted Names. """ from __future__ import division, absolute_import import socket from zope.interface import implementer from twisted.names import dns from twisted.names.error import DNSFormatError, DNSServerError, DNSNameError from twisted.names.error import DNSNotImplementedError, DNSQueryRefusedError from twisted.names.error import DNSUnknownError from twisted.internet import defer, error, interfaces from twisted.python import failure # Helpers for indexing the three-tuples that get thrown around by this code a # lot. _ANS, _AUTH, _ADD = range(3) EMPTY_RESULT = (), (), () @implementer(interfaces.IResolver) class ResolverBase: """ L{ResolverBase} is a base class for implementations of L{interfaces.IResolver} which deals with a lot of the boilerplate of implementing all of the lookup methods. @cvar _errormap: A C{dict} mapping DNS protocol failure response codes to exception classes which will be used to represent those failures. """ _errormap = { dns.EFORMAT: DNSFormatError, dns.ESERVER: DNSServerError, dns.ENAME: DNSNameError, dns.ENOTIMP: DNSNotImplementedError, dns.EREFUSED: DNSQueryRefusedError} typeToMethod = None def __init__(self): self.typeToMethod = {} for (k, v) in typeToMethod.items(): self.typeToMethod[k] = getattr(self, v) def exceptionForCode(self, responseCode): """ Convert a response code (one of the possible values of L{dns.Message.rCode} to an exception instance representing it. @since: 10.0 """ return self._errormap.get(responseCode, DNSUnknownError) def query(self, query, timeout=None): try: method = self.typeToMethod[query.type] except KeyError: return defer.fail(failure.Failure(NotImplementedError( str(self.__class__) + " " + str(query.type)))) else: return defer.maybeDeferred(method, query.name.name, timeout) def _lookup(self, name, cls, type, timeout): return defer.fail(NotImplementedError("ResolverBase._lookup")) def lookupAddress(self, name, timeout=None): return self._lookup(name, dns.IN, dns.A, timeout) def lookupIPV6Address(self, name, timeout=None): return self._lookup(name, dns.IN, dns.AAAA, timeout) def lookupAddress6(self, name, timeout=None): return self._lookup(name, dns.IN, dns.A6, timeout) def lookupMailExchange(self, name, timeout=None): return self._lookup(name, dns.IN, dns.MX, timeout) def lookupNameservers(self, name, timeout=None): return self._lookup(name, dns.IN, dns.NS, timeout) def lookupCanonicalName(self, name, timeout=None): return self._lookup(name, dns.IN, dns.CNAME, timeout) def lookupMailBox(self, name, timeout=None): return self._lookup(name, dns.IN, dns.MB, timeout) def lookupMailGroup(self, name, timeout=None): return self._lookup(name, dns.IN, dns.MG, timeout) def lookupMailRename(self, name, timeout=None): return self._lookup(name, dns.IN, dns.MR, timeout) def lookupPointer(self, name, timeout=None): return self._lookup(name, dns.IN, dns.PTR, timeout) def lookupAuthority(self, name, timeout=None): return self._lookup(name, dns.IN, dns.SOA, timeout) def lookupNull(self, name, timeout=None): return self._lookup(name, dns.IN, dns.NULL, timeout) def lookupWellKnownServices(self, name, timeout=None): return self._lookup(name, dns.IN, dns.WKS, timeout) def lookupService(self, name, timeout=None): return self._lookup(name, dns.IN, dns.SRV, timeout) def lookupHostInfo(self, name, timeout=None): return self._lookup(name, dns.IN, dns.HINFO, timeout) def lookupMailboxInfo(self, name, timeout=None): return self._lookup(name, dns.IN, dns.MINFO, timeout) def lookupText(self, name, timeout=None): return self._lookup(name, dns.IN, dns.TXT, timeout) def lookupSenderPolicy(self, name, timeout=None): return self._lookup(name, dns.IN, dns.SPF, timeout) def lookupResponsibility(self, name, timeout=None): return self._lookup(name, dns.IN, dns.RP, timeout) def lookupAFSDatabase(self, name, timeout=None): return self._lookup(name, dns.IN, dns.AFSDB, timeout) def lookupZone(self, name, timeout=None): return self._lookup(name, dns.IN, dns.AXFR, timeout) def lookupNamingAuthorityPointer(self, name, timeout=None): return self._lookup(name, dns.IN, dns.NAPTR, timeout) def lookupAllRecords(self, name, timeout=None): return self._lookup(name, dns.IN, dns.ALL_RECORDS, timeout) # IResolverSimple def getHostByName(self, name, timeout=None, effort=10): # XXX - respect timeout return self.lookupAllRecords(name, timeout ).addCallback(self._cbRecords, name, effort ) def _cbRecords(self, records, name, effort): (ans, auth, add) = records result = extractRecord(self, dns.Name(name), ans + auth + add, effort) if not result: raise error.DNSLookupError(name) return result def extractRecord(resolver, name, answers, level=10): if not level: return None if hasattr(socket, 'inet_ntop'): for r in answers: if r.name == name and r.type == dns.A6: return socket.inet_ntop(socket.AF_INET6, r.payload.address) for r in answers: if r.name == name and r.type == dns.AAAA: return socket.inet_ntop(socket.AF_INET6, r.payload.address) for r in answers: if r.name == name and r.type == dns.A: return socket.inet_ntop(socket.AF_INET, r.payload.address) for r in answers: if r.name == name and r.type == dns.CNAME: result = extractRecord( resolver, r.payload.name, answers, level - 1) if not result: return resolver.getHostByName( str(r.payload.name), effort=level - 1) return result # No answers, but maybe there's a hint at who we should be asking about # this for r in answers: if r.type == dns.NS: from twisted.names import client r = client.Resolver(servers=[(str(r.payload.name), dns.PORT)]) return r.lookupAddress(str(name) ).addCallback( lambda records: extractRecord( r, name, records[_ANS] + records[_AUTH] + records[_ADD], level - 1)) typeToMethod = { dns.A: 'lookupAddress', dns.AAAA: 'lookupIPV6Address', dns.A6: 'lookupAddress6', dns.NS: 'lookupNameservers', dns.CNAME: 'lookupCanonicalName', dns.SOA: 'lookupAuthority', dns.MB: 'lookupMailBox', dns.MG: 'lookupMailGroup', dns.MR: 'lookupMailRename', dns.NULL: 'lookupNull', dns.WKS: 'lookupWellKnownServices', dns.PTR: 'lookupPointer', dns.HINFO: 'lookupHostInfo', dns.MINFO: 'lookupMailboxInfo', dns.MX: 'lookupMailExchange', dns.TXT: 'lookupText', dns.SPF: 'lookupSenderPolicy', dns.RP: 'lookupResponsibility', dns.AFSDB: 'lookupAFSDatabase', dns.SRV: 'lookupService', dns.NAPTR: 'lookupNamingAuthorityPointer', dns.AXFR: 'lookupZone', dns.ALL_RECORDS: 'lookupAllRecords', }
31.776892
79
0.62663
7947ce474893a4f869777763e46bca23b70bacea
18,142
py
Python
src/pytezos/cli/cli.py
konchunas/pytezos
65576d18bdf1956fae8ea21241b6c43a38921b83
[ "MIT" ]
null
null
null
src/pytezos/cli/cli.py
konchunas/pytezos
65576d18bdf1956fae8ea21241b6c43a38921b83
[ "MIT" ]
null
null
null
src/pytezos/cli/cli.py
konchunas/pytezos
65576d18bdf1956fae8ea21241b6c43a38921b83
[ "MIT" ]
null
null
null
import io import sys import tarfile import time from glob import glob from os.path import abspath, dirname, exists, join, split from pprint import pformat from typing import List, Optional import click import docker # type: ignore from pytezos import ContractInterface, __version__, pytezos from pytezos.cli.github import create_deployment, create_deployment_status from pytezos.context.mixin import default_network # type: ignore from pytezos.logging import logger from pytezos.michelson.types.base import generate_pydoc from pytezos.operation.result import OperationResult from pytezos.rpc.errors import RpcError from pytezos.sandbox.node import SandboxedNodeTestCase from pytezos.sandbox.parameters import EDO, FLORENCE kernel_js_path = join(dirname(dirname(__file__)), 'assets', 'kernel.js') kernel_json = { "argv": ['pytezos', 'kernel', 'run', "-file", "{connection_file}"], "display_name": "Michelson", "language": "michelson", "codemirror_mode": "michelson", } SMARTPY_CLI_IMAGE = 'bakingbad/smartpy-cli' def make_bcd_link(network, address): return f'https://better-call.dev/{network}/{address}' def get_local_contract_path(path, extension='tz'): if path is None: files = glob(f'*.{extension}') if len(files) != 1: raise Exception('No contracts found in working directory, specify --path implicitly') path = abspath(files[0]) if exists(path): return path return False def get_contract(path): path = get_local_contract_path(path) if path: contract = ContractInterface.from_file(path) else: network, address = path.split(':') contract = pytezos.using(shell=network).contract(address) return contract def get_docker_client(): return docker.from_env() @click.group() @click.version_option(__version__) @click.pass_context def cli(*_args, **_kwargs): pass @cli.command(help='Manage contract storage') @click.option('--action', '-a', type=str, help='One of `schema`, `default`.') @click.option('--path', '-p', type=str, default=None, help='Path to the .tz file, or the following uri: <network>:<KT-address>') @click.pass_context def storage(_ctx, action: str, path: Optional[str]) -> None: contract = get_contract(path) if action == 'schema': logger.info(generate_pydoc(type(contract.storage.data), title='storage')) elif action == 'default': logger.info(pformat(contract.storage.dummy())) else: raise Exception('Action must be either `schema` or `default`') @cli.command(help='Manage contract storage') @click.option('--action', '-a', type=str, default='schema', help='One of `schema`') @click.option('--path', '-p', type=str, default=None, help='Path to the .tz file, or the following uri: <network>:<KT-address>') @click.pass_context def parameter(_ctx, action: str, path: Optional[str]) -> None: contract = get_contract(path) if action == 'schema': logger.info(contract.parameter.__doc__) else: raise Exception('Action must be `schema`') @cli.command(help='Activate and reveal key from the faucet file') @click.option('--path', '-p', type=str, help='Path to the .json file downloaded from https://faucet.tzalpha.net/') @click.option('--network', '-n', type=str, default=default_network, help='Default is edo2net') @click.pass_context def activate(_ctx, path: str, network: str) -> None: ptz = pytezos.using(key=path, shell=network) logger.info( 'Activating %s in the %s', ptz.key.public_key_hash(), network, ) if ptz.balance() == 0: try: opg = ptz.reveal().autofill().sign() logger.info('Injecting reveal operation:') logger.info(pformat(opg.json_payload())) opg.inject(_async=False) except RpcError as e: logger.critical(pformat(e)) sys.exit(-1) else: logger.info('Activation succeeded! Claimed balance: %s ꜩ', ptz.balance()) else: logger.info('Already activated') try: opg = ptz.reveal().autofill().sign() logger.info('Injecting reveal operation:') logger.info(pformat(opg.json_payload())) opg.inject(_async=False) except RpcError as e: logger.critical(pformat(e)) sys.exit(-1) else: logger.info('Your key %s is now active and revealed', ptz.key.public_key_hash()) @cli.command(help='Deploy contract to the specified network') @click.option('--path', '-p', type=str, help='Path to the .tz file') @click.option('--storage', type=str, default=None, help='Storage in JSON format (not Micheline)') @click.option('--network', '-n', type=str, default=default_network, help='Default is edo2net') @click.option('--key', type=str, default=None) @click.option('--github-repo-slug', type=str, default=None) @click.option('--github-oauth-token', type=str, default=None) @click.option('--dry-run', type=bool, default=False, help='Set this flag if you just want to see what would happen') @click.pass_context def deploy( _ctx, path: str, storage: Optional[str], # pylint: disable=redefined-outer-name network: str, key: Optional[str], github_repo_slug: Optional[str], github_oauth_token: Optional[str], dry_run: bool, ): ptz = pytezos.using(shell=network, key=key) logger.info('Deploying contract using %s in the %s', ptz.key.public_key_hash(), network) contract = get_contract(path) try: opg = ptz.origination(script=contract.script(initial_storage=storage)).autofill().sign() logger.info('Injecting origination operation:') logger.info(pformat(opg.json_payload())) if dry_run: logger.info(pformat(opg.preapply())) sys.exit(0) else: opg = opg.inject(_async=False) except RpcError as e: logger.critical(pformat(e)) sys.exit(-1) else: originated_contracts = OperationResult.originated_contracts(opg) if len(originated_contracts) != 1: raise Exception('Operation group must has exactly one originated contract') bcd_link = make_bcd_link(network, originated_contracts[0]) logger.info('Contract was successfully deployed: %s', bcd_link) if github_repo_slug: deployment = create_deployment( github_repo_slug, github_oauth_token, environment=network, ) logger.info(pformat(deployment)) status = create_deployment_status( github_repo_slug, github_oauth_token, deployment_id=deployment['id'], state='success', environment=network, environment_url=bcd_link, ) logger.info(status) @cli.command(help='Update containerized SmartPy CLI') @click.option('--tag', '-t', type=str, help='Version or tag to pull', default='latest') @click.pass_context def update_smartpy(ctx, tag): client = get_docker_client() logger.info('Will now pull latest SmartPy image, please stay put.') for line in client.api.pull(f'{SMARTPY_CLI_IMAGE}:{tag}', stream=True, decode=True): logger.info(line) logger.info('Pulled SmartPy CLI image successfully!') def run_smartpy_container( tag: str = 'latest', command: str = '', files_to_add: List[str] = [], mounts: List[docker.types.Mount] = [], ): try: client = get_docker_client() container = client.containers.create( image=f'{SMARTPY_CLI_IMAGE}:{tag}', command=command, detach=True, mounts=mounts, ) buffer = io.BytesIO() with tarfile.open(fileobj=buffer, mode='w:gz') as archive: for filename in files_to_add: with open(filename, 'rb') as current_file: current_file_data = current_file.read() current_file_buffer = io.BytesIO(initial_bytes=current_file_data) _, short_filename = split(filename) archive.add(filename, arcname=short_filename) buffer.seek(0) container.put_archive( '/root/smartpy-cli/', buffer, ) container.start() return container except docker.errors.ImageNotFound: logger.error('SmartPy compiler not found. Please run update-smartpy first.') @cli.command(help='Run SmartPy CLI command "test"') @click.option('--script', '-s', type=str, help='Path to script', default='script.py') @click.option('--output-directory', '-o', type=str, help='Output directory', default='./smartpy-output') @click.option('--protocol', type=click.Choice(['delphi', 'edo', 'florence', 'proto10']), help='Protocol to use', default='edo') @click.option('--detach', '-d', type=bool, help='Run container in detached mode', default=False) @click.option('--tag', '-t', type=str, help='Version or tag of SmartPy to use', default='latest') @click.pass_context def smartpy_test( _ctx, script: str, output_directory: str, detach: bool, protocol: str, tag: str, ): client = get_docker_client() path = get_local_contract_path(script, extension='py') if path: _, script_name = split(path) container = run_smartpy_container( tag=tag, command=f'test /root/smartpy-cli/{script_name} /root/output --protocol {protocol}', files_to_add=[path, ], mounts=[ docker.types.Mount( target='/root/output', source=output_directory, type='bind' ) ] ) if container is None: raise Exception('Could not create container. Try running update-smartpy.') if not detach: for line in container.logs(stream=True): print(line.decode('utf-8').rstrip()) else: logger.error('No local script found. Please ensure a valid script is present or specify path.') @cli.command(help='Run SmartPy CLI command "compile"') @click.option('--script', '-s', type=str, help='Path to script', default='script.py') @click.option('--output-directory', '-o', type=str, help='Output directory', default='./smartpy-output') @click.option('--detach', '-d', type=bool, help='Run container in detached mode', default=False) @click.option('--protocol', type=click.Choice(['delphi', 'edo', 'florence', 'proto10']), help='Protocol to use', default='edo') @click.option('--tag', '-t', type=str, help='Version or tag of SmartPy to use', default='latest') @click.pass_context def smartpy_compile( _ctx, script: str, output_directory: str, detach: bool, protocol: str, tag: str, ): client = get_docker_client() path = get_local_contract_path(script, extension='py') if path: _, script_name = split(path) container = run_smartpy_container( tag=tag, command=f'compile /root/smartpy-cli/{script_name} /root/output --protocol {protocol}', files_to_add=[path,], mounts=[ docker.types.Mount( target='/root/output', source=output_directory, type='bind' ) ] ) if container is None: raise Exception('Could not create container. Try running update-smartpy.') if not detach: for line in container.logs(stream=True): print(line.decode('utf-8').rstrip()) else: logger.error('No local script found. Please ensure a valid script is present or specify path.') @cli.command(help='Run containerized sandbox node') @click.option('--image', type=str, help='Docker image to use', default=SandboxedNodeTestCase.IMAGE) @click.option('--protocol', type=click.Choice(['florence', 'edo']), help='Protocol to use', default='florence') @click.option('--port', '-p', type=int, help='Port to expose', default=8732) @click.option('--interval', '-i', type=float, help='Interval between baked blocks (in seconds)', default=1.0) @click.option('--blocks', '-b', type=int, help='Number of blocks to bake before exit') @click.pass_context def sandbox( _ctx, image: str, protocol: str, port: int, interval: float, blocks: int, ): protocol = { 'edo': EDO, 'florence': FLORENCE, }[protocol] SandboxedNodeTestCase.PROTOCOL = protocol SandboxedNodeTestCase.IMAGE = image SandboxedNodeTestCase.PORT = port SandboxedNodeTestCase.setUpClass() blocks_baked = 0 while True: try: logger.info('Baking block %s...', blocks_baked) block_hash = SandboxedNodeTestCase.get_client().using(key='bootstrap1').bake_block().fill().work().sign().inject() logger.info('Baked block: %s', block_hash) blocks_baked += 1 if blocks and blocks_baked == blocks: break time.sleep(interval) except KeyboardInterrupt: break @cli.command(help='Update Ligo compiler (docker pull ligolang/ligo)') @click.option('--tag', '-t', type=str, help='Version or tag to pull', default='0.13.0') @click.pass_context def update_ligo( _ctx, tag: str, ): client = get_docker_client() logger.info(f'Pulling ligolang/ligo{(":" + tag) if tag else ""}, please stay put.') for line in client.api.pull('ligolang/ligo', tag=tag, stream=True, decode=True): logger.info(line) logger.info('Pulled Ligo compiler image successfully!') def run_ligo_container( tag: str = '0.13.0', command: str = '', files_to_add: List[str] = [], ): try: client = get_docker_client() container = client.containers.create( image=f'ligolang/ligo:{tag}', command=command, detach=True, ) buffer = io.BytesIO() with tarfile.open(fileobj=buffer, mode='w:gz') as archive: for filename in files_to_add: with open(filename, 'rb') as current_file: current_file_data = current_file.read() current_file_buffer = io.BytesIO(initial_bytes=current_file_data) _, short_filename = split(filename) archive.add(filename, arcname=short_filename) buffer.seek(0) container.put_archive( '/root/', buffer, ) container.start() return container except docker.errors.ImageNotFound: logger.error('Ligo compiler not found. Please run update-ligo first.') @cli.command(help='Compile contract using Ligo compiler.') @click.option('--tag', '-t', type=str, help='Version or tag of Ligo compiler', default='0.13.0') @click.option('--path', '-p', type=str, help='Path to contract') @click.option('--entry-point', '-ep', type=str, help='Entrypoint for the invocation') @click.option('--detach', '-d', type=bool, help='Run container in detached mode', default=False) @click.pass_context def ligo_compile_contract( _ctx, tag: str, path: str, entry_point: str, detach: bool, ): path = get_local_contract_path(path, extension='ligo') if path: _, contract_name = split(path) container = run_ligo_container( tag=tag, command=f'compile-contract {contract_name} "{entry_point}"', files_to_add=[path,] ) if not detach: for line in container.logs(stream=True): print(line.decode('utf-8').rstrip()) else: logger.error('No local contract found. Please ensure a valid contract is present or specify path.') @cli.command(help='Define initial storage using Ligo compiler.') @click.option('--tag', '-t', type=str, help='Version or tag of Ligo compiler', default='0.13.0') @click.option('--path', '-p', type=str, help='Path to contract') @click.option('--entry-point', '-ep', type=str, help='Entrypoint for the storage', default='') @click.option('--expression', '-ex', type=str, help='Expression for the storage', default='') @click.option('--detach', '-d', type=bool, help='Run container in detached mode', default=False) @click.pass_context def ligo_compile_storage( _ctx, tag: str, path: str, entry_point: str, expression: str, detach: bool, ): path = get_local_contract_path(path, extension='ligo') if path: container = run_ligo_container( tag=tag, command=f'compile-storage {path} "{entry_point}" "{expression}"', files_to_add=[path,], ) if not detach: for line in container.logs(stream=True): print(line.decode('utf-8').rstrip()) else: logger.error('No local contract found. Please ensure a valid contract is present or specify path.') @cli.command(help='Invoke a contract with a parameter using Ligo compiler.') @click.option('--tag', '-t', type=str, help='Version or tag of Ligo compiler', default='0.13.0') @click.option('--path', '-p', type=str, help='Path to contract') @click.option('--entry-point', '-ep', type=str, help='Entrypoint for the invocation') @click.option('--expression', '-ex', type=str, help='Expression for the invocation') @click.option('--detach', '-d', type=bool, help='Run container in detached mode', default=False) @click.pass_context def ligo_invoke_contract( _ctx, tag: str, path: str, entry_point: str, expression: str, detach: bool, ): path = get_local_contract_path(path, extension='ligo') if path: container = run_ligo_container( tag=tag, command=f'compile-parameter {path} "{entry_point}" "{expression}"', files_to_add=[path,], ) if not detach: for line in container.logs(stream=True): print(line.decode('utf-8').rstrip()) else: logger.error('No local contract found. Please ensure a valid contract is present or specify path.') if __name__ == '__main__': cli(prog_name='pytezos')
36.949084
128
0.634439
7947ceb66d8381b8c8164586bcef95fe302b7bdb
7,633
py
Python
pepe/analysis/ForceBalance.py
Jfeatherstone/pepe
4d28cab830ff2a94d3cfc06c680bde05d92b2cdb
[ "MIT" ]
null
null
null
pepe/analysis/ForceBalance.py
Jfeatherstone/pepe
4d28cab830ff2a94d3cfc06c680bde05d92b2cdb
[ "MIT" ]
null
null
null
pepe/analysis/ForceBalance.py
Jfeatherstone/pepe
4d28cab830ff2a94d3cfc06c680bde05d92b2cdb
[ "MIT" ]
null
null
null
""" Methods to gauge how well force balance is satisfied for an ensemble, and to convert between polar and cartesian systems. """ import numpy as np import numba def polarToCartesian(force, alpha, beta, collapse=True): """ Convert a set of forces defined in polar coordinates (f, a, b), to cartesian coordinates (f_y, f_x). Parameters ---------- force : float or np.ndarray[F] or list[F] The force magnitude, or an array/list of F force magnitudes. alpha : float or np.ndarray[F] or list[F] The alpha angle, or an array/list of F alpha angles. beta : float or np.ndarray[F] or list[F] The beta angle, or an array/list of F beta angles. collapse : bool Whether to collapse the force index dimension in the case that only a single force is provided. Returns ------- forceArr : np.ndarray[F,2] An array of the cartesian components (y,x) of the forces. If only a single force is provided (ie. `force`, `alpha` and `beta` are all floats) the first dimension will be omitted, leaving just `[f_y, f_x]`. See `collapse` for more information. """ # Check to see if we were given multiple forces, or just a single one if hasattr(force, '__iter__'): forceArr = np.array(force) alphaArr = np.array(alpha) betaArr = np.array(beta) singleForce = False else: forceArr = np.array([force]) alphaArr = np.array([alpha]) betaArr = np.array([beta]) singleForce = True cartesianForceArr = np.zeros((forceArr.shape[0], 2)) for i in range(cartesianForceArr.shape[0]): # Note that this expression is not exactly the same as in K. E. Daniels et al. # Rev. Sci. Inst. 88 (2017). There is an extra negative on the alphas, since mine # appear to be defined backwards. # F_y cartesianForceArr[i,0] = forceArr[i] * np.cos(-alphaArr[i] + betaArr[i]) #(np.cos(betaArr[i,j]) * np.cos(alphaArr[i,j]) + np.sin(betaArr[i,j]) * np.sin(alphaArr[i,j])) # F_x cartesianForceArr[i,1] = -forceArr[i] * np.sin(-alphaArr[i] + betaArr[i]) #(-np.sin(betaArr[i,j]) * np.cos(alphaArr[i,j]) + np.cos(betaArr[i,j]) * np.sin(alphaArr[i,j])) # If we only have a single force, we should collapse that first dimension if singleForce and collapse: return cartesianForceArr[0] return cartesianForceArr def testForceBalance(forceArr, alphaArr, betaArr, collapse=True): """ Sum each of the cartesian force components to see how well an ensemble of forces satisfies force balance. Parameters ---------- forceArr : np.ndarray[F] or np.ndarray[T,F] An array/list of F force magnitudes, possibly for T timesteps. alphaArr : np.ndarray[F] or np.ndarray[T,F] An array/list of F alpha angles, possibly for T timesteps. betaArr : np.ndarray[F] or np.ndarray[T,F] An array/list of F beta angles, possibly for T timesteps. collapse : bool Whether to collapse the timestep dimension in the case that only a single timestep is provided. Returns ------- forceSumArr : np.ndarray[T,2] An array of the sum of each cartesian component (y,x) of the forces at each timestep. If only a single timestep is provided (ie. `forceArr`, `alphaArr` and `betaArr` are all 1D arrays) the first dimension will be omitted, leaving just `[sum_f_y, sum_f_x]`. See `collapse` for more information. """ # Check if we were given a single timestep, or multiple if len(np.shape(forceArr)) == 2: singleTimestep = False multiForceArr = np.array(forceArr) multiAlphaArr = np.array(alphaArr) multiBetaArr = np.array(betaArr) else: singleTimestep = True # TODO: Might need a transpose here multiForceArr = np.array([forceArr]) multiAlphaArr = np.array([alphaArr]) multiBetaArr = np.array([betaArr]) forceSumArr = np.zeros((multiForceArr.shape[1], 2)) # Sum up forces for each timestep for i in range(multiForceArr.shape[1]): cartForces = polarToCartesian(multiForceArr[:,i], multiAlphaArr[:,i], multiBetaArr[:,i], collapse=False) # sum_y forceSumArr[i,0] = np.sum(cartForces[:,0]) # sum_x forceSumArr[i,1] = np.sum(cartForces[:,1]) if singleTimestep and collapse: return forceSumArr[0] return forceSumArr @numba.jit(nopython=True) def singleParticleForceBalance(forceArr, alphaArr, betaArr): """ **Does not currently work! Any calls to this function will just return the original arrays** Takes a set of forces acting on a single particle and ensures they obey force balance. The majority of this method is transpiled directly from Jonathan Kollmer's implementation: https://github.com/jekollmer/PEGS Parameters ---------- forceArr : np.ndarray[N] Array of force magnitudes at each contact point. alphaArr : np.ndarray[N] Array of angles that define the direction of force at each contact point betaArr : np.ndarray[N] Array of angles that define the contact point of the forces, and therefore are not adjusted in the force balancing process Returns ------- np.ndarray[N] : Magnitude of balanced forces np.ndarray[N] : Balanced contact angles alpha """ # TODO: Get this function working print("Warning: force balance is not yet implemented, do not call the singleParticleForceBalance function!") return forceArr, alphaArr # Number of contacts (coordination number, often denoted by z) numContacts = len(forceArr) if numContacts < 2: # Can't do anything with only a single force return forceArr, alphaArr elif numContacts == 2: # For 2 forces, there is a unique process # The two force magnitudes must be equal balancedForceArr = np.array([forceArr[0], forceArr[0]]) balancedAlphaArr = np.zeros(2) dBeta = (betaArr[0] - betaArr[1]) / 2 balancedAlphaArr[0] = np.arccos(np.sin(dBeta)) if balancedAlphaArr[0] > np.pi/2: balancedAlphaArr[0] = np.arccos(np.sin(-dBeta)) # And the other angle must be the opposite balancedAlphaArr[1] = - balancedAlphaArr[0] return balancedForceArr, balancedAlphaArr elif numContacts > 2: # We solve any z>2 contacts the same way balancedForceArr = np.zeros_like(forceArr) balancedAlphaArr = np.zeros_like(alphaArr) # To calculate the new force magnitudes, we add up vertical and # horizontal components of the other forces for i in range(numContacts): # These initializations are to not count the case where j = i sum1 = -forceArr[i] * np.sin(alphaArr[i]) sum2 = -forceArr[i] * np.cos(alphaArr[i]) for j in range(numContacts): sum1 += forceArr[j] * np.sin(alphaArr[j] + betaArr[j] - betaArr[i]) sum2 += forceArr[j] * np.cos(alphaArr[j] + betaArr[j] - betaArr[i]) balancedForceArr[i] = np.sqrt(sum1**2 + sum2**2) # To calculate new alpha values, we for i in range(numContacts): sum3 = -balancedForceArr[i] * np.sin(alphaArr[i]) for j in range(numContacts): sum3 += balancedForceArr[j] * np.sin(alphaArr[j]) balancedAlphaArr[i] = np.arcsin(-sum3/balancedForceArr[i]) return balancedForceArr, balancedAlphaArr
34.538462
177
0.639198
7947cf5e1892b79ae46d07d2a0126e6c1b20dbd8
4,592
py
Python
pretrain_AE.py
bigaidream-projects/citylearn-2020-pikapika
8c9389eb4b4e979faf269b8c0ce87b499af97ac1
[ "Apache-2.0" ]
3
2021-12-20T03:40:55.000Z
2022-02-02T04:26:33.000Z
pretrain_AE.py
bigaidream-projects/citylearn-2020-pikapika
8c9389eb4b4e979faf269b8c0ce87b499af97ac1
[ "Apache-2.0" ]
null
null
null
pretrain_AE.py
bigaidream-projects/citylearn-2020-pikapika
8c9389eb4b4e979faf269b8c0ce87b499af97ac1
[ "Apache-2.0" ]
4
2022-02-11T20:30:51.000Z
2022-02-27T01:17:34.000Z
from torch.optim import Adam from torch.nn.functional import l1_loss from torch.distributions import kl_divergence, Normal from pathlib import Path import numpy as np import torch from torch.utils.tensorboard import SummaryWriter from citylearn import CityLearn from utils.standardization import normalize_AE_state_with_pred from utils.io import get_output_folder from model.Encoder import AE from utils.util import USE_CUDA import os import argparse log_per_step = 1000 # Instantiating the Tensorboard writers PATH_base = 'datas/new/' PATH_base = get_output_folder(PATH_base, 'scalar_pretrain_encoder') PATH_to_log_dir1 = PATH_base + '/pred' pred_writer = SummaryWriter(PATH_to_log_dir1) PATH_to_log_dir2 = PATH_base + '/unpred' unpred_writer = SummaryWriter(PATH_to_log_dir2) # load data parser = argparse.ArgumentParser() # RL Hyper-parameters parser.add_argument('--climate_zone', type=int, default=1) args = parser.parse_args() data_path = Path("../data/Climate_Zone_" + str(args.climate_zone)) building_attributes = data_path / 'building_attributes.json' weather_file = data_path / 'weather_data.csv' solar_profile = data_path / 'solar_generation_1kW.csv' building_state_actions = 'buildings_state_action_space.json' building_ids = ["Building_1", "Building_2", "Building_3", "Building_4", "Building_5", "Building_6", "Building_7", "Building_8", "Building_9"] objective_function = ['ramping', '1-load_factor', 'average_daily_peak', 'peak_demand', 'net_electricity_consumption', 'total'] # Instantiating the env env = CityLearn(data_path, building_attributes, weather_file, solar_profile, building_ids, buildings_states_actions=building_state_actions, cost_function=objective_function) observations_spaces, actions_spaces = env.get_state_action_spaces() # test_sample = torch.zeros((100, 37)) # dataloader = [test_sample] state = env.reset() norm_state = normalize_AE_state_with_pred(state, noSOC=True) dataloader = [norm_state] done = False while not done: action = np.zeros((9, 2)) next_state, reward, done, _ = env.step(action) norm_state = normalize_AE_state_with_pred(next_state, noSOC=True) dataloader.append(norm_state) state = next_state model = AE(31, 128, [128, 128], {}) if USE_CUDA: model = model.cuda() opt = Adam(model.parameters(), lr=0.001) max_epoch = 100 MIN_loss = 9999999 model_path = './Models_one_AE_128dim_zone' + str(args.climate_zone) if not os.path.isdir(model_path): os.mkdir(model_path) # model.load_state_dict(torch.load('{}/AE.pt'.format(model_path))) # print("load model successfully") def print_grad(net): for name, parms in net.named_parameters(): if parms.grad is None: continue print('-->name:', name, '-->grad_requires:', parms.requires_grad, ' -->grad_value:', torch.max(parms.grad), torch.min(parms.grad)) STEP_PER_EPOCH = 10000 BATCH_SIZE = 100 DROPOUT = 0.2 for e in range(max_epoch): cum_loss = 0. for idx in range(STEP_PER_EPOCH): batch_idx = np.random.randint(low=0, high=8760, size=BATCH_SIZE) s = torch.FloatTensor(np.array(dataloader)[batch_idx]).reshape(BATCH_SIZE * 9, -1) if USE_CUDA: s = s.cuda() # =========== training VAE1 for predictable variables ========= hidden_state = model(s) # GaussianDist = Normal(torch.zeros_like(dist.mean), torch.ones_like(dist.stddev)) # Gaussian(0, 1) # TODO Check gradient flow through kl_divergence recon_s = model.decode(hidden_state) # <input - output> pair-wise dropout mask = torch.ones_like(s) mask = torch.nn.Dropout(0.2)(mask) mask[mask != 0] = 1. recon_s = recon_s * mask s = s * mask ReconstructionLoss = l1_loss(recon_s, s, reduction='mean') loss = ReconstructionLoss opt.zero_grad() loss.backward() opt.step() cum_loss += loss.detach().cpu() if (e * STEP_PER_EPOCH + idx) % log_per_step == 0: # print(recon_s, pred_s) print("loss {} at step {}".format(loss, e * STEP_PER_EPOCH + idx)) print_grad(model) pred_writer.add_scalar('pred_loss_step', loss, e * STEP_PER_EPOCH + idx) print("cum loss {} at epoch {}".format(cum_loss, e)) if cum_loss < MIN_loss: MIN_loss = cum_loss if e > 0: torch.save(model.state_dict(), '{}/AE.pt'.format(model_path)) print("save pred model in epoch {}".format(e)) pred_writer.add_scalar('loss_epoch', cum_loss, e)
32.338028
113
0.690984
7947d033e8d393f86da4736436a387d28b8a58ad
7,799
py
Python
mmdet/core/bbox/bbox_target.py
arthur801031/3d-multi-resolution-rcnn
8e5454a72f8daa174bf3eabfa5964152f04ab287
[ "Apache-2.0" ]
16
2021-03-02T07:41:01.000Z
2022-03-14T08:55:45.000Z
mmdet/core/bbox/bbox_target.py
arthur801031/3d-multi-resolution-rcnn
8e5454a72f8daa174bf3eabfa5964152f04ab287
[ "Apache-2.0" ]
2
2022-01-06T20:54:13.000Z
2022-02-24T03:50:51.000Z
mmdet/core/bbox/bbox_target.py
arthur801031/3d-multi-resolution-rcnn
8e5454a72f8daa174bf3eabfa5964152f04ab287
[ "Apache-2.0" ]
2
2021-05-26T19:23:35.000Z
2022-01-06T20:30:24.000Z
import torch from .transforms import bbox2delta, bbox2delta3d from ..utils import multi_apply def bbox_target(pos_bboxes_list, neg_bboxes_list, pos_gt_bboxes_list, pos_gt_labels_list, cfg, reg_classes=1, target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0], concat=True): labels, label_weights, bbox_targets, bbox_weights = multi_apply( bbox_target_single, pos_bboxes_list, neg_bboxes_list, pos_gt_bboxes_list, pos_gt_labels_list, cfg=cfg, reg_classes=reg_classes, target_means=target_means, target_stds=target_stds) if concat: labels = torch.cat(labels, 0) label_weights = torch.cat(label_weights, 0) bbox_targets = torch.cat(bbox_targets, 0) bbox_weights = torch.cat(bbox_weights, 0) return labels, label_weights, bbox_targets, bbox_weights def bbox_target_3d(pos_bboxes_list, neg_bboxes_list, pos_gt_bboxes_list, pos_gt_labels_list, cfg, reg_classes=1, target_means=[.0, .0, .0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0], concat=True): labels, label_weights, bbox_targets, bbox_weights = multi_apply( bbox_target_single_3d, pos_bboxes_list, neg_bboxes_list, pos_gt_bboxes_list, pos_gt_labels_list, cfg=cfg, reg_classes=reg_classes, target_means=target_means, target_stds=target_stds) if concat: labels = torch.cat(labels, 0) label_weights = torch.cat(label_weights, 0) bbox_targets = torch.cat(bbox_targets, 0) bbox_weights = torch.cat(bbox_weights, 0) return labels, label_weights, bbox_targets, bbox_weights def bbox_target_3d_parcel(pos_bboxes_list, neg_bboxes_list, pos_gt_bboxes_list, pos_gt_labels_list, pos_gt_bregions_list, cfg, reg_classes=1, target_means=[.0, .0, .0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0], concat=True): labels, label_weights, bbox_targets, bbox_weights, bregions, bregion_weights = multi_apply( bbox_target_single_3d_parcel, pos_bboxes_list, neg_bboxes_list, pos_gt_bboxes_list, pos_gt_labels_list, pos_gt_bregions_list, cfg=cfg, reg_classes=reg_classes, target_means=target_means, target_stds=target_stds) if concat: labels = torch.cat(labels, 0) label_weights = torch.cat(label_weights, 0) bbox_targets = torch.cat(bbox_targets, 0) bbox_weights = torch.cat(bbox_weights, 0) bregions = torch.cat(bregions, 0) bregion_weights = torch.cat(bregion_weights, 0) return labels, label_weights, bbox_targets, bbox_weights, bregions, bregion_weights def bbox_target_single(pos_bboxes, neg_bboxes, pos_gt_bboxes, pos_gt_labels, cfg, reg_classes=1, target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]): num_pos = pos_bboxes.size(0) num_neg = neg_bboxes.size(0) num_samples = num_pos + num_neg labels = pos_bboxes.new_zeros(num_samples, dtype=torch.long) label_weights = pos_bboxes.new_zeros(num_samples) bbox_targets = pos_bboxes.new_zeros(num_samples, 4) bbox_weights = pos_bboxes.new_zeros(num_samples, 4) if num_pos > 0: labels[:num_pos] = pos_gt_labels pos_weight = 1.0 if cfg.pos_weight <= 0 else cfg.pos_weight label_weights[:num_pos] = pos_weight pos_bbox_targets = bbox2delta(pos_bboxes, pos_gt_bboxes, target_means, target_stds) bbox_targets[:num_pos, :] = pos_bbox_targets bbox_weights[:num_pos, :] = 1 if num_neg > 0: label_weights[-num_neg:] = 1.0 return labels, label_weights, bbox_targets, bbox_weights def bbox_target_single_3d(pos_bboxes, neg_bboxes, pos_gt_bboxes, pos_gt_labels, cfg, reg_classes=1, target_means=[.0, .0, .0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0]): num_pos = pos_bboxes.size(0) num_neg = neg_bboxes.size(0) num_samples = num_pos + num_neg labels = pos_bboxes.new_zeros(num_samples, dtype=torch.long) label_weights = pos_bboxes.new_zeros(num_samples) bbox_targets = pos_bboxes.new_zeros(num_samples, 6) bbox_weights = pos_bboxes.new_zeros(num_samples, 6) if num_pos > 0: labels[:num_pos] = pos_gt_labels pos_weight = 1.0 if cfg.pos_weight <= 0 else cfg.pos_weight label_weights[:num_pos] = pos_weight pos_bbox_targets = bbox2delta3d(pos_bboxes, pos_gt_bboxes, target_means, target_stds) bbox_targets[:num_pos, :] = pos_bbox_targets bbox_weights[:num_pos, :] = 1 if num_neg > 0: label_weights[-num_neg:] = 1.0 # if torch.isnan(bbox_targets).any().item() == 1: # breakpoint() return labels, label_weights, bbox_targets, bbox_weights def bbox_target_single_3d_parcel(pos_bboxes, neg_bboxes, pos_gt_bboxes, pos_gt_labels, pos_gt_bregions, cfg, reg_classes=1, target_means=[.0, .0, .0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0]): num_pos = pos_bboxes.size(0) num_neg = neg_bboxes.size(0) num_samples = num_pos + num_neg labels = pos_bboxes.new_zeros(num_samples, dtype=torch.long) bregions = pos_bboxes.new_zeros(num_samples, dtype=torch.long) label_weights = pos_bboxes.new_zeros(num_samples) bregion_weights = pos_bboxes.new_zeros(num_samples) bbox_targets = pos_bboxes.new_zeros(num_samples, 6) bbox_weights = pos_bboxes.new_zeros(num_samples, 6) if num_pos > 0: labels[:num_pos] = pos_gt_labels bregions[:num_pos] = pos_gt_bregions pos_weight = 1.0 if cfg.pos_weight <= 0 else cfg.pos_weight label_weights[:num_pos] = pos_weight bregion_weights[:num_pos] = pos_weight pos_bbox_targets = bbox2delta3d(pos_bboxes, pos_gt_bboxes, target_means, target_stds) bbox_targets[:num_pos, :] = pos_bbox_targets bbox_weights[:num_pos, :] = 1 if num_neg > 0: label_weights[-num_neg:] = 1.0 bregion_weights[-num_neg:] = 1.0 # if torch.isnan(bbox_targets).any().item() == 1: # breakpoint() return labels, label_weights, bbox_targets, bbox_weights, bregions, bregion_weights def expand_target(bbox_targets, bbox_weights, labels, num_classes): breakpoint() bbox_targets_expand = bbox_targets.new_zeros((bbox_targets.size(0), 4 * num_classes)) bbox_weights_expand = bbox_weights.new_zeros((bbox_weights.size(0), 4 * num_classes)) for i in torch.nonzero(labels > 0).squeeze(-1): start, end = labels[i] * 4, (labels[i] + 1) * 4 bbox_targets_expand[i, start:end] = bbox_targets[i, :] bbox_weights_expand[i, start:end] = bbox_weights[i, :] return bbox_targets_expand, bbox_weights_expand
39.790816
95
0.594307
7947d0b73cbc54028f11cf6382ee720dc2d6bf13
6,636
py
Python
Lib/site-packages/qt_py_convert/_modules/from_imports/process.py
fochoao/cpython
3dc84b260e5bced65ebc2c45c40c8fa65f9b5aa9
[ "bzip2-1.0.6", "0BSD" ]
61
2018-04-17T18:09:32.000Z
2022-03-04T03:33:50.000Z
Lib/site-packages/qt_py_convert/_modules/from_imports/process.py
fochoao/cpython
3dc84b260e5bced65ebc2c45c40c8fa65f9b5aa9
[ "bzip2-1.0.6", "0BSD" ]
20
2021-05-03T18:02:23.000Z
2022-03-12T12:01:04.000Z
Lib/site-packages/qt_py_convert/_modules/from_imports/process.py
fochoao/cpython
3dc84b260e5bced65ebc2c45c40c8fa65f9b5aa9
[ "bzip2-1.0.6", "0BSD" ]
5
2018-04-18T07:36:21.000Z
2019-07-01T01:41:55.000Z
# Copyright 2018 Digital Domain 3.0 # # Licensed under the Apache License, Version 2.0 (the "Apache License") # with the following modification; you may not use this file except in # compliance with the Apache License and the following modification to it: # Section 6. Trademarks. is deleted and replaced with: # # 6. Trademarks. This License does not grant permission to use the trade # names, trademarks, service marks, or product names of the Licensor # and its affiliates, except as required to comply with Section 4(c) of # the License and to reproduce the content of the NOTICE file. # # You may obtain a copy of the Apache License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the Apache License with the above modification is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the Apache License for the specific # language governing permissions and limitations under the Apache License. """ The from_imports module is designed to fix the from import statements. """ from qt_py_convert._modules.expand_stars import process as stars_process from qt_py_convert.general import __supported_bindings__, ALIAS_DICT, change, \ supported_binding from qt_py_convert.log import get_logger FROM_IMPORTS_LOG = get_logger("from_imports") IGNORED_IMPORT_TARGETS = ("right_parenthesis", "left_parenthesis") class Processes(object): """Processes class for from_imports""" @staticmethod def _get_import_parts(node, binding): return node.dumps().replace(binding, "").lstrip(".").split(".") @staticmethod def _no_second_level_module(node, _parts, skip_lineno=False): text = "from Qt import {key}".format( key=", ".join([target.value for target in node.targets]) ) change( logger=FROM_IMPORTS_LOG, node=node, replacement=text, skip_lineno=skip_lineno ) node.replace(text) @classmethod def _process_import(cls, red, objects, skip_lineno=False): """ _process_import is designed to replace from import methods. :param red: redbaron process. Unused in this method. :type red: redbardon.RedBaron :param objects: List of redbaron nodes that matched for this proc. :type objects: list :param skip_lineno: Global "skip_lineno" flag. :type skip_lineno: bool """ binding_aliases = ALIAS_DICT mappings = {} # Replace each node for node, binding in objects: from_import_parts = cls._get_import_parts(node, binding) if len(from_import_parts) and from_import_parts[0]: second_level_module = from_import_parts[0] else: cls._no_second_level_module( node.parent, from_import_parts, skip_lineno=skip_lineno ) binding_aliases["bindings"].add(binding) for target in node.parent.targets: binding_aliases["root_aliases"].add(target.value) continue for _from_as_name in node.parent.targets: if _from_as_name.type in IGNORED_IMPORT_TARGETS: continue if _from_as_name.type == "star": # TODO: Make this a flag and make use the expand module. _, star_mappings = stars_process( red ) mappings.update(star_mappings) else: key = _from_as_name.target or _from_as_name.value value = ".".join(from_import_parts)+"."+_from_as_name.value mappings[key] = value replacement = "from Qt import {key}".format( key=second_level_module ) change( logger=FROM_IMPORTS_LOG, node=node.parent, replacement=replacement, skip_lineno=skip_lineno ) node.parent.replace(replacement) binding_aliases["bindings"].add(binding) for target in node.parent.targets: binding_aliases["root_aliases"].add(target.value) if binding not in binding_aliases: binding_aliases[binding] = set() binding_aliases[binding] = binding_aliases[binding].union( set([target.value for target in node.parent.targets]) ) return binding_aliases, mappings FROM_IMPORT_STR = "FROM_IMPORT" FROM_IMPORT = _process_import def import_process(store): """ import_process is one of the more complex handlers for the _modules. :param store: Store is the issues dict defined in "process" :type store: dict :return: The filter_function callable. :rtype: callable """ def filter_function(value): """ filter_function takes an AtomTrailersNode or a DottedNameNode and will filter them out if they match something that has changed in psep0101 """ _raw_module = value.dumps() # See if that import is in our __supported_bindings__ matched_binding = supported_binding(_raw_module) if matched_binding: store[Processes.FROM_IMPORT_STR].add( (value, matched_binding) ) return True return filter_function def process(red, skip_lineno=False, **kwargs): """ process is the main function for the import process. :param red: Redbaron ast. :type red: redbaron.redbaron :param skip_lineno: An optional performance flag. By default, when the script replaces something, it will tell you which line it is replacing on. This can be useful for tracking the places that changes occurred. When you turn this flag on however, it will not show the line numbers. This can give great performance increases because redbaron has trouble calculating the line number sometimes. :type skip_lineno: bool :param kwargs: Any other kwargs will be ignored. :type kwargs: dict """ issues = { Processes.FROM_IMPORT_STR: set(), } red.find_all("FromImportNode", value=import_process(issues)) key = Processes.FROM_IMPORT_STR if issues[key]: return getattr(Processes, key)(red, issues[key], skip_lineno=skip_lineno) else: return ALIAS_DICT, {}
37.280899
81
0.639994
7947d0c383359141ce9cb03d6cd951c21f2fa75f
10,025
py
Python
src/transformers/tokenization_t5_fast.py
Liang813/transformers
08f534d2da47875a4b7eb1c125cfa7f0f3b79642
[ "Apache-2.0" ]
null
null
null
src/transformers/tokenization_t5_fast.py
Liang813/transformers
08f534d2da47875a4b7eb1c125cfa7f0f3b79642
[ "Apache-2.0" ]
null
null
null
src/transformers/tokenization_t5_fast.py
Liang813/transformers
08f534d2da47875a4b7eb1c125cfa7f0f3b79642
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2018 T5 Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization class for model T5.""" import os from shutil import copyfile from typing import List, Optional, Tuple from .file_utils import add_start_docstrings, is_sentencepiece_available from .tokenization_utils import BatchEncoding from .tokenization_utils_base import PREPARE_SEQ2SEQ_BATCH_DOCSTRING from .tokenization_utils_fast import PreTrainedTokenizerFast from .utils import logging if is_sentencepiece_available(): from .tokenization_t5 import T5Tokenizer else: T5Tokenizer = None logger = logging.get_logger(__name__) #################################################### # Mapping from the keyword arguments names of Tokenizer `__init__` # to file names for serializing Tokenizer instances #################################################### VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} #################################################### # Mapping from the keyword arguments names of Tokenizer `__init__` # to pretrained vocabulary URL for all the model shortcut names. #################################################### PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "t5-small": "https://s3.amazonaws.com/models.huggingface.co/bert/t5-spiece.model", "t5-base": "https://s3.amazonaws.com/models.huggingface.co/bert/t5-spiece.model", "t5-large": "https://s3.amazonaws.com/models.huggingface.co/bert/t5-spiece.model", "t5-3b": "https://s3.amazonaws.com/models.huggingface.co/bert/t5-spiece.model", "t5-11b": "https://s3.amazonaws.com/models.huggingface.co/bert/t5-spiece.model", }, "tokenizer_file": { "t5-small": "https://s3.amazonaws.com/models.huggingface.co/bert/t5-tokenizer.json", "t5-base": "https://s3.amazonaws.com/models.huggingface.co/bert/t5-tokenizer.json", "t5-large": "https://s3.amazonaws.com/models.huggingface.co/bert/t5-tokenizer.json", "t5-3b": "https://s3.amazonaws.com/models.huggingface.co/bert/t5-tokenizer.json", "t5-11b": "https://s3.amazonaws.com/models.huggingface.co/bert/t5-tokenizer.json", }, } #################################################### # Mapping from model shortcut names to max length of inputs #################################################### PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "t5-small": 512, "t5-base": 512, "t5-large": 512, "t5-3b": 512, "t5-11b": 512, } class T5TokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" T5 tokenizer (backed by HuggingFace's `tokenizers` library). Based on `SentencePiece <https://github.com/google/sentencepiece>`__ . This tokenizer inherits from :class:`~transformers.PreTrainedTokenizerFast` which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (:obj:`str`): `SentencePiece <https://github.com/google/sentencepiece>`__ file (generally has a `.spm` extension) that contains the vocabulary necessary to instantiate a tokenizer. eos_token (:obj:`str`, `optional`, defaults to :obj:`"</s>"`): The end of sequence token. .. note:: When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the :obj:`sep_token`. unk_token (:obj:`str`, `optional`, defaults to :obj:`"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (:obj:`str`, `optional`, defaults to :obj:`"<pad>"`): The token used for padding, for example when batching sequences of different lengths. extra_ids (:obj:`int`, `optional`, defaults to 100): Add a number of extra ids added to the end of the vocabulary for use as sentinels. These tokens are accessible as "<extra_id_{%d}>" where "{%d}" is a number between 0 and extra_ids-1. Extra tokens are indexed from the end of the vocabulary up to beginnning ("<extra_id_0>" is the last token in the vocabulary like in T5 preprocessing see `here <https://github.com/google-research/text-to-text-transfer-transformer/blob/9fd7b14a769417be33bc6c850f9598764913c833/t5/data/preprocessors.py#L2117>`__). additional_special_tokens (:obj:`List[str]`, `optional`): Additional special tokens used by the tokenizer. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["attention_mask"] slow_tokenizer_class = T5Tokenizer prefix_tokens: List[int] = [] def __init__( self, vocab_file, tokenizer_file=None, eos_token="</s>", unk_token="<unk>", pad_token="<pad>", extra_ids=100, additional_special_tokens=None, **kwargs ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: additional_special_tokens = ["<extra_id_{}>".format(i) for i in range(extra_ids)] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens extra_tokens = len(set(filter(lambda x: bool("extra_id_" in x), additional_special_tokens))) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are provided to T5Tokenizer. " "In this case the additional_special_tokens must include the extra_ids tokens" ) super().__init__( vocab_file, tokenizer_file=tokenizer_file, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, extra_ids=extra_ids, additional_special_tokens=additional_special_tokens, **kwargs, ) self.vocab_file = vocab_file self._extra_ids = extra_ids def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error("Vocabulary path ({}) should be a directory".format(save_directory)) return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A sequence has the following format: - single sequence: ``X </s>`` - pair of sequences: ``A </s> B </s>`` Args: token_ids_0 (:obj:`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (:obj:`List[int]`, `optional`): Optional second list of IDs for sequence pairs. Returns: :obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. """ token_ids_0 = token_ids_0 + [self.eos_token_id] if token_ids_1 is None: return self.prefix_tokens + token_ids_0 else: token_ids_1 = token_ids_1 + [self.eos_token_id] return self.prefix_tokens + token_ids_0 + token_ids_1 @add_start_docstrings(PREPARE_SEQ2SEQ_BATCH_DOCSTRING) def prepare_seq2seq_batch( self, src_texts: List[str], tgt_texts: Optional[List[str]] = None, max_length: Optional[int] = None, max_target_length: Optional[int] = None, padding: str = "longest", return_tensors: str = None, truncation: bool = True, **kwargs, ) -> BatchEncoding: if max_length is None: max_length = self.max_len self.prefix_tokens = [] model_inputs = self( src_texts, add_special_tokens=True, return_tensors=return_tensors, max_length=max_length, padding=padding, truncation=truncation, **kwargs, ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: max_target_length = max_length # set prefix_tokens for target text self.prefix_tokens = [self.pad_token_id] labels_and_decoder_mask = self( tgt_texts, add_special_tokens=True, return_tensors=return_tensors, padding=padding, max_length=max_target_length, truncation=truncation, **kwargs, ) model_inputs["labels"] = labels_and_decoder_mask["input_ids"] self.prefix_tokens = [] return model_inputs
42.299578
164
0.639302
7947d0e06d1b2056e68ba1afac0bed9598f27f4e
194
py
Python
manage.py
atten/mongo-log-watcher
7269356acc30c44ae6ed857d491758ef4865f8a4
[ "MIT" ]
null
null
null
manage.py
atten/mongo-log-watcher
7269356acc30c44ae6ed857d491758ef4865f8a4
[ "MIT" ]
null
null
null
manage.py
atten/mongo-log-watcher
7269356acc30c44ae6ed857d491758ef4865f8a4
[ "MIT" ]
null
null
null
from app import app, init_app, manager @manager.command def runserver(): app.run(host='localhost', port=8211) if __name__ == '__main__': init_app('local_settings') manager.run()
16.166667
40
0.690722
7947d1981ddc9d96cd3518cb130a97c890c1b721
1,113
py
Python
module3/modules04.py
zubrik13/stepic_python
72def2a2c2d45d8ff47a94a6ba6bc4936459046d
[ "MIT" ]
null
null
null
module3/modules04.py
zubrik13/stepic_python
72def2a2c2d45d8ff47a94a6ba6bc4936459046d
[ "MIT" ]
null
null
null
module3/modules04.py
zubrik13/stepic_python
72def2a2c2d45d8ff47a94a6ba6bc4936459046d
[ "MIT" ]
null
null
null
""" Имеется набор файлов, каждый из которых, кроме последнего, содержит имя следующего файла. Первое слово в тексте последнего файла: "We". Скачайте предложенный файл. В нём содержится ссылка на первый файл из этого набора. Все файлы располагаются в каталоге по адресу: https://stepic.org/media/attachments/course67/3.6.3/ Загрузите содержимое последнего файла из набора, как ответ на это задание. """ import requests with open("dataset05.txt") as file: for line in file: url = line.strip() link = "https://stepic.org/media/attachments/course67/3.6.3/" r = requests.get(url) filename = r.text.split("/")[-1] # print(filename) counter = 0 while filename: # print(filename) r = requests.get(link+filename) if r.text.startswith('We'): filename = None else: filename = r.text counter += 1 print(counter) with open("out04.txt", "w") as out: out.write(r.text) # beauty # import requests # url, name = 'https://stepic.org/media/attachments/course67/3.6.3/', '699991.txt' # while name[:2] != 'We': # name = requests.get(url + name).text # print(name)
24.733333
89
0.683738
7947d19c532dad134debf70d773a709f348ef1bd
1,648
py
Python
exercise_code/data/base_dataset.py
Rylie-W/I2DL_21WS
d0c6517695b71a491f7f88ed1031366de209c4a0
[ "Apache-2.0" ]
null
null
null
exercise_code/data/base_dataset.py
Rylie-W/I2DL_21WS
d0c6517695b71a491f7f88ed1031366de209c4a0
[ "Apache-2.0" ]
null
null
null
exercise_code/data/base_dataset.py
Rylie-W/I2DL_21WS
d0c6517695b71a491f7f88ed1031366de209c4a0
[ "Apache-2.0" ]
null
null
null
"""Dataset Base Class""" from abc import ABC, abstractmethod from .download_utils import download_dataset class Dataset(ABC): """ Abstract Dataset Base Class All subclasses must define __getitem__() and __len__() """ def __init__(self, root, download_url=None, force_download=False, verbose=False): self.root_path = root # The actual archive name should be all the text of the url after the # last '/'. if download_url is not None: dataset_zip_name = download_url[download_url.rfind('/')+1:] self.dataset_zip_name = dataset_zip_name download_dataset( url=download_url, data_dir=root, dataset_zip_name=dataset_zip_name, force_download=force_download, verbose=verbose, ) @abstractmethod def __getitem__(self, index): """Return data sample at given index""" @abstractmethod def __len__(self): """Return size of the dataset""" class DummyDataset(Dataset): """ Simple dummy dataset Contains all integers from 1 to a given limit, which are dividable by a given divisor """ def __init__(self, divisor, limit, **kwargs): """ :param divisor: common divisor of all integers in the dataset :param limit: upper limit of integers in the dataset """ super().__init__(**kwargs) self.data = [i for i in range(1, limit + 1) if i % divisor == 0] def __len__(self): return len(self.data) def __getitem__(self, index): return {"data": self.data[index]}
29.428571
89
0.617112
7947d19ce0ccb5dc7be7a4370b51e1c11ff969ed
1,269
py
Python
addic7ed/logger.py
spfeifer222/addic7ed
f606d72d88eb131a4252dd863fbee5c36ce059b7
[ "MIT" ]
13
2015-12-22T14:23:23.000Z
2018-11-18T21:01:29.000Z
addic7ed/logger.py
spfeifer222/addic7ed
f606d72d88eb131a4252dd863fbee5c36ce059b7
[ "MIT" ]
5
2016-01-23T06:34:27.000Z
2017-03-20T09:48:13.000Z
addic7ed/logger.py
spfeifer222/addic7ed
f606d72d88eb131a4252dd863fbee5c36ce059b7
[ "MIT" ]
4
2016-02-15T14:02:46.000Z
2017-03-17T08:28:13.000Z
from os import makedirs from os.path import expanduser, exists from logging import getLogger, Formatter, StreamHandler, DEBUG, WARN from logging.handlers import RotatingFileHandler from termcolor import colored LOG_COLORS = { "DEBUG": "grey", "INFO": "cyan", "WARNING": "yellow", "ERROR": "magenta", "CRITICAL": "red" } def init_logger(): logger = getLogger("addic7ed") logger.setLevel(DEBUG) directory = "%s/.config/addic7ed/" % expanduser("~") if not exists(directory): makedirs(directory) fh = RotatingFileHandler("%s%s" % (directory, "addic7ed.log")) fh.setLevel(DEBUG) sh = StreamHandler() sh.setLevel(WARN) fcolor = "%s - %s" % (colored("%(asctime)s", "green"), "%(levelname)7s - %(name)s - %(message)s") formatter_color = ColoredFormatter(fcolor) formatter = Formatter(("%(asctime)s - %(levelname)7s - " "%(name)s - %(message)s")) fh.setFormatter(formatter) sh.setFormatter(formatter_color) logger.addHandler(fh) logger.addHandler(sh) class ColoredFormatter(Formatter): def format(self, record): record.msg = colored(record.msg, LOG_COLORS[record.levelname]) return super().format(record)
26.4375
70
0.634358
7947d1f977b1d1e3f29ceb0a5dae7b9d6701b2ec
1,107
py
Python
test/publish_async_stddev.py
Kettenhoax/quickplot
e6624dbcefef5382b2727c93286699193ae60b1c
[ "Apache-2.0" ]
null
null
null
test/publish_async_stddev.py
Kettenhoax/quickplot
e6624dbcefef5382b2727c93286699193ae60b1c
[ "Apache-2.0" ]
null
null
null
test/publish_async_stddev.py
Kettenhoax/quickplot
e6624dbcefef5382b2727c93286699193ae60b1c
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python3 import sys import rclpy import math import random from rclpy.node import Node from rclpy.time import CONVERSION_CONSTANT, Duration from geometry_msgs.msg import Vector3Stamped class PublishAsyncStddev(Node): def __init__(self): super().__init__('publish_async_stddev') self._pub_value = self.create_publisher(Vector3Stamped, 'value', 1) self._pub_stddev = self.create_publisher(Vector3Stamped, 'stddev', 1) self._timer = self.create_timer(0.1, self._on_timer) def _on_timer(self): msg = Vector3Stamped() t = self.get_clock().now() t += Duration(nanoseconds=random.randint(0, CONVERSION_CONSTANT / 1e3)) msg.header.stamp = t.to_msg() msg.vector.x = math.sin(t.nanoseconds / CONVERSION_CONSTANT) self._pub_value.publish(msg) msg.vector.x = 1.0 if bool(random.getrandbits(3)): print('publishing') self._pub_stddev.publish(msg) def main(args=sys.argv): rclpy.init(args=args) rclpy.spin(PublishAsyncStddev()) if __name__ == '__main__': main()
27
79
0.676603
7947d2e788b5bc6f296b37452dd2b5276ff23200
1,699
py
Python
tests/test_list_notation.py
lbolanos/aws-sfn-builder
6323963786388990ba2ffc1349a9b488bee338a7
[ "MIT" ]
4
2018-10-14T23:15:57.000Z
2020-11-03T04:05:14.000Z
tests/test_list_notation.py
lbolanos/aws-sfn-builder
6323963786388990ba2ffc1349a9b488bee338a7
[ "MIT" ]
null
null
null
tests/test_list_notation.py
lbolanos/aws-sfn-builder
6323963786388990ba2ffc1349a9b488bee338a7
[ "MIT" ]
2
2020-11-03T04:06:26.000Z
2021-05-12T00:37:53.000Z
from aws_sfn_builder import Machine, Parallel, State, States def test_empty_machine(): m = Machine.parse([]) assert m.start_at is None assert not m.states assert m.dry_run() == [] def test_simple_sequence(): s = Machine.parse(["a", "b"]) assert len(s.states) == 2 assert s.start_at == "a" assert s.dry_run() == ["a", "b"] def test_simple_parallel(): source = [["a"], ["b"]] s = Machine.parse(source) assert len(s.states) == 1 assert isinstance(s.states[s.start_at], Parallel) assert s.dry_run() == source c = s.compile() assert c["States"][c["StartAt"]]["Type"] == "Parallel" def test_parallel_inside_sequence(): source = [ "a", [ ["b11", "b12"], ["b21", "b22"], ], "c", ] s = Machine.parse(source) assert len(s.states) == 3 assert s.start_at == "a" assert s.dry_run() == source c = s.compile() assert c["States"][c["States"]["a"]["Next"]]["Type"] == "Parallel" def test_parallel_inside_parallel(): source = [ [ "a", ], [ [ [ "b11", ], [ "b21", ], ], "b3", ] ] s = Machine.parse(source) assert s.dry_run() == source c = s.compile() assert c["States"][c["StartAt"]]["Type"] == "Parallel" def test_dictionary_with_no_type_defaults_to_task(): state = State.parse({ "InputPath": "$.first_input", "ResultPath": "$.first_output", "Resource": "MultiplierByTwo", }) assert state.type == States.Task
21.506329
70
0.496174
7947d2fb901ee78b07c7746fba2b505013cc6e13
5,533
py
Python
LogicPy/shift_registers.py
Sunillad08/Digital_logic
18fb08b5223f57ec89ca24d8ed62a7891e657c1c
[ "MIT" ]
6
2021-05-04T11:35:46.000Z
2022-03-11T18:41:33.000Z
LogicPy/shift_registers.py
Sunillad08/Digital_logic
18fb08b5223f57ec89ca24d8ed62a7891e657c1c
[ "MIT" ]
9
2021-05-05T15:52:44.000Z
2021-06-13T14:53:14.000Z
LogicPy/shift_registers.py
Sunillad08/Digital_logic
18fb08b5223f57ec89ca24d8ed62a7891e657c1c
[ "MIT" ]
1
2021-05-04T18:10:37.000Z
2021-05-04T18:10:37.000Z
''' shift registers type:class\n name-format: shift_register_[name]\n SIPO\n PISO\n SISO\n PIPO ''' '''SIPO''' class shift_register_SIPO(): def __init__(self,level,inputno = None): self.level = level self.inputno = inputno def sr_set(self,inputno): #list input if (isinstance(inputno, list)): if(len(inputno) == self.level): for bin_in in inputno: if bin_in not in [0,1]: raise ValueError("Invalid value for input") else: raise ValueError("Number of input bits is not equal to the number of flip flops") else: raise ValueError("Input must be in a list format") self.inputno = inputno def sr_get(self,clock): if(isinstance(clock,int)): if (clock < 0): raise ValueError("Clock pulses are not negative") elif (clock >= self.level): clock = self.level - 1 else: raise ValueError("The Nth clock pulse should be an integer") input_cp = self.inputno.copy() og_list = [] for i in range(clock + 1): #start from the least significant bit og_list.insert(0,input_cp[-1]) input_cp.pop() if(len(og_list) < self.level): for val in range(self.level - len(og_list)): og_list.append(0) return(og_list) '''PISO''' class shift_register_PISO(): def __init__(self,level,inputno = None): self.level = level self.inputno = inputno def sr_set(self,inputno): #list input if (isinstance(inputno, list)): if(len(inputno) == self.level): for bin_in in inputno: if bin_in not in [0,1]: raise ValueError("Invalid value for input") else: raise ValueError("Number of input bits is not equal to the number of flip flops") else: raise ValueError("Input must be in a list format") self.inputno = inputno def sr_get(self,clock): if(isinstance(clock,int)): if (clock < 0): raise ValueError("Clock pulses are not negative") elif (clock >= self.level): clock = self.level - 1 else: raise ValueError("The Nth clock pulse should be an integer") input_cp = self.inputno.copy() og_list = [] for _ in range(clock + 1): #start from the least significant bit og_list.insert(0,input_cp[-1]) input_cp.pop() if(len(og_list) < self.level): for _ in range(self.level - len(og_list)): og_list.append(0) return(og_list) '''SISO''' class shift_register_SISO(): def __init__(self,level,inputno = None): self.level = level self.inputno = inputno def sr_set(self,inputno): #list input if (isinstance(inputno, list)): if(len(inputno) == self.level): for bin_in in inputno: if bin_in not in [0,1]: raise ValueError("Invalid value for input") else: raise ValueError("Number of input bits is not equal to the number of flip flops") else: raise ValueError("Input must be in a list format") self.inputno = inputno def sr_get(self,clock): if(isinstance(clock,int)): if (clock < 0): raise ValueError("Clock pulses are not negative") elif (clock >= self.level): clock = self.level - 1 else: raise ValueError("The Nth clock pulse should be an integer") input_cp = self.inputno.copy() og_list = [] for i in range(clock + 1): #start from the least significant bit og_list.insert(0,input_cp[-1]) input_cp.pop() if(len(og_list) < self.level): for val in range(self.level - len(og_list)): og_list.append(0) return(og_list) '''PIPO''' class shift_register_PIPO(): def __init__(self,level,inputno = None): self.level = level self.inputno = inputno def sr_set(self,inputno): #list input if (isinstance(inputno, list)): if(len(inputno) == self.level): for bin_in in inputno: if bin_in not in [0,1]: raise ValueError("Invalid value for input") else: raise ValueError("Number of input bits is not equal to the number of flip flops") else: raise ValueError("Input must be in a list format") self.inputno = inputno def sr_get(self,clock): if(isinstance(clock,int)): if (clock < 0): raise ValueError("Clock pulses are not negative") else: return(self.inputno.copy()) else: raise ValueError("The Nth clock pulse should be an integer")
29.430851
97
0.50009
7947d507a8683e1a58ed9dea8fd0fdab2cff341d
2,855
py
Python
test/unit/test_utils_process.py
persanix-llc/endrpi-server
0bc69bfde977e558e7097175d1207be4da388065
[ "Apache-2.0" ]
2
2021-04-30T18:12:14.000Z
2021-10-30T02:53:48.000Z
test/unit/test_utils_process.py
persanix-llc/endrpi-server
0bc69bfde977e558e7097175d1207be4da388065
[ "Apache-2.0" ]
1
2021-08-29T16:18:15.000Z
2021-08-29T16:18:15.000Z
test/unit/test_utils_process.py
persanix-llc/endrpi-server
0bc69bfde977e558e7097175d1207be4da388065
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2020 - 2021 Persanix LLC. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import unittest from unittest import TestCase from unittest.mock import patch from endrpi.utils.process import process_output class TestProcessUtils(TestCase): def setUp(self): logging.disable(logging.CRITICAL) @patch('endrpi.utils.process.subprocess.Popen') def test_process_output(self, mocked_popen_constructor): # Instantiate a mocked popen object mocked_popen = mocked_popen_constructor.return_value # Ensure errors in stderr propagate mocked_popen.communicate.return_value = (b'Value', b'Error') output = process_output(['example', 'command']) self.assertIsNone(output) mocked_popen.communicate.return_value = (b'', b'E') output = process_output(['example', 'command']) self.assertIsNone(output) # Ensure errors caught while running the command propagate mocked_popen.communicate.side_effect = OSError('An error occurred') output = process_output(['example', 'command']) self.assertIsNone(output) mocked_popen.communicate.side_effect = None mocked_popen.communicate.side_effect = ValueError('An error occurred') output = process_output(['example', 'command']) self.assertIsNone(output) mocked_popen.communicate.side_effect = None mocked_popen.communicate.side_effect = OSError('An error occurred') output = process_output(['example', 'command']) self.assertIsNone(output) mocked_popen.communicate.side_effect = None # Ensure valid inputs return their expected results mocked_popen.communicate.return_value = (b'Value', None) output = process_output(['example', 'command']) self.assertIsNotNone(output) self.assertEqual(output, 'Value') mocked_popen.communicate.return_value = (b'', None) output = process_output(['example', 'command']) self.assertIsNotNone(output) self.assertEqual(output, '') mocked_popen.communicate.return_value = (b'', b'') output = process_output(['example', 'command']) self.assertIsNotNone(output) self.assertEqual(output, '') if __name__ == '__main__': unittest.main()
36.602564
78
0.695972
7947d6bdd3ab72cc5c532d7daf87d3634956dc50
546
py
Python
build/usb_cam/catkin_generated/pkg.installspace.context.pc.py
madalynlmillen/MadalynMillenCapstone
a1585ba419d4ab4854908b4ba88e4c8ca330b5cd
[ "MIT", "Unlicense" ]
null
null
null
build/usb_cam/catkin_generated/pkg.installspace.context.pc.py
madalynlmillen/MadalynMillenCapstone
a1585ba419d4ab4854908b4ba88e4c8ca330b5cd
[ "MIT", "Unlicense" ]
null
null
null
build/usb_cam/catkin_generated/pkg.installspace.context.pc.py
madalynlmillen/MadalynMillenCapstone
a1585ba419d4ab4854908b4ba88e4c8ca330b5cd
[ "MIT", "Unlicense" ]
null
null
null
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "/home/kinova/MillenCapstone/MadalynMillenCapstone/install/include".split(';') if "/home/kinova/MillenCapstone/MadalynMillenCapstone/install/include" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "-lusb_cam".split(';') if "-lusb_cam" != "" else [] PROJECT_NAME = "usb_cam" PROJECT_SPACE_DIR = "/home/kinova/MillenCapstone/MadalynMillenCapstone/install" PROJECT_VERSION = "0.3.6"
60.666667
197
0.771062
7947d6f31a003375bb2110cc75c25710b9b5ee80
5,088
py
Python
capreolus/reranker/ptparade.py
nimasadri11/capreolus
27b081ec1a37d2af6afa6b61eb1cb7cc4ec9db1c
[ "Apache-2.0" ]
77
2019-12-01T20:48:14.000Z
2022-03-11T14:45:54.000Z
capreolus/reranker/ptparade.py
nimasadri11/capreolus
27b081ec1a37d2af6afa6b61eb1cb7cc4ec9db1c
[ "Apache-2.0" ]
106
2020-01-30T18:01:16.000Z
2022-02-11T18:05:16.000Z
capreolus/reranker/ptparade.py
nimasadri11/capreolus
27b081ec1a37d2af6afa6b61eb1cb7cc4ec9db1c
[ "Apache-2.0" ]
30
2020-01-31T08:50:40.000Z
2022-01-25T05:51:11.000Z
import torch from torch import nn from transformers import BertModel, ElectraModel from transformers.models.bert.modeling_bert import BertLayer from capreolus import ConfigOption, Dependency from capreolus.reranker import Reranker class PTParade_Class(nn.Module): def __init__(self, extractor, config, *args, **kwargs): super().__init__(*args, **kwargs) self.extractor = extractor self.config = config if config["pretrained"] == "electra-base-msmarco": self.bert = ElectraModel.from_pretrained("Capreolus/electra-base-msmarco") elif config["pretrained"] == "bert-base-msmarco": self.bert = BertModel.from_pretrained("Capreolus/bert-base-msmarco") elif config["pretrained"] == "bert-base-uncased": self.bert = BertModel.from_pretrained("bert-base-uncased") else: raise ValueError( f"unsupported model: {config['pretrained']}; need to ensure correct tokenizers will be used before arbitrary hgf models are supported" ) self.transformer_layer_1 = BertLayer(self.bert.config) self.transformer_layer_2 = BertLayer(self.bert.config) self.num_passages = extractor.config["numpassages"] self.maxseqlen = extractor.config["maxseqlen"] self.linear = nn.Linear(self.bert.config.hidden_size, 1) if config["aggregation"] == "max": raise NotImplementedError() elif config["aggregation"] == "avg": raise NotImplementedError() elif config["aggregation"] == "attn": raise NotImplementedError() elif config["aggregation"] == "transformer": self.aggregation = self.aggregate_using_transformer input_embeddings = self.bert.get_input_embeddings() # TODO hardcoded CLS token id cls_token_id = torch.tensor([[101]]) self.initial_cls_embedding = input_embeddings(cls_token_id).view(1, self.bert.config.hidden_size) self.full_position_embeddings = torch.zeros( (1, self.num_passages + 1, self.bert.config.hidden_size), requires_grad=True, dtype=torch.float ) torch.nn.init.normal_(self.full_position_embeddings, mean=0.0, std=0.02) self.initial_cls_embedding = nn.Parameter(self.initial_cls_embedding, requires_grad=True) self.full_position_embeddings = nn.Parameter(self.full_position_embeddings, requires_grad=True) else: raise ValueError(f"unknown aggregation type: {self.config['aggregation']}") def aggregate_using_transformer(self, cls): expanded_cls = cls.view(-1, self.num_passages, self.bert.config.hidden_size) # TODO make sure batch size here is correct batch_size = expanded_cls.shape[0] tiled_initial_cls = self.initial_cls_embedding.repeat(batch_size, 1) merged_cls = torch.cat((tiled_initial_cls.view(batch_size, 1, self.bert.config.hidden_size), expanded_cls), dim=1) merged_cls = merged_cls + self.full_position_embeddings (transformer_out_1,) = self.transformer_layer_1(merged_cls, None, None, None) (transformer_out_2,) = self.transformer_layer_2(transformer_out_1, None, None, None) aggregated = transformer_out_2[:, 0, :] return aggregated def forward(self, doc_input, doc_mask, doc_seg): batch_size = doc_input.shape[0] doc_input = doc_input.view((batch_size * self.num_passages, self.maxseqlen)) doc_mask = doc_mask.view((batch_size * self.num_passages, self.maxseqlen)) doc_seg = doc_seg.view((batch_size * self.num_passages, self.maxseqlen)) cls = self.bert(doc_input, attention_mask=doc_mask, token_type_ids=doc_seg)[0][:, 0, :] aggregated = self.aggregation(cls) return self.linear(aggregated) @Reranker.register class PTParade(Reranker): """ PyTorch implementation of PARADE. PARADE: Passage Representation Aggregation for Document Reranking. Canjia Li, Andrew Yates, Sean MacAvaney, Ben He, and Yingfei Sun. arXiv 2020. https://arxiv.org/pdf/2008.09093.pdf """ module_name = "ptparade" dependencies = [ Dependency(key="extractor", module="extractor", name="pooledbertpassage"), Dependency(key="trainer", module="trainer", name="pytorch"), ] config_spec = [ ConfigOption( "pretrained", "bert-base-uncased", "Pretrained model: bert-base-uncased, bert-base-msmarco, or electra-base-msmarco" ), ConfigOption("aggregation", "transformer"), ] def build_model(self): if not hasattr(self, "model"): self.model = PTParade_Class(self.extractor, self.config) return self.model def score(self, d): return [ self.model(d["pos_bert_input"], d["pos_mask"], d["pos_seg"]).view(-1), self.model(d["neg_bert_input"], d["neg_mask"], d["neg_seg"]).view(-1), ] def test(self, d): return self.model(d["pos_bert_input"], d["pos_mask"], d["pos_seg"]).view(-1)
43.487179
150
0.666863
7947d7e87955580e6d48bd07c5feb64785c360ee
565
py
Python
test_example.py
IvankaK/Testing
2ce0ee645b2172b37f3c8c8ce4461b60e2180321
[ "Apache-2.0" ]
null
null
null
test_example.py
IvankaK/Testing
2ce0ee645b2172b37f3c8c8ce4461b60e2180321
[ "Apache-2.0" ]
null
null
null
test_example.py
IvankaK/Testing
2ce0ee645b2172b37f3c8c8ce4461b60e2180321
[ "Apache-2.0" ]
1
2021-12-08T17:10:05.000Z
2021-12-08T17:10:05.000Z
import pytest from selenium import webdriver from selenium.webdriver.support.wait import WebDriverWait from selenium.webdriver.support import expected_conditions as EC @pytest.fixture def driver(request): wd = webdriver.Chrome() print(wd.capabilities) request.addfinalizer(wd.quit) return wd def test_example(driver): driver.get("http://www.google.com/") driver.find_element_by_name("q").send_keys("webdriver") driver.find_element_by_name("btnG").click() WebDriverWait(driver, 10).until(EC.title_is("webdriver - Поиск в Google"))
29.736842
78
0.757522
7947d92b271bd5c2c437556c4ad924618395b6c2
2,765
py
Python
rlscope/parser/overlap_result.py
UofT-EcoSystem/rlscope
cdd9bbdc2a3a832be24f20105b8c9fe28149cb63
[ "Apache-2.0" ]
35
2021-01-26T22:34:17.000Z
2022-03-02T01:25:11.000Z
rlscope/parser/overlap_result.py
UofT-EcoSystem/rlscope
cdd9bbdc2a3a832be24f20105b8c9fe28149cb63
[ "Apache-2.0" ]
1
2022-03-15T01:40:03.000Z
2022-03-15T01:40:03.000Z
rlscope/parser/overlap_result.py
UofT-EcoSystem/rlscope
cdd9bbdc2a3a832be24f20105b8c9fe28149cb63
[ "Apache-2.0" ]
1
2021-03-17T08:49:07.000Z
2021-03-17T08:49:07.000Z
""" Reading overlap results from ``rls-analyze``. """ from rlscope.parser.common import * class CategoryKey: def __init__(self): self.procs = frozenset() self.ops = frozenset() self.non_ops = frozenset() @staticmethod def from_js(obj): self = CategoryKey() assert obj['typename'] == 'CategoryKey' self.procs = frozenset(obj['procs']) self.ops = frozenset(obj['ops']) self.non_ops = frozenset(obj['non_ops']) return self def __eq__(self, rhs): lhs = self return lhs.procs == rhs.procs and \ lhs.ops == rhs.ops and \ lhs.non_ops == rhs.non_ops def __hash__(self): return hash((self.procs, self.ops, self.non_ops)) def __str__(self): bldr = ToStringBuilder(obj=self) bldr.add_param('procs', self.procs) bldr.add_param('ops', self.ops) bldr.add_param('non_ops', self.non_ops) return bldr.to_string() def __repr__(self): return str(self) # class OverlapResult: # def __init__(self): # self.procs = frozenset() # self.ops = frozenset() # self.non_ops = frozenset() # # @staticmethod # def from_js(obj): # self = OverlapResult() # self.overlap_map = dict() # assert obj['typename'] == 'CategoryKey' # self.procs = frozenset(obj['procs']) # self.ops = frozenset(obj['ops']) # self.non_ops = frozenset(obj['non_ops']) # return self def from_js(obj, mutable=True): if type(obj) == dict and 'typename' in obj: if obj['typename'] == 'dict': return dict_from_js(obj, mutable=mutable) elif obj['typename'] in JS_TYPENAME_TO_KLASS: Klass = JS_TYPENAME_TO_KLASS[obj['typename']] parsed = Klass.from_js(obj) return parsed else: raise NotImplementedError("Not sure how to parse js object with typename={typename}".format(typename=obj['typename'])) elif type(obj) == list: if mutable: return [from_js(x, mutable=mutable) for x in obj] else: return tuple(from_js(x, mutable=mutable) for x in obj) else: return obj def dict_from_js(obj, mutable=True): assert obj['typename'] == 'dict' d = dict() for key, value in obj['key_value_pairs']: parsed_key = from_js(key, mutable=False) # if type(parsed_key) == list: # parsed_key = tuple(parsed_key) # elif type(parsed_key) == set: # parsed_key = frozenset(parsed_key) d[parsed_key] = from_js(value, mutable=mutable) return d JS_TYPENAME_TO_KLASS = { 'CategoryKey': CategoryKey, # 'OverlapResult': OverlapResult, }
30.722222
130
0.588065
7947daffed4d4782a8432d2be0e58e95c3f9e42f
17,407
py
Python
sfepy/discrete/common/dof_info.py
antonykamp/sfepy
8213d3c8cc2825602b41dc65eb543b575856ca8c
[ "BSD-3-Clause" ]
null
null
null
sfepy/discrete/common/dof_info.py
antonykamp/sfepy
8213d3c8cc2825602b41dc65eb543b575856ca8c
[ "BSD-3-Clause" ]
null
null
null
sfepy/discrete/common/dof_info.py
antonykamp/sfepy
8213d3c8cc2825602b41dc65eb543b575856ca8c
[ "BSD-3-Clause" ]
null
null
null
""" Classes holding information on global DOFs and mapping of all DOFs - equations (active DOFs). Helper functions for the equation mapping. """ import numpy as nm import scipy.sparse as sp from sfepy.base.base import assert_, Struct, basestr from sfepy.discrete.functions import Function from sfepy.discrete.conditions import get_condition_value, EssentialBC, \ PeriodicBC, DGPeriodicBC, DGEssentialBC def expand_nodes_to_dofs(nods, n_dof_per_node): """ Expand DOF node indices into DOFs given a constant number of DOFs per node. """ dofs = nm.repeat(nods, n_dof_per_node) dofs.shape = (nods.shape[0], n_dof_per_node) idof = nm.arange(n_dof_per_node, dtype=nm.int32) dofs = n_dof_per_node * dofs + idof return dofs def expand_nodes_to_equations(nods, dof_names, all_dof_names): """ Expand vector of node indices to equations (DOF indices) based on the DOF-per-node count. DOF names must be already canonized. Returns ------- eq : array The equations/DOF indices in the node-by-node order. """ dpn = len(all_dof_names) nc = len(dof_names) eq = nm.empty(len(nods) * nc, dtype=nm.int32) for ii, dof in enumerate(dof_names): idof = all_dof_names.index(dof) eq[ii::nc] = dpn * nods + idof return eq def resolve_chains(master_slave, chains): """ Resolve EPBC chains - e.g. in corner nodes. """ for chain in chains: slave = chain[-1] master_slave[chain[:-1]] = slave + 1 master_slave[slave] = - chain[0] - 1 # Any of masters... def group_chains(chain_list): """ Group EPBC chains. """ chains = [] while len(chain_list): chain = set(chain_list.pop(0)) ## print ':', chain ii = 0 while ii < len(chain_list): c1 = sorted(chain_list[ii]) ## print '--', ii, c1, chain is0 = c1[0] in chain is1 = c1[1] in chain if is0 and is1: chain_list.pop(ii) elif is0 or is1: chain.update(c1) chain_list.pop(ii) ii = 0 else: ii += 1 ## print ii, chain, chain_list ## print '->', chain ## print chain_list chains.append(list(chain)) ## print 'EPBC chain groups:', chains aux = {} for chain in chains: aux.setdefault(len(chain), [0])[0] += 1 ## print 'EPBC chain counts:', aux return chains class DofInfo(Struct): """ Global DOF information, i.e. ordering of DOFs of the state (unknown) variables in the global state vector. """ def __init__(self, name): Struct.__init__(self, name=name) self.n_var = 0 self.var_names = [] self.n_dof = {} self.ptr = [0] self.indx = {} self.details = {} def _update_after_append(self, name): self.ptr.append(self.ptr[-1] + self.n_dof[name]) ii = self.n_var self.indx[name] = slice(int(self.ptr[ii]), int(self.ptr[ii+1])) self.n_var += 1 def append_variable(self, var, active=False): """ Append DOFs of the given variable. Parameters ---------- var : Variable instance The variable to append. active : bool, optional When True, only active (non-constrained) DOFs are considered. """ name = var.name if name in self.var_names: raise ValueError('variable %s already present!' % name) self.var_names.append(name) self.n_dof[name], self.details[name] = var.get_dof_info(active=active) self._update_after_append(name) def append_raw(self, name, n_dof): """ Append raw DOFs. Parameters ---------- name : str The name of variable the DOFs correspond to. n_dof : int The number of DOFs. """ if name in self.var_names: raise ValueError('variable %s already present!' % name) self.var_names.append(name) self.n_dof[name], self.details[name] = n_dof, None self._update_after_append(name) def update(self, name, n_dof): """ Set the number of DOFs of the given variable. Parameters ---------- name : str The name of variable the DOFs correspond to. n_dof : int The number of DOFs. """ if not name in self.var_names: raise ValueError('variable %s is not present!' % name) ii = self.var_names.index(name) delta = n_dof - self.n_dof[name] self.n_dof[name] = n_dof for iv, nn in enumerate(self.var_names[ii:]): self.ptr[ii+iv+1] += delta self.indx[nn] = slice(self.ptr[ii+iv], self.ptr[ii+iv+1]) def get_info(self, var_name): """ Return information on DOFs of the given variable. Parameters ---------- var_name : str The name of the variable. """ return Struct(name='%s_dof_info' % var_name, var_name=var_name, n_dof=self.n_dof[var_name], indx=self.indx[var_name], details=self.details[var_name]) def get_subset_info(self, var_names): """ Return global DOF information for selected variables only. Silently ignores non-existing variable names. Parameters ---------- var_names : list The names of the selected variables. """ di = DofInfo(self.name + ':subset') for var_name in var_names: if var_name not in self.var_names: continue di.append_raw(var_name, self.n_dof[var_name]) return di def get_n_dof_total(self): """ Return the total number of DOFs of all state variables. """ return self.ptr[-1] def is_active_bc(bc, ts=None, functions=None): """ Check whether the given boundary condition is active in the current time. Returns ------- active : bool True if the condition `bc` is active. """ if (bc.times is None) or (ts is None): active = True elif isinstance(bc.times, list): for tt in bc.times: if tt[0] <= ts.time < tt[1]: active = True break else: active = False else: if isinstance(bc.times, basestr): if functions is not None: fun = functions[bc.times] else: raise ValueError('no functions given for bc %s!' % bc.name) elif isinstance(bc.times, Function): fun = bc.times else: raise ValueError('unknown times type! (%s)' % type(bc.times)) active = fun(ts) return active class EquationMap(Struct): """ Map all DOFs to equations for active DOFs. """ def __init__(self, name, dof_names, var_di): Struct.__init__(self, name=name, dof_names=dof_names, var_di=var_di) self.dpn = len(self.dof_names) self.eq = nm.arange(var_di.n_dof, dtype=nm.int32) self.n_dg_ebc = 0 self.dg_ebc_names = {} self.dg_ebc = {} self.dg_ebc_val = {} self.n_dg_epbc = 0 self.dg_epbc_names = [] self.dg_epbc = [] def _init_empty(self, field): self.val_ebc = nm.empty((0,), dtype=field.dtype) if field.get('unused_dofs') is None: self.eqi = nm.arange(self.var_di.n_dof, dtype=nm.int32) else: self._mark_unused(field) self.eqi = nm.compress(self.eq >= 0, self.eq) self.eq[self.eqi] = nm.arange(self.eqi.shape[0], dtype=nm.int32) self.eq_ebc = nm.empty((0,), dtype=nm.int32) self.master = nm.empty((0,), dtype=nm.int32) self.slave = nm.empty((0,), dtype=nm.int32) self.n_eq = self.eqi.shape[0] self.n_ebc = self.eq_ebc.shape[0] self.n_epbc = self.master.shape[0] def _mark_unused(self, field): unused_dofs = field.get('unused_dofs') if unused_dofs is not None: unused = expand_nodes_to_equations(field.unused_dofs, self.dof_names, self.dof_names) self.eq[unused] = -3 def map_equations(self, bcs, field, ts, functions, problem=None, warn=False): """ Create the mapping of active DOFs from/to all DOFs. Parameters ---------- bcs : Conditions instance The Dirichlet or periodic boundary conditions (single condition instances). The dof names in the conditions must already be canonized. field : Field instance The field of the variable holding the DOFs. ts : TimeStepper instance The time stepper. functions : Functions instance The registered functions. problem : Problem instance, optional The problem that can be passed to user functions as a context. warn : bool, optional If True, warn about BC on non-existent nodes. Returns ------- active_bcs : set The set of boundary conditions active in the current time. Notes ----- - Periodic bc: master and slave DOFs must belong to the same field (variables can differ, though). """ if bcs is None: self._init_empty(field) return set() eq_ebc = nm.zeros((self.var_di.n_dof,), dtype=nm.int32) val_ebc = nm.zeros((self.var_di.n_dof,), dtype=field.dtype) master_slave = nm.zeros((self.var_di.n_dof,), dtype=nm.int32) chains = [] active_bcs = set() for bc in bcs: # Skip conditions that are not active in the current time. if not is_active_bc(bc, ts=ts, functions=functions): continue active_bcs.add(bc.key) if isinstance(bc, DGEssentialBC): ntype = "DGEBC" region = bc.region elif isinstance(bc, DGPeriodicBC): ntype = "DGEPBC" region = bc.regions[0] elif isinstance(bc, EssentialBC): ntype = 'EBC' region = bc.region elif isinstance(bc, PeriodicBC): ntype = 'EPBC' region = bc.regions[0] if warn: clean_msg = ('warning: ignoring nonexistent %s node (%s) in ' % (ntype, self.var_di.var_name)) else: clean_msg = None # Get master region nodes. master_nod_list = field.get_dofs_in_region(region) if len(master_nod_list) == 0: continue if ntype == 'EBC': # EBC. dofs, val = bc.dofs ## # Evaluate EBC values. fun = get_condition_value(val, functions, 'EBC', bc.name) if isinstance(fun, Function): aux = fun fun = lambda coors: aux(ts, coors, bc=bc, problem=problem) nods, vv = field.set_dofs(fun, region, len(dofs), clean_msg) eq = expand_nodes_to_equations(nods, dofs, self.dof_names) # Duplicates removed here... eq_ebc[eq] = 1 if vv is not None: val_ebc[eq] = nm.ravel(vv) elif ntype == "DGEBC": dofs, val = bc.dofs ## # Evaluate EBC values. fun = get_condition_value(val, functions, 'EBC', bc.name) if isinstance(fun, Function): aux = fun fun = lambda coors: aux(ts, coors, bc=bc, problem=problem) values = field.get_bc_facet_values(fun, region, diff=bc.diff) bc2bfi = field.get_bc_facet_idx(region) self.dg_ebc_val.setdefault(bc.diff, []).append(values) self.dg_ebc.setdefault(bc.diff, []).append(bc2bfi) self.n_dg_ebc += 1 elif ntype == "DGEPBC": # ensure matching boundaries? master_bc2bfi = field.get_bc_facet_idx(region) slave_bc2bfi = field.get_bc_facet_idx(bc.regions[1]) self.dg_epbc.append((master_bc2bfi, slave_bc2bfi)) self.n_dg_epbc += 1 else: # EPBC. region = bc.regions[1] slave_nod_list = field.get_dofs_in_region(region) nmaster = nm.unique(master_nod_list) # Treat fields not covering the whole domain. if nmaster[0] == -1: nmaster = nmaster[1:] nslave = nm.unique(slave_nod_list) # Treat fields not covering the whole domain. if nslave[0] == -1: nslave = nslave[1:] ## print nmaster + 1 ## print nslave + 1 if nmaster.shape != nslave.shape: msg = 'EPBC list lengths do not match!\n(%s,\n %s)' %\ (nmaster, nslave) raise ValueError(msg) if (nmaster.shape[0] == 0) and (nslave.shape[0] == 0): continue mcoor = field.get_coor(nmaster) scoor = field.get_coor(nslave) fun = get_condition_value(bc.match, functions, 'EPBC', bc.name) if isinstance(fun, Function): i1, i2 = fun(mcoor, scoor) else: i1, i2 = fun ## print nm.c_[mcoor[i1], scoor[i2]] ## print nm.c_[nmaster[i1], nslave[i2]] + 1 meq = expand_nodes_to_equations(nmaster[i1], bc.dofs[0], self.dof_names) seq = expand_nodes_to_equations(nslave[i2], bc.dofs[1], self.dof_names) m_assigned = nm.where(master_slave[meq] != 0)[0] s_assigned = nm.where(master_slave[seq] != 0)[0] if m_assigned.size or s_assigned.size: # Chain EPBC. aux = master_slave[meq[m_assigned]] sgn = nm.sign(aux) om_chain = zip(meq[m_assigned], (aux - sgn) * sgn) chains.extend(om_chain) aux = master_slave[seq[s_assigned]] sgn = nm.sign(aux) os_chain = zip(seq[s_assigned], (aux - sgn) * sgn) chains.extend(os_chain) m_chain = zip(meq[m_assigned], seq[m_assigned]) chains.extend(m_chain) msd = nm.setdiff1d(s_assigned, m_assigned) s_chain = zip(meq[msd], seq[msd]) chains.extend(s_chain) msa = nm.union1d(m_assigned, s_assigned) ii = nm.setdiff1d(nm.arange(meq.size), msa) master_slave[meq[ii]] = seq[ii] + 1 master_slave[seq[ii]] = - meq[ii] - 1 else: master_slave[meq] = seq + 1 master_slave[seq] = - meq - 1 chains = group_chains(chains) resolve_chains(master_slave, chains) ii = nm.argwhere(eq_ebc == 1) self.eq_ebc = nm.atleast_1d(ii.squeeze()) self.val_ebc = nm.atleast_1d(val_ebc[ii].squeeze()) # add axis in case we squeezed too hard self.master = nm.atleast_1d(nm.argwhere(master_slave > 0).squeeze()) self.slave = master_slave[self.master] - 1 assert_((self.eq_ebc.shape == self.val_ebc.shape)) self.eq[self.eq_ebc] = -2 self.eq[self.master] = -1 self._mark_unused(field) self.eqi = nm.compress(self.eq >= 0, self.eq) self.eq[self.eqi] = nm.arange(self.eqi.shape[0], dtype=nm.int32) self.eq[self.master] = self.eq[self.slave] self.n_eq = self.eqi.shape[0] self.n_ebc = self.eq_ebc.shape[0] self.n_epbc = self.master.shape[0] return active_bcs def get_operator(self): """ Get the matrix operator :math:`R` corresponding to the equation mapping, such that the restricted matrix :math:`A_r` can be obtained from the full matrix :math:`A` by :math:`A_r = R^T A R`. All the matrices are w.r.t. a single variables that uses this mapping. Returns ------- mtx : coo_matrix The matrix :math:`R`. """ # EBC. rows = self.eqi cols = nm.arange(self.n_eq, dtype=nm.int32) # EPBC. ic = self.eq[self.slave] ii = ic >= 0 rows = nm.r_[rows, self.master[ii]] cols = nm.r_[cols, ic[ii]] ones = nm.ones(rows.shape[0], dtype=nm.float64) mtx = sp.coo_matrix((ones, (rows, cols)), shape=(self.eq.shape[0], self.n_eq)) return mtx
31.70674
79
0.5295
7947dbf338ac521eca55c8670d4c75ada14c51be
2,263
py
Python
GUIScripts/Hotel Management System/Code/recipt.py
Gaurav1401/Awesome_Python_Scripts
e98044cc42a975e81d880b27546fadcdead17a42
[ "MIT" ]
2
2021-07-12T10:12:56.000Z
2021-07-12T10:13:10.000Z
GUIScripts/Hotel Management System/Code/recipt.py
Gaurav1401/Awesome_Python_Scripts
e98044cc42a975e81d880b27546fadcdead17a42
[ "MIT" ]
null
null
null
GUIScripts/Hotel Management System/Code/recipt.py
Gaurav1401/Awesome_Python_Scripts
e98044cc42a975e81d880b27546fadcdead17a42
[ "MIT" ]
2
2021-10-03T16:22:08.000Z
2021-10-03T17:35:14.000Z
#! /usr/bin/env python # -*- coding: utf-8 -*- # # GUI module generated by PAGE version 4.17 # In conjunction with Tcl version 8.6 # Oct 07, 2018 01:57:36 PM IST platform: Windows NT from __main__ import * import sys try: from Tkinter import * except ImportError: from tkinter import * try: import ttk py3 = False except ImportError: import tkinter.ttk as ttk py3 = True fo1=open("recipt.txt","r") list1=fo1.readlines() del list1[1] del list1[2] del list1[3] del list1[4] del list1[5] list1[0]=list1[0][:-1] list1[1]=list1[1][:-1] list1[2]=list1[2][:-1] list1[3]=list1[3][:-1] list1[4]=list1[4][:-1] p=''' @@@@@@@@@@@ PROJECTWORLDS HOTEL AND RESORTS @@@@@@@@@@@@@ @@@@@@@@@@@@ BHILAI CHHATTISGARH@@@@@@@@@@@@@@ @@@@@@@@@@ SERVING GUEST SINCE @@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@ ###2000### @@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ NAME-%s ADDRESS-%s MOBILE NO.-%s YOUR TOTAL BILL IS Rs.-%s YOUR ROOM NUMBER IS %s '''%(list1[0],list1[1],list1[2],list1[4],list1[3]) class recipt: def __init__(self): root=Tk() '''This class configures and populates the toplevel window. top is the toplevel containing window.''' _bgcolor = '#d9d9d9' # X11 color: 'gray85' _fgcolor = '#000000' # X11 color: 'black' _compcolor = '#d9d9d9' # X11 color: 'gray85' _ana1color = '#d9d9d9' # X11 color: 'gray85' _ana2color = '#d9d9d9' # X11 color: 'gray85' root.geometry("800x800") root.title("recipt") root.configure(background="#d9d9d9") self.Label1 = Label(root) self.Label1.configure(background="#d9d9d9") self.Label1.place(relx=0, rely=0, height=800, width=800) self.Label1.configure(disabledforeground="#a3a3a3") self.Label1.configure(foreground="#000000") self.Label1.configure(text=p) self.Label1.configure(anchor=N) self.Label1.configure(wraplength=1000) self.Label1.configure(justify =LEFT) self.Label1.configure(width=582) root.mainloop() if __name__ == '__main__': recipt1=recipt()
24.074468
68
0.551038
7947dc0a4e71a3106d21b1d4e16e816652b8e7e7
1,321
py
Python
line_follower_skeleton.py
MartinCoderDojo/bit-bot-line-follower
72e5b557a70f66c2790d05ae5fd3ccc1634b950f
[ "MIT" ]
null
null
null
line_follower_skeleton.py
MartinCoderDojo/bit-bot-line-follower
72e5b557a70f66c2790d05ae5fd3ccc1634b950f
[ "MIT" ]
null
null
null
line_follower_skeleton.py
MartinCoderDojo/bit-bot-line-follower
72e5b557a70f66c2790d05ae5fd3ccc1634b950f
[ "MIT" ]
null
null
null
from microbit import * leftLine = pin11 rightLine = pin5 # pin 0 = left speed # pin 8 = left direction # pin 1 = right speed # pin 12 = right direction # Direction = 0 for forward, 1 for backward def moveRobot(pin0Val, pin8Val, pin1Val, pin12Val): pin0.write_analog(pin0Val) pin8.write_digital(pin8Val) pin1.write_analog(pin1Val) pin12.write_digital(pin12Val) sleep(100) def convert(speed): if speed > 0: return (speed * 1023) / 100.0 return 1023 - ((abs(speed) * 1023) / 100.0) def forward(speed): moveRobot(convert(speed), 0, convert(speed), 0) def turnRight(speed): moveRobot(convert(speed), 0, 0, 0) def turnLeft(speed): moveRobot(0, 0, convert(speed), 0) def stop(): moveRobot(0, 0, 0, 0) def reverse(speed): moveRobot(convert(-speed), 1, convert(-speed), 1) # Left sensor and right sensor both 1: on black line # Left sensor 1 and right sensor 0: left sensor is on the line # Left sensor 0 and right sensor 1: right sensor is on the line # Left sensor and right sensor both 0: lost the line while True: lline = leftLine.read_digital() rline = rightLine.read_digital() if ((lline == 1) and (rline == 1)): forward(100) elif ((lline == 1) and (rline == 0)): ??? elif ???: ??? else: ???
20.640625
63
0.637396
7947dc776d4a209ea6dcc970e5d48c72006dc88a
184
py
Python
webApi/books_api/book/urls.py
FreeN1ckname/web_api
50b6ffc03f918e25d36ff11caa1cf5d83628646b
[ "MIT" ]
null
null
null
webApi/books_api/book/urls.py
FreeN1ckname/web_api
50b6ffc03f918e25d36ff11caa1cf5d83628646b
[ "MIT" ]
null
null
null
webApi/books_api/book/urls.py
FreeN1ckname/web_api
50b6ffc03f918e25d36ff11caa1cf5d83628646b
[ "MIT" ]
null
null
null
from django.urls import path from .views import BookView app_name = "books" urlpatterns = [ path('books/', BookView.as_view()), path('books/<int:pk>', BookView.as_view()) ]
16.727273
46
0.673913
7947dcd96d795289937fadd931a974395bcc5d6d
1,938
py
Python
apps/Training/models.py
MarkyMark1000/AWS---PYTHON---COPY---MYWEBSITE
e6a6a76376d122b224d4744314e687f660aad770
[ "MIT" ]
1
2022-01-30T07:30:06.000Z
2022-01-30T07:30:06.000Z
apps/Training/models.py
MarkyMark1000/AWS---PYTHON---COPY---MYWEBSITE
e6a6a76376d122b224d4744314e687f660aad770
[ "MIT" ]
5
2020-03-12T19:22:55.000Z
2022-02-10T14:19:21.000Z
apps/Training/models.py
MarkyMark1000/AWS---PYTHON---COPY---MYWEBSITE
e6a6a76376d122b224d4744314e687f660aad770
[ "MIT" ]
null
null
null
from __future__ import unicode_literals from django.db import models import datetime from django.urls import reverse # Create your models here. class TrainingGroup(models.Model): title = models.CharField(max_length=15) updated_at = models.DateTimeField(auto_now=True) def __str__(self): return self.title def get_absolute_url(self): # Useful for sitemap (training_list from urls.py) return reverse('training_list', args=[str(self.id)]) class Meta: ordering = ['id'] class TrainingCourse(models.Model): title = models.CharField(max_length=30) img = models.CharField(max_length=50) date = models.DateField("Date", default=datetime.date.today) link_text = models.CharField(max_length=10, default="") link_href = models.CharField(max_length=250, default="") code_text = models.CharField(max_length=20, default="", blank=True) code_href = models.CharField(max_length=250, default="", blank=True) short_text = models.CharField(max_length=50, default="") main_text = models.TextField( default="main training course description ...", null=True, blank=True) group = models.ForeignKey(TrainingGroup, on_delete=models.CASCADE) updated_at = models.DateTimeField(auto_now=True) # Please note, I was unsure whether to use auto_now based upon the # following articles: # https://stackoverflow.com/questions/3429878/automatic-creation-date-for- # django-model-form-objects # https://stackoverflow.com/questions/1737017/django-auto-now-and-auto-now- # add/1737078#1737078 def __str__(self): return self.title def get_absolute_url(self): # Useful for sitemap (training_detail from urls.py) return reverse('training_detail', args=[str(self.id)]) class Meta: ordering = ['-date', 'id']
34.607143
79
0.674407
7947dde487cadbe8b98283a35268c10a35ca2c24
12,501
py
Python
akshare/stock_feature/stock_board_concept_ths.py
euyuil/akshare
5205796b53a29259831c11413004e405f8a16368
[ "MIT" ]
null
null
null
akshare/stock_feature/stock_board_concept_ths.py
euyuil/akshare
5205796b53a29259831c11413004e405f8a16368
[ "MIT" ]
null
null
null
akshare/stock_feature/stock_board_concept_ths.py
euyuil/akshare
5205796b53a29259831c11413004e405f8a16368
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding:utf-8 -*- """ Date: 2021/10/30 17:10 Desc: 同花顺-板块-概念板块 http://q.10jqka.com.cn/gn/detail/code/301558/ """ import os from datetime import datetime import pandas as pd import requests from bs4 import BeautifulSoup from py_mini_racer import py_mini_racer from tqdm import tqdm from akshare.utils import demjson def _get_js_path_ths(name: str = None, module_file: str = None) -> str: """ 获取 JS 文件的路径(从模块所在目录查找) :param name: 文件名 :type name: str :param module_file: 模块路径 :type module_file: str :return: 路径 :rtype: str """ module_folder = os.path.abspath(os.path.dirname(os.path.dirname(module_file))) module_json_path = os.path.join(module_folder, "stock_feature", name) return module_json_path def _get_file_content_ths(file_name: str = "ase.min.js") -> str: """ 获取 JS 文件的内容 :param file_name: JS 文件名 :type file_name: str :return: 文件内容 :rtype: str """ setting_file_name = file_name setting_file_path = _get_js_path_ths(setting_file_name, __file__) with open(setting_file_path) as f: file_data = f.read() return file_data def __stock_board_concept_name_ths() -> pd.DataFrame: """ 同花顺-板块-概念板块-概念-缩放页 http://q.10jqka.com.cn/gn/detail/code/301558/ :return: 所有概念板块的名称和链接 :rtype: pandas.DataFrame """ headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36' } url = 'http://q.10jqka.com.cn/gn/' r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") html_list = soup.find('div', attrs={'class': 'boxShadow'}).find_all('a', attrs={'target': '_blank'}) name_list = [item.text for item in html_list] url_list = [item['href'] for item in html_list] temp_df = pd.DataFrame([name_list, url_list], index=['name', 'url']).T return temp_df def stock_board_concept_name_ths() -> pd.DataFrame: """ 同花顺-板块-概念板块-概念 http://q.10jqka.com.cn/gn/detail/code/301558/ :return: 所有概念板块的名称和链接 :rtype: pandas.DataFrame """ url = "http://q.10jqka.com.cn/gn/index/field/addtime/order/desc/page/1/ajax/1/" js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call('v') headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36', 'Cookie': f'v={v_code}' } r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") total_page = soup.find('span', attrs={'class': 'page_info'}).text.split('/')[1] big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page)+1), leave=False): url = f"http://q.10jqka.com.cn/gn/index/field/addtime/order/desc/page/{page}/ajax/1/" js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call('v') headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36', 'Cookie': f'v={v_code}' } r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") soup.find('table', attrs={'class': 'm-table m-pager-table'}).find('tbody') url_list = [] for item in soup.find('table', attrs={'class': 'm-table m-pager-table'}).find('tbody').find_all('tr'): inner_url = item.find_all("td")[1].find('a')['href'] url_list.append(inner_url) temp_df = pd.read_html(r.text)[0] temp_df['代码'] = url_list big_df = big_df.append(temp_df, ignore_index=True) big_df = big_df[[ '日期', '概念名称', '成分股数量', '代码' ]] big_df['日期'] = pd.to_datetime(big_df['日期']).dt.date big_df['成分股数量'] = pd.to_numeric(big_df['成分股数量']) return big_df def _stock_board_concept_code_ths() -> pd.DataFrame: """ 同花顺-板块-概念板块-概念 http://q.10jqka.com.cn/gn/detail/code/301558/ :return: 所有概念板块的名称和链接 :rtype: pandas.DataFrame """ _stock_board_concept_name_ths_df = stock_board_concept_name_ths() name_list = _stock_board_concept_name_ths_df['概念名称'].tolist() url_list = [item.split('/')[-2] for item in _stock_board_concept_name_ths_df['代码'].tolist()] temp_map = dict(zip(name_list, url_list)) return temp_map def stock_board_concept_cons_ths(symbol: str = "阿里巴巴概念") -> pd.DataFrame: """ 同花顺-板块-概念板块-成份股 http://q.10jqka.com.cn/gn/detail/code/301558/ :param symbol: 板块名称 :type symbol: str :return: 成份股 :rtype: pandas.DataFrame """ stock_board_ths_map_df = stock_board_concept_name_ths() symbol = stock_board_ths_map_df[stock_board_ths_map_df['概念名称'] == symbol]['代码'].values[0].split('/')[-2] js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call('v') headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36', 'Cookie': f'v={v_code}' } url = f'http://q.10jqka.com.cn/gn/detail/field/264648/order/desc/page/1/ajax/1/code/{symbol}' r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: page_num = int(soup.find_all('a', attrs={'class': 'changePage'})[-1]['page']) except IndexError as e: page_num = 1 big_df = pd.DataFrame() for page in tqdm(range(1, page_num+1), leave=False): v_code = js_code.call('v') headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36', 'Cookie': f'v={v_code}' } url = f'http://q.10jqka.com.cn/gn/detail/field/264648/order/desc/page/{page}/ajax/1/code/{symbol}' r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text)[0] big_df = big_df.append(temp_df, ignore_index=True) big_df.rename({"涨跌幅(%)": "涨跌幅", "涨速(%)": "涨速", "换手(%)": "换手", "振幅(%)": "振幅", }, inplace=True, axis=1) del big_df['加自选'] big_df['代码'] = big_df['代码'].astype(str).str.zfill(6) return big_df def stock_board_concept_info_ths(symbol: str = "阿里巴巴概念") -> pd.DataFrame: """ 同花顺-板块-概念板块-板块简介 http://q.10jqka.com.cn/gn/detail/code/301558/ :param symbol: 板块简介 :type symbol: str :return: 板块简介 :rtype: pandas.DataFrame """ stock_board_ths_map_df = stock_board_concept_name_ths() symbol_code = stock_board_ths_map_df[stock_board_ths_map_df['概念名称'] == symbol]['代码'].values[0].split('/')[-2] url = f'http://q.10jqka.com.cn/gn/detail/code/{symbol_code}/' headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36', } r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, 'lxml') name_list = [item.text for item in soup.find('div', attrs={'class': 'board-infos'}).find_all('dt')] value_list = [item.text.strip().replace('\n', '/') for item in soup.find('div', attrs={'class': 'board-infos'}).find_all('dd')] temp_df = pd.DataFrame([name_list, value_list]).T temp_df.columns = ['项目', "值"] return temp_df def stock_board_concept_hist_ths(start_year: str = '2000', symbol: str = "安防") -> pd.DataFrame: """ 同花顺-板块-概念板块-指数数据 http://q.10jqka.com.cn/gn/detail/code/301558/ :param start_year: 开始年份; e.g., 2019 :type start_year: str :param symbol: 板块简介 :type symbol: str :return: 板块简介 :rtype: pandas.DataFrame """ code_map = _stock_board_concept_code_ths() symbol_url = f'http://q.10jqka.com.cn/gn/detail/code/{code_map[symbol]}/' headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36', } r = requests.get(symbol_url, headers=headers) soup = BeautifulSoup(r.text, 'lxml') symbol_code = soup.find('div', attrs={'class': 'board-hq'}).find('span').text big_df = pd.DataFrame() current_year = datetime.now().year for year in tqdm(range(int(start_year), current_year+1), leave=False): url = f'http://d.10jqka.com.cn/v4/line/bk_{symbol_code}/01/{year}.js' headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36', 'Referer': 'http://q.10jqka.com.cn', 'Host': 'd.10jqka.com.cn' } r = requests.get(url, headers=headers) data_text = r.text try: demjson.decode(data_text[data_text.find('{'):-1]) except: continue temp_df = demjson.decode(data_text[data_text.find('{'):-1]) temp_df = pd.DataFrame(temp_df['data'].split(';')) temp_df = temp_df.iloc[:, 0].str.split(',', expand=True) big_df = big_df.append(temp_df, ignore_index=True) big_df.columns = [ '日期', '开盘价', '最高价', '最低价', '收盘价', '成交量', '成交额', '_', '_', '_', '_', ] big_df = big_df[[ '日期', '开盘价', '最高价', '最低价', '收盘价', '成交量', '成交额', ]] big_df['日期'] = pd.to_datetime(big_df['日期']).dt.date big_df['开盘价'] = pd.to_numeric(big_df['开盘价']) big_df['最高价'] = pd.to_numeric(big_df['最高价']) big_df['最低价'] = pd.to_numeric(big_df['最低价']) big_df['收盘价'] = pd.to_numeric(big_df['收盘价']) big_df['成交量'] = pd.to_numeric(big_df['成交量']) big_df['成交额'] = pd.to_numeric(big_df['成交额']) return big_df def stock_board_cons_ths(symbol: str = "885611") -> pd.DataFrame: """ 行业板块或者概念板块的成份股 http://q.10jqka.com.cn/thshy/detail/code/881121/ http://q.10jqka.com.cn/gn/detail/code/301558/ :param symbol: 行业板块或者概念板块的代码 :type symbol: str :return: 行业板块或者概念板块的成份股 :rtype: pandas.DataFrame """ js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call('v') headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36', 'Cookie': f'v={v_code}' } url = f'http://q.10jqka.com.cn/thshy/detail/field/199112/order/desc/page/1/ajax/1/code/{symbol}' r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: page_num = int(soup.find_all('a', attrs={'class': 'changePage'})[-1]['page']) except IndexError as e: page_num = 1 big_df = pd.DataFrame() for page in tqdm(range(1, page_num+1), leave=False): v_code = js_code.call('v') headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36', 'Cookie': f'v={v_code}' } url = f'http://q.10jqka.com.cn/thshy/detail/field/199112/order/desc/page/{page}/ajax/1/code/{symbol}' r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text)[0] big_df = big_df.append(temp_df, ignore_index=True) big_df.rename({"涨跌幅(%)": "涨跌幅", "涨速(%)": "涨速", "换手(%)": "换手", "振幅(%)": "振幅", }, inplace=True, axis=1) del big_df['加自选'] big_df['代码'] = big_df['代码'].astype(str).str.zfill(6) return big_df if __name__ == '__main__': stock_board_concept_name_ths_df = stock_board_concept_name_ths() print(stock_board_concept_name_ths_df) stock_board_concept_cons_ths_df = stock_board_concept_cons_ths(symbol="PVDF概念") print(stock_board_concept_cons_ths_df) stock_board_concept_info_ths_df = stock_board_concept_info_ths(symbol="PVDF概念") print(stock_board_concept_info_ths_df) stock_board_concept_hist_ths_df = stock_board_concept_hist_ths(start_year='2021', symbol="PVDF概念") print(stock_board_concept_hist_ths_df) stock_board_cons_ths_df = stock_board_cons_ths(symbol="885611") print(stock_board_cons_ths_df)
37.094955
143
0.62179
7947de5ed2b12060285f429af18853ad1924864d
5,025
py
Python
bin/ADFRsuite/CCSBpckgs/MolKit2/PDBresidueNames.py
AngelRuizMoreno/Jupyter_Dock_devel
6d23bc174d5294d1e9909a0a1f9da0713042339e
[ "MIT" ]
null
null
null
bin/ADFRsuite/CCSBpckgs/MolKit2/PDBresidueNames.py
AngelRuizMoreno/Jupyter_Dock_devel
6d23bc174d5294d1e9909a0a1f9da0713042339e
[ "MIT" ]
null
null
null
bin/ADFRsuite/CCSBpckgs/MolKit2/PDBresidueNames.py
AngelRuizMoreno/Jupyter_Dock_devel
6d23bc174d5294d1e9909a0a1f9da0713042339e
[ "MIT" ]
1
2021-11-04T21:48:14.000Z
2021-11-04T21:48:14.000Z
################################################################################ ## ## This library is free software; you can redistribute it and/or ## modify it under the terms of the GNU Lesser General Public ## License as published by the Free Software Foundation; either ## version 2.1 of the License, or (at your option) any later version. ## ## This library is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## Lesser General Public License for more details. ## ## You should have received a copy of the GNU Lesser General Public ## License along with this library; if not, write to the Free Software ## Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA ## ## (C) Copyrights Dr. Michel F. Sanner and TSRI 2016 ## ################################################################################ ############################################################################# # # Author: Michel F. SANNER # # Copyright: M. Sanner TSRI 2010 # # ############################################################################# # # $Header: /mnt/raid/services/cvs/MolKit2/PDBresidueNames.py,v 1.1.1.1.4.1 2017/07/26 22:03:40 annao Exp $ # # $Id: PDBresidueNames.py,v 1.1.1.1.4.1 2017/07/26 22:03:40 annao Exp $ # ## ## This file provides residues names used in PDB for various type of entities ## DNAnames = { 'DC':'D', 'DG':'G', 'DA':'A', 'DT':'T', 'T':'T', 'DI':'I', 'N':'N', } RNAnames = { 'C':'C', 'G':'G', 'A':'A', 'U':'U', 'I':'I', 'N':'N', } Nucleotides = DNAnames.copy() Nucleotides.update(RNAnames) AAnames = { 'ALA':'A', 'CYS':'C', 'ASP':'D', 'GLU':'E', 'PHE':'F', 'GLY':'G', 'HIS':'H', 'ILE':'I', 'LYS':'K', 'LEU':'L', 'MET':'M', 'ASN':'N', 'PRO':'P', 'GLN':'Q', 'ARG':'R', 'SER':'S', 'THR':'T', 'VAL':'V', 'TRP':'W', 'TYR':'Y', # the follwould be added automatically if the # MODRES ris present in the pdb file but we put # them herays 'HID':'?', 'HSP':'?', 'HIE':'?', 'HIP':'?', 'CYX':'?', 'CSS':'?', 'ACE':'?', 'MSE':'?', '5HP':'?', 'SOC':'?', } ## ## list of resames for ions taken from ## http://decogroup.org/ion_list.txt ## ionNames = { '1CU':'?', '2HP':'?', '2MO':'?', '2OF':'?', '3CO':'?', '3MT':'?', '3NI':'?', '4MO':'?', '543':'?', '6MO':'?', 'ACT':'?', 'AG':'?', 'AL':'?', 'ALF':'?', 'ATH':'?', 'AU':'?', 'AU3':'?', 'AUC':'?', 'AZI':'?', 'BA':'?', 'BCT':'?', 'BEF':'?', 'BF4':'?', 'BO4':'?', 'BR':'?', 'CA':'?', 'CAC':'?', 'CD':'?', 'CD1':'?', 'CD3':'?', 'CD5':'?', 'CE':'?', 'CHT':'?', 'CL':'?', 'CO':'?', 'CO3':'?', 'CO5':'?', 'CON':'?', 'CR':'?', 'CS':'?', 'CU':'?', 'CU1':'?', 'CUA':'?', 'CUZ':'?', 'CYN':'?', 'DMI':'?', 'E4N':'?', 'EMC':'?', 'EU':'?', 'EU3':'?', 'F':'?', 'FE':'?', 'FE2':'?', 'FPO':'?', 'GA':'?', 'GD3':'?', 'HAI':'?', 'HG':'?', 'HGC':'?', 'HO':'?', 'IN':'?', 'IOD':'?', 'IR':'?', 'IR3':'?', 'IRI':'?', 'IUM':'?', 'K':'?', 'KO4':'?', 'LA':'?', 'LCO':'?', 'LCP':'?', 'LI':'?', 'LU':'?', 'MAC':'?', 'MG':'?', 'MH2':'?', 'MH3':'?', 'MLI':'?', 'MLT':'?', 'MMC':'?', 'MN':'?', 'MN3':'?', 'MN5':'?', 'MO1':'?', 'MO2':'?', 'MO3':'?', 'MO4':'?', 'MO5':'?', 'MO6':'?', 'MOO':'?', 'MOS':'?', 'MW1':'?', 'MW2':'?', 'MW3':'?', 'NA':'?', 'NA2':'?', 'NA5':'?', 'NA6':'?', 'NAO':'?', 'NAW':'?', 'NC':'?', 'NET':'?', 'NH4':'?', 'NI':'?', 'NI1':'?', 'NI2':'?', 'NI3':'?', 'NO2':'?', 'NO3':'?', 'O4M':'?', 'OAA':'?', 'OC1':'?', 'OC2':'?', 'OC3':'?', 'OC4':'?', 'OC5':'?', 'OC6':'?', 'OC7':'?', 'OCL':'?', 'OCM':'?', 'OCN':'?', 'OCO':'?', 'OF1':'?', 'OF2':'?', 'OF3':'?', 'OH':'?', 'OS':'?', 'OXL':'?', 'PB':'?', 'PBM':'?', 'PD':'?', 'PER':'?', 'PI':'?', 'PO3':'?', 'PO4':'?', 'PR':'?', 'PT':'?', 'PT4':'?', 'PTN':'?', 'RB':'?', 'RHD':'?', 'RU':'?', 'SB':'?', 'SCN':'?', 'SE4':'?', 'SM':'?', 'SMO':'?', 'SO3':'?', 'SO4':'?', 'SOH':'?', 'SR':'?', 'TB':'?', 'TCN':'?', 'TEA':'?', 'THE':'?', 'TL':'?', 'TMA':'?', 'TRA':'?', 'UNX':'?', 'V':'?', 'VO4':'?', 'W':'?', 'WO5':'?', 'Y1':'?', 'YB':'?', 'YT3':'?', 'ZN':'?', 'ZN2':'?', 'ZN3':'?', 'ZNO':'?', 'ZO3':'?', } waterNames = {'HOH':'?', 'WAT':'?'} allResidueNames = {} allResidueNames.update(waterNames) allResidueNames.update(RNAnames) allResidueNames.update(AAnames) allResidueNames.update(DNAnames) allResidueNames.update(ionNames)
20.1
106
0.363184
7947de8a85f74c935a72f7f328d86563af6e55cb
65,087
py
Python
tensorflow_model_analysis/api/model_eval_lib.py
rtg0795/model-analysis
0f73989a2dfe1e56548f1ccd0001d98846f89e05
[ "Apache-2.0" ]
null
null
null
tensorflow_model_analysis/api/model_eval_lib.py
rtg0795/model-analysis
0f73989a2dfe1e56548f1ccd0001d98846f89e05
[ "Apache-2.0" ]
null
null
null
tensorflow_model_analysis/api/model_eval_lib.py
rtg0795/model-analysis
0f73989a2dfe1e56548f1ccd0001d98846f89e05
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """API for Tensorflow Model Analysis.""" # TODO(b/149126671): Put ValidationResultsWriter in a separate file. import os import tempfile from typing import Any, Dict, Iterable, Iterator, List, Optional, Set, Union from absl import logging import apache_beam as beam import pandas as pd import pyarrow as pa import tensorflow as tf from tensorflow_model_analysis import constants from tensorflow_model_analysis import types from tensorflow_model_analysis.eval_saved_model import constants as eval_constants from tensorflow_model_analysis.evaluators import evaluator from tensorflow_model_analysis.evaluators import legacy_metrics_and_plots_evaluator from tensorflow_model_analysis.evaluators import metrics_plots_and_validations_evaluator from tensorflow_model_analysis.extractors import example_weights_extractor from tensorflow_model_analysis.extractors import extractor from tensorflow_model_analysis.extractors import features_extractor from tensorflow_model_analysis.extractors import labels_extractor from tensorflow_model_analysis.extractors import legacy_predict_extractor from tensorflow_model_analysis.extractors import predictions_extractor from tensorflow_model_analysis.extractors import slice_key_extractor from tensorflow_model_analysis.extractors import sql_slice_key_extractor from tensorflow_model_analysis.extractors import tfjs_predict_extractor from tensorflow_model_analysis.extractors import tflite_predict_extractor from tensorflow_model_analysis.extractors import transformed_features_extractor from tensorflow_model_analysis.extractors import unbatch_extractor from tensorflow_model_analysis.post_export_metrics import post_export_metrics from tensorflow_model_analysis.proto import config_pb2 from tensorflow_model_analysis.proto import metrics_for_slice_pb2 from tensorflow_model_analysis.proto import validation_result_pb2 from tensorflow_model_analysis.slicer import slicer_lib as slicer from tensorflow_model_analysis.utils import config_util from tensorflow_model_analysis.utils import model_util from tensorflow_model_analysis.validators import validator from tensorflow_model_analysis.view import util as view_util from tensorflow_model_analysis.view import view_types from tensorflow_model_analysis.writers import eval_config_writer from tensorflow_model_analysis.writers import metrics_plots_and_validations_writer from tensorflow_model_analysis.writers import writer from tfx_bsl.arrow import table_util from tfx_bsl.tfxio import raw_tf_record from tfx_bsl.tfxio import tensor_adapter from tfx_bsl.tfxio import tf_example_record from tensorflow_metadata.proto.v0 import schema_pb2 def _assert_tensorflow_version(): """Check that we're using a compatible TF version.""" # Fail with a clear error in case we are not using a compatible TF version. major, minor, _ = tf.version.VERSION.split('.') if (int(major) not in (1, 2)) or (int(major) == 1 and int(minor) < 15): raise RuntimeError( 'Tensorflow version >= 1.15, < 3 is required. Found (%s). Please ' 'install the latest 1.x or 2.x version from ' 'https://github.com/tensorflow/tensorflow. ' % tf.version.VERSION) if int(major) == 2: logging.warning( 'Tensorflow version (%s) found. Note that TFMA support for TF 2.0 ' 'is currently in beta', tf.version.VERSION) def _is_legacy_eval( config_version: Optional[int], eval_shared_model: Optional[types.MaybeMultipleEvalSharedModels], eval_config: Optional[config_pb2.EvalConfig]): """Returns True if legacy evaluation is being used. A legacy evaluation is an evalution that uses only a single EvalSharedModel, has no tags (or uses "eval" as its tag), and does not specify an eval_config The legacy evaluation is based on using add_metrics_callbacks to create a modified version of the graph saved with an EvalSavedModel. The newer version of evaluation supports both add_metrics_callbacks as well as metrics defined in MetricsSpecs inside of EvalConfig. The newer version works with both "eval" and serving models and also supports multi-model evaluation. This function is used by code to support backwards compatibility for callers that have not updated to use the new EvalConfig. Args: config_version: Optionally, An explicit version of the config determined elsewhere. This is used to handle cases where the provided eval_config was generated internally, and thus not a reliable indicator of user intent. eval_shared_model: Optionally, the model to be evaluated. eval_config: Optionally, an EvalConfig specifying v2 config. Returns: Whether the user inputs should trigger a legacy evaluation. """ return ((config_version is not None and config_version == 1) or (eval_shared_model and not isinstance(eval_shared_model, dict) and not isinstance(eval_shared_model, list) and (not eval_shared_model.model_loader.tags or eval_constants.EVAL_TAG in eval_shared_model.model_loader.tags) and not eval_config)) def _default_eval_config(eval_shared_models: List[types.EvalSharedModel], slice_spec: Optional[List[slicer.SingleSliceSpec]], write_config: Optional[bool], compute_confidence_intervals: Optional[bool], min_slice_size: int): """Creates default EvalConfig (for use in legacy evaluations).""" model_specs = [] for shared_model in eval_shared_models: example_weight_key = shared_model.example_weight_key example_weight_keys = {} if example_weight_key and isinstance(example_weight_key, dict): example_weight_keys = example_weight_key example_weight_key = '' model_specs.append( config_pb2.ModelSpec( name=shared_model.model_name, example_weight_key=example_weight_key, example_weight_keys=example_weight_keys)) slicing_specs = None if slice_spec: slicing_specs = [s.to_proto() for s in slice_spec] options = config_pb2.Options() options.compute_confidence_intervals.value = compute_confidence_intervals options.min_slice_size.value = min_slice_size if not write_config: options.disabled_outputs.values.append(eval_config_writer.EVAL_CONFIG_FILE) return config_pb2.EvalConfig( model_specs=model_specs, slicing_specs=slicing_specs, options=options) def _model_types( eval_shared_model: Optional[types.MaybeMultipleEvalSharedModels] ) -> Optional[Set[str]]: """Returns model types associated with given EvalSharedModels.""" eval_shared_models = model_util.verify_and_update_eval_shared_models( eval_shared_model) if not eval_shared_models: return None else: return set([m.model_type for m in eval_shared_models]) def _update_eval_config_with_defaults( eval_config: config_pb2.EvalConfig, eval_shared_model: Optional[types.MaybeMultipleEvalSharedModels] ) -> config_pb2.EvalConfig: """Returns updated eval config with default values.""" eval_shared_models = model_util.verify_and_update_eval_shared_models( eval_shared_model) has_baseline = eval_shared_models and len(eval_shared_models) == 2 return config_util.update_eval_config_with_defaults( eval_config=eval_config, has_baseline=has_baseline, rubber_stamp=model_util.has_rubber_stamp(eval_shared_models)) def _get_extract_num_bytes(extract: types.Extracts) -> int: """Returns the number of bytes in the input.""" if constants.ARROW_RECORD_BATCH_KEY in extract: return extract[constants.ARROW_RECORD_BATCH_KEY].nbytes if constants.INPUT_KEY in extract: if isinstance(extract[constants.INPUT_KEY], bytes): return len(extract[constants.INPUT_KEY]) logging.warning('Failed to extract number of input bytes.') return 0 def _increment_counter(counter_name: str, value: int) -> int: """Increments the specified counter by the value.""" counter = beam.metrics.Metrics.counter(constants.METRICS_NAMESPACE, counter_name) counter.inc(value) return value @beam.ptransform_fn def _TrackBytesProcessed( # pylint: disable=invalid-name dataset: beam.PCollection[types.Extracts]) -> beam.pvalue.PCollection[int]: """Gathers telemetry on input Extracts.""" return (dataset | 'GetExtractSize' >> beam.Map(_get_extract_num_bytes) | 'SumTotalBytes' >> beam.CombineGlobally(sum) | 'IncrementCounter' >> beam.Map(lambda x: _increment_counter('extract_input_bytes', x))) MetricsForSlice = metrics_for_slice_pb2.MetricsForSlice def load_metrics( output_path: str, output_file_format: str = 'tfrecord') -> Iterator[MetricsForSlice]: """Read and deserialize the MetricsForSlice records.""" for m in metrics_plots_and_validations_writer.load_and_deserialize_metrics( output_path, output_file_format): yield m PlotsForSlice = metrics_for_slice_pb2.PlotsForSlice def load_plots(output_path: str, output_file_format: str = 'tfrecord') -> Iterator[PlotsForSlice]: """Read and deserialize the PlotsForSlice records.""" for p in metrics_plots_and_validations_writer.load_and_deserialize_plots( output_path, output_file_format): yield p AttributionsForSlice = metrics_for_slice_pb2.AttributionsForSlice def load_attributions( output_path: str, output_file_format: str = 'tfrecord') -> Iterator[AttributionsForSlice]: """Read and deserialize the AttributionsForSlice records.""" for a in ( metrics_plots_and_validations_writer.load_and_deserialize_attributions( output_path, output_file_format)): yield a # Define types here to avoid type errors between OSS and internal code. ValidationResult = validation_result_pb2.ValidationResult def load_validation_result(output_path: str, output_file_format: str = '') -> ValidationResult: """Read and deserialize the ValidationResult.""" return metrics_plots_and_validations_writer.load_and_deserialize_validation_result( output_path, output_file_format) def make_eval_results(results: List[view_types.EvalResult], mode: str) -> view_types.EvalResults: """Run model analysis for a single model on multiple data sets. Args: results: A list of TFMA evaluation results. mode: The mode of the evaluation. Currently, tfma.DATA_CENTRIC_MODE and tfma.MODEL_CENTRIC_MODE are supported. Returns: An `tfma.view.EvalResults` object containing all evaluation results. This can be used to construct a time series view. """ return view_types.EvalResults(results, mode) def load_eval_results( output_paths: Union[str, List[str]], output_file_format: Optional[str] = 'tfrecord', mode: str = constants.MODEL_CENTRIC_MODE, model_name: Optional[str] = None) -> view_types.EvalResults: """Loads results for multiple models or multiple data sets. Args: output_paths: A single path or list of output paths of completed tfma runs. output_file_format: Optional file extension to filter files by. mode: The mode of the evaluation. Currently, tfma.DATA_CENTRIC_MODE and tfma.MODEL_CENTRIC_MODE are supported. model_name: Filters to only return results for given model. If unset all models are returned. Returns: An EvalResults containing the evaluation results serialized at output_paths. This can be used to construct a time series view. """ results = [] if not isinstance(output_paths, list): output_paths = [output_paths] for output_path in output_paths: if model_name is None: _, _, _, model_locations = eval_config_writer.load_eval_run(output_path) model_names = list(model_locations.keys()) else: model_names = [model_name] for model_name in model_names: results.append( load_eval_result( output_path, output_file_format, model_name=model_name)) return make_eval_results(results, mode) def load_eval_result(output_path: str, output_file_format: Optional[str] = 'tfrecord', model_name: Optional[str] = None) -> view_types.EvalResult: """Loads EvalResult object for use with the visualization functions. Args: output_path: Output directory containing config, metrics, plots, etc. output_file_format: Optional file extension to filter files by. model_name: Optional model name. Required if multi-model evaluation was run. Returns: EvalResult object for use with the visualization functions. """ # Config, metrics, and plots files should all exist under the given output # directory, but fairness plugin has a use-case where only the metrics are # provided so we support all files as being optional (the EvalResult will have # corresponding None values for files that are not present). eval_config, data_location, file_format, model_locations = ( eval_config_writer.load_eval_run(output_path)) metrics_list = [] for p in metrics_plots_and_validations_writer.load_and_deserialize_metrics( output_path, output_file_format): metrics = view_util.convert_metrics_proto_to_dict(p, model_name=model_name) if metrics is not None: metrics_list.append(metrics) plots_list = [] for p in metrics_plots_and_validations_writer.load_and_deserialize_plots( output_path, output_file_format): plots = view_util.convert_plots_proto_to_dict(p, model_name=model_name) if plots is not None: plots_list.append(plots) attributions_list = [] for a in metrics_plots_and_validations_writer.load_and_deserialize_attributions( output_path, output_file_format): attributions = view_util.convert_attributions_proto_to_dict( a, model_name=model_name) if attributions is not None: attributions_list.append(attributions) if not model_locations: model_location = '' elif model_name is None: model_location = list(model_locations.values())[0] else: model_location = model_locations[model_name] return view_types.EvalResult( slicing_metrics=metrics_list, plots=plots_list, attributions=attributions_list, config=eval_config, data_location=data_location, file_format=file_format, model_location=model_location) def default_eval_shared_model( eval_saved_model_path: str, add_metrics_callbacks: Optional[List[types.AddMetricsCallbackType]] = None, include_default_metrics: Optional[bool] = True, example_weight_key: Optional[Union[str, Dict[str, str]]] = None, additional_fetches: Optional[List[str]] = None, blacklist_feature_fetches: Optional[List[str]] = None, tags: Optional[List[str]] = None, model_name: str = '', eval_config: Optional[config_pb2.EvalConfig] = None, custom_model_loader: Optional[types.ModelLoader] = None, rubber_stamp: Optional[bool] = False) -> types.EvalSharedModel: """Returns default EvalSharedModel. Args: eval_saved_model_path: Path to EvalSavedModel. add_metrics_callbacks: Optional list of callbacks for adding additional metrics to the graph (see EvalSharedModel for more information on how to configure additional metrics). Metrics for example count and example weights will be added automatically. Only used if EvalSavedModel used. include_default_metrics: DEPRECATED. Use eval_config.options.include_default_metrics. example_weight_key: DEPRECATED. Use eval_config.model_specs.example_weight_key or eval_config.model_specs.example_weight_keys. additional_fetches: Optional prefixes of additional tensors stored in signature_def.inputs that should be fetched at prediction time. The "features" and "labels" tensors are handled automatically and should not be included. Only used if EvalSavedModel used. blacklist_feature_fetches: Optional list of tensor names in the features dictionary which should be excluded from the fetches request. This is useful in scenarios where features are large (e.g. images) and can lead to excessive memory use if stored. Only used if EvalSavedModel used. tags: Optional model tags (e.g. 'serve' for serving or 'eval' for EvalSavedModel). model_name: Optional name of the model being created (should match ModelSpecs.name). The name should only be provided if multiple models are being evaluated. eval_config: Eval config. custom_model_loader: Optional custom model loader for non-TF models. rubber_stamp: True when this run is a first run without a baseline model while a baseline is configured, the diff thresholds will be ignored. """ if not eval_config: is_baseline = False model_type = constants.TF_ESTIMATOR if tags is None: tags = [eval_constants.EVAL_TAG] else: model_spec = model_util.get_model_spec(eval_config, model_name) if not model_spec: raise ValueError('ModelSpec for model name {} not found in EvalConfig: ' 'config={}'.format(model_name, eval_config)) is_baseline = model_spec.is_baseline model_type = model_util.get_model_type(model_spec, eval_saved_model_path, tags) if tags is None: # Default to serving unless estimator is used. if model_type == constants.TF_ESTIMATOR: tags = [eval_constants.EVAL_TAG] else: tags = [tf.saved_model.SERVING] if model_spec.example_weight_key or model_spec.example_weight_keys: example_weight_key = ( model_spec.example_weight_key or model_spec.example_weight_keys) if eval_config.options.HasField('include_default_metrics'): include_default_metrics = ( eval_config.options.include_default_metrics.value) # Backwards compatibility for legacy add_metrics_callbacks implementation. if model_type == constants.TF_ESTIMATOR and eval_constants.EVAL_TAG in tags: # PyType doesn't know about the magic exports we do in post_export_metrics. # Additionally, the lines seem to get reordered in compilation, so we can't # just put the disable-attr on the add_metrics_callbacks lines. # pytype: disable=module-attr if not add_metrics_callbacks: add_metrics_callbacks = [] if include_default_metrics: # Always compute example weight and example count if default metrics are # enabled. example_count_callback = post_export_metrics.example_count() add_metrics_callbacks.append(example_count_callback) if example_weight_key: if isinstance(example_weight_key, dict): for output_name, key in example_weight_key.items(): example_weight_callback = post_export_metrics.example_weight( key, metric_tag=output_name) add_metrics_callbacks.append(example_weight_callback) else: example_weight_callback = post_export_metrics.example_weight( example_weight_key) add_metrics_callbacks.append(example_weight_callback) # pytype: enable=module-attr model_loader = custom_model_loader if not model_loader and model_type in constants.VALID_TF_MODEL_TYPES: model_loader = types.ModelLoader( construct_fn=model_util.model_construct_fn( eval_saved_model_path=eval_saved_model_path, add_metrics_callbacks=add_metrics_callbacks, include_default_metrics=include_default_metrics, additional_fetches=additional_fetches, blacklist_feature_fetches=blacklist_feature_fetches, model_type=model_type, tags=tags), tags=tags) return types.EvalSharedModel( model_name=model_name, model_type=model_type, model_path=eval_saved_model_path, add_metrics_callbacks=add_metrics_callbacks, include_default_metrics=include_default_metrics, example_weight_key=example_weight_key, additional_fetches=additional_fetches, model_loader=model_loader, rubber_stamp=rubber_stamp, is_baseline=is_baseline) def _has_sql_slices(eval_config: Optional[config_pb2.EvalConfig]) -> bool: if eval_config: for spec in eval_config.slicing_specs: if spec.slice_keys_sql: return True return False def default_extractors( # pylint: disable=invalid-name eval_shared_model: Optional[types.MaybeMultipleEvalSharedModels] = None, eval_config: Optional[config_pb2.EvalConfig] = None, slice_spec: Optional[List[slicer.SingleSliceSpec]] = None, materialize: Optional[bool] = None, tensor_adapter_config: Optional[tensor_adapter.TensorAdapterConfig] = None, custom_predict_extractor: Optional[extractor.Extractor] = None, config_version: Optional[int] = None) -> List[extractor.Extractor]: """Returns the default extractors for use in ExtractAndEvaluate. Args: eval_shared_model: Shared model (single-model evaluation) or list of shared models (multi-model evaluation). Required unless the predictions are provided alongside of the features (i.e. model-agnostic evaluations). eval_config: Eval config. slice_spec: Deprecated (use EvalConfig). materialize: True to have extractors create materialized output. tensor_adapter_config: Tensor adapter config which specifies how to obtain tensors from the Arrow RecordBatch. If None, an attempt will be made to create the tensors using default TensorRepresentations. custom_predict_extractor: Optional custom predict extractor for non-TF models. config_version: Optional config version for this evaluation. This should not be explicitly set by users. It is only intended to be used in cases where the provided eval_config was generated internally, and thus not a reliable indicator of user intent. Raises: NotImplementedError: If eval_config contains mixed serving and eval models. """ if materialize is None: # TODO(b/172969312): Once analysis table is supported, remove defaulting # to false unless 'analysis' is in disabled_outputs. materialize = False if slice_spec and eval_config: raise ValueError('slice_spec is deprecated, only use eval_config') if eval_config is not None: eval_config = _update_eval_config_with_defaults(eval_config, eval_shared_model) tensor_representations = None if tensor_adapter_config: tensor_representations = tensor_adapter_config.tensor_representations if _is_legacy_eval(config_version, eval_shared_model, eval_config): # Backwards compatibility for previous add_metrics_callbacks implementation. if not eval_config and slice_spec: eval_config = config_pb2.EvalConfig( slicing_specs=[s.to_proto() for s in slice_spec]) return [ custom_predict_extractor or legacy_predict_extractor.PredictExtractor( eval_shared_model, materialize=materialize), slice_key_extractor.SliceKeyExtractor( eval_config=eval_config, materialize=materialize) ] slicing_extractors = [] if _has_sql_slices(eval_config): slicing_extractors.append( sql_slice_key_extractor.SqlSliceKeyExtractor(eval_config)) slicing_extractors.extend([ unbatch_extractor.UnbatchExtractor(), slice_key_extractor.SliceKeyExtractor( eval_config=eval_config, materialize=materialize) ]) if eval_shared_model: model_types = _model_types(eval_shared_model) eval_shared_models = model_util.verify_and_update_eval_shared_models( eval_shared_model) if (not model_types.issubset(constants.VALID_TF_MODEL_TYPES) and not custom_predict_extractor): raise NotImplementedError( 'either a custom_predict_extractor must be used or model type must ' 'be one of: {}. evalconfig={}'.format( str(constants.VALID_TF_MODEL_TYPES), eval_config)) if model_types == set([constants.TF_LITE]): # TODO(b/163889779): Convert TFLite extractor to operate on batched # extracts. Then we can remove the input extractor. return [ features_extractor.FeaturesExtractor( eval_config=eval_config, tensor_representations=tensor_representations), transformed_features_extractor.TransformedFeaturesExtractor( eval_config=eval_config, eval_shared_model=eval_shared_model), labels_extractor.LabelsExtractor(eval_config=eval_config), example_weights_extractor.ExampleWeightsExtractor( eval_config=eval_config), (custom_predict_extractor or tflite_predict_extractor.TFLitePredictExtractor( eval_config=eval_config, eval_shared_model=eval_shared_model)) ] + slicing_extractors elif constants.TF_LITE in model_types: raise NotImplementedError( 'support for mixing tf_lite and non-tf_lite models is not ' 'implemented: eval_config={}'.format(eval_config)) if model_types == set([constants.TF_JS]): return [ features_extractor.FeaturesExtractor( eval_config=eval_config, tensor_representations=tensor_representations), labels_extractor.LabelsExtractor(eval_config=eval_config), example_weights_extractor.ExampleWeightsExtractor( eval_config=eval_config), (custom_predict_extractor or tfjs_predict_extractor.TFJSPredictExtractor( eval_config=eval_config, eval_shared_model=eval_shared_model)) ] + slicing_extractors elif constants.TF_JS in model_types: raise NotImplementedError( 'support for mixing tf_js and non-tf_js models is not ' 'implemented: eval_config={}'.format(eval_config)) elif (eval_config and model_types == set([constants.TF_ESTIMATOR]) and all(eval_constants.EVAL_TAG in m.model_loader.tags for m in eval_shared_models)): return [ custom_predict_extractor or legacy_predict_extractor.PredictExtractor( eval_shared_model, materialize=materialize, eval_config=eval_config) ] + slicing_extractors elif (eval_config and constants.TF_ESTIMATOR in model_types and any(eval_constants.EVAL_TAG in m.model_loader.tags for m in eval_shared_models)): raise NotImplementedError( 'support for mixing eval and non-eval estimator models is not ' 'implemented: eval_config={}'.format(eval_config)) else: extractors = [ features_extractor.FeaturesExtractor( eval_config=eval_config, tensor_representations=tensor_representations) ] if not custom_predict_extractor: extractors.append( transformed_features_extractor.TransformedFeaturesExtractor( eval_config=eval_config, eval_shared_model=eval_shared_model)) extractors.extend([ labels_extractor.LabelsExtractor(eval_config=eval_config), example_weights_extractor.ExampleWeightsExtractor( eval_config=eval_config), (custom_predict_extractor or predictions_extractor.PredictionsExtractor( eval_config=eval_config, eval_shared_model=eval_shared_model)), ]) extractors.extend(slicing_extractors) return extractors else: return [ features_extractor.FeaturesExtractor( eval_config=eval_config, tensor_representations=tensor_representations), labels_extractor.LabelsExtractor(eval_config=eval_config), example_weights_extractor.ExampleWeightsExtractor( eval_config=eval_config), predictions_extractor.PredictionsExtractor(eval_config=eval_config) ] + slicing_extractors def default_evaluators( # pylint: disable=invalid-name eval_shared_model: Optional[types.MaybeMultipleEvalSharedModels] = None, eval_config: Optional[config_pb2.EvalConfig] = None, schema: Optional[schema_pb2.Schema] = None, compute_confidence_intervals: Optional[bool] = False, min_slice_size: int = 1, serialize: bool = False, random_seed_for_testing: Optional[int] = None, config_version: Optional[int] = None) -> List[evaluator.Evaluator]: """Returns the default evaluators for use in ExtractAndEvaluate. Args: eval_shared_model: Optional shared model (single-model evaluation) or list of shared models (multi-model evaluation). Only required if there are metrics to be computed in-graph using the model. eval_config: Eval config. schema: A schema to use for customizing default evaluators. compute_confidence_intervals: Deprecated (use eval_config). min_slice_size: Deprecated (use eval_config). serialize: Deprecated. random_seed_for_testing: Provide for deterministic tests only. config_version: Optional config version for this evaluation. This should not be explicitly set by users. It is only intended to be used in cases where the provided eval_config was generated internally, and thus not a reliable indicator of user intent. """ disabled_outputs = [] if eval_config: eval_config = _update_eval_config_with_defaults(eval_config, eval_shared_model) disabled_outputs = eval_config.options.disabled_outputs.values if (_model_types(eval_shared_model) == set([constants.TF_LITE]) or _model_types(eval_shared_model) == set([constants.TF_JS])): # no in-graph metrics present when tflite or tfjs is used. if eval_shared_model: if isinstance(eval_shared_model, dict): eval_shared_model = { k: v._replace(include_default_metrics=False) for k, v in eval_shared_model.items() } elif isinstance(eval_shared_model, list): eval_shared_model = [ v._replace(include_default_metrics=False) for v in eval_shared_model ] else: eval_shared_model = eval_shared_model._replace( include_default_metrics=False) if (constants.METRICS_KEY in disabled_outputs and constants.PLOTS_KEY in disabled_outputs and constants.ATTRIBUTIONS_KEY in disabled_outputs): return [] if _is_legacy_eval(config_version, eval_shared_model, eval_config): # Backwards compatibility for previous add_metrics_callbacks implementation. if eval_config is not None: if eval_config.options.HasField('compute_confidence_intervals'): compute_confidence_intervals = ( eval_config.options.compute_confidence_intervals.value) if eval_config.options.HasField('min_slice_size'): min_slice_size = eval_config.options.min_slice_size.value return [ legacy_metrics_and_plots_evaluator.MetricsAndPlotsEvaluator( eval_shared_model, compute_confidence_intervals=compute_confidence_intervals, min_slice_size=min_slice_size, serialize=serialize, random_seed_for_testing=random_seed_for_testing) ] else: return [ metrics_plots_and_validations_evaluator .MetricsPlotsAndValidationsEvaluator( eval_config=eval_config, eval_shared_model=eval_shared_model, schema=schema, random_seed_for_testing=random_seed_for_testing) ] def default_writers( output_path: Optional[str], eval_shared_model: Optional[types.MaybeMultipleEvalSharedModels] = None, eval_config: Optional[config_pb2.EvalConfig] = None, display_only_data_location: Optional[str] = None, display_only_data_file_format: Optional[str] = None, output_file_format: str = 'tfrecord', add_metric_callbacks: Optional[List[types.AddMetricsCallbackType]] = None ) -> List[writer.Writer]: # pylint: disable=invalid-name """Returns the default writers for use in WriteResults. Note, sharding will be enabled by default if an output_file_format is provided. Filenames will be <output_path>-SSSSS-of-NNNNN.<output_file_format> where SSSSS is the shard number and NNNNN is the number of shards. Args: output_path: Output path. eval_shared_model: Optional shared model (single-model evaluation) or list of shared models (multi-model evaluation). Required unless the predictions are provided alongside of the features (i.e. model-agnostic evaluations). eval_config: Eval config for writing out config along with results. Also used for to check for missing slices. display_only_data_location: Optional path indicating where the examples were read from. This is used only for display purposes - data will not actually be read from this path. display_only_data_file_format: Optional format of the input examples. This is used only for display purposes. output_file_format: File format to use when saving files. Currently only 'tfrecord' is supported. add_metric_callbacks: Optional list of metric callbacks (if used). """ writers = [] if not add_metric_callbacks: add_metric_callbacks = [] # The add_metric_callbacks are used in the metrics and plots serialization # code to post process the metric data by calling populate_stats_and_pop. # While both the legacy (V1) and new (V2) evaluation implementations support # EvalSavedModels using add_metric_callbacks, this particular code is only # required for the legacy evaluation based on the MetricsAndPlotsEvaluator. # The V2 MetricsAndPlotsEvaluator output requires no additional processing. # Since the V1 code only supports a single EvalSharedModel, we only set the # add_metrics_callbacks if a dict is not passed. if (eval_shared_model and not isinstance(eval_shared_model, dict) and not isinstance(eval_shared_model, list)): add_metric_callbacks = eval_shared_model.add_metrics_callbacks eval_shared_models = model_util.verify_and_update_eval_shared_models( eval_shared_model) if eval_config: model_locations = {} for v in (eval_shared_models or [None]): k = '' if v is None else v.model_name model_locations[k] = ('<unknown>' if v is None or v.model_path is None else v.model_path) writers.append( eval_config_writer.EvalConfigWriter( output_path, eval_config=eval_config, data_location=display_only_data_location, data_file_format=display_only_data_file_format, model_locations=model_locations)) output_paths = { constants.METRICS_KEY: os.path.join(output_path, constants.METRICS_KEY), constants.PLOTS_KEY: os.path.join(output_path, constants.PLOTS_KEY), constants.ATTRIBUTIONS_KEY: os.path.join(output_path, constants.ATTRIBUTIONS_KEY), constants.VALIDATIONS_KEY: os.path.join(output_path, constants.VALIDATIONS_KEY) } writers.append( metrics_plots_and_validations_writer.MetricsPlotsAndValidationsWriter( output_paths=output_paths, # Empty EvalConfig supported for backwards compatibility. eval_config=eval_config or config_pb2.EvalConfig(), add_metrics_callbacks=add_metric_callbacks, output_file_format=output_file_format, rubber_stamp=model_util.has_rubber_stamp(eval_shared_models))) return writers @beam.ptransform_fn # TODO(b/156538355): Find out why str is also required instead of just bytes # after adding types.Extracts. @beam.typehints.with_input_types(Union[bytes, str, types.Extracts]) @beam.typehints.with_output_types(types.Extracts) def InputsToExtracts( # pylint: disable=invalid-name inputs: beam.pvalue.PCollection) -> beam.pvalue.PCollection: """Converts serialized inputs (e.g. examples) to Extracts if not already.""" def to_extracts(x: Union[bytes, str, types.Extracts]) -> types.Extracts: result = {} if isinstance(x, dict): result.update(x) else: result[constants.INPUT_KEY] = x return result return inputs | 'AddInputKey' >> beam.Map(to_extracts) @beam.ptransform_fn @beam.typehints.with_input_types(Union[bytes, pa.RecordBatch, types.Extracts]) @beam.typehints.with_output_types(types.Extracts) def BatchedInputsToExtracts( # pylint: disable=invalid-name batched_inputs: beam.pvalue.PCollection) -> beam.pvalue.PCollection: """Converts Arrow RecordBatch inputs to Extracts.""" def to_extracts( x: Union[bytes, types.Extracts, pa.RecordBatch]) -> types.Extracts: result = {} if isinstance(x, dict): result.update(x) else: result[constants.ARROW_RECORD_BATCH_KEY] = x return result return batched_inputs | 'AddArrowRecordBatchKey' >> beam.Map(to_extracts) @beam.ptransform_fn @beam.typehints.with_input_types(types.Extracts) @beam.typehints.with_output_types(Any) def ExtractAndEvaluate( # pylint: disable=invalid-name extracts: beam.pvalue.PCollection, extractors: List[extractor.Extractor], evaluators: List[evaluator.Evaluator]) -> evaluator.Evaluation: """Performs Extractions and Evaluations in provided order.""" # evaluation[k] = list of values for k evaluation = {} def update(evaluation: Dict[str, Any], new_evaluation: Dict[str, Any]): for k, v in new_evaluation.items(): if k not in evaluation: evaluation[k] = [] evaluation[k].append(v) return evaluation _ = extracts | 'TrackInputBytes' >> _TrackBytesProcessed() # pylint: disable=no-value-for-parameter # Run evaluators that run before extraction (i.e. that only require # the incoming input extract added by ReadInputs) for v in evaluators: if not v.run_after: update(evaluation, extracts | v.stage_name >> v.ptransform) for x in extractors: extracts = (extracts | x.stage_name >> x.ptransform) for v in evaluators: if v.run_after == x.stage_name: update(evaluation, extracts | v.stage_name >> v.ptransform) for v in evaluators: if v.run_after == extractor.LAST_EXTRACTOR_STAGE_NAME: update(evaluation, extracts | v.stage_name >> v.ptransform) # Merge multi-valued keys if necessary. result = {} for k, v in evaluation.items(): if len(v) == 1: result[k] = v[0] continue # Note that we assume that if a key is multivalued, its values are # dictionaries with disjoint keys. The combined value will simply be the # disjoint union of all the dictionaries. result[k] = ( v | 'FlattenEvaluationOutput(%s)' % k >> beam.Flatten() | 'CombineEvaluationOutput(%s)' % k >> beam.CombinePerKey( _CombineEvaluationDictionariesFn())) return result class _CombineEvaluationDictionariesFn(beam.CombineFn): """CombineFn to combine dictionaries generated by different evaluators.""" def create_accumulator(self) -> Dict[str, Any]: return {} def _merge(self, accumulator: Dict[str, Any], output_dict: Dict[str, Any]) -> None: intersection = set(accumulator) & set(output_dict) if intersection: raise ValueError( 'Dictionaries generated by different evaluators should have ' 'different keys, but keys %s appeared in the output of multiple ' 'evaluators' % intersection) accumulator.update(output_dict) def add_input(self, accumulator: Dict[str, Any], output_dict: Dict[str, Any]) -> Dict[str, Any]: if not isinstance(output_dict, dict): raise TypeError( 'for outputs written to by multiple evaluators, the outputs must all ' 'be dictionaries, but got output of type %s, value %s' % (type(output_dict), str(output_dict))) self._merge(accumulator, output_dict) return accumulator def merge_accumulators( self, accumulators: Iterable[Dict[str, Any]]) -> Dict[str, Any]: accumulators = iter(accumulators) result = next(accumulators) for acc in accumulators: self._merge(result, acc) return result def extract_output(self, accumulator: Dict[str, Any]) -> Dict[str, Any]: return accumulator @beam.ptransform_fn # TODO(b/157600974): Add input typehint. @beam.typehints.with_output_types(beam.pvalue.PDone) def WriteResults( # pylint: disable=invalid-name evaluation_or_validation: Union[evaluator.Evaluation, validator.Validation], writers: List[writer.Writer]) -> beam.pvalue.PDone: """Writes Evaluation or Validation results using given writers. Args: evaluation_or_validation: Evaluation or Validation output. writers: Writes to use for writing out output. Raises: ValueError: If Evaluation or Validation is empty. Returns: beam.pvalue.PDone. """ if not evaluation_or_validation: raise ValueError('Evaluations and Validations cannot be empty') for w in writers: _ = evaluation_or_validation | w.stage_name >> w.ptransform return beam.pvalue.PDone(list(evaluation_or_validation.values())[0].pipeline) def is_legacy_estimator( eval_shared_model: Optional[types.MaybeMultipleEvalSharedModels] = None ) -> bool: """Returns true if there is a legacy estimator. Args: eval_shared_model: Shared model (single-model evaluation) or list of shared models (multi-model evaluation). Required unless the predictions are provided alongside of the features (i.e. model-agnostic evaluations). Returns: A boolean indicating if legacy predict extractor will be used. """ model_types = _model_types(eval_shared_model) eval_shared_models = model_util.verify_and_update_eval_shared_models( eval_shared_model) return (model_types == set([constants.TF_ESTIMATOR]) and all(eval_constants.EVAL_TAG in m.model_loader.tags for m in eval_shared_models)) def is_batched_input(eval_shared_model: Optional[ types.MaybeMultipleEvalSharedModels] = None, eval_config: Optional[config_pb2.EvalConfig] = None, config_version: Optional[int] = None) -> bool: """Returns true if batched input should be used. We will keep supporting the legacy unbatched V1 PredictExtractor as it parses the features and labels, and is the only solution currently that allows for slicing on transformed features. Eventually we should have support for transformed features via keras preprocessing layers. Args: eval_shared_model: Shared model (single-model evaluation) or list of shared models (multi-model evaluation). Required unless the predictions are provided alongside of the features (i.e. model-agnostic evaluations). eval_config: Eval config. config_version: Optional config version for this evaluation. This should not be explicitly set by users. It is only intended to be used in cases where the provided eval_config was generated internally, and thus not a reliable indicator of user intent. Returns: A boolean indicating if batched extractors should be used. """ return not _is_legacy_eval(config_version, eval_shared_model, eval_config) @beam.ptransform_fn @beam.typehints.with_input_types(Any) @beam.typehints.with_output_types(beam.pvalue.PDone) def ExtractEvaluateAndWriteResults( # pylint: disable=invalid-name examples: beam.pvalue.PCollection, eval_shared_model: Optional[types.MaybeMultipleEvalSharedModels] = None, eval_config: Optional[config_pb2.EvalConfig] = None, extractors: Optional[List[extractor.Extractor]] = None, evaluators: Optional[List[evaluator.Evaluator]] = None, writers: Optional[List[writer.Writer]] = None, output_path: Optional[str] = None, display_only_data_location: Optional[str] = None, display_only_file_format: Optional[str] = None, slice_spec: Optional[List[slicer.SingleSliceSpec]] = None, write_config: Optional[bool] = True, compute_confidence_intervals: Optional[bool] = False, min_slice_size: int = 1, random_seed_for_testing: Optional[int] = None, tensor_adapter_config: Optional[tensor_adapter.TensorAdapterConfig] = None, schema: Optional[schema_pb2.Schema] = None, config_version: Optional[int] = None) -> beam.pvalue.PDone: """PTransform for performing extraction, evaluation, and writing results. Users who want to construct their own Beam pipelines instead of using the lightweight run_model_analysis functions should use this PTransform. Example usage: ```python eval_config = tfma.EvalConfig(model_specs=[...], metrics_specs=[...], slicing_specs=[...]) eval_shared_model = tfma.default_eval_shared_model( eval_saved_model_path=model_location, eval_config=eval_config) tfx_io = tf_example_record.TFExampleRecord( file_pattern=data_location, raw_record_column_name=tfma.ARROW_INPUT_COLUMN) with beam.Pipeline(runner=...) as p: _ = (p | 'ReadData' >> tfx_io.BeamSource() | 'ExtractEvaluateAndWriteResults' >> tfma.ExtractEvaluateAndWriteResults( eval_shared_model=eval_shared_model, eval_config=eval_config, ...)) result = tfma.load_eval_result(output_path=output_path) tfma.view.render_slicing_metrics(result) NOTE: If running with an EvalSavedModel (i.e. the ModelSpec has signature_name "eval"), then instead of using the tfxio.BeamSource() code use the following beam.io.ReadFromTFRecord(data_location) ``` Note that the exact serialization format is an internal implementation detail and subject to change. Users should only use the TFMA functions to write and read the results. Args: examples: PCollection of input examples or Arrow Record batches. Examples can be any format the model accepts (e.g. string containing CSV row, TensorFlow.Example, etc). If the examples are in the form of a dict it will be assumed that input is already in the form of tfma.Extracts with examples stored under tfma.INPUT_KEY (any other keys will be passed along unchanged to downstream extractors and evaluators). eval_shared_model: Optional shared model (single-model evaluation) or list of shared models (multi-model evaluation). Only required if needed by default extractors, evaluators, or writers and for display purposes of the model path. eval_config: Eval config. extractors: Optional list of Extractors to apply to Extracts. Typically these will be added by calling the default_extractors function. If no extractors are provided, default_extractors (non-materialized) will be used. evaluators: Optional list of Evaluators for evaluating Extracts. Typically these will be added by calling the default_evaluators function. If no evaluators are provided, default_evaluators will be used. writers: Optional list of Writers for writing Evaluation output. Typically these will be added by calling the default_writers function. If no writers are provided, default_writers will be used. output_path: Path to output results to (config file, metrics, plots, etc). display_only_data_location: Optional path indicating where the examples were read from. This is used only for display purposes - data will not actually be read from this path. display_only_file_format: Optional format of the examples. This is used only for display purposes. slice_spec: Deprecated (use EvalConfig). write_config: Deprecated (use EvalConfig). compute_confidence_intervals: Deprecated (use EvalConfig). min_slice_size: Deprecated (use EvalConfig). random_seed_for_testing: Provide for deterministic tests only. tensor_adapter_config: Tensor adapter config which specifies how to obtain tensors from the Arrow RecordBatch. If None, an attempt will be made to create the tensors using default TensorRepresentations. schema: A schema to use for customizing evaluators. config_version: Optional config version for this evaluation. This should not be explicitly set by users. It is only intended to be used in cases where the provided eval_config was generated internally, and thus not a reliable indicator of user intent. Raises: ValueError: If EvalConfig invalid or matching Extractor not found for an Evaluator. Returns: PDone. """ eval_shared_models = model_util.verify_and_update_eval_shared_models( eval_shared_model) if eval_config is None: config_version = 1 if config_version is None else config_version eval_config = _default_eval_config(eval_shared_models, slice_spec, write_config, compute_confidence_intervals, min_slice_size) else: config_version = 2 if config_version is None else config_version eval_config = _update_eval_config_with_defaults(eval_config, eval_shared_model) config_util.verify_eval_config(eval_config) if not extractors: extractors = default_extractors( eval_config=eval_config, eval_shared_model=eval_shared_model, tensor_adapter_config=tensor_adapter_config, config_version=config_version) if not evaluators: evaluators = default_evaluators( eval_config=eval_config, eval_shared_model=eval_shared_model, random_seed_for_testing=random_seed_for_testing, schema=schema, config_version=config_version) for v in evaluators: evaluator.verify_evaluator(v, extractors) if not writers: writers = default_writers( output_path=output_path, eval_shared_model=eval_shared_model, eval_config=eval_config, display_only_data_location=display_only_data_location, display_only_data_file_format=display_only_file_format) # pylint: disable=no-value-for-parameter if is_batched_input(eval_shared_model, eval_config, config_version): extracts = ( examples | 'BatchedInputsToExtracts' >> BatchedInputsToExtracts()) else: extracts = (examples | 'InputsToExtracts' >> InputsToExtracts()) _ = ( extracts | 'ExtractAndEvaluate' >> ExtractAndEvaluate( extractors=extractors, evaluators=evaluators) | 'WriteResults' >> WriteResults(writers=writers)) return beam.pvalue.PDone(examples.pipeline) def run_model_analysis( eval_shared_model: Optional[types.MaybeMultipleEvalSharedModels] = None, eval_config: Optional[config_pb2.EvalConfig] = None, data_location: str = '', file_format: str = 'tfrecords', output_path: Optional[str] = None, extractors: Optional[List[extractor.Extractor]] = None, evaluators: Optional[List[evaluator.Evaluator]] = None, writers: Optional[List[writer.Writer]] = None, pipeline_options: Optional[Any] = None, slice_spec: Optional[List[slicer.SingleSliceSpec]] = None, write_config: Optional[bool] = True, compute_confidence_intervals: Optional[bool] = False, min_slice_size: int = 1, random_seed_for_testing: Optional[int] = None, schema: Optional[schema_pb2.Schema] = None, ) -> Union[view_types.EvalResult, view_types.EvalResults]: """Runs TensorFlow model analysis. It runs a Beam pipeline to compute the slicing metrics exported in TensorFlow Eval SavedModel and returns the results. This is a simplified API for users who want to quickly get something running locally. Users who wish to create their own Beam pipelines can use the Evaluate PTransform instead. Args: eval_shared_model: Optional shared model (single-model evaluation) or list of shared models (multi-model evaluation). Only required if needed by default extractors, evaluators, or writers. eval_config: Eval config. data_location: The location of the data files. file_format: The file format of the data, can be either 'text' or 'tfrecords' for now. By default, 'tfrecords' will be used. output_path: The directory to output metrics and results to. If None, we use a temporary directory. extractors: Optional list of Extractors to apply to Extracts. Typically these will be added by calling the default_extractors function. If no extractors are provided, default_extractors (non-materialized) will be used. evaluators: Optional list of Evaluators for evaluating Extracts. Typically these will be added by calling the default_evaluators function. If no evaluators are provided, default_evaluators will be used. writers: Optional list of Writers for writing Evaluation output. Typically these will be added by calling the default_writers function. If no writers are provided, default_writers will be used. pipeline_options: Optional arguments to run the Pipeline, for instance whether to run directly. slice_spec: Deprecated (use EvalConfig). write_config: Deprecated (use EvalConfig). compute_confidence_intervals: Deprecated (use EvalConfig). min_slice_size: Deprecated (use EvalConfig). random_seed_for_testing: Provide for deterministic tests only. schema: Optional tf.Metadata schema of the input data. Returns: An EvalResult that can be used with the TFMA visualization functions. Raises: ValueError: If the file_format is unknown to us. """ _assert_tensorflow_version() if output_path is None: output_path = tempfile.mkdtemp() if not tf.io.gfile.exists(output_path): tf.io.gfile.makedirs(output_path) if eval_config is None: config_version = 1 eval_shared_models = model_util.verify_and_update_eval_shared_models( eval_shared_model) eval_config = _default_eval_config(eval_shared_models, slice_spec, write_config, compute_confidence_intervals, min_slice_size) else: config_version = 2 eval_config = _update_eval_config_with_defaults(eval_config, eval_shared_model) tensor_adapter_config = None with beam.Pipeline(options=pipeline_options) as p: if file_format == 'tfrecords': if is_batched_input(eval_shared_model, eval_config, config_version): if is_legacy_estimator(eval_shared_model): tfxio = raw_tf_record.RawTfRecordTFXIO( file_pattern=data_location, raw_record_column_name=constants.ARROW_INPUT_COLUMN, telemetry_descriptors=['StandaloneTFMA']) else: tfxio = tf_example_record.TFExampleRecord( file_pattern=data_location, schema=schema, raw_record_column_name=constants.ARROW_INPUT_COLUMN, telemetry_descriptors=['StandaloneTFMA']) if schema is not None: tensor_adapter_config = tensor_adapter.TensorAdapterConfig( arrow_schema=tfxio.ArrowSchema(), tensor_representations=tfxio.TensorRepresentations()) data = p | 'ReadFromTFRecordToArrow' >> tfxio.BeamSource() else: data = p | 'ReadFromTFRecord' >> beam.io.ReadFromTFRecord( file_pattern=data_location, compression_type=beam.io.filesystem.CompressionTypes.AUTO) elif file_format == 'text': tfxio = raw_tf_record.RawBeamRecordTFXIO( physical_format='csv', raw_record_column_name=constants.ARROW_INPUT_COLUMN, telemetry_descriptors=['StandaloneTFMA']) data = ( p | 'ReadFromText' >> beam.io.textio.ReadFromText( data_location, coder=beam.coders.BytesCoder()) | 'ConvertToArrow' >> tfxio.BeamSource()) else: raise ValueError('unknown file_format: {}'.format(file_format)) # pylint: disable=no-value-for-parameter _ = ( data | 'ExtractEvaluateAndWriteResults' >> ExtractEvaluateAndWriteResults( eval_config=eval_config, eval_shared_model=eval_shared_model, display_only_data_location=data_location, display_only_file_format=file_format, output_path=output_path, extractors=extractors, evaluators=evaluators, writers=writers, random_seed_for_testing=random_seed_for_testing, tensor_adapter_config=tensor_adapter_config, schema=schema, config_version=config_version)) # pylint: enable=no-value-for-parameter if len(eval_config.model_specs) <= 1: return load_eval_result(output_path) else: results = [] for spec in eval_config.model_specs: results.append(load_eval_result(output_path, model_name=spec.name)) return view_types.EvalResults(results, constants.MODEL_CENTRIC_MODE) def single_model_analysis( model_location: str, data_location: str, output_path: Optional[str] = None, eval_config: Optional[config_pb2.EvalConfig] = None, slice_spec: Optional[List[slicer.SingleSliceSpec]] = None ) -> view_types.EvalResult: """Run model analysis for a single model on a single data set. This is a convenience wrapper around run_model_analysis for a single model with a single data set. For more complex use cases, use tfma.run_model_analysis. Args: model_location: Path to the export eval saved model. data_location: The location of the data files. output_path: The directory to output metrics and results to. If None, we use a temporary directory. eval_config: Eval config. slice_spec: Deprecated (use EvalConfig). Returns: An EvalResult that can be used with the TFMA visualization functions. """ # Get working_dir ready. if output_path is None: output_path = tempfile.mkdtemp() if not tf.io.gfile.exists(output_path): tf.io.gfile.makedirs(output_path) if slice_spec and eval_config: raise ValueError('slice_spec is deprecated, only use eval_config') if slice_spec: eval_config = config_pb2.EvalConfig( slicing_specs=[s.to_proto() for s in slice_spec]) return run_model_analysis( eval_config=eval_config, eval_shared_model=default_eval_shared_model( eval_saved_model_path=model_location), data_location=data_location, output_path=output_path) # pytype: disable=bad-return-type def multiple_model_analysis(model_locations: List[str], data_location: str, **kwargs) -> view_types.EvalResults: """Run model analysis for multiple models on the same data set. Args: model_locations: A list of paths to the export eval saved model. data_location: The location of the data files. **kwargs: The args used for evaluation. See tfma.single_model_analysis() for details. Returns: A tfma.EvalResults containing all the evaluation results with the same order as model_locations. """ results = [] for m in model_locations: results.append(single_model_analysis(m, data_location, **kwargs)) return view_types.EvalResults(results, constants.MODEL_CENTRIC_MODE) def multiple_data_analysis(model_location: str, data_locations: List[str], **kwargs) -> view_types.EvalResults: """Run model analysis for a single model on multiple data sets. Args: model_location: The location of the exported eval saved model. data_locations: A list of data set locations. **kwargs: The args used for evaluation. See tfma.run_model_analysis() for details. Returns: A tfma.EvalResults containing all the evaluation results with the same order as data_locations. """ results = [] for d in data_locations: results.append(single_model_analysis(model_location, d, **kwargs)) return view_types.EvalResults(results, constants.DATA_CENTRIC_MODE) def analyze_raw_data( data: pd.DataFrame, eval_config: Optional[config_pb2.EvalConfig] = None, output_path: Optional[str] = None, add_metric_callbacks: Optional[List[types.AddMetricsCallbackType]] = None ) -> view_types.EvalResult: """Runs TensorFlow model analysis on a pandas.DataFrame. This function allows you to use TFMA with Pandas DataFrames. The dataframe must include a 'predicted' column for the predicted label and a 'label' column for the actual label. In addition to a DataFrame, this function requires an eval_config, a `tfma.EvalConfig` object containing various configuration parameters (see [config.proto](https://github.com/tensorflow/model-analysis/blob/master/tensorflow_model_analysis/proto/config.proto) for a comprehensive list)... * the metrics to compute * the slices to compute metrics on * the DataFrame's column names for example labels and predictions ('label' and 'prediction' by default) * confidence interval options This function returns a `tfma.EvalResult`, which contains TFMA's computed metrics and can be used to generate plots with `tfma.view.render_slicing_metrics`. Example usage: ```python model_specs = [ tfma.ModelSpec( prediction_key='prediction', label_key='label') ] metrics_specs = [ tfma.MetricsSpec(metrics=[ tfma.MetricConfig(class_name='Accuracy'), tfma.MetricConfig(class_name='ExampleCount') ]) ] slicing_specs = [ tfma.SlicingSpec(), # the empty slice represents overall dataset tfma.SlicingSpec(feature_keys=['language']) ] eval_config = tfma.EvalConfig( model_specs=model_specs, metrics_specs=metrics_specs, slicing_specs=slicing_specs) result = tfma.analyze_raw_data(df, eval_config) tfma.view.render_slicing_metrics(result) # Example with Fairness Indicators from tensorflow_model_analysis.addons.fairness.post_export_metrics import fairness_indicators from tensorflow_model_analysis.addons.fairness.view import widget_view add_metrics_callbacks = [ tfma.post_export_metrics.fairness_indicators(thresholds=[0.25, 0.5, 0.75]) ] result = tfma.analyze_raw_data( data=df, metrics_specs=metrics_specs, slicing_specs=slicing_specs, add_metric_callbacks=add_metrics_callbacks ) widget_view.render_fairness_indicator(result) ``` Args: data: A pandas.DataFrame, where rows correspond to examples and columns correspond to features. One column must indicate a row's predicted label, and one column must indicate a row's actual label. eval_config: A `tfma.EvalConfig`, which contains various configuration parameters including metrics, slices, and label/prediction column names. output_path: Path to write EvalResult to. add_metric_callbacks: Optional list of metric callbacks (if used). Returns: A tfma.EvalResult to extract metrics or generate visualizations from. Raises: KeyError: If the prediction or label columns are not found within the DataFrame. """ for model_spec in eval_config.model_specs: # pytype: disable=attribute-error model_spec.prediction_key = model_spec.prediction_key or 'prediction' model_spec.label_key = model_spec.label_key or 'label' if model_spec.prediction_key not in data.columns: raise KeyError( 'The prediction_key column was not found. Looked for %s but found: %s' % (model_spec.prediction_key, list(data.columns))) if model_spec.label_key not in data.columns: raise KeyError( 'The label_key column was not found. Looked for %s but found: %s' % (model_spec.label_key, list(data.columns))) # TODO(b/153570803): Validity check / assertions for dataframe structure if eval_config.slicing_specs is None: # pytype: disable=attribute-error eval_config.slicing_specs = [config_pb2.SlicingSpec(feature_keys=[''])] if output_path is None: output_path = tempfile.mkdtemp() arrow_data = table_util.CanonicalizeRecordBatch( table_util.DataFrameToRecordBatch(data)) beam_data = beam.Create([arrow_data]) writers = default_writers( output_path, eval_config=eval_config, add_metric_callbacks=add_metric_callbacks) with beam.Pipeline() as p: _ = ( p | beam_data | 'ExtractEvaluateAndWriteResults' >> ExtractEvaluateAndWriteResults( # pylint: disable=no-value-for-parameter writers=writers, eval_config=eval_config, output_path=output_path)) return load_eval_result(output_path)
42.876812
119
0.732788
7947e1139a93608b2a4f3812af5f89bae8eb8579
40,278
py
Python
utils.py
jzheng84/singleshotpose
5d23bcd348dce8c0eeb6c90d1cdc1a0a4d4c32cb
[ "MIT" ]
null
null
null
utils.py
jzheng84/singleshotpose
5d23bcd348dce8c0eeb6c90d1cdc1a0a4d4c32cb
[ "MIT" ]
null
null
null
utils.py
jzheng84/singleshotpose
5d23bcd348dce8c0eeb6c90d1cdc1a0a4d4c32cb
[ "MIT" ]
null
null
null
import sys import os import time import math import torch import numpy as np from PIL import Image, ImageDraw, ImageFont from torch.autograd import Variable import torch.nn.functional as F import cv2 from scipy import spatial import struct import imghdr def get_all_files(directory): files = [] for f in os.listdir(directory): if os.path.isfile(os.path.join(directory, f)): files.append(os.path.join(directory, f)) else: files.extend(get_all_files(os.path.join(directory, f))) return files def calcAngularDistance(gt_rot, pr_rot): rotDiff = np.dot(gt_rot, np.transpose(pr_rot)) trace = np.trace(rotDiff) return np.rad2deg(np.arccos((trace-1.0)/2.0)) def get_camera_intrinsic(): # TODO: Change to autorally intrinsics. Should load from param file. K = np.zeros((3, 3), dtype='float64') #K[0, 0], K[0, 2] = 572.4114, 325.2611 #K[1, 1], K[1, 2] = 573.5704, 242.0489 #K[2, 2] = 1. # Alpha #K[0, 0], K[0, 2] = 814.5068358423324, 641.3206511250478 #K[1, 1], K[1, 2] = 818.5252047479286, 503.98399653885133 K[0, 0], K[0, 2] = 852.0367654236857, 626.9338016782257 K[1, 1], K[1, 2] = 852.0736515102927, 500.2665457442116 K[2, 2] = 1. return K def compute_projection(points_3D, transformation, internal_calibration): projections_2d = np.zeros((2, points_3D.shape[1]), dtype='float32') camera_projection = (internal_calibration.dot(transformation)).dot(points_3D) projections_2d[0, :] = camera_projection[0, :]/camera_projection[2, :] projections_2d[1, :] = camera_projection[1, :]/camera_projection[2, :] return projections_2d def compute_transformation(points_3D, transformation): return transformation.dot(points_3D) def calc_pts_diameter(pts): diameter = -1 for pt_id in range(pts.shape[0]): pt_dup = np.tile(np.array([pts[pt_id, :]]), [pts.shape[0] - pt_id, 1]) pts_diff = pt_dup - pts[pt_id:, :] max_dist = math.sqrt((pts_diff * pts_diff).sum(axis=1).max()) if max_dist > diameter: diameter = max_dist return diameter def adi(pts_est, pts_gt): nn_index = spatial.cKDTree(pts_est) nn_dists, _ = nn_index.query(pts_gt, k=1) e = nn_dists.mean() return e def get_3D_corners(vertices): min_x = np.min(vertices[0,:]) max_x = np.max(vertices[0,:]) min_y = np.min(vertices[1,:]) max_y = np.max(vertices[1,:]) min_z = np.min(vertices[2,:]) max_z = np.max(vertices[2,:]) corners = np.array([[min_x, min_y, min_z], [min_x, min_y, max_z], [min_x, max_y, min_z], [min_x, max_y, max_z], [max_x, min_y, min_z], [max_x, min_y, max_z], [max_x, max_y, min_z], [max_x, max_y, max_z]]) corners = np.concatenate((np.transpose(corners), np.ones((1,8)) ), axis=0) return corners def pnp(points_3D, points_2D, cameraMatrix): try: distCoeffs = pnp.distCoeffs except: distCoeffs = np.zeros((8, 1), dtype='float32') assert points_2D.shape[0] == points_2D.shape[0], 'points 3D and points 2D must have same number of vertices' _, R_exp, t = cv2.solvePnP(points_3D, # points_2D, np.ascontiguousarray(points_2D[:,:2]).reshape((-1,1,2)), cameraMatrix, distCoeffs) # , None, None, False, cv2.SOLVEPNP_UPNP) # R_exp, t, _ = cv2.solvePnPRansac(points_3D, # points_2D, # cameraMatrix, # distCoeffs, # reprojectionError=12.0) # R, _ = cv2.Rodrigues(R_exp) # Rt = np.c_[R, t] return R, t def get_2d_bb(box, size): x = box[0] y = box[1] min_x = np.min(np.reshape(box, [9,2])[:,0]) max_x = np.max(np.reshape(box, [9,2])[:,0]) min_y = np.min(np.reshape(box, [9,2])[:,1]) max_y = np.max(np.reshape(box, [9,2])[:,1]) w = max_x - min_x h = max_y - min_y new_box = [x*size, y*size, w*size, h*size] return new_box def compute_2d_bb(pts): min_x = np.min(pts[0,:]) max_x = np.max(pts[0,:]) min_y = np.min(pts[1,:]) max_y = np.max(pts[1,:]) w = max_x - min_x h = max_y - min_y cx = (max_x + min_x) / 2.0 cy = (max_y + min_y) / 2.0 new_box = [cx, cy, w, h] return new_box def compute_2d_bb_from_orig_pix(pts, size): min_x = np.min(pts[0,:]) / 640.0 max_x = np.max(pts[0,:]) / 640.0 min_y = np.min(pts[1,:]) / 480.0 max_y = np.max(pts[1,:]) / 480.0 w = max_x - min_x h = max_y - min_y cx = (max_x + min_x) / 2.0 cy = (max_y + min_y) / 2.0 new_box = [cx*size, cy*size, w*size, h*size] return new_box def bbox_iou(box1, box2, x1y1x2y2=False): if x1y1x2y2: mx = min(box1[0], box2[0]) Mx = max(box1[2], box2[2]) my = min(box1[1], box2[1]) My = max(box1[3], box2[3]) w1 = box1[2] - box1[0] h1 = box1[3] - box1[1] w2 = box2[2] - box2[0] h2 = box2[3] - box2[1] else: mx = min(box1[0]-box1[2]/2.0, box2[0]-box2[2]/2.0) Mx = max(box1[0]+box1[2]/2.0, box2[0]+box2[2]/2.0) my = min(box1[1]-box1[3]/2.0, box2[1]-box2[3]/2.0) My = max(box1[1]+box1[3]/2.0, box2[1]+box2[3]/2.0) w1 = box1[2] h1 = box1[3] w2 = box2[2] h2 = box2[3] uw = Mx - mx uh = My - my cw = w1 + w2 - uw ch = h1 + h2 - uh carea = 0 if cw <= 0 or ch <= 0: return 0.0 area1 = w1 * h1 area2 = w2 * h2 carea = cw * ch uarea = area1 + area2 - carea return carea/uarea def corner_confidences(gt_corners, pr_corners, th=30, sharpness=2, im_width=640, im_height=480): ''' gt_corners: Ground-truth 2D projections of the 3D bounding box corners, shape: (16 x nA), type: torch.FloatTensor pr_corners: Prediction for the 2D projections of the 3D bounding box corners, shape: (16 x nA), type: torch.FloatTensor th : distance threshold, type: int sharpness : sharpness of the exponential that assigns a confidence value to the distance ----------- return : a torch.FloatTensor of shape (nA,) with 8 confidence values ''' shape = gt_corners.size() nA = shape[1] dist = gt_corners - pr_corners dist = dist.t().contiguous().view(nA, 8, 2) dist[:, :, 0] = dist[:, :, 0] * im_width dist[:, :, 1] = dist[:, :, 1] * im_height eps = 1e-5 distthresh = torch.FloatTensor([th]).repeat(nA, 8) dist = torch.sqrt(torch.sum((dist)**2, dim=2)).squeeze() # nA x 8 mask = (dist < distthresh).type(torch.FloatTensor) conf = torch.exp(sharpness*(1 - dist/distthresh))-1 # mask * (torch.exp(math.log(2) * (1.0 - dist/rrt)) - 1) conf0 = torch.exp(sharpness*(1 - torch.zeros(conf.size(0),1))) - 1 conf = conf / conf0.repeat(1, 8) # conf = 1 - dist/distthresh conf = mask * conf # nA x 8 mean_conf = torch.mean(conf, dim=1) return mean_conf def corner_confidence(gt_corners, pr_corners, th=30, sharpness=2, im_width=640, im_height=480): ''' gt_corners: Ground-truth 2D projections of the 3D bounding box corners, shape: (16,) type: list pr_corners: Prediction for the 2D projections of the 3D bounding box corners, shape: (16,), type: list th : distance threshold, type: int sharpness : sharpness of the exponential that assigns a confidence value to the distance ----------- return : a list of shape (8,) with 8 confidence values ''' dist = torch.FloatTensor(gt_corners) - pr_corners dist = dist.view(8, 2) dist[:, 0] = dist[:, 0] * im_width dist[:, 1] = dist[:, 1] * im_height eps = 1e-5 dist = torch.sqrt(torch.sum((dist)**2, dim=1)) mask = (dist < th).type(torch.FloatTensor) conf = torch.exp(sharpness * (1.0 - dist/th)) - 1 conf0 = torch.exp(torch.FloatTensor([sharpness])) - 1 + eps conf = conf / conf0.repeat(8, 1) # conf = 1.0 - dist/th conf = mask * conf return torch.mean(conf) def corner_confidences9(gt_corners, pr_corners, th=80, sharpness=2, im_width=640, im_height=480): ''' gt_corners: Ground-truth 2D projections of the 3D bounding box corners, shape: (16 x nA), type: torch.FloatTensor pr_corners: Prediction for the 2D projections of the 3D bounding box corners, shape: (16 x nA), type: torch.FloatTensor th : distance threshold, type: int sharpness : sharpness of the exponential that assigns a confidence value to the distance ----------- return : a torch.FloatTensor of shape (nA,) with 9 confidence values ''' shape = gt_corners.size() nA = shape[1] dist = gt_corners - pr_corners dist = dist.t().contiguous().view(nA, 9, 2) dist[:, :, 0] = dist[:, :, 0] * im_width dist[:, :, 1] = dist[:, :, 1] * im_height eps = 1e-5 distthresh = torch.FloatTensor([th]).repeat(nA, 9) dist = torch.sqrt(torch.sum((dist)**2, dim=2)).squeeze() # nA x 9 mask = (dist < distthresh).type(torch.FloatTensor) conf = torch.exp(sharpness*(1 - dist/distthresh))-1 # mask * (torch.exp(math.log(2) * (1.0 - dist/rrt)) - 1) conf0 = torch.exp(sharpness*(1 - torch.zeros(conf.size(0),1))) - 1 conf = conf / conf0.repeat(1, 9) # conf = 1 - dist/distthresh conf = mask * conf # nA x 9 mean_conf = torch.mean(conf, dim=1) return mean_conf def corner_confidence9(gt_corners, pr_corners, th=80, sharpness=2, im_width=640, im_height=480): ''' gt_corners: Ground-truth 2D projections of the 3D bounding box corners, shape: (18,) type: list pr_corners: Prediction for the 2D projections of the 3D bounding box corners, shape: (18,), type: list th : distance threshold, type: int sharpness : sharpness of the exponential that assigns a confidence value to the distance ----------- return : a list of shape (9,) with 9 confidence values ''' dist = torch.FloatTensor(gt_corners) - pr_corners dist = dist.view(9, 2) dist[:, 0] = dist[:, 0] * im_width dist[:, 1] = dist[:, 1] * im_height eps = 1e-5 dist = torch.sqrt(torch.sum((dist)**2, dim=1)) mask = (dist < th).type(torch.FloatTensor) conf = torch.exp(sharpness * (1.0 - dist/th)) - 1 conf0 = torch.exp(torch.FloatTensor([sharpness])) - 1 + eps conf = conf / conf0.repeat(9, 1) # conf = 1.0 - dist/th conf = mask * conf return torch.mean(conf) def sigmoid(x): return 1.0/(math.exp(-x)+1.) def softmax(x): x = torch.exp(x - torch.max(x)) x = x/x.sum() return x def nms(boxes, nms_thresh): if len(boxes) == 0: return boxes det_confs = torch.zeros(len(boxes)) for i in range(len(boxes)): det_confs[i] = 1-boxes[i][4] _,sortIds = torch.sort(det_confs) out_boxes = [] for i in range(len(boxes)): box_i = boxes[sortIds[i]] if box_i[4] > 0: out_boxes.append(box_i) for j in range(i+1, len(boxes)): box_j = boxes[sortIds[j]] if bbox_iou(box_i, box_j, x1y1x2y2=False) > nms_thresh: #print(box_i, box_j, bbox_iou(box_i, box_j, x1y1x2y2=False)) box_j[4] = 0 return out_boxes def fix_corner_order(corners2D_gt): corners2D_gt_corrected = np.zeros((9, 2), dtype='float32') corners2D_gt_corrected[0, :] = corners2D_gt[0, :] corners2D_gt_corrected[1, :] = corners2D_gt[1, :] corners2D_gt_corrected[2, :] = corners2D_gt[3, :] corners2D_gt_corrected[3, :] = corners2D_gt[5, :] corners2D_gt_corrected[4, :] = corners2D_gt[7, :] corners2D_gt_corrected[5, :] = corners2D_gt[2, :] corners2D_gt_corrected[6, :] = corners2D_gt[4, :] corners2D_gt_corrected[7, :] = corners2D_gt[6, :] corners2D_gt_corrected[8, :] = corners2D_gt[8, :] return corners2D_gt_corrected def convert2cpu(gpu_matrix): return torch.FloatTensor(gpu_matrix.size()).copy_(gpu_matrix) def convert2cpu_long(gpu_matrix): return torch.LongTensor(gpu_matrix.size()).copy_(gpu_matrix) def get_region_boxes(output, conf_thresh, num_classes, only_objectness=1, validation=False): # Parameters anchor_dim = 1 if output.dim() == 3: output = output.unsqueeze(0) batch = output.size(0) assert(output.size(1) == (19+num_classes)*anchor_dim) h = output.size(2) w = output.size(3) # Activation t0 = time.time() all_boxes = [] max_conf = -100000 output = output.view(batch*anchor_dim, 19+num_classes, h*w).transpose(0,1).contiguous().view(19+num_classes, batch*anchor_dim*h*w) grid_x = torch.linspace(0, w-1, w).repeat(h,1).repeat(batch*anchor_dim, 1, 1).view(batch*anchor_dim*h*w).cuda() grid_y = torch.linspace(0, h-1, h).repeat(w,1).t().repeat(batch*anchor_dim, 1, 1).view(batch*anchor_dim*h*w).cuda() xs0 = torch.sigmoid(output[0]) + grid_x ys0 = torch.sigmoid(output[1]) + grid_y xs1 = output[2] + grid_x ys1 = output[3] + grid_y xs2 = output[4] + grid_x ys2 = output[5] + grid_y xs3 = output[6] + grid_x ys3 = output[7] + grid_y xs4 = output[8] + grid_x ys4 = output[9] + grid_y xs5 = output[10] + grid_x ys5 = output[11] + grid_y xs6 = output[12] + grid_x ys6 = output[13] + grid_y xs7 = output[14] + grid_x ys7 = output[15] + grid_y xs8 = output[16] + grid_x ys8 = output[17] + grid_y det_confs = torch.sigmoid(output[18]) cls_confs = torch.nn.Softmax()(Variable(output[19:19+num_classes].transpose(0,1))).data cls_max_confs, cls_max_ids = torch.max(cls_confs, 1) cls_max_confs = cls_max_confs.view(-1) cls_max_ids = cls_max_ids.view(-1) t1 = time.time() # GPU to CPU sz_hw = h*w sz_hwa = sz_hw*anchor_dim det_confs = convert2cpu(det_confs) cls_max_confs = convert2cpu(cls_max_confs) cls_max_ids = convert2cpu_long(cls_max_ids) xs0 = convert2cpu(xs0) ys0 = convert2cpu(ys0) xs1 = convert2cpu(xs1) ys1 = convert2cpu(ys1) xs2 = convert2cpu(xs2) ys2 = convert2cpu(ys2) xs3 = convert2cpu(xs3) ys3 = convert2cpu(ys3) xs4 = convert2cpu(xs4) ys4 = convert2cpu(ys4) xs5 = convert2cpu(xs5) ys5 = convert2cpu(ys5) xs6 = convert2cpu(xs6) ys6 = convert2cpu(ys6) xs7 = convert2cpu(xs7) ys7 = convert2cpu(ys7) xs8 = convert2cpu(xs8) ys8 = convert2cpu(ys8) if validation: cls_confs = convert2cpu(cls_confs.view(-1, num_classes)) t2 = time.time() # Boxes filter for b in range(batch): boxes = [] max_conf = -1 for cy in range(h): for cx in range(w): for i in range(anchor_dim): ind = b*sz_hwa + i*sz_hw + cy*w + cx det_conf = det_confs[ind] if only_objectness: conf = det_confs[ind] else: conf = det_confs[ind] * cls_max_confs[ind] if conf > max_conf: max_conf = conf max_ind = ind if conf > conf_thresh: bcx0 = xs0[ind] bcy0 = ys0[ind] bcx1 = xs1[ind] bcy1 = ys1[ind] bcx2 = xs2[ind] bcy2 = ys2[ind] bcx3 = xs3[ind] bcy3 = ys3[ind] bcx4 = xs4[ind] bcy4 = ys4[ind] bcx5 = xs5[ind] bcy5 = ys5[ind] bcx6 = xs6[ind] bcy6 = ys6[ind] bcx7 = xs7[ind] bcy7 = ys7[ind] bcx8 = xs8[ind] bcy8 = ys8[ind] cls_max_conf = cls_max_confs[ind] cls_max_id = cls_max_ids[ind] box = [bcx0/w, bcy0/h, bcx1/w, bcy1/h, bcx2/w, bcy2/h, bcx3/w, bcy3/h, bcx4/w, bcy4/h, bcx5/w, bcy5/h, bcx6/w, bcy6/h, bcx7/w, bcy7/h, bcx8/w, bcy8/h, det_conf, cls_max_conf, cls_max_id] if (not only_objectness) and validation: for c in range(num_classes): tmp_conf = cls_confs[ind][c] if c != cls_max_id and det_confs[ind]*tmp_conf > conf_thresh: box.append(tmp_conf) box.append(c) boxes.append(box) if len(boxes) == 0: bcx0 = xs0[max_ind] bcy0 = ys0[max_ind] bcx1 = xs1[max_ind] bcy1 = ys1[max_ind] bcx2 = xs2[max_ind] bcy2 = ys2[max_ind] bcx3 = xs3[max_ind] bcy3 = ys3[max_ind] bcx4 = xs4[max_ind] bcy4 = ys4[max_ind] bcx5 = xs5[max_ind] bcy5 = ys5[max_ind] bcx6 = xs6[max_ind] bcy6 = ys6[max_ind] bcx7 = xs7[max_ind] bcy7 = ys7[max_ind] bcx8 = xs8[max_ind] bcy8 = ys8[max_ind] cls_max_conf = cls_max_confs[max_ind] cls_max_id = cls_max_ids[max_ind] det_conf = det_confs[max_ind] box = [bcx0/w, bcy0/h, bcx1/w, bcy1/h, bcx2/w, bcy2/h, bcx3/w, bcy3/h, bcx4/w, bcy4/h, bcx5/w, bcy5/h, bcx6/w, bcy6/h, bcx7/w, bcy7/h, bcx8/w, bcy8/h, det_conf, cls_max_conf, cls_max_id] boxes.append(box) all_boxes.append(boxes) else: all_boxes.append(boxes) all_boxes.append(boxes) t3 = time.time() if False: print('---------------------------------') print('matrix computation : %f' % (t1-t0)) print(' gpu to cpu : %f' % (t2-t1)) print(' boxes filter : %f' % (t3-t2)) print('---------------------------------') return all_boxes def get_corresponding_region_boxes(output, conf_thresh, num_classes, anchors, num_anchors, correspondingclass, only_objectness=1, validation=False): # Parameters anchor_step = len(anchors)/num_anchors if output.dim() == 3: output = output.unsqueeze(0) batch = output.size(0) assert(output.size(1) == (19+num_classes)*num_anchors) h = output.size(2) w = output.size(3) # Activation t0 = time.time() all_boxes = [] max_conf = -100000 max_cls_conf = -100000 output = output.view(batch*num_anchors, 19+num_classes, h*w).transpose(0,1).contiguous().view(19+num_classes, batch*num_anchors*h*w) grid_x = torch.linspace(0, w-1, w).repeat(h,1).repeat(batch*num_anchors, 1, 1).view(batch*num_anchors*h*w).cuda() grid_y = torch.linspace(0, h-1, h).repeat(w,1).t().repeat(batch*num_anchors, 1, 1).view(batch*num_anchors*h*w).cuda() xs0 = torch.sigmoid(output[0]) + grid_x ys0 = torch.sigmoid(output[1]) + grid_y xs1 = output[2] + grid_x ys1 = output[3] + grid_y xs2 = output[4] + grid_x ys2 = output[5] + grid_y xs3 = output[6] + grid_x ys3 = output[7] + grid_y xs4 = output[8] + grid_x ys4 = output[9] + grid_y xs5 = output[10] + grid_x ys5 = output[11] + grid_y xs6 = output[12] + grid_x ys6 = output[13] + grid_y xs7 = output[14] + grid_x ys7 = output[15] + grid_y xs8 = output[16] + grid_x ys8 = output[17] + grid_y det_confs = torch.sigmoid(output[18]) cls_confs = torch.nn.Softmax()(Variable(output[19:19+num_classes].transpose(0,1))).data cls_max_confs, cls_max_ids = torch.max(cls_confs, 1) cls_max_confs = cls_max_confs.view(-1) cls_max_ids = cls_max_ids.view(-1) t1 = time.time() # GPU to CPU sz_hw = h*w sz_hwa = sz_hw*num_anchors det_confs = convert2cpu(det_confs) cls_max_confs = convert2cpu(cls_max_confs) cls_max_ids = convert2cpu_long(cls_max_ids) xs0 = convert2cpu(xs0) ys0 = convert2cpu(ys0) xs1 = convert2cpu(xs1) ys1 = convert2cpu(ys1) xs2 = convert2cpu(xs2) ys2 = convert2cpu(ys2) xs3 = convert2cpu(xs3) ys3 = convert2cpu(ys3) xs4 = convert2cpu(xs4) ys4 = convert2cpu(ys4) xs5 = convert2cpu(xs5) ys5 = convert2cpu(ys5) xs6 = convert2cpu(xs6) ys6 = convert2cpu(ys6) xs7 = convert2cpu(xs7) ys7 = convert2cpu(ys7) xs8 = convert2cpu(xs8) ys8 = convert2cpu(ys8) if validation: cls_confs = convert2cpu(cls_confs.view(-1, num_classes)) t2 = time.time() # Boxes filter for b in range(batch): boxes = [] max_conf = -1 for cy in range(h): for cx in range(w): for i in range(num_anchors): ind = b*sz_hwa + i*sz_hw + cy*w + cx det_conf = det_confs[ind] if only_objectness: conf = det_confs[ind] else: conf = det_confs[ind] * cls_max_confs[ind] if (det_confs[ind] > max_conf) and (cls_confs[ind, correspondingclass] > max_cls_conf): max_conf = det_confs[ind] max_cls_conf = cls_confs[ind, correspondingclass] max_ind = ind if conf > conf_thresh: bcx0 = xs0[ind] bcy0 = ys0[ind] bcx1 = xs1[ind] bcy1 = ys1[ind] bcx2 = xs2[ind] bcy2 = ys2[ind] bcx3 = xs3[ind] bcy3 = ys3[ind] bcx4 = xs4[ind] bcy4 = ys4[ind] bcx5 = xs5[ind] bcy5 = ys5[ind] bcx6 = xs6[ind] bcy6 = ys6[ind] bcx7 = xs7[ind] bcy7 = ys7[ind] bcx8 = xs8[ind] bcy8 = ys8[ind] cls_max_conf = cls_max_confs[ind] cls_max_id = cls_max_ids[ind] box = [bcx0/w, bcy0/h, bcx1/w, bcy1/h, bcx2/w, bcy2/h, bcx3/w, bcy3/h, bcx4/w, bcy4/h, bcx5/w, bcy5/h, bcx6/w, bcy6/h, bcx7/w, bcy7/h, bcx8/w, bcy8/h, det_conf, cls_max_conf, cls_max_id] if (not only_objectness) and validation: for c in range(num_classes): tmp_conf = cls_confs[ind][c] if c != cls_max_id and det_confs[ind]*tmp_conf > conf_thresh: box.append(tmp_conf) box.append(c) boxes.append(box) boxesnp = np.array(boxes) if (len(boxes) == 0) or (not (correspondingclass in boxesnp[:,20])): bcx0 = xs0[max_ind] bcy0 = ys0[max_ind] bcx1 = xs1[max_ind] bcy1 = ys1[max_ind] bcx2 = xs2[max_ind] bcy2 = ys2[max_ind] bcx3 = xs3[max_ind] bcy3 = ys3[max_ind] bcx4 = xs4[max_ind] bcy4 = ys4[max_ind] bcx5 = xs5[max_ind] bcy5 = ys5[max_ind] bcx6 = xs6[max_ind] bcy6 = ys6[max_ind] bcx7 = xs7[max_ind] bcy7 = ys7[max_ind] bcx8 = xs8[max_ind] bcy8 = ys8[max_ind] cls_max_conf = max_cls_conf # cls_max_confs[max_ind] cls_max_id = correspondingclass # cls_max_ids[max_ind] det_conf = max_conf # det_confs[max_ind] box = [bcx0/w, bcy0/h, bcx1/w, bcy1/h, bcx2/w, bcy2/h, bcx3/w, bcy3/h, bcx4/w, bcy4/h, bcx5/w, bcy5/h, bcx6/w, bcy6/h, bcx7/w, bcy7/h, bcx8/w, bcy8/h, det_conf, cls_max_conf, cls_max_id] boxes.append(box) # print(boxes) all_boxes.append(boxes) else: all_boxes.append(boxes) t3 = time.time() if False: print('---------------------------------') print('matrix computation : %f' % (t1-t0)) print(' gpu to cpu : %f' % (t2-t1)) print(' boxes filter : %f' % (t3-t2)) print('---------------------------------') return all_boxes def get_boxes(output, conf_thresh, num_classes, anchors, num_anchors, correspondingclass, only_objectness=1, validation=False): # Parameters anchor_step = len(anchors)/num_anchors if output.dim() == 3: output = output.unsqueeze(0) batch = output.size(0) assert(output.size(1) == (19+num_classes)*num_anchors) h = output.size(2) w = output.size(3) # Activation t0 = time.time() all_boxes = [] max_conf = -100000 max_cls_conf = -100000 output = output.view(batch*num_anchors, 19+num_classes, h*w).transpose(0,1).contiguous().view(19+num_classes, batch*num_anchors*h*w) grid_x = torch.linspace(0, w-1, w).repeat(h,1).repeat(batch*num_anchors, 1, 1).view(batch*num_anchors*h*w).cuda() grid_y = torch.linspace(0, h-1, h).repeat(w,1).t().repeat(batch*num_anchors, 1, 1).view(batch*num_anchors*h*w).cuda() xs0 = torch.sigmoid(output[0]) + grid_x ys0 = torch.sigmoid(output[1]) + grid_y xs1 = output[2] + grid_x ys1 = output[3] + grid_y xs2 = output[4] + grid_x ys2 = output[5] + grid_y xs3 = output[6] + grid_x ys3 = output[7] + grid_y xs4 = output[8] + grid_x ys4 = output[9] + grid_y xs5 = output[10] + grid_x ys5 = output[11] + grid_y xs6 = output[12] + grid_x ys6 = output[13] + grid_y xs7 = output[14] + grid_x ys7 = output[15] + grid_y xs8 = output[16] + grid_x ys8 = output[17] + grid_y det_confs = torch.sigmoid(output[18]) cls_confs = torch.nn.Softmax()(Variable(output[19:19+num_classes].transpose(0,1))).data cls_max_confs, cls_max_ids = torch.max(cls_confs, 1) cls_max_confs = cls_max_confs.view(-1) cls_max_ids = cls_max_ids.view(-1) t1 = time.time() # GPU to CPU sz_hw = h*w sz_hwa = sz_hw*num_anchors det_confs = convert2cpu(det_confs) cls_max_confs = convert2cpu(cls_max_confs) cls_max_ids = convert2cpu_long(cls_max_ids) xs0 = convert2cpu(xs0) ys0 = convert2cpu(ys0) xs1 = convert2cpu(xs1) ys1 = convert2cpu(ys1) xs2 = convert2cpu(xs2) ys2 = convert2cpu(ys2) xs3 = convert2cpu(xs3) ys3 = convert2cpu(ys3) xs4 = convert2cpu(xs4) ys4 = convert2cpu(ys4) xs5 = convert2cpu(xs5) ys5 = convert2cpu(ys5) xs6 = convert2cpu(xs6) ys6 = convert2cpu(ys6) xs7 = convert2cpu(xs7) ys7 = convert2cpu(ys7) xs8 = convert2cpu(xs8) ys8 = convert2cpu(ys8) if validation: cls_confs = convert2cpu(cls_confs.view(-1, num_classes)) t2 = time.time() # Boxes filter for b in range(batch): boxes = [] max_conf = -1 for cy in range(h): for cx in range(w): for i in range(num_anchors): ind = b*sz_hwa + i*sz_hw + cy*w + cx det_conf = det_confs[ind] if only_objectness: conf = det_confs[ind] else: conf = det_confs[ind] * cls_max_confs[ind] if (conf > max_conf) and (cls_confs[ind, correspondingclass] > max_cls_conf): max_conf = conf max_cls_conf = cls_confs[ind, correspondingclass] max_ind = ind if conf > conf_thresh: bcx0 = xs0[ind] bcy0 = ys0[ind] bcx1 = xs1[ind] bcy1 = ys1[ind] bcx2 = xs2[ind] bcy2 = ys2[ind] bcx3 = xs3[ind] bcy3 = ys3[ind] bcx4 = xs4[ind] bcy4 = ys4[ind] bcx5 = xs5[ind] bcy5 = ys5[ind] bcx6 = xs6[ind] bcy6 = ys6[ind] bcx7 = xs7[ind] bcy7 = ys7[ind] bcx8 = xs8[ind] bcy8 = ys8[ind] cls_max_conf = cls_max_confs[ind] cls_max_id = cls_max_ids[ind] box = [bcx0/w, bcy0/h, bcx1/w, bcy1/h, bcx2/w, bcy2/h, bcx3/w, bcy3/h, bcx4/w, bcy4/h, bcx5/w, bcy5/h, bcx6/w, bcy6/h, bcx7/w, bcy7/h, bcx8/w, bcy8/h, det_conf, cls_max_conf, cls_max_id] if (not only_objectness) and validation: for c in range(num_classes): tmp_conf = cls_confs[ind][c] if c != cls_max_id and det_confs[ind]*tmp_conf > conf_thresh: box.append(tmp_conf) box.append(c) boxes.append(box) boxesnp = np.array(boxes) if (len(boxes) == 0) or (not (correspondingclass in boxesnp[:,20])): bcx0 = xs0[max_ind] bcy0 = ys0[max_ind] bcx1 = xs1[max_ind] bcy1 = ys1[max_ind] bcx2 = xs2[max_ind] bcy2 = ys2[max_ind] bcx3 = xs3[max_ind] bcy3 = ys3[max_ind] bcx4 = xs4[max_ind] bcy4 = ys4[max_ind] bcx5 = xs5[max_ind] bcy5 = ys5[max_ind] bcx6 = xs6[max_ind] bcy6 = ys6[max_ind] bcx7 = xs7[max_ind] bcy7 = ys7[max_ind] bcx8 = xs8[max_ind] bcy8 = ys8[max_ind] cls_max_conf = max_cls_conf # cls_max_confs[max_ind] cls_max_id = correspondingclass # cls_max_ids[max_ind] det_conf = det_confs[max_ind] box = [bcx0/w, bcy0/h, bcx1/w, bcy1/h, bcx2/w, bcy2/h, bcx3/w, bcy3/h, bcx4/w, bcy4/h, bcx5/w, bcy5/h, bcx6/w, bcy6/h, bcx7/w, bcy7/h, bcx8/w, bcy8/h, det_conf, cls_max_conf, cls_max_id] boxes.append(box) # print(boxes) all_boxes.append(boxes) else: all_boxes.append(boxes) t3 = time.time() if False: print('---------------------------------') print('matrix computation : %f' % (t1-t0)) print(' gpu to cpu : %f' % (t2-t1)) print(' boxes filter : %f' % (t3-t2)) print('---------------------------------') return all_boxes def plot_boxes_cv2(img, boxes, savename=None, class_names=None, color=None): import cv2 colors = torch.FloatTensor([[1,0,1],[0,0,1],[0,1,1],[0,1,0],[1,1,0],[1,0,0]]); def get_color(c, x, max_val): ratio = float(x)/max_val * 5 i = int(math.floor(ratio)) j = int(math.ceil(ratio)) ratio = ratio - i r = (1-ratio) * colors[i][c] + ratio*colors[j][c] return int(r*255) width = img.shape[1] height = img.shape[0] for i in range(len(boxes)): box = boxes[i] x1 = int(round((box[0] - box[2]/2.0) * width)) y1 = int(round((box[1] - box[3]/2.0) * height)) x2 = int(round((box[0] + box[2]/2.0) * width)) y2 = int(round((box[1] + box[3]/2.0) * height)) if color: rgb = color else: rgb = (255, 0, 0) if len(box) >= 7 and class_names: cls_conf = box[5] cls_id = box[6] print('%s: %f' % (class_names[cls_id], cls_conf)) classes = len(class_names) offset = cls_id * 123457 % classes red = get_color(2, offset, classes) green = get_color(1, offset, classes) blue = get_color(0, offset, classes) if color is None: rgb = (red, green, blue) img = cv2.putText(img, class_names[cls_id], (x1,y1), cv2.FONT_HERSHEY_SIMPLEX, 1.2, rgb, 1) img = cv2.rectangle(img, (x1,y1), (x2,y2), rgb, 1) if savename: print("save plot results to %s" % savename) cv2.imwrite(savename, img) return img def plot_boxes(img, boxes, savename=None, class_names=None): colors = torch.FloatTensor([[1,0,1],[0,0,1],[0,1,1],[0,1,0],[1,1,0],[1,0,0]]); def get_color(c, x, max_val): ratio = float(x)/max_val * 5 i = int(math.floor(ratio)) j = int(math.ceil(ratio)) ratio = ratio - i r = (1-ratio) * colors[i][c] + ratio*colors[j][c] return int(r*255) width = img.width height = img.height draw = ImageDraw.Draw(img) for i in range(len(boxes)): box = boxes[i] x1 = (box[0] - box[2]/2.0) * width y1 = (box[1] - box[3]/2.0) * height x2 = (box[0] + box[2]/2.0) * width y2 = (box[1] + box[3]/2.0) * height rgb = (255, 0, 0) if len(box) >= 7 and class_names: cls_conf = box[5] cls_id = box[6] print('%s: %f' % (class_names[cls_id], cls_conf)) classes = len(class_names) offset = cls_id * 123457 % classes red = get_color(2, offset, classes) green = get_color(1, offset, classes) blue = get_color(0, offset, classes) rgb = (red, green, blue) draw.text((x1, y1), class_names[cls_id], fill=rgb) draw.rectangle([x1, y1, x2, y2], outline = rgb) if savename: print("save plot results to %s" % savename) img.save(savename) return img def read_truths(lab_path): if os.path.getsize(lab_path): truths = np.loadtxt(lab_path) truths = truths.reshape(truths.size/21, 21) # to avoid single truth problem return truths else: return np.array([]) def read_truths_args(lab_path, min_box_scale): truths = read_truths(lab_path) new_truths = [] for i in range(truths.shape[0]): new_truths.append([truths[i][0], truths[i][1], truths[i][2], truths[i][3], truths[i][4], truths[i][5], truths[i][6], truths[i][7], truths[i][8], truths[i][9], truths[i][10], truths[i][11], truths[i][12], truths[i][13], truths[i][14], truths[i][15], truths[i][16], truths[i][17], truths[i][18]]) return np.array(new_truths) def read_pose(lab_path): if os.path.getsize(lab_path): truths = np.loadtxt(lab_path) # truths = truths.reshape(truths.size/21, 21) # to avoid single truth problem return truths else: return np.array([]) def load_class_names(namesfile): class_names = [] with open(namesfile, 'r') as fp: lines = fp.readlines() for line in lines: line = line.rstrip() class_names.append(line) return class_names def image2torch(img): width = img.width height = img.height img = torch.ByteTensor(torch.ByteStorage.from_buffer(img.tobytes())) img = img.view(height, width, 3).transpose(0,1).transpose(0,2).contiguous() img = img.view(1, 3, height, width) img = img.float().div(255.0) return img def do_detect(model, img, conf_thresh, nms_thresh, use_cuda=1): model.eval() t0 = time.time() if isinstance(img, Image.Image): width = img.width height = img.height img = torch.ByteTensor(torch.ByteStorage.from_buffer(img.tobytes())) img = img.view(height, width, 3).transpose(0,1).transpose(0,2).contiguous() img = img.view(1, 3, height, width) img = img.float().div(255.0) elif type(img) == np.ndarray: # cv2 image img = torch.from_numpy(img.transpose(2,0,1)).float().div(255.0).unsqueeze(0) else: print("unknow image type") exit(-1) t1 = time.time() if use_cuda: img = img.cuda() img = torch.autograd.Variable(img) t2 = time.time() output = model(img) output = output.data #for j in range(100): # sys.stdout.write('%f ' % (output.storage()[j])) #print('') t3 = time.time() boxes = get_region_boxes(output, conf_thresh, model.num_classes, model.anchors, model.num_anchors)[0] #for j in range(len(boxes)): # print(boxes[j]) t4 = time.time() boxes = nms(boxes, nms_thresh) t5 = time.time() if False: print('-----------------------------------') print(' image to tensor : %f' % (t1 - t0)) print(' tensor to cuda : %f' % (t2 - t1)) print(' predict : %f' % (t3 - t2)) print('get_region_boxes : %f' % (t4 - t3)) print(' nms : %f' % (t5 - t4)) print(' total : %f' % (t5 - t0)) print('-----------------------------------') return boxes def read_data_cfg(datacfg): options = dict() options['gpus'] = '0,1,2,3' options['num_workers'] = '10' with open(datacfg, 'r') as fp: lines = fp.readlines() for line in lines: line = line.strip() if line == '': continue key,value = line.split('=') key = key.strip() value = value.strip() options[key] = value return options def scale_bboxes(bboxes, width, height): import copy dets = copy.deepcopy(bboxes) for i in range(len(dets)): dets[i][0] = dets[i][0] * width dets[i][1] = dets[i][1] * height dets[i][2] = dets[i][2] * width dets[i][3] = dets[i][3] * height return dets def file_lines(thefilepath): count = 0 thefile = open(thefilepath, 'rb') while True: buffer = thefile.read(8192*1024) if not buffer: break count += buffer.count('\n') thefile.close( ) return count def get_image_size(fname): '''Determine the image type of fhandle and return its size. from draco''' with open(fname, 'rb') as fhandle: head = fhandle.read(24) if len(head) != 24: return if imghdr.what(fname) == 'png': check = struct.unpack('>i', head[4:8])[0] if check != 0x0d0a1a0a: return width, height = struct.unpack('>ii', head[16:24]) elif imghdr.what(fname) == 'gif': width, height = struct.unpack('<HH', head[6:10]) elif imghdr.what(fname) == 'jpeg' or imghdr.what(fname) == 'jpg': try: fhandle.seek(0) # Read 0xff next size = 2 ftype = 0 while not 0xc0 <= ftype <= 0xcf: fhandle.seek(size, 1) byte = fhandle.read(1) while ord(byte) == 0xff: byte = fhandle.read(1) ftype = ord(byte) size = struct.unpack('>H', fhandle.read(2))[0] - 2 # We are at a SOFn block fhandle.seek(1, 1) # Skip `precision' byte. height, width = struct.unpack('>HH', fhandle.read(4)) except Exception: #IGNORE:W0703 return else: return return width, height def logging(message): print('%s %s' % (time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()), message)) def read_pose(lab_path): if os.path.getsize(lab_path): truths = np.loadtxt(lab_path) return truths else: return np.array([])
37.748828
210
0.531407
7947e1e1043167789147fc53296da23eb207a314
1,481
py
Python
Required Codes/Python Scripts/scikit-feature-master/skfeature/example/test_FCBF.py
shuvoprime/A-Supervised-Machine-Learning-Approach-to-Predict-Vulnerability-to-Drug-Addiction
8bd08557f134b5347b23fd5fb4af935d0d28d6b9
[ "MIT" ]
null
null
null
Required Codes/Python Scripts/scikit-feature-master/skfeature/example/test_FCBF.py
shuvoprime/A-Supervised-Machine-Learning-Approach-to-Predict-Vulnerability-to-Drug-Addiction
8bd08557f134b5347b23fd5fb4af935d0d28d6b9
[ "MIT" ]
null
null
null
Required Codes/Python Scripts/scikit-feature-master/skfeature/example/test_FCBF.py
shuvoprime/A-Supervised-Machine-Learning-Approach-to-Predict-Vulnerability-to-Drug-Addiction
8bd08557f134b5347b23fd5fb4af935d0d28d6b9
[ "MIT" ]
null
null
null
import scipy.io from sklearn.metrics import accuracy_score from sklearn import cross_validation from sklearn import svm from skfeature.function.information_theoretical_based import FCBF def main(): # load data mat = scipy.io.loadmat('../data/colon.mat') X = mat['X'] # data X = X.astype(float) y = mat['Y'] # label y = y[:, 0] n_samples, n_features = X.shape # number of samples and number of features # split data into 10 folds ss = cross_validation.KFold(n_samples, n_folds=10, shuffle=True) # perform evaluation on classification task num_fea = 10 # number of selected features clf = svm.LinearSVC() # linear SVM correct = 0 for train, test in ss: # obtain the index of each feature on the training set idx = FCBF.fcbf(X[train], y[train], n_selected_features=num_fea) # obtain the dataset on the selected features features = X[:, idx[0:num_fea]] # train a classification model with the selected features on the training dataset clf.fit(features[train], y[train]) # predict the class labels of test data y_predict = clf.predict(features[test]) # obtain the classification accuracy on the test data acc = accuracy_score(y[test], y_predict) correct = correct + acc # output the average classification accuracy over all 10 folds print 'Accuracy:', float(correct)/10 if __name__ == '__main__': main()
31.510638
89
0.667792
7947e2e2cb8981ffc39146ed7a0893bfac8304b7
5,022
py
Python
src/icemac/ab/calendar/calendar.py
icemac/icemac.ab.calendar
c0cdedd3a8fdd39520156c2ea7cf83aca742e3d9
[ "BSD-2-Clause" ]
1
2020-04-21T19:34:04.000Z
2020-04-21T19:34:04.000Z
src/icemac/ab/calendar/calendar.py
icemac/icemac.ab.calendar
c0cdedd3a8fdd39520156c2ea7cf83aca742e3d9
[ "BSD-2-Clause" ]
null
null
null
src/icemac/ab/calendar/calendar.py
icemac/icemac.ab.calendar
c0cdedd3a8fdd39520156c2ea7cf83aca742e3d9
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from .interfaces import DATE_INDEX from .interfaces import IEvent from .interfaces import IRecurringEvent from datetime import datetime, time from icemac.addressbook.interfaces import ISchemaName import gocept.reference import grokcore.annotation as grok import icemac.ab.calendar.interfaces import icemac.ab.calendar.property import icemac.addressbook.interfaces import itertools import pytz import zope.catalog.interfaces import zope.component import zope.container.btree import zope.interface @zope.interface.implementer(icemac.ab.calendar.interfaces.ICalendar) class Calendar(zope.container.btree.BTreeContainer): """Calendar containing dates.""" def get_events_for_month(self, month, timezone=None): """Get all events which belong to `month`.""" timezone = self._timezone_name_to_timezone(timezone) midnight = time(0, 0, 0) start = timezone.localize( datetime.combine(month.firstOfMonth(), midnight)) end = timezone.localize( datetime.combine((month + 1).firstOfMonth(), midnight)) return self._get_events(start, end, timezone, categories=[]) def get_events(self, start, end, timezone=None, categories=[]): """Get all events between `start` and `end` with one of `categories`. `start` and `end` have to be datetime objects. `categories` is a list of category titles. `start` is part of the interval, but `end` is not. """ timezone = self._timezone_name_to_timezone(timezone) return self._get_events(start, end, timezone, categories) def _get_events(self, start, end, timezone, categories): """Get all events between `start` and `end`. `start` is part of the interval, but `end` is not. `categories` is a list of category titles. Only return events of the given `categories`. If `categories` is an empty list, do not restrict by category. """ recurring_events = zope.component.getUtility( icemac.ab.calendar.interfaces.IRecurringEvents).get_events( categories) recurred_events = [x.get_events(start, end, timezone) for x in recurring_events] events_map = {(x.category, x.in_timezone(timezone)): x for x in itertools.chain(*recurred_events)} single_events = self.query_single_events( start, end, categories=categories) # Sort deleted events first. This way a recurred event can be deleted # and later on replaced by a new event of the same category. sorted_single_events = sorted( single_events, key=lambda x: int(x.deleted), reverse=True) # A single_event with the same category and datetime overwrites the # recurred event as it is its customization: single_events_map = {(x.category, x.in_timezone(timezone)): x for x in sorted_single_events} events_map.update(single_events_map) # Filter out deleted recurred events and sort: return sorted( (x for x in events_map.values() if not x.deleted), key=lambda x: (x.in_timezone(timezone), icemac.addressbook.interfaces.ITitle( x.category, None))) def _timezone_name_to_timezone(self, name): """Return a timezone object. If `name` is None, return UTC.""" if name is None: timezone = pytz.utc else: timezone = pytz.timezone(name) return timezone def query_single_events(self, start, end, categories=[]): catalog = zope.component.getUtility(zope.catalog.interfaces.ICatalog) query = { DATE_INDEX: {'between': (start, end, False, True)}, 'schema_name': {'any_of': [ ISchemaName(IEvent).schema_name, ISchemaName(IRecurringEvent).schema_name, ]}, } if categories: query['keywords'] = {'any_of': categories} # The values for the index are: min, max, min_exclude, max_exclude return catalog.searchResults(**query) class CalendarDisplaySettings(grok.Annotation): """Store calendar display settings in annotations.""" grok.context(icemac.ab.calendar.interfaces.ICalendar) grok.implements(icemac.ab.calendar.interfaces.ICalendarDisplaySettings) person_keyword = gocept.reference.Reference( 'person_keyword', ensure_integrity=True) event_additional_fields = icemac.ab.calendar.property.AddressBookField( '_event_additional_fields', multiple=True) def __init__(self, *args, **kw): super(CalendarDisplaySettings, self).__init__(*args, **kw) self.person_keyword = None @grok.adapter(icemac.addressbook.interfaces.IAddressBook) @grok.implementer(icemac.ab.calendar.interfaces.ICalendar) def calendar(address_book): """Adapt the event to its calendar.""" return address_book.calendar
41.163934
77
0.665671
7947e35a0811b35e7438682407f8f6cfd40002c5
47
py
Python
code/exampleStrats/alwaysCooperate.py
robo-monk/PrisonersDilemmaTournament
84f323f46233d3c6b4ce4380e04e981520912423
[ "MIT" ]
null
null
null
code/exampleStrats/alwaysCooperate.py
robo-monk/PrisonersDilemmaTournament
84f323f46233d3c6b4ce4380e04e981520912423
[ "MIT" ]
null
null
null
code/exampleStrats/alwaysCooperate.py
robo-monk/PrisonersDilemmaTournament
84f323f46233d3c6b4ce4380e04e981520912423
[ "MIT" ]
null
null
null
def strategy(history, memory): return 1, None
15.666667
30
0.744681
7947e404e4ee514e4c2feee5b184f0770d8a8cab
1,319
py
Python
pokershell/config.py
fblaha/pokershell
36a3bfff6ead7fef175e430dfdb88ac6f6a31d1f
[ "Apache-2.0" ]
6
2016-05-13T07:39:37.000Z
2022-03-05T07:23:46.000Z
pokershell/config.py
fblaha/pokershell
36a3bfff6ead7fef175e430dfdb88ac6f6a31d1f
[ "Apache-2.0" ]
1
2017-12-18T09:08:28.000Z
2017-12-31T01:48:32.000Z
pokershell/config.py
fblaha/pokershell
36a3bfff6ead7fef175e430dfdb88ac6f6a31d1f
[ "Apache-2.0" ]
5
2016-10-11T23:54:35.000Z
2022-03-05T07:23:47.000Z
import pokershell.utils as utils class ConfigOption(utils.CommonReprMixin): def __init__(self, name, type, value, short, description): super().__init__() self.name = name self.type = type self._value = value self.short = short self.description = description @property def value(self): return self._value @property def python_name(self): return self.name.replace('-', '_') @property def long(self): return '--' + self.name @value.setter def value(self, val): if type(val) != self.type: self._value = self.type(val) else: self._value = val options = {} def register_option(name, type, value, short, description): option = ConfigOption(name, type, value, short, description) assert name not in options options[name] = option return option player_num = register_option(name='player-num', value=2, type=int, short='-p', description='default player number used when actual player ' 'number is specified in hand simulation') hand_stats = register_option(name='hand-stats', value=3, type=int, short='-x', description='length of hand statistics table')
27.479167
89
0.595906
7947e41914c569736fcfe8a66e3c0df8f2cbd9c1
16,340
py
Python
var/spack/repos/builtin/packages/rocm-openmp-extras/package.py
HigherOrderMethods/spack
87ed3fcc59fc25ce250042338d082925e3a3610b
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
1
2019-03-29T10:13:11.000Z
2019-03-29T10:13:11.000Z
var/spack/repos/builtin/packages/rocm-openmp-extras/package.py
HigherOrderMethods/spack
87ed3fcc59fc25ce250042338d082925e3a3610b
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
11
2021-05-12T06:29:51.000Z
2022-03-31T04:13:35.000Z
var/spack/repos/builtin/packages/rocm-openmp-extras/package.py
HigherOrderMethods/spack
87ed3fcc59fc25ce250042338d082925e3a3610b
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * import os import re tools_url = 'https://github.com/ROCm-Developer-Tools' compute_url = 'https://github.com/RadeonOpenCompute' # Arrays of hashes are in order of the versions array below # For example array[0] = 3.9.0, array[1] = 3.10.0, etc. aomp = [ "377ab59b685a73b3f95fba95f5e028678ec5aafabc4177b7f0ffb78da095d679", "808fca9bdefb109d5bcbbc9f5b59c564a6d422488869e986516f2a7233eda235", "aa75455cf1d333419e5310117678e5789c5222f7cb05b05e3dfacef855c55d84", "9e6ed2c7bdc3b4af069751b5d3e92913fd5ac318ae844f68bd78c5def990a8f7", "c368d39ba9c1bc8b0edbe66edaa3f2a4ff5649c2bd16f499ac19dfd1591dec5a" ] devlib = [ "c99f45dacf5967aef9a31e3731011b9c142446d4a12bac69774998976f2576d7", "bca9291385d6bdc91a8b39a46f0fd816157d38abb1725ff5222e6a0daa0834cc", "d0aa495f9b63f6d8cf8ac668f4dc61831d996e9ae3f15280052a37b9d7670d2a", "f5f5aa6bfbd83ff80a968fa332f80220256447c4ccb71c36f1fbd2b4a8e9fc1b", "34a2ac39b9bb7cfa8175cbab05d30e7f3c06aaffce99eed5f79c616d0f910f5f" ] llvm = [ "1ff14b56d10c2c44d36c3c412b190d3d8cd1bb12cfc7cd58af004c16fd9987d1", "8262aff88c1ff6c4deb4da5a4f8cda1bf90668950e2b911f93f73edaee53b370", "aa1f80f429fded465e86bcfaef72255da1af1c5c52d58a4c979bc2f6c2da5a69", "244e38d824fa7dfa8d0edf3c036b3c84e9c17a16791828e4b745a8d31eb374ae", "751eca1d18595b565cfafa01c3cb43efb9107874865a60c80d6760ba83edb661" ] flang = [ "5d113f44fb173bd0d5704b282c5cebbb2aa642c7c29f188764bfa1daa58374c9", "3990d39ff1c908b150f464f0653a123d94be30802f9cad6af18fbb560c4b412e", "f3e19699ce4ac404f41ffe08ef4546e31e2e741d8deb403b5477659e054275d5", "f41f661425534b5cfb20e2c0efd9d0800609dc3876ee9c3f76f026d36abbfa35", "d6c3f3aaa289251a433d99d1cffe432812093089ae876a6863295a15066c1eaf" ] extras = [ "830a37cf1c6700f81fc00749206a37e7cda4d2867bbdf489e9e2d81f52d06b3d", "5d98d34aff97416d8b5b9e16e7cf474580f8de8a73bd0e549c4440a3c5df4ef5", "51cc8a7c5943e1d9bc657fc9b9797f45e3ce6a4e544d3d3a967c7cd0185a0510", "91fdfadb94aa6afc1942124d0953ddc80c297fa75de1897fb42ac8e7dea51ab9", "31bbe70b51c259a54370d021ae63528a1740b5477a22412685afd14150fff6f4" ] versions = ['3.9.0', '3.10.0', '4.0.0', '4.1.0', '4.2.0'] versions_dict = dict() components = ['aomp', 'devlib', 'llvm', 'flang', 'extras'] component_hashes = [aomp, devlib, llvm, flang, extras] # Loop through versions and create necessary dictionaries of components for outer_index, item in enumerate(versions): for inner_index, component in enumerate(component_hashes): versions_dict.setdefault(item, {})[components[inner_index]] = \ component_hashes[inner_index][outer_index] class RocmOpenmpExtras(Package): """OpenMP support for ROCm LLVM.""" homepage = tools_url + "/aomp" url = tools_url + "/aomp/archive/rocm-4.2.0.tar.gz" maintainers = ['srekolam', 'arjun-raj-kuppala', 'estewart08'] version('4.2.0', sha256=versions_dict['4.2.0']['aomp']) version('4.1.0', sha256=versions_dict['4.1.0']['aomp']) version('4.0.0', sha256=versions_dict['4.0.0']['aomp']) version('3.10.0', sha256=versions_dict['3.10.0']['aomp']) version('3.9.0', sha256=versions_dict['3.9.0']['aomp']) depends_on('cmake@3:', type='build') depends_on('[email protected]:', type=('build', 'link')) depends_on('py-setuptools', type='build') depends_on('python@3:', type='build') depends_on('perl-data-dumper', type='build') depends_on('awk', type='build') depends_on('elfutils', type=('build', 'link')) depends_on('libffi', type=('build', 'link')) for ver in ['3.9.0', '3.10.0', '4.0.0', '4.1.0', '4.2.0']: depends_on('hsakmt-roct@' + ver, when='@' + ver) depends_on('comgr@' + ver, when='@' + ver) depends_on('hsa-rocr-dev@' + ver, when='@' + ver) # standalone rocm-device-libs depends_on('rocm-device-libs@' + ver, when='@' + ver) depends_on('llvm-amdgpu@{0} ~rocm-device-libs ~openmp'.format(ver), when='@' + ver) # tag changed to 'rocm-' in 4.0.0 if ver == '3.9.0' or ver == '3.10.0': tag = 'rocm-uc-' else: tag = 'rocm-' resource( name='rocm-device-libs', url=compute_url + '/ROCm-Device-Libs/archive/' + tag + ver + '.tar.gz', sha256=versions_dict[ver]['devlib'], expand=True, destination='rocm-openmp-extras', placement='rocm-device-libs', when='@' + ver) resource( name='flang', url=tools_url + '/flang/archive/' + tag + ver + '.tar.gz', sha256=versions_dict[ver]['flang'], expand=True, destination='rocm-openmp-extras', placement='flang', when='@' + ver) resource( name='aomp-extras', url=tools_url + '/aomp-extras/archive/' + tag + ver + '.tar.gz', sha256=versions_dict[ver]['extras'], expand=True, destination='rocm-openmp-extras', placement='aomp-extras', when='@' + ver) resource( name='llvm-project', url=compute_url + '/llvm-project/archive/rocm-' + ver + '.tar.gz', sha256=versions_dict[ver]['llvm'], expand=True, destination='rocm-openmp-extras', placement='llvm-project', when='@' + ver) def setup_run_environment(self, env): devlibs_prefix = self.spec['rocm-device-libs'].prefix openmp_extras_prefix = self.spec['rocm-openmp-extras'].prefix llvm_prefix = self.spec['llvm-amdgpu'].prefix env.set('AOMP', '{0}'.format(llvm_prefix)) env.set('HIP_DEVICE_LIB_PATH', '{0}/amdgcn/bitcode'.format(devlibs_prefix)) env.prepend_path('CPATH', '{0}/include'.format(openmp_extras_prefix)) env.prepend_path('LIBRARY_PATH', '{0}/lib'.format(openmp_extras_prefix)) if self.spec.version < Version('4.1.0'): env.set('AOMP_GPU', '`{0}/rocm-bin/mygpu`'.format(openmp_extras_prefix)) else: env.set('AOMP_GPU', '`{0}/bin/mygpu`'.format(openmp_extras_prefix)) def setup_build_environment(self, env): openmp_extras_prefix = self.spec['rocm-openmp-extras'].prefix llvm_prefix = self.spec['llvm-amdgpu'].prefix env.set('AOMP', '{0}'.format(llvm_prefix)) env.set('FC', '{0}/bin/flang'.format(openmp_extras_prefix)) env.set( 'GFXLIST', 'gfx700 gfx701 gfx801 gfx803 gfx900 gfx902 gfx906 gfx908') def patch(self): src = self.stage.source_path flang_warning = '-Wno-incompatible-pointer-types-discards-qualifiers)' aomp_extras = '{0}/rocm-openmp-extras/aomp-extras/aomp-device-libs' libomptarget = \ '{0}/rocm-openmp-extras/llvm-project/openmp/libomptarget' flang = '{0}/rocm-openmp-extras/flang/' if self.spec.version < Version('4.1.0'): plugin = '/plugins/hsa/CMakeLists.txt' else: # Spack thinks some warnings from the flang build are errors. # Disable those warnings. filter_file('PRIVATE -fPIC)', 'PRIVATE -fPIC PRIVATE ' + flang_warning, flang.format(src) + 'runtime/flang/CMakeLists.txt', string=True) plugin = '/plugins/amdgpu/CMakeLists.txt' filter_file( '{ROCM_DIR}/amdgcn/bitcode', '{DEVICE_LIBS_DIR}', aomp_extras.format(src) + '/aompextras/CMakeLists.txt', aomp_extras.format(src) + '/libm/CMakeLists.txt', libomptarget.format(src) + '/deviceRTLs/amdgcn/CMakeLists.txt') # Openmp adjustments filter_file( '-nogpulib', '-nogpulib -nogpuinc', libomptarget.format(src) + '/deviceRTLs/amdgcn/CMakeLists.txt') filter_file( '-x hip', '-x hip -nogpulib -nogpuinc', libomptarget.format(src) + '/deviceRTLs/amdgcn/CMakeLists.txt') filter_file( '-c ', '-c -nogpulib -nogpuinc -I{LIMIT}', libomptarget.format(src) + '/hostrpc/CMakeLists.txt') filter_file( r'${ROCM_DIR}/hsa/include ${ROCM_DIR}/hsa/include/hsa', '${HSA_INCLUDE}/hsa/include ${HSA_INCLUDE}/hsa/include/hsa', libomptarget.format(src) + plugin, string=True) filter_file( '{ROCM_DIR}/hsa/lib', '{HSA_LIB}', libomptarget.format(src) + plugin) filter_file( r'{ROCM_DIR}/lib\)', '{HSAKMT_LIB})\nset(HSAKMT_LIB64 ${HSAKMT_LIB64})', libomptarget.format(src) + plugin) filter_file( r'-L${LIBOMPTARGET_DEP_LIBHSAKMT_LIBRARIES_DIRS}', '-L${LIBOMPTARGET_DEP_LIBHSAKMT_LIBRARIES_DIRS} -L${HSAKMT_LIB64}', libomptarget.format(src) + plugin, string=True) filter_file( r'-rpath,${LIBOMPTARGET_DEP_LIBHSAKMT_LIBRARIES_DIRS}', '-rpath,${LIBOMPTARGET_DEP_LIBHSAKMT_LIBRARIES_DIRS}' + ',-rpath,${HSAKMT_LIB64}', libomptarget.format(src) + plugin, string=True) filter_file( '{ROCM_DIR}/include', '{COMGR_INCLUDE}', libomptarget.format(src) + plugin) filter_file( r'-L${LLVM_LIBDIR}${OPENMP_LIBDIR_SUFFIX}', '-L${LLVM_LIBDIR}${OPENMP_LIBDIR_SUFFIX} -L${COMGR_LIB}', libomptarget.format(src) + plugin, string=True) filter_file( r'rpath,${LLVM_LIBDIR}${OPENMP_LIBDIR_SUFFIX}', 'rpath,${LLVM_LIBDIR}${OPENMP_LIBDIR_SUFFIX}' + '-Wl,-rpath,${COMGR_LIB}', libomptarget.format(src) + plugin, string=True) filter_file( 'ADDITIONAL_VERSIONS 2.7', 'ADDITIONAL_VERSIONS 3', flang.format(src) + 'CMakeLists.txt') def install(self, spec, prefix): src = self.stage.source_path gfx_list = "gfx700;gfx701;gfx801;gfx803;gfx900;gfx902;gfx906;gfx908" openmp_extras_prefix = self.spec['rocm-openmp-extras'].prefix devlibs_prefix = self.spec['rocm-device-libs'].prefix devlibs_src = '{0}/rocm-openmp-extras/rocm-device-libs'.format(src) hsa_prefix = self.spec['hsa-rocr-dev'].prefix hsakmt_prefix = self.spec['hsakmt-roct'].prefix comgr_prefix = self.spec['comgr'].prefix llvm_inc = '/rocm-openmp-extras/llvm-project/llvm/include' llvm_prefix = self.spec['llvm-amdgpu'].prefix omp_bin_dir = '{0}/bin'.format(openmp_extras_prefix) omp_lib_dir = '{0}/lib'.format(openmp_extras_prefix) bin_dir = '{0}/bin'.format(llvm_prefix) lib_dir = '{0}/lib'.format(llvm_prefix) # flang1 and flang2 symlink needed for build of flang-runtime # libdevice symlink to rocm-openmp-extras for runtime # libdebug symlink to rocm-openmp-extras for runtime if not (os.path.islink((os.path.join(bin_dir, 'flang1')))): os.symlink(os.path.join(omp_bin_dir, 'flang1'), os.path.join(bin_dir, 'flang1')) if not (os.path.islink((os.path.join(bin_dir, 'flang2')))): os.symlink(os.path.join(omp_bin_dir, 'flang2'), os.path.join(bin_dir, 'flang2')) if not (os.path.islink((os.path.join(lib_dir, 'libdevice')))): os.symlink(os.path.join(omp_lib_dir, 'libdevice'), os.path.join(lib_dir, 'libdevice')) if not (os.path.islink((os.path.join(llvm_prefix, 'lib-debug')))): os.symlink(os.path.join(openmp_extras_prefix, 'lib-debug'), os.path.join(llvm_prefix, 'lib-debug')) # Set cmake args components = dict() components['aomp-extras'] = [ '../rocm-openmp-extras/aomp-extras', '-DLLVM_DIR={0}'.format(llvm_prefix), '-DDEVICE_LIBS_DIR={0}/amdgcn/bitcode'.format(devlibs_prefix), '-DAOMP_STANDALONE_BUILD=0', '-DDEVICELIBS_ROOT={0}'.format(devlibs_src), '-DNEW_BC_PATH=1', '-DAOMP={0}'.format(llvm_prefix) ] # Shared cmake configuration for openmp, openmp-debug openmp_common_args = [ '-DROCM_DIR={0}'.format(hsa_prefix), '-DDEVICE_LIBS_DIR={0}/amdgcn/bitcode'.format(devlibs_prefix), '-DAOMP_STANDALONE_BUILD=0', '-DDEVICELIBS_ROOT={0}'.format(devlibs_src), '-DOPENMP_TEST_C_COMPILER={0}/clang'.format(bin_dir), '-DOPENMP_TEST_CXX_COMPILER={0}/clang++'.format(bin_dir), '-DLIBOMPTARGET_AMDGCN_GFXLIST={0}'.format(gfx_list), '-DLIBOMP_COPY_EXPORTS=OFF', '-DHSA_LIB={0}/lib'.format(hsa_prefix), '-DHSAKMT_LIB={0}/lib'.format(hsakmt_prefix), '-DHSAKMT_LIB64={0}/lib64'.format(hsakmt_prefix), '-DCOMGR_INCLUDE={0}/include'.format(comgr_prefix), '-DCOMGR_LIB={0}/lib'.format(comgr_prefix), '-DOPENMP_ENABLE_LIBOMPTARGET=1', '-DOPENMP_ENABLE_LIBOMPTARGET_HSA=1', '-DLLVM_MAIN_INCLUDE_DIR={0}{1}'.format(src, llvm_inc), '-DLLVM_INSTALL_PREFIX={0}'.format(llvm_prefix) ] if self.spec.version < Version('4.1.0'): openmp_common_args += [ '-DHSA_INCLUDE={0}'.format(hsa_prefix) ] else: openmp_common_args += [ '-DHSA_INCLUDE={0}/include/hsa'.format(hsa_prefix) ] components['openmp'] = ['../rocm-openmp-extras/llvm-project/openmp'] components['openmp'] += openmp_common_args components['openmp-debug'] = [ '../rocm-openmp-extras/llvm-project/openmp', '-DLIBOMPTARGET_NVPTX_DEBUG=ON', '-DCMAKE_CXX_FLAGS=-g', '-DCMAKE_C_FLAGS=-g' ] components['openmp-debug'] += openmp_common_args # Shared cmake configuration for pgmath, flang, flang-runtime flang_common_args = [ '-DLLVM_ENABLE_ASSERTIONS=ON', '-DLLVM_CONFIG={0}/llvm-config'.format(bin_dir), '-DCMAKE_CXX_COMPILER={0}/clang++'.format(bin_dir), '-DCMAKE_C_COMPILER={0}/clang'.format(bin_dir), '-DCMAKE_Fortran_COMPILER={0}/flang'.format(bin_dir), '-DLLVM_TARGETS_TO_BUILD=AMDGPU;x86' ] components['pgmath'] = [ '../rocm-openmp-extras/flang/runtime/libpgmath' ] components['pgmath'] += flang_common_args components['flang'] = [ '../rocm-openmp-extras/flang', '-DFLANG_OPENMP_GPU_AMD=ON', '-DFLANG_OPENMP_GPU_NVIDIA=ON' ] components['flang'] += flang_common_args components['flang-runtime'] = [ '../rocm-openmp-extras/flang', '-DLLVM_INSTALL_RUNTIME=ON', '-DFLANG_BUILD_RUNTIME=ON', '-DOPENMP_BUILD_DIR={0}/spack-build-openmp/runtime/src'.format(src) ] components['flang-runtime'] += flang_common_args build_order = [ "aomp-extras", "openmp", "openmp-debug", "pgmath", "flang", "flang-runtime" ] # Override standard CMAKE_BUILD_TYPE for arg in std_cmake_args: found = re.search("CMAKE_BUILD_TYPE", arg) if found: std_cmake_args.remove(arg) for component in build_order: with working_dir('spack-build-{0}'.format(component), create=True): cmake_args = components[component] cmake_args.extend(std_cmake_args) # OpenMP build needs to be run twice(Release, Debug) if component == "openmp-debug": cmake_args.append("-DCMAKE_BUILD_TYPE=Debug") else: cmake_args.append("-DCMAKE_BUILD_TYPE=Release") cmake(*cmake_args) make() make("install")
41.262626
79
0.611567
7947e43e9efdc64b556da3863796fa7716e34ac9
9,160
py
Python
public/Python27/Lib/test/test_string.py
NingrumFadillah/cekmutasi
1fccb6cafb874c2a80ece9b71d7c682fd44dbd48
[ "MIT" ]
27
2020-11-12T19:24:54.000Z
2022-03-27T23:10:45.000Z
public/Python27/Lib/test/test_string.py
NingrumFadillah/cekmutasi
1fccb6cafb874c2a80ece9b71d7c682fd44dbd48
[ "MIT" ]
2
2020-11-02T06:30:39.000Z
2022-02-23T18:39:55.000Z
public/Python27/Lib/test/test_string.py
NingrumFadillah/cekmutasi
1fccb6cafb874c2a80ece9b71d7c682fd44dbd48
[ "MIT" ]
3
2017-04-07T12:02:22.000Z
2020-03-23T12:11:55.000Z
import unittest, string from test import test_support, string_tests from UserList import UserList class StringTest( string_tests.CommonTest, string_tests.MixinStrStringUserStringTest ): type2test = str def checkequal(self, result, object, methodname, *args): realresult = getattr(string, methodname)(object, *args) self.assertEqual( result, realresult ) def checkraises(self, exc, object, methodname, *args): self.assertRaises( exc, getattr(string, methodname), object, *args ) def checkcall(self, object, methodname, *args): getattr(string, methodname)(object, *args) def test_join(self): # These are the same checks as in string_test.ObjectTest.test_join # but the argument order ist different self.checkequal('a b c d', ['a', 'b', 'c', 'd'], 'join', ' ') self.checkequal('abcd', ('a', 'b', 'c', 'd'), 'join', '') self.checkequal('w x y z', string_tests.Sequence(), 'join', ' ') self.checkequal('abc', ('abc',), 'join', 'a') self.checkequal('z', UserList(['z']), 'join', 'a') if test_support.have_unicode: self.checkequal(unicode('a.b.c'), ['a', 'b', 'c'], 'join', unicode('.')) self.checkequal(unicode('a.b.c'), [unicode('a'), 'b', 'c'], 'join', '.') self.checkequal(unicode('a.b.c'), ['a', unicode('b'), 'c'], 'join', '.') self.checkequal(unicode('a.b.c'), ['a', 'b', unicode('c')], 'join', '.') self.checkraises(TypeError, ['a', unicode('b'), 3], 'join', '.') for i in [5, 25, 125]: self.checkequal( ((('a' * i) + '-') * i)[:-1], ['a' * i] * i, 'join', '-') self.checkequal( ((('a' * i) + '-') * i)[:-1], ('a' * i,) * i, 'join', '-') self.checkraises(TypeError, string_tests.BadSeq1(), 'join', ' ') self.checkequal('a b c', string_tests.BadSeq2(), 'join', ' ') try: def f(): yield 4 + "" self.fixtype(' ').join(f()) except TypeError, e: if '+' not in str(e): self.fail('join() ate exception message') else: self.fail('exception not raised') class ModuleTest(unittest.TestCase): def test_attrs(self): string.whitespace string.lowercase string.uppercase string.letters string.digits string.hexdigits string.octdigits string.punctuation string.printable def test_atoi(self): self.assertEqual(string.atoi(" 1 "), 1) self.assertRaises(ValueError, string.atoi, " 1x") self.assertRaises(ValueError, string.atoi, " x1 ") def test_atol(self): self.assertEqual(string.atol(" 1 "), 1L) self.assertRaises(ValueError, string.atol, " 1x ") self.assertRaises(ValueError, string.atol, " x1 ") def test_atof(self): self.assertAlmostEqual(string.atof(" 1 "), 1.0) self.assertRaises(ValueError, string.atof, " 1x ") self.assertRaises(ValueError, string.atof, " x1 ") def test_maketrans(self): transtable = '\000\001\002\003\004\005\006\007\010\011\012\013\014\015\016\017\020\021\022\023\024\025\026\027\030\031\032\033\034\035\036\037 !"#$%&\'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`xyzdefghijklmnopqrstuvwxyz{|}~\177\200\201\202\203\204\205\206\207\210\211\212\213\214\215\216\217\220\221\222\223\224\225\226\227\230\231\232\233\234\235\236\237\240\241\242\243\244\245\246\247\250\251\252\253\254\255\256\257\260\261\262\263\264\265\266\267\270\271\272\273\274\275\276\277\300\301\302\303\304\305\306\307\310\311\312\313\314\315\316\317\320\321\322\323\324\325\326\327\330\331\332\333\334\335\336\337\340\341\342\343\344\345\346\347\350\351\352\353\354\355\356\357\360\361\362\363\364\365\366\367\370\371\372\373\374\375\376\377' self.assertEqual(string.maketrans('abc', 'xyz'), transtable) self.assertRaises(ValueError, string.maketrans, 'abc', 'xyzq') def test_capwords(self): self.assertEqual(string.capwords('abc def ghi'), 'Abc Def Ghi') self.assertEqual(string.capwords('abc\tdef\nghi'), 'Abc Def Ghi') self.assertEqual(string.capwords('abc\t def \nghi'), 'Abc Def Ghi') self.assertEqual(string.capwords('ABC DEF GHI'), 'Abc Def Ghi') self.assertEqual(string.capwords('ABC-DEF-GHI', '-'), 'Abc-Def-Ghi') self.assertEqual(string.capwords('ABC-def DEF-ghi GHI'), 'Abc-def Def-ghi Ghi') self.assertEqual(string.capwords(' aBc DeF '), 'Abc Def') self.assertEqual(string.capwords('\taBc\tDeF\t'), 'Abc Def') self.assertEqual(string.capwords('\taBc\tDeF\t', '\t'), '\tAbc\tDef\t') def test_formatter(self): fmt = string.Formatter() self.assertEqual(fmt.format("foo"), "foo") self.assertEqual(fmt.format("foo{0}", "bar"), "foobar") self.assertEqual(fmt.format("foo{1}{0}-{1}", "bar", 6), "foo6bar-6") self.assertEqual(fmt.format("-{arg!r}-", arg='test'), "-'test'-") # override get_value ############################################ class NamespaceFormatter(string.Formatter): def __init__(self, namespace={}): string.Formatter.__init__(self) self.namespace = namespace def get_value(self, key, args, kwds): if isinstance(key, str): try: # Check explicitly passed arguments first return kwds[key] except KeyError: return self.namespace[key] else: string.Formatter.get_value(key, args, kwds) fmt = NamespaceFormatter({'greeting':'hello'}) self.assertEqual(fmt.format("{greeting}, world!"), 'hello, world!') # override format_field ######################################### class CallFormatter(string.Formatter): def format_field(self, value, format_spec): return format(value(), format_spec) fmt = CallFormatter() self.assertEqual(fmt.format('*{0}*', lambda : 'result'), '*result*') # override convert_field ######################################## class XFormatter(string.Formatter): def convert_field(self, value, conversion): if conversion == 'x': return None return super(XFormatter, self).convert_field(value, conversion) fmt = XFormatter() self.assertEqual(fmt.format("{0!r}:{0!x}", 'foo', 'foo'), "'foo':None") # override parse ################################################ class BarFormatter(string.Formatter): # returns an iterable that contains tuples of the form: # (literal_text, field_name, format_spec, conversion) def parse(self, format_string): for field in format_string.split('|'): if field[0] == '+': # it's markup field_name, _, format_spec = field[1:].partition(':') yield '', field_name, format_spec, None else: yield field, None, None, None fmt = BarFormatter() self.assertEqual(fmt.format('*|+0:^10s|*', 'foo'), '* foo *') # test all parameters used class CheckAllUsedFormatter(string.Formatter): def check_unused_args(self, used_args, args, kwargs): # Track which arguments actuallly got used unused_args = set(kwargs.keys()) unused_args.update(range(0, len(args))) for arg in used_args: unused_args.remove(arg) if unused_args: raise ValueError("unused arguments") fmt = CheckAllUsedFormatter() self.assertEqual(fmt.format("{0}", 10), "10") self.assertEqual(fmt.format("{0}{i}", 10, i=100), "10100") self.assertEqual(fmt.format("{0}{i}{1}", 10, 20, i=100), "1010020") self.assertRaises(ValueError, fmt.format, "{0}{i}{1}", 10, 20, i=100, j=0) self.assertRaises(ValueError, fmt.format, "{0}", 10, 20) self.assertRaises(ValueError, fmt.format, "{0}", 10, 20, i=100) self.assertRaises(ValueError, fmt.format, "{i}", 10, 20, i=100) # Alternate formatting is not supported self.assertRaises(ValueError, format, '', '#') self.assertRaises(ValueError, format, '', '#20') class BytesAliasTest(unittest.TestCase): def test_builtin(self): self.assertTrue(str is bytes) def test_syntax(self): self.assertEqual(b"spam", "spam") self.assertEqual(br"egg\foo", "egg\\foo") self.assertTrue(type(b""), str) self.assertTrue(type(br""), str) def test_main(): test_support.run_unittest(StringTest, ModuleTest, BytesAliasTest) if __name__ == "__main__": test_main()
42.018349
764
0.559607
7947e48d11b8f33f814f4fb6352f15d6daf16777
685
py
Python
app/core/migrations/0003_ingredient.py
abdulsagheer/recipe-api
6c5f8408705c8ebf7fb1f4c916b898f8bab6ff43
[ "MIT" ]
null
null
null
app/core/migrations/0003_ingredient.py
abdulsagheer/recipe-api
6c5f8408705c8ebf7fb1f4c916b898f8bab6ff43
[ "MIT" ]
null
null
null
app/core/migrations/0003_ingredient.py
abdulsagheer/recipe-api
6c5f8408705c8ebf7fb1f4c916b898f8bab6ff43
[ "MIT" ]
null
null
null
# Generated by Django 3.1.7 on 2021-03-15 20:18 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('core', '0002_tag'), ] operations = [ migrations.CreateModel( name='Ingredient', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
28.541667
118
0.617518
7947e49f6f85fe7d238de36258dfb0d9e3db3823
15,545
py
Python
hydropandas/extensions/plots.py
boyandomhof/hydropandas
0307d8dfa1262b832d559c80971884b53af0f675
[ "MIT" ]
11
2021-01-04T13:01:24.000Z
2022-03-17T15:43:37.000Z
hydropandas/extensions/plots.py
boyandomhof/hydropandas
0307d8dfa1262b832d559c80971884b53af0f675
[ "MIT" ]
21
2020-05-18T12:47:20.000Z
2022-03-29T11:13:06.000Z
hydropandas/extensions/plots.py
boyandomhof/hydropandas
0307d8dfa1262b832d559c80971884b53af0f675
[ "MIT" ]
2
2020-07-06T06:36:10.000Z
2021-12-24T12:41:43.000Z
import os import numpy as np from . import accessor import logging logger = logging.getLogger(__name__) @accessor.register_obscollection_accessor("plots") class CollectionPlots: def __init__(self, oc_obj): """Object containing plotting methods for ObsCollections. Parameters ---------- oc : ObsCollection ObsCollection instance """ self._obj = oc_obj def interactive_plots(self, savedir, tmin=None, tmax=None, per_location=True, **kwargs): """Create interactive plots of the observations using bokeh. Parameters ---------- savedir : str directory used for the folium map and bokeh plots tmin : dt.datetime, optional start date for timeseries plot tmax : dt.datetime, optional end date for timeseries plot per_location : bool, optional if True plot multiple filters on the same location in one figure **kwargs : will be passed to the Obs.to_interactive_plot method, options include: - plot_columns : list of str - hoover_names : list of str - plot_freq : list of str - plot_legend_names : list of str - markers : list of str - hoover_names : list of str - plot_colors : list of str - ylabel : str - add_filter_to_legend : boolean """ _color_cycle = ( 'blue', 'olive', 'lime', 'red', 'orange', 'yellow', 'purple', 'silver', 'powderblue', 'salmon', 'tan') if per_location: plot_names = self._obj.groupby('locatie').count().index else: plot_names = self._obj.index for name in plot_names: if per_location: oc = self._obj.loc[self._obj.locatie == name, 'obs'].sort_index() else: oc = self._obj.loc[[name], 'obs'] p = None for i, o in enumerate(oc.values): if i == 10: raise NotImplementedError( 'cannot add more than 10 lines to a single plot') try: p = o.plots.interactive_plot(savedir=savedir, p=p, tmin=tmin, tmax=tmax, plot_colors=[_color_cycle[i + 1]], return_filename=False, **kwargs) logger.info(f'created iplot -> {o.name}') except ValueError: logger.error(f'{o.name} has no data between {tmin} and {tmax}') o.iplot_fname = None def interactive_map(self, plot_dir, m=None, tiles='OpenStreetMap', fname=None, per_location=True, color='blue', legend_name=None, add_legend=True, map_label='', map_label_size=20, col_name_lat='lat', col_name_lon='lon', zoom_start=13, create_interactive_plots=True, **kwargs): """Create an interactive map with interactive plots using folium and bokeh. Notes ----- Some notes on this method: - if you want to have multiple obs collections on one folium map, only the last one should have add_legend = True to create a correct legend - the color of the observation point on the map is now the same color as the line of the observation measurements. Also a built-in color cycle is used for different measurements on the same location. Parameters ---------- plot_dir : str directory used for the folium map and bokeh plots m : folium.Map, str, optional current map to add observations too, if None a new map is created tiles : str, optional background tiles, default is openstreetmap fname : str, optional name of the folium map per_location : bool, optional if True plot multiple filters on the same location in one figure color : str, optional color of the observation points on the map legend_name : str, optional the name of the observation points shown in the map legend add_legend : boolean, optional add a legend to a plot map_label : str, optional add a label to the obs locations on the map, this label is picked from the meta attribute of the obs points. map_label_size : int, optional label size of the map_label in pt. col_name_lat : str, optional name of the column in the obs_collection dic with the lat values of the observation points col_name_lon : str, optional see col_name_lat zoom_start : int, optional start zoom level of the folium ma create_interactive_plots : boolean, optional if True interactive plots will be created, if False the iplot_fname attribute of the observations is used. **kwargs : will be passed to the to_interactive_plots method options are: - plot_columns : list of str - hoover_names : list of str - plot_legend_names : list of str - plot_freq : list of str - markers : list of str - hoover_names : list of str - plot_colors : list of str - ylabel : str - add_filter_to_legend : boolean - tmin : dt.datetime - tmax : dt.datetime Returns ------- m : folium.Map the folium map """ import branca import folium from folium.features import DivIcon # create interactive bokeh plots if create_interactive_plots: self._obj.plots.interactive_plots(savedir=plot_dir, per_location=per_location, **kwargs) # check if observation collection has lat and lon values if (not col_name_lat in self._obj.columns) and (not col_name_lon in self._obj.columns): self._obj.geo.set_lat_lon() # determine start location of map northing = np.mean( (self._obj[col_name_lat].min(), self._obj[col_name_lat].max())) easting = np.mean( (self._obj[col_name_lon].min(), self._obj[col_name_lon].max())) # create map if no map is given if m is None: m = folium.Map([northing, easting], zoom_start=zoom_start) # add the point observations with plots to the map group_name = '<span style=\\"color: {};\\">{}</span>'.format( color, legend_name) group = folium.FeatureGroup(name=group_name) if per_location: plot_names = self._obj.groupby('locatie').count().index else: plot_names = self._obj.index for name in plot_names: if per_location: oc = self._obj.loc[self._obj.locatie == name, 'obs'].sort_index() o = oc.iloc[-1] name = o.name else: o = self._obj.loc[name, 'obs'] if o.iplot_fname is not None: with open(o.iplot_fname, 'r') as f: bokeh_html = f.read() iframe = branca.element.IFrame( html=bokeh_html, width=620, height=420) popup = folium.Popup(iframe, max_width=620) folium.CircleMarker([self._obj.loc[o.name, col_name_lat], self._obj.loc[o.name, col_name_lon]], icon=folium.Icon(icon='signal'), fill=True, color=color, popup=popup).add_to(group) if map_label != '': folium.map.Marker( [self._obj.loc[name, col_name_lat], self._obj.loc[name, col_name_lon]], icon=DivIcon( icon_size=( 150, 36), icon_anchor=( 0, 0), html='<div style="font-size: %ipt">%s</div>' % (map_label_size, o.meta[map_label]))).add_to(group) else: logger.info(f'no iplot available for {o.name}') group.add_to(m) # add legend if add_legend: folium.map.LayerControl('topright', collapsed=False).add_to(m) # save map #filename and path if fname is not None: if not fname.endswith('.html'): fname = fname + '.html' if not os.path.exists(plot_dir): os.mkdir(plot_dir) m.save(os.path.join(plot_dir, fname)) return m @accessor.register_obs_accessor("plots") class ObsPlots: def __init__(self, obs): self._obj = obs def interactive_plot(self, savedir=None, plot_columns=('stand_m_tov_nap',), markers=('line',), p=None, plot_legend_names=('',), plot_freq=(None,), tmin=None, tmax=None, hoover_names=('Peil',), hoover_date_format="%Y-%m-%d", ylabel='m NAP', plot_colors=('blue',), add_filter_to_legend=False, return_filename=False): """Create an interactive plot of the observations using bokeh. Todo: - add options for hoovers, markers, linestyle Parameters ---------- savedir : str, optional directory used for the folium map and bokeh plots plot_columns : list of str, optional name of the column in the obs df that will be plotted with bokeh markers : list of str, optional type of markers that can be used for plot, 'line' and 'circle' are supported p : bokeh.plotting.figure, optional reference to existing figure, if p is None a new figure is created plot_legend_names : list of str, optional legend in bokeh plot plot_freq : list of str, optional bokeh plot is resampled with this frequency to reduce the size tmin : dt.datetime, optional start date for timeseries plot tmax : dt.datetime, optional end date for timeseries plot hoover_names : list of str, optional names will be displayed together with the plot_column value when hoovering over plot hoover_date_format : str, optional date format to use when hoovering over a plot ylabel : str, optional label on the y-axis plot_colors : list of str, optional plot_colors used for the plots add_filter_to_legend : boolean, optional if True the attributes bovenkant_filter and onderkant_filter are added to the legend name return_filename : boolean, optional if True filename will be returned Returns ------- fname_plot : str or bokeh plot filename of the bokeh plot or reference to bokeh plot """ from bokeh.plotting import figure from bokeh.models import ColumnDataSource, HoverTool from bokeh.plotting import save from bokeh.resources import CDN # create plot dataframe plot_df = self._obj[tmin:tmax].copy() plot_df['date'] = plot_df.index.strftime(hoover_date_format) if plot_df.empty or plot_df[list(plot_columns)].isna().all().all(): raise ValueError( '{} has no data between {} and {}'.format(self._obj.name, tmin, tmax)) # create plot if p is None: p = figure(plot_width=600, plot_height=400, x_axis_type='datetime', title='') p.yaxis.axis_label = ylabel # get x axis xcol = self._obj.index.name if xcol is None: xcol = 'index' # get color if len(plot_colors) < len(plot_columns): plot_colors = list(plot_colors) * len(plot_columns) # get base for hoover tooltips plots = [] tooltips = [] tooltips.append(('date', "@date")) # plot multiple columns for i, column in enumerate(plot_columns): # legend name if add_filter_to_legend: lname = '{} {} (NAP {:.2f} - {:.2f})'.format(plot_legend_names[i], self._obj.name, self._obj.onderkant_filter, self._obj.bovenkant_filter) else: lname = '{} {}'.format(plot_legend_names[i], self._obj.name) # resample data if plot_freq[i] is None: source = ColumnDataSource(plot_df[[column, 'date']]) else: source = ColumnDataSource( plot_df[[column, 'date']].resample(plot_freq[i]).first()) # plot data if markers[i] in ['line', 'l']: plots.append(p.line(xcol, column, source=source, color=plot_colors[i], legend_label=lname, alpha=0.8, muted_alpha=0.2)) elif markers[i] in ['circle','c']: plots.append(p.circle(xcol, column, source=source, color=plot_colors[i], legend_label=lname, alpha=0.8, muted_alpha=0.2)) else: raise NotImplementedError("marker '{}' invalid. Only line and" "circle are currently available".format(markers[i])) # add columns to hoover tooltips tooltips_p = tooltips.copy() tooltips_p.append((hoover_names[i], "@{}".format(column))) hover = HoverTool(renderers=[plots[i]], tooltips=tooltips_p, mode='vline') p.add_tools(hover) p.legend.location = "top_left" p.legend.click_policy = "mute" # save plot if savedir is not None: if not os.path.isdir(savedir): os.makedirs(savedir) self._obj.iplot_fname = os.path.join( savedir, self._obj.name + '.html') save(p, self._obj.iplot_fname, resources=CDN, title=self._obj.name) if return_filename: return self._obj.iplot_fname else: return p
37.639225
109
0.5156
7947e4a9f21b9336faa7f5564e48701bce7d2762
6,843
py
Python
sp_api/api/products/products.py
coderjiang/python-amazon-sp-api
ecf64d468975b63839ee99b888dc8c72c32dcebd
[ "MIT" ]
1
2022-01-10T01:45:07.000Z
2022-01-10T01:45:07.000Z
sp_api/api/products/products.py
coderjiang/python-amazon-sp-api
ecf64d468975b63839ee99b888dc8c72c32dcebd
[ "MIT" ]
30
2022-02-23T21:41:48.000Z
2022-03-31T21:36:16.000Z
sp_api/api/products/products.py
pharm-it-de/python-amazon-sp-api
389cca687a48da2387dac45d4352718dc60aaeec
[ "MIT" ]
null
null
null
import urllib.parse from sp_api.base import ApiResponse, Client, fill_query_params, sp_endpoint class Products(Client): """ :link: https://github.com/amzn/selling-partner-api-docs/blob/main/references/product-pricing-api/productPricingV0.md """ @sp_endpoint('/products/pricing/v0/price', method='GET') def get_product_pricing_for_skus(self, seller_sku_list: [str], item_condition=None, **kwargs) -> ApiResponse: """ get_product_pricing_for_skus(self, seller_sku_list: [str], item_condition: str = None, **kwargs) -> ApiResponse Returns pricing information for a seller's offer listings based on SKU. **Usage Plan:** ====================================== ============== Rate (requests per second) Burst ====================================== ============== 1 1 ====================================== ============== Args: seller_sku_list: [str] item_condition: str ("New", "Used", "Collectible", "Refurbished", "Club") **kwargs: Returns: ApiResponse: """ if item_condition is not None: kwargs['ItemCondition'] = item_condition return self._create_get_pricing_request(seller_sku_list, 'Sku', **kwargs) @sp_endpoint('/products/pricing/v0/price', method='GET') def get_product_pricing_for_asins(self, asin_list: [str], item_condition=None, **kwargs) -> ApiResponse: """ get_product_pricing_for_asins(self, asin_list: [str], item_condition=None, **kwargs) -> ApiResponse Returns pricing information for a seller's offer listings based on ASIN. **Usage Plan:** ====================================== ============== Rate (requests per second) Burst ====================================== ============== 1 1 ====================================== ============== :param asin_list: [str] :param item_condition: str ("New", "Used", "Collectible", "Refurbished", "Club") Filters the offer listings based on item condition. Possible values: New, Used, Collectible, Refurbished, Club. Available values : New, Used, Collectible, Refurbished, Club :param kwargs: :return: ApiResponse """ if item_condition is not None: kwargs['ItemCondition'] = item_condition return self._create_get_pricing_request(asin_list, 'Asin', **kwargs) @sp_endpoint('/products/pricing/v0/competitivePrice', method='GET') def get_competitive_pricing_for_skus(self, seller_sku_list: [str], **kwargs) -> ApiResponse: """ get_competitive_pricing_for_skus(self, seller_sku_list, **kwargs) -> ApiResponse Returns competitive pricing information for a seller's offer listings based on Seller Sku **Usage Plan:** ====================================== ============== Rate (requests per second) Burst ====================================== ============== 1 1 ====================================== ============== :param seller_sku_list: [str] :param kwargs: :return: ApiResponse """ return self._create_get_pricing_request(seller_sku_list, 'Sku', **kwargs) @sp_endpoint('/products/pricing/v0/competitivePrice', method='GET') def get_competitive_pricing_for_asins(self, asin_list: [str], **kwargs) -> ApiResponse: """ get_competitive_pricing_for_asins(self, asin_list, **kwargs) -> ApiResponse Returns competitive pricing information for a seller's offer listings based on ASIN **Usage Plan:** ====================================== ============== Rate (requests per second) Burst ====================================== ============== 1 1 ====================================== ============== :param asin_list: [str] :param kwargs: :return: """ return self._create_get_pricing_request(asin_list, 'Asin', **kwargs) @sp_endpoint('/products/pricing/v0/listings/{}/offers', method='GET') def get_listings_offer(self, seller_sku: str, **kwargs) -> ApiResponse: """ get_listings_offer(self, seller_sku: str, **kwargs) -> ApiResponse Returns the lowest priced offers for a single SKU listing **Usage Plan:** ====================================== ============== Rate (requests per second) Burst ====================================== ============== 1 1 ====================================== ============== Args: :param seller_sku: str key ItemCondition: str | Possible values: New, Used, Collectible, Refurbished, Club. key MarketplaceId: str Returns: GetOffersResponse: """ return self._request(fill_query_params(kwargs.pop('path'), seller_sku), params={**kwargs}) @sp_endpoint('/products/pricing/v0/items/{}/offers', method='GET') def get_item_offers(self, asin: str, **kwargs) -> ApiResponse: """ get_item_offers(self, asin: str, **kwargs) -> ApiResponse Returns the lowest priced offers for a single item based on ASIN **Usage Plan:** ====================================== ============== Rate (requests per second) Burst ====================================== ============== 5 10 ====================================== ============== Args: :param seller_sku: str key ItemCondition: str | Possible values: New, Used, Collectible, Refurbished, Club. key MarketplaceId: str Returns: GetOffersResponse: """ return self._request(fill_query_params(kwargs.pop('path'), asin), params={**kwargs}) def _create_get_pricing_request(self, item_list, item_type, **kwargs): return self._request(kwargs.pop('path'), params={**{f"{item_type}s": ','.join( [urllib.parse.quote_plus(s) for s in item_list])}, 'ItemType': item_type, **({'ItemCondition': kwargs.pop( 'ItemCondition')} if 'ItemCondition' in kwargs else {}), 'MarketplaceId': kwargs.get('MarketplaceId', self.marketplace_id)})
41.222892
122
0.486483
7947e4b75e780761f5d74c2cf47683f445cd6ee8
1,124
py
Python
mindspore/ops/_op_impl/cpu/bias_add.py
ATestGroup233/mindspore
5d81221b5896cf7d7c6adb44daef28d92cb43352
[ "Apache-2.0" ]
1
2021-06-01T12:34:37.000Z
2021-06-01T12:34:37.000Z
mindspore/ops/_op_impl/cpu/bias_add.py
ATestGroup233/mindspore
5d81221b5896cf7d7c6adb44daef28d92cb43352
[ "Apache-2.0" ]
null
null
null
mindspore/ops/_op_impl/cpu/bias_add.py
ATestGroup233/mindspore
5d81221b5896cf7d7c6adb44daef28d92cb43352
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """BiasAdd op""" from mindspore.ops.op_info_register import op_info_register, CpuRegOp, DataType bias_add_op_info = CpuRegOp("BiasAdd") \ .input(0, "x", "required") \ .input(1, "bias", "required") \ .output(0, "y", "required") \ .dtype_format(DataType.F32_ChannelLast, DataType.F32_Default, DataType.F32_ChannelLast) \ .get_op_info() @op_info_register(bias_add_op_info) def _bias_add_cpu(): """BiasAdd cpu register""" return
36.258065
93
0.685943
7947e54a17416b38a5dd639dd1a919f91909328c
1,949
py
Python
forecaster/Utilities.py
malin1993ml/QueryBot5000
58908dcd6d542b935dd8aa0f62b2dfe78430f61e
[ "Apache-2.0" ]
82
2018-04-20T19:59:42.000Z
2022-03-29T05:13:44.000Z
forecaster/Utilities.py
pentium3/QueryBot5000
7aace45fc9e13019931f73f837c8feb10a3cd142
[ "Apache-2.0" ]
4
2018-12-04T09:42:55.000Z
2021-04-01T13:18:58.000Z
forecaster/Utilities.py
pentium3/QueryBot5000
7aace45fc9e13019931f73f837c8feb10a3cd142
[ "Apache-2.0" ]
28
2018-05-03T14:13:36.000Z
2021-12-28T01:20:40.000Z
import numpy as np from torch.autograd import Variable import math import torch import matplotlib.pyplot as plt import os def onehot(X, dim): Xind = np.zeros(dim) Xind[X, np.arange(dim[1])] = 1 return Xind def flat_prod(X,Y): XY = np.zeros((X.shape[0]*Y.shape[0], X.shape[1])) for i in range(X.shape[1]): XY[:,i] = np.kron(X[:,i], Y[:,i].T).reshape(X.shape[0]*Y.shape[0]) return XY def repackage_hidden(h): """Wraps hidden states in new Variables, to detach them from their history.""" if isinstance(h, tuple) or isinstance(h, list): return tuple(repackage_hidden(v) for v in h) else: return h.detach() def get_batch(source, i, bptt, evaluation=False): seq_len = min(bptt, source.shape[0] - 1 - i) data = source[i:i+seq_len] target = source[i+1:i+1+seq_len] return data, target def get_batch(source, i, bptt, evaluation=False, horizon=1): seq_len = min(bptt, source.shape[0] - horizon - i) data = source[i:i+seq_len] target = source[i+horizon:i+horizon+seq_len] return data, target def prettyPrint(description, loss): print('=' * 89) print('|| ',description, ' || loss {:5.3f}'.format(loss)) print('=' * 89) def my_plot(x_tst, y, i_plt,j_plt): plt.plot(x_tst[:,i_plt,j_plt]) plt.plot(y[:,i_plt,j_plt]) plt.show() def save_plot(x_tst, y, i_plt): x_tst = x_tst.transpose(1, 0, 2) y = y.transpose(1, 0, 2) plt.figure(figsize = (120, 2.5)) plt.plot(x_tst[:, :, i_plt].flatten(), linewidth = 0.5) plt.plot(y[:, :, i_plt].flatten(), linewidth = 0.5) #plt.ylim([0, 8000]) plot_dir = "../plot/regressed-admission-psrnn-lr1-log" #plot_dir = "../plot/regressed-admission-rnn-lr1-log" if not os.path.exists(plot_dir): os.makedirs(plot_dir) plt.savefig("%s/%d.pdf" % (plot_dir, i_plt)) plt.close() def plot_weights(W): plt.set_cmap('jet') plt.imshow(W) plt.show()
28.246377
82
0.623397
7947e584bf2b506b6695887c8a0e54809396cb59
6,611
py
Python
test/functional/feature_maxuploadtarget.py
dogxteam/dogxwallet-master
346189354bdec9a80c20bdc429ddec15c3b17b73
[ "MIT" ]
5
2019-03-18T02:14:20.000Z
2019-03-21T17:08:27.000Z
test/functional/feature_maxuploadtarget.py
dogxteam/dogxwallet-master
346189354bdec9a80c20bdc429ddec15c3b17b73
[ "MIT" ]
null
null
null
test/functional/feature_maxuploadtarget.py
dogxteam/dogxwallet-master
346189354bdec9a80c20bdc429ddec15c3b17b73
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2015-2018 The dogxcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test behavior of -maxuploadtarget. * Verify that getdata requests for old blocks (>1week) are dropped if uploadtarget has been reached. * Verify that getdata requests for recent blocks are respected even if uploadtarget has been reached. * Verify that the upload counters are reset after 24 hours. """ from collections import defaultdict import time from test_framework.messages import CInv, msg_getdata from test_framework.mininode import P2PInterface from test_framework.test_framework import dogxcoinTestFramework from test_framework.util import assert_equal, mine_large_block class TestP2PConn(P2PInterface): def __init__(self): super().__init__() self.block_receive_map = defaultdict(int) def on_inv(self, message): pass def on_block(self, message): message.block.calc_sha256() self.block_receive_map[message.block.sha256] += 1 class MaxUploadTest(dogxcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 self.extra_args = [["-maxuploadtarget=800"]] # Cache for utxos, as the listunspent may take a long time later in the test self.utxo_cache = [] def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): # Before we connect anything, we first set the time on the node # to be in the past, otherwise things break because the CNode # time counters can't be reset backward after initialization old_time = int(time.time() - 2*60*60*24*7) self.nodes[0].setmocktime(old_time) # Generate some old blocks self.nodes[0].generate(130) # p2p_conns[0] will only request old blocks # p2p_conns[1] will only request new blocks # p2p_conns[2] will test resetting the counters p2p_conns = [] for _ in range(3): p2p_conns.append(self.nodes[0].add_p2p_connection(TestP2PConn())) # Now mine a big block mine_large_block(self.nodes[0], self.utxo_cache) # Store the hash; we'll request this later big_old_block = self.nodes[0].getbestblockhash() old_block_size = self.nodes[0].getblock(big_old_block, True)['size'] big_old_block = int(big_old_block, 16) # Advance to two days ago self.nodes[0].setmocktime(int(time.time()) - 2*60*60*24) # Mine one more block, so that the prior block looks old mine_large_block(self.nodes[0], self.utxo_cache) # We'll be requesting this new block too big_new_block = self.nodes[0].getbestblockhash() big_new_block = int(big_new_block, 16) # p2p_conns[0] will test what happens if we just keep requesting the # the same big old block too many times (expect: disconnect) getdata_request = msg_getdata() getdata_request.inv.append(CInv(2, big_old_block)) max_bytes_per_day = 800*1024*1024 daily_buffer = 144 * 4000000 max_bytes_available = max_bytes_per_day - daily_buffer success_count = max_bytes_available // old_block_size # 576MB will be reserved for relaying new blocks, so expect this to # succeed for ~235 tries. for i in range(success_count): p2p_conns[0].send_message(getdata_request) p2p_conns[0].sync_with_ping() assert_equal(p2p_conns[0].block_receive_map[big_old_block], i+1) assert_equal(len(self.nodes[0].getpeerinfo()), 3) # At most a couple more tries should succeed (depending on how long # the test has been running so far). for i in range(3): p2p_conns[0].send_message(getdata_request) p2p_conns[0].wait_for_disconnect() assert_equal(len(self.nodes[0].getpeerinfo()), 2) self.log.info("Peer 0 disconnected after downloading old block too many times") # Requesting the current block on p2p_conns[1] should succeed indefinitely, # even when over the max upload target. # We'll try 800 times getdata_request.inv = [CInv(2, big_new_block)] for i in range(800): p2p_conns[1].send_message(getdata_request) p2p_conns[1].sync_with_ping() assert_equal(p2p_conns[1].block_receive_map[big_new_block], i+1) self.log.info("Peer 1 able to repeatedly download new block") # But if p2p_conns[1] tries for an old block, it gets disconnected too. getdata_request.inv = [CInv(2, big_old_block)] p2p_conns[1].send_message(getdata_request) p2p_conns[1].wait_for_disconnect() assert_equal(len(self.nodes[0].getpeerinfo()), 1) self.log.info("Peer 1 disconnected after trying to download old block") self.log.info("Advancing system time on node to clear counters...") # If we advance the time by 24 hours, then the counters should reset, # and p2p_conns[2] should be able to retrieve the old block. self.nodes[0].setmocktime(int(time.time())) p2p_conns[2].sync_with_ping() p2p_conns[2].send_message(getdata_request) p2p_conns[2].sync_with_ping() assert_equal(p2p_conns[2].block_receive_map[big_old_block], 1) self.log.info("Peer 2 able to download old block") self.nodes[0].disconnect_p2ps() #stop and start node 0 with 1MB maxuploadtarget, whitelist 127.0.0.1 self.log.info("Restarting nodes with -whitelist=127.0.0.1") self.stop_node(0) self.start_node(0, ["-whitelist=127.0.0.1", "-maxuploadtarget=1"]) # Reconnect to self.nodes[0] self.nodes[0].add_p2p_connection(TestP2PConn()) #retrieve 20 blocks which should be enough to break the 1MB limit getdata_request.inv = [CInv(2, big_new_block)] for i in range(20): self.nodes[0].p2p.send_message(getdata_request) self.nodes[0].p2p.sync_with_ping() assert_equal(self.nodes[0].p2p.block_receive_map[big_new_block], i+1) getdata_request.inv = [CInv(2, big_old_block)] self.nodes[0].p2p.send_and_ping(getdata_request) assert_equal(len(self.nodes[0].getpeerinfo()), 1) #node is still connected because of the whitelist self.log.info("Peer still connected after trying to download old block (whitelisted)") if __name__ == '__main__': MaxUploadTest().main()
40.066667
107
0.678264
7947e5b7dabab313f33e5e1f63fa2898c6f11020
8,112
py
Python
nagios/libexec/check_mod_status.py
Oneiroi/sysadmin
701c8db0667eff683377fd119490308c503bf464
[ "Apache-2.0" ]
29
2015-01-11T06:14:19.000Z
2020-01-16T04:27:25.000Z
nagios/libexec/check_mod_status.py
Oneiroi/sysadmin
701c8db0667eff683377fd119490308c503bf464
[ "Apache-2.0" ]
1
2015-04-07T12:20:07.000Z
2015-04-07T12:20:07.000Z
nagios/libexec/check_mod_status.py
Oneiroi/sysadmin
701c8db0667eff683377fd119490308c503bf464
[ "Apache-2.0" ]
18
2015-01-26T05:19:52.000Z
2021-04-29T12:18:46.000Z
#!/usr/local/bin/python # # check_mod_status.py # # Created by David Busby on 30/03/2009. # """ __author__="David Busby" __copyright__="Psycle Interactive Ltd & David Busby" __license__="GNU v3 + part 5d section 7: Redistribution/Reuse of this code is permitted under the GNU v3 license, as an additional term ALL code must carry the original Author(s) credit in comment form." """ #imports import sys, getopt, httplib, string, urllib2, re #global vars TAG="HTTPD_STATUS" def main(): try: opts, args = getopt.getopt(sys.argv[1:], "hs:c:w:d:x:", ["help", "output="]) except getopt.GetoptError, err: print str(err) usage() sys.exit(2) srv = "" #server to read status from cpuc = 0 #cpu critical threshold cpuw = 0 #cpu warning threshold freec = 0 #free slot warning threshold freew = 0 #free slot warning threshold for o, a in opts: if o in ("-h", "--help"): usage() elif o == "-s": srv = a elif o == "-c": cpuc = a elif o == "-w": cpuw = a elif o == "-d": freec = int(a) elif o == "-x": freew = int(a) else: assert False, "unhandled option" if len(srv) > 0 and cpuc > 0 and cpuw > 0 and freec > 0 and freew > 0: srv = "%s%s%s" % ("http://",srv,"/server-status?auto") req = urllib2.Request(srv) try: res = urllib2.urlopen(req) headers = res.info().headers data = res.read() except IOError, e: if hasattr(e, 'reason'): critical(e.reason) elif hasattr(e, 'code'): critical(e.code) if len(data) > 0: #data = data.split("\n") #the following does assume however that the auto data provides the following order # # # Total Accesses: 39186 # Total kBytes: 2168752 # CPULoad: 1.16224 # Uptime: 34923 # ReqPerSec: 1.12207 # BytesPerSec: 63591.4 # BytesPerReq: 56673.4 # BusyWorkers: 1 # IdleWorkers: 19 # Scoreboard: #total accesses #adata = { # "ta": data[0].split(":")[1].lstrip(), # "tk": data[1].split(":")[1].lstrip(), # "cpu": float(data[2].split(":")[1].lstrip()), # "up": data[3].split(":")[1].lstrip(), # "rps": data[4].split(":")[1].lstrip(), # "bps": data[5].split(":")[1].lstrip(), # "bpr": data[6].split(":")[1].lstrip(), # "bw": data[7].split(":")[1].lstrip(), # "iw": data[8].split(":")[1].lstrip(), # "sb": data[9].split(":")[1].lstrip() #} #Regex Data cap adata = { "ta": 0 if re.search('Total\sAccesses:\s+([0-9]+)',data) == None else re.search('Total\sAccesses:\s+([0-9]+)',data).group(1), "tk": 0 if re.search('Total\skBytes:\s+([0-9]+)',data) == None else re.search('Total\skBytes:\s+([0-9]+)',data).group(1), "cpu": float(0 if re.search('CPULoad:\s+([0-9]+\.?[0-9]+)',data) == None else re.search('CPULoad:\s+([0-9]+\.?[0-9]+)',data).group(1)), "up": 0 if re.search('Uptime:\s+([0-9]+)',data) == None else re.search('Uptime:\s+([0-9]+)',data).group(1), "rps": 0 if re.search('ReqPerSec:\s+([0-9]+)',data) == None else re.search('ReqPerSec:\s+([0-9]+)',data).group(1), "bps": 0 if re.search('BytesPerSec:\s+([0-9]+\.?[0-9]+)',data) == None else re.search('BytesPerSec:\s+([0-9]+\.?[0-9]+)',data).group(1), "bpr": 0 if re.search('BytesPerReq:\s+([0-9]+\.?[0-9]+)',data) == None else re.search('BytesPerReq:\s+([0-9]+\.?[0-9]+)',data).group(1), "bw": 0 if re.search('BusyWorkers:\s+([0-9]+)',data) == None else re.search('BusyWorkers:\s+([0-9]+)',data).group(1), "iw": 0 if re.search('IdleWorkers:\s+([0-9]+)',data) == None else re.search('IdleWorkers:\s+([0-9]+)',data).group(1), "sb": '' if re.search('Scoreboard:\s+(.*)',data) == None else re.search('Scoreboard:\s+(.*)',data).group(1) } #parse the score board asb = sb_parse(adata["sb"]) #generate perfdata stat ="| cpu_load=%s;0; max=%s;0; waiting=%s;0; starting=%s;0;" % (adata["cpu"], asb["max"], asb["wc"], asb["su"]) stat = stat +" reading=%s;0; sending=%s;0; keepalive=%s;0; lookup=%s;0;" % (asb["rr"], asb["sr"], asb["ka"], asb["dns"]) stat = stat +" closing=%s;0; logging=%s;0; finishing=%s;0; idle=%s;0;" % (asb["cc"], asb["lo"], asb["gf"], asb["id"]) stat = stat + " open=%s;0; bytes_per_sec=%s;0; Uptime=%s;0; total_accesses=%s;0;" % (asb["op"], adata["bps"], adata["up"], adata["ta"]) #check cpu load if adata["cpu"] >= cpuc: critical("CPULoad Percentage: %s exceeds critical threshold (%s)%s" % (adata["cpu"],cpuc,stat)) elif adata["cpu"] >= cpuw: warn("CPULoad Percentage: %s exceeds warning threshold (%s)%s" % (adata["cpu"],cpuw,stat)) #free slot check perfree = (1.0*asb["op"]/asb["max"])*100 if perfree <= freec: critical("Free Slots Percentage: %s less than critical threshold (%s)%s" % (perfree,freec,stat)) elif perfree <= freew: warn("Free Slots Percentage: %s less than warning threshold (%s)%s" % (perfree,freew,stat)) #no of the checks have caused an exit so status is ok! ok("CPU: %s FREE: %s %s" % (adata["cpu"],perfree,stat)) else: stat = "No Data" critical(stat) else: usage() def sb_parse(sb): #setup struct / assoc array asb = { "wc": 0, #"_" Waiting for Connection "su": 0, #"S" Starting up "rr": 0, #"R" Reading Request "sr": 0, #"W" Sending Reply "ka": 0, #"K" Keepalive (read) "dns": 0, #"D" DNS Lookup, "cc": 0, #"C" Closing connection "lo": 0, #"L" Logging "gf": 0, #"G" Gracefully finishing "id": 0, #"I" Idle cleanup of worker "op": 0, #"." Open slot with no current process "max": 0 #max slots } sblen = len(sb) asb["max"] = sblen for i in range(0,sblen): if sb[i] == "_": asb["wc"] += 1 elif sb[i] == "S": asb["su"] += 1 elif sb[i] == "R": asb["rr"] += 1 elif sb[i] == "W": asb["sr"] += 1 elif sb[i] == "K": asb["ka"] += 1 elif sb[i] == "D": asb["dns"] += 1 elif sb[i] == "C": asb["cc"] += 1 elif sb[i] == "L": asb["lo"] += 1 elif sb[i] == "G": asb["gf"] += 1 elif sb[i] == "I": asb["id"] += 1 elif sb[i] == ".": asb["op"] += 1 return asb def usage(): print "Usage: ",sys.argv[0]," [-h][-s][-c][-w][-d][-x]" print "-s server_ip or name" print "-c critical CPU max percentage" print "-w warning CPU max percentage" print "-d critical free slot min percentage" print "-x warning free slot min percentage" print "NOTE: DO NOT include the http:// or /server-status?auto in the server address." sys.exit(0) def ok(stat): print TAG,"OK -",stat sys.exit(0) def warn(stat): print TAG,"WARN -",stat sys.exit(1) def critical(stat): print TAG,"CRITICAL -",stat sys.exit(2); if __name__ == "__main__": main()
39.960591
203
0.464127
7947e75c144919fa8d6f90aa6d06febedec241ef
174
py
Python
aws-cdk-cis/app.py
severel/aws-cdk-cis
7008a65966240708da235eb7e52d75d21489dd9e
[ "MIT" ]
2
2021-03-08T01:24:42.000Z
2021-04-03T14:50:33.000Z
aws-cdk-cis/app.py
severel/aws-cdk-cis
7008a65966240708da235eb7e52d75d21489dd9e
[ "MIT" ]
null
null
null
aws-cdk-cis/app.py
severel/aws-cdk-cis
7008a65966240708da235eb7e52d75d21489dd9e
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 from aws_cdk import core from aws_cdk_cis.aws_cdk_cis_stack import AwsCdkCisStack app = core.App() AwsCdkCisStack(app, "aws-cdk-cis") app.synth()
14.5
56
0.764368
7947e857d5687cf517a0c3dd276e5e6f000b17e7
464
py
Python
data/scripts/templates/object/building/poi/shared_yavin4_hutt_scavenger_camp_small1.py
obi-two/GameServer
7d37024e2291a97d49522610cd8f1dbe5666afc2
[ "MIT" ]
20
2015-02-23T15:11:56.000Z
2022-03-18T20:56:48.000Z
data/scripts/templates/object/building/poi/shared_yavin4_hutt_scavenger_camp_small1.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
null
null
null
data/scripts/templates/object/building/poi/shared_yavin4_hutt_scavenger_camp_small1.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
20
2015-04-04T16:35:59.000Z
2022-03-24T14:54:37.000Z
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Building() result.template = "object/building/poi/shared_yavin4_hutt_scavenger_camp_small1.iff" result.attribute_template_id = -1 result.stfName("poi_n","base_poi_building") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
27.294118
85
0.737069
7947ea7425f1c0daf4d66cf8aac431401496318e
3,250
py
Python
common/database/main.py
dnguyen0304/python-common
7fdcc584d223c277e3cdb0336cc923a4f9adcece
[ "MIT" ]
null
null
null
common/database/main.py
dnguyen0304/python-common
7fdcc584d223c277e3cdb0336cc923a4f9adcece
[ "MIT" ]
null
null
null
common/database/main.py
dnguyen0304/python-common
7fdcc584d223c277e3cdb0336cc923a4f9adcece
[ "MIT" ]
1
2018-09-19T00:40:10.000Z
2018-09-19T00:40:10.000Z
# -*- coding: utf-8 -*- import datetime import sqlalchemy from sqlalchemy import orm class DBContext: def __init__(self, session): """ Decorator class that manages persistence operations for ORM-mapped objects. Parameters ---------- session : sqlalchemy.orm.session.Session Session instance. See Also -------- sqlalchemy.orm.session.Session """ # Composition must be used instead of inheritance because # SQLAlchemy Sessions are always accessed through a factory. self._session = session def add(self, entity, by=None): """ Decorator method. Extends the SQLAlchemy Session's `add()` to require specifying the created or updated `by` information given the respective condition. The appropriate `created_at` or `updated_at` field is set to the current UTC date and time. Parameters ---------- entity : models.Base subclass Domain model instance. by : int Unique identifier for the user who created or updated the entity. """ entity_state = sqlalchemy.inspect(entity) self._validate_metadata(entity=entity, entity_state=entity_state, by=by) if not entity_state.persistent or entity in self._session.dirty: self._session.add(entity) @staticmethod def _validate_metadata(entity, entity_state, by): message = 'add() missing 1 required positional argument: "by"' if entity_state.transient: if by is None: raise TypeError(message) else: entity.created_at = datetime.datetime.utcnow() entity.created_by = by elif entity_state.persistent: if by is None: raise TypeError(message) else: entity.updated_at = datetime.datetime.utcnow() entity.updated_by = by def __getattr__(self, name): return getattr(self._session, name) class DBContextFactory: def __init__(self, connection_string): """ Factory class for producing DBContexts. Parameters ---------- connection_string : str Formatted string containing host and authentication information. """ engine = sqlalchemy.create_engine(connection_string) SessionFactory = orm.sessionmaker() SessionFactory.configure(bind=engine) self._SessionFactory = orm.scoped_session(SessionFactory) def create(self): """ Produce an object configured as specified. See the Stack Overflow answer for more details [1]. Returns ------- database.DBContext References ---------- .. [1] zzzeek, "SQLAlchemy: Creating vs. Reusing a Session", http://stackoverflow.com/a/12223711. """ # Should this dispose the engine, close the connection, and / or # close the session? session = self._SessionFactory() return DBContext(session=session)
26.639344
72
0.585231
7947ea9ba83ddb09570586326518f67e03a4a24e
868
py
Python
mms/tests/unit_tests/test_utils/dummy_class_model_service.py
dhanainme/multi-model-server
cd5a693032b1bec4c46b0f7a9844df496a62c1a8
[ "Apache-2.0" ]
527
2017-12-04T20:58:19.000Z
2019-11-14T03:15:39.000Z
mms/tests/unit_tests/test_utils/dummy_class_model_service.py
DrSnowbird/mxnet-model-server
a0bfd712350545dceb21c8e0b0b21dfa0c9918a7
[ "Apache-2.0" ]
303
2017-12-05T06:14:08.000Z
2019-11-16T01:35:15.000Z
mms/tests/unit_tests/test_utils/dummy_class_model_service.py
DrSnowbird/mxnet-model-server
a0bfd712350545dceb21c8e0b0b21dfa0c9918a7
[ "Apache-2.0" ]
144
2017-12-05T19:27:39.000Z
2019-11-15T22:15:50.000Z
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # http://www.apache.org/licenses/LICENSE-2.0 # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. """ Dummy custom service which is class based """ # noinspection PyUnusedLocal class CustomService(object): def initialize(self, context): pass # noinspection PyMethodMayBeStatic def handle(self, data, context): from mms.context import Context return ["OK"]
33.384615
75
0.732719
7947eb1402324f98d876f6bdeed5867603d64cfd
2,005
py
Python
datary/operations/clean.py
Datary/python-sdk
2790a50e1ad262cbe3210665dc34f497625e923d
[ "MIT" ]
null
null
null
datary/operations/clean.py
Datary/python-sdk
2790a50e1ad262cbe3210665dc34f497625e923d
[ "MIT" ]
null
null
null
datary/operations/clean.py
Datary/python-sdk
2790a50e1ad262cbe3210665dc34f497625e923d
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Datary sdk clean Operations File """ from datary.repos import DataryRepos from datary.workdirs import DataryWorkdirs from datary.operations.remove import DataryRemoveOperation from datary.operations.limits import DataryOperationLimits from scrapbag import flatten import structlog logger = structlog.getLogger(__name__) class DataryCleanOperation(DataryRemoveOperation, DataryWorkdirs, DataryOperationLimits): """ Datary clean operation class """ def clean_repo(self, repo_uuid, **kwargs): """ Clean repo data from datary & algolia. ================ ============= ==================================== Parameter Type Description ================ ============= ==================================== repo_uuid str repository uuid ================ ============= ==================================== """ repo = DataryRepos.get_describerepo(repo_uuid=repo_uuid, **kwargs) if repo: wdir_uuid = repo.get('workdir', {}).get('uuid') # clear changes self.clear_index(wdir_uuid) # get workdir workdir = self.get_wdir_filetree(wdir_uuid) # flatten workdir to list flatten_filetree = flatten(workdir, sep='/') filetree_keys = [ x for x in flatten_filetree.keys() if '__self' not in x] # Delete files for path in filetree_keys: element_data = { 'path': "/".join(path.split('/')[:-1]), 'basename': path.split('/')[-1] } self.delete_file(wdir_uuid, element_data) logger.info( 'cleaning remove of {}'.format(path), element_data=element_data) else: logger.error('Fail to clean_repo, repo not found in datary.')
31.328125
78
0.505237
7947ebe6d82af84e96e565ed75358755411f84bb
237
py
Python
pattern_classes/Engineer.py
Sunuba/PythonStrategyPattern
b0490cf63ecc87562d5fc3ef1f2a152fb97b0a78
[ "MIT" ]
null
null
null
pattern_classes/Engineer.py
Sunuba/PythonStrategyPattern
b0490cf63ecc87562d5fc3ef1f2a152fb97b0a78
[ "MIT" ]
null
null
null
pattern_classes/Engineer.py
Sunuba/PythonStrategyPattern
b0490cf63ecc87562d5fc3ef1f2a152fb97b0a78
[ "MIT" ]
null
null
null
class Engineer: def __init__(self, height, width, method): self.method = method self.height = height self.width = width def calculate(self): return self.method().calculate(self.width, self.height)
29.625
63
0.637131
7947ed6af9e6a790dfcadb11eb9ecd5474560cf0
4,812
py
Python
setup.py
sjfleming/pyro
c8dc40a75cc4ff1f43c6ff9178d91c08155d7973
[ "Apache-2.0" ]
null
null
null
setup.py
sjfleming/pyro
c8dc40a75cc4ff1f43c6ff9178d91c08155d7973
[ "Apache-2.0" ]
null
null
null
setup.py
sjfleming/pyro
c8dc40a75cc4ff1f43c6ff9178d91c08155d7973
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2017-2019 Uber Technologies, Inc. # SPDX-License-Identifier: Apache-2.0 import os import subprocess import sys from setuptools import find_packages, setup PROJECT_PATH = os.path.dirname(os.path.abspath(__file__)) VERSION = """ # This file is auto-generated with the version information during setup.py installation. __version__ = '{}' """ # Find pyro version. for line in open(os.path.join(PROJECT_PATH, "pyro", "__init__.py")): if line.startswith("version_prefix = "): version = line.strip().split()[2][1:-1] # Append current commit sha to version commit_sha = "" try: current_tag = ( subprocess.check_output(["git", "tag", "--points-at", "HEAD"], cwd=PROJECT_PATH) .decode("ascii") .strip() ) # only add sha if HEAD does not point to the release tag if not current_tag == version: commit_sha = ( subprocess.check_output( ["git", "rev-parse", "--short", "HEAD"], cwd=PROJECT_PATH ) .decode("ascii") .strip() ) # catch all exception to be safe except Exception: pass # probably not a git repo # Write version to _version.py if commit_sha: version += "+{}".format(commit_sha) with open(os.path.join(PROJECT_PATH, "pyro", "_version.py"), "w") as f: f.write(VERSION.format(version)) # READ README.md for long description on PyPi. # This requires uploading via twine, e.g.: # $ python setup.py sdist bdist_wheel # $ twine upload --repository-url https://test.pypi.org/legacy/ dist/* # test version # $ twine upload dist/* try: long_description = open("README.md", encoding="utf-8").read() except Exception as e: sys.stderr.write("Failed to read README.md: {}\n".format(e)) sys.stderr.flush() long_description = "" # Remove badges since they will always be obsolete. # This assumes the first 12 lines contain badge info. long_description = "\n".join([str(line) for line in long_description.split("\n")[12:]]) # examples/tutorials EXTRAS_REQUIRE = [ "jupyter>=1.0.0", "graphviz>=0.8", "matplotlib>=1.3", "torchvision>=0.10.0", "visdom>=0.1.4", "pandas", "pillow==8.2.0", # https://github.com/pytorch/pytorch/issues/61125 "scikit-learn", "seaborn", "wget", "lap", # 'biopython>=1.54', # Requires Python 3.6 # 'scanpy>=1.4', # Requires HDF5 # 'scvi>=0.6', # Requires loopy and other fragile packages ] setup( name="pyro-ppl", version=version, description="A Python library for probabilistic modeling and inference", long_description=long_description, long_description_content_type="text/markdown", packages=find_packages(include=["pyro", "pyro.*"]), package_data={"pyro.distributions": ["*.cpp"]}, author="Uber AI Labs", url="http://pyro.ai", install_requires=[ # if you add any additional libraries, please also # add them to `docs/requirements.txt` # numpy is necessary for some functionality of PyTorch "numpy>=1.7", "opt_einsum>=2.3.2", "pyro-api>=0.1.1", "torch>=1.9.0", "tqdm>=4.36", ], extras_require={ "extras": EXTRAS_REQUIRE, "test": EXTRAS_REQUIRE + [ "black>=21.4b0", "flake8", "nbval", "pytest>=5.0", "pytest-cov", "scipy>=1.1", ], "profile": ["prettytable", "pytest-benchmark", "snakeviz"], "dev": EXTRAS_REQUIRE + [ "black>=21.4b0", "flake8", "isort>=5.0", "mypy>=0.812", "nbformat", "nbsphinx>=0.3.2", "nbstripout", "nbval", "ninja", "pypandoc", "pytest>=5.0", "pytest-xdist", "scipy>=1.1", "sphinx", "sphinx_rtd_theme", "yapf", ], "horovod": ["horovod[pytorch]>=0.19"], "funsor": [ # This must be a released version when Pyro is released. # "funsor[torch] @ git+git://github.com/pyro-ppl/funsor.git@383e7a6d05c9d5de9646d23698891e10c4cba927", "funsor[torch]==0.4.1", ], }, python_requires=">=3.6", keywords="machine learning statistics probabilistic programming bayesian modeling pytorch", license="Apache 2.0", classifiers=[ "Intended Audience :: Developers", "Intended Audience :: Education", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Operating System :: POSIX :: Linux", "Operating System :: MacOS :: MacOS X", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", ], # yapf )
30.649682
114
0.584996
7947eebcc1a5a7b8a1b7eb267e5490b41b8cfb57
446
py
Python
venv/Scripts/pasteurize-script.py
TRGG3R/Visual_FCT_Explorer
3fc2cf00109afa5f407de6c0d6e3de6cb7285a78
[ "MIT" ]
null
null
null
venv/Scripts/pasteurize-script.py
TRGG3R/Visual_FCT_Explorer
3fc2cf00109afa5f407de6c0d6e3de6cb7285a78
[ "MIT" ]
null
null
null
venv/Scripts/pasteurize-script.py
TRGG3R/Visual_FCT_Explorer
3fc2cf00109afa5f407de6c0d6e3de6cb7285a78
[ "MIT" ]
null
null
null
#!C:\Users\thepo\PycharmProjects\Visual_FCT_Explorer\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'future==0.18.2','console_scripts','pasteurize' __requires__ = 'future==0.18.2' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('future==0.18.2', 'console_scripts', 'pasteurize')() )
34.307692
77
0.695067
7947ef79e3867a3dd00242e8dc2abce727d565e5
353
py
Python
Aulas/Mundo 3/104.py
JoaoEmanuell/Meus-Estudos-Python
f6f6eeb6016919e594613785ffe7136d74241ada
[ "MIT" ]
2
2021-07-29T18:58:02.000Z
2021-10-29T21:11:22.000Z
Aulas/Mundo 3/104.py
JoaoEmanuell/Meus-Estudos-Python
f6f6eeb6016919e594613785ffe7136d74241ada
[ "MIT" ]
null
null
null
Aulas/Mundo 3/104.py
JoaoEmanuell/Meus-Estudos-Python
f6f6eeb6016919e594613785ffe7136d74241ada
[ "MIT" ]
null
null
null
def leia(msg): ok = False valor = 0 while True: n = str(input(msg)) if n.isnumeric(): valor = int(n) ok = True else: print('Porfavor digite um numero valido') if ok: break return n n = leia('Digite um numero ') print(f'Você digitou {n}')
19.611111
54
0.456091
7947ef9fd9180a2f6b9d4777a2890c14fba66dc7
1,089
py
Python
examples/extra_examples/drum_hits.py
aejb/blinkt
e93217143ac645ed2a1365a312908283c54ac2e0
[ "MIT" ]
1
2021-06-05T03:12:37.000Z
2021-06-05T03:12:37.000Z
examples/extra_examples/drum_hits.py
aejb/blinkt
e93217143ac645ed2a1365a312908283c54ac2e0
[ "MIT" ]
null
null
null
examples/extra_examples/drum_hits.py
aejb/blinkt
e93217143ac645ed2a1365a312908283c54ac2e0
[ "MIT" ]
null
null
null
#!/usr/bin/env python import glob import os import time from sys import exit try: import drumhat except ImportError: exit("This script requires the drumhat module\nInstall with: sudo pip install drumhat") try: import pygame except ImportError: exit("This script requires the pygame module\nInstall with: sudo pip install pygame") import blinkt DRUM_FOLDER = "drums2" BANK = os.path.join(os.path.dirname(__file__), DRUM_FOLDER) pygame.mixer.init(44100, -16, 1, 512) pygame.mixer.set_num_channels(16) files = glob.glob(os.path.join(BANK, "*.wav")) files.sort() samples = [pygame.mixer.Sound(f) for f in files] def show_all(state): for i in range(8): val = state * 255 blinkt.set_pixel(i, val, val, val) blinkt.show() def handle_hit(event): samples[event.channel].play(loops=0) show_all(1) print("You hit pad {}, playing: {}".format(event.pad, files[event.channel])) def handle_release(): show_all(0) drumhat.on_hit(drumhat.PADS, handle_hit) drumhat.on_release(drumhat.PADS, handle_release) while True: time.sleep(1)
20.942308
91
0.708907
7947f117a59843822c68958a98ab745bc2d61baf
813
py
Python
models.py
eyvonne/TwittOff
cfb1226a351aa89ab9ae183e38042caa0eef2db9
[ "MIT" ]
null
null
null
models.py
eyvonne/TwittOff
cfb1226a351aa89ab9ae183e38042caa0eef2db9
[ "MIT" ]
null
null
null
models.py
eyvonne/TwittOff
cfb1226a351aa89ab9ae183e38042caa0eef2db9
[ "MIT" ]
null
null
null
''' SQLAlchecmy models for twittoff''' from flask_sqlalchemy import SQLAlchemy DB = SQLAlchemy() class User(DB.Model): """Twitter users that we pull and analyze""" id = DB.Column(DB.BigInteger, primary_key=True) name = DB.Column(DB.String(15), nullable=False) #newest_tweet_id = DB.Column(DB.BigInteger) def __repr__(self): return '<User {}>'.format(self.name) class Tweet(DB.Model): """Tweets""" id = DB.Column(DB.BigInteger, primary_key=True) text = DB.Column(DB.Unicode(300)) #embedding = DB.Column(DB.PickleType, nullable=False) user_id = DB.Column(DB.BigInteger, DB.ForeignKey('user.id'), nullable=False) user = DB.relationship('User', backref=DB.backref('tweets', lazy=True)) def __repr__(self): return '<Tweet {}>'.format(self.text)
28.034483
80
0.671587
7947f1748767b84cff2e04ce6a706eaf08d2eeaf
10,852
py
Python
mayan/apps/documents/settings.py
nattangwiwat/Mayan-EDMS-recitation
fcf16afb56eae812fb99144d65ae1ae6749de0b7
[ "Apache-2.0" ]
4
2021-09-02T00:16:30.000Z
2021-09-09T22:25:15.000Z
mayan/apps/documents/settings.py
nattangwiwat/Mayan-EDMS-recitation
fcf16afb56eae812fb99144d65ae1ae6749de0b7
[ "Apache-2.0" ]
86
2021-09-01T23:53:02.000Z
2021-09-20T02:25:10.000Z
mayan/apps/documents/settings.py
nattangwiwat/Mayan-EDMS-recitation
fcf16afb56eae812fb99144d65ae1ae6749de0b7
[ "Apache-2.0" ]
70
2021-09-01T12:54:51.000Z
2022-02-16T00:53:18.000Z
from django.utils.translation import ugettext_lazy as _ from mayan.apps.smart_settings.classes import SettingNamespace from .literals import ( DEFAULT_DOCUMENTS_DISPLAY_HEIGHT, DEFAULT_DOCUMENTS_DISPLAY_WIDTH, DEFAULT_DOCUMENTS_FAVORITE_COUNT, DEFAULT_DOCUMENTS_FILE_PAGE_IMAGE_CACHE_STORAGE_BACKEND, DEFAULT_DOCUMENTS_FILE_PAGE_IMAGE_CACHE_STORAGE_BACKEND_ARGUMENTS, DEFAULT_DOCUMENTS_FILE_PAGE_IMAGE_CACHE_TIME, DEFAULT_DOCUMENTS_FILE_PAGE_IMAGE_CACHE_MAXIMUM_SIZE, DEFAULT_DOCUMENTS_FILE_STORAGE_BACKEND, DEFAULT_DOCUMENTS_FILE_STORAGE_BACKEND_ARGUMENTS, DEFAULT_DOCUMENTS_HASH_BLOCK_SIZE, DEFAULT_DOCUMENTS_LIST_THUMBNAIL_WIDTH, DEFAULT_DOCUMENTS_PREVIEW_HEIGHT, DEFAULT_DOCUMENTS_PREVIEW_WIDTH, DEFAULT_DOCUMENTS_PRINT_HEIGHT, DEFAULT_DOCUMENTS_PRINT_WIDTH, DEFAULT_DOCUMENTS_RECENTLY_ACCESSED_COUNT, DEFAULT_DOCUMENTS_RECENTLY_CREATED_COUNT, DEFAULT_DOCUMENTS_ROTATION_STEP, DEFAULT_DOCUMENTS_THUMBNAIL_HEIGHT, DEFAULT_DOCUMENTS_THUMBNAIL_WIDTH, DEFAULT_DOCUMENTS_VERSION_PAGE_IMAGE_CACHE_MAXIMUM_SIZE, DEFAULT_DOCUMENTS_VERSION_PAGE_IMAGE_CACHE_TIME, DEFAULT_DOCUMENTS_VERSION_PAGE_IMAGE_CACHE_STORAGE_BACKEND, DEFAULT_DOCUMENTS_VERSION_PAGE_IMAGE_CACHE_STORAGE_BACKEND_ARGUMENTS, DEFAULT_DOCUMENTS_ZOOM_MAX_LEVEL, DEFAULT_DOCUMENTS_ZOOM_MIN_LEVEL, DEFAULT_DOCUMENTS_ZOOM_PERCENT_STEP, DEFAULT_LANGUAGE, DEFAULT_LANGUAGE_CODES, DEFAULT_STUB_EXPIRATION_INTERVAL, DEFAULT_TASK_GENERATE_DOCUMENT_FILE_PAGE_IMAGE_RETRY_DELAY, DEFAULT_TASK_GENERATE_DOCUMENT_VERSION_PAGE_IMAGE_RETRY_DELAY ) from .setting_callbacks import ( callback_update_document_file_page_image_cache_size, callback_update_document_version_page_image_cache_size ) from .setting_migrations import DocumentsSettingMigration namespace = SettingNamespace( label=_('Documents'), migration_class=DocumentsSettingMigration, name='documents', version='0004' ) setting_display_height = namespace.add_setting( default=DEFAULT_DOCUMENTS_DISPLAY_HEIGHT, global_name='DOCUMENTS_DISPLAY_HEIGHT' ) setting_display_width = namespace.add_setting( default=DEFAULT_DOCUMENTS_DISPLAY_WIDTH, global_name='DOCUMENTS_DISPLAY_WIDTH' ) setting_document_file_page_image_cache_maximum_size = namespace.add_setting( default=DEFAULT_DOCUMENTS_FILE_PAGE_IMAGE_CACHE_MAXIMUM_SIZE, global_name='DOCUMENTS_FILE_PAGE_IMAGE_CACHE_MAXIMUM_SIZE', help_text=_( 'The threshold at which the DOCUMENTS_FILE_PAGE_IMAGE_CACHE_STORAGE_BACKEND will start ' 'deleting the oldest document file page image cache files. Specify ' 'the size in bytes.' ), post_edit_function=callback_update_document_file_page_image_cache_size ) setting_document_file_page_image_cache_time = namespace.add_setting( default=DEFAULT_DOCUMENTS_FILE_PAGE_IMAGE_CACHE_TIME, global_name='DOCUMENTS_FILE_PAGE_IMAGE_CACHE_TIME', help_text=_( 'Time in seconds that the browser should cache the supplied document ' 'file page images. The default of 31559626 seconds correspond to ' '1 year.' ) ) setting_document_file_storage_backend = namespace.add_setting( default=DEFAULT_DOCUMENTS_FILE_STORAGE_BACKEND, global_name='DOCUMENTS_FILE_STORAGE_BACKEND', help_text=_( 'Path to the Storage subclass to use when storing document ' 'files.' ) ) setting_document_file_storage_backend_arguments = namespace.add_setting( default=DEFAULT_DOCUMENTS_FILE_STORAGE_BACKEND_ARGUMENTS, global_name='DOCUMENTS_FILE_STORAGE_BACKEND_ARGUMENTS', help_text=_( 'Arguments to pass to the DOCUMENT_FILE_STORAGE_BACKEND.' ) ) setting_document_file_page_image_cache_storage_backend = namespace.add_setting( default=DEFAULT_DOCUMENTS_FILE_PAGE_IMAGE_CACHE_STORAGE_BACKEND, global_name='DOCUMENTS_FILE_PAGE_IMAGE_CACHE_STORAGE_BACKEND', help_text=_( 'Path to the Storage subclass to use when storing the cached ' 'document file page image files.' ) ) setting_document_file_page_image_cache_storage_backend_arguments = namespace.add_setting( default=DEFAULT_DOCUMENTS_FILE_PAGE_IMAGE_CACHE_STORAGE_BACKEND_ARGUMENTS, global_name='DOCUMENTS_FILE_PAGE_IMAGE_CACHE_STORAGE_BACKEND_ARGUMENTS', help_text=_( 'Arguments to pass to the DOCUMENTS_FILE_PAGE_IMAGE_CACHE_STORAGE_BACKEND.' ), ) setting_favorite_count = namespace.add_setting( default=DEFAULT_DOCUMENTS_FAVORITE_COUNT, global_name='DOCUMENTS_FAVORITE_COUNT', help_text=_( 'Maximum number of favorite documents to remember per user.' ) ) setting_hash_block_size = namespace.add_setting( default=DEFAULT_DOCUMENTS_HASH_BLOCK_SIZE, global_name='DOCUMENTS_HASH_BLOCK_SIZE', help_text=_( 'Size of blocks to use when calculating the document file\'s ' 'checksum. A value of 0 disables the block calculation and the entire ' 'file will be loaded into memory.' ) ) setting_language = namespace.add_setting( default=DEFAULT_LANGUAGE, global_name='DOCUMENTS_LANGUAGE', help_text=_('Default documents language (in ISO639-3 format).') ) setting_language_codes = namespace.add_setting( default=DEFAULT_LANGUAGE_CODES, global_name='DOCUMENTS_LANGUAGE_CODES', help_text=_('List of supported document languages. In ISO639-3 format.') ) setting_document_version_page_image_cache_maximum_size = namespace.add_setting( default=DEFAULT_DOCUMENTS_VERSION_PAGE_IMAGE_CACHE_MAXIMUM_SIZE, global_name='DOCUMENTS_VERSION_PAGE_IMAGE_CACHE_MAXIMUM_SIZE', help_text=_( 'The threshold at which the DOCUMENT_VERSION_PAGE_IMAGE_CACHE_STORAGE_BACKEND will start ' 'deleting the oldest document version page image cache versions. Specify ' 'the size in bytes.' ), post_edit_function=callback_update_document_version_page_image_cache_size ) setting_document_version_page_image_cache_time = namespace.add_setting( default=DEFAULT_DOCUMENTS_VERSION_PAGE_IMAGE_CACHE_TIME, global_name='DOCUMENTS_VERSION_PAGE_IMAGE_CACHE_TIME', help_text=_( 'Time in seconds that the browser should cache the supplied document ' 'version page images. The default of 31559626 seconds correspond ' 'to 1 year.' ) ) setting_document_version_page_image_cache_storage_backend = namespace.add_setting( default=DEFAULT_DOCUMENTS_VERSION_PAGE_IMAGE_CACHE_STORAGE_BACKEND, global_name='DOCUMENTS_VERSION_PAGE_IMAGE_CACHE_STORAGE_BACKEND', help_text=_( 'Path to the Storage subclass to use when storing the cached ' 'document version page image versions.' ) ) setting_document_version_page_image_cache_storage_backend_arguments = namespace.add_setting( default=DEFAULT_DOCUMENTS_VERSION_PAGE_IMAGE_CACHE_STORAGE_BACKEND_ARGUMENTS, global_name='DOCUMENTS_VERSION_PAGE_IMAGE_CACHE_STORAGE_BACKEND_ARGUMENTS', help_text=_( 'Arguments to pass to the DOCUMENTS_VERSION_PAGE_IMAGE_CACHE_STORAGE_BACKEND.' ), ) setting_preview_height = namespace.add_setting( default=DEFAULT_DOCUMENTS_PREVIEW_HEIGHT, global_name='DOCUMENTS_PREVIEW_HEIGHT' ) setting_preview_width = namespace.add_setting( default=DEFAULT_DOCUMENTS_PREVIEW_WIDTH, global_name='DOCUMENTS_PREVIEW_WIDTH' ) setting_print_height = namespace.add_setting( default=DEFAULT_DOCUMENTS_PRINT_HEIGHT, global_name='DOCUMENTS_PRINT_HEIGHT' ) setting_print_width = namespace.add_setting( default=DEFAULT_DOCUMENTS_PRINT_WIDTH, global_name='DOCUMENTS_PRINT_WIDTH' ) setting_recently_accessed_document_count = namespace.add_setting( default=DEFAULT_DOCUMENTS_RECENTLY_ACCESSED_COUNT, global_name='DOCUMENTS_RECENTLY_ACCESSED_COUNT', help_text=_( 'Maximum number of recently accessed documents (created, edited, ' 'viewed) to remember per user.' ) ) setting_recently_created_document_count = namespace.add_setting( default=DEFAULT_DOCUMENTS_RECENTLY_CREATED_COUNT, global_name='DOCUMENTS_RECENTLY_CREATED_COUNT', help_text=_( 'Maximum number of recently created documents to show.' ) ) setting_rotation_step = namespace.add_setting( default=DEFAULT_DOCUMENTS_ROTATION_STEP, global_name='DOCUMENTS_ROTATION_STEP', help_text=_( 'Amount in degrees to rotate a document page per user interaction.' ) ) setting_stub_expiration_interval = namespace.add_setting( default=DEFAULT_STUB_EXPIRATION_INTERVAL, global_name='DOCUMENTS_STUB_EXPIRATION_INTERVAL', help_text=_( 'Time after which a document stub will be considered invalid and ' 'deleted.' ) ) setting_task_document_file_page_image_generate_retry_delay = namespace.add_setting( default=DEFAULT_TASK_GENERATE_DOCUMENT_FILE_PAGE_IMAGE_RETRY_DELAY, global_name='DOCUMENT_TASK_GENERATE_DOCUMENT_FILE_PAGE_IMAGE_RETRY_DELAY', help_text=_( 'Amount of time in seconds, a failed document file page image task ' 'will wait before retrying.' ) ) setting_task_document_version_page_image_generate_retry_delay = namespace.add_setting( default=DEFAULT_TASK_GENERATE_DOCUMENT_VERSION_PAGE_IMAGE_RETRY_DELAY, global_name='DOCUMENT_TASK_GENERATE_DOCUMENT_VERSION_PAGE_IMAGE_RETRY_DELAY', help_text=_( 'Amount of time in seconds, a failed document version page image ' 'task will wait before retrying.' ) ) setting_thumbnail_height = namespace.add_setting( default=DEFAULT_DOCUMENTS_THUMBNAIL_HEIGHT, global_name='DOCUMENTS_THUMBNAIL_HEIGHT', help_text=_( 'Height in pixels of the document thumbnail image.' ) ) setting_thumbnail_width = namespace.add_setting( default=DEFAULT_DOCUMENTS_THUMBNAIL_WIDTH, global_name='DOCUMENTS_THUMBNAIL_WIDTH', help_text=( 'Width in pixels of the document thumbnail image.' ) ) setting_thumbnail_list_width = namespace.add_setting( default=DEFAULT_DOCUMENTS_LIST_THUMBNAIL_WIDTH, global_name='DOCUMENTS_LIST_THUMBNAIL_WIDTH', help_text=( 'Width in pixels of the document thumbnail image when shown in list ' 'view mode.' ) ) setting_zoom_max_level = namespace.add_setting( default=DEFAULT_DOCUMENTS_ZOOM_MAX_LEVEL, global_name='DOCUMENTS_ZOOM_MAX_LEVEL', help_text=_( 'Maximum amount in percent (%) to allow user to zoom in a document ' 'page interactively.' ) ) setting_zoom_min_level = namespace.add_setting( default=DEFAULT_DOCUMENTS_ZOOM_MIN_LEVEL, global_name='DOCUMENTS_ZOOM_MIN_LEVEL', help_text=_( 'Minimum amount in percent (%) to allow user to zoom out a document ' 'page interactively.' ) ) setting_zoom_percent_step = namespace.add_setting( default=DEFAULT_DOCUMENTS_ZOOM_PERCENT_STEP, global_name='DOCUMENTS_ZOOM_PERCENT_STEP', help_text=_( 'Amount in percent zoom in or out a document page per user ' 'interaction.' ) )
44.113821
98
0.803078
7947f27800b8632d645a717db73609d4f9adbc4e
762
py
Python
users/forms.py
zamuzakki/gis-portfolio
b628c3854db992dbd8435a655bfb32c7f5a075a7
[ "MIT" ]
null
null
null
users/forms.py
zamuzakki/gis-portfolio
b628c3854db992dbd8435a655bfb32c7f5a075a7
[ "MIT" ]
9
2020-06-06T01:35:08.000Z
2022-03-12T00:19:55.000Z
users/forms.py
zamuzakki/gis-portfolio
b628c3854db992dbd8435a655bfb32c7f5a075a7
[ "MIT" ]
null
null
null
from django.contrib.auth.forms import UserCreationForm, UserChangeForm from .models import CustomUser class CustomUserCreationForm(UserCreationForm): """ Form that will be used to create the user in CustomUserAdmin """ class Meta(UserCreationForm.Meta): model = CustomUser fields = ('email', 'username',) class CustomUserChangeForm(UserChangeForm): """ Form that will be used to change the user in CustomUserAdmin """ class Meta: model = CustomUser fields = ('email', 'username',) class RegistrationForm(UserCreationForm): """ Form that will be used in signup process """ class Meta: model = CustomUser fields = ('email', 'username', 'first_name', 'last_name')
26.275862
70
0.666667
7947f2847d3466790ef15ec7e94bef5e06a88ff1
2,811
py
Python
pretrainings/pretrainings_tmc.py
expertailab/ISAAQ
133e25adbf5c219aceef6e7f38135de248371cb1
[ "MIT" ]
7
2020-10-06T03:51:13.000Z
2021-11-30T04:05:10.000Z
pretrainings/pretrainings_tmc.py
expertailab/ISAAQ
133e25adbf5c219aceef6e7f38135de248371cb1
[ "MIT" ]
2
2020-10-12T02:10:47.000Z
2021-01-05T06:15:54.000Z
pretrainings/pretrainings_tmc.py
expertailab/ISAAQ
133e25adbf5c219aceef6e7f38135de248371cb1
[ "MIT" ]
4
2020-10-08T05:04:27.000Z
2021-01-07T01:31:22.000Z
from transformers import AdamW, RobertaForMultipleChoice, RobertaTokenizer from transformers import get_linear_schedule_with_warmup import numpy as np import random import torch import sys import argparse from aux_methods import get_data_pretrainings, process_data_ndq, training_ndq def main(argv): parser = argparse.ArgumentParser(description='') parser.add_argument('-d', '--device', default='gpu', choices=['gpu', 'cpu'], help='device to train the model with. Options: cpu or gpu. Default: gpu') parser.add_argument('-p', '--pretrainings', default='../checkpoints/RACE_e1.pth', help='path to the pretrainings model. Default: ../checkpoints/RACE_e1.pth') parser.add_argument('-b', '--batchsize', default= 1, type=int, help='size of the batches. Default: 1') parser.add_argument('-x', '--maxlen', default= 256, type=int, help='max sequence length. Default: 256') parser.add_argument('-l', '--lr', default= 1e-5, type=float, help='learning rate. Default: 1e-5') parser.add_argument('-e', '--epochs', default= 4, type=int, help='number of epochs. Default: 4') parser.add_argument('-s', '--save', default=False, help='save model at the end of the training', action='store_true') args = parser.parse_args() print(args) if args.pretrainings == "": model = RobertaForMultipleChoice.from_pretrained("roberta-large") else: model = torch.load(args.pretrainings) tokenizer = RobertaTokenizer.from_pretrained('roberta-large') if args.device=="gpu": device = torch.device("cuda") model.cuda() if args.device=="cpu": device = torch.device("cpu") model.cpu() model.zero_grad() batch_size = args.batchsize max_len = args.maxlen dataset_name = "pretrainings" lr = args.lr epochs = args.epochs save_model = args.save raw_data_train = get_data_pretrainings(dataset_name, "train", tokenizer, max_len) raw_data_val = get_data_pretrainings(dataset_name, "val", tokenizer, max_len) train_dataloader = process_data_ndq(raw_data_train, batch_size, "train") val_dataloader = process_data_ndq(raw_data_val, batch_size, "val") optimizer = AdamW(model.parameters(), lr = lr, eps = 1e-8) total_steps = len(train_dataloader) * epochs scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps = 0, num_training_steps = total_steps) training_ndq(model, train_dataloader, val_dataloader, optimizer, scheduler, epochs, device, save_model, dataset_name) if __name__ == "__main__": # Set the seed value all over the place to make this reproducible. seed_val = 42 random.seed(seed_val) np.random.seed(seed_val) torch.manual_seed(seed_val) torch.cuda.manual_seed_all(seed_val) main(sys.argv[1:])
43.921875
161
0.704731
7947f2d84e8441a05199b8816964ce493113c9ac
6,918
py
Python
bindings/python/ensmallen_graph/datasets/string/lachnospiraceaebacteriumfe2018.py
caufieldjh/ensmallen_graph
14e98b1cdbc73193a84a913d7d4f2b2b3eb2c43a
[ "MIT" ]
null
null
null
bindings/python/ensmallen_graph/datasets/string/lachnospiraceaebacteriumfe2018.py
caufieldjh/ensmallen_graph
14e98b1cdbc73193a84a913d7d4f2b2b3eb2c43a
[ "MIT" ]
null
null
null
bindings/python/ensmallen_graph/datasets/string/lachnospiraceaebacteriumfe2018.py
caufieldjh/ensmallen_graph
14e98b1cdbc73193a84a913d7d4f2b2b3eb2c43a
[ "MIT" ]
null
null
null
""" This file offers the methods to automatically retrieve the graph Lachnospiraceae bacterium FE2018. The graph is automatically retrieved from the STRING repository. Report --------------------- At the time of rendering these methods (please see datetime below), the graph had the following characteristics: Datetime: 2021-02-03 22:42:43.955245 The undirected graph Lachnospiraceae bacterium FE2018 has 2687 nodes and 185520 weighted edges, of which none are self-loops. The graph is dense as it has a density of 0.05141 and has 9 connected components, where the component with most nodes has 2670 nodes and the component with the least nodes has 2 nodes. The graph median node degree is 101, the mean node degree is 138.09, and the node degree mode is 1. The top 5 most central nodes are 1410624.JNKK01000005_gene258 (degree 1099), 1410624.JNKK01000011_gene2220 (degree 993), 1410624.JNKK01000012_gene2308 (degree 919), 1410624.JNKK01000034_gene2571 (degree 870) and 1410624.JNKK01000068_gene1149 (degree 824). References --------------------- Please cite the following if you use the data: @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } Usage example ---------------------- The usage of this graph is relatively straightforward: .. code:: python # First import the function to retrieve the graph from the datasets from ensmallen_graph.datasets.string import LachnospiraceaeBacteriumFe2018 # Then load the graph graph = LachnospiraceaeBacteriumFe2018() # Finally, you can do anything with it, for instance, compute its report: print(graph) # If you need to run a link prediction task with validation, # you can split the graph using a connected holdout as follows: train_graph, validation_graph = graph.connected_holdout( # You can use an 80/20 split the holdout, for example. train_size=0.8, # The random state is used to reproduce the holdout. random_state=42, # Wether to show a loading bar. verbose=True ) # Remember that, if you need, you can enable the memory-time trade-offs: train_graph.enable( vector_sources=True, vector_destinations=True, vector_outbounds=True ) # Consider using the methods made available in the Embiggen package # to run graph embedding or link prediction tasks. """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen_graph import EnsmallenGraph # pylint: disable=import-error def LachnospiraceaeBacteriumFe2018( directed: bool = False, verbose: int = 2, cache_path: str = "graphs/string", **additional_graph_kwargs: Dict ) -> EnsmallenGraph: """Return new instance of the Lachnospiraceae bacterium FE2018 graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False, Wether to load the graph as directed or undirected. By default false. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache_path: str = "graphs", Where to store the downloaded graphs. additional_graph_kwargs: Dict, Additional graph kwargs. Returns ----------------------- Instace of Lachnospiraceae bacterium FE2018 graph. Report --------------------- At the time of rendering these methods (please see datetime below), the graph had the following characteristics: Datetime: 2021-02-03 22:42:43.955245 The undirected graph Lachnospiraceae bacterium FE2018 has 2687 nodes and 185520 weighted edges, of which none are self-loops. The graph is dense as it has a density of 0.05141 and has 9 connected components, where the component with most nodes has 2670 nodes and the component with the least nodes has 2 nodes. The graph median node degree is 101, the mean node degree is 138.09, and the node degree mode is 1. The top 5 most central nodes are 1410624.JNKK01000005_gene258 (degree 1099), 1410624.JNKK01000011_gene2220 (degree 993), 1410624.JNKK01000012_gene2308 (degree 919), 1410624.JNKK01000034_gene2571 (degree 870) and 1410624.JNKK01000068_gene1149 (degree 824). References --------------------- Please cite the following if you use the data: @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } Usage example ---------------------- The usage of this graph is relatively straightforward: .. code:: python # First import the function to retrieve the graph from the datasets from ensmallen_graph.datasets.string import LachnospiraceaeBacteriumFe2018 # Then load the graph graph = LachnospiraceaeBacteriumFe2018() # Finally, you can do anything with it, for instance, compute its report: print(graph) # If you need to run a link prediction task with validation, # you can split the graph using a connected holdout as follows: train_graph, validation_graph = graph.connected_holdout( # You can use an 80/20 split the holdout, for example. train_size=0.8, # The random state is used to reproduce the holdout. random_state=42, # Wether to show a loading bar. verbose=True ) # Remember that, if you need, you can enable the memory-time trade-offs: train_graph.enable( vector_sources=True, vector_destinations=True, vector_outbounds=True ) # Consider using the methods made available in the Embiggen package # to run graph embedding or link prediction tasks. """ return AutomaticallyRetrievedGraph( graph_name="LachnospiraceaeBacteriumFe2018", dataset="string", directed=directed, verbose=verbose, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
36.219895
223
0.712778
7947f32ca0629cfad404922aa3cc80ba408baca2
3,054
py
Python
tensorflow_graphics/notebooks/mesh_viewer.py
jackd/graphics
736b99a3306e302674a9b7599e3e2857b85fdb74
[ "Apache-2.0" ]
null
null
null
tensorflow_graphics/notebooks/mesh_viewer.py
jackd/graphics
736b99a3306e302674a9b7599e3e2857b85fdb74
[ "Apache-2.0" ]
null
null
null
tensorflow_graphics/notebooks/mesh_viewer.py
jackd/graphics
736b99a3306e302674a9b7599e3e2857b85fdb74
[ "Apache-2.0" ]
1
2020-04-11T10:37:36.000Z
2020-04-11T10:37:36.000Z
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper class for viewing 3D meshes in Colab demos. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow_graphics.notebooks import threejs_visualization SEGMENTATION_COLORMAP = np.array( ((165, 242, 12), (89, 12, 89), (165, 89, 165), (242, 242, 165), (242, 165, 12), (89, 12, 12), (165, 12, 12), (165, 89, 242), (12, 12, 165), (165, 12, 89), (12, 89, 89), (165, 165, 89), (89, 242, 12), (12, 89, 165), (242, 242, 89), (165, 165, 165)), dtype=np.float32) / 255.0 class Viewer(object): """A ThreeJS based viewer class for viewing 3D meshes.""" def _mesh_from_data(self, data): """Creates a dictionary of ThreeJS mesh objects from numpy data.""" if 'vertices' not in data or 'faces' not in data: raise ValueError('Mesh Data must contain vertices and faces') vertices = np.asarray(data['vertices']) faces = np.asarray(data['faces']) material = self.context.THREE.MeshLambertMaterial.new_object({ 'color': 0xfffacd, 'vertexColors': self.context.THREE.NoColors, 'side': self.context.THREE.DoubleSide, }) mesh = {'vertices': vertices, 'faces': faces} if 'vertex_colors' in data: mesh['vertex_colors'] = np.asarray(data['vertex_colors']) material = self.context.THREE.MeshLambertMaterial.new_object({ 'color': 0xfffacd, 'vertexColors': self.context.THREE.VertexColors, 'side': self.context.THREE.DoubleSide, }) mesh['material'] = material return mesh def __init__(self, source_mesh_data): context = threejs_visualization.build_context() self.context = context light1 = context.THREE.PointLight.new_object(0x808080) light1.position.set(10., 10., 10.) light2 = context.THREE.AmbientLight.new_object(0x808080) lights = (light1, light2) camera = threejs_visualization.build_perspective_camera( field_of_view=30, position=(0.0, 0.0, 4.0)) mesh = self._mesh_from_data(source_mesh_data) geometries = threejs_visualization.triangular_mesh_renderer([mesh], lights=lights, camera=camera, width=400, height=400) self.geometries = geometries
40.184211
80
0.638179
7947f45ac8bc384fbcbb39197a6a9122e89ec90d
880
py
Python
spider/data_collector.py
glstr/python_learning
243908d6f358764386f2e58dfbfde10a406d803c
[ "Apache-2.0" ]
2
2018-09-20T06:08:00.000Z
2018-09-26T13:57:20.000Z
spider/data_collector.py
glstr/python_learning
243908d6f358764386f2e58dfbfde10a406d803c
[ "Apache-2.0" ]
null
null
null
spider/data_collector.py
glstr/python_learning
243908d6f358764386f2e58dfbfde10a406d803c
[ "Apache-2.0" ]
1
2019-03-25T05:53:32.000Z
2019-03-25T05:53:32.000Z
#!/usr/bin/python # coding=utf-8 import json import requests class DataCollector(object): def __init__(self): self.name = "default data collector" return def grab(self, option): url = option["url"] r = requests.get(url) r.json() return r def gather(self, options): res = [] for option in options: r = self.grab(option) res.append(r) return res def output(self, options): f = open("output.txt", "w") contents = self.gather(options) for content in contents: cstr = json.dumps(content) f.write(cstr + '\n') f.close() return def load_config(self, config_file): with open(config_file) as f: self.options = json.load(f) if __name__ == '__main__': print "hello world"
20.465116
44
0.542045
7947f60c020e68066e55c9bf1360bcba8e1517d2
3,158
py
Python
mindinsight/mindconverter/graph_based_converter/sub_graph_searcher/known_module_name.py
fapbatista/mindinsight
db5769eb80cbd13a2a9af7682c11f5667d8bf141
[ "Apache-2.0" ]
null
null
null
mindinsight/mindconverter/graph_based_converter/sub_graph_searcher/known_module_name.py
fapbatista/mindinsight
db5769eb80cbd13a2a9af7682c11f5667d8bf141
[ "Apache-2.0" ]
null
null
null
mindinsight/mindconverter/graph_based_converter/sub_graph_searcher/known_module_name.py
fapbatista/mindinsight
db5769eb80cbd13a2a9af7682c11f5667d8bf141
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Huawei Technologies Co., Ltd.All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Introduce some standard pattern name into MindConverter.""" __all__ = ["register_module_name", "is_built_in_module_name", "BUILT_IN_MODULE_NAME"] from mindinsight.mindconverter.graph_based_converter.sub_graph_searcher.pattern import Pattern PLACEHOLDER = "PLC" BUILT_IN_MODULE_NAME = dict() def is_built_in_module_name(module_name: str): """ Whether the module name was built-in. Args: module_name (str): Module name. Returns: bool, true or false. """ return module_name.split("_")[0] in BUILT_IN_MODULE_NAME def register_module_name(md_name: str, in_degree: int, out_degree: int): """ Register pattern to MindConverter. Args: out_degree (int): Out degree of pattern. in_degree (int): In degree of pattern. md_name (str): Module name. """ def _reg(pattern): result = pattern() if not result: return BUILT_IN_MODULE_NAME[Pattern("->".join(result), len(result), in_degree, out_degree, ptn_items=result)] = md_name return _reg @register_module_name("Bottleneck", 1, 2) def _resnet_block_0(): """Add ResNet feature extraction block pattern.""" return ["Conv", "BatchNormalization", "Relu", "Conv", "BatchNormalization", "Relu", "Conv", "BatchNormalization", "Add", "Relu"] @register_module_name("Bottleneck", 1, 2) def _resnet_block_1(): """Add ResNet feature extraction block pattern.""" return [PLACEHOLDER, PLACEHOLDER, "Conv", "BatchNormalization", "Add", "Relu"] @register_module_name("Bottleneck", 1, 2) def _resnet_block_2(): """Add ResNet feature extraction block pattern.""" return [PLACEHOLDER, PLACEHOLDER, PLACEHOLDER, "Add", "Relu"] @register_module_name("BasicConvBlock", 1, 1) def _basic_conv_block_0(): """Add basic conv block.""" return ["Conv", "BatchNormalization", "Relu"] @register_module_name("ConvBN", 1, 1) def _conv_bn(): """Add basic conv block.""" return ["Conv", "BatchNormalization"] @register_module_name("UnSample", 1, 1) def _up_sampling_in_op12(): return [ "Shape", "Slice", "Gather", "Cast", "Slice", "Mul", "Cast", "Concat", "Resize" ] @register_module_name("UnSample", 1, 1) def _up_sampling_in_op10(): return [ "Shape", "Gather", "Cast", "Slice", "Mul", "Slice", "Cast", "Cast", "Div", "Concat", "Resize" ]
30.365385
101
0.649145
7947f7cccae483ca053f2dcb8c10607944745386
6,815
py
Python
tests/components/hassio/test_http.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
30,023
2016-04-13T10:17:53.000Z
2020-03-02T12:56:31.000Z
tests/components/hassio/test_http.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
31,101
2020-03-02T13:00:16.000Z
2022-03-31T23:57:36.000Z
tests/components/hassio/test_http.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
11,956
2016-04-13T18:42:31.000Z
2020-03-02T09:32:12.000Z
"""The tests for the hassio component.""" import asyncio from http import HTTPStatus from aiohttp import StreamReader import pytest from homeassistant.components.hassio.http import _need_auth async def test_forward_request(hassio_client, aioclient_mock): """Test fetching normal path.""" aioclient_mock.post("http://127.0.0.1/beer", text="response") resp = await hassio_client.post("/api/hassio/beer") # Check we got right response assert resp.status == HTTPStatus.OK body = await resp.text() assert body == "response" # Check we forwarded command assert len(aioclient_mock.mock_calls) == 1 @pytest.mark.parametrize( "build_type", ["supervisor/info", "homeassistant/update", "host/info"] ) async def test_auth_required_forward_request(hassio_noauth_client, build_type): """Test auth required for normal request.""" resp = await hassio_noauth_client.post(f"/api/hassio/{build_type}") # Check we got right response assert resp.status == HTTPStatus.UNAUTHORIZED @pytest.mark.parametrize( "build_type", [ "app/index.html", "app/hassio-app.html", "app/index.html", "app/hassio-app.html", "app/some-chunk.js", "app/app.js", ], ) async def test_forward_request_no_auth_for_panel( hassio_client, build_type, aioclient_mock ): """Test no auth needed for .""" aioclient_mock.get(f"http://127.0.0.1/{build_type}", text="response") resp = await hassio_client.get(f"/api/hassio/{build_type}") # Check we got right response assert resp.status == HTTPStatus.OK body = await resp.text() assert body == "response" # Check we forwarded command assert len(aioclient_mock.mock_calls) == 1 async def test_forward_request_no_auth_for_logo(hassio_client, aioclient_mock): """Test no auth needed for logo.""" aioclient_mock.get("http://127.0.0.1/addons/bl_b392/logo", text="response") resp = await hassio_client.get("/api/hassio/addons/bl_b392/logo") # Check we got right response assert resp.status == HTTPStatus.OK body = await resp.text() assert body == "response" # Check we forwarded command assert len(aioclient_mock.mock_calls) == 1 async def test_forward_request_no_auth_for_icon(hassio_client, aioclient_mock): """Test no auth needed for icon.""" aioclient_mock.get("http://127.0.0.1/addons/bl_b392/icon", text="response") resp = await hassio_client.get("/api/hassio/addons/bl_b392/icon") # Check we got right response assert resp.status == HTTPStatus.OK body = await resp.text() assert body == "response" # Check we forwarded command assert len(aioclient_mock.mock_calls) == 1 async def test_forward_log_request(hassio_client, aioclient_mock): """Test fetching normal log path doesn't remove ANSI color escape codes.""" aioclient_mock.get("http://127.0.0.1/beer/logs", text="\033[32mresponse\033[0m") resp = await hassio_client.get("/api/hassio/beer/logs") # Check we got right response assert resp.status == HTTPStatus.OK body = await resp.text() assert body == "\033[32mresponse\033[0m" # Check we forwarded command assert len(aioclient_mock.mock_calls) == 1 async def test_bad_gateway_when_cannot_find_supervisor(hassio_client, aioclient_mock): """Test we get a bad gateway error if we can't find supervisor.""" aioclient_mock.get("http://127.0.0.1/addons/test/info", exc=asyncio.TimeoutError) resp = await hassio_client.get("/api/hassio/addons/test/info") assert resp.status == HTTPStatus.BAD_GATEWAY async def test_forwarding_user_info(hassio_client, hass_admin_user, aioclient_mock): """Test that we forward user info correctly.""" aioclient_mock.get("http://127.0.0.1/hello") resp = await hassio_client.get("/api/hassio/hello") # Check we got right response assert resp.status == HTTPStatus.OK assert len(aioclient_mock.mock_calls) == 1 req_headers = aioclient_mock.mock_calls[0][-1] assert req_headers["X-Hass-User-ID"] == hass_admin_user.id assert req_headers["X-Hass-Is-Admin"] == "1" async def test_backup_upload_headers(hassio_client, aioclient_mock, caplog): """Test that we forward the full header for backup upload.""" content_type = "multipart/form-data; boundary='--webkit'" aioclient_mock.get("http://127.0.0.1/backups/new/upload") resp = await hassio_client.get( "/api/hassio/backups/new/upload", headers={"Content-Type": content_type} ) # Check we got right response assert resp.status == HTTPStatus.OK assert len(aioclient_mock.mock_calls) == 1 req_headers = aioclient_mock.mock_calls[0][-1] assert req_headers["Content-Type"] == content_type async def test_backup_download_headers(hassio_client, aioclient_mock): """Test that we forward the full header for backup download.""" content_disposition = "attachment; filename=test.tar" aioclient_mock.get( "http://127.0.0.1/backups/slug/download", headers={ "Content-Length": "50000000", "Content-Disposition": content_disposition, }, ) resp = await hassio_client.get("/api/hassio/backups/slug/download") # Check we got right response assert resp.status == HTTPStatus.OK assert len(aioclient_mock.mock_calls) == 1 assert resp.headers["Content-Disposition"] == content_disposition def test_need_auth(hass): """Test if the requested path needs authentication.""" assert not _need_auth(hass, "addons/test/logo") assert _need_auth(hass, "backups/new/upload") assert _need_auth(hass, "supervisor/logs") hass.data["onboarding"] = False assert not _need_auth(hass, "backups/new/upload") assert not _need_auth(hass, "supervisor/logs") async def test_stream(hassio_client, aioclient_mock): """Verify that the request is a stream.""" aioclient_mock.get("http://127.0.0.1/test") await hassio_client.get("/api/hassio/test", data="test") assert isinstance(aioclient_mock.mock_calls[-1][2], StreamReader) async def test_entrypoint_cache_control(hassio_client, aioclient_mock): """Test that we return cache control for requests to the entrypoint only.""" aioclient_mock.get("http://127.0.0.1/app/entrypoint.js") aioclient_mock.get("http://127.0.0.1/app/entrypoint.fdhkusd8y43r.js") resp1 = await hassio_client.get("/api/hassio/app/entrypoint.js") resp2 = await hassio_client.get("/api/hassio/app/entrypoint.fdhkusd8y43r.js") # Check we got right response assert resp1.status == HTTPStatus.OK assert resp2.status == HTTPStatus.OK assert len(aioclient_mock.mock_calls) == 2 assert resp1.headers["Cache-Control"] == "no-store, max-age=0" assert "Cache-Control" not in resp2.headers
32.922705
86
0.704916
7947f851f8f04b9ce2515f2ec19e08711c27ffee
28,686
py
Python
mskit/ms_pred/pdeep.py
gureann/MSKit
8b360d38288100476740ad808e11b6c1b454dc2c
[ "MIT" ]
null
null
null
mskit/ms_pred/pdeep.py
gureann/MSKit
8b360d38288100476740ad808e11b6c1b454dc2c
[ "MIT" ]
null
null
null
mskit/ms_pred/pdeep.py
gureann/MSKit
8b360d38288100476740ad808e11b6c1b454dc2c
[ "MIT" ]
null
null
null
import os import re from collections import defaultdict import pandas as pd from mskit import rapid_kit from mskit.post_analysis.spectronaut import SpectronautLibrary from ._pdeep_constant import BasicpDeepInfo from ._pdeep_constant import MOD def intprec_to_pdeep_test(intprec_list): """ 从 intprec 转换为 pDeep2 的 test input intprec: 如 DKEAIQA4SESLMTSAPK.2 pDeep2 test input 格式为 peptide modification charge FRTPSFLK 3,Phospho[T];5,Phospho[S]; 2 ... """ title = ['peptide', 'modification', 'charge'] pdeep_test_data_list = [] for each_intprec in intprec_list: intprec_result = intprec_to_pdeep(each_intprec) if intprec_result is not None: stripped_pep, mod_info, charge = intprec_result else: continue pdeep_test_data_list.append([stripped_pep, mod_info, charge]) pdeep_test_df = pd.DataFrame(pdeep_test_data_list, columns=title) return pdeep_test_df def intprec_to_pdeep(intprec: str): int_to_pdeep2_mod = { 'C': 'Carbamidomethyl[C]', '1': 'Oxidation[M]', '2': 'Phospho[S]', '3': 'Phospho[T]', '4': 'Phospho[Y]', } intseq, charge = intprec.split('.') if intseq.startswith('@'): intseq = intseq[1:] elif intseq.startswith('*'): return None else: pass stripped_pep = intseq.replace('1', 'M').replace('2', 'S').replace('3', 'T').replace('4', 'Y') mod_info = '' for _ in re.finditer('[C1234]', intseq): site = _.end() mod_char = _.group() mod = int_to_pdeep2_mod[mod_char] mod_info += f'{site},{mod};' return stripped_pep, mod_info, charge def mod_extraction_for_pdeep(mod_pep): """ The """ mod_pep = mod_pep.replace('_', '') if '[' not in mod_pep: return '' else: modinfo = '' mod_start = [left_bracket.start() for left_bracket in re.finditer('\[', mod_pep)] mod_end = [right_bracket.start() for right_bracket in re.finditer(']', mod_pep)] mod_len = 0 for mod_site in zip(mod_start, mod_end): if mod_site[0] == 0: # or mod_site[1] == len(mod_pep) - 1: return 'Unsupport' else: mod_residu = mod_pep[mod_site[0] - 1] mod_type = mod_pep[mod_site[0] + 1: mod_site[1]].replace(' ', '') mod_type = re.sub(r'\(.+?\)', f'[{mod_residu}]', mod_type) modinfo += '{mod_site},{mod_type};'.format(mod_site=mod_site[0] - mod_len, mod_type=mod_type) mod_len += (mod_site[1] - mod_site[0] + 1) return modinfo def inten_dict_to_plabel(inten_dict: dict): """ :param inten_dict: The input dict should have the k[v] pairs as 'Prec': {'Frag_1': Inten_1, 'Frag_2': Inten_2, ...} """ plabel_rows = [] for prec, ion_inten_dict in inten_dict.items(): intprec_trans = intprec_to_pdeep(prec) if intprec_trans is None: continue stripped_pep, mod_info, charge = intprec_trans spec = f'Unknown.{charge}.0.0' plabel_ion_str = plabel_one_ion_row(ion_inten_dict, return_type='str') plabel_rows.append(f'{spec}\t{stripped_pep}\t{mod_info}\t{plabel_ion_str}') return plabel_rows def write_plabel_with_inten_dict(inten_dict: dict, output_path: str): plabel_rows = inten_dict_to_plabel(inten_dict) with open(output_path, 'w') as f: f.write('spec\tpeptide\tmodinfo\tb\tb-NH3\tb-H2O\tb-ModLoss\ty\ty-NH3\ty-H2O\ty-ModLoss\n') for row in plabel_rows: f.write(row + '\n') def plabel_to_pred_input(plabel_path): plabel_df = pd.read_csv(plabel_path, sep='\t', low_memory=False) plabel_df['charge'] = plabel_df['spec'].apply(lambda x: x.split('.')[-3]) plabel_df = plabel_df[['peptide', 'modinfo', 'charge']] plabel_df.columns = ['peptide', 'modification', 'charge'] return plabel_df def plabel_one_ion_row(ion_inten_dict: dict, ion_type=('b', 'b-NH3', 'b-H2O', 'b-ModLoss', 'y', 'y-NH3', 'y-H2O', 'y-ModLoss'), return_type='str'): ion_dict = defaultdict(list) ion_dict.fromkeys(ion_type) loss_trans = {'1,H3PO4': 'ModLoss', '1,H2O': 'H2O', '1,NH3': 'NH3'} for frag, inten in ion_inten_dict.items(): frag_type, frag_num, frag_charge, frag_loss = re.findall(r'([abcxyz])(\d+)\+(\d)-(.+)', frag)[0] if frag_loss == 'Noloss': ion_name = f'{frag_type}' elif frag_loss in ['1,H2O', '1,NH3', '1,H3PO4']: ion_name = f'{frag_type}-{loss_trans[frag_loss]}' else: continue ion_dict[ion_name].append((f'{frag_type}{frag_num}{ion_name[1:]}+{frag_charge},{inten};', int(frag_num), int(frag_charge))) if return_type == 'dict': return ion_dict elif return_type == 'str': ion_info = [] for each_ion_type in ion_type: if each_ion_type[0] in ['a', 'b', 'c']: sorted_ions = sorted(ion_dict[each_ion_type], key=lambda x: (x[2], x[1]), reverse=False) elif each_ion_type[0] in ['x', 'y', 'z']: sorted_ions = sorted(ion_dict[each_ion_type], key=lambda x: (-x[2], x[1]), reverse=True) else: raise ions = [_[0] for _ in sorted_ions] ion_info.append(''.join(ions)) return '\t'.join(ion_info) def plabel_ion_info(one_psm_df, return_type): ion_info = {'b': '', 'b-NH3': '', 'b-H2O': '', 'b-ModLoss': '', 'y': [], 'y-NH3': [], 'y-H2O': [], 'y-ModLoss': []} for row_index, each_row in one_psm_df.iterrows(): fragment_type = each_row['FragmentType'] fragment_num = each_row['FragmentNumber'] fragment_charge = each_row['FragmentCharge'] fragment_relative_intensity = each_row['RelativeIntensity'] fragment_losstype = each_row['FragmentLossType'] if fragment_type == 'b': if fragment_losstype == 'noloss': ion_info['b'] += 'b{num}+{charge},{relative_intensity};'.format(num=fragment_num, charge=fragment_charge, relative_intensity=fragment_relative_intensity) elif fragment_losstype == 'NH3': ion_info['b-NH3'] += 'b{num}-NH3+{charge},{relative_intensity};'.format(num=fragment_num, charge=fragment_charge, relative_intensity=fragment_relative_intensity) elif fragment_losstype == 'H2O': ion_info['b-H2O'] += 'b{num}-H2O+{charge},{relative_intensity};'.format(num=fragment_num, charge=fragment_charge, relative_intensity=fragment_relative_intensity) elif fragment_losstype == 'H3PO4': ion_info['b-ModLoss'] += 'b{num}-ModLoss+{charge},{relative_intensity};'.format(num=fragment_num, charge=fragment_charge, relative_intensity=fragment_relative_intensity) else: continue elif fragment_type == 'y': if fragment_losstype == 'noloss': ion_info['y'].append('y{num}+{charge},{relative_intensity};'.format(num=fragment_num, charge=fragment_charge, relative_intensity=fragment_relative_intensity)) elif fragment_losstype == 'NH3': ion_info['y-NH3'].append( 'y{num}-NH3+{charge},{relative_intensity};'.format(num=fragment_num, charge=fragment_charge, relative_intensity=fragment_relative_intensity)) elif fragment_losstype == 'H2O': ion_info['y-H2O'].append( 'y{num}-H2O+{charge},{relative_intensity};'.format(num=fragment_num, charge=fragment_charge, relative_intensity=fragment_relative_intensity)) elif fragment_losstype == 'H3PO4': ion_info['y-ModLoss'].append( 'y{num}-ModLoss+{charge},{relative_intensity};'.format(num=fragment_num, charge=fragment_charge, relative_intensity=fragment_relative_intensity)) else: continue if return_type == 'dict': return ion_info elif return_type == 'str': str_ion_info = '' b_ion_order = ['b', 'b-NH3', 'b-H2O', 'b-ModLoss'] # ion_order = ['b', 'y'] for ion_losstype in b_ion_order: str_ion_info += ion_info[ion_losstype] str_ion_info += '\t' y_ion_order = ['y', 'y-NH3', 'y-H2O', 'y-ModLoss'] for ion_losstype in y_ion_order: str_ion_info += ''.join(ion_info[ion_losstype][::-1]) if ion_losstype != 'y-ModLoss': str_ion_info += '\t' # if ion_losstype != 'y': # str_ion_info += '\t' return str_ion_info def sn_lib_to_plabel(lib, plabel_output): if isinstance(lib, pd.DataFrame): lib_df = lib else: if os.path.exists(lib): lib_df = pd.read_csv(lib, sep='\t', low_memory=False) else: raise FileNotFoundError lib_df['Prec'] = lib_df['ModifiedPeptide'] + '.' + lib_df['PrecursorCharge'].astype(str) with open(plabel_output, 'w') as plabel_handle: plabel_handle.write('spec\tpeptide\tmodinfo\tb\tb-NH3\tb-H2O\tb-ModLoss\ty\ty-NH3\ty-H2O\ty-ModLoss\n') # handle_plabel.write('spec\tpeptide\tmodinfo\tb\ty\n') for psm_index, (each_prec, each_psm_df) in enumerate(lib_df.groupby('Prec')): first_row = each_psm_df.iloc[0] spec = '{title}.{charge}.0.0'.format(title=first_row['ReferenceRun'], charge=first_row['PrecursorCharge']) # spec = '{charge}.0.0'.format(charge=first_fragment[1]) stripped_pep = first_row['StrippedPeptide'] mod_pep = first_row['ModifiedPeptide'] modinfo = mod_extraction_for_pdeep(mod_pep) if modinfo == 'Unsupport': continue ion_info = plabel_ion_info(each_psm_df, 'str') plabel_handle.write('{spec}\t{pep}\t{mod}\t{ioninfo}\n'.format( spec=spec, pep=stripped_pep, mod=modinfo, ioninfo=ion_info)) def sn_lib_to_pdeep_test(test_lib, test_set_output): if isinstance(test_lib, pd.DataFrame): lib_df = test_lib else: if os.path.exists(test_lib): lib_df = pd.read_csv(test_lib, sep='\t', low_memory=False) else: raise FileNotFoundError lib_df['Prec'] = lib_df['ModifiedPeptide'] + '.' + lib_df['PrecursorCharge'].astype(str) lib_df = lib_df.drop_duplicates('Prec') with open(test_set_output, 'w') as test_handle: test_handle.write('peptide\tmodification\tcharge\n') for row_index, each_lib_row in lib_df.iterrows(): mod_pep = each_lib_row['ModifiedPeptide'] charge = str(each_lib_row['PrecursorCharge']) stripped_pep = each_lib_row['StrippedPeptide'] mod = mod_extraction_for_pdeep(mod_pep) if mod == 'Unsupport': continue test_handle.write('{}\t{}\t{}\n'.format(stripped_pep, mod, charge)) def extract_pdeep_mod(mod_pep, mod_ident='bracket', mod_trans=True): """ input: '_C[Carbamidomethyl (C)]DM[Oxidation (M)]EDER_' output: 'CDMEDER', '1,Carbamidomethyl[C];3,Oxidation[M];' """ stripped_pep, mod = rapid_kit.split_mod(modpep=mod_pep, mod_ident=mod_ident) if mod_trans: mod = trans_sn_mod(mod) return stripped_pep, mod def trans_sn_mod(mod): for sn_mod, pdeep_mod in MOD.items(): mod = mod.replace(sn_mod, pdeep_mod) if '(' not in mod: break if '(' in mod: return None return mod def restore_pdeep_mod_site(stripped_pep, mod_content, mod_processor): """ This will restore the modification to stripped peptide. EXAMPLE: restore_pdeep_mod_site('MPALAIMGLSLAAFLELGMGASLCLSQQFK', '24,Carbamidomethyl[C];') -> 'MPALAIMGLSLAAFLELGMGASLC[Carbamidomethyl (C)]LSQQFK' """ return rapid_kit.add_mod(stripped_pep, mod_content, mod_processor) def pdeep_input(output_path, prec_list): with open(output_path, 'w') as out_file: pred_title = ['peptide', 'modification', 'charge'] out_file.write('\t'.join(pred_title) + '\n') for _prec in prec_list: modpep, charge = rapid_kit.split_prec(_prec) strip_pep, mod = extract_pdeep_mod(modpep) out_file.write(f'{strip_pep}\t{mod}\t{charge}\n') def pdeep_trainset(output_path, prec_inten_dict): with open(output_path, 'w') as out_file: plabel_title_list = BasicpDeepInfo.pDeepTrainsetTitle plabel_title = '\t'.join(plabel_title_list) out_file.write(plabel_title + '\n') for _prec, inten_dict in prec_inten_dict.items(): plabel_row_dict = plabel_one_row_dict(_prec, inten_dict) if not plabel_row_dict: continue one_row_list = [plabel_row_dict[_] for _ in plabel_title_list] out_file.write('\t'.join(one_row_list) + '\n') def plabel_one_row_dict(prec, inten_dict: dict): plabel_row_dict = defaultdict(str) modpep, charge = rapid_kit.split_prec(prec) strip_pep, mod = extract_pdeep_mod(modpep, mod_ident='bracket', mod_trans=True) if not mod: return None plabel_row_dict['spec'] = f'{charge}.0.0' plabel_row_dict['peptide'] = strip_pep plabel_row_dict['modinfo'] = mod for frag, inten in inten_dict.items(): frag_type, frag_num, frag_charge, frag_loss = rapid_kit.split_fragment_name(frag) if frag_loss == 'noloss': plabel_type = frag_type plabel_frag = f'{frag_type}{frag_num}+{frag_charge}' elif frag_loss == 'NH3' or frag_loss == 'H2O': plabel_type = f'{frag_type}-{frag_loss}' plabel_frag = f'{frag_type}{frag_num}-{frag_loss}+{frag_charge}' else: plabel_type = f'{frag_type}-ModLoss' plabel_frag = f'{frag_type}{frag_num}-ModLoss+{frag_charge}' plabel_row_dict[plabel_type] += f'{plabel_frag},{inten};' return plabel_row_dict def read_pdeep_result(pdeep_result, modloss_name='H3PO4', require_mz=True, min_inten_ratio=0.01, min_frag_num=3, exclude_frag_num=(1, 2), exclude_modloss=False): mod_dict = {'Carbamidomethyl[C]': '[Carbamidomethyl (C)]', 'Oxidation[M]': '[Oxidation (M)]', 'Phospho[S]': '[Phospho (STY)]', 'Phospho[T]': '[Phospho (STY)]', 'Phospho[Y]': '[Phospho (STY)]', } with open(os.path.abspath(pdeep_result), 'r') as pdeep_handle: predicted_fragment_data = dict() for each_line in pdeep_handle: each_line = each_line.strip('\n') if each_line == 'BEGIN IONS': fragment_dict = dict() elif each_line == 'END IONS': if len(fragment_dict) >= min_frag_num: predicted_fragment_data[prec] = fragment_dict else: pass else: if each_line.startswith('TITLE'): split_pep_title = each_line.replace('TITLE=', '').split('|') stripped_pep = split_pep_title[0] mod = split_pep_title[1].strip(';') charge = split_pep_title[2] if not mod: prec = '_{}_.{}'.format(stripped_pep, charge) else: mod_pep = '' previous_mod_site = 0 for each_mod in mod.split(';'): each_mod_info = each_mod.split(',') mod_site = int(each_mod_info[0]) mod_type = mod_dict[each_mod_info[1]] mod_pep += stripped_pep[previous_mod_site: mod_site] + mod_type previous_mod_site = mod_site mod_pep += stripped_pep[previous_mod_site:] prec = '_{}_.{}'.format(mod_pep, charge) elif each_line[0].isdigit(): split_frag_inten_line = each_line.split(' ') frag_inten = round(float(split_frag_inten_line[1]), 5) * 100 if frag_inten < min_inten_ratio: continue frag_mz = split_frag_inten_line[0] if float(frag_mz) < 10: continue frag_name = split_frag_inten_line[2] frag_type, frag_num, loss_type, frag_c = re.findall('([by])(\d+)-?(.+)?\+(\d)', frag_name)[0] if int(frag_num) in exclude_frag_num: continue if exclude_modloss and loss_type == 'ModLoss': continue new_frag_name = f'{frag_type}{frag_num}+{frag_c}' if not loss_type: new_frag_name += '-noloss' else: new_frag_name += f'-{loss_type}' if loss_type != 'ModLoss' else f'-{modloss_name}' if require_mz: fragment_dict[new_frag_name] = (frag_mz, frag_inten) else: fragment_dict[new_frag_name] = frag_inten else: continue return predicted_fragment_data def trans_pdeep2_result_to_df(result: dict, frag_trans=None, pep_trans=None, pep_trans_col='IntPep') -> pd.DataFrame: df_rows = [] for prec, inten_dict in result.items(): if frag_trans is not None: inten_dict = {frag_trans[frag]: inten for frag, inten in inten_dict.items()} one_row = [prec, inten_dict] if pep_trans is not None: modpep, charge = prec.split('.') transed_pep = pep_trans(modpep) one_row.append(transed_pep) def read_inten_from_plabel(_plabel_file): ion_type_list = ['b', 'b-NH3', 'b-H2O', 'b-ModLoss', 'y', 'y-NH3', 'y-H2O', 'y-ModLoss'] _p_df = pd.read_csv(_plabel_file, sep='\t') _p_df = _p_df.fillna('') _p_df['prec'] = _p_df.apply(lambda x: '|'.join([x['peptide'], x['modinfo'], x['spec'].split('.')[-3]]), axis=1) _p_inten_dict = dict() def _merge_plabel_inten(x): _one_prec = x['prec'] _one_inten_info = ''.join(x[ion_type_list].tolist()).split(';')[:-1] _p_inten_dict[_one_prec] = dict([(_o_f.split(',')[0], float(_o_f.split(',')[1])) for _o_f in _one_inten_info]) _p_df.progress_apply(_merge_plabel_inten, axis=1) return _p_inten_dict class pDeepSpectronaut(SpectronautLibrary): def __init__(self, spectronaut_version=12): super(pDeepSpectronaut, self).__init__(spectronaut_version) self.plabel_title_list = BasicpDeepInfo.pDeepTrainsetTitle def prec_ion_info(self, one_psm_df: pd.DataFrame, spectronaut_run_name=True): """ For pDeep trainset preparation. This will receive get_one_prefix_result dataframe of one psm block and assemble get_one_prefix_result pd.series as one row of the plabel dataframe. :param one_psm_df: This must contain columns after ['PrecursorCharge', 'StrippedPeptide', 'ModifiedPeptide', 'FragmentType', 'FragmentNumber', 'FragmentCharge', 'RelativeIntensity', 'FragmentLossType'] :param spectronaut_run_name: This can be choose as True or False and dont affect the result. This can make the plabel file have much information :return: A series as one plabel dataframe row """ first_row = one_psm_df.iloc[0] prec_charge = first_row['PrecursorCharge'] if spectronaut_run_name: run_title = first_row['ReferenceRun'] spec = '{title}.{charge}.0.0'.format(title=run_title, charge=prec_charge) else: spec = '{charge}.0.0'.format(charge=prec_charge) stripped_pep = first_row['StrippedPeptide'] mod_pep = first_row['ModifiedPeptide'] stripped_pep, modinfo = extract_pdeep_mod(mod_pep) if modinfo == 'Unsupport': return 'Unsupport' current_prec_info = pd.Series(data=[spec, stripped_pep, modinfo] + [''] * 8, index=self.plabel_title_list) for row_index in one_psm_df.index: line_series = one_psm_df.loc[row_index] fragment_type = line_series['FragmentType'] fragment_num = line_series['FragmentNumber'] fragment_charge = line_series['FragmentCharge'] fragment_relative_intensity = line_series['RelativeIntensity'] fragment_losstype = line_series['FragmentLossType'] if fragment_type == 'b': if fragment_losstype == 'noloss': current_prec_info['b'] += 'b{num}+{charge},{relative_intensity};'.format(num=fragment_num, charge=fragment_charge, relative_intensity=fragment_relative_intensity) elif fragment_losstype == 'NH3': current_prec_info['b-NH3'] += 'b{num}-NH3+{charge},{relative_intensity};'.format(num=fragment_num, charge=fragment_charge, relative_intensity=fragment_relative_intensity) elif fragment_losstype == 'H2O': current_prec_info['b-H2O'] += 'b{num}-H2O+{charge},{relative_intensity};'.format(num=fragment_num, charge=fragment_charge, relative_intensity=fragment_relative_intensity) else: current_prec_info['b-ModLoss'] += 'b{num}-ModLoss+{charge},{relative_intensity};'.format(num=fragment_num, charge=fragment_charge, relative_intensity=fragment_relative_intensity) elif fragment_type == 'y': if fragment_losstype == 'noloss': current_prec_info['y'] += 'y{num}+{charge},{relative_intensity};'.format(num=fragment_num, charge=fragment_charge, relative_intensity=fragment_relative_intensity) elif fragment_losstype == 'NH3': current_prec_info['y-NH3'] += 'y{num}-NH3+{charge},{relative_intensity};'.format(num=fragment_num, charge=fragment_charge, relative_intensity=fragment_relative_intensity) elif fragment_losstype == 'H2O': current_prec_info['y-H2O'] += 'y{num}-H2O+{charge},{relative_intensity};'.format(num=fragment_num, charge=fragment_charge, relative_intensity=fragment_relative_intensity) else: current_prec_info['y-ModLoss'] += 'y{num}-ModLoss+{charge},{relative_intensity};'.format(num=fragment_num, charge=fragment_charge, relative_intensity=fragment_relative_intensity) return current_prec_info def plabel_trainset(self, output_path, spectronaut_run_name=True): """ Write get_one_prefix_result pDeep trainset file by calling function prec_ion_info to process the library dataframe """ trainset_df = pd.DataFrame(columns=self.plabel_title_list) for each_psm_index in self.get_psm_block_index(self._lib_df): current_prec_info = self.prec_ion_info(self._lib_df.loc[each_psm_index[0]: each_psm_index[1]], spectronaut_run_name) if not isinstance(current_prec_info, pd.DataFrame): continue trainset_df = trainset_df.append(current_prec_info, ignore_index=True) trainset_df.to_csv(output_path, sep='\t', index=False) def extract_bracket(str_with_bracket): bracket_start = [left_bracket.start() for left_bracket in re.finditer('\(', str_with_bracket)] bracket_end = [right_bracket.start() for right_bracket in re.finditer('\)', str_with_bracket)] return bracket_start, bracket_end mod_dict = {'M(ox)': 'Oxidation[M]', 'Y(ph)': "Phospho[Y]", 'S(ph)': "Phospho[S]", 'T(ph)': "Phospho[T]", } def _plabel_from_mq(x): def pdeep_mod_extraction(mod_pep): mod_pep = mod_pep.replace('_', '') modinfo = '' mod_start, mod_end = extract_bracket(mod_pep) mod_len = 0 for mod_site in zip(mod_start, mod_end): mod_type = mod_pep[mod_site[0] - 1: mod_site[1] + 1].replace(' ', '') mod_type = mod_dict[mod_type] modinfo += '{mod_site},{mod_type};'.format(mod_site=mod_site[0] - mod_len, mod_type=mod_type) mod_len += (mod_site[1] - mod_site[0] + 1) return modinfo ion_type_list = ['b', 'b-NH3', 'b-H2O', 'b-ModLoss', 'y', 'y-NH3', 'y-H2O', 'y-ModLoss'] plabel_title = ['spec', 'peptide', 'modinfo', *ion_type_list] spec_name = '{}.{}.{}.{}.0.dta'.format(x['Raw file'], x['Scan number'], x['Scan number'], x['Charge']) pep = x['Sequence'] mod_pep = x['Modified sequence'] mod_info = pdeep_mod_extraction(mod_pep) ions = x['Matches'] intens = x['Intensities'] inten_dict = dict(zip(ion_type_list, [''] * 8)) ion_intens_list = list(zip(ions.split(';'), intens.split(';'))) b_ion_info = [_ for _ in ion_intens_list if _[0].startswith('b')] y_ion_info = [_ for _ in ion_intens_list if _[0].startswith('y')] for diff_ion_info in [b_ion_info, y_ion_info]: current_num = 0 _mod_start = False _second_mod_start = False for ion, inten in diff_ion_info: if '*' in ion: if not _mod_start: current_num = 0 _mod_start = True if '-' in ion: if _mod_start: continue ion_type, ion_num = re.findall('([by])(\d+)', ion)[0] ion_num = int(ion_num) re_charge = re.findall('\((\d)\+\)', ion) if re_charge: ion_charge = re_charge[0] else: ion_charge = '1' if ion_num <= current_num and '*' in ion: _second_mod_start = True continue if '*' in ion and _second_mod_start: continue current_num = ion_num tag = ion_type if '*' in ion: tag += '-ModLoss' elif '-' in ion: tag += '-{}'.format(re.findall('-(.+)', ion)[0]) inten_dict[tag] += '{}{}{}+{},{};'.format(ion_type, ion_num, '-' + tag.split('-')[1] if '-' in tag else '', ion_charge, inten ) one_psm_data = [spec_name, pep, mod_info, *[inten_dict[_] for _ in ion_type_list]] return one_psm_data """ NOTICE This one is for MQ > 1.6, in which the modifications added in the peptide sequence was set as Phospho (STY) but not (ph) in 1.5 def extract_bracket(str_with_bracket): bracket_start = [left_bracket.start() for left_bracket in re.finditer('\(', str_with_bracket)][::2] bracket_end = [right_bracket.start() for right_bracket in re.finditer('\)', str_with_bracket)][1::2] return bracket_start, bracket_end mod_dict2 = {'M(Oxidation (M))': 'Oxidation[M]', 'Y(Phospho (STY))' : "Phospho[Y]", 'S(Phospho (STY))' : "Phospho[S]", 'T(Phospho (STY))' : "Phospho[T]",} def pdeep_mod_extraction(mod_pep): mod_pep = mod_pep.replace('_', '') modinfo = '' mod_start, mod_end = extract_bracket(mod_pep) mod_len = 0 for mod_site in zip(mod_start, mod_end): mod_type = mod_pep[mod_site[0] - 1: mod_site[1] + 1]# .replace(' ', '') mod_type = mod_dict2[mod_type] modinfo += '{mod_site},{mod_type};'.format(mod_site=mod_site[0] - mod_len, mod_type=mod_type) mod_len += (mod_site[1] - mod_site[0] + 1) return modinfo """
46.193237
177
0.579237
7947f8839eecc7dabc5f3ccfb8db7265e4c4b26b
1,363
py
Python
threaded_stream/reader.py
cipher982/birb-watch
bdba5455f3b994b143e96b41afbf17d698610454
[ "Apache-2.0" ]
null
null
null
threaded_stream/reader.py
cipher982/birb-watch
bdba5455f3b994b143e96b41afbf17d698610454
[ "Apache-2.0" ]
null
null
null
threaded_stream/reader.py
cipher982/birb-watch
bdba5455f3b994b143e96b41afbf17d698610454
[ "Apache-2.0" ]
null
null
null
# import the necessary packages import os from threading import Thread import cv2 from dotenv import load_dotenv load_dotenv() RTSP_USER = os.getenv("RTSP_USER") RTSP_PW = os.getenv("RTSP_PW") RTSP_IP = os.getenv("RTSP_IP") def get_amcrest_rtsp_url(user, pw, ip): url = ( f"rtsp://{user}:{pw}@{ip}:554/" "cam/realmonitor?channel=1&subtype=0&authbasic=64" ) return url def get_reolink_rtsp_url(user, pw, ip): url = f"rtsp://{user}:{pw}@{ip}:554//h264Preview_01_main" return url class RTSPStream: def __init__(self, src=0): rtsp_url = get_reolink_rtsp_url(RTSP_USER, RTSP_PW, RTSP_IP) print(f"Received RTSP URL: {rtsp_url}") self.stream = cv2.VideoCapture(rtsp_url) (self.grabbed, self.frame) = self.stream.read() self.stopped = False def start(self): Thread(target=self.update, args=()).start() return self def update(self): # keep looping infinitely until the thread is stopped while True: # if the thread indicator variable is set, stop the thread if self.stopped: return # otherwise, read the next frame from the stream (self.grabbed, self.frame) = self.stream.read() def read(self): return self.frame def stop(self): self.stopped = True
24.339286
70
0.630227
7947f8b4cbeb5d156ac757518624a8901ace033c
7,548
py
Python
lesson11/sunzhaohui/reboot/users/group/__init__.py
herrywen-nanj/51reboot
1130c79a360e1b548a6eaad176eb60f8bed22f40
[ "Apache-2.0" ]
null
null
null
lesson11/sunzhaohui/reboot/users/group/__init__.py
herrywen-nanj/51reboot
1130c79a360e1b548a6eaad176eb60f8bed22f40
[ "Apache-2.0" ]
null
null
null
lesson11/sunzhaohui/reboot/users/group/__init__.py
herrywen-nanj/51reboot
1130c79a360e1b548a6eaad176eb60f8bed22f40
[ "Apache-2.0" ]
null
null
null
# _*_ encoding:utf-8 _*_ __author__ = 'sunzhaohui' __date__ = '2019-08-05 17:20' from django.shortcuts import render from django.http import HttpResponse,QueryDict,HttpResponseRedirect,JsonResponse,Http404 from django.urls import reverse from django.conf import settings from users.models import UserProfile from django.contrib.auth.models import Group from django.db.models import Q from django.contrib.auth.models import Permission from django.contrib.contenttypes.models import ContentType from users.forms import RoleProfileForm from django.contrib.auth.hashers import make_password from django.views.generic import View,DetailView,ListView from django.contrib.auth import authenticate, login, logout # Create your views here. # 用户认证及权限管理模块导入 from django.utils.decorators import method_decorator from django.contrib.auth.decorators import login_required, permission_required from django.contrib.auth.mixins import LoginRequiredMixin, PermissionRequiredMixin from pure_pagination.mixins import PaginationMixin # class RoleListView(LoginRequiredMixin,View): # login_url = '/login/' # 用户没有通过或者权限不够时跳转的地址,默认是 settings.LOGIN_URL. # # 把没通过检查的用户重定向到没有 "next page" 的非登录页面时,把它设置为 None ,这样它会在 URL 中移除。 # redirect_field_name = 'redirect_to' # #@method_decorator(login_required(login_url='/login/')) # def get(self,request): # rolelist = Group.objects.all() # print(rolelist) # return render(request, 'users/rolelist.html', {'rolelist': rolelist}) class RoleListView(LoginRequiredMixin,PermissionRequiredMixin,PaginationMixin,ListView): model = Group template_name = "users/rolelist.html" context_object_name = "rolelist" login_url = '/login/' # 用户没有通过或者权限不够时跳转的地址,默认是 settings.LOGIN_URL. # 把没通过检查的用户重定向到没有 "next page" 的非登录页面时,把它设置为 None ,这样它会在 URL 中移除。 redirect_field_name = 'redirect_to' permission_required = ('users.view_group','users.delete_group','users.add_group','users.change_group') #@method_decorator(login_required(login_url='/login/')) paginate_by = 2 keyword = '' #搜索 def get_queryset(self): queryset = super(RoleListView, self).get_queryset() self.keyword = self.request.GET.get('keyword','').strip() print(self.keyword) if self.keyword: queryset = queryset.filter(Q(name__icontains=self.keyword)| Q(name__icontains=self.keyword) ) return queryset #显示搜索关键字 def get_context_data(self, **kwargs): context = super(RoleListView,self).get_context_data(**kwargs) context['keyword'] = self.keyword context['user'] = self.request.user.username #rolelist = list(context["object_list"]) rolelist = [] for role in context["object_list"]: role_info = {} # role_name = role.name # role_username = role.user_set.all() role_info['id'] = role.id role_info['name'] = role.name role_info['member'] = role.user_set.all() role_info['permissions'] = role.permissions.all() rolelist.append(role_info) context['rolelist'] = rolelist print(context) return context #添加角色 Group.objects.create(name='qa') def post(self, request): print('####### roleadd') _roleForm = RoleProfileForm(request.POST) if _roleForm.is_valid(): try: data = _roleForm.cleaned_data print(data) self.model.objects.create(**data) res = {'code': 0, 'result': '添加角色成功'} except: # logger.error("create user error: %s" % traceback.format_exc()) res = {'code': 1, 'errmsg': '添加角色失败'} else: # 获取自定义的表单错误的两种常用方式 print(_roleForm.errors) # <ul class="errorlist"> # <li>phone<ul class="errorlist"><li>手机号码非法</li></ul></li> # <li>username<ul class="errorlist"><li>已存在一位使用该名字的用户。</li></ul></li> # </ul> print(_roleForm.errors.as_json()) # {"phone": [{"message": "\u624b\u673a\u53f7\u7801\u975e\u6cd5", "code": "invalid"}], # "username": [{"message": "\u5df2\u5b4f7f\u7528\u8be5\u540d\u5b57\u7684\u7528\u6237\u3002", # "code": "unique"}]} # print(_roleForm.errors['phone'][0]) # 手机号码非法 print(_roleForm.errors['name'][0]) # 已存在一位使用该名字的用户 res = {'code': 1, 'errmsg': _roleForm.errors.as_json()} return JsonResponse(res, safe=True) def delete(self,request,**kwargs): print(kwargs) data = QueryDict(request.body).dict() id = data['id'] print(id) try: self.model.objects.get(id=id).delete() res = {'code': 0, 'result': '删除角色成功'} except: # print(id) res = {'code': 1, 'errmsg': '删除角色失败'} return JsonResponse(res, safe=True) class RolePowerView(LoginRequiredMixin,PermissionRequiredMixin, DetailView): login_url = '/login/' # 用户没有通过或者权限不够时跳转的地址,默认是 settings.LOGIN_URL. # 把没通过检查的用户重定向到没有 "next page" 的非登录页面时,把它设置为 None ,这样它会在 URL 中移除。 redirect_field_name = 'redirect_to' permission_required = ('users.view_group','users.delete_group','users.add_group','users.change_group') """ 更新角色及权限 """ template_name = 'users/role_power.html' model = Group context_object_name = 'role' # 返回所有组、权限,并将当前用户所拥有的组、权限显示 def get_context_data(self, **kwargs): context = super(RolePowerView, self).get_context_data(**kwargs) context['role_has_users'],context['role_has_permissions'] = self._get_role_power() context['role_not_users'],context['role_not_permissions'] = self._get_role_not_power() return context # 获取当前角色所有用户,权限以列表形式返回 def _get_role_power(self): pk = self.kwargs.get(self.pk_url_kwarg) try: role = self.model.objects.get(pk=pk) users = role.user_set.all() return users,role.permissions.all() except self.model.DoesNotExist: raise Http404 # 获取当前角色没有的用户,权限,以列表形式返回 def _get_role_not_power(self): pk = self.kwargs.get(self.pk_url_kwarg) try: role = self.model.objects.get(pk=pk) all_user = UserProfile.objects.all() users = [user for user in all_user if user not in role.user_set.all()] all_perms = Permission.objects.all() perms = [perm for perm in all_perms if perm not in role.permissions.all()] return users,perms except: return JsonResponse([], safe=False) #修改角色 def post(self, request, **kwargs): #ops.user_set.set([2]) print(request.POST) print(request.POST.getlist('users', [])) user_id_list = request.POST.getlist('users_selected', []) permission_id_list = request.POST.getlist('perms_selected', []) pk = kwargs.get("pk") try: role = self.model.objects.get(pk=pk) # user.groups.set(group_id_list) print(user_id_list) role.user_set.set(user_id_list) role.permissions.set(permission_id_list) res = {'code': 0, 'next_url': reverse("users:role_list"), 'result': '角色权限更新成功'} except: res = {'code': 1, 'next_url': reverse("users:role_list"), 'errmsg': '角色权限更新失败'} #logger.error("edit user group pwoer error: %s" % traceback.format_exc()) return render(request, settings.JUMP_PAGE, res)
38.907216
106
0.638182
7947fa4f1cf325abcbf605aed1f3df3be36ad692
188
py
Python
contrib/tests/tests/test_perl518.py
rockstack/rock
1d010d942c5b1c8fd198223ac1f4a3dd5d690edb
[ "MIT" ]
1
2015-03-13T06:01:06.000Z
2015-03-13T06:01:06.000Z
contrib/tests/tests/test_perl518.py
rockstack/rock
1d010d942c5b1c8fd198223ac1f4a3dd5d690edb
[ "MIT" ]
null
null
null
contrib/tests/tests/test_perl518.py
rockstack/rock
1d010d942c5b1c8fd198223ac1f4a3dd5d690edb
[ "MIT" ]
null
null
null
import helper class RuntimeTestCase(helper.RuntimeTests): name = 'perl518' init_files = ['cpanfile'] init_directories = ['t'] if __name__ == '__main__': helper.main()
14.461538
43
0.659574
7947fad0417dc385353cf42672bb3f4f5e8d8531
4,898
py
Python
source/models/gans/VQGAN/utils.py
Adamkomar95/gans-clip-pw
14694abd3a793b3e0fdfed76e2e12908e91ea484
[ "MIT" ]
null
null
null
source/models/gans/VQGAN/utils.py
Adamkomar95/gans-clip-pw
14694abd3a793b3e0fdfed76e2e12908e91ea484
[ "MIT" ]
null
null
null
source/models/gans/VQGAN/utils.py
Adamkomar95/gans-clip-pw
14694abd3a793b3e0fdfed76e2e12908e91ea484
[ "MIT" ]
null
null
null
import os from imageio import imread, imsave import numpy as np import matplotlib.pyplot as plt import torch import torch.nn.functional as F def plot_text(txt, size=224): fig = plt.figure(figsize=(1,1), dpi=size) fontsize = size//len(txt) if len(txt) < 15 else 8 plt.text(0.5, 0.5, txt, fontsize=fontsize, ha='center', va='center', wrap=True) plt.axis('off') fig.tight_layout(pad=0) fig.canvas.draw() img = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) img = img.reshape(fig.canvas.get_width_height()[::-1] + (3,)) return img def txt_clean(txt): return txt.translate(str.maketrans(dict.fromkeys(list("\n',.—|!?/:;\\"), ""))).replace(' ', '_').replace('"', '') def basename(file): return os.path.splitext(os.path.basename(file))[0] def file_list(path, ext=None, subdir=None): if subdir is True: files = [os.path.join(dp, f) for dp, dn, fn in os.walk(path) for f in fn] else: files = [os.path.join(path, f) for f in os.listdir(path)] if ext is not None: if isinstance(ext, list): files = [f for f in files if os.path.splitext(f.lower())[1][1:] in ext] elif isinstance(ext, str): files = [f for f in files if f.endswith(ext)] else: print(' Unknown extension/type for file list!') return sorted([f for f in files if os.path.isfile(f)]) def img_list(path, subdir=None): if subdir is True: files = [os.path.join(dp, f) for dp, dn, fn in os.walk(path) for f in fn] else: files = [os.path.join(path, f) for f in os.listdir(path)] files = [f for f in files if os.path.splitext(f.lower())[1][1:] in ['jpg', 'jpeg', 'png', 'ppm', 'tif']] return sorted([f for f in files if os.path.isfile(f)]) def img_read(path): img = imread(path) # 8bit to 256bit if (img.ndim == 2) or (img.shape[2] == 1): img = np.dstack((img,img,img)) # rgba to rgb if img.shape[2] == 4: img = img[:,:,:3] return img def img_save(path, img, norm=True): if norm == True and not np.issubdtype(img.dtype.kind, np.integer): img = (img*255).astype(np.uint8) imsave(path, img) def minmax(x, torch=True): if torch: mn = torch.min(x).detach().cpu().numpy() mx = torch.max(x).detach().cpu().numpy() else: mn = np.min(x.detach().cpu().numpy()) mx = np.max(x.detach().cpu().numpy()) return (mn, mx) # Tiles an array around two points, allowing for pad lengths greater than the input length # NB: if symm=True, every second tile is mirrored = messed up in GAN # adapted from https://discuss.pytorch.org/t/symmetric-padding/19866/3 def tile_pad(xt, padding, symm=False): h, w = xt.shape[-2:] left, right, top, bottom = padding def tile(x, minx, maxx): rng = maxx - minx if symm is True: # triangular reflection double_rng = 2*rng mod = np.fmod(x - minx, double_rng) normed_mod = np.where(mod < 0, mod+double_rng, mod) out = np.where(normed_mod >= rng, double_rng - normed_mod, normed_mod) + minx else: # repeating tiles mod = np.remainder(x - minx, rng) out = mod + minx return np.array(out, dtype=x.dtype) x_idx = np.arange(-left, w+right) y_idx = np.arange(-top, h+bottom) x_pad = tile(x_idx, -0.5, w-0.5) y_pad = tile(y_idx, -0.5, h-0.5) xx, yy = np.meshgrid(x_pad, y_pad) return xt[..., yy, xx] def pad_up_to(x, size, type='centr'): sh = x.shape[2:][::-1] if list(x.shape[2:]) == list(size): return x padding = [] for i, s in enumerate(size[::-1]): if 'side' in type.lower(): padding = padding + [0, s-sh[i]] else: # centr p0 = (s-sh[i]) // 2 p1 = s-sh[i] - p0 padding = padding + [p0,p1] y = tile_pad(x, padding, symm = ('symm' in type.lower())) return y def load_config(config_path, display=False): config = OmegaConf.load(config_path) if display: print(yaml.dump(OmegaConf.to_container(config))) return config def load_vqgan(config, ckpt_path=None): model = VQModel(**config.model.params) if ckpt_path is not None: sd = torch.load(ckpt_path, map_location="cpu")["state_dict"] missing, unexpected = model.load_state_dict(sd, strict=False) return model.eval() def vqgan_image(model, z): x = model.decode(z) x = (x+1.)/2. return x def makevid(seq_dir, size=None): out_video = seq_dir + '.mp4' moviepy.editor.ImageSequenceClip(img_list(seq_dir), fps=25).write_videofile(out_video, verbose=False) data_url = "data:video/mp4;base64," + b64encode(open(out_video,'rb').read()).decode() wh = '' if size is None else 'width=%d height=%d' % (size, size) return """<video %s controls><source src="%s" type="video/mp4"></video>""" % (wh, data_url)
35.751825
119
0.603103
7947fb0d104b8aace7c25ae3592a76a3eb9dd5c5
898
py
Python
apps/financeDashboard.py
austinbyersking/sp500Dashboard-main
0e2ee26207c51592ea925e8fbf9303f45b2e3c31
[ "MIT" ]
null
null
null
apps/financeDashboard.py
austinbyersking/sp500Dashboard-main
0e2ee26207c51592ea925e8fbf9303f45b2e3c31
[ "MIT" ]
null
null
null
apps/financeDashboard.py
austinbyersking/sp500Dashboard-main
0e2ee26207c51592ea925e8fbf9303f45b2e3c31
[ "MIT" ]
null
null
null
import streamlit as st import yfinance as yf import pandas as pd def app(): st.title('Finance Dashboard') #Tickers snp500 = pd.read_csv("Datasets/SP500.csv") tickers = snp500['Symbol'].sort_values().tolist() #Dropdown menu dropdown = st.multiselect('Pick your assets', tickers) #Get dates start = st.date_input('Start', value = pd.to_datetime('2021-01-01')) end = st.date_input('End', value = pd.to_datetime('today')) #Returns def relativeret(df): rel = df.pct_change() cumret = (1+rel).cumprod() - 1 cumret = cumret.fillna(0) return cumret #Get data if len(dropdown) > 0: # df = yf.download(dropdown,start,end)['Adj Close'] df = relativeret(yf.download(dropdown,start,end)['Adj Close']) st.header('Returns of {}'.format(dropdown)) st.line_chart(df)
27.212121
72
0.605791
7947fb213795fccdf10fe28c061f252c70e52237
1,515
py
Python
frontoxy/blocks/reader.py
fabienvauchelles/frontoxy
320a4b5592c507ac88955d727408b58ff35902b8
[ "MIT" ]
8
2016-10-20T15:52:09.000Z
2019-03-27T19:16:40.000Z
frontoxy/blocks/reader.py
fabienvauchelles/frontoxy
320a4b5592c507ac88955d727408b58ff35902b8
[ "MIT" ]
1
2018-01-19T12:31:06.000Z
2018-01-24T09:38:12.000Z
frontoxy/blocks/reader.py
fabienvauchelles/frontoxy
320a4b5592c507ac88955d727408b58ff35902b8
[ "MIT" ]
4
2017-08-17T11:40:41.000Z
2021-01-21T07:07:48.000Z
# -*- coding: utf-8 -*- from scrapy import Request from scrapy.http import HtmlResponse import json import os import zipfile class BlocksReader(object): INFO_FORMAT = u'{0}.desc' BODY_FORMAT = u'{0}.dat' def read(self, source): source_filename = os.path.basename(source) with zipfile.ZipFile(source) as zf: filenames = sorted(set([zipinfo.filename[:10] for zipinfo in zf.infolist()])) for filename in filenames: source_path = u'{0}/{1}'.format(source_filename, filename) # Read info desc = zf.read(self.INFO_FORMAT.format(filename)) info = json.loads(desc) url = info['url'].encode('utf8') info.pop('url', None) headers = info['headers'] info.pop('headers', None) status = info['status'] info.pop('status', None) info_meta = info['meta'] info_meta['source_path'] = source_path # Read content content = zf.read(self.BODY_FORMAT.format(filename)) request = Request( url=url, meta=info_meta ) response = HtmlResponse( url=url, headers=headers, status=status, body=content, request=request, ) yield response
27.053571
89
0.491749
7947fc13e0fd41c017b3d3c251557c2b34ccd944
139
py
Python
exercicios-python/curso-python/ex011.py
PabloLanza/curso-python3
34cf44a2467fa239ba4019e085833002ad9b76a1
[ "MIT" ]
null
null
null
exercicios-python/curso-python/ex011.py
PabloLanza/curso-python3
34cf44a2467fa239ba4019e085833002ad9b76a1
[ "MIT" ]
null
null
null
exercicios-python/curso-python/ex011.py
PabloLanza/curso-python3
34cf44a2467fa239ba4019e085833002ad9b76a1
[ "MIT" ]
null
null
null
sal = float(input('Qual o seu salário? ')) aum = sal * 0.15 novosal = sal + aum print('O seu novo salário é de R${:.2f}.' .format(novosal))
34.75
59
0.640288
7947fcbdbe209ef363cc968339ee4c047a1a073e
1,474
py
Python
python_scripts/010_Concatenate_cap_catAGN.py
SoumyaShreeram/Locating_AGN_in_DM_halos
1cfbee69b2c000faee4ecb199d65c3235afbed42
[ "MIT" ]
null
null
null
python_scripts/010_Concatenate_cap_catAGN.py
SoumyaShreeram/Locating_AGN_in_DM_halos
1cfbee69b2c000faee4ecb199d65c3235afbed42
[ "MIT" ]
null
null
null
python_scripts/010_Concatenate_cap_catAGN.py
SoumyaShreeram/Locating_AGN_in_DM_halos
1cfbee69b2c000faee4ecb199d65c3235afbed42
[ "MIT" ]
null
null
null
""" 010. Concatenates the cluster files with affected Lx due to AGN Script written by: Soumya Shreeram Project supervised by: Johan Comparat Date: 1st July 2021 """ # astropy modules import astropy.units as u import astropy.io.fits as fits from astropy.table import Table, Column, join from astropy.coordinates import SkyCoord from astropy.cosmology import FlatLambdaCDM, z_at_value import numpy as np # system imports import os import sys import importlib as ib import glob # plotting imports import matplotlib import matplotlib.pyplot as plt import seaborn as sns from scipy.stats import norm from scipy import interpolate sys.path.append('../imported_files/') import Exploring_DM_Halos as edh import Agn_incidence_from_Major_Mergers as aimm import Comparison_simulation_with_literature_data as cswl import Scaling_relations as sr import plotting_sr_agn_clu as pt import All_sky as sky # look back into redshifts until... redshift_limit = 2 # fraction of close pair agns added to the cat_AGN_all frac_cp_agn = 0.03 model_name = 'Model_A3' using_cp_catAGN = False hd_clu_params_all = sky.makeClusterFile(redshift_limit=redshift_limit,\ model_name=model_name, using_cp_catAGN=using_cp_catAGN) if using_cp_catAGN: fname = '../Data/pairs_z%.1f/CLU_with_scaled_Lx_all_sky_%s.fit'%(redshift_limit, model_name) else: fname = '../Data/pairs_z%.1f/CLU_with_scaled_Lx_all_sky_ModelNone.fit'%(redshift_limit) hd_clu_params_all.write(fname, format='fits')
24.566667
96
0.807327
7947fd129400a285b41b3ab1ed3bf731fc382cae
4,811
py
Python
mymcadmin/cli/commands/start.py
durandj/mymcadmin
6c9ebfa2a5dfcea1f5fb5c5cf1c0256b05b98172
[ "MIT" ]
null
null
null
mymcadmin/cli/commands/start.py
durandj/mymcadmin
6c9ebfa2a5dfcea1f5fb5c5cf1c0256b05b98172
[ "MIT" ]
null
null
null
mymcadmin/cli/commands/start.py
durandj/mymcadmin
6c9ebfa2a5dfcea1f5fb5c5cf1c0256b05b98172
[ "MIT" ]
null
null
null
""" Start commands """ import multiprocessing import grp import os import os.path import pwd import click import daemon import daemon.pidfile from .. import params from ..base import mymcadmin, cli_command, rpc_command, error, success from ... import ( errors, manager, rpc, utils, ) @mymcadmin.command() @click.argument('server_id') @cli_command @rpc_command def start(rpc_conn, server_id): """ Start a Minecraft server """ click.echo('Starting {}...'.format(server_id), nl = False) with rpc.RpcClient(*rpc_conn) as rpc_client: rpc_client.server_start(server_id) success('Success') @mymcadmin.command() @cli_command @rpc_command def start_all(rpc_conn): """ Start all Minecraft servers """ click.echo('Attempting to start all servers...') with rpc.RpcClient(*rpc_conn) as rpc_client: result = rpc_client.server_start_all() successful = result['success'] failure = result['failure'] for server_id in successful: success('{} successfully started'.format(server_id)) for server_id in failure: error('{} did not start properly'.format(server_id)) @mymcadmin.command() @click.option('--host', default = None, help = 'The host to listen on') @click.option( '--port', type = click.INT, default = None, help = 'The port to listen on') @click.option( '--user', type = params.User(), default = None, help = 'The user to run as') @click.option( '--group', type = params.Group(), default = None, help = 'The group to run as') @click.option( '--root', type = click.Path(file_okay = False), default = None, help = 'The location where instances are stored') @click.option( '--pid', type = click.Path(dir_okay = False), default = None, help = 'The location of the PID file') @click.option( '--log', type = click.Path(dir_okay = False), default = None, help = 'The log file to write to') @cli_command @click.pass_context def start_daemon(ctx, **kwargs): """ Start management daemon """ daemon_config = ctx.obj['config'].daemon or {} def _get_option(name, default, convert = None): if kwargs[name] is not None: return kwargs[name] value = daemon_config.get(name, default) if convert: try: return convert(value) except Exception: raise click.ClickException( 'Configuration value is not valid. {}: {}'.format(name, value) ) return value def _convert_user(user): if isinstance(user, int): pwd.getpwuid(user) return user else: return pwd.getpwnam(user).pw_uid def _convert_group(group): if isinstance(group, int): grp.getgrgid(group) return group else: return grp.getgrnam(group).gr_gid host = _get_option('host', 'localhost') port = _get_option('port', 2323) user = _get_option('user', os.getuid(), convert = _convert_user) group = _get_option('group', os.getgid(), convert = _convert_group) root = _get_option( 'root', os.path.join(utils.get_user_home(user), 'mymcadmin'), ) pid = _get_option('pid', os.path.join(root, 'daemon.pid')) log = _get_option('log', os.path.join(root, 'mymcadmin.log')) click.echo( 'Starting daemon as {} {} on {}:{}...'.format( user, group, host, port, ), nl = False, ) if os.path.exists(pid): raise errors.ManagerError('Management daemon is already started') proc = multiprocessing.Process( target = start_management_daemon, kwargs = { 'host': host, 'port': port, 'user': user, 'group': group, 'root': root, 'pid': pid, 'log': log, }, ) proc.start() proc.join() success('Success') def start_management_daemon(**kwargs): """ Start the management daemon """ daemon_log = open(kwargs['log'], 'a') with daemon.DaemonContext( detach_process = True, gid = kwargs['group'], pidfile = daemon.pidfile.PIDLockFile(kwargs['pid']), stdout = daemon_log, stderr = daemon_log, uid = kwargs['user'], working_directory = kwargs['root'], ): utils.setup_logging() proc = manager.Manager( kwargs['host'], kwargs['port'], kwargs['root'], ) proc.run() daemon_log.close()
23.468293
82
0.563916
7947fed0eaa684eb6f80641ee94fbbc46ba016df
7,314
py
Python
graph/undirected_graph_vector.py
rburing/gcaops
3866e11584d42354c65643c70cd2b6982866c129
[ "MIT" ]
null
null
null
graph/undirected_graph_vector.py
rburing/gcaops
3866e11584d42354c65643c70cd2b6982866c129
[ "MIT" ]
null
null
null
graph/undirected_graph_vector.py
rburing/gcaops
3866e11584d42354c65643c70cd2b6982866c129
[ "MIT" ]
null
null
null
from itertools import product from .graph_vector import GraphVector, GraphModule from .graph_vector_dict import GraphVector_dict, GraphModule_dict from .graph_vector_vector import GraphVector_vector, GraphModule_vector from .undirected_graph_basis import UndirectedGraphBasis class UndirectedGraphVector(GraphVector): """ Vector representing a linear combination of undirected graphs. """ pass class UndirectedGraphModule(GraphModule): """ Module spanned by undirected graphs. """ pass class UndirectedGraphVector_dict(UndirectedGraphVector, GraphVector_dict): """ Vector representing a linear combination of undirected graphs (stored as a dictionary). """ def __init__(self, parent, vector): """ Initialize this undirected graph vector. INPUT: - ``parent`` -- an UndirectedGraphModule - ``vector`` -- a dictionary, representing a sparse vector of coefficients with respect to the basis of ``parent`` """ if not isinstance(parent, UndirectedGraphModule_dict): raise ValueError("parent must be a UndirectedGraphModule_dict") super().__init__(parent, vector) def nvertices(self): """ Return the number of vertices in each graph in this graph vector. ASSUMPTIONS: Assumes all graphs in this graph vector have the same number of vertices. """ for key in self._vector: v, e = key[:2] if not self._vector[key].is_zero(): return v def nedges(self): """ Return the number of edges in each graph in this graph vector. ASSUMPTIONS: Assumes all graphs in this graph vector have the same number of edges. """ for key in self._vector: v, e = key[:2] if not self._vector[key].is_zero(): return e def insertion(self, position, other, **kwargs): """ Return the insertion of ``other`` into this graph vector at the vertex ``position``. """ # TODO: cache when self and other are in normal form. when not, use symmetric group action + operad axioms to deduce result. terms = [] for user_key in self._vector: user_coeff = self._vector[user_key] if user_coeff.is_zero(): continue for victim_key in other._vector: victim_coeff = other._vector[victim_key] if victim_coeff.is_zero(): continue product_coeff = user_coeff * victim_coeff if product_coeff.is_zero(): continue user, user_sign = self._parent._graph_basis.key_to_graph(user_key) user_coeff *= user_sign victim, victim_sign = other._parent._graph_basis.key_to_graph(victim_key) victim_coeff *= victim_sign for g in user._insertion_graphs(position, victim, **kwargs): terms.append([product_coeff, g]) return self._parent(terms) class UndirectedGraphModule_dict(UndirectedGraphModule, GraphModule_dict): """ Module spanned by undirected graphs (with elements stored as dictionaries). """ def __init__(self, base_ring, graph_basis): """ Initialize this undirected graph module. INPUT: - ``base_ring`` -- a ring, to be used as the ring of coefficients - ``graph_basis`` -- an UndirectedGraphBasis """ if not isinstance(graph_basis, UndirectedGraphBasis): raise ValueError('graph_basis must be an UndirectedGraphBasis') super().__init__(base_ring, graph_basis) self.element_class = UndirectedGraphVector_dict class UndirectedGraphVector_vector(UndirectedGraphVector, GraphVector_vector): """ Vector representing a linear combination of undirected graphs (stored as a dictionary of vectors). """ def __init__(self, parent, vectors): """ Initialize this graph vector. INPUT: - ``parent`` -- an UndirectedGraphModule - ``vectors`` -- a dictionary, mapping bi-gradings to sparse vectors of coefficients with respect to the basis of ``parent`` """ if not isinstance(parent, UndirectedGraphModule_vector): raise ValueError("parent must be a UndirectedGraphModule_vector") super().__init__(parent, vectors) def nvertices(self): """ Return the number of vertices in each graph in this graph vector. ASSUMPTIONS: Assumes all graphs in this graph vector have the same number of vertices. """ for bi_grading in self._vectors: if not self._vectors[bi_grading].is_zero(): return bi_grading[0] def nedges(self): """ Return the number of edges in each graph in this graph vector. ASSUMPTIONS: Assumes all graphs in this graph vector have the same number of edges. """ for bi_grading in self._vectors: if not self._vectors[bi_grading].is_zero(): return bi_grading[1] def insertion(self, position, other, **kwargs): """ Return the insertion of ``other`` into this graph vector at the vertex ``position``. """ terms = [] for (user_bigrading, user_vector) in self._vectors.items(): for (user_idx, user_coeff) in user_vector.items(): user_key = user_bigrading + (user_idx,) user, user_sign = self._parent._graph_basis.key_to_graph(user_key) user_coeff *= user_sign for (victim_bigrading, victim_vector) in other._vectors.items(): for (victim_idx, victim_coeff) in victim_vector.items(): victim_key = victim_bigrading + (victim_idx,) victim, victim_sign = other._parent._graph_basis.key_to_graph(victim_key) victim_coeff *= victim_sign product_coeff = user_coeff * victim_coeff if product_coeff.is_zero(): continue for g in user._insertion_graphs(position, victim, **kwargs): terms.append([product_coeff, g]) return self._parent(terms) class UndirectedGraphModule_vector(UndirectedGraphModule, GraphModule_vector): """ Module spanned by undirected graphs (with elements stored as dictionaries of vectors). """ def __init__(self, base_ring, graph_basis, vector_constructor, matrix_constructor): """ Initialize this undirected graph module. INPUT: - ``base_ring`` -- a ring, to be used as the ring of coefficients - ``graph_basis`` -- an UndirectedGraphBasis - ``vector_constructor`` -- constructor of (sparse) vectors - ``matrix_constructor`` -- constructor of (sparse) matrices """ if not isinstance(graph_basis, UndirectedGraphBasis): raise ValueError('graph_basis must be an UndirectedGraphBasis') super().__init__(base_ring, graph_basis, vector_constructor, matrix_constructor) self.element_class = UndirectedGraphVector_vector
37.896373
132
0.628521
7947ffbd8d5704dc68f6e3d1299c9380098fc835
1,302
py
Python
pylsd/bindings/lsd_ctypes.py
AndranikSargsyan/pylsd-nova
762a8c587a7b8bf142495d367880dbb33df121ba
[ "BSD-2-Clause" ]
23
2020-08-13T01:37:54.000Z
2022-03-31T09:39:50.000Z
pylsd/bindings/lsd_ctypes.py
AndranikSargsyan/pylsd-nova
762a8c587a7b8bf142495d367880dbb33df121ba
[ "BSD-2-Clause" ]
2
2020-08-15T15:24:26.000Z
2021-07-20T23:05:51.000Z
pylsd/bindings/lsd_ctypes.py
AndranikSargsyan/pylsd-nova
762a8c587a7b8bf142495d367880dbb33df121ba
[ "BSD-2-Clause" ]
3
2020-09-01T17:17:45.000Z
2022-03-09T09:58:50.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import ctypes import os import sys def load_lsd_library(): root_dir = os.path.abspath(os.path.dirname(__file__)) libnames = ['linux/liblsd.so'] libdir = 'lib' if sys.platform == 'win32': if sys.maxsize > 2 ** 32: libnames = ['win32/x64/lsd.dll', 'win32/x64/liblsd.dll'] else: libnames = ['win32/x86/lsd.dll', 'win32/x86/liblsd.dll'] elif sys.platform == 'darwin': libnames = ['darwin/liblsd.dylib'] while root_dir is not None: for libname in libnames: try: lsdlib = ctypes.cdll[os.path.join(root_dir, libdir, libname)] return lsdlib except Exception as e: pass tmp = os.path.dirname(root_dir) if tmp == root_dir: root_dir = None else: root_dir = tmp # if we didn't find the library so far, try loading without # a full path as a last resort for libname in libnames: try: lsdlib = ctypes.cdll[libname] return lsdlib except Exception as e: pass return None lsdlib = load_lsd_library() if lsdlib is None: raise ImportError('Cannot load dynamic library. Did you compile LSD?')
25.038462
77
0.572197
7948001291cd96ce098a5bb558bae227822ceaa0
728
py
Python
server_part/config.py
Hubert51/Empty-study-room-detector
9cbd18a4bf5bc02b8aebac42c15161258015ed5c
[ "MIT" ]
2
2017-04-30T00:46:59.000Z
2019-04-20T03:39:31.000Z
server_part/config.py
Hubert51/Empty-study-room-detector
9cbd18a4bf5bc02b8aebac42c15161258015ed5c
[ "MIT" ]
2
2017-04-30T16:25:08.000Z
2017-05-04T01:47:31.000Z
server_part/config.py
Hubert51/Empty-study-room-detector
9cbd18a4bf5bc02b8aebac42c15161258015ed5c
[ "MIT" ]
3
2017-02-16T00:22:02.000Z
2019-04-14T00:03:13.000Z
#encoding:utf-8 import os WTF_CSRF_ENABLED = True SECRET_KEY = 'you-will-never-guess' OPENID_PROVIDERS = [ {'name': 'Google', 'url': 'https://www.google.com/accounts/o8/id'}, {'name': 'Yahoo', 'url': 'https://me.yahoo.com'}, {'name': 'AOL', 'url': 'http://openid.aol.com/<username>'}, {'name': 'Flickr', 'url': 'http://www.flickr.com/<username>'}, {'name': 'MyOpenID', 'url': 'https://www.myopenid.com'}] basedir = os.path.abspath(os.path.dirname(__file__)) SQLALCHEMY_DATABASE_URI='mysql://root:gengruijie@localhost:3306/test_roomr' #这里登陆的是root用户,要填上自己的密码,MySQL的默认端口是3306,填上之前创建的数据库名text1 SQLALCHEMY_TRACK_MODIFICATIONS = True SQLALCHEMY_COMMIT_ON_TEARDOWN=True #设置这一项是每次请求结束后都会自动提交数据库中的变动 # db = SQLAlchemy(app)
30.333333
131
0.717033
7948008a047381e0a522f628007fc2bc95a7dea4
1,694
py
Python
UVA-OJ/108 - Maximum Sum.py
MhmdRyhn/Programming-Sloution
be189cbf81b14ac7c10d387e259aa23992ba1016
[ "MIT" ]
1
2019-07-29T04:05:34.000Z
2019-07-29T04:05:34.000Z
UVA-OJ/108 - Maximum Sum.py
MhmdRyhn/Programming-Sloution
be189cbf81b14ac7c10d387e259aa23992ba1016
[ "MIT" ]
null
null
null
UVA-OJ/108 - Maximum Sum.py
MhmdRyhn/Programming-Sloution
be189cbf81b14ac7c10d387e259aa23992ba1016
[ "MIT" ]
null
null
null
def max_sum_subarray_1D(arr, sz): cur_max_sum = global_max_sum = arr[0] for i in range(1, sz): cur_max_sum = max(arr[i], cur_max_sum+arr[i]) if cur_max_sum > global_max_sum: global_max_sum = cur_max_sum return global_max_sum def max_sum_subarray_2D(arr_2d, m, n): for i in range(m): for j in range(1, n): arr_2d[i][j] += arr_2d[i][j-1] cur_sum, max_sum = 0, 0 for l in range(n): for r in range(l, n): arr = [] for k in range(m): if l != 0: arr.append(arr_2d[k][r] - arr_2d[k][l-1]) else: arr.append(arr_2d[k][r]) cur_sum = max_sum_subarray_1D(arr, m) if cur_sum > max_sum: max_sum = cur_sum return max_sum if __name__ == '__main__': while True: try: n = int(input()) except EOFError: break arr = [[0 for i in range(n)] for j in range(n)] i, j = 0, 0 while True: a = None try: a = list(map(int, input().split())) except EOFError: break sz = len(a) for k in range(sz): if j < n: arr[i][j] = a[k] j += 1 else: j = 0 i += 1 arr[i][j] = a[k] j += 1 if i > (n-1) and j > (n-1): break if i == (n - 1) and j > (n - 1): break ans = max_sum_subarray_2D(arr, n, n) print(ans)
23.527778
61
0.40732
794800951ac21be2ddf4a72f53436150a681f5d0
6,768
py
Python
sdk/python/pulumi_azure_native/network/v20200701/get_virtual_network_gateway_vpnclient_ipsec_parameters.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/network/v20200701/get_virtual_network_gateway_vpnclient_ipsec_parameters.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/network/v20200701/get_virtual_network_gateway_vpnclient_ipsec_parameters.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities __all__ = [ 'GetVirtualNetworkGatewayVpnclientIpsecParametersResult', 'AwaitableGetVirtualNetworkGatewayVpnclientIpsecParametersResult', 'get_virtual_network_gateway_vpnclient_ipsec_parameters', ] @pulumi.output_type class GetVirtualNetworkGatewayVpnclientIpsecParametersResult: """ An IPSec parameters for a virtual network gateway P2S connection. """ def __init__(__self__, dh_group=None, ike_encryption=None, ike_integrity=None, ipsec_encryption=None, ipsec_integrity=None, pfs_group=None, sa_data_size_kilobytes=None, sa_life_time_seconds=None): if dh_group and not isinstance(dh_group, str): raise TypeError("Expected argument 'dh_group' to be a str") pulumi.set(__self__, "dh_group", dh_group) if ike_encryption and not isinstance(ike_encryption, str): raise TypeError("Expected argument 'ike_encryption' to be a str") pulumi.set(__self__, "ike_encryption", ike_encryption) if ike_integrity and not isinstance(ike_integrity, str): raise TypeError("Expected argument 'ike_integrity' to be a str") pulumi.set(__self__, "ike_integrity", ike_integrity) if ipsec_encryption and not isinstance(ipsec_encryption, str): raise TypeError("Expected argument 'ipsec_encryption' to be a str") pulumi.set(__self__, "ipsec_encryption", ipsec_encryption) if ipsec_integrity and not isinstance(ipsec_integrity, str): raise TypeError("Expected argument 'ipsec_integrity' to be a str") pulumi.set(__self__, "ipsec_integrity", ipsec_integrity) if pfs_group and not isinstance(pfs_group, str): raise TypeError("Expected argument 'pfs_group' to be a str") pulumi.set(__self__, "pfs_group", pfs_group) if sa_data_size_kilobytes and not isinstance(sa_data_size_kilobytes, int): raise TypeError("Expected argument 'sa_data_size_kilobytes' to be a int") pulumi.set(__self__, "sa_data_size_kilobytes", sa_data_size_kilobytes) if sa_life_time_seconds and not isinstance(sa_life_time_seconds, int): raise TypeError("Expected argument 'sa_life_time_seconds' to be a int") pulumi.set(__self__, "sa_life_time_seconds", sa_life_time_seconds) @property @pulumi.getter(name="dhGroup") def dh_group(self) -> str: """ The DH Group used in IKE Phase 1 for initial SA. """ return pulumi.get(self, "dh_group") @property @pulumi.getter(name="ikeEncryption") def ike_encryption(self) -> str: """ The IKE encryption algorithm (IKE phase 2). """ return pulumi.get(self, "ike_encryption") @property @pulumi.getter(name="ikeIntegrity") def ike_integrity(self) -> str: """ The IKE integrity algorithm (IKE phase 2). """ return pulumi.get(self, "ike_integrity") @property @pulumi.getter(name="ipsecEncryption") def ipsec_encryption(self) -> str: """ The IPSec encryption algorithm (IKE phase 1). """ return pulumi.get(self, "ipsec_encryption") @property @pulumi.getter(name="ipsecIntegrity") def ipsec_integrity(self) -> str: """ The IPSec integrity algorithm (IKE phase 1). """ return pulumi.get(self, "ipsec_integrity") @property @pulumi.getter(name="pfsGroup") def pfs_group(self) -> str: """ The Pfs Group used in IKE Phase 2 for new child SA. """ return pulumi.get(self, "pfs_group") @property @pulumi.getter(name="saDataSizeKilobytes") def sa_data_size_kilobytes(self) -> int: """ The IPSec Security Association (also called Quick Mode or Phase 2 SA) payload size in KB for P2S client.. """ return pulumi.get(self, "sa_data_size_kilobytes") @property @pulumi.getter(name="saLifeTimeSeconds") def sa_life_time_seconds(self) -> int: """ The IPSec Security Association (also called Quick Mode or Phase 2 SA) lifetime in seconds for P2S client. """ return pulumi.get(self, "sa_life_time_seconds") class AwaitableGetVirtualNetworkGatewayVpnclientIpsecParametersResult(GetVirtualNetworkGatewayVpnclientIpsecParametersResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetVirtualNetworkGatewayVpnclientIpsecParametersResult( dh_group=self.dh_group, ike_encryption=self.ike_encryption, ike_integrity=self.ike_integrity, ipsec_encryption=self.ipsec_encryption, ipsec_integrity=self.ipsec_integrity, pfs_group=self.pfs_group, sa_data_size_kilobytes=self.sa_data_size_kilobytes, sa_life_time_seconds=self.sa_life_time_seconds) def get_virtual_network_gateway_vpnclient_ipsec_parameters(resource_group_name: Optional[str] = None, virtual_network_gateway_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetVirtualNetworkGatewayVpnclientIpsecParametersResult: """ An IPSec parameters for a virtual network gateway P2S connection. :param str resource_group_name: The name of the resource group. :param str virtual_network_gateway_name: The virtual network gateway name. """ __args__ = dict() __args__['resourceGroupName'] = resource_group_name __args__['virtualNetworkGatewayName'] = virtual_network_gateway_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:network/v20200701:getVirtualNetworkGatewayVpnclientIpsecParameters', __args__, opts=opts, typ=GetVirtualNetworkGatewayVpnclientIpsecParametersResult).value return AwaitableGetVirtualNetworkGatewayVpnclientIpsecParametersResult( dh_group=__ret__.dh_group, ike_encryption=__ret__.ike_encryption, ike_integrity=__ret__.ike_integrity, ipsec_encryption=__ret__.ipsec_encryption, ipsec_integrity=__ret__.ipsec_integrity, pfs_group=__ret__.pfs_group, sa_data_size_kilobytes=__ret__.sa_data_size_kilobytes, sa_life_time_seconds=__ret__.sa_life_time_seconds)
43.10828
205
0.695035
794800983929868e97c60247f8df44c27ac6fc3d
5,506
py
Python
tests/test_image_to_ascii.py
emberati/ascii-art
955360cea395f224d17dbb3f48ee49738a4f4014
[ "MIT" ]
25
2020-11-18T16:30:19.000Z
2022-03-12T03:54:05.000Z
tests/test_image_to_ascii.py
emberati/ascii-art
955360cea395f224d17dbb3f48ee49738a4f4014
[ "MIT" ]
3
2020-08-28T09:59:43.000Z
2020-12-20T05:58:38.000Z
tests/test_image_to_ascii.py
emberati/ascii-art
955360cea395f224d17dbb3f48ee49738a4f4014
[ "MIT" ]
9
2020-10-15T17:38:06.000Z
2021-12-25T22:52:53.000Z
from pathlib import Path from PIL import Image from ascii_art import image_to_ascii einstein = f"""??*??**???**?????????????;?;;;;?*#??**%#####@@###@@@@@@@@@##@#######SS****S###??*?. ?**??**??*?????????????;??;;,?*S#?;*%####@@@@@@@@@@@@@@@@@@@@@@######%#SS*S####*?*;. ***?***???????????????;;??;??*S%??*S%#@@@@@@@@@@@@@@@@@@@@@@@@@@######%##SS%####***. ********???????????;;;;;;;??***??**S##@@@@@@@@@@@@@@@@@@@@@@@@##@@#######%S%####*?S?: ********??????????;;,,;?????*??;?**S##@@@@@@@@@@@@@@@@@@@@@@@@@@#########%SS#####*???,. ******??*????????;;;;;?*****??;?**S##@@@@@@@@@@@@@@@@@@@@@@@@@##@#########%S%#####*?.,,: ****?**????????;;;;;?*%*??????;?*%%%#@@@@@@@@@@@@@@@@@@@@@@@@@@@###########%######**:. :, ***??**???????;;;;,;*S?????;?*,?**%S*##@@@@@@@@@@@@@@@@@@@@@@@@@@############@@###**? :, *****?*????????;;;;?*;???*?;**,?*;:.,?*#@@@@@@@@@@@@#****##%##@@@#####@#######@#%*S*?,. ,, ******?*??????;;,,;*;,??**;?**:??.,;?S##@@@@@@@@@@@@###*??***S@@@################***?;?,..:. #********??????;,;?*;,??*?;?S*.??*S#%##@@@@@@@@@@@@@@@@###@@@@@@######@#####@@@##***?;,;..:,. ********???????;;;??;;***?;*#*:?S########@@@@@@@@@@@@@@@@@@@@@@@#####@@#####@@@#S****?;,,. .. ?#*?*?***?????;;;;,;,;***;;?*?:*#@##S%####@@@@@@@@@@@@@@@@@@@@@@#############@###S**?*??;, *S***?**????;;;;,,,::;*??;;?*;;S@#%****##**#@@@@@@@@@##%***S#@@@####@@@#####@@@####*??**??, #******?????;;;,::..:;*?;;;?*:;%#*?;?**###?*@@@@@@@@###**S#**#@@@#S#@@@@#####@@@@##S******?. #**?**?????;;,:......,*;;,;*?.?S*;?##??**#*;#@@@@@###****?**S*#@@#%##########@@@####*****??*, *#**??????;;,.... ...;*,;;;S?:?**?*@,.,*#**;#@@@@###SS@#;,.?*%#@############@@@@##**%*?***?;?; ?***????;;,,:... ...,?*,;;;*;,?*%??*?,?%*%?*#@@@##@#%##%:..S*%###@###############%S********?,.;. *#?????;;,,:... ..:;:??.,,,?,;?*????**#%#S;S@@@#####SS*******####@@############*SS********?*?.., *#?;;??;;;,:......::.??.:::;:?*?*S***###*,;#@@###########%%#%##%#@@###########S***SS*S*?**??*; .. **;;;,,;;;,:.. ,....,?;..::..?*?*SS##SS#*:?#######@@@############@@#####%####SS#*??*SSS**S*;??. . **..:,,,,;,... :. .:?:,:... .?***#######;;S#######@@@@@##@##########S##%S###S***#*;??**S**S*;?: .. *? .:,,.:... ....;::,..;...?########@*;*#####S###@@@@@@@@@@#@@####%##SSSSSSS**#%**;?**%S#***?. . *? ..,:.... ..:;:.:...;...*#@####@@%?*######*S#@@@@@@@@@@@@@@@@##%SSSS*?*S**##S**??**###S***,. *, ...... .,,,......,...*#@@#####*?##@@@@#S*S#@@@@@@@@@@@@@@@##SS*S**?**##@@##?S**%####*%%;,. ,. .....,:.. ...,,...*#@#####@??#@@@@@@#S%*#@@@@@@@@@@@@@@##***S*??*#@@@@#####?*#@##**#?,.. :. .... ........:..?#####@@%;;#@@@@@###@#S#@@@@@@@@@@@@@##***S****#@@@@##@#@**@@@#**#*;.. ?,. ............,..?%%S#@@@?,,?#@@#####@@*#@#@@@@@@@@@@@##**SS****%##@#SS@@#%*@@@#**#*?:, ?;. .:...,,;;..?S*S#@@#%*;:?*S%S####%%@@@#@@@@@@@@@###**S*****#@##S###@#SS@@##*?S*;,. *;.... .,;;??;,..***#@@#####**####@@@##@@@@##@@@@@@@@@##**S***?#@@##*#####*#@@##??S*;,. ?,..?S,.:. :. . ..:..**?######@@@@@@##@@##@@######@@@@@@@@@#**S****#@@*****###%#@##%?*S?:, . ?; ,,.:. . ,,,..*S?SS#####@#@@@#@@@@@@@#######@@@#@@@##**S****@##*?******###@S**S?:.... ?; . .::. .?%?***###@@##@@@@@@#####@@####@@@@@@@#%**S#S?#@##*?;;S**%#*?#S*?,.. .. , .?:,. . ..... ?*******%###@##################@@@@@@#S**##**?S#?:...?****,;*?: ..... . ..:. ...... ,**S#??;?********#***S*S########@@@@@#%**##**,.. .,,. .?, ........ . ....... :***##*;,,,????;???***?*?**####@@@@@@#%?##%*?, ........... .........?S?#@@S?;?***S***S%S**;:,**###@##@@@#**##*?: ..........; ...........;S**@@#S;*SS##S######*,,*S##S#@##@@@#*##S;. . ...... .;? ............?#*#@@#:*###%S%%*##*??*##@#%@###@@@#*##? ..... :;?? .............:*S*@@#:S@##%%SS*##?***#@@##@##@@@@*##; . ... .. .,;??? ................;#*#@#:*####S**S@*?**%@@@@####@@@#S#, . .. .,;???? .....................*#S@@,?###%S**%#??*S@##@@@@S#@@#**. . . .;;???;; .:,;,,,:................:#*@@?;#@#SS**#*?*S###@@@@#S@@#?, .,??????;; .,;?;;;;,:.................?*#@?.*##*#**#?*###@@@@@@##@#? . .,;???????; .;???;;;;;;,,..........:::....?*##.;##SS*#*?###@@@@@@#S@#? . .,;???;????; .;??;;;;;???;;,:........:::,:...:;*#*.*#S%#*?#@@@@@@@@@##%, . .;?????;??;;: .;????;????????;,,......:::,,:,:...:,*#;,*S#S?#@@@@@@@@@#*? .. .;????????;;:. ,;??????????????;;;:....:::,,,,::.....:*#,:???#@@@@@@@@@#?. ...... :;;???????;,,.. ??????????????????;,::::::,,,,,:::.....:**??*#@@@@@@@@#*: .. ......... ,;????;????;,... ??????????????????;:.::::,,,,,:::::.....,*###@@#@@@@@*, . .. ......... :;????;;???;;. ., """ # noqa: F541,W291 def test_image_to_ascii(): image = Image.open("examples/images/einstein.jpg") params = { "width": 100, "height": 50, "font": str(Path(__file__).parent / "Menlo.ttc"), "normalize": True, "invert": True, } ascii = image_to_ascii(image, **params) assert ascii == einstein
77.549296
115
0.081184
794800c65532dcfea40ee497a3fbd17d8a818d2d
33,498
py
Python
sdk/lusid/models/resource_list_of_get_index_convention_response.py
fossabot/lusid-sdk-python-preview
2c95d870489d93dee921593877256d3869c090e6
[ "MIT" ]
null
null
null
sdk/lusid/models/resource_list_of_get_index_convention_response.py
fossabot/lusid-sdk-python-preview
2c95d870489d93dee921593877256d3869c090e6
[ "MIT" ]
null
null
null
sdk/lusid/models/resource_list_of_get_index_convention_response.py
fossabot/lusid-sdk-python-preview
2c95d870489d93dee921593877256d3869c090e6
[ "MIT" ]
1
2020-10-29T08:35:32.000Z
2020-10-29T08:35:32.000Z
# coding: utf-8 """ LUSID API # Introduction This page documents the [LUSID APIs](https://www.lusid.com/api/swagger), which allows authorised clients to query and update their data within the LUSID platform. SDKs to interact with the LUSID APIs are available in the following languages : * [C#](https://github.com/finbourne/lusid-sdk-csharp) * [Java](https://github.com/finbourne/lusid-sdk-java) * [JavaScript](https://github.com/finbourne/lusid-sdk-js) * [Python](https://github.com/finbourne/lusid-sdk-python) # Data Model The LUSID API has a relatively lightweight but extremely powerful data model. One of the goals of LUSID was not to enforce on clients a single rigid data model but rather to provide a flexible foundation onto which clients can map their own data models. The core entities in LUSID provide a minimal structure and set of relationships, and the data model can be extended using Properties. The LUSID data model is exposed through the LUSID APIs. The APIs provide access to both business objects and the meta data used to configure the systems behaviours. The key business entities are: - * **Portfolios** A portfolio is a container for transactions and holdings (a **Transaction Portfolio**) or constituents (a **Reference Portfolio**). * **Derived Portfolios**. Derived Portfolios allow Portfolios to be created based on other Portfolios, by overriding or adding specific items. * **Holdings** A Holding is a quantity of an Instrument or a balance of cash within a Portfolio. Holdings can only be adjusted via Transactions. * **Transactions** A Transaction is an economic event that occurs in a Portfolio, causing its holdings to change. * **Corporate Actions** A corporate action is a market event which occurs to an Instrument and thus applies to all portfolios which holding the instrument. Examples are stock splits or mergers. * **Constituents** A constituent is a record in a Reference Portfolio containing an Instrument and an associated weight. * **Instruments** An instrument represents a currency, tradable instrument or OTC contract that is attached to a transaction and a holding. * **Properties** All major entities allow additional user defined properties to be associated with them. For example, a Portfolio manager may be associated with a portfolio. Meta data includes: - * **Transaction Types** Transactions are booked with a specific transaction type. The types are client defined and are used to map the Transaction to a series of movements which update the portfolio holdings. * **Properties Types** Types of user defined properties used within the system. ## Scope All data in LUSID is segregated at the client level. Entities in LUSID are identifiable by a unique code. Every entity lives within a logical data partition known as a Scope. Scope is an identity namespace allowing two entities with the same unique code to co-exist within individual address spaces. For example, prices for equities from different vendors may be uploaded into different scopes such as `client/vendor1` and `client/vendor2`. A portfolio may then be valued using either of the price sources by referencing the appropriate scope. LUSID Clients cannot access scopes of other clients. ## Instruments LUSID has its own built-in instrument master which you can use to master your own instrument universe. Every instrument must be created with one or more unique market identifiers, such as [FIGI](https://openfigi.com/). For any non-listed instruments (eg OTCs), you can upload an instrument against a custom ID of your choosing. In addition, LUSID will allocate each instrument a unique 'LUSID instrument identifier'. The LUSID instrument identifier is what is used when uploading transactions, holdings, prices, etc. The API exposes an `instrument/lookup` endpoint which can be used to lookup these LUSID identifiers using their market identifiers. Cash can be referenced using the ISO currency code prefixed with \"`CCY_`\" e.g. `CCY_GBP` ## Instrument Data Instrument data can be uploaded to the system using the [Instrument Properties](#tag/InstrumentProperties) endpoint. | Field|Type|Description | | ---|---|--- | | Key|propertykey|The key of the property. This takes the format {domain}/{scope}/{code} e.g. 'Instrument/system/Name' or 'Transaction/strategy/quantsignal'. | | Value|string|The value of the property. | | EffectiveFrom|datetimeoffset|The effective datetime from which the property is valid. | ## Transaction Portfolios Portfolios are the top-level entity containers within LUSID, containing transactions, corporate actions and holdings. The transactions build up the portfolio holdings on which valuations, analytics profit & loss and risk can be calculated. Properties can be associated with Portfolios to add in additional data. Portfolio properties can be changed over time, for example to allow a Portfolio Manager to be linked with a Portfolio. Additionally, portfolios can be securitised and held by other portfolios, allowing LUSID to perform \"drill-through\" into underlying fund holdings ### Derived Portfolios LUSID also allows for a portfolio to be composed of another portfolio via derived portfolios. A derived portfolio can contain its own transactions and also inherits any transactions from its parent portfolio. Any changes made to the parent portfolio are automatically reflected in derived portfolio. Derived portfolios in conjunction with scopes are a powerful construct. For example, to do pre-trade what-if analysis, a derived portfolio could be created a new namespace linked to the underlying live (parent) portfolio. Analysis can then be undertaken on the derived portfolio without affecting the live portfolio. ### Transactions A transaction represents an economic activity against a Portfolio. Transactions are processed according to a configuration. This will tell the LUSID engine how to interpret the transaction and correctly update the holdings. LUSID comes with a set of transaction types you can use out of the box, or you can configure your own set(s) of transactions. For more details see the [LUSID Getting Started Guide for transaction configuration.](https://support.lusid.com/configuring-transaction-types) | Field|Type|Description | | ---|---|--- | | TransactionId|string|The unique identifier for the transaction. | | Type|string|The type of the transaction e.g. 'Buy', 'Sell'. The transaction type should have been pre-configured via the System Configuration API endpoint. If it hasn't been pre-configured the transaction will still be updated or inserted however you will be unable to generate the resultant holdings for the portfolio that contains this transaction as LUSID does not know how to process it. | | InstrumentIdentifiers|map|A set of instrument identifiers to use to resolve the transaction to a unique instrument. | | TransactionDate|dateorcutlabel|The date of the transaction. | | SettlementDate|dateorcutlabel|The settlement date of the transaction. | | Units|decimal|The number of units transacted in the associated instrument. | | TransactionPrice|transactionprice|The price for each unit of the transacted instrument in the transaction currency. | | TotalConsideration|currencyandamount|The total value of the transaction in the settlement currency. | | ExchangeRate|decimal|The exchange rate between the transaction and settlement currency. For example if the transaction currency is in USD and the settlement currency is in GBP this this the USD/GBP rate. | | TransactionCurrency|currency|The transaction currency. | | Properties|map|Set of unique transaction properties and associated values to store with the transaction. Each property must be from the 'Transaction' domain. | | CounterpartyId|string|The identifier for the counterparty of the transaction. | | Source|string|The source of the transaction. This is used to look up the appropriate transaction group set in the transaction type configuration. | From these fields, the following values can be calculated * **Transaction value in Transaction currency**: TotalConsideration / ExchangeRate * **Transaction value in Portfolio currency**: Transaction value in Transaction currency * TradeToPortfolioRate #### Example Transactions ##### A Common Purchase Example Three example transactions are shown in the table below. They represent a purchase of USD denominated IBM shares within a Sterling denominated portfolio. * The first two transactions are for separate buy and fx trades * Buying 500 IBM shares for $71,480.00 * A spot foreign exchange conversion to fund the IBM purchase. (Buy $71,480.00 for &#163;54,846.60) * The third transaction is an alternate version of the above trades. Buying 500 IBM shares and settling directly in Sterling. | Column | Buy Trade | Fx Trade | Buy Trade with foreign Settlement | | ----- | ----- | ----- | ----- | | TransactionId | FBN00001 | FBN00002 | FBN00003 | | Type | Buy | FxBuy | Buy | | InstrumentIdentifiers | { \"figi\", \"BBG000BLNNH6\" } | { \"CCY\", \"CCY_USD\" } | { \"figi\", \"BBG000BLNNH6\" } | | TransactionDate | 2018-08-02 | 2018-08-02 | 2018-08-02 | | SettlementDate | 2018-08-06 | 2018-08-06 | 2018-08-06 | | Units | 500 | 71480 | 500 | | TransactionPrice | 142.96 | 1 | 142.96 | | TradeCurrency | USD | USD | USD | | ExchangeRate | 1 | 0.7673 | 0.7673 | | TotalConsideration.Amount | 71480.00 | 54846.60 | 54846.60 | | TotalConsideration.Currency | USD | GBP | GBP | | Trade/default/TradeToPortfolioRate&ast; | 0.7673 | 0.7673 | 0.7673 | [&ast; This is a property field] ##### A Forward FX Example LUSID has a flexible transaction modelling system, meaning there are a number of different ways of modelling forward fx trades. The default LUSID transaction types are FwdFxBuy and FwdFxSell. Using these transaction types, LUSID will generate two holdings for each Forward FX trade, one for each currency in the trade. An example Forward Fx trade to sell GBP for USD in a JPY-denominated portfolio is shown below: | Column | Forward 'Sell' Trade | Notes | | ----- | ----- | ---- | | TransactionId | FBN00004 | | | Type | FwdFxSell | | | InstrumentIdentifiers | { \"Instrument/default/Currency\", \"GBP\" } | | | TransactionDate | 2018-08-02 | | | SettlementDate | 2019-02-06 | Six month forward | | Units | 10000.00 | Units of GBP | | TransactionPrice | 1 | | | TradeCurrency | GBP | Currency being sold | | ExchangeRate | 1.3142 | Agreed rate between GBP and USD | | TotalConsideration.Amount | 13142.00 | Amount in the settlement currency, USD | | TotalConsideration.Currency | USD | Settlement currency | | Trade/default/TradeToPortfolioRate | 142.88 | Rate between trade currency, GBP and portfolio base currency, JPY | Please note that exactly the same economic behaviour could be modelled using the FwdFxBuy Transaction Type with the amounts and rates reversed. ### Holdings A holding represents a position in an instrument or cash on a given date. | Field|Type|Description | | ---|---|--- | | InstrumentUid|string|The unqiue Lusid Instrument Id (LUID) of the instrument that the holding is in. | | SubHoldingKeys|map|The sub-holding properties which identify the holding. Each property will be from the 'Transaction' domain. These are configured when a transaction portfolio is created. | | Properties|map|The properties which have been requested to be decorated onto the holding. These will be from the 'Instrument' or 'Holding' domain. | | HoldingType|string|The type of the holding e.g. Position, Balance, CashCommitment, Receivable, ForwardFX etc. | | Units|decimal|The total number of units of the holding. | | SettledUnits|decimal|The total number of settled units of the holding. | | Cost|currencyandamount|The total cost of the holding in the transaction currency. | | CostPortfolioCcy|currencyandamount|The total cost of the holding in the portfolio currency. | | Transaction|transaction|The transaction associated with an unsettled holding. | ## Corporate Actions Corporate actions are represented within LUSID in terms of a set of instrument-specific 'transitions'. These transitions are used to specify the participants of the corporate action, and the effect that the corporate action will have on holdings in those participants. ### Corporate Action | Field|Type|Description | | ---|---|--- | | CorporateActionCode|code|The unique identifier of this corporate action | | Description|string| | | AnnouncementDate|datetimeoffset|The announcement date of the corporate action | | ExDate|datetimeoffset|The ex date of the corporate action | | RecordDate|datetimeoffset|The record date of the corporate action | | PaymentDate|datetimeoffset|The payment date of the corporate action | | Transitions|corporateactiontransition[]|The transitions that result from this corporate action | ### Transition | Field|Type|Description | | ---|---|--- | | InputTransition|corporateactiontransitioncomponent|Indicating the basis of the corporate action - which security and how many units | | OutputTransitions|corporateactiontransitioncomponent[]|What will be generated relative to the input transition | ### Example Corporate Action Transitions #### A Dividend Action Transition In this example, for each share of IBM, 0.20 units (or 20 pence) of GBP are generated. | Column | Input Transition | Output Transition | | ----- | ----- | ----- | | Instrument Identifiers | { \"figi\" : \"BBG000BLNNH6\" } | { \"ccy\" : \"CCY_GBP\" } | | Units Factor | 1 | 0.20 | | Cost Factor | 1 | 0 | #### A Split Action Transition In this example, for each share of IBM, we end up with 2 units (2 shares) of IBM, with total value unchanged. | Column | Input Transition | Output Transition | | ----- | ----- | ----- | | Instrument Identifiers | { \"figi\" : \"BBG000BLNNH6\" } | { \"figi\" : \"BBG000BLNNH6\" } | | Units Factor | 1 | 2 | | Cost Factor | 1 | 1 | #### A Spinoff Action Transition In this example, for each share of IBM, we end up with 1 unit (1 share) of IBM and 3 units (3 shares) of Celestica, with 85% of the value remaining on the IBM share, and 5% in each Celestica share (15% total). | Column | Input Transition | Output Transition 1 | Output Transition 2 | | ----- | ----- | ----- | ----- | | Instrument Identifiers | { \"figi\" : \"BBG000BLNNH6\" } | { \"figi\" : \"BBG000BLNNH6\" } | { \"figi\" : \"BBG000HBGRF3\" } | | Units Factor | 1 | 1 | 3 | | Cost Factor | 1 | 0.85 | 0.15 | ## Reference Portfolios Reference portfolios are portfolios that contain constituents with weights. They are designed to represent entities such as indices and benchmarks. ### Constituents | Field|Type|Description | | ---|---|--- | | InstrumentIdentifiers|map|Unique instrument identifiers | | InstrumentUid|string|LUSID's internal unique instrument identifier, resolved from the instrument identifiers | | Currency|decimal| | | Weight|decimal| | | FloatingWeight|decimal| | ## Portfolio Groups Portfolio groups allow the construction of a hierarchy from portfolios and groups. Portfolio operations on the group are executed on an aggregated set of portfolios in the hierarchy. For example: * Global Portfolios _(group)_ * APAC _(group)_ * Hong Kong _(portfolio)_ * Japan _(portfolio)_ * Europe _(group)_ * France _(portfolio)_ * Germany _(portfolio)_ * UK _(portfolio)_ In this example **Global Portfolios** is a group that consists of an aggregate of **Hong Kong**, **Japan**, **France**, **Germany** and **UK** portfolios. ## Properties Properties are key-value pairs that can be applied to any entity within a domain (where a domain is `trade`, `portfolio`, `security` etc). Properties must be defined before use with a `PropertyDefinition` and can then subsequently be added to entities. ## Schema A detailed description of the entities used by the API and parameters for endpoints which take a JSON document can be retrieved via the `schema` endpoint. ## Meta data The following headers are returned on all responses from LUSID | Name | Purpose | | --- | --- | | lusid-meta-duration | Duration of the request | | lusid-meta-success | Whether or not LUSID considered the request to be successful | | lusid-meta-requestId | The unique identifier for the request | | lusid-schema-url | Url of the schema for the data being returned | | lusid-property-schema-url | Url of the schema for any properties | # Error Codes | Code|Name|Description | | ---|---|--- | | <a name=\"-10\">-10</a>|Server Configuration Error| | | <a name=\"-1\">-1</a>|Unknown error|An unexpected error was encountered on our side. | | <a name=\"102\">102</a>|Version Not Found| | | <a name=\"103\">103</a>|Api Rate Limit Violation| | | <a name=\"104\">104</a>|Instrument Not Found| | | <a name=\"105\">105</a>|Property Not Found| | | <a name=\"106\">106</a>|Portfolio Recursion Depth| | | <a name=\"108\">108</a>|Group Not Found| | | <a name=\"109\">109</a>|Portfolio Not Found| | | <a name=\"110\">110</a>|Property Schema Not Found| | | <a name=\"111\">111</a>|Portfolio Ancestry Not Found| | | <a name=\"112\">112</a>|Portfolio With Id Already Exists| | | <a name=\"113\">113</a>|Orphaned Portfolio| | | <a name=\"119\">119</a>|Missing Base Claims| | | <a name=\"121\">121</a>|Property Not Defined| | | <a name=\"122\">122</a>|Cannot Delete System Property| | | <a name=\"123\">123</a>|Cannot Modify Immutable Property Field| | | <a name=\"124\">124</a>|Property Already Exists| | | <a name=\"125\">125</a>|Invalid Property Life Time| | | <a name=\"126\">126</a>|Property Constraint Style Excludes Properties| | | <a name=\"127\">127</a>|Cannot Modify Default Data Type| | | <a name=\"128\">128</a>|Group Already Exists| | | <a name=\"129\">129</a>|No Such Data Type| | | <a name=\"130\">130</a>|Undefined Value For Data Type| | | <a name=\"131\">131</a>|Unsupported Value Type Defined On Data Type| | | <a name=\"132\">132</a>|Validation Error| | | <a name=\"133\">133</a>|Loop Detected In Group Hierarchy| | | <a name=\"134\">134</a>|Undefined Acceptable Values| | | <a name=\"135\">135</a>|Sub Group Already Exists| | | <a name=\"138\">138</a>|Price Source Not Found| | | <a name=\"139\">139</a>|Analytic Store Not Found| | | <a name=\"141\">141</a>|Analytic Store Already Exists| | | <a name=\"143\">143</a>|Client Instrument Already Exists| | | <a name=\"144\">144</a>|Duplicate In Parameter Set| | | <a name=\"147\">147</a>|Results Not Found| | | <a name=\"148\">148</a>|Order Field Not In Result Set| | | <a name=\"149\">149</a>|Operation Failed| | | <a name=\"150\">150</a>|Elastic Search Error| | | <a name=\"151\">151</a>|Invalid Parameter Value| | | <a name=\"153\">153</a>|Command Processing Failure| | | <a name=\"154\">154</a>|Entity State Construction Failure| | | <a name=\"155\">155</a>|Entity Timeline Does Not Exist| | | <a name=\"156\">156</a>|Concurrency Conflict Failure| | | <a name=\"157\">157</a>|Invalid Request| | | <a name=\"158\">158</a>|Event Publish Unknown| | | <a name=\"159\">159</a>|Event Query Failure| | | <a name=\"160\">160</a>|Blob Did Not Exist| | | <a name=\"162\">162</a>|Sub System Request Failure| | | <a name=\"163\">163</a>|Sub System Configuration Failure| | | <a name=\"165\">165</a>|Failed To Delete| | | <a name=\"166\">166</a>|Upsert Client Instrument Failure| | | <a name=\"167\">167</a>|Illegal As At Interval| | | <a name=\"168\">168</a>|Illegal Bitemporal Query| | | <a name=\"169\">169</a>|Invalid Alternate Id| | | <a name=\"170\">170</a>|Cannot Add Source Portfolio Property Explicitly| | | <a name=\"171\">171</a>|Entity Already Exists In Group| | | <a name=\"173\">173</a>|Entity With Id Already Exists| | | <a name=\"174\">174</a>|Derived Portfolio Details Do Not Exist| | | <a name=\"176\">176</a>|Portfolio With Name Already Exists| | | <a name=\"177\">177</a>|Invalid Transactions| | | <a name=\"178\">178</a>|Reference Portfolio Not Found| | | <a name=\"179\">179</a>|Duplicate Id| | | <a name=\"180\">180</a>|Command Retrieval Failure| | | <a name=\"181\">181</a>|Data Filter Application Failure| | | <a name=\"182\">182</a>|Search Failed| | | <a name=\"183\">183</a>|Movements Engine Configuration Key Failure| | | <a name=\"184\">184</a>|Fx Rate Source Not Found| | | <a name=\"185\">185</a>|Accrual Source Not Found| | | <a name=\"186\">186</a>|Access Denied| | | <a name=\"187\">187</a>|Invalid Identity Token| | | <a name=\"188\">188</a>|Invalid Request Headers| | | <a name=\"189\">189</a>|Price Not Found| | | <a name=\"190\">190</a>|Invalid Sub Holding Keys Provided| | | <a name=\"191\">191</a>|Duplicate Sub Holding Keys Provided| | | <a name=\"192\">192</a>|Cut Definition Not Found| | | <a name=\"193\">193</a>|Cut Definition Invalid| | | <a name=\"194\">194</a>|Time Variant Property Deletion Date Unspecified| | | <a name=\"195\">195</a>|Perpetual Property Deletion Date Specified| | | <a name=\"196\">196</a>|Time Variant Property Upsert Date Unspecified| | | <a name=\"197\">197</a>|Perpetual Property Upsert Date Specified| | | <a name=\"200\">200</a>|Invalid Unit For Data Type| | | <a name=\"201\">201</a>|Invalid Type For Data Type| | | <a name=\"202\">202</a>|Invalid Value For Data Type| | | <a name=\"203\">203</a>|Unit Not Defined For Data Type| | | <a name=\"204\">204</a>|Units Not Supported On Data Type| | | <a name=\"205\">205</a>|Cannot Specify Units On Data Type| | | <a name=\"206\">206</a>|Unit Schema Inconsistent With Data Type| | | <a name=\"207\">207</a>|Unit Definition Not Specified| | | <a name=\"208\">208</a>|Duplicate Unit Definitions Specified| | | <a name=\"209\">209</a>|Invalid Units Definition| | | <a name=\"210\">210</a>|Invalid Instrument Identifier Unit| | | <a name=\"211\">211</a>|Holdings Adjustment Does Not Exist| | | <a name=\"212\">212</a>|Could Not Build Excel Url| | | <a name=\"213\">213</a>|Could Not Get Excel Version| | | <a name=\"214\">214</a>|Instrument By Code Not Found| | | <a name=\"215\">215</a>|Entity Schema Does Not Exist| | | <a name=\"216\">216</a>|Feature Not Supported On Portfolio Type| | | <a name=\"217\">217</a>|Quote Not Found| | | <a name=\"218\">218</a>|Invalid Quote Identifier| | | <a name=\"219\">219</a>|Invalid Metric For Data Type| | | <a name=\"220\">220</a>|Invalid Instrument Definition| | | <a name=\"221\">221</a>|Instrument Upsert Failure| | | <a name=\"222\">222</a>|Reference Portfolio Request Not Supported| | | <a name=\"223\">223</a>|Transaction Portfolio Request Not Supported| | | <a name=\"224\">224</a>|Invalid Property Value Assignment| | | <a name=\"230\">230</a>|Transaction Type Not Found| | | <a name=\"231\">231</a>|Transaction Type Duplication| | | <a name=\"232\">232</a>|Portfolio Does Not Exist At Given Date| | | <a name=\"233\">233</a>|Query Parser Failure| | | <a name=\"234\">234</a>|Duplicate Constituent| | | <a name=\"235\">235</a>|Unresolved Instrument Constituent| | | <a name=\"236\">236</a>|Unresolved Instrument In Transition| | | <a name=\"237\">237</a>|Missing Side Definitions| | | <a name=\"299\">299</a>|Invalid Recipe| | | <a name=\"300\">300</a>|Missing Recipe| | | <a name=\"301\">301</a>|Dependencies| | | <a name=\"304\">304</a>|Portfolio Preprocess Failure| | | <a name=\"310\">310</a>|Valuation Engine Failure| | | <a name=\"311\">311</a>|Task Factory Failure| | | <a name=\"312\">312</a>|Task Evaluation Failure| | | <a name=\"313\">313</a>|Task Generation Failure| | | <a name=\"314\">314</a>|Engine Configuration Failure| | | <a name=\"315\">315</a>|Model Specification Failure| | | <a name=\"320\">320</a>|Market Data Key Failure| | | <a name=\"321\">321</a>|Market Resolver Failure| | | <a name=\"322\">322</a>|Market Data Failure| | | <a name=\"330\">330</a>|Curve Failure| | | <a name=\"331\">331</a>|Volatility Surface Failure| | | <a name=\"332\">332</a>|Volatility Cube Failure| | | <a name=\"350\">350</a>|Instrument Failure| | | <a name=\"351\">351</a>|Cash Flows Failure| | | <a name=\"352\">352</a>|Reference Data Failure| | | <a name=\"360\">360</a>|Aggregation Failure| | | <a name=\"361\">361</a>|Aggregation Measure Failure| | | <a name=\"370\">370</a>|Result Retrieval Failure| | | <a name=\"371\">371</a>|Result Processing Failure| | | <a name=\"372\">372</a>|Vendor Result Processing Failure| | | <a name=\"373\">373</a>|Vendor Result Mapping Failure| | | <a name=\"374\">374</a>|Vendor Library Unauthorised| | | <a name=\"375\">375</a>|Vendor Connectivity Error| | | <a name=\"376\">376</a>|Vendor Interface Error| | | <a name=\"377\">377</a>|Vendor Pricing Failure| | | <a name=\"378\">378</a>|Vendor Translation Failure| | | <a name=\"379\">379</a>|Vendor Key Mapping Failure| | | <a name=\"380\">380</a>|Vendor Reflection Failure| | | <a name=\"390\">390</a>|Attempt To Upsert Duplicate Quotes| | | <a name=\"391\">391</a>|Corporate Action Source Does Not Exist| | | <a name=\"392\">392</a>|Corporate Action Source Already Exists| | | <a name=\"393\">393</a>|Instrument Identifier Already In Use| | | <a name=\"394\">394</a>|Properties Not Found| | | <a name=\"395\">395</a>|Batch Operation Aborted| | | <a name=\"400\">400</a>|Invalid Iso4217 Currency Code| | | <a name=\"401\">401</a>|Cannot Assign Instrument Identifier To Currency| | | <a name=\"402\">402</a>|Cannot Assign Currency Identifier To Non Currency| | | <a name=\"403\">403</a>|Currency Instrument Cannot Be Deleted| | | <a name=\"404\">404</a>|Currency Instrument Cannot Have Economic Definition| | | <a name=\"405\">405</a>|Currency Instrument Cannot Have Lookthrough Portfolio| | | <a name=\"406\">406</a>|Cannot Create Currency Instrument With Multiple Identifiers| | | <a name=\"407\">407</a>|Specified Currency Is Undefined| | | <a name=\"410\">410</a>|Index Does Not Exist| | | <a name=\"411\">411</a>|Sort Field Does Not Exist| | | <a name=\"413\">413</a>|Negative Pagination Parameters| | | <a name=\"414\">414</a>|Invalid Search Syntax| | | <a name=\"415\">415</a>|Filter Execution Timeout| | | <a name=\"420\">420</a>|Side Definition Inconsistent| | | <a name=\"450\">450</a>|Invalid Quote Access Metadata Rule| | | <a name=\"451\">451</a>|Access Metadata Not Found| | | <a name=\"452\">452</a>|Invalid Access Metadata Identifier| | | <a name=\"460\">460</a>|Standard Resource Not Found| | | <a name=\"461\">461</a>|Standard Resource Conflict| | | <a name=\"462\">462</a>|Calendar Not Found| | | <a name=\"463\">463</a>|Date In A Calendar Not Found| | | <a name=\"464\">464</a>|Invalid Date Source Data| | | <a name=\"465\">465</a>|Invalid Timezone| | | <a name=\"601\">601</a>|Person Identifier Already In Use| | | <a name=\"602\">602</a>|Person Not Found| | | <a name=\"603\">603</a>|Cannot Set Identifier| | | <a name=\"617\">617</a>|Invalid Recipe Specification In Request| | | <a name=\"618\">618</a>|Inline Recipe Deserialisation Failure| | | <a name=\"619\">619</a>|Identifier Types Not Set For Entity| | | <a name=\"620\">620</a>|Cannot Delete All Client Defined Identifiers| | | <a name=\"650\">650</a>|The Order requested was not found.| | | <a name=\"654\">654</a>|The Allocation requested was not found.| | | <a name=\"655\">655</a>|Cannot build the fx forward target with the given holdings.| | | <a name=\"656\">656</a>|Group does not contain expected entities.| | | <a name=\"667\">667</a>|Relation definition already exists| | | <a name=\"673\">673</a>|Missing entitlements for entities in Group| | | <a name=\"674\">674</a>|Next Best Action not found| | | <a name=\"676\">676</a>|Relation definition not defined| | | <a name=\"677\">677</a>|Invalid entity identifier for relation| | | <a name=\"681\">681</a>|Sorting by specified field not supported|One or more of the provided fields to order by were either invalid or not supported. | | <a name=\"682\">682</a>|Too many fields to sort by|The number of fields to sort the data by exceeds the number allowed by the endpoint | | <a name=\"684\">684</a>|Sequence Not Found| | | <a name=\"685\">685</a>|Sequence Already Exists| | | <a name=\"686\">686</a>|Non-cycling sequence has been exhausted| | | <a name=\"687\">687</a>|Legal Entity Identifier Already In Use| | | <a name=\"688\">688</a>|Legal Entity Not Found| | | <a name=\"689\">689</a>|The supplied pagination token is invalid| | | <a name=\"690\">690</a>|Property Type Is Not Supported| | | <a name=\"691\">691</a>|Multiple Tax-lots For Currency Type Is Not Supported| | # noqa: E501 The version of the OpenAPI document: 0.11.2220 Contact: [email protected] Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class ResourceListOfGetIndexConventionResponse(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. required_map (dict): The key is attribute name and the value is whether it is 'required' or 'optional'. """ openapi_types = { 'values': 'list[GetIndexConventionResponse]', 'href': 'str', 'links': 'list[Link]' } attribute_map = { 'values': 'values', 'href': 'href', 'links': 'links' } required_map = { 'values': 'required', 'href': 'optional', 'links': 'optional' } def __init__(self, values=None, href=None, links=None): # noqa: E501 """ ResourceListOfGetIndexConventionResponse - a model defined in OpenAPI :param values: (required) :type values: list[lusid.GetIndexConventionResponse] :param href: :type href: str :param links: :type links: list[lusid.Link] """ # noqa: E501 self._values = None self._href = None self._links = None self.discriminator = None self.values = values self.href = href self.links = links @property def values(self): """Gets the values of this ResourceListOfGetIndexConventionResponse. # noqa: E501 :return: The values of this ResourceListOfGetIndexConventionResponse. # noqa: E501 :rtype: list[GetIndexConventionResponse] """ return self._values @values.setter def values(self, values): """Sets the values of this ResourceListOfGetIndexConventionResponse. :param values: The values of this ResourceListOfGetIndexConventionResponse. # noqa: E501 :type: list[GetIndexConventionResponse] """ if values is None: raise ValueError("Invalid value for `values`, must not be `None`") # noqa: E501 self._values = values @property def href(self): """Gets the href of this ResourceListOfGetIndexConventionResponse. # noqa: E501 :return: The href of this ResourceListOfGetIndexConventionResponse. # noqa: E501 :rtype: str """ return self._href @href.setter def href(self, href): """Sets the href of this ResourceListOfGetIndexConventionResponse. :param href: The href of this ResourceListOfGetIndexConventionResponse. # noqa: E501 :type: str """ self._href = href @property def links(self): """Gets the links of this ResourceListOfGetIndexConventionResponse. # noqa: E501 :return: The links of this ResourceListOfGetIndexConventionResponse. # noqa: E501 :rtype: list[Link] """ return self._links @links.setter def links(self, links): """Sets the links of this ResourceListOfGetIndexConventionResponse. :param links: The links of this ResourceListOfGetIndexConventionResponse. # noqa: E501 :type: list[Link] """ self._links = links def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ResourceListOfGetIndexConventionResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
184.054945
28,439
0.685832
794801319b582d2eaef8d7df978ce1b0d46a51f9
79
py
Python
nbsphinx_link/_version.py
madsmpedersen/nbsphinx-link
9a55a92a6956c716cf341530cd3de1f9f389bf18
[ "BSD-3-Clause" ]
null
null
null
nbsphinx_link/_version.py
madsmpedersen/nbsphinx-link
9a55a92a6956c716cf341530cd3de1f9f389bf18
[ "BSD-3-Clause" ]
null
null
null
nbsphinx_link/_version.py
madsmpedersen/nbsphinx-link
9a55a92a6956c716cf341530cd3de1f9f389bf18
[ "BSD-3-Clause" ]
null
null
null
version_info = (1, 1, 2, 'dev') __version__ = ".".join(map(str, version_info))
26.333333
46
0.64557
7948016ccca9a31000f6563153725864c13c1188
214
py
Python
algo_trading/signal_detector/urls.py
qz-fordham/algo-trading-microservice
8778daeb90250f7c5c0e772c24d4912326850a37
[ "MIT" ]
1
2022-02-12T08:10:27.000Z
2022-02-12T08:10:27.000Z
algo_trading/signal_detector/urls.py
qz-fordham/algo-trading-microservice
8778daeb90250f7c5c0e772c24d4912326850a37
[ "MIT" ]
null
null
null
algo_trading/signal_detector/urls.py
qz-fordham/algo-trading-microservice
8778daeb90250f7c5c0e772c24d4912326850a37
[ "MIT" ]
1
2022-02-11T03:43:41.000Z
2022-02-11T03:43:41.000Z
from django.urls import path from . import views # Routing urlpatterns = [ # path('<str:ticker>/<int:span>/', views.sma_view, name='sma'), path('', views.SignalDetectorView.as_view(), name='detector'), ]
21.4
67
0.668224
794801bd56fd3b515dcd5bf5498a7876f87f9fd3
26,203
py
Python
venv/Lib/site-packages/sqlalchemy/sql/crud.py
YunJaePark3908/BaseAPIServer
17ab922917541406a3c2d75b428614ce97152a16
[ "Apache-2.0" ]
1
2021-03-26T10:07:00.000Z
2021-03-26T10:07:00.000Z
venv/Lib/site-packages/sqlalchemy/sql/crud.py
YunJaePark3908/BaseAPIServer
17ab922917541406a3c2d75b428614ce97152a16
[ "Apache-2.0" ]
1
2021-09-28T04:53:41.000Z
2021-09-28T04:53:41.000Z
venv/Lib/site-packages/sqlalchemy/sql/crud.py
YunJaePark3908/BaseAPIServer
17ab922917541406a3c2d75b428614ce97152a16
[ "Apache-2.0" ]
3
2021-11-30T11:10:26.000Z
2021-12-08T05:59:31.000Z
# sql/crud.py # Copyright (C) 2005-2021 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """Functions used by compiler.py to determine the parameters rendered within INSERT and UPDATE statements. """ import operator from . import dml from . import elements from .. import exc from .. import util REQUIRED = util.symbol( "REQUIRED", """ Placeholder for the value within a :class:`.BindParameter` which is required to be present when the statement is passed to :meth:`_engine.Connection.execute`. This symbol is typically used when a :func:`_expression.insert` or :func:`_expression.update` statement is compiled without parameter values present. """, ) ISINSERT = util.symbol("ISINSERT") ISUPDATE = util.symbol("ISUPDATE") ISDELETE = util.symbol("ISDELETE") def _setup_crud_params(compiler, stmt, local_stmt_type, **kw): restore_isinsert = compiler.isinsert restore_isupdate = compiler.isupdate restore_isdelete = compiler.isdelete should_restore = ( (restore_isinsert or restore_isupdate or restore_isdelete) or len(compiler.stack) > 1 or "visiting_cte" in kw ) if local_stmt_type is ISINSERT: compiler.isupdate = False compiler.isinsert = True elif local_stmt_type is ISUPDATE: compiler.isupdate = True compiler.isinsert = False elif local_stmt_type is ISDELETE: if not should_restore: compiler.isdelete = True else: assert False, "ISINSERT, ISUPDATE, or ISDELETE expected" try: if local_stmt_type in (ISINSERT, ISUPDATE): return _get_crud_params(compiler, stmt, **kw) finally: if should_restore: compiler.isinsert = restore_isinsert compiler.isupdate = restore_isupdate compiler.isdelete = restore_isdelete def _get_crud_params(compiler, stmt, **kw): """create a set of tuples representing column/string pairs for use in an INSERT or UPDATE statement. Also generates the Compiled object's postfetch, prefetch, and returning column collections, used for default handling and ultimately populating the ResultProxy's prefetch_cols() and postfetch_cols() collections. """ compiler.postfetch = [] compiler.insert_prefetch = [] compiler.update_prefetch = [] compiler.returning = [] # no parameters in the statement, no parameters in the # compiled params - return binds for all columns if compiler.column_keys is None and stmt.parameters is None: return [ (c, _create_bind_param(compiler, c, None, required=True)) for c in stmt.table.columns ] if stmt._has_multi_parameters: stmt_parameters = stmt.parameters[0] else: stmt_parameters = stmt.parameters # getters - these are normally just column.key, # but in the case of mysql multi-table update, the rules for # .key must conditionally take tablename into account ( _column_as_key, _getattr_col_key, _col_bind_name, ) = _key_getters_for_crud_column(compiler, stmt) # if we have statement parameters - set defaults in the # compiled params if compiler.column_keys is None: parameters = {} else: parameters = dict( (_column_as_key(key), REQUIRED) for key in compiler.column_keys if not stmt_parameters or key not in stmt_parameters ) # create a list of column assignment clauses as tuples values = [] if stmt_parameters is not None: _get_stmt_parameters_params( compiler, parameters, stmt_parameters, _column_as_key, values, kw ) check_columns = {} # special logic that only occurs for multi-table UPDATE # statements if compiler.isupdate and stmt._extra_froms and stmt_parameters: _get_multitable_params( compiler, stmt, stmt_parameters, check_columns, _col_bind_name, _getattr_col_key, values, kw, ) if compiler.isinsert and stmt.select_names: _scan_insert_from_select_cols( compiler, stmt, parameters, _getattr_col_key, _column_as_key, _col_bind_name, check_columns, values, kw, ) else: _scan_cols( compiler, stmt, parameters, _getattr_col_key, _column_as_key, _col_bind_name, check_columns, values, kw, ) if parameters and stmt_parameters: check = ( set(parameters) .intersection(_column_as_key(k) for k in stmt_parameters) .difference(check_columns) ) if check: raise exc.CompileError( "Unconsumed column names: %s" % (", ".join("%s" % c for c in check)) ) if stmt._has_multi_parameters: values = _extend_values_for_multiparams(compiler, stmt, values, kw) return values def _create_bind_param( compiler, col, value, process=True, required=False, name=None, **kw ): if name is None: name = col.key bindparam = elements.BindParameter( name, value, type_=col.type, required=required ) bindparam._is_crud = True if process: bindparam = bindparam._compiler_dispatch(compiler, **kw) return bindparam def _key_getters_for_crud_column(compiler, stmt): if compiler.isupdate and stmt._extra_froms: # when extra tables are present, refer to the columns # in those extra tables as table-qualified, including in # dictionaries and when rendering bind param names. # the "main" table of the statement remains unqualified, # allowing the most compatibility with a non-multi-table # statement. _et = set(stmt._extra_froms) def _column_as_key(key): str_key = elements._column_as_key(key) if hasattr(key, "table") and key.table in _et: return (key.table.name, str_key) else: return str_key def _getattr_col_key(col): if col.table in _et: return (col.table.name, col.key) else: return col.key def _col_bind_name(col): if col.table in _et: return "%s_%s" % (col.table.name, col.key) else: return col.key else: _column_as_key = elements._column_as_key _getattr_col_key = _col_bind_name = operator.attrgetter("key") return _column_as_key, _getattr_col_key, _col_bind_name def _scan_insert_from_select_cols( compiler, stmt, parameters, _getattr_col_key, _column_as_key, _col_bind_name, check_columns, values, kw, ): ( need_pks, implicit_returning, implicit_return_defaults, postfetch_lastrowid, ) = _get_returning_modifiers(compiler, stmt) cols = [stmt.table.c[_column_as_key(name)] for name in stmt.select_names] compiler._insert_from_select = stmt.select add_select_cols = [] if stmt.include_insert_from_select_defaults: col_set = set(cols) for col in stmt.table.columns: if col not in col_set and col.default: cols.append(col) for c in cols: col_key = _getattr_col_key(c) if col_key in parameters and col_key not in check_columns: parameters.pop(col_key) values.append((c, None)) else: _append_param_insert_select_hasdefault( compiler, stmt, c, add_select_cols, kw ) if add_select_cols: values.extend(add_select_cols) compiler._insert_from_select = compiler._insert_from_select._generate() compiler._insert_from_select._raw_columns = tuple( compiler._insert_from_select._raw_columns ) + tuple(expr for col, expr in add_select_cols) def _scan_cols( compiler, stmt, parameters, _getattr_col_key, _column_as_key, _col_bind_name, check_columns, values, kw, ): ( need_pks, implicit_returning, implicit_return_defaults, postfetch_lastrowid, ) = _get_returning_modifiers(compiler, stmt) if stmt._parameter_ordering: parameter_ordering = [ _column_as_key(key) for key in stmt._parameter_ordering ] ordered_keys = set(parameter_ordering) cols = [stmt.table.c[key] for key in parameter_ordering] + [ c for c in stmt.table.c if c.key not in ordered_keys ] else: cols = stmt.table.columns for c in cols: col_key = _getattr_col_key(c) if col_key in parameters and col_key not in check_columns: _append_param_parameter( compiler, stmt, c, col_key, parameters, _col_bind_name, implicit_returning, implicit_return_defaults, values, kw, ) elif compiler.isinsert: if ( c.primary_key and need_pks and ( implicit_returning or not postfetch_lastrowid or c is not stmt.table._autoincrement_column ) ): if implicit_returning: _append_param_insert_pk_returning( compiler, stmt, c, values, kw ) else: _append_param_insert_pk(compiler, stmt, c, values, kw) elif c.default is not None: _append_param_insert_hasdefault( compiler, stmt, c, implicit_return_defaults, values, kw ) elif c.server_default is not None: if implicit_return_defaults and c in implicit_return_defaults: compiler.returning.append(c) elif not c.primary_key: compiler.postfetch.append(c) elif implicit_return_defaults and c in implicit_return_defaults: compiler.returning.append(c) elif ( c.primary_key and c is not stmt.table._autoincrement_column and not c.nullable ): _warn_pk_with_no_anticipated_value(c) elif compiler.isupdate: _append_param_update( compiler, stmt, c, implicit_return_defaults, values, kw ) def _append_param_parameter( compiler, stmt, c, col_key, parameters, _col_bind_name, implicit_returning, implicit_return_defaults, values, kw, ): value = parameters.pop(col_key) if elements._is_literal(value): value = _create_bind_param( compiler, c, value, required=value is REQUIRED, name=_col_bind_name(c) if not stmt._has_multi_parameters else "%s_m0" % _col_bind_name(c), **kw ) else: if isinstance(value, elements.BindParameter) and value.type._isnull: value = value._clone() value.type = c.type if c.primary_key and implicit_returning: compiler.returning.append(c) value = compiler.process(value.self_group(), **kw) elif implicit_return_defaults and c in implicit_return_defaults: compiler.returning.append(c) value = compiler.process(value.self_group(), **kw) else: # postfetch specifically means, "we can SELECT the row we just # inserted by primary key to get back the server generated # defaults". so by definition this can't be used to get the primary # key value back, because we need to have it ahead of time. if not c.primary_key: compiler.postfetch.append(c) value = compiler.process(value.self_group(), **kw) values.append((c, value)) def _append_param_insert_pk_returning(compiler, stmt, c, values, kw): """Create a primary key expression in the INSERT statement and possibly a RETURNING clause for it. If the column has a Python-side default, we will create a bound parameter for it and "pre-execute" the Python function. If the column has a SQL expression default, or is a sequence, we will add it directly into the INSERT statement and add a RETURNING element to get the new value. If the column has a server side default or is marked as the "autoincrement" column, we will add a RETRUNING element to get at the value. If all the above tests fail, that indicates a primary key column with no noted default generation capabilities that has no parameter passed; raise an exception. """ if c.default is not None: if c.default.is_sequence: if compiler.dialect.supports_sequences and ( not c.default.optional or not compiler.dialect.sequences_optional ): proc = compiler.process(c.default, **kw) values.append((c, proc)) compiler.returning.append(c) elif c.default.is_clause_element: values.append( (c, compiler.process(c.default.arg.self_group(), **kw)) ) compiler.returning.append(c) else: values.append((c, _create_insert_prefetch_bind_param(compiler, c))) elif c is stmt.table._autoincrement_column or c.server_default is not None: compiler.returning.append(c) elif not c.nullable: # no .default, no .server_default, not autoincrement, we have # no indication this primary key column will have any value _warn_pk_with_no_anticipated_value(c) def _create_insert_prefetch_bind_param(compiler, c, process=True, name=None): param = _create_bind_param(compiler, c, None, process=process, name=name) compiler.insert_prefetch.append(c) return param def _create_update_prefetch_bind_param(compiler, c, process=True, name=None): param = _create_bind_param(compiler, c, None, process=process, name=name) compiler.update_prefetch.append(c) return param class _multiparam_column(elements.ColumnElement): _is_multiparam_column = True def __init__(self, original, index): self.index = index self.key = "%s_m%d" % (original.key, index + 1) self.original = original self.default = original.default self.type = original.type def __eq__(self, other): return ( isinstance(other, _multiparam_column) and other.key == self.key and other.original == self.original ) def _process_multiparam_default_bind(compiler, stmt, c, index, kw): if not c.default: raise exc.CompileError( "INSERT value for column %s is explicitly rendered as a bound" "parameter in the VALUES clause; " "a Python-side value or SQL expression is required" % c ) elif c.default.is_clause_element: return compiler.process(c.default.arg.self_group(), **kw) else: col = _multiparam_column(c, index) if isinstance(stmt, dml.Insert): return _create_insert_prefetch_bind_param(compiler, col) else: return _create_update_prefetch_bind_param(compiler, col) def _append_param_insert_pk(compiler, stmt, c, values, kw): """Create a bound parameter in the INSERT statement to receive a 'prefetched' default value. The 'prefetched' value indicates that we are to invoke a Python-side default function or expliclt SQL expression before the INSERT statement proceeds, so that we have a primary key value available. if the column has no noted default generation capabilities, it has no value passed in either; raise an exception. """ if ( # column has a Python-side default c.default is not None and ( # and it won't be a Sequence not c.default.is_sequence or compiler.dialect.supports_sequences ) ) or ( # column is the "autoincrement column" c is stmt.table._autoincrement_column and ( # and it's either a "sequence" or a # pre-executable "autoincrement" sequence compiler.dialect.supports_sequences or compiler.dialect.preexecute_autoincrement_sequences ) ): values.append((c, _create_insert_prefetch_bind_param(compiler, c))) elif c.default is None and c.server_default is None and not c.nullable: # no .default, no .server_default, not autoincrement, we have # no indication this primary key column will have any value _warn_pk_with_no_anticipated_value(c) def _append_param_insert_hasdefault( compiler, stmt, c, implicit_return_defaults, values, kw ): if c.default.is_sequence: if compiler.dialect.supports_sequences and ( not c.default.optional or not compiler.dialect.sequences_optional ): proc = compiler.process(c.default, **kw) values.append((c, proc)) if implicit_return_defaults and c in implicit_return_defaults: compiler.returning.append(c) elif not c.primary_key: compiler.postfetch.append(c) elif c.default.is_clause_element: proc = compiler.process(c.default.arg.self_group(), **kw) values.append((c, proc)) if implicit_return_defaults and c in implicit_return_defaults: compiler.returning.append(c) elif not c.primary_key: # don't add primary key column to postfetch compiler.postfetch.append(c) else: values.append((c, _create_insert_prefetch_bind_param(compiler, c))) def _append_param_insert_select_hasdefault(compiler, stmt, c, values, kw): if c.default.is_sequence: if compiler.dialect.supports_sequences and ( not c.default.optional or not compiler.dialect.sequences_optional ): proc = c.default values.append((c, proc.next_value())) elif c.default.is_clause_element: proc = c.default.arg.self_group() values.append((c, proc)) else: values.append( (c, _create_insert_prefetch_bind_param(compiler, c, process=False)) ) def _append_param_update( compiler, stmt, c, implicit_return_defaults, values, kw ): if c.onupdate is not None and not c.onupdate.is_sequence: if c.onupdate.is_clause_element: values.append( (c, compiler.process(c.onupdate.arg.self_group(), **kw)) ) if implicit_return_defaults and c in implicit_return_defaults: compiler.returning.append(c) else: compiler.postfetch.append(c) else: values.append((c, _create_update_prefetch_bind_param(compiler, c))) elif c.server_onupdate is not None: if implicit_return_defaults and c in implicit_return_defaults: compiler.returning.append(c) else: compiler.postfetch.append(c) elif ( implicit_return_defaults and stmt._return_defaults is not True and c in implicit_return_defaults ): compiler.returning.append(c) def _get_multitable_params( compiler, stmt, stmt_parameters, check_columns, _col_bind_name, _getattr_col_key, values, kw, ): normalized_params = dict( (elements._clause_element_as_expr(c), param) for c, param in stmt_parameters.items() ) affected_tables = set() for t in stmt._extra_froms: for c in t.c: if c in normalized_params: affected_tables.add(t) check_columns[_getattr_col_key(c)] = c value = normalized_params[c] if elements._is_literal(value): value = _create_bind_param( compiler, c, value, required=value is REQUIRED, name=_col_bind_name(c), ) else: compiler.postfetch.append(c) value = compiler.process(value.self_group(), **kw) values.append((c, value)) # determine tables which are actually to be updated - process onupdate # and server_onupdate for these for t in affected_tables: for c in t.c: if c in normalized_params: continue elif c.onupdate is not None and not c.onupdate.is_sequence: if c.onupdate.is_clause_element: values.append( ( c, compiler.process( c.onupdate.arg.self_group(), **kw ), ) ) compiler.postfetch.append(c) else: values.append( ( c, _create_update_prefetch_bind_param( compiler, c, name=_col_bind_name(c) ), ) ) elif c.server_onupdate is not None: compiler.postfetch.append(c) def _extend_values_for_multiparams(compiler, stmt, values, kw): values_0 = values values = [values] for i, row in enumerate(stmt.parameters[1:]): extension = [] for (col, param) in values_0: if col in row or col.key in row: key = col if col in row else col.key if elements._is_literal(row[key]): new_param = _create_bind_param( compiler, col, row[key], name="%s_m%d" % (col.key, i + 1), **kw ) else: new_param = compiler.process(row[key].self_group(), **kw) else: new_param = _process_multiparam_default_bind( compiler, stmt, col, i, kw ) extension.append((col, new_param)) values.append(extension) return values def _get_stmt_parameters_params( compiler, parameters, stmt_parameters, _column_as_key, values, kw ): for k, v in stmt_parameters.items(): colkey = _column_as_key(k) if colkey is not None: parameters.setdefault(colkey, v) else: # a non-Column expression on the left side; # add it to values() in an "as-is" state, # coercing right side to bound param if elements._is_literal(v): v = compiler.process( elements.BindParameter(None, v, type_=k.type), **kw ) else: if v._is_bind_parameter and v.type._isnull: # either unique parameter, or other bound parameters that # were passed in directly # set type to that of the column unconditionally v = v._with_binary_element_type(k.type) v = compiler.process(v.self_group(), **kw) values.append((k, v)) def _get_returning_modifiers(compiler, stmt): need_pks = ( compiler.isinsert and not compiler.inline and not stmt._returning and not stmt._has_multi_parameters ) implicit_returning = ( need_pks and compiler.dialect.implicit_returning and stmt.table.implicit_returning ) if compiler.isinsert: implicit_return_defaults = implicit_returning and stmt._return_defaults elif compiler.isupdate: implicit_return_defaults = ( compiler.dialect.implicit_returning and stmt.table.implicit_returning and stmt._return_defaults ) else: # this line is unused, currently we are always # isinsert or isupdate implicit_return_defaults = False # pragma: no cover if implicit_return_defaults: if stmt._return_defaults is True: implicit_return_defaults = set(stmt.table.c) else: implicit_return_defaults = set(stmt._return_defaults) postfetch_lastrowid = need_pks and compiler.dialect.postfetch_lastrowid return ( need_pks, implicit_returning, implicit_return_defaults, postfetch_lastrowid, ) def _warn_pk_with_no_anticipated_value(c): msg = ( "Column '%s.%s' is marked as a member of the " "primary key for table '%s', " "but has no Python-side or server-side default generator indicated, " "nor does it indicate 'autoincrement=True' or 'nullable=True', " "and no explicit value is passed. " "Primary key columns typically may not store NULL." % (c.table.fullname, c.name, c.table.fullname) ) if len(c.table.primary_key) > 1: msg += ( " Note that as of SQLAlchemy 1.1, 'autoincrement=True' must be " "indicated explicitly for composite (e.g. multicolumn) primary " "keys if AUTO_INCREMENT/SERIAL/IDENTITY " "behavior is expected for one of the columns in the primary key. " "CREATE TABLE statements are impacted by this change as well on " "most backends." ) util.warn(msg)
32.429455
79
0.602984
794802ec9a91fdcbe89ef923fa50ee9bd8bb5209
2,393
py
Python
dzTraficoBackend/dzTrafico/BusinessEntities/Flow.py
DZAymen/dz-Trafico
74ff9caf9e3845d8af977c46b04a2d3421a0661b
[ "MIT" ]
null
null
null
dzTraficoBackend/dzTrafico/BusinessEntities/Flow.py
DZAymen/dz-Trafico
74ff9caf9e3845d8af977c46b04a2d3421a0661b
[ "MIT" ]
null
null
null
dzTraficoBackend/dzTrafico/BusinessEntities/Flow.py
DZAymen/dz-Trafico
74ff9caf9e3845d8af977c46b04a2d3421a0661b
[ "MIT" ]
null
null
null
from rest_framework import serializers from Location import Location, LocationSerializer class Flow(object): end_depart_time = 10000 # via_edges = "26322664#2" via_edges = "" def __init__(self, start, end, depart_time, flow_value): self.start_edge = start self.end_edge = end self.depart_time = depart_time self.vehicles_per_hour = flow_value class InFlowPoint(object): id = 0 def __init__(self, lon, lat, departTime, flow, order): self.id = InFlowPoint.id InFlowPoint.id += 1 self.lon = lon self.lat = lat self.position = Location(lon, lat) self.departTime = departTime self.flow = flow self.left_flow = flow self.order = order def get_left_flow(self, percentage): flow = percentage * self.left_flow / 100 self.left_flow -= flow return flow def reset_flow_value(self): self.left_flow = self.flow class OutSerializer(serializers.Serializer): outIndex = serializers.IntegerField() class InFlowPointSerializer(serializers.Serializer): id = serializers.CharField(required=False) position = LocationSerializer() departTime = serializers.FloatField() flow = serializers.FloatField() order = serializers.IntegerField() def create(self, validated_data): return InFlowPoint( validated_data["position"]["lng"], validated_data["position"]["lat"], validated_data["departTime"], validated_data["flow"], validated_data["order"] ) class OutFlowPoint(object): id = 0 def __init__(self, lon, lat, percentage, order): self.id = OutFlowPoint.id OutFlowPoint.id += 1 self.lon = lon self.lat = lat self.position = Location(lon, lat) self.percentage = percentage self.order = order class OutFlowPointSerializer(serializers.Serializer): id = serializers.IntegerField(required=False) position = LocationSerializer() percentage = serializers.FloatField(required=False) order = serializers.IntegerField() def create(self, validated_data): return OutFlowPoint( validated_data["position"]["lng"], validated_data["position"]["lat"], validated_data["percentage"], validated_data["order"] )
29.9125
60
0.642708
794802fe975600038aaffaee86a5b27b383e674e
6,806
py
Python
test/models/test_loaders.py
GHzytp/atomai
30eab2e5b9cb508247341b1dea8215123b4bf995
[ "MIT" ]
69
2020-09-04T06:45:13.000Z
2022-03-28T12:55:20.000Z
test/models/test_loaders.py
GHzytp/atomai
30eab2e5b9cb508247341b1dea8215123b4bf995
[ "MIT" ]
24
2020-12-08T23:15:19.000Z
2022-01-20T19:20:20.000Z
test/models/test_loaders.py
GHzytp/atomai
30eab2e5b9cb508247341b1dea8215123b4bf995
[ "MIT" ]
13
2020-09-10T19:45:42.000Z
2022-03-15T03:49:28.000Z
import sys import numpy as np import pytest from numpy.testing import assert_, assert_array_equal, assert_equal sys.path.append("../../../") from atomai.models import (VAE, ImSpec, Segmentor, jrVAE, jVAE, load_ensemble, load_model, load_pretrained_model, rVAE) from atomai.trainers import EnsembleTrainer def gen_image_data(): """ Dummy images with random pixels """ X = np.random.random(size=(5, 1, 8, 8)) X_ = np.random.random(size=(5, 1, 8, 8)) return X, X_ def gen_image_labels(): """ Dummy labels for dummy images """ y = np.random.randint(0, 3, size=(5, 8, 8)) y_ = np.random.randint(0, 3, size=(5, 8, 8)) return y, y_ def gen_spectra(): """ Dummy 1D signal with random points """ X = np.random.random(size=(5, 1, 16)) X_ = np.random.random(size=(5, 1, 16)) return X, X_ def compare_optimizers(opt1, opt2): for group_param1, group_param2 in zip(opt1.param_groups, opt2.param_groups): for param1, param2 in zip(group_param1["params"], group_param1["params"]): for p1, p2 in zip(param1, param2): assert_array_equal(p1.detach().cpu().numpy(), p2.detach().cpu().numpy()) @pytest.mark.parametrize("model", ["Unet", "dilnet", "SegResNet", "ResHedNet"]) def test_io_segmentor(model): X, X_test = gen_image_data() y, y_test = gen_image_labels() segmodel = Segmentor(model, nb_classes=3) segmodel.fit(X, y, X_test, y_test, training_cycles=4, batch_size=2) loaded_model = load_model("model_metadict_final.tar") for p1, p2 in zip(loaded_model.net.parameters(), segmodel.net.parameters()): assert_array_equal(p1.detach().cpu().numpy(), p2.detach().cpu().numpy()) @pytest.mark.parametrize("model", ["Unet", "dilnet", "SegResNet", "ResHedNet"]) def test_saved_optimizer_segmentor(model): X, X_test = gen_image_data() y, y_test = gen_image_labels() segmodel = Segmentor(model, nb_classes=3) segmodel.fit(X, y, X_test, y_test, training_cycles=4, batch_size=2, filename="segmodel") opt1 = segmodel.optimizer loaded_model = load_model("segmodel_metadict_final.tar") opt2 = loaded_model.optimizer compare_optimizers(opt1, opt2) def test_io_imspec(): X, X_test = gen_image_data() y, y_test = gen_spectra() i2s_model = ImSpec((8, 8), (16,)) i2s_model.fit(X, y, X_test, y_test, training_cycles=4, batch_size=2) loaded_model = load_model("model_metadict_final.tar") for p1, p2 in zip(loaded_model.net.parameters(), i2s_model.net.parameters()): assert_array_equal(p1.detach().cpu().numpy(), p2.detach().cpu().numpy()) def test_saved_optimizer_imspec(): X, X_test = gen_image_data() y, y_test = gen_spectra() i2s_model = ImSpec((8, 8), (16,)) i2s_model.fit(X, y, X_test, y_test, training_cycles=4, batch_size=2) opt1 = i2s_model.optimizer loaded_model = load_model("model_metadict_final.tar") opt2 = loaded_model.optimizer compare_optimizers(opt1, opt2) @pytest.mark.parametrize("model", [VAE, rVAE, jVAE, jrVAE]) def test_io_VAE(model): X, _ = gen_image_data() X = X[:, 0, ...] vae_model = model((8, 8)) vae_model.fit(X, training_cycles=4, batch_size=2, filename="vae_metadict") loaded_model = load_model("vae_metadict.tar") for p1, p2 in zip(loaded_model.encoder_net.parameters(), vae_model.encoder_net.parameters()): assert_array_equal(p1.detach().cpu().numpy(), p2.detach().cpu().numpy()) for p1, p2 in zip(loaded_model.decoder_net.parameters(), vae_model.decoder_net.parameters()): assert_array_equal(p1.detach().cpu().numpy(), p2.detach().cpu().numpy()) @pytest.mark.parametrize("model", [VAE, rVAE, jVAE, jrVAE]) def test_saved_optimizer_VAE(model): X, _ = gen_image_data() X = X[:, 0, ...] vae_model = model((8, 8)) vae_model.fit(X, training_cycles=4, batch_size=2, filename="vae_metadict") opt1 = vae_model.optim loaded_model = load_model("vae_metadict.tar") opt2 = loaded_model.optim compare_optimizers(opt1, opt2) @pytest.mark.parametrize("model", [jVAE, jrVAE]) def test_saved_iter_jVAE(model): X, _ = gen_image_data() X = X[:, 0, ...] vae_model = model((8, 8)) vae_model.fit(X, training_cycles=4, batch_size=2, filename="jvae_metadict") num_iter = vae_model.kdict_["num_iter"] loaded_model = load_model("jvae_metadict.tar") assert_equal(num_iter, loaded_model.kdict_["num_iter"]) @pytest.mark.parametrize("model", [VAE, rVAE, jVAE, jrVAE]) def test_resume_training(model): X, _ = gen_image_data() X = X[:, 0, ...] vae_model = model((8, 8)) vae_model.fit(X, training_cycles=4, batch_size=2, filename="vae_metadict") loss0 = abs(vae_model.loss_history["train_loss"][0]) loaded_model = load_model("vae_metadict.tar") loaded_model.fit(X, training_cycles=4, batch_size=2, filename="vae_metadict") loss1 = abs(loaded_model.loss_history["train_loss"][0]) assert_(not np.isnan(loss1)) assert_(loss1 < loss0) @pytest.mark.parametrize("model", ["Unet", "dilnet", "SegResNet", "ResHedNet"]) def test_io_ensemble_seg(model): X, X_test = gen_image_data() y, y_test = gen_image_labels() etrainer = EnsembleTrainer(model, nb_classes=3) etrainer.compile_ensemble_trainer(training_cycles=4, batch_size=2) smodel, ensemble = etrainer.train_ensemble_from_scratch( X, y, X_test, y_test, n_models=3) smodel_, ensemble_ = load_ensemble("model_ensemble_metadict.tar") for i in ensemble.keys(): m1 = ensemble[i] m2 = ensemble_[i] for p1, p2 in zip(m1.values(), m2.values()): assert_array_equal( p1.detach().cpu().numpy(), p2.detach().cpu().numpy()) def test_io_ensemble_imspec(): X, X_test = gen_image_data() y, y_test = gen_spectra() etrainer = EnsembleTrainer( "imspec", in_dim=(8, 8), out_dim=(16,), latent_dim=2) etrainer.compile_ensemble_trainer(training_cycles=4, batch_size=2) smodel, ensemble = etrainer.train_ensemble_from_scratch( X, y, X_test, y_test, n_models=3) smodel_, ensemble_ = load_ensemble("model_ensemble_metadict.tar") for i in ensemble.keys(): m1 = ensemble[i] m2 = ensemble_[i] for p1, p2 in zip(m1.values(), m2.values()): assert_array_equal( p1.detach().cpu().numpy(), p2.detach().cpu().numpy()) @pytest.mark.parametrize("model_name", ["G_MD", "BFO"]) def test_load_pretrained(model_name): model = load_pretrained_model(model_name) assert_(hasattr(model, "fit")) assert_(hasattr(model, "predict")) assert_(hasattr(model, "net")) assert_(hasattr(model.net, "state_dict"))
36.395722
88
0.662651
79480372cae4a1aaac1a6aca825ed02d66c097a9
303
py
Python
src/test_pset.py
CTimmerman/PyPico8
a68c83ae5a9dc53221ab39d6e55bb68bb5a1e479
[ "MIT" ]
null
null
null
src/test_pset.py
CTimmerman/PyPico8
a68c83ae5a9dc53221ab39d6e55bb68bb5a1e479
[ "MIT" ]
null
null
null
src/test_pset.py
CTimmerman/PyPico8
a68c83ae5a9dc53221ab39d6e55bb68bb5a1e479
[ "MIT" ]
null
null
null
from pypico8 import * def _init(): fillp(1) for y in range(129): for x in range(129): pset(x, y, 1 + 2 * 16) rectfill(0, 0, 10, 10, 3 + 4 * 16) circfill(64, 64, 10, 5 + 6 * 16) ovalfill(80, 80, 90, 90, 7 + 8 * 16) line(126, 0, 0, 126, 0 + 9*16) run(_init)
20.2
40
0.491749
794803b67170e3277ad5209c3c585223aa6a7aa5
399,183
py
Python
modules/s3db/dvr.py
Mkgdukoo/aidiq
840b97651d79352878d5a777067a915985617378
[ "MIT" ]
1
2018-06-06T12:11:25.000Z
2018-06-06T12:11:25.000Z
modules/s3db/dvr.py
Mkgdukoo/aidiq
840b97651d79352878d5a777067a915985617378
[ "MIT" ]
null
null
null
modules/s3db/dvr.py
Mkgdukoo/aidiq
840b97651d79352878d5a777067a915985617378
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Sahana Eden Disaster Victim Registration Model @copyright: 2012-2021 (c) Sahana Software Foundation @license: MIT Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ __all__ = ("DVRCaseModel", "DVRCaseFlagModel", "DVRCaseActivityModel", "DVRCaseAllowanceModel", "DVRCaseAppointmentModel", "DVRHouseholdModel", "DVRHouseholdMembersModel", "DVRCaseEconomyInformationModel", "DVRLegalStatusModel", "DVRCaseEffortModel", "DVRCaseEventModel", "DVRCaseEvaluationModel", "DVRActivityFundingModel", "DVRNeedsModel", "DVRNotesModel", "DVRReferralModel", "DVRResponseModel", "DVRServiceContactModel", "DVRSiteActivityModel", "DVRVulnerabilityModel", "dvr_ActivityRepresent", "dvr_CaseActivityRepresent", "dvr_DocEntityRepresent", "dvr_ResponseActionThemeRepresent", "dvr_ResponseThemeRepresent", "dvr_AssignMethod", "dvr_case_default_status", "dvr_case_activity_default_status", "dvr_case_status_filter_opts", "dvr_set_response_action_defaults", "dvr_response_default_type", "dvr_response_default_status", "dvr_response_status_colors", "dvr_case_household_size", "dvr_due_followups", "dvr_get_flag_instructions", "dvr_get_household_size", "dvr_rheader", "dvr_update_last_seen", ) import datetime from collections import OrderedDict from gluon import * from gluon.storage import Storage from ..s3 import * from s3compat import basestring from s3layouts import S3PopupLink # ============================================================================= class DVRCaseModel(S3Model): """ Model for DVR Cases Allow an individual or household to register to receive compensation and/or distributions of relief items """ names = ("dvr_case", "dvr_case_id", "dvr_case_language", "dvr_case_details", "dvr_case_status", "dvr_case_status_id", "dvr_case_type", ) def model(self): T = current.T db = current.db settings = current.deployment_settings crud_strings = current.response.s3.crud_strings NONE = current.messages["NONE"] configure = self.configure define_table = self.define_table person_id = self.pr_person_id beneficiary = settings.get_dvr_label() # If we add more options in future then == "Beneficiary" manage_transferability = settings.get_dvr_manage_transferability() # --------------------------------------------------------------------- # Case Types # tablename = "dvr_case_type" define_table(tablename, Field("name", label = T("Type"), requires = [IS_NOT_EMPTY(), IS_LENGTH(512, minsize=1)], ), # Enable in template if/when org-specific # case types are required: self.org_organisation_id(readable = False, writable = False, ), s3_comments(), *s3_meta_fields()) # CRUD Strings ADD_CASE_TYPE = T("Create Case Type") crud_strings[tablename] = Storage( label_create = ADD_CASE_TYPE, title_display = T("Case Type"), title_list = T("Case Types"), title_update = T("Edit Case Type"), label_list_button = T("List Case Types"), label_delete_button = T("Delete Case Type"), msg_record_created = T("Case Type added"), msg_record_modified = T("Case Type updated"), msg_record_deleted = T("Case Type deleted"), msg_list_empty = T("No Case Types currently registered") ) # Represent for reference case_type_represent = S3Represent(lookup = "dvr_case_type", translate = True, ) # --------------------------------------------------------------------- # Case Statuses # tablename = "dvr_case_status" define_table(tablename, Field("workflow_position", "integer", default = 1, label = T("Workflow Position"), requires = IS_INT_IN_RANGE(1, None), comment = DIV(_class = "tooltip", _title = "%s|%s" % (T("Workflow Position"), T("Rank when ordering cases by status"), ), ), ), Field("code", length=64, notnull=True, unique=True, label = T("Status Code"), requires = [IS_NOT_EMPTY(), IS_LENGTH(64, minsize=1), IS_NOT_ONE_OF(db, "%s.code" % tablename, ), ], comment = DIV(_class = "tooltip", _title = "%s|%s" % (T("Status Code"), T("A unique code to identify the status"), ), ), ), Field("name", label = T("Status"), # Removed to allow single column imports of Cases #requires = IS_NOT_EMPTY(), ), Field("is_default", "boolean", default = False, label = T("Default Status"), represent = s3_yes_no_represent, comment = DIV(_class = "tooltip", _title = "%s|%s" % (T("Default Status"), T("This status applies for new cases unless specified otherwise"), ), ), ), Field("is_closed", "boolean", default = False, label = T("Case Closed"), represent = s3_yes_no_represent, comment = DIV(_class="tooltip", _title="%s|%s" % (T("Case Closed"), T("Cases with this status are closed"), ), ), ), Field("is_not_transferable", "boolean", default = False, label = T("Not Transferable"), represent = s3_yes_no_represent, readable = manage_transferability, writable = manage_transferability, comment = DIV(_class = "tooltip", _title = "%s|%s" % (T("Not Transferable"), T("Cases with this status are not transferable"), ), ), ), s3_comments( comment = DIV(_class = "tooltip", _title = "%s|%s" % (T("Comments"), T("Describe the meaning, reasons and potential consequences of this status"), ), ), ), *s3_meta_fields()) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Create Case Status"), title_display = T("Case Status"), title_list = T("Case Statuses"), title_update = T("Edit Case Status"), label_list_button = T("List Case Statuses"), label_delete_button = T("Delete Case Status"), msg_record_created = T("Case Status added"), msg_record_modified = T("Case Status updated"), msg_record_deleted = T("Case Status deleted"), msg_list_empty = T("No Case Statuses currently registered") ) # Table configuration configure(tablename, # Allow imports to change the status code: deduplicate = S3Duplicate(primary = ("name",), ignore_deleted = True, ), onaccept = self.case_status_onaccept, ) # Reusable field represent = S3Represent(lookup=tablename, translate=True) status_id = S3ReusableField("status_id", "reference %s" % tablename, label = T("Status"), ondelete = "RESTRICT", represent = represent, requires = IS_EMPTY_OR( IS_ONE_OF(db, "dvr_case_status.id", represent, orderby = "dvr_case_status.workflow_position", sort = False, )), sortby = "workflow_position", ) # --------------------------------------------------------------------- # Cases # # Case priority options # => tuple list to enforce widget order # => numeric key so it can be sorted by case_priority_opts = ((3, T("High")), (2, T("Medium")), (1, T("Low")), ) # Consent flag options consent_opts = {"N/A": T("n/a"), "Y": T("yes"), "N": T("no"), } SITE = settings.get_org_site_label() site_represent = self.org_SiteRepresent(show_link=False) # Defaults for case assignment default_organisation = settings.get_org_default_organisation() default_site = settings.get_org_default_site() permitted_facilities = current.auth.permitted_facilities(redirect_on_error=False) # Household size tracking household_size = settings.get_dvr_household_size() household_size_writable = household_size and household_size != "auto" # Transfer origin/destination tracking track_transfer_sites = settings.get_dvr_track_transfer_sites() transfer_site_types = settings.get_dvr_transfer_site_types() transfer_site_requires = IS_EMPTY_OR( IS_ONE_OF(db, "org_site.site_id", site_represent, sort = True, filterby = "instance_type", filter_opts = transfer_site_types, not_filterby = "obsolete", not_filter_opts = (True,), )) transfer_site_id = S3ReusableField("transfer_site_id", "reference org_site", ondelete = "RESTRICT", requires = transfer_site_requires, represent = site_represent, # Enable in template if required readable = track_transfer_sites, writable = track_transfer_sites, ) tablename = "dvr_case" define_table(tablename, self.super_link("doc_id", "doc_entity"), # The primary case beneficiary person_id(represent = self.pr_PersonRepresent(show_link=True), widget = S3AddPersonWidget(controller="dvr"), empty = False, ), # Case type and reference number FieldS3("case_type_id", "reference dvr_case_type", label = T("Case Type"), represent = case_type_represent, requires = IS_EMPTY_OR(IS_ONE_OF( db, "dvr_case_type.id", case_type_represent, )), sortby = "name", comment = S3PopupLink(c = "dvr", f = "case_type", title = ADD_CASE_TYPE, tooltip = T("Choose the case type from the drop-down, or click the link to create a new type"), # Always look up options from dvr/case # (required if inline in person form): vars = {"parent": "case", }, ), ), # @todo: rename into "code"? # @ToDo: Option to autogenerate these, like Waybills, et al # @ToDo: Deprecate: We use pe_label as primary ID and Tags for any additional IDs to cross-reference to 3rd-party systems Field("reference", label = T("Case Number"), ), # Case priority and status status_id(), Field("priority", "integer", default = 2, label = T("Priority"), represent = S3Represent(options=dict(case_priority_opts)), requires = IS_IN_SET(case_priority_opts, sort = False, zero = None, ), ), Field("disclosure_consent", "string", length=8, label = T("Consenting to Data Disclosure"), requires = IS_EMPTY_OR(IS_IN_SET(consent_opts)), represent = S3Represent(options=consent_opts), readable = False, writable = False, ), Field("archived", "boolean", default = False, label = T("Archived"), represent = s3_yes_no_represent, # Enabled in controller: readable = False, writable = False, ), # Case assignment self.org_organisation_id( default = default_organisation, readable = not default_organisation, writable = not default_organisation, ), self.project_project_id( ondelete = "SET NULL", # Enable in template as required: readable = False, writable = False, ), self.super_link("site_id", "org_site", default = default_site, filterby = "site_id", filter_opts = permitted_facilities, label = SITE, readable = not default_site, writable = not default_site, represent = site_represent, updateable = True, ), self.hrm_human_resource_id( label = T("Assigned to"), readable = False, writable = False, ), # Basic date fields s3_date(label = T("Registration Date"), default = "now", empty = False, ), s3_date("closed_on", label = T("Case closed on"), # Automatically set onaccept writable = False, ), # Extended date fields s3_date("valid_until", label = T("Valid until"), # Enable in template if required readable = False, writable = False, ), s3_date("stay_permit_until", label = T("Stay Permit until"), # Enable in template if required readable = False, writable = False, ), s3_datetime("last_seen_on", label = T("Last seen on"), # Enable in template if required readable = False, writable = False, ), # Household size tracking Field("household_size", "integer", default = 1, label = T("Household Size"), requires = IS_EMPTY_OR(IS_INT_IN_RANGE(1, None)), readable = household_size, writable = household_size_writable, comment = DIV(_class="tooltip", _title="%s|%s" % (T("Household Size"), T("Number of persons belonging to the same household"), ), ), ), # Case transfer management transfer_site_id("origin_site_id", label = T("Admission from"), ), transfer_site_id("destination_site_id", label = T("Transfer to"), ), # "transferable" indicates whether this case is # ready for transfer (=workflow is complete) Field("transferable", "boolean", default = False, label = T("Transferable"), represent = s3_yes_no_represent, readable = manage_transferability, writable = manage_transferability, ), # "household transferable" indicates whether all # open cases in the case group are ready for transfer Field("household_transferable", "boolean", default = False, label = T("Household Transferable"), represent = s3_yes_no_represent, readable = manage_transferability, writable = manage_transferability, ), # Standard comments and meta fields s3_comments(), *s3_meta_fields()) # CRUD Strings if beneficiary: label = T("Beneficiary") crud_strings[tablename] = Storage( label_create = T("Create Beneficiary"), title_display = T("Beneficiary Details"), title_list = T("Beneficiaries"), title_update = T("Edit Beneficiary"), label_list_button = T("List Beneficiaries"), label_delete_button = T("Delete Beneficiary"), msg_record_created = T("Beneficiary added"), msg_record_modified = T("Beneficiary updated"), msg_record_deleted = T("Beneficiary deleted"), msg_list_empty = T("No Beneficiaries found"), ) else: label = T("Case") crud_strings[tablename] = Storage( label_create = T("Create Case"), title_display = T("Case Details"), title_list = T("Cases"), title_update = T("Edit Case"), label_list_button = T("List Cases"), label_delete_button = T("Delete Case"), msg_record_created = T("Case added"), msg_record_modified = T("Case updated"), msg_record_deleted = T("Case deleted"), msg_list_empty = T("No Cases found"), ) # Components self.add_components(tablename, dvr_case_activity = "case_id", dvr_case_details = {"joinby": "case_id", "multiple": False, }, dvr_case_event = "case_id", dvr_economy = {"joinby": "case_id", "multiple": False, }, dvr_evaluation = {"joinby": "case_id", "multiple": False, }, dvr_need = {"link": "dvr_case_need", "joinby": "case_id", "key": "need_id", }, ) # Report options FIXME #axes = ["organisation_id", # "case_need.need_id", # ] #levels = current.gis.get_relevant_hierarchy_levels() #for level in levels: # axes.append("current_address.location_id$%s" % level) #highest_lx = "current_address.location_id$%s" % levels[0] # #facts = [(T("Number of Cases"), "count(id)"), # ] # #report_options = {"rows": axes, # "cols": axes, # "fact": facts, # "defaults": {"rows": "case_need.need_id", # "cols": highest_lx, # "fact": facts[0], # "totals": True, # }, # } # Table configuration configure(tablename, #report_options = report_options, onvalidation = self.case_onvalidation, create_onaccept = self.case_create_onaccept, update_onaccept = self.case_onaccept, super_entity = ("doc_entity",), ) # Reusable field represent = S3Represent(lookup=tablename, fields=("reference",)) case_id = S3ReusableField("case_id", "reference %s" % tablename, label = label, ondelete = "RESTRICT", represent = represent, requires = IS_EMPTY_OR( IS_ONE_OF(db, "dvr_case.id", represent)), ) # --------------------------------------------------------------------- # Case Language: languages that can be used to communicate with # a case beneficiary # # Quality/Mode of communication: lang_quality_opts = (("N", T("native")), ("F", T("fluent")), ("S", T("simplified/slow")), ("W", T("written-only")), ("I", T("interpreter required")), ) tablename = "dvr_case_language" define_table(tablename, person_id(empty = False, ondelete = "CASCADE", ), s3_language(select = None), Field("quality", default = "N", label = T("Quality/Mode"), represent = S3Represent(options=dict(lang_quality_opts)), requires = IS_IN_SET(lang_quality_opts, sort = False, zero = None, ), ), s3_comments(), *s3_meta_fields()) # --------------------------------------------------------------------- # Case Details: extended attributes for DVR cases # tablename = "dvr_case_details" define_table(tablename, case_id(empty = False, ondelete = "CASCADE", ), person_id(empty = False, ondelete = "CASCADE", ), Field("registered", "boolean", default = True, label = T("Officially Registered"), represent = s3_yes_no_represent, ), Field("enrolled_in_school", "boolean", default = False, label = T("Enrolled in Public School"), represent = s3_yes_no_represent, ), s3_date("arrival_date", label = T("Arrival Date"), ), Field("lodging", length=128, label = T("Lodging"), represent = lambda v: v if v else NONE, requires = IS_LENGTH(128), ), s3_date("on_site_from", label = T("On-site from"), ), s3_date("on_site_until", label = T("On-site until"), ), Field("referred_by", length=128, label = T("Referred by"), represent = lambda v: v if v else NONE, requires = IS_LENGTH(128), ), Field("referred_to", length=128, label = T("Referred to"), represent = lambda v: v if v else NONE, requires = IS_LENGTH(128), ), self.dvr_referral_type_id(), self.dvr_referral_type_id( "activity_referral_type_id", label = T("Referred to Group Activities by"), ), *s3_meta_fields()) # --------------------------------------------------------------------- # Pass names back to global scope (s3.*) # return {"dvr_case_id": case_id, "dvr_case_status_id": status_id, } # ------------------------------------------------------------------------- @staticmethod def defaults(): """ Safe defaults for names in case the module is disabled """ dummy = S3ReusableField("dummy_id", "integer", readable = False, writable = False, ) return {"dvr_case_id": lambda name="case_id", **attr: \ dummy(name, **attr), "dvr_case_status_id": lambda name="status_id", **attr: \ dummy(name, **attr), } # ------------------------------------------------------------------------- @staticmethod def case_status_onaccept(form): """ Onaccept routine for case statuses: - only one status can be the default @param form: the FORM """ form_vars = form.vars try: record_id = form_vars.id except AttributeError: record_id = None if not record_id: return # If this status is the default, then set is_default-flag # for all other statuses to False: if "is_default" in form_vars and form_vars.is_default: table = current.s3db.dvr_case_status db = current.db db(table.id != record_id).update(is_default = False) # ------------------------------------------------------------------------- @staticmethod def case_onvalidation(form): """ Case onvalidation: - make sure case numbers are unique within the organisation @param form: the FORM """ db = current.db s3db = current.s3db # Read form data form_vars = form.vars if "id" in form_vars: # Inline subtable update record_id = form_vars.id elif hasattr(form, "record_id"): # Regular update form record_id = form.record_id else: # New record record_id = None try: reference = form_vars.reference except AttributeError: reference = None if reference: # Make sure the case reference is unique within the organisation ctable = s3db.dvr_case otable = s3db.org_organisation # Get the organisation_id if "organisation_id" not in form_vars: if not record_id: # Create form with hidden organisation_id # => use default organisation_id = ctable.organisation_id.default else: # Reload the record to get the organisation_id query = (ctable.id == record_id) row = db(query).select(ctable.organisation_id, limitby = (0, 1)).first() if not row: return organisation_id = row.organisation_id else: # Use the organisation_id in the form organisation_id = form_vars.organisation_id # Case duplicate query dquery = (ctable.reference == reference) & \ (ctable.deleted != True) if record_id: dquery &= (ctable.id != record_id) msg = current.T("This Case Number is already in use") # Add organisation query to duplicate query if current.deployment_settings.get_org_branches(): # Get the root organisation query = (otable.id == organisation_id) row = db(query).select(otable.root_organisation, limitby = (0, 1)).first() root_organisation = row.root_organisation \ if row else organisation_id dquery &= (otable.root_organisation == root_organisation) left = otable.on(otable.id == ctable.organisation_id) else: dquery &= (ctable.organisation_id == organisation_id) left = None # Is there a record with the same reference? row = db(dquery).select(ctable.id, left = left, limitby = (0, 1)).first() if row: form.errors["reference"] = msg # ------------------------------------------------------------------------- @classmethod def case_create_onaccept(cls, form): """ Wrapper for case_onaccept when called during create rather than update @param form: the FORM """ cls.case_onaccept(form, create=True) # ------------------------------------------------------------------------- @staticmethod def case_onaccept(form, create=False): """ Case onaccept routine: - auto-create active appointments - count household size for new cases @param form: the FORM @param create: perform additional actions for new cases """ db = current.db s3db = current.s3db # Read form data form_vars = form.vars if "id" in form_vars: record_id = form_vars.id elif hasattr(form, "record_id"): record_id = form.record_id else: return # Get the case ctable = s3db.dvr_case stable = s3db.dvr_case_status left = stable.on(stable.id == ctable.status_id) query = (ctable.id == record_id) row = db(query).select(ctable.id, ctable.person_id, ctable.closed_on, stable.is_closed, left = left, limitby = (0, 1), ).first() if not row: return # Update closed_on date case = row.dvr_case if row.dvr_case_status.is_closed: if not case.closed_on: case.update_record(closed_on = current.request.utcnow.date()) elif case.closed_on: case.update_record(closed_on = None) # Get the person ID person_id = case.person_id atable = s3db.dvr_case_appointment ttable = s3db.dvr_case_appointment_type left = atable.on((atable.type_id == ttable.id) & (atable.person_id == person_id) & (atable.deleted != True)) query = (atable.id == None) & \ (ttable.active == True) & \ (ttable.deleted != True) rows = db(query).select(ttable.id, left=left) for row in rows: atable.insert(case_id = record_id, person_id = person_id, type_id = row.id, ) if create and \ current.deployment_settings.get_dvr_household_size() == "auto": # Count household size for newly created cases, in order # to catch pre-existing case group memberships gtable = s3db.pr_group mtable = s3db.pr_group_membership query = ((mtable.person_id == person_id) & \ (mtable.deleted != True) & \ (gtable.id == mtable.group_id) & \ (gtable.group_type == 7)) rows = db(query).select(gtable.id) for row in rows: dvr_case_household_size(row.id) # ============================================================================= class DVRCaseFlagModel(S3Model): """ Model for Case Flags """ names = ("dvr_case_flag", "dvr_case_flag_case", ) def model(self): T = current.T db = current.db settings = current.deployment_settings crud_strings = current.response.s3.crud_strings configure = self.configure define_table = self.define_table manage_transferability = settings.get_dvr_manage_transferability() # --------------------------------------------------------------------- # Case Flags # tablename = "dvr_case_flag" define_table(tablename, Field("name", label = T("Name"), requires = [IS_NOT_EMPTY(), IS_LENGTH(512, minsize=1)], ), Field("advise_at_check_in", "boolean", default = False, label = T("Advice at Check-in"), represent = s3_yes_no_represent, comment = DIV(_class = "tooltip", _title = "%s|%s" % (T("Advice at Check-in"), T("Show handling instructions at check-in"), ), ), ), Field("advise_at_check_out", "boolean", default = False, label = T("Advice at Check-out"), represent = s3_yes_no_represent, comment = DIV(_class = "tooltip", _title = "%s|%s" % (T("Advice at Check-out"), T("Show handling instructions at check-out"), ), ), ), Field("advise_at_id_check", "boolean", default = False, label = T("Advice at ID Check"), represent = s3_yes_no_represent, comment = DIV(_class = "tooltip", _title = "%s|%s" % (T("Advice at ID Check"), T("Show handling instructions at ID checks (e.g. for event registration, payments)"), ), ), ), Field("instructions", "text", label = T("Instructions"), represent = s3_text_represent, comment = DIV(_class = "tooltip", _title = "%s|%s" % (T("Instructions"), T("Instructions for handling of the case"), ), ), ), Field("deny_check_in", "boolean", default = False, label = T("Deny Check-in"), represent = s3_yes_no_represent, comment = DIV(_class = "tooltip", _title = "%s|%s" % (T("Deny Check-in"), T("Deny the person to check-in when this flag is set"), ), ), ), Field("deny_check_out", "boolean", default = False, label = T("Deny Check-out"), represent = s3_yes_no_represent, comment = DIV(_class = "tooltip", _title = "%s|%s" % (T("Deny Check-out"), T("Deny the person to check-out when this flag is set"), ), ), ), Field("allowance_suspended", "boolean", default = False, label = T("Allowance Suspended"), represent = s3_yes_no_represent, comment = DIV(_class = "tooltip", _title = "%s|%s" % (T("Allowance Suspended"), T("Person shall not receive allowance payments when this flag is set"), ), ), ), Field("is_not_transferable", "boolean", default = False, label = T("Not Transferable"), represent = s3_yes_no_represent, readable = manage_transferability, writable = manage_transferability, comment = DIV(_class = "tooltip", _title = "%s|%s" % (T("Not Transferable"), T("Cases with this flag are not transferable"), ), ), ), Field("is_external", "boolean", default = False, label = T("External"), represent = s3_yes_no_represent, comment = DIV(_class = "tooltip", _title = "%s|%s" % (T("External"), T("This flag indicates that the person is currently accommodated/being held externally (e.g. in Hospital or with Police)"), ), ), ), Field("nostats", "boolean", default = False, label = T("Exclude from Reports"), represent = s3_yes_no_represent, comment = DIV(_class = "tooltip", _title = "%s|%s" % (T("Exclude from Reports"), T("Exclude cases with this flag from certain reports"), ), ), ), s3_comments(), *s3_meta_fields()) # CRUD Strings ADD_FLAG = T("Create Case Flag") crud_strings[tablename] = Storage( label_create = ADD_FLAG, title_display = T("Case Flag Details"), title_list = T("Case Flags"), title_update = T("Edit Case Flag"), label_list_button = T("List Case Flags"), label_delete_button = T("Delete Case Flag"), msg_record_created = T("Case Flag added"), msg_record_modified = T("Case Flag updated"), msg_record_deleted = T("Case Flag deleted"), msg_list_empty = T("No Case Flags found"), ) # Table configuration configure(tablename, deduplicate = S3Duplicate(ignore_deleted = True, ), ) # Reusable field represent = S3Represent(lookup=tablename, translate=True) flag_id = S3ReusableField("flag_id", "reference %s" % tablename, label = T("Case Flag"), ondelete = "RESTRICT", represent = represent, requires = IS_EMPTY_OR( IS_ONE_OF(db, "dvr_case_flag.id", represent)), comment=S3PopupLink(c = "dvr", f = "case_flag", title = ADD_FLAG, tooltip = T("Choose the flag from the drop-down, or click the link to create a new flag"), ), ) # --------------------------------------------------------------------- # Link table Case <=> Flag # tablename = "dvr_case_flag_case" define_table(tablename, self.pr_person_id(empty = False, ondelete = "CASCADE", ), flag_id(empty = False, ondelete = "CASCADE", ), *s3_meta_fields()) # Table configuration configure(tablename, deduplicate = S3Duplicate(primary = ("person_id", "flag_id", ), ), ) # --------------------------------------------------------------------- # Pass names back to global scope (s3.*) # return {"dvr_case_flag_id": flag_id, } # ------------------------------------------------------------------------- @staticmethod def defaults(): """ Safe defaults for names in case the module is disabled """ dummy = S3ReusableField("dummy_id", "integer", readable = False, writable = False, ) return {"dvr_case_flag_id": lambda name="flag_id", **attr: \ dummy(name, **attr), } # ============================================================================= class DVRNeedsModel(S3Model): """ Model for Needs """ names = ("dvr_need", "dvr_need_id", "dvr_case_need", ) def model(self): T = current.T db = current.db settings = current.deployment_settings crud_strings = current.response.s3.crud_strings define_table = self.define_table configure = self.configure service_type = settings.get_dvr_needs_use_service_type() service_id = self.org_service_id hierarchical_needs = settings.get_dvr_needs_hierarchical() # --------------------------------------------------------------------- # Needs # tablename = "dvr_need" define_table(tablename, Field("name", label = T("Name"), requires = [IS_NOT_EMPTY(), IS_LENGTH(512, minsize=1)], ), # This form of hierarchy may not work on all Databases: Field("parent", "reference dvr_need", label = T("Subtype of"), ondelete = "RESTRICT", readable = hierarchical_needs, writable = hierarchical_needs, ), service_id(label = T("Service Type"), ondelete = "SET NULL", readable = service_type, writable = service_type, ), # Activate in template as needed: self.org_organisation_id(readable = False, writable = False, ), Field("protection", "boolean", default = False, label = T("Protection Need"), represent = s3_yes_no_represent, readable = False, writable = False, ), s3_comments(), *s3_meta_fields()) # Hierarchy if hierarchical_needs: hierarchy = "parent" widget = S3HierarchyWidget(multiple = False, leafonly = False, ) else: hierarchy = None widget = None # Table configuration configure(tablename, deduplicate = S3Duplicate(primary = ("name",), secondary = ("parent", "organisation_id", ), ), hierarchy = hierarchy, ) # CRUD Strings ADD_NEED = T("Create Need Type") crud_strings[tablename] = Storage( label_create = ADD_NEED, title_display = T("Need Type Details"), title_list = T("Need Types"), title_update = T("Edit Need Type"), label_list_button = T("List Need Types"), label_delete_button = T("Delete Need Type"), msg_record_created = T("Need Type added"), msg_record_modified = T("Need Type updated"), msg_record_deleted = T("Need Type deleted"), msg_list_empty = T("No Need Types found"), ) # Reusable field represent = S3Represent(lookup=tablename, translate=True) need_id = S3ReusableField("need_id", "reference %s" % tablename, label = T("Need Type"), ondelete = "RESTRICT", represent = represent, requires = IS_EMPTY_OR( IS_ONE_OF(db, "dvr_need.id", represent, )), comment = S3PopupLink(c = "dvr", f = "need", title = ADD_NEED, tooltip = T("Choose the need type from the drop-down, or click the link to create a new type"), ), widget = widget ) # --------------------------------------------------------------------- # Link table Case <=> Need # tablename = "dvr_case_need" define_table(tablename, self.dvr_case_id(empty = False, ondelete = "CASCADE", ), need_id(empty = False, ondelete = "CASCADE", ), *s3_meta_fields()) # --------------------------------------------------------------------- # Pass names back to global scope (s3.*) # return {"dvr_need_id": need_id, } # ------------------------------------------------------------------------- @staticmethod def defaults(): """ Safe defaults for names in case the module is disabled """ dummy = S3ReusableField("dummy_id", "integer", readable = False, writable = False, ) return {"dvr_need_id": lambda name="need_id", **attr: \ dummy(name, **attr), } # ============================================================================= class DVRNotesModel(S3Model): """ Model for Notes """ names = ("dvr_note_type", "dvr_note", ) def model(self): T = current.T db = current.db crud_strings = current.response.s3.crud_strings define_table = self.define_table # --------------------------------------------------------------------- # Note Types # tablename = "dvr_note_type" define_table(tablename, Field("name", length=128, unique=True, label = T("Name"), requires = [IS_NOT_EMPTY(), IS_LENGTH(128, minsize=1), IS_NOT_ONE_OF(db, "dvr_note_type.name", ), ], ), s3_comments(), *s3_meta_fields()) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Create Note Type"), title_display = T("Note Type Details"), title_list = T("Note Types"), title_update = T("Edit Note Type"), label_list_button = T("List Note Types"), label_delete_button = T("Delete Note Type"), msg_record_created = T("Note Type added"), msg_record_modified = T("Note Type updated"), msg_record_deleted = T("Note Type deleted"), msg_list_empty = T("No Note Types found"), ) # Table configuration #self.configure(tablename, # # Not needed as unique=True # deduplicate = S3Duplicate(), # ) # Reusable field represent = S3Represent(lookup=tablename, translate=True) note_type_id = S3ReusableField("note_type_id", "reference %s" % tablename, label = T("Note Type"), ondelete = "RESTRICT", represent = represent, requires = IS_EMPTY_OR( IS_ONE_OF(db, "dvr_note_type.id", represent)), ) # --------------------------------------------------------------------- # Notes # tablename = "dvr_note" define_table(tablename, # Uncomment if needed for the Case perspective #self.dvr_case_id(empty = False, # ondelete = "CASCADE", # ), self.pr_person_id(empty = False, ondelete = "CASCADE", ), note_type_id(empty = False), s3_date(default = "now", ), s3_comments("note", label = T("Note"), comment = None, ), *s3_meta_fields()) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Create Note"), title_display = T("Note Details"), title_list = T("Notes"), title_update = T("Edit Note"), label_list_button = T("List Notes"), label_delete_button = T("Delete Note"), msg_record_created = T("Note added"), msg_record_modified = T("Note updated"), msg_record_deleted = T("Note deleted"), msg_list_empty = T("No Notes found"), ) # --------------------------------------------------------------------- # Pass names back to global scope (s3.*) # return {} # ============================================================================= class DVRReferralModel(S3Model): """ Data model for case referrals (both incoming and outgoing) """ names = ("dvr_referral_type", "dvr_referral_type_id", ) def model(self): T = current.T db = current.db crud_strings = current.response.s3.crud_strings # --------------------------------------------------------------------- # Referral Types (how cases are admitted) # tablename = "dvr_referral_type" self.define_table(tablename, Field("name", label = T("Name"), requires = [IS_NOT_EMPTY(), IS_LENGTH(512, minsize=1)], ), s3_comments(), *s3_meta_fields()) # Table configuration self.configure(tablename, deduplicate = S3Duplicate(), ) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Create Referral Type"), title_display = T("Referral Type Details"), title_list = T("Referral Types"), title_update = T("Edit Referral Type"), label_list_button = T("List Referral Types"), label_delete_button = T("Delete Referral Type"), msg_record_created = T("Referral Type added"), msg_record_modified = T("Referral Type updated"), msg_record_deleted = T("Referral Type deleted"), msg_list_empty = T("No Referral Types found"), ) # Reusable field represent = S3Represent(lookup=tablename, translate=True) referral_type_id = S3ReusableField("referral_type_id", "reference %s" % tablename, label = T("Type of Referral"), ondelete = "RESTRICT", represent = represent, requires = IS_EMPTY_OR( IS_ONE_OF(db, "%s.id" % tablename, represent, )), ) # --------------------------------------------------------------------- # Pass names back to global scope (s3.*) # return {"dvr_referral_type_id": referral_type_id, } # ------------------------------------------------------------------------- @staticmethod def defaults(): """ Safe defaults for names in case the module is disabled """ dummy = S3ReusableField("dummy_id", "integer", readable = False, writable = False, ) return {"dvr_referral_type_id": lambda name="referral_type_id", **attr: \ dummy(name, **attr), } # ============================================================================= class DVRResponseModel(S3Model): """ Model representing responses to case needs """ names = ("dvr_response_action", "dvr_response_action_theme", "dvr_response_status", "dvr_response_theme", "dvr_response_type", "dvr_response_type_case_activity", ) def model(self): T = current.T db = current.db s3 = current.response.s3 settings = current.deployment_settings crud_strings = s3.crud_strings define_table = self.define_table configure = self.configure hierarchical_response_types = settings.get_dvr_response_types_hierarchical() themes_sectors = settings.get_dvr_response_themes_sectors() themes_needs = settings.get_dvr_response_themes_needs() case_activity_id = self.dvr_case_activity_id NONE = current.messages["NONE"] # --------------------------------------------------------------------- # Response Themes # tablename = "dvr_response_theme" define_table(tablename, self.org_organisation_id(), Field("name", label = T("Theme"), requires = [IS_NOT_EMPTY(), IS_LENGTH(512, minsize=1)], ), self.dvr_need_id(readable = themes_needs, writable = themes_needs, ), self.org_sector_id(readable = themes_sectors, writable = themes_sectors, ), s3_comments(), *s3_meta_fields()) # Table configuration configure(tablename, deduplicate = S3Duplicate(primary = ("name",), secondary = ("organisation_id",), ), ondelete_cascade = self.response_theme_ondelete_cascade, ) # CRUD strings crud_strings[tablename] = Storage( label_create = T("Create Response Theme"), title_display = T("Response Theme Details"), title_list = T("Response Themes"), title_update = T("Edit Response Theme"), label_list_button = T("List Response Themes"), label_delete_button = T("Delete Response Theme"), msg_record_created = T("Response Theme created"), msg_record_modified = T("Response Theme updated"), msg_record_deleted = T("Response Theme deleted"), msg_list_empty = T("No Response Themes currently defined"), ) # Reusable field themes_represent = dvr_ResponseThemeRepresent(multiple = True, translate = True, ) requires = IS_ONE_OF(db, "%s.id" % tablename, themes_represent, multiple = True, ) if settings.get_dvr_response_themes_org_specific(): root_org = current.auth.root_org() if root_org: requires.set_filter(filterby = "organisation_id", filter_opts = (root_org,), ) response_theme_ids = S3ReusableField( "response_theme_ids", "list:reference %s" % tablename, label = T("Themes"), ondelete = "RESTRICT", represent = themes_represent, requires = IS_EMPTY_OR(requires), sortby = "name", widget = S3MultiSelectWidget(header = False, ), ) # --------------------------------------------------------------------- # Response Types # tablename = "dvr_response_type" define_table(tablename, Field("name", requires = [IS_NOT_EMPTY(), IS_LENGTH(512, minsize=1)], ), # This form of hierarchy may not work on all databases: Field("parent", "reference dvr_response_type", label = T("Subtype of"), ondelete = "RESTRICT", represent = S3Represent(lookup = tablename, translate = True, hierarchy = True, ), readable = hierarchical_response_types, writable = hierarchical_response_types, ), Field("is_default", "boolean", label = T("Default?"), default = False, represent = s3_yes_no_represent, ), Field("is_consultation", "boolean", label = T("Consultation"), default = False, represent = s3_yes_no_represent, ), s3_comments(), *s3_meta_fields()) # Hierarchy if hierarchical_response_types: hierarchy = "parent" widget = S3HierarchyWidget(multiple = False, leafonly = True, ) else: hierarchy = None widget = None # Table configuration configure(tablename, deduplicate = S3Duplicate(primary = ("name",), secondary = ("parent",), ), hierarchy = hierarchy, onaccept = self.response_type_onaccept, ) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Create Response Type"), title_display = T("Response Type Details"), title_list = T("Response Types"), title_update = T("Edit Response Type"), label_list_button = T("List Response Types"), label_delete_button = T("Delete Response Type"), msg_record_created = T("Response Type created"), msg_record_modified = T("Response Type updated"), msg_record_deleted = T("Response Type deleted"), msg_list_empty = T("No Response Types currently defined"), ) # Reusable field represent = S3Represent(lookup=tablename, translate=True) response_type_id = S3ReusableField( "response_type_id", "reference %s" % tablename, label = T("Response Type"), represent = represent, requires = IS_EMPTY_OR( IS_ONE_OF(db, "%s.id" % tablename, represent, )), sortby = "name", widget = widget, ) # --------------------------------------------------------------------- # Response action status # tablename = "dvr_response_status" define_table(tablename, Field("name", requires = [IS_NOT_EMPTY(), IS_LENGTH(512, minsize=1)], ), Field("workflow_position", "integer", label = T("Workflow Position"), requires = IS_INT_IN_RANGE(0, None), ), Field("is_default", "boolean", default = False, label = T("Default Initial Status"), ), Field("is_closed", "boolean", default = False, label = T("Closes Response Action"), ), Field("is_default_closure", "boolean", default = False, label = T("Default Closure Status"), ), Field("color", requires = IS_HTML_COLOUR(), widget = S3ColorPickerWidget(), ), s3_comments(), *s3_meta_fields()) # Table Configuration configure(tablename, deduplicate = S3Duplicate(), onaccept = self.response_status_onaccept, ) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Create Response Status"), title_display = T("Response Status Details"), title_list = T("Response Statuses"), title_update = T("Edit Response Status"), label_list_button = T("List Response Statuses"), label_delete_button = T("Delete Response Status"), msg_record_created = T("Response Status created"), msg_record_modified = T("Response Status updated"), msg_record_deleted = T("Response Status deleted"), msg_list_empty = T("No Response Statuses currently defined"), ) # Reusable field represent = S3Represent(lookup=tablename, translate=True) response_status_id = S3ReusableField( "status_id", "reference %s" % tablename, label = T("Status"), represent = represent, requires = IS_ONE_OF(db, "%s.id" % tablename, represent, orderby = "workflow_position", sort = False, zero = None, ), sortby = "workflow_position", ) # --------------------------------------------------------------------- # Responses # case_label = settings.get_dvr_label() if case_label: # If we add more options in future then == "Beneficiary" CASE = T("Beneficiary") else: CASE = T("Case") use_response_types = settings.get_dvr_response_types() use_response_themes = settings.get_dvr_response_themes() response_themes_details = settings.get_dvr_response_themes_details() use_due_date = settings.get_dvr_response_due_date() DATE = T("Date Actioned") if use_due_date else T("Date") use_time = settings.get_dvr_response_use_time() tablename = "dvr_response_action" define_table(tablename, # Beneficiary self.pr_person_id( label = CASE, widget = S3PersonAutocompleteWidget(controller="dvr"), empty = False, ), case_activity_id( empty = False, label = T("Activity"), ondelete = "CASCADE", writable = False, ), response_theme_ids( ondelete = "RESTRICT", readable = use_response_themes, writable = use_response_themes, ), response_type_id( empty = not use_response_types, label = T("Action Type"), ondelete = "RESTRICT", readable = use_response_types, writable = use_response_types, ), s3_date("date_due", label = T("Date Due"), readable = use_due_date, writable = use_due_date, ), # For backwards-compatibility: s3_date(label = DATE, default = None if use_due_date else "now", readable = False, writable = False, ), s3_datetime("start_date", label = DATE, default = None if use_due_date else "now", widget = None if use_time else "date", ), s3_datetime("end_date", label = T("End"), widget = None if use_time else "date", readable = False, writable = False, ), self.hrm_human_resource_id(), response_status_id(), Field("hours", "double", label = T("Effort (Hours)"), requires = IS_EMPTY_OR( IS_FLOAT_IN_RANGE(0.0, None)), represent = lambda hours: "%.2f" % hours if hours else NONE, widget = S3HoursWidget(precision = 2, ), ), s3_comments(label = T("Details"), comment = None, represent = lambda v: s3_text_represent(v, lines=8), ), *s3_meta_fields()) # List_fields list_fields = ["case_activity_id", "comments", "human_resource_id", #"date_due", "start_date", "hours", "status_id", ] if use_due_date: list_fields[3:3] = ["date_due"] if use_response_types: list_fields[1:1] = ["response_type_id"] if use_response_themes: if response_themes_details: list_fields[1:1] = ["response_action_theme.theme_id"] else: list_fields[1:1] = ["response_theme_ids", "comments"] else: list_fields[1:1] = ["comments"] # Filter widgets if use_response_types: if hierarchical_response_types: response_type_filter = S3HierarchyFilter( "response_type_id", lookup = "dvr_response_type", hidden = True, ) else: response_type_filter = S3OptionsFilter( "response_type_id", options = lambda: \ s3_get_filter_opts("dvr_response_type"), hidden = True, ) else: response_type_filter = None if use_due_date: due_filter = S3DateFilter("date_due") else: due_filter = None filter_widgets = [S3TextFilter(["case_activity_id$person_id$pe_label", "case_activity_id$person_id$first_name", "case_activity_id$person_id$middle_name", "case_activity_id$person_id$last_name", "comments", ], label = T("Search"), ), S3OptionsFilter("status_id", options = lambda: \ s3_get_filter_opts("dvr_response_status"), cols = 3, translate = True, ), due_filter, response_type_filter, ] # CRUD Form type_field = "response_type_id" if use_response_types else None details_field = "comments" if use_response_themes: if response_themes_details: theme_field = S3SQLInlineComponent("response_action_theme", fields = ["theme_id", "comments", ], label = T("Themes"), ) details_field = None else: theme_field = "response_theme_ids" else: theme_field = None due_field = "date_due" if use_due_date else None crud_form = S3SQLCustomForm("person_id", "case_activity_id", type_field, theme_field, details_field, "human_resource_id", due_field, "start_date", "status_id", "hours", ) # Table Configuration configure(tablename, crud_form = crud_form, filter_widgets = filter_widgets, list_fields = list_fields, onaccept = self.response_action_onaccept, ) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Create Action"), title_display = T("Action Details"), title_list = T("Actions"), title_update = T("Edit Action"), label_list_button = T("List Actions"), label_delete_button = T("Delete Action"), msg_record_created = T("Action created"), msg_record_modified = T("Action updated"), msg_record_deleted = T("Action deleted"), msg_list_empty = T("No Actions currently registered"), ) # Components self.add_components(tablename, dvr_response_action_theme = "action_id", ) # --------------------------------------------------------------------- # Response Action <=> Theme link table # - for filtering/reporting by extended theme attributes # - not exposed directly, populated onaccept from response_theme_ids # theme_represent = S3Represent(lookup = "dvr_response_theme", translate = True, ) action_represent = dvr_ResponseActionRepresent() tablename = "dvr_response_action_theme" define_table(tablename, Field("action_id", "reference dvr_response_action", label = T("Action"), ondelete = "CASCADE", represent = action_represent, requires = IS_ONE_OF(db, "dvr_response_action.id", action_represent, ), ), Field("theme_id", "reference dvr_response_theme", ondelete = "RESTRICT", label = T("Theme"), represent = theme_represent, requires = IS_ONE_OF(db, "dvr_response_theme.id", theme_represent, ), ), case_activity_id(ondelete = "SET NULL", readable = False, writable = False, ), s3_comments(label = T("Details"), comment = None, represent = lambda v: s3_text_represent(v, lines=8), ), *s3_meta_fields()) configure(tablename, onaccept = self.response_action_theme_onaccept, ondelete = self.response_action_theme_ondelete, ) # --------------------------------------------------------------------- # Response Types <=> Case Activities link table # @todo: drop/replace by dvr_response_action? (currently still used in STL) # tablename = "dvr_response_type_case_activity" define_table(tablename, self.dvr_case_activity_id( empty = False, ondelete = "CASCADE", ), response_type_id( empty = False, ondelete = "RESTRICT", ), *s3_meta_fields()) # --------------------------------------------------------------------- # Pass names back to global scope (s3.*) # return {} # ------------------------------------------------------------------------- @staticmethod def defaults(): """ Safe defaults for names in case the module is disabled """ #dummy = S3ReusableField("dummy_id", "integer", #readable = False, #writable = False, #) return {} # ------------------------------------------------------------------------- @staticmethod def response_type_onaccept(form): """ Onaccept routine for response types: - only one type can be the default @param form: the FORM """ form_vars = form.vars try: record_id = form_vars.id except AttributeError: record_id = None if not record_id: return table = current.s3db.dvr_response_type # If this status is the default, then set is_default-flag # for all other types to False: if form_vars.get("is_default"): query = (table.is_default == True) & \ (table.id != record_id) current.db(query).update(is_default = False) # ------------------------------------------------------------------------- @staticmethod def response_status_onaccept(form): """ Onaccept routine for response statuses: - only one status can be the default @param form: the FORM """ form_vars = form.vars try: record_id = form_vars.id except AttributeError: record_id = None if not record_id: return table = current.s3db.dvr_response_status db = current.db # If this status is the default, then set is_default-flag # for all other statuses to False: if form_vars.get("is_default"): query = (table.is_default == True) & \ (table.id != record_id) db(query).update(is_default = False) # If this status is the default closure, then enforce is_closed, # and set is_default_closure for all other statuses to False if form_vars.get("is_default_closure"): db(table.id == record_id).update(is_closed = True) query = (table.is_default_closure == True) & \ (table.id != record_id) db(query).update(is_default_closure = False) # ------------------------------------------------------------------------- @staticmethod def response_theme_ondelete_cascade(row): """ Explicit deletion cascade for response theme list:references (which are not caught by standard cascade), action depending on "ondelete" setting of response_theme_ids: - RESTRICT => block deletion cascade - otherwise => clean up the list:reference @param row: the dvr_response_theme Row to be deleted """ db = current.db theme_id = row.id # Table with list:reference dvr_response_theme atable = current.s3db.dvr_response_action reference = atable.response_theme_ids # Referencing rows query = (reference.contains(theme_id)) & \ (atable.deleted == False) if reference.ondelete == "RESTRICT": referenced_by = db(query).select(atable.id, limitby=(0, 1)).first() if referenced_by: # Raise to stop deletion cascade raise RuntimeError("Attempt to delete a theme that is referenced by a response") else: referenced_by = db(query).select(atable.id, reference) for rrow in referenced_by: # Clean up reference list theme_ids = rrow[reference] rrow.update_record(response_theme_ids = \ [tid for tid in theme_ids if tid != theme_id]) # ------------------------------------------------------------------------- @staticmethod def get_case_activity_by_need(person_id, need_id, hr_id=None): """ DRY helper to find or create a case activity matching a need_id @param person_id: the beneficiary person ID @param need_id: the need ID (or a list of need IDs) @param human_resource_id: the HR responsible @returns: a dvr_case_activity record ID """ if not person_id: return None s3db = current.s3db table = s3db.dvr_case_activity # Look up a matching case activity for this beneficiary query = (table.person_id == person_id) if isinstance(need_id, (list, tuple)): need = need_id[0] if len(need_id) == 1 else None query &= (table.need_id.belongs(need_id)) else: need = need_id query &= (table.need_id == need_id) query &= (table.deleted == False) activity = current.db(query).select(table.id, orderby = ~table.start_date, limitby = (0, 1), ).first() if activity: activity_id = activity.id elif need is not None: # Create an activity for the case activity_id = table.insert(person_id = person_id, need_id = need, start_date = current.request.utcnow, human_resource_id = hr_id, ) s3db.update_super(table, {"id": activity_id}) else: activity_id = None return activity_id # ------------------------------------------------------------------------- @classmethod def response_action_onaccept(cls, form): """ Onaccept routine for response actions - update theme links from inline response_theme_ids - link to case activity if required """ form_vars = form.vars try: record_id = form_vars.id except AttributeError: record_id = None if not record_id: return db = current.db s3db = current.s3db # Get the record atable = s3db.dvr_response_action query = (atable.id == record_id) record = db(query).select(atable.id, atable.person_id, atable.case_activity_id, atable.response_theme_ids, atable.human_resource_id, atable.start_date, atable.end_date, atable.hours, limitby = (0, 1), ).first() if not record: return settings = current.deployment_settings themes_details = settings.get_dvr_response_themes_details() theme_ids = record.response_theme_ids if not theme_ids: theme_ids = [] if not record.person_id: # Inherit the person_id (beneficiary) from the case activity case_activity_id = record.case_activity_id if case_activity_id: catable = s3db.dvr_case_activity query = (catable.id == case_activity_id) case_activity = db(query).select(catable.person_id, limitby = (0, 1), ).first() if case_activity: record.update_record(person_id = case_activity.person_id) elif settings.get_dvr_response_activity_autolink() and \ not themes_details: # Automatically link the response action to a case activity # (using matching needs) # Get all needs of the response ttable = s3db.dvr_response_theme if theme_ids: query = ttable.id.belongs(theme_ids) themes = db(query).select(ttable.need_id, groupby = ttable.need_id, ) need_ids = set(theme.need_id for theme in themes) else: need_ids = None if not need_ids: # Response is not linked to any needs # => Remove activity link activity_id = None else: catable = s3db.dvr_case_activity activity_id = record.case_activity_id if activity_id: # Verify that the case activity's need matches person+theme query = (catable.id == activity_id) & \ (catable.person_id == record.person_id) & \ (catable.deleted == False) activity = db(query).select(catable.need_id, limitby = (0, 1), ).first() if not activity or activity.need_id not in need_ids: activity_id = None if not activity_id: # Find or create a matching case activity activity_id = cls.get_case_activity_by_need( record.person_id, need_ids, hr_id = record.human_resource_id, ) # Update the activity link record.update_record(case_activity_id = activity_id) if not themes_details: # Get all selected themes selected = set(theme_ids) # Get all linked themes ltable = s3db.dvr_response_action_theme query = (ltable.action_id == record_id) & \ (ltable.deleted == False) links = db(query).select(ltable.theme_id) linked = set(link.theme_id for link in links) # Remove obsolete theme links obsolete = linked - selected if obsolete: query &= ltable.theme_id.belongs(obsolete) db(query).delete() # Add links for newly selected themes added = selected - linked for theme_id in added: ltable.insert(action_id = record_id, theme_id = theme_id, ) # Calculate end_date start_date = record.start_date end_date = record.end_date if start_date: if "end_date" not in form_vars: new_end_date = None hours = record.hours if hours: duration = datetime.timedelta(hours=hours) else: duration = datetime.timedelta(hours=0.5) orig_start_date = None if hasattr(form, "record"): try: orig_start_date = form.record.start_date except AttributeError: pass if not end_date or not orig_start_date: new_end_date = start_date + duration else: delta = end_date - orig_start_date if hours and delta != duration: delta = duration duration_changed = True else: duration_changed = False if start_date != orig_start_date or duration_changed: new_end_date = start_date + delta if new_end_date: record.update_record(end_date = new_end_date) elif end_date: record.update_record(end_date = None) # ------------------------------------------------------------------------- @classmethod def response_action_theme_onaccept(cls, form): """ Onaccept routine for response action theme links - update response_theme_ids in response action record - link to case activity if required """ form_vars = form.vars try: record_id = form_vars.id except AttributeError: record_id = None if not record_id: return db = current.db s3db = current.s3db # Look up the record table = s3db.dvr_response_action_theme query = (table.id == record_id) record = db(query).select(table.id, table.action_id, table.theme_id, table.comments, limitby = (0, 1), ).first() if not record: return settings = current.deployment_settings if settings.get_dvr_response_themes_details(): # Look up the response action action_id = record.action_id if action_id: atable = s3db.dvr_response_action query = (atable.id == action_id) action = db(query).select(atable.id, atable.person_id, atable.human_resource_id, limitby = (0, 1), ).first() else: action = None if action: theme_id = record.theme_id if theme_id: # Merge duplicate action<=>theme links query = (table.id != record.id) & \ (table.action_id == action_id) & \ (table.theme_id == record.theme_id) & \ current.auth.s3_accessible_query("delete", table) & \ (table.deleted == False) rows = db(query).select(table.id, table.comments, orderby = table.created_on, ) duplicates = [] details = [] for row in rows: if row.comments: details.append(row.comments.strip()) duplicates.append(row.id) if record.comments: details.append(record.comments.strip()) record.update_record(comments="\n\n".join(c for c in details if c)) s3db.resource("dvr_response_action_theme", id=duplicates).delete() # Update response_theme_ids in response action query = (table.action_id == action_id) & \ (table.deleted == False) rows = db(query).select(table.theme_id) theme_ids = [row.theme_id for row in rows if row.theme_id] action.update_record(response_theme_ids=theme_ids) # Auto-link to case activity if settings.get_dvr_response_themes_needs() and \ settings.get_dvr_response_activity_autolink(): # Look up the theme's need_id ttable = s3db.dvr_response_theme query = (ttable.id == record.theme_id) theme = db(query).select(ttable.need_id, limitby = (0, 1), ).first() if theme: activity_id = cls.get_case_activity_by_need( action.person_id, theme.need_id, hr_id = action.human_resource_id, ) record.update_record(case_activity_id=activity_id) # ------------------------------------------------------------------------- @staticmethod def response_action_theme_ondelete(row): """ On-delete actions for response_action_theme links - update response_theme_ids in action record """ db = current.db s3db = current.s3db action_id = row.action_id if action_id: atable = s3db.dvr_response_action query = (atable.id == action_id) & \ (atable.deleted == False) action = db(query).select(atable.id, atable.person_id, atable.human_resource_id, limitby = (0, 1), ).first() else: action = None if action: # Update response theme ids in response action table = s3db.dvr_response_action_theme query = (table.action_id == action_id) & \ (table.deleted == False) rows = db(query).select(table.theme_id) theme_ids = [row.theme_id for row in rows if row.theme_id] action.update_record(response_theme_ids = theme_ids) # ============================================================================= class DVRCaseActivityModel(S3Model): """ Model for Case Activities """ names = ("dvr_activity", "dvr_activity_id", "dvr_activity_age_group", "dvr_activity_focus", "dvr_activity_group_type", "dvr_case_activity", "dvr_case_activity_id", "dvr_case_activity_need", "dvr_case_activity_status", "dvr_case_activity_update", "dvr_case_activity_update_type", "dvr_provider_type", "dvr_termination_type", ) def model(self): T = current.T db = current.db settings = current.deployment_settings crud_strings = current.response.s3.crud_strings configure = self.configure define_table = self.define_table service_type = settings.get_dvr_activity_use_service_type() activity_sectors = settings.get_dvr_activity_sectors() service_id = self.org_service_id project_id = self.project_project_id organisation_id = self.org_organisation_id human_resource_id = self.hrm_human_resource_id # --------------------------------------------------------------------- # Provider Type # tablename = "dvr_provider_type" define_table(tablename, Field("name", notnull=True, label = T("Type"), requires = [IS_NOT_EMPTY(), IS_LENGTH(512, minsize=1)], ), s3_comments(), *s3_meta_fields()) # Table configuration configure(tablename, deduplicate = S3Duplicate(), ) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Create Provider Type"), title_display = T("Provider Type Details"), title_list = T("Provider Types"), title_update = T("Edit Provider Type"), label_list_button = T("List Provider Types"), label_delete_button = T("Delete Provider Type"), msg_record_created = T("Provider Type added"), msg_record_modified = T("Provider Type updated"), msg_record_deleted = T("Provider Type deleted"), msg_list_empty = T("No Provider Types currently defined"), ) # Reusable Field represent = S3Represent(lookup=tablename) provider_type_id = S3ReusableField("provider_type_id", "reference %s" % tablename, label = T("Provider Type"), ondelete = "CASCADE", represent = represent, requires = IS_EMPTY_OR( IS_ONE_OF(db, "%s.id" % tablename, represent, sort = True, )), sortby = "name", ) # --------------------------------------------------------------------- # Activity Group Type # tablename = "dvr_activity_group_type" define_table(tablename, Field("name", length=128, notnull=True, unique=True, label = T("Type"), requires = [IS_NOT_EMPTY(), IS_LENGTH(128, minsize=1), IS_NOT_ONE_OF(db, "%s.name" % tablename, ), ], ), s3_comments(), *s3_meta_fields()) # Table configuration configure(tablename, deduplicate = S3Duplicate(), ) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Create Group Type"), title_display = T("Group Type Details"), title_list = T("Group Types"), title_update = T("Edit Group Type"), label_list_button = T("List Group Types"), label_delete_button = T("Delete Group Type"), msg_record_created = T("Group Type added"), msg_record_modified = T("Group Type updated"), msg_record_deleted = T("Group Type deleted"), msg_list_empty = T("No Group Types currently defined"), ) # Reusable Field represent = S3Represent(lookup=tablename) group_type_id = S3ReusableField("group_type_id", "reference %s" % tablename, label = T("Group Type"), ondelete = "CASCADE", represent = represent, requires = IS_EMPTY_OR( IS_ONE_OF(db, "%s.id" % tablename, represent, sort = True, )), sortby = "name", ) # --------------------------------------------------------------------- # Activity Age Group # tablename = "dvr_activity_age_group" define_table(tablename, Field("name", length=128, notnull=True, unique=True, label = T("Age Group"), requires = [IS_NOT_EMPTY(), IS_LENGTH(128, minsize=1), IS_NOT_ONE_OF(db, "%s.name" % tablename, ), ], ), s3_comments(), *s3_meta_fields()) # Table configuration configure(tablename, deduplicate = S3Duplicate(), ) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Create Age Group"), title_display = T("Age Group Details"), title_list = T("Age Groups"), title_update = T("Edit Age Group"), label_list_button = T("List Age Groups"), label_delete_button = T("Delete Age Group"), msg_record_created = T("Age Group added"), msg_record_modified = T("Age Group updated"), msg_record_deleted = T("Age Group deleted"), msg_list_empty = T("No Age Groups currently defined"), ) # Reusable Field represent = S3Represent(lookup=tablename) age_group_id = S3ReusableField("age_group_id", "reference %s" % tablename, label = T("Age Group"), ondelete = "CASCADE", represent = represent, requires = IS_EMPTY_OR( IS_ONE_OF(db, "%s.id" % tablename, represent, sort = True, )), sortby = "name", ) # --------------------------------------------------------------------- # Activity Focus # tablename = "dvr_activity_focus" define_table(tablename, Field("name", notnull=True, label = T("Name"), requires = [IS_NOT_EMPTY(), IS_LENGTH(512, minsize=1)], ), s3_comments(), *s3_meta_fields()) # Table configuration configure(tablename, deduplicate = S3Duplicate(), ) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Create Activity Focus"), title_display = T("Activity Focus Details"), title_list = T("Activity Focuses"), title_update = T("Edit Activity Focus"), label_list_button = T("List Activity Focuses"), label_delete_button = T("Delete Activity Focus"), msg_record_created = T("Activity Focus added"), msg_record_modified = T("Activity Focus updated"), msg_record_deleted = T("Activity Focus deleted"), msg_list_empty = T("No Activity Focuses currently defined"), ) # Reusable Field represent = S3Represent(lookup=tablename) focus_id = S3ReusableField("focus_id", "reference %s" % tablename, label = T("Activity Focus"), ondelete = "CASCADE", represent = represent, requires = IS_EMPTY_OR( IS_ONE_OF(db, "%s.id" % tablename, represent, sort = True, )), sortby = "name", ) # --------------------------------------------------------------------- # Activity (not case-specific) # site_represent = self.org_SiteRepresent(show_link=False) permitted_facilities = current.auth.permitted_facilities(redirect_on_error=False) # Simplified periodicity options # @todo: make boolean and use free text interval description? period_opts = {"R": T("regular"), "O": T("occasional"), } # Modality options modality_opts = {"E": T("Event"), "O": T("Outreach"), } # Target gender type options # (Tuple list to enforce this order in drop-down) gender_opts = [("M", T("Male")), ("F", T("Female")), ("A", T("Mixed")), ] if not settings.get_pr_hide_third_gender(): gender_opts.insert(-1, ("X", T("Other"))) tablename = "dvr_activity" define_table(tablename, self.super_link("doc_id", "doc_entity"), service_id(label = T("Service Type"), ondelete = "RESTRICT", readable = service_type, writable = service_type, ), # Expose in template as needed: organisation_id(readable = False, writable = False, ), project_id(ondelete = "SET NULL", readable = False, writable = False, ), Field("name", label = T("Title"), ), s3_date("start_date", label = T("Start Date"), ), s3_date("end_date", label = T("End Date"), ), Field("period", length=4, represent = S3Represent(options=period_opts), requires = IS_EMPTY_OR(IS_IN_SET(period_opts)), ), Field("modality", length=4, label = T("Modality"), default = "E", represent = S3Represent(options=dict(modality_opts)), requires = IS_IN_SET(modality_opts, zero=None), readable = False, writable = False, ), self.super_link("site_id", "org_site", filterby = "site_id", filter_opts = permitted_facilities, label = T("Place"), readable = True, writable = True, represent = site_represent, updateable = True, ), self.org_room_id(), self.gis_location_id( label = T("Target Area"), widget = S3LocationSelector(points = False, polygons = True, #show_address = False, ), readable = False, writable = False, ), # @todo: have alternative lookup field (hrm) Field("facilitator", label = T("Facilitator"), ), Field("gender", length=4, label = T("Gender"), represent = S3Represent(options=dict(gender_opts)), requires = IS_EMPTY_OR(IS_IN_SET(gender_opts, sort = False, )), readable = False, writable = False, ), age_group_id(ondelete="SET NULL"), group_type_id(ondelete="SET NULL"), focus_id(ondelete = "SET NULL", readable = False, writable = False, ), # Certificates for Participants: # - expose in template if required: Field("certificate", "boolean", default = False, label = T("Certificate issued"), represent = s3_yes_no_represent, readable = False, writable = False, ), Field("certificate_details", "text", label = T("Certificate Details"), represent = s3_text_represent, readable = False, writable = False, widget = s3_comments_widget, ), s3_comments(), *s3_meta_fields()) # Table Options configure(tablename, super_entity = "doc_entity", ) # Components self.add_components(tablename, dvr_case_activity = "activity_id", supply_distribution = {"link": "supply_distribution_case_activity", "joinby": "activity_id", "key": "distribution_id", }, ) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Create Activity"), title_display = T("Activity Details"), title_list = T("Activities"), title_update = T("Edit Activity"), label_list_button = T("List Activities"), label_delete_button = T("Delete Activity"), msg_record_created = T("Activity added"), msg_record_modified = T("Activity updated"), msg_record_deleted = T("Activity deleted"), msg_list_empty = T("No Activities currently registered"), ) # Reusable Field represent = dvr_ActivityRepresent(show_link=False) activity_id = S3ReusableField("activity_id", "reference %s" % tablename, label = T("Activity"), ondelete = "CASCADE", represent = represent, requires = IS_EMPTY_OR( IS_ONE_OF(db, "%s.id" % tablename, represent, sort = True, )), sortby = "service_id", ) # --------------------------------------------------------------------- # Termination Types (=how a case activity ended) # tablename = "dvr_termination_type" define_table(tablename, service_id(label = T("Service Type"), ondelete = "CASCADE", readable = service_type, writable = service_type, ), Field("name", notnull=True, label = T("Name"), requires = [IS_NOT_EMPTY(), IS_LENGTH(512, minsize=1)], ), s3_comments(), *s3_meta_fields()) # Table configuration configure(tablename, deduplicate = S3Duplicate(primary = ("name",), secondary = ("service_id",), ), ) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Create Termination Type"), title_display = T("Termination Type Details"), title_list = T("Termination Types"), title_update = T("Edit Termination Type"), label_list_button = T("List Termination Types"), label_delete_button = T("Delete Termination Type"), msg_record_created = T("Termination Type added"), msg_record_modified = T("Termination Type updated"), msg_record_deleted = T("Termination Type deleted"), msg_list_empty = T("No Termination Types currently defined"), ) # Reusable Field represent = S3Represent(lookup=tablename) termination_type_id = S3ReusableField("termination_type_id", "reference %s" % tablename, label = T("Termination Type"), ondelete = "CASCADE", represent = represent, requires = IS_EMPTY_OR( IS_ONE_OF(db, "%s.id" % tablename, represent, sort = True, )), sortby = "name", ) # --------------------------------------------------------------------- # Case Activity Status # tablename = "dvr_case_activity_status" define_table(tablename, Field("name", requires = [IS_NOT_EMPTY(), IS_LENGTH(512, minsize=1)], ), Field("workflow_position", "integer", label = T("Workflow Position"), requires = IS_INT_IN_RANGE(0, None), ), Field("is_default", "boolean", default = False, label = T("Default Status"), ), Field("is_closed", "boolean", default = False, label = T("Closes Activity"), ), s3_comments(), *s3_meta_fields()) # Table Configuration configure(tablename, deduplicate = S3Duplicate(), onaccept = self.case_activity_status_onaccept, ) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Create Activity Status"), title_display = T("Activity Status Details"), title_list = T("Activity Statuses"), title_update = T("Edit Activity Status"), label_list_button = T("List Activity Statuses"), label_delete_button = T("Delete Activity Status"), msg_record_created = T("Activity Status created"), msg_record_modified = T("Activity Status updated"), msg_record_deleted = T("Activity Status deleted"), msg_list_empty = T("No Activity Statuses currently defined"), ) # Reusable field represent = S3Represent(lookup=tablename, translate=True) activity_status_id = S3ReusableField("status_id", "reference %s" % tablename, label = T("Status"), represent = represent, requires = IS_ONE_OF(db, "%s.id" % tablename, represent, orderby = "workflow_position", sort = False, zero = None, ), sortby = "workflow_position", ) # --------------------------------------------------------------------- # Case Activity (case-specific) # twoweeks = current.request.utcnow + datetime.timedelta(days=14) multiple_needs = settings.get_dvr_case_activity_needs_multiple() use_status = settings.get_dvr_case_activity_use_status() follow_up = settings.get_dvr_case_activity_follow_up() # Priority options priority_opts = [#(0, T("Urgent")), (1, T("High")), (2, T("Normal")), (3, T("Low")), ] # Achievement options achievement_opts = [("INCR", T("Increased in severity")), ("SAME", T("At same level")), ("DECR", T("Decreased in severity")), ("RSLV", T("Completely resolved")), ] tablename = "dvr_case_activity" define_table(tablename, self.super_link("doc_id", "doc_entity"), self.dvr_case_id(comment = None, empty = False, label = T("Case Number"), ondelete = "CASCADE", writable = False, ), # Beneficiary (component link) # @todo: populate from case and hide in case perspective self.pr_person_id(comment = None, empty = False, ondelete = "CASCADE", writable = False, ), # Subject and Details Field("subject", label = T("Subject / Occasion"), readable = False, writable = False, ), Field("need_details", "text", label = T("Need Details"), represent = s3_text_represent, widget = s3_comments_widget, ), # Need type (if single) self.dvr_need_id(readable = not multiple_needs, writable = not multiple_needs, ), # Dates s3_date("start_date", label = T("Registered on"), default = "now", set_min = "#dvr_case_activity_end_date", ), s3_date("end_date", label = T("Completed on"), readable = False, writable = False, set_max = "#dvr_case_activity_start_date", ), # Priority Field("emergency", "boolean", default = False, label = T("Emergency"), represent = s3_yes_no_represent, ), Field("priority", "integer", label = T("Priority"), represent = S3Represent(options=dict(priority_opts)), requires = IS_IN_SET(priority_opts, sort=False), default = 2, # normal readable = False, writable = False, ), # Responsibilities (activate in template as needed) organisation_id(label = T("Referral Agency"), readable = False, writable = False, ), human_resource_id(label = T("Assigned to"), readable = False, writable = False, ), # Categories (activate in template as needed) self.org_sector_id(readable = activity_sectors, writable = activity_sectors, ), service_id(label = T("Service Type"), ondelete = "RESTRICT", readable = service_type, writable = service_type, ), project_id(ondelete = "SET NULL", readable = False, writable = False, ), # Actions performed (activate in template as needed) activity_id(readable=False, writable=False, ), Field("activity_details", "text", label = T("Support provided"), represent = s3_text_represent, widget = s3_comments_widget, ), provider_type_id(label = T("Referred to"), ondelete = "RESTRICT", readable = False, writable = False, ), # Support received by the beneficiary independently # of the managed activity: Field("outside_support", "text", label = T("Outside Support"), represent = s3_text_represent, widget = s3_comments_widget, readable = False, writable = False, ), # Details about referrals made under this activity # @deprecate: should use activity_details instead # @todo: remove once templates have been migrated? Field("referral_details", "text", label = T("Support provided"), represent = s3_text_represent, readable = False, writable = False, ), # Follow-up Field("followup", "boolean", default = True if follow_up else None, label = T("Follow up"), represent = s3_yes_no_represent, readable = follow_up, writable = follow_up, ), s3_date("followup_date", default = twoweeks if follow_up else None, label = T("Date for Follow-up"), readable = follow_up, writable = follow_up, ), # Status, type of exit Field("completed", "boolean", default = False, label = T("Completed"), represent = s3_yes_no_represent, readable = not use_status, writable = not use_status, ), activity_status_id(readable = use_status, writable = use_status, ), termination_type_id(ondelete = "RESTRICT", readable = False, writable = False, ), # Outcomes Field("outcome", "text", label = T("Outcome"), represent = s3_text_represent, widget = s3_comments_widget, ), Field("achievement", label = T("Change achieved"), comment = DIV(_class="tooltip", _title="%s|%s" % (T("Change achieved"), T("What change in the severity of the problem has so far been achieved by this activity?"), ), ), represent = S3Represent( options=dict(achievement_opts), ), requires = IS_EMPTY_OR( IS_IN_SET(achievement_opts, sort = False, )), readable = False, writable = False, ), s3_comments(), *s3_meta_fields()) # Components self.add_components(tablename, dvr_activity_funding = { "joinby": "case_activity_id", "multiple": False, }, dvr_case_effort = "case_activity_id", dvr_case_activity_need = "case_activity_id", dvr_need = { "link": "dvr_case_activity_need", "joinby": "case_activity_id", "key": "need_id", }, dvr_response_action = "case_activity_id", dvr_response_action_theme = "case_activity_id", dvr_response_type = { "link": "dvr_response_type_case_activity", "joinby": "case_activity_id", "key": "response_type_id", }, dvr_case_activity_update = "case_activity_id", dvr_vulnerability_type = ( {"name": "vulnerability_type", "link": "dvr_vulnerability_type_case_activity", "joinby": "case_activity_id", "key": "vulnerability_type_id", }, {"name": "diagnosis", "link": "dvr_diagnosis_case_activity", "joinby": "case_activity_id", "key": "vulnerability_type_id", }, ), supply_distribution = { "link": "supply_distribution_case_activity", "joinby": "case_activity_id", "key": "distribution_id", }, ) # List fields if multiple_needs: need_field = "case_activity_need.need_id" else: need_field = "need_id" list_fields = ["start_date", need_field, "need_details", "emergency", "activity_details", "completed", ] if follow_up: list_fields[-1:-1] = ["followup", "followup_date"] # Filter widgets filter_widgets = [S3TextFilter(["person_id$pe_label", "person_id$first_name", "person_id$last_name", "case_id$reference", "need_details", "activity_details", ], label = T("Search"), ), S3OptionsFilter("emergency", options = {True: T("Yes"), False: T("No"), }, cols = 2, ), S3OptionsFilter(need_field, options = lambda: s3_get_filter_opts("dvr_need", translate = True, ), ), S3OptionsFilter("completed", default = False, options = {True: T("Yes"), False: T("No"), }, cols = 2, ), ] if follow_up: filter_widgets.extend([S3OptionsFilter("followup", label = T("Follow-up required"), options = {True: T("Yes"), False: T("No"), }, cols = 2, hidden = True, ), S3DateFilter("followup_date", cols = 2, hidden = True, ), ]) if service_type: filter_widgets.insert(3, S3OptionsFilter("service_id")) # Report options axes = [need_field, (T("Case Status"), "case_id$status_id"), "emergency", "completed", ] if follow_up: axes.insert(-1, "followup") if service_type: axes.insert(2, "service_id") facts = [(T("Number of Activities"), "count(id)"), (T("Number of Cases"), "count(case_id)"), ] report_options = {"rows": axes, "cols": axes, "fact": facts, "defaults": {"rows": need_field, "cols": "completed", "fact": facts[0], "totals": True, "chart": "barchart:rows", }, } # Table configuration configure(tablename, filter_widgets = filter_widgets, list_fields = list_fields, onaccept = self.case_activity_onaccept, onvalidation = self.case_activity_onvalidation, orderby = "dvr_case_activity.start_date desc", report_options = report_options, super_entity = "doc_entity", ) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Create Activity"), title_display = T("Activity Details"), title_list = T("Activities"), title_update = T("Edit Activity"), label_list_button = T("List Activities"), label_delete_button = T("Delete Activity"), msg_record_created = T("Activity added"), msg_record_modified = T("Activity updated"), msg_record_deleted = T("Activity deleted"), msg_list_empty = T("No Activities currently registered"), ) # Reusable field represent = dvr_CaseActivityRepresent(show_link=True) case_activity_id = S3ReusableField("case_activity_id", "reference %s" % tablename, ondelete = "CASCADE", represent = represent, requires = IS_EMPTY_OR( IS_ONE_OF(db, "%s.id" % tablename, represent, )), ) # --------------------------------------------------------------------- # Case Activity <=> Needs # # - use this when there is a need to link Case Activities to # multiple Needs (e.g. STL, DRKCM) # tablename = "dvr_case_activity_need" define_table(tablename, case_activity_id(empty = False, # default #ondelete = "CASCADE", ), s3_date(label = T("Established on"), default = "now", ), human_resource_id( label = T("Established by"), ), self.dvr_need_id(empty = False, ), s3_comments(), *s3_meta_fields()) # Table configuration configure(tablename, orderby = "%s.date" % tablename, ) # --------------------------------------------------------------------- # Case Activity Update Types # tablename = "dvr_case_activity_update_type" define_table(tablename, Field("name", label = T("Name"), requires = [IS_NOT_EMPTY(), IS_LENGTH(512, minsize=1)], ), s3_comments(), *s3_meta_fields()) # Table configuration configure(tablename, deduplicate = S3Duplicate(), ) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Create Update Type"), title_display = T("Update Type Details"), title_list = T("Update Types"), title_update = T("Edit Update Type"), label_list_button = T("List Update Types"), label_delete_button = T("Delete Update Type"), msg_record_created = T("Update Type added"), msg_record_modified = T("Update Type updated"), msg_record_deleted = T("Update Type deleted"), msg_list_empty = T("No Update Types currently defined"), ) # Reusable field represent = S3Represent(lookup=tablename, translate=True) update_type_id = S3ReusableField("update_type_id", "reference %s" % tablename, label = T("Update Type"), represent = represent, requires = IS_EMPTY_OR( IS_ONE_OF(db, "%s.id" % tablename, represent, )), sortby = "name", ) # --------------------------------------------------------------------- # Case Activity Updates # tablename = "dvr_case_activity_update" define_table(tablename, case_activity_id(), s3_date(default = "now", ), update_type_id(), human_resource_id(), s3_comments(), *s3_meta_fields()) # Table configuration configure(tablename, orderby = "%s.date" % tablename, ) # --------------------------------------------------------------------- # Pass names back to global scope (s3.*) # return {"dvr_activity_id": activity_id, "dvr_case_activity_id": case_activity_id, } # ------------------------------------------------------------------------- @staticmethod def defaults(): """ Safe defaults for names in case the module is disabled """ dummy = S3ReusableField("dummy_id", "integer", readable = False, writable = False, ) return {"dvr_activity_id": lambda name="activity_id", **attr: \ dummy(name, **attr), "dvr_case_activity_id": lambda name="case_activity_id", **attr: \ dummy(name, **attr), } # ------------------------------------------------------------------------- @staticmethod def case_activity_status_onaccept(form): """ Onaccept routine for case activity statuses: - only one status can be the default @param form: the FORM """ form_vars = form.vars try: record_id = form_vars.id except AttributeError: record_id = None if not record_id: return # If this status is the default, then set is_default-flag # for all other statuses to False: if "is_default" in form_vars and form_vars.is_default: table = current.s3db.dvr_case_activity_status db = current.db db(table.id != record_id).update(is_default = False) # ------------------------------------------------------------------------- @staticmethod def case_activity_onvalidation(form): """ Validate case activity form: - end date must be after start date """ T = current.T form_vars = form.vars try: start = form_vars.start_date end = form_vars.end_date except AttributeError: return if start and end and end < start: form.errors["end_date"] = T("End date must be after start date") # ------------------------------------------------------------------------- @staticmethod def case_activity_close_responses(case_activity_id): """ Close all open response actions in a case activity @param case_activity_id: the case activity record ID """ db = current.db s3db = current.s3db rtable = s3db.dvr_response_action stable = s3db.dvr_response_status # Get all response actions for this case activity # that have an open-status (or no status at all): left = stable.on((stable.id == rtable.status_id) & \ (stable.deleted == False)) query = (rtable.case_activity_id == case_activity_id) & \ (rtable.deleted == False) & \ ((stable.is_closed == False) | (stable.id == None)) rows = db(query).select(rtable.id, left=left) if rows: # Get the default closure status, # (usually something like "obsolete") query = (stable.is_default_closure == True) & \ (stable.deleted == False) closure_status = db(query).select(stable.id, limitby = (0, 1), ).first() # Update all open response actions for this # case activity to the default closure status: if closure_status: response_ids = set(row.id for row in rows) query = rtable.id.belongs(response_ids) db(query).update(status_id = closure_status.id) # ------------------------------------------------------------------------- @classmethod def case_activity_onaccept(cls, form): """ Onaccept-callback for case activites: - set end date when marked as completed - close any open response actions when marked as completed """ db = current.db s3db = current.s3db settings = current.deployment_settings # Read form data form_vars = form.vars if "id" in form_vars: record_id = form_vars.id elif hasattr(form, "record_id"): record_id = form.record_id else: return # Get current status and end_date of the record atable = s3db.dvr_case_activity query = (atable.id == record_id) activity = None is_closed = False if settings.get_dvr_case_activity_use_status(): # Use status_id stable = s3db.dvr_case_activity_status left = stable.on(atable.status_id == stable.id) row = db(query).select(atable.id, atable.end_date, stable.is_closed, left = left, limitby = (0, 1), ).first() if row: activity = row.dvr_case_activity is_closed = row.dvr_case_activity_status.is_closed else: # Use completed-flag row = db(query).select(atable.id, atable.end_date, atable.completed, limitby = (0, 1), ).first() if row: activity = row is_closed = row.completed if not activity: return if is_closed: # Cancel follow-ups for closed activities data = {"followup": False, "followup_date": None, } # Set end-date if not already set if not activity.end_date: data["end_date"] = current.request.utcnow.date() activity.update_record(**data) # Close any open response actions in this activity: if settings.get_dvr_manage_response_actions(): cls.case_activity_close_responses(activity.id) elif activity.end_date: # Remove end-date if present activity.update_record(end_date = None) # ============================================================================= class DVRCaseEffortModel(S3Model): """ Effort Log for Case / Case Activities """ names = ("dvr_case_effort", ) def model(self): T = current.T s3 = current.response.s3 define_table = self.define_table crud_strings = s3.crud_strings # --------------------------------------------------------------------- # Effort log # tablename = "dvr_case_effort" define_table(tablename, self.pr_person_id( ondelete = "CASCADE", ), self.dvr_case_activity_id( ondelete = "SET NULL", readable = False, writable = False, ), s3_datetime( default = "now" ), Field("name", label = T("Short Description"), ), self.hrm_human_resource_id( comment = None, ), Field("hours", "double", represent = lambda v: \ IS_FLOAT_AMOUNT.represent(v, precision = 2, ), requires = IS_FLOAT_AMOUNT(minimum=0.0), widget = S3HoursWidget(precision = 2, ), ), s3_comments(), *s3_meta_fields()) # Table Configuration self.configure(tablename, onaccept = self.case_effort_onaccept, ) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Add Effort"), title_display = T("Effort Details Details"), title_list = T("Efforts"), title_update = T("Edit Effort"), label_list_button = T("List Efforts"), label_delete_button = T("Delete Effort"), msg_record_created = T("Effort added"), msg_record_modified = T("Effort updated"), msg_record_deleted = T("Effort deleted"), msg_list_empty = T("No Efforts currently registered"), ) # --------------------------------------------------------------------- # Pass names back to global scope (s3.*) # return {} # ------------------------------------------------------------------------- @staticmethod def defaults(): """ Safe defaults for names in case the module is disabled """ #dummy = S3ReusableField("dummy_id", "integer", # readable = False, # writable = False, # ) return {} # ------------------------------------------------------------------------- @staticmethod def case_effort_onaccept(form): """ Onaccept-callback for dvr_case_effort: - inherit person_id from case_activity, unless specified in form or default @param form: the FORM """ # Read form data formvars = form.vars # Get the record ID if "id" in formvars: record_id = formvars.id elif hasattr(form, "record_id"): record_id = form.record_id else: record_id = None if not record_id: return s3db = current.s3db etable = s3db.dvr_case_effort field = etable.person_id if "person_id" not in formvars and not field.default: # Inherit person_id from the case activity atable = s3db.dvr_case_activity query = (etable.id == record_id) & \ (atable.id == etable.case_activity_id) row = current.db(query).select(etable.id, etable.person_id, atable.person_id, limitby = (0, 1), ).first() if row: effort = row.dvr_case_effort activity = row.dvr_case_activity if not effort.person_id: effort.update_record(person_id = activity.person_id) # ============================================================================= class DVRCaseAppointmentModel(S3Model): """ Model for Case Appointments """ names = ("dvr_case_appointment", "dvr_case_appointment_type", "dvr_appointment_type_id", ) def model(self): T = current.T db = current.db settings = current.deployment_settings crud_strings = current.response.s3.crud_strings configure = self.configure define_table = self.define_table mandatory_appointments = settings.get_dvr_mandatory_appointments() update_case_status = settings.get_dvr_appointments_update_case_status() update_last_seen_on = settings.get_dvr_appointments_update_last_seen_on() # --------------------------------------------------------------------- # Case Appointment Type # mandatory_comment = DIV(_class="tooltip", _title="%s|%s" % (T("Mandatory Appointment"), T("This appointment is mandatory before transfer"), ), ) tablename = "dvr_case_appointment_type" define_table(tablename, Field("name", length=64, notnull=True, unique=True, requires = [IS_NOT_EMPTY(), IS_LENGTH(64, minsize=1), IS_NOT_ONE_OF(db, "%s.name" % tablename, ), ], ), Field("active", "boolean", default = True, label = T("Active"), represent = s3_yes_no_represent, comment = DIV(_class = "tooltip", _title = "%s|%s" % (T("Active Appointment"), T("Automatically create this appointment for new cases"), ), ), ), Field("mandatory_children", "boolean", default = False, label = T("Mandatory for Children"), represent = s3_yes_no_represent, readable = mandatory_appointments, writable = mandatory_appointments, comment = mandatory_comment, ), Field("mandatory_adolescents", "boolean", default = False, label = T("Mandatory for Adolescents"), represent = s3_yes_no_represent, readable = mandatory_appointments, writable = mandatory_appointments, comment = mandatory_comment, ), Field("mandatory_adults", "boolean", default = False, label = T("Mandatory for Adults"), represent = s3_yes_no_represent, readable = mandatory_appointments, writable = mandatory_appointments, comment = mandatory_comment, ), Field("presence_required", "boolean", default = True, label = T("Presence required"), represent = s3_yes_no_represent, readable = update_last_seen_on, writable = update_last_seen_on, comment = DIV(_class = "tooltip", _title = "%s|%s" % (T("Presence required"), T("This appointment requires the presence of the person concerned"), ), ), ), self.dvr_case_status_id( label = T("Case Status upon Completion"), readable = update_case_status, writable = update_case_status, ), s3_comments(), *s3_meta_fields()) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Create Appointment Type"), title_display = T("Appointment Type Details"), title_list = T("Appointment Types"), title_update = T("Edit Appointment Type"), label_list_button = T("List Appointment Types"), label_delete_button = T("Delete Appointment Type"), msg_record_created = T("Appointment Type added"), msg_record_modified = T("Appointment Type updated"), msg_record_deleted = T("Appointment Type deleted"), msg_list_empty = T("No Appointment Types currently registered"), ) # Reusable Field represent = S3Represent(lookup=tablename, translate=True) appointment_type_id = S3ReusableField("type_id", "reference %s" % tablename, label = T("Appointment Type"), ondelete = "RESTRICT", represent = represent, requires = IS_EMPTY_OR( IS_ONE_OF(db, "dvr_case_appointment_type.id", represent, )), ) # --------------------------------------------------------------------- # Case Appointments # appointment_status_opts = {1: T("Planning"), 2: T("Planned"), 3: T("In Progress"), 4: T("Completed"), 5: T("Missed"), 6: T("Cancelled"), 7: T("Not Required"), } tablename = "dvr_case_appointment" define_table(tablename, self.dvr_case_id(comment = None, # @ToDo: Populate this onaccept from imports #empty = False, label = T("Case Number"), ondelete = "CASCADE", writable = False, ), # Beneficiary (component link): # @todo: populate from case and hide in case perspective self.pr_person_id(comment = None, empty = False, ondelete = "CASCADE", writable = False, ), appointment_type_id(empty = False, ), s3_date(label = T("Planned on"), ), # Activate in template as needed: self.hrm_human_resource_id(readable=False, writable=False, ), Field("status", "integer", default = 1, # Planning requires = IS_IN_SET(appointment_status_opts, zero = None, ), represent = S3Represent(options = appointment_status_opts, ), ), s3_comments(), *s3_meta_fields()) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Create Appointment"), title_display = T("Appointment Details"), title_list = T("Appointments"), title_update = T("Edit Appointment"), label_list_button = T("List Appointments"), label_delete_button = T("Delete Appointment"), msg_record_created = T("Appointment added"), msg_record_modified = T("Appointment updated"), msg_record_deleted = T("Appointment deleted"), msg_list_empty = T("No Appointments currently registered"), ) # Custom methods self.set_method("dvr", "case_appointment", method = "manage", action = DVRManageAppointments, ) configure(tablename, deduplicate = S3Duplicate(primary = ("person_id", "type_id", ), ), onaccept = self.case_appointment_onaccept, ondelete = self.case_appointment_ondelete, onvalidation = self.case_appointment_onvalidation, ) # @todo: onaccept to change status "planning" to "planned" if a date # has been entered, and vice versa # --------------------------------------------------------------------- # Pass names back to global scope (s3.*) # return {"dvr_appointment_status_opts": appointment_status_opts, "dvr_appointment_type_id": appointment_type_id, } # ------------------------------------------------------------------------- @staticmethod def defaults(): """ Safe defaults for names in case the module is disabled """ dummy = S3ReusableField("dummy_id", "integer", readable = False, writable = False, ) return {"dvr_appointment_status_opts": {}, "dvr_appointment_type_id": lambda name="type_id", **attr: \ dummy(name, **attr), } # ------------------------------------------------------------------------- @staticmethod def case_appointment_onvalidation(form): """ Validate appointment form - Future appointments can not be set to completed - Undated appointments can not be set to completed @param form: the FORM """ formvars = form.vars date = formvars.get("date") status = formvars.get("status") if str(status) == "4": if date is None: form.errors["date"] = current.T("Date is required when marking the appointment as completed") elif date > current.request.utcnow.date(): form.errors["status"] = current.T("Appointments with future dates can not be marked as completed") # ------------------------------------------------------------------------- @staticmethod def case_appointment_onaccept(form): """ Actions after creating/updating appointments - Update last_seen_on in the corresponding case(s) - Update the case status if configured to do so @param form: the FORM """ # Read form data formvars = form.vars if "id" in formvars: record_id = formvars.id elif hasattr(form, "record_id"): record_id = form.record_id else: record_id = None if not record_id: return db = current.db s3db = current.s3db settings = current.deployment_settings table = s3db.dvr_case_appointment person_id = formvars.get("person_id") case_id = formvars.get("case_id") if not person_id or not case_id: row = db(table.id == record_id).select(table.case_id, table.person_id, limitby = (0, 1), ).first() if row: person_id = row.person_id case_id = row.case_id if settings.get_dvr_appointments_update_last_seen_on() and person_id: # Update last_seen_on dvr_update_last_seen(person_id) # Update the case status if appointment is completed # NB appointment status "completed" must be set by this form if settings.get_dvr_appointments_update_case_status() and \ s3_str(formvars.get("status")) == "4": # Get the case status to be set when appointment is completed ttable = s3db.dvr_case_appointment_type query = (table.id == record_id) & \ (table.deleted != True) & \ (ttable.id == table.type_id) & \ (ttable.status_id != None) row = db(query).select(table.date, ttable.status_id, limitby = (0, 1), ).first() if row: # Check whether there is a later appointment that # would have set a different case status (we don't # want to override this when closing appointments # restrospectively): date = row.dvr_case_appointment.date if not date: # Assume today if no date given date = current.request.utcnow.date() status_id = row.dvr_case_appointment_type.status_id query = (table.person_id == person_id) if case_id: query &= (table.case_id == case_id) query &= (table.date != None) & \ (table.status == 4) & \ (table.date > date) & \ (table.deleted != True) & \ (ttable.id == table.type_id) & \ (ttable.status_id != None) & \ (ttable.status_id != status_id) later = db(query).select(table.id, limitby = (0, 1)).first() if later: status_id = None else: status_id = None if status_id: # Update the corresponding case(s) # NB appointments without case_id update all cases for the person ctable = s3db.dvr_case stable = s3db.dvr_case_status query = (ctable.person_id == person_id) & \ (ctable.archived != True) & \ (ctable.deleted != True) & \ (stable.id == ctable.status_id) & \ (stable.is_closed != True) if case_id: query &= (ctable.id == case_id) cases = db(query).select(ctable.id, ctable.person_id, ctable.archived, ) has_permission = current.auth.s3_has_permission for case in cases: if has_permission("update", ctable, record_id=case.id): # Customise case resource r = S3Request("dvr", "case", current.request, args = [], get_vars = {}, ) r.customise_resource("dvr_case") # Update case status + run onaccept case.update_record(status_id = status_id) s3db.onaccept(ctable, case, method="update") # ------------------------------------------------------------------------- @staticmethod def case_appointment_ondelete(row): """ Actions after deleting appointments - Update last_seen_on in the corresponding case(s) @param row: the deleted Row """ if current.deployment_settings.get_dvr_appointments_update_last_seen_on(): # Get the deleted keys table = current.s3db.dvr_case_appointment row = current.db(table.id == row.id).select(table.deleted_fk, limitby = (0, 1), ).first() if row and row.deleted_fk: # Get the person ID try: deleted_fk = json.loads(row.deleted_fk) except (ValueError, TypeError): person_id = None else: person_id = deleted_fk.get("person_id") # Update last_seen_on if person_id: dvr_update_last_seen(person_id) # ============================================================================= class DVRHouseholdModel(S3Model): """ Model to document the household situation of a case - used by STL (DRK use pr_group_membership, SCPHIMS use DVRHouseholdMemberModel) """ names = ("dvr_household", "dvr_beneficiary_type", "dvr_beneficiary_data", ) def model(self): T = current.T db = current.db crud_strings = current.response.s3.crud_strings configure = self.configure define_table = self.define_table # --------------------------------------------------------------------- tablename = "dvr_household" define_table(tablename, # Main Beneficiary (component link): # @todo: populate from case and hide in case perspective self.pr_person_id(empty = False, ondelete = "CASCADE", ), Field("hoh_name", label = T("Head of Household Name"), ), self.pr_gender("hoh_gender", label = T("Head of Household Gender"), ), s3_date("hoh_date_of_birth", label = T("Head of Household Date of Birth"), future = 0, past = 1320, ), Field("hoh_relationship", label = T("Head of Household Relationship"), ), s3_comments(), *s3_meta_fields()) # Components self.add_components(tablename, dvr_beneficiary_data = "household_id", ) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Add Household Details"), title_display = T("Household Details"), title_list = T("Household Details"), title_update = T("Edit Household Details"), label_list_button = T("List Household Details"), label_delete_button = T("Delete Household Details"), msg_record_created = T("Household Details added"), msg_record_modified = T("Household Details updated"), msg_record_deleted = T("Household Details deleted"), msg_list_empty = T("No Household Details currently registered"), ) # Reusable field household_id = S3ReusableField("household_id", "reference %s" % tablename, ondelete = "CASCADE", requires = IS_EMPTY_OR( IS_ONE_OF(db, "%s.id" % tablename, )), ) # --------------------------------------------------------------------- # Beneficiary Types (e.g. Age Groups) # tablename = "dvr_beneficiary_type" define_table(tablename, Field("name", label = T("Type"), requires = [IS_NOT_EMPTY(), IS_LENGTH(512, minsize=1)], ), s3_comments(), *s3_meta_fields()) # CRUD Strings ADD_BENEFICIARY_TYPE = T("Create Beneficiary Type") crud_strings[tablename] = Storage( label_create = ADD_BENEFICIARY_TYPE, title_display = T("Beneficiary Type"), title_list = T("Beneficiary Types"), title_update = T("Edit Beneficiary Type"), label_list_button = T("List Beneficiary Types"), label_delete_button = T("Delete Beneficiary Type"), msg_record_created = T("Beneficiary Type added"), msg_record_modified = T("Beneficiary Type updated"), msg_record_deleted = T("Beneficiary Type deleted"), msg_list_empty = T("No Beneficiary Types currently registered") ) # Reusable field represent = S3Represent(lookup=tablename, translate=True) beneficiary_type_id = S3ReusableField("beneficiary_type_id", "reference %s" % tablename, label = T("Beneficiary Type"), ondelete = "RESTRICT", represent = represent, requires = IS_EMPTY_OR( IS_ONE_OF(db, "dvr_beneficiary_type.id", represent)), ) # --------------------------------------------------------------------- # Beneficiary data # show_third_gender = not current.deployment_settings.get_pr_hide_third_gender() int_represent = lambda v: str(v) if v is not None else "-" tablename = "dvr_beneficiary_data" define_table(tablename, household_id(), beneficiary_type_id(), Field("total", "integer", label = T("Number of Beneficiaries"), requires = IS_EMPTY_OR(IS_INT_IN_RANGE(0, None)), represent = int_represent, # Expose in templates when not using per-gender fields readable = False, writable = False, ), Field("female", "integer", label = T("Number Female"), represent = int_represent, requires = IS_EMPTY_OR(IS_INT_IN_RANGE(0, None)), ), Field("male", "integer", label = T("Number Male"), represent = int_represent, requires = IS_EMPTY_OR(IS_INT_IN_RANGE(0, None)), ), Field("other", "integer", label = T("Number Other Gender"), represent = int_represent, requires = IS_EMPTY_OR(IS_INT_IN_RANGE(0, None)), readable = show_third_gender, writable = show_third_gender, ), Field("in_school", "integer", label = T("Number in School"), represent = int_represent, requires = IS_EMPTY_OR(IS_INT_IN_RANGE(0, None)), ), Field("out_of_school", "integer", label = T("Number out of School"), represent = int_represent, requires = IS_EMPTY_OR(IS_INT_IN_RANGE(0, None)), ), Field("employed", "integer", label = T("Number Employed"), represent = int_represent, requires = IS_EMPTY_OR(IS_INT_IN_RANGE(0, None)), ), s3_comments(), *s3_meta_fields()) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Add Beneficiary Data"), title_display = T("Beneficiary Data"), title_list = T("Beneficiary Data"), title_update = T("Edit Beneficiary Data"), label_list_button = T("List Beneficiary Data"), label_delete_button = T("Delete Beneficiary Data"), msg_record_created = T("Beneficiary Data added"), msg_record_modified = T("Beneficiary Data updated"), msg_record_deleted = T("Beneficiary Data deleted"), msg_list_empty = T("No Beneficiary Data currently registered"), ) # List fields list_fields = ["beneficiary_type_id", "female", "male", "in_school", "employed", "comments", ] if show_third_gender: list_fields.insert(3, "other") # Table configuration configure(tablename, list_fields = list_fields, ) # --------------------------------------------------------------------- # Pass names back to global scope (s3.*) # return {"dvr_beneficiary_type_id": beneficiary_type_id, } # ------------------------------------------------------------------------- @staticmethod def defaults(): """ Safe defaults for names in case the module is disabled """ dummy = S3ReusableField("dummy_id", "integer", readable = False, writable = False, ) return {"dvr_beneficiary_type_id": lambda name="beneficiary_type_id", **attr: \ dummy(name, **attr), } # ============================================================================= class DVRHouseholdMembersModel(S3Model): """ Model to document the household situation of a case - used by SCPHIMS (DRK use pr_group_membership, STL use DVRHouseholdModel) """ names = ("dvr_household_member", ) def model(self): T = current.T # --------------------------------------------------------------------- tablename = "dvr_household_member" self.define_table(tablename, self.pr_person_id(empty = False, label = T("Head of Household"), ondelete = "CASCADE", ), Field("age", "integer", label = T("Age"), requires = IS_INT_IN_RANGE(0, 150), ), self.pr_gender("gender", #label = T("Gender"), ), Field("disabled", "boolean", label = T("Disabled"), represent = s3_yes_no_represent, ), s3_comments(), *s3_meta_fields()) # CRUD Strings current.response.s3.crud_strings[tablename] = Storage( label_create = T("Add Household Member"), title_display = T("Household Member"), title_list = T("Household Members"), title_update = T("Edit Household Member"), label_list_button = T("List Household Members"), label_delete_button = T("Delete Household Member"), msg_record_created = T("Household Member added"), msg_record_modified = T("Household Member updated"), msg_record_deleted = T("Household Member deleted"), msg_list_empty = T("No Household Members currently registered"), ) # --------------------------------------------------------------------- # Pass names back to global scope (s3.*) # return {} # ============================================================================= class DVRCaseEconomyInformationModel(S3Model): """ Model for Household Economy Information """ names = ("dvr_economy", "dvr_income_source", "dvr_income_source_economy", "dvr_housing_type", ) def model(self): T = current.T db = current.db crud_strings = current.response.s3.crud_strings configure = self.configure define_table = self.define_table float_represent = lambda v: \ IS_FLOAT_AMOUNT.represent(v, precision=2) # --------------------------------------------------------------------- # Housing Types # tablename = "dvr_housing_type" define_table(tablename, Field("name", label = T("Type"), requires = [IS_NOT_EMPTY(), IS_LENGTH(512, minsize=1)], ), s3_comments(), *s3_meta_fields()) # CRUD Strings ADD_HOUSING_TYPE = T("Create Housing Type") crud_strings[tablename] = Storage( label_create = ADD_HOUSING_TYPE, title_display = T("Housing Type"), title_list = T("Housing Types"), title_update = T("Edit Housing Type"), label_list_button = T("List Housing Types"), label_delete_button = T("Delete Housing Type"), msg_record_created = T("Housing Type added"), msg_record_modified = T("Housing Type updated"), msg_record_deleted = T("Housing Type deleted"), msg_list_empty = T("No Housing Types currently defined") ) # Represent for reference housing_type_represent = S3Represent(lookup = "dvr_housing_type", translate = True, ) # --------------------------------------------------------------------- # Income sources # tablename = "dvr_income_source" define_table(tablename, Field("name", requires = [IS_NOT_EMPTY(), IS_LENGTH(512, minsize=1)], ), s3_comments(), *s3_meta_fields()) # CRUD Strings ADD_INCOME_SOURCE = T("Create Income Source") crud_strings[tablename] = Storage( label_create = ADD_INCOME_SOURCE, title_display = T("Income Source"), title_list = T("Income Sources"), title_update = T("Edit Income Source"), label_list_button = T("List Income Sources"), label_delete_button = T("Delete Income Source"), msg_record_created = T("Income Source added"), msg_record_modified = T("Income Source updated"), msg_record_deleted = T("Income Source deleted"), msg_list_empty = T("No Income Sources currently defined") ) # Reusable field represent = S3Represent(lookup=tablename, translate=True) income_source_id = S3ReusableField("income_source_id", "reference %s" % tablename, label = T("Income Source"), ondelete = "RESTRICT", represent = represent, requires = IS_EMPTY_OR( IS_ONE_OF(db, "dvr_income_source.id", represent, )), ) # Table configuration configure(tablename, deduplicate = S3Duplicate(), ) # --------------------------------------------------------------------- # Household Economy Information # tablename = "dvr_economy" define_table(tablename, # Beneficiary (component link): # @todo: populate from case and hide in case perspective self.pr_person_id(empty = False, ondelete = "CASCADE", ), self.dvr_case_id(empty = False, label = T("Case Number"), ondelete = "CASCADE", ), FieldS3("housing_type_id", "reference dvr_housing_type", label = T("Housing Type"), represent = housing_type_represent, requires = IS_EMPTY_OR(IS_ONE_OF( db, "dvr_housing_type.id", housing_type_represent, )), sortby = "name", comment = S3PopupLink(c = "dvr", f = "housing_type", title = ADD_HOUSING_TYPE, tooltip = T("Choose the housing type from the drop-down, or click the link to create a new type"), ), ), Field("monthly_costs", "double", label = T("Monthly Costs"), represent = float_represent, requires = IS_EMPTY_OR(IS_FLOAT_AMOUNT(minimum=0.0)), ), Field("average_weekly_income", "double", label = T("Average Weekly Income"), represent = float_represent, requires = IS_EMPTY_OR(IS_FLOAT_AMOUNT(minimum=0.0)), ), Field("monthly_income", "double", label = T("Average Monthly Income"), represent = float_represent, requires = IS_EMPTY_OR(IS_FLOAT_AMOUNT(minimum=0.0)), ), s3_currency(), s3_comments(), *s3_meta_fields()) # Components self.add_components(tablename, dvr_income_source = {"link": "dvr_income_source_economy", "joinby": "economy_id", "key": "income_source_id", "actuate": "link", "autodelete": False, }, ) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Create Economy Information"), title_display = T("Economy Information"), title_list = T("Economy Information"), title_update = T("Edit Economy Information"), label_list_button = T("List Economy Information"), label_delete_button = T("Delete Economy Information"), msg_record_created = T("Economy Information added"), msg_record_modified = T("Economy Information updated"), msg_record_deleted = T("Economy Information deleted"), msg_list_empty = T("No Economy Information currently registered"), ) # CRUD Form crud_form = S3SQLCustomForm("housing_type_id", "monthly_costs", #"average_weekly_income", "monthly_income", "currency", S3SQLInlineLink("income_source", field = "income_source_id", label = T("Income Sources"), cols = 3, ), "comments", ) # List fields list_fields = ["housing_type_id", "monthly_costs", "income_source_economy.income_source_id", #"average_weekly_income", "monthly_income", "comments", ] # Table configuration configure(tablename, crud_form = crud_form, list_fields = list_fields, ) # --------------------------------------------------------------------- # Link table Economy Information <=> Income Sources # tablename = "dvr_income_source_economy" define_table(tablename, Field("economy_id", "reference dvr_economy", ondelete = "CASCADE", requires = IS_ONE_OF(db, "dvr_economy.id"), ), income_source_id(), s3_comments(), *s3_meta_fields()) # --------------------------------------------------------------------- # Pass names back to global scope (s3.*) # return {} # ------------------------------------------------------------------------- @staticmethod def defaults(): """ Safe defaults for names in case the module is disabled """ return {} # ============================================================================= class DVRLegalStatusModel(S3Model): """ Models to document the legal status of a beneficiary """ names = ("dvr_residence_status_type", "dvr_residence_permit_type", "dvr_residence_status", ) def model(self): T = current.T db = current.db s3 = current.response.s3 define_table = self.define_table crud_strings = s3.crud_strings # --------------------------------------------------------------------- # Residence Status Types # tablename = "dvr_residence_status_type" define_table(tablename, Field("name", requires = [IS_NOT_EMPTY(), IS_LENGTH(512, minsize=1)], ), s3_comments(), *s3_meta_fields()) # Table Configuration self.configure(tablename, deduplicate = S3Duplicate(), ) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Create Residence Status Type"), title_display = T("Residence Status Type Details"), title_list = T("Residence Status Types"), title_update = T("Edit Residence Status Type"), label_list_button = T("List Residence Status Types"), label_delete_button = T("Delete Residence Status Type"), msg_record_created = T("Residence Status Type created"), msg_record_modified = T("Residence Status Type updated"), msg_record_deleted = T("Residence Status Type deleted"), msg_list_empty = T("No Residence Status Types currently defined"), ) # Reusable field represent = S3Represent(lookup=tablename, translate=True) status_type_id = S3ReusableField("status_type_id", "reference %s" % tablename, label = T("Residence Status"), represent = represent, requires = IS_EMPTY_OR(IS_ONE_OF( db, "%s.id" % tablename, represent, )), sortby = "name", comment = S3PopupLink( c="dvr", f="residence_status_type", tooltip=T("Create a new status type"), ), ) # --------------------------------------------------------------------- # Residence Permit Types # tablename = "dvr_residence_permit_type" define_table(tablename, Field("name", requires = [IS_NOT_EMPTY(), IS_LENGTH(512, minsize=1)], ), s3_comments(), *s3_meta_fields()) # Table Configuration self.configure(tablename, deduplicate = S3Duplicate(), ) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Create Residence Permit Type"), title_display = T("Residence Permit Type Details"), title_list = T("Residence Permit Types"), title_update = T("Edit Residence Permit Type"), label_list_button = T("List Residence Permit Types"), label_delete_button = T("Delete Residence Permit Type"), msg_record_created = T("Residence Permit Type created"), msg_record_modified = T("Residence Permit Type updated"), msg_record_deleted = T("Residence Permit Type deleted"), msg_list_empty = T("No Residence Permit Types currently defined"), ) # Reusable field represent = S3Represent(lookup=tablename, translate=True) permit_type_id = S3ReusableField("permit_type_id", "reference %s" % tablename, label = T("Residence Permit Type"), represent = represent, requires = IS_EMPTY_OR(IS_ONE_OF( db, "%s.id" % tablename, represent, )), sortby = "name", comment = S3PopupLink( c="dvr", f="residence_permit_type", tooltip=T("Create a new permit type"), ), ) # --------------------------------------------------------------------- # Residence Status # tablename = "dvr_residence_status" define_table(tablename, self.pr_person_id(), status_type_id(), permit_type_id(), Field("reference", label = T("ID/Ref.No."), ), s3_date("valid_from", label = T("Valid From"), ), s3_date("valid_until", label = T("Valid Until"), ), #Field("obsolete", "boolean", # default = False, # ), s3_comments(), *s3_meta_fields()) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Create Residence Status"), title_display = T("Residence Status Details"), title_list = T("Residence Statuses"), title_update = T("Edit Residence Status"), label_list_button = T("List Residence Statuses"), label_delete_button = T("Delete Residence Status"), msg_record_created = T("Residence Status created"), msg_record_modified = T("Residence Status updated"), msg_record_deleted = T("Residence Status deleted"), msg_list_empty = T("No Residence Statuses currently defined"), ) # --------------------------------------------------------------------- # Pass names back to global scope (s3.*) # return {} # ------------------------------------------------------------------------- @staticmethod def defaults(): """ Safe defaults for names in case the module is disabled """ #dummy = S3ReusableField("dummy_id", "integer", # readable = False, # writable = False, # ) return {} # ============================================================================= class DVRCaseAllowanceModel(S3Model): """ Model for Allowance Management """ names = ("dvr_allowance", ) def model(self): T = current.T crud_strings = current.response.s3.crud_strings configure = self.configure define_table = self.define_table set_method = self.set_method # --------------------------------------------------------------------- # Allowance Information # allowance_status_opts = {1: T("pending"), 2: T("paid"), 3: T("refused"), 4: T("missed"), } amount_represent = lambda v: IS_FLOAT_AMOUNT.represent(v, precision = 2, fixed = True, ) tablename = "dvr_allowance" define_table(tablename, # Beneficiary (component link): # @todo: populate from case and hide in case perspective self.pr_person_id(comment = None, empty = False, ondelete = "CASCADE", ), self.dvr_case_id(# @ToDo: Populate this onaccept from imports #empty = False, label = T("Case Number"), ondelete = "CASCADE", ), s3_date("entitlement_period", label = T("Entitlement Period"), ), s3_date(default="now", label = T("Planned on"), ), s3_datetime("paid_on", label = T("Paid on"), future = 0, ), Field("amount", "double", label = T("Amount"), requires = IS_EMPTY_OR(IS_FLOAT_AMOUNT(minimum=0.0)), represent = amount_represent, ), s3_currency(), Field("status", "integer", default = 1, # pending requires = IS_IN_SET(allowance_status_opts, zero = None, ), represent = S3Represent(options=allowance_status_opts, ), widget = S3GroupedOptionsWidget(cols = 4, multiple = False, ), ), s3_comments(), *s3_meta_fields()) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Create Allowance Information"), title_display = T("Allowance Information"), title_list = T("Allowance Information"), title_update = T("Edit Allowance Information"), label_list_button = T("List Allowance Information"), label_delete_button = T("Delete Allowance Information"), msg_record_created = T("Allowance Information added"), msg_record_modified = T("Allowance Information updated"), msg_record_deleted = T("Allowance Information deleted"), msg_list_empty = T("No Allowance Information currently registered"), ) # Custom list fields list_fields = ["person_id", "entitlement_period", "date", "currency", "amount", "status", "paid_on", "comments", ] # Table configuration configure(tablename, deduplicate = S3Duplicate(primary = ("person_id", "entitlement_period", ), ), list_fields = list_fields, onaccept = self.allowance_onaccept, ondelete = self.allowance_ondelete, onvalidation = self.allowance_onvalidation, ) set_method("dvr", "allowance", method = "register", action = DVRRegisterPayment, ) set_method("dvr", "allowance", method = "manage", action = DVRManageAllowance, ) # --------------------------------------------------------------------- # Pass names back to global scope (s3.*) # return {"dvr_allowance_status_opts": allowance_status_opts, } # ------------------------------------------------------------------------- @staticmethod def defaults(): """ Safe defaults for names in case the module is disabled """ return {"dvr_allowance_status_opts": {}, } # ------------------------------------------------------------------------- @staticmethod def allowance_onvalidation(form): """ Validate allowance form - Status paid requires paid_on date @param form: the FORM """ formvars = form.vars date = formvars.get("paid_on") status = formvars.get("status") if str(status) == "2" and not date: form.errors["paid_on"] = current.T("Date of payment required") # ------------------------------------------------------------------------- @staticmethod def allowance_onaccept(form): """ Actions after creating/updating allowance information - update last_seen_on """ if current.deployment_settings.get_dvr_payments_update_last_seen_on(): # Read form data form_vars = form.vars if "id" in form_vars: record_id = form_vars.id elif hasattr(form, "record_id"): record_id = form.record_id else: record_id = None if not record_id: return if current.response.s3.bulk and "status" not in form_vars: # Import without status change won't affect last_seen_on, # so we can skip this check for better performance return # Get the person ID table = current.s3db.dvr_allowance row = current.db(table.id == record_id).select(table.person_id, limitby = (0, 1), ).first() # Update last_seen_on if row: dvr_update_last_seen(row.person_id) # ------------------------------------------------------------------------- @staticmethod def allowance_ondelete(row): """ Actions after deleting allowance information - Update last_seen_on in the corresponding case(s) @param row: the deleted Row """ if current.deployment_settings.get_dvr_payments_update_last_seen_on(): # Get the deleted keys table = current.s3db.dvr_allowance row = current.db(table.id == row.id).select(table.deleted_fk, limitby = (0, 1), ).first() if row and row.deleted_fk: # Get the person ID try: deleted_fk = json.loads(row.deleted_fk) except (ValueError, TypeError): person_id = None else: person_id = deleted_fk.get("person_id") # Update last_seen_on if person_id: dvr_update_last_seen(person_id) # ============================================================================= class DVRCaseEventModel(S3Model): """ Model representing monitoring events for cases """ names = ("dvr_case_event_type", "dvr_case_event", ) def model(self): T = current.T db = current.db s3 = current.response.s3 settings = current.deployment_settings crud_strings = s3.crud_strings configure = self.configure define_table = self.define_table # --------------------------------------------------------------------- # Case Event Types # role_table = str(current.auth.settings.table_group) role_represent = S3Represent(lookup=role_table, fields=("role",)) close_appointments = settings.get_dvr_case_events_close_appointments() tablename = "dvr_case_event_type" define_table(tablename, Field("code", notnull=True, length=64, unique=True, label = T("Code"), requires = [IS_NOT_EMPTY(), IS_LENGTH(64, minsize=1), IS_NOT_ONE_OF(db, "dvr_case_event_type.code", ), ], ), Field("name", label = T("Name"), requires = [IS_NOT_EMPTY(), IS_LENGTH(512, minsize=1)], ), Field("is_inactive", "boolean", default = False, label = T("Inactive"), represent = s3_yes_no_represent, comment = DIV(_class = "tooltip", _title = "%s|%s" % (T("Inactive"), T("This event type can not currently be registered"), ), ), ), Field("is_default", "boolean", default = False, label = T("Default Event Type"), represent = s3_yes_no_represent, comment = DIV(_class = "tooltip", _title = "%s|%s" % (T("Default Event Type"), T("Assume this event type if no type was specified for an event"), ), ), ), Field("role_required", "reference %s" % role_table, label = T("User Role Required"), ondelete = "SET NULL", represent = role_represent, requires = IS_EMPTY_OR(IS_ONE_OF(db, "%s.id" % role_table, role_represent, )), comment = DIV(_class = "tooltip", _title = "%s|%s" % (T("User Role Required"), T("User role required to register events of this type"), ), ), ), self.dvr_appointment_type_id( "appointment_type_id", label = T("Appointment Type"), readable = close_appointments, writable = close_appointments, comment = DIV(_class = "tooltip", _title = "%s|%s" % (T("Appointment Type"), T("The type of appointments which are completed with this type of event"), ), ), ), Field("min_interval", "double", label = T("Minimum Interval (Hours)"), comment = DIV(_class = "tooltip", _title = "%s|%s" % (T("Minimum Interval (Hours)"), T("Minimum interval between two consecutive registrations of this event type for the same person"), ), ), requires = IS_EMPTY_OR(IS_FLOAT_IN_RANGE(0.0, None)), ), Field("max_per_day", "integer", label = T("Maximum Number per Day"), comment = DIV(_class = "tooltip", _title = "%s|%s" % (T("Maximum Number per Day"), T("Maximum number of occurences of this event type for the same person on the same day"), ), ), requires = IS_EMPTY_OR(IS_INT_IN_RANGE(0, None)), ), Field("presence_required", "boolean", default = True, label = T("Presence required"), represent = s3_yes_no_represent, comment = DIV(_class = "tooltip", _title = "%s|%s" % (T("Presence required"), T("This event type requires the presence of the person concerned"), ), ), ), s3_comments(), *s3_meta_fields()) # Components self.add_components(tablename, dvr_case_event = {"name": "excluded_by", "link": "dvr_case_event_exclusion", "joinby": "type_id", "key": "excluded_by_id", }, ) # Table Configuration configure(tablename, onaccept = self.case_event_type_onaccept, ) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Create Event Type"), title_display = T("Event Type Details"), title_list = T("Event Types"), title_update = T("Edit Event Type"), label_list_button = T("List Event Types"), label_delete_button = T("Delete Event Type"), msg_record_created = T("Event Type created"), msg_record_modified = T("Event Type updated"), msg_record_deleted = T("Event Type deleted"), msg_list_empty = T("No Event Types currently defined"), ) # Reusable field represent = S3Represent(lookup=tablename, translate=True) event_type_id = S3ReusableField("type_id", "reference %s" % tablename, label = T("Event Type"), ondelete = "RESTRICT", represent = represent, requires = IS_ONE_OF(db, "%s.id" % tablename, represent, ), sortby = "name", comment = S3PopupLink(c = "dvr", f = "case_event_type", tooltip = T("Create a new event type"), ), ) # --------------------------------------------------------------------- # Case Event Types, Impermissible Combinations # tablename = "dvr_case_event_exclusion" define_table(tablename, event_type_id(comment = None, ondelete = "CASCADE", ), event_type_id("excluded_by_id", comment = None, label = T("Not Combinable With"), ondelete = "CASCADE", ), *s3_meta_fields()) # Table Configuration configure(tablename, deduplicate = S3Duplicate(primary = ("type_id", "excluded_by_id", ), ), ) # --------------------------------------------------------------------- # Case Events # tablename = "dvr_case_event" define_table(tablename, self.dvr_case_id(comment = None, empty = False, label = T("Case Number"), ondelete = "CASCADE", readable = False, writable = False, ), # Beneficiary (component link): # @todo: populate from case and hide in case perspective self.pr_person_id(comment = None, empty = False, ondelete = "CASCADE", writable = False, ), event_type_id(comment = None, ondelete = "CASCADE", # Not user-writable as this is for automatic # event registration, override in template if # required: writable = False, ), s3_datetime(label = T("Date/Time"), default = "now", empty = False, future = 0, writable = False, ), # Field for quantitative recording of case events # for statistical purposes (without linking them to # individual cases) Field("quantity", "integer", label = T("Quantity"), default = 1, requires = IS_EMPTY_OR(IS_INT_IN_RANGE(0, None)), # activate in template as required readable = False, writable = False, ), s3_comments(), *s3_meta_fields()) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Create Event"), title_display = T("Event Details"), title_list = T("Events"), title_update = T("Edit Event"), label_list_button = T("List Events"), label_delete_button = T("Delete Event"), msg_record_created = T("Event added"), msg_record_modified = T("Event updated"), msg_record_deleted = T("Event deleted"), msg_list_empty = T("No Events currently registered"), ) # Filter Widgets filter_widgets = [S3TextFilter(["person_id$pe_label", "person_id$first_name", "person_id$middle_name", "person_id$last_name", "created_by$email", "comments", ], label = T("Search"), ), S3OptionsFilter("type_id", options = lambda: s3_get_filter_opts("dvr_case_event_type", translate = True, ), ), S3DateFilter("date"), ] # Table Configuration configure(tablename, create_onaccept = self.case_event_create_onaccept, deduplicate = S3Duplicate(primary = ("person_id", "type_id", ), ), filter_widgets = filter_widgets, # Not user-insertable as this is for automatic # event registration, override in template if # required: insertable = False, list_fields = ["person_id", "date", "type_id", (T("Registered by"), "created_by"), "comments", ], ondelete = self.case_event_ondelete, orderby = "%s.date desc" % tablename, ) # Custom method for event registration self.set_method("dvr", "case_event", method = "register", action = DVRRegisterCaseEvent, ) # --------------------------------------------------------------------- # Pass names back to global scope (s3.*) # return {} # ------------------------------------------------------------------------- @staticmethod def defaults(): """ Safe defaults for names in case the module is disabled """ return {} # ------------------------------------------------------------------------- @staticmethod def case_event_type_onaccept(form): """ Onaccept routine for case event types: - only one type can be the default @param form: the FORM """ form_vars = form.vars try: record_id = form_vars.id except AttributeError: record_id = None if not record_id: return # If this type is the default, then set is_default-flag # for all other types to False: if "is_default" in form_vars and form_vars.is_default: table = current.s3db.dvr_case_event_type db = current.db db(table.id != record_id).update(is_default = False) # ------------------------------------------------------------------------- @staticmethod def case_event_create_onaccept(form): """ Actions after creation of a case event: - update last_seen_on in the corresponding cases - close appointments if configured to do so @param form: the FORM """ formvars = form.vars try: record_id = formvars.id except AttributeError: record_id = None if not record_id: return db = current.db s3db = current.s3db close_appointments = current.deployment_settings \ .get_dvr_case_events_close_appointments() case_id = formvars.get("case_id") person_id = formvars.get("person_id") type_id = formvars.get("type_id") if not person_id or not type_id or \ close_appointments and not case_id: # Reload the record table = s3db.dvr_case_event row = db(table.id == record_id).select(table.case_id, table.person_id, table.type_id, limitby = (0, 1), ).first() if not row: return case_id = row.case_id person_id = row.person_id type_id = row.type_id if not person_id: return # Get the event type ttable = s3db.dvr_case_event_type query = (ttable.id == type_id) & \ (ttable.deleted == False) event_type = db(query).select(ttable.presence_required, ttable.appointment_type_id, limitby = (0, 1), ).first() if not event_type: return # Update last_seen (if event type requires personal presence) if event_type.presence_required: dvr_update_last_seen(person_id) # Close appointments appointment_type_id = event_type.appointment_type_id if close_appointments and appointment_type_id: today = current.request.utcnow.date() atable = s3db.dvr_case_appointment query = (atable.type_id == appointment_type_id) & \ (atable.person_id == person_id) & \ ((atable.date == None) | (atable.date <= today)) & \ (atable.deleted == False) if case_id: query &= (atable.case_id == case_id) | \ (atable.case_id == None) rows = db(query).select(atable.id, atable.date, atable.status, orderby = ~atable.date, ) data = {"date": today, "status": 4} if not rows: # No appointment of this type yet # => create a new closed appointment data["type_id"] = appointment_type_id data["person_id"] = person_id data["case_id"] = case_id aresource = s3db.resource("dvr_case_appointment") try: record_id = aresource.insert(**data) except S3PermissionError: current.log.error("Event Registration: %s" % sys.exc_info()[1]) else: update = None # Find key dates undated = open_today = closed_today = previous = None for row in rows: if row.date is None: if not undated: # An appointment without date undated = row elif row.date == today: if row.status != 4: # An open or cancelled appointment today open_today = row else: # A closed appointment today closed_today = row elif previous is None: # The last appointment before today previous = row if open_today: # If we have an open appointment for today, update it update = open_today elif closed_today: # If we already have a closed appointment for today, # do nothing update = None elif previous: if previous.status not in (1, 2, 3): # Last appointment before today is closed # => create a new one unless there is an undated one if undated: update = undated else: # Last appointment before today is still open # => update it update = previous else: update = undated if update: # Update the appointment permitted = current.auth.s3_has_permission("update", atable, record_id=update.id, ) if permitted: # Customise appointment resource r = S3Request("dvr", "case_appointment", current.request, args = [], get_vars = {}, ) r.customise_resource("dvr_case_appointment") # Update appointment success = update.update_record(**data) if success: data["id"] = update.id s3db.onaccept(atable, data, method="update") else: current.log.error("Event Registration: could not update appointment %s" % update.id) else: current.log.error("Event registration: not permitted to update appointment %s" % update.id) # ------------------------------------------------------------------------- @staticmethod def case_event_ondelete(row): """ Actions after deleting a case event: - update last_seen_on in the corresponding cases @param row: the deleted Row """ # Get the deleted keys table = current.s3db.dvr_case_event row = current.db(table.id == row.id).select(table.deleted_fk, limitby = (0, 1), ).first() if row and row.deleted_fk: # Get the person ID try: deleted_fk = json.loads(row.deleted_fk) except (ValueError, TypeError): person_id = None else: person_id = deleted_fk.get("person_id") # Update last_seen_on if person_id: dvr_update_last_seen(person_id) # ============================================================================= class DVRCaseEvaluationModel(S3Model): """ Evaluation of Cases - Flexible Questions (Dynamic Data Model) """ names = ("dvr_evaluation_question", "dvr_evaluation", "dvr_evaluation_data", ) def model(self): T = current.T crud_strings = current.response.s3.crud_strings define_table = self.define_table # --------------------------------------------------------------------- # Questions # tablename = "dvr_evaluation_question" define_table(tablename, Field("section", label = T("Section"), ), #Field("header", # label = T("Header"), # ), Field("number", "integer", label = T("Number"), ), Field("name", label = T("Question"), ), *s3_meta_fields() ) crud_strings[tablename] = Storage( label_create = T("Create Question"), title_display = T("Question Details"), title_list = T("Questions"), title_update = T("Edit Question"), label_list_button = T("List Questions"), label_delete_button = T("Delete Question"), msg_record_created = T("Question added"), msg_record_modified = T("Question updated"), msg_record_deleted = T("Question removed"), msg_list_empty = T("No Questions currently registered")) # --------------------------------------------------------------------- # Case Evaluations # tablename = "dvr_evaluation" define_table(tablename, # Beneficiary (component link): # @todo: populate from case and hide in case perspective self.pr_person_id(empty = False, ondelete = "CASCADE", ), self.dvr_case_id(empty = False, label = T("Case Number"), ondelete = "CASCADE", ), #s3_date(future=0), s3_comments(), *s3_meta_fields() ) crud_strings[tablename] = Storage( label_create = T("Create Evaluation"), title_display = T("Evaluation Details"), title_list = T("Evaluations"), title_update = T("Edit Evaluation"), label_list_button = T("List Evaluations"), label_delete_button = T("Delete Evaluation"), msg_record_created = T("Evaluation added"), msg_record_modified = T("Evaluation updated"), msg_record_deleted = T("Evaluation removed"), msg_list_empty = T("No Evaluations currently registered")) # Components self.add_components(tablename, dvr_evaluation_data = {"name": "data", "joinby": "evaluation_id", }, ) # --------------------------------------------------------------------- # Case Evaluation Data # tablename = "dvr_evaluation_data" define_table(tablename, Field("evaluation_id", "reference dvr_evaluation", readable = False, writable = False, ), Field("question_id", "reference dvr_evaluation_question", represent = S3Represent(lookup="dvr_evaluation_question", fields=["number", "name"], field_sep=". "), writable = False, ), Field("answer", "boolean", label = T("Answer"), represent = s3_yes_no_represent, ), *s3_meta_fields() ) # Custom Report Method #self.set_method("org", "capacity_assessment_data", # method = "custom_report", # action = org_CapacityReport()) # --------------------------------------------------------------------- # Pass names back to global scope (s3.*) return {} # ============================================================================= class DVRVulnerabilityModel(S3Model): """ Targeted vulnerabilities for activities """ names = ("dvr_vulnerability_type", "dvr_vulnerability_type_case_activity", ) def model(self): T = current.T db = current.db s3 = current.response.s3 settings = current.deployment_settings define_table = self.define_table crud_strings = s3.crud_strings hierarchical_vulnerability_types = settings.get_dvr_vulnerability_types_hierarchical() # --------------------------------------------------------------------- # Types of vulnerability # tablename = "dvr_vulnerability_type" define_table(tablename, Field("name", label = T("Type of Vulnerability"), requires = [IS_NOT_EMPTY(), IS_LENGTH(512, minsize=1)], ), # This form of hierarchy may not work on all Databases: Field("parent", "reference dvr_vulnerability_type", label = T("Subtype of"), ondelete = "RESTRICT", represent = S3Represent(lookup = tablename, translate = True, hierarchy = True, ), readable = hierarchical_vulnerability_types, writable = hierarchical_vulnerability_types, ), Field("required", "boolean", default = False, label = T("Required Category"), represent = s3_yes_no_represent, readable = False, writable = False, ), s3_comments(), *s3_meta_fields()) # Hierarchy if hierarchical_vulnerability_types: hierarchy = "parent" widget = S3HierarchyWidget(multiple = False, leafonly = True, ) else: hierarchy = None widget = None # Table configuration self.configure(tablename, deduplicate = S3Duplicate(primary = ("name",), secondary = ("parent",), ), hierarchy = hierarchy, ) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Create Vulnerability Type"), title_display = T("Vulnerability Type"), title_list = T("Vulnerability Types"), title_update = T("Edit Vulnerability Type"), label_list_button = T("List Vulnerability Types"), label_delete_button = T("Delete Vulnerability Type"), msg_record_created = T("Vulnerability Type created"), msg_record_modified = T("Vulnerability Type updated"), msg_record_deleted = T("Vulnerability Type deleted"), msg_list_empty = T("No Vulnerability Types currently defined"), ) # Reusable field represent = S3Represent(lookup=tablename, translate=True) vulnerability_type_id = S3ReusableField("vulnerability_type_id", "reference %s" % tablename, label = T("Type of Vulnerability"), represent = represent, requires = IS_EMPTY_OR( IS_ONE_OF(db, "%s.id" % tablename, represent, )), sortby = "name", comment = S3PopupLink(c="dvr", f="vulnerability_type", tooltip=T("Create a new vulnerability type"), ), widget = widget, ) # --------------------------------------------------------------------- # Link tables vulnerability type <=> case activity # - in the context of psycho-social support, this could be # diagnoses => when differentiating into suspected / confirmed # diagnoses, we use the diagnosis-link for the confirmed ones # tablename = "dvr_vulnerability_type_case_activity" define_table(tablename, self.dvr_case_activity_id( empty = False, ondelete = "CASCADE", ), vulnerability_type_id( empty = False, ondelete = "RESTRICT", ), *s3_meta_fields()) tablename = "dvr_diagnosis_case_activity" define_table(tablename, self.dvr_case_activity_id( empty = False, ondelete = "CASCADE", ), vulnerability_type_id( empty = False, ondelete = "RESTRICT", ), *s3_meta_fields()) # --------------------------------------------------------------------- # Pass names back to global scope (s3.*) # return {} # ============================================================================= class DVRActivityFundingModel(S3Model): """ Model to manage funding needs for cases """ names = ("dvr_activity_funding", ) def model(self): T = current.T s3 = current.response.s3 define_table = self.define_table crud_strings = s3.crud_strings # --------------------------------------------------------------------- # Case activity funding # tablename = "dvr_activity_funding" define_table(tablename, self.dvr_case_activity_id(), Field("funding_required", "boolean", default = False, label = T("Funding Required"), represent = s3_yes_no_represent, ), Field("reason", "text", label = T("Reason"), represent = s3_text_represent, widget = s3_comments_widget, ), Field("proposal", "text", label = T("Proposed Assistance"), ), Field("approved", "boolean", label = T("Approved"), represent = s3_yes_no_represent, ), s3_comments(), *s3_meta_fields()) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Create Funding Proposal"), title_display = T("Funding Proposal"), title_list = T("Funding Proposals"), title_update = T("Edit Funding Proposal"), label_list_button = T("List Funding Proposals"), label_delete_button = T("Delete Funding Proposal"), msg_record_created = T("Funding Proposal created"), msg_record_modified = T("Funding Proposal updated"), msg_record_deleted = T("Funding Proposal deleted"), msg_list_empty = T("No Funding Proposals currently registered"), ) # --------------------------------------------------------------------- # Pass names back to global scope (s3.*) # return {} # ============================================================================= class DVRServiceContactModel(S3Model): """ Model to track external service contacts of beneficiaries """ names = ("dvr_service_contact", "dvr_service_contact_type", ) def model(self): T = current.T db = current.db s3 = current.response.s3 crud_strings = s3.crud_strings define_table = self.define_table configure = self.configure # --------------------------------------------------------------------- # Service Contact Types # tablename = "dvr_service_contact_type" define_table(tablename, Field("name", label = T("Name"), requires = [IS_NOT_EMPTY(), IS_LENGTH(512, minsize=1)], ), s3_comments(), *s3_meta_fields()) # Table configuration configure(tablename, deduplicate = S3Duplicate(), ) # CRUD Strings ADD_TYPE = T("Create Service Contact Type") crud_strings[tablename] = Storage( label_create = ADD_TYPE, title_display = T("Service Contact Type"), title_list = T("Service Contact Types"), title_update = T("Edit Service Contact Types"), label_list_button = T("List Service Contact Types"), label_delete_button = T("Delete Service Contact Type"), msg_record_created = T("Service Contact Type added"), msg_record_modified = T("Service Contact Type updated"), msg_record_deleted = T("Service Contact Type deleted"), msg_list_empty = T("No Service Contact Types currently defined"), ) # Reusable field represent = S3Represent(lookup=tablename, translate=True) type_id = S3ReusableField("type_id", "reference %s" % tablename, label = T("Service Contact Type"), ondelete = "RESTRICT", represent = represent, requires = IS_EMPTY_OR( IS_ONE_OF(db, "%s.id" % tablename, represent, )), sortby = "name", ) # --------------------------------------------------------------------- # Service Contacts of Beneficiaries # AGENCY = T("Providing Agency") tablename = "dvr_service_contact" define_table(tablename, # Beneficiary (component link): self.pr_person_id(empty = False, ondelete = "CASCADE", ), type_id(), #self.dvr_need_id(), self.org_organisation_id(label = AGENCY, ), # Alternative free-text field: Field("organisation", label = AGENCY, readable = False, writable = False, ), Field("reference", label = T("Ref.No."), comment = DIV(_class = "tooltip", _title = "%s|%s" % (T("Ref.No."), T("Customer number, file reference or other reference number"), ), ), ), # Enable in template as needed: Field("contact", label = T("Contact Person"), ), Field("phone", label = T("Phone"), ), Field("email", label = T("Email"), ), s3_comments(), *s3_meta_fields()) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Create Service Contact"), title_display = T("Service Contact Details"), title_list = T("Service Contacts"), title_update = T("Edit Service Contacts"), label_list_button = T("List Service Contacts"), label_delete_button = T("Delete Service Contact"), msg_record_created = T("Service Contact added"), msg_record_modified = T("Service Contact updated"), msg_record_deleted = T("Service Contact deleted"), msg_list_empty = T("No Service Contacts currently registered"), ) # --------------------------------------------------------------------- # Pass names back to global scope (s3.*) # return {} # ------------------------------------------------------------------------- @staticmethod def defaults(): """ Safe defaults for names in case the module is disabled """ #dummy = S3ReusableField("dummy_id", "integer", # readable = False, # writable = False, # ) return {} # ============================================================================= class DVRSiteActivityModel(S3Model): """ Model to record the activity of a site over time """ names = ("dvr_site_activity", ) def model(self): T = current.T s3 = current.response.s3 settings = current.deployment_settings crud_strings = s3.crud_strings configure = self.configure define_table = self.define_table SITE = settings.get_org_site_label() site_represent = self.org_SiteRepresent(show_link=False) default_site = settings.get_org_default_site() permitted_facilities = current.auth.permitted_facilities(redirect_on_error=False) # --------------------------------------------------------------------- # Site Activity # tablename = "dvr_site_activity" define_table(tablename, self.super_link("site_id", "org_site", default = default_site, filterby = "site_id", filter_opts = permitted_facilities, label = SITE, readable = not default_site, writable = not default_site, represent = site_represent, updateable = True, ), s3_date(future=0), Field("old_total", "integer", default = 0, label = T("Previous Total"), requires = IS_INT_IN_RANGE(0, None), ), Field("cases_new", "integer", default = 0, label = T("Admissions"), requires = IS_INT_IN_RANGE(0, None), ), Field("cases_closed", "integer", default = 0, label = T("Departures"), requires = IS_INT_IN_RANGE(0, None), ), Field("new_total", "integer", default = 0, label = T("Current Total"), requires = IS_INT_IN_RANGE(0, None), ), Field("report", "upload", autodelete = True, label = T("Report"), length = current.MAX_FILENAME_LENGTH, represent = self.report_represent, uploadfolder = os.path.join(current.request.folder, "uploads", "dvr", ), ), s3_comments(), *s3_meta_fields()) # CRUD Strings crud_strings[tablename] = Storage( label_create = T("Create Activity Report"), title_display = T("Activity Report"), title_list = T("Activity Reports"), title_update = T("Edit Activity Report"), label_list_button = T("List Activity Reports"), label_delete_button = T("Delete Activity Report"), msg_record_created = T("Activity Report created"), msg_record_modified = T("Activity Report updated"), msg_record_deleted = T("Activity Report deleted"), msg_list_empty = T("No Activity Reports found"), ) # Filter widgets date_filter = S3DateFilter("date") date_filter.operator = ["eq"] filter_widgets = [date_filter] if not default_site: site_filter = S3OptionsFilter("site_id", label = SITE, ) filter_widgets.insert(0, site_filter) # Table configuration configure(tablename, filter_widgets = filter_widgets, ) # --------------------------------------------------------------------- # Pass names back to global scope (s3.*) # return {} # ------------------------------------------------------------------------- @staticmethod def defaults(): """ Safe defaults for names in case the module is disabled """ return {} # ------------------------------------------------------------------------- @staticmethod def report_represent(value): """ File representation """ if value: try: # Read the filename from the file filename = current.db.dvr_site_activity.report.retrieve(value)[0] except IOError: return current.T("File not found") else: return A(filename, _href=URL(c="default", f="download", args=[value])) else: return current.messages["NONE"] # ============================================================================= def dvr_case_default_status(): """ Helper to get/set the default status for case records @return: the default status_id """ s3db = current.s3db ctable = s3db.dvr_case field = ctable.status_id default = field.default if default: # Already set return default # Look up the default status stable = s3db.dvr_case_status query = (stable.is_default == True) & \ (stable.deleted != True) row = current.db(query).select(stable.id, limitby=(0, 1)).first() if row: # Set as field default in case table ctable = s3db.dvr_case default = field.default = row.id return default # ============================================================================= def dvr_case_status_filter_opts(closed=None): """ Get filter options for case status, ordered by workflow position @return: OrderedDict of options @note: set sort=False for filter widget to retain this order """ table = current.s3db.dvr_case_status query = (table.deleted != True) if closed is not None: if closed: query &= (table.is_closed == True) else: query &= ((table.is_closed == False) | (table.is_closed == None)) rows = current.db(query).select(table.id, table.name, orderby = "workflow_position", ) if not rows: return {} T = current.T return OrderedDict((row.id, T(row.name)) for row in rows) # ============================================================================= def dvr_case_activity_default_status(): """ Helper to get/set the default status for case activities @return: the default status_id """ s3db = current.s3db rtable = s3db.dvr_case_activity field = rtable.status_id default = field.default if not default: # Look up the default status stable = s3db.dvr_case_activity_status query = (stable.is_default == True) & \ (stable.deleted != True) row = current.db(query).select(stable.id, limitby=(0, 1)).first() if row: # Set as field default in case activity table default = field.default = row.id return default # ============================================================================= def dvr_set_response_action_defaults(): """ DRY Helper to set defaults for response actions """ if current.deployment_settings.get_dvr_response_types(): dvr_response_default_type() dvr_response_default_status() # ============================================================================= def dvr_response_default_type(): """ Helper to get/set the default type for response records @return: the default response_type_id """ s3db = current.s3db rtable = s3db.dvr_response_action field = rtable.response_type_id default = field.default if not default: # Look up the default status ttable = s3db.dvr_response_type query = (ttable.is_default == True) & \ (ttable.deleted != True) row = current.db(query).select(ttable.id, cache = s3db.cache, limitby = (0, 1), ).first() if row: # Set as field default in responses table default = field.default = row.id return default # ============================================================================= def dvr_response_default_status(): """ Helper to get/set the default status for response records @return: the default status_id """ s3db = current.s3db rtable = s3db.dvr_response_action field = rtable.status_id default = field.default if not default: stable = s3db.dvr_response_status if current.deployment_settings.get_dvr_response_planning(): # Actions are planned ahead, so initial status by default query = (stable.is_default == True) else: # Actions are documented in hindsight, so closed by default query = (stable.is_default_closure == True) # Look up the default status query = query & (stable.deleted != True) row = current.db(query).select(stable.id, cache = s3db.cache, limitby = (0, 1), ).first() if row: # Set as field default in responses table default = field.default = row.id return default # ============================================================================= def dvr_response_status_colors(resource, selector): """ Get colors for response statuses @param resource: the S3Resource the caller is looking at @param selector: the Field selector (usually "status_id") @returns: a dict with colors {field_value: "#RRGGBB", ...} """ table = current.s3db.dvr_response_status query = (table.color != None) rows = current.db(query).select(table.id, table.color, ) return {row.id: ("#%s" % row.color) for row in rows if row.color} # ============================================================================= def dvr_case_household_size(group_id): """ Update the household_size for all cases in the given case group, taking into account that the same person could belong to multiple case groups. To be called onaccept of pr_group_membership if automatic household size is enabled @param group_id: the group_id of the case group (group_type == 7) """ db = current.db s3db = current.s3db ptable = s3db.pr_person gtable = s3db.pr_group mtable = s3db.pr_group_membership # Get all persons related to this group_id, make sure this is a case group join = [mtable.on((mtable.group_id == gtable.id) & (mtable.deleted != True)), ptable.on(ptable.id == mtable.person_id) ] query = (gtable.id == group_id) & \ (gtable.group_type == 7) & \ (gtable.deleted != True) rows = db(query).select(ptable.id, join=join) person_ids = {row.id for row in rows} if person_ids: # Get case group members for each of these person_ids ctable = s3db.dvr_case rtable = ctable.with_alias("member_cases") otable = mtable.with_alias("case_members") join = ctable.on(ctable.person_id == mtable.person_id) left = [otable.on((otable.group_id == mtable.group_id) & (otable.deleted != True)), rtable.on(rtable.person_id == otable.person_id), ] query = (mtable.person_id.belongs(person_ids)) & \ (mtable.deleted != True) & \ (rtable.id != None) rows = db(query).select(ctable.id, otable.person_id, join = join, left = left, ) # Count heads CASE = str(ctable.id) MEMBER = str(otable.person_id) groups = {} for row in rows: member_id = row[MEMBER] case_id = row[CASE] if case_id not in groups: groups[case_id] = {member_id} else: groups[case_id].add(member_id) # Update the related cases for case_id, members in groups.items(): number_of_members = len(members) db(ctable.id == case_id).update(household_size = number_of_members) # ============================================================================= def dvr_due_followups(human_resource_id=None): """ Number of activities due for follow-up @param human_resource_id: count only activities assigned to this HR """ # Generate a request for case activities and customise it r = S3Request("dvr", "case_activity", args = ["count_due_followups"], get_vars = {}, ) r.customise_resource() resource = r.resource # Filter to exclude closed case activities if current.deployment_settings.get_dvr_case_activity_use_status(): status_filter = (FS("status_id$is_closed") == False) else: status_filter = (FS("completed") == False) # Filter for due follow-ups query = (FS("followup") == True) & \ (FS("followup_date") <= datetime.datetime.utcnow().date()) & \ status_filter & \ (FS("person_id$dvr_case.archived") == False) if human_resource_id: query &= (FS("human_resource_id") == human_resource_id) resource.add_filter(query) return resource.count() # ============================================================================= class dvr_ActivityRepresent(S3Represent): """ Representation of activity IDs """ def __init__(self, show_link=False): """ Constructor @param show_link: show representation as clickable link """ super(dvr_ActivityRepresent, self).__init__(lookup = "dvr_activity", show_link = show_link, ) # ------------------------------------------------------------------------- def lookup_rows(self, key, values, fields=None): """ Custom rows lookup @param key: the key Field @param values: the values @param fields: unused (retained for API compatibility) """ table = current.s3db.dvr_activity count = len(values) if count == 1: query = (key == values[0]) else: query = key.belongs(values) rows = current.db(query).select(table.id, table.name, table.start_date, table.end_date, table.service_id, table.facilitator, limitby = (0, count), ) self.queries += 1 services = set() for row in rows: service_id = row.service_id if service_id: services.add(service_id) if services: represent = table.service_id.represent represent.bulk(list(services)) return rows # ------------------------------------------------------------------------- def represent_row(self, row): """ Represent a row @param row: the Row """ if row.name: title = row.name else: table = current.s3db.dvr_activity title = table.service_id.represent(row.service_id) template = "%(title)s" data = {"title": title, "start": "-", "end": "-", } start_date = row.start_date end_date = row.end_date if start_date or end_date: date_represent = S3DateTime.date_represent if start_date: data["start"] = date_represent(start_date) if end_date: data["end"] = date_represent(end_date) template = "%(title)s (%(start)s - %(end)s)" facilitator = row.facilitator if facilitator: template = "%s (%%(facilitator)s)" % template data["facilitator"] = facilitator return template % data # ------------------------------------------------------------------------- def link(self, k, v, row=None): """ Represent a (key, value) as hypertext link @param k: the key (dvr_activity.id) @param v: the representation of the key @param row: the row with this key (unused here) """ url = URL(c="dvr", f="activity", args=[k], extension="") return A(v, _href = url) # ============================================================================= class dvr_ResponseActionRepresent(S3Represent): """ Representation of response actions """ def __init__(self, show_hr=True, show_link=True): """ Constructor @param show_hr: include the staff member name """ super(dvr_ResponseActionRepresent, self).__init__( lookup = "dvr_response_action", show_link = show_link, ) self.show_hr = show_hr # ------------------------------------------------------------------------- def lookup_rows(self, key, values, fields=None): """ Custom rows lookup @param key: the key Field @param values: the values @param fields: list of fields to look up (unused) """ show_hr = self.show_hr count = len(values) if count == 1: query = (key == values[0]) else: query = key.belongs(values) table = self.table fields = [table.id, table.start_date, table.person_id] if show_hr: fields.append(table.human_resource_id) rows = current.db(query).select(limitby=(0, count), *fields) self.queries += 1 # Bulk-represent human_resource_ids if show_hr: hr_ids = [row.human_resource_id for row in rows] table.human_resource_id.represent.bulk(hr_ids) return rows # ------------------------------------------------------------------------- def represent_row(self, row): """ Represent a row @param row: the Row """ table = self.table date = table.start_date.represent(row.start_date) if self.show_hr: hr = table.human_resource_id.represent(row.human_resource_id, show_link = False, ) reprstr = "[%s] %s" % (date, hr) else: reprstr = date return reprstr # ------------------------------------------------------------------------- def link(self, k, v, row=None): """ Represent a (key, value) as hypertext link @param k: the key (dvr_case_activity.id) @param v: the representation of the key @param row: the row with this key """ try: person_id = row.person_id except AttributeError: return v url = URL(c = "dvr", f = "person", args = [person_id, "response_action", k], extension = "", ) return A(v, _href = url) # ============================================================================= class dvr_ResponseActionThemeRepresent(S3Represent): """ Representation of response action theme links """ def __init__(self, paragraph=False, details=False): """ Constructor @param paragraph: render as HTML paragraph @param details: include details in paragraph """ super(dvr_ResponseActionThemeRepresent, self).__init__( lookup = "dvr_response_action_theme", ) self.paragraph = paragraph self.details = details # ------------------------------------------------------------------------- def lookup_rows(self, key, values, fields=None): """ Custom rows lookup @param key: the key Field @param values: the values @param fields: list of fields to look up (unused) """ count = len(values) if count == 1: query = (key == values[0]) else: query = key.belongs(values) table = self.table fields = [table.id, table.action_id, table.theme_id] if self.details: fields.append(table.comments) rows = current.db(query).select(limitby=(0, count), *fields) self.queries += 1 # Bulk-represent themes theme_ids = [row.theme_id for row in rows] table.theme_id.represent.bulk(theme_ids) return rows # ------------------------------------------------------------------------- def represent_row(self, row): """ Represent a row @param row: the Row """ table = self.table theme = table.theme_id.represent(row.theme_id) if self.paragraph: # CSS class to allow styling css = "dvr-response-action-theme" if self.details: comments = table.comments.represent(row.comments) reprstr = DIV(H6(theme), comments, _class=css) else: reprstr = P(theme, _class=css) else: reprstr = theme return reprstr # ------------------------------------------------------------------------- def render_list(self, value, labels, show_link=True): """ Render list-type representations from bulk()-results. @param value: the list @param labels: the labels as returned from bulk() @param show_link: render references as links, should be the same as used with bulk() """ if self.paragraph: reprstr = TAG[""]([labels[v] if v in labels else self.default for v in value ]) else: reprstr = super(dvr_ResponseActionThemeRepresent, self) \ .render_list(value, labels, show_link=show_link) return reprstr # ============================================================================= class dvr_ResponseThemeRepresent(S3Represent): """ Representation of response themes """ def __init__(self, multiple=False, translate=True, show_need=False): super(dvr_ResponseThemeRepresent, self).__init__( lookup = "dvr_response_theme", multiple = multiple, translate = translate, ) self.show_need = show_need # ------------------------------------------------------------------------- def lookup_rows(self, key, values, fields=None): """ Custom rows lookup @param key: the key Field @param values: the values @param fields: unused (retained for API compatibility) """ table = self.table count = len(values) if count == 1: query = (key == values[0]) else: query = key.belongs(values) if self.show_need: ntable = current.s3db.dvr_need left = ntable.on(ntable.id == table.need_id) rows = current.db(query).select(table.id, table.name, ntable.id, ntable.name, left = left, limitby = (0, count), ) else: rows = current.db(query).select(table.id, table.name, limitby = (0, count), ) self.queries += 1 return rows # ------------------------------------------------------------------------- def represent_row(self, row): """ Represent a row @param row: the Row """ T = current.T translate = self.translate if self.show_need: theme = row.dvr_response_theme.name if theme: theme = T(theme) if translate else theme else: theme = self.none need = row.dvr_need.name if need: need = T(need) if translate else need if need: reprstr = "%s: %s" % (need, theme) else: reprstr = theme else: theme = row.name if theme: reprstr = T(theme) if translate else theme else: reprstr = self.none return reprstr # ============================================================================= class dvr_CaseActivityRepresent(S3Represent): """ Representation of case activity IDs """ def __init__(self, show_as=None, fmt=None, show_link=False, linkto=None): """ Constructor @param show_as: alternative representations: "beneficiary"|"need"|"subject" @param show_link: show representation as clickable link @param fmt: string format template for person record """ super(dvr_CaseActivityRepresent, self).__init__( lookup = "dvr_case_activity", show_link = show_link, linkto = linkto, ) if show_as is None: self.show_as = "beneficiary" else: self.show_as = show_as if fmt: self.fmt = fmt else: self.fmt = "%(first_name)s %(last_name)s" # ------------------------------------------------------------------------- def lookup_rows(self, key, values, fields=None): """ Custom rows lookup @param key: the key Field @param values: the values @param fields: unused (retained for API compatibility) """ table = self.table count = len(values) if count == 1: query = (key == values[0]) else: query = key.belongs(values) ptable = current.s3db.pr_person left = [ptable.on(ptable.id == table.person_id)] show_as = self.show_as if show_as == "beneficiary": rows = current.db(query).select(table.id, ptable.id, ptable.pe_label, ptable.first_name, ptable.middle_name, ptable.last_name, left = left, limitby = (0, count), ) elif show_as == "need": ntable = current.s3db.dvr_need left.append(ntable.on(ntable.id == table.need_id)) rows = current.db(query).select(table.id, ptable.id, ntable.name, left = left, limitby = (0, count), ) else: rows = current.db(query).select(table.id, table.subject, ptable.id, left = left, limitby = (0, count), ) self.queries += 1 return rows # ------------------------------------------------------------------------- def represent_row(self, row): """ Represent a row @param row: the Row """ show_as = self.show_as if show_as == "beneficiary": beneficiary = dict(row.pr_person) # Do not show "None" for no label if beneficiary.get("pe_label") is None: beneficiary["pe_label"] = "" return self.fmt % beneficiary elif show_as == "need": need = row.dvr_need.name if self.translate: need = current.T(need) if need else self.none return need else: return row.dvr_case_activity.subject # ------------------------------------------------------------------------- def link(self, k, v, row=None): """ Represent a (key, value) as hypertext link @param k: the key (dvr_case_activity.id) @param v: the representation of the key @param row: the row with this key """ try: beneficiary = row.pr_person except AttributeError: return v url = URL(c = "dvr", f = "person", args = [beneficiary.id, "case_activity", k], extension = "", ) return A(v, _href = url) # ============================================================================= class dvr_DocEntityRepresent(S3Represent): """ Module context-specific representation of doc-entities """ def __init__(self, case_label=None, case_group_label=None, activity_label=None, use_sector=True, use_need=False, show_link=False, ): """ Constructor @param case_label: label for cases (default: "Case") @param case_group_label: label for case groups (default: "Case Group") @param activity_label: label for case activities (default: "Activity") @param use_need: use need if available instead of subject @param use_sector: use sector if available instead of activity label @param show_link: show representation as clickable link """ super(dvr_DocEntityRepresent, self).__init__(lookup = "doc_entity", show_link = show_link, ) T = current.T if case_label: self.case_label = case_label else: self.case_label = T("Case") if case_group_label: self.case_group_label = case_group_label else: self.case_group_label = T("Case Group") if activity_label: self.activity_label = activity_label else: self.activity_label = T("Activity") self.use_need = use_need self.use_sector = use_sector # ------------------------------------------------------------------------- def lookup_rows(self, key, values, fields=None): """ Custom rows lookup @param key: the key Field @param values: the values @param fields: unused (retained for API compatibility) """ db = current.db s3db = current.s3db table = self.table ptable = s3db.pr_person count = len(values) if count == 1: query = (key == values[0]) else: query = key.belongs(values) rows = db(query).select(table.doc_id, table.instance_type, limitby = (0, count), orderby = table.instance_type, ) self.queries += 1 # Sort by instance type doc_ids = {} for row in rows: doc_id = row.doc_id instance_type = row.instance_type if instance_type not in doc_ids: doc_ids[instance_type] = {doc_id: row} else: doc_ids[instance_type][doc_id] = row need_ids = set() sector_ids = set() for instance_type in ("dvr_case", "dvr_case_activity", "pr_group"): doc_entities = doc_ids.get(instance_type) if not doc_entities: continue # The instance table itable = s3db[instance_type] # Look up person and instance data query = itable.doc_id.belongs(set(doc_entities.keys())) if instance_type == "pr_group": mtable = s3db.pr_group_membership left = [mtable.on((mtable.group_id == itable.id) & \ (mtable.deleted == False)), ptable.on(ptable.id == mtable.person_id), ] else: left = ptable.on(ptable.id == itable.person_id) fields = [itable.id, itable.doc_id, ptable.id, ptable.first_name, ptable.middle_name, ptable.last_name, ] if instance_type == "dvr_case_activity": fields.extend((itable.sector_id, itable.subject, itable.need_id, )) if instance_type == "pr_group": fields.extend((itable.name, itable.group_type, )) irows = db(query).select(left=left, *fields) self.queries += 1 # Add the person+instance data to the entity rows for irow in irows: instance = irow[instance_type] entity = doc_entities[instance.doc_id] if hasattr(instance, "sector_id"): sector_ids.add(instance.sector_id) if hasattr(instance, "need_id"): need_ids.add(instance.need_id) entity[instance_type] = instance entity.pr_person = irow.pr_person # Bulk represent any sector ids if sector_ids and "sector_id" in itable.fields: represent = itable.sector_id.represent if represent and hasattr(represent, "bulk"): represent.bulk(list(sector_ids)) # Bulk represent any need ids if need_ids and "need_id" in itable.fields: represent = itable.need_id.represent if represent and hasattr(represent, "bulk"): represent.bulk(list(need_ids)) return rows # ------------------------------------------------------------------------- def represent_row(self, row): """ Represent a row @param row: the Row """ reprstr = self.default instance_type = row.instance_type if hasattr(row, "pr_person"): if instance_type == "dvr_case": person = row.pr_person title = s3_fullname(person) label = self.case_label elif instance_type == "dvr_case_activity": table = current.s3db.dvr_case_activity activity = row.dvr_case_activity title = activity.subject if self.use_need: need_id = activity.need_id if need_id: represent = table.need_id.represent title = represent(need_id) label = self.activity_label if self.use_sector: sector_id = activity.sector_id if sector_id: represent = table.sector_id.represent label = represent(sector_id) elif instance_type == "pr_group": group = row.pr_group if group.group_type == 7: label = self.case_group_label if group.name: title = group.name else: person = row.pr_person title = s3_fullname(person) else: label = current.T("Group") title = group.name or self.default else: title = None label = None if title: reprstr = "%s (%s)" % (s3_str(title), s3_str(label)) return reprstr # ------------------------------------------------------------------------- def link(self, k, v, row=None): """ Represent a (key, value) as hypertext link @param k: the key (doc_entity.doc_id) @param v: the representation of the key @param row: the row with this key """ link = v if row: if row.instance_type == "dvr_case_activity": try: person_id = row.pr_person.id case_activity_id = row.dvr_case_activity.id except AttributeError: pass else: url = URL(c = "dvr", f = "person", args = [person_id, "case_activity", case_activity_id, ], extension="", ) link = A(v, _href=url) return link # ============================================================================= class DVRManageAppointments(S3Method): """ Custom method to bulk-manage appointments """ def apply_method(self, r, **attr): T = current.T s3db = current.s3db get_vars = r.get_vars response = current.response if not self._permitted("update"): r.unauthorised() if r.http == "POST" and r.representation != "aadata": count = 0 base_query = (FS("person_id$case.archived") == None) | \ (FS("person_id$case.archived") == False) post_vars = r.post_vars if "selected" in post_vars and "mode" in post_vars and \ any([n in post_vars for n in ("completed", "cancelled")]): selected = post_vars.selected if selected: selected = selected.split(",") else: selected = [] db = current.db atable = s3db.dvr_case_appointment # Handle exclusion filter if post_vars.mode == "Exclusive": if "filterURL" in post_vars: filters = S3URLQuery.parse_url(post_vars.filterURL) else: filters = None query = ~(FS("id").belongs(selected)) & base_query aresource = s3db.resource("dvr_case_appointment", filter = query, vars = filters, ) rows = aresource.select(["id"], as_rows=True) selected = [str(row.id) for row in rows] if selected: query = (atable.id.belongs(selected)) & \ (atable.deleted != True) if "completed" in post_vars: count = db(query).update(status=4) # Completed elif "cancelled" in post_vars: count = db(query).update(status=6) # Cancelled current.session.confirmation = T("%(count)s Appointments updated") % \ {"count": count} redirect(URL(f="case_appointment", args=["manage"], vars={})) elif r.http == "GET" or r.representation == "aadata": resource = r.resource # Filter widgets filter_widgets = resource.get_config("filter_widgets") # List fields list_fields = ["id", (T("ID"), "person_id$pe_label"), "person_id", "type_id", "date", "status", ] # Data table totalrows = resource.count() if "pageLength" in get_vars: display_length = get_vars["pageLength"] if display_length == "None": display_length = None else: display_length = int(display_length) else: display_length = 25 if display_length: limit = 4 * display_length else: limit = None # Sorting by person_id requires introspection => use datatable_filter if r.representation != "aadata": get_vars = dict(get_vars) dt_sorting = {"iSortingCols": "1", "bSortable_0": "false", "iSortCol_0": "1", "sSortDir_0": "asc", } get_vars.update(dt_sorting) dtfilter, orderby, left = resource.datatable_filter(list_fields, get_vars, ) resource.add_filter(dtfilter) data = resource.select(list_fields, start = 0, limit = limit, orderby = orderby, left = left, count = True, represent = True, ) filteredrows = data["numrows"] dt = S3DataTable(data["rfields"], data["rows"], orderby=orderby) dt_id = "datatable" # Bulk actions dt_bulk_actions = [(T("Completed"), "completed"), (T("Cancelled"), "cancelled"), ] if r.representation == "html": # Page load resource.configure(deletable = False) dt.defaultActionButtons(resource) response.s3.no_formats = True # Data table (items) items = dt.html(totalrows, filteredrows, dt_id, dt_pageLength = display_length, dt_ajax_url = URL(c = "dvr", f = "case_appointment", args = ["manage"], vars = {}, extension = "aadata", ), dt_searching = "false", dt_pagination = "true", dt_bulk_actions = dt_bulk_actions, ) # Filter form if filter_widgets: # Where to retrieve filtered data from: _vars = resource.crud._remove_filters(r.get_vars) filter_submit_url = r.url(vars=_vars) # Where to retrieve updated filter options from: filter_ajax_url = URL(f = "case_appointment", args = ["filter.options"], vars = {}, ) get_config = resource.get_config filter_clear = get_config("filter_clear", True) filter_formstyle = get_config("filter_formstyle", None) filter_submit = get_config("filter_submit", True) filter_form = S3FilterForm(filter_widgets, clear = filter_clear, formstyle = filter_formstyle, submit = filter_submit, ajax = True, url = filter_submit_url, ajaxurl = filter_ajax_url, _class = "filter-form", _id = "datatable-filter-form", ) fresource = current.s3db.resource(resource.tablename) alias = resource.alias if r.component else None ff = filter_form.html(fresource, r.get_vars, target = "datatable", alias = alias, ) else: ff = "" output = dict(items = items, title = T("Manage Appointments"), list_filter_form = ff, ) response.view = "list_filter.html" return output elif r.representation == "aadata": # Ajax refresh if "draw" in get_vars: echo = int(get_vars["draw"]) else: echo = None items = dt.json(totalrows, filteredrows, dt_id, echo, dt_bulk_actions = dt_bulk_actions, ) response.headers["Content-Type"] = "application/json" return items else: r.error(415, current.ERROR.BAD_FORMAT) else: r.error(405, current.ERROR.BAD_METHOD) # ============================================================================= class DVRManageAllowance(S3Method): """ Method handler to bulk-update allowance payments status """ # ------------------------------------------------------------------------- def apply_method(self, r, **attr): """ Main entry point for REST interface. @param r: the S3Request instance @param attr: controller parameters """ # User must be permitted to update allowance information permitted = self._permitted("update") if not permitted: r.unauthorised() if r.representation in ("html", "iframe"): if r.http in ("GET", "POST"): output = self.bulk_update_status(r, **attr) else: r.error(405, current.ERROR.BAD_METHOD) else: r.error(415, current.ERROR.BAD_FORMAT) return output # ------------------------------------------------------------------------- def bulk_update_status(self, r, **attr): """ Method to bulk-update status of allowance payments @param r: the S3Request instance @param attr: controller parameters """ T = current.T s3db = current.s3db settings = current.deployment_settings response = current.response output = {"title": T("Update Allowance Status"), } status_opts = dict(s3db.dvr_allowance_status_opts) # Can not bulk-update from or to status "paid" del status_opts[2] # Form fields formfields = [s3_date("from_date", label = T("Planned From"), set_min = "#allowance_to_date", ), s3_date("to_date", default = "now", label = T("Planned Until"), set_max = "#allowance_from_date", empty = False, ), Field("current_status", "integer", default = 1, # pending label = T("Current Status"), requires = IS_IN_SET(status_opts), ), Field("new_status", "integer", default = 4, # missed label = T("New Status"), requires = IS_IN_SET(status_opts), ), ] # Form buttons submit_btn = INPUT(_class = "tiny primary button", _name = "submit", _type = "submit", _value = T("Update"), ) cancel_btn = A(T("Cancel"), _href = r.url(id=None, method=""), _class = "action-lnk", ) buttons = [submit_btn, cancel_btn] # Generate the form and add it to the output resourcename = r.resource.name formstyle = settings.get_ui_formstyle() form = SQLFORM.factory(record = None, showid = False, formstyle = formstyle, table_name = resourcename, buttons = buttons, *formfields) output["form"] = form # Process the form formname = "%s/manage" % resourcename if form.accepts(r.post_vars, current.session, formname = formname, onvalidation = self.validate, keepvalues = False, hideerror = False, ): formvars = form.vars current_status = formvars.current_status new_status = formvars.new_status table = s3db.dvr_allowance query = current.auth.s3_accessible_query("update", table) & \ (table.status == current_status) & \ (table.deleted != True) from_date = formvars.from_date if from_date: query &= table.date >= from_date to_date = formvars.to_date if to_date: query &= table.date <= to_date result = current.db(query).update(status=int(new_status)) if result: response.confirmation = T("%(number)s records updated") % \ {"number": result} else: response.warning = T("No records found") response.view = self._view(r, "update.html") return output # ------------------------------------------------------------------------- @staticmethod def validate(form): """ Update form validation @param form: the FORM """ T = current.T formvars = form.vars errors = form.errors # Must not update from status "paid" if str(formvars.current_status) == "2": errors.current_status = T("Bulk update from this status not allowed") # Must not update to status "paid" if str(formvars.new_status) == "2": errors.new_status = T("Bulk update to this status not allowed") # To-date must be after from-date from_date = formvars.from_date to_date = formvars.to_date if from_date and to_date and from_date > to_date: errors.to_date = T("Date until must be after date from") # ============================================================================= def dvr_get_household_size(person_id, dob=False, formatted=True): """ Helper function to calculate the household size (counting only members with active cases) @param person_id: the person record ID @param dob: the date of birth of that person (if known) @param formatted: return household size info as string @return: household size info as string if formatted=True, otherwise tuple (number_of_adults, number_of_children) """ db = current.db s3db = current.s3db ptable = s3db.pr_person gtable = s3db.pr_group mtable = s3db.pr_group_membership ctable = s3db.dvr_case stable = s3db.dvr_case_status from dateutil.relativedelta import relativedelta now = current.request.utcnow.date() # Default result adults, children, children_u1 = 1, 0, 0 # Count the person in question if dob is False: query = (ptable.id == person_id) row = db(query).select(ptable.date_of_birth, limitby = (0, 1), ).first() if row: dob = row.date_of_birth if dob: age = relativedelta(now, dob).years if age < 18: adults, children = 0, 1 if age < 1: children_u1 = 1 # Household members which have already been counted members = {person_id} counted = members.add # Get all case groups this person belongs to query = ((mtable.person_id == person_id) & \ (mtable.deleted != True) & \ (gtable.id == mtable.group_id) & \ (gtable.group_type == 7)) rows = db(query).select(gtable.id) group_ids = set(row.id for row in rows) if group_ids: join = [ptable.on(ptable.id == mtable.person_id), ctable.on((ctable.person_id == ptable.id) & \ (ctable.archived != True) & \ (ctable.deleted != True)), ] left = [stable.on(stable.id == ctable.status_id), ] query = (mtable.group_id.belongs(group_ids)) & \ (mtable.deleted != True) & \ (stable.is_closed != True) rows = db(query).select(ptable.id, ptable.date_of_birth, join = join, left = left, ) for row in rows: person, dob = row.id, row.date_of_birth if person not in members: age = relativedelta(now, dob).years if dob else None if age is not None and age < 18: children += 1 if age < 1: children_u1 += 1 else: adults += 1 counted(person) if not formatted: return adults, children, children_u1 T = current.T template = "%(number)s %(label)s" details = [] if adults: label = T("Adults") if adults != 1 else T("Adult") details.append(template % {"number": adults, "label": label, }) if children: label = T("Children") if children != 1 else T("Child") details.append(template % {"number": children, "label": label, }) details = ", ".join(details) if children_u1: if children_u1 == 1: label = T("Child under 1 year") else: label = T("Children under 1 year") details = "%s (%s)" % (details, template % {"number": children_u1, "label": label, }, ) return details # ============================================================================= class DVRRegisterCaseEvent(S3Method): """ Method handler to register case events """ # Action to check flag restrictions for ACTION = "id-check" # ------------------------------------------------------------------------- def apply_method(self, r, **attr): """ Main entry point for REST interface. @param r: the S3Request instance @param attr: controller parameters """ if not self.permitted(): current.auth.permission.fail() output = {} representation = r.representation if representation == "html": if r.http in ("GET", "POST"): output = self.registration_form(r, **attr) else: r.error(405, current.ERROR.BAD_METHOD) elif representation == "json": if r.http == "POST": output = self.registration_ajax(r, **attr) else: r.error(405, current.ERROR.BAD_METHOD) else: r.error(415, current.ERROR.BAD_FORMAT) return output # ------------------------------------------------------------------------- def registration_form(self, r, **attr): """ Render and process the registration form @param r: the S3Request instance @param attr: controller parameters """ T = current.T response = current.response settings = current.deployment_settings output = {} http = r.http request_vars = r.get_vars check = True label = None if http == "POST": # Form submission request_vars = r.post_vars if "check" in request_vars: # Only check ID label, don't register an event label = request_vars.get("label") else: # Form has been submitted with "Register" check = False else: # Coming from external scan app (e.g. Zxing), or from a link label = request_vars.get("label") scanner = request_vars.get("scanner") person = None pe_label = None if label is not None: # Identify the person person = self.get_person(label) if person is None: if http == "GET": response.error = T("No person found with this ID number") else: pe_label = person.pe_label request_vars["label"] = pe_label # Get person details, waiting intervals, flag and permission info flags = [] intervals = {} if person: # Person details person_details = self.person_details(person) profile_picture = self.profile_picture(person) # Blocking periods for events event_types = self.get_event_types() blocked = self.get_blocked_events(person.id) for type_id, info in blocked.items(): event_type = event_types.get(type_id) if not event_type: continue code = event_type.code msg, dt = info intervals[code] = (s3_str(msg), "%sZ" % s3_encode_iso_datetime(dt), ) # Flag info flag_info = dvr_get_flag_instructions(person.id, action = self.ACTION, ) permitted = flag_info["permitted"] if check: info = flag_info["info"] for flagname, instructions in info: flags.append({"n": s3_str(T(flagname)), "i": s3_str(T(instructions)), }) else: person_details = "" profile_picture = None permitted = False # Identify the event type event_code = request_vars.get("event") event_type = self.get_event_type(event_code) if not event_type: # Fall back to default event type event_type = self.get_event_type() event_code = event_type.code if event_type else None # Whether the event registration is actionable actionable = event_code is not None # Standard form fields and data formfields = [Field("label", label = T("ID"), requires = [IS_NOT_EMPTY(error_message=T("Enter or scan an ID")), IS_LENGTH(512, minsize=1), ], ), Field("person", label = "", writable = False, default = "", ), Field("flaginfo", label = "", writable = False, ), ] data = {"id": "", "label": pe_label, "person": person_details, "flaginfo": "", } # Hidden fields to store event type, scanner, flag info and permission hidden = {"event": event_code, "scanner": scanner, "actionable": json.dumps(actionable), "permitted": json.dumps(permitted), "flags": json.dumps(flags), "intervals": json.dumps(intervals), "image": profile_picture, } # Additional form data widget_id, submit = self.get_form_data(person, formfields, data, hidden, permitted = permitted, ) # Form buttons check_btn = INPUT(_class = "tiny secondary button check-btn", _name = "check", _type = "submit", _value = T("Check ID"), ) submit_btn = INPUT(_class = "tiny primary button submit-btn", _name = "submit", _type = "submit", _value = submit, ) # Toggle buttons (active button first, otherwise pressing Enter # hits the disabled button so requiring an extra tab step) actionable = hidden.get("actionable") == "true" if person and actionable and permitted: check_btn["_disabled"] = "disabled" check_btn.add_class("hide") buttons = [submit_btn, check_btn] else: submit_btn["_disabled"] = "disabled" submit_btn.add_class("hide") buttons = [check_btn, submit_btn] # Add the cancel-action buttons.append(A(T("Cancel"), _class = "cancel-action action-lnk")) resourcename = r.resource.name # Generate the form and add it to the output formstyle = settings.get_ui_formstyle() form = SQLFORM.factory(record = data if check else None, showid = False, formstyle = formstyle, table_name = resourcename, buttons = buttons, hidden = hidden, _id = widget_id, *formfields) output["form"] = form # Process the form formname = "%s/registration" % resourcename if form.accepts(r.post_vars, current.session, onvalidation = self.validate, formname = formname, keepvalues = False, hideerror = False, ): if not check: self.accept(r, form, event_type=event_type) header = self.get_header(event_type) output.update(header) # ZXing Barcode Scanner Launch Button output["zxing"] = self.get_zxing_launch_button(event_code) # Custom view response.view = self._view(r, "dvr/register_case_event.html") # Show profile picture by default or only on demand? show_picture = settings.get_dvr_event_registration_show_picture() # Inject JS options = {"tablename": resourcename, "ajaxURL": r.url(None, method = "register", representation = "json", ), "showPicture": show_picture, "showPictureText": s3_str(T("Show Picture")), "hidePictureText": s3_str(T("Hide Picture")), } self.inject_js(widget_id, options) return output # ------------------------------------------------------------------------- # Configuration # ------------------------------------------------------------------------- def permitted(self): """ Helper function to check permissions @return: True if permitted to use this method, else False """ # User must be permitted to create case events return self._permitted("create") # ------------------------------------------------------------------------- def get_event_type(self, code=None): """ Get a case event type for an event code @param code: the type code (using default event type if None) @return: the dvr_case_event_type Row, or None if not found """ event_types = self.get_event_types() event_type = None if code is None: event_type = event_types.get("_default") else: code = s3_str(code) for value in event_types.values(): if value.code == code: event_type = value break return event_type # ------------------------------------------------------------------------- def validate(self, form): """ Validate the event registration form @param form: the FORM """ T = current.T formvars = form.vars pe_label = formvars.get("label").strip() person = self.get_person(pe_label) if person is None: form.errors["label"] = T("No person found with this ID number") permitted = False else: person_id = person.id formvars.person_id = person_id flag_info = dvr_get_flag_instructions(person_id, action = self.ACTION, ) permitted = flag_info["permitted"] formvars.permitted = permitted # Validate the event type (if not default) type_id = None try: request_vars = form.request_vars except AttributeError: event_code = None else: event_code = request_vars.get("event") if event_code: event_type = self.get_event_type(event_code) if not event_type: form.errors["event"] = \ current.response.error = T("Invalid event code") else: type_id = event_type.id formvars.type_id = type_id # Check whether event type is blocked for this person if person and type_id: blocked = self.get_blocked_events(person.id, type_id = type_id, ) if type_id in blocked: msg = blocked[type_id][0] form.errors["event"] = current.response.error = msg # ------------------------------------------------------------------------- def accept(self, r, form, event_type=None): """ Helper function to process the form @param r: the S3Request @param form: the FORM @param event_type: the event_type (Row) """ T = current.T response = current.response formvars = form.vars person_id = formvars.person_id success = False if not formvars.get("permitted"): response.error = T("Event registration not permitted") elif person_id: event_type_id = event_type.id if event_type else None success = self.register_event(person_id, event_type_id) if success: success = True response.confirmation = T("Event registered") else: response.error = T("Could not register event") else: response.error = T("Person not found") return success # ------------------------------------------------------------------------- def registration_ajax(self, r, **attr): """ Ajax response method, expects a JSON input like: {l: the PE label (from the input field), c: boolean to indicate whether to just check the PE label or to register payments t: the event type code } @param r: the S3Request instance @param attr: controller parameters @return: JSON response, structure: {l: the actual PE label (to update the input field), p: the person details, d: the family details, f: [{n: the flag name i: the flag instructions }, ...], b: profile picture URL, i: {<event_code>: [<msg>, <blocked_until_datetime>]}, s: whether the action is permitted or not e: form error (for label field) a: error message w: warning message m: success message } """ T = current.T # Load JSON data from request body s = r.body s.seek(0) try: data = json.load(s) except (ValueError, TypeError): r.error(400, current.ERROR.BAD_REQUEST) # Initialize processing variables output = {} error = None alert = None message = None warning = None permitted = False flags = [] # Identify the person pe_label = data.get("l") person = self.get_person(pe_label) if person is None: error = s3_str(T("No person found with this ID number")) else: # Get flag info flag_info = dvr_get_flag_instructions(person.id, action = "id-check", ) permitted = flag_info["permitted"] check = data.get("c") if check: # Person details person_details = self.person_details(person) profile_picture = self.profile_picture(person) output["p"] = s3_str(person_details) output["l"] = person.pe_label output["b"] = profile_picture # Family details details = dvr_get_household_size(person.id, dob = person.date_of_birth, ) if details: output["d"] = {"d": details} # Flag Info info = flag_info["info"] for flagname, instructions in info: flags.append({"n": s3_str(T(flagname)), "i": s3_str(T(instructions)), }) # Blocking periods for events event_types = self.get_event_types() blocked = self.get_blocked_events(person.id) intervals = {} for type_id, info in blocked.items(): event_type = event_types.get(type_id) if not event_type: continue code = event_type.code msg, dt = info intervals[code] = (s3_str(msg), "%sZ" % s3_encode_iso_datetime(dt), ) output["i"] = intervals else: # Check event code and permission type_id = None event_code = data.get("t") if not event_code: alert = T("No event type specified") elif not permitted: alert = T("Event registration not permitted") else: event_type = self.get_event_type(event_code) if not event_type: alert = T("Invalid event type: %s") % event_code else: type_id = event_type.id if type_id: # Check whether event type is blocked for this person person_id = person.id blocked = self.get_blocked_events(person_id, type_id = type_id, ) if type_id in blocked: # Event type is currently blocked for this person alert = blocked[type_id][0] else: # Ok - register the event success = self.register_event(person.id, type_id) if success: message = T("Event registered") else: alert = T("Could not register event") # Add messages to output if alert: output["a"] = s3_str(alert) if error: output["e"] = s3_str(error) if message: output["m"] = s3_str(message) if warning: output["w"] = s3_str(warning) # Add flag info to output output["s"] = permitted output["f"] = flags current.response.headers["Content-Type"] = "application/json" return json.dumps(output) # ------------------------------------------------------------------------- @staticmethod def get_form_data(person, formfields, data, hidden, permitted=False): """ Helper function to extend the form @param person: the person (Row) @param formfields: list of form fields (Field) @param data: the form data (dict) @param hidden: hidden form fields (dict) @param permitted: whether the action is permitted @return: tuple (widget_id, submit_label) """ T = current.T # Extend form with household size info if person: details = dvr_get_household_size(person.id, dob = person.date_of_birth, ) else: details = "" formfields.extend([Field("details", label = T("Family"), writable = False, ), ]) data["details"] = details widget_id = "case-event-form" submit = current.T("Register") return widget_id, submit # ------------------------------------------------------------------------- def get_header(self, event_type=None): """ Helper function to construct the event type header @param event_type: the event type (Row) @returns: dict of view items """ T = current.T output = {} # Event type header if event_type: event_type_name = T(event_type.name) name_class = "event-type-name" else: event_type_name = T("Please select an event type") name_class = "event-type-name placeholder" event_type_header = DIV(H4(SPAN(T(event_type_name), _class = name_class, ), SPAN(ICON("settings"), _class = "event-type-setting", ), _class = "event-type-toggle", _id = "event-type-toggle", ), _class = "event-type-header", ) output["event_type"] = event_type_header # Event type selector event_types = self.get_event_types() buttons = [] for k, v in event_types.items(): if k != "_default": button = LI(A(T(v.name), _class = "secondary button event-type-selector", data = {"code": s3_str(v.code), "name": s3_str(T(v.name)), }, ), ) buttons.append(button) output["event_type_selector"] = UL(buttons, _class="button-group stack hide event-type-selector", _id="event-type-selector", ) return output # ------------------------------------------------------------------------- # Class-specific functions # ------------------------------------------------------------------------- @staticmethod def register_event(person_id, type_id): """ Register a case event @param person_id: the person record ID @param type:id: the event type record ID """ s3db = current.s3db ctable = s3db.dvr_case etable = s3db.dvr_case_event # Get the case ID for the person_id query = (ctable.person_id == person_id) & \ (ctable.deleted != True) case = current.db(query).select(ctable.id, limitby=(0, 1), ).first() if case: case_id = case.id else: case_id = None # Customise event resource r = S3Request("dvr", "case_event", current.request, args = [], get_vars = {}, ) r.customise_resource("dvr_case_event") data = {"person_id": person_id, "case_id": case_id, "type_id": type_id, "date": current.request.utcnow, } record_id = etable.insert(**data) if record_id: # Set record owner auth = current.auth auth.s3_set_record_owner(etable, record_id) auth.s3_make_session_owner(etable, record_id) # Execute onaccept data["id"] = record_id s3db.onaccept(etable, data, method="create") return record_id # ------------------------------------------------------------------------- def get_event_types(self): """ Lazy getter for case event types @return: a dict {id: Row} for dvr_case_event_type, with an additional key "_default" for the default event type """ if not hasattr(self, "event_types"): event_types = {} table = current.s3db.dvr_case_event_type # Active event types query = (table.is_inactive == False) & \ (table.deleted == False) # Excluded event codes excluded = current.deployment_settings \ .get_dvr_event_registration_exclude_codes() if excluded: for code in excluded: if "*" in code: query &= (~(table.code.like(code.replace("*", "%")))) else: query &= (table.code != code) # Roles required sr = current.auth.get_system_roles() roles = current.session.s3.roles if sr.ADMIN not in roles: query &= (table.role_required == None) | \ (table.role_required.belongs(roles)) rows = current.db(query).select(table.id, table.code, table.name, table.is_default, table.min_interval, table.max_per_day, table.comments, ) for row in rows: event_types[row.id] = row if row.is_default: event_types["_default"] = row self.event_types = event_types return self.event_types # ------------------------------------------------------------------------- def check_intervals(self, person_id, type_id=None): """ Check minimum intervals between consecutive registrations of the same event type @param person_id: the person record ID @param type_id: check only this event type (rather than all types) @return: a dict with blocked event types {type_id: (error_message, blocked_until_datetime)} """ T = current.T db = current.db s3db = current.s3db now = current.request.utcnow day_start = now.replace(hour=0, minute=0, second=0, microsecond=0, ) next_day = day_start + datetime.timedelta(days=1) output = {} table = s3db.dvr_case_event event_type_id = table.type_id # Get event types to check event_types = self.get_event_types() # Check for impermissible combinations etable = s3db.dvr_case_event_exclusion query = (table.person_id == person_id) & \ (table.date >= day_start) & \ (table.deleted == False) & \ (etable.excluded_by_id == table.type_id) & \ (etable.deleted == False) if type_id and event_types.get(type_id): query &= etable.type_id == type_id rows = db(query).select(etable.type_id, etable.excluded_by_id, ) excluded = {} for row in rows: tid = row.type_id if tid in excluded: excluded[tid].append(row.excluded_by_id) else: excluded[tid] = [row.excluded_by_id] for tid, excluded_by_ids in excluded.items(): event_type = event_types.get(tid) if not event_type: continue excluded_by_names = [] seen = set() for excluded_by_id in excluded_by_ids: if excluded_by_id in seen: continue else: seen.add(excluded_by_id) excluded_by_type = event_types.get(excluded_by_id) if not excluded_by_type: continue excluded_by_names.append(s3_str(T(excluded_by_type.name))) if excluded_by_names: msg = T("%(event)s already registered today, not combinable") % \ {"event": ", ".join(excluded_by_names) } output[tid] = (msg, next_day) # Helper function to build event type sub-query def type_query(items): if len(items) == 1: return (event_type_id == items[0]) elif items: return (event_type_id.belongs(set(items))) else: return None # Check maximum occurences per day q = None if type_id: event_type = event_types.get(type_id) if event_type and \ event_type.max_per_day and \ type_id not in output: q = type_query((type_id,)) else: check = [tid for tid, row in event_types.items() if row.max_per_day and \ tid != "_default" and tid not in output ] q = type_query(check) if q is not None: # Get number of events per type for this person today cnt = table.id.count() query = (table.person_id == person_id) & q & \ (table.date >= day_start) & \ (table.deleted != True) rows = db(query).select(event_type_id, cnt, groupby = event_type_id, ) # Check limit for row in rows: number = row[cnt] tid = row[event_type_id] event_type = event_types[tid] limit = event_type.max_per_day if number >= limit: if number > 1: msg = T("%(event)s already registered %(number)s times today") % \ {"event": T(event_type.name), "number": number, } else: msg = T("%(event)s already registered today") % \ {"event": T(event_type.name), } output[tid] = (msg, next_day) # Check minimum intervals q = None if type_id: event_type = event_types.get(type_id) if event_type and \ event_type.min_interval and \ type_id not in output: q = type_query((type_id,)) else: check = [tid for tid, row in event_types.items() if row.min_interval and \ tid != "_default" and tid not in output ] q = type_query(check) if q is not None: # Get the last events for these types for this person query = (table.person_id == person_id) & q & \ (table.deleted != True) timestamp = table.date.max() rows = db(query).select(event_type_id, timestamp, groupby = event_type_id, ) # Check intervals represent = table.date.represent for row in rows: latest = row[timestamp] tid = row[event_type_id] event_type = event_types[tid] interval = event_type.min_interval if latest: earliest = latest + datetime.timedelta(hours=interval) if earliest > now: msg = T("%(event)s already registered on %(timestamp)s") % \ {"event": T(event_type.name), "timestamp": represent(latest), } output[tid] = (msg, earliest) return output # ------------------------------------------------------------------------- # Common methods # ------------------------------------------------------------------------- @classmethod def get_person(cls, pe_label): """ Get the person record for a PE Label (or ID code), search only for persons with an open DVR case. @param pe_label: the PE label (or a scanned ID code as string) """ s3db = current.s3db person = None # Fields to extract fields = ["id", "pe_id", "pe_label", "first_name", "middle_name", "last_name", "date_of_birth", "gender", ] data = cls.parse_code(pe_label) def person_(label): """ Helper function to find a person by pe_label """ query = (FS("pe_label") == pe_label) & \ (FS("dvr_case.id") != None) & \ (FS("dvr_case.archived") != True) & \ (FS("dvr_case.status_id$is_closed") != True) presource = s3db.resource("pr_person", components = ["dvr_case"], filter = query, ) rows = presource.select(fields, start = 0, limit = 1, as_rows = True, ) return rows[0] if rows else None pe_label = data["label"].strip() if pe_label: person = person_(pe_label) if person: data_match = True else: family = data.get("family") if family: # Get the head of family person = person_(family) data_match = False if person: first_name, last_name = None, None if "first_name" in data: first_name = s3_unicode(data["first_name"]).lower() if s3_unicode(person.first_name).lower() != first_name: data_match = False if "last_name" in data: last_name = s3_unicode(data["last_name"]).lower() if s3_unicode(person.last_name).lower() != last_name: data_match = False if not data_match: # Family member? => search by names/DoB ptable = s3db.pr_person query = current.auth.s3_accessible_query("read", ptable) gtable = s3db.pr_group mtable = s3db.pr_group_membership otable = mtable.with_alias("family") ctable = s3db.dvr_case stable = s3db.dvr_case_status left = [gtable.on((gtable.id == mtable.group_id) & \ (gtable.group_type == 7)), otable.on((otable.group_id == gtable.id) & \ (otable.person_id != mtable.person_id) & \ (otable.deleted != True)), ptable.on((ptable.id == otable.person_id) & \ (ptable.pe_label != None)), ctable.on((ctable.person_id == otable.person_id) & \ (ctable.archived != True)), stable.on((stable.id == ctable.status_id)), ] query &= (mtable.person_id == person.id) & \ (ctable.id != None) & \ (stable.is_closed != True) & \ (mtable.deleted != True) & \ (ptable.deleted != True) if first_name: query &= (ptable.first_name.lower() == first_name) if last_name: query &= (ptable.last_name.lower() == last_name) if "date_of_birth" in data: # Include date of birth dob, error = IS_UTC_DATE()(data["date_of_birth"]) if not error and dob: query &= (ptable.date_of_birth == dob) fields_ = [ptable[fn] for fn in fields] rows = current.db(query).select(left=left, limitby = (0, 2), *fields_) if len(rows) == 1: person = rows[0] elif "first_name" in data and "last_name" in data: first_name = s3_unicode(data["first_name"]).lower() last_name = s3_unicode(data["last_name"]).lower() # Search by names query = (FS("pe_label") != None) if first_name: query &= (FS("first_name").lower() == first_name) if last_name: query &= (FS("last_name").lower() == last_name) if "date_of_birth" in data: # Include date of birth dob, error = IS_UTC_DATE()(data["date_of_birth"]) if not error and dob: query &= (FS("date_of_birth") == dob) # Find only open cases query &= (FS("dvr_case.id") != None) & \ (FS("dvr_case.archived") != True) & \ (FS("dvr_case.status_id$is_closed") != True) presource = s3db.resource("pr_person", components = ["dvr_case"], filter = query, ) rows = presource.select(fields, start = 0, limit = 2, as_rows = True, ) if len(rows) == 1: person = rows[0] return person # ------------------------------------------------------------------------- @staticmethod def person_details(person): """ Format the person details @param person: the person record (Row) """ T = current.T settings = current.deployment_settings name = s3_fullname(person) dob = person.date_of_birth if dob: dob = S3DateTime.date_represent(dob) details = "%s (%s %s)" % (name, T("Date of Birth"), dob) else: details = name output = SPAN(details, _class = "person-details", ) if settings.get_dvr_event_registration_checkin_warning(): table = current.s3db.cr_shelter_registration if table: # Person counts as checked-out when checked-out # somewhere and not checked-in somewhere else query = (table.person_id == person.id) & \ (table.deleted != True) cnt = table.id.count() status = table.registration_status rows = current.db(query).select(status, cnt, groupby = status, ) checked_in = checked_out = 0 for row in rows: s = row[status] if s == 2: checked_in = row[cnt] elif s == 3: checked_out = row[cnt] if checked_out and not checked_in: output = TAG[""](output, SPAN(ICON("hint"), T("not checked-in!"), _class = "check-in-warning", ), ) return output # ------------------------------------------------------------------------- @staticmethod def profile_picture(person): """ Get the profile picture URL for a person @param person: the person record (Row) @return: the profile picture URL (relative URL), or None if no profile picture is available for that person """ try: pe_id = person.pe_id except AttributeError: return None table = current.s3db.pr_image query = (table.pe_id == pe_id) & \ (table.profile == True) & \ (table.deleted != True) row = current.db(query).select(table.image, limitby=(0, 1)).first() if row: return URL(c="default", f="download", args=row.image) else: return None # ------------------------------------------------------------------------- def get_blocked_events(self, person_id, type_id=None): """ Check minimum intervals for event registration and return all currently blocked events @param person_id: the person record ID @param type_id: check only this event type (rather than all) @return: a dict of blocked event types: {type_id: (reason, blocked_until)} """ check_intervals = self.check_intervals if check_intervals and callable(check_intervals): blocked = check_intervals(person_id, type_id=type_id) else: blocked = {} return blocked # ------------------------------------------------------------------------- @staticmethod def parse_code(code): """ Parse a scanned ID code (QR Code) @param code: the scanned ID code (string) @return: a dict {"label": the PE label, "first_name": optional first name, "last_name": optional last name, "date_of_birth": optional date of birth, } """ data = {"label": code} pattern = current.deployment_settings.get_dvr_id_code_pattern() if pattern and code: import re pattern = re.compile(pattern) m = pattern.match(code) if m: data.update(m.groupdict()) return data # ------------------------------------------------------------------------- @staticmethod def get_zxing_launch_button(event_code): """ Renders the button to launch the Zxing barcode scanner app @param event_code: the current event code @return: the Zxing launch button """ T = current.T # URL template template = "zxing://scan/?ret=%s&SCAN_FORMATS=Code 128,UPC_A,EAN_13" # Query variables for return URL scan_vars = {"label": "{CODE}", "scanner": "zxing", "event": "{EVENT}", } # Return URL template tmp = URL(args = ["register"], vars = scan_vars, host = True, ) tmp = str(tmp).replace("&", "%26") # Current return URL if event_code: # must double-escape ampersands: scan_vars["event"] = event_code.replace("&", "%2526") ret = URL(args = ["register"], vars = scan_vars, host = True, ) ret = str(ret).replace("&", "%26") # Construct button return A(T("Scan with Zxing"), _href = template % ret, _class = "tiny primary button zxing-button", data = {"tmp": template % tmp, }, ) # ------------------------------------------------------------------------- @staticmethod def inject_js(widget_id, options): """ Helper function to inject static JS and instantiate the eventRegistration widget @param widget_id: the node ID where to instantiate the widget @param options: dict of widget options (JSON-serializable) """ s3 = current.response.s3 appname = current.request.application # Static JS scripts = s3.scripts if s3.debug: script = "/%s/static/scripts/S3/s3.dvr.js" % appname else: script = "/%s/static/scripts/S3/s3.dvr.min.js" % appname scripts.append(script) # Instantiate widget scripts = s3.jquery_ready script = '''$('#%(id)s').eventRegistration(%(options)s)''' % \ {"id": widget_id, "options": json.dumps(options)} if script not in scripts: scripts.append(script) # ============================================================================= class DVRRegisterPayment(DVRRegisterCaseEvent): """ Method handler to register case events """ # Action to check flag restrictions for ACTION = "payment" # Do not check minimum intervals for consecutive registrations check_intervals = False # ------------------------------------------------------------------------- # Configuration # ------------------------------------------------------------------------- def permitted(self): """ Helper function to check permissions @return: True if permitted to use this method, else False """ # User must be permitted to update allowance records return self._permitted("update") # ------------------------------------------------------------------------- def get_event_type(self, code=None): """ Get a case event type for an event code @param code: the type code (using default event type if None) @return: the dvr_case_event_type Row, or None if not found """ # Only one type of event return Storage(id=None, code="PAYMENT") # ------------------------------------------------------------------------- def accept(self, r, form, event_type=None): """ Helper function to process the form @param r: the S3Request @param form: the FORM @param event_type: the event_type (Row) """ T = current.T response = current.response formvars = form.vars person_id = formvars.person_id success = False if not formvars.get("permitted"): response.error = T("Payment registration not permitted") elif person_id: # Get payment data from hidden input payments = r.post_vars.get("actions") if payments: # @todo: read date from formvars (utcnow as fallback) date = r.utcnow comments = formvars.get("comments") updated, failed = self.register_payments(person_id, payments, date = date, comments = comments, ) response.confirmation = T("%(number)s payment(s) registered") % \ {"number": updated} if failed: response.warning = T("%(number)s payment(s) not found") % \ {"number": failed} else: response.error = T("No payments specified") else: response.error = T("Person not found") return success # ------------------------------------------------------------------------- def registration_ajax(self, r, **attr): """ Ajax response method, expects a JSON input like: {l: the PE label (from the input field), c: boolean to indicate whether to just check the PE label or to register payments d: the payment data (raw data, which payments to update) } @param r: the S3Request instance @param attr: controller parameters @return: JSON response, structure: {l: the actual PE label (to update the input field), p: the person details, f: [{n: the flag name i: the flag instructions }, ...], u: whether there are any actionable data s: whether the action is permitted or not d: {t: time stamp h: payment details (raw data) d: payment details (HTML) } e: form error (for label field) a: error message w: warning message m: success message } """ T = current.T # Load JSON data from request body s = r.body s.seek(0) try: data = json.load(s) except (ValueError, TypeError): r.error(400, current.ERROR.BAD_REQUEST) # Initialize processing variables output = {} alert = None error = None warning = None message = None permitted = False flags = [] # Identify the person pe_label = data.get("l") person = self.get_person(pe_label) if person is None: error = s3_str(T("No person found with this ID number")) else: # Get flag info flag_info = dvr_get_flag_instructions(person.id, action = self.ACTION, ) permitted = flag_info["permitted"] check = data.get("c") if check: # Person details person_details = self.person_details(person) profile_picture = self.profile_picture(person) output["p"] = s3_str(person_details) output["l"] = person.pe_label output["b"] = profile_picture info = flag_info["info"] for flagname, instructions in info: flags.append({"n": s3_str(T(flagname)), "i": s3_str(T(instructions)), }) if permitted: payments = self.get_payment_data(person.id) else: payments = [] date = S3DateTime.datetime_represent(current.request.utcnow, utc = True, ) output["d"] = {"d": s3_str(self.payment_data_represent(payments)), "t": s3_str(date), "h": payments, } output["u"] = True if payments else False else: if not permitted: alert = T("Payment registration not permitted") else: # Get payment data from JSON payments = data.get("d") if payments: # @todo: read date from JSON data (utcnow as fallback) date = r.utcnow comments = data.get("c") updated, failed = self.register_payments( person.id, payments, date = date, comments = comments, ) message = T("%(number)s payment(s) registered") % \ {"number": updated} if failed: warning = T("%(number)s payment(s) not found") % \ {"number": failed} else: alert = T("No payments specified") # Add messages to output if alert: output["a"] = s3_str(alert) if error: output["e"] = s3_str(error) if message: output["m"] = s3_str(message) if warning: output["w"] = s3_str(warning) # Add flag info to output output["s"] = permitted output["f"] = flags current.response.headers["Content-Type"] = "application/json" return json.dumps(output) # ------------------------------------------------------------------------- def get_form_data(self, person, formfields, data, hidden, permitted=False): """ Helper function to extend the form @param person: the person (Row) @param formfields: list of form fields (Field) @param data: the form data (dict) @param hidden: hidden form fields (dict) @param permitted: whether the action is permitted @return: tuple (widget_id, submit_label) """ T = current.T if person and permitted: payments = self.get_payment_data(person.id) else: payments = [] date = S3DateTime.datetime_represent(current.request.utcnow, utc = True, ) # Additional form fields for payments formfields.extend([Field("details", label = T("Pending Payments"), writable = False, represent = self.payment_data_represent, ), Field("date", label = T("Payment Date"), writable = False, default = date, ), Field("comments", label = T("Comments"), widget = s3_comments_widget, ), ]) # Additional data for payments data["date"] = s3_str(date) data["details"] = payments data["comments"] = "" # Add payments JSON to hidden form fields, update actionable info hidden["actions"] = json.dumps(payments) if not payments: hidden["actionable"] = "false" widget_id = "payment-form" submit = current.T("Register") return widget_id, submit # ------------------------------------------------------------------------- def get_header(self, event_type=None): """ Helper function to construct the event type header @param event_type: the event type (Row) @returns: dict of view items """ # Simple title, no selector/toggle event_type_header = DIV(H4(SPAN(current.T("Allowance Payment"), _class = "event-type-name", ), ), _class = "event-type-header", ) output = {"event_type": event_type_header, "event_type_selector": "", } return output # ------------------------------------------------------------------------- # Class-specific functions # ------------------------------------------------------------------------- @staticmethod def get_payment_data(person_id): """ Helper function to extract currently pending allowance payments for the person_id. @param person_id: the person record ID @return: a list of dicts [{i: record_id, d: date, c: currency, a: amount, }, ...] """ query = (FS("person_id") == person_id) & \ (FS("status") == 1) & \ (FS("date") <= current.request.utcnow.date()) resource = current.s3db.resource("dvr_allowance", filter = query, ) data = resource.select(["id", "date", "currency", "amount", ], orderby = "dvr_allowance.date", represent = True, ) payments = [] append = payments.append for row in data.rows: payment_details = {"r": row["dvr_allowance.id"], "d": row["dvr_allowance.date"], "c": row["dvr_allowance.currency"], "a": row["dvr_allowance.amount"], } append(payment_details) return payments # ------------------------------------------------------------------------- @staticmethod def register_payments(person_id, payments, date=None, comments=None): """ Helper function to register payments @param person_id: the person record ID @param payments: the payments as sent from form @param date: the payment date (default utcnow) @param comments: comments for the payments @return: tuple (updated, failed), number of records """ if isinstance(payments, basestring): try: payments = json.loads(payments) except (ValueError, TypeError): payments = [] if not date: date = current.request.utcnow # Data to write data = {"status": 2, "paid_on": date, } if comments: data["comments"] = comments atable = current.s3db.dvr_allowance updated = 0 failed = 0 # Customise allowance resource r = S3Request("dvr", "allowance", current.request, args = [], get_vars = {}, ) r.customise_resource("dvr_allowance") onaccept = current.s3db.onaccept db = current.db accessible = current.auth.s3_accessible_query("update", atable) for payment in payments: record_id = payment.get("r") query = accessible & \ (atable.id == record_id) & \ (atable.person_id == person_id) & \ (atable.status != 2) & \ (atable.deleted != True) success = db(query).update(**data) if success: record = {"id": record_id, "person_id": person_id} record.update(data) onaccept(atable, record, method="update") updated += 1 else: failed += 1 return updated, failed # ------------------------------------------------------------------------- @staticmethod def payment_data_represent(data): """ Representation method for the payment details field @param data: the payment data (from get_payment_data) """ if data: output = TABLE(_class="payment-details") for payment in data: details = TR(TD(payment["d"], _class="payment-date"), TD(payment["c"], _class="payment-currency"), TD(payment["a"], _class="payment-amount"), ) output.append(details) else: output = current.T("No pending payments") return output # ============================================================================= class dvr_AssignMethod(S3Method): """ Custom Method to allow beneficiaries (cases) to be assigned to something e.g. Project, Activity, Distribution """ def __init__(self, component, next_tab="case", types=None): """ @param component: the Component in which to create records @param types: a list of types to pick from: Staff, Volunteers, Deployables @param next_tab: the component/method to redirect to after assigning """ self.component = component self.next_tab = next_tab self.types = types def apply_method(self, r, **attr): """ Apply method. @param r: the S3Request @param attr: controller options for this request """ try: component = r.resource.components[self.component] except KeyError: current.log.error("Invalid Component!") raise if component.link: component = component.link tablename = component.tablename # Requires permission to create component authorised = current.auth.s3_has_permission("create", tablename) if not authorised: r.unauthorised() T = current.T db = current.db s3db = current.s3db #settings = current.deployment_settings table = s3db[tablename] fkey = component.fkey record = r.record if fkey in record: # SuperKey record_id = record[fkey] else: record_id = r.id get_vars = r.get_vars response = current.response if r.http == "POST": added = 0 post_vars = r.post_vars if all([n in post_vars for n in ("assign", "selected", "mode")]): selected = post_vars.selected if selected: selected = selected.split(",") else: selected = [] # Handle exclusion filter if post_vars.mode == "Exclusive": if "filterURL" in post_vars: filters = S3URLQuery.parse_url(post_vars.filterURL) else: filters = None query = ~(FS("id").belongs(selected)) dresource = s3db.resource("dvr_case", alias = self.component, filter=query, vars=filters) rows = dresource.select(["id"], as_rows=True) selected = [str(row.id) for row in rows] # Prevent multiple entries in the link table query = (table.case_id.belongs(selected)) & \ (table[fkey] == record_id) & \ (table.deleted != True) rows = db(query).select(table.id) rows = dict((row.id, row) for row in rows) onaccept = component.get_config("create_onaccept", component.get_config("onaccept", None)) for case_id in selected: try: cid = int(case_id.strip()) except ValueError: continue if cid not in rows: link = Storage(case_id = case_id) link[fkey] = record_id _id = table.insert(**link) if onaccept: link["id"] = _id form = Storage(vars=link) onaccept(form) added += 1 current.session.confirmation = T("%(number)s assigned") % \ dict(number=added) if added > 0: redirect(URL(args=[r.id, self.next_tab], vars={})) else: redirect(URL(args=r.args, vars={})) elif r.http == "GET": # Filter widgets filter_widgets = s3db.get_config("dvr_case", "filter_widgets") # List fields list_fields = ["id", "person_id", ] # Data table resource = s3db.resource("dvr_case", alias=r.component.alias if r.component else None, vars=get_vars) totalrows = resource.count() if "pageLength" in get_vars: display_length = get_vars["pageLength"] if display_length == "None": display_length = None else: display_length = int(display_length) else: display_length = 25 if display_length: limit = 4 * display_length else: limit = None dtfilter, orderby, left = resource.datatable_filter(list_fields, get_vars, ) resource.add_filter(dtfilter) # Hide people already in the link table query = (table[fkey] == record_id) & \ (table.deleted != True) rows = db(query).select(table.case_id) already = [row.case_id for row in rows] resource.add_filter((~db.dvr_case.id.belongs(already))) dt_id = "datatable" # Bulk actions dt_bulk_actions = [(T("Assign"), "assign")] if r.representation == "html": # Page load resource.configure(deletable = False) profile_url = URL(c = "dvr", f = "case", args = ["[id]", "profile"]) S3CRUD.action_buttons(r, deletable = False, read_url = profile_url, update_url = profile_url) response.s3.no_formats = True # Filter form if filter_widgets: # Where to retrieve filtered data from: _vars = resource.crud._remove_filters(r.get_vars) filter_submit_url = r.url(vars=_vars) # Default Filters (before selecting data!) resource.configure(filter_widgets=filter_widgets) S3FilterForm.apply_filter_defaults(r, resource) # Where to retrieve updated filter options from: filter_ajax_url = URL(f="case", args=["filter.options"], vars={}) get_config = resource.get_config filter_clear = get_config("filter_clear", True) filter_formstyle = get_config("filter_formstyle", None) filter_submit = get_config("filter_submit", True) filter_form = S3FilterForm(filter_widgets, clear=filter_clear, formstyle=filter_formstyle, submit=filter_submit, ajax=True, url=filter_submit_url, ajaxurl=filter_ajax_url, _class="filter-form", _id="datatable-filter-form", ) fresource = current.s3db.resource(resource.tablename) alias = r.component.alias if r.component else None ff = filter_form.html(fresource, r.get_vars, target="datatable", alias=alias) else: ff = "" # Data table (items) data = resource.select(list_fields, start=0, limit=limit, orderby=orderby, left=left, count=True, represent=True) filteredrows = data["numrows"] dt = S3DataTable(data["rfields"], data["rows"]) items = dt.html(totalrows, filteredrows, dt_id, dt_ajax_url=r.url(representation="aadata"), dt_bulk_actions=dt_bulk_actions, dt_pageLength=display_length, dt_pagination="true", dt_searching="false", ) # @ToDO: dvr_case_label() #CASE = settings.get_dvr_case_label() CASE = T("Beneficiaries") output = dict(items = items, title = T("Assign %(case)s") % dict(case=CASE), list_filter_form = ff) response.view = "list_filter.html" return output elif r.representation == "aadata": # Ajax refresh if "draw" in get_vars: echo = int(get_vars.draw) else: echo = None data = resource.select(list_fields, start=0, limit=limit, orderby=orderby, left=left, count=True, represent=True) filteredrows = data["numrows"] dt = S3DataTable(data["rfields"], data["rows"]) items = dt.json(totalrows, filteredrows, dt_id, echo, dt_bulk_actions=dt_bulk_actions) response.headers["Content-Type"] = "application/json" return items else: r.error(415, current.ERROR.BAD_FORMAT) else: r.error(405, current.ERROR.BAD_METHOD) # ============================================================================= def dvr_get_flag_instructions(person_id, action=None): """ Get handling instructions if flags are set for a person @param person_id: the person ID @param action: the action for which instructions are needed: - check-in|check-out|payment|id-check @returns: dict {"permitted": whether the action is permitted "info": list of tuples (flagname, instructions) } """ s3db = current.s3db ftable = s3db.dvr_case_flag ltable = s3db.dvr_case_flag_case query = (ltable.person_id == person_id) & \ (ltable.deleted != True) & \ (ftable.id == ltable.flag_id) & \ (ftable.deleted != True) if action == "check-in": query &= (ftable.advise_at_check_in == True) | \ (ftable.deny_check_in == True) elif action == "check-out": query &= (ftable.advise_at_check_out == True) | \ (ftable.deny_check_out == True) elif action == "payment": query &= (ftable.advise_at_id_check == True) | \ (ftable.allowance_suspended == True) else: query &= (ftable.advise_at_id_check == True) flags = current.db(query).select(ftable.name, ftable.deny_check_in, ftable.deny_check_out, ftable.allowance_suspended, ftable.advise_at_check_in, ftable.advise_at_check_out, ftable.advise_at_id_check, ftable.instructions, ) info = [] permitted = True for flag in flags: advise = False if action == "check-in": if flag.deny_check_in: permitted = False advise = flag.advise_at_check_in elif action == "check-out": if flag.deny_check_out: permitted = False advise = flag.advise_at_check_out elif action == "payment": if flag.allowance_suspended: permitted = False advise = flag.advise_at_id_check else: advise = flag.advise_at_id_check if advise: instructions = flag.instructions if instructions is not None: instructions = instructions.strip() if not instructions: instructions = current.T("No instructions for this flag") info.append((flag.name, instructions)) return {"permitted": permitted, "info": info, } # ============================================================================= def dvr_update_last_seen(person_id): """ Helper function for automatic updates of dvr_case.last_seen_on @param person_id: the person ID """ db = current.db s3db = current.s3db now = current.request.utcnow last_seen_on = None if not person_id: return # Get event types that require presence ettable = s3db.dvr_case_event_type query = (ettable.presence_required == True) & \ (ettable.deleted == False) types = db(query).select(ettable.id, cache=s3db.cache) type_ids = set(t.id for t in types) # Get the last case event that required presence etable = s3db.dvr_case_event query = (etable.person_id == person_id) & \ (etable.type_id.belongs(type_ids)) & \ (etable.date != None) & \ (etable.date <= now) & \ (etable.deleted != True) event = db(query).select(etable.date, orderby = ~etable.date, limitby = (0, 1), ).first() if event: last_seen_on = event.date # Check shelter registration history for newer entries htable = s3db.cr_shelter_registration_history query = (htable.person_id == person_id) & \ (htable.status.belongs(2, 3)) & \ (htable.date != None) & \ (htable.deleted != True) if last_seen_on is not None: query &= htable.date > last_seen_on entry = db(query).select(htable.date, orderby = ~htable.date, limitby = (0, 1), ).first() if entry: last_seen_on = entry.date settings = current.deployment_settings # Case appointments to update last_seen_on? if settings.get_dvr_appointments_update_last_seen_on(): # Get appointment types that require presence attable = s3db.dvr_case_appointment_type query = (attable.presence_required == True) & \ (attable.deleted == False) types = db(query).select(attable.id, cache=s3db.cache) type_ids = set(t.id for t in types) # Get last appointment that required presence atable = s3db.dvr_case_appointment query = (atable.person_id == person_id) & \ (atable.date != None) & \ (atable.type_id.belongs(type_ids)) & \ (atable.date <= now.date()) & \ (atable.status == 4) & \ (atable.deleted != True) if last_seen_on is not None: query &= atable.date > last_seen_on.date() appointment = db(query).select(atable.date, orderby = ~atable.date, limitby = (0, 1), ).first() if appointment: date = appointment.date # Default to 08:00 local time (...unless that would be in the future) try: date = datetime.datetime.combine(date, datetime.time(8, 0, 0)) except TypeError: pass date = min(now, S3DateTime.to_utc(date)) last_seen_on = date # Allowance payments to update last_seen_on? if settings.get_dvr_payments_update_last_seen_on(): atable = s3db.dvr_allowance query = (atable.person_id == person_id) & \ (atable.paid_on != None) & \ (atable.status == 2) & \ (atable.deleted != True) if last_seen_on is not None: query &= atable.paid_on > last_seen_on payment = db(query).select(atable.paid_on, orderby = ~atable.paid_on, limitby = (0, 1), ).first() if payment: last_seen_on = payment.paid_on # Update last_seen_on ctable = s3db.dvr_case query = (ctable.person_id == person_id) & \ (ctable.archived != True) & \ (ctable.deleted != True) db(query).update(last_seen_on = last_seen_on, # Don't change author stamp for # system-controlled record update: modified_on = ctable.modified_on, modified_by = ctable.modified_by, ) # ============================================================================= def dvr_rheader(r, tabs=None): """ DVR module resource headers """ if r.representation != "html": # Resource headers only used in interactive views return None tablename, record = s3_rheader_resource(r) if tablename != r.tablename: resource = current.s3db.resource(tablename, id=record.id) else: resource = r.resource rheader = None rheader_fields = [] if record: T = current.T if tablename == "pr_person": if not tabs: # Defaults used by? (Not used by DRK, STL or SCPHIMS) tabs = [(T("Basic Details"), None), (T("Activities"), "case_activity"), (T("Beneficiaries"), "beneficiary_data"), (T("Economy"), "economy"), (T("Identity"), "identity"), ] case = resource.select(["dvr_case.reference", "dvr_case.case_type_id", ], represent = True, ).rows if case: case = case[0] case_number = lambda row: case["dvr_case.reference"] case_type = lambda row: case["dvr_case.case_type_id"] name = s3_fullname else: # Target record exists, but doesn't match filters return None rheader_fields = [[(T("Case Number"), case_number)], [(T("Case Type"), case_type)], [(T("Name"), name)], ["date_of_birth"], ] elif tablename == "dvr_case": if not tabs: tabs = [(T("Basic Details"), None), (T("Activities"), "case_activity"), ] rheader_fields = [["reference"], ["status_id"], ] elif tablename == "dvr_activity": label = current.deployment_settings.get_dvr_label() if label == "Beneficiary": CASES = T("Beneficiaries") else: CASES = T("Cases") if not tabs: tabs = [(T("Basic Details"), None), (CASES, "case_activity"), ] rheader_fields = [["name"], ["service_id"], ] rheader = S3ResourceHeader(rheader_fields, tabs)(r, table = resource.table, record = record, ) return rheader # END =========================================================================
40.476881
184
0.412169
794805f6eaeb971030c2a10a20a764b88e94ae7e
293
py
Python
example/conanfile.py
thormme/imgui_sdl
5d888cdcaf64a2f937e0710971e75219088d45f6
[ "MIT" ]
null
null
null
example/conanfile.py
thormme/imgui_sdl
5d888cdcaf64a2f937e0710971e75219088d45f6
[ "MIT" ]
null
null
null
example/conanfile.py
thormme/imgui_sdl
5d888cdcaf64a2f937e0710971e75219088d45f6
[ "MIT" ]
null
null
null
from conans import ConanFile, CMake class StrifeConan(ConanFile): settings = "os", "compiler", "build_type", "arch" requires = \ "sdl2/2.0.8@bincrafters/stable", \ "sdl2_image/2.0.3@bincrafters/stable", \ "imgui/1.62@bincrafters/stable" generators = "cmake"
26.636364
52
0.645051
7948065b574978879735dc42a7ed6f8dce99ace9
856
py
Python
course/models.py
oneofsunshine/OUCOJ
68d9edf23346a30b1c6966045a0cb36abdddedfb
[ "MIT" ]
null
null
null
course/models.py
oneofsunshine/OUCOJ
68d9edf23346a30b1c6966045a0cb36abdddedfb
[ "MIT" ]
5
2021-06-08T21:55:26.000Z
2022-03-12T00:38:42.000Z
course/models.py
oneofsunshine/OUCOJ
68d9edf23346a30b1c6966045a0cb36abdddedfb
[ "MIT" ]
null
null
null
from django.db import models from account.models import User from contest.models import Contest class Course(models.Model): name = models.TextField() s_year = models.CharField(max_length=4) short_description = models.TextField(default="ownerless") contests = models.ManyToManyField(Contest) students = models.ManyToManyField(User) class Meta: db_table = "course" unique_together = (("name", "s_year"),) class JoinCourseRequest(models.Model): course = models.ForeignKey(Course, on_delete=models.CASCADE, related_name="join_course_requests") user = models.ForeignKey(User, on_delete=models.CASCADE) status = models.BooleanField(default=False) accepted = models.BooleanField(default=False) class Meta: db_table = "join_course_request" unique_together = (("user", "course"),)
29.517241
101
0.718458
794807174fb65d5d2b1754fccfcc4f0c80d8d68b
6,550
py
Python
tests/ui_tests/test_activatable_groups_ui_options_data/config_generator.py
dimuha-rs/adcm
0f49cc9ece16c1e257be12375a64b65a34b3a3ae
[ "Apache-2.0" ]
null
null
null
tests/ui_tests/test_activatable_groups_ui_options_data/config_generator.py
dimuha-rs/adcm
0f49cc9ece16c1e257be12375a64b65a34b3a3ae
[ "Apache-2.0" ]
null
null
null
tests/ui_tests/test_activatable_groups_ui_options_data/config_generator.py
dimuha-rs/adcm
0f49cc9ece16c1e257be12375a64b65a34b3a3ae
[ "Apache-2.0" ]
null
null
null
import os DATA = [(g_i, g_a, f_g, f_i, act) for g_i in [ 'true', 'false'] for g_a in [ 'true', 'false'] for f_g in [ 'true', 'false'] for f_i in [ 'true', 'false'] for act in [ 'true', 'false' ]] TYPES = ("string", "password", "integer", "text", 'boolean', 'float', 'option', 'list', 'map', 'json', 'file') TEMPLATE_STRING = """ - type: cluster name: group_advanced_{0}_invisible_{1}_field_advanced_{2}_invisible_{3}_activatable_{5}_{4} version: 1 config: - description: {4} display_name: {4} name: group type: group activatable: true active: {5} ui_options: advanced: {0} invisible: {1} subs: &id001 - &id002 name: {4} default: {4} display_name: {4} type: {4} ui_options: advanced: {2} invisible: {3} """ TEMPLATE_NUMBERS = """ - type: cluster name: group_advanced_{0}_invisible_{1}_field_advanced_{2}_invisible_{3}_activatable_{5}_{4} version: 1 config: - description: {4} display_name: {4} name: group type: group activatable: true active: {5} ui_options: advanced: {0} invisible: {1} subs: &id001 - &id002 name: {4} default: 1 display_name: {4} type: {4} ui_options: advanced: {2} invisible: {3} """ TEMPLATE_BOOLEAN = """ - type: cluster name: group_advanced_{0}_invisible_{1}_field_advanced_{2}_invisible_{3}_activatable_{5}_{4} version: 1 config: - description: {4} display_name: {4} activatable: true active: {5} name: group type: group ui_options: advanced: {0} invisible: {1} subs: &id001 - &id002 name: {4} default: true display_name: {4} type: {4} ui_options: advanced: {2} invisible: {3} """ TEMPLATE_FILE = """ - type: cluster name: group_advanced_{0}_invisible_{1}_field_advanced_{2}_invisible_{3}_activatable_{5}_{4} version: 1 config: - description: {4} display_name: {4} activatable: true active: {5} name: group type: group ui_options: advanced: {0} invisible: {1} subs: &id001 - &id002 name: {4} display_name: {4} type: {4} ui_options: advanced: {2} invisible: {3} """ TEMPLATE_JSON = """ - type: cluster name: group_advanced_{0}_invisible_{1}_field_advanced_{2}_invisible_{3}_activatable_{5}_{4} version: 1 config: - description: {4} display_name: {4} name: group type: group activatable: true active: {5} ui_options: advanced: {0} invisible: {1} subs: &id001 - &id002 name: {4} display_name: {4} default: {{}} type: {4} ui_options: advanced: {2} invisible: {3} """ TEMPLATE_LIST = """ - type: cluster name: group_advanced_{0}_invisible_{1}_field_advanced_{2}_invisible_{3}_activatable_{5}_{4} version: 1 config: - description: {4} display_name: {4} name: group type: group activatable: true active: {5} ui_options: advanced: {0} invisible: {1} subs: &id001 - &id002 name: {4} display_name: {4} default: - /dev/rdisk0s1 - /dev/rdisk0s2 - /dev/rdisk0s3 type: {4} ui_options: advanced: {2} invisible: {3} """ TEMPLATE_MAP = """ - type: cluster name: group_advanced_{0}_invisible_{1}_field_advanced_{2}_invisible_{3}_activatable_{5}_{4} version: 1 config: - description: {4} display_name: {4} name: group type: group activatable: true active: {5} ui_options: advanced: {0} invisible: {1} subs: &id001 - &id002 name: {4} display_name: {4} default: name: Joe age: "24" sex: m type: {4} ui_options: advanced: {2} invisible: {3} """ TEMPLATE_OPTION = """ - type: cluster name: group_advanced_{0}_invisible_{1}_field_advanced_{2}_invisible_{3}_activatable_{5}_{4} version: 1 config: - description: {4} display_name: {4} activatable: true active: {5} name: group type: group ui_options: advanced: {0} invisible: {1} subs: &id001 - &id002 name: {4} display_name: {4} option: {{http: 80, https: 443}} default: 80 type: {4} ui_options: advanced: {2} invisible: {3} """ TEMPLATE_PASSWORD = """ - type: cluster name: group_advanced_{0}_invisible_{1}_field_advanced_{2}_invisible_{3}_activatable_{5}_{4} version: 1 config: - description: {4} display_name: {4} name: group type: group activatable: true active: {5} ui_options: advanced: {0} invisible: {1} subs: &id001 - &id002 name: {4} display_name: {4} default: password type: {4} ui_options: advanced: {2} invisible: {3} """ TEMPLATE_TEXT = """ - type: cluster name: group_advanced_{0}_invisible_{1}_field_advanced_{2}_invisible_{3}_activatable_{5}_{4} version: 1 config: - description: {4} display_name: {4} name: group type: group activatable: true active: {5} ui_options: advanced: {0} invisible: {1} subs: &id001 - &id002 name: {4} display_name: {4} default: text type: {4} ui_options: advanced: {2} invisible: {3} """ TEMPLATES = {"string": TEMPLATE_STRING, "password": TEMPLATE_PASSWORD, "integer": TEMPLATE_NUMBERS, "text": TEMPLATE_TEXT, 'boolean': TEMPLATE_BOOLEAN, 'float': TEMPLATE_NUMBERS, 'option': TEMPLATE_OPTION, 'list': TEMPLATE_LIST, 'map': TEMPLATE_MAP, 'json': TEMPLATE_JSON, 'file': TEMPLATE_FILE} for t in TYPES: for config in DATA: d_name = "group_advanced_{}_invisible_{}_field_advanced_{}_invisible_{}_activiatable_{}/{}".format( config[0], config[1], config[2], config[3], config[4], t) os.makedirs(d_name) tmpl = '' with open("{}/config.yaml".format(d_name), "w+") as f: f.write(TEMPLATES[t].format(config[0], config[1], config[2], config[3], t, config[4]))
23.309609
110
0.544885
7948072fe52b21c3eab620409b0c06b23986d74f
78,098
py
Python
parlai/mturk/core/dev/mturk_manager.py
whitemike889/ParlAI
48187b7aaacea5f910719074fe78d13c409e6776
[ "MIT" ]
1
2019-07-25T17:30:18.000Z
2019-07-25T17:30:18.000Z
parlai/mturk/core/dev/mturk_manager.py
abisee/ParlAI
5507d4745ca23b23af311673a6b0d1b7e72eb5cd
[ "MIT" ]
null
null
null
parlai/mturk/core/dev/mturk_manager.py
abisee/ParlAI
5507d4745ca23b23af311673a6b0d1b7e72eb5cd
[ "MIT" ]
1
2019-07-28T14:53:18.000Z
2019-07-28T14:53:18.000Z
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import math import os import pickle import threading import time import uuid import errno import requests from parlai.mturk.core.dev.agents import ( AssignState, AbsentAgentError, AgentTimeoutError, ) from parlai.mturk.core.dev.socket_manager import Packet, SocketManager from parlai.mturk.core.dev.worker_manager import WorkerManager from parlai.mturk.core.dev.mturk_data_handler import MTurkDataHandler import parlai.mturk.core.dev.data_model as data_model import parlai.mturk.core.dev.mturk_utils as mturk_utils import parlai.mturk.core.dev.server_utils as server_utils import parlai.mturk.core.dev.shared_utils as shared_utils # Timeout before cancelling a world start WORLD_START_TIMEOUT = 11 # Multiplier to apply when creating hits to ensure worker availibility. As the # number of HITs increases, this decreases HIT_MULT_SCALE = [ # At more than 1000 HITS, most workers will become 'regulars', and we can # discount the occasional disconnects from being a large portion of workers (1000, 1.05), # Between 1000 and 100 HITs, disconnecting workers take a bit more of an # impact, so we scale a bit higher (100, 1.1), # Under 100 hits, we should prepare for a larger proportion of workers that # try (10, 1.25), # Under 10 hits, we need more to ensure one worker doesn't take all (0, 1.5), ] # 6 minute timeout to ensure only one thread updates the time logs. # Those update once daily in a 3 minute window RESET_TIME_LOG_TIMEOUT = 360 TIME_LOGS_FILE_NAME = 'working_time.pickle' TIME_LOGS_FILE_LOCK = 'working_time.lock' AMAZON_SNS_NAME = 'AmazonMTurk' SNS_ASSIGN_ABANDONDED = 'AssignmentAbandoned' SNS_ASSIGN_SUBMITTED = 'AssignmentSubmitted' SNS_ASSIGN_RETURNED = 'AssignmentReturned' PARLAI_MTURK_NOTICE_URL = 'http://mturk.parl.ai/mturk/mturk_notice/' PARLAI_MTURK_UPLOAD_URL = 'http://mturk.parl.ai/mturk/mturk_stats/' PARLAI_CRED_DIR = os.path.expanduser('~/.parlai') PARLAI_MTURK_LOG_PERMISSION_FILE = os.path.join( PARLAI_CRED_DIR, 'mturk_log_permission.pickle' ) TWO_WEEKS = 60 * 60 * 24 * 7 * 2 parent_dir = os.path.dirname(os.path.abspath(__file__)) class LockFile: flags = os.O_CREAT | os.O_EXCL | os.O_WRONLY def __init__(self, filename): self.filename = filename self.fd = None def __enter__(self): while self.fd is None: try: self.fd = os.open(self.filename, self.flags) except OSError as e: if e.errno == errno.EEXIST: # Failed as the file exists. pass time.sleep(shared_utils.THREAD_SHORT_SLEEP) return self def __exit__(self, *args): os.close(self.fd) os.remove(self.filename) class MTurkManager: """Manages interactions between MTurk agents as well as direct interactions between a world and the MTurk server. """ STATE_CREATED = 0 # object created STATE_SERVER_ALIVE = 1 # heroku server running STATE_INIT_RUN = 2 # run initialized STATE_ACCEPTING_WORKERS = 3 # Socket ready to recieve workers STATE_HITS_MADE = 4 # hits created def __init__(self, opt, mturk_agent_ids, is_test=False, use_db=False): """Create an MTurkManager using the given setup opts and a list of agent_ids that will participate in each conversation """ if not is_test: try: import parlai_internal.mturk.configs as local_configs opt = local_configs.apply_default_opts(opt) except Exception: # not all users will be drawing configs from internal settings pass self.opt = opt if self.opt['unique_worker']: self.opt['allowed_conversations'] = 1 elif ( self.opt['max_hits_per_worker'] != 0 and self.opt['allowed_conversations'] == 0 ): self.opt['allowed_conversations'] = self.opt['max_hits_per_worker'] self.server_url = None self.topic_arn = None self.server_task_name = None self.port = 443 self.task_group_id = None self.run_id = None self.mturk_agent_ids = mturk_agent_ids self.task_files_to_copy = None self.is_sandbox = opt['is_sandbox'] self.agent_pool_change_condition = threading.Condition() self.get_onboard_world = None self.num_conversations = opt['num_conversations'] # Determine the correct number of hits to be launching base_required_hits = self.num_conversations * len(self.mturk_agent_ids) for hit_amount, hit_mult in HIT_MULT_SCALE: if base_required_hits >= hit_amount: self.hit_mult = hit_mult break self.required_hits = math.ceil(base_required_hits * self.hit_mult) self.minimum_messages = opt.get('min_messages', 0) self.auto_approve_delay = opt.get('auto_approve_delay', 4 * 7 * 24 * 3600) self.has_time_limit = opt.get('max_time', 0) > 0 self.socket_manager = None self.worker_manager = WorkerManager(self, opt) self.is_test = is_test self.is_unique = False self.max_hits_per_worker = opt.get('max_hits_per_worker', 0) self.is_shutdown = False self.use_db = use_db # TODO enable always DB integration is complete self.db_logger = None self.logging_permitted = False # Enables logging to parl.ai self.task_state = self.STATE_CREATED if opt.get('tmp_dir') is None: opt['tmp_dir'] = shared_utils.get_tmp_dir() self.tmp_dir = opt['tmp_dir'] self._init_logging_config() self._assert_opts() @staticmethod def make_taskless_instance(is_sandbox=False): """Creates an instance without a task to be used for approving or rejecting assignments, blocking workers, and managing qualifications """ opt = { 'unique_worker': False, 'max_hits_per_worker': 0, 'num_conversations': 0, 'is_sandbox': is_sandbox, 'is_debug': False, 'log_level': 30, } manager = MTurkManager(opt, [], use_db=True) manager.is_shutdown = True mturk_utils.setup_aws_credentials() return manager # Helpers and internal manager methods # def _assert_opts(self): """Manages ensuring everything about the passed in options make sense in that they don't conflict in some way or another""" if self.opt.get('allow_reviews') and len(self.mturk_agent_ids) != 2: shared_utils.print_and_log( logging.WARN, '[OPT CONFIGURATION ISSUE] ' 'allow_reviews is currently only supported on 2 person tasks, ' 'overriding this value to false.', should_print=True, ) self.opt['allow_reviews'] = False if self.opt.get('frontend_version', 0) < 1: # Ensure no react only features have been set features = ['frame_height', 'allow_reviews', 'block_mobile'] for feat in features: if self.opt.get(feat) is not None: shared_utils.print_and_log( logging.WARN, '[OPT CONFIGURATION ISSUE] ' '{} only works when using the react frontend ' '(frontend_version >= 1), so this option will be ' 'ignored'.format(feat), should_print=True, ) def _init_state(self): """Initialize everything in the worker, task, and thread states""" # TODO handle pooling in own class, note this is an agent_pool self.agent_pool = [] # TODO move some state to DB self.hit_id_list = [] # list of outstanding incomplete hits self.assignment_to_onboard_thread = {} self.conversation_index = 0 self.started_conversations = 0 self.completed_conversations = 0 self.task_threads = [] self.accepting_workers = True self._reset_time_logs(init_load=True) self.qualifications = None self.unique_qual_name = None self.time_limit_checked = time.time() self.task_state = self.STATE_INIT_RUN self.last_hit_check = time.time() if self.use_db: db_filename = 'pmt_sbdata.db' if self.is_sandbox else 'pmt_data.db' self.db_logger = MTurkDataHandler(self.task_group_id, db_filename) def _init_logging_config(self): """Initialize logging settings from the opt""" if self.use_db and not self.opt['is_debug']: shared_utils.disable_logging() else: shared_utils.set_is_debug(self.opt['is_debug']) shared_utils.set_log_level(self.opt['log_level']) def _logging_permission_check(self): if self.is_test: return False if not os.path.exists(PARLAI_CRED_DIR): os.makedirs(PARLAI_CRED_DIR) if os.path.exists(PARLAI_MTURK_LOG_PERMISSION_FILE): with open(PARLAI_MTURK_LOG_PERMISSION_FILE, 'rb') as perm_file: permissions = pickle.load(perm_file) if permissions['allowed'] is True: return True elif time.time() - permissions['asked_time'] < TWO_WEEKS: return False # Snooze expired os.remove(PARLAI_MTURK_LOG_PERMISSION_FILE) print( 'Would you like to help improve ParlAI-MTurk by providing some ' 'metrics? We would like to record acceptance, completion, and ' 'disconnect rates by worker. These metrics let us track the ' 'health of the platform. If you accept we\'ll collect this data ' 'on all of your future runs. We\'d ask before collecting anything ' 'else, but currently we have no plans to. You can decline to ' 'snooze this request for 2 weeks.' ) selected = '' while selected not in ['y', 'Y', 'n', 'N']: selected = input('Share worker rates? (y/n): ') if selected not in ['y', 'Y', 'n', 'N']: print('Must type one of (Y/y/N/n)') if selected in ['y', 'Y']: print('Thanks for helping us make the platform better!') permissions = {'allowed': selected in ['y', 'Y'], 'asked_time': time.time()} with open(PARLAI_MTURK_LOG_PERMISSION_FILE, 'wb+') as perm_file: pickle.dump(permissions, perm_file) return permissions['allowed'] def _upload_worker_data(self): """Uploads worker data acceptance and completion rates to the parlai server """ worker_data = self.worker_manager.get_worker_data_package() data = {'worker_data': worker_data} headers = {'Content-type': 'application/json', 'Accept': 'text/plain'} try: requests.post(PARLAI_MTURK_UPLOAD_URL, json=data, headers=headers) except Exception: shared_utils.print_and_log( logging.WARNING, 'Unable to log worker statistics to parl.ai', should_print=True, ) def _maintain_hit_status(self): def update_status(): while len(self.hit_id_list) > 0: cur_time = time.time() if cur_time - self.last_hit_check > 10: self.last_hit_check = cur_time for hit_id in self.hit_id_list.copy(): hit = self.get_hit(hit_id) hit_data = hit['HIT'] if hit_data['HITStatus'] in [ 'Reviewable', 'Reviewing', 'Disposed', ]: self.hit_id_list.remove(hit_id) time.sleep(10) hit_status_thread = threading.Thread( target=update_status, name='Hit-Status-Thread', daemon=True ) hit_status_thread.start() def _should_use_time_logs(self): # Used to ensure time logs are properly tracked. Can be overridden for # testing return self.is_sandbox def _reset_time_logs(self, init_load=False, force=False): # Uses a weak lock file to try to prevent clobbering between threads if not self._should_use_time_logs(): return # sandbox doesn't check logs file_path = os.path.join(parent_dir, TIME_LOGS_FILE_NAME) file_lock = os.path.join(parent_dir, TIME_LOGS_FILE_LOCK) with LockFile(file_lock) as _lock_file: assert _lock_file is not None if os.path.exists(file_path): with open(file_path, 'rb+') as time_log_file: existing_times = pickle.load(time_log_file) # Initial loads should only reset if it's been a day, # otherwise only need to check an hour for safety compare_time = 24 * 60 * 60 if init_load else 60 * 60 if ( time.time() - existing_times['last_reset'] < compare_time and not force ): return # do nothing if it's been less than a day reset_workers = list(existing_times.keys()) reset_workers.remove('last_reset') if len(reset_workers) != 0: self.worker_manager.un_time_block_workers(reset_workers) # Reset the time logs os.remove(file_path) # new time logs with open(file_path, 'wb+') as time_log_file: time_logs = {'last_reset': time.time()} pickle.dump(time_logs, time_log_file, pickle.HIGHEST_PROTOCOL) # TODO move working times into the DB def _log_working_time(self, mturk_agent): if not self._should_use_time_logs(): return # sandbox does not log working time additional_time = time.time() - mturk_agent.creation_time worker_id = mturk_agent.worker_id file_path = os.path.join(parent_dir, TIME_LOGS_FILE_NAME) file_lock = os.path.join(parent_dir, TIME_LOGS_FILE_LOCK) with LockFile(file_lock) as _lock_file: assert _lock_file is not None if not os.path.exists(file_path): self._reset_time_logs() with open(file_path, 'rb+') as time_log_file: existing_times = pickle.load(time_log_file) total_work_time = existing_times.get(worker_id, 0) total_work_time += additional_time existing_times[worker_id] = total_work_time os.remove(file_path) with open(file_path, 'wb+') as time_log_file: pickle.dump(existing_times, time_log_file, pickle.HIGHEST_PROTOCOL) if total_work_time > int(self.opt.get('max_time')): self.worker_manager.time_block_worker(worker_id) def _move_agents_to_waiting(self, agents): """Put all agents into waiting worlds, expire them if no longer accepting agents. If the agent is already final, clean it. Add workers in waiting worlds to the worker pool. """ for agent in agents: worker_id = agent.worker_id assignment_id = agent.assignment_id if agent.is_final(): agent.reduce_state() self.socket_manager.close_channel(agent.get_connection_id()) continue conversation_id = 'w_{}'.format(uuid.uuid4()) if self.accepting_workers: # Move the worker into a waiting world agent.set_status( AssignState.STATUS_WAITING, conversation_id=conversation_id, agent_id='waiting', ) self._add_agent_to_pool(agent) else: self.force_expire_hit(worker_id, assignment_id) def _expire_onboarding_pool(self): """Expire any agent that is in an onboarding thread""" def expire_func(agent): self.force_expire_hit(agent.worker_id, agent.assignment_id) def is_onboard(agent): return agent.get_status() == AssignState.STATUS_ONBOARDING self.worker_manager.map_over_agents(expire_func, is_onboard) def _expire_agent_pool(self): """Expire all workers in the worker pool""" for agent in self.agent_pool.copy(): self.force_expire_hit(agent.worker_id, agent.assignment_id) with self.agent_pool_change_condition: self._remove_from_agent_pool(agent) def _get_unique_pool(self, eligibility_function): """Return a filtered version of the worker pool where each worker is only listed a maximum of one time. In sandbox this is overridden for testing purposes, and the same worker can be returned more than once """ pool = [a for a in self.agent_pool if not a.hit_is_returned] if eligibility_function['multiple'] is True: agents = eligibility_function['func'](pool) else: agents = [a for a in pool if eligibility_function['func'](a)] unique_agents = [] unique_worker_ids = [] for agent in agents: if (self.is_sandbox) or (agent.worker_id not in unique_worker_ids): unique_agents.append(agent) unique_worker_ids.append(agent.worker_id) return unique_agents def _add_agent_to_pool(self, agent): """Add a single agent to the pool""" if agent not in self.agent_pool: # Add the agent to pool with self.agent_pool_change_condition: if agent not in self.agent_pool: shared_utils.print_and_log( logging.DEBUG, "Adding worker {} to pool.".format(agent.worker_id), ) self.agent_pool.append(agent) def _remove_from_agent_pool(self, agent): """Remove an agent from the pool. should be called under the agent_pool_change_condition being set. """ assert agent in self.agent_pool, 'agent not in pool' self.agent_pool.remove(agent) def _handle_agent_disconnect(self, worker_id, assignment_id): """Mark a worker as disconnected and send a message to all agents in his conversation that a partner has disconnected. """ self.worker_manager.handle_agent_disconnect( worker_id, assignment_id, self._handle_partner_disconnect ) def _handle_partner_disconnect(self, agent): """Send a message to an agent notifying them that a partner has disconnected and we marked the HIT as complete for them """ if agent is not None and not agent.is_final(): # Update the assignment state agent.some_agent_disconnected = True agent_messages = [ m for m in agent.get_messages() if 'id' in m and m['id'] == agent.id ] if len(agent_messages) < self.minimum_messages: # TODO move worker back to pool if hasn't sent message yet, # remove disconnect_early agent.set_status(AssignState.STATUS_PARTNER_DISCONNECT_EARLY) else: agent.set_status(AssignState.STATUS_PARTNER_DISCONNECT) # Create and send the command data = { 'agent_status': AssignState.STATUS_PARTNER_DISCONNECT, 'done_text': 'One of your partners disconnected in the middle of the ' 'HIT. We won\'t penalize you for their disconnect, so ' 'please use the button below to mark the HIT as complete.', } def disconnect_agent(*args): self.socket_manager.close_channel(agent.get_connection_id()) self.send_state_change( agent.worker_id, agent.assignment_id, data, ack_func=disconnect_agent ) def _setup_socket(self, timeout_seconds=None): """Set up a socket_manager with defined callbacks""" assert ( self.task_state >= self.STATE_INIT_RUN ), 'socket cannot be set up until run is started' socket_server_url = self.server_url if self.opt['local']: # skip some hops for local stuff socket_server_url = "https://localhost" self.socket_manager = SocketManager( socket_server_url, self.port, self._on_alive, self._on_new_message, self._on_socket_dead, self.task_group_id, socket_dead_timeout=timeout_seconds, server_death_callback=self.shutdown, ) def _on_alive(self, pkt): """Update MTurkManager's state when a worker sends an alive packet. This asks the socket manager to open a new channel and then handles ensuring the worker state is consistent """ shared_utils.print_and_log(logging.DEBUG, 'on_agent_alive: {}'.format(pkt)) worker_id = pkt.data['worker_id'] hit_id = pkt.data['hit_id'] assign_id = pkt.data['assignment_id'] conversation_id = pkt.data['conversation_id'] if not assign_id: # invalid assignment_id is an auto-fail shared_utils.print_and_log( logging.WARN, 'Agent ({}) with no assign_id called alive'.format(worker_id), ) return # Open a channel if it doesn't already exist self.socket_manager.open_channel(worker_id, assign_id) # Get a state for this worker, create if non existing worker_state = self.worker_manager.worker_alive(worker_id) if self.db_logger is not None: self.db_logger.log_worker_note( worker_id, assign_id, 'Reconnected with conversation_id {} at {}'.format( conversation_id, time.time() ), ) if not worker_state.has_assignment(assign_id): # New connection for the worker. First ensure that this connection # isn't violating our uniqueness constraints completed_assignments = worker_state.completed_assignments() max_hits = self.max_hits_per_worker if (self.is_unique and completed_assignments > 0) or ( max_hits != 0 and completed_assignments > max_hits ): text = ( 'You have already participated in this HIT the maximum ' 'number of times. This HIT is now expired. ' 'Please return the HIT.' ) self.force_expire_hit(worker_id, assign_id, text) return # Ensure we are still accepting workers if not self.accepting_workers: self.force_expire_hit(worker_id, assign_id) return # Ensure worker has not exceeded concurrent convo cap convs = worker_state.active_conversation_count() allowed_convs = self.opt['allowed_conversations'] if allowed_convs > 0 and convs >= allowed_convs: text = ( 'You can participate in only {} of these HITs at ' 'once. Please return this HIT and finish your ' 'existing HITs before accepting more.'.format(allowed_convs) ) self.force_expire_hit(worker_id, assign_id, text) return # Initialize a new agent for this worker self.worker_manager.assign_task_to_worker(hit_id, assign_id, worker_id) if self.db_logger is not None: self.db_logger.log_worker_accept_assignment( worker_id, assign_id, hit_id ) agent = self.worker_manager._get_agent(worker_id, assign_id) self._onboard_new_agent(agent) else: # Reconnecting worker should no longer happen shared_utils.print_and_log( logging.WARN, 'Agent ({}) is reconnecting to {}'.format(worker_id, assign_id), ) def _handle_mturk_message(self, pkt): assignment_id = pkt.assignment_id agent = self.worker_manager.get_agent_for_assignment(assignment_id) if agent is None: return mturk_event_type = pkt.data['text'] if mturk_event_type == SNS_ASSIGN_RETURNED: agent.hit_is_returned = True # Treat as a socket_dead event self._on_socket_dead(agent.worker_id, assignment_id) elif mturk_event_type == SNS_ASSIGN_ABANDONDED: agent.hit_is_returned = True # Treat as a socket_dead event self._on_socket_dead(agent.worker_id, assignment_id) elif mturk_event_type == SNS_ASSIGN_SUBMITTED: # Socket dead already called, just mark as complete agent.hit_is_complete = True def _on_new_message(self, pkt): """Handle incoming messages from Amazon's SNS queue. All other packets should be handled by the worker_manager """ if pkt.sender_id == AMAZON_SNS_NAME: self._handle_mturk_message(pkt) return self.worker_manager.route_packet(pkt) def _on_socket_dead(self, worker_id, assignment_id): """Handle a disconnect event, update state as required and notifying other agents if the disconnected agent was in conversation with them returns False if the socket death should be ignored and the socket should stay open and not be considered disconnected """ agent = self.worker_manager._get_agent(worker_id, assignment_id) if agent is None: # This worker never registered, so we don't do anything return shared_utils.print_and_log( logging.DEBUG, 'Worker {} disconnected from {} in status {}'.format( worker_id, agent.conversation_id, agent.get_status() ), ) if agent.get_status() == AssignState.STATUS_NONE: # Agent never made it to onboarding, delete agent.set_status(AssignState.STATUS_DISCONNECT) agent.reduce_state() elif agent.get_status() == AssignState.STATUS_ONBOARDING: # Agent never made it to task pool, the onboarding thread will die # and delete the agent if we mark it as a disconnect agent.set_status(AssignState.STATUS_DISCONNECT) agent.reduce_state() agent.disconnected = True elif agent.get_status() == AssignState.STATUS_WAITING: # agent is in pool, remove from pool and delete if agent in self.agent_pool: with self.agent_pool_change_condition: self._remove_from_agent_pool(agent) agent.set_status(AssignState.STATUS_DISCONNECT) agent.reduce_state() agent.disconnected = True elif agent.get_status() == AssignState.STATUS_IN_TASK: self._handle_agent_disconnect(worker_id, assignment_id) agent.disconnected = True elif agent.get_status() == AssignState.STATUS_DONE: # It's okay if a complete assignment socket dies, but wait for the # world to clean up the resource return self.socket_manager.close_channel(agent.get_connection_id()) def _onboard_new_agent(self, mturk_agent): """Handle creating an onboarding thread and moving an agent through the onboarding process, updating the state properly along the way Returns True if a thread is launched, False if the call is ignored. """ # get state variable in question worker_id = mturk_agent.worker_id assignment_id = mturk_agent.assignment_id def _onboard_function(mturk_agent): """Onboarding wrapper to set state to onboarding properly""" if self.get_onboard_world: conversation_id = 'o_' + str(uuid.uuid4()) agent.set_status( AssignState.STATUS_ONBOARDING, conversation_id=conversation_id, agent_id='onboarding', ) # call onboarding function try: world = self.get_onboard_world(mturk_agent) while not world.episode_done(): world.parley() except AgentTimeoutError: self.handle_turker_timeout( mturk_agent.worker_id, mturk_agent.assignment_id ) except AbsentAgentError: pass # agent state already updated world.shutdown() world.review_work() save_data = world.prep_save_data([mturk_agent]) if save_data is not None: MTurkDataHandler.save_world_data( save_data, self.task_group_id, conversation_id, sandbox=self.is_sandbox, ) mturk_agent.clear_messages() # once onboarding is done, move into a waiting world self._move_agents_to_waiting([mturk_agent]) if assignment_id in self.assignment_to_onboard_thread: if self.assignment_to_onboard_thread[assignment_id].isAlive(): return False agent = self.worker_manager.get_agent_for_assignment(assignment_id) # Only start an onboarding world if the worker never got a world if agent.get_status() != AssignState.STATUS_NONE: return False # Start the onboarding thread and run it onboard_thread = threading.Thread( target=_onboard_function, args=(mturk_agent,), name='onboard-{}-{}'.format(worker_id, assignment_id), ) onboard_thread.daemon = True onboard_thread.start() self.assignment_to_onboard_thread[assignment_id] = onboard_thread return True def _no_agents_incomplete(self, agents): """Return True if all the given agents completed their task""" for agent in agents: if not agent.is_final() or agent.get_status() != AssignState.STATUS_DONE: return False return True def _check_time_limit(self): if time.time() - self.time_limit_checked < RESET_TIME_LOG_TIMEOUT: return if int(time.time()) % (60 * 60 * 24) > (60 * 30): # sync the time resets to ONCE DAILY in a 30 minute window return self.time_limit_checked = time.time() self._reset_time_logs() self.worker_manager.un_time_block_workers() def is_onboarding_world(self, conversation_id): return conversation_id is not None and conversation_id.startswith('o_') def is_waiting_world(self, conversation_id): return conversation_id is not None and conversation_id.startswith('w_') def is_task_world(self, conversation_id): return conversation_id is not None and conversation_id.startswith('t_') # Manager Lifecycle Functions # def populate_task_files(self, task_directory_path): # Poplulate files to copy over to the server if not self.task_files_to_copy: self.task_files_to_copy = { 'static': [], 'components': [], 'css': [], 'needs_build': None, } if not task_directory_path: task_directory_path = os.path.join( self.opt['parlai_home'], 'parlai', 'mturk', 'tasks', self.opt['task'] ) self.task_files_to_copy['static'].append( os.path.join(task_directory_path, 'frontend', 'static', 'cover_page.html') ) try: frontend_contents = os.listdir( os.path.join(task_directory_path, 'frontend') ) if 'package.json' in frontend_contents: # We take a package file to mean that this component will # need to be built separately before importing self.task_files_to_copy['needs_build'] = os.path.join( task_directory_path, 'frontend' ) for dir in frontend_contents: if dir in self.task_files_to_copy: for file_name in os.listdir( os.path.join(task_directory_path, 'frontend', dir) ): self.task_files_to_copy[dir].append( os.path.join( task_directory_path, 'frontend', dir, file_name ) ) except FileNotFoundError: # noqa F821 we don't support python2 # No frontend dir exists pass def setup_server(self, task_directory_path=None): """Prepare the MTurk server for the new HIT we would like to submit""" assert self.task_state >= self.STATE_CREATED fin_word = 'start' if self.opt['count_complete']: fin_word = 'finish' shared_utils.print_and_log( logging.INFO, '\nYou are going to allow workers from Amazon Mechanical Turk to ' 'be an agent in ParlAI.\nDuring this process, Internet connection ' 'is required, and you should turn off your computer\'s auto-sleep ' 'feature.', should_print=True, ) if self.opt['max_connections'] == 0: shared_utils.print_and_log( logging.INFO, 'Enough HITs will be created to fulfill {} times the ' 'number of conversations requested, extra HITs will be expired' ' once the desired conversations {}.' ''.format(self.hit_mult, fin_word), should_print=True, ) else: shared_utils.print_and_log( logging.INFO, 'Enough HITs will be launched over time ' 'up to a max of {} times the amount requested until the ' 'desired number of conversations {}.' ''.format(self.hit_mult, fin_word), should_print=True, ) input('Please press Enter to continue... ') shared_utils.print_and_log(logging.NOTSET, '', True) if self.opt['local'] is True: shared_utils.print_and_log( logging.INFO, "In order to run the server locally, you will need " "to have a public HTTPS endpoint (SSL signed) running on " "the server you are currently excecuting ParlAI on. Enter " "that public URL hostname when prompted and ensure that the " "port being used by ParlAI (usually 3000) has external " "traffic routed to it.", should_print=True, ) input('Please press Enter to continue... ') mturk_utils.setup_aws_credentials() # See if there's enough money in the account to fund the HITs requested num_assignments = self.required_hits payment_opt = { 'type': 'reward', 'num_total_assignments': num_assignments, 'reward': self.opt['reward'], # in dollars } total_cost = mturk_utils.calculate_mturk_cost(payment_opt=payment_opt) if not mturk_utils.check_mturk_balance( balance_needed=total_cost, is_sandbox=self.opt['is_sandbox'] ): raise SystemExit('Insufficient funds') if (not self.opt['is_sandbox']) and ( total_cost > 100 or self.opt['reward'] > 1 ): confirm_string = '$%.2f' % total_cost expected_cost = total_cost / self.hit_mult expected_string = '$%.2f' % expected_cost shared_utils.print_and_log( logging.INFO, 'You are going to create {} HITs at {} per assignment, for a ' 'total cost up to {} after MTurk fees. Please enter "{}" to ' 'confirm and continue, and anything else to cancel.\nNote that' ' of the {}, the target amount to spend is {}.'.format( self.required_hits, '$%.2f' % self.opt['reward'], confirm_string, confirm_string, confirm_string, expected_string, ), should_print=True, ) check = input('Enter here: ') if check != confirm_string and ('$' + check) != confirm_string: raise SystemExit('Cancelling') # Check to see if there are any additional notices on the parlai site if not self.is_test: shared_utils.print_and_log( logging.INFO, 'Querying the parlai website for possible notices...', should_print=True, ) endpoint = 'sandbox' if self.is_sandbox else 'live' notice_url = PARLAI_MTURK_NOTICE_URL + endpoint try: import parlai_internal.mturk.configs as local_configs notice_url = local_configs.get_true_url(notice_url) except Exception: # not all users will be drawing configs from internal settings pass try: resp = requests.post(notice_url) warnings = resp.json() for warn in warnings: print('Notice: ' + warn) accept = input('Continue? (Y/n): ') if accept == 'n': raise SystemExit('Additional notice was rejected.') except Exception: print('Unable to query warnings from the parl.ai website.') accept = input('Continue without checking warnings? (Y/n): ') if accept == 'n': raise SystemExit('Aborted.') self.logging_permitted = self._logging_permission_check() shared_utils.print_and_log( logging.INFO, 'Setting up MTurk server...', should_print=True ) self.is_unique = self.opt['unique_worker'] self.max_hits_per_worker = self.opt.get('max_hits_per_worker', 0) mturk_utils.create_hit_config( opt=self.opt, task_description=self.opt['task_description'], unique_worker=self.is_unique, is_sandbox=self.opt['is_sandbox'], ) # Setup the server with a likely-unique app-name task_name = '{}-{}'.format(str(uuid.uuid4())[:8], self.opt['task']) self.server_task_name = ''.join( e for e in task_name.lower() if e.isalnum() or e == '-' ) if 'heroku_team' in self.opt: heroku_team = self.opt['heroku_team'] else: heroku_team = None assert self.opt.get('frontend_version', 0) > 0, ( 'Tasks requiring the legacy frontend have to use the legacy ' 'infrastructure. This can be done by importing from ' 'parlai.mturk.core.legacy_2018.mturk_manager in your run code.' ) self.populate_task_files(task_directory_path) self.server_url = server_utils.setup_server( self.server_task_name, self.task_files_to_copy, self.opt['local'], heroku_team, self.opt['hobby'], tmp_dir=self.opt['tmp_dir'], ) shared_utils.print_and_log(logging.INFO, self.server_url) shared_utils.print_and_log( logging.INFO, "MTurk server setup done.\n", should_print=True ) self.task_state = self.STATE_SERVER_ALIVE def start_new_run(self): """Clear state to prepare for a new run""" assert self.task_state >= self.STATE_SERVER_ALIVE, ( 'Cannot start a run before having a running server using ' '`mturk_manager.setup_server()` first.' ) self.run_id = str(int(time.time())) self.task_group_id = '{}_{}'.format(self.opt['task'], self.run_id) self._init_state() try: self.topic_arn = mturk_utils.setup_sns_topic( self.opt['task'], self.server_url, self.task_group_id ) except Exception as e: self.topic_arn = None shared_utils.print_and_log( logging.WARN, 'Botocore couldn\'t subscribe to HIT events, ' 'perhaps you tried to register to localhost?', should_print=True, ) print(repr(e)) if self.db_logger is not None: self.db_logger.log_new_run(self.required_hits, self.opt['task']) self.task_state = self.STATE_INIT_RUN def ready_to_accept_workers(self, timeout_seconds=None): """Set up socket to start communicating to workers""" assert self.task_state >= self.STATE_INIT_RUN, ( 'Cannot be ready to accept workers before starting a run with ' '`mturk_manager.start_new_run()` first.' ) shared_utils.print_and_log( logging.INFO, 'Local: Setting up WebSocket...', not self.is_test ) self._setup_socket(timeout_seconds=timeout_seconds) shared_utils.print_and_log(logging.INFO, 'WebSocket set up!', should_print=True) # Just in case create_hits was called first. To be removed when that # workflow is no longer supported if self.STATE_ACCEPTING_WORKERS > self.task_state: self.task_state = self.STATE_ACCEPTING_WORKERS def set_get_onboard_world(self, get_onboard_world): self.get_onboard_world = get_onboard_world def move_agent_to_task(self, agent, new_conversation_id): agent.set_status( AssignState.STATUS_IN_TASK, conversation_id=new_conversation_id, agent_id=agent.id, ) # Remove selected agents from the pool self._remove_from_agent_pool(agent) def start_task(self, eligibility_function, assign_role_function, get_task_world): """Handle running a task by checking to see when enough agents are in the pool to start an instance of the task. Continue doing this until the desired number of conversations is had. """ assert self.task_state >= self.STATE_HITS_MADE, ( 'Must have launched HITs with `mturk_manager.create_hits`' ' to start the task' ) if callable(eligibility_function): # Convert legacy eligibility_functions to the new format eligibility_function = {'multiple': False, 'func': eligibility_function} else: # Ensure the eligibility function is valid if 'func' not in eligibility_function: shared_utils.print_and_log( logging.CRITICAL, "eligibility_function has no 'func'. Cancelling." ) raise Exception( 'eligibility_function dict must contain a `func` field ' 'containing the actual function.' ) elif not callable(eligibility_function['func']): shared_utils.print_and_log( logging.CRITICAL, "eligibility_function['func'] not a function. Cancelling.", ) raise Exception( "eligibility_function['func'] must contain a function. " "If eligibility_function['multiple'] is set, it should " "filter through the list of workers and only return those " "that are currently eligible to participate. If it is not " "set, it should take in a single worker and return whether" " or not they are eligible." ) if 'multiple' not in eligibility_function: eligibility_function['multiple'] = False def _task_function(opt, agents, conversation_id): """Wait for agents to join the world, then run task function""" shared_utils.print_and_log( logging.INFO, 'Starting task {}...'.format(conversation_id) ) shared_utils.print_and_log( logging.DEBUG, 'Waiting for all agents to join the conversation...' ) start_time = time.time() while True: all_joined = True for agent in agents: # check the status of an individual agent assignment if agent.get_status() != AssignState.STATUS_IN_TASK: all_joined = False if all_joined: break if time.time() - start_time > WORLD_START_TIMEOUT: # We waited but not all agents rejoined, throw agents # back into the waiting pool. Stragglers will disconnect # from there shared_utils.print_and_log( logging.INFO, 'Timeout waiting for {}, move back to waiting'.format( conversation_id ), ) self._move_agents_to_waiting(agents) return time.sleep(shared_utils.THREAD_SHORT_SLEEP) shared_utils.print_and_log( logging.INFO, 'All agents joined the conversation {}!'.format(conversation_id), ) self.started_conversations += 1 world = get_task_world(mturk_manager=self, opt=opt, workers=agents) # run the world to completion or error try: while not world.episode_done(): world.parley() except AgentTimeoutError as e: self.handle_turker_timeout(e.worker_id, e.assignment_id) except AbsentAgentError: pass # disconnect already managed # shutdown and review the work world.shutdown() world.review_work() # Return the contents for saving save_data = world.prep_save_data(agents) if save_data is not None: MTurkDataHandler.save_world_data( save_data, self.task_group_id, conversation_id, sandbox=self.is_sandbox, ) # Delete extra state data that is now unneeded for agent in agents: agent.clear_messages() # Count if it's a completed conversation if self._no_agents_incomplete(agents): self.completed_conversations += 1 if self.opt['max_connections'] > 0: # If using a conv cap if self.accepting_workers: # if still looking for new agents for agent in agents: if agent.submitted_hit(): self.create_additional_hits(1) if self.db_logger is not None: self._maintain_hit_status() while not self.is_shutdown: if self.has_time_limit: self._check_time_limit() # Loop forever starting task worlds until desired convos are had with self.agent_pool_change_condition: valid_agents = self._get_unique_pool(eligibility_function) needed_agents = len(self.mturk_agent_ids) if len(valid_agents) >= needed_agents: # enough agents in pool to start new conversation self.conversation_index += 1 new_conversation_id = 't_{}'.format(self.conversation_index) # Add the required number of valid agents to the conv agents = [a for a in valid_agents[:needed_agents]] assign_role_function(agents) # Allow task creator to filter out agents and run # versions of the task that require fewer agents agents = [a for a in agents if a.id is not None] for agent in agents: self.move_agent_to_task(agent, new_conversation_id) # Start a new thread for this task world task_thread = threading.Thread( target=_task_function, args=(self.opt, agents, new_conversation_id), name='task-{}'.format(new_conversation_id), ) task_thread.daemon = True task_thread.start() self.task_threads.append(task_thread) # Once we've had enough conversations, finish and break compare_count = self.started_conversations if self.opt['count_complete']: compare_count = self.completed_conversations if compare_count >= self.num_conversations: self.accepting_workers = False self.expire_all_unassigned_hits() self._expire_onboarding_pool() self._expire_agent_pool() # Wait for all conversations to finish, then break from # the while loop for thread in self.task_threads: thread.join() break time.sleep(shared_utils.THREAD_MEDIUM_SLEEP) def _wait_for_task_expirations(self): """Wait for the full task duration to ensure anyone who sees the task has it expired, and ensures that all tasks are properly expired """ start_time = time.time() min_wait = self.opt['assignment_duration_in_seconds'] while time.time() - start_time < min_wait and len(self.hit_id_list) > 0: self.expire_all_unassigned_hits() time.sleep(max(self.opt['assignment_duration_in_seconds'] / 60, 0.1)) def shutdown(self, force=False): """Handle any mturk client shutdown cleanup.""" # Ensure all threads are cleaned and state and HITs are handled if self.is_shutdown and not force: return self.is_shutdown = True try: self.expire_all_unassigned_hits() self._expire_onboarding_pool() self._expire_agent_pool() self._wait_for_task_expirations() for assignment_id in self.assignment_to_onboard_thread: self.assignment_to_onboard_thread[assignment_id].join() except BaseException: pass finally: if self.server_task_name is not None: server_utils.delete_server( self.server_task_name, self.opt['local'], tmp_dir=self.opt['tmp_dir'], ) if self.topic_arn is not None: mturk_utils.delete_sns_topic(self.topic_arn) if self.opt['unique_worker'] and not self.opt['unique_qual_name']: mturk_utils.delete_qualification(self.unique_qual_id, self.is_sandbox) if self.socket_manager is not None: self.socket_manager.shutdown() if self.logging_permitted and not self.is_sandbox and not self.is_test: self._upload_worker_data() if self.worker_manager is not None: self.worker_manager.shutdown() # MTurk Agent Interaction Functions # def force_expire_hit(self, worker_id, assign_id, text=None, ack_func=None): """Send a command to expire a hit to the provided agent, update State to reflect that the HIT is now expired """ # Expire in the state agent = self.worker_manager._get_agent(worker_id, assign_id) if agent is not None: if agent.is_final(): return agent.set_status(AssignState.STATUS_EXPIRED) agent.hit_is_expired = True if ack_func is None: def use_ack_func(*args): self.socket_manager.close_channel('{}_{}'.format(worker_id, assign_id)) else: def use_ack_func(*args): ack_func(*args) self.socket_manager.close_channel('{}_{}'.format(worker_id, assign_id)) # Send the expiration command if text is None: text = ( 'This HIT is expired, please return and take a new ' 'one if you\'d want to work on this task.' ) data = {'agent_status': AssignState.STATUS_EXPIRED, 'done_text': text} self.send_state_change(worker_id, assign_id, data, ack_func=use_ack_func) def handle_turker_timeout(self, worker_id, assign_id): """To be used by the MTurk agent when the worker doesn't send a message within the expected window. """ # Expire the hit for the disconnected user text = ( 'You haven\'t entered a message in too long. As these HITs ' ' often require real-time interaction, this hit has ' 'been expired and you have been considered disconnected. ' 'Disconnect too frequently and you will be blocked from ' 'working on these HITs in the future.' ) self.force_expire_hit(worker_id, assign_id, text) # Send the disconnect event to all workers in the convo self._handle_agent_disconnect(worker_id, assign_id) def send_message( self, receiver_id, assignment_id, data, blocking=True, ack_func=None ): """Send a message through the socket manager, update conversation state """ data = data.copy() # Ensure data packet is sent in current state data['type'] = data_model.MESSAGE_TYPE_ACT # Force messages to have a unique ID if 'message_id' not in data: data['message_id'] = str(uuid.uuid4()) conversation_id = None agent = self.worker_manager._get_agent(receiver_id, assignment_id) if agent is not None: conversation_id = agent.conversation_id event_id = shared_utils.generate_event_id(receiver_id) packet = Packet( event_id, data_model.WORLD_MESSAGE, self.socket_manager.get_my_sender_id(), receiver_id, assignment_id, data, conversation_id=conversation_id, ack_func=ack_func, ) shared_utils.print_and_log( logging.INFO, 'Manager sending: {}'.format(packet), should_print=self.opt['verbose'], ) self.socket_manager.queue_packet(packet) return data['message_id'] def send_command( self, receiver_id, assignment_id, data, blocking=True, ack_func=None ): """Sends a command through the socket manager, update conversation state """ data['type'] = data_model.MESSAGE_TYPE_COMMAND event_id = shared_utils.generate_event_id(receiver_id) conversation_id = None agent = self.worker_manager._get_agent(receiver_id, assignment_id) if agent is not None: conversation_id = agent.conversation_id packet = Packet( event_id, data_model.WORLD_MESSAGE, self.socket_manager.get_my_sender_id(), receiver_id, assignment_id, data, conversation_id=conversation_id, ack_func=ack_func, ) self.socket_manager.queue_packet(packet) def send_state_change(self, receiver_id, assignment_id, data, ack_func=None): """Send an updated state to the server to push to the agent""" event_id = shared_utils.generate_event_id(receiver_id) packet = Packet( event_id, data_model.AGENT_STATE_CHANGE, self.socket_manager.get_my_sender_id(), receiver_id, assignment_id, data, ack_func=ack_func, ) self.socket_manager.queue_packet(packet) def mark_workers_done(self, workers): """Mark a group of agents as done to keep state consistent""" for agent in workers: if self.is_unique: assert ( self.unique_qual_name is not None ), 'Unique qual name must not be none to use is_unique' self.give_worker_qualification(agent.worker_id, self.unique_qual_name) if not agent.is_final(): agent.set_status(AssignState.STATUS_DONE, 'done', None) if self.max_hits_per_worker > 0: worker_state = self.worker_manager._get_worker(agent.worker_id) completed_assignments = worker_state.completed_assignments() assert self.unique_qual_name is not None, ( 'Unique qual name ' 'must not be none to use max_hits_per_worker' ) if completed_assignments >= self.max_hits_per_worker: self.give_worker_qualification( agent.worker_id, self.unique_qual_name ) if self.has_time_limit: self._log_working_time(agent) def free_workers(self, workers): """End completed worker threads""" for agent in workers: self.socket_manager.close_channel(agent.get_connection_id()) # Amazon MTurk Server Functions # def get_qualification_list(self, qualifications=None): if self.qualifications is not None: return self.qualifications.copy() if qualifications is None: qualifications = [] if not self.is_sandbox and not self.is_test: try: import parlai_internal.mturk.configs as local_configs qualifications = local_configs.set_default_qualifications( qualifications ) except Exception: # not all users will be drawing configs from internal settings pass if self.opt['disconnect_qualification'] is not None: block_qual_id = mturk_utils.find_or_create_qualification( self.opt['disconnect_qualification'], 'A soft ban from using a ParlAI-created HIT due to frequent ' 'disconnects from conversations, leading to negative ' 'experiences for other Turkers and for the requester.', self.is_sandbox, ) assert block_qual_id is not None, ( 'Hits could not be created as disconnect qualification could ' 'not be acquired. Shutting down server.' ) qualifications.append( { 'QualificationTypeId': block_qual_id, 'Comparator': 'DoesNotExist', 'ActionsGuarded': 'DiscoverPreviewAndAccept', } ) # Add the soft block qualification if it has been specified if self.opt['block_qualification'] is not None: block_qual_id = mturk_utils.find_or_create_qualification( self.opt['block_qualification'], 'A soft ban from this ParlAI-created HIT at the requesters ' 'discretion. Generally used to restrict how frequently a ' 'particular worker can work on a particular task.', self.is_sandbox, ) assert block_qual_id is not None, ( 'Hits could not be created as block qualification could not be' ' acquired. Shutting down server.' ) qualifications.append( { 'QualificationTypeId': block_qual_id, 'Comparator': 'DoesNotExist', 'ActionsGuarded': 'DiscoverPreviewAndAccept', } ) if self.has_time_limit: block_qual_name = '{}-max-daily-time'.format(self.task_group_id) if self.opt['max_time_qual'] is not None: block_qual_name = self.opt['max_time_qual'] self.max_time_qual = block_qual_name block_qual_id = mturk_utils.find_or_create_qualification( block_qual_name, 'A soft ban from working on this HIT or HITs by this ' 'requester based on a maximum amount of daily work time set ' 'by the requester.', self.is_sandbox, ) assert block_qual_id is not None, ( 'Hits could not be created as a time block qualification could' ' not be acquired. Shutting down server.' ) qualifications.append( { 'QualificationTypeId': block_qual_id, 'Comparator': 'DoesNotExist', 'ActionsGuarded': 'DiscoverPreviewAndAccept', } ) if self.is_unique or self.max_hits_per_worker > 0: self.unique_qual_name = self.opt.get('unique_qual_name') if self.unique_qual_name is None: self.unique_qual_name = self.task_group_id + '_max_submissions' self.unique_qual_id = mturk_utils.find_or_create_qualification( self.unique_qual_name, 'Prevents workers from completing a task too frequently', self.is_sandbox, ) qualifications.append( { 'QualificationTypeId': self.unique_qual_id, 'Comparator': 'DoesNotExist', 'ActionsGuarded': 'DiscoverPreviewAndAccept', } ) self.qualifications = qualifications return qualifications.copy() def create_additional_hits(self, num_hits, qualifications=None): """Handle creation for a specific number of hits/assignments Put created HIT ids into the hit_id_list """ shared_utils.print_and_log(logging.INFO, 'Creating {} hits...'.format(num_hits)) qualifications = self.get_qualification_list(qualifications) self.opt['assignment_duration_in_seconds'] = self.opt.get( 'assignment_duration_in_seconds', 30 * 60 ) hit_type_id = mturk_utils.create_hit_type( hit_title=self.opt['hit_title'], hit_description='{} (ID: {})'.format( self.opt['hit_description'], self.task_group_id ), hit_keywords=self.opt['hit_keywords'], hit_reward=self.opt['reward'], # Set to 30 minutes by default assignment_duration_in_seconds=self.opt.get( 'assignment_duration_in_seconds', 30 * 60 ), is_sandbox=self.opt['is_sandbox'], qualifications=qualifications, auto_approve_delay=self.auto_approve_delay, ) mturk_chat_url = '{}/chat_index?task_group_id={}'.format( self.server_url, self.task_group_id ) shared_utils.print_and_log(logging.INFO, mturk_chat_url) mturk_page_url = None if self.topic_arn is not None: mturk_utils.subscribe_to_hits(hit_type_id, self.is_sandbox, self.topic_arn) for _i in range(num_hits): mturk_page_url, hit_id, mturk_response = mturk_utils.create_hit_with_hit_type( opt=self.opt, page_url=mturk_chat_url, hit_type_id=hit_type_id, num_assignments=1, is_sandbox=self.is_sandbox, ) if self.db_logger is not None: self.db_logger.log_hit_status(mturk_response) self.hit_id_list.append(hit_id) return mturk_page_url def create_hits(self, qualifications=None): """Create hits based on the managers current config, return hit url""" shared_utils.print_and_log(logging.INFO, 'Creating HITs...', True) if self.task_state < self.STATE_ACCEPTING_WORKERS: shared_utils.print_and_log( logging.WARN, 'You should be calling `ready_to_accept_workers` before ' '`create_hits` to ensure that the socket is connected before' 'hits are added. This will be enforced in future versions.', True, ) if self.opt['max_connections'] == 0: mturk_page_url = self.create_additional_hits( num_hits=self.required_hits, qualifications=qualifications ) else: mturk_page_url = self.create_additional_hits( num_hits=min(self.required_hits, self.opt['max_connections']), qualifications=qualifications, ) shared_utils.print_and_log( logging.INFO, 'Link to HIT: {}\n'.format(mturk_page_url), should_print=True ) shared_utils.print_and_log( logging.INFO, 'Waiting for Turkers to respond... (Please don\'t close' ' your laptop or put your computer into sleep or standby mode.)\n', should_print=True, ) self.task_state = self.STATE_HITS_MADE return mturk_page_url def get_hit(self, hit_id): """Get hit from mturk by hit_id""" client = mturk_utils.get_mturk_client(self.is_sandbox) hit = client.get_hit(HITId=hit_id) if self.db_logger is not None: try: self.db_logger.log_hit_status(hit) except Exception: pass return hit def get_assignment(self, assignment_id): """Gets assignment from mturk by assignment_id. Only works if the assignment is in a completed state """ client = mturk_utils.get_mturk_client(self.is_sandbox) return client.get_assignment(AssignmentId=assignment_id) def get_assignments_for_hit(self, hit_id): """Get completed assignments for a hit""" client = mturk_utils.get_mturk_client(self.is_sandbox) assignments_info = client.list_assignments_for_hit(HITId=hit_id) return assignments_info.get('Assignments', []) def expire_all_unassigned_hits(self): """Move through the whole hit_id list and attempt to expire the HITs, though this only immediately expires those that aren't assigned. """ # TODO note and mark assigned hits as ones to be expired later. # this will improve the shutdown experience shared_utils.print_and_log( logging.INFO, 'Expiring all unassigned HITs...', should_print=not self.is_test, ) completed_ids = self.worker_manager.get_complete_hits() for hit_id in self.hit_id_list: if hit_id not in completed_ids: # TODO get confirmation that the HIT is acutally expired mturk_utils.expire_hit(self.is_sandbox, hit_id) def approve_work(self, assignment_id, override_rejection=False): """approve work for a given assignment through the mturk client""" client = mturk_utils.get_mturk_client(self.is_sandbox) client.approve_assignment( AssignmentId=assignment_id, OverrideRejection=override_rejection ) if self.db_logger is not None: self.db_logger.log_approve_assignment(assignment_id) shared_utils.print_and_log( logging.INFO, 'Assignment {} approved.' ''.format(assignment_id) ) def reject_work(self, assignment_id, reason): """reject work for a given assignment through the mturk client""" client = mturk_utils.get_mturk_client(self.is_sandbox) client.reject_assignment(AssignmentId=assignment_id, RequesterFeedback=reason) if self.db_logger is not None: self.db_logger.log_reject_assignment(assignment_id) shared_utils.print_and_log( logging.INFO, 'Assignment {} rejected for reason {}.' ''.format(assignment_id, reason), ) def approve_assignments_for_hit(self, hit_id, override_rejection=False): """Approve work for assignments associated with a given hit, through mturk client """ client = mturk_utils.get_mturk_client(self.is_sandbox) assignments = self.get_assignments_for_hit(hit_id) for assignment in assignments: assignment_id = assignment['AssignmentId'] client.approve_assignment( AssignmentId=assignment_id, OverrideRejection=override_rejection ) def block_worker(self, worker_id, reason): """Block a worker by id using the mturk client, passes reason along""" client = mturk_utils.get_mturk_client(self.is_sandbox) client.create_worker_block(WorkerId=worker_id, Reason=reason) shared_utils.print_and_log( logging.INFO, 'Worker {} blocked for reason {}.' ''.format(worker_id, reason), ) def soft_block_worker(self, worker_id, qual='block_qualification'): """Soft block a worker by giving the worker the block qualification""" qual_name = self.opt.get(qual, None) assert ( qual_name is not None ), 'No qualification {} has been specified' 'in opt'.format(qual) self.give_worker_qualification(worker_id, qual_name) def un_soft_block_worker(self, worker_id, qual='block_qualification'): """Remove a soft block from a worker by removing a block qualification from the worker""" qual_name = self.opt.get(qual, None) assert ( qual_name is not None ), 'No qualification {} has been specified' 'in opt'.format(qual) self.remove_worker_qualification(worker_id, qual_name) def give_worker_qualification(self, worker_id, qual_name, qual_value=None): """Give a worker a particular qualification""" qual_id = mturk_utils.find_qualification(qual_name, self.is_sandbox) if qual_id is False or qual_id is None: shared_utils.print_and_log( logging.WARN, 'Could not give worker {} qualification {}, as the ' 'qualification could not be found to exist.' ''.format(worker_id, qual_name), should_print=True, ) return mturk_utils.give_worker_qualification( worker_id, qual_id, qual_value, self.is_sandbox ) shared_utils.print_and_log( logging.INFO, 'gave {} qualification {}'.format(worker_id, qual_name), should_print=True, ) def remove_worker_qualification(self, worker_id, qual_name, reason=''): """Remove a qualification from a worker""" qual_id = mturk_utils.find_qualification(qual_name, self.is_sandbox) if qual_id is False or qual_id is None: shared_utils.print_and_log( logging.WARN, 'Could not remove from worker {} qualification {}, as the ' 'qualification could not be found to exist.' ''.format(worker_id, qual_name), should_print=True, ) return try: mturk_utils.remove_worker_qualification( worker_id, qual_id, self.is_sandbox, reason ) shared_utils.print_and_log( logging.INFO, 'removed {}\'s qualification {}'.format(worker_id, qual_name), should_print=True, ) except Exception as e: shared_utils.print_and_log( logging.WARN if not self.has_time_limit else logging.INFO, 'removing {}\'s qualification {} failed with error {}. This ' 'can be because the worker didn\'t have that qualification.' ''.format(worker_id, qual_name, repr(e)), should_print=True, ) def create_qualification(self, qualification_name, description, can_exist=True): """Create a new qualification. If can_exist is set, simply return the ID of the existing qualification rather than throw an error """ if not can_exist: qual_id = mturk_utils.find_qualification( qualification_name, self.is_sandbox ) if qual_id is not None: shared_utils.print_and_log( logging.WARN, 'Could not create qualification {}, as it existed' ''.format(qualification_name), should_print=True, ) return None return mturk_utils.find_or_create_qualification( qualification_name, description, self.is_sandbox ) def pay_bonus( self, worker_id, bonus_amount, assignment_id, reason, unique_request_token ): """Handles paying bonus to a turker, fails for insufficient funds. Returns True on success and False on failure """ total_cost = mturk_utils.calculate_mturk_cost( payment_opt={'type': 'bonus', 'amount': bonus_amount} ) if not mturk_utils.check_mturk_balance( balance_needed=total_cost, is_sandbox=self.is_sandbox ): shared_utils.print_and_log( logging.WARN, 'Cannot pay bonus. Reason: Insufficient ' 'funds in your MTurk account.', should_print=True, ) return False client = mturk_utils.get_mturk_client(self.is_sandbox) # unique_request_token may be useful for handling future network errors client.send_bonus( WorkerId=worker_id, BonusAmount=str(bonus_amount), AssignmentId=assignment_id, Reason=reason, UniqueRequestToken=unique_request_token, ) if self.db_logger is not None: self.db_logger.log_pay_extra_bonus( worker_id, assignment_id, bonus_amount, reason ) shared_utils.print_and_log( logging.INFO, 'Paid ${} bonus to WorkerId: {}'.format(bonus_amount, worker_id), ) return True def email_worker(self, worker_id, subject, message_text): """Send an email to a worker through the mturk client""" client = mturk_utils.get_mturk_client(self.is_sandbox) response = client.notify_workers( Subject=subject, MessageText=message_text, WorkerIds=[worker_id] ) if len(response['NotifyWorkersFailureStatuses']) > 0: failure_message = response['NotifyWorkersFailureStatuses'][0] return {'failure': failure_message['NotifyWorkersFailureMessage']} else: return {'success': True} # TODO consolidate base functionality out of this class and above into a # base_crowd_manager and then expand out from there. class StaticMTurkManager(MTurkManager): """Manages interactions between MTurk agents and tasks, the task launching workflow, and more, but only for tasks that require just 2 connections to the server: an initial task request and the submission of results """ def __init__(self, opt, is_test=False): """No interaction means only ever one agent, so that's what we get""" opt['max_connections'] = 0 # Max connections doesn't make sense here opt['count_complete'] = True # No other way to count static HITs opt['frontend_template_type'] = 'static' super().__init__(opt, ['worker'], is_test, use_db=True) self.hit_mult = 1 # No need to pad HITs if they're static self.required_hits = self.num_conversations def _assert_opts(self): """Manages ensuring everything about the passed in options make sense in that they don't conflict in some way or another""" if self.opt.get('allow_reviews'): shared_utils.print_and_log( logging.WARN, '[OPT CONFIGURATION ISSUE] ' 'allow_reviews is not supported on single person tasks.', should_print=True, ) self.opt['allow_reviews'] = False if self.opt.get('frontend_version', 0) < 1: shared_utils.print_and_log( logging.WARN, '[OPT CONFIGURATION ISSUE] ' 'Static tasks must use the react version of the frontend.', should_print=True, ) raise Exception('Invalid mturk manager options') def _onboard_new_agent(self, agent): """Override onboarding to go straight to the pool for static stasks """ self._add_agent_to_pool(agent)
42.352495
90
0.597314
7948075596ed9ec404c366cc48003cf22bfdb57c
52,825
py
Python
pysnmp/Nortel-Magellan-Passport-X25TraceRcvrMIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
11
2021-02-02T16:27:16.000Z
2021-08-31T06:22:49.000Z
pysnmp/Nortel-Magellan-Passport-X25TraceRcvrMIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
75
2021-02-24T17:30:31.000Z
2021-12-08T00:01:18.000Z
pysnmp/Nortel-Magellan-Passport-X25TraceRcvrMIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
10
2019-04-30T05:51:36.000Z
2022-02-16T03:33:41.000Z
# # PySNMP MIB module Nortel-Magellan-Passport-X25TraceRcvrMIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/Nortel-Magellan-Passport-X25TraceRcvrMIB # Produced by pysmi-0.3.4 at Mon Apr 29 20:19:26 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, ObjectIdentifier, OctetString = mibBuilder.importSymbols("ASN1", "Integer", "ObjectIdentifier", "OctetString") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsUnion, ConstraintsIntersection, ValueRangeConstraint, ValueSizeConstraint, SingleValueConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsUnion", "ConstraintsIntersection", "ValueRangeConstraint", "ValueSizeConstraint", "SingleValueConstraint") DisplayString, Integer32, StorageType, Unsigned32, RowStatus = mibBuilder.importSymbols("Nortel-Magellan-Passport-StandardTextualConventionsMIB", "DisplayString", "Integer32", "StorageType", "Unsigned32", "RowStatus") Hex, EnterpriseDateAndTime, HexString, DigitString, NonReplicated = mibBuilder.importSymbols("Nortel-Magellan-Passport-TextualConventionsMIB", "Hex", "EnterpriseDateAndTime", "HexString", "DigitString", "NonReplicated") traceIndex, traceRcvrIndex, traceSession, traceSessionIndex, traceRcvr = mibBuilder.importSymbols("Nortel-Magellan-Passport-TraceBaseMIB", "traceIndex", "traceRcvrIndex", "traceSession", "traceSessionIndex", "traceRcvr") passportMIBs, = mibBuilder.importSymbols("Nortel-Magellan-Passport-UsefulDefinitionsMIB", "passportMIBs") NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance") Counter32, Gauge32, iso, MibScalar, MibTable, MibTableRow, MibTableColumn, Integer32, Counter64, ModuleIdentity, Bits, MibIdentifier, Unsigned32, NotificationType, TimeTicks, ObjectIdentity, IpAddress = mibBuilder.importSymbols("SNMPv2-SMI", "Counter32", "Gauge32", "iso", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Integer32", "Counter64", "ModuleIdentity", "Bits", "MibIdentifier", "Unsigned32", "NotificationType", "TimeTicks", "ObjectIdentity", "IpAddress") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") x25TraceRcvrMIB = MibIdentifier((1, 3, 6, 1, 4, 1, 562, 2, 4, 2, 62)) traceRcvrX25 = MibIdentifier((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2)) traceRcvrX25RowStatusTable = MibTable((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 1), ) if mibBuilder.loadTexts: traceRcvrX25RowStatusTable.setStatus('mandatory') traceRcvrX25RowStatusEntry = MibTableRow((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 1, 1), ).setIndexNames((0, "Nortel-Magellan-Passport-TraceBaseMIB", "traceIndex"), (0, "Nortel-Magellan-Passport-TraceBaseMIB", "traceRcvrIndex"), (0, "Nortel-Magellan-Passport-X25TraceRcvrMIB", "traceRcvrX25Index")) if mibBuilder.loadTexts: traceRcvrX25RowStatusEntry.setStatus('mandatory') traceRcvrX25RowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 1, 1, 1), RowStatus()).setMaxAccess("readwrite") if mibBuilder.loadTexts: traceRcvrX25RowStatus.setStatus('mandatory') traceRcvrX25ComponentName = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 1, 1, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: traceRcvrX25ComponentName.setStatus('mandatory') traceRcvrX25StorageType = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 1, 1, 4), StorageType()).setMaxAccess("readonly") if mibBuilder.loadTexts: traceRcvrX25StorageType.setStatus('mandatory') traceRcvrX25Index = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 1, 1, 10), NonReplicated()) if mibBuilder.loadTexts: traceRcvrX25Index.setStatus('mandatory') traceRcvrX25Dna = MibIdentifier((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2)) traceRcvrX25DnaRowStatusTable = MibTable((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 1), ) if mibBuilder.loadTexts: traceRcvrX25DnaRowStatusTable.setStatus('mandatory') traceRcvrX25DnaRowStatusEntry = MibTableRow((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 1, 1), ).setIndexNames((0, "Nortel-Magellan-Passport-TraceBaseMIB", "traceIndex"), (0, "Nortel-Magellan-Passport-TraceBaseMIB", "traceRcvrIndex"), (0, "Nortel-Magellan-Passport-X25TraceRcvrMIB", "traceRcvrX25Index"), (0, "Nortel-Magellan-Passport-X25TraceRcvrMIB", "traceRcvrX25DnaIndex")) if mibBuilder.loadTexts: traceRcvrX25DnaRowStatusEntry.setStatus('mandatory') traceRcvrX25DnaRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 1, 1, 1), RowStatus()).setMaxAccess("readonly") if mibBuilder.loadTexts: traceRcvrX25DnaRowStatus.setStatus('mandatory') traceRcvrX25DnaComponentName = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 1, 1, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: traceRcvrX25DnaComponentName.setStatus('mandatory') traceRcvrX25DnaStorageType = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 1, 1, 4), StorageType()).setMaxAccess("readonly") if mibBuilder.loadTexts: traceRcvrX25DnaStorageType.setStatus('mandatory') traceRcvrX25DnaIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 1, 1, 10), NonReplicated()) if mibBuilder.loadTexts: traceRcvrX25DnaIndex.setStatus('mandatory') traceRcvrX25DnaAddressTable = MibTable((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 10), ) if mibBuilder.loadTexts: traceRcvrX25DnaAddressTable.setStatus('mandatory') traceRcvrX25DnaAddressEntry = MibTableRow((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 10, 1), ).setIndexNames((0, "Nortel-Magellan-Passport-TraceBaseMIB", "traceIndex"), (0, "Nortel-Magellan-Passport-TraceBaseMIB", "traceRcvrIndex"), (0, "Nortel-Magellan-Passport-X25TraceRcvrMIB", "traceRcvrX25Index"), (0, "Nortel-Magellan-Passport-X25TraceRcvrMIB", "traceRcvrX25DnaIndex")) if mibBuilder.loadTexts: traceRcvrX25DnaAddressEntry.setStatus('mandatory') traceRcvrX25DnaNumberingPlanIndicator = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 10, 1, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("x121", 0), ("e164", 1))).clone('x121')).setMaxAccess("readwrite") if mibBuilder.loadTexts: traceRcvrX25DnaNumberingPlanIndicator.setStatus('mandatory') traceRcvrX25DnaDataNetworkAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 10, 1, 2), DigitString().subtype(subtypeSpec=ValueSizeConstraint(1, 15))).setMaxAccess("readwrite") if mibBuilder.loadTexts: traceRcvrX25DnaDataNetworkAddress.setStatus('mandatory') traceRcvrX25DnaOutgoingOptionsTable = MibTable((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 11), ) if mibBuilder.loadTexts: traceRcvrX25DnaOutgoingOptionsTable.setStatus('mandatory') traceRcvrX25DnaOutgoingOptionsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 11, 1), ).setIndexNames((0, "Nortel-Magellan-Passport-TraceBaseMIB", "traceIndex"), (0, "Nortel-Magellan-Passport-TraceBaseMIB", "traceRcvrIndex"), (0, "Nortel-Magellan-Passport-X25TraceRcvrMIB", "traceRcvrX25Index"), (0, "Nortel-Magellan-Passport-X25TraceRcvrMIB", "traceRcvrX25DnaIndex")) if mibBuilder.loadTexts: traceRcvrX25DnaOutgoingOptionsEntry.setStatus('mandatory') traceRcvrX25DnaOutCalls = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 11, 1, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("disallowed", 0), ("allowed", 1))).clone('allowed')).setMaxAccess("readonly") if mibBuilder.loadTexts: traceRcvrX25DnaOutCalls.setStatus('mandatory') traceRcvrX25DnaOutDefaultPriority = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 11, 1, 7), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("normal", 0), ("high", 1))).clone('high')).setMaxAccess("readwrite") if mibBuilder.loadTexts: traceRcvrX25DnaOutDefaultPriority.setStatus('mandatory') traceRcvrX25DnaOutIntl = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 11, 1, 8), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("disallowed", 0), ("allowed", 1))).clone('allowed')).setMaxAccess("readonly") if mibBuilder.loadTexts: traceRcvrX25DnaOutIntl.setStatus('mandatory') traceRcvrX25DnaOutDefaultPathSensitivity = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 11, 1, 11), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("throughput", 0), ("delay", 1))).clone('throughput')).setMaxAccess("readonly") if mibBuilder.loadTexts: traceRcvrX25DnaOutDefaultPathSensitivity.setStatus('obsolete') traceRcvrX25DnaOutDefaultPathReliability = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 11, 1, 14), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("high", 0), ("normal", 1))).clone('high')).setMaxAccess("readonly") if mibBuilder.loadTexts: traceRcvrX25DnaOutDefaultPathReliability.setStatus('mandatory') traceRcvrX25DnaOutPathReliabilityOverRide = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 11, 1, 15), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("no", 0), ("yes", 1))).clone('no')).setMaxAccess("readonly") if mibBuilder.loadTexts: traceRcvrX25DnaOutPathReliabilityOverRide.setStatus('mandatory') traceRcvrX25DnaOutPathReliabilitySignal = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 11, 1, 16), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("disallowed", 0), ("allowed", 1))).clone('disallowed')).setMaxAccess("readonly") if mibBuilder.loadTexts: traceRcvrX25DnaOutPathReliabilitySignal.setStatus('mandatory') traceRcvrX25DnaOutAccess = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 11, 1, 17), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("disallowed", 0), ("allowed", 1))).clone('disallowed')).setMaxAccess("readwrite") if mibBuilder.loadTexts: traceRcvrX25DnaOutAccess.setStatus('mandatory') traceRcvrX25DnaIncomingOptionsTable = MibTable((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 12), ) if mibBuilder.loadTexts: traceRcvrX25DnaIncomingOptionsTable.setStatus('mandatory') traceRcvrX25DnaIncomingOptionsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 12, 1), ).setIndexNames((0, "Nortel-Magellan-Passport-TraceBaseMIB", "traceIndex"), (0, "Nortel-Magellan-Passport-TraceBaseMIB", "traceRcvrIndex"), (0, "Nortel-Magellan-Passport-X25TraceRcvrMIB", "traceRcvrX25Index"), (0, "Nortel-Magellan-Passport-X25TraceRcvrMIB", "traceRcvrX25DnaIndex")) if mibBuilder.loadTexts: traceRcvrX25DnaIncomingOptionsEntry.setStatus('mandatory') traceRcvrX25DnaIncCalls = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 12, 1, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("disallowed", 0), ("allowed", 1))).clone('disallowed')).setMaxAccess("readonly") if mibBuilder.loadTexts: traceRcvrX25DnaIncCalls.setStatus('mandatory') traceRcvrX25DnaCallOptionsTable = MibTable((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 13), ) if mibBuilder.loadTexts: traceRcvrX25DnaCallOptionsTable.setStatus('mandatory') traceRcvrX25DnaCallOptionsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 13, 1), ).setIndexNames((0, "Nortel-Magellan-Passport-TraceBaseMIB", "traceIndex"), (0, "Nortel-Magellan-Passport-TraceBaseMIB", "traceRcvrIndex"), (0, "Nortel-Magellan-Passport-X25TraceRcvrMIB", "traceRcvrX25Index"), (0, "Nortel-Magellan-Passport-X25TraceRcvrMIB", "traceRcvrX25DnaIndex")) if mibBuilder.loadTexts: traceRcvrX25DnaCallOptionsEntry.setStatus('mandatory') traceRcvrX25DnaPacketSizes = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 13, 1, 2), OctetString().subtype(subtypeSpec=ValueSizeConstraint(2, 2)).setFixedLength(2).clone(hexValue="0100")).setMaxAccess("readonly") if mibBuilder.loadTexts: traceRcvrX25DnaPacketSizes.setStatus('mandatory') traceRcvrX25DnaDefaultRecvFrmNetworkPacketSize = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 13, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(4, 5, 6, 7, 8, 9, 10, 11, 12))).clone(namedValues=NamedValues(("n16", 4), ("n32", 5), ("n64", 6), ("n128", 7), ("n256", 8), ("n512", 9), ("n1024", 10), ("n2048", 11), ("n4096", 12))).clone('n2048')).setMaxAccess("readonly") if mibBuilder.loadTexts: traceRcvrX25DnaDefaultRecvFrmNetworkPacketSize.setStatus('mandatory') traceRcvrX25DnaDefaultSendToNetworkPacketSize = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 13, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(4, 5, 6, 7, 8, 9, 10, 11, 12))).clone(namedValues=NamedValues(("n16", 4), ("n32", 5), ("n64", 6), ("n128", 7), ("n256", 8), ("n512", 9), ("n1024", 10), ("n2048", 11), ("n4096", 12))).clone('n2048')).setMaxAccess("readonly") if mibBuilder.loadTexts: traceRcvrX25DnaDefaultSendToNetworkPacketSize.setStatus('mandatory') traceRcvrX25DnaDefaultRecvFrmNetworkThruputClass = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 13, 1, 5), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 15)).clone(10)).setMaxAccess("readwrite") if mibBuilder.loadTexts: traceRcvrX25DnaDefaultRecvFrmNetworkThruputClass.setStatus('mandatory') traceRcvrX25DnaDefaultSendToNetworkThruputClass = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 13, 1, 6), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 15)).clone(10)).setMaxAccess("readwrite") if mibBuilder.loadTexts: traceRcvrX25DnaDefaultSendToNetworkThruputClass.setStatus('mandatory') traceRcvrX25DnaDefaultRecvFrmNetworkWindowSize = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 13, 1, 7), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 7)).clone(1)).setMaxAccess("readonly") if mibBuilder.loadTexts: traceRcvrX25DnaDefaultRecvFrmNetworkWindowSize.setStatus('mandatory') traceRcvrX25DnaDefaultSendToNetworkWindowSize = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 13, 1, 8), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 7)).clone(1)).setMaxAccess("readonly") if mibBuilder.loadTexts: traceRcvrX25DnaDefaultSendToNetworkWindowSize.setStatus('mandatory') traceRcvrX25DnaPacketSizeNegotiation = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 13, 1, 9), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("endToEnd", 0), ("local", 1))).clone('local')).setMaxAccess("readonly") if mibBuilder.loadTexts: traceRcvrX25DnaPacketSizeNegotiation.setStatus('mandatory') traceRcvrX25DnaCugFormat = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 13, 1, 10), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("basic", 0), ("extended", 1))).clone('basic')).setMaxAccess("readonly") if mibBuilder.loadTexts: traceRcvrX25DnaCugFormat.setStatus('mandatory') traceRcvrX25DnaCug = MibIdentifier((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 2)) traceRcvrX25DnaCugRowStatusTable = MibTable((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 2, 1), ) if mibBuilder.loadTexts: traceRcvrX25DnaCugRowStatusTable.setStatus('mandatory') traceRcvrX25DnaCugRowStatusEntry = MibTableRow((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 2, 1, 1), ).setIndexNames((0, "Nortel-Magellan-Passport-TraceBaseMIB", "traceIndex"), (0, "Nortel-Magellan-Passport-TraceBaseMIB", "traceRcvrIndex"), (0, "Nortel-Magellan-Passport-X25TraceRcvrMIB", "traceRcvrX25Index"), (0, "Nortel-Magellan-Passport-X25TraceRcvrMIB", "traceRcvrX25DnaIndex"), (0, "Nortel-Magellan-Passport-X25TraceRcvrMIB", "traceRcvrX25DnaCugIndex")) if mibBuilder.loadTexts: traceRcvrX25DnaCugRowStatusEntry.setStatus('mandatory') traceRcvrX25DnaCugRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 2, 1, 1, 1), RowStatus()).setMaxAccess("readwrite") if mibBuilder.loadTexts: traceRcvrX25DnaCugRowStatus.setStatus('mandatory') traceRcvrX25DnaCugComponentName = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 2, 1, 1, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: traceRcvrX25DnaCugComponentName.setStatus('mandatory') traceRcvrX25DnaCugStorageType = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 2, 1, 1, 4), StorageType()).setMaxAccess("readonly") if mibBuilder.loadTexts: traceRcvrX25DnaCugStorageType.setStatus('mandatory') traceRcvrX25DnaCugIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 2, 1, 1, 10), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 1))) if mibBuilder.loadTexts: traceRcvrX25DnaCugIndex.setStatus('mandatory') traceRcvrX25DnaCugCugOptionsTable = MibTable((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 2, 10), ) if mibBuilder.loadTexts: traceRcvrX25DnaCugCugOptionsTable.setStatus('mandatory') traceRcvrX25DnaCugCugOptionsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 2, 10, 1), ).setIndexNames((0, "Nortel-Magellan-Passport-TraceBaseMIB", "traceIndex"), (0, "Nortel-Magellan-Passport-TraceBaseMIB", "traceRcvrIndex"), (0, "Nortel-Magellan-Passport-X25TraceRcvrMIB", "traceRcvrX25Index"), (0, "Nortel-Magellan-Passport-X25TraceRcvrMIB", "traceRcvrX25DnaIndex"), (0, "Nortel-Magellan-Passport-X25TraceRcvrMIB", "traceRcvrX25DnaCugIndex")) if mibBuilder.loadTexts: traceRcvrX25DnaCugCugOptionsEntry.setStatus('mandatory') traceRcvrX25DnaCugType = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 2, 10, 1, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("national", 0), ("international", 1))).clone('national')).setMaxAccess("readwrite") if mibBuilder.loadTexts: traceRcvrX25DnaCugType.setStatus('mandatory') traceRcvrX25DnaCugDnic = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 2, 10, 1, 2), DigitString().subtype(subtypeSpec=ValueSizeConstraint(4, 4)).setFixedLength(4).clone(hexValue="30303030")).setMaxAccess("readwrite") if mibBuilder.loadTexts: traceRcvrX25DnaCugDnic.setStatus('mandatory') traceRcvrX25DnaCugInterlockCode = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 2, 10, 1, 3), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))).setMaxAccess("readwrite") if mibBuilder.loadTexts: traceRcvrX25DnaCugInterlockCode.setStatus('mandatory') traceRcvrX25DnaCugPreferential = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 2, 10, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("no", 0), ("yes", 1))).clone('yes')).setMaxAccess("readonly") if mibBuilder.loadTexts: traceRcvrX25DnaCugPreferential.setStatus('mandatory') traceRcvrX25DnaCugOutCalls = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 2, 10, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("disallowed", 0), ("allowed", 1))).clone('allowed')).setMaxAccess("readonly") if mibBuilder.loadTexts: traceRcvrX25DnaCugOutCalls.setStatus('mandatory') traceRcvrX25DnaCugIncCalls = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 2, 10, 1, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("disallowed", 0), ("allowed", 1))).clone('disallowed')).setMaxAccess("readonly") if mibBuilder.loadTexts: traceRcvrX25DnaCugIncCalls.setStatus('mandatory') traceRcvrX25DnaCugPrivileged = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 2, 2, 10, 1, 7), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("no", 0), ("yes", 1))).clone('yes')).setMaxAccess("readwrite") if mibBuilder.loadTexts: traceRcvrX25DnaCugPrivileged.setStatus('mandatory') traceRcvrX25Dc = MibIdentifier((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 3)) traceRcvrX25DcRowStatusTable = MibTable((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 3, 1), ) if mibBuilder.loadTexts: traceRcvrX25DcRowStatusTable.setStatus('mandatory') traceRcvrX25DcRowStatusEntry = MibTableRow((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 3, 1, 1), ).setIndexNames((0, "Nortel-Magellan-Passport-TraceBaseMIB", "traceIndex"), (0, "Nortel-Magellan-Passport-TraceBaseMIB", "traceRcvrIndex"), (0, "Nortel-Magellan-Passport-X25TraceRcvrMIB", "traceRcvrX25Index"), (0, "Nortel-Magellan-Passport-X25TraceRcvrMIB", "traceRcvrX25DcIndex")) if mibBuilder.loadTexts: traceRcvrX25DcRowStatusEntry.setStatus('mandatory') traceRcvrX25DcRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 3, 1, 1, 1), RowStatus()).setMaxAccess("readonly") if mibBuilder.loadTexts: traceRcvrX25DcRowStatus.setStatus('mandatory') traceRcvrX25DcComponentName = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 3, 1, 1, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: traceRcvrX25DcComponentName.setStatus('mandatory') traceRcvrX25DcStorageType = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 3, 1, 1, 4), StorageType()).setMaxAccess("readonly") if mibBuilder.loadTexts: traceRcvrX25DcStorageType.setStatus('mandatory') traceRcvrX25DcIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 3, 1, 1, 10), NonReplicated()) if mibBuilder.loadTexts: traceRcvrX25DcIndex.setStatus('mandatory') traceRcvrX25DcOptionsTable = MibTable((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 3, 10), ) if mibBuilder.loadTexts: traceRcvrX25DcOptionsTable.setStatus('mandatory') traceRcvrX25DcOptionsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 3, 10, 1), ).setIndexNames((0, "Nortel-Magellan-Passport-TraceBaseMIB", "traceIndex"), (0, "Nortel-Magellan-Passport-TraceBaseMIB", "traceRcvrIndex"), (0, "Nortel-Magellan-Passport-X25TraceRcvrMIB", "traceRcvrX25Index"), (0, "Nortel-Magellan-Passport-X25TraceRcvrMIB", "traceRcvrX25DcIndex")) if mibBuilder.loadTexts: traceRcvrX25DcOptionsEntry.setStatus('mandatory') traceRcvrX25DcRemoteNpi = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 3, 10, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("x121", 0), ("e164", 1))).clone('x121')).setMaxAccess("readwrite") if mibBuilder.loadTexts: traceRcvrX25DcRemoteNpi.setStatus('mandatory') traceRcvrX25DcRemoteDna = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 3, 10, 1, 4), DigitString().subtype(subtypeSpec=ValueSizeConstraint(1, 15))).setMaxAccess("readwrite") if mibBuilder.loadTexts: traceRcvrX25DcRemoteDna.setStatus('mandatory') traceRcvrX25DcType = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 3, 10, 1, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3))).clone(namedValues=NamedValues(("switched", 0), ("permanentMaster", 1), ("permanentSlave", 2), ("permanentBackupSlave", 3))).clone('switched')).setMaxAccess("readonly") if mibBuilder.loadTexts: traceRcvrX25DcType.setStatus('mandatory') traceRcvrX25DcUserData = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 2, 2, 3, 10, 1, 8), HexString().subtype(subtypeSpec=ValueSizeConstraint(0, 16)).clone(hexValue="")).setMaxAccess("readwrite") if mibBuilder.loadTexts: traceRcvrX25DcUserData.setStatus('mandatory') traceSessionX25 = MibIdentifier((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2)) traceSessionX25RowStatusTable = MibTable((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 1), ) if mibBuilder.loadTexts: traceSessionX25RowStatusTable.setStatus('mandatory') traceSessionX25RowStatusEntry = MibTableRow((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 1, 1), ).setIndexNames((0, "Nortel-Magellan-Passport-TraceBaseMIB", "traceIndex"), (0, "Nortel-Magellan-Passport-TraceBaseMIB", "traceSessionIndex"), (0, "Nortel-Magellan-Passport-X25TraceRcvrMIB", "traceSessionX25Index")) if mibBuilder.loadTexts: traceSessionX25RowStatusEntry.setStatus('mandatory') traceSessionX25RowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 1, 1, 1), RowStatus()).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25RowStatus.setStatus('mandatory') traceSessionX25ComponentName = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 1, 1, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25ComponentName.setStatus('mandatory') traceSessionX25StorageType = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 1, 1, 4), StorageType()).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25StorageType.setStatus('mandatory') traceSessionX25Index = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 1, 1, 10), NonReplicated()) if mibBuilder.loadTexts: traceSessionX25Index.setStatus('mandatory') traceSessionX25Vc = MibIdentifier((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2)) traceSessionX25VcRowStatusTable = MibTable((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 1), ) if mibBuilder.loadTexts: traceSessionX25VcRowStatusTable.setStatus('mandatory') traceSessionX25VcRowStatusEntry = MibTableRow((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 1, 1), ).setIndexNames((0, "Nortel-Magellan-Passport-TraceBaseMIB", "traceIndex"), (0, "Nortel-Magellan-Passport-TraceBaseMIB", "traceSessionIndex"), (0, "Nortel-Magellan-Passport-X25TraceRcvrMIB", "traceSessionX25Index"), (0, "Nortel-Magellan-Passport-X25TraceRcvrMIB", "traceSessionX25VcIndex")) if mibBuilder.loadTexts: traceSessionX25VcRowStatusEntry.setStatus('mandatory') traceSessionX25VcRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 1, 1, 1), RowStatus()).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcRowStatus.setStatus('mandatory') traceSessionX25VcComponentName = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 1, 1, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcComponentName.setStatus('mandatory') traceSessionX25VcStorageType = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 1, 1, 4), StorageType()).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcStorageType.setStatus('mandatory') traceSessionX25VcIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 1, 1, 10), NonReplicated()) if mibBuilder.loadTexts: traceSessionX25VcIndex.setStatus('mandatory') traceSessionX25VcCadTable = MibTable((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 10), ) if mibBuilder.loadTexts: traceSessionX25VcCadTable.setStatus('mandatory') traceSessionX25VcCadEntry = MibTableRow((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 10, 1), ).setIndexNames((0, "Nortel-Magellan-Passport-TraceBaseMIB", "traceIndex"), (0, "Nortel-Magellan-Passport-TraceBaseMIB", "traceSessionIndex"), (0, "Nortel-Magellan-Passport-X25TraceRcvrMIB", "traceSessionX25Index"), (0, "Nortel-Magellan-Passport-X25TraceRcvrMIB", "traceSessionX25VcIndex")) if mibBuilder.loadTexts: traceSessionX25VcCadEntry.setStatus('mandatory') traceSessionX25VcType = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 10, 1, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("svc", 0), ("pvc", 1)))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcType.setStatus('mandatory') traceSessionX25VcState = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 10, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 4, 5, 6, 7, 8))).clone(namedValues=NamedValues(("creating", 0), ("readyP1", 1), ("dteWaitingP2", 2), ("dceWaitingP3", 3), ("dataTransferP4", 4), ("unsupportedP5", 5), ("dteClearRequestP6", 6), ("dceClearIndicationP7", 7), ("termination", 8)))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcState.setStatus('mandatory') traceSessionX25VcPreviousState = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 10, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 4, 5, 6, 7, 8))).clone(namedValues=NamedValues(("creating", 0), ("readyP1", 1), ("dteWaitingP2", 2), ("dceWaitingP3", 3), ("dataTransferP4", 4), ("unsupportedP5", 5), ("dteClearRequestP6", 6), ("dceClearIndicationP7", 7), ("termination", 8)))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcPreviousState.setStatus('mandatory') traceSessionX25VcDiagnosticCode = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 10, 1, 4), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcDiagnosticCode.setStatus('mandatory') traceSessionX25VcPreviousDiagnosticCode = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 10, 1, 5), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcPreviousDiagnosticCode.setStatus('mandatory') traceSessionX25VcCalledNpi = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 10, 1, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("x121", 0), ("e164", 1)))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcCalledNpi.setStatus('mandatory') traceSessionX25VcCalledDna = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 10, 1, 7), DigitString().subtype(subtypeSpec=ValueSizeConstraint(1, 15))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcCalledDna.setStatus('mandatory') traceSessionX25VcCalledLcn = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 10, 1, 8), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcCalledLcn.setStatus('mandatory') traceSessionX25VcCallingNpi = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 10, 1, 9), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("x121", 0), ("e164", 1)))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcCallingNpi.setStatus('mandatory') traceSessionX25VcCallingDna = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 10, 1, 10), DigitString().subtype(subtypeSpec=ValueSizeConstraint(1, 15))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcCallingDna.setStatus('mandatory') traceSessionX25VcCallingLcn = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 10, 1, 11), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcCallingLcn.setStatus('mandatory') traceSessionX25VcAccountingEnabled = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 10, 1, 12), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("yes", 0), ("no", 1)))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcAccountingEnabled.setStatus('mandatory') traceSessionX25VcFastSelectCall = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 10, 1, 13), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("no", 0), ("yes", 1)))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcFastSelectCall.setStatus('mandatory') traceSessionX25VcLocalRxPktSize = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 10, 1, 14), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 4, 5, 6, 7, 8, 9, 10, 11, 12))).clone(namedValues=NamedValues(("unknown", 0), ("n16", 4), ("n32", 5), ("n64", 6), ("n128", 7), ("n256", 8), ("n512", 9), ("n1024", 10), ("n2048", 11), ("n4096", 12)))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcLocalRxPktSize.setStatus('mandatory') traceSessionX25VcLocalTxPktSize = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 10, 1, 15), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 4, 5, 6, 7, 8, 9, 10, 11, 12))).clone(namedValues=NamedValues(("unknown", 0), ("n16", 4), ("n32", 5), ("n64", 6), ("n128", 7), ("n256", 8), ("n512", 9), ("n1024", 10), ("n2048", 11), ("n4096", 12)))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcLocalTxPktSize.setStatus('mandatory') traceSessionX25VcLocalTxWindowSize = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 10, 1, 16), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 127))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcLocalTxWindowSize.setStatus('mandatory') traceSessionX25VcLocalRxWindowSize = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 10, 1, 17), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 127))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcLocalRxWindowSize.setStatus('mandatory') traceSessionX25VcPathReliability = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 10, 1, 19), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("high", 0), ("normal", 1)))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcPathReliability.setStatus('mandatory') traceSessionX25VcAccountingEnd = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 10, 1, 20), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("callingEnd", 0), ("calledEnd", 1)))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcAccountingEnd.setStatus('mandatory') traceSessionX25VcPriority = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 10, 1, 21), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("normal", 0), ("high", 1)))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcPriority.setStatus('mandatory') traceSessionX25VcSegmentSize = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 10, 1, 22), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 4096))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcSegmentSize.setStatus('mandatory') traceSessionX25VcSubnetTxPktSize = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 10, 1, 23), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 4, 5, 6, 7, 8, 9, 10, 11, 12))).clone(namedValues=NamedValues(("unknown", 0), ("n16", 4), ("n32", 5), ("n64", 6), ("n128", 7), ("n256", 8), ("n512", 9), ("n1024", 10), ("n2048", 11), ("n4096", 12)))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcSubnetTxPktSize.setStatus('mandatory') traceSessionX25VcSubnetTxWindowSize = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 10, 1, 24), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 4096))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcSubnetTxWindowSize.setStatus('mandatory') traceSessionX25VcSubnetRxPktSize = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 10, 1, 25), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 4, 5, 6, 7, 8, 9, 10, 11, 12))).clone(namedValues=NamedValues(("unknown", 0), ("n16", 4), ("n32", 5), ("n64", 6), ("n128", 7), ("n256", 8), ("n512", 9), ("n1024", 10), ("n2048", 11), ("n4096", 12)))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcSubnetRxPktSize.setStatus('mandatory') traceSessionX25VcSubnetRxWindowSize = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 10, 1, 26), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 4096))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcSubnetRxWindowSize.setStatus('mandatory') traceSessionX25VcMaxSubnetPktSize = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 10, 1, 27), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 4096))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcMaxSubnetPktSize.setStatus('mandatory') traceSessionX25VcTransferPriorityToNetwork = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 10, 1, 28), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 9))).clone(namedValues=NamedValues(("normal", 0), ("high", 9)))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcTransferPriorityToNetwork.setStatus('mandatory') traceSessionX25VcTransferPriorityFromNetwork = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 10, 1, 29), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 9))).clone(namedValues=NamedValues(("normal", 0), ("high", 9)))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcTransferPriorityFromNetwork.setStatus('mandatory') traceSessionX25VcIntdTable = MibTable((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 11), ) if mibBuilder.loadTexts: traceSessionX25VcIntdTable.setStatus('mandatory') traceSessionX25VcIntdEntry = MibTableRow((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 11, 1), ).setIndexNames((0, "Nortel-Magellan-Passport-TraceBaseMIB", "traceIndex"), (0, "Nortel-Magellan-Passport-TraceBaseMIB", "traceSessionIndex"), (0, "Nortel-Magellan-Passport-X25TraceRcvrMIB", "traceSessionX25Index"), (0, "Nortel-Magellan-Passport-X25TraceRcvrMIB", "traceSessionX25VcIndex")) if mibBuilder.loadTexts: traceSessionX25VcIntdEntry.setStatus('mandatory') traceSessionX25VcCallReferenceNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 11, 1, 1), Hex().subtype(subtypeSpec=ValueRangeConstraint(0, 16777215))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcCallReferenceNumber.setStatus('mandatory') traceSessionX25VcElapsedTimeTillNow = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 11, 1, 2), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 16777215))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcElapsedTimeTillNow.setStatus('mandatory') traceSessionX25VcSegmentsRx = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 11, 1, 3), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 16777215))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcSegmentsRx.setStatus('mandatory') traceSessionX25VcSegmentsSent = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 11, 1, 4), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 16777215))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcSegmentsSent.setStatus('mandatory') traceSessionX25VcStartTime = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 11, 1, 5), EnterpriseDateAndTime().subtype(subtypeSpec=ConstraintsUnion(ValueSizeConstraint(0, 0), ValueSizeConstraint(19, 19), ))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcStartTime.setStatus('mandatory') traceSessionX25VcStatsTable = MibTable((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 12), ) if mibBuilder.loadTexts: traceSessionX25VcStatsTable.setStatus('mandatory') traceSessionX25VcStatsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 12, 1), ).setIndexNames((0, "Nortel-Magellan-Passport-TraceBaseMIB", "traceIndex"), (0, "Nortel-Magellan-Passport-TraceBaseMIB", "traceSessionIndex"), (0, "Nortel-Magellan-Passport-X25TraceRcvrMIB", "traceSessionX25Index"), (0, "Nortel-Magellan-Passport-X25TraceRcvrMIB", "traceSessionX25VcIndex")) if mibBuilder.loadTexts: traceSessionX25VcStatsEntry.setStatus('mandatory') traceSessionX25VcAckStackingTimeouts = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 12, 1, 1), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 5000))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcAckStackingTimeouts.setStatus('mandatory') traceSessionX25VcOutOfRangeFrmFromSubnet = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 12, 1, 2), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 5000))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcOutOfRangeFrmFromSubnet.setStatus('mandatory') traceSessionX25VcDuplicatesFromSubnet = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 12, 1, 3), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 5000))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcDuplicatesFromSubnet.setStatus('mandatory') traceSessionX25VcFrmRetryTimeouts = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 12, 1, 4), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 5000))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcFrmRetryTimeouts.setStatus('mandatory') traceSessionX25VcPeakRetryQueueSize = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 12, 1, 5), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 5000))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcPeakRetryQueueSize.setStatus('mandatory') traceSessionX25VcPeakOoSeqQueueSize = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 12, 1, 6), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 5000))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcPeakOoSeqQueueSize.setStatus('mandatory') traceSessionX25VcPeakOoSeqFrmForwarded = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 12, 1, 7), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 5000))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcPeakOoSeqFrmForwarded.setStatus('mandatory') traceSessionX25VcPeakStackedAcksRx = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 12, 1, 8), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 5000))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcPeakStackedAcksRx.setStatus('mandatory') traceSessionX25VcSubnetRecoveries = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 12, 1, 9), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 5000))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcSubnetRecoveries.setStatus('mandatory') traceSessionX25VcWindowClosuresToSubnet = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 12, 1, 10), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 5000))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcWindowClosuresToSubnet.setStatus('mandatory') traceSessionX25VcWindowClosuresFromSubnet = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 12, 1, 11), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 5000))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcWindowClosuresFromSubnet.setStatus('mandatory') traceSessionX25VcWrTriggers = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 2, 4, 1, 106, 3, 2, 2, 12, 1, 12), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 5000))).setMaxAccess("readonly") if mibBuilder.loadTexts: traceSessionX25VcWrTriggers.setStatus('mandatory') x25TraceRcvrGroup = MibIdentifier((1, 3, 6, 1, 4, 1, 562, 2, 4, 2, 62, 1)) x25TraceRcvrGroupBD = MibIdentifier((1, 3, 6, 1, 4, 1, 562, 2, 4, 2, 62, 1, 4)) x25TraceRcvrGroupBD00 = MibIdentifier((1, 3, 6, 1, 4, 1, 562, 2, 4, 2, 62, 1, 4, 1)) x25TraceRcvrGroupBD00A = MibIdentifier((1, 3, 6, 1, 4, 1, 562, 2, 4, 2, 62, 1, 4, 1, 2)) x25TraceRcvrCapabilities = MibIdentifier((1, 3, 6, 1, 4, 1, 562, 2, 4, 2, 62, 3)) x25TraceRcvrCapabilitiesBD = MibIdentifier((1, 3, 6, 1, 4, 1, 562, 2, 4, 2, 62, 3, 4)) x25TraceRcvrCapabilitiesBD00 = MibIdentifier((1, 3, 6, 1, 4, 1, 562, 2, 4, 2, 62, 3, 4, 1)) x25TraceRcvrCapabilitiesBD00A = MibIdentifier((1, 3, 6, 1, 4, 1, 562, 2, 4, 2, 62, 3, 4, 1, 2)) mibBuilder.exportSymbols("Nortel-Magellan-Passport-X25TraceRcvrMIB", traceRcvrX25DnaDefaultRecvFrmNetworkThruputClass=traceRcvrX25DnaDefaultRecvFrmNetworkThruputClass, traceSessionX25VcPathReliability=traceSessionX25VcPathReliability, traceRcvrX25DnaDefaultSendToNetworkWindowSize=traceRcvrX25DnaDefaultSendToNetworkWindowSize, traceRcvrX25DnaCugRowStatusEntry=traceRcvrX25DnaCugRowStatusEntry, traceRcvrX25DnaOutgoingOptionsEntry=traceRcvrX25DnaOutgoingOptionsEntry, traceRcvrX25DnaDefaultSendToNetworkThruputClass=traceRcvrX25DnaDefaultSendToNetworkThruputClass, traceRcvrX25DnaCugPrivileged=traceRcvrX25DnaCugPrivileged, traceRcvrX25DnaPacketSizes=traceRcvrX25DnaPacketSizes, traceRcvrX25DcRemoteNpi=traceRcvrX25DcRemoteNpi, traceSessionX25VcIndex=traceSessionX25VcIndex, traceRcvrX25RowStatus=traceRcvrX25RowStatus, traceRcvrX25StorageType=traceRcvrX25StorageType, traceSessionX25VcFastSelectCall=traceSessionX25VcFastSelectCall, traceSessionX25VcStartTime=traceSessionX25VcStartTime, traceSessionX25VcPreviousState=traceSessionX25VcPreviousState, traceSessionX25VcWindowClosuresToSubnet=traceSessionX25VcWindowClosuresToSubnet, traceSessionX25VcComponentName=traceSessionX25VcComponentName, traceSessionX25VcCallingLcn=traceSessionX25VcCallingLcn, traceRcvrX25DnaCallOptionsEntry=traceRcvrX25DnaCallOptionsEntry, traceRcvrX25DnaCugOutCalls=traceRcvrX25DnaCugOutCalls, traceRcvrX25DnaOutDefaultPathSensitivity=traceRcvrX25DnaOutDefaultPathSensitivity, traceSessionX25VcDiagnosticCode=traceSessionX25VcDiagnosticCode, traceSessionX25VcSegmentSize=traceSessionX25VcSegmentSize, traceSessionX25VcMaxSubnetPktSize=traceSessionX25VcMaxSubnetPktSize, traceRcvrX25DcComponentName=traceRcvrX25DcComponentName, traceRcvrX25DnaOutCalls=traceRcvrX25DnaOutCalls, traceSessionX25VcIntdEntry=traceSessionX25VcIntdEntry, traceSessionX25VcElapsedTimeTillNow=traceSessionX25VcElapsedTimeTillNow, x25TraceRcvrGroupBD=x25TraceRcvrGroupBD, traceSessionX25VcCallingDna=traceSessionX25VcCallingDna, traceRcvrX25=traceRcvrX25, traceSessionX25RowStatusTable=traceSessionX25RowStatusTable, traceSessionX25VcLocalTxWindowSize=traceSessionX25VcLocalTxWindowSize, traceRcvrX25DnaComponentName=traceRcvrX25DnaComponentName, traceRcvrX25DnaCugCugOptionsTable=traceRcvrX25DnaCugCugOptionsTable, traceSessionX25VcDuplicatesFromSubnet=traceSessionX25VcDuplicatesFromSubnet, traceRcvrX25DcRowStatusEntry=traceRcvrX25DcRowStatusEntry, traceRcvrX25DnaRowStatusTable=traceRcvrX25DnaRowStatusTable, traceRcvrX25DnaOutDefaultPathReliability=traceRcvrX25DnaOutDefaultPathReliability, traceSessionX25VcSegmentsRx=traceSessionX25VcSegmentsRx, traceSessionX25VcSubnetRxPktSize=traceSessionX25VcSubnetRxPktSize, traceSessionX25VcAccountingEnd=traceSessionX25VcAccountingEnd, traceSessionX25VcOutOfRangeFrmFromSubnet=traceSessionX25VcOutOfRangeFrmFromSubnet, traceRcvrX25Dna=traceRcvrX25Dna, traceRcvrX25DnaCugRowStatusTable=traceRcvrX25DnaCugRowStatusTable, traceSessionX25VcPeakOoSeqFrmForwarded=traceSessionX25VcPeakOoSeqFrmForwarded, traceRcvrX25DcRemoteDna=traceRcvrX25DcRemoteDna, traceSessionX25VcLocalRxWindowSize=traceSessionX25VcLocalRxWindowSize, traceRcvrX25Index=traceRcvrX25Index, x25TraceRcvrCapabilitiesBD00A=x25TraceRcvrCapabilitiesBD00A, traceSessionX25VcSubnetTxPktSize=traceSessionX25VcSubnetTxPktSize, traceSessionX25VcWindowClosuresFromSubnet=traceSessionX25VcWindowClosuresFromSubnet, traceRcvrX25ComponentName=traceRcvrX25ComponentName, traceRcvrX25DnaDefaultSendToNetworkPacketSize=traceRcvrX25DnaDefaultSendToNetworkPacketSize, x25TraceRcvrGroup=x25TraceRcvrGroup, traceRcvrX25DnaCugStorageType=traceRcvrX25DnaCugStorageType, traceRcvrX25DnaCugDnic=traceRcvrX25DnaCugDnic, traceRcvrX25DnaCugCugOptionsEntry=traceRcvrX25DnaCugCugOptionsEntry, traceSessionX25VcSubnetRxWindowSize=traceSessionX25VcSubnetRxWindowSize, traceRcvrX25DnaCugIndex=traceRcvrX25DnaCugIndex, traceRcvrX25DcStorageType=traceRcvrX25DcStorageType, traceSessionX25VcSubnetRecoveries=traceSessionX25VcSubnetRecoveries, traceRcvrX25DcIndex=traceRcvrX25DcIndex, traceSessionX25VcRowStatusEntry=traceSessionX25VcRowStatusEntry, traceRcvrX25DnaOutIntl=traceRcvrX25DnaOutIntl, traceRcvrX25DnaOutPathReliabilityOverRide=traceRcvrX25DnaOutPathReliabilityOverRide, x25TraceRcvrCapabilitiesBD00=x25TraceRcvrCapabilitiesBD00, traceSessionX25VcCalledLcn=traceSessionX25VcCalledLcn, traceRcvrX25DnaRowStatusEntry=traceRcvrX25DnaRowStatusEntry, traceRcvrX25RowStatusEntry=traceRcvrX25RowStatusEntry, x25TraceRcvrGroupBD00A=x25TraceRcvrGroupBD00A, traceRcvrX25DcRowStatusTable=traceRcvrX25DcRowStatusTable, traceRcvrX25DnaOutDefaultPriority=traceRcvrX25DnaOutDefaultPriority, traceSessionX25VcLocalTxPktSize=traceSessionX25VcLocalTxPktSize, traceSessionX25RowStatus=traceSessionX25RowStatus, traceRcvrX25DcUserData=traceRcvrX25DcUserData, traceSessionX25VcStatsEntry=traceSessionX25VcStatsEntry, traceSessionX25VcAckStackingTimeouts=traceSessionX25VcAckStackingTimeouts, traceRcvrX25DcType=traceRcvrX25DcType, traceRcvrX25RowStatusTable=traceRcvrX25RowStatusTable, traceRcvrX25DnaCugFormat=traceRcvrX25DnaCugFormat, traceSessionX25ComponentName=traceSessionX25ComponentName, traceRcvrX25DcOptionsTable=traceRcvrX25DcOptionsTable, traceRcvrX25DnaCugComponentName=traceRcvrX25DnaCugComponentName, traceSessionX25VcRowStatusTable=traceSessionX25VcRowStatusTable, traceSessionX25VcIntdTable=traceSessionX25VcIntdTable, traceSessionX25=traceSessionX25, traceSessionX25VcRowStatus=traceSessionX25VcRowStatus, traceSessionX25VcTransferPriorityToNetwork=traceSessionX25VcTransferPriorityToNetwork, traceSessionX25StorageType=traceSessionX25StorageType, traceSessionX25VcPeakOoSeqQueueSize=traceSessionX25VcPeakOoSeqQueueSize, traceSessionX25VcStatsTable=traceSessionX25VcStatsTable, traceRcvrX25DnaIncCalls=traceRcvrX25DnaIncCalls, x25TraceRcvrCapabilities=x25TraceRcvrCapabilities, traceRcvrX25DnaCugPreferential=traceRcvrX25DnaCugPreferential, traceSessionX25VcType=traceSessionX25VcType, traceRcvrX25DnaIncomingOptionsEntry=traceRcvrX25DnaIncomingOptionsEntry, traceSessionX25VcTransferPriorityFromNetwork=traceSessionX25VcTransferPriorityFromNetwork, traceRcvrX25DnaDefaultRecvFrmNetworkWindowSize=traceRcvrX25DnaDefaultRecvFrmNetworkWindowSize, traceRcvrX25DnaAddressTable=traceRcvrX25DnaAddressTable, traceRcvrX25DnaIndex=traceRcvrX25DnaIndex, traceSessionX25VcCalledNpi=traceSessionX25VcCalledNpi, traceRcvrX25DnaIncomingOptionsTable=traceRcvrX25DnaIncomingOptionsTable, traceSessionX25VcLocalRxPktSize=traceSessionX25VcLocalRxPktSize, traceRcvrX25DnaStorageType=traceRcvrX25DnaStorageType, traceRcvrX25DnaOutAccess=traceRcvrX25DnaOutAccess, traceSessionX25VcCadTable=traceSessionX25VcCadTable, x25TraceRcvrGroupBD00=x25TraceRcvrGroupBD00, traceSessionX25VcSegmentsSent=traceSessionX25VcSegmentsSent, traceRcvrX25DnaOutgoingOptionsTable=traceRcvrX25DnaOutgoingOptionsTable, traceSessionX25VcSubnetTxWindowSize=traceSessionX25VcSubnetTxWindowSize, traceRcvrX25DnaCugType=traceRcvrX25DnaCugType, traceRcvrX25DcRowStatus=traceRcvrX25DcRowStatus, traceRcvrX25DnaCallOptionsTable=traceRcvrX25DnaCallOptionsTable, traceRcvrX25DnaPacketSizeNegotiation=traceRcvrX25DnaPacketSizeNegotiation, traceRcvrX25DnaCugInterlockCode=traceRcvrX25DnaCugInterlockCode, traceSessionX25VcAccountingEnabled=traceSessionX25VcAccountingEnabled, traceSessionX25RowStatusEntry=traceSessionX25RowStatusEntry, traceSessionX25Index=traceSessionX25Index, traceSessionX25VcCadEntry=traceSessionX25VcCadEntry, traceRcvrX25DnaOutPathReliabilitySignal=traceRcvrX25DnaOutPathReliabilitySignal, traceSessionX25Vc=traceSessionX25Vc, traceSessionX25VcPreviousDiagnosticCode=traceSessionX25VcPreviousDiagnosticCode, traceRcvrX25DnaRowStatus=traceRcvrX25DnaRowStatus, traceRcvrX25DnaDataNetworkAddress=traceRcvrX25DnaDataNetworkAddress, traceRcvrX25DnaAddressEntry=traceRcvrX25DnaAddressEntry, x25TraceRcvrMIB=x25TraceRcvrMIB, traceRcvrX25DnaCug=traceRcvrX25DnaCug, traceSessionX25VcPriority=traceSessionX25VcPriority, traceSessionX25VcCalledDna=traceSessionX25VcCalledDna, traceRcvrX25DnaDefaultRecvFrmNetworkPacketSize=traceRcvrX25DnaDefaultRecvFrmNetworkPacketSize, traceRcvrX25Dc=traceRcvrX25Dc, traceSessionX25VcPeakRetryQueueSize=traceSessionX25VcPeakRetryQueueSize, traceSessionX25VcPeakStackedAcksRx=traceSessionX25VcPeakStackedAcksRx, traceSessionX25VcState=traceSessionX25VcState, traceRcvrX25DcOptionsEntry=traceRcvrX25DcOptionsEntry, traceSessionX25VcCallingNpi=traceSessionX25VcCallingNpi, traceRcvrX25DnaCugRowStatus=traceRcvrX25DnaCugRowStatus, traceRcvrX25DnaNumberingPlanIndicator=traceRcvrX25DnaNumberingPlanIndicator, traceRcvrX25DnaCugIncCalls=traceRcvrX25DnaCugIncCalls, x25TraceRcvrCapabilitiesBD=x25TraceRcvrCapabilitiesBD, traceSessionX25VcStorageType=traceSessionX25VcStorageType, traceSessionX25VcFrmRetryTimeouts=traceSessionX25VcFrmRetryTimeouts, traceSessionX25VcWrTriggers=traceSessionX25VcWrTriggers, traceSessionX25VcCallReferenceNumber=traceSessionX25VcCallReferenceNumber)
179.676871
8,901
0.775523
7948077f51ef43c4716525281468ba3414bcf24a
2,118
py
Python
2020/17/17 _part_1.py
Sveder/advent_of_code
57a36bc3066fcba6330d4d579de053e8b7e78c74
[ "CC0-1.0" ]
null
null
null
2020/17/17 _part_1.py
Sveder/advent_of_code
57a36bc3066fcba6330d4d579de053e8b7e78c74
[ "CC0-1.0" ]
null
null
null
2020/17/17 _part_1.py
Sveder/advent_of_code
57a36bc3066fcba6330d4d579de053e8b7e78c74
[ "CC0-1.0" ]
null
null
null
import copy import itertools input = """###..#.. .####### #####... #..##.#. ###..##. ##...#.. ..#...#. .#....##""" # # input = """.#. # ..# # ###""" W = H = 3 cycles_count = 6 def step(world): size = len(world[0]) new_size = size + 1 new_world = copy.deepcopy(world) # RESIZE PART: # Add new planes and empty world to make sure we have enough canvas to draw on: new_world.append([['.'] * size] * size) new_world.insert(0, [['.'] * size] * size) for i, plane in enumerate(new_world): new_plane = [['.'] * (new_size + 1)] for line in plane: new_plane += [['.'] + line + ['.']] new_plane += [['.'] * (new_size + 1)] new_world[i] = new_plane # Now we have enough room to grow, actually grow: directions = list(itertools.product((-1, 0, 1), repeat=3)) directions.remove((0, 0, 0)) newer_world = copy.deepcopy(new_world) for z, plane in enumerate(new_world): for y, line in enumerate(plane): for x, cell in enumerate(line): n_count = 0 for dz, dy, dx in directions: try: friend = new_world[z + dz][y + dy][x + dx] if friend == "#": n_count += 1 except IndexError: pass if cell == '.' and n_count == 3: newer_world[z][y][x] = '#' elif cell == '#' and n_count not in (2, 3): newer_world[z][y][x] = '.' return newer_world def print_world(world): for i, z in enumerate(world): print("z=%s" % i) for y in z: print("".join(y)) print() cur_world = [] for line in input.split('\n'): cur_line = [i for i in line] cur_world.append(cur_line) cur_world = [cur_world] for i in range(cycles_count): print("Cycle:", i) print_world(cur_world) W += 1 cur_world = step(cur_world) alive = 0 for plane in cur_world: for line in plane: alive += line.count('#') print("Alive:", alive)
21.835052
83
0.487252
7948091978e96e950dde7414eec430e6cf6f7ea3
3,096
py
Python
qd_english/qd_english/settings.py
smujm/ScrapyProjects
04e9eb42c64805475893be595db4f3b6530ba597
[ "MIT" ]
null
null
null
qd_english/qd_english/settings.py
smujm/ScrapyProjects
04e9eb42c64805475893be595db4f3b6530ba597
[ "MIT" ]
null
null
null
qd_english/qd_english/settings.py
smujm/ScrapyProjects
04e9eb42c64805475893be595db4f3b6530ba597
[ "MIT" ]
null
null
null
# Scrapy settings for qd_english project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://docs.scrapy.org/en/latest/topics/settings.html # https://docs.scrapy.org/en/latest/topics/downloader-middleware.html # https://docs.scrapy.org/en/latest/topics/spider-middleware.html BOT_NAME = 'qd_english' SPIDER_MODULES = ['qd_english.spiders'] NEWSPIDER_MODULE = 'qd_english.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'qd_english (+http://www.yourdomain.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = False # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See https://docs.scrapy.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'qd_english.middlewares.QdEnglishSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'qd_english.middlewares.QdEnglishDownloaderMiddleware': 543, #} # Enable or disable extensions # See https://docs.scrapy.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See https://docs.scrapy.org/en/latest/topics/item-pipeline.html ITEM_PIPELINES = { 'qd_english.pipelines.QdEnglishPipeline': 300, } # Enable and configure the AutoThrottle extension (disabled by default) # See https://docs.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
34.786517
103
0.780039
794809beee4a05ad36743f08bdfb1b86720338b0
3,082
py
Python
test/database_test.py
lvzheqi/StreamingEventCompliance
3a9470f9b0b670c814864369f22e1f1eacef7bad
[ "BSD-2-Clause" ]
3
2018-10-16T15:14:41.000Z
2019-09-04T09:38:55.000Z
test/database_test.py
lvzheqi/StreamingEventCompliance
3a9470f9b0b670c814864369f22e1f1eacef7bad
[ "BSD-2-Clause" ]
2
2021-03-31T19:00:14.000Z
2021-12-13T19:51:46.000Z
test/database_test.py
lvzheqi/StreamingEventCompliance
3a9470f9b0b670c814864369f22e1f1eacef7bad
[ "BSD-2-Clause" ]
2
2018-10-16T15:14:43.000Z
2019-12-16T13:58:28.000Z
import unittest from streaming_event_compliance.database import dbtools from streaming_event_compliance.objects.automata import automata, alertlog from streaming_event_compliance import app class DBToolsTest(unittest.TestCase): def setUp(self): dbtools.empty_tables() def create_automata(self): auto1 = automata.Automata() auto2 = automata.Automata() auto3 = automata.Automata() auto4 = automata.Automata() auto1.update_automata(automata.Connection('A', 'B', 1)) auto1.update_automata(automata.Connection('A', 'B', 1)) auto1.update_automata(automata.Connection('A', 'C', 1)) auto2.update_automata(automata.Connection('A,B', 'B,C', 1)) auto2.update_automata(automata.Connection('B,D', 'D,B', 1)) auto3.update_automata(automata.Connection('A,D,D', 'C,D,D', 1)) auto4.update_automata(automata.Connection('A,B,A,W', 'B,C,S,S', 1)) auto1.set_probability() auto2.set_probability() auto3.set_probability() auto4.set_probability() return {1: auto1, 2: auto2, 3: auto3, 4: auto4} def test_node_and_connection(self): ws = app.config['WINDOW_SIZE'] if ws == [1, 2, 3, 4]: autos = self.create_automata() dbtools.insert_node_and_connection(autos) autos2, status = dbtools.init_automata_from_database() self.assertEqual(status, 1) self.assertEqual(repr(autos), repr(autos2)) def test_alert_log(self): ws = app.config['WINDOW_SIZE'] if ws == [1, 2, 3, 4]: uuid = '1' dbtools.create_client('1') alog1 = alertlog.AlertLog() alog2 = alertlog.AlertLog() alog3 = alertlog.AlertLog() alog4 = alertlog.AlertLog() alog1.update_alert_record(alertlog.AlertRecord(uuid, 'A', 'B', 1)) alog1.update_alert_record(alertlog.AlertRecord(uuid, 'A', 'B', 1)) alog1.update_alert_record(alertlog.AlertRecord(uuid, 'B', 'B', 1)) alog2.update_alert_record(alertlog.AlertRecord(uuid, 'A,C', 'B,D', 1)) alog2.update_alert_record(alertlog.AlertRecord(uuid, 'A,C', 'B,R', 1)) alog2.update_alert_record(alertlog.AlertRecord(uuid, 'A,W', 'B,W', 1)) alog3.update_alert_record(alertlog.AlertRecord(uuid, 'A,A,W', 'B,S,S', 1)) alog4.update_alert_record(alertlog.AlertRecord(uuid, 'A,L,K,K', 'B,S,S,D', 1)) alogs = {1: alog1, 2: alog2, 3: alog3, 4: alog4} dbtools.insert_alert_log(alogs) alogs2, status = dbtools.init_alert_log_from_database(uuid) self.assertEqual(repr(alogs), repr(alogs2)) def test_user(self): dbtools.create_client('1') dbtools.create_client('2') dbtools.update_client_status('1', True) dbtools.update_client_status('2', False) self.assertEqual(dbtools.check_client_status('1'), True) self.assertEqual(dbtools.check_client_status('2'), False) if __name__ == '__main__': unittest.main()
43.408451
90
0.629786
794809f9cec19936467c6329b9bb3362b22dd70a
629
py
Python
sample-input-h2.py
trex47/MD-copy
915919ce1f541f93d35ebfa1461350d861a3e6a7
[ "BSD-3-Clause" ]
1
2021-03-25T09:13:16.000Z
2021-03-25T09:13:16.000Z
sample-input-h2.py
trex47/MD-copy
915919ce1f541f93d35ebfa1461350d861a3e6a7
[ "BSD-3-Clause" ]
null
null
null
sample-input-h2.py
trex47/MD-copy
915919ce1f541f93d35ebfa1461350d861a3e6a7
[ "BSD-3-Clause" ]
1
2020-12-02T19:04:32.000Z
2020-12-02T19:04:32.000Z
from mmd.molecule import Molecule from mmd.postscf import PostSCF import numpy as np h2 = """ 0 1 H 0.000000000 0.000000000 -0.368652 H 0.000000000 0.000000000 0.368652 """ # init molecule and build integrals mol = Molecule(geometry=h2,basis='6-311G**') # do the SCF mol.RHF() # do MP2 PostSCF(mol).MP2() #print(mol.CAP) np.savetxt("cap_h2.dat",mol.CAP,'%10.6f',delimiter=" ") #P_MO = np.real(np.dot(np.transpose(mol.CO),np.dot(mol.P,mol.CO))) #DEN = np.real(np.dot(np.transpose(mol.CO),np.dot(mol.CAP,mol.CO))) #print(DEN) #new = np.real(np.dot(mol.CAP,mol.P)) #trace = np.trace(new) #print(trace)
17.971429
67
0.666137
79480add2be70cf64764691383e0508c1acd78a7
8,894
py
Python
telemetry/telemetry/internal/results/page_test_results_unittest.py
Martijnve23/catapult
5c63b19d221af6a12889e8727acc85d93892cab7
[ "BSD-3-Clause" ]
1,894
2015-04-17T18:29:53.000Z
2022-03-28T22:41:06.000Z
telemetry/telemetry/internal/results/page_test_results_unittest.py
Martijnve23/catapult
5c63b19d221af6a12889e8727acc85d93892cab7
[ "BSD-3-Clause" ]
4,640
2015-07-08T16:19:08.000Z
2019-12-02T15:01:27.000Z
telemetry/telemetry/internal/results/page_test_results_unittest.py
Martijnve23/catapult
5c63b19d221af6a12889e8727acc85d93892cab7
[ "BSD-3-Clause" ]
698
2015-06-02T19:18:35.000Z
2022-03-29T16:57:15.000Z
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from __future__ import absolute_import import json import shutil import sys import tempfile import unittest import mock from telemetry.core import exceptions from telemetry.internal.results import page_test_results from telemetry.internal.results import results_options from telemetry.testing import test_stories from tracing.trace_data import trace_data def _CreateException(): try: raise exceptions.IntentionalException except Exception: # pylint: disable=broad-except return sys.exc_info() class PageTestResultsTest(unittest.TestCase): def setUp(self): self.stories = test_stories.DummyStorySet(['foo', 'bar', 'baz']) self.intermediate_dir = tempfile.mkdtemp() self._time_module = mock.patch( 'telemetry.internal.results.page_test_results.time').start() self._time_module.time.return_value = 0 def tearDown(self): shutil.rmtree(self.intermediate_dir) mock.patch.stopall() @property def mock_time(self): return self._time_module.time def CreateResults(self, **kwargs): kwargs.setdefault('intermediate_dir', self.intermediate_dir) return page_test_results.PageTestResults(**kwargs) def ReadTestResults(self): return results_options.ReadTestResults(self.intermediate_dir) def testFailures(self): with self.CreateResults() as results: with results.CreateStoryRun(self.stories[0]): results.Fail(_CreateException()) with results.CreateStoryRun(self.stories[1]): pass self.assertTrue(results.had_failures) test_results = self.ReadTestResults() self.assertEqual(len(test_results), 2) self.assertEqual(test_results[0]['status'], 'FAIL') self.assertEqual(test_results[1]['status'], 'PASS') def testSkips(self): with self.CreateResults() as results: with results.CreateStoryRun(self.stories[0]): results.Skip('testing reason') with results.CreateStoryRun(self.stories[1]): pass self.assertTrue(results.had_skips) test_results = self.ReadTestResults() self.assertEqual(len(test_results), 2) self.assertEqual(test_results[0]['status'], 'SKIP') self.assertEqual(test_results[1]['status'], 'PASS') def testBenchmarkInterruption(self): reason = 'This is a reason' with self.CreateResults() as results: self.assertIsNone(results.benchmark_interruption) self.assertFalse(results.benchmark_interrupted) results.InterruptBenchmark(reason) self.assertEqual(results.benchmark_interruption, reason) self.assertTrue(results.benchmark_interrupted) def testUncaughtExceptionInterruptsBenchmark(self): with self.assertRaises(ValueError): with self.CreateResults() as results: with results.CreateStoryRun(self.stories[0]): raise ValueError('expected error') self.assertTrue(results.benchmark_interrupted) # In Python2, the exc_value has a extra comma like: # ValueError('expected error',) # while in Python3, exc_value is like: # ValueError('expected error') self.assertIn("ValueError('expected error'", results.benchmark_interruption) def testPassesNoSkips(self): with self.CreateResults() as results: with results.CreateStoryRun(self.stories[0]): results.Fail(_CreateException()) with results.CreateStoryRun(self.stories[1]): pass with results.CreateStoryRun(self.stories[2]): results.Skip('testing reason') test_results = self.ReadTestResults() self.assertEqual(len(test_results), 3) self.assertEqual(test_results[0]['status'], 'FAIL') self.assertEqual(test_results[1]['status'], 'PASS') self.assertEqual(test_results[2]['status'], 'SKIP') def testAddMeasurementAsScalar(self): with self.CreateResults() as results: with results.CreateStoryRun(self.stories[0]): results.AddMeasurement('a', 'seconds', 3) test_results = self.ReadTestResults() self.assertTrue(len(test_results), 1) measurements = results_options.ReadMeasurements(test_results[0]) self.assertEqual(measurements, {'a': {'unit': 'seconds', 'samples': [3]}}) def testAddMeasurementAsList(self): with self.CreateResults() as results: with results.CreateStoryRun(self.stories[0]): results.AddMeasurement('a', 'seconds', [1, 2, 3]) test_results = self.ReadTestResults() self.assertTrue(len(test_results), 1) measurements = results_options.ReadMeasurements(test_results[0]) self.assertEqual(measurements, {'a': {'unit': 'seconds', 'samples': [1, 2, 3]}}) def testNonNumericMeasurementIsInvalid(self): with self.CreateResults() as results: with results.CreateStoryRun(self.stories[0]): with self.assertRaises(TypeError): results.AddMeasurement('url', 'string', 'foo') def testMeasurementUnitChangeRaises(self): with self.CreateResults() as results: with results.CreateStoryRun(self.stories[0]): results.AddMeasurement('a', 'seconds', 3) with results.CreateStoryRun(self.stories[1]): with self.assertRaises(ValueError): results.AddMeasurement('a', 'foobgrobbers', 3) def testNoSuccessesWhenAllStoriesFailOrSkip(self): with self.CreateResults() as results: with results.CreateStoryRun(self.stories[0]): results.Fail('message') with results.CreateStoryRun(self.stories[1]): results.Skip('message') self.assertFalse(results.had_successes) def testAddTraces(self): with self.CreateResults() as results: with results.CreateStoryRun(self.stories[0]): results.AddTraces(trace_data.CreateTestTrace(1)) with results.CreateStoryRun(self.stories[1]): results.AddTraces(trace_data.CreateTestTrace(2)) test_results = self.ReadTestResults() self.assertEqual(len(test_results), 2) for test_result in test_results: trace_names = [name for name in test_result['outputArtifacts'] if name.startswith('trace/')] self.assertTrue(len(trace_names), 1) def testAddTracesForSameStory(self): with self.CreateResults() as results: with results.CreateStoryRun(self.stories[0]): results.AddTraces(trace_data.CreateTestTrace(1)) results.AddTraces(trace_data.CreateTestTrace(2)) test_results = self.ReadTestResults() self.assertEqual(len(test_results), 1) for test_result in test_results: trace_names = [name for name in test_result['outputArtifacts'] if name.startswith('trace/')] self.assertTrue(len(trace_names), 2) def testDiagnosticsAsArtifact(self): with self.CreateResults(benchmark_name='some benchmark', benchmark_description='a description') as results: results.AddSharedDiagnostics( owners=['test'], bug_components=['1', '2'], documentation_urls=[['documentation', 'url']], architecture='arch', device_id='id', os_name='os', os_version='ver', ) with results.CreateStoryRun(self.stories[0]): pass with results.CreateStoryRun(self.stories[1]): pass test_results = self.ReadTestResults() self.assertEqual(len(test_results), 2) for test_result in test_results: self.assertEqual(test_result['status'], 'PASS') artifacts = test_result['outputArtifacts'] self.assertIn(page_test_results.DIAGNOSTICS_NAME, artifacts) with open(artifacts[page_test_results.DIAGNOSTICS_NAME]['filePath']) as f: diagnostics = json.load(f) self.assertEqual(diagnostics, { 'diagnostics': { 'benchmarks': ['some benchmark'], 'benchmarkDescriptions': ['a description'], 'owners': ['test'], 'bugComponents': ['1', '2'], 'documentationLinks': [['documentation', 'url']], 'architectures': ['arch'], 'deviceIds': ['id'], 'osNames': ['os'], 'osVersions': ['ver'], }, }) def testCreateArtifactsForDifferentStories(self): with self.CreateResults() as results: with results.CreateStoryRun(self.stories[0]): with results.CreateArtifact('log.txt') as log_file: log_file.write('story0\n') with results.CreateStoryRun(self.stories[1]): with results.CreateArtifact('log.txt') as log_file: log_file.write('story1\n') test_results = self.ReadTestResults() with open(test_results[0]['outputArtifacts']['log.txt']['filePath']) as f: self.assertEqual(f.read(), 'story0\n') with open(test_results[1]['outputArtifacts']['log.txt']['filePath']) as f: self.assertEqual(f.read(), 'story1\n')
37.058333
80
0.687317
79480bb8ba3893543d8703504ba1500af9d3edb4
8,222
py
Python
test/pybind_test/single_node_test.py
xjqbest/HugeCTR
0b1c92d5e65891dfdd90d917bc6d520d0ca5d1e1
[ "Apache-2.0" ]
130
2021-10-11T11:55:28.000Z
2022-03-31T21:53:07.000Z
test/pybind_test/single_node_test.py
xjqbest/HugeCTR
0b1c92d5e65891dfdd90d917bc6d520d0ca5d1e1
[ "Apache-2.0" ]
72
2021-10-09T04:59:09.000Z
2022-03-31T11:27:54.000Z
test/pybind_test/single_node_test.py
xjqbest/HugeCTR
0b1c92d5e65891dfdd90d917bc6d520d0ca5d1e1
[ "Apache-2.0" ]
29
2021-11-03T22:35:01.000Z
2022-03-30T13:11:59.000Z
import hugectr import json import sys import argparse DATA_READER_TYPE = {"Norm": hugectr.DataReaderType_t.Norm, "Raw": hugectr.DataReaderType_t.Raw, "Parquet": hugectr.DataReaderType_t.Parquet} CHECK_TYPE = {"Sum": hugectr.Check_t.Sum, "None": hugectr.Check_t.Non} OPTIMIZER_TYPE = {"Adam": hugectr.Optimizer_t.Adam, "MomentumSGD": hugectr.Optimizer_t.MomentumSGD, "Nesterov": hugectr.Optimizer_t.Nesterov, "SGD": hugectr.Optimizer_t.SGD} UPDATE_TYPE = {"Global": hugectr.Update_t.Global, "LazyGlobal": hugectr.Update_t.LazyGlobal, "Local": hugectr.Update_t.Local} def parse_args(parser): args = parser.parse_args() json_config = json.load(open(args.json_file, "rb")) solver_config = json_config['solver'] optimizer_config = json_config['optimizer'] data_config = json_config['layers'][0] args.source = data_config['source'] args.eval_source = data_config['eval_source'] if 'format' not in data_config: args.data_reader_type = hugectr.DataReaderType_t.Norm else: args.data_reader_type = DATA_READER_TYPE[data_config.get('format', 'Norm')] args.check_type = CHECK_TYPE[data_config['check']] args.cache_eval_data = data_config.get('cache_eval_data', 0) args.num_samples = data_config.get('num_samples', 0) args.eval_num_samples = data_config.get('eval_num_samples', 0) args.float_label_dense = data_config.get('float_label_dense', False) args.num_workers = data_config.get('num_workers', 16) args.slot_size_array = data_config.get('slot_size_array', []) args.optimizer_type = OPTIMIZER_TYPE[optimizer_config["type"]] args.update_type = UPDATE_TYPE[optimizer_config['update_type']] args.learning_rate = 0.001 args.beta1 = 0.9 args.beta2 = 0.999 args.epsilon = 0.0000001 args.initial_accu_value = 0.0 args.momentum_factor = 0.0 args.atomic_update = True args.warmup_steps = 1 args.decay_start = 0 args.decay_steps = 1 args.decay_power = 2.0 args.end_lr = 0.0 if 'adam_hparam' in optimizer_config: args.learning_rate = optimizer_config['adam_hparam']['learning_rate'] args.beta1 = optimizer_config['adam_hparam']['beta1'] args.beta2 = optimizer_config['adam_hparam']['beta2'] args.epsilon = optimizer_config['adam_hparam']['epsilon'] if 'adagrad_hparam' in optimizer_config: args.initial_accu_value = optimizer_config['adagrad_hparam']['initial_accu_value'] args.epsilon = optimizer_config['adagrad_hparam']['epsilon'] if 'momentum_sgd_hparam' in optimizer_config: args.learning_rate = optimizer_config['momentum_sgd_hparam']['learning_rate'] args.momentum_factor = optimizer_config['momentum_sgd_hparam']['momentum_factor'] if 'nesterov_hparam' in optimizer_config: args.learning_rate = optimizer_config['nesterov_hparam']['learning_rate'] args.momentum_factor = optimizer_config['nesterov_hparam']['momentum_factor'] if 'sgd_hparam' in optimizer_config: args.learning_rate = optimizer_config['sgd_hparam']['learning_rate'] args.warmup_steps = optimizer_config['sgd_hparam'].get('warmup_steps', 1) args.decay_start = optimizer_config['sgd_hparam'].get('decay_start', 0) args.decay_steps = optimizer_config['sgd_hparam'].get('decay_steps', 1) args.decay_power = optimizer_config['sgd_hparam'].get('decay_power', 2.0) args.end_lr = optimizer_config['sgd_hparam'].get('end_lr', 0) args.batchsize = solver_config.get('batchsize', 2048) args.batchsize_eval = solver_config.get('batchsize_eval', args.batchsize) args.snapshot = solver_config.get('snapshot', 100000000) args.max_eval_batches = solver_config.get('max_eval_batches', 100) args.max_iter = solver_config.get('max_iter', 10000) args.eval_interval = solver_config.get('eval_interval', 1000) args.display = solver_config.get('display', 200) vvgpu = solver_config['gpu'] if isinstance(vvgpu[0], list): args.vvgpu = vvgpu else: args.vvgpu = [vvgpu] args.use_mixed_precision = False args.scaler = 1.0 if 'mixed_precision' in solver_config: args.use_mixed_precision = True args.scaler = solver_config['mixed_precision'] args.i64_input_key = False if 'input_key_type' in solver_config and solver_config['input_key_type'] == 'I64': args.i64_input_key = True if 'auc_threshold' in solver_config: args.auc_threshold = solver_config['auc_threshold'] args.auc_check = True else: args.auc_threshold = 0.5 args.auc_check = False return args def train(model, max_iter, display, max_eval_batches, eval_interval, auc_threshold): model.start_data_reading() lr_sch = model.get_learning_rate_scheduler() reach_auc_threshold = False for iter in range(max_iter): lr = lr_sch.get_next() model.set_learning_rate(lr) model.train(False) if (iter%display == 0): loss = model.get_current_loss() print("[HUGECTR][INFO] iter: {}; loss: {}".format(iter, loss)) if (iter%eval_interval == 0 and iter != 0): for _ in range(max_eval_batches): model.eval() metrics = model.get_eval_metrics() print("[HUGECTR][INFO] iter: {}, metrics: {}".format(iter, metrics)) if metrics[0][1] > auc_threshold: reach_auc_threshold = True break if reach_auc_threshold == False: raise RuntimeError("Cannot reach the AUC threshold {}".format(auc_threshold)) sys.exit(1) else: print("Successfully reach the AUC threshold {}".format(auc_threshold)) def single_node_test(args): solver = hugectr.CreateSolver(max_eval_batches = args.max_eval_batches, batchsize_eval = args.batchsize_eval, batchsize = args.batchsize, vvgpu = args.vvgpu, lr = args.learning_rate, warmup_steps = args.warmup_steps, decay_start = args.decay_start, decay_steps = args.decay_steps, decay_power = args.decay_power, end_lr = args.end_lr, i64_input_key = args.i64_input_key, use_mixed_precision = args.use_mixed_precision, scaler = args.scaler) reader = hugectr.DataReaderParams(data_reader_type = args.data_reader_type, source = [args.source], eval_source = args.eval_source, check_type = args.check_type, cache_eval_data = args.cache_eval_data, num_samples = args.num_samples, eval_num_samples = args.eval_num_samples, float_label_dense = args.float_label_dense, num_workers = args.num_workers, slot_size_array = args.slot_size_array) optimizer = hugectr.CreateOptimizer(optimizer_type = args.optimizer_type, beta1 = args.beta1, beta2 = args.beta2, epsilon = args.epsilon, update_type = args.update_type, momentum_factor = args.momentum_factor, atomic_update = args.atomic_update) model = hugectr.Model(solver, reader, optimizer) model.construct_from_json(graph_config_file = args.json_file, include_dense_network = True) model.compile() model.summary() if args.auc_check: train(model, args.max_iter, args.display, args.max_eval_batches, args.eval_interval, args.auc_threshold) else: model.fit(max_iter = args.max_iter, display = args.display, eval_interval = args.eval_interval, snapshot = args.snapshot) return if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--json-file', type=str, required = True, help='JSON configuration file') args = parse_args(parser) single_node_test(args)
47.802326
125
0.653369
79480c31164cbab7a3ac8ce70cda95d80b18aec2
808
py
Python
manage.py
boxed/related_how
9184b36fd07233426f80adde294eea0b2dfa8c7c
[ "BSD-3-Clause" ]
2
2020-06-04T18:04:33.000Z
2021-04-09T14:39:59.000Z
manage.py
boxed/relatedhow
9184b36fd07233426f80adde294eea0b2dfa8c7c
[ "BSD-3-Clause" ]
null
null
null
manage.py
boxed/relatedhow
9184b36fd07233426f80adde294eea0b2dfa8c7c
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "relatedhow.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
35.130435
77
0.643564
79480c5fd27378c21569e9f5db1f3471d679145b
3,497
py
Python
BriVL-code-inference/evaluation/XYB_box_extract.py
BAAI-WuDao/BriVL
bb8d95b230e692b2669a4234bb454f75d66a5e5b
[ "MIT" ]
130
2021-08-18T07:44:10.000Z
2022-03-28T02:10:40.000Z
BriVL-code-inference/evaluation/XYB_box_extract.py
FesianXu/BriVL
8d2c2487284f4b5c015fa3cc19b99c9171cc1ffa
[ "MIT" ]
12
2021-08-31T07:27:53.000Z
2021-12-24T07:27:58.000Z
BriVL-code-inference/evaluation/XYB_box_extract.py
FesianXu/BriVL
8d2c2487284f4b5c015fa3cc19b99c9171cc1ffa
[ "MIT" ]
19
2021-09-02T06:34:24.000Z
2022-03-23T01:47:39.000Z
import sys import os sys.path.append(os.path.abspath(os.path.dirname(os.path.realpath(__file__))+'/'+'..')) import os import time import argparse import torch import json from tqdm import tqdm import math import numpy as np import random from utils import getLanMask from models import build_network from dataset import build_moco_dataset from utils.config import cfg_from_yaml_file, cfg parser = argparse.ArgumentParser() parser.add_argument('--pretrainRes', type=str, default=None) parser.add_argument('--load_checkpoint', type=str, default=None) parser.add_argument('--data_dir', type=str, default=None) parser.add_argument('--feat_save_dir', type=str, default=None) parser.add_argument('--gpu_ids', type=str, default='0') parser.add_argument('--option', type=str, default='img_text') parser.add_argument('--seed', type=int, default=111) parser.add_argument('--gpu', type=int, default=0) parser.add_argument('--cfg_file', type=str, default='../cfg/test_xyb.yml') args = parser.parse_args() cfg_from_yaml_file(args.cfg_file, cfg) param_group = { 'img_text': {'img_fname':'np_img.npy', 'text_fname':'np_text.npy'}} os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_ids torch.manual_seed(args.seed) # cpu torch.cuda.manual_seed(args.seed) #gpu np.random.seed(args.seed) #numpy random.seed(args.seed) #random and transforms torch.backends.cudnn.deterministic=True # cudnn torch.cuda.set_device(args.gpu) dataloader_test = build_moco_dataset(args, cfg, is_training=False) model = build_network(cfg.MODEL) model = model.cuda() model_component = torch.load(args.load_checkpoint, map_location=torch.device('cpu')) model.learnable.load_state_dict(model_component['learnable']) model = torch.nn.DataParallel(model) model.eval() if not os.path.exists(args.feat_save_dir): os.makedirs(args.feat_save_dir) print('Successfully create feature save dir {} !'.format(args.feat_save_dir)) print('Load model from {:s}'.format(args.load_checkpoint)) print('Save features to dir {:s}'.format(args.feat_save_dir)) with torch.no_grad(): num_samples = len(dataloader_test) np_text, np_img = None, None for idx, batch in enumerate(tqdm(dataloader_test)): # data imgs = batch[0] img_lens = batch[1].view(-1) texts = batch[2] text_lens = batch[3] image_boxs = batch[4] bsz, textlen = texts.size(0), texts.size(1) # get image mask imgMask = getLanMask(img_lens, cfg.MODEL.MAX_IMG_LEN) imgMask = imgMask.cuda() # get language mask textMask = getLanMask(text_lens, cfg.MODEL.MAX_TEXT_LEN) textMask = textMask.cuda() imgs = imgs.cuda() texts = texts.cuda() image_boxs = image_boxs.cuda() # <BSZ, 36, 4> text_lens = text_lens.cuda() feature_group = model(imgs, texts, imgMask, textMask, text_lens, image_boxs, is_training=False) img, text = feature_group[args.option] if np_img is None: np_img = img.cpu().numpy() # <bsz, featdim> np_text = text.cpu().numpy() # <bsz, cap_num, featdim> else: np_img = np.concatenate((np_img, img.cpu().numpy()), axis=0) np_text = np.concatenate((np_text, text.cpu().numpy()), axis=0) fn_img = os.path.join(args.feat_save_dir, param_group[args.option]['img_fname']) fn_text = os.path.join(args.feat_save_dir, param_group[args.option]['text_fname']) np.save(fn_img, np_img) np.save(fn_text, np_text)
32.990566
103
0.697455