hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
794365115aa04eb4c09cbffc450febfcb142bb99
343
py
Python
src/AppiumLibrary/utils/__init__.py
ddavvID/robotframework-appiumlibrary
9635645c3349624716ebddb3afc158b7219167cd
[ "Apache-2.0" ]
null
null
null
src/AppiumLibrary/utils/__init__.py
ddavvID/robotframework-appiumlibrary
9635645c3349624716ebddb3afc158b7219167cd
[ "Apache-2.0" ]
null
null
null
src/AppiumLibrary/utils/__init__.py
ddavvID/robotframework-appiumlibrary
9635645c3349624716ebddb3afc158b7219167cd
[ "Apache-2.0" ]
null
null
null
from .applicationcache import ApplicationCache def escape_xpath_value(value): value = unicode(value) if '"' in value and '\'' in value: parts_wo_apos = value.split('\'') return "concat('%s')" % "', \"'\", '".join(parts_wo_apos) if '\'' in value: return "\"%s\"" % value return "'%s'" % value
31.181818
66
0.553936
7943655df1849f689805b87850caf20fa8429c35
712
py
Python
dax/__init__.py
onealbao/LDax
b3f33c68185d970eb340bed49dfc18889b180645
[ "MIT" ]
null
null
null
dax/__init__.py
onealbao/LDax
b3f33c68185d970eb340bed49dfc18889b180645
[ "MIT" ]
13
2020-06-11T20:56:24.000Z
2022-03-12T00:37:02.000Z
dax/__init__.py
onealbao/LDax
b3f33c68185d970eb340bed49dfc18889b180645
[ "MIT" ]
1
2018-09-14T15:52:35.000Z
2018-09-14T15:52:35.000Z
# -*- coding: utf-8 -*- # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: from __future__ import absolute_import from . import bin from . import dax_tools_utils from . import log from . import xnat_tools_utils from . import XnatUtils from .task import Task from .cluster import PBS from .launcher import Launcher from .dax_settings import DAX_Settings, DAX_Netrc from .version import VERSION as __version__ from .XnatUtils import SpiderProcessHandler, AssessorHandler from .modules import ScanModule, SessionModule from .spiders import AutoSpider, ScanSpider, SessionSpider from .processors import ScanProcessor, SessionProcessor, AutoProcessor
32.363636
73
0.79073
794365e35c56303005d5fe80bf841130b470ccfb
5,568
py
Python
pcdet/models/dense_heads/point_intra_part_head.py
Gltina/OpenPCDet
e32dc7f8f903a3f0e1c93effc68d74dbe16766e2
[ "Apache-2.0" ]
1,984
2020-07-01T05:13:02.000Z
2022-03-31T20:34:00.000Z
pcdet/models/dense_heads/point_intra_part_head.py
Gltina/OpenPCDet
e32dc7f8f903a3f0e1c93effc68d74dbe16766e2
[ "Apache-2.0" ]
748
2020-07-01T07:04:58.000Z
2022-03-31T07:38:51.000Z
pcdet/models/dense_heads/point_intra_part_head.py
Gltina/OpenPCDet
e32dc7f8f903a3f0e1c93effc68d74dbe16766e2
[ "Apache-2.0" ]
764
2020-07-01T12:19:13.000Z
2022-03-31T11:19:17.000Z
import torch from ...utils import box_coder_utils, box_utils from .point_head_template import PointHeadTemplate class PointIntraPartOffsetHead(PointHeadTemplate): """ Point-based head for predicting the intra-object part locations. Reference Paper: https://arxiv.org/abs/1907.03670 From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network """ def __init__(self, num_class, input_channels, model_cfg, predict_boxes_when_training=False, **kwargs): super().__init__(model_cfg=model_cfg, num_class=num_class) self.predict_boxes_when_training = predict_boxes_when_training self.cls_layers = self.make_fc_layers( fc_cfg=self.model_cfg.CLS_FC, input_channels=input_channels, output_channels=num_class ) self.part_reg_layers = self.make_fc_layers( fc_cfg=self.model_cfg.PART_FC, input_channels=input_channels, output_channels=3 ) target_cfg = self.model_cfg.TARGET_CONFIG if target_cfg.get('BOX_CODER', None) is not None: self.box_coder = getattr(box_coder_utils, target_cfg.BOX_CODER)( **target_cfg.BOX_CODER_CONFIG ) self.box_layers = self.make_fc_layers( fc_cfg=self.model_cfg.REG_FC, input_channels=input_channels, output_channels=self.box_coder.code_size ) else: self.box_layers = None def assign_targets(self, input_dict): """ Args: input_dict: point_features: (N1 + N2 + N3 + ..., C) batch_size: point_coords: (N1 + N2 + N3 + ..., 4) [bs_idx, x, y, z] gt_boxes (optional): (B, M, 8) Returns: point_cls_labels: (N1 + N2 + N3 + ...), long type, 0:background, -1:ignored point_part_labels: (N1 + N2 + N3 + ..., 3) """ point_coords = input_dict['point_coords'] gt_boxes = input_dict['gt_boxes'] assert gt_boxes.shape.__len__() == 3, 'gt_boxes.shape=%s' % str(gt_boxes.shape) assert point_coords.shape.__len__() in [2], 'points.shape=%s' % str(point_coords.shape) batch_size = gt_boxes.shape[0] extend_gt_boxes = box_utils.enlarge_box3d( gt_boxes.view(-1, gt_boxes.shape[-1]), extra_width=self.model_cfg.TARGET_CONFIG.GT_EXTRA_WIDTH ).view(batch_size, -1, gt_boxes.shape[-1]) targets_dict = self.assign_stack_targets( points=point_coords, gt_boxes=gt_boxes, extend_gt_boxes=extend_gt_boxes, set_ignore_flag=True, use_ball_constraint=False, ret_part_labels=True, ret_box_labels=(self.box_layers is not None) ) return targets_dict def get_loss(self, tb_dict=None): tb_dict = {} if tb_dict is None else tb_dict point_loss_cls, tb_dict = self.get_cls_layer_loss(tb_dict) point_loss_part, tb_dict = self.get_part_layer_loss(tb_dict) point_loss = point_loss_cls + point_loss_part if self.box_layers is not None: point_loss_box, tb_dict = self.get_box_layer_loss(tb_dict) point_loss += point_loss_box return point_loss, tb_dict def forward(self, batch_dict): """ Args: batch_dict: batch_size: point_features: (N1 + N2 + N3 + ..., C) or (B, N, C) point_coords: (N1 + N2 + N3 + ..., 4) [bs_idx, x, y, z] point_labels (optional): (N1 + N2 + N3 + ...) gt_boxes (optional): (B, M, 8) Returns: batch_dict: point_cls_scores: (N1 + N2 + N3 + ..., 1) point_part_offset: (N1 + N2 + N3 + ..., 3) """ point_features = batch_dict['point_features'] point_cls_preds = self.cls_layers(point_features) # (total_points, num_class) point_part_preds = self.part_reg_layers(point_features) ret_dict = { 'point_cls_preds': point_cls_preds, 'point_part_preds': point_part_preds, } if self.box_layers is not None: point_box_preds = self.box_layers(point_features) ret_dict['point_box_preds'] = point_box_preds point_cls_scores = torch.sigmoid(point_cls_preds) point_part_offset = torch.sigmoid(point_part_preds) batch_dict['point_cls_scores'], _ = point_cls_scores.max(dim=-1) batch_dict['point_part_offset'] = point_part_offset if self.training: targets_dict = self.assign_targets(batch_dict) ret_dict['point_cls_labels'] = targets_dict['point_cls_labels'] ret_dict['point_part_labels'] = targets_dict.get('point_part_labels') ret_dict['point_box_labels'] = targets_dict.get('point_box_labels') if self.box_layers is not None and (not self.training or self.predict_boxes_when_training): point_cls_preds, point_box_preds = self.generate_predicted_boxes( points=batch_dict['point_coords'][:, 1:4], point_cls_preds=point_cls_preds, point_box_preds=ret_dict['point_box_preds'] ) batch_dict['batch_cls_preds'] = point_cls_preds batch_dict['batch_box_preds'] = point_box_preds batch_dict['batch_index'] = batch_dict['point_coords'][:, 0] batch_dict['cls_preds_normalized'] = False self.forward_ret_dict = ret_dict return batch_dict
43.5
107
0.626976
794366031d29ab7a2d8b00c5d7a5dfb71d311ff0
3,436
py
Python
HSTB/kluster/dms.py
giumas/kluster
40abd266551a56b693132a7cb12471601f5a02b4
[ "CC0-1.0" ]
18
2020-11-01T19:59:33.000Z
2022-03-31T22:46:48.000Z
HSTB/kluster/dms.py
giumas/kluster
40abd266551a56b693132a7cb12471601f5a02b4
[ "CC0-1.0" ]
46
2020-10-23T13:55:24.000Z
2022-03-31T15:58:26.000Z
HSTB/kluster/dms.py
giumas/kluster
40abd266551a56b693132a7cb12471601f5a02b4
[ "CC0-1.0" ]
9
2021-03-18T22:28:26.000Z
2022-02-23T21:48:09.000Z
import re import numpy as np def dms2dd(d: float, m: float, s: float): """ convert between deg-min-sec and decimal degrees Parameters ---------- d degrees m minutes s seconds Returns ------- float decimal degrees """ sign = 1 try: if float(d) < 0: sign = -1 except TypeError: d = float(d) m = float(m) s = float(s) dd = abs(float(d)) + float(m)/60 + float(s)/(60 * 60) return dd * sign def dd2dms(deg: float): """ convert between decimal degrees and deg-min-sec Parameters ---------- deg decimal degrees Returns ------- list [degrees as float, minutes as float, seconds as float] """ try: d, m = divmod(abs(deg), 1) except TypeError: deg = float(deg) d, m = divmod(abs(deg), 1) m, s = divmod(m * 60, 1) s = s * 60 if float(deg) < 0: d = d * -1 return [d, m, s] def parse_dms_to_dd(dms: str): """ Take in deg-min-sec string in a couple different formats and return the decimal degrees representation. Supported formats: "80:38:06.57 W" "80:38:06.57W" "-80:38:06.57" "-80:38:06" Parameters ---------- dms deg-min-sec string Returns ------- float decimal degrees """ # split by any non-digit, non-letter character except - sign parts = re.split(r"[^\w-]+", dms) direct = 1 directions_included = {'N': 1, 'E': 1, 'W': -1, 'S': -1} if parts[-1] in directions_included: # someone included dir with space, ex: "80:38:06.57 W" direct = directions_included[parts[-1]] parts = parts[:-1] elif parts[-1][-1] in directions_included: # someone included dir without space, ex: "80:38:06.57W" direct = directions_included[parts[-1][-1]] parts[-1] = parts[-1][:-1].rstrip() if parts[0][0] != '-': parts[0] = int(parts[0]) * direct # add negative if direction was included as a letter but not as sign for deg dd = '' if len(parts) == 4: # milliseconds given, ex: "-80:38:06.57" dec_secs = int(parts[2]) + (int(parts[3]) / (10.0 ** len(parts[3].rstrip()))) dd = dms2dd(float(parts[0]), float(parts[1]), float(dec_secs)) elif len(parts) == 3: # milliseconds not given, ex: "-80:38:06" dd = dms2dd(float(parts[0]), float(parts[1]), float(parts[2])) return dd def return_zone_from_min_max_long(minlon: float, maxlon: float, minlat: float): """ Takes min longitude / max longitude and returns the zone that encompasses both. If min/max are in different zones, prints warning message and returns the higher zone number Parameters ---------- minlon the minimum longitude value of the dataset maxlon the maximum longitude value of the dataset minlat the minimum latitude value of the dataset Returns ------- str zone number with N/S identifier """ maxlon_zone = str(int(np.ceil((maxlon + 180) / 6))) minlon_zone = str(int(np.ceil((minlon + 180) / 6))) if minlat > 0: zone_ident = 'N' else: zone_ident = 'S' if int(maxlon_zone) != int(minlon_zone): print('Spanning more than one UTM zone: MIN {}, MAX {}'.format(minlon_zone, maxlon_zone)) return maxlon_zone + zone_ident
24.197183
119
0.562573
7943677c73c476ae1a7ddf1ee604277dd5599bcb
3,624
py
Python
salt/utils/mako.py
skrobul/salt
ef7fb71082cce7a9783e00b9c65062fefae09263
[ "Apache-2.0" ]
2
2017-09-17T21:10:35.000Z
2019-08-26T03:00:12.000Z
salt/utils/mako.py
skrobul/salt
ef7fb71082cce7a9783e00b9c65062fefae09263
[ "Apache-2.0" ]
null
null
null
salt/utils/mako.py
skrobul/salt
ef7fb71082cce7a9783e00b9c65062fefae09263
[ "Apache-2.0" ]
3
2021-02-23T08:12:48.000Z
2021-02-23T08:13:13.000Z
# -*- coding: utf-8 -*- from __future__ import absolute_import # Import python libs import os import urlparse # Import third party libs from mako.lookup import TemplateCollection, TemplateLookup # Import salt libs import salt.fileclient class SaltMakoTemplateLookup(TemplateCollection): """ Look up Mako template files using file:// or salt:// URLs with <%include/> or <%namespace/>. (1) Look up mako template files on local file system via files://... URL. Make sure mako template file is present locally on minion beforehand. Examples: <%include file="file:///etc/salt/lib/templates/sls-parts.mako"/> <%namespace file="file:///etc/salt/lib/templates/utils.mako" import="helper"/> (2) Look up mako template files on Salt master via salt://... URL. If URL is a relative path (without an URL scheme) then assume it's relative to the directory of the salt file that's doing the lookup. If URL is an absolute path then it's treated as if it has been prefixed with salt://. Examples:: <%include file="templates/sls-parts.mako"/> <%include file="salt://lib/templates/sls-parts.mako"/> <%include file="/lib/templates/sls-parts.mako"/> ##-- treated as salt:// <%namespace file="templates/utils.mako"/> <%namespace file="salt://lib/templates/utils.mako" import="helper"/> <%namespace file="/lib/templates/utils.mako" import="helper"/> ##-- treated as salt:// """ def __init__(self, opts, saltenv='base', env=None): if env is not None: salt.utils.warn_until( 'Boron', 'Passing a salt environment should be done using \'saltenv\' ' 'not \'env\'. This functionality will be removed in Salt ' 'Boron.' ) # Backwards compatibility saltenv = env self.opts = opts self.saltenv = saltenv self.file_client = salt.fileclient.get_file_client(self.opts) self.lookup = TemplateLookup(directories='/') self.cache = {} def adjust_uri(self, uri, filename): scheme = urlparse.urlparse(uri).scheme if scheme in ('salt', 'file'): return uri elif scheme: raise ValueError( 'Unsupported URL scheme({0}) in {1}'.format( scheme, uri ) ) return self.lookup.adjust_uri(uri, filename) def get_template(self, uri, relativeto=None): if uri.startswith("file://"): prefix = "file://" searchpath = "/" salt_uri = uri else: prefix = "salt://" if self.opts['file_client'] == 'local': searchpath = self.opts['file_roots'][self.saltenv] else: searchpath = [os.path.join(self.opts['cachedir'], 'files', self.saltenv)] salt_uri = uri if uri.startswith(prefix) else (prefix + uri) self.cache_file(salt_uri) self.lookup = TemplateLookup(directories=searchpath) return self.lookup.get_template(salt_uri[len(prefix):]) def cache_file(self, fpath): if fpath not in self.cache: self.cache[fpath] = self.file_client.get_file(fpath, '', True, self.saltenv)
37.75
99
0.549945
794367a83c37690f7bbe9302d7372524b47a0be3
425
py
Python
WEEKS/CD_Sata-Structures/_MISC/misc-examples/lookup.py
webdevhub42/Lambda
b04b84fb5b82fe7c8b12680149e25ae0d27a0960
[ "MIT" ]
null
null
null
WEEKS/CD_Sata-Structures/_MISC/misc-examples/lookup.py
webdevhub42/Lambda
b04b84fb5b82fe7c8b12680149e25ae0d27a0960
[ "MIT" ]
null
null
null
WEEKS/CD_Sata-Structures/_MISC/misc-examples/lookup.py
webdevhub42/Lambda
b04b84fb5b82fe7c8b12680149e25ae0d27a0960
[ "MIT" ]
null
null
null
import math # Inverse Square Root is 1 over the square root of a number (1 / sqrt(n)) inv_sqrt = {} def build_table(n): for i in range(1, n): global inv_sqrt inv_sqrt[i] = 1 / math.sqrt(i) print("Building Table") build_table(1000000) print("Done Building") print(inv_sqrt[30000]) print(inv_sqrt[30010]) print(inv_sqrt[32000]) print(inv_sqrt[30030]) print(inv_sqrt[30300]) print(inv_sqrt[30060])
15.740741
73
0.687059
794367bc65a9cfd8eec7cf6db37397cb60266b87
19,263
py
Python
lib/perf_uploader.py
hustwei/chromite
10eb79abeb64e859362546214b7e039096ac9830
[ "BSD-3-Clause" ]
null
null
null
lib/perf_uploader.py
hustwei/chromite
10eb79abeb64e859362546214b7e039096ac9830
[ "BSD-3-Clause" ]
null
null
null
lib/perf_uploader.py
hustwei/chromite
10eb79abeb64e859362546214b7e039096ac9830
[ "BSD-3-Clause" ]
null
null
null
# Copyright 2014 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Uploads performance data to the performance dashboard. The performance dashboard is owned by Chrome team and is available here: https://chromeperf.appspot.com/ Users must be logged in with an @google.com account to view perf data there. For more information on sending data to the dashboard, see: http://dev.chromium.org/developers/testing/sending-data-to-the-performance-dashboard Note: This module started off from the autotest/tko/perf_uploader.py but has been extended significantly since. """ from __future__ import print_function import collections import httplib import json import math import os import re import string import urllib import urllib2 from chromite.lib import cros_logging as logging from chromite.lib import osutils from chromite.lib import retry_util # Clearly mark perf values coming from chromite by default. _DEFAULT_TEST_PREFIX = 'cbuildbot.' _DEFAULT_PLATFORM_PREFIX = 'cros-' _ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) _PRESENTATION_CONFIG_FILE = os.path.join(_ROOT_DIR, 'perf_dashboard_config.json') LOCAL_DASHBOARD_URL = 'http://localhost:8080' STAGE_DASHBOARD_URL = 'https://chrome-perf.googleplex.com' DASHBOARD_URL = 'https://chromeperf.appspot.com' _MAX_DESCRIPTION_LENGTH = 256 _MAX_UNIT_LENGTH = 32 # Format for Chrome and Chrome OS version strings. _VERSION_REGEXP = r'^(\d+)\.(\d+)\.(\d+)\.(\d+)$' class PerfUploadingError(Exception): """A class to wrap errors in this module. This exception class has two attributes: value and orig_exc. "value" is what was used to create this exception while "orig_exc" is the optional original exception that is wrapped by this exception. """ def __init__(self, value, orig_exc=None): super(PerfUploadingError, self).__init__(value) self.orig_exc = orig_exc def __str__(self): r = super(PerfUploadingError, self).__str__() if self.orig_exc: r += '\ncaused by: %s' % str(self.orig_exc) return r PerformanceValue = collections.namedtuple( 'PerformanceValue', 'description value units higher_is_better graph stdio_uri') def OutputPerfValue(filename, description, value, units, higher_is_better=True, graph=None, stdio_uri=None): """Record a measured performance value in an output file. This is originally from autotest/files/client/common_lib/test.py. The output file will subsequently be parsed by ImageTestStage to have the information sent to chromeperf.appspot.com. Args: filename: A path to the output file. Data will be appended to this file. description: A string describing the measured perf value. Must be maximum length 256, and may only contain letters, numbers, periods, dashes, and underscores. For example: "page_load_time", "scrolling-frame-rate". value: A number representing the measured perf value, or a list of measured values if a test takes multiple measurements. Measured perf values can be either ints or floats. units: A string describing the units associated with the measured perf value(s). Must be maximum length 32, and may only contain letters, numbers, periods, dashes, and uderscores. For example: "msec", "fps". higher_is_better: A boolean indicating whether or not a higher measured perf value is considered better. If False, it is assumed that a "lower" measured value is better. graph: A string indicating the name of the graph on which the perf value will be subsequently displayed on the chrome perf dashboard. This allows multiple metrics to be grouped together on the same graph. Default to None, perf values should be graphed individually on separate graphs. stdio_uri: A URL relevant to this data point (e.g. the buildbot log). """ def ValidateString(param_name, value, max_len): if len(value) > max_len: raise ValueError('%s must be at most %d characters.', param_name, max_len) allowed_chars = string.ascii_letters + string.digits + '-._' if not set(value).issubset(set(allowed_chars)): raise ValueError( '%s may only contain letters, digits, hyphens, periods, and ' 'underscores. Its current value is %s.', param_name, value ) ValidateString('description', description, _MAX_DESCRIPTION_LENGTH) ValidateString('units', units, _MAX_UNIT_LENGTH) entry = { 'description': description, 'value': value, 'units': units, 'higher_is_better': higher_is_better, 'graph': graph, 'stdio_uri': stdio_uri, } data = (json.dumps(entry), '\n') osutils.WriteFile(filename, data, 'a') def LoadPerfValues(filename): """Return a list of PerformanceValue objects from |filename|.""" lines = osutils.ReadFile(filename).splitlines() entries = [] for line in lines: entry = json.loads(line) entries.append(PerformanceValue(**entry)) return entries def _AggregateIterations(perf_values): """Aggregate same measurements from multiple iterations. Each perf measurement may exist multiple times across multiple iterations of a test. Here, the results for each unique measured perf metric are aggregated across multiple iterations. Args: perf_values: A list of PerformanceValue objects. Returns: A dictionary mapping each unique measured perf value (keyed by tuple of its description and graph name) to information about that perf value (in particular, the value is a list of values for each iteration). """ aggregated_data = {} for perf_value in perf_values: key = (perf_value.description, perf_value.graph) try: aggregated_entry = aggregated_data[key] except KeyError: aggregated_entry = { 'units': perf_value.units, 'higher_is_better': perf_value.higher_is_better, 'graph': perf_value.graph, 'value': [], } aggregated_data[key] = aggregated_entry # Note: the stddev will be recomputed later when the results # from each of the multiple iterations are averaged together. aggregated_entry['value'].append(perf_value.value) return aggregated_data def _MeanAndStddev(data, precision=4): """Computes mean and standard deviation from a list of numbers. Args: data: A list of numeric values. precision: The integer number of decimal places to which to round the results. Returns: A 2-tuple (mean, standard_deviation), in which each value is rounded to |precision| decimal places. """ n = len(data) if n == 0: raise ValueError('Cannot compute mean and stddev of an empty list.') if n == 1: return round(data[0], precision), 0 mean = math.fsum(data) / n # Divide by n-1 to compute "sample standard deviation". variance = math.fsum((elem - mean) ** 2 for elem in data) / (n - 1) return round(mean, precision), round(math.sqrt(variance), precision) def _ComputeAvgStddev(perf_data): """Compute average and standard deviations as needed for perf measurements. For any perf measurement that exists in multiple iterations (has more than one measured value), compute the average and standard deviation for it and then store the updated information in the dictionary (in place). Args: perf_data: A dictionary of measured perf data as computed by _AggregateIterations(), except each "value" is now a single value, not a list of values. """ for perf in perf_data.itervalues(): perf['value'], perf['stddev'] = _MeanAndStddev(perf['value']) return perf_data PresentationInfo = collections.namedtuple( 'PresentationInfo', 'master_name test_name') def _GetPresentationInfo(test_name): """Get presentation info for |test_name| from config file. Args: test_name: The test name. Returns: A PresentationInfo object for this test. """ infos = osutils.ReadFile(_PRESENTATION_CONFIG_FILE) infos = json.loads(infos) for info in infos: if info['test_name'] == test_name: try: return PresentationInfo(**info) except: raise PerfUploadingError('No master found for %s' % test_name) raise PerfUploadingError('No presentation config found for %s' % test_name) def _FormatForUpload(perf_data, platform_name, presentation_info, revision=None, cros_version=None, chrome_version=None, test_prefix=None, platform_prefix=None): """Formats perf data suitably to upload to the perf dashboard. The perf dashboard expects perf data to be uploaded as a specially-formatted JSON string. In particular, the JSON object must be a dictionary with key "data", and value being a list of dictionaries where each dictionary contains all the information associated with a single measured perf value: master name, bot name, test name, perf value, units, and build version numbers. See also google3/googleclient/chrome/speed/dashboard/add_point.py for the server side handler. Args: platform_name: The string name of the platform. perf_data: A dictionary of measured perf data. This is keyed by (description, graph name) tuple. presentation_info: A PresentationInfo object of the given test. revision: The raw X-axis value; normally it represents a VCS repo, but may be any monotonic increasing value integer. cros_version: A string identifying Chrome OS version e.g. '6052.0.0'. chrome_version: A string identifying Chrome version e.g. '38.0.2091.2'. test_prefix: Arbitrary string to automatically prefix to the test name. If None, then 'cbuildbot.' is used to guarantee namespacing. platform_prefix: Arbitrary string to automatically prefix to |platform_name|. If None, then 'cros-' is used to guarantee namespacing. Returns: A dictionary containing the formatted information ready to upload to the performance dashboard. """ if test_prefix is None: test_prefix = _DEFAULT_TEST_PREFIX if platform_prefix is None: platform_prefix = _DEFAULT_PLATFORM_PREFIX dash_entries = [] for (desc, graph), data in perf_data.iteritems(): # Each perf metric is named by a path that encodes the test name, # a graph name (if specified), and a description. This must be defined # according to rules set by the Chrome team, as implemented in: # chromium/tools/build/scripts/slave/results_dashboard.py. desc = desc.replace('/', '_') test_name = test_prefix + presentation_info.test_name test_parts = [test_name, desc] if graph: test_parts.insert(1, graph) test_path = '/'.join(test_parts) supp_cols = {'a_default_rev': 'r_cros_version'} if data.get('stdio_uri'): supp_cols['a_stdio_uri'] = data['stdio_uri'] if cros_version is not None: supp_cols['r_cros_version'] = cros_version if chrome_version is not None: supp_cols['r_chrome_version'] = chrome_version new_dash_entry = { 'master': presentation_info.master_name, 'bot': platform_prefix + platform_name, 'test': test_path, 'value': data['value'], 'error': data['stddev'], 'units': data['units'], 'higher_is_better': data['higher_is_better'], 'supplemental_columns': supp_cols, } if revision is not None: new_dash_entry['revision'] = revision dash_entries.append(new_dash_entry) json_string = json.dumps(dash_entries) return {'data': json_string} def _SendToDashboard(data_obj, dashboard=DASHBOARD_URL): """Sends formatted perf data to the perf dashboard. Args: data_obj: A formatted data object as returned by _FormatForUpload(). dashboard: The dashboard to upload data to. Raises: PerfUploadingError if an exception was raised when uploading. """ upload_url = os.path.join(dashboard, 'add_point') encoded = urllib.urlencode(data_obj) req = urllib2.Request(upload_url, encoded) try: urllib2.urlopen(req) except urllib2.HTTPError as e: raise PerfUploadingError('HTTPError: %d %s for JSON %s\n' % (e.code, e.msg, data_obj['data']), e) except urllib2.URLError as e: raise PerfUploadingError('URLError: %s for JSON %s\n' % (str(e.reason), data_obj['data']), e) except httplib.HTTPException as e: raise PerfUploadingError( 'HTTPException for JSON %s\n' % data_obj['data'], e) def _ComputeRevisionFromVersions(chrome_version, cros_version): """Computes the point ID to use, from Chrome and Chrome OS version numbers. For ChromeOS row data, data values are associated with both a Chrome version number and a ChromeOS version number (unlike for Chrome row data that is associated with a single revision number). This function takes both version numbers as input, then computes a single, unique integer ID from them, which serves as a 'fake' revision number that can uniquely identify each ChromeOS data point, and which will allow ChromeOS data points to be sorted by Chrome version number, with ties broken by ChromeOS version number. To compute the integer ID, we take the portions of each version number that serve as the shortest unambiguous names for each (as described here: http://www.chromium.org/developers/version-numbers). We then force each component of each portion to be a fixed width (padded by zeros if needed), concatenate all digits together (with those coming from the Chrome version number first), and convert the entire string of digits into an integer. We ensure that the total number of digits does not exceed that which is allowed by AppEngine NDB for an integer (64-bit signed value). For example: Chrome version: 27.0.1452.2 (shortest unambiguous name: 1452.2) ChromeOS version: 27.3906.0.0 (shortest unambiguous name: 3906.0.0) concatenated together with padding for fixed-width columns: ('01452' + '002') + ('03906' + '000' + '00') = '014520020390600000' Final integer ID: 14520020390600000 Args: chrome_version: The Chrome version number as a string. cros_version: The ChromeOS version number as a string. Returns: A unique integer ID associated with the two given version numbers. """ # Number of digits to use from each part of the version string for Chrome # and Chrome OS versions when building a point ID out of these two versions. chrome_version_col_widths = [0, 0, 5, 3] cros_version_col_widths = [0, 5, 3, 2] def get_digits_from_version(version_num, column_widths): if re.match(_VERSION_REGEXP, version_num): computed_string = '' version_parts = version_num.split('.') for i, version_part in enumerate(version_parts): if column_widths[i]: computed_string += version_part.zfill(column_widths[i]) return computed_string else: return None chrome_digits = get_digits_from_version( chrome_version, chrome_version_col_widths) cros_digits = get_digits_from_version( cros_version, cros_version_col_widths) if not chrome_digits or not cros_digits: return None result_digits = chrome_digits + cros_digits max_digits = sum(chrome_version_col_widths + cros_version_col_widths) if len(result_digits) > max_digits: return None return int(result_digits) def _RetryIfServerError(perf_exc): """Exception handler to retry an upload if error code is 5xx. Args: perf_exc: The exception from _SendToDashboard. Returns: True if the cause of |perf_exc| is HTTP 5xx error. """ return (isinstance(perf_exc.orig_exc, urllib2.HTTPError) and perf_exc.orig_exc.code >= 500) def UploadPerfValues(perf_values, platform_name, test_name, revision=None, cros_version=None, chrome_version=None, dashboard=DASHBOARD_URL, master_name=None, test_prefix=None, platform_prefix=None, dry_run=False): """Uploads any perf data associated with a test to the perf dashboard. Note: If |revision| is used, then |cros_version| & |chrome_version| are not necessary. Conversely, if |revision| is not used, then |cros_version| and |chrome_version| must both be specified. Args: perf_values: List of PerformanceValue objects. platform_name: A string identifying platform e.g. 'x86-release'. 'cros-' will be prepended to |platform_name| internally, by _FormatForUpload. test_name: A string identifying the test revision: The raw X-axis value; normally it represents a VCS repo, but may be any monotonic increasing value integer. cros_version: A string identifying Chrome OS version e.g. '6052.0.0'. chrome_version: A string identifying Chrome version e.g. '38.0.2091.2'. dashboard: The dashboard to upload data to. master_name: The "master" field to use; by default it is looked up in the perf_dashboard_config.json database. test_prefix: Arbitrary string to automatically prefix to the test name. If None, then 'cbuildbot.' is used to guarantee namespacing. platform_prefix: Arbitrary string to automatically prefix to |platform_name|. If None, then 'cros-' is used to guarantee namespacing. dry_run: Do everything but upload the data to the server. """ if not perf_values: return # Aggregate values from multiple iterations together. perf_data = _AggregateIterations(perf_values) # Compute averages and standard deviations as needed for measured perf # values that exist in multiple iterations. Ultimately, we only upload a # single measurement (with standard deviation) for every unique measured # perf metric. _ComputeAvgStddev(perf_data) # Format the perf data for the upload, then upload it. if revision is None: # No "revision" field, calculate one. Chrome and CrOS fields must be given. cros_version = chrome_version[:chrome_version.find('.') + 1] + cros_version revision = _ComputeRevisionFromVersions(chrome_version, cros_version) try: if master_name is None: presentation_info = _GetPresentationInfo(test_name) else: presentation_info = PresentationInfo(master_name, test_name) formatted_data = _FormatForUpload(perf_data, platform_name, presentation_info, revision=revision, cros_version=cros_version, chrome_version=chrome_version, test_prefix=test_prefix, platform_prefix=platform_prefix) if dry_run: logging.debug('UploadPerfValues: skipping upload due to dry-run') else: retry_util.GenericRetry(_RetryIfServerError, 3, _SendToDashboard, formatted_data, dashboard=dashboard) except PerfUploadingError: logging.exception('Error when uploading perf data to the perf ' 'dashboard for test %s.', test_name) raise else: logging.info('Successfully uploaded perf data to the perf ' 'dashboard for test %s.', test_name)
38.836694
84
0.712713
79436840c2a6914408d5ecd48e477349eb37de44
2,367
py
Python
vaccine_allocation/constant_hazard.py
COVID-IWG/epimargin-studies
7d4a78e2e6713c6a0aea2cd2440529153e9a635d
[ "MIT" ]
null
null
null
vaccine_allocation/constant_hazard.py
COVID-IWG/epimargin-studies
7d4a78e2e6713c6a0aea2cd2440529153e9a635d
[ "MIT" ]
null
null
null
vaccine_allocation/constant_hazard.py
COVID-IWG/epimargin-studies
7d4a78e2e6713c6a0aea2cd2440529153e9a635d
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd from studies.vaccine_allocation.commons import * from tqdm import tqdm May15 = 30 # days since April 15 simulation_initial_conditions = pd.read_csv(data/f"all_india_coalesced_initial_conditions{simulation_start.strftime('%b%d')}.csv")\ .drop(columns = ["Unnamed: 0"])\ .set_index(["state", "district"])\ .assign( frac_R = lambda _: _.R0 / _.N_tot, frac_RV = lambda _: (_.R0 + _.V0) / _.N_tot, V0 = lambda _: _.V0.astype(int), D0 = lambda _: _.D0.astype(int), scaled_new_cases = lambda _: _.dT0.astype(int) )\ [["Rt", "frac_R", "frac_RV", "V0", "scaled_new_cases"]] def load_projections(state, district, t = May15): state_code = state_name_lookup[state] f = np.load(epi_dst / f'{state_code}_{district}_phi25_novax.npz') return [np.median(f["dD"], axis = 1).astype(int)[t], np.median(f["dD"], axis = 1).astype(int)[t]] projections = [load_projections(*idx) for idx in tqdm(simulation_initial_conditions.index)] # prioritization = simulation_initial_conditions\ # .join(pd.DataFrame(projections, columns = ["projected_new_cases_may15", "projected_new_deaths_may15"], index = simulation_initial_conditions.index)) prioritization = pd.read_csv(data / "apr15_sero_prioritization.csv").set_index(["state", "district"]) crosswalk = pd.read_stata(Path.home() / "Dropbox/COVID Vaccination Policy/India/data/districts/all_crosswalk.dta")\ .drop(columns = ["state", "district"])\ .rename(columns = lambda s: s.replace("_api", ""))\ .set_index(["state", "district"])\ .sort_index()\ .filter(like = "lgd", axis = 1) crosswalk.loc[coalesce_states].reset_index()\ .assign( district = lambda _:_.state, lgd_district_id = lambda _:_.lgd_state_id, lgd_district_name = lambda _:_.lgd_state_name ).drop_duplicates() prioritization.join(pd.concat([ crosswalk.drop(labels = coalesce_states), crosswalk.loc[coalesce_states].reset_index()\ .assign( district = lambda _:_.state, lgd_district_id = lambda _:_.lgd_state_id, lgd_district_name = lambda _:_.lgd_state_name )\ .drop_duplicates()\ .set_index(["state", "district"]) ]).sort_index())\ .to_csv(data / "apr15_sero_prioritization_lgd.csv" )
42.267857
154
0.662442
7943684ce59aafc1a6b4a946adad0e0c94f0e850
9,274
py
Python
Codes/2DCNN/Models/UNet3P.py
Sakib1263/1D-2D-Segmentation-AutoEncoder-TF2-KERAS
bdeeed8913686d5141a5178bddc0137cce3f7212
[ "MIT" ]
1
2022-03-10T13:36:49.000Z
2022-03-10T13:36:49.000Z
Codes/2DCNN/Models/UNet3P.py
Sakib1263/1D-2D-Segmentation-AutoEncoder-TF2-KERAS
bdeeed8913686d5141a5178bddc0137cce3f7212
[ "MIT" ]
null
null
null
Codes/2DCNN/Models/UNet3P.py
Sakib1263/1D-2D-Segmentation-AutoEncoder-TF2-KERAS
bdeeed8913686d5141a5178bddc0137cce3f7212
[ "MIT" ]
2
2022-02-13T12:08:56.000Z
2022-03-10T13:36:49.000Z
# Import Necessary Libraries import numpy as np import tensorflow as tf def Conv_Block(inputs, model_width, kernel, multiplier): # 2D Convolutional Block x = tf.keras.layers.Conv2D(model_width * multiplier, kernel, padding='same')(inputs) x = tf.keras.layers.BatchNormalization()(x) x = tf.keras.layers.Activation('relu')(x) return x def trans_conv2D(inputs, model_width, multiplier): # 2D Transposed Convolutional Block, used instead of UpSampling x = tf.keras.layers.Conv2DTranspose(model_width * multiplier, (2, 2), strides=(2, 2), padding='same')(inputs) # Stride = 2, Kernel Size = 2 x = tf.keras.layers.BatchNormalization()(x) x = tf.keras.layers.Activation('relu')(x) return x def Concat_Block(input1, *argv): # Concatenation Block from the Keras Library cat = input1 for arg in range(0, len(argv)): cat = tf.keras.layers.concatenate([cat, argv[arg]], axis=-1) return cat def upConv_Block(inputs, size=(2, 2)): # 2D UpSampling Block up = tf.keras.layers.UpSampling2D(size=size)(inputs) return up def Feature_Extraction_Block(inputs, model_width, feature_number): # Feature Extraction Block for the AutoEncoder Mode shape = inputs.shape latent = tf.keras.layers.Flatten()(inputs) latent = tf.keras.layers.Dense(feature_number, name='features')(latent) latent = tf.keras.layers.Dense(model_width * shape[1] * shape[2])(latent) latent = tf.keras.layers.Reshape((shape[1], shape[2], model_width))(latent) return latent def Attention_Block(skip_connection, gating_signal, num_filters, multiplier): # Attention Block conv1x1_1 = tf.keras.layers.Conv2D(num_filters*multiplier, (1, 1), strides=(2, 2))(skip_connection) conv1x1_1 = tf.keras.layers.BatchNormalization()(conv1x1_1) conv1x1_2 = tf.keras.layers.Conv2D(num_filters*multiplier, (1, 1), strides=(1, 1))(gating_signal) conv1x1_2 = tf.keras.layers.BatchNormalization()(conv1x1_2) conv1_2 = tf.keras.layers.add([conv1x1_1, conv1x1_2]) conv1_2 = tf.keras.layers.Activation('relu')(conv1_2) conv1_2 = tf.keras.layers.Conv2D(1, (1, 1), strides=(1, 1))(conv1_2) conv1_2 = tf.keras.layers.BatchNormalization()(conv1_2) conv1_2 = tf.keras.layers.Activation('sigmoid')(conv1_2) resampler1 = upConv_Block(conv1_2) resampler2 = trans_conv2D(conv1_2, 1, 1) resampler = tf.keras.layers.add([resampler1, resampler2]) out = skip_connection * resampler return out class UNet: def __init__(self, length, width, model_depth, num_channel, model_width, kernel_size, problem_type='Regression', output_nums=1, ds=0, ae=0, ag=0, lstm=0, feature_number=1024, is_transconv=True): # length: Input Signal Length # width: Input Image Width (y-dim) [Normally same as the x-dim i.e., Square shape] # model_depth: Depth of the Model # model_width: Width of the Input Layer of the Model # num_channel: Number of Channels allowed by the Model # kernel_size: Kernel or Filter Size of the Convolutional Layers # problem_type: Classification (Binary or Multiclass) or Regression # output_nums: Output Classes (Classification Mode) or Features (Regression Mode) # ds: Checks where Deep Supervision is active or not, either 0 or 1 [Default value set as 0] # ae: Enables or diables the AutoEncoder Mode, either 0 or 1 [Default value set as 0] # ag: Checks where Attention Guided is active or not, either 0 or 1 [Default value set as 0] # lstm: Checks where Bidirectional LSTM is active or not, either 0 or 1 [Default value set as 0] # feature_number: Number of Features or Embeddings to be extracted from the AutoEncoder in the A_E Mode # is_transconv: (TRUE - Transposed Convolution, FALSE - UpSampling) in the Encoder Layer self.length = length self.width = width self.model_depth = model_depth self.num_channel = num_channel self.model_width = model_width self.kernel_size = kernel_size self.problem_type = problem_type self.output_nums = output_nums self.D_S = ds self.A_E = ae self.A_G = ag self.LSTM = lstm self.feature_number = feature_number self.is_transconv = is_transconv def UNet3P(self): # Variable UNet3+ Model Design if self.length == 0 or self.model_depth == 0 or self.model_width == 0 or self.num_channel == 0 or self.kernel_size == 0: raise ValueError("Please Check the Values of the Input Parameters!") convs = {} levels = [] # Encoding inputs = tf.keras.Input((self.length, self.width, self.num_channel)) pool = inputs for i in range(1, (self.model_depth + 1)): conv = Conv_Block(pool, self.model_width, self.kernel_size, 2 ** (i - 1)) conv = Conv_Block(conv, self.model_width, self.kernel_size, 2 ** (i - 1)) pool = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(conv) convs["conv%s" % i] = conv if self.A_E == 1: # Collect Latent Features or Embeddings from AutoEncoders pool = Feature_Extraction_Block(pool, self.model_width, self.feature_number) conv = Conv_Block(pool, self.model_width, self.kernel_size, 2 ** self.model_depth) conv = Conv_Block(conv, self.model_width, self.kernel_size, 2 ** self.model_depth) # Decoding deconv = conv deconvs = {} convs_list = list(convs.values()) for j in range(0, self.model_depth): skip_connections_all = convs_list[self.model_depth - j - 1] skip_connections_all = Conv_Block(skip_connections_all, self.model_width, self.kernel_size, 2 ** 0) for k in range(0, self.model_depth - j - 1): skip_connection = convs_list[k] skip_connection = tf.keras.layers.MaxPooling2D(pool_size=(2 ** ((self.model_depth-j)-k-1),2 ** ((self.model_depth-j)-k-1)))(skip_connection) skip_connection = Conv_Block(skip_connection, self.model_width, self.kernel_size, 2 ** 0) skip_connections_all = tf.keras.layers.concatenate([skip_connections_all, skip_connection], axis=-1) deconv_tot = upConv_Block(deconv, size=(2 ** 1,2 ** 1)) deconv_tot = Conv_Block(deconv_tot, self.model_width, self.kernel_size, 2 ** 0) deconv_tot = tf.keras.layers.concatenate([skip_connections_all, deconv_tot], axis=-1) if j > 0: for m in range(0, j): deconv = upConv_Block(deconvs["deconv%s" % m], size=(2 ** (j-m),2 ** (j-m))) deconv = Conv_Block(deconv, self.model_width, self.kernel_size, 2 ** 0) deconv_tot = tf.keras.layers.concatenate([deconv_tot, deconv], axis=-1) deconv = Conv_Block(deconv_tot, self.model_width, self.kernel_size, self.model_depth + 1) deconvs["deconv%s" % j] = deconv if self.D_S == 1: # For Deep Supervision level = tf.keras.layers.Conv2D(1, (1, 1), (2, 2), name=f'level{self.model_depth - j}')(deconv) levels.append(level) # Output outputs = [] if self.problem_type == 'Classification': outputs = tf.keras.layers.Conv2D(self.output_nums, (1, 1), activation='softmax', name="out")(deconv) elif self.problem_type == 'Regression': outputs = tf.keras.layers.Conv2D(self.output_nums, (1, 1), activation='linear', name="out")(deconv) model = tf.keras.Model(inputs=[inputs], outputs=[outputs]) if self.D_S == 1: levels.append(outputs) levels.reverse() model = tf.keras.Model(inputs=[inputs], outputs=levels) return model if __name__ == '__main__': # Configurations length = 224 # Length of the Image (2D Signal) width = 224 # Width of the Image model_name = 'UNet3P' # Name of the Model model_depth = 5 # Number of Levels in the CNN Model model_width = 64 # Width of the Initial Layer, subsequent layers start from here kernel_size = 3 # Size of the Kernels/Filter num_channel = 1 # Number of Channels in the Model D_S = 1 # Turn on Deep Supervision A_E = 0 # Turn on AutoEncoder Mode for Feature Extraction A_G = 1 # Turn on for Guided Attention LSTM = 1 # Turn on for BiConvLSTM problem_type = 'Regression' # Problem Type: Regression or Classification output_nums = 1 # Number of Class for Classification Problems, always '1' for Regression Problems is_transconv = True # True: Transposed Convolution, False: UpSampling '''Only required if the AutoEncoder Mode is turned on''' feature_number = 1024 # Number of Features to be Extracted # Model = UNet(length, width, model_depth, num_channel, model_width, kernel_size, problem_type=problem_type, output_nums=output_nums, ds=D_S, ae=A_E, ag=A_G, lstm=LSTM, is_transconv=is_transconv).UNet3P() Model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0003), loss=tf.keras.losses.MeanAbsoluteError(), metrics=tf.keras.metrics.MeanSquaredError()) Model.summary()
47.804124
162
0.660017
794368ca201a13a7ea89add820a3ec46ea3c0524
15,350
py
Python
play/play_bagging_on_main.py
GavrilovMike/EnsembleLearning
6badedf2b6e9f2d3b01c11246c32916864ad3848
[ "MIT" ]
null
null
null
play/play_bagging_on_main.py
GavrilovMike/EnsembleLearning
6badedf2b6e9f2d3b01c11246c32916864ad3848
[ "MIT" ]
null
null
null
play/play_bagging_on_main.py
GavrilovMike/EnsembleLearning
6badedf2b6e9f2d3b01c11246c32916864ad3848
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ https://github.com/oxwhirl/smac """ from smac.env import StarCraft2Env import numpy as np # import sys import random import pickle # from gym.spaces import Discrete, Box, Dict # Вывод массива целиком np.set_printoptions(threshold=np.inf) # определяем может ли агент сделать заданнное действие action_is def is_possible_action(avail_actions_ind, action_is): ia = 0 # print ("in def len(avail_actions_ind) = ", len(avail_actions_ind)) while ia < len(avail_actions_ind): # print ("ia = ", ia) if avail_actions_ind[ia] == action_is: ia = len(avail_actions_ind) + 1 return True else: ia = ia + 1 return False # получаем состояние агента как позицию на карте def get_stateFox(agent_posX, agent_posY): error_count = 0 state = 67 if 6 < agent_posX < 7 and 16.2 < agent_posY < 18: state = 0 elif 7 < agent_posX < 8 and 16.2 < agent_posY < 18: state = 1 elif 8 < agent_posX < 8.9 and 16.2 < agent_posY < 18: state = 2 elif 8.9 < agent_posX < 9.1 and 16.2 < agent_posY < 18: state = 3 elif 9.1 < agent_posX < 10 and 16.2 < agent_posY < 18: state = 4 elif 10 < agent_posX < 11 and 16.2 < agent_posY < 18: state = 5 elif 11 < agent_posX < 12 and 16.2 < agent_posY < 18: state = 6 elif 12 < agent_posX < 13.1 and 16.2 < agent_posY < 18: state = 7 elif 6 < agent_posX < 7 and 15.9 < agent_posY < 16.2: state = 8 elif 7 < agent_posX < 8 and 15.9 < agent_posY < 16.2: state = 9 elif 8 < agent_posX < 8.9 and 15.9 < agent_posY < 16.2: state = 10 elif 8.9 < agent_posX < 9.1 and 15.9 < agent_posY < 16.2: state = 11 elif 9.1 < agent_posX < 10 and 15.9 < agent_posY < 16.2: state = 12 elif 10 < agent_posX < 11 and 15.9 < agent_posY < 16.2: state = 13 elif 11 < agent_posX < 12 and 15.9 < agent_posY < 16.2: state = 14 elif 12 < agent_posX < 13.1 and 15.9 < agent_posY < 16.2: state = 15 elif 6 < agent_posX < 7 and 15 < agent_posY < 15.9: state = 16 elif 7 < agent_posX < 8 and 15 < agent_posY < 15.9: state = 17 elif 8 < agent_posX < 8.9 and 15 < agent_posY < 15.9: state = 18 elif 8.9 < agent_posX < 9.1 and 15 < agent_posY < 15.9: state = 19 elif 9.1 < agent_posX < 10 and 15 < agent_posY < 15.9: state = 20 elif 10 < agent_posX < 11 and 15 < agent_posY < 15.9: state = 21 elif 11 < agent_posX < 12 and 15 < agent_posY < 15.9: state = 22 elif 12 < agent_posX < 13.1 and 15 < agent_posY < 15.9: state = 23 elif 6 < agent_posX < 7 and 14 < agent_posY < 15: state = 24 elif 7 < agent_posX < 8 and 14 < agent_posY < 15: state = 25 elif 8 < agent_posX < 8.9 and 14 < agent_posY < 15: state = 26 elif 8.9 < agent_posX < 9.1 and 14 < agent_posY < 15: state = 27 elif 9.1 < agent_posX < 10 and 14 < agent_posY < 15: state = 28 elif 10 < agent_posX < 11 and 14 < agent_posY < 15: state = 29 elif 11 < agent_posX < 12 and 14 < agent_posY < 15: state = 30 elif 12 < agent_posX < 13.1 and 14 < agent_posY < 15: state = 31 if 13.1 < agent_posX < 14 and 16.2 < agent_posY < 18: state = 32 elif 14 < agent_posX < 15 and 16.2 < agent_posY < 18: state = 33 elif 15 < agent_posX < 16 and 16.2 < agent_posY < 18: state = 34 elif 16 < agent_posX < 17 and 16.2 < agent_posY < 18: state = 35 elif 17 < agent_posX < 18 and 16.2 < agent_posY < 18: state = 36 elif 18 < agent_posX < 19 and 16.2 < agent_posY < 18: state = 37 elif 19 < agent_posX < 20 and 16.2 < agent_posY < 18: state = 38 elif 20 < agent_posX < 21 and 16.2 < agent_posY < 18: state = 39 elif 21 < agent_posX < 22 and 16.2 < agent_posY < 18: state = 40 elif 22 < agent_posX < 23 and 16.2 < agent_posY < 18: state = 41 elif 23 < agent_posX < 24 and 16.2 < agent_posY < 18: state = 42 if 13.1 < agent_posX < 14 and 15.9 < agent_posY < 16.2: state = 43 elif 14 < agent_posX < 15 and 15.9 < agent_posY < 16.2: state = 44 elif 15 < agent_posX < 16 and 15.9 < agent_posY < 16.2: state = 45 elif 16 < agent_posX < 17 and 15.9 < agent_posY < 16.2: state = 46 elif 17 < agent_posX < 18 and 15.9 < agent_posY < 16.2: state = 47 elif 18 < agent_posX < 19 and 15.9 < agent_posY < 16.2: state = 48 elif 19 < agent_posX < 20 and 15.9 < agent_posY < 16.2: state = 49 elif 20 < agent_posX < 21 and 15.9 < agent_posY < 16.2: state = 50 elif 21 < agent_posX < 22 and 15.9 < agent_posY < 16.2: state = 51 elif 22 < agent_posX < 23 and 15.9 < agent_posY < 16.2: state = 52 elif 23 < agent_posX < 24 and 15.9 < agent_posY < 16.2: state = 53 if 13.1 < agent_posX < 14 and 15 < agent_posY < 15.9: state = 54 elif 14 < agent_posX < 15 and 15 < agent_posY < 15.9: state = 55 elif 15 < agent_posX < 16 and 15 < agent_posY < 15.9: state = 56 elif 16 < agent_posX < 17 and 15 < agent_posY < 15.9: state = 57 elif 17 < agent_posX < 18 and 15 < agent_posY < 15.9: state = 58 elif 18 < agent_posX < 19 and 15 < agent_posY < 15.9: state = 59 elif 19 < agent_posX < 20 and 15 < agent_posY < 15.9: state = 60 elif 20 < agent_posX < 21 and 15 < agent_posY < 15.9: state = 61 elif 21 < agent_posX < 22 and 15 < agent_posY < 15.9: state = 62 elif 22 < agent_posX < 23 and 15 < agent_posY < 15.9: state = 63 elif 23 < agent_posX < 24 and 15 < agent_posY < 15.9: state = 64 if 13.1 < agent_posX < 14 and 14 < agent_posY < 15: state = 65 elif 14 < agent_posX < 15 and 14 < agent_posY < 15: state = 66 elif 15 < agent_posX < 16 and 14 < agent_posY < 15: state = 67 elif 16 < agent_posX < 17 and 14 < agent_posY < 15: state = 68 elif 17 < agent_posX < 18 and 14 < agent_posY < 15: state = 69 elif 18 < agent_posX < 19 and 14 < agent_posY < 15: state = 70 elif 19 < agent_posX < 20 and 14 < agent_posY < 15: state = 71 elif 20 < agent_posX < 21 and 14 < agent_posY < 15: state = 72 elif 21 < agent_posX < 22 and 14 < agent_posY < 15: state = 73 elif 22 < agent_posX < 23 and 14 < agent_posY < 15: state = 74 elif 23 < agent_posX < 24 and 14 < agent_posY < 15: state = 75 # if (state > 31): # print('Mistake\n') # error_count += 1 # # if (state < 31): # print('Mistake\n') # error_count += 1 # print ('Error_count+: ',error_count) return state """ keys = [0 1 2 3 4 5] act_ind_decode= {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6} qt_arr[act_ind]= 0.0 qt_arr[act_ind]= 0.0 qt_arr[act_ind]= 0.0 qt_arr[act_ind]= 0.0 qt_arr[act_ind]= 0.0 qt_arr[act_ind]= 0.0 """ def select_actionFox(state, avail_actions_ind, n_actionsFox, epsilon, Q_table): qt_arr = np.zeros(len(avail_actions_ind)) # Функция arange() возвращает одномерный массив с равномерно разнесенными значениями внутри заданного интервала. keys = np.arange(len(avail_actions_ind)) # print ("keys =", keys) # act_ind_decode= {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6} # Функция zip объединяет в кортежи элементы из последовательностей переданных в качестве аргументов. act_ind_decode = dict(zip(keys, avail_actions_ind)) # print ("act_ind_decode=", act_ind_decode) for act_ind in range(len(avail_actions_ind)): qt_arr[act_ind] = Q_table[state, act_ind_decode[act_ind]] # print ("qt_arr[act_ind]=",qt_arr[act_ind]) # Returns the indices of the maximum values along an axis. # Exploit learned values action = act_ind_decode[np.argmax(qt_arr)] return action # MAIN def main(): """The StarCraft II environment for decentralised multi-agent micromanagement scenarios.""" '''difficulty ="1" is VeryEasy''' # replay_dir="D:\StarCraft II\Replays\smacfox" env = StarCraft2Env(map_name="1mFOX", difficulty="1") '''env_info= {'state_shape': 48, 'obs_shape': 30, 'n_actions': 9, 'n_agents': 3, 'episode_limit': 60}''' env_info = env.get_env_info() # print("env_info = ", env_info) """Returns the size of the observation.""" """obssize = 10""" """obs= [array([ 1. , 1. , 1. , 1. , 1. , 0.63521415, 0.63517255, -0.00726997, 0.06666667, 0.06666667], dtype=float32)]""" obssize = env.get_obs_size() # print("obssize = ", obssize) ###################################################################### """ ready_agents = [] #observation_space= Dict(action_mask:Box(9,), obs:Box(30,)) observation_space = Dict({ "obs": Box(-1, 1, shape=(env.get_obs_size())), "action_mask": Box(0, 1, shape=(env.get_total_actions())) }) #print ("observation_space=", observation_space) #action_space= Discrete(9) action_space = Discrete(env.get_total_actions()) #print ("action_space=", action_space) """ ######################################################################## n_actions = env_info["n_actions"] # print ("n_actions=", n_actions) n_agents = env_info["n_agents"] n_episodes = 20 # количество эпизодов ############### Параметры обучения здесь нужны для функции select_actionFox ################################ alpha = 0.9 # learning rate sayon - 0.5 gamma = 0.5 # discount factor sayon - 0.9 epsilon = 0.7 # e-greedy n_statesFox = 76 # количество состояний нашего мира-сетки n_actionsFox = 7 # вводим свое количество действий, которые понадобятся ################################################################################################## total_reward = 0 with open("/Users/mgavrilov/Study/ENSEMBLEALGS/ensebmles/Bagging/Bagging_QTable.pkl", 'rb') as f: Q_table = pickle.load(f) print(Q_table) # print (Q_table) for e in range(n_episodes): # print("n_episode = ", e) """Reset the environment. Required after each full episode.Returns initial observations and states.""" env.reset() ''' Battle is over terminated = True''' terminated = False episode_reward = 0 actions_history = [] # n_steps = 1 #пока не берем это количество шагов для уменьгения награды за долгий поиск """ # вывод в файл fileobj = open("файл.txt", "wt") print("text",file=fileobj) fileobj.close() """ """ #динамический epsilon if e % 15 == 0: epsilon += (1 - epsilon) * 10 / n_episodes print("epsilon = ", epsilon) """ # stoprun = [0,0,0,0,0] while not terminated: """Returns observation for agent_id.""" obs = env.get_obs() # print ("obs=", obs) """Returns the global state.""" # state = env.get_state() actions = [] action = 0 '''agent_id= 0, agent_id= 1, agent_id= 2''' for agent_id in range(n_agents): # получаем характеристики юнита unit = env.get_unit_by_id(agent_id) # получаем состояние по координатам юнита stateFox = get_stateFox(unit.pos.x, unit.pos.y) # print ("state=", stateFox) ''' tag = unit.tag #много разных характеристик юнита x = unit.pos.x y = unit.pos.y ''' """Returns the available actions for agent_id.""" """avail_actions= [0, 1, 1, 1, 1, 1, 0, 0, 0]""" avail_actions = env.get_avail_agent_actions(agent_id) '''Функция nonzero() возвращает индексы ненулевых элементов массива.''' """avail_actions_ind of agent_id == 0: [1 2 3 4 5]""" avail_actions_ind = np.nonzero(avail_actions)[0] # выбираем действие action = select_actionFox(stateFox, avail_actions_ind, n_actionsFox, epsilon, Q_table) # собираем действия от разных агентов actions.append(action) actions_history.append(action) ###############_Бежим вправо и стреляем_################################ """ if is_possible_action(avail_actions_ind, 6) == True: action = 6 else: if is_possible_action(avail_actions_ind, 4) == True: action = 4 else: action = np.random.choice(avail_actions_ind) #Случайная выборка из значений заданного одномерного массива """ ##################################################################### """Функция append() добавляет элементы в конец массива.""" # print("agent_id=",agent_id,"avail_actions_ind=", avail_actions_ind, "action = ", action, "actions = ", actions) # f.write(agent_id) # f.write(avail_actions_ind) # собираем действия от разных агентов # actions.append(action) # как узнать куда стрелять? в определенного человека? # как узнать что делают другие агенты? самому создавать для них глобальное состояние # раз я ими управляю? """A single environment step. Returns reward, terminated, info.""" reward, terminated, _ = env.step(actions) episode_reward += reward ###################_Обучаем_############################################## """ for agent_id in range(n_agents): #получаем характеристики юнита unit = env.get_unit_by_id(agent_id) #получаем состояние по координатам юнита stateFox_next = get_stateFox(unit.pos.x, unit.pos.y) #поменять название на Qlearn #подумать над action ведь здесь это последнее действие #Qlearn(stateFox, stateFox_next, reward, action) Q_table[stateFox, action] = Q_table[stateFox, action] + alpha * \ (reward + gamma * np.max(Q_table[stateFox_next, :]) - Q_table[stateFox, action]) """ ########################################################################## total_reward += episode_reward # Total reward in episode 4 = 20.0 print("Total reward in episode {} = {}".format(e, episode_reward)) # get_stats()= {'battles_won': 2, 'battles_game': 5, 'battles_draw': 0, 'win_rate': 0.4, 'timeouts': 0, 'restarts': 0} print("get_stats()=", env.get_stats()) print("actions_history=", actions_history) # env.save_replay() """Save a replay.""" print("Average reward = ", total_reward / n_episodes) """"Close StarCraft II.""""" env.close() if __name__ == "__main__": main()
36.634845
129
0.549902
79436959148f0e0285d36b4e93e303c4f50a26d2
123
py
Python
Day2/Q7.py
nkem1010/python-challenge-solutions
203cedc691094a83b110fc75764aac51dbbc1a03
[ "MIT" ]
1
2020-05-24T21:53:59.000Z
2020-05-24T21:53:59.000Z
Day2/Q7.py
nkem1010/python-challenge-solutions
203cedc691094a83b110fc75764aac51dbbc1a03
[ "MIT" ]
null
null
null
Day2/Q7.py
nkem1010/python-challenge-solutions
203cedc691094a83b110fc75764aac51dbbc1a03
[ "MIT" ]
null
null
null
file = input('Input name of file') extension = file.split('.') print('The extension of the file is :' + extension[-1])
30.75
57
0.650407
79436a2db622eac37a8a711cc3b784358db3b345
372
py
Python
backend/mainshop/email.py
mbranko/webshop
b7c2ebb8720922f5277fee98fe826e54760b29d2
[ "MIT" ]
null
null
null
backend/mainshop/email.py
mbranko/webshop
b7c2ebb8720922f5277fee98fe826e54760b29d2
[ "MIT" ]
5
2021-03-19T01:53:49.000Z
2022-03-02T08:11:51.000Z
backend/mainshop/email.py
mbranko/webshop
b7c2ebb8720922f5277fee98fe826e54760b29d2
[ "MIT" ]
null
null
null
ACTIVATE_ACCOUNT_TITLE = "Webshop Account Activation" ACTIVATE_ACCOUNT_TEXT = """ Dear %s %s, In order to complete registration of your account at the Webshop please follow this link: https://badasswebshop.com/activate/%s/ If you have not requested a Webshop account at our website https://badasswebshop.com please ignore this message. Best regards, Webshop Team """
21.882353
64
0.782258
79436a6e24f6c9af2d3c2ad83f6201dd4e19cc97
15,924
py
Python
pyquil/simulation/_reference.py
stjordanis/pyquil
36987ecb78d5dc85d299dd62395b7669a1cedd5a
[ "Apache-2.0" ]
677
2017-01-09T23:20:22.000Z
2018-11-26T10:57:49.000Z
pyquil/simulation/_reference.py
stjordanis/pyquil
36987ecb78d5dc85d299dd62395b7669a1cedd5a
[ "Apache-2.0" ]
574
2018-11-28T05:38:40.000Z
2022-03-23T20:38:28.000Z
pyquil/simulation/_reference.py
stjordanis/pyquil
36987ecb78d5dc85d299dd62395b7669a1cedd5a
[ "Apache-2.0" ]
202
2018-11-30T06:36:28.000Z
2022-03-29T15:38:18.000Z
############################################################################## # Copyright 2016-2019 Rigetti Computing # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## import warnings from typing import Any, List, Optional, Sequence, Tuple, Union, cast import numpy as np from numpy.random.mtrand import RandomState from pyquil.paulis import PauliTerm, PauliSum from pyquil.pyqvm import AbstractQuantumSimulator from pyquil.quilbase import Gate from pyquil.simulation.matrices import P0, P1, KRAUS_OPS, QUANTUM_GATES from pyquil.simulation.tools import lifted_gate_matrix, lifted_gate, all_bitstrings def _term_expectation(wf: np.ndarray, term: PauliTerm, n_qubits: int) -> Any: # Computes <psi|XYZ..XXZ|psi> wf2 = wf for qubit_i, op_str in term._ops.items(): assert isinstance(qubit_i, int) # Re-use QUANTUM_GATES since it has X, Y, Z op_mat = QUANTUM_GATES[op_str] op_mat = lifted_gate_matrix(matrix=op_mat, qubit_inds=[qubit_i], n_qubits=n_qubits) wf2 = op_mat @ wf2 # `wf2` is XYZ..XXZ|psi> # hit it with a <psi| i.e. `wf.dag` return term.coefficient * (wf.conj().T @ wf2) def _is_valid_quantum_state(state_matrix: np.ndarray, rtol: float = 1e-05, atol: float = 1e-08) -> bool: """ Checks if a quantum state is valid, i.e. the matrix is Hermitian; trace one, and that the eigenvalues are non-negative. :param state_matrix: a D by D np.ndarray representing a quantum state :param rtol: The relative tolerance parameter in np.allclose and np.isclose :param atol: The absolute tolerance parameter in np.allclose and np.isclose :return: bool """ hermitian = np.allclose(state_matrix, np.conjugate(state_matrix.transpose()), rtol, atol) if not hermitian: raise ValueError("The state matrix is not Hermitian.") trace_one = np.isclose(np.trace(state_matrix), 1, rtol, atol) if not trace_one: raise ValueError("The state matrix is not trace one.") evals = np.linalg.eigvals(state_matrix) non_neg_eigs = all([False if val < -atol else True for val in evals]) if not non_neg_eigs: raise ValueError("The state matrix has negative Eigenvalues of order -" + str(atol) + ".") return hermitian and trace_one and non_neg_eigs class ReferenceWavefunctionSimulator(AbstractQuantumSimulator): def __init__(self, n_qubits: int, rs: Optional[RandomState] = None): """ A wavefunction simulator that prioritizes readability over performance. Please consider using :py:class:`PyQVM(..., wf_simulator_type=ReferenceWavefunctionSimulator)` rather than using this class directly. This class uses a flat state-vector of length 2^n_qubits to store wavefunction amplitudes. The basis is taken to be bitstrings ordered lexicographically with qubit 0 as the rightmost bit. This is the same as the Rigetti Lisp QVM. :param n_qubits: Number of qubits to simulate. :param rs: a RandomState (should be shared with the owning :py:class:`PyQVM`) for doing anything stochastic. A value of ``None`` disallows doing anything stochastic. """ super().__init__(n_qubits=n_qubits, rs=rs) self.n_qubits = n_qubits self.rs = rs self.wf = np.zeros(2 ** n_qubits, dtype=np.complex128) self.wf[0] = complex(1.0, 0) def sample_bitstrings(self, n_samples: int) -> np.ndarray: """ Sample bitstrings from the distribution defined by the wavefunction. Qubit 0 is at ``out[:, 0]``. :param n_samples: The number of bitstrings to sample :return: An array of shape (n_samples, n_qubits) """ if self.rs is None: raise ValueError( "You have tried to perform a stochastic operation without setting the " "random state of the simulator. Might I suggest using a PyQVM object?" ) probabilities = np.abs(self.wf) ** 2 possible_bitstrings = all_bitstrings(self.n_qubits) inds = self.rs.choice(2 ** self.n_qubits, n_samples, p=probabilities) bitstrings = possible_bitstrings[inds, :] bitstrings = np.flip(bitstrings, axis=1) # qubit ordering: 0 on the left. return bitstrings # type: ignore def do_gate(self, gate: Gate) -> "ReferenceWavefunctionSimulator": """ Perform a gate. :return: ``self`` to support method chaining. """ unitary = lifted_gate(gate=gate, n_qubits=self.n_qubits) self.wf = unitary.dot(self.wf) return self def do_gate_matrix(self, matrix: np.ndarray, qubits: Sequence[int]) -> "ReferenceWavefunctionSimulator": """ Apply an arbitrary unitary; not necessarily a named gate. :param matrix: The unitary matrix to apply. No checks are done. :param qubits: The qubits to apply the unitary to. :return: ``self`` to support method chaining. """ unitary = lifted_gate_matrix(matrix, list(qubits), n_qubits=self.n_qubits) self.wf = unitary.dot(self.wf) return self def do_measurement(self, qubit: int) -> int: """ Measure a qubit, collapse the wavefunction, and return the measurement result. :param qubit: Index of the qubit to measure. :return: measured bit """ if self.rs is None: raise ValueError( "You have tried to perform a stochastic operation without setting the " "random state of the simulator. Might I suggest using a PyQVM object?" ) # lift projective measure operator to Hilbert space # prob(0) = <psi P0 | P0 psi> = psi* . P0* . P0 . psi measure_0 = lifted_gate_matrix(matrix=P0, qubit_inds=[qubit], n_qubits=self.n_qubits) proj_psi = measure_0 @ self.wf prob_zero = np.conj(proj_psi).T @ proj_psi # generate random number to 'roll' for measure if self.rs.uniform() < prob_zero: # decohere state using the measure_0 operator unitary = measure_0 @ (np.eye(2 ** self.n_qubits) / np.sqrt(prob_zero)) self.wf = unitary.dot(self.wf) return 0 else: # measure one measure_1 = lifted_gate_matrix(matrix=P1, qubit_inds=[qubit], n_qubits=self.n_qubits) unitary = measure_1 @ (np.eye(2 ** self.n_qubits) / np.sqrt(1 - prob_zero)) self.wf = unitary.dot(self.wf) return 1 def expectation(self, operator: Union[PauliTerm, PauliSum]) -> float: """ Compute the expectation of an operator. :param operator: The operator :return: The operator's expectation value """ if not isinstance(operator, PauliSum): operator = PauliSum([operator]) return sum(_term_expectation(self.wf, term, n_qubits=self.n_qubits) for term in operator) def reset(self) -> "ReferenceWavefunctionSimulator": """ Reset the wavefunction to the ``|000...00>`` state. :return: ``self`` to support method chaining. """ self.wf.fill(0) self.wf[0] = complex(1.0, 0) return self def do_post_gate_noise(self, noise_type: str, noise_prob: float, qubits: List[int]) -> "AbstractQuantumSimulator": raise NotImplementedError("The reference wavefunction simulator cannot handle noise") def zero_state_matrix(n_qubits: int) -> np.ndarray: """ Construct a matrix corresponding to the tensor product of `n` ground states ``|0><0|``. :param n_qubits: The number of qubits. :return: The state matrix ``|000...0><000...0|`` for `n_qubits`. """ state_matrix = np.zeros((2 ** n_qubits, 2 ** n_qubits), dtype=np.complex128) state_matrix[0, 0] = complex(1.0, 0) return state_matrix class ReferenceDensitySimulator(AbstractQuantumSimulator): """ A density matrix simulator that prioritizes readability over performance. Please consider using :py:class:`PyQVM(..., wf_simulator_type=ReferenceDensitySimulator)` rather than using this class directly. This class uses a dense matrix of shape ``(2^n_qubits, 2^n_qubits)`` to store the density matrix. :param n_qubits: Number of qubits to simulate. :param rs: a RandomState (should be shared with the owning :py:class:`PyQVM`) for doing anything stochastic. A value of ``None`` disallows doing anything stochastic. """ def __init__(self, n_qubits: int, rs: Optional[RandomState] = None): super().__init__(n_qubits=n_qubits, rs=rs) self.n_qubits = n_qubits self.rs = rs self.density: Optional[np.ndarray] = None self.set_initial_state(zero_state_matrix(n_qubits)).reset() def set_initial_state(self, state_matrix: np.ndarray) -> "ReferenceDensitySimulator": """ This method is the correct way (TM) to update the initial state matrix that is initialized every time reset() is called. The default initial state of ReferenceDensitySimulator is ``|000...00>``. Note that the current state matrix, i.e. ``self.density`` is not affected by this method; you must change it directly or else call reset() after calling this method. To restore default state initialization behavior of ReferenceDensitySimulator pass in a ``state_matrix`` equal to the default initial state on `n_qubits` (i.e. ``|000...00>``) and then call ``reset()``. We have provided a helper function ``n_qubit_zero_state`` in the ``_reference.py`` module to simplify this step. :param state_matrix: numpy.ndarray or None. :return: ``self`` to support method chaining. """ rows, cols = state_matrix.shape if rows != cols: raise ValueError("The state matrix is not square.") if self.n_qubits != int(np.log2(rows)): raise ValueError("The state matrix is not defined on the same numbers of qubits as the QVM.") if _is_valid_quantum_state(state_matrix): self.initial_density = state_matrix else: raise ValueError( "The state matrix is not valid. It must be Hermitian, trace one, " "and have non-negative eigenvalues." ) return self def sample_bitstrings(self, n_samples: int, tol_factor: float = 1e8) -> np.ndarray: """ Sample bitstrings from the distribution defined by the wavefunction. Qubit 0 is at ``out[:, 0]``. :param n_samples: The number of bitstrings to sample :param tol_factor: Tolerance to set imaginary probabilities to zero, relative to machine epsilon. :return: An array of shape (n_samples, n_qubits) """ if self.rs is None: raise ValueError( "You have tried to perform a stochastic operation without setting the " "random state of the simulator. Might I suggest using a PyQVM object?" ) # for np.real_if_close the actual tolerance is (machine_eps * tol_factor), # where `machine_epsilon = np.finfo(float).eps`. If we use tol_factor = 1e8, then the # overall tolerance is \approx 2.2e-8. probabilities = np.real_if_close(np.diagonal(self.density), tol=tol_factor) # type: ignore # Next set negative probabilities to zero probabilities = np.array([0 if p < 0.0 else p for p in probabilities]) # Ensure they sum to one probabilities = probabilities / np.sum(probabilities) possible_bitstrings = all_bitstrings(self.n_qubits) inds = self.rs.choice(2 ** self.n_qubits, n_samples, p=probabilities) bitstrings = possible_bitstrings[inds, :] bitstrings = np.flip(bitstrings, axis=1) # qubit ordering: 0 on the left. return bitstrings # type: ignore def do_gate(self, gate: Gate) -> "AbstractQuantumSimulator": """ Perform a gate. :return: ``self`` to support method chaining. """ unitary = lifted_gate(gate=gate, n_qubits=self.n_qubits) self.density = unitary.dot(self.density).dot(np.conj(unitary).T) # type: ignore return self def do_gate_matrix(self, matrix: np.ndarray, qubits: Sequence[int]) -> "AbstractQuantumSimulator": """ Apply an arbitrary unitary; not necessarily a named gate. :param matrix: The unitary matrix to apply. No checks are done :param qubits: A list of qubits to apply the unitary to. :return: ``self`` to support method chaining. """ unitary = lifted_gate_matrix(matrix=matrix, qubit_inds=qubits, n_qubits=self.n_qubits) self.density = unitary.dot(self.density).dot(np.conj(unitary).T) # type: ignore return self def do_measurement(self, qubit: int) -> int: """ Measure a qubit and collapse the wavefunction :return: The measurement result. A 1 or a 0. """ if self.rs is None: raise ValueError( "You have tried to perform a stochastic operation without setting the " "random state of the simulator. Might I suggest using a PyQVM object?" ) measure_0 = lifted_gate_matrix(matrix=P0, qubit_inds=[qubit], n_qubits=self.n_qubits) prob_zero = np.trace(measure_0 @ self.density) # type: ignore # generate random number to 'roll' for measurement if self.rs.uniform() < prob_zero: # decohere state using the measure_0 operator unitary = measure_0 @ (np.eye(2 ** self.n_qubits) / np.sqrt(prob_zero)) self.density = unitary.dot(self.density).dot(np.conj(unitary.T)) return 0 else: # measure one measure_1 = lifted_gate_matrix(matrix=P1, qubit_inds=[qubit], n_qubits=self.n_qubits) unitary = measure_1 @ (np.eye(2 ** self.n_qubits) / np.sqrt(1 - prob_zero)) self.density = unitary.dot(self.density).dot(np.conj(unitary.T)) return 1 def expectation(self, operator: Union[PauliTerm, PauliSum]) -> complex: raise NotImplementedError("To implement") def reset(self) -> "AbstractQuantumSimulator": """ Resets the current state of ReferenceDensitySimulator ``self.density`` to ``self.initial_density``. :return: ``self`` to support method chaining. """ self.density = self.initial_density return self def do_post_gate_noise(self, noise_type: str, noise_prob: float, qubits: List[int]) -> "ReferenceDensitySimulator": kraus_ops = cast(Tuple[np.ndarray, ...], KRAUS_OPS[noise_type](p=noise_prob)) if np.isclose(noise_prob, 0.0): warnings.warn(f"Skipping {noise_type} post-gate noise because noise_prob is close to 0") return self for q in qubits: new_density = np.zeros_like(self.density) # type: ignore for kraus_op in kraus_ops: lifted_kraus_op = lifted_gate_matrix(matrix=kraus_op, qubit_inds=[q], n_qubits=self.n_qubits) new_density += lifted_kraus_op.dot(self.density).dot(np.conj(lifted_kraus_op.T)) # type: ignore self.density = new_density return self
43.98895
119
0.646822
79436b03a99bfdbf3a6fe58a16d67e8863aefd1f
3,403
py
Python
pypureclient/flasharray/FA_2_10/models/directory_policy_export_post.py
Flav-STOR-WL/py-pure-client
03b889c997d90380ac5d6380ca5d5432792d3e89
[ "BSD-2-Clause" ]
14
2018-12-07T18:30:27.000Z
2022-02-22T09:12:33.000Z
pypureclient/flasharray/FA_2_10/models/directory_policy_export_post.py
Flav-STOR-WL/py-pure-client
03b889c997d90380ac5d6380ca5d5432792d3e89
[ "BSD-2-Clause" ]
28
2019-09-17T21:03:52.000Z
2022-03-29T22:07:35.000Z
pypureclient/flasharray/FA_2_10/models/directory_policy_export_post.py
Flav-STOR-WL/py-pure-client
03b889c997d90380ac5d6380ca5d5432792d3e89
[ "BSD-2-Clause" ]
15
2020-06-11T15:50:08.000Z
2022-03-21T09:27:25.000Z
# coding: utf-8 """ FlashArray REST API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: 2.10 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re import six import typing from ....properties import Property if typing.TYPE_CHECKING: from pypureclient.flasharray.FA_2_10 import models class DirectoryPolicyExportPost(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'policies': 'list[DirectorypolicyexportpostPolicies]' } attribute_map = { 'policies': 'policies' } required_args = { } def __init__( self, policies=None, # type: List[models.DirectorypolicyexportpostPolicies] ): """ Keyword args: policies (list[DirectorypolicyexportpostPolicies]): A list of export policies to apply to the directory. The `id` and `name` fields in each `policy` parameter are required, but cannot be set together. """ if policies is not None: self.policies = policies def __setattr__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `DirectoryPolicyExportPost`".format(key)) self.__dict__[key] = value def __getattribute__(self, item): value = object.__getattribute__(self, item) if isinstance(value, Property): raise AttributeError else: return value def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(DirectoryPolicyExportPost, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, DirectoryPolicyExportPost): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
30.383929
212
0.570673
79436b2aab1c38baca65b992127fe364691ab9c9
2,379
py
Python
pipeline/helper_components.py
younesslanda/MLops-on-GCP
430a453389fc23e19bd6f7585e08fdce511b8920
[ "Apache-2.0" ]
1
2022-03-17T04:58:05.000Z
2022-03-17T04:58:05.000Z
pipeline/helper_components.py
younesslanda/MLops-on-GCP
430a453389fc23e19bd6f7585e08fdce511b8920
[ "Apache-2.0" ]
null
null
null
pipeline/helper_components.py
younesslanda/MLops-on-GCP
430a453389fc23e19bd6f7585e08fdce511b8920
[ "Apache-2.0" ]
null
null
null
"""Helper components.""" from googleapiclient import discovery from googleapiclient import errors #import joblib import pickle import json import pandas as pd import subprocess import sys from sklearn.metrics import accuracy_score, recall_score from typing import NamedTuple def retrieve_best_run(project_id: str, job_id: str) -> NamedTuple('Outputs', [('metric_value', float), ('alpha', float), ('max_iter', int)]): """Retrieves the parameters of the best Hypertune run.""" ml = discovery.build('ml', 'v1') job_name = 'projects/{}/jobs/{}'.format(project_id, job_id) request = ml.projects().jobs().get(name=job_name) try: response = request.execute() except errors.HttpError as err: print(err) except: print('Unexpected error') print(response) best_trial = response['trainingOutput']['trials'][0] metric_value = best_trial['finalMetric']['objectiveValue'] alpha = float(best_trial['hyperparameters']['alpha']) max_iter = int(best_trial['hyperparameters']['max_iter']) return (metric_value, alpha, max_iter) def evaluate_model(dataset_path: str, model_path: str, metric_name: str) -> NamedTuple('Outputs', [('metric_name', str), ('metric_value', float), ('mlpipeline_metrics', 'Metrics')]): """Evaluates a trained sklearn model.""" df_test = pd.read_csv(dataset_path) X_test = df_test.drop('Cover_Type', axis=1) y_test = df_test['Cover_Type'] # Copy the model from GCS model_filename = 'model.pkl' gcs_model_filepath = '{}/{}'.format(model_path, model_filename) print(gcs_model_filepath) subprocess.check_call(['gsutil', 'cp', gcs_model_filepath, model_filename], stderr=sys.stdout) with open(model_filename, 'rb') as model_file: model = pickle.load(model_file) y_hat = model.predict(X_test) if metric_name == 'accuracy': metric_value = accuracy_score(y_test, y_hat) elif metric_name == 'recall': metric_value = recall_score(y_test, y_hat) else: metric_name = 'N/A' metric_value = 0 # Export the metric metrics = { 'metrics': [{ 'name': metric_name, 'numberValue': float(metric_value) }] } return (metric_name, metric_value, json.dumps(metrics))
29.37037
145
0.649853
79436b95bc43ee6466e0336fb33e37e57a42086a
1,246
py
Python
coffea/nanoaod/methods/__init__.py
dnoonan08/coffea
fb52a8a31245c6f4cf5bbd13ea51cdda5262dfa0
[ "BSD-3-Clause" ]
null
null
null
coffea/nanoaod/methods/__init__.py
dnoonan08/coffea
fb52a8a31245c6f4cf5bbd13ea51cdda5262dfa0
[ "BSD-3-Clause" ]
null
null
null
coffea/nanoaod/methods/__init__.py
dnoonan08/coffea
fb52a8a31245c6f4cf5bbd13ea51cdda5262dfa0
[ "BSD-3-Clause" ]
1
2019-06-14T15:24:26.000Z
2019-06-14T15:24:26.000Z
from .common import METVector, LorentzVector, Candidate from .leptons import Electron, Muon, Photon, Tau from .jets import Jet, FatJet from .generator import GenParticle, GenVisTau collection_methods = { 'CaloMET': METVector, 'ChsMET': METVector, 'GenMET': METVector, 'MET': METVector, 'METFixEE2017': METVector, 'PuppiMET': METVector, 'RawMET': METVector, 'TkMET': METVector, # pseudo-lorentz: pt, eta, phi, mass=0 'IsoTrack': LorentzVector, 'SoftActivityJet': LorentzVector, 'TrigObj': LorentzVector, # True lorentz: pt, eta, phi, mass 'FatJet': FatJet, 'GenDressedLepton': LorentzVector, 'GenJet': LorentzVector, 'GenJetAK8': FatJet, 'Jet': Jet, 'LHEPart': LorentzVector, 'SV': LorentzVector, 'SubGenJetAK8': LorentzVector, 'SubJet': LorentzVector, # Candidate: LorentzVector + charge 'Electron': Electron, 'Muon': Muon, 'Photon': Photon, 'Tau': Tau, 'GenVisTau': GenVisTau, # special 'GenPart': GenParticle, } __all__ = [ 'METVector', 'LorentzVector', 'Candidate', 'Electron', 'Muon', 'Photon', 'Tau', 'Jet', 'FatJet', 'GenParticle', 'GenVisTau', 'collection_methods', ]
23.074074
55
0.631621
79436bd7814ecf9e1c295937509df98d8fbb09eb
673
py
Python
autobahn/wamp/gen/wamp/proto/Principal.py
andriyor/autobahn-python
4b6d825bb308d695f440be6ebe5e713af85bf143
[ "MIT" ]
null
null
null
autobahn/wamp/gen/wamp/proto/Principal.py
andriyor/autobahn-python
4b6d825bb308d695f440be6ebe5e713af85bf143
[ "MIT" ]
3
2019-07-10T12:37:53.000Z
2021-12-07T14:14:56.000Z
autobahn/wamp/gen/wamp/proto/Principal.py
andriyor/autobahn-python
4b6d825bb308d695f440be6ebe5e713af85bf143
[ "MIT" ]
4
2019-03-01T14:57:06.000Z
2022-01-06T16:31:10.000Z
# automatically generated by the FlatBuffers compiler, do not modify # namespace: proto import flatbuffers from flatbuffers.compat import import_numpy np = import_numpy() class Principal(object): __slots__ = ['_tab'] @classmethod def SizeOf(cls): return 8 # Principal def Init(self, buf, pos): self._tab = flatbuffers.table.Table(buf, pos) # Principal def Session(self): return self._tab.Get(flatbuffers.number_types.Uint64Flags, self._tab.Pos + flatbuffers.number_types.UOffsetTFlags.py_type(0)) def CreatePrincipal(builder, session): builder.Prep(8, 8) builder.PrependUint64(session) return builder.Offset()
24.925926
148
0.720654
79436c5601928c492585143de43f0536374ffca4
6,594
py
Python
GPro/validations.py
1989Ryan/GPro
368ac6b349f83287cc683b4d50b77036cc9deafa
[ "MIT" ]
null
null
null
GPro/validations.py
1989Ryan/GPro
368ac6b349f83287cc683b4d50b77036cc9deafa
[ "MIT" ]
null
null
null
GPro/validations.py
1989Ryan/GPro
368ac6b349f83287cc683b4d50b77036cc9deafa
[ "MIT" ]
null
null
null
import numpy as np def assert_array(x): """Throw a TypeError if X is not array-like.""" if not (isinstance(x, np.ndarray) or isinstance(x, list)): raise TypeError('Only lists and numpy arrays are supported.') def convert_array(x): """Convert a list to a numpy array.""" if isinstance(x, list): # data-type is inferred from the input data. x = np.asarray(x) return x def set_d_type(x, d_type): """Sets the d_type of a numpy array.""" if not isinstance(x[0, 0], d_type): x = x.astype(d_type) return x def assert_finite(x): """Throw a ValueError if x contains NaNs or infinity.""" if not np.isfinite(x.sum()): raise ValueError('Only finite numbers are supported.') def assert_dim(x): """Throw an Assertion error if x is a 1d array.""" assert len(x.shape) > 1, \ "Array %r is of inconsistent dimensions." % x def assert_object(x): """Throw a Type error if X is an object.""" if x.dtype.kind == "O": raise TypeError('Object type is not supported for %r.' % x) def check_x_m(x, m): """Input validation for standard estimators. Checks x and m for consistent shapes. By default, x and m are checked to be non-empty and containing only finite values. m is also checked to be containing only positives indexes of x. Parameters ---------- x : array-like. Input data. m : array-like. Preferences. Returns ------- x : the validated x. m : the validated m. """ # Pandas data frame not supported. assert_array(x), assert_array(m) # If list converts to numpy array. x = convert_array(x) m = convert_array(m) # Check valid dimensions assert_dim(x), assert_dim(m) # Only real values are supported. assert_object(x), assert_object(m) if x.dtype.kind not in ('f', 'i', 'u'): raise TypeError('Only floating-point, signed or unsigned integer,\ training data supported.') if m.dtype.kind not in ('i', 'u'): raise TypeError('Only integer preference data supported.') # float64 for x and int8 for m. x = set_d_type(x, d_type=np.float64) m = set_d_type(m, d_type=np.int8) # Only finite numbers are supported. assert_finite(x), assert_finite(m) # Only positive numbers are supported for preferences. if any(m.ravel() < 0): raise ValueError('Only positive integers are supported for m.') # A preference set should contain two values. assert m.shape[1] == 2, \ "Array %r is of inconsistent dimensions." % m assert x.shape[0] > 1, \ "Array %r is of inconsistent size." % x # Check if indexes of m are consistent with size of x. if m.max() > x.shape[0]: raise ValueError('Preferences should be indexes of X.') if any(np.subtract(m[:, 0], m[:, 1]) == 0): raise ValueError('m contains at least one set of preferences' ' with the same values.') return x, m def check_post_approx(**params): """Input validation for the Laplace approximation. Checks s_eval, max_iter, eta, tol for consistent values and shapes. """ s_eval = params['s_eval'] max_iter = params['max_iter'] eta = params['eta'] tol = params['tol'] if np.isscalar(s_eval) and not isinstance(s_eval, str): if max_iter <= 0: raise ValueError("s_eval must be a positive scalar.") else: raise ValueError("s_eval must be a positive scalar.") if np.isscalar(max_iter) and not isinstance(max_iter, str): if not (isinstance(max_iter, int) and max_iter > 0): raise ValueError("max_iter must be a positive integer scalar.") else: raise ValueError("max_iter must be a positive integer scalar.") if np.isscalar(eta) and not isinstance(eta, str): if eta < 0: raise ValueError("eta must be a positive scalar.") else: raise ValueError("eta must be a positive scalar.") if np.isscalar(tol) and not isinstance(tol, str): if tol < 0: raise ValueError("tol must be a positive scalar.") else: raise ValueError("tol must be a positive scalar.") return def check_kernel(x, **params): """Input validation for the RBF and Matern kernel. Checks length_scale and nu for consistent shape and value. Parameters ---------- x : array-like. Input data. Returns ------- None """ length_scale = params['length_scale'] if np.iterable(length_scale): if np.asarray(length_scale).dtype.kind not in ('f', 'i', 'u'): raise TypeError('Only floating-point, signed or unsigned integer,\ length_scale supported.') elif any(length_scale) <= 0: raise ValueError("length_scale values must be positive.") assert x.shape[0] == len(length_scale), \ "Array length_scale is of inconsistent dimension." elif isinstance(length_scale, str): raise ValueError("length_scale must be a positive scalar.") if len(params) > 1: nu = params['nu'] if np.isscalar(nu) and not isinstance(nu, str): if nu <= 0: raise ValueError("nu must be a positive scalar.") else: raise ValueError("nu must be a positive scalar.") return def check_acquisition(**params): """Input validation for acquisition functions. Checks kappa and nu for consistent values and shapes. """ key = list(params)[0] value = params[key] if np.isscalar(value) and not isinstance(value, str): if value < 0: raise ValueError("%s must be a positive scalar." % key) else: raise ValueError("%s must be a positive scalar." % key) def check_bounds(x, bounds): """Input validation for . Checks kappa and nu for consistent values and shapes. """ if not isinstance(bounds, dict): raise TypeError('bounds should be a dictionary') assert x.shape[1] == len(bounds), \ "bounds is of inconsistent size." for key_value in bounds.items(): values = key_value[1] if not (isinstance(values, tuple) or isinstance(values, list)): raise TypeError('bounds values should be stored in list or tuple') assert len(values) == 2, "bounds is of inconsistent size." inf, sup = values if isinstance(inf, str) or isinstance(sup, str): raise ValueError('bounds values should be numeric.') assert inf < sup, "inf bound cannot be superior to sup bound."
31.701923
78
0.624507
79436d3789fd6d745dd0555280cc906dec6a9158
33,175
py
Python
sdk/lusid/models/resource_list_of_value_type.py
fossabot/lusid-sdk-python-preview
2c95d870489d93dee921593877256d3869c090e6
[ "MIT" ]
null
null
null
sdk/lusid/models/resource_list_of_value_type.py
fossabot/lusid-sdk-python-preview
2c95d870489d93dee921593877256d3869c090e6
[ "MIT" ]
null
null
null
sdk/lusid/models/resource_list_of_value_type.py
fossabot/lusid-sdk-python-preview
2c95d870489d93dee921593877256d3869c090e6
[ "MIT" ]
1
2020-10-29T08:35:32.000Z
2020-10-29T08:35:32.000Z
# coding: utf-8 """ LUSID API # Introduction This page documents the [LUSID APIs](https://www.lusid.com/api/swagger), which allows authorised clients to query and update their data within the LUSID platform. SDKs to interact with the LUSID APIs are available in the following languages : * [C#](https://github.com/finbourne/lusid-sdk-csharp) * [Java](https://github.com/finbourne/lusid-sdk-java) * [JavaScript](https://github.com/finbourne/lusid-sdk-js) * [Python](https://github.com/finbourne/lusid-sdk-python) # Data Model The LUSID API has a relatively lightweight but extremely powerful data model. One of the goals of LUSID was not to enforce on clients a single rigid data model but rather to provide a flexible foundation onto which clients can map their own data models. The core entities in LUSID provide a minimal structure and set of relationships, and the data model can be extended using Properties. The LUSID data model is exposed through the LUSID APIs. The APIs provide access to both business objects and the meta data used to configure the systems behaviours. The key business entities are: - * **Portfolios** A portfolio is a container for transactions and holdings (a **Transaction Portfolio**) or constituents (a **Reference Portfolio**). * **Derived Portfolios**. Derived Portfolios allow Portfolios to be created based on other Portfolios, by overriding or adding specific items. * **Holdings** A Holding is a quantity of an Instrument or a balance of cash within a Portfolio. Holdings can only be adjusted via Transactions. * **Transactions** A Transaction is an economic event that occurs in a Portfolio, causing its holdings to change. * **Corporate Actions** A corporate action is a market event which occurs to an Instrument and thus applies to all portfolios which holding the instrument. Examples are stock splits or mergers. * **Constituents** A constituent is a record in a Reference Portfolio containing an Instrument and an associated weight. * **Instruments** An instrument represents a currency, tradable instrument or OTC contract that is attached to a transaction and a holding. * **Properties** All major entities allow additional user defined properties to be associated with them. For example, a Portfolio manager may be associated with a portfolio. Meta data includes: - * **Transaction Types** Transactions are booked with a specific transaction type. The types are client defined and are used to map the Transaction to a series of movements which update the portfolio holdings. * **Properties Types** Types of user defined properties used within the system. ## Scope All data in LUSID is segregated at the client level. Entities in LUSID are identifiable by a unique code. Every entity lives within a logical data partition known as a Scope. Scope is an identity namespace allowing two entities with the same unique code to co-exist within individual address spaces. For example, prices for equities from different vendors may be uploaded into different scopes such as `client/vendor1` and `client/vendor2`. A portfolio may then be valued using either of the price sources by referencing the appropriate scope. LUSID Clients cannot access scopes of other clients. ## Instruments LUSID has its own built-in instrument master which you can use to master your own instrument universe. Every instrument must be created with one or more unique market identifiers, such as [FIGI](https://openfigi.com/). For any non-listed instruments (eg OTCs), you can upload an instrument against a custom ID of your choosing. In addition, LUSID will allocate each instrument a unique 'LUSID instrument identifier'. The LUSID instrument identifier is what is used when uploading transactions, holdings, prices, etc. The API exposes an `instrument/lookup` endpoint which can be used to lookup these LUSID identifiers using their market identifiers. Cash can be referenced using the ISO currency code prefixed with \"`CCY_`\" e.g. `CCY_GBP` ## Instrument Data Instrument data can be uploaded to the system using the [Instrument Properties](#tag/InstrumentProperties) endpoint. | Field|Type|Description | | ---|---|--- | | Key|propertykey|The key of the property. This takes the format {domain}/{scope}/{code} e.g. 'Instrument/system/Name' or 'Transaction/strategy/quantsignal'. | | Value|string|The value of the property. | | EffectiveFrom|datetimeoffset|The effective datetime from which the property is valid. | ## Transaction Portfolios Portfolios are the top-level entity containers within LUSID, containing transactions, corporate actions and holdings. The transactions build up the portfolio holdings on which valuations, analytics profit & loss and risk can be calculated. Properties can be associated with Portfolios to add in additional data. Portfolio properties can be changed over time, for example to allow a Portfolio Manager to be linked with a Portfolio. Additionally, portfolios can be securitised and held by other portfolios, allowing LUSID to perform \"drill-through\" into underlying fund holdings ### Derived Portfolios LUSID also allows for a portfolio to be composed of another portfolio via derived portfolios. A derived portfolio can contain its own transactions and also inherits any transactions from its parent portfolio. Any changes made to the parent portfolio are automatically reflected in derived portfolio. Derived portfolios in conjunction with scopes are a powerful construct. For example, to do pre-trade what-if analysis, a derived portfolio could be created a new namespace linked to the underlying live (parent) portfolio. Analysis can then be undertaken on the derived portfolio without affecting the live portfolio. ### Transactions A transaction represents an economic activity against a Portfolio. Transactions are processed according to a configuration. This will tell the LUSID engine how to interpret the transaction and correctly update the holdings. LUSID comes with a set of transaction types you can use out of the box, or you can configure your own set(s) of transactions. For more details see the [LUSID Getting Started Guide for transaction configuration.](https://support.lusid.com/configuring-transaction-types) | Field|Type|Description | | ---|---|--- | | TransactionId|string|The unique identifier for the transaction. | | Type|string|The type of the transaction e.g. 'Buy', 'Sell'. The transaction type should have been pre-configured via the System Configuration API endpoint. If it hasn't been pre-configured the transaction will still be updated or inserted however you will be unable to generate the resultant holdings for the portfolio that contains this transaction as LUSID does not know how to process it. | | InstrumentIdentifiers|map|A set of instrument identifiers to use to resolve the transaction to a unique instrument. | | TransactionDate|dateorcutlabel|The date of the transaction. | | SettlementDate|dateorcutlabel|The settlement date of the transaction. | | Units|decimal|The number of units transacted in the associated instrument. | | TransactionPrice|transactionprice|The price for each unit of the transacted instrument in the transaction currency. | | TotalConsideration|currencyandamount|The total value of the transaction in the settlement currency. | | ExchangeRate|decimal|The exchange rate between the transaction and settlement currency. For example if the transaction currency is in USD and the settlement currency is in GBP this this the USD/GBP rate. | | TransactionCurrency|currency|The transaction currency. | | Properties|map|Set of unique transaction properties and associated values to store with the transaction. Each property must be from the 'Transaction' domain. | | CounterpartyId|string|The identifier for the counterparty of the transaction. | | Source|string|The source of the transaction. This is used to look up the appropriate transaction group set in the transaction type configuration. | From these fields, the following values can be calculated * **Transaction value in Transaction currency**: TotalConsideration / ExchangeRate * **Transaction value in Portfolio currency**: Transaction value in Transaction currency * TradeToPortfolioRate #### Example Transactions ##### A Common Purchase Example Three example transactions are shown in the table below. They represent a purchase of USD denominated IBM shares within a Sterling denominated portfolio. * The first two transactions are for separate buy and fx trades * Buying 500 IBM shares for $71,480.00 * A spot foreign exchange conversion to fund the IBM purchase. (Buy $71,480.00 for &#163;54,846.60) * The third transaction is an alternate version of the above trades. Buying 500 IBM shares and settling directly in Sterling. | Column | Buy Trade | Fx Trade | Buy Trade with foreign Settlement | | ----- | ----- | ----- | ----- | | TransactionId | FBN00001 | FBN00002 | FBN00003 | | Type | Buy | FxBuy | Buy | | InstrumentIdentifiers | { \"figi\", \"BBG000BLNNH6\" } | { \"CCY\", \"CCY_USD\" } | { \"figi\", \"BBG000BLNNH6\" } | | TransactionDate | 2018-08-02 | 2018-08-02 | 2018-08-02 | | SettlementDate | 2018-08-06 | 2018-08-06 | 2018-08-06 | | Units | 500 | 71480 | 500 | | TransactionPrice | 142.96 | 1 | 142.96 | | TradeCurrency | USD | USD | USD | | ExchangeRate | 1 | 0.7673 | 0.7673 | | TotalConsideration.Amount | 71480.00 | 54846.60 | 54846.60 | | TotalConsideration.Currency | USD | GBP | GBP | | Trade/default/TradeToPortfolioRate&ast; | 0.7673 | 0.7673 | 0.7673 | [&ast; This is a property field] ##### A Forward FX Example LUSID has a flexible transaction modelling system, meaning there are a number of different ways of modelling forward fx trades. The default LUSID transaction types are FwdFxBuy and FwdFxSell. Using these transaction types, LUSID will generate two holdings for each Forward FX trade, one for each currency in the trade. An example Forward Fx trade to sell GBP for USD in a JPY-denominated portfolio is shown below: | Column | Forward 'Sell' Trade | Notes | | ----- | ----- | ---- | | TransactionId | FBN00004 | | | Type | FwdFxSell | | | InstrumentIdentifiers | { \"Instrument/default/Currency\", \"GBP\" } | | | TransactionDate | 2018-08-02 | | | SettlementDate | 2019-02-06 | Six month forward | | Units | 10000.00 | Units of GBP | | TransactionPrice | 1 | | | TradeCurrency | GBP | Currency being sold | | ExchangeRate | 1.3142 | Agreed rate between GBP and USD | | TotalConsideration.Amount | 13142.00 | Amount in the settlement currency, USD | | TotalConsideration.Currency | USD | Settlement currency | | Trade/default/TradeToPortfolioRate | 142.88 | Rate between trade currency, GBP and portfolio base currency, JPY | Please note that exactly the same economic behaviour could be modelled using the FwdFxBuy Transaction Type with the amounts and rates reversed. ### Holdings A holding represents a position in an instrument or cash on a given date. | Field|Type|Description | | ---|---|--- | | InstrumentUid|string|The unqiue Lusid Instrument Id (LUID) of the instrument that the holding is in. | | SubHoldingKeys|map|The sub-holding properties which identify the holding. Each property will be from the 'Transaction' domain. These are configured when a transaction portfolio is created. | | Properties|map|The properties which have been requested to be decorated onto the holding. These will be from the 'Instrument' or 'Holding' domain. | | HoldingType|string|The type of the holding e.g. Position, Balance, CashCommitment, Receivable, ForwardFX etc. | | Units|decimal|The total number of units of the holding. | | SettledUnits|decimal|The total number of settled units of the holding. | | Cost|currencyandamount|The total cost of the holding in the transaction currency. | | CostPortfolioCcy|currencyandamount|The total cost of the holding in the portfolio currency. | | Transaction|transaction|The transaction associated with an unsettled holding. | ## Corporate Actions Corporate actions are represented within LUSID in terms of a set of instrument-specific 'transitions'. These transitions are used to specify the participants of the corporate action, and the effect that the corporate action will have on holdings in those participants. ### Corporate Action | Field|Type|Description | | ---|---|--- | | CorporateActionCode|code|The unique identifier of this corporate action | | Description|string| | | AnnouncementDate|datetimeoffset|The announcement date of the corporate action | | ExDate|datetimeoffset|The ex date of the corporate action | | RecordDate|datetimeoffset|The record date of the corporate action | | PaymentDate|datetimeoffset|The payment date of the corporate action | | Transitions|corporateactiontransition[]|The transitions that result from this corporate action | ### Transition | Field|Type|Description | | ---|---|--- | | InputTransition|corporateactiontransitioncomponent|Indicating the basis of the corporate action - which security and how many units | | OutputTransitions|corporateactiontransitioncomponent[]|What will be generated relative to the input transition | ### Example Corporate Action Transitions #### A Dividend Action Transition In this example, for each share of IBM, 0.20 units (or 20 pence) of GBP are generated. | Column | Input Transition | Output Transition | | ----- | ----- | ----- | | Instrument Identifiers | { \"figi\" : \"BBG000BLNNH6\" } | { \"ccy\" : \"CCY_GBP\" } | | Units Factor | 1 | 0.20 | | Cost Factor | 1 | 0 | #### A Split Action Transition In this example, for each share of IBM, we end up with 2 units (2 shares) of IBM, with total value unchanged. | Column | Input Transition | Output Transition | | ----- | ----- | ----- | | Instrument Identifiers | { \"figi\" : \"BBG000BLNNH6\" } | { \"figi\" : \"BBG000BLNNH6\" } | | Units Factor | 1 | 2 | | Cost Factor | 1 | 1 | #### A Spinoff Action Transition In this example, for each share of IBM, we end up with 1 unit (1 share) of IBM and 3 units (3 shares) of Celestica, with 85% of the value remaining on the IBM share, and 5% in each Celestica share (15% total). | Column | Input Transition | Output Transition 1 | Output Transition 2 | | ----- | ----- | ----- | ----- | | Instrument Identifiers | { \"figi\" : \"BBG000BLNNH6\" } | { \"figi\" : \"BBG000BLNNH6\" } | { \"figi\" : \"BBG000HBGRF3\" } | | Units Factor | 1 | 1 | 3 | | Cost Factor | 1 | 0.85 | 0.15 | ## Reference Portfolios Reference portfolios are portfolios that contain constituents with weights. They are designed to represent entities such as indices and benchmarks. ### Constituents | Field|Type|Description | | ---|---|--- | | InstrumentIdentifiers|map|Unique instrument identifiers | | InstrumentUid|string|LUSID's internal unique instrument identifier, resolved from the instrument identifiers | | Currency|decimal| | | Weight|decimal| | | FloatingWeight|decimal| | ## Portfolio Groups Portfolio groups allow the construction of a hierarchy from portfolios and groups. Portfolio operations on the group are executed on an aggregated set of portfolios in the hierarchy. For example: * Global Portfolios _(group)_ * APAC _(group)_ * Hong Kong _(portfolio)_ * Japan _(portfolio)_ * Europe _(group)_ * France _(portfolio)_ * Germany _(portfolio)_ * UK _(portfolio)_ In this example **Global Portfolios** is a group that consists of an aggregate of **Hong Kong**, **Japan**, **France**, **Germany** and **UK** portfolios. ## Properties Properties are key-value pairs that can be applied to any entity within a domain (where a domain is `trade`, `portfolio`, `security` etc). Properties must be defined before use with a `PropertyDefinition` and can then subsequently be added to entities. ## Schema A detailed description of the entities used by the API and parameters for endpoints which take a JSON document can be retrieved via the `schema` endpoint. ## Meta data The following headers are returned on all responses from LUSID | Name | Purpose | | --- | --- | | lusid-meta-duration | Duration of the request | | lusid-meta-success | Whether or not LUSID considered the request to be successful | | lusid-meta-requestId | The unique identifier for the request | | lusid-schema-url | Url of the schema for the data being returned | | lusid-property-schema-url | Url of the schema for any properties | # Error Codes | Code|Name|Description | | ---|---|--- | | <a name=\"-10\">-10</a>|Server Configuration Error| | | <a name=\"-1\">-1</a>|Unknown error|An unexpected error was encountered on our side. | | <a name=\"102\">102</a>|Version Not Found| | | <a name=\"103\">103</a>|Api Rate Limit Violation| | | <a name=\"104\">104</a>|Instrument Not Found| | | <a name=\"105\">105</a>|Property Not Found| | | <a name=\"106\">106</a>|Portfolio Recursion Depth| | | <a name=\"108\">108</a>|Group Not Found| | | <a name=\"109\">109</a>|Portfolio Not Found| | | <a name=\"110\">110</a>|Property Schema Not Found| | | <a name=\"111\">111</a>|Portfolio Ancestry Not Found| | | <a name=\"112\">112</a>|Portfolio With Id Already Exists| | | <a name=\"113\">113</a>|Orphaned Portfolio| | | <a name=\"119\">119</a>|Missing Base Claims| | | <a name=\"121\">121</a>|Property Not Defined| | | <a name=\"122\">122</a>|Cannot Delete System Property| | | <a name=\"123\">123</a>|Cannot Modify Immutable Property Field| | | <a name=\"124\">124</a>|Property Already Exists| | | <a name=\"125\">125</a>|Invalid Property Life Time| | | <a name=\"126\">126</a>|Property Constraint Style Excludes Properties| | | <a name=\"127\">127</a>|Cannot Modify Default Data Type| | | <a name=\"128\">128</a>|Group Already Exists| | | <a name=\"129\">129</a>|No Such Data Type| | | <a name=\"130\">130</a>|Undefined Value For Data Type| | | <a name=\"131\">131</a>|Unsupported Value Type Defined On Data Type| | | <a name=\"132\">132</a>|Validation Error| | | <a name=\"133\">133</a>|Loop Detected In Group Hierarchy| | | <a name=\"134\">134</a>|Undefined Acceptable Values| | | <a name=\"135\">135</a>|Sub Group Already Exists| | | <a name=\"138\">138</a>|Price Source Not Found| | | <a name=\"139\">139</a>|Analytic Store Not Found| | | <a name=\"141\">141</a>|Analytic Store Already Exists| | | <a name=\"143\">143</a>|Client Instrument Already Exists| | | <a name=\"144\">144</a>|Duplicate In Parameter Set| | | <a name=\"147\">147</a>|Results Not Found| | | <a name=\"148\">148</a>|Order Field Not In Result Set| | | <a name=\"149\">149</a>|Operation Failed| | | <a name=\"150\">150</a>|Elastic Search Error| | | <a name=\"151\">151</a>|Invalid Parameter Value| | | <a name=\"153\">153</a>|Command Processing Failure| | | <a name=\"154\">154</a>|Entity State Construction Failure| | | <a name=\"155\">155</a>|Entity Timeline Does Not Exist| | | <a name=\"156\">156</a>|Concurrency Conflict Failure| | | <a name=\"157\">157</a>|Invalid Request| | | <a name=\"158\">158</a>|Event Publish Unknown| | | <a name=\"159\">159</a>|Event Query Failure| | | <a name=\"160\">160</a>|Blob Did Not Exist| | | <a name=\"162\">162</a>|Sub System Request Failure| | | <a name=\"163\">163</a>|Sub System Configuration Failure| | | <a name=\"165\">165</a>|Failed To Delete| | | <a name=\"166\">166</a>|Upsert Client Instrument Failure| | | <a name=\"167\">167</a>|Illegal As At Interval| | | <a name=\"168\">168</a>|Illegal Bitemporal Query| | | <a name=\"169\">169</a>|Invalid Alternate Id| | | <a name=\"170\">170</a>|Cannot Add Source Portfolio Property Explicitly| | | <a name=\"171\">171</a>|Entity Already Exists In Group| | | <a name=\"173\">173</a>|Entity With Id Already Exists| | | <a name=\"174\">174</a>|Derived Portfolio Details Do Not Exist| | | <a name=\"176\">176</a>|Portfolio With Name Already Exists| | | <a name=\"177\">177</a>|Invalid Transactions| | | <a name=\"178\">178</a>|Reference Portfolio Not Found| | | <a name=\"179\">179</a>|Duplicate Id| | | <a name=\"180\">180</a>|Command Retrieval Failure| | | <a name=\"181\">181</a>|Data Filter Application Failure| | | <a name=\"182\">182</a>|Search Failed| | | <a name=\"183\">183</a>|Movements Engine Configuration Key Failure| | | <a name=\"184\">184</a>|Fx Rate Source Not Found| | | <a name=\"185\">185</a>|Accrual Source Not Found| | | <a name=\"186\">186</a>|Access Denied| | | <a name=\"187\">187</a>|Invalid Identity Token| | | <a name=\"188\">188</a>|Invalid Request Headers| | | <a name=\"189\">189</a>|Price Not Found| | | <a name=\"190\">190</a>|Invalid Sub Holding Keys Provided| | | <a name=\"191\">191</a>|Duplicate Sub Holding Keys Provided| | | <a name=\"192\">192</a>|Cut Definition Not Found| | | <a name=\"193\">193</a>|Cut Definition Invalid| | | <a name=\"194\">194</a>|Time Variant Property Deletion Date Unspecified| | | <a name=\"195\">195</a>|Perpetual Property Deletion Date Specified| | | <a name=\"196\">196</a>|Time Variant Property Upsert Date Unspecified| | | <a name=\"197\">197</a>|Perpetual Property Upsert Date Specified| | | <a name=\"200\">200</a>|Invalid Unit For Data Type| | | <a name=\"201\">201</a>|Invalid Type For Data Type| | | <a name=\"202\">202</a>|Invalid Value For Data Type| | | <a name=\"203\">203</a>|Unit Not Defined For Data Type| | | <a name=\"204\">204</a>|Units Not Supported On Data Type| | | <a name=\"205\">205</a>|Cannot Specify Units On Data Type| | | <a name=\"206\">206</a>|Unit Schema Inconsistent With Data Type| | | <a name=\"207\">207</a>|Unit Definition Not Specified| | | <a name=\"208\">208</a>|Duplicate Unit Definitions Specified| | | <a name=\"209\">209</a>|Invalid Units Definition| | | <a name=\"210\">210</a>|Invalid Instrument Identifier Unit| | | <a name=\"211\">211</a>|Holdings Adjustment Does Not Exist| | | <a name=\"212\">212</a>|Could Not Build Excel Url| | | <a name=\"213\">213</a>|Could Not Get Excel Version| | | <a name=\"214\">214</a>|Instrument By Code Not Found| | | <a name=\"215\">215</a>|Entity Schema Does Not Exist| | | <a name=\"216\">216</a>|Feature Not Supported On Portfolio Type| | | <a name=\"217\">217</a>|Quote Not Found| | | <a name=\"218\">218</a>|Invalid Quote Identifier| | | <a name=\"219\">219</a>|Invalid Metric For Data Type| | | <a name=\"220\">220</a>|Invalid Instrument Definition| | | <a name=\"221\">221</a>|Instrument Upsert Failure| | | <a name=\"222\">222</a>|Reference Portfolio Request Not Supported| | | <a name=\"223\">223</a>|Transaction Portfolio Request Not Supported| | | <a name=\"224\">224</a>|Invalid Property Value Assignment| | | <a name=\"230\">230</a>|Transaction Type Not Found| | | <a name=\"231\">231</a>|Transaction Type Duplication| | | <a name=\"232\">232</a>|Portfolio Does Not Exist At Given Date| | | <a name=\"233\">233</a>|Query Parser Failure| | | <a name=\"234\">234</a>|Duplicate Constituent| | | <a name=\"235\">235</a>|Unresolved Instrument Constituent| | | <a name=\"236\">236</a>|Unresolved Instrument In Transition| | | <a name=\"237\">237</a>|Missing Side Definitions| | | <a name=\"299\">299</a>|Invalid Recipe| | | <a name=\"300\">300</a>|Missing Recipe| | | <a name=\"301\">301</a>|Dependencies| | | <a name=\"304\">304</a>|Portfolio Preprocess Failure| | | <a name=\"310\">310</a>|Valuation Engine Failure| | | <a name=\"311\">311</a>|Task Factory Failure| | | <a name=\"312\">312</a>|Task Evaluation Failure| | | <a name=\"313\">313</a>|Task Generation Failure| | | <a name=\"314\">314</a>|Engine Configuration Failure| | | <a name=\"315\">315</a>|Model Specification Failure| | | <a name=\"320\">320</a>|Market Data Key Failure| | | <a name=\"321\">321</a>|Market Resolver Failure| | | <a name=\"322\">322</a>|Market Data Failure| | | <a name=\"330\">330</a>|Curve Failure| | | <a name=\"331\">331</a>|Volatility Surface Failure| | | <a name=\"332\">332</a>|Volatility Cube Failure| | | <a name=\"350\">350</a>|Instrument Failure| | | <a name=\"351\">351</a>|Cash Flows Failure| | | <a name=\"352\">352</a>|Reference Data Failure| | | <a name=\"360\">360</a>|Aggregation Failure| | | <a name=\"361\">361</a>|Aggregation Measure Failure| | | <a name=\"370\">370</a>|Result Retrieval Failure| | | <a name=\"371\">371</a>|Result Processing Failure| | | <a name=\"372\">372</a>|Vendor Result Processing Failure| | | <a name=\"373\">373</a>|Vendor Result Mapping Failure| | | <a name=\"374\">374</a>|Vendor Library Unauthorised| | | <a name=\"375\">375</a>|Vendor Connectivity Error| | | <a name=\"376\">376</a>|Vendor Interface Error| | | <a name=\"377\">377</a>|Vendor Pricing Failure| | | <a name=\"378\">378</a>|Vendor Translation Failure| | | <a name=\"379\">379</a>|Vendor Key Mapping Failure| | | <a name=\"380\">380</a>|Vendor Reflection Failure| | | <a name=\"390\">390</a>|Attempt To Upsert Duplicate Quotes| | | <a name=\"391\">391</a>|Corporate Action Source Does Not Exist| | | <a name=\"392\">392</a>|Corporate Action Source Already Exists| | | <a name=\"393\">393</a>|Instrument Identifier Already In Use| | | <a name=\"394\">394</a>|Properties Not Found| | | <a name=\"395\">395</a>|Batch Operation Aborted| | | <a name=\"400\">400</a>|Invalid Iso4217 Currency Code| | | <a name=\"401\">401</a>|Cannot Assign Instrument Identifier To Currency| | | <a name=\"402\">402</a>|Cannot Assign Currency Identifier To Non Currency| | | <a name=\"403\">403</a>|Currency Instrument Cannot Be Deleted| | | <a name=\"404\">404</a>|Currency Instrument Cannot Have Economic Definition| | | <a name=\"405\">405</a>|Currency Instrument Cannot Have Lookthrough Portfolio| | | <a name=\"406\">406</a>|Cannot Create Currency Instrument With Multiple Identifiers| | | <a name=\"407\">407</a>|Specified Currency Is Undefined| | | <a name=\"410\">410</a>|Index Does Not Exist| | | <a name=\"411\">411</a>|Sort Field Does Not Exist| | | <a name=\"413\">413</a>|Negative Pagination Parameters| | | <a name=\"414\">414</a>|Invalid Search Syntax| | | <a name=\"415\">415</a>|Filter Execution Timeout| | | <a name=\"420\">420</a>|Side Definition Inconsistent| | | <a name=\"450\">450</a>|Invalid Quote Access Metadata Rule| | | <a name=\"451\">451</a>|Access Metadata Not Found| | | <a name=\"452\">452</a>|Invalid Access Metadata Identifier| | | <a name=\"460\">460</a>|Standard Resource Not Found| | | <a name=\"461\">461</a>|Standard Resource Conflict| | | <a name=\"462\">462</a>|Calendar Not Found| | | <a name=\"463\">463</a>|Date In A Calendar Not Found| | | <a name=\"464\">464</a>|Invalid Date Source Data| | | <a name=\"465\">465</a>|Invalid Timezone| | | <a name=\"601\">601</a>|Person Identifier Already In Use| | | <a name=\"602\">602</a>|Person Not Found| | | <a name=\"603\">603</a>|Cannot Set Identifier| | | <a name=\"617\">617</a>|Invalid Recipe Specification In Request| | | <a name=\"618\">618</a>|Inline Recipe Deserialisation Failure| | | <a name=\"619\">619</a>|Identifier Types Not Set For Entity| | | <a name=\"620\">620</a>|Cannot Delete All Client Defined Identifiers| | | <a name=\"650\">650</a>|The Order requested was not found.| | | <a name=\"654\">654</a>|The Allocation requested was not found.| | | <a name=\"655\">655</a>|Cannot build the fx forward target with the given holdings.| | | <a name=\"656\">656</a>|Group does not contain expected entities.| | | <a name=\"667\">667</a>|Relation definition already exists| | | <a name=\"673\">673</a>|Missing entitlements for entities in Group| | | <a name=\"674\">674</a>|Next Best Action not found| | | <a name=\"676\">676</a>|Relation definition not defined| | | <a name=\"677\">677</a>|Invalid entity identifier for relation| | | <a name=\"681\">681</a>|Sorting by specified field not supported|One or more of the provided fields to order by were either invalid or not supported. | | <a name=\"682\">682</a>|Too many fields to sort by|The number of fields to sort the data by exceeds the number allowed by the endpoint | | <a name=\"684\">684</a>|Sequence Not Found| | | <a name=\"685\">685</a>|Sequence Already Exists| | | <a name=\"686\">686</a>|Non-cycling sequence has been exhausted| | | <a name=\"687\">687</a>|Legal Entity Identifier Already In Use| | | <a name=\"688\">688</a>|Legal Entity Not Found| | | <a name=\"689\">689</a>|The supplied pagination token is invalid| | | <a name=\"690\">690</a>|Property Type Is Not Supported| | | <a name=\"691\">691</a>|Multiple Tax-lots For Currency Type Is Not Supported| | # noqa: E501 The version of the OpenAPI document: 0.11.2220 Contact: [email protected] Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class ResourceListOfValueType(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. required_map (dict): The key is attribute name and the value is whether it is 'required' or 'optional'. """ openapi_types = { 'values': 'list[ValueType]', 'href': 'str', 'links': 'list[Link]' } attribute_map = { 'values': 'values', 'href': 'href', 'links': 'links' } required_map = { 'values': 'required', 'href': 'optional', 'links': 'optional' } def __init__(self, values=None, href=None, links=None): # noqa: E501 """ ResourceListOfValueType - a model defined in OpenAPI :param values: (required) :type values: list[lusid.ValueType] :param href: :type href: str :param links: :type links: list[lusid.Link] """ # noqa: E501 self._values = None self._href = None self._links = None self.discriminator = None self.values = values self.href = href self.links = links @property def values(self): """Gets the values of this ResourceListOfValueType. # noqa: E501 :return: The values of this ResourceListOfValueType. # noqa: E501 :rtype: list[ValueType] """ return self._values @values.setter def values(self, values): """Sets the values of this ResourceListOfValueType. :param values: The values of this ResourceListOfValueType. # noqa: E501 :type: list[ValueType] """ if values is None: raise ValueError("Invalid value for `values`, must not be `None`") # noqa: E501 self._values = values @property def href(self): """Gets the href of this ResourceListOfValueType. # noqa: E501 :return: The href of this ResourceListOfValueType. # noqa: E501 :rtype: str """ return self._href @href.setter def href(self, href): """Sets the href of this ResourceListOfValueType. :param href: The href of this ResourceListOfValueType. # noqa: E501 :type: str """ self._href = href @property def links(self): """Gets the links of this ResourceListOfValueType. # noqa: E501 :return: The links of this ResourceListOfValueType. # noqa: E501 :rtype: list[Link] """ return self._links @links.setter def links(self, links): """Sets the links of this ResourceListOfValueType. :param links: The links of this ResourceListOfValueType. # noqa: E501 :type: list[Link] """ self._links = links def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ResourceListOfValueType): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
182.28022
28,439
0.682773
79436d4f640ec16220716633ea1d0436609e6fe0
75
py
Python
wxwork_auth_oauth/__init__.py
rainbow-studio-solution/wxwork
344a0a8f8f0ac364101a1bb4a98c132588118839
[ "MulanPSL-1.0" ]
9
2021-01-02T15:42:21.000Z
2021-08-13T08:09:16.000Z
wxwork_auth_oauth/__init__.py
rainbow-studio-solution/wxwork
344a0a8f8f0ac364101a1bb4a98c132588118839
[ "MulanPSL-1.0" ]
null
null
null
wxwork_auth_oauth/__init__.py
rainbow-studio-solution/wxwork
344a0a8f8f0ac364101a1bb4a98c132588118839
[ "MulanPSL-1.0" ]
4
2021-01-11T04:57:07.000Z
2021-05-21T06:01:55.000Z
# -*- coding: utf-8 -*- from . import models from . import controllers
9.375
25
0.626667
79436e4e5ba1681caa1cf71e2a9788db7e877c95
4,303
py
Python
cyder/management/commands/lib/dhcpd_compare/parser.py
drkitty/cyder
1babc443cc03aa51fa3c1015bcd22f0ea2e5f0f8
[ "BSD-3-Clause" ]
6
2015-04-16T23:18:22.000Z
2020-08-25T22:50:13.000Z
cyder/management/commands/lib/dhcpd_compare/parser.py
drkitty/cyder
1babc443cc03aa51fa3c1015bcd22f0ea2e5f0f8
[ "BSD-3-Clause" ]
267
2015-01-01T00:18:57.000Z
2015-10-14T00:01:13.000Z
cyder/management/commands/lib/dhcpd_compare/parser.py
drkitty/cyder
1babc443cc03aa51fa3c1015bcd22f0ea2e5f0f8
[ "BSD-3-Clause" ]
5
2015-03-23T00:57:09.000Z
2019-09-09T22:42:37.000Z
from parsley import wrapGrammar from ometa.grammar import OMeta from ometa.runtime import OMetaBase from constants import * from dhcp_objects import (Host, Pool, Parameter, Option, Subnet, Group, Allow, Deny, ClientClass) from utils import prepare_arguments, is_mac, is_ip import sys from bisect import insort_left, bisect_left from ipaddr import IPv4Address, IPv6Address from sys import stdout def strip_comments(content): return "".join(line[:line.find('#')] if '#' in line else line for line in content) grammar = open('cyder/management/commands/lib/dhcpd_compare/' 'isc.parsley').read() class DhcpConfigContext( OMeta.makeGrammar( grammar, name='DhcpConfigContext').createParserClass(OMetaBase, globals())): stdout = stdout def __init__(self, *args, **kwargs): self.hosts = set() self.subnets = set() self.groups = set() self.classes = set() self.options = set() self.parameters = set() super(DhcpConfigContext, self).__init__(*args, **kwargs) def apply_attrs(self, host, attrs): for attr in attrs: host.add_option_or_parameter(attr) def add_subnet(self, subnet): self.subnets.add(subnet) def add_host(self, host): self.hosts.add(host) def add_group(self, group): self.groups.add(group) def add_option(self, option): self.options.add(option) def add_parameter(self, parameter): self.parameters.add(parameter) def add_class(self, dhcp_class): self.classes.add(dhcp_class) def add_subclass(self, name, mac): for _class in self.classes: if _class.name == name: _class.add_subclass(mac) return True return False def __eq__(self, other): return self.hosts == other.hosts and \ self.subnets == other.subnets and \ self.groups == other.groups and \ self.classes == other.classes def diff(self, other): if not (self == other): first_subnets = self.subnets - other.subnets second_subnets = other.subnets - self.subnets first_hosts = self.hosts - other.hosts second_hosts = other.hosts - self.hosts first_groups = self.groups - other.groups second_groups = other.groups - self.groups first_classes = self.classes - other.classes second_classes = other.classes - self.classes if first_subnets: print '### Subnets found only in the first config ###' for subnet in first_subnets: stdout.write(str(subnet)) if second_subnets: print '### Subnets found only in the second config ###' for subnet in second_subnets: stdout.write(str(subnet)) if first_hosts: print '### Hosts found only in the first config ###' for host in first_hosts: stdout.write(str(host)) if second_hosts: print '### Hosts found only in the second config ###' for host in second_hosts: stdout.write(str(host)) if first_groups: print '### Groups found only in the first config ###' for group in first_groups: stdout.write(str(group)) if second_groups: print '### Groups found only in the second config ###' for group in second_groups: stdout.write(str(group)) if first_classes: print '### Classes found only in the first config ###' for klass in first_classes: stdout.write(str(klass)) if second_classes: print '### Classes found only in the second config ###' for klass in second_classes: stdout.write(str(klass)) iscgrammar = wrapGrammar(DhcpConfigContext) def compare(file1, file2): parse1 = iscgrammar(strip_comments(open(file1))).GlobalParse() parse2 = iscgrammar(strip_comments(open(file2))).GlobalParse() parse1.diff(parse2)
34.150794
86
0.585638
79436e5fe9692a0fba7726d128aa89f8245fb76b
610
py
Python
tests/nlp/encoders/test_label_encoder.py
ChristophAlt/pytorch-quasar
7b957b1b4cba83677b415d752dcac6acf682f15b
[ "BSD-3-Clause" ]
4
2018-10-02T20:20:26.000Z
2019-07-26T12:57:26.000Z
tests/nlp/encoders/test_label_encoder.py
ChristophAlt/pytorch-quasar
7b957b1b4cba83677b415d752dcac6acf682f15b
[ "BSD-3-Clause" ]
null
null
null
tests/nlp/encoders/test_label_encoder.py
ChristophAlt/pytorch-quasar
7b957b1b4cba83677b415d752dcac6acf682f15b
[ "BSD-3-Clause" ]
null
null
null
from quasar.nlp.encoders import LabelEncoder def test_label_encoder(): input_ = 'label_b' sample = ['label_a', 'label_b'] encoder = LabelEncoder(sample) output = encoder.encode(input_) assert encoder.vocab_size == 2 assert len(output) == 1 assert encoder.decode(output) == input_ def test_label_encoder_sequence(): input_ = ['label_b', 'label_c'] sample = ['label_a', 'label_b', 'label_c'] encoder = LabelEncoder(sample) output = encoder.encode(input_) assert encoder.vocab_size == 3 assert len(output) == 2 assert encoder.decode(output) == input_
25.416667
46
0.67541
79436f2d2db70c9225f587c4836538dc75ce15b2
15,129
py
Python
webapp/ENV/lib/python3.6/site-packages/dask/dataframe/io/hdf.py
linkehub/linkehub_api
b5579a6156d6ae01f0cbd8526c8ed8264b5deeb5
[ "MIT" ]
null
null
null
webapp/ENV/lib/python3.6/site-packages/dask/dataframe/io/hdf.py
linkehub/linkehub_api
b5579a6156d6ae01f0cbd8526c8ed8264b5deeb5
[ "MIT" ]
1
2021-04-30T20:41:53.000Z
2021-04-30T20:41:53.000Z
webapp/ENV/lib/python3.6/site-packages/dask/dataframe/io/hdf.py
linkehub/linkehub_api
b5579a6156d6ae01f0cbd8526c8ed8264b5deeb5
[ "MIT" ]
1
2018-07-06T03:48:08.000Z
2018-07-06T03:48:08.000Z
from __future__ import absolute_import, division, print_function from fnmatch import fnmatch from glob import glob import os import uuid from warnings import warn import pandas as pd from toolz import merge from .io import _link from ..core import DataFrame, new_dd_object from ... import multiprocessing from ...base import tokenize, compute_as_if_collection from ...bytes.utils import build_name_function from ...compatibility import PY3 from ...context import _globals from ...delayed import Delayed, delayed from ...local import get_sync from ...utils import effective_get, get_scheduler_lock def _pd_to_hdf(pd_to_hdf, lock, args, kwargs=None): """ A wrapper function around pd_to_hdf that enables locking""" if lock: lock.acquire() try: pd_to_hdf(*args, **kwargs) finally: if lock: lock.release() return None def to_hdf(df, path, key, mode='a', append=False, get=None, name_function=None, compute=True, lock=None, dask_kwargs={}, **kwargs): """ Store Dask Dataframe to Hierarchical Data Format (HDF) files This is a parallel version of the Pandas function of the same name. Please see the Pandas docstring for more detailed information about shared keyword arguments. This function differs from the Pandas version by saving the many partitions of a Dask DataFrame in parallel, either to many files, or to many datasets within the same file. You may specify this parallelism with an asterix ``*`` within the filename or datapath, and an optional ``name_function``. The asterix will be replaced with an increasing sequence of integers starting from ``0`` or with the result of calling ``name_function`` on each of those integers. This function only supports the Pandas ``'table'`` format, not the more specialized ``'fixed'`` format. Parameters ---------- path: string Path to a target filename. May contain a ``*`` to denote many filenames key: string Datapath within the files. May contain a ``*`` to denote many locations name_function: function A function to convert the ``*`` in the above options to a string. Should take in a number from 0 to the number of partitions and return a string. (see examples below) compute: bool Whether or not to execute immediately. If False then this returns a ``dask.Delayed`` value. lock: Lock, optional Lock to use to prevent concurrency issues. By default a ``threading.Lock``, ``multiprocessing.Lock`` or ``SerializableLock`` will be used depending on your scheduler if a lock is required. See dask.utils.get_scheduler_lock for more information about lock selection. **other: See pandas.to_hdf for more information Examples -------- Save Data to a single file >>> df.to_hdf('output.hdf', '/data') # doctest: +SKIP Save data to multiple datapaths within the same file: >>> df.to_hdf('output.hdf', '/data-*') # doctest: +SKIP Save data to multiple files: >>> df.to_hdf('output-*.hdf', '/data') # doctest: +SKIP Save data to multiple files, using the multiprocessing scheduler: >>> df.to_hdf('output-*.hdf', '/data', get=dask.multiprocessing.get) # doctest: +SKIP Specify custom naming scheme. This writes files as '2000-01-01.hdf', '2000-01-02.hdf', '2000-01-03.hdf', etc.. >>> from datetime import date, timedelta >>> base = date(year=2000, month=1, day=1) >>> def name_function(i): ... ''' Convert integer 0 to n to a string ''' ... return base + timedelta(days=i) >>> df.to_hdf('*.hdf', '/data', name_function=name_function) # doctest: +SKIP Returns ------- None: if compute == True delayed value: if compute == False See Also -------- read_hdf: to_parquet: """ name = 'to-hdf-' + uuid.uuid1().hex pd_to_hdf = getattr(df._partition_type, 'to_hdf') single_file = True single_node = True # if path is string, format using i_name if isinstance(path, str): if path.count('*') + key.count('*') > 1: raise ValueError("A maximum of one asterisk is accepted in file " "path and dataset key") fmt_obj = lambda path, i_name: path.replace('*', i_name) if '*' in path: single_file = False else: if key.count('*') > 1: raise ValueError("A maximum of one asterisk is accepted in " "dataset key") fmt_obj = lambda path, _: path if '*' in key: single_node = False if 'format' in kwargs and kwargs['format'] not in ['t', 'table']: raise ValueError("Dask only support 'table' format in hdf files.") if mode not in ('a', 'w', 'r+'): raise ValueError("Mode must be one of 'a', 'w' or 'r+'") if name_function is None: name_function = build_name_function(df.npartitions - 1) # we guarantee partition order is preserved when its saved and read # so we enforce name_function to maintain the order of its input. if not (single_file and single_node): formatted_names = [name_function(i) for i in range(df.npartitions)] if formatted_names != sorted(formatted_names): warn("To preserve order between partitions name_function " "must preserve the order of its input") # If user did not specify scheduler and write is sequential default to the # sequential scheduler. otherwise let the _get method choose the scheduler if get is None and 'get' not in _globals and single_node and single_file: get = get_sync # handle lock default based on whether we're writing to a single entity _actual_get = effective_get(get, df) if lock is None: if not single_node: lock = True elif not single_file and _actual_get is not multiprocessing.get: # if we're writing to multiple files with the multiprocessing # scheduler we don't need to lock lock = True else: lock = False if lock: lock = get_scheduler_lock(get, df) kwargs.update({'format': 'table', 'mode': mode, 'append': append}) dsk = dict() i_name = name_function(0) dsk[(name, 0)] = (_pd_to_hdf, pd_to_hdf, lock, [(df._name, 0), fmt_obj(path, i_name), key.replace('*', i_name)], kwargs) kwargs2 = kwargs.copy() if single_file: kwargs2['mode'] = 'a' if single_node: kwargs2['append'] = True filenames = [] for i in range(0,df.npartitions): i_name = name_function(i) filenames.append(fmt_obj(path, i_name)) for i in range(1, df.npartitions): i_name = name_function(i) task = (_pd_to_hdf, pd_to_hdf, lock, [(df._name, i), fmt_obj(path, i_name), key.replace('*', i_name)], kwargs2) if single_file: link_dep = i - 1 if single_node else 0 task = (_link, (name, link_dep), task) dsk[(name, i)] = task dsk = merge(df.dask, dsk) if single_file and single_node: keys = [(name, df.npartitions - 1)] else: keys = [(name, i) for i in range(df.npartitions)] if compute: compute_as_if_collection(DataFrame, dsk, keys, get=get, **dask_kwargs) return filenames else: return delayed([Delayed(k, dsk) for k in keys]) dont_use_fixed_error_message = """ This HDFStore is not partitionable and can only be use monolithically with pandas. In the future when creating HDFStores use the ``format='table'`` option to ensure that your dataset can be parallelized""" read_hdf_error_msg = """ The start and stop keywords are not supported when reading from more than one file/dataset. The combination is ambiguous because it could be interpreted as the starting and stopping index per file, or starting and stopping index of the global dataset.""" def _read_single_hdf(path, key, start=0, stop=None, columns=None, chunksize=int(1e6), sorted_index=False, lock=None, mode='a'): """ Read a single hdf file into a dask.dataframe. Used for each file in read_hdf. """ def get_keys_stops_divisions(path, key, stop, sorted_index, chunksize): """ Get the "keys" or group identifiers which match the given key, which can contain wildcards. This uses the hdf file identified by the given path. Also get the index of the last row of data for each matched key. """ with pd.HDFStore(path, mode=mode) as hdf: keys = [k for k in hdf.keys() if fnmatch(k, key)] stops = [] divisions = [] for k in keys: storer = hdf.get_storer(k) if storer.format_type != 'table': raise TypeError(dont_use_fixed_error_message) if stop is None: stops.append(storer.nrows) elif stop > storer.nrows: raise ValueError("Stop keyword exceeds dataset number " "of rows ({})".format(storer.nrows)) else: stops.append(stop) if sorted_index: division = [storer.read_column('index', start=start, stop=start + 1)[0] for start in range(0, storer.nrows, chunksize)] division_end = storer.read_column('index', start=storer.nrows - 1, stop=storer.nrows)[0] division.append(division_end) divisions.append(division) else: divisions.append(None) return keys, stops, divisions def one_path_one_key(path, key, start, stop, columns, chunksize, division, lock): """ Get the data frame corresponding to one path and one key (which should not contain any wildcards). """ empty = pd.read_hdf(path, key, mode=mode, stop=0) if columns is not None: empty = empty[columns] token = tokenize((path, os.path.getmtime(path), key, start, stop, empty, chunksize, division)) name = 'read-hdf-' + token if empty.ndim == 1: base = {'name': empty.name, 'mode': mode} else: base = {'columns': empty.columns, 'mode': mode} if start >= stop: raise ValueError("Start row number ({}) is above or equal to stop " "row number ({})".format(start, stop)) def update(s): new = base.copy() new.update({'start': s, 'stop': s + chunksize}) return new dsk = dict(((name, i), (_pd_read_hdf, path, key, lock, update(s))) for i, s in enumerate(range(start, stop, chunksize))) if division: divisions = division else: divisions = [None] * (len(dsk) + 1) return new_dd_object(dsk, name, empty, divisions) keys, stops, divisions = get_keys_stops_divisions(path, key, stop, sorted_index, chunksize) if (start != 0 or stop is not None) and len(keys) > 1: raise NotImplementedError(read_hdf_error_msg) from ..multi import concat return concat([one_path_one_key(path, k, start, s, columns, chunksize, d, lock) for k, s, d in zip(keys, stops, divisions)]) def _pd_read_hdf(path, key, lock, kwargs): """ Read from hdf5 file with a lock """ if lock: lock.acquire() try: result = pd.read_hdf(path, key, **kwargs) finally: if lock: lock.release() return result def read_hdf(pattern, key, start=0, stop=None, columns=None, chunksize=1000000, sorted_index=False, lock=True, mode='a'): """ Read HDF files into a Dask DataFrame Read hdf files into a dask dataframe. This function is like ``pandas.read_hdf``, except it can read from a single large file, or from multiple files, or from multiple keys from the same file. Parameters ---------- pattern : string, list File pattern (string), buffer to read from, or list of file paths. Can contain wildcards. key : group identifier in the store. Can contain wildcards start : optional, integer (defaults to 0), row number to start at stop : optional, integer (defaults to None, the last row), row number to stop at columns : list of columns, optional A list of columns that if not None, will limit the return columns (default is None) chunksize : positive integer, optional Maximal number of rows per partition (default is 1000000). sorted_index : boolean, optional Option to specify whether or not the input hdf files have a sorted index (default is False). lock : boolean, optional Option to use a lock to prevent concurrency issues (default is True). mode : {'a', 'r', 'r+'}, default 'a'. Mode to use when opening file(s). 'r' Read-only; no data can be modified. 'a' Append; an existing file is opened for reading and writing, and if the file does not exist it is created. 'r+' It is similar to 'a', but the file must already exist. Returns ------- dask.DataFrame Examples -------- Load single file >>> dd.read_hdf('myfile.1.hdf5', '/x') # doctest: +SKIP Load multiple files >>> dd.read_hdf('myfile.*.hdf5', '/x') # doctest: +SKIP >>> dd.read_hdf(['myfile.1.hdf5', 'myfile.2.hdf5'], '/x') # doctest: +SKIP Load multiple datasets >>> dd.read_hdf('myfile.1.hdf5', '/*') # doctest: +SKIP """ if lock is True: lock = get_scheduler_lock() key = key if key.startswith('/') else '/' + key if isinstance(pattern, str): paths = sorted(glob(pattern)) else: paths = pattern if (start != 0 or stop is not None) and len(paths) > 1: raise NotImplementedError(read_hdf_error_msg) if chunksize <= 0: raise ValueError("Chunksize must be a positive integer") if (start != 0 or stop is not None) and sorted_index: raise ValueError("When assuming pre-partitioned data, data must be " "read in its entirety using the same chunksizes") from ..multi import concat return concat([_read_single_hdf(path, key, start=start, stop=stop, columns=columns, chunksize=chunksize, sorted_index=sorted_index, lock=lock, mode=mode) for path in paths]) if PY3: from ..core import _Frame _Frame.to_hdf.__doc__ = to_hdf.__doc__
35.850711
95
0.603609
79436f4cb36dbb6d556879c6278c8c5c8da6d81b
14,469
py
Python
fomautomator.py
johnmgregoire/2013JCAPDataProcess
4533e72b09084860b3753d8864c75ac3c6b66b1a
[ "BSD-3-Clause" ]
1
2018-06-03T01:15:16.000Z
2018-06-03T01:15:16.000Z
fomautomator.py
johnmgregoire/2013JCAPDataProcess
4533e72b09084860b3753d8864c75ac3c6b66b1a
[ "BSD-3-Clause" ]
null
null
null
fomautomator.py
johnmgregoire/2013JCAPDataProcess
4533e72b09084860b3753d8864c75ac3c6b66b1a
[ "BSD-3-Clause" ]
null
null
null
# Allison Schubauer and Daisy Hernandez # Created: 6/26/2013 # Last Updated: 7/25/2013 # For JCAP """ runs functions to produce figures of merit automatically, and replaces dictionaries of data produced by old versions with updated data """ import sys, os import argparse import cPickle as pickle from multiprocessing import Process, Pool, Manager from inspect import * from rawdataparser import RAW_DATA_PATH from qhtest import * # this also imports queue import jsontranslator import xmltranslator import importlib import distutils.util import path_helpers import fomautomator_helpers import filerunner import time import datetime from infodbcomm import infoDictfromDB # the directory where the versions of the fomfunctions are FUNC_DIR = os.path.normpath(os.path.expanduser("~/Desktop/Working Folder/AutoAnalysisFunctions")) MOD_NAME = 'fomfunctions' UPDATE_MOD_NAME = 'fomfunctions_update' """ The FOMAutomator class provides the framework for processing data files automatically. Its main method, defined in fom_commandline, can be accessed through the command line. Alternatively, the FOMAutomator can be started with the user interface in fomautomator_menu. The automator can either process files in sequence on a single process or use Python's multiprocessing framework to process files on an optimal number of processes for your system (determined by Python). Both options are available through the command line and user interface, but the command line defaults to running sequentially. In both implementations, status messages and errors are logged to a file in the output directory, and the FileRunner class (defined in filerunner.py) is used to process each individual file. """ class FOMAutomator(object): """ initializes the automator with all necessary information """ def __init__(self, rawDataFiles, versionName, prevVersion,funcModule, updateModule, technique_names, srcDir, dstDir, rawDataDir,errorNum,jobname): # initializing all the basic info self.version = versionName self.lastVersion = prevVersion # the os.path.insert in the gui or in main is what makes # we select the correct function module self.funcMod = __import__(funcModule) self.modname = funcModule self.updatemod = updateModule self.technique_names = technique_names self.srcDir = srcDir self.dstDir = dstDir self.rawDataDir = rawDataDir # the max number of errors allowed by the user self.errorNum = errorNum self.jobname = jobname self.files = rawDataFiles self.infoDicts=infoDictfromDB(self.files) # required to have keys 'reference_Eo' and 'technique_name' self.processFuncs() """ returns a dictionary with all of the parameters and batch variables for the fom functions that will be run """ def processFuncs(self): self.params = {} self.funcDicts = {} self.allFuncs = [] # if we have the type of experiment, we can just get the specific functions if self.technique_names: for tech in self.technique_names: techDict = self.funcMod.EXPERIMENT_FUNCTIONS.get(tech) if techDict: [self.allFuncs.append(func) for func in techDict if func not in self.allFuncs] # if not we just get them all else: self.allFuncs = [f[0] for f in getmembers(self.funcMod, isfunction)] # now that we have all the functions, we get all the parameters for fname in self.allFuncs: funcObj = [f[1] for f in getmembers(self.funcMod, isfunction) if f[0] == fname][0] funcdict = {'batchvars': [], 'params': []} try: dictargs = funcObj.func_code.co_argcount - len(funcObj.func_defaults) funcdict['numdictargs'] = dictargs arglist = zip(funcObj.func_code.co_varnames[dictargs:], funcObj.func_defaults) except TypeError: # if there are no keyword arguments dictargs = funcObj.func_code.co_argcount funcdict['numdictargs'] = dictargs arglist = [] # note: we're assuming any string argument to the functions that the user wrote is data # for example t = 't(s)' in the function would mean t is equal to the raw data column t(s) for arg, val in arglist: if isinstance(val, list): funcdict['batchvars'].append(arg) funcdict['~'+arg] = val elif isinstance(val, str): funcdict[arg] = val ## ---- VSHIFT ------------------------------------------------------- ## elif arg == 'vshift': ## pass ## ------------------------------------------------------------------- else: self.params[fname+'_'+arg] = val funcdict['params'].append(arg) funcdict['#'+arg] = val self.funcDicts[fname] = funcdict """ Returns a list of functions and their parameters, which can be changed by the user if running fomautomator_menu. This function is only called by fomautomator_menu. If 'default' is true, the default parameters defined in the fom functions file are used; otherwise, the parameters are requested from the user. """ def requestParams(self,default=True): funcNames = self.funcDicts.keys() funcNames.sort() params_full = [[ fname, [(pname,type(pval),pval) for pname in self.funcDicts[fname]['params'] for pval in [self.funcDicts[fname]['#'+pname]]]] for fname in funcNames if self.funcDicts[fname]['params'] != []] if not default: return params_full else: funcs_names = [func[0] for func in params_full for num in range(len(func[1]))] params_and_answers = [[pname,pval] for func in params_full for (pname,ptype,pval) in func[1]] return funcs_names, params_and_answers """ If the parameter values were changed by fomautomator_menu, save the changed values in the automator's parameter dictionary and function dictionary. """ def setParams(self, funcNames, paramsList): for fname, params in zip(funcNames, paramsList): fdict = self.funcDicts[fname] param,val = params fdict['#'+param] = val self.params[fname+'_'+param] = val """ processes the files in parallel, logs status messages and errors """ def runParallel(self): # the path to which to log - will change depending on the way # processing ends and if a statusFile with the same # name already exists statusFileName = path_helpers.createPathWExtention(self.dstDir,self.jobname,".run") # set up the manager and objects required for logging due to multiprocessing pmanager = Manager() # this queue takes messages from individual processes and passes them # to the QueueListener loggingQueue = pmanager.Queue() processPool = Pool() # handler for the logging file fileHandler = logging.FileHandler(statusFileName) logFormat = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') fileHandler.setFormatter(logFormat) # the QueueListener takes messages from the logging queue and passes # them through another queue to the fileHandler (logs safely because # only this main process writes to the fileHandler) fileLogger = QueueListener(loggingQueue, fileHandler) fileLogger.start() # keep track of when processing started bTime = time.time() # the jobs to process each of the files # jobs = [(loggingQueue, filename, self.version, self.lastVersion, # self.modname, self.updatemod,self.params, self.funcDicts, # self.srcDir, self.dstDir, self.rawDataDir) # for filename in self.files] jobs = [(loggingQueue, filename, self.version, self.lastVersion, self.modname, self.updatemod, self.params, self.funcDicts, self.srcDir, self.dstDir, self.rawDataDir, infodict['reference_Eo'], infodict['technique_name']) \ for (filename, infodict) in zip(self.files, self.infoDicts)] processPool.map(makeFileRunner, jobs) # keep track of when processing ended eTime = time.time() timeStamp = time.strftime('%Y%m%d%H%M%S',time.gmtime()) # clean up the pool processPool.close() processPool.join() root = logging.getLogger() if fileLogger.errorCount > self.errorNum: root.info("The job encountered %d errors and the max number of them allowed is %d" %(fileLogger.errorCount,self.errorNum)) root.info("Processed for %s H:M:S" %(str(datetime.timedelta(seconds=eTime-bTime)),)) fileLogger.stop() fileHandler.close() if fileLogger.errorCount > self.errorNum: try: os.rename(statusFileName, path_helpers.createPathWExtention(self.dstDir,self.jobname,".error")) except: os.rename(statusFileName, path_helpers.createPathWExtention(self.dstDir,self.jobname+timeStamp,".error")) else: try: os.rename(statusFileName, path_helpers.createPathWExtention(self.dstDir,self.jobname,".done")) except: os.rename(statusFileName, path_helpers.createPathWExtention(self.dstDir,self.jobname+timeStamp,".done")) """ runs the files in order on a single process and logs errors """ def runSequentially(self): # set up everything needed for logging the errors root = logging.getLogger() root.setLevel(logging.INFO) statusFileName = path_helpers.createPathWExtention(self.dstDir,self.jobname,".run") fileHandler = logging.FileHandler(statusFileName) logFormat = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') fileHandler.setFormatter(logFormat) root.addHandler(fileHandler) numberOfFiles = len(self.files) numberOfErrors = 0 bTime= time.time() # The file processing occurs here logQueue = None for i, (filename, infodict) in enumerate(zip(self.files, self.infoDicts)): if numberOfErrors > self.errorNum: root.info("The job encountered %d errors and the max number of them allowed is %d" %(numberOfErrors,self.errorNum)) break try: # returns 1 if file was processed and 0 if file was skipped exitcode = filerunner.FileRunner(logQueue,filename, self.version, self.lastVersion, self.modname, self.updatemod, self.params, self.funcDicts,self.srcDir, self.dstDir, self.rawDataDir, infodict['reference_Eo'], infodict['technique_name']) if exitcode.exitSuccess: root.info('File %s completed %d/%d' %(os.path.basename(filename),i+1,numberOfFiles)) except Exception as someException: # root.exception will log an ERROR with printed traceback; # root.error will log an ERROR without traceback # root.exception(someException) root.error('Exception raised in file %s:\n' %filename +repr(someException)) numberOfErrors +=1 exitcode = -1 eTime= time.time() root.info("Processed for %s H:M:S" %(str(datetime.timedelta(seconds=eTime-bTime)),)) timeStamp = time.strftime('%Y%m%d%H%M%S',time.gmtime()) # closing the fileHandler is important or else we cannot rename the file root.removeHandler(fileHandler) fileHandler.close() # the renaming of the run file based on the way the file processing ended if numberOfErrors > self.errorNum: try: os.rename(statusFileName, path_helpers.createPathWExtention(self.dstDir,self.jobname,".error")) except: os.rename(statusFileName, path_helpers.createPathWExtention(self.dstDir,self.jobname+timeStamp,".error")) else: try: os.rename(statusFileName, path_helpers.createPathWExtention(self.dstDir,self.jobname,".done")) except: os.rename(statusFileName, path_helpers.createPathWExtention(self.dstDir,self.jobname+timeStamp,".done")) """ This function is started in a separate process by ProcessPool.map. Here, a FileRunner is created and a processHandler is added temporarily to log status or error messages from the FileRunner. The argument to makeFileRunner is the list of arguments to the FileRunner, but this function is only allowed a single argument because of ProcessPool.map. """ def makeFileRunner(args): # the multiprocessing queue queue = args[0] filename = os.path.basename(args[1]) root = logging.getLogger() root.setLevel(logging.INFO) # a logging handler which sends messages to the multiprocessing queue processHandler = QueueHandler(queue) root.addHandler(processHandler) try: # exitSuccess is 1 if file was processed or 0 if file was too short exitcode = filerunner.FileRunner(*args) # if file was processed, write logging message if exitcode.exitSuccess: root.info('File %s completed' %filename) except Exception as someException: # root.exception will log an ERROR with printed traceback; # root.error will log an ERROR without traceback root.error('Exception raised in file %s:\n' %filename +repr(someException)) #root.exception(someException) exitcode = -1 finally: # remove handler for this file (because a new handler is created # for every file) root.removeHandler(processHandler) return exitcode
47.130293
134
0.632939
79436f9f7cbc8886ea9ff50c62390ccdc2a56869
391
py
Python
altcore/core/wsgi.py
artkra/altcore
de3e2f0520c55f0390e9964155818a78110bbdb1
[ "MIT" ]
null
null
null
altcore/core/wsgi.py
artkra/altcore
de3e2f0520c55f0390e9964155818a78110bbdb1
[ "MIT" ]
null
null
null
altcore/core/wsgi.py
artkra/altcore
de3e2f0520c55f0390e9964155818a78110bbdb1
[ "MIT" ]
null
null
null
""" WSGI config for altcore project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.9/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "altcore.settings") application = get_wsgi_application()
23
78
0.785166
794370347d544fb058ff684fcf7b44e8576cbfc2
98
py
Python
broadcast-db/broadcastdb/common/models/__init__.py
faical-yannick-congo/broadcast-backend
bf16c047696c27bc53dd40fb8370b46f7cf9a4cb
[ "MIT" ]
null
null
null
broadcast-db/broadcastdb/common/models/__init__.py
faical-yannick-congo/broadcast-backend
bf16c047696c27bc53dd40fb8370b46f7cf9a4cb
[ "MIT" ]
null
null
null
broadcast-db/broadcastdb/common/models/__init__.py
faical-yannick-congo/broadcast-backend
bf16c047696c27bc53dd40fb8370b46f7cf9a4cb
[ "MIT" ]
null
null
null
"""SMS Broadcast Service Mongoengine Database Models. """ from .broadcast_model import Broadcast
19.6
53
0.795918
7943714bdca40de97b70c9a58e851a3ff904c4bd
6,742
py
Python
qa/rpc-tests/test_framework/test_framework.py
zahidaliayub/protoncoin-PROTON
bf415b60cbec0e52e174878adf0c5344b860723e
[ "MIT" ]
5
2018-04-06T15:38:50.000Z
2018-05-18T09:29:13.000Z
qa/rpc-tests/test_framework/test_framework.py
zahidaliayub/protoncoin-PROTON
bf415b60cbec0e52e174878adf0c5344b860723e
[ "MIT" ]
null
null
null
qa/rpc-tests/test_framework/test_framework.py
zahidaliayub/protoncoin-PROTON
bf415b60cbec0e52e174878adf0c5344b860723e
[ "MIT" ]
18
2018-03-05T15:18:36.000Z
2018-05-22T01:44:46.000Z
#!/usr/bin/env python2 # Copyright (c) 2014-2015 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # Base class for RPC testing # Add python-bitcoinrpc to module search path: import os import sys import shutil import tempfile import traceback from .util import ( initialize_chain, assert_equal, start_nodes, connect_nodes_bi, sync_blocks, sync_mempools, stop_nodes, wait_bitcoinds, enable_coverage, check_json_precision, initialize_chain_clean, ) from .authproxy import AuthServiceProxy, JSONRPCException class BitcoinTestFramework(object): # These may be over-ridden by subclasses: def run_test(self): for node in self.nodes: assert_equal(node.getblockcount(), 200) assert_equal(node.getbalance(), 25*500) def add_options(self, parser): pass def setup_chain(self): print("Initializing test directory "+self.options.tmpdir) initialize_chain(self.options.tmpdir) def setup_nodes(self): return start_nodes(4, self.options.tmpdir) def setup_network(self, split = False): self.nodes = self.setup_nodes() # Connect the nodes as a "chain". This allows us # to split the network between nodes 1 and 2 to get # two halves that can work on competing chains. # If we joined network halves, connect the nodes from the joint # on outward. This ensures that chains are properly reorganised. if not split: connect_nodes_bi(self.nodes, 1, 2) sync_blocks(self.nodes[1:3]) sync_mempools(self.nodes[1:3]) connect_nodes_bi(self.nodes, 0, 1) connect_nodes_bi(self.nodes, 2, 3) self.is_network_split = split self.sync_all() def split_network(self): """ Split the network of four nodes into nodes 0/1 and 2/3. """ assert not self.is_network_split stop_nodes(self.nodes) wait_bitcoinds() self.setup_network(True) def sync_all(self): if self.is_network_split: sync_blocks(self.nodes[:2]) sync_blocks(self.nodes[2:]) sync_mempools(self.nodes[:2]) sync_mempools(self.nodes[2:]) else: sync_blocks(self.nodes) sync_mempools(self.nodes) def join_network(self): """ Join the (previously split) network halves together. """ assert self.is_network_split stop_nodes(self.nodes) wait_bitcoinds() self.setup_network(False) def main(self): import optparse parser = optparse.OptionParser(usage="%prog [options]") parser.add_option("--nocleanup", dest="nocleanup", default=False, action="store_true", help="Leave protonds and test.* datadir on exit or error") parser.add_option("--noshutdown", dest="noshutdown", default=False, action="store_true", help="Don't stop protonds after the test execution") parser.add_option("--srcdir", dest="srcdir", default="../../src", help="Source directory containing protond/proton-cli (default: %default)") parser.add_option("--tmpdir", dest="tmpdir", default=tempfile.mkdtemp(prefix="test"), help="Root directory for datadirs") parser.add_option("--tracerpc", dest="trace_rpc", default=False, action="store_true", help="Print out all RPC calls as they are made") parser.add_option("--coveragedir", dest="coveragedir", help="Write tested RPC commands into this directory") self.add_options(parser) (self.options, self.args) = parser.parse_args() if self.options.trace_rpc: import logging logging.basicConfig(level=logging.DEBUG) if self.options.coveragedir: enable_coverage(self.options.coveragedir) os.environ['PATH'] = self.options.srcdir+":"+self.options.srcdir+"/qt:"+os.environ['PATH'] check_json_precision() success = False try: if not os.path.isdir(self.options.tmpdir): os.makedirs(self.options.tmpdir) self.setup_chain() self.setup_network() self.run_test() success = True except JSONRPCException as e: print("JSONRPC error: "+e.error['message']) traceback.print_tb(sys.exc_info()[2]) except AssertionError as e: print("Assertion failed: "+ str(e)) traceback.print_tb(sys.exc_info()[2]) except Exception as e: print("Unexpected exception caught during testing: " + repr(e)) traceback.print_tb(sys.exc_info()[2]) if not self.options.noshutdown: print("Stopping nodes") stop_nodes(self.nodes) wait_bitcoinds() else: print("Note: protonds were not stopped and may still be running") if not self.options.nocleanup and not self.options.noshutdown: print("Cleaning up") shutil.rmtree(self.options.tmpdir) if success: print("Tests successful") sys.exit(0) else: print("Failed") sys.exit(1) # Test framework for doing p2p comparison testing, which sets up some bitcoind # binaries: # 1 binary: test binary # 2 binaries: 1 test binary, 1 ref binary # n>2 binaries: 1 test binary, n-1 ref binaries class ComparisonTestFramework(BitcoinTestFramework): # Can override the num_nodes variable to indicate how many nodes to run. def __init__(self): self.num_nodes = 2 def add_options(self, parser): parser.add_option("--testbinary", dest="testbinary", default=os.getenv("PROTOND", "protond"), help="bitcoind binary to test") parser.add_option("--refbinary", dest="refbinary", default=os.getenv("PROTOND", "protond"), help="bitcoind binary to use for reference nodes (if any)") def setup_chain(self): print "Initializing test directory "+self.options.tmpdir initialize_chain_clean(self.options.tmpdir, self.num_nodes) def setup_network(self): self.nodes = start_nodes( self.num_nodes, self.options.tmpdir, extra_args=[['-debug', '-whitelist=127.0.0.1']] * self.num_nodes, binary=[self.options.testbinary] + [self.options.refbinary]*(self.num_nodes-1))
34.050505
100
0.617324
794371eccc65a4086e60fe5da73d78c99db83b66
1,070
py
Python
ch06/prepare_airplanes.py
wikibook/agile-data-science
7769fc2d6c810e9f1a64e45d3684e9260d99d983
[ "MIT" ]
1
2020-02-13T05:45:13.000Z
2020-02-13T05:45:13.000Z
ch06/prepare_airplanes.py
wikibook/agile-data-science
7769fc2d6c810e9f1a64e45d3684e9260d99d983
[ "MIT" ]
null
null
null
ch06/prepare_airplanes.py
wikibook/agile-data-science
7769fc2d6c810e9f1a64e45d3684e9260d99d983
[ "MIT" ]
null
null
null
# FAA N-Number 검색 레코드를 적재 faa_tail_number_inquiry = spark.read.json('data/faa_tail_number_inquiry.jsonl') faa_tail_number_inquiry.show() # 레코드 수 세기 faa_tail_number_inquiry.count() # 고유한 꼬리 번호 적재 unique_tail_numbers = spark.read.json('data/tail_numbers.jsonl') unique_tail_numbers.show() # 꼬리 번호를 조회 레코드와 조인 tail_num_plus_inquiry = unique_tail_numbers.join( faa_tail_number_inquiry, unique_tail_numbers.TailNum == faa_tail_number_inquiry.TailNum, ) tail_num_plus_inquiry = tail_num_plus_inquiry.drop(unique_tail_numbers.TailNum) tail_num_plus_inquiry.show() # 불필요한 필드를 제거하고 꼬리 번호를 추가한 조회 레코드를 저장 tail_num_plus_inquiry.registerTempTable("tail_num_plus_inquiry") airplanes = spark.sql("""SELECT TailNum AS TailNum, engine_manufacturer AS EngineManufacturer, engine_model AS EngineModel, manufacturer AS Manufacturer, mfr_year AS ManufacturerYear, model AS Model, owner AS Owner, owner_state AS OwnerState, serial_number AS SerialNumber FROM tail_num_plus_inquiry""") airplanes.repartition(1).write.mode("overwrite").json('data/airplanes.json')
29.722222
79
0.808411
79437273867f2d753c5e37507a5a67577dd0f65f
21,929
py
Python
aries_cloudagent/messaging/decorators/attach_decorator.py
zanost/aries-cloudagent-python
9541edfb957742e9db8082981c8397b45f8de987
[ "Apache-2.0" ]
null
null
null
aries_cloudagent/messaging/decorators/attach_decorator.py
zanost/aries-cloudagent-python
9541edfb957742e9db8082981c8397b45f8de987
[ "Apache-2.0" ]
8
2021-07-27T01:13:56.000Z
2022-03-15T01:12:40.000Z
aries_cloudagent/messaging/decorators/attach_decorator.py
zanost/aries-cloudagent-python
9541edfb957742e9db8082981c8397b45f8de987
[ "Apache-2.0" ]
1
2022-02-02T17:05:27.000Z
2022-02-02T17:05:27.000Z
""" A message decorator for attachments. An attach decorator embeds content or specifies appended content. """ import json import uuid from typing import Any, Mapping, Sequence, Tuple, Union from marshmallow import EXCLUDE, fields, pre_load from ...wallet.base import BaseWallet from ...wallet.util import ( b58_to_bytes, b64_to_bytes, b64_to_str, bytes_to_b58, bytes_to_b64, set_urlsafe_b64, str_to_b64, unpad, ) from ...wallet.key_type import KeyType from ...did.did_key import DIDKey from ..models.base import BaseModel, BaseModelError, BaseModelSchema from ..valid import ( BASE64, BASE64URL_NO_PAD, INDY_ISO8601_DATETIME, JWS_HEADER_KID, SHA256, UUIDFour, ) class AttachDecoratorDataJWSHeader(BaseModel): """Attach decorator data JWS header.""" class Meta: """AttachDecoratorDataJWS metadata.""" schema_class = "AttachDecoratorDataJWSHeaderSchema" def __init__(self, kid: str): """Initialize JWS header to include in attach decorator data.""" self.kid = kid def __eq__(self, other: Any): """Compare equality with another.""" return type(self) == type(other) and self.kid == other.kid class AttachDecoratorDataJWSHeaderSchema(BaseModelSchema): """Attach decorator data JWS header schema.""" class Meta: """Attach decorator data schema metadata.""" model_class = AttachDecoratorDataJWSHeader unknown = EXCLUDE kid = fields.Str( description="Key identifier, in W3C did:key or DID URL format", required=True, **JWS_HEADER_KID, ) class AttachDecoratorData1JWS(BaseModel): """Single Detached JSON Web Signature for inclusion in attach decorator data.""" class Meta: """AttachDecoratorData1JWS metadata.""" schema_class = "AttachDecoratorData1JWSSchema" def __init__( self, *, header: AttachDecoratorDataJWSHeader, protected: str = None, signature: str, ): """Initialize flattened single-JWS to include in attach decorator data.""" self.header = header self.protected = protected self.signature = signature def __eq__(self, other: Any): """Compare equality with another.""" return ( type(self) == type(other) and self.header == other.header and self.protected == other.protected and self.signature == other.signature ) class AttachDecoratorData1JWSSchema(BaseModelSchema): """Single attach decorator data JWS schema.""" class Meta: """Single attach decorator data JWS schema metadata.""" model_class = AttachDecoratorData1JWS unknown = EXCLUDE header = fields.Nested(AttachDecoratorDataJWSHeaderSchema, required=True) protected = fields.Str( description="protected JWS header", required=False, **BASE64URL_NO_PAD ) signature = fields.Str(description="signature", required=True, **BASE64URL_NO_PAD) class AttachDecoratorDataJWS(BaseModel): """ Detached JSON Web Signature for inclusion in attach decorator data. May hold one signature in flattened format, or multiple signatures in the "signatures" member. """ class Meta: """AttachDecoratorDataJWS metadata.""" schema_class = "AttachDecoratorDataJWSSchema" def __init__( self, *, header: AttachDecoratorDataJWSHeader = None, protected: str = None, signature: str = None, signatures: Sequence[AttachDecoratorData1JWS] = None, ): """Initialize JWS to include in attach decorator multi-sig data.""" self.header = header self.protected = protected self.signature = signature self.signatures = signatures class AttachDecoratorDataJWSSchema(BaseModelSchema): """Schema for detached JSON Web Signature for inclusion in attach decorator data.""" class Meta: """Metadata for schema for detached JWS for inclusion in attach deco data.""" model_class = AttachDecoratorDataJWS unknown = EXCLUDE @pre_load def validate_single_xor_multi_sig(self, data: Mapping, **kwargs): """Ensure model is for either 1 or many sigatures, not mishmash of both.""" if "signatures" in data: if any(k in data for k in ("header", "protected", "signature")): raise BaseModelError( "AttachDecoratorDataJWSSchema: " "JWS must be flattened or general JSON serialization format" ) elif not all(k in data for k in ("header", "signature")): raise BaseModelError( "AttachDecoratorDataJWSSchema: " "Flattened JSON serialization format must include header and signature" ) return data header = fields.Nested( AttachDecoratorDataJWSHeaderSchema, required=False, # packed in signatures if multi-sig ) protected = fields.Str( description="protected JWS header", required=False, # packed in signatures if multi-sig **BASE64URL_NO_PAD, ) signature = fields.Str( description="signature", required=False, # packed in signatures if multi-sig **BASE64URL_NO_PAD, ) signatures = fields.List( fields.Nested(AttachDecoratorData1JWSSchema), required=False, # only present if multi-sig description="List of signatures", ) def did_key(verkey: str) -> str: """Qualify verkey into DID key if need be.""" if verkey.startswith("did:key:"): return verkey return DIDKey.from_public_key_b58(verkey, KeyType.ED25519).did def raw_key(verkey: str) -> str: """Strip qualified key to raw key if need be.""" if verkey.startswith("did:key:"): return DIDKey.from_did(verkey).public_key_b58 return verkey class AttachDecoratorData(BaseModel): """Attach decorator data.""" class Meta: """AttachDecoratorData metadata.""" schema_class = "AttachDecoratorDataSchema" def __init__( self, *, jws_: AttachDecoratorDataJWS = None, sha256_: str = None, links_: Union[Sequence[str], str] = None, base64_: str = None, json_: dict = None, ): """ Initialize decorator data. Specify content for one of: - `base64_` - `json_` - `links_`. Args: jws_: detached JSON Web Signature over base64 or linked attachment content sha256_: optional sha-256 hash for content links_: URL or list of URLs base64_: base64 encoded content for inclusion json_: dict content for inclusion as json """ if jws_: self.jws_ = jws_ assert not json_ if base64_: self.base64_ = base64_ elif json_: self.json_ = json_ else: assert isinstance(links_, (str, Sequence)) self.links_ = [links_] if isinstance(links_, str) else list(links_) if sha256_: self.sha256_ = sha256_ @property def base64(self): """Accessor for base64 decorator data, or None.""" return getattr(self, "base64_", None) @property def jws(self): """Accessor for JWS, or None.""" return getattr(self, "jws_", None) @property def signatures(self) -> int: """Accessor for number of signatures.""" if self.jws: return 1 if self.jws.signature else len(self.jws.signatures) return 0 @property def signed(self) -> bytes: """Accessor for signed content (payload), None for unsigned.""" return ( b64_to_bytes(unpad(set_urlsafe_b64(self.base64, urlsafe=True))) if self.signatures else None ) def header_map(self, idx: int = 0, jose: bool = True) -> Mapping: """ Accessor for header info at input index, default 0 or unique for singly-signed. Args: idx: index of interest, zero-based (default 0) jose: True to return unprotected header attributes, False for protected only """ if not self.signatures: return None headers = {} sig = self.jws if self.jws.signature else self.jws.signatures[idx] if sig.protected: headers.update(json.loads(b64_to_str(sig.protected, urlsafe=True))) if jose: headers.update(sig.header.serialize()) return headers @property def json(self): """Accessor for json decorator data, or None.""" return getattr(self, "json_", None) @property def links(self): """Accessor for links decorator data, or None.""" return getattr(self, "links_", None) @property def sha256(self): """Accessor for sha256 decorator data, or None.""" return getattr(self, "sha256_", None) async def sign( self, verkeys: Union[str, Sequence[str]], wallet: BaseWallet, ): """ Sign base64 data value of attachment. Args: verkeys: verkey(s) of the signing party (in raw or DID key format) wallet: The wallet to use for the signature """ def build_protected(verkey: str): """Build protected header.""" return str_to_b64( json.dumps( { "alg": "EdDSA", "kid": did_key(verkey), "jwk": { "kty": "OKP", "crv": "Ed25519", "x": bytes_to_b64( b58_to_bytes(raw_key(verkey)), urlsafe=True, pad=False ), "kid": did_key(verkey), }, } ), urlsafe=True, pad=False, ) assert self.base64 b64_payload = unpad(set_urlsafe_b64(self.base64, True)) if isinstance(verkeys, str) or ( isinstance(verkeys, Sequence) and len(verkeys) == 1 ): kid = did_key(verkeys if isinstance(verkeys, str) else verkeys[0]) verkey = raw_key(verkeys if isinstance(verkeys, str) else verkeys[0]) b64_protected = build_protected(verkey) b64_sig = bytes_to_b64( await wallet.sign_message( message=(b64_protected + "." + b64_payload).encode("ascii"), from_verkey=verkey, ), urlsafe=True, pad=False, ) self.jws_ = AttachDecoratorDataJWS.deserialize( { "header": AttachDecoratorDataJWSHeader(kid).serialize(), "protected": b64_protected, # always present by construction "signature": b64_sig, } ) else: jws = {"signatures": []} for verkey in verkeys: b64_protected = build_protected(verkey) b64_sig = bytes_to_b64( await wallet.sign_message( message=(b64_protected + "." + b64_payload).encode("ascii"), from_verkey=raw_key(verkey), ), urlsafe=True, pad=False, ) jws["signatures"].append( { "protected": b64_protected, # always present by construction "header": {"kid": did_key(verkey)}, "signature": b64_sig, } ) self.jws_ = AttachDecoratorDataJWS.deserialize(jws) async def verify(self, wallet: BaseWallet) -> bool: """ Verify the signature(s). Args: wallet: Wallet to use to verify signature Returns: True if verification succeeds else False """ assert self.jws b64_payload = unpad(set_urlsafe_b64(self.base64, True)) for sig in [self.jws] if self.signatures == 1 else self.jws.signatures: b64_protected = sig.protected b64_sig = sig.signature protected = json.loads(b64_to_str(b64_protected, urlsafe=True)) assert "jwk" in protected and protected["jwk"].get("kty") == "OKP" sign_input = (b64_protected + "." + b64_payload).encode("ascii") b_sig = b64_to_bytes(b64_sig, urlsafe=True) verkey = bytes_to_b58(b64_to_bytes(protected["jwk"]["x"], urlsafe=True)) if not await wallet.verify_message( sign_input, b_sig, verkey, KeyType.ED25519 ): return False return True def __eq__(self, other): """Compare equality with another.""" for attr in ["jws_", "sha256_", "base64_"]: if getattr(self, attr, None) != getattr(other, attr, None): return False if set(getattr(self, "links_", [])) != set(getattr(other, "links_", [])): return False return True class AttachDecoratorDataSchema(BaseModelSchema): """Attach decorator data schema.""" class Meta: """Attach decorator data schema metadata.""" model_class = AttachDecoratorData unknown = EXCLUDE @pre_load def validate_data_spec(self, data: Mapping, **kwargs): """Ensure model chooses exactly one of base64, json, or links.""" if len(set(data.keys()) & {"base64", "json", "links"}) != 1: raise BaseModelError( "AttachDecoratorSchema: choose exactly one of base64, json, or links" ) return data base64_ = fields.Str( description="Base64-encoded data", required=False, data_key="base64", **BASE64 ) jws_ = fields.Nested( AttachDecoratorDataJWSSchema, description="Detached Java Web Signature", required=False, data_key="jws", ) json_ = fields.Dict( description="JSON-serialized data", required=False, example='{"sample": "content"}', data_key="json", ) links_ = fields.List( fields.Str(example="https://link.to/data"), description="List of hypertext links to data", required=False, data_key="links", ) sha256_ = fields.Str( description="SHA256 hash (binhex encoded) of content", required=False, data_key="sha256", **SHA256, ) class AttachDecorator(BaseModel): """Class representing attach decorator.""" class Meta: """AttachDecorator metadata.""" schema_class = "AttachDecoratorSchema" def __init__( self, *, ident: str = None, description: str = None, filename: str = None, mime_type: str = None, lastmod_time: str = None, byte_count: int = None, data: AttachDecoratorData, **kwargs, ): """ Initialize an AttachDecorator instance. The attachment decorator allows for embedding or appending content to a message. Args: ident ("@id" in serialization): identifier for the appendage mime_type ("mime-type" in serialization): MIME type for attachment filename: file name lastmod_time: last modification time, "%Y-%m-%d %H:%M:%SZ" description: content description data: payload, as per `AttachDecoratorData` """ super().__init__(**kwargs) self.ident = ident self.description = description self.filename = filename self.mime_type = mime_type self.lastmod_time = lastmod_time self.byte_count = byte_count self.data = data @property def content(self) -> Union[Mapping, Tuple[Sequence[str], str]]: """ Return attachment content. Returns: data attachment, decoded if necessary and json-loaded, or data links and sha-256 hash. """ if hasattr(self.data, "base64_"): return json.loads(b64_to_bytes(self.data.base64)) elif hasattr(self.data, "json_"): return self.data.json elif hasattr(self.data, "links_"): return ( # fetching would be async; we want a property here self.data.links, self.data.sha256, ) else: return None @classmethod def data_base64( cls, mapping: Mapping, *, ident: str = None, description: str = None, filename: str = None, lastmod_time: str = None, byte_count: int = None, ): """ Create `AttachDecorator` instance on base64-encoded data from input mapping. Given mapping, JSON dump, base64-encode, and embed it as data; mark `application/json` MIME type. Args: mapping: (dict) data structure; e.g., indy production ident: optional attachment identifier (default random UUID4) description: optional attachment description filename: optional attachment filename lastmod_time: optional attachment last modification time byte_count: optional attachment byte count """ return AttachDecorator( ident=ident or str(uuid.uuid4()), description=description, filename=filename, mime_type="application/json", lastmod_time=lastmod_time, byte_count=byte_count, data=AttachDecoratorData( base64_=bytes_to_b64(json.dumps(mapping).encode()) ), ) @classmethod def data_json( cls, mapping: dict, *, ident: str = None, description: str = None, filename: str = None, lastmod_time: str = None, byte_count: int = None, ): """ Create `AttachDecorator` instance on json-encoded data from input mapping. Given message object (dict), JSON dump, and embed it as data; mark `application/json` MIME type. Args: mapping: (dict) data structure; e.g., Aries message ident: optional attachment identifier (default random UUID4) description: optional attachment description filename: optional attachment filename lastmod_time: optional attachment last modification time byte_count: optional attachment byte count """ return AttachDecorator( ident=ident or str(uuid.uuid4()), description=description, filename=filename, mime_type="application/json", lastmod_time=lastmod_time, byte_count=byte_count, data=AttachDecoratorData(json_=mapping), ) @classmethod def data_links( cls, links: Union[str, Sequence[str]], sha256: str = None, *, ident: str = None, mime_type: str = None, description: str = None, filename: str = None, lastmod_time: str = None, byte_count: int = None, ): """ Create `AttachDecorator` instance on json-encoded data from input mapping. Given message object (dict), JSON dump, and embed it as data; mark `application/json` MIME type. Args: links: URL or list of URLs sha256: optional sha-256 hash for content ident: optional attachment identifier (default random UUID4) mime_type: optional MIME type description: optional attachment description filename: optional attachment filename lastmod_time: optional attachment last modification time byte_count: optional attachment byte count """ return AttachDecorator( ident=ident or str(uuid.uuid4()), description=description, filename=filename, mime_type=mime_type or "application/json", lastmod_time=lastmod_time, byte_count=byte_count, data=AttachDecoratorData(sha256_=sha256, links_=links), ) class AttachDecoratorSchema(BaseModelSchema): """Attach decorator schema used in serialization/deserialization.""" class Meta: """AttachDecoratorSchema metadata.""" model_class = AttachDecorator unknown = EXCLUDE ident = fields.Str( description="Attachment identifier", example=UUIDFour.EXAMPLE, required=False, allow_none=False, data_key="@id", ) mime_type = fields.Str( description="MIME type", example="image/png", required=False, data_key="mime-type", ) filename = fields.Str( description="File name", example="IMG1092348.png", required=False ) byte_count = fields.Int( description="Byte count of data included by reference", example=1234, required=False, strict=True, ) lastmod_time = fields.Str( description="Hint regarding last modification datetime, in ISO-8601 format", required=False, **INDY_ISO8601_DATETIME, ) description = fields.Str( description="Human-readable description of content", example="view from doorway, facing east, with lights off", required=False, ) data = fields.Nested( AttachDecoratorDataSchema, required=True, )
30.080933
88
0.582015
794372a1f4b0dcc41bcf0da611f5bc2ec9301973
8,125
py
Python
tensorflow/contrib/nccl/python/ops/nccl_ops.py
zhangyujing/tensorflow
c7a04561fb8972fb64907acc5f10f3c6d4cef9f2
[ "Apache-2.0" ]
54
2018-05-29T19:52:44.000Z
2021-11-30T10:41:12.000Z
tensorflow/contrib/nccl/python/ops/nccl_ops.py
hiflyin/tensorflow
8e86dcd1c59bb3f1dc978fcb5398dd3f2f51d9ad
[ "Apache-2.0" ]
20
2017-12-06T18:20:54.000Z
2021-11-10T09:54:23.000Z
tensorflow/contrib/nccl/python/ops/nccl_ops.py
hiflyin/tensorflow
8e86dcd1c59bb3f1dc978fcb5398dd3f2f51d9ad
[ "Apache-2.0" ]
31
2018-09-11T02:17:17.000Z
2021-12-15T10:33:35.000Z
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Ops for GPU collective operations implemented using NVIDIA nccl.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import threading from tensorflow.contrib.nccl.ops import gen_nccl_ops from tensorflow.contrib.util import loader from tensorflow.python.eager import context from tensorflow.python.framework import device from tensorflow.python.framework import ops from tensorflow.python.platform import resource_loader _nccl_ops_so = loader.load_op_library( resource_loader.get_path_to_datafile('_nccl_ops.so')) def all_sum(tensors): """Returns a list of tensors with the all-reduce sum across `tensors`. The computation is done with an all-reduce operation, so if only some of the returned tensors are evaluated then the computation will hang. Args: tensors: The input tensors across which to sum; must be assigned to GPU devices. Returns: List of tensors, each with the sum of the input tensors, where tensor i has the same device as `tensors[i]`. """ return _apply_all_reduce('sum', tensors) @ops.RegisterGradient('NcclAllReduce') def _all_sum_grad(op, grad): """The gradients for `all_sum`. Args: op: The `all_sum` `Operation` that we are differentiating. grad: Gradient with respect to the output of the `all_sum` op. Returns: The gradient with respect to the output of `all_sum`. Raises: LookupError: If `reduction` is not `sum`. """ if op.get_attr('reduction') != 'sum': raise LookupError('No gradient defined for NcclAllReduce except sum.') _check_device(grad, expected=op.device) num_devices = op.get_attr('num_devices') shared_name = op.get_attr('shared_name') + '_grad' with ops.device(op.device): return gen_nccl_ops.nccl_all_reduce( input=grad, reduction='sum', num_devices=num_devices, shared_name=shared_name) def all_prod(tensors): """Returns a list of tensors with the all-reduce product across `tensors`. The computation is done with an all-reduce operation, so if only some of the returned tensors are evaluated then the computation will hang. Args: tensors: The input tensors across which to multiply; must be assigned to GPU devices. Returns: List of tensors, each with the product of the input tensors, where tensor i has the same device as `tensors[i]`. """ return _apply_all_reduce('prod', tensors) def all_min(tensors): """Returns a list of tensors with the all-reduce min across `tensors`. The computation is done with an all-reduce operation, so if only some of the returned tensors are evaluated then the computation will hang. Args: tensors: The input tensors across which to reduce; must be assigned to GPU devices. Returns: List of tensors, each with the minimum of the input tensors, where tensor i has the same device as `tensors[i]`. """ return _apply_all_reduce('min', tensors) def all_max(tensors): """Returns a list of tensors with the all-reduce max across `tensors`. The computation is done with an all-reduce operation, so if only some of the returned tensors are evaluated then the computation will hang. Args: tensors: The input tensors across which to reduce; must be assigned to GPU devices. Returns: List of tensors, each with the maximum of the input tensors, where tensor i has the same device as `tensors[i]`. """ return _apply_all_reduce('max', tensors) def reduce_sum(tensors): """Returns a tensor with the reduce sum across `tensors`. The computation is done with a reduce operation, so only one tensor is returned. Args: tensors: The input tensors across which to sum; must be assigned to GPU devices. Returns: A tensor containing the sum of the input tensors. Raises: LookupError: If context is not currently using a GPU device. """ return _apply_reduce('sum', tensors) @ops.RegisterGradient('NcclReduce') def _reduce_sum_grad(op, grad): """The gradients for input `Operation` of `reduce_sum`. Args: op: The `sum send` `Operation` that we are differentiating. grad: Gradient with respect to the output of the `reduce_sum` op. Returns: The gradient with respect to the input of `reduce_sum` op. Raises: LookupError: If the reduction attribute of op is not `sum`. """ if op.get_attr('reduction') != 'sum': raise LookupError('No gradient defined for NcclReduce except sum.') _check_device(grad, expected=op.device) with ops.device(op.device): result = gen_nccl_ops.nccl_broadcast(input=grad, shape=grad.shape) return [result] * len(op.inputs) def broadcast(tensor): """Returns a tensor that can be efficiently transferred to other devices. Args: tensor: The tensor to send; must be assigned to a GPU device. Returns: A tensor with the value of `src_tensor`, which can be used as input to ops on other GPU devices. """ _check_graph_mode() _check_device(tensor) with ops.device(tensor.device): return gen_nccl_ops.nccl_broadcast(input=tensor, shape=tensor.shape) @ops.RegisterGradient('NcclBroadcast') def _broadcast_grad(op, accumulated_grad): """The gradients for input `Operation` of `broadcast`. Args: op: The `broadcast send` `Operation` that we are differentiating. accumulated_grad: Accumulated gradients with respect to the output of the `broadcast` op. Returns: Gradients with respect to the input of `broadcast`. """ # Grab inputs of accumulated_grad and replace accumulation with reduce_sum. grads = [t for t in accumulated_grad.op.inputs] for t in grads: _check_device(t) with ops.device(op.device): return gen_nccl_ops.nccl_reduce(input=grads, reduction='sum') def _apply_all_reduce(reduction, tensors): """Helper function for all_* functions.""" if not tensors: raise ValueError('Must pass >0 tensors to all reduce operations') _check_graph_mode() shared_name = _get_shared_name() res = [] for t in tensors: _check_device(t) with ops.device(t.device): res.append( gen_nccl_ops.nccl_all_reduce( input=t, reduction=reduction, num_devices=len(tensors), shared_name=shared_name)) return res def _apply_reduce(reduction, tensors): """Helper function for reduce_* functions.""" if not tensors: raise ValueError('Must pass >0 tensors to reduce operations') _check_graph_mode() for t in tensors: _check_device(t) result = gen_nccl_ops.nccl_reduce(input=tensors, reduction=reduction) try: next(t for t in tensors if t.device == result.device) except StopIteration: raise ValueError('One input tensor must be assigned to current device') return result _lock = threading.Lock() _shared_name_counter = 0 def _get_shared_name(): global _shared_name_counter with _lock: val = _shared_name_counter _shared_name_counter += 1 return 'c%s' % val def _check_device(tensor, expected=None): if not device.canonical_name(tensor.device): raise ValueError('Device assignment required for nccl collective ops') if expected and expected != tensor.device: raise ValueError('Expected device %s, got %s' % (expected, tensor.device)) def _check_graph_mode(): if context.executing_eagerly(): raise ValueError('Nccl ops are not supported in eager mode')
29.871324
80
0.720123
79437319d9e87ccb06608cfd0c2654f6db2e39e2
457
py
Python
plotly/validators/scatterpolargl/_customdatasrc.py
faezs/plotly.py
6009b5b9c746e5d2a2849ad255a4eb234b551ed7
[ "MIT" ]
2
2020-03-24T11:41:14.000Z
2021-01-14T07:59:43.000Z
plotly/validators/scatterpolargl/_customdatasrc.py
faezs/plotly.py
6009b5b9c746e5d2a2849ad255a4eb234b551ed7
[ "MIT" ]
null
null
null
plotly/validators/scatterpolargl/_customdatasrc.py
faezs/plotly.py
6009b5b9c746e5d2a2849ad255a4eb234b551ed7
[ "MIT" ]
4
2019-06-03T14:49:12.000Z
2022-01-06T01:05:12.000Z
import _plotly_utils.basevalidators class CustomdatasrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__( self, plotly_name='customdatasrc', parent_name='scatterpolargl', **kwargs ): super(CustomdatasrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type='none', role='info', **kwargs )
24.052632
72
0.610503
794377aa6e0f26e11e87e5959fe9b78f9811a5bb
2,632
py
Python
tests/test_charm.py
AlexsJones/charmed-sfs
4d94c803a1811660d24aa95326d675bde56377c5
[ "Apache-2.0" ]
null
null
null
tests/test_charm.py
AlexsJones/charmed-sfs
4d94c803a1811660d24aa95326d675bde56377c5
[ "Apache-2.0" ]
null
null
null
tests/test_charm.py
AlexsJones/charmed-sfs
4d94c803a1811660d24aa95326d675bde56377c5
[ "Apache-2.0" ]
null
null
null
# Copyright 2022 jonesax # See LICENSE file for licensing details. # # Learn more about testing at: https://juju.is/docs/sdk/testing import unittest from unittest.mock import Mock from charm import SfsCharm from ops.model import ActiveStatus from ops.testing import Harness class TestCharm(unittest.TestCase): def setUp(self): self.harness = Harness(SfsCharm) self.addCleanup(self.harness.cleanup) self.harness.begin() def test_config_changed(self): self.assertEqual(list(self.harness.charm._stored.things), []) self.harness.update_config({"thing": "foo"}) self.assertEqual(list(self.harness.charm._stored.things), ["foo"]) def test_action(self): # the harness doesn't (yet!) help much with actions themselves action_event = Mock(params={"fail": ""}) self.harness.charm._on_fortune_action(action_event) self.assertTrue(action_event.set_results.called) def test_action_fail(self): action_event = Mock(params={"fail": "fail this"}) self.harness.charm._on_fortune_action(action_event) self.assertEqual(action_event.fail.call_args, [("fail this",)]) def test_httpbin_pebble_ready(self): # Check the initial Pebble plan is empty initial_plan = self.harness.get_container_pebble_plan("httpbin") self.assertEqual(initial_plan.to_yaml(), "{}\n") # Expected plan after Pebble ready with default config expected_plan = { "services": { "httpbin": { "override": "replace", "summary": "httpbin", "command": "gunicorn -b 0.0.0.0:80 httpbin:app -k gevent", "startup": "enabled", "environment": {"thing": "🎁"}, } }, } # Get the httpbin container from the model container = self.harness.model.unit.get_container("httpbin") # Emit the PebbleReadyEvent carrying the httpbin container self.harness.charm.on.httpbin_pebble_ready.emit(container) # Get the plan now we've run PebbleReady updated_plan = self.harness.get_container_pebble_plan("httpbin").to_dict() # Check we've got the plan we expected self.assertEqual(expected_plan, updated_plan) # Check the service was started service = self.harness.model.unit.get_container("httpbin").get_service("httpbin") self.assertTrue(service.is_running()) # Ensure we set an ActiveStatus with no message self.assertEqual(self.harness.model.unit.status, ActiveStatus())
39.283582
89
0.649316
794378f4465298f29eb5f72120e249fcdcedbf34
734
py
Python
src/rust/iced-x86-py/src/iced_x86/EncodingKind.py
clayne/iced
dcd3db725b1137fec4d2bda9b17587cead49bf4d
[ "MIT" ]
1,018
2018-09-07T20:12:43.000Z
2021-01-17T18:41:10.000Z
src/rust/iced-x86-py/src/iced_x86/EncodingKind.py
clayne/iced
dcd3db725b1137fec4d2bda9b17587cead49bf4d
[ "MIT" ]
127
2018-09-07T19:33:48.000Z
2021-01-17T22:20:33.000Z
src/rust/iced-x86-py/src/iced_x86/EncodingKind.py
clayne/iced
dcd3db725b1137fec4d2bda9b17587cead49bf4d
[ "MIT" ]
146
2018-09-09T12:38:30.000Z
2021-01-18T23:37:11.000Z
# SPDX-License-Identifier: MIT # Copyright (C) 2018-present iced project and contributors # ⚠️This file was generated by GENERATOR!🦹‍♂️ # pylint: disable=invalid-name # pylint: disable=line-too-long # pylint: disable=too-many-lines """ Instruction encoding """ import typing if typing.TYPE_CHECKING: from ._iced_x86_py import EncodingKind else: EncodingKind = int LEGACY: EncodingKind = 0 # type: ignore """ Legacy encoding """ VEX: EncodingKind = 1 # type: ignore """ VEX encoding """ EVEX: EncodingKind = 2 # type: ignore """ EVEX encoding """ XOP: EncodingKind = 3 # type: ignore """ XOP encoding """ D3NOW: EncodingKind = 4 # type: ignore """ 3DNow! encoding """ MVEX: EncodingKind = 5 # type: ignore """ MVEX encoding """
16.681818
58
0.702997
7943792e88a220c8a46d4c362f88faacf61c4cf9
9,375
py
Python
eod/data/samplers/sampler.py
scott-mao/EOD
f10e64de86c0f356ebf5c7e923f4042eec4207b1
[ "Apache-2.0" ]
1
2022-01-12T01:51:39.000Z
2022-01-12T01:51:39.000Z
eod/data/samplers/sampler.py
YZW-explorer/EOD
f10e64de86c0f356ebf5c7e923f4042eec4207b1
[ "Apache-2.0" ]
null
null
null
eod/data/samplers/sampler.py
YZW-explorer/EOD
f10e64de86c0f356ebf5c7e923f4042eec4207b1
[ "Apache-2.0" ]
null
null
null
# Standard Library import math from collections import defaultdict # Import from third library import numpy as np import torch from torch.utils.data.sampler import Sampler from eod.utils.env.dist_helper import env, get_rank, get_world_size from eod.utils.general.log_helper import default_logger as logger from eod.utils.general.registry_factory import SAMPLER_REGISTRY __all__ = ['DistributedSampler', 'LocalSampler', 'TestDistributedSampler'] @SAMPLER_REGISTRY.register('dist') class DistributedSampler(Sampler): """ Sampler that restricts data loading to a subset of the dataset. .. note: Dataset is assumed to be of constant size. Arguments: dataset (Dataset): dataset used for sampling. num_replicas (int): number of processes participating in distributed training, optional. rank (int): rank of the current process within num_replicas, optional. """ def __init__(self, dataset, num_replicas=None, rank=None, fix_seed=False): """ Arguments: - dataset (:obj:`dataset`): instance of dataset object """ if num_replicas is None: num_replicas = env.world_size if rank is None: rank = env.rank self.dataset = dataset self.num_replicas = num_replicas self.rank = rank self.epoch = 0 self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas)) self.total_size = self.num_samples * self.num_replicas self.fix_seed = fix_seed def __iter__(self): # deterministically shuffle based on epoch g = torch.Generator() g.manual_seed(self.epoch * (not self.fix_seed)) indices = list(torch.randperm(len(self.dataset), generator=g)) # add extra samples to make it evenly divisible # indices += indices[:(self.total_size - len(indices))] padding_size = self.total_size - len(indices) if padding_size <= len(indices): indices += indices[:padding_size] else: indices += (indices * math.ceil(padding_size / len(indices)))[:padding_size] assert len(indices) == self.total_size # subsample offset = self.num_samples * self.rank indices = indices[offset:offset + self.num_samples] assert len(indices) == self.num_samples return iter(indices) def __len__(self): return self.num_samples def set_epoch(self, epoch): self.epoch = epoch @SAMPLER_REGISTRY.register('local') class LocalSampler(Sampler): def __init__(self, dataset, rank=None): if rank is None: rank = env.rank self.dataset = dataset self.rank = rank self.epoch = 0 self.num_samples = len(self.dataset) def __iter__(self): # deterministically shuffle based on epoch g = torch.Generator() g.manual_seed(self.epoch + self.rank) indices = list(torch.randperm(self.num_samples, generator=g)) return iter(indices) def set_epoch(self, epoch): self.epoch = epoch def __len__(self): return self.num_samples @SAMPLER_REGISTRY.register('dist_test') class TestDistributedSampler(Sampler): """ Sampler that restricts data loading to a subset of the dataset, but won't align the total data size to be divisible by world_size bacause this will lead to duplicate detecton results """ def __init__(self, dataset, num_replicas=None, rank=None): """ Arguments: - dataset (:obj:`dataset`): instance of dataset object """ if num_replicas is None: num_replicas = env.world_size if rank is None: rank = env.rank self.dataset = dataset self.num_replicas = num_replicas self.rank = rank self.epoch = 0 self.num_samples = len(range(rank, len(self.dataset), num_replicas)) self.total_size = len(self.dataset) def __iter__(self): indices = torch.arange(len(self.dataset)) indices = indices[self.rank::self.num_replicas] assert len(indices) == self.num_samples return iter(indices) def __len__(self): return self.num_samples def set_epoch(self, epoch): self.epoch = epoch @SAMPLER_REGISTRY.register('repeat_factor') class DistributedRepeatFactorReSampler(Sampler): """ Suitable for long-tail distribution datasets. Refer to `LVIS <https://arxiv.org/abs/1908.03195>`_ paper """ def __init__(self, dataset, t=0.001, ri_mode='random_round', pn=0.5, ri_if_empty=1, num_replicas=None, static_size=True, rank=None): """ Arguments: - dataset (:obj:`Dataset`): dataset used for sampling. - t (:obj:`float`): thresh- old that intuitively controls the point at which oversampling kicks in - ri_mode (:obj:`str`): choices={floor, round, random_round, ceil, c_ceil_r_f_floor}, method to compute repeat factor for one image - pn (:obj:`float`): power number - num_replicas (int): number of processes participating in distributed training, optional. - rank (int): rank of the current process within num_replicas, optional. """ if num_replicas is None: num_replicas = get_world_size() if rank is None: rank = get_rank() self.dataset = dataset self.num_replicas = num_replicas self.rank = rank self.epoch = 0 self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas)) self.total_size = self.num_samples * self.num_replicas self.original_num_samples = self.num_samples self.t = t self.ri_mode = ri_mode self.ri_if_empty = int(ri_if_empty) self.pn = pn self.static_size = static_size self._prepare() logger.info('init re-sampler, ri mode: {}'.format(self.ri_mode)) def _prepare(self): # prepare re-sampling factor for category rc = defaultdict(int) img_num_per_class = defaultdict(int) for cls, img_num in sorted(self.dataset.num_images_per_class.items()): f = img_num / len(self.dataset) img_num_per_class[cls] = img_num rc[cls] = max(1, math.pow(self.t / f, self.pn)) logger.info('class id {}, image count {}, rc {}'.format(cls, img_num, rc[cls])) self.rc = rc def _compute_ri(self, img_index): classes = self.dataset.get_image_classes(img_index) ris = [self.rc[cls] for cls in classes] if len(ris) == 0: return self.ri_if_empty if self.ri_mode == 'floor': ri = int(max(ris)) elif self.ri_mode == 'round': ri = round(max(ris)) elif self.ri_mode == 'random_round': ri_max = max(ris) p = ri_max - int(ri_max) if np.random.rand() < p: ri = math.ceil(ri_max) else: ri = int(ri_max) elif self.ri_mode == 'ceil': ri = math.ceil(max(ris)) elif self.ri_mode == 'c_ceil_r_f_floor': max_ind = np.argmax(ris) assert hasattr(self.dataset, 'lvis'), 'Only lvis dataset supportted for c_ceil_r_f_floor mode' img_id = self.dataset.img_ids[img_index] meta_annos = self.dataset.lvis.img_ann_map[img_id] f = self.dataset.lvis.cats[meta_annos[max_ind]['category_id']]['frequency'] assert f in ['f', 'c', 'r'] if f in ['r', 'f']: ri = int(max(ris)) else: ri = math.ceil(max(ris)) else: raise NotImplementedError return ri def _get_new_indices(self): indices = [] for idx in range(len(self.dataset)): ri = self._compute_ri(idx) indices += [idx] * ri logger.info('dataset size {}, indexes size {}'.format(len(self.dataset), len(indices))) return indices def __iter__(self): # deterministically shuffle based on epoch # generate a perm based using class-aware balance for this epoch indices = self._get_new_indices() # override num_sample total size self.num_samples = int(math.ceil(len(indices) * 1.0 / self.num_replicas)) self.total_size = self.num_samples * self.num_replicas indices = np.random.RandomState(seed=self.epoch).permutation(np.array(indices)) indices = list(indices) # add extra samples to make it evenly divisible indices += indices[:(self.total_size - len(indices))] assert len(indices) == self.total_size # subsample offset = self.num_samples * self.rank indices = indices[offset:offset + self.num_samples] assert len(indices) == self.num_samples # convert to int because this array will be converted to torch.tensor, # but torch.as_tensor dosen't support numpy.int64 # a = torch.tensor(np.float64(1)) # works # b = torch.tensor(np.int64(1)) # fails indices = list(map(lambda x: int(x), indices)) return iter(indices) def __len__(self): return self.original_num_samples def set_epoch(self, epoch): self.epoch = epoch
35.511364
115
0.620053
79437956e5607d5e0a159baa5ff8342e2b0ed99c
2,283
py
Python
server1/models/__init__.py
cchangr/Animal
f6701c9780dc06a3420bcec8664b3b89ed67174f
[ "MIT" ]
null
null
null
server1/models/__init__.py
cchangr/Animal
f6701c9780dc06a3420bcec8664b3b89ed67174f
[ "MIT" ]
null
null
null
server1/models/__init__.py
cchangr/Animal
f6701c9780dc06a3420bcec8664b3b89ed67174f
[ "MIT" ]
null
null
null
import json from server1.utils import log def save(data, path): s = json.dumps(data, indent=2, ensure_ascii=False) with open(path, 'w+', encoding='utf-8') as f: log('save', path, s, data) f.write(s) def load(path): with open(path, 'r', encoding='utf-8') as f: s = f.read() log('load', s) return json.loads(s) class Model(object): @classmethod def db_path(cls): classname = cls.__name__ path = 'db/{}.txt'.format(classname) return path @classmethod def new(cls, form): m = cls(form) return m @classmethod def all(cls): path = cls.db_path() models = load(path) ms = [cls.new(m) for m in models] return ms @classmethod def find_by(cls, **kwargs): k, v = '', '' for key, value in kwargs.items(): k, v = key, value all = cls.all() for m in all: if v == m.__dict__[k]: return m return None @classmethod def find_all(cls, **kwargs): res = [] k, v = '', '' for key, value in kwargs: k, v = key, value all = cls.all() for m in all: if v == m.__dict__[k]: res.append(m) return res def save(self): models = self.all() log('models', models) first_index = 0 if self.__dict__.get('id') is None: if len(models) > 0: log('用 log 可以查看代码执行的走向') self.id = models[-1].id + 1 else: log('first index', first_index) self.id = first_index models.append(self) else: index = -1 for i, m in enumerate(models): if m.id == self.id: index = i break if index > -1: models[index] = self l = [m.__dict__ for m in models] path = self.db_path() save(l, path) def __repr__(self): classname = self.__class__.__name__ properties = ['{}: ({})'.format(k, v) for k, v in self.__dict__.items()] s = '\n'.join(properties) return '< {}\n{} >\n'.format(classname, s)
24.815217
80
0.473062
794379e2c7b785601a571290b407dd50a94b8577
3,839
py
Python
tools/c7n_azure/c7n_azure/resources/storage_container.py
al3pht/cloud-custodian
ce6613d1b716f336384c5e308eee300389e6bf50
[ "Apache-2.0" ]
2,415
2018-12-04T00:37:58.000Z
2022-03-31T12:28:56.000Z
tools/c7n_azure/c7n_azure/resources/storage_container.py
al3pht/cloud-custodian
ce6613d1b716f336384c5e308eee300389e6bf50
[ "Apache-2.0" ]
3,272
2018-12-03T23:58:17.000Z
2022-03-31T21:15:32.000Z
tools/c7n_azure/c7n_azure/resources/storage_container.py
al3pht/cloud-custodian
ce6613d1b716f336384c5e308eee300389e6bf50
[ "Apache-2.0" ]
773
2018-12-06T09:43:23.000Z
2022-03-30T20:44:43.000Z
# Copyright The Cloud Custodian Authors. # SPDX-License-Identifier: Apache-2.0 from c7n_azure.provider import resources from c7n_azure.query import ChildTypeInfo from c7n_azure.actions.base import AzureBaseAction from c7n_azure.resources.arm import ChildArmResourceManager from c7n.filters.core import type_schema from c7n_azure.utils import ResourceIdParser from msrestazure.tools import parse_resource_id @resources.register('storage-container') class StorageContainer(ChildArmResourceManager): """Storage Container Resource :example: Finds all containers with public access enabled .. code-block:: yaml policies: - name: storage-container-public description: | Find all containers with public access enabled resource: azure.storage-container filters: - type: value key: properties.publicAccess op: not-equal value: None # Possible values: Blob, Container, None """ class resource_type(ChildTypeInfo): doc_groups = ['Storage'] service = 'azure.mgmt.storage' client = 'StorageManagementClient' enum_spec = ('blob_containers', 'list', None) parent_manager_name = 'storage' diagnostic_settings_enabled = False resource_type = 'Microsoft.Storage/storageAccounts/blobServices/containers' raise_on_exception = False default_report_fields = ( 'name', 'properties.publicAccess', '"c7n:parent-id"' ) @classmethod def extra_args(cls, parent_resource): return {'resource_group_name': parent_resource['resourceGroup'], 'account_name': parent_resource['name']} def get_resources(self, resource_ids): client = self.get_client() data = [ self.get_storage_container(rid, client) for rid in resource_ids ] return self.augment([r.serialize(True) for r in data]) def get_storage_container(self, resource_id, client): parsed = parse_resource_id(resource_id) return client.blob_containers.get(parsed.get('resource_group'), parsed.get('name'), # Account name parsed.get('resource_name')) # Container name @StorageContainer.action_registry.register('set-public-access') class StorageContainerSetPublicAccessAction(AzureBaseAction): """Action that updates the access level setting on Storage Containers. Programmatically, this will be seen by updating the Public Access setting :example: Finds all Blob Storage Containers that are not private and sets them to private .. code-block:: yaml policies: - name: set-non-production-accounts-private resource: azure.storage-container filters: - type: value key: properties.publicAccess op: not-equal value: None actions: - type: set-public-access value: None """ schema = type_schema( 'set-public-access', required=['value'], **{ 'value': {'enum': ['Container', 'Blob', 'None']} } ) def _prepare_processing(self): self.client = self.manager.get_client() def _process_resource(self, resource): resource_group = ResourceIdParser.get_resource_group(resource['id']) account_name = ResourceIdParser.get_resource_name(resource['c7n:parent-id']) self.client.blob_containers.update( resource_group, account_name, resource['name'], public_access=self.data['value'] )
33.675439
90
0.620995
79437a49fed0591607b2c696668a5a25ac5bdf85
1,999
py
Python
ugali/analysis/pipeline.py
mcnanna/ugali
2572915b82af5b25e8762013e6d5baabdaa24b21
[ "MIT" ]
12
2016-10-26T20:45:33.000Z
2021-11-24T04:07:43.000Z
ugali/analysis/pipeline.py
mcnanna/ugali
2572915b82af5b25e8762013e6d5baabdaa24b21
[ "MIT" ]
64
2017-04-14T15:04:24.000Z
2022-02-03T19:42:57.000Z
ugali/analysis/pipeline.py
kadrlica/ugali
dcf53594658a2b577f4da271783b43ed0a79fec9
[ "MIT" ]
12
2016-06-23T21:42:46.000Z
2021-06-19T05:29:49.000Z
#!/usr/bin/env python """ Base functionality for pipeline scripts """ import ugali.utils.batch from ugali.utils.parser import Parser from ugali.utils.logger import logger from ugali.utils.config import Config class Pipeline(object): """ A pipeline script owns: - A set of command line arguments - A set of runtime components """ defaults = None def __init__(self, description=__doc__, components=[]): self.description = description self.components = components if not self.defaults: self.defaults = self.components self._setup_parser() def _setup_parser(self): self.parser = Parser(description=self.description) self.parser.add_config() self.parser.add_debug() self.parser.add_force() self.parser.add_queue() self.parser.add_run(choices=self.components) self.parser.add_verbose() self.parser.add_version() def parse_args(self): self.opts = self.parser.parse_args() if not self.opts.run: self.opts.run = self.defaults self.config = Config(self.opts.config) # Setup the batch system #kwargs = self.config['batch'].get(self.opts.queue,dict()) self.batch = ugali.utils.batch.batch_factory(self.opts.queue) def run(self): logger.warning("Doing nothing...") return def execute(self): ret = self.run() logger.info("Done.") return ret if __name__ == "__main__": description = "Pipeline test" components = ['test'] def run(self): logger.info("Testing pipeline...") if 'test' in self.opts.run: logger.info(" This should run.") if 'foo' in self.opts.run: logger.error(" This should NOT run") raise Exception Pipeline.run = run pipeline = Pipeline(description,components) pipeline.parser.print_help() pipeline.parse_args() pipeline.execute()
27.763889
69
0.624812
79437b40f20170296113ffbe7df62bc10bfd99e4
2,160
py
Python
BOT.py
GoodDalek/BOTDiscord-Jogo-de-escolhas
91199b4ae75f1953ebf1028a002bcc6dcec79b20
[ "MIT" ]
null
null
null
BOT.py
GoodDalek/BOTDiscord-Jogo-de-escolhas
91199b4ae75f1953ebf1028a002bcc6dcec79b20
[ "MIT" ]
null
null
null
BOT.py
GoodDalek/BOTDiscord-Jogo-de-escolhas
91199b4ae75f1953ebf1028a002bcc6dcec79b20
[ "MIT" ]
null
null
null
######################################################################################################################## # BOT DE ADVENTURE GAME PARA DISCORD COM DISCORD.PY # ######################################################################################################################## #Usar python 3.6 ou inferior - incompatibilidade com python 3.7. #Inompatibilidade com rewrite usado o async. #Ultima modificação: 23/09/2018. import discord #API do discord. import chave #Função que retorna o token do bot. import asyncio import random TOKEN = chave.token() #Chama a funçao que tem o token e armazena o resultado na variavel. client = discord.Client() #Importa o metodo Client da api do discord e atribui o nome "client". #Colocar as variaveis e funções aqui - elas serao chamadas dependendo do que o usuario diigitar historia ="""Aqui voce coloca o bloco de historia do seu jogo""" #nomei a variavel como quiser mas evite nomes iguais inicio ="""Deseja começar o jogo: !Sim !Não""" #Lembre-se de dar alternativas para que possam chamar outro bloco #Colocar aqui as funções do bot. @client.event #chama os eventos gerados pelo usuario. async def on_ready(): #funçao propria da API - Gera alteraçoes no back end. print('BOT ONLINE') #imprime uma mensagem de confirmaçao para o bot. @client.event async def on_message(message): #funçao propria da API - Gera alteraçoes no servidor do usuario. if message.content.lower().startswith('!jogar'): #Checa a entrada do usuario deu e faz um tratamento de erro await client.send_message(message.channel, inicio) #Envia uma resposta ao usuario - neste caso uma variavel if message.content.lower().startswith('!sim'): await client.send_message(message.channel, historia) client.run(TOKEN) #inicia o bot e passa como paramentro o token do bot. ########################################################################################################################
42.352941
122
0.556944
79437b528788810f0366e538c931dddf3b6380e8
5,186
py
Python
build/X86_MESI_Two_Level/python/m5/internal/param_SrcClockDomain.py
hoho20000000/gem5-fy
b59f6feed22896d6752331652c4d8a41a4ca4435
[ "BSD-3-Clause" ]
null
null
null
build/X86_MESI_Two_Level/python/m5/internal/param_SrcClockDomain.py
hoho20000000/gem5-fy
b59f6feed22896d6752331652c4d8a41a4ca4435
[ "BSD-3-Clause" ]
1
2020-08-20T05:53:30.000Z
2020-08-20T05:53:30.000Z
build/X86_MESI_Two_Level/python/m5/internal/param_SrcClockDomain.py
hoho20000000/gem5-fy
b59f6feed22896d6752331652c4d8a41a4ca4435
[ "BSD-3-Clause" ]
null
null
null
# This file was automatically generated by SWIG (http://www.swig.org). # Version 3.0.12 # # Do not make changes to this file unless you know what you are doing--modify # the SWIG interface file instead. from sys import version_info as _swig_python_version_info if _swig_python_version_info >= (2, 7, 0): def swig_import_helper(): import importlib pkg = __name__.rpartition('.')[0] mname = '.'.join((pkg, '_param_SrcClockDomain')).lstrip('.') try: return importlib.import_module(mname) except ImportError: return importlib.import_module('_param_SrcClockDomain') _param_SrcClockDomain = swig_import_helper() del swig_import_helper elif _swig_python_version_info >= (2, 6, 0): def swig_import_helper(): from os.path import dirname import imp fp = None try: fp, pathname, description = imp.find_module('_param_SrcClockDomain', [dirname(__file__)]) except ImportError: import _param_SrcClockDomain return _param_SrcClockDomain try: _mod = imp.load_module('_param_SrcClockDomain', fp, pathname, description) finally: if fp is not None: fp.close() return _mod _param_SrcClockDomain = swig_import_helper() del swig_import_helper else: import _param_SrcClockDomain del _swig_python_version_info try: _swig_property = property except NameError: pass # Python < 2.2 doesn't have 'property'. try: import builtins as __builtin__ except ImportError: import __builtin__ def _swig_setattr_nondynamic(self, class_type, name, value, static=1): if (name == "thisown"): return self.this.own(value) if (name == "this"): if type(value).__name__ == 'SwigPyObject': self.__dict__[name] = value return method = class_type.__swig_setmethods__.get(name, None) if method: return method(self, value) if (not static): object.__setattr__(self, name, value) else: raise AttributeError("You cannot add attributes to %s" % self) def _swig_setattr(self, class_type, name, value): return _swig_setattr_nondynamic(self, class_type, name, value, 0) def _swig_getattr(self, class_type, name): if (name == "thisown"): return self.this.own() method = class_type.__swig_getmethods__.get(name, None) if method: return method(self) raise AttributeError("'%s' object has no attribute '%s'" % (class_type.__name__, name)) def _swig_repr(self): try: strthis = "proxy of " + self.this.__repr__() except __builtin__.Exception: strthis = "" return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,) def _swig_setattr_nondynamic_method(set): def set_attr(self, name, value): if (name == "thisown"): return self.this.own(value) if hasattr(self, name) or (name == "this"): set(self, name, value) else: raise AttributeError("You cannot add attributes to %s" % self) return set_attr import m5.internal.Clock_vector import m5.internal.param_VoltageDomain import m5.internal.Voltage_vector import m5.internal.param_SimObject import m5.internal.drain import m5.internal.serialize import m5.internal.param_ClockDomain class SrcClockDomain(m5.internal.param_ClockDomain.ClockDomain): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract") __repr__ = _swig_repr SrcClockDomain_swigregister = _param_SrcClockDomain.SrcClockDomain_swigregister SrcClockDomain_swigregister(SrcClockDomain) class SrcClockDomainParams(m5.internal.param_ClockDomain.ClockDomainParams): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def create(self): return _param_SrcClockDomain.SrcClockDomainParams_create(self) clock = _swig_property(_param_SrcClockDomain.SrcClockDomainParams_clock_get, _param_SrcClockDomain.SrcClockDomainParams_clock_set) domain_id = _swig_property(_param_SrcClockDomain.SrcClockDomainParams_domain_id_get, _param_SrcClockDomain.SrcClockDomainParams_domain_id_set) init_perf_level = _swig_property(_param_SrcClockDomain.SrcClockDomainParams_init_perf_level_get, _param_SrcClockDomain.SrcClockDomainParams_init_perf_level_set) voltage_domain = _swig_property(_param_SrcClockDomain.SrcClockDomainParams_voltage_domain_get, _param_SrcClockDomain.SrcClockDomainParams_voltage_domain_set) def __init__(self): this = _param_SrcClockDomain.new_SrcClockDomainParams() try: self.this.append(this) except __builtin__.Exception: self.this = this __swig_destroy__ = _param_SrcClockDomain.delete_SrcClockDomainParams __del__ = lambda self: None SrcClockDomainParams_swigregister = _param_SrcClockDomain.SrcClockDomainParams_swigregister SrcClockDomainParams_swigregister(SrcClockDomainParams)
37.309353
164
0.71828
79437bcd9b3988078b9b47ff92c7e7159dfb4f65
27,654
py
Python
salt/modules/win_update.py
tschmittni/salt
ccfcd5ed1272576799797ec7f259b676fd130585
[ "Apache-2.0" ]
2
2018-11-08T02:59:24.000Z
2021-01-04T00:30:50.000Z
salt/modules/win_update.py
The-Loeki/salt
8ff8212cc1eacfe409eb9cc017b21250f28dd305
[ "Apache-2.0" ]
4
2020-09-04T10:19:34.000Z
2020-11-09T12:55:59.000Z
salt/modules/win_update.py
The-Loeki/salt
8ff8212cc1eacfe409eb9cc017b21250f28dd305
[ "Apache-2.0" ]
5
2017-06-16T23:48:13.000Z
2021-04-08T17:43:48.000Z
# -*- coding: utf-8 -*- ''' Module for running windows updates. This module is being deprecated and will be removed in Salt Fluorine. Please use the ``win_wua`` module instead. :depends: - win32com - win32con - win32api - pywintypes .. versionadded:: 2014.7.0 Set windows updates to run by category. Default behavior is to install all updates that do not require user interaction to complete. Optionally set ``categories`` to a category of your choice to only install certain updates. Default is to set to install all available but driver updates. The following example will install all Security and Critical Updates, and download but not install standard updates. .. code-block:: bash salt '*' win_update.install_updates categories="['Critical Updates', 'Security Updates']" You can also specify a number of features about the update to have a fine grain approach to specific types of updates. These are the following features/states of updates available for configuring: .. code-block:: text 'UI' - User interaction required, skipped by default 'downloaded' - Already downloaded, included by default 'present' - Present on computer, included by default 'installed' - Already installed, skipped by default 'reboot' - Reboot required, included by default 'hidden' - Skip hidden updates, skipped by default 'software' - Software updates, included by default 'driver' - Driver updates, included by default The following example installs all updates that don't require a reboot: .. code-block:: bash salt '*' win_update.install_updates skips="[{'reboot':True}]" Once installed Salt will return a similar output: .. code-block:: bash 2 : Windows Server 2012 Update (KB123456) 4 : Internet Explorer Security Update (KB098765) 2 : Malware Definition Update (KB321456) ... The number at the beginning of the line is an OperationResultCode from the Windows Update Agent, it's enumeration is described here: https://msdn.microsoft.com/en-us/library/windows/desktop/aa387095(v=vs.85).aspx. The result code is then followed by the update name and its KB identifier. ''' # pylint: disable=invalid-name,missing-docstring # Import Python libs from __future__ import absolute_import, unicode_literals, print_function import logging # Import 3rd-party libs # pylint: disable=import-error from salt.ext import six from salt.ext.six.moves import range # pylint: disable=no-name-in-module,redefined-builtin try: import win32com.client import pythoncom HAS_DEPENDENCIES = True except ImportError: HAS_DEPENDENCIES = False # pylint: enable=import-error # Import Salt libs import salt.utils.platform import salt.utils.locales import salt.utils.versions log = logging.getLogger(__name__) def __virtual__(): ''' Only works on Windows systems ''' if salt.utils.platform.is_windows() and HAS_DEPENDENCIES: salt.utils.versions.warn_until( 'Fluorine', 'The \'win_update\' module is being deprecated and will be removed ' 'in Salt {version}. Please use the \'win_wua\' module instead.' ) return True return (False, "Module win_update: module has failed dependencies or is not on Windows client") def _gather_update_categories(updateCollection): ''' this is a convenience method to gather what categories of updates are available in any update collection it is passed. Typically though, the download_collection. Some known categories: Updates Windows 7 Critical Updates Security Updates Update Rollups ''' categories = [] for i in range(updateCollection.Count): update = updateCollection.Item(i) for j in range(update.Categories.Count): name = update.Categories.Item(j).Name if name not in categories: log.debug('found category: %s', name) categories.append(name) return categories class PyWinUpdater(object): def __init__(self, categories=None, skipUI=True, skipDownloaded=False, skipInstalled=True, skipReboot=False, skipPresent=False, skipSoftwareUpdates=False, skipDriverUpdates=False, skipHidden=True): log.debug('CoInitializing the pycom system') pythoncom.CoInitialize() self.skipUI = skipUI self.skipDownloaded = skipDownloaded self.skipInstalled = skipInstalled self.skipReboot = skipReboot self.skipPresent = skipPresent self.skipHidden = skipHidden self.skipSoftwareUpdates = skipSoftwareUpdates self.skipDriverUpdates = skipDriverUpdates # the list of categories that the user wants to be searched for. self.categories = categories # the list of categories that are present in the updates found. self.foundCategories = [] # careful not to get those two confused. log.debug('dispatching update_session to keep the session object.') self.update_session = win32com.client.Dispatch('Microsoft.Update.Session') log.debug('update_session got. Now creating a win_searcher to seek out the updates') self.win_searcher = self.update_session.CreateUpdateSearcher() # list of updates that are applicable by current settings. self.download_collection = win32com.client.Dispatch('Microsoft.Update.UpdateColl') # list of updates to be installed. self.install_collection = win32com.client.Dispatch('Microsoft.Update.UpdateColl') # the object responsible for fetching the actual downloads. self.win_downloader = self.update_session.CreateUpdateDownloader() self.win_downloader.Updates = self.download_collection # the object responsible for the installing of the updates. self.win_installer = self.update_session.CreateUpdateInstaller() self.win_installer.Updates = self.install_collection # the results of the download process self.download_results = None # the results of the installation process self.install_results = None # search results from CreateUpdateSearcher() self.search_results = None def Search(self, searchString): try: log.debug('beginning search of the passed string: %s', searchString) self.search_results = self.win_searcher.Search(searchString) log.debug('search completed successfully.') except Exception as exc: log.info('search for updates failed. %s', exc) return exc log.debug('parsing results. %s updates were found.', self.search_results.Updates.Count) try: # step through the list of the updates to ensure that the updates match the # features desired. for update in self.search_results.Updates: # this skipps an update if UI updates are not desired. if update.InstallationBehavior.CanRequestUserInput: log.debug(U'Skipped update {0} - requests user input'.format(update.title)) continue # if this update is already downloaded, it doesn't need to be in # the download_collection. so skipping it unless the user mandates re-download. if self.skipDownloaded and update.IsDownloaded: log.debug( 'Skipped update %s - already downloaded', update.title ) continue # check this update's categories against the ones desired. for category in update.Categories: # this is a zero guard. these tests have to be in this order # or it will error out when the user tries to search for # updates with out specifying categories. if self.categories is None or category.Name in self.categories: # adds it to the list to be downloaded. self.download_collection.Add(update) log.debug('added update %s', update.title) # ever update has 2 categories. this prevents the # from being added twice. break log.debug('download_collection made. gathering found categories.') # gets the categories of the updates available in this collection of updates self.foundCategories = _gather_update_categories(self.download_collection) log.debug('found categories: %s', six.text_type(self.foundCategories)) return True except Exception as exc: log.info('parsing updates failed. %s', exc) return exc def AutoSearch(self): ''' this function generates a search string. simplifying the search function while still providing as many features as possible. ''' search_string = '' searchParams = [] if self.skipInstalled: searchParams.append('IsInstalled=0') else: searchParams.append('IsInstalled=1') if self.skipHidden: searchParams.append('IsHidden=0') else: searchParams.append('IsHidden=1') if self.skipReboot: searchParams.append('RebootRequired=0') else: searchParams.append('RebootRequired=1') if self.skipPresent: searchParams.append('IsPresent=0') else: searchParams.append('IsPresent=1') for i in searchParams: search_string += '{0} and '.format(i) if not self.skipSoftwareUpdates and not self.skipDriverUpdates: search_string += 'Type=\'Software\' or Type=\'Driver\'' elif not self.skipSoftwareUpdates: search_string += 'Type=\'Software\'' elif not self.skipDriverUpdates: search_string += 'Type=\'Driver\'' else: return False # if there is no type, the is nothing to search. log.debug('generated search string: %s', search_string) return self.Search(search_string) def Download(self): # chase the download_collection! do the actual download process. try: # if the download_collection is empty. no need to download things. if self.download_collection.Count != 0: self.download_results = self.win_downloader.Download() else: log.debug('Skipped downloading, all updates were already cached.') return True except Exception as exc: log.debug('failed in the downloading %s.', exc) return exc def Install(self): # beat those updates into place! try: # this does not draw from the download_collection. important thing to know. # the blugger is created regardless of what the download_collection has done. but it # will only download those updates which have been downloaded and are ready. for update in self.search_results.Updates: if update.IsDownloaded: self.install_collection.Add(update) log.debug('Updates prepared. beginning installation') except Exception as exc: log.info('Preparing install list failed: %s', exc) return exc # accept eula if not accepted try: for update in self.search_results.Updates: if not update.EulaAccepted: log.debug('Accepting EULA: %s', update.Title) update.AcceptEula() except Exception as exc: log.info('Accepting Eula failed: %s', exc) return exc # if the blugger is empty. no point it starting the install process. if self.install_collection.Count != 0: log.debug('Install list created, about to install') try: # the call to install. self.install_results = self.win_installer.Install() log.info('Installation of updates complete') return True except Exception as exc: log.info('Installation failed: %s', exc) return exc else: log.info('no new updates.') return True def GetInstallationResults(self): ''' this gets results of installation process. ''' # if the blugger is empty, the results are nil. log.debug('blugger has {0} updates in it'.format(self.install_collection.Count)) if self.install_collection.Count == 0: return {} updates = [] log.debug('repairing update list') for i in range(self.install_collection.Count): # this gets the result from install_results, but the title comes from the update # collection install_collection. updates.append('{0}: {1}'.format( self.install_results.GetUpdateResult(i).ResultCode, self.install_collection.Item(i).Title)) log.debug('Update results enumerated, now making a library to pass back') results = {} # translates the list of update results into a library that salt expects. for i, update in enumerate(updates): results['update {0}'.format(i)] = update log.debug('Update information complied. returning') return results def GetInstallationResultsPretty(self): ''' converts the installation results into a pretty print. ''' updates = self.GetInstallationResults() ret = 'The following are the updates and their return codes.\n' for i in updates: ret += '\t{0}\n'.format(updates[i]) return ret def GetDownloadResults(self): updates = [] for i in range(self.download_collection.Count): updates.append('{0}: {1}'.format( six.text_type(self.download_results.GetUpdateResult(i).ResultCode), six.text_type(self.download_collection.Item(i).Title))) results = {} for i, update in enumerate(updates): results['update {0}'.format(i)] = update return results def GetSearchResultsVerbose(self): updates = [] log.debug('parsing results. %s updates were found.', self.download_collection.count) for update in self.download_collection: if update.InstallationBehavior.CanRequestUserInput: log.debug('Skipped update %s', update.title) continue # More fields can be added from https://msdn.microsoft.com/en-us/library/windows/desktop/aa386099(v=vs.85).aspx update_com_fields = ['Categories', 'Deadline', 'Description', 'Identity', 'IsMandatory', 'KBArticleIDs', 'MaxDownloadSize', 'MinDownloadSize', 'MoreInfoUrls', 'MsrcSeverity', 'ReleaseNotes', 'SecurityBulletinIDs', 'SupportUrl', 'Title'] simple_enums = ['KBArticleIDs', 'MoreInfoUrls', 'SecurityBulletinIDs'] # update_dict = {k: getattr(update, k) for k in update_com_fields} update_dict = {} for f in update_com_fields: v = getattr(update, f) if not any([isinstance(v, bool), isinstance(v, six.string_types)]): # Fields that require special evaluation. if f in simple_enums: v = [x for x in v] elif f == 'Categories': v = [{'Name': cat.Name, 'Description': cat.Description} for cat in v] elif f == 'Deadline': # Deadline will be useful and should be added. # However, until it can be tested with a date object # as returned by the COM, it is unclear how to # handle this field. continue elif f == 'Identity': v = {'RevisionNumber': v.RevisionNumber, 'UpdateID': v.UpdateID} update_dict[f] = v updates.append(update_dict) log.debug('added update %s', update.title) return updates def GetSearchResults(self, fields=None): """Reduce full updates information to the most important information.""" updates_verbose = self.GetSearchResultsVerbose() if fields is not None: updates = [dict((k, v) for k, v in update.items() if k in fields) for update in updates_verbose] return updates # Return list of titles. return [update['Title'] for update in updates_verbose] def SetCategories(self, categories): self.categories = categories def GetCategories(self): return self.categories def GetAvailableCategories(self): return self.foundCategories def SetSkips(self, skips): if skips: for i in skips: value = i[next(six.iterkeys(i))] skip = next(six.iterkeys(i)) self.SetSkip(skip, value) log.debug('was asked to set %s to %s', skip, value) def SetSkip(self, skip, state): if skip == 'UI': self.skipUI = state elif skip == 'downloaded': self.skipDownloaded = state elif skip == 'installed': self.skipInstalled = state elif skip == 'reboot': self.skipReboot = state elif skip == 'present': self.skipPresent = state elif skip == 'hidden': self.skipHidden = state elif skip == 'software': self.skipSoftwareUpdates = state elif skip == 'driver': self.skipDriverUpdates = state log.debug('new search state: \n\tUI: %s\n\tDownload: %s\n\tInstalled: %s\n\treboot :%s\n\tPresent: %s\n\thidden: %s\n\tsoftware: %s\n\tdriver: %s', self.skipUI, self.skipDownloaded, self.skipInstalled, self.skipReboot, self.skipPresent, self.skipHidden, self.skipSoftwareUpdates, self.skipDriverUpdates) def __str__(self): results = 'There are {0} updates, by category there are:\n'.format( self.download_collection.count) for category in self.foundCategories: count = 0 for update in self.download_collection: for cat in update.Categories: if category == cat.Name: count += 1 results += '\t{0}: {1}\n'.format(category, count) return results def _search(quidditch, retries=5): ''' a wrapper method for the pywinupdater class. I might move this into the class, but right now, that is to much for one class I think. ''' passed = False clean = True comment = '' while not passed: log.debug('Searching. tries left: %s', retries) # let the updater make its own search string. MORE POWER this way. passed = quidditch.AutoSearch() log.debug('Done searching: %s', passed) if isinstance(passed, Exception): clean = False comment += 'Failed in the seeking/parsing process:\n\t\t{0}\n'.format(passed) retries -= 1 if retries: comment += '{0} tries to go. retrying\n'.format(str(retries)) else: comment += 'out of retries. this update round failed.\n' return (comment, True, retries) passed = False if clean: # bragging rights. comment += 'Search was done without error.\n' return (comment, True, retries) def _download(quidditch, retries=5): ''' another wrapper method. ''' passed = False clean = True comment = '' while not passed: log.debug('Downloading. tries left: %s', retries) passed = quidditch.Download() log.debug('Done downloading: %s', passed) if isinstance(passed, Exception): clean = False comment += 'Failed while trying to download updates:\n\t\t{0}\n'.format(str(passed)) retries -= 1 if retries: comment += '{0} tries to go. retrying\n'.format(str(retries)) passed = False else: comment += 'out of retries. this update round failed.\n' return (comment, False, retries) if clean: comment += 'Download was done without error.\n' return (comment, True, retries) def _install(quidditch, retries=5): ''' and the last wrapper method. keeping things simple. ''' passed = False clean = True comment = '' while not passed: log.debug('download_collection is this long: %s', quidditch.install_collection.Count) log.debug('Installing. tries left: %s', retries) passed = quidditch.Install() log.info('Done installing: %s', passed) if isinstance(passed, Exception): clean = False comment += 'Failed while trying to install the updates.\n\t\t{0}\n'.format(str(passed)) retries -= 1 if retries: comment += '{0} tries to go. retrying\n'.format(str(retries)) passed = False else: comment += 'out of retries. this update round failed.\n' return (comment, False, retries) if clean: comment += 'Install was done without error.\n' return (comment, True, retries) # this is where the actual functions available to salt begin. def list_updates(verbose=False, fields=None, skips=None, retries=5, categories=None): ''' Returns a summary of available updates, grouped into their non-mutually exclusive categories. verbose Return full set of results, including several fields from the COM. fields Return a list of specific fields for each update. The optional values here are those at the root level of the verbose list. This is superseded by the verbose option. retries Number of retries to make before giving up. This is total, not per step. categories Specify the categories to list. Must be passed as a list. .. code-block:: bash salt '*' win_update.list_updates categories="['Updates']" Categories include, but are not limited to, the following: * Updates * Windows 7 * Critical Updates * Security Updates * Update Rollups CLI Examples: .. code-block:: bash # Normal Usage salt '*' win_update.list_updates # Specific Fields salt '*' win_update.list_updates fields="['Title', 'Description']" # List all critical updates list in verbose detail salt '*' win_update.list_updates categories="['Critical Updates']" verbose=True ''' log.debug('categories to search for are: %s', categories) updates = PyWinUpdater() if categories: updates.SetCategories(categories) updates.SetSkips(skips) # this is where we be seeking the things! yar! comment, passed, retries = _search(updates, retries) if not passed: return (comment, str(passed)) log.debug('verbose: %s', verbose) if verbose: return updates.GetSearchResultsVerbose() return updates.GetSearchResults(fields=fields) def download_updates(skips=None, retries=5, categories=None): ''' Downloads all available updates, skipping those that require user interaction. Various aspects of the updates can be included or excluded. this feature is still in development. retries Number of retries to make before giving up. This is total, not per step. categories Specify the categories to update. Must be passed as a list. .. code-block:: bash salt '*' win_update.download_updates categories="['Updates']" Categories include the following: * Updates * Windows 7 * Critical Updates * Security Updates * Update Rollups CLI Examples: .. code-block:: bash # Normal Usage salt '*' win_update.download_updates # Download critical updates only salt '*' win_update.download_updates categories="['Critical Updates']" ''' log.debug('categories to search for are: %s', categories) quidditch = PyWinUpdater(skipDownloaded=True) quidditch.SetCategories(categories) quidditch.SetSkips(skips) # this is where we be seeking the things! yar! comment, passed, retries = _search(quidditch, retries) if not passed: return (comment, str(passed)) # this is where we get all the things! i.e. download updates. comment, passed, retries = _download(quidditch, retries) if not passed: return (comment, str(passed)) try: comment = quidditch.GetDownloadResults() except Exception as exc: comment = 'could not get results, but updates were installed. {0}'.format(exc) return 'Windows is up to date. \n{0}'.format(comment) def install_updates(skips=None, retries=5, categories=None): ''' Downloads and installs all available updates, skipping those that require user interaction. Add ``cached`` to only install those updates which have already been downloaded. you can set the maximum number of retries to ``n`` in the search process by adding: ``retries=n`` various aspects of the updates can be included or excluded. This function is still under development. retries Number of retries to make before giving up. This is total, not per step. categories Specify the categories to install. Must be passed as a list. .. code-block:: bash salt '*' win_update.install_updates categories="['Updates']" Categories include the following: * Updates * Windows 7 * Critical Updates * Security Updates * Update Rollups CLI Examples: .. code-block:: bash # Normal Usage salt '*' win_update.install_updates # Install all critical updates salt '*' win_update.install_updates categories="['Critical Updates']" ''' log.debug('categories to search for are: %s', categories) quidditch = PyWinUpdater() quidditch.SetCategories(categories) quidditch.SetSkips(skips) # this is where we be seeking the things! yar! comment, passed, retries = _search(quidditch, retries) if not passed: return (comment, str(passed)) # this is where we get all the things! i.e. download updates. comment, passed, retries = _download(quidditch, retries) if not passed: return (comment, str(passed)) # this is where we put things in their place! comment, passed, retries = _install(quidditch, retries) if not passed: return (comment, str(passed)) try: comment = quidditch.GetInstallationResultsPretty() except Exception as exc: comment = 'Could not get results, but updates were installed. {0}'.format(exc) return 'Windows is up to date. \n{0}'.format(comment)
36.7251
155
0.618898
79437c420094127c5b84b9c82a8f30b8f1e0ccf1
337
py
Python
invoice/migrations/0002_remove_invoice_due_days.py
kaviarasanmani/test123-
3995a28826edca5d2694a44c5295af9031780396
[ "MIT" ]
null
null
null
invoice/migrations/0002_remove_invoice_due_days.py
kaviarasanmani/test123-
3995a28826edca5d2694a44c5295af9031780396
[ "MIT" ]
null
null
null
invoice/migrations/0002_remove_invoice_due_days.py
kaviarasanmani/test123-
3995a28826edca5d2694a44c5295af9031780396
[ "MIT" ]
null
null
null
# Generated by Django 4.0.1 on 2022-02-16 07:31 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('invoice', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='invoice', name='due_days', ), ]
18.722222
48
0.551929
79437c6dd27ce024cff688b9354d43357225f2b0
2,846
py
Python
tests/test_units/test_templating.py
KinSai1975/Menira.py
ca275ce244ee4804444e1827ba60010a55acc07c
[ "BSD-3-Clause" ]
118
2015-01-04T06:55:14.000Z
2022-01-14T08:32:41.000Z
tests/test_units/test_templating.py
KinSai1975/Menira.py
ca275ce244ee4804444e1827ba60010a55acc07c
[ "BSD-3-Clause" ]
21
2015-01-03T02:16:28.000Z
2021-03-24T06:10:57.000Z
tests/test_units/test_templating.py
KinSai1975/Menira.py
ca275ce244ee4804444e1827ba60010a55acc07c
[ "BSD-3-Clause" ]
53
2015-01-04T03:21:08.000Z
2021-08-04T20:52:01.000Z
import os import re import sys from beaker.cache import CacheManager from beaker.middleware import SessionMiddleware, CacheMiddleware from mako.lookup import TemplateLookup from nose.tools import raises from paste.fixture import TestApp from paste.registry import RegistryManager from paste.deploy.converters import asbool from routes import Mapper from routes.middleware import RoutesMiddleware from nose.tools import raises from __init__ import test_root def make_app(global_conf, full_stack=True, static_files=True, include_cache_middleware=False, attribsafe=False, **app_conf): import pylons import pylons.configuration as configuration from pylons import url from pylons.decorators import jsonify from pylons.middleware import ErrorHandler, StatusCodeRedirect from pylons.error import handle_mako_error from pylons.wsgiapp import PylonsApp root = os.path.dirname(os.path.abspath(__file__)) paths = dict(root=os.path.join(test_root, 'sample_controllers'), controllers=os.path.join(test_root, 'sample_controllers', 'controllers'), templates=os.path.join(test_root, 'sample_controllers', 'templates')) sys.path.append(test_root) config = configuration.PylonsConfig() config.init_app(global_conf, app_conf, package='sample_controllers', paths=paths) map = Mapper(directory=config['pylons.paths']['controllers']) map.connect('/{controller}/{action}') config['routes.map'] = map class AppGlobals(object): pass config['pylons.app_globals'] = AppGlobals() config['pylons.app_globals'].mako_lookup = TemplateLookup( directories=paths['templates'], imports=['from markupsafe import escape'] ) if attribsafe: config['pylons.strict_tmpl_context'] = False app = PylonsApp(config=config) app = RoutesMiddleware(app, config['routes.map'], singleton=False) if include_cache_middleware: app = CacheMiddleware(app, config) app = SessionMiddleware(app, config) if asbool(full_stack): app = ErrorHandler(app, global_conf, **config['pylons.errorware']) if asbool(config['debug']): app = StatusCodeRedirect(app) else: app = StatusCodeRedirect(app, [401, 403, 404, 500]) app = RegistryManager(app) app.config = config return app class TestTemplatingApp(object): def setUp(self): self.app = TestApp(make_app({'cache_dir': os.path.join(os.path.dirname(__file__), 'cache')}, include_cache_middleware=True)) def test_testvars(self): resp = self.app.get('/hello/intro_template') assert 'Hi there 6' in resp def test_template_cache(self): resp = self.app.get('/hello/time_template') resp2 = self.app.get('/hello/time_template') assert resp.body == resp2.body
35.135802
142
0.71293
79437d1aac83d1a8f6ea1ecbe13078296f917e31
327
py
Python
setup.py
mumrah/cloudcache
f11422c338070c9b212c82d83f46f8e501f8e8a7
[ "MIT" ]
1
2021-11-15T09:39:25.000Z
2021-11-15T09:39:25.000Z
setup.py
mumrah/cloudcache
f11422c338070c9b212c82d83f46f8e501f8e8a7
[ "MIT" ]
4
2016-04-13T15:21:24.000Z
2016-04-13T15:24:30.000Z
setup.py
mumrah/cloudcache
f11422c338070c9b212c82d83f46f8e501f8e8a7
[ "MIT" ]
null
null
null
from setuptools import setup,find_packages setup ( name = 'CloudCached', version = '0.1', install_requires = {'Boto':'boto>=1.8','Nose':'nose>=0.11'}, packages = find_packages(), tests_require = {'Nose':'nose>=0.1'}, test_suite = "nose.collector", author = 'David Arthur', author_email = '[email protected]', )
25.153846
62
0.654434
79437d3f9400627008f93abce47ffda936af4563
7,284
py
Python
grr/server/grr_response_server/timeseries.py
BA7JCM/grr
c6f3b19e73e1d76a195d3c9a63e894ace6ea2508
[ "Apache-2.0" ]
null
null
null
grr/server/grr_response_server/timeseries.py
BA7JCM/grr
c6f3b19e73e1d76a195d3c9a63e894ace6ea2508
[ "Apache-2.0" ]
null
null
null
grr/server/grr_response_server/timeseries.py
BA7JCM/grr
c6f3b19e73e1d76a195d3c9a63e894ace6ea2508
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python """Operations on a series of points, indexed by time. """ import copy from grr_response_core.lib import rdfvalue NORMALIZE_MODE_GAUGE = 1 NORMALIZE_MODE_COUNTER = 2 class Timeseries(object): """Timeseries contains a sequence of points, each with a timestamp.""" def __init__(self, initializer=None): """Create a timeseries with an optional initializer. Args: initializer: An optional Timeseries to clone. Raises: RuntimeError: If initializer is not understood. """ if initializer is None: self.data = [] return if isinstance(initializer, Timeseries): self.data = copy.deepcopy(initializer.data) return raise RuntimeError("Unrecognized initializer.") def _NormalizeTime(self, time): """Normalize a time to be an int measured in microseconds.""" if isinstance(time, rdfvalue.RDFDatetime): return time.AsMicrosecondsSinceEpoch() if isinstance(time, rdfvalue.Duration): return time.microseconds return int(time) def Append(self, value, timestamp): """Adds value at timestamp. Values must be added in order of increasing timestamp. Args: value: An observed value. timestamp: The timestamp at which value was observed. Raises: RuntimeError: If timestamp is smaller than the previous timstamp. """ timestamp = self._NormalizeTime(timestamp) if self.data and timestamp < self.data[-1][1]: raise RuntimeError("Next timestamp must be larger.") self.data.append([value, timestamp]) def MultiAppend(self, value_timestamp_pairs): """Adds multiple value<->timestamp pairs. Args: value_timestamp_pairs: Tuples of (value, timestamp). """ for value, timestamp in value_timestamp_pairs: self.Append(value, timestamp) def FilterRange(self, start_time=None, stop_time=None): """Filter the series to lie between start_time and stop_time. Removes all values of the series which are outside of some time range. Args: start_time: If set, timestamps before start_time will be dropped. stop_time: If set, timestamps at or past stop_time will be dropped. """ start_time = self._NormalizeTime(start_time) stop_time = self._NormalizeTime(stop_time) self.data = [ p for p in self.data if (start_time is None or p[1] >= start_time) and (stop_time is None or p[1] < stop_time) ] def Normalize(self, period, start_time, stop_time, mode=NORMALIZE_MODE_GAUGE): """Normalize the series to have a fixed period over a fixed time range. Supports two modes, depending on the type of data: NORMALIZE_MODE_GAUGE: support gauge values. If multiple original data points lie within an output interval, the output value is an average of the original data point. if no original data points lie within an output interval, the output value is None. NORMALIZE_MODE_COUNTER: supports counter values. Assumes that the sequence is already increasing (typically, MakeIncreasing will have been called). Each output value is the largest value seen during or before the corresponding output interval. Args: period: The desired time between points. Should be an rdfvalue.Duration or a count of microseconds. start_time: The first timestamp will be at start_time. Should be an rdfvalue.RDFDatetime or a count of microseconds since epoch. stop_time: The last timestamp will be at stop_time - period. Should be an rdfvalue.RDFDatetime or a count of microseconds since epoch. mode: The type of normalization to perform. May be NORMALIZE_MODE_GAUGE or NORMALIZE_MODE_COUNTER. Raises: RuntimeError: In case the sequence timestamps are misordered. """ period = self._NormalizeTime(period) start_time = self._NormalizeTime(start_time) stop_time = self._NormalizeTime(stop_time) if not self.data: return self.FilterRange(start_time, stop_time) grouped = {} for value, timestamp in self.data: offset = timestamp - start_time shifted_offset = offset - (offset % period) grouped.setdefault(shifted_offset, []).append(value) self.data = [] last_value = None for offset in range(0, stop_time - start_time, period): g = grouped.get(offset) if mode == NORMALIZE_MODE_GAUGE: v = None if g: v = sum(g) / len(g) self.data.append([v, offset + start_time]) else: if g: for v in g: if last_value is not None and v < last_value: raise RuntimeError("Next value must not be smaller.") last_value = v self.data.append([last_value, offset + start_time]) def MakeIncreasing(self): """Makes the time series increasing. Assumes that series is based on a counter which is occasionally reset, and using this assumption converts the sequence to estimate the total number of counts which occurred. NOTE: Could give inaccurate numbers in either of the following cases: 1) Multiple resets occur between samples. 2) A reset is followed by a spike larger than the previous level. """ offset = 0 last_value = None for p in self.data: if last_value and last_value > p[0]: # Assume that it was only reset once. offset += last_value last_value = p[0] if offset: p[0] += offset def ToDeltas(self): """Convert the sequence to the sequence of differences between points. The value of each point v[i] is replaced by v[i+1] - v[i], except for the last point which is dropped. """ if len(self.data) < 2: self.data = [] return for i in range(0, len(self.data) - 1): if self.data[i][0] is None or self.data[i + 1][0] is None: self.data[i][0] = None else: self.data[i][0] = self.data[i + 1][0] - self.data[i][0] del self.data[-1] def Add(self, other): """Add other to self pointwise. Requires that both self and other are of the same length, and contain identical timestamps. Typically this means that Normalize has been called on both with identical time parameters. Args: other: The sequence to add to self. Raises: RuntimeError: other does not contain the same timestamps as self. """ if len(self.data) != len(other.data): raise RuntimeError("Can only add series of identical lengths.") for i in range(len(self.data)): if self.data[i][1] != other.data[i][1]: raise RuntimeError("Timestamp mismatch.") if self.data[i][0] is None and other.data[i][0] is None: continue self.data[i][0] = (self.data[i][0] or 0) + (other.data[i][0] or 0) def Rescale(self, multiplier): """Multiply pointwise by multiplier.""" for p in self.data: if p[0] is not None: p[0] *= multiplier def Mean(self): """Return the arithmetic mean of all values.""" values = [v for v, _ in self.data if v is not None] if not values: return None # TODO(hanuszczak): Why do we return a floored division result instead of # the exact value? return sum(values) // len(values)
32.230088
80
0.66804
79437e01cb5e0766fa805972b4bb57c9f142d8db
8,491
py
Python
var/spack/repos/builtin/packages/vtk-m/package.py
BetsyMcPhail/spack
42ed6e25e16099c866af90e6222f5283f25026ae
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
1
2021-02-08T15:05:27.000Z
2021-02-08T15:05:27.000Z
var/spack/repos/builtin/packages/vtk-m/package.py
gmt3141/spack
e05ac5c944e086ab558ad53ca929c29b1770a818
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
var/spack/repos/builtin/packages/vtk-m/package.py
gmt3141/spack
e05ac5c944e086ab558ad53ca929c29b1770a818
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * import os import sys class VtkM(CMakePackage, CudaPackage): """VTK-m is a toolkit of scientific visualization algorithms for emerging processor architectures. VTK-m supports the fine-grained concurrency for data analysis and visualization algorithms required to drive extreme scale computing by providing abstract models for data and execution that can be applied to a variety of algorithms across many different processor architectures.""" homepage = "https://m.vtk.org/" maintainers = ['robertmaynard', 'kmorel', 'vicentebolea'] url = "https://gitlab.kitware.com/vtk/vtk-m/-/archive/v1.5.1/vtk-m-v1.5.1.tar.gz" git = "https://gitlab.kitware.com/vtk/vtk-m.git" version('master', branch='master') version('1.5.1', sha256="64c19e66c0d579cfb21bb0df10d649b523b470b0c9a6c2ea5fd979dfeda2c25e") version('1.5.0', sha256="b1b13715c7fcc8d17f5c7166ff5b3e9025f6865dc33eb9b06a63471c21349aa8") version('1.4.0', sha256="8d83cca7cd5e204d10da151ce4f1846c1f7414c7c1e579173d15c5ea0631555a") version('1.3.0', sha256="f88c1b0a1980f695240eeed9bcccfa420cc089e631dc2917c9728a2eb906df2e") version('1.2.0', sha256="607272992e05f8398d196f0acdcb4af025a4a96cd4f66614c6341f31d4561763") version('1.1.0', sha256="78618c81ca741b1fbba0853cb5d7af12c51973b514c268fc96dfb36b853cdb18") # version used by ascent version('ascent_ver', commit="a3b8525ef97d94996ae843db0dd4f675c38e8b1e") # patches, required for ascent patch('vtkmdiy_fpic.patch', when='@ascent_ver') patch('disable_flying_edges.patch', when='@ascent_ver') # use release, instead of release with debug symbols b/c vtkm libs # can overwhelm compilers with too many symbols variant('build_type', default='Release', description='CMake build type', values=('Debug', 'Release', 'RelWithDebInfo', 'MinSizeRel')) variant("shared", default=False, description="build shared libs") variant("doubleprecision", default=True, description='enable double precision') variant("logging", default=False, description="build logging support") variant("mpi", default=False, description="build mpi support") variant("rendering", default=True, description="build rendering support") variant("64bitids", default=False, description="enable 64 bits ids") # Device variants variant("cuda", default=False, description="build cuda support") variant("openmp", default=(sys.platform != 'darwin'), description="build openmp support") variant("tbb", default=(sys.platform == 'darwin'), description="build TBB support") variant("hip", default=False, description="build hip support") # it doesn't look like spack has a amd gpu abstraction amdgpu_targets = ( 'gfx701', 'gfx801', 'gfx802', 'gfx803', 'gfx900', 'gfx906', 'gfx908', 'gfx1010', 'gfx1011', 'gfx1012' ) variant('amdgpu_target', default='none', multi=True, values=amdgpu_targets) conflicts("+hip", when="amdgpu_target=none") depends_on("[email protected]:", type="build") # CMake >= 3.12 depends_on("[email protected]:", when="+hip", type="build") # CMake >= 3.18 depends_on('[email protected]:', when='+cuda') depends_on("tbb", when="+tbb") depends_on("mpi", when="+mpi") depends_on("[email protected]:+hip", when="+hip") depends_on("[email protected]:", when="+hip") depends_on("[email protected]:", when="+hip") conflicts("+hip", when="+cuda") conflicts("~shared", when="~pic") def cmake_args(self): spec = self.spec options = [] gpu_name_table = {'30': 'kepler', '32': 'kepler', '35': 'kepler', '50': 'maxwell', '52': 'maxwell', '53': 'maxwell', '60': 'pascal', '61': 'pascal', '62': 'pascal', '70': 'volta', '72': 'turing', '75': 'turing', '80': 'ampere', '86': 'ampere'} with working_dir('spack-build', create=True): options = ["-DVTKm_ENABLE_TESTING:BOOL=OFF"] # shared vs static libs logic # force building statically with cuda if "+cuda" in spec: options.append('-DBUILD_SHARED_LIBS=OFF') else: if "+shared" in spec: options.append('-DBUILD_SHARED_LIBS=ON') else: options.append('-DBUILD_SHARED_LIBS=OFF') # double precision if "+doubleprecision" in spec: options.append("-DVTKm_USE_DOUBLE_PRECISION:BOOL=ON") else: options.append("-DVTKm_USE_DOUBLE_PRECISION:BOOL=OFF") # logging support if "+logging" in spec: if not spec.satisfies('@1.3.0:,ascent_ver'): raise InstallError('logging is not supported for\ vtkm version lower than 1.3') options.append("-DVTKm_ENABLE_LOGGING:BOOL=ON") else: options.append("-DVTKm_ENABLE_LOGGING:BOOL=OFF") # mpi support if "+mpi" in spec: if not spec.satisfies('@1.3.0:,ascent_ver'): raise InstallError('mpi is not supported for\ vtkm version lower than 1.3') options.append("-DVTKm_ENABLE_MPI:BOOL=ON") else: options.append("-DVTKm_ENABLE_MPI:BOOL=OFF") # rendering support if "+rendering" in spec: options.append("-DVTKm_ENABLE_RENDERING:BOOL=ON") else: options.append("-DVTKm_ENABLE_RENDERING:BOOL=OFF") # 64 bit ids if "+64bitids" in spec: options.append("-DVTKm_USE_64BIT_IDS:BOOL=ON") print("64 bit ids enabled") else: options.append("-DVTKm_USE_64BIT_IDS:BOOL=OFF") if spec.variants["build_type"].value != 'Release': options.append("-DVTKm_NO_ASSERT:BOOL=ON") # cuda support if "+cuda" in spec: options.append("-DVTKm_ENABLE_CUDA:BOOL=ON") options.append("-DCMAKE_CUDA_HOST_COMPILER={0}".format( env["SPACK_CXX"])) if 'cuda_arch' in spec.variants: cuda_value = spec.variants['cuda_arch'].value cuda_arch = cuda_value[0] if cuda_arch in gpu_name_table: vtkm_cuda_arch = gpu_name_table[cuda_arch] options.append('-DVTKm_CUDA_Architecture={0}'.format( vtkm_cuda_arch)) else: # this fix is necessary if compiling platform has cuda, but # no devices (this is common for front end nodes on hpc # clusters). We choose volta as a lowest common denominator options.append("-DVTKm_CUDA_Architecture=volta") else: options.append("-DVTKm_ENABLE_CUDA:BOOL=OFF") # hip support if "+hip" in spec: options.append("-DVTKm_ENABLE_HIP:BOOL=ON") archs = ",".join(self.spec.variants['amdgpu_target'].value) options.append( "-DCMAKE_HIP_ARCHITECTURES:STRING={0}".format(archs)) else: options.append("-DVTKm_ENABLE_HIP:BOOL=OFF") # openmp support if "+openmp" in spec: # openmp is added since version 1.3.0 if not spec.satisfies('@1.3.0:,ascent_ver'): raise InstallError('OpenMP is not supported for\ vtkm version lower than 1.3') options.append("-DVTKm_ENABLE_OPENMP:BOOL=ON") else: options.append("-DVTKm_ENABLE_OPENMP:BOOL=OFF") # tbb support if "+tbb" in spec: # vtk-m detectes tbb via TBB_ROOT env var os.environ["TBB_ROOT"] = spec["tbb"].prefix options.append("-DVTKm_ENABLE_TBB:BOOL=ON") else: options.append("-DVTKm_ENABLE_TBB:BOOL=OFF") return options
44.689474
95
0.589919
79437fb438922eee8a35a3da4888482710ed2633
2,435
py
Python
data/p4VQE/R4/benchmark/startQiskit_Class718.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p4VQE/R4/benchmark/startQiskit_Class718.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
data/p4VQE/R4/benchmark/startQiskit_Class718.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
# qubit number=3 # total number=13 import numpy as np from qiskit import QuantumCircuit, execute, Aer, QuantumRegister, ClassicalRegister, transpile, BasicAer, IBMQ import networkx as nx from qiskit.visualization import plot_histogram from typing import * from pprint import pprint from math import log2 from collections import Counter from qiskit.test.mock import FakeVigo, FakeYorktown kernel = 'circuit/bernstein' def make_circuit(n:int) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") prog = QuantumCircuit(input_qubit) prog.h(input_qubit[0]) # number=1 prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[2]) # number=3 prog.h(input_qubit[2]) # number=10 prog.cz(input_qubit[1],input_qubit[2]) # number=11 prog.h(input_qubit[2]) # number=12 prog.x(input_qubit[2]) # number=6 prog.y(input_qubit[3]) # number=5 for edge in E: k = edge[0] l = edge[1] prog.cp(-2 * gamma, input_qubit[k-1], input_qubit[l-1]) prog.p(gamma, k) prog.p(gamma, l) prog.rx(2 * beta, range(len(V))) prog.swap(input_qubit[1],input_qubit[0]) # number=8 # circuit end return prog if __name__ == '__main__': n = 4 V = np.arange(0, n, 1) E = [(0, 1, 1.0), (0, 2, 1.0), (1, 2, 1.0), (3, 2, 1.0), (3, 1, 1.0)] G = nx.Graph() G.add_nodes_from(V) G.add_weighted_edges_from(E) step_size = 0.1 a_gamma = np.arange(0, np.pi, step_size) a_beta = np.arange(0, np.pi, step_size) a_gamma, a_beta = np.meshgrid(a_gamma, a_beta) F1 = 3 - (np.sin(2 * a_beta) ** 2 * np.sin(2 * a_gamma) ** 2 - 0.5 * np.sin(4 * a_beta) * np.sin(4 * a_gamma)) * ( 1 + np.cos(4 * a_gamma) ** 2) result = np.where(F1 == np.amax(F1)) a = list(zip(result[0], result[1]))[0] gamma = a[0] * step_size beta = a[1] * step_size prog = make_circuit(4) sample_shot =5600 writefile = open("../data/startQiskit_Class718.csv", "w") # prog.draw('mpl', filename=(kernel + '.png')) backend = BasicAer.get_backend('statevector_simulator') circuit1 = transpile(prog, FakeYorktown()) prog = circuit1 info = execute(prog,backend=backend, shots=sample_shot).result().get_counts() print(info, file=writefile) print("results end", file=writefile) print(circuit1.depth(), file=writefile) print(circuit1, file=writefile) writefile.close()
27.359551
118
0.634908
7943814b3a25193766fc2d5ba6d81f51f2ef6298
203
py
Python
venmo_client/model/__init__.py
sharadmv/venmo-client
2b236053ab5f233645b0a64f5333a4e9723ebf30
[ "MIT" ]
null
null
null
venmo_client/model/__init__.py
sharadmv/venmo-client
2b236053ab5f233645b0a64f5333a4e9723ebf30
[ "MIT" ]
null
null
null
venmo_client/model/__init__.py
sharadmv/venmo-client
2b236053ab5f233645b0a64f5333a4e9723ebf30
[ "MIT" ]
null
null
null
from venmo_client.model.transaction import Notification from venmo_client.model.transaction import Transaction from venmo_client.model.transaction import Payment from venmo_client.model.user import User
40.6
55
0.881773
7943824d53294043734ffa67046f42136422c29f
1,361
py
Python
api/views/SaleItemViewSet.py
ghalonso94/wswallet
8f1f13a0d646166adad45b3872c2db6558d48f38
[ "MIT" ]
null
null
null
api/views/SaleItemViewSet.py
ghalonso94/wswallet
8f1f13a0d646166adad45b3872c2db6558d48f38
[ "MIT" ]
null
null
null
api/views/SaleItemViewSet.py
ghalonso94/wswallet
8f1f13a0d646166adad45b3872c2db6558d48f38
[ "MIT" ]
null
null
null
from rest_framework import viewsets from rest_framework.generics import get_object_or_404 from rest_framework.response import Response from core.models import SaleItem from api.serializer import SaleItemSerializer from rest_framework.authentication import BasicAuthentication from rest_framework.permissions import IsAuthenticated class SaleItemViewSet(viewsets.ModelViewSet): # Show all Customers serializer_class = SaleItemSerializer http_method_names = ['get'] authentication_classes = [BasicAuthentication] permission_classes = [IsAuthenticated] def list(self, request): """ Method for listing all sale items """ if request.user.is_staff: queryset = SaleItem.objects.all() else: queryset = SaleItem.objects.filter(sale__company__user__exact=request.user) serializer = SaleItemSerializer(queryset, many=True) return Response(serializer.data) def retrieve(self, request, pk=None): """ Method to recover a single sale item """ if request.user.is_staff: queryset = SaleItem.objects.all() else: queryset = SaleItem.objects.filter(sale__company__user__exact=request.user) cashback = get_object_or_404(queryset, pk=pk) serializer = SaleItemSerializer(cashback) return Response(serializer.data)
36.783784
87
0.728876
794382e928536c41b822332348976703fd1d2f36
14,017
py
Python
tests/test_canonicalization.py
cthoyt/pybel
ed66f013a77f9cbc513892b0dad1025b8f68bb46
[ "Apache-2.0" ]
null
null
null
tests/test_canonicalization.py
cthoyt/pybel
ed66f013a77f9cbc513892b0dad1025b8f68bb46
[ "Apache-2.0" ]
11
2017-12-28T08:03:14.000Z
2019-01-15T02:13:58.000Z
tests/test_canonicalization.py
cthoyt/pybel
ed66f013a77f9cbc513892b0dad1025b8f68bb46
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """Tests for canonicalization functions.""" import unittest from typing import Iterable from pybel import BELGraph from pybel.canonicalize import _to_bel_lines_body, postpend_location from pybel.constants import CITATION_TYPE_PUBMED, EXTRACELLULAR, INTRACELLULAR, MODIFIER from pybel.dsl import ( Abundance, BiologicalProcess, ComplexAbundance, CompositeAbundance, EnumeratedFusionRange, Fragment, Gene, GeneFusion, GeneModification, Hgvs, MicroRna, NamedComplexAbundance, Pathology, Protein, ProteinModification, ProteinSubstitution, Reaction, Rna, RnaFusion, activity, degradation, secretion, translocation, ) from pybel.language import Entity from pybel.testing.utils import n from pybel.utils import canonicalize_edge class TestCanonicalize(unittest.TestCase): def test_postpend_location_failure(self): with self.assertRaises(ValueError): postpend_location("", dict(name="failure")) def test_canonicalize_variant_dsl(self): """Use the __str__ functions in the DSL to create BEL instead of external pybel.canonicalize.""" self.assertEqual('var("p.Val600Glu")', str(Hgvs("p.Val600Glu"))) self.assertEqual('var("p.Val600Glu")', str(ProteinSubstitution("Val", 600, "Glu"))) self.assertEqual( 'pmod(go:0006468 ! "protein phosphorylation")', str(ProteinModification("Ph")), ) self.assertEqual("pmod(TEST:Ph)", str(ProteinModification("Ph", namespace="TEST"))) self.assertEqual( "pmod(TEST:Ph, Ser)", str(ProteinModification("Ph", namespace="TEST", code="Ser")), ) self.assertEqual( "pmod(TEST:Ph, Ser, 5)", str(ProteinModification("Ph", namespace="TEST", code="Ser", position=5)), ) self.assertEqual( 'pmod(GO:"protein phosphorylation", Thr, 308)', str( ProteinModification( name="protein phosphorylation", namespace="GO", code="Thr", position=308, ) ), ) self.assertEqual('frag("?")', str(Fragment())) self.assertEqual('frag("672_713")', str(Fragment(start=672, stop=713))) self.assertEqual('frag("?", "descr")', str(Fragment(description="descr"))) self.assertEqual( 'frag("672_713", "descr")', str(Fragment(start=672, stop=713, description="descr")), ) self.assertEqual('gmod(go:0006306 ! "DNA methylation")', str(GeneModification("Me"))) self.assertEqual("gmod(TEST:Me)", str(GeneModification("Me", namespace="TEST"))) self.assertEqual( 'gmod(GO:"DNA Methylation")', str(GeneModification("DNA Methylation", namespace="GO")), ) def test_canonicalize_fusion_range_dsl(self): """Test canonicalization of enumerated fusion ranges.""" self.assertEqual("p.1_15", str(EnumeratedFusionRange("p", 1, 15))) self.assertEqual("p.*_15", str(EnumeratedFusionRange("p", "*", 15))) def test_Abundance(self): """Test canonicalization of abundances.""" short = Abundance(namespace="CHEBI", name="water") self.assertEqual("a(CHEBI:water)", str(short)) long = Abundance(namespace="CHEBI", name="test name") self.assertEqual('a(CHEBI:"test name")', str(long)) def test_protein_reference(self): self.assertEqual("p(HGNC:AKT1)", str(Protein(namespace="HGNC", name="AKT1"))) def test_gene_reference(self): node = Gene(namespace="EGID", name="780") self.assertEqual("g(EGID:780)", str(node)) def test_protein_pmod(self): node = Protein( name="PLCG1", namespace="HGNC", variants=[ProteinModification(name="Ph", code="Tyr")], ) self.assertEqual( 'p(HGNC:PLCG1, pmod(go:0006468 ! "protein phosphorylation", Tyr))', str(node), ) def test_protein_fragment(self): node = Protein(name="APP", namespace="HGNC", variants=[Fragment(start=672, stop=713)]) self.assertEqual('p(HGNC:APP, frag("672_713"))', str(node)) def test_mirna_reference(self): self.assertEqual("m(HGNC:MIR1)", str(MicroRna(namespace="HGNC", name="MIR1"))) def test_rna_fusion_specified(self): node = RnaFusion( partner_5p=Rna(namespace="HGNC", name="TMPRSS2"), range_5p=EnumeratedFusionRange("r", 1, 79), partner_3p=Rna(namespace="HGNC", name="ERG"), range_3p=EnumeratedFusionRange("r", 312, 5034), ) self.assertEqual('r(fus(HGNC:TMPRSS2, "r.1_79", HGNC:ERG, "r.312_5034"))', str(node)) def test_rna_fusion_unspecified(self): node = RnaFusion( partner_5p=Rna(namespace="HGNC", name="TMPRSS2"), partner_3p=Rna(namespace="HGNC", name="ERG"), ) self.assertEqual('r(fus(HGNC:TMPRSS2, "?", HGNC:ERG, "?"))', str(node)) def test_gene_fusion_specified(self): node = GeneFusion( partner_5p=Gene(namespace="HGNC", name="TMPRSS2"), range_5p=EnumeratedFusionRange("c", 1, 79), partner_3p=Gene(namespace="HGNC", name="ERG"), range_3p=EnumeratedFusionRange("c", 312, 5034), ) self.assertEqual('g(fus(HGNC:TMPRSS2, "c.1_79", HGNC:ERG, "c.312_5034"))', str(node)) def test_pathology(self): node = Pathology(namespace="DO", name="Alzheimer disease") self.assertEqual('path(DO:"Alzheimer disease")', str(node)) def test_bioprocess(self): node = BiologicalProcess(namespace="GO", name="apoptosis") self.assertEqual("bp(GO:apoptosis)", str(node)) def test_named_complex_abundance(self): node = NamedComplexAbundance(namespace="SCOMP", name="Calcineurin Complex") self.assertEqual('complex(SCOMP:"Calcineurin Complex")', str(node)) def test_complex_abundance(self): node = ComplexAbundance( members=[ Protein(namespace="HGNC", name="FOS"), Protein(namespace="HGNC", name="JUN"), ] ) self.assertEqual("complex(p(HGNC:FOS), p(HGNC:JUN))", str(node)) def test_composite_abundance(self): node = CompositeAbundance( members=[ Protein(namespace="HGNC", name="FOS"), Protein(namespace="HGNC", name="JUN"), ] ) self.assertEqual("composite(p(HGNC:FOS), p(HGNC:JUN))", str(node)) def test_reaction(self): node = Reaction( reactants=[Abundance(namespace="CHEBI", name="A")], products=[Abundance(namespace="CHEBI", name="B")], ) self.assertEqual("rxn(reactants(a(CHEBI:A)), products(a(CHEBI:B)))", str(node)) class TestCanonicalizeEdge(unittest.TestCase): """This class houses all testing for the canonicalization of edges such that the relation/modifications can be used as a second level hash""" def setUp(self): self.g = BELGraph() self.g.annotation_pattern["Species"] = r"\d+" self.u = Protein(name="u", namespace="TEST") self.v = Protein(name="v", namespace="TEST") self.g.add_node_from_data(self.u) self.g.add_node_from_data(self.v) def get_data(self, k): return self.g[self.u][self.v][k] def add_edge(self, source_modifier=None, target_modifier=None, annotations=None): key = self.g.add_increases( self.u, self.v, evidence=n(), citation=n(), source_modifier=source_modifier, target_modifier=target_modifier, annotations=annotations, ) return canonicalize_edge(self.get_data(key)) def test_failure(self): with self.assertRaises(ValueError): self.add_edge(source_modifier={MODIFIER: "nope"}) def test_canonicalize_edge_info(self): c1 = self.add_edge(annotations={"Species": "9606"}) c2 = self.add_edge(annotations={"Species": "9606"}) c3 = self.add_edge( source_modifier=activity("tport"), ) c4 = self.add_edge( source_modifier=activity(namespace="go", name="transporter activity", identifier="0005215"), ) self.assertEqual(c1, c2) self.assertNotEqual(c1, c3) self.assertEqual(c3, c4) def test_subject_degradation_location(self): self.assertEqual( self.add_edge(source_modifier=degradation()), self.add_edge(source_modifier=degradation()), ) self.assertEqual( self.add_edge(source_modifier=degradation(location=Entity(name="somewhere", namespace="GO"))), self.add_edge(source_modifier=degradation(location=Entity(name="somewhere", namespace="GO"))), ) self.assertNotEqual( self.add_edge(source_modifier=degradation()), self.add_edge(source_modifier=degradation(location=Entity(name="somewhere", namespace="GO"))), ) def test_translocation(self): self.assertEqual( self.add_edge(source_modifier=secretion()), self.add_edge(source_modifier=secretion()), ) self.assertEqual( self.add_edge(source_modifier=secretion()), self.add_edge(source_modifier=translocation(INTRACELLULAR, EXTRACELLULAR)), ) class TestSerializeBEL(unittest.TestCase): def setUp(self): self.citation = n() self.evidence = n() self.url = n() self.graph = BELGraph() self.graph.namespace_url["HGNC"] = self.url def _help_check_lines(self, lines: Iterable[str]): """Check the given lines match the graph built during the tests.""" self.assertEqual(lines, list(_to_bel_lines_body(self.graph))) def test_simple(self): """Test a scenario with a qualified edge, but no annotations.""" self.graph.add_increases( Protein(namespace="HGNC", name="YFG1"), Protein(namespace="HGNC", name="YFG"), citation=self.citation, evidence=self.evidence, ) self.assertEqual(2, self.graph.number_of_nodes()) self.assertEqual(1, self.graph.number_of_edges()) expected_lines = [ f'SET Citation = {{"{CITATION_TYPE_PUBMED}", "{self.citation}"}}\n', 'SET SupportingText = "{}"'.format(self.evidence), "p(HGNC:YFG1) increases p(HGNC:YFG)", "UNSET SupportingText", "UNSET Citation\n", "#" * 80, ] self._help_check_lines(expected_lines) def test_different_key_and_namespace(self): key, namespace, value = map(lambda _: n(), range(3)) self.graph.annotation_curie.add(key) self.graph.add_increases( Protein(namespace="HGNC", name="YFG1"), Protein(namespace="HGNC", name="YFG"), citation=self.citation, evidence=self.evidence, annotations={ key: Entity(namespace=namespace, identifier=value), }, ) self.assertEqual(2, self.graph.number_of_nodes()) self.assertEqual(1, self.graph.number_of_edges()) expected_lines = [ f'SET Citation = {{"{CITATION_TYPE_PUBMED}", "{self.citation}"}}\n', f'SET SupportingText = "{self.evidence}"', f'SET {key} = "{namespace}:{value}"', "p(HGNC:YFG1) increases p(HGNC:YFG)", f"UNSET {key}", "UNSET SupportingText", "UNSET Citation\n", ("#" * 80), ] self._help_check_lines(expected_lines) def test_single_annotation(self): """Test a scenario with a qualified edge, but no annotations.""" a1, v1 = map(lambda _: n(), range(2)) self.graph.annotation_list[a1] = {v1} self.graph.add_increases( Protein(namespace="HGNC", name="YFG1"), Protein(namespace="HGNC", name="YFG"), citation=self.citation, evidence=self.evidence, annotations={ a1: {v1}, }, ) self.assertEqual(2, self.graph.number_of_nodes()) self.assertEqual(1, self.graph.number_of_edges()) # Means that only the identifier needs to be written out self.assertNotIn(a1, self.graph.annotation_curie) expected_lines = [ f'SET Citation = {{"{CITATION_TYPE_PUBMED}", "{self.citation}"}}\n', f'SET SupportingText = "{self.evidence}"', f'SET {a1} = "{v1}"', "p(HGNC:YFG1) increases p(HGNC:YFG)", f"UNSET {a1}", "UNSET SupportingText", "UNSET Citation\n", "#" * 80, ] self._help_check_lines(expected_lines) def test_multiple_annotations(self): a1, v1, v2 = map(lambda _: n(), range(3)) v1, v2 = sorted([v1, v2]) self.graph.annotation_list[a1] = {v1, v2} self.graph.add_increases( Protein(namespace="HGNC", name="YFG1"), Protein(namespace="HGNC", name="YFG"), citation=self.citation, evidence=self.evidence, annotations={ a1: {v1, v2}, }, ) self.assertEqual(2, self.graph.number_of_nodes()) self.assertEqual(1, self.graph.number_of_edges()) expected_lines = [ f'SET Citation = {{"{CITATION_TYPE_PUBMED}", "{self.citation}"}}\n', f'SET SupportingText = "{self.evidence}"', f'SET {a1} = {{"{v1}", "{v2}"}}', "p(HGNC:YFG1) increases p(HGNC:YFG)", f"UNSET {a1}", "UNSET SupportingText", "UNSET Citation\n", ("#" * 80), ] self._help_check_lines(expected_lines)
35.0425
119
0.591567
794382f2adca5bfa500dfec904cf220384f3479c
994
py
Python
data_terbuka_id/items.py
seagatesoft/data-terbuka-id
57e0531fa4a978483852ee1333cc5bf0b80637f7
[ "MIT" ]
null
null
null
data_terbuka_id/items.py
seagatesoft/data-terbuka-id
57e0531fa4a978483852ee1333cc5bf0b80637f7
[ "MIT" ]
null
null
null
data_terbuka_id/items.py
seagatesoft/data-terbuka-id
57e0531fa4a978483852ee1333cc5bf0b80637f7
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # http://doc.scrapy.org/en/latest/topics/items.html from scrapy import Field, Item from scrapy.loader import ItemLoader from scrapylib.processors import default_input_processor, default_output_processor class MasjidItem(Item): id_masjid = Field() nama_masjid = Field() link_detail = Field() kabupaten_kota = Field() kecamatan = Field() tipologi = Field() alamat = Field() luas_tanah = Field() status_tanah = Field() luas_bangunan = Field() tahun_berdiri = Field() jamaah = Field() imam = Field() khatib = Field() muazin = Field() remaja = Field() no_telepon = Field() keterangan = Field() longitude = Field() latitude = Field() class MasjidItemLoader(ItemLoader): default_item_class = MasjidItem default_input_processor = default_input_processor default_output_processor = default_output_processor
24.85
82
0.695171
7943830a68d11d1bab1e92768af6ca55088f447e
19,254
py
Python
quart_openapi/swagger.py
kowbot/quart-openapi
d259bd1f6dd8315ddd6f601e395ff08313921196
[ "Apache-2.0" ]
null
null
null
quart_openapi/swagger.py
kowbot/quart-openapi
d259bd1f6dd8315ddd6f601e395ff08313921196
[ "Apache-2.0" ]
null
null
null
quart_openapi/swagger.py
kowbot/quart-openapi
d259bd1f6dd8315ddd6f601e395ff08313921196
[ "Apache-2.0" ]
null
null
null
"""swagger.py Provides the View class for generating the openapi.json file on the fly based on the Pint instance and decorators """ from collections import OrderedDict from http import HTTPStatus from itertools import chain from typing import (Any, Callable, Dict, Generator, Iterable, List, Mapping, Optional, Tuple, Union) from jsonschema import Draft4Validator from quart.routing import Map as RouteMap from werkzeug.routing import _rule_re as ROUTE_VAR_RE from .resource import Resource, get_expect_args from .typing import HeaderType, ValidatorTypes from .utils import extract_path, merge, not_none, parse_docstring DEFAULT_RESPONSE_DESCRIPTION = 'Success' DEFAULT_RESPONSE = {'description': DEFAULT_RESPONSE_DESCRIPTION} PY_TYPES = { int: 'integer', float: 'number', str: 'string', bool: 'boolean', None: 'void' } PATH_TYPES = { 'int': 'integer', 'float': 'number', 'string': 'string', 'default': 'string' } def _clean_header(header: HeaderType) -> Dict[str, Any]: """Convert headers to dict representation :param header: Either a header description, a type, a validator, or a dict of keys for the header param object :return: The dict of properties for the given header param normalized to the openapi 3.0 spec """ if isinstance(header, str): header = {'description': header} typedef = header.get('type', 'string') if typedef in PY_TYPES: header['type'] = PY_TYPES[typedef] elif isinstance(typedef, (list, tuple)) and len(typedef) == 1 and typedef[0] in PY_TYPES: header['type'] = 'array' header['items'] = {'type': PY_TYPES[typedef[0]]} elif hasattr(typedef, '__schema__'): header.update(typedef.__schema__) else: header['type'] = typedef return not_none(header) def _parse_rule(rule: str) -> Generator[Tuple[str, str], None, None]: """Generator for the converters for the path parameters :param rule: a route string :return: each iteration yields the next tuple of (converter name, variable name) """ for match in ROUTE_VAR_RE.finditer(rule): named_groups = match.groupdict() yield (named_groups['converter'], named_groups['variable']) def _extract_path_params(path: str) -> OrderedDict: """Generate the path params from the route :param path: The route string :return: An :class:`~collections.OrderedDict` of param names to definitions """ params = OrderedDict() for converter, variable in _parse_rule(path): if not converter: continue param = { 'name': variable, 'in': 'path', 'required': True, 'schema': {} } if converter in PATH_TYPES: param['schema']['type'] = PATH_TYPES[converter] elif converter == 'uuid': param['schema']['type'] = 'string' param['schema']['format'] = 'uuid' elif converter in RouteMap.default_converters: param['schema']['type'] = 'string' else: raise ValueError('Unsupported type converter: %s' % converter) params[variable] = param return params class Swagger(): """Class for generating a openapi.json from the resources and information defined with :class:`~factset.quart_openapi.Pint`""" def __init__(self, api: 'Pint') -> None: """Construct a Swagger object for generating the openapi Json :param api: the main app interface for getting the base model and resources """ self.api = api self._components = OrderedDict([('schemas', OrderedDict()), ('responses', OrderedDict()), ('parameters', OrderedDict()), ('examples', OrderedDict()), ('requestBodies', OrderedDict()), ('headers', OrderedDict()), ('securitySchemes', OrderedDict())]) def as_dict(self) -> Dict[str, Any]: """Return a dict which can be used with the :mod:`json` module to return valid json""" infos = { 'title': self.api.title or 'OpenApi Rest Documentation', 'version': self.api.version or '1.0' } if self.api.description: infos['description'] = self.api.description if self.api.contact and (self.api.contact_email or self.api.contact_url): infos['contact'] = not_none({ 'name': self.api.contact, 'email': self.api.contact_email, 'url': self.api.contact_url }) components = self.serialize_components() or None paths = {} for resource, path, methods in self.api.resources: paths[extract_path(path)] = self.serialize_resource(resource, path, methods) scheme = self.api.config.get('PREFERRED_URL_SCHEME', 'http' if not self.api.config.get('PREFER_SECURE_URLS', False) else 'https') spec = { 'openapi': '3.0.0', 'info': infos, 'servers': [ { 'url': ''.join([scheme, '://', self.api.config['SERVER_NAME'] or '']) } ], 'paths': paths, 'components': components } return not_none(spec) def register_component(self, category: str, name: str, schema: Dict[str, Any]) -> None: """Used for populating the components_ section of the openapi docs :param category: The category under the component section :param name: The name of the model for reference :param schema: the actual schema for this object """ if category not in self._components: raise ValueError('invalid category for components') self._components[category][name] = schema def serialize_components(self) -> Mapping[str, Dict[str, Any]]: """Generate the json for the components_ section :return: An :class:`~collections.OrderedDict` of the components """ if self.api.base_model is None: return {} base_components = self.api.base_model.resolve('#/components')[1] for category, val in base_components.items(): for name, schema in val.items(): self.register_component(category, name, schema) return OrderedDict((k, v) for k, v in self._components.items() if v) @staticmethod def tags_for(doc: List[str]) -> Iterable[List[str]]: """Get the list of tags for output :param doc: a mapping from HTTP verb to the properties for serialization :return: a list of string containing tags as described by the openapi 3.0 spec """ tags = [] for name in doc['tags']: tags.append(name) return tags @staticmethod def description_for(doc: Dict[str, Any], method: str) -> str: """Extract the description metadata and fallback on the whole docstring :param doc: a mapping from HTTP verb to the properties for serialization :param method: The HTTP Verb function for the route :return: The description as pulled from the docstring for the description property """ parts = [] if 'description' in doc: parts.append(doc['description']) if method in doc and 'description' in doc[method]: parts.append(doc[method]['description']) if doc[method]['docstring']['details']: parts.append(doc[method]['docstring']['details']) return '\n'.join(parts).strip() def parameters_for(self, doc: Dict[str, Any]) -> Iterable[Dict[str, Any]]: """Get the list of param descriptions for output :param doc: a mapping from HTTP verb to the properties for serialization :return: a list of dict objects containing params as described by the openapi 3.0 spec """ params = [] for name, param in doc['params'].items(): if 'ref' in param: if isinstance(param['ref'], str) and param['ref'].startswith('#/components/'): params.append({'$ref': param['ref']}) else: params.append(self.serialize_schema(param['ref'])) continue param['name'] = name if 'schema' not in param: param['schema'] = {} if 'type' not in param['schema'] and '$ref' not in param['schema']: param['schema']['type'] = 'string' if 'in' not in param: param['in'] = 'query' params.append(param) return params def operation_id_for(self, doc: Dict[str, Any], method: str) -> str: """Return the operation id to be used for openapi docs :param doc: a mapping from HTTP verb to the properties for serialization :param method: the HTTP Verb :return: The id str """ return doc[method]['id'] if 'id' in doc[method] else self.api.default_id(doc['name'], method) def responses_for(self, doc: Dict[str, Any], method: str) -> Dict[HTTPStatus, Dict[str, Any]]: """Get the Response dictionary for a given route and HTTP verb :param doc: a mapping from HTTP verb to the properties for serialization :param method: the HTTP Verb to get the responses for :return: A dict mapping status codes to object descriptions as per the `openapi response object`__ spec. __ https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.1.md#responseObject """ def process_response(resp: Union[str, Tuple]) -> Tuple[str, Any, Dict[str, Any]]: description = '' validator = None kwargs = {} if isinstance(resp, str): description = resp validator = None kwargs = {} elif len(resp) == 3: description, validator, kwargs = resp elif len(resp) == 2: description, validator = resp kwargs = {} else: raise ValueError('Unsupported response specification') return (description, validator, kwargs) responses = {} for obj in doc, doc[method]: if 'responses' in obj: for code, response in obj['responses'].items(): description, validator, kwargs = process_response(response) description = description or DEFAULT_RESPONSE_DESCRIPTION if code in responses: responses[code].update(description=description) else: responses[code] = {'description': description} if validator: if 'content' not in responses[code]: responses[code]['content'] = {} content_type = kwargs.get('content_type') or 'application/json' if content_type not in responses[code]['content']: responses[code]['content'][content_type] = {} responses[code]['content'][content_type]['schema'] = self.serialize_schema(validator) self.process_headers(responses[code], doc, method, kwargs.get('headers')) if not responses: responses[HTTPStatus.OK.value] = self.process_headers(DEFAULT_RESPONSE.copy(), doc, method) return responses @staticmethod def process_headers(response: Dict[str, Any], doc: Dict[str, Any], method: Optional[str] = None, headers: Optional[Dict[str, Union[str, Dict[str, Any]]]] = None) -> Dict[str, Any]: """Properly form the header parameter objects according to the openapi 3.0 spec :param response: Response object definition :param doc: a mapping from HTTP verb to the properties for serialization :param method: the HTTP verb for specific requests or None for all in the resource :param headers: Header object dict to add to whatever is already in the resource and function decorators :return: The full set of headers for this particular route and request method joining the resource level, method level and any additional headers passed in """ method_doc = doc.get(method, {}) if 'headers' in doc or 'headers' in method_doc or headers: response['headers'] = dict( (k, _clean_header(v)) for k, v in chain( doc.get('headers', {}).items(), method_doc.get('headers', {}).items(), (headers or {}).items()) ) return response def serialize_schema(self, validator: ValidatorTypes) -> Dict[str, Any]: """Given a validator normalize the schema definition :param validator: either the name of a validator, a :class:`~jsonschema.Draft4Validator` instance, or the actual type of the value. Passing a list or tuple will create a schema for an array of that type :return: The schema as defined by the openapi 3.0 spec as a dict """ if isinstance(validator, (list, tuple)): validator = validator[0] return { 'type': 'array', 'items': self.serialize_schema(validator) } if isinstance(validator, Draft4Validator): return validator.schema if isinstance(validator, str): validator = self.api.get_validator(validator) return validator.schema if isinstance(validator, (type, type(None))) and validator in PY_TYPES: return {'type': PY_TYPES[validator]} return {} def serialize_resource(self, resource: Union[Resource, Callable], path: str, methods: Iterable[str]) -> Dict[str, Any]: """Use the docstring and any decorated info to create the resource object :param resource: the Resource object or view function :param path: the route path for this resource :param methods: The list of available HTTP verbs for this route :return: The dict conforming to the openapi 3.0 spec for a `path item object`__ __ https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.1.md#pathItemObject """ doc = self.extract_resource_doc(resource, path) if doc is False: return {} path = {} for method in [m.lower() for m in resource.methods or []]: methods = [m.lower() for m in methods or []] if doc[method] is False or methods and method not in methods: continue path[method] = self.serialize_operation(doc, method) return not_none(path) def serialize_operation(self, doc: Mapping[str, Any], method: str) -> Dict[str, Any]: """Serialize a single operation on the resource corresponding to a single HTTP verb :param doc: a mapping from HTTP verb to the properties for serialization :param method: The HTTP verb for this operation :return: The dict openapi representation to be converted to json for this operation """ operation = { 'summary': doc[method]['docstring']['summary'], 'description': self.description_for(doc, method), 'tags': self.tags_for(doc[method]), 'parameters': self.parameters_for(doc[method]) or None, 'responses': self.responses_for(doc, method) or None, 'operationId': self.operation_id_for(doc, method) } body = merge(self.expected_params(doc), self.expected_params(doc[method])) if body: operation['requestBody'] = body if doc.get('deprecated') or doc[method].get('deprecated'): operation['deprecated'] = True return not_none(operation) @staticmethod def extract_resource_doc(resource: Union[Resource, Callable], path: str) -> Dict[str, Any]: """Return the doc mapping for this resource that we saved on it :param resource: The :class:`Resource` derived class or decorated view function :param path: The route for this resource :return: a mapping from HTTP verb to the properties for serialization This returns the object that is passed into the `serialize_*` functions that expect a `doc` parameter """ doc = getattr(resource, '__apidoc__', {}) if doc is False: return False doc['name'] = resource.__name__ params = merge(doc.get('params', OrderedDict()), _extract_path_params(path)) doc['params'] = params tags = doc.get('tags', list()) doc['tags'] = tags for method in [m.lower() for m in resource.methods or []]: method_doc = doc.get(method, OrderedDict()) method_impl = getattr(resource, method) if hasattr(method_impl, 'im_func'): method_impl = method_impl.im_func elif hasattr(method_impl, '__func__'): method_impl = method_impl.__func__ method_doc = merge(method_doc, getattr(method_impl, '__apidoc__', OrderedDict())) if method_doc is not False: method_doc['docstring'] = parse_docstring(method_impl) method_params = method_doc.get('params', {}) inherited_params = OrderedDict((k, v) for k, v in params.items()) method_doc['params'] = merge(inherited_params, method_params) method_tags = method_doc.get('tags', []) inherited_tags = sorted(list(tags)) method_doc['tags'] = merge(inherited_tags, method_tags) doc[method] = method_doc return doc def expected_params(self, doc: Dict[str, Any]) -> Dict[str, Any]: """Return the `Media Type object <https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.1.md#mediaTypeObject>`_ for the expected request body. :param doc: a mapping from HTTP verb to the properties for serialization :return: a dict containing the content type and schemas for the requestBody """ params = OrderedDict() if 'expect' not in doc: return params for expect in doc.get('expect', []): validator, content_type, kwargs = get_expect_args(expect) if isinstance(validator, str): validator = self.api.get_validator(validator) elif not isinstance(validator, Draft4Validator): continue schema = self.serialize_schema(validator) if '$ref' in schema and '/components/requestBodies/' in schema['$ref']: return schema params[content_type] = not_none(dict({ 'schema': self.serialize_schema(validator) }, **kwargs)) return {'content': params}
43.073826
113
0.595357
79438484e40112f9be328425cf71095e0f093eeb
2,421
py
Python
tests/test_vector3.py
crazymaik/ard-python
ef6dc62ae9853ac636be3a343aabf69082b74b8b
[ "MIT" ]
null
null
null
tests/test_vector3.py
crazymaik/ard-python
ef6dc62ae9853ac636be3a343aabf69082b74b8b
[ "MIT" ]
null
null
null
tests/test_vector3.py
crazymaik/ard-python
ef6dc62ae9853ac636be3a343aabf69082b74b8b
[ "MIT" ]
null
null
null
import context import math import pytest from ard.vector3 import Vector3 class TestVector3: def test_add_example(self): u = Vector3(x=1, y=2, z=3) v = Vector3(x=4, y=5, z=6) actual = u.add(v) assert actual.x == 5 assert actual.y == 7 assert actual.z == 9 def test_add_and_sub_equalize(self): u = Vector3(x=1, y=2, z=3) v = Vector3(x=4, y=5, z=6) actual = u.add(v).sub(v) assert actual.x == u.x assert actual.y == u.y assert actual.z == u.z def test_add_and_sub_operators(self): u = Vector3(x=1, y=2, z=3) v = Vector3(x=4, y=5, z=6) actual = u + v assert actual.x == 5 assert actual.y == 7 assert actual.z == 9 actual = actual - v assert actual.x == 1 assert actual.y == 2 assert actual.z == 3 def test_length_squared_example(self): u = Vector3(x=1, y=2, z=3) assert u.length_squared() == 14 def test_length_example(self): u = Vector3(x=1, y=1, z=1) assert u.length() == math.sqrt(3) def test_dot_perpendicular_vector_is_zero(self): u = Vector3(x=1, y=0, z=0) v = Vector3(x=0, y=1, z=0) assert u.dot(v) == 0 def test_dot_of_unit_vector_is_one(self): u = Vector3(x=0, y=1, z=0) v = Vector3(x=0, y=1, z=0) assert u.dot(v) == 1 def test_cross_of_vector_is_perpendicular(self): u = Vector3(x=0.5, y=0.5, z=0) v = Vector3(x=-0.5, y=0.5, z=0) actual = u.cross(v) assert actual.x == 0 assert actual.y == 0 assert actual.z != 0 def test_cross_uv_and_vu_point_in_opposite_direction(self): u = Vector3(x=1, y=2, z=3) v = Vector3(x=2, y=3, z=1) c0 = u.cross(v) c1 = v.cross(u) assert c0.x == -c1.x assert c0.y == -c1.y assert c0.z == -c1.z def test_normalized_vector_has_length_one(self): u = Vector3(x=1, y=1, z=0) n = u.normalized() assert n.length() == pytest.approx(1.0) def test_equality_compares_values(self): assert Vector3(x=1, y=2, z=3) == Vector3(x=1, y=2, z=3) assert Vector3(x=1, y=2, z=3) != Vector3(x=0, y=0, z=0) def test_hash_is_based_on_values(self): u = Vector3(x=1, y=2, z=3) v = Vector3(x=1, y=2, z=3) assert hash(u) == hash(v)
28.821429
63
0.539447
794384874d17809add381bd0ed1c52b5bf3f5f4c
670
py
Python
examples/example_3_inducible/setup_bmss.py
EngBioNUS/BMSS2
41163c61a4e0ef3c6430e5954d81a77832e49a9d
[ "Apache-2.0" ]
null
null
null
examples/example_3_inducible/setup_bmss.py
EngBioNUS/BMSS2
41163c61a4e0ef3c6430e5954d81a77832e49a9d
[ "Apache-2.0" ]
null
null
null
examples/example_3_inducible/setup_bmss.py
EngBioNUS/BMSS2
41163c61a4e0ef3c6430e5954d81a77832e49a9d
[ "Apache-2.0" ]
4
2020-08-24T13:35:55.000Z
2022-03-07T16:48:12.000Z
''' Adds base directory to path so BMSS can be imported. You can just use import BMSS if you have successfully installed it using pip. ''' import sys from os import getcwd, listdir from os.path import abspath, dirname, join #Get base directory __base_dir__ = dirname(dirname(dirname(__file__))) try: import BMSS except: #Append to path sys.path.insert(0, __base_dir__) #Add Styles try: __src_dir__ = join(__base_dir__, 'BMSS') library = join(__src_dir__, 'stylelib') styles = {file.split('.')[0]: abspath(join(library,file)) for file in listdir(library)} except Exception as e: print(e.args) styles = {}
23.103448
97
0.679104
79438b20506d0e78e13663f9417f24e5064adc78
2,170
py
Python
agents/network/base_network.py
samuelfneumann/RLControl
71430b1de2e4262483908932eb44579c2ec8216d
[ "Apache-2.0" ]
9
2018-07-30T20:12:47.000Z
2021-02-05T17:02:04.000Z
agents/network/base_network.py
samuelfneumann/RLControl
71430b1de2e4262483908932eb44579c2ec8216d
[ "Apache-2.0" ]
14
2020-01-28T22:38:58.000Z
2022-02-10T00:11:21.000Z
agents/network/base_network.py
samuelfneumann/RLControl
71430b1de2e4262483908932eb44579c2ec8216d
[ "Apache-2.0" ]
3
2018-08-08T14:52:53.000Z
2021-01-23T18:00:05.000Z
import tensorflow as tf class BaseNetwork(object): def __init__(self, sess, config, learning_rate): """ base network for actor and critic network. Args: sess: tf.Session() config: Configuration object learning_rate: learning rate for training (Could be an array if two-headed network) """ self.sess = sess # Env config self.state_dim = config.state_dim self.state_min = config.state_min self.state_max = config.state_max self.action_dim = config.action_dim self.action_min = config.action_min self.action_max = config.action_max self.learning_rate = learning_rate self.tau = config.tau self.norm_type = config.norm_type def set_session(self, session): self.session = session def build_network(self, *args): """ build network. """ raise NotImplementedError("build network first!") def train(self, *args): raise NotImplementedError("train network!") def predict(self, *args): raise NotImplementedError("predict output for network!") def predict_target(self, *args): raise NotImplementedError("predict output for target network!") def update_target_network(self): raise NotImplementedError("update target network!") def get_num_trainable_vars(self): raise NotImplementedError("update target network!") def apply_norm(self, net, activation_fn, phase, layer_num): if self.norm_type == 'layer': norm_net = tf.contrib.layers.layer_norm(net, center=True, scale=True, activation_fn=activation_fn) elif self.norm_type == 'batch': norm_net = tf.contrib.layers.batch_norm(net, fused=True, center=True, scale=True, activation_fn=activation_fn, is_training=phase, scope='batchnorm_'+str(layer_num)) elif self.norm_type == 'none' or self.norm_type == 'input_norm': norm_net = activation_fn(net) else: raise ValueError('unknown norm type') return norm_net
31.911765
122
0.632719
79438c9b854902e87e38789dfcddc1cd111f4d6d
272
py
Python
notifications/tests/sample_notifications/admin.py
pandafy/django-notifications
720c40576a9387a035a44aa800f423efd15c8038
[ "BSD-3-Clause" ]
1,354
2015-01-03T17:22:58.000Z
2022-03-29T11:49:12.000Z
notifications/tests/sample_notifications/admin.py
pandafy/django-notifications
720c40576a9387a035a44aa800f423efd15c8038
[ "BSD-3-Clause" ]
275
2015-01-19T21:32:51.000Z
2022-03-30T10:07:14.000Z
notifications/tests/sample_notifications/admin.py
pandafy/django-notifications
720c40576a9387a035a44aa800f423efd15c8038
[ "BSD-3-Clause" ]
385
2015-01-08T19:51:12.000Z
2022-03-29T10:19:16.000Z
import swapper from django.contrib import admin from notifications.base.admin import AbstractNotificationAdmin Notification = swapper.load_model('notifications', 'Notification') @admin.register(Notification) class NotificationAdmin(AbstractNotificationAdmin): pass
24.727273
66
0.838235
79438d8404eedf800fd113aedf8ce572ec5e86fd
613
py
Python
data_cleaning/main.py
JuaniRios/4p-chess-prediction
f0fa49f16bade6089108d0b06bf2bbd1be8366f8
[ "MIT" ]
null
null
null
data_cleaning/main.py
JuaniRios/4p-chess-prediction
f0fa49f16bade6089108d0b06bf2bbd1be8366f8
[ "MIT" ]
null
null
null
data_cleaning/main.py
JuaniRios/4p-chess-prediction
f0fa49f16bade6089108d0b06bf2bbd1be8366f8
[ "MIT" ]
null
null
null
from data_cleaning.filter_data import filter_data from data_cleaning.data_manipulation import mk_move from data_cleaning.to_hdf import to_hdf def txt_to_h5(file_name): """ takes the name of a .txt file with games from chess.com, and converts it to an hdf5 db. """ print("txt to h5. Step 1/3. \n Please wait...") step1 = filter_data(file_name) # .txt to json print("txt to h5... step 2/3. \n Please wait...") step2 = mk_move(step1) # add additional data to json print("txt to h5... step 3/3. \n Please wait...") step3 = to_hdf(step2) # convert to hdf return step3
32.263158
76
0.675367
79438ec4b0f18c2b90027c54e46052098b0b1220
1,170
py
Python
sc/graphRegistry.py
Omegaice/smartcontainers
0d2e75734dbf76c6aed73ee10b9590ed82c8f7e5
[ "Apache-2.0" ]
6
2016-04-26T20:22:31.000Z
2021-05-03T23:38:11.000Z
sc/graphRegistry.py
Omegaice/smartcontainers
0d2e75734dbf76c6aed73ee10b9590ed82c8f7e5
[ "Apache-2.0" ]
43
2016-03-10T15:03:01.000Z
2016-06-06T15:28:27.000Z
sc/graphRegistry.py
Omegaice/smartcontainers
0d2e75734dbf76c6aed73ee10b9590ed82c8f7e5
[ "Apache-2.0" ]
4
2016-03-02T17:18:26.000Z
2016-03-18T14:13:11.000Z
# -*- coding: utf-8 -*- """RDFlib Graph Registry for SmartContainers. This module provides a common interface to all RDFlib graphs created by all vocabularies. New vocabularies should subclass baseVocabulary. Since the registry has access to the SmartContainer global provenance graph it also manages the named graph objects. The design specification is to have a named graph for each docker state change (build, commit, run). Provenance of the named graphs can then be provided by referencing the graph as a quad. For more information about RDF 1.1 Datasets and named graphs see: https://dvcs.w3.org/hg/rdf/raw-file/default/rdf-dataset/index.html http://patterns.dataincubator.org/book/named-graphs.html RDFLib Dataset graph object reference: https://rdflib.readthedocs.org/en/stable/apidocs/rdflib.html#dataset """ import graphManager import provVocabulary import envVocabulary # Create instances of registry and register vocabularies scVocabRegistry = graphManager.VocabularyRegistry() scProvVocab = provVocabulary.provVocabulary() scVocabRegistry.register(scProvVocab) scEnvVocabulary = envVocabulary.envVocabulary() scVocabRegistry.register(envVocabulary)
43.333333
77
0.816239
7943903d9e45dd79dbdbdf01e333de7721d4c6ee
14,197
py
Python
affiliate/model/mysql_model.py
gods-view/AdclickIO
ccb73867e568aac5f40bd5890149626ce0be1897
[ "BSD-2-Clause" ]
null
null
null
affiliate/model/mysql_model.py
gods-view/AdclickIO
ccb73867e568aac5f40bd5890149626ce0be1897
[ "BSD-2-Clause" ]
null
null
null
affiliate/model/mysql_model.py
gods-view/AdclickIO
ccb73867e568aac5f40bd5890149626ce0be1897
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python # encoding: utf-8 from peewee import * from affiliate.model.config import mysql, mysql_report import time db = MySQLDatabase(mysql['name'], host=mysql['host'], port=int(mysql['port']), user=mysql['user'], passwd=mysql['passwd'] ) # 旧的数据库连接 class BaseModel(Model): """A base model that will use our MySQL database""" class Meta: database = db class CampaignMap(BaseModel): OurCampId = IntegerField(null=False, default=0) TheirCampId = CharField(null=False, default=0) class Meta: db_table = "CampaignMap" index = (('OurCampId', True), ('TheirCampId', True)) class User(BaseModel): idText = CharField(max_length=8, null=False) email = CharField(max_length=50, null=False) emailVerified = IntegerField(null=False, default=0) contact = TextField(null=False) password = CharField(max_length=256, null=False, default='') firstname = CharField(max_length=256, null=False, default='') lastname = CharField(max_length=256, null=False, default='') campanyName = CharField(max_length=256, null=False, default='') status = IntegerField(null=False, default=0) registerts = IntegerField() lastLogon = IntegerField() timezone = CharField(max_length=6, null=False, default='+00:00') timezoneId = IntegerField(null=False) rootdomainredirect = CharField(max_length=512, null=False, default='') json = TextField(null=False) setting = TextField(null=False) referralToken = CharField(max_length=128, null=False) deleted = IntegerField(null=False, default=0) class Meta: db_table = "User" index = (('idText', True), ('email', True)) class OfferSyncTask(BaseModel): """ task """ userId = IntegerField(null=False) thirdPartyANId = IntegerField() status = IntegerField(default=0) # 0:新建;1:运行中;2:出错;3:完成 executor = CharField(max_length=32, null=False) # 执行者的唯一标识 mac地址 message = TextField() createdAt = IntegerField(null=False) startedAt = IntegerField(null=False) endedAt = IntegerField(null=False) deleted = IntegerField(null=False, default=0) # 0:未删除;1:已删除 class Meta: db_table = "OfferSyncTask" class ThirdPartyAffiliateNetwork(BaseModel): """ affiliate login info """ userId = IntegerField(null=False) trustedANId = IntegerField(null=False) # TemplateAffiliateNetwork name = CharField(max_length=256, null=False, default='') token = TextField() userName = TextField() password = TextField() createdAt = IntegerField(null=False) deleted = IntegerField(null=False, default=0) class Meta: db_table = "ThirdPartyAffiliateNetwork" class TemplateAffiliateNetwork(BaseModel): """ provider """ name = CharField(max_length=256, null=False) postbackParams = TextField(null=False) # 回调url中参数的写法:{cid:%subid1%;p:%commission%} desc = TextField(null=False) # 关于该AfflicateNetwork的描述,HTML apiOffer = IntegerField(null=False) # 0:不支持api拉取Offer;1:支持拉取Offer apiName = CharField(max_length=256, null=False, help_text='api拉取时,区分用') apiUrl = TextField(null=False) apiParams = TextField(null=False) apiMode = IntegerField(null=False) # 1:仅token;2:仅Username/password;3:token/up都支持 apiInterval = IntegerField(null=False, default=0) # 连续两次Task之间的最小间隔时间,0表示没有限制,单位:秒 apiOfferAutoSuffix = CharField(max_length=256, null=False, default='') deleted = IntegerField(null=False, default=0) class Meta: db_table = "TemplateAffiliateNetwork" class TemplateTrafficSource(BaseModel): """ TemplateTrafficSource """ id = IntegerField(null=False) order = IntegerField(null=False) name = CharField(max_length=256, null=False) class Meta: db_table = "TemplateTrafficSource" class ThirdPartyCountryCode(BaseModel): """ CountryCode """ key_code = CharField() val_code = CharField() class Meta: db_table = "ThirdPartyCountryCode" class ThirdPartyOffer(BaseModel): """ offer """ updatetime = TimeField() sourcename = CharField(max_length=20) userId = IntegerField(null=False) taskId = IntegerField(null=False) status = IntegerField(null=False) offerId = TextField() name = CharField(max_length=256, null=False, default='') previewLink = TextField() trackingLink = TextField() countryCode = TextField() payoutMode = IntegerField(null=False, default=1) payoutValue = CharField(null=False, default='0.00000') category = TextField() carrier = TextField() platform = TextField() detail = TextField() class Meta: db_table = "ThirdPartyOffer" class Country(BaseModel): name = CharField(max_length=256, null=False) alpha2Code = CharField(max_length=2, null=False) alpha3Code = CharField(max_length=3, null=False) numCode = IntegerField(null=False) class Meta: db_table = "Country" index = (('alpha2Code', True), ('alpha3Code', True), ('numCode', True)) class Flow(BaseModel): name = CharField(max_length=256, null=False) class Meta: db_table = "Flow" index = ('id', True) class Lander(BaseModel): name = CharField(max_length=256, null=False) class Meta: db_table = "Lander" index = ('id', True) class Offer(BaseModel): name = CharField(max_length=256, null=False) payoutMode = IntegerField(null=False) payoutValue = FloatField(null=False) class Meta: db_table = "Offer" index = ('id', True) class TrackingCampaign(BaseModel): id = IntegerField(null=False) status = IntegerField(null=False) name = CharField(max_length=256, null=False) remark = CharField(max_length=1000, null=False) TheirCampName = CharField(max_length=1000, null=False) class Meta: db_table = "TrackingCampaign" index = ('id', True) class TrafficSource(BaseModel): id = IntegerField(null=False) userid = IntegerField(null=False) name = CharField(max_length=256, null=False) trafficTemplateId = IntegerField(default=0, null=False) token = CharField(max_length=128) account = CharField(max_length=128) password = CharField(max_length=128) integrations = IntegerField(null=False) class Meta: db_table = "TrafficSource" index = ('id', True) class AffiliateNetwork(BaseModel): name = CharField(max_length=256, null=False) class Meta: db_table = "AffiliateNetwork" index = ('id', True) class AdConversionsStatis(BaseModel): UserID = CharField(max_length=256, null=True, default='') PostbackTimestamp = CharField(max_length=256, null=True, default='') VisitTimestamp = CharField(max_length=256, null=True, default='') ExternalID = CharField(max_length=256, null=True, default='') ClickID = CharField(max_length=256, null=True, default='') TransactionID = CharField(max_length=256, null=True, default='') Revenue = CharField(max_length=256, null=True, default='0.0') Cost = CharField(max_length=256, null=True, default='0.0') CampaignName = CharField(max_length=256, null=True, default='') CampaignID = CharField(max_length=256, null=True, default='') LanderName = CharField(max_length=256, null=True, default='') LanderID = CharField(max_length=256, null=True, default='') OfferName = CharField(max_length=256, null=True, default='') OfferID = CharField(max_length=256, null=True, default='') Country = CharField(max_length=256, null=True, default='') CountryCode = CharField(max_length=256, null=True, default='') TrafficSourceName = CharField(max_length=256, null=True, default='') TrafficSourceID = CharField(max_length=256, null=True, default='') AffiliateNetworkName = CharField(max_length=256, null=True, default='') AffiliateNetworkID = CharField(max_length=256, null=True, default='') Device = CharField(max_length=256, null=True, default='') OS = CharField(max_length=256, null=True, default='') OSVersion = CharField(max_length=256, null=True, default='') Brand = CharField(max_length=256, null=True, default='') Model = CharField(max_length=256, null=True, default='') Browser = CharField(max_length=256, null=True, default='') BrowserVersion = CharField(max_length=256, null=True, default='') ISP = CharField(max_length=256, null=True, default='') MobileCarrier = CharField(max_length=256, null=True, default='') ConnectionType = CharField(max_length=256, null=True, default='') VisitorIP = CharField(max_length=256, null=True, default='') VisitorReferrer = CharField(max_length=256, null=True, default='') V1 = CharField(max_length=256, null=True, default='') V2 = CharField(max_length=256, null=True, default='') V3 = CharField(max_length=256, null=True, default='') V4 = CharField(max_length=256, null=True, default='') V5 = CharField(max_length=256, null=True, default='') V6 = CharField(max_length=256, null=True, default='') V7 = CharField(max_length=256, null=True, default='') V8 = CharField(max_length=256, null=True, default='') V9 = CharField(max_length=256, null=True, default='') V10 = CharField(max_length=256, null=True, default='') class Meta: db_table = "AdConversionsStatis" index = (('ClickID', True)) class AdStatisLog(BaseModel): UserID = CharField(null=False, default=0) CampaignID = CharField(null=False, default=0) CampaignName = CharField(max_length=256, null=True, default='') FlowID = CharField(null=True, default=0) FlowName = CharField(max_length=256, null=True, default='') LanderID = CharField(null=True, default=0) LanderName = CharField(max_length=256, null=True, default='') OfferID = CharField(null=True, default=0) OfferName = CharField(max_length=256, null=True, default='') OfferUrl = CharField(max_length=256, null=True, default='') OfferCountry = CharField(max_length=256, null=True, default='') AffiliateNetworkID = CharField(null=True, default=0) AffilliateNetworkName = CharField(max_length=256, null=True, default='') TrafficSourceID = CharField(null=True, default=0) TrafficSourceName = CharField(max_length=256, null=True, default='') Language = CharField(max_length=256, null=True, default='') Model = CharField(max_length=256, null=True, default='') Country = CharField(max_length=256, null=True, default='') City = CharField(max_length=256, null=True, default='') Region = CharField(max_length=256, null=True, default='') ISP = CharField(max_length=256, null=True, default='') MobileCarrier = CharField(max_length=256, null=True, default='') Domain = CharField(max_length=256, null=True, default='') DeviceType = CharField(max_length=256, null=True, default='') Brand = CharField(max_length=256, null=True, default='') OS = CharField(max_length=256, null=True, default='') OSVersion = CharField(max_length=256, null=True, default='') Browser = CharField(max_length=256, null=True, default='') BrowserVersion = CharField(max_length=256, null=True, default='') ConnectionType = CharField(max_length=256, null=True, default='') Timestamp = CharField(null=True, default=0) Visits = CharField(null=True, default=0) Clicks = CharField(null=True, default=0) Conversions = CharField(null=True, default=0) Cost = CharField(null=True, default=0) Revenue = CharField(null=True, default=0) Impressions = CharField(null=True, default=0) KeysMD5 = CharField(max_length=256, null=True, default='') Ip = CharField(max_length=256, null=True, default='') V1 = CharField(max_length=256, null=True, default='') V2 = CharField(max_length=256, null=True, default='') V3 = CharField(max_length=256, null=True, default='') V4 = CharField(max_length=256, null=True, default='') V5 = CharField(max_length=256, null=True, default='') V6 = CharField(max_length=256, null=True, default='') V7 = CharField(max_length=256, null=True, default='') V8 = CharField(max_length=256, null=True, default='') V9 = CharField(max_length=256, null=True, default='') V10 = CharField(max_length=256, null=True, default='') tsCampaignId = CharField(max_length=256, null=True, default='') tsWebsiteId = CharField(max_length=256, null=True, default='') class Meta: db_table = "AdStatis" index = (('KeysMD5', True)) class AdCost(BaseModel): id = CharField(null=False) CampaignID = CharField(max_length=50, null=True) userid = IntegerField(null=False) WebsiteId = CharField(max_length=50, null=False, default='') WebsiteChildId = CharField(max_length=50, null=False, default='') Cost = CharField(max_length=50, null=False, default='') Createtime = BigIntegerField() Status = IntegerField(null=False) # State = IntegerField(null=False, default=0) type = IntegerField(null=False) State = CharField(null=False) begintime = BigIntegerField() endtime = BigIntegerField() updatecost = IntegerField(default=0) TrafficsourceId = CharField(max_length=100) remark = CharField(max_length=255) updatebid = IntegerField(default=0) bid = FloatField(null=True) class Meta: db_table = "AdCost" class WebsiteId(BaseModel): id = IntegerField(null=False) userId = IntegerField(null=False) status = IntegerField(null=False) web_site_id = CharField(max_length=256) state = IntegerField(null=False) remark = CharField(max_length=256) campaignId = IntegerField(null=False) TrafficSourceId = IntegerField(null=False) class Meta: db_table = "WebSiteId" class UserBilling(BaseModel): totalEvents = IntegerField(null=False) billedEvents = IntegerField(null=False) userId = IntegerField(null=False) expired = IntegerField(null=False) class Meta: db_table = "UserBilling" db.connect() # a = Country.update(name='ccc').where(Country.id == 1).execute() # pass
36.216837
87
0.683525
7943919783a547676eb4f8c2813e2b0de4121377
4,427
py
Python
tests/tests_emg.py
vansjyo/NeuroKit
238cd3d89467f7922c68a3a4c1f44806a8466922
[ "MIT" ]
null
null
null
tests/tests_emg.py
vansjyo/NeuroKit
238cd3d89467f7922c68a3a4c1f44806a8466922
[ "MIT" ]
null
null
null
tests/tests_emg.py
vansjyo/NeuroKit
238cd3d89467f7922c68a3a4c1f44806a8466922
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd import neurokit2 as nk import matplotlib.pyplot as plt import scipy.stats import biosppy # ============================================================================= # EMG # ============================================================================= def test_emg_simulate(): emg1 = nk.emg_simulate(duration=20, length=5000, burst_number=1) assert len(emg1) == 5000 emg2 = nk.emg_simulate(duration=20, length=5000, burst_number=15) assert scipy.stats.median_absolute_deviation(emg1) < scipy.stats.median_absolute_deviation(emg2) emg3 = nk.emg_simulate(duration=20, length=5000, burst_number=1, burst_duration=2.0) # pd.DataFrame({"EMG1":emg1, "EMG3": emg3}).plot() assert len(nk.signal_findpeaks(emg3, height_min=1.0)["Peaks"]) > len(nk.signal_findpeaks(emg1, height_min=1.0)["Peaks"]) def test_emg_clean(): sampling_rate=1000 emg = nk.emg_simulate(duration=20, sampling_rate=sampling_rate) emg_cleaned = nk.emg_clean(emg, sampling_rate=sampling_rate) assert emg.size == emg_cleaned.size # Comparison to biosppy (https://github.com/PIA-Group/BioSPPy/blob/e65da30f6379852ecb98f8e2e0c9b4b5175416c3/biosppy/signals/emg.py) original, _, _ = biosppy.tools.filter_signal(signal=emg, ftype='butter', band='highpass', order=4, frequency=100, sampling_rate=sampling_rate) emg_cleaned_biosppy = nk.signal_detrend(original, order=0) assert np.allclose((emg_cleaned - emg_cleaned_biosppy).mean(), 0, atol=1e-6) def test_emg_plot(): sampling_rate=1000 emg = nk.emg_simulate(duration=10, sampling_rate=1000, burst_number=3) emg_summary, _ = nk.emg_process(emg, sampling_rate=sampling_rate) # Plot data over samples. nk.emg_plot(emg_summary) # This will identify the latest figure. fig = plt.gcf() assert len(fig.axes) == 2 titles = ["Raw and Cleaned Signal", "Muscle Activation"] for (ax, title) in zip(fig.get_axes(), titles): assert ax.get_title() == title assert fig.get_axes()[1].get_xlabel() == "Samples" np.testing.assert_array_equal(fig.axes[0].get_xticks(), fig.axes[1].get_xticks()) plt.close(fig) # Plot data over time. nk.emg_plot(emg_summary, sampling_rate=sampling_rate) # This will identify the latest figure. fig = plt.gcf() assert fig.get_axes()[1].get_xlabel() == "Time (seconds)" def test_emg_eventrelated(): emg = nk.emg_simulate(duration=20, sampling_rate=1000, burst_number=3) emg_signals, info = nk.emg_process(emg, sampling_rate=1000) epochs = nk.epochs_create(emg_signals, events=[3000, 6000, 9000], sampling_rate=1000, epochs_start=-0.1, epochs_end=1.9) emg_eventrelated = nk.emg_eventrelated(epochs) # Test amplitude features no_activation = np.where(emg_eventrelated["EMG_Activation"] == 0)[0][0] assert int(pd.DataFrame(emg_eventrelated.values [no_activation]).isna().sum()) == 4 assert np.alltrue(np.nansum(np.array( emg_eventrelated["EMG_Amplitude_Mean"])) < np.nansum(np.array( emg_eventrelated["EMG_Amplitude_Max"]))) assert len(emg_eventrelated["Label"]) == 3 def test_emg_intervalrelated(): emg = nk.emg_simulate(duration=40, sampling_rate=1000, burst_number=3) emg_signals, info = nk.emg_process(emg, sampling_rate=1000) columns = ['EMG_Activation_N', 'EMG_Amplitude_Mean'] # Test with signal dataframe features_df = nk.emg_intervalrelated(emg_signals) assert all(elem in columns for elem in np.array(features_df.columns.values, dtype=str)) assert features_df.shape[0] == 1 # Number of rows # Test with dict epochs = nk.epochs_create(emg_signals, events=[0, 20000], sampling_rate=1000, epochs_end=20) features_dict = nk.emg_intervalrelated(epochs) assert all(elem in columns for elem in np.array(features_dict.columns.values, dtype=str)) assert features_dict.shape[0] == 2 # Number of rows
37.837607
135
0.615541
794391b7ea7953b97340b5e0fa229186988762cf
1,586
py
Python
test_scripts/functional_tests/wallet/open_wallet_test.py
hyperledger/indy-post-install-automation
a19cb3c66f0adea6bb4c1fc20e1509cc97bd3d5f
[ "Apache-2.0" ]
2
2021-08-23T15:20:22.000Z
2021-12-03T01:58:02.000Z
test_scripts/functional_tests/wallet/open_wallet_test.py
hyperledger-archives/indy-post-install-automation
a19cb3c66f0adea6bb4c1fc20e1509cc97bd3d5f
[ "Apache-2.0" ]
1
2018-02-22T10:04:41.000Z
2018-02-22T10:04:41.000Z
test_scripts/functional_tests/wallet/open_wallet_test.py
hyperledger/indy-post-install-automation
a19cb3c66f0adea6bb4c1fc20e1509cc97bd3d5f
[ "Apache-2.0" ]
7
2018-01-03T20:45:48.000Z
2019-08-12T11:02:31.000Z
""" Created on Dec 08, 2017 @author: khoi.ngo Implementing test case open_wallet with valid value. """ from indy.error import IndyError import pytest from utilities import common from utilities.result import Status from utilities.test_scenario_base import TestScenarioBase from utilities.utils import perform from indy import pool class TestOpenWallet(TestScenarioBase): @pytest.mark.asyncio async def test(self): await pool.set_protocol_version(2) # 1. Create and open a pool self.steps.add_step("Create and open a pool") self.pool_handle = await perform(self.steps, common.create_and_open_pool, self.pool_name, self.pool_genesis_txn_file) # 2. Create and open a wallet self.steps.add_step("Create and open a wallet") returned_code = await perform(self.steps, common.create_and_open_wallet, self.pool_name, self.wallet_name, self.wallet_credentials) # 3. Verify that user is able to open a new wallet self.steps.add_step("Verify the response code of open_wallet API.") if not isinstance(returned_code, IndyError): self.wallet_handle = returned_code # using for post-condition self.steps.get_last_step().set_status(Status.PASSED) else: self.steps.get_last_step().set_message( "Failed. Cannot open the wallet which was created.")
36.045455
96
0.627995
794392091da644e03337eb56df872a6c97689b07
902
py
Python
demos/biotool/oauth2client/contrib/django_util/site.py
Servir-Mekong/biotool
80ef1b18e34db637bf11d2ab84782e6a1a2dddd0
[ "Apache-2.0" ]
1
2016-09-09T14:45:45.000Z
2016-09-09T14:45:45.000Z
demos/biotool/oauth2client/contrib/django_util/site.py
Servir-Mekong/Eco-Dashboard
80ef1b18e34db637bf11d2ab84782e6a1a2dddd0
[ "Apache-2.0" ]
null
null
null
demos/biotool/oauth2client/contrib/django_util/site.py
Servir-Mekong/Eco-Dashboard
80ef1b18e34db637bf11d2ab84782e6a1a2dddd0
[ "Apache-2.0" ]
null
null
null
# Copyright 2015 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from django.conf import urls from oauth2client.contrib.django_util import views urlpatterns = [ urls.url(r'oauth2callback/', views.oauth2_callback, name="callback"), urls.url(r'oauth2authorize/', views.oauth2_authorize, name="authorize") ] urls = (urlpatterns, "google_oauth", "google_oauth")
36.08
75
0.759424
794392491dc0b95ea313e760db2a0367077f052d
3,661
py
Python
cride/rides/migrations/0001_initial.py
danhergir/cride
b346138ec597e4f58feed8b1ca6826d214f08135
[ "MIT" ]
null
null
null
cride/rides/migrations/0001_initial.py
danhergir/cride
b346138ec597e4f58feed8b1ca6826d214f08135
[ "MIT" ]
null
null
null
cride/rides/migrations/0001_initial.py
danhergir/cride
b346138ec597e4f58feed8b1ca6826d214f08135
[ "MIT" ]
null
null
null
# Generated by Django 2.0.9 on 2021-06-13 17:27 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('circles', '0004_invitation'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Rating', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(auto_now_add=True, help_text='Date time on which the object was created', verbose_name='created_at')), ('modified', models.DateTimeField(auto_now_add=True, help_text='Date time on which the object was last modified', verbose_name='modified_at')), ('comments', models.TextField(blank=True)), ('rating', models.IntegerField(default=1)), ('circle', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='circles.Circle')), ('rated_user', models.ForeignKey(help_text='User that receives the rating.', null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='rated_user', to=settings.AUTH_USER_MODEL)), ('rating_user', models.ForeignKey(help_text='User that emits the rating', null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='rating_user', to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ['-created', '-modified'], 'get_latest_by': 'created', 'abstract': False, }, ), migrations.CreateModel( name='Ride', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(auto_now_add=True, help_text='Date time on which the object was created', verbose_name='created_at')), ('modified', models.DateTimeField(auto_now_add=True, help_text='Date time on which the object was last modified', verbose_name='modified_at')), ('available_seats', models.PositiveSmallIntegerField(default=1)), ('comments', models.TextField(blank=True)), ('departure_location', models.CharField(max_length=255)), ('departure_date', models.DateTimeField()), ('arrival_location', models.CharField(max_length=255)), ('arrival_date', models.DateTimeField()), ('rating', models.FloatField(null=True)), ('is_active', models.BooleanField(default=True, help_text='Used for disabling the ride or marking it as finished.', verbose_name='active status')), ('offered_by', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL)), ('offered_in', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='circles.Circle')), ('passengers', models.ManyToManyField(related_name='passengers', to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ['-created', '-modified'], 'get_latest_by': 'created', 'abstract': False, }, ), migrations.AddField( model_name='rating', name='ride', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='rated_ride', to='rides.Ride'), ), ]
55.469697
207
0.62442
794393b01c036f0976522ce1ea21d17622e05a1e
681
py
Python
setup.py
hmlingesh/csv-to-html-table
114d8c85a121b32604d321973f854614b5a9e8b5
[ "MIT" ]
null
null
null
setup.py
hmlingesh/csv-to-html-table
114d8c85a121b32604d321973f854614b5a9e8b5
[ "MIT" ]
null
null
null
setup.py
hmlingesh/csv-to-html-table
114d8c85a121b32604d321973f854614b5a9e8b5
[ "MIT" ]
null
null
null
""" Hello World app for running Python apps on Bluemix """ # Always prefer setuptools over distutils from setuptools import setup, find_packages # To use a consistent encoding from codecs import open from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name='python-hello-world-flask', version='1.0.0', description='Hello World app for running Python apps on Bluemix', long_description=long_description, url='https://github.com/IBM-Bluemix/python-hello-world-flask', license='Apache-2.0' )
26.192308
69
0.732746
794393d1a7e8c7597428dd549930a830b3e2e2b8
386
py
Python
events/migrations/0028_event_holiday.py
McCarthyCode/Market-to-Market-Chicago
15d491f6f45c0899864ae9256f2808e46e0e140b
[ "MIT" ]
null
null
null
events/migrations/0028_event_holiday.py
McCarthyCode/Market-to-Market-Chicago
15d491f6f45c0899864ae9256f2808e46e0e140b
[ "MIT" ]
1
2020-06-09T11:15:17.000Z
2020-06-09T11:15:17.000Z
events/migrations/0028_event_holiday.py
mattmc318/Market-to-Market-Chicago
15d491f6f45c0899864ae9256f2808e46e0e140b
[ "MIT" ]
null
null
null
# Generated by Django 3.0.8 on 2020-10-22 03:18 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('events', '0027_auto_20200512_1857'), ] operations = [ migrations.AddField( model_name='event', name='holiday', field=models.BooleanField(default=False), ), ]
20.315789
53
0.598446
794393fb589763a930fda72bea185e4c76b867ae
2,020
py
Python
code/python3/index_sorting.py
jaylett/xapian-docsprint
2e8fdffecf71f7042c0abe49924ba48c11818b7e
[ "MIT" ]
47
2015-01-20T15:38:41.000Z
2022-02-15T21:03:50.000Z
code/python3/index_sorting.py
jaylett/xapian-docsprint
2e8fdffecf71f7042c0abe49924ba48c11818b7e
[ "MIT" ]
16
2015-06-09T16:12:50.000Z
2020-02-05T06:40:18.000Z
code/python3/index_sorting.py
jaylett/xapian-docsprint
2e8fdffecf71f7042c0abe49924ba48c11818b7e
[ "MIT" ]
56
2015-01-20T15:38:44.000Z
2022-03-03T18:13:39.000Z
#!/usr/bin/env python import json import sys import xapian from support import parse_csv_file def index(datapath, dbpath): # Create or open the database we're going to be writing to. db = xapian.WritableDatabase(dbpath, xapian.DB_CREATE_OR_OPEN) # Set up a TermGenerator that we'll use in indexing. termgenerator = xapian.TermGenerator() termgenerator.set_stemmer(xapian.Stem("en")) for fields in parse_csv_file(datapath): # 'fields' is a dictionary mapping from field name to value. # Pick out the fields we're going to index. description = fields.get('DESCRIPTION', u'') title = fields.get('TITLE', u'') identifier = fields.get('id_NUMBER', u'') collection = fields.get('COLLECTION', u'') maker = fields.get('MAKER', u'') # We make a document and tell the term generator to use this. doc = xapian.Document() termgenerator.set_document(doc) # Index each field with a suitable prefix. termgenerator.index_text(title, 1, 'S') termgenerator.index_text(description, 1, 'XD') # Index fields without prefixes for general search. termgenerator.index_text(title) termgenerator.increase_termpos() termgenerator.index_text(description) ### Start of example code. # add the collection as a value in slot 0 doc.add_value(0, collection) # add the maker as a value in slot 1 doc.add_value(1, maker) ### End of example code. # Store all the fields for display purposes. doc.set_data(json.dumps(fields)) # We use the identifier to ensure each object ends up in the # database only once no matter how many times we run the # indexer. idterm = u"Q" + identifier doc.add_boolean_term(idterm) db.replace_document(idterm, doc) if len(sys.argv) != 3: print("Usage: %s DATAPATH DBPATH" % sys.argv[0]) sys.exit(1) index(datapath = sys.argv[1], dbpath = sys.argv[2])
33.114754
69
0.654455
794394713869e26b0d0b88070f8f1a200e0683f3
2,794
py
Python
examples/trader/stock_traders.py
ringwraith/zvt
ff5844ff7991132bbf38d464f29f461dba5efa14
[ "MIT" ]
1
2019-08-24T02:26:51.000Z
2019-08-24T02:26:51.000Z
examples/trader/stock_traders.py
ringwraith/zvt
ff5844ff7991132bbf38d464f29f461dba5efa14
[ "MIT" ]
null
null
null
examples/trader/stock_traders.py
ringwraith/zvt
ff5844ff7991132bbf38d464f29f461dba5efa14
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from zvt.domain.common import TradingLevel from zvt.factors.technical_factor import CrossMaFactor, BullFactor from zvt.selectors.selector import TargetSelector from zvt.settings import SAMPLE_STOCK_CODES from zvt.trader.impls import StockTrader # make sure run init_data_sample.py to init the data sample at first # or you could change settings.DATA_PATH to your data path,and run the recorders for the data class MyMaTrader(StockTrader): def init_selectors(self, security_list, security_type, exchanges, codes, start_timestamp, end_timestamp): myselector = TargetSelector(security_list=security_list, security_type=security_type, exchanges=exchanges, codes=codes, start_timestamp=start_timestamp, end_timestamp=end_timestamp, provider='joinquant') myselector.add_filter_factor( CrossMaFactor(security_list=security_list, security_type=security_type, exchanges=exchanges, codes=codes, start_timestamp=start_timestamp, end_timestamp=end_timestamp)) self.selectors.append(myselector) class MyBullTrader(StockTrader): def init_selectors(self, security_list, security_type, exchanges, codes, start_timestamp, end_timestamp): myselector = TargetSelector(security_list=security_list, security_type=security_type, exchanges=exchanges, codes=codes, start_timestamp=start_timestamp, end_timestamp=end_timestamp, provider='joinquant') myselector.add_filter_factor( BullFactor(security_list=security_list, security_type=security_type, exchanges=exchanges, codes=codes, start_timestamp=start_timestamp, end_timestamp=end_timestamp)) self.selectors.append(myselector) if __name__ == '__main__': # single stock with cross ma factor MyMaTrader(codes=['000338'], level=TradingLevel.LEVEL_1DAY, start_timestamp='2018-01-01', end_timestamp='2019-06-30', trader_name='000338_ma_trader').run() # single stock with bull factor MyBullTrader(codes=['000338'], level=TradingLevel.LEVEL_1DAY, start_timestamp='2018-01-01', end_timestamp='2019-06-30', trader_name='000338_bull_trader').run() # multiple stocks with cross ma factor MyMaTrader(codes=SAMPLE_STOCK_CODES, level=TradingLevel.LEVEL_1DAY, start_timestamp='2018-01-01', end_timestamp='2019-06-30', trader_name='sample_stocks_ma_trader').run() # multiple stocks with bull factor MyBullTrader(codes=SAMPLE_STOCK_CODES, level=TradingLevel.LEVEL_1DAY, start_timestamp='2018-01-01', end_timestamp='2019-06-30', trader_name='sample_stocks_bull_trader').run()
51.740741
114
0.719757
794395bff0077ab2aeee6e61c4575ee4acd4d76d
12,575
py
Python
.ipynb_checkpoints/augment-ignore-checkpoint.py
jkooy/darts_ignoring
7ae7c769cffe81441af9e1a0e0b92552245ae1d1
[ "MIT" ]
null
null
null
.ipynb_checkpoints/augment-ignore-checkpoint.py
jkooy/darts_ignoring
7ae7c769cffe81441af9e1a0e0b92552245ae1d1
[ "MIT" ]
null
null
null
.ipynb_checkpoints/augment-ignore-checkpoint.py
jkooy/darts_ignoring
7ae7c769cffe81441af9e1a0e0b92552245ae1d1
[ "MIT" ]
null
null
null
""" Training augmented model """ import os import torch import torch.nn as nn import numpy as np from tensorboardX import SummaryWriter from config import AugmentConfig import utils from models.augment_cnn import AugmentCNN import copy config = AugmentConfig() device = torch.device("cuda") # tensorboard writer = SummaryWriter(log_dir=os.path.join(config.path, "tb")) writer.add_text('config', config.as_markdown(), 0) logger = utils.get_logger(os.path.join(config.path, "{}.log".format(config.name))) config.print_params(logger.info) class Architect(): """ Compute gradients of alphas """ def __init__(self, net, w_momentum, w_weight_decay): """ Args: net w_momentum: weights momentum """ self.net = net self.v_net = copy.deepcopy(net) self.w_momentum = w_momentum self.w_weight_decay = w_weight_decay def virtual_step(self, trn_X, trn_y, xi, w_optim, model, Likelihood, batch_size, step): """ Compute unrolled weight w' (virtual step) Step process: 1) forward 2) calc loss 3) compute gradient (by backprop) 4) update gradient Args: xi: learning rate for virtual gradient step (same as weights lr) w_optim: weights optimizer """ # forward & calc loss dataIndex = len(trn_y)+step*batch_size ignore_crit = nn.CrossEntropyLoss(reduction='none').cuda() # forward logits,_ = self.net(trn_X) # sigmoid loss loss = torch.dot(torch.sigmoid(Likelihood[step*batch_size:dataIndex]), ignore_crit(logits, trn_y))/(torch.sigmoid(Likelihood[step*batch_size:dataIndex]).sum()) loss.backward() dtloss_ll = Likelihood.grad dtloss_w = [] # do virtual step (update gradient) # below operations do not need gradient tracking with torch.no_grad(): # dict key is not the value, but the pointer. So original network weight have to # be iterated also. for w, vw in zip(self.net.weights(), self.v_net.weights()): m = w_optim.state[w].get('momentum_buffer', 0.) * self.w_momentum if w.grad is not None: vw.copy_(w - xi * (m + w.grad )) dtloss_w.append(m + w.grad ) elif w.grad is None: dtloss_w.append(w.grad ) return dtloss_w, dtloss_ll # 1399:[48, 3, 3, 3], 1:25000 def unrolled_backward(self, trn_X, trn_y, val_X, val_y, xi, w_optim, model, likelihood, Likelihood_optim, batch_size, step): """ Compute unrolled loss and backward its gradients Args: xi: learning rate for virtual gradient step (same as net lr) w_optim: weights optimizer - for virtual step """ # do virtual step (calc w`) dtloss_w, dtloss_ll = self.virtual_step(trn_X, trn_y, xi, w_optim, model, likelihood, batch_size, step) logits, aux_logits = self.v_net(val_X) # calc unrolled loss ignore_crit = nn.CrossEntropyLoss(reduction='none').to(device) dataIndex = len(trn_y)+step*batch_size loss = torch.dot(torch.sigmoid(likelihood[step*batch_size:dataIndex]), ignore_crit(logits, trn_y)) loss = loss/(torch.sigmoid(likelihood[step*batch_size:dataIndex]).sum()) # L_val(w`) # compute gradient loss.backward() dvloss_tloss = 0 for v, dt in zip(self.v_net.weights(), dtloss_w): if v.grad is not None: grad_valw_d_trainw = torch.div(v.grad, dt) grad_valw_d_trainw[torch.isinf(grad_valw_d_trainw)] = 0 grad_valw_d_trainw[torch.isnan(grad_valw_d_trainw)] = 0 grad_val_train = torch.sum(grad_valw_d_trainw) # print(grad_val_train) dvloss_tloss += grad_val_train dlikelihood = dvloss_tloss* dtloss_ll vprec1, vprec5 = utils.accuracy(logits, val_y, topk=(1, 5)) Likelihood_optim.zero_grad() likelihood.grad = dlikelihood print(dvloss_tloss) print(dtloss_ll) print('likelihood gradient is:', likelihood.grad) Likelihood_optim.step() return likelihood, Likelihood_optim, loss, vprec1, vprec5 def main(): logger.info("Logger is set - training start") # set default gpu device id torch.cuda.set_device(config.gpus[0]) # set seed np.random.seed(config.seed) torch.manual_seed(config.seed) torch.cuda.manual_seed_all(config.seed) torch.backends.cudnn.benchmark = True # get data with meta info input_size, input_channels, n_classes, train_val_data, test_data = utils.get_data( config.dataset, config.data_path, config.cutout_length, validation=True) criterion = nn.CrossEntropyLoss().to(device) use_aux = config.aux_weight > 0. model = AugmentCNN(input_size, input_channels, config.init_channels, n_classes, config.layers, use_aux, config.genotype).to(device) #single GPU # model = nn.DataParallel(model, device_ids=config.gpus).to(device) # model size mb_params = utils.param_size(model) logger.info("Model size = {:.3f} MB".format(mb_params)) # weights optimizer with SGD optimizer = torch.optim.SGD(model.parameters(), config.lr, momentum=config.momentum, weight_decay=config.weight_decay) n_train = len(train_val_data) split = n_train // 2 indices = list(range(n_train)) # each train data is endowed with a weight Likelihood = torch.nn.Parameter(torch.ones(len(indices[:split])).cuda(),requires_grad=True) Likelihood_optim = torch.optim.SGD({Likelihood}, config.lr) # data split train_data = torch.utils.data.Subset(train_val_data, indices[:split]) valid_data = torch.utils.data.Subset(train_val_data, indices[split:]) train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, shuffle=False, num_workers=config.workers, pin_memory=False) valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, shuffle=False, num_workers=config.workers, pin_memory=False) lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, config.epochs) architect = Architect(model, 0.9, 3e-4) best_top1 = 0. # training loop for epoch in range(config.epochs): lr_scheduler.step() lr = lr_scheduler.get_lr()[0] drop_prob = config.drop_path_prob * epoch / config.epochs model.drop_path_prob(drop_prob) # training train(train_loader, valid_loader, model, architect, optimizer, criterion, lr, epoch, Likelihood, Likelihood_optim, config.batch_size) # validation cur_step = (epoch+1) * len(train_loader) top1 = validate(valid_loader, model, criterion, epoch, cur_step) # save if best_top1 < top1: best_top1 = top1 is_best = True else: is_best = False utils.save_checkpoint(model, config.path, is_best) print("") logger.info("Final best Prec@1 = {:.4%}".format(best_top1)) def train(train_loader, valid_loader, model, architect, optimizer, criterion, lr, epoch, Likelihood, Likelihood_optim, batch_size): top1 = utils.AverageMeter() top5 = utils.AverageMeter() losses = utils.AverageMeter() standard_losses = utils.AverageMeter() valid_losses = utils.AverageMeter() cur_step = epoch*len(train_loader) cur_lr = optimizer.param_groups[0]['lr'] logger.info("Epoch {} LR {}".format(epoch, cur_lr)) writer.add_scalar('train/lr', cur_lr, cur_step) model.train() for step, ((trn_X, trn_y), (val_X, val_y)) in enumerate(zip(train_loader, valid_loader)): trn_X, trn_y = trn_X.to(device, non_blocking=True), trn_y.to(device, non_blocking=True) val_X, val_y = val_X.to(device, non_blocking=True), val_y.to(device, non_blocking=True) N = trn_X.size(0) M = val_X.size(0) # phase 2. Likelihood step (Likelihood) Likelihood_optim.zero_grad() Likelihood, Likelihood_optim, valid_loss, vprec1, vprec5= architect.unrolled_backward(trn_X, trn_y, val_X, val_y, lr, optimizer, model, Likelihood, Likelihood_optim, batch_size, step) # phase 1. network weight step (w) optimizer.zero_grad() logits, aux_logits = model(trn_X) ignore_crit = nn.CrossEntropyLoss(reduction='none').to(device) dataIndex = len(trn_y)+step*batch_size loss = torch.dot(torch.sigmoid(Likelihood[step*batch_size:dataIndex]), ignore_crit(logits, trn_y)) loss = loss/(torch.sigmoid(Likelihood[step*batch_size:dataIndex]).sum()) ''' if config.aux_weight > 0.: loss += config.aux_weight * criterion(aux_logits, y) ''' loss.backward() # gradient clipping nn.utils.clip_grad_norm_(model.parameters(), config.grad_clip) # update network weight on train data optimizer.step() #compare normal loss without weighted standard_loss = criterion(logits, trn_y) prec1, prec5 = utils.accuracy(logits, trn_y, topk=(1, 5)) losses.update(loss.item(), N) standard_losses.update(standard_loss.item(), N) valid_losses.update(valid_loss.item(), M) top1.update(prec1.item(), N) top5.update(prec5.item(), N) if step % config.print_freq == 0 or step == len(train_loader)-1: logger.info( "Train: [{:3d}/{}] Step {:03d}/{:03d} Loss {losses.avg:.3f} standard Loss {slosses.avg:.3f} Valid Loss {vlosses.avg:.3f}" " Prec@(1,5) ({top1.avg:.1%}, {top5.avg:.1%})".format( epoch+1, config.epochs, step, len(train_loader)-1, losses=losses, slosses=standard_losses, vlosses=valid_losses, top1=top1, top5=top5)) writer.add_scalar('train/loss', loss.item(), cur_step) writer.add_scalar('train/top1', prec1.item(), cur_step) writer.add_scalar('train/top5', prec5.item(), cur_step) writer.add_scalar('val/loss', valid_loss.item(), cur_step) writer.add_scalar('train/top1', vprec1.item(), cur_step) writer.add_scalar('train/top5', vprec5.item(), cur_step) cur_step += 1 logger.info("Train: [{:3d}/{}] Final Prec@1 {:.4%}".format(epoch+1, config.epochs, top1.avg)) def validate(valid_loader, model, criterion, epoch, cur_step): top1 = utils.AverageMeter() top5 = utils.AverageMeter() losses = utils.AverageMeter() model.eval() with torch.no_grad(): for step,(X, y) in enumerate(valid_loader): X, y = X.to(device, non_blocking=True), y.to(device, non_blocking=True) N = X.size(0) logits, _ = model(X) loss = criterion(logits, y) prec1, prec5 = utils.accuracy(logits, y, topk=(1, 5)) losses.update(loss.item(), N) top1.update(prec1.item(), N) top5.update(prec5.item(), N) if step % config.print_freq == 0 or step == len(valid_loader)-1: logger.info( "Test: [{:3d}/{}] Step {:03d}/{:03d} Loss {losses.avg:.3f} " "Prec@(1,5) ({top1.avg:.1%}, {top5.avg:.1%})".format( epoch+1, config.epochs, step, len(valid_loader)-1, losses=losses, top1=top1, top5=top5)) writer.add_scalar('test/loss', losses.avg, cur_step) writer.add_scalar('test/top1', top1.avg, cur_step) writer.add_scalar('test/top5', top5.avg, cur_step) logger.info("Test: [{:3d}/{}] Final Prec@1 {:.4%}".format(epoch+1, config.epochs, top1.avg)) return top1.avg if __name__ == "__main__": main()
38.455657
191
0.59833
79439689139bc78e7fafa036aa9680c5c06bf3ab
3,646
py
Python
src/zen/tests/gml.py
wangyiranamy/Testing
2a729d1f73b6df69150807b965b8fedbb7661c04
[ "BSD-3-Clause" ]
41
2015-01-13T19:49:50.000Z
2021-05-02T04:11:19.000Z
src/zen/tests/gml.py
wangyiranamy/Testing
2a729d1f73b6df69150807b965b8fedbb7661c04
[ "BSD-3-Clause" ]
9
2015-01-28T10:46:27.000Z
2022-03-12T06:32:39.000Z
src/zen/tests/gml.py
wangyiranamy/Testing
2a729d1f73b6df69150807b965b8fedbb7661c04
[ "BSD-3-Clause" ]
19
2015-01-27T12:19:42.000Z
2019-07-20T21:30:56.000Z
from zen import * import unittest import os import os.path as path import tempfile class GMLReadTestCase(unittest.TestCase): def test_read_directed_test1(self): fname = path.join(path.dirname(__file__),'test1.gml') G = gml.read(fname) self.assertEqual(len(G),3) self.assertEqual(G.size(),2) self.assertEqual(type(G),DiGraph) self.assertTrue(G.has_edge('N1','N2')) self.assertTrue(G.has_edge('N2','N3')) self.assertFalse(G.has_edge('N1','N3')) self.assertFalse(G.has_edge('N3','N2')) self.assertEqual(G.node_idx('N1'),1) self.assertEqual(G.node_idx('N2'),2) self.assertEqual(G.node_idx('N3'),3) self.assertEqual(G.node_data('N1')['sampleOne'],42) self.assertEqual(G.node_data('N2')['sampleTwo'],42.1) self.assertEqual(G.node_data('N3')['sampleThree'],'HELLO WORLD') self.assertEqual(G.edge_data('N1','N2')['label'], 'Edge from node 1 to node 2') def test_read_undirected_test1(self): fname = path.join(path.dirname(__file__),'test2.gml') G = gml.read(fname) self.assertEqual(len(G),3) self.assertEqual(G.size(),2) self.assertEqual(type(G),Graph) self.assertTrue(G.has_edge('N1','N2')) self.assertTrue(G.has_edge('N2','N3')) self.assertFalse(G.has_edge('N1','N3')) self.assertTrue(G.has_edge('N3','N2')) self.assertEqual(G.node_idx('N1'),1) self.assertEqual(G.node_idx('N2'),2) self.assertEqual(G.node_idx('N3'),3) self.assertEqual(G.node_data('N1')['sampleOne'],42) self.assertEqual(G.node_data('N2')['sampleTwo'],42.1) self.assertEqual(G.node_data('N3')['sampleThree'],'HELLO WORLD') self.assertEqual(G.edge_data('N1','N2')['label'], 'Edge from node 1 to node 2') def test_list_variables(self): fname = path.join(path.dirname(__file__),'test3.gml') G = gml.read(fname) self.assertEqual(len(G),3) self.assertEqual(G.size(),2) self.assertEqual(G.node_data('N1')['listVar'], [1,'a',3.2]) def test_weight_fxn(self): fname = path.join(path.dirname(__file__),'test3.gml') G = gml.read(fname,weight_fxn=lambda data:data['value']) self.assertEqual(len(G),3) self.assertEqual(G.size(),2) self.assertEqual(G.weight('N1','N2'),2) self.assertEqual(G.weight('N2','N3'),3) def test_non_asci_char(self): G = Graph() G.add_node(u'\u2660') G.add_node(u'\u2663') G.add_node(u'\u2665') G.add_node(u'\u2666') G.add_edge(u'\u2663', u'\u2665') G.add_edge(u'\u2660', u'\u2666') G.add_edge(u'\u2665', u'\u2666') G.add_edge(u'\u2660', u'\u2663') gml.write(G, 'test4.gml') H = gml.read('test4.gml') for nobj in G.nodes(): self.assertEqual(H.node_idx(nobj), G.node_idx(nobj)) for nobj1, nobj2 in G.edges(): self.assertEqual(H.edge_idx(nobj1, nobj2), G.edge_idx(nobj1, nobj2)) self.assertEqual(G.size(), H.size()) self.assertEqual(len(G), len(H)) def test_tuple_node_objects(self): G = Graph() G.add_node((1,2)) G.add_node((2,3)) G.add_edge((1,2),(2,3)) gml.write(G, 'test5.gml') H = gml.read('test5.gml') for nobj in G.nodes(): self.assertEqual(H.node_idx(nobj), G.node_idx(nobj)) for nobj1, nobj2 in G.edges(): self.assertEqual(H.edge_idx(nobj1, nobj2), G.edge_idx(nobj1, nobj2)) self.assertEqual(G.size(), H.size()) self.assertEqual(len(G), len(H)) def test_no_node_data(self): G = Graph() G.add_node() G.add_node() G.add_edge_(0,1) gml.write(G, 'test5.gml') H = gml.read('test5.gml') for edge_idx in G.edges_(): node_idx1, node_idx2 = H.endpoints_(edge_idx) H.has_edge_(node_idx1, node_idx2) self.assertEqual(G.size(), H.size()) self.assertEqual(len(G), len(H)) if __name__ == '__main__': unittest.main()
24.469799
66
0.665661
794397b00537fc54e66f1719163df7e915b4f252
9,003
py
Python
nuart/biclustering/bartmap.py
ACIL-Group/NuART-Py
36011432f6da9b87452c25cb1911a742f353bc49
[ "Apache-2.0" ]
6
2018-12-09T21:03:06.000Z
2021-09-06T09:28:53.000Z
nuart/biclustering/bartmap.py
ACIL-Group/NuART-Py
36011432f6da9b87452c25cb1911a742f353bc49
[ "Apache-2.0" ]
null
null
null
nuart/biclustering/bartmap.py
ACIL-Group/NuART-Py
36011432f6da9b87452c25cb1911a742f353bc49
[ "Apache-2.0" ]
1
2019-12-14T07:25:31.000Z
2019-12-14T07:25:31.000Z
""" Copyright 2019 Islam Elnabarawy Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # References: # [1] R. Xu and D. C. Wunsch II, "BARTMAP: A viable structure for biclustering," # Neural Networks, vol. 24, no. 7, pp. 709-716, 2011. # [2] I. Elnabarawy, D. C. Wunsch II, and A. M. Abdelbar, "Biclustering ARTMAP # Collaborative Filtering Recommender System," in Proceedings of the 2016 International # Joint Conference on Neural Networks (IJCNN ’16), 2016, pp. 2986-2991. import multiprocessing import random import numpy as np from sklearn import preprocessing from nuart.common.linear_algebra import fuzzy_and, max_norm __author__ = 'Islam Elnabarawy' class FuzzyARTModule(object): def __init__(self, rho, alpha, beta, num_features): self.rho = rho self.alpha = alpha self.beta = beta self.num_clusters = 0 self.num_features = num_features self.w = np.ones((self.num_clusters, self.num_features * 2)) def train_dataset(self, dataset, max_epochs=np.inf, shuffle=False, random_seed=None): # complement-code the data dataset = np.concatenate((dataset, 1 - dataset), axis=1) # initialize variables labels = np.zeros(dataset.shape[0]) iterations = 0 w_old = None indices = list(range(dataset.shape[0])) if shuffle: if random_seed is not None: random.seed(random_seed) random.shuffle(indices) while not np.array_equal(self.w, w_old) and iterations < max_epochs: w_old = self.w for ix in indices: labels[ix] = self.train_pattern(dataset[ix, :]) iterations += 1 return labels, iterations def train_pattern(self, pattern): # evaluate the pattern to get the winning category winner = self.eval_pattern(pattern) # commit the pattern to the winning category self.commit_pattern(pattern, winner) return winner def commit_pattern(self, pattern, category): # check if the uncommitted node was the winner if (category + 1) > self.num_clusters: self.num_clusters += 1 self.w = np.concatenate((self.w, np.ones((1, self.w.shape[1])))) # update the weight of the winning neuron self.w[category, :] = self.weight_update(pattern, self.w[category, :], self.beta) def eval_pattern(self, pattern): # initialize variables matches = np.zeros(self.num_clusters) # calculate the category match values for jx in range(self.num_clusters): matches[jx] = self.category_choice(pattern, self.w[jx, :], self.alpha) # pick the winning category match_attempts = 0 while match_attempts < self.num_clusters: # winner-take-all selection winner = np.argmax(matches) # vigilance test if self.vigilance_check(pattern, self.w[winner, :], self.rho): # the winning category passed the vigilance test return winner else: # shut off this category from further testing matches[winner] = 0 match_attempts += 1 return self.num_clusters @staticmethod def category_choice(pattern, category_w, alpha): return max_norm(fuzzy_and(pattern, category_w)) / (alpha + max_norm(category_w)) @staticmethod def vigilance_check(pattern, category_w, rho): return max_norm(fuzzy_and(pattern, category_w)) >= rho * max_norm(pattern) @staticmethod def weight_update(pattern, category_w, beta): return beta * fuzzy_and(pattern, category_w) + (1 - beta) * category_w class BARTMAP(object): def __init__(self, arta_settings, artb_settings, corr_thresh, step_size): """ Create a Biclustering ARTMAP object :param artb_settings: A 3-tuple containing the rho, alpha, and beta parameters of ARTa :param arta_settings: A 3-tuple containing the rho, alpha, and beta parameters of ARTb :param corr_thresh: A float specifying the correlation threshold to use for BARTMAP's inter-ART module :param step_size: The step size parameter for BARTMAP's inter-ART module """ super(BARTMAP, self).__init__() self.arta_settings = arta_settings self.artb_settings = artb_settings self.corr_thresh = corr_thresh self.step_size = step_size self.num_samples = None self.num_features = None self.ARTa = None self.ARTb = None self.sample_labels = None self.num_sample_labels = 0 self.feature_labels = None self.num_feature_labels = 0 self.map = map def train(self, data): sample_data = preprocessing.MinMaxScaler().fit_transform(data) feature_data = preprocessing.MinMaxScaler().fit_transform(data.transpose()) return self.train_preprocessed(sample_data, feature_data) def train_preprocessed(self, sample_data, feature_data): pool = multiprocessing.Pool() self.map = pool.map self.num_samples, self.num_features = sample_data.shape self.ARTa = FuzzyARTModule(*self.arta_settings, self.num_features) self.ARTb = FuzzyARTModule(*self.artb_settings, self.num_samples) self.feature_labels, _ = self.ARTb.train_dataset(feature_data) self.num_feature_labels = self.ARTb.num_clusters self.sample_labels = np.zeros(self.num_samples, dtype=np.int32) self.num_sample_labels = 0 for ix in range(self.num_samples): # re-initialize the ARTa vigilance parameter for each sample self.ARTa.rho = self.arta_settings[0] sample = np.concatenate([sample_data[ix, :], 1 - sample_data[ix, :]], axis=0) while True: sample_category = self.ARTa.eval_pattern(sample) if sample_category == self.ARTa.num_clusters: # new cluster created; always allow new clusters self.ARTa.commit_pattern(sample, sample_category) self.sample_labels[ix] = sample_category self.num_sample_labels += 1 break else: # the sample was assigned to an existing cluster; check correlation threshold sample_cluster = sample_data[np.nonzero(self.sample_labels[:ix] == sample_category)] correlations = np.array([ self.get_bicluster_correlations(jx, sample, sample_cluster) for jx in range(self.num_feature_labels) ]) # check the correlations against the threshold if np.any(correlations > self.corr_thresh) or self.ARTa.rho >= 1: # allow this sample to be committed into the bicluster self.ARTa.commit_pattern(sample, sample_category) self.sample_labels[ix] = sample_category break else: # increase the ARTa vigilance threshold and try again self.ARTa.rho += self.step_size if self.ARTa.rho > 1: self.ARTa.rho = 1 pool.close() self.map = map def get_bicluster_correlations(self, jx, sample, sample_cluster): feature_ix = np.nonzero(self.feature_labels == jx) return self.get_average_correlation(sample_cluster[:, feature_ix], sample[feature_ix]) def get_average_correlation(self, bicluster, sample): # compute the average of the correlation between each pair of samples return np.array(list(self.map(BARTMAP.get_correlation_args, [(row, sample) for row in bicluster]))).mean() @staticmethod def get_correlation_args(args): return BARTMAP.get_correlation(*args) @staticmethod def get_correlation(x, y): # compute the terms for all the item values terms1 = x - np.mean(x) terms2 = y - np.mean(y) # compute the sums to find the pairwise correlation numerator = np.sum(np.multiply(terms1, terms2)) root1 = np.sqrt(np.sum(np.multiply(terms1, terms1))) root2 = np.sqrt(np.sum(np.multiply(terms2, terms2))) return numerator / (root1 * root2) if root1 != 0 and root2 != 0 else 0
37.987342
114
0.634011
794397f22334c4db124c0decc963f5fbb527abf7
1,613
py
Python
msdsl/expr/extras.py
sgherbst/msdsl
e38d5ecdb88b3574bda62f22a4f91ce3e4173d12
[ "MIT" ]
15
2019-05-14T10:12:23.000Z
2022-03-29T15:29:52.000Z
msdsl/expr/extras.py
sgherbst/msdsl
e38d5ecdb88b3574bda62f22a4f91ce3e4173d12
[ "MIT" ]
19
2020-01-22T21:44:33.000Z
2021-06-05T02:10:41.000Z
msdsl/expr/extras.py
sgherbst/msdsl
e38d5ecdb88b3574bda62f22a4f91ce3e4173d12
[ "MIT" ]
5
2019-10-21T09:53:17.000Z
2021-08-10T17:32:20.000Z
from typing import Union, List from numbers import Number, Integral from msdsl.expr.expr import ModelExpr, concatenate, BitwiseAnd, array def all_between(x: List[ModelExpr], lo: Union[Number, ModelExpr], hi: Union[Number, ModelExpr]) -> ModelExpr: """ Limit checking. Check if a list of ModelExpr objects provided in *x* is larger than *lo* and smaller than *hi*. :param x: List of ModelExpr that are to be checked :param lo: Lower limit :param hi: Upper limit :return: boolean, 1 if x is within limits, 0 otherwise """ return BitwiseAnd([between(elem, lo, hi) for elem in x]) def between(x: ModelExpr, lo: Union[Number, ModelExpr], hi: Union[Number, ModelExpr]) -> ModelExpr: """ Limit checking. Check if a ModelExpr object provided in *x* is larger than *lo* and smaller than *hi*. :param x: ModelExpr that is to be checked :param lo: Lower limit :param hi: Upper limit :return: boolean, 1 if x is within limits, 0 otherwise """ return (lo <= x) & (x <= hi) def replicate(x: ModelExpr, n: Integral): return concatenate([x]*n) def if_(condition, then, else_): """ Conditional statement. Condition *condition* is evaluated and if result is true, action *then* is executed, otherwise action *else_*. :param condition: Conditional expression that is to be evaluated :param then: Action to be executed for True case :param else_: Action to be executed for False case :return: Boolean """ return array([else_, then], condition)
40.325
122
0.655301
794398b0194e39c4b3b063f02919562b6cff5a96
373
py
Python
workout_tracker/users/urls.py
ympaik87/workout_tracker
9f78e0ef7664b53868f43ccda7256bcfa4105405
[ "MIT" ]
null
null
null
workout_tracker/users/urls.py
ympaik87/workout_tracker
9f78e0ef7664b53868f43ccda7256bcfa4105405
[ "MIT" ]
null
null
null
workout_tracker/users/urls.py
ympaik87/workout_tracker
9f78e0ef7664b53868f43ccda7256bcfa4105405
[ "MIT" ]
null
null
null
from django.urls import path from workout_tracker.users.views import ( user_redirect_view, user_update_view, user_detail_view, ) app_name = "users" urlpatterns = [ path("~redirect/", view=user_redirect_view, name="redirect"), path("~update/", view=user_update_view, name="update"), path("<str:username>/", view=user_detail_view, name="detail"), ]
24.866667
66
0.707775
79439959fab8f2b4fea936c7985f79c23293d51d
4,109
py
Python
uts/zscore.py
Yifei-Liu/uts
64c137d59fcd0c7c016082018d67a56abac0b28e
[ "MIT" ]
null
null
null
uts/zscore.py
Yifei-Liu/uts
64c137d59fcd0c7c016082018d67a56abac0b28e
[ "MIT" ]
null
null
null
uts/zscore.py
Yifei-Liu/uts
64c137d59fcd0c7c016082018d67a56abac0b28e
[ "MIT" ]
null
null
null
# coding: utf-8 __author__ = 'Mário Antunes' __version__ = '0.1' __email__ = '[email protected]' __status__ = 'Development' import math import numpy as np def weighted_avg_and_std(values: np.ndarray, weights: np.ndarray): """ Return the weighted average and standard deviation. Args: points (np.ndarray): numpy array with values weights (np.ndarray): numpy array with weights Returns: tuple[float, float]: returns a tuple with the weighted average and standard deviation """ average = np.average(values, weights=weights) # Fast and numerically precise: variance = np.average((values-average)**2, weights=weights) return (average, math.sqrt(variance)) def zscore(xi: float, mean: float, std: float) -> float: """ Return the z-score for a single value. Args: xi (float): the single value mean (float): mean value from the sequence std (float): standart deviation from the sequence Returns: float: the z-score for a single value """ if std != 0: return (xi - mean)/std else: return xi - mean def linear_delta_mapping_points(points: np.ndarray): """ Return a linear mapping from the sequence of points. One way to estimate the z-score metric from a uneven sequence is to map the values linearly and compute the weight of each new value. The weight is proportional to the delta in the x axis. Args: points (np.ndarray): numpy array with the points (x, y) Returns: tuple[np.ndarray, np.ndarray]: the weight and the linear mapping """ x = points[:, 0] y = points[:, 1] return linear_delta_mapping(x, y) def linear_delta_mapping(x: np.ndarray, y: np.ndarray): """ Return a linear mapping from the sequence of points. One way to estimate the z-score metric from a uneven sequence is to map the values linearly and compute the weight of each new value. The weight is proportional to the delta in the x axis. Args: x (np.ndarray): values from the x axis y (np.ndarray): values from the y axis Returns: tuple[np.ndarray, np.ndarray]: the weight and the linear mapping """ tdelta = x[1:] - x[:-1] linear_values = (y[1:] + y[:-1]) / 2.0 return tdelta, linear_values def zscore_linear(xi: float, points: np.ndarray) -> float: """ Return the z-score for a single value, using the linear mapping to deal with the uneven sequence of values. Args: xi (float): the single value points (np.ndarray): numpy array with the points (x, y) Returns: float: the z-score for a single value Raises: ValueError: If the lenght of points is smaller than 2. """ if len(points) <= 1: raise ValueError('The number of points is smaller than 2') weights, values = linear_delta_mapping_points(points) mean, std = weighted_avg_and_std(values, weights) return zscore(xi, mean, std) def zscore_array_points(points: np.ndarray) -> np.ndarray: """ Returns the z-score value for all the values in the sequence. It uses linear mapping to deal with the uneven sequence. Args: points (np.ndarray): numpy array with the points (x, y) Returns: np.ndarray: the z-score value for all the values in the sequence """ x = points[:, 0] y = points[:, 1] return zscore_array(x, y) def zscore_array(x: np.ndarray, y: np.ndarray) -> np.ndarray: """ Returns the z-score value for all the values in the sequence. It uses linear mapping to deal with the uneven sequence. Args: x (np.ndarray): values from the x axis y (np.ndarray): values from the y axis Returns: np.ndarray: the z-score value for all the values in the sequence """ weights, values = linear_delta_mapping(x, y) mean, std = weighted_avg_and_std(values, weights) if std != 0.0: return (y - mean)/std else: return y - mean
28.143836
93
0.640058
79439ac28bbfb080bb21b110a889781f1a504560
5,304
py
Python
datasets/pose/data_loader.py
kangcheol/torchcv
561ef4e662fff1b9b47060bb08842408a205e689
[ "Apache-2.0" ]
106
2020-09-08T11:30:28.000Z
2022-03-23T03:07:09.000Z
datasets/pose/data_loader.py
shanhedian2017/torchcv
6414f5acb41c2f35f8e79e477a57eaba65591c66
[ "Apache-2.0" ]
5
2020-09-09T09:45:11.000Z
2022-02-18T03:07:20.000Z
datasets/pose/data_loader.py
shanhedian2017/torchcv
6414f5acb41c2f35f8e79e477a57eaba65591c66
[ "Apache-2.0" ]
10
2020-09-09T08:06:36.000Z
2021-11-01T08:27:15.000Z
#!/usr/bin/env python # -*- coding:utf-8 -*- # Author: Donny You([email protected]) # Class for the Pose Data Loader. from torch.utils import data from datasets.pose.loader.default_loader import DefaultLoader from datasets.pose.loader.openpose_loader import OpenPoseLoader import datasets.tools.pil_aug_transforms as pil_aug_trans import datasets.tools.cv2_aug_transforms as cv2_aug_trans import datasets.tools.transforms as trans from datasets.tools.collate import collate from tools.util.logger import Logger as Log class DataLoader(object): def __init__(self, configer): self.configer = configer if self.configer.get('data', 'image_tool') == 'pil': self.aug_train_transform = pil_aug_trans.PILAugCompose(self.configer, split='train') elif self.configer.get('data', 'image_tool') == 'cv2': self.aug_train_transform = cv2_aug_trans.CV2AugCompose(self.configer, split='train') else: Log.error('Not support {} image tool.'.format(self.configer.get('data', 'image_tool'))) exit(1) if self.configer.get('data', 'image_tool') == 'pil': self.aug_val_transform = pil_aug_trans.PILAugCompose(self.configer, split='val') elif self.configer.get('data', 'image_tool') == 'cv2': self.aug_val_transform = cv2_aug_trans.CV2AugCompose(self.configer, split='val') else: Log.error('Not support {} image tool.'.format(self.configer.get('data', 'image_tool'))) exit(1) self.img_transform = trans.Compose([ trans.ToTensor(), trans.Normalize(**self.configer.get('data', 'normalize')), ]) def get_trainloader(self): if self.configer.get('train.loader', default=None) in [None, 'default']: trainloader = data.DataLoader( DefaultLoader(root_dir=self.configer.get('data', 'data_dir'), dataset='train', aug_transform=self.aug_train_transform, img_transform=self.img_transform, configer=self.configer), batch_size=self.configer.get('train', 'batch_size'), shuffle=True, num_workers=self.configer.get('data', 'workers'), pin_memory=True, drop_last=self.configer.get('data', 'drop_last'), collate_fn=lambda *args: collate( *args, trans_dict=self.configer.get('train', 'data_transformer') ) ) return trainloader elif self.configer.get('train', 'loader') == 'openpose': trainloader = data.DataLoader( OpenPoseLoader(root_dir=self.configer.get('data', 'data_dir'), dataset='train', aug_transform=self.aug_train_transform, img_transform=self.img_transform, configer=self.configer), batch_size=self.configer.get('train', 'batch_size'), shuffle=True, num_workers=self.configer.get('data', 'workers'), pin_memory=True, drop_last=self.configer.get('data', 'drop_last'), collate_fn=lambda *args: collate( *args, trans_dict=self.configer.get('train', 'data_transformer') ) ) return trainloader else: Log.error('{} train loader is invalid.'.format(self.configer.get('train', 'loader'))) exit(1) def get_valloader(self, dataset=None): dataset = 'val' if dataset is None else dataset if self.configer.get('val.loader', default=None) in [None, 'default']: valloader = data.DataLoader( DefaultLoader(root_dir=self.configer.get('data', 'data_dir'), dataset=dataset, aug_transform=self.aug_val_transform, img_transform=self.img_transform, configer=self.configer), batch_size=self.configer.get('val', 'batch_size'), shuffle=False, num_workers=self.configer.get('data', 'workers'), pin_memory=True, collate_fn=lambda *args: collate( *args, trans_dict=self.configer.get('val', 'data_transformer') ) ) return valloader elif self.configer.get('val', 'loader') == 'openpose': valloader = data.DataLoader( OpenPoseLoader(root_dir=self.configer.get('data', 'data_dir'), dataset=dataset, aug_transform=self.aug_val_transform, img_transform=self.img_transform, configer=self.configer), batch_size=self.configer.get('val', 'batch_size'), shuffle=False, num_workers=self.configer.get('data', 'workers'), pin_memory=True, collate_fn=lambda *args: collate( *args, trans_dict=self.configer.get('val', 'data_transformer') ) ) return valloader else: Log.error('{} val loader is invalid.'.format(self.configer.get('val', 'loader'))) exit(1) if __name__ == "__main__": # Test data loader. pass
44.2
99
0.584842
79439ad0ff1608862ace1645a2820a56cf0c8fe0
288
py
Python
profq_data/helpers/nodes/binary_tree_node.py
ProfessorQu/ProfQ-Data
13edf73c90ea2545a9a373fabb78a764f247e575
[ "MIT" ]
null
null
null
profq_data/helpers/nodes/binary_tree_node.py
ProfessorQu/ProfQ-Data
13edf73c90ea2545a9a373fabb78a764f247e575
[ "MIT" ]
null
null
null
profq_data/helpers/nodes/binary_tree_node.py
ProfessorQu/ProfQ-Data
13edf73c90ea2545a9a373fabb78a764f247e575
[ "MIT" ]
null
null
null
class Node: """A class for most data structures """ def __init__(self, data: int) -> None: """The init function Args: data (int): what data to put in the node """ self.data = data self.left = None self.right = None
22.153846
52
0.510417
79439b18c3912597cd972753b041dc6ba5f3ca7f
3,134
py
Python
rcsb/app/chem/convertTools.py
rcsb/py-rcsb_app_chem
c2a2465fa12ecb66dfcaf5fdc352d8b824bd21b4
[ "Apache-2.0" ]
null
null
null
rcsb/app/chem/convertTools.py
rcsb/py-rcsb_app_chem
c2a2465fa12ecb66dfcaf5fdc352d8b824bd21b4
[ "Apache-2.0" ]
1
2021-08-10T14:52:12.000Z
2021-08-10T15:08:43.000Z
rcsb/app/chem/convertTools.py
rcsb/py-rcsb_app_chem
c2a2465fa12ecb66dfcaf5fdc352d8b824bd21b4
[ "Apache-2.0" ]
null
null
null
## # File: convertTools.py # Date: 10-Decmber-2020 jdw # # Updates: # ## # pylint: skip-file __docformat__ = "restructuredtext en" __author__ = "John Westbrook" __email__ = "[email protected]" __license__ = "Apache 2.0" import logging from enum import Enum # from typing import List from fastapi import APIRouter, Path, Query from fastapi.encoders import jsonable_encoder from fastapi.responses import FileResponse # pylint disable=no-name-in-module from pydantic import BaseModel, Field from rcsb.utils.chem.ChemCompDepictWrapper import ChemCompDepictWrapper logger = logging.getLogger(__name__) router = APIRouter() class ConvertIdentifierType(str, Enum): smiles = "SMILES" inchi = "InChI" identifierPdb = "IdentifierPDB" class MoleculeFormatType(str, Enum): mol = "mol" sdf = "sdf" mol2 = "mol2" mol2h = "mol2h" class ConvertMoleculeIdentifier(BaseModel): target: str = Field(None, title="Descriptor string", description="SMILES or InChI chemical descriptor", example="c1ccc(cc1)[C@@H](C(=O)O)N") fmt: MoleculeFormatType = Field(None, title="Molecule format", description="Molecule format type (mol, sdf, mol2, mol2h)", example="mol") @router.get("/to-molfile/{convertIdentifierType}", tags=["convert"]) def toMolFileGet( target: str = Query(None, title="Target molecule identifier", description="SMILES, InChI or PDB identifier", example="c1ccc(cc1)[C@@H](C(=O)O)N"), fmt: MoleculeFormatType = Query(None, title="Molecule format type", description="Molecule format type (mol, sdf, mol2, mol2h)", example="mol"), convertIdentifierType: ConvertIdentifierType = Path( ..., title="Molecule identifier type", description="Molecule identifier type (SMILES, InChI or PDB identifier)", example="SMILES" ), ): logger.debug("Got %r %r %r", convertIdentifierType, target, fmt) # --- fmt = fmt.lower() if fmt else "mol" ccdw = ChemCompDepictWrapper() molfilePath = ccdw.toMolFile(target, convertIdentifierType, fmt=fmt) mimeTypeD = {"mol": "chemical/x-mdl-molfile", "sdf": "chemical/x-mdl-sdfile", "mol2": "chemical/x-mol2", "mol2h": "chemical/x-mol2"} mType = mimeTypeD[fmt] # --- return FileResponse(molfilePath, media_type=mType) @router.post("/to-molfile/{convertIdentifierType}", tags=["convert"]) def toMolFilePost( target: ConvertMoleculeIdentifier, convertIdentifierType: ConvertIdentifierType = Path( ..., title="Molecule identifier type", description="Type of molecule identifier (SMILES, InChI or PDB identifier)", example="SMILES" ), ): qD = jsonable_encoder(target) logger.debug("qD %r", qD) fmt = qD["fmt"].lower() if "fmt" in qD and qD["fmt"] else "mol" logger.debug("Got %r %r %r", convertIdentifierType, target, fmt) # -- ccdw = ChemCompDepictWrapper() molfilePath = ccdw.toMolFile(qD["target"], convertIdentifierType, fmt=fmt) mimeTypeD = {"mol": "chemical/x-mdl-molfile", "sdf": "chemical/x-mdl-sdfile", "mol2": "chemical/x-mol2", "mol2h": "chemical/x-mol2"} mType = mimeTypeD[fmt] # --- return FileResponse(molfilePath, media_type=mType)
35.213483
150
0.702936
79439b25270eae84af82de1bfab959e59655e80f
25,586
py
Python
lib/onigmo/onigmo.py
carrotop/fluent-bit
7083a0edf480f09424f25c8e634e4996bf1e101b
[ "Apache-2.0" ]
3,553
2015-01-29T21:43:36.000Z
2022-03-31T08:41:59.000Z
lib/onigmo/onigmo.py
carrotop/fluent-bit
7083a0edf480f09424f25c8e634e4996bf1e101b
[ "Apache-2.0" ]
4,247
2015-05-20T15:59:38.000Z
2022-03-31T23:19:12.000Z
lib/onigmo/onigmo.py
carrotop/fluent-bit
7083a0edf480f09424f25c8e634e4996bf1e101b
[ "Apache-2.0" ]
1,176
2015-05-20T08:31:11.000Z
2022-03-31T22:40:08.000Z
# -*- coding: utf-8 -*- """Using Onigmo (Oniguruma-mod) regular expression library. This is a low level wrapper for Onigmo regular expression DLL/shared object. (This module does not support static link library.) This provides almost same API as the original C API, so the API is not object oriented. Onigmo DLL (onigmo.dll, libonigmo.so, etc.) must be placed in the default search path. The default search path depends on the system. """ import ctypes import os import sys #__all__ = ["onig_new", "onig_free", # "onig_search", "onig_match", # "onig_region_new", "onig_region_free", # "onig_version", "onig_copyright"] # # Onigmo API version # (Must be synchronized with LTVERSION in configure.ac.) # _onig_api_version = 6 # # Type Definitions # OnigCodePoint = ctypes.c_uint class OnigRegexType(ctypes.Structure): _fields_ = [ ] regex_t = OnigRegexType OnigRegex = ctypes.POINTER(OnigRegexType) try: # Python 2.7 _c_ssize_t = ctypes.c_ssize_t except AttributeError: # Python 2.6 if ctypes.sizeof(ctypes.c_int) == ctypes.sizeof(ctypes.c_void_p): _c_ssize_t = ctypes.c_int elif ctypes.sizeof(ctypes.c_long) == ctypes.sizeof(ctypes.c_void_p): _c_ssize_t = ctypes.c_long elif ctypes.sizeof(ctypes.c_longlong) == ctypes.sizeof(ctypes.c_void_p): _c_ssize_t = ctypes.c_longlong class OnigRegion(ctypes.Structure): _fields_ = [ ("allocated", ctypes.c_int), ("num_regs", ctypes.c_int), ("beg", ctypes.POINTER(_c_ssize_t)), ("end", ctypes.POINTER(_c_ssize_t)), ("history_root",ctypes.c_void_p), ] re_registers = OnigRegion OnigOptionType = ctypes.c_int class OnigEncodingType(ctypes.Structure): _fields_ = [ ("mbc_enc_len", ctypes.c_void_p), ("name", ctypes.c_char_p), ("max_enc_len", ctypes.c_int), ("min_enc_len", ctypes.c_int), ("is_mbc_newline", ctypes.c_void_p), ("mbc_to_code", ctypes.c_void_p), ("code_to_mbclen", ctypes.c_void_p), ("code_to_mbc", ctypes.c_void_p), ("mbc_case_fold", ctypes.c_void_p), ("apply_all_case_fold", ctypes.c_void_p), ("get_case_fold_codes_by_str", ctypes.c_void_p), ("property_name_to_ctype", ctypes.c_void_p), ("is_code_ctype", ctypes.c_void_p), ("get_ctype_code_range", ctypes.c_void_p), ("left_adjust_char_head", ctypes.c_void_p), ("is_allowed_reverse_match",ctypes.c_void_p), ("case_map", ctypes.c_void_p), ("ruby_encoding_index", ctypes.c_int), ("flags", ctypes.c_int), ] OnigEncoding = ctypes.POINTER(OnigEncodingType) class OnigMetaCharTableType(ctypes.Structure): _fields_ = [ ("esc", OnigCodePoint), ("anychar", OnigCodePoint), ("anytime", OnigCodePoint), ("zero_or_one_time",OnigCodePoint), ("one_or_one_time", OnigCodePoint), ("anychar_anytime", OnigCodePoint), ] class OnigSyntaxType(ctypes.Structure): _fields_ = [ ("op", ctypes.c_uint), ("op2", ctypes.c_uint), ("behavior", ctypes.c_uint), ("options", OnigOptionType), ("meta_char_table", OnigMetaCharTableType), ] class OnigErrorInfo(ctypes.Structure): _fields_ = [ ("enc", OnigEncoding), ("par", ctypes.c_char_p), ("par_end", ctypes.c_char_p), ] # load the DLL or the shared library if os.name in ("nt", "ce"): # Win32 _libname = "onigmo.dll" try: libonig = ctypes.cdll.LoadLibrary(_libname) except OSError: # Sometimes MinGW version has a prefix "lib". _libname = "libonigmo.dll" try: libonig = ctypes.cdll.LoadLibrary(_libname) except OSError: # Sometimes MinGW version has the API version. _libname = "libonigmo-%d.dll" % _onig_api_version libonig = ctypes.cdll.LoadLibrary(_libname) elif sys.platform == "cygwin": # Cygwin _libname = "cygonigmo-%d.dll" % _onig_api_version libonig = ctypes.cdll.LoadLibrary(_libname) elif sys.platform == "msys": # MSYS/MSYS2 _libname = "msys-onigmo-%d.dll" % _onig_api_version libonig = ctypes.cdll.LoadLibrary(_libname) elif sys.platform == "darwin": # Mac _libname = "libonigmo.dylib" libonig = ctypes.cdll.LoadLibrary(_libname) else: # Unix _libname = "libonigmo.so" libonig = ctypes.cdll.LoadLibrary(_libname) # # Encodings # def _load_encoding(enc): return ctypes.pointer(OnigEncodingType.in_dll(libonig, enc)) ONIG_ENCODING_ASCII = _load_encoding("OnigEncodingASCII") ONIG_ENCODING_ISO_8859_1 = _load_encoding("OnigEncodingISO_8859_1") ONIG_ENCODING_ISO_8859_2 = _load_encoding("OnigEncodingISO_8859_2") ONIG_ENCODING_ISO_8859_3 = _load_encoding("OnigEncodingISO_8859_3") ONIG_ENCODING_ISO_8859_4 = _load_encoding("OnigEncodingISO_8859_4") ONIG_ENCODING_ISO_8859_5 = _load_encoding("OnigEncodingISO_8859_5") ONIG_ENCODING_ISO_8859_6 = _load_encoding("OnigEncodingISO_8859_6") ONIG_ENCODING_ISO_8859_7 = _load_encoding("OnigEncodingISO_8859_7") ONIG_ENCODING_ISO_8859_8 = _load_encoding("OnigEncodingISO_8859_8") ONIG_ENCODING_ISO_8859_9 = _load_encoding("OnigEncodingISO_8859_9") ONIG_ENCODING_ISO_8859_10 = _load_encoding("OnigEncodingISO_8859_10") ONIG_ENCODING_ISO_8859_11 = _load_encoding("OnigEncodingISO_8859_11") ONIG_ENCODING_ISO_8859_13 = _load_encoding("OnigEncodingISO_8859_13") ONIG_ENCODING_ISO_8859_14 = _load_encoding("OnigEncodingISO_8859_14") ONIG_ENCODING_ISO_8859_15 = _load_encoding("OnigEncodingISO_8859_15") ONIG_ENCODING_ISO_8859_16 = _load_encoding("OnigEncodingISO_8859_16") ONIG_ENCODING_UTF_8 = _load_encoding("OnigEncodingUTF_8") ONIG_ENCODING_UTF_16LE = _load_encoding("OnigEncodingUTF_16LE") ONIG_ENCODING_UTF_16BE = _load_encoding("OnigEncodingUTF_16BE") ONIG_ENCODING_UTF_32LE = _load_encoding("OnigEncodingUTF_32LE") ONIG_ENCODING_UTF_32BE = _load_encoding("OnigEncodingUTF_32BE") ONIG_ENCODING_UTF8 = ONIG_ENCODING_UTF_8 ONIG_ENCODING_UTF16_LE = ONIG_ENCODING_UTF_16LE ONIG_ENCODING_UTF16_BE = ONIG_ENCODING_UTF_16BE ONIG_ENCODING_UTF32_LE = ONIG_ENCODING_UTF_32LE ONIG_ENCODING_UTF32_BE = ONIG_ENCODING_UTF_32BE ONIG_ENCODING_EUC_JP = _load_encoding("OnigEncodingEUC_JP") ONIG_ENCODING_EUC_TW = _load_encoding("OnigEncodingEUC_TW") ONIG_ENCODING_EUC_KR = _load_encoding("OnigEncodingEUC_KR") ONIG_ENCODING_EUC_CN = _load_encoding("OnigEncodingEUC_CN") ONIG_ENCODING_SHIFT_JIS = _load_encoding("OnigEncodingShift_JIS") ONIG_ENCODING_WINDOWS_31J = _load_encoding("OnigEncodingWindows_31J") ONIG_ENCODING_SJIS = ONIG_ENCODING_SHIFT_JIS ONIG_ENCODING_CP932 = ONIG_ENCODING_WINDOWS_31J #ONIG_ENCODING_KOI8 = _load_encoding("OnigEncodingKOI8") ONIG_ENCODING_KOI8_R = _load_encoding("OnigEncodingKOI8_R") ONIG_ENCODING_KOI8_U = _load_encoding("OnigEncodingKOI8_U") ONIG_ENCODING_WINDOWS_1250 = _load_encoding("OnigEncodingWindows_1250") ONIG_ENCODING_WINDOWS_1251 = _load_encoding("OnigEncodingWindows_1251") ONIG_ENCODING_WINDOWS_1252 = _load_encoding("OnigEncodingWindows_1252") ONIG_ENCODING_WINDOWS_1253 = _load_encoding("OnigEncodingWindows_1253") ONIG_ENCODING_WINDOWS_1254 = _load_encoding("OnigEncodingWindows_1254") ONIG_ENCODING_WINDOWS_1257 = _load_encoding("OnigEncodingWindows_1257") ONIG_ENCODING_CP1250 = ONIG_ENCODING_WINDOWS_1250 ONIG_ENCODING_CP1251 = ONIG_ENCODING_WINDOWS_1251 ONIG_ENCODING_CP1252 = ONIG_ENCODING_WINDOWS_1252 ONIG_ENCODING_CP1253 = ONIG_ENCODING_WINDOWS_1253 ONIG_ENCODING_CP1254 = ONIG_ENCODING_WINDOWS_1254 ONIG_ENCODING_CP1257 = ONIG_ENCODING_WINDOWS_1257 ONIG_ENCODING_BIG5 = _load_encoding("OnigEncodingBIG5") ONIG_ENCODING_GB18030 = _load_encoding("OnigEncodingGB18030") #ONIG_ENCODING_UNDEF = None # # Syntaxes # def _load_syntax(syn): return ctypes.pointer(OnigSyntaxType.in_dll(libonig, syn)) ONIG_SYNTAX_ASIS = _load_syntax("OnigSyntaxASIS") ONIG_SYNTAX_POSIX_BASIC = _load_syntax("OnigSyntaxPosixBasic") ONIG_SYNTAX_POSIX_EXTENDED = _load_syntax("OnigSyntaxPosixExtended") ONIG_SYNTAX_EMACS = _load_syntax("OnigSyntaxEmacs") ONIG_SYNTAX_GREP = _load_syntax("OnigSyntaxGrep") ONIG_SYNTAX_GNU_REGEX = _load_syntax("OnigSyntaxGnuRegex") ONIG_SYNTAX_JAVA = _load_syntax("OnigSyntaxJava") ONIG_SYNTAX_PERL = _load_syntax("OnigSyntaxPerl") ONIG_SYNTAX_PERL58 = _load_syntax("OnigSyntaxPerl58") ONIG_SYNTAX_PERL58_NG = _load_syntax("OnigSyntaxPerl58_NG") ONIG_SYNTAX_RUBY = _load_syntax("OnigSyntaxRuby") ONIG_SYNTAX_PYTHON = _load_syntax("OnigSyntaxPython") ONIG_SYNTAX_DEFAULT = ctypes.POINTER(OnigSyntaxType).in_dll( libonig, "OnigDefaultSyntax") # # Constants # ONIG_MAX_ERROR_MESSAGE_LEN = 90 # options ONIG_OPTION_NONE = 0 ONIG_OPTION_IGNORECASE = 1 ONIG_OPTION_EXTEND = (ONIG_OPTION_IGNORECASE << 1) ONIG_OPTION_MULTILINE = (ONIG_OPTION_EXTEND << 1) ONIG_OPTION_DOTALL = ONIG_OPTION_MULTILINE ONIG_OPTION_SINGLELINE = (ONIG_OPTION_MULTILINE << 1) ONIG_OPTION_FIND_LONGEST = (ONIG_OPTION_SINGLELINE << 1) ONIG_OPTION_FIND_NOT_EMPTY = (ONIG_OPTION_FIND_LONGEST << 1) ONIG_OPTION_NEGATE_SINGLELINE = (ONIG_OPTION_FIND_NOT_EMPTY << 1) ONIG_OPTION_DONT_CAPTURE_GROUP = (ONIG_OPTION_NEGATE_SINGLELINE << 1) ONIG_OPTION_CAPTURE_GROUP = (ONIG_OPTION_DONT_CAPTURE_GROUP << 1) # options (search time) ONIG_OPTION_NOTBOL = (ONIG_OPTION_CAPTURE_GROUP << 1) ONIG_OPTION_NOTEOL = (ONIG_OPTION_NOTBOL << 1) ONIG_OPTION_NOTBOS = (ONIG_OPTION_NOTEOL << 1) ONIG_OPTION_NOTEOS = (ONIG_OPTION_NOTBOS << 1) # options (ctype range) ONIG_OPTION_ASCII_RANGE = (ONIG_OPTION_NOTEOS << 1) ONIG_OPTION_POSIX_BRACKET_ALL_RANGE = (ONIG_OPTION_ASCII_RANGE << 1) ONIG_OPTION_WORD_BOUND_ALL_RANGE = (ONIG_OPTION_POSIX_BRACKET_ALL_RANGE << 1) # options (newline) ONIG_OPTION_NEWLINE_CRLF = (ONIG_OPTION_WORD_BOUND_ALL_RANGE << 1) ONIG_OPTION_DEFAULT = ONIG_OPTION_NONE # syntax (operators) ONIG_SYN_OP_VARIABLE_META_CHARACTERS = (1<<0) ONIG_SYN_OP_DOT_ANYCHAR = (1<<1) ONIG_SYN_OP_ASTERISK_ZERO_INF = (1<<2) ONIG_SYN_OP_ESC_ASTERISK_ZERO_INF = (1<<3) ONIG_SYN_OP_PLUS_ONE_INF = (1<<4) ONIG_SYN_OP_ESC_PLUS_ONE_INF = (1<<5) ONIG_SYN_OP_QMARK_ZERO_ONE = (1<<6) ONIG_SYN_OP_ESC_QMARK_ZERO_ONE = (1<<7) ONIG_SYN_OP_BRACE_INTERVAL = (1<<8) ONIG_SYN_OP_ESC_BRACE_INTERVAL = (1<<9) ONIG_SYN_OP_VBAR_ALT = (1<<10) ONIG_SYN_OP_ESC_VBAR_ALT = (1<<11) ONIG_SYN_OP_LPAREN_SUBEXP = (1<<12) ONIG_SYN_OP_ESC_LPAREN_SUBEXP = (1<<13) ONIG_SYN_OP_ESC_AZ_BUF_ANCHOR = (1<<14) ONIG_SYN_OP_ESC_CAPITAL_G_BEGIN_ANCHOR = (1<<15) ONIG_SYN_OP_DECIMAL_BACKREF = (1<<16) ONIG_SYN_OP_BRACKET_CC = (1<<17) ONIG_SYN_OP_ESC_W_WORD = (1<<18) ONIG_SYN_OP_ESC_LTGT_WORD_BEGIN_END = (1<<19) ONIG_SYN_OP_ESC_B_WORD_BOUND = (1<<20) ONIG_SYN_OP_ESC_S_WHITE_SPACE = (1<<21) ONIG_SYN_OP_ESC_D_DIGIT = (1<<22) ONIG_SYN_OP_LINE_ANCHOR = (1<<23) ONIG_SYN_OP_POSIX_BRACKET = (1<<24) ONIG_SYN_OP_QMARK_NON_GREEDY = (1<<25) ONIG_SYN_OP_ESC_CONTROL_CHARS = (1<<26) ONIG_SYN_OP_ESC_C_CONTROL = (1<<27) ONIG_SYN_OP_ESC_OCTAL3 = (1<<28) ONIG_SYN_OP_ESC_X_HEX2 = (1<<29) ONIG_SYN_OP_ESC_X_BRACE_HEX8 = (1<<30) ONIG_SYN_OP_ESC_O_BRACE_OCTAL = (1<<31) ONIG_SYN_OP2_ESC_CAPITAL_Q_QUOTE = (1<<0) ONIG_SYN_OP2_QMARK_GROUP_EFFECT = (1<<1) ONIG_SYN_OP2_OPTION_PERL = (1<<2) ONIG_SYN_OP2_OPTION_RUBY = (1<<3) ONIG_SYN_OP2_PLUS_POSSESSIVE_REPEAT = (1<<4) ONIG_SYN_OP2_PLUS_POSSESSIVE_INTERVAL = (1<<5) ONIG_SYN_OP2_CCLASS_SET_OP = (1<<6) ONIG_SYN_OP2_QMARK_LT_NAMED_GROUP = (1<<7) ONIG_SYN_OP2_ESC_K_NAMED_BACKREF = (1<<8) ONIG_SYN_OP2_ESC_G_SUBEXP_CALL = (1<<9) ONIG_SYN_OP2_ATMARK_CAPTURE_HISTORY = (1<<10) ONIG_SYN_OP2_ESC_CAPITAL_C_BAR_CONTROL = (1<<11) ONIG_SYN_OP2_ESC_CAPITAL_M_BAR_META = (1<<12) ONIG_SYN_OP2_ESC_V_VTAB = (1<<13) ONIG_SYN_OP2_ESC_U_HEX4 = (1<<14) ONIG_SYN_OP2_ESC_GNU_BUF_ANCHOR = (1<<15) ONIG_SYN_OP2_ESC_P_BRACE_CHAR_PROPERTY = (1<<16) ONIG_SYN_OP2_ESC_P_BRACE_CIRCUMFLEX_NOT = (1<<17) #ONIG_SYN_OP2_CHAR_PROPERTY_PREFIX_IS = (1<<18) ONIG_SYN_OP2_ESC_H_XDIGIT = (1<<19) ONIG_SYN_OP2_INEFFECTIVE_ESCAPE = (1<<20) ONIG_SYN_OP2_ESC_CAPITAL_R_LINEBREAK = (1<<21) ONIG_SYN_OP2_ESC_CAPITAL_X_EXTENDED_GRAPHEME_CLUSTER = (1<<22) ONIG_SYN_OP2_ESC_V_VERTICAL_WHITESPACE = (1<<23) ONIG_SYN_OP2_ESC_H_HORIZONTAL_WHITESPACE = (1<<24) ONIG_SYN_OP2_ESC_CAPITAL_K_KEEP = (1<<25) ONIG_SYN_OP2_ESC_G_BRACE_BACKREF = (1<<26) ONIG_SYN_OP2_QMARK_SUBEXP_CALL = (1<<27) ONIG_SYN_OP2_QMARK_VBAR_BRANCH_RESET = (1<<28) ONIG_SYN_OP2_QMARK_LPAREN_CONDITION = (1<<29) ONIG_SYN_OP2_QMARK_CAPITAL_P_NAMED_GROUP = (1<<30) ONIG_SYN_OP2_OPTION_JAVA = (1<<31) # syntax (behavior) ONIG_SYN_CONTEXT_INDEP_ANCHORS = (1<<31) ONIG_SYN_CONTEXT_INDEP_REPEAT_OPS = (1<<0) ONIG_SYN_CONTEXT_INVALID_REPEAT_OPS = (1<<1) ONIG_SYN_ALLOW_UNMATCHED_CLOSE_SUBEXP = (1<<2) ONIG_SYN_ALLOW_INVALID_INTERVAL = (1<<3) ONIG_SYN_ALLOW_INTERVAL_LOW_ABBREV = (1<<4) ONIG_SYN_STRICT_CHECK_BACKREF = (1<<5) ONIG_SYN_DIFFERENT_LEN_ALT_LOOK_BEHIND = (1<<6) ONIG_SYN_CAPTURE_ONLY_NAMED_GROUP = (1<<7) ONIG_SYN_ALLOW_MULTIPLEX_DEFINITION_NAME = (1<<8) ONIG_SYN_FIXED_INTERVAL_IS_GREEDY_ONLY = (1<<9) ONIG_SYN_ALLOW_MULTIPLEX_DEFINITION_NAME_CALL = (1<<10) ONIG_SYN_USE_LEFT_MOST_NAMED_GROUP = (1<<11) # (behavior) in char class [...] ONIG_SYN_NOT_NEWLINE_IN_NEGATIVE_CC = (1<<20) ONIG_SYN_BACKSLASH_ESCAPE_IN_CC = (1<<21) ONIG_SYN_ALLOW_EMPTY_RANGE_IN_CC = (1<<22) ONIG_SYN_ALLOW_DOUBLE_RANGE_OP_IN_CC = (1<<23) # syntax (behavior) warning ONIG_SYN_WARN_CC_OP_NOT_ESCAPED = (1<<24) ONIG_SYN_WARN_REDUNDANT_NESTED_REPEAT = (1<<25) ONIG_SYN_WARN_CC_DUP = (1<<26) # meta character specifiers (onig_set_meta_char()) ONIG_META_CHAR_ESCAPE = 0 ONIG_META_CHAR_ANYCHAR = 1 ONIG_META_CHAR_ANYTIME = 2 ONIG_META_CHAR_ZERO_OR_ONE_TIME = 3 ONIG_META_CHAR_ONE_OR_MORE_TIME = 4 ONIG_META_CHAR_ANYCHAR_ANYTIME = 5 ONIG_INEFFECTIVE_META_CHAR = 0 # error codes def ONIG_IS_PATTERN_ERROR(ecode): return ((ecode) <= -100 and (ecode) > -1000) # normal return ONIG_NORMAL = 0 ONIG_MISMATCH = -1 ONIG_NO_SUPPORT_CONFIG = -2 # internal error ONIGERR_MEMORY = -5 ONIGERR_TYPE_BUG = -6 ONIGERR_PARSER_BUG = -11 ONIGERR_STACK_BUG = -12 ONIGERR_UNDEFINED_BYTECODE = -13 ONIGERR_UNEXPECTED_BYTECODE = -14 ONIGERR_MATCH_STACK_LIMIT_OVER = -15 ONIGERR_PARSE_DEPTH_LIMIT_OVER = -16 ONIGERR_DEFAULT_ENCODING_IS_NOT_SET = -21 ONIGERR_SPECIFIED_ENCODING_CANT_CONVERT_TO_WIDE_CHAR = -22 # general error ONIGERR_INVALID_ARGUMENT = -30 # syntax error ONIGERR_END_PATTERN_AT_LEFT_BRACE = -100 ONIGERR_END_PATTERN_AT_LEFT_BRACKET = -101 ONIGERR_EMPTY_CHAR_CLASS = -102 ONIGERR_PREMATURE_END_OF_CHAR_CLASS = -103 ONIGERR_END_PATTERN_AT_ESCAPE = -104 ONIGERR_END_PATTERN_AT_META = -105 ONIGERR_END_PATTERN_AT_CONTROL = -106 ONIGERR_META_CODE_SYNTAX = -108 ONIGERR_CONTROL_CODE_SYNTAX = -109 ONIGERR_CHAR_CLASS_VALUE_AT_END_OF_RANGE = -110 ONIGERR_CHAR_CLASS_VALUE_AT_START_OF_RANGE = -111 ONIGERR_UNMATCHED_RANGE_SPECIFIER_IN_CHAR_CLASS = -112 ONIGERR_TARGET_OF_REPEAT_OPERATOR_NOT_SPECIFIED = -113 ONIGERR_TARGET_OF_REPEAT_OPERATOR_INVALID = -114 ONIGERR_NESTED_REPEAT_OPERATOR = -115 ONIGERR_UNMATCHED_CLOSE_PARENTHESIS = -116 ONIGERR_END_PATTERN_WITH_UNMATCHED_PARENTHESIS = -117 ONIGERR_END_PATTERN_IN_GROUP = -118 ONIGERR_UNDEFINED_GROUP_OPTION = -119 ONIGERR_INVALID_POSIX_BRACKET_TYPE = -121 ONIGERR_INVALID_LOOK_BEHIND_PATTERN = -122 ONIGERR_INVALID_REPEAT_RANGE_PATTERN = -123 ONIGERR_INVALID_CONDITION_PATTERN = -124 # values error (syntax error) ONIGERR_TOO_BIG_NUMBER = -200 ONIGERR_TOO_BIG_NUMBER_FOR_REPEAT_RANGE = -201 ONIGERR_UPPER_SMALLER_THAN_LOWER_IN_REPEAT_RANGE = -202 ONIGERR_EMPTY_RANGE_IN_CHAR_CLASS = -203 ONIGERR_MISMATCH_CODE_LENGTH_IN_CLASS_RANGE = -204 ONIGERR_TOO_MANY_MULTI_BYTE_RANGES = -205 ONIGERR_TOO_SHORT_MULTI_BYTE_STRING = -206 ONIGERR_TOO_BIG_BACKREF_NUMBER = -207 ONIGERR_INVALID_BACKREF = -208 ONIGERR_NUMBERED_BACKREF_OR_CALL_NOT_ALLOWED = -209 ONIGERR_TOO_MANY_CAPTURE_GROUPS = -210 ONIGERR_TOO_SHORT_DIGITS = -211 ONIGERR_TOO_LONG_WIDE_CHAR_VALUE = -212 ONIGERR_EMPTY_GROUP_NAME = -214 ONIGERR_INVALID_GROUP_NAME = -215 ONIGERR_INVALID_CHAR_IN_GROUP_NAME = -216 ONIGERR_UNDEFINED_NAME_REFERENCE = -217 ONIGERR_UNDEFINED_GROUP_REFERENCE = -218 ONIGERR_MULTIPLEX_DEFINED_NAME = -219 ONIGERR_MULTIPLEX_DEFINITION_NAME_CALL = -220 ONIGERR_NEVER_ENDING_RECURSION = -221 ONIGERR_GROUP_NUMBER_OVER_FOR_CAPTURE_HISTORY = -222 ONIGERR_INVALID_CHAR_PROPERTY_NAME = -223 ONIGERR_INVALID_CODE_POINT_VALUE = -400 ONIGERR_INVALID_WIDE_CHAR_VALUE = -400 ONIGERR_TOO_BIG_WIDE_CHAR_VALUE = -401 ONIGERR_NOT_SUPPORTED_ENCODING_COMBINATION = -402 ONIGERR_INVALID_COMBINATION_OF_OPTIONS = -403 # errors related to thread #ONIGERR_OVER_THREAD_PASS_LIMIT_COUNT = -1001 OnigWarnFunc = ctypes.CFUNCTYPE(None, ctypes.c_char_p) # # Onigmo APIs # # onig_init onig_init = libonig.onig_init # onig_error_code_to_str libonig.onig_error_code_to_str.argtypes = [ctypes.c_char_p, _c_ssize_t, ctypes.POINTER(OnigErrorInfo)] def onig_error_code_to_str(err_buf, err_code, err_info=None): return libonig.onig_error_code_to_str(err_buf, err_code, err_info) # onig_set_warn_func libonig.onig_set_warn_func.argtypes = [OnigWarnFunc] onig_set_warn_func = libonig.onig_set_warn_func # onig_set_verb_warn_func libonig.onig_set_verb_warn_func.argtypes = [OnigWarnFunc] onig_set_verb_warn_func = libonig.onig_set_verb_warn_func # onig_new libonig.onig_new.argtypes = [ctypes.POINTER(OnigRegex), ctypes.c_void_p, ctypes.c_void_p, OnigOptionType, OnigEncoding, ctypes.POINTER(OnigSyntaxType), ctypes.POINTER(OnigErrorInfo)] onig_new = libonig.onig_new # onig_reg_init # onig_new_without_alloc # onig_new_deluxe # onig_free libonig.onig_free.argtypes = [OnigRegex] onig_free = libonig.onig_free # onig_free_body # onig_search libonig.onig_search.argtypes = [OnigRegex, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.POINTER(OnigRegion), OnigOptionType] libonig.onig_search.restype = _c_ssize_t onig_search = libonig.onig_search # onig_search_gpos libonig.onig_search_gpos.argtypes = [OnigRegex, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.POINTER(OnigRegion), OnigOptionType] libonig.onig_search_gpos.restype = _c_ssize_t onig_search_gpos = libonig.onig_search_gpos # onig_match libonig.onig_match.argtypes = [OnigRegex, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.POINTER(OnigRegion), OnigOptionType] libonig.onig_match.restype = _c_ssize_t onig_match = libonig.onig_match # onig_region_new libonig.onig_region_new.argtypes = [] libonig.onig_region_new.restype = ctypes.POINTER(OnigRegion) onig_region_new = libonig.onig_region_new # onig_region_init # onig_region_free libonig.onig_region_free.argtypes = [ctypes.POINTER(OnigRegion), ctypes.c_int] onig_region_free = libonig.onig_region_free # onig_region_copy # onig_region_clear # onig_region_resize # onig_region_set # onig_name_to_group_numbers # onig_name_to_backref_number # onig_foreach_name # onig_number_of_names # onig_number_of_captures # onig_number_of_capture_histories # onig_get_capture_tree # onig_capture_tree_traverse # onig_noname_group_capture_is_active # onig_get_encoding # onig_get_options # onig_get_case_fold_flag # onig_get_syntax # onig_set_default_syntax libonig.onig_set_default_syntax.argtypes = [ctypes.POINTER(OnigSyntaxType)] libonig.onig_set_default_syntax.restype = ctypes.c_int onig_set_default_syntax = libonig.onig_set_default_syntax # onig_copy_syntax libonig.onig_copy_syntax.argtypes = [ctypes.POINTER(OnigSyntaxType), ctypes.POINTER(OnigSyntaxType)] onig_copy_syntax = libonig.onig_copy_syntax # onig_get_syntax_op libonig.onig_get_syntax_op.argtypes = [ctypes.POINTER(OnigSyntaxType)] libonig.onig_get_syntax_op.restype = ctypes.c_int onig_get_syntax_op = libonig.onig_get_syntax_op # onig_get_syntax_op2 libonig.onig_get_syntax_op2.argtypes = [ctypes.POINTER(OnigSyntaxType)] libonig.onig_get_syntax_op2.restype = ctypes.c_int onig_get_syntax_op2 = libonig.onig_get_syntax_op2 # onig_get_syntax_behavior libonig.onig_get_syntax_behavior.argtypes = [ctypes.POINTER(OnigSyntaxType)] libonig.onig_get_syntax_behavior.restype = ctypes.c_int onig_get_syntax_behavior = libonig.onig_get_syntax_behavior # onig_get_syntax_options libonig.onig_get_syntax_options.argtypes = [ctypes.POINTER(OnigSyntaxType)] libonig.onig_get_syntax_options.restype = ctypes.c_int onig_get_syntax_options = libonig.onig_get_syntax_options # onig_set_syntax_op libonig.onig_set_syntax_op.argtypes = [ctypes.POINTER(OnigSyntaxType), ctypes.c_int] onig_set_syntax_op = libonig.onig_set_syntax_op # onig_set_syntax_op2 libonig.onig_set_syntax_op2.argtypes = [ctypes.POINTER(OnigSyntaxType), ctypes.c_int] onig_set_syntax_op2 = libonig.onig_set_syntax_op2 # onig_set_syntax_behavior libonig.onig_set_syntax_behavior.argtypes = [ctypes.POINTER(OnigSyntaxType), ctypes.c_int] onig_set_syntax_behavior = libonig.onig_set_syntax_behavior # onig_set_syntax_options libonig.onig_set_syntax_options.argtypes = [ctypes.POINTER(OnigSyntaxType), ctypes.c_int] onig_set_syntax_options = libonig.onig_set_syntax_options # onig_set_meta_char # onig_copy_encoding # onig_get_default_case_fold_flag # onig_set_default_case_fold_flag # onig_get_match_stack_limit_size libonig.onig_get_match_stack_limit_size.argtypes = [] libonig.onig_get_match_stack_limit_size.restype = ctypes.c_int onig_get_match_stack_limit_size = libonig.onig_get_match_stack_limit_size # onig_set_match_stack_limit_size libonig.onig_set_match_stack_limit_size.argtypes = [ctypes.c_int] libonig.onig_set_match_stack_limit_size.restype = ctypes.c_int onig_set_match_stack_limit_size = libonig.onig_set_match_stack_limit_size # onig_get_parse_depth_limit libonig.onig_get_parse_depth_limit.argtypes = [] libonig.onig_get_parse_depth_limit.restype = ctypes.c_int onig_get_parse_depth_limit = libonig.onig_get_parse_depth_limit # onig_set_parse_depth_limit libonig.onig_set_parse_depth_limit.argtypes = [ctypes.c_int] libonig.onig_set_parse_depth_limit.restype = ctypes.c_int onig_set_parse_depth_limit = libonig.onig_set_parse_depth_limit # onig_end libonig.onig_end.argtypes = [] onig_end = libonig.onig_end # onig_version libonig.onig_version.argtypes = [] libonig.onig_version.restype = ctypes.c_char_p def onig_version(): return libonig.onig_version().decode() # onig_copyright libonig.onig_copyright.argtypes = [] libonig.onig_copyright.restype = ctypes.c_char_p def onig_copyright(): return libonig.onig_copyright().decode()
40.742038
80
0.70222
79439cc92631b22d0a5023cbac9a9ec9ecb29493
9,505
py
Python
sanic_ext/extensions/openapi/builders.py
ChihweiLHBird/sanic-ext
f0193a0cc89650a43c50fe543b43d1832307896f
[ "MIT" ]
null
null
null
sanic_ext/extensions/openapi/builders.py
ChihweiLHBird/sanic-ext
f0193a0cc89650a43c50fe543b43d1832307896f
[ "MIT" ]
null
null
null
sanic_ext/extensions/openapi/builders.py
ChihweiLHBird/sanic-ext
f0193a0cc89650a43c50fe543b43d1832307896f
[ "MIT" ]
null
null
null
""" Builders for the oas3 object types These are completely internal, so can be refactored if desired without concern for breaking user experience """ from collections import defaultdict from typing import Optional from ...utils.route import remove_nulls, remove_nulls_from_kwargs from .autodoc import YamlStyleParametersParser from .definitions import ( Any, Components, Contact, Dict, ExternalDocumentation, Info, License, List, OpenAPI, Operation, Parameter, PathItem, RequestBody, Response, Server, Tag, ) class OperationBuilder: summary: str description: str operationId: str requestBody: RequestBody externalDocs: ExternalDocumentation tags: List[str] security: List[Any] parameters: List[Parameter] responses: Dict[str, Response] callbacks: List[str] # TODO deprecated: bool = False def __init__(self): self.tags = [] self.security = [] self.parameters = [] self.responses = {} self._default = {} self._autodoc = None self._exclude = False self._allow_autodoc = True def name(self, value: str): self.operationId = value def describe(self, summary: str = None, description: str = None): if summary: self.summary = summary if description: self.description = description def document(self, url: str, description: str = None): self.externalDocs = ExternalDocumentation.make(url, description) def tag(self, *args: str): for arg in args: self.tags.append(arg) def deprecate(self): self.deprecated = True def body(self, content: Any, **kwargs): self.requestBody = RequestBody.make(content, **kwargs) def parameter( self, name: str, schema: Any, location: str = "query", **kwargs ): self.parameters.append( Parameter.make(name, schema, location, **kwargs) ) def response( self, status, content: Any = None, description: str = None, **kwargs ): self.responses[status] = Response.make(content, description, **kwargs) def secured(self, *args, **kwargs): items = {**{v: [] for v in args}, **kwargs} gates = {} for name, params in items.items(): gate = name.__name__ if isinstance(name, type) else name gates[gate] = params self.security.append(gates) def disable_autodoc(self): self._allow_autodoc = False def build(self): operation_dict = self._build_merged_dict() if "responses" not in operation_dict: # todo -- look into more consistent default response format operation_dict["responses"] = {"default": {"description": "OK"}} return Operation(**operation_dict) def _build_merged_dict(self): defined_dict = self.__dict__.copy() autodoc_dict = self._autodoc or {} default_dict = self._default merged_dict = {} for d in (default_dict, autodoc_dict, defined_dict): cleaned = { k: v for k, v in d.items() if v and not k.startswith("_") } merged_dict.update(cleaned) return merged_dict def autodoc(self, docstring: str): y = YamlStyleParametersParser(docstring) self._autodoc = y.to_openAPI_3() def exclude(self, flag: bool = True): self._exclude = flag class OperationStore(defaultdict): _singleton = None def __new__(cls) -> Any: if not cls._singleton: cls._singleton = super().__new__(cls) return cls._singleton def __init__(self): super().__init__(OperationBuilder) @classmethod def reset(cls): cls._singleton = None class SpecificationBuilder: _urls: List[str] _title: str _version: str _description: Optional[str] _terms: Optional[str] _contact: Contact _license: License _paths: Dict[str, Dict[str, OperationBuilder]] _tags: Dict[str, Tag] _components: Dict[str, Any] _servers: List[Server] # _components: ComponentsBuilder # deliberately not included _singleton = None def __new__(cls) -> Any: if not cls._singleton: cls._singleton = super().__new__(cls) cls._setup_instance(cls._singleton) return cls._singleton @classmethod def _setup_instance(cls, instance): instance._components = defaultdict(dict) instance._contact = None instance._description = None instance._external = None instance._license = None instance._paths = defaultdict(dict) instance._servers = [] instance._tags = {} instance._terms = None instance._title = None instance._urls = [] instance._version = None @classmethod def reset(cls): cls._singleton = None @property def tags(self): return self._tags def url(self, value: str): self._urls.append(value) def describe( self, title: str, version: str, description: Optional[str] = None, terms: Optional[str] = None, ): self._title = title self._version = version self._description = description self._terms = terms def _do_describe( self, title: str, version: str, description: Optional[str] = None, terms: Optional[str] = None, ): if any([self._title, self._version, self._description, self._terms]): return self.describe(title, version, description, terms) def tag(self, name: str, description: Optional[str] = None, **kwargs): self._tags[name] = Tag(name, description=description, **kwargs) def external(self, url: str, description: Optional[str] = None, **kwargs): self._external = ExternalDocumentation(url, description=description) def contact(self, name: str = None, url: str = None, email: str = None): kwargs = remove_nulls_from_kwargs(name=name, url=url, email=email) self._contact = Contact(**kwargs) def _do_contact( self, name: str = None, url: str = None, email: str = None ): if self._contact: return self.contact(name, url, email) def license(self, name: str = None, url: str = None): if name is not None: self._license = License(name, url=url) def _do_license(self, name: str = None, url: str = None): if self._license: return self.license(name, url) def operation(self, path: str, method: str, operation: OperationBuilder): for _tag in operation.tags: if _tag in self._tags.keys(): continue self._tags[_tag] = Tag(_tag) self._paths[path][method.lower()] = operation def add_component(self, location: str, name: str, obj: Any): self._components[location].update({name: obj}) def has_component(self, location: str, name: str) -> bool: return name in self._components.get(location, {}) def raw(self, data): if "info" in data: self.describe( data["info"].get("title"), data["info"].get("version"), data["info"].get("description"), data["info"].get("terms"), ) if "servers" in data: for server in data["servers"]: self._servers.append(Server(**server)) if "paths" in data: self._paths.update(data["paths"]) if "components" in data: for location, component in data["components"].items(): self._components[location].update(component) if "security" in data: ... if "tags" in data: for tag in data["tags"]: self.tag(**tag) if "externalDocs" in data: self.external(**data["externalDocs"]) def build(self) -> OpenAPI: info = self._build_info() paths = self._build_paths() tags = self._build_tags() url_servers = getattr(self, "_urls", None) servers = self._servers if url_servers is not None: for url_server in url_servers: servers.append(Server(url=url_server)) components = ( Components(**self._components) if self._components else None ) return OpenAPI( info, paths, tags=tags, servers=servers, components=components, externalDocs=self._external, ) def _build_info(self) -> Info: kwargs = remove_nulls( { "description": self._description, "termsOfService": self._terms, "license": self._license, "contact": self._contact, }, deep=False, ) return Info(self._title, self._version, **kwargs) def _build_tags(self): return [self._tags[k] for k in self._tags] def _build_paths(self) -> Dict: paths = {} for path, operations in self._paths.items(): paths[path] = PathItem( **{ k: v if isinstance(v, dict) else v.build() for k, v in operations.items() } ) return paths
27.550725
78
0.582851
79439d4238f37334534f020b74192aeb0ee908e0
4,635
py
Python
yaaz/src/optimisation.py
swasun/Yet-Another-AlphaZero
dc9fc185ecb1ba345be1c2b79bd0898c820d4d0c
[ "MIT" ]
2
2019-03-13T18:00:21.000Z
2020-06-16T03:30:40.000Z
yaaz/src/optimisation.py
swasun/Yet-Another-AlphaZero
dc9fc185ecb1ba345be1c2b79bd0898c820d4d0c
[ "MIT" ]
null
null
null
yaaz/src/optimisation.py
swasun/Yet-Another-AlphaZero
dc9fc185ecb1ba345be1c2b79bd0898c820d4d0c
[ "MIT" ]
null
null
null
##################################################################################### # MIT License # # # # Copyright (C) 2019 Charly Lamothe # # # # This file is part of Yet-Another-AlphaZero. # # # # Permission is hereby granted, free of charge, to any person obtaining a copy # # of this software and associated documentation files (the "Software"), to deal # # in the Software without restriction, including without limitation the rights # # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # # copies of the Software, and to permit persons to whom the Software is # # furnished to do so, subject to the following conditions: # # # # The above copyright notice and this permission notice shall be included in all # # copies or substantial portions of the Software. # # # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # # SOFTWARE. # ##################################################################################### from chess_model import ChessModel from dataset import Dataset from error_handling.console_logger import ConsoleLogger from chess_env import ChessEnv import os import numpy as np import random class Optimisation(object): def __init__(self, model, dataset): self._model = model self._dataset = dataset def start(self): environment_batches = self._dataset.load_n_last_environment_batches(1) losses = list() for environment_batch in environment_batches: mini_batch = [] values = [] policies = [] actual_policies = [] for environment in environment_batch: env = ChessEnv() result = environment['result'] if result == '1/2-1/2': values += [[-1.0]] elif result == '1-0': values += [[1.0]] else: values += [[-1.0]] policies += environment['policies'] actions = environment['actions'] if len(actions) % 2 > 0: action = random.randint(0, (len(actions) - 3) / 2) else: action = random.randint(0, (len(actions) - 2) / 2) for i in range(0, action): env._board.push(actions[2 * i]) env._board.push(actions[(2 * i) + 1]) state = env.build_state(T=8) mini_batch += [state] probabilities = np.zeros((73, 8, 8)) actual_probabilities = env.filter_illegal_probabilities(probabilities, is_training=True, q=environment['policies'][action]) actual_probabilities = np.ndarray.flatten(actual_probabilities) actual_policies += [actual_probabilities] for i in range(len(environment_batch)): labels = {'policy_head': np.reshape(actual_policies[i], (1, 8 * 8 * 73)), 'value_head': np.array(values[i])} history = self._model.fit(mini_batch[i], labels) losses += [history.history['loss']] print(np.mean(losses)) if __name__ == "__main__": dataset = Dataset(results_path='..' + os.sep + '..' + os.sep + 'results' + os.sep + 'chess') model = dataset.load_best_model() if model is None: model = ChessModel() optimisation = Optimisation(model, dataset) optimisation.start()
50.380435
139
0.484574
79439d8a07e3e20e3a361afa525efba7ade7a0ae
506
py
Python
dotinstall/installer/util.py
TeeJayYang/dotinstall
d0ee99d264425fee7132623753717072e67a533b
[ "Apache-2.0", "MIT" ]
1
2019-09-04T02:52:51.000Z
2019-09-04T02:52:51.000Z
dotinstall/installer/util.py
TeeJayYang/dotinstall
d0ee99d264425fee7132623753717072e67a533b
[ "Apache-2.0", "MIT" ]
3
2018-11-28T05:15:12.000Z
2021-10-18T01:13:08.000Z
dotinstall/installer/util.py
TeeJayYang/dotinstall
d0ee99d264425fee7132623753717072e67a533b
[ "Apache-2.0", "MIT" ]
2
2017-10-30T23:14:36.000Z
2018-11-27T03:46:24.000Z
from dotinstall.installer.apt_installer import AptInstaller from dotinstall.installer.brew_installer import BrewInstaller from dotinstall.installer.eopkg_installer import EopkgInstaller from dotinstall.installer.pacman_installer import PacmanInstaller installers = [AptInstaller(), BrewInstaller(), EopkgInstaller(), PacmanInstaller()] def get_system_installer(): # pragma: no cover for installer in installers: if installer.installer_exists(): return installer return None
36.142857
83
0.798419
79439db88c6791357f555f69796702bfef10fd70
20,102
py
Python
evolution.py
brianwgoldman/LengthBiasCGP
a81cf7215b2dd0a06412cae4626d37a943db6b85
[ "BSD-2-Clause-FreeBSD" ]
3
2016-02-24T13:32:38.000Z
2021-03-16T07:03:07.000Z
evolution.py
brianwgoldman/LengthBiasCGP
a81cf7215b2dd0a06412cae4626d37a943db6b85
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
evolution.py
brianwgoldman/LengthBiasCGP
a81cf7215b2dd0a06412cae4626d37a943db6b85
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
''' Handles how to perform all of the actual evolution. ''' import random import sys from copy import copy from util import diff_count from collections import defaultdict class Individual(object): ''' An individual object used to combine gene fitness with genomes, as well methods for manipulating those genomes. ''' def __init__(self, graph_length, input_length, output_length, max_arity, function_list, **_): ''' Create a new individual instance. Parameters: - ``graph_length``: The number of nodes in the CGP encoded graph. - ``input_length``: The number of input variables. - ``output_length``: The number of output variables. - ``max_arity``: The maximum arity used by any function. - ``function_list``: The list of functions a node can use. ''' self.node_step = max_arity + 1 self.input_length = input_length self.graph_length = graph_length self.function_list = function_list self.output_length = output_length self.genes = None self.genes = [self.random_gene(index) for index in range(graph_length * self.node_step + output_length)] self.determine_active_nodes() # If memory problems arise, make this globally shared self.scratch = [None] * (graph_length + self.input_length) self.fitness = -sys.maxint def random_gene(self, index, invalid=None): ''' Determines a random gene value given a gene index. If optional ``invalid`` option is used, the returned value will only be ``invalid`` if the gene has no other valid values. Parameters: - ``index``: The gene index who's value is being set. - ``invalid``: Value to avoid returning if possible ''' node_number = index // self.node_step gene_number = index % self.node_step # If the gene is used to specify output locations if node_number >= self.graph_length: node_number = self.graph_length gene_number = -1 # If the gene controls the function of a node if gene_number == 0: if len(self.function_list) == 1: return self.function_list[0] while True: choice = random.choice(self.function_list) if choice != invalid: return choice # If the gene controls a connection / output location else: if node_number + self.input_length == 1: return -1 while True: choice = random.randrange(-self.input_length, node_number) if choice != invalid: return choice def dag_random_gene(self, index, invalid=None): ''' Determines a random gene value given a gene index of a full DAG. If optional ``invalid`` option is used, the returned value will only be ``invalid`` if the gene has no other valid values. Parameters: - ``index``: The gene index who's value is being set. - ``invalid``: Value to avoid returning if possible ''' node_number = index // self.node_step gene_number = index % self.node_step if node_number >= self.graph_length: node_number = self.graph_length gene_number = -1 # If it is a function gene if gene_number == 0: if len(self.function_list) == 1: return self.function_list[0] while True: choice = random.choice(self.function_list) if choice != invalid: return choice # If you are dealing with output locations or individual initialization elif gene_number < 0 or not self.genes: if node_number + self.input_length == 1: return -1 while True: choice = random.randrange(-self.input_length, node_number) if choice != invalid: return choice # If you are resetting a connection link on an existing individual else: return self.valid_reconnect(node_number, invalid) def valid_reconnect(self, node_index, invalid=None): ''' When using a DAG individual, find a random connection location that does not depend on the current node. Parameters: - ``node_index``: The index of the node who's connection is being reset - ``invalid``: Value to avoid returning if possible ''' # Nodes always depend on themselves and inputs never depend on nodes dependent = {node_index: True, invalid: False} # Current inputs are not dependent on the mutating node for conn in self.connections(node_index): dependent[conn] = False for index in range(-self.input_length, 0): dependent[index] = False def is_dependent(current): ''' Internal recursive function to determine if a node index is dependent on ``node_index``. Also updates the dependency dictionary. Parameters: - ``current``: The current working node index to be checked for dependency. ''' if current in dependent: return dependent[current] for conn in self.connections(current): if is_dependent(conn): dependent[current] = True return True dependent[current] = False return False # Create the list of all possible connections options = range(-self.input_length, self.graph_length) for index in range(len(options)): # Choose a random untried option and swap it to the next index swapdown = random.randrange(index, len(options)) options[index], options[swapdown] = (options[swapdown], options[index]) option = options[index] # Test this option if option != invalid and not is_dependent(option): return option return invalid def copy(self): ''' Return a copy of the individual. Note that individuals are shallow copied except for their list of genes. ''' # WARNING individuals are shallow copied except for things added here new = copy(self) new.genes = list(self.genes) return new def connections(self, node_index): ''' Return the list of connections that a specified node has. Parameters - ``node_index``: The index of the node information is being requested for. Note this is different from gene index. ''' node_start = self.node_step * node_index return self.genes[node_start + 1: node_start + self.node_step] def determine_active_nodes(self): ''' Determines which nodes are currently active and sets self.active to the sorted list of active genes. Automatically called by gene manipulating member functions. ''' self.active = set(self.genes[-self.output_length:]) for node_index in reversed(range(self.graph_length)): if node_index in self.active: # add all of the connection genes for this node self.active.update(self.connections(node_index)) self.active = sorted([acting for acting in self.active if acting >= 0]) def dag_determine_active_nodes(self): ''' Determines which nodes are currently active and sets self.active to the sorted list of active genes in DAG individuals. Automatically called by gene manipulating member functions. ''' depends_on = defaultdict(set) feeds_to = defaultdict(set) # The output locations start as 'connected' connected = self.genes[-self.output_length:] added = set(connected) # Build a bi-directional dependency tree while connected: working = connected.pop() # Ignore input locations if working < 0: continue for conn in self.connections(working): # Record that 'working' takes input from 'conn' depends_on[working].add(conn) # Record that 'conn' sends its output to 'working' feeds_to[conn].add(working) if conn not in added: connected.append(conn) added.add(conn) # find the order in which to evaluate them self.active = [] # All input locations start out addable addable = [x for x in range(-self.input_length, 0)] while addable: working = addable.pop() # Find everything that depends on 'working' for input for conn in feeds_to[working]: # Record that 'conn' is no longer waiting on 'working' depends_on[conn].remove(working) if len(depends_on[conn]) == 0: addable.append(conn) self.active.append(conn) def all_active(self): ''' Function that always makes all nodes in the genome active. Useful when the fitness function analyzes nodes directly when combined with Single mutation. ''' self.active = range(self.graph_length) def evaluate(self, inputs): ''' Given a list of inputs, return a list of outputs from executing this individual. Parameters: - ``inputs``: The list of input values for the individual to process. ''' # Start by loading the input values into scratch # NOTE: Input locations are given as negative values self.scratch[-len(inputs):] = inputs[::-1] # Loop through the active genes in order for node_index in self.active: function = self.genes[node_index * self.node_step] args = [self.scratch[con] for con in self.connections(node_index)] # Apply the function to the inputs from scratch, saving results # back to the scratch self.scratch[node_index] = function(*args) # Extract outputs from the scratch space return [self.scratch[output] for output in self.genes[-self.output_length:]] def mutate(self, mutation_rate): ''' Return a mutated version of this individual using the specified mutation rate. Parameters: - ``mutation_rate``: The probability that a specific gene will mutate. ''' mutant = self.copy() for index in range(len(mutant.genes)): if random.random() < mutation_rate: mutant.genes[index] = mutant.random_gene(index, mutant.genes[index]) # Have the mutant recalculate its active genes mutant.determine_active_nodes() return mutant def one_active_mutation(self, _): ''' Return a mutated version of this individual using the ``Single`` mutation method. ''' mutant = self.copy() while True: # Choose an index at random index = random.randrange(len(mutant.genes)) # Get a new value for that gene newval = mutant.random_gene(index) # If that value is different than the current value if newval != mutant.genes[index]: mutant.genes[index] = newval # Determine if that gene was part of an active node node_number = index // self.node_step if (node_number >= self.graph_length or node_number in self.active): break # Have the mutant recalculate its active genes mutant.determine_active_nodes() return mutant def reorder(self): ''' Return an individual who's genes have been reordered randomly without changing any of the actual connection information. ''' # Build a list of dependencies depends_on = defaultdict(set) feeds_to = defaultdict(set) for node_index in range(self.graph_length): for conn in self.connections(node_index): # Record that 'node_index' takes input from 'conn' depends_on[node_index].add(conn) # Record that 'conn' sends its output to 'node_index' feeds_to[conn].add(node_index) # Create a dictionary storing how to translate location information new_order = {i: i for i in range(-self.input_length, 0)} # Input locations start as addable addable = new_order.keys() counter = 0 while addable: # Choose a node at random who's dependencies have already been met working = random.choice(addable) addable.remove(working) # If 'working' is not an input location if working >= 0: # Assign this node to the next available index new_order[working] = counter counter += 1 # Update all dependencies now that this node has been added for to_add in feeds_to[working]: # Mark 'to_add' as having its requirement on 'working' complete depends_on[to_add].remove(working) if len(depends_on[to_add]) == 0: addable.append(to_add) # Create the new individual using the new ordering mutant = self.copy() for node_index in range(self.graph_length): # Find the new starting location in the mutant for this node start = new_order[node_index] * self.node_step # Move over the function gene mutant.genes[start] = self.genes[node_index * self.node_step] # Translate connection genes to have new order information connections = [new_order[conn] for conn in self.connections(node_index)] # Move over the connection genes mutant.genes[start + 1:start + self.node_step] = connections length = len(self.genes) # Update the output locations for index in range(length - self.output_length, length): mutant.genes[index] = new_order[self.genes[index]] # Have the mutant recalculate its active genes mutant.determine_active_nodes() return mutant def asym_phenotypic_difference(self, other): ''' Determine how many genes would have to be mutated in order to make the ``other`` individual phenotypically identical to ``self``. Parameters: - ``other``: The individual to compare with. ''' # Count the differences in the output locations count = diff_count(self.genes[-self.output_length:], other.genes[-self.output_length:]) # For each active node for node_index in self.active: index = node_index * self.node_step # Count the number of different connection genes count += diff_count(self.connections(node_index), other.connections(node_index)) # Include differences in the function gene count += (self.genes[index] != other.genes[index]) return count def show_active(self): ''' Prints the active portions of the individual in a somewhat readable way. ''' for node_index in self.active: node_start = self.node_step * node_index print node_index, self.genes[node_start], print self.connections(node_index) print self.genes[-self.output_length:] def __lt__(self, other): ''' Returns the result of self.fitness < other.fitness. ''' return self.fitness < other.fitness def __le__(self, other): ''' Returns the result of self.fitness <= other.fitness ''' return self.fitness <= other.fitness def generate(config, frequencies): ''' An ``Individual`` generator that will yield a never ending supply of ``Individual`` objects that need to have their fitness set before the next ``Individual`` can be yielded. Parameters: - ``config``: A dictionary containing all configuration information required to generate initial individuals. Should include values for: - All configuration information required to initialize an Individual. - ``dag``: If DAG based individuals should be used. - ``reorder``: If the parent should be reordered before making offspring. - ``mutation_rate``: The probably to use for mutation. - ``off_size``: The number of offspring to produce per generation. - ``output_length``: The number of output variables. - ``max_arity``: The maximum arity used by any function. - ``speed``: String specifying the way to handle duplicate individual creation, either ``normal'', ``skip'', ``accumulate``, or ``single``. - ``active_push``: Determines if fitness should break ties depending on number of active nodes. Valid settings are ``none``, ``more``, or ``less``. - ``problem``: The problem these individuals are solving. Used on in the case where problems require unusual individual modification. - ``frequencies``: Dictionary used to return information about how often individuals of different lengths are evolved. ''' if config['dag']: # Override base functions with dag versions Individual.determine_active_nodes = \ Individual.dag_determine_active_nodes Individual.random_gene = \ Individual.dag_random_gene if config['speed'] == 'single': # Override normal mutation with Single Individual.mutate = Individual.one_active_mutation if config['problem'] == 'Flat': # Override normal method for determining active genes Individual.determine_active_nodes = Individual.all_active parent = Individual(**config) # Evaluate initial individual yield parent while True: if config['reorder']: # Replace the parent with a reordered version of itself parent = parent.reorder() # Create mutant offspring mutants = [parent.mutate(config['mutation_rate']) for _ in range(config['off_size'])] # Determine how many active genes the parent has for index, mutant in enumerate(mutants): prev = mutant if config['speed'] not in ['normal', 'single']: change = parent.asym_phenotypic_difference(mutant) if change == 0: if config['speed'] == 'skip': continue if config['speed'] == 'accumulate': while change == 0: # As long as there have been no changes, # keep mutating prev = mutant mutant = prev.mutate(config['mutation_rate']) change = parent.asym_phenotypic_difference(mutant) if 'frequency_results' in config: # Records the length of the generated individual frequencies[len(mutant.active)] += 1 # Send the offspring out to be evaluated yield mutant if config['speed'] == 'accumulate': # If the mutant is strickly worse, use the last equivalent mutants[index] = prev if mutant < parent else mutant best_child = max(mutants) if parent <= best_child: parent = best_child
40.940937
79
0.593822
79439e40089d9b1cc00bb56d0d916cd55378fc77
2,644
py
Python
url`s_and_templates/django101/settings.py
EmilianStoyanov/python-web
60ddb1f0cc4c5bb1615317967c4da33c4171b27b
[ "MIT" ]
3
2021-01-19T18:54:38.000Z
2022-01-05T17:28:41.000Z
url`s_and_templates/django101/settings.py
EmilianStoyanov/python-web
60ddb1f0cc4c5bb1615317967c4da33c4171b27b
[ "MIT" ]
null
null
null
url`s_and_templates/django101/settings.py
EmilianStoyanov/python-web
60ddb1f0cc4c5bb1615317967c4da33c4171b27b
[ "MIT" ]
null
null
null
from os.path import join from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent SECRET_KEY = 'yiamnr83kv$okon9j)d58t)(wr&_hb4f(yr#reec4$ae6s_t62' DEBUG = True ALLOWED_HOSTS = [] INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django101', 'django102', 'django101_admin', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'django101.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [BASE_DIR / 'templates'] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'django101.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = '' STATICFILES_DIRS = ( join(BASE_DIR, 'static'), )
24.943396
91
0.677383
79439e72705d2c1de958b119ecc0dfe3284f8c29
5,791
py
Python
tests/unit/wrappers/ensembles/test_ensembles.py
pavelg087/hcrystalball
25f186dc72d4e273c6696a5c822f601d54bab734
[ "MIT" ]
1
2021-04-12T17:08:17.000Z
2021-04-12T17:08:17.000Z
tests/unit/wrappers/ensembles/test_ensembles.py
pavelg087/hcrystalball
25f186dc72d4e273c6696a5c822f601d54bab734
[ "MIT" ]
null
null
null
tests/unit/wrappers/ensembles/test_ensembles.py
pavelg087/hcrystalball
25f186dc72d4e273c6696a5c822f601d54bab734
[ "MIT" ]
1
2022-01-03T16:02:35.000Z
2022-01-03T16:02:35.000Z
import pytest import pandas as pd import numpy as np from sklearn.linear_model import LinearRegression from sklearn.pipeline import Pipeline from pandas.testing import assert_frame_equal from hcrystalball.ensemble import StackingEnsemble, SimpleEnsemble from hcrystalball.exceptions import DuplicatedModelNameError @pytest.fixture( scope="module", params=["with_duplicates", "no_duplicates", "no_duplicates_with_pipeline"], ) def base_learners(request): class DummyModel: def __init__(self, alpha, name): self.alpha = alpha self.name = name self.fitted = False def fit(self, X, y): self.fitted = True def predict(self, X): return pd.DataFrame(np.ones(len(X)) * self.alpha, columns=["dummy"], index=X.index) if request.param == "with_duplicates": return [DummyModel(name="model", alpha=5), DummyModel(name="model", alpha=20)] elif request.param == "no_duplicates": return [ DummyModel(name="model_1", alpha=5), DummyModel(name="model_2", alpha=20), ] elif request.param == "no_duplicates_with_pipeline": return [ Pipeline([("model", DummyModel(name="model_1", alpha=5))]), DummyModel(name="model_2", alpha=20), ] elif request.param == "with_duplicates_with_pipeline": return [ Pipeline([("model", DummyModel(name="model_1", alpha=5))]), DummyModel(name="model__model_1", alpha=20), ] else: return None @pytest.mark.parametrize( "base_learners, ensemble, kwargs, expected_error", [ ("no_duplicates", StackingEnsemble, {"meta_model": LinearRegression()}, None), ("no_duplicates", SimpleEnsemble, {}, None), ( "with_duplicates", StackingEnsemble, {"meta_model": LinearRegression()}, DuplicatedModelNameError, ), ("with_duplicates", SimpleEnsemble, {}, DuplicatedModelNameError), ( "no_duplicates_with_pipeline", StackingEnsemble, {"meta_model": LinearRegression()}, None, ), ("no_duplicates_with_pipeline", SimpleEnsemble, {}, None), ( "with_duplicates_with_pipeline", StackingEnsemble, {"meta_model": LinearRegression()}, DuplicatedModelNameError, ), ("with_duplicates_with_pipeline", SimpleEnsemble, {}, DuplicatedModelNameError), ], indirect=["base_learners"], ) def test_check_base_learners_names(base_learners, ensemble, kwargs, expected_error): if expected_error is None: se = ensemble(base_learners=base_learners, **kwargs) assert isinstance(se, ensemble) else: with pytest.raises(expected_error): _ = ensemble(base_learners=base_learners, **kwargs) @pytest.mark.parametrize( "base_learners, ensemble_func, expected_error", [ ("no_duplicates", "mean", None), ("no_duplicates", "min", None), ("no_duplicates", "max", None), ("no_duplicates", "median", None), ("no_duplicates", "agg", ValueError), # pandas available func ("no_duplicates", "random_string", ValueError), # no real func ], indirect=["base_learners"], ) def test_ensemble_func(base_learners, ensemble_func, expected_error): if expected_error is not None: with pytest.raises(expected_error): _ = SimpleEnsemble(base_learners=base_learners, ensemble_func=ensemble_func) else: model = SimpleEnsemble(base_learners=base_learners, ensemble_func=ensemble_func) alphas = [bl.alpha for bl in model.base_learners] X = pd.DataFrame(index=pd.date_range("2012", "2016", freq="Y")) model.fit(X, y=np.ones(len(X))) exp_result = pd.DataFrame( ( pd.DataFrame(np.ones(len(X)) * alphas[0]) .assign(xx=np.ones(len(X)) * alphas[1]) .apply(ensemble_func, axis=1) .values ), columns=[model.name], index=X.index, ) assert_frame_equal(exp_result, model.predict(X)) @pytest.mark.parametrize("base_learners", [("no_duplicates")], indirect=["base_learners"]) def test_ensembles_stackingensemble_create_horizons_as_features(base_learners): n_splits = 2 horizon = 3 model = StackingEnsemble( meta_model=LinearRegression(), base_learners=base_learners, train_n_splits=n_splits, train_horizon=horizon, ) cross_result_index = np.arange(horizon * n_splits, dtype=int) df = model._create_horizons_as_features(cross_result_index, horizon=horizon, n_splits=n_splits) assert isinstance(df, pd.DataFrame) assert df.shape == (n_splits * horizon, horizon) @pytest.mark.parametrize("base_learners", [("no_duplicates")], indirect=["base_learners"]) def test_ensembles_stackingensemble_create_weekdays_as_features(base_learners): n_splits = 2 horizon = 3 model = StackingEnsemble( meta_model=LinearRegression(), base_learners=base_learners, train_n_splits=n_splits, train_horizon=horizon, ) cross_result_index = pd.DatetimeIndex( ["2020-01-01", "2020-01-02", "2020-01-03", "2020-01-04", "2020-01-05"] ) df = model._create_weekdays_as_features(cross_result_index) result = pd.DataFrame( { "Friday": [0, 0, 1, 0, 0], "Saturday": [0, 0, 0, 1, 0], "Sunday": [0, 0, 0, 0, 1], "Thursday": [0, 1, 0, 0, 0], "Wednesday": [1, 0, 0, 0, 0], }, index=cross_result_index, ).astype("uint8") assert_frame_equal(result, df)
32.903409
99
0.625453
79439f10d84c1ca42f995d4097fb9362e7243099
25
py
Python
data/studio21_generated/introductory/4215/starter_code.py
vijaykumawat256/Prompt-Summarization
614f5911e2acd2933440d909de2b4f86653dc214
[ "Apache-2.0" ]
null
null
null
data/studio21_generated/introductory/4215/starter_code.py
vijaykumawat256/Prompt-Summarization
614f5911e2acd2933440d909de2b4f86653dc214
[ "Apache-2.0" ]
null
null
null
data/studio21_generated/introductory/4215/starter_code.py
vijaykumawat256/Prompt-Summarization
614f5911e2acd2933440d909de2b4f86653dc214
[ "Apache-2.0" ]
null
null
null
def count_number(n, x):
12.5
23
0.68
79439f72a06999080c58c993e1f36a2f819d96a0
4,231
py
Python
backtest/algos/trash/algo_ema_v1.py
block1o1/CryptoPredicted
7f660cdc456fb8252b3125028f31fd6f5a3ceea5
[ "MIT" ]
4
2021-10-14T21:22:25.000Z
2022-03-12T19:58:48.000Z
backtest/algos/trash/algo_ema_v1.py
inevolin/CryptoPredicted
7f660cdc456fb8252b3125028f31fd6f5a3ceea5
[ "MIT" ]
null
null
null
backtest/algos/trash/algo_ema_v1.py
inevolin/CryptoPredicted
7f660cdc456fb8252b3125028f31fd6f5a3ceea5
[ "MIT" ]
1
2022-03-15T22:52:53.000Z
2022-03-15T22:52:53.000Z
import json import sys sys.dont_write_bytecode = True import numpy as np import datetime import random import math import core def run(debug): base = "BTC" #base = "ETH" #base = "LTC" quote = "USDT" historymins = 60*24*30*1 #60*24*30*4 interval = 60 dtend = datetime.datetime.strptime('2018-04-15 00:00', '%Y-%m-%d %H:%M') dtstart = dtend - datetime.timedelta(minutes=historymins) inp = core.getPriceExchange_v1('binance', interval, base, quote, historymins, dtend) uncertainty_margin = 0.001 def sig(prev_len, prevY, prevs, price): if len(prevY) == 0: return price multiplier = (2 / float(1 + prev_len)) v = price*multiplier + prevY[-1]*(1-multiplier) return v def work(_1, _2): portfolio = {} dtit = dtstart prevs = [] canBuy = True canSell = False traceA = core.createNewScatterTrace("traceA", "y") traceA['prev_len'] = _1 traceB = core.createNewScatterTrace("traceB", "y") traceB['prev_len'] = _2 while dtit <= dtend: idx = datetime.datetime.strftime(dtit, '%Y-%m-%dT%H:%M') if idx in inp: c = inp[idx]['close'] o = inp[idx]['open'] l = inp[idx]['low'] h = inp[idx]['high'] #price = (o+c)/2 # ok # price = c # ok price = o + (c-o)*random.randint(0,10)/10 # ok #price = random.uniform(o, c) if c > o else random.uniform(c, o) # price = random.uniform(l, h) # much worse than [open, close] buyprice = price sellprice = price core.portfolioPriceEntry(portfolio, dtit, price, o, c, l, h) core.addToScatterTrace(traceA, dtit, sig(traceA['prev_len'], traceA['y'], prevs, price)) core.addToScatterTrace(traceB, dtit, sig(traceB['prev_len'], traceB['y'], prevs, price)) if len(traceA['y']) > 1: if canBuy and (traceA['y'][-2] < traceB['y'][-2] and traceA['y'][-1] > traceB['y'][-1]): core.portfolioBuy(portfolio, dtit, buyprice, uncertainty_margin) canSell = True canBuy = False elif canSell and (traceA['y'][-2] > traceB['y'][-2] and traceA['y'][-1] < traceB['y'][-1]): core.portfolioSell(portfolio, dtit, sellprice, uncertainty_margin) canSell = False canBuy = True prevs.append(price) dtit += datetime.timedelta(minutes=interval) # beautify (replacing 0's by None ) for i,v in enumerate(traceB['y']): if v == 0: traceB['y'][i]=None proc = core.processPortfolio(portfolio, 1) return (proc, portfolio, [traceA, traceB]) if debug == 0: # computing ROI A = 1 B = 2 avgs = [] for x in range(100): (proc, portfolio, traces) = work(A, B) print("%s ROI \t %f" % (str(x), proc['_']['ROI%'])) avgs.append(proc['_']['ROI%']) print("avg ROI%: " + str(sum(avgs)/len(avgs))) std = np.std(avgs) print("std ROI%: " + str(std)) elif debug == 1: # brute-force searching for optimal parameters (A & B) arr = [] for A in range(1, 30): for B in range(2, 30): if (B <= A): continue rois = [] for x in range(5): (proc, portfolio, traces) = work(A, B) rois.append( proc['_']['ROI%'] ) arr.append({"ROI": np.average(rois), "A": A, "B": B}) print("ROI: %i %i %f" % (A, B, np.average(rois))) print(sorted(arr, key=lambda x: x['ROI'])) else: # computing and plotting out A = 8 B = 23 (proc, portfolio, traces) = work(A, B) print("ROI: (%i, %i) %f" % (A, B, proc['_']['ROI%'])) core.portfolioToChart_OHLC(portfolio, traces) if __name__ == '__main__': debug = 2 run(debug)
33.314961
111
0.491373
79439fd10a687de8f9739a63bb86e71c000f5a9b
147
py
Python
tests/expected/string_encoding.py
OctoPrint/codemods
6c6cd4bd689582f906571951b0eb7729c4923b51
[ "MIT" ]
5
2020-10-06T12:02:23.000Z
2021-04-26T00:31:55.000Z
tests/expected/string_encoding.py
OctoPrint/codemods
6c6cd4bd689582f906571951b0eb7729c4923b51
[ "MIT" ]
null
null
null
tests/expected/string_encoding.py
OctoPrint/codemods
6c6cd4bd689582f906571951b0eb7729c4923b51
[ "MIT" ]
1
2020-10-10T17:18:39.000Z
2020-10-10T17:18:39.000Z
temp_regex = rb"T:((\d*\.)\d+)" temp_regex = rb"T:((\d*\.)\d+)" "äöüß".encode() "äöüß".encode() b"Hello World" b"Hello World" b"Hello World"
10.5
31
0.564626
79439fd9b3c2f738920329a1f025d784fda4c140
12,711
py
Python
coverage/results.py
nedbat/covcode
59ce1f44c00b991c64efe8ecb0cf70c13dec5521
[ "Apache-2.0" ]
null
null
null
coverage/results.py
nedbat/covcode
59ce1f44c00b991c64efe8ecb0cf70c13dec5521
[ "Apache-2.0" ]
null
null
null
coverage/results.py
nedbat/covcode
59ce1f44c00b991c64efe8ecb0cf70c13dec5521
[ "Apache-2.0" ]
null
null
null
# Licensed under the Apache License: http://www.apache.org/licenses/LICENSE-2.0 # For details: https://github.com/nedbat/coveragepy/blob/master/NOTICE.txt """Results of coverage measurement.""" import collections from coverage.debug import SimpleReprMixin from coverage.exceptions import ConfigError from coverage.misc import contract, nice_pair class Analysis: """The results of analyzing a FileReporter.""" def __init__(self, data, precision, file_reporter, file_mapper): self.data = data self.file_reporter = file_reporter self.filename = file_mapper(self.file_reporter.filename) self.statements = self.file_reporter.lines() self.excluded = self.file_reporter.excluded_lines() # Identify missing statements. executed = self.data.lines(self.filename) or [] executed = self.file_reporter.translate_lines(executed) self.executed = executed self.missing = self.statements - self.executed if self.data.has_arcs(): self._arc_possibilities = sorted(self.file_reporter.arcs()) self.exit_counts = self.file_reporter.exit_counts() self.no_branch = self.file_reporter.no_branch_lines() n_branches = self._total_branches() mba = self.missing_branch_arcs() n_partial_branches = sum(len(v) for k,v in mba.items() if k not in self.missing) n_missing_branches = sum(len(v) for k,v in mba.items()) else: self._arc_possibilities = [] self.exit_counts = {} self.no_branch = set() n_branches = n_partial_branches = n_missing_branches = 0 self.numbers = Numbers( precision=precision, n_files=1, n_statements=len(self.statements), n_excluded=len(self.excluded), n_missing=len(self.missing), n_branches=n_branches, n_partial_branches=n_partial_branches, n_missing_branches=n_missing_branches, ) def missing_formatted(self, branches=False): """The missing line numbers, formatted nicely. Returns a string like "1-2, 5-11, 13-14". If `branches` is true, includes the missing branch arcs also. """ if branches and self.has_arcs(): arcs = self.missing_branch_arcs().items() else: arcs = None return format_lines(self.statements, self.missing, arcs=arcs) def has_arcs(self): """Were arcs measured in this result?""" return self.data.has_arcs() @contract(returns='list(tuple(int, int))') def arc_possibilities(self): """Returns a sorted list of the arcs in the code.""" return self._arc_possibilities @contract(returns='list(tuple(int, int))') def arcs_executed(self): """Returns a sorted list of the arcs actually executed in the code.""" executed = self.data.arcs(self.filename) or [] executed = self.file_reporter.translate_arcs(executed) return sorted(executed) @contract(returns='list(tuple(int, int))') def arcs_missing(self): """Returns a sorted list of the unexecuted arcs in the code.""" possible = self.arc_possibilities() executed = self.arcs_executed() missing = ( p for p in possible if p not in executed and p[0] not in self.no_branch and p[1] not in self.excluded ) return sorted(missing) @contract(returns='list(tuple(int, int))') def arcs_unpredicted(self): """Returns a sorted list of the executed arcs missing from the code.""" possible = self.arc_possibilities() executed = self.arcs_executed() # Exclude arcs here which connect a line to itself. They can occur # in executed data in some cases. This is where they can cause # trouble, and here is where it's the least burden to remove them. # Also, generators can somehow cause arcs from "enter" to "exit", so # make sure we have at least one positive value. unpredicted = ( e for e in executed if e not in possible and e[0] != e[1] and (e[0] > 0 or e[1] > 0) ) return sorted(unpredicted) def _branch_lines(self): """Returns a list of line numbers that have more than one exit.""" return [l1 for l1,count in self.exit_counts.items() if count > 1] def _total_branches(self): """How many total branches are there?""" return sum(count for count in self.exit_counts.values() if count > 1) @contract(returns='dict(int: list(int))') def missing_branch_arcs(self): """Return arcs that weren't executed from branch lines. Returns {l1:[l2a,l2b,...], ...} """ missing = self.arcs_missing() branch_lines = set(self._branch_lines()) mba = collections.defaultdict(list) for l1, l2 in missing: if l1 in branch_lines: mba[l1].append(l2) return mba @contract(returns='dict(int: list(int))') def executed_branch_arcs(self): """Return arcs that were executed from branch lines. Returns {l1:[l2a,l2b,...], ...} """ executed = self.arcs_executed() branch_lines = set(self._branch_lines()) eba = collections.defaultdict(list) for l1, l2 in executed: if l1 in branch_lines: eba[l1].append(l2) return eba @contract(returns='dict(int: tuple(int, int))') def branch_stats(self): """Get stats about branches. Returns a dict mapping line numbers to a tuple: (total_exits, taken_exits). """ missing_arcs = self.missing_branch_arcs() stats = {} for lnum in self._branch_lines(): exits = self.exit_counts[lnum] missing = len(missing_arcs[lnum]) stats[lnum] = (exits, exits - missing) return stats class Numbers(SimpleReprMixin): """The numerical results of measuring coverage. This holds the basic statistics from `Analysis`, and is used to roll up statistics across files. """ def __init__(self, precision=0, n_files=0, n_statements=0, n_excluded=0, n_missing=0, n_branches=0, n_partial_branches=0, n_missing_branches=0 ): assert 0 <= precision < 10 self._precision = precision self._near0 = 1.0 / 10**precision self._near100 = 100.0 - self._near0 self.n_files = n_files self.n_statements = n_statements self.n_excluded = n_excluded self.n_missing = n_missing self.n_branches = n_branches self.n_partial_branches = n_partial_branches self.n_missing_branches = n_missing_branches def init_args(self): """Return a list for __init__(*args) to recreate this object.""" return [ self._precision, self.n_files, self.n_statements, self.n_excluded, self.n_missing, self.n_branches, self.n_partial_branches, self.n_missing_branches, ] @property def n_executed(self): """Returns the number of executed statements.""" return self.n_statements - self.n_missing @property def n_executed_branches(self): """Returns the number of executed branches.""" return self.n_branches - self.n_missing_branches @property def pc_covered(self): """Returns a single percentage value for coverage.""" if self.n_statements > 0: numerator, denominator = self.ratio_covered pc_cov = (100.0 * numerator) / denominator else: pc_cov = 100.0 return pc_cov @property def pc_covered_str(self): """Returns the percent covered, as a string, without a percent sign. Note that "0" is only returned when the value is truly zero, and "100" is only returned when the value is truly 100. Rounding can never result in either "0" or "100". """ return self.display_covered(self.pc_covered) def display_covered(self, pc): """Return a displayable total percentage, as a string. Note that "0" is only returned when the value is truly zero, and "100" is only returned when the value is truly 100. Rounding can never result in either "0" or "100". """ if 0 < pc < self._near0: pc = self._near0 elif self._near100 < pc < 100: pc = self._near100 else: pc = round(pc, self._precision) return "%.*f" % (self._precision, pc) def pc_str_width(self): """How many characters wide can pc_covered_str be?""" width = 3 # "100" if self._precision > 0: width += 1 + self._precision return width @property def ratio_covered(self): """Return a numerator and denominator for the coverage ratio.""" numerator = self.n_executed + self.n_executed_branches denominator = self.n_statements + self.n_branches return numerator, denominator def __add__(self, other): nums = Numbers(precision=self._precision) nums.n_files = self.n_files + other.n_files nums.n_statements = self.n_statements + other.n_statements nums.n_excluded = self.n_excluded + other.n_excluded nums.n_missing = self.n_missing + other.n_missing nums.n_branches = self.n_branches + other.n_branches nums.n_partial_branches = ( self.n_partial_branches + other.n_partial_branches ) nums.n_missing_branches = ( self.n_missing_branches + other.n_missing_branches ) return nums def __radd__(self, other): # Implementing 0+Numbers allows us to sum() a list of Numbers. assert other == 0 # we only ever call it this way. return self def _line_ranges(statements, lines): """Produce a list of ranges for `format_lines`.""" statements = sorted(statements) lines = sorted(lines) pairs = [] start = None lidx = 0 for stmt in statements: if lidx >= len(lines): break if stmt == lines[lidx]: lidx += 1 if not start: start = stmt end = stmt elif start: pairs.append((start, end)) start = None if start: pairs.append((start, end)) return pairs def format_lines(statements, lines, arcs=None): """Nicely format a list of line numbers. Format a list of line numbers for printing by coalescing groups of lines as long as the lines represent consecutive statements. This will coalesce even if there are gaps between statements. For example, if `statements` is [1,2,3,4,5,10,11,12,13,14] and `lines` is [1,2,5,10,11,13,14] then the result will be "1-2, 5-11, 13-14". Both `lines` and `statements` can be any iterable. All of the elements of `lines` must be in `statements`, and all of the values must be positive integers. If `arcs` is provided, they are (start,[end,end,end]) pairs that will be included in the output as long as start isn't in `lines`. """ line_items = [(pair[0], nice_pair(pair)) for pair in _line_ranges(statements, lines)] if arcs: line_exits = sorted(arcs) for line, exits in line_exits: for ex in sorted(exits): if line not in lines and ex not in lines: dest = (ex if ex > 0 else "exit") line_items.append((line, f"{line}->{dest}")) ret = ', '.join(t[-1] for t in sorted(line_items)) return ret @contract(total='number', fail_under='number', precision=int, returns=bool) def should_fail_under(total, fail_under, precision): """Determine if a total should fail due to fail-under. `total` is a float, the coverage measurement total. `fail_under` is the fail_under setting to compare with. `precision` is the number of digits to consider after the decimal point. Returns True if the total should fail. """ # We can never achieve higher than 100% coverage, or less than zero. if not (0 <= fail_under <= 100.0): msg = f"fail_under={fail_under} is invalid. Must be between 0 and 100." raise ConfigError(msg) # Special case for fail_under=100, it must really be 100. if fail_under == 100.0 and total != 100.0: return True return round(total, precision) < fail_under
35.11326
92
0.61907
7943a0391aef87a77f55197b3b70173744eb560f
448
py
Python
ex033.py
Nawaus/Ex-curso-em-video
3517248a0ecc3669608a8023075c166b007eaeec
[ "Unlicense" ]
1
2021-11-27T01:39:58.000Z
2021-11-27T01:39:58.000Z
ex033.py
Nawaus/Ex-curso-em-video
3517248a0ecc3669608a8023075c166b007eaeec
[ "Unlicense" ]
null
null
null
ex033.py
Nawaus/Ex-curso-em-video
3517248a0ecc3669608a8023075c166b007eaeec
[ "Unlicense" ]
null
null
null
#033 a = int(input('Primeiro valor: ')) b = int(input('Segundo valor: ')) c = int(input('Terceiro valor: ')) # Verificando o quem é menor menor = a if b < a and b < c: menor = a if c < a and c < b: menor = c # Verificando quem é maior maior = a if b > a and b > c: maior = b if c > a and c > b: maior = c print('O menor valor digitado foi {}'.format(menor)) print('O maior valor digitado foi {}'.format(maior))
23.578947
53
0.578125
7943a0b6fcb8862938e558bdbbfe9bf903b36bec
5,755
py
Python
.github/scripts/deploy.py
rse-ops/proposals
a09790692c6b09dc7d1400b8f8dde49dd886cca8
[ "MIT" ]
null
null
null
.github/scripts/deploy.py
rse-ops/proposals
a09790692c6b09dc7d1400b8f8dde49dd886cca8
[ "MIT" ]
null
null
null
.github/scripts/deploy.py
rse-ops/proposals
a09790692c6b09dc7d1400b8f8dde49dd886cca8
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # This script does the following. # 1. Takes in a space separated list of changed files # 2. For each changed file, adds a header (title) based on the filename # 3. Sets output for the prepared files to move into the site import argparse import os import json import re import sys import tempfile def read_file(filename): with open(filename, "r") as fd: content = fd.read() return content def read_json(filename): with open(filename, "r") as fd: content = json.loads(fd.read()) return content # Templates draft_template = """--- title: %s layout: proposal pr: %s tags: - %s ---""" approved_template = """--- title: %s layout: proposal tags: - %s ---""" draft_label = os.environ.get("draft_label", "draft") approved_label = os.environ.get("approved_label", "approved") def get_parser(): parser = argparse.ArgumentParser(description="Proposals Parsing Client") description = "Prepare proposal drafts" subparsers = parser.add_subparsers( help="actions", title="actions", description=description, dest="command", ) draft = subparsers.add_parser("draft", help="prepare drafts") approved = subparsers.add_parser("approved", help="add approved proposals") remove = subparsers.add_parser("remove", help="remove non-existing proposals") for command in [draft, approved, remove]: command.add_argument( "files", help="the drafts to consider (changed files)", nargs="*" ) return parser def get_title(filename): """ Convert name-of-markdown.md to Name Of Markdown """ basename = os.path.basename(filename) return " ".join([x.capitalize() for x in basename.split(".", 1)[0].split("-")]) def is_correct(filename): """ Formatting and sanity checks """ if not os.path.exists(filename): print("%s does not exist, skipping!" % filename) return False dirname = os.path.basename(os.path.dirname(filename)) if dirname != "proposals": print("%s is not a proposal, skipping." % filename) return False # Check that we end in markdown if not filename.endswith("md"): print("%s does not end in .md, skipping." % filename) return False # and only have lowercase and - basename = os.path.basename(filename).replace(".md", "") if not re.search("^[a-z0-9-]*$", basename): print( "%s contains invalid characters: only lowercase letters, numbers, and - are allowed!" % basename ) return False return True def find_removed(files): """ Only allow removed on merge into main, so it's approved by owners """ removed = [] for filename in files: if not os.path.exists(filename): removed.append(filename) print("::set-output name=removed::%s" % " ".join(removed)) def prepare_preposals(files, template_string, template_tag, with_pr=False): """ Generic shared function to prepare proposal files """ tmpdir = tempfile.mkdtemp() final_files = [] for filename in files: if not is_correct(filename): continue # Prepare header title = get_title(filename) if with_pr: pr = PullRequest() # Default to custom tag on PR or just draft default template = template_string % (title, pr.url, pr.get_tag() or template_tag) else: template = template_string % (title, template_tag) content = template + "\n\n" + read_file(filename) # Write to final location tmppath = os.path.join(tmpdir, os.path.basename(filename)) with open(tmppath, "w") as fd: fd.write(content) final_files.append(tmppath) # When we have final files, set in environment print("::set-output name=proposals::%s" % " ".join(final_files)) def prepare_approved(files): """ Prepare approved (in progress) proposals """ prepare_preposals(files, approved_template, approved_label, with_pr=False) def prepare_drafts(files): """ Prepare proposal drafts """ prepare_preposals(files, draft_template, draft_label, with_pr=True) class PullRequest: """Helper class to get pull request and labels to indicate status""" def __init__(self): from github import Github self.gh = Github(os.getenv("GITHUB_TOKEN")) events_path = os.getenv("GITHUB_EVENT_PATH") self.event = read_json(events_path) self.repo = self.gh.get_repo(self.repo_name) self.number = self.event["pull_request"]["number"] @property def repo_name(self): return self.event["repository"]["full_name"] @property def url(self): return "https://github.com/%s/pull/%s" % (self.repo_name, self.number) def get_tag(self): pr = self.repo.get_pull(self.number) # Return the first status we find for label in pr.get_labels(): if label.name.startswith("status-"): name = label.name.replace("status-", "").strip() return name def main(): parser = get_parser() def help(return_code=0): parser.print_help() sys.exit(return_code) # If an error occurs while parsing the arguments, the interpreter will exit with value 2 args, extra = parser.parse_known_args() if not args.command: help() print(args.files) # Prepare drafts if args.command == "draft": prepare_drafts(args.files) elif args.command == "approved": prepare_approved(args.files) elif args.command == "remove": find_removed(args.files) if __name__ == "__main__": main()
26.278539
97
0.631972
7943a0d84e5541c5310d3b230ae410809c8ec659
2,479
py
Python
util/compute_bootstrap.py
AnneBeyer/tgen
f7d7d13a85b8fd35919097c7d11345ddb9775d26
[ "Apache-2.0" ]
222
2015-06-15T14:39:41.000Z
2022-03-12T03:45:32.000Z
util/compute_bootstrap.py
AnneBeyer/tgen
f7d7d13a85b8fd35919097c7d11345ddb9775d26
[ "Apache-2.0" ]
40
2015-12-02T10:42:44.000Z
2021-12-05T17:31:11.000Z
util/compute_bootstrap.py
AnneBeyer/tgen
f7d7d13a85b8fd35919097c7d11345ddb9775d26
[ "Apache-2.0" ]
72
2015-07-27T08:11:48.000Z
2022-03-24T14:25:37.000Z
#!/usr/bin/env python # -"- coding: utf-8 -"- from argparse import ArgumentParser import os import re from subprocess import call from tgen.logf import log_info MY_PATH = os.path.dirname(os.path.abspath(__file__)) def lcall(arg_str): log_info(arg_str) return call(arg_str, shell=True) def get_confidence(metric, lines): for idx, line in enumerate(lines): if line.startswith(metric): lines = lines[idx:] break for idx, line in enumerate(lines): if line.startswith('Confidence of [Sys1'): return line.strip() return '???' def process_all(args): join_sets = os.path.join(MY_PATH, 'join_sets.pl') gen_log = os.path.join(MY_PATH, 'mteval-v13a-sig.pl') bootstrap = os.path.join(MY_PATH, 'paired_bootstrap_resampling_bleu_v13a.pl') # create the test and source files lcall("%s %s/s*/test-conc.sgm > %s/test-conc.sgm" % (join_sets, args.experiment_dirs[0], args.target_dir)) lcall("%s %s/s*/test-das.sgm > %s/test-das.sgm" % (join_sets, args.experiment_dirs[0], args.target_dir)) exp_nums = [] for exp_dir in args.experiment_dirs: exp_num = int(re.search(r'(?:^|/)([0-9]+)', exp_dir).group(1)) exp_nums.append(exp_num) lcall("%s %s/s*/out-text.sgm > %s/%d.sgm" % (join_sets, exp_dir, args.target_dir, exp_num)) os.chdir(args.target_dir) for exp_num in exp_nums: lcall("%s -s test-das.sgm -r test-conc.sgm -t %d.sgm -f %d.log.txt > %d.score.txt" % (gen_log, exp_num, exp_num, exp_num)) for skip, exp_num1 in enumerate(exp_nums): for exp_num2 in exp_nums[skip + 1:]: # recompute only if not done already (TODO switch for this) out_file = 'bootstrap.%dvs%d.txt' % (exp_num1, exp_num2) if not os.path.isfile(out_file) or os.stat(out_file).st_size == 0: lcall("%s %s.log.txt %s.log.txt 1000 0.01 > %s" % (bootstrap, exp_num1, exp_num2, out_file)) with open(out_file) as fh: bootstrap_data = fh.readlines() print "%dvs%d BLEU: %s" % (exp_num1, exp_num2, bootstrap_data[0].strip()) if __name__ == '__main__': ap = ArgumentParser() ap.add_argument('target_dir', type=str, help='Target directory for bootstrap logs') ap.add_argument('experiment_dirs', nargs='+', type=str, help='Experiment directories to use') args = ap.parse_args() process_all(args)
34.915493
99
0.626059
7943a128bfb949a033d9c02de7e9e524c93c5a37
558
py
Python
ogn_lib/constants.py
akolar/ogn-lib
6b307cad9bf82316a69bb8c82ebfa734040e2689
[ "MIT" ]
null
null
null
ogn_lib/constants.py
akolar/ogn-lib
6b307cad9bf82316a69bb8c82ebfa734040e2689
[ "MIT" ]
17
2017-12-16T12:49:18.000Z
2018-05-21T10:12:29.000Z
ogn_lib/constants.py
akolar/ogn-lib
6b307cad9bf82316a69bb8c82ebfa734040e2689
[ "MIT" ]
null
null
null
import enum class AirplaneType(enum.Enum): unknown = 0 glider = 1 tow_plane = 2 helicopter_rotorcraft = 3 parachute = 4 drop_plane = 5 hang_glider = 6 paraglider = 7 powered_aircraft = 8 jet_aircraft = 9 ufo = 10 baloon = 11 airship = 12 uav = 13 static_object = 15 class AddressType(enum.Enum): unknown = 0b000 icao = 0b001 flarm = 0b010 ogn_tracker = 0b011 naviter = 0b100 class BeaconType(enum.Enum): aircraft_beacon = 1 server_beacon = 2 server_status = 3
16.411765
30
0.623656
7943a185bdfa57c7369d17cea134abbeca2ae127
502
py
Python
longes_sequence/tests/test_4.py
NikolayLutakov/FMI-Python-Basics
1712ae4aec8371f1144aa83d579d2151e1ea7eaa
[ "MIT" ]
null
null
null
longes_sequence/tests/test_4.py
NikolayLutakov/FMI-Python-Basics
1712ae4aec8371f1144aa83d579d2151e1ea7eaa
[ "MIT" ]
null
null
null
longes_sequence/tests/test_4.py
NikolayLutakov/FMI-Python-Basics
1712ae4aec8371f1144aa83d579d2151e1ea7eaa
[ "MIT" ]
null
null
null
from solution_logic import solution rows = 0 cols = 0 test_matrix_4 = [] def fill_test_matrix_4(): for row in range(rows): str_arr = input().split(' ') line = [str(num) for num in str_arr] test_matrix_4.append(line) def create_test_4(): str_arr = input().split(' ') dimensions = [int(num) for num in str_arr] global rows rows = dimensions[0] global cols cols = dimensions[1] fill_test_matrix_4() def test_4(): solution(test_matrix_4)
17.928571
46
0.63745
7943a193cfe352ce2d878ea0ec30408da173f611
2,107
py
Python
src/freemovr_engine/plot_utils.py
strawlab/flyvr
335892cae740e53e82e07b526e1ba53fbd34b0ce
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
3
2015-01-29T14:09:25.000Z
2016-04-24T04:25:49.000Z
src/freemovr_engine/plot_utils.py
strawlab/flyvr
335892cae740e53e82e07b526e1ba53fbd34b0ce
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
src/freemovr_engine/plot_utils.py
strawlab/flyvr
335892cae740e53e82e07b526e1ba53fbd34b0ce
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt from pymvg.plot_utils import plot_camera def get_3d_verts(geom): allw = [] res_u = 32 res_v = 5 for tc1 in np.linspace(0,1,res_v): tc = np.vstack( ( np.linspace(0,1.,res_u), tc1*np.ones( (res_u,) ), )).T world = geom.model.texcoord2worldcoord(tc) allw.append(world) allw = np.concatenate(allw) return allw def plot_camera( ax, display, scale=0.2): C = display.get_camcenter() C.shape=(3,) ax.plot( [C[0]], [C[1]], [C[2]], 'ko', ms=5 ) world_coords = display.project_camera_frame_to_3d( [[scale,0,0], [0,scale,0], [0,0,scale], [0,0,-scale], [0,0,0], [0,scale,0], [0,0,scale]] ) for i in range(3): c = 'rgb'[i] vv = world_coords[i] v = np.vstack( ([C],[vv]) ) ax.plot( v[:,0], v[:,1], v[:,2], c+'-' ) uv_raw = np.array([[0,0], [0,display.height], [display.width, display.height], [display.width, 0], [0,0]]) pts3d_near = display.project_pixel_to_3d_ray( uv_raw, distorted=True, distance=0.1*scale) pts3d_far = display.project_pixel_to_3d_ray( uv_raw, distorted=True, distance=scale) # ring at near depth ax.plot( pts3d_near[:,0], pts3d_near[:,1], pts3d_near[:,2], 'k-' ) # ring at far depth ax.plot( pts3d_far[:,0], pts3d_far[:,1], pts3d_far[:,2], 'k-' ) # connectors for i in range(len(pts3d_near)-1): pts3d = np.vstack((pts3d_near[i,:],pts3d_far[i,:])) ax.plot( pts3d[:,0], pts3d[:,1], pts3d[:,2], 'k-' ) ax.text( C[0], C[1], C[2], display.name ) ax.text( pts3d_far[0,0], pts3d_far[0,1], pts3d_far[0,2], 'UL' )
35.711864
93
0.456573
7943a1c5a5d0ce1cb84fd764615f9828b0d89135
1,050
py
Python
boids/command.py
irinagrigorescu/bad_boids
5508f1b246041c57df95af1f641b1c90c369befe
[ "MIT" ]
null
null
null
boids/command.py
irinagrigorescu/bad_boids
5508f1b246041c57df95af1f641b1c90c369befe
[ "MIT" ]
null
null
null
boids/command.py
irinagrigorescu/bad_boids
5508f1b246041c57df95af1f641b1c90c369befe
[ "MIT" ]
null
null
null
import sys from argparse import ArgumentParser from matplotlib import animation from matplotlib import pyplot as plt from flock import Flock from animator import FlockAnimator # Command line entry point def process(): parser = ArgumentParser(description = \ "Simulate the motion of a flock of birds") # Parameters parser.add_argument('--file', '-f', dest = 'configFile') # Print help message even if no flag is provided if len(sys.argv) == 1: parser.print_help() sys.exit(1) args = parser.parse_args() # Catch exception if file does not exist try: # Create object boids = Flock(args.configFile) # Plot figures animator = FlockAnimator((-500,1500), (-500,1500), "The Boids!", boids) animator.animate_flock() except IOError: print "The file you provided does not exist.\n" parser.print_help() except: print "Unexpected error.", sys.exc_info()[0], "\n" raise if __name__ == "__main__": process()
25.609756
79
0.640952
7943a1fabc9a00f980fbaa46319c2d17ede4b6ff
1,278
py
Python
team_10/haiku.py
Donnyvdm/dojo19
3cf043a84e3ad6d3c4d59cd9c50b160e1ff03400
[ "BSD-3-Clause" ]
1
2019-09-15T18:59:49.000Z
2019-09-15T18:59:49.000Z
team_10/haiku.py
Donnyvdm/dojo19
3cf043a84e3ad6d3c4d59cd9c50b160e1ff03400
[ "BSD-3-Clause" ]
null
null
null
team_10/haiku.py
Donnyvdm/dojo19
3cf043a84e3ad6d3c4d59cd9c50b160e1ff03400
[ "BSD-3-Clause" ]
null
null
null
import wave import os import random import sys WORDS = { 1: [ 'a', 'and', 'the', 'code', 'get', 'dance', 'will', 'fork', 'git', 'snake', 'plant', 'trees', ], 2: [ 'python', 'dojo', 'dancing', 'pizza', 'cocos', 'Cardiff', 'London', 'Pycon', 'hurry', 'quickly', ], 3: [ 'meditate', 'introspect', 'validate', 'optimist', 'realist', 'happiness', 'indulgence', 'decadence', 'unsponsored', 'reverted', ], } def generate_haiku(): lines = [] for syl_count in 5, 7, 5: this_line = [] while syl_count > 3: this_syl = random.randint(1, 3) this_word = random.choice( WORDS[this_syl] ) syl_count -= this_syl this_line.append(this_word) if syl_count > 0: this_line.append(random.choice(WORDS[syl_count])) lines.append(' '.join(this_line)) return lines def main(): haiku = generate_haiku() for line in haiku: print(line) if __name__ == '__main__': main()
17.75
61
0.435837
7943a2a352a12510ccb18760d9656a6cd9e8f55b
1,388
py
Python
nagini/star.py
bmorris3/nagini
f020e5ec97b29274d6b4105c909efd64b86f0b85
[ "BSD-3-Clause" ]
1
2018-02-13T19:51:47.000Z
2018-02-13T19:51:47.000Z
rms/star.py
bmorris3/rms
4239e488f6fae9869782ffbac9f39747b58afdda
[ "MIT" ]
null
null
null
rms/star.py
bmorris3/rms
4239e488f6fae9869782ffbac9f39747b58afdda
[ "MIT" ]
1
2018-11-23T20:57:09.000Z
2018-11-23T20:57:09.000Z
# Licensed under the MIT License - see LICENSE from .planet import Planet __all__ = ['Star'] class Star(object): """ An object for stellar parameters, to use as inputs for STSP. """ def __init__(self, planet=None, rotation_period=None, inc_stellar=None, spot_contrast=0.7, u=[0.2, 0.1], rho_s=1.0): """ Parameters ---------- rotation_period : float Stellar rotation period in days inc_stellar : float Stellar inclination (measured away from observer's line-of-sight) in units of degrees spot_contrast : float Relative intensity of a spot to the photosphere (0==perfectly dark, 1==same as photosphere) u : float Quadratic limb darkening parameters limb_dark : float Limb darkening formula planet : `~rms.Planet` Planet parameters. If planet is None, a non-transiting planet will be used for STSP computations. rho_s : float Stellar density in units of the solar density """ self.inc_stellar = inc_stellar self.per_rot = rotation_period self.spot_contrast = spot_contrast if planet is None: planet = Planet.non_transiting() self.planet = planet self.u = u self.rho_s = rho_s
30.844444
79
0.592939
7943a424a3c3f3d5a9c8fab3ab65eaef86b9a686
29,070
py
Python
tests/test_hooks/conan-center/test_conan-center.py
Minimonium/hooks
92a4ade551dab17c497244f42dc51328cc7fee2e
[ "MIT" ]
null
null
null
tests/test_hooks/conan-center/test_conan-center.py
Minimonium/hooks
92a4ade551dab17c497244f42dc51328cc7fee2e
[ "MIT" ]
null
null
null
tests/test_hooks/conan-center/test_conan-center.py
Minimonium/hooks
92a4ade551dab17c497244f42dc51328cc7fee2e
[ "MIT" ]
null
null
null
import os import platform import textwrap import pytest from conans import tools from conans.client.command import ERROR_INVALID_CONFIGURATION, SUCCESS from conans.tools import Version from conans import __version__ as conan_version from tests.utils.test_cases.conan_client import ConanClientTestCase class ConanCenterTests(ConanClientTestCase): conanfile_base = textwrap.dedent("""\ from conans import ConanFile class AConan(ConanFile): url = "fake_url.com" license = "fake_license" description = "whatever" homepage = "homepage.com" topics = ("fake_topic", "another_fake_topic") exports_sources = "header.h" {placeholder} def package(self): self.copy("*", dst="include") """) conanfile_header_only_with_settings = textwrap.dedent("""\ from conans import ConanFile class AConan(ConanFile): url = "fake_url.com" license = "fake_license" description = "whatever" homepage = "homepage.com" exports_sources = "header.h" settings = "os", "compiler", "arch", "build_type" def package(self): self.copy("*", dst="include") def package_id(self): self.info.header_only() """) conanfile_fpic = textwrap.dedent("""\ from conans import ConanFile class Fpic(ConanFile): url = "fake_url.com" license = "fake_license" description = "whatever" settings = "os", "arch", "compiler", "build_type" options = {'fPIC': [True, False]} default_options = {'fPIC': True} """) conanfile_header_only = conanfile_base.format(placeholder='') conanfile_installer = conanfile_base.format(placeholder='settings = "os_build"') conanfile = conanfile_base.format(placeholder='settings = "os"') def _get_environ(self, **kwargs): kwargs = super(ConanCenterTests, self)._get_environ(**kwargs) kwargs.update({'CONAN_HOOKS': os.path.join(os.path.dirname(__file__), '..', '..', '..', 'hooks', 'conan-center')}) return kwargs def test_no_duplicated_messages(self): tools.save('conanfile.py', content=self.conanfile) output = self.conan(['create', '.', 'name/version@jgsogo/test']) self.assertIn("ERROR: [PACKAGE LICENSE (KB-H012)] No 'licenses' folder found in package", output) self.assertNotIn("[PACKAGE LICENSE (KB-H012)] OK", output) def test_conanfile(self): tools.save('conanfile.py', content=self.conanfile) output = self.conan(['create', '.', 'name/version@jgsogo/test']) self.assertIn("[RECIPE METADATA (KB-H003)] OK", output) self.assertIn("[HEADER_ONLY, NO COPY SOURCE (KB-H005)] OK", output) self.assertIn("[FPIC OPTION (KB-H006)] OK", output) self.assertIn("[FPIC MANAGEMENT (KB-H007)] 'fPIC' option not found", output) self.assertIn("[VERSION RANGES (KB-H008)] OK", output) self.assertIn("[LIBCXX MANAGEMENT (KB-H011)] OK", output) self.assertIn("ERROR: [MATCHING CONFIGURATION (KB-H014)] Empty package", output) self.assertIn("ERROR: [PACKAGE LICENSE (KB-H012)] No 'licenses' folder found in package", output) self.assertIn("[DEFAULT PACKAGE LAYOUT (KB-H013)] OK", output) self.assertIn("[SHARED ARTIFACTS (KB-H015)] OK", output) self.assertIn("[EXPORT LICENSE (KB-H023)] OK", output) self.assertIn("ERROR: [TEST PACKAGE FOLDER (KB-H024)] There is no 'test_package' for this " "recipe", output) self.assertIn("[META LINES (KB-H025)] OK", output) self.assertIn("ERROR: [CONAN CENTER INDEX URL (KB-H027)] The attribute 'url' should " \ "point to: https://github.com/conan-io/conan-center-index", output) self.assertIn("[CMAKE MINIMUM VERSION (KB-H028)] OK", output) self.assertIn("[SYSTEM REQUIREMENTS (KB-H032)] OK", output) def test_conanfile_header_only(self): tools.save('conanfile.py', content=self.conanfile_header_only) tools.save('header.h', content="") output = self.conan(['create', '.', 'name/version@jgsogo/test']) self.assertIn("[RECIPE METADATA (KB-H003)] OK", output) self.assertIn("[HEADER_ONLY, NO COPY SOURCE (KB-H005)] This recipe is a header only library", output) self.assertIn("[FPIC OPTION (KB-H006)] OK", output) self.assertIn("[FPIC MANAGEMENT (KB-H007)] 'fPIC' option not found", output) self.assertIn("[VERSION RANGES (KB-H008)] OK", output) self.assertIn("[LIBCXX MANAGEMENT (KB-H011)] OK", output) self.assertIn("[MATCHING CONFIGURATION (KB-H014)] OK", output) self.assertNotIn("ERROR: [MATCHING CONFIGURATION (KB-H014)]", output) self.assertIn("ERROR: [PACKAGE LICENSE (KB-H012)] No 'licenses' folder found in package", output) self.assertIn("[DEFAULT PACKAGE LAYOUT (KB-H013)] OK", output) self.assertIn("[SHARED ARTIFACTS (KB-H015)] OK", output) self.assertIn("[EXPORT LICENSE (KB-H023)] OK", output) self.assertIn("ERROR: [TEST PACKAGE FOLDER (KB-H024)] There is no 'test_package' for this " "recipe", output) self.assertIn("[META LINES (KB-H025)] OK", output) self.assertIn("[CMAKE MINIMUM VERSION (KB-H028)] OK", output) self.assertIn("[SYSTEM REQUIREMENTS (KB-H032)] OK", output) def test_conanfile_header_only_with_settings(self): tools.save('conanfile.py', content=self.conanfile_header_only_with_settings) tools.save('header.h', content="") output = self.conan(['create', '.', 'name/version@jgsogo/test']) self.assertIn("[RECIPE METADATA (KB-H003)] OK", output) self.assertIn("[HEADER_ONLY, NO COPY SOURCE (KB-H005)] OK", output) self.assertIn("[FPIC OPTION (KB-H006)] OK", output) self.assertIn("[FPIC MANAGEMENT (KB-H007)] 'fPIC' option not found", output) self.assertIn("[VERSION RANGES (KB-H008)] OK", output) self.assertIn("[LIBCXX MANAGEMENT (KB-H011)] OK", output) self.assertIn("[MATCHING CONFIGURATION (KB-H014)] OK", output) self.assertIn("ERROR: [PACKAGE LICENSE (KB-H012)] No 'licenses' folder found in package", output) self.assertIn("[DEFAULT PACKAGE LAYOUT (KB-H013)] OK", output) self.assertIn("[SHARED ARTIFACTS (KB-H015)] OK", output) self.assertIn("[EXPORT LICENSE (KB-H023)] OK", output) self.assertIn("ERROR: [TEST PACKAGE FOLDER (KB-H024)] There is no 'test_package' for this " "recipe", output) self.assertIn("[META LINES (KB-H025)] OK", output) self.assertIn("[CMAKE MINIMUM VERSION (KB-H028)] OK", output) self.assertIn("[SYSTEM REQUIREMENTS (KB-H032)] OK", output) def test_conanfile_installer(self): tools.save('conanfile.py', content=self.conanfile_installer) output = self.conan(['create', '.', 'name/version@jgsogo/test']) self.assertIn("[RECIPE METADATA (KB-H003)] OK", output) self.assertIn("[HEADER_ONLY, NO COPY SOURCE (KB-H005)] OK", output) self.assertIn("[FPIC OPTION (KB-H006)] OK", output) self.assertIn("[FPIC MANAGEMENT (KB-H007)] 'fPIC' option not found", output) self.assertIn("[VERSION RANGES (KB-H008)] OK", output) self.assertIn("[LIBCXX MANAGEMENT (KB-H011)] OK", output) self.assertIn("ERROR: [MATCHING CONFIGURATION (KB-H014)] Empty package", output) self.assertIn("ERROR: [MATCHING CONFIGURATION (KB-H014)] Packaged artifacts does not match", output) self.assertIn("ERROR: [PACKAGE LICENSE (KB-H012)] No 'licenses' folder found in package", output) self.assertIn("[DEFAULT PACKAGE LAYOUT (KB-H013)] OK", output) self.assertIn("[SHARED ARTIFACTS (KB-H015)] OK", output) self.assertIn("ERROR: [TEST PACKAGE FOLDER (KB-H024)] There is no 'test_package' for this " "recipe", output) self.assertIn("[META LINES (KB-H025)] OK", output) self.assertIn("[CMAKE MINIMUM VERSION (KB-H028)] OK", output) def test_shebang(self): conanfile = textwrap.dedent("""\ #!/usr/bin/env python # -*- coding: utf-8 -*- from conans import ConanFile, tools import os class AConan(ConanFile): url = "fake_url.com" license = "fake_license" description = "whatever" exports_sources = "header.h" def package(self): tools.save(os.path.join(self.package_folder, "__init__.py"), content="#!/usr/bin/env python") self.copy("*", dst="include") # vim: tabstop=8 expandtab shiftwidth=4 softtabstop=4 """) tools.save('conanfile.py', content=conanfile) output = self.conan(['create', '.', 'name/version@user/test']) self.assertIn("ERROR: [META LINES (KB-H025)] PEP 263 (encoding) is not allowed in the " \ "conanfile. Remove the line 2", output) self.assertIn("ERROR: [META LINES (KB-H025)] vim editor configuration detected in your " \ "recipe. Remove the line 17", output) self.assertIn("ERROR: [META LINES (KB-H025)] Shebang (#!) detected in your recipe. " \ "Remove the line 1", output) def test_run_environment_test_package(self): conanfile_tp = textwrap.dedent("""\ from conans import ConanFile, RunEnvironment, tools class TestConan(ConanFile): settings = "os", "arch" def test(self): env_build = RunEnvironment(self) with tools.environment_append(env_build.vars): self.run("echo bar") """) tools.save('test_package/conanfile.py', content=conanfile_tp) tools.save('conanfile.py', content=self.conanfile) output = self.conan(['create', '.', 'name/version@user/test']) self.assertIn("[TEST PACKAGE FOLDER (KB-H024)] OK", output) self.assertIn("ERROR: [TEST PACKAGE - RUN ENVIRONMENT (KB-H029)] The 'RunEnvironment()' " "build helper is no longer needed. It has been integrated into the " "self.run(..., run_environment=True)", output) conanfile_tp = textwrap.dedent("""\ from conans import ConanFile, tools class TestConan(ConanFile): settings = "os", "arch" def test(self): self.run("echo bar", run_environment=True) """) tools.save('test_package/conanfile.py', content=conanfile_tp) tools.save('conanfile.py', content=self.conanfile) output = self.conan(['create', '.', 'name/version@user/test']) self.assertIn("[TEST PACKAGE FOLDER (KB-H024)] OK", output) self.assertIn("[TEST PACKAGE - RUN ENVIRONMENT (KB-H029)] OK", output) self.assertIn("[EXPORT LICENSE (KB-H023)] OK", output) self.assertIn("[TEST PACKAGE - NO IMPORTS() (KB-H034)] OK", output) def test_exports_licenses(self): tools.save('conanfile.py', content=self.conanfile_base.format(placeholder='exports = "LICENSE"')) output = self.conan(['create', '.', 'name/version@name/test']) self.assertIn("ERROR: [EXPORT LICENSE (KB-H023)] This recipe is exporting a license file." \ " Remove LICENSE from `exports`", output) tools.save('conanfile.py', content=self.conanfile_base.format(placeholder='exports_sources = "LICENSE"')) output = self.conan(['create', '.', 'name/version@name/test']) self.assertIn("ERROR: [EXPORT LICENSE (KB-H023)] This recipe is exporting a license file." \ " Remove LICENSE from `exports_sources`", output) tools.save('conanfile.py', content=self.conanfile_base.format(placeholder='exports = ["foobar", "COPYING.md"]')) output = self.conan(['create', '.', 'name/version@name/test']) self.assertIn("ERROR: [EXPORT LICENSE (KB-H023)] This recipe is exporting a license file." \ " Remove COPYING.md from `exports`", output) def test_fpic_remove(self): conanfile = textwrap.dedent("""\ from conans import ConanFile class LinuxOnly(ConanFile): url = "fake_url.com" license = "fake_license" description = "whatever" settings = "os", "arch", "compiler", "build_type" options = {"fPIC": [True, False], "shared": [True, False]} default_options = {"fPIC": True, "shared": False} """) tools.save('conanfile.py', content=conanfile) output = self.conan(['create', '.', 'package/version@conan/test']) self.assertIn("[FPIC OPTION (KB-H006)] OK", output) if tools.os_info.is_windows: self.assertIn("ERROR: [FPIC MANAGEMENT (KB-H007)] 'fPIC' option not managed " \ "correctly. Please remove it for Windows " \ "configurations: del self.options.fpic", output) else: self.assertIn("[FPIC MANAGEMENT (KB-H007)] OK. 'fPIC' option found and apparently " \ "well managed", output) def test_fpic_remove_windows(self): conanfile = textwrap.dedent("""\ from conans import ConanFile class Conan(ConanFile): url = "fake_url.com" license = "fake_license" description = "whatever" settings = "os", "arch", "compiler", "build_type" options = {"fPIC": [True, False], "shared": [True, False]} default_options = {"fPIC": True, "shared": False} def config_options(self): if self.settings.os == "Windows": del self.options.fPIC """) tools.save('conanfile.py', content=conanfile) output = self.conan(['create', '.', 'package/version@conan/test']) self.assertIn("[FPIC OPTION (KB-H006)] OK", output) if platform.system() == "Windows": self.assertIn("[FPIC MANAGEMENT (KB-H007)] 'fPIC' option not found", output) else: self.assertIn("[FPIC MANAGEMENT (KB-H007)] OK. 'fPIC' option found and apparently well " "managed", output) self.assertIn("[FPIC MANAGEMENT (KB-H007)] OK", output) def test_fpic_remove_windows_configuration(self): conanfile = textwrap.dedent("""\ from conans import ConanFile from conans.errors import ConanInvalidConfiguration class Conan(ConanFile): url = "fake_url.com" license = "fake_license" description = "whatever" settings = "os", "arch", "compiler", "build_type" options = {"fPIC": [True, False], "shared": [True, False]} default_options = {"fPIC": True, "shared": False} def configure(self): if self.settings.os == "Windows": raise ConanInvalidConfiguration("Windows not supported") """) tools.save('conanfile.py', content=conanfile) if platform.system() == "Windows": expected_return_code = ERROR_INVALID_CONFIGURATION else: expected_return_code = SUCCESS output = self.conan(['create', '.', 'package/version@conan/test'], expected_return_code) if platform.system() == "Windows": self.assertNotIn("[FPIC MANAGEMENT (KB-H007)] OK", output) else: self.assertIn("[FPIC MANAGEMENT (KB-H007)] OK. 'fPIC' option found and apparently well " "managed", output) def test_conanfile_cppstd(self): content = textwrap.dedent("""\ from conans import ConanFile class AConan(ConanFile): url = "fake_url.com" license = "fake_license" description = "whatever" exports_sources = "header.h", "test.c" settings = "os", "compiler", "arch", "build_type" def configure(self): {configure} def package(self): self.copy("*", dst="include") """) tools.save('test.c', content="#define FOO 1") tools.save('conanfile.py', content=content.format( configure="pass")) output = self.conan(['create', '.', 'name/version@user/test']) self.assertIn("ERROR: [LIBCXX MANAGEMENT (KB-H011)] Can't detect C++ source files but " \ "recipe does not remove 'self.settings.compiler.libcxx'", output) self.assertIn("ERROR: [CPPSTD MANAGEMENT (KB-H022)] Can't detect C++ source files but " \ "recipe does not remove 'self.settings.compiler.cppstd'", output) tools.save('conanfile.py', content=content.format(configure=""" del self.settings.compiler.libcxx del self.settings.compiler.cppstd""")) output = self.conan(['create', '.', 'name/version@user/test']) self.assertIn("[LIBCXX MANAGEMENT (KB-H011)] OK", output) self.assertIn("[CPPSTD MANAGEMENT (KB-H022)] OK", output) def test_missing_attributes(self): conanfile = textwrap.dedent("""\ from conans import ConanFile class AConan(ConanFile): pass """) bad_recipe_output = [ "ERROR: [RECIPE METADATA (KB-H003)] Conanfile doesn't have 'url' attribute.", "ERROR: [RECIPE METADATA (KB-H003)] Conanfile doesn't have 'license' attribute.", "ERROR: [RECIPE METADATA (KB-H003)] Conanfile doesn't have 'description' attribute.", "ERROR: [RECIPE METADATA (KB-H003)] Conanfile doesn't have 'homepage' attribute.", "WARN: [RECIPE METADATA (KB-H003)] Conanfile doesn't have 'topics' attribute." ] tools.save('conanfile.py', content=conanfile) output = self.conan(['create', '.', 'name/version@user/test']) for msg in bad_recipe_output: self.assertIn(msg, output) self.assertNotIn("[RECIPE METADATA (KB-H003)] OK", output) tools.save('conanfile.py', content=self.conanfile_base.format(placeholder='')) output = self.conan(['create', '.', 'name/version@user/test']) for msg in bad_recipe_output: self.assertNotIn(msg, output) self.assertIn("[RECIPE METADATA (KB-H003)] OK", output) def test_cci_url(self): conanfile = textwrap.dedent("""\ from conans import ConanFile class AConan(ConanFile): url = "https://github.com/conan-io/conan-center-index" license = "fake_license" description = "whatever" exports_sources = "header.h" def package(self): self.copy("*", dst="include") """) tools.save('conanfile.py', content=conanfile) output = self.conan(['create', '.', 'name/version@jgsogo/test']) self.assertIn("[CONAN CENTER INDEX URL (KB-H027)] OK", output) def test_cmake_minimum_version(self): conanfile = self.conanfile_base.format(placeholder="exports_sources = \"CMakeLists.txt\"") cmake = """project(test) """ tools.save('conanfile.py', content=conanfile) tools.save('CMakeLists.txt', content=cmake) output = self.conan(['create', '.', 'name/version@user/test']) path = os.path.join(".", "CMakeLists.txt") self.assertIn("ERROR: [CMAKE MINIMUM VERSION (KB-H028)] The CMake file '%s' must contain a " "minimum version declared at the beginning " "(e.g. cmake_minimum_required(VERSION 3.1.2))" % path, output) cmake = textwrap.dedent(""" # foobar.cmake cmake_minimum_required(VERSION 2.8) project(test) """) tools.save('CMakeLists.txt', content=cmake) output = self.conan(['create', '.', 'name/version@user/test']) self.assertIn("[CMAKE MINIMUM VERSION (KB-H028)] OK", output) cmake = textwrap.dedent(""" cmake_minimum_required(VERSION 2.8) project(test) """) tools.save('CMakeLists.txt', content=cmake) output = self.conan(['create', '.', 'name/version@user/test']) self.assertIn("[CMAKE MINIMUM VERSION (KB-H028)] OK", output) def test_cmake_minimum_version_test_package(self): conanfile = self.conanfile_base.format(placeholder="exports_sources = \"CMakeLists.txt\"") conanfile_tp = textwrap.dedent("""\ from conans import ConanFile, tools, CMake class TestConan(ConanFile): settings = "os", "arch" def build(self): cmake = CMake(self) def test(self): self.run("echo bar", run_environment=True) """) cmake = """cmake_minimum_required(VERSION 2.8.11) project(test) """ tools.save('conanfile.py', content=conanfile) tools.save('CMakeLists.txt', content=cmake) tools.save('test_package/CMakeLists.txt', content=cmake) tools.save('test_package/conanfile.py', content=conanfile_tp) output = self.conan(['create', '.', 'name/version@user/test']) self.assertIn("[CMAKE MINIMUM VERSION (KB-H028)] OK", output) # validate residual cmake files in test_package/build output = self.conan(['create', '.', 'name/version@user/test']) self.assertIn("[CMAKE MINIMUM VERSION (KB-H028)] OK", output) self.assertNotIn("ERROR: [CMAKE MINIMUM VERSION (KB-H028)]", output) cmake = textwrap.dedent("""CMAKE_MINIMUM_REQUIRED (VERSION 2.8.11) project(test) """) tools.save('CMakeLists.txt', content=cmake) output = self.conan(['create', '.', 'name/version@user/test']) self.assertIn("[CMAKE MINIMUM VERSION (KB-H028)] OK", output) cmake = textwrap.dedent("""cmake_minimum_required(VERSION 2.8.11) project(test) """) tools.save('CMakeLists.txt', content=cmake) output = self.conan(['create', '.', 'name/version@user/test']) self.assertIn("[CMAKE MINIMUM VERSION (KB-H028)] OK", output) self.assertNotIn("ERROR: [CMAKE MINIMUM VERSION (KB-H028)]", output) cmake = textwrap.dedent("""project(test) cmake_minimum_required(VERSION 2.8.11) """) tools.save('CMakeLists.txt', content=cmake) output = self.conan(['create', '.', 'name/version@user/test']) self.assertIn("ERROR: [CMAKE MINIMUM VERSION (KB-H028)]", output) self.assertNotIn("[CMAKE MINIMUM VERSION (KB-H028)] OK", output) cmake = """cmake_minimum_required(VERSION 2.8.11) project(test) """ tools.save('CMakeLists.txt', content=cmake) cmake = textwrap.dedent("""project(test) cmake_minimum_required(VERSION 2.8.11) """) tools.save('test_package/CMakeLists.txt', content=cmake) output = self.conan(['create', '.', 'name/version@user/test']) self.assertIn("ERROR: [CMAKE MINIMUM VERSION (KB-H028)]", output) self.assertNotIn("[CMAKE MINIMUM VERSION (KB-H028)] OK", output) def test_system_requirements(self): conanfile = textwrap.dedent("""\ from conans import ConanFile from conans.tools import SystemPackageTool class SystemReqConan(ConanFile): url = "https://github.com/conan-io/conan-center-index" license = "fake_license" description = "whatever" def system_requirements(self): installer = SystemPackageTool() """) tools.save('conanfile.py', content=conanfile) output = self.conan(['create', '.', 'name/version@user/test']) self.assertIn("[SYSTEM REQUIREMENTS (KB-H032)] OK", output) conanfile += " installer.install([])" tools.save('conanfile.py', content=conanfile) output = self.conan(['create', '.', 'name/version@user/test']) self.assertIn("ERROR: [SYSTEM REQUIREMENTS (KB-H032)] The method " \ "'SystemPackageTool.install' is not allowed in the recipe.", output) conanfile = conanfile.replace("installer.install([])", "SystemPackageTool().install([])") tools.save('conanfile.py', content=conanfile) output = self.conan(['create', '.', 'name/version@user/test']) self.assertIn("ERROR: [SYSTEM REQUIREMENTS (KB-H032)] The method " \ "'SystemPackageTool.install' is not allowed in the recipe.", output) output = self.conan(['create', '.', 'libusb/version@user/test']) self.assertIn("[SYSTEM REQUIREMENTS (KB-H032)] 'libusb' is part of the allowlist.", output) self.assertNotIn("ERROR: [SYSTEM REQUIREMENTS (KB-H032)]", output) def test_imports_not_allowed(self): conanfile_tp = textwrap.dedent("""\ from conans import ConanFile, tools class TestConan(ConanFile): settings = "os", "arch" def imports(self): self.copy("*.dll", "", "bin") self.copy("*.dylib", "", "lib") def test(self): self.run("echo bar", run_environment=True) """) tools.save('test_package/conanfile.py', content=conanfile_tp) tools.save('conanfile.py', content=self.conanfile) output = self.conan(['create', '.', 'name/version@user/test']) self.assertIn("[TEST PACKAGE FOLDER (KB-H024)] OK", output) self.assertIn("[TEST PACKAGE - RUN ENVIRONMENT (KB-H029)] OK", output) self.assertIn("ERROR: [TEST PACKAGE - NO IMPORTS() (KB-H034)] The method `imports` is not " \ "allowed in test_package/conanfile.py", output) def test_no_author(self): conanfile = textwrap.dedent("""\ from conans import ConanFile class AConan(ConanFile): {} def configure(self): pass """) tools.save('conanfile.py', content=conanfile.replace("{}", "")) output = self.conan(['create', '.', 'name/version@user/test']) self.assertIn("[NO AUTHOR (KB-H037)] OK", output) tools.save('conanfile.py', content=conanfile.replace("{}", "author = 'foobar'")) output = self.conan(['create', '.', 'name/version@user/test']) self.assertIn('ERROR: [NO AUTHOR (KB-H037)] Conanfile should not contain author. ' 'Remove \'author = "foobar"\'', output) tools.save('conanfile.py', content=conanfile.replace("{}", "author = ('foo', 'bar')")) output = self.conan(['create', '.', 'name/version@user/test']) self.assertIn('ERROR: [NO AUTHOR (KB-H037)] Conanfile should not contain author. ' 'Remove \'author = (\'foo\', \'bar\')', output) @pytest.mark.skipif(Version(conan_version) < "1.21", reason="requires Conan 1.21 or higher") def test_no_target_name(self): conanfile = textwrap.dedent("""\ from conans import ConanFile class AConan(ConanFile): def package_info(self): {} """) pkg_config = 'self.cpp_info.names["pkg_config"] = "foolib"' regular = 'self.cpp_info.name = "Foo"' cmake = 'self.cpp_info.names["cmake"] = "Foo"' cmake_multi = 'self.cpp_info.names["cmake_multi"] = "Foo"' cmake_find = 'self.cpp_info.names["cmake_find_package"] = "Foo"' cmake_find_multi = 'self.cpp_info.names["cmake_find_package_multi"] = "Foo"' tools.save('conanfile.py', content=conanfile.replace("{}", regular)) output = self.conan(['create', '.', 'name/version@user/test']) self.assertIn("ERROR: [NO TARGET NAME (KB-H040)] " "CCI uses the name of the package for cmake generator." " Use 'cpp_info.names' instead.", output) for line, gen in [(cmake, "cmake"), (cmake_multi, "cmake_multi")]: tools.save('conanfile.py', content=conanfile.replace("{}", line)) output = self.conan(['create', '.', 'name/version@user/test']) self.assertIn("ERROR: [NO TARGET NAME (KB-H040)] CCI uses the name of the package for " "{0} generator. Conanfile should not contain " "'self.cpp_info.names['{0}']'. " " Use 'cmake_find_package' and 'cmake_find_package_multi' instead.".format(gen), output) for it in [pkg_config, cmake_find, cmake_find_multi]: tools.save('conanfile.py', content=conanfile.replace("{}", it)) output = self.conan(['create', '.', 'name/version@user/test']) self.assertIn("[NO TARGET NAME (KB-H040)] OK", output)
48.45
114
0.595356
7943a57efa6eee80c17abe87f852e0d90ab24f29
2,211
py
Python
misc/process_boundary_flux.py
diamondjems016/galaxy_analysis
fa1367085a6b9870de2546daf3163aaa41129ea0
[ "MIT" ]
1
2021-01-15T15:33:05.000Z
2021-01-15T15:33:05.000Z
misc/process_boundary_flux.py
diamondjems016/galaxy_analysis
fa1367085a6b9870de2546daf3163aaa41129ea0
[ "MIT" ]
null
null
null
misc/process_boundary_flux.py
diamondjems016/galaxy_analysis
fa1367085a6b9870de2546daf3163aaa41129ea0
[ "MIT" ]
1
2020-11-29T00:15:25.000Z
2020-11-29T00:15:25.000Z
""" process_boundary_flux Author: A. Emerick Notes: script and functions to process output from domain boundary mass flux computation """ import numpy as np import os import subprocess __all__ = ['process_boundary_flux'] def process_boundary_flux(data = None, filename = None, wdir = '.'): """ Given a set of boundary mass flux data, loop through and stitch this together so that there is no double counting of timesteps. Processed file contains cumulative sum of outflowing mass for each field. """ if data is None: if filename is None: filename = wdir + '/boundary_mass_flux.dat' if not os.path.isfile(filename): print('boundary mass flux file not found at ' + filename) return False, 0 data = np.genfromtxt(filename) with open(filename, 'r') as f: header = f.readline() data = data[data[:,1].argsort()] unique_time = np.unique(data[:,1]) filtered_data = [None]*np.size(unique_time) for i, t in enumerate(unique_time): selection = (data[:,1] == t) filtered_data[i] = np.mean(data[selection], axis= 0) filtered_data = np.array(filtered_data) for i in np.arange(2, np.size(filtered_data[0])): filtered_data[:,i] = np.cumsum(filtered_data[:,i]) # output result outfile = wdir + '/filtered_boundary_mass_flux.dat' np.savetxt(outfile, filtered_data, fmt = ('%0.6E'), header = header) # clean out some NAN's or # if present with open(outfile) as oldfile, open(wdir + '/temp.txt', 'w') as newfile: for line in oldfile: if not any(badword in line for badword in ['NAN',"# "]): newfile.write(line) # final cleaning with open(outfile,'w') as output, open(wdir + '/temp.txt') as tempfile: for line in tempfile: output.write(line) # remove temporary file bash_command = "rm " + wdir + "/temp.txt" subprocess.call(bash_command, shell=True) data = np.genfromtxt(outfile, names = True) return True, data if __name__ == '__main__': file_exists, data = process_boundary_flux(filename = 'boundary_mass_flux.dat')
27.6375
82
0.632293
7943a6038687525beb95d2f8e78a37df30387a66
2,130
py
Python
sarpy/utils/create_kmz.py
bombaci-vsc/sarpy
3e31e9d7fca77612b60f2507f6f7068d1660a3e2
[ "MIT" ]
119
2018-07-12T22:08:17.000Z
2022-03-24T12:11:39.000Z
sarpy/utils/create_kmz.py
bombaci-vsc/sarpy
3e31e9d7fca77612b60f2507f6f7068d1660a3e2
[ "MIT" ]
72
2018-03-29T15:57:37.000Z
2022-03-10T01:46:21.000Z
sarpy/utils/create_kmz.py
bombaci-vsc/sarpy
3e31e9d7fca77612b60f2507f6f7068d1660a3e2
[ "MIT" ]
54
2018-03-27T19:57:20.000Z
2022-03-09T20:53:11.000Z
""" Create kmz products based on SICD type reader. For a basic help on the command-line, check >>> python -m sarpy.utils.create_kmz --help """ import argparse import logging import os from sarpy.io.complex.converter import open_complex from sarpy.io.product.kmz_product_creation import create_kmz_view __classification__ = "UNCLASSIFIED" __author__ = "Thomas McCullough" if __name__ == '__main__': parser = argparse.ArgumentParser( description="Create derived product is SIDD format from a SICD type file.", formatter_class=argparse.RawTextHelpFormatter) parser.add_argument( 'input_file', metavar='input_file', help='Path input data file, or directory for radarsat, RCM, or sentinel.\n' '* For radarsat or RCM, this can be the product.xml file, or parent directory\n' ' of product.xml or metadata/product.xml.\n' '* For sentinel, this can be the manifest.safe file, or parent directory of\n' ' manifest.safe.\n') parser.add_argument( 'output_directory', metavar='output_directory', help='Path to the output directory where the product file(s) will be created.\n' 'This directory MUST exist.\n' '* Depending on the input file, multiple product files may be produced.\n' '* The name for the ouput file(s) will be chosen based on CoreName and\n ' ' transmit/collect polarization.\n') parser.add_argument( '-s', '--size', default=3072, type=int, help='Maximum size for the interpolated image, put -1 for full size') parser.add_argument( '-v', '--verbose', action='store_true', help='Verbose (level="INFO") logging?') args = parser.parse_args() if args.verbose: logger = logging.getLogger('sarpy') logger.setLevel('INFO') reader = open_complex(args.input_file) file_stem = os.path.splitext(os.path.split(args.input_file)[1])[0] pixel_limit = None if args.size == -1 else args.size create_kmz_view(reader, args.output_directory, pixel_limit=pixel_limit, file_stem='View-{}'.format(file_stem))
39.444444
117
0.679343
7943a77ef8e29d915df5662636770bb2a29a4282
6,034
py
Python
netanalysis/ooni/ooni_client.py
dharmaxbum1/net-analysis
94c9b7fc68be56c17cc1bf076681e4260ba4728b
[ "Apache-2.0" ]
1
2019-12-23T05:07:41.000Z
2019-12-23T05:07:41.000Z
netanalysis/ooni/ooni_client.py
dharmaxbum1/net-analysis
94c9b7fc68be56c17cc1bf076681e4260ba4728b
[ "Apache-2.0" ]
null
null
null
netanalysis/ooni/ooni_client.py
dharmaxbum1/net-analysis
94c9b7fc68be56c17cc1bf076681e4260ba4728b
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 Jigsaw Operations LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=yield-inside-async-function import abc import asyncio from collections import deque from concurrent.futures import Executor from functools import singledispatch import logging import os import os.path from typing import Any, AsyncIterable, Dict, Iterable, List from urllib.parse import urlencode, quote import aiohttp import ujson as json class OoniClient(abc.ABC): @abc.abstractmethod async def get_measurement(self, measurement_id: str) -> Dict: pass @abc.abstractmethod def list_measurements(self, country_code: str, url: str) -> AsyncIterable[Dict]: pass def _read_json_from_file(filename): with open(filename, mode="r") as file: return json.load(file) def _write_json_to_file(json_object, filename): with open(filename, mode="w+") as file: return json.dump(json_object, file) class CachedOoniClient(OoniClient): def __init__(self, origin: OoniClient, cache_dir: str, executor: Executor) -> None: self._origin = origin self._cache_dir = cache_dir self._executor = executor os.makedirs(os.path.join(cache_dir, "measurement"), exist_ok=True) async def _run_async(self, *args): return await asyncio.get_event_loop().run_in_executor(self._executor, *args) async def get_measurement(self, measurement_id: str): measurement_filename = os.path.join( self._cache_dir, "measurement", "%s.json" % measurement_id) logging.debug("Look up measurement %s", measurement_id) try: measurement = await self._run_async(_read_json_from_file, measurement_filename) logging.debug("Cache hit for measurement %s", measurement_id) except (FileNotFoundError, json.decoder.JSONDecodeError): logging.debug("Cache miss for measurement %s", measurement_id) measurement = await self._origin.get_measurement(measurement_id) await self._run_async(_write_json_to_file, measurement, measurement_filename) return measurement def list_measurements(self, *args, **kwargs) -> AsyncIterable[Dict]: return self._origin.list_measurements(*args, **kwargs) @singledispatch def _trim_json(json_obj, max_string_size: int): return json_obj @_trim_json.register(dict) def _(json_dict: dict, max_string_size: int): keys_to_delete = [] # type: str for key, value in json_dict.items(): if type(value) == str and len(value) > max_string_size: keys_to_delete.append(key) else: _trim_json(value, max_string_size) for key in keys_to_delete: del json_dict[key] return json_dict @_trim_json.register(list) def _(json_list: list, max_string_size: int): for item in json_list: _trim_json(item, max_string_size) return json_list # Documentation: https://api.ooni.io/api/ class ApiOoniClient(OoniClient): def __init__(self, api_url: str, http_client: aiohttp.ClientSession, max_string_size=1000) -> None: self._api_url = api_url self._http_client = http_client self._max_string_size = max_string_size async def _get_json(self, url): try: logging.debug("Fetching %s", url) async with self._http_client.get(url) as response: json_obj = await response.json(encoding="utf8") if self._max_string_size: _trim_json(json_obj, self._max_string_size) return json_obj except Exception as error: raise Exception("Failed to query url %s" % url, error) def _api_query_url(self, path, params=None): query_url = "%s/%s" % (self._api_url, quote(path)) if params: query_url = query_url + "?" + urlencode(params) return query_url async def get_measurement(self, measurement_id: str): logging.debug("Fetching measurement %s", measurement_id) measurement = await self._get_json(self._api_query_url("measurement/%s" % measurement_id)) return measurement async def list_measurements(self, country_code: str=None, url: str=None): # Params order_by and input make the query *a lot* slower. # TODO: Consider fetching without input. # Unfortunately pagination breaks without order_by params = { "test_name": "web_connectivity", "order_by": "test_start_time", "order": "desc", "limit": 1000, } if country_code: params["probe_cc"] = country_code if url: params["input"] = url params["limit"] = 100 next_page_url = self._api_query_url("measurements", params) measurement_entries = deque() while True: if not measurement_entries: if not next_page_url: return logging.debug("Fetching %s", next_page_url) async with self._http_client.get(next_page_url) as response: response_json = await response.json(encoding="utf8") next_page_url = response_json["metadata"].get("next_url") measurement_entries.extend(response_json["results"]) if measurement_entries: yield measurement_entries.popleft() def CreatePublicApiOoniClient(http_client: aiohttp.ClientSession): return ApiOoniClient("https://api.ooni.io/api/v1", http_client)
36.349398
103
0.673682
7943a7c9b028e696b387ff15afb5ee2a225928cc
3,318
py
Python
examples/undocumented/python/evaluation_cross_validation_mkl_weight_storage.py
mrkarna/shogun
dc4b41d8e3cdaecf39c59d2414d68b424a448da7
[ "BSD-3-Clause" ]
null
null
null
examples/undocumented/python/evaluation_cross_validation_mkl_weight_storage.py
mrkarna/shogun
dc4b41d8e3cdaecf39c59d2414d68b424a448da7
[ "BSD-3-Clause" ]
null
null
null
examples/undocumented/python/evaluation_cross_validation_mkl_weight_storage.py
mrkarna/shogun
dc4b41d8e3cdaecf39c59d2414d68b424a448da7
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # This software is distributed under BSD 3-clause license (see LICENSE file). # # Authors: Heiko Strathmann from numpy.random import randn from numpy import * # generate some overlapping training vectors num_vectors=5 vec_distance=1 traindat=concatenate((randn(2,num_vectors)-vec_distance, randn(2,num_vectors)+vec_distance), axis=1) label_traindat=concatenate((-ones(num_vectors), ones(num_vectors))); parameter_list = [[traindat,label_traindat]] def evaluation_cross_validation_mkl_weight_storage(traindat=traindat, label_traindat=label_traindat): from shogun import CrossValidation, CrossValidationResult from shogun import ParameterObserverCV from shogun import ContingencyTableEvaluation, ACCURACY from shogun import StratifiedCrossValidationSplitting from shogun import BinaryLabels from shogun import RealFeatures, CombinedFeatures from shogun import CombinedKernel from shogun import MKLClassification import shogun as sg import numpy as np # training data, combined features all on same data features=RealFeatures(traindat) comb_features=CombinedFeatures() comb_features.append_feature_obj(features) comb_features.append_feature_obj(features) comb_features.append_feature_obj(features) labels=BinaryLabels(label_traindat) # kernel, different Gaussians combined kernel=CombinedKernel() kernel.append_kernel(sg.kernel("GaussianKernel", log_width=np.log(0.1))) kernel.append_kernel(sg.kernel("GaussianKernel", log_width=np.log(1))) kernel.append_kernel(sg.kernel("GaussianKernel", log_width=np.log(2))) # create mkl using libsvm, due to a mem-bug, interleaved is not possible svm=MKLClassification(); svm.put("svm", sg.as_svm(sg.machine("LibSVM"))) svm.set_interleaved_optimization_enabled(False); svm.set_kernel(kernel); # splitting strategy for 5 fold cross-validation (for classification its better # to use "StratifiedCrossValidation", but the standard # "StratifiedCrossValidationSplitting" is also available splitting_strategy=StratifiedCrossValidationSplitting(labels, 5) # evaluation method evaluation_criterium=ContingencyTableEvaluation(ACCURACY) # cross-validation instance cross_validation=CrossValidation(svm, comb_features, labels, splitting_strategy, evaluation_criterium) cross_validation.set_autolock(False) # append cross vlaidation output classes mkl_storage=ParameterObserverCV() cross_validation.subscribe_to_parameters(mkl_storage) cross_validation.set_num_runs(3) # perform cross-validation result=cross_validation.evaluate() # print mkl weights weights = [] for obs_index in range(mkl_storage.get_num_observations()): obs = mkl_storage.get_observation(obs_index) for fold_index in range(obs.get_num_folds()): fold = obs.get_fold(fold_index) machine = MKLClassification.obtain_from_generic(fold.get_trained_machine()) w = machine.get_kernel().get_subkernel_weights() weights.append(w) print("mkl weights during cross--validation") print(weights) if __name__=='__main__': print('Evaluation CrossValidationClassification') evaluation_cross_validation_mkl_weight_storage(*parameter_list[0])
37.704545
101
0.768837