hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
4a273f551d8225ab3bbd470297a52534408bc01e
35,624
py
Python
src/cogent3/app/data_store.py
u6052029/cogent3
ca0efcb7f60b715bcbfbecd924cdb98a53cefe20
[ "BSD-3-Clause" ]
null
null
null
src/cogent3/app/data_store.py
u6052029/cogent3
ca0efcb7f60b715bcbfbecd924cdb98a53cefe20
[ "BSD-3-Clause" ]
null
null
null
src/cogent3/app/data_store.py
u6052029/cogent3
ca0efcb7f60b715bcbfbecd924cdb98a53cefe20
[ "BSD-3-Clause" ]
null
null
null
import glob import json import os import pathlib import re import shutil import weakref import zipfile from collections import defaultdict from fnmatch import fnmatch, translate from io import TextIOWrapper from json import JSONDecodeError from pathlib import Path from pprint import pprint from warnings import warn from scitrack import get_text_hexdigest from tinydb import Query, TinyDB from tinydb.middlewares import CachingMiddleware from tinydb.storages import JSONStorage from cogent3.util.deserialise import deserialise_not_completed from cogent3.util.misc import ( atomic_write, extend_docstring_from, get_format_suffixes, open_, ) from cogent3.util.table import Table from cogent3.util.union_dict import UnionDict __author__ = "Gavin Huttley" __copyright__ = "Copyright 2007-2020, The Cogent Project" __credits__ = ["Gavin Huttley"] __license__ = "BSD-3" __version__ = "2020.7.2a" __maintainer__ = "Gavin Huttley" __email__ = "[email protected]" __status__ = "Alpha" # handling archive, member existence SKIP = "skip" OVERWRITE = "overwrite" RAISE = "raise" IGNORE = "ignore" def make_record_for_json(identifier, data, completed): """returns a dict for storage as json""" try: data = data.to_rich_dict() except AttributeError: pass data = json.dumps(data) return dict(identifier=identifier, data=data, completed=completed) def load_record_from_json(data): """returns identifier, data, completed status from json string""" if type(data) == str: data = json.loads(data) value = data["data"] if isinstance(value, str): try: value = json.loads(value) except JSONDecodeError: pass return data["identifier"], value, data["completed"] class DataStoreMember(str): def __new__(klass, name, parent=None, id=None): result = str.__new__(klass, name) result.name = os.path.basename(name) result.parent = parent result._file = None result.id = id return result def read(self): """returns contents""" return self.parent.read(self) def open(self): """returns file-like object""" if self._file is None: self._file = self.parent.open(self.name) return self._file def close(self): """closes file""" if self._file is None: return self._file.close() self._file = None @property def md5(self): return self.parent.md5(self, force=True) class ReadOnlyDataStoreBase: """a read only data store""" store_suffix = None def __init__(self, source, suffix=None, limit=None, verbose=False, md5=True): """ Parameters ---------- source path to directory / zip file. Forced to end with store_suffix. suffix only members whose name matches the suffix are considered included limit the maximum number of members to consider verbose displays files that don't match search (applies only to the Zipped variant) md5 : bool record md5 hexadecimal checksum of read data when possible """ # assuming delimiter is / # todo this approach to caching persistent arguments for reconstruction # is fragile. Need an inspect module based approach d = locals() self._persistent = UnionDict({k: v for k, v in d.items() if k != "self"}) source = str(source) suffix = suffix or "" if suffix != "*": # wild card search for all suffix = re.sub(r"^[\s.*]+", "", suffix) # tidy the suffix source = re.sub(r"/+$", "", source) # tidy the source self.suffix = suffix if self.store_suffix and not source.endswith(self.store_suffix): source = ".".join([source, self.store_suffix]) self.source = str(pathlib.Path(source).expanduser()) self.mode = "r" self._members = [] self.limit = limit self._verbose = verbose self._md5 = md5 self._checksums = {} def __getstate__(self): data = self._persistent.copy() return data def __setstate__(self, data): new = self.__class__(**data) self.__dict__.update(new.__dict__) return self def __repr__(self): if len(self) > 3: sample = str(list(self[:3])) sample = f"{sample[:-1]}..." else: sample = list(self) num = len(self) name = self.__class__.__name__ txt = f"{num}x member {name}(source='{self.source}', members={sample})" return txt def __str__(self): return str(list(self)) def head(self, n=5): """displays top n members""" pprint(self[:n]) def tail(self, n=5): """displays last n members""" pprint(self[-n:]) def __iter__(self): for i, member in enumerate(self.members): if not isinstance(member, DataStoreMember): member = DataStoreMember(self.get_absolute_identifier(member), self) self.members[i] = member yield member def __getitem__(self, index): return self.members[index] def __len__(self): return len(self.members) def __contains__(self, identifier): """whether relative identifier has been stored""" if isinstance(identifier, DataStoreMember): return identifier.parent is self if not identifier.endswith(self.suffix): suffix = pathlib.Path(identifier).suffix # possible an "added" file if self.store_suffix == "zip": klass = ReadOnlyZippedDataStore else: klass = ReadOnlyDirectoryDataStore new = klass(self.source, suffix=suffix) return identifier in new identifier = self.get_relative_identifier(identifier) result = False for member in self.members: if identifier in member: result = True break return result def get_member(self, identifier): """returns DataStoreMember""" identifier = self.get_relative_identifier(identifier) for member in self.members: if identifier in member: return member return None def get_relative_identifier(self, identifier): """returns the identifier relative to store root path """ if isinstance(identifier, DataStoreMember) and identifier.parent is self: return identifier source = self.source identifier = os.path.basename(identifier) if source.endswith(".zip"): # we insert the source path into identifier name # for zip members to ensure inflation creates a directory # containing them source = source.replace(".zip", "") source = os.path.basename(source) identifier = f"{source}{os.sep}{identifier}" else: identifier = Path(identifier) identifier = identifier.name return identifier def get_absolute_identifier(self, identifier, from_relative=False): """returns the identifier relative to the root path """ if not from_relative: identifier = self.get_relative_identifier(identifier) source = self.source.replace(".zip", "") if isinstance(identifier, DataStoreMember): identifier = identifier.name elif not identifier.startswith(source): identifier = f"{source}{os.sep}{identifier}" return identifier def read(self, identifier): """reads data corresponding to identifier""" if isinstance(identifier, DataStoreMember) and identifier.parent is self: identifier = identifier.name source = self.open(identifier) data = source.read() if self._md5: self._checksums[identifier] = get_text_hexdigest(data) source.close() return data @property def members(self): raise NotImplementedError # override in subclasses def open(self, identifier): raise NotImplementedError def filtered(self, pattern=None, callback=None): """returns list of members for which callback returns True""" assert any([callback, pattern]), "Must provide a pattern or a callback" if pattern: result = [m for m in self if fnmatch(m, pattern)] else: result = [m for m in self if callback(m)] return result def md5(self, identifier, force=True): """ Parameters ---------- identifier name of data store member force : bool forces reading of data if not already done Returns ------- md5 checksum for the member, if available, None otherwise """ md5_setting = self._md5 # for restoring automatic md5 calc setting absoluteid = self.get_absolute_identifier(identifier) if force and absoluteid not in self._checksums: self._md5 = True _ = self.read(absoluteid) result = self._checksums.get(absoluteid, None) self._md5 = md5_setting return result class ReadOnlyDirectoryDataStore(ReadOnlyDataStoreBase): @property def members(self): if not self._members: pattern = "%s/**/*.%s" % (self.source, self.suffix) paths = glob.iglob(pattern, recursive=True) members = [] for i, path in enumerate(paths): if self.limit and i >= self.limit: break member = DataStoreMember(self.get_absolute_identifier(path), self) members.append(member) self._members = members return self._members def open(self, identifier): identifier = self.get_absolute_identifier(identifier, from_relative=False) if not os.path.exists(identifier): raise ValueError(f"path '{identifier}' does not exist") infile = open_(identifier) return infile class SingleReadDataStore(ReadOnlyDirectoryDataStore): """simplified for a single file""" def __init__(self, source, *args, **kwargs): """ Parameters source path to one file args ignored kwargs ignored """ path = Path(source) assert path.exists() and path.is_file() super(SingleReadDataStore, self).__init__( str(path.parent), suffix=str(path.suffix) ) self._members = [DataStoreMember(path, self)] class ReadOnlyZippedDataStore(ReadOnlyDataStoreBase): store_suffix = "zip" @property def members(self): if os.path.exists(self.source) and not self._members: source_path = self.source.replace(Path(self.source).suffix, "") pattern = "*.%s" % self.suffix members = [] with zipfile.ZipFile(self.source) as archive: names = archive.namelist() num_matches = 0 for name in names: name = os.path.basename(name) if fnmatch(name, pattern): num_matches += 1 member = DataStoreMember(os.path.join(source_path, name), self) members.append(member) elif self._verbose: print(f"Did not match {name}") if self.limit and num_matches >= self.limit: break self._members = members return self._members def open(self, identifier): identifier = self.get_relative_identifier(identifier) archive = zipfile.ZipFile(self.source) record = archive.open(identifier.replace("\\", "/")) record = TextIOWrapper(record, encoding="latin-1") return record class WritableDataStoreBase: def __init__(self, if_exists=RAISE, create=False): """ Parameters ---------- if_exists : str behaviour when the destination already exists. Valid constants are defined in this file as OVERWRITE, SKIP, RAISE, IGNORE (they correspond to lower case version of the same word) create : bool if True, the destination is created """ d = locals() d = UnionDict({k: v for k, v in d.items() if k != "self"}) if self._persistent: self._persistent |= d else: self._persistent = d self._members = [] if_exists = if_exists.lower() assert if_exists in (OVERWRITE, SKIP, RAISE, IGNORE) if create is False and if_exists == OVERWRITE: warn(f"'{OVERWRITE}' reset to '{IGNORE}' and create=True", UserWarning) create = True self._source_create_delete(if_exists, create) def make_relative_identifier(self, data): """returns identifier for a new member relative to source""" if isinstance(data, DataStoreMember): data = data.name elif type(data) != str: try: data = data.info.source except AttributeError: try: data = data.source except AttributeError: raise ValueError( "objects for storage require either a " "source or info.source string attribute" ) basename = os.path.basename(data) suffix, comp = get_format_suffixes(basename) if suffix and comp: pattern = f".{suffix}.{comp}$" elif suffix: pattern = f".{suffix}$" elif comp: pattern = f".{comp}*$" else: pattern = None if pattern: basename = re.sub(pattern, "", basename) basename = f"{basename}.{self.suffix}" return basename def make_absolute_identifier(self, data): """returns a absolute identifier for a new member, includes source""" basename = self.make_relative_identifier(data) identifier = self.get_absolute_identifier(basename, from_relative=True) return identifier def add_file(self, path, make_unique=True, keep_suffix=True, cleanup=False): """ Parameters ---------- path : str location of file to be added to the data store keep_suffix : bool new path will retain the suffix of the provided file make_unique : bool a successive number will be added to the name before the suffix until the name is unique cleanup : bool delete the original """ relativeid = self.make_relative_identifier(path) relativeid = Path(relativeid) path = Path(path) if keep_suffix: relativeid = str(relativeid).replace( relativeid.suffix, "".join(path.suffixes) ) relativeid = Path(relativeid) suffixes = "".join(relativeid.suffixes) new = relativeid num = 0 while True: if not str(relativeid) in self: if num: new = str(relativeid).replace(suffixes, f"-{num}{suffixes}") break num += 1 relativeid = new data = SingleReadDataStore(path)[0].read() self.write(str(relativeid), data) if cleanup: path.unlink() return relativeid def write_incomplete(self, identifier, not_completed): """ Parameters ---------- identifier : str identifier for record not_completed : NotComplete instance that records key details for why incomplete Returns ------- None if storage class does not support writing incomplete, otherwise a DataStoreMember. """ if self.suffix != "json": msg = f"not supported for {self.__class__.__name__}" warn(msg, UserWarning) return record = make_record_for_json(identifier, not_completed, False) record = json.dumps(record) self.write(identifier, record) def write(self, *args, **kwargs): """ Parameters ---------- identifier : str identifier that data wil be saved under data data to be saved Returns ------- DataStoreMember instance """ raise NotImplementedError def close(self): pass class WritableDirectoryDataStore(ReadOnlyDirectoryDataStore, WritableDataStoreBase): def __init__( self, source, suffix, mode="w", if_exists=RAISE, create=False, md5=True, **kwargs, ): """ Parameters ---------- source path to directory / zip file suffix only members whose name matches the suffix are considered included mode : str file opening mode, defaults to write if_exists : str behaviour when the destination already exists. Valid constants are defined in this file as OVERWRITE, SKIP, RAISE, IGNORE (they correspond to lower case version of the same word) create : bool if True, the destination is created md5 : bool record md5 hexadecimal checksum of data when possible """ assert "w" in mode or "a" in mode ReadOnlyDirectoryDataStore.__init__(self, source=source, suffix=suffix, md5=md5) WritableDataStoreBase.__init__(self, if_exists=if_exists, create=create) d = locals() self._persistent = {k: v for k, v in d.items() if k != "self"} self.mode = mode def _has_other_suffixes(self, path, suffix): p = Path(path) allowed = {str(suffix), "log"} for f in p.iterdir(): if get_format_suffixes(str(f))[0] not in allowed: return True return False def _source_create_delete(self, if_exists, create): exists = os.path.exists(self.source) if exists and if_exists == RAISE: raise RuntimeError(f"'{self.source}' exists") elif exists and if_exists == OVERWRITE: if self._has_other_suffixes(self.source, self.suffix): raise RuntimeError( f"Unsafe to delete {self.source} as it contains ", f"files other than .{self.suffix} or .log files." " You will need to remove this directly yourself.", ) try: shutil.rmtree(self.source) except NotADirectoryError: os.remove(self.source) elif not exists and not create: raise RuntimeError(f"'{self.source}' does not exist") if create: os.makedirs(self.source, exist_ok=True) @extend_docstring_from(WritableDataStoreBase.write) def write(self, identifier, data): relative_id = self.get_relative_identifier(identifier) absolute_id = self.get_absolute_identifier(relative_id, from_relative=True) if self._md5: self._checksums[absolute_id] = get_text_hexdigest(data) with atomic_write(str(absolute_id), in_zip=False) as out: out.write(data) member = DataStoreMember(relative_id, self) if relative_id not in self and relative_id.endswith(self.suffix): self._members.append(member) return member class WritableZippedDataStore(ReadOnlyZippedDataStore, WritableDataStoreBase): def __init__( self, source, suffix, mode="a", if_exists=RAISE, create=False, md5=True, **kwargs, ): """ Parameters ---------- source path to directory / zip file suffix only members whose name matches the suffix are considered included mode : str file opening mode, defaults to append if_exists : str behaviour when the destination already exists. Valid constants are defined in this file as OVERWRITE, SKIP, RAISE, IGNORE (they correspond to lower case version of the same word) create : bool if True, the destination is created md5 : bool record md5 hexadecimal checksum of data when possible """ ReadOnlyZippedDataStore.__init__(self, source=source, suffix=suffix, md5=md5) WritableDataStoreBase.__init__(self, if_exists=if_exists, create=create) d = locals() self._persistent = {k: v for k, v in d.items() if k != "self"} self.mode = "a" or mode def _has_other_suffixes(self, path, suffix): allowed = {str(suffix), "log"} for f in zipfile.ZipFile(path).namelist(): if get_format_suffixes(str(f))[0] not in allowed: return True return False def _source_create_delete(self, if_exists, create): exists = os.path.exists(self.source) dirname = os.path.dirname(self.source) if exists and if_exists == RAISE: raise RuntimeError(f"'{self.source}' exists") elif exists and if_exists == OVERWRITE: if self._has_other_suffixes(self.source, self.suffix): raise RuntimeError( f"Unsafe to delete {self.source} as it contains ", f"files other than .{self.suffix} or .log files." " You will need to remove this directly yourself.", ) os.remove(self.source) elif dirname and not os.path.exists(dirname) and not create: raise RuntimeError(f"'{dirname}' does not exist") if create and dirname: os.makedirs(dirname, exist_ok=True) @extend_docstring_from(WritableDataStoreBase.write) def write(self, identifier, data): relative_id = self.get_relative_identifier(identifier) absolute_id = self.get_absolute_identifier(relative_id, from_relative=True) if self._md5: self._checksums[absolute_id] = get_text_hexdigest(data) with atomic_write(str(relative_id), in_zip=self.source) as out: out.write(data) member = DataStoreMember(relative_id, self) if relative_id not in self and relative_id.endswith(self.suffix): self._members.append(member) return member def _db_lockid(path): """returns value for pid in LOCK record or None""" if not os.path.exists(path): return None db = TinyDB(path) query = Query().identifier.matches("LOCK") got = db.get(query) lockid = None if not got else got["pid"] db.close() return lockid class ReadOnlyTinyDbDataStore(ReadOnlyDataStoreBase): """A TinyDB based json data store""" store_suffix = "tinydb" def __init__(self, *args, **kwargs): kwargs["suffix"] = "json" super(ReadOnlyTinyDbDataStore, self).__init__(*args, **kwargs) self._db = None self._finish = None def __contains__(self, identifier): """whether identifier has been stored here""" if isinstance(identifier, DataStoreMember): return identifier.parent is self query = Query().identifier.matches(identifier) return self.db.contains(query) def __repr__(self): txt = super().__repr__() query = Query().completed == False num = self.db.count(query) if num > 0: txt = f"{txt}, {num}x incomplete" return txt @property def db(self): if self._db is None: storage = CachingMiddleware(JSONStorage) storage.WRITE_CACHE_SIZE = 50 # todo support for user specifying self._db = TinyDB(self.source, storage=storage) name = self.__class__.__name__ if "readonly" in name.lower(): # remove interface for inserting records making this a read only db self._db.insert = None else: self.lock() self._finish = weakref.finalize(self, self._close, self._db) return self._db def __del__(self): self.close() @classmethod def _close(cls, db): try: db.storage.flush() db.close() except ValueError: # file probably already closed pass def close(self): """closes the data store""" try: self.unlock() self.db.storage.flush() except ValueError: # file probably already closed pass self._finish() self._finish.detach() def lock(self): """if writable, and not locked, locks the database to this pid """ if not self.locked: self._db.insert(dict(identifier="LOCK", pid=os.getpid())) self._db.storage.flush() @property def locked(self): """returns lock pid or None if unlocked or pid matches self""" return _db_lockid(self.source) is not None def unlock(self, force=False): """remove a lock if pid matches. If force, ignores pid.""" if "readonly" in self.__class__.__name__: # not allowed to touch a lock return query = Query().identifier.matches("LOCK") got = self.db.get(query) if not got: return lock_id = got["pid"] if lock_id == os.getpid() or force: self.db.remove(query) self.db.storage.flush() return lock_id @property def incomplete(self): """returns database records with completed=False""" query = Query().completed == False incomplete = [] for record in self.db.search(query): member = DataStoreMember(record["identifier"], self, id=record.doc_id) incomplete.append(member) return incomplete @property def summary_incomplete(self): """returns a table summarising incomplete results""" types = defaultdict(list) indices = "type", "origin" for member in self.incomplete: record = member.read() record = deserialise_not_completed(record) key = tuple(getattr(record, k, None) for k in indices) types[key].append([record.message, record.source]) header = list(indices) + ["message", "num", "source"] rows = [] for record in types: messages, sources = list(zip(*types[record])) messages = list(sorted(set(messages))) if len(messages) > 3: messages = messages[:3] + ["..."] if len(sources) > 3: sources = sources[:3] + ("...",) row = list(record) + [ ", ".join(messages), len(types[record]), ", ".join(sources), ] rows.append(row) table = Table(header=header, data=rows, title="incomplete records") return table @property def members(self): if not self._members: if self.suffix: pattern = translate("*.%s" % self.suffix) else: pattern = translate("*") members = [] query = Query() query = (query.identifier.matches(pattern)) & (query.completed == True) for record in self.db.search(query): member = DataStoreMember(record["identifier"], self, id=record.doc_id) members.append(member) if self.limit and len(members) >= self.limit: break self._members = members return self._members @extend_docstring_from(ReadOnlyDataStoreBase.get_absolute_identifier, pre=True) def get_absolute_identifier(self, identifier, from_relative=True): """For tinydb, this is the same as the relative identifier""" return self.get_relative_identifier(identifier) @extend_docstring_from(ReadOnlyDataStoreBase.get_relative_identifier) def get_relative_identifier(self, identifier): if isinstance(identifier, DataStoreMember) and identifier.parent is self: return identifier identifier = Path(identifier) identifier = identifier.name return identifier def open(self, identifier): if getattr(identifier, "parent", None) is not self: member = self.get_member(identifier) else: member = identifier _, record, _ = load_record_from_json(self.db.get(doc_id=member.id)) return record def read(self, identifier): data = self.open(identifier) if self._md5 and isinstance(data, str): self._checksums[identifier] = get_text_hexdigest(data) return data @extend_docstring_from(ReadOnlyDataStoreBase.md5) def md5(self, member, force=True): md5_setting = self._md5 # for restoring automatic md5 calc setting if not getattr(member, "id", None): member = self.filtered(member)[0] if force and member not in self._checksums: self._md5 = True _ = member.read() result = self._checksums.get(member, None) self._md5 = md5_setting return result @property def logs(self): """returns all records with a .log suffix""" logfiles = [] query = Query().identifier.matches(translate("*.log")) for record in self.db.search(query): member = DataStoreMember(record["identifier"], self, id=record.doc_id) logfiles.append(member) return logfiles @property def summary_logs(self): """returns a table summarising log files""" rows = [] for record in self.logs: data = record.read().splitlines() first = data.pop(0).split("\t") row = [first[0], record.name] key = None mapped = {} for line in data: line = line.split("\t")[-1].split(" : ", maxsplit=1) if len(line) == 1: mapped[key] += line[0] continue key = line[0] mapped[key] = line[1] data = mapped row.extend( [ data["python"], data["user"], data["command_string"], data["composable function"], ] ) rows.append(row) table = Table( header=["time", "name", "python version", "who", "command", "composable"], data=rows, title="summary of log files", ) return table @property def describe(self): """returns tables describing content types""" lock_id = _db_lockid(self.source) if lock_id: title = ( f"Locked db store. Locked to pid={lock_id}, current pid={os.getpid()}" ) else: title = "Unlocked db store." num_incomplete = len(self.incomplete) num_complete = len(self.members) num_logs = len(self.logs) summary = Table( header=["record type", "number"], data=[ ["completed", num_complete], ["incomplete", num_incomplete], ["logs", num_logs], ], title=title, ) return summary class WritableTinyDbDataStore(ReadOnlyTinyDbDataStore, WritableDataStoreBase): def __init__(self, *args, **kwargs): if_exists = kwargs.pop("if_exists", RAISE) create = kwargs.pop("create", True) ReadOnlyTinyDbDataStore.__init__(self, *args, **kwargs) WritableDataStoreBase.__init__(self, if_exists=if_exists, create=create) def _source_create_delete(self, if_exists, create): if _db_lockid(self.source): return exists = os.path.exists(self.source) dirname = os.path.dirname(self.source) if exists and if_exists == RAISE: raise RuntimeError(f"'{self.source}' exists") elif exists and if_exists == OVERWRITE: try: os.remove(self.source) except PermissionError: # probably user accidentally created a directory shutil.rmtree(self.source) elif dirname and not os.path.exists(dirname) and not create: raise RuntimeError(f"'{dirname}' does not exist") if create and dirname: os.makedirs(dirname, exist_ok=True) @extend_docstring_from(WritableDataStoreBase.write) def write(self, identifier, data): matches = self.filtered(identifier) if matches: return matches[0] relative_id = self.get_relative_identifier(identifier) record = make_record_for_json(relative_id, data, True) doc_id = self.db.insert(record) member = DataStoreMember(relative_id, self, id=doc_id) if relative_id.endswith(self.suffix): self._members.append(member) return member def write_incomplete(self, identifier, not_completed): """stores an incomplete result object""" from .composable import NotCompleted matches = self.filtered(identifier) if matches: return matches[0] relative_id = self.get_relative_identifier(identifier) record = make_record_for_json(relative_id, not_completed, False) doc_id = self.db.insert(record) member = DataStoreMember(relative_id, self, id=doc_id) return member def add_file(self, path, make_unique=True, keep_suffix=True, cleanup=False): """ Parameters ---------- path : str location of file to be added to the data store keep_suffix : bool new path will retain the suffix of the provided file make_unique : bool a successive number will be added to the name before the suffix until the name is unique cleanup : bool delete the original """ relativeid = self.make_relative_identifier(path) relativeid = Path(relativeid) path = Path(path) if keep_suffix: relativeid = str(relativeid).replace( relativeid.suffix, "".join(path.suffixes) ) relativeid = Path(relativeid) if relativeid.suffix: name_wo_suffix = ".".join(relativeid.name.split(".")[:-1]) else: name_wo_suffix = relativeid suffixes = "".join(relativeid.suffixes) query = Query().identifier.matches(f"{name_wo_suffix}*") num = self.db.count(query) if num: num += 1 relativeid = str(relativeid).replace(suffixes, f"-{num}{suffixes}") relativeid = str(relativeid).replace(suffixes, f"-{num}{suffixes}") data = path.read_text() m = self.write(str(relativeid), data) if cleanup: path.unlink() return m
32.652612
88
0.583595
4a273fb3ef73b3ff8e1aa3b4c26ee5011bb7b8c9
2,894
py
Python
test1/test1/settings.py
435236402/dome
6c433c84b682475e2d2843c57ec5a847bc688405
[ "MIT" ]
null
null
null
test1/test1/settings.py
435236402/dome
6c433c84b682475e2d2843c57ec5a847bc688405
[ "MIT" ]
null
null
null
test1/test1/settings.py
435236402/dome
6c433c84b682475e2d2843c57ec5a847bc688405
[ "MIT" ]
null
null
null
""" Django settings for test1 project. Generated by 'django-admin startproject' using Django 1.8.2. For more information on this file, see https://docs.djangoproject.com/en/1.8/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.8/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.8/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = ')n$-!%^u%l@#&*%zszn^p+41*12z$yu^&$__6syeoays_cy1#^' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'tinymce', 'booktest', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', ) ROOT_URLCONF = 'test1.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'test1.wsgi.application' # Database # https://docs.djangoproject.com/en/1.8/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'test1', 'USER': 'root', 'PASSWORD': 'mysql', 'HOST': '192.168.231.134', 'PORT': 3306 } } # Internationalization # https://docs.djangoproject.com/en/1.8/topics/i18n/ LANGUAGE_CODE = 'zh-Hans' TIME_ZONE = 'Asia/Shanghai' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.8/howto/static-files/ STATIC_URL = '/static/' TINYMCE_DEFAULT_CONFIG = { 'theme': 'advanced', 'width': 600, 'height': 400, }
24.735043
71
0.678645
4a27408c5113ac9308808830efa68fdd6ad58ea5
40,960
py
Python
imagenet/models/pre_resnet_CFandIN_temp.py
LongJin-lab/Nematode-Connectome-Neural-Network
c1fcef110df7d5cfb9fec6a0778b8340e5289ede
[ "MIT" ]
null
null
null
imagenet/models/pre_resnet_CFandIN_temp.py
LongJin-lab/Nematode-Connectome-Neural-Network
c1fcef110df7d5cfb9fec6a0778b8340e5289ede
[ "MIT" ]
null
null
null
imagenet/models/pre_resnet_CFandIN_temp.py
LongJin-lab/Nematode-Connectome-Neural-Network
c1fcef110df7d5cfb9fec6a0778b8340e5289ede
[ "MIT" ]
null
null
null
import torch.nn as nn import torch import torch.nn.functional as functional from torch.nn.parameter import Parameter import math from torch.autograd import Variable import numpy as np import torch.onnx import netron # from init import * from random import random import argparse # __all__ = ['pre_resnet18', 'pre_resnet34', 'pre_resnet50', 'pre_resnet101', # 'pre_resnet152'] __all__ = ['honet18_in', 'honet34_in', 'honet50_in', 'pre_act_resnet18_in', 'pre_act_resnet34_in', 'pre_act_resnet50_in'] # __all__ = ['HONet34_IN', 'HONet18_IN'] parser = argparse.ArgumentParser(description='PyTorch CIFAR Training') args = parser.parse_args() global num_cla num_cla = 1000 class BasicBlockWithDeathRate(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1, death_rate=0., downsample=None): super(BasicBlockWithDeathRate, self).__init__() self.bn1 = nn.BatchNorm2d(in_planes) self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) self.relu = nn.ReLU(inplace=True) self.stride = stride self.in_planes = in_planes self.planes = planes self.death_rate = death_rate def forward(self, x): if not self.training or torch.rand(1)[ 0] >= self.death_rate: # 2nd condition: death_rate is below the upper bound out = self.bn1(x) out = self.relu(out) out = self.conv1(out) out = self.bn2(out) out = self.relu(out) out = self.conv2(out) # ^ the same with Pre-ResNet if self.training: out /= (1. - self.death_rate) # out = out/(1. - death_rate) ? maybe it is mutiplied by the rate before else: if self.stride == 1: out = Variable(torch.FloatTensor(x.size()).cuda().zero_(), requires_grad=False) else: size = list(x.size()) size[-1] //= 2 # Maybe it is the Height (interger, devide) size[-2] //= 2 # Maybe it is the Width size[-3] *= 2 # Maybe Channel size = torch.Size(size) out = Variable(torch.FloatTensor(size).cuda().zero_(), requires_grad=False) # all zero tensor return out class BasicBlock_cifar(nn.Module): # actually, this is the preact block expansion = 1 def __init__(self, in_planes, planes, stride=1, downsample=None): super(BasicBlock_cifar, self).__init__() self.bn1 = nn.BatchNorm2d(in_planes) self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) self.relu = nn.ReLU(inplace=True) self.stride = stride self.in_planes = in_planes self.planes = planes def forward(self, x): # Pre-ResNet out = self.bn1(x) # wo BN # out = x # wo BN out = self.relu(out) out = self.conv1(out) out = self.bn2(out) out = self.relu(out) out = self.conv2(out) return out class HOBlock(nn.Module): # actually, this is the preact block expansion = 1 def __init__(self, in_planes, planes, last_res_planes, l_last_res_planes, stride=1, k_ini=-9.0 / 5, fix_k=False, stepsize=1, given_ks=[10, 10, 10, 10], downsample=None): super(HOBlock, self).__init__() self.bn1 = nn.BatchNorm2d(in_planes) self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) self.relu = nn.ReLU(inplace=True) # self.bn3 = nn.BatchNorm2d(planes)# 20210803 self.stride = stride self.in_planes = in_planes self.planes = planes self.last_res_planes = last_res_planes self.l_last_res_planes = l_last_res_planes self.stepsize = stepsize self.fix_k = fix_k if self.fix_k: self.k = k_ini self.a_0 = float(given_ks[0]) self.a_1 = float(given_ks[1]) self.a_2 = float(given_ks[2]) self.b_0 = float(given_ks[3]) else: self.k = nn.Parameter(torch.Tensor(1).uniform_(k_ini, k_ini)) # self.ks = nn.ParameterList(torch.Tensor(1).uniform_(1.0, 1.1)) # print('l_last_res_planes, last_res_planes, in_planes, planes', l_last_res_planes, last_res_planes, in_planes, planes) if not (self.last_res_planes == -1 or self.l_last_res_planes == -1): # if 1: if self.planes == 32: if in_planes == 16: self.downsample_16_32_x = Downsample_clean(16, 32, 2) # print('downsample_16_32_x') if self.last_res_planes == 16: self.downsample_16_32_l = Downsample_clean(16, 32, 2) # print('downsample_16_32_l') if self.l_last_res_planes == 16: self.downsample_16_32_ll = Downsample_clean(16, 32, 2) # print('downsample_16_32_ll') if self.planes == 64: if self.in_planes == 32: self.downsample_32_64_x = Downsample_clean(32, 64, 2) if self.last_res_planes == 32: self.downsample_32_64_l = Downsample_clean(32, 64, 2) if self.l_last_res_planes == 32: self.downsample_32_64_ll = Downsample_clean(32, 64, 2) if self.planes == 128: if self.in_planes == 64: self.downsample_64_128_x = Downsample_clean(64, 128, 2) if self.last_res_planes == 64: self.downsample_64_128_l = Downsample_clean(64, 128, 2) if self.l_last_res_planes == 64: self.downsample_64_128_ll = Downsample_clean(64, 128, 2) if self.planes == 256: if self.in_planes == 128: self.downsample_128_256_x = Downsample_clean(128, 256, 2) if self.last_res_planes == 128: self.downsample_128_256_l = Downsample_clean(128, 256, 2) if self.l_last_res_planes == 128: self.downsample_128_256_ll = Downsample_clean(128, 256, 2) def forward(self, x, last_res, l_last_res): # Pre-ResNet residual = x F_x_n = self.bn1(x) # wo BN # F_x_n=x F_x_n = self.relu(F_x_n) F_x_n = self.conv1(F_x_n) F_x_n = self.bn2(F_x_n) F_x_n = self.relu(F_x_n) F_x_n = self.conv2(F_x_n) # if not (isinstance(last_res,int) or isinstance(l_last_res,int)): # print('F_x_n.size(), residual.size(),last_res.size(),l_last_res.size()', F_x_n.size()[1], residual.size()[1],last_res.size()[1],l_last_res.size()[1]) # print('planes, in_planes, last_res_planes, l_last_res_planes', self.planes, self.in_planes, self.last_res_planes, self.l_last_res_planes) if not (isinstance(last_res, int) or isinstance(l_last_res, int)): # print('HO') # if 1: if self.planes == 32: if self.in_planes == 16: residual = self.downsample_16_32_x(residual) # print('residual.size()', residual.size()) if self.last_res_planes == 16: last_res = self.downsample_16_32_l(last_res) # print('last_res.size()', last_res.size()) if self.l_last_res_planes == 16: l_last_res = self.downsample_16_32_ll(l_last_res) # print('l_last_res.size()', l_last_res.size()) if self.planes == 64: if self.in_planes == 32: residual = self.downsample_32_64_x(residual) if self.last_res_planes == 32: last_res = self.downsample_32_64_l(last_res) if self.l_last_res_planes == 32: l_last_res = self.downsample_32_64_ll(l_last_res) if self.planes == 128: if self.in_planes == 64: residual = self.downsample_64_128_x(residual) if self.last_res_planes == 64: last_res = self.downsample_64_128_l(last_res) if self.l_last_res_planes == 64: l_last_res = self.downsample_64_128_ll(l_last_res) if self.planes == 256: if self.in_planes == 128: residual = self.downsample_128_256_x(residual) if self.last_res_planes == 128: last_res = self.downsample_128_256_l(last_res) if self.l_last_res_planes == 128: l_last_res = self.downsample_128_256_ll(l_last_res) if not self.fix_k: self.b_0 = (3 * self.k - 1) / (self.k * 2) self.a_0 = (3 * self.k + 3) / (self.k * 4) self.a_1 = -1 / (self.k) self.a_2 = (self.k + 1) / (4 * self.k) # print("trainable") x = torch.mul(self.stepsize, torch.mul(self.b_0, F_x_n)) + torch.mul(self.a_0, residual) + torch.mul( self.a_1, last_res) + torch.mul(self.a_2, l_last_res) # print('x', x[0][0][0][0]) # print("self.a_0, self.a_1, self.a_2, self.b_0", self.a_0, self.a_1, self.a_2, self.b_0) else: # print('res') x = F_x_n # x = self.bn3(x) l_last_res = last_res last_res = residual # x means the residual # residual = x return x, last_res, l_last_res, self.k class GaussianNoise(nn.Module): def __init__(self, stddev): super(GaussianNoise, self).__init__() self.stddev = stddev def forward(self, x): if self.training: return x + torch.autograd.Variable(torch.randn(x.size()).cuda() * self.stddev, requires_grad=False) return x class Bottleneck_cifar(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1): super(Bottleneck_cifar, self).__init__() self.bn1 = nn.BatchNorm2d(in_planes) self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.relu = nn.ReLU(inplace=True) self.in_planes = in_planes self.planes = planes def forward(self, x): out = self.bn1(x) out = self.relu(out) out = self.conv1(out) out = self.bn2(out) out = self.relu(out) out = self.conv2(out) out = self.bn3(out) out = self.relu(out) out = self.conv3(out) return out class HoBottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, last_res_planes, l_last_res_planes, stride=1, k_ini=-9.0 / 5, fix_k=False, stepsize=1, given_ks=[1.0 / 3, 5.0 / 9, 1.0 / 9, 16.0 / 9]): super(HoBottleneck, self).__init__() self.bn1 = nn.BatchNorm2d(in_planes) self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.relu = nn.ReLU(inplace=True) self.expansion = 4 self.in_planes = in_planes self.planes = planes * self.expansion self.last_res_planes = last_res_planes self.l_last_res_planes = l_last_res_planes self.stepsize = stepsize self.fix_k = fix_k if self.fix_k: self.k = k_ini self.a_0 = float(given_ks[0]) self.a_1 = float(given_ks[1]) self.a_2 = float(given_ks[2]) self.b_0 = float(given_ks[3]) else: self.k = nn.Parameter(torch.Tensor(1).uniform_(k_ini, k_ini)) # self.ks=nn.ParameterList(torch.Tensor(1).uniform_(1.0, 1.1)) # self.downsample_16_64_res = Downsample_clean(16, 64, 1) # if not (last_res_planes == -1 and l_last_res_planes == -1): # if 1: if not (last_res_planes == -1 or l_last_res_planes == -1): if self.planes == 32: if in_planes == 16: self.downsample_16_32_x = Downsample_clean(16, 32, 2) # print('downsample_16_32_x') if last_res_planes == 16: self.downsample_16_32_l = Downsample_clean(16, 32, 2) # print('downsample_16_32_l') if l_last_res_planes == 16: self.downsample_16_32_ll = Downsample_clean(16, 32, 2) # print('downsample_16_32_ll') if self.planes == 64: if self.in_planes == 16: self.downsample_16_64_x = Downsample_clean(16, 64, 1) # print('downsample_16_32_x') if self.last_res_planes == 16: self.downsample_16_64_l = Downsample_clean(16, 64, 1) # print('downsample_16_32_l') if self.l_last_res_planes == 16: self.downsample_16_64_ll = Downsample_clean(16, 64, 1) if self.in_planes == 32: self.downsample_32_64_x = Downsample_clean(32, 64, 2) if self.last_res_planes == 32: self.downsample_32_64_l = Downsample_clean(32, 64, 2) if self.l_last_res_planes == 32: self.downsample_32_64_ll = Downsample_clean(32, 64, 2) if self.planes == 128: if self.in_planes == 64: self.downsample_64_128_x = Downsample_clean(64, 128, 2) if self.last_res_planes == 64: self.downsample_64_128_l = Downsample_clean(64, 128, 2) if self.l_last_res_planes == 64: self.downsample_64_128_ll = Downsample_clean(64, 128, 2) if self.planes == 256: if self.in_planes == 128: self.downsample_128_256_x = Downsample_clean(128, 256, 2) if self.last_res_planes == 128: self.downsample_128_256_l = Downsample_clean(128, 256, 2) if self.l_last_res_planes == 128: self.downsample_128_256_ll = Downsample_clean(128, 256, 2) def forward(self, x, last_res, l_last_res): # if self.expansion==4: # residual = self.downsample_16_64_res(x) # elif self.expansion==1: # residual = x residual = x F_x_n = self.bn1(x) F_x_n = self.relu(F_x_n) F_x_n = self.conv1(F_x_n) F_x_n = self.bn2(F_x_n) F_x_n = self.relu(F_x_n) F_x_n = self.conv2(F_x_n) F_x_n = self.bn3(F_x_n) F_x_n = self.relu(F_x_n) F_x_n = self.conv3(F_x_n) # self.planes = self.planes*self.expansion # if not (isinstance(last_res,int) or isinstance(l_last_res,int)): # print('F_x_n.size(), residual.size(),last_res.size(),l_last_res.size()', F_x_n.size()[1], residual.size()[1],last_res.size()[1],l_last_res.size()[1]) # print('planes, in_planes, last_res_planes, l_last_res_planes', self.planes, self.in_planes, self.last_res_planes, self.l_last_res_planes) # elif not (isinstance(last_res,int)): # print('F_x_n.size(), residual.size(),last_res.size(),l_last_res.size()', F_x_n.size()[ # 1], residual.size()[1], last_res.size()[1], l_last_res) # print('planes, in_planes, last_res_planes, l_last_res_planes', self.planes, self.in_planes, self.last_res_planes, self.l_last_res_planes) # else: # print('F_x_n.size(), residual.size(),last_res.size(),l_last_res.size()', F_x_n.size()[1], residual.size()[1],last_res,l_last_res) # print('planes, in_planes, last_res_planes, l_last_res_planes', self.planes, self.in_planes, self.last_res_planes, self.l_last_res_planes) if not (isinstance(last_res, int) or isinstance(l_last_res, int)): # print('HO') # if 1: if self.planes == 32: if self.in_planes == 16: residual = self.downsample_16_32_x(residual) # print('residual.size()', residual.size()) if self.last_res_planes == 16: last_res = self.downsample_16_32_l(last_res) # print('last_res.size()', last_res.size()) if self.l_last_res_planes == 16: l_last_res = self.downsample_16_32_ll(l_last_res) # print('l_last_res.size()', l_last_res.size()) if self.planes == 64: if self.in_planes == 16: residual = self.downsample_16_64_x(residual) if self.last_res_planes == 16: last_res = self.downsample_16_64_l(last_res) if self.l_last_res_planes == 16: l_last_res = self.downsample_16_64_ll(l_last_res) if self.in_planes == 32: residual = self.downsample_32_64_x(residual) if self.last_res_planes == 32: last_res = self.downsample_32_64_l(last_res) if self.l_last_res_planes == 32: l_last_res = self.downsample_32_64_ll(l_last_res) if self.planes == 128: if self.in_planes == 64: residual = self.downsample_64_128_x(residual) if self.last_res_planes == 64: last_res = self.downsample_64_128_l(last_res) if self.l_last_res_planes == 64: l_last_res = self.downsample_64_128_ll(l_last_res) if self.planes == 256: if self.in_planes == 128: residual = self.downsample_128_256_x(residual) if self.last_res_planes == 128: last_res = self.downsample_128_256_l(last_res) if self.l_last_res_planes == 128: l_last_res = self.downsample_128_256_ll(l_last_res) if not (isinstance(last_res, int) or isinstance(l_last_res, int)): if not self.fix_k: self.b_0 = (3 * self.k - 1) / (self.k * 2) self.a_0 = (3 * self.k + 3) / (self.k * 4) self.a_1 = -1 / (self.k) self.a_2 = (self.k + 1) / (4 * self.k) # x = torch.mul(b_0, F_x_n) + torch.mul(a_0, residual) + torch.mul(a_1, last_res) + torch.mul(a_2, l_last_res) x = torch.mul(self.stepsize, torch.mul(self.b_0, F_x_n)) + torch.mul(self.a_0, residual) + torch.mul( self.a_1, last_res) + torch.mul(self.a_2, l_last_res) else: # print('res') x = F_x_n l_last_res = last_res last_res = residual # x means the residual # residual = x # print('x.sixe()[1], residual.size()[1]', x.size()[1], residual.size()[1]) return x, last_res, l_last_res, self.k class Downsample(nn.Module): # ReLU and BN are involved in this downsample def __init__(self, in_planes, out_planes, stride=2): super(Downsample, self).__init__() self.downsample = nn.Sequential( nn.BatchNorm2d(in_planes), nn.ReLU(inplace=True), nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) ) def forward(self, x): x = self.downsample(x) return x class Downsample_clean(nn.Module): # ReLU and BN are involved in this downsample def __init__(self, in_planes, out_planes, stride=2): super(Downsample_clean, self).__init__() self.downsample_ = nn.Sequential( # nn.BatchNorm2d(in_planes), # nn.ReLU(inplace=True), nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) ) def forward(self, x): x = self.downsample_(x) return x class Downsample_real(nn.Module): # ReLU and BN are not involved in this downsample def __init__(self, in_shape, out_shape): super(Downsample_real, self).__init__() # in_shape = x.shape() self.in_planes = in_shape[1] self.out_planes = out_shape[1] self.stride = int(in_shape[2] / out_shape[2]) # [256, 64, 32, 32]->[256, 128, 16, 16] self.downsample_real = nn.Sequential( # nn.BatchNorm2d(in_planes), # nn.ReLU(inplace=True), nn.Conv2d(self.in_planes, self.out_planes, kernel_size=1, stride=self.stride, bias=False) ) def forward(self, x): x = self.downsample_real(x) return x class MResNet(nn.Module): # def __init__(self,block,layers,pretrain=True,num_classes=num_cla,stochastic_depth=False,PL=0.5,noise_level=0.001,noise=False): def __init__(self, block, layers, pretrain=False, num_classes=num_cla, stochastic_depth=False, PL=1.0, noise_level=0.001, noise=False): self.in_planes = 16 self.planes = [16, 32, 64] self.strides = [1, 2, 2] super(MResNet, self).__init__() self.noise = noise # what for? self.block = block self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(16) self.relu = nn.ReLU(inplace=True) self.pretrain = pretrain self.ks = nn.ParameterList([nn.Parameter(torch.Tensor(1).uniform_(1.0, 1.1)) for i in range(layers[0] + layers[1] + layers[2])]) # each layer has a trainable $k_n$ self.stochastic_depth = stochastic_depth blocks = [] n = layers[0] + layers[1] + layers[2] if not self.stochastic_depth: for i in range(3): blocks.append(block(self.in_planes, self.planes[i], self.strides[i])) self.in_planes = self.planes[i] * block.expansion for j in range(1, layers[ i]): # Recalling "MResNet(BasicBlock,[3,3,3],**kwargs)", and "layers" is assigned as "[3,3,3]"; then j is 0 to 2 blocks.append(block(self.in_planes, self.planes[i])) # three (Basic) Blocks else: # with death_rates death_rates = [i / (n - 1) * (1 - PL) for i in range(n)] # n is the sum of elements of "[3,3,3]" # print(death_rates) for i in range(3): blocks.append(block(self.in_planes, self.planes[i], self.strides[i], death_rate=death_rates[i * layers[0]])) # note that layers[k] == layers[j] self.in_planes = self.planes[i] * block.expansion for j in range(1, layers[i]): blocks.append(block(self.in_planes, self.planes[i], death_rate=death_rates[i * layers[0] + j])) self.blocks = nn.ModuleList(blocks) # ModuleList cannot determine the sequence of layers self.downsample1 = Downsample(16, 64, stride=1) # Downsample: (in_planes,out_planes,stride=2): # self.downsample1=nn.Conv2d(16, 64, # kernel_size=1, stride=1, bias=False) self.downsample21 = Downsample(16 * block.expansion, 32 * block.expansion) # "expansion" is 1 for BasicBlocks and is 4 for the Bottleneck # self.downsample22=Downsample(16*block.expansion,32*block.expansion) self.downsample31 = Downsample(32 * block.expansion, 64 * block.expansion) # self.downsample32=Downsample(32*block.expansion,64*block.expansion) self.bn = nn.BatchNorm2d(64 * block.expansion) self.avgpool = nn.AvgPool2d(8) self.fc = nn.Linear(64 * block.expansion, num_classes) for m in self.modules(): # initialization if isinstance(m, nn.Conv2d): # if m is a conv n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels # element num of the kernel m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def change_state(self): self.pretrain = not self.pretrain def forward(self, x): x = self.conv1(x) # x=self.bn1(x) # x=self.relu(x) if self.block.expansion == 4: # 4 is the "expansion" of the "Bottleneck". If "Bottleneck" is used, we need to downsample residual = self.downsample1(x) # residual.size()[1]: 16->64 else: residual = x x = self.blocks[0](x) + residual # x.size()[1]: 16->64 last_res = residual for i, b in enumerate(self.blocks): # index and content if i == 0: continue residual = x if b.in_planes != b.planes * b.expansion: # sizes of the input and output are not the same if b.planes == 32: residual = self.downsample21(x) # if not self.pretrain: # last_res=self.downsample22(last_res) elif b.planes == 64: residual = self.downsample31(x) # if not self.pretrain: # last_res=self.downsample32(last_res) x = b(x) # print(x.size()) # print(residual.size()) x += residual elif self.pretrain: # x = b(x) + residual else: # in.channel = out.channel and not pretrain x = b(x) + self.ks[i].expand_as(residual) * residual + (1 - self.ks[i]).expand_as( last_res) * last_res # "B.expand_as (A)": expand B in A's shape last_res = residual x = self.bn(x) x = self.relu(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x, self.ks class HONet_v2(nn.Module): def __init__(self, block, layers, k_ini=-9.0 / 5, pretrain=False, num_classes=num_cla, stochastic_depth=False, PL=1.0, noise_level=0.001, noise=False): self.in_planes = 16 self.planes = [16, 32, 64] self.last_res_planes = -1 self.l_last_res_planes = -1 self.strides = [1, 2, 2] super(HONet_v2, self).__init__() self.noise = noise # what for? self.block = block self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(16) self.relu = nn.ReLU(inplace=True) self.pretrain = pretrain self.stochastic_depth = stochastic_depth self.k_ini = k_ini # self.stepsize =nn.Parameter(torch.Tensor(1).uniform_(1, 1)) blocks = [] self.ks = [] n = layers[0] + layers[1] + layers[2] l = 0 if not self.stochastic_depth: for i in range(3): # there are 3 elements in the list like [7,7,7] # print('v2: self.planes[i], self.in_planes, self.last_res_planes, self.l_last_res_planes', self.planes[i]* block.expansion, self.in_planes, self.last_res_planes, self.l_last_res_planes) blocks.append( block(self.in_planes, self.planes[i], self.last_res_planes, self.l_last_res_planes, self.strides[i], k_ini=self.k_ini)) # ### # if # # ### # self.l_last_res_planes = self.last_res_planes # self.last_res_planes = self.in_planes if l == 0 or l == 1: self.l_last_res_planes = self.last_res_planes self.last_res_planes = self.in_planes else: self.l_last_res_planes = self.planes[i] * block.expansion self.last_res_planes = self.planes[i] * block.expansion self.in_planes = self.planes[i] * block.expansion l += 1 # print('l', l) # print('i', i) for j in range(1, layers[ i]): # Recalling "MResNet(BasicBlock,[3,3,3],**kwargs)", and "layers" is assigned as "[3,3,3]"; then j is 1 to 2 # if l == 0: # self.l_last_res_planes = self.last_res_planes # self.last_res_planes = self.in_planes # # elif l==1: # self.l_last_res_planes = self.last_res_planes # self.last_res_planes = self.in_planes # else: # self.l_last_res_planes = self.planes[i]*block.expansion # self.last_res_planes = self.planes[i]*block.expansion # self.plane = self.planes[i]*block.expansion # print('j', j) # print('v2: self.planes[i], self.in_planes, self.last_res_planes, self.l_last_res_planes', self.planes[i]* block.expansion, self.in_planes, self.last_res_planes, self.l_last_res_planes) blocks.append(block(self.in_planes, self.planes[i], self.last_res_planes, self.l_last_res_planes, k_ini=self.k_ini)) # three (Basic) Blocks # self.l_last_res_planes = self.last_res_planes # self.last_res_planes = self.in_planes if l == 0 or l == 1: self.l_last_res_planes = self.last_res_planes self.last_res_planes = self.in_planes else: self.l_last_res_planes = self.planes[i] * block.expansion self.last_res_planes = self.planes[i] * block.expansion l += 1 # print('l', l) else: # with death_rates death_rates = [i / (n - 1) * (1 - PL) for i in range(n)] # n is the sum of elements of "[3,3,3]" # print(death_rates) for i in range(3): blocks.append( block(self.in_planes, self.planes[i], self.last_res_planes, self.l_last_res_planes, self.strides[i], k_ini=self.k_ini, death_rate=death_rates[i * layers[0]])) # note that layers[k] == layers[j] self.l_last_res_planes = self.last_res_planes self.last_res_planes = self.in_planes self.in_planes = self.planes[i] * block.expansion # print('i', i) for j in range(1, layers[i]): # print('j', j) blocks.append(block(self.in_planes, self.planes[i], self.last_res_planes, self.l_last_res_planes, k_ini=self.k_ini, death_rate=death_rates[i * layers[0] + j])) self.l_last_res_planes = self.last_res_planes self.last_res_planes = self.in_planes self.blocks = nn.ModuleList(blocks) # ModuleList cannot determine the sequence of layers self.downsample1 = Downsample(16, 64, stride=1) # Downsample: (in_planes,out_planes,stride): self.bn = nn.BatchNorm2d(64 * block.expansion) self.avgpool = nn.AvgPool2d(8) self.fc = nn.Linear(64 * block.expansion, num_classes) for m in self.modules(): # initialization if isinstance(m, nn.Conv2d): # if m is a conv n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels # element num of the kernel m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def change_state(self): self.pretrain = not self.pretrain def forward(self, x): self.ks = [] x = self.conv1(x) last_res = -1 l_last_res = -1 # x=self.bn1(x) # x=self.relu(x) if self.block.expansion == 4: # 4 is the "expansion" of the "Bottleneck". If "Bottleneck" is used, we need to downsample residual = self.downsample1(x) # print('downsample1') else: residual = x x, last_res, l_last_res, k = self.blocks[0](x, last_res, l_last_res) # print('v2: x.sixe()[1], residual.size()[1]', x.size()[1], residual.size()[1]) x += residual # l_last_res = residual residual = x x, last_res, l_last_res, k = self.blocks[1](x, last_res, l_last_res) # x = self.blocks[1](x)[0] + residual x += residual # last_res = residual # residual = x # moved from below. Flag:318 ### \end for i, b in enumerate(self.blocks): # index and content if i == 0 or i == 1: # print('i', i) continue residual = x # moved up. Flag:318 #### # if b.in_planes != b.planes * b.expansion: # sizes of the input and output are not the same # if b.planes == 32: # residual = self.downsample21(x) # # if not self.pretrain: # # last_res=self.downsample22(last_res) # elif b.planes == 64: # residual = self.downsample31(x) # # x = b(x) # # print(x.size()) # # print(residual.size()) # x += residual #### if self.pretrain: # x = b(x) + residual else: # in.channel = out.channel and not pretrain # \begin HONet core x, last_res, l_last_res, k = b(x, last_res, l_last_res) self.ks += k.data # print('i, ks', i, self.ks) # \end HONet core # print('cnt', cnt1, cnt2, cnt3, cnt4) x = self.bn(x) x = self.relu(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) # print('out') return x, self.ks class HONet_stepsize(nn.Module): def __init__(self, block, layers, k_ini=-9.0 / 5, pretrain=False, num_classes=num_cla, stochastic_depth=False, PL=1.0, noise_level=0.001, noise=False, dataset='cifar10'): self.in_planes = 16 self.planes = [16, 32, 64] self.last_res_planes = -1 self.l_last_res_planes = -1 self.strides = [1, 2, 2] super(HONet_stepsize, self).__init__() self.noise = noise # what for? self.block = block self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(16) self.relu = nn.ReLU(inplace=True) self.pretrain = pretrain self.stochastic_depth = stochastic_depth self.k_ini = k_ini self.stepsize = nn.Parameter(torch.Tensor(1).uniform_(1, 1)) blocks = [] self.ks = [] n = layers[0] + layers[1] + layers[2] l = 0 if not self.stochastic_depth: for i in range(3): # there are 3 elements in the list like [7,7,7] # print('v2: self.planes[i], self.in_planes, self.last_res_planes, self.l_last_res_planes', self.planes[i]* block.expansion, self.in_planes, self.last_res_planes, self.l_last_res_planes) blocks.append( block(self.in_planes, self.planes[i], self.last_res_planes, self.l_last_res_planes, self.strides[i], k_ini=self.k_ini, stepsize=self.stepsize)) # ### # if # # ### # self.l_last_res_planes = self.last_res_planes # self.last_res_planes = self.in_planes if l == 0 or l == 1: self.l_last_res_planes = self.last_res_planes self.last_res_planes = self.in_planes else: self.l_last_res_planes = self.planes[i] * block.expansion self.last_res_planes = self.planes[i] * block.expansion self.in_planes = self.planes[i] * block.expansion l += 1 # print('l', l) # print('i', i) for j in range(1, layers[ i]): # Recalling "MResNet(BasicBlock,[3,3,3],**kwargs)", and "layers" is assigned as "[3,3,3]"; then j is 1 to 2 # if l == 0: # self.l_last_res_planes = self.last_res_planes # self.last_res_planes = self.in_planes # # elif l==1: # self.l_last_res_planes = self.last_res_planes # self.last_res_planes = self.in_planes # else: # self.l_last_res_planes = self.planes[i]*block.expansion # self.last_res_planes = self.planes[i]*block.expansion # self.plane = self.planes[i]*block.expansion # print('j', j) # print('v2: self.planes[i], self.in_planes, self.last_res_planes, self.l_last_res_planes', self.planes[i]* block.expansion, self.in_planes, self.last_res_planes, self.l_last_res_planes) blocks.append(block(self.in_planes, self.planes[i], self.last_res_planes, self.l_last_res_planes, k_ini=self.k_ini, stepsize=self.stepsize)) # three (Basic) Blocks # self.l_last_res_planes = self.last_res_planes # self.last_res_planes = self.in_planes if l == 0 or l == 1: self.l_last_res_planes = self.last_res_planes self.last_res_planes = self.in_planes else: self.l_last_res_planes = self.planes[i] * block.expansion self.last_res_planes = self.planes[i] * block.expansion l += 1 # print('l', l) else: # with death_rates death_rates = [i / (n - 1) * (1 - PL) for i in range(n)] # n is the sum of elements of "[3,3,3]" # print(death_rates) for i in range(3): blocks.append( block(self.in_planes, self.planes[i], self.last_res_planes, self.l_last_res_planes, self.strides[i], k_ini=self.k_ini, stepsize=self.stepsize, death_rate=death_rates[i * layers[0]])) # note that layers[k] == layers[j] self.l_last_res_planes = self.last_res_planes self.last_res_planes = self.in_planes self.in_planes = self.planes[i] * block.expansion # print('i', i) for j in range(1, layers[i]): # print('j', j) blocks.append(block(self.in_planes, self.planes[i], self.last_res_planes, self.l_last_res_planes, k_ini=self.k_ini, stepsize=self.stepsize, death_rate=death_rates[i * layers[0] + j])) self.l_last_res_planes = self.last_res_planes self.last_res_planes = self.in_planes self.blocks = nn.ModuleList(blocks) # ModuleList cannot determine the sequence of layers self.downsample1 = Downsample(16, 64, stride=1) # Downsample: (in_planes,out_planes,stride): self.bn = nn.BatchNorm2d(64 * block.expansion) self.avgpool = nn.AvgPool2d(8) self.fc = nn.Linear(64 * block.expansion, num_classes) for m in self.modules(): # initialization if isinstance(m, nn.Conv2d): # if m is a conv n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels # element num of the kernel m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def change_state(self): self.pretrain = not self.pretrain def forward(self, x):
46.439909
207
0.55293
4a2742170ed4fd25a7774bc7142b7a73d279b213
32,602
py
Python
old_projects/hilbert/section2.py
rorik/manim
1fa9ba56eabaf189ef40278ab6cd894fad257776
[ "MIT" ]
null
null
null
old_projects/hilbert/section2.py
rorik/manim
1fa9ba56eabaf189ef40278ab6cd894fad257776
[ "MIT" ]
null
null
null
old_projects/hilbert/section2.py
rorik/manim
1fa9ba56eabaf189ef40278ab6cd894fad257776
[ "MIT" ]
null
null
null
from big_ol_pile_of_manim_imports import * import displayer as disp from hilbert.curves import \ TransformOverIncreasingOrders, FlowSnake, HilbertCurve, \ SnakeCurve, PeanoCurve from hilbert.section1 import get_mathy_and_bubble from scipy.spatial.distance import cdist def get_time_line(): length = 2.6*FRAME_WIDTH year_range = 400 time_line = NumberLine( numerical_radius = year_range/2, unit_length_to_spatial_width = length/year_range, tick_frequency = 10, leftmost_tick = 1720, number_at_center = 1870, numbers_with_elongated_ticks = list(range(1700, 2100, 100)) ) time_line.sort_points(lambda p : p[0]) time_line.set_color_by_gradient( PeanoCurve.CONFIG["start_color"], PeanoCurve.CONFIG["end_color"] ) time_line.add_numbers( 2020, *list(range(1800, 2050, 50)) ) return time_line class SectionTwo(Scene): def construct(self): self.add(TextMobject("Section 2: Filling space")) self.wait() class HilbertCurveIsPerfect(Scene): def construct(self): curve = HilbertCurve(order = 6) curve.set_color(WHITE) colored_curve = curve.copy() colored_curve.thin_out(3) lion = ImageMobject("lion", invert = False) lion.replace(curve, stretch = True) sparce_lion = lion.copy() sparce_lion.thin_out(100) distance_matrix = cdist(colored_curve.points, sparce_lion.points) closest_point_indices = np.apply_along_axis( np.argmin, 1, distance_matrix ) colored_curve.rgbas = sparce_lion.rgbas[closest_point_indices] line = Line(5*LEFT, 5*RIGHT) Mobject.align_data(line, colored_curve) line.rgbas = colored_curve.rgbas self.add(lion) self.play(ShowCreation(curve, run_time = 3)) self.play( FadeOut(lion), Transform(curve, colored_curve), run_time = 3 ) self.wait() self.play(Transform(curve, line, run_time = 5)) self.wait() class AskMathematicianFriend(Scene): def construct(self): mathy, bubble = get_mathy_and_bubble() bubble.sort_points(lambda p : np.dot(p, UP+RIGHT)) self.add(mathy) self.wait() self.play(ApplyMethod( mathy.blink, rate_func = squish_rate_func(there_and_back) )) self.wait() self.play(ShowCreation(bubble)) self.wait() self.play( ApplyMethod(mathy.shift, 3*(DOWN+LEFT)), ApplyPointwiseFunction( lambda p : 15*p/get_norm(p), bubble ), run_time = 3 ) class TimeLineAboutSpaceFilling(Scene): def construct(self): curve = PeanoCurve(order = 5) curve.stretch_to_fit_width(FRAME_WIDTH) curve.stretch_to_fit_height(FRAME_HEIGHT) curve_start = curve.copy() curve_start.apply_over_attr_arrays( lambda arr : arr[:200] ) time_line = get_time_line() time_line.shift(-time_line.number_to_point(2000)) self.add(time_line) self.play(ApplyMethod( time_line.shift, -time_line.number_to_point(1900), run_time = 3 )) brace = Brace( Mobject( Point(time_line.number_to_point(1865)), Point(time_line.number_to_point(1888)), ), UP ) words = TextMobject(""" Cantor drives himself (and the \\\\ mathematical community at large) \\\\ crazy with research on infinity. """) words.next_to(brace, UP) self.play( GrowFromCenter(brace), ShimmerIn(words) ) self.wait() self.play( Transform(time_line, curve_start), FadeOut(brace), FadeOut(words) ) self.play(ShowCreation( curve, run_time = 5, rate_func = None )) self.wait() class NotPixelatedSpace(Scene): def construct(self): grid = Grid(64, 64) space_region = Region() space_mobject = MobjectFromRegion(space_region, DARK_GREY) curve = PeanoCurve(order = 5).replace(space_mobject) line = Line(5*LEFT, 5*RIGHT) line.set_color_by_gradient(curve.start_color, curve.end_color) for mob in grid, space_mobject: mob.sort_points(get_norm) infinitely = TextMobject("Infinitely") detailed = TextMobject("detailed") extending = TextMobject("extending") detailed.next_to(infinitely, RIGHT) extending.next_to(infinitely, RIGHT) Mobject(extending, infinitely, detailed).center() arrows = Mobject(*[ Arrow(2*p, 4*p) for theta in np.arange(np.pi/6, 2*np.pi, np.pi/3) for p in [rotate_vector(RIGHT, theta)] ]) self.add(grid) self.wait() self.play(Transform(grid, space_mobject, run_time = 5)) self.remove(grid) self.set_color_region(space_region, DARK_GREY) self.wait() self.add(infinitely, detailed) self.wait() self.play(DelayByOrder(Transform(detailed, extending))) self.play(ShowCreation(arrows)) self.wait() self.clear() self.set_color_region(space_region, DARK_GREY) self.play(ShowCreation(line)) self.play(Transform(line, curve, run_time = 5)) class HistoryOfDiscover(Scene): def construct(self): time_line = get_time_line() time_line.shift(-time_line.number_to_point(1900)) hilbert_curve = HilbertCurve(order = 3) peano_curve = PeanoCurve(order = 2) for curve in hilbert_curve, peano_curve: curve.scale(0.5) hilbert_curve.to_corner(DOWN+RIGHT) peano_curve.to_corner(UP+LEFT) squares = Mobject(*[ Square(side_length=3, color=WHITE).replace(curve) for curve in (hilbert_curve, peano_curve) ]) self.add(time_line) self.wait() for year, curve, vect, text in [ (1890, peano_curve, UP, "Peano Curve"), (1891, hilbert_curve, DOWN, "Hilbert Curve"), ]: point = time_line.number_to_point(year) point[1] = 0.2 arrow = Arrow(point+2*vect, point, buff = 0.1) arrow.set_color_by_gradient(curve.start_color, curve.end_color) year_mob = TexMobject(str(year)) year_mob.next_to(arrow, vect) words = TextMobject(text) words.next_to(year_mob, vect) self.play( ShowCreation(arrow), ShimmerIn(year_mob), ShimmerIn(words) ) self.play(ShowCreation(curve)) self.wait() self.play(ShowCreation(squares)) self.wait() self.play(ApplyMethod( Mobject(*self.mobjects).shift, 20*(DOWN+RIGHT) )) class DefinitionOfCurve(Scene): def construct(self): start_words = TextMobject([ "``", "Space Filling", "Curve ''", ]).to_edge(TOP, buff = 0.25) quote, space_filling, curve_quote = start_words.copy().split() curve_quote.shift( space_filling.get_left()-\ curve_quote.get_left() ) space_filling = Point(space_filling.get_center()) end_words = Mobject(*[ quote, space_filling, curve_quote ]).center().to_edge(TOP, buff = 0.25) space_filling_fractal = TextMobject(""" ``Space Filling Fractal'' """).to_edge(UP) curve = HilbertCurve(order = 2).shift(DOWN) fine_curve = HilbertCurve(order = 8) fine_curve.replace(curve) dots = Mobject(*[ Dot( curve.points[int(n*curve.get_num_points()/15)], color = YELLOW_C ) for n in range(1, 15) if n not in [4, 11] ]) start_words.shift(2*(UP+LEFT)) self.play( ApplyMethod(start_words.shift, 2*(DOWN+RIGHT)) ) self.wait() self.play(Transform(start_words, end_words)) self.wait() self.play(ShowCreation(curve)) self.wait() self.play(ShowCreation( dots, run_time = 3, )) self.wait() self.clear() self.play(ShowCreation(fine_curve, run_time = 5)) self.wait() self.play(ShimmerIn(space_filling_fractal)) self.wait() class PseudoHilbertCurvesDontFillSpace(Scene): def construct(self): curve = HilbertCurve(order = 1) grid = Grid(2, 2, stroke_width=1) self.add(grid, curve) for order in range(2, 6): self.wait() new_grid = Grid(2**order, 2**order, stroke_width=1) self.play( ShowCreation(new_grid), Animation(curve) ) self.remove(grid) grid = new_grid self.play(Transform( curve, HilbertCurve(order = order) )) square = Square(side_length = 6, color = WHITE) square.corner = Mobject1D() square.corner.add_line(3*DOWN, ORIGIN) square.corner.add_line(ORIGIN, 3*RIGHT) square.digest_mobject_attrs() square.scale(2**(-5)) square.corner.set_color( Color(rgb = curve.rgbas[int(curve.get_num_points()/3)]) ) square.shift( grid.get_corner(UP+LEFT)-\ square.get_corner(UP+LEFT) ) self.wait() self.play( FadeOut(grid), FadeOut(curve), FadeIn(square) ) self.play( ApplyMethod(square.replace, grid) ) self.wait() class HilbertCurveIsLimit(Scene): def construct(self): mathy, bubble = get_mathy_and_bubble() bubble.write( "A Hilbert curve is the \\\\ limit of all these \\dots" ) self.add(mathy, bubble) self.play(ShimmerIn(bubble.content)) self.wait() class DefiningCurves(Scene): def construct(self): words = TextMobject( ["One does not simply define the limit \\\\ \ of a sequence of","curves","\\dots"] ) top_words = TextMobject([ "curves", "are functions" ]).to_edge(UP) curves1 = words.split()[1] curves2 = top_words.split()[0] words.ingest_submobjects() number = TexMobject("0.27") pair = TexMobject("(0.53, 0.02)") pair.next_to(number, buff = 2) arrow = Arrow(number, pair) Mobject(number, arrow, pair).center().shift(UP) number_line = UnitInterval() number_line.stretch_to_fit_width(5) number_line.to_edge(LEFT).shift(DOWN) grid = Grid(4, 4).scale(0.4) grid.next_to(number_line, buff = 2) low_arrow = Arrow(number_line, grid) self.play(ShimmerIn(words)) self.wait() self.play( FadeOut(words), ApplyMethod(curves1.replace, curves2), ShimmerIn(top_words.split()[1]) ) self.wait() self.play(FadeIn(number)) self.play(ShowCreation(arrow)) self.play(FadeIn(pair)) self.wait() self.play(ShowCreation(number_line)) self.play(ShowCreation(low_arrow)) self.play(ShowCreation(grid)) self.wait() class PseudoHilbertCurveAsFunctionExample(Scene): args_list = [(2,), (3,)] # For subclasses to turn args in the above # list into stings which can be appended to the name @staticmethod def args_to_string(order): return "Order%d"%order @staticmethod def string_to_args(order_str): return int(order_str) def construct(self, order): if order == 2: result_tex = "(0.125, 0.75)" elif order == 3: result_tex = "(0.0758, 0.6875)" phc, arg, result = TexMobject([ "\\text{PHC}_%d"%order, "(0.3)", "= %s"%result_tex ]).to_edge(UP).split() function = TextMobject("Function", size = "\\normal") function.shift(phc.get_center()+DOWN+2*LEFT) function_arrow = Arrow(function, phc) line = Line(5*LEFT, 5*RIGHT) curve = HilbertCurve(order = order) line.match_colors(curve) grid = Grid(2**order, 2**order) grid.fade() for mob in curve, grid: mob.scale(0.7) index = int(0.3*line.get_num_points()) dot1 = Dot(line.points[index]) arrow1 = Arrow(arg, dot1, buff = 0.1) dot2 = Dot(curve.points[index]) arrow2 = Arrow(result.get_bottom(), dot2, buff = 0.1) self.add(phc) self.play( ShimmerIn(function), ShowCreation(function_arrow) ) self.wait() self.remove(function_arrow, function) self.play(ShowCreation(line)) self.wait() self.play( ShimmerIn(arg), ShowCreation(arrow1), ShowCreation(dot1) ) self.wait() self.remove(arrow1) self.play( FadeIn(grid), Transform(line, curve), Transform(dot1, dot2), run_time = 2 ) self.wait() self.play( ShimmerIn(result), ShowCreation(arrow2) ) self.wait() class ContinuityRequired(Scene): def construct(self): words = TextMobject([ "A function must be", "\\emph{continuous}", "if it is to represent a curve." ]) words.split()[1].set_color(YELLOW_C) self.add(words) self.wait() class FormalDefinitionOfContinuity(Scene): def construct(self): self.setup() self.label_spaces() self.move_dot() self.label_jump() self.draw_circles() self.vary_circle_sizes() self.discontinuous_point() def setup(self): self.input_color = YELLOW_C self.output_color = RED def spiril(t): theta = 2*np.pi*t return t*np.cos(theta)*RIGHT+t*np.sin(theta)*UP self.spiril1 = ParametricFunction( lambda t : 1.5*RIGHT + DOWN + 2*spiril(t), density = 5*DEFAULT_POINT_DENSITY_1D, ) self.spiril2 = ParametricFunction( lambda t : 5.5*RIGHT + UP - 2*spiril(1-t), density = 5*DEFAULT_POINT_DENSITY_1D, ) Mobject.align_data(self.spiril1, self.spiril2) self.output = Mobject(self.spiril1, self.spiril2) self.output.ingest_submobjects() self.output.set_color(GREEN_A) self.interval = UnitInterval() self.interval.set_width(FRAME_X_RADIUS-1) self.interval.to_edge(LEFT) self.input_dot = Dot(color = self.input_color) self.output_dot = self.input_dot.copy().set_color(self.output_color) left, right = self.interval.get_left(), self.interval.get_right() self.input_homotopy = lambda x_y_z_t : (x_y_z_t[0], x_y_z_t[1], x_y_z_t[3]) + interpolate(left, right, x_y_z_t[3]) output_size = self.output.get_num_points()-1 output_points = self.output.points self.output_homotopy = lambda x_y_z_t1 : (x_y_z_t1[0], x_y_z_t1[1], x_y_z_t1[2]) + output_points[int(x_y_z_t1[3]*output_size)] def get_circles_and_points(self, min_input, max_input): input_left, input_right = [ self.interval.number_to_point(num) for num in (min_input, max_input) ] input_circle = Circle( radius = get_norm(input_left-input_right)/2, color = WHITE ) input_circle.shift((input_left+input_right)/2) input_points = Line( input_left, input_right, color = self.input_color ) output_points = Mobject(color = self.output_color) n = self.output.get_num_points() output_points.add_points( self.output.points[int(min_input*n):int(max_input*n)] ) output_center = output_points.points[int(0.5*output_points.get_num_points())] max_distance = get_norm(output_center-output_points.points[-1]) output_circle = Circle( radius = max_distance, color = WHITE ) output_circle.shift(output_center) return ( input_circle, input_points, output_circle, output_points ) def label_spaces(self): input_space = TextMobject("Input Space") input_space.to_edge(UP) input_space.shift(LEFT*FRAME_X_RADIUS/2) output_space = TextMobject("Output Space") output_space.to_edge(UP) output_space.shift(RIGHT*FRAME_X_RADIUS/2) line = Line( UP*FRAME_Y_RADIUS, DOWN*FRAME_Y_RADIUS, color = WHITE ) self.play( ShimmerIn(input_space), ShimmerIn(output_space), ShowCreation(line), ShowCreation(self.interval), ) self.wait() def move_dot(self): kwargs = { "rate_func" : None, "run_time" : 3 } self.play( Homotopy(self.input_homotopy, self.input_dot, **kwargs), Homotopy(self.output_homotopy, self.output_dot, **kwargs), ShowCreation(self.output, **kwargs) ) self.wait() def label_jump(self): jump_points = Mobject( Point(self.spiril1.points[-1]), Point(self.spiril2.points[0]) ) self.brace = Brace(jump_points, RIGHT) self.jump = TextMobject("Jump") self.jump.next_to(self.brace, RIGHT) self.play( GrowFromCenter(self.brace), ShimmerIn(self.jump) ) self.wait() self.remove(self.brace, self.jump) def draw_circles(self): input_value = 0.45 input_radius = 0.04 for dot in self.input_dot, self.output_dot: dot.center() kwargs = { "rate_func" : lambda t : interpolate(1, input_value, smooth(t)) } self.play( Homotopy(self.input_homotopy, self.input_dot, **kwargs), Homotopy(self.output_homotopy, self.output_dot, **kwargs) ) A, B = list(map(Mobject.get_center, [self.input_dot, self.output_dot])) A_text = TextMobject("A") A_text.shift(A+2*(LEFT+UP)) A_arrow = Arrow( A_text, self.input_dot, color = self.input_color ) B_text = TextMobject("B") B_text.shift(B+2*RIGHT+DOWN) B_arrow = Arrow( B_text, self.output_dot, color = self.output_color ) tup = self.get_circles_and_points( input_value-input_radius, input_value+input_radius ) input_circle, input_points, output_circle, output_points = tup for text, arrow in [(A_text, A_arrow), (B_text, B_arrow)]: self.play( ShimmerIn(text), ShowCreation(arrow) ) self.wait() self.remove(A_text, A_arrow, B_text, B_arrow) self.play(ShowCreation(input_circle)) self.wait() self.play(ShowCreation(input_points)) self.wait() input_points_copy = input_points.copy() self.play( Transform(input_points_copy, output_points), run_time = 2 ) self.wait() self.play(ShowCreation(output_circle)) self.wait() self.wait() self.remove(*[ input_circle, input_points, output_circle, input_points_copy ]) def vary_circle_sizes(self): input_value = 0.45 radius = 0.04 vary_circles = VaryCircles( self, input_value, radius, run_time = 5, ) self.play(vary_circles) self.wait() text = TextMobject("Function is ``Continuous at A''") text.shift(2*UP).to_edge(LEFT) arrow = Arrow(text, self.input_dot) self.play( ShimmerIn(text), ShowCreation(arrow) ) self.wait() self.remove(vary_circles.mobject, text, arrow) def discontinuous_point(self): point_description = TextMobject( "Point where the function jumps" ) point_description.shift(3*RIGHT) discontinuous_at_A = TextMobject( "``Discontinuous at A''", size = "\\Large" ) discontinuous_at_A.shift(2*UP).to_edge(LEFT) text = TextMobject(""" Circle around ouput \\\\ points can never \\\\ be smaller than \\\\ the jump """) text.scale(0.75) text.shift(3.5*RIGHT) input_value = 0.5 input_radius = 0.04 vary_circles = VaryCircles( self, input_value, input_radius, run_time = 5, ) for dot in self.input_dot, self.output_dot: dot.center() kwargs = { "rate_func" : lambda t : interpolate(0.45, input_value, smooth(t)) } self.play( Homotopy(self.input_homotopy, self.input_dot, **kwargs), Homotopy(self.output_homotopy, self.output_dot, **kwargs) ) discontinuous_arrow = Arrow(discontinuous_at_A, self.input_dot) arrow = Arrow( point_description, self.output_dot, buff = 0.05, color = self.output_color ) self.play( ShimmerIn(point_description), ShowCreation(arrow) ) self.wait() self.remove(point_description, arrow) tup = self.get_circles_and_points( input_value-input_radius, input_value+input_radius ) input_circle, input_points, output_circle, output_points = tup input_points_copy = input_points.copy() self.play(ShowCreation(input_circle)) self.play(ShowCreation(input_points)) self.play( Transform(input_points_copy, output_points), run_time = 2 ) self.play(ShowCreation(output_circle)) self.wait() self.play(ShimmerIn(text)) self.remove(input_circle, input_points, output_circle, input_points_copy) self.play(vary_circles) self.wait() self.play( ShimmerIn(discontinuous_at_A), ShowCreation(discontinuous_arrow) ) self.wait(3) self.remove(vary_circles.mobject, discontinuous_at_A, discontinuous_arrow) def continuous_point(self): pass class VaryCircles(Animation): def __init__(self, scene, input_value, radius, **kwargs): digest_locals(self) Animation.__init__(self, Mobject(), **kwargs) def update_mobject(self, alpha): radius = self.radius + 0.9*self.radius*np.sin(1.5*np.pi*alpha) self.mobject = Mobject(*self.scene.get_circles_and_points( self.input_value-radius, self.input_value+radius )).ingest_submobjects() class FunctionIsContinuousText(Scene): def construct(self): all_points = TextMobject("$f$ is continuous at every input point") continuous = TextMobject("$f$ is continuous") all_points.shift(UP) continuous.shift(DOWN) arrow = Arrow(all_points, continuous) self.play(ShimmerIn(all_points)) self.play(ShowCreation(arrow)) self.play(ShimmerIn(continuous)) self.wait() class DefineActualHilbertCurveText(Scene): def construct(self): self.add(TextMobject(""" Finally define a Hilbert Curve\\dots """)) self.wait() class ReliesOnWonderfulProperty(Scene): def construct(self): self.add(TextMobject(""" \\dots which relies on a certain property of Pseudo-Hilbert-curves. """)) self.wait() class WonderfulPropertyOfPseudoHilbertCurves(Scene): def construct(self): val = 0.3 text = TextMobject([ "PHC", "$_n", "(", "%3.1f"%val, ")$", " has a ", "limit point ", "as $n \\to \\infty$" ]) func_parts = text.copy().split()[:5] Mobject(*func_parts).center().to_edge(UP) num_str, val_str = func_parts[1], func_parts[3] curve = UnitInterval() curve.sort_points(lambda p : p[0]) dot = Dot().shift(curve.number_to_point(val)) arrow = Arrow(val_str, dot, buff = 0.1) curve.add_numbers(0, 1) self.play(ShowCreation(curve)) self.play( ShimmerIn(val_str), ShowCreation(arrow), ShowCreation(dot) ) self.wait() self.play( FadeOut(arrow), *[ FadeIn(func_parts[i]) for i in (0, 1, 2, 4) ] ) for num in range(2,9): new_curve = HilbertCurve(order = num) new_curve.scale(0.8) new_dot = Dot(new_curve.points[int(val*new_curve.get_num_points())]) new_num_str = TexMobject(str(num)).replace(num_str) self.play( Transform(curve, new_curve), Transform(dot, new_dot), Transform(num_str, new_num_str) ) self.wait() text.to_edge(UP) text_parts = text.split() for index in 1, -1: text_parts[index].set_color() starters = Mobject(*func_parts + [ Point(mob.get_center(), stroke_width=1) for mob in text_parts[5:] ]) self.play(Transform(starters, text)) arrow = Arrow(text_parts[-2].get_bottom(), dot, buff = 0.1) self.play(ShowCreation(arrow)) self.wait() class FollowManyPoints(Scene): def construct(self): text = TextMobject([ "PHC", "_n", "(", "x", ")$", " has a limit point ", "as $n \\to \\infty$", "\\\\ for all $x$" ]) parts = text.split() parts[-1].next_to(Mobject(*parts[:-1]), DOWN) parts[-1].set_color(BLUE) parts[3].set_color(BLUE) parts[1].set_color() parts[-2].set_color() text.to_edge(UP) curve = UnitInterval() curve.sort_points(lambda p : p[0]) vals = np.arange(0.1, 1, 0.1) dots = Mobject(*[ Dot(curve.number_to_point(val)) for val in vals ]) curve.add_numbers(0, 1) starter_dots = dots.copy().ingest_submobjects() starter_dots.shift(2*UP) self.add(curve, text) self.wait() self.play(DelayByOrder(ApplyMethod(starter_dots.shift, 2*DOWN))) self.wait() self.remove(starter_dots) self.add(dots) for num in range(1, 10): new_curve = HilbertCurve(order = num) new_curve.scale(0.8) new_dots = Mobject(*[ Dot(new_curve.points[int(val*new_curve.get_num_points())]) for val in vals ]) self.play( Transform(curve, new_curve), Transform(dots, new_dots), ) # self.wait() class FormalDefinitionOfHilbertCurve(Scene): def construct(self): val = 0.7 text = TexMobject([ "\\text{HC}(", "x", ")", "=\\lim_{n \\to \\infty}\\text{PHC}_n(", "x", ")" ]) text.to_edge(UP) x1 = text.split()[1] x2 = text.split()[-2] x2.set_color(BLUE) explanation = TextMobject("Actual Hilbert curve function") exp_arrow = Arrow(explanation, text.split()[0]) curve = UnitInterval() dot = Dot(curve.number_to_point(val)) x_arrow = Arrow(x1.get_bottom(), dot, buff = 0) curve.sort_points(lambda p : p[0]) curve.add_numbers(0, 1) self.add(*text.split()[:3]) self.play( ShimmerIn(explanation), ShowCreation(exp_arrow) ) self.wait() self.remove(explanation, exp_arrow) self.play(ShowCreation(curve)) self.play( ApplyMethod(x1.set_color, BLUE), ShowCreation(x_arrow), ShowCreation(dot) ) self.wait() self.remove(x_arrow) limit = Mobject(*text.split()[3:]).ingest_submobjects() limit.stroke_width = 1 self.play(ShimmerIn(limit)) for num in range(1, 9): new_curve = HilbertCurve(order = num) new_curve.scale(0.8) new_dot = Dot(new_curve.points[int(val*new_curve.get_num_points())]) self.play( Transform(curve, new_curve), Transform(dot, new_dot), ) class CouldNotDefineForSnakeCurve(Scene): def construct(self): self.add(TextMobject(""" You could not define a limit curve from snake curves. """)) self.wait() class ThreeThingsToProve(Scene): def construct(self): definition = TexMobject([ "\\text{HC}(", "x", ")", "=\\lim_{n \\to \\infty}\\text{PHC}_n(", "x", ")" ]) definition.to_edge(UP) definition.split()[1].set_color(BLUE) definition.split()[-2].set_color(BLUE) intro = TextMobject("Three things need to be proven") prove_that = TextMobject("Prove that HC is $\\dots$") prove_that.scale(0.7) prove_that.to_edge(LEFT) items = TextMobject([ "\\begin{enumerate}", "\\item Well-defined: ", "Points on Pseudo-Hilbert-curves really do converge", "\\item A Curve: ", "HC is continuous", "\\item Space-filling: ", "Each point in the unit square is an output of HC", "\\end{enumerate}", ]).split() items[1].set_color(GREEN) items[3].set_color(YELLOW_C) items[5].set_color(MAROON) Mobject(*items).to_edge(RIGHT) self.add(definition) self.play(ShimmerIn(intro)) self.wait() self.play(Transform(intro, prove_that)) for item in items[1:-1]: self.play(ShimmerIn(item)) self.wait() class TilingSpace(Scene): def construct(self): coords_set = [ORIGIN] for n in range(int(FRAME_WIDTH)): for vect in UP, RIGHT: for k in range(n): new_coords = coords_set[-1]+((-1)**n)*vect coords_set.append(new_coords) square = Square(side_length = 1, color = WHITE) squares = Mobject(*[ square.copy().shift(coords) for coords in coords_set ]).ingest_submobjects() self.play( DelayByOrder(FadeIn(squares)), run_time = 3 ) curve = HilbertCurve(order = 6).scale(1./6) all_curves = Mobject(*[ curve.copy().shift(coords) for coords in coords_set ]).ingest_submobjects() all_curves.thin_out(10) self.play(ShowCreation( all_curves, rate_func = None, run_time = 15 )) class ColorIntervals(Scene): def construct(self): number_line = NumberLine( numerical_radius = 5, number_at_center = 5, leftmost_tick = 0, density = 2*DEFAULT_POINT_DENSITY_1D ) number_line.shift(2*RIGHT) number_line.add_numbers() number_line.scale(2) brace = Brace(Mobject( *number_line.submobjects[:2] )) self.add(number_line) for n in range(0, 10, 2): if n == 0: brace_anim = GrowFromCenter(brace) else: brace_anim = ApplyMethod(brace.shift, 2*RIGHT) self.play( ApplyMethod( number_line.set_color, RED, lambda p : p[0] > n-6.2 and p[0] < n-4 and p[1] > -0.4 ), brace_anim )
30.640977
134
0.555518
4a27422523ba02a996ae6f97dd7dde2c90b46fc3
193
py
Python
api/lambda_handler/get_random_color.py
dgimeno777/aws-api-demo
7ff2386737ba8e5e953dbe86e1afa41548c4efc1
[ "MIT" ]
null
null
null
api/lambda_handler/get_random_color.py
dgimeno777/aws-api-demo
7ff2386737ba8e5e953dbe86e1afa41548c4efc1
[ "MIT" ]
null
null
null
api/lambda_handler/get_random_color.py
dgimeno777/aws-api-demo
7ff2386737ba8e5e953dbe86e1afa41548c4efc1
[ "MIT" ]
null
null
null
import json from api.src.colors import get_random_color def lambda_handler(event, context): return { "statusCode": 200, "body": json.dumps(get_random_color().value) }
19.3
52
0.673575
4a274232edcedda9393b016fb72088fb5bf0d757
1,099
py
Python
cibyl/outputs/cli/ci/env/printer.py
rhos-infra/cibyl
842a993ddf3552d1b4f2e85025dcf928f76fe7fb
[ "Apache-2.0" ]
3
2022-02-17T18:07:07.000Z
2022-03-19T10:22:38.000Z
cibyl/outputs/cli/ci/env/printer.py
rhos-infra/cibyl
842a993ddf3552d1b4f2e85025dcf928f76fe7fb
[ "Apache-2.0" ]
58
2022-02-14T14:41:22.000Z
2022-03-31T10:54:28.000Z
cibyl/outputs/cli/ci/env/printer.py
rhos-infra/cibyl
842a993ddf3552d1b4f2e85025dcf928f76fe7fb
[ "Apache-2.0" ]
6
2022-02-14T19:21:26.000Z
2022-03-29T09:31:31.000Z
""" # Copyright 2022 Red Hat # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ from abc import ABC, abstractmethod from cibyl.outputs.cli.printer import Printer class CIPrinter(Printer, ABC): """Interface for printers of a CI model hierarchy. """ @abstractmethod def print_environment(self, env): """ :param env: The environment. :type env: :class:`cibyl.models.ci.base.environment.Environment` :return: Textual representation of the provided model. :rtype: str """ raise NotImplementedError
32.323529
78
0.689718
4a27437f92548ec7ff55d69a520d4dd3412ea13a
6,440
py
Python
mlrun/frameworks/_ml_common/plans/roc_curve_plan.py
george0st/mlrun
6467d3a5ceadf6cd35512b84b3ddc3da611cf39a
[ "Apache-2.0" ]
null
null
null
mlrun/frameworks/_ml_common/plans/roc_curve_plan.py
george0st/mlrun
6467d3a5ceadf6cd35512b84b3ddc3da611cf39a
[ "Apache-2.0" ]
null
null
null
mlrun/frameworks/_ml_common/plans/roc_curve_plan.py
george0st/mlrun
6467d3a5ceadf6cd35512b84b3ddc3da611cf39a
[ "Apache-2.0" ]
null
null
null
from typing import Dict, List, Union import numpy as np import pandas as pd import plotly.graph_objects as go from sklearn.metrics import roc_auc_score, roc_curve from mlrun.artifacts import Artifact, PlotlyArtifact from ..._common import ModelType from ..plan import MLPlanStages, MLPlotPlan from ..utils import DatasetType, to_dataframe class ROCCurvePlan(MLPlotPlan): """ Plan for producing a receiver operating characteristic (ROC) - a plot that shows the connection / trade-off between clinical sensitivity and specificity for every possible cut-off for a test or a combination of tests. """ _ARTIFACT_NAME = "roc-curves" def __init__( self, pos_label: Union[str, int] = None, sample_weight: np.ndarray = None, drop_intermediate: bool = True, average: str = "macro", max_fpr: float = None, multi_class: str = "raise", labels: List[str] = None, ): """ Initialize a receiver operating characteristic plan with the given configuration. To read more about the parameters, head to the SciKit-Learn docs at: * https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html * https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html :param pos_label: The label of the positive class. When None, if 'y_true' (y) is in {-1, 1} or {0, 1}, 'pos_label' is set to 1, otherwise an error will be raised. Defaulted to None. :param sample_weight: Sample weights to apply. :param drop_intermediate: Whether to drop some suboptimal thresholds which would not appear on a plotted ROC curve. Defaulted to True. :param average: Determines the type of averaging performed on the data. If None, the scores for each class are returned. Defaulted to "macro". :param max_fpr: For multiclass it should be equal to 1 or None. If not None, the standardized partial AUC [2] over the range [0, max_fpr] is returned. Defaulted to None. :param multi_class: Only used for multiclass targets. Determines the type of configuration to use. Can be one of {'raise', 'ovr', 'ovo'}. Defaulted to "raise". :param labels: Only used for multiclass targets. List of labels that index the classes in 'y_pred'. If None, the labels found in 'y_true' (y) will be used. Defaulted to None. """ # Store the parameters: self._pos_label = pos_label self._sample_weight = sample_weight self._drop_intermediate = drop_intermediate self._average = average self._max_fpr = max_fpr self._multi_class = multi_class self._labels = labels # Continue the initialization for the MLPlan: super(ROCCurvePlan, self).__init__(need_probabilities=True) def is_ready(self, stage: MLPlanStages, is_probabilities: bool) -> bool: """ Check whether or not the plan is fit for production by the given stage and prediction probabilities. The roc curve is ready only post prediction probabilities. :param stage: The stage to check if the plan is ready. :param is_probabilities: True if the 'y_pred' that will be sent to 'produce' is a prediction of probabilities (from 'predict_proba') and False if not. :return: True if the plan is producible and False otherwise. """ return stage == MLPlanStages.POST_PREDICT and is_probabilities def produce( self, y: DatasetType, y_pred: DatasetType = None, model: ModelType = None, x: DatasetType = None, **kwargs, ) -> Dict[str, Artifact]: """ Produce the roc curve according to the ground truth (y) and predictions (y_pred) values. If predictions are not available, the model and a dataset can be given to produce them. :param y: The ground truth values. :param y_pred: The predictions values. :param model: Model to produce the predictions. :param x: Input dataset to produce the predictions. :return: The produced roc curve artifact in an artifacts dictionary. """ # Calculate the predictions if needed: y_pred = self._calculate_predictions(y_pred=y_pred, model=model, x=x) # Convert to DataFrame: y = to_dataframe(dataset=y) y_pred = to_dataframe(dataset=y_pred) # One hot encode the labels in order to plot them y_one_hot = pd.get_dummies(y, columns=y.columns.to_list()) # Create an empty figure: fig = go.Figure() fig.add_shape(type="line", line={"dash": "dash"}, x0=0, x1=1, y0=0, y1=1) # Iteratively add new lines every time we compute a new class: for i in range(y_pred.shape[1]): class_i_true = y_one_hot.iloc[:, i] class_i_pred = y_pred.iloc[:, i] fpr, tpr, _ = roc_curve( class_i_true, class_i_pred, pos_label=self._pos_label, sample_weight=self._sample_weight, drop_intermediate=self._drop_intermediate, ) auc_score = roc_auc_score( class_i_true, class_i_pred, average=self._average, sample_weight=self._sample_weight, max_fpr=self._max_fpr, multi_class=self._multi_class, labels=self._labels, ) name = f"{y_one_hot.columns[i]} (AUC={auc_score:.2f})" fig.add_trace(go.Scatter(x=fpr, y=tpr, name=name, mode="lines")) # Configure the layout: fig.update_layout( xaxis_title="False Positive Rate", yaxis_title="True Positive Rate", yaxis={"scaleanchor": "x", "scaleratio": 1}, xaxis={"constrain": "domain"}, width=700, height=500, ) # Creating the plot artifact: self._artifacts[self._ARTIFACT_NAME] = PlotlyArtifact( key=self._ARTIFACT_NAME, figure=fig, ) return self._artifacts
42.091503
119
0.612112
4a274490f468fdb36049590578a088584870be4b
382
py
Python
utilities/micro_utils/marshmallow/leading_zeros_integer_field.py
ndjuric93/MusicOrganizer
ef2e50abfeb1629325274b260f654935fd3f2740
[ "Apache-2.0" ]
1
2019-09-13T18:05:27.000Z
2019-09-13T18:05:27.000Z
utilities/micro_utils/marshmallow/leading_zeros_integer_field.py
ndjuric93/MusicOrganizer
ef2e50abfeb1629325274b260f654935fd3f2740
[ "Apache-2.0" ]
5
2021-03-09T00:49:53.000Z
2022-02-17T20:03:16.000Z
utilities/micro_utils/marshmallow/leading_zeros_integer_field.py
ndjuric93/MusicOrganizer
ef2e50abfeb1629325274b260f654935fd3f2740
[ "Apache-2.0" ]
null
null
null
from marshmallow import fields class LeadingZerosIntegerField(fields.Integer): def __init__(self, zeros_count, *args, **kwargs): super(LeadingZerosIntegerField, self).__init__(*args, **kwargs) self.zeros_count = zeros_count def _format_num(self, value): if value is None: return None return str(value).zfill(self.zeros_count)
27.285714
71
0.685864
4a2744b9c5e65e3a966fecf05ad9a7c7e889f15c
840
py
Python
python/BFS/993. Cousins in Binary Tree.py
Nobodylesszb/LeetCode
0e902f6bff4834a93ce64cf9c57fd64297e63523
[ "MIT" ]
null
null
null
python/BFS/993. Cousins in Binary Tree.py
Nobodylesszb/LeetCode
0e902f6bff4834a93ce64cf9c57fd64297e63523
[ "MIT" ]
null
null
null
python/BFS/993. Cousins in Binary Tree.py
Nobodylesszb/LeetCode
0e902f6bff4834a93ce64cf9c57fd64297e63523
[ "MIT" ]
null
null
null
#In a binary tree, the root node is at depth 0, and children of each depth k node are at depth k+1. # Two nodes of a binary tree are cousins if they have the same depth, but have different parents. # We are given the root of a binary tree with unique values, and the values x and y of two different nodes in the tree. # Return true if and only if the nodes corresponding to the values x and y are cousins. class Solution: def isCousins(self, root: TreeNode, x: int, y: int) -> bool: def dfs(node, parent, depth, mod): if node: if node.val == mod: return depth, parent return dfs(node.left, node, depth + 1, mod) or dfs(node.right, node, depth + 1, mod) dx, px, dy, py = dfs(root, None, 0, x) + dfs(root, None, 0, y) return dx == dy and px != py
49.411765
119
0.628571
4a27458679f341a6776b31d457ac77e5847b502f
8,089
py
Python
tests/full_flow_tests.py
FelixLorenz/distiller
08b5cd95704d850cfb845ed7785f739cbb57de54
[ "Apache-2.0" ]
3
2019-11-03T23:52:42.000Z
2020-05-07T09:08:32.000Z
tests/full_flow_tests.py
FelixLorenz/distiller
08b5cd95704d850cfb845ed7785f739cbb57de54
[ "Apache-2.0" ]
null
null
null
tests/full_flow_tests.py
FelixLorenz/distiller
08b5cd95704d850cfb845ed7785f739cbb57de54
[ "Apache-2.0" ]
1
2019-10-15T03:44:17.000Z
2019-10-15T03:44:17.000Z
# # Copyright (c) 2018 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import subprocess import os import errno import re from collections import namedtuple import argparse import time DS_CIFAR = 'cifar10' distiller_root = os.path.realpath('..') examples_root = os.path.join(distiller_root, 'examples') script_path = os.path.realpath(os.path.join(examples_root, 'classifier_compression', 'compress_classifier.py')) ########### # Some Basic Logging Mechanisms ########### class Colors: PURPLE = '\033[95m' CYAN = '\033[96m' DARKCYAN = '\033[36m' BLUE = '\033[94m' GREEN = '\033[92m' YELLOW = '\033[93m' RED = '\033[91m' WHITE = '\033[37m' BG_RED = '\033[41m' BG_GREEN = '\033[42m' BG_YELLOW = '\033[43m' BG_BLUE = '\033[44m' BG_PURPLE = '\033[45m' BG_CYAN = '\033[30;46m' BG_WHITE = '\x1b[30;47m' BG_RESET = '\033[49m' BOLD = '\033[1m' UNDERLINE_ON = '\033[4m' UNDERLINE_OFF = '\033[24m' END = '\033[0m' def colorize(string, color): return color + string + Colors.END def error(string): print(colorize('ERROR: ' + string, Colors.RED)) def test_progress(string): print(colorize(string, Colors.BLUE)) def success(string): print(colorize(string, Colors.GREEN)) ########### # Checkers ########### def compare_values(name, expected, actual): print('Comparing {0}: Expected = {1} ; Actual = {2}'.format(name, expected, actual)) if expected != actual: error('Mismatch on {0}'.format(name)) return False else: return True def accuracy_checker(log, expected_top1, expected_top5): tops = re.findall(r"Top1: (?P<top1>\d*\.\d*) *Top5: (?P<top5>\d*\.\d*)", log) if not tops: error('No accuracy results in log') return False if not compare_values('Top-1', expected_top1, float(tops[-1][0])): return False return compare_values('Top-5', expected_top5, float(tops[-1][1])) def collateral_checker(log, *collateral_list): """Test that the test produced the expected collaterals. A collateral_list is a list of tuples, where tuple elements are: 0: file name 1: expected file size """ for collateral in collateral_list: statinfo = os.stat(collateral[0]) if statinfo.st_size != collateral[1]: return False return True ########### # Test Configurations ########### TestConfig = namedtuple('TestConfig', ['args', 'dataset', 'checker_fn', 'checker_args']) test_configs = [ TestConfig('--arch simplenet_cifar --epochs 2', DS_CIFAR, accuracy_checker, [44.610, 92.080]), TestConfig('-a resnet20_cifar --resume {0} --quantize-eval --evaluate'. format(os.path.join(examples_root, 'ssl', 'checkpoints', 'checkpoint_trained_dense.pth.tar')), DS_CIFAR, accuracy_checker, [91.710, 99.610]), TestConfig('-a preact_resnet20_cifar --epochs 2 --compress {0}'. format(os.path.join('full_flow_tests', 'preact_resnet20_cifar_pact_test.yaml')), DS_CIFAR, accuracy_checker, [54.590, 94.810]), TestConfig('-a resnet20_cifar --resume {0} --sense=filter --sense-range 0 0.10 0.05'. format(os.path.join(examples_root, 'ssl', 'checkpoints', 'checkpoint_trained_dense.pth.tar')), DS_CIFAR, collateral_checker, [('sensitivity.csv', 3175), ('sensitivity.png', 96158)]) ] ########### # Tests Execution ########### def process_failure(msg, test_idx, cmd, log_path, failed_tests, log): error(msg) if not log_path: test_progress('Log file not created. Full output from test:') print(log) else: test_progress('Test log file: {0}'.format(colorize(log_path, Colors.YELLOW))) failed_tests.append((test_idx, cmd, log_path)) def validate_dataset_path(path, default, name): if path: path = os.path.expanduser(path) if not os.path.isdir(path): error("Path provided to {0} dataset doesn't exist".format(name)) exit(1) return path test_progress('Path to {0} dataset not provided, defaulting to: {1}'.format(name, colorize(os.path.abspath(default), Colors.WHITE))) try: os.makedirs(default) except OSError as e: if e.errno != errno.EEXIST: raise return default def run_tests(): parser = argparse.ArgumentParser() parser.add_argument('--cifar10-path', dest='cifar10_path', metavar='DIR', help='Path to CIFAR-10 dataset') args = parser.parse_args() cifar10_path = validate_dataset_path(args.cifar10_path, default='data.cifar10', name='CIFAR-10') datasets = {DS_CIFAR: cifar10_path} total_configs = len(test_configs) failed_tests = [] for idx, tc in enumerate(test_configs): print('') test_progress('-------------------------------------------------') test_progress('Running Test {0} / {1}'.format(idx + 1, total_configs)) dataset_dir = datasets[tc.dataset] # Run with '--det -j 1' to ensure deterministic results # Run with single GPU (lowest common denominator...) cmd = 'python3 {script} {tc_args} --det -j 1 --gpus 0 {data}'.format(script=script_path, tc_args=tc.args, data=dataset_dir) test_progress('Executing command: ' + colorize(cmd, Colors.YELLOW)) p = subprocess.Popen(cmd.split(' '), stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True) # Poll for completion waiting_chars = ['-', '\\', '|', '/'] cnt = 0 while p.poll() is None: print(waiting_chars[cnt] * 5, end='\r', flush=True) cnt = (cnt + 1) % len(waiting_chars) time.sleep(0.5) log = p.stdout.read() log_path = re.match(r"Log file for this run: (.*)", log) log_path = log_path.groups()[0] if log_path else '' if p.returncode != 0: process_failure('Command returned with exit status {0}'. format(p.returncode), idx, cmd, log_path, failed_tests, log) continue test_progress('Running checker: ' + colorize(tc.checker_fn.__name__, Colors.YELLOW)) if not tc.checker_fn(log, *tc.checker_args): process_failure('Checker failed', idx, cmd, log_path, failed_tests, log) continue success('TEST PASSED') test_progress('Test log file: {0}'.format(colorize(log_path, Colors.YELLOW))) print('') test_progress('-------------------------------------------------') test_progress('-------------------------------------------------') test_progress('All tests completed') test_progress('# Tests run: {0} ; # Tests passed {1} ; # Tests failed: {2}'. format(total_configs, total_configs - len(failed_tests), len(failed_tests))) if failed_tests: print('') print(colorize('Failed tests summary:', Colors.RED)) for idx, cmd, log_path in failed_tests: print(colorize(' Test Index:', Colors.YELLOW), idx + 1) print(colorize(' Command Line:', Colors.YELLOW), cmd) print(colorize(' Log File Path:', Colors.YELLOW), log_path) exit(1) print('') success('ALL TESTS PASSED') print('') exit(0) if __name__ == '__main__': run_tests()
34.716738
119
0.598714
4a2745a0fa61f5e8b66dec5985b1686a33f641bc
1,403
py
Python
python/pycylon/test/test_parquet.py
kaiyingshan/cylon
1a8c3d7efab000ec665eeba3c9a58dfac9531701
[ "Apache-2.0" ]
3
2019-11-18T23:59:03.000Z
2020-05-28T06:17:49.000Z
python/pycylon/test/test_parquet.py
DSC-SPIDAL/twisternet
773f11ff79648938dc5dd0678b786b97ed289b36
[ "Apache-2.0" ]
33
2019-10-17T15:59:48.000Z
2020-06-19T14:22:41.000Z
python/pycylon/test/test_parquet.py
DSC-SPIDAL/twisternet
773f11ff79648938dc5dd0678b786b97ed289b36
[ "Apache-2.0" ]
15
2019-10-17T02:09:55.000Z
2020-05-23T02:04:45.000Z
## # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ## """ Run test: >> pytest -q python/pycylon/test/test_parquet.py """ import pandas as pd from pyarrow.parquet import read_table from pycylon.frame import DataFrame, CylonEnv def test_read_parquet(): tbl = read_table('data/input/parquet1_0.parquet') cdf = DataFrame(tbl) pdf = pd.read_parquet('file://data/input/parquet1_0.parquet') assert (pdf.values.tolist() == cdf.to_pandas().values.tolist()) def test_parquet_join(): cdf1 = DataFrame(read_table('data/input/parquet1_0.parquet')) cdf2 = DataFrame(read_table('data/input/parquet2_0.parquet')) expected = DataFrame(read_table('data/output/join_inner_1_0.parquet')) out = cdf1.merge(cdf2, how='inner', on=[0], algorithm='sort', suffixes=('lt-', 'rt-')) assert(expected.equals(out, ordered=False)) assert (len(expected.to_table().subtract(out.to_table())) == 0)
34.219512
90
0.729865
4a27460046cffe6cdeb324c5d5b67ebaa7e1457a
10,459
py
Python
poni/rcontrol_paramiko.py
saaros/poni
1d2a9982f7e934137ce1ee675f0e1373314df7c7
[ "Apache-2.0" ]
6
2015-05-11T12:21:53.000Z
2018-01-17T00:07:29.000Z
poni/rcontrol_paramiko.py
saaros/poni
1d2a9982f7e934137ce1ee675f0e1373314df7c7
[ "Apache-2.0" ]
null
null
null
poni/rcontrol_paramiko.py
saaros/poni
1d2a9982f7e934137ce1ee675f0e1373314df7c7
[ "Apache-2.0" ]
2
2015-02-27T10:14:26.000Z
2015-02-27T10:14:30.000Z
""" Remote node control using the Paramiko SSH library Copyright (c) 2010-2012 Mika Eloranta See LICENSE for details. """ import os import sys import socket import time from . import errors from . import rcontrol import select import termios import tty import errno import warnings try: with warnings.catch_warnings(): # paramiko needs to be imported with warnings disabled to get rid of # a useless (really) crypto warning warnings.simplefilter("ignore") import paramiko except AttributeError: import paramiko try: from select import epoll except ImportError: epoll = None def convert_paramiko_errors(method): """Convert remote Paramiko errors to errors.RemoteError""" def wrapper(self, *args, **kw): try: return method(self, *args, **kw) except IOError as error: if error.errno == errno.ENOENT: raise errors.RemoteFileDoesNotExist(str(error)) else: raise errors.RemoteError("%s: %s" % (error.__class__.__name__, error)) except (socket.error, paramiko.SSHException, EOFError) as error: raise errors.RemoteError("%s: %s" % (error.__class__.__name__, error)) wrapper.__doc__ = method.__doc__ wrapper.__name__ = method.__name__ return wrapper def interactive_shell(chan): """stolen from paramiko examples""" oldtty = termios.tcgetattr(sys.stdin) try: tty.setraw(sys.stdin.fileno()) tty.setcbreak(sys.stdin.fileno()) chan.settimeout(0.0) while True: r, w, e = select.select([chan, sys.stdin], [], []) if chan in r: try: x = chan.recv(1024) if len(x) == 0: break sys.stdout.write(x) sys.stdout.flush() except socket.timeout: pass if sys.stdin in r: x = sys.stdin.read(1) if len(x) == 0: break chan.send(x) finally: termios.tcsetattr(sys.stdin, termios.TCSADRAIN, oldtty) class ParamikoRemoteControl(rcontrol.SshRemoteControl): def __init__(self, node): rcontrol.SshRemoteControl.__init__(self, node) self._ssh = None self._sftp = None self.ping_interval = 10 def get_sftp(self): if not self._sftp: self._sftp = self.get_ssh(lambda ssh: ssh.open_sftp()) return self._sftp @convert_paramiko_errors def read_file(self, file_path): file_path = str(file_path) sftp = self.get_sftp() return sftp.file(file_path, mode="rb").read() @convert_paramiko_errors def write_file(self, file_path, contents, mode=None, owner=None, group=None): file_path = str(file_path) sftp = self.get_sftp() f = sftp.file(file_path, mode="wb") if mode is not None: sftp.chmod(file_path, mode) if (owner is not None) or (group is not None): # set owner and group file_stat = sftp.stat(file_path) sftp.chown(file_path, owner if (owner is not None) else file_stat.st_uid, group if (group is not None) else file_stat.st_gid) f.write(contents) f.close() def close(self): if self._sftp: self._sftp.close() self._sftp = None if self._ssh: self._ssh.close() self._ssh = None def get_ssh(self, action=None): host = self.node.get("host") user = self.node.get("user") password = self.node.get("password") port = int(self.node.get("ssh-port", os.environ.get("PONI_SSH_PORT", 22))) if not host: raise errors.RemoteError("%s: 'host' property not defined" % ( self.node.name)) elif not user: raise errors.RemoteError("%s: 'user' property not defined" % ( self.node.name)) if self.key_filename: key_file = self.key_filename if not os.path.isabs(key_file): key_file = "%s/.ssh/%s" % (os.environ.get("HOME"), key_file) else: key_file = None self.log.debug("ssh connect: host=%s, port=%r, user=%s, key=%s", host, port, user, key_file) end_time = time.time() + self.connect_timeout while time.time() < end_time: try: if not self._ssh: ssh = paramiko.SSHClient() ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) ssh.connect(host, port=port, username=user, key_filename=key_file, password=password) self._ssh = ssh return action(self._ssh) if action else self._ssh except (socket.error, paramiko.SSHException) as error: remaining = max(0, end_time - time.time()) self.log.warning("%s: ssh connection to %s failed: %s: %s, " "retry time remaining=%.0fs", self.node.name, host, error.__class__.__name__, error, remaining) self._ssh = None time.sleep(2.5) raise errors.RemoteError("%s: ssh connect failed: %s: %s" % ( self.node.name, error.__class__.__name__, error)) @convert_paramiko_errors def execute_command(self, cmd, pseudo_tty=False): def get_channel(ssh): channel = ssh.get_transport().open_session() if not channel: raise paramiko.SSHException("channel opening failed") return channel channel = self.get_ssh(get_channel) if not channel: raise errors.RemoteError("failed to open an SSH session to %s" % ( self.node.name)) if pseudo_tty: channel.get_pty() channel.set_combine_stderr(True) # TODO: separate stdout/stderr? BS = 2**16 rx_time = time.time() log_name = "%s (%s): %r" % (self.node.name, self.node.get("host"), cmd) next_warn = time.time() + self.warn_timeout next_ping = time.time() + self.ping_interval def available_output(): """read all the output that is immediately available""" while channel.recv_ready(): chunk = channel.recv(BS) yield rcontrol.STDOUT, chunk channel.exec_command(cmd) channel.shutdown_write() exit_code = None if epoll: poll = select.epoll() poll.register(channel.fileno(), select.EPOLLIN) else: poll = None try: while True: if (exit_code is None) and channel.exit_status_ready(): # process has finished executing, but there still may be # output to read from stdout or stderr exit_code = channel.recv_exit_status() # wait for input, note that the results are not used for anything if poll: try: poll.poll(timeout=1.0) # just poll, not interested in the fileno except IOError as ex: if ex.errno != errno.EINTR: raise continue else: select.select([channel], [], [], 1.0) for output in available_output(): rx_time = time.time() next_warn = time.time() + self.warn_timeout yield output if channel.closed and (exit_code is not None): yield rcontrol.DONE, exit_code break # everything done! now = time.time() if now > (rx_time + self.terminate_timeout): # no output in a long time, terminate connection raise errors.RemoteError( "%s: no output in %.1f seconds, terminating" % ( log_name, self.terminate_timeout)) if now > next_warn: elapsed_since = time.time() - rx_time self.log.warning("%s: no output in %.1fs", log_name, elapsed_since) next_warn = time.time() + self.warn_timeout if now > next_ping: channel.transport.send_ignore() next_ping = time.time() + self.ping_interval finally: if poll: poll.close() @convert_paramiko_errors def execute_shell(self): def invoke_shell(ssh): # TODO: get dimensions from `stty size` or something like that return ssh.invoke_shell(term='vt100', width=80, height=24) try: channel = self.get_ssh(invoke_shell) interactive_shell(channel) finally: if channel: channel.close() @convert_paramiko_errors def stat(self, file_path): file_path = str(file_path) sftp = self.get_sftp() return sftp.stat(file_path) @convert_paramiko_errors def put_file(self, source_path, dest_path, callback=None): source_path = str(source_path) dest_path = str(dest_path) sftp = self.get_sftp() sftp.put(source_path, dest_path, callback=callback) @convert_paramiko_errors def makedirs(self, dir_path): sftp = self.get_sftp() create_dirs = [] while 1: try: sftp.stat(dir_path) break # dir exists except (paramiko.SSHException, IOError): create_dirs.insert(0, dir_path) dir_path, rest = os.path.split(dir_path) if not dir_path or not rest: break for dir_path in create_dirs: sftp.mkdir(dir_path) @convert_paramiko_errors def utime(self, file_path, times): sftp = self.get_sftp() sftp.utime(str(file_path), times)
34.068404
105
0.536571
4a27465b409074b2c4b003a44020bc92d0679e91
114,353
py
Python
tools/python/transform/transformer.py
juierror/mace
a2bcf2c98b410f75d38f2291585b0ad11b36d068
[ "Apache-2.0" ]
1
2020-07-22T08:12:24.000Z
2020-07-22T08:12:24.000Z
tools/python/transform/transformer.py
deadzq/mace
aec8421951390ee1dfec4db5c118805908776330
[ "Apache-2.0" ]
null
null
null
tools/python/transform/transformer.py
deadzq/mace
aec8421951390ee1dfec4db5c118805908776330
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The MACE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re import numpy as np import six from py_proto import mace_pb2 from transform import base_converter from transform.base_converter import ActivationType from transform.base_converter import ConverterUtil from transform.base_converter import DataFormat from transform.base_converter import DeviceType from transform.base_converter import EltwiseType from transform.base_converter import FrameworkType from transform.base_converter import MaceKeyword from transform.base_converter import MaceOp from transform.base_converter import MaceFixedDataFormatOps # noqa from transform.base_converter import MaceTransposableDataFormatOps # noqa from transform.base_converter import PaddingMode from transform.base_converter import ReduceType from transform.base_converter import TransformerRule from quantize import quantize_util from utils.util import mace_check class Transformer(base_converter.ConverterInterface): """A class for transform naive mace model to optimized model. This Transformer should be platform irrelevant. So, do not assume tensor name has suffix like ':0". """ def __init__(self, option, model): # Dependencies # (TRANSFORM_MATMUL_TO_FC, TRANSFORM_GLOBAL_CONV_TO_FC) -> RESHAPE_FC_WEIGHT # noqa self._registered_transformers = { TransformerRule.TRANSFORM_FAKE_QUANTIZE: self.transform_fake_quantize, TransformerRule.REMOVE_USELESS_OP: self.remove_useless_op, TransformerRule.TRANSFORM_GLOBAL_POOLING: self.transform_global_pooling, TransformerRule.TRANSFORM_LSTMCELL_ZEROSTATE: self.transform_lstmcell_zerostate, TransformerRule.TRANSFORM_BASIC_LSTMCELL: self.transform_basic_lstmcell, TransformerRule.FOLD_RESHAPE: self.fold_reshape, TransformerRule.TRANSFORM_MATMUL_TO_FC: self.transform_matmul_to_fc, TransformerRule.FOLD_BATCHNORM: self.fold_batchnorm, TransformerRule.FOLD_BIASADD: self.fold_biasadd, TransformerRule.FOLD_CONV_AND_BN: self.fold_conv_and_bn, # data_format related TransformerRule.FOLD_DECONV_AND_BN: self.fold_deconv_and_bn, # data_format related TransformerRule.FOLD_DEPTHWISE_CONV_AND_BN: self.fold_depthwise_conv_and_bn, # data_format related TransformerRule.TRANSFORM_ADD_TO_BIASADD: self.transform_add_to_biasadd, TransformerRule.REARRANGE_BATCH_TO_SPACE: self.rearrange_batch_to_space, TransformerRule.FLATTEN_ATROUS_CONV: self.flatten_atrous_conv, TransformerRule.FOLD_ACTIVATION: self.fold_activation, TransformerRule.FOLD_SQRDIFF_MEAN: self.fold_squared_diff_mean, TransformerRule.FOLD_EMBEDDING_LOOKUP: self.fold_embedding_lookup, TransformerRule.TRANSPOSE_FILTERS: self.transpose_filters, TransformerRule.TRANSPOSE_MATMUL_WEIGHT: self.transpose_matmul_weight, TransformerRule.FOLD_FC_RESHAPE: self.fold_fc_reshape, TransformerRule.ADD_IN_OUT_TENSOR_INFO: self.add_in_out_tensor_info, TransformerRule.ADD_WINOGRAD_ARG: self.add_winograd_arg, TransformerRule.TRANSFORM_GLOBAL_CONV_TO_FC: self.transform_global_conv_to_fc, TransformerRule.RESHAPE_FC_WEIGHT: self.reshape_fc_weight, TransformerRule.QUANTIZE_NODES: self.quantize_nodes, TransformerRule.ADD_QUANTIZE_TENSOR_RANGE: self.add_quantize_tensor_range, TransformerRule.QUANTIZE_WEIGHTS: self.quantize_weights, TransformerRule.UPDATE_FLOAT_OP_DATA_TYPE: self.update_float_op_data_type, TransformerRule.ADD_OPENCL_INFORMATIONS: self.add_opencl_informations, TransformerRule.SORT_BY_EXECUTION: self.sort_by_execution, TransformerRule.UPDATE_DATA_FORMAT: self.update_data_format, TransformerRule.TRANSPOSE_RESHAPE_AND_FLATTEN: self.transform_reshape_and_flatten, TransformerRule.TRANSPOSE_SHAPE_TENSOR_TO_PARAM: self.transform_shape_tensor_to_param, TransformerRule.TRANSPOSE_DATA_FORMAT: self.transpose_data_format, TransformerRule.CHECK_QUANTIZE_INFO: self.check_quantize_info, TransformerRule.TRANSFORM_CHANNEL_SHUFFLE: self.transform_channel_shuffle, TransformerRule.QUANTIZE_SPECIFIC_OPS_ONLY: self.quantize_specific_ops_only, TransformerRule.FP16_MATMUL_WEIGHT: self.fp16_matmul_weight, TransformerRule.FP16_GATHER_WEIGHT: self.fp16_gather_weight, TransformerRule.QUANTIZE_LARGE_WEIGHTS: self.quantize_large_weights, } self._option = option self._model = model self._wino_arg = self._option.winograd self._ops = {} self._consts = {} self._consumers = {} self._producer = {} self._quantize_activation_info = {} self._quantized_tensor = set() self.input_name_map = {} self.output_name_map = {} self.initialize_name_map() def run(self): for key in self._option.transformer_option: transformer = self._registered_transformers[key] while True: self.construct_ops_and_consumers(key) changed = transformer() if not changed: break return self._model, self._quantize_activation_info def initialize_name_map(self): for input_node in self._option.input_nodes.values(): new_input_name = MaceKeyword.mace_input_node_name \ + '_' + input_node.name self.input_name_map[input_node.name] = new_input_name output_nodes = self._option.check_nodes.values() for output_node in output_nodes: new_output_name = MaceKeyword.mace_output_node_name \ + '_' + output_node.name self.output_name_map[output_node.name] = new_output_name def filter_format(self): filter_format_value = ConverterUtil.get_arg(self._model, MaceKeyword.mace_filter_format_str).i # noqa filter_format = None if filter_format_value == DataFormat.HWIO.value: filter_format = DataFormat.HWIO elif filter_format_value == DataFormat.OIHW.value: filter_format = DataFormat.OIHW elif filter_format_value == DataFormat.HWOI.value: filter_format = DataFormat.HWOI else: mace_check(False, "filter format %d not supported" % filter_format_value) return filter_format def set_filter_format(self, filter_format): arg = ConverterUtil.get_arg(self._model, MaceKeyword.mace_filter_format_str) arg.i = filter_format.value def construct_ops_and_consumers(self, key): self._ops.clear() self._consumers.clear() self._producer.clear() for op in self._model.op: self._ops[op.name] = op for tensor in self._model.tensors: self._consts[tensor.name] = tensor for op in self._ops.values(): for input_tensor in op.input: if input_tensor not in self._consumers: self._consumers[input_tensor] = [] self._consumers[input_tensor].append(op) for output_tensor in op.output: self._producer[output_tensor] = op if key != TransformerRule.SORT_BY_EXECUTION: for input_node in self._option.input_nodes.values(): input_node_existed = False for op in self._model.op: if input_node.name in op.output: input_node_existed = True break if not input_node_existed: op = mace_pb2.OperatorDef() op.name = self.normalize_op_name(input_node.name) op.type = "Input" data_type_arg = op.arg.add() data_type_arg.name = MaceKeyword.mace_op_data_type_str data_type_arg.i = input_node.data_type op.output.extend([input_node.name]) output_shape = op.output_shape.add() output_shape.dims.extend(input_node.shape) if input_node.data_format != DataFormat.NONE: if input_node.data_format == DataFormat.NCHW: self.transpose_shape(output_shape.dims, [0, 3, 1, 2]) ConverterUtil.add_data_format_arg(op, DataFormat.AUTO) else: ConverterUtil.add_data_format_arg(op, DataFormat.NONE) self._producer[op.output[0]] = op @staticmethod def replace(obj_list, source, target): for i in six.moves.range(len(obj_list)): if obj_list[i] == source: obj_list[i] = target @staticmethod def transpose_shape(shape, order): transposed_shape = [] for i in six.moves.range(len(order)): transposed_shape.append(shape[order[i]]) shape[:] = transposed_shape[:] @staticmethod def normalize_op_name(name): return name.replace(':', '_') def get_tensor_shape(self, tensor): if tensor in self._consts: return list(self._consts[tensor].dims) elif tensor in self._producer: producer = self._producer[tensor] for i in six.moves.range(len(producer.output)): if producer.output[i] == tensor: return list(producer.output_shape[i].dims) else: return None def get_tensor_data_type(self, tensor): if tensor in self._consts: return self._consts[tensor].data_type elif tensor in self._producer: producer = self._producer[tensor] for i in six.moves.range(len(producer.output)): if producer.output[i] == tensor: if i < len(producer.output_type): return producer.output_type[i] elif ConverterUtil.get_arg(producer, "T") is not None: return ConverterUtil.get_arg(producer, "T").i else: print("No data type filled: ", producer) return None else: return None def get_tensor_data_format(self, tensor): if tensor in self._producer: producer = self._producer[tensor] return ConverterUtil.data_format(producer) else: return DataFormat.NONE def consumer_count(self, tensor_name): return len(self._consumers.get(tensor_name, [])) def is_op_output_node(self, op): output_node_tensor_names = [out for out in self._option.output_nodes] for output in op.output: if output in output_node_tensor_names: return True return False def safe_remove_node(self, op, replace_op, remove_input_tensor=False): """remove op. 1. change the inputs of its consumers to the outputs of replace_op 2. if the op is output node, change output node to replace op""" if replace_op is None: # When no replace op specified, we change the inputs of # its consumers to the input of the op. This handles the case # that the op is identity op and its input is a tensor. mace_check(len(op.output) == 1 and len(op.input) == 1, "cannot remove op that w/o replace op specified" " and input/output length > 1\n" + str(op)) for consumer_op in self._consumers.get(op.output[0], []): self.replace(consumer_op.input, op.output[0], op.input[0]) mace_check(op.output[0] not in self._option.output_nodes, "cannot remove op that is output node") else: mace_check(len(op.output) == len(replace_op.output), "cannot remove op since len(op.output) " "!= len(replace_op.output)") for i in six.moves.range(len(op.output)): # if the op is output node, change replace_op output name # to the op output name if op.output[i] in self._option.output_nodes: for consumer in self._consumers.get( replace_op.output[i], []): self.replace(consumer.input, replace_op.output[i], op.output[i]) replace_op.output[i] = op.output[i] else: for consumer_op in self._consumers.get(op.output[i], []): self.replace(consumer_op.input, op.output[i], replace_op.output[i]) if remove_input_tensor: for input_name in op.input: if input_name in self._consts: const_tensor = self._consts[input_name] self._model.tensors.remove(const_tensor) self._model.op.remove(op) def add_in_out_tensor_info(self): net = self._model for input_node in self._option.input_nodes.values(): input_info = net.input_info.add() input_info.name = input_node.name input_info.data_format = input_node.data_format.value input_info.dims.extend(input_node.shape) input_info.data_type = input_node.data_type output_nodes = self._option.check_nodes.values() for output_node in output_nodes: output_info = net.output_info.add() output_info.name = output_node.name output_info.data_format = output_node.data_format.value output_info.dims.extend( self._producer[output_node.name].output_shape[0].dims) output_info.data_type = output_node.data_type return False def remove_useless_op(self): net = self._model for op in net.op: if op.type == 'Identity': print("Remove useless op: %s(%s)" % (op.name, op.type)) self.safe_remove_node(op, self._producer.get(op.input[0], None)) return True elif op.type == 'Reshape' and \ op.output_shape[0].dims == \ self.get_tensor_shape(op.input[0]): print("Remove useless reshape: %s(%s)" % (op.name, op.type)) self.safe_remove_node(op, self._producer.get(op.input[0], None)) return True return False def transform_global_pooling(self): net = self._model for op in net.op: if op.type == MaceOp.Pooling.name and \ ConverterUtil.get_arg(op, MaceKeyword.mace_global_pooling_str) is not None: # noqa print("Transform global pooling: %s(%s)" % (op.name, op.type)) input_shape = self._producer[op.input[0]].output_shape[0].dims if ConverterUtil.data_format(op) == DataFormat.NHWC: kernel_shape = input_shape[1:3] else: kernel_shape = input_shape[2:4] ConverterUtil.get_arg(op, MaceKeyword.mace_kernel_str).ints[:] \ = kernel_shape[:] return False def fold_batchnorm(self): net = self._model for op in net.op: if (op.type == MaceOp.Eltwise.name and ConverterUtil.get_arg( op, MaceKeyword.mace_element_type_str).i == EltwiseType.PROD.value) \ and len(op.input) == 2 \ and op.input[1] in self._consts \ and op.output_shape[0].dims[-1:] == \ self._consts[op.input[1]].dims \ and self.consumer_count(op.output[0]) == 1 \ and not self.is_op_output_node(op): consumer_op = self._consumers[op.output[0]][0] if (consumer_op.type == MaceOp.Eltwise.name and ConverterUtil.get_arg( consumer_op, MaceKeyword.mace_element_type_str).i == EltwiseType.SUM.value or consumer_op.type == MaceOp.BiasAdd.name) \ and len(consumer_op.input) == 2 \ and consumer_op.input[1] in self._consts \ and len(self._consts[consumer_op.input[1]].dims) == 1: print("Fold batchnorm: %s(%s)" % (op.name, op.type)) consumer_op.type = MaceOp.BatchNorm.name consumer_op.input[:] = [op.input[0], op.input[1], consumer_op.input[1]] net.op.remove(op) return True return False def fold_squared_diff_mean(self): net = self._model for op in net.op: if op.type == MaceOp.Eltwise.name and len(op.input) == 2: elt_type = ConverterUtil.get_arg( op, MaceKeyword.mace_element_type_str).i if elt_type == EltwiseType.SQR_DIFF.value and\ self.consumer_count(op.output[0]) == 1: consumer_op = self._consumers[op.output[0]][0] if consumer_op.type == MaceOp.Reduce.name: axis = ConverterUtil.get_arg( consumer_op, MaceKeyword.mace_axis_str).ints keep_dims = ConverterUtil.get_arg( consumer_op, MaceKeyword.mace_keepdims_str).i reduce_type = ConverterUtil.get_arg( consumer_op, MaceKeyword.mace_reduce_type_str).i if reduce_type == ReduceType.MEAN.value and\ len(consumer_op.input) == 1 and\ axis[0] == 1 and axis[1] == 2 and\ keep_dims > 0: print("Fold SquaredDiff Reduce: %s" % op.name) op.type = MaceOp.SqrDiffMean.name op.output[0] = consumer_op.output[0] self.replace_quantize_info(op, consumer_op) self.safe_remove_node(consumer_op, op) return True return False def fold_embedding_lookup(self): net = self._model for op in net.op: # gather -> mul if (op.type == MaceOp.Gather.name and self.consumer_count(op.output[0]) == 1): consumer_op = self._consumers[op.output[0]][0] if (consumer_op.type == MaceOp.Eltwise.name and ConverterUtil.get_arg(consumer_op, MaceKeyword.mace_element_type_str).i == EltwiseType.PROD.value and # noqa len(consumer_op.input) == 1 and op.input[0] in self._consts and self.consumer_count(op.input[0]) == 1): print("Fold Gather and Mul: %s" % op.name) gather_weights = self._consts[op.input[0]] mul_weight = ConverterUtil.get_arg(consumer_op, MaceKeyword.mace_scalar_input_str).f # noqa gather_weights.float_data[:] = [float_data * mul_weight for float_data in gather_weights.float_data] # noqa self.safe_remove_node(consumer_op, None, remove_input_tensor=True) def transform_lstmcell_zerostate(self): net = self._model zero_state_pattern = \ re.compile(r'^.*BasicLSTMCellZeroState_?[0-9]*/[a-zA-Z]+_?[0-9]*') # noqa for op in net.op: if op.type == MaceOp.Fill.name and \ zero_state_pattern.match(op.name): print("Transform lstm zerostate") concat_op = self._producer[op.input[0]] consumer_op = self._consumers[op.output[0]][0] dims = [self._consts[concat_op.input[0]].int32_data[0], self._consts[concat_op.input[1]].int32_data[0]] tensor_def = net.tensors.add() tensor_def.name = op.output[0].replace('/zeros', '/init_const') tensor_def.dims.extend(dims) tensor_def.data_type = self._consts[op.input[1]].data_type tensor_def.float_data.extend( [self._consts[op.input[1]].float_data[0]] * (dims[0] * dims[1])) for i in range(len(consumer_op.input)): if zero_state_pattern.match(consumer_op.input[i][:-2]): consumer_op.input[i] = tensor_def.name net.tensors.remove(self._consts[op.input[1]]) net.tensors.remove(self._consts[concat_op.input[0]]) net.tensors.remove(self._consts[concat_op.input[1]]) net.op.remove(concat_op) net.op.remove(op) return True def transform_basic_lstmcell(self): if self._option.device != DeviceType.GPU.value: return False net = self._model basic_lstm_concat_pattern = \ re.compile(r'^.*basic_lstm_cell_?[0-9]*/concat_?[0-9]*') for op in net.op: if op.type == MaceOp.Concat.name and \ basic_lstm_concat_pattern.match(op.name): print("Transform basic lstmcell") ops_to_delete = [] ops_to_delete.extend([op]) op_def = net.op.add() op_def.name = op.name.replace('/concat', '/folded_lstmcell') op_def.type = MaceOp.LSTMCell.name op_def.arg.extend(op.arg[:-1]) # Concat pre output and cur input # extend concat inputs op_def.input.extend([op_input for op_input in op.input]) # lstm MatMul in FC of [pre_output, cur_input] matmul_op = self._consumers[op.output[0]][0] ops_to_delete.extend([matmul_op]) # extend MatMul weight input op_def.input.extend([matmul_op.input[1]]) # lstm BiasAdd in FC of [pre_output, cur_input] biasadd_op = self._consumers[matmul_op.output[0]][0] ops_to_delete.extend([biasadd_op]) # extend BiasAdd bias input op_def.input.extend([biasadd_op.input[1]]) # Split FC output into i, j, f, o # i = input_gate, j = new_input, f = forget_gate, o = output_gate # noqa split_op = self._consumers[biasadd_op.output[0]][0] ops_to_delete.extend([split_op]) # input gate activation input_gate_op = self._consumers[split_op.output[0]][0] ops_to_delete.extend([input_gate_op]) # new input gate new_input_tanh_op = self._consumers[split_op.output[1]][0] ops_to_delete.extend([new_input_tanh_op]) # forget gate add forget_add_op = self._consumers[split_op.output[2]][0] ops_to_delete.extend([forget_add_op]) # output gate activation output_gate_op = self._consumers[split_op.output[3]][0] ops_to_delete.extend([output_gate_op]) # extend forget add mace_check(len(forget_add_op.input) == 1, 'Wrong LSTM format in forget gate inputs') for arg in forget_add_op.arg: if arg.name == MaceKeyword.mace_scalar_input_str: op_def.arg.extend([arg]) # state remember remember_mul_op = self._consumers[input_gate_op.output[0]][0] ops_to_delete.extend([remember_mul_op]) mace_check(remember_mul_op.name == self._consumers[ new_input_tanh_op.output[0]][0].name, 'Wrong LSTM format in input sig & input tanh mul') # forget gate activation forget_gate_op = self._consumers[forget_add_op.output[0]][0] ops_to_delete.extend([forget_gate_op]) # Mul `forget` & `pre cell state` forget_mul_op = self._consumers[forget_gate_op.output[0]][0] ops_to_delete.extend([forget_mul_op]) # extend pre cell state input op_def.input.extend([forget_mul_op.input[0]]) # get cur cell state # Add `forget gate output` & `remember mul output` remember_forget_add_op = \ self._consumers[remember_mul_op.output[0]][0] ops_to_delete.extend([remember_forget_add_op]) mace_check(remember_forget_add_op.name == self._consumers[forget_mul_op.output[0]][0].name, 'Wrong LSTM format in add forget gate & remember mul') # noqa op_def.output.extend([remember_forget_add_op.output[0]]) op_def.output_shape.extend(remember_forget_add_op.output_shape) # cell state output tanh for consumer in \ self._consumers[remember_forget_add_op.output[0]]: if consumer.type == MaceOp.Activation.name and \ consumer.name.find('basic_lstm_cell') > 0: cell_tanh_op = consumer ops_to_delete.extend([cell_tanh_op]) # final mul, get output final_mul_op = self._consumers[cell_tanh_op.output[0]][0] ops_to_delete.extend([final_mul_op]) mace_check(final_mul_op.name == self._consumers[output_gate_op.output[0]][0].name, 'Wrong LSTM format in final mul') op_def.output.extend([final_mul_op.output[0]]) op_def.output_shape.extend(final_mul_op.output_shape) for op_to_del in ops_to_delete: net.op.remove(op_to_del) return True return False def fold_conv_and_bn(self): net = self._model for op in net.op: if (op.type == MaceOp.Conv2D.name) \ and self.consumer_count(op.output[0]) == 1: consumer_op = self._consumers[op.output[0]][0] input_len = len(op.input) if (consumer_op.type == MaceOp.BatchNorm.name and (input_len == 2 or (input_len == 3 and op.input[-1] in self._consts)) # noqa and len(self._consumers[op.input[1]]) == 1): print("Fold conv and bn: %s(%s)" % (op.name, op.type)) filter = self._consts[op.input[1]] scale = self._consts[consumer_op.input[1]] offset = self._consts[consumer_op.input[2]] idx = 0 filter_format = self.filter_format() if filter_format == DataFormat.HWIO: for hwi in six.moves.range(filter.dims[0] * filter.dims[1] * filter.dims[2]): for o in six.moves.range(filter.dims[3]): filter.float_data[idx] *= scale.float_data[o] idx += 1 elif filter_format == DataFormat.OIHW: for o in six.moves.range(filter.dims[0]): for hwi in six.moves.range(filter.dims[1] * filter.dims[2] * filter.dims[3]): filter.float_data[idx] *= scale.float_data[o] idx += 1 else: mace_check(False, "filter format %s not supported" % filter_format) if len(op.input) == 3: conv_bias = self._consts[op.input[2]] for c in six.moves.range(conv_bias.dims[0]): conv_bias.float_data[c] *= scale.float_data[c] conv_bias.float_data[c] += offset.float_data[c] net.tensors.remove(offset) else: op.input.extend([consumer_op.input[2]]) # remove bn del consumer_op.input[:] net.tensors.remove(scale) self.replace_quantize_info(op, consumer_op) self.safe_remove_node(consumer_op, op) return True return False def fold_deconv_and_bn(self): net = self._model for op in net.op: if (op.type in [MaceOp.Deconv2D.name, MaceOp.DepthwiseDeconv2d]) \ and self.consumer_count(op.output[0]) == 1: consumer_op = self._consumers[op.output[0]][0] framework = ConverterUtil.get_arg( op, MaceKeyword.mace_framework_type_str).i input_len = len(op.input) if (consumer_op.type == MaceOp.BatchNorm.name and ( (framework == FrameworkType.CAFFE.value and (input_len == 2 or (input_len == 3 and op.input[-1] in self._consts))) or (framework == FrameworkType.TENSORFLOW.value and (input_len == 3 or (input_len == 4 and op.input[-1] in self._consts)))) and len(self._consumers[op.input[1]]) == 1): print("Fold deconv and bn: %s(%s)" % (op.name, op.type)) filter = self._consts[op.input[1]] scale = self._consts[consumer_op.input[1]] offset = self._consts[consumer_op.input[2]] idx = 0 filter_format = self.filter_format() # in deconv op O and I channel is switched if filter_format == DataFormat.HWIO: for hw in six.moves.range(filter.dims[0] * filter.dims[1]): for o in six.moves.range(filter.dims[2]): for i in six.moves.range(filter.dims[3]): filter.float_data[idx] *=\ scale.float_data[o] idx += 1 elif filter_format == DataFormat.OIHW: for i in six.moves.range(filter.dims[0]): for o in six.moves.range(filter.dims[1]): for hw in six.moves.range(filter.dims[2] * filter.dims[3]): filter.float_data[idx] *=\ scale.float_data[o] idx += 1 else: mace_check(False, "filter format %s not supported" % filter_format) bias_dim = -1 if framework == FrameworkType.CAFFE.value \ and len(op.input) == 3: bias_dim = 2 if framework == FrameworkType.TENSORFLOW.value \ and len(op.input) == 4: bias_dim = 3 if bias_dim != -1: conv_bias = self._consts[op.input[bias_dim]] for c in six.moves.range(conv_bias.dims[0]): conv_bias.float_data[c] *= scale.float_data[c] conv_bias.float_data[c] += offset.float_data[c] net.tensors.remove(offset) else: op.input.extend([consumer_op.input[2]]) del consumer_op.input[:] net.tensors.remove(scale) self.replace_quantize_info(op, consumer_op) self.safe_remove_node(consumer_op, op) return True return False def fold_depthwise_conv_and_bn(self): net = self._model for op in net.op: if op.type == MaceOp.DepthwiseConv2d.name \ and self.consumer_count(op.output[0]) == 1: consumer_op = self._consumers[op.output[0]][0] input_len = len(op.input) if (consumer_op.type == MaceOp.BatchNorm.name and (input_len == 2 or (input_len == 3 and op.input[-1] in self._consts)) # noqa and len(self._consumers[op.input[1]]) == 1): print("Fold depthwise conv and bn: %s(%s)" % (op.name, op.type)) filter = self._consts[op.input[1]] scale = self._consts[consumer_op.input[1]] offset = self._consts[consumer_op.input[2]] idx = 0 filter_format = self.filter_format() if filter_format == DataFormat.HWIO: for hw in six.moves.range(filter.dims[0] * filter.dims[1]): for i in six.moves.range(filter.dims[2]): for o in six.moves.range(filter.dims[3]): filter.float_data[idx] *= scale.float_data[ i * filter.dims[3] + o] idx += 1 elif filter_format == DataFormat.OIHW: for o in six.moves.range(filter.dims[0]): for i in six.moves.range(filter.dims[1]): for hw in six.moves.range(filter.dims[2] * filter.dims[3]): filter.float_data[idx] *= scale.float_data[ i * filter.dims[0] + o] idx += 1 else: mace_check(False, "filter format %s not supported" % filter_format) if len(op.input) == 3: conv_bias = self._consts[op.input[2]] for c in six.moves.range(conv_bias.dims[0]): conv_bias.float_data[c] *= scale.float_data[c] conv_bias.float_data[c] += offset.float_data[c] net.tensors.remove(offset) else: op.input.extend([consumer_op.input[2]]) # remove bn del consumer_op.input[:] net.tensors.remove(scale) self.replace_quantize_info(op, consumer_op) self.safe_remove_node(consumer_op, op) return True return False @staticmethod def sort_feature_map_shape(shape, data_format): """Return shape in NHWC order""" batch = shape[0] if data_format == DataFormat.NHWC: height = shape[1] width = shape[2] channels = shape[3] else: height = shape[2] width = shape[3] channels = shape[1] return batch, height, width, channels @staticmethod def sort_filter_shape(filter_shape, filter_format): """Return filter shape in HWIO order""" if filter_format == DataFormat.HWIO: filter_height = filter_shape[0] filter_width = filter_shape[1] in_channels = filter_shape[2] out_channels = filter_shape[3] elif filter_format == DataFormat.OIHW: filter_height = filter_shape[2] filter_width = filter_shape[3] in_channels = filter_shape[1] out_channels = filter_shape[0] elif filter_format == DataFormat.HWOI: filter_height = filter_shape[0] filter_width = filter_shape[1] in_channels = filter_shape[3] out_channels = filter_shape[2] else: mace_check(False, "filter format %s not supported" % filter_format) return filter_height, filter_width, in_channels, out_channels def transform_add_to_biasadd(self): net = self._model for op in net.op: if (op.type == 'Eltwise' and ConverterUtil.get_arg(op, MaceKeyword.mace_element_type_str).i == EltwiseType.SUM.value # noqa and len(op.input) == 2 and op.input[1] in self._consts and len(self._consts[op.input[1]].dims) == 1): print("Transform add to biasadd: %s(%s)" % (op.name, op.type)) op.type = MaceOp.BiasAdd.name return True return False def replace_quantize_info(self, op, replace_op): if len(replace_op.quantize_info) > 0: del op.quantize_info[:] op.quantize_info.extend(replace_op.quantize_info) for i in range(len(op.quantize_info)): self._quantize_activation_info[op.output[i]] = \ op.quantize_info[i] def fold_biasadd(self): net = self._model for op in net.op: if (((op.type == MaceOp.Conv2D.name or op.type == MaceOp.DepthwiseConv2d.name or op.type == MaceOp.FullyConnected.name) and len(op.input) == 2) or (op.type == MaceOp.Deconv2D.name and ((ConverterUtil.get_arg( op, MaceKeyword.mace_framework_type_str).i == FrameworkType.CAFFE.value and len(op.input) == 2) or (ConverterUtil.get_arg( op, MaceKeyword.mace_framework_type_str).i == FrameworkType.TENSORFLOW.value and len(op.input) == 3)))) \ and len(self._consumers.get(op.output[0], [])) == 1: consumer_op = self._consumers[op.output[0]][0] if consumer_op.type == MaceOp.BiasAdd.name: print("Fold biasadd: %s(%s)" % (op.name, op.type)) op.name = consumer_op.name op.output[0] = consumer_op.output[0] op.input.append(consumer_op.input[1]) self.replace_quantize_info(op, consumer_op) self.safe_remove_node(consumer_op, op) return True return False def flatten_atrous_conv(self): if self._option.device != DeviceType.GPU.value \ and self._option.device != DeviceType.APU.value \ and self._option.device != DeviceType.HTA.value: return net = self._model for op in net.op: if (op.type == MaceOp.SpaceToBatchND.name and len(self._consumers.get(op.output[0], [])) == 1): conv_op = self._consumers.get(op.output[0])[0] if (conv_op.type == MaceOp.Conv2D.name or conv_op.type == MaceOp.DepthwiseConv2d.name) \ and len(self._consumers.get(conv_op.output[0], [])) == 1: # noqa b2s_op = self._consumers.get(conv_op.output[0])[0] if b2s_op.type == MaceOp.BatchToSpaceND.name: six.print_("Flatten atrous convolution") # Add args. padding_arg_values = ConverterUtil.get_arg( op, MaceKeyword.mace_paddings_str).ints blocks_arg_values = ConverterUtil.get_arg( b2s_op, MaceKeyword.mace_space_batch_block_shape_str).ints dilation_arg = ConverterUtil.get_arg( conv_op, MaceKeyword.mace_dilations_str) if dilation_arg is None: dilation_arg = conv_op.arg.add() dilation_arg.name = MaceKeyword.mace_dilations_str dilation_arg.ints[:] = blocks_arg_values padding_arg = ConverterUtil.get_arg( conv_op, MaceKeyword.mace_padding_str) if padding_arg is None: padding_arg = conv_op.arg.add() padding_arg.name = MaceKeyword.mace_padding_str if len(padding_arg_values) > 0 \ and padding_arg_values[0] > 0: padding_arg.i = PaddingMode.SAME.value else: padding_arg.i = PaddingMode.VALID.value strides_arg = ConverterUtil.get_arg( conv_op, MaceKeyword.mace_strides_str) if strides_arg is None: strides_arg = conv_op.arg.add() strides_arg.name = MaceKeyword.mace_strides_str strides_arg.ints[:] = [1, 1] # update output shape conv_op.output_shape[0].dims[:] = \ b2s_op.output_shape[0].dims[:] conv_op.output[0] = b2s_op.output[0] conv_op.name = b2s_op.name self.safe_remove_node(op, None) self.replace_quantize_info(b2s_op, conv_op) self.safe_remove_node(b2s_op, conv_op) return True return False def fold_activation(self): net = self._model for op in net.op: if (op.type == MaceOp.Conv2D.name or op.type == MaceOp.Deconv2D.name or op.type == MaceOp.DepthwiseConv2d.name or op.type == MaceOp.FullyConnected.name or op.type == MaceOp.BatchNorm.name) \ and len(self._consumers.get(op.output[0], [])) == 1: consumer_op = self._consumers[op.output[0]][0] if consumer_op.type == MaceOp.Activation.name: act_type_arg = ConverterUtil.get_arg( consumer_op, MaceKeyword.mace_activation_type_str) act_type = act_type_arg.s.decode() if act_type == ActivationType.PRELU.name: continue # during quantization, only fold relu/relux if (self._option.quantize_stat or self._option.quantize) \ and act_type not in [ActivationType.RELU.name, ActivationType.RELUX.name]: continue print("Fold activation: %s(%s)" % (op.name, op.type)) op.name = consumer_op.name op.output[0] = consumer_op.output[0] for arg in consumer_op.arg: if arg.name == MaceKeyword.mace_activation_type_str \ or arg.name == \ MaceKeyword.mace_activation_max_limit_str \ or arg.name == MaceKeyword.mace_activation_leakyrelu_coefficient_str: # noqa op.arg.extend([arg]) self.replace_quantize_info(op, consumer_op) self.safe_remove_node(consumer_op, op) return True return False def transform_global_conv_to_fc(self): """Transform global conv to fc should be placed after transposing input/output and filter""" if self._option.quantize: return net = self._model for op in net.op: if op.type == MaceOp.Conv2D.name \ and len(op.input) >= 2 \ and op.input[1] in self._consts: producer = self._producer[op.input[0]] input_shape = producer.output_shape[0].dims batch, height, width, channels = self.sort_feature_map_shape( input_shape, ConverterUtil.data_format(producer)) filter = self._consts[op.input[1]] filter_shape = filter.dims filter_height, filter_width, in_channels, out_channels = \ self.sort_filter_shape(filter_shape, self.filter_format()) zero_padding = True padding_arg = ConverterUtil.get_arg(op, MaceKeyword.mace_padding_str) # noqa if padding_arg is not None: if padding_arg.i != PaddingMode.VALID.value: zero_padding = False else: padding_value_arg = ConverterUtil.get_arg(op, MaceKeyword.mace_padding_values_str) # noqa if padding_value_arg is not None: if not all(v == 0 for v in padding_value_arg.ints): zero_padding = False if height == filter_height and width == filter_width \ and zero_padding \ and len(self._consumers[op.input[1]]) == 1: print("transform global conv to fc %s(%s)" % (op.name, op.type)) op.type = MaceOp.FullyConnected.name return False def reshape_fc_weight(self): net = self._model filter_format = self.filter_format() for op in net.op: if op.type == MaceOp.FullyConnected.name: weight = self._consts[op.input[1]] if len(weight.dims) == 2: print("Reshape fully connected weight shape") input_op = self._producer[op.input[0]] input_shape = list(input_op.output_shape[0].dims) weight.dims[:] = [weight.dims[0]] + input_shape[1:] if len(input_shape) == 2: if filter_format == DataFormat.HWIO: weight.dims[:] = [1, 1] + weight.dims[:] elif filter_format == DataFormat.OIHW: weight.dims[:] = weight.dims[:] + [1, 1] else: mace_check(False, "FC does not support filter format %s" % filter_format.name) return False def add_winograd_arg(self): if self._wino_arg == 0: return False net = self._model for op in net.op: if op.type == MaceOp.Conv2D.name: winograd_arg = op.arg.add() winograd_arg.name = MaceKeyword.mace_wino_arg_str winograd_arg.i = self._wino_arg return False def transpose_matmul_weight(self): if self._option.device != DeviceType.CPU.value: return False net = self._model transposed_weights = [] for op in net.op: if op.type == MaceOp.MatMul.name: # noqa rhs = op.input[1] if rhs in self._consts and len(self._consts[rhs].dims) == 2: arg = ConverterUtil.get_arg(op, MaceKeyword.mace_transpose_b_str) # noqa # six.print_("Transpose matmul weight %s" % rhs) if arg is None: arg = op.arg.add() arg.name = MaceKeyword.mace_transpose_b_str arg.i = 0 if arg.i == 0: arg.i = 1 if rhs not in transposed_weights: filter = self._consts[rhs] filter_data = np.array(filter.float_data).reshape( filter.dims) filter_data = filter_data.transpose(1, 0) filter.float_data[:] = filter_data.flat filter.dims[:] = filter_data.shape transposed_weights.append(rhs) six.print_('Transpose matmul weight to shape:', filter.dims) def transpose_filters(self): net = self._model filter_format = self.filter_format() transposed_filter = set() transposed_deconv_filter = set() if self._option.quantize and \ (self._option.device == DeviceType.CPU.value or self._option.device == DeviceType.APU.value): print("Transpose filters to OHWI") if filter_format == DataFormat.HWIO: transpose_order = [3, 0, 1, 2] elif filter_format == DataFormat.OIHW: transpose_order = [0, 2, 3, 1] else: mace_check(False, "Quantize model does not support conv " "filter format: %s" % filter_format.name) for op in net.op: if (op.type == MaceOp.Conv2D.name or op.type == MaceOp.Deconv2D.name or (op.type == MaceOp.DepthwiseConv2d.name and self._option.device == DeviceType.APU.value) or (op.type == MaceOp.FullyConnected.name and len(self._consts[op.input[1]].dims) == 4)) and \ op.input[1] not in transposed_filter: filter = self._consts[op.input[1]] filter_data = np.array(filter.float_data).reshape( filter.dims) filter_data = filter_data.transpose(transpose_order) filter.float_data[:] = filter_data.flat filter.dims[:] = filter_data.shape transposed_filter.add(op.input[1]) elif op.type == MaceOp.DepthwiseConv2d.name and\ filter_format == DataFormat.OIHW and\ self._option.device == DeviceType.CPU.value and\ op.input[1] not in transposed_filter: filter = self._consts[op.input[1]] filter_data = np.array(filter.float_data).reshape( filter.dims) filter_data = filter_data.transpose(2, 3, 1, 0) filter.float_data[:] = filter_data.flat filter.dims[:] = filter_data.shape transposed_filter.add(op.input[1]) # deconv's filter's output channel and input channel is reversed for op in net.op: if op.type == MaceOp.Deconv2D.name and \ op.input[1] not in transposed_deconv_filter: filter = self._consts[op.input[1]] filter_data = np.array(filter.float_data).reshape( filter.dims) filter_data = filter_data.transpose(3, 1, 2, 0) filter.float_data[:] = filter_data.flat filter.dims[:] = filter_data.shape transposed_deconv_filter.add(op.input[1]) self.set_filter_format(DataFormat.OHWI) elif self._option.quantize and \ (self._option.device == DeviceType.HEXAGON.value or self._option.device == DeviceType.HTA.value): for op in net.op: # from HWOI to OHWI, deconv is unique if op.type == MaceOp.Deconv2D.name \ and op.input[1] in self._consts \ and op.input[1] not in transposed_deconv_filter: filter = self._consts[op.input[1]] filter_data = np.array(filter.float_data).reshape( filter.dims) filter_data = filter_data.transpose(2, 0, 1, 3) filter.float_data[:] = filter_data.flat filter.dims[:] = filter_data.shape transposed_deconv_filter.add(op.input[1]) print("Transpose filters to HWIO/HWIM") mace_check(filter_format == DataFormat.HWIO, "HEXAGON only support HWIO/HWIM filter format.") else: # transpose filter to OIHW/MIHW for tensorflow (HWIO/HWIM) if filter_format == DataFormat.HWIO: for op in net.op: if (op.type == MaceOp.Conv2D.name or op.type == MaceOp.Deconv2D.name or op.type == MaceOp.DepthwiseConv2d.name) \ and op.input[1] in self._consts \ and op.input[1] not in transposed_filter: print("Transpose Conv2D/Deconv2D filters to OIHW/MIHW") filter = self._consts[op.input[1]] filter_data = np.array(filter.float_data).reshape( filter.dims) filter_data = filter_data.transpose(3, 2, 0, 1) filter.float_data[:] = filter_data.flat filter.dims[:] = filter_data.shape transposed_filter.add(op.input[1]) if (op.type == MaceOp.MatMul.name and (ConverterUtil.get_arg( op, MaceKeyword.mace_winograd_filter_transformed) is not None) # noqa and op.input[1] not in transposed_filter): print("Transpose Winograd filters to OIHW/MIHW") filter = self._consts[op.input[0]] filter_data = np.array(filter.float_data).reshape( filter.dims) filter_data = filter_data.transpose(3, 2, 0, 1) filter.float_data[:] = filter_data.flat filter.dims[:] = filter_data.shape transposed_filter.add(op.input[0]) if op.type == MaceOp.FullyConnected.name \ and op.input[1] not in transposed_filter: weight = self._consts[op.input[1]] if len(weight.dims) == 4: print("Transpose FullyConnected filters to" " OIHW/MIHW") weight_data = np.array(weight.float_data).reshape( weight.dims) weight_data = weight_data.transpose(3, 2, 0, 1) weight.float_data[:] = weight_data.flat weight.dims[:] = weight_data.shape transposed_filter.add(op.input[1]) self.set_filter_format(DataFormat.OIHW) # deconv's filter's output channel and input channel is reversed for op in net.op: if op.type in [MaceOp.Deconv2D.name, MaceOp.DepthwiseDeconv2d] \ and op.input[1] not in transposed_deconv_filter: filter = self._consts[op.input[1]] filter_data = np.array(filter.float_data).reshape( filter.dims) filter_data = filter_data.transpose(1, 0, 2, 3) filter.float_data[:] = filter_data.flat filter.dims[:] = filter_data.shape transposed_deconv_filter.add(op.input[1]) return False def fold_reshape(self): net = self._model for op in net.op: if op.type == MaceOp.Softmax.name: # see if possible to fold # Reshape(xd->2d) + Softmax(2d) [+ Reshape(xd)] to Softmax(xd) should_fold = False if op.input[0] in self._producer \ and self._producer[op.input[0]].type \ == MaceOp.Reshape.name \ and len(op.output_shape[0].dims) == 2: producer = self._producer[op.input[0]] reshape_input_rank = len(self.get_tensor_shape( producer.input[0])) if reshape_input_rank == 4: should_fold = True if should_fold: print( "Fold reshape and softmax: %s(%s)" % (op.name, op.type)) producer = self._producer[op.input[0]] op.output_shape[0].dims[:] = self.get_tensor_shape( producer.input[0]) if op.output[0] in self._consumers: consumer = self._consumers[op.output[0]][0] # if there is a shape op, remove it too if len(consumer.input) > 1: if (consumer.input[1] in self._producer and self._producer[consumer.input[1]].type == 'Shape'): self.safe_remove_node( self._producer[consumer.input[1]], None, remove_input_tensor=True) # remove consumer reshape self.safe_remove_node(consumer, op, remove_input_tensor=True) # remove producer reshape self.safe_remove_node(producer, self._producer.get(producer.input[0], None), remove_input_tensor=True) return True return False def is_after_fc(self, op): while op.input[0] in self._producer: producer = self._producer[op.input[0]] if producer.type in [MaceOp.Activation.name, MaceOp.BiasAdd.name]: op = producer continue elif producer.type == MaceOp.FullyConnected.name: return True else: return False return False def transform_matmul_to_fc(self): net = self._model filter_format = self.filter_format() for op in net.op: # transform `input(4D) -> reshape(2D) -> matmul` to `fc(2D)` # fc output is 2D in transformer, using as 4D in op kernel # work for TensorFlow if op.type == MaceOp.Reshape.name and \ len(op.input) == 2 and \ op.input[1] in self._consts and \ len(op.output_shape[0].dims) == 2 and \ filter_format == DataFormat.HWIO and \ op.input[0] in self._producer: input_op = self._producer[op.input[0]] input_shape = input_op.output_shape[0].dims # check input op if len(input_shape) == 4 and \ np.prod(input_shape[1:]) == op.output_shape[0].dims[1]: is_fc = True consumers = self._consumers[op.output[0]] # check matmul op for matmul_op in consumers: if matmul_op.type != MaceOp.MatMul.name: is_fc = False else: weight = self._consts[matmul_op.input[1]] if len(weight.dims) != 2 or \ weight.dims[0] != op.output_shape[0].dims[1]: is_fc = False if is_fc: print('convert reshape and matmul to fc') self.safe_remove_node(op, input_op, remove_input_tensor=True) for matmul_op in consumers: weight = self._consts[matmul_op.input[1]] matmul_op.type = MaceOp.FullyConnected.name weight_data = np.array(weight.float_data).reshape( weight.dims) weight.dims[:] = input_shape[1:] + \ [weight_data.shape[1]] return True # transform `fc1(2D) -> matmul` to `fc1(2D) -> fc1(2D)` if op.type == MaceOp.MatMul.name and \ filter_format == DataFormat.HWIO and \ op.input[1] in self._consts: producer = self._producer[op.input[0]] weight = self._consts[op.input[1]] if len(weight.dims) == 2 and self.is_after_fc(op) and \ len(producer.output_shape[0].dims) == 2 and \ weight.dims[0] == producer.output_shape[0].dims[1]: six.print_('convert matmul to fc') op.type = MaceOp.FullyConnected.name weight_data = np.array(weight.float_data).reshape( weight.dims) weight.dims[:] = [1, 1] + list(weight_data.shape) return True return False def update_float_op_data_type(self): print("update op with float data type") net = self._model data_type = self._option.data_type net.data_type = data_type if self._option.quantize: return for op in net.op: data_type_arg = ConverterUtil.get_arg( op, MaceKeyword.mace_op_data_type_str) if not data_type_arg: data_type_arg = op.arg.add() data_type_arg.name = MaceKeyword.mace_op_data_type_str data_type_arg.i = data_type elif data_type_arg.i != data_type \ and data_type_arg.i == mace_pb2.DT_FLOAT: data_type_arg.i = data_type return False def sort_dfs(self, op, visited, sorted_nodes): if op.name in visited: return visited.update([op.name]) if len(op.input) > 0: for input_tensor in op.input: producer_op = self._producer.get(input_tensor, None) if producer_op is None: pass elif producer_op.name not in visited: self.sort_dfs(producer_op, visited, sorted_nodes) sorted_nodes.append(op) def sort_by_execution(self): print("Sort by execution") net = self._model visited = set() sorted_nodes = [] output_nodes = list(self._option.check_nodes.keys()) if not self._quantize_activation_info: output_nodes.extend(self._option.output_nodes) for output_node in output_nodes: mace_check(output_node in self._producer, "output_tensor %s not existed in model" % output_node) self.sort_dfs(self._producer[output_node], visited, sorted_nodes) del net.op[:] net.op.extend(sorted_nodes) print("Final ops:") index = 0 for op in net.op: if op.type not in [MaceOp.Quantize.name, MaceOp.Dequantize.name]: index_str = str(index) index += 1 else: index_str = '' print("%s (%s, index:%s): %s" % (op.name, op.type, index_str, [ out_shape.dims for out_shape in op.output_shape])) return False def is_transposable_data_format_ops(self, op): transposable = op.type in MaceTransposableDataFormatOps if op.type == MaceOp.Reshape: input_op = self._producer[op.input[0]] input_dims = input_op.output_shape[0].dims output_dims = op.output_shape[0].dims if len(input_op.output_shape) != 1 or \ len(input_dims) != 4 or len(output_dims) != 4: transposable = False else: in_b, in_h, in_w, in_c = self.sort_feature_map_shape( input_dims, ConverterUtil.data_format(input_op)) ou_b, ou_h, ou_w, ou_c = self.sort_feature_map_shape( output_dims, ConverterUtil.data_format(op)) transposable = (in_b == ou_b and in_c == ou_c) elif op.type == MaceOp.Squeeze: input_dims = self._producer[op.input[0]].output_shape[0].dims output_dims = op.output_shape[0].dims src_df = ConverterUtil.data_format(self._model) arg = ConverterUtil.get_arg(op, MaceKeyword.mace_axis_str) if len(input_dims) == 4 and len(output_dims) == 2 and \ ((src_df == DataFormat.NCHW and arg.ints == [2, 3]) or (src_df == DataFormat.NHWC and arg.ints == [1, 2])): transposable = True else: transposable = False if op.type in MaceTransposableDataFormatOps and not transposable: print("%s(%s) is not a transposable op in this model." % (op.name, op.type)) return transposable def update_data_format(self): print("update data format") net = self._model for op in net.op: df_arg = ConverterUtil.get_arg( op, MaceKeyword.mace_data_format_str) if not df_arg: df_arg = op.arg.add() df_arg.name = MaceKeyword.mace_data_format_str if op.type in MaceFixedDataFormatOps: df_arg.i = DataFormat.AUTO.value elif self.is_transposable_data_format_ops(op): input_df = DataFormat.AUTO.value for input_tensor in op.input: if input_tensor in self._consts: continue mace_check( input_tensor in self._producer, "Input tensor %s not in producer" % input_tensor) father_op = self._producer[input_tensor] temp_input_df = ConverterUtil.get_arg( father_op, MaceKeyword.mace_data_format_str) if temp_input_df.i != DataFormat.AUTO.value: input_df = temp_input_df.i if input_df == DataFormat.AUTO.value: df_arg.i = input_df # add flag to mark the ops may has data format has_data_format_arg = op.arg.add() has_data_format_arg.name = \ MaceKeyword.mace_has_data_format_str has_data_format_arg.i = 1 return False def transpose_data_format(self): print("Transpose arguments based on data format") net = self._model src_data_format = ConverterUtil.data_format(net) for op in net.op: has_data_format = ConverterUtil.data_format(op) == \ DataFormat.AUTO # transpose args if op.type == MaceOp.Pad.name: for arg in op.arg: if arg.name == MaceKeyword.mace_paddings_str: mace_check(len(arg.ints) == 8, "pad dim rank should be 8.") if src_data_format == DataFormat.NCHW and \ has_data_format: print("Transpose pad args: %s(%s)" % (op.name, op.type)) self.transpose_shape(arg.ints, [0, 1, 4, 5, 6, 7, 2, 3]) elif op.type == MaceOp.Concat.name or op.type == MaceOp.Split.name: for arg in op.arg: if arg.name == MaceKeyword.mace_axis_str: if (src_data_format == DataFormat.NCHW and has_data_format and len(op.output_shape[0].dims) == 4): print("Transpose concat/split args: %s(%s)" % (op.name, op.type)) if arg.i == 1: arg.i = 3 elif arg.i == 2: arg.i = 1 elif arg.i == 3: arg.i = 2 if op.input[0] in self._producer: producer = self._producer[op.input[0]] input_shape = producer.output_shape[0].dims if (producer.type == MaceOp.FullyConnected.name and len(input_shape) == 2): axis_arg = ConverterUtil.get_arg( op, MaceKeyword.mace_axis_str) if axis_arg.i == 1: axis_arg.i = 3 elif op.type == MaceOp.Squeeze.name: for arg in op.arg: if arg.name == MaceKeyword.mace_axis_str: if (src_data_format == DataFormat.NCHW and has_data_format and len(self._producer[op.input[0]].output_shape[0].dims) == 4 # noqa and len(op.output_shape[0].dims) == 2 and arg.ints == [2, 3]): print("Transpose squeeze args: %s(%s)" % (op.name, op.type)) arg.ints[:] = [1, 2] elif op.type == MaceOp.Reduce.name: for arg in op.arg: if arg.name == MaceKeyword.mace_axis_str: if src_data_format == DataFormat.NCHW and \ has_data_format: print("Transpose reduce args: %s(%s)" % (op.name, op.type)) reduce_axises = list(arg.ints) new_axises = [] for i in range(len(reduce_axises)): idx = reduce_axises[i] if idx == 2 or idx == 3: new_axises.append(idx - 1) elif idx == 1: new_axises.append(3) else: new_axises.append(idx) new_axises.sort() arg.ints[:] = [] arg.ints.extend(new_axises) elif op.type == MaceOp.Crop.name: offset_arg = ConverterUtil.get_arg(op, MaceKeyword.mace_offset_str) mace_check(offset_arg and src_data_format == DataFormat.NCHW and has_data_format and len(op.output_shape[0].dims) == 4, "MACE only support crop with NCHW format") print("Transpose crop args: %s(%s)" % (op.name, op.type)) self.transpose_shape(offset_arg.ints, [0, 2, 3, 1]) elif op.type == MaceOp.Reshape.name: for arg in op.arg: if arg.name == MaceKeyword.mace_dim_str and \ len(arg.ints) == 4 and \ src_data_format == DataFormat.NCHW and \ has_data_format: self.transpose_shape(arg.ints, [0, 2, 3, 1]) # transpose op output shape if src_data_format == DataFormat.NCHW and \ has_data_format: print("Transpose output shapes: %s(%s)" % (op.name, op.type)) for output_shape in op.output_shape: if len(output_shape.dims) == 4: self.transpose_shape(output_shape.dims, [0, 2, 3, 1]) return False def quantize_nodes(self): if not self._option.quantize: return False print("Add mace quantize and dequantize nodes") for op in self._model.op: for i in range(len(op.input)): if op.input[i] in self.input_name_map: op.input[i] = self.input_name_map[op.input[i]] for i in range(len(op.output)): if op.output[i] in self.output_name_map: op.name = MaceKeyword.mace_output_node_name \ + '_' + op.name new_output_name = self.output_name_map[op.output[i]] self._quantize_activation_info[new_output_name] = \ self._quantize_activation_info[op.output[i]] if op.output[i] in self._consumers: for consumer_op in self._consumers[op.output[i]]: self.replace(consumer_op.input, op.output[i], new_output_name) op.output[i] = new_output_name data_type_arg = ConverterUtil.get_arg( op, MaceKeyword.mace_op_data_type_str) mace_check(data_type_arg, "Data type does not exist for %s(%s)" % (op.name, op.type)) if data_type_arg.i == mace_pb2.DT_FLOAT: data_type_arg.i = mace_pb2.DT_UINT8 elif data_type_arg.i == mace_pb2.DT_UINT8: mace_check(op.type == MaceOp.Quantize.name or op.type == MaceOp.Dequantize.name, "Only Quantization ops support uint8, " "but got %s(%s)" % (op.name, op.type)) else: mace_check(op.type == MaceOp.Quantize.name, "Quantization only support float ops, " "but get %s(%s, %s)" % (op.name, op.type, mace_pb2.DataType.Name(data_type_arg.i))) for i, input_node in enumerate(self._option.input_nodes.values()): new_input_name = self.input_name_map[input_node.name] op_def = self._model.op.add() op_def.name = self.normalize_op_name(new_input_name) op_def.type = MaceOp.Quantize.name op_def.input.extend([input_node.name]) op_def.output.extend([new_input_name]) output_shape = op_def.output_shape.add() output_shape.dims.extend(input_node.shape) quantize_info = self._quantize_activation_info[new_input_name] self.copy_quantize_info(op_def, quantize_info) self._model.input_info[i].scale = quantize_info.scale self._model.input_info[i].zero_point = quantize_info.zero_point ConverterUtil.add_data_type_arg(op_def, mace_pb2.DT_UINT8) ConverterUtil.add_data_format_arg(op_def, input_node.data_format) # use actual ranges for model input quantize find_range_every_time_arg = op_def.arg.add() find_range_every_time_arg.name = \ MaceKeyword.mace_find_range_every_time find_range_every_time_arg.i = 1 output_nodes = self._option.check_nodes.values() for i, output_node in enumerate(output_nodes): op_def = self._model.op.add() op_def.name = self.normalize_op_name(output_node.name) op_def.type = MaceOp.Dequantize.name op_def.input.extend([self.output_name_map[output_node.name]]) op_def.output.extend([output_node.name]) output_shape = op_def.output_shape.add() producer_op = self._producer[output_node.name] output_shape.dims.extend(producer_op.output_shape[0].dims) op_def.output_type.extend([mace_pb2.DT_FLOAT]) quantize_info = producer_op.quantize_info[0] self._model.output_info[i].scale = quantize_info.scale self._model.output_info[i].zero_point = quantize_info.zero_point ConverterUtil.add_data_type_arg(op_def, mace_pb2.DT_UINT8) ConverterUtil.add_data_format_arg(op_def, output_node.data_format) quantize_flag_arg = self._model.arg.add() quantize_flag_arg.name = MaceKeyword.mace_quantize_flag_arg_str quantize_flag_arg.i = 1 return False def quantize_tensor(self, tensor): """Assume biasadd has been already folded with convolution and fc""" if tensor.data_type == mace_pb2.DT_FLOAT: ops = self._consumers.get(tensor.name, None) check_conv = False check_deconv = False if ops is not None and len(ops) == 1: if len(ops[0].input) >= 3: check_conv =\ ops[0].type in [MaceOp.Conv2D.name, MaceOp.DepthwiseConv2d.name, MaceOp.FullyConnected.name]\ and ops[0].input[2] == tensor.name # in tensorflow deconv's bias is the forth input if ops[0].type in [MaceOp.Deconv2D.name, MaceOp.DepthwiseDeconv2d]: from_caffe = ConverterUtil.get_arg( ops[0], MaceKeyword.mace_framework_type_str).i ==\ FrameworkType.CAFFE.value if from_caffe and len(ops[0].input) >= 3: check_deconv = ops[0].input[2] == tensor.name else: if len(ops[0].input) >= 4: check_deconv = ops[0].input[3] == tensor.name if check_conv or check_deconv: if self._option.device == DeviceType.CPU.value \ or self._option.device == DeviceType.APU.value: conv_op = ops[0] scale_input = self._quantize_activation_info[ conv_op.input[0]].scale if conv_op.input[1] not in self._quantized_tensor: self.quantize_tensor(self._consts[conv_op.input[1]]) scale_filter = self._consts[conv_op.input[1]].scale scale = scale_input * scale_filter quantized_tensor = \ quantize_util.quantize_with_scale_and_zero( tensor.float_data, scale, 0) elif self._option.device == DeviceType.HEXAGON.value or \ self._option.device == DeviceType.HTA.value: quantized_tensor = \ quantize_util.quantize_bias_for_hexagon( tensor.float_data) else: mace_check(False, "wrong device.") tensor.data_type = mace_pb2.DT_INT32 else: non_zero = self._option.device == DeviceType.CPU.value quantized_tensor = quantize_util.quantize(tensor.float_data, self._option.device, non_zero) tensor.data_type = mace_pb2.DT_UINT8 del tensor.float_data[:] tensor.int32_data.extend(quantized_tensor.data) tensor.scale = quantized_tensor.scale tensor.zero_point = quantized_tensor.zero tensor.minval = quantized_tensor.minval tensor.maxval = quantized_tensor.maxval tensor.quantized = True self._quantized_tensor.update([tensor.name]) return False def quantize_weights(self): print("Quantize weights") net = self._model for tensor in net.tensors: self.quantize_tensor(tensor) return False def quantize_large_tensor(self, tensor): if tensor.data_type == mace_pb2.DT_FLOAT: ops = self._consumers.get(tensor.name, None) if ops is not None and len(ops) == 1: if ops[0].type in [MaceOp.Conv2D.name, MaceOp.FullyConnected.name]: quantized_tensor = \ quantize_util.quantize(tensor.float_data, self._option.device, False) tensor.data_type = mace_pb2.DT_UINT8 del tensor.float_data[:] tensor.int32_data.extend(quantized_tensor.data) tensor.scale = quantized_tensor.scale tensor.zero_point = quantized_tensor.zero tensor.minval = quantized_tensor.minval tensor.maxval = quantized_tensor.maxval tensor.quantized = True self._quantized_tensor.update([tensor.name]) def quantize_large_weights(self): print("Quantize large weights") net = self._model for tensor in net.tensors: self.quantize_large_tensor(tensor) return False def add_quantize_info(self, op, minval, maxval): scale, zero, minval, maxval = \ quantize_util.adjust_range(minval, maxval, self._option.device, non_zero=False) quantize_info = op.quantize_info.add() quantize_info.minval = minval quantize_info.maxval = maxval quantize_info.scale = scale quantize_info.zero_point = zero return quantize_info def copy_quantize_info(self, op, info): quantize_info = op.quantize_info.add() quantize_info.minval = info.minval quantize_info.maxval = info.maxval quantize_info.scale = info.scale quantize_info.zero_point = info.zero_point def transform_fake_quantize(self): # Quantize info from fixpoint fine tune print("Transform fake quantize") net = self._model for op in net.op: if op.type == 'FakeQuantWithMinMaxVars' or \ op.type == 'FakeQuantWithMinMaxArgs': if self._option.quantize and op.input[0] not in self._consts: producer_op = self._producer[op.input[0]] minval = ConverterUtil.get_arg(op, 'min').f maxval = ConverterUtil.get_arg(op, 'max').f quantize_info = \ self.add_quantize_info(producer_op, minval, maxval) self._quantize_activation_info[op.input[0]] = quantize_info # for add -> fakequant pattern self._quantize_activation_info[op.output[0]] = \ quantize_info print(op.input[0], op.output[0]) op.type = MaceOp.Identity.name return False def rearrange_batch_to_space(self): if not self._option.quantize: return False # Put b2s after biasadd and relu for conv_op in self._model.op: if conv_op.type in [MaceOp.Conv2D.name, MaceOp.DepthwiseConv2d.name] \ and self.consumer_count(conv_op.output[0]) == 1: b2s_op = self._consumers[conv_op.output[0]][0] if b2s_op.type == MaceOp.BatchToSpaceND.name \ and self.consumer_count(b2s_op.output[0]) == 1: biasadd_or_act_op = self._consumers[b2s_op.output[0]][0] if biasadd_or_act_op.type == MaceOp.BiasAdd.name: biasadd_op = biasadd_or_act_op if self.consumer_count(biasadd_op.output[0]) == 1 \ and self._consumers[biasadd_op.output[0]][0].type == MaceOp.Activation.name: # noqa act_op = self._consumers[biasadd_op.output[0]][0] biasadd_op.input[0] = conv_op.output[0] b2s_op.input[0] = act_op.output[0] for op in self._consumers[act_op.output[0]]: self.replace(op.input, act_op.output[0], b2s_op.output[0]) else: biasadd_op.input[0] = conv_op.output[0] b2s_op.input[0] = biasadd_op.output[0] for op in self._consumers[biasadd_op.output[0]]: self.replace(op.input, biasadd_op.output[0], b2s_op.output[0]) print("Rearrange batch to space: %s(%s)" % (b2s_op.name, b2s_op.type)) return True elif biasadd_or_act_op.type == MaceOp.Activation.name: act_op = biasadd_or_act_op act_op.input[0] = conv_op.output[0] b2s_op.input[0] = act_op.output[0] for op in self._consumers[act_op.output[0]]: self.replace(op.input, act_op.output[0], b2s_op.output[0]) print("Rearrange batch to space: %s(%s)" % (b2s_op.name, b2s_op.type)) return True return False def add_quantize_tensor_range(self): # Quantize info from range statistics range_file = self._option.quantize_range_file if range_file: print("Add quantize tensor range") post_quantize_info = {} with open(range_file) as f: for line in f: tensor_name, minmax = line.split("@@")[:2] min_val, max_val = [float(i) for i in minmax.strip().split(",")] scale, zero, min_val, max_val = \ quantize_util.adjust_range(min_val, max_val, self._option.device, non_zero=False) activation_info = mace_pb2.QuantizeActivationInfo() activation_info.minval = min_val activation_info.maxval = max_val activation_info.scale = scale activation_info.zero_point = zero if tensor_name not in self._quantize_activation_info: post_quantize_info[tensor_name] = activation_info for op in self._model.op: if op.name.find(MaceKeyword.mace_output_node_name) >= 0: continue for output in op.output: # Prefer quantize info from quantization-aware training if output not in self._quantize_activation_info: mace_check(output in post_quantize_info, "%s does not have quantize activation info" % op) op.quantize_info.extend([post_quantize_info[output]]) self._quantize_activation_info[output] = \ post_quantize_info[output] if not self._option.quantize: return False print("Add default quantize info for input") for i, input_node in enumerate(self._option.input_nodes.values()): if input_node.name not in self._quantize_activation_info: print("Input range %s: %s" % (input_node.name, str(input_node.range))) new_input_name = self.input_name_map[input_node.name] scale, zero, minval, maxval = \ quantize_util.adjust_range(input_node.range[0], input_node.range[1], self._option.device, non_zero=False) quantize_info = \ mace_pb2.QuantizeActivationInfo() quantize_info.minval = minval quantize_info.maxval = maxval quantize_info.scale = scale quantize_info.zero_point = zero self._quantize_activation_info[new_input_name] = quantize_info input_op = self._producer[input_node.name] input_op.quantize_info.extend([quantize_info]) print("Add default quantize info for ops like Pooling, Softmax") for op in self._model.op: if op.type in [MaceOp.ExpandDims.name, MaceOp.Pad.name, MaceOp.Pooling.name, MaceOp.Reduce.name, MaceOp.Reshape.name, MaceOp.ResizeBilinear.name, MaceOp.Squeeze.name, MaceOp.StridedSlice.name, MaceOp.BatchToSpaceND.name, MaceOp.SpaceToBatchND.name, MaceOp.SpaceToDepth.name, MaceOp.DepthToSpace.name]: del op.quantize_info[:] producer_op = self._producer[op.input[0]] if producer_op.output[0] in self._option.input_nodes: new_input_name = self.input_name_map[producer_op.output[0]] self.copy_quantize_info( op, self._quantize_activation_info[new_input_name]) else: self.copy_quantize_info(op, producer_op.quantize_info[0]) self._quantize_activation_info[op.output[0]] = \ op.quantize_info[0] elif (op.type == MaceOp.Concat.name and (not op.quantize_info or self._option.change_concat_ranges)): if op.quantize_info: maxval = op.quantize_info[0].maxval minval = op.quantize_info[0].minval del op.quantize_info[:] else: maxval = float("-inf") minval = float("inf") for i in range(len(op.input)): minval = min(minval, self._producer[op.input[i]].quantize_info[0].minval) # noqa maxval = max(maxval, self._producer[op.input[i]].quantize_info[0].maxval) # noqa quantize_info = \ self.add_quantize_info(op, minval, maxval) self._quantize_activation_info[op.output[0]] = quantize_info if self._option.change_concat_ranges: for i in range(len(op.input)): producer_op = self._producer[op.input[i]] del producer_op.quantize_info[:] self.copy_quantize_info(producer_op, quantize_info) self._quantize_activation_info[producer_op.output[0]] \ = producer_op.quantize_info[0] elif op.type == MaceOp.Activation.name: act_type = ConverterUtil.get_arg( op, MaceKeyword.mace_activation_type_str).s.decode() if act_type not in [ActivationType.TANH.name, ActivationType.SIGMOID.name]: continue del op.quantize_info[:] if act_type == ActivationType.TANH.name: quantize_info = self.add_quantize_info(op, -1.0, 1.0) else: quantize_info = self.add_quantize_info(op, 0.0, 1.0) self._quantize_activation_info[op.output[0]] = quantize_info elif op.type == MaceOp.Softmax.name: del op.quantize_info[:] quantize_info = \ self.add_quantize_info(op, 0.0, 1.0) self._quantize_activation_info[op.output[0]] = quantize_info elif (op.type == MaceOp.Eltwise.name and not op.quantize_info and len(op.input) == 2 and op.input[0] not in self._consts and op.input[1] not in self._consts): producer_op0 = self._producer[op.input[0]] producer_op1 = self._producer[op.input[1]] if ConverterUtil.get_arg( op, MaceKeyword.mace_element_type_str).i \ == EltwiseType.SUM.value: minval = producer_op0.quantize_info[0].minval \ + producer_op1.quantize_info[0].minval maxval = producer_op0.quantize_info[0].maxval \ + producer_op1.quantize_info[0].maxval elif ConverterUtil.get_arg( op, MaceKeyword.mace_element_type_str).i \ == EltwiseType.SUB.value: minval = producer_op0.quantize_info[0].minval \ - producer_op1.quantize_info[0].maxval maxval = producer_op0.quantize_info[0].maxval \ - producer_op1.quantize_info[0].minval else: print(op) mace_check(False, "Quantized Elementwise only support:" " SUM and SUB without ranges now.") quantize_info = \ self.add_quantize_info(op, minval, maxval) self._quantize_activation_info[op.output[0]] = quantize_info return False def check_quantize_info(self): if not self._option.quantize: return False print("Check quantize info") for op in self._model.op: if (op.name.find(MaceKeyword.mace_input_node_name) == -1 and op.name.find(MaceKeyword.mace_output_node_name) == -1 and op.type != MaceOp.Quantize.name and op.type != MaceOp.Dequantize.name): # noqa mace_check(len(op.output) == len(op.quantize_info), "missing quantize info: %s" % op) for i in six.moves.range(len(op.quantize_info)): print("Op output %s range: [%f, %f]" % ( op.output[i], op.quantize_info[i].minval, op.quantize_info[i].maxval)) def fp16_gather_weight(self): for op in self._model.op: if op.type != MaceOp.Gather.name: continue if op.input[0] not in self._consts: raise KeyError("Not in const tensor: " + str(op.input[0])) const_tensor = self._consts[op.input[0]] if const_tensor.data_type == mace_pb2.DT_FLOAT16: print(str(const_tensor.name) + " is alreay float16") continue print("FP16 Embedding Lookup Weights: %s" % const_tensor.name) op_outputs = [x for x in op.output] new_gather_name = op.name + '_fp16' new_gather_output_name = new_gather_name + ":0" dehalve_name = op.name # fp16 weights const_tensor.data_type = mace_pb2.DT_FLOAT16 # change gather op.name = new_gather_name op.output[:] = [new_gather_output_name] # op.output.extend([new_gather_output_name]) data_type_arg = ConverterUtil.get_arg(op, MaceKeyword.mace_op_data_type_str) # noqa if data_type_arg is None: data_type_arg = op.arg.add() data_type_arg.name = MaceKeyword.mace_op_data_type_str data_type_arg.i = mace_pb2.DT_FLOAT16 # add dehalve dehalve_op = self._model.op.add() dehalve_op.name = dehalve_name dehalve_op.type = MaceOp.Cast.name dehalve_op.input.extend([new_gather_output_name]) dehalve_op.output.extend(op_outputs) dehalve_op.output_shape.extend(op.output_shape) dehalve_op.output_type.extend([mace_pb2.DT_FLOAT]) data_type_arg = dehalve_op.arg.add() data_type_arg.name = MaceKeyword.mace_op_data_type_str data_type_arg.i = mace_pb2.DT_FLOAT16 def fp16_matmul_weight(self): if self._option.device != DeviceType.CPU.value: return print('Convert matmul weights to fp16 for specific matmul: activation + weights') # noqa for op in self._model.op: if op.type != MaceOp.MatMul.name: continue if op.input[0] not in self._consts and op.input[1] not in self._consts: # noqa continue if op.input[0] in self._consts and op.input[1] in self._consts: continue # Matmul fp16 Op only support fp32[1,k] x fp16[w,k]T or fp16[w,k] x fp32[k,1] now! # noqa transpose_a_arg = ConverterUtil.get_arg(op, MaceKeyword.mace_transpose_a_str) # noqa transpose_b_arg = ConverterUtil.get_arg(op, MaceKeyword.mace_transpose_b_str) # noqa transpose_a = transpose_a_arg is not None and transpose_a_arg.i == 1 # noqa transpose_b = transpose_b_arg is not None and transpose_b_arg.i == 1 # noqa left_tensor = op.input[0] right_tensor = op.input[1] left_shape = self.get_tensor_shape(left_tensor) right_shape = self.get_tensor_shape(right_tensor) height = left_shape[-1] if transpose_a else left_shape[-2] width = right_shape[-2] if transpose_b else right_shape[-1] batch = reduce(lambda x, y: x * y, left_shape[: -2], 1) if batch != 1: continue if left_tensor in self._consts: if width != 1 or transpose_a: continue const_tensor = self._consts[left_tensor] else: if height != 1 or not transpose_b: continue const_tensor = self._consts[right_tensor] print('Convert Matmul Weights to fp16: %s' % op.name) const_tensor.data_type = mace_pb2.DT_FLOAT16 data_type_arg = ConverterUtil.get_arg(op, MaceKeyword.mace_op_data_type_str) # noqa if data_type_arg is None: data_type_arg = op.arg.add() data_type_arg.name = MaceKeyword.mace_op_data_type_str data_type_arg.i = mace_pb2.DT_FLOAT16 op.output_type.extend([mace_pb2.DT_FLOAT]) def add_opencl_informations(self): print("Add OpenCL informations") net = self._model arg = net.arg.add() arg.name = MaceKeyword.mace_opencl_mem_type arg.i = mace_pb2.GPU_IMAGE if self._option.cl_mem_type == "image"\ else mace_pb2.GPU_BUFFER def transform_reshape_and_flatten(self): net = self._model for op in net.op: if op.type != MaceOp.Reshape.name: continue dim_arg = ConverterUtil.get_arg(op, MaceKeyword.mace_dim_str) shape_tensor = None if len(op.input) == 1: print("Transform Caffe Reshape") dims = [] axis_arg = ConverterUtil.get_arg(op, MaceKeyword.mace_axis_str) # transform caffe reshape op if dim_arg: dims = dim_arg.ints shape_tensor = net.tensors.add() shape_tensor.name = op.name + '_shape' shape_tensor.dims.append(len(op.output_shape[0].dims)) shape_tensor.data_type = mace_pb2.DT_INT32 # transform caffe flatten op elif axis_arg is not None: axis = axis_arg.i for i in range(0, axis): dims.append(0) dims.append(-1) for i in range(axis + 1, len(op.output_shape[0].dims)): dims.append(0) shape_tensor = net.tensors.add() shape_tensor.name = op.name + '_shape' shape_tensor.dims.append(len(dims)) shape_tensor.data_type = mace_pb2.DT_INT32 else: mace_check(False, "Only support reshape and flatten") shape_tensor.int32_data.extend(dims) op.input.append(shape_tensor.name) def transform_shape_tensor_to_param(self): kOpTypeInputIdxMap = { MaceOp.ResizeNearestNeighbor.name: 1, MaceOp.Deconv2D.name: 2, MaceOp.Reshape.name: 1, } net = self._model for op in net.op: if op.type not in kOpTypeInputIdxMap: continue shape_idx = kOpTypeInputIdxMap[op.type] dim_arg = ConverterUtil.get_arg(op, MaceKeyword.mace_dim_str) if len(op.input) > shape_idx and dim_arg is None and \ op.input[shape_idx] in self._consts: shape_tensor = self._consts[op.input[shape_idx]] dim_arg = op.arg.add() dim_arg.name = MaceKeyword.mace_dim_str dim_arg.ints.extend(shape_tensor.int32_data) def fold_fc_reshape(self): net = self._model for op in net.op: # whether to reshape fc output(default 4D) if op.type == MaceOp.FullyConnected.name and\ op.output[0] in self._consumers: consumers = self._consumers[op.output[0]] op_output_shape = op.output_shape[0].dims[:] for consumer in consumers: if consumer.type == MaceOp.Reshape.name and \ consumer.input[1] in self._consts and \ self._consts[consumer.input[1]].int32_data[:] == \ [op_output_shape[0], 1, 1, op_output_shape[1]]: # work for tensorflow net.tensors.remove(self._consts[consumer.input[1]]) del consumer.input[1] self.safe_remove_node(consumer, None) return True return False def transform_channel_shuffle(self): net = self._model for op in net.op: if op.type == MaceOp.Transpose.name and \ len(op.output_shape[0].dims) == 5: perm = ConverterUtil.get_arg(op, MaceKeyword.mace_dims_str).ints if [0, 1, 2, 4, 3] == list(perm): # Remove the following Reshape op reshape_op = self._consumers.get(op.output[0], None) if (reshape_op and len(reshape_op) == 1 and reshape_op[0].type == MaceOp.Reshape.name and len(reshape_op[0].output_shape[0].dims) == 4): print("Transform channel shuffle") output_shape = reshape_op[0].output_shape[0].dims self.safe_remove_node(reshape_op[0], op, remove_input_tensor=True) else: return False # Change Transpose op to ChannelShuffle op.type = MaceOp.ChannelShuffle.name del op.arg[:] group_arg = op.arg.add() group_arg.name = MaceKeyword.mace_group_str group_arg.i = op.output_shape[0].dims[4] op.output_shape[0].dims[:] = output_shape # Remove previous Reshape op producer_op = self._producer.get(op.input[0], None) if producer_op: if producer_op.type == MaceOp.Reshape.name: self.safe_remove_node(producer_op, None) elif producer_op.type == MaceOp.Stack.name: print("Change channel shuffle stack to concat") # Change previous Stack op to Concat if any producer_op.type = MaceOp.Concat.name producer_op.output_shape[0].dims[:] = output_shape return True def quantize_specific_ops_only(self): """ This transform rule is only used internally, we are not gonna make things too complex for users """ to_quantize_ops_output_type = { MaceOp.MatMul.name: mace_pb2.DT_INT32, MaceOp.Gather.name: mace_pb2.DT_UINT8, } for op in self._model.op: if (op.type not in to_quantize_ops_output_type or len(op.output) > 1 or ConverterUtil.get_arg(op, MaceKeyword.mace_op_data_type_str).i != mace_pb2.DT_FLOAT): # noqa # only support single output continue quantized_inputs_names = [] should_quantize = False has_const = False for idx, input_tensor in enumerate(op.input): if input_tensor in self._consts: has_const = True break if not has_const: continue for idx, input_tensor in enumerate(op.input): if self.get_tensor_data_type(input_tensor) \ == mace_pb2.DT_FLOAT: should_quantize = True break if not should_quantize: continue else: print("Quantize op %s (%s)" % (op.name, op.type)) non_zero = self._option.device == DeviceType.CPU.value \ and op.type == MaceOp.MatMul.name for idx, input_tensor in enumerate(op.input): quantized_inputs_names.append(input_tensor) if self.get_tensor_data_type(input_tensor) \ != mace_pb2.DT_FLOAT: continue if input_tensor in self._consts: const_tensor = self._consts[input_tensor] quantized_tensor = quantize_util.quantize( const_tensor.float_data, self._option.device, non_zero) del const_tensor.float_data[:] const_tensor.int32_data.extend(quantized_tensor.data) const_tensor.data_type = mace_pb2.DT_UINT8 const_tensor.scale = quantized_tensor.scale const_tensor.zero_point = quantized_tensor.zero const_tensor.minval = quantized_tensor.minval const_tensor.maxval = quantized_tensor.maxval const_tensor.quantized = True else: input_shape = self.get_tensor_shape(input_tensor) quantize_op = self._model.op.add() quantize_op.name = self.normalize_op_name( input_tensor) + "_quant" quantize_op.type = MaceOp.Quantize.name quantize_op.input.extend([input_tensor]) quantize_output_name = quantize_op.name + '_0' quantize_op.output.extend([quantize_output_name]) output_shape = quantize_op.output_shape.add() output_shape.dims.extend(input_shape) quantize_op.output_type.extend([mace_pb2.DT_UINT8]) data_type_arg = quantize_op.arg.add() data_type_arg.name = MaceKeyword.mace_op_data_type_str data_type_arg.i = mace_pb2.DT_UINT8 ConverterUtil.add_data_format_arg( quantize_op, self.get_tensor_data_format(input_tensor)) data_type_arg = quantize_op.arg.add() data_type_arg.name = MaceKeyword.mace_non_zero data_type_arg.i = 0 find_range_arg = quantize_op.arg.add() find_range_arg.name = \ MaceKeyword.mace_find_range_every_time find_range_arg.i = 1 quantized_inputs_names[-1] = quantize_output_name del op.input[:] op.input.extend(quantized_inputs_names) original_output_name = op.output[0] op.output[0] = original_output_name + "_quant" op.output_type.extend([to_quantize_ops_output_type[op.type]]) data_type_arg = ConverterUtil.get_arg(op, MaceKeyword.mace_op_data_type_str) # noqa if data_type_arg is None: data_type_arg = op.arg.add() data_type_arg.name = MaceKeyword.mace_op_data_type_str data_type_arg.i = mace_pb2.DT_UINT8 dequantize_op = self._model.op.add() dequantize_op.name = op.name + "_dequant" dequantize_op.type = MaceOp.Dequantize.name dequantize_op.input.extend([op.output[0]]) dequantize_op.output.extend([original_output_name]) dequantize_op.output_shape.extend(op.output_shape) dequantize_op.output_type.extend([mace_pb2.DT_FLOAT]) data_type_arg = dequantize_op.arg.add() data_type_arg.name = MaceKeyword.mace_op_data_type_str data_type_arg.i = to_quantize_ops_output_type[op.type] ConverterUtil.add_data_format_arg( dequantize_op, self.get_tensor_data_format(original_output_name)) quantize_flag_arg = ConverterUtil.get_arg(self._model, MaceKeyword.mace_quantize_flag_arg_str) # noqa if quantize_flag_arg is None: quantize_flag_arg = self._model.arg.add() quantize_flag_arg.name = MaceKeyword.mace_quantize_flag_arg_str quantize_flag_arg.i = 1 return True return False
47.806438
128
0.51383
4a27466f957a497b4fccef8e529356b4647eeb1e
14,638
py
Python
eaitest.py
jrlevine/eaitesttools
b51d23db0f37235f32a1f88f7a5ff5b5e2c8cdf1
[ "BSD-2-Clause" ]
1
2020-12-13T20:25:15.000Z
2020-12-13T20:25:15.000Z
eaitest.py
jrlevine/eaitesttools
b51d23db0f37235f32a1f88f7a5ff5b5e2c8cdf1
[ "BSD-2-Clause" ]
null
null
null
eaitest.py
jrlevine/eaitesttools
b51d23db0f37235f32a1f88f7a5ff5b5e2c8cdf1
[ "BSD-2-Clause" ]
null
null
null
#!/usr/local/bin/python3 # # EAI feature tests from bottle import request, route, get, post, run, hook, app, template, view, \ static_file, redirect, HTTPResponse, BaseRequest from beaker.middleware import SessionMiddleware from eaidb import EAIdb import re, sys import base64 debug = False # allow large zones BaseRequest.MEMFILE_MAX = 1024*1024 # to keep out random snoopers apikeys = { "xxxxx": 'bob', "yyyyyyy": 'mary', } session_opts = { 'session.key': 'eaitest', 'session.type': 'file', 'session.data_dir': '/tmp/session', 'session.lock_dir': '/tmp/sessionlock', 'session.cookie_expires' : 86400, 'session.secret': "swordfish", 'session.auto': True } # my cookie directory, for debugging if __name__=="__main__": if len(sys.argv) >= 2 and sys.argv[1].startswith("debug"): session_opts['session.data_dir'] ='/tmp/mysession' session_opts['session.lock_dir'] ='/tmp/mysessionlock' debug = True print("Debugging on") myapp = SessionMiddleware(app(), session_opts) # print something in red def inred(msg): if msg: return '<font color="red">{0}</font>'.format(msg) return msg @hook('before_request') def setup_request(): request.session = request.environ['beaker.session'] if 'user' not in request.session and request.path not in ('/api', '/login') and not request.path.startswith('/static'): return redirect("/login") # print "path is",request.path def boilerplate(): """ boilerplate toolbar at the top of each page """ here = request.path def bp(page, desc): if here == page: return "<li><a href=\"{}\" class=active>{}</a></li>\n".format(page,desc) else: return "<li><a href=\"{}\">{}</a></li>\n".format(page,desc) bo = "<ul id=tabnav>\n" bo += bp("/packages","Packages") bo += bp("/tasks","Tasks") bo += bp("/tests","Tests") bo += bp("/summary","Summary") bo += bp("/help","Help") bo += bp("/logout", "Logout") bo += "</ul>\n<p align=right>Logged in as " + request.session['user'] bo += "</p>" return bo @view('failpage') def failpage(why): """ return a failure page """ return dict(boilerplate=boilerplate(), kvetch=why) @view('statuspage') def statuspage(why): """ return a status page """ return dict(boilerplate=boilerplate(), kvetch=why) #################### Session management ########################### @get('/') @get('/login') @view('login') def login(): return dict(name="EAI Tests") @post('/login') @view('login') def loginp(): db = EAIdb(request.forms.user,debug=debug) cqr = db.userlogin(pw=request.forms.pw) if cqr: request.session['user'] = cqr['user'] request.session['ttid'] = cqr['ttid'] return redirect('/packages') if 'user' in request.session: del request.session['user'] return dict(name="EAI tests", kvetch='User or password not recognized') @get('/logout') def logout(): """ log out and return to login page """ del request.session['user'] return redirect('/login') @get('/packages') @view('packages') def packages(): db = EAIdb(request.session['user'],debug=debug) prods = db.getproducts() if not prods: return failpage("No packages") return dict(name="Packages to be tested", boilerplate=boilerplate(), prods=prods) @get('/package/<pid:int>') @view('package') def package(pid): db = EAIdb(request.session['user'],debug=debug) prod = db.getproduct(pid=pid) return dict(name=f"Package info for {prod['name']}", prod=prod, boilerplate=boilerplate()) ############################## Tests ############################# testtype = ('MUA','MSA','MTA','MDA','MSP','Web') def typeselect(name="ttype"): sel = f'<select name="{name}">\n' + \ "".join((f"<option>{t}</option>\n" for t in testtype)) + \ "</select>\n" return sel taskstate = ('assigned','working','done') def stateselect(name="tstate", defstate=None): sel = f'<select name="{name}">\n' + \ "".join(("<option {1}>{0}</option>\n".format(t, "selected" if t==defstate else "") for t in taskstate)) + \ "</select>\n" return sel @get('/tests') @view('tests') def tests0(): return(tests(testtype[0])) # default @get('/tests/<ttype>') @view('tests') def tests(ttype): db = EAIdb(request.session['user'],debug=debug) tests = db.gettests(ttype) return dict(name="Tests for "+ttype, ttype=ttype, tests=tests, testtype=testtype, boilerplate=boilerplate()) @get('/test/<tid:int>') @view('test') def test(tid): """ show one test """ db = EAIdb(request.session['user'],debug=debug) test = db.gettest(tid=tid) if not test: return failpage("No such test") return dict(name="Test description for "+test['testid'], test=test, tid=tid, boilerplate=boilerplate()) ################ Tasks ################ @get('/tasks/<sortkey>') @view('tasks') def taskssort(kvetch=None , sortkey=None): if sortkey in ('user', 'product','testtype','state'): return tasks(sortkey=sortkey) return tasks(kvetch=f"Mystery sortkey {sortkey}") @get('/tasks') @view('tasks') def tasks(kvetch=None , sortkey=None): db = EAIdb(request.session['user'],debug=debug) tasks = db.gettasks(stats=True) if sortkey: tasks.sort(key=lambda x: x[sortkey]) return dict(name="Assigned Tasks", boilerplate=boilerplate(), tasks=tasks, kvetch=kvetch) @get('/finish/<ttid:int>/<pid:int>/<ttype>/<state>') def chgtask(ttid, pid, ttype, state): """ mark task as done or something """ db = EAIdb(request.session['user'],debug=debug) product = db.getproduct(pid=pid) ldone = db.getresults(ttid, pid, ttype, done=True) ndone = db.getresults(ttid, pid, ttype, done=False) args = {'ttid': ttid, 'pid': pid, 'testtype': ttype, 'state': state } r = db.addtask(args, update=True) if not r[0]: if debug: print("failed",r) return tasks(kvetch=r[1]) # error message return tasks() @get('/newtask') @view('newtask') def newtask(): db = EAIdb(request.session['user'],debug=debug) return dict(name="Add a new task", typeselect=typeselect(), testerselect=db.testerselect(), productselect=db.productselect(), stateselect=stateselect(), boilerplate=boilerplate()) @post('/newtask') def pnewtask(): db = EAIdb(request.session['user'],debug=debug) args = {'ttid': request.forms.tester, 'pid': request.forms.product, 'testtype': request.forms.ttype, 'state': request.forms.tstate } r = db.addtask(args) if not r[0]: if debug: print("failed",r) return tasks(kvetch=r[1]) # error message return tasks() @get('/task/<ttid:int>/<pid:int>/<ttype>') @view('task') def task(ttid, pid, ttype): """ show pending and completed tests in a task """ db = EAIdb(request.session['user'],debug=debug) product = db.getproduct(pid=pid) ldone = db.getresults(ttid, pid, ttype, done=True) ndone = db.getresults(ttid, pid, ttype, done=False) return dict(boilerplate=boilerplate(), name="Tests in this Task", ttid=ttid, pid=pid, ttype=ttype, ldone=ldone, ndone=ndone, product=product) @get('/result/<ttid:int>/<pid:int>/<tid:int>') @view('result') def result(ttid, pid, tid, kvetch=None, comments=None): """ show or update a result for a specific test """ db = EAIdb(request.session['user'],debug=debug) res = db.getoneresult(tid, pid, ttid) hashval = db.dhash(res) test = db.gettest(tid=tid) product = db.getproduct(pid=pid) if res and res['picture']: picurl = pictourl(res['picture']) else: picurl = None if comments: res['comments'] = comments # keep value from failed update return dict(boilerplate=boilerplate(), name="Test Result", ttid=ttid, pid=pid, tid=tid, res=res, test=test, product=product, picurl=picurl, kvetch=kvetch, hashval=hashval) def pictourl(pic): """ turn bytes into data URL """ if pic.startswith(b'\x89\x50\x4e\x47\r\n\x1a\n'): # PNG signature return b"data:image/png;base64," + base64.b64encode(pic) if pic.startswith(b'\xff\xd8'): return b"data:image/jpeg;base64," + base64.b64encode(pic) return b"data:,Unknown%20file%20format" @post('/result/<ttid:int>/<pid:int>/<tid:int>') @view('result') def postresult(ttid, pid, tid): """ add or update a test result """ db = EAIdb(request.session['user'],debug=debug) status = request.forms.s comments = request.forms.c picture = request.files.get('pic') oldhv = request.forms.hv if not status: return result(ttid, pid, tid, kvetch="Status not set") test = db.gettest(tid=tid) if request.forms.rr: return task(ttid, pid, test['testtype']) if request.forms.nn: return result(ttid, pid, tid+1) if not status: return result(ttid, pid, tid, kvetch="Status not set", comments=comments) res = db.getoneresult(tid, pid, ttid) hashval = db.dhash(res) if hashval != oldhv: return result(ttid, pid, tid, kvetch="Database changed", comments=comments) if picture: l = picture.content_length pictext = picture.file.read(l) else: pictext = None r, m = db.addresult(tid, ttid, pid, status, comments, pictext) if debug: print("did addresult",request.forms.u, request.forms.ur, request.forms.un) # return to this page if (not r) or request.forms.u: return result(ttid, pid, tid, kvetch=m) if request.forms.un: # next test if debug: print("result",ttid,pid,tid+1) return result(ttid, pid, tid+1) # return to test page return task(ttid, pid, test['testtype']) @get('/summary/<ttype>') @view('summary') def tsummary(ttype): return summary(ttype=ttype) @get('/summary') @view('summary') def summary(ttype='MUA', ttid=None): """ summary table of tests and products """ db = EAIdb(request.session['user'],debug=debug) if not ttid: ttid=request.session['ttid'] s = db.getsummary(ttid, testtype=ttype) if not s: return template('nosummary', boilerplate=boilerplate(), name="Test Summary", ttype=ttype, ttid=ttid, testtype=testtype, testerselect=db.testerselect(addall=True)) return dict(boilerplate=boilerplate(), name="Test Summary", products=s[0], tests=s[1], results=s[2], ttype=ttype, ttid=ttid, testtype=testtype, testerselect=db.testerselect(addall=True)) @post('/summary') @view('summary') def postsummary(): """ change who or what on summary page """ ttid = request.forms.tester ttype = request.forms.ttype return summary(ttype=ttype, ttid=ttid) ################################################################ # programmatic API @post('/api') def api(): """ API for json blob of apikey: secret key request: getresult, setresult, getresults, gettasks getresults; product, testtype, optional Done. optional tester getresult: product, testid or tid setresult: product, testid or tid, status, optional comments tasks: product, testtype response blob of request: whatever answer: yes """ j = request.json # print("request", j) k = j.get('apikey','x') if k not in apikeys or 'request' not in j: raise HTTPResponse(status=403) db = EAIdb(apikeys[k],debug=debug) # fake login as user for api key req = j['request'] r = { 'request': req, "answer": "yes" } # get tester ID if 'ttid' in j: ttid = j['ttid'] else: user = db.getuser() ttid = user['ttid'] # get product if req == 'products': res = db.getproducts() r['result'] = res return r if 'product' not in j: raise HTTPResponse(status=403) product = db.getproduct(name=j['product']) if not product: raise HTTPResponse(status=403) pid = product['pid'] if req == 'getresults': if 'testtype' not in j: raise HTTPResponse(status=403) if debug: print("getresults", ttid, pid, j['testtype'], j.get('done', False)) # check for arguments res = db.getresults(ttid, pid, j['testtype'], j.get('done', False)) # check for arguments r['result'] = res return r elif req in ('getresult', 'setresult'): if 'tid' in j: tid = j['tid'] elif 'testid' in j: tt = db.gettest(testid=j['testid']) if tt: tid = tt['tid'] else: raise HTTPResponse(status=403) # unknown test else: raise HTTPResponse(status=403) # need tid or testid if req == 'getresult': res = db.getoneresult(tid, pid) r['result'] = res else: # setresult if 'status' not in j: raise HTTPResponse(status=403) # need status res = db.addresult(tid, ttid, pid, j['status'], comments=j.get('comments', None)) r['result'] = res return r elif req == 'tasks': testtype = j.get('testtype') # default OK res = db.gettasks(testtype=testtype, pid=pid, stats=True) r['result'] = res return r else: raise HTTPResponse(status=403) # unknown request ############################################################ # try to be helpful @get('/help') @view('help') def help(): """ be helpful """ return dict(boilerplate=boilerplate(), name="Help") ################################################################ # for CSS and images @route('/static/<filename:path>') def send_static(filename): return static_file(filename, root='./static') @route('/favicon.ico') def favicon(): return static_file('favicon.ico', root='./static') @route('/robots.txt') def robots(): return static_file('robots.txt', root='./static') ################# main stub for debugging if __name__=="__main__": import sys if len(sys.argv) >= 2 and sys.argv[1] == "debug": run(app=myapp, host='localhost', port=8802, debug=True, reloader=True) else: run(app=myapp, server="cgi", debug=True)
27.776091
123
0.587785
4a27475926312ccb7a625df32634d6512bd2e976
436
py
Python
src/gpt_utils/location.py
nelsonlove/gpt-utils
1ce52a160c26b647f7674bf518a322b54b6080da
[ "MIT" ]
null
null
null
src/gpt_utils/location.py
nelsonlove/gpt-utils
1ce52a160c26b647f7674bf518a322b54b6080da
[ "MIT" ]
null
null
null
src/gpt_utils/location.py
nelsonlove/gpt-utils
1ce52a160c26b647f7674bf518a322b54b6080da
[ "MIT" ]
null
null
null
from . import GPT from .prompt import ConversionPrompt @GPT.requires_key def fix_location(in_text): """Accepts a string containing a location and formats it properly.""" prompt = ConversionPrompt( 'I', 'O', ("lenox ma", "Lenox, MA"), ("london", "London, U.K."), ("chicago", "Chicago, IL"), ("dallas, tx", "Dallas, TX"), engine='babbage' ) return prompt.convert(in_text)
25.647059
73
0.591743
4a2748593c7ffd2811b7e0a1c9adcc5fcf3ca492
3,100
py
Python
doc/source/examples/usage_helper.py
mail2nsrajesh/oslo.log
33d76a5d296bc0685844a896970fb4f59cce5143
[ "Apache-2.0" ]
null
null
null
doc/source/examples/usage_helper.py
mail2nsrajesh/oslo.log
33d76a5d296bc0685844a896970fb4f59cce5143
[ "Apache-2.0" ]
null
null
null
doc/source/examples/usage_helper.py
mail2nsrajesh/oslo.log
33d76a5d296bc0685844a896970fb4f59cce5143
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2016 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """A usage example with helper debugging of minimum Oslo Logging This example requires the following package to be installed. $ pip install oslo.log Additional Oslo packages installed include oslo.config, oslo.context, oslo.i18n, oslo.serialization and oslo.utils. More information about Oslo Logging can be found at: http://docs.openstack.org/developer/oslo.log/usage.html """ # Use default Python logging to display running output import logging as py_logging from oslo_config import cfg from oslo_log import log as logging LOG = py_logging.getLogger(__name__) CONF = cfg.CONF DOMAIN = "demo" def prepare(): """Prepare Oslo Logging (2 or 3 steps) Use of Oslo Logging involves the following: * logging.register_options * logging.set_defaults (optional) * logging.setup """ LOG.debug("Prepare Oslo Logging") LOG.info("Size of configuration options before %d", len(CONF)) # Required step to register common, logging and generic configuration # variables logging.register_options(CONF) LOG.info("Size of configuration options after %d", len(CONF)) # Optional step to set new defaults if necessary for # * logging_context_format_string # * default_log_levels # # These variables default to respectively: # # import oslo_log # oslo_log._options.DEFAULT_LOG_LEVELS # oslo_log._options.log_opts[0].default # custom_log_level_defaults = logging.get_default_log_levels() + [ 'dogpile=INFO', 'routes=INFO' ] logging.set_defaults(default_log_levels=custom_log_level_defaults) # NOTE: We cannot show the contents of the CONF object # after register_options() because accessing this caches # the default_log_levels subsequently modified with set_defaults() LOG.info("List of Oslo Logging configuration options and current values") LOG.info("=" * 80) for c in CONF: LOG.info("%s = %s" % (c, CONF[c])) LOG.info("=" * 80) # Required setup based on configuration and domain logging.setup(CONF, DOMAIN) if __name__ == '__main__': py_logging.basicConfig(level=py_logging.DEBUG) prepare() # NOTE: These examples do not demonstration Oslo i18n messages LOG.info("Welcome to Oslo Logging") LOG.debug("A debugging message") LOG.warning("A warning occurred") LOG.error("An error occurred") try: raise Exception("This is exceptional") except Exception: LOG.exception("An Exception occurred")
29.807692
77
0.71871
4a2749b71895f0ebbc35caf4072935fd945d9167
22,404
py
Python
ucsmsdk/mometa/vm/VmLifeCyclePolicy.py
Kego/ucsmsdk
244f283a5c295cf746110bb96686d079b19927ce
[ "Apache-2.0" ]
78
2015-11-30T14:10:05.000Z
2022-02-13T00:29:08.000Z
ucsmsdk/mometa/vm/VmLifeCyclePolicy.py
Kego/ucsmsdk
244f283a5c295cf746110bb96686d079b19927ce
[ "Apache-2.0" ]
113
2015-11-20T09:42:46.000Z
2022-03-16T16:53:29.000Z
ucsmsdk/mometa/vm/VmLifeCyclePolicy.py
Kego/ucsmsdk
244f283a5c295cf746110bb96686d079b19927ce
[ "Apache-2.0" ]
86
2015-12-12T08:22:18.000Z
2022-01-23T03:56:34.000Z
"""This module contains the general information for VmLifeCyclePolicy ManagedObject.""" from ...ucsmo import ManagedObject from ...ucscoremeta import MoPropertyMeta, MoMeta from ...ucsmeta import VersionMeta class VmLifeCyclePolicyConsts: FSM_PREV_CONFIG_BEGIN = "configBegin" FSM_PREV_CONFIG_FAIL = "configFail" FSM_PREV_CONFIG_LOCAL = "configLocal" FSM_PREV_CONFIG_PEER = "configPeer" FSM_PREV_CONFIG_SUCCESS = "configSuccess" FSM_PREV_NOP = "nop" FSM_RMT_INV_ERR_CODE_ERR_2FA_AUTH_RETRY = "ERR-2fa-auth-retry" FSM_RMT_INV_ERR_CODE_ERR_ACTIVATE_FAILED = "ERR-ACTIVATE-failed" FSM_RMT_INV_ERR_CODE_ERR_ACTIVATE_IN_PROGRESS = "ERR-ACTIVATE-in-progress" FSM_RMT_INV_ERR_CODE_ERR_ACTIVATE_RETRY = "ERR-ACTIVATE-retry" FSM_RMT_INV_ERR_CODE_ERR_BIOS_TOKENS_OLD_BIOS = "ERR-BIOS-TOKENS-OLD-BIOS" FSM_RMT_INV_ERR_CODE_ERR_BIOS_TOKENS_OLD_CIMC = "ERR-BIOS-TOKENS-OLD-CIMC" FSM_RMT_INV_ERR_CODE_ERR_BIOS_NETWORK_BOOT_ORDER_NOT_FOUND = "ERR-BIOS-network-boot-order-not-found" FSM_RMT_INV_ERR_CODE_ERR_BOARDCTRLUPDATE_IGNORE = "ERR-BOARDCTRLUPDATE-ignore" FSM_RMT_INV_ERR_CODE_ERR_DIAG_CANCELLED = "ERR-DIAG-cancelled" FSM_RMT_INV_ERR_CODE_ERR_DIAG_FSM_RESTARTED = "ERR-DIAG-fsm-restarted" FSM_RMT_INV_ERR_CODE_ERR_DIAG_TEST_FAILED = "ERR-DIAG-test-failed" FSM_RMT_INV_ERR_CODE_ERR_DNLD_AUTHENTICATION_FAILURE = "ERR-DNLD-authentication-failure" FSM_RMT_INV_ERR_CODE_ERR_DNLD_HOSTKEY_MISMATCH = "ERR-DNLD-hostkey-mismatch" FSM_RMT_INV_ERR_CODE_ERR_DNLD_INVALID_IMAGE = "ERR-DNLD-invalid-image" FSM_RMT_INV_ERR_CODE_ERR_DNLD_NO_FILE = "ERR-DNLD-no-file" FSM_RMT_INV_ERR_CODE_ERR_DNLD_NO_SPACE = "ERR-DNLD-no-space" FSM_RMT_INV_ERR_CODE_ERR_DNLD_USB_UNMOUNTED = "ERR-DNLD-usb-unmounted" FSM_RMT_INV_ERR_CODE_ERR_DNS_DELETE_ERROR = "ERR-DNS-delete-error" FSM_RMT_INV_ERR_CODE_ERR_DNS_GET_ERROR = "ERR-DNS-get-error" FSM_RMT_INV_ERR_CODE_ERR_DNS_SET_ERROR = "ERR-DNS-set-error" FSM_RMT_INV_ERR_CODE_ERR_DIAGNOSTICS_IN_PROGRESS = "ERR-Diagnostics-in-progress" FSM_RMT_INV_ERR_CODE_ERR_DIAGNOSTICS_MEMTEST_IN_PROGRESS = "ERR-Diagnostics-memtest-in-progress" FSM_RMT_INV_ERR_CODE_ERR_DIAGNOSTICS_NETWORK_IN_PROGRESS = "ERR-Diagnostics-network-in-progress" FSM_RMT_INV_ERR_CODE_ERR_FILTER_ILLEGAL_FORMAT = "ERR-FILTER-illegal-format" FSM_RMT_INV_ERR_CODE_ERR_FSM_NO_SUCH_STATE = "ERR-FSM-no-such-state" FSM_RMT_INV_ERR_CODE_ERR_HOST_FRU_IDENTITY_MISMATCH = "ERR-HOST-fru-identity-mismatch" FSM_RMT_INV_ERR_CODE_ERR_HTTP_SET_ERROR = "ERR-HTTP-set-error" FSM_RMT_INV_ERR_CODE_ERR_HTTPS_SET_ERROR = "ERR-HTTPS-set-error" FSM_RMT_INV_ERR_CODE_ERR_IBMC_ANALYZE_RESULTS = "ERR-IBMC-analyze-results" FSM_RMT_INV_ERR_CODE_ERR_IBMC_CONNECT_ERROR = "ERR-IBMC-connect-error" FSM_RMT_INV_ERR_CODE_ERR_IBMC_CONNECTOR_INFO_RETRIEVAL_ERROR = "ERR-IBMC-connector-info-retrieval-error" FSM_RMT_INV_ERR_CODE_ERR_IBMC_FRU_RETRIEVAL_ERROR = "ERR-IBMC-fru-retrieval-error" FSM_RMT_INV_ERR_CODE_ERR_IBMC_INVALID_END_POINT_CONFIG = "ERR-IBMC-invalid-end-point-config" FSM_RMT_INV_ERR_CODE_ERR_IBMC_RESULTS_NOT_READY = "ERR-IBMC-results-not-ready" FSM_RMT_INV_ERR_CODE_ERR_MAX_SUBSCRIPTIONS_ALLOWED_ERROR = "ERR-MAX-subscriptions-allowed-error" FSM_RMT_INV_ERR_CODE_ERR_MO_CONFIG_CHILD_OBJECT_CANT_BE_CONFIGURED = "ERR-MO-CONFIG-child-object-cant-be-configured" FSM_RMT_INV_ERR_CODE_ERR_MO_META_NO_SUCH_OBJECT_CLASS = "ERR-MO-META-no-such-object-class" FSM_RMT_INV_ERR_CODE_ERR_MO_PROPERTY_NO_SUCH_PROPERTY = "ERR-MO-PROPERTY-no-such-property" FSM_RMT_INV_ERR_CODE_ERR_MO_PROPERTY_VALUE_OUT_OF_RANGE = "ERR-MO-PROPERTY-value-out-of-range" FSM_RMT_INV_ERR_CODE_ERR_MO_ACCESS_DENIED = "ERR-MO-access-denied" FSM_RMT_INV_ERR_CODE_ERR_MO_DELETION_RULE_VIOLATION = "ERR-MO-deletion-rule-violation" FSM_RMT_INV_ERR_CODE_ERR_MO_DUPLICATE_OBJECT = "ERR-MO-duplicate-object" FSM_RMT_INV_ERR_CODE_ERR_MO_ILLEGAL_CONTAINMENT = "ERR-MO-illegal-containment" FSM_RMT_INV_ERR_CODE_ERR_MO_ILLEGAL_CREATION = "ERR-MO-illegal-creation" FSM_RMT_INV_ERR_CODE_ERR_MO_ILLEGAL_ITERATOR_STATE = "ERR-MO-illegal-iterator-state" FSM_RMT_INV_ERR_CODE_ERR_MO_ILLEGAL_OBJECT_LIFECYCLE_TRANSITION = "ERR-MO-illegal-object-lifecycle-transition" FSM_RMT_INV_ERR_CODE_ERR_MO_NAMING_RULE_VIOLATION = "ERR-MO-naming-rule-violation" FSM_RMT_INV_ERR_CODE_ERR_MO_OBJECT_NOT_FOUND = "ERR-MO-object-not-found" FSM_RMT_INV_ERR_CODE_ERR_MO_RESOURCE_ALLOCATION = "ERR-MO-resource-allocation" FSM_RMT_INV_ERR_CODE_ERR_NTP_DELETE_ERROR = "ERR-NTP-delete-error" FSM_RMT_INV_ERR_CODE_ERR_NTP_GET_ERROR = "ERR-NTP-get-error" FSM_RMT_INV_ERR_CODE_ERR_NTP_SET_ERROR = "ERR-NTP-set-error" FSM_RMT_INV_ERR_CODE_ERR_POWER_CAP_UNSUPPORTED = "ERR-POWER-CAP-UNSUPPORTED" FSM_RMT_INV_ERR_CODE_ERR_POWER_PROFILE_IN_PROGRESS = "ERR-POWER-PROFILE-IN-PROGRESS" FSM_RMT_INV_ERR_CODE_ERR_SERVER_MIS_CONNECT = "ERR-SERVER-mis-connect" FSM_RMT_INV_ERR_CODE_ERR_SWITCH_INVALID_IF_CONFIG = "ERR-SWITCH-invalid-if-config" FSM_RMT_INV_ERR_CODE_ERR_TOKEN_REQUEST_DENIED = "ERR-TOKEN-request-denied" FSM_RMT_INV_ERR_CODE_ERR_UNABLE_TO_FETCH_BIOS_SETTINGS = "ERR-UNABLE-TO-FETCH-BIOS-SETTINGS" FSM_RMT_INV_ERR_CODE_ERR_UPDATE_FAILED = "ERR-UPDATE-failed" FSM_RMT_INV_ERR_CODE_ERR_UPDATE_IN_PROGRESS = "ERR-UPDATE-in-progress" FSM_RMT_INV_ERR_CODE_ERR_UPDATE_RETRY = "ERR-UPDATE-retry" FSM_RMT_INV_ERR_CODE_ERR_AAA_CONFIG_MODIFY_ERROR = "ERR-aaa-config-modify-error" FSM_RMT_INV_ERR_CODE_ERR_ACCT_REALM_SET_ERROR = "ERR-acct-realm-set-error" FSM_RMT_INV_ERR_CODE_ERR_ADMIN_PASSWD_SET = "ERR-admin-passwd-set" FSM_RMT_INV_ERR_CODE_ERR_AUTH_ISSUE = "ERR-auth-issue" FSM_RMT_INV_ERR_CODE_ERR_AUTH_REALM_GET_ERROR = "ERR-auth-realm-get-error" FSM_RMT_INV_ERR_CODE_ERR_AUTH_REALM_SET_ERROR = "ERR-auth-realm-set-error" FSM_RMT_INV_ERR_CODE_ERR_AUTHENTICATION = "ERR-authentication" FSM_RMT_INV_ERR_CODE_ERR_AUTHORIZATION_REQUIRED = "ERR-authorization-required" FSM_RMT_INV_ERR_CODE_ERR_CLI_SESSION_LIMIT_REACHED = "ERR-cli-session-limit-reached" FSM_RMT_INV_ERR_CODE_ERR_CREATE_KEYRING = "ERR-create-keyring" FSM_RMT_INV_ERR_CODE_ERR_CREATE_LOCALE = "ERR-create-locale" FSM_RMT_INV_ERR_CODE_ERR_CREATE_ROLE = "ERR-create-role" FSM_RMT_INV_ERR_CODE_ERR_CREATE_TP = "ERR-create-tp" FSM_RMT_INV_ERR_CODE_ERR_CREATE_USER = "ERR-create-user" FSM_RMT_INV_ERR_CODE_ERR_DELETE_LOCALE = "ERR-delete-locale" FSM_RMT_INV_ERR_CODE_ERR_DELETE_ROLE = "ERR-delete-role" FSM_RMT_INV_ERR_CODE_ERR_DELETE_SESSION = "ERR-delete-session" FSM_RMT_INV_ERR_CODE_ERR_DELETE_USER = "ERR-delete-user" FSM_RMT_INV_ERR_CODE_ERR_DOWNGRADE_FAIL = "ERR-downgrade-fail" FSM_RMT_INV_ERR_CODE_ERR_EFI_DIAGNOSTICS_IN_PROGRESS = "ERR-efi-Diagnostics--in-progress" FSM_RMT_INV_ERR_CODE_ERR_ENABLE_MGMT_CONN = "ERR-enable-mgmt-conn" FSM_RMT_INV_ERR_CODE_ERR_EP_SET_ERROR = "ERR-ep-set-error" FSM_RMT_INV_ERR_CODE_ERR_GET_MAX_HTTP_USER_SESSIONS = "ERR-get-max-http-user-sessions" FSM_RMT_INV_ERR_CODE_ERR_HTTP_INITIALIZING = "ERR-http-initializing" FSM_RMT_INV_ERR_CODE_ERR_INSUFFICIENTLY_EQUIPPED = "ERR-insufficiently-equipped" FSM_RMT_INV_ERR_CODE_ERR_INTERNAL_ERROR = "ERR-internal-error" FSM_RMT_INV_ERR_CODE_ERR_LDAP_DELETE_ERROR = "ERR-ldap-delete-error" FSM_RMT_INV_ERR_CODE_ERR_LDAP_GET_ERROR = "ERR-ldap-get-error" FSM_RMT_INV_ERR_CODE_ERR_LDAP_GROUP_MODIFY_ERROR = "ERR-ldap-group-modify-error" FSM_RMT_INV_ERR_CODE_ERR_LDAP_GROUP_SET_ERROR = "ERR-ldap-group-set-error" FSM_RMT_INV_ERR_CODE_ERR_LDAP_SET_ERROR = "ERR-ldap-set-error" FSM_RMT_INV_ERR_CODE_ERR_LOCALE_SET_ERROR = "ERR-locale-set-error" FSM_RMT_INV_ERR_CODE_ERR_MAX_USERID_SESSIONS_REACHED = "ERR-max-userid-sessions-reached" FSM_RMT_INV_ERR_CODE_ERR_MISSING_METHOD = "ERR-missing-method" FSM_RMT_INV_ERR_CODE_ERR_MODIFY_LOCALE = "ERR-modify-locale" FSM_RMT_INV_ERR_CODE_ERR_MODIFY_ROLE = "ERR-modify-role" FSM_RMT_INV_ERR_CODE_ERR_MODIFY_USER = "ERR-modify-user" FSM_RMT_INV_ERR_CODE_ERR_MODIFY_USER_LOCALE = "ERR-modify-user-locale" FSM_RMT_INV_ERR_CODE_ERR_MODIFY_USER_ROLE = "ERR-modify-user-role" FSM_RMT_INV_ERR_CODE_ERR_PROVIDER_GROUP_MODIFY_ERROR = "ERR-provider-group-modify-error" FSM_RMT_INV_ERR_CODE_ERR_PROVIDER_GROUP_SET_ERROR = "ERR-provider-group-set-error" FSM_RMT_INV_ERR_CODE_ERR_RADIUS_GET_ERROR = "ERR-radius-get-error" FSM_RMT_INV_ERR_CODE_ERR_RADIUS_GLOBAL_SET_ERROR = "ERR-radius-global-set-error" FSM_RMT_INV_ERR_CODE_ERR_RADIUS_GROUP_SET_ERROR = "ERR-radius-group-set-error" FSM_RMT_INV_ERR_CODE_ERR_RADIUS_SET_ERROR = "ERR-radius-set-error" FSM_RMT_INV_ERR_CODE_ERR_REQUEST_TIMEOUT = "ERR-request-timeout" FSM_RMT_INV_ERR_CODE_ERR_RESET_ADAPTER = "ERR-reset-adapter" FSM_RMT_INV_ERR_CODE_ERR_ROLE_SET_ERROR = "ERR-role-set-error" FSM_RMT_INV_ERR_CODE_ERR_SECONDARY_NODE = "ERR-secondary-node" FSM_RMT_INV_ERR_CODE_ERR_SERVICE_NOT_READY = "ERR-service-not-ready" FSM_RMT_INV_ERR_CODE_ERR_SESSION_CACHE_FULL = "ERR-session-cache-full" FSM_RMT_INV_ERR_CODE_ERR_SESSION_NOT_FOUND = "ERR-session-not-found" FSM_RMT_INV_ERR_CODE_ERR_SET_KEY_CERT = "ERR-set-key-cert" FSM_RMT_INV_ERR_CODE_ERR_SET_LOGIN_PROFILE = "ERR-set-login-profile" FSM_RMT_INV_ERR_CODE_ERR_SET_MIN_PASSPHRASE_LENGTH = "ERR-set-min-passphrase-length" FSM_RMT_INV_ERR_CODE_ERR_SET_NETWORK = "ERR-set-network" FSM_RMT_INV_ERR_CODE_ERR_SET_PASSWORD_STRENGTH_CHECK = "ERR-set-password-strength-check" FSM_RMT_INV_ERR_CODE_ERR_SET_PORT_CHANNEL = "ERR-set-port-channel" FSM_RMT_INV_ERR_CODE_ERR_STORE_PRE_LOGIN_BANNER_MSG = "ERR-store-pre-login-banner-msg" FSM_RMT_INV_ERR_CODE_ERR_TACACS_ENABLE_ERROR = "ERR-tacacs-enable-error" FSM_RMT_INV_ERR_CODE_ERR_TACACS_GLOBAL_SET_ERROR = "ERR-tacacs-global-set-error" FSM_RMT_INV_ERR_CODE_ERR_TACACS_GROUP_SET_ERROR = "ERR-tacacs-group-set-error" FSM_RMT_INV_ERR_CODE_ERR_TACACS_PLUS_GET_ERROR = "ERR-tacacs-plus-get-error" FSM_RMT_INV_ERR_CODE_ERR_TACACS_SET_ERROR = "ERR-tacacs-set-error" FSM_RMT_INV_ERR_CODE_ERR_TEST_ERROR_1 = "ERR-test-error-1" FSM_RMT_INV_ERR_CODE_ERR_TEST_ERROR_2 = "ERR-test-error-2" FSM_RMT_INV_ERR_CODE_ERR_TIMEZONE_SET_ERROR = "ERR-timezone-set-error" FSM_RMT_INV_ERR_CODE_ERR_USER_ACCOUNT_EXPIRED = "ERR-user-account-expired" FSM_RMT_INV_ERR_CODE_ERR_USER_PASSWD_EXPIRED = "ERR-user-passwd-expired" FSM_RMT_INV_ERR_CODE_ERR_USER_SET_ERROR = "ERR-user-set-error" FSM_RMT_INV_ERR_CODE_ERR_XML_PARSE_ERROR = "ERR-xml-parse-error" FSM_RMT_INV_ERR_CODE_NONE = "none" FSM_STAMP_NEVER = "never" FSM_STATUS_CONFIG_BEGIN = "configBegin" FSM_STATUS_CONFIG_FAIL = "configFail" FSM_STATUS_CONFIG_LOCAL = "configLocal" FSM_STATUS_CONFIG_PEER = "configPeer" FSM_STATUS_CONFIG_SUCCESS = "configSuccess" FSM_STATUS_NOP = "nop" INT_ID_NONE = "none" POLICY_OWNER_LOCAL = "local" POLICY_OWNER_PENDING_POLICY = "pending-policy" POLICY_OWNER_POLICY = "policy" VM_RETENTION_1_DAY = "1-day" VM_RETENTION_1_HOUR = "1-hour" VM_RETENTION_1_MIN = "1-min" VNIC_RETENTION_1_DAY = "1-day" VNIC_RETENTION_1_HOUR = "1-hour" VNIC_RETENTION_1_MIN = "1-min" class VmLifeCyclePolicy(ManagedObject): """This is VmLifeCyclePolicy class.""" consts = VmLifeCyclePolicyConsts() naming_props = set([]) mo_meta = MoMeta("VmLifeCyclePolicy", "vmLifeCyclePolicy", "vm-lc-policy", VersionMeta.Version111j, "InputOutput", 0x3ff, [], ["admin", "pn-policy"], ['orgOrg'], ['eventInst', 'faultInst', 'vmLifeCyclePolicyFsm', 'vmLifeCyclePolicyFsmTask'], ["Get", "Set"]) prop_meta = { "child_action": MoPropertyMeta("child_action", "childAction", "string", VersionMeta.Version111j, MoPropertyMeta.INTERNAL, 0x2, None, None, r"""((deleteAll|ignore|deleteNonPresent),){0,2}(deleteAll|ignore|deleteNonPresent){0,1}""", [], []), "descr": MoPropertyMeta("descr", "descr", "string", VersionMeta.Version111j, MoPropertyMeta.READ_WRITE, 0x4, None, None, r"""[ !#$%&\(\)\*\+,\-\./:;\?@\[\]_\{\|\}~a-zA-Z0-9]{0,256}""", [], []), "dn": MoPropertyMeta("dn", "dn", "string", VersionMeta.Version111j, MoPropertyMeta.READ_ONLY, 0x8, 0, 256, None, [], []), "fsm_descr": MoPropertyMeta("fsm_descr", "fsmDescr", "string", VersionMeta.Version201m, MoPropertyMeta.INTERNAL, None, None, None, None, [], []), "fsm_prev": MoPropertyMeta("fsm_prev", "fsmPrev", "string", VersionMeta.Version201m, MoPropertyMeta.INTERNAL, None, None, None, None, ["configBegin", "configFail", "configLocal", "configPeer", "configSuccess", "nop"], []), "fsm_progr": MoPropertyMeta("fsm_progr", "fsmProgr", "byte", VersionMeta.Version201m, MoPropertyMeta.INTERNAL, None, None, None, None, [], ["0-100"]), "fsm_rmt_inv_err_code": MoPropertyMeta("fsm_rmt_inv_err_code", "fsmRmtInvErrCode", "string", VersionMeta.Version201m, MoPropertyMeta.INTERNAL, None, None, None, None, ["ERR-2fa-auth-retry", "ERR-ACTIVATE-failed", "ERR-ACTIVATE-in-progress", "ERR-ACTIVATE-retry", "ERR-BIOS-TOKENS-OLD-BIOS", "ERR-BIOS-TOKENS-OLD-CIMC", "ERR-BIOS-network-boot-order-not-found", "ERR-BOARDCTRLUPDATE-ignore", "ERR-DIAG-cancelled", "ERR-DIAG-fsm-restarted", "ERR-DIAG-test-failed", "ERR-DNLD-authentication-failure", "ERR-DNLD-hostkey-mismatch", "ERR-DNLD-invalid-image", "ERR-DNLD-no-file", "ERR-DNLD-no-space", "ERR-DNLD-usb-unmounted", "ERR-DNS-delete-error", "ERR-DNS-get-error", "ERR-DNS-set-error", "ERR-Diagnostics-in-progress", "ERR-Diagnostics-memtest-in-progress", "ERR-Diagnostics-network-in-progress", "ERR-FILTER-illegal-format", "ERR-FSM-no-such-state", "ERR-HOST-fru-identity-mismatch", "ERR-HTTP-set-error", "ERR-HTTPS-set-error", "ERR-IBMC-analyze-results", "ERR-IBMC-connect-error", "ERR-IBMC-connector-info-retrieval-error", "ERR-IBMC-fru-retrieval-error", "ERR-IBMC-invalid-end-point-config", "ERR-IBMC-results-not-ready", "ERR-MAX-subscriptions-allowed-error", "ERR-MO-CONFIG-child-object-cant-be-configured", "ERR-MO-META-no-such-object-class", "ERR-MO-PROPERTY-no-such-property", "ERR-MO-PROPERTY-value-out-of-range", "ERR-MO-access-denied", "ERR-MO-deletion-rule-violation", "ERR-MO-duplicate-object", "ERR-MO-illegal-containment", "ERR-MO-illegal-creation", "ERR-MO-illegal-iterator-state", "ERR-MO-illegal-object-lifecycle-transition", "ERR-MO-naming-rule-violation", "ERR-MO-object-not-found", "ERR-MO-resource-allocation", "ERR-NTP-delete-error", "ERR-NTP-get-error", "ERR-NTP-set-error", "ERR-POWER-CAP-UNSUPPORTED", "ERR-POWER-PROFILE-IN-PROGRESS", "ERR-SERVER-mis-connect", "ERR-SWITCH-invalid-if-config", "ERR-TOKEN-request-denied", "ERR-UNABLE-TO-FETCH-BIOS-SETTINGS", "ERR-UPDATE-failed", "ERR-UPDATE-in-progress", "ERR-UPDATE-retry", "ERR-aaa-config-modify-error", "ERR-acct-realm-set-error", "ERR-admin-passwd-set", "ERR-auth-issue", "ERR-auth-realm-get-error", "ERR-auth-realm-set-error", "ERR-authentication", "ERR-authorization-required", "ERR-cli-session-limit-reached", "ERR-create-keyring", "ERR-create-locale", "ERR-create-role", "ERR-create-tp", "ERR-create-user", "ERR-delete-locale", "ERR-delete-role", "ERR-delete-session", "ERR-delete-user", "ERR-downgrade-fail", "ERR-efi-Diagnostics--in-progress", "ERR-enable-mgmt-conn", "ERR-ep-set-error", "ERR-get-max-http-user-sessions", "ERR-http-initializing", "ERR-insufficiently-equipped", "ERR-internal-error", "ERR-ldap-delete-error", "ERR-ldap-get-error", "ERR-ldap-group-modify-error", "ERR-ldap-group-set-error", "ERR-ldap-set-error", "ERR-locale-set-error", "ERR-max-userid-sessions-reached", "ERR-missing-method", "ERR-modify-locale", "ERR-modify-role", "ERR-modify-user", "ERR-modify-user-locale", "ERR-modify-user-role", "ERR-provider-group-modify-error", "ERR-provider-group-set-error", "ERR-radius-get-error", "ERR-radius-global-set-error", "ERR-radius-group-set-error", "ERR-radius-set-error", "ERR-request-timeout", "ERR-reset-adapter", "ERR-role-set-error", "ERR-secondary-node", "ERR-service-not-ready", "ERR-session-cache-full", "ERR-session-not-found", "ERR-set-key-cert", "ERR-set-login-profile", "ERR-set-min-passphrase-length", "ERR-set-network", "ERR-set-password-strength-check", "ERR-set-port-channel", "ERR-store-pre-login-banner-msg", "ERR-tacacs-enable-error", "ERR-tacacs-global-set-error", "ERR-tacacs-group-set-error", "ERR-tacacs-plus-get-error", "ERR-tacacs-set-error", "ERR-test-error-1", "ERR-test-error-2", "ERR-timezone-set-error", "ERR-user-account-expired", "ERR-user-passwd-expired", "ERR-user-set-error", "ERR-xml-parse-error", "none"], ["0-4294967295"]), "fsm_rmt_inv_err_descr": MoPropertyMeta("fsm_rmt_inv_err_descr", "fsmRmtInvErrDescr", "string", VersionMeta.Version201m, MoPropertyMeta.INTERNAL, None, 0, 510, None, [], []), "fsm_rmt_inv_rslt": MoPropertyMeta("fsm_rmt_inv_rslt", "fsmRmtInvRslt", "string", VersionMeta.Version201m, MoPropertyMeta.INTERNAL, None, None, None, r"""((defaultValue|not-applicable|resource-unavailable|service-unavailable|intermittent-error|sw-defect|service-not-implemented-ignore|extend-timeout|capability-not-implemented-failure|illegal-fru|end-point-unavailable|failure|resource-capacity-exceeded|service-protocol-error|fw-defect|service-not-implemented-fail|task-reset|unidentified-fail|capability-not-supported|end-point-failed|fru-state-indeterminate|resource-dependency|fru-identity-indeterminate|internal-error|hw-defect|service-not-supported|fru-not-supported|end-point-protocol-error|capability-unavailable|fru-not-ready|capability-not-implemented-ignore|fru-info-malformed|timeout),){0,32}(defaultValue|not-applicable|resource-unavailable|service-unavailable|intermittent-error|sw-defect|service-not-implemented-ignore|extend-timeout|capability-not-implemented-failure|illegal-fru|end-point-unavailable|failure|resource-capacity-exceeded|service-protocol-error|fw-defect|service-not-implemented-fail|task-reset|unidentified-fail|capability-not-supported|end-point-failed|fru-state-indeterminate|resource-dependency|fru-identity-indeterminate|internal-error|hw-defect|service-not-supported|fru-not-supported|end-point-protocol-error|capability-unavailable|fru-not-ready|capability-not-implemented-ignore|fru-info-malformed|timeout){0,1}""", [], []), "fsm_stage_descr": MoPropertyMeta("fsm_stage_descr", "fsmStageDescr", "string", VersionMeta.Version201m, MoPropertyMeta.INTERNAL, None, None, None, None, [], []), "fsm_stamp": MoPropertyMeta("fsm_stamp", "fsmStamp", "string", VersionMeta.Version201m, MoPropertyMeta.INTERNAL, None, None, None, r"""([0-9]){4}-([0-9]){2}-([0-9]){2}T([0-9]){2}:([0-9]){2}:([0-9]){2}((\.([0-9]){3})){0,1}""", ["never"], []), "fsm_status": MoPropertyMeta("fsm_status", "fsmStatus", "string", VersionMeta.Version201m, MoPropertyMeta.INTERNAL, None, None, None, None, ["configBegin", "configFail", "configLocal", "configPeer", "configSuccess", "nop"], []), "fsm_try": MoPropertyMeta("fsm_try", "fsmTry", "byte", VersionMeta.Version201m, MoPropertyMeta.INTERNAL, None, None, None, None, [], []), "int_id": MoPropertyMeta("int_id", "intId", "string", VersionMeta.Version111j, MoPropertyMeta.INTERNAL, None, None, None, None, ["none"], ["0-4294967295"]), "name": MoPropertyMeta("name", "name", "string", VersionMeta.Version111j, MoPropertyMeta.READ_WRITE, 0x10, None, None, r"""[\-\.:_a-zA-Z0-9]{0,16}""", [], []), "policy_level": MoPropertyMeta("policy_level", "policyLevel", "uint", VersionMeta.Version211a, MoPropertyMeta.READ_ONLY, None, None, None, None, [], []), "policy_owner": MoPropertyMeta("policy_owner", "policyOwner", "string", VersionMeta.Version211a, MoPropertyMeta.READ_WRITE, 0x20, None, None, None, ["local", "pending-policy", "policy"], []), "rn": MoPropertyMeta("rn", "rn", "string", VersionMeta.Version111j, MoPropertyMeta.READ_ONLY, 0x40, 0, 256, None, [], []), "sacl": MoPropertyMeta("sacl", "sacl", "string", VersionMeta.Version302c, MoPropertyMeta.READ_ONLY, None, None, None, r"""((none|del|mod|addchild|cascade),){0,4}(none|del|mod|addchild|cascade){0,1}""", [], []), "status": MoPropertyMeta("status", "status", "string", VersionMeta.Version111j, MoPropertyMeta.READ_WRITE, 0x80, None, None, r"""((removed|created|modified|deleted),){0,3}(removed|created|modified|deleted){0,1}""", [], []), "vm_retention": MoPropertyMeta("vm_retention", "vmRetention", "string", VersionMeta.Version111j, MoPropertyMeta.READ_WRITE, 0x100, None, None, None, ["1-day", "1-hour", "1-min"], ["1-7200"]), "vnic_retention": MoPropertyMeta("vnic_retention", "vnicRetention", "string", VersionMeta.Version111j, MoPropertyMeta.READ_WRITE, 0x200, None, None, None, ["1-day", "1-hour", "1-min"], ["1-7200"]), } prop_map = { "childAction": "child_action", "descr": "descr", "dn": "dn", "fsmDescr": "fsm_descr", "fsmPrev": "fsm_prev", "fsmProgr": "fsm_progr", "fsmRmtInvErrCode": "fsm_rmt_inv_err_code", "fsmRmtInvErrDescr": "fsm_rmt_inv_err_descr", "fsmRmtInvRslt": "fsm_rmt_inv_rslt", "fsmStageDescr": "fsm_stage_descr", "fsmStamp": "fsm_stamp", "fsmStatus": "fsm_status", "fsmTry": "fsm_try", "intId": "int_id", "name": "name", "policyLevel": "policy_level", "policyOwner": "policy_owner", "rn": "rn", "sacl": "sacl", "status": "status", "vmRetention": "vm_retention", "vnicRetention": "vnic_retention", } def __init__(self, parent_mo_or_dn, **kwargs): self._dirty_mask = 0 self.child_action = None self.descr = None self.fsm_descr = None self.fsm_prev = None self.fsm_progr = None self.fsm_rmt_inv_err_code = None self.fsm_rmt_inv_err_descr = None self.fsm_rmt_inv_rslt = None self.fsm_stage_descr = None self.fsm_stamp = None self.fsm_status = None self.fsm_try = None self.int_id = None self.name = None self.policy_level = None self.policy_owner = None self.sacl = None self.status = None self.vm_retention = None self.vnic_retention = None ManagedObject.__init__(self, "VmLifeCyclePolicy", parent_mo_or_dn, **kwargs)
89.975904
3,774
0.759373
4a2749e705a341088ce6e0bc3866ad36335e55f2
4,388
py
Python
network/predict_many.py
Neoleukin-Therapeutics/trRosetta
6a68c33e1c9834c24bd7aa010999d0e9e5279d4d
[ "MIT" ]
179
2019-11-07T06:53:34.000Z
2022-03-17T13:55:20.000Z
network/predict_many.py
Neoleukin-Therapeutics/trRosetta
6a68c33e1c9834c24bd7aa010999d0e9e5279d4d
[ "MIT" ]
11
2020-03-29T22:05:08.000Z
2021-05-12T17:03:26.000Z
network/predict_many.py
Neoleukin-Therapeutics/trRosetta
6a68c33e1c9834c24bd7aa010999d0e9e5279d4d
[ "MIT" ]
52
2019-10-21T23:42:18.000Z
2022-03-17T04:27:50.000Z
import warnings, logging, os, sys warnings.filterwarnings('ignore',category=FutureWarning) logging.disable(logging.WARNING) os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" import json import tensorflow as tf from utils import * from arguments import get_args_many args = get_args_many() MDIR = args.MDIR n2d_layers = 61 n2d_filters = 64 window2d = 3 wmin = 0.8 ns = 21 # load network weights in RAM w,b,beta_,gamma_ = load_weights(args.MDIR) # # network # config = tf.ConfigProto( gpu_options = tf.GPUOptions(allow_growth=True) ) activation = tf.nn.elu conv1d = tf.layers.conv1d conv2d = tf.layers.conv2d with tf.Graph().as_default(): with tf.name_scope('input'): ncol = tf.placeholder(dtype=tf.int32, shape=()) nrow = tf.placeholder(dtype=tf.int32, shape=()) msa = tf.placeholder(dtype=tf.uint8, shape=(None,None)) # # collect features # msa1hot = tf.one_hot(msa, ns, dtype=tf.float32) weights = reweight(msa1hot, wmin) # 1D features f1d_seq = msa1hot[0,:,:20] f1d_pssm = msa2pssm(msa1hot, weights) f1d = tf.concat(values=[f1d_seq, f1d_pssm], axis=1) f1d = tf.expand_dims(f1d, axis=0) f1d = tf.reshape(f1d, [1,ncol,42]) # 2D features f2d_dca = tf.cond(nrow>1, lambda: fast_dca(msa1hot, weights), lambda: tf.zeros([ncol,ncol,442], tf.float32)) f2d_dca = tf.expand_dims(f2d_dca, axis=0) f2d = tf.concat([tf.tile(f1d[:,:,None,:], [1,1,ncol,1]), tf.tile(f1d[:,None,:,:], [1,ncol,1,1]), f2d_dca], axis=-1) f2d = tf.reshape(f2d, [1,ncol,ncol,442+2*42]) # # 2D network # # store ensemble of networks in separate branches layers2d = [[] for _ in range(len(w))] preds = [[] for _ in range(4)] Activation = tf.nn.elu for i in range(len(w)): layers2d[i].append(Conv2d(f2d,w[i][0],b[i][0])) layers2d[i].append(InstanceNorm(layers2d[i][-1],beta_[i][0],gamma_[i][0])) layers2d[i].append(Activation(layers2d[i][-1])) # resnet idx = 1 dilation = 1 for _ in range(n2d_layers): layers2d[i].append(Conv2d(layers2d[i][-1],w[i][idx],b[i][idx],dilation)) layers2d[i].append(InstanceNorm(layers2d[i][-1],beta_[i][idx],gamma_[i][idx])) layers2d[i].append(Activation(layers2d[i][-1])) idx += 1 layers2d[i].append(Conv2d(layers2d[i][-1],w[i][idx],b[i][idx],dilation)) layers2d[i].append(InstanceNorm(layers2d[i][-1],beta_[i][idx],gamma_[i][idx])) layers2d[i].append(Activation(layers2d[i][-1] + layers2d[i][-6])) idx += 1 dilation *= 2 if dilation > 16: dilation = 1 # probabilities for theta and phi preds[0].append(tf.nn.softmax(Conv2d(layers2d[i][-1],w[i][123],b[i][123]))[0]) preds[1].append(tf.nn.softmax(Conv2d(layers2d[i][-1],w[i][124],b[i][124]))[0]) # symmetrize layers2d[i].append(0.5*(layers2d[i][-1]+tf.transpose(layers2d[i][-1],perm=[0,2,1,3]))) # probabilities for dist and omega preds[2].append(tf.nn.softmax(Conv2d(layers2d[i][-1],w[i][125],b[i][125]))[0]) preds[3].append(tf.nn.softmax(Conv2d(layers2d[i][-1],w[i][127],b[i][127]))[0]) #preds[4].append(tf.nn.softmax(Conv2d(layers2d[i][-1],w[i][126],b[i][126]))[0]) # average over all branches prob_theta = tf.reduce_mean(tf.stack(preds[0]),axis=0) prob_phi = tf.reduce_mean(tf.stack(preds[1]),axis=0) prob_dist = tf.reduce_mean(tf.stack(preds[2]),axis=0) prob_omega = tf.reduce_mean(tf.stack(preds[3]),axis=0) with tf.Session(config=config) as sess: # loop over all A3M files in the imput folder for filename in os.listdir(args.ALNDIR): if not filename.endswith(".a3m"): continue # parse & predict a3m = parse_a3m(args.ALNDIR + '/' + filename) print("processing:", filename) pd, pt, pp, po = sess.run([prob_dist, prob_theta, prob_phi, prob_omega], feed_dict = {msa : a3m, ncol : a3m.shape[1], nrow : a3m.shape[0] }) # save distograms & anglegrams npz_file = args.NPZDIR + '/' + filename[:-3] + 'npz' np.savez_compressed(npz_file, dist=pd, omega=po, theta=pt, phi=pp)
32.264706
112
0.591613
4a2749ebffed0ee537968d7cdb32a8bc1cb54427
2,450
py
Python
domain_management/domainutil.py
IBM/api-samples
d69f7a7b74244012e835f023bceec2b0370be586
[ "Apache-2.0" ]
172
2015-02-18T21:18:31.000Z
2022-03-13T17:51:11.000Z
domain_management/domainutil.py
IBM/api-samples
d69f7a7b74244012e835f023bceec2b0370be586
[ "Apache-2.0" ]
15
2015-03-06T15:30:33.000Z
2021-03-05T09:20:34.000Z
domain_management/domainutil.py
IBM/api-samples
d69f7a7b74244012e835f023bceec2b0370be586
[ "Apache-2.0" ]
77
2015-03-06T13:14:06.000Z
2022-02-14T15:35:58.000Z
"""Domain utilities used by sample scripts for Domain API. """ import json import os import sys import uuid from importlib import import_module sys.path.append(os.path.realpath('../modules')) _RestApiClient = import_module('RestApiClient') _SampleUtilities = import_module('SampleUtilities') _client = _RestApiClient.RestApiClient(version='6.0') # Pretty-prints response. pp_response = _SampleUtilities.pretty_print_response def api(endpoint, method, data=None, json=False): """Invokes RestApiClient call_api method and pretty-prints the request. """ if json: headers = _client.get_headers().copy() headers['Content-type'] = 'application/json' else: headers = None return _client.call_api(endpoint, method, headers=headers, data=data, print_request=True) def from_json(response): """Converts RestApiClient response from JSON to string. """ return json.loads(response.read().decode('utf-8')) def to_json(data): """Converts Python data to JSON. """ return json.dumps(data).encode('utf8') def setup_domain(): """Sets up a domain with event collector ID = -1000 and returns this new domain. The domain name is a randomly generated UUID. The event collector ID is chosen to be not among existing IDs. If the data for the event collector ID already exists, re-use the domain with that event collector configured. """ body = { "asset_scanner_ids": [], "custom_properties": [], "deleted": False, "description": "", "event_collector_ids": [-1000], # Assign non-existing ID "flow_collector_ids": [], "flow_source_ids": [], "log_source_group_ids": [], "log_source_ids": [], "name": str(uuid.uuid4()), # Generate a random domain name "qvm_scanner_ids": [], "tenant_id": 0 } response = api('config/domain_management/domains', 'POST', data=to_json(body), json=True) if response.code == 201: return from_json(response) elif response.code == 409: # Finds the domain ID for conflicting resource. resp = api('config/domain_management/domains', 'GET') domains = from_json(resp) for domain in domains: if -1000 in domain['event_collector_ids']: return domain print('ERROR: Unrecognized conflict error', file=sys.stderr)
29.518072
76
0.64898
4a274a2db9c0c59ef0c85a11dc81fec3f77847b4
203
py
Python
2016/02/test_lavvy_lock.py
GeoffRiley/AdventOfCode
27fe8670a1923cb3b0675784f5e855ad18c29c93
[ "Unlicense" ]
2
2020-12-12T03:18:45.000Z
2021-12-17T00:35:33.000Z
2016/02/test_lavvy_lock.py
GeoffRiley/AdventOfCode
27fe8670a1923cb3b0675784f5e855ad18c29c93
[ "Unlicense" ]
null
null
null
2016/02/test_lavvy_lock.py
GeoffRiley/AdventOfCode
27fe8670a1923cb3b0675784f5e855ad18c29c93
[ "Unlicense" ]
null
null
null
from lavvy_lock import lavvy_decode def test_lavvy_decode(): test_code = '''ULL RRDDD LURDL UUUUD''' assert lavvy_decode(test_code) == '1985' assert lavvy_decode(test_code, True) == '5DB3'
18.454545
50
0.714286
4a274b652127e10dc02a8f78940f1ad1c2739737
1,870
py
Python
flask_reveal/tests/test_base.py
grupydf/flask-reveal
6a60c9db68db68d18eae9734ac809158157ed293
[ "MIT" ]
2
2015-04-23T14:16:08.000Z
2015-04-23T14:19:26.000Z
flask_reveal/tests/test_base.py
grupydf/flask-reveal
6a60c9db68db68d18eae9734ac809158157ed293
[ "MIT" ]
null
null
null
flask_reveal/tests/test_base.py
grupydf/flask-reveal
6a60c9db68db68d18eae9734ac809158157ed293
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import os import unittest import tempfile from flask import current_app from flask_reveal.app import FlaskReveal from flask_reveal.config import REVEAL_CONFIG, REVEAL_META from flask_reveal.blueprints.reveal import reveal_blueprint class BaseAppTestCase(unittest.TestCase): def setUp(self): self.app = FlaskReveal('flask_reveal') self.app.config['TESTING'] = True fd, self.config = tempfile.mkstemp('.py') os.close(fd) def tearDown(self): os.remove(self.config) def test_start_invalid_config(self): self.assertRaises(FileNotFoundError, self.app.start, '', '', 'invalid_file') def test_current_app(self): with self.app.app_context(): self.assertEqual(current_app.name, 'flask_reveal') def test_blueprint_loading(self): with self.app.app_context(): self.assertDictEqual(current_app.blueprints, {'reveal': reveal_blueprint}) def test_default_config_loading(self): with self.app.app_context(): self.assertDictEqual(current_app.config['REVEAL_META'], REVEAL_META) self.assertDictEqual(current_app.config['REVEAL_CONFIG'], REVEAL_CONFIG) def test_user_config_loading(self): with open(self.config, 'w') as config: config.write('TEST_VAR = "TEST"') self.app.load_user_config('', '', self.config) with self.app.app_context(): self.assertEqual(current_app.config['TEST_VAR'], 'TEST') def test_user_config_loading_invalid_config_file(self): self.assertRaises(FileNotFoundError, self.app.load_user_config, '', '', 'invalid_file')
30.655738
69
0.615508
4a274b8640c1fd38bf0922dc720e98ebe27c8e6f
13,881
py
Python
tensorflow_probability/python/distributions/onehot_categorical_test.py
nbro/probability
07a6378155f0ed720b5aaccf5387e3f9a432bd10
[ "Apache-2.0" ]
null
null
null
tensorflow_probability/python/distributions/onehot_categorical_test.py
nbro/probability
07a6378155f0ed720b5aaccf5387e3f9a432bd10
[ "Apache-2.0" ]
null
null
null
tensorflow_probability/python/distributions/onehot_categorical_test.py
nbro/probability
07a6378155f0ed720b5aaccf5387e3f9a432bd10
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for OneHotCategorical distribution.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports import numpy as np import tensorflow.compat.v1 as tf1 import tensorflow.compat.v2 as tf import tensorflow_probability as tfp from tensorflow_probability.python.internal import tensorshape_util from tensorflow_probability.python.internal import test_util tfb = tfp.bijectors tfd = tfp.distributions def make_onehot_categorical(batch_shape, num_classes, dtype=tf.int32): logits = tf.random.uniform( list(batch_shape) + [num_classes], -10, 10, dtype=tf.float32) - 50. return tfd.OneHotCategorical(logits, dtype=dtype, validate_args=True) @test_util.test_all_tf_execution_regimes class OneHotCategoricalTest(test_util.TestCase): def setUp(self): super(OneHotCategoricalTest, self).setUp() self._rng = np.random.RandomState(42) def assertRaises(self, error_class, msg): if tf.executing_eagerly(): return self.assertRaisesRegexp(error_class, msg) return self.assertRaisesOpError(msg) def testP(self): p = [0.2, 0.8] dist = tfd.OneHotCategorical(probs=p, validate_args=True) self.assertAllClose(p, self.evaluate(dist.probs)) self.assertAllEqual([2], dist.logits.shape) def testLogits(self): p = np.array([0.2, 0.8], dtype=np.float32) logits = np.log(p) - 50. dist = tfd.OneHotCategorical(logits=logits, validate_args=True) self.assertAllEqual([2], dist.probs.shape) self.assertAllEqual([2], dist.logits.shape) self.assertAllClose(self.evaluate(dist.probs), p) self.assertAllClose(self.evaluate(dist.logits), logits) def testShapes(self): for batch_shape in ([], [1], [2, 3, 4]): dist = make_onehot_categorical(batch_shape, 10) self.assertAllEqual(batch_shape, tensorshape_util.as_list(dist.batch_shape)) self.assertAllEqual(batch_shape, self.evaluate(dist.batch_shape_tensor())) self.assertAllEqual([10], tensorshape_util.as_list(dist.event_shape)) self.assertAllEqual([10], self.evaluate(dist.event_shape_tensor())) # event_shape is available as a constant because the shape is # known at graph build time. self.assertEqual(10, dist.event_shape) for batch_shape in ([], [1], [2, 3, 4]): dist = make_onehot_categorical(batch_shape, tf.constant( 10, dtype=tf.int32)) self.assertAllEqual( len(batch_shape), tensorshape_util.rank(dist.batch_shape)) self.assertAllEqual(batch_shape, self.evaluate(dist.batch_shape_tensor())) self.assertAllEqual([10], tensorshape_util.as_list(dist.event_shape)) self.assertEqual(10, self.evaluate(dist.event_shape_tensor())) def testDtype(self): dist = make_onehot_categorical([], 5, dtype=tf.int32) self.assertEqual(dist.dtype, tf.int32) self.assertEqual(dist.dtype, dist.sample(5).dtype) self.assertEqual(dist.dtype, dist.mode().dtype) dist = make_onehot_categorical([], 5, dtype=tf.int64) self.assertEqual(dist.dtype, tf.int64) self.assertEqual(dist.dtype, dist.sample(5).dtype) self.assertEqual(dist.dtype, dist.mode().dtype) self.assertEqual(dist.probs.dtype, tf.float32) self.assertEqual(dist.logits.dtype, tf.float32) self.assertEqual(dist.logits.dtype, dist.entropy().dtype) self.assertEqual(dist.logits.dtype, dist.prob( np.array([1]+[0]*4, dtype=np.int64)).dtype) self.assertEqual(dist.logits.dtype, dist.log_prob( np.array([1]+[0]*4, dtype=np.int64)).dtype) def testUnknownShape(self): logits = tf1.placeholder_with_default( [[-1000.0, 1000.0], [1000.0, -1000.0]], shape=None) dist = tfd.OneHotCategorical(logits, validate_args=True) sample = dist.sample() # Batch entry 0 will sample class 1, batch entry 1 will sample class 0. sample_value_batch = self.evaluate(sample) self.assertAllEqual([[0, 1], [1, 0]], sample_value_batch) def testUnknownAndInvalidShape(self): logits = tf1.placeholder_with_default(19.84, shape=None) with self.assertRaises( ValueError, 'Argument `logits` must have rank at least 1.'): dist = tfd.OneHotCategorical(logits, validate_args=True) self.evaluate(dist.sample()) logits = tf1.placeholder_with_default([[], []], shape=None) with self.assertRaises( ValueError, 'Argument `logits` must have final dimension >= 1.'): dist = tfd.OneHotCategorical(logits, validate_args=True) self.evaluate(dist.sample()) def testEntropyNoBatch(self): logits = np.log([0.2, 0.8]) - 50. dist = tfd.OneHotCategorical(logits, validate_args=True) self.assertAllClose(self.evaluate(dist.entropy()), -(0.2 * np.log(0.2) + 0.8 * np.log(0.8)), atol=1e-5, rtol=1e-5) def testEntropyWithBatch(self): logits = np.log([[0.2, 0.8], [0.6, 0.4]]) - 50. dist = tfd.OneHotCategorical(logits, validate_args=True) self.assertAllClose( self.evaluate(dist.entropy()), [-(0.2 * np.log(0.2) + 0.8 * np.log(0.8)), -(0.6 * np.log(0.6) + 0.4 * np.log(0.4))], atol=1e-5, rtol=1e-5) def testPmf(self): # check that probability of samples correspond to their class probabilities logits = self._rng.random_sample(size=(8, 2, 10)) prob = np.exp(logits) / np.sum(np.exp(logits), axis=-1, keepdims=True) dist = tfd.OneHotCategorical(logits=logits, validate_args=True) np_sample = self.evaluate(dist.sample()) np_prob = self.evaluate(dist.prob(np_sample)) expected_prob = prob[np_sample.astype(np.bool)] self.assertAllClose(expected_prob, np_prob.flatten()) def testEventSizeOfOne(self): d = tfd.OneHotCategorical( probs=tf1.placeholder_with_default([1.], shape=None), validate_args=True) self.assertAllEqual(np.ones((5, 3, 1), dtype=np.int32), self.evaluate(d.sample([5, 3]))) self.assertAllClose([0., 0., 0., 0., 0.], self.evaluate(d.log_prob(tf.ones((5, 1))))) self.assertAllClose(0., self.evaluate(d.entropy())) self.assertAllClose([0.], self.evaluate(d.variance())) self.assertAllClose([[0.]], self.evaluate(d.covariance())) self.assertAllClose([1.], self.evaluate(d.mode())) self.assertAllClose([1.], self.evaluate(d.mean())) def testSample(self): probs = [[[0.2, 0.8], [0.4, 0.6]]] dist = tfd.OneHotCategorical(tf.math.log(probs) - 50., validate_args=True) n = 100 samples = dist.sample(n, seed=test_util.test_seed()) self.assertEqual(samples.dtype, tf.int32) sample_values = self.evaluate(samples) self.assertAllEqual([n, 1, 2, 2], sample_values.shape) self.assertFalse(np.any(sample_values < 0)) self.assertFalse(np.any(sample_values > 1)) def testSampleWithSampleShape(self): probs = [[[0.2, 0.8], [0.4, 0.6]]] dist = tfd.OneHotCategorical(tf.math.log(probs) - 50., validate_args=True) samples = dist.sample((100, 100), seed=test_util.test_seed()) prob = dist.prob(samples) prob_val = self.evaluate(prob) self.assertAllClose( [0.2**2 + 0.8**2], [prob_val[:, :, :, 0].mean()], atol=1e-2) self.assertAllClose( [0.4**2 + 0.6**2], [prob_val[:, :, :, 1].mean()], atol=1e-2) def testCategoricalCategoricalKL(self): def np_softmax(logits): exp_logits = np.exp(logits) return exp_logits / exp_logits.sum(axis=-1, keepdims=True) for categories in [2, 10]: for batch_size in [1, 2]: p_logits = self._rng.random_sample((batch_size, categories)) q_logits = self._rng.random_sample((batch_size, categories)) p = tfd.OneHotCategorical(logits=p_logits, validate_args=True) q = tfd.OneHotCategorical(logits=q_logits, validate_args=True) prob_p = np_softmax(p_logits) prob_q = np_softmax(q_logits) kl_expected = np.sum( prob_p * (np.log(prob_p) - np.log(prob_q)), axis=-1) kl_actual = tfd.kl_divergence(p, q) kl_same = tfd.kl_divergence(p, p) x = p.sample(int(2e4), seed=test_util.test_seed()) x = tf.cast(x, dtype=tf.float32) # Compute empirical KL(p||q). kl_sample = tf.reduce_mean( input_tensor=p.log_prob(x) - q.log_prob(x), axis=0) [kl_sample_, kl_actual_, kl_same_] = self.evaluate([kl_sample, kl_actual, kl_same]) self.assertEqual(kl_actual.shape, (batch_size,)) self.assertAllClose(kl_same_, np.zeros_like(kl_expected)) self.assertAllClose(kl_actual_, kl_expected, atol=0., rtol=1e-4) self.assertAllClose(kl_sample_, kl_expected, atol=1e-2, rtol=0.) def testSampleUnbiasedNonScalarBatch(self): logits = self._rng.rand(4, 3, 2).astype(np.float32) dist = tfd.OneHotCategorical(logits=logits, validate_args=True) n = int(3e3) x = dist.sample(n, seed=test_util.test_seed()) x = tf.cast(x, dtype=tf.float32) sample_mean = tf.reduce_mean(input_tensor=x, axis=0) x_centered = tf.transpose(a=x - sample_mean, perm=[1, 2, 3, 0]) sample_covariance = tf.matmul(x_centered, x_centered, adjoint_b=True) / n [ sample_mean_, sample_covariance_, actual_mean_, actual_covariance_, ] = self.evaluate([ sample_mean, sample_covariance, dist.mean(), dist.covariance(), ]) self.assertAllEqual([4, 3, 2], sample_mean.shape) self.assertAllClose(actual_mean_, sample_mean_, atol=0., rtol=0.07) self.assertAllEqual([4, 3, 2, 2], sample_covariance.shape) self.assertAllClose( actual_covariance_, sample_covariance_, atol=0., rtol=0.10) def testSampleUnbiasedScalarBatch(self): logits = self._rng.rand(3).astype(np.float32) dist = tfd.OneHotCategorical(logits=logits, validate_args=True) n = int(1e4) x = dist.sample(n, seed=test_util.test_seed()) x = tf.cast(x, dtype=tf.float32) sample_mean = tf.reduce_mean(input_tensor=x, axis=0) # elementwise mean x_centered = x - sample_mean sample_covariance = tf.matmul(x_centered, x_centered, adjoint_a=True) / n [ sample_mean_, sample_covariance_, actual_mean_, actual_covariance_, ] = self.evaluate([ sample_mean, sample_covariance, dist.probs, dist.covariance(), ]) self.assertAllEqual([3], sample_mean.shape) self.assertAllClose(actual_mean_, sample_mean_, atol=0., rtol=0.1) self.assertAllEqual([3, 3], sample_covariance.shape) self.assertAllClose( actual_covariance_, sample_covariance_, atol=0., rtol=0.1) def testParamTensorFromLogits(self): x = tf.constant([-1., 0.5, 1.]) d = tfd.OneHotCategorical(logits=x, validate_args=True) self.assertAllClose( *self.evaluate([x, d.logits_parameter()]), atol=0, rtol=1e-4) self.assertAllClose( *self.evaluate([tf.math.softmax(x), d.probs_parameter()]), atol=0, rtol=1e-4) def testParamTensorFromProbs(self): x = tf.constant([0.1, 0.5, 0.4]) d = tfd.OneHotCategorical(probs=x, validate_args=True) self.assertAllClose( *self.evaluate([tf.math.log(x), d.logits_parameter()]), atol=0, rtol=1e-4) self.assertAllClose( *self.evaluate([x, d.probs_parameter()]), atol=0, rtol=1e-4) @test_util.test_all_tf_execution_regimes class OneHotCategoricalFromVariableTest(test_util.TestCase): def testGradientLogits(self): x = tf.Variable([-1., 0., 1]) d = tfd.OneHotCategorical(logits=x, validate_args=True) with tf.GradientTape() as tape: loss = -d.log_prob([[1, 0, 0], [0, 0, 1]]) g = tape.gradient(loss, d.trainable_variables) self.assertLen(g, 1) self.assertAllNotNone(g) def testGradientProbs(self): x = tf.Variable([0.1, 0.7, 0.2]) d = tfd.OneHotCategorical(probs=x, validate_args=True) with tf.GradientTape() as tape: loss = -d.log_prob([[1, 0, 0], [0, 0, 1]]) g = tape.gradient(loss, d.trainable_variables) self.assertLen(g, 1) self.assertAllNotNone(g) def testAssertionsProbs(self): x = tf.Variable([0.1, 0.7, 0.0]) with self.assertRaisesOpError('Argument `probs` must sum to 1.'): d = tfd.OneHotCategorical(probs=x, validate_args=True) self.evaluate([v.initializer for v in d.variables]) self.evaluate(d.entropy()) def testAssertionsProbsAfterMutation(self): x = tf.Variable([0.25, 0.25, 0.5]) d = tfd.OneHotCategorical(probs=x, validate_args=True) with self.assertRaisesOpError('Condition x >= 0 did not hold element-wise'): self.evaluate([v.initializer for v in d.variables]) with tf.control_dependencies([x.assign([-0.25, 0.75, 0.5])]): self.evaluate(d.logits_parameter()) def testAssertionsLogits(self): x = tfp.util.TransformedVariable(0., tfb.Identity(), shape=None) with self.assertRaisesRegexp( ValueError, 'Argument `logits` must have rank at least 1.'): d = tfd.OneHotCategorical(logits=x, validate_args=True) self.evaluate([v.initializer for v in d.variables]) self.evaluate(d.entropy()) if __name__ == '__main__': tf.test.main()
40.469388
80
0.670413
4a274c32ed647884f878b0eb041d24272785eeb6
39,591
py
Python
svg2mod/svg2mod.py
al3ph/svg2mod
a6fb251b99b048920a4d92a6558243bc5ee4af6c
[ "CC0-1.0" ]
null
null
null
svg2mod/svg2mod.py
al3ph/svg2mod
a6fb251b99b048920a4d92a6558243bc5ee4af6c
[ "CC0-1.0" ]
null
null
null
svg2mod/svg2mod.py
al3ph/svg2mod
a6fb251b99b048920a4d92a6558243bc5ee4af6c
[ "CC0-1.0" ]
null
null
null
#!/usr/bin/python from __future__ import absolute_import import argparse import datetime import os from pprint import pformat, pprint import re import svg2mod.svg as svg import sys #---------------------------------------------------------------------------- DEFAULT_DPI = 96 # 96 as of Inkscape 0.92 def main(): args, parser = get_arguments() pretty = args.format == 'pretty' use_mm = args.units == 'mm' if pretty: if not use_mm: print( "Error: decimil units only allowed with legacy output type" ) sys.exit( -1 ) #if args.include_reverse: #print( #"Warning: reverse footprint not supported or required for" + #" pretty output format" #) # Import the SVG: imported = Svg2ModImport( args.input_file_name, args.module_name, args.module_value ) # Pick an output file name if none was provided: if args.output_file_name is None: args.output_file_name = os.path.splitext( os.path.basename( args.input_file_name ) )[ 0 ] # Append the correct file name extension if needed: if pretty: extension = ".kicad_mod" else: extension = ".mod" if args.output_file_name[ - len( extension ) : ] != extension: args.output_file_name += extension # Create an exporter: if pretty: exported = Svg2ModExportPretty( imported, args.output_file_name, args.scale_factor, args.precision, args.dpi, ) else: # If the module file exists, try to read it: exported = None if os.path.isfile( args.output_file_name ): try: exported = Svg2ModExportLegacyUpdater( imported, args.output_file_name, args.scale_factor, args.precision, args.dpi, include_reverse = not args.front_only, ) except Exception as e: raise e #print( e.message ) #exported = None # Write the module file: if exported is None: exported = Svg2ModExportLegacy( imported, args.output_file_name, args.scale_factor, args.precision, use_mm = use_mm, dpi = args.dpi, include_reverse = not args.front_only, ) # Export the footprint: exported.write() #---------------------------------------------------------------------------- class LineSegment( object ): #------------------------------------------------------------------------ @staticmethod def _on_segment( p, q, r ): """ Given three colinear points p, q, and r, check if point q lies on line segment pr. """ if ( q.x <= max( p.x, r.x ) and q.x >= min( p.x, r.x ) and q.y <= max( p.y, r.y ) and q.y >= min( p.y, r.y ) ): return True return False #------------------------------------------------------------------------ @staticmethod def _orientation( p, q, r ): """ Find orientation of ordered triplet (p, q, r). Returns following values 0 --> p, q and r are colinear 1 --> Clockwise 2 --> Counterclockwise """ val = ( ( q.y - p.y ) * ( r.x - q.x ) - ( q.x - p.x ) * ( r.y - q.y ) ) if val == 0: return 0 if val > 0: return 1 return 2 #------------------------------------------------------------------------ def __init__( self, p = None, q = None ): self.p = p self.q = q #------------------------------------------------------------------------ def connects( self, segment ): if self.q.x == segment.p.x and self.q.y == segment.p.y: return True if self.q.x == segment.q.x and self.q.y == segment.q.y: return True if self.p.x == segment.p.x and self.p.y == segment.p.y: return True if self.p.x == segment.q.x and self.p.y == segment.q.y: return True return False #------------------------------------------------------------------------ def intersects( self, segment ): """ Return true if line segments 'p1q1' and 'p2q2' intersect. Adapted from: http://www.geeksforgeeks.org/check-if-two-given-line-segments-intersect/ """ # Find the four orientations needed for general and special cases: o1 = self._orientation( self.p, self.q, segment.p ) o2 = self._orientation( self.p, self.q, segment.q ) o3 = self._orientation( segment.p, segment.q, self.p ) o4 = self._orientation( segment.p, segment.q, self.q ) return ( # General case: ( o1 != o2 and o3 != o4 ) or # p1, q1 and p2 are colinear and p2 lies on segment p1q1: ( o1 == 0 and self._on_segment( self.p, segment.p, self.q ) ) or # p1, q1 and p2 are colinear and q2 lies on segment p1q1: ( o2 == 0 and self._on_segment( self.p, segment.q, self.q ) ) or # p2, q2 and p1 are colinear and p1 lies on segment p2q2: ( o3 == 0 and self._on_segment( segment.p, self.p, segment.q ) ) or # p2, q2 and q1 are colinear and q1 lies on segment p2q2: ( o4 == 0 and self._on_segment( segment.p, self.q, segment.q ) ) ) #------------------------------------------------------------------------ def q_next( self, q ): self.p = self.q self.q = q #------------------------------------------------------------------------ #---------------------------------------------------------------------------- class PolygonSegment( object ): #------------------------------------------------------------------------ def __init__( self, points ): self.points = points if len( points ) < 3: print( "Warning:" " Path segment has only {} points (not a polygon?)".format( len( points ) ) ) #------------------------------------------------------------------------ # KiCad will not "pick up the pen" when moving between a polygon outline # and holes within it, so we search for a pair of points connecting the # outline (self) to the hole such that the connecting segment will not # cross the visible inner space within any hole. def _find_insertion_point( self, hole, holes ): #print( " Finding insertion point. {} holes".format( len( holes ) ) ) # Try the next point on the container: for cp in range( len( self.points ) ): container_point = self.points[ cp ] #print( " Trying container point {}".format( cp ) ) # Try the next point on the hole: for hp in range( len( hole.points ) - 1 ): hole_point = hole.points[ hp ] #print( " Trying hole point {}".format( cp ) ) bridge = LineSegment( container_point, hole_point ) # Check for intersection with each other hole: for other_hole in holes: #print( " Trying other hole. Check = {}".format( hole == other_hole ) ) # If the other hole intersects, don't bother checking # remaining holes: if other_hole.intersects( bridge, check_connects = ( other_hole == hole or other_hole == self ) ): break #print( " Hole does not intersect." ) else: print( " Found insertion point: {}, {}".format( cp, hp ) ) # No other holes intersected, so this insertion point # is acceptable: return ( cp, hole.points_starting_on_index( hp ) ) print( "Could not insert segment without overlapping other segments" ) #------------------------------------------------------------------------ # Return the list of ordered points starting on the given index, ensuring # that the first and last points are the same. def points_starting_on_index( self, index ): points = self.points if index > 0: # Strip off end point, which is a duplicate of the start point: points = points[ : -1 ] points = points[ index : ] + points[ : index ] points.append( svg.Point( points[ 0 ].x, points[ 0 ].y ) ) return points #------------------------------------------------------------------------ # Return a list of points with the given polygon segments (paths) inlined. def inline( self, segments ): if len( segments ) < 1: return self.points print( " Inlining {} segments...".format( len( segments ) ) ) all_segments = segments[ : ] + [ self ] insertions = [] # Find the insertion point for each hole: for hole in segments: insertion = self._find_insertion_point( hole, all_segments ) if insertion is not None: insertions.append( insertion ) insertions.sort( key = lambda i: i[ 0 ] ) inlined = [ self.points[ 0 ] ] ip = 1 points = self.points for insertion in insertions: while ip <= insertion[ 0 ]: inlined.append( points[ ip ] ) ip += 1 if ( inlined[ -1 ].x == insertion[ 1 ][ 0 ].x and inlined[ -1 ].y == insertion[ 1 ][ 0 ].y ): inlined += insertion[ 1 ][ 1 : -1 ] else: inlined += insertion[ 1 ] inlined.append( svg.Point( points[ ip - 1 ].x, points[ ip - 1 ].y, ) ) while ip < len( points ): inlined.append( points[ ip ] ) ip += 1 return inlined #------------------------------------------------------------------------ def intersects( self, line_segment, check_connects ): hole_segment = LineSegment() # Check each segment of other hole for intersection: for point in self.points: hole_segment.q_next( point ) if hole_segment.p is not None: if ( check_connects and line_segment.connects( hole_segment ) ): continue if line_segment.intersects( hole_segment ): #print( "Intersection detected." ) return True return False #------------------------------------------------------------------------ # Apply all transformations and rounding, then remove duplicate # consecutive points along the path. def process( self, transformer, flip, fill ): points = [] for point in self.points: point = transformer.transform_point( point, flip ) if ( len( points ) < 1 or point.x != points[ -1 ].x or point.y != points[ -1 ].y ): points.append( point ) if ( points[ 0 ].x != points[ -1 ].x or points[ 0 ].y != points[ -1 ].y ): #print( "Warning: Closing polygon. start=({}, {}) end=({}, {})".format( #points[ 0 ].x, points[ 0 ].y, #points[ -1 ].x, points[ -1 ].y, #) ) if fill: points.append( svg.Point( points[ 0 ].x, points[ 0 ].y, ) ) #else: #print( "Polygon closed: start=({}, {}) end=({}, {})".format( #points[ 0 ].x, points[ 0 ].y, #points[ -1 ].x, points[ -1 ].y, #) ) self.points = points #------------------------------------------------------------------------ #---------------------------------------------------------------------------- class Svg2ModImport( object ): #------------------------------------------------------------------------ def __init__( self, file_name, module_name, module_value ): self.file_name = file_name self.module_name = module_name self.module_value = module_value print( "Parsing SVG..." ) self.svg = svg.parse( file_name ) #------------------------------------------------------------------------ #---------------------------------------------------------------------------- class Svg2ModExport( object ): #------------------------------------------------------------------------ @staticmethod def _convert_decimil_to_mm( decimil ): return float( decimil ) * 0.00254 #------------------------------------------------------------------------ @staticmethod def _convert_mm_to_decimil( mm ): return int( round( mm * 393.700787 ) ) #------------------------------------------------------------------------ def _get_fill_stroke( self, item ): fill = True stroke = True stroke_width = 0.0 if item.style is not None and item.style != "": for property in item.style.split( ";" ): nv = property.split( ":" ); name = nv[ 0 ].strip() value = nv[ 1 ].strip() if name == "fill" and value == "none": fill = False elif name == "stroke" and value == "none": stroke = False elif name == "stroke-width": if value.endswith("px"): value = value.replace( "px", "" ) stroke_width = float( value ) * 25.4 / float(self.dpi) else: stroke_width = float( value ) if not stroke: stroke_width = 0.0 elif stroke_width is None: # Give a default stroke width? stroke_width = self._convert_decimil_to_mm( 1 ) return fill, stroke, stroke_width #------------------------------------------------------------------------ def __init__( self, svg2mod_import, file_name, scale_factor = 1.0, precision = 20.0, use_mm = True, dpi = DEFAULT_DPI, ): if use_mm: # 25.4 mm/in; scale_factor *= 25.4 / float(dpi) use_mm = True else: # PCBNew uses "decimil" (10K DPI); scale_factor *= 10000.0 / float(dpi) self.imported = svg2mod_import self.file_name = file_name self.scale_factor = scale_factor self.precision = precision self.use_mm = use_mm self.dpi = dpi #------------------------------------------------------------------------ def _calculate_translation( self ): min_point, max_point = self.imported.svg.bbox() # Center the drawing: adjust_x = min_point.x + ( max_point.x - min_point.x ) / 2.0 adjust_y = min_point.y + ( max_point.y - min_point.y ) / 2.0 self.translation = svg.Point( 0.0 - adjust_x, 0.0 - adjust_y, ) #------------------------------------------------------------------------ # Find and keep only the layers of interest. def _prune( self, items = None ): if items is None: self.layers = {} for name in self.layer_map.iterkeys(): self.layers[ name ] = None items = self.imported.svg.items self.imported.svg.items = [] for item in items: if not isinstance( item, svg.Group ): continue for name in self.layers.iterkeys(): #if re.search( name, item.name, re.I ): if name == item.name: print( "Found SVG layer: {}".format( item.name ) ) self.imported.svg.items.append( item ) self.layers[ name ] = item break else: self._prune( item.items ) #------------------------------------------------------------------------ def _write_items( self, items, layer, flip = False ): for item in items: if isinstance( item, svg.Group ): self._write_items( item.items, layer, flip ) continue elif isinstance( item, svg.Path ): segments = [ PolygonSegment( segment ) for segment in item.segments( precision = self.precision ) ] fill, stroke, stroke_width = self._get_fill_stroke( item ) for segment in segments: segment.process( self, flip, fill ) if len( segments ) > 1: points = segments[ 0 ].inline( segments[ 1 : ] ) elif len( segments ) > 0: points = segments[ 0 ].points if not self.use_mm: stroke_width = self._convert_mm_to_decimil( stroke_width ) print( " Writing polygon with {} points".format( len( points ) ) ) self._write_polygon( points, layer, fill, stroke, stroke_width ) else: print( "Unsupported SVG element: {}".format( item.__class__.__name__ ) ) #------------------------------------------------------------------------ def _write_module( self, front ): module_name = self._get_module_name( front ) min_point, max_point = self.imported.svg.bbox() min_point = self.transform_point( min_point, flip = False ) max_point = self.transform_point( max_point, flip = False ) label_offset = 1200 label_size = 600 label_pen = 120 if self.use_mm: label_size = self._convert_decimil_to_mm( label_size ) label_pen = self._convert_decimil_to_mm( label_pen ) reference_y = min_point.y - self._convert_decimil_to_mm( label_offset ) value_y = max_point.y + self._convert_decimil_to_mm( label_offset ) else: reference_y = min_point.y - label_offset value_y = max_point.y + label_offset self._write_module_header( label_size, label_pen, reference_y, value_y, front, ) for name, group in self.layers.iteritems(): if group is None: continue layer = self._get_layer_name( name, front ) #print( " Writing layer: {}".format( name ) ) self._write_items( group.items, layer, not front ) self._write_module_footer( front ) #------------------------------------------------------------------------ def _write_polygon_filled( self, points, layer, stroke_width = 0.0 ): self._write_polygon_header( points, layer ) for point in points: self._write_polygon_point( point ) self._write_polygon_footer( layer, stroke_width ) #------------------------------------------------------------------------ def _write_polygon_outline( self, points, layer, stroke_width ): prior_point = None for point in points: if prior_point is not None: self._write_polygon_segment( prior_point, point, layer, stroke_width ) prior_point = point #------------------------------------------------------------------------ def transform_point( self, point, flip = False ): transformed_point = svg.Point( ( point.x + self.translation.x ) * self.scale_factor, ( point.y + self.translation.y ) * self.scale_factor, ) if flip: transformed_point.x *= -1 if self.use_mm: transformed_point.x = round( transformed_point.x, 12 ) transformed_point.y = round( transformed_point.y, 12 ) else: transformed_point.x = int( round( transformed_point.x ) ) transformed_point.y = int( round( transformed_point.y ) ) return transformed_point #------------------------------------------------------------------------ def write( self ): self._prune() # Must come after pruning: translation = self._calculate_translation() print( "Writing module file: {}".format( self.file_name ) ) self.output_file = open( self.file_name, 'w' ) self._write_library_intro() self._write_modules() self.output_file.close() self.output_file = None #------------------------------------------------------------------------ #---------------------------------------------------------------------------- class Svg2ModExportLegacy( Svg2ModExport ): layer_map = { #'inkscape-name' : [ kicad-front, kicad-back ], 'Cu' : [ 15, 0 ], 'Adhes' : [ 17, 16 ], 'Paste' : [ 19, 18 ], 'SilkS' : [ 21, 20 ], 'Mask' : [ 23, 22 ], 'Dwgs.User' : [ 24, 24 ], 'Cmts.User' : [ 25, 25 ], 'Eco1.User' : [ 26, 26 ], 'Eco2.User' : [ 27, 27 ], 'Edge.Cuts' : [ 28, 28 ], } #------------------------------------------------------------------------ def __init__( self, svg2mod_import, file_name, scale_factor = 1.0, precision = 20.0, use_mm = True, dpi = DEFAULT_DPI, include_reverse = True, ): super( Svg2ModExportLegacy, self ).__init__( svg2mod_import, file_name, scale_factor, precision, use_mm, dpi, ) self.include_reverse = include_reverse #------------------------------------------------------------------------ def _get_layer_name( self, name, front ): layer_info = self.layer_map[ name ] layer = layer_info[ 0 ] if not front and layer_info[ 1 ] is not None: layer = layer_info[ 1 ] return layer #------------------------------------------------------------------------ def _get_module_name( self, front = None ): if self.include_reverse and not front: return self.imported.module_name + "-rev" return self.imported.module_name #------------------------------------------------------------------------ def _write_library_intro( self ): modules_list = self._get_module_name( front = True ) if self.include_reverse: modules_list += ( "\n" + self._get_module_name( front = False ) ) units = "" if self.use_mm: units = "\nUnits mm" self.output_file.write( """PCBNEW-LibModule-V1 {0}{1} $INDEX {2} $EndINDEX # # {3} # """.format( datetime.datetime.now().strftime( "%a %d %b %Y %I:%M:%S %p %Z" ), units, modules_list, self.imported.file_name, ) ) #------------------------------------------------------------------------ def _write_module_header( self, label_size, label_pen, reference_y, value_y, front, ): self.output_file.write( """$MODULE {0} Po 0 0 0 {6} 00000000 00000000 ~~ Li {0} T0 0 {1} {2} {2} 0 {3} N I 21 "{0}" T1 0 {5} {2} {2} 0 {3} N I 21 "{4}" """.format( self._get_module_name( front ), reference_y, label_size, label_pen, self.imported.module_value, value_y, 15, # Seems necessary ) ) #------------------------------------------------------------------------ def _write_module_footer( self, front ): self.output_file.write( "$EndMODULE {0}\n".format( self._get_module_name( front ) ) ) #------------------------------------------------------------------------ def _write_modules( self ): self._write_module( front = True ) if self.include_reverse: self._write_module( front = False ) self.output_file.write( "$EndLIBRARY" ) #------------------------------------------------------------------------ def _write_polygon( self, points, layer, fill, stroke, stroke_width ): if fill: self._write_polygon_filled( points, layer ) if stroke: self._write_polygon_outline( points, layer, stroke_width ) #------------------------------------------------------------------------ def _write_polygon_footer( self, layer, stroke_width ): pass #------------------------------------------------------------------------ def _write_polygon_header( self, points, layer ): pen = 1 if self.use_mm: pen = self._convert_decimil_to_mm( pen ) self.output_file.write( "DP 0 0 0 0 {} {} {}\n".format( len( points ), pen, layer ) ) #------------------------------------------------------------------------ def _write_polygon_point( self, point ): self.output_file.write( "Dl {} {}\n".format( point.x, point.y ) ) #------------------------------------------------------------------------ def _write_polygon_segment( self, p, q, layer, stroke_width ): self.output_file.write( "DS {} {} {} {} {} {}\n".format( p.x, p.y, q.x, q.y, stroke_width, layer ) ) #------------------------------------------------------------------------ #---------------------------------------------------------------------------- class Svg2ModExportLegacyUpdater( Svg2ModExportLegacy ): #------------------------------------------------------------------------ def __init__( self, svg2mod_import, file_name, scale_factor = 1.0, precision = 20.0, dpi = DEFAULT_DPI, include_reverse = True, ): self.file_name = file_name use_mm = self._parse_output_file() super( Svg2ModExportLegacyUpdater, self ).__init__( svg2mod_import, file_name, scale_factor, precision, use_mm, dpi, include_reverse, ) #------------------------------------------------------------------------ def _parse_output_file( self ): print( "Parsing module file: {}".format( self.file_name ) ) module_file = open( self.file_name, 'r' ) lines = module_file.readlines() module_file.close() self.loaded_modules = {} self.post_index = [] self.pre_index = [] use_mm = False index = 0 # Find the start of the index: while index < len( lines ): line = lines[ index ] index += 1 self.pre_index.append( line ) if line[ : 6 ] == "$INDEX": break m = re.match( "Units[\s]+mm[\s]*", line ) if m is not None: print( " Use mm detected" ) use_mm = True # Read the index: while index < len( lines ): line = lines[ index ] if line[ : 9 ] == "$EndINDEX": break index += 1 self.loaded_modules[ line.strip() ] = [] # Read up until the first module: while index < len( lines ): line = lines[ index ] if line[ : 7 ] == "$MODULE": break index += 1 self.post_index.append( line ) # Read modules: while index < len( lines ): line = lines[ index ] if line[ : 7 ] == "$MODULE": module_name, module_lines, index = self._read_module( lines, index ) if module_name is not None: self.loaded_modules[ module_name ] = module_lines elif line[ : 11 ] == "$EndLIBRARY": break else: raise Exception( "Expected $EndLIBRARY: [{}]".format( line ) ) #print( "Pre-index:" ) #pprint( self.pre_index ) #print( "Post-index:" ) #pprint( self.post_index ) #print( "Loaded modules:" ) #pprint( self.loaded_modules ) return use_mm #------------------------------------------------------------------------ def _read_module( self, lines, index ): # Read module name: m = re.match( r'\$MODULE[\s]+([^\s]+)[\s]*', lines[ index ] ) module_name = m.group( 1 ) print( " Reading module {}".format( module_name ) ) index += 1 module_lines = [] while index < len( lines ): line = lines[ index ] index += 1 m = re.match( r'\$EndMODULE[\s]+' + module_name + r'[\s]*', line ) if m is not None: return module_name, module_lines, index module_lines.append( line ) raise Exception( "Could not find end of module '{}'".format( module_name ) ) #------------------------------------------------------------------------ def _write_library_intro( self ): # Write pre-index: self.output_file.writelines( self.pre_index ) self.loaded_modules[ self._get_module_name( front = True ) ] = None if self.include_reverse: self.loaded_modules[ self._get_module_name( front = False ) ] = None # Write index: for module_name in sorted( self.loaded_modules.iterkeys(), key = str.lower ): self.output_file.write( module_name + "\n" ) # Write post-index: self.output_file.writelines( self.post_index ) #------------------------------------------------------------------------ def _write_preserved_modules( self, up_to = None ): if up_to is not None: up_to = up_to.lower() for module_name in sorted( self.loaded_modules.iterkeys(), key = str.lower ): if up_to is not None and module_name.lower() >= up_to: continue module_lines = self.loaded_modules[ module_name ] if module_lines is not None: self.output_file.write( "$MODULE {}\n".format( module_name ) ) self.output_file.writelines( module_lines ) self.output_file.write( "$EndMODULE {}\n".format( module_name ) ) self.loaded_modules[ module_name ] = None #------------------------------------------------------------------------ def _write_module_footer( self, front ): super( Svg2ModExportLegacyUpdater, self )._write_module_footer( front, ) # Write remaining modules: if not front: self._write_preserved_modules() #------------------------------------------------------------------------ def _write_module_header( self, label_size, label_pen, reference_y, value_y, front, ): self._write_preserved_modules( up_to = self._get_module_name( front ) ) super( Svg2ModExportLegacyUpdater, self )._write_module_header( label_size, label_pen, reference_y, value_y, front, ) #------------------------------------------------------------------------ #---------------------------------------------------------------------------- class Svg2ModExportPretty( Svg2ModExport ): layer_map = { #'inkscape-name' : kicad-name, 'Cu' : "{}.Cu", 'Adhes' : "{}.Adhes", 'Paste' : "{}.Paste", 'SilkS' : "{}.SilkS", 'Mask' : "{}.Mask", 'CrtYd' : "{}.CrtYd", 'Fab' : "{}.Fab", 'Edge.Cuts' : "Edge.Cuts" } #------------------------------------------------------------------------ def _get_layer_name( self, name, front ): if front: return self.layer_map[ name ].format("F") else: return self.layer_map[ name ].format("B") #------------------------------------------------------------------------ def _get_module_name( self, front = None ): return self.imported.module_name #------------------------------------------------------------------------ def _write_library_intro( self ): self.output_file.write( """(module {0} (layer F.Cu) (tedit {1:8X}) (attr smd) (descr "{2}") (tags {3}) """.format( self.imported.module_name, #0 int( round( os.path.getctime( #1 self.imported.file_name ) ) ), "Imported from {}".format( self.imported.file_name ), #2 "svg2mod", #3 ) ) #------------------------------------------------------------------------ def _write_module_footer( self, front ): self.output_file.write( "\n)" ) #------------------------------------------------------------------------ def _write_module_header( self, label_size, label_pen, reference_y, value_y, front, ): if front: side = "F" else: side = "B" self.output_file.write( """ (fp_text reference {0} (at 0 {1}) (layer {2}.SilkS) hide (effects (font (size {3} {3}) (thickness {4}))) ) (fp_text value {5} (at 0 {6}) (layer {2}.SilkS) hide (effects (font (size {3} {3}) (thickness {4}))) )""".format( self._get_module_name(), #0 reference_y, #1 side, #2 label_size, #3 label_pen, #4 self.imported.module_value, #5 value_y, #6 ) ) #------------------------------------------------------------------------ def _write_modules( self ): self._write_module( front = True ) #------------------------------------------------------------------------ def _write_polygon( self, points, layer, fill, stroke, stroke_width ): if fill: self._write_polygon_filled( points, layer, stroke_width ) # Polygons with a fill and stroke are drawn with the filled polygon # above: if stroke and not fill: self._write_polygon_outline( points, layer, stroke_width ) #------------------------------------------------------------------------ def _write_polygon_footer( self, layer, stroke_width ): self.output_file.write( " )\n (layer {})\n (width {})\n )".format( layer, stroke_width ) ) #------------------------------------------------------------------------ def _write_polygon_header( self, points, layer ): self.output_file.write( "\n (fp_poly\n (pts \n" ) #------------------------------------------------------------------------ def _write_polygon_point( self, point ): self.output_file.write( " (xy {} {})\n".format( point.x, point.y ) ) #------------------------------------------------------------------------ def _write_polygon_segment( self, p, q, layer, stroke_width ): self.output_file.write( """\n (fp_line (start {} {}) (end {} {}) (layer {}) (width {}) )""".format( p.x, p.y, q.x, q.y, layer, stroke_width, ) ) #------------------------------------------------------------------------ #---------------------------------------------------------------------------- def get_arguments(): parser = argparse.ArgumentParser( description = ( 'Convert Inkscape SVG drawings to KiCad footprint modules.' ) ) #------------------------------------------------------------------------ parser.add_argument( '-i', '--input-file', type = str, dest = 'input_file_name', metavar = 'FILENAME', help = "name of the SVG file", required = True, ) parser.add_argument( '-o', '--output-file', type = str, dest = 'output_file_name', metavar = 'FILENAME', help = "name of the module file", ) parser.add_argument( '--name', '--module-name', type = str, dest = 'module_name', metavar = 'NAME', help = "base name of the module", default = "svg2mod", ) parser.add_argument( '--value', '--module-value', type = str, dest = 'module_value', metavar = 'VALUE', help = "value of the module", default = "G***", ) parser.add_argument( '-f', '--factor', type = float, dest = 'scale_factor', metavar = 'FACTOR', help = "scale paths by this factor", default = 1.0, ) parser.add_argument( '-p', '--precision', type = float, dest = 'precision', metavar = 'PRECISION', help = "smoothness for approximating curves with line segments (float)", default = 10.0, ) parser.add_argument( '--front-only', dest = 'front_only', action = 'store_const', const = True, help = "omit output of back module (legacy output format)", default = False, ) parser.add_argument( '--format', type = str, dest = 'format', metavar = 'FORMAT', choices = [ 'legacy', 'pretty' ], help = "output module file format (legacy|pretty)", default = 'pretty', ) parser.add_argument( '--units', type = str, dest = 'units', metavar = 'UNITS', choices = [ 'decimil', 'mm' ], help = "output units, if output format is legacy (decimil|mm)", default = 'mm', ) parser.add_argument( '-d', '--dpi', type = int, dest = 'dpi', metavar = 'DPI', help = "DPI of the SVG file (int)", default = DEFAULT_DPI, ) return parser.parse_args(), parser #------------------------------------------------------------------------ #---------------------------------------------------------------------------- main() #---------------------------------------------------------------------------- # vi: set et sts=4 sw=4 ts=4:
27.135709
97
0.43131
4a274e454f34759f91e9b97175b1709948e54e7e
1,239
py
Python
contracts/contract_account.py
fabrice102/create-asa-with-ssc
616025599b54cc3cff94f5abb012535c7eebcf03
[ "MIT" ]
5
2021-06-17T18:17:52.000Z
2021-07-18T07:58:32.000Z
contracts/contract_account.py
fabrice102/create-asa-with-ssc
616025599b54cc3cff94f5abb012535c7eebcf03
[ "MIT" ]
null
null
null
contracts/contract_account.py
fabrice102/create-asa-with-ssc
616025599b54cc3cff94f5abb012535c7eebcf03
[ "MIT" ]
null
null
null
import sys from pyteal import * def contract_account(app_id): asset_close_to_check = Txn.asset_close_to() == Global.zero_address() rekey_check = Txn.rekey_to() == Global.zero_address() linked_with_app_call = And( Gtxn[0].type_enum() == TxnType.ApplicationCall, Gtxn[0].application_id() == Int(app_id) ) fee_check = Txn.fee() <= Int(1000) # create asa from escrow on_create_asa = Txn.type_enum() == TxnType.AssetConfig # fund 1 asa that has been created by escrow on_fund_asa = Seq([ Assert(Txn.type_enum() == TxnType.AssetTransfer), Assert(Txn.asset_sender() == Global.zero_address()), Assert(asset_close_to_check), Assert(Txn.asset_amount() == Int(1)), Int(1) ]) return Seq([ Assert(Txn.group_index() == Int(1)), Assert(linked_with_app_call), Assert(rekey_check), Assert(fee_check), Cond( [Gtxn[0].application_args[0] == Bytes("create_asa"), on_create_asa], [Gtxn[0].application_args[0] == Bytes("fund_asa"), on_fund_asa] ) ]) if __name__ == "__main__": arg = int(sys.argv[1]) print(compileTeal(contract_account(arg), Mode.Signature, version=3))
29.5
80
0.625504
4a274e9f499232b325635a993f9a963c9d2c20e9
7,750
py
Python
monitor-app-route-report-csv.py
ccie29824/viptela_application-route-policy
610f3a054a1bf5fae691845b7bc0d410609dc38e
[ "BSD-3-Clause" ]
6
2020-05-31T06:37:31.000Z
2020-11-18T03:14:38.000Z
monitor-app-route-report-csv.py
ccie29824/viptela_application-route-policy
610f3a054a1bf5fae691845b7bc0d410609dc38e
[ "BSD-3-Clause" ]
null
null
null
monitor-app-route-report-csv.py
ccie29824/viptela_application-route-policy
610f3a054a1bf5fae691845b7bc0d410609dc38e
[ "BSD-3-Clause" ]
4
2020-05-13T06:19:07.000Z
2021-03-08T03:55:52.000Z
import requests import sys import json import os import time import logging import tabulate import yaml from logging.handlers import TimedRotatingFileHandler requests.packages.urllib3.disable_warnings() from requests.packages.urllib3.exceptions import InsecureRequestWarning def get_logger(logfile, level): ''' Create a logger ''' if logfile is not None: ''' Create the log directory if it doesn't exist ''' fldr = os.path.dirname(logfile) if not os.path.exists(fldr): os.makedirs(fldr) logger = logging.getLogger() logger.setLevel(level) log_format = '%(asctime)s | %(levelname)-8s | %(funcName)-20s | %(lineno)-3d | %(message)s' formatter = logging.Formatter(log_format) file_handler = TimedRotatingFileHandler(logfile, when='midnight', backupCount=7) file_handler.setFormatter(formatter) file_handler.setLevel(level) logger.addHandler(file_handler) return logger return None class Authentication: @staticmethod def get_jsessionid(vmanage_host, vmanage_port, username, password): api = "/j_security_check" base_url = "https://%s:%s"%(vmanage_host, vmanage_port) url = base_url + api payload = {'j_username' : username, 'j_password' : password} response = requests.post(url=url, data=payload, verify=False) try: cookies = response.headers["Set-Cookie"] jsessionid = cookies.split(";") return(jsessionid[0]) except: if logger is not None: logger.error("No valid JSESSION ID returned\n") exit() @staticmethod def get_token(vmanage_host, vmanage_port, jsessionid): headers = {'Cookie': jsessionid} base_url = "https://%s:%s"%(vmanage_host, vmanage_port) api = "/dataservice/client/token" url = base_url + api response = requests.get(url=url, headers=headers, verify=False) if response.status_code == 200: return(response.text) else: return None if __name__ == '__main__': try: log_level = logging.DEBUG logger = get_logger("log/app_route_report.txt", log_level) if logger is not None: logger.info("Loading vManage login details from YAML\n") with open("vmanage_login.yaml") as f: config = yaml.safe_load(f.read()) vmanage_host = config["vmanage_host"] vmanage_port = config["vmanage_port"] username = config["vmanage_username"] password = config["vmanage_password"] rtr1_systemip = input("Enter Router-1 System IP address : ") rtr2_systemip = input("Enter Router-2 System IP address : ") Auth = Authentication() jsessionid = Auth.get_jsessionid(vmanage_host,vmanage_port,username,password) token = Auth.get_token(vmanage_host,vmanage_port,jsessionid) if token is not None: headers = {'Content-Type': "application/json",'Cookie': jsessionid, 'X-XSRF-TOKEN': token} else: headers = {'Content-Type': "application/json",'Cookie': jsessionid} base_url = "https://%s:%s/dataservice"%(vmanage_host,vmanage_port) # Get app route statistics for tunnels between router-1(rtr1_systemip) and router-2(rtr2_systemip) api_url = "/statistics/approute/fec/aggregation" payload = { "query": { "condition": "AND", "rules": [ { "value": [ "2020-02-29T08:00:00 UTC", "2020-03-31T07:00:00 UTC" ], "field": "entry_time", "type": "date", "operator": "between" }, { "value": [ rtr1_systemip ], "field": "local_system_ip", "type": "string", "operator": "in" }, { "value": [ rtr2_systemip ], "field": "remote_system_ip", "type": "string", "operator": "in" } ] }, "aggregation": { "field": [ { "property": "name", "sequence": 1 }, { "property": "proto", "sequence": 2 } ], "histogram": { "property": "entry_time", "type": "hour", "interval": 24, "order": "asc" }, "metrics": [ { "property": "latency", "type": "avg" }, { "property": "jitter", "type": "avg" }, { "property": "loss_percentage", "type": "avg" }, { "property": "vqoe_score", "type": "avg" } ] } } url = base_url + api_url response = requests.post(url=url, headers=headers, data=json.dumps(payload), verify=False) if response.status_code == 200: app_route_stats = response.json()["data"] app_route_stats_headers = ["Date", "Tunnel name", "vQoE score", "Latency", "Loss percentage", "Jitter"] table = list() print("\nAverage App route statistics between %s and %s for last 30 days\n"%(rtr1_systemip,rtr2_systemip)) for item in app_route_stats: tr = [time.strftime('%m/%d/%Y', time.gmtime(item['entry_time']/1000.)), item['name'], item['vqoe_score'], item['latency'], item['loss_percentage'], item['jitter']] table.append(tr) try: print(tabulate.tabulate(table, app_route_stats_headers, tablefmt="fancy_grid")) csv_content = tabulate.tabulate(table, app_route_stats_headers, tablefmt="csv") file_name = open("Tunnel Statistics %s.csv"%time.strftime("%Y-%m-%d"),"w") file_name.write(csv_content) file_name.close() except UnicodeEncodeError: print(tabulate.tabulate(table, app_route_stats_headers, tablefmt="grid")) else: if logger is not None: logger.error("Failed to retrieve app route statistics\n") except Exception as e: print('Failed due to error',str(e))
37.259615
180
0.454194
4a27500b6976d0a3ae283165b4b304c2596c149d
4,059
py
Python
benchmark/startCirq1426.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startCirq1426.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startCirq1426.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 5/15/20 4:49 PM # @File : grover.py # qubit number=5 # total number=55 import cirq import cirq.google as cg from typing import Optional import sys from math import log2 import numpy as np #thatsNoCode from cirq.contrib.svg import SVGCircuit # Symbols for the rotation angles in the QAOA circuit. def make_circuit(n: int, input_qubit): c = cirq.Circuit() # circuit begin c.append(cirq.H.on(input_qubit[0])) # number=3 c.append(cirq.H.on(input_qubit[1])) # number=4 c.append(cirq.H.on(input_qubit[2])) # number=5 c.append(cirq.H.on(input_qubit[3])) # number=6 c.append(cirq.H.on(input_qubit[4])) # number=21 for i in range(2): c.append(cirq.H.on(input_qubit[0])) # number=1 c.append(cirq.H.on(input_qubit[1])) # number=2 c.append(cirq.H.on(input_qubit[2])) # number=7 c.append(cirq.H.on(input_qubit[3])) # number=8 c.append(cirq.H.on(input_qubit[0])) # number=17 c.append(cirq.H.on(input_qubit[1])) # number=18 c.append(cirq.H.on(input_qubit[3])) # number=51 c.append(cirq.H.on(input_qubit[2])) # number=19 c.append(cirq.H.on(input_qubit[3])) # number=20 c.append(cirq.H.on(input_qubit[0])) # number=31 c.append(cirq.CZ.on(input_qubit[1],input_qubit[0])) # number=32 c.append(cirq.H.on(input_qubit[0])) # number=33 c.append(cirq.H.on(input_qubit[1])) # number=44 c.append(cirq.CZ.on(input_qubit[0],input_qubit[1])) # number=45 c.append(cirq.H.on(input_qubit[1])) # number=46 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=52 c.append(cirq.X.on(input_qubit[1])) # number=53 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=54 c.append(cirq.H.on(input_qubit[1])) # number=48 c.append(cirq.CZ.on(input_qubit[0],input_qubit[1])) # number=49 c.append(cirq.H.on(input_qubit[1])) # number=50 c.append(cirq.X.on(input_qubit[0])) # number=26 c.append(cirq.CNOT.on(input_qubit[1],input_qubit[0])) # number=27 c.append(cirq.H.on(input_qubit[1])) # number=37 c.append(cirq.CZ.on(input_qubit[0],input_qubit[1])) # number=38 c.append(cirq.H.on(input_qubit[1])) # number=39 c.append(cirq.X.on(input_qubit[1])) # number=35 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=36 c.append(cirq.X.on(input_qubit[2])) # number=11 c.append(cirq.X.on(input_qubit[3])) # number=12 c.append(cirq.CNOT.on(input_qubit[3],input_qubit[2])) # number=43 c.append(cirq.CNOT.on(input_qubit[3],input_qubit[2])) # number=47 c.append(cirq.X.on(input_qubit[0])) # number=13 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=22 c.append(cirq.X.on(input_qubit[1])) # number=23 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=24 c.append(cirq.X.on(input_qubit[2])) # number=15 c.append(cirq.X.on(input_qubit[1])) # number=29 c.append(cirq.Y.on(input_qubit[4])) # number=28 c.append(cirq.X.on(input_qubit[3])) # number=16 # circuit end c.append(cirq.measure(*input_qubit, key='result')) return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': qubit_count = 5 input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] circuit = make_circuit(qubit_count,input_qubits) circuit = cg.optimized_for_sycamore(circuit, optimizer_type='sqrt_iswap') circuit_sample_count =2000 simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=circuit_sample_count) frequencies = result.histogram(key='result', fold_func=bitstring) writefile = open("../data/startCirq1426.csv","w+") print(format(frequencies),file=writefile) print("results end", file=writefile) print(circuit.__len__(), file=writefile) print(circuit,file=writefile) writefile.close()
39.028846
77
0.646465
4a27506c3f62de61587af4f428faaa37a1a38dc8
3,567
py
Python
system/t04_mirror/edit.py
masselstine/aptly
3d2ccf1b2a02ea45eb0fa4fa7180b1809cb4590d
[ "MIT" ]
1,035
2015-01-05T00:37:30.000Z
2018-04-17T17:17:20.000Z
system/t04_mirror/edit.py
utopia-repository/aptly
799462acc46628f85ab1539c8866f864216edee5
[ "MIT" ]
502
2015-01-05T09:45:29.000Z
2018-04-18T01:37:33.000Z
system/t04_mirror/edit.py
utopia-repository/aptly
799462acc46628f85ab1539c8866f864216edee5
[ "MIT" ]
198
2015-01-02T03:08:20.000Z
2018-04-16T22:16:51.000Z
import re from lib import BaseTest class EditMirror1Test(BaseTest): """ edit mirror: enable filter & download sources """ fixtureDB = True runCmd = "aptly mirror edit -filter=nginx -filter-with-deps -with-sources wheezy-main" def check(self): self.check_output() self.check_cmd_output("aptly mirror show wheezy-main", "mirror_show", match_prepare=lambda s: re.sub(r"Last update: [0-9:+A-Za-z -]+\n", "", s)) class EditMirror2Test(BaseTest): """ edit mirror: missing mirror """ runCmd = "aptly mirror edit wheezy-main" expectedCode = 1 class EditMirror3Test(BaseTest): """ edit mirror: no changes """ fixtureDB = True runCmd = "aptly mirror edit wheezy-main" def check(self): self.check_output() self.check_cmd_output("aptly mirror show wheezy-main", "mirror_show", match_prepare=lambda s: re.sub(r"Last update: [0-9:+A-Za-z -]+\n", "", s)) class EditMirror4Test(BaseTest): """ edit mirror: wrong query """ fixtureDB = True runCmd = "aptly mirror edit -filter=| wheezy-main" expectedCode = 1 class EditMirror5Test(BaseTest): """ edit mirror: remove filter """ fixtureCmds = [ "aptly mirror create -ignore-signatures -filter='nginx | Priority (required)' mirror5 http://security.debian.org/ stretch/updates main", ] runCmd = "aptly mirror edit -filter= mirror5" def check(self): def removeDates(s): return re.sub(r"(Date|Valid-Until): [,0-9:+A-Za-z -]+\n", "", s) self.check_output() self.check_cmd_output("aptly mirror show mirror5", "mirror_show", match_prepare=removeDates) class EditMirror6Test(BaseTest): """ edit mirror: change architectures """ fixtureCmds = [ "aptly mirror create -ignore-signatures -architectures=amd64 mirror6 http://mirror.yandex.ru/debian stretch main" ] runCmd = "aptly mirror edit -ignore-signatures -architectures=amd64,i386 mirror6" def check(self): self.check_output() self.check_cmd_output("aptly mirror show mirror6", "mirror_show", match_prepare=lambda s: re.sub(r"Last update: [0-9:+A-Za-z -]+\n", "", s)) class EditMirror7Test(BaseTest): """ edit mirror: change architectures to missing archs """ fixtureCmds = [ "aptly mirror create -ignore-signatures -architectures=amd64 stretch http://mirror.yandex.ru/debian stretch main" ] runCmd = "aptly mirror edit -ignore-signatures -architectures=amd64,x56 stretch" expectedCode = 1 class EditMirror8Test(BaseTest): """ edit mirror: enable udebs """ fixtureDB = True runCmd = "aptly mirror edit -with-udebs wheezy-main" def check(self): self.check_output() self.check_cmd_output("aptly mirror show wheezy-main", "mirror_show", match_prepare=lambda s: re.sub(r"Last update: [0-9:+A-Za-z -]+\n", "", s)) class EditMirror9Test(BaseTest): """ edit mirror: flat mirror with udebs """ fixtureCmds = ["aptly mirror create -keyring=aptlytest.gpg mirror9 http://pkg.jenkins-ci.org/debian-stable binary/"] fixtureGpg = True runCmd = "aptly mirror edit -with-udebs mirror9" expectedCode = 1 class EditMirror10Test(BaseTest): """ edit mirror: change archive url """ requiresFTP = True fixtureCmds = ["aptly mirror create -ignore-signatures mirror10 ftp://ftp.ru.debian.org/debian stretch main"] runCmd = "aptly mirror edit -ignore-signatures -archive-url ftp://ftp.ch.debian.org/debian mirror10"
30.487179
152
0.662461
4a2750a66ec41830ed5b9b3e040f7b708af5c733
70,391
py
Python
sympy/tensor/tests/test_tensor.py
giorgosgiapis/sympy
6128b47aa008657715ce5c70b7c3fdd6bd3f1648
[ "BSD-3-Clause" ]
null
null
null
sympy/tensor/tests/test_tensor.py
giorgosgiapis/sympy
6128b47aa008657715ce5c70b7c3fdd6bd3f1648
[ "BSD-3-Clause" ]
null
null
null
sympy/tensor/tests/test_tensor.py
giorgosgiapis/sympy
6128b47aa008657715ce5c70b7c3fdd6bd3f1648
[ "BSD-3-Clause" ]
null
null
null
from functools import wraps from sympy import Matrix, eye, Integer, expand, Indexed, Sum from sympy.combinatorics import Permutation from sympy.core import S, Rational, Symbol, Basic, Add from sympy.core.containers import Tuple from sympy.core.symbol import symbols from sympy.functions.elementary.miscellaneous import sqrt from sympy.printing.pretty.pretty import pretty from sympy.tensor.array import Array from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorSymmetry, \ get_symmetric_group_sgs, TensorIndex, tensor_mul, TensAdd, \ riemann_cyclic_replace, riemann_cyclic, TensMul, tensor_heads, \ TensorManager, TensExpr, TensorHead, canon_bp, \ tensorhead, tensorsymmetry, TensorType, substitute_indices from sympy.utilities.pytest import raises, XFAIL, warns_deprecated_sympy, ignore_warnings from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.core.compatibility import range from sympy.matrices import diag def filter_warnings_decorator(f): @wraps(f) def wrapper(): with ignore_warnings(SymPyDeprecationWarning): f() return wrapper def _is_equal(arg1, arg2): if isinstance(arg1, TensExpr): return arg1.equals(arg2) elif isinstance(arg2, TensExpr): return arg2.equals(arg1) return arg1 == arg2 #################### Tests from tensor_can.py ####################### def test_canonicalize_no_slot_sym(): # A_d0 * B^d0; T_c = A^d0*B_d0 Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b, d0, d1 = tensor_indices('a,b,d0,d1', Lorentz) A, B = tensor_heads('A,B', [Lorentz], TensorSymmetry.no_symmetry(1)) t = A(-d0)*B(d0) tc = t.canon_bp() assert str(tc) == 'A(L_0)*B(-L_0)' # A^a * B^b; T_c = T t = A(a)*B(b) tc = t.canon_bp() assert tc == t # B^b * A^a t1 = B(b)*A(a) tc = t1.canon_bp() assert str(tc) == 'A(a)*B(b)' # A symmetric # A^{b}_{d0}*A^{d0, a}; T_c = A^{a d0}*A{b}_{d0} A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t = A(b, -d0)*A(d0, a) tc = t.canon_bp() assert str(tc) == 'A(a, L_0)*A(b, -L_0)' # A^{d1}_{d0}*B^d0*C_d1 # T_c = A^{d0 d1}*B_d0*C_d1 B, C = tensor_heads('B,C', [Lorentz], TensorSymmetry.no_symmetry(1)) t = A(d1, -d0)*B(d0)*C(-d1) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1)*B(-L_0)*C(-L_1)' # A without symmetry # A^{d1}_{d0}*B^d0*C_d1 ord=[d0,-d0,d1,-d1]; g = [2,1,0,3,4,5] # T_c = A^{d0 d1}*B_d1*C_d0; can = [0,2,3,1,4,5] A = TensorHead('A', [Lorentz]*2, TensorSymmetry.no_symmetry(2)) t = A(d1, -d0)*B(d0)*C(-d1) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1)*B(-L_1)*C(-L_0)' # A, B without symmetry # A^{d1}_{d0}*B_{d1}^{d0} # T_c = A^{d0 d1}*B_{d0 d1} B = TensorHead('B', [Lorentz]*2, TensorSymmetry.no_symmetry(2)) t = A(d1, -d0)*B(-d1, d0) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1)*B(-L_0, -L_1)' # A_{d0}^{d1}*B_{d1}^{d0} # T_c = A^{d0 d1}*B_{d1 d0} t = A(-d0, d1)*B(-d1, d0) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1)*B(-L_1, -L_0)' # A, B, C without symmetry # A^{d1 d0}*B_{a d0}*C_{d1 b} # T_c=A^{d0 d1}*B_{a d1}*C_{d0 b} C = TensorHead('C', [Lorentz]*2, TensorSymmetry.no_symmetry(2)) t = A(d1, d0)*B(-a, -d0)*C(-d1, -b) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1)*B(-a, -L_1)*C(-L_0, -b)' # A symmetric, B and C without symmetry # A^{d1 d0}*B_{a d0}*C_{d1 b} # T_c = A^{d0 d1}*B_{a d0}*C_{d1 b} A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t = A(d1, d0)*B(-a, -d0)*C(-d1, -b) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1)*B(-a, -L_0)*C(-L_1, -b)' # A and C symmetric, B without symmetry # A^{d1 d0}*B_{a d0}*C_{d1 b} ord=[a,b,d0,-d0,d1,-d1] # T_c = A^{d0 d1}*B_{a d0}*C_{b d1} C = TensorHead('C', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t = A(d1, d0)*B(-a, -d0)*C(-d1, -b) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1)*B(-a, -L_0)*C(-b, -L_1)' def test_canonicalize_no_dummies(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b, c, d = tensor_indices('a, b, c, d', Lorentz) # A commuting # A^c A^b A^a # T_c = A^a A^b A^c A = TensorHead('A', [Lorentz], TensorSymmetry.no_symmetry(1)) t = A(c)*A(b)*A(a) tc = t.canon_bp() assert str(tc) == 'A(a)*A(b)*A(c)' # A anticommuting # A^c A^b A^a # T_c = -A^a A^b A^c A = TensorHead('A', [Lorentz], TensorSymmetry.no_symmetry(1), 1) t = A(c)*A(b)*A(a) tc = t.canon_bp() assert str(tc) == '-A(a)*A(b)*A(c)' # A commuting and symmetric # A^{b,d}*A^{c,a} # T_c = A^{a c}*A^{b d} A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t = A(b, d)*A(c, a) tc = t.canon_bp() assert str(tc) == 'A(a, c)*A(b, d)' # A anticommuting and symmetric # A^{b,d}*A^{c,a} # T_c = -A^{a c}*A^{b d} A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(2), 1) t = A(b, d)*A(c, a) tc = t.canon_bp() assert str(tc) == '-A(a, c)*A(b, d)' # A^{c,a}*A^{b,d} # T_c = A^{a c}*A^{b d} t = A(c, a)*A(b, d) tc = t.canon_bp() assert str(tc) == 'A(a, c)*A(b, d)' def test_tensorhead_construction_without_symmetry(): L = TensorIndexType('Lorentz') A1 = TensorHead('A', [L, L]) A2 = TensorHead('A', [L, L], TensorSymmetry.no_symmetry(2)) assert A1 == A2 A3 = TensorHead('A', [L, L], TensorSymmetry.fully_symmetric(2)) # Symmetric assert A1 != A3 def test_no_metric_symmetry(): # no metric symmetry; A no symmetry # A^d1_d0 * A^d0_d1 # T_c = A^d0_d1 * A^d1_d0 Lorentz = TensorIndexType('Lorentz', dummy_name='L', metric_symmetry=0) d0, d1, d2, d3 = tensor_indices('d:4', Lorentz) A = TensorHead('A', [Lorentz]*2, TensorSymmetry.no_symmetry(2)) t = A(d1, -d0)*A(d0, -d1) tc = t.canon_bp() assert str(tc) == 'A(L_0, -L_1)*A(L_1, -L_0)' # A^d1_d2 * A^d0_d3 * A^d2_d1 * A^d3_d0 # T_c = A^d0_d1 * A^d1_d0 * A^d2_d3 * A^d3_d2 t = A(d1, -d2)*A(d0, -d3)*A(d2, -d1)*A(d3, -d0) tc = t.canon_bp() assert str(tc) == 'A(L_0, -L_1)*A(L_1, -L_0)*A(L_2, -L_3)*A(L_3, -L_2)' # A^d0_d2 * A^d1_d3 * A^d3_d0 * A^d2_d1 # T_c = A^d0_d1 * A^d1_d2 * A^d2_d3 * A^d3_d0 t = A(d0, -d1)*A(d1, -d2)*A(d2, -d3)*A(d3, -d0) tc = t.canon_bp() assert str(tc) == 'A(L_0, -L_1)*A(L_1, -L_2)*A(L_2, -L_3)*A(L_3, -L_0)' def test_canonicalize1(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, a0, a1, a2, a3, b, d0, d1, d2, d3 = \ tensor_indices('a,a0,a1,a2,a3,b,d0,d1,d2,d3', Lorentz) # A_d0*A^d0; ord = [d0,-d0] # T_c = A^d0*A_d0 A = TensorHead('A', [Lorentz], TensorSymmetry.no_symmetry(1)) t = A(-d0)*A(d0) tc = t.canon_bp() assert str(tc) == 'A(L_0)*A(-L_0)' # A commuting # A_d0*A_d1*A_d2*A^d2*A^d1*A^d0 # T_c = A^d0*A_d0*A^d1*A_d1*A^d2*A_d2 t = A(-d0)*A(-d1)*A(-d2)*A(d2)*A(d1)*A(d0) tc = t.canon_bp() assert str(tc) == 'A(L_0)*A(-L_0)*A(L_1)*A(-L_1)*A(L_2)*A(-L_2)' # A anticommuting # A_d0*A_d1*A_d2*A^d2*A^d1*A^d0 # T_c 0 A = TensorHead('A', [Lorentz], TensorSymmetry.no_symmetry(1), 1) t = A(-d0)*A(-d1)*A(-d2)*A(d2)*A(d1)*A(d0) tc = t.canon_bp() assert tc == 0 # A commuting symmetric # A^{d0 b}*A^a_d1*A^d1_d0 # T_c = A^{a d0}*A^{b d1}*A_{d0 d1} A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t = A(d0, b)*A(a, -d1)*A(d1, -d0) tc = t.canon_bp() assert str(tc) == 'A(a, L_0)*A(b, L_1)*A(-L_0, -L_1)' # A, B commuting symmetric # A^{d0 b}*A^d1_d0*B^a_d1 # T_c = A^{b d0}*A_d0^d1*B^a_d1 B = TensorHead('B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t = A(d0, b)*A(d1, -d0)*B(a, -d1) tc = t.canon_bp() assert str(tc) == 'A(b, L_0)*A(-L_0, L_1)*B(a, -L_1)' # A commuting symmetric # A^{d1 d0 b}*A^{a}_{d1 d0}; ord=[a,b, d0,-d0,d1,-d1] # T_c = A^{a d0 d1}*A^{b}_{d0 d1} A = TensorHead('A', [Lorentz]*3, TensorSymmetry.fully_symmetric(3)) t = A(d1, d0, b)*A(a, -d1, -d0) tc = t.canon_bp() assert str(tc) == 'A(a, L_0, L_1)*A(b, -L_0, -L_1)' # A^{d3 d0 d2}*A^a0_{d1 d2}*A^d1_d3^a1*A^{a2 a3}_d0 # T_c = A^{a0 d0 d1}*A^a1_d0^d2*A^{a2 a3 d3}*A_{d1 d2 d3} t = A(d3, d0, d2)*A(a0, -d1, -d2)*A(d1, -d3, a1)*A(a2, a3, -d0) tc = t.canon_bp() assert str(tc) == 'A(a0, L_0, L_1)*A(a1, -L_0, L_2)*A(a2, a3, L_3)*A(-L_1, -L_2, -L_3)' # A commuting symmetric, B antisymmetric # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3 # in this esxample and in the next three, # renaming dummy indices and using symmetry of A, # T = A^{d0 d1 d2} * A_{d0 d1 d3} * B_d2^d3 # can = 0 A = TensorHead('A', [Lorentz]*3, TensorSymmetry.fully_symmetric(3)) B = TensorHead('B', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2)) t = A(d0, d1, d2)*A(-d2, -d3, -d1)*B(-d0, d3) tc = t.canon_bp() assert tc == 0 # A anticommuting symmetric, B antisymmetric # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3 # T_c = A^{d0 d1 d2} * A_{d0 d1}^d3 * B_{d2 d3} A = TensorHead('A', [Lorentz]*3, TensorSymmetry.fully_symmetric(3), 1) B = TensorHead('B', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2)) t = A(d0, d1, d2)*A(-d2, -d3, -d1)*B(-d0, d3) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1, L_2)*A(-L_0, -L_1, L_3)*B(-L_2, -L_3)' # A anticommuting symmetric, B antisymmetric commuting, antisymmetric metric # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3 # T_c = -A^{d0 d1 d2} * A_{d0 d1}^d3 * B_{d2 d3} Spinor = TensorIndexType('Spinor', dummy_name='S', metric_symmetry=-1) a, a0, a1, a2, a3, b, d0, d1, d2, d3 = \ tensor_indices('a,a0,a1,a2,a3,b,d0,d1,d2,d3', Spinor) A = TensorHead('A', [Spinor]*3, TensorSymmetry.fully_symmetric(3), 1) B = TensorHead('B', [Spinor]*2, TensorSymmetry.fully_symmetric(-2)) t = A(d0, d1, d2)*A(-d2, -d3, -d1)*B(-d0, d3) tc = t.canon_bp() assert str(tc) == '-A(S_0, S_1, S_2)*A(-S_0, -S_1, S_3)*B(-S_2, -S_3)' # A anticommuting symmetric, B antisymmetric anticommuting, # no metric symmetry # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3 # T_c = A^{d0 d1 d2} * A_{d0 d1 d3} * B_d2^d3 Mat = TensorIndexType('Mat', metric_symmetry=0, dummy_name='M') a, a0, a1, a2, a3, b, d0, d1, d2, d3 = \ tensor_indices('a,a0,a1,a2,a3,b,d0,d1,d2,d3', Mat) A = TensorHead('A', [Mat]*3, TensorSymmetry.fully_symmetric(3), 1) B = TensorHead('B', [Mat]*2, TensorSymmetry.fully_symmetric(-2)) t = A(d0, d1, d2)*A(-d2, -d3, -d1)*B(-d0, d3) tc = t.canon_bp() assert str(tc) == 'A(M_0, M_1, M_2)*A(-M_0, -M_1, -M_3)*B(-M_2, M_3)' # Gamma anticommuting # Gamma_{mu nu} * gamma^rho * Gamma^{nu mu alpha} # T_c = -Gamma^{mu nu} * gamma^rho * Gamma_{alpha mu nu} alpha, beta, gamma, mu, nu, rho = \ tensor_indices('alpha,beta,gamma,mu,nu,rho', Lorentz) Gamma = TensorHead('Gamma', [Lorentz], TensorSymmetry.fully_symmetric(1), 2) Gamma2 = TensorHead('Gamma', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2), 2) Gamma3 = TensorHead('Gamma', [Lorentz]*3, TensorSymmetry.fully_symmetric(-3), 2) t = Gamma2(-mu, -nu)*Gamma(rho)*Gamma3(nu, mu, alpha) tc = t.canon_bp() assert str(tc) == '-Gamma(L_0, L_1)*Gamma(rho)*Gamma(alpha, -L_0, -L_1)' # Gamma_{mu nu} * Gamma^{gamma beta} * gamma_rho * Gamma^{nu mu alpha} # T_c = Gamma^{mu nu} * Gamma^{beta gamma} * gamma_rho * Gamma^alpha_{mu nu} t = Gamma2(mu, nu)*Gamma2(beta, gamma)*Gamma(-rho)*Gamma3(alpha, -mu, -nu) tc = t.canon_bp() assert str(tc) == 'Gamma(L_0, L_1)*Gamma(beta, gamma)*Gamma(-rho)*Gamma(alpha, -L_0, -L_1)' # f^a_{b,c} antisymmetric in b,c; A_mu^a no symmetry # f^c_{d a} * f_{c e b} * A_mu^d * A_nu^a * A^{nu e} * A^{mu b} # g = [8,11,5, 9,13,7, 1,10, 3,4, 2,12, 0,6, 14,15] # T_c = -f^{a b c} * f_a^{d e} * A^mu_b * A_{mu d} * A^nu_c * A_{nu e} Flavor = TensorIndexType('Flavor', dummy_name='F') a, b, c, d, e, ff = tensor_indices('a,b,c,d,e,f', Flavor) mu, nu = tensor_indices('mu,nu', Lorentz) f = TensorHead('f', [Flavor]*3, TensorSymmetry.direct_product(1, -2)) A = TensorHead('A', [Lorentz, Flavor], TensorSymmetry.no_symmetry(2)) t = f(c, -d, -a)*f(-c, -e, -b)*A(-mu, d)*A(-nu, a)*A(nu, e)*A(mu, b) tc = t.canon_bp() assert str(tc) == '-f(F_0, F_1, F_2)*f(-F_0, F_3, F_4)*A(L_0, -F_1)*A(-L_0, -F_3)*A(L_1, -F_2)*A(-L_1, -F_4)' def test_bug_correction_tensor_indices(): # to make sure that tensor_indices does not return a list if creating # only one index: A = TensorIndexType("A") i = tensor_indices('i', A) assert not isinstance(i, (tuple, list)) assert isinstance(i, TensorIndex) def test_riemann_invariants(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') d0, d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11 = \ tensor_indices('d0:12', Lorentz) # R^{d0 d1}_{d1 d0}; ord = [d0,-d0,d1,-d1] # T_c = -R^{d0 d1}_{d0 d1} R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann()) t = R(d0, d1, -d1, -d0) tc = t.canon_bp() assert str(tc) == '-R(L_0, L_1, -L_0, -L_1)' # R_d11^d1_d0^d5 * R^{d6 d4 d0}_d5 * R_{d7 d2 d8 d9} * # R_{d10 d3 d6 d4} * R^{d2 d7 d11}_d1 * R^{d8 d9 d3 d10} # can = [0,2,4,6, 1,3,8,10, 5,7,12,14, 9,11,16,18, 13,15,20,22, # 17,19,21<F10,23, 24,25] # T_c = R^{d0 d1 d2 d3} * R_{d0 d1}^{d4 d5} * R_{d2 d3}^{d6 d7} * # R_{d4 d5}^{d8 d9} * R_{d6 d7}^{d10 d11} * R_{d8 d9 d10 d11} t = R(-d11,d1,-d0,d5)*R(d6,d4,d0,-d5)*R(-d7,-d2,-d8,-d9)* \ R(-d10,-d3,-d6,-d4)*R(d2,d7,d11,-d1)*R(d8,d9,d3,d10) tc = t.canon_bp() assert str(tc) == 'R(L_0, L_1, L_2, L_3)*R(-L_0, -L_1, L_4, L_5)*R(-L_2, -L_3, L_6, L_7)*R(-L_4, -L_5, L_8, L_9)*R(-L_6, -L_7, L_10, L_11)*R(-L_8, -L_9, -L_10, -L_11)' def test_riemann_products(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') d0, d1, d2, d3, d4, d5, d6 = tensor_indices('d0:7', Lorentz) a0, a1, a2, a3, a4, a5 = tensor_indices('a0:6', Lorentz) a, b = tensor_indices('a,b', Lorentz) R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann()) # R^{a b d0}_d0 = 0 t = R(a, b, d0, -d0) tc = t.canon_bp() assert tc == 0 # R^{d0 b a}_d0 # T_c = -R^{a d0 b}_d0 t = R(d0, b, a, -d0) tc = t.canon_bp() assert str(tc) == '-R(a, L_0, b, -L_0)' # R^d1_d2^b_d0 * R^{d0 a}_d1^d2; ord=[a,b,d0,-d0,d1,-d1,d2,-d2] # T_c = -R^{a d0 d1 d2}* R^b_{d0 d1 d2} t = R(d1, -d2, b, -d0)*R(d0, a, -d1, d2) tc = t.canon_bp() assert str(tc) == '-R(a, L_0, L_1, L_2)*R(b, -L_0, -L_1, -L_2)' # A symmetric commuting # R^{d6 d5}_d2^d1 * R^{d4 d0 d2 d3} * A_{d6 d0} A_{d3 d1} * A_{d4 d5} # g = [12,10,5,2, 8,0,4,6, 13,1, 7,3, 9,11,14,15] # T_c = -R^{d0 d1 d2 d3} * R_d0^{d4 d5 d6} * A_{d1 d4}*A_{d2 d5}*A_{d3 d6} V = TensorHead('V', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t = R(d6, d5, -d2, d1)*R(d4, d0, d2, d3)*V(-d6, -d0)*V(-d3, -d1)*V(-d4, -d5) tc = t.canon_bp() assert str(tc) == '-R(L_0, L_1, L_2, L_3)*R(-L_0, L_4, L_5, L_6)*V(-L_1, -L_4)*V(-L_2, -L_5)*V(-L_3, -L_6)' # R^{d2 a0 a2 d0} * R^d1_d2^{a1 a3} * R^{a4 a5}_{d0 d1} # T_c = R^{a0 d0 a2 d1}*R^{a1 a3}_d0^d2*R^{a4 a5}_{d1 d2} t = R(d2, a0, a2, d0)*R(d1, -d2, a1, a3)*R(a4, a5, -d0, -d1) tc = t.canon_bp() assert str(tc) == 'R(a0, L_0, a2, L_1)*R(a1, a3, -L_0, L_2)*R(a4, a5, -L_1, -L_2)' ###################################################################### def test_canonicalize2(): D = Symbol('D') Eucl = TensorIndexType('Eucl', metric_symmetry=1, dim=D, dummy_name='E') i0,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14 = \ tensor_indices('i0:15', Eucl) A = TensorHead('A', [Eucl]*3, TensorSymmetry.fully_symmetric(-3)) # two examples from Cvitanovic, Group Theory page 59 # of identities for antisymmetric tensors of rank 3 # contracted according to the Kuratowski graph eq.(6.59) t = A(i0,i1,i2)*A(-i1,i3,i4)*A(-i3,i7,i5)*A(-i2,-i5,i6)*A(-i4,-i6,i8) t1 = t.canon_bp() assert t1 == 0 # eq.(6.60) #t = A(i0,i1,i2)*A(-i1,i3,i4)*A(-i2,i5,i6)*A(-i3,i7,i8)*A(-i6,-i7,i9)* # A(-i8,i10,i13)*A(-i5,-i10,i11)*A(-i4,-i11,i12)*A(-i3,-i12,i14) t = A(i0,i1,i2)*A(-i1,i3,i4)*A(-i2,i5,i6)*A(-i3,i7,i8)*A(-i6,-i7,i9)*\ A(-i8,i10,i13)*A(-i5,-i10,i11)*A(-i4,-i11,i12)*A(-i9,-i12,i14) t1 = t.canon_bp() assert t1 == 0 def test_canonicalize3(): D = Symbol('D') Spinor = TensorIndexType('Spinor', dim=D, metric_symmetry=-1, dummy_name='S') a0,a1,a2,a3,a4 = tensor_indices('a0:5', Spinor) chi, psi = tensor_heads('chi,psi', [Spinor], TensorSymmetry.no_symmetry(1), 1) t = chi(a1)*psi(a0) t1 = t.canon_bp() assert t1 == t t = psi(a1)*chi(a0) t1 = t.canon_bp() assert t1 == -chi(a0)*psi(a1) def test_TensorIndexType(): D = Symbol('D') Lorentz = TensorIndexType('Lorentz', metric_name='g', metric_symmetry=1, dim=D, dummy_name='L') m0, m1, m2, m3, m4 = tensor_indices('m0:5', Lorentz) sym2 = TensorSymmetry.fully_symmetric(2) sym2n = TensorSymmetry(*get_symmetric_group_sgs(2)) assert sym2 == sym2n g = Lorentz.metric assert str(g) == 'g(Lorentz,Lorentz)' assert Lorentz.eps_dim == Lorentz.dim TSpace = TensorIndexType('TSpace', dummy_name = 'TSpace') i0, i1 = tensor_indices('i0 i1', TSpace) g = TSpace.metric A = TensorHead('A', [TSpace]*2, sym2) assert str(A(i0,-i0).canon_bp()) == 'A(TSpace_0, -TSpace_0)' def test_indices(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b, c, d = tensor_indices('a,b,c,d', Lorentz) assert a.tensor_index_type == Lorentz assert a != -a A, B = tensor_heads('A B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t = A(a,b)*B(-b,c) indices = t.get_indices() L_0 = TensorIndex('L_0', Lorentz) assert indices == [a, L_0, -L_0, c] raises(ValueError, lambda: tensor_indices(3, Lorentz)) raises(ValueError, lambda: A(a,b,c)) def test_TensorSymmetry(): assert TensorSymmetry.fully_symmetric(2) == \ TensorSymmetry(get_symmetric_group_sgs(2)) assert TensorSymmetry.fully_symmetric(-3) == \ TensorSymmetry(get_symmetric_group_sgs(3, True)) assert TensorSymmetry.direct_product(-4) == \ TensorSymmetry.fully_symmetric(-4) assert TensorSymmetry.fully_symmetric(-1) == \ TensorSymmetry.fully_symmetric(1) assert TensorSymmetry.direct_product(1, -1, 1) == \ TensorSymmetry.no_symmetry(3) assert TensorSymmetry(get_symmetric_group_sgs(2)) == \ TensorSymmetry(*get_symmetric_group_sgs(2)) # TODO: add check for *get_symmetric_group_sgs(0) sym = TensorSymmetry.fully_symmetric(-3) assert sym.rank == 3 assert sym.base == Tuple(0, 1) assert sym.generators == Tuple(Permutation(0, 1)(3, 4), Permutation(1, 2)(3, 4)) def test_TensExpr(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b, c, d = tensor_indices('a,b,c,d', Lorentz) g = Lorentz.metric A, B = tensor_heads('A B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) raises(ValueError, lambda: g(c, d)/g(a, b)) raises(ValueError, lambda: S.One/g(a, b)) raises(ValueError, lambda: (A(c, d) + g(c, d))/g(a, b)) raises(ValueError, lambda: S.One/(A(c, d) + g(c, d))) raises(ValueError, lambda: A(a, b) + A(a, c)) A(a, b) + B(a, b) # assigned to t for below #raises(NotImplementedError, lambda: TensExpr.__mul__(t, 'a')) #raises(NotImplementedError, lambda: TensExpr.__add__(t, 'a')) #raises(NotImplementedError, lambda: TensExpr.__radd__(t, 'a')) #raises(NotImplementedError, lambda: TensExpr.__sub__(t, 'a')) #raises(NotImplementedError, lambda: TensExpr.__rsub__(t, 'a')) #raises(NotImplementedError, lambda: TensExpr.__div__(t, 'a')) #raises(NotImplementedError, lambda: TensExpr.__rdiv__(t, 'a')) with ignore_warnings(SymPyDeprecationWarning): # DO NOT REMOVE THIS AFTER DEPRECATION REMOVED: raises(ValueError, lambda: A(a, b)**2) raises(NotImplementedError, lambda: 2**A(a, b)) raises(NotImplementedError, lambda: abs(A(a, b))) def test_TensorHead(): # simple example of algebraic expression Lorentz = TensorIndexType('Lorentz', dummy_name='L') A = TensorHead('A', [Lorentz]*2) assert A.name == 'A' assert A.index_types == [Lorentz, Lorentz] assert A.rank == 2 assert A.symmetry == TensorSymmetry.no_symmetry(2) assert A.comm == 0 def test_add1(): assert TensAdd().args == () assert TensAdd().doit() == 0 # simple example of algebraic expression Lorentz = TensorIndexType('Lorentz', dummy_name='L') a,b,d0,d1,i,j,k = tensor_indices('a,b,d0,d1,i,j,k', Lorentz) # A, B symmetric A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t1 = A(b, -d0)*B(d0, a) assert TensAdd(t1).equals(t1) t2a = B(d0, a) + A(d0, a) t2 = A(b, -d0)*t2a assert str(t2) == 'A(b, -L_0)*(A(L_0, a) + B(L_0, a))' t2 = t2.expand() assert str(t2) == 'A(b, -L_0)*A(L_0, a) + A(b, -L_0)*B(L_0, a)' t2 = t2.canon_bp() assert str(t2) == 'A(a, L_0)*A(b, -L_0) + A(b, L_0)*B(a, -L_0)' t2b = t2 + t1 assert str(t2b) == 'A(a, L_0)*A(b, -L_0) + A(b, -L_0)*B(L_0, a) + A(b, L_0)*B(a, -L_0)' t2b = t2b.canon_bp() assert str(t2b) == '2*A(b, L_0)*B(a, -L_0) + A(a, L_0)*A(b, -L_0)' p, q, r = tensor_heads('p,q,r', [Lorentz]) t = q(d0)*2 assert str(t) == '2*q(d0)' t = 2*q(d0) assert str(t) == '2*q(d0)' t1 = p(d0) + 2*q(d0) assert str(t1) == '2*q(d0) + p(d0)' t2 = p(-d0) + 2*q(-d0) assert str(t2) == '2*q(-d0) + p(-d0)' t1 = p(d0) t3 = t1*t2 assert str(t3) == 'p(L_0)*(2*q(-L_0) + p(-L_0))' t3 = t3.expand() assert str(t3) == '2*p(L_0)*q(-L_0) + p(L_0)*p(-L_0)' t3 = t2*t1 t3 = t3.expand() assert str(t3) == '2*q(-L_0)*p(L_0) + p(-L_0)*p(L_0)' t3 = t3.canon_bp() assert str(t3) == '2*p(L_0)*q(-L_0) + p(L_0)*p(-L_0)' t1 = p(d0) + 2*q(d0) t3 = t1*t2 t3 = t3.canon_bp() assert str(t3) == '4*p(L_0)*q(-L_0) + 4*q(L_0)*q(-L_0) + p(L_0)*p(-L_0)' t1 = p(d0) - 2*q(d0) assert str(t1) == '-2*q(d0) + p(d0)' t2 = p(-d0) + 2*q(-d0) t3 = t1*t2 t3 = t3.canon_bp() assert t3 == p(d0)*p(-d0) - 4*q(d0)*q(-d0) t = p(i)*p(j)*(p(k) + q(k)) + p(i)*(p(j) + q(j))*(p(k) - 3*q(k)) t = t.canon_bp() assert t == 2*p(i)*p(j)*p(k) - 2*p(i)*p(j)*q(k) + p(i)*p(k)*q(j) - 3*p(i)*q(j)*q(k) t1 = (p(i) + q(i) + 2*r(i))*(p(j) - q(j)) t2 = (p(j) + q(j) + 2*r(j))*(p(i) - q(i)) t = t1 + t2 t = t.canon_bp() assert t == 2*p(i)*p(j) + 2*p(i)*r(j) + 2*p(j)*r(i) - 2*q(i)*q(j) - 2*q(i)*r(j) - 2*q(j)*r(i) t = p(i)*q(j)/2 assert 2*t == p(i)*q(j) t = (p(i) + q(i))/2 assert 2*t == p(i) + q(i) t = S.One - p(i)*p(-i) t = t.canon_bp() tz1 = t + p(-j)*p(j) assert tz1 != 1 tz1 = tz1.canon_bp() assert tz1.equals(1) t = S.One + p(i)*p(-i) assert (t - p(-j)*p(j)).canon_bp().equals(1) t = A(a, b) + B(a, b) assert t.rank == 2 t1 = t - A(a, b) - B(a, b) assert t1 == 0 t = 1 - (A(a, -a) + B(a, -a)) t1 = 1 + (A(a, -a) + B(a, -a)) assert (t + t1).expand().equals(2) t2 = 1 + A(a, -a) assert t1 != t2 assert t2 != TensMul.from_data(0, [], [], []) def test_special_eq_ne(): # test special equality cases: Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b, d0, d1, i, j, k = tensor_indices('a,b,d0,d1,i,j,k', Lorentz) # A, B symmetric A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) p, q, r = tensor_heads('p,q,r', [Lorentz]) t = 0*A(a, b) assert _is_equal(t, 0) assert _is_equal(t, S.Zero) assert p(i) != A(a, b) assert A(a, -a) != A(a, b) assert 0*(A(a, b) + B(a, b)) == 0 assert 0*(A(a, b) + B(a, b)) is S.Zero assert 3*(A(a, b) - A(a, b)) is S.Zero assert p(i) + q(i) != A(a, b) assert p(i) + q(i) != A(a, b) + B(a, b) assert p(i) - p(i) == 0 assert p(i) - p(i) is S.Zero assert _is_equal(A(a, b), A(b, a)) def test_add2(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') m, n, p, q = tensor_indices('m,n,p,q', Lorentz) R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann()) A = TensorHead('A', [Lorentz]*3, TensorSymmetry.fully_symmetric(-3)) t1 = 2*R(m, n, p, q) - R(m, q, n, p) + R(m, p, n, q) t2 = t1*A(-n, -p, -q) t2 = t2.canon_bp() assert t2 == 0 t1 = Rational(2, 3)*R(m,n,p,q) - Rational(1, 3)*R(m,q,n,p) + Rational(1, 3)*R(m,p,n,q) t2 = t1*A(-n, -p, -q) t2 = t2.canon_bp() assert t2 == 0 t = A(m, -m, n) + A(n, p, -p) t = t.canon_bp() assert t == 0 def test_add3(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') i0, i1 = tensor_indices('i0:2', Lorentz) E, px, py, pz = symbols('E px py pz') A = TensorHead('A', [Lorentz]) B = TensorHead('B', [Lorentz]) expr1 = A(i0)*A(-i0) - (E**2 - px**2 - py**2 - pz**2) assert expr1.args == (px**2, py**2, pz**2, -E**2, A(i0)*A(-i0)) expr2 = E**2 - px**2 - py**2 - pz**2 - A(i0)*A(-i0) assert expr2.args == (E**2, -px**2, -py**2, -pz**2, -A(i0)*A(-i0)) expr3 = A(i0)*A(-i0) - E**2 + px**2 + py**2 + pz**2 assert expr3.args == (px**2, py**2, pz**2, -E**2, A(i0)*A(-i0)) expr4 = B(i1)*B(-i1) + 2*E**2 - 2*px**2 - 2*py**2 - 2*pz**2 - A(i0)*A(-i0) assert expr4.args == (-2*px**2, -2*py**2, -2*pz**2, 2*E**2, -A(i0)*A(-i0), B(i1)*B(-i1)) def test_mul(): from sympy.abc import x Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b, c, d = tensor_indices('a,b,c,d', Lorentz) t = TensMul.from_data(S.One, [], [], []) assert str(t) == '1' A, B = tensor_heads('A B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t = (1 + x)*A(a, b) assert str(t) == '(x + 1)*A(a, b)' assert t.index_types == [Lorentz, Lorentz] assert t.rank == 2 assert t.dum == [] assert t.coeff == 1 + x assert sorted(t.free) == [(a, 0), (b, 1)] assert t.components == [A] ts = A(a, b) assert str(ts) == 'A(a, b)' assert ts.index_types == [Lorentz, Lorentz] assert ts.rank == 2 assert ts.dum == [] assert ts.coeff == 1 assert sorted(ts.free) == [(a, 0), (b, 1)] assert ts.components == [A] t = A(-b, a)*B(-a, c)*A(-c, d) t1 = tensor_mul(*t.split()) assert t == t1 assert tensor_mul(*[]) == TensMul.from_data(S.One, [], [], []) t = TensMul.from_data(1, [], [], []) C = TensorHead('C', []) assert str(C()) == 'C' assert str(t) == '1' assert t == 1 raises(ValueError, lambda: A(a, b)*A(a, c)) def test_substitute_indices(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') i, j, k, l, m, n, p, q = tensor_indices('i,j,k,l,m,n,p,q', Lorentz) A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) p = TensorHead('p', [Lorentz]) t = p(i) t1 = t.substitute_indices((j, k)) assert t1 == t t1 = t.substitute_indices((i, j)) assert t1 == p(j) t1 = t.substitute_indices((i, -j)) assert t1 == p(-j) t1 = t.substitute_indices((-i, j)) assert t1 == p(-j) t1 = t.substitute_indices((-i, -j)) assert t1 == p(j) t = A(m, n) t1 = t.substitute_indices((m, i), (n, -i)) assert t1 == A(n, -n) t1 = substitute_indices(t, (m, i), (n, -i)) assert t1 == A(n, -n) t = A(i, k)*B(-k, -j) t1 = t.substitute_indices((i, j), (j, k)) t1a = A(j, l)*B(-l, -k) assert t1 == t1a t1 = substitute_indices(t, (i, j), (j, k)) assert t1 == t1a t = A(i, j) + B(i, j) t1 = t.substitute_indices((j, -i)) t1a = A(i, -i) + B(i, -i) assert t1 == t1a t1 = substitute_indices(t, (j, -i)) assert t1 == t1a def test_riemann_cyclic_replace(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') m0, m1, m2, m3 = tensor_indices('m:4', Lorentz) R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann()) t = R(m0, m2, m1, m3) t1 = riemann_cyclic_replace(t) t1a = Rational(-1, 3)*R(m0, m3, m2, m1) + Rational(1, 3)*R(m0, m1, m2, m3) + Rational(2, 3)*R(m0, m2, m1, m3) assert t1 == t1a def test_riemann_cyclic(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') i, j, k, l, m, n, p, q = tensor_indices('i,j,k,l,m,n,p,q', Lorentz) R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann()) t = R(i,j,k,l) + R(i,l,j,k) + R(i,k,l,j) - \ R(i,j,l,k) - R(i,l,k,j) - R(i,k,j,l) t2 = t*R(-i,-j,-k,-l) t3 = riemann_cyclic(t2) assert t3 == 0 t = R(i,j,k,l)*(R(-i,-j,-k,-l) - 2*R(-i,-k,-j,-l)) t1 = riemann_cyclic(t) assert t1 == 0 t = R(i,j,k,l) t1 = riemann_cyclic(t) assert t1 == Rational(-1, 3)*R(i, l, j, k) + Rational(1, 3)*R(i, k, j, l) + Rational(2, 3)*R(i, j, k, l) t = R(i,j,k,l)*R(-k,-l,m,n)*(R(-m,-n,-i,-j) + 2*R(-m,-j,-n,-i)) t1 = riemann_cyclic(t) assert t1 == 0 @XFAIL def test_div(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') m0, m1, m2, m3 = tensor_indices('m0:4', Lorentz) R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann()) t = R(m0,m1,-m1,m3) t1 = t/S(4) assert str(t1) == '(1/4)*R(m0, L_0, -L_0, m3)' t = t.canon_bp() assert not t1._is_canon_bp t1 = t*4 assert t1._is_canon_bp t1 = t1/4 assert t1._is_canon_bp def test_contract_metric1(): D = Symbol('D') Lorentz = TensorIndexType('Lorentz', dim=D, dummy_name='L') a, b, c, d, e = tensor_indices('a,b,c,d,e', Lorentz) g = Lorentz.metric p = TensorHead('p', [Lorentz]) t = g(a, b)*p(-b) t1 = t.contract_metric(g) assert t1 == p(a) A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) # case with g with all free indices t1 = A(a,b)*B(-b,c)*g(d, e) t2 = t1.contract_metric(g) assert t1 == t2 # case of g(d, -d) t1 = A(a,b)*B(-b,c)*g(-d, d) t2 = t1.contract_metric(g) assert t2 == D*A(a, d)*B(-d, c) # g with one free index t1 = A(a,b)*B(-b,-c)*g(c, d) t2 = t1.contract_metric(g) assert t2 == A(a, c)*B(-c, d) # g with both indices contracted with another tensor t1 = A(a,b)*B(-b,-c)*g(c, -a) t2 = t1.contract_metric(g) assert _is_equal(t2, A(a, b)*B(-b, -a)) t1 = A(a,b)*B(-b,-c)*g(c, d)*g(-a, -d) t2 = t1.contract_metric(g) assert _is_equal(t2, A(a,b)*B(-b,-a)) t1 = A(a,b)*g(-a,-b) t2 = t1.contract_metric(g) assert _is_equal(t2, A(a, -a)) assert not t2.free Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b = tensor_indices('a,b', Lorentz) g = Lorentz.metric assert _is_equal(g(a, -a).contract_metric(g), Lorentz.dim) # no dim def test_contract_metric2(): D = Symbol('D') Lorentz = TensorIndexType('Lorentz', dim=D, dummy_name='L') a, b, c, d, e, L_0 = tensor_indices('a,b,c,d,e,L_0', Lorentz) g = Lorentz.metric p, q = tensor_heads('p,q', [Lorentz]) t1 = g(a,b)*p(c)*p(-c) t2 = 3*g(-a,-b)*q(c)*q(-c) t = t1*t2 t = t.contract_metric(g) assert t == 3*D*p(a)*p(-a)*q(b)*q(-b) t1 = g(a,b)*p(c)*p(-c) t2 = 3*q(-a)*q(-b) t = t1*t2 t = t.contract_metric(g) t = t.canon_bp() assert t == 3*p(a)*p(-a)*q(b)*q(-b) t1 = 2*g(a,b)*p(c)*p(-c) t2 = - 3*g(-a,-b)*q(c)*q(-c) t = t1*t2 t = t.contract_metric(g) t = 6*g(a,b)*g(-a,-b)*p(c)*p(-c)*q(d)*q(-d) t = t.contract_metric(g) t1 = 2*g(a,b)*p(c)*p(-c) t2 = q(-a)*q(-b) + 3*g(-a,-b)*q(c)*q(-c) t = t1*t2 t = t.contract_metric(g) assert t == (2 + 6*D)*p(a)*p(-a)*q(b)*q(-b) t1 = p(a)*p(b) + p(a)*q(b) + 2*g(a,b)*p(c)*p(-c) t2 = q(-a)*q(-b) - g(-a,-b)*q(c)*q(-c) t = t1*t2 t = t.contract_metric(g) t1 = (1 - 2*D)*p(a)*p(-a)*q(b)*q(-b) + p(a)*q(-a)*p(b)*q(-b) assert canon_bp(t - t1) == 0 t = g(a,b)*g(c,d)*g(-b,-c) t1 = t.contract_metric(g) assert t1 == g(a, d) t1 = g(a,b)*g(c,d) + g(a,c)*g(b,d) + g(a,d)*g(b,c) t2 = t1.substitute_indices((a,-a),(b,-b),(c,-c),(d,-d)) t = t1*t2 t = t.contract_metric(g) assert t.equals(3*D**2 + 6*D) t = 2*p(a)*g(b,-b) t1 = t.contract_metric(g) assert t1.equals(2*D*p(a)) t = 2*p(a)*g(b,-a) t1 = t.contract_metric(g) assert t1 == 2*p(b) M = Symbol('M') t = (p(a)*p(b) + g(a, b)*M**2)*g(-a, -b) - D*M**2 t1 = t.contract_metric(g) assert t1 == p(a)*p(-a) A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t = A(a, b)*p(L_0)*g(-a, -b) t1 = t.contract_metric(g) assert str(t1) == 'A(L_1, -L_1)*p(L_0)' or str(t1) == 'A(-L_1, L_1)*p(L_0)' def test_metric_contract3(): D = Symbol('D') Spinor = TensorIndexType('Spinor', dim=D, metric_symmetry=-1, dummy_name='S') a0, a1, a2, a3, a4 = tensor_indices('a0:5', Spinor) C = Spinor.metric chi, psi = tensor_heads('chi,psi', [Spinor], TensorSymmetry.no_symmetry(1), 1) B = TensorHead('B', [Spinor]*2, TensorSymmetry.no_symmetry(2)) t = C(a0,-a0) t1 = t.contract_metric(C) assert t1.equals(-D) t = C(-a0,a0) t1 = t.contract_metric(C) assert t1.equals(D) t = C(a0,a1)*C(-a0,-a1) t1 = t.contract_metric(C) assert t1.equals(D) t = C(a1,a0)*C(-a0,-a1) t1 = t.contract_metric(C) assert t1.equals(-D) t = C(-a0,a1)*C(a0,-a1) t1 = t.contract_metric(C) assert t1.equals(-D) t = C(a1,-a0)*C(a0,-a1) t1 = t.contract_metric(C) assert t1.equals(D) t = C(a0,a1)*B(-a1,-a0) t1 = t.contract_metric(C) t1 = t1.canon_bp() assert _is_equal(t1, B(a0,-a0)) t = C(a1,a0)*B(-a1,-a0) t1 = t.contract_metric(C) assert _is_equal(t1, -B(a0,-a0)) t = C(a0,-a1)*B(a1,-a0) t1 = t.contract_metric(C) assert _is_equal(t1, -B(a0,-a0)) t = C(-a0,a1)*B(-a1,a0) t1 = t.contract_metric(C) assert _is_equal(t1, -B(a0,-a0)) t = C(-a0,-a1)*B(a1,a0) t1 = t.contract_metric(C) assert _is_equal(t1, B(a0,-a0)) t = C(-a1, a0)*B(a1,-a0) t1 = t.contract_metric(C) assert _is_equal(t1, B(a0,-a0)) t = C(a0,a1)*psi(-a1) t1 = t.contract_metric(C) assert _is_equal(t1, psi(a0)) t = C(a1,a0)*psi(-a1) t1 = t.contract_metric(C) assert _is_equal(t1, -psi(a0)) t = C(a0,a1)*chi(-a0)*psi(-a1) t1 = t.contract_metric(C) assert _is_equal(t1, -chi(a1)*psi(-a1)) t = C(a1,a0)*chi(-a0)*psi(-a1) t1 = t.contract_metric(C) assert _is_equal(t1, chi(a1)*psi(-a1)) t = C(-a1,a0)*chi(-a0)*psi(a1) t1 = t.contract_metric(C) assert _is_equal(t1, chi(-a1)*psi(a1)) t = C(a0,-a1)*chi(-a0)*psi(a1) t1 = t.contract_metric(C) assert _is_equal(t1, -chi(-a1)*psi(a1)) t = C(-a0,-a1)*chi(a0)*psi(a1) t1 = t.contract_metric(C) assert _is_equal(t1, chi(-a1)*psi(a1)) t = C(-a1,-a0)*chi(a0)*psi(a1) t1 = t.contract_metric(C) assert _is_equal(t1, -chi(-a1)*psi(a1)) t = C(-a1,-a0)*B(a0,a2)*psi(a1) t1 = t.contract_metric(C) assert _is_equal(t1, -B(-a1,a2)*psi(a1)) t = C(a1,a0)*B(-a2,-a0)*psi(-a1) t1 = t.contract_metric(C) assert _is_equal(t1, B(-a2,a1)*psi(-a1)) def test_epsilon(): Lorentz = TensorIndexType('Lorentz', dim=4, dummy_name='L') a, b, c, d, e = tensor_indices('a,b,c,d,e', Lorentz) epsilon = Lorentz.epsilon p, q, r, s = tensor_heads('p,q,r,s', [Lorentz]) t = epsilon(b,a,c,d) t1 = t.canon_bp() assert t1 == -epsilon(a,b,c,d) t = epsilon(c,b,d,a) t1 = t.canon_bp() assert t1 == epsilon(a,b,c,d) t = epsilon(c,a,d,b) t1 = t.canon_bp() assert t1 == -epsilon(a,b,c,d) t = epsilon(a,b,c,d)*p(-a)*q(-b) t1 = t.canon_bp() assert t1 == epsilon(c,d,a,b)*p(-a)*q(-b) t = epsilon(c,b,d,a)*p(-a)*q(-b) t1 = t.canon_bp() assert t1 == epsilon(c,d,a,b)*p(-a)*q(-b) t = epsilon(c,a,d,b)*p(-a)*q(-b) t1 = t.canon_bp() assert t1 == -epsilon(c,d,a,b)*p(-a)*q(-b) t = epsilon(c,a,d,b)*p(-a)*p(-b) t1 = t.canon_bp() assert t1 == 0 t = epsilon(c,a,d,b)*p(-a)*q(-b) + epsilon(a,b,c,d)*p(-b)*q(-a) t1 = t.canon_bp() assert t1 == -2*epsilon(c,d,a,b)*p(-a)*q(-b) # Test that epsilon can be create with a SymPy integer: Lorentz = TensorIndexType('Lorentz', dim=Integer(4), dummy_name='L') epsilon = Lorentz.epsilon assert isinstance(epsilon, TensorHead) def test_contract_delta1(): # see Group Theory by Cvitanovic page 9 n = Symbol('n') Color = TensorIndexType('Color', dim=n, dummy_name='C') a, b, c, d, e, f = tensor_indices('a,b,c,d,e,f', Color) delta = Color.delta def idn(a, b, d, c): assert a.is_up and d.is_up assert not (b.is_up or c.is_up) return delta(a,c)*delta(d,b) def T(a, b, d, c): assert a.is_up and d.is_up assert not (b.is_up or c.is_up) return delta(a,b)*delta(d,c) def P1(a, b, c, d): return idn(a,b,c,d) - 1/n*T(a,b,c,d) def P2(a, b, c, d): return 1/n*T(a,b,c,d) t = P1(a, -b, e, -f)*P1(f, -e, d, -c) t1 = t.contract_delta(delta) assert canon_bp(t1 - P1(a, -b, d, -c)) == 0 t = P2(a, -b, e, -f)*P2(f, -e, d, -c) t1 = t.contract_delta(delta) assert t1 == P2(a, -b, d, -c) t = P1(a, -b, e, -f)*P2(f, -e, d, -c) t1 = t.contract_delta(delta) assert t1 == 0 t = P1(a, -b, b, -a) t1 = t.contract_delta(delta) assert t1.equals(n**2 - 1) @filter_warnings_decorator def test_fun(): D = Symbol('D') Lorentz = TensorIndexType('Lorentz', dim=D, dummy_name='L') a, b, c, d, e = tensor_indices('a,b,c,d,e', Lorentz) g = Lorentz.metric p, q = tensor_heads('p q', [Lorentz]) t = q(c)*p(a)*q(b) + g(a,b)*g(c,d)*q(-d) assert t(a,b,c) == t assert canon_bp(t - t(b,a,c) - q(c)*p(a)*q(b) + q(c)*p(b)*q(a)) == 0 assert t(b,c,d) == q(d)*p(b)*q(c) + g(b,c)*g(d,e)*q(-e) t1 = t.substitute_indices((a,b),(b,a)) assert canon_bp(t1 - q(c)*p(b)*q(a) - g(a,b)*g(c,d)*q(-d)) == 0 # check that g_{a b; c} = 0 # example taken from L. Brewin # "A brief introduction to Cadabra" arxiv:0903.2085 # dg_{a b c} = \partial_{a} g_{b c} is symmetric in b, c dg = TensorHead('dg', [Lorentz]*3, TensorSymmetry.direct_product(1, 2)) # gamma^a_{b c} is the Christoffel symbol gamma = S.Half*g(a,d)*(dg(-b,-d,-c) + dg(-c,-b,-d) - dg(-d,-b,-c)) # t = g_{a b; c} t = dg(-c,-a,-b) - g(-a,-d)*gamma(d,-b,-c) - g(-b,-d)*gamma(d,-a,-c) t = t.contract_metric(g) assert t == 0 t = q(c)*p(a)*q(b) assert t(b,c,d) == q(d)*p(b)*q(c) def test_TensorManager(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') LorentzH = TensorIndexType('LorentzH', dummy_name='LH') i, j = tensor_indices('i,j', Lorentz) ih, jh = tensor_indices('ih,jh', LorentzH) p, q = tensor_heads('p q', [Lorentz]) ph, qh = tensor_heads('ph qh', [LorentzH]) Gsymbol = Symbol('Gsymbol') GHsymbol = Symbol('GHsymbol') TensorManager.set_comm(Gsymbol, GHsymbol, 0) G = TensorHead('G', [Lorentz], TensorSymmetry.no_symmetry(1), Gsymbol) assert TensorManager._comm_i2symbol[G.comm] == Gsymbol GH = TensorHead('GH', [LorentzH], TensorSymmetry.no_symmetry(1), GHsymbol) ps = G(i)*p(-i) psh = GH(ih)*ph(-ih) t = ps + psh t1 = t*t assert canon_bp(t1 - ps*ps - 2*ps*psh - psh*psh) == 0 qs = G(i)*q(-i) qsh = GH(ih)*qh(-ih) assert _is_equal(ps*qsh, qsh*ps) assert not _is_equal(ps*qs, qs*ps) n = TensorManager.comm_symbols2i(Gsymbol) assert TensorManager.comm_i2symbol(n) == Gsymbol assert GHsymbol in TensorManager._comm_symbols2i raises(ValueError, lambda: TensorManager.set_comm(GHsymbol, 1, 2)) TensorManager.set_comms((Gsymbol,GHsymbol,0),(Gsymbol,1,1)) assert TensorManager.get_comm(n, 1) == TensorManager.get_comm(1, n) == 1 TensorManager.clear() assert TensorManager.comm == [{0:0, 1:0, 2:0}, {0:0, 1:1, 2:None}, {0:0, 1:None}] assert GHsymbol not in TensorManager._comm_symbols2i nh = TensorManager.comm_symbols2i(GHsymbol) assert TensorManager.comm_i2symbol(nh) == GHsymbol assert GHsymbol in TensorManager._comm_symbols2i def test_hash(): D = Symbol('D') Lorentz = TensorIndexType('Lorentz', dim=D, dummy_name='L') a, b, c, d, e = tensor_indices('a,b,c,d,e', Lorentz) g = Lorentz.metric p, q = tensor_heads('p q', [Lorentz]) p_type = p.args[1] t1 = p(a)*q(b) t2 = p(a)*p(b) assert hash(t1) != hash(t2) t3 = p(a)*p(b) + g(a,b) t4 = p(a)*p(b) - g(a,b) assert hash(t3) != hash(t4) assert a.func(*a.args) == a assert Lorentz.func(*Lorentz.args) == Lorentz assert g.func(*g.args) == g assert p.func(*p.args) == p assert p_type.func(*p_type.args) == p_type assert p(a).func(*(p(a)).args) == p(a) assert t1.func(*t1.args) == t1 assert t2.func(*t2.args) == t2 assert t3.func(*t3.args) == t3 assert t4.func(*t4.args) == t4 assert hash(a.func(*a.args)) == hash(a) assert hash(Lorentz.func(*Lorentz.args)) == hash(Lorentz) assert hash(g.func(*g.args)) == hash(g) assert hash(p.func(*p.args)) == hash(p) assert hash(p_type.func(*p_type.args)) == hash(p_type) assert hash(p(a).func(*(p(a)).args)) == hash(p(a)) assert hash(t1.func(*t1.args)) == hash(t1) assert hash(t2.func(*t2.args)) == hash(t2) assert hash(t3.func(*t3.args)) == hash(t3) assert hash(t4.func(*t4.args)) == hash(t4) def check_all(obj): return all([isinstance(_, Basic) for _ in obj.args]) assert check_all(a) assert check_all(Lorentz) assert check_all(g) assert check_all(p) assert check_all(p_type) assert check_all(p(a)) assert check_all(t1) assert check_all(t2) assert check_all(t3) assert check_all(t4) tsymmetry = TensorSymmetry.direct_product(-2, 1, 3) assert tsymmetry.func(*tsymmetry.args) == tsymmetry assert hash(tsymmetry.func(*tsymmetry.args)) == hash(tsymmetry) assert check_all(tsymmetry) ### TEST VALUED TENSORS ### def _get_valued_base_test_variables(): minkowski = Matrix(( (1, 0, 0, 0), (0, -1, 0, 0), (0, 0, -1, 0), (0, 0, 0, -1), )) Lorentz = TensorIndexType('Lorentz', dim=4) Lorentz.data = minkowski i0, i1, i2, i3, i4 = tensor_indices('i0:5', Lorentz) E, px, py, pz = symbols('E px py pz') A = TensorHead('A', [Lorentz]) A.data = [E, px, py, pz] B = TensorHead('B', [Lorentz], TensorSymmetry.no_symmetry(1), 'Gcomm') B.data = range(4) AB = TensorHead("AB", [Lorentz]*2) AB.data = minkowski ba_matrix = Matrix(( (1, 2, 3, 4), (5, 6, 7, 8), (9, 0, -1, -2), (-3, -4, -5, -6), )) BA = TensorHead("BA", [Lorentz]*2) BA.data = ba_matrix # Let's test the diagonal metric, with inverted Minkowski metric: LorentzD = TensorIndexType('LorentzD') LorentzD.data = [-1, 1, 1, 1] mu0, mu1, mu2 = tensor_indices('mu0:3', LorentzD) C = TensorHead('C', [LorentzD]) C.data = [E, px, py, pz] ### non-diagonal metric ### ndm_matrix = ( (1, 1, 0,), (1, 0, 1), (0, 1, 0,), ) ndm = TensorIndexType("ndm") ndm.data = ndm_matrix n0, n1, n2 = tensor_indices('n0:3', ndm) NA = TensorHead('NA', [ndm]) NA.data = range(10, 13) NB = TensorHead('NB', [ndm]*2) NB.data = [[i+j for j in range(10, 13)] for i in range(10, 13)] NC = TensorHead('NC', [ndm]*3) NC.data = [[[i+j+k for k in range(4, 7)] for j in range(1, 4)] for i in range(2, 5)] return (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) @filter_warnings_decorator def test_valued_tensor_iter(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() list_BA = [Array([1, 2, 3, 4]), Array([5, 6, 7, 8]), Array([9, 0, -1, -2]), Array([-3, -4, -5, -6])] # iteration on VTensorHead assert list(A) == [E, px, py, pz] assert list(ba_matrix) == [1, 2, 3, 4, 5, 6, 7, 8, 9, 0, -1, -2, -3, -4, -5, -6] assert list(BA) == list_BA # iteration on VTensMul assert list(A(i1)) == [E, px, py, pz] assert list(BA(i1, i2)) == list_BA assert list(3 * BA(i1, i2)) == [3 * i for i in list_BA] assert list(-5 * BA(i1, i2)) == [-5 * i for i in list_BA] # iteration on VTensAdd # A(i1) + A(i1) assert list(A(i1) + A(i1)) == [2*E, 2*px, 2*py, 2*pz] assert BA(i1, i2) - BA(i1, i2) == 0 assert list(BA(i1, i2) - 2 * BA(i1, i2)) == [-i for i in list_BA] @filter_warnings_decorator def test_valued_tensor_covariant_contravariant_elements(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() assert A(-i0)[0] == A(i0)[0] assert A(-i0)[1] == -A(i0)[1] assert AB(i0, i1)[1, 1] == -1 assert AB(i0, -i1)[1, 1] == 1 assert AB(-i0, -i1)[1, 1] == -1 assert AB(-i0, i1)[1, 1] == 1 @filter_warnings_decorator def test_valued_tensor_get_matrix(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() matab = AB(i0, i1).get_matrix() assert matab == Matrix([ [1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, -1], ]) # when alternating contravariant/covariant with [1, -1, -1, -1] metric # it becomes the identity matrix: assert AB(i0, -i1).get_matrix() == eye(4) # covariant and contravariant forms: assert A(i0).get_matrix() == Matrix([E, px, py, pz]) assert A(-i0).get_matrix() == Matrix([E, -px, -py, -pz]) @filter_warnings_decorator def test_valued_tensor_contraction(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() assert (A(i0) * A(-i0)).data == E ** 2 - px ** 2 - py ** 2 - pz ** 2 assert (A(i0) * A(-i0)).data == A ** 2 assert (A(i0) * A(-i0)).data == A(i0) ** 2 assert (A(i0) * B(-i0)).data == -px - 2 * py - 3 * pz for i in range(4): for j in range(4): assert (A(i0) * B(-i1))[i, j] == [E, px, py, pz][i] * [0, -1, -2, -3][j] # test contraction on the alternative Minkowski metric: [-1, 1, 1, 1] assert (C(mu0) * C(-mu0)).data == -E ** 2 + px ** 2 + py ** 2 + pz ** 2 contrexp = A(i0) * AB(i1, -i0) assert A(i0).rank == 1 assert AB(i1, -i0).rank == 2 assert contrexp.rank == 1 for i in range(4): assert contrexp[i] == [E, px, py, pz][i] @filter_warnings_decorator def test_valued_tensor_self_contraction(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() assert AB(i0, -i0).data == 4 assert BA(i0, -i0).data == 2 @filter_warnings_decorator def test_valued_tensor_pow(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() assert C**2 == -E**2 + px**2 + py**2 + pz**2 assert C**1 == sqrt(-E**2 + px**2 + py**2 + pz**2) assert C(mu0)**2 == C**2 assert C(mu0)**1 == C**1 @filter_warnings_decorator def test_valued_tensor_expressions(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() x1, x2, x3 = symbols('x1:4') # test coefficient in contraction: rank2coeff = x1 * A(i3) * B(i2) assert rank2coeff[1, 1] == x1 * px assert rank2coeff[3, 3] == 3 * pz * x1 coeff_expr = ((x1 * A(i4)) * (B(-i4) / x2)).data assert coeff_expr.expand() == -px*x1/x2 - 2*py*x1/x2 - 3*pz*x1/x2 add_expr = A(i0) + B(i0) assert add_expr[0] == E assert add_expr[1] == px + 1 assert add_expr[2] == py + 2 assert add_expr[3] == pz + 3 sub_expr = A(i0) - B(i0) assert sub_expr[0] == E assert sub_expr[1] == px - 1 assert sub_expr[2] == py - 2 assert sub_expr[3] == pz - 3 assert (add_expr * B(-i0)).data == -px - 2*py - 3*pz - 14 expr1 = x1*A(i0) + x2*B(i0) expr2 = expr1 * B(i1) * (-4) expr3 = expr2 + 3*x3*AB(i0, i1) expr4 = expr3 / 2 assert expr4 * 2 == expr3 expr5 = (expr4 * BA(-i1, -i0)) assert expr5.data.expand() == 28*E*x1 + 12*px*x1 + 20*py*x1 + 28*pz*x1 + 136*x2 + 3*x3 @filter_warnings_decorator def test_valued_tensor_add_scalar(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() # one scalar summand after the contracted tensor expr1 = A(i0)*A(-i0) - (E**2 - px**2 - py**2 - pz**2) assert expr1.data == 0 # multiple scalar summands in front of the contracted tensor expr2 = E**2 - px**2 - py**2 - pz**2 - A(i0)*A(-i0) assert expr2.data == 0 # multiple scalar summands after the contracted tensor expr3 = A(i0)*A(-i0) - E**2 + px**2 + py**2 + pz**2 assert expr3.data == 0 # multiple scalar summands and multiple tensors expr4 = C(mu0)*C(-mu0) + 2*E**2 - 2*px**2 - 2*py**2 - 2*pz**2 - A(i0)*A(-i0) assert expr4.data == 0 @filter_warnings_decorator def test_noncommuting_components(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() euclid = TensorIndexType('Euclidean') euclid.data = [1, 1] i1, i2, i3 = tensor_indices('i1:4', euclid) a, b, c, d = symbols('a b c d', commutative=False) V1 = TensorHead('V1', [euclid]*2) V1.data = [[a, b], (c, d)] V2 = TensorHead('V2', [euclid]*2) V2.data = [[a, c], [b, d]] vtp = V1(i1, i2) * V2(-i2, -i1) assert vtp.data == a**2 + b**2 + c**2 + d**2 assert vtp.data != a**2 + 2*b*c + d**2 vtp2 = V1(i1, i2)*V1(-i2, -i1) assert vtp2.data == a**2 + b*c + c*b + d**2 assert vtp2.data != a**2 + 2*b*c + d**2 Vc = (b * V1(i1, -i1)).data assert Vc.expand() == b * a + b * d @filter_warnings_decorator def test_valued_non_diagonal_metric(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() mmatrix = Matrix(ndm_matrix) assert (NA(n0)*NA(-n0)).data == (NA(n0).get_matrix().T * mmatrix * NA(n0).get_matrix())[0, 0] @filter_warnings_decorator def test_valued_assign_numpy_ndarray(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() # this is needed to make sure that a numpy.ndarray can be assigned to a # tensor. arr = [E+1, px-1, py, pz] A.data = Array(arr) for i in range(4): assert A(i0).data[i] == arr[i] qx, qy, qz = symbols('qx qy qz') A(-i0).data = Array([E, qx, qy, qz]) for i in range(4): assert A(i0).data[i] == [E, -qx, -qy, -qz][i] assert A.data[i] == [E, -qx, -qy, -qz][i] # test on multi-indexed tensors. random_4x4_data = [[(i**3-3*i**2)%(j+7) for i in range(4)] for j in range(4)] AB(-i0, -i1).data = random_4x4_data for i in range(4): for j in range(4): assert AB(i0, i1).data[i, j] == random_4x4_data[i][j]*(-1 if i else 1)*(-1 if j else 1) assert AB(-i0, i1).data[i, j] == random_4x4_data[i][j]*(-1 if j else 1) assert AB(i0, -i1).data[i, j] == random_4x4_data[i][j]*(-1 if i else 1) assert AB(-i0, -i1).data[i, j] == random_4x4_data[i][j] AB(-i0, i1).data = random_4x4_data for i in range(4): for j in range(4): assert AB(i0, i1).data[i, j] == random_4x4_data[i][j]*(-1 if i else 1) assert AB(-i0, i1).data[i, j] == random_4x4_data[i][j] assert AB(i0, -i1).data[i, j] == random_4x4_data[i][j]*(-1 if i else 1)*(-1 if j else 1) assert AB(-i0, -i1).data[i, j] == random_4x4_data[i][j]*(-1 if j else 1) @filter_warnings_decorator def test_valued_metric_inverse(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() # let's assign some fancy matrix, just to verify it: # (this has no physical sense, it's just testing sympy); # it is symmetrical: md = [[2, 2, 2, 1], [2, 3, 1, 0], [2, 1, 2, 3], [1, 0, 3, 2]] Lorentz.data = md m = Matrix(md) metric = Lorentz.metric minv = m.inv() meye = eye(4) # the Kronecker Delta: KD = Lorentz.get_kronecker_delta() for i in range(4): for j in range(4): assert metric(i0, i1).data[i, j] == m[i, j] assert metric(-i0, -i1).data[i, j] == minv[i, j] assert metric(i0, -i1).data[i, j] == meye[i, j] assert metric(-i0, i1).data[i, j] == meye[i, j] assert metric(i0, i1)[i, j] == m[i, j] assert metric(-i0, -i1)[i, j] == minv[i, j] assert metric(i0, -i1)[i, j] == meye[i, j] assert metric(-i0, i1)[i, j] == meye[i, j] assert KD(i0, -i1)[i, j] == meye[i, j] @filter_warnings_decorator def test_valued_canon_bp_swapaxes(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() e1 = A(i1)*A(i0) e2 = e1.canon_bp() assert e2 == A(i0)*A(i1) for i in range(4): for j in range(4): assert e1[i, j] == e2[j, i] o1 = B(i2)*A(i1)*B(i0) o2 = o1.canon_bp() for i in range(4): for j in range(4): for k in range(4): assert o1[i, j, k] == o2[j, i, k] @filter_warnings_decorator def test_valued_components_with_wrong_symmetry(): IT = TensorIndexType('IT', dim=3) i0, i1, i2, i3 = tensor_indices('i0:4', IT) IT.data = [1, 1, 1] A_nosym = TensorHead('A', [IT]*2) A_sym = TensorHead('A', [IT]*2, TensorSymmetry.fully_symmetric(2)) A_antisym = TensorHead('A', [IT]*2, TensorSymmetry.fully_symmetric(-2)) mat_nosym = Matrix([[1,2,3],[4,5,6],[7,8,9]]) mat_sym = mat_nosym + mat_nosym.T mat_antisym = mat_nosym - mat_nosym.T A_nosym.data = mat_nosym A_nosym.data = mat_sym A_nosym.data = mat_antisym def assign(A, dat): A.data = dat A_sym.data = mat_sym raises(ValueError, lambda: assign(A_sym, mat_nosym)) raises(ValueError, lambda: assign(A_sym, mat_antisym)) A_antisym.data = mat_antisym raises(ValueError, lambda: assign(A_antisym, mat_sym)) raises(ValueError, lambda: assign(A_antisym, mat_nosym)) A_sym.data = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] A_antisym.data = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] @filter_warnings_decorator def test_issue_10972_TensMul_data(): Lorentz = TensorIndexType('Lorentz', metric_symmetry=1, dummy_name='i', dim=2) Lorentz.data = [-1, 1] mu, nu, alpha, beta = tensor_indices('\\mu, \\nu, \\alpha, \\beta', Lorentz) u = TensorHead('u', [Lorentz]) u.data = [1, 0] F = TensorHead('F', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2)) F.data = [[0, 1], [-1, 0]] mul_1 = F(mu, alpha) * u(-alpha) * F(nu, beta) * u(-beta) assert (mul_1.data == Array([[0, 0], [0, 1]])) mul_2 = F(mu, alpha) * F(nu, beta) * u(-alpha) * u(-beta) assert (mul_2.data == mul_1.data) assert ((mul_1 + mul_1).data == 2 * mul_1.data) @filter_warnings_decorator def test_TensMul_data(): Lorentz = TensorIndexType('Lorentz', metric_symmetry=1, dummy_name='L', dim=4) Lorentz.data = [-1, 1, 1, 1] mu, nu, alpha, beta = tensor_indices('\\mu, \\nu, \\alpha, \\beta', Lorentz) u = TensorHead('u', [Lorentz]) u.data = [1, 0, 0, 0] F = TensorHead('F', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2)) Ex, Ey, Ez, Bx, By, Bz = symbols('E_x E_y E_z B_x B_y B_z') F.data = [ [0, Ex, Ey, Ez], [-Ex, 0, Bz, -By], [-Ey, -Bz, 0, Bx], [-Ez, By, -Bx, 0]] E = F(mu, nu) * u(-nu) assert ((E(mu) * E(nu)).data == Array([[0, 0, 0, 0], [0, Ex ** 2, Ex * Ey, Ex * Ez], [0, Ex * Ey, Ey ** 2, Ey * Ez], [0, Ex * Ez, Ey * Ez, Ez ** 2]]) ) assert ((E(mu) * E(nu)).canon_bp().data == (E(mu) * E(nu)).data) assert ((F(mu, alpha) * F(beta, nu) * u(-alpha) * u(-beta)).data == - (E(mu) * E(nu)).data ) assert ((F(alpha, mu) * F(beta, nu) * u(-alpha) * u(-beta)).data == (E(mu) * E(nu)).data ) g = TensorHead('g', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) g.data = Lorentz.data # tensor 'perp' is orthogonal to vector 'u' perp = u(mu) * u(nu) + g(mu, nu) mul_1 = u(-mu) * perp(mu, nu) assert (mul_1.data == Array([0, 0, 0, 0])) mul_2 = u(-mu) * perp(mu, alpha) * perp(nu, beta) assert (mul_2.data == Array.zeros(4, 4, 4)) Fperp = perp(mu, alpha) * perp(nu, beta) * F(-alpha, -beta) assert (Fperp.data[0, :] == Array([0, 0, 0, 0])) assert (Fperp.data[:, 0] == Array([0, 0, 0, 0])) mul_3 = u(-mu) * Fperp(mu, nu) assert (mul_3.data == Array([0, 0, 0, 0])) @filter_warnings_decorator def test_issue_11020_TensAdd_data(): Lorentz = TensorIndexType('Lorentz', metric_symmetry=1, dummy_name='i', dim=2) Lorentz.data = [-1, 1] a, b, c, d = tensor_indices('a, b, c, d', Lorentz) i0, i1 = tensor_indices('i_0:2', Lorentz) # metric tensor g = TensorHead('g', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) g.data = Lorentz.data u = TensorHead('u', [Lorentz]) u.data = [1, 0] add_1 = g(b, c) * g(d, i0) * u(-i0) - g(b, c) * u(d) assert (add_1.data == Array.zeros(2, 2, 2)) # Now let us replace index `d` with `a`: add_2 = g(b, c) * g(a, i0) * u(-i0) - g(b, c) * u(a) assert (add_2.data == Array.zeros(2, 2, 2)) # some more tests # perp is tensor orthogonal to u^\mu perp = u(a) * u(b) + g(a, b) mul_1 = u(-a) * perp(a, b) assert (mul_1.data == Array([0, 0])) mul_2 = u(-c) * perp(c, a) * perp(d, b) assert (mul_2.data == Array.zeros(2, 2, 2)) def test_index_iteration(): L = TensorIndexType("Lorentz", dummy_name="L") i0, i1, i2, i3, i4 = tensor_indices('i0:5', L) L0 = tensor_indices('L_0', L) L1 = tensor_indices('L_1', L) A = TensorHead("A", [L, L]) B = TensorHead("B", [L, L], TensorSymmetry.fully_symmetric(2)) e1 = A(i0,i2) e2 = A(i0,-i0) e3 = A(i0,i1)*B(i2,i3) e4 = A(i0,i1)*B(i2,-i1) e5 = A(i0,i1)*B(-i0,-i1) e6 = e1 + e4 assert list(e1._iterate_free_indices) == [(i0, (1, 0)), (i2, (1, 1))] assert list(e1._iterate_dummy_indices) == [] assert list(e1._iterate_indices) == [(i0, (1, 0)), (i2, (1, 1))] assert list(e2._iterate_free_indices) == [] assert list(e2._iterate_dummy_indices) == [(L0, (1, 0)), (-L0, (1, 1))] assert list(e2._iterate_indices) == [(L0, (1, 0)), (-L0, (1, 1))] assert list(e3._iterate_free_indices) == [(i0, (0, 1, 0)), (i1, (0, 1, 1)), (i2, (1, 1, 0)), (i3, (1, 1, 1))] assert list(e3._iterate_dummy_indices) == [] assert list(e3._iterate_indices) == [(i0, (0, 1, 0)), (i1, (0, 1, 1)), (i2, (1, 1, 0)), (i3, (1, 1, 1))] assert list(e4._iterate_free_indices) == [(i0, (0, 1, 0)), (i2, (1, 1, 0))] assert list(e4._iterate_dummy_indices) == [(L0, (0, 1, 1)), (-L0, (1, 1, 1))] assert list(e4._iterate_indices) == [(i0, (0, 1, 0)), (L0, (0, 1, 1)), (i2, (1, 1, 0)), (-L0, (1, 1, 1))] assert list(e5._iterate_free_indices) == [] assert list(e5._iterate_dummy_indices) == [(L0, (0, 1, 0)), (L1, (0, 1, 1)), (-L0, (1, 1, 0)), (-L1, (1, 1, 1))] assert list(e5._iterate_indices) == [(L0, (0, 1, 0)), (L1, (0, 1, 1)), (-L0, (1, 1, 0)), (-L1, (1, 1, 1))] assert list(e6._iterate_free_indices) == [(i0, (0, 1, 0)), (i2, (0, 1, 1)), (i0, (1, 0, 1, 0)), (i2, (1, 1, 1, 0))] assert list(e6._iterate_dummy_indices) == [(L0, (1, 0, 1, 1)), (-L0, (1, 1, 1, 1))] assert list(e6._iterate_indices) == [(i0, (0, 1, 0)), (i2, (0, 1, 1)), (i0, (1, 0, 1, 0)), (L0, (1, 0, 1, 1)), (i2, (1, 1, 1, 0)), (-L0, (1, 1, 1, 1))] assert e1.get_indices() == [i0, i2] assert e1.get_free_indices() == [i0, i2] assert e2.get_indices() == [L0, -L0] assert e2.get_free_indices() == [] assert e3.get_indices() == [i0, i1, i2, i3] assert e3.get_free_indices() == [i0, i1, i2, i3] assert e4.get_indices() == [i0, L0, i2, -L0] assert e4.get_free_indices() == [i0, i2] assert e5.get_indices() == [L0, L1, -L0, -L1] assert e5.get_free_indices() == [] def test_tensor_expand(): L = TensorIndexType("L") i, j, k = tensor_indices("i j k", L) L_0 = TensorIndex("L_0", L) A, B, C, D = tensor_heads("A B C D", [L]) assert isinstance(Add(A(i), B(i)), TensAdd) assert isinstance(expand(A(i)+B(i)), TensAdd) expr = A(i)*(A(-i)+B(-i)) assert expr.args == (A(L_0), A(-L_0) + B(-L_0)) assert expr != A(i)*A(-i) + A(i)*B(-i) assert expr.expand() == A(i)*A(-i) + A(i)*B(-i) assert str(expr) == "A(L_0)*(A(-L_0) + B(-L_0))" expr = A(i)*A(j) + A(i)*B(j) assert str(expr) == "A(i)*A(j) + A(i)*B(j)" expr = A(-i)*(A(i)*A(j) + A(i)*B(j)*C(k)*C(-k)) assert expr != A(-i)*A(i)*A(j) + A(-i)*A(i)*B(j)*C(k)*C(-k) assert expr.expand() == A(-i)*A(i)*A(j) + A(-i)*A(i)*B(j)*C(k)*C(-k) assert str(expr) == "A(-L_0)*(A(L_0)*A(j) + A(L_0)*B(j)*C(L_1)*C(-L_1))" assert str(expr.canon_bp()) == 'A(L_0)*A(-L_0)*B(j)*C(L_1)*C(-L_1) + A(j)*A(L_0)*A(-L_0)' expr = A(-i)*(2*A(i)*A(j) + A(i)*B(j)) assert expr.expand() == 2*A(-i)*A(i)*A(j) + A(-i)*A(i)*B(j) expr = 2*A(i)*A(-i) assert expr.coeff == 2 expr = A(i)*(B(j)*C(k) + C(j)*(A(k) + D(k))) assert str(expr) == "A(i)*(B(j)*C(k) + C(j)*(A(k) + D(k)))" assert str(expr.expand()) == "A(i)*B(j)*C(k) + A(i)*C(j)*A(k) + A(i)*C(j)*D(k)" assert isinstance(TensMul(3), TensMul) tm = TensMul(3).doit() assert tm == 3 assert isinstance(tm, Integer) p1 = B(j)*B(-j) + B(j)*C(-j) p2 = C(-i)*p1 p3 = A(i)*p2 assert p3.expand() == A(i)*C(-i)*B(j)*B(-j) + A(i)*C(-i)*B(j)*C(-j) expr = A(i)*(B(-i) + C(-i)*(B(j)*B(-j) + B(j)*C(-j))) assert expr.expand() == A(i)*B(-i) + A(i)*C(-i)*B(j)*B(-j) + A(i)*C(-i)*B(j)*C(-j) expr = C(-i)*(B(j)*B(-j) + B(j)*C(-j)) assert expr.expand() == C(-i)*B(j)*B(-j) + C(-i)*B(j)*C(-j) def test_tensor_alternative_construction(): L = TensorIndexType("L") i0, i1, i2, i3 = tensor_indices('i0:4', L) A = TensorHead("A", [L]) x, y = symbols("x y") assert A(i0) == A(Symbol("i0")) assert A(-i0) == A(-Symbol("i0")) raises(TypeError, lambda: A(x+y)) raises(ValueError, lambda: A(2*x)) def test_tensor_replacement(): L = TensorIndexType("L") L2 = TensorIndexType("L2", dim=2) i, j, k, l = tensor_indices("i j k l", L) A, B, C, D = tensor_heads("A B C D", [L]) H = TensorHead("H", [L, L]) K = TensorHead("K", [L]*4) expr = H(i, j) repl = {H(i,-j): [[1,2],[3,4]], L: diag(1, -1)} assert expr._extract_data(repl) == ([i, j], Array([[1, -2], [3, -4]])) assert expr.replace_with_arrays(repl) == Array([[1, -2], [3, -4]]) assert expr.replace_with_arrays(repl, [i, j]) == Array([[1, -2], [3, -4]]) assert expr.replace_with_arrays(repl, [i, -j]) == Array([[1, 2], [3, 4]]) assert expr.replace_with_arrays(repl, [-i, j]) == Array([[1, -2], [-3, 4]]) assert expr.replace_with_arrays(repl, [-i, -j]) == Array([[1, 2], [-3, -4]]) assert expr.replace_with_arrays(repl, [j, i]) == Array([[1, 3], [-2, -4]]) assert expr.replace_with_arrays(repl, [j, -i]) == Array([[1, -3], [-2, 4]]) assert expr.replace_with_arrays(repl, [-j, i]) == Array([[1, 3], [2, 4]]) assert expr.replace_with_arrays(repl, [-j, -i]) == Array([[1, -3], [2, -4]]) # Test stability of optional parameter 'indices' assert expr.replace_with_arrays(repl) == Array([[1, -2], [3, -4]]) expr = H(i,j) repl = {H(i,j): [[1,2],[3,4]], L: diag(1, -1)} assert expr._extract_data(repl) == ([i, j], Array([[1, 2], [3, 4]])) assert expr.replace_with_arrays(repl) == Array([[1, 2], [3, 4]]) assert expr.replace_with_arrays(repl, [i, j]) == Array([[1, 2], [3, 4]]) assert expr.replace_with_arrays(repl, [i, -j]) == Array([[1, -2], [3, -4]]) assert expr.replace_with_arrays(repl, [-i, j]) == Array([[1, 2], [-3, -4]]) assert expr.replace_with_arrays(repl, [-i, -j]) == Array([[1, -2], [-3, 4]]) assert expr.replace_with_arrays(repl, [j, i]) == Array([[1, 3], [2, 4]]) assert expr.replace_with_arrays(repl, [j, -i]) == Array([[1, -3], [2, -4]]) assert expr.replace_with_arrays(repl, [-j, i]) == Array([[1, 3], [-2, -4]]) assert expr.replace_with_arrays(repl, [-j, -i]) == Array([[1, -3], [-2, 4]]) # Not the same indices: expr = H(i,k) repl = {H(i,j): [[1,2],[3,4]], L: diag(1, -1)} assert expr._extract_data(repl) == ([i, k], Array([[1, 2], [3, 4]])) expr = A(i)*A(-i) repl = {A(i): [1,2], L: diag(1, -1)} assert expr._extract_data(repl) == ([], -3) assert expr.replace_with_arrays(repl, []) == -3 expr = K(i, j, -j, k)*A(-i)*A(-k) repl = {A(i): [1, 2], K(i,j,k,l): Array([1]*2**4).reshape(2,2,2,2), L: diag(1, -1)} assert expr._extract_data(repl) expr = H(j, k) repl = {H(i,j): [[1,2],[3,4]], L: diag(1, -1)} raises(ValueError, lambda: expr._extract_data(repl)) expr = A(i) repl = {B(i): [1, 2]} raises(ValueError, lambda: expr._extract_data(repl)) expr = A(i) repl = {A(i): [[1, 2], [3, 4]]} raises(ValueError, lambda: expr._extract_data(repl)) # TensAdd: expr = A(k)*H(i, j) + B(k)*H(i, j) repl = {A(k): [1], B(k): [1], H(i, j): [[1, 2],[3,4]], L:diag(1,1)} assert expr._extract_data(repl) == ([k, i, j], Array([[[2, 4], [6, 8]]])) assert expr.replace_with_arrays(repl, [k, i, j]) == Array([[[2, 4], [6, 8]]]) assert expr.replace_with_arrays(repl, [k, j, i]) == Array([[[2, 6], [4, 8]]]) expr = A(k)*A(-k) + 100 repl = {A(k): [2, 3], L: diag(1, 1)} assert expr.replace_with_arrays(repl, []) == 113 ## Symmetrization: expr = H(i, j) + H(j, i) repl = {H(i, j): [[1, 2], [3, 4]]} assert expr._extract_data(repl) == ([i, j], Array([[2, 5], [5, 8]])) assert expr.replace_with_arrays(repl, [i, j]) == Array([[2, 5], [5, 8]]) assert expr.replace_with_arrays(repl, [j, i]) == Array([[2, 5], [5, 8]]) ## Anti-symmetrization: expr = H(i, j) - H(j, i) repl = {H(i, j): [[1, 2], [3, 4]]} assert expr.replace_with_arrays(repl, [i, j]) == Array([[0, -1], [1, 0]]) assert expr.replace_with_arrays(repl, [j, i]) == Array([[0, 1], [-1, 0]]) # Tensors with contractions in replacements: expr = K(i, j, k, -k) repl = {K(i, j, k, -k): [[1, 2], [3, 4]]} assert expr._extract_data(repl) == ([i, j], Array([[1, 2], [3, 4]])) expr = H(i, -i) repl = {H(i, -i): 42} assert expr._extract_data(repl) == ([], 42) # Replace with array, raise exception if indices are not compatible: expr = A(i)*A(j) repl = {A(i): [1, 2]} raises(ValueError, lambda: expr.replace_with_arrays(repl, [j])) # Raise exception if array dimension is not compatible: expr = A(i) repl = {A(i): [[1, 2]]} raises(ValueError, lambda: expr.replace_with_arrays(repl, [i])) # TensorIndexType with dimension, wrong dimension in replacement array: u1, u2, u3 = tensor_indices("u1:4", L2) U = TensorHead("U", [L2]) expr = U(u1)*U(-u2) repl = {U(u1): [[1]]} raises(ValueError, lambda: expr.replace_with_arrays(repl, [u1, -u2])) def test_rewrite_tensor_to_Indexed(): L = TensorIndexType("L", dim=4) A = TensorHead("A", [L]*4) B = TensorHead("B", [L]) i0, i1, i2, i3 = symbols("i0:4") L_0, L_1 = symbols("L_0:2") a1 = A(i0, i1, i2, i3) assert a1.rewrite(Indexed) == Indexed(Symbol("A"), i0, i1, i2, i3) a2 = A(i0, -i0, i2, i3) assert a2.rewrite(Indexed) == Sum(Indexed(Symbol("A"), L_0, L_0, i2, i3), (L_0, 0, 3)) a3 = a2 + A(i2, i3, i0, -i0) assert a3.rewrite(Indexed) == \ Sum(Indexed(Symbol("A"), L_0, L_0, i2, i3), (L_0, 0, 3)) +\ Sum(Indexed(Symbol("A"), i2, i3, L_0, L_0), (L_0, 0, 3)) b1 = B(-i0)*a1 assert b1.rewrite(Indexed) == Sum(Indexed(Symbol("B"), L_0)*Indexed(Symbol("A"), L_0, i1, i2, i3), (L_0, 0, 3)) b2 = B(-i3)*a2 assert b2.rewrite(Indexed) == Sum(Indexed(Symbol("B"), L_1)*Indexed(Symbol("A"), L_0, L_0, i2, L_1), (L_0, 0, 3), (L_1, 0, 3)) def test_tensorsymmetry(): with warns_deprecated_sympy(): tensorsymmetry([1]*2) def test_tensorhead(): with warns_deprecated_sympy(): tensorhead('A', []) def test_TensorType(): with warns_deprecated_sympy(): sym2 = TensorSymmetry.fully_symmetric(2) Lorentz = TensorIndexType('Lorentz') S2 = TensorType([Lorentz]*2, sym2) assert isinstance(S2, TensorType)
35.695233
171
0.55017
4a27516fed55d3054a4c4bf1821eb628c1b92edd
2,405
py
Python
src/firebolt/db/connection.py
firebolt-db/firebolt-python-sdk
35154a5ce070e71138d8573ce4c97891e212a939
[ "Apache-2.0" ]
4
2022-01-29T19:21:52.000Z
2022-03-25T20:48:14.000Z
src/firebolt/db/connection.py
firebolt-db/firebolt-python-sdk
35154a5ce070e71138d8573ce4c97891e212a939
[ "Apache-2.0" ]
92
2021-11-19T18:15:15.000Z
2022-03-30T11:52:06.000Z
src/firebolt/db/connection.py
firebolt-db/firebolt-python-sdk
35154a5ce070e71138d8573ce4c97891e212a939
[ "Apache-2.0" ]
6
2021-11-22T22:04:20.000Z
2022-02-18T15:30:23.000Z
from __future__ import annotations from functools import wraps from types import TracebackType from typing import Any from warnings import warn from readerwriterlock.rwlock import RWLockWrite from firebolt.async_db.connection import BaseConnection as AsyncBaseConnection from firebolt.async_db.connection import async_connect_factory from firebolt.db.cursor import Cursor from firebolt.utils.exception import ConnectionClosedError from firebolt.utils.util import AsyncJobThread, async_to_sync DEFAULT_TIMEOUT_SECONDS: int = 5 class Connection(AsyncBaseConnection): """ Firebolt database connection class. Implements PEP-249. Args: engine_url: Firebolt database engine REST API url database: Firebolt database name username: Firebolt account username password: Firebolt account password api_endpoint: Optional. Firebolt API endpoint. Used for authentication. Note: Firebolt currenly doesn't support transactions so commit and rollback methods are not implemented. """ __slots__ = AsyncBaseConnection.__slots__ + ("_closing_lock", "_async_job_thread") cursor_class = Cursor def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) # Holding this lock for write means that connection is closing itself. # cursor() should hold this lock for read to read/write state self._closing_lock = RWLockWrite() self._async_job_thread = AsyncJobThread() def cursor(self) -> Cursor: with self._closing_lock.gen_rlock(): c = super()._cursor(async_job_thread=self._async_job_thread) assert isinstance(c, Cursor) # typecheck return c @wraps(AsyncBaseConnection._aclose) def close(self) -> None: with self._closing_lock.gen_wlock(): async_to_sync(self._aclose, self._async_job_thread)() # Context manager support def __enter__(self) -> Connection: if self.closed: raise ConnectionClosedError("Connection is already closed.") return self def __exit__( self, exc_type: type, exc_val: Exception, exc_tb: TracebackType ) -> None: self.close() def __del__(self) -> None: if not self.closed: warn(f"Unclosed {self!r}", UserWarning) connect = async_to_sync(async_connect_factory(Connection))
32.066667
86
0.708524
4a27519c41792019a8bb0e1fd2709ef021c726b3
426
py
Python
data/scripts/templates/object/intangible/pet/shared_peko_peko_hue.py
obi-two/GameServer
7d37024e2291a97d49522610cd8f1dbe5666afc2
[ "MIT" ]
20
2015-02-23T15:11:56.000Z
2022-03-18T20:56:48.000Z
data/scripts/templates/object/intangible/pet/shared_peko_peko_hue.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
null
null
null
data/scripts/templates/object/intangible/pet/shared_peko_peko_hue.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
20
2015-04-04T16:35:59.000Z
2022-03-24T14:54:37.000Z
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Intangible() result.template = "object/intangible/pet/shared_peko_peko_hue.iff" result.attribute_template_id = -1 result.stfName("","") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
25.058824
67
0.713615
4a275209c1a77420b2e277e438ceb78b3db7e5ae
1,730
py
Python
utils.py
cnguyen10/similarity_classification_tasks
a8ecf253ed1b23bc246ba5f8880a8a18e92f3bff
[ "MIT" ]
null
null
null
utils.py
cnguyen10/similarity_classification_tasks
a8ecf253ed1b23bc246ba5f8880a8a18e92f3bff
[ "MIT" ]
null
null
null
utils.py
cnguyen10/similarity_classification_tasks
a8ecf253ed1b23bc246ba5f8880a8a18e92f3bff
[ "MIT" ]
null
null
null
import torch import numpy as np import os import sys import pickle from PIL import Image import typing def list_dir(root: str, prefix: bool = False) -> typing.List[str]: """List all directories at a given root Args: root (str): Path to directory whose folders need to be listed prefix (bool, optional): If true, prepends the path to each result, otherwise only returns the name of the directories found """ root = os.path.expanduser(root) directories = [p for p in os.listdir(root) if os.path.isdir(os.path.join(root, p))] if prefix is True: directories = [os.path.join(root, d) for d in directories] return directories def list_files(root: str, suffix: str, prefix: bool = False) -> typing.List[str]: """List all files ending with a suffix at a given root Args: root (str): Path to directory whose folders need to be listed suffix (str or tuple): Suffix of the files to match, e.g. '.png' or ('.jpg', '.png'). It uses the Python "str.endswith" method and is passed directly prefix (bool, optional): If true, prepends the path to each result, otherwise only returns the name of the files found """ root = os.path.expanduser(root) files = [p for p in os.listdir(root) if os.path.isfile(os.path.join(root, p)) and p.endswith(suffix)] if prefix is True: files = [os.path.join(root, d) for d in files] return files def expected_log_dirichlet(concentration: torch.Tensor) -> torch.Tensor: """Calculate the expected log of a Dirichlet distribution """ return torch.digamma(input=concentration) - torch.digamma(input=torch.sum(input=concentration, dim=-1, keepdim=True))
39.318182
121
0.675145
4a27524cfec7a5568a1b5cb287a6322330bcea88
971
py
Python
xlsxwriter/test/comparison/test_table22.py
hugovk/XlsxWriter
e97cc66637d9895480ee32cfb5e561d652d3787b
[ "BSD-2-Clause" ]
null
null
null
xlsxwriter/test/comparison/test_table22.py
hugovk/XlsxWriter
e97cc66637d9895480ee32cfb5e561d652d3787b
[ "BSD-2-Clause" ]
null
null
null
xlsxwriter/test/comparison/test_table22.py
hugovk/XlsxWriter
e97cc66637d9895480ee32cfb5e561d652d3787b
[ "BSD-2-Clause" ]
null
null
null
############################################################################### # # Tests for XlsxWriter. # # SPDX-License-Identifier: BSD-2-Clause # Copyright (c), 2013-2022, John McNamara, [email protected] # from ..excel_comparison_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename('table22.xlsx') def test_create_file(self): """Test the creation of a simple XlsxWriter file with tables.""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() data = [ ['apple', 'pie'], ['pine', 'tree'], ] worksheet.set_column('B:C', 10.288) worksheet.add_table('B2:C3', {'data': data, 'header_row': False}) workbook.close() self.assertExcelEqual()
23.119048
79
0.580844
4a2754a50ca140a14e986a0719ddb97e42260ecf
1,562
py
Python
kanshu/merge_txt_files.py
hustbill/python-crawler
7d736b9a3c6d031a9a7e37c74ae3bd417534fb06
[ "MIT" ]
null
null
null
kanshu/merge_txt_files.py
hustbill/python-crawler
7d736b9a3c6d031a9a7e37c74ae3bd417534fb06
[ "MIT" ]
null
null
null
kanshu/merge_txt_files.py
hustbill/python-crawler
7d736b9a3c6d031a9a7e37c74ae3bd417534fb06
[ "MIT" ]
null
null
null
import os import glob import re # Ref: https://stackoverflow.com/questions/5967500/how-to-correctly-sort-a-string-with-a-number-inside def atof(text): try: retval = float(text) except ValueError: retval = text return retval def natural_keys(text): ''' alist.sort(key=natural_keys) sorts in human order http://nedbatchelder.com/blog/200712/human_sorting.html (See Toothy's implementation in the comments) float regex comes from https://stackoverflow.com/a/12643073/190597 ''' return [atof(c) for c in re.split(r'[+-]?([0-9]+(?:[.][0-9]*)?|[.][0-9]+)', text)] def merge_txt_files(txtPath,outputFile): print("merge_txt_files: ") read_files = glob.glob(txtPath + "/*.txt") # sorted_files = sorted(read_files) # correctly sort a string with a number inside read_files.sort(key=natural_keys) # print (read_files[1:20]) # sub_files = read_files[1:20] sub_files = read_files with open(outputFile, "wb") as outfile: for f in sub_files: with open(f, "rb") as infile: print(f) # outfile.write(f.encode('gbk')) # outfile.write(f) base = os.path.basename(f) file_name = os.path.splitext(base)[0] section_name = ('\n\n ' + file_name + ' \n\n').encode() outfile.write(section_name) outfile.write(infile.read()) if __name__ == "__main__": outputFile = "冷枪-中日两支特种小分队生死对决-吴超著.txt" merge_txt_files("./txt_files", outputFile)
31.24
102
0.612036
4a2755168326d2d2e2f9c332581bcb8de167d5df
1,402
py
Python
library/books/book_descriptors.py
HoldYourBreath/Library
776d4e31beb3ce976c23dc423c88839435bf26ae
[ "MIT" ]
2
2017-04-29T07:27:04.000Z
2017-06-17T14:49:14.000Z
library/books/book_descriptors.py
HoldYourBreath/Library
776d4e31beb3ce976c23dc423c88839435bf26ae
[ "MIT" ]
45
2017-06-16T13:34:45.000Z
2022-03-08T22:46:52.000Z
library/books/book_descriptors.py
HoldYourBreath/Library
776d4e31beb3ce976c23dc423c88839435bf26ae
[ "MIT" ]
null
null
null
import library.database as database from library.books.book_descriptor import BookDescriptor class BookDescriptors: def __init__(self): self.books = [] def marshal(self): return [book.marshal() for book in self.books] @staticmethod def get(search_params={}): db = database.get() sub_query_books = 'SELECT isbn, COUNT(book_id) AS num_copies ' \ 'FROM books GROUP BY isbn' sub_query_authors = 'SELECT isbn, GROUP_CONCAT(name) AS authors ' \ 'FROM authors GROUP BY isbn' query = 'SELECT book_descriptors.*, books.num_copies, ' \ 'authors.authors FROM book_descriptors ' \ 'LEFT JOIN ({}) books USING (isbn) ' \ 'LEFT JOIN ({}) authors USING (isbn)' \ .format(sub_query_books, sub_query_authors) curs = db.execute(query) books = BookDescriptors() for book in curs.fetchall(): if not book['isbn']: # No books found return books authors = book['authors'] book = dict(book) if authors: book['authors'] = [author for author in authors.split(',')] else: book['authors'] = [] book = BookDescriptor(**book) books.books.append(book) return books
34.195122
75
0.544936
4a2755b80c5c2cdeb9ae85e867ecee13ef8a0c99
2,544
py
Python
resources/migrations/0005_add_map_field.py
City-of-Helsinki/berth-reservations
a3b1a8c2176f132505527acdf6da3a62199401db
[ "MIT" ]
3
2020-10-13T07:58:48.000Z
2020-12-22T09:41:50.000Z
resources/migrations/0005_add_map_field.py
City-of-Helsinki/berth-reservations
a3b1a8c2176f132505527acdf6da3a62199401db
[ "MIT" ]
422
2018-10-25T10:57:05.000Z
2022-03-30T05:47:14.000Z
resources/migrations/0005_add_map_field.py
City-of-Helsinki/berth-reservations
a3b1a8c2176f132505527acdf6da3a62199401db
[ "MIT" ]
1
2020-04-03T07:38:03.000Z
2020-04-03T07:38:03.000Z
# Generated by Django 2.2.6 on 2020-03-06 08:44 import django.core.files.storage from django.db import migrations, models import django.db.models.deletion import resources.models import uuid class Migration(migrations.Migration): dependencies = [ ("resources", "0004_add_depth_to_berth_type"), ] operations = [ migrations.CreateModel( name="WinterStorageAreaMap", fields=[ ( "id", models.UUIDField( default=uuid.uuid4, editable=False, primary_key=True, serialize=False, ), ), ( "map_file", models.FileField( storage=django.core.files.storage.FileSystemStorage(), upload_to=None, verbose_name="map file", ), ), ( "winter_storage_area", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="maps", to="resources.WinterStorageArea", verbose_name="winter storage area", ), ), ], options={"abstract": False,}, ), migrations.CreateModel( name="HarborMap", fields=[ ( "id", models.UUIDField( default=uuid.uuid4, editable=False, primary_key=True, serialize=False, ), ), ( "map_file", models.FileField( storage=django.core.files.storage.FileSystemStorage(), upload_to=None, verbose_name="map file", ), ), ( "harbor", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="maps", to="resources.Harbor", verbose_name="harbor", ), ), ], options={"abstract": False,}, ), ]
31.02439
78
0.387972
4a2755d462f429a54d8d093f181b2e4e0c348950
7,440
py
Python
test/client_test.py
mengibin/nacos-sdk-python
f929d983f62904efdbbda3b5dd148905478bfa08
[ "Apache-2.0" ]
null
null
null
test/client_test.py
mengibin/nacos-sdk-python
f929d983f62904efdbbda3b5dd148905478bfa08
[ "Apache-2.0" ]
null
null
null
test/client_test.py
mengibin/nacos-sdk-python
f929d983f62904efdbbda3b5dd148905478bfa08
[ "Apache-2.0" ]
1
2020-11-05T09:01:30.000Z
2020-11-05T09:01:30.000Z
# -*- coding: utf8 -*- from __future__ import print_function import unittest import nacos from nacos import files import time import shutil SERVER_1 = "100.69.207.65" SERVER_ADDRESSES = "%s:8848, 100.69.207.66:8848" % SERVER_1 NAMESPACE = "6cface1f-2f1b-4744-a59d-fd818b91a799" # Set the following values if authentication mode is enabled on the server USERNAME = None PASSWORD = None client = nacos.NacosClient(SERVER_ADDRESSES, namespace=NAMESPACE, username=USERNAME, password=PASSWORD) class TestClient(unittest.TestCase): def test_get_server(self): self.assertEqual(client.get_server(), (SERVER_1, 8848)) def test_set_get_remove_config(self): d = "test" g = "DEFAULT_GROUP" content = u"test中文" self.assertEqual(client.publish_config(d, g, content), True) time.sleep(0.5) self.assertEqual(client.get_config(d, g), content) self.assertEqual(client.remove_config(d, g), True) time.sleep(0.5) self.assertEqual(client.get_config(d, g), None) def test_server_failover(self): client2 = nacos.NacosClient("100.69.207.66:8848, %s:8848" %SERVER_1, namespace=NAMESPACE, username=USERNAME, password=PASSWORD) d = "test" g = "DEFAULT_GROUP" content = u"test中文" self.assertEqual(client2.publish_config(d, g, content), True) time.sleep(0.5) self.assertEqual(client2.get_config(d, g), content) self.assertEqual(client2.remove_config(d, g), True) time.sleep(0.5) self.assertEqual(client2.get_config(d, g), None) def test_fake_watcher(self): d = "test" g = "DEFAULT_GROUP" class Share: content = None count = 0 cache_key = "+".join([d, g, NAMESPACE]) def test_cb(args): print(args) Share.count += 1 Share.content = args["content"] client.add_config_watcher(d, g, test_cb) client.add_config_watcher(d, g, test_cb) client.add_config_watcher(d, g, test_cb) time.sleep(1) client.notify_queue.put((cache_key, "xxx", "md51")) time.sleep(1) self.assertEqual(Share.content, "xxx") self.assertEqual(Share.count, 3) client.remove_config_watcher(d, g, test_cb) Share.count = 0 client.notify_queue.put((cache_key, "yyy", "md52")) time.sleep(1) self.assertEqual(Share.content, "yyy") self.assertEqual(Share.count, 2) client.remove_config_watcher(d, g, test_cb, True) Share.count = 0 client.notify_queue.put((cache_key, "not effective, no watchers", "md53")) time.sleep(1) self.assertEqual(Share.content, "yyy") self.assertEqual(Share.count, 0) Share.count = 0 client.add_config_watcher(d, g, test_cb) time.sleep(1) client.notify_queue.put((cache_key, "zzz", "md54")) time.sleep(1) self.assertEqual(Share.content, "zzz") self.assertEqual(Share.count, 1) Share.count = 0 client.notify_queue.put((cache_key, "not effective, md5 no changes", "md54")) time.sleep(1) self.assertEqual(Share.content, "zzz") self.assertEqual(Share.count, 0) def test_long_pulling(self): client2 = nacos.NacosClient(SERVER_ADDRESSES, username=USERNAME, password=PASSWORD) d = "test1_pulling" g = "Group1" g2 = "Group2" class Share: content = None def cb(x): Share.content = x["content"] print(Share.content) client2.publish_config(d, g, "test2") client2.publish_config(d, g2, "test2") time.sleep(0.5) # test common client2.add_config_watcher(d, g, cb) client2.add_config_watcher(d, g2, cb) time.sleep(0.5) client2.publish_config(d, g, "test") client2.publish_config(d, g2, "test") time.sleep(1) self.assertEqual(Share.content, "test") client2.publish_config(d, g2, u"test2中文") time.sleep(1) self.assertEqual(Share.content, u"test2中文") def test_get_from_failover(self): d = "test_fo" g = "group" key = "+".join([d, g, NAMESPACE]) files.save_file(client.failover_base, key, u"xxx中文") print(client.get_config(d, g)) self.assertEqual(client.get_config(d, g), u"xxx中文") shutil.rmtree(client.failover_base) def test_get_from_snapshot(self): client2 = nacos.NacosClient(SERVER_ADDRESSES, namespace=NAMESPACE, username=USERNAME, password=PASSWORD) client2.current_server = ("1.100.84.215", 8080) d = "test_snap" g = "group" key = "+".join([d, g, NAMESPACE]) files.save_file(client2.snapshot_base, key, u"yyy中文") self.assertEqual(client2.get_config(d, g), u"yyy中文") shutil.rmtree(client2.snapshot_base) def test_add_naming_instance(self): self.assertEqual( client.add_naming_instance("test.service", "1.0.0.1", 8080, "testCluster2", 0.1, "{}", False, True), True) def test_add_naming_instance_with_dict_metadata(self): self.assertEqual( client.add_naming_instance("test.service", "1.0.0.1", 8080, "testCluster2", 0.1, {"a":"c"}, False, True), True) def test_remove_naming_instance(self): print(client.remove_naming_instance("test.service", "1.0.0.1", 8080)) def test_modify_naming_instance(self): self.assertEqual( client.modify_naming_instance("test.service", "1.0.0.1", 8080, cluster_name="testCluster", enable=False, metadata='{"a":"a"}'), True) def test_modify_naming_instance_with_dict_metadata(self): self.assertEqual( client.modify_naming_instance("test.service", "1.0.0.1", 8080, cluster_name="testCluster", enable=False, metadata={"a":"b"}), True) def test_list_naming_instance_offline(self): client.add_naming_instance("test.service", "1.0.0.1", 8080, "testCluster2", 0.1, "{}", False, True) self.assertEqual(len(client.list_naming_instance("test.service")["hosts"]), 0) def test_list_naming_instance_online(self): client.add_naming_instance("test.service", "1.0.0.1", 8080, "testCluster2", 0.1, "{}", True, True) self.assertEqual(len(client.list_naming_instance("test.service")["hosts"]), 1) def test_get_naming_instance(self): client.add_naming_instance("test.service", "1.0.0.1", 8080, "testCluster2", 0.1, "{}", False, True) self.assertEqual(client.get_naming_instance("test.service", "1.0.0.1", 8080, "testCluster2")['ip'], u'1.0.0.1') def test_send_heartbeat(self): client.add_naming_instance("test.service", "1.0.0.1", 8080, "testCluster2", 0.1, "{}", False, True) self.assertEqual( client.send_heartbeat("test.service", "1.0.0.1", 8080, "testCluster2", 0.1, "{}")["clientBeatInterval"] > 0, True) def test_send_heartbeat_with_dict_metadata(self): client.add_naming_instance("test.service", "1.0.0.1", 8080, "testCluster2", 0.1, {"a":"c"}, False, True) self.assertEqual( client.send_heartbeat("test.service", "1.0.0.1", 8080, "testCluster2", 0.1, {"a":"c"})["clientBeatInterval"] > 0, True) if __name__ == '__main__': unittest.main()
37.959184
135
0.624866
4a27563d132b3e77f97bdad802c5d4b9ad436078
1,893
py
Python
modules/tools/navigator/navigator.py
XiaoyuMo92/apollo
ee7bbef1b5afe9caa94bdc8033eed5d0ee3779aa
[ "Apache-2.0" ]
null
null
null
modules/tools/navigator/navigator.py
XiaoyuMo92/apollo
ee7bbef1b5afe9caa94bdc8033eed5d0ee3779aa
[ "Apache-2.0" ]
2
2022-01-27T16:14:38.000Z
2022-02-11T00:10:28.000Z
modules/tools/navigator/navigator.py
XiaoyuMo92/apollo
ee7bbef1b5afe9caa94bdc8033eed5d0ee3779aa
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python ############################################################################### # Copyright 2017 The Apollo Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### import rospy import sys import json from modules.map.relative_map.proto import navigation_pb2 if __name__ == '__main__': fdata = sys.argv[1] rospy.init_node("navigator3", anonymous=True) navigation_pub = rospy.Publisher( "/apollo/navigation", navigation_pb2.NavigationInfo, queue_size=1) navigation_info = navigation_pb2.NavigationInfo() navigation_path = navigation_info.navigation_path.add() navigation_path.path_priority = 0 navigation_path.path.name = "navigation" f = open(fdata, 'r') for line in f: seg = json.loads(line) for i in range(len(seg['s'])): point = navigation_path.path.path_point.add() point.x = seg['x'][i] point.y = seg['y'][i] point.s = seg['s'][i] point.theta = seg['theta'][i] point.kappa = seg['kappa'][i] point.dkappa = seg['dkappa'][i] f.close() print navigation_info r = rospy.Rate(1) # 1hz while not rospy.is_shutdown(): r.sleep() navigation_pub.publish(navigation_info) break
35.055556
79
0.611199
4a275690686fae92756ab8a3eee6b1b4120cc9c0
1,209
py
Python
river/tree/_attribute_test/nominal_attribute_binary_test.py
brcharron/creme
25290780f6bba0eb030215194e81b120d0219389
[ "BSD-3-Clause" ]
1
2020-12-04T18:56:19.000Z
2020-12-04T18:56:19.000Z
river/tree/_attribute_test/nominal_attribute_binary_test.py
brcharron/creme
25290780f6bba0eb030215194e81b120d0219389
[ "BSD-3-Clause" ]
null
null
null
river/tree/_attribute_test/nominal_attribute_binary_test.py
brcharron/creme
25290780f6bba0eb030215194e81b120d0219389
[ "BSD-3-Clause" ]
null
null
null
from .instance_conditional_test import InstanceConditionalTest class NominalAttributeBinaryTest(InstanceConditionalTest): """Implement binary split tests for categorical features. The resulting test considers two branches: one encompassing a specific feature value, and another for the remaining cases. Parameters ---------- att_idx The id of the attribute. att_value The categorical value of the feature to test. """ def __init__(self, att_idx, att_value): super().__init__() self._att_idx = att_idx self._att_value = att_value def branch_for_instance(self, x): try: return 0 if x[self._att_idx] == self._att_value else 1 except KeyError: return -1 @staticmethod def max_branches(): return 2 def describe_condition_for_branch(self, branch, shorten=False): condition = ' = ' if branch == 0 else ' != ' if shorten: return f"{condition}{self._att_value}" else: return f"{self._att_idx}{condition}{self._att_value}" def attrs_test_depends_on(self): return [self._att_idx]
29.487805
78
0.630273
4a275706a79050b9179b731a6d0d84a6e13fbc93
2,289
py
Python
swmmio/__main__.py
jennwuu/swmmio
6918ecfb69c10333cbc65ce0ab6554f8a04ef8f9
[ "MIT" ]
76
2016-04-26T14:04:02.000Z
2022-03-24T10:10:29.000Z
swmmio/__main__.py
Kimi-Monica/swmmio
54dd6c1f7a3e47db5702b1f703beca0a8945a250
[ "MIT" ]
94
2016-05-06T15:32:51.000Z
2022-02-10T08:03:30.000Z
swmmio/__main__.py
Kimi-Monica/swmmio
54dd6c1f7a3e47db5702b1f703beca0a8945a250
[ "MIT" ]
26
2016-09-01T22:51:47.000Z
2022-02-09T09:13:23.000Z
from swmmio.run_models.run import run_simple, run_hot_start_sequence from swmmio.run_models import start_pool from swmmio import Model from itertools import chain import os import argparse from multiprocessing import Pool, cpu_count from datetime import datetime #parse the arguments parser = argparse.ArgumentParser(description='Process some stuff') parser.add_argument('-r', '--run', dest='model_to_run', nargs="+") parser.add_argument('-rhs', '--run_hotstart', dest='hotstart_model_to_run', nargs="+") parser.add_argument('-sp', '--start_pool', dest='start_pool', nargs="+") parser.add_argument('-cores_left', '--cores_left', dest='cores_left', default=4, type=int) parser.add_argument('-pp', '--post_process', dest='post_process', nargs="+") args = parser.parse_args() wd = os.getcwd() #current directory script is being called from if args.model_to_run is not None: models_paths = [os.path.join(wd, f) for f in args.model_to_run] print('Adding models to queue:\n\t{}'.format('\n\t'.join(models_paths))) #run the models in series (one after the other) list(map(run_simple, models_paths)) # run_simple(args.model_to_run) elif args.hotstart_model_to_run is not None: models_paths = [os.path.join(wd, f) for f in args.hotstart_model_to_run] print('hotstart_model_to_run the model: {}'.format(args.hotstart_model_to_run)) # m = Model(args.hotstart_model_to_run) # run_hot_start_sequence(m)#args.hotstart_model_to_run) list(map(run_hot_start_sequence, models_paths)) elif args.start_pool is not None: models_dirs = [os.path.join(wd, f) for f in args.start_pool] print('Searching for models in:\n\t{}'.format('\n\t'.join(models_dirs))) #combine the segments and options (combinations) into one iterable inp_paths = [] for root, dirs, files in chain.from_iterable(os.walk(path) for path in models_dirs): for f in files: if f.endswith('.inp') and 'bk' not in root: #we've found a directory containing an inp inp_paths.append(os.path.join(root, f)) #call the main() function in start_pool.py start_pool.main(inp_paths, args.cores_left) print("swmmio has completed running {} models".format(len(inp_paths))) else: print('you need to pass in some args')
38.79661
90
0.719965
4a2757df18c3a10db89c859de214132cdd08ef92
48
py
Python
tests/__init__.py
vishalbelsare/drug2ways
9ddac00c221e4c0c785dcce2e5360624ead1575b
[ "Apache-2.0" ]
21
2020-05-27T21:23:09.000Z
2022-02-09T13:42:29.000Z
tests/__init__.py
vishalbelsare/drug2ways
9ddac00c221e4c0c785dcce2e5360624ead1575b
[ "Apache-2.0" ]
8
2020-05-29T20:46:21.000Z
2021-10-13T13:35:59.000Z
tests/__init__.py
vishalbelsare/drug2ways
9ddac00c221e4c0c785dcce2e5360624ead1575b
[ "Apache-2.0" ]
6
2020-07-15T14:09:48.000Z
2022-03-30T12:27:53.000Z
# -*- coding: utf-8 -*- """drug2ways tests."""
12
23
0.5
4a275945fc5f750571e7af4f4e2d2d0eec387687
362
py
Python
never_saiddit/core/urls.py
Damgaard/Never-Saiddit
d2b0bac0a39da0f21d8a0e5ed46094786615c41f
[ "MIT" ]
null
null
null
never_saiddit/core/urls.py
Damgaard/Never-Saiddit
d2b0bac0a39da0f21d8a0e5ed46094786615c41f
[ "MIT" ]
null
null
null
never_saiddit/core/urls.py
Damgaard/Never-Saiddit
d2b0bac0a39da0f21d8a0e5ed46094786615c41f
[ "MIT" ]
null
null
null
from django.conf.urls import url from . import views urlpatterns = [ url(r'^get_job_status/$', views.get_job_status, name='get_job_status'), # Main pages url(r'^confirmation/(?P<pk>[\w-]*)/$', views.ConfirmationView.as_view(), name="confirmation"), url(r'^destruction/(?P<pk>[\w-]*)/$', views.DestructionView.as_view(), name="destruction"), ]
30.166667
98
0.668508
4a275aac0f57032d51c557bd2190c036a2ccaa9c
4,676
py
Python
great_expectations/datasource/data_connector/configured_asset_filesystem_data_connector.py
OmriBromberg/great_expectations
60eb81ebfb08fef5d37d55c316dc962928beb165
[ "Apache-2.0" ]
1
2021-04-11T20:54:23.000Z
2021-04-11T20:54:23.000Z
great_expectations/datasource/data_connector/configured_asset_filesystem_data_connector.py
OmriBromberg/great_expectations
60eb81ebfb08fef5d37d55c316dc962928beb165
[ "Apache-2.0" ]
53
2021-10-02T02:26:51.000Z
2021-12-28T20:49:25.000Z
great_expectations/datasource/data_connector/configured_asset_filesystem_data_connector.py
OmriBromberg/great_expectations
60eb81ebfb08fef5d37d55c316dc962928beb165
[ "Apache-2.0" ]
1
2022-03-03T16:47:32.000Z
2022-03-03T16:47:32.000Z
import logging from pathlib import Path from typing import List, Optional from great_expectations.datasource.data_connector.asset import Asset from great_expectations.datasource.data_connector.configured_asset_file_path_data_connector import ( ConfiguredAssetFilePathDataConnector, ) from great_expectations.datasource.data_connector.util import ( get_filesystem_one_level_directory_glob_path_list, normalize_directory_path, ) from great_expectations.execution_engine import ExecutionEngine logger = logging.getLogger(__name__) class ConfiguredAssetFilesystemDataConnector(ConfiguredAssetFilePathDataConnector): """ Extension of ConfiguredAssetFilePathDataConnector used to connect to Filesystem The ConfiguredAssetFilesystemDataConnector is one of two classes (InferredAssetFilesystemDataConnector being the other one) designed for connecting to data on a filesystem. It connects to assets defined by the `assets` configuration. A ConfiguredAssetFilesystemDataConnector requires an explicit listing of each DataAsset you want to connect to. This allows more fine-tuning, but also requires more setup. """ def __init__( self, name: str, datasource_name: str, base_directory: str, assets: dict, execution_engine: Optional[ExecutionEngine] = None, default_regex: Optional[dict] = None, glob_directive: str = "**/*", sorters: Optional[list] = None, batch_spec_passthrough: Optional[dict] = None, ): """ Base class for DataConnectors that connect to data on a filesystem. This class supports the configuration of default_regex and sorters for filtering and sorting data_references. It takes in configured `assets` as a dictionary. Args: name (str): name of ConfiguredAssetFilesystemDataConnector datasource_name (str): Name of datasource that this DataConnector is connected to assets (dict): configured assets as a dictionary. These can each have their own regex and sorters execution_engine (ExecutionEngine): ExecutionEngine object to actually read the data default_regex (dict): Optional dict the filter and organize the data_references. glob_directive (str): glob for selecting files in directory (defaults to **/*) or nested directories (e.g. */*/*.csv) sorters (list): Optional list if you want to sort the data_references batch_spec_passthrough (dict): dictionary with keys that will be added directly to batch_spec """ logger.debug(f'Constructing ConfiguredAssetFilesystemDataConnector "{name}".') super().__init__( name=name, datasource_name=datasource_name, assets=assets, execution_engine=execution_engine, default_regex=default_regex, sorters=sorters, batch_spec_passthrough=batch_spec_passthrough, ) self._base_directory = base_directory self._glob_directive = glob_directive def _get_data_reference_list_for_asset(self, asset: Optional[Asset]) -> List[str]: base_directory: str = self.base_directory glob_directive: str = self._glob_directive if asset is not None: if asset.base_directory: base_directory = normalize_directory_path( dir_path=asset.base_directory, root_directory_path=base_directory ) if asset.glob_directive: glob_directive = asset.glob_directive path_list: List[str] = get_filesystem_one_level_directory_glob_path_list( base_directory_path=base_directory, glob_directive=glob_directive ) return sorted(path_list) def _get_full_file_path_for_asset( self, path: str, asset: Optional[Asset] = None ) -> str: base_directory: str = self.base_directory if asset is not None: if asset.base_directory: base_directory = normalize_directory_path( dir_path=asset.base_directory, root_directory_path=base_directory, ) return str(Path(base_directory).joinpath(path)) @property def base_directory(self) -> str: """ Accessor method for base_directory. If directory is a relative path, interpret it as relative to the root directory. If it is absolute, then keep as-is. """ return normalize_directory_path( dir_path=self._base_directory, root_directory_path=self.data_context_root_directory, )
41.75
130
0.69568
4a275af21d78e08a2e03aebd9e2c2fa65929698f
7,368
py
Python
src/repair/project.py
violetbingzhe/angelix
511c701a51522c0fceded153a9ec71a3695f8720
[ "MIT" ]
89
2016-02-19T10:11:47.000Z
2022-03-30T17:04:31.000Z
src/repair/project.py
violetbingzhe/angelix
511c701a51522c0fceded153a9ec71a3695f8720
[ "MIT" ]
29
2016-03-24T12:55:42.000Z
2022-01-13T21:41:16.000Z
src/repair/project.py
violetbingzhe/angelix
511c701a51522c0fceded153a9ec71a3695f8720
[ "MIT" ]
38
2016-02-21T15:39:38.000Z
2022-03-18T02:33:33.000Z
import copy import difflib import os from os.path import join, exists, relpath, basename, realpath import shutil import subprocess import json from utils import cd import logging import tempfile import sys import re import statistics import time from transformation import PrintfTransformer logger = logging.getLogger(__name__) class CompilationError(Exception): pass class Project: def __init__(self, config, dir, buggy, build_cmd, configure_cmd): self.config = config if self.config['verbose']: self.subproc_output = sys.stderr else: self.subproc_output = subprocess.DEVNULL self.dir = dir self.buggy = buggy self.build_cmd = build_cmd self.configure_cmd = configure_cmd def initialize(self): if self.config['instr_printf'] is not None: self.configure() self.instrument_printf = PrintfTransformer(self.config) self.instrument_printf(self, self.config['instr_printf']) self._buggy_backup = join(self.dir, self.buggy) + '.backup' shutil.copyfile(join(self.dir, self.buggy), self._buggy_backup) def restore_buggy(self): shutil.copyfile(self._buggy_backup, join(self.dir, self.buggy)) def diff_buggy(self): with open(join(self.dir, self.buggy), encoding='latin-1') as buggy: buggy_lines = buggy.readlines() with open(self._buggy_backup, encoding='latin-1') as backup: backup_lines = backup.readlines() return difflib.unified_diff(backup_lines, buggy_lines, fromfile=join('a', self.buggy), tofile=join('b', self.buggy)) def import_compilation_db(self, compilation_db): compilation_db = copy.deepcopy(compilation_db) for item in compilation_db: item['directory'] = join(self.dir, item['directory']) item['file'] = join(self.dir, item['file']) # this is a temporary hack. It general case, we need (probably) a different workflow: wrong_dir = realpath(join(self.dir, '..', 'validation')) item['command'] = item['command'].replace(wrong_dir, self.dir) item['command'] = item['command'] + ' -I' + os.environ['LLVM3_INCLUDE_PATH'] # this is a hack to skip output expressions when perform transformation: item['command'] = item['command'] + ' -include ' + os.environ['ANGELIX_RUNTIME_H'] item['command'] = item['command'] + ' -D ANGELIX_INSTRUMENTATION' compilation_db_file = join(self.dir, 'compile_commands.json') with open(compilation_db_file, 'w') as file: json.dump(compilation_db, file, indent=2) def configure(self): compile_start_time = time.time() src = basename(self.dir) logger.info('configuring {} source'.format(src)) if self.configure_cmd is None: return with cd(self.dir): return_code = subprocess.call(self.configure_cmd, shell=True, stderr=self.subproc_output, stdout=self.subproc_output) if return_code != 0 and not self.config['mute_warning']: logger.warning("configuration of {} returned non-zero code".format(relpath(dir))) compile_end_time = time.time() compile_elapsed = compile_end_time - compile_start_time statistics.data['time']['compilation'] += compile_elapsed def build_in_env(dir, cmd, subproc_output, config, env=os.environ): dirpath = tempfile.mkdtemp() messages = join(dirpath, 'messages') environment = dict(env) environment['ANGELIX_COMPILER_MESSAGES'] = messages with cd(dir): return_code = subprocess.call(cmd, env=environment, shell=True, stderr=subproc_output, stdout=subproc_output) if return_code != 0 and not config['mute_warning']: logger.warning("compilation of {} returned non-zero code".format(relpath(dir))) if exists(messages): with open(messages) as file: lines = file.readlines() if not config['mute_warning']: for line in lines: logger.warning("failed to build {}".format(relpath(line.strip()))) def build_with_cc(dir, cmd, stderr, cc, config): env = dict(os.environ) env['CC'] = cc build_in_env(dir, cmd, stderr, config, env) class Validation(Project): def build(self): logger.info('building {} source'.format(basename(self.dir))) compile_start_time = time.time() build_in_env(self.dir, self.build_cmd, subprocess.DEVNULL if self.config['mute_build_message'] else self.subproc_output, self.config) compile_end_time = time.time() compile_elapsed = compile_end_time - compile_start_time statistics.data['time']['compilation'] += compile_elapsed def export_compilation_db(self): logger.info('building json compilation database from {} source'.format(basename(self.dir))) compile_start_time = time.time() build_in_env(self.dir, 'bear ' + self.build_cmd, subprocess.DEVNULL if self.config['mute_build_message'] else self.subproc_output, self.config) compile_end_time = time.time() compile_elapsed = compile_end_time - compile_start_time statistics.data['time']['compilation'] += compile_elapsed compilation_db_file = join(self.dir, 'compile_commands.json') with open(compilation_db_file) as file: compilation_db = json.load(file) # making paths relative: for item in compilation_db: item['directory'] = relpath(item['directory'], self.dir) item['file'] = relpath(item['file'], self.dir) return compilation_db class Frontend(Project): def build(self): logger.info('building {} source'.format(basename(self.dir))) compile_start_time = time.time() build_with_cc(self.dir, self.build_cmd, subprocess.DEVNULL if self.config['mute_build_message'] else self.subproc_output, 'angelix-compiler --test', self.config) compile_end_time = time.time() compile_elapsed = compile_end_time - compile_start_time statistics.data['time']['compilation'] += compile_elapsed class Backend(Project): def build(self): logger.info('building {} source'.format(basename(self.dir))) compile_start_time = time.time() build_with_cc(self.dir, self.build_cmd, subprocess.DEVNULL if self.config['mute_build_message'] else self.subproc_output, 'angelix-compiler --klee', self.config) compile_end_time = time.time() compile_elapsed = compile_end_time - compile_start_time statistics.data['time']['compilation'] += compile_elapsed
38.375
99
0.605592
4a275af5c3d2c609c38a4ef1ab8da66221596ed5
225
py
Python
gail_airl_ppo/network/__init__.py
tarawa/imitation
409abfba1f60bca507c44de562bed135cc9f348f
[ "MIT" ]
null
null
null
gail_airl_ppo/network/__init__.py
tarawa/imitation
409abfba1f60bca507c44de562bed135cc9f348f
[ "MIT" ]
null
null
null
gail_airl_ppo/network/__init__.py
tarawa/imitation
409abfba1f60bca507c44de562bed135cc9f348f
[ "MIT" ]
null
null
null
from .policy import StateDependentPolicy, StateIndependentPolicy from .value import StateFunction, StateActionFunction, TwinnedStateActionFunction from .disc import GAILDiscrim, AIRLDiscrim, WGAILDiscrim, WGAILDiscrim_notanh
56.25
81
0.88
4a275b8cf8f7d35c1c0d28dca053cee66cae7da3
1,308
py
Python
py/test/i18n/test_ui.py
arccode/factory
a1b0fccd68987d8cd9c89710adc3c04b868347ec
[ "BSD-3-Clause" ]
3
2022-01-06T16:52:52.000Z
2022-03-07T11:30:47.000Z
py/test/i18n/test_ui.py
arccode/factory
a1b0fccd68987d8cd9c89710adc3c04b868347ec
[ "BSD-3-Clause" ]
null
null
null
py/test/i18n/test_ui.py
arccode/factory
a1b0fccd68987d8cd9c89710adc3c04b868347ec
[ "BSD-3-Clause" ]
1
2021-10-24T01:47:22.000Z
2021-10-24T01:47:22.000Z
# Copyright 2017 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Module for methods of creating i18n UIs.""" from cros.factory.test.i18n import translation def MakeI18nLabel(label): """Make an i18n label. Args: label: The string of the label, or the translation dict obtained by ``i18n._``. Returns: The HTML of label, that can be used in Goofy. Example: MakeI18nLabel( i18n._( 'This is a label with name "{name}" and value {value}', name=i18n._('example label name'), value='value')) """ label = translation.Translated(label) html = [] for locale in translation.LOCALES: translated_label = label[locale] html_class = 'goofy-label-' + locale html.append(u'<span class="%s">%s</span>' % (html_class, translated_label)) return ''.join(html) def GetStyleSheet(): """Return a stylesheet that can be used to style i18n labels properly.""" styles = [] for locale in translation.LOCALES: styles.append(""" .goofy-label-{locale} {{ display: none; }} .goofy-locale-{locale} .goofy-label-{locale} {{ display: inline; }}""".format(locale=locale)) return '\n'.join(styles)
26.693878
79
0.646789
4a275b90c1639cabf4cd659fc51b6857ad4fb938
491
py
Python
env/lib/python3.8/site-packages/plotly/validators/indicator/gauge/axis/_showticklabels.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
76
2020-07-06T14:44:05.000Z
2022-02-14T15:30:21.000Z
env/lib/python3.8/site-packages/plotly/validators/indicator/gauge/axis/_showticklabels.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
11
2020-08-09T02:30:14.000Z
2022-03-12T00:50:14.000Z
env/lib/python3.8/site-packages/plotly/validators/indicator/gauge/axis/_showticklabels.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
11
2020-07-12T16:18:07.000Z
2022-02-05T16:48:35.000Z
import _plotly_utils.basevalidators class ShowticklabelsValidator(_plotly_utils.basevalidators.BooleanValidator): def __init__( self, plotly_name="showticklabels", parent_name="indicator.gauge.axis", **kwargs ): super(ShowticklabelsValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "plot"), role=kwargs.pop("role", "style"), **kwargs )
32.733333
88
0.655804
4a275c02f45d63d24f83857f778a60186fe1bf1c
19,661
py
Python
station_lmc.py
andreww5au/PaSD-client
5ed7ff3e8b529c440fbfecb8c3159516285496c4
[ "MIT" ]
null
null
null
station_lmc.py
andreww5au/PaSD-client
5ed7ff3e8b529c440fbfecb8c3159516285496c4
[ "MIT" ]
null
null
null
station_lmc.py
andreww5au/PaSD-client
5ed7ff3e8b529c440fbfecb8c3159516285496c4
[ "MIT" ]
null
null
null
#!/usr/bin/env python """ Manage a single PaSD station - control and monitor the hardware via Modbus commands to the specified IP address, and update the relevant tables in the PaSD database. Monitor the port state tables in that database, and send updated information as needed to the hardware in the field. """ import argparse from configparser import ConfigParser as conparser import datetime from datetime import timezone import logging import sys import time import psycopg2 from psycopg2 import extras LOGFILE = 'station_lmc.log' CPPATH = ['/usr/local/etc/pasd.conf', '/usr/local/etc/pasd-local.conf', './pasd.conf', './pasd-local.conf'] DEFAULT_STATION_NUMBER = 1 FNDH_STATE_QUERY = """ UPDATE pasd_fndh_state SET mbrv = %(mbrv)s, pcbrv = %(pcbrv)s, cpuid = %(cpuid)s, chipid = %(chipid)s, firmware_version = %(firmware_version)s, uptime = %(uptime)s, psu48v1_voltage = %(psu48v1_voltage)s, psu48v2_voltage = %(psu48v2_voltage)s, psu5v_voltage = %(psu5v_voltage)s, psu48v_current = %(psu48v_current)s, psu48v_temp = %(psu48v_temp)s, psu5v_temp = %(psu5v_temp)s, pcb_temp = %(pcb_temp)s, outside_temp = %(outside_temp)s, status = %(status)s, indicator_state = %(indicator_state)s, readtime = %(readtime)s WHERE (station_id = %(station_id)s) """ FNDH_PORT_QUERY = """ UPDATE pasd_fndh_port_status SET smartbox_number = %(smartbox_address)s, system_online = %(system_online)s, locally_forced_on = %(locally_forced_on)s, locally_forced_off = %(locally_forced_off)s, power_state = %(power_state)s, power_sense = %(power_sense)s, status_timestamp = %(status_timestamp)s WHERE (station_id = %(station_id)s) AND (pdoc_number = %(port_number)s) """ SMARTBOX_STATE_QUERY = """ UPDATE pasd_smartbox_state SET mbrv = %(mbrv)s, pcbrv = %(pcbrv)s, cpuid = %(cpuid)s, chipid = %(chipid)s, firmware_version = %(firmware_version)s, uptime = %(uptime)s, incoming_voltage = %(incoming_voltage)s, psu_voltage = %(psu_voltage)s, psu_temp = %(psu_temp)s, pcb_temp = %(pcb_temp)s, outside_temp = %(outside_temp)s, status = %(status)s, indicator_state = %(indicator_state)s, readtime = %(readtime)s, pdoc_number = %(pdoc_number)s WHERE (station_id = %(station_id)s) AND (smartbox_number = %(modbus_address)s) """ SMARTBOX_PORT_QUERY = """ UPDATE pasd_smartbox_port_status SET system_online = %(system_online)s, current_draw = %(current)s, locally_forced_on = %(locally_forced_on)s, locally_forced_off = %(locally_forced_off)s, breaker_tripped = %(breaker_tripped)s, power_state = %(power_state)s, status_timestamp = %(status_timestamp)s, current_draw_timestamp = %(current_timestamp)s WHERE (station_id = %(station_id)s) AND (smartbox_number = %(modbus_address)s) AND (port_number = %(port_number)s) """ LAST_STARTUP_ATTEMPT_TIME = 0 # Timestamp for the last time we tried to start up the station STARTUP_RETRY_INTERVAL = 600 # If the station isn't active, but is meant to be, wait this long before retrying startup LAST_SHUTDOWN_ATTEMPT_TIME = 0 # Timestamp for the last time we tried to shut down the station SHUTDOWN_RETRY_INTERVAL = 600 # If the station is active, but isnt meant to be, wait this long before retrying shutdown def initialise_db(db, stn): """ Make sure that all state rows in the database tables exist (with empty contents), so that future writes can just use 'update' queries instead of checking to see if they need to do 'insert' instead'. If more than one row exists for any FNDH/smartbox/port, delete all of the duplicates and create a new empty row. :param db: Database connection object :param stn: An instance of station.Station(), used to get the station number. :return: """ with db: with db.cursor() as curs: curs.execute('SELECT COUNT(*) FROM pasd_stations WHERE (station_id = %s)', (stn.station_id,)) if curs.fetchone()[0] != 1: # No rows match, or more than one row matches: curs.execute('DELETE FROM pasd_stations WHERE (station_id = %s)', (stn.station_id,)) curs.execute('INSERT INTO pasd_stations (station_id) VALUES (%s)', (stn.station_id,)) curs.execute('SELECT COUNT(*) FROM pasd_fndh_state WHERE (station_id = %s)', (stn.station_id,)) if curs.fetchone()[0] != 1: # No rows match, or more than one row matches: curs.execute('DELETE FROM pasd_fndh_state WHERE (station_id = %s)', (stn.station_id,)) curs.execute('INSERT INTO pasd_fndh_state (station_id) VALUES (%s)', (stn.station_id,)) for pnum in range(1, 29): curs.execute('SELECT COUNT(*) FROM pasd_fndh_port_status WHERE (station_id = %s) AND (pdoc_number = %s)', (stn.station_id, pnum)) if curs.fetchone()[0] != 1: # No rows match, or more than one row matches: curs.execute('DELETE FROM pasd_fndh_port_status WHERE (station_id = %s) AND (pdoc_number = %s)', (stn.station_id, pnum)) curs.execute('INSERT INTO pasd_fndh_port_status (station_id, pdoc_number) VALUES (%s, %s)', (stn.station_id, pnum)) for sb_num in range(1, 25): curs.execute('SELECT COUNT(*) FROM pasd_smartbox_state WHERE (station_id = %s) AND (smartbox_number = %s)', (stn.station_id, sb_num)) if curs.fetchone()[0] != 1: # No rows match, or more than one row matches: curs.execute('DELETE FROM pasd_smartbox_state WHERE (station_id = %s) AND (smartbox_number = %s)', (stn.station_id, sb_num)) curs.execute('INSERT INTO pasd_smartbox_state (station_id, smartbox_number) VALUES (%s, %s)', (stn.station_id, sb_num)) for pnum in range(1, 13): curs.execute('SELECT COUNT(*) FROM pasd_smartbox_port_status WHERE (station_id = %s) AND (smartbox_number = %s) AND (port_number = %s)', (stn.station_id, sb_num, pnum)) if curs.fetchone()[0] != 1: # No rows match, or more than one row matches: curs.execute('DELETE FROM pasd_smartbox_port_status WHERE (station_id = %s) AND (smartbox_number = %s) AND (port_number = %s)', (stn.station_id, sb_num, pnum)) curs.execute('INSERT INTO pasd_smartbox_port_status (station_id, smartbox_number, port_number) VALUES (%s, %s, %s)', (stn.station_id, sb_num, pnum)) def update_db(db, stn): """ Write current instance data to the database (FNDH state, all 28 FNDH port states, all 24 smartbox states, and all 288 smartbox ports states. :param db: Database connection object :param stn: An instance of station.Station(), with contents to write the database. :return: """ # FNDH state table: with db: # Commit transaction when block exits with db.cursor() as curs: stn.fndh.station_id = stn.station_id curs.execute(FNDH_STATE_QUERY, stn.fndh.__dict__) fpdata_list = [] for pnum, port in stn.fndh.ports.items(): tmpdict = port.__dict__.copy() tmpdict['smartbox_number'] = stn.station_id fpdata_list.append(tmpdict) # FNDH port table: with db: # Commit transaction when block exits with db.cursor() as curs: psycopg2.extras.execute_batch(curs, FNDH_PORT_QUERY, fpdata_list) # Smartbox port table sb_data_list = [] # Will end up with 24 dicts, one for each smartbox state sb_ports_data_list = [] # Will end up with 288 dicts, one for each port state if stn.active: # If the station is active, we have real smartbox data to send for sb_num, sb in stn.smartboxes.items(): sb.station_id = stn.station_id sb_data_list.append(sb.__dict__) for pnum, port in sb.ports: port.station_id = stn.station_id sb_ports_data_list.append(port.__dict__) else: # If the station is not active (smartboxes are all off), fill in empty smartbox data for sb_num in range(1, 25): for portnum in range(1, 13): spdata = {'station_id':stn.station_id, 'modbus_address':sb_num, 'port_number':portnum, 'system_online':None, 'current_draw':None, 'locally_forced_on':None, 'locally_forced_off':None, 'breaker_tripped':None, 'power_state':None, 'status_timestamp':datetime.datetime.now(timezone.utc), 'current_timestamp':None} sb_ports_data_list.append(spdata) with db: # Commit transaction when block exits with db.cursor() as curs: psycopg2.extras.execute_batch(curs, SMARTBOX_STATE_QUERY, sb_data_list) psycopg2.extras.execute_batch(curs, SMARTBOX_PORT_QUERY, sb_ports_data_list) def get_antenna_map(db, station_number=DEFAULT_STATION_NUMBER): """ Query the database to find the antenna->smartbox/port mapping, and return it as a dict of dicts. The returned dict has smartbox address (1-24) as key. The values are dicts with port number (1-12) as key, and antenna number (1-256) as value (or None). All 288 possible smartbox ports must be in the antenna map. :param db: Database connection object :param station_number: Station ID (1-9999) :return: Antenna map (dict of dicts) """ # Create antenna map structure with all 288 ports set to None, to make sure none are missing ant_map = {} for sid in range(1, 25): ant_map[sid] = {pid:None for pid in range(1, 13)} with db: # Commit transaction when block exits with db.cursor() as curs: query = """SELECT antenna_number, smartbox_number, port_number FROM pasd_antenna_portmap WHERE (station_id=%s) and begintime < now() and endtime > now() """ curs.execute(query, (station_number,)) # Fill in mapping data from the query for row in curs: antenna_number, smartbox_number, port_number = row ant_map[smartbox_number][port_number] = antenna_number return ant_map def get_all_port_configs(db, station_number=DEFAULT_STATION_NUMBER): """ Query the database to get the smartbox port state dictionary, for all smartboxes. Result is a tuple of two dictionaries - the first contains all 28 FNDH port configs, the second all 288 smartbox port configs. The FNDH port config dictionary is a dict with port number (1-28) as key, and a list of two booleans of 0/1 integers as value, where the first item is the 'desire_enabled_online', and the second is the 'desire_enabled_offline'. The smartbox port dictionary has smartbox number as the key. Each value is a dict with port number (1-12) as key, and a list of two booleans of 0/1 integers as value, where the first item is the 'desire_enabled_online', and the second is the 'desire_enabled_offline'. :param db: Database connection object :param station_number: Station ID (1-9999) :return: port configuration for that smartbox (dict of dicts) """ with db: # Commit transaction when block exits with db.cursor() as curs: # Read FNDH port config for this station: query = """SELECT pdoc_number, desire_enabled_online, desire_enabled_offline FROM pasd_fndh_port_status WHERE station_id=%s""" curs.execute(query, (station_number,)) fndhpc = {i:[False, False] for i in range(1, 29)} for row in curs: pdoc_number, desire_enabled_online, desire_enabled_offline = row fndhpc[pdoc_number] = bool(desire_enabled_online), bool(desire_enabled_offline) # Read all smartbox port configs for this station: query = """SELECT smartbox_number, port_number, desire_enabled_online, desire_enabled_offline FROM pasd_smartbox_port_status WHERE station_id=%s""" curs.execute(query, (station_number,)) sbpc = {} for sid in range(1, 25): sbpc[sid] = {i:[False, False] for i in range(1, 13)} for row in curs: smartbox_number, port_number, desire_enabled_online, desire_enabled_offline = row sbpc[smartbox_number][port_number] = bool(desire_enabled_online), bool(desire_enabled_offline) return fndhpc, sbpc def update_station_state(db, stn): """ Write the current station state (stn.active, stn.status, etc) to the 'stations' table in the database. :param db: Database connection object :param stn: An instance of station.Station() :return: The current value of the desired_active row in the stations table entry for this station. """ query = "UPDATE pasd_stations SET active = %s, status = %s, status_timestamp = %s WHERE station_id = %s" with db: with db.cursor() as curs: curs.execute(query, (stn.active. stn.status, datetime.datetime.now(timezone.utc), stn.station_id)) curs.execute("SELECT desired_active FROM pasd_stations WHERE station_id = %s", (stn.station_id,)) rows = curs.fetchall() if len(rows) > 1: stn.logger.critical('Multiple records in stations table for station ID=%d' % (stn.station_id)) sys.exit() else: desired_active = rows[0][0] return desired_active def main_loop(db, stn): """ Run forever in a loop -Query the field hardware to get all the current sensor and port parameters and update the instance data -Use the instance data to update the database sensor and port parameters -Query the database to look for commanded changes in station or port state -Write the commanded state data to the field hardware if it's different -Query the stations table to see if we're meant to start up, or shut down :param db: Database connection object :param stn: An instance of station.Station() :return: """ while not stn.wants_exit: # Query the field hardware to get all the current sensor and port parameters and update the instance data stn.poll_data() # If station is not active, only FNDH data can be polled # Use the instance data to update the database sensor and port parameters update_db(db, stn=stn) # Query the database to see if the desired port config is different to the polled port config fndhpc, sbpc = get_all_port_configs(db, station_number=stn.station_id) needs_write = False for pid in stn.fndh.ports.keys(): p = stn.fndh.ports[pid] desire_enabled_online, desire_enabled_offline = fndhpc[pid] if (p.desire_enabled_online != desire_enabled_online): p.desire_enabled_online = desire_enabled_online needs_write = True if (p.desire_enabled_offline != desire_enabled_offline): p.desire_enabled_offline = desire_enabled_offline needs_write = True if needs_write: stn.fndh.write_portconfig() time.sleep(1.0) # Allow time for a smartbox to boot, if it's being turned on here. for sid in stn.smartboxes.keys(): needs_write = False for pid in stn.smartboxes[sid].ports.keys(): p = stn.smartboxes[sid].ports[pid] desire_enabled_online, desire_enabled_offline = sbpc[sid][pid] if (p.desire_enabled_online != desire_enabled_online): p.desire_enabled_online = desire_enabled_online needs_write = True if (p.desire_enabled_offline != desire_enabled_offline): p.desire_enabled_offline = desire_enabled_offline needs_write = True if needs_write: stn.smartboxes[sid].write_portconfig() desired_active = update_station_state(db, stn=stn) if ( (desired_active and (not stn.active) and ((time.time() - LAST_STARTUP_ATTEMPT_TIME) > STARTUP_RETRY_INTERVAL)) ): stn.startup() elif ( (not desired_active) and stn.active and ((time.time() - LAST_SHUTDOWN_ATTEMPT_TIME) > SHUTDOWN_RETRY_INTERVAL) ): stn.shutdown() if __name__ == '__main__': CP = conparser(defaults={}) CPfile = CP.read(CPPATH) if not CPfile: print("None of the specified configuration files found by mwaconfig.py: %s" % (CPPATH,)) parser = argparse.ArgumentParser(description='Run a PaSD station', epilog='Run this as "python -i %s" to drop into the Python prompt after starting up.' % sys.argv[0]) parser.add_argument('--host', dest='host', default=None, help='Hostname of an ethernet-serial gateway, eg 134.7.50.185') parser.add_argument('--device', dest='device', default=None, help='Serial port device name, eg /dev/ttyS0 or COM6') parser.add_argument('--id', '--station_id', dest='station_id', default=DEFAULT_STATION_NUMBER, help='Station number (1-9999)') parser.add_argument('--debug', dest='debug', default=False, action='store_true', help='If given, drop to the DEBUG log level, otherwise use INFO') args = parser.parse_args() if (args.host is None) and (args.device is None): args.host = 'pasd-fndh' if args.debug: loglevel = logging.DEBUG else: loglevel = logging.INFO config = CP['station_%03d' % args.station_id] dbuser = config['dbuser'] dbhost = config['dbhost'] dbpass = config['dbpass'] dbname = config['dbname'] db = psycopg2.connect(user=dbuser, password=dbpass, host=dbhost, database=dbname) fh = logging.FileHandler(filename=LOGFILE, mode='w') fh.setLevel(logging.DEBUG) # All log messages go to the log file sh = logging.StreamHandler() sh.setLevel(loglevel) # Some or all log messages go to the console logging.basicConfig(handlers=[fh, sh], level=logging.DEBUG, format='%(levelname)s:%(name)s %(created)14.3f - %(message)s') from pasd import transport from pasd import station tlogger = logging.getLogger('T') if loglevel == logging.DEBUG: print('Setting transport log level to info, DEBUG is very spammy. All other logging is at DEBUG level.') tlogger.setLevel(logging.INFO) conn = transport.Connection(hostname=args.host, devicename=args.device, multidrop=False, logger=tlogger) fndhpc, sbpc = get_all_port_configs(db, station_number=args.station_id) slogger = logging.getLogger('ST') s = station.Station(conn=conn, station_id=args.station_id, antenna_map=get_antenna_map(db, args.station_id), portconfig_fndh=fndhpc, portconfig_smartboxes=sbpc, logger=slogger) print('Starting up entire station as "s" - FNDH on address 31, SMARTboxes on addresses 1-24.')
48.90796
156
0.641676
4a275c46532f4459879f3d271d24bb8e70571c0f
874
py
Python
data_science_layer/preprocessing/log_tranformation.py
nathangeology/cyclist_dataset
44ad4a3765e86cba934bfdbfb151a788eddfbead
[ "MIT" ]
null
null
null
data_science_layer/preprocessing/log_tranformation.py
nathangeology/cyclist_dataset
44ad4a3765e86cba934bfdbfb151a788eddfbead
[ "MIT" ]
null
null
null
data_science_layer/preprocessing/log_tranformation.py
nathangeology/cyclist_dataset
44ad4a3765e86cba934bfdbfb151a788eddfbead
[ "MIT" ]
null
null
null
from data_science_layer.preprocessing.abstract_pre_processor import AbstractPreProcessor import pandas as pd import numpy as np class LogTransformation(AbstractPreProcessor): def fit_transform(self, data, y=None): return self._process_data(data=data) def fit(self, data, y=None): return None def transform(self, data, y=None): return self._process_data(data=data) def _process_data(self, data): try: output = np.log10(data) except Exception as e: print(e) output = np.log10(np.float32(data.values)) output = self._check_output(data, output) return output def _check_output(self, input, output): if isinstance(input, pd.DataFrame): output = pd.DataFrame(data=output, index=input.index, columns=input.columns) return output
28.193548
88
0.661327
4a275ccb627103219fac829dcd23cad8a7cedfe1
50,319
py
Python
BtS/Assets/Python/CvAdvisorUtils.py
f1rpo/Civ4CE
ba64c3545b479887739ad0ff78605b51b6fa57f9
[ "CNRI-Python" ]
null
null
null
BtS/Assets/Python/CvAdvisorUtils.py
f1rpo/Civ4CE
ba64c3545b479887739ad0ff78605b51b6fa57f9
[ "CNRI-Python" ]
null
null
null
BtS/Assets/Python/CvAdvisorUtils.py
f1rpo/Civ4CE
ba64c3545b479887739ad0ff78605b51b6fa57f9
[ "CNRI-Python" ]
null
null
null
## Sid Meier's Civilization 4 ## Copyright Firaxis Games 2005 ## ## CvAdvisorUtils from CvPythonExtensions import * import PyHelpers gc = CyGlobalContext() localText = CyTranslator() PyPlayer = PyHelpers.PyPlayer g_iAdvisorNags = 0 g_listNoLiberateCities = [] def resetAdvisorNags(): global g_iAdvisorNags g_iAdvisorNags = 0 def resetNoLiberateCities(): global g_listNoLiberateCities g_listNoLiberateCities = [] def featPopup(iPlayer): if (not gc.getPlayer(iPlayer).isOption(PlayerOptionTypes.PLAYEROPTION_ADVISOR_POPUPS)): return False if (not gc.getPlayer(iPlayer).isHuman()): return False if (gc.getGame().isNetworkMultiPlayer()): return False if (gc.getGame().getElapsedGameTurns() == 0): return False return True def populationFeat(iPlayer, eFeat, szText): if (not gc.getPlayer(iPlayer).isFeatAccomplished(eFeat)): gc.getPlayer(iPlayer).setFeatAccomplished(eFeat, True) if (featPopup(iPlayer)): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(eFeat) popupInfo.setText(localText.getText(szText, (gc.getPlayer(iPlayer).getCivilizationDescriptionKey(), ))) popupInfo.setOnClickedPythonCallback("featAccomplishedOnClickedCallback") popupInfo.setOnFocusPythonCallback("featAccomplishedOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_OK", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_MORE", ()), "") popupInfo.addPopup(iPlayer) def unitBuiltFeats(pCity, pUnit): if (not gc.getPlayer(pCity.getOwner()).isFeatAccomplished(FeatTypes.FEAT_UNITCOMBAT_ARCHER)): if (pUnit.getUnitCombatType() == gc.getInfoTypeForString("UNITCOMBAT_ARCHER")): gc.getPlayer(pCity.getOwner()).setFeatAccomplished(FeatTypes.FEAT_UNITCOMBAT_ARCHER, True) if (featPopup(pCity.getOwner()) and (gc.getGame().getStartYear() == gc.getDefineINT("START_YEAR"))): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(FeatTypes.FEAT_UNITCOMBAT_ARCHER) popupInfo.setData2(pCity.getID()) popupInfo.setText(localText.getText("TXT_KEY_FEAT_UNITCOMBAT_ARCHER", (pUnit.getNameKey(), pCity.getNameKey(), ))) popupInfo.setOnClickedPythonCallback("featAccomplishedOnClickedCallback") popupInfo.setOnFocusPythonCallback("featAccomplishedOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_OK", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_MORE", ()), "") popupInfo.addPopup(pCity.getOwner()) if (not gc.getPlayer(pCity.getOwner()).isFeatAccomplished(FeatTypes.FEAT_UNITCOMBAT_MOUNTED)): if (pUnit.getUnitCombatType() == gc.getInfoTypeForString("UNITCOMBAT_MOUNTED")): gc.getPlayer(pCity.getOwner()).setFeatAccomplished(FeatTypes.FEAT_UNITCOMBAT_MOUNTED, True) if (featPopup(pCity.getOwner()) and (gc.getGame().getStartYear() == gc.getDefineINT("START_YEAR"))): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(FeatTypes.FEAT_UNITCOMBAT_MOUNTED) popupInfo.setData2(pCity.getID()) popupInfo.setText(localText.getText("TXT_KEY_FEAT_UNITCOMBAT_MOUNTED", (pUnit.getNameKey(), pCity.getNameKey(), ))) popupInfo.setOnClickedPythonCallback("featAccomplishedOnClickedCallback") popupInfo.setOnFocusPythonCallback("featAccomplishedOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_OK", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_MORE", ()), "") popupInfo.addPopup(pCity.getOwner()) if (not gc.getPlayer(pCity.getOwner()).isFeatAccomplished(FeatTypes.FEAT_UNITCOMBAT_MELEE)): if (pUnit.getUnitCombatType() == gc.getInfoTypeForString("UNITCOMBAT_MELEE")): gc.getPlayer(pCity.getOwner()).setFeatAccomplished(FeatTypes.FEAT_UNITCOMBAT_MELEE, True) if (featPopup(pCity.getOwner()) and (gc.getGame().getStartYear() == gc.getDefineINT("START_YEAR"))): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(FeatTypes.FEAT_UNITCOMBAT_MELEE) popupInfo.setData2(pCity.getID()) popupInfo.setText(localText.getText("TXT_KEY_FEAT_UNITCOMBAT_MELEE", (pUnit.getNameKey(), pCity.getNameKey(), ))) popupInfo.setOnClickedPythonCallback("featAccomplishedOnClickedCallback") popupInfo.setOnFocusPythonCallback("featAccomplishedOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_OK", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_MORE", ()), "") popupInfo.addPopup(pCity.getOwner()) if (not gc.getPlayer(pCity.getOwner()).isFeatAccomplished(FeatTypes.FEAT_UNITCOMBAT_SIEGE)): if (pUnit.getUnitCombatType() == gc.getInfoTypeForString("UNITCOMBAT_SIEGE")): gc.getPlayer(pCity.getOwner()).setFeatAccomplished(FeatTypes.FEAT_UNITCOMBAT_SIEGE, True) if (featPopup(pCity.getOwner()) and (gc.getGame().getStartYear() == gc.getDefineINT("START_YEAR"))): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(FeatTypes.FEAT_UNITCOMBAT_SIEGE) popupInfo.setData2(pCity.getID()) popupInfo.setText(localText.getText("TXT_KEY_FEAT_UNITCOMBAT_SIEGE", (pUnit.getNameKey(), pCity.getNameKey(), ))) popupInfo.setOnClickedPythonCallback("featAccomplishedOnClickedCallback") popupInfo.setOnFocusPythonCallback("featAccomplishedOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_OK", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_MORE", ()), "") popupInfo.addPopup(pCity.getOwner()) if (not gc.getPlayer(pCity.getOwner()).isFeatAccomplished(FeatTypes.FEAT_UNITCOMBAT_GUN)): if (pUnit.getUnitCombatType() == gc.getInfoTypeForString("UNITCOMBAT_GUN")): gc.getPlayer(pCity.getOwner()).setFeatAccomplished(FeatTypes.FEAT_UNITCOMBAT_GUN, True) if (featPopup(pCity.getOwner()) and (gc.getGame().getStartYear() == gc.getDefineINT("START_YEAR"))): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(FeatTypes.FEAT_UNITCOMBAT_GUN) popupInfo.setData2(pCity.getID()) popupInfo.setText(localText.getText("TXT_KEY_FEAT_UNITCOMBAT_GUN", (pUnit.getNameKey(), pCity.getNameKey(), ))) popupInfo.setOnClickedPythonCallback("featAccomplishedOnClickedCallback") popupInfo.setOnFocusPythonCallback("featAccomplishedOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_OK", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_MORE", ()), "") popupInfo.addPopup(pCity.getOwner()) if (not gc.getPlayer(pCity.getOwner()).isFeatAccomplished(FeatTypes.FEAT_UNITCOMBAT_ARMOR)): if (pUnit.getUnitCombatType() == gc.getInfoTypeForString("UNITCOMBAT_ARMOR")): gc.getPlayer(pCity.getOwner()).setFeatAccomplished(FeatTypes.FEAT_UNITCOMBAT_ARMOR, True) if (featPopup(pCity.getOwner()) and (gc.getGame().getStartYear() == gc.getDefineINT("START_YEAR"))): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(FeatTypes.FEAT_UNITCOMBAT_ARMOR) popupInfo.setData2(pCity.getID()) popupInfo.setText(localText.getText("TXT_KEY_FEAT_UNITCOMBAT_ARMOR", (pUnit.getNameKey(), pCity.getNameKey(), ))) popupInfo.setOnClickedPythonCallback("featAccomplishedOnClickedCallback") popupInfo.setOnFocusPythonCallback("featAccomplishedOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_OK", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_MORE", ()), "") popupInfo.addPopup(pCity.getOwner()) if (not gc.getPlayer(pCity.getOwner()).isFeatAccomplished(FeatTypes.FEAT_UNITCOMBAT_HELICOPTER)): if (pUnit.getUnitCombatType() == gc.getInfoTypeForString("UNITCOMBAT_HELICOPTER")): gc.getPlayer(pCity.getOwner()).setFeatAccomplished(FeatTypes.FEAT_UNITCOMBAT_HELICOPTER, True) if (featPopup(pCity.getOwner()) and (gc.getGame().getStartYear() == gc.getDefineINT("START_YEAR"))): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(FeatTypes.FEAT_UNITCOMBAT_HELICOPTER) popupInfo.setData2(pCity.getID()) popupInfo.setText(localText.getText("TXT_KEY_FEAT_UNITCOMBAT_HELICOPTER", (pUnit.getNameKey(), pCity.getNameKey(), ))) popupInfo.setOnClickedPythonCallback("featAccomplishedOnClickedCallback") popupInfo.setOnFocusPythonCallback("featAccomplishedOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_OK", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_MORE", ()), "") popupInfo.addPopup(pCity.getOwner()) if (not gc.getPlayer(pCity.getOwner()).isFeatAccomplished(FeatTypes.FEAT_UNITCOMBAT_NAVAL)): if (pUnit.getUnitCombatType() == gc.getInfoTypeForString("UNITCOMBAT_NAVAL")): gc.getPlayer(pCity.getOwner()).setFeatAccomplished(FeatTypes.FEAT_UNITCOMBAT_NAVAL, True) if (featPopup(pCity.getOwner()) and (gc.getGame().getStartYear() == gc.getDefineINT("START_YEAR"))): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(FeatTypes.FEAT_UNITCOMBAT_NAVAL) popupInfo.setData2(pCity.getID()) popupInfo.setText(localText.getText("TXT_KEY_FEAT_UNITCOMBAT_NAVAL", (pUnit.getNameKey(), pCity.getNameKey(), ))) popupInfo.setOnClickedPythonCallback("featAccomplishedOnClickedCallback") popupInfo.setOnFocusPythonCallback("featAccomplishedOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_OK", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_MORE", ()), "") popupInfo.addPopup(pCity.getOwner()) if (not gc.getPlayer(pCity.getOwner()).isFeatAccomplished(FeatTypes.FEAT_UNIT_PRIVATEER)): if (pUnit.getUnitType() == gc.getInfoTypeForString("UNIT_PRIVATEER")): gc.getPlayer(pCity.getOwner()).setFeatAccomplished(FeatTypes.FEAT_UNIT_PRIVATEER, True) if (featPopup(pCity.getOwner()) and (gc.getGame().getStartYear() == gc.getDefineINT("START_YEAR"))): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(FeatTypes.FEAT_UNIT_PRIVATEER) popupInfo.setData2(pCity.getID()) popupInfo.setText(localText.getText("TXT_KEY_FEAT_UNIT_PRIVATEER", (pUnit.getNameKey(), pCity.getNameKey(), ))) popupInfo.setOnClickedPythonCallback("featAccomplishedOnClickedCallback") popupInfo.setOnFocusPythonCallback("featAccomplishedOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_OK", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_MORE", ()), "") popupInfo.addPopup(pCity.getOwner()) if (not gc.getPlayer(pCity.getOwner()).isFeatAccomplished(FeatTypes.FEAT_UNIT_SPY)): if (pUnit.getUnitType() == gc.getInfoTypeForString("UNIT_SPY")): gc.getPlayer(pCity.getOwner()).setFeatAccomplished(FeatTypes.FEAT_UNIT_SPY, True) if (featPopup(pCity.getOwner()) and (gc.getGame().getStartYear() == gc.getDefineINT("START_YEAR"))): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(FeatTypes.FEAT_UNIT_SPY) popupInfo.setData2(pCity.getID()) popupInfo.setText(localText.getText("TXT_KEY_FEAT_UNIT_SPY", (pUnit.getNameKey(), pCity.getNameKey(), ))) popupInfo.setOnClickedPythonCallback("featAccomplishedOnClickedCallback") popupInfo.setOnFocusPythonCallback("featAccomplishedOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_OK", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_MORE", ()), "") popupInfo.addPopup(pCity.getOwner()) def buildingBuiltFeats(pCity, iBuildingType): if (not gc.getPlayer(pCity.getOwner()).isFeatAccomplished(FeatTypes.FEAT_NATIONAL_WONDER)): if (isNationalWonderClass(gc.getBuildingInfo(iBuildingType).getBuildingClassType())): gc.getPlayer(pCity.getOwner()).setFeatAccomplished(FeatTypes.FEAT_NATIONAL_WONDER, True) if (featPopup(pCity.getOwner()) and (gc.getGame().getStartYear() == gc.getDefineINT("START_YEAR"))): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(FeatTypes.FEAT_NATIONAL_WONDER) popupInfo.setData2(pCity.getID()) popupInfo.setText(localText.getText("TXT_KEY_FEAT_NATIONAL_WONDER", (gc.getBuildingInfo(iBuildingType).getTextKey(), pCity.getNameKey(), ))) popupInfo.setOnClickedPythonCallback("featAccomplishedOnClickedCallback") popupInfo.setOnFocusPythonCallback("featAccomplishedOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_OK", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_MORE", ()), "") popupInfo.addPopup(pCity.getOwner()) def endTurnFeats(iPlayer): lRealPopulation = gc.getPlayer(iPlayer).getRealPopulation() if (lRealPopulation > 500000): populationFeat(iPlayer, FeatTypes.FEAT_POPULATION_HALF_MILLION, "TXT_KEY_FEAT_HALF_MILLION") if (lRealPopulation > 1000000): populationFeat(iPlayer, FeatTypes.FEAT_POPULATION_1_MILLION, "TXT_KEY_FEAT_1_MILLION") if (lRealPopulation > 2000000): populationFeat(iPlayer, FeatTypes.FEAT_POPULATION_2_MILLION, "TXT_KEY_FEAT_2_MILLION") if (lRealPopulation > 5000000): populationFeat(iPlayer, FeatTypes.FEAT_POPULATION_5_MILLION, "TXT_KEY_FEAT_5_MILLION") if (lRealPopulation > 10000000): populationFeat(iPlayer, FeatTypes.FEAT_POPULATION_10_MILLION, "TXT_KEY_FEAT_10_MILLION") if (lRealPopulation > 20000000): populationFeat(iPlayer, FeatTypes.FEAT_POPULATION_20_MILLION, "TXT_KEY_FEAT_20_MILLION") if (lRealPopulation > 50000000): populationFeat(iPlayer, FeatTypes.FEAT_POPULATION_50_MILLION, "TXT_KEY_FEAT_50_MILLION") if (lRealPopulation > 100000000): populationFeat(iPlayer, FeatTypes.FEAT_POPULATION_100_MILLION, "TXT_KEY_FEAT_100_MILLION") if (lRealPopulation > 200000000): populationFeat(iPlayer, FeatTypes.FEAT_POPULATION_200_MILLION, "TXT_KEY_FEAT_200_MILLION") if (lRealPopulation > 500000000): populationFeat(iPlayer, FeatTypes.FEAT_POPULATION_500_MILLION, "TXT_KEY_FEAT_500_MILLION") if (lRealPopulation > 1000000000): populationFeat(iPlayer, FeatTypes.FEAT_POPULATION_1_BILLION, "TXT_KEY_FEAT_1_BILLION") if (lRealPopulation > 2000000000): populationFeat(iPlayer, FeatTypes.FEAT_POPULATION_2_BILLION, "TXT_KEY_FEAT_2_BILLION") if (not gc.getPlayer(iPlayer).isFeatAccomplished(FeatTypes.FEAT_TRADE_ROUTE)): apCityList = PyPlayer(iPlayer).getCityList() for pCity in apCityList: if (not pCity.isCapital()): if (pCity.isConnectedToCapital(iPlayer)): gc.getPlayer(iPlayer).setFeatAccomplished(FeatTypes.FEAT_TRADE_ROUTE, True) if (featPopup(iPlayer) and (gc.getGame().getStartYear() == gc.getDefineINT("START_YEAR"))): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(FeatTypes.FEAT_TRADE_ROUTE) popupInfo.setData2(pCity.getID()) popupInfo.setText(localText.getText("TXT_KEY_FEAT_TRADE_ROUTE", (pCity.getNameKey(), ))) popupInfo.setOnClickedPythonCallback("featAccomplishedOnClickedCallback") popupInfo.setOnFocusPythonCallback("featAccomplishedOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_OK", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_MORE", ()), "") popupInfo.addPopup(iPlayer) break pCapitalCity = gc.getPlayer(iPlayer).getCapitalCity() if (not pCapitalCity.isNone()): if (not gc.getPlayer(iPlayer).isFeatAccomplished(FeatTypes.FEAT_COPPER_CONNECTED)): iBonus = gc.getInfoTypeForString("BONUS_COPPER") if (iBonus != BonusTypes.NO_BONUS): if (pCapitalCity.hasBonus(iBonus)): gc.getPlayer(iPlayer).setFeatAccomplished(FeatTypes.FEAT_COPPER_CONNECTED, True) if (featPopup(iPlayer) and (gc.getGame().getStartYear() == gc.getDefineINT("START_YEAR"))): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(FeatTypes.FEAT_COPPER_CONNECTED) popupInfo.setData2(pCapitalCity.getID()) popupInfo.setText(localText.getText("TXT_KEY_FEAT_COPPER_CONNECTED", ())) popupInfo.setOnClickedPythonCallback("featAccomplishedOnClickedCallback") popupInfo.setOnFocusPythonCallback("featAccomplishedOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_OK", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_MORE", ()), "") popupInfo.addPopup(iPlayer) if (not gc.getPlayer(iPlayer).isFeatAccomplished(FeatTypes.FEAT_HORSE_CONNECTED)): iBonus = gc.getInfoTypeForString("BONUS_HORSE") if (iBonus != BonusTypes.NO_BONUS): if (pCapitalCity.hasBonus(iBonus)): gc.getPlayer(iPlayer).setFeatAccomplished(FeatTypes.FEAT_HORSE_CONNECTED, True) if (featPopup(iPlayer) and (gc.getGame().getStartYear() == gc.getDefineINT("START_YEAR"))): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(FeatTypes.FEAT_HORSE_CONNECTED) popupInfo.setData2(pCapitalCity.getID()) popupInfo.setText(localText.getText("TXT_KEY_FEAT_HORSE_CONNECTED", ())) popupInfo.setOnClickedPythonCallback("featAccomplishedOnClickedCallback") popupInfo.setOnFocusPythonCallback("featAccomplishedOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_OK", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_MORE", ()), "") popupInfo.addPopup(iPlayer) if (not gc.getPlayer(iPlayer).isFeatAccomplished(FeatTypes.FEAT_IRON_CONNECTED)): iBonus = gc.getInfoTypeForString("BONUS_IRON") if (iBonus != BonusTypes.NO_BONUS): if (pCapitalCity.hasBonus(iBonus)): gc.getPlayer(iPlayer).setFeatAccomplished(FeatTypes.FEAT_IRON_CONNECTED, True) if (featPopup(iPlayer) and (gc.getGame().getStartYear() == gc.getDefineINT("START_YEAR"))): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(FeatTypes.FEAT_IRON_CONNECTED) popupInfo.setData2(pCapitalCity.getID()) popupInfo.setText(localText.getText("TXT_KEY_FEAT_IRON_CONNECTED", ())) popupInfo.setOnClickedPythonCallback("featAccomplishedOnClickedCallback") popupInfo.setOnFocusPythonCallback("featAccomplishedOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_OK", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_MORE", ()), "") popupInfo.addPopup(iPlayer) if (not gc.getPlayer(iPlayer).isFeatAccomplished(FeatTypes.FEAT_LUXURY_CONNECTED)): for iI in range(gc.getNumBonusInfos()): if (gc.getBonusInfo(iI).getHappiness() > 0): if (pCapitalCity.hasBonus(iI)): gc.getPlayer(iPlayer).setFeatAccomplished(FeatTypes.FEAT_LUXURY_CONNECTED, True) if (featPopup(iPlayer) and (gc.getGame().getStartYear() == gc.getDefineINT("START_YEAR"))): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(FeatTypes.FEAT_LUXURY_CONNECTED) popupInfo.setData2(pCapitalCity.getID()) popupInfo.setText(localText.getText("TXT_KEY_FEAT_LUXURY_CONNECTED", (gc.getBonusInfo(iI).getTextKey(), ))) popupInfo.setOnClickedPythonCallback("featAccomplishedOnClickedCallback") popupInfo.setOnFocusPythonCallback("featAccomplishedOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_OK", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_MORE", ()), "") popupInfo.addPopup(iPlayer) break if (not gc.getPlayer(iPlayer).isFeatAccomplished(FeatTypes.FEAT_FOOD_CONNECTED)): for iI in range(gc.getNumBonusInfos()): if (gc.getBonusInfo(iI).getHealth() > 0): if (pCapitalCity.hasBonus(iI)): gc.getPlayer(iPlayer).setFeatAccomplished(FeatTypes.FEAT_FOOD_CONNECTED, True) if (featPopup(iPlayer) and (gc.getGame().getStartYear() == gc.getDefineINT("START_YEAR"))): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(FeatTypes.FEAT_FOOD_CONNECTED) popupInfo.setData2(pCapitalCity.getID()) popupInfo.setText(localText.getText("TXT_KEY_FEAT_FOOD_CONNECTED", (gc.getBonusInfo(iI).getTextKey(), ))) popupInfo.setOnClickedPythonCallback("featAccomplishedOnClickedCallback") popupInfo.setOnFocusPythonCallback("featAccomplishedOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_OK", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_MORE", ()), "") popupInfo.addPopup(iPlayer) break if (not gc.getPlayer(iPlayer).isFeatAccomplished(FeatTypes.FEAT_CORPORATION_ENABLED)): for iI in range(gc.getNumBuildingInfos()): eCorporation = gc.getBuildingInfo(iI).getFoundsCorporation() if eCorporation != -1 and not gc.getGame().isCorporationFounded(eCorporation): bValid = true eTeam = gc.getPlayer(iPlayer).getTeam() if not gc.getTeam(eTeam).isHasTech(gc.getBuildingInfo(iI).getPrereqAndTech()): bValid = false if bValid: for iPrereq in range(gc.getDefineINT("NUM_BUILDING_AND_TECH_PREREQS")): if not gc.getTeam(eTeam).isHasTech(gc.getBuildingInfo(iI).getPrereqAndTechs(iPrereq)): bValid = false break if bValid: gc.getPlayer(iPlayer).setFeatAccomplished(FeatTypes.FEAT_CORPORATION_ENABLED, True) szBonusList = u"" bFirst = true for iPrereq in range(gc.getDefineINT("NUM_CORPORATION_PREREQ_BONUSES")): eBonus = gc.getCorporationInfo(eCorporation).getPrereqBonus(iPrereq) if eBonus != -1: if bFirst: bFirst = false else: szBonusList += localText.getText("TXT_KEY_OR", ()) szBonusList += gc.getBonusInfo(eBonus).getDescription() szFounder = u"" for iUnit in range(gc.getNumUnitInfos()): if gc.getUnitInfo(iUnit).getBuildings(iI) or gc.getUnitInfo(iUnit).getForceBuildings(iI): szFounder = gc.getUnitInfo(iUnit).getTextKey() break if (featPopup(iPlayer) and (gc.getGame().getStartYear() == gc.getDefineINT("START_YEAR"))): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(FeatTypes.FEAT_CORPORATION_ENABLED) popupInfo.setData2(pCapitalCity.getID()) popupInfo.setText(localText.getText("TXT_KEY_FEAT_CORPORATION_ENABLED", (gc.getCorporationInfo(eCorporation).getTextKey(), szFounder, szBonusList))) popupInfo.setOnClickedPythonCallback("featAccomplishedOnClickedCallback") popupInfo.setOnFocusPythonCallback("featAccomplishedOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_OK", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_FEAT_ACCOMPLISHED_MORE", ()), "") popupInfo.addPopup(iPlayer) break def cityAdvise(pCity, iPlayer): global g_iAdvisorNags if (g_iAdvisorNags >= 2): return if (pCity.isDisorder()): return if (gc.getPlayer(iPlayer).isOption(PlayerOptionTypes.PLAYEROPTION_ADVISOR_POPUPS) and gc.getPlayer(iPlayer).isHuman() and not gc.getGame().isNetworkMultiPlayer()): if (gc.getGame().getGameTurn() % 40 == pCity.getGameTurnFounded() % 40): if (not pCity.getID() in g_listNoLiberateCities): eLiberationPlayer = pCity.getLiberationPlayer(false) if (eLiberationPlayer != -1): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(pCity.getID()) popupInfo.setText(localText.getText("TXT_KEY_POPUP_LIBERATION_DEMAND", (pCity.getNameKey(), gc.getPlayer(eLiberationPlayer).getCivilizationDescriptionKey(), gc.getPlayer(eLiberationPlayer).getNameKey()))) popupInfo.setOnClickedPythonCallback("liberateOnClickedCallback") popupInfo.setOnFocusPythonCallback("cityWarningOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_AGREE", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_REFUSE", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_EXAMINE", ()), "") popupInfo.addPopup(iPlayer) g_listNoLiberateCities.append(pCity.getID()) g_iAdvisorNags += 1 elif (gc.getPlayer(iPlayer).canSplitEmpire() and gc.getPlayer(iPlayer).canSplitArea(pCity.area().getID()) and pCity.AI_cityValue() < 0): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(pCity.getID()) popupInfo.setText(localText.getText("TXT_KEY_POPUP_COLONY_DEMAND", (pCity.getNameKey(), ))) popupInfo.setOnClickedPythonCallback("colonyOnClickedCallback") popupInfo.setOnFocusPythonCallback("cityWarningOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_AGREE", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_REFUSE", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_EXAMINE", ()), "") popupInfo.addPopup(iPlayer) g_listNoLiberateCities.append(pCity.getID()) g_iAdvisorNags += 1 if (pCity.isProduction()): if (not pCity.isProductionUnit() and (pCity.getOrderQueueLength() <= 1)): if (gc.getGame().getGameTurn() + 1) % 40 == pCity.getGameTurnFounded() % 40: if ((gc.getGame().getElapsedGameTurns() < 200) and (pCity.getPopulation() > 2) and (gc.getPlayer(iPlayer).AI_totalAreaUnitAIs(pCity.area(), UnitAITypes.UNITAI_SETTLE) == 0) and not gc.getPlayer(iPlayer).AI_isFinancialTrouble() and (pCity.area().getBestFoundValue(iPlayer) > 0)): iBestValue = 0 eBestUnit = UnitTypes.NO_UNIT for iI in range(gc.getNumUnitClassInfos()): if (not isLimitedUnitClass(iI)): eLoopUnit = gc.getCivilizationInfo(gc.getPlayer(iPlayer).getCivilizationType()).getCivilizationUnits(iI) if (eLoopUnit != UnitTypes.NO_UNIT): if (gc.getUnitInfo(eLoopUnit).getDomainType() == DomainTypes.DOMAIN_LAND): if pCity.canTrain(eLoopUnit, False, False): if (pCity.getFirstUnitOrder(eLoopUnit) == -1): iValue = gc.getPlayer(iPlayer).AI_unitValue(eLoopUnit, UnitAITypes.UNITAI_SETTLE, pCity.area()) if (iValue > iBestValue): iBestValue = iValue eBestUnit = eLoopUnit if (eBestUnit != UnitTypes.NO_UNIT): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(pCity.getID()) popupInfo.setData2(OrderTypes.ORDER_TRAIN) popupInfo.setData3(eBestUnit) popupInfo.setText(localText.getText("TXT_KEY_POPUP_UNIT_SETTLE_DEMAND", (gc.getUnitInfo(eBestUnit).getTextKey(), ))) popupInfo.setOnClickedPythonCallback("cityWarningOnClickedCallback") popupInfo.setOnFocusPythonCallback("cityWarningOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_AGREE", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_REFUSE", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_EXAMINE", ()), "") popupInfo.addPopup(iPlayer) g_iAdvisorNags += 1 if (gc.getGame().getGameTurn() + 5) % 40 == pCity.getGameTurnFounded() % 40: if ((pCity.getPopulation() > 1) and (pCity.countNumImprovedPlots() == 0) and (pCity.AI_countBestBuilds(pCity.area()) > 3)): iBestValue = 0 eBestUnit = UnitTypes.NO_UNIT for iI in range(gc.getNumUnitClassInfos()): if (not isLimitedUnitClass(iI)): eLoopUnit = gc.getCivilizationInfo(gc.getPlayer(iPlayer).getCivilizationType()).getCivilizationUnits(iI) if (eLoopUnit != UnitTypes.NO_UNIT): if (gc.getUnitInfo(eLoopUnit).getDomainType() == DomainTypes.DOMAIN_LAND): if pCity.canTrain(eLoopUnit, False, False): if (pCity.getFirstUnitOrder(eLoopUnit) == -1): iValue = gc.getPlayer(iPlayer).AI_unitValue(eLoopUnit, UnitAITypes.UNITAI_WORKER, pCity.area()) if (iValue > iBestValue): iBestValue = iValue eBestUnit = eLoopUnit if (eBestUnit != UnitTypes.NO_UNIT): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(pCity.getID()) popupInfo.setData2(OrderTypes.ORDER_TRAIN) popupInfo.setData3(eBestUnit) popupInfo.setText(localText.getText("TXT_KEY_POPUP_UNIT_WORKER_DEMAND", (pCity.getNameKey(), gc.getUnitInfo(eBestUnit).getTextKey()))) popupInfo.setOnClickedPythonCallback("cityWarningOnClickedCallback") popupInfo.setOnFocusPythonCallback("cityWarningOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_AGREE", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_REFUSE", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_EXAMINE", ()), "") popupInfo.addPopup(iPlayer) g_iAdvisorNags += 1 if (gc.getGame().getGameTurn() + 9) % 40 == pCity.getGameTurnFounded() % 40: if (pCity.plot().getNumDefenders(iPlayer) == 0): iBestValue = 0 eBestUnit = UnitTypes.NO_UNIT for iI in range(gc.getNumUnitClassInfos()): if (not isLimitedUnitClass(iI)): eLoopUnit = gc.getCivilizationInfo(gc.getPlayer(iPlayer).getCivilizationType()).getCivilizationUnits(iI) if (eLoopUnit != UnitTypes.NO_UNIT): if (gc.getUnitInfo(eLoopUnit).getDomainType() == DomainTypes.DOMAIN_LAND): if pCity.canTrain(eLoopUnit, False, False): iValue = (gc.getPlayer(iPlayer).AI_unitValue(eLoopUnit, UnitAITypes.UNITAI_CITY_DEFENSE, pCity.area()) * 2) iValue += gc.getPlayer(iPlayer).AI_unitValue(eLoopUnit, UnitAITypes.UNITAI_ATTACK, pCity.area()) if (iValue > iBestValue): iBestValue = iValue eBestUnit = eLoopUnit if (eBestUnit != UnitTypes.NO_UNIT): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(pCity.getID()) popupInfo.setData2(OrderTypes.ORDER_TRAIN) popupInfo.setData3(eBestUnit) popupInfo.setText(localText.getText("TXT_KEY_POPUP_UNIT_DEFENSE_DEMAND", (pCity.getNameKey(), gc.getUnitInfo(eBestUnit).getTextKey()))) popupInfo.setOnClickedPythonCallback("cityWarningOnClickedCallback") popupInfo.setOnFocusPythonCallback("cityWarningOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_AGREE", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_REFUSE", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_EXAMINE", ()), "") popupInfo.addPopup(iPlayer) g_iAdvisorNags += 1 if (gc.getGame().getGameTurn() + 12) % 40 == pCity.getGameTurnFounded() % 40: if ((gc.getPlayer(iPlayer).AI_totalAreaUnitAIs(pCity.area(), UnitAITypes.UNITAI_MISSIONARY) == 0) and (gc.getTeam(gc.getPlayer(iPlayer).getTeam()).getAtWarCount(True) == 0)): eStateReligion = gc.getPlayer(iPlayer).getStateReligion() if (eStateReligion != ReligionTypes.NO_RELIGION): if (gc.getPlayer(iPlayer).getHasReligionCount(eStateReligion) < (gc.getPlayer(iPlayer).getNumCities() / 2)): iBestValue = 0 eBestUnit = UnitTypes.NO_UNIT for iI in range(gc.getNumUnitClassInfos()): eLoopUnit = gc.getCivilizationInfo(gc.getPlayer(iPlayer).getCivilizationType()).getCivilizationUnits(iI) if (eLoopUnit != UnitTypes.NO_UNIT): if (gc.getUnitInfo(eLoopUnit).getDomainType() == DomainTypes.DOMAIN_LAND): if (gc.getUnitInfo(eLoopUnit).getReligionSpreads(eStateReligion)): if pCity.canTrain(eLoopUnit, False, False): iValue = gc.getPlayer(iPlayer).AI_unitValue(eLoopUnit, UnitAITypes.UNITAI_MISSIONARY, pCity.area()) if (iValue > iBestValue): iBestValue = iValue eBestUnit = eLoopUnit if (eBestUnit != UnitTypes.NO_UNIT): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(pCity.getID()) popupInfo.setData2(OrderTypes.ORDER_TRAIN) popupInfo.setData3(eBestUnit) popupInfo.setText(localText.getText("TXT_KEY_POPUP_MISSIONARY_DEMAND", (gc.getReligionInfo(eStateReligion).getTextKey(), gc.getUnitInfo(eBestUnit).getTextKey(), pCity.getNameKey()))) popupInfo.setOnClickedPythonCallback("cityWarningOnClickedCallback") popupInfo.setOnFocusPythonCallback("cityWarningOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_AGREE", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_REFUSE", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_EXAMINE", ()), "") popupInfo.addPopup(iPlayer) g_iAdvisorNags += 1 if (not pCity.isProductionBuilding() and (pCity.getOrderQueueLength() <= 1)): if (pCity.healthRate(False, 0) < 0): if (gc.getGame().getGameTurn() + 2) % 40 == pCity.getGameTurnFounded() % 40: iBestValue = 0 eBestBuilding = BuildingTypes.NO_BUILDING for iI in range(gc.getNumBuildingClassInfos()): if (not isLimitedWonderClass(iI)): eLoopBuilding = gc.getCivilizationInfo(gc.getPlayer(iPlayer).getCivilizationType()).getCivilizationBuildings(iI) if (eLoopBuilding != BuildingTypes.NO_BUILDING): if (gc.getBuildingInfo(eLoopBuilding).getHealth() > 0): if pCity.canConstruct(eLoopBuilding, False, False, False): iValue = gc.getBuildingInfo(eLoopBuilding).getHealth() if (iValue > iBestValue): iBestValue = iValue eBestBuilding = eLoopBuilding if (eBestBuilding != BuildingTypes.NO_BUILDING): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(pCity.getID()) popupInfo.setData2(OrderTypes.ORDER_CONSTRUCT) popupInfo.setData3(eBestBuilding) popupInfo.setText(localText.getText("TXT_KEY_POPUP_UNHEALTHY_CITIZENS_DEMAND", (pCity.getNameKey(), gc.getBuildingInfo(eBestBuilding).getTextKey()))) popupInfo.setOnClickedPythonCallback("cityWarningOnClickedCallback") popupInfo.setOnFocusPythonCallback("cityWarningOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_UNHEALTHY_DO_SO_NEXT", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_UNHEALTHY_REFUSE", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_UNHEALTHY_EXAMINE", ()), "") popupInfo.addPopup(iPlayer) g_iAdvisorNags += 1 if (pCity.angryPopulation(0) > 0): if (gc.getGame().getGameTurn() + 3) % 40 == pCity.getGameTurnFounded() % 40: iBestValue = 0 eBestBuilding = BuildingTypes.NO_BUILDING for iI in range(gc.getNumBuildingClassInfos()): if (not isLimitedWonderClass(iI)): eLoopBuilding = gc.getCivilizationInfo(gc.getPlayer(iPlayer).getCivilizationType()).getCivilizationBuildings(iI) if (eLoopBuilding != BuildingTypes.NO_BUILDING): if (gc.getBuildingInfo(eLoopBuilding).getHappiness() > 0): if pCity.canConstruct(eLoopBuilding, False, False, False): iValue = gc.getBuildingInfo(eLoopBuilding).getHappiness() if (iValue > iBestValue): iBestValue = iValue eBestBuilding = eLoopBuilding if (eBestBuilding != BuildingTypes.NO_BUILDING): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(pCity.getID()) popupInfo.setData2(OrderTypes.ORDER_CONSTRUCT) popupInfo.setData3(eBestBuilding) popupInfo.setText(localText.getText("TXT_KEY_POPUP_UNHAPPY_CITIZENS_DEMAND", (pCity.getNameKey(), gc.getBuildingInfo(eBestBuilding).getTextKey()))) popupInfo.setOnClickedPythonCallback("cityWarningOnClickedCallback") popupInfo.setOnFocusPythonCallback("cityWarningOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_UNHAPPY_DO_SO_NEXT", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_UNHAPPY_REFUSE", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_UNHEALTHY_EXAMINE", ()), "") popupInfo.addPopup(iPlayer) g_iAdvisorNags += 1 if ((gc.getGame().getGameTurn < 100) and (gc.getTeam(gc.getPlayer(iPlayer).getTeam()).getHasMetCivCount(True) > 0) and (pCity.getBuildingDefense() == 0)): if (gc.getGame().getGameTurn() + 4) % 40 == pCity.getGameTurnFounded() % 40: iBestValue = 0 eBestBuilding = BuildingTypes.NO_BUILDING for iI in range(gc.getNumBuildingClassInfos()): if (not isLimitedWonderClass(iI)): eLoopBuilding = gc.getCivilizationInfo(gc.getPlayer(iPlayer).getCivilizationType()).getCivilizationBuildings(iI) if (eLoopBuilding != BuildingTypes.NO_BUILDING): if (gc.getBuildingInfo(eLoopBuilding).getDefenseModifier() > pCity.getNaturalDefense()): if pCity.canConstruct(eLoopBuilding, False, False, False): iValue = gc.getBuildingInfo(eLoopBuilding).getDefenseModifier() if (iValue > iBestValue): iBestValue = iValue eBestBuilding = eLoopBuilding if (eBestBuilding != BuildingTypes.NO_BUILDING): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(pCity.getID()) popupInfo.setData2(OrderTypes.ORDER_CONSTRUCT) popupInfo.setData3(eBestBuilding) popupInfo.setText(localText.getText("TXT_KEY_POPUP_BUILDING_DEFENSE_DEMAND", (pCity.getNameKey(), gc.getBuildingInfo(eBestBuilding).getTextKey()))) popupInfo.setOnClickedPythonCallback("cityWarningOnClickedCallback") popupInfo.setOnFocusPythonCallback("cityWarningOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_AGREE", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_REFUSE", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_EXAMINE", ()), "") popupInfo.addPopup(iPlayer) g_iAdvisorNags += 1 if (pCity.getMaintenance() >= 8): if (gc.getGame().getGameTurn() + 6) % 40 == pCity.getGameTurnFounded() % 40: iBestValue = 0 eBestBuilding = BuildingTypes.NO_BUILDING for iI in range(gc.getNumBuildingClassInfos()): if (not isLimitedWonderClass(iI)): eLoopBuilding = gc.getCivilizationInfo(gc.getPlayer(iPlayer).getCivilizationType()).getCivilizationBuildings(iI) if (eLoopBuilding != BuildingTypes.NO_BUILDING): if (gc.getBuildingInfo(eLoopBuilding).getMaintenanceModifier() < 0): if pCity.canConstruct(eLoopBuilding, False, False, False): iValue = gc.getBuildingInfo(eLoopBuilding).getMaintenanceModifier() if (iValue < iBestValue): iBestValue = iValue eBestBuilding = eLoopBuilding if (eBestBuilding != BuildingTypes.NO_BUILDING): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(pCity.getID()) popupInfo.setData2(OrderTypes.ORDER_CONSTRUCT) popupInfo.setData3(eBestBuilding) popupInfo.setText(localText.getText("TXT_KEY_POPUP_MAINTENANCE_DEMAND", (pCity.getNameKey(), gc.getBuildingInfo(eBestBuilding).getTextKey()))) popupInfo.setOnClickedPythonCallback("cityWarningOnClickedCallback") popupInfo.setOnFocusPythonCallback("cityWarningOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_AGREE", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_REFUSE", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_EXAMINE", ()), "") popupInfo.addPopup(iPlayer) g_iAdvisorNags += 1 if (pCity.getCommerceRate(CommerceTypes.COMMERCE_CULTURE) == 0 and not pCity.isOccupation()): if (gc.getGame().getGameTurn() + 7) % 40 == pCity.getGameTurnFounded() % 40: iBestValue = 0 eBestBuilding = BuildingTypes.NO_BUILDING for iI in range(gc.getNumBuildingClassInfos()): if (not isLimitedWonderClass(iI)): eLoopBuilding = gc.getCivilizationInfo(gc.getPlayer(iPlayer).getCivilizationType()).getCivilizationBuildings(iI) if (eLoopBuilding != BuildingTypes.NO_BUILDING): if (gc.getBuildingInfo(eLoopBuilding).getObsoleteSafeCommerceChange(CommerceTypes.COMMERCE_CULTURE) > 0): if pCity.canConstruct(eLoopBuilding, False, False, False): iValue = gc.getBuildingInfo(eLoopBuilding).getObsoleteSafeCommerceChange(CommerceTypes.COMMERCE_CULTURE) if (iValue > iBestValue): iBestValue = iValue eBestBuilding = eLoopBuilding if (eBestBuilding != BuildingTypes.NO_BUILDING): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(pCity.getID()) popupInfo.setData2(OrderTypes.ORDER_CONSTRUCT) popupInfo.setData3(eBestBuilding) popupInfo.setText(localText.getText("TXT_KEY_POPUP_CULTURE_DEMAND", (pCity.getNameKey(), gc.getBuildingInfo(eBestBuilding).getTextKey()))) popupInfo.setOnClickedPythonCallback("cityWarningOnClickedCallback") popupInfo.setOnFocusPythonCallback("cityWarningOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_AGREE", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_REFUSE", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_EXAMINE", ()), "") popupInfo.addPopup(iPlayer) g_iAdvisorNags += 1 if (pCity.getBaseCommerceRate(CommerceTypes.COMMERCE_GOLD) > 10): if (gc.getGame().getGameTurn() + 8) % 40 == pCity.getGameTurnFounded() % 40: iBestValue = 0 eBestBuilding = BuildingTypes.NO_BUILDING for iI in range(gc.getNumBuildingClassInfos()): if (not isLimitedWonderClass(iI)): eLoopBuilding = gc.getCivilizationInfo(gc.getPlayer(iPlayer).getCivilizationType()).getCivilizationBuildings(iI) if (eLoopBuilding != BuildingTypes.NO_BUILDING): if (gc.getBuildingInfo(eLoopBuilding).getCommerceModifier(CommerceTypes.COMMERCE_GOLD) > 0): if pCity.canConstruct(eLoopBuilding, False, False, False): iValue = gc.getBuildingInfo(eLoopBuilding).getCommerceModifier(CommerceTypes.COMMERCE_GOLD) if (iValue > iBestValue): iBestValue = iValue eBestBuilding = eLoopBuilding if (eBestBuilding != BuildingTypes.NO_BUILDING): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(pCity.getID()) popupInfo.setData2(OrderTypes.ORDER_CONSTRUCT) popupInfo.setData3(eBestBuilding) popupInfo.setText(localText.getText("TXT_KEY_POPUP_GOLD_DEMAND", (pCity.getNameKey(), gc.getBuildingInfo(eBestBuilding).getTextKey()))) popupInfo.setOnClickedPythonCallback("cityWarningOnClickedCallback") popupInfo.setOnFocusPythonCallback("cityWarningOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_AGREE", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_REFUSE", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_EXAMINE", ()), "") popupInfo.addPopup(iPlayer) g_iAdvisorNags += 1 if (pCity.getBaseCommerceRate(CommerceTypes.COMMERCE_RESEARCH) > 10): if (gc.getGame().getGameTurn() + 10) % 40 == pCity.getGameTurnFounded() % 40: iBestValue = 0 eBestBuilding = BuildingTypes.NO_BUILDING for iI in range(gc.getNumBuildingClassInfos()): if (not isLimitedWonderClass(iI)): eLoopBuilding = gc.getCivilizationInfo(gc.getPlayer(iPlayer).getCivilizationType()).getCivilizationBuildings(iI) if (eLoopBuilding != BuildingTypes.NO_BUILDING): if (gc.getBuildingInfo(eLoopBuilding).getCommerceModifier(CommerceTypes.COMMERCE_RESEARCH) > 0): if pCity.canConstruct(eLoopBuilding, False, False, False): iValue = gc.getBuildingInfo(eLoopBuilding).getCommerceModifier(CommerceTypes.COMMERCE_RESEARCH) if (iValue > iBestValue): iBestValue = iValue eBestBuilding = eLoopBuilding if (eBestBuilding != BuildingTypes.NO_BUILDING): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(pCity.getID()) popupInfo.setData2(OrderTypes.ORDER_CONSTRUCT) popupInfo.setData3(eBestBuilding) popupInfo.setText(localText.getText("TXT_KEY_POPUP_RESEARCH_DEMAND", (pCity.getNameKey(), gc.getBuildingInfo(eBestBuilding).getTextKey()))) popupInfo.setOnClickedPythonCallback("cityWarningOnClickedCallback") popupInfo.setOnFocusPythonCallback("cityWarningOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_AGREE", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_REFUSE", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_EXAMINE", ()), "") popupInfo.addPopup(iPlayer) g_iAdvisorNags += 1 if (pCity.countNumWaterPlots() > 10): if (gc.getGame().getGameTurn() + 11) % 40 == pCity.getGameTurnFounded() % 40: iBestValue = 0 eBestBuilding = BuildingTypes.NO_BUILDING for iI in range(gc.getNumBuildingClassInfos()): if (not isLimitedWonderClass(iI)): eLoopBuilding = gc.getCivilizationInfo(gc.getPlayer(iPlayer).getCivilizationType()).getCivilizationBuildings(iI) if (eLoopBuilding != BuildingTypes.NO_BUILDING): if (gc.getBuildingInfo(eLoopBuilding).getSeaPlotYieldChange(YieldTypes.YIELD_FOOD) > 0): if pCity.canConstruct(eLoopBuilding, False, False, False): iValue = gc.getBuildingInfo(eLoopBuilding).getSeaPlotYieldChange(YieldTypes.YIELD_FOOD) if (iValue > iBestValue): iBestValue = iValue eBestBuilding = eLoopBuilding if (eBestBuilding != BuildingTypes.NO_BUILDING): popupInfo = CyPopupInfo() popupInfo.setButtonPopupType(ButtonPopupTypes.BUTTONPOPUP_PYTHON) popupInfo.setData1(pCity.getID()) popupInfo.setData2(OrderTypes.ORDER_CONSTRUCT) popupInfo.setData3(eBestBuilding) popupInfo.setText(localText.getText("TXT_KEY_POPUP_WATER_FOOD_DEMAND", (pCity.getNameKey(), gc.getBuildingInfo(eBestBuilding).getTextKey()))) popupInfo.setOnClickedPythonCallback("cityWarningOnClickedCallback") popupInfo.setOnFocusPythonCallback("cityWarningOnFocusCallback") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_AGREE", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_REFUSE", ()), "") popupInfo.addPythonButton(localText.getText("TXT_KEY_POPUP_DEMAND_EXAMINE", ()), "") popupInfo.addPopup(iPlayer) g_iAdvisorNags += 1
49.722332
284
0.717522
4a275d87c5dba78fd0df02729a0ea463a2fab4f1
1,661
py
Python
tests/test_app.py
mpdude/thumbor
21799d4731ed0901dcd85a3025f6836412333e09
[ "MIT" ]
5
2018-09-15T07:57:21.000Z
2019-06-04T08:02:10.000Z
tests/test_app.py
mpdude/thumbor
21799d4731ed0901dcd85a3025f6836412333e09
[ "MIT" ]
3
2020-12-02T15:23:46.000Z
2021-04-13T15:44:34.000Z
tests/test_app.py
mpdude/thumbor
21799d4731ed0901dcd85a3025f6836412333e09
[ "MIT" ]
1
2021-07-29T19:14:53.000Z
2021-07-29T19:14:53.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- # thumbor imaging service # https://github.com/thumbor/thumbor/wiki # Licensed under the MIT license: # http://www.opensource.org/licenses/mit-license # Copyright (c) 2011 globo.com [email protected] from unittest import TestCase import mock from preggy import expect from thumbor.app import ( ThumborServiceApp ) from thumbor.url import Url class AppTestCase(TestCase): def test_can_create_app(self): ctx = mock.Mock() app = ThumborServiceApp(ctx) expect(app).not_to_be_null() expect(app.context).to_equal(ctx) def test_can_get_handlers(self): ctx = mock.Mock( config=mock.Mock( UPLOAD_ENABLED=False, USE_BLACKLIST=False, ) ) app = ThumborServiceApp(ctx) handlers = app.get_handlers() expect(handlers).to_length(2) expect(handlers[0][0]).to_equal(r'/healthcheck') expect(handlers[1][0]).to_equal(Url.regex()) def test_can_get_handlers_with_upload(self): ctx = mock.Mock( config=mock.Mock( UPLOAD_ENABLED=True, USE_BLACKLIST=False, ) ) app = ThumborServiceApp(ctx) handlers = app.get_handlers() expect(handlers).to_length(4) def test_can_get_handlers_with_blacklist(self): ctx = mock.Mock( config=mock.Mock( UPLOAD_ENABLED=False, USE_BLACKLIST=True, ) ) app = ThumborServiceApp(ctx) handlers = app.get_handlers() expect(handlers).to_length(3)
25.166667
56
0.606863
4a275fb0ba26af2f5482c9cc1ac99ae55dfc23c1
1,802
py
Python
tools/localtest.py
kinsaurralde/lights
a9673188875dbd91bb8822c1920002a4f1c2ec5b
[ "MIT" ]
null
null
null
tools/localtest.py
kinsaurralde/lights
a9673188875dbd91bb8822c1920002a4f1c2ec5b
[ "MIT" ]
null
null
null
tools/localtest.py
kinsaurralde/lights
a9673188875dbd91bb8822c1920002a4f1c2ec5b
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import argparse import time import subprocess import atexit try: import yaml # 3.6 except: import ruamel.yaml as yaml # 3.7 parser = argparse.ArgumentParser() parser.add_argument( "-c", "--config", type=str, help="Path to config file", default="configs/localtest.yaml", ) parser.add_argument("-b", "--buildfolder", type=str, help="Path to buildfolder", default="../build/") args = parser.parse_args() def load_yaml(path): with open(path) as open_file: return yaml.safe_load(open_file) def createControllerServer(port): print(f"Creating controller server on port {port}") subprocess.run( [args.buildfolder + "raspberrypi/rpi_startup.sh", "--test", "--port", str(port),], check=True, ) def createWebappServer(): print("Creating webapp server") command = ["sudo", "python3", "app.py", "--test", "--debug"] subprocess.run(command, cwd=f"{args.buildfolder + 'webapp'}", check=True) def shutdownServers(name): print(f"Shutdown {name} servers") command = ( "sudo screen -ls " + name + " | grep -E '\s+[0-9]+\.' | awk -F ' ' '{print $1}' | " + "while read s; do sudo screen -XS $s quit; done" ) subprocess.run(command, shell=True, check=True) def setup(): config = load_yaml(args.config) webapp_config_name = config["webapp_config"] webapp_config = load_yaml(args.buildfolder + "webapp/config/controllers_" + webapp_config_name + ".yaml") for i in range(len(webapp_config["controllers"])): if webapp_config["controllers"][i]["active"] == "active": createControllerServer(6000 + i) time.sleep(3) createWebappServer() @atexit.register def cleanup(): shutdownServers("rgb_server") if __name__ == "__main__": setup()
26.895522
109
0.649279
4a27610c0609c773eb34ba47872dac473af206b3
5,146
py
Python
sure_tosca-client_python_stubs/test/test_default_api.py
QCDIS/CONF
6ddb37b691754bbba97c85228d266ac050c4baa4
[ "Apache-2.0" ]
null
null
null
sure_tosca-client_python_stubs/test/test_default_api.py
QCDIS/CONF
6ddb37b691754bbba97c85228d266ac050c4baa4
[ "Apache-2.0" ]
null
null
null
sure_tosca-client_python_stubs/test/test_default_api.py
QCDIS/CONF
6ddb37b691754bbba97c85228d266ac050c4baa4
[ "Apache-2.0" ]
1
2021-04-05T09:49:03.000Z
2021-04-05T09:49:03.000Z
# coding: utf-8 """ tosca-sure TOSCA Simple qUeRy sErvice (SURE). # noqa: E501 OpenAPI spec version: 1.0.0 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import unittest from io import BytesIO import urllib3 import sure_tosca_client from sure_tosca_client import Configuration, ApiClient from sure_tosca_client.api.default_api import DefaultApi # noqa: E501 from sure_tosca_client.rest import ApiException class TestDefaultApi(unittest.TestCase): """DefaultApi unit test stubs""" def setUp(self): configuration = Configuration() configuration.host = 'http://localhost:8081/tosca-sure/1.0.0' #Make sure we don't have '/' on the end of url if self.service_is_up(configuration.host): configuration.verify_ssl = False api_client = ApiClient(configuration=configuration) self.api = sure_tosca_client.api.default_api.DefaultApi(api_client=api_client) # noqa: E501 self.service_is_up = True else: self.service_is_up = False def tearDown(self): pass def test_get_all_ancestor_properties(self): """Test case for get_all_ancestor_properties # noqa: E501 """ pass def test_get_all_ancestor_types(self): """Test case for get_all_ancestor_types # noqa: E501 """ pass def test_get_ancestors_requirements(self): """Test case for get_ancestors_requirements # noqa: E501 """ pass def test_get_dsl_definitions(self): """Test case for get_dsl_definitions # noqa: E501 """ pass def test_get_imports(self): """Test case for get_imports # noqa: E501 """ pass def test_get_node_outputs(self): """Test case for get_node_outputs # noqa: E501 """ pass def test_get_node_properties(self): """Test case for get_node_properties # noqa: E501 """ pass def test_get_node_requirements(self): """Test case for get_node_requirements """ pass def test_get_node_templates(self): """Test case for get_node_templates """ if self.service_is_up: file_id = self.upload_tosca_template('application_example_provisioned.yaml') node_templates = self.api.get_node_templates(file_id) self.assertIsNotNone(node_templates) nodes_to_deploy = self.api.get_node_templates(file_id,type_name = 'tosca.nodes.QC.Application') def test_get_node_type_name(self): """Test case for get_node_type_name # noqa: E501 """ pass def test_get_parent_type_name(self): """Test case for get_parent_type_name # noqa: E501 """ pass def test_get_related_nodes(self): """Test case for get_related_nodes # noqa: E501 """ pass def test_get_relationship_templates(self): """Test case for get_relationship_templates # noqa: E501 """ pass def test_get_topology_template(self): """Test case for get_topology_template """ pass def test_get_tosca_template(self): """Test case for get_tosca_template """ pass def test_get_types(self): """Test case for get_types # noqa: E501 """ pass def test_set_node_properties(self): """Test case for set_node_properties # noqa: E501 """ pass def test_upload_tosca_template(self): """Test case for upload_tosca_template upload a tosca template description file # noqa: E501 """ if self.service_is_up: file_id = self.upload_tosca_template('application_example_provisioned.yaml') self.assertIsNotNone(file_id) def get_tosca_file(self, file_name): tosca_path = "../../TOSCA/" input_tosca_file_path = tosca_path + '/' + file_name if not os.path.exists(input_tosca_file_path): tosca_path = "../TOSCA/" input_tosca_file_path = tosca_path + '/' + file_name dir_path = os.path.dirname(os.path.realpath(__file__)) self.assertEqual(True, os.path.exists(input_tosca_file_path), 'Starting from: ' + dir_path + ' Input TOSCA file: ' + input_tosca_file_path + ' not found') return input_tosca_file_path def upload_tosca_template(self, file_name): if self.service_is_up: file = self.get_tosca_file(file_name) file_id = self.api.upload_tosca_template(file) return file_id def service_is_up(self, url): code = None try: http = urllib3.PoolManager() r = http.request('HEAD', url) except Exception as e: return False return True if __name__ == '__main__': unittest.main()
24.859903
117
0.613875
4a2761da4dd15cbe9bc532b45c460627b5e3ae36
1,618
py
Python
gw_bot/lambdas/gw/store/create_api_gw_api_key.py
atykhonov/GW-Bot
fb1d8584f229efe703f05aa0e44fa0924b90ca1d
[ "Apache-2.0" ]
null
null
null
gw_bot/lambdas/gw/store/create_api_gw_api_key.py
atykhonov/GW-Bot
fb1d8584f229efe703f05aa0e44fa0924b90ca1d
[ "Apache-2.0" ]
null
null
null
gw_bot/lambdas/gw/store/create_api_gw_api_key.py
atykhonov/GW-Bot
fb1d8584f229efe703f05aa0e44fa0924b90ca1d
[ "Apache-2.0" ]
null
null
null
import uuid from gw_bot.helpers.Lambda_Helpers import log_to_elk from osbot_aws.apis.API_Gateway import API_Gateway def create_key_in_policy(policy_name, key_name): api_gateway = API_Gateway() usage_plan_id = api_gateway.usage_plan_id(policy_name) new_key = api_gateway.api_key_create(key_name) key_id = new_key.get('id') key_value = new_key.get('value') api_gateway.usage_plan_add_key(usage_plan_id, key_id) return key_value def create_key(params): try: order_id = params.get('order_id') product_name = params.get('product_name') if product_name == 'File Type Detection - 50 (Free)': return create_key_in_policy('50 Free', f'50_{order_id}') elif product_name == 'File Type Detection - 1000 files': return create_key_in_policy('1k month', f'1000_{order_id}') elif product_name == 'File Type Detection - 50,000 files': return create_key_in_policy('50k month', f'50k_{order_id}') elif product_name == 'File Type Detection - 500,000 files': return create_key_in_policy('500k month', f'500k_{order_id}') except Exception as error: log_to_elk('error in create_key', f'{error}', level='error') return f'{error}' return uuid.uuid1() def run(event, context): params = event.get("queryStringParameters",{}) api_key = create_key(params) log_to_elk('shopify new key request create_api_gw_key', f'{params}') return { "isBase64Encoded": False, "statusCode": 200, "headers": {}, "body": f'{api_key}' }
37.627907
73
0.662546
4a2762d79be63aca2854e3b0444cb625fa1b88ff
2,603
py
Python
gym_modular/wrappers/flatten_wrapper.py
TimSchneider42/mbpo
736ba90bbdaddb2a40a6233bc0b78da72235100a
[ "MIT" ]
null
null
null
gym_modular/wrappers/flatten_wrapper.py
TimSchneider42/mbpo
736ba90bbdaddb2a40a6233bc0b78da72235100a
[ "MIT" ]
null
null
null
gym_modular/wrappers/flatten_wrapper.py
TimSchneider42/mbpo
736ba90bbdaddb2a40a6233bc0b78da72235100a
[ "MIT" ]
null
null
null
from typing import Dict, Tuple import gym import numpy as np from .dict_flattener import DictFlattener class FlattenWrapper(gym.Env): """ A wrapper for gym environments that converts gym.spaces.Dict observation and action spaces to gym.spaces.Box. Needed since stable-baselines3 does not support Dict spaces. """ def __init__(self, wrapped_env: gym.Env): assert isinstance(wrapped_env.action_space, gym.spaces.Dict), "The action space must be of type Dict" assert isinstance(wrapped_env.observation_space, gym.spaces.Dict), "The observation space must be of type Dict" self.__wrapped_env = wrapped_env self.__action_flattener = DictFlattener(self.__wrapped_env.action_space) self.__observation_flattener = DictFlattener(self.__wrapped_env.observation_space) def reset(self) -> np.ndarray: obs_dict = self.__wrapped_env.reset() obs = self._pack_observation(obs_dict) return obs def step(self, action: np.ndarray) -> Tuple[np.ndarray, float, bool, Dict]: action_dict = self._unpack_action(action) obs_dict, reward, done, info = self.__wrapped_env.step(action_dict) obs = self._pack_observation(obs_dict) return obs, reward, done, info def _pack_observation(self, obs: Dict[str, np.ndarray]) -> np.ndarray: return self.__observation_flattener.pack_dict(obs) def _unpack_observation(self, packed_obs: np.ndarray) -> Dict[str, np.ndarray]: return self.__observation_flattener.unpack_dict(packed_obs) def _pack_action(self, act: Dict[str, np.ndarray]) -> np.ndarray: return self.__action_flattener.pack_dict(act) def _unpack_action(self, packed_act: np.ndarray) -> Dict[str, np.ndarray]: return self.__action_flattener.unpack_dict(packed_act) def render(self, mode="human") -> None: self.__wrapped_env.render(mode) def close(self) -> None: self.__wrapped_env.close() @property def action_space(self) -> gym.spaces.Space: return self.__action_flattener.flattened_space @property def observation_space(self) -> gym.spaces.Dict: return self.__observation_flattener.flattened_space @property def wrapped_env(self) -> gym.Env: return self.__wrapped_env @property def unwrapped(self): return self.__wrapped_env.unwrapped @property def observation_flattener(self) -> DictFlattener: return self.__observation_flattener @property def action_flattener(self) -> DictFlattener: return self.__action_flattener
34.706667
119
0.711103
4a2762f99d42099aee67604c2d8319f8894a7bd8
449
py
Python
Strings/2087.py
LorranSutter/URI-Online-Judge
aef885b9a7caa83484cf172e29eea8ec92fc3627
[ "MIT" ]
null
null
null
Strings/2087.py
LorranSutter/URI-Online-Judge
aef885b9a7caa83484cf172e29eea8ec92fc3627
[ "MIT" ]
null
null
null
Strings/2087.py
LorranSutter/URI-Online-Judge
aef885b9a7caa83484cf172e29eea8ec92fc3627
[ "MIT" ]
null
null
null
while True: N = int(input()) if N == 0: break P = [input() for k in range(N)] ruim = False l_p = len(P) for k in range(l_p): l = len(P[k]) for w in range(l_p): if k != w and l <= len(P[w]): if P[k] == P[w][:l]: ruim = True break if ruim: break if ruim: print("Conjunto Ruim") else: print("Conjunto Bom")
22.45
41
0.405345
4a276430d0e74badc9536fb9a55652f79bc19854
2,778
py
Python
dipy/denoise/non_local_means.py
omarocegueda/dipy
520b724041116a958892bee0068b057314a21cb2
[ "MIT" ]
null
null
null
dipy/denoise/non_local_means.py
omarocegueda/dipy
520b724041116a958892bee0068b057314a21cb2
[ "MIT" ]
null
null
null
dipy/denoise/non_local_means.py
omarocegueda/dipy
520b724041116a958892bee0068b057314a21cb2
[ "MIT" ]
null
null
null
from __future__ import division, print_function import numpy as np from dipy.denoise.nlmeans_block import nlmeans_block def non_local_means(arr, sigma, mask=None, patch_radius=1, block_radius=5, rician=True): r""" Non-local means for denoising 3D and 4D images, using blockwise averaging approach Parameters ---------- arr : 3D or 4D ndarray The array to be denoised mask : 3D ndarray sigma : float or 3D array standard deviation of the noise estimated from the data patch_radius : int patch size is ``2 x patch_radius + 1``. Default is 1. block_radius : int block size is ``2 x block_radius + 1``. Default is 5. rician : boolean If True the noise is estimated as Rician, otherwise Gaussian noise is assumed. Returns ------- denoised_arr : ndarray the denoised ``arr`` which has the same shape as ``arr``. References ---------- .. [Coupe08] P. Coupe, P. Yger, S. Prima, P. Hellier, C. Kervrann, C. Barillot, An Optimized Blockwise Non Local Means Denoising Filter for 3D Magnetic Resonance Images, IEEE Transactions on Medical Imaging, 27(4):425-441, 2008 .. [Coupe11] Pierrick Coupe, Jose Manjon, Montserrat Robles, Louis Collins. Adaptive Multiresolution Non-Local Means Filter for 3D MR Image Denoising IET Image Processing, Institution of Engineering and Technology, 2011 """ if mask is None and arr.ndim > 2: mask = np.ones((arr.shape[0], arr.shape[1], arr.shape[2]), dtype='f8') else: mask = np.ascontiguousarray(mask, dtype='f8') if mask.ndim != 3: raise ValueError('mask needs to be a 3D ndarray', mask.shape) if arr.ndim == 3: sigma = np.ones(arr.shape, dtype=np.float64) * sigma return np.array(nlmeans_block( np.double(arr), mask, patch_radius, block_radius, sigma[0, 0, 0], np.int(rician))).astype(arr.dtype) elif arr.ndim == 4: denoised_arr = np.zeros_like(arr) if isinstance(sigma, np.ndarray) and sigma.ndim == 3: sigma = (np.ones(arr.shape, dtype=np.float64) * sigma[..., np.newaxis]) else: sigma = np.ones(arr.shape, dtype=np.float64) * sigma for i in range(arr.shape[-1]): denoised_arr[..., i] = np.array(nlmeans_block(np.double( arr[..., i]), mask, patch_radius, block_radius, sigma[0, 0, 0, 0], np.int(rician))).astype(arr.dtype) return denoised_arr else: raise ValueError("Only 3D or 4D array are supported!", arr.shape)
34.296296
83
0.593593
4a27643b985835407da85a54bb4ee65b8a29d1fa
1,994
py
Python
dota_webscraper/client_interface.py
alexpickering/dota_webscraper
930c17f5563e6c778a820097517e7bb37e36bfe8
[ "MIT" ]
null
null
null
dota_webscraper/client_interface.py
alexpickering/dota_webscraper
930c17f5563e6c778a820097517e7bb37e36bfe8
[ "MIT" ]
null
null
null
dota_webscraper/client_interface.py
alexpickering/dota_webscraper
930c17f5563e6c778a820097517e7bb37e36bfe8
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Prompts user input, parses into a dictionary of heroes and corresponding levels """ import json import os import re import sys from argparse import ArgumentParser from gooey import Gooey, GooeyParser def import_hero_list(): # import hardcoded hero_list hero_list = [] with open('hero_list.txt', 'r') as f: hero_list = [line.rstrip('\n') for line in f] return hero_list def format_request(heroes, all_lvl): # regex separates entries into hero,lvl tuples reg_obj = re.findall(r'([A-Za-z]+)([^A-Za-z]+)', heroes) hero_list = import_hero_list() outdict = {} for pair in reg_obj: # if multiple matches, takes first match (alphabetical) hero = [listhero for listhero in hero_list if pair[0] in listhero.lower()][0] lvls = [] for elt in pair[1].split(','): print(elt) if '-' in elt: start, end = elt.split('-') start = int(start.strip()) end = int(end.strip()) lvls += [lvl for lvl in range(start, end+1)] elif elt.strip(): lvls.append(int(elt.strip())) outdict[hero] = lvls outdict['All Heroes'] = all_lvl # saving dictionary as file #with open('outdict.json','w+') as f: # json.dump(outdict,f) print(outdict) return outdict @Gooey def set_gooey(): pass def main(): if len(sys.argv) == 1: set_gooey() parser = ArgumentParser() parser.add_argument('hero', action='extend', type=str, nargs='+', help='Hero and Level') parser.add_argument('--all', action='store', default=1, type=str, help='Level for All-Heroes Display') args = parser.parse_args() heroes = args.hero all_lvl = args.all req = format_request(' '.join(heroes), all_lvl) with open('request.json', 'w') as f: json.dump(req, f) #return req if __name__ == '__main__': main()
24.617284
106
0.594784
4a27644dd7940449724b856c7cc589e4790fba54
1,516
pyde
Python
processing_visualizations/Voronoi_Whirl/Voronoi_Whirl.pyde
COLOR-SKY/RecursiveVoronoi
24d98298bfcf52a7938557dda491e9d2b3dc9616
[ "MIT" ]
3
2021-01-25T17:27:35.000Z
2022-03-22T12:07:16.000Z
processing_visualizations/Voronoi_Whirl/Voronoi_Whirl.pyde
COLOR-SKY/RecursiveVoronoi
24d98298bfcf52a7938557dda491e9d2b3dc9616
[ "MIT" ]
null
null
null
processing_visualizations/Voronoi_Whirl/Voronoi_Whirl.pyde
COLOR-SKY/RecursiveVoronoi
24d98298bfcf52a7938557dda491e9d2b3dc9616
[ "MIT" ]
null
null
null
""" Author: colorsky Date: 2020/01/20 """ import sys # Replace with your environment dir sys.path.append('/Python Project/venv_2.7/lib/python2.7/site-packages/') import requests def setup(): size(800, 800) def draw(): background(0) noFill() num_points = 10 seed = 999 mask_polygon = [[20, 20], [width - 20, 20], [width - 20, height - 20], [20, height - 20]] baseapi = "http://127.0.0.1:5699" points = requests.post(baseapi + "/RandomPointsInsidePolygon", json={ "polygon": mask_polygon, "n": 10, "seed": 10 }).json() voronoi_regions = requests.post(baseapi + "/ClippedVoronoi", json={ "polygon": mask_polygon, "points": points }).json() interpolations = requests.post(baseapi + "/PolygonsInterpolate", json={ "polygons": voronoi_regions, "displacement": 1, "min_area": 5, "max_iter": 1000 }).json() for interpolated in interpolations: for iteration in interpolated: stroke(map(int(iteration), 0, len(interpolated), 255, 0)) strokeWeight(0.3) polygon = interpolated[iteration] p = createShape() p.beginShape() for x, y in polygon: p.vertex(x, y) p.endShape(CLOSE) shape(p) filetitle = "N" + str(num_points) + "S" + str(seed) # Add text fill(255) textSize(12) textAlign(CENTER) text(filetitle, width / 2, 15) noLoop()
27.071429
75
0.566623
4a2764e86e7ce34f8609ce47fdf27d7a5be482cf
54,206
bzl
Python
tensorflow/workspace2.bzl
vadimVoloshanov/tensorflow
15c4071f8c2422dec79c17e5294969f0fdbd22a3
[ "Apache-2.0" ]
1
2021-06-17T17:07:40.000Z
2021-06-17T17:07:40.000Z
tensorflow/workspace2.bzl
vadimVoloshanov/tensorflow
15c4071f8c2422dec79c17e5294969f0fdbd22a3
[ "Apache-2.0" ]
2
2021-11-10T20:10:39.000Z
2022-02-10T05:15:31.000Z
tensorflow/workspace2.bzl
vadimVoloshanov/tensorflow
15c4071f8c2422dec79c17e5294969f0fdbd22a3
[ "Apache-2.0" ]
1
2021-04-20T18:26:18.000Z
2021-04-20T18:26:18.000Z
"""TensorFlow workspace initialization. Consult the WORKSPACE on how to use it.""" # Import third party config rules. load("//tensorflow:version_check.bzl", "check_bazel_version_at_least") load("//third_party/gpus:cuda_configure.bzl", "cuda_configure") load("//third_party/gpus:rocm_configure.bzl", "rocm_configure") load("//third_party/tensorrt:tensorrt_configure.bzl", "tensorrt_configure") load("//third_party/nccl:nccl_configure.bzl", "nccl_configure") load("//third_party/git:git_configure.bzl", "git_configure") load("//third_party/py:python_configure.bzl", "python_configure") load("//third_party/systemlibs:syslibs_configure.bzl", "syslibs_configure") load("//third_party/toolchains/cpus/arm:arm_compiler_configure.bzl", "arm_compiler_configure") load("//third_party/toolchains/embedded/arm-linux:arm_linux_toolchain_configure.bzl", "arm_linux_toolchain_configure") load("//third_party:repo.bzl", "tf_http_archive") load("//third_party/clang_toolchain:cc_configure_clang.bzl", "cc_download_clang_toolchain") load("//tensorflow/tools/def_file_filter:def_file_filter_configure.bzl", "def_file_filter_configure") # Import third party repository rules. See go/tfbr-thirdparty. load("//third_party/FP16:workspace.bzl", FP16 = "repo") load("//third_party/absl:workspace.bzl", absl = "repo") load("//third_party/aws:workspace.bzl", aws = "repo") load("//third_party/clog:workspace.bzl", clog = "repo") load("//third_party/cpuinfo:workspace.bzl", cpuinfo = "repo") load("//third_party/dlpack:workspace.bzl", dlpack = "repo") load("//third_party/eigen3:workspace.bzl", eigen3 = "repo") load("//third_party/farmhash:workspace.bzl", farmhash = "repo") load("//third_party/flatbuffers:workspace.bzl", flatbuffers = "repo") load("//third_party/gemmlowp:workspace.bzl", gemmlowp = "repo") load("//third_party/hexagon:workspace.bzl", hexagon_nn = "repo") load("//third_party/highwayhash:workspace.bzl", highwayhash = "repo") load("//third_party/hwloc:workspace.bzl", hwloc = "repo") load("//third_party/icu:workspace.bzl", icu = "repo") load("//third_party/jpeg:workspace.bzl", jpeg = "repo") load("//third_party/llvm:workspace.bzl", llvm = "repo") load("//third_party/nasm:workspace.bzl", nasm = "repo") load("//third_party/opencl_headers:workspace.bzl", opencl_headers = "repo") load("//third_party/kissfft:workspace.bzl", kissfft = "repo") load("//third_party/pasta:workspace.bzl", pasta = "repo") load("//third_party/psimd:workspace.bzl", psimd = "repo") load("//third_party/ruy:workspace.bzl", ruy = "repo") load("//third_party/sobol_data:workspace.bzl", sobol_data = "repo") load("//third_party/vulkan_headers:workspace.bzl", vulkan_headers = "repo") # Import external repository rules. load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_file") load("@bazel_tools//tools/build_defs/repo:java.bzl", "java_import_external") load("@io_bazel_rules_closure//closure:defs.bzl", "filegroup_external") load("@tf_runtime//:dependencies.bzl", "tfrt_dependencies") load("@tf_toolchains//toolchains/remote_config:configs.bzl", "initialize_rbe_configs") load("@tf_toolchains//toolchains/remote:configure.bzl", "remote_execution_configure") load("@tf_toolchains//toolchains/clang6:repo.bzl", "clang6_configure") def _initialize_third_party(): """ Load third party repositories. See above load() statements. """ FP16() absl() aws() clog() cpuinfo() dlpack() eigen3() farmhash() flatbuffers() gemmlowp() hexagon_nn() highwayhash() hwloc() icu() jpeg() kissfft() nasm() opencl_headers() pasta() psimd() ruy() sobol_data() vulkan_headers() # Toolchains & platforms required by Tensorflow to build. def _tf_toolchains(): native.register_execution_platforms("@local_execution_config_platform//:platform") native.register_toolchains("@local_execution_config_python//:py_toolchain") # Loads all external repos to configure RBE builds. initialize_rbe_configs() # Note that we check the minimum bazel version in WORKSPACE. clang6_configure(name = "local_config_clang6") cc_download_clang_toolchain(name = "local_config_download_clang") cuda_configure(name = "local_config_cuda") tensorrt_configure(name = "local_config_tensorrt") nccl_configure(name = "local_config_nccl") git_configure(name = "local_config_git") syslibs_configure(name = "local_config_syslibs") python_configure(name = "local_config_python") rocm_configure(name = "local_config_rocm") remote_execution_configure(name = "local_config_remote_execution") # For windows bazel build # TODO: Remove def file filter when TensorFlow can export symbols properly on Windows. def_file_filter_configure(name = "local_config_def_file_filter") # Point //external/local_config_arm_compiler to //external/arm_compiler arm_compiler_configure( name = "local_config_arm_compiler", build_file = "//third_party/toolchains/cpus/arm:BUILD", remote_config_repo_arm = "../arm_compiler", remote_config_repo_aarch64 = "../aarch64_compiler", ) # TFLite crossbuild toolchain for embeddeds Linux arm_linux_toolchain_configure( name = "local_config_embedded_arm", build_file = "//third_party/toolchains/embedded/arm-linux:BUILD", aarch64_repo = "../aarch64_linux_toolchain", armhf_repo = "../armhf_linux_toolchain", ) # Define all external repositories required by TensorFlow def _tf_repositories(): """All external dependencies for TF builds.""" # To update any of the dependencies bellow: # a) update URL and strip_prefix to the new git commit hash # b) get the sha256 hash of the commit by running: # curl -L <url> | sha256sum # and update the sha256 with the result. tf_http_archive( name = "XNNPACK", sha256 = "5482fb0fcdc1df8b4842f8edf944443ea67ffe712a5cd846f0af484abe4f9a79", strip_prefix = "XNNPACK-8f15372eb67ffab0d54cfe3752acaf8f8415af17", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/XNNPACK/archive/8f15372eb67ffab0d54cfe3752acaf8f8415af17.zip", "https://github.com/google/XNNPACK/archive/8f15372eb67ffab0d54cfe3752acaf8f8415af17.zip", ], ) tf_http_archive( name = "FXdiv", sha256 = "3d7b0e9c4c658a84376a1086126be02f9b7f753caa95e009d9ac38d11da444db", strip_prefix = "FXdiv-63058eff77e11aa15bf531df5dd34395ec3017c8", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/Maratyszcza/FXdiv/archive/63058eff77e11aa15bf531df5dd34395ec3017c8.zip", "https://github.com/Maratyszcza/FXdiv/archive/63058eff77e11aa15bf531df5dd34395ec3017c8.zip", ], ) tf_http_archive( name = "pthreadpool", sha256 = "b96413b10dd8edaa4f6c0a60c6cf5ef55eebeef78164d5d69294c8173457f0ec", strip_prefix = "pthreadpool-b8374f80e42010941bda6c85b0e3f1a1bd77a1e0", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/Maratyszcza/pthreadpool/archive/b8374f80e42010941bda6c85b0e3f1a1bd77a1e0.zip", "https://github.com/Maratyszcza/pthreadpool/archive/b8374f80e42010941bda6c85b0e3f1a1bd77a1e0.zip", ], ) tf_http_archive( name = "cudnn_frontend_archive", build_file = "//third_party:cudnn_frontend.BUILD", patch_file = "//third_party:cudnn_frontend_header_fix.patch", sha256 = "498f908ced41bbf524af6b89dc4229d5cc89311bfaaed1e3794981e858629196", strip_prefix = "cudnn-frontend-360d6e7164dfb7c802493fd1c0464f0d815b852a", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/NVIDIA/cudnn-frontend/archive/360d6e7164dfb7c802493fd1c0464f0d815b852a.zip", "https://github.com/NVIDIA/cudnn-frontend/archive/360d6e7164dfb7c802493fd1c0464f0d815b852a.zip", ], ) tf_http_archive( name = "mkl_dnn", build_file = "//third_party/mkl_dnn:mkldnn.BUILD", sha256 = "a0211aeb5e7dad50b97fa5dffc1a2fe2fe732572d4164e1ee8750a2ede43fbec", strip_prefix = "oneDNN-0.21.3", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/oneapi-src/oneDNN/archive/v0.21.3.tar.gz", "https://github.com/oneapi-src/oneDNN/archive/v0.21.3.tar.gz", ], ) tf_http_archive( name = "mkl_dnn_v1", build_file = "//third_party/mkl_dnn:mkldnn_v1.BUILD", sha256 = "4d655c0751ee6439584ef5e3d465953fe0c2f4ee2700bc02699bdc1d1572af0d", strip_prefix = "oneDNN-2.2", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/oneapi-src/oneDNN/archive/v2.2.tar.gz", "https://github.com/oneapi-src/oneDNN/archive/v2.2.tar.gz", ], ) tf_http_archive( name = "mkl_dnn_acl_compatible", build_file = "//third_party/mkl_dnn:mkldnn_acl.BUILD", sha256 = "4d655c0751ee6439584ef5e3d465953fe0c2f4ee2700bc02699bdc1d1572af0d", strip_prefix = "oneDNN-2.2", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/oneapi-src/oneDNN/archive/v2.2.tar.gz", "https://github.com/oneapi-src/oneDNN/archive/v2.2.tar.gz", ], ) tf_http_archive( name = "compute_library", sha256 = "cdb3d8a7ab7ea13f0df207a20657f2827ac631c24aa0e8487bacf97697237bdf", strip_prefix = "ComputeLibrary-21.02", build_file = "//third_party/compute_library:BUILD", patch_file = "//third_party/compute_library:compute_library.patch", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/ARM-software/ComputeLibrary/archive/v21.02.tar.gz", "https://github.com/ARM-software/ComputeLibrary/archive/v21.02.tar.gz", ], ) tf_http_archive( name = "arm_compiler", build_file = "//:arm_compiler.BUILD", sha256 = "b9e7d50ffd9996ed18900d041d362c99473b382c0ae049b2fce3290632d2656f", strip_prefix = "rpi-newer-crosstools-eb68350c5c8ec1663b7fe52c742ac4271e3217c5/x64-gcc-6.5.0/arm-rpi-linux-gnueabihf/", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/rvagg/rpi-newer-crosstools/archive/eb68350c5c8ec1663b7fe52c742ac4271e3217c5.tar.gz", "https://github.com/rvagg/rpi-newer-crosstools/archive/eb68350c5c8ec1663b7fe52c742ac4271e3217c5.tar.gz", ], ) tf_http_archive( # This is the latest `aarch64-none-linux-gnu` compiler provided by ARM # See https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads # The archive contains GCC version 9.2.1 name = "aarch64_compiler", build_file = "//:arm_compiler.BUILD", sha256 = "8dfe681531f0bd04fb9c53cf3c0a3368c616aa85d48938eebe2b516376e06a66", strip_prefix = "gcc-arm-9.2-2019.12-x86_64-aarch64-none-linux-gnu", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/developer.arm.com/-/media/Files/downloads/gnu-a/9.2-2019.12/binrel/gcc-arm-9.2-2019.12-x86_64-aarch64-none-linux-gnu.tar.xz", "https://developer.arm.com/-/media/Files/downloads/gnu-a/9.2-2019.12/binrel/gcc-arm-9.2-2019.12-x86_64-aarch64-none-linux-gnu.tar.xz", ], ) tf_http_archive( name = "aarch64_linux_toolchain", build_file = "//third_party/toolchains/embedded/arm-linux:aarch64-linux-toolchain.BUILD", sha256 = "8ce3e7688a47d8cd2d8e8323f147104ae1c8139520eca50ccf8a7fa933002731", strip_prefix = "gcc-arm-8.3-2019.03-x86_64-aarch64-linux-gnu", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/developer.arm.com/media/Files/downloads/gnu-a/8.3-2019.03/binrel/gcc-arm-8.3-2019.03-x86_64-aarch64-linux-gnu.tar.xz", "https://developer.arm.com/-/media/Files/downloads/gnu-a/8.3-2019.03/binrel/gcc-arm-8.3-2019.03-x86_64-aarch64-linux-gnu.tar.xz", ], ) tf_http_archive( name = "armhf_linux_toolchain", build_file = "//third_party/toolchains/embedded/arm-linux:armhf-linux-toolchain.BUILD", sha256 = "d4f6480ecaa99e977e3833cc8a8e1263f9eecd1ce2d022bb548a24c4f32670f5", strip_prefix = "gcc-arm-8.3-2019.03-x86_64-arm-linux-gnueabihf", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/developer.arm.com/media/Files/downloads/gnu-a/8.3-2019.03/binrel/gcc-arm-8.3-2019.03-x86_64-arm-linux-gnueabihf.tar.xz", "https://developer.arm.com/-/media/Files/downloads/gnu-a/8.3-2019.03/binrel/gcc-arm-8.3-2019.03-x86_64-arm-linux-gnueabihf.tar.xz", ], ) tf_http_archive( name = "libxsmm_archive", build_file = "//third_party:libxsmm.BUILD", sha256 = "9c0af4509ea341d1ee2c6c19fc6f19289318c3bd4b17844efeb9e7f9691abf76", strip_prefix = "libxsmm-1.14", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/hfp/libxsmm/archive/1.14.tar.gz", "https://github.com/hfp/libxsmm/archive/1.14.tar.gz", ], ) tf_http_archive( name = "com_googlesource_code_re2", sha256 = "d070e2ffc5476c496a6a872a6f246bfddce8e7797d6ba605a7c8d72866743bf9", strip_prefix = "re2-506cfa4bffd060c06ec338ce50ea3468daa6c814", system_build_file = "//third_party/systemlibs:re2.BUILD", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/re2/archive/506cfa4bffd060c06ec338ce50ea3468daa6c814.tar.gz", "https://github.com/google/re2/archive/506cfa4bffd060c06ec338ce50ea3468daa6c814.tar.gz", ], ) tf_http_archive( name = "com_github_google_crc32c", sha256 = "6b3b1d861bb8307658b2407bc7a4c59e566855ef5368a60b35c893551e4788e9", build_file = "@com_github_googlecloudplatform_google_cloud_cpp//bazel:crc32c.BUILD", strip_prefix = "crc32c-1.0.6", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/crc32c/archive/1.0.6.tar.gz", "https://github.com/google/crc32c/archive/1.0.6.tar.gz", ], ) tf_http_archive( name = "com_github_googlecloudplatform_google_cloud_cpp", sha256 = "ff82045b9491f0d880fc8e5c83fd9542eafb156dcac9ff8c6209ced66ed2a7f0", strip_prefix = "google-cloud-cpp-1.17.1", repo_mapping = { "@com_github_curl_curl": "@curl", "@com_github_nlohmann_json": "@nlohmann_json_lib", }, system_build_file = "//third_party/systemlibs:google_cloud_cpp.BUILD", system_link_files = { "//third_party/systemlibs:google_cloud_cpp.google.cloud.bigtable.BUILD": "google/cloud/bigtable/BUILD", }, urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/googleapis/google-cloud-cpp/archive/v1.17.1.tar.gz", "https://github.com/googleapis/google-cloud-cpp/archive/v1.17.1.tar.gz", ], ) tf_http_archive( name = "com_github_googlecloudplatform_tensorflow_gcp_tools", sha256 = "5e9ebe17eaa2895eb7f77fefbf52deeda7c4b63f5a616916b823eb74f3a0c542", strip_prefix = "tensorflow-gcp-tools-2643d8caeba6ca2a6a0b46bb123953cb95b7e7d5", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/GoogleCloudPlatform/tensorflow-gcp-tools/archive/2643d8caeba6ca2a6a0b46bb123953cb95b7e7d5.tar.gz", "https://github.com/GoogleCloudPlatform/tensorflow-gcp-tools/archive/2643d8caeba6ca2a6a0b46bb123953cb95b7e7d5.tar.gz", ], ) tf_http_archive( name = "com_google_googleapis", build_file = "//third_party/googleapis:googleapis.BUILD", sha256 = "7ebab01b06c555f4b6514453dc3e1667f810ef91d1d4d2d3aa29bb9fcb40a900", strip_prefix = "googleapis-541b1ded4abadcc38e8178680b0677f65594ea6f", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/googleapis/googleapis/archive/541b1ded4abadcc38e8178680b0677f65594ea6f.zip", "https://github.com/googleapis/googleapis/archive/541b1ded4abadcc38e8178680b0677f65594ea6f.zip", ], ) tf_http_archive( name = "png", build_file = "//third_party:png.BUILD", patch_file = "//third_party:png_fix_rpi.patch", sha256 = "ca74a0dace179a8422187671aee97dd3892b53e168627145271cad5b5ac81307", strip_prefix = "libpng-1.6.37", system_build_file = "//third_party/systemlibs:png.BUILD", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/glennrp/libpng/archive/v1.6.37.tar.gz", "https://github.com/glennrp/libpng/archive/v1.6.37.tar.gz", ], ) tf_http_archive( name = "org_sqlite", build_file = "//third_party:sqlite.BUILD", sha256 = "a629d0b1cc301347109e8ad211ff46af371b6ef73c41b7698e9cf1fb37bf4b95", strip_prefix = "sqlite-amalgamation-3350300", system_build_file = "//third_party/systemlibs:sqlite.BUILD", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/sqlite.org/2021/sqlite-amalgamation-3350300.zip", "https://sqlite.org/2021/sqlite-amalgamation-3350300.zip", ], ) tf_http_archive( name = "gif", build_file = "//third_party:gif.BUILD", patch_file = "//third_party:gif_fix_strtok_r.patch", sha256 = "31da5562f44c5f15d63340a09a4fd62b48c45620cd302f77a6d9acf0077879bd", strip_prefix = "giflib-5.2.1", system_build_file = "//third_party/systemlibs:gif.BUILD", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/pilotfiber.dl.sourceforge.net/project/giflib/giflib-5.2.1.tar.gz", "https://pilotfiber.dl.sourceforge.net/project/giflib/giflib-5.2.1.tar.gz", ], ) tf_http_archive( name = "six_archive", build_file = "//third_party:six.BUILD", sha256 = "30639c035cdb23534cd4aa2dd52c3bf48f06e5f4a941509c8bafd8ce11080259", strip_prefix = "six-1.15.0", system_build_file = "//third_party/systemlibs:six.BUILD", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/pypi.python.org/packages/source/s/six/six-1.15.0.tar.gz", "https://pypi.python.org/packages/source/s/six/six-1.15.0.tar.gz", ], ) tf_http_archive( name = "astor_archive", build_file = "//third_party:astor.BUILD", sha256 = "95c30d87a6c2cf89aa628b87398466840f0ad8652f88eb173125a6df8533fb8d", strip_prefix = "astor-0.7.1", system_build_file = "//third_party/systemlibs:astor.BUILD", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/pypi.python.org/packages/99/80/f9482277c919d28bebd85813c0a70117214149a96b08981b72b63240b84c/astor-0.7.1.tar.gz", "https://pypi.python.org/packages/99/80/f9482277c919d28bebd85813c0a70117214149a96b08981b72b63240b84c/astor-0.7.1.tar.gz", ], ) tf_http_archive( name = "astunparse_archive", build_file = "//third_party:astunparse.BUILD", sha256 = "5ad93a8456f0d084c3456d059fd9a92cce667963232cbf763eac3bc5b7940872", strip_prefix = "astunparse-1.6.3/lib", system_build_file = "//third_party/systemlibs:astunparse.BUILD", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/files.pythonhosted.org/packages/f3/af/4182184d3c338792894f34a62672919db7ca008c89abee9b564dd34d8029/astunparse-1.6.3.tar.gz", "https://files.pythonhosted.org/packages/f3/af/4182184d3c338792894f34a62672919db7ca008c89abee9b564dd34d8029/astunparse-1.6.3.tar.gz", ], ) filegroup_external( name = "astunparse_license", licenses = ["notice"], # PSFL sha256_urls = { "92fc0e4f4fa9460558eedf3412b988d433a2dcbb3a9c45402a145a4fab8a6ac6": [ "https://storage.googleapis.com/mirror.tensorflow.org/raw.githubusercontent.com/simonpercivall/astunparse/v1.6.2/LICENSE", "https://raw.githubusercontent.com/simonpercivall/astunparse/v1.6.2/LICENSE", ], }, ) tf_http_archive( name = "functools32_archive", build_file = "//third_party:functools32.BUILD", sha256 = "f6253dfbe0538ad2e387bd8fdfd9293c925d63553f5813c4e587745416501e6d", strip_prefix = "functools32-3.2.3-2", system_build_file = "//third_party/systemlibs:functools32.BUILD", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/pypi.python.org/packages/c5/60/6ac26ad05857c601308d8fb9e87fa36d0ebf889423f47c3502ef034365db/functools32-3.2.3-2.tar.gz", "https://pypi.python.org/packages/c5/60/6ac26ad05857c601308d8fb9e87fa36d0ebf889423f47c3502ef034365db/functools32-3.2.3-2.tar.gz", ], ) tf_http_archive( name = "gast_archive", build_file = "//third_party:gast.BUILD", sha256 = "40feb7b8b8434785585ab224d1568b857edb18297e5a3047f1ba012bc83b42c1", strip_prefix = "gast-0.4.0", system_build_file = "//third_party/systemlibs:gast.BUILD", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/files.pythonhosted.org/packages/12/59/eaa15ab9710a20e22225efd042cd2d6a0b559a0656d5baba9641a2a4a921/gast-0.4.0.tar.gz", "https://files.pythonhosted.org/packages/83/4a/07c7e59cef23fb147454663c3271c21da68ba2ab141427c20548ae5a8a4d/gast-0.4.0.tar.gz", ], ) tf_http_archive( name = "termcolor_archive", build_file = "//third_party:termcolor.BUILD", sha256 = "1d6d69ce66211143803fbc56652b41d73b4a400a2891d7bf7a1cdf4c02de613b", strip_prefix = "termcolor-1.1.0", system_build_file = "//third_party/systemlibs:termcolor.BUILD", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/pypi.python.org/packages/8a/48/a76be51647d0eb9f10e2a4511bf3ffb8cc1e6b14e9e4fab46173aa79f981/termcolor-1.1.0.tar.gz", "https://pypi.python.org/packages/8a/48/a76be51647d0eb9f10e2a4511bf3ffb8cc1e6b14e9e4fab46173aa79f981/termcolor-1.1.0.tar.gz", ], ) tf_http_archive( name = "typing_extensions_archive", build_file = "//third_party:typing_extensions.BUILD", sha256 = "79ee589a3caca649a9bfd2a8de4709837400dfa00b6cc81962a1e6a1815969ae", strip_prefix = "typing_extensions-3.7.4.2/src_py3", system_build_file = "//third_party/systemlibs:typing_extensions.BUILD", urls = [ "http://mirror.tensorflow.org/files.pythonhosted.org/packages/6a/28/d32852f2af6b5ead85d396249d5bdf450833f3a69896d76eb480d9c5e406/typing_extensions-3.7.4.2.tar.gz", "https://files.pythonhosted.org/packages/6a/28/d32852f2af6b5ead85d396249d5bdf450833f3a69896d76eb480d9c5e406/typing_extensions-3.7.4.2.tar.gz", ], ) filegroup_external( name = "typing_extensions_license", licenses = ["notice"], # PSFL sha256_urls = { "ff17ce94e102024deb68773eb1cc74ca76da4e658f373531f0ac22d68a6bb1ad": [ "http://mirror.tensorflow.org/raw.githubusercontent.com/python/typing/master/typing_extensions/LICENSE", "https://raw.githubusercontent.com/python/typing/master/typing_extensions/LICENSE", ], }, ) tf_http_archive( name = "opt_einsum_archive", build_file = "//third_party:opt_einsum.BUILD", sha256 = "d3d464b4da7ef09e444c30e4003a27def37f85ff10ff2671e5f7d7813adac35b", strip_prefix = "opt_einsum-2.3.2", system_build_file = "//third_party/systemlibs:opt_einsum.BUILD", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/pypi.python.org/packages/f6/d6/44792ec668bcda7d91913c75237314e688f70415ab2acd7172c845f0b24f/opt_einsum-2.3.2.tar.gz", "https://pypi.python.org/packages/f6/d6/44792ec668bcda7d91913c75237314e688f70415ab2acd7172c845f0b24f/opt_einsum-2.3.2.tar.gz", ], ) tf_http_archive( name = "absl_py", sha256 = "603febc9b95a8f2979a7bdb77d2f5e4d9b30d4e0d59579f88eba67d4e4cc5462", strip_prefix = "abseil-py-pypi-v0.9.0", system_build_file = "//third_party/systemlibs:absl_py.BUILD", system_link_files = { "//third_party/systemlibs:absl_py.absl.BUILD": "absl/BUILD", "//third_party/systemlibs:absl_py.absl.flags.BUILD": "absl/flags/BUILD", "//third_party/systemlibs:absl_py.absl.testing.BUILD": "absl/testing/BUILD", "//third_party/systemlibs:absl_py.absl.logging.BUILD": "absl/logging/BUILD", }, urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/abseil/abseil-py/archive/pypi-v0.9.0.tar.gz", "https://github.com/abseil/abseil-py/archive/pypi-v0.9.0.tar.gz", ], ) tf_http_archive( name = "enum34_archive", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/pypi.python.org/packages/bf/3e/31d502c25302814a7c2f1d3959d2a3b3f78e509002ba91aea64993936876/enum34-1.1.6.tar.gz", "https://pypi.python.org/packages/bf/3e/31d502c25302814a7c2f1d3959d2a3b3f78e509002ba91aea64993936876/enum34-1.1.6.tar.gz", ], sha256 = "8ad8c4783bf61ded74527bffb48ed9b54166685e4230386a9ed9b1279e2df5b1", build_file = "//third_party:enum34.BUILD", system_build_file = "//third_party/systemlibs:enum34.BUILD", strip_prefix = "enum34-1.1.6/enum", ) tf_http_archive( name = "org_python_pypi_backports_weakref", build_file = "//third_party:backports_weakref.BUILD", sha256 = "8813bf712a66b3d8b85dc289e1104ed220f1878cf981e2fe756dfaabe9a82892", strip_prefix = "backports.weakref-1.0rc1/src", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/pypi.python.org/packages/bc/cc/3cdb0a02e7e96f6c70bd971bc8a90b8463fda83e264fa9c5c1c98ceabd81/backports.weakref-1.0rc1.tar.gz", "https://pypi.python.org/packages/bc/cc/3cdb0a02e7e96f6c70bd971bc8a90b8463fda83e264fa9c5c1c98ceabd81/backports.weakref-1.0rc1.tar.gz", ], ) tf_http_archive( name = "dill_archive", build_file = "//third_party:dill.BUILD", system_build_file = "//third_party/systemlibs:dill.BUILD", urls = [ "http://mirror.tensorflow.org/files.pythonhosted.org/packages/e2/96/518a8ea959a734b70d2e95fef98bcbfdc7adad1c1e5f5dd9148c835205a5/dill-0.3.2.zip", "https://files.pythonhosted.org/packages/e2/96/518a8ea959a734b70d2e95fef98bcbfdc7adad1c1e5f5dd9148c835205a5/dill-0.3.2.zip", ], sha256 = "6e12da0d8e49c220e8d6e97ee8882002e624f1160289ce85ec2cc0a5246b3a2e", strip_prefix = "dill-0.3.2", ) tf_http_archive( name = "tblib_archive", build_file = "//third_party:tblib.BUILD", system_build_file = "//third_party/systemlibs:tblib.BUILD", urls = [ "http://mirror.tensorflow.org/files.pythonhosted.org/packages/d3/41/901ef2e81d7b1e834b9870d416cb09479e175a2be1c4aa1a9dcd0a555293/tblib-1.7.0.tar.gz", "https://files.pythonhosted.org/packages/d3/41/901ef2e81d7b1e834b9870d416cb09479e175a2be1c4aa1a9dcd0a555293/tblib-1.7.0.tar.gz", ], sha256 = "059bd77306ea7b419d4f76016aef6d7027cc8a0785579b5aad198803435f882c", strip_prefix = "tblib-1.7.0", ) filegroup_external( name = "org_python_license", licenses = ["notice"], # Python 2.0 sha256_urls = { "e76cacdf0bdd265ff074ccca03671c33126f597f39d0ed97bc3e5673d9170cf6": [ "https://storage.googleapis.com/mirror.tensorflow.org/docs.python.org/2.7/_sources/license.rst.txt", "https://docs.python.org/2.7/_sources/license.rst.txt", ], }, ) tf_http_archive( name = "com_google_protobuf", patch_file = "//third_party/protobuf:protobuf.patch", sha256 = "cfcba2df10feec52a84208693937c17a4b5df7775e1635c1e3baffc487b24c9b", strip_prefix = "protobuf-3.9.2", system_build_file = "//third_party/systemlibs:protobuf.BUILD", system_link_files = { "//third_party/systemlibs:protobuf.bzl": "protobuf.bzl", }, urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/protocolbuffers/protobuf/archive/v3.9.2.zip", "https://github.com/protocolbuffers/protobuf/archive/v3.9.2.zip", ], ) tf_http_archive( name = "nsync", sha256 = "caf32e6b3d478b78cff6c2ba009c3400f8251f646804bcb65465666a9cea93c4", strip_prefix = "nsync-1.22.0", system_build_file = "//third_party/systemlibs:nsync.BUILD", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/nsync/archive/1.22.0.tar.gz", "https://github.com/google/nsync/archive/1.22.0.tar.gz", ], ) tf_http_archive( name = "com_google_googletest", sha256 = "ff7a82736e158c077e76188232eac77913a15dac0b22508c390ab3f88e6d6d86", strip_prefix = "googletest-b6cd405286ed8635ece71c72f118e659f4ade3fb", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/googletest/archive/b6cd405286ed8635ece71c72f118e659f4ade3fb.zip", "https://github.com/google/googletest/archive/b6cd405286ed8635ece71c72f118e659f4ade3fb.zip", ], ) tf_http_archive( name = "com_github_gflags_gflags", sha256 = "ae27cdbcd6a2f935baa78e4f21f675649271634c092b1be01469440495609d0e", strip_prefix = "gflags-2.2.1", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/gflags/gflags/archive/v2.2.1.tar.gz", "https://github.com/gflags/gflags/archive/v2.2.1.tar.gz", ], ) tf_http_archive( name = "pcre", build_file = "//third_party:pcre.BUILD", sha256 = "aecafd4af3bd0f3935721af77b889d9024b2e01d96b58471bd91a3063fb47728", strip_prefix = "pcre-8.44", system_build_file = "//third_party/systemlibs:pcre.BUILD", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/ftp.exim.org/pub/pcre/pcre-8.44.tar.gz", "https://ftp.exim.org/pub/pcre/pcre-8.44.tar.gz", ], ) tf_http_archive( name = "curl", build_file = "//third_party:curl.BUILD", sha256 = "3b4378156ba09e224008e81dcce854b7ce4d182b1f9cfb97fe5ed9e9c18c6bd3", strip_prefix = "curl-7.76.0", system_build_file = "//third_party/systemlibs:curl.BUILD", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/curl.haxx.se/download/curl-7.76.0.tar.gz", "https://curl.haxx.se/download/curl-7.76.0.tar.gz", ], ) # WARNING: make sure ncteisen@ and vpai@ are cc-ed on any CL to change the below rule tf_http_archive( name = "com_github_grpc_grpc", sha256 = "b956598d8cbe168b5ee717b5dafa56563eb5201a947856a6688bbeac9cac4e1f", strip_prefix = "grpc-b54a5b338637f92bfcf4b0bc05e0f57a5fd8fadd", system_build_file = "//third_party/systemlibs:grpc.BUILD", patch_file = "//third_party/grpc:generate_cc_env_fix.patch", system_link_files = { "//third_party/systemlibs:BUILD": "bazel/BUILD", "//third_party/systemlibs:grpc.BUILD": "src/compiler/BUILD", "//third_party/systemlibs:grpc.bazel.grpc_deps.bzl": "bazel/grpc_deps.bzl", "//third_party/systemlibs:grpc.bazel.grpc_extra_deps.bzl": "bazel/grpc_extra_deps.bzl", "//third_party/systemlibs:grpc.bazel.cc_grpc_library.bzl": "bazel/cc_grpc_library.bzl", "//third_party/systemlibs:grpc.bazel.generate_cc.bzl": "bazel/generate_cc.bzl", "//third_party/systemlibs:grpc.bazel.protobuf.bzl": "bazel/protobuf.bzl", }, urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/grpc/grpc/archive/b54a5b338637f92bfcf4b0bc05e0f57a5fd8fadd.tar.gz", "https://github.com/grpc/grpc/archive/b54a5b338637f92bfcf4b0bc05e0f57a5fd8fadd.tar.gz", ], ) tf_http_archive( name = "linenoise", build_file = "//third_party:linenoise.BUILD", sha256 = "7f51f45887a3d31b4ce4fa5965210a5e64637ceac12720cfce7954d6a2e812f7", strip_prefix = "linenoise-c894b9e59f02203dbe4e2be657572cf88c4230c3", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/antirez/linenoise/archive/c894b9e59f02203dbe4e2be657572cf88c4230c3.tar.gz", "https://github.com/antirez/linenoise/archive/c894b9e59f02203dbe4e2be657572cf88c4230c3.tar.gz", ], ) llvm("llvm-project") # Intel openMP that is part of LLVM sources. tf_http_archive( name = "llvm_openmp", build_file = "//third_party/llvm_openmp:BUILD", sha256 = "d19f728c8e04fb1e94566c8d76aef50ec926cd2f95ef3bf1e0a5de4909b28b44", strip_prefix = "openmp-10.0.1.src", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/llvm/llvm-project/releases/download/llvmorg-10.0.1/openmp-10.0.1.src.tar.xz", "https://github.com/llvm/llvm-project/releases/download/llvmorg-10.0.1/openmp-10.0.1.src.tar.xz", ], ) tf_http_archive( name = "lmdb", build_file = "//third_party:lmdb.BUILD", sha256 = "f3927859882eb608868c8c31586bb7eb84562a40a6bf5cc3e13b6b564641ea28", strip_prefix = "lmdb-LMDB_0.9.22/libraries/liblmdb", system_build_file = "//third_party/systemlibs:lmdb.BUILD", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/LMDB/lmdb/archive/LMDB_0.9.22.tar.gz", "https://github.com/LMDB/lmdb/archive/LMDB_0.9.22.tar.gz", ], ) tf_http_archive( name = "jsoncpp_git", build_file = "//third_party:jsoncpp.BUILD", sha256 = "77a402fb577b2e0e5d0bdc1cf9c65278915cdb25171e3452c68b6da8a561f8f0", strip_prefix = "jsoncpp-1.9.2", system_build_file = "//third_party/systemlibs:jsoncpp.BUILD", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/open-source-parsers/jsoncpp/archive/1.9.2.tar.gz", "https://github.com/open-source-parsers/jsoncpp/archive/1.9.2.tar.gz", ], ) tf_http_archive( name = "boringssl", sha256 = "a9c3b03657d507975a32732f04563132b4553c20747cec6dc04de475c8bdf29f", strip_prefix = "boringssl-80ca9f9f6ece29ab132cce4cf807a9465a18cfac", system_build_file = "//third_party/systemlibs:boringssl.BUILD", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/boringssl/archive/80ca9f9f6ece29ab132cce4cf807a9465a18cfac.tar.gz", "https://github.com/google/boringssl/archive/80ca9f9f6ece29ab132cce4cf807a9465a18cfac.tar.gz", ], ) tf_http_archive( name = "zlib", build_file = "//third_party:zlib.BUILD", sha256 = "c3e5e9fdd5004dcb542feda5ee4f0ff0744628baf8ed2dd5d66f8ca1197cb1a1", strip_prefix = "zlib-1.2.11", system_build_file = "//third_party/systemlibs:zlib.BUILD", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/zlib.net/zlib-1.2.11.tar.gz", "https://zlib.net/zlib-1.2.11.tar.gz", ], ) tf_http_archive( name = "fft2d", build_file = "//third_party/fft2d:fft2d.BUILD", sha256 = "5f4dabc2ae21e1f537425d58a49cdca1c49ea11db0d6271e2a4b27e9697548eb", strip_prefix = "OouraFFT-1.0", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/petewarden/OouraFFT/archive/v1.0.tar.gz", "https://github.com/petewarden/OouraFFT/archive/v1.0.tar.gz", ], ) tf_http_archive( name = "snappy", build_file = "//third_party:snappy.BUILD", sha256 = "16b677f07832a612b0836178db7f374e414f94657c138e6993cbfc5dcc58651f", strip_prefix = "snappy-1.1.8", system_build_file = "//third_party/systemlibs:snappy.BUILD", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/snappy/archive/1.1.8.tar.gz", "https://github.com/google/snappy/archive/1.1.8.tar.gz", ], ) tf_http_archive( name = "nccl_archive", build_file = "//third_party:nccl/archive.BUILD", patch_file = "//third_party/nccl:archive.patch", sha256 = "3ae89ddb2956fff081e406a94ff54ae5e52359f5d645ce977c7eba09b3b782e6", strip_prefix = "nccl-2.8.3-1", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/nvidia/nccl/archive/v2.8.3-1.tar.gz", "https://github.com/nvidia/nccl/archive/v2.8.3-1.tar.gz", ], ) java_import_external( name = "junit", jar_sha256 = "59721f0805e223d84b90677887d9ff567dc534d7c502ca903c0c2b17f05c116a", jar_urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/repo1.maven.org/maven2/junit/junit/4.12/junit-4.12.jar", "https://repo1.maven.org/maven2/junit/junit/4.12/junit-4.12.jar", "https://maven.ibiblio.org/maven2/junit/junit/4.12/junit-4.12.jar", ], licenses = ["reciprocal"], # Common Public License Version 1.0 testonly_ = True, deps = ["@org_hamcrest_core"], ) java_import_external( name = "org_hamcrest_core", jar_sha256 = "66fdef91e9739348df7a096aa384a5685f4e875584cce89386a7a47251c4d8e9", jar_urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/repo1.maven.org/maven2/org/hamcrest/hamcrest-core/1.3/hamcrest-core-1.3.jar", "https://repo1.maven.org/maven2/org/hamcrest/hamcrest-core/1.3/hamcrest-core-1.3.jar", "https://maven.ibiblio.org/maven2/org/hamcrest/hamcrest-core/1.3/hamcrest-core-1.3.jar", ], licenses = ["notice"], # New BSD License testonly_ = True, ) java_import_external( name = "com_google_testing_compile", jar_sha256 = "edc180fdcd9f740240da1a7a45673f46f59c5578d8cd3fbc912161f74b5aebb8", jar_urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/repo1.maven.org/maven2/com/google/testing/compile/compile-testing/0.11/compile-testing-0.11.jar", "https://repo1.maven.org/maven2/com/google/testing/compile/compile-testing/0.11/compile-testing-0.11.jar", ], licenses = ["notice"], # New BSD License testonly_ = True, deps = ["@com_google_guava", "@com_google_truth"], ) java_import_external( name = "com_google_truth", jar_sha256 = "032eddc69652b0a1f8d458f999b4a9534965c646b8b5de0eba48ee69407051df", jar_urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/repo1.maven.org/maven2/com/google/truth/truth/0.32/truth-0.32.jar", "https://repo1.maven.org/maven2/com/google/truth/truth/0.32/truth-0.32.jar", ], licenses = ["notice"], # Apache 2.0 testonly_ = True, deps = ["@com_google_guava"], ) java_import_external( name = "org_checkerframework_qual", jar_sha256 = "d261fde25d590f6b69db7721d469ac1b0a19a17ccaaaa751c31f0d8b8260b894", jar_urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/repo1.maven.org/maven2/org/checkerframework/checker-qual/2.10.0/checker-qual-2.10.0.jar", "https://repo1.maven.org/maven2/org/checkerframework/checker-qual/2.10.0/checker-qual-2.10.0.jar", ], licenses = ["notice"], # Apache 2.0 ) java_import_external( name = "com_squareup_javapoet", jar_sha256 = "5bb5abdfe4366c15c0da3332c57d484e238bd48260d6f9d6acf2b08fdde1efea", jar_urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/repo1.maven.org/maven2/com/squareup/javapoet/1.9.0/javapoet-1.9.0.jar", "https://repo1.maven.org/maven2/com/squareup/javapoet/1.9.0/javapoet-1.9.0.jar", ], licenses = ["notice"], # Apache 2.0 ) tf_http_archive( name = "com_google_pprof", build_file = "//third_party:pprof.BUILD", sha256 = "e0928ca4aa10ea1e0551e2d7ce4d1d7ea2d84b2abbdef082b0da84268791d0c4", strip_prefix = "pprof-c0fb62ec88c411cc91194465e54db2632845b650", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/pprof/archive/c0fb62ec88c411cc91194465e54db2632845b650.tar.gz", "https://github.com/google/pprof/archive/c0fb62ec88c411cc91194465e54db2632845b650.tar.gz", ], ) # The CUDA 11 toolkit ships with CUB. We should be able to delete this rule # once TF drops support for CUDA 10. tf_http_archive( name = "cub_archive", build_file = "//third_party:cub.BUILD", sha256 = "162514b3cc264ac89d91898b58450190b8192e2af1142cf8ccac2d59aa160dda", strip_prefix = "cub-1.9.9", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/NVlabs/cub/archive/1.9.9.zip", "https://github.com/NVlabs/cub/archive/1.9.9.zip", ], ) tf_http_archive( name = "cython", build_file = "//third_party:cython.BUILD", sha256 = "e2e38e1f0572ca54d6085df3dec8b607d20e81515fb80215aed19c81e8fe2079", strip_prefix = "cython-0.29.21", system_build_file = "//third_party/systemlibs:cython.BUILD", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/cython/cython/archive/0.29.21.tar.gz", "https://github.com/cython/cython/archive/0.29.21.tar.gz", ], ) tf_http_archive( name = "arm_neon_2_x86_sse", build_file = "//third_party:arm_neon_2_x86_sse.BUILD", sha256 = "213733991310b904b11b053ac224fee2d4e0179e46b52fe7f8735b8831e04dcc", strip_prefix = "ARM_NEON_2_x86_SSE-1200fe90bb174a6224a525ee60148671a786a71f", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/intel/ARM_NEON_2_x86_SSE/archive/1200fe90bb174a6224a525ee60148671a786a71f.tar.gz", "https://github.com/intel/ARM_NEON_2_x86_SSE/archive/1200fe90bb174a6224a525ee60148671a786a71f.tar.gz", ], ) tf_http_archive( name = "double_conversion", build_file = "//third_party:double_conversion.BUILD", sha256 = "2f7fbffac0d98d201ad0586f686034371a6d152ca67508ab611adc2386ad30de", strip_prefix = "double-conversion-3992066a95b823efc8ccc1baf82a1cfc73f6e9b8", system_build_file = "//third_party/systemlibs:double_conversion.BUILD", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/double-conversion/archive/3992066a95b823efc8ccc1baf82a1cfc73f6e9b8.zip", "https://github.com/google/double-conversion/archive/3992066a95b823efc8ccc1baf82a1cfc73f6e9b8.zip", ], ) tf_http_archive( name = "tflite_mobilenet_float", build_file = "//third_party:tflite_mobilenet_float.BUILD", sha256 = "2fadeabb9968ec6833bee903900dda6e61b3947200535874ce2fe42a8493abc0", urls = [ "https://storage.googleapis.com/download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224.tgz", "https://storage.googleapis.com/download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224.tgz", ], ) tf_http_archive( name = "tflite_mobilenet_quant", build_file = "//third_party:tflite_mobilenet_quant.BUILD", sha256 = "d32432d28673a936b2d6281ab0600c71cf7226dfe4cdcef3012555f691744166", urls = [ "https://storage.googleapis.com/download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz", "https://storage.googleapis.com/download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz", ], ) tf_http_archive( name = "tflite_mobilenet_ssd", build_file = str(Label("//third_party:tflite_mobilenet.BUILD")), sha256 = "767057f2837a46d97882734b03428e8dd640b93236052b312b2f0e45613c1cf0", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/storage.googleapis.com/download.tensorflow.org/models/tflite/mobilenet_ssd_tflite_v1.zip", "https://storage.googleapis.com/download.tensorflow.org/models/tflite/mobilenet_ssd_tflite_v1.zip", ], ) tf_http_archive( name = "tflite_mobilenet_ssd_quant", build_file = str(Label("//third_party:tflite_mobilenet.BUILD")), sha256 = "a809cd290b4d6a2e8a9d5dad076e0bd695b8091974e0eed1052b480b2f21b6dc", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/storage.googleapis.com/download.tensorflow.org/models/tflite/coco_ssd_mobilenet_v1_0.75_quant_2018_06_29.zip", "https://storage.googleapis.com/download.tensorflow.org/models/tflite/coco_ssd_mobilenet_v1_0.75_quant_2018_06_29.zip", ], ) tf_http_archive( name = "tflite_mobilenet_ssd_quant_protobuf", build_file = str(Label("//third_party:tflite_mobilenet.BUILD")), sha256 = "09280972c5777f1aa775ef67cb4ac5d5ed21970acd8535aeca62450ef14f0d79", strip_prefix = "ssd_mobilenet_v1_quantized_300x300_coco14_sync_2018_07_18", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/storage.googleapis.com/download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_quantized_300x300_coco14_sync_2018_07_18.tar.gz", "https://storage.googleapis.com/download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_quantized_300x300_coco14_sync_2018_07_18.tar.gz", ], ) tf_http_archive( name = "tflite_conv_actions_frozen", build_file = str(Label("//third_party:tflite_mobilenet.BUILD")), sha256 = "d947b38cba389b5e2d0bfc3ea6cc49c784e187b41a071387b3742d1acac7691e", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/storage.googleapis.com/download.tensorflow.org/models/tflite/conv_actions_tflite.zip", "https://storage.googleapis.com/download.tensorflow.org/models/tflite/conv_actions_tflite.zip", ], ) tf_http_archive( name = "tflite_ovic_testdata", build_file = "//third_party:tflite_ovic_testdata.BUILD", sha256 = "033c941b7829b05ca55a124a26a6a0581b1ececc154a2153cafcfdb54f80dca2", strip_prefix = "ovic", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/storage.googleapis.com/download.tensorflow.org/data/ovic_2019_04_30.zip", "https://storage.googleapis.com/download.tensorflow.org/data/ovic_2019_04_30.zip", ], ) tf_http_archive( name = "rules_python", sha256 = "aa96a691d3a8177f3215b14b0edc9641787abaaa30363a080165d06ab65e1161", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/bazelbuild/rules_python/releases/download/0.0.1/rules_python-0.0.1.tar.gz", "https://github.com/bazelbuild/rules_python/releases/download/0.0.1/rules_python-0.0.1.tar.gz", ], ) tf_http_archive( name = "build_bazel_rules_android", sha256 = "cd06d15dd8bb59926e4d65f9003bfc20f9da4b2519985c27e190cddc8b7a7806", strip_prefix = "rules_android-0.1.1", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/bazelbuild/rules_android/archive/v0.1.1.zip", "https://github.com/bazelbuild/rules_android/archive/v0.1.1.zip", ], ) # Apple and Swift rules. # https://github.com/bazelbuild/rules_apple/releases tf_http_archive( name = "build_bazel_rules_apple", sha256 = "ee9e6073aeb5a65c100cb9c44b0017c937706a4ae03176e14a7e78620a198079", strip_prefix = "rules_apple-5131f3d46794bf227d296c82f30c2499c9de3c5b", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/bazelbuild/rules_apple/archive/5131f3d46794bf227d296c82f30c2499c9de3c5b.tar.gz", "https://github.com/bazelbuild/rules_apple/archive/5131f3d46794bf227d296c82f30c2499c9de3c5b.tar.gz", ], ) # https://github.com/bazelbuild/rules_swift/releases tf_http_archive( name = "build_bazel_rules_swift", sha256 = "d0833bc6dad817a367936a5f902a0c11318160b5e80a20ece35fb85a5675c886", strip_prefix = "rules_swift-3eeeb53cebda55b349d64c9fc144e18c5f7c0eb8", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/bazelbuild/rules_swift/archive/3eeeb53cebda55b349d64c9fc144e18c5f7c0eb8.tar.gz", "https://github.com/bazelbuild/rules_swift/archive/3eeeb53cebda55b349d64c9fc144e18c5f7c0eb8.tar.gz", ], ) # https://github.com/bazelbuild/apple_support/releases tf_http_archive( name = "build_bazel_apple_support", sha256 = "ad8ae80e93612b8151019367a3d1604d7a51c14480dae1254e10252007e8260c", strip_prefix = "apple_support-501b4afb27745c4813a88ffa28acd901408014e4", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/bazelbuild/apple_support/archive/501b4afb27745c4813a88ffa28acd901408014e4.tar.gz", "https://github.com/bazelbuild/apple_support/archive/501b4afb27745c4813a88ffa28acd901408014e4.tar.gz", ], ) # https://github.com/bazelbuild/bazel-skylib/releases tf_http_archive( name = "bazel_skylib", sha256 = "1c531376ac7e5a180e0237938a2536de0c54d93f5c278634818e0efc952dd56c", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/bazelbuild/bazel-skylib/releases/download/1.0.3/bazel-skylib-1.0.3.tar.gz", "https://github.com/bazelbuild/bazel-skylib/releases/download/1.0.3/bazel-skylib-1.0.3.tar.gz", ], ) # https://github.com/apple/swift-protobuf/releases tf_http_archive( name = "com_github_apple_swift_swift_protobuf", strip_prefix = "swift-protobuf-1.6.0/", sha256 = "4ccf6e5ea558e8287bf6331f9f6e52b3c321fca5f1d181d03680f415c32a6bba", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/apple/swift-protobuf/archive/1.6.0.zip", "https://github.com/apple/swift-protobuf/archive/1.6.0.zip", ], ) # https://github.com/google/xctestrunner/releases http_file( name = "xctestrunner", executable = 1, urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/xctestrunner/releases/download/0.2.9/ios_test_runner.par", "https://github.com/google/xctestrunner/releases/download/0.2.9/ios_test_runner.par", ], ) tf_http_archive( name = "nlohmann_json_lib", build_file = "//third_party:nlohmann_json.BUILD", sha256 = "c377963a95989270c943d522bfefe7b889ef5ed0e1e15d535fd6f6f16ed70732", strip_prefix = "json-3.4.0", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/nlohmann/json/archive/v3.4.0.tar.gz", "https://github.com/nlohmann/json/archive/v3.4.0.tar.gz", ], ) tf_http_archive( name = "pybind11", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/pybind/pybind11/archive/v2.6.0.tar.gz", "https://github.com/pybind/pybind11/archive/v2.6.0.tar.gz", ], sha256 = "90b705137b69ee3b5fc655eaca66d0dc9862ea1759226f7ccd3098425ae69571", strip_prefix = "pybind11-2.6.0", build_file = "//third_party:pybind11.BUILD", system_build_file = "//third_party/systemlibs:pybind11.BUILD", ) tf_http_archive( name = "wrapt", build_file = "//third_party:wrapt.BUILD", sha256 = "8a6fb40e8f8b6a66b4ba81a4044c68e6a7b1782f21cfabc06fb765332b4c3e51", strip_prefix = "wrapt-1.11.1/src/wrapt", system_build_file = "//third_party/systemlibs:wrapt.BUILD", urls = [ "https://storage.googleapis.com/mirror.tensorflow.org/github.com/GrahamDumpleton/wrapt/archive/1.11.1.tar.gz", "https://github.com/GrahamDumpleton/wrapt/archive/1.11.1.tar.gz", ], ) tf_http_archive( name = "coremltools", sha256 = "0d594a714e8a5fd5bd740ad112ef59155c0482e25fdc8f8efa5758f90abdcf1e", strip_prefix = "coremltools-3.3", build_file = "//third_party:coremltools.BUILD", urls = [ "http://mirror.tensorflow.org/github.com/apple/coremltools/archive/3.3.zip", "https://github.com/apple/coremltools/archive/3.3.zip", ], ) def workspace(): # Check the bazel version before executing any repository rules, in case # those rules rely on the version we require here. check_bazel_version_at_least("1.0.0") # Initialize toolchains and platforms. _tf_toolchains() # Import third party repositories according to go/tfbr-thirdparty. _initialize_third_party() # Import all other repositories. This should happen before initializing # any external repositories, because those come with their own # dependencies. Those recursive dependencies will only be imported if they # don't already exist (at least if the external repository macros were # written according to common practice to query native.existing_rule()). _tf_repositories() tfrt_dependencies() # Alias so it can be loaded without assigning to a different symbol to prevent # shadowing previous loads and trigger a buildifier warning. tf_workspace2 = workspace
48.571685
203
0.689241
4a27656913c0f9fe243e4673f96884d10712e2c3
3,964
py
Python
data/process_data.py
dariusgm/disasterresponse
cd7b8f93ff769f0581cf7c541a1f85af7543d844
[ "MIT" ]
null
null
null
data/process_data.py
dariusgm/disasterresponse
cd7b8f93ff769f0581cf7c541a1f85af7543d844
[ "MIT" ]
null
null
null
data/process_data.py
dariusgm/disasterresponse
cd7b8f93ff769f0581cf7c541a1f85af7543d844
[ "MIT" ]
null
null
null
import sys import pandas as pd import os from sqlalchemy import create_engine import sys class ETLPipeline: def __init__(self, messages_path: str, categories_path: str, sql_path: str): self.messages_path = messages_path self.categories_path = categories_path self.sql_path = sql_path def __transform_categories(self, df: pd.DataFrame) -> pd.DataFrame: ''' Return ready to use graph to generate them once :param df: (pd.DataFrame) data with cateogries column :returns: (pd.DataFrame) ccategories column exploded to multiple columns ''' # create a dataframe of the 36 individual category columns categories = df['categories'].str.split(expand=True, pat=";") # select the first row of the categories dataframe row = categories.iloc[0] # use this row to extract a list of new column names for categories. # one way is to apply a lambda function that takes everything # up to the second to last character of each string with slicing category_colnames = row.apply(lambda x: x.split("-")[0]) # rename the columns of `categories` categories.columns = category_colnames # Convert category values to just numbers 0 or 1 for column in categories: # set each value to be the last character of the string # convert column from string to numeric categories[column] = categories[column].astype(str).apply(lambda x: int(x[-1])) return categories def __extract(self): ''' Return raw df for messages and categories :returns: (list(pd.DataFrame)) [messages_df, categories_df] ''' return [ pd.read_csv(self.messages_path), pd.read_csv(self.categories_path) ] def __transform(self, categories: pd.DataFrame, messages: pd.DataFrame) -> pd.DataFrame: ''' transform categories_df and messages_df. Apply required transformations on the data. :param categories: (pd.DataFrame) data with cateogries :param messages: (pd.DataFrame) data with messages :returns: merged df ''' df = pd.concat([categories, messages], axis=1) categories = self.__transform_categories(df) df = df.drop(columns='categories') return pd.concat([df, categories], axis=1) def __load(self, df: pd.DataFrame) -> None: ''' Dump the data without duplocates to a sqlite database :param df: (pd.DataFrame) entire dataframe :returns: None ''' # check number of duplicates print("length with duplicates: {}".format(len(df))) # drop duplicates df = df.drop_duplicates() # check number of duplicates print("length without duplicates: {}".format(len(df))) engine = create_engine(f'sqlite:///{self.sql_path}') df.to_sql('etl', engine, index=False) def run(self): ''' trigger entire ETL process :returns: None ''' messages_df, categories_df = self.__extract() df = self.__transform(messages_df, categories_df) self.__load(df) def main(): if len(sys.argv) == 4: messages_filepath, categories_filepath, database_filepath = sys.argv[1:] etl_pipeline = ETLPipeline(messages_filepath, categories_filepath, database_filepath) etl_pipeline.run() else: print('Please provide the filepaths of the messages and categories '\ 'datasets as the first and second argument respectively, as '\ 'well as the filepath of the database to save the cleaned data '\ 'to as the third argument. \n\nExample: python process_data.py '\ 'disaster_messages.csv disaster_categories.csv '\ 'DisasterResponse.db') if __name__ == '__main__': main()
35.711712
93
0.631181
4a276779e36901e75eeac835583a5f142b2b1684
529
py
Python
venv/Exercises/ex062.py
jonassignoreti/Python-CursoemVideo
24f5932bed2fe98308321be7dd9326e65a942d4b
[ "MIT" ]
null
null
null
venv/Exercises/ex062.py
jonassignoreti/Python-CursoemVideo
24f5932bed2fe98308321be7dd9326e65a942d4b
[ "MIT" ]
null
null
null
venv/Exercises/ex062.py
jonassignoreti/Python-CursoemVideo
24f5932bed2fe98308321be7dd9326e65a942d4b
[ "MIT" ]
null
null
null
'''Melhore o DESAFIO 61, perguntando para o usuário se ele quer mostrar mais alguns termos. O programa encerra quando ele disser que quer mostrar 0 termos''' print('{:=^100}'.format(' Os 10 PRIMEIROS TERMOS DE UMA PA ')) p = int(input('Primeiro Termo: ')) r = int(input('Razão: ')) cont = 1 meta = 10 while cont != (meta + 1): termo = p + (cont - 1) * r print('{}'.format(termo), end=' > ') cont += 1 if cont == (meta + 1): meta = int(input('\nQuantos termos você deseja mais ver: ')) + meta print('END')
35.266667
91
0.618147
4a2767ee85dc1db1e563b89771c652a5a38621c1
4,785
py
Python
test/functional/wallet_importprunedfunds.py
btc20/bitcoin2.0
e7a54b00ebd0e8d20f4d5315cc9a21c77ded25cd
[ "MIT" ]
null
null
null
test/functional/wallet_importprunedfunds.py
btc20/bitcoin2.0
e7a54b00ebd0e8d20f4d5315cc9a21c77ded25cd
[ "MIT" ]
null
null
null
test/functional/wallet_importprunedfunds.py
btc20/bitcoin2.0
e7a54b00ebd0e8d20f4d5315cc9a21c77ded25cd
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2014-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the importprunedfunds and removeprunedfunds RPCs.""" from decimal import Decimal from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, assert_raises_rpc_error, ) from test_framework.bitcoin2config import * class ImportPrunedFundsTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 2 def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): self.log.info("Mining blocks...") self.nodes[0].generate(COINBASE_MATURITY+1) self.sync_all() # address address1 = self.nodes[0].getnewaddress() # pubkey address2 = self.nodes[0].getnewaddress() # privkey address3 = self.nodes[0].getnewaddress() address3_privkey = self.nodes[0].dumpprivkey(address3) # Using privkey # Check only one address address_info = self.nodes[0].getaddressinfo(address1) assert_equal(address_info['ismine'], True) self.sync_all() # Node 1 sync test assert_equal(self.nodes[1].getblockcount(), 1+COINBASE_MATURITY) # Address Test - before import address_info = self.nodes[1].getaddressinfo(address1) assert_equal(address_info['iswatchonly'], False) assert_equal(address_info['ismine'], False) address_info = self.nodes[1].getaddressinfo(address2) assert_equal(address_info['iswatchonly'], False) assert_equal(address_info['ismine'], False) address_info = self.nodes[1].getaddressinfo(address3) assert_equal(address_info['iswatchonly'], False) assert_equal(address_info['ismine'], False) # Send funds to self txnid1 = self.nodes[0].sendtoaddress(address1, 0.1) self.nodes[0].generate(1) rawtxn1 = self.nodes[0].gettransaction(txnid1)['hex'] proof1 = self.nodes[0].gettxoutproof([txnid1]) txnid2 = self.nodes[0].sendtoaddress(address2, 0.05) self.nodes[0].generate(1) rawtxn2 = self.nodes[0].gettransaction(txnid2)['hex'] proof2 = self.nodes[0].gettxoutproof([txnid2]) txnid3 = self.nodes[0].sendtoaddress(address3, 0.025) self.nodes[0].generate(1) rawtxn3 = self.nodes[0].gettransaction(txnid3)['hex'] proof3 = self.nodes[0].gettxoutproof([txnid3]) self.sync_all() # Import with no affiliated address assert_raises_rpc_error(-5, "No addresses", self.nodes[1].importprunedfunds, rawtxn1, proof1) balance1 = self.nodes[1].getbalance() assert_equal(balance1, Decimal(0)) # Import with affiliated address with no rescan self.nodes[1].importaddress(address=address2, rescan=False) self.nodes[1].importprunedfunds(rawtransaction=rawtxn2, txoutproof=proof2) assert [tx for tx in self.nodes[1].listtransactions(include_watchonly=True) if tx['txid'] == txnid2] # Import with private key with no rescan self.nodes[1].importprivkey(privkey=address3_privkey, rescan=False) self.nodes[1].importprunedfunds(rawtxn3, proof3) assert [tx for tx in self.nodes[1].listtransactions() if tx['txid'] == txnid3] balance3 = self.nodes[1].getbalance() assert_equal(balance3, Decimal('0.025')) # Addresses Test - after import address_info = self.nodes[1].getaddressinfo(address1) assert_equal(address_info['iswatchonly'], False) assert_equal(address_info['ismine'], False) address_info = self.nodes[1].getaddressinfo(address2) assert_equal(address_info['iswatchonly'], True) assert_equal(address_info['ismine'], False) address_info = self.nodes[1].getaddressinfo(address3) assert_equal(address_info['iswatchonly'], False) assert_equal(address_info['ismine'], True) # Remove transactions assert_raises_rpc_error(-8, "Transaction does not exist in wallet.", self.nodes[1].removeprunedfunds, txnid1) assert not [tx for tx in self.nodes[1].listtransactions(include_watchonly=True) if tx['txid'] == txnid1] self.nodes[1].removeprunedfunds(txnid2) assert not [tx for tx in self.nodes[1].listtransactions(include_watchonly=True) if tx['txid'] == txnid2] self.nodes[1].removeprunedfunds(txnid3) assert not [tx for tx in self.nodes[1].listtransactions(include_watchonly=True) if tx['txid'] == txnid3] if __name__ == '__main__': ImportPrunedFundsTest().main()
40.550847
117
0.681714
4a2769d33c0836f6b6cbb7ac9cb3d013cb356e56
11,431
py
Python
tests/mdts/tests/functional_tests/test_nat_router.py
yantarou/midonet
11fea2549416588a9170f6ce872790ad907d2a4b
[ "Apache-2.0" ]
2
2018-08-29T01:36:17.000Z
2018-11-22T16:57:25.000Z
tests/mdts/tests/functional_tests/test_nat_router.py
yantarou/midonet
11fea2549416588a9170f6ce872790ad907d2a4b
[ "Apache-2.0" ]
8
2018-05-24T13:36:03.000Z
2021-02-19T16:01:43.000Z
tests/mdts/tests/functional_tests/test_nat_router.py
yantarou/midonet
11fea2549416588a9170f6ce872790ad907d2a4b
[ "Apache-2.0" ]
null
null
null
# Copyright 2014 Midokura SARL # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nose.plugins.attrib import attr from mdts.lib.binding_manager import BindingManager from mdts.lib.physical_topology_manager import PhysicalTopologyManager from mdts.lib.virtual_topology_manager import VirtualTopologyManager from mdts.tests.utils.asserts import async_assert_that from mdts.tests.utils.asserts import receives from mdts.tests.utils.asserts import receives_icmp_unreachable_for_udp from mdts.tests.utils.asserts import should_NOT_receive from mdts.tests.utils.asserts import within_sec from mdts.tests.utils.utils import bindings from mdts.tests.utils.utils import wait_on_futures import logging import time LOG = logging.getLogger(__name__) PTM = PhysicalTopologyManager('../topologies/mmm_physical_test_nat_router.yaml') VTM = VirtualTopologyManager('../topologies/mmm_virtual_test_nat_router.yaml') BM = BindingManager(PTM, VTM) binding_multihost = { 'description': 'spanning across multiple MMs', 'bindings': [ {'binding': {'device_name': 'bridge-000-001', 'port_id': 2, 'host_id': 1, 'interface_id': 1}}, {'binding': {'device_name': 'bridge-000-002', 'port_id': 2, 'host_id': 2, 'interface_id': 2}}, ] } def set_filters(router_name, inbound_filter_name, outbound_filter_name): """Sets in-/out-bound filters to a router.""" router = VTM.get_router(router_name) inbound_filter = None if inbound_filter_name: inbound_filter = VTM.get_chain(inbound_filter_name) outbound_filter = None if outbound_filter_name: outbound_filter = VTM.get_chain(outbound_filter_name) router.set_inbound_filter(inbound_filter) router.set_outbound_filter(outbound_filter) # Sleep here to make sure that the settings have been propagated. time.sleep(5) def unset_filters(router_name): """Unsets in-/out-bound filters from a router.""" set_filters(router_name, None, None) def feed_receiver_mac(receiver): """Feeds the receiver's mac address to the MidoNet router.""" try: router_port = VTM.get_router('router-000-001').get_port(2) router_ip = router_port.get_mn_resource().get_port_address() receiver_ip = receiver.get_ip() f1 = async_assert_that(receiver, receives('dst host %s' % receiver_ip, within_sec(10))) receiver.send_arp_request(router_ip) wait_on_futures([f1]) except: LOG.warn('Oops, sending ARP from the receiver VM failed.') @attr(version="v1.2.0") @bindings(binding_multihost) def test_dnat(): """ Title: Tests DNAT on ping messages. Scenario 1: When: a VM sends ICMP echo request with ping command to an unassigned IP address. Then: the router performs DNAT on the message according to the rule chain set to the router, And: the receiver VM should receive the ICMP echo packet, And: the ping command succeeds """ sender = BM.get_iface_for_port('bridge-000-001', 2) receiver = BM.get_iface_for_port('bridge-000-002', 2) # Reset in-/out-bound filters. unset_filters('router-000-001') feed_receiver_mac(receiver) f2 = async_assert_that(receiver, should_NOT_receive('dst host 172.16.2.1 and icmp', within_sec(5))) f1 = sender.ping_ipv4_addr('100.100.100.100') wait_on_futures([f1, f2]) # Set DNAT rule chains to the router set_filters('router-000-001', 'pre_filter_001', 'post_filter_001') f2 = async_assert_that(receiver, receives('dst host 172.16.2.1 and icmp', within_sec(5))) f3 = async_assert_that(sender, receives('src host 100.100.100.100 and icmp', within_sec(5))) f1 = sender.ping_ipv4_addr('100.100.100.100') wait_on_futures([f1, f2, f3]) @attr(version="v1.2.0") @bindings(binding_multihost) def test_dnat_for_udp(): """ Title: Tests DNAT on UDP packets. Scenario: When: a VM sends UDP packets to an unassigned IP address. Then: the router performs DNAT on the message according to the rule chain set to the router, And: the UDP packets reach the receiver VM. And: because the UDP port is not open, the receiver VM returns ICMP error responses. """ sender = BM.get_iface_for_port('bridge-000-001', 2) receiver = BM.get_iface_for_port('bridge-000-002', 2) # Reset in-/out-bound filters. unset_filters('router-000-001') feed_receiver_mac(receiver) # Target hardware is a router's incoming port. router_port = VTM.get_router('router-000-001').get_port(1) router_mac = router_port.get_mn_resource().get_port_mac() f2 = async_assert_that(receiver, should_NOT_receive('dst host 172.16.2.1 and udp', within_sec(5))) f1 = sender.send_udp(router_mac, '100.100.100.100', 29, src_port=9, dst_port=9) wait_on_futures([f1, f2]) # Set DNAT rule chains to the router set_filters('router-000-001', 'pre_filter_001', 'post_filter_001') f1 = async_assert_that(receiver, receives('dst host 172.16.2.1 and udp', within_sec(5))) # Sender should receive ICMP unreachable as the receiver port is not open. f2 = async_assert_that(sender, receives_icmp_unreachable_for_udp( '172.16.1.1', '100.100.100.100', udp_src_port=9, udp_dst_port=9, timeout=within_sec(10))) f3 = sender.send_udp(router_mac, '100.100.100.100', 29, src_port=9, dst_port=9) wait_on_futures([f1, f2, f3]) @attr(version="v1.2.0") @bindings(binding_multihost) def test_snat(): """ Title: Tests SNAT on ping messages. Scenario: When: a VM sends ICMP echo request with ping command to a different subnet, Then: the router performs SNAT on the message according to the rule chain set to the router, And: the receiver VM should receive the ICMP echo packet, with src address NATted, And: the ping command succeeds. """ sender = BM.get_iface_for_port('bridge-000-001', 2) receiver = BM.get_iface_for_port('bridge-000-002', 2) # Reset in-/out-bound filters. unset_filters('router-000-001') feed_receiver_mac(receiver) # No SNAT configured. Should not receive SNATed messages. f2 = async_assert_that(receiver, should_NOT_receive('src host 172.16.1.100 and icmp', within_sec(5))) f1 = sender.ping4(receiver) wait_on_futures([f1, f2]) # Set SNAT rule chains to the router set_filters('router-000-001', 'pre_filter_002', 'post_filter_002') # The receiver should receive SNATed messages. f2 = async_assert_that(receiver, receives('src host 172.16.1.100 and icmp', within_sec(5))) f3 = async_assert_that(sender, receives('dst host 172.16.1.1 and icmp', within_sec(5))) f1 = sender.ping4(receiver) wait_on_futures([f1, f2, f3]) @attr(version="v1.2.0") @bindings(binding_multihost) def test_snat_for_udp(): """ Title: Tests SNAT on UDP packets. Scenario: When: a VM sends UDP packets to an unassigned IP address. Then: the router performs SNAT on the message according to the rule chain set to the router, And: the UDP packets reach the receiver VM, with src address NATted, And: because the UDP port is not open, the receiver VM returns ICMP error responses. """ sender = BM.get_iface_for_port('bridge-000-001', 2) receiver = BM.get_iface_for_port('bridge-000-002', 2) # Reset in-/out-bound filters. unset_filters('router-000-001') feed_receiver_mac(receiver) # Target hardware is a router's incoming port. router_port = VTM.get_router('router-000-001').get_port(1) router_mac = router_port.get_mn_resource().get_port_mac() # No SNAT configured. Should not receive SNATed messages. f2 = async_assert_that(receiver, should_NOT_receive('src host 172.16.1.100 and udp', within_sec(5))) f1 = sender.send_udp(router_mac, '172.16.2.1', 29, src_port=9, dst_port=65000) wait_on_futures([f1, f2]) # Set SNAT rule chains to the router set_filters('router-000-001', 'pre_filter_002', 'post_filter_002') # The receiver should receive SNATed messages. f2 = async_assert_that(receiver, receives('src host 172.16.1.100 and udp', within_sec(5))) # Sender should receive ICMP unreachable as the receiver port is not open. f3 = async_assert_that(sender, receives_icmp_unreachable_for_udp( '172.16.1.1', '172.16.2.1', udp_src_port=9, udp_dst_port=65000, timeout=within_sec(5))) f1 = sender.send_udp(router_mac, '172.16.2.1', 29, src_port=9, dst_port=65000) wait_on_futures([f1, f2, f3]) @attr(version="v1.2.0") @bindings(binding_multihost) def test_floating_ip(): """ Title: Tests a floating IP. Scenario 1: When: a VM sends an ICMP echo request to a floating IP address (100.100.100.100). Then: the router performs DNAT on the message according to the rule chain set to the router, And: the receiver VM should receive the ICMP echo packet, And: the receiver sends back an ICMP reply with its original IP address as a source address. And: the router applies SNAT to the reply packet. And: the sender receives the reply with src address NATed to the floating IP address. """ sender = BM.get_iface_for_port('bridge-000-001', 2) receiver = BM.get_iface_for_port('bridge-000-002', 2) # Reset in-/out-bound filters. unset_filters('router-000-001') feed_receiver_mac(receiver) f1 = async_assert_that(receiver, should_NOT_receive('dst host 172.16.2.1 and icmp', within_sec(10))) sender.ping_ipv4_addr('100.100.100.100') wait_on_futures([f1]) # Configure floating IP address with the router set_filters('router-000-001', 'pre_filter_floating_ip', 'post_filter_floating_ip') f1 = async_assert_that(receiver, receives('dst host 172.16.2.1 and icmp', within_sec(10))) f2 = async_assert_that(sender, receives('src host 100.100.100.100 and icmp', within_sec(10))) sender.ping_ipv4_addr('100.100.100.100') wait_on_futures([f1, f2])
38.35906
89
0.652786
4a276b388a829dc6aaa6cd8623f0bc929eed7ea1
85
py
Python
assignment1/admin.py
patilpriyankaco/assignment-django-1
577ab25c3d698132b082e107dffd25d0a1a50305
[ "MIT" ]
null
null
null
assignment1/admin.py
patilpriyankaco/assignment-django-1
577ab25c3d698132b082e107dffd25d0a1a50305
[ "MIT" ]
null
null
null
assignment1/admin.py
patilpriyankaco/assignment-django-1
577ab25c3d698132b082e107dffd25d0a1a50305
[ "MIT" ]
null
null
null
from django.contrib import admin from .models import Quote admin.site.register(Quote)
28.333333
32
0.835294
4a276c9f3a42863221612d9bd649385f40a3e39e
3,090
py
Python
managefunds/settings.py
chiraag-kakar/managefunds
bf768ef90bde06d1b7877b14765d48e858d971c8
[ "MIT" ]
1
2022-01-24T13:49:03.000Z
2022-01-24T13:49:03.000Z
managefunds/settings.py
chiraag-kakar/managefunds
bf768ef90bde06d1b7877b14765d48e858d971c8
[ "MIT" ]
null
null
null
managefunds/settings.py
chiraag-kakar/managefunds
bf768ef90bde06d1b7877b14765d48e858d971c8
[ "MIT" ]
null
null
null
""" Django settings for managefunds project. Generated by 'django-admin startproject' using Django 3.1.7. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '4lilh&gbj8twfa-r0#r1^yyx^15c%26ukcujso=c-@%l8u4k%*' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'app' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'managefunds.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'managefunds.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/'
25.327869
91
0.695793
4a276db1d093593755987b35ccb0eb1e337a0052
26,050
py
Python
parsl/providers/aws/aws.py
gerrick/parsl
820c43d2e893a016139692a23cd93f99cde5cc8d
[ "Apache-2.0" ]
1
2020-11-21T17:32:09.000Z
2020-11-21T17:32:09.000Z
parsl/providers/aws/aws.py
raffmont/parsl
2f843b903a9008d230d42734db48317a40a2ad8e
[ "Apache-2.0" ]
null
null
null
parsl/providers/aws/aws.py
raffmont/parsl
2f843b903a9008d230d42734db48317a40a2ad8e
[ "Apache-2.0" ]
1
2022-03-09T10:51:12.000Z
2022-03-09T10:51:12.000Z
import json import logging import os import time from string import Template from parsl.dataflow.error import ConfigurationError from parsl.providers.aws.template import template_string from parsl.providers.provider_base import ExecutionProvider, JobState, JobStatus from parsl.providers.error import OptionalModuleMissing from parsl.utils import RepresentationMixin from parsl.launchers import SingleNodeLauncher logger = logging.getLogger(__name__) try: import boto3 from botocore.exceptions import ClientError except ImportError: _boto_enabled = False else: _boto_enabled = True translate_table = { 'pending': JobState.PENDING, 'running': JobState.RUNNING, 'terminated': JobState.COMPLETED, 'shutting-down': JobState.COMPLETED, # (configuring), 'stopping': JobState.COMPLETED, # We shouldn't really see this state 'stopped': JobState.COMPLETED, # We shouldn't really see this state } class AWSProvider(ExecutionProvider, RepresentationMixin): """A provider for using Amazon Elastic Compute Cloud (EC2) resources. One of 3 methods are required to authenticate: keyfile, profile or environment variables. If neither keyfile or profile are set, the following environment variables must be set: ``AWS_ACCESS_KEY_ID`` (the access key for your AWS account), ``AWS_SECRET_ACCESS_KEY`` (the secret key for your AWS account), and (optionaly) the ``AWS_SESSION_TOKEN`` (the session key for your AWS account). Parameters ---------- image_id : str Identification of the Amazon Machine Image (AMI). worker_init : str String to append to the Userdata script executed in the cloudinit phase of instance initialization. walltime : str Walltime requested per block in HH:MM:SS. key_file : str Path to json file that contains 'AWSAccessKeyId' and 'AWSSecretKey'. nodes_per_block : int This is always 1 for ec2. Nodes to provision per block. profile : str Profile to be used from the standard aws config file ~/.aws/config. nodes_per_block : int Nodes to provision per block. Default is 1. init_blocks : int Number of blocks to provision at the start of the run. Default is 1. min_blocks : int Minimum number of blocks to maintain. Default is 0. max_blocks : int Maximum number of blocks to maintain. Default is 10. instance_type : str EC2 instance type. Instance types comprise varying combinations of CPU, memory, . storage, and networking capacity For more information on possible instance types,. see `here <https://aws.amazon.com/ec2/instance-types/>`_ Default is 't2.small'. region : str Amazon Web Service (AWS) region to launch machines. Default is 'us-east-2'. key_name : str Name of the AWS private key (.pem file) that is usually generated on the console to allow SSH access to the EC2 instances. This is mostly used for debugging. spot_max_bid : float Maximum bid price (if requesting spot market machines). iam_instance_profile_arn : str Launch instance with a specific role. state_file : str Path to the state file from a previous run to re-use. walltime : str Walltime requested per block in HH:MM:SS. This option is not currently honored by this provider. launcher : Launcher Launcher for this provider. Possible launchers include :class:`~parsl.launchers.SingleNodeLauncher` (the default), :class:`~parsl.launchers.SrunLauncher`, or :class:`~parsl.launchers.AprunLauncher` linger : Bool When set to True, the workers will not ``halt``. The user is responsible for shutting down the node. """ def __init__(self, image_id, key_name, init_blocks=1, min_blocks=0, max_blocks=10, nodes_per_block=1, parallelism=1, worker_init='', instance_type='t2.small', region='us-east-2', spot_max_bid=0, key_file=None, profile=None, iam_instance_profile_arn='', state_file=None, walltime="01:00:00", linger=False, launcher=SingleNodeLauncher()): if not _boto_enabled: raise OptionalModuleMissing(['boto3'], "AWS Provider requires the boto3 module.") self.image_id = image_id self._label = 'ec2' self.init_blocks = init_blocks self.min_blocks = min_blocks self.max_blocks = max_blocks self.nodes_per_block = nodes_per_block self.max_nodes = max_blocks * nodes_per_block self.parallelism = parallelism self.worker_init = worker_init self.instance_type = instance_type self.region = region self.spot_max_bid = spot_max_bid self.key_name = key_name self.key_file = key_file self.profile = profile self.iam_instance_profile_arn = iam_instance_profile_arn self.walltime = walltime self.launcher = launcher self.linger = linger self.resources = {} self.state_file = state_file if state_file is not None else '.ec2_{}.json'.format(self.label) env_specified = os.getenv("AWS_ACCESS_KEY_ID") is not None and os.getenv("AWS_SECRET_ACCESS_KEY") is not None if profile is None and key_file is None and not env_specified: raise ConfigurationError("Must specify either profile', 'key_file', or " "'AWS_ACCESS_KEY_ID' and 'AWS_SECRET_ACCESS_KEY' environment variables.") try: self.initialize_boto_client() except Exception as e: logger.error("{} failed to initialize.".format(self)) raise e state_file_exists = False try: self.read_state_file(self.state_file) state_file_exists = True except Exception: logger.info("No state file found. Cannot load previous options. Creating new infrastructure.") if not state_file_exists: try: self.create_vpc().id except Exception as e: logger.info("Failed to create ec2 infrastructure: {0}".format(e)) raise else: self.write_state_file() def initialize_boto_client(self): """Initialize the boto client.""" self.session = self.create_session() self.client = self.session.client('ec2') self.ec2 = self.session.resource('ec2') self.instances = [] self.instance_states = {} self.vpc_id = 0 self.sg_id = 0 self.sn_ids = [] def read_state_file(self, state_file): """Read the state file, if it exists. If this script has been run previously, resource IDs will have been written to a state file. On starting a run, a state file will be looked for before creating new infrastructure. Information on VPCs, security groups, and subnets are saved, as well as running instances and their states. AWS has a maximum number of VPCs per region per account, so we do not want to clutter users' AWS accounts with security groups and VPCs that will be used only once. """ try: fh = open(state_file, 'r') state = json.load(fh) self.vpc_id = state['vpcID'] self.sg_id = state['sgID'] self.sn_ids = state['snIDs'] self.instances = state['instances'] except Exception as e: logger.debug("Caught exception while reading state file: {0}".format(e)) raise e logger.debug("Done reading state from the local state file.") def write_state_file(self): """Save information that must persist to a file. We do not want to create a new VPC and new identical security groups, so we save information about them in a file between runs. """ fh = open('awsproviderstate.json', 'w') state = {} state['vpcID'] = self.vpc_id state['sgID'] = self.sg_id state['snIDs'] = self.sn_ids state['instances'] = self.instances state["instanceState"] = self.instance_states fh.write(json.dumps(state, indent=4)) def create_session(self): """Create a session. First we look in self.key_file for a path to a json file with the credentials. The key file should have 'AWSAccessKeyId' and 'AWSSecretKey'. Next we look at self.profile for a profile name and try to use the Session call to automatically pick up the keys for the profile from the user default keys file ~/.aws/config. Finally, boto3 will look for the keys in environment variables: AWS_ACCESS_KEY_ID: The access key for your AWS account. AWS_SECRET_ACCESS_KEY: The secret key for your AWS account. AWS_SESSION_TOKEN: The session key for your AWS account. This is only needed when you are using temporary credentials. The AWS_SECURITY_TOKEN environment variable can also be used, but is only supported for backwards compatibility purposes. AWS_SESSION_TOKEN is supported by multiple AWS SDKs besides python. """ session = None if self.key_file is not None: credfile = os.path.expandvars(os.path.expanduser(self.key_file)) try: with open(credfile, 'r') as f: creds = json.load(f) except json.JSONDecodeError as e: logger.error( "EC2Provider '{}': json decode error in credential file {}".format(self.label, credfile) ) raise e except Exception as e: logger.debug( "EC2Provider '{0}' caught exception while reading credential file: {1}".format( self.label, credfile ) ) raise e logger.debug("EC2Provider '{}': Using credential file to create session".format(self.label)) session = boto3.session.Session(region_name=self.region, **creds) elif self.profile is not None: logger.debug("EC2Provider '{}': Using profile name to create session".format(self.label)) session = boto3.session.Session( profile_name=self.profile, region_name=self.region ) else: logger.debug("EC2Provider '{}': Using environment variables to create session".format(self.label)) session = boto3.session.Session(region_name=self.region) return session def create_vpc(self): """Create and configure VPC We create a VPC with CIDR 10.0.0.0/16, which provides up to 64,000 instances. We attach a subnet for each availability zone within the region specified in the config. We give each subnet an ip range like 10.0.X.0/20, which is large enough for approx. 4000 instances. Security groups are configured in function security_group. """ try: # We use a large VPC so that the cluster can get large vpc = self.ec2.create_vpc( CidrBlock='10.0.0.0/16', AmazonProvidedIpv6CidrBlock=False, ) except Exception as e: # This failure will cause a full abort logger.error("{}\n".format(e)) raise e # Attach internet gateway so that our cluster can # talk to the outside internet internet_gateway = self.ec2.create_internet_gateway() internet_gateway.attach_to_vpc(VpcId=vpc.vpc_id) # Returns None self.internet_gateway = internet_gateway.id # Create and configure route table to allow proper traffic route_table = self.config_route_table(vpc, internet_gateway) self.route_table = route_table.id # Get all avaliability zones availability_zones = self.client.describe_availability_zones() # go through AZs and set up a subnet per for num, zone in enumerate(availability_zones['AvailabilityZones']): if zone['State'] == "available": # Create a large subnet (4000 max nodes) subnet = vpc.create_subnet( CidrBlock='10.0.{}.0/20'.format(16 * num), AvailabilityZone=zone['ZoneName'] ) # Make subnet accessible subnet.meta.client.modify_subnet_attribute( SubnetId=subnet.id, MapPublicIpOnLaunch={"Value": True} ) route_table.associate_with_subnet(SubnetId=subnet.id) self.sn_ids.append(subnet.id) else: logger.info("{} unavailable".format(zone['ZoneName'])) # Security groups self.security_group(vpc) self.vpc_id = vpc.id return vpc def security_group(self, vpc): """Create and configure a new security group. Allows all ICMP in, all TCP and UDP in within VPC. This security group is very open. It allows all incoming ping requests on all ports. It also allows all outgoing traffic on all ports. This can be limited by changing the allowed port ranges. Parameters ---------- vpc : VPC instance VPC in which to set up security group. """ sg = vpc.create_security_group( GroupName="private-subnet", Description="security group for remote executors" ) ip_ranges = [{'CidrIp': '10.0.0.0/16'}] # Allows all ICMP in, all TCP and UDP in within VPC in_permissions = [ { 'IpProtocol': 'TCP', 'FromPort': 0, 'ToPort': 65535, 'IpRanges': ip_ranges, }, { 'IpProtocol': 'UDP', 'FromPort': 0, 'ToPort': 65535, 'IpRanges': ip_ranges, }, { 'IpProtocol': 'ICMP', 'FromPort': -1, 'ToPort': -1, 'IpRanges': [{ 'CidrIp': '0.0.0.0/0' }], }, { 'IpProtocol': 'TCP', 'FromPort': 22, 'ToPort': 22, 'IpRanges': [{ 'CidrIp': '0.0.0.0/0' }], } ] # Allows all TCP out, all TCP and UDP out within VPC out_permissions = [ { 'IpProtocol': 'TCP', 'FromPort': 0, 'ToPort': 65535, 'IpRanges': [{ 'CidrIp': '0.0.0.0/0' }], }, { 'IpProtocol': 'TCP', 'FromPort': 0, 'ToPort': 65535, 'IpRanges': ip_ranges, }, { 'IpProtocol': 'UDP', 'FromPort': 0, 'ToPort': 65535, 'IpRanges': ip_ranges, }, ] sg.authorize_ingress(IpPermissions=in_permissions) sg.authorize_egress(IpPermissions=out_permissions) self.sg_id = sg.id return sg def config_route_table(self, vpc, internet_gateway): """Configure route table for Virtual Private Cloud (VPC). Parameters ---------- vpc : dict Representation of the VPC (created by create_vpc()). internet_gateway : dict Representation of the internet gateway (created by create_vpc()). """ route_table = vpc.create_route_table() route_table.create_route( DestinationCidrBlock='0.0.0.0/0', GatewayId=internet_gateway.internet_gateway_id ) return route_table def xstr(self, s): return '' if s is None else s def spin_up_instance(self, command, job_name): """Start an instance in the VPC in the first available subnet. N instances will be started if nodes_per_block > 1. Not supported. We only do 1 node per block. Parameters ---------- command : str Command string to execute on the node. job_name : str Name associated with the instances. """ command = Template(template_string).substitute(jobname=job_name, user_script=command, linger=str(self.linger).lower(), worker_init=self.worker_init) instance_type = self.instance_type subnet = self.sn_ids[0] ami_id = self.image_id total_instances = len(self.instances) if float(self.spot_max_bid) > 0: spot_options = { 'MarketType': 'spot', 'SpotOptions': { 'MaxPrice': str(self.spot_max_bid), 'SpotInstanceType': 'one-time', 'InstanceInterruptionBehavior': 'terminate' } } else: spot_options = {} if total_instances > self.max_nodes: logger.warning("Exceeded instance limit ({}). Cannot continue\n".format(self.max_nodes)) return [None] try: tag_spec = [{"ResourceType": "instance", "Tags": [{'Key': 'Name', 'Value': job_name}]}] instance = self.ec2.create_instances( MinCount=1, MaxCount=1, InstanceType=instance_type, ImageId=ami_id, KeyName=self.key_name, SubnetId=subnet, SecurityGroupIds=[self.sg_id], TagSpecifications=tag_spec, InstanceMarketOptions=spot_options, InstanceInitiatedShutdownBehavior='terminate', IamInstanceProfile={'Arn': self.iam_instance_profile_arn}, UserData=command ) except ClientError as e: print(e) logger.error(e.response) return [None] except Exception as e: logger.error("Request for EC2 resources failed : {0}".format(e)) return [None] self.instances.append(instance[0].id) logger.info( "Started up 1 instance {}. Instance type: {}".format(instance[0].id, instance_type) ) return instance def shut_down_instance(self, instances=None): """Shut down a list of instances, if provided. If no instance is provided, the last instance started up will be shut down. """ if instances and len(self.instances) > 0: print(instances) try: print([i.id for i in instances]) except Exception as e: print(e) term = self.client.terminate_instances(InstanceIds=instances) logger.info("Shut down {} instances (ids:{}".format(len(instances), str(instances))) elif len(self.instances) > 0: instance = self.instances.pop() term = self.client.terminate_instances(InstanceIds=[instance]) logger.info("Shut down 1 instance (id:{})".format(instance)) else: logger.warning("No Instances to shut down.\n") return -1 self.get_instance_state() return term def get_instance_state(self, instances=None): """Get states of all instances on EC2 which were started by this file.""" if instances: desc = self.client.describe_instances(InstanceIds=instances) else: desc = self.client.describe_instances(InstanceIds=self.instances) # pprint.pprint(desc['Reservations'],indent=4) for i in range(len(desc['Reservations'])): instance = desc['Reservations'][i]['Instances'][0] self.instance_states[instance['InstanceId']] = instance['State']['Name'] return self.instance_states def status(self, job_ids): """Get the status of a list of jobs identified by their ids. Parameters ---------- job_ids : list of str Identifiers for the jobs. Returns ------- list of int The status codes of the requsted jobs. """ all_states = [] status = self.client.describe_instances(InstanceIds=list(job_ids)) for r in status['Reservations']: for i in r['Instances']: instance_id = i['InstanceId'] instance_state = translate_table.get(i['State']['Name'], JobState.UNKNOWN) instance_status = JobStatus(instance_state) self.resources[instance_id]['status'] = instance_status all_states.extend([instance_status]) return all_states def submit(self, command='sleep 1', tasks_per_node=1, job_name="parsl.aws"): """Submit the command onto a freshly instantiated AWS EC2 instance. Submit returns an ID that corresponds to the task that was just submitted. Parameters ---------- command : str Command to be invoked on the remote side. tasks_per_node : int (default=1) Number of command invocations to be launched per node job_name : str Prefix for the job name. Returns ------- None or str If at capacity, None will be returned. Otherwise, the job identifier will be returned. """ job_name = "parsl.aws.{0}".format(time.time()) wrapped_cmd = self.launcher(command, tasks_per_node, self.nodes_per_block) [instance, *rest] = self.spin_up_instance(command=wrapped_cmd, job_name=job_name) if not instance: logger.error("Failed to submit request to EC2") return None logger.debug("Started instance_id: {0}".format(instance.instance_id)) state = translate_table.get(instance.state['Name'], JobState.PENDING) self.resources[instance.instance_id] = { "job_id": instance.instance_id, "instance": instance, "status": JobStatus(state) } return instance.instance_id def cancel(self, job_ids): """Cancel the jobs specified by a list of job ids. Parameters ---------- job_ids : list of str List of of job identifiers Returns ------- list of bool Each entry in the list will contain False if the operation fails. Otherwise, the entry will be True. """ if self.linger is True: logger.debug("Ignoring cancel requests due to linger mode") return [False for x in job_ids] try: self.client.terminate_instances(InstanceIds=list(job_ids)) except Exception as e: logger.error("Caught error while attempting to remove instances: {0}".format(job_ids)) raise e else: logger.debug("Removed the instances: {0}".format(job_ids)) for job_id in job_ids: self.resources[job_id]["status"] = JobStatus(JobState.COMPLETED) for job_id in job_ids: self.instances.remove(job_id) return [True for x in job_ids] def show_summary(self): """Print human readable summary of current AWS state to log and to console.""" self.get_instance_state() status_string = "EC2 Summary:\n\tVPC IDs: {}\n\tSubnet IDs: \ {}\n\tSecurity Group ID: {}\n\tRunning Instance IDs: {}\n".format( self.vpc_id, self.sn_ids, self.sg_id, self.instances ) status_string += "\tInstance States:\n\t\t" self.get_instance_state() for state in self.instance_states.keys(): status_string += "Instance ID: {} State: {}\n\t\t".format( state, self.instance_states[state] ) status_string += "\n" logger.info(status_string) return status_string def teardown(self): """Teardown the EC2 infastructure. Terminate all EC2 instances, delete all subnets, delete security group, delete VPC, and reset all instance variables. """ self.shut_down_instance(self.instances) self.instances = [] try: self.client.delete_internet_gateway(InternetGatewayId=self.internet_gateway) self.internet_gateway = None self.client.delete_route_table(RouteTableId=self.route_table) self.route_table = None for subnet in list(self.sn_ids): # Cast to list ensures that this is a copy # Which is important because it means that # the length of the list won't change during iteration self.client.delete_subnet(SubnetId=subnet) self.sn_ids.remove(subnet) self.client.delete_security_group(GroupId=self.sg_id) self.sg_id = None self.client.delete_vpc(VpcId=self.vpc_id) self.vpc_id = None except Exception as e: logger.error("{}".format(e)) raise e self.show_summary() os.remove(self.config['state_file_path']) @property def label(self): return self._label @property def current_capacity(self): """Returns the current blocksize.""" return len(self.instances) def goodbye(self): self.teardown() @property def status_polling_interval(self): return 60
36.950355
117
0.587946
4a276e343345dc34e2d63fa1702c14a2a72af94e
882
py
Python
test/iqdb_test.py
Coder-Sakura/PicImageSearch
f947d0aa5648f39763f35295e7d67b9ec2eecca8
[ "MIT" ]
null
null
null
test/iqdb_test.py
Coder-Sakura/PicImageSearch
f947d0aa5648f39763f35295e7d67b9ec2eecca8
[ "MIT" ]
null
null
null
test/iqdb_test.py
Coder-Sakura/PicImageSearch
f947d0aa5648f39763f35295e7d67b9ec2eecca8
[ "MIT" ]
null
null
null
from loguru import logger from PicImageSearch import Iqdb _REQUESTS_KWARGS = { # 'proxies': { # 'https': 'http://127.0.0.1:10809', # } # 如果需要代理 } iqdb = Iqdb() res = iqdb.search(r"https://pixiv.cat/77702503-1.jpg") # logger.info(res.origin) # logger.info(res.raw) logger.info("说明: " + res.raw[0].content) logger.info("来源地址: " + res.raw[0].url) logger.info("缩略图: " + res.raw[0].thumbnail) logger.info("相似度: " + res.raw[0].similarity) logger.info("图片大小: " + res.raw[0].size) logger.info("图片来源: " + res.raw[0].source) logger.info("其他图片来源: " + str(res.raw[0].other_source)) logger.info("SauceNAO搜图链接: " + res.saucenao) logger.info("Ascii2d搜图链接: " + res.ascii2d) logger.info("TinEye搜图链接: " + res.tineye) logger.info("Google搜图链接: " + res.google) logger.info("相似度低的结果: " + str(res.more))
32.666667
59
0.599773
4a276ee4adc4fcd9270ec436ef97aa86b0ccbb73
1,610
py
Python
src/server/oasisapi/files/viewsets.py
cdlhub/OasisPlatform
b9e23448f9ddb18ba589081ee9f702f5c50c2b78
[ "BSD-3-Clause" ]
null
null
null
src/server/oasisapi/files/viewsets.py
cdlhub/OasisPlatform
b9e23448f9ddb18ba589081ee9f702f5c50c2b78
[ "BSD-3-Clause" ]
null
null
null
src/server/oasisapi/files/viewsets.py
cdlhub/OasisPlatform
b9e23448f9ddb18ba589081ee9f702f5c50c2b78
[ "BSD-3-Clause" ]
null
null
null
from __future__ import absolute_import from django.utils.translation import ugettext_lazy as _ from django_filters import rest_framework as filters from rest_framework import viewsets, mixins from rest_framework.decorators import action from rest_framework.parsers import MultiPartParser from rest_framework.settings import api_settings from ..filters import TimeStampedFilter from .views import handle_related_file from .serializers import RelatedFileSerializer from .models import RelatedFile class FilesFilter(TimeStampedFilter): content_type = filters.CharFilter( help_text=_('Filter results by case insensitive `supplier_id` equal to the given string'), lookup_expr='iexact', field_name='content_type' ) filename__contains = filters.CharFilter( help_text=_('Filter results by case insensitive `supplier_id` containing the given string'), lookup_expr='icontains', field_name='filename' ) user = filters.CharFilter( help_text=_('Filter results by case insensitive `model_id` equal to the given string'), lookup_expr='iexact', field_name='creator_name' ) class Meta: model = RelatedFile fields = [ 'content_type', 'filename__contains', 'user', ] class FilesViewSet(mixins.RetrieveModelMixin, mixins.ListModelMixin, viewsets.GenericViewSet): """ Add doc string here """ queryset = RelatedFile.objects.all() serializer_class = RelatedFileSerializer filter_class = FilesFilter
32.2
100
0.706832
4a276f0f99cc640529418675c4f3e4ca3341a700
1,707
py
Python
src/backup.py
jpatnayk/i3wm-themer
8e2a63c690b2b08b0ef47ca4ad9397d570c51fab
[ "MIT" ]
1
2020-02-05T10:51:55.000Z
2020-02-05T10:51:55.000Z
src/backup.py
jpatnayk/i3wm-themer
8e2a63c690b2b08b0ef47ca4ad9397d570c51fab
[ "MIT" ]
null
null
null
src/backup.py
jpatnayk/i3wm-themer
8e2a63c690b2b08b0ef47ca4ad9397d570c51fab
[ "MIT" ]
null
null
null
import os.path from shutil import copyfile import fileutils as fileu import msgfunc as prnt def backup_file( config, back_file, destination): if(fileu.locate_file(config[back_file])): prnt.prnt( '-s', 'Located your '+config[back_file]+' file!') try: copyfile( config[back_file], destination) prnt.prnt( '-s', 'Backed it up successfully!') return True except: prnt.prnt( '-f', 'Failed to back it up!') return False else: prnt.prnt( '-f', 'Could not locate '+config[back_file]+' file!') return False def backup_config( backup_folder, configuration): prnt.prnt( '-n', 'Backing up your files.') if( fileu.locate_folder(backup_folder) ): prnt.prnt( '-s', 'Located the backup folder.') # Backup i3 file if 'i3-config' in configuration: if( backup_file( configuration, 'i3-config', backup_folder+'/i3.config')): prnt.prnt( '-s', 'Success!') else: prnt.prnt( '-f', 'Failed!') # Backup Polybr config if 'polybar-config' in configuration: if( backup_file( configuration, 'polybar-config', backup_folder+'/polybar.config')): prnt.prnt( '-s', 'Success!') else: prnt.prnt( '-f', 'Failed!') # Backup xresources if 'xresources' in configuration: if( backup_file( configuration, 'xresources', backup_folder+'/xresources')): prnt.prnt( '-s', 'Success!') else: prnt.prnt( '-f', 'Failed!') else: prnt.prnt( '-f', 'Failed to locate the backup folder.') exit(9)
33.470588
96
0.561219
4a276f2b334e648d3bb1b0a7886ecfed56b79597
882
py
Python
darts/__init__.py
amadejkocbek/darts
074be2a76eee11258da066878c564badf40834e9
[ "Apache-2.0" ]
null
null
null
darts/__init__.py
amadejkocbek/darts
074be2a76eee11258da066878c564badf40834e9
[ "Apache-2.0" ]
42
2021-10-04T17:11:50.000Z
2021-12-24T15:37:41.000Z
darts/__init__.py
amadejkocbek/darts
074be2a76eee11258da066878c564badf40834e9
[ "Apache-2.0" ]
null
null
null
""" darts ----- """ from .timeseries import TimeSeries, concatenate import matplotlib as mpl from matplotlib import cycler __version__ = "0.16.0" colors = cycler( color=["black", "003DFD", "b512b8", "11a9ba", "0d780f", "f77f07", "ba0f0f"] ) u8plots_mplstyle = { "font.family": "sans serif", "axes.edgecolor": "black", "axes.grid": True, "axes.labelcolor": "#333333", "axes.labelweight": 600, "axes.linewidth": 1, "axes.prop_cycle": colors, "axes.spines.top": False, "axes.spines.right": False, "axes.spines.bottom": False, "axes.spines.left": False, "grid.color": "#dedede", "legend.frameon": False, "lines.linewidth": 1.3, "xtick.color": "#333333", "xtick.labelsize": "small", "ytick.color": "#333333", "ytick.labelsize": "small", "xtick.bottom": False, } mpl.rcParams.update(u8plots_mplstyle)
21.512195
79
0.622449
4a276fae313692800c347880b9d90906557fa7a6
27,434
py
Python
src/graphepp/graphepp.py
jwallnoefer/graphepp
684b683d84ce8ccfb5c809e5aa3f4f1acb0f7048
[ "MIT" ]
null
null
null
src/graphepp/graphepp.py
jwallnoefer/graphepp
684b683d84ce8ccfb5c809e5aa3f4f1acb0f7048
[ "MIT" ]
null
null
null
src/graphepp/graphepp.py
jwallnoefer/graphepp
684b683d84ce8ccfb5c809e5aa3f4f1acb0f7048
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """Functions for multiparite entanglement purification on graph states. See README.md for an overview of the functionality. """ # All states are assumed to be diagonal in the graph state basis corresponding to # the graph state considered. # The noise should work for arbitrary graph states, while the purification # protocol only makes sense for two-colorable graph states. # # Make sure the variables input follow the conventions given in the docstrings, # since not many sanity checks are included. # # This should run reasonably well even for bigger states (ca. 10 qubits) if # cythonized. import numpy as np from itertools import product from functools import lru_cache # ====Graph definitions==== # def adj_matrix(N, E): """Calculates the adjacency matrix from vetices and edges. The graph has `N` vertices (labeled 0 to N-1) and edges `E`. Parameters ---------- N : int Number of vertices. E : list (or tuple) of tuples Should contain 2-tuples with the edges of the graph. Each pair (i,j) indicates a connection between vertices i and j. Only simple, unweighted, undirected graphs are supported. Note that the `N` vertices are labeled 0...N-1 Returns ------- adj : np.ndarray Adjacency matrix of the graph specified. Is a symmetric `N` x `N` matrix with N_{ij}=1 if (i,j) is in `E` and 0 otherwise. """ adj = np.zeros((N, N), dtype=int) for i, n in product(range(N), repeat=2): if (i, n) in E: adj[i, n] = 1 adj[n, i] = 1 return adj class Graph(object): """A graph object consisting of vertices and edges. Other functions that need to know in which graph state basis a state is given expect a `Graph` object to specify the associated graph. The properties are read-only on purpose to make this hashable. This is desirable because some functions in this module profit heavily from caching. Parameters ---------- N : int Number of vertices. E : list of tuples of ints Should contain 2-tuples with the edges of the graph. Each pair (i,j) indicates a connection between vertices i and j. Only simple, unweighted, undirected graphs are supported. Note that the `N` vertices are labeled 0...N-1 sets : list of list of ints, optional Optionally define subsets of vertices, e.g. coloring of the graph as expected for the entanglement purification protocols. Default: [] Attributes ---------- adj : np.ndarray Adjacency matrix of the graph. N E sets a : tuple of ints the first subset of vertices (e.g. one color) b : tuple of ints the second subset of vertices (e.g. one color) """ def __init__(self, N, E, sets=[]): self._N = N self._E = tuple(sorted(tuple(sorted(edge)) for edge in E)) self._sets = tuple(tuple(sorted(set)) for set in sets) self._adj = tuple(tuple(row) for row in adj_matrix(N, E)) def __repr__(self): return f"gg.Graph(N={self.N}, E={self.E}, sets={self.sets})" def __hash__(self): return hash((self._N, self._sets, self._adj)) def __eq__(self, other): if isinstance(other, Graph): return ( self.N == other.N and self.sets == other.sets and np.all(self.adj == other.adj) ) else: return NotImplemented @property def N(self): return self._N @property def E(self): return self._E @property def sets(self): return self._sets @property def adj(self): return np.array(self._adj, dtype=int) @property def a(self): # subset a is the first color try: return self.sets[0] except IndexError: return None @property def b(self): # subset b is the first color try: return self.sets[1] except IndexError: return None # ====Noise functions==== # def noisy(rho, subset, graph=None): """Template to generate noise patterns. In physical terms this is correlated sigma_z noise on all particles in `subset`. Parameters ---------- rho : np.ndarray Is the state acted on. Should be a 2**N-dimensional vector with the diagonal entries of the density matrix in the graph state basis. subset : list of int The list of which qubits are affected, counting starts at 0. Indices are expected to be in order 012...(N-1) regardless of coloring of the vertices. graph : Graph, optional Specifies in which graph state basis rho is given. This function does not use it - only included for consistency. Default: None Returns ------- np.ndarray The state after the action. Same shape as `rho`. """ N = int(np.log2(len(rho))) rho = rho.reshape((2,) * N) rho = np.flip(rho, axis=subset) rho = rho.reshape((2 ** N,)) return rho # # if there is only one int in subset, the following is actually faster # # than np.flip for some reason # for n in subset: # rho = np.swapaxes(np.swapaxes(rho, 0, n)[::-1], 0, n) # #old, slow implementation # j=0 # for n in nn: # k=int(np.log2(len(rho)))-1-n # j=j^(1<<k) # + would be slightly faster than ^ but can lead to weird behaviour # mu=np.zeros(len(rho)) # for i in range(len(mu)): # mu[i]=rho[i^j] # return mu def znoisy(rho, qubit_index, graph=None): """Applies sigma_z noise on the specified qubit. Parameters ---------- rho : np.ndarray Is the state acted on. Should be a 2**N-dimensional vector with the diagonal entries of the density matrix in the graph state basis. qubit_index : int The `qubit_index`-th qubit is affected, counting starts at 0. Indices are expected to be in order 012...(N-1) regardless of coloring of the vertices. graph : Graph, optional Specifies in which graph state basis rho is given. This function does not use it. Included only so znoisy can be called the same way as xnoisy and ynoisy. Default: None Returns ------- np.ndarray The state after the action. Same shape as `rho`. """ return noisy(rho, [qubit_index]) def xnoisy(rho, qubit_index, graph): """Applies sigma_x noise on the specified qubit. Parameters ---------- rho : np.ndarray Is the state acted on. Should be a 2**N-dimensional vector with the diagonal entries of the density matrix in the graph state basis. qubit_index : int The `qubit_index`-th qubit is affected, counting starts at 0. Indices are expected to be in order 012...(N-1) regardless of coloring of the vertices. graph : Graph Specifies in which graph state basis rho is given. Returns ------- np.ndarray The state after the action. Same shape as `rho`. """ nn = [] for i in range(graph.N): if graph.adj[qubit_index, i]: nn += [i] return noisy(rho, nn) def ynoisy(rho, qubit_index, graph): """Applies sigma_y noise on the specified qubit. Parameters ---------- rho : np.ndarray Is the state acted on. Should be a 2**N-dimensional vector with the diagonal entries of the density matrix in the graph state basis. qubit_index : int The `qubit_index`-th qubit is affected, counting starts at 0. Indices are expected to be in order 012...(N-1) regardless of coloring of the vertices. graph : Graph Specifies in which graph state basis rho is given. Returns ------- np.ndarray The state after the action. Same shape as `rho`. """ nn = [qubit_index] for i in range(graph.N): if graph.adj[qubit_index, i]: nn += [i] return noisy(rho, nn) def znoise(rho, qubit_index, p, graph=None): """Apply Pauli-Z noise channel with error parameter `p` on a qubit. Parameters ---------- rho : np.ndarray Is the state acted on. Should be a 2**N-dimensional vector with the diagonal entries of the density matrix in the graph state basis. qubit_index : int The `qubit_index`-th qubit is affected, counting starts at 0. Indices are expected to be in order 012...(N-1) regardless of coloring of the vertices. p : scalar Error parameter of the channel should be in interval [0, 1]. graph : Graph, optional Specifies in which graph state basis rho is given. Default: None Returns ------- np.ndarray The state after the action. Same shape as `rho`. """ return p * rho + (1 - p) * znoisy(rho, qubit_index, graph) def xnoise(rho, qubit_index, p, graph): """Apply Pauli-X noise channel with error parameter `p` on a qubit. Parameters ---------- rho : np.ndarray Is the state acted on. Should be a 2**N-dimensional vector with the diagonal entries of the density matrix in the graph state basis. qubit_index : int The `qubit_index`-th qubit is affected, counting starts at 0. Indices are expected to be in order 012...(N-1) regardless of coloring of the vertices. p : scalar Error parameter of the channel should be in interval [0, 1]. graph : Graph Specifies in which graph state basis rho is given. Returns ------- np.ndarray The state after the action. Same shape as `rho`. """ return p * rho + (1 - p) * xnoisy(rho, qubit_index, graph) def ynoise(rho, qubit_index, p, graph): """Apply Pauli-Y noise channel with error parameter `p` on a qubit. Parameters ---------- rho : np.ndarray Is the state acted on. Should be a 2**N-dimensional vector with the diagonal entries of the density matrix in the graph state basis. qubit_index : int The `qubit_index`-th qubit is affected, counting starts at 0. Indices are expected to be in order 012...(N-1) regardless of coloring of the vertices. p : scalar Error parameter of the channel should be in interval [0, 1]. graph : Graph Specifies in which graph state basis rho is given. Returns ------- np.ndarray The state after the action. Same shape as `rho`. """ return p * rho + (1 - p) * ynoisy(rho, qubit_index, graph) def wnoise(rho, qubit_index, p, graph): """Apply local white noise channel with error parameter `p` on a qubit. Note: local white noise is often also called local depolarizing noise Parameters ---------- rho : np.ndarray Is the state acted on. Should be a 2**N-dimensional vector with the diagonal entries of the density matrix in the graph state basis. qubit_index : int The `qubit_index`-th qubit is affected, counting starts at 0. Indices are expected to be in order 012...(N-1) regardless of coloring of the vertices. p : scalar Error parameter of the channel should be in interval [0, 1]. graph : Graph Specifies in which graph state basis rho is given. Returns ------- np.ndarray The state after the action. Same shape as `rho`. """ return p * rho + (1 - p) / 4 * ( rho + xnoisy(rho, qubit_index, graph) + ynoisy(rho, qubit_index, graph) + znoisy(rho, qubit_index, graph) ) def noise_pattern(rho, qubit_index, ps, graph): """Applies a local pauli-diagonal noise channel on the specified qubit. Parameters ---------- rho : np.ndarray Is the state acted on. Should be a 2**N-dimensional vector with the diagonal entries of the density matrix in the graph state basis. qubit_index : int The `n`-th qubit is affected, counting starts at 0. Indices are expected to be in order 012...(N-1) regardless of coloring of the vertices. ps : list of scalars The coefficients of the noise channel. Should have 4 entries p_0 p_x p_y p_z that sum to 1. graph : Graph Specifies in which graph state basis rho is given. Returns ------- np.ndarray The state after the action. Same shape as `rho`. """ return ( ps[0] * rho + ps[1] * xnoisy(rho, qubit_index, graph) + ps[2] * ynoisy(rho, qubit_index, graph) + ps[3] * znoisy(rho, qubit_index, graph) ) def wnoise_all(rho, p, graph): """Apply local white noise with the same error parameter to all qubits. Parameters ---------- rho : np.ndarray Is the state acted on. Should be a 2**N-dimensional vector with the diagonal entries of the density matrix in the graph state basis. p : scalar Error parameter of the channel should be in interval [0, 1]. graph : Graph Specifies the graphstate considered. Returns ------- np.ndarray The state after the action. Same shape as `rho`. """ for i in range(int(np.log2(len(rho)))): rho = wnoise(rho, i, p, graph) return rho def noise_global(rho, p, graph=None): """Apply a global white noise channel to the state. Parameters ---------- rho : np.ndarray Is the state acted on. Should be a 2**N-dimensional vector with the diagonal entries of the density matrix in the graph state basis. p : scalar Error parameter of the channel should be in interval [0, 1]. graph : Graph, optional Specifies in which graph state basis rho is given. This function does not use it - only included for consistency. Default: None Returns ------- np.ndarray The state after the action. Same shape as `rho`. """ k = len(rho) return p * rho + (1 - p) * np.ones(k) / k # ====Functions related to distance measures==== # def fidelity(rho, mu): """Calculate fidelity of two states given in the same graph state basis. This is a special case of the general definition of the fidelity: F(rho, mu) = (tr(sqrt(sqrt(rho), mu, sqrt(rho))))**2 Note that the term "fidelity" has been used ambiguously in quantum information theory, either referring to F or sqrt(F). F as defined here is the square of the fidelity as defined in Nielsen and Chuang. sqrt(1 - F(rho, mu)) is a distance measure. (1 - sqrt(F(rho, mu))) is a distance measure. Parameters ---------- rho, mu : np.ndarray Diagonal entries of quantum states given in the same graph state basis. Returns ------- scalar The fidelity F. """ a = np.sqrt(rho) b = np.sqrt(mu) return np.dot(a, b) ** 2 def fid_alternative(rho, mu): """Alternative fidelity function. Calculates sqrt(F) instead of F (as defined in the `fidelity` fucntion). Parameters ---------- rho, mu : np.ndarray Diagonal entries of quantum states given in the same graph state basis. Returns ------- scalar sqrt(F) """ a = np.sqrt(rho) b = np.sqrt(mu) return np.dot(a, b) def trace_distance(rho, mu): """Calculate the trace distance between to states in the same graph state basis. Parameters ---------- rho, mu : np.ndarray Diagonal entries of quantum states given in the same graph state basis. Returns ------- scalar The trace distance. """ sigma = np.abs(rho - mu) return 1 / 2 * np.sum(sigma) # ====Auxiliary Functions==== # def normalize(rho): """Normalize the state to trace = 1. Also catches numerical phenomena with entries < 0. Parameters ---------- rho : np.ndarray The state to be normalized. Returns ------- np.ndarray The normalized state. Same shape as `rho`. """ if np.any(rho < 0): rho = np.copy(rho) rho[rho < 0] = 0 return rho / np.sum(rho) def local_complementation(n, graph): """Return the new graph after local complementation. Careful: Subsets are just copied so the coloring is not updated! Parameters ---------- n : int Local complementation around the `n`-th vertex. graph : Graph The original graph. Returns ------- Graph The graph after local complementation. """ # note that Graph is only a simple graph! # crude implementation - surely this can be done better. # get neighbourhood of n Nn = [] for i in range(graph.N): if graph.adj[i, n]: Nn += [i] new_adjmatrix = np.copy(graph.adj) for i in Nn: for k in Nn: if k == i: continue new_adjmatrix[i, k] = (graph.adj[i, k] + 1) % 2 # get new edges from adjmatrix new_edges = [] for i in range(graph.N): for k in range(i + 1, graph.N): if new_adjmatrix[i, k]: new_edges += [(i, k)] return Graph( N=graph.N, E=new_edges, sets=graph.sets ) # just copies sets without thinking # ====EPP functions for two-colorable states==== # @lru_cache(maxsize=None) # this will be getting called a lot with the same input def _mask_a(j, graph): """Spread a bit string on set a to the whole bitstring. Takes an int representing a bit string of length size of set a and spreads it to a length graph.N bit string with the bits set at the correct places. Example: graph.N = 4, graph.a = [0, 2], j=3 (bitstring "11") will return 10 (bitstring "1010") Example: graph.N = 4, graph.a = [0, 2], j=1 (bitstring "01") will return 2 (bitstring "0010") Parameters ---------- j : int Representing a bit string of length len(graph.a). graph : Graph The graph containing information about the set. Returns ------- int Representing a bit string of length graph.N, i.e. `j` spread out over the appropriate positions in the bit string. """ m = ["0"] * graph.N short_string = format(j, "0" + str(len(graph.a)) + "b") for bit, idx in zip(short_string, graph.a): m[idx] = bit long_string = "".join(m) return int(long_string, base=2) @lru_cache(maxsize=None) # this will be getting called a lot with the same input def _mask_b(j, graph): """Spread a bit string on set b to the whole bitstring. Takes an int representing a bit string of length size of set b and spreads it to a length graph.N bit string with the bits set at the correct places. Example: graph.N = 4, graph.b = [1, 3], j=3 (bitstring "11") will return 10 (bitstring "0101") Example: graph.N = 4, graph.b = [1, 3], j=1 (bitstring "01") will return 2 (bitstring "0001") Parameters ---------- j : int Representing a bit string of length len(graph.b). graph : Graph The graph containing information about the set. Returns ------- int Representing a bit string of length graph.N, i.e. `j` spread out over the appropriate positions in the bit string. """ m = ["0"] * graph.N short_string = format(j, "0" + str(len(graph.b)) + "b") for bit, idx in zip(short_string, graph.b): m[idx] = bit long_string = "".join(m) return int(long_string, base=2) # Note: np.fromfunction does not help with speeding up p1p2, but cythonizing does! def p1(rho, graph): """Perform protocol P1 of the ADB protocol for two-colorable graph states. Implements equation (17) of Phys. Rev. A 71, 012319 (2005) Preprint: https://arxiv.org/abs/quant-ph/0405045 Comment on the implementation: The integers used here correspond to the bit strings in the publication as follows: i ~ γ_A,γ_B j ~ 0,γ_B k ~ ν_B m ~ 0,ν_B and therefore: i^j ~ γ_A,0 (i^j)^m ~ γ_A,ν_B i^m ~ γ_A,(γ_B ⊕ ν_B) So the loop over k iterates over all possible ν_B. While equation (17) suggests another loop over μ_B, there is only one μ_B = (γ_B ⊕ ν_B) that fulfils the specified condition ν_B ⊕ μ_B = γ_B so another nested loop is not necessary. Parameters ---------- rho : np.ndarray Diagonal entries of a density matrix in the graph state basis. Two copies of this state will be used to perform the protocol. graph : Graph Graph of the target graph state to be purified. rho is given in this graph state basis. Must contain coloring information of the two-colorable graph state. Returns ------- np.ndarray The output state of the protocol, assuming the purification step was successful. """ mu = np.zeros(len(rho)) for i in range(2 ** graph.N): j = i & (_mask_b((1 << len(graph.b)) - 1, graph)) for k in range(2 ** len(graph.b)): m = _mask_b(k, graph) mu[i] += rho[(i ^ j) ^ m] * rho[i ^ m] mu = normalize(mu) return mu def p2(rho, graph): """Perform protocol P2 of the ADB protocol for two-colorable graph states. Implements equation (19) of Phys. Rev. A 71, 012319 (2005) Preprint: https://arxiv.org/abs/quant-ph/0405045 See docstring of p1 for comment on the iterations and bit strings. Parameters ---------- rho : np.ndarray Diagonal entries of a density matrix in the graph state basis. Two copies of this state will be used to perform the protocol. graph : Graph Graph of the target graph state to be purified. rho is given in this graph state basis. Must contain coloring information of the two-colorable graph state. Returns ------- np.ndarray The output state of the protocol, assuming the purification step was successful. """ mu = np.zeros(len(rho)) for i in range(2 ** graph.N): j = i & (_mask_a((1 << len(graph.a)) - 1, graph)) for k in range(2 ** len(graph.a)): m = _mask_a(k, graph) mu[i] += rho[(i ^ j) ^ m] * rho[i ^ m] mu = normalize(mu) return mu def p1_var(rho, sigma, graph): """P1 but with two different input states instead of two copies of the same. Parameters ---------- rho : np.ndarray Diagonal entries of a density matrix in the graph state basis. First input state. sigma : np.ndarray Diagonal entries of a density matrix in the graph state basis. Second input state. graph : Graph Graph of the target graph state to be purified. rho and mu are given in this graph state basis. Must contain coloring information of the two-colorable graph state. Returns ------- np.ndarray The output state of the protocol, assuming the purification step was successful. """ mu = np.zeros(len(rho)) for i in range(2 ** graph.N): j = i & (_mask_b((1 << len(graph.b)) - 1, graph)) for k in range(2 ** len(graph.b)): m = _mask_b(k, graph) mu[i] += rho[(i ^ j) ^ m] * sigma[i ^ m] mu = normalize(mu) return mu def p2_var(rho, sigma, graph): """P2 but with two different input states instead of two copies of the same. Parameters ---------- rho : np.ndarray Diagonal entries of a density matrix in the graph state basis. First input state. sigma : np.ndarray Diagonal entries of a density matrix in the graph state basis. Second input state. graph : Graph Graph of the target graph state to be purified. rho and mu are given in this graph state basis. Must contain coloring information of the two-colorable graph state. Returns ------- np.ndarray The output state of the protocol, assuming the purification step was successful. """ mu = np.zeros(len(rho)) for i in range(2 ** graph.N): j = i & (_mask_a((1 << len(graph.a)) - 1, graph)) for k in range(2 ** len(graph.a)): m = _mask_a(k, graph) mu[i] += rho[(i ^ j) ^ m] * sigma[i ^ m] mu = normalize(mu) return mu # ====EPP functions for arbitrary graph states==== # @lru_cache(maxsize=None) def _mask_k(j, graph, subset): """Spread a bit string on a subset to the whole bitstring. Takes an int representing a bit string of length len(myset) and spreads it to a length graph.N bit string with the bits set at the correct places. Example: graph.N = 4, myset = (0, 2), j=3 (bitstring "11") will return 10 (bitstring "1010") Example: graph.N = 4, myset = (0, 2), j=1 (bitstring "01") will return 2 (bitstring "0010") Parameters ---------- j : int Representing a bit string of length len(subset). graph : Graph The graph, basically just here for graph.N subset : tuple of ints A subset of vertices of the graph. Ideally use a tuple not a list to allow caching to work. Returns ------- int Representing a bit string of length graph.N, i.e. `j` spread out over the appropriate positions in the bit string. """ m = ["0"] * graph.N short_string = format(j, "0" + str(len(subset)) + "b") for bit, idx in zip(short_string, subset): m[idx] = bit long_string = "".join(m) return int(long_string, base=2) def pk(rho, sigma, graph1, graph2, subset): """Perform sub-protocol P_k. A sub-protocol of the entanglement purification protocol for all graph states. Implements equation (8) of Phys. Rev. A 74, 052316 (2006) Preprint: https://arxiv.org/abs/quant-ph/0606090 See docstring of p1 for comment on the iterations and bit strings. Parameters ---------- rho : np.ndarray Diagonal entries of a density matrix in the graph state basis corresponding to `graph1`. Main input state. sigma : np.ndarray Diagonal entries of a density matrix in the graph state basis corresponding to `graph2`. Auxiliary input state. Make sure it has the same number of qubits as `rho` (expand with unconnected vertices if needed). graph1 : Graph The main graph of the protocol. graph2 : Graph The auxiliary graph for the k-th subset for the k-th sub-protocol P_k. Make sure it has the same number of vertices as `graph1` (expand with unconnected vertices if needed). subset : tuple of ints A subset of vertices, corresponding to the k-th subset. Returns ------- np.ndarray The output state of the protocol, assuming the purification step was successful. """ mu = np.zeros(len(rho)) other_set = tuple(i for i in range(graph1.N) if i not in subset) for i in range(2 ** graph1.N): j = i & (_mask_k((1 << len(other_set)) - 1, graph1, other_set)) for k in range(2 ** len(other_set)): m = _mask_k(k, graph1, other_set) mu[i] += rho[(i ^ j) ^ m] * sigma[i ^ m] mu = normalize(mu) return mu
29.690476
87
0.609645
4a27702a5d1fe3100025cc44bc4dcd2e38f79cc4
606
py
Python
src/statistics/dataset/utils.py
VincentXWD/CopyGirlsMoe
779838ad89d7def99ec74985919bcb0feaa6736c
[ "MIT" ]
68
2018-06-21T08:33:14.000Z
2019-12-05T13:31:13.000Z
src/statistics/dataset/utils.py
VincentXWD/CopyGirlsMoe
779838ad89d7def99ec74985919bcb0feaa6736c
[ "MIT" ]
5
2018-06-25T13:34:13.000Z
2019-09-19T11:42:33.000Z
src/statistics/dataset/utils.py
VincentXWD/CopyGirlsMoe
779838ad89d7def99ec74985919bcb0feaa6736c
[ "MIT" ]
11
2018-06-25T10:44:20.000Z
2019-10-08T12:14:55.000Z
__author__ = 'Wendong Xu' import os import re def get_image_path(raw_input_dir: str) -> list: """ get image path and id from root resource path. :return: a list contains all images' path. """ result = [] for root, dirs, files in os.walk(raw_input_dir): for file in files: result.append(os.path.join(root, file)) return result def read_list(list_path: str) -> list: """ :param list_path: :return: """ avatar_list = [] with open(list_path) as fin: avatar_list = fin.readlines() avatar_list = list(map(lambda x: x.split(' '), avatar_list)) return avatar_list
20.2
62
0.665017
4a277032db9f6effd081629317aa01dd2b7dbc91
137,925
py
Python
datasets/multi_eurlex/multi_eurlex.py
WojciechKusa/datasets
1406a04c3e911cec2680d8bc513653e0cafcaaa4
[ "Apache-2.0" ]
10,608
2020-09-10T15:47:50.000Z
2022-03-31T22:51:47.000Z
datasets/multi_eurlex/multi_eurlex.py
realChainLife/datasets
98261e8b0b7be4dbaaa71ae188b950f7fbe51bbd
[ "Apache-2.0" ]
2,396
2020-09-10T14:55:31.000Z
2022-03-31T19:41:04.000Z
datasets/multi_eurlex/multi_eurlex.py
realChainLife/datasets
98261e8b0b7be4dbaaa71ae188b950f7fbe51bbd
[ "Apache-2.0" ]
1,530
2020-09-10T21:43:10.000Z
2022-03-31T01:59:12.000Z
# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MultiEURLEX - A multi-lingual and multi-label legal document classification dataset.""" import json import os import datasets _CITATION = """\ @InProceedings{chalkidis-etal-2021-multieurlex, author = {Chalkidis, Ilias and Fergadiotis, Manos and Androutsopoulos, Ion}, title = {MultiEURLEX -- A multi-lingual and multi-label legal document classification dataset for zero-shot cross-lingual transfer}, booktitle = {Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing}, year = {2021}, publisher = {Association for Computational Linguistics}, location = {Punta Cana, Dominican Republic}, }""" _DESCRIPTION = """\ MultiEURLEX comprises 65k EU laws in 23 official EU languages (some low-ish resource). Each EU law has been annotated with EUROVOC concepts (labels) by the Publication Office of EU. As with the English EURLEX, the goal is to predict the relevant EUROVOC concepts (labels); this is multi-label classification task (given the text, predict multiple labels). """ DATA_URL = "https://zenodo.org/record/5363165/files/multi_eurlex.tar.gz" _LANGUAGES = [ "en", "da", "de", "nl", "sv", "bg", "cs", "hr", "pl", "sk", "sl", "es", "fr", "it", "pt", "ro", "et", "fi", "hu", "lt", "lv", "el", "mt", ] _CONCEPTS = { "level_1": [ "100149", "100160", "100148", "100147", "100152", "100143", "100156", "100158", "100154", "100153", "100142", "100145", "100150", "100162", "100159", "100144", "100151", "100157", "100161", "100146", "100155", ], "level_2": [ "100215", "100211", "100213", "100214", "100209", "100208", "100216", "100210", "100212", "100270", "100273", "100269", "100272", "100276", "100274", "100271", "100268", "100275", "100203", "100201", "100202", "100207", "100205", "100204", "100199", "100206", "100200", "100198", "100192", "100193", "100191", "100196", "100197", "100195", "100194", "100230", "100231", "100229", "100227", "100228", "100226", "100173", "100170", "100172", "100171", "100250", "100245", "100251", "100246", "100248", "100249", "100252", "100247", "100260", "100262", "100261", "100237", "100241", "100238", "100239", "100240", "100234", "100236", "100232", "100235", "100233", "100164", "100166", "100169", "100167", "100165", "100163", "100168", "100178", "100181", "100179", "100184", "100183", "100180", "100182", "100222", "100217", "100219", "100223", "100218", "100220", "100221", "100288", "100285", "100287", "100289", "100286", "100264", "100263", "100265", "100267", "100266", "100177", "100174", "100176", "100175", "100225", "100224", "100256", "100255", "100258", "100253", "100254", "100257", "100259", "100278", "100280", "100284", "100277", "100279", "100282", "100281", "100283", "100190", "100186", "100185", "100188", "100189", "100187", "100244", "100243", "100242", ], "level_3": [ "1754", "5881", "c_4ee83dea", "2479", "1268", "181", "1415", "2789", "85", "3487", "1820", "4305", "2688", "317", "3257", "2459", "108", "1004", "4050", "1909", "1916", "4184", "3307", "540", "965", "2398", "4619", "2496", "490", "1690", "2475", "1687", "1221", "385", "3300", "52", "3318", "2690", "4706", "1700", "2517", "1882", "1417", "3820", "4414", "3879", "4565", "3798", "3809", "3810", "1362", "1401", "1400", "3895", "1398", "5359", "1390", "1386", "1845", "1410", "1834", "5615", "1718", "5614", "2720", "2507", "3587", "4303", "1418", "1388", "3151", "1804", "1630", "1000", "1488", "2489", "2639", "1039", "2656", "2632", "929", "394", "2698", "1012", "2448", "1018", "424", "2510", "4602", "2486", "1809", "1325", "1326", "1321", "2504", "1021", "1310", "8469", "285", "1452", "2495", "2149", "4370", "1016", "6332", "4671", "3239", "1850", "4380", "3156", "2520", "5842", "2519", "2292", "2128", "614", "c_4c7717f3", "2487", "2449", "2450", "1786", "1810", "524", "2488", "87", "5268", "13", "474", "4291", "138", "3193", "139", "3584", "11", "3185", "1155", "54", "2474", "802", "539", "3581", "4413", "1164", "1154", "813", "5985", "445", "4189", "4703", "4300", "69", "2469", "3582", "554", "3451", "2628", "2647", "3423", "2464", "1346", "3461", "3474", "3467", "2189", "3476", "2500", "4697", "6722", "3450", "99", "3074", "2460", "3489", "2734", "2723", "5877", "711", "1277", "2711", "2443", "2442", "1063", "651", "2505", "2972", "2477", "2493", "4363", "4412", "4630", "2014", "5962", "1372", "2320", "3544", "1652", "5913", "2476", "3605", "2551", "4358", "2814", "937", "962", "2707", "2481", "2817", "4185", "2914", "2478", "3797", "4418", "3641", "3632", "3689", "4415", "3160", "2494", "3101", "3131", "4505", "3092", "1954", "2181", "2015", "3098", "4539", "4522", "2512", "4515", "2184", "82", "4543", "2178", "557", "3209", "5974", "1627", "1074", "4299", "2468", "3522", "1163", "2491", "3273", "5275", "1737", "1802", "4276", "2180", "2258", "4436", "41", "3232", "2242", "53", "2246", "2166", "77", "6034", "3062", "517", "2702", "2703", "4157", "1748", "695", "4750", "558", "2186", "4367", "1953", "883", "2370", "1282", "2573", "3025", "1453", "2152", "2001", "4045", "4179", "4704", "5789", "3935", "4222", "5371", "2701", "1538", "5400", "3929", "523", "584", "7347", "3901", "538", "3900", "3908", "3899", "6922", "565", "567", "4010", "566", "1432", "3513", "3878", "3954", "573", "2351", "5923", "2472", "1422", "4486", "2467", "668", "3683", "3278", "4705", "2175", "4554", "1426", "4488", "1405", "3028", "5922", "873", "778", "2059", "795", "784", "4150", "494", "486", "4366", "1370", "4361", "2473", "2012", "3855", "c_415bab24", "119", "2188", "3716", "4365", "4826", "2179", "6015", "1455", "8380", "2170", "5286", "2190", "2172", "2167", "5285", "2171", "6157", "2191", "90", "2187", "5366", "2767", "3743", "1411", "2498", "3737", "2364", "1274", "1414", "744", "1412", "5350", "3783", "753", "5576", "5051", "5620", "438855", "1005", "3258", "4067", "5640", "2163", "5130", "5767", "5769", "1451", "5758", "4304", "4057", "4060", "4040", "5442", "26", "4017", "5258", "8473", "525", "4479", "3956", "3928", "3952", "6382", "3941", "3949", "3946", "5017", "4314", "2775", "239", "2763", "6788", "1360", "656", "2418", "2417", "5360", "2412", "1602", "2416", "2414", "2413", "1115", "2737", "2735", "2736", "1258", "4416", "6052", "8301", "1088", "7816", "8189", "2564", "2288", "6138", "6136", "1520", "1506", "1329", "337", "7815", "c_6acbfd25", "1184", "6135", "7879", "4840", "7861", "7855", "7868", "7817", "7814", "864", "281", "5424", "311", "3778", "1087", "2287", "1086", "911", "912", "913", "909", "914", "1587", "1293", "1615", "5259", "1632", "1297", "5302", "4069", "1844", "4607", "2117", "8365", "c_2b2e17b1", "5283", "5776", "c_964c9649", "4690", "6205", "c_b2c019c8", "7207", "1794", "4587", "8369", "187", "4845", "5083", "5087", "2148", "594", "5778", "8278", "c_c385cfb4", "5780", "8366", "5265", "1847", "1105", "1191", "8367", "2106", "2838", "727", "5448", "3791", "2858", "3889", "956", "2113", "2705", "1765", "2848", "2119", "c_6e703074", "122", "5775", "5434", "2200", "1658", "5435", "130", "2079", "5931", "4590", "c_789ead37", "4483", "5437", "5655", "2616", "4256", "1800", "335", "427", "84", "712", "2402", "2497", "637", "4006", "3013", "3659", "4362", "56", "5848", "2515", "3058", "371", "343", "2090", "2524", "3549", "3150", "3146", "6011", "833", "1707", "434743", "1158", "2470", "c_98d1408a", "2825", "5781", ], "original": [ "100149", "100160", "100148", "100147", "100152", "100143", "100156", "100158", "100154", "100153", "100142", "100145", "100150", "100162", "100159", "100144", "100151", "100157", "100161", "100146", "100155", "100215", "100211", "100213", "100214", "100209", "100208", "100216", "100210", "100212", "100270", "100273", "100269", "100272", "100276", "100274", "100271", "100268", "100275", "100203", "100201", "100202", "100207", "100205", "100204", "100199", "100206", "100200", "100198", "100192", "100193", "100191", "100196", "100197", "100195", "100194", "100230", "100231", "100229", "100227", "100228", "100226", "100173", "100170", "100172", "100171", "100250", "100245", "100251", "100246", "100248", "100249", "100252", "100247", "100260", "100262", "100261", "100237", "100241", "100238", "100239", "100240", "100234", "100236", "100232", "100235", "100233", "100164", "100166", "100169", "100167", "100165", "100163", "100168", "100178", "100181", "100179", "100184", "100183", "100180", "100182", "100222", "100217", "100219", "100223", "100218", "100220", "100221", "100288", "100285", "100287", "100289", "100286", "100264", "100263", "100265", "100267", "100266", "100177", "100174", "100176", "100175", "100225", "100224", "100256", "100255", "100258", "100253", "100254", "100257", "100259", "100278", "100280", "100284", "100277", "100279", "100282", "100281", "100283", "100190", "100186", "100185", "100188", "100189", "100187", "100244", "100243", "100242", "1754", "5881", "c_4ee83dea", "2479", "1268", "181", "1415", "2789", "85", "3487", "1820", "4305", "2688", "317", "3257", "2459", "108", "1004", "4050", "1909", "1916", "4184", "3307", "540", "965", "2398", "4619", "2496", "490", "1690", "2475", "1687", "1221", "385", "3300", "52", "3318", "2690", "4706", "1700", "2517", "1882", "1417", "3820", "4414", "3879", "4565", "3798", "3809", "3810", "1362", "1401", "1400", "3895", "1398", "5359", "1390", "1386", "1845", "1410", "1834", "5615", "1718", "5614", "2720", "2507", "3587", "4303", "1418", "1388", "3151", "1804", "1630", "1000", "1488", "2489", "2639", "1039", "2656", "2632", "929", "394", "2698", "1012", "2448", "1018", "424", "2510", "4602", "2486", "1809", "1325", "1326", "1321", "2504", "1021", "1310", "8469", "285", "1452", "2495", "2149", "4370", "1016", "6332", "4671", "3239", "1850", "4380", "3156", "2520", "5842", "2519", "2292", "2128", "614", "c_4c7717f3", "2487", "2449", "2450", "1786", "1810", "524", "2488", "87", "5268", "13", "474", "4291", "138", "3193", "139", "3584", "11", "3185", "1155", "54", "2474", "802", "539", "3581", "4413", "1164", "1154", "813", "5985", "445", "4189", "4703", "4300", "69", "2469", "3582", "554", "3451", "2628", "2647", "3423", "2464", "1346", "3461", "3474", "3467", "2189", "3476", "2500", "4697", "6722", "3450", "99", "3074", "2460", "3489", "2734", "2723", "5877", "711", "1277", "2711", "2443", "2442", "1063", "651", "2505", "2972", "2477", "2493", "4363", "4412", "4630", "2014", "5962", "1372", "2320", "3544", "1652", "5913", "2476", "3605", "2551", "4358", "2814", "937", "962", "2707", "2481", "2817", "4185", "2914", "2478", "3797", "4418", "3641", "3632", "3689", "4415", "3160", "2494", "3101", "3131", "4505", "3092", "1954", "2181", "2015", "3098", "4539", "4522", "2512", "4515", "2184", "82", "4543", "2178", "557", "3209", "5974", "1627", "1074", "4299", "2468", "3522", "1163", "2491", "3273", "5275", "1737", "1802", "4276", "2180", "2258", "4436", "41", "3232", "2242", "53", "2246", "2166", "77", "6034", "3062", "517", "2702", "2703", "4157", "1748", "695", "4750", "558", "2186", "4367", "1953", "883", "2370", "1282", "2573", "3025", "1453", "2152", "2001", "4045", "4179", "4704", "5789", "3935", "4222", "5371", "2701", "1538", "5400", "3929", "523", "584", "7347", "3901", "538", "3900", "3908", "3899", "6922", "565", "567", "4010", "566", "1432", "3513", "3878", "3954", "573", "2351", "5923", "2472", "1422", "4486", "2467", "668", "3683", "3278", "4705", "2175", "4554", "1426", "4488", "1405", "3028", "5922", "873", "778", "2059", "795", "784", "4150", "494", "486", "4366", "1370", "4361", "2473", "2012", "3855", "c_415bab24", "119", "2188", "3716", "4365", "4826", "2179", "6015", "1455", "8380", "2170", "5286", "2190", "2172", "2167", "5285", "2171", "6157", "2191", "90", "2187", "5366", "2767", "3743", "1411", "2498", "3737", "2364", "1274", "1414", "744", "1412", "5350", "3783", "753", "5576", "5051", "5620", "438855", "1005", "3258", "4067", "5640", "2163", "5130", "5767", "5769", "1451", "5758", "4304", "4057", "4060", "4040", "5442", "26", "4017", "5258", "8473", "525", "4479", "3956", "3928", "3952", "6382", "3941", "3949", "3946", "5017", "4314", "2775", "239", "2763", "6788", "1360", "656", "2418", "2417", "5360", "2412", "1602", "2416", "2414", "2413", "1115", "2737", "2735", "2736", "1258", "4416", "6052", "8301", "1088", "7816", "8189", "2564", "2288", "6138", "6136", "1520", "1506", "1329", "337", "7815", "c_6acbfd25", "1184", "6135", "7879", "4840", "7861", "7855", "7868", "7817", "7814", "864", "281", "5424", "311", "3778", "1087", "2287", "1086", "911", "912", "913", "909", "914", "1587", "1293", "1615", "5259", "1632", "1297", "5302", "4069", "1844", "4607", "2117", "8365", "c_2b2e17b1", "5283", "5776", "c_964c9649", "4690", "6205", "c_b2c019c8", "7207", "1794", "4587", "8369", "187", "4845", "5083", "5087", "2148", "594", "5778", "8278", "c_c385cfb4", "5780", "8366", "5265", "1847", "1105", "1191", "8367", "2106", "2838", "727", "5448", "3791", "2858", "3889", "956", "2113", "2705", "1765", "2848", "2119", "c_6e703074", "122", "5775", "5434", "2200", "1658", "5435", "130", "2079", "5931", "4590", "c_789ead37", "4483", "5437", "5655", "2616", "4256", "1800", "335", "427", "84", "712", "2402", "2497", "637", "4006", "3013", "3659", "4362", "56", "5848", "2515", "3058", "371", "343", "2090", "2524", "3549", "3150", "3146", "6011", "833", "1707", "434743", "1158", "2470", "c_98d1408a", "2825", "5781", "6152", "c_28750470", "5431", "1758", "5939", "5716", "5719", "1759", "1760", "5717", "5104", "1756", "837", "5718", "5714", "1762", "1757", "7354", "c_cbdf29ef", "8447", "c_9b88f778", "6567", "5720", "5715", "1153", "4474", "838", "1304", "1859", "2923", "1852", "4455", "5970", "5907", "c_c4afa011", "c_31da5694", "5764", "c_60d3928d", "5921", "273", "3365", "4116", "5689", "2446", "6569", "c_4523e1dd", "1590", "4849", "1279", "1284", "465", "2318", "2785", "2773", "3593", "5821", "5487", "3597", "3594", "3595", "2790", "5785", "86", "2083", "1205", "1202", "3486", "4214", "7131", "c_6c4d5118", "772", "1353", "6002", "1470", "1420", "4277", "2873", "1951", "2023", "2810", "4837", "2697", "3598", "3601", "4096", "1680", "5667", "439", "4097", "326", "5171", "7374", "5996", "c_827bea7d", "4873", "3296", "5987", "c_57946f1a", "1508", "7397", "7387", "1454", "c_847fc9f2", "6561", "5030", "3297", "1536", "3904", "6009", "1244", "4101", "6560", "7371", "6563", "3200", "4089", "5322", "442", "1364", "2840", "1780", "2278", "2022", "283", "6558", "4105", "6924", "102", "105", "103", "4209", "3357", "2929", "4143", "826", "3361", "3358", "c_16e35fe6", "6233", "3360", "250", "2605", "4028", "6564", "3359", "977", "1914", "1922", "2509", "1302", "6540", "1921", "724", "1912", "3322", "1948", "259", "3320", "1913", "1911", "1925", "1910", "1917", "1924", "1923", "2065", "1920", "2339", "2238", "2341", "5345", "6538", "74", "2334", "2335", "3309", "3311", "7414", "719", "3315", "6536", "2099", "570", "3314", "483", "4581", "117", "5296", "1818", "3317", "3316", "3312", "7352", "2239", "967", "966", "5961", "6535", "4234", "5390", "2501", "3301", "5159", "6539", "6537", "3168", "861", "3281", "2391", "5173", "6033", "3124", "4167", "3376", "6035", "662", "1805", "2691", "c_d59e7560", "847", "3377", "4443", "4618", "4442", "1456", "4850", "4058", "507", "515", "1693", "5553", "1694", "1692", "556", "1695", "271", "5309", "3378", "4243", "2806", "775", "2327", "3134", "4598", "4874", "1223", "1222", "1773", "2029", "589", "1991", "2092", "2484", "3460", "66", "2559", "389", "2558", "3245", "3337", "1864", "3327", "5799", "4852", "3324", "405", "6544", "4231", "4343", "5314", "442958", "5325", "5634", "4374", "4728", "2823", "4475", "3352", "5800", "374", "6738", "6542", "1764", "1691", "4323", "1162", "3348", "3353", "1817", "442990", "5160", "7195", "5169", "6046", "5170", "5291", "101", "432", "6549", "5382", "2270", "1990", "5323", "3250", "3329", "4702", "3334", "5903", "4470", "4634", "5166", "4245", "4564", "3179", "6552", "4086", "282", "3344", "1231", "6215", "3919", "1469", "3347", "1133", "1708", "81", "3346", "580", "1340", "6823", "1886", "3837", "4084", "1883", "1885", "1884", "3824", "3831", "3828", "3827", "3826", "708", "1945", "1889", "1868", "4228", "3829", "2766", "5289", "3825", "1514", "5503", "5447", "6012", "5678", "626", "1826", "4831", "154", "1830", "3880", "6916", "153", "509", "1523", "3882", "1145", "510", "1512", "4211", "945", "3", "6915", "2747", "28", "212", "2420", "1704", "2372", "2214", "1229", "5290", "1887", "c_b9c60592", "4545", "1275", "5261", "4062", "1878", "2213", "51", "5035", "3817", "2740", "1143", "1396", "6914", "c_e5d85c14", "1387", "2739", "3808", "2716", "3861", "3859", "1833", "1828", "3864", "3865", "3876", "849", "2192", "3874", "50", "1720", "2726", "1416", "2706", "5245", "1391", "2745", "5646", "1458", "2755", "2205", "3897", "1384", "2774", "1393", "1867", "1375", "2754", "6825", "3842", "1403", "1413", "2159", "2169", "1357", "1358", "5243", "1361", "1846", "3841", "1371", "3840", "155", "4584", "2378", "3759", "5440", "5397", "2549", "1077", "3846", "4579", "3851", "1832", "1994", "1724", "1723", "1725", "2758", "2770", "4224", "3627", "451069", "4264", "3290", "3707", "c_804a9afe", "3224", "3617", "429", "2802", "3624", "2677", "8450", "1957", "1009", "1356", "1434", "2405", "1435", "1407", "1408", "3619", "3622", "1402", "1377", "1376", "5024", "1726", "3890", "2783", "4377", "1397", "4169", "1368", "3887", "315", "3886", "3706", "3477", "3590", "165", "3567", "3599", "3630", "3274", "3723", "3243", "3244", "3373", "3187", "549", "34", "3222", "3673", "2906", "3242", "c_dcf3f7c0", "1485", "1790", "c_3e6af2e7", "c_8f89faac", "2150", "4491", "c_834b57c4", "3233", "4646", "2787", "728", "1459", "4263", "4187", "5156", "2002", "2502", "560", "1003", "1007", "6025", "1001", "6714", "5154", "1014", "1002", "c_10aa91c7", "c_39d242fc", "2466", "1492", "1489", "1490", "1491", "1497", "1496", "1495", "2463", "1494", "1072", "233", "1354", "1025", "2456", "1348", "5155", "460", "4235", "3152", "4248", "188", "2672", "2662", "2644", "2659", "2676", "2682", "3270", "2649", "2650", "2657", "2661", "2645", "2651", "2643", "4146", "4623", "2635", "2668", "2634", "2653", "2636", "2642", "2640", "2664", "2648", "3272", "2652", "2638", "2685", "2673", "3208", "2689", "2633", "2674", "2666", "2665", "2670", "3268", "2687", "2681", "4329", "2660", "2683", "2679", "4301", "933", "1675", "296", "3253", "341", "3350", "173", "189", "763", "402", "398", "397", "403", "5059", "5061", "875", "917", "3182", "144", "6028", "2574", "2615", "3558", "368", "4383", "3554", "4282", "6340", "843", "2403", "5062", "5972", "5050", "4241", "1824", "4569", "4132", "3119", "3256", "5052", "3254", "58", "2319", "2067", "1017", "5054", "137", "740", "1682", "5021", "729", "178", "4763", "1075", "c_2d0e694e", "c_6cfce4be", "5797", "c_c565cff5", "5795", "5883", "5474", "5555", "204", "1799", "6335", "4390", "182", "3227", "1676", "1969", "2365", "904", "1825", "c_20fde7af", "1322", "530", "1324", "1328", "1323", "1314", "1312", "1327", "4406", "1330", "1331", "4585", "4409", "4401", "1015", "4399", "4400", "4407", "6343", "504", "3298", "4279", "935", "c_c586f36c", "1985", "3261", "365", "3262", "6736", "561", "1234", "6342", "57", "6029", "5566", "170", "924", "3685", "2230", "3264", "1316", "1315", "1320", "1319", "1313", "1317", "6713", "6339", "290", "3229", "286", "2606", "295", "293", "c_896e199b", "292", "297", "289", "298", "8432", "736", "4118", "3246", "872", "4738", "4195", "278", "1130", "3230", "858", "2959", "3231", "3251", "4356", "2151", "2371", "3252", "408", "3612", "3994", "521", "3248", "2447", "1058", "6055", "5729", "973", "3449", "3225", "1677", "739", "3186", "2219", "423", "4371", "665", "6333", "4644", "4633", "4661", "4798", "1466", "4344", "4608", "219", "2069", "2387", "4078", "4405", "4793", "502", "4079", "491", "1069", "5583", "3948", "4645", "3178", "4381", "4402", "4499", "1637", "3174", "5843", "4600", "4836", "4789", "1232", "4333", "3611", "3176", "1091", "4350", "161", "932", "4385", "2957", "2050", "4885", "4025", "2317", "4186", "946", "4748", "613", "622", "1309", "3189", "4643", "4573", "c_34465dac", "c_163e1e96", "480", "3166", "1010", "5542", "2912", "1486", "4", "3123", "635", "2804", "5707", "3172", "9", "10", "692", "6364", "2590", "3165", "3170", "2182", "2967", "927", "619", "4605", "618", "3171", "4073", "1807", "1795", "1803", "1806", "1801", "4219", "20", "1797", "5725", "2218", "1796", "6365", "1798", "6366", "522", "6062", "3570", "3167", "6268", "288", "3271", "2742", "720", "2589", "893", "2756", "722", "4663", "5710", "1688", "2602", "4983", "2862", "3173", "3204", "2803", "2081", "895", "1423", "6371", "3205", "1562", "4104", "3207", "5451", "2786", "3218", "1078", "5", "6010", "1055", "2045", "1684", "6", "5140", "4280", "47", "6216", "2836", "4880", "4878", "3195", "c_a62dbeba", "5317", "4099", "3198", "4879", "3197", "140", "4198", "147", "143", "146", "3202", "377", "393", "396", "1135", "3201", "4208", "145", "809", "3579", "810", "3577", "6081", "2771", "8", "2748", "621", "2781", "4130", "1616", "6367", "1337", "5151", "620", "482", "1567", "2851", "4524", "4828", "2452", "2275", "6173", "4817", "1791", "2864", "6013", "2216", "957", "4675", "1333", "5092", "5964", "55", "60", "61", "3602", "3446", "75", "1635", "435330", "805", "804", "803", "3006", "4574", "806", "1592", "183", "1591", "3145", "2696", "5541", "1979", "2565", "2646", "2863", "2998", "4242", "2993", "2100", "588", "6134", "2135", "2134", "174", "c_03f9a8ac", "2165", "4360", "1165", "5480", "1782", "4855", "1811", "3443", "2629", "1161", "1156", "6064", "c_406ad4cc", "7926", "c_5b447e3a", "2792", "6910", "4286", "814", "830", "829", "3005", "820", "819", "824", "6754", "828", "816", "821", "815", "822", "5206", "827", "817", "823", "2359", "1178", "1247", "4193", "227", "4202", "874", "4201", "4191", "4194", "1200", "3007", "3060", "4204", "6749", "6748", "6174", "6753", "5374", "1672", "5372", "2889", "150", "7201", "115", "3121", "3543", "447", "871", "3542", "3004", "1122", "2129", "110", "1193", "2264", "c_5f90006e", "7948", "6752", "45", "1956", "7942", "4492", "7956", "c_5a7a0d82", "6751", "5205", "1307", "644", "215", "733", "3583", "5081", "2831", "7", "1365", "2303", "4292", "3452", "3458", "5610", "5786", "3439", "3442", "5591", "3437", "5783", "3441", "7809", "3440", "3436", "4127", "2637", "5321", "3431", "3420", "1944", "4417", "2567", "6363", "3429", "3432", "7987", "c_9104c45f", "4156", "4822", "2905", "6380", "3447", "6379", "2499", "472", "5053", "3448", "7340", "2005", "3488", "4596", "1347", "359", "5121", "1345", "4216", "3463", "3466", "3465", "5420", "2901", "5870", "5537", "2095", "1379", "5833", "6007", "2928", "2850", "5574", "3462", "1663", "3219", "2087", "3223", "3480", "5744", "3241", "3479", "3228", "3196", "c_39046afb", "3870", "3481", "5124", "3650", "3206", "3483", "435", "3468", "3473", "3482", "3470", "5486", "2926", "5638", "6704", "6372", "5449", "5126", "c_99e6dc30", "4275", "4270", "3500", "2986", "5831", "8355", "3502", "8357", "3501", "c_e78f03db", "8354", "4269", "8356", "3499", "c_7d7608fa", "c_ff638149", "2053", "1306", "1517", "2071", "3498", "406", "1869", "4696", "1743", "5773", "2485", "6024", "c_959c23de", "3496", "3112", "6117", "1930", "5753", "5957", "3505", "3506", "3504", "3453", "6927", "411", "440", "6375", "5335", "c_47ea173d", "498", "3495", "c_54f7dd1f", "1214", "c_7cbc24fd", "1436", "541", "1210", "3493", "3076", "5125", "3075", "c_f7430876", "c_50620749", "807", "3077", "899", "737", "4055", "881", "5337", "949", "845", "969", "922", "3003", "910", "986", "500", "2909", "4221", "207", "6373", "224", "210", "208", "226", "5551", "220", "5546", "2285", "213", "435164", "6917", "2300", "223", "c_8f1cd55b", "5545", "4121", "217", "4123", "216", "221", "2298", "6920", "218", "211", "209", "5779", "3491", "225", "4225", "1763", "324", "2625", "2131", "1031", "3409", "322", "330", "2396", "7133", "323", "6321", "2025", "320", "5792", "4734", "329", "6320", "318", "1260", "5462", "1755", "1856", "768", "4095", "4251", "3408", "2115", "715", "721", "4427", "6322", "713", "1224", "4163", "1898", "1585", "1167", "1937", "1929", "4743", "1919", "2989", "2511", "8459", "c_8b0ac3e2", "2173", "2971", "2969", "2444", "2965", "1595", "2970", "2445", "6100", "2915", "4117", "638", "6311", "6308", "1849", "579", "1788", "1598", "7204", "2404", "6328", "6323", "6329", "5316", "1064", "1066", "8437", "1068", "1067", "1065", "2992", "2994", "943", "6331", "563", "2995", "4352", "5219", "4336", "2920", "6326", "1513", "2893", "926", "2194", "2975", "2977", "2974", "2892", "4404", "2622", "2624", "2068", "3576", "1686", "1201", "2976", "1144", "2938", "5096", "1958", "4298", "4771", "4312", "3265", "5373", "1342", "222", "319", "6317", "2419", "568", "2544", "327", "328", "636", "4142", "6318", "624", "2536", "2596", "370", "4490", "1521", "2842", "1483", "2925", "2410", "832", "325", "4444", "4338", "4708", "4450", "4448", "4445", "4447", "4674", "152", "764", "2409", "4081", "846", "c_39cda9ba", "2985", "2560", "842", "2211", "5034", "5252", "6918", "4612", "2718", "2310", "c_cb1ce6ff", "4260", "2307", "2311", "2384", "3000", "2999", "714", "2435", "313", "2395", "1961", "2411", "2305", "2308", "2561", "1035", "2921", "4790", "1159", "2879", "2556", "5255", "2455", "c_8702d5f7", "5228", "3679", "3682", "3424", "2725", "4257", "5906", "936", "1738", "2981", "2980", "1525", "577", "6314", "2983", "939", "559", "942", "615", "1947", "2655", "2978", "3009", "4811", "5226", "983", "944", "4337", "938", "586", "963", "1890", "964", "982", "3634", "2721", "2713", "2722", "4285", "6292", "1465", "6294", "4863", "c_b18ab65c", "479", "4239", "2399", "2177", "5147", "3304", "3633", "5123", "c_ab46334d", "529", "2816", "5238", "1487", "3669", "6302", "3672", "1439", "1894", "3670", "2922", "c_de4d6f2f", "6305", "3668", "3671", "6306", "2916", "3667", "2924", "5237", "c_fea6771b", "5236", "3657", "3654", "3660", "3586", "2795", "c_7bc27da2", "3652", "3655", "2797", "3656", "c_99a79cea", "2801", "4890", "4930", "3795", "3796", "4111", "3800", "3801", "6361", "3640", "3803", "2076", "3645", "3649", "4082", "866", "3997", "71", "179", "1848", "4253", "3744", "180", "3695", "3694", "3691", "3696", "3698", "3697", "3692", "3693", "6299", "3909", "3651", "923", "3636", "7219", "5383", "5928", "5973", "4496", "7931", "6362", "3108", "3117", "3110", "1645", "4464", "3111", "4318", "3115", "3116", "2457", "1433", "5295", "5908", "555", "3109", "4536", "2400", "5212", "6850", "648", "4033", "4379", "4387", "4805", "5324", "3100", "6020", "2325", "3143", "4162", "172", "6021", "3107", "4408", "195", "c_c8c80a5b", "2039", "c_ea3f5ed2", "5471", "3125", "1033", "5239", "5216", "5677", "3093", "4527", "4510", "4528", "4537", "4506", "4516", "4530", "6851", "2350", "5152", "3428", "4529", "4152", "818", "4535", "3114", "3113", "c_4c441ea0", "3120", "4531", "4511", "4509", "4541", "3097", "6848", "4651", "4526", "4532", "3614", "4517", "4518", "4508", "4519", "4521", "4540", "4514", "4533", "4827", "569", "1037", "5211", "3130", "5077", "2041", "3129", "2513", "3105", "6911", "1447", "2040", "1036", "1032", "3435", "5210", "2571", "896", "4550", "1503", "5208", "592", "4546", "1653", "1926", "c_e4f135ba", "4039", "c_2efea99f", "855", "3574", "4252", "2161", "238", "3566", "2082", "533", "6022", "4000", "3564", "4887", "1443", "194", "5587", "2046", "98", "3572", "2266", "3374", "5982", "5975", "6344", "5983", "5981", "3515", "5980", "5979", "5976", "5977", "5978", "2284", "3534", "104", "7212", "c_090e8e94", "3532", "6345", "7191", "1073", "7209", "7210", "6008", "4552", "5940", "3529", "3530", "4549", "3525", "506", "4547", "2904", "3519", "2427", "4029", "4700", "8549", "731", "3523", "2330", "1742", "3518", "2454", "545", "284", "1646", "5329", "4332", "3626", "3623", "2267", "4090", "4273", "2342", "2943", "3562", "5475", "166", "414", "3559", "3849", "3850", "3555", "3653", "687", "1866", "1026", "3553", "3556", "3688", "3557", "3664", "3843", "2619", "481", "732", "5080", "2207", "4563", "6745", "3540", "c_95b02746", "4555", "4557", "6354", "c_9eb9cbaa", "4562", "4559", "2868", "2555", "2550", "1529", "4556", "3539", "1739", "1740", "4561", "4558", "735", "4054", "5207", "372", "3537", "1946", "5632", "6348", "4113", "4851", "2593", "3325", "5755", "c_a9a17fe5", "2126", "6350", "376", "6717", "3854", "3545", "2788", "2784", "1011", "1928", "149", "2422", "5069", "6014", "244", "3964", "7343", "6888", "2261", "2259", "6886", "7378", "2255", "7377", "2262", "2257", "3050", "2254", "2253", "2260", "2251", "2250", "2252", "7376", "955", "954", "1137", "582", "5357", "190", "1599", "5867", "5549", "7337", "2245", "2244", "5068", "18", "5379", "1197", "2072", "7952", "3040", "1303", "1336", "3680", "1344", "1778", "3049", "4328", "7217", "4120", "362", "2968", "1046", "340", "5450", "3088", "4272", "361", "206", "4136", "6894", "68", "442917", "5118", "8466", "5120", "38", "7934", "5945", "5852", "c_46f6aaeb", "878", "c_9829e6b7", "390", "2296", "7353", "65", "5119", "5502", "5501", "2854", "5657", "27", "391", "4451", "3031", "1172", "39", "6897", "4011", "7365", "2700", "3862", "5536", "2695", "3038", "5217", "4012", "35", "1438", "3703", "2861", "1558", "4449", "6892", "4119", "4754", "4762", "1062", "4091", "3984", "4147", "5851", "3313", "4159", "1750", "1753", "1746", "4593", "697", "700", "704", "5607", "699", "696", "701", "5067", "4759", "4760", "4761", "3035", "7215", "5064", "1471", "360", "5984", "4766", "2268", "4765", "5105", "363", "706", "5097", "4322", "702", "2966", "6890", "4368", "3044", "698", "3982", "3977", "3981", "3383", "6882", "6881", "5622", "5626", "6885", "5621", "887", "5625", "5623", "7197", "4093", "381", "1588", "1601", "7216", "1829", "907", "3096", "1967", "7413", "2033", "1478", "4188", "971", "c_3a2df4eb", "1785", "5875", "1138", "2030", "1823", "6862", "1479", "135", "633", "1614", "435136", "32", "905", "3048", "2583", "3046", "5114", "2576", "2578", "2581", "2582", "2580", "2579", "2577", "382", "5483", "6883", "3002", "7386", "1977", "3016", "2020", "4950", "3020", "1174", "3413", "1966", "1173", "436", "2263", "3042", "2588", "5805", "6884", "5669", "5891", "2009", "1999", "1751", "1931", "2000", "2007", "1198", "419", "2154", "7373", "2003", "2011", "2073", "7416", "470", "3056", "8428", "2010", "2004", "4153", "4729", "c_57f3c49f", "4730", "2162", "4087", "c_2f00dd5a", "c_af502da0", "3057", "4180", "3561", "4182", "3226", "5313", "7184", "4181", "1749", "1998", "3517", "49", "5897", "1192", "6893", "7189", "309", "4959", "c_9eea2203", "7385", "3589", "8419", "3379", "7187", "5841", "2155", "3054", "1437", "3237", "67", "6017", "7370", "7390", "7399", "3922", "578", "527", "576", "1484", "7350", "6729", "6611", "6257", "1589", "c_7afb6cd4", "1550", "6609", "528", "148", "5813", "6023", "485", "5836", "5415", "5414", "5835", "c_0f3b8370", "7929", "435469", "5817", "2913", "2704", "2699", "3974", "6617", "3966", "c_6496f5ea", "6619", "6618", "5809", "8458", "930", "5954", "1080", "5616", "3969", "7200", "5596", "2819", "3936", "2031", "2818", "234", "948", "4503", "3938", "3937", "4625", "546", "2249", "2813", "5093", "3932", "2812", "2815", "3497", "186", "96", "4274", "164", "5598", "2833", "564", "3902", "3915", "1626", "520", "3917", "2828", "857", "7348", "3916", "c_ba4acdb2", "585", "3911", "3906", "1620", "1636", "1628", "1619", "1625", "583", "543", "1621", "1618", "455", "454", "458", "3912", "456", "5592", "3910", "459", "2834", "6254", "6230", "6231", "457", "688", "516", "6628", "3914", "7411", "689", "512", "513", "3913", "514", "3565", "435196", "4009", "8457", "3503", "518", "4334", "8456", "542", "8411", "1633", "551", "581", "4238", "537", "6923", "2034", "552", "2035", "3521", "488", "7944", "8417", "245", "5571", "574", "8420", "3355", "6612", "3943", "3944", "8449", "3993", "5489", "6615", "6614", "5142", "5490", "4695", "5631", "2314", "3959", "5271", "3958", "2631", "3957", "3588", "1549", "3953", "3962", "3963", "2353", "3955", "877", "3961", "575", "7349", "1537", "3990", "2441", "2124", "1735", "1938", "5141", "1543", "2982", "1539", "5692", "42", "1541", "5691", "6623", "6621", "c_bf1e2c81", "6140", "c_5ea6e5c4", "5351", "5196", "1367", "453", "3422", "3404", "156", "3585", "4330", "616", "4359", "5422", "4220", "1482", "3030", "5200", "6909", "4441", "6120", "4501", "4478", "4072", "671", "6763", "5905", "5178", "269", "5177", "1597", "280", "590", "3968", "5176", "5175", "1419", "854", "2397", "384", "2932", "674", "673", "677", "675", "669", "2313", "781", "676", "779", "3279", "c_243b7be2", "1784", "4534", "7341", "1098", "1444", "1081", "1950", "7388", "3216", "3280", "48", "1380", "1927", "5266", "4357", "2794", "2196", "684", "5094", "2973", "2195", "373", "3615", "5102", "3606", "184", "446", "6037", "925", "3177", "6261", "3607", "6275", "6908", "6262", "5333", "4430", "3026", "6019", "5181", "6030", "3024", "4821", "5334", "5595", "773", "1696", "5613", "3027", "5949", "c_04ae3ba8", "5684", "5355", "5441", "5862", "628", "631", "5687", "629", "627", "782", "789", "794", "787", "796", "785", "679", "793", "799", "792", "800", "1071", "790", "801", "1070", "780", "3277", "788", "682", "3276", "5603", "678", "783", "672", "798", "670", "680", "681", "791", "2918", "1079", "c_40f54e0c", "6188", "774", "441", "1752", "5109", "8470", "4295", "438", "4456", "2859", "1076", "4137", "5627", "2891", "5311", "5628", "7364", "1902", "1962", "6765", "7368", "4144", "1681", "7363", "487", "5277", "7379", "5665", "4905", "c_cdec6719", "6767", "3930", "5340", "c_25ddd844", "1978", "452", "4168", "492", "7369", "4139", "6766", "242", "31", "5356", "4626", "5066", "2492", "451", "6769", "7398", "4865", "1705", "1629", "1385", "1366", "3580", "1392", "5184", "667", "1363", "5188", "2566", "c_b12a760a", "6088", "4424", "3255", "5793", "8418", "5191", "175", "29", "2013", "2185", "3873", "2176", "3856", "2125", "3869", "c_a02d5941", "2392", "c_764bcd4e", "25", "5765", "6163", "3675", "2026", "5688", "c_d3334ae3", "5495", "2199", "2105", "5479", "7193", "5991", "1194", "6129", "c_9fe65404", "4604", "2147", "1034", "3514", "5044", "2070", "5086", "7202", "5656", "c_7bf10a38", "6114", "1045", "3710", "6083", "2432", "6016", "1022", "7933", "2791", "5250", "8393", "2431", "4614", "4002", "258", "3709", "2885", "124", "123", "8384", "2145", "1043", "2093", "2144", "2142", "2143", "968", "4616", "4595", "4591", "992", "7203", "2130", "450983", "4812", "2141", "5249", "4594", "8381", "1507", "8382", "4611", "8383", "2118", "c_acf7832d", "5264", "6338", "7220", "5430", "7415", "4064", "2116", "3676", "7211", "6116", "c_5bad9438", "5738", "4872", "1094", "1190", "c_ce38fff4", "3725", "8402", "4615", "2094", "6336", "1838", "5279", "5446", "120", "8398", "2103", "2202", "4586", "5107", "6159", "8399", "5341", "4744", "8400", "8403", "3722", "2102", "5530", "2137", "2146", "8370", "1657", "987", "1044", "1664", "8404", "312", "5282", "c_2f64fd66", "991", "1510", "3853", "125", "6207", "906", "5365", "3720", "2183", "8488", "6091", "5557", "5460", "5248", "6160", "7186", "3718", "4597", "3715", "4588", "4859", "2123", "7185", "121", "129", "c_90ad7755", "5284", "176", "421", "2829", "8396", "5679", "450898", "4844", "2381", "1935", "3756", "3757", "3754", "3746", "5386", "5387", "3745", "5260", "4489", "3750", "3753", "3747", "2821", "3749", "5861", "6697", "c_22f8c0e6", "4631", "2917", "3785", "642", "534", "4507", "6044", "4293", "308", "c_d8d35f08", "475", "3735", "6079", "1685", "4886", "5201", "3736", "746", "203", "4420", "6043", "3741", "2772", "1141", "2366", "3734", "3733", "3764", "3765", "1061", "3766", "3767", "4423", "6702", "c_eb46b396", "749", "4900", "750", "756", "757", "748", "4892", "754", "4042", "c_e0e4608a", "4422", "3731", "2903", "3782", "751", "3786", "747", "6047", "1840", "5577", "5579", "400", "401", "5057", "5452", "5825", "5590", "5158", "5554", "c_34746c6e", "5844", "1460", "3560", "2592", "3259", "1311", "5854", "8465", "5937", "5519", "5421", "7927", "2140", "447472", "5508", "6054", "4838", "5645", "5680", "4071", "5251", "1048", "c_871b5612", "3717", "7938", "6128", "8284", "2164", "5426", "2153", "c_047e5912", "6049", "441001", "448275", "c_edee9606", "6219", "7126", "6072", "447917", "c_f5ed5adb", "7985", "7937", "6076", "7928", "7221", "5310", "5354", "447756", "5641", "6256", "7936", "c_8a658bb0", "447958", "5427", "5757", "7222", "8439", "c_4768a12e", "7983", "2198", "5425", "5642", "447795", "447660", "c_96124aaf", "6255", "c_bbc13d07", "4046", "5342", "7984", "4038", "2243", "128", "256", "255", "5455", "114", "4177", "5762", "4175", "5885", "c_8a6f744c", "2324", "12", "4063", "6222", "5544", "5547", "5788", "1474", "442821", "5763", "5873", "5409", "5407", "7932", "4183", "5629", "5499", "5948", "3234", "5418", "1464", "4070", "3299", "c_59f9c651", "6274", "5344", "5343", "5327", "40", "4125", "4030", "43", "36", "5127", "7930", "2927", "3102", "440549", "440523", "449", "3484", "4014", "4015", "4020", "4022", "6284", "349", "4457", "8474", "7194", "4066", "4065", "5606", "5534", "5498", "5411", "2897", "4018", "1551", "2247", "4482", "c_777eba81", "4032", "5871", "8553", "4068", "443137", "4035", "7127", "4481", "4480", "6142", "4031", "6725", "4034", "6726", "2369", "1245", "4205", "892", "3923", "2453", "1670", "3933", "3947", "307", "4094", "2856", "1151", "c_a935cf3f", "2114", "1278", "1148", "6715", "3931", "6390", "1892", "6383", "3790", "632", "2367", "4921", "2232", "685", "710", "1896", "3293", "5968", "3925", "1835", "709", "4110", "4109", "4108", "5966", "4107", "5301", "2376", "3292", "3291", "5287", "5018", "5019", "4315", "4317", "3793", "1170", "4316", "1563", "4319", "1511", "2847", "2845", "2846", "2849", "1176", "1814", "1175", "240", "241", "2958", "1565", "4227", "1568", "4860", "1571", "5073", "1836", "1102", "301", "1573", "303", "1943", "4984", "1406", "1394", "3563", "1374", "2277", "1271", "136", "5031", "1113", "1378", "93", "1395", "5967", "2710", "666", "5078", "4454", "5088", "5384", "252", "1667", "1556", "1554", "4173", "4059", "5363", "5361", "4497", "2193", "4994", "1891", "4215", "1932", "1744", "4571", "3732", "3898", "1714", "4566", "1607", "1609", "1603", "1608", "5231", "1605", "1604", "4858", "4857", "1781", "1285", "2548", "6042", "2136", "3724", "4145", "1668", "4472", "2064", "2345", "4210", "4373", "2950", "2948", "1261", "5106", "1117", "1120", "1118", "1119", "693", "4582", "1116", "2888", "4207", "4681", "1907", "5728", "2121", "5263", "1564", "2302", "c_60d786af", "387", "5232", "6790", "1654", "2732", "2749", "6789", "6787", "2730", "4311", "2738", "2731", "79", "1250", "2212", "2733", "2729", "2753", "1240", "2776", "2762", "c_16b63d4f", "2757", "2779", "2741", "2764", "2782", "2760", "2777", "2962", "4083", "2752", "2743", "473", "2226", "386", "4726", "2887", "4294", "1857", "132", "4498", "6039", "2963", "741", "683", "2133", "2658", "463", "8311", "8332", "8324", "8328", "8304", "8317", "1288", "c_8331ae25", "5352", "c_791e9f27", "246", "2293", "c_bbd07d89", "c_be8fda35", "c_f2f1fb47", "c_0a700c19", "2853", "c_c44f1704", "5041", "7842", "7847", "7850", "7849", "7846", "7845", "7841", "7840", "7844", "7853", "7843", "7848", "7851", "7852", "8491", "8490", "8494", "8496", "8497", "8493", "8492", "8495", "3395", "5076", "3394", "1730", "3393", "1177", "1187", "1209", "2210", "5037", "4781", "1101", "5637", "1248", "1249", "1660", "1189", "4632", "511", "6237", "6242", "6246", "6238", "6239", "6245", "6240", "6241", "6198", "6200", "6197", "6202", "6194", "6201", "6199", "6195", "6196", "3891", "1586", "1701", "4823", "2570", "1100", "4660", "4568", "5091", "4640", "1659", "5098", "4155", "1960", "2139", "2379", "1813", "4468", "5075", "725", "5947", "2021", "113", "1610", "1230", "5932", "4825", "5470", "1239", "3711", "5880", "5730", "3918", "3713", "3903", "4847", "4835", "4560", "5879", "5039", "3726", "8280", "4693", "1", "4678", "4659", "2074", "5027", "8279", "3719", "1096", "1020", "8282", "4297", "1097", "8283", "3752", "232", "4296", "4206", "8281", "7828", "7829", "7827", "7821", "7822", "7818", "7825", "7826", "7824", "7819", "7823", "7820", "c_de77a2c0", "c_d4ca9a6c", "c_4b33c289", "c_e6d358a0", "c_46e54685", "c_c5c9cfc7", "c_d3974887", "7889", "4458", "1183", "1295", "4171", "334", "839", "2315", "7890", "495", "1717", "305", "4459", "4244", "7881", "6251", "6248", "6247", "6250", "7880", "6249", "7904", "7899", "7901", "7902", "7905", "7903", "7900", "5517", "3039", "3084", "3061", "7862", "7864", "7866", "7867", "7865", "7858", "7860", "7857", "7859", "7856", "7877", "7878", "7870", "7873", "7869", "7871", "7872", "7875", "7876", "7874", "7830", "7839", "7834", "7838", "7836", "7854", "7837", "7835", "7965", "7979", "7972", "7976", "7967", "7970", "7968", "7977", "7971", "7978", "7966", "7973", "7974", "7980", "7975", "7969", "2289", "3384", "3388", "1127", "6282", "6283", "2354", "3385", "3391", "4172", "3392", "869", "3382", "1873", "5273", "3390", "3822", "3387", "2038", "3386", "5423", "291", "332", "302", "342", "357", "3804", "351", "3799", "3407", "8371", "8374", "5774", "4649", "3381", "1290", "7208", "1180", "2362", "1606", "1624", "261", "1716", "236", "1903", "2546", "1862", "6279", "4776", "1727", "5777", "4778", "2291", "2612", "2613", "2614", "2822", "4258", "4266", "1895", "2907", "2902", "4265", "3326", "4268", "2066", "4267", "4213", "4262", "4302", "3085", "1901", "770", "3086", "1728", "6786", "1352", "1731", "634", "3400", "4250", "1041", "1040", "2910", "1038", "1421", "4254", "3080", "430", "310", "6143", "2299", "5148", "2295", "2933", "358", "2569", "2297", "6781", "4223", "461", "1472", "274", "5146", "3533", "5992", "3071", "3068", "835", "889", "723", "862", "3069", "3070", "976", "745", "797", "786", "766", "8460", "995", "2407", "2393", "2408", "2406", "1409", "4077", "369", "202", "2490", "2461", "c_1138d9d2", "2518", "410", "1463", "3066", "2465", "2458", "2844", "2462", "3194", "653", "660", "658", "661", "c_87ccc7c3", "652", "3082", "659", "647", "643", "639", "7951", "655", "650", "4008", "4016", "4021", "4013", "6783", "6032", "654", "1792", "646", "c_68ddcc11", "5840", "649", "4601", "c_8bf65f26", "657", "640", "5564", "2062", "5056", "3684", "834", "6785", "3319", "3072", "2575", "836", "4372", "3328", "3083", "2778", "59", "3333", "536", "3073", "5845", "5457", "c_a6b5bad0", "c_6eb6fb87", "5443", "c_12742da8", "431", "1542", "5433", "462", "6782", "2516", "c_c8363c09", "1468", "3067", "3079", "4129", "3052", "5846", "3047", "3064", "4128", "3078", "3081", "3043", "243", "412", "420", "3157", "5482", "4802", "413", "416", "4165", "5958", "1335", "4800", "339", "6410", "5336", "6412", "6411", "5294", "1269", "6103", "c_fa0acac6", "344", "6408", "6409", "347", "c_2b70515a", "345", "612", "4141", "346", "3188", "6720", "5048", "2521", "4308", "5319", "c_be0de7b7", "2530", "6413", "2527", "2539", "2542", "3159", "3161", "2531", "2534", "2541", "2540", "3164", "6407", "2532", "3163", "6414", "2538", "3162", "2537", "2526", "2528", "3531", "3536", "3153", "3538", "3546", "3551", "3535", "3528", "3687", "972", "865", "1030", "3149", "3154", "260", "1987", "1870", "4785", "2389", "3414", "2107", "c_93670e37", "415", "1287", "5697", "4786", "89", "3967", "4940", "664", "5741", "844", "3136", "2611", "177", "2824", "2626", "2877", "6400", "434843", "434786", "434966", "434938", "434909", "2947", "3133", "718", "c_749f2ce9", "2869", "535", "c_bb1a60eb", "3139", "6396", "1157", "5682", "8550", "6397", "4074", "3140", "5794", "2919", "1160", "1709", "c_165899a6", "c_d8ba2fe4", "3144", "3141", "2841", "5225", "4801", "3142", "134", "2826", "1706", "2827", "6398", "6131", "2201", "8300", "6148", "6161", "5370", "168", "6252", "690", "1298", "8373", "1168", "1291", "4848", "2547", "3823", "1019", "336", "2084", "4320", "1294", "1509", "1774", "4580", "1182", "5989", "3814", "1519", "863", "2563", "1504", "4353", "4324", "3774", "1874", "1085", "4839", "1712", "2286", "1649", "1318", "1965", "2543", "5563", "5898", "5713", "1125", "5469", "5859", "5695", "6223", "3763", "5860", "1255", "5063", "5876", "5892", "5746", "5946", "5458", "5858", "1188", "5100", "1899", "888", "1338", "5969", "4707", "2089", "2368", "1767", "1254", "4164", "5049", "235", "4453", "4160", "1524", "1355", "4375", "1768", "4862", "4461", "4775", "1968", "1518", "1555", "4966", "1584", "2052", "4246", "2222", "4732", "5694", "5925", "5693", "5944", "5770", "5721", "434", "1770", "5951", "6904", "5732", "6741", "5594", "3289", "5305", "5307", "5306", "5902", "c_7dda56e2", "6903", "6929", "c_abfaf2ea", "5292", "3844", "5899", "5878", "5938", "1594", "5810", "1854", "6565", "3288", "3885", "1855", "5293", "7355", "3368", "3364", "2843", "3375", "c_41ef4cb8", "5731", "3372", "1181", "5894", "1084", "3366", "1256", "464", "876", "1442", "2078", "c_1af36ac9", "4230", "961", "5734", "4733", "4635", "3815", "3813", "5914", "5818", "3596", "83", "4881", "2870", "5653", "7339", "6545", "5690", "7361", "6546", "4229", "6001", "6000", "5997", "5998", "5999", "6003", "4112", "2471", "5882", "5994", "8442", "6559", "5162", "5165", "5163", "5164", "7342", "5297", "450925", "6562", "4098", "5896", "4100", "2122", "4877", "5513", "c_e9ccc5a7", "5747", "4102", "4103", "1389", "2601", "3249", "7946", "3332", "7981", "1369", "3512", "3751", "2604", "1399", "3412", "7382", "c_b0c14f45", "185", "1462", "6541", "3323", "934", "760", "4495", "6534", "8448", "6625", "4007", "2197", "761", "762", "759", "3302", "3305", "4504", "162", "4278", "6737", "851", "7359", "4834", "5488", "5429", "7395", "476", "477", "4741", "5712", "4709", "1703", "3380", "591", "4606", "547", "2908", "6543", "4259", "2554", "974", "1993", "1992", "2480", "1949", "3464", "1865", "5280", "5281", "975", "2340", "160", "2333", "2594", "1528", "758", "c_3a9ccfe3", "6557", "6555", "6553", "6739", "375", "6743", "5560", "5512", "1710", "2265", "3748", "3330", "2174", "2944", "3331", "1527", "3336", "c_e2de1ffd", "3335", "443600", "6554", "443629", "c_67699417", "3705", "4471", "3340", "8461", "5099", "8472", "c_6e3cbbca", "3339", "3608", "1373", "3343", "3341", "4767", "1404", "8471", "3118", "3702", "6121", "5723", "c_d6ede0c7", "3613", "5766", "853", "3338", "5396", "3351", "3349", "5636", "6550", "6548", "5484", "6113", "5395", "5060", "6253", "6105", "2514", "2156", "2424", "981", "1964", "1880", "2428", "1736", "5288", "3838", "1779", "4647", "2056", "3835", "5988", "4783", "5304", "4462", "3836", "2568", "6018", "879", "4990", "1446", "316", "3834", "4577", "5065", "3832", "1059", "1515", "1516", "6821", "1827", "2425", "6822", "4856", "5993", "3690", "3881", "8435", "2744", "1042", "5971", "5046", "1499", "5055", "5045", "4676", "989", "5242", "5241", "2430", "3818", "1382", "1381", "1383", "3811", "5410", "3863", "5500", "5927", "5888", "5532", "5466", "3610", "2228", "3883", "5014", "5244", "5346", "5467", "988", "3884", "1650", "5013", "3478", "169", "3471", "6824", "2765", "2751", "5819", "2780", "2936", "3600", "3616", "70", "3625", "2686", "299", "1493", "4624", "4833", "850", "2712", "3621", "3620", "990", "3893", "3892", "4680", "3541", "3303", "4166", "1341", "3728", "2623", "c_a3b85311", "c_e749c083", "248", "262", "2098", "5362", "c_a18525ab", "c_f007e95f", "3235", "5153", "947", "2946", "4493", "5157", "2386", "5240", "4749", "2890", "3240", "4226", "1952", "2394", "1132", "2805", "2798", "3148", "3674", "2678", "4818", "2675", "4397", "5011", "2684", "4391", "2799", "508", "1698", "1959", "7384", "7383", "426", "2960", "c_d1f03d01", "5804", "5943", "5584", "6212", "c_9a1bc51d", "5917", "433", "1808", "1812", "4393", "2240", "c_2ffe4574", "1974", "1975", "1972", "903", "902", "901", "900", "3220", "4392", "2900", "5647", "562", "7351", "742", "3263", "4814", "5090", "4774", "4813", "4752", "3247", "4815", "5089", "4795", "4784", "4806", "c_ee45cd99", "c_dd52c1e9", "c_dcc650ef", "c_7f2d2214", "c_14d71455", "c_9ffe3bdc", "1476", "5023", "4394", "1970", "300", "1973", "587", "1918", "1300", "1858", "882", "880", "2225", "1351", "5602", "6151", "4603", "4437", "5751", "3183", "5820", "5369", "1642", "1644", "3180", "5368", "3181", "6155", "2321", "4500", "5935", "97", "2322", "812", "2047", "2048", "5750", "4477", "8552", "2049", "4389", "3190", "2961", "3191", "3175", "4440", "3568", "1006", "3267", "4310", "287", "3065", "4347", "2839", "2401", "5666", "3169", "1641", "5376", "6926", "5033", "2746", "4666", "4673", "4670", "4668", "4665", "4669", "3210", "4664", "4672", "4667", "5015", "1305", "5058", "7947", "1578", "5771", "771", "c_f2c7a2f7", "5696", "3604", "3603", "263", "3658", "72", "407", "3213", "2434", "3211", "3592", "3212", "3214", "6901", "3199", "5353", "1090", "442884", "1477", "24", "1199", "3217", "4288", "4289", "1996", "1226", "1225", "4036", "2871", "c_e5dbcb63", "1425", "3678", "2750", "6369", "4131", "7136", "4122", "1881", "4403", "811", "3591", "5367", "1839", "4240", "3094", "46", "1136", "6115", "6145", "6146", "c_8150867f", "4290", "1054", "1721", "1711", "2217", "6210", "c_b3d1a308", "c_0e4239f5", "c_441fb0c4", "266", "279", "265", "1083", "264", "277", "268", "267", "275", "276", "4641", "5202", "409", "1815", "1057", "4884", "1673", "c_fa8f51b0", "63", "62", "367", "4842", "2355", "392", "2911", "5270", "76", "5267", "3306", "3008", "2837", "1662", "478", "64", "519", "5332", "4309", "931", "354", "1980", "1982", "1981", "894", "928", "918", "6755", "2016", "2358", "4200", "3896", "4199", "4196", "6757", "4192", "5658", "1051", "3122", "960", "1674", "5218", "1301", "5389", "4158", "4203", "437", "380", "998", "4313", "6750", "999", "3821", "5724", "4140", "3444", "4106", "2097", "3445", "1441", "2595", "3419", "2557", "366", "3426", "3425", "3427", "5453", "5660", "5468", "3434", "5952", "3433", "6377", "5801", "5901", "7412", "5827", "3644", "5525", "3637", "2835", "3367", "7935", "6898", "3472", "201", "3490", "5485", "5394", "5639", "5375", "2380", "6919", "8410", "2949", "3455", "3454", "6930", "7213", "8441", "6376", "1215", "1213", "1212", "7214", "1008", "80", "2793", "4348", "958", "2294", "6374", "4843", "3295", "4627", "231", "1467", "2006", "5122", "860", "6124", "2356", "5047", "8464", "994", "4576", "6112", "2988", "1612", "3308", "2990", "1233", "4854", "1888", "1908", "4747", "4745", "4746", "1988", "4395", "4236", "6048", "755", "870", "6310", "6312", "6309", "191", "604", "6313", "2979", "645", "4255", "1475", "984", "1789", "1445", "2426", "2415", "2997", "2996", "6324", "6721", "6327", "5016", "5950", "2935", "2934", "2621", "2937", "2620", "131", "1577", "1534", "3345", "6319", "767", "765", "1719", "2204", "4484", "5227", "2987", "2357", "1146", "4388", "5012", "4637", "4650", "6928", "2438", "2437", "2436", "c_623f2583", "1204", "2306", "2304", "4829", "4788", "133", "5257", "5254", "5253", "2309", "5256", "2872", "915", "2329", "3001", "544", "2323", "997", "5229", "2984", "2727", "3275", "6315", "2709", "6316", "808", "595", "228", "4876", "4446", "4327", "1179", "4339", "2360", "2017", "2237", "4613", "2667", "4287", "4281", "6293", "4232", "3629", "2708", "2714", "2717", "831", "641", "3628", "4346", "2719", "7129", "c_c95f62c1", "1640", "1821", "3663", "167", "5042", "3095", "c_20f6ad03", "6304", "6264", "6271", "6270", "6267", "6269", "6272", "6263", "6303", "c_4254375b", "8454", "304", "c_18ac5876", "6171", "5768", "1669", "4721", "996", "4575", "4819", "3805", "2421", "3802", "2694", "2693", "2692", "3647", "3648", "5726", "3646", "2077", "1252", "2852", "867", "c_18802d13", "3848", "6300", "c_ab84e157", "c_79e507c2", "c_50fb9d42", "c_d6e5f3ab", "5461", "3639", "4419", "4421", "3638", "6297", "2206", "c_a02c420c", "c_28c51c2a", "5887", "730", "5889", "4047", "3266", "4386", "3269", "5215", "5214", "2865", "4378", "4382", "3103", "5213", "1099", "4398", "531", "2301", "2663", "2326", "6855", "c_52792cef", "8463", "4438", "1238", "3905", "5699", "2132", "1142", "6852", "2349", "2343", "2352", "1655", "4542", "4622", "5865", "4512", "5392", "158", "5401", "3681", "3089", "6849", "4538", "254", "848", "4655", "4656", "4652", "5331", "4654", "3090", "2433", "3430", "2234", "193", "4657", "3127", "4653", "3438", "2233", "1283", "5209", "4520", "1195", "7945", "2043", "4830", "4832", "985", "2282", "2283", "5103", "5101", "3700", "2316", "2044", "4736", "4735", "3321", "2728", "3550", "163", "4551", "4553", "1243", "593", "2953", "1535", "4435", "1257", "1259", "3548", "1761", "825", "1334", "1853", "1280", "5612", "2857", "1273", "2375", "8416", "7188", "5588", "5527", "1689", "3417", "1186", "3573", "3575", "2279", "5604", "6026", "3569", "4233", "1424", "157", "3363", "6051", "3571", "7810", "6718", "3552", "5941", "3527", "4548", "4544", "3516", "3520", "6347", "1638", "6346", "532", "6099", "1634", "3524", "1648", "1647", "7949", "6236", "1343", "6355", "6357", "2807", "6356", "5436", "6150", "1349", "625", "3845", "4820", "5869", "3847", "5085", "5084", "1783", "2209", "2208", "2276", "6351", "2553", "5986", "2552", "6353", "6887", "6891", "5830", "2363", "1481", "2876", "1995", "5558", "5117", "4694", "2598", "22", "14", "21", "15", "7190", "1976", "4871", "3036", "5784", "4271", "1047", "734", "5116", "1860", "2939", "5936", "5070", "5918", "6896", "126", "5959", "1939", "171", "1593", "3507", "2506", "2508", "c_cef8ea9d", "2587", "5995", "2800", "2811", "127", "4753", "4756", "450", "3059", "2878", "4755", "2160", "489", "338", "356", "1242", "2880", "6006", "159", "4321", "4757", "4751", "3045", "3037", "4758", "355", "5529", "418", "5276", "694", "1679", "3041", "1359", "1082", "2796", "2808", "1013", "705", "4764", "2223", "1678", "3975", "3976", "5624", "1579", "2586", "2584", "2585", "8423", "8421", "8422", "8424", "1448", "5654", "8415", "1211", "253", "2630", "769", "3053", "2991", "4452", "4467", "2440", "3055", "526", "3389", "885", "7199", "5855", "214", "5609", "5748", "2332", "2269", "3260", "471", "379", "2388", "5960", "5074", "7375", "8427", "6731", "6735", "6732", "6734", "6730", "6733", "5599", "3924", "2158", "6106", "571", "3099", "1697", "3699", "151", "8425", "6610", "5497", "5496", "3979", "3980", "2942", "5837", "3978", "2941", "5145", "5412", "5417", "5416", "5838", "2940", "5832", "2964", "3965", "5686", "5144", "3973", "4882", "3970", "8455", "8443", "3972", "3971", "1457", "5633", "4434", "8453", "3839", "6900", "501", "3934", "5079", "3927", "497", "499", "3635", "3926", "1339", "2337", "884", "5910", "3940", "2338", "3939", "5161", "5493", "437483", "c_471a61cf", "1777", "1129", "1281", "3475", "5582", "5559", "3920", "306", "6077", "2832", "1498", "8426", "6277", "548", "717", "1622", "2881", "2051", "2086", "100", "6627", "553", "1941", "1942", "1473", "c_558c1e00", "c_b19d7503", "859", "5708", "5444", "5143", "1623", "3992", "4791", "3996", "611", "3995", "5405", "1114", "3677", "951", "3998", "3999", "4001", "505", "2096", "2036", "4005", "4004", "3526", "4003", "2271", "3951", "8434", "c_b499ede2", "c_7546272f", "3950", "5933", "3945", "5428", "5572", "1251", "6613", "8433", "2", "1092", "4742", "2383", "1600", "6727", "4349", "3960", "4114", "2597", "6899", "6925", "6728", "953", "950", "1272", "3989", "2085", "1546", "1547", "1545", "1544", "3983", "1540", "6624", "5139", "44", "6622", "94", "37", "3987", "1548", "3986", "3985", "c_d02647e2", "437539", "443", "7939", "92", "437655", "6176", "6905", "716", "777", "897", "88", "6276", "6126", "5197", "5520", "5071", "3023", "1429", "1431", "1427", "1428", "5473", "6778", "c_4cd4362b", "4426", "5198", "5358", "435299", "5199", "6779", "5920", "5919", "5476", "2157", "3701", "3033", "5915", "c_f53bfc88", "5863", "5929", "5893", "c_433922a6", "630", "4151", "1582", "1581", "6189", "444", "6004", "5272", "1350", "78", "617", "4135", "4134", "2860", "2896", "c_9a9e5627", "c_65366e84", "2894", "7130", "6768", "5568", "4864", "3342", "4138", "5274", "3032", "493", "1533", "8414", "4869", "6067", "4868", "6764", "4867", "4866", "4870", "1332", "5187", "5186", "5569", "6104", "6110", "1745", "5183", "4384", "4133", "6771", "c_324b44f1", "6775", "6177", "6772", "7950", "c_a17a2156", "6182", "6178", "6773", "3022", "4431", "5195", "3010", "6139", "4425", "4429", "5190", "30", "3860", "6774", "3018", "4502", "4433", "5180", "5194", "5192", "5193", "5348", "6770", "1984", "2883", "2599", "5320", "3014", "3012", "4432", "3015", "3868", "3871", "5477", "3867", "4331", "3872", "6130", "908", "5478", "5347", "1024", "428", "3729", "434664", "5278", "8385", "8387", "23", "8386", "7137", "c_b605a1d4", "17", "6058", "4875", "1286", "4610", "3708", "5526", "703", "4149", "8377", "8378", "8375", "7192", "3727", "7206", "1461", "7205", "450953", "1793", "6095", "6093", "6094", "257", "16", "7346", "8395", "5644", "118", "6101", "3760", "4218", "1643", "3761", "3758", "1934", "1933", "1656", "6027", "952", "1060", "1831", "2945", "1241", "572", "3739", "8412", "6701", "2312", "142", "378", "4629", "466", "2127", "6700", "2654", "2715", "2382", "6045", "1139", "3768", "5262", "3773", "3769", "1267", "1266", "3775", "6921", "c_ece9dd5b", "3770", "3779", "c_097751fd", "2886", "743", "752", "2256", "2374", "2482", "6031", "921", "2882", "2884", "3788", "1123", "776", "868", "3789", "1023", "3631", "6703", "4341", "3792", "c_3508a934", "2429", "4617", "5578", "5575", "5580", "5787", "5904", "5866", "4126", "5561", "5856", "1052", "437422", "1851", "2609", "441716", "738", "4080", "251", "5539", "5868", "2591", "5538", "5459", "5408", "5548", "5589", "5399", "5829", "5518", "5611", "6288", "447503", "c_5cec7cfa", "2346", "8407", "2347", "2348", "8542", "5506", "6050", "6060", "6057", "6059", "5509", "6056", "5507", "c_e9845504", "5807", "4124", "4044", "5128", "4174", "19", "2248", "443167", "439592", "5308", "8462", "4043", "5328", "439498", "447442", "447536", "237", "5806", "447604", "4178", "6708", "6706", "6710", "5494", "5552", "8480", "5550", "5761", "5942", "6709", "c_2e08d60f", "8478", "c_1c478aa5", "4048", "5404", "5749", "5403", "116", "5681", "1450", "c_6547ccb7", "5491", "6286", "5864", "5543", "c_fd848a9f", "5772", "5413", "2451", "8409", "4061", "5137", "5826", "2008", "c_6f7bbe63", "c_8d31aed6", "5675", "2931", "4037", "350", "3106", "4024", "4019", "388", "8479", "353", "352", "4026", "2930", "6133", "8468", "5204", "5812", "6265", "2227", "2618", "6266", "5811", "4023", "440710", "440657", "440631", "3494", "6290", "6289", "445228", "6285", "445203", "4027", "4473", "5129", "445259", "8489", "440605", "440579", "440265", "5815", "2809", "440238", "5115", "5511", "5822", "5456", "5203", "3087", "5524", "7128", "5136", "5953", "5739", "5581", "1989", "442850", "5661", "7362", "5663", "5803", "443080", "5662", "5664", "7391", "7392", "7393", "6395", "7394", "6394", "7941", "2019", "4888", "1580", "435265", "443048", "7389", "7812", "4176", "1276", "4770", "6391", "1936", "3294", "1147", "1152", "7360", "1150", "6389", "6387", "5269", "6388", "7218", "1149", "6386", "6381", "6392", "6384", "6716", "5608", "7955", "c_ff4dd793", "5338", "5740", "5028", "5651", "1246", "5303", "3282", "4810", "7410", "2373", "4889", "707", "5300", "5298", "5299", "4883", "5990", "601", "1134", "4713", "1671", "2104", "1552", "1665", "606", "1553", "1265", "3806", "1262", "4861", "1270", "1572", "1569", "1575", "1576", "1570", "1566", "1574", "1109", "1103", "1108", "1112", "1104", "1111", "1110", "1107", "1106", "4773", "5364", "5000", "5010", "4682", "4691", "4687", "4688", "4685", "4684", "4689", "4692", "4683", "2954", "2955", "920", "4170", "1863", "970", "1206", "4088", "2274", "2221", "1029", "1772", "5698", "5385", "4085", "417", "109", "4340", "1715", "2273", "6041", "6040", "8312", "8315", "8316", "8321", "8319", "8334", "8337", "8336", "8335", "8333", "8327", "8313", "8326", "8325", "8314", "8310", "8330", "8329", "8331", "8306", "8307", "8309", "8308", "8305", "8318", "8322", "8323", "8320", "1235", "4824", "1583", "1904", "2075", "2377", "1666", "2439", "2328", "1089", "5032", "3714", "4364", "5381", "1702", "1430", "8500", "8502", "8504", "8501", "8499", "8503", "8519", "8518", "8517", "8520", "8533", "8530", "8532", "8529", "8528", "8531", "8537", "8536", "8535", "8538", "8534", "8513", "8515", "8514", "8511", "8512", "8516", "8506", "8508", "8505", "8509", "8507", "8510", "8526", "8522", "8523", "8527", "8524", "8521", "8525", "8008", "8007", "8001", "8000", "8006", "8004", "8005", "8002", "8003", "7999", "7998", "7994", "7995", "7996", "7993", "7990", "7992", "7991", "7989", "7988", "5246", "5247", "c_82778b62", "c_dffba30e", "c_f9143718", "c_049691c5", "c_d3db05e6", "c_cf9e250b", "c_e4bfb3bb", "c_a5c15adc", "c_ec0f4970", "c_070e15e7", "c_23635024", "c_496cee2d", "c_095c8a84", "c_412ed48a", "c_7d7c383b", "c_fee7acae", "c_e300778f", "c_b4cffbee", "c_7a080afd", "c_14e0ae65", "c_eb3ada47", "7895", "7896", "7893", "7892", "7891", "5516", "5515", "5514", "1713", "2028", "1227", "1651", "5038", "5036", "1027", "2061", "1661", "1028", "4410", "5349", "1124", "5095", "1876", "4779", "3888", "1218", "111", "4351", "2027", "321", "1611", "5029", "33", "2018", "4148", "4782", "1561", "1841", "1766", "5556", "1729", "1843", "4780", "4217", "5108", "4092", "2057", "2058", "1842", "1128", "3830", "1217", "1769", "1216", "1236", "4465", "4846", "1166", "4161", "1617", "249", "1639", "1734", "5709", "5706", "5619", "451941", "451991", "5652", "5445", "5454", "314", "1228", "4567", "2562", "3415", "1522", "4816", "3406", "3405", "2032", "2820", "4570", "1185", "496", "3833", "2024", "3401", "3403", "2042", "2055", "1208", "691", "247", "4841", "2224", "1253", "4621", "1220", "1771", "5020", "6036", "4342", "2525", "5965", "2331", "841", "1219", "4662", "2231", "5040", "1292", "1559", "6278", "1296", "2037", "3410", "6280", "205", "6281", "3858", "4466", "3416", "1237", "4772", "4583", "3411", "4648", "3857", "2088", "2229", "993", "5930", "1613", "1532", "4354", "2336", "4572", "1501", "1560", "1500", "2866", "2138", "726", "4620", "4411", "1308", "623", "1955", "2101", "112", "852", "5562", "4249", "1131", "6061", "5673", "6705", "6125", "2627", "5585", "c_1137acd8", "2390", "2483", "5886", "6108", "2281", "3721", "3310", "959", "2280", "2241", "4369", "399", "2761", "2768", "c_61b6fae1", "5149", "c_f05a3667", "5472", "5847", "c_2a1a9fdc", "5823", "5849", "3034", "3051", "1900", "433963", "3988", "3155", "3158", "5890", "5565", "1440", "856", "5683", "686", "2063", "2523", "2522", "3469", "c_667f2c16", "3135", "4307", "2759", "6747", "2535", "916", "2533", "5605", "5676", "c_a2e1def8", "5857", "5760", "5722", "1879", "5736", "5737", "5735", "2503", "1983", "2110", "2111", "2108", "2112", "2109", "4808", "4796", "4792", "4803", "4797", "4807", "2215", "5463", "c_d701b19c", "c_3212cc75", "6405", "c_9055e9e1", "c_0e092eaf", "5464", "597", "5742", "4891", "5593", "2060", "434880", "435007", "5912", "3132", "5672", "5754", "6401", "272", "5533", "5839", "5782", "4075", "4076", "6402", "3138", "941", "919", "1741", "141", "4853", "4485", "4628", "2235", "3457", "2830", "3128", "3784", "2203", "4376", "5072", "451486", "1557", "1449", "3780", "5955", "1526", "4460", "5026", "1502", "4326", "1963", "4325", "4679", "5172", "3284", "2855", "3287", "3286", "3356", "3285", "6570", "5900", "c_1000336b", "3369", "5916", "c_7951978e", "5752", "4636", "3370", "3730", "1596", "3371", "192", "7135", "1480", "5733", "1997", "6568", "c_6f563894", "c_aaa8331c", "5911", "5934", "4306", "331", "3362", "4494", "1915", "4525", "4513", "7959", "4787", "4809", "5230", "4804", "1897", "4712", "2361", "4710", "4711", "1861", "c_c825b20c", "6556", "5168", "6547", "c_34242feb", "5909", "5167", "4769", "5956", "4768", "3609", "1530", "6038", "1837", "4642", "1787", "c_18180cde", "294", "5465", "3236", "6902", "2220", "5963", "4463", "4731", "1971", "230", "1816", "6359", "8429", "6334", "6360", "c_062f6587", "4284", "5025", "4283", "3618", "6089", "1732", "1733", "229", "3215", "3643", "5573", "3642", "6711", "1631", "5393", "3283", "2724", "6756", "4190", "4115", "6378", "3421", "2603", "91", "5523", "7417", "5535", "5756", "3578", "5432", "5670", "5326", "434056", "3508", "4794", "3509", "3510", "3456", "c_4e75f061", "2898", "6325", "2680", "4476", "1722", "4638", "4639", "6913", "3665", "3662", "3661", "3666", "5043", "550", "6307", "435098", "6295", "6296", "5235", "5234", "5233", "6298", "5481", "435061", "6912", "8452", "c_9a27a573", "2671", "2641", "c_681e6d24", "5111", "5391", "5388", "467", "468", "469", "7358", "4737", "4740", "4739", "4345", "2385", "6854", "4197", "4261", "4658", "c_b3e9d826", "106", "3354", "107", "3547", "5339", "3907", "4439", "5522", "5521", "6084", "7943", "7811", "5743", "2875", "2874", "5377", "5378", "425", "5586", "5600", "3221", "3063", "383", "2895", "1093", "2091", "4701", "5528", "c_9d09fbc3", "7381", "7380", "7223", "5540", "886", "5853", "95", "404", "348", "448", "2669", "364", "7366", "2236", "3921", "1699", "5711", "5685", "5802", "5850", "1747", "5110", "1940", "5112", "5113", "6005", "5492", "3942", "422", "605", "1171", "603", "598", "6626", "5330", "5649", "2867", "5796", "2272", "1095", "5570", "4727", "5659", "6132", "6616", "5884", "898", "5924", "4487", "5828", "c_715c08c0", "3740", "c_dea47e63", "5635", "3704", "5601", "6192", "5671", "5705", "5174", "6190", "6191", "5185", "435228", "8413", "443345", "6907", "4698", "4699", "6776", "6777", "5745", "6906", "3875", "5182", "3011", "c_25fe24f4", "c_32e52346", "3017", "5179", "395", "2600", "5808", "3019", "4428", "3021", "5189", "6337", "3755", "890", "1893", "3738", "c_6c8b04b9", "4469", "6699", "3776", "3772", "3771", "c_315af034", "5419", "5872", "5926", "c_4e3beee2", "452085", "5643", "5138", "450652", "450658", "c_e548b67f", "c_b54dc55a", "c_d08207d1", "978", "3238", "4237", "73", "c_4d5b6dbd", "2610", "2608", "2054", "2607", "6287", "5135", "5134", "5133", "6358", "6053", "7132", "7986", "5630", "6723", "6724", "8482", "8481", "8477", "8476", "7982", "7953", "8475", "7954", "5618", "4049", "5406", "8285", "5505", "5531", "5504", "5510", "4052", "4051", "4041", "5132", "5834", "c_c4c48e5c", "5674", "5315", "5824", "c_2212c2c4", "5567", "6218", "7138", "5312", "1531", "5131", "445178", "5816", "5814", "5790", "5648", "3866", "c_70c441cc", "c_104476d7", "5704", "5702", "c_b8e8e06e", "5700", "5703", "5701", "8438", "6385", "442791", "6744", "6260", "c_2c5a05a0", "442765", "6111", "4720", "5380", "4717", "4715", "4718", "4719", "4724", "4714", "4716", "4725", "4723", "4722", "2952", "2951", "1263", "1264", "2956", "4686", "4212", "484", "5617", "891", "4578", "1819", "1196", "3816", "1822", "1207", "8547", "3402", "1986", "1299", "451885", "333", "451912", "454784", "7198", "451462", "1289", "4523", "4154", "2899", "4592", "1121", "503", "7134", "6784", "3686", "2769", "5150", "2572", "1140", "5798", "5650", "2529", "5439", "5727", "8446", "8445", "5895", "5874", "450869", "1775", "8444", "5222", "5224", "5223", "5221", "5220", "1875", "1776", "1871", "1877", "1872", "c_1c2d26cf", "5791", "c_3897ba70", "6404", "608", "1169", "610", "599", "609", "607", "c_25e0bb6d", "600", "3147", "602", "1683", "1050", "2080", "840", "3137", "4335", "940", "c_82916123", "8451", "1505", "2290", "5438", "663", "7396", "6566", "c_8c634c9b", "6740", "4799", "2545", "c_8f56da2a", "6370", "434004", "6273", "2617", "5597", "c_ccac12ef", "c_12e208c8", "3777", "5668", "1056", "4056", "980", "979", "197", "7813", "196", "200", "8430", "3812", "3787", "5022", "6406", "8303", "6403", "1049", "2423", "c_d978c1fc", "1906", "596", "3396", "8498", "3399", "4777", "1905", "3398", "3397", "4247", "199", "4053", "198", "4355", "5318", ], } class MultiEURLEXConfig(datasets.BuilderConfig): """BuilderConfig for MultiEURLEX.""" def __init__(self, language: str, languages=None, label_level="level_1", **kwargs): """BuilderConfig for MultiEURLEX. Args: language: One of ar,bg,de,el,en,es,fr,hi,ru,sw,th,tr,ur,vi,zh, or all_languages **kwargs: keyword arguments forwarded to super. """ super(MultiEURLEXConfig, self).__init__(**kwargs) self.language = language self.label_level = label_level if language != "all_languages": self.languages = [language] else: self.languages = languages if languages is not None else _LANGUAGES class MultiEURLEX(datasets.GeneratorBasedBuilder): """MultiEURLEX - A multi-lingual and multi-label legal document classification dataset. Version 1.0""" VERSION = datasets.Version("1.0.0", "") BUILDER_CONFIG_CLASS = MultiEURLEXConfig BUILDER_CONFIGS = [ MultiEURLEXConfig( name=lang, language=lang, version=datasets.Version("1.0.0", ""), description=f"Plain text import of MultiEURLEX for the {lang} language", ) for lang in _LANGUAGES ] + [ MultiEURLEXConfig( name="all_languages", language="all_languages", version=datasets.Version("1.0.0", ""), description="Plain text import of MultiEURLEX for all languages", ) ] def _info(self): if self.config.language == "all_languages": features = datasets.Features( { "celex_id": datasets.Value("string"), "text": datasets.Translation( languages=_LANGUAGES, ), "labels": datasets.features.Sequence( datasets.ClassLabel(names=_CONCEPTS[self.config.label_level]) ), } ) else: features = datasets.Features( { "celex_id": datasets.Value("string"), "text": datasets.Value("string"), "labels": datasets.features.Sequence( datasets.ClassLabel(names=_CONCEPTS[self.config.label_level]) ), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage="https://github.io/iliaschalkidis", citation=_CITATION, ) def _split_generators(self, dl_manager): data_dir = dl_manager.download_and_extract(DATA_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={"filepath": os.path.join(data_dir, "train.jsonl"), "split": "train"}, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={"filepath": os.path.join(data_dir, "test.jsonl"), "split": "test"}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={"filepath": os.path.join(data_dir, "dev.jsonl"), "split": "dev"}, ), ] def _generate_examples(self, filepath, split): """This function returns the examples in the raw (text) form.""" if self.config.language == "all_languages": with open(filepath, encoding="utf-8") as f: for id_, row in enumerate(f): data = json.loads(row) yield id_, { "celex_id": data["celex_id"], "text": {lang: data["text"][lang] for lang in self.config.languages}, "labels": data["eurovoc_concepts"][self.config.label_level], } else: with open(filepath, encoding="utf-8") as f: for id_, row in enumerate(f): data = json.loads(row) if data["text"][self.config.language] is not None: yield id_, { "celex_id": data["celex_id"], "text": data["text"][self.config.language], "labels": data["eurovoc_concepts"][self.config.label_level], }
16.609465
106
0.273736
4a2770aa34f9b4617811e836a5182a9d833a1fe3
68
py
Python
userplugins/AlphaMusic.py
AlphaEliasPY/VC-Bot-
088f8efcb70dab24f32349dcc52557786905382a
[ "MIT" ]
2
2021-08-28T10:36:27.000Z
2022-02-03T16:48:38.000Z
userplugins/AlphaMusic.py
AlphaEliasPY/VC-Bot-
088f8efcb70dab24f32349dcc52557786905382a
[ "MIT" ]
null
null
null
userplugins/AlphaMusic.py
AlphaEliasPY/VC-Bot-
088f8efcb70dab24f32349dcc52557786905382a
[ "MIT" ]
9
2021-08-25T07:27:08.000Z
2022-02-07T15:06:31.000Z
from utils import * from config import * from userplugins import *
13.6
25
0.764706
4a27713d43da514894f4cdf99c5a88ad364f75b9
5,400
py
Python
src/poetry/console/commands/install.py
ycechungAI/poetry
feb11b133af2e94d6c5239decb4e614426f2a299
[ "MIT" ]
null
null
null
src/poetry/console/commands/install.py
ycechungAI/poetry
feb11b133af2e94d6c5239decb4e614426f2a299
[ "MIT" ]
null
null
null
src/poetry/console/commands/install.py
ycechungAI/poetry
feb11b133af2e94d6c5239decb4e614426f2a299
[ "MIT" ]
null
null
null
from __future__ import annotations from cleo.helpers import option from poetry.console.commands.installer_command import InstallerCommand class InstallCommand(InstallerCommand): name = "install" description = "Installs the project dependencies." options = [ *InstallerCommand._group_dependency_options(), option( "no-dev", None, "Do not install the development dependencies." " (<warning>Deprecated</warning>)", ), option( "dev-only", None, "Only install the development dependencies." " (<warning>Deprecated</warning>)", ), option( "sync", None, "Synchronize the environment with the locked packages and the specified" " groups.", ), option( "no-root", None, "Do not install the root package (the current project)." ), option( "no-binary", None, "Do not use binary distributions for packages matching given policy.\n" "Use package name to disallow a specific package; or <b>:all:</b> to\n" "disallow and <b>:none:</b> to force binary for all packages. Multiple\n" "packages can be specified separated by commas.", flag=False, multiple=True, ), option( "dry-run", None, "Output the operations but do not execute anything " "(implicitly enables --verbose).", ), option( "remove-untracked", None, "Removes packages not present in the lock file." " (<warning>Deprecated</warning>)", ), option( "extras", "E", "Extra sets of dependencies to install.", flag=False, multiple=True, ), ] help = """The <info>install</info> command reads the <comment>poetry.lock</> file from the current directory, processes it, and downloads and installs all the libraries and dependencies outlined in that file. If the file does not exist it will look for <comment>pyproject.toml</> and do the same. <info>poetry install</info> By default, the above command will also install the current project. To install only the dependencies and not including the current project, run the command with the <info>--no-root</info> option like below: <info> poetry install --no-root</info> """ _loggers = ["poetry.repositories.pypi_repository", "poetry.inspection.info"] def handle(self) -> int: from poetry.core.masonry.utils.module import ModuleOrPackageNotFound from poetry.masonry.builders.editable import EditableBuilder self._installer.use_executor( self.poetry.config.get("experimental.new-installer", False) ) extras = [] for extra in self.option("extras", []): if " " in extra: extras += [e.strip() for e in extra.split(" ")] else: extras.append(extra) self._installer.extras(extras) with_synchronization = self.option("sync") if self.option("remove-untracked"): self.line_error( "<warning>The `<fg=yellow;options=bold>--remove-untracked</>` option is" " deprecated, use the `<fg=yellow;options=bold>--sync</>` option" " instead.</warning>" ) with_synchronization = True if self.option("no-binary"): policy = ",".join(self.option("no-binary", [])) try: self._installer.no_binary(policy=policy) except ValueError as e: self.line_error( f"<warning>Invalid value (<c1>{policy}</>) for" f" `<b>--no-binary</b>`</>.\n\n<error>{e}</>" ) return 1 self._installer.only_groups(self.activated_groups) self._installer.dry_run(self.option("dry-run")) self._installer.requires_synchronization(with_synchronization) self._installer.verbose(self._io.is_verbose()) return_code = self._installer.run() if return_code != 0: return return_code if self.option("no-root"): return 0 try: builder = EditableBuilder(self.poetry, self._env, self._io) except ModuleOrPackageNotFound: # This is likely due to the fact that the project is an application # not following the structure expected by Poetry # If this is a true error it will be picked up later by build anyway. return 0 log_install = ( "<b>Installing</> the current project:" f" <c1>{self.poetry.package.pretty_name}</c1>" f" (<{{tag}}>{self.poetry.package.pretty_version}</>)" ) overwrite = self._io.output.is_decorated() and not self.io.is_debug() self.line("") self.write(log_install.format(tag="c2")) if not overwrite: self.line("") if self.option("dry-run"): self.line("") return 0 builder.build() if overwrite: self.overwrite(log_install.format(tag="success")) self.line("") return 0
32.727273
90
0.567037
4a277261a9eb3732f175b0d053d0bd8f2de98e5c
428
py
Python
myapp/migrations/0012_form_action.py
sharmin6630/Project-Distribution
32692653c309b417187ab0299f074a38d1a5bd3e
[ "MIT" ]
null
null
null
myapp/migrations/0012_form_action.py
sharmin6630/Project-Distribution
32692653c309b417187ab0299f074a38d1a5bd3e
[ "MIT" ]
1
2021-08-04T15:41:05.000Z
2021-08-04T15:41:05.000Z
myapp/migrations/0012_form_action.py
sharmin6630/Project-Distribution
32692653c309b417187ab0299f074a38d1a5bd3e
[ "MIT" ]
null
null
null
# Generated by Django 3.0.5 on 2021-06-26 00:55 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('myapp', '0011_form_assigned_supervisor_id'), ] operations = [ migrations.AddField( model_name='form', name='action', field=models.CharField(blank=True, default='Save', max_length=55, null=True), ), ]
22.526316
89
0.61215
4a2773671dd150f445e8246b9beaf67905695aed
1,166
py
Python
pype/hosts/maya/plugins/publish/validate_mesh_non_manifold.py
simonebarbieri/pype
a6dc83aa1300738749cbe8e5e2e6d2d1794e0289
[ "MIT" ]
null
null
null
pype/hosts/maya/plugins/publish/validate_mesh_non_manifold.py
simonebarbieri/pype
a6dc83aa1300738749cbe8e5e2e6d2d1794e0289
[ "MIT" ]
null
null
null
pype/hosts/maya/plugins/publish/validate_mesh_non_manifold.py
simonebarbieri/pype
a6dc83aa1300738749cbe8e5e2e6d2d1794e0289
[ "MIT" ]
null
null
null
from maya import cmds import pyblish.api import pype.api import pype.hosts.maya.api.action class ValidateMeshNonManifold(pyblish.api.Validator): """Ensure that meshes don't have non-manifold edges or vertices To debug the problem on the meshes you can use Maya's modeling tool: "Mesh > Cleanup..." """ order = pype.api.ValidateMeshOrder hosts = ['maya'] families = ['model'] label = 'Mesh Non-Manifold Vertices/Edges' actions = [pype.hosts.maya.api.action.SelectInvalidAction] @staticmethod def get_invalid(instance): meshes = cmds.ls(instance, type='mesh', long=True) invalid = [] for mesh in meshes: if (cmds.polyInfo(mesh, nonManifoldVertices=True) or cmds.polyInfo(mesh, nonManifoldEdges=True)): invalid.append(mesh) return invalid def process(self, instance): """Process all the nodes in the instance 'objectSet'""" invalid = self.get_invalid(instance) if invalid: raise ValueError("Meshes found with non-manifold " "edges/vertices: {0}".format(invalid))
27.116279
67
0.633791
4a27741b0fbb9c6c3548bc5de26bfc581ec23821
1,871
py
Python
python/MultiChannelBuildTool.py
SteamedBunZL/AndroidUtilByZFT
cecb7a165946babb29bb8bd2a8ead9fde8e60043
[ "Apache-2.0" ]
null
null
null
python/MultiChannelBuildTool.py
SteamedBunZL/AndroidUtilByZFT
cecb7a165946babb29bb8bd2a8ead9fde8e60043
[ "Apache-2.0" ]
null
null
null
python/MultiChannelBuildTool.py
SteamedBunZL/AndroidUtilByZFT
cecb7a165946babb29bb8bd2a8ead9fde8e60043
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 import zipfile import shutil import os import time #获取系统时间 def gainDateTime(): return time.strftime("%Y-%m-%d %H:%M:%S",time.localtime(time.time())) # 空文件 便于写入此空文件到apk包中作为channel文件 src_empty_file = 'info/chennel_empty.txt' # 创建一个空文件(不存在则创建) f = open(src_empty_file, 'w') f.close() # 获取当前目录中所有的apk源包 src_apks = [] # python3 : os.listdir()即可,这里使用兼容Python2的os.listdir('.') for file in os.listdir('.'): if os.path.isfile(file): extension = os.path.splitext(file)[1][1:] if extension in 'apk': src_apks.append(file) # 获取渠道列表 channel_file = 'info/channel_list.txt' f = open(channel_file) lines = f.readlines() f.close() for src_apk in src_apks: # file name (with extension) src_apk_file_name = os.path.basename(src_apk) # 分割文件名与后缀 temp_list = os.path.splitext(src_apk_file_name) # name without extension src_apk_name = temp_list[0] # 后缀名,包含. 例如: ".apk " src_apk_extension = temp_list[1] # 创建生成目录,与文件名相关 output_dir = 'output_' + src_apk_name + '/' # 目录不存在则创建 if not os.path.exists(output_dir): os.mkdir(output_dir) print('开始生成渠道-->'+gainDateTime()) # 遍历渠道号并创建对应渠道号的apk文件 for line in lines: # 获取当前渠道号,因为从渠道文件中获得带有\n,所有strip一下 target_channel = line.strip() # 拼接对应渠道号的apk target_apk = output_dir + src_apk_name + "_" + target_channel + src_apk_extension # 打印Log print('生产渠道包'+ gainDateTime() +'-->'+ target_apk ) # 拷贝建立新apk shutil.copy(src_apk, target_apk) # zip获取新建立的apk文件 zipped = zipfile.ZipFile(target_apk, 'a', zipfile.ZIP_DEFLATED) # 初始化渠道信息 empty_channel_file = "META-INF/ChannelName_{channel}".format(channel = target_channel) # 写入渠道信息 zipped.write(src_empty_file, empty_channel_file) # 关闭zip流 zipped.close()
28.784615
94
0.652058
4a2775cf59a76cd2573df4e50121c9a7d418a82d
928
py
Python
filibuster/logger/__init__.py
filibuster-testing/filibuster
b1df9d5100f8dbfc5ff07cd2ddc76ecbc49485fb
[ "Apache-2.0" ]
14
2021-10-16T21:49:14.000Z
2022-03-26T23:02:12.000Z
filibuster/logger/__init__.py
filibuster-testing/filibuster
b1df9d5100f8dbfc5ff07cd2ddc76ecbc49485fb
[ "Apache-2.0" ]
2
2022-03-17T05:48:04.000Z
2022-03-24T02:13:38.000Z
filibuster/logger/__init__.py
filibuster-testing/filibuster
b1df9d5100f8dbfc5ff07cd2ddc76ecbc49485fb
[ "Apache-2.0" ]
null
null
null
import os import sys class BColors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKCYAN = '\033[96m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' def error(string): print(BColors.FAIL + "[FILIBUSTER] [FAIL]: " + string + BColors.ENDC, file=sys.stderr, flush=True) def warning(string): print(BColors.WARNING + "[FILIBUSTER] [WARNING]: " + string + BColors.ENDC, file=sys.stderr, flush=True) def notice(string): print(BColors.OKGREEN + "[FILIBUSTER] [NOTICE]: " + string + BColors.ENDC, file=sys.stderr, flush=True) def info(string): print(BColors.OKBLUE + "[FILIBUSTER] [INFO]: " + string + BColors.ENDC, file=sys.stderr, flush=True) def debug(string): if os.environ.get("DEBUG", ""): print(BColors.OKCYAN + "[FILIBUSTER] [DEBUG]: " + string + BColors.ENDC, file=sys.stderr, flush=True)
25.777778
109
0.630388
4a2775d9bb62ccdf7b838610ae2f4036d0921077
445
py
Python
djangocon_2020/site/templatetags/markdown_extras.py
thibaudcolas/2021.djangocon.eu
7b2b4de2105f4c31369081f14c9777727a73244f
[ "MIT" ]
4
2021-04-29T22:11:39.000Z
2022-03-20T20:26:29.000Z
djangocon_2020/site/templatetags/markdown_extras.py
thibaudcolas/2021.djangocon.eu
7b2b4de2105f4c31369081f14c9777727a73244f
[ "MIT" ]
14
2022-03-09T16:30:03.000Z
2022-03-31T08:43:07.000Z
pycon_portugal_2022/site/templatetags/markdown_extras.py
pyconpt/2022
33019223a6138edfde0e23722cd054cdd1ad22c4
[ "MIT" ]
6
2021-03-12T09:48:38.000Z
2021-05-22T22:06:39.000Z
from django import template from django.template.defaultfilters import stringfilter import markdown as md register = template.Library() @register.filter() @stringfilter def markdown(value): r = {} f = open(value, 'r') f = f.read() m = md.Markdown(extensions = [ 'extra', 'nl2br', 'sane_lists', 'meta', 'toc', ]) r['html'] = m.convert(f) r['meta'] = m.Meta return r
17.8
55
0.570787
4a2775eb9108f09c34d5a6bed2449ee5a0bbecc1
47,982
py
Python
src/quadruped/quadruped/RL/gymVrka/gym_vrka/envs/vrka.py
BitsRobocon/AutonomousQuadruped
980d4a568c73c98093839f372e0db0193f51bb1d
[ "Apache-2.0" ]
null
null
null
src/quadruped/quadruped/RL/gymVrka/gym_vrka/envs/vrka.py
BitsRobocon/AutonomousQuadruped
980d4a568c73c98093839f372e0db0193f51bb1d
[ "Apache-2.0" ]
null
null
null
src/quadruped/quadruped/RL/gymVrka/gym_vrka/envs/vrka.py
BitsRobocon/AutonomousQuadruped
980d4a568c73c98093839f372e0db0193f51bb1d
[ "Apache-2.0" ]
null
null
null
""" CODE BASED ON EXAMPLE FROM: @misc{coumans2017pybullet, title={Pybullet, a python module for physics simulation in robotics, games and machine learning}, author={Coumans, Erwin and Bai, Yunfei}, url={www.pybullet.org}, year={2017}, } Example: minitaur.py https://github.com/bulletphysics/bullet3/blob/master/examples/pybullet/gym/pybullet_envs/bullet/minitaur.py """ import collections import copy import math import re import numpy as np from . import motor from src.quadruped.quadruped import pybullet_data print(pybullet_data.getDataPath()) # from .bezier import legIK as IK # from .bezier import BezierPoints from .Vrkakinematics import VrkaModel from . import LieAlgebra as LA INIT_POSITION = [0, 0, 0.25] INIT_RACK_POSITION = [0, 0, 1] # NOTE: URDF IS FACING THE WRONG WAY # TEMP FIX INIT_ORIENTATION = [0, 0, 0, 1] OVERHEAT_SHUTDOWN_TORQUE = 2.45 OVERHEAT_SHUTDOWN_TIME = 1.0 # -math.pi / 5 INIT_LEG_POS = -0.658319 # math.pi / 3 INIT_FOOT_POS = 1.0472 OLD_LEG_POSITION = ["front_left", "front_right", "rear_left", "rear_right"] OLD_MOTOR_NAMES = [ "motor_front_left_shoulder", "motor_front_left_leg", "foot_motor_front_left", "motor_front_right_shoulder", "motor_front_right_leg", "foot_motor_front_right", "motor_rear_left_shoulder", "motor_rear_left_leg", "foot_motor_rear_left", "motor_rear_right_shoulder", "motor_rear_right_leg", "foot_motor_rear_right" ] OLD_MOTOR_LIMITS_BY_NAME = {} for name in OLD_MOTOR_NAMES: if "shoulder" in name: OLD_MOTOR_LIMITS_BY_NAME[name] = [-1.04, 1.04] elif "leg" in name: OLD_MOTOR_LIMITS_BY_NAME[name] = [-2.59, 1.571] elif "foot" in name: OLD_MOTOR_LIMITS_BY_NAME[name] = [-1.571, 2.9] OLD_FOOT_NAMES = [ "front_left_toe", "front_right_toe", "rear_left_toe", "rear_right_toe" ] LEG_POSITION = ["front_left", "front_right", "back_left", "back_right"] MOTOR_NAMES = [ "motor_front_left_hip", "motor_front_left_upper_leg", "motor_front_left_lower_leg", "motor_front_right_hip", "motor_front_right_upper_leg", "motor_front_right_lower_leg", "motor_back_left_hip", "motor_back_left_upper_leg", "motor_back_left_lower_leg", "motor_back_right_hip", "motor_back_right_upper_leg", "motor_back_right_lower_leg" ] MOTOR_LIMITS_BY_NAME = {} for name in MOTOR_NAMES: if "hip" in name: MOTOR_LIMITS_BY_NAME[name] = [-1.04, 1.04] elif "upper_leg" in name: MOTOR_LIMITS_BY_NAME[name] = [-1.571, 2.59] elif "lower_leg" in name: MOTOR_LIMITS_BY_NAME[name] = [-2.9, 1.671] FOOT_NAMES = [ "front_left_leg_foot", "front_right_leg_foot", "back_left_leg_foot", "back_right_leg_foot" ] _CHASSIS_NAME_PATTERN = re.compile(r"chassis\D*") _MOTOR_NAME_PATTERN = re.compile(r"motor\D*") _FOOT_NAME_PATTERN = re.compile(r"foot\D*") SENSOR_NOISE_STDDEV = (0.0, 0.0, 0.0, 0.0, 0.0) TWO_PI = 2 * math.pi def MapToMinusPiToPi(angles): """Maps a list of angles to [-pi, pi]. Args: angles: A list of angles in rad. Returns: A list of angle mapped to [-pi, pi]. """ mapped_angles = copy.deepcopy(angles) for i in range(len(angles)): mapped_angles[i] = math.fmod(angles[i], TWO_PI) if mapped_angles[i] >= math.pi: mapped_angles[i] -= TWO_PI elif mapped_angles[i] < -math.pi: mapped_angles[i] += TWO_PI return mapped_angles class Vrka(object): """The vrka class that simulates a quadruped robot. """ INIT_POSES = { 'stand': np.array([ 0.15192765, 0.7552236, -1.5104472, -0.15192765, 0.7552236, -1.5104472, 0.15192765, 0.7552236, -1.5104472, -0.15192765, 0.7552236, -1.5104472 ]), 'liedown': np.array([-0.4, -1.5, 6, 0.4, -1.5, 6, -0.4, -1.5, 6, 0.4, -1.5, 6]), 'zero': np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]), } def __init__(self, pybullet_client, urdf_root=pybullet_data.getDataPath(), time_step=0.01, action_repeat=1, self_collision_enabled=False, motor_velocity_limit=9.7, pd_control_enabled=False, accurate_motor_model_enabled=False, remove_default_joint_damping=False, max_force=100.0, motor_kp=1.0, motor_kd=0.02, pd_latency=0.0, control_latency=0.0, observation_noise_stdev=SENSOR_NOISE_STDDEV, torque_control_enabled=False, motor_overheat_protection=False, on_rack=False, kd_for_pd_controllers=0.3, pose_id='stand', np_random=np.random, contacts=True): """Constructs a vrka and reset it to the initial states. Args: pybullet_client: The instance of BulletClient to manage different simulations. urdf_root: The path to the urdf folder. time_step: The time step of the simulation. action_repeat: The number of ApplyAction() for each control step. self_collision_enabled: Whether to enable self collision. motor_velocity_limit: The upper limit of the motor velocity. pd_control_enabled: Whether to use PD control for the motors. accurate_motor_model_enabled: Whether to use the accurate DC motor model. remove_default_joint_damping: Whether to remove the default joint damping. motor_kp: proportional gain for the accurate motor model. motor_kd: derivative gain for the accurate motor model. pd_latency: The latency of the observations (in seconds) used to calculate PD control. On the real hardware, it is the latency between the microcontroller and the motor controller. control_latency: The latency of the observations (in second) used to calculate action. On the real hardware, it is the latency from the motor controller, the microcontroller to the host (Nvidia TX2). observation_noise_stdev: The standard deviation of a Gaussian noise model for the sensor. It should be an array for separate sensors in the following order [motor_angle, motor_velocity, motor_torque, base_roll_pitch_yaw, base_angular_velocity] torque_control_enabled: Whether to use the torque control, if set to False, pose control will be used. motor_overheat_protection: Whether to shutdown the motor that has exerted large torque (OVERHEAT_SHUTDOWN_TORQUE) for an extended amount of time (OVERHEAT_SHUTDOWN_TIME). See ApplyAction() in vrka.py for more details. on_rack: Whether to place the vrka on rack. This is only used to debug the walking gait. In this mode, the vrka's base is hanged midair so that its walking gait is clearer to visualize. """ # vrka MODEL self.vrka = VrkaModel() # Whether to include contact sensing self.contacts = contacts # Control Inputs self.StepLength = 0.0 self.StepVelocity = 0.0 self.LateralFraction = 0.0 self.YawRate = 0.0 # Leg Phases self.LegPhases = [0.0, 0.0, 0.0, 0.0] # used to calculate minitaur acceleration self.init_leg = INIT_LEG_POS self.init_foot = INIT_FOOT_POS self.prev_ang_twist = np.array([0, 0, 0]) self.prev_lin_twist = np.array([0, 0, 0]) self.prev_lin_acc = np.array([0, 0, 0]) self.num_motors = 12 self.num_legs = int(self.num_motors / 3) self._pybullet_client = pybullet_client self._action_repeat = action_repeat self._urdf_root = urdf_root self._self_collision_enabled = self_collision_enabled self._motor_velocity_limit = motor_velocity_limit self._pd_control_enabled = pd_control_enabled self._motor_direction = np.ones(self.num_motors) self._observed_motor_torques = np.zeros(self.num_motors) self._applied_motor_torques = np.zeros(self.num_motors) self._max_force = max_force self._pd_latency = pd_latency self._control_latency = control_latency self._observation_noise_stdev = observation_noise_stdev self._accurate_motor_model_enabled = accurate_motor_model_enabled self._remove_default_joint_damping = remove_default_joint_damping self._observation_history = collections.deque(maxlen=100) self._control_observation = [] self._chassis_link_ids = [-1] self._leg_link_ids = [] self._motor_link_ids = [] self._foot_link_ids = [] self._torque_control_enabled = torque_control_enabled self._motor_overheat_protection = motor_overheat_protection self._on_rack = on_rack self._pose_id = pose_id self.np_random = np_random if self._accurate_motor_model_enabled: self._kp = motor_kp self._kd = motor_kd self._motor_model = motor.MotorModel( torque_control_enabled=self._torque_control_enabled, kp=self._kp, kd=self._kd) elif self._pd_control_enabled: self._kp = 8 self._kd = kd_for_pd_controllers else: self._kp = 1 self._kd = 1 self.time_step = time_step self._step_counter = 0 # reset_time=-1.0 means skipping the reset motion. # See Reset for more details. self.Reset(reset_time=-1) self.init_on_rack_position = INIT_RACK_POSITION self.init_position = INIT_POSITION self.initial_pose = self.INIT_POSES[pose_id] def _RecordMassInfoFromURDF(self): self._base_mass_urdf = [] for chassis_id in self._chassis_link_ids: self._base_mass_urdf.append( self._pybullet_client.getDynamicsInfo(self.quadruped, chassis_id)[0]) self._leg_masses_urdf = [] for leg_id in self._leg_link_ids: self._leg_masses_urdf.append( self._pybullet_client.getDynamicsInfo(self.quadruped, leg_id)[0]) for motor_id in self._motor_link_ids: self._leg_masses_urdf.append( self._pybullet_client.getDynamicsInfo(self.quadruped, motor_id)[0]) def GetBaseMassFromURDF(self): """Get the mass of the base from the URDF file.""" return self._base_mass_urdf def SetBaseMass(self, base_mass): for i in range(len(self._chassis_link_ids)): self._pybullet_client.changeDynamics(self.quadruped, self._chassis_link_ids[i], mass=base_mass[i]) def _RecordInertiaInfoFromURDF(self): """Record the inertia of each body from URDF file.""" self._link_urdf = [] num_bodies = self._pybullet_client.getNumJoints(self.quadruped) for body_id in range(-1, num_bodies): # -1 is for the base link. inertia = self._pybullet_client.getDynamicsInfo( self.quadruped, body_id)[2] self._link_urdf.append(inertia) # We need to use id+1 to index self._link_urdf because it has the base # (index = -1) at the first element. self._base_inertia_urdf = [ self._link_urdf[chassis_id + 1] for chassis_id in self._chassis_link_ids ] self._leg_inertia_urdf = [ self._link_urdf[leg_id + 1] for leg_id in self._leg_link_ids ] self._leg_inertia_urdf.extend([ self._link_urdf[motor_id + 1] for motor_id in self._motor_link_ids ]) def _BuildJointNameToIdDict(self): num_joints = self._pybullet_client.getNumJoints(self.quadruped) self._joint_name_to_id = {} for i in range(num_joints): joint_info = self._pybullet_client.getJointInfo(self.quadruped, i) self._joint_name_to_id[joint_info[1].decode( "UTF-8")] = joint_info[0] def _BuildMotorIdList(self): self._motor_id_list = [ self._joint_name_to_id[motor_name] for motor_name in MOTOR_NAMES ] def _BuildFootIdList(self): self._foot_id_list = [ self._joint_name_to_id[foot_name] for foot_name in FOOT_NAMES ] print(self._foot_id_list) def _BuildUrdfIds(self): """Build the link Ids from its name in the URDF file.""" c = [] m = [] f = [] lg = [] num_joints = self._pybullet_client.getNumJoints(self.quadruped) self._chassis_link_ids = [-1] # the self._leg_link_ids include both the upper and lower links of the leg. self._leg_link_ids = [] self._motor_link_ids = [] self._foot_link_ids = [] for i in range(num_joints): joint_info = self._pybullet_client.getJointInfo(self.quadruped, i) joint_name = joint_info[1].decode("UTF-8") joint_id = self._joint_name_to_id[joint_name] if _CHASSIS_NAME_PATTERN.match(joint_name): c.append(joint_name) self._chassis_link_ids.append(joint_id) elif _MOTOR_NAME_PATTERN.match(joint_name): m.append(joint_name) self._motor_link_ids.append(joint_id) elif _FOOT_NAME_PATTERN.match(joint_name): f.append(joint_name) self._foot_link_ids.append(joint_id) else: lg.append(joint_name) self._leg_link_ids.append(joint_id) self._leg_link_ids.extend(self._foot_link_ids) self._chassis_link_ids.sort() self._motor_link_ids.sort() self._foot_link_ids.sort() self._leg_link_ids.sort() def Reset(self, reload_urdf=True, default_motor_angles=None, reset_time=3.0): """Reset the vrka to its initial states. Args: reload_urdf: Whether to reload the urdf file. If not, Reset() just place the vrka back to its starting position. default_motor_angles: The default motor angles. If it is None, vrka will hold a default pose for 100 steps. In torque control mode, the phase of holding the default pose is skipped. reset_time: The duration (in seconds) to hold the default motor angles. If reset_time <= 0 or in torque control mode, the phase of holding the default pose is skipped. """ if self._on_rack: init_position = INIT_RACK_POSITION else: init_position = INIT_POSITION if reload_urdf: if self._self_collision_enabled: self.quadruped = self._pybullet_client.loadURDF( pybullet_data.getDataPath() + "/vrka.urdf", init_position, useFixedBase=self._on_rack, flags=self._pybullet_client.URDF_USE_SELF_COLLISION_EXCLUDE_PARENT) else: self.quadruped = self._pybullet_client.loadURDF( pybullet_data.getDataPath() + "/vrka.urdf", init_position, INIT_ORIENTATION, useFixedBase=self._on_rack) self._BuildJointNameToIdDict() self._BuildUrdfIds() if self._remove_default_joint_damping: self._RemoveDefaultJointDamping() self._BuildMotorIdList() self._BuildFootIdList() self._RecordMassInfoFromURDF() self._RecordInertiaInfoFromURDF() self.ResetPose(add_constraint=True) else: self._pybullet_client.resetBasePositionAndOrientation( self.quadruped, init_position, INIT_ORIENTATION) self._pybullet_client.resetBaseVelocity(self.quadruped, [0, 0, 0], [0, 0, 0]) # self._pybullet_client.changeDynamics(self.quadruped, -1, lateralFriction=0.8) self.ResetPose(add_constraint=False) self._overheat_counter = np.zeros(self.num_motors) self._motor_enabled_list = [True] * self.num_motors self._step_counter = 0 # Perform reset motion within reset_duration if in position control mode. # Nothing is performed if in torque control mode for now. self._observation_history.clear() if reset_time > 0.0 and default_motor_angles is not None: self.RealisticObservation() for _ in range(100): self.ApplyAction(self.initial_pose) self._pybullet_client.stepSimulation() self.RealisticObservation() num_steps_to_reset = int(reset_time / self.time_step) for _ in range(num_steps_to_reset): self.ApplyAction(default_motor_angles) self._pybullet_client.stepSimulation() self.RealisticObservation() self.RealisticObservation() # Set Foot Friction self.SetFootFriction() def _RemoveDefaultJointDamping(self): num_joints = self._pybullet_client.getNumJoints(self.quadruped) for i in range(num_joints): joint_info = self._pybullet_client.getJointInfo(self.quadruped, i) self._pybullet_client.changeDynamics(joint_info[0], -1, linearDamping=0, angularDamping=0) def _SetMotorTorqueById(self, motor_id, torque): self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=motor_id, controlMode=self._pybullet_client.TORQUE_CONTROL, force=torque) def _SetDesiredMotorAngleById(self, motor_id, desired_angle): if self._pd_control_enabled or self._accurate_motor_model_enabled: self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=motor_id, controlMode=self._pybullet_client.POSITION_CONTROL, targetPosition=desired_angle, positionGain=self._kp, velocityGain=self._kd, force=self._max_force) # Pybullet has a 'perfect' joint controller with its default p,d else: self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=motor_id, controlMode=self._pybullet_client.POSITION_CONTROL, targetPosition=desired_angle) def _SetDesiredMotorAngleByName(self, motor_name, desired_angle): self._SetDesiredMotorAngleById(self._joint_name_to_id[motor_name], desired_angle) def ResetPose(self, add_constraint): """Reset the pose of the vrka. Args: add_constraint: Whether to add a constraint at the joints of two feet. """ for i in range(self.num_legs): self._ResetPoseForLeg(i, add_constraint) def _ResetPoseForLeg(self, leg_id, add_constraint): """Reset the initial pose for the leg. Args: leg_id: It should be 0, 1, 2, or 3, which represents the leg at front_left, back_left, front_right and back_right. add_constraint: Whether to add a constraint at the joints of two feet. """ knee_friction_force = 0 pi = math.pi leg_position = LEG_POSITION[leg_id] self._pybullet_client.resetJointState( self.quadruped, self._joint_name_to_id["motor_" + leg_position + "_hip"], self.INIT_POSES[self._pose_id][3 * leg_id], targetVelocity=0) self._pybullet_client.resetJointState( self.quadruped, self._joint_name_to_id["motor_" + leg_position + "_upper_leg"], self.INIT_POSES[self._pose_id][3 * leg_id + 1], targetVelocity=0) self._pybullet_client.resetJointState( self.quadruped, self._joint_name_to_id["motor_" + leg_position + "_lower_leg"], self.INIT_POSES[self._pose_id][3 * leg_id + 2], targetVelocity=0) if self._accurate_motor_model_enabled or self._pd_control_enabled: # Disable the default motor in pybullet. self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=(self._joint_name_to_id["motor_" + leg_position + "_hip"]), controlMode=self._pybullet_client.VELOCITY_CONTROL, targetVelocity=0, force=knee_friction_force) self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=(self._joint_name_to_id["motor_" + leg_position + "_upper_leg"]), controlMode=self._pybullet_client.VELOCITY_CONTROL, targetVelocity=0, force=knee_friction_force) self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=(self._joint_name_to_id["motor_" + leg_position + "_lower_leg"]), controlMode=self._pybullet_client.VELOCITY_CONTROL, targetVelocity=0, force=knee_friction_force) def GetBasePosition(self): """Get the position of vrka's base. Returns: The position of vrka's base. """ position, _ = (self._pybullet_client.getBasePositionAndOrientation( self.quadruped)) return position def GetBaseOrientation(self): """Get the orientation of vrka's base, represented as quaternion. Returns: The orientation of vrka's base. """ _, orientation = (self._pybullet_client.getBasePositionAndOrientation( self.quadruped)) return orientation def GetBaseRollPitchYaw(self): """Get the rate of orientation change of the vrka's base in euler angle. Returns: rate of (roll, pitch, yaw) change of the vrka's base. """ vel = self._pybullet_client.getBaseVelocity(self.quadruped) return np.asarray([vel[1][0], vel[1][1], vel[1][2]]) def GetBaseRollPitchYawRate(self): """Get the rate of orientation change of the vrka's base in euler angle. This function mimicks the noisy sensor reading and adds latency. Returns: rate of (roll, pitch, yaw) change of the vrka's base polluted by noise and latency. """ return self._AddSensorNoise( np.array(self._control_observation[3 * self.num_motors + 4:3 * self.num_motors + 7]), self._observation_noise_stdev[4]) def GetBaseTwist(self): """Get the Twist of minitaur's base. Returns: The Twist of the minitaur's base. """ return self._pybullet_client.getBaseVelocity(self.quadruped) def GetActionDimension(self): """Get the length of the action list. Returns: The length of the action list. """ return self.num_motors def GetObservationUpperBound(self): """Get the upper bound of the observation. Returns: The upper bound of an observation. See GetObservation() for the details of each element of an observation. NOTE: Changed just like GetObservation() """ upper_bound = np.array([0.0] * self.GetObservationDimension()) # roll, pitch upper_bound[0:2] = 2.0 * np.pi # acc, rate in x,y,z upper_bound[2:8] = np.inf # Leg Phases upper_bound[8:12] = 2.0 # Contacts if self.contacts: upper_bound[12:] = 1.0 return upper_bound def GetObservationLowerBound(self): """Get the lower bound of the observation.""" return -self.GetObservationUpperBound() def GetObservationDimension(self): """Get the length of the observation list. Returns: The length of the observation list. """ return len(self.GetObservation()) def GetObservation(self): """Get the observations of minitaur. It includes the angles, velocities, torques and the orientation of the base. Returns: The observation list. observation[0:8] are motor angles. observation[8:16] are motor velocities, observation[16:24] are motor torques. observation[24:28] is the orientation of the base, in quaternion form. NOTE: DIVERGES FROM STOCK MINITAUR ENV. WILL LEAVE ORIGINAL COMMENTED For my purpose, the observation space includes Roll and Pitch, as well as acceleration and gyroscopic rate along the x,y,z axes. All of this information can be collected from an onboard IMU. The reward function will contain a hidden velocity reward (fwd, bwd) which cannot be measured and so is not included. For spinning, the gyroscopic z rate will be used as the (explicit) velocity reward. This version operates without motor torques, angles and velocities. Erwin Coumans' paper suggests a sparse observation space leads to higher reward # NOTE: use True version for perfect data, or other for realistic data """ observation = [] # GETTING TWIST IN BODY FRAME pos = self.GetBasePosition() orn = self.GetBaseOrientation() roll, pitch, yaw = self._pybullet_client.getEulerFromQuaternion( [orn[0], orn[1], orn[2], orn[3]]) # rpy = LA.RPY(roll, pitch, yaw) # R, _ = LA.TransToRp(rpy) # T_wb = LA.RpToTrans(R, np.array([pos[0], pos[1], pos[2]])) # T_bw = LA.TransInv(T_wb) # Adj_Tbw = LA.Adjoint(T_bw) # Get Linear and Angular Twist in WORLD FRAME lin_twist, ang_twist = self.GetBaseTwist() lin_twist = np.array([lin_twist[0], lin_twist[1], lin_twist[2]]) ang_twist = np.array([ang_twist[0], ang_twist[1], ang_twist[2]]) # Vw = np.concatenate((ang_twist, lin_twist)) # Vb = np.dot(Adj_Tbw, Vw) # roll, pitch, _ = self._pybullet_client.getEulerFromQuaternion( # [orn[0], orn[1], orn[2], orn[3]]) # # Get linear accelerations # lin_twist = -Vb[3:] # ang_twist = Vb[:3] lin_acc = lin_twist - self.prev_lin_twist if lin_acc.all() == 0.0: lin_acc = self.prev_lin_acc self.prev_lin_acc = lin_acc # print("LIN TWIST: ", lin_twist) self.prev_lin_twist = lin_twist self.prev_ang_twist = ang_twist # Get Contacts CONTACT = list(self._pybullet_client.getContactPoints(self.quadruped)) FLC = 0 FRC = 0 BLC = 0 BRC = 0 if len(CONTACT) > 0: for i in range(len(CONTACT)): Contact_Link_Index = CONTACT[i][3] if Contact_Link_Index == self._foot_id_list[0]: FLC = 1 # print("FL CONTACT") if Contact_Link_Index == self._foot_id_list[1]: FRC = 1 # print("FR CONTACT") if Contact_Link_Index == self._foot_id_list[2]: BLC = 1 # print("BL CONTACT") if Contact_Link_Index == self._foot_id_list[3]: BRC = 1 # print("BR CONTACT") # order: roll, pitch, gyro(x,y,z), acc(x, y, z) observation.append(roll) observation.append(pitch) observation.extend(list(ang_twist)) observation.extend(list(lin_acc)) # Control Input # observation.append(self.StepLength) # observation.append(self.StepVelocity) # observation.append(self.LateralFraction) # observation.append(self.YawRate) observation.extend(self.LegPhases) if self.contacts: observation.append(FLC) observation.append(FRC) observation.append(BLC) observation.append(BRC) # print("CONTACTS: {} {} {} {}".format(FLC, FRC, BLC, BRC)) return observation def GetControlInput(self, controller): """ Store Control Input as Observation """ _, _, StepLength, LateralFraction, YawRate, StepVelocity, _, _ = controller.return_bezier_params( ) self.StepLength = StepLength self.StepVelocity = StepVelocity self.LateralFraction = LateralFraction self.YawRate = YawRate def GetLegPhases(self, TrajectoryGenerator): """ Leg phases according to TG from 0->2 0->1: Stance 1->2 Swing """ self.LegPhases = TrajectoryGenerator.Phases def GetExternalObservations(self, TrajectoryGenerator, controller): """ Augment State Space """ self.GetControlInput(controller) self.GetLegPhases(TrajectoryGenerator) def ConvertFromLegModel(self, action): # TODO joint_angles = action return joint_angles def ApplyMotorLimits(self, joint_angles): eps = 0.001 for i in range(len(joint_angles)): LIM = MOTOR_LIMITS_BY_NAME[MOTOR_NAMES[i]] joint_angles[i] = np.clip(joint_angles[i], LIM[0] + eps, LIM[1] - eps) return joint_angles def ApplyAction(self, motor_commands): """Set the desired motor angles to the motors of the minitaur. The desired motor angles are clipped based on the maximum allowed velocity. If the pd_control_enabled is True, a torque is calculated according to the difference between current and desired joint angle, as well as the joint velocity. This torque is exerted to the motor. For more information about PD control, please refer to: https://en.wikipedia.org/wiki/PID_controller. Args: motor_commands: The eight desired motor angles. """ # FIRST, APPLY MOTOR LIMITS: motor_commands = self.ApplyMotorLimits(motor_commands) if self._motor_velocity_limit < np.inf: current_motor_angle = self.GetMotorAngles() motor_commands_max = (current_motor_angle + self.time_step * self._motor_velocity_limit) motor_commands_min = (current_motor_angle - self.time_step * self._motor_velocity_limit) motor_commands = np.clip(motor_commands, motor_commands_min, motor_commands_max) if self._accurate_motor_model_enabled or self._pd_control_enabled: q = self.GetMotorAngles() qdot = self.GetMotorVelocities() if self._accurate_motor_model_enabled: actual_torque, observed_torque = self._motor_model.convert_to_torque( motor_commands, q, qdot) if self._motor_overheat_protection: for i in range(self.num_motors): if abs(actual_torque[i]) > OVERHEAT_SHUTDOWN_TORQUE: self._overheat_counter[i] += 1 else: self._overheat_counter[i] = 0 if (self._overheat_counter[i] > OVERHEAT_SHUTDOWN_TIME / self.time_step): self._motor_enabled_list[i] = False # The torque is already in the observation space because we use # GetMotorAngles and GetMotorVelocities. self._observed_motor_torques = observed_torque # Transform into the motor space when applying the torque. self._applied_motor_torque = np.multiply( actual_torque, self._motor_direction) for motor_id, motor_torque, motor_enabled in zip( self._motor_id_list, self._applied_motor_torque, self._motor_enabled_list): if motor_enabled: self._SetMotorTorqueById(motor_id, motor_torque) else: self._SetMotorTorqueById(motor_id, 0) else: torque_commands = -self._kp * ( q - motor_commands) - self._kd * qdot # The torque is already in the observation space because we use # GetMotorAngles and GetMotorVelocities. self._observed_motor_torques = torque_commands # Transform into the motor space when applying the torque. self._applied_motor_torques = np.multiply( self._observed_motor_torques, self._motor_direction) for motor_id, motor_torque in zip(self._motor_id_list, self._applied_motor_torques): self._SetMotorTorqueById(motor_id, motor_torque) else: motor_commands_with_direction = np.multiply( motor_commands, self._motor_direction) for motor_id, motor_command_with_direction in zip( self._motor_id_list, motor_commands_with_direction): self._SetDesiredMotorAngleById(motor_id, motor_command_with_direction) def Step(self, action): for _ in range(self._action_repeat): self.ApplyAction(action) self._pybullet_client.stepSimulation() self.RealisticObservation() self._step_counter += 1 def GetTimeSinceReset(self): return self._step_counter * self.time_step def GetMotorAngles(self): """Gets the eight motor angles at the current moment, mapped to [-pi, pi]. Returns: Motor angles, mapped to [-pi, pi]. """ motor_angles = [ self._pybullet_client.getJointState(self.quadruped, motor_id)[0] for motor_id in self._motor_id_list ] motor_angles = np.multiply(motor_angles, self._motor_direction) return MapToMinusPiToPi(motor_angles) def GetMotorVelocities(self): """Get the velocity of all eight motors. Returns: Velocities of all eight motors. """ motor_velocities = [ self._pybullet_client.getJointState(self.quadruped, motor_id)[1] for motor_id in self._motor_id_list ] motor_velocities = np.multiply(motor_velocities, self._motor_direction) return motor_velocities def GetMotorTorques(self): """Get the amount of torque the motors are exerting. Returns: Motor torques of all eight motors. """ if self._accurate_motor_model_enabled or self._pd_control_enabled: return self._observed_motor_torques else: motor_torques = [ self._pybullet_client.getJointState(self.quadruped, motor_id)[3] for motor_id in self._motor_id_list ] motor_torques = np.multiply(motor_torques, self._motor_direction) return motor_torques def GetBaseMassesFromURDF(self): """Get the mass of the base from the URDF file.""" return self._base_mass_urdf def GetBaseInertiasFromURDF(self): """Get the inertia of the base from the URDF file.""" return self._base_inertia_urdf def GetLegMassesFromURDF(self): """Get the mass of the legs from the URDF file.""" return self._leg_masses_urdf def GetLegInertiasFromURDF(self): """Get the inertia of the legs from the URDF file.""" return self._leg_inertia_urdf def SetBaseMasses(self, base_mass): """Set the mass of vrka's base. Args: base_mass: A list of masses of each body link in CHASIS_LINK_IDS. The length of this list should be the same as the length of CHASIS_LINK_IDS. Raises: ValueError: It is raised when the length of base_mass is not the same as the length of self._chassis_link_ids. """ if len(base_mass) != len(self._chassis_link_ids): raise ValueError( "The length of base_mass {} and self._chassis_link_ids {} are not " "the same.".format(len(base_mass), len(self._chassis_link_ids))) for chassis_id, chassis_mass in zip(self._chassis_link_ids, base_mass): self._pybullet_client.changeDynamics(self.quadruped, chassis_id, mass=chassis_mass) def SetLegMasses(self, leg_masses): """Set the mass of the legs. Args: leg_masses: The leg and motor masses for all the leg links and motors. Raises: ValueError: It is raised when the length of masses is not equal to number of links + motors. """ if len(leg_masses) != len(self._leg_link_ids) + len( self._motor_link_ids): raise ValueError("The number of values passed to SetLegMasses are " "different than number of leg links and motors.") for leg_id, leg_mass in zip(self._leg_link_ids, leg_masses): self._pybullet_client.changeDynamics(self.quadruped, leg_id, mass=leg_mass) motor_masses = leg_masses[len(self._leg_link_ids):] for link_id, motor_mass in zip(self._motor_link_ids, motor_masses): self._pybullet_client.changeDynamics(self.quadruped, link_id, mass=motor_mass) def SetBaseInertias(self, base_inertias): """Set the inertias of vrka's base. Args: base_inertias: A list of inertias of each body link in CHASIS_LINK_IDS. The length of this list should be the same as the length of CHASIS_LINK_IDS. Raises: ValueError: It is raised when the length of base_inertias is not the same as the length of self._chassis_link_ids and base_inertias contains negative values. """ if len(base_inertias) != len(self._chassis_link_ids): raise ValueError( "The length of base_inertias {} and self._chassis_link_ids {} are " "not the same.".format(len(base_inertias), len(self._chassis_link_ids))) for chassis_id, chassis_inertia in zip(self._chassis_link_ids, base_inertias): for inertia_value in chassis_inertia: if (np.asarray(inertia_value) < 0).any(): raise ValueError( "Values in inertia matrix should be non-negative.") self._pybullet_client.changeDynamics( self.quadruped, chassis_id, localInertiaDiagonal=chassis_inertia) def SetLegInertias(self, leg_inertias): """Set the inertias of the legs. Args: leg_inertias: The leg and motor inertias for all the leg links and motors. Raises: ValueError: It is raised when the length of inertias is not equal to the number of links + motors or leg_inertias contains negative values. """ if len(leg_inertias) != len(self._leg_link_ids) + len( self._motor_link_ids): raise ValueError("The number of values passed to SetLegMasses are " "different than number of leg links and motors.") for leg_id, leg_inertia in zip(self._leg_link_ids, leg_inertias): for inertia_value in leg_inertias: if (np.asarray(inertia_value) < 0).any(): raise ValueError( "Values in inertia matrix should be non-negative.") self._pybullet_client.changeDynamics( self.quadruped, leg_id, localInertiaDiagonal=leg_inertia) motor_inertias = leg_inertias[len(self._leg_link_ids):] for link_id, motor_inertia in zip(self._motor_link_ids, motor_inertias): for inertia_value in motor_inertias: if (np.asarray(inertia_value) < 0).any(): raise ValueError( "Values in inertia matrix should be non-negative.") self._pybullet_client.changeDynamics( self.quadruped, link_id, localInertiaDiagonal=motor_inertia) def SetFootFriction(self, foot_friction=100.0): """Set the lateral friction of the feet. Args: foot_friction: The lateral friction coefficient of the foot. This value is shared by all four feet. """ for link_id in self._foot_link_ids: self._pybullet_client.changeDynamics(self.quadruped, link_id, lateralFriction=foot_friction) # TODO(b/73748980): Add more API's to set other contact parameters. def SetFootRestitution(self, link_id, foot_restitution=1.0): """Set the coefficient of restitution at the feet. Args: foot_restitution: The coefficient of restitution (bounciness) of the feet. This value is shared by all four feet. """ self._pybullet_client.changeDynamics(self.quadruped, link_id, restitution=foot_restitution) def SetJointFriction(self, joint_frictions): for knee_joint_id, friction in zip(self._foot_link_ids, joint_frictions): self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=knee_joint_id, controlMode=self._pybullet_client.VELOCITY_CONTROL, targetVelocity=0, force=friction) def GetNumKneeJoints(self): return len(self._foot_link_ids) def SetBatteryVoltage(self, voltage): if self._accurate_motor_model_enabled: self._motor_model.set_voltage(voltage) def SetMotorViscousDamping(self, viscous_damping): if self._accurate_motor_model_enabled: self._motor_model.set_viscous_damping(viscous_damping) def RealisticObservation(self): """Receive the observation from sensors. This function is called once per step. The observations are only updated when this function is called. """ self._observation_history.appendleft(self.GetObservation()) self._control_observation = self._GetDelayedObservation( self._control_latency) self._control_observation = self._AddSensorNoise( self._control_observation, self._observation_noise_stdev) return self._control_observation def _GetDelayedObservation(self, latency): """Get observation that is delayed by the amount specified in latency. Args: latency: The latency (in seconds) of the delayed observation. Returns: observation: The observation which was actually latency seconds ago. """ if latency <= 0 or len(self._observation_history) == 1: observation = self._observation_history[0] else: n_steps_ago = int(latency / self.time_step) if n_steps_ago + 1 >= len(self._observation_history): return self._observation_history[-1] remaining_latency = latency - n_steps_ago * self.time_step blend_alpha = remaining_latency / self.time_step observation = ( (1.0 - blend_alpha) * np.array(self._observation_history[n_steps_ago]) + blend_alpha * np.array(self._observation_history[n_steps_ago + 1])) return observation def _GetPDObservation(self): pd_delayed_observation = self._GetDelayedObservation(self._pd_latency) q = pd_delayed_observation[0:self.num_motors] qdot = pd_delayed_observation[self.num_motors:2 * self.num_motors] return (np.array(q), np.array(qdot)) def _AddSensorNoise(self, observation, noise_stdev): # if self._observation_noise_stdev > 0: # observation += (self.np_random.normal(scale=noise_stdev, # size=observation.shape) * # self.GetObservationUpperBound()) return observation def SetControlLatency(self, latency): """Set the latency of the control loop. It measures the duration between sending an action from Nvidia TX2 and receiving the observation from microcontroller. Args: latency: The latency (in seconds) of the control loop. """ self._control_latency = latency def GetControlLatency(self): """Get the control latency. Returns: The latency (in seconds) between when the motor command is sent and when the sensor measurements are reported back to the controller. """ return self._control_latency def SetMotorGains(self, kp, kd): """Set the gains of all motors. These gains are PD gains for motor positional control. kp is the proportional gain and kd is the derivative gain. Args: kp: proportional gain of the motors. kd: derivative gain of the motors. """ self._kp = kp self._kd = kd if self._accurate_motor_model_enabled: self._motor_model.set_motor_gains(kp, kd) def GetMotorGains(self): """Get the gains of the motor. Returns: The proportional gain. The derivative gain. """ return self._kp, self._kd def SetMotorStrengthRatio(self, ratio): """Set the strength of all motors relative to the default value. Args: ratio: The relative strength. A scalar range from 0.0 to 1.0. """ if self._accurate_motor_model_enabled: self._motor_model.set_strength_ratios([ratio] * self.num_motors) def SetMotorStrengthRatios(self, ratios): """Set the strength of each motor relative to the default value. Args: ratios: The relative strength. A numpy array ranging from 0.0 to 1.0. """ if self._accurate_motor_model_enabled: self._motor_model.set_strength_ratios(ratios) def SetTimeSteps(self, action_repeat, simulation_step): """Set the time steps of the control and simulation. Args: action_repeat: The number of simulation steps that the same action is repeated. simulation_step: The simulation time step. """ self.time_step = simulation_step self._action_repeat = action_repeat @property def chassis_link_ids(self): return self._chassis_link_ids
42.424403
107
0.611208
4a2776c9d6a8bafe28dd7d343285d29019467a3d
3,909
py
Python
src/gesture_api.py
ShikharJ/Gestures-Alive
2a8c8a36400c3a7778c00fd76159a64f3a49a1e9
[ "BSD-3-Clause" ]
4
2017-12-28T20:26:51.000Z
2021-08-06T11:57:41.000Z
src/gesture_api.py
ShikharJ/Gestures-Alive
2a8c8a36400c3a7778c00fd76159a64f3a49a1e9
[ "BSD-3-Clause" ]
null
null
null
src/gesture_api.py
ShikharJ/Gestures-Alive
2a8c8a36400c3a7778c00fd76159a64f3a49a1e9
[ "BSD-3-Clause" ]
3
2019-02-22T18:52:14.000Z
2019-08-23T06:31:45.000Z
import numpy import math class Gesture(object): def __init__(self, name): self.name = name def get_name(self): return self.name def set_palm(self, hand_center, hand_radius): self.hand_center = hand_center self.hand_radius = hand_radius def set_finger_position(self, finger_position): self.finger_position = finger_position self.finger_count = len(finger_position) def calculate_angles(self): self.angle = numpy.zeros(self.finger_count, dtype=int) for i in range(self.finger_count): x = self.finger_position[i][0] y = self.finger_position[i][1] self.angle[i] = abs(math.atan2((self.hand_center[1] - y), (x - self.hand_center[0])) * 180 / math.pi) def define_gestures(): dictionary = {} v = Gesture("V Sign") v.set_palm((475, 225), 45) v.set_finger_position([(490, 90), (415, 105)]) v.calculate_angles() dictionary[v.get_name()] = v l_right = Gesture("L Sign") l_right.set_palm((475, 225), 50) l_right.set_finger_position([(450, 62), (345, 200)]) l_right.calculate_angles() dictionary[l_right.get_name()] = l_right index_pointing = Gesture("Index Pointing") index_pointing.set_palm((480, 230), 43) index_pointing.set_finger_position([(475, 102)]) index_pointing.calculate_angles() dictionary[index_pointing.get_name()] = index_pointing return dictionary def compare_gestures(primary, secondary): if primary.finger_count == secondary.finger_count: if primary.finger_count == 1: angle_difference = primary.angle[0] - secondary.angle[0] if angle_difference > 20: result = 0 else: primary_length = numpy.sqrt((primary.finger_position[0][0] - primary.hand_center[0]) ** 2 + (primary.finger_position[0][1] - primary.hand_center[1]) ** 2) secondary_length = numpy.sqrt((secondary.finger_position[0][0] - secondary.hand_center[0]) ** 2 + (secondary.finger_position[0][1] - secondary.hand_center[1]) ** 2) length_difference = primary_length / secondary_length radius_difference = primary.hand_radius / secondary.hand_radius length_score = abs(length_difference - radius_difference) if length_score < 0.09: result = secondary.get_name() else: result = 0 else: angle_difference = [] for i in range(primary.finger_count): angle_difference.append(primary.angle[i] - secondary.angle[i]) angle_score = max(angle_difference) - min(angle_difference) if angle_score < 15: length_difference = [] for i in range(primary.finger_count): primary_length = numpy.sqrt((primary.finger_position[i][0] - primary.hand_center[0]) ** 2 + (primary.finger_position[i][1] - primary.hand_center[1]) ** 2) secondary_length = numpy.sqrt((secondary.finger_position[i][0] - secondary.hand_center[0]) ** 2 + (secondary.finger_position[i][1] - secondary.hand_center[1]) ** 2) length_difference.append(primary_length / secondary_length) length_score = max(length_difference) - min(length_difference) if length_score < 0.06: result = secondary.get_name() else: result = 0 else: result = 0 else: result = 0 return result def decide_gesture(source, gesture_dictionary): for k in gesture_dictionary.keys(): result = compare_gestures(source, gesture_dictionary[k]) if result != 0: return result return "None"
36.877358
184
0.59913
4a277804f7a900ea1516bf5d0d530eab40f68a7c
2,700
py
Python
imu_test.py
anacsousa1/footLifter
df23db98759da66c874600651957e18b2416e676
[ "Apache-2.0" ]
null
null
null
imu_test.py
anacsousa1/footLifter
df23db98759da66c874600651957e18b2416e676
[ "Apache-2.0" ]
null
null
null
imu_test.py
anacsousa1/footLifter
df23db98759da66c874600651957e18b2416e676
[ "Apache-2.0" ]
null
null
null
# ###################################################################################################################### # ## imu_test.py # ## Description: testing the IMU # ## - We test the connection and print the pitch angle. # ## Library needed: imu, time, math, serial, sys libraries # ## Python interpreter: Anaconda 2.2.0 (python 2.7) # ## Author: Ana Carolina Cardoso de Sousa # ## Email: [email protected] # ## Created: May 29th 2015 # ###################################################################################################################### __authors__ = [ "\"Ana de Sousa\" <[email protected]>", ] # Importing... import time import math import serial import imu import sys # Greetings print "Welcome to ours IMU tester, let\'s get this started?\n" # Ports and addresses portIMU = 'COM9' # in windows, verify "Manage Devices" addressIMU = 1 # the device must have a stick informing it # Open ports print '\tWe are trying to connect to the IMU (address ' + str(addressIMU) + ') to port ' + portIMU + '.' try: serialPortIMU = serial.Serial(portIMU, timeout=1, writeTimeout=1, baudrate=115200) except serial.SerialException: print '\t\tNo Hardware Found in ' + portIMU + '... :(\n \t\tExiting now. \n' sys.exit(0) if not serialPortIMU.isOpen(): # verify if it is already open serialPortIMU.open() device1 = imu.IMU(serialPortIMU, addressIMU) # Construct object testing = device1.getEulerAngles() # Get some info testing = testing.split(',', 6) # Convert to list if len(testing) == 2: # testing connection print '\t\tUnable to connect to the IMU... :(\n \t\tExiting now. \n' sys.exit(1) # Calibrating print '\t\tWe are connected! Now, we are going to calibrate the IMU. Keep it still!\n' device1.calibrate() device1.tare() print "\t\t\tIMU Calibrated!\n" # Wait until the user press the 'Start' button print '\n\t\tWhenever you\'re ready, press button 1 (the left one)!' while not (device1.checkButtons() == 1): pass # Do it while 'Stop' button not pressed dt = 0.5 print '\nPrinting pitch angle (sample time ' + str(dt) + ' seconds).' while not (device1.checkButtons() == 2): angles = device1.getEulerAngles() # get angles angles = angles.split(',', 6) # convert to list if len(angles) == 6: # if we connect correctly with the device pitch = float(angles[4]) if pitch >= 0: pitch = math.degrees(pitch) else: pitch = 360 + math.degrees(pitch) print str(pitch) time.sleep(dt) # Bye bye serialPortIMU.close() # close port print 'Have a nice day!'
31.764706
120
0.584444
4a27781bf259e265f2fcf3d32a578706cc732b31
1,523
py
Python
stonesoup/feeder/filter.py
dlast-dstl/Stone-Soup
033254add5adc00097b746f81d6640308a3e3319
[ "MIT" ]
1
2021-04-13T11:47:42.000Z
2021-04-13T11:47:42.000Z
stonesoup/feeder/filter.py
dlast-dstl/Stone-Soup
033254add5adc00097b746f81d6640308a3e3319
[ "MIT" ]
null
null
null
stonesoup/feeder/filter.py
dlast-dstl/Stone-Soup
033254add5adc00097b746f81d6640308a3e3319
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from operator import attrgetter from ..base import Property from .base import Feeder class MetadataReducer(Feeder): """Reduce detections so unique metadata value present at each time step. This allows to reduce detections so a single detection is returned, based on a particular metadata value, for example a unique identity. The most recent detection will be yielded for each unique metadata value at each time step. """ metadata_field = Property( str, doc="Field used to reduce unique set of detections") def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._detections = set() @property def detections(self): return self._detections def detections_gen(self): for time, detections in self.detector.detections_gen(): unique_detections = set() sorted_detections = sorted( detections, key=attrgetter('timestamp'), reverse=True) meta_values = set() for detection in sorted_detections: meta_value = detection.metadata.get(self.metadata_field) if meta_value not in meta_values: unique_detections.add(detection) # Ignore those without meta data value if meta_value is not None: meta_values.add(meta_value) self._detections = unique_detections yield time, unique_detections
34.613636
77
0.633618
4a27787bd23387a673e48299f1c4b348941da986
34,525
py
Python
docs/3.0.0/_downloads/tutorial.py
sadielbartholomew/cf-python
98541d8e55c703eca9bfba4168fb3d42755267da
[ "MIT" ]
49
2019-10-08T12:46:39.000Z
2022-02-06T01:13:30.000Z
docs/3.0.0/_downloads/tutorial.py
sadielbartholomew/cf-python
98541d8e55c703eca9bfba4168fb3d42755267da
[ "MIT" ]
279
2019-10-07T11:14:37.000Z
2022-03-31T13:46:37.000Z
docs/3.0.0/_downloads/tutorial.py
sadielbartholomew/cf-python
98541d8e55c703eca9bfba4168fb3d42755267da
[ "MIT" ]
14
2019-10-25T08:54:06.000Z
2022-01-31T10:42:39.000Z
print("\n**Tutorial**\n") print("\n**Sample datasets**\n") print("\n**Import**\n") import cf cf.CF() print("\n**Field construct**\n") print("\n**Reading field constructs from datasets**\n") x = cf.read('file.nc') type(x) len(x) y = cf.read('*.nc') len(y) z = cf.read(['file.nc', 'precipitation_flux.nc']) len(z) try: y = cf.read('$PWD') except: pass else: raise Exception("This should have failed!") y = cf.read('$PWD', ignore_read_error=True) len(y) print("\n**Inspection**\n") x = cf.read('file.nc') x q = x[0] t = x[1] q print(q) print(t) q.dump() t.dump() print("\n**Visualization**\n") print("\n**Field lists**\n") x = cf.read('file.nc') y = cf.read('precipitation_flux.nc') x y y.extend(x) y y[2] y[::-1] len(y) len(y + y) len(y * 4) for f in y: print('field:', repr(f)) print("\n**Properties**\n") q, t = cf.read('file.nc') t.properties() t.has_property('standard_name') t.get_property('standard_name') t.del_property('standard_name') t.get_property('standard_name', default='not set') t.set_property('standard_name', value='air_temperature') t.get_property('standard_name', default='not set') original = t.properties() original t.set_properties({'foo': 'bar', 'units': 'K'}) t.properties() t.clear_properties() t.properties() t.set_properties(original) t.properties() t.identity() t.identities() print("\n**Metadata constructs**\n") q, t = cf.read('file.nc') t.coordinate_references print(t.coordinate_references) list(t.coordinate_references.keys()) for key, value in t.coordinate_references.items(): print(key, repr(value)) print(t.dimension_coordinates) print(t.domain_axes) q.constructs print(q.constructs) t.constructs print(t.constructs) print("\n**Data**\n") q, t = cf.read('file.nc') t.data print(t.array) t.dtype t.ndim t.shape t.size print(t.domain_axes) t t.data.shape t.get_data_axes() data = t.del_data() t.has_data() t.set_data(data) t.data d = cf.Data([1, 2, 3], units='days since 2004-2-28') print(d.array) print(d.datetime_array) e = cf.Data([1, 2, 3], units='days since 2004-2-28', calendar='360_day') print(d.array) print(d.datetime_array) date_time = cf.dt(2004, 2, 29) date_time d = cf.Data(date_time, calendar='gregorian') print(d.array) d.datetime_array date_times = cf.dt_vector(['2004-02-29', '2004-02-30', '2004-03-01'], calendar='360_day') print (date_times) e = cf.Data(date_times) print(e.array) print(e.datetime_array) d = cf.Data(['2004-02-29', '2004-02-30', '2004-03-01'], calendar='360_day') d.Units print(d.array) print(d.datetime_array) e = cf.Data(['2004-02-29', '2004-03-01', '2004-03-02'], dt=True) e.Units print(e.datetime_array) f = cf.Data(['2004-02-29', '2004-03-01', '2004-03-02']) print(f.array) f.Units try: print(f.datetime_array) except: pass else: raise Exception("This should have failed!") q, t = cf.read('file.nc') t t2 = t.squeeze() t2 print(t2.dimension_coordinates) t3 = t2.insert_dimension(axis='domainaxis3', position=1) t3 t3.transpose([2, 0, 1]) t4 = t.transpose([2, 0, 1], constructs=True) print("\n**Subspacing by index**\n") q, t = cf.read('file.nc') print(q) new = q[::-1, 0] print(new) q t[:, :, 1] t[:, 0] t[..., 6:3:-1, 3:6] t[0, [2, 3, 9], [4, 8]] t[0, :, -2] q q.cyclic() q.constructs.domain_axis_identity('domainaxis1') print(q[:, -2:3]) print(q[:, 3:-2:-1]) t.data[0, [2, 3, 9], [4, 8]] print("\n**Assignment by index**\n") q, t = cf.read('file.nc') t[:, 0, 0] = -1 t[:, :, 1] = -2 t[..., 6:3:-1, 3:6] = -3 print(t.array) import numpy t[..., 6:3:-1, 3:6] = numpy.arange(9).reshape(3, 3) t[0, [2, 9], [4, 8]] = cf.Data([[-4, -5]]) t[0, [4, 7], 0] = [[-10], [-11]] print(t.array) print(t[0, 0, -1].array) t[0, -1, -1] /= -10 print(t[0, 0, -1].array) t.data[0, 0, -1] = -99 print(t[0, 0, -1].array) t[0, :, -2] = cf.masked print(t.array) t[0, 4, -2] = 99 print(t[0, 4, -2].array) t.hardmask = False t[0, 4, -2] = 99 print(t[0, 4, -2].array) q, t = cf.read('file.nc') t0 = t.copy() u = t.squeeze(0) u.transpose(inplace=True) u.flip(inplace=True) t[...] = u t.allclose(t0) t[:, :, 1:3] = u[2] print(t[:, :, 1:3].array) print(u[2].array) t[:, :, 1:3] = u[2] print(t[:, :, 1:3].array) print("\n**Units**\n") q, t = cf.read('file.nc') t.units t.Units t.units = 'degreesC' t.units t.Units t.Units += 273.15 t.units t.Units t.data t.Units = cf.Units('degreesC') t.data t.units = 'Kelvin' t.data t.data t[0, 0, 0] = cf.Data(1) t.data t[0, 0, 0] = cf.Data(1, 'degreesC') t.data air_temp = cf.read('air_temperature.nc')[0] time = air_temp.coordinate('time') time.units time.calendar time.Units print("\n**Filtering metadata constructs**\n") q, t = cf.read('file.nc') print(t.constructs.filter_by_type('dimension_coordinate')) print(t.constructs.filter_by_type('cell_method', 'field_ancillary')) print(t.constructs.filter_by_property( standard_name='air_temperature standard_error')) print(t.constructs.filter_by_property( standard_name='air_temperature standard_error', units='K')) print(t.constructs.filter_by_property( 'or', standard_name='air_temperature standard_error', units='m')) print(t.constructs.filter_by_axis('and', 'domainaxis1')) print(t.constructs.filter_by_measure('area')) print(t.constructs.filter_by_method('maximum')) print(t.constructs.filter_by_type('auxiliary_coordinate').filter_by_axis('and', 'domainaxis2')) c = t.constructs.filter_by_type('dimension_coordinate') d = c.filter_by_property(units='degrees') print(d) print(t) print(t.constructs.filter_by_identity('X')) print(t.constructs.filter_by_identity('latitude')) print(t.constructs.filter_by_identity('long_name=Grid latitude name')) print(t.constructs.filter_by_identity('measure:area')) print(t.constructs.filter_by_identity('ncvar%b')) print(t.constructs.filter_by_identity('latitude')) print(t.constructs('latitude')) print(t.constructs.filter_by_key('domainancillary2')) print(t.constructs.filter_by_key('cellmethod1')) print(t.constructs.filter_by_key('auxiliarycoordinate2', 'cellmeasure0')) c = t.constructs('radiation_wavelength') c print(c) len(c) c = t.constructs.filter_by_type('auxiliary_coordinate') c c.inverse_filter() print(t.constructs.filter_by_type('cell_measure')) print(t.cell_measures) print("\n**Metadata construct access**\n") t.construct('latitude') t.construct('latitude', key=True) key = t.construct_key('latitude') t.get_construct(key) t.constructs('latitude').value() c = t.constructs.get(key) t.constructs[key] t.auxiliary_coordinate('latitude') t.auxiliary_coordinate('latitude', key=True) try: t.construct('measure:volume') except: pass else: raise Exception("This should have failed!") t.construct('measure:volume', False) c = t.constructs.filter_by_measure('volume') len(c) try: c.value() except: pass else: raise Exception("This should have failed!") c.value(default='No construct') try: c.value(default=KeyError('My message')) except: pass else: raise Exception("This should have failed!") d = t.constructs('units=degrees') len(d) try: d.value() except: pass else: raise Exception("This should have failed!") print(d.value(default=None)) lon = q.construct('longitude') lon lon.set_property('long_name', 'Longitude') lon.properties() area = t.constructs.filter_by_property(units='km2').value() area area.identity() area.identities() lon = q.constructs('longitude').value() lon lon.data lon.data[2] lon.data[2] = 133.33 print(lon.array) lon.data[2] = 112.5 key = t.construct_key('latitude') key t.get_data_axes(key) t.constructs.data_axes() print("\n**Time**\n") time = q.construct('time') time time.get_property('units') time.get_property('calendar', default='standard') print(time.array) print(time.datetime_array) cm = cf.TimeDuration(1, 'calendar_month', day=16, hour=12) cm cf.dt(2000, 2, 1) + cm cf.Data([1, 2, 3], 'days since 2000-02-01') + cm cm.interval(cf.dt(2000, 2, 1)) cm.bounds(cf.dt(2000, 2, 1)) print("\n**Domain**\n") domain = t.domain domain print(domain) description = domain.dump(display=False) domain_latitude = t.domain.constructs('latitude').value() field_latitude = t.constructs('latitude').value() domain_latitude.set_property('test', 'set by domain') print(field_latitude.get_property('test')) field_latitude.set_property('test', 'set by field') print(domain_latitude.get_property('test')) domain_latitude.del_property('test') field_latitude.has_property('test') print("\n**Metadata construct types**\n") print(q.domain_axes) d = q.domain_axes.get('domainaxis1') d d.get_size() print(t.coordinates) lon = t.constructs('grid_longitude').value() bounds = lon.bounds bounds bounds.data print(bounds.array) bounds.inherited_properties() bounds.properties() a = t.constructs.get('domainancillary0') print(a.array) bounds = a.bounds bounds print(bounds.array) crs = t.constructs('standard_name:atmosphere_hybrid_height_coordinate').value() crs crs.dump() crs.coordinates() crs.datum crs.datum.parameters() crs.coordinate_conversion crs.coordinate_conversion.parameters() crs.coordinate_conversion.domain_ancillaries() print(t.cell_methods) t.cell_methods.ordered() cm = t.constructs('method:mean').value() cm cm.get_axes() cm.get_method() cm.qualifiers() cm.get_qualifier('where') a = t.get_construct('fieldancillary0') a a.properties() a.data print("\n**Cyclic domain axes**\n") print(q.array[0]) print(q.roll('X', shift=1).array[0]) qr = q.roll('X', shift=-3) print(qr.array[0]) print(q.dimension_coordinate('X').array) print(qr.dimension_coordinate('X').array) print(q.anchor('X', -150)) print(q.anchor('X', -750)) print("\n**Subspacing by metadata**\n") print(q) print(q.construct('X').array) q2 = q.subspace(X=112.5) print(q2) print(q.construct('latitude').array) print(q.subspace(X=112.5, latitude=cf.gt(-60))) c = cf.eq(-45) | cf.ge(20) c print(q.subspace(latitude=c)) print(q.subspace(X=[1, 2, 4], Y=slice(None, None, -1))) print(q.subspace(X=cf.wi(-100, 200))) print (q.subspace(X=slice(-2, 4))) a = cf.read('timeseries.nc')[0] print (a) print(a.coordinate('T').array[0:9]) print(a.coordinate('T').datetime_array[0:9]) print(a.subspace(T=410.5)) print(a.subspace(T=cf.dt('1960-04-16'))) print(a.subspace(T=cf.wi(cf.dt('1962-11-01'), cf.dt('1967-03-17 07:30')))) print(q.array) q2 = q.subspace('compress', X=[1, 2, 4, 6]) print(q2) print(q2.array) q2 = q.subspace('envelope', X=[1, 2, 4, 6]) print(q2) print(q2.array) q2 = q.subspace('full', X=[1, 2, 4, 6]) print(q2) print(q2.array) print(t) print(t.construct('latitude').array) t2 = t.subspace(latitude=cf.wi(51, 53)) print(t2.array) print("\n**Sorting and selecting from field lists**\n") fl = cf.read('file.nc') fl fl.sort() fl fl.sort(key=lambda f: f.units) fl fl = cf.read('*.nc') fl fl.select_by_identity('precipitation_flux') import re fl.select_by_identity(re.compile('.*potential.*')) fl.select_by_identity('relative_humidity') fl('air_temperature') fl.select('air_temperature') print(t) t.match_by_identity('air_temperature') t.match_by_rank(4) t.match_by_units('degC', exact=False) t.match_by_construct(longitude=cf.wi(-10, 10)) t.match('specific_humidity') t.match('specific_humidity', 'air_temperature') print("\n**Encapsulating conditions**\n") c = cf.Query('lt', 3) c c.evaluate(2) c == 2 c != 2 c.evaluate(3) c == cf.Data([1, 2, 3]) c == numpy.array([1, 2, 3]) ge3 = cf.Query('ge', 3) lt5 = cf.Query('lt', 5) c = ge3 & lt5 c c == 2 c != 2 c = ge3 | lt5 c c == 2 c &= cf.Query('set', [1, 3, 5]) c c == 2 c == 3 upper_bounds_ge_minus4 = cf.Query('ge', -4, attr='upper_bounds') X = t.dimension_coordinate('X') X print(X.bounds.array) print((upper_bounds_ge_minus4 == X).array) cf.ge(3) cf.ge(cf.dt('2000-3-23')) cf.year(1999) cf.jja() cf.contains(4) cf.cellsize(cf.lt(10, 'degrees')) print("\n**Assignment by condition**\n") t = cf.read('file.nc')[1] print(t.array) u = t.where(cf.lt(273.15), x=cf.masked) print(u.array) u = t.where(cf.lt(273.15), x=0, y=1) print(u.array) print(t.where(u, x=-t, y=-99).array) print(t.where(cf.gt(0.5), x=cf.masked, construct='grid_latitude').array) print("\n**Field creation**\n") print("\n**Stage 1:** The field construct is created without metadata\n") print("\n**Stage 2:** Metadata constructs are created independently.\n") print("\n**Stage 3:** The metadata constructs are inserted into the field\n") p = cf.Field(properties={'standard_name': 'precipitation_flux'}) p dc = cf.DimensionCoordinate(properties={'long_name': 'Longitude'}, data=cf.Data([0, 1, 2.])) dc fa = cf.FieldAncillary( properties={'standard_name': 'precipitation_flux status_flag'}, data=cf.Data(numpy.array([0, 0, 2], dtype='int8'))) fa p = cf.Field() p p.set_property('standard_name', 'precipitation_flux') p dc = cf.DimensionCoordinate() dc dc.set_property('long_name', 'Longitude') dc.set_data(cf.Data([1, 2, 3.])) dc fa = cf.FieldAncillary( data=cf.Data(numpy.array([0, 0, 2], dtype='int8'))) fa fa.set_property('standard_name', 'precipitation_flux status_flag') fa longitude_axis = p.set_construct(cf.DomainAxis(3)) longitude_axis key = p.set_construct(dc, axes=longitude_axis) key cm = cf.CellMethod(axes=longitude_axis, method='minimum') p.set_construct(cm) import numpy import cf # Initialise the field construct with properties Q = cf.Field(properties={'project': 'research', 'standard_name': 'specific_humidity', 'units': '1'}) # Create the domain axis constructs domain_axisT = cf.DomainAxis(1) domain_axisY = cf.DomainAxis(5) domain_axisX = cf.DomainAxis(8) # Insert the domain axis constructs into the field. The # set_construct method returns the domain axis construct key that # will be used later to specify which domain axis corresponds to # which dimension coordinate construct. axisT = Q.set_construct(domain_axisT) axisY = Q.set_construct(domain_axisY) axisX = Q.set_construct(domain_axisX) # Create and insert the field construct data data = cf.Data(numpy.arange(40.).reshape(5, 8)) Q.set_data(data) # Create the cell method constructs cell_method1 = cf.CellMethod(axes='area', method='mean') cell_method2 = cf.CellMethod() cell_method2.set_axes(axisT) cell_method2.set_method('maximum') # Insert the cell method constructs into the field in the same # order that their methods were applied to the data Q.set_construct(cell_method1) Q.set_construct(cell_method2) # Create a "time" dimension coordinate construct, with coordinate # bounds dimT = cf.DimensionCoordinate( properties={'standard_name': 'time', 'units': 'days since 2018-12-01'}, data=cf.Data([15.5]), bounds=cf.Bounds(data=cf.Data([[0,31.]]))) # Create a "longitude" dimension coordinate construct, without # coordinate bounds dimX = cf.DimensionCoordinate(data=cf.Data(numpy.arange(8.))) dimX.set_properties({'standard_name': 'longitude', 'units': 'degrees_east'}) # Create a "longitude" dimension coordinate construct dimY = cf.DimensionCoordinate(properties={'standard_name': 'latitude', 'units' : 'degrees_north'}) array = numpy.arange(5.) dimY.set_data(cf.Data(array)) # Create and insert the latitude coordinate bounds bounds_array = numpy.empty((5, 2)) bounds_array[:, 0] = array - 0.5 bounds_array[:, 1] = array + 0.5 bounds = cf.Bounds(data=cf.Data(bounds_array)) dimY.set_bounds(bounds) # Insert the dimension coordinate constructs into the field, # specifying to which domain axis each one corresponds Q.set_construct(dimT) Q.set_construct(dimY) Q.set_construct(dimX) Q.dump() import numpy import cf # Initialize the field construct tas = cf.Field( properties={'project': 'research', 'standard_name': 'air_temperature', 'units': 'K'}) # Create and set domain axis constructs axis_T = tas.set_construct(cf.DomainAxis(1)) axis_Z = tas.set_construct(cf.DomainAxis(1)) axis_Y = tas.set_construct(cf.DomainAxis(10)) axis_X = tas.set_construct(cf.DomainAxis(9)) # Set the field construct data tas.set_data(cf.Data(numpy.arange(90.).reshape(10, 9))) # Create and set the cell method constructs cell_method1 = cf.CellMethod( axes=[axis_Y, axis_X], method='mean', qualifiers={'where': 'land', 'interval': [cf.Data(0.1, units='degrees')]}) cell_method2 = cf.CellMethod(axes=axis_T, method='maximum') tas.set_construct(cell_method1) tas.set_construct(cell_method2) # Create and set the field ancillary constructs field_ancillary = cf.FieldAncillary( properties={'standard_name': 'air_temperature standard_error', 'units': 'K'}, data=cf.Data(numpy.arange(90.).reshape(10, 9))) tas.set_construct(field_ancillary) # Create and set the dimension coordinate constructs dimension_coordinate_T = cf.DimensionCoordinate( properties={'standard_name': 'time', 'units': 'days since 2018-12-01'}, data=cf.Data([15.5]), bounds=cf.Bounds(data=cf.Data([[0., 31]]))) dimension_coordinate_Z = cf.DimensionCoordinate( properties={'computed_standard_name': 'altitude', 'standard_name': 'atmosphere_hybrid_height_coordinate'}, data = cf.Data([1.5]), bounds=cf.Bounds(data=cf.Data([[1.0, 2.0]]))) dimension_coordinate_Y = cf.DimensionCoordinate( properties={'standard_name': 'grid_latitude', 'units': 'degrees'}, data=cf.Data(numpy.arange(10.)), bounds=cf.Bounds(data=cf.Data(numpy.arange(20).reshape(10, 2)))) dimension_coordinate_X = cf.DimensionCoordinate( properties={'standard_name': 'grid_longitude', 'units': 'degrees'}, data=cf.Data(numpy.arange(9.)), bounds=cf.Bounds(data=cf.Data(numpy.arange(18).reshape(9, 2)))) dim_T = tas.set_construct(dimension_coordinate_T, axes=axis_T) dim_Z = tas.set_construct(dimension_coordinate_Z, axes=axis_Z) dim_Y = tas.set_construct(dimension_coordinate_Y) dim_X = tas.set_construct(dimension_coordinate_X) # Create and set the auxiliary coordinate constructs auxiliary_coordinate_lat = cf.AuxiliaryCoordinate( properties={'standard_name': 'latitude', 'units': 'degrees_north'}, data=cf.Data(numpy.arange(90.).reshape(10, 9))) auxiliary_coordinate_lon = cf.AuxiliaryCoordinate( properties={'standard_name': 'longitude', 'units': 'degrees_east'}, data=cf.Data(numpy.arange(90.).reshape(9, 10))) array = numpy.ma.array(list('abcdefghij')) array[0] = numpy.ma.masked auxiliary_coordinate_name = cf.AuxiliaryCoordinate( properties={'long_name': 'Grid latitude name'}, data=cf.Data(array)) aux_LAT = tas.set_construct(auxiliary_coordinate_lat) aux_LON = tas.set_construct(auxiliary_coordinate_lon) aux_NAME = tas.set_construct(auxiliary_coordinate_name) # Create and set domain ancillary constructs domain_ancillary_a = cf.DomainAncillary( properties={'units': 'm'}, data=cf.Data([10.]), bounds=cf.Bounds(data=cf.Data([[5., 15.]]))) domain_ancillary_b = cf.DomainAncillary( properties={'units': '1'}, data=cf.Data([20.]), bounds=cf.Bounds(data=cf.Data([[14, 26.]]))) domain_ancillary_orog = cf.DomainAncillary( properties={'standard_name': 'surface_altitude', 'units': 'm'}, data=cf.Data(numpy.arange(90.).reshape(10, 9))) domain_anc_A = tas.set_construct(domain_ancillary_a, axes=axis_Z) domain_anc_B = tas.set_construct(domain_ancillary_b, axes=axis_Z) domain_anc_OROG = tas.set_construct(domain_ancillary_orog) # Create the datum for the coordinate reference constructs datum = cf.Datum(parameters={'earth_radius': 6371007.}) # Create the coordinate conversion for the horizontal coordinate # reference construct coordinate_conversion_h = cf.CoordinateConversion( parameters={'grid_mapping_name': 'rotated_latitude_longitude', 'grid_north_pole_latitude': 38.0, 'grid_north_pole_longitude': 190.0}) # Create the coordinate conversion for the vertical coordinate # reference construct coordinate_conversion_v = cf.CoordinateConversion( parameters={'standard_name': 'atmosphere_hybrid_height_coordinate', 'computed_standard_name': 'altitude'}, domain_ancillaries={'a': domain_anc_A, 'b': domain_anc_B, 'orog': domain_anc_OROG}) # Create the vertical coordinate reference construct horizontal_crs = cf.CoordinateReference( datum=datum, coordinate_conversion=coordinate_conversion_h, coordinates=[dim_X, dim_Y, aux_LAT, aux_LON]) # Create the vertical coordinate reference construct vertical_crs = cf.CoordinateReference( datum=datum, coordinate_conversion=coordinate_conversion_v, coordinates=[dim_Z]) # Set the coordinate reference constructs tas.set_construct(horizontal_crs) tas.set_construct(vertical_crs) # Create and set the cell measure constructs cell_measure = cf.CellMeasure(measure='area', properties={'units': 'km2'}, data=cf.Data(numpy.arange(90.).reshape(9, 10))) tas.set_construct(cell_measure) print(tas) import netCDF4 nc = netCDF4.Dataset('file.nc', 'r') v = nc.variables['ta'] netcdf_array = cf.NetCDFArray(filename='file.nc', ncvar='ta', dtype=v.dtype, ndim=v.ndim, shape=v.shape, size=v.size) data_disk = cf.Data(netcdf_array) numpy_array = v[...] data_memory = cf.Data(numpy_array) data_disk.equals(data_memory) key = tas.construct_key('surface_altitude') orog = tas.convert(key) print(orog) orog1 = tas.convert(key, full_domain=False) print(orog1) cf.write(tas, 'tas.nc') f = cf.read('tas.nc') f fields = cf.read('tas.nc', extra='domain_ancillary') fields orog_from_file = fields[3] print(orog_from_file) print("\n**Copying**\n") u = t.copy() u.data[0, 0, 0] = -1e30 u.data[0, 0, 0] t.data[0, 0, 0] u.del_construct('grid_latitude') u.constructs('grid_latitude') t.constructs('grid_latitude') import copy u = copy.deepcopy(t) orog = t.constructs('surface_altitude').value().copy() print("\n**Equality**\n") t.equals(t) t.equals(t.copy()) t.equals(t[...]) t.equals(q) t.equals(q, verbose=True) cf.ATOL() cf.RTOL() original = cf.RTOL(0.00001) cf.RTOL() cf.RTOL(original) cf.RTOL() orog = t.constructs('surface_altitude').value() orog.equals(orog.copy()) print("\n**NetCDF interface**\n") print(t.constructs.filter_by_ncvar('b')) t.constructs('ncvar%x').value() t.constructs('ncdim%x') q.nc_get_variable() q.nc_global_attributes() q.nc_set_variable('humidity') q.nc_get_variable() q.constructs('latitude').value().nc_get_variable() print("\n**Writing to disk**\n") print(q) cf.write(q, 'q_file.nc') x cf.write(x, 'new_file.nc') f = cf.read('q_file.nc')[0] q.equals(f) f.set_property('model', 'model_A') cf.write(f, 'f_file.nc', global_attributes='model') f.nc_global_attributes() f.nc_set_global_attribute('model') f.nc_global_attributes() cf.write(f, 'f_file.nc') f.set_property('information', 'variable information') f.properties() f.nc_set_global_attribute('information', 'global information') f.nc_global_attributes() cf.write(f, 'f_file.nc') cf.write(f, 'f_file.nc', file_descriptors={'history': 'created in 2019'}) f_file = cf.read('f_file.nc')[0] f_file.nc_global_attributes() f_file.properties() f_file.nc_global_attributes() f_file.set_property('Conventions', 'UGRID1.0') cf.write(f, 'f_file.nc', Conventions='UGRID1.0') print(q) key = q.construct_key('time') axes = q.get_data_axes(key) axes q2 = q.insert_dimension(axis=axes[0]) q2 cf.write(q2, 'q2_file.nc') print("\n**External variables**\n") u = cf.read('parent.nc')[0] print(u) area = u.constructs('measure:area').value() area area.nc_get_external() area.nc_get_variable() area.properties() area.has_data() g = cf.read('parent.nc', external='external.nc')[0] print(g) area = g.construct('measure:area') area area.nc_get_external() area.nc_get_variable() area.properties() area.data area.nc_set_external(True) cf.write(g, 'new_parent.nc') cf.write(g, 'new_parent.nc', external='new_external.nc') print("\n**Statistical collapses**\n") a = cf.read('timeseries.nc')[0] print(a) b = a.collapse('minimum') print(b) print(b.array) b = a.collapse('maximum', axes='T') b = a.collapse('T: maximum') print(b) print(b.array) b = a.collapse('maximum', axes=['X', 'Y']) b = a.collapse('X: Y: maximum') print(b) b = a.collapse('area: maximum') print(b) b = a.collapse('T: mean', weights='T') print(b) print (b.array) w = a.weights(weights='T') print(w) print(w.array) b = a.collapse('T: Y: mean', weights='Y') print(b) print (b.array) b = a.collapse('area: mean', weights='area') print(b) b = a.collapse('area: mean', weights='area').collapse('T: maximum') print(b) print(b.array) b = a.collapse('area: mean T: maximum', weights='area') print(b.array) y = cf.Y(month=12) y b = a.collapse('T: maximum', group=y) print(b) b = a.collapse('T: maximum', group=6) print(b) b = a.collapse('T: maximum', group=cf.djf()) print(b) c = cf.seasons() c b = a.collapse('T: maximum', group=c) print(b) b = a.collapse('X: mean', group=cf.Data(180, 'degrees')) print(b) b = a.collapse('T: mean within years T: mean over years', within_years=cf.seasons(), weights='T') print(b) print(b.coordinate('T').bounds.datetime_array) b = a.collapse('T: minimum within years T: variance over years', within_years=cf.seasons(), weights='T') print(b) print(b.coordinate('T').bounds.datetime_array) b = a.collapse('T: mean within years T: mean over years', weights='T', within_years=cf.seasons(), over_years=cf.Y(5)) print(b) print(b.coordinate('T').bounds.datetime_array) b = a.collapse('T: mean within years T: mean over years', weights='T', within_years=cf.seasons(), over_years=cf.year(cf.wi(1963, 1968))) print(b) print(b.coordinate('T').bounds.datetime_array) b = a.collapse('T: standard_deviation within years', within_years=cf.seasons(), weights='T') print(b) c = b.collapse('T: maximum over years') print(c) print("\n**Regridding**\n") a = cf.read('air_temperature.nc')[0] b = cf.read('precipitation_flux.nc')[0] print(a) print(b) c = a.regrids(b, 'conservative') print(c) import numpy lat = cf.DimensionCoordinate(data=cf.Data(numpy.arange(-90, 92.5, 2.5), 'degrees_north')) lon = cf.DimensionCoordinate(data=cf.Data(numpy.arange(0, 360, 5.0), 'degrees_east')) c = a.regrids({'latitude': lat, 'longitude': lon}, 'bilinear') time = cf.DimensionCoordinate() time.standard_name='time' time.set_data(cf.Data(numpy.arange(0.5, 60, 1), units='days since 1860-01-01', calendar='360_day')) time c = a.regridc({'T': time}, axes='T', method='bilinear') try: c = a.regridc({'T': time}, axes='T', method='conservative') except: pass else: raise Exception("This should have failed!") bounds = time.create_bounds() time.set_bounds(bounds) c = a.regridc({'T': time}, axes='T', method='conservative') print(c) v = cf.read('vertical.nc')[0] print(v) z_p = v.construct('Z') print(z_p.array) z_ln_p = z_p.log() print(z_ln_p.array) _ = v.replace_construct('Z', z_ln_p) new_z_p = cf.DimensionCoordinate(data=cf.Data([800, 705, 632, 510, 320.], 'hPa')) new_z_ln_p = new_z_p.log() new_v = v.regridc({'Z': new_z_ln_p}, axes='Z', method='bilinear') new_v.replace_construct('Z', new_z_p) print(new_v) print("\n**Mathematical operations**\n") q, t = cf.read('file.nc') t.data.stats() x = t + t x x.min() (t - 2).min() (2 + t).min() (t * list(range(9))).min() (t + cf.Data(numpy.arange(20, 29), '0.1 K')).min() u = t.copy() u.transpose(inplace=True) u.Units -= 273.15 u[0] t + u[0] t.identities() u = t * cf.Data(10, 'ms-1') u.identities() q, t = cf.read('file.nc') print(q.array) print(-q.array) print(abs(-q.array)) q, t = cf.read('file.nc') print(q.array) print((q == q).array) print((q < 0.05).array) print((q >= q[0]).array) q.identities() r = q > q.mean() r.identities() t.min() u = t.copy() new_data = t.data + t.data u.set_data(new_data) u u.min() u[...] = new_data u.min() t.data -= t.data t.min() q, t = cf.read('file.nc') lat = q.dimension_coordinate('latitude') lat.data sin_lat = lat.sin() sin_lat.data q q.log() q.exp() t t.log(base=10) try: t.exp() except: pass else: raise Exception("This should have failed!") print(q) q.iscyclic('X') r = q.convolution_filter([0.1, 0.15, 0.5, 0.15, 0.1], axis='X') print(r) print(q.dimension_coordinate('X').bounds.array) print(r.dimension_coordinate('X').bounds.array) from scipy.signal import windows exponential_weights = windows.exponential(3) print(exponential_weights) r = q.convolution_filter(exponential_weights, axis='Y') print(r.array) r = q.derivative('X') r = q.derivative('Y', one_sided_at_boundary=True) u, v = cf.read('wind_components.nc') zeta = cf.relative_vorticity(u, v) print(zeta) print(zeta.array.round(8)) a = cf.read('timeseries.nc')[0] print(a) b = a.cumsum('T') print(b) print(a.coordinate('T').bounds[-1].dtarray) print(b.coordinate('T').bounds[-1].dtarray) print("\n**Aggregation**\n") a = cf.read('air_temperature.nc')[0] a a_parts = [a[0, : , 0:30], a[0, :, 30:], a[1, :, 0:30], a[1, :, 30:]] a_parts for i, f in enumerate(a_parts): cf.write(f, str(i)+'_air_temperature.nc') x = cf.read('[0-3]_air_temperature.nc') y = cf.read('[0-3]_air_temperature.nc', aggregate=False) z = cf.aggregate(y) x.equals(z) print("\n**Compression**\n") h = cf.read('contiguous.nc')[0] print(h) print(h.array) h.data.get_compression_type() print(h.data.compressed_array) count_variable = h.data.get_count() count_variable print(count_variable.array) station2 = h[1] station2 print(station2.array) h.data.get_compression_type() h.data[1, 2] = -9 print(h.array) h.data.get_compression_type() import numpy import cf # Define the ragged array values ragged_array = cf.Data([280, 281, 279, 278, 279.5]) # Define the count array values count_array = [1, 4] # Create the count variable count_variable = cf.Count(data=cf.Data(count_array)) count_variable.set_property('long_name', 'number of obs for this timeseries') # Create the contiguous ragged array object, specifying the # uncompressed shape array = cf.RaggedContiguousArray( compressed_array=ragged_array, shape=(2, 4), size=8, ndim=2, count_variable=count_variable) # Create the field construct with the domain axes and the ragged # array T = cf.Field() T.set_properties({'standard_name': 'air_temperature', 'units': 'K', 'featureType': 'timeSeries'}) # Create the domain axis constructs for the uncompressed array X = T.set_construct(cf.DomainAxis(4)) Y = T.set_construct(cf.DomainAxis(2)) # Set the data for the field T.set_data(cf.Data(array)) T print(T.array) T.data.get_compression_type() print(T.data.compressed_array) count_variable = T.data.get_count() count_variable print(count_variable.array) cf.write(T, 'T_contiguous.nc') p = cf.read('gathered.nc')[0] print(p) print(p.array) p.data.get_compression_type() print(p.data.compressed_array) list_variable = p.data.get_list() list_variable print(list_variable.array) p[0] p[1, :, 3:5] p.data.get_compression_type() p.data[1] = -9 p.data.get_compression_type() import numpy import cf # Define the gathered values gathered_array = cf.Data([[2, 1, 3], [4, 0, 5]]) # Define the list array values list_array = [1, 4, 5] # Create the list variable list_variable = cf.List(data=cf.Data(list_array)) # Create the gathered array object, specifying the uncompressed # shape array = cf.GatheredArray( compressed_array=gathered_array, compressed_dimension=1, shape=(2, 3, 2), size=12, ndim=3, list_variable=list_variable) # Create the field construct with the domain axes and the gathered # array P = cf.Field(properties={'standard_name': 'precipitation_flux', 'units': 'kg m-2 s-1'}) # Create the domain axis constructs for the uncompressed array T = P.set_construct(cf.DomainAxis(2)) Y = P.set_construct(cf.DomainAxis(3)) X = P.set_construct(cf.DomainAxis(2)) # Set the data for the field P.set_data(cf.Data(array), axes=[T, Y, X]) P print(P.data.array) P.data.get_compression_type() print(P.data.compressed_array) list_variable = P.data.get_list() list_variable print(list_variable.array) cf.write(P, 'P_gathered.nc') print("\n**PP and UM fields files**\n") pp = cf.read('umfile.pp') pp print(pp[0]) cf.write(pp, 'umfile1.nc') type(cf.read_write.um.umread.stash2standard_name) cf.read_write.um.umread.stash2standard_name[(1, 4)] cf.read_write.um.umread.stash2standard_name[(1, 2)] cf.read_write.um.umread.stash2standard_name[(1, 7)] (1, 999) in cf.read_write.um.umread.stash2standard_name with open('new_STASH.txt', 'w') as new: new.write('1!999!My STASH code!1!!!ultraviolet_index!!') _ = cf.load_stash2standard_name('new_STASH.txt', merge=True) cf.read_write.um.umread.stash2standard_name[(1, 999)]
27.400794
95
0.656799
4a27790d060559740bc7576e9deaba8d430efab6
1,083
py
Python
api/logger.py
IFRCGo/go-api
6acd84df479f0cf46553029ababa1e7753f86550
[ "MIT" ]
11
2018-06-11T06:05:12.000Z
2022-03-25T09:31:44.000Z
api/logger.py
IFRCGo/go-api
6acd84df479f0cf46553029ababa1e7753f86550
[ "MIT" ]
498
2017-11-07T21:20:13.000Z
2022-03-31T14:37:18.000Z
api/logger.py
IFRCGo/go-api
6acd84df479f0cf46553029ababa1e7753f86550
[ "MIT" ]
6
2018-04-11T13:29:50.000Z
2020-07-16T16:52:11.000Z
import logging import sys import os from azure_storage_logging.handlers import BlobStorageTimedRotatingFileHandler as storage formatter = logging.Formatter(fmt='%(asctime)s %(levelname)-8s %(message)s', datefmt='%Y-%m-%d %H:%M:%S') screen_handler = logging.StreamHandler(stream=sys.stdout) screen_handler.setFormatter(formatter) logger = logging.getLogger('api') logger.setLevel('DEBUG') logger.addHandler(screen_handler) if (os.environ.get('AZURE_STORAGE_ACCOUNT') is not None and os.environ.get('AZURE_STORAGE_KEY') is not None): handler = storage(account_name=os.environ.get('AZURE_STORAGE_ACCOUNT'), account_key=os.environ.get('AZURE_STORAGE_KEY'), filename='go.log', when='M', interval=90, container='logs', encoding='utf-8' ) handler.setFormatter(formatter) logger.addHandler(handler) else: logger.warning('No Azure credentials found, falling back to local logs.')
36.1
89
0.636196
4a27797083dfc1ed62152cbbd9ac1da9b521bc15
562
py
Python
Wrappers/Python/Testing/Functions/loadSBML.py
gregmedlock/roadrunnerwork
11f18f78ef3e381bc59c546a8d5e3ed46d8ab596
[ "Apache-2.0" ]
null
null
null
Wrappers/Python/Testing/Functions/loadSBML.py
gregmedlock/roadrunnerwork
11f18f78ef3e381bc59c546a8d5e3ed46d8ab596
[ "Apache-2.0" ]
null
null
null
Wrappers/Python/Testing/Functions/loadSBML.py
gregmedlock/roadrunnerwork
11f18f78ef3e381bc59c546a8d5e3ed46d8ab596
[ "Apache-2.0" ]
null
null
null
import rrPython import os import csv os.chdir('C:\\RoadRunner\\bin') function = 'loadSBML' file = open('C:\\RoadRunner\\Models\\feedback.xml','r').read() #rrPython.loadSBML(file) try: sbml = rrPython.loadSBML(file) if str(sbml) is not False: result = 'True' else: result = 'False' except: result = 'False' PythonTestResults = open('C:\\RoadRunner\\PythonTestResults.csv','a') writer = csv.writer(PythonTestResults) writevar = function + '=' + result writer.writerow([writevar]) PythonTestResults.close()
23.416667
70
0.654804
4a27797eb2a704f0036582dbcb245ae770e1b82d
291
py
Python
lexrank/mappings/stopwords.py
Berndzz/lexrank
07bdd1579c408cf73cc822da303734d0a70cf3f7
[ "MIT" ]
99
2018-11-01T08:05:48.000Z
2022-03-09T17:45:07.000Z
lexrank/mappings/stopwords.py
Berndzz/lexrank
07bdd1579c408cf73cc822da303734d0a70cf3f7
[ "MIT" ]
4
2020-02-27T14:16:25.000Z
2022-02-16T14:38:49.000Z
lexrank/mappings/stopwords.py
Berndzz/lexrank
07bdd1579c408cf73cc822da303734d0a70cf3f7
[ "MIT" ]
33
2018-12-19T05:08:34.000Z
2022-02-09T17:29:52.000Z
import gzip import json from lexrank import settings file = settings.ASSETS_ROOT / 'stopwords.json.gz' with gzip.open(file, mode='rt', encoding='utf-8') as fp: _STOPWORDS = json.load(fp) STOPWORDS = {} for lang, stopwords in _STOPWORDS.items(): STOPWORDS[lang] = set(stopwords)
19.4
56
0.714777
4a27798ba3251ce8d5186df588c15db1b2904d7d
638
py
Python
decorator/annotation.py
guwenbo/DesignPattern-Python
3b7228595e9dd6ae5cb0df06b2b8a74ce2d774a9
[ "Apache-2.0" ]
null
null
null
decorator/annotation.py
guwenbo/DesignPattern-Python
3b7228595e9dd6ae5cb0df06b2b8a74ce2d774a9
[ "Apache-2.0" ]
null
null
null
decorator/annotation.py
guwenbo/DesignPattern-Python
3b7228595e9dd6ae5cb0df06b2b8a74ce2d774a9
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 装饰器模式 (基于注解) """ from functools import wraps from datetime import datetime import time def decorate(func): @wraps(func) def wrapper(*args, **kwargs): begin = datetime.now() result = func(*args, **kwargs) end = datetime.now() print("function [%s] executes for %d seconds" % (func.__name__, (end - begin).seconds)) return result return wrapper @decorate def func(*args, **kwargs): print("Do something ...") sec = 3 print("Sleeping for %d seconds" % sec) time.sleep(sec) if __name__ == '__main__': func()
18.228571
95
0.595611
4a277a1412d025076b481251f5f043cfe0fbc5be
2,510
py
Python
simpleblog/models.py
jchoude/django-simple-blog
1081496ed0210691e27eab5c9ee3917ed08ebf7f
[ "BSD-2-Clause" ]
null
null
null
simpleblog/models.py
jchoude/django-simple-blog
1081496ed0210691e27eab5c9ee3917ed08ebf7f
[ "BSD-2-Clause" ]
null
null
null
simpleblog/models.py
jchoude/django-simple-blog
1081496ed0210691e27eab5c9ee3917ed08ebf7f
[ "BSD-2-Clause" ]
null
null
null
from __future__ import unicode_literals from django.conf import settings from django.core.urlresolvers import reverse from django.db import models from django.db.models.signals import post_save from django.utils.encoding import python_2_unicode_compatible from django.utils.translation import ugettext_lazy as _ from .signals import save_comment @python_2_unicode_compatible class Post(models.Model): title = models.CharField(max_length=200, verbose_name=_("title")) slug = models.SlugField() bodytext = models.TextField(verbose_name=_("message")) post_date = models.DateTimeField( auto_now_add=True, verbose_name=_("post date")) modified = models.DateTimeField(null=True, verbose_name=_("modified")) posted_by = models.ForeignKey(settings.AUTH_USER_MODEL, verbose_name=_("posted by")) allow_comments = models.BooleanField( default=True, verbose_name=_("allow comments")) comment_count = models.IntegerField( blank=True, default=0, verbose_name=_('comment count')) class Meta: verbose_name = _('post') verbose_name_plural = _('posts') ordering = ['-post_date'] def __str__(self): return self.title def get_absolute_url(self): kwargs = { 'slug': self.slug, 'year': '%04d' % self.post_date.year, 'month': '%02d' % self.post_date.month, 'day': '%02d' % self.post_date.day, } return reverse('blog_detail', kwargs=kwargs) @python_2_unicode_compatible class Comment(models.Model): post = models.ForeignKey( Post, related_name='comments', verbose_name=_("post")) bodytext = models.TextField(verbose_name=_("message")) post_date = models.DateTimeField( auto_now_add=True, verbose_name=_("post date")) ip_address = models.GenericIPAddressField( default='0.0.0.0', verbose_name=_("ip address")) user = models.ForeignKey( settings.AUTH_USER_MODEL, null=True, blank=True, verbose_name=_("user"), related_name='comment_user') user_name = models.CharField( max_length=50, default='anonymous', verbose_name=_("user name")) user_email = models.EmailField(blank=True, verbose_name=_("user email")) def __str__(self): return self.bodytext class Meta: verbose_name = _('comment') verbose_name_plural = _('comments') ordering = ['post_date'] post_save.connect(save_comment, sender=Comment)
32.597403
76
0.679283
4a277a3496b5bed9ed845782fca7b51080c30a17
6,045
py
Python
testscripts/RDKB/component/WIFIHAL/TS_WIFIHAL_5GHzGetApName.py
rdkcmf/rdkb-tools-tdkb
9f9c3600cd701d5fc90ac86a6394ebd28d49267e
[ "Apache-2.0" ]
null
null
null
testscripts/RDKB/component/WIFIHAL/TS_WIFIHAL_5GHzGetApName.py
rdkcmf/rdkb-tools-tdkb
9f9c3600cd701d5fc90ac86a6394ebd28d49267e
[ "Apache-2.0" ]
null
null
null
testscripts/RDKB/component/WIFIHAL/TS_WIFIHAL_5GHzGetApName.py
rdkcmf/rdkb-tools-tdkb
9f9c3600cd701d5fc90ac86a6394ebd28d49267e
[ "Apache-2.0" ]
null
null
null
########################################################################## # If not stated otherwise in this file or this component's Licenses.txt # file the following copyright and licenses apply: # # Copyright 2018 RDK Management # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ########################################################################## ''' <?xml version="1.0" encoding="UTF-8"?><xml> <id/> <version>1</version> <name>TS_WIFIHAL_5GHzGetApName</name> <primitive_test_id/> <primitive_test_name>WIFIHAL_GetOrSetParamStringValue</primitive_test_name> <primitive_test_version>8</primitive_test_version> <status>FREE</status> <synopsis>To get the access point name for access point 1</synopsis> <groups_id/> <execution_time>1</execution_time> <long_duration>false</long_duration> <advanced_script>false</advanced_script> <remarks/> <skip>false</skip> <box_types> <box_type>Broadband</box_type> <box_type>Emulator</box_type> <box_type>RPI</box_type> </box_types> <rdk_versions> <rdk_version>RDKB</rdk_version> </rdk_versions> <test_cases> <test_case_id>TC_WIFIHAL_171</test_case_id> <test_objective>To get the access point name for access point 1</test_objective> <test_type>Positive</test_type> <test_setup>Broadband, Emulator, RPI</test_setup> <pre_requisite>1.Ccsp Components should be in a running state else invoke cosa_start.sh manually that includes all the ccsp components and TDK Component 2.TDK Agent should be in running state or invoke it through StartTdk.sh script</pre_requisite> <api_or_interface_used>wifi_getApName()</api_or_interface_used> <input_parameters>methodName : getApName ApIndex : 1</input_parameters> <automation_approch>1. Load wifihal module 2. Using WIFIHAL_GetOrSetParamStringValue invoke wifi_getApName() 3. The api returns a string "ath" succeeded by the ApIndex 4. Depending upon the values return SUCCESS or FAILURE 5. Unload wifihal module</automation_approch> <except_output>Should return ath1</except_output> <priority>High</priority> <test_stub_interface>WIFIHAL </test_stub_interface> <test_script>TS_WIFIHAL_5GHzGetApName</test_script> <skipped>No</skipped> <release_version/> <remarks/> </test_cases> </xml> ''' # use tdklib library,which provides a wrapper for tdk testcase script import tdklib; from wifiUtility import *; from tdkbVariables import *; radio = "5G" #Test component to be tested obj = tdklib.TDKScriptingLibrary("wifihal","1"); sysobj = tdklib.TDKScriptingLibrary("sysutil","1"); #IP and Port of box, No need to change, #This will be replaced with correspoing Box Ip and port while executing script ip = <ipaddress> port = <port> obj.configureTestCase(ip,port,'TS_WIFIHAL_5GHzGetApName'); sysobj.configureTestCase(ip,port,'TS_WIFIHAL_5GHzGetApName'); #Get the result of connection with test component and DUT loadmodulestatus =obj.getLoadModuleResult(); sysloadmodulestatus =sysobj.getLoadModuleResult(); print "[LIB LOAD STATUS] : %s" %sysloadmodulestatus ; print "[LIB LOAD STATUS] : %s" %loadmodulestatus ; if "SUCCESS" in loadmodulestatus.upper() and "SUCCESS" in sysloadmodulestatus.upper(): obj.setLoadModuleStatus("SUCCESS"); tdkTestObjTemp, idx = getIndex(obj, radio); ## Check if a invalid index is returned if idx == -1: print "Failed to get radio index for radio %s\n" %radio; tdkTestObjTemp.setResultStatus("FAILURE"); else: tdkTestObj = sysobj.createTestStep('ExecuteCmd'); expectedresult="SUCCESS"; accesspointname = "sh %s/tdk_utility.sh parseConfigFile AP_IF_NAME_5G" %TDK_PATH; print "query:%s" %accesspointname tdkTestObj.addParameter("command", accesspointname); tdkTestObj.executeTestCase(expectedresult); actualresult = tdkTestObj.getResult(); accesspointname= tdkTestObj.getResultDetails().strip().replace("\\n", ""); if expectedresult in actualresult and accesspointname != "": #Set the result status of execution tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 1: Get the 5GHZ Access Point name from properties file"; print "ACTUAL RESULT 1:Access point name: %s" %accesspointname; #Get the result of execution print "[TEST EXECUTION RESULT] : SUCCESS"; getMethod = "getApName" apIndex = idx primitive = 'WIFIHAL_GetOrSetParamStringValue' #Calling the method from wifiUtility to execute test case and set result status for the test. tdkTestObj, actualresult, details = ExecuteWIFIHalCallMethod(obj, primitive, apIndex, "0", getMethod) apName = details.split(":")[1].strip() if expectedresult in actualresult and accesspointname == apName: #Set the result status of execution tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 2: Get the 5GHZ Access Point name"; print "ACTUAL RESULT 2: %s" %apName; #Get the result of execution print "[TEST EXECUTION RESULT] : SUCCESS"; else: #Set the result status of execution tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 2: Get the 5GHZ Access Point name"; print "ACTUAL RESULT 2: %s" %apName; #Get the result of execution print "[TEST EXECUTION RESULT] : FAILURE"; else: tdkTestObj.setResultStatus("FAILURE"); print "FAILURE: Failed to get the value of 5GHZ access point name from tdk_platform.properties file" obj.unloadModule("wifihal"); sysobj.unloadModule("sysutil"); else: print "Failed to load wifi module"; obj.setLoadModuleStatus("FAILURE");
39.509804
157
0.722746
4a277b1ddb3f786b5b077f938f37f6835c2cab55
1,168
py
Python
test2.py
ragulkesavan/Hand-Cricket
216822fa3a0d361bdd41d55b104b63664510d753
[ "MIT" ]
null
null
null
test2.py
ragulkesavan/Hand-Cricket
216822fa3a0d361bdd41d55b104b63664510d753
[ "MIT" ]
null
null
null
test2.py
ragulkesavan/Hand-Cricket
216822fa3a0d361bdd41d55b104b63664510d753
[ "MIT" ]
null
null
null
import cv2 # Camera 0 is the integrated web cam on my netbook camera_port = 0 # Number of frames to throw away while the camera adjusts to light levels ramp_frames = 30 # Now we can initialize the camera capture object with the cv2.VideoCapture class. # All it needs is the index to a camera port. camera = cv2.VideoCapture(camera_port) # Captures a single image from the camera and returns it in PIL format def get_image(): # read is the easiest way to get a full image out of a VideoCapture object. retval, im = camera.read() return im # Ramp the camera - these frames will be discarded and are only used to allow v4l2 # to adjust light levels, if necessary for i in range(ramp_frames): temp = get_image() print("Taking image...") # Take the actual image we want to keep camera_capture = get_image() file = "test_image.png" # A nice feature of the imwrite method is that it will automatically choose the # correct format based on the file extension you provide. Convenient! cv2.imwrite(file, camera_capture) # You'll want to release the camera, otherwise you won't be able to create a new # capture object until your script exits del (camera)
33.371429
82
0.755137
4a277b503c91c73bd2e8f935c9a849cffc1db871
1,327
py
Python
lib/ult/config.py
DirtyHarryLYL/DJ-RN
7f362693f433d49e2fb5c0fc6216218d464c612b
[ "Apache-2.0" ]
96
2020-03-07T09:23:56.000Z
2022-01-05T08:31:59.000Z
lib/ult/config.py
DirtyHarryLYL/DJ-RN
7f362693f433d49e2fb5c0fc6216218d464c612b
[ "Apache-2.0" ]
71
2020-04-21T07:25:51.000Z
2022-03-01T12:17:06.000Z
lib/ult/config.py
DirtyHarryLYL/DJ-RN
7f362693f433d49e2fb5c0fc6216218d464c612b
[ "Apache-2.0" ]
14
2020-04-20T08:53:10.000Z
2022-02-27T05:24:23.000Z
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import os.path as osp import numpy as np from easydict import EasyDict as edict __C = edict() cfg = __C __C.TRAIN = edict() __C.TRAIN_MODULE = 1 __C.TRAIN_MODULE_UPDATE = 1 __C.TRAIN_INIT_WEIGHT = 3 __C.TRAIN_MODULE_CONTINUE = 2 __C.TRAIN.LEARNING_RATE = 0.0001 __C.TRAIN_DROP_OUT_BINARY = 0.8 __C.TRAIN.SNAPSHOT_ITERS = 100000 __C.TRAIN.MOMENTUM = 0.9 __C.TRAIN.WEIGHT_DECAY = 0.0005 __C.TRAIN.GAMMA = 0.96 __C.TRAIN.STEPSIZE = 20000 __C.TRAIN.SNAPSHOT_KEPT = None __C.TRAIN.DISPLAY = 10 __C.TRAIN.SUMMARY_INTERVAL = 200 __C.RESNET = edict() __C.RESNET.MAX_POOL = False __C.RESNET.FIXED_BLOCKS = 1 __C.LR_DECAY = edict() __C.LR_DECAY.TYPE = 'none' __C.LR_DECAY.STEPS = 5.0 __C.LR_DECAY.T_MUL = 2.0 __C.LR_DECAY.M_MUL = 1.0 __C.LANG_NOISE = 0 __C.PIXEL_MEANS = np.array([[[102.9801, 115.9465, 122.7717]]]) __C.RNG_SEED = 3 __C.ROOT_DIR = osp.abspath(osp.join(osp.dirname(__file__), '..', '..')) __C.DATA_DIR = osp.abspath(osp.join(__C.ROOT_DIR, 'Data')) __C.DATA_DIR = osp.abspath(osp.join(__C.ROOT_DIR, 'Data', 'smplx_res')) __C.EXP_DIR = 'default' __C.USE_GPU_NMS = True __C.POOLING_MODE = 'crop' __C.POOLING_SIZE = 7 __C.ANCHOR_SCALES = [8,16,32] __C.ANCHOR_RATIOS = [0.5,1,2] __C.RPN_CHANNELS = 512
26.019608
71
0.750565
4a277b62376927e17c525ee41b8fd28efd110544
163
py
Python
python/gen_randon_lst.py
torao-1892/testes
0452283355533ee68de0e84ad7d48c1aed03571c
[ "MIT" ]
null
null
null
python/gen_randon_lst.py
torao-1892/testes
0452283355533ee68de0e84ad7d48c1aed03571c
[ "MIT" ]
null
null
null
python/gen_randon_lst.py
torao-1892/testes
0452283355533ee68de0e84ad7d48c1aed03571c
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import random num = 1 count = 0 while count < 1000: num = random.randint(1, 100000) print("BRI %03d" % num) count = count + 1
14.818182
35
0.613497
4a277bde34da8915fd8213c0bb37099246d3b91e
1,187
py
Python
hwt/hdl/types/integerCast.py
mgielda/hwt
e6c699fb154f93ac03523bfe40a3d4fc1912d28b
[ "MIT" ]
null
null
null
hwt/hdl/types/integerCast.py
mgielda/hwt
e6c699fb154f93ac03523bfe40a3d4fc1912d28b
[ "MIT" ]
null
null
null
hwt/hdl/types/integerCast.py
mgielda/hwt
e6c699fb154f93ac03523bfe40a3d4fc1912d28b
[ "MIT" ]
null
null
null
from hwt.hdl.operator import Operator from hwt.hdl.operatorDefs import AllOps from hwt.hdl.types.bits import Bits from hwt.hdl.types.boolVal import HBoolVal from hwt.hdl.types.defs import BOOL from hwt.hdl.types.hdlType import default_auto_cast_fn from hwt.hdl.value import Value from hwt.doc_markers import internal @internal def cast_integer(self, sigOrVal, toType): isVal = isinstance(sigOrVal, Value) if toType == BOOL: if isVal: v = int(bool(sigOrVal.val)) return HBoolVal(v, BOOL, sigOrVal.vldMask, sigOrVal.updateTime) elif isinstance(toType, Bits): if isVal: _v = sigOrVal.val w = toType.bit_length() assert _v.bit_length() <= w,\ "%d can not fit into %d bits" % (_v, w) v = toType.fromPy(_v) v.updateTime = sigOrVal.updateTime v._dtype = toType if not sigOrVal.vldMask: v.vldMask = 0 return v else: return Operator.withRes(AllOps.IntToBits, [sigOrVal], toType) return default_auto_cast_fn(self, sigOrVal, toType)
31.236842
73
0.604886
4a277be7714bdaa880c567474e8f5b5f484959de
6,780
py
Python
tools/train.py
LRY89757/mmdetection
8cd89a678fbde6c37eda3fa32af58b7b398abe41
[ "Apache-2.0" ]
2
2021-11-29T09:21:35.000Z
2021-12-19T10:14:32.000Z
tools/train.py
LRY89757/mmdetection
8cd89a678fbde6c37eda3fa32af58b7b398abe41
[ "Apache-2.0" ]
null
null
null
tools/train.py
LRY89757/mmdetection
8cd89a678fbde6c37eda3fa32af58b7b398abe41
[ "Apache-2.0" ]
null
null
null
# Copyright (c) OpenMMLab. All rights reserved. import argparse import copy import os import os.path as osp import time import warnings import mmcv import torch from mmcv import Config, DictAction from mmcv.runner import get_dist_info, init_dist from mmcv.utils import get_git_hash from mmdet import __version__ from mmdet.apis import init_random_seed, set_random_seed, train_detector from mmdet.datasets import build_dataset from mmdet.models import build_detector from mmdet.utils import collect_env, get_root_logger def parse_args(): parser = argparse.ArgumentParser(description='Train a detector') parser.add_argument('config', help='train config file path') parser.add_argument('--work-dir', help='the dir to save logs and models') parser.add_argument( '--resume-from', help='the checkpoint file to resume from') parser.add_argument( '--no-validate', action='store_true', help='whether not to evaluate the checkpoint during training') group_gpus = parser.add_mutually_exclusive_group() group_gpus.add_argument( '--gpus', type=int, help='number of gpus to use ' '(only applicable to non-distributed training)') group_gpus.add_argument( '--gpu-ids', type=int, nargs='+', help='ids of gpus to use ' '(only applicable to non-distributed training)') parser.add_argument('--seed', type=int, default=None, help='random seed') parser.add_argument( '--deterministic', action='store_true', help='whether to set deterministic options for CUDNN backend.') parser.add_argument( '--options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file (deprecate), ' 'change to --cfg-options instead.') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) if args.options and args.cfg_options: raise ValueError( '--options and --cfg-options cannot be both ' 'specified, --options is deprecated in favor of --cfg-options') if args.options: warnings.warn('--options is deprecated in favor of --cfg-options') args.cfg_options = args.options return args def main(): args = parse_args() # 获得参数 cfg = Config.fromfile(args.config) # 读取有关的文件 if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True # work_dir is determined in this priority: CLI > segment in file > filename if args.work_dir is not None: # update configs according to CLI args if args.work_dir is not None cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0]) if args.resume_from is not None: cfg.resume_from = args.resume_from if args.gpu_ids is not None: cfg.gpu_ids = args.gpu_ids else: cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus) # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # re-set gpu_ids with distributed training mode _, world_size = get_dist_info() cfg.gpu_ids = range(world_size) # create work_dir mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) # dump config cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config))) # init the logger before other steps timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) log_file = osp.join(cfg.work_dir, f'{timestamp}.log') logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) # init the meta dict to record some important information such as # environment info and seed, which will be logged meta = dict() # log env info env_info_dict = collect_env() env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()]) dash_line = '-' * 60 + '\n' logger.info('Environment info:\n' + dash_line + env_info + '\n' + dash_line) meta['env_info'] = env_info meta['config'] = cfg.pretty_text # log some basic info logger.info(f'Distributed training: {distributed}') logger.info(f'Config:\n{cfg.pretty_text}') # set random seeds seed = init_random_seed(args.seed) logger.info(f'Set random seed to {seed}, ' f'deterministic: {args.deterministic}') set_random_seed(seed, deterministic=args.deterministic) cfg.seed = seed meta['seed'] = seed meta['exp_name'] = osp.basename(args.config) model = build_detector( cfg.model, train_cfg=cfg.get('train_cfg'), test_cfg=cfg.get('test_cfg')) model.init_weights() datasets = [build_dataset(cfg.data.train)] if len(cfg.workflow) == 2: val_dataset = copy.deepcopy(cfg.data.val) val_dataset.pipeline = cfg.data.train.pipeline datasets.append(build_dataset(val_dataset)) if cfg.checkpoint_config is not None: # save mmdet version, config file content and class names in # checkpoints as meta data cfg.checkpoint_config.meta = dict( mmdet_version=__version__ + get_git_hash()[:7], CLASSES=datasets[0].CLASSES) # add an attribute for visualization convenience model.CLASSES = datasets[0].CLASSES train_detector( model, datasets, cfg, distributed=distributed, validate=(not args.no_validate), timestamp=timestamp, meta=meta) if __name__ == '__main__': main()
36.451613
79
0.652065
4a277c93788a707efe5c9ec2856ce8c6f9fc3dc0
856
py
Python
development/migrations/0059_auto_20170619_1150.py
stewardshiptools/stewardshiptools
ee5d27e7b0d5d4947f34ad02bdf63a06ad0a5c3e
[ "MIT" ]
null
null
null
development/migrations/0059_auto_20170619_1150.py
stewardshiptools/stewardshiptools
ee5d27e7b0d5d4947f34ad02bdf63a06ad0a5c3e
[ "MIT" ]
11
2020-03-24T15:29:46.000Z
2022-03-11T23:14:48.000Z
development/migrations/0059_auto_20170619_1150.py
stewardshiptools/stewardshiptools
ee5d27e7b0d5d4947f34ad02bdf63a06ad0a5c3e
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('development', '0058_delete_projectgroup'), ] operations = [ migrations.AlterModelOptions( name='developmentasset', options={'verbose_name': 'Develoment File'}, ), migrations.AlterModelOptions( name='developmentprojectasset', options={'verbose_name': 'Development Project File'}, ), migrations.AlterField( model_name='developmentproject', name='consultation_stage', field=models.ForeignKey(blank=True, null=True, to='development.ConsultationStage', on_delete=django.db.models.deletion.PROTECT), ), ]
29.517241
140
0.641355
4a277c9a1db0d35aa294bbd4d51166b6a27a94f9
2,222
py
Python
tests/test_wsgi.py
ambrozic/http3
5442006a41f94a3e41186910d7a6e8546adf0f89
[ "BSD-3-Clause" ]
null
null
null
tests/test_wsgi.py
ambrozic/http3
5442006a41f94a3e41186910d7a6e8546adf0f89
[ "BSD-3-Clause" ]
null
null
null
tests/test_wsgi.py
ambrozic/http3
5442006a41f94a3e41186910d7a6e8546adf0f89
[ "BSD-3-Clause" ]
null
null
null
import sys import pytest import http3 def hello_world(environ, start_response): status = "200 OK" output = b"Hello, World!" response_headers = [ ("Content-type", "text/plain"), ("Content-Length", str(len(output))), ] start_response(status, response_headers) return [output] def echo_body(environ, start_response): status = "200 OK" output = environ["wsgi.input"].read() response_headers = [ ("Content-type", "text/plain"), ("Content-Length", str(len(output))), ] start_response(status, response_headers) return [output] def echo_body_with_response_stream(environ, start_response): status = "200 OK" response_headers = [("Content-Type", "text/plain")] start_response(status, response_headers) def output_generator(f): while True: output = f.read(2) if not output: break yield output return output_generator(f=environ["wsgi.input"]) def raise_exc(environ, start_response): status = "500 Server Error" output = b"Nope!" response_headers = [ ("Content-type", "text/plain"), ("Content-Length", str(len(output))), ] try: raise ValueError() except: exc_info = sys.exc_info() start_response(status, response_headers, exc_info=exc_info) return [output] def test_wsgi(): client = http3.Client(app=hello_world) response = client.get("http://www.example.org/") assert response.status_code == 200 assert response.text == "Hello, World!" def test_wsgi_upload(): client = http3.Client(app=echo_body) response = client.post("http://www.example.org/", data=b"example") assert response.status_code == 200 assert response.text == "example" def test_wsgi_upload_with_response_stream(): client = http3.Client(app=echo_body_with_response_stream) response = client.post("http://www.example.org/", data=b"example") assert response.status_code == 200 assert response.text == "example" def test_wsgi_exc(): client = http3.Client(app=raise_exc) with pytest.raises(ValueError): response = client.get("http://www.example.org/")
23.145833
70
0.645815
4a277d54479faf78b386d39381052129329ec959
1,446
py
Python
fields/validators.py
MilkBotttle/BFP
0753d8476b50a5b3342dc49b127712b545e417fd
[ "MIT" ]
null
null
null
fields/validators.py
MilkBotttle/BFP
0753d8476b50a5b3342dc49b127712b545e417fd
[ "MIT" ]
null
null
null
fields/validators.py
MilkBotttle/BFP
0753d8476b50a5b3342dc49b127712b545e417fd
[ "MIT" ]
null
null
null
import ipaddress from django.utils.translation import gettext_lazy as _, ngettext_lazy from django.core.exceptions import ValidationError def validate_ipv4_network(value): try: ipaddress.IPv4Network(value) except ValueError: raise ValidationError(_('Enter a valid IPv4 network.'), code='invalid') def validate_ipv6_network(value): try: ipaddress.IPv6Network(value) except ValueError: raise ValidationError(_('Enter a valid IPv6 network.'), code='invalid') def validate_ipv46_network(value): try: validate_ipv4_network(value) except ValidationError: try: validate_ipv6_network(value) except ValidationError: raise ValidationError(_('Enter a valid IPv4 or IPv6 network.'), code='invalid') ip_network_validator_map = { 'both': ([validate_ipv46_network], _('Enter a valid IPv4 or IPv6 network.')), 'ipv4': ([validate_ipv4_network], _('Enter a valid IPv4 network.')), 'ipv6': ([validate_ipv6_network], _('Enter a valid IPv6 network.')), } def ip_network_validators(protocol): """ Depending on the given parameters, return the appropriate validators for the GenericIPNetworkField. """ try: return ip_network_validator_map[protocol.lower()] except KeyError: raise ValueError("The protocol '%s' is unknown. Supported: %s" % (protocol, list(ip_network_validator_map)))
34.428571
91
0.690871
4a277e55a1170b50990d8a4af93e157163793224
6,599
py
Python
kali_extractor/kali_extractor/documents_processor.py
adipasquale/kali_dumps_scripts
3a340627169ba42c461fa914f68d7cc1f9458075
[ "Apache-2.0" ]
3
2019-09-12T06:44:17.000Z
2019-10-09T12:14:09.000Z
kali_extractor/kali_extractor/documents_processor.py
adipasquale/kali_dumps_scripts
3a340627169ba42c461fa914f68d7cc1f9458075
[ "Apache-2.0" ]
7
2019-01-16T16:25:32.000Z
2019-01-29T08:41:56.000Z
kali_extractor/kali_extractor/documents_processor.py
SocialGouv/kaligator
3a340627169ba42c461fa914f68d7cc1f9458075
[ "Apache-2.0" ]
2
2019-01-22T06:04:29.000Z
2019-01-23T07:49:30.000Z
from xml.etree import ElementTree import html from kali_extractor.custom_xml_parser import \ custom_xml_parser, custom_abdera_parser from kali_extractor.dict_utils import deep_get, deep_set class DocumentProcessor(object): def __init__( self, xml_path, html_fields=None, array_fields=None, **kwargs ): self.xml_path = xml_path self.html_fields = [] if html_fields is None else html_fields self.array_fields = [] if array_fields is None else array_fields def parse_xml(self): """ reads and parses the XML into a json-formatted dictionary object. drops the root tag (<ARTICLE>, <IDCC> ...) """ with open(self.xml_path, "r") as f: element = ElementTree.parse(f) self.root = element.getroot() parsed_root = custom_xml_parser.data(self.root) root_keys = list(parsed_root.keys()) if len(root_keys) > 1: raise Exception( "parsed XML has more than one element at the root level: %s" % ",".join(root_keys) ) self.json = parsed_root[root_keys[0]] def format_array_fields(self): """ Enforce some fields to always be arrays, even with a single entry. By default, you get a mixed schema, with single items as objects, and multiple items as arrays """ for field in self.array_fields: for value, selector in deep_get(self.json, field): if value is not None and not isinstance(value, list): deep_set(self.json, selector, [value]) def format_html_fields(self): """ Enforce some fields to contain their content as unformatted HTML. By default, all the fields are parsed and split into objects but we want to treat HTML content as raw text. """ for field in self.html_fields: xpath_selector = "./%s" % "/".join(field.split(".")) value = self.root.find(xpath_selector) if value is None: continue sub_strings = [ ElementTree.tostring(sub_element).decode("utf-8") for sub_element in value ] parsed_contenu_html = html.unescape("".join(sub_strings)) deep_set(self.json, field, parsed_contenu_html) def process(self): self.parse_xml() self.format_html_fields() self.format_array_fields() return self.json class ArticleProcessor(DocumentProcessor): def __init__(self, xml_path, **kwargs): super(ArticleProcessor, self).__init__( xml_path, html_fields=["BLOC_TEXTUEL/CONTENU", "NOTA/CONTENU"], array_fields=["VERSIONS/VERSION", "LIENS/LIEN"], **kwargs ) class IDCCProcessor(DocumentProcessor): def __init__(self, xml_path, **kwargs): super(IDCCProcessor, self).__init__( xml_path, html_fields=[], array_fields=[ "STRUCTURE_TXT/TM", "ACTS_PRO/ACT_PRO", "NUMS_BROCH/NUM_BROCH", "STRUCTURE_TXT/TM/LIEN_TXT" ], **kwargs ) class SectionTaProcessor(DocumentProcessor): def __init__(self, xml_path, **kwargs): super(SectionTaProcessor, self).__init__( xml_path, html_fields=[], array_fields=[ "STRUCTURE_TA/LIEN_ART", "STRUCTURE_TA/LIEN_SECTION_TA", "CONTEXTE/TEXTE/TITRE_TXT", "CONTEXTE/TEXTE/TM/TITRE_TM" ], **kwargs ) def flatten_abdera_item(item): """ takes a dict parsed by the abdera algorithm and returns one that is formatted like the rest of the XML parsed docs (with top level attributes and a `_text` key) """ keys = list(item.keys()) if len(keys) != 1: raise Exception("found %s abdera tag names instead of 1" % len(keys)) key = keys[0] abdera_obj = item[key] new_object = {"_type": key} for name, value in abdera_obj.get("attributes").items(): new_object[name] = value if "children" in abdera_obj: if not isinstance(abdera_obj["children"], list): raise Exception( "children should be a list but was a %s" % abdera_obj["children"].__class__ ) if len(abdera_obj["children"]) != 1: raise Exception( "children should contain a single item but has %s" % len(abdera_obj["children"]) ) new_object["_text"] = abdera_obj["children"][0] return new_object class TexteVersionProcessor(DocumentProcessor): def __init__(self, xml_path, **kwargs): super(TexteVersionProcessor, self).__init__( xml_path, html_fields=[ "VISAS/CONTENU", "SIGNATAIRES/SIGNPATRON/CONTENU", "SIGNATAIRES/SIGNSYNDIC/CONTENU", "SIGNATAIRES/ORGADHERE/CONTENU", "SIGNATAIRES/ORGDENONCE/CONTENU", "SIGNATAIRES/SIGNEXT/CONTENU", "SIGNATAIRES/EXECUTION/CONTENU", "NOTA/CONTENU", ], **kwargs ) class TexteStructProcessor(DocumentProcessor): def __init__(self, xml_path, **kwargs): super(TexteStructProcessor, self).__init__( xml_path, array_fields=["VERSIONS/VERSION"], **kwargs ) def parse_xml(self): """ slightly hacky, this fixes #6, as the STRUCT contains a mixed list of two different tags, we cannot treat it as the array fields """ super(TexteStructProcessor, self).parse_xml() if 'STRUCT' not in self.json: return doc = custom_abdera_parser.data(self.root) subdocs = [ d for d in doc["TEXTEKALI"]["children"] if ["STRUCT"] == list(d.keys()) ] if len(subdocs) != 1: raise Exception( "found %s STRUCT tags in TEXTEKALI instead of 1" % len(subdocs) ) if subdocs[0]["STRUCT"].get("children"): children = subdocs[0]["STRUCT"]["children"] flat_children = [flatten_abdera_item(c) for c in children] elif len(subdocs[0]["STRUCT"].keys()) == 1: flat_children = [flatten_abdera_item(subdocs[0]["STRUCT"])] elif not subdocs[0]["STRUCT"]: flat_children = [] self.json["STRUCT"] = flat_children
35.67027
79
0.578421