hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
4a24e5af148e6e7349744b7b9f2538aef9d3388a
326
py
Python
JellyBot/components/navbar/header.py
RaenonX/Jelly-Bot-API
c7da1e91783dce3a2b71b955b3a22b68db9056cf
[ "MIT" ]
5
2020-08-26T20:12:00.000Z
2020-12-11T16:39:22.000Z
JellyBot/components/navbar/header.py
RaenonX/Jelly-Bot
c7da1e91783dce3a2b71b955b3a22b68db9056cf
[ "MIT" ]
234
2019-12-14T03:45:19.000Z
2020-08-26T18:55:19.000Z
JellyBot/components/navbar/header.py
RaenonX/Jelly-Bot-API
c7da1e91783dce3a2b71b955b3a22b68db9056cf
[ "MIT" ]
2
2019-10-23T15:21:15.000Z
2020-05-22T09:35:55.000Z
from ._base import NavBaseItem class NavHeader(NavBaseItem): def __init__(self, parent, label: str): super().__init__(parent) self._label = label @property def label(self) -> str: return self._label def to_html(self): return f'<h6 class="dropdown-header">{self.label}</h6>'
21.733333
63
0.631902
4a24e65d9678a98521ca8c45f547ed3d92c6eceb
3,035
py
Python
parsyfiles/plugins_optional/support_for_attrs.py
smarie/python-simple-file-collection-parsing-framework
344b37e1151e8d4e7c2ee49ae09d6568715ae64e
[ "BSD-3-Clause" ]
null
null
null
parsyfiles/plugins_optional/support_for_attrs.py
smarie/python-simple-file-collection-parsing-framework
344b37e1151e8d4e7c2ee49ae09d6568715ae64e
[ "BSD-3-Clause" ]
null
null
null
parsyfiles/plugins_optional/support_for_attrs.py
smarie/python-simple-file-collection-parsing-framework
344b37e1151e8d4e7c2ee49ae09d6568715ae64e
[ "BSD-3-Clause" ]
null
null
null
import attr from attr import fields, NOTHING from attr.validators import _OptionalValidator, _InstanceOfValidator def _guess_type_from_validator(validator): """ Utility method to return the declared type of an attribute or None. It handles _OptionalValidator and _AndValidator in order to unpack the validators. :param validator: :return: the type of attribute declared in an inner 'instance_of' validator (if any is found, the first one is used) or None if no inner 'instance_of' validator is found """ if isinstance(validator, _OptionalValidator): # Optional : look inside return _guess_type_from_validator(validator.validator) elif isinstance(validator, _AndValidator): # Sequence : try each of them for v in validator.validators: typ = _guess_type_from_validator(v) if typ is not None: return typ return None elif isinstance(validator, _InstanceOfValidator): # InstanceOf validator : found it ! return validator.type else: # we could not find the type return None def guess_type_from_validators(attr): """ Utility method to return the declared type of an attribute or None. It handles _OptionalValidator and _AndValidator in order to unpack the validators. :param attr: :return: the type of attribute declared in an inner 'instance_of' validator (if any is found, the first one is used) or None if no inner 'instance_of' validator is found """ return _guess_type_from_validator(attr.validator) def is_optional(attr): """ Helper method to find if an attribute is mandatory :param attr: :return: """ return isinstance(attr.validator, _OptionalValidator) or (attr.default is not None and attr.default is not NOTHING) def get_attrs_declarations(item_type): """ Helper method to return a dictionary of tuples. Each key is attr_name, and value is (attr_type, attr_is_optional) :param item_type: :return: """ # this will raise an error if the type is not an attr-created type attribs = fields(item_type) res = dict() for attr in attribs: attr_name = attr.name # -- is the attribute mandatory ? optional = is_optional(attr) # -- get and check the attribute type typ = guess_type_from_validators(attr) # -- store both info in result dict res[attr_name] = (typ, optional) return res @attr.s(repr=False, slots=True) class _AndValidator(object): validators = attr.ib() def __call__(self, inst, attr, value): for v in self.validators: v(inst, attr, value) return def __repr__(self): return ( "<validator sequence : {seq}>".format(seq=repr(self.validators)) ) def chain(*validators): """ A validator that applies several validators in order :param validators: A sequence of validators """ return _AndValidator(validators)
28.632075
120
0.674794
4a24e69fcecf0973b361e7354cb5f16c5e86e0b9
16,468
py
Python
venv/lib/python3.5/site-packages/flask_testing/utils.py
JonathanVaughan/project
8f0a84345588017b96b6724efb07af7441cf6844
[ "MIT" ]
null
null
null
venv/lib/python3.5/site-packages/flask_testing/utils.py
JonathanVaughan/project
8f0a84345588017b96b6724efb07af7441cf6844
[ "MIT" ]
null
null
null
venv/lib/python3.5/site-packages/flask_testing/utils.py
JonathanVaughan/project
8f0a84345588017b96b6724efb07af7441cf6844
[ "MIT" ]
1
2021-04-11T05:23:48.000Z
2021-04-11T05:23:48.000Z
# -*- coding: utf-8 -*- """ flask_testing.utils ~~~~~~~~~~~~~~~~~~~ Flask unittest integration. :copyright: (c) 2010 by Dan Jacob. :license: BSD, see LICENSE for more details. """ from __future__ import absolute_import, with_statement import gc import multiprocessing import socket import time try: import socketserver except ImportError: # Python 2 SocketServer fallback import SocketServer as socketserver try: import unittest2 as unittest except ImportError: import unittest try: from urllib.parse import urlparse, urljoin except ImportError: # Python 2 urlparse fallback from urlparse import urlparse, urljoin from werkzeug.utils import cached_property # Use Flask's preferred JSON module so that our runtime behavior matches. from flask import json_available, templating, template_rendered try: from flask import message_flashed _is_message_flashed = True except ImportError: message_flashed = None _is_message_flashed = False if json_available: from flask import json # we'll use signals for template-related tests if # available in this version of Flask try: import blinker _is_signals = True except ImportError: # pragma: no cover _is_signals = False __all__ = ["TestCase"] class ContextVariableDoesNotExist(Exception): pass class JsonResponseMixin(object): """ Mixin with testing helper methods """ @cached_property def json(self): if not json_available: # pragma: no cover raise NotImplementedError return json.loads(self.data) def _make_test_response(response_class): class TestResponse(response_class, JsonResponseMixin): pass return TestResponse def _empty_render(template, context, app): """ Used to monkey patch the render_template flask method when the render_templates property is set to False in the TestCase """ if _is_signals: template_rendered.send(app, template=template, context=context) return "" def _check_for_message_flashed_support(): if not _is_signals or not _is_message_flashed: raise RuntimeError( "Your version of Flask doesn't support message_flashed. " "This requires Flask 0.10+ with the blinker module installed." ) def _check_for_signals_support(): if not _is_signals: raise RuntimeError( "Your version of Flask doesn't support signals. " "This requires Flask 0.6+ with the blinker module installed." ) class TestCase(unittest.TestCase): render_templates = True run_gc_after_test = False def create_app(self): """ Create your Flask app here, with any configuration you need. """ raise NotImplementedError def __call__(self, result=None): """ Does the required setup, doing it here means you don't have to call super.setUp in subclasses. """ try: self._pre_setup() super(TestCase, self).__call__(result) finally: self._post_teardown() def debug(self): try: self._pre_setup() super(TestCase, self).debug() finally: self._post_teardown() def _pre_setup(self): self.app = self.create_app() self._orig_response_class = self.app.response_class self.app.response_class = _make_test_response(self.app.response_class) self.client = self.app.test_client() self._ctx = self.app.test_request_context() self._ctx.push() if not self.render_templates: # Monkey patch the original template render with a empty render self._original_template_render = templating._render templating._render = _empty_render self.templates = [] self.flashed_messages = [] if _is_signals: template_rendered.connect(self._add_template) if _is_message_flashed: message_flashed.connect(self._add_flash_message) def _add_flash_message(self, app, message, category): self.flashed_messages.append((message, category)) def _add_template(self, app, template, context): if len(self.templates) > 0: self.templates = [] self.templates.append((template, context)) def _post_teardown(self): if getattr(self, '_ctx', None) is not None: self._ctx.pop() del self._ctx if getattr(self, 'app', None) is not None: if getattr(self, '_orig_response_class', None) is not None: self.app.response_class = self._orig_response_class del self.app if hasattr(self, 'client'): del self.client if hasattr(self, 'templates'): del self.templates if hasattr(self, 'flashed_messages'): del self.flashed_messages if _is_signals: template_rendered.disconnect(self._add_template) if _is_message_flashed: message_flashed.disconnect(self._add_flash_message) if hasattr(self, '_original_template_render'): templating._render = self._original_template_render if self.run_gc_after_test: gc.collect() def assertMessageFlashed(self, message, category='message'): """ Checks if a given message was flashed. Only works if your version of Flask has message_flashed signal support (0.10+) and blinker is installed. :param message: expected message :param category: expected message category """ _check_for_message_flashed_support() for _message, _category in self.flashed_messages: if _message == message and _category == category: return True raise AssertionError("Message '%s' in category '%s' wasn't flashed" % (message, category)) assert_message_flashed = assertMessageFlashed def assertTemplateUsed(self, name, tmpl_name_attribute='name'): """ Checks if a given template is used in the request. Only works if your version of Flask has signals support (0.6+) and blinker is installed. If the template engine used is not Jinja2, provide ``tmpl_name_attribute`` with a value of its `Template` class attribute name which contains the provided ``name`` value. :versionadded: 0.2 :param name: template name :param tmpl_name_attribute: template engine specific attribute name """ _check_for_signals_support() used_templates = [] for template, context in self.templates: if getattr(template, tmpl_name_attribute) == name: return True used_templates.append(template) raise AssertionError("Template %s not used. Templates were used: %s" % (name, ' '.join(repr(used_templates)))) assert_template_used = assertTemplateUsed def get_context_variable(self, name): """ Returns a variable from the context passed to the template. Only works if your version of Flask has signals support (0.6+) and blinker is installed. Raises a ContextVariableDoesNotExist exception if does not exist in context. :versionadded: 0.2 :param name: name of variable """ _check_for_signals_support() for template, context in self.templates: if name in context: return context[name] raise ContextVariableDoesNotExist def assertContext(self, name, value, message=None): """ Checks if given name exists in the template context and equals the given value. :versionadded: 0.2 :param name: name of context variable :param value: value to check against """ try: self.assertEqual(self.get_context_variable(name), value, message) except ContextVariableDoesNotExist: self.fail(message or "Context variable does not exist: %s" % name) assert_context = assertContext def assertRedirects(self, response, location, message=None): """ Checks if response is an HTTP redirect to the given location. :param response: Flask response :param location: relative URL path to SERVER_NAME or an absolute URL """ parts = urlparse(location) if parts.netloc: expected_location = location else: server_name = self.app.config.get('SERVER_NAME') or 'localhost' expected_location = urljoin("http://%s" % server_name, location) valid_status_codes = (301, 302, 303, 305, 307) valid_status_code_str = ', '.join(str(code) for code in valid_status_codes) not_redirect = "HTTP Status %s expected but got %d" % (valid_status_code_str, response.status_code) self.assertTrue(response.status_code in valid_status_codes, message or not_redirect) self.assertEqual(response.location, expected_location, message) assert_redirects = assertRedirects def assertStatus(self, response, status_code, message=None): """ Helper method to check matching response status. :param response: Flask response :param status_code: response status code (e.g. 200) :param message: Message to display on test failure """ message = message or 'HTTP Status %s expected but got %s' \ % (status_code, response.status_code) self.assertEqual(response.status_code, status_code, message) assert_status = assertStatus def assert200(self, response, message=None): """ Checks if response status code is 200 :param response: Flask response :param message: Message to display on test failure """ self.assertStatus(response, 200, message) assert_200 = assert200 def assert400(self, response, message=None): """ Checks if response status code is 400 :versionadded: 0.2.5 :param response: Flask response :param message: Message to display on test failure """ self.assertStatus(response, 400, message) assert_400 = assert400 def assert401(self, response, message=None): """ Checks if response status code is 401 :versionadded: 0.2.1 :param response: Flask response :param message: Message to display on test failure """ self.assertStatus(response, 401, message) assert_401 = assert401 def assert403(self, response, message=None): """ Checks if response status code is 403 :versionadded: 0.2 :param response: Flask response :param message: Message to display on test failure """ self.assertStatus(response, 403, message) assert_403 = assert403 def assert404(self, response, message=None): """ Checks if response status code is 404 :param response: Flask response :param message: Message to display on test failure """ self.assertStatus(response, 404, message) assert_404 = assert404 def assert405(self, response, message=None): """ Checks if response status code is 405 :versionadded: 0.2 :param response: Flask response :param message: Message to display on test failure """ self.assertStatus(response, 405, message) assert_405 = assert405 def assert500(self, response, message=None): """ Checks if response status code is 500 :versionadded: 0.4.1 :param response: Flask response :param message: Message to display on test failure """ self.assertStatus(response, 500, message) assert_500 = assert500 # A LiveServerTestCase useful with Selenium or headless browsers # Inspired by https://docs.djangoproject.com/en/dev/topics/testing/#django.test.LiveServerTestCase class LiveServerTestCase(unittest.TestCase): def create_app(self): """ Create your Flask app here, with any configuration you need. """ raise NotImplementedError def __call__(self, result=None): """ Does the required setup, doing it here means you don't have to call super.setUp in subclasses. """ # Get the app self.app = self.create_app() self._configured_port = self.app.config.get('LIVESERVER_PORT', 5000) self._port_value = multiprocessing.Value('i', self._configured_port) # We need to create a context in order for extensions to catch up self._ctx = self.app.test_request_context() self._ctx.push() try: self._spawn_live_server() super(LiveServerTestCase, self).__call__(result) finally: self._post_teardown() self._terminate_live_server() def get_server_url(self): """ Return the url of the test server """ return 'http://localhost:%s' % self._port_value.value def _spawn_live_server(self): self._process = None port_value = self._port_value def worker(app, port): # Based on solution: http://stackoverflow.com/a/27598916 # Monkey-patch the server_bind so we can determine the port bound by Flask. # This handles the case where the port specified is `0`, which means that # the OS chooses the port. This is the only known way (currently) of getting # the port out of Flask once we call `run`. original_socket_bind = socketserver.TCPServer.server_bind def socket_bind_wrapper(self): ret = original_socket_bind(self) # Get the port and save it into the port_value, so the parent process # can read it. (_, port) = self.socket.getsockname() port_value.value = port socketserver.TCPServer.server_bind = original_socket_bind return ret socketserver.TCPServer.server_bind = socket_bind_wrapper app.run(port=port, use_reloader=False) self._process = multiprocessing.Process( target=worker, args=(self.app, self._configured_port) ) self._process.start() # We must wait for the server to start listening, but give up # after a specified maximum timeout timeout = self.app.config.get('LIVESERVER_TIMEOUT', 5) start_time = time.time() while True: elapsed_time = (time.time() - start_time) if elapsed_time > timeout: raise RuntimeError( "Failed to start the server after %d seconds. " % timeout ) if self._can_ping_server(): break def _can_ping_server(self): host, port = self._get_server_address() if port == 0: # Port specified by the user was 0, and the OS has not yet assigned # the proper port. return False sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: sock.connect((host, port)) except socket.error as e: success = False else: success = True finally: sock.close() return success def _get_server_address(self): """ Gets the server address used to test the connection with a socket. Respects both the LIVESERVER_PORT config value and overriding get_server_url() """ parts = urlparse(self.get_server_url()) host = parts.hostname port = parts.port if port is None: if parts.scheme == 'http': port = 80 elif parts.scheme == 'https': port = 443 else: raise RuntimeError( "Unsupported server url scheme: %s" % parts.scheme ) return host, port def _post_teardown(self): if getattr(self, '_ctx', None) is not None: self._ctx.pop() del self._ctx def _terminate_live_server(self): if self._process: self._process.terminate()
29.779385
118
0.628249
4a24e78d17cb717b05364ce2c66c4fcd0efca07d
2,937
py
Python
examples/archive/max_distance_from_time.py
BillMakwae/Simulation
8d0ec274643f23bc0e78c96e50508b60791c11d2
[ "MIT" ]
8
2020-03-29T01:44:16.000Z
2022-03-26T23:15:34.000Z
examples/archive/max_distance_from_time.py
BillMakwae/Simulation
8d0ec274643f23bc0e78c96e50508b60791c11d2
[ "MIT" ]
60
2020-02-08T22:07:16.000Z
2022-03-26T23:51:55.000Z
examples/archive/max_distance_from_time.py
BillMakwae/Simulation
8d0ec274643f23bc0e78c96e50508b60791c11d2
[ "MIT" ]
1
2021-10-20T20:07:06.000Z
2021-10-20T20:07:06.000Z
import simulation import datetime """ Description: Given an input time, determine the largest distance the car can travel in that time. [time -> distance] Note: this example assumes constant speed throughout """ # Time parameters tick = 1 # Inputs simulation_duration = int(60 * 60 * 9) # 9 hours # Simulation constants incident_sunlight = 1000 initial_battery_charge = 0.9 battery_charge = initial_battery_charge lvs_power_loss = 0 speed_increment = 1 max_speed_kmh = 50 # Outputs final_parameters = dict() for speed_kmh in range(1, max_speed_kmh + 1, speed_increment): distance_travelled = 0 basic_array = simulation.BasicArray(incident_sunlight) basic_array.set_produced_energy(0) basic_battery = simulation.BasicBattery(initial_battery_charge) basic_lvs = simulation.BasicLVS(lvs_power_loss * tick) basic_motor = simulation.BasicMotor() # Run the simulation at a specific speed for time in range(tick, simulation_duration + tick, tick): basic_array.update(tick) produced_energy = basic_array.get_produced_energy() basic_lvs.update(tick) lvs_consumed_energy = basic_lvs.get_consumed_energy() basic_motor.update(tick) basic_motor.calculate_power_in(speed_kmh) motor_consumed_energy = basic_motor.get_consumed_energy() basic_battery.charge(produced_energy) # tries to remove some energy from the battery try: basic_battery.discharge(lvs_consumed_energy) basic_battery.discharge(motor_consumed_energy) basic_battery.update(tick) # Battery is empty except simulation.BatteryEmptyError: break # Battery still has some charge in it else: distance_travelled += speed_kmh * (tick / 3600) # Ensures that the simulation doesn't run completely when the battery charge reaches equilibrium if battery_charge == basic_battery.get_state_of_charge() and basic_battery.is_empty() is not True: print(f"Equilibrium reached at speed {speed_kmh}km/h.\n") distance_travelled = speed_kmh * (simulation_duration / 3600) break finally: battery_charge = basic_battery.get_state_of_charge() if time % 60 == 0: print(f"Time: {time} sec / {datetime.timedelta(seconds=time)}") print(f"Car speed: {speed_kmh:.2f}km/h") print(f"Distance travelled: {distance_travelled:.2f}km") print(f"Battery SOC: {float(battery_charge) * 100:.3f}%\n") final_parameters[speed_kmh] = distance_travelled max_distance = round(max(final_parameters.values()), 2) optimal_speed = round(max(final_parameters, key=final_parameters.get), 2) print(f"Simulation complete! Maximum traversable distance in {datetime.timedelta(seconds=simulation_duration)} is " f"{max_distance}km at speed {optimal_speed}km/h.")
34.964286
117
0.701396
4a24e7c39d2d3cf6ec0555ca66a8fa00e0faceb5
1,620
py
Python
pymatgen/core/helper.py
materialsproject/workshop-2017
893da316ecb77fece2a9937ffa604b57c0938e0a
[ "BSD-3-Clause-LBNL" ]
21
2017-07-25T17:38:55.000Z
2022-01-17T09:20:26.000Z
pymatgen/core/helper.py
materialsproject/workshop-2017
893da316ecb77fece2a9937ffa604b57c0938e0a
[ "BSD-3-Clause-LBNL" ]
1
2017-07-25T23:29:35.000Z
2017-07-25T23:29:35.000Z
pymatgen/core/helper.py
materialsproject/workshop-2017
893da316ecb77fece2a9937ffa604b57c0938e0a
[ "BSD-3-Clause-LBNL" ]
22
2017-07-25T22:42:33.000Z
2022-02-24T12:41:18.000Z
from pymatgen import vis from monty.serialization import loadfn import matplotlib as mpl mpl.use("TkAgg") import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import numpy as np import os, itertools, re colors = loadfn(os.path.join(os.path.dirname(vis.__file__), "ElementColorSchemes.yaml")) color_dict = {el:[j / 256. for j in colors["Jmol"][el]] for el in colors["Jmol"].keys()} def vis_struct(structure, res=100, show_unit_cell=True): """ Visualizes structure using 3d matplotlib plot """ fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.set_aspect('equal') #plot unit cell if show_unit_cell: vecs = structure.lattice.matrix for vec in vecs: ax.plot(*zip([0, 0, 0], vec), 'k-', zorder=0) for (vec1, vec2) in itertools.permutations(vecs, 2): ax.plot(*zip(vec1, vec1+vec2), 'k-', zorder=0) for (vec1, vec2, vec3) in itertools.permutations(vecs, 3): ax.plot(*zip(vec1+vec2, vec1+vec2+vec3), 'k-', zorder=0) phi = np.linspace(0, 2*np.pi, res) theta = np.linspace(0, np.pi, res) regex = re.compile('[^a-zA-Z]') for site in structure.sites: rad = float(site.specie.atomic_radius) loc = site.coords xm = rad * np.outer(np.cos(phi), np.sin(theta)) + loc[0] ym = rad * np.outer(np.sin(phi), np.sin(theta)) + loc[1] zm = rad * np.outer(np.ones(np.size(phi)), np.cos(theta)) + loc[2] color = color_dict[regex.sub('', site.species_string)] ax.plot_surface(xm, ym, zm, color=color, linewidth=0, zorder=1) return fig
38.571429
88
0.633333
4a24e809049aebb4595d4d4e2e79b92b47f0932e
3,005
py
Python
uob_utils.py
TeamworkNUS/uob_voice_to_text_proj
dce143572b041d54463a04a19fa0fda97eff1361
[ "Unlicense" ]
null
null
null
uob_utils.py
TeamworkNUS/uob_voice_to_text_proj
dce143572b041d54463a04a19fa0fda97eff1361
[ "Unlicense" ]
null
null
null
uob_utils.py
TeamworkNUS/uob_voice_to_text_proj
dce143572b041d54463a04a19fa0fda97eff1361
[ "Unlicense" ]
4
2022-03-07T09:49:49.000Z
2022-03-09T06:59:19.000Z
import json import os from typing import Any, Optional from pydub import AudioSegment import wave import filetype # to check file type def check_file_type(audioname, audiopath): audiofile = os.path.join(audiopath, audioname) kind = filetype.guess(audiofile) if kind is None: print('Cannot guess file type!') print('File extension: %s' % kind.extension) print('File MIME type: %s' % kind.mime) return kind.extension, kind.mime def audio2wav(from_audioname, from_audiopath, to_audioname, to_audiopath): from_audiofile = os.path.join(from_audiopath,from_audioname) to_audiofile = os.path.join(to_audiopath,to_audioname) AudioSegment.from_file(from_audiofile).export(to_audiofile,format='wav') def get_audio_params(audioname, audiopath): ''' Note: only works on .wav file ''' audiofile = os.path.join(audiopath, audioname) f=wave.open(audiofile) params = f.getparams() channels = f.getnchannels() samplerate = f.getframerate() sampwidth = f.getsampwidth() nframes = f.getnframes() f.close() print('params: ',params) # print('channels: ',channels) # print('sample rate: ', samplerate) # print('sample width: ', sampwidth) # print('nframes: ', nframes) return params, channels, samplerate, sampwidth, nframes def standardize_audio(from_audioname, from_audiopath, to_audioname, to_audiopath, sample_rate, no_of_channel): ''' requirements: ffmpeg $ ffmpeg {global param} {input file param} -i {input file} {output file param} {output file} ''' from_audiofile = os.path.join(from_audiopath,from_audioname) to_audiofile = os.path.join(to_audiopath,to_audioname) # cmd = "ffmpeg -i " + str(from_audiofile) + " -hide_banner " +" -ac " + str(no_of_channel) + " -ar " + str(sample_rate) +' ' + to_audiofile # print(cmd) # os.system(cmd) AudioSegment.from_wav(from_audiofile).set_frame_rate(sample_rate).set_channels(no_of_channel).export(to_audiofile,format='wav') def get_audio_meta(audioname,audiopath): audiofile = os.path.join(audiopath, audioname) f=wave.open(audiofile) nframes = f.getnframes() rate = f.getframerate() duration = nframes / float(rate) bytes_size=os.path.getsize(os.path.join(audiopath, audioname)) params = f.getparams() nchannels = f.getnchannels() samplerate = f.getframerate() sampwidth = f.getsampwidth() bit_type = f.getsampwidth() * 8 bit_rate=samplerate * bit_type * nchannels f.close() # print('params: ',params) # print('channels: ',channels) # print('sample rate: ', samplerate) # print('sample width: ', sampwidth) # print('nframes: ', nframes) output_obj = {"nchannels":nchannels,"samplerate":samplerate,"sampwidth":sampwidth,"nframes":nframes, "duration":duration, "bytes_size":bytes_size, "bit_type":bit_type,"bit_rate":round(bit_rate)} output = json.dumps(output_obj) return output
31.968085
198
0.686522
4a24e891e0c49cb6fe6b24b3bb8a34afbdf3838c
25,982
py
Python
stencilflow/stencil/intel_fpga.py
spcl/stencilflow
28bb88e7f4251f29aecc266663bc780023ed2549
[ "BSD-3-Clause" ]
12
2020-06-05T09:27:41.000Z
2021-11-22T04:29:55.000Z
stencilflow/stencil/intel_fpga.py
spcl/stencilflow
28bb88e7f4251f29aecc266663bc780023ed2549
[ "BSD-3-Clause" ]
1
2021-09-11T14:42:50.000Z
2021-09-15T12:33:34.000Z
stencilflow/stencil/intel_fpga.py
spcl/stencilflow
28bb88e7f4251f29aecc266663bc780023ed2549
[ "BSD-3-Clause" ]
5
2020-09-29T11:35:32.000Z
2021-09-26T03:31:25.000Z
import ast import astunparse import collections import functools import itertools import operator import re import dace import numpy as np from .subscript_converter import SubscriptConverter from ._common import JUNK_VAL, dim_to_abs_val, make_iterators @dace.library.expansion class ExpandStencilIntelFPGA(dace.library.ExpandTransformation): environments = [] @staticmethod def expansion(node, parent_state, parent_sdfg): sdfg = dace.SDFG(node.label + "_outer") state = sdfg.add_state(node.label + "_outer") shape = np.array(node.shape) # Extract which fields to read from streams and what to buffer field_to_memlet = {} # Maps fields to which memlet carries it field_to_data = {} # Maps fields to which data object represents it buffer_sizes = collections.OrderedDict() buffer_accesses = collections.OrderedDict() in_edges = parent_state.in_edges(node) scalars = {} # {name: type} vector_lengths = {} # {name: vector length} for field_name, (dim_mask, relative) in node.accesses.items(): relative = dace.dtypes.deduplicate( [tuple(int(x) for x in r) for r in relative]) if not any(dim_mask): # This is a scalar, no buffer needed. Instead, the SDFG must # take this as a symbol scalars[field_name] = parent_sdfg.symbols[field_name] vector_lengths[field_name] = 1 sdfg.add_symbol(field_name, parent_sdfg.symbols[field_name]) continue # Find the corresponding input memlets for e in in_edges: if e.dst_conn == field_name: field_to_memlet[field_name] = e data = dace.sdfg.find_input_arraynode(parent_state, e).data field_to_data[field_name] = data vector_lengths[field_name] = parent_sdfg.data(data).veclen break else: raise KeyError("Input connector {} was not found for {}".format( connector, field_name, node.label)) # Deduplicate, as we can have multiple accesses to the same index abs_indices = ( [dim_to_abs_val(i, shape[dim_mask]) for i in relative] + ([0] if node.boundary_conditions[field_name]["btype"] == "copy" else [])) max_access = max(abs_indices) min_access = min(abs_indices) buffer_size = max_access - min_access + vector_lengths[field_name] buffer_sizes[field_name] = buffer_size # (indices relative to center, buffer indices, buffer center index) buffer_accesses[field_name] = ([tuple(r) for r in relative], [ i - min_access for i in abs_indices ], -min_access) # Find output connectors for field_name, offset in node.output_fields.items(): for e in parent_state.out_edges(node): if e.src_conn == field_name: data = dace.sdfg.find_output_arraynode(parent_state, e).data field_to_data[field_name] = data vector_lengths[field_name] = parent_sdfg.data(data).veclen break else: raise KeyError( "Output connector {} was not found for {}".format( field_name, node.label)) # Assert that we support the given vectorization widths vector_length = max(vector_lengths.values()) for field_name in node.output_fields: if vector_lengths[field_name] != vector_length: raise ValueError("{} has vector length {}, should be {}".format( field_name, vector_lengths[field_name], vector_length)) # All inputs must be vectorized if they read the innermost dimension, # and cannot be vectorized if they don't for field_name, (dim_mask, _) in node.accesses.items(): if dim_mask[-1] == True: if vector_lengths[field_name] != vector_length: raise ValueError("Input {} has vectorization width, " "expected {}.".format( field_name, vector_lengths[field_name], vector_length)) else: if vector_lengths[field_name] != 1: raise ValueError( "Input {} cannot be vectorized, " "because it doesn't read the innermost dimension.". format(field_name)) # Create a initialization phase corresponding to the highest distance # to the center init_sizes = [ (buffer_sizes[key] - vector_lengths[key] - val[2]) // vector_length for key, val in buffer_accesses.items() ] init_size_max = int(np.max(init_sizes)) parameters = np.array(["i", "j", "k"])[:len(shape)] iterator_mask = shape > 1 # Dimensions we need to iterate over iterators = make_iterators(shape[iterator_mask], parameters=parameters[iterator_mask]) if vector_length > 1: iterators[parameters[-1]] += "/{}".format(vector_length) # Manually add pipeline entry and exit nodes pipeline_range = dace.properties.SubsetProperty.from_string(', '.join( iterators.values())) pipeline = dace.sdfg.nodes.Pipeline( "compute_" + node.label, list(iterators.keys()), pipeline_range, dace.dtypes.ScheduleType.FPGA_Device, False, init_size=init_size_max, init_overlap=False, drain_size=init_size_max, drain_overlap=True) entry = dace.sdfg.nodes.PipelineEntry(pipeline) exit = dace.sdfg.nodes.PipelineExit(pipeline) state.add_nodes_from([entry, exit]) # Add nested SDFG to do 1) shift buffers 2) read from input 3) compute nested_sdfg = dace.SDFG(node.label + "_inner", parent=state) nested_sdfg._parent_sdfg = sdfg # TODO: This should not be necessary nested_sdfg_tasklet = dace.sdfg.nodes.NestedSDFG( nested_sdfg.label, nested_sdfg, # Input connectors [k + "_in" for k, v in node.accesses.items() if any(v[0])] + [name + "_buffer_in" for name, _ in buffer_sizes.items()], # Output connectors [k + "_out" for k in node.output_fields.keys()] + [name + "_buffer_out" for name, _ in buffer_sizes.items()], schedule=dace.ScheduleType.FPGA_Device) nested_sdfg.parent_nsdfg_node = nested_sdfg_tasklet # Map all symbols for f, (dim_mask, _) in node.accesses.items(): if not any(dim_mask): nested_sdfg_tasklet.symbol_mapping[f] = f # Map iterators for p in parameters: nested_sdfg.add_symbol(p, dace.int64) nested_sdfg_tasklet.symbol_mapping[p] = p state.add_node(nested_sdfg_tasklet) # Shift state, which shifts all buffers by one shift_state = nested_sdfg.add_state(node.label + "_shift") # Update state, which reads new values from memory update_state = nested_sdfg.add_state(node.label + "_update") ####################################################################### # Tasklet code generation ####################################################################### code = node.code.as_string # Replace relative indices with memlet names converter = SubscriptConverter() # Add copy boundary conditions for field in node.boundary_conditions: btype = node.boundary_conditions[field]["btype"] if btype == "copy": center_index = tuple(0 for _ in range(sum(accesses[field][0], 0))) # This will register the renaming converter.convert(field, center_index) new_ast = converter.visit(ast.parse(code)) code = astunparse.unparse(new_ast) code_memlet_names = converter.names ####################################################################### # Implement boundary conditions ####################################################################### boundary_code = "" # Loop over each input for (field_name, (accesses, accesses_buffer, center)) in buffer_accesses.items(): # Loop over each access to this data for indices in accesses: # Loop over each index of this access try: memlet_name = code_memlet_names[field_name][indices] except KeyError: raise KeyError("Missing access in code: {}[{}]".format( field_name, ", ".join(map(str, indices)))) cond = [] for i, offset in enumerate(indices): if vector_length > 1 and i == len(indices) - 1: par = "{}*{} + i_unroll".format(vector_length, parameters[i]) else: par = parameters[i] if offset < 0: cond.append(par + " < " + str(-offset)) elif offset > 0: cond.append(par + " >= " + str(shape[i] - offset)) ctype = parent_sdfg.data(field_to_data[field_name]).dtype.ctype if len(cond) == 0: boundary_code += "{} = _{}\n".format( memlet_name, memlet_name) else: bc = node.boundary_conditions[field_name] btype = bc["btype"] if btype == "copy": center_memlet = code_memlet_names[field_name][center] boundary_val = "_{}".format(center_memlet) elif btype == "constant": boundary_val = bc["value"] elif btype == "shrink": # We don't need to do anything here, it's up to the # user to not use the junk output boundary_val = JUNK_VAL pass else: raise ValueError( "Unsupported boundary condition type: {}".format( node.boundary_conditions[field_name]["btype"])) boundary_code += ("{} = {} if {} else _{}\n".format( memlet_name, boundary_val, " or ".join(cond), memlet_name)) ####################################################################### # Only write if we're in bounds ####################################################################### write_code = ("\n".join([ "{}_inner_out = {}\n".format( output, code_memlet_names[output][tuple(0 for _ in range(len(shape)))]) for output in node.output_fields ])) if init_size_max > 0: init_cond = pipeline.init_condition() write_condition = f"if not {init_cond}:\n\t" nested_sdfg_tasklet.symbol_mapping[init_cond] = (init_cond) nested_sdfg.add_symbol(init_cond, dace.bool) else: write_condition = "" code = boundary_code + "\n" + code + "\n" + write_code ####################################################################### # Create DaCe compute state ####################################################################### # Compute state, which reads from input channels, performs the compute, # and writes to the output channel(s) compute_state = nested_sdfg.add_state(node.label + "_compute") compute_inputs = list( itertools.chain.from_iterable( [["_" + v for v in code_memlet_names[f].values()] for f, a in node.accesses.items() if any(a[0])])) compute_tasklet = compute_state.add_tasklet( node.label + "_compute", compute_inputs, {name + "_inner_out" for name in node.output_fields}, code, language=dace.dtypes.Language.Python) if vector_length > 1: compute_unroll_entry, compute_unroll_exit = compute_state.add_map( compute_state.label + "_unroll", {"i_unroll": "0:{}".format(vector_length)}, schedule=dace.ScheduleType.FPGA_Device, unroll=True) # Connect the three nested states nested_sdfg.add_edge(shift_state, update_state, dace.sdfg.InterstateEdge()) nested_sdfg.add_edge(update_state, compute_state, dace.sdfg.InterstateEdge()) # First, grab scalar variables for scalar, scalar_type in scalars.items(): nested_sdfg.add_symbol(scalar, scalar_type) for (field_name, size), init_size in zip(buffer_sizes.items(), init_sizes): data_name = field_to_data[field_name] connector = field_to_memlet[field_name].dst_conn # Outer memory read stream_name_outer = connector stream_name_inner = field_name + "_in" stream_outer = parent_sdfg.arrays[data_name].clone() stream_outer.transient = False sdfg.add_datadesc(stream_name_outer, stream_outer) read_node_outer = state.add_read(stream_name_outer) state.add_memlet_path(read_node_outer, entry, nested_sdfg_tasklet, dst_conn=stream_name_inner, memlet=dace.memlet.Memlet.simple( stream_name_outer, "0", num_accesses=-1)) # Create inner memory pipe stream_inner = stream_outer.clone() nested_sdfg.add_datadesc(stream_name_inner, stream_inner) buffer_name_outer = "{}_{}_buffer".format(node.label, field_name) buffer_name_inner_read = "{}_buffer_in".format(field_name) buffer_name_inner_write = "{}_buffer_out".format(field_name) # Create buffer transient in outer SDFG field_dtype = parent_sdfg.data(data_name).dtype _, desc_outer = sdfg.add_array( buffer_name_outer, (size, ), field_dtype.base_type, storage=dace.dtypes.StorageType.FPGA_Local, transient=True) # Create read and write nodes read_node_outer = state.add_read(buffer_name_outer) write_node_outer = state.add_write(buffer_name_outer) # Outer buffer read state.add_memlet_path(read_node_outer, entry, nested_sdfg_tasklet, dst_conn=buffer_name_inner_read, memlet=dace.memlet.Memlet.simple( buffer_name_outer, "0:{}".format(size), num_accesses=-1)) # Outer buffer write state.add_memlet_path(nested_sdfg_tasklet, exit, write_node_outer, src_conn=buffer_name_inner_write, memlet=dace.memlet.Memlet.simple( write_node_outer.data, "0:{}".format(size), num_accesses=-1)) # Inner copy desc_inner_read = desc_outer.clone() desc_inner_read.transient = False desc_inner_read.name = buffer_name_inner_read desc_inner_write = desc_inner_read.clone() desc_inner_write.name = buffer_name_inner_write nested_sdfg.add_datadesc(buffer_name_inner_read, desc_inner_read) nested_sdfg.add_datadesc(buffer_name_inner_write, desc_inner_write) # Make shift state if necessary if size > 1: shift_read = shift_state.add_read(buffer_name_inner_read) shift_write = shift_state.add_write(buffer_name_inner_write) shift_entry, shift_exit = shift_state.add_map( "shift_{}".format(field_name), { "i_shift": "0:{} - {}".format(size, vector_lengths[field_name]) }, schedule=dace.dtypes.ScheduleType.FPGA_Device, unroll=True) shift_tasklet = shift_state.add_tasklet( "shift_{}".format(field_name), {"{}_shift_in".format(field_name)}, {"{}_shift_out".format(field_name)}, "{field}_shift_out = {field}_shift_in".format( field=field_name)) shift_state.add_memlet_path(shift_read, shift_entry, shift_tasklet, dst_conn=field_name + "_shift_in", memlet=dace.memlet.Memlet.simple( shift_read.data, "i_shift + {}".format( vector_lengths[field_name]), num_accesses=1)) shift_state.add_memlet_path(shift_tasklet, shift_exit, shift_write, src_conn=field_name + "_shift_out", memlet=dace.memlet.Memlet.simple( shift_write.data, "i_shift", num_accesses=1)) # Begin reading according to this field's own buffer size, which is # translated to an index by subtracting it from the maximum buffer # size begin_reading = (init_size_max - init_size) end_reading = ( functools.reduce(operator.mul, shape, 1) / vector_length + init_size_max - init_size) update_read = update_state.add_read(stream_name_inner) update_write = update_state.add_write(buffer_name_inner_write) update_tasklet = update_state.add_tasklet( "read_wavefront", {"wavefront_in"}, {"buffer_out"}, "if {it} >= {begin} and {it} < {end}:\n" "\tbuffer_out = wavefront_in\n".format( it=pipeline.iterator_str(), begin=begin_reading, end=end_reading), language=dace.dtypes.Language.Python) nested_sdfg_tasklet.symbol_mapping[pipeline.iterator_str()] = ( pipeline.iterator_str()) iterator_str = pipeline.iterator_str() if iterator_str not in nested_sdfg.symbols: nested_sdfg.add_symbol(iterator_str, dace.int64) update_state.add_memlet_path(update_read, update_tasklet, memlet=dace.memlet.Memlet.simple( update_read.data, "0", num_accesses=-1), dst_conn="wavefront_in") update_state.add_memlet_path( update_tasklet, update_write, memlet=dace.memlet.Memlet.simple( update_write.data, "{size} - {veclen}:{size}".format( size=size, veclen=vector_lengths[field_name], dynamic=True) if size > 1 else "0"), src_conn="buffer_out") # Make compute state compute_read = compute_state.add_read(buffer_name_inner_read) for relative, offset in zip(buffer_accesses[field_name][0], buffer_accesses[field_name][1]): memlet_name = code_memlet_names[field_name][tuple(relative)] if vector_length > 1: if vector_lengths[field_name] > 1: offset = "{} + i_unroll".format(offset) else: offset = str(offset) path = [compute_read, compute_unroll_entry, compute_tasklet] else: offset = str(offset) path = [compute_read, compute_tasklet] compute_state.add_memlet_path(*path, dst_conn="_" + memlet_name, memlet=dace.memlet.Memlet.simple( compute_read.data, offset, num_accesses=1)) for field_name, offset in node.output_fields.items(): if offset is not None and list(offset) != [0] * len(offset): raise NotImplementedError("Output offsets not implemented") data_name = field_to_data[field_name] # Outer write stream_name_outer = field_name stream_name_inner = field_name + "_out" stream_outer = parent_sdfg.arrays[data_name].clone() stream_outer.transient = False try: sdfg.add_datadesc(stream_name_outer, stream_outer) except NameError: # Already an input parent_sdfg.arrays[data_name].access = ( dace.AccessType.ReadWrite) write_node_outer = state.add_write(stream_name_outer) state.add_memlet_path(nested_sdfg_tasklet, exit, write_node_outer, src_conn=stream_name_inner, memlet=dace.memlet.Memlet.simple( stream_name_outer, "0", num_accesses=-1)) # Create inner stream stream_inner = stream_outer.clone() nested_sdfg.add_datadesc(stream_name_inner, stream_inner) # Inner write write_node_inner = compute_state.add_write(stream_name_inner) # Intermediate buffer, mostly relevant for vectorization output_buffer_name = field_name + "_output_buffer" nested_sdfg.add_array(output_buffer_name, (vector_length, ), stream_inner.dtype.base_type, storage=dace.StorageType.FPGA_Registers, transient=True) output_buffer = compute_state.add_access(output_buffer_name) # Condition write tasklet output_tasklet = compute_state.add_tasklet( field_name + "_conditional_write", {"_{}".format(output_buffer_name)}, {"_{}".format(stream_name_inner)}, (write_condition + "_{} = _{}".format(stream_name_inner, output_buffer_name))) # If vectorized, we need to pass through the unrolled scope if vector_length > 1: compute_state.add_memlet_path( compute_tasklet, compute_unroll_exit, output_buffer, src_conn=field_name + "_inner_out", memlet=dace.memlet.Memlet.simple(output_buffer_name, "i_unroll", num_accesses=1)) else: compute_state.add_memlet_path( compute_tasklet, output_buffer, src_conn=field_name + "_inner_out", memlet=dace.memlet.Memlet.simple(output_buffer_name, "0", num_accesses=1)) # Final memlet to the output compute_state.add_memlet_path( output_buffer, output_tasklet, dst_conn="_{}".format(output_buffer_name), memlet=dace.Memlet.simple(output_buffer.data, "0:{}".format(vector_length))) compute_state.add_memlet_path( output_tasklet, write_node_inner, src_conn="_{}".format(stream_name_inner), memlet=dace.memlet.Memlet.simple(write_node_inner.data, "0", num_accesses=-1)) sdfg.parent = parent_state sdfg._parent_sdfg = parent_sdfg # TODO: this should not be necessary return sdfg
47.326047
80
0.50739
4a24e979607bb713cd05fc1b119ce53eef18f604
4,682
py
Python
homeassistant/components/deluge/sensor.py
domwillcode/home-assistant
f170c80bea70c939c098b5c88320a1c789858958
[ "Apache-2.0" ]
6
2020-07-18T16:33:25.000Z
2021-09-26T09:52:04.000Z
homeassistant/components/deluge/sensor.py
domwillcode/home-assistant
f170c80bea70c939c098b5c88320a1c789858958
[ "Apache-2.0" ]
47
2020-07-23T07:13:11.000Z
2022-03-31T06:01:46.000Z
homeassistant/components/deluge/sensor.py
klauern/home-assistant-core
c18ba6aec0627e6afb6442c678edb5ff2bb17db6
[ "Apache-2.0" ]
5
2020-03-29T00:29:13.000Z
2021-09-06T20:58:40.000Z
"""Support for monitoring the Deluge BitTorrent client API.""" import logging from deluge_client import DelugeRPCClient, FailedToReconnectException import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import ( CONF_HOST, CONF_MONITORED_VARIABLES, CONF_NAME, CONF_PASSWORD, CONF_PORT, CONF_USERNAME, DATA_RATE_KILOBYTES_PER_SECOND, STATE_IDLE, ) from homeassistant.exceptions import PlatformNotReady import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity import Entity _LOGGER = logging.getLogger(__name__) _THROTTLED_REFRESH = None DEFAULT_NAME = "Deluge" DEFAULT_PORT = 58846 DHT_UPLOAD = 1000 DHT_DOWNLOAD = 1000 SENSOR_TYPES = { "current_status": ["Status", None], "download_speed": ["Down Speed", DATA_RATE_KILOBYTES_PER_SECOND], "upload_speed": ["Up Speed", DATA_RATE_KILOBYTES_PER_SECOND], } PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Required(CONF_HOST): cv.string, vol.Required(CONF_PASSWORD): cv.string, vol.Optional(CONF_PORT, default=DEFAULT_PORT): cv.port, vol.Required(CONF_USERNAME): cv.string, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_MONITORED_VARIABLES, default=[]): vol.All( cv.ensure_list, [vol.In(SENSOR_TYPES)] ), } ) def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the Deluge sensors.""" name = config[CONF_NAME] host = config[CONF_HOST] username = config[CONF_USERNAME] password = config[CONF_PASSWORD] port = config[CONF_PORT] deluge_api = DelugeRPCClient(host, port, username, password) try: deluge_api.connect() except ConnectionRefusedError: _LOGGER.error("Connection to Deluge Daemon failed") raise PlatformNotReady dev = [] for variable in config[CONF_MONITORED_VARIABLES]: dev.append(DelugeSensor(variable, deluge_api, name)) add_entities(dev) class DelugeSensor(Entity): """Representation of a Deluge sensor.""" def __init__(self, sensor_type, deluge_client, client_name): """Initialize the sensor.""" self._name = SENSOR_TYPES[sensor_type][0] self.client = deluge_client self.type = sensor_type self.client_name = client_name self._state = None self._unit_of_measurement = SENSOR_TYPES[sensor_type][1] self.data = None self._available = False @property def name(self): """Return the name of the sensor.""" return f"{self.client_name} {self._name}" @property def state(self): """Return the state of the sensor.""" return self._state @property def available(self): """Return true if device is available.""" return self._available @property def unit_of_measurement(self): """Return the unit of measurement of this entity, if any.""" return self._unit_of_measurement def update(self): """Get the latest data from Deluge and updates the state.""" try: self.data = self.client.call( "core.get_session_status", [ "upload_rate", "download_rate", "dht_upload_rate", "dht_download_rate", ], ) self._available = True except FailedToReconnectException: _LOGGER.error("Connection to Deluge Daemon Lost") self._available = False return upload = self.data[b"upload_rate"] - self.data[b"dht_upload_rate"] download = self.data[b"download_rate"] - self.data[b"dht_download_rate"] if self.type == "current_status": if self.data: if upload > 0 and download > 0: self._state = "Up/Down" elif upload > 0 and download == 0: self._state = "Seeding" elif upload == 0 and download > 0: self._state = "Downloading" else: self._state = STATE_IDLE else: self._state = None if self.data: if self.type == "download_speed": kb_spd = float(download) kb_spd = kb_spd / 1024 self._state = round(kb_spd, 2 if kb_spd < 0.1 else 1) elif self.type == "upload_speed": kb_spd = float(upload) kb_spd = kb_spd / 1024 self._state = round(kb_spd, 2 if kb_spd < 0.1 else 1)
31.422819
80
0.618966
4a24ea186e9967618d4d5543ceeb82aa5e761f9f
2,265
py
Python
ginga/misc/Future.py
kyraikeda/ginga
e0ce979de4a87e12ba7a90eec0517a0be05d14bc
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
76
2015-01-05T14:46:14.000Z
2022-03-23T04:10:54.000Z
ginga/misc/Future.py
kyraikeda/ginga
e0ce979de4a87e12ba7a90eec0517a0be05d14bc
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
858
2015-01-17T01:55:12.000Z
2022-03-08T20:20:31.000Z
ginga/misc/Future.py
kyraikeda/ginga
e0ce979de4a87e12ba7a90eec0517a0be05d14bc
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
60
2015-01-14T21:59:07.000Z
2022-02-13T03:38:49.000Z
# # Future.py -- implementation of a computation placeholder object # # This is open-source software licensed under a BSD license. # Please see the file LICENSE.txt for details. # # TODO: python finally has something like this. Use it instead? # import threading from . import Callback class TimeoutError(Exception): pass class Future(Callback.Callbacks): def __init__(self, data=None, priority=0): Callback.Callbacks.__init__(self) self.evt = threading.Event() self.res = None # User can attach some arbitrary data if desired self.data = data self.priority = priority self.enable_callback('resolved') # for sorting in PriorityQueues def __lt__(self, other): return self.priority < other.priority def get_data(self): return self.data # TODO: Could add some args type/value, return value validation here def freeze(self, method, *args, **kwdargs): self.method = method self.args = args self.kwdargs = kwdargs def thaw(self, suppress_exception=True): self.evt.clear() if not suppress_exception: res = self.method(*self.args, **self.kwdargs) else: try: res = self.method(*self.args, **self.kwdargs) except Exception as e: res = e self.resolve(res) return res def has_value(self): return self.evt.is_set() def resolve(self, value): self.res = value self.evt.set() # TODO: need to change callbacks on some custom plugins first #self.make_callback('resolved', value) self.make_callback('resolved') def get_value(self, block=True, timeout=None, suppress_exception=False): if block: self.evt.wait(timeout=timeout) if not self.has_value(): raise TimeoutError("Timed out waiting for value!") if isinstance(self.res, Exception) and (not suppress_exception): raise self.res return self.res def wait(self, timeout=None): self.evt.wait(timeout=timeout) if not self.has_value(): raise TimeoutError("Timed out waiting for value!") return self.res # END
25.738636
76
0.623841
4a24ebc9ca59f2c6871eceff2454a8931d5214f2
15,147
py
Python
lib/datasets/json_dataset_evaluator.py
hp-zhengzy/detectron
b6cc9e2d243f43dacfa7329fb8920076727d9ece
[ "Apache-2.0" ]
null
null
null
lib/datasets/json_dataset_evaluator.py
hp-zhengzy/detectron
b6cc9e2d243f43dacfa7329fb8920076727d9ece
[ "Apache-2.0" ]
null
null
null
lib/datasets/json_dataset_evaluator.py
hp-zhengzy/detectron
b6cc9e2d243f43dacfa7329fb8920076727d9ece
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## """Functions for evaluating results computed for a json dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import json import logging import numpy as np import os import uuid from pycocotools.cocoeval import COCOeval from core.config import cfg from utils.io import save_object import utils.boxes as box_utils logger = logging.getLogger(__name__) def evaluate_masks( json_dataset, all_boxes, all_segms, output_dir, use_salt=True, cleanup=False ): res_file = os.path.join( output_dir, 'segmentations_' + json_dataset.name + '_results' ) if use_salt: res_file += '_{}'.format(str(uuid.uuid4())) res_file += '.json' _write_coco_segms_results_file( json_dataset, all_boxes, all_segms, res_file) # Only do evaluation on non-test sets (annotations are undisclosed on test) if json_dataset.name.find('test') == -1: coco_eval = _do_segmentation_eval(json_dataset, res_file, output_dir) else: coco_eval = None # Optionally cleanup results json file if cleanup: os.remove(res_file) return coco_eval def _write_coco_segms_results_file( json_dataset, all_boxes, all_segms, res_file ): # [{"image_id": 42, # "category_id": 18, # "segmentation": [...], # "score": 0.236}, ...] results = [] for cls_ind, cls in enumerate(json_dataset.classes): if cls == '__background__': continue if cls_ind >= len(all_boxes): break cat_id = json_dataset.category_to_id_map[cls] results.extend(_coco_segms_results_one_category( json_dataset, all_boxes[cls_ind], all_segms[cls_ind], cat_id)) print(results) logger.info( 'Writing segmentation results json to: {}'.format( os.path.abspath(res_file))) with open(res_file, 'w') as fid: json.dump(results, fid) def _coco_segms_results_one_category(json_dataset, boxes, segms, cat_id): results = [] image_ids = json_dataset.COCO.getImgIds() image_ids.sort() assert len(boxes) == len(image_ids) assert len(segms) == len(image_ids) for i, image_id in enumerate(image_ids): dets = boxes[i] rles = segms[i] if isinstance(dets, list) and len(dets) == 0: continue dets = dets.astype(np.float) scores = dets[:, -1] results.extend( [{'image_id': image_id, 'category_id': cat_id, 'segmentation': rles[k], 'score': scores[k]} for k in range(dets.shape[0])]) return results def _do_segmentation_eval(json_dataset, res_file, output_dir): coco_dt = json_dataset.COCO.loadRes(str(res_file)) coco_eval = COCOeval(json_dataset.COCO, coco_dt, 'segm') coco_eval.evaluate() coco_eval.accumulate() _log_detection_eval_metrics(json_dataset, coco_eval) eval_file = os.path.join(output_dir, 'segmentation_results.pkl') save_object(coco_eval, eval_file) logger.info('Wrote json eval results to: {}'.format(eval_file)) return coco_eval def evaluate_boxes( json_dataset, all_boxes, output_dir, use_salt=True, cleanup=False ): res_file = os.path.join( output_dir, 'bbox_' + json_dataset.name + '_results' ) if use_salt: res_file += '_{}'.format(str(uuid.uuid4())) res_file += '.json' _write_coco_bbox_results_file(json_dataset, all_boxes, res_file) # Only do evaluation on non-test sets (annotations are undisclosed on test) if json_dataset.name.find('test') == -1: coco_eval = _do_detection_eval(json_dataset, res_file, output_dir) else: coco_eval = None # Optionally cleanup results json file if cleanup: os.remove(res_file) return coco_eval def _write_coco_bbox_results_file(json_dataset, all_boxes, res_file): # [{"image_id": 42, # "category_id": 18, # "bbox": [258.15,41.29,348.26,243.78], # "score": 0.236}, ...] results = [] for cls_ind, cls in enumerate(json_dataset.classes): if cls == '__background__': continue if cls_ind >= len(all_boxes): break cat_id = json_dataset.category_to_id_map[cls] results.extend(_coco_bbox_results_one_category( json_dataset, all_boxes[cls_ind], cat_id)) logger.info( 'Writing bbox results json to: {}'.format(os.path.abspath(res_file))) with open(res_file, 'w') as fid: json.dump(results, fid) def _coco_bbox_results_one_category(json_dataset, boxes, cat_id): results = [] image_ids = json_dataset.COCO.getImgIds() image_ids.sort() assert len(boxes) == len(image_ids) for i, image_id in enumerate(image_ids): dets = boxes[i] if isinstance(dets, list) and len(dets) == 0: continue dets = dets.astype(np.float) scores = dets[:, -1] xywh_dets = box_utils.xyxy_to_xywh(dets[:, 0:4]) xs = xywh_dets[:, 0] ys = xywh_dets[:, 1] ws = xywh_dets[:, 2] hs = xywh_dets[:, 3] results.extend( [{'image_id': image_id, 'category_id': cat_id, 'bbox': [xs[k], ys[k], ws[k], hs[k]], 'score': scores[k]} for k in range(dets.shape[0])]) return results def _do_detection_eval(json_dataset, res_file, output_dir): coco_dt = json_dataset.COCO.loadRes(str(res_file)) coco_eval = COCOeval(json_dataset.COCO, coco_dt, 'bbox') coco_eval.evaluate() coco_eval.accumulate() _log_detection_eval_metrics(json_dataset, coco_eval) eval_file = os.path.join(output_dir, 'detection_results.pkl') save_object(coco_eval, eval_file) logger.info('Wrote json eval results to: {}'.format(eval_file)) return coco_eval def _log_detection_eval_metrics(json_dataset, coco_eval): def _get_thr_ind(coco_eval, thr): ind = np.where((coco_eval.params.iouThrs > thr - 1e-5) & (coco_eval.params.iouThrs < thr + 1e-5))[0][0] iou_thr = coco_eval.params.iouThrs[ind] assert np.isclose(iou_thr, thr) return ind IoU_lo_thresh = 0.5 IoU_hi_thresh = 0.95 ind_lo = _get_thr_ind(coco_eval, IoU_lo_thresh) ind_hi = _get_thr_ind(coco_eval, IoU_hi_thresh) # precision has dims (iou, recall, cls, area range, max dets) # area range index 0: all area ranges # max dets index 2: 100 per image precision = coco_eval.eval['precision'][ind_lo:(ind_hi + 1), :, :, 0, 2] ap_default = np.mean(precision[precision > -1]) logger.info( '~~~~ Mean and per-category AP @ IoU=[{:.2f},{:.2f}] ~~~~'.format( IoU_lo_thresh, IoU_hi_thresh)) logger.info('{:.1f}'.format(100 * ap_default)) for cls_ind, cls in enumerate(json_dataset.classes): if cls == '__background__': continue # minus 1 because of __background__ precision = coco_eval.eval['precision'][ ind_lo:(ind_hi + 1), :, cls_ind - 1, 0, 2] ap = np.mean(precision[precision > -1]) logger.info('{:.1f}'.format(100 * ap)) logger.info('~~~~ Summary metrics ~~~~') coco_eval.summarize() def evaluate_box_proposals( json_dataset, roidb, thresholds=None, area='all', limit=None ): """Evaluate detection proposal recall metrics. This function is a much faster alternative to the official COCO API recall evaluation code. However, it produces slightly different results. """ # Record max overlap value for each gt box # Return vector of overlap values areas = { 'all': 0, 'small': 1, 'medium': 2, 'large': 3, '96-128': 4, '128-256': 5, '256-512': 6, '512-inf': 7} area_ranges = [ [0**2, 1e5**2], # all [0**2, 32**2], # small [32**2, 96**2], # medium [96**2, 1e5**2], # large [96**2, 128**2], # 96-128 [128**2, 256**2], # 128-256 [256**2, 512**2], # 256-512 [512**2, 1e5**2]] # 512-inf assert area in areas, 'Unknown area range: {}'.format(area) area_range = area_ranges[areas[area]] gt_overlaps = np.zeros(0) num_pos = 0 for entry in roidb: gt_inds = np.where( (entry['gt_classes'] > 0) & (entry['is_crowd'] == 0))[0] gt_boxes = entry['boxes'][gt_inds, :] gt_areas = entry['seg_areas'][gt_inds] valid_gt_inds = np.where( (gt_areas >= area_range[0]) & (gt_areas <= area_range[1]))[0] gt_boxes = gt_boxes[valid_gt_inds, :] num_pos += len(valid_gt_inds) non_gt_inds = np.where(entry['gt_classes'] == 0)[0] boxes = entry['boxes'][non_gt_inds, :] if boxes.shape[0] == 0: continue if limit is not None and boxes.shape[0] > limit: boxes = boxes[:limit, :] overlaps = box_utils.bbox_overlaps( boxes.astype(dtype=np.float32, copy=False), gt_boxes.astype(dtype=np.float32, copy=False)) _gt_overlaps = np.zeros((gt_boxes.shape[0])) for j in range(min(boxes.shape[0], gt_boxes.shape[0])): # find which proposal box maximally covers each gt box argmax_overlaps = overlaps.argmax(axis=0) # and get the iou amount of coverage for each gt box max_overlaps = overlaps.max(axis=0) # find which gt box is 'best' covered (i.e. 'best' = most iou) gt_ind = max_overlaps.argmax() gt_ovr = max_overlaps.max() assert gt_ovr >= 0 # find the proposal box that covers the best covered gt box box_ind = argmax_overlaps[gt_ind] # record the iou coverage of this gt box _gt_overlaps[j] = overlaps[box_ind, gt_ind] assert _gt_overlaps[j] == gt_ovr # mark the proposal box and the gt box as used overlaps[box_ind, :] = -1 overlaps[:, gt_ind] = -1 # append recorded iou coverage level gt_overlaps = np.hstack((gt_overlaps, _gt_overlaps)) gt_overlaps = np.sort(gt_overlaps) if thresholds is None: step = 0.05 thresholds = np.arange(0.5, 0.95 + 1e-5, step) recalls = np.zeros_like(thresholds) # compute recall for each iou threshold for i, t in enumerate(thresholds): recalls[i] = (gt_overlaps >= t).sum() / float(num_pos) # ar = 2 * np.trapz(recalls, thresholds) ar = recalls.mean() return {'ar': ar, 'recalls': recalls, 'thresholds': thresholds, 'gt_overlaps': gt_overlaps, 'num_pos': num_pos} def evaluate_keypoints( json_dataset, all_boxes, all_keypoints, output_dir, use_salt=True, cleanup=False ): res_file = os.path.join( output_dir, 'keypoints_' + json_dataset.name + '_results' ) if use_salt: res_file += '_{}'.format(str(uuid.uuid4())) res_file += '.json' _write_coco_keypoint_results_file( json_dataset, all_boxes, all_keypoints, res_file) # Only do evaluation on non-test sets (annotations are undisclosed on test) if json_dataset.name.find('test') == -1: coco_eval = _do_keypoint_eval(json_dataset, res_file, output_dir) else: coco_eval = None # Optionally cleanup results json file if cleanup: os.remove(res_file) return coco_eval def _write_coco_keypoint_results_file( json_dataset, all_boxes, all_keypoints, res_file ): results = [] for cls_ind, cls in enumerate(json_dataset.classes): if cls == '__background__': continue if cls_ind >= len(all_keypoints): break logger.info( 'Collecting {} results ({:d}/{:d})'.format( cls, cls_ind, len(all_keypoints) - 1)) cat_id = json_dataset.category_to_id_map[cls] results.extend(_coco_kp_results_one_category( json_dataset, all_boxes[cls_ind], all_keypoints[cls_ind], cat_id)) logger.info( 'Writing keypoint results json to: {}'.format( os.path.abspath(res_file))) with open(res_file, 'w') as fid: json.dump(results, fid) def _coco_kp_results_one_category(json_dataset, boxes, kps, cat_id): results = [] image_ids = json_dataset.COCO.getImgIds() image_ids.sort() assert len(kps) == len(image_ids) assert len(boxes) == len(image_ids) use_box_score = False if cfg.KRCNN.KEYPOINT_CONFIDENCE == 'logit': # This is ugly; see utils.keypoints.heatmap_to_keypoints for the magic # indexes score_index = 2 elif cfg.KRCNN.KEYPOINT_CONFIDENCE == 'prob': score_index = 3 elif cfg.KRCNN.KEYPOINT_CONFIDENCE == 'bbox': use_box_score = True else: raise ValueError( 'KRCNN.KEYPOINT_CONFIDENCE must be "logit", "prob", or "bbox"') for i, image_id in enumerate(image_ids): if len(boxes[i]) == 0: continue kps_dets = kps[i] scores = boxes[i][:, -1].astype(np.float) if len(kps_dets) == 0: continue for j in range(len(kps_dets)): xy = [] kps_score = 0 for k in range(kps_dets[j].shape[1]): xy.append(float(kps_dets[j][0, k])) xy.append(float(kps_dets[j][1, k])) xy.append(1) if not use_box_score: kps_score += kps_dets[j][score_index, k] if use_box_score: kps_score = scores[j] else: kps_score /= kps_dets[j].shape[1] results.extend([{'image_id': image_id, 'category_id': cat_id, 'keypoints': xy, 'score': kps_score}]) return results def _do_keypoint_eval(json_dataset, res_file, output_dir): ann_type = 'keypoints' imgIds = json_dataset.COCO.getImgIds() imgIds.sort() coco_dt = json_dataset.COCO.loadRes(res_file) coco_eval = COCOeval(json_dataset.COCO, coco_dt, ann_type) coco_eval.params.imgIds = imgIds coco_eval.evaluate() coco_eval.accumulate() eval_file = os.path.join(output_dir, 'keypoint_results.pkl') save_object(coco_eval, eval_file) logger.info('Wrote json eval results to: {}'.format(eval_file)) coco_eval.summarize() return coco_eval
35.0625
80
0.618076
4a24eea48c207ee6db0142a26cbf6b883121d36b
4,770
py
Python
tests.py
nicorellius/password-generator
15fff8583f070f1d5ef41524f8776c8c97bf99db
[ "MIT" ]
1
2017-06-11T14:29:54.000Z
2017-06-11T14:29:54.000Z
tests.py
nicorellius/password-generator
15fff8583f070f1d5ef41524f8776c8c97bf99db
[ "MIT" ]
null
null
null
tests.py
nicorellius/password-generator
15fff8583f070f1d5ef41524f8776c8c97bf99db
[ "MIT" ]
null
null
null
""" Write some tests! """ import pytest from click.testing import CliRunner from scripts.generate import generate_secret from scripts.generate import ( _validate_count, _roll_dice, _concatenate_remainder, _prepare_chunks, _chunks ) import config from utils import get_roc # All tests use these... runner = CliRunner() roc = get_roc(config.API_KEY) chars = config.CHARACTERS # ========== simple add function for sanity check ========== def add_function(x): return x + 1 def test_add_function_pass(): assert add_function(4) == 5 # ========================================================== def test__concatenate_remainder_default(): tmp_pw = _concatenate_remainder(roc, chars, 20) assert tmp_pw is not None assert len(tmp_pw) == 20 def test__concatenate_remainder_thirty_chars(): tmp_pw = _concatenate_remainder(roc, chars, 30) assert tmp_pw is not None assert len(tmp_pw) == 30 def test__generate_secret_mixed_default(): result = runner.invoke(generate_secret, ['mixed']) tmp_pw = result.output assert result.exit_code == 0 assert tmp_pw is not None assert len(tmp_pw) == 40 assert len(tmp_pw.split()) == 4 def test__generate_secret_numbers_default(): result = runner.invoke(generate_secret, ['numbers']) tmp_pw = result.output assert result.exit_code == 0 assert tmp_pw is not None assert len(tmp_pw) == 40 assert len(tmp_pw.split()) == 4 def test__generate_secret_default(): result = runner.invoke(generate_secret, ['words']) assert result.exit_code == 0 assert result.output is not None assert len(result.output.split()) == 8 def test__generate_secret_short_list_four_words(): result = runner.invoke(generate_secret, ['words', '--how-many', 1, '--number-rolls', 4, '--number-dice', 4]) assert result.exit_code == 0 assert result.output is not None assert len(result.output.split()) == 7 def test__generate_secret_long_list_five_words(): result = runner.invoke(generate_secret, ['words', '--how-many', 1, '--number-rolls', 5, '--number-dice', 5]) assert result.exit_code == 0 assert result.output is not None assert len(result.output.split()) == 8 def test__generate_secret_short_list_five_words(): result = runner.invoke(generate_secret, ['words', '--how-many', 1, '--number-rolls', 4, '--number-dice', 5]) assert result.exit_code == 0 assert result.output is not None assert len(result.output.split()) == 7 def test__generate_secret_long_list_four_words(): result = runner.invoke(generate_secret, ['words', '--how-many', 1, '--number-rolls', 5, '--number-dice', 4]) assert result.exit_code == 0 assert result.output is not None assert len(result.output.split()) == 8 def test__roll_dice_is_list(): r5 = _roll_dice() r4 = _roll_dice() # Test if roll result type is a list assert type(r5) is list assert type(r4) is list # Test for emptiness of various lists assert not [] is True # This one is weird and confusing assert not [] assert [1, 2, 3, 4, 5] assert r5, r4 # @pytest.mark.parametrize('execution_number', range(10)) # def test__roll_dice(execution_number): # # r = _roll_dice() # total = sum(r) # # assert total >= 25 # # # This test will fail ~7% of the time, so it's considered brittle # for i in {1, 2, 3, 4, 5, 6}: # assert i in r def test__roll_dice(): r = _roll_dice() total = sum(r) assert total >= 25 assert 1 or 2 or 3 or 4 or 5 or 6 in r def test__chunks(): inlist = [1, 2, 3, 4, 5] results = _chunks(inlist, 1) assert results is not None def test__prepare_chunks_four(): result = _prepare_chunks(4, 4) for i in result: assert len(i) == 4 def test__prepare_chunks_five(): result = _prepare_chunks(5, 5) for i in result: assert len(i) == 5 def test__validate_count(): v1 = 4 v2 = 5 c1 = _validate_count(v1) c2 = _validate_count(v2) assert c1 == 4 assert c2 == 5 def test__validate_count_throws_correct_exception(): with pytest.raises(Exception): v3 = 6 _validate_count(v3)
23.15534
71
0.578826
4a24eee501abc6d0e1697fdbaf9bb26cb1d15319
5,420
py
Python
tensorflow/contrib/model_pruning/python/layers/layers_test.py
uve/tensorflow
e08079463bf43e5963acc41da1f57e95603f8080
[ "Apache-2.0" ]
null
null
null
tensorflow/contrib/model_pruning/python/layers/layers_test.py
uve/tensorflow
e08079463bf43e5963acc41da1f57e95603f8080
[ "Apache-2.0" ]
null
null
null
tensorflow/contrib/model_pruning/python/layers/layers_test.py
uve/tensorflow
e08079463bf43e5963acc41da1f57e95603f8080
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for imagingvision.intelligence.tensorflow.model_pruning.layers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.model_pruning.python.layers import core_layers from tensorflow.contrib.model_pruning.python.layers import layers from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.platform import test class MaskedConvolutionLayerTest(test.TestCase): def setUp(self): super(MaskedConvolutionLayerTest, self).setUp() self.height, self.width = 7, 9 def testInvalidRank3(self): input_tensor = array_ops.ones((self.height, self.width, 3)) with self.assertRaisesRegexp(ValueError, 'rank'): layers.masked_conv2d(input_tensor, 32, 3) def testInvalidRank5(self): input_tensor = array_ops.ones((8, 8, self.height, self.width, 3)) with self.assertRaisesRegexp(ValueError, 'rank'): layers.masked_conv2d(input_tensor, 32, 3) def testSingleConvMaskAdded(self): kernel_size = 3 input_depth, output_depth = 8, 32 input_tensor = array_ops.ones((8, self.height, self.width, input_depth)) layers.masked_conv2d(input_tensor, output_depth, kernel_size) masks = ops.get_collection(core_layers.MASK_COLLECTION) self.assertEqual(len(masks), 1) self.assertListEqual(masks[0].get_shape().as_list(), [kernel_size, kernel_size, input_depth, output_depth]) masked_weight = ops.get_collection(core_layers.MASKED_WEIGHT_COLLECTION) self.assertEqual(len(masked_weight), 1) self.assertListEqual(masked_weight[0].get_shape().as_list(), [kernel_size, kernel_size, input_depth, output_depth]) def testMultipleConvMaskAdded(self): number_of_layers = 5 kernel_size = 3 base_depth = 4 depth_step = 7 input_tensor = array_ops.ones((8, self.height, self.width, base_depth)) top_layer = input_tensor for ix in range(number_of_layers): top_layer = layers.masked_conv2d(top_layer, base_depth + (ix + 1) * depth_step, kernel_size) masks = ops.get_collection(core_layers.MASK_COLLECTION) self.assertEqual(len(masks), number_of_layers) for ix in range(number_of_layers): self.assertListEqual(masks[ix].get_shape().as_list(), [ kernel_size, kernel_size, base_depth + ix * depth_step, base_depth + (ix + 1) * depth_step ]) masked_weight = ops.get_collection(core_layers.MASKED_WEIGHT_COLLECTION) self.assertEqual(len(masked_weight), number_of_layers) for ix in range(number_of_layers): self.assertListEqual(masked_weight[ix].get_shape().as_list(), [ kernel_size, kernel_size, base_depth + ix * depth_step, base_depth + (ix + 1) * depth_step ]) class MaskedFullyConnectedLayerTest(test.TestCase): def testSingleFCMaskAdded(self): input_depth, output_depth = 8, 32 input_tensor = array_ops.ones((5, input_depth)) layers.masked_fully_connected(input_tensor, output_depth) masks = ops.get_collection(core_layers.MASK_COLLECTION) self.assertEqual(len(masks), 1) self.assertListEqual(masks[0].get_shape().as_list(), [input_depth, output_depth]) masked_weight = ops.get_collection(core_layers.MASKED_WEIGHT_COLLECTION) self.assertEqual(len(masked_weight), 1) self.assertListEqual(masked_weight[0].get_shape().as_list(), [input_depth, output_depth]) def testMultipleConvMaskAdded(self): number_of_layers = 5 base_depth = 4 depth_step = 7 input_tensor = array_ops.ones((8, base_depth)) top_layer = input_tensor for ix in range(number_of_layers): top_layer = layers.masked_fully_connected(top_layer, base_depth + (ix + 1) * depth_step) masks = ops.get_collection(core_layers.MASK_COLLECTION) self.assertEqual(len(masks), number_of_layers) for ix in range(number_of_layers): self.assertListEqual(masks[ix].get_shape().as_list(), [ base_depth + ix * depth_step, base_depth + (ix + 1) * depth_step ]) masked_weight = ops.get_collection(core_layers.MASKED_WEIGHT_COLLECTION) self.assertEqual(len(masked_weight), number_of_layers) for ix in range(number_of_layers): self.assertListEqual(masked_weight[ix].get_shape().as_list(), [ base_depth + ix * depth_step, base_depth + (ix + 1) * depth_step ]) if __name__ == '__main__': test.main()
38.714286
81
0.684502
4a24ef2e858b4c420e0ab165bdcf7645e7a1697f
2,175
py
Python
tests/entry_point_test.py
elias-1/NiftyNet
05cd2ffbff5043d9a40b524a6d72f6bd5cd072d2
[ "Apache-2.0" ]
1
2018-02-24T12:43:53.000Z
2018-02-24T12:43:53.000Z
tests/entry_point_test.py
elias-1/NiftyNet
05cd2ffbff5043d9a40b524a6d72f6bd5cd072d2
[ "Apache-2.0" ]
null
null
null
tests/entry_point_test.py
elias-1/NiftyNet
05cd2ffbff5043d9a40b524a6d72f6bd5cd072d2
[ "Apache-2.0" ]
1
2018-02-24T12:43:40.000Z
2018-02-24T12:43:40.000Z
# -*- coding: utf-8 -*- from __future__ import absolute_import, print_function import os import sys import tensorflow as tf import net_autoencoder import net_gan import net_regress import net_run import net_segment class EntryPointTest(tf.test.TestCase): def test_wrong_app(self): sys.argv = ['', 'train', '-a', 'foo', '-c', os.path.join('config', 'default_segmentation.ini')] with self.assertRaisesRegexp(ValueError, 'module'): net_run.main() sys.argv = ['', 'train', '-c', os.path.join('config', 'default_segmentation.ini')] with self.assertRaisesRegexp(ValueError, 'module'): net_run.main() def test_wrong_config(self): sys.argv = ['', 'train', '-a', 'net_segment', '-c', os.path.join('foo', 'default_segmentation.ini')] with self.assertRaisesRegexp(IOError, ''): net_run.main() sys.argv = ['', 'train', '-a', 'net_segment'] with self.assertRaisesRegexp(IOError, ''): net_run.main() def test_no_action(self): sys.argv = ['', '-a', 'net_segment', '-c', os.path.join('config', 'default_segmentation.ini')] with self.assertRaisesRegexp(SystemExit, ''): net_run.main() def test_wrong_param(self): sys.argv = ['', '-a', 'net_segment', '-c', os.path.join('config', 'default_segmentation.ini'), '--foo=bar'] with self.assertRaisesRegexp(SystemExit, ''): net_run.main() def test_empty(self): with self.assertRaisesRegexp(SystemExit, ''): net_run.main() with self.assertRaisesRegexp(SystemExit, ''): net_gan.main() with self.assertRaisesRegexp(SystemExit, ''): net_segment.main() with self.assertRaisesRegexp(SystemExit, ''): net_regress.main() with self.assertRaisesRegexp(SystemExit, ''): net_autoencoder.main() if __name__ == "__main__": tf.test.main()
30.633803
77
0.551724
4a24f0c63e218f563222e8f8a9b5c7688f728ba8
1,209
py
Python
code/run_models.py
mcallaghan/cc-topography
0a48cc7ef19013076aceba7195a9375e499cbf6e
[ "MIT" ]
5
2020-01-28T13:09:21.000Z
2022-01-12T15:43:02.000Z
code/run_models.py
xueke-li/cc-topography
0a48cc7ef19013076aceba7195a9375e499cbf6e
[ "MIT" ]
null
null
null
code/run_models.py
xueke-li/cc-topography
0a48cc7ef19013076aceba7195a9375e499cbf6e
[ "MIT" ]
7
2020-01-27T17:43:33.000Z
2022-02-20T11:46:16.000Z
import sys, os, django sys.path.append('/home/galm/software/django/tmv/BasicBrowser/') os.environ.setdefault("DJANGO_SETTINGS_MODULE", "BasicBrowser.settings") django.setup() from scoping.models import * from tmv_app.models import * from tmv_app.tasks import * sw = set([]) sw.add('elsevier') sw.add('rights') sw.add('reserved') sw.add('john') sw.add('wiley') sw.add('sons') sw.add('copyright') q = Query.objects.get(pk=6187) for m in ["NM","LD"]: for a in [0.01,0.05,0.1]: for k in [80,90,100,110,120,130,140,150]: if m=="LD": alpha=a*10 else: alpha=a try: stat, created = RunStats.objects.get_or_create( K=k, alpha=alpha, fancy_tokenization=True, max_df=0.9, max_iter=500, method=m, min_freq=50, ngram=1, query=q, ) except: continue if created or stat.status==0: stat.extra_stopwords=list(sw) stat.save() do_nmf(stat.pk)
25.1875
72
0.490488
4a24f214d80f0b166d48e52b9f23a5187b33e525
228
py
Python
accounts/apps.py
ccollado12/Price-Comparison-Group1-BE-1
b257e963ce946303efe6a640fd6d23039d39e34f
[ "MIT" ]
1
2021-11-09T11:20:45.000Z
2021-11-09T11:20:45.000Z
accounts/apps.py
ccollado12/Price-Comparison-Group1-BE-1
b257e963ce946303efe6a640fd6d23039d39e34f
[ "MIT" ]
1
2021-07-22T02:30:03.000Z
2021-07-22T02:30:03.000Z
accounts/apps.py
ccollado12/Price-Comparison-Group1-BE-1
b257e963ce946303efe6a640fd6d23039d39e34f
[ "MIT" ]
4
2021-07-15T14:35:47.000Z
2021-08-14T18:07:14.000Z
from django.apps import AppConfig class AccountsConfig(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'accounts' # Use created signals def ready(self): import accounts.signals
20.727273
56
0.714912
4a24f41c6440042630371ecb46583ce87fe572bc
197
py
Python
car/factories/brand.py
stefangeorg/town-car
81ca81eed8912911527c3cb6dc521d000482b0fd
[ "Apache-2.0" ]
null
null
null
car/factories/brand.py
stefangeorg/town-car
81ca81eed8912911527c3cb6dc521d000482b0fd
[ "Apache-2.0" ]
null
null
null
car/factories/brand.py
stefangeorg/town-car
81ca81eed8912911527c3cb6dc521d000482b0fd
[ "Apache-2.0" ]
null
null
null
import factory from car.models import Brand class BrandFactory(factory.django.DjangoModelFactory): name = factory.Sequence(lambda n: "Model %03d" % n) class Meta: model = Brand
17.909091
55
0.705584
4a24f4279472d48c30df8429861ca338b4fa36ca
15,094
py
Python
src/main/python/lib/default/reconnect.py
emilybache/texttest-runner
2d5c42b8d37699a2cbcb8f19af7c271d6ad1024a
[ "MIT" ]
null
null
null
src/main/python/lib/default/reconnect.py
emilybache/texttest-runner
2d5c42b8d37699a2cbcb8f19af7c271d6ad1024a
[ "MIT" ]
null
null
null
src/main/python/lib/default/reconnect.py
emilybache/texttest-runner
2d5c42b8d37699a2cbcb8f19af7c271d6ad1024a
[ "MIT" ]
null
null
null
import os, shutil, plugins, operator, logging, time, datetime from glob import glob from itertools import groupby # Trawl around for a suitable dir to reconnect to if we haven't been told one # A tangle of side-effects: we find the run directory when asked for the extra versions, # (so we can provide further ones accordingly), find the application directory when asked to check sanity # (so we can bail if it's not there) and store in self.reconnDir, ready to provide to the ReconnectTest action class ReconnectConfig: runDirCache = {} datedVersions = set() def __init__(self, optionMap): self.fullRecalculate = optionMap.has_key("reconnfull") self.diag = logging.getLogger("Reconnection") self.reconnectTmpInfo = optionMap.get("reconnect") self.reconnDir = None self.errorMessage = "" def getReconnectAction(self): return ReconnectTest(self.reconnDir, self.fullRecalculate) def cacheRunDir(self, app, runDir, version=""): if version: keys = [ app.fullName() + "." + version ] else: keys = [ app.fullName() ] + app.versions for i in range(len(keys)): subKey = ".".join(keys[:i+1]) if i == len(keys) - 1 or not self.runDirCache.has_key(subKey): self.runDirCache[subKey] = runDir self.diag.info("Caching " + subKey + " = " + runDir) def findRunDir(self, app): return self._findRunDir(repr(app)) def _findRunDir(self, searchKey): self.diag.info("Searching for run directory for " + searchKey) entry = self.runDirCache.get(searchKey) if entry: return entry parts = searchKey.split(".") if len(parts) > 1: return self._findRunDir(".".join(parts[:-1])) def getExtraVersions(self, app, givenExtras): self.diag = logging.getLogger("Reconnection") self.diag.info("Finding reconnect 'extra versions' for " + repr(app) + " given tmp info '" + repr(self.reconnectTmpInfo) + "'") if self.reconnectTmpInfo and os.path.isdir(self.reconnectTmpInfo): # See if this is an explicitly provided run directory dirName = os.path.normpath(self.reconnectTmpInfo) versionLists = self.getVersionListsTopDir(dirName) self.diag.info("Directory has version lists " + repr(versionLists)) if versionLists is not None: return self.getVersionsFromDirs(app, [ dirName ], givenExtras) fetchDir = app.getPreviousWriteDirInfo(self.reconnectTmpInfo) if not os.path.isdir(fetchDir): if fetchDir == self.reconnectTmpInfo or not self.reconnectTmpInfo: self.errorMessage = "Could not find TextTest temporary directory at " + fetchDir else: self.errorMessage = "Could not find TextTest temporary directory for " + \ self.reconnectTmpInfo + " at " + fetchDir return [] self.diag.info("Looking for run directories under " + fetchDir) runDirs = self.getReconnectRunDirs(app, fetchDir) self.diag.info("Found run directories " + repr(runDirs)) if len(runDirs) == 0: self.errorMessage = "Could not find any runs matching " + app.description() + " under " + fetchDir return [] else: return self.getVersionsFromDirs(app, runDirs, givenExtras) def findAppDirUnder(self, app, runDir): # Don't pay attention to dated versions here... appVersions = frozenset(app.versions).difference(self.datedVersions) self.diag.info("Looking for directory with versions " + repr(appVersions)) for f in os.listdir(runDir): versionSet = self.getVersionSetSubDir(f, app.name) if versionSet == appVersions: return os.path.join(runDir, f) def getReconnectRunDirs(self, app, fetchDir): correctNames = sorted(os.listdir(fetchDir)) fullPaths = [ os.path.join(fetchDir, d) for d in correctNames ] return filter(lambda d: self.isRunDirectoryFor(app, d), fullPaths) def getFilter(self): return ReconnectFilter(self.reconnDir) @classmethod def all_perms(cls, items): # Lifted from a standard recipe if len(items) <= 1: yield items else: for perm in cls.all_perms(items[1:]): for i in range(len(perm)+1): yield perm[:i] + items[0:1] + perm[i:] def versionSuffix(self, parts): fullVersion = ".".join(parts) if len(fullVersion) == 0: return "" return "." + fullVersion def isRunDirectoryFor(self, app, d): for permutation in self.all_perms(app.versions): appDirRoot = os.path.join(d, app.name + self.versionSuffix(permutation)) if os.path.isdir(appDirRoot) or len(glob(appDirRoot + ".*")) > 0: return True return False def getVersionListsTopDir(self, fileName): # Show the framework how to find the version list given a file name # If it doesn't match, return None parts = os.path.basename(fileName).split(".") if len(parts) > 2 and parts[0] != "static_gui": # drop the run descriptor at the start and the date/time and pid at the end versionParts = ".".join(parts[1:-2]).split("++") return [ part.split(".") for part in versionParts ] def getVersionListSubDir(self, fileName, stem): # Show the framework how to find the version list given a file name # If it doesn't match, return None parts = fileName.split(".") if stem == parts[0]: # drop the application at the start return parts[1:] def getVersionSetSubDir(self, fileName, stem): vlist = self.getVersionListSubDir(fileName, stem) if vlist is not None: return frozenset(vlist) def getAllVersionLists(self, app, givenExtras, groupDirs): vlists = [] for groupDir in groupDirs: for path in os.listdir(groupDir): fullPath = os.path.join(groupDir, path) if os.path.isdir(fullPath): vlist = self.getVersionListSubDir(path, app.name) if vlist is None: continue self.diag.info("Found list " + repr(vlist)) if givenExtras: vset = frozenset(vlist).difference(givenExtras) vlist = filter(lambda v: v in vset, vlist) if vlist not in vlists: vlists.append(vlist) return vlists def expandExtraVersions(self, extras): expanded = set() for extra in extras: expanded.add(extra) expanded.update(extra.split(".")) return expanded def getVersionsFromDirs(self, app, dirs, givenExtras): versions = [] allGivenExtras = self.expandExtraVersions(givenExtras) self.diag.info("Getting extra versions from directories, versions from config = " + repr(allGivenExtras)) appVersions = frozenset(app.versions) for versionLists, groupDirIter in groupby(dirs, self.getVersionListsTopDir): groupDirs = list(groupDirIter) self.diag.info("Considering version lists " + repr(versionLists) + " with dirs " + repr(groupDirs)) for versionList in self.getAllVersionLists(app, allGivenExtras, groupDirs): version = ".".join(versionList) self.diag.info("Considering version list " + repr(versionList)) versionSet = frozenset(versionList) if len(appVersions.difference(versionSet)) > 0: continue # If the given version isn't included, ignore it extraVersionSet = versionSet.difference(appVersions) # Important to preserve the order of the versions as received extraVersionList = filter(lambda v: v in extraVersionSet, versionList) extraVersion = ".".join(extraVersionList) if len(groupDirs) == 1: if extraVersion: versions.append(extraVersion) self.cacheRunDir(app, groupDirs[0], version) else: self.cacheRunDir(app, groupDirs[0]) else: datedVersionMap = {} for dir in groupDirs: datedVersionMap[os.path.basename(dir).split(".")[-2]] = dir datedVersions = sorted(datedVersionMap.keys(), key=self.dateValue, reverse=True) self.datedVersions.update(datedVersions) self.diag.info("Found candidate dated versions: " + repr(datedVersions)) if not extraVersion: # one of them has to be the main version... mainVersion = datedVersions.pop(0) self.cacheRunDir(app, datedVersionMap.get(mainVersion)) for datedVersion in datedVersions: dir = datedVersionMap.get(datedVersion) if extraVersion: versions.append(extraVersion + "." + datedVersion) self.cacheRunDir(app, dir, version + "." + datedVersion) else: versions.append(datedVersion) if version: self.cacheRunDir(app, dir, version + "." + datedVersion) else: self.cacheRunDir(app, dir, datedVersion) self.diag.info("Extra versions found as " + repr(versions)) return versions @staticmethod def dateValue(version): yearlessDatetime = datetime.datetime.strptime(version, "%d%b%H%M%S") now = datetime.datetime.now() currYearDatetime = yearlessDatetime.replace(year=now.year) if currYearDatetime > now: return currYearDatetime.replace(year=now.year - 1) else: return currYearDatetime def checkSanity(self, app): if self.errorMessage: # We failed already, basically raise plugins.TextTestError, self.errorMessage runDir = self.findRunDir(app) if not runDir: raise plugins.TextTestWarning, "Could not find any runs matching " + app.description() self.diag.info("Found run directory " + repr(runDir)) self.reconnDir = self.findAppDirUnder(app, runDir) self.diag.info("Found application directory " + repr(self.reconnDir)) if not self.reconnDir: raise plugins.TextTestWarning, "Could not find an application directory matching " + app.description() + \ " for the run directory found at " + runDir for datedVersion in self.datedVersions: app.addConfigEntry("unsaveable_version", datedVersion) class ReconnectFilter(plugins.TextFilter): def __init__(self, rootDir): self.rootDir = rootDir def acceptsTestCase(self, test): return os.path.exists(os.path.join(self.rootDir, test.getRelPath())) def acceptsTestSuite(self, suite): return os.path.exists(os.path.join(self.rootDir, suite.getRelPath())) class ReconnectTest(plugins.Action): def __init__(self, rootDirToCopy, fullRecalculate): self.rootDirToCopy = rootDirToCopy self.fullRecalculate = fullRecalculate self.diag = logging.getLogger("Reconnection") def __repr__(self): return "Reconnecting to" def __call__(self, test): newState = self.getReconnectState(test) self.describe(test, self.getStateText(newState)) if newState: test.changeState(newState) def getReconnectState(self, test): reconnLocation = os.path.join(self.rootDirToCopy, test.getRelPath()) self.diag.info("Reconnecting to test at " + reconnLocation) if os.path.isdir(reconnLocation): return self.getReconnectStateFrom(test, reconnLocation) else: return plugins.Unrunnable(briefText="no results", \ freeText="No file found to load results from under " + reconnLocation) def getStateText(self, state): if state: return " (state " + state.category + ")" else: return " (recomputing)" def getReconnectStateFrom(self, test, location): stateToUse = None stateFile = os.path.join(location, "framework_tmp", "teststate") if os.path.isfile(stateFile): newTmpPath = os.path.dirname(self.rootDirToCopy) loaded, newState = test.getNewState(open(stateFile, "rU"), updatePaths=True, newTmpPath=newTmpPath) self.diag.info("Loaded state file at " + stateFile + " - " + repr(loaded)) if loaded and self.modifyState(test, newState): # if we can't read it, recompute it stateToUse = newState if self.fullRecalculate or not stateToUse: self.copyFiles(test, location) return stateToUse def copyFiles(self, test, reconnLocation): test.makeWriteDirectory() tmpDir = test.getDirectory(temporary=1) self.diag.info("Copying files from " + reconnLocation + " to " + tmpDir) for file in os.listdir(reconnLocation): fullPath = os.path.join(reconnLocation, file) if os.path.isfile(fullPath): targetPath = os.path.join(tmpDir, os.path.basename(fullPath)) try: shutil.copyfile(fullPath, targetPath) except EnvironmentError, e: # File could not be copied, may not have been readable # Write the exception to it instead targetFile = open(targetPath, "w") targetFile.write("Failed to copy file - exception info follows :\n" + str(e) + "\n") targetFile.close() def modifyState(self, test, newState): if self.fullRecalculate: # Only pick up errors here, recalculate the rest. Don't notify until # we're done with recalculation. if newState.hasResults(): # Also pick up execution machines, we can't get them otherwise... test.state.executionHosts = newState.executionHosts return False # don't actually change the state else: newState.lifecycleChange = "" # otherwise it's regarded as complete return True else: return True def setUpApplication(self, app): plugins.log.info("Reconnecting to test results in directory " + self.rootDirToCopy) def setUpSuite(self, suite): self.describe(suite)
46.443077
135
0.59792
4a24f56e1fb3731a1be2f5e878c6b82a8cddc520
2,799
py
Python
lale/lib/rasl/_folds_for_monoid.py
Ingkarat/lale
faded6f80790629cfe216f72f1ceb1fb4f6c70bb
[ "Apache-2.0" ]
null
null
null
lale/lib/rasl/_folds_for_monoid.py
Ingkarat/lale
faded6f80790629cfe216f72f1ceb1fb4f6c70bb
[ "Apache-2.0" ]
null
null
null
lale/lib/rasl/_folds_for_monoid.py
Ingkarat/lale
faded6f80790629cfe216f72f1ceb1fb4f6c70bb
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 IBM Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sklearn.metrics import sklearn.model_selection from sklearn.utils.metaestimators import _safe_split from lale.datasets.data_schemas import add_folds_for_monoid class FoldsForMonoid: def __init__(self, estimator, X, y, cv): self.train_Xs = [] self.train_ys = [] self.test_Xs = [] self.test_ys = [] for split_id, (train, test) in enumerate(cv.split(X, y)): train_X, train_y = _safe_split(estimator, X, y, train) train_X = add_folds_for_monoid(train_X, (split_id, self)) train_y = add_folds_for_monoid(train_y, (split_id, self)) self.train_Xs.append(train_X) self.train_ys.append(train_y) test_X, test_y = _safe_split(estimator, X, y, test, train) test_X = add_folds_for_monoid(test_X, (split_id, self)) test_y = add_folds_for_monoid(test_y, (split_id, self)) self.test_Xs.append(test_X) self.test_ys.append(test_y) self._split2op2lifted = [{} for _ in range(cv.get_n_splits())] def get_lifted(self, split_id, op_id): return self._split2op2lifted[split_id][op_id] def has_lifted(self, split_id, op_id): return op_id in self._split2op2lifted[split_id] def set_lifted(self, split_id, op_id, lifted): self._split2op2lifted[split_id][op_id] = lifted def get_n_splits(self): return len(self.train_Xs) def cross_val_score_for_monoid( estimator, X, y=None, scoring=sklearn.metrics.accuracy_score, cv=5, return_estimators=False, ): if isinstance(cv, int): cv = sklearn.model_selection.StratifiedKFold(cv) folds = FoldsForMonoid(estimator, X, y, cv) estimators = [] cv_results = [] for i in range(folds.get_n_splits()): trained_estimator = estimator.fit(folds.train_Xs[i], folds.train_ys[i]) if return_estimators: estimators.append(trained_estimator) predicted_values = trained_estimator.predict(folds.test_Xs[i]) scoring_result = scoring(folds.test_ys[i], predicted_values) cv_results.append(scoring_result) if return_estimators: return estimators, cv_results return cv_results
36.350649
79
0.689532
4a24f716918cb6215cfc9b7bd23b6225776eedac
38
py
Python
test/movie_test.py
cck325/free-style-project
f09073b0e15bad4e7326803e73306698e09e6fa8
[ "MIT" ]
null
null
null
test/movie_test.py
cck325/free-style-project
f09073b0e15bad4e7326803e73306698e09e6fa8
[ "MIT" ]
null
null
null
test/movie_test.py
cck325/free-style-project
f09073b0e15bad4e7326803e73306698e09e6fa8
[ "MIT" ]
null
null
null
from move import now def test_now()
7.6
20
0.736842
4a24f86cdc2e6e90fedd411d159a3556cef0d220
3,191
py
Python
tests/contrib/decorators/test_decorators.py
yhzqb/kedro
619d7f0ccb51895d3bb43d30e3dee9d4d0cebcab
[ "Apache-2.0" ]
1
2021-11-19T05:36:47.000Z
2021-11-19T05:36:47.000Z
tests/contrib/decorators/test_decorators.py
yhzqb/kedro
619d7f0ccb51895d3bb43d30e3dee9d4d0cebcab
[ "Apache-2.0" ]
null
null
null
tests/contrib/decorators/test_decorators.py
yhzqb/kedro
619d7f0ccb51895d3bb43d30e3dee9d4d0cebcab
[ "Apache-2.0" ]
1
2021-11-19T05:36:49.000Z
2021-11-19T05:36:49.000Z
# Copyright 2018-2019 QuantumBlack Visual Analytics Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND # NONINFRINGEMENT. IN NO EVENT WILL THE LICENSOR OR OTHER CONTRIBUTORS # BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # The QuantumBlack Visual Analytics Limited ("QuantumBlack") name and logo # (either separately or in combination, "QuantumBlack Trademarks") are # trademarks of QuantumBlack. The License does not grant you any right or # license to the QuantumBlack Trademarks. You may not use the QuantumBlack # Trademarks or any confusingly similar mark as a trademark for your product, # or use the QuantumBlack Trademarks in any other manner that might cause # confusion in the marketplace, including but not limited to in advertising, # on websites, or on software. # # See the License for the specific language governing permissions and # limitations under the License. import pandas as pd import pytest from kedro.contrib.decorators import pandas_to_spark, retry, spark_to_pandas from kedro.pipeline import node @pytest.fixture() def pandas_df(): return pd.DataFrame( { "Name": ["Alex", "Bob", "Clarke", "Dave"], "Age": [31, 12, 65, 29], "member": ["y", "n", "y", "n"], } ) @pytest.fixture() def spark_df(pandas_df, spark_session): return spark_session.createDataFrame(pandas_df) @pytest.fixture() def three_arg_node(): return node( lambda arg1, arg2, arg3: [arg1, arg2, arg3], ["input1", "input2", "input3"], ["output1", "output2", "output3"], ) @pytest.fixture() def inputs(pandas_df, spark_df): return {"input1": pandas_df, "input2": spark_df, "input3": pandas_df} def test_pandas_to_spark(three_arg_node, spark_session, pandas_df, inputs): res = three_arg_node.decorate(pandas_to_spark(spark_session)).run(inputs) for output in ["output1", "output2", "output3"]: assert res[output].toPandas().equals(pandas_df) def test_spark_to_pandas(three_arg_node, pandas_df, inputs): res = three_arg_node.decorate(spark_to_pandas()).run(inputs) for output in ["output1", "output2", "output3"]: assert res[output].equals(pandas_df) def test_retry(): def _bigger(obj): obj["value"] += 1 if obj["value"] >= 0: return True raise ValueError("Value less than 0") decorated = node(_bigger, "in", "out").decorate(retry()) with pytest.raises(ValueError, match=r"Value less than 0"): decorated.run({"in": {"value": -3}}) decorated2 = node(_bigger, "in", "out").decorate(retry(n_times=2)) assert decorated2.run({"in": {"value": -3}})
35.065934
77
0.699154
4a24f8cd6acb87c053dffb04f638b8ce5b85d92c
7,334
py
Python
tests/upgrades/test_upgrades.py
martriay/cairo-contracts
6835b57a599f9dc1c2b9648a6ae4c6041bc4a5cc
[ "MIT" ]
12
2022-03-23T18:47:13.000Z
2022-03-26T15:14:36.000Z
tests/upgrades/test_upgrades.py
martriay/cairo-contracts
6835b57a599f9dc1c2b9648a6ae4c6041bc4a5cc
[ "MIT" ]
null
null
null
tests/upgrades/test_upgrades.py
martriay/cairo-contracts
6835b57a599f9dc1c2b9648a6ae4c6041bc4a5cc
[ "MIT" ]
null
null
null
import pytest import asyncio from starkware.starknet.testing.starknet import Starknet from utils import ( Signer, assert_revert, assert_event_emitted, get_contract_def, cached_contract ) # random value VALUE_1 = 123 VALUE_2 = 987 signer = Signer(123456789987654321) @pytest.fixture(scope='module') def event_loop(): return asyncio.new_event_loop() @pytest.fixture(scope='module') def contract_defs(): account_def = get_contract_def('openzeppelin/account/Account.cairo') v1_def = get_contract_def('tests/mocks/upgrades_v1_mock.cairo') v2_def = get_contract_def('tests/mocks/upgrades_v2_mock.cairo') proxy_def = get_contract_def('openzeppelin/upgrades/Proxy.cairo') return account_def, v1_def, v2_def, proxy_def @pytest.fixture(scope='module') async def proxy_init(contract_defs): account_def, dummy_v1_def, dummy_v2_def, proxy_def = contract_defs starknet = await Starknet.empty() account1 = await starknet.deploy( contract_def=account_def, constructor_calldata=[signer.public_key] ) account2 = await starknet.deploy( contract_def=account_def, constructor_calldata=[signer.public_key] ) v1 = await starknet.deploy( contract_def=dummy_v1_def, constructor_calldata=[] ) v2 = await starknet.deploy( contract_def=dummy_v2_def, constructor_calldata=[] ) proxy = await starknet.deploy( contract_def=proxy_def, constructor_calldata=[v1.contract_address] ) return ( starknet.state, account1, account2, v1, v2, proxy ) @pytest.fixture def proxy_factory(contract_defs, proxy_init): account_def, dummy_v1_def, dummy_v2_def, proxy_def = contract_defs state, account1, account2, v1, v2, proxy = proxy_init _state = state.copy() account1 = cached_contract(_state, account_def, account1) account2 = cached_contract(_state, account_def, account2) v1 = cached_contract(_state, dummy_v1_def, v1) v2 = cached_contract(_state, dummy_v2_def, v2) proxy = cached_contract(_state, proxy_def, proxy) return account1, account2, v1, v2, proxy @pytest.fixture async def after_upgrade(proxy_factory): admin, other, v1, v2, proxy = proxy_factory # initialize await signer.send_transaction( admin, proxy.contract_address, 'initializer', [ admin.contract_address ] ) # set value await signer.send_transaction( admin, proxy.contract_address, 'set_value_1', [ VALUE_1 ] ) # upgrade await signer.send_transaction( admin, proxy.contract_address, 'upgrade', [ v2.contract_address ] ) return admin, other, v1, v2, proxy @pytest.mark.asyncio async def test_initializer(proxy_factory): admin, _, _, _, proxy = proxy_factory await signer.send_transaction( admin, proxy.contract_address, 'initializer', [ admin.contract_address ] ) @pytest.mark.asyncio async def test_initializer_already_initialized(proxy_factory): admin, _, _, _, proxy = proxy_factory await signer.send_transaction( admin, proxy.contract_address, 'initializer', [ admin.contract_address ] ) await assert_revert( signer.send_transaction( admin, proxy.contract_address, 'initializer', [ admin.contract_address ] ), reverted_with='Proxy: contract already initialized' ) @pytest.mark.asyncio async def test_upgrade(proxy_factory): admin, _, _, v2, proxy = proxy_factory # initialize implementation await signer.send_transaction( admin, proxy.contract_address, 'initializer', [ admin.contract_address ] ) # set value await signer.send_transaction( admin, proxy.contract_address, 'set_value_1', [ VALUE_1 ] ) # check value execution_info = await signer.send_transaction( admin, proxy.contract_address, 'get_value_1', [] ) assert execution_info.result.response == [VALUE_1, ] # upgrade await signer.send_transaction( admin, proxy.contract_address, 'upgrade', [ v2.contract_address ] ) # check value execution_info = await signer.send_transaction( admin, proxy.contract_address, 'get_value_1', [] ) assert execution_info.result.response == [VALUE_1, ] @pytest.mark.asyncio async def test_upgrade_event(proxy_factory): admin, _, _, v2, proxy = proxy_factory # initialize implementation await signer.send_transaction( admin, proxy.contract_address, 'initializer', [ admin.contract_address ] ) # upgrade tx_exec_info = await signer.send_transaction( admin, proxy.contract_address, 'upgrade', [ v2.contract_address ] ) # check event assert_event_emitted( tx_exec_info, from_address=proxy.contract_address, name='Upgraded', data=[ v2.contract_address ] ) @pytest.mark.asyncio async def test_upgrade_from_non_admin(proxy_factory): admin, non_admin, _, v2, proxy = proxy_factory # initialize implementation await signer.send_transaction( admin, proxy.contract_address, 'initializer', [ admin.contract_address ] ) # upgrade should revert await assert_revert( signer.send_transaction( non_admin, proxy.contract_address, 'upgrade', [ v2.contract_address ] ), reverted_with="Proxy: caller is not admin" ) # Using `after_upgrade` fixture henceforth @pytest.mark.asyncio async def test_implementation_v2(after_upgrade): admin, _, _, v2, proxy = after_upgrade # check implementation address execution_info = await signer.send_transaction( admin, proxy.contract_address, 'get_implementation', [] ) assert execution_info.result.response == [v2.contract_address] # check admin execution_info = await signer.send_transaction( admin, proxy.contract_address, 'get_admin', [] ) assert execution_info.result.response == [admin.contract_address] # check value execution_info = await signer.send_transaction( admin, proxy.contract_address, 'get_value_1', [] ) assert execution_info.result.response == [VALUE_1, ] @pytest.mark.asyncio async def test_set_admin(after_upgrade): admin, new_admin, _, _, proxy = after_upgrade # change admin await signer.send_transaction( admin, proxy.contract_address, 'set_admin', [ new_admin.contract_address ] ) # check admin execution_info = await signer.send_transaction( admin, proxy.contract_address, 'get_admin', [] ) assert execution_info.result.response == [new_admin.contract_address] @pytest.mark.asyncio async def test_set_admin_from_non_admin(after_upgrade): _, non_admin, _, _, proxy = after_upgrade # change admin should revert await assert_revert( signer.send_transaction( non_admin, proxy.contract_address, 'set_admin', [ non_admin.contract_address ] ) )
26.099644
82
0.665394
4a24f9a1563d6252902ec3c44c24d90d680eed64
8,345
py
Python
test/functional/feature_proxy.py
merelcoin/merelcoin
088b1f9f653363238aafc41d4218a3cd0d7ad968
[ "MIT" ]
null
null
null
test/functional/feature_proxy.py
merelcoin/merelcoin
088b1f9f653363238aafc41d4218a3cd0d7ad968
[ "MIT" ]
null
null
null
test/functional/feature_proxy.py
merelcoin/merelcoin
088b1f9f653363238aafc41d4218a3cd0d7ad968
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2015-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test merelcoind with different proxy configuration. Test plan: - Start merelcoind's with different proxy configurations - Use addnode to initiate connections - Verify that proxies are connected to, and the right connection command is given - Proxy configurations to test on merelcoind side: - `-proxy` (proxy everything) - `-onion` (proxy just onions) - `-proxyrandomize` Circuit randomization - Proxy configurations to test on proxy side, - support no authentication (other proxy) - support no authentication + user/pass authentication (Tor) - proxy on IPv6 - Create various proxies (as threads) - Create merelcoinds that connect to them - Manipulate the merelcoinds using addnode (onetry) an observe effects addnode connect to IPv4 addnode connect to IPv6 addnode connect to onion addnode connect to generic DNS name """ import socket import os from test_framework.socks5 import Socks5Configuration, Socks5Command, Socks5Server, AddressType from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( PORT_MIN, PORT_RANGE, assert_equal, ) from test_framework.netutil import test_ipv6_local RANGE_BEGIN = PORT_MIN + 2 * PORT_RANGE # Start after p2p and rpc ports class ProxyTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 4 def setup_nodes(self): self.have_ipv6 = test_ipv6_local() # Create two proxies on different ports # ... one unauthenticated self.conf1 = Socks5Configuration() self.conf1.addr = ('127.0.0.1', RANGE_BEGIN + (os.getpid() % 1000)) self.conf1.unauth = True self.conf1.auth = False # ... one supporting authenticated and unauthenticated (Tor) self.conf2 = Socks5Configuration() self.conf2.addr = ('127.0.0.1', RANGE_BEGIN + 1000 + (os.getpid() % 1000)) self.conf2.unauth = True self.conf2.auth = True if self.have_ipv6: # ... one on IPv6 with similar configuration self.conf3 = Socks5Configuration() self.conf3.af = socket.AF_INET6 self.conf3.addr = ('::1', RANGE_BEGIN + 2000 + (os.getpid() % 1000)) self.conf3.unauth = True self.conf3.auth = True else: self.log.warning("Testing without local IPv6 support") self.serv1 = Socks5Server(self.conf1) self.serv1.start() self.serv2 = Socks5Server(self.conf2) self.serv2.start() if self.have_ipv6: self.serv3 = Socks5Server(self.conf3) self.serv3.start() # Note: proxies are not used to connect to local nodes # this is because the proxy to use is based on CService.GetNetwork(), which return NET_UNROUTABLE for localhost args = [ ['-listen', '-proxy=%s:%i' % (self.conf1.addr),'-proxyrandomize=1'], ['-listen', '-proxy=%s:%i' % (self.conf1.addr),'-onion=%s:%i' % (self.conf2.addr),'-proxyrandomize=0'], ['-listen', '-proxy=%s:%i' % (self.conf2.addr),'-proxyrandomize=1'], [] ] if self.have_ipv6: args[3] = ['-listen', '-proxy=[%s]:%i' % (self.conf3.addr),'-proxyrandomize=0', '-noonion'] self.add_nodes(self.num_nodes, extra_args=args) self.start_nodes() def node_test(self, node, proxies, auth, test_onion=True): rv = [] # Test: outgoing IPv4 connection through node node.addnode("15.61.23.23:1234", "onetry") cmd = proxies[0].queue.get() assert(isinstance(cmd, Socks5Command)) # Note: bitcoind's SOCKS5 implementation only sends atyp DOMAINNAME, even if connecting directly to IPv4/IPv6 assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"15.61.23.23") assert_equal(cmd.port, 1234) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) if self.have_ipv6: # Test: outgoing IPv6 connection through node node.addnode("[1233:3432:2434:2343:3234:2345:6546:4534]:5443", "onetry") cmd = proxies[1].queue.get() assert(isinstance(cmd, Socks5Command)) # Note: bitcoind's SOCKS5 implementation only sends atyp DOMAINNAME, even if connecting directly to IPv4/IPv6 assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"1233:3432:2434:2343:3234:2345:6546:4534") assert_equal(cmd.port, 5443) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) if test_onion: # Test: outgoing onion connection through node node.addnode("bitcoinostk4e4re.onion:9333", "onetry") cmd = proxies[2].queue.get() assert(isinstance(cmd, Socks5Command)) assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"bitcoinostk4e4re.onion") assert_equal(cmd.port, 9333) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) # Test: outgoing DNS name connection through node node.addnode("node.noumenon:9333", "onetry") cmd = proxies[3].queue.get() assert(isinstance(cmd, Socks5Command)) assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"node.noumenon") assert_equal(cmd.port, 9333) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) return rv def run_test(self): # basic -proxy self.node_test(self.nodes[0], [self.serv1, self.serv1, self.serv1, self.serv1], False) # -proxy plus -onion self.node_test(self.nodes[1], [self.serv1, self.serv1, self.serv2, self.serv1], False) # -proxy plus -onion, -proxyrandomize rv = self.node_test(self.nodes[2], [self.serv2, self.serv2, self.serv2, self.serv2], True) # Check that credentials as used for -proxyrandomize connections are unique credentials = set((x.username,x.password) for x in rv) assert_equal(len(credentials), len(rv)) if self.have_ipv6: # proxy on IPv6 localhost self.node_test(self.nodes[3], [self.serv3, self.serv3, self.serv3, self.serv3], False, False) def networks_dict(d): r = {} for x in d['networks']: r[x['name']] = x return r # test RPC getnetworkinfo n0 = networks_dict(self.nodes[0].getnetworkinfo()) for net in ['ipv4','ipv6','onion']: assert_equal(n0[net]['proxy'], '%s:%i' % (self.conf1.addr)) assert_equal(n0[net]['proxy_randomize_credentials'], True) assert_equal(n0['onion']['reachable'], True) n1 = networks_dict(self.nodes[1].getnetworkinfo()) for net in ['ipv4','ipv6']: assert_equal(n1[net]['proxy'], '%s:%i' % (self.conf1.addr)) assert_equal(n1[net]['proxy_randomize_credentials'], False) assert_equal(n1['onion']['proxy'], '%s:%i' % (self.conf2.addr)) assert_equal(n1['onion']['proxy_randomize_credentials'], False) assert_equal(n1['onion']['reachable'], True) n2 = networks_dict(self.nodes[2].getnetworkinfo()) for net in ['ipv4','ipv6','onion']: assert_equal(n2[net]['proxy'], '%s:%i' % (self.conf2.addr)) assert_equal(n2[net]['proxy_randomize_credentials'], True) assert_equal(n2['onion']['reachable'], True) if self.have_ipv6: n3 = networks_dict(self.nodes[3].getnetworkinfo()) for net in ['ipv4','ipv6']: assert_equal(n3[net]['proxy'], '[%s]:%i' % (self.conf3.addr)) assert_equal(n3[net]['proxy_randomize_credentials'], False) assert_equal(n3['onion']['reachable'], False) if __name__ == '__main__': ProxyTest().main()
41.311881
121
0.626123
4a24fbe2dd700a9378c18f31d3c8ca69a55b7ca0
1,911
py
Python
pdfmajor/interpreter/commands/state/PDFGraphicState/__init__.py
asosnovsky/pdfmajor
7e24c64b5b4fdc84c12b2f78dcaab0e1aa07f4ad
[ "MIT" ]
23
2019-01-13T23:32:24.000Z
2021-07-08T04:29:15.000Z
pdfmajor/interpreter/commands/state/PDFGraphicState/__init__.py
asosnovsky/pdfmajor
7e24c64b5b4fdc84c12b2f78dcaab0e1aa07f4ad
[ "MIT" ]
3
2019-08-09T18:42:01.000Z
2019-12-13T15:43:24.000Z
pdfmajor/interpreter/commands/state/PDFGraphicState/__init__.py
asosnovsky/pdfmajor
7e24c64b5b4fdc84c12b2f78dcaab0e1aa07f4ad
[ "MIT" ]
2
2020-01-09T11:18:20.000Z
2020-03-24T06:02:30.000Z
from .PDFColor import PDFColor, PDFColorSpace from .PDFColorSpace import PREDEFINED_COLORSPACE class PDFGraphicState(object): def __init__(self): self.linewidth = 0 self.linecap = None self.linejoin = None self.miterlimit = None self.dash = None self.intent = None self.flatness = None self.scolor:PDFColor = PDFColor(None) self.ncolor:PDFColor = PDFColor(None) self.scolspace:PDFColorSpace = None self.ncolspace:PDFColorSpace = None def set_stroke_color(self, colspace: PDFColorSpace, *values): if colspace is None: colspace = self.scolspace self.scolor = PDFColor(colspace, *values) def set_nostroke_color(self, colspace: PDFColorSpace, *values): if colspace is None: colspace = self.ncolspace self.ncolor = PDFColor(colspace, *values) def copy(self): obj = PDFGraphicState() obj.linewidth = self.linewidth obj.linecap = self.linecap obj.linejoin = self.linejoin obj.miterlimit = self.miterlimit obj.dash = self.dash obj.intent = self.intent obj.flatness = self.flatness obj.scolor = self.scolor.copy() obj.ncolor = self.ncolor.copy() obj.scolspace = self.scolspace obj.ncolspace = self.ncolspace return obj def __repr__(self): return ('<PDFGraphicState linewidth=%r, linecap=%r, linejoin=%r, ' ' miterlimit=%r, dash=%r, intent=%r, flatness=%r, ' ' stroking color=%r, non stroking color=%r' '>' % ( self.linewidth, self.linecap, self.linejoin, self.miterlimit, self.dash, self.intent, self.flatness, str(self.scolor), str(self.ncolor) ) )
34.745455
75
0.579801
4a24fc8cc508928081a834186aa743c80cfd6c9f
864
py
Python
bluesky_queueserver/__init__.py
dmgav/bluesky-queueserver
75b941bb1764f135ac492985b5bb79f673121dec
[ "BSD-3-Clause" ]
8
2020-01-29T23:11:09.000Z
2022-03-31T14:14:21.000Z
bluesky_queueserver/__init__.py
dmgav/bluesky-queueserver
75b941bb1764f135ac492985b5bb79f673121dec
[ "BSD-3-Clause" ]
134
2020-09-01T22:02:39.000Z
2022-03-30T17:56:59.000Z
bluesky_queueserver/__init__.py
dmgav/bluesky-queueserver
75b941bb1764f135ac492985b5bb79f673121dec
[ "BSD-3-Clause" ]
14
2020-09-02T20:36:36.000Z
2021-08-06T16:59:08.000Z
from ._version import get_versions __version__ = get_versions()["version"] del get_versions from .manager.comms import ZMQCommSendAsync, ZMQCommSendThreads, CommTimeoutError # noqa: E402, F401 from .manager.annotation_decorator import parameter_annotation_decorator # noqa: E402, F401 from .manager.output_streaming import ReceiveConsoleOutput, ReceiveConsoleOutputAsync # noqa: E402, F401 from .manager.profile_ops import validate_plan # noqa: E402, F401 from .manager.profile_ops import bind_plan_arguments # noqa: E402, F401 from .manager.profile_ops import construct_parameters # noqa: E402, F401 from .manager.profile_ops import format_text_descriptions # noqa: E402, F401 from .manager.profile_tools import is_re_worker_active # noqa: E402, F401 from .manager.profile_tools import set_re_worker_active, clear_re_worker_active # noqa: E402, F401
50.823529
105
0.820602
4a24fcbb76135a2179b0b04df9a43deb48a09ac2
22,729
py
Python
code/client/munkilib/keychain.py
backwardn/munki
f1b5162841475a9486983faabff22504e14c06ae
[ "Apache-2.0" ]
1
2020-12-17T19:52:42.000Z
2020-12-17T19:52:42.000Z
code/client/munkilib/keychain.py
backwardn/munki
f1b5162841475a9486983faabff22504e14c06ae
[ "Apache-2.0" ]
null
null
null
code/client/munkilib/keychain.py
backwardn/munki
f1b5162841475a9486983faabff22504e14c06ae
[ "Apache-2.0" ]
null
null
null
# encoding: utf-8 # # Copyright 2014-2020 Greg Neagle. # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ keychain Created by Greg Neagle on 2014-06-09. Incorporating work and ideas from Michael Lynn here: https://gist.github.com/pudquick/7704254 and here: https://gist.github.com/pudquick/836a19b5ff17c5b7640d#file-cert_tricks-py """ from __future__ import absolute_import, print_function import base64 import hashlib import os import subprocess from . import display from . import osutils from . import prefs from .wrappers import unicode_or_str DEFAULT_KEYCHAIN_NAME = 'munki.keychain' DEFAULT_KEYCHAIN_PASSWORD = 'munki' KEYCHAIN_DIRECTORY = os.path.join( prefs.pref('ManagedInstallDir'), 'Keychains') def read_file(pathname): '''Return the contents of pathname as a string''' try: fileobj = open(pathname, mode='r') data = fileobj.read() fileobj.close() return data except (OSError, IOError) as err: display.display_error( 'Could not read %s: %s', pathname, err) return '' def write_file(stringdata, pathname): '''Writes stringdata to pathname. Returns the pathname on success, empty string on failure.''' try: fileobject = open(pathname, mode='w') fileobject.write(stringdata) fileobject.close() return pathname except (OSError, IOError) as err: display.display_error( 'Couldn\'t write %s to %s: %s', stringdata, pathname, err) return '' def pem_cert_bytes(cert_path): '''Read in a base64 pem file, return raw bytestring of embedded certificate''' cert_data = read_file(cert_path) if not (('-----BEGIN CERTIFICATE-----' in cert_data) and ('-----END CERTIFICATE-----' in cert_data)): raise Exception('Certificate does not appear to be .pem file') core_data = cert_data.split( '-----BEGIN CERTIFICATE', 1)[-1].replace('\r', '\n').split( '-----\n', 1)[-1].split('\n-----END CERTIFICATE-----', 1)[0] return base64.b64decode(''.join(core_data.split('\n'))) def pem_cert_sha1_digest(cert_path): '''Return SHA1 digest for pem certificate at path''' try: raw_bytes = pem_cert_bytes(cert_path) return hashlib.sha1(raw_bytes).hexdigest().upper() except BaseException as err: display.display_error('Error reading %s: %s' % (cert_path, err)) return None def get_munki_server_cert_info(): '''Attempt to get information we need from Munki's preferences or defaults. Returns a dictionary.''' cert_info = {} # get server CA cert if it exists so we can verify the Munki server cert_info['ca_cert_path'] = None cert_info['ca_dir_path'] = None if prefs.pref('SoftwareRepoCAPath'): ca_path = prefs.pref('SoftwareRepoCAPath') if os.path.isfile(ca_path): cert_info['ca_cert_path'] = ca_path elif os.path.isdir(ca_path): cert_info['ca_dir_path'] = ca_path if prefs.pref('SoftwareRepoCACertificate'): cert_info['ca_cert_path'] = prefs.pref( 'SoftwareRepoCACertificate') if cert_info['ca_cert_path'] is None: ca_cert_path = os.path.join( prefs.pref('ManagedInstallDir'), 'certs', 'ca.pem') if os.path.exists(ca_cert_path): cert_info['ca_cert_path'] = ca_cert_path return cert_info def get_munki_client_cert_info(): '''Attempt to get information we need from Munki's preferences or defaults. Returns a dictionary.''' cert_info = {} cert_info['client_cert_path'] = None cert_info['client_key_path'] = None cert_info['site_urls'] = [] # get client cert if it exists if prefs.pref('UseClientCertificate'): cert_info['client_cert_path'] = ( prefs.pref('ClientCertificatePath') or None) cert_info['client_key_path'] = prefs.pref('ClientKeyPath') or None if not cert_info['client_cert_path']: for name in ['cert.pem', 'client.pem', 'munki.pem']: client_cert_path = os.path.join( prefs.pref('ManagedInstallDir'), 'certs', name) if os.path.exists(client_cert_path): cert_info['client_cert_path'] = client_cert_path break site_urls = [] for key in ['SoftwareRepoURL', 'PackageURL', 'CatalogURL', 'ManifestURL', 'IconURL', 'ClientResourceURL']: url = prefs.pref(key) if url: site_urls.append(url.rstrip('/') + '/') cert_info['site_urls'] = site_urls return cert_info def get_client_cert_common_name(): '''Returns the common name for the client cert, if any''' common_name = None cert_info = get_munki_client_cert_info() client_cert_path = cert_info['client_cert_path'] if client_cert_path and os.path.exists(client_cert_path): cmd = ['/usr/bin/openssl', 'x509', '-noout', '-subject', '-in', client_cert_path] proc = subprocess.Popen(cmd, bufsize=-1, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE) out = proc.communicate()[0].decode("UTF-8") if out: for i in out.split('/'): if i.startswith('CN='): common_name = i[3:].rstrip() return common_name def add_ca_certs_to_system_keychain(cert_info=None): '''Adds any CA certs as trusted root certs to System.keychain''' if not cert_info: cert_info = get_munki_server_cert_info() ca_cert_path = cert_info['ca_cert_path'] ca_dir_path = cert_info['ca_dir_path'] if not ca_cert_path and not ca_dir_path: # no CA certs, so nothing to do display.display_debug2( 'No CA cert info provided, so nothing to add to System keychain.') return else: display.display_debug2('CA cert path: %s', ca_cert_path) display.display_debug2('CA dir path: %s', ca_dir_path) system_keychain = "/Library/Keychains/System.keychain" if not os.path.exists(system_keychain): display.display_warning('%s not found.', system_keychain) return # Add CA certs. security add-trusted-cert does the right thing even if # the cert is already added, so we just do it; checking to see if the # cert is already added is hard. certs_to_add = [] if ca_cert_path: certs_to_add.append(ca_cert_path) if ca_dir_path: # add any pem files in the ca_dir_path directory for item in os.listdir(ca_dir_path): if item.endswith('.pem'): certs_to_add.append(os.path.join(ca_dir_path, item)) for cert in certs_to_add: display.display_debug1('Adding CA cert %s...', cert) try: output = security('add-trusted-cert', '-d', '-k', system_keychain, cert) if output: display.display_debug2(output) except SecurityError as err: display.display_error( 'Could not add CA cert %s into System keychain: %s', cert, err) display.display_detail('System.keychain updated.') def make_client_keychain(cert_info=None): '''Builds a client cert keychain from existing client certs''' if not cert_info: # just grab data from Munki's preferences/defaults cert_info = get_munki_client_cert_info() client_cert_path = cert_info['client_cert_path'] client_key_path = cert_info['client_key_path'] site_urls = cert_info['site_urls'] if not client_cert_path: # no client, so nothing to do display.display_debug1( 'No client cert info provided, ' 'so no client keychain will be created.') return else: display.display_debug1('Client cert path: %s', client_cert_path) display.display_debug1('Client key path: %s', client_key_path) # to do some of the following options correctly, we need to be root # and have root's home. # check to see if we're root if os.geteuid() != 0: display.display_error( 'Can\'t make our client keychain unless we are root!') return # switch HOME if needed to root's home original_home = os.environ.get('HOME') if original_home: os.environ['HOME'] = os.path.expanduser('~root') keychain_pass = ( prefs.pref('KeychainPassword') or DEFAULT_KEYCHAIN_PASSWORD) abs_keychain_path = get_keychain_path() if os.path.exists(abs_keychain_path): os.unlink(abs_keychain_path) if not os.path.exists(os.path.dirname(abs_keychain_path)): os.makedirs(os.path.dirname(abs_keychain_path)) # create a new keychain display.display_debug1('Creating client keychain...') try: output = security('create-keychain', '-p', keychain_pass, abs_keychain_path) if output: display.display_debug2(output) except SecurityError as err: display.display_error( 'Could not create keychain %s: %s', abs_keychain_path, err) if original_home: # switch it back os.environ['HOME'] = original_home return # Ensure the keychain is in the search path and unlocked added_keychain = add_to_keychain_list(abs_keychain_path) unlock_and_set_nonlocking(abs_keychain_path) # Add client cert (and optionally key) client_cert_file = None combined_pem = None if client_key_path: # combine client cert and private key before we import cert_data = read_file(client_cert_path) key_data = read_file(client_key_path) # write the combined data combined_pem = os.path.join(osutils.tmpdir(), 'combined.pem') if write_file(cert_data + key_data, combined_pem): client_cert_file = combined_pem else: display.display_error( 'Could not combine client cert and key for import!') else: client_cert_file = client_cert_path if client_cert_file: # client_cert_file is combined_pem or client_cert_file display.display_debug2('Importing client cert and key...') try: output = security( 'import', client_cert_file, '-A', '-k', abs_keychain_path) if output: display.display_debug2(output) except SecurityError as err: display.display_error( 'Could not import %s: %s', client_cert_file, err) if combined_pem: # we created this; we should clean it up try: os.unlink(combined_pem) except (OSError, IOError): pass id_hash = pem_cert_sha1_digest(client_cert_path) if not id_hash: display.display_error( 'Cannot create keychain identity preference.') else: # set up identity preference(s) linking the identity (cert and key) # to the various urls display.display_debug1('Creating identity preferences...') try: output = security('default-keychain') if output: display.display_debug2('Default keychain is %s', output) # One is defined, remember the path default_keychain = [ x.strip().strip('"') for x in output.split('\n') if x.strip()][0] except SecurityError as err: # error raised if there is no default default_keychain = None # Temporarily assign the default keychain to ours try: output = security( 'default-keychain', '-s', abs_keychain_path) if output: display.display_debug2( 'Attempting to set default keychain to %s resulted in: %s', abs_keychain_path, output) except SecurityError as err: display.display_error( 'Could not set default keychain to %s failed: %s' % (abs_keychain_path, err)) default_keychain = None # Create the identity preferences for url in site_urls: try: display.display_debug2( 'Adding identity preference for %s...' % url) output = security( 'set-identity-preference', '-s', url, '-Z', id_hash, abs_keychain_path) if output: display.display_debug2( 'security set-identity-preference output: ' + output) except SecurityError as err: display.display_error( 'Setting identity preference for %s failed: %s' % (url, err)) if default_keychain: # We originally had a different default, set it back output = security( 'default-keychain', '-s', default_keychain) if output: display.display_debug2( 'Attempting to set default keychain to %s resulted in: %s', default_keychain, output) # we're done, clean up. if added_keychain: remove_from_keychain_list(abs_keychain_path) if original_home: # switch it back os.environ['HOME'] = original_home display.display_info( 'Completed creation of client keychain at %s' % abs_keychain_path) def add_to_keychain_list(keychain_path): '''Ensure the keychain is in the search path. Returns True if we added the keychain to the list.''' added_keychain = False output = security('list-keychains', '-d', 'user') # Split the output and strip it of whitespace and leading/trailing # quotes, the result are absolute paths to keychains # Preserve the order in case we need to append to them search_keychains = [x.strip().strip('"') for x in output.split('\n') if x.strip()] if not keychain_path in search_keychains: # Keychain is not in the search paths display.display_debug2('Adding client keychain to search path...') search_keychains.append(keychain_path) try: output = security( 'list-keychains', '-d', 'user', '-s', *search_keychains) if output: display.display_debug2(output) added_keychain = True except SecurityError as err: display.display_error( 'Could not add keychain %s to keychain list: %s', keychain_path, err) added_keychain = False return added_keychain def remove_from_keychain_list(keychain_path): '''Remove keychain from the list of keychains''' output = security('list-keychains', '-d', 'user') # Split the output and strip it of whitespace and leading/trailing # quotes, the result are absolute paths to keychains # Preserve the order in case we need to append to them search_keychains = [x.strip().strip('"') for x in output.split('\n') if x.strip()] if keychain_path in search_keychains: # Keychain is in the search path display.display_debug1( 'Removing %s from search path...', keychain_path) filtered_keychains = [keychain for keychain in search_keychains if keychain != keychain_path] try: output = security( 'list-keychains', '-d', 'user', '-s', *filtered_keychains) if output: display.display_debug2(output) except SecurityError as err: display.display_error( 'Could not set new keychain list: %s', err) def unlock_and_set_nonlocking(keychain_path): '''Unlocks the keychain and sets it to non-locking''' keychain_pass = ( prefs.pref('KeychainPassword') or DEFAULT_KEYCHAIN_PASSWORD) try: output = security( 'unlock-keychain', '-p', keychain_pass, keychain_path) if output: display.display_debug2(output) except SecurityError as err: # some problem unlocking the keychain. display.display_error( 'Could not unlock %s: %s.', keychain_path, err) # delete it try: os.unlink(keychain_path) except OSError as err: display.display_error( 'Could not remove %s: %s.', keychain_path, err) return try: output = security('set-keychain-settings', keychain_path) if output: display.display_debug2(output) except SecurityError as err: display.display_error( 'Could not set keychain settings for %s: %s', keychain_path, err) def client_certs_exist(): '''Returns True if there a client cert exists that we need to import into a keychain''' cert_info = get_munki_client_cert_info() client_cert_path = cert_info['client_cert_path'] # we must have a client cert; we don't at this stage need # to check for a key return client_cert_path and os.path.exists(client_cert_path) def client_certs_newer_than_keychain(): '''Returns True if we have client certs that are newer than our client keychain, False otherwise''' # pylint: disable=invalid-name cert_info = get_munki_client_cert_info() client_cert_path = cert_info['client_cert_path'] client_key_path = cert_info['client_key_path'] keychain_path = get_keychain_path() if not client_cert_path or not os.path.exists(client_cert_path): return False if not os.path.exists(keychain_path): return False keychain_mod_time = os.stat(keychain_path).st_mtime if os.stat(client_cert_path).st_mtime > keychain_mod_time: return True if client_key_path and os.path.exists(client_key_path): if os.stat(client_key_path).st_mtime > keychain_mod_time: return True return False def debug_output(): '''Debugging output for keychain''' try: display.display_debug1('***Keychain list***') display.display_debug1(security('list-keychains', '-d', 'user')) display.display_debug1('***Default keychain info***') display.display_debug1(security('default-keychain', '-d', 'user')) keychainfile = get_keychain_path() if os.path.exists(keychainfile): display.display_debug1('***Info for %s***' % keychainfile) display.display_debug1( security('show-keychain-info', keychainfile)) except SecurityError as err: display.display_error(unicode_or_str(err)) class SecurityError(Exception): '''An exception class to raise if there is an error running /usr/bin/security''' pass def security(verb_name, *args): '''Runs the security binary with args. Returns stdout. Raises SecurityError for a non-zero return code''' cmd = ['/usr/bin/security', verb_name] + list(args) proc = subprocess.Popen( cmd, shell=False, bufsize=-1, stdout=subprocess.PIPE, stderr=subprocess.PIPE) (output, err) = proc.communicate() if proc.returncode: raise SecurityError('%s: %s' % (proc.returncode, err.decode("UTF-8"))) return (output or err).decode("UTF-8") def get_keychain_path(): '''Returns an absolute path for our keychain''' keychain_name = ( prefs.pref('KeychainName') or DEFAULT_KEYCHAIN_NAME) # If we have an odd path that appears to be all directory and no # file name, revert to default filename if not os.path.basename(keychain_name): keychain_name = DEFAULT_KEYCHAIN_NAME # Check to make sure it's just a simple file name, no directory # information if os.path.dirname(keychain_name): # keychain name should be just the filename, # so we'll drop down to the base name keychain_name = os.path.basename( keychain_name).strip() or DEFAULT_KEYCHAIN_NAME # Correct the filename to include '.keychain' if not already present if not keychain_name.lower().endswith('.keychain'): keychain_name += '.keychain' keychain_path = os.path.realpath( os.path.join(KEYCHAIN_DIRECTORY, keychain_name)) return keychain_path class MunkiKeychain(object): '''Wrapper class for handling the client keychain''' # pylint: disable=too-few-public-methods keychain_path = None added_keychain = False def __init__(self): '''Adds CA certs as trusted to System keychain. Unlocks the munki.keychain if it exists. Makes sure the munki.keychain is in the search list. Creates a new client keychain if needed.''' add_ca_certs_to_system_keychain() self.keychain_path = get_keychain_path() if client_certs_exist() and os.path.exists(self.keychain_path): # we have client certs; we should build a keychain using them try: os.unlink(self.keychain_path) except (OSError, IOError) as err: display.display_error( 'Could not remove pre-existing %s: %s' % (self.keychain_path, err)) if os.path.exists(self.keychain_path): # ensure existing keychain is available for use self.added_keychain = add_to_keychain_list(self.keychain_path) unlock_and_set_nonlocking(self.keychain_path) if not os.path.exists(self.keychain_path): # try making a new keychain make_client_keychain() if os.path.exists(self.keychain_path): self.added_keychain = add_to_keychain_list(self.keychain_path) unlock_and_set_nonlocking(self.keychain_path) if not os.path.exists(self.keychain_path): # give up self.keychain_path = None self.added_keychain = False def __del__(self): '''Remove our keychain from the keychain list if we added it''' if self.added_keychain: remove_from_keychain_list(self.keychain_path) if __name__ == '__main__': print('This is a library of support tools for the Munki Suite.')
38.393581
79
0.63276
4a24fd88ed68405ef7c2fcbe7ba28fab7905b762
9,234
py
Python
mitmproxy/proxy/layer.py
timgates42/mitmproxy
b0a258f236d495efa8f874374dabdb60d5ee3a62
[ "MIT" ]
null
null
null
mitmproxy/proxy/layer.py
timgates42/mitmproxy
b0a258f236d495efa8f874374dabdb60d5ee3a62
[ "MIT" ]
18
2020-12-28T20:12:26.000Z
2022-03-15T20:44:40.000Z
mitmproxy/proxy/layer.py
timgates42/mitmproxy
b0a258f236d495efa8f874374dabdb60d5ee3a62
[ "MIT" ]
null
null
null
""" Base class for protocol layers. """ import collections import textwrap from abc import abstractmethod from typing import Optional, List, ClassVar, Deque, NamedTuple, Generator, Any, TypeVar from mitmproxy.proxy import commands, events from mitmproxy.proxy.commands import Command, Hook from mitmproxy.proxy.context import Connection, Context T = TypeVar('T') CommandGenerator = Generator[Command, Any, T] """ A function annotated with CommandGenerator[bool] may yield commands and ultimately return a boolean value. """ class Paused(NamedTuple): """ State of a layer that's paused because it is waiting for a command reply. """ command: commands.Command generator: CommandGenerator class Layer: """ The base class for all protocol layers. Layers interface with their child layer(s) by calling .handle_event(event), which returns a list (more precisely: a generator) of commands. Most layers only implement ._handle_event, which is called by the default implementation of .handle_event. The default implementation allows layers to emulate blocking code: When ._handle_event yields a command that has its blocking attribute set to True, .handle_event pauses the execution of ._handle_event and waits until it is called with the corresponding CommandReply. All events encountered in the meantime are buffered and replayed after execution is resumed. The result is code that looks like blocking code, but is not blocking: def _handle_event(self, event): err = yield OpenConnection(server) # execution continues here after a connection has been established. """ __last_debug_message: ClassVar[str] = "" context: Context _paused: Optional[Paused] _paused_event_queue: Deque[events.Event] debug: Optional[str] = None """ Enable debug logging by assigning a prefix string for log messages. Different amounts of whitespace for different layers work well. """ def __init__(self, context: Context) -> None: self.context = context self.context.layers.append(self) self._paused = None self._paused_event_queue = collections.deque() show_debug_output = getattr(context.options, "proxy_debug", False) if show_debug_output: # pragma: no cover self.debug = " " * len(context.layers) def __repr__(self): statefun = getattr(self, "state", self._handle_event) state = getattr(statefun, "__name__", "") state = state.replace("state_", "") if state == "_handle_event": state = "" else: state = f"state: {state}" return f"{type(self).__name__}({state})" def __debug(self, message): if len(message) > 512: message = message[:512] + "…" if Layer.__last_debug_message == message: message = message.split("\n", 1)[0].strip() if len(message) > 256: message = message[:256] + "…" else: Layer.__last_debug_message = message return commands.Log( textwrap.indent(message, self.debug), "debug" ) @abstractmethod def _handle_event(self, event: events.Event) -> CommandGenerator[None]: """Handle a proxy server event""" yield from () # pragma: no cover def handle_event(self, event: events.Event) -> CommandGenerator[None]: if self._paused: # did we just receive the reply we were waiting for? pause_finished = ( isinstance(event, events.CommandReply) and event.command is self._paused.command ) if self.debug is not None: yield self.__debug(f"{'>>' if pause_finished else '>!'} {event}") if pause_finished: assert isinstance(event, events.CommandReply) yield from self.__continue(event) else: self._paused_event_queue.append(event) else: if self.debug is not None: yield self.__debug(f">> {event}") command_generator = self._handle_event(event) yield from self.__process(command_generator) def __process(self, command_generator: CommandGenerator, send=None): """ yield all commands from a generator. if a command is blocking, the layer is paused and this function returns before processing any other commands. """ try: command = command_generator.send(send) except StopIteration: return while True: if self.debug is not None: if not isinstance(command, commands.Log): yield self.__debug(f"<< {command}") if command.blocking is True: command.blocking = self # assign to our layer so that higher layers don't block. self._paused = Paused( command, command_generator, ) yield command return else: yield command try: command = next(command_generator) except StopIteration: return def __continue(self, event: events.CommandReply): """continue processing events after being paused""" assert self._paused is not None command_generator = self._paused.generator self._paused = None yield from self.__process(command_generator, event.reply) while not self._paused and self._paused_event_queue: ev = self._paused_event_queue.popleft() if self.debug is not None: yield self.__debug(f"!> {ev}") command_generator = self._handle_event(ev) yield from self.__process(command_generator) mevents = events # alias here because autocomplete above should not have aliased version. class NextLayerHook(Hook): data: "NextLayer" class NextLayer(Layer): layer: Optional[Layer] """The next layer. To be set by an addon.""" events: List[mevents.Event] """All events that happened before a decision was made.""" _ask_on_start: bool def __init__(self, context: Context, ask_on_start: bool = False) -> None: super().__init__(context) self.context.layers.remove(self) self.layer = None self.events = [] self._ask_on_start = ask_on_start self._handle = None def __repr__(self): return f"NextLayer:{repr(self.layer)}" def handle_event(self, event: mevents.Event): if self._handle is not None: yield from self._handle(event) else: yield from super().handle_event(event) def _handle_event(self, event: mevents.Event): self.events.append(event) # We receive new data. Let's find out if we can determine the next layer now? if self._ask_on_start and isinstance(event, events.Start): yield from self._ask() elif isinstance(event, mevents.ConnectionClosed) and event.connection == self.context.client: # If we have not determined the next protocol yet and the client already closes the connection, # we abort everything. yield commands.CloseConnection(self.context.client) elif isinstance(event, mevents.DataReceived): # For now, we only ask if we have received new data to reduce hook noise. yield from self._ask() def _ask(self): """ Manually trigger a next_layer hook. The only use at the moment is to make sure that the top layer is initialized. """ yield NextLayerHook(self) # Has an addon decided on the next layer yet? if self.layer: if self.debug: yield commands.Log(f"{self.debug}[nextlayer] {self.layer!r}", "debug") for e in self.events: yield from self.layer.handle_event(e) self.events.clear() # Why do we need three assignments here? # 1. When this function here is invoked we may have paused events. Those should be # forwarded to the sublayer right away, so we reassign ._handle_event. # 2. This layer is not needed anymore, so we directly reassign .handle_event. # 3. Some layers may however still have a reference to the old .handle_event. # ._handle is just an optimization to reduce the callstack in these cases. self.handle_event = self.layer.handle_event self._handle_event = self.layer._handle_event self._handle = self.layer.handle_event # Utility methods for whoever decides what the next layer is going to be. def data_client(self): return self._data(self.context.client) def data_server(self): return self._data(self.context.server) def _data(self, connection: Connection): data = ( e.data for e in self.events if isinstance(e, mevents.DataReceived) and e.connection == connection ) return b"".join(data)
37.844262
115
0.627897
4a24fe5ce29ebcfb7242f3f39f17e2a209a2ec74
19,475
py
Python
detectron2/layers/deform_conv.py
sm047/detectron2
1036cce320ce0f2adbce7f143566462d3222bd5a
[ "Apache-2.0" ]
5
2020-06-16T11:31:22.000Z
2021-11-08T03:07:47.000Z
detectron2/layers/deform_conv.py
fangchengji/detectron2
1036cce320ce0f2adbce7f143566462d3222bd5a
[ "Apache-2.0" ]
null
null
null
detectron2/layers/deform_conv.py
fangchengji/detectron2
1036cce320ce0f2adbce7f143566462d3222bd5a
[ "Apache-2.0" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import math from functools import lru_cache import torch from torch import nn from torch.autograd import Function from torch.autograd.function import once_differentiable from torch.nn.modules.utils import _pair from detectron2 import _C from .wrappers import _NewEmptyTensorOp from detectron2.layers import Conv2d class _DeformConv(Function): @staticmethod def forward( ctx, input, offset, weight, stride=1, padding=0, dilation=1, groups=1, deformable_groups=1, im2col_step=64, ): if input is not None and input.dim() != 4: raise ValueError( "Expected 4D tensor as input, got {}D tensor instead.".format(input.dim()) ) ctx.stride = _pair(stride) ctx.padding = _pair(padding) ctx.dilation = _pair(dilation) ctx.groups = groups ctx.deformable_groups = deformable_groups ctx.im2col_step = im2col_step ctx.save_for_backward(input, offset, weight) output = input.new_empty( _DeformConv._output_size(input, weight, ctx.padding, ctx.dilation, ctx.stride) ) ctx.bufs_ = [input.new_empty(0), input.new_empty(0)] # columns, ones if not input.is_cuda: raise NotImplementedError("Deformable Conv is not supported on CPUs!") else: cur_im2col_step = _DeformConv._cal_im2col_step(input.shape[0], ctx.im2col_step) assert (input.shape[0] % cur_im2col_step) == 0, "im2col step must divide batchsize" _C.deform_conv_forward( input, weight, offset, output, ctx.bufs_[0], ctx.bufs_[1], weight.size(3), weight.size(2), ctx.stride[1], ctx.stride[0], ctx.padding[1], ctx.padding[0], ctx.dilation[1], ctx.dilation[0], ctx.groups, ctx.deformable_groups, cur_im2col_step, ) return output @staticmethod @once_differentiable def backward(ctx, grad_output): input, offset, weight = ctx.saved_tensors grad_input = grad_offset = grad_weight = None if not grad_output.is_cuda: raise NotImplementedError("Deformable Conv is not supported on CPUs!") else: cur_im2col_step = _DeformConv._cal_im2col_step(input.shape[0], ctx.im2col_step) assert (input.shape[0] % cur_im2col_step) == 0, "im2col step must divide batchsize" if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]: grad_input = torch.zeros_like(input) grad_offset = torch.zeros_like(offset) _C.deform_conv_backward_input( input, offset, grad_output, grad_input, grad_offset, weight, ctx.bufs_[0], weight.size(3), weight.size(2), ctx.stride[1], ctx.stride[0], ctx.padding[1], ctx.padding[0], ctx.dilation[1], ctx.dilation[0], ctx.groups, ctx.deformable_groups, cur_im2col_step, ) if ctx.needs_input_grad[2]: grad_weight = torch.zeros_like(weight) _C.deform_conv_backward_filter( input, offset, grad_output, grad_weight, ctx.bufs_[0], ctx.bufs_[1], weight.size(3), weight.size(2), ctx.stride[1], ctx.stride[0], ctx.padding[1], ctx.padding[0], ctx.dilation[1], ctx.dilation[0], ctx.groups, ctx.deformable_groups, 1, cur_im2col_step, ) return grad_input, grad_offset, grad_weight, None, None, None, None, None, None @staticmethod def _output_size(input, weight, padding, dilation, stride): channels = weight.size(0) output_size = (input.size(0), channels) for d in range(input.dim() - 2): in_size = input.size(d + 2) pad = padding[d] kernel = dilation[d] * (weight.size(d + 2) - 1) + 1 stride_ = stride[d] output_size += ((in_size + (2 * pad) - kernel) // stride_ + 1,) if not all(map(lambda s: s > 0, output_size)): raise ValueError( "convolution input is too small (output would be {})".format( "x".join(map(str, output_size)) ) ) return output_size @staticmethod @lru_cache(maxsize=128) def _cal_im2col_step(input_size, default_size): """ Calculate proper im2col step size, which should be divisible by input_size and not larger than prefer_size. Meanwhile the step size should be as large as possible to be more efficient. So we choose the largest one among all divisors of input_size which are smaller than prefer_size. :param input_size: input batch size . :param default_size: default preferred im2col step size. :return: the largest proper step size. """ if input_size <= default_size: return input_size best_step = 1 for step in range(2, min(int(math.sqrt(input_size)) + 1, default_size)): if input_size % step == 0: if input_size // step <= default_size: return input_size // step best_step = step return best_step class _ModulatedDeformConv(Function): @staticmethod def forward( ctx, input, offset, mask, weight, bias=None, stride=1, padding=0, dilation=1, groups=1, deformable_groups=1, ): ctx.stride = stride ctx.padding = padding ctx.dilation = dilation ctx.groups = groups ctx.deformable_groups = deformable_groups ctx.with_bias = bias is not None if not ctx.with_bias: bias = input.new_empty(1) # fake tensor if not input.is_cuda: raise NotImplementedError("Deformable Conv is not supported on CPUs!") if ( weight.requires_grad or mask.requires_grad or offset.requires_grad or input.requires_grad ): ctx.save_for_backward(input, offset, mask, weight, bias) output = input.new_empty(_ModulatedDeformConv._infer_shape(ctx, input, weight)) ctx._bufs = [input.new_empty(0), input.new_empty(0)] _C.modulated_deform_conv_forward( input, weight, bias, ctx._bufs[0], offset, mask, output, ctx._bufs[1], weight.shape[2], weight.shape[3], ctx.stride, ctx.stride, ctx.padding, ctx.padding, ctx.dilation, ctx.dilation, ctx.groups, ctx.deformable_groups, ctx.with_bias, ) return output @staticmethod @once_differentiable def backward(ctx, grad_output): if not grad_output.is_cuda: raise NotImplementedError("Deformable Conv is not supported on CPUs!") input, offset, mask, weight, bias = ctx.saved_tensors grad_input = torch.zeros_like(input) grad_offset = torch.zeros_like(offset) grad_mask = torch.zeros_like(mask) grad_weight = torch.zeros_like(weight) grad_bias = torch.zeros_like(bias) _C.modulated_deform_conv_backward( input, weight, bias, ctx._bufs[0], offset, mask, ctx._bufs[1], grad_input, grad_weight, grad_bias, grad_offset, grad_mask, grad_output, weight.shape[2], weight.shape[3], ctx.stride, ctx.stride, ctx.padding, ctx.padding, ctx.dilation, ctx.dilation, ctx.groups, ctx.deformable_groups, ctx.with_bias, ) if not ctx.with_bias: grad_bias = None return ( grad_input, grad_offset, grad_mask, grad_weight, grad_bias, None, None, None, None, None, ) @staticmethod def _infer_shape(ctx, input, weight): n = input.size(0) channels_out = weight.size(0) height, width = input.shape[2:4] kernel_h, kernel_w = weight.shape[2:4] height_out = ( height + 2 * ctx.padding - (ctx.dilation * (kernel_h - 1) + 1) ) // ctx.stride + 1 width_out = ( width + 2 * ctx.padding - (ctx.dilation * (kernel_w - 1) + 1) ) // ctx.stride + 1 return n, channels_out, height_out, width_out deform_conv = _DeformConv.apply modulated_deform_conv = _ModulatedDeformConv.apply class DeformConv(nn.Module): def __init__( self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, deformable_groups=1, bias=False, norm=None, activation=None, ): """ Deformable convolution from :paper:`deformconv`. Arguments are similar to :class:`Conv2D`. Extra arguments: Args: deformable_groups (int): number of groups used in deformable convolution. norm (nn.Module, optional): a normalization layer activation (callable(Tensor) -> Tensor): a callable activation function """ super(DeformConv, self).__init__() assert not bias assert in_channels % groups == 0, "in_channels {} cannot be divisible by groups {}".format( in_channels, groups ) assert ( out_channels % groups == 0 ), "out_channels {} cannot be divisible by groups {}".format(out_channels, groups) self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = _pair(kernel_size) self.stride = _pair(stride) self.padding = _pair(padding) self.dilation = _pair(dilation) self.groups = groups self.deformable_groups = deformable_groups self.norm = norm self.activation = activation self.weight = nn.Parameter( torch.Tensor(out_channels, in_channels // self.groups, *self.kernel_size) ) self.bias = None nn.init.kaiming_uniform_(self.weight, nonlinearity="relu") def forward(self, x, offset): if x.numel() == 0: # When input is empty, we want to return a empty tensor with "correct" shape, # So that the following operations will not panic # if they check for the shape of the tensor. # This computes the height and width of the output tensor output_shape = [ (i + 2 * p - (di * (k - 1) + 1)) // s + 1 for i, p, di, k, s in zip( x.shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride ) ] output_shape = [x.shape[0], self.weight.shape[0]] + output_shape return _NewEmptyTensorOp.apply(x, output_shape) x = deform_conv( x, offset, self.weight, self.stride, self.padding, self.dilation, self.groups, self.deformable_groups, ) if self.norm is not None: x = self.norm(x) if self.activation is not None: x = self.activation(x) return x def extra_repr(self): tmpstr = "in_channels=" + str(self.in_channels) tmpstr += ", out_channels=" + str(self.out_channels) tmpstr += ", kernel_size=" + str(self.kernel_size) tmpstr += ", stride=" + str(self.stride) tmpstr += ", padding=" + str(self.padding) tmpstr += ", dilation=" + str(self.dilation) tmpstr += ", groups=" + str(self.groups) tmpstr += ", deformable_groups=" + str(self.deformable_groups) tmpstr += ", bias=False" return tmpstr class ModulatedDeformConv(nn.Module): def __init__( self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, deformable_groups=1, bias=True, norm=None, activation=None, ): """ Modulated deformable convolution from :paper:`deformconv2`. Arguments are similar to :class:`Conv2D`. Extra arguments: Args: deformable_groups (int): number of groups used in deformable convolution. norm (nn.Module, optional): a normalization layer activation (callable(Tensor) -> Tensor): a callable activation function """ super(ModulatedDeformConv, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = _pair(kernel_size) self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups self.deformable_groups = deformable_groups self.with_bias = bias self.norm = norm self.activation = activation self.weight = nn.Parameter( torch.Tensor(out_channels, in_channels // groups, *self.kernel_size) ) if bias: self.bias = nn.Parameter(torch.Tensor(out_channels)) else: self.bias = None nn.init.kaiming_uniform_(self.weight, nonlinearity="relu") if self.bias is not None: nn.init.constant_(self.bias, 0) def forward(self, x, offset, mask): if x.numel() == 0: output_shape = [ (i + 2 * p - (di * (k - 1) + 1)) // s + 1 for i, p, di, k, s in zip( x.shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride ) ] output_shape = [x.shape[0], self.weight.shape[0]] + output_shape return _NewEmptyTensorOp.apply(x, output_shape) x = modulated_deform_conv( x, offset, mask, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups, self.deformable_groups, ) if self.norm is not None: x = self.norm(x) if self.activation is not None: x = self.activation(x) return x def extra_repr(self): tmpstr = "in_channels=" + str(self.in_channels) tmpstr += ", out_channels=" + str(self.out_channels) tmpstr += ", kernel_size=" + str(self.kernel_size) tmpstr += ", stride=" + str(self.stride) tmpstr += ", padding=" + str(self.padding) tmpstr += ", dilation=" + str(self.dilation) tmpstr += ", groups=" + str(self.groups) tmpstr += ", deformable_groups=" + str(self.deformable_groups) tmpstr += ", bias=" + str(self.with_bias) return tmpstr class DFConv2d(nn.Module): """Deformable convolutional layer""" def __init__( self, in_channels, out_channels, with_modulated_dcn=True, kernel_size=3, stride=1, groups=1, dilation=1, deformable_groups=1, bias=False, padding=None ): super(DFConv2d, self).__init__() if isinstance(kernel_size, (list, tuple)): assert isinstance(stride, (list, tuple)) assert isinstance(dilation, (list, tuple)) assert len(kernel_size) == 2 assert len(stride) == 2 assert len(dilation) == 2 padding = ( dilation[0] * (kernel_size[0] - 1) // 2, dilation[1] * (kernel_size[1] - 1) // 2 ) offset_base_channels = kernel_size[0] * kernel_size[1] else: padding = dilation * (kernel_size - 1) // 2 offset_base_channels = kernel_size * kernel_size if with_modulated_dcn: from .deform_conv import ModulatedDeformConv offset_channels = offset_base_channels * 3 # default: 27 conv_block = ModulatedDeformConv else: from .deform_conv import DeformConv offset_channels = offset_base_channels * 2 # default: 18 conv_block = DeformConv self.offset = Conv2d( in_channels, deformable_groups * offset_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=1, dilation=dilation ) for l in [self.offset, ]: nn.init.kaiming_uniform_(l.weight, a=1) torch.nn.init.constant_(l.bias, 0.) self.conv = conv_block( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, deformable_groups=deformable_groups, bias=bias ) self.with_modulated_dcn = with_modulated_dcn self.kernel_size = kernel_size self.stride = stride self.padding = padding self.dilation = dilation self.offset_split = offset_base_channels * deformable_groups * 2 def forward(self, x, return_offset=False): if x.numel() > 0: if not self.with_modulated_dcn: offset_mask = self.offset(x) x = self.conv(x, offset_mask) else: offset_mask = self.offset(x) offset = offset_mask[:, :self.offset_split, :, :] mask = offset_mask[:, self.offset_split:, :, :].sigmoid() x = self.conv(x, offset, mask) if return_offset: return x, offset_mask return x # get output shape output_shape = [ (i + 2 * p - (di * (k - 1) + 1)) // d + 1 for i, p, di, k, d in zip( x.shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride ) ] output_shape = [x.shape[0], self.conv.weight.shape[0]] + output_shape return _NewEmptyTensorOp.apply(x, output_shape)
32.952623
99
0.533248
4a24fedd3f7b0acd3a9708b2fcb6f8b8fba6c72d
81,609
py
Python
src/transformers/modeling_utils.py
katarinaslama/transformers-1
a5a8eeb772b185b0746f3ce9be6ae43181d2ca71
[ "Apache-2.0" ]
3
2020-11-11T14:29:18.000Z
2021-03-07T14:42:33.000Z
src/transformers/modeling_utils.py
katarinaslama/transformers-1
a5a8eeb772b185b0746f3ce9be6ae43181d2ca71
[ "Apache-2.0" ]
1
2021-09-15T09:20:01.000Z
2022-03-02T17:16:01.000Z
src/transformers/modeling_utils.py
katarinaslama/transformers-1
a5a8eeb772b185b0746f3ce9be6ae43181d2ca71
[ "Apache-2.0" ]
1
2020-11-11T14:29:22.000Z
2020-11-11T14:29:22.000Z
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import os import re import warnings from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union import torch from torch import Tensor, device, dtype, nn from torch.nn import CrossEntropyLoss from torch.nn import functional as F from .activations import get_activation from .configuration_utils import PretrainedConfig from .file_utils import ( DUMMY_INPUTS, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, WEIGHTS_NAME, ModelOutput, cached_path, hf_bucket_url, is_remote_url, is_torch_tpu_available, replace_return_docstrings, ) from .generation_utils import GenerationMixin from .utils import logging logger = logging.get_logger(__name__) try: from torch.nn import Identity except ImportError: # Older PyTorch compatibility class Identity(nn.Module): r"""A placeholder identity operator that is argument-insensitive.""" def __init__(self, *args, **kwargs): super().__init__() def forward(self, input): return input def find_pruneable_heads_and_indices( heads: List[int], n_heads: int, head_size: int, already_pruned_heads: Set[int] ) -> Tuple[Set[int], torch.LongTensor]: """ Finds the heads and their indices taking :obj:`already_pruned_heads` into account. Args: heads (:obj:`List[int]`): List of the indices of heads to prune. n_heads (:obj:`int`): The number of heads in the model. head_size (:obj:`int`): The size of each head. already_pruned_heads (:obj:`Set[int]`): A set of already pruned heads. Returns: :obj:`Tuple[Set[int], torch.LongTensor]`: A tuple with the remaining heads and their corresponding indices. """ mask = torch.ones(n_heads, head_size) heads = set(heads) - already_pruned_heads # Convert to set and remove already pruned heads for head in heads: # Compute how many pruned heads are before the head and move the index accordingly head = head - sum(1 if h < head else 0 for h in already_pruned_heads) mask[head] = 0 mask = mask.view(-1).contiguous().eq(1) index: torch.LongTensor = torch.arange(len(mask))[mask].long() return heads, index class ModuleUtilsMixin: """ A few utilities for :obj:`torch.nn.Modules`, to be used as a mixin. """ @staticmethod def _hook_rss_memory_pre_forward(module, *args, **kwargs): try: import psutil except (ImportError): raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.") process = psutil.Process(os.getpid()) mem = process.memory_info() module.mem_rss_pre_forward = mem.rss return None @staticmethod def _hook_rss_memory_post_forward(module, *args, **kwargs): try: import psutil except (ImportError): raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.") process = psutil.Process(os.getpid()) mem = process.memory_info() module.mem_rss_post_forward = mem.rss mem_rss_diff = module.mem_rss_post_forward - module.mem_rss_pre_forward module.mem_rss_diff = mem_rss_diff + (module.mem_rss_diff if hasattr(module, "mem_rss_diff") else 0) return None def add_memory_hooks(self): """ Add a memory hook before and after each sub-module forward pass to record increase in memory consumption. Increase in memory consumption is stored in a :obj:`mem_rss_diff` attribute for each module and can be reset to zero with :obj:`model.reset_memory_hooks_state()`. """ for module in self.modules(): module.register_forward_pre_hook(self._hook_rss_memory_pre_forward) module.register_forward_hook(self._hook_rss_memory_post_forward) self.reset_memory_hooks_state() def reset_memory_hooks_state(self): """ Reset the :obj:`mem_rss_diff` attribute of each module (see :func:`~transformers.modeling_utils.ModuleUtilsMixin.add_memory_hooks`). """ for module in self.modules(): module.mem_rss_diff = 0 module.mem_rss_post_forward = 0 module.mem_rss_pre_forward = 0 @property def device(self) -> device: """ :obj:`torch.device`: The device on which the module is (assuming that all the module parameters are on the same device). """ try: return next(self.parameters()).device except StopIteration: # For nn.DataParallel compatibility in PyTorch 1.5 def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]: tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] return tuples gen = self._named_members(get_members_fn=find_tensor_attributes) first_tuple = next(gen) return first_tuple[1].device @property def dtype(self) -> dtype: """ :obj:`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype). """ try: return next(self.parameters()).dtype except StopIteration: # For nn.DataParallel compatibility in PyTorch 1.5 def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]: tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] return tuples gen = self._named_members(get_members_fn=find_tensor_attributes) first_tuple = next(gen) return first_tuple[1].dtype def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor: """ Invert an attention mask (e.g., switches 0. and 1.). Args: encoder_attention_mask (:obj:`torch.Tensor`): An attention mask. Returns: :obj:`torch.Tensor`: The inverted attention mask. """ if encoder_attention_mask.dim() == 3: encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility if self.dtype == torch.float16: encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e4 elif self.dtype == torch.float32: encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e9 else: raise ValueError( "{} not recognized. `dtype` should be set to either `torch.float32` or `torch.float16`".format( self.dtype ) ) return encoder_extended_attention_mask def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device) -> Tensor: """ Makes broadcastable attention and causal masks so that future and masked tokens are ignored. Arguments: attention_mask (:obj:`torch.Tensor`): Mask with ones indicating tokens to attend to, zeros for tokens to ignore. input_shape (:obj:`Tuple[int]`): The shape of the input to the model. device: (:obj:`torch.device`): The device of the input to the model. Returns: :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`. """ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if attention_mask.dim() == 3: extended_attention_mask = attention_mask[:, None, :, :] elif attention_mask.dim() == 2: # Provided a padding mask of dimensions [batch_size, seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder: batch_size, seq_length = input_shape seq_ids = torch.arange(seq_length, device=device) causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None] # in case past_key_values are used we need to add a prefix ones mask to the causal mask # causal and attention masks must have same type with pytorch version < 1.3 causal_mask = causal_mask.to(attention_mask.dtype) if causal_mask.shape[1] < attention_mask.shape[1]: prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1] causal_mask = torch.cat( [ torch.ones( (batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype ), causal_mask, ], axis=-1, ) extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :] else: extended_attention_mask = attention_mask[:, None, None, :] else: raise ValueError( "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( input_shape, attention_mask.shape ) ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 return extended_attention_mask def get_head_mask( self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False ) -> Tensor: """ Prepare the head mask if needed. Args: head_mask (:obj:`torch.Tensor` with shape :obj:`[num_heads]` or :obj:`[num_hidden_layers x num_heads]`, `optional`): The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard). num_hidden_layers (:obj:`int`): The number of hidden layers in the model. is_attention_chunked: (:obj:`bool`, `optional, defaults to :obj:`False`): Whether or not the attentions scores are computed by chunks or not. Returns: :obj:`torch.Tensor` with shape :obj:`[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with :obj:`[None]` for each layer. """ if head_mask is not None: head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers) if is_attention_chunked is True: head_mask = head_mask.unsqueeze(-1) else: head_mask = [None] * num_hidden_layers return head_mask def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers): """-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]""" if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer assert head_mask.dim() == 5, f"head_mask.dim != 5, instead {head_mask.dim()}" head_mask = head_mask.to(dtype=self.dtype) # switch to float if need + fp16 compatibility return head_mask def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int: """ Get number of (optionally, trainable or non-embeddings) parameters in the module. Args: only_trainable (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to return only the number of trainable parameters exclude_embeddings (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to return only the number of non-embeddings parameters Returns: :obj:`int`: The number of parameters. """ def parameter_filter(x): return (x.requires_grad or not only_trainable) and not ( isinstance(x, torch.nn.Embedding) and exclude_embeddings ) params = filter(parameter_filter, self.parameters()) if only_trainable else self.parameters() return sum(p.numel() for p in params) def estimate_tokens(self, input_dict: Dict[str, Union[torch.Tensor, Any]]) -> int: """ Helper function to estimate the total number of tokens from the model inputs. Args: inputs (:obj:`dict`): The model inputs. Returns: :obj:`int`: The total number of tokens. """ token_inputs = [tensor for key, tensor in input_dict.items() if "input" in key] if token_inputs: return sum([token_input.numel() for token_input in token_inputs]) else: warnings.warn( "Could not estimate the number of tokens of the input, floating-point operations will not be computed" ) return 0 def floating_point_ops( self, input_dict: Dict[str, Union[torch.Tensor, Any]], exclude_embeddings: bool = True ) -> int: """ Get number of (optionally, non-embeddings) floating-point operations for the forward and backward passes of a batch with this transformer model. Default approximation neglects the quadratic dependency on the number of tokens (valid if :obj:`12 * d_model << sequence_length`) as laid out in `this paper <https://arxiv.org/pdf/2001.08361.pdf>`__ section 2.1. Should be overriden for transformers with parameter re-use e.g. Albert or Universal Transformers, or if doing long-range modeling with very high sequence lengths. Args: batch_size (:obj:`int`): The batch size for the forward pass. sequence_length (:obj:`int`): The number of tokens in each line of the batch. exclude_embeddings (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to count embedding and softmax operations. Returns: :obj:`int`: The number of floating-point operations. """ return 6 * self.estimate_tokens(input_dict) * self.num_parameters(exclude_embeddings=exclude_embeddings) class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin): r""" Base class for all models. :class:`~transformers.PreTrainedModel` takes care of storing the configuration of the models and handles methods for loading, downloading and saving models as well as a few methods common to all models to: * resize the input embeddings, * prune heads in the self-attention heads. Class attributes (overridden by derived classes): - **config_class** (:class:`~transformers.PretrainedConfig`) -- A subclass of :class:`~transformers.PretrainedConfig` to use as configuration class for this model architecture. - **load_tf_weights** (:obj:`Callable`) -- A python `method` for loading a TensorFlow checkpoint in a PyTorch model, taking as arguments: - **model** (:class:`~transformers.PreTrainedModel`) -- An instance of the model on which to load the TensorFlow checkpoint. - **config** (:class:`~transformers.PreTrainedConfig`) -- An instance of the configuration associated to the model. - **path** (:obj:`str`) -- A path to the TensorFlow checkpoint. - **base_model_prefix** (:obj:`str`) -- A string indicating the attribute associated to the base model in derived classes of the same architecture adding modules on top of the base model. - **authorized_missing_keys** (:obj:`Optional[List[str]]`) -- A list of re pattern of tensor names to ignore when loading the model (and avoid unnecessary warnings). - **keys_to_never_save** (:obj:`Optional[List[str]]`) -- A list of of tensor names to ignore when saving the model (useful for keys that aren't trained, but which are deterministic) """ config_class = None base_model_prefix = "" authorized_missing_keys = None authorized_unexpected_keys = None keys_to_never_save = None @property def dummy_inputs(self) -> Dict[str, torch.Tensor]: """ :obj:`Dict[str, torch.Tensor]`: Dummy inputs to do a forward pass in the network. """ return {"input_ids": torch.tensor(DUMMY_INPUTS)} def __init__(self, config: PretrainedConfig, *inputs, **kwargs): super().__init__() if not isinstance(config, PretrainedConfig): raise ValueError( "Parameter config in `{}(config)` should be an instance of class `PretrainedConfig`. " "To create a model from a pretrained model use " "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format( self.__class__.__name__, self.__class__.__name__ ) ) # Save config in model self.config = config @property def base_model(self) -> nn.Module: """ :obj:`torch.nn.Module`: The main body of the model. """ return getattr(self, self.base_model_prefix, self) def get_input_embeddings(self) -> nn.Module: """ Returns the model's input embeddings. Returns: :obj:`nn.Module`: A torch module mapping vocabulary to hidden states. """ base_model = getattr(self, self.base_model_prefix, self) if base_model is not self: return base_model.get_input_embeddings() else: raise NotImplementedError def set_input_embeddings(self, value: nn.Module): """ Set model's input embeddings. Args: value (:obj:`nn.Module`): A module mapping vocabulary to hidden states. """ base_model = getattr(self, self.base_model_prefix, self) if base_model is not self: base_model.set_input_embeddings(value) else: raise NotImplementedError def get_output_embeddings(self) -> nn.Module: """ Returns the model's output embeddings. Returns: :obj:`nn.Module`: A torch module mapping hidden states to vocabulary. """ return None # Overwrite for models with output embeddings def tie_weights(self): """ Tie the weights between the input embeddings and the output embeddings. If the :obj:`torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the weights instead. """ output_embeddings = self.get_output_embeddings() if output_embeddings is not None and self.config.tie_word_embeddings: self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings()) if self.config.is_encoder_decoder and self.config.tie_encoder_decoder: self._tie_encoder_decoder_weights(self.encoder, self.decoder, self.base_model_prefix) @staticmethod def _tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str): uninitialized_encoder_weights: List[str] = [] assert decoder.__class__ == encoder.__class__, f"{decoder.__class__} and {encoder.__class__} have to be equal." def tie_encoder_to_decoder_recursively( decoder_pointer: nn.Module, encoder_pointer: nn.Module, module_name: str, uninitialized_encoder_weights: List[str], depth=0, ): assert isinstance(decoder_pointer, nn.Module) and isinstance( encoder_pointer, nn.Module ), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module" if hasattr(decoder_pointer, "weight"): assert hasattr(encoder_pointer, "weight") encoder_pointer.weight = decoder_pointer.weight if hasattr(decoder_pointer, "bias"): assert hasattr(encoder_pointer, "bias") encoder_pointer.bias = decoder_pointer.bias return encoder_modules = encoder_pointer._modules decoder_modules = decoder_pointer._modules if len(decoder_modules) > 0: assert ( len(encoder_modules) > 0 ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}" all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()]) encoder_layer_pos = 0 for name, module in decoder_modules.items(): if name.isdigit(): encoder_name = str(int(name) + encoder_layer_pos) decoder_name = name if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])): # this can happen if the name corresponds to the position in a list module list of layers # in this case the decoder has added a cross-attention that the encoder does not have # thus skip this step and substract one layer pos from encoder encoder_layer_pos -= 1 continue elif name not in encoder_modules: continue elif depth > 500: raise ValueError( "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model." ) else: decoder_name = encoder_name = name tie_encoder_to_decoder_recursively( decoder_modules[decoder_name], encoder_modules[encoder_name], module_name + "/" + name, uninitialized_encoder_weights, depth=depth + 1, ) all_encoder_weights.remove(module_name + "/" + encoder_name) uninitialized_encoder_weights += list(all_encoder_weights) # tie weights recursively tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights) if len(uninitialized_encoder_weights) > 0: logger.warning( f"The following encoder weights were not tied to the decoder {uninitialized_encoder_weights}" ) def _tie_or_clone_weights(self, output_embeddings, input_embeddings): """Tie or clone module weights depending of whether we are using TorchScript or not""" if self.config.torchscript: output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone()) else: output_embeddings.weight = input_embeddings.weight if getattr(output_embeddings, "bias", None) is not None: output_embeddings.bias.data = torch.nn.functional.pad( output_embeddings.bias.data, ( 0, output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0], ), "constant", 0, ) if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"): output_embeddings.out_features = input_embeddings.num_embeddings def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> torch.nn.Embedding: """ Resizes input token embeddings matrix of the model if :obj:`new_num_tokens != config.vocab_size`. Takes care of tying weights embeddings afterwards if the model class has a :obj:`tie_weights()` method. Arguments: new_num_tokens (:obj:`int`, `optional`): The number of new tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end. If not provided or :obj:`None`, just returns a pointer to the input tokens :obj:`torch.nn.Embedding` module of the model wihtout doing anything. Return: :obj:`torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model. """ base_model = getattr(self, self.base_model_prefix, self) # get the base model if needed model_embeds = base_model._resize_token_embeddings(new_num_tokens) if new_num_tokens is None: return model_embeds # Update base model and current model config self.config.vocab_size = new_num_tokens base_model.vocab_size = new_num_tokens # Tie weights again if needed self.tie_weights() return model_embeds def _resize_token_embeddings(self, new_num_tokens): old_embeddings = self.get_input_embeddings() new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens) self.set_input_embeddings(new_embeddings) return self.get_input_embeddings() def _get_resized_embeddings( self, old_embeddings: torch.nn.Embedding, new_num_tokens: Optional[int] = None ) -> torch.nn.Embedding: """ Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end Args: old_embeddings (:obj:`torch.nn.Embedding`): Old embeddings to be resized. new_num_tokens (:obj:`int`, `optional`): New number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end. If not provided or :obj:`None`, just returns a pointer to the input tokens :obj:`torch.nn.Embedding`` module of the model wihtout doing anything. Return: :obj:`torch.nn.Embedding`: Pointer to the resized Embedding Module or the old Embedding Module if :obj:`new_num_tokens` is :obj:`None` """ if new_num_tokens is None: return old_embeddings old_num_tokens, old_embedding_dim = old_embeddings.weight.size() if old_num_tokens == new_num_tokens: return old_embeddings # Build new embeddings new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim) new_embeddings.to(old_embeddings.weight.device) # initialize all new embeddings (in particular added tokens) self._init_weights(new_embeddings) # Copy token embeddings from the previous weights num_tokens_to_copy = min(old_num_tokens, new_num_tokens) new_embeddings.weight.data[:num_tokens_to_copy, :] = old_embeddings.weight.data[:num_tokens_to_copy, :] return new_embeddings def init_weights(self): """ Initializes and prunes weights if needed. """ # Initialize weights self.apply(self._init_weights) # Prune heads if needed if self.config.pruned_heads: self.prune_heads(self.config.pruned_heads) # Tie weights if needed self.tie_weights() def prune_heads(self, heads_to_prune: Dict[int, List[int]]): """ Prunes heads of the base model. Arguments: heads_to_prune (:obj:`Dict[int, List[int]]`): Dictionary with keys being selected layer indices (:obj:`int`) and associated values being the list of heads to prune in said layer (list of :obj:`int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on layer 1 and heads 2 and 3 on layer 2. """ # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads for layer, heads in heads_to_prune.items(): union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads) self.config.pruned_heads[layer] = list(union_heads) # Unfortunately we have to store it as list for JSON self.base_model._prune_heads(heads_to_prune) def save_pretrained(self, save_directory): """ Save a model and its configuration file to a directory, so that it can be re-loaded using the `:func:`~transformers.PreTrainedModel.from_pretrained`` class method. Arguments: save_directory (:obj:`str`): Directory to which to save. Will be created if it doesn't exist. """ if os.path.isfile(save_directory): logger.error("Provided path ({}) should be a directory, not a file".format(save_directory)) return os.makedirs(save_directory, exist_ok=True) # Only save the model itself if we are using distributed training model_to_save = self.module if hasattr(self, "module") else self # Attach architecture to the config model_to_save.config.architectures = [model_to_save.__class__.__name__] state_dict = model_to_save.state_dict() # Handle the case where some state_dict keys shouldn't be saved if self.keys_to_never_save is not None: state_dict = {k: v for k, v in state_dict.items() if k not in self.keys_to_never_save} # If we save using the predefined names, we can load using `from_pretrained` output_model_file = os.path.join(save_directory, WEIGHTS_NAME) if getattr(self.config, "xla_device", False) and is_torch_tpu_available(): import torch_xla.core.xla_model as xm if xm.is_master_ordinal(): # Save configuration file model_to_save.config.save_pretrained(save_directory) # xm.save takes care of saving only from master xm.save(state_dict, output_model_file) else: model_to_save.config.save_pretrained(save_directory) torch.save(state_dict, output_model_file) logger.info("Model weights saved in {}".format(output_model_file)) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): r""" Instantiate a pretrained pytorch model from a pre-trained model configuration. The model is set in evaluation mode by default using ``model.eval()`` (Dropout modules are deactivated). To train the model, you should first set it back in training mode with ``model.train()``. The warning `Weights from XXX not initialized from pretrained model` means that the weights of XXX do not come pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning task. The warning `Weights from XXX not used in YYY` means that the layer XXX is not used by YYY, therefore those weights are discarded. Parameters: pretrained_model_name_or_path (:obj:`str`, `optional`): Can be either: - A string with the `shortcut name` of a pretrained model to load from cache or download, e.g., ``bert-base-uncased``. - A string with the `identifier name` of a pretrained model that was user-uploaded to our S3, e.g., ``dbmdz/bert-base-german-cased``. - A path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``. - A path or url to a `tensorflow index checkpoint file` (e.g, ``./tf_model/model.ckpt.index``). In this case, ``from_tf`` should be set to :obj:`True` and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. - :obj:`None` if you are both providing the configuration and state dictionary (resp. with keyword arguments ``config`` and ``state_dict``). model_args (sequence of positional arguments, `optional`): All remaning positional arguments will be passed to the underlying model's ``__init__`` method. config (:obj:`Union[PretrainedConfig, str]`, `optional`): Can be either: - an instance of a class derived from :class:`~transformers.PretrainedConfig`, - a string valid as input to :func:`~transformers.PretrainedConfig.from_pretrained`. Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when: - The model is a model provided by the library (loaded with the `shortcut name` string of a pretrained model). - The model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory. - The model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory. state_dict (:obj:`Dict[str, torch.Tensor]`, `optional`): A state dictionary to use instead of a state dictionary loaded from saved weights file. This option can be used if you want to create a model from a pretrained configuration but load your own weights. In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option. cache_dir (:obj:`str`, `optional`): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. from_tf (:obj:`bool`, `optional`, defaults to :obj:`False`): Load the model weights from a TensorFlow checkpoint save file (see docstring of ``pretrained_model_name_or_path`` argument). force_download (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists. proxies (:obj:`Dict[str, str], `optional`): A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`): Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to only look at local files (e.g., not try doanloading the model). use_cdn(:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to use Cloudfront (a Content Delivery Network, or CDN) when searching for the model on our S3 (faster). Should be set to :obj:`False` for checkpoints larger than 20GB. mirror(:obj:`str`, `optional`, defaults to :obj:`None`): Mirror source to accelerate downloads in China. If you are from China and have an accessibility problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety. Please refer to the mirror site for more information. kwargs (remaining dictionary of keyword arguments, `optional`): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., :obj:`output_attentions=True`). Behaves differently depending on whether a ``config`` is provided or automatically loaded: - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function. Examples:: >>> from transformers import BertConfig, BertModel >>> # Download model and configuration from S3 and cache. >>> model = BertModel.from_pretrained('bert-base-uncased') >>> # Model was saved using `save_pretrained('./test/saved_model/')` (for example purposes, not runnable). >>> model = BertModel.from_pretrained('./test/saved_model/') >>> # Update configuration during loading. >>> model = BertModel.from_pretrained('bert-base-uncased', output_attentions=True) >>> assert model.config.output_attentions == True >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable). >>> config = BertConfig.from_json_file('./tf_model/my_tf_model_config.json') >>> model = BertModel.from_pretrained('./tf_model/my_tf_checkpoint.ckpt.index', from_tf=True, config=config) """ config = kwargs.pop("config", None) state_dict = kwargs.pop("state_dict", None) cache_dir = kwargs.pop("cache_dir", None) from_tf = kwargs.pop("from_tf", False) force_download = kwargs.pop("force_download", False) resume_download = kwargs.pop("resume_download", False) proxies = kwargs.pop("proxies", None) output_loading_info = kwargs.pop("output_loading_info", False) local_files_only = kwargs.pop("local_files_only", False) use_cdn = kwargs.pop("use_cdn", True) mirror = kwargs.pop("mirror", None) # Load config if we don't provide a configuration if not isinstance(config, PretrainedConfig): config_path = config if config is not None else pretrained_model_name_or_path config, model_kwargs = cls.config_class.from_pretrained( config_path, *model_args, cache_dir=cache_dir, return_unused_kwargs=True, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, **kwargs, ) else: model_kwargs = kwargs # Load model if pretrained_model_name_or_path is not None: if os.path.isdir(pretrained_model_name_or_path): if from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")): # Load from a TF 1.0 checkpoint archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index") elif from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)): # Load from a TF 2.0 checkpoint archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME) elif os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)): # Load from a PyTorch checkpoint archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME) else: raise EnvironmentError( "Error no file named {} found in directory {} or `from_tf` set to False".format( [WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME + ".index"], pretrained_model_name_or_path, ) ) elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path): archive_file = pretrained_model_name_or_path elif os.path.isfile(pretrained_model_name_or_path + ".index"): assert ( from_tf ), "We found a TensorFlow checkpoint at {}, please set from_tf to True to load from this checkpoint".format( pretrained_model_name_or_path + ".index" ) archive_file = pretrained_model_name_or_path + ".index" else: archive_file = hf_bucket_url( pretrained_model_name_or_path, filename=(TF2_WEIGHTS_NAME if from_tf else WEIGHTS_NAME), use_cdn=use_cdn, mirror=mirror, ) try: # Load from URL or cache if already cached resolved_archive_file = cached_path( archive_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, ) if resolved_archive_file is None: raise EnvironmentError except EnvironmentError: msg = ( f"Can't load weights for '{pretrained_model_name_or_path}'. Make sure that:\n\n" f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n" f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a file named one of {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME}.\n\n" ) raise EnvironmentError(msg) if resolved_archive_file == archive_file: logger.info("loading weights file {}".format(archive_file)) else: logger.info("loading weights file {} from cache at {}".format(archive_file, resolved_archive_file)) else: resolved_archive_file = None # Instantiate model. model = cls(config, *model_args, **model_kwargs) if state_dict is None and not from_tf: try: state_dict = torch.load(resolved_archive_file, map_location="cpu") except Exception: raise OSError( "Unable to load weights from pytorch checkpoint file. " "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True. " ) missing_keys = [] unexpected_keys = [] error_msgs = [] if from_tf: if resolved_archive_file.endswith(".index"): # Load from a TensorFlow 1.X checkpoint - provided by original authors model = cls.load_tf_weights(model, config, resolved_archive_file[:-6]) # Remove the '.index' else: # Load from our TensorFlow 2.0 checkpoints try: from .modeling_tf_pytorch_utils import load_tf2_checkpoint_in_pytorch_model model = load_tf2_checkpoint_in_pytorch_model(model, resolved_archive_file, allow_missing_keys=True) except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see " "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions." ) raise else: # Convert old format to new format if needed from a PyTorch state_dict old_keys = [] new_keys = [] for key in state_dict.keys(): new_key = None if "gamma" in key: new_key = key.replace("gamma", "weight") if "beta" in key: new_key = key.replace("beta", "bias") if new_key: old_keys.append(key) new_keys.append(new_key) for old_key, new_key in zip(old_keys, new_keys): state_dict[new_key] = state_dict.pop(old_key) # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, "_metadata", None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants # so we need to apply the function recursively. def load(module: nn.Module, prefix=""): local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) module._load_from_state_dict( state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs, ) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + ".") # Make sure we are able to load base models as well as derived models (with heads) start_prefix = "" model_to_load = model has_prefix_module = any(s.startswith(cls.base_model_prefix) for s in state_dict.keys()) if not hasattr(model, cls.base_model_prefix) and has_prefix_module: start_prefix = cls.base_model_prefix + "." if hasattr(model, cls.base_model_prefix) and not has_prefix_module: model_to_load = getattr(model, cls.base_model_prefix) load(model_to_load, prefix=start_prefix) if model.__class__.__name__ != model_to_load.__class__.__name__: base_model_state_dict = model_to_load.state_dict().keys() head_model_state_dict_without_base_prefix = [ key.split(cls.base_model_prefix + ".")[-1] for key in model.state_dict().keys() ] missing_keys.extend(head_model_state_dict_without_base_prefix - base_model_state_dict) # Some models may have keys that are not in the state by design, removing them before needlessly warning # the user. if cls.authorized_missing_keys is not None: for pat in cls.authorized_missing_keys: missing_keys = [k for k in missing_keys if re.search(pat, k) is None] if cls.authorized_unexpected_keys is not None: for pat in cls.authorized_unexpected_keys: unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] if len(unexpected_keys) > 0: logger.warning( f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when " f"initializing {model.__class__.__name__}: {unexpected_keys}\n" f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task " f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPretraining model).\n" f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect " f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)." ) else: logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n") if len(missing_keys) > 0: logger.warning( f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} " f"and are newly initialized: {missing_keys}\n" f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference." ) else: logger.info( f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n" f"If your task is similar to the task the model of the checkpoint was trained on, " f"you can already use {model.__class__.__name__} for predictions without further training." ) if len(error_msgs) > 0: raise RuntimeError( "Error(s) in loading state_dict for {}:\n\t{}".format( model.__class__.__name__, "\n\t".join(error_msgs) ) ) # make sure token embedding weights are still tied if needed model.tie_weights() # Set model in evaluation mode to deactivate DropOut modules by default model.eval() if output_loading_info: loading_info = { "missing_keys": missing_keys, "unexpected_keys": unexpected_keys, "error_msgs": error_msgs, } return model, loading_info if hasattr(config, "xla_device") and config.xla_device and is_torch_tpu_available(): import torch_xla.core.xla_model as xm model = xm.send_cpu_data_to_device(model, xm.xla_device()) model.to(xm.xla_device()) return model class Conv1D(nn.Module): """ 1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2). Basically works like a linear layer but the weights are transposed. Args: nf (:obj:`int`): The number of output features. nx (:obj:`int`): The number of input features. """ def __init__(self, nf, nx): super().__init__() self.nf = nf w = torch.empty(nx, nf) nn.init.normal_(w, std=0.02) self.weight = nn.Parameter(w) self.bias = nn.Parameter(torch.zeros(nf)) def forward(self, x): size_out = x.size()[:-1] + (self.nf,) x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight) x = x.view(*size_out) return x class PoolerStartLogits(nn.Module): """ Compute SQuAD start logits from sequence hidden states. Args: config (:class:`~transformers.PretrainedConfig`): The config used by the model, will be used to grab the :obj:`hidden_size` of the model. """ def __init__(self, config: PretrainedConfig): super().__init__() self.dense = nn.Linear(config.hidden_size, 1) def forward( self, hidden_states: torch.FloatTensor, p_mask: Optional[torch.FloatTensor] = None ) -> torch.FloatTensor: """ Args: hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`): The final hidden states of the model. p_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len)`, `optional`): Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token should be masked. Returns: :obj:`torch.FloatTensor`: The start logits for SQuAD. """ x = self.dense(hidden_states).squeeze(-1) if p_mask is not None: if next(self.parameters()).dtype == torch.float16: x = x * (1 - p_mask) - 65500 * p_mask else: x = x * (1 - p_mask) - 1e30 * p_mask return x class PoolerEndLogits(nn.Module): """ Compute SQuAD end logits from sequence hidden states. Args: config (:class:`~transformers.PretrainedConfig`): The config used by the model, will be used to grab the :obj:`hidden_size` of the model and the :obj:`layer_norm_eps` to use. """ def __init__(self, config: PretrainedConfig): super().__init__() self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size) self.activation = nn.Tanh() self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dense_1 = nn.Linear(config.hidden_size, 1) def forward( self, hidden_states: torch.FloatTensor, start_states: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, p_mask: Optional[torch.FloatTensor] = None, ) -> torch.FloatTensor: """ Args: hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`): The final hidden states of the model. start_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`, `optional`): The hidden states of the first tokens for the labeled span. start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): The position of the first token for the labeled span. p_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len)`, `optional`): Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token should be masked. .. note:: One of ``start_states`` or ``start_positions`` should be not obj:`None`. If both are set, ``start_positions`` overrides ``start_states``. Returns: :obj:`torch.FloatTensor`: The end logits for SQuAD. """ assert ( start_states is not None or start_positions is not None ), "One of start_states, start_positions should be not None" if start_positions is not None: slen, hsz = hidden_states.shape[-2:] start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) start_states = hidden_states.gather(-2, start_positions) # shape (bsz, 1, hsz) start_states = start_states.expand(-1, slen, -1) # shape (bsz, slen, hsz) x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1)) x = self.activation(x) x = self.LayerNorm(x) x = self.dense_1(x).squeeze(-1) if p_mask is not None: if next(self.parameters()).dtype == torch.float16: x = x * (1 - p_mask) - 65500 * p_mask else: x = x * (1 - p_mask) - 1e30 * p_mask return x class PoolerAnswerClass(nn.Module): """ Compute SQuAD 2.0 answer class from classification and start tokens hidden states. Args: config (:class:`~transformers.PretrainedConfig`): The config used by the model, will be used to grab the :obj:`hidden_size` of the model. """ def __init__(self, config): super().__init__() self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size) self.activation = nn.Tanh() self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False) def forward( self, hidden_states: torch.FloatTensor, start_states: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, cls_index: Optional[torch.LongTensor] = None, ) -> torch.FloatTensor: """ Args: hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`): The final hidden states of the model. start_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`, `optional`): The hidden states of the first tokens for the labeled span. start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): The position of the first token for the labeled span. cls_index (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Position of the CLS token for each sentence in the batch. If :obj:`None`, takes the last token. .. note:: One of ``start_states`` or ``start_positions`` should be not obj:`None`. If both are set, ``start_positions`` overrides ``start_states``. Returns: :obj:`torch.FloatTensor`: The SQuAD 2.0 answer class. """ # No dependency on end_feature so that we can obtain one single `cls_logits` for each sample. hsz = hidden_states.shape[-1] assert ( start_states is not None or start_positions is not None ), "One of start_states, start_positions should be not None" if start_positions is not None: start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) start_states = hidden_states.gather(-2, start_positions).squeeze(-2) # shape (bsz, hsz) if cls_index is not None: cls_index = cls_index[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, hsz) else: cls_token_state = hidden_states[:, -1, :] # shape (bsz, hsz) x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1)) x = self.activation(x) x = self.dense_1(x).squeeze(-1) return x @dataclass class SquadHeadOutput(ModelOutput): """ Base class for outputs of question answering models using a :class:`~transformers.modeling_utils.SQuADHead`. Args: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned if both :obj:`start_positions` and :obj:`end_positions` are provided): Classification loss as the sum of start token, end token (and is_impossible if provided) classification losses. start_top_log_probs (``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided): Log probabilities for the top config.start_n_top start token possibilities (beam-search). start_top_index (``torch.LongTensor`` of shape ``(batch_size, config.start_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided): Indices for the top config.start_n_top start token possibilities (beam-search). end_top_log_probs (``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided): Log probabilities for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search). end_top_index (``torch.LongTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided): Indices for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search). cls_logits (``torch.FloatTensor`` of shape ``(batch_size,)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided): Log probabilities for the ``is_impossible`` label of the answers. """ loss: Optional[torch.FloatTensor] = None start_top_log_probs: Optional[torch.FloatTensor] = None start_top_index: Optional[torch.LongTensor] = None end_top_log_probs: Optional[torch.FloatTensor] = None end_top_index: Optional[torch.LongTensor] = None cls_logits: Optional[torch.FloatTensor] = None class SQuADHead(nn.Module): r""" A SQuAD head inspired by XLNet. Args: config (:class:`~transformers.PretrainedConfig`): The config used by the model, will be used to grab the :obj:`hidden_size` of the model and the :obj:`layer_norm_eps` to use. """ def __init__(self, config): super().__init__() self.start_n_top = config.start_n_top self.end_n_top = config.end_n_top self.start_logits = PoolerStartLogits(config) self.end_logits = PoolerEndLogits(config) self.answer_class = PoolerAnswerClass(config) @replace_return_docstrings(output_type=SquadHeadOutput, config_class=PretrainedConfig) def forward( self, hidden_states: torch.FloatTensor, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, cls_index: Optional[torch.LongTensor] = None, is_impossible: Optional[torch.LongTensor] = None, p_mask: Optional[torch.FloatTensor] = None, return_dict: bool = False, ) -> Union[SquadHeadOutput, Tuple[torch.FloatTensor]]: """ Args: hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`): Final hidden states of the model on the sequence tokens. start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Positions of the first token for the labeled span. end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Positions of the last token for the labeled span. cls_index (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Position of the CLS token for each sentence in the batch. If :obj:`None`, takes the last token. is_impossible (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Whether the question has a possible answer in the paragraph or not. p_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len)`, `optional`): Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token should be masked. return_dict (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to return a :class:`~transformers.file_utils.ModelOuput` instead of a plain tuple. Returns: """ start_logits = self.start_logits(hidden_states, p_mask=p_mask) if start_positions is not None and end_positions is not None: # If we are on multi-GPU, let's remove the dimension added by batch splitting for x in (start_positions, end_positions, cls_index, is_impossible): if x is not None and x.dim() > 1: x.squeeze_(-1) # during training, compute the end logits based on the ground truth of the start position end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask) loss_fct = CrossEntropyLoss() start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if cls_index is not None and is_impossible is not None: # Predict answerability from the representation of CLS and START cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index) loss_fct_cls = nn.BCEWithLogitsLoss() cls_loss = loss_fct_cls(cls_logits, is_impossible) # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss total_loss += cls_loss * 0.5 return SquadHeadOutput(loss=total_loss) if return_dict else (total_loss,) else: # during inference, compute the end logits based on beam search bsz, slen, hsz = hidden_states.size() start_log_probs = F.softmax(start_logits, dim=-1) # shape (bsz, slen) start_top_log_probs, start_top_index = torch.topk( start_log_probs, self.start_n_top, dim=-1 ) # shape (bsz, start_n_top) start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz) start_states = torch.gather(hidden_states, -2, start_top_index_exp) # shape (bsz, start_n_top, hsz) start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz) hidden_states_expanded = hidden_states.unsqueeze(2).expand_as( start_states ) # shape (bsz, slen, start_n_top, hsz) p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask) end_log_probs = F.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top) end_top_log_probs, end_top_index = torch.topk( end_log_probs, self.end_n_top, dim=1 ) # shape (bsz, end_n_top, start_n_top) end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top) end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top) start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs) cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index) if not return_dict: return (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits) else: return SquadHeadOutput( start_top_log_probs=start_top_log_probs, start_top_index=start_top_index, end_top_log_probs=end_top_log_probs, end_top_index=end_top_index, cls_logits=cls_logits, ) class SequenceSummary(nn.Module): r""" Compute a single vector summary of a sequence hidden states. Args: config (:class:`~transformers.PretrainedConfig`): The config used by the model. Relevant arguments in the config class of the model are (refer to the actual config class of your model for the default values it uses): - **summary_type** (:obj:`str`) -- The method to use to make this summary. Accepted values are: - :obj:`"last"` -- Take the last token hidden state (like XLNet) - :obj:`"first"` -- Take the first token hidden state (like Bert) - :obj:`"mean"` -- Take the mean of all tokens hidden states - :obj:`"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2) - :obj:`"attn"` -- Not implemented now, use multi-head attention - **summary_use_proj** (:obj:`bool`) -- Add a projection after the vector extraction. - **summary_proj_to_labels** (:obj:`bool`) -- If :obj:`True`, the projection outputs to :obj:`config.num_labels` classes (otherwise to :obj:`config.hidden_size`). - **summary_activation** (:obj:`Optional[str]`) -- Set to :obj:`"tanh"` to add a tanh activation to the output, another string or :obj:`None` will add no activation. - **summary_first_dropout** (:obj:`float`) -- Optional dropout probability before the projection and activation. - **summary_last_dropout** (:obj:`float`)-- Optional dropout probability after the projection and activation. """ def __init__(self, config: PretrainedConfig): super().__init__() self.summary_type = getattr(config, "summary_type", "last") if self.summary_type == "attn": # We should use a standard multi-head attention module with absolute positional embedding for that. # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276 # We can probably just use the multi-head attention module of PyTorch >=1.1.0 raise NotImplementedError self.summary = Identity() if hasattr(config, "summary_use_proj") and config.summary_use_proj: if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0: num_classes = config.num_labels else: num_classes = config.hidden_size self.summary = nn.Linear(config.hidden_size, num_classes) activation_string = getattr(config, "summary_activation", None) self.activation: Callable = get_activation(activation_string) if activation_string else Identity() self.first_dropout = Identity() if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0: self.first_dropout = nn.Dropout(config.summary_first_dropout) self.last_dropout = Identity() if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0: self.last_dropout = nn.Dropout(config.summary_last_dropout) def forward( self, hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None ) -> torch.FloatTensor: """ Compute a single vector summary of a sequence hidden states. Args: hidden_states (:obj:`torch.FloatTensor` of shape :obj:`[batch_size, seq_len, hidden_size]`): The hidden states of the last layer. cls_index (:obj:`torch.LongTensor` of shape :obj:`[batch_size]` or :obj:`[batch_size, ...]` where ... are optional leading dimensions of :obj:`hidden_states`, `optional`): Used if :obj:`summary_type == "cls_index"` and takes the last token of the sequence as classification token. Returns: :obj:`torch.FloatTensor`: The summary of the sequence hidden states. """ if self.summary_type == "last": output = hidden_states[:, -1] elif self.summary_type == "first": output = hidden_states[:, 0] elif self.summary_type == "mean": output = hidden_states.mean(dim=1) elif self.summary_type == "cls_index": if cls_index is None: cls_index = torch.full_like( hidden_states[..., :1, :], hidden_states.shape[-2] - 1, dtype=torch.long, ) else: cls_index = cls_index.unsqueeze(-1).unsqueeze(-1) cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),)) # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states output = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, XX, hidden_size) elif self.summary_type == "attn": raise NotImplementedError output = self.first_dropout(output) output = self.summary(output) output = self.activation(output) output = self.last_dropout(output) return output def prune_linear_layer(layer: torch.nn.Linear, index: torch.LongTensor, dim: int = 0) -> torch.nn.Linear: """ Prune a linear layer to keep only entries in index. Used to remove heads. Args: layer (:obj:`torch.nn.Linear`): The layer to prune. index (:obj:`torch.LongTensor`): The indices to keep in the layer. dim (:obj:`int`, `optional`, defaults to 0): The dimension on which to keep the indices. Returns: :obj:`torch.nn.Linear`: The pruned layer as a new layer with :obj:`requires_grad=True`. """ index = index.to(layer.weight.device) W = layer.weight.index_select(dim, index).clone().detach() if layer.bias is not None: if dim == 1: b = layer.bias.clone().detach() else: b = layer.bias[index].clone().detach() new_size = list(layer.weight.size()) new_size[dim] = len(index) new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device) new_layer.weight.requires_grad = False new_layer.weight.copy_(W.contiguous()) new_layer.weight.requires_grad = True if layer.bias is not None: new_layer.bias.requires_grad = False new_layer.bias.copy_(b.contiguous()) new_layer.bias.requires_grad = True return new_layer def prune_conv1d_layer(layer: Conv1D, index: torch.LongTensor, dim: int = 1) -> Conv1D: """ Prune a Conv1D layer to keep only entries in index. A Conv1D work as a Linear layer (see e.g. BERT) but the weights are transposed. Used to remove heads. Args: layer (:class:`~transformers.modeling_utils.Conv1D`): The layer to prune. index (:obj:`torch.LongTensor`): The indices to keep in the layer. dim (:obj:`int`, `optional`, defaults to 1): The dimension on which to keep the indices. Returns: :class:`~transformers.modeling_utils.Conv1D`: The pruned layer as a new layer with :obj:`requires_grad=True`. """ index = index.to(layer.weight.device) W = layer.weight.index_select(dim, index).clone().detach() if dim == 0: b = layer.bias.clone().detach() else: b = layer.bias[index].clone().detach() new_size = list(layer.weight.size()) new_size[dim] = len(index) new_layer = Conv1D(new_size[1], new_size[0]).to(layer.weight.device) new_layer.weight.requires_grad = False new_layer.weight.copy_(W.contiguous()) new_layer.weight.requires_grad = True new_layer.bias.requires_grad = False new_layer.bias.copy_(b.contiguous()) new_layer.bias.requires_grad = True return new_layer def prune_layer( layer: Union[torch.nn.Linear, Conv1D], index: torch.LongTensor, dim: Optional[int] = None ) -> Union[torch.nn.Linear, Conv1D]: """ Prune a Conv1D or linear layer to keep only entries in index. Used to remove heads. Args: layer (:obj:`Union[torch.nn.Linear, Conv1D]`): The layer to prune. index (:obj:`torch.LongTensor`): The indices to keep in the layer. dim (:obj:`int`, `optional`): The dimension on which to keep the indices. Returns: :obj:`torch.nn.Linear` or :class:`~transformers.modeling_utils.Conv1D`: The pruned layer as a new layer with :obj:`requires_grad=True`. """ if isinstance(layer, nn.Linear): return prune_linear_layer(layer, index, dim=0 if dim is None else dim) elif isinstance(layer, Conv1D): return prune_conv1d_layer(layer, index, dim=1 if dim is None else dim) else: raise ValueError("Can't prune layer of class {}".format(layer.__class__)) def apply_chunking_to_forward( forward_fn: Callable[..., torch.Tensor], chunk_size: int, chunk_dim: int, *input_tensors ) -> torch.Tensor: """ This function chunks the :obj:`input_tensors` into smaller input tensor parts of size :obj:`chunk_size` over the dimension :obj:`chunk_dim`. It then applies a layer :obj:`forward_fn` to each chunk independently to save memory. If the :obj:`forward_fn` is independent across the :obj:`chunk_dim` this function will yield the same result as directly applying :obj:`forward_fn` to :obj:`input_tensors`. Args: forward_fn (:obj:`Callable[..., torch.Tensor]`): The forward function of the model. chunk_size (:obj:`int`): The chunk size of a chunked tensor: :obj:`num_chunks = len(input_tensors[0]) / chunk_size`. chunk_dim (:obj:`int`): The dimension over which the :obj:`input_tensors` should be chunked. input_tensors (:obj:`Tuple[torch.Tensor]`): The input tensors of ``forward_fn`` which will be chunked. Returns: :obj:`torch.Tensor`: A tensor with the same shape as the :obj:`foward_fn` would have given if applied`. Examples:: # rename the usual forward() fn to forward_chunk() def forward_chunk(self, hidden_states): hidden_states = self.decoder(hidden_states) return hidden_states # implement a chunked forward function def forward(self, hidden_states): return apply_chunking_to_forward(self.forward_chunk, self.chunk_size_lm_head, self.seq_len_dim, hidden_states) """ assert len(input_tensors) > 0, "{} has to be a tuple/list of tensors".format(input_tensors) tensor_shape = input_tensors[0].shape assert all( input_tensor.shape == tensor_shape for input_tensor in input_tensors ), "All input tenors have to be of the same shape" # inspect.signature exist since python 3.5 and is a python method -> no problem with backward compability num_args_in_forward_chunk_fn = len(inspect.signature(forward_fn).parameters) assert num_args_in_forward_chunk_fn == len( input_tensors ), "forward_chunk_fn expects {} arguments, but only {} input tensors are given".format( num_args_in_forward_chunk_fn, len(input_tensors) ) if chunk_size > 0: assert ( input_tensors[0].shape[chunk_dim] % chunk_size == 0 ), "The dimension to be chunked {} has to be a multiple of the chunk size {}".format( input_tensors[0].shape[chunk_dim], chunk_size ) num_chunks = input_tensors[0].shape[chunk_dim] // chunk_size # chunk input tensor into tuples input_tensors_chunks = tuple(input_tensor.chunk(num_chunks, dim=chunk_dim) for input_tensor in input_tensors) # apply forward fn to every tuple output_chunks = tuple(forward_fn(*input_tensors_chunk) for input_tensors_chunk in zip(*input_tensors_chunks)) # concatenate output at same dimension return torch.cat(output_chunks, dim=chunk_dim) return forward_fn(*input_tensors)
48.375222
197
0.628105
4a2500eda82325c1ec5344b9d75fa4b96252becd
1,306
py
Python
jorldy/config/icm_ppo/super_mario_bros.py
Kyushik/JORLDY
6a24a2195e5e87ade157ee53f631af2221f0a188
[ "Apache-2.0" ]
300
2021-11-03T07:06:34.000Z
2022-03-24T02:23:56.000Z
jorldy/config/icm_ppo/super_mario_bros.py
Kyushik/JORLDY
6a24a2195e5e87ade157ee53f631af2221f0a188
[ "Apache-2.0" ]
37
2021-11-04T04:31:07.000Z
2022-03-30T01:40:49.000Z
jorldy/config/icm_ppo/super_mario_bros.py
Kyushik/JORLDY
6a24a2195e5e87ade157ee53f631af2221f0a188
[ "Apache-2.0" ]
45
2021-11-03T08:05:56.000Z
2022-03-24T08:35:05.000Z
### ICM PPO Super Mario Bros Config ### env = { "name": "super_mario_bros", "render": False, "gray_img": True, "img_width": 84, "img_height": 84, "stack_frame": 4, "no_op": True, "skip_frame": 4, "reward_clip": True, "episodic_life": True, } agent = { "name": "icm_ppo", "network": "discrete_policy_value", "head": "cnn", "gamma": 0.99, "batch_size": 16, "n_step": 128, "n_epoch": 3, "_lambda": 0.95, "epsilon_clip": 0.1, "vf_coef": 1.0, "ent_coef": 0.01, "clip_grad_norm": 1.0, "use_standardization": True, "lr_decay": True, # Parameters for Curiosity-driven Exploration "icm_network": "icm_cnn", # icm_mlp, icm_cnn, icm_multi "beta": 0.2, "lamb": 1.0, "eta": 0.1, "extrinsic_coeff": 1.0, "intrinsic_coeff": 1.0, "obs_normalize": True, "ri_normalize": True, "batch_norm": True, } optim = { "name": "adam", "lr": 2.5e-4, } train = { "training": True, "load_path": None, "run_step": 30000000, "print_period": 10000, "save_period": 500000, "eval_iteration": 1, "record": True, "record_period": 500000, # distributed setting "distributed_batch_size": 1024, "update_period": agent["n_step"], "num_workers": 64, }
21.064516
60
0.569678
4a2500fc7f57081d8b12a4f49d5fff1d33311e02
7,202
py
Python
dao/ERC20Initializer.py
caleb-berry/dao
8898e85eca5e052eb7545b9a41862048c1d9932f
[ "Apache-2.0" ]
9
2021-12-18T16:48:36.000Z
2022-02-15T17:54:07.000Z
dao/ERC20Initializer.py
caleb-berry/dao
8898e85eca5e052eb7545b9a41862048c1d9932f
[ "Apache-2.0" ]
20
2021-12-16T13:47:42.000Z
2022-03-17T17:39:49.000Z
dao/ERC20Initializer.py
bugout-dev/dao
d6e089d32ecd54a5bfd3b31f98e582528b201f15
[ "Apache-2.0" ]
null
null
null
# Code generated by moonworm : https://github.com/bugout-dev/moonworm # Moonworm version : 0.1.14 import argparse import json import os from pathlib import Path from typing import Any, Dict, List, Optional, Union from brownie import Contract, network, project from brownie.network.contract import ContractContainer from eth_typing.evm import ChecksumAddress PROJECT_DIRECTORY = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) BUILD_DIRECTORY = os.path.join(PROJECT_DIRECTORY, "build", "contracts") def boolean_argument_type(raw_value: str) -> bool: TRUE_VALUES = ["1", "t", "y", "true", "yes"] FALSE_VALUES = ["0", "f", "n", "false", "no"] if raw_value.lower() in TRUE_VALUES: return True elif raw_value.lower() in FALSE_VALUES: return False raise ValueError( f"Invalid boolean argument: {raw_value}. Value must be one of: {','.join(TRUE_VALUES + FALSE_VALUES)}" ) def bytes_argument_type(raw_value: str) -> bytes: return raw_value.encode() def get_abi_json(abi_name: str) -> List[Dict[str, Any]]: abi_full_path = os.path.join(BUILD_DIRECTORY, f"{abi_name}.json") if not os.path.isfile(abi_full_path): raise IOError( f"File does not exist: {abi_full_path}. Maybe you have to compile the smart contracts?" ) with open(abi_full_path, "r") as ifp: build = json.load(ifp) abi_json = build.get("abi") if abi_json is None: raise ValueError(f"Could not find ABI definition in: {abi_full_path}") return abi_json def contract_from_build(abi_name: str) -> ContractContainer: # This is workaround because brownie currently doesn't support loading the same project multiple # times. This causes problems when using multiple contracts from the same project in the same # python project. PROJECT = project.main.Project("moonworm", Path(PROJECT_DIRECTORY)) abi_full_path = os.path.join(BUILD_DIRECTORY, f"{abi_name}.json") if not os.path.isfile(abi_full_path): raise IOError( f"File does not exist: {abi_full_path}. Maybe you have to compile the smart contracts?" ) with open(abi_full_path, "r") as ifp: build = json.load(ifp) return ContractContainer(PROJECT, build) class ERC20Initializer: def __init__(self, contract_address: Optional[ChecksumAddress]): self.contract_name = "ERC20Initializer" self.address = contract_address self.contract = None self.abi = get_abi_json("ERC20Initializer") if self.address is not None: self.contract: Optional[Contract] = Contract.from_abi( self.contract_name, self.address, self.abi ) def deploy(self, transaction_config): contract_class = contract_from_build(self.contract_name) deployed_contract = contract_class.deploy(transaction_config) self.address = deployed_contract.address self.contract = deployed_contract def assert_contract_is_instantiated(self) -> None: if self.contract is None: raise Exception("contract has not been instantiated") def verify_contract(self): self.assert_contract_is_instantiated() contract_class = contract_from_build(self.contract_name) contract_class.publish_source(self.contract) def init(self, transaction_config) -> Any: self.assert_contract_is_instantiated() return self.contract.init(transaction_config) def get_transaction_config(args: argparse.Namespace) -> Dict[str, Any]: signer = network.accounts.load(args.sender, args.password) transaction_config: Dict[str, Any] = {"from": signer} if args.gas_price is not None: transaction_config["gas_price"] = args.gas_price if args.max_fee_per_gas is not None: transaction_config["max_fee"] = args.max_fee_per_gas if args.max_priority_fee_per_gas is not None: transaction_config["priority_fee"] = args.max_priority_fee_per_gas if args.confirmations is not None: transaction_config["required_confs"] = args.confirmations if args.nonce is not None: transaction_config["nonce"] = args.nonce return transaction_config def add_default_arguments(parser: argparse.ArgumentParser, transact: bool) -> None: parser.add_argument( "--network", required=True, help="Name of brownie network to connect to" ) parser.add_argument( "--address", required=False, help="Address of deployed contract to connect to" ) if not transact: return parser.add_argument( "--sender", required=True, help="Path to keystore file for transaction sender" ) parser.add_argument( "--password", required=False, help="Password to keystore file (if you do not provide it, you will be prompted for it)", ) parser.add_argument( "--gas-price", default=None, help="Gas price at which to submit transaction" ) parser.add_argument( "--max-fee-per-gas", default=None, help="Max fee per gas for EIP1559 transactions", ) parser.add_argument( "--max-priority-fee-per-gas", default=None, help="Max priority fee per gas for EIP1559 transactions", ) parser.add_argument( "--confirmations", type=int, default=None, help="Number of confirmations to await before considering a transaction completed", ) parser.add_argument( "--nonce", type=int, default=None, help="Nonce for the transaction (optional)" ) def handle_deploy(args: argparse.Namespace) -> None: network.connect(args.network) transaction_config = get_transaction_config(args) contract = ERC20Initializer(None) result = contract.deploy(transaction_config=transaction_config) print(result) def handle_verify_contract(args: argparse.Namespace) -> None: network.connect(args.network) contract = ERC20Initializer(args.address) result = contract.verify_contract() print(result) def handle_init(args: argparse.Namespace) -> None: network.connect(args.network) contract = ERC20Initializer(args.address) transaction_config = get_transaction_config(args) result = contract.init(transaction_config=transaction_config) print(result) def generate_cli() -> argparse.ArgumentParser: parser = argparse.ArgumentParser(description="CLI for ERC20Initializer") parser.set_defaults(func=lambda _: parser.print_help()) subcommands = parser.add_subparsers() deploy_parser = subcommands.add_parser("deploy") add_default_arguments(deploy_parser, True) deploy_parser.set_defaults(func=handle_deploy) verify_contract_parser = subcommands.add_parser("verify-contract") add_default_arguments(verify_contract_parser, False) verify_contract_parser.set_defaults(func=handle_verify_contract) init_parser = subcommands.add_parser("init") add_default_arguments(init_parser, True) init_parser.set_defaults(func=handle_init) return parser def main() -> None: parser = generate_cli() args = parser.parse_args() args.func(args) if __name__ == "__main__": main()
34.132701
110
0.701611
4a250214e0a1d9d5bdec4bf3d75be27517fa9e33
530
py
Python
backend/home/migrations/0001_load_initial_data.py
crowdbotics-apps/kikter-34297
c00388be0a9a1fa83c441d3dc94b4c9f88eaeb88
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/home/migrations/0001_load_initial_data.py
crowdbotics-apps/kikter-34297
c00388be0a9a1fa83c441d3dc94b4c9f88eaeb88
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/home/migrations/0001_load_initial_data.py
crowdbotics-apps/kikter-34297
c00388be0a9a1fa83c441d3dc94b4c9f88eaeb88
[ "FTL", "AML", "RSA-MD" ]
null
null
null
from django.db import migrations def create_site(apps, schema_editor): Site = apps.get_model("sites", "Site") custom_domain = "kikter-34297.botics.co" site_params = { "name": "kikter", } if custom_domain: site_params["domain"] = custom_domain Site.objects.update_or_create(defaults=site_params, id=1) class Migration(migrations.Migration): dependencies = [ ("sites", "0002_alter_domain_unique"), ] operations = [ migrations.RunPython(create_site), ]
20.384615
61
0.65283
4a25026959c078c3ac209b1a8245de320efc3aea
7,456
py
Python
tests/components/motion_blinds/test_config_flow.py
dlintott/core
a6c83cc46a34084fdc4c0e7221b6ba493f82cbac
[ "Apache-2.0" ]
1
2021-01-27T08:47:19.000Z
2021-01-27T08:47:19.000Z
tests/components/motion_blinds/test_config_flow.py
dlintott/core
a6c83cc46a34084fdc4c0e7221b6ba493f82cbac
[ "Apache-2.0" ]
36
2021-02-08T08:20:27.000Z
2022-03-31T06:06:05.000Z
tests/components/motion_blinds/test_config_flow.py
dlintott/core
a6c83cc46a34084fdc4c0e7221b6ba493f82cbac
[ "Apache-2.0" ]
1
2021-01-01T02:35:17.000Z
2021-01-01T02:35:17.000Z
"""Test the Motion Blinds config flow.""" import socket import pytest from homeassistant import config_entries from homeassistant.components.motion_blinds.config_flow import DEFAULT_GATEWAY_NAME from homeassistant.components.motion_blinds.const import DOMAIN from homeassistant.const import CONF_API_KEY, CONF_HOST from tests.async_mock import Mock, patch TEST_HOST = "1.2.3.4" TEST_HOST2 = "5.6.7.8" TEST_API_KEY = "12ab345c-d67e-8f" TEST_MAC = "ab:cd:ef:gh" TEST_MAC2 = "ij:kl:mn:op" TEST_DEVICE_LIST = {TEST_MAC: Mock()} TEST_DISCOVERY_1 = { TEST_HOST: { "msgType": "GetDeviceListAck", "mac": TEST_MAC, "deviceType": "02000002", "ProtocolVersion": "0.9", "token": "12345A678B9CDEFG", "data": [ {"mac": "abcdefghujkl", "deviceType": "02000002"}, {"mac": "abcdefghujkl0001", "deviceType": "10000000"}, {"mac": "abcdefghujkl0002", "deviceType": "10000000"}, ], } } TEST_DISCOVERY_2 = { TEST_HOST: { "msgType": "GetDeviceListAck", "mac": TEST_MAC, "deviceType": "02000002", "ProtocolVersion": "0.9", "token": "12345A678B9CDEFG", "data": [ {"mac": "abcdefghujkl", "deviceType": "02000002"}, {"mac": "abcdefghujkl0001", "deviceType": "10000000"}, ], }, TEST_HOST2: { "msgType": "GetDeviceListAck", "mac": TEST_MAC2, "deviceType": "02000002", "ProtocolVersion": "0.9", "token": "12345A678B9CDEFG", "data": [ {"mac": "abcdefghujkl", "deviceType": "02000002"}, {"mac": "abcdefghujkl0001", "deviceType": "10000000"}, ], }, } @pytest.fixture(name="motion_blinds_connect", autouse=True) def motion_blinds_connect_fixture(): """Mock motion blinds connection and entry setup.""" with patch( "homeassistant.components.motion_blinds.gateway.MotionGateway.GetDeviceList", return_value=True, ), patch( "homeassistant.components.motion_blinds.gateway.MotionGateway.Update", return_value=True, ), patch( "homeassistant.components.motion_blinds.gateway.MotionGateway.device_list", TEST_DEVICE_LIST, ), patch( "homeassistant.components.motion_blinds.config_flow.MotionDiscovery.discover", return_value=TEST_DISCOVERY_1, ), patch( "homeassistant.components.motion_blinds.async_setup_entry", return_value=True ): yield async def test_config_flow_manual_host_success(hass): """Successful flow manually initialized by the user.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "user" assert result["errors"] == {} result = await hass.config_entries.flow.async_configure( result["flow_id"], {CONF_HOST: TEST_HOST}, ) assert result["type"] == "form" assert result["step_id"] == "connect" assert result["errors"] is None result = await hass.config_entries.flow.async_configure( result["flow_id"], {CONF_API_KEY: TEST_API_KEY}, ) assert result["type"] == "create_entry" assert result["title"] == DEFAULT_GATEWAY_NAME assert result["data"] == { CONF_HOST: TEST_HOST, CONF_API_KEY: TEST_API_KEY, } async def test_config_flow_discovery_1_success(hass): """Successful flow with 1 gateway discovered.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "user" assert result["errors"] == {} result = await hass.config_entries.flow.async_configure( result["flow_id"], {}, ) assert result["type"] == "form" assert result["step_id"] == "connect" assert result["errors"] is None result = await hass.config_entries.flow.async_configure( result["flow_id"], {CONF_API_KEY: TEST_API_KEY}, ) assert result["type"] == "create_entry" assert result["title"] == DEFAULT_GATEWAY_NAME assert result["data"] == { CONF_HOST: TEST_HOST, CONF_API_KEY: TEST_API_KEY, } async def test_config_flow_discovery_2_success(hass): """Successful flow with 2 gateway discovered.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "user" assert result["errors"] == {} with patch( "homeassistant.components.motion_blinds.config_flow.MotionDiscovery.discover", return_value=TEST_DISCOVERY_2, ): result = await hass.config_entries.flow.async_configure( result["flow_id"], {}, ) assert result["type"] == "form" assert result["step_id"] == "select" assert result["data_schema"].schema["select_ip"].container == [ TEST_HOST, TEST_HOST2, ] assert result["errors"] is None result = await hass.config_entries.flow.async_configure( result["flow_id"], {"select_ip": TEST_HOST2}, ) assert result["type"] == "form" assert result["step_id"] == "connect" assert result["errors"] is None result = await hass.config_entries.flow.async_configure( result["flow_id"], {CONF_API_KEY: TEST_API_KEY}, ) assert result["type"] == "create_entry" assert result["title"] == DEFAULT_GATEWAY_NAME assert result["data"] == { CONF_HOST: TEST_HOST2, CONF_API_KEY: TEST_API_KEY, } async def test_config_flow_connection_error(hass): """Failed flow manually initialized by the user with connection timeout.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "user" assert result["errors"] == {} result = await hass.config_entries.flow.async_configure( result["flow_id"], {CONF_HOST: TEST_HOST}, ) assert result["type"] == "form" assert result["step_id"] == "connect" assert result["errors"] is None with patch( "homeassistant.components.motion_blinds.gateway.MotionGateway.GetDeviceList", side_effect=socket.timeout, ): result = await hass.config_entries.flow.async_configure( result["flow_id"], {CONF_API_KEY: TEST_API_KEY}, ) assert result["type"] == "abort" assert result["reason"] == "connection_error" async def test_config_flow_discovery_fail(hass): """Failed flow with no gateways discovered.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["step_id"] == "user" assert result["errors"] == {} with patch( "homeassistant.components.motion_blinds.config_flow.MotionDiscovery.discover", return_value={}, ): result = await hass.config_entries.flow.async_configure( result["flow_id"], {}, ) assert result["type"] == "form" assert result["step_id"] == "user" assert result["errors"] == {"base": "discovery_error"}
29.943775
86
0.635461
4a2502ab4483fab98f449c34a0ee6f02b9ba8ab1
3,534
py
Python
pyvizio/api/pair.py
jezzab/pyvizio
8086f9e5aac49d1d99ade02684ca35c05e03a7eb
[ "MIT" ]
72
2017-08-08T19:32:12.000Z
2022-03-18T03:18:41.000Z
pyvizio/api/pair.py
raman325/pyvizio
9cf45fcc9b409caf223a38d8f79c775742ab4127
[ "MIT" ]
48
2017-09-16T16:37:54.000Z
2022-01-23T20:43:42.000Z
pyvizio/api/pair.py
ConnectionMaster/pyvizio
0fe4558557917509d3da3bb24f9221f15ba901ce
[ "MIT" ]
42
2017-09-04T22:59:21.000Z
2022-03-18T03:18:30.000Z
"""Vizio SmartCast API commands and class for pairing.""" from typing import Any, Dict, Union from pyvizio.api._protocol import ENDPOINT, PairingResponseKey, ResponseKey from pyvizio.api.base import CommandBase from pyvizio.helpers import dict_get_case_insensitive class PairCommandBase(CommandBase): """Base pairing command.""" def __init__(self, device_id: str, device_type: str, endpoint: str) -> None: """Initialize base pairing command.""" super(PairCommandBase, self).__init__(ENDPOINT[device_type][endpoint]) self.DEVICE_ID: str = device_id class BeginPairResponse(object): """Response from command to begin pairing process.""" def __init__(self, ch_type: str, token: str) -> None: """Initialize response from command to begin pairing process.""" self.ch_type: str = ch_type self.token: str = token def __repr__(self) -> str: return f"{type(self).__name__}({self.__dict__})" def __eq__(self, other) -> bool: return self is other or self.__dict__ == other.__dict__ class BeginPairCommand(PairCommandBase): """Command to begin pairing process.""" def __init__(self, device_id: str, device_name: str, device_type: str) -> None: """Initialize command to begin pairing process.""" super().__init__(device_id, device_type, "BEGIN_PAIR") self.DEVICE_NAME: str = str(device_name) def process_response(self, json_obj: Dict[str, Any]) -> BeginPairResponse: """Return response to command to begin pairing process.""" item = dict_get_case_insensitive(json_obj, ResponseKey.ITEM) return BeginPairResponse( dict_get_case_insensitive(item, PairingResponseKey.CHALLENGE_TYPE), dict_get_case_insensitive(item, PairingResponseKey.PAIRING_REQ_TOKEN), ) class PairChallengeResponse(object): """Response from command to complete pairing process.""" def __init__(self, auth_token: str) -> None: """Initialize response from command to complete pairing process.""" self.auth_token = auth_token def __repr__(self) -> str: return f"{type(self).__name__}({self.__dict__})" def __eq__(self, other) -> bool: return self is other or self.__dict__ == other.__dict__ class PairChallengeCommand(PairCommandBase): """Command to complete pairing process.""" def __init__( self, device_id: str, challenge_type: Union[int, str], pairing_token: Union[int, str], pin: str, device_type: str, ) -> None: """Initialize command to complete pairing process.""" super().__init__(device_id, device_type, "FINISH_PAIR") self.CHALLENGE_TYPE = int(challenge_type) self.PAIRING_REQ_TOKEN = int(pairing_token) self.RESPONSE_VALUE = str(pin) def process_response(self, json_obj: Dict[str, Any]) -> PairChallengeResponse: """Return response to command to complete pairing process.""" item = dict_get_case_insensitive(json_obj, ResponseKey.ITEM) return PairChallengeResponse( dict_get_case_insensitive(item, PairingResponseKey.AUTH_TOKEN) ) class CancelPairCommand(PairCommandBase): """Command to cancel pairing process.""" def __init__(self, device_id, device_name: str, device_type: str) -> None: """Initialize command to cancel pairing process.""" super().__init__(device_id, device_type, "CANCEL_PAIR") self.DEVICE_NAME = str(device_name)
34.990099
83
0.685342
4a2503be6992977277d49b6e3836794b00eff7b1
10,438
py
Python
comicapi/comicinfoxml.py
OzzieIsaacs/comicapi
59e7830f62c5f6e42aea16d171d336814dca826f
[ "Apache-2.0" ]
2
2022-01-22T19:17:11.000Z
2022-03-16T20:19:20.000Z
comicapi/comicinfoxml.py
OzzieIsaacs/comicapi
59e7830f62c5f6e42aea16d171d336814dca826f
[ "Apache-2.0" ]
null
null
null
comicapi/comicinfoxml.py
OzzieIsaacs/comicapi
59e7830f62c5f6e42aea16d171d336814dca826f
[ "Apache-2.0" ]
1
2021-08-02T07:07:01.000Z
2021-08-02T07:07:01.000Z
""" A python class to encapsulate ComicRack's ComicInfo.xml data Copyright 2012-2014 Anthony Beville Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import xml.etree.ElementTree as ET from comicapi.genericmetadata import GenericMetadata import comicapi.utils class ComicInfoXml: writer_synonyms = ['writer', 'plotter', 'scripter'] penciller_synonyms = ['artist', 'penciller', 'penciler', 'breakdowns'] inker_synonyms = ['inker', 'artist', 'finishes'] colorist_synonyms = ['colorist', 'colourist', 'colorer', 'colourer'] letterer_synonyms = ['letterer'] cover_synonyms = ['cover', 'covers', 'coverartist', 'cover artist'] editor_synonyms = ['editor'] def getParseableCredits(self): parsable_credits = [] parsable_credits.extend(self.writer_synonyms) parsable_credits.extend(self.penciller_synonyms) parsable_credits.extend(self.inker_synonyms) parsable_credits.extend(self.colorist_synonyms) parsable_credits.extend(self.letterer_synonyms) parsable_credits.extend(self.cover_synonyms) parsable_credits.extend(self.editor_synonyms) return parsable_credits def metadataFromString(self, string): tree = ET.ElementTree(ET.fromstring(string)) return self.convertXMLToMetadata(tree) def stringFromMetadata(self, metadata): header = '<?xml version="1.0"?>\n' tree = self.convertMetadataToXML(self, metadata) return header + ET.tostring(tree.getroot()) def indent(self, elem, level=0): # for making the XML output readable i = "\n" + level * " " if len(elem): if not elem.text or not elem.text.strip(): elem.text = i + " " if not elem.tail or not elem.tail.strip(): elem.tail = i for elem in elem: self.indent(elem, level + 1) if not elem.tail or not elem.tail.strip(): elem.tail = i else: if level and (not elem.tail or not elem.tail.strip()): elem.tail = i def convertMetadataToXML(self, filename, metadata): # shorthand for the metadata md = metadata # build a tree structure root = ET.Element("ComicInfo") root.attrib['xmlns:xsi'] = "http://www.w3.org/2001/XMLSchema-instance" root.attrib['xmlns:xsd'] = "http://www.w3.org/2001/XMLSchema" # helper func def assign(cix_entry, md_entry): if md_entry is not None: ET.SubElement(root, cix_entry).text = u"{0}".format(md_entry) assign('Title', md.title) assign('Series', md.series) assign('Number', md.issue) assign('Count', md.issueCount) assign('Volume', md.volume) assign('AlternateSeries', md.alternateSeries) assign('AlternateNumber', md.alternateNumber) assign('StoryArc', md.storyArc) assign('SeriesGroup', md.seriesGroup) assign('AlternateCount', md.alternateCount) assign('Summary', md.comments) assign('Notes', md.notes) assign('Year', md.year) assign('Month', md.month) assign('Day', md.day) # need to specially process the credits, since they are structured differently than CIX credit_writer_list = list() credit_penciller_list = list() credit_inker_list = list() credit_colorist_list = list() credit_letterer_list = list() credit_cover_list = list() credit_editor_list = list() # first, loop thru credits, and build a list for each role that CIX supports for credit in metadata.credits: if credit['role'].lower() in set(self.writer_synonyms): credit_writer_list.append(credit['person'].replace(",", "")) if credit['role'].lower() in set(self.penciller_synonyms): credit_penciller_list.append(credit['person'].replace(",", "")) if credit['role'].lower() in set(self.inker_synonyms): credit_inker_list.append(credit['person'].replace(",", "")) if credit['role'].lower() in set(self.colorist_synonyms): credit_colorist_list.append(credit['person'].replace(",", "")) if credit['role'].lower() in set(self.letterer_synonyms): credit_letterer_list.append(credit['person'].replace(",", "")) if credit['role'].lower() in set(self.cover_synonyms): credit_cover_list.append(credit['person'].replace(",", "")) if credit['role'].lower() in set(self.editor_synonyms): credit_editor_list.append(credit['person'].replace(",", "")) # second, convert each list to string, and add to XML struct if len(credit_writer_list) > 0: node = ET.SubElement(root, 'Writer') node.text = comicapi.utils.listToString(credit_writer_list) if len(credit_penciller_list) > 0: node = ET.SubElement(root, 'Penciller') node.text = comicapi.utils.listToString(credit_penciller_list) if len(credit_inker_list) > 0: node = ET.SubElement(root, 'Inker') node.text = comicapi.utils.listToString(credit_inker_list) if len(credit_colorist_list) > 0: node = ET.SubElement(root, 'Colorist') node.text = comicapi.utils.listToString(credit_colorist_list) if len(credit_letterer_list) > 0: node = ET.SubElement(root, 'Letterer') node.text = comicapi.utils.listToString(credit_letterer_list) if len(credit_cover_list) > 0: node = ET.SubElement(root, 'CoverArtist') node.text = comicapi.utils.listToString(credit_cover_list) if len(credit_editor_list) > 0: node = ET.SubElement(root, 'Editor') node.text = comicapi.utils.listToString(credit_editor_list) assign('Publisher', md.publisher) assign('Imprint', md.imprint) assign('Genre', md.genre) assign('Web', md.webLink) assign('PageCount', md.pageCount) assign('LanguageISO', md.language) assign('Format', md.format) assign('AgeRating', md.maturityRating) if md.blackAndWhite is not None and md.blackAndWhite: ET.SubElement(root, 'BlackAndWhite').text = "Yes" assign('Manga', md.manga) assign('Characters', md.characters) assign('Teams', md.teams) assign('Locations', md.locations) assign('ScanInformation', md.scanInfo) # loop and add the page entries under pages node if len(md.pages) > 0: pages_node = ET.SubElement(root, 'Pages') for page_dict in md.pages: page_node = ET.SubElement(pages_node, 'Page') page_node.attrib = page_dict # self pretty-print self.indent(root) # wrap it in an ElementTree instance, and save as XML tree = ET.ElementTree(root) return tree def convertXMLToMetadata(self, tree): root = tree.getroot() if root.tag != 'ComicInfo': raise KeyError("Not a ComicInfo XML!") # return None metadata = GenericMetadata() md = metadata # Helper function def xlate(tag): node = root.find(tag) if node is not None: return node.text else: return None md.series = xlate('Series') md.title = xlate('Title') md.issue = xlate('Number') md.issueCount = xlate('Count') md.volume = xlate('Volume') md.alternateSeries = xlate('AlternateSeries') md.alternateNumber = xlate('AlternateNumber') md.alternateCount = xlate('AlternateCount') md.comments = xlate('Summary') md.notes = xlate('Notes') md.year = xlate('Year') md.month = xlate('Month') md.day = xlate('Day') md.publisher = xlate('Publisher') md.imprint = xlate('Imprint') md.genre = xlate('Genre') md.webLink = xlate('Web') md.language = xlate('LanguageISO') md.format = xlate('Format') md.manga = xlate('Manga') md.characters = xlate('Characters') md.teams = xlate('Teams') md.locations = xlate('Locations') md.pageCount = xlate('PageCount') md.scanInfo = xlate('ScanInformation') md.storyArc = xlate('StoryArc') md.seriesGroup = xlate('SeriesGroup') md.maturityRating = xlate('AgeRating') tmp = xlate('BlackAndWhite') md.blackAndWhite = False if tmp is not None and tmp.lower() in ["yes", "true", "1"]: md.blackAndWhite = True # Now extract the credit info for n in root: if (n.tag == 'Writer' or n.tag == 'Penciller' or n.tag == 'Inker' or n.tag == 'Colorist' or n.tag == 'Letterer' or n.tag == 'Editor'): if n.text is not None: for name in n.text.split(','): metadata.addCredit(name.strip(), n.tag) if n.tag == 'CoverArtist': if n.text is not None: for name in n.text.split(','): metadata.addCredit(name.strip(), "Cover") # parse page data now pages_node = root.find("Pages") if pages_node is not None: for page in pages_node: metadata.pages.append(page.attrib) # print page.attrib metadata.isEmpty = False return metadata def writeToExternalFile(self, filename, metadata): tree = self.convertMetadataToXML(self, metadata) tree.write(filename, encoding='utf-8') def readFromExternalFile(self, filename): tree = ET.parse(filename) return self.convertXMLToMetadata(tree)
37.014184
95
0.603372
4a2503e4ce2f4db46b32a5ac3f91beb31c971221
6,261
py
Python
clean_fac_staff_data.py
code-ape/SocialJusticeDataProcessing
7535fe9d510e44b0eb08067b6c526f987917a0f8
[ "Apache-2.0" ]
null
null
null
clean_fac_staff_data.py
code-ape/SocialJusticeDataProcessing
7535fe9d510e44b0eb08067b6c526f987917a0f8
[ "Apache-2.0" ]
null
null
null
clean_fac_staff_data.py
code-ape/SocialJusticeDataProcessing
7535fe9d510e44b0eb08067b6c526f987917a0f8
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import csv, json import os import traceback import settings import tools diverse_matcher = { "Very Diverse": 3, "Moderately Diverse": 2, "Slightly Diverse": 1, "Not Diverse": 0 } importance_matcher = { "Very Important": 3, "Moderately Important": 2, "Slightly Important": 1, "Slightly  Unimportant": -1, #contains special ascii character "Moderately Unimportant": -2, "Very Unimporant": -3 } agreement_matcher = { "Strongly Agree": 3, "Moderately Agree": 2, "Slightly Agree": 1, "Slightly Disagree": -1, "Moderately Disagree": -2, "Strongly Disagree": -3 } def clean_fac_staff_data(fac_staff_data): fac_staff_clean_key = [] fac_staff_clean_data = [] # strip initial entry that is the question each answer coorelates to for i in xrange(1, len(fac_staff_data)): try: print('.'), raw_entry = fac_staff_data[i] clean_entry = [] # ignore timestamp # position position_matcher = {"Staff": "staff", "Non-Tenured Faculty": "nontenured faculty", "Tenured Faculty": "tenured faculty"} position = position_matcher[raw_entry[1]] clean_entry.append(('position', raw_entry[1], position)) # race race_matcher = {"African American / Black": "black", "Asian": "asian", "Hispanic / Latino / Latina": "hispanic", "Non-Hispanic White": "white", "Pacific Islander / Hawaiian" : "hawaiian", "Not Listed": "not listed" } race = race_matcher[raw_entry[2]] clean_entry.append(('race', raw_entry[2], race)) # bio gender bio_gender_matcher = {"Female": "female", "Male": "male"} bio_gender = bio_gender_matcher[raw_entry[3]] clean_entry.append(('bio_gender', raw_entry[3], bio_gender)) # id gender id_gender_matcher = {"Man": "male", "Woman": "female", "Intersexual": "intersexual", "Transgender": "transgender", "Not Listed": "not listed"} id_gender = id_gender_matcher[raw_entry[4]] clean_entry.append(('id_gender', raw_entry[4], id_gender)) # sexuality sexuality_matcher = {"Asexual": "asexual", "Bisexual": "bisexual", "Gay": "gay", "Heterosexual": "heterosexual", "Lesbian": "lesbian", "Questioning": "questioning", "Not Listed": "not listed" } sexuality = sexuality_matcher[raw_entry[5]] clean_entry.append(('sexuality', raw_entry[5], sexuality)) # years at E&H years_working_matcher = {"1st year": 1, "2-5": 3.5, "6-10": 8, "11-19": 15, "20+": 25 } years_working = years_working_matcher[raw_entry[6]] clean_entry.append(('years_working', raw_entry[6], years_working)) # division division_matcher = {"Humanities": "humanities", "Life Sciences": "life sciences", "Social Sciences": "social sciences", "": None } division = division_matcher[raw_entry[7]] clean_entry.append(('division', raw_entry[7], division)) # student body diversity perception student_body_diversity_perception = diverse_matcher[raw_entry[8]] clean_entry.append(("student_body_diversity_perception", raw_entry[8], student_body_diversity_perception)) # student faculty staff diversity perception student_fac_staff_diversity_perception = diverse_matcher[raw_entry[9]] clean_entry.append(('student_fac_staff_diversity_perception', raw_entry[9], student_fac_staff_diversity_perception)) # diversity importance diversity_importance = importance_matcher[raw_entry[10]] clean_entry.append(('diversity_importance', raw_entry[10], diversity_importance)) # experience loop categories = ( 'diversity_emphesis', 'race_experience', 'financial_experience', 'religion_experience', 'gender_experience', 'sexuality_experience', 'safe_in_buildings', 'safe_walking', 'asking_me_for_help', 'help_availability', 'student_of_diff_race_seek_help', 'greek_life_discriminiation', 'non_greek_life_discriminiation', 'athletics_discrimination', 'non_athletics_discrimination', 'prc_access' ) number = 11 for cat in categories: raw_val = raw_entry[number] clean_val = agreement_matcher[raw_val] clean_entry.append((cat, raw_val, clean_val)) number += 1 fac_staff_clean_data.append(clean_entry) except Exception as e: print("\nProcessing failed for entry {}".format(i)) traceback.print_exc() raise(e) return fac_staff_clean_data def main(): print("Loading fac_staff raw csv.") fac_staff_data = [] with open(settings.fac_staff_raw_path, 'r') as csvfile: reader = csv.reader(csvfile) for row in reader: fac_staff_data.append(row) fac_staff_clean_data = clean_fac_staff_data(fac_staff_data) print('\nFinished processing {} fac_staff responses.'.format(len(fac_staff_clean_data))) # tools.print_first(3, fac_staff_clean_data) # deleting old clean data if os.path.exists(settings.fac_staff_clean_path): print("Deleting old clean data.") os.remove(settings.fac_staff_clean_path) else: print("No old clean data to delete.") print("Writing data to: {}".format(settings.fac_staff_clean_path)) try: with open(settings.fac_staff_clean_path, "w") as f: f.write(json.dumps(fac_staff_clean_data)) except Exception as e: print("Failed to write clean fac_staff data!") raise e if __name__ == "__main__": print("Starting clean_data.py\n") main() print("\nExiting clean_data.py")
35.174157
93
0.598467
4a2503e61a636e8f8bcb04a5ab77cb9812bff9ca
6,689
py
Python
huskar_api/models/auth/team.py
mowangdk/huskar
7692fbc5672a5ae6e2a33616c493466a7137f8cd
[ "MIT" ]
59
2019-10-31T10:50:10.000Z
2021-11-26T04:32:25.000Z
huskar_api/models/auth/team.py
mowangdk/huskar
7692fbc5672a5ae6e2a33616c493466a7137f8cd
[ "MIT" ]
5
2019-10-31T10:37:30.000Z
2020-03-02T06:45:46.000Z
huskar_api/models/auth/team.py
mowangdk/huskar
7692fbc5672a5ae6e2a33616c493466a7137f8cd
[ "MIT" ]
9
2019-10-31T10:35:00.000Z
2019-12-01T14:13:58.000Z
from __future__ import absolute_import import logging from sqlalchemy import Column, Integer, Unicode, UniqueConstraint from sqlalchemy.dialects.mysql import TINYINT from sqlalchemy.exc import IntegrityError # TODO Do not use this base exception in future from huskar_api.service.exc import HuskarApiException from huskar_api.models.db import UpsertMixin from huskar_api.models.signals import ( team_will_be_archived, team_will_be_deleted) from huskar_api.models import ( DeclarativeBase, CacheMixin, DBSession, cache_on_arguments) from huskar_api.models.exceptions import NameOccupiedError from .user import User from .role import Authority logger = logging.getLogger(__name__) class Team(CacheMixin, DeclarativeBase): """The team which organized applications of Huskar.""" __tablename__ = 'team' #: The team name which serves minimal mode DEFAULT_NAME = 'default' STATUS_ACTIVE = 0 STATUS_ARCHIVED = 1 id = Column(Integer, primary_key=True) team_name = Column(Unicode(32, collation='utf8mb4_bin'), nullable=False, unique=True) team_desc = Column(Unicode(128, collation='utf8mb4_bin')) status = Column(TINYINT, nullable=False, default=STATUS_ACTIVE) @classmethod def get_by_name(cls, name): team_id = cls.get_id_by_name(name) if team_id is not None: return cls.get(team_id) @classmethod @cache_on_arguments(5 * 60) def get_id_by_name(cls, name): cond = ( (cls.team_name == name) & (cls.status == cls.STATUS_ACTIVE) ) return DBSession().query(cls.id).filter(cond).scalar() @classmethod @cache_on_arguments(5 * 60) def get_all_ids(cls): rs = DBSession().query(cls.id) \ .filter_by(status=cls.STATUS_ACTIVE).all() return sorted(r[0] for r in rs) @classmethod def get_multi_by_admin(cls, user_id): ids = TeamAdmin.get_team_ids(user_id) return cls.mget(ids) @classmethod def get_all(cls): ids = cls.get_all_ids() return cls.mget(ids) @classmethod def create(cls, name, desc=None): """Creates a new team. :param name: The unique name of team. :param desc: The readable name of team. :returns: The instance of :class:`Team`. """ try: with DBSession().close_on_exit(False) as db: instance = cls(team_name=name, team_desc=desc or name) db.add(instance) except IntegrityError: raise NameOccupiedError cls.flush([instance.id]) cls.get_id_by_name.flush(instance.team_name) cls.get_all_ids.flush() return instance def _set_status(self, status): with DBSession().close_on_exit(False): self.status = status self.__class__.flush([self.id]) self.__class__.get_all_ids.flush() self.__class__.get_id_by_name.flush(self.team_name) @classmethod def delete(cls, team_id): team = cls.get(team_id) with DBSession().close_on_exit(False) as db: team_will_be_deleted.send(cls, db=db, team_id=team_id) for user_id in TeamAdmin.get_user_ids(team_id): TeamAdmin.discard(team_id, user_id) db.query(cls).filter_by(id=team_id).delete() if team is not None: # can be skip safety (instance will be erased) cls.get_id_by_name.flush(team.team_name) cls.get_all_ids.flush() cls.flush([team_id]) def rename_desc(self, new_desc): with DBSession().close_on_exit(False): self.team_desc = new_desc self.__class__.flush([self.id]) def archive(self): team_will_be_archived.send( self.__class__, db=DBSession(), team_id=self.id) self._set_status(self.STATUS_ARCHIVED) def unarchive(self): self._set_status(self.STATUS_ACTIVE) @property def is_active(self): return self.status == self.STATUS_ACTIVE def check_is_admin(self, user_id): """Checks a user is admin of this team or not.""" ids = TeamAdmin.get_user_ids(self.id) return int(user_id) in ids def list_admin(self): """Get the list of admin users for this team. :returns: The list of :class:`User`. """ ids = TeamAdmin.get_user_ids(self.id) return User.mget(ids) def grant_admin(self, user_id): """Grants user as an admin for this team. :param user_id: The id of user. """ TeamAdmin.ensure(self.id, user_id) def dismiss_admin(self, user_id): """Dismisses user's admin role for this team. :param user_id: The id of user. """ TeamAdmin.discard(self.id, user_id) def check_auth(self, authority, user_id): assert authority in Authority return self.check_is_admin(user_id) class TeamAdmin(CacheMixin, UpsertMixin, DeclarativeBase): __tablename__ = 'team_admin' __table_args__ = ( UniqueConstraint( 'user_id', 'team_id', name='uq_team_admin', ), DeclarativeBase.__table_args__, ) id = Column(Integer, primary_key=True) team_id = Column(Integer, nullable=False, index=True) user_id = Column(Integer, nullable=False) @classmethod @cache_on_arguments(5 * 60) def get_user_ids(cls, team_id): rs = DBSession().query(cls.user_id) \ .filter_by(team_id=team_id) \ .order_by(cls.id.asc()) \ .all() return [r[0] for r in rs] @classmethod @cache_on_arguments(5 * 60) def get_team_ids(cls, user_id): rs = DBSession().query(cls.team_id) \ .filter_by(user_id=user_id) \ .order_by(cls.id.asc()) \ .all() return [r[0] for r in rs] @classmethod def flush_by(cls, team_id, user_id): cls.get_user_ids.flush(team_id) cls.get_team_ids.flush(user_id) @classmethod def ensure(cls, team_id, user_id): stmt = cls.upsert().values(team_id=team_id, user_id=user_id) with DBSession().close_on_exit(False) as db: db.execute(stmt) cls.flush_by(team_id, user_id) @classmethod def discard(cls, team_id, user_id): stmt = cls.__table__.delete().where( (cls.team_id == team_id) & (cls.user_id == user_id)) with DBSession().close_on_exit(False) as db: db.execute(stmt) cls.flush_by(team_id, user_id) class TeamNotEmptyError(HuskarApiException): pass
31.257009
76
0.630588
4a2504187fce9e06f3d156d71a6a17ce9a0c4ea0
5,808
py
Python
cool_netstat.py
kilbouri/cool-netstat
bf35ffc8d343cbc88fed834d856fed6beb66600b
[ "Unlicense" ]
null
null
null
cool_netstat.py
kilbouri/cool-netstat
bf35ffc8d343cbc88fed834d856fed6beb66600b
[ "Unlicense" ]
null
null
null
cool_netstat.py
kilbouri/cool-netstat
bf35ffc8d343cbc88fed834d856fed6beb66600b
[ "Unlicense" ]
null
null
null
''' Configuration ''' interval = 10 # number of minutes between completion of a test and starting a new one outfile = "results.txt" # the path/file to output results in show_res = False # show result after each test? ''' Dependencies: speedtest pip3 install speedtest-cli ''' ''' Program ''' from time import localtime, sleep import json import threading try: # import the speedtest module from speedtest-cli import speedtest as st except ImportError: print("\nFailed to import module \"speedtest\". You can install it with:") print("\tpip3 install speedtest-cli") exit() results = list() num_to_day = { # will be used to translate a day (from time.localtime) 0: "Monday", 1: "Tuesday", 2: "Wednesday", 3: "Thursday", 4: "Friday", 5: "Saturday", 6: "Sunday" } def bits_to_megabits(bits) -> float: return bits/1000/1000 def run_speedtest(printRes) -> dict: ''' Runs a speed test and returns a dictionary result ''' t = st.Speedtest() start = localtime() ping = t.results.ping up = bits_to_megabits(t.upload()) dn = bits_to_megabits(t.download()) end = localtime() # assemble tuple result = { "ping": ping, "upload": up, "download": dn, "t_started": { "weekday": start[6], "hour": start[3], "minute": start[4], "second": start[5] }, "t_finished": { "weekday": end[6], "hour": end[3], "minute": end[4], "second": end[5] } } if printRes: # print the results of the most recent test print(f"\tPing: %d ms" % ping) print(f"\tDown: %.2f Mbps" % dn) print(f"\t Up: %.2f Mbps" % up) return result def make_time_string(result) -> str: ''' Creates a 24-hour time string (hh:mm) from a given speedtest result ''' hour = result["t_started"]["hour"] minute = result["t_started"]["minute"] if hour < 10: string = "0" + str(hour) else: string = str(hour) string += ":" if minute < 10: string += "0" + str(minute) else: string += str(minute) return string def create_stat_string(name, average, best, worst, unit="") -> str: ''' Creates a string to be printed that displays the best, worst, and average of a given statistic in a human-readable format ''' t_best = make_time_string(best_ping_result) t_worst = make_time_string(worst_ping_result) string = "\t" + name + "\n" string += ("\t\tAverage: %.2f" % average) + f"{unit}\n" string += ("\t\t Best: %.2f" % best) + f"{unit} (Time: " + t_best + ")\n" string += ("\t\t Worst: %.2f" % worst) + f"{unit} (Time: " + t_worst + ")\n" return string if __name__ == "__main__": completed = 0 print("Running network speed tests. Use [Ctrl/Cmd + C] to stop data collection.") while (True): try: results.append(run_speedtest(show_res)) print(f"Completed tests: {completed + 1}", end="\n") completed += 1 sleep(60 * interval) except KeyboardInterrupt: print("Stopping data collection. Please wait for data compilation.") break res_by_day = dict() for result in results: if result["t_started"]["weekday"] not in res_by_day.keys(): res_by_day[result["t_started"]["weekday"]] = list() res_by_day[result["t_started"]["weekday"]].append(result) stats_by_day = dict() for day in range(0, 7): if day not in res_by_day.keys(): continue # stats for each weekday count = len(res_by_day[day]) worst_ping_result = res_by_day[day][0] best_ping_result = res_by_day[day][0] avg_ping = 0 best_up_result = res_by_day[day][0] worst_up_result = res_by_day[day][0] avg_up = 0 best_down_result = res_by_day[day][0] worst_down_result = res_by_day[day][0] avg_down = 0 # determine the day's stats for result in res_by_day[day]: ping = result["ping"] up = result["upload"] down = result["download"] # ping -> lower is better if (worst_down_result["ping"] < ping): worst_ping_result = result if (ping < best_ping_result["ping"]): best_ping_result = result avg_ping += ping # upload -> higher is better if (up < worst_up_result["upload"]): worst_up_result = result if (best_up_result["upload"] < up): best_up_result = result avg_up += up # download -> higher is better if (down < worst_down_result["download"]): worst_down_result = result if (best_down_result["download"] < down): best_down_result = result avg_down += down avg_ping = float(avg_ping) / count avg_up = float(avg_up) / count avg_down = float(avg_down) / count # store the day's stats stats_by_day[num_to_day[day]] = { "ping": { "best": best_ping_result, "worst": worst_ping_result, "average": avg_ping }, "upload": { "best": best_up_result, "worst": worst_up_result, "average": avg_up }, "download": { "best": best_down_result, "worst": worst_down_result, "average": avg_down } } # output the stats of the weekday print(f"Stats for {num_to_day[day]}:") best_ping = best_ping_result["ping"] worst_ping = worst_ping_result["ping"] print(create_stat_string("Ping", avg_ping, best_ping, worst_ping, unit="ms")) best_up = best_up_result["upload"] worst_up = worst_up_result["upload"] print(create_stat_string("Upload", avg_up, best_up, worst_up, unit="Mbps")) best_down = best_down_result["download"] worst_down = worst_down_result["download"] print(create_stat_string("Download", avg_down, best_down, worst_down, unit="Mbps")) with(open(outfile, "w")) as out: final_results = { "stats": stats_by_day, "datapoints": results } out.write(json.dumps(final_results, indent=4)) print("Data has been logged in " + outfile)
25.928571
96
0.634298
4a25049fb5b6031c0db1d5cdf12f97fb219dae07
2,937
py
Python
check_jenkins_job_buildable.py
stdevel/nagios-plugins
5ea0e186fa6fdd0e70681c7fed02c6d46d50bbb5
[ "IBM-pibs", "Apache-1.1" ]
null
null
null
check_jenkins_job_buildable.py
stdevel/nagios-plugins
5ea0e186fa6fdd0e70681c7fed02c6d46d50bbb5
[ "IBM-pibs", "Apache-1.1" ]
null
null
null
check_jenkins_job_buildable.py
stdevel/nagios-plugins
5ea0e186fa6fdd0e70681c7fed02c6d46d50bbb5
[ "IBM-pibs", "Apache-1.1" ]
null
null
null
#!/usr/bin/env python # vim:ts=4:sts=4:sw=4:et # # Author: Hari Sekhon # Date: 2017-06-22 22:29:37 +0200 (Thu, 22 Jun 2017) # # https://github.com/harisekhon/nagios-plugins # # License: see accompanying Hari Sekhon LICENSE file # # If you're using my code you're welcome to connect with me on LinkedIn # and optionally send me feedback to help steer this or other code I publish # # https://www.linkedin.com/in/harisekhon # """ Nagios Plugin to check if a Jenkins job is set to buildable via the Rest API The --password switch accepts either a password or an API token Tested on Jenkins 2.60.1 """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os import sys import traceback srcdir = os.path.abspath(os.path.dirname(__file__)) libdir = os.path.join(srcdir, 'pylib') sys.path.append(libdir) try: # pylint: disable=wrong-import-position from harisekhon import RestNagiosPlugin from harisekhon.utils import validate_chars, ERRORS except ImportError as _: print(traceback.format_exc(), end='') sys.exit(4) __author__ = 'Hari Sekhon' __version__ = '0.1' class CheckJenkinsJob(RestNagiosPlugin): def __init__(self): # Python 2.x super(CheckJenkinsJob, self).__init__() # Python 3.x # super().__init__() self.name = 'Jenkins' self.default_port = 8080 self.json = True self.msg = self.name + ' job ' self.path = None self.job = None self.list_jobs = False self.age = None def add_options(self): super(CheckJenkinsJob, self).add_options() self.add_opt('-j', '--job', help='Job name to check') self.add_opt('-l', '--list', action='store_true', help='List jobs and exit') self.add_thresholds(default_warning=3600, default_critical=7200) def process_options(self): super(CheckJenkinsJob, self).process_options() self.job = self.get_opt('job') self.list_jobs = self.get_opt('list') if self.list_jobs: self.path = '/api/json' else: validate_chars(self.job, 'job', r'A-Za-z0-9\s\._-') self.path = '/job/{job}/api/json'.format(job=self.job) self.msg += "'{job}' is ".format(job=self.job) self.validate_thresholds(integer=False, optional=True) def parse_json(self, json_data): if self.list_jobs: print('Jenkins Jobs:\n') for job in json_data['jobs']: print(job['name']) sys.exit(ERRORS['UNKNOWN']) displayname = json_data['displayName'] assert displayname == self.job buildable = json_data['buildable'] if not buildable: self.critical() self.msg += 'not ' self.msg += 'buildable' if __name__ == '__main__': CheckJenkinsJob().main()
29.079208
84
0.642492
4a25049ff96c819bf75953ad0505149aa6263666
2,705
py
Python
malaya_speech/utils/char.py
dtx525942103/malaya-speech
212c4e890d0cbcbbca0037c89a698b68b05db393
[ "MIT" ]
null
null
null
malaya_speech/utils/char.py
dtx525942103/malaya-speech
212c4e890d0cbcbbca0037c89a698b68b05db393
[ "MIT" ]
null
null
null
malaya_speech/utils/char.py
dtx525942103/malaya-speech
212c4e890d0cbcbbca0037c89a698b68b05db393
[ "MIT" ]
1
2021-08-19T02:34:41.000Z
2021-08-19T02:34:41.000Z
import six from typing import List PAD = '<PAD>' EOS = '<EOS>' RESERVED_TOKENS = [PAD, EOS] NUM_RESERVED_TOKENS = len(RESERVED_TOKENS) PAD_ID = RESERVED_TOKENS.index(PAD) EOS_ID = RESERVED_TOKENS.index(EOS) VOCAB_SIZE = 256 BLANK = 0 def strip_ids(ids, ids_to_strip): """Strip ids_to_strip from the end ids.""" ids = list(ids) while ids and ids[-1] in ids_to_strip: ids.pop() return ids def generate_vocab(strings: List[str]): """ Generate character vocab sorted based on frequency. Parameters ----------- strings: List[str] Returns -------- result: List[str] """ joined = ' '.join(strings) unique_chars = set(joined) unique_chars = [(c, joined.count(c)) for c in unique_chars] unique_chars = sorted( unique_chars, key = lambda element: element[1], reverse = True ) unique_chars, _ = zip(*unique_chars) unique_chars = list(unique_chars) return RESERVED_TOKENS + unique_chars def encode( string: str, add_eos: bool = True, add_blank: bool = False, lookup: List[str] = None, ): """ Encode string to integer representation based on ascii table or lookup variable. Parameters ----------- string: str add_eos: bool, optional (default=True) add EOS token at the end of encoded. add_blank: bool, optional (default=False) add BLANK token at the starting of encoded, this is for transducer / transformer based. lookup: List[str], optional (default=None) list of unique strings. Returns -------- result: List[int] """ if lookup: if len(lookup) != len(set(lookup)): raise ValueError('lookup must be a list of unique strings') r = [lookup.index(c) for c in string] else: r = [c + NUM_RESERVED_TOKENS for c in string.encode('utf-8')] if add_eos: r = r + [1] if add_blank: r = [BLANK] + r return r def decode(ids, lookup: List[str] = None): """ Decode integer representation to string based on ascii table or lookup variable. Parameters ----------- ids: List[int] lookup: List[str], optional (default=None) list of unique strings. Returns -------- result: str """ decoded_ids = [] int2byte = six.int2byte for id_ in ids: if 0 <= id_ < NUM_RESERVED_TOKENS: decoded_ids.append(RESERVED_TOKENS[int(id_)]) else: if lookup: decoded_ids.append(lookup[id_]) else: decoded_ids.append( int2byte(id_ - NUM_RESERVED_TOKENS).decode('utf-8') ) return ''.join(decoded_ids)
24.816514
95
0.6
4a2504dcc154ee18bdb32d4b4601266999cb63b0
17,798
py
Python
redtubeapi/utils.py
Mattlk13/RedTubeAPI
842c2251188c165a47026d169aa7d3e808666fcf
[ "MIT" ]
null
null
null
redtubeapi/utils.py
Mattlk13/RedTubeAPI
842c2251188c165a47026d169aa7d3e808666fcf
[ "MIT" ]
null
null
null
redtubeapi/utils.py
Mattlk13/RedTubeAPI
842c2251188c165a47026d169aa7d3e808666fcf
[ "MIT" ]
null
null
null
#!/usr/bin/env # -*- coding: utf-8 -*- # author=Kristen # date = 8/8/16 import sys, os from collections import Counter, OrderedDict, MutableSet,namedtuple import logging import datetime import re from logging import FileHandler as _FileHandler from requests import get import feedparser from kgerringrc import * from operator import attrgetter, itemgetter __all__ = ['Cache', 'Entry', 'FeedParser', 'OrderedSet', 'RecordExistsError', 'RedException', 'RSS_FEED', '_parse_date_w3dtf', 'all_deleted', 'change_page', 'getCategoriesList', 'getDeletedVideos', 'getRedtubeVideos', 'getStarDetailedList', 'getStarList', 'getTagList', 'get_datetime', 'get_deleted_videos', 'get_entry', 'get_feed', 'get_info', 'odict', 'parse_datestr', 'prune_dict', 'redtuple', 'request', 'row_is_expanded', 'searchVideos', 'username'] startTime = datetime.datetime.fromtimestamp(logging._startTime) RSS_FEED = RSSFEED = "http://feeds.feedburner.com/redtube/videos" def get_feed(url=RSS_FEED): feed = feedparser.parse(RSS_FEED).get('entries') return feed def prune_dict(d): data = {k: v for k, v in d.items() if v is not None} #def _parse_date_w3dtf(datestr, timetuple=True): # timezonenames = { # 'ut' : 0, 'gmt': 0, 'z': 0, # 'adt': -3, 'ast': -4, 'at': -4, # 'edt': -4, 'est': -5, 'et': -5, # 'cdt': -5, 'cst': -6, 'ct': -6, # 'mdt': -6, 'mst': -7, 'mt': -7, # 'pdt': -7, 'pst': -8, 'pt': -8, # 'a' : -1, 'n': 1, # 'm' : -12, 'y': 12, # } # if not datestr.strip(): # return None # parts = datestr.lower().split('t') # if len(parts) == 1: # # This may be a date only, or may be an MSSQL-style date # parts = parts[0].split() # if len(parts) == 1: # # Treat this as a date only # parts.append('00:00:00z') # elif len(parts) > 2: # return None # date = parts[0].split('-', 2) # if not date or len(date[0]) != 4: # return None # # Ensure that `date` has 3 elements. Using '1' sets the default # # month to January and the default day to the 1st of the month. # date.extend(['1'] * (3 - len(date))) # try: # year, month, day = [int(i) for i in date] # except ValueError: # # `date` may have more than 3 elements or may contain # # non-integer strings. # return None # if parts[1].endswith('z'): # parts[1] = parts[1][:-1] # parts.append('z') # # Append the numeric timezone offset, if any, to parts. # # If this is an MSSQL-style date then parts[2] already contains # # the timezone information, so `append()` will not affect it. # # Add 1 to each value so that if `find()` returns -1 it will be # # treated as False. # loc = parts[1].find('-') + 1 or parts[1].find('+') + 1 or len(parts[1]) + 1 # loc = loc - 1 # parts.append(parts[1][loc:]) # parts[1] = parts[1][:loc] # time = parts[1].split(':', 2) # # Ensure that time has 3 elements. Using '0' means that the # # minutes and seconds, if missing, will default to 0. # time.extend(['0'] * (3 - len(time))) # tzhour = 0 # tzmin = 0 # if parts[2][:1] in ('-', '+'): # try: # tzhour = int(parts[2][1:3]) # tzmin = int(parts[2][4:]) # except ValueError: # return None # if parts[2].startswith('-'): # tzhour = tzhour * -1 # tzmin = tzmin * -1 # else: # tzhour = timezonenames.get(parts[2], 0) # try: # hour, minute, second = [int(float(i)) for i in time] # except ValueError: # return None # # Create the datetime object and timezone delta objects # try: # stamp = datetime(year, month, day, hour, minute, second) # except ValueError: # return None # delta = timedelta(0, 0, 0, 0, tzmin, tzhour) # # Return the date and timestamp in a UTC 9-tuple # if timetuple: # try: # return (stamp - delta).utctimetuple() # except (OverflowError, ValueError): # return None # if not timetuple: # try: # return (stamp - delta) # except (OverflowError, ValueError): # return None # #def parse_datestr(datestr): # return _parse_date_w3dtf(datestr, timetuple=False) # class odict(OrderedDict): def __init__(self, *args, **kwargs): super(odict, self).__init__(*args, **kwargs) def __getattr__(self, attr): return self[attr] def __repr__(self): results = [] for k, v in self.items(): item = '"{}": {}'.format(k, v) results.append(item) display = ', '.join(results) final = '{' + display + '}' return final class OrderedSet(MutableSet): SLICE_ALL = slice(None) """ An OrderedSet is a custom MutableSet that remembers its order, so that every entry has an index that can be looked up. """ import collections def __init__(self, iterable=None): self.items = [] self.map = {} if iterable is not None: self |= iterable def __len__(self): return len(self.items) def __getitem__(self, index): """ Get the item at a given index. If `index` is a slice, you will get back that slice of items. If it's the slice [:], exactly the same object is returned. (If you want an independent copy of an OrderedSet, use `OrderedSet.copy()`.) If `index` is an iterable, you'll get the OrderedSet of items corresponding to those indices. This is similar to NumPy's "fancy indexing". """ if index == self.SLICE_ALL: return self elif hasattr(index, '__index__') or isinstance(index, slice): result = self.items[index] if isinstance(result, list): return OrderedSet(result) else: return result elif self.is_iterable(index): return OrderedSet([self.items[i] for i in index]) else: raise TypeError("Don't know how to index an OrderedSet by %r" % index) def is_iterable(obj): """ Are we being asked to look up a list of things, instead of a single thing? We check for the `__iter__` attribute so that this can cover types that don't have to be known by this module, such as NumPy arrays. Strings, however, should be considered as atomic values to look up, not iterables. The same goes for tuples, since they are immutable and therefore valid entries. We don't need to check for the Python 2 `unicode` type, because it doesn't have an `__iter__` attribute anyway. """ return hasattr(obj, '__iter__') and not isinstance(obj, str) and not isinstance(obj, tuple) def copy(self): return OrderedSet(self) def __getstate__(self): if len(self) == 0: # The state can't be an empty list. # We need to return a truthy value, or else __setstate__ won't be run. # # This could have been done more gracefully by always putting the state # in a tuple, but this way is backwards- and forwards- compatible with # previous versions of OrderedSet. return (None,) else: return list(self) def __setstate__(self, state): if state == (None,): self.__init__([]) else: self.__init__(state) def __contains__(self, key): return key in self.map def find_similar(self, term, max_dist=0.8): from jellyfish import jaro_distance if exact: found = [item for item in self.items if item.__contains__(term)] else: found = [(item, self.index(item)) for item in self.items if term or term.lower() or term.upper() or term.title() in item] if found is None: return None else: return dict(found) def add(self, key): """ Add `key` as an item to this OrderedSet, then return its index. If `key` is already in the OrderedSet, return the index it already had. """ if key not in self.map: self.map[key] = len(self.items) self.items.append(key) return self.map[key] append = add def update(self, sequence): """ Update the set with the given iterable sequence, then return the index of the last element inserted. """ item_index = None try: for item in sequence: item_index = self.add(item) except TypeError: raise ValueError('Argument needs to be an iterable, got %s' % type(sequence)) return item_index def index(self, key): """ Get the index of a given entry, raising an IndexError if it's not present. `key` can be an iterable of entries that is not a string, in which case this returns a list of indices. """ if self.is_iterable(key): return [self.index(subkey) for subkey in key] return self.map[key] def pop(self): """ Remove and return the last element from the set. Raises KeyError if the set is empty. """ if not self.items: raise KeyError('Set is empty') elem = self.items[-1] del self.items[-1] del self.map[elem] return elem def discard(self, key): """ Remove an element. Do not raise an exception if absent. The MutableSet mixin uses this to implement the .remove() method, which *does* raise an error when asked to remove a non-existent item. """ if key in self: i = self.items.index(key) del self.items[i] del self.map[key] for k, v in self.map.items(): if v >= i: self.map[k] = v - 1 def clear(self): """ Remove all items from this OrderedSet. """ del self.items[:] self.map.clear() def __iter__(self): return iter(self.items) def __reversed__(self): return reversed(self.items) def __eq__(self, other): if isinstance(other, OrderedSet): return len(self) == len(other) and self.items == other.items try: other_as_set = set(other) except TypeError: # If `other` can't be converted into a set, it's not equal. return False else: return set(self) == other_as_set @property def _as_dict(self): """The reverse of map""" return dict(enumerate(self.items)) def __repr__(self): if len(self.items) < 10: return 'OrderedSet(%r)' % self.items else: return 'OrderedSet of %d items like %r' % (len(self.items), self[0]) class Cache(object): def __init__(self, *args, **kwargs): self.words = OrderedSet(kwargs.get('replace').words.items) if 'replace' in kwargs else OrderedSet() self.results = odict(kwargs.get('replace').results.items()) if 'replace' in kwargs else odict() def __setitem__(self, k, v): if k not in self.words: self.words.add(k) self.results[k] = v def __getitem__(self, word): if word in self.words.items: answer = self.results.get(word) if answer is None: self.words.remove(word) return None return answer elif word in self.results.keys() and self.results.get(word) is not None and word not in self.words.items: self.words.add(word) self.results.move_to_end(word) return {word: self.results.get(word)} elif word not in self.words.items and word not in self.results.keys(): return None return None class RedException(Exception): pass class RecordExistsError(Exception): def __init__(self, record='', table=''): self.record = record self.table = table self.msg = 'Record "{}" already exists for table "{}"'.format(self.record, self.table) def __str__(self): return repr(self.msg) def get_datetime(s): try: return datetime.strptime(s, '%Y-%m-%d %H:%M:%S') except AttributeError: return datetime.datetime.strptime(s, '%Y-%m-%d %H:%M:%S') def searchVideos(self, **data): client = self or RedClient() query_type = 'redtube.Videos.searchVideos' data = data result = client._request(query_type, **data) result.update(data) return result def change_page(url=None, page=None): url = url or 'http://api.redtube.com/?data=redtube.Videos.searchVideos&page=1' pattern = 'page=(\d+)' current_page = re.search(pattern, url).group(1) pagestr = 'page={}'.format(int(current_page) + 1) or 'page={}'.format(page) newstr = re.sub(pattern, pagestr, url) return newstr redtuple = namedtuple('RedTube', ( 'id', 'url', 'title', 'uploader', 'views', 'rating', 'votes', 'comments', 'upload_date', 'duration', 'tags', 'categories', 'stars')) def getCategoriesList(): raw_categories = get('http://api.redtube.com/?data=redtube.Categories.getCategoriesList&output=json').json().get( 'categories') categories = [entry['category'] for entry in raw_categories] return categories def getTagList(): raw_tags = get('http://api.redtube.com/?data=redtube.Tags.getTagList&output=json').json().get('tags') tags = [entry['tag']['tag_name'] for entry in raw_tags] return tags def getStarList(): raw_stars = get('http://api.redtube.com/?data=redtube.Stars.getStarList&output=json').json().get('stars') stars = [entry['star']['star_name'] for entry in raw_stars] return stars def getStarDetailedList(): raw_stars = get('http://api.redtube.com/?data=redtube.Stars.getStarDetailedList&output=json').json().get('stars') stars = [(entry['star']['star_name'], entry['star']['star_url']) for entry in raw_stars] return stars def username(url): text = get(url).text username = re.compile('<td class="withbadge">\\s*<a href="/(?P<username>\\w+)"') # likes = re.compile('<span class="percent-likes">(\d\d\d|\d\d|\d)%</span>') # views = '<td>102,501\s?<span class="added-time">' if username.search(text): return username.search(text).group('username') return None class FeedParser(object): RSS_FEED = "http://feeds.feedburner.com/redtube/videos" TM = attrgetter('tm_year', 'tm_mon', 'tm_mday', 'tm_hour', 'tm_min', 'tm_sec') def __init__(self): self.feed = feedparser.parse(self.RSS_FEED) self.etag = self.feed.get('etag', None) self.updated_parsed = self.TM(self.feed.get('updated_parsed')) or None self.entries = self.feed.get('entries') def get_ids(self): ids = [entry.get('id').rsplit('/', 1)[-1] for entry in self.entries] return ids def get_entry(i): FEED = feedparser.parse("http://feeds.feedburner.com/redtube/videos").get('entries') entry = FEED[i] id = int(entry.get('id').rsplit('/', 1)[-1]) url = entry.get('feedburner_origlink') info = get_info(url) info['id'] = id info['url'] = url title = entry.get('title') info['title'] = title updated_parsed = entry.get('updated_parsed') tm = attrgetter('tm_year', 'tm_mon', 'tm_mday', 'tm_hour', 'tm_min', 'tm_sec')(updated_parsed) upload_date = datetime(*tm) info['upload_date'] = upload_date content = entry.get('content') summary = entry.get('summary_detail', {}).get('value') other = re.compile( '\s?Added:\s?(?P<added>\d\d\d\d-\d\d-\d\d),\s?Duration:\s?(?P<duration>\d\d:\d\d|\d:\d\d|:\d\d),\s?Rating:\s(?P<rating>\d.\d\d|\d.\d|\d),\s?Views:\s(?P<views>\d+)') gd = other.search(summary).groupdict() if other.search(summary) else {} info.update(gd) views = int(gd.get('views', '0')) info['views'] = views rating = gd.get('rating', '0.00') info['rating'] = rating timing = gd.get('duration', '0:00') info['timing'] = timing duration = int(sum([x[1] * pow(60, x[0]) for x in enumerate(map(int, timing.split(':')[::-1]))])) info['duration'] = duration return info added_at = isodate.parse_date(gd.get('added', '1900-01-01')) link = entry.get('link') updated = entry.get('updated') updated = isodate.parse_datetime(updated) updated_at = attrgetter('year', 'month', 'day', 'hour', 'minute', 'second')(updated) updated_at = datetime(*updated_at) return info class Entry(feedparser.FeedParserDict): def __init__(self, *args, **kwargs): super(Entry, self).__init__(*args, **kwargs) self.url = self.get('feedburner_origlink') or self.get('id', '') self.title = self.get('title').lower() def parse_summary(self): from toolz import partition self.summary = self.get('summary', ' ').lower() title = self.title self.unparsed = summary.split(title)[-1].strip('"').strip().replace(',', '') unparsed_split = self.unparsed.split() if len(unparsed_split) / 2 != 1: return self.unparsed self._summary = dict(partition(2, unparsed_split)) return self._summary # dict(partition(2, unparsed_split)) def duration(self): duration = int(sum([x[1] * pow(60, x[0]) for x in enumerate(map(int, self.duration.split(':')[::-1]))])) ############ def row_is_expanded(self): try: return bool(self.info) except AttributeError: return False def request(data, **kwargs): #todo from urllib.parse import urlencode ordering = set(['newest', 'mostviewed', 'rating']) period = set(['weekly', 'monthly', 'alltime']) kwargs.update({'output': 'json', 'data': data}) url = '%s?%s' % ('http://api.redtube.com/', urlencode(kwargs)) print(url) return get(url).json() def get_info(url): u = G.request(url=url) likes = u.select('//span[@class="percent-likes"]').text('0%') likes = re.search('(\d\d\d|\d\d|\d)%', likes).group(1) tags = '/'.join(u.select('//td[preceding-sibling::td="TAGS"]/a').text_list([])).lower() categories = '/'.join(u.select('//td[preceding-sibling::td="FROM"][3]/*').text_list([])).lower() stars = '/'.join(u.select('//td[preceding-sibling::td="PORNSTARS"]').text_list([])).lower() comments = u.select('//a[@class="comments-btn"]').text('comments (0)') comments = re.search('\s?comments\s?\((\d\d\d\d|\d\d\d|\d\d|\d)\)', comments).group(1) username = u.select('//td[@class="withbadge"]/a').text('') return dict(likes=likes, tags=tags, categories=categories, comments=comments, uploader=username, stars=stars) #todo def get_deleted_videos(page=0): req = request(data='redtube.Videos.getDeletedVideos', ordering='newest', period='all', page=page) return [Row(**entry.get('video')) for entry in req.get('videos')] def getRedtubeVideos(page=0, category=None): http = 'http://api.redtube.com/' url = 'http://api.redtube.com/?data=redtube.Videos.searchVideos&output=json&ordering=newest&page={}'.format(page) count = get(url).json().get('count') videos = get(url).json().get('videos') return [Row(RedClient(), **entry.get('video')) for entry in videos] def getDeletedVideos(page=0): page = page url = 'http://api.redtube.com/?data=redtube.Videos.getDeletedVideos&ordering=newest&period=alltime&output=json&page={}'.format( page) json = get(url).json() count = json.get('count') videos = json.get('videos') return dict(query=url, total=count, videos=videos, page=page) def all_deleted(page=0): url = 'http://api.redtube.com/?data=redtube.Videos.getDeletedVideos&ordering=newest&period=alltime&output=json&page={}'.format( page=page) json = get(url).json() count = json.get('count')
32.537477
166
0.670356
4a2505434fb9ec672dc75d7f5328d5d0141ca5b9
1,851
py
Python
src/deployer/plugins/echo.py
jbenden/deployer
b036fa3030f99ed0730bb3770cf7e01c58c257f1
[ "Apache-2.0" ]
2
2018-08-30T14:14:13.000Z
2022-03-24T15:19:29.000Z
src/deployer/plugins/echo.py
jbenden/deployer
b036fa3030f99ed0730bb3770cf7e01c58c257f1
[ "Apache-2.0" ]
null
null
null
src/deployer/plugins/echo.py
jbenden/deployer
b036fa3030f99ed0730bb3770cf7e01c58c257f1
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2018 Joseph Benden <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ The module plug-in providing the ```echo``` command. .. moduleauthor:: Joseph Benden <[email protected]> :copyright: (c) Copyright 2018 by Joseph Benden. :license: Apache License 2.0, see LICENSE.txt for full details. """ import logging from collections import OrderedDict from deployer.rendering import render from deployer.result import Result from .plugin import Plugin LOGGER = logging.getLogger(__name__) class Echo(Plugin): """Print data to console.""" TAG = 'echo' def __init__(self, msg): """Ctor.""" self.msg = msg['echo'] @staticmethod def valid(node): """Ensure node structure is valid.""" if type(node) is not OrderedDict: return False if Echo.TAG not in node: return False return True @staticmethod def build(node): """Build an `Echo` node.""" yield Echo(node) def execute(self, context): """Perform the plugin's task purpose.""" if context: msg = render(self.msg, **context.variables.last()) else: msg = self.msg for line in msg.splitlines(False): LOGGER.info("| %s", line) return Result(result='success')
25.708333
74
0.653701
4a250616ae55bbb9cadc79db09f445fc985389d4
8,446
py
Python
docs/conf.py
AjanShrestha/rentomatic
30f42a4f349bd1a2d4303dbc4eee4f4066b9c634
[ "MIT" ]
null
null
null
docs/conf.py
AjanShrestha/rentomatic
30f42a4f349bd1a2d4303dbc4eee4f4066b9c634
[ "MIT" ]
null
null
null
docs/conf.py
AjanShrestha/rentomatic
30f42a4f349bd1a2d4303dbc4eee4f4066b9c634
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # # rentomatic documentation build configuration file, created by # sphinx-quickstart on Tue Jul 9 22:26:36 2013. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory is # relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # Get the project root dir, which is the parent dir of this cwd = os.getcwd() project_root = os.path.dirname(cwd) # Insert the project root dir as the first element in the PYTHONPATH. # This lets us ensure that the source package is imported, and that its # version is used. sys.path.insert(0, project_root) import rentomatic # -- General configuration --------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.viewcode'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Rentomatic' copyright = u"2020, Ajan Lal Shrestha" # The version info for the project you're documenting, acts as replacement # for |version| and |release|, also used in various other places throughout # the built documents. # # The short X.Y version. version = rentomatic.__version__ # The full version, including alpha/beta/rc tags. release = rentomatic.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to # some non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built # documents. #keep_warnings = False # -- Options for HTML output ------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a # theme further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as # html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the # top of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon # of the docs. This file should be a Windows icon file (.ico) being # 16x16 or 32x32 pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) # here, relative to this directory. They are copied after the builtin # static files, so a file named "default.css" will overwrite the builtin # "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page # bottom, using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names # to template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. # Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. # Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages # will contain a <link> tag referring to it. The value of this option # must be the base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'rentomaticdoc' # -- Options for LaTeX output ------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto/manual]). latex_documents = [ ('index', 'rentomatic.tex', u'Rentomatic Documentation', u'Ajan Lal Shrestha', 'manual'), ] # The name of an image file (relative to this directory) to place at # the top of the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings # are parts, not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output ------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'rentomatic', u'Rentomatic Documentation', [u'Ajan Lal Shrestha'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ---------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'rentomatic', u'Rentomatic Documentation', u'Ajan Lal Shrestha', 'rentomatic', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
30.601449
76
0.716552
4a2506c873018a3f4274f4d860b8cda748ec373c
158
py
Python
scripts/portal/gold_boss_gate.py
Snewmy/swordie
ae01ed4ec0eb20a18730e8cd209eea0b84a8dd17
[ "MIT" ]
9
2021-04-26T11:59:29.000Z
2021-12-20T13:15:27.000Z
scripts/portal/gold_boss_gate.py
Snewmy/swordie
ae01ed4ec0eb20a18730e8cd209eea0b84a8dd17
[ "MIT" ]
null
null
null
scripts/portal/gold_boss_gate.py
Snewmy/swordie
ae01ed4ec0eb20a18730e8cd209eea0b84a8dd17
[ "MIT" ]
6
2021-07-14T06:32:05.000Z
2022-02-06T02:32:56.000Z
# 252020000 - to gold boss # idk if this is the correct portal progression but i couldn't find another way to link everything together sm.warp(252030000, 5)
31.6
107
0.772152
4a2506db2c71f143d623b0584d66060be9f68943
1,806
py
Python
ace/label.py
jflournoy/ACE
b28a4eddfb31cd758df38f48d170e970618e16da
[ "MIT" ]
20
2015-01-16T19:39:51.000Z
2022-02-22T19:50:46.000Z
ace/label.py
jflournoy/ACE
b28a4eddfb31cd758df38f48d170e970618e16da
[ "MIT" ]
2
2015-10-15T19:34:57.000Z
2017-02-21T22:11:21.000Z
ace/label.py
jflournoy/ACE
b28a4eddfb31cd758df38f48d170e970618e16da
[ "MIT" ]
12
2015-05-08T20:06:26.000Z
2020-05-05T09:34:00.000Z
# from nltk import * import re from collections import Counter from database import Article from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer import pandas as pd def extract_ngram_features(db, tfidf=True, save=None, vocabulary=None, require_activations=True, **kwargs): ''' Takes text from an article as input and returns a matrix of document --> ngram weights. At the moment, only extracts terms from abstracts. Args: db: A database instance tfidf: If True, uses a tf-idf tokenizer; otherwise uses raw counts save: an optional path to save a CSV to; if None, returns the resulting data vocabulary: an optional list of ngrams to restrict extraction to require_activations: When True, only articles containing at least one fMRI activation table will be included. When False, use all articles in DB. kwargs: Optional keywords passed onto the scikit-learn vectorizer. Common args are ngram_range, min_df, max_df, stop_words, and vocabulary. ''' # Extract article texts--for now, uses abstracts articles = db.session.query(Article.id, Article.abstract) if require_activations: articles = articles.filter(Article.tables.any()) pmids, corpus = zip(*articles.all()) # Instantiate vectorizer--either simple counts, or tf-idf vectorizer = TfidfVectorizer if tfidf else CountVectorizer vectorizer = vectorizer(vocabulary=vocabulary, **kwargs) # Transform texts weights = vectorizer.fit_transform(corpus).toarray() names = vectorizer.get_feature_names() data = pd.DataFrame(weights, columns=names, index=pmids) if save is not None: data.to_csv(save, sep='\t', index_label='pmid', encoding='utf-8') else: return data
41.045455
107
0.717608
4a2506ef05b670b2319cbdba9aa52f26f52decd6
1,856
py
Python
tts/espeak.py
javatechs/controller
caf99feb15b85f369f3d929847563be3f391757f
[ "Apache-2.0" ]
null
null
null
tts/espeak.py
javatechs/controller
caf99feb15b85f369f3d929847563be3f391757f
[ "Apache-2.0" ]
null
null
null
tts/espeak.py
javatechs/controller
caf99feb15b85f369f3d929847563be3f391757f
[ "Apache-2.0" ]
1
2020-09-07T22:04:17.000Z
2020-09-07T22:04:17.000Z
import os import tempfile import uuid import logging log = logging.getLogger('RemoTV.tts.espeak') tempDir = None male = None voice_number = None hw_num = None espeak_path = None def setup(robot_config): global tempDir global male global voice_number global hw_num global espeak_path male = robot_config.getboolean('espeak', 'male') voice_number = robot_config.getint('espeak', 'voice_number') if robot_config.has_option('tts', 'speaker_num'): hw_num = robot_config.get('tts', 'speaker_num') else: hw_num = robot_config.get('tts', 'hw_num') if robot_config.has_option('espeak', 'espeak_path'): espeak_path = robot_config.get('espeak', 'espeak_path') else: if os.name == 'nt': espeak_path = '"c:\\Program Files (x86)\\eSpeak\\command_line\\espeak.exe"' else: espeak_path = '/usr/bin/espeak' #set the location to write the temp file to tempDir = tempfile.gettempdir() log.info("TTS temporary directory : %s", tempDir) def say(*args): message = args[0] message = message.encode('ascii', 'ignore') tempFilePath = os.path.join(tempDir, "text_" + str(uuid.uuid4())) f = open(tempFilePath, "wb") f.write(message) f.close() if male: espeak_command = espeak_path + ' -v en-us+m{} -s 170'.format(voice_number) else: espeak_command = espeak_path + ' -v en-us+f{} -s 170'.format(voice_number) if os.name == 'nt': os.system('type ' + tempFilePath + ' | ' + espeak_command ) else: # os.system('cat ' + tempFilePath + ' | ' + espeak_command + ' --stdout | aplay -q -D plughw:{}'.format(hw_num) ) mw_str = 'cat ' + tempFilePath + ' | ' + espeak_command + ' --stdout | aplay -q' log.debug(mw_str) os.system(mw_str) os.remove(tempFilePath)
29.460317
121
0.626078
4a25082298efebb554c3b878070d1dbf07ee8b41
5,100
py
Python
FreeCAD_geometry_generation/racetrack_tapered_cavity.py
alunmorgan/EM_CAD_frontend
9bed7842444129b2c962d2870b9e06782a8999c4
[ "Apache-2.0" ]
2
2020-08-09T19:43:08.000Z
2020-10-10T01:31:30.000Z
FreeCAD_geometry_generation/racetrack_tapered_cavity.py
alunmorgan/EM_CAD_frontend
9bed7842444129b2c962d2870b9e06782a8999c4
[ "Apache-2.0" ]
3
2019-08-15T19:36:21.000Z
2022-01-19T03:28:57.000Z
FreeCAD_geometry_generation/racetrack_tapered_cavity.py
alunmorgan/EM_CAD_frontend
9bed7842444129b2c962d2870b9e06782a8999c4
[ "Apache-2.0" ]
null
null
null
from freecad_elements import make_beampipe, make_racetrack_aperture, make_circular_aperture,\ make_taper, ModelException, parameter_sweep, base_model from sys import argv import os # baseline model parameters INPUT_PARAMETERS = {'racetrack_height': 10e-3, 'racetrack_width': 40e-3, 'racetrack_length': 80e-3, 'cavity_radius': 20e-3, 'cavity_length': 20e-3, 'taper_length': 30e-3, 'pipe_thickness': 2e-3} MODEL_NAME, OUTPUT_PATH = argv def racetrack_to_octagonal_cavity_model(input_parameters): """Generates the geometry for a circular cavity with tapers to a racetrack pipe in FreeCAD. Also writes out the geometry as STL files and writes a "sidecar" text file containing the input parameters used. Args: input_parameters (dict): Dictionary of input parameter names and values. """ try: wire1, face1 = make_racetrack_aperture(input_parameters['racetrack_height'], input_parameters['racetrack_width']) wire2, face2 = make_circular_aperture(input_parameters['cavity_radius']) wire3, face3 = make_racetrack_aperture(input_parameters['racetrack_height'] + input_parameters['pipe_thickness'], input_parameters['racetrack_width'] + input_parameters['pipe_thickness']) wire4, face4 = make_circular_aperture(input_parameters['cavity_radius'] + input_parameters['pipe_thickness']) beampipe_vac1 = make_beampipe(face1, input_parameters['racetrack_length'], (-input_parameters['racetrack_length'] / 2. - input_parameters['taper_length'] - input_parameters['cavity_length'] / 2., 0, 0)) taper_vac1 = make_taper(wire2, wire1, input_parameters['taper_length'], (-input_parameters['cavity_length'] / 2., 0, 0), (0, 180, 0)) beampipe_vac2 = make_beampipe(face2, input_parameters['cavity_length']) taper_vac2 = make_taper(wire2, wire1, input_parameters['taper_length'], (input_parameters['cavity_length'] / 2., 0, 0)) beampipe_vac3 = make_beampipe(face1, input_parameters['racetrack_length'], (input_parameters['racetrack_length'] / 2. + input_parameters['taper_length'] + input_parameters['cavity_length'] / 2., 0, 0)) beampipe1 = make_beampipe(face3, input_parameters['racetrack_length'], (-input_parameters['racetrack_length'] / 2. - input_parameters['taper_length'] - input_parameters['cavity_length'] / 2., 0, 0)) taper1 = make_taper(wire4, wire3, input_parameters['taper_length'], (-input_parameters['cavity_length'] / 2., 0, 0), (0, 180, 0)) beampipe2 = make_beampipe(face4, input_parameters['cavity_length']) taper2 = make_taper(wire4, wire3, input_parameters['taper_length'], (input_parameters['cavity_length'] / 2., 0, 0)) beampipe3 = make_beampipe(face3, input_parameters['racetrack_length'], (input_parameters['racetrack_length'] / 2. + input_parameters['taper_length'] + input_parameters['cavity_length'] / 2., 0, 0)) fin1 = beampipe1.fuse(taper1) fin2 = fin1.fuse(beampipe2) fin3 = fin2.fuse(taper2) fin4 = fin3.fuse(beampipe3) vac1 = beampipe_vac1.fuse(taper_vac1) vac2 = vac1.fuse(beampipe_vac2) vac3 = vac2.fuse(taper_vac2) vac4 = vac3.fuse(beampipe_vac3) full_pipe = fin4.cut(vac4) except Exception as e: raise ModelException(e) # An entry in the parts dictionary corresponds to an STL file. This is useful for parts of differing materials. parts = {'pipe': full_pipe, 'vac': vac4} return parts, os.path.splitext(os.path.basename(MODEL_NAME))[0] base_model(racetrack_to_octagonal_cavity_model, INPUT_PARAMETERS, OUTPUT_PATH, accuracy=10) parameter_sweep(racetrack_to_octagonal_cavity_model, INPUT_PARAMETERS, OUTPUT_PATH, 'cavity_radius', [5e-3, 10e-3, 15e-3, 25e-3, 30e-3]) parameter_sweep(racetrack_to_octagonal_cavity_model, INPUT_PARAMETERS, OUTPUT_PATH, 'taper_length', [10e-3, 20e-3, 40e-3, 50e-3, 60e-3]) parameter_sweep(racetrack_to_octagonal_cavity_model, INPUT_PARAMETERS, OUTPUT_PATH, 'racetrack_height', [15e-3, 20e-3, 25e-3, 30e-3, 35e-3, 40e-3, 45e-3, 50e-3]) parameter_sweep(racetrack_to_octagonal_cavity_model, INPUT_PARAMETERS, OUTPUT_PATH, 'racetrack_width', [20e-3, 30e-3, 50e-3, 60e-3, 70e-3]) parameter_sweep(racetrack_to_octagonal_cavity_model, INPUT_PARAMETERS, OUTPUT_PATH, 'racetrack_length', [50e-3, 100e-3, 150e-3, 200e-3, 250e-3, 300e-3]) parameter_sweep(racetrack_to_octagonal_cavity_model, INPUT_PARAMETERS, OUTPUT_PATH, 'cavity_length', [10e-3, 30e-3])
65.384615
161
0.646275
4a250860c2bee2736db0d8cbb33a31524eb3c35f
3,965
py
Python
tests/test_clblas.py
SarckFour/purecl
72429ff03d224ea8a2665610e1c579cf59d1af53
[ "BSD-2-Clause-FreeBSD" ]
9
2016-07-22T13:33:30.000Z
2022-03-18T11:31:19.000Z
tests/test_clblas.py
SarckFour/purecl
72429ff03d224ea8a2665610e1c579cf59d1af53
[ "BSD-2-Clause-FreeBSD" ]
3
2016-01-03T06:50:23.000Z
2017-07-28T02:57:36.000Z
tests/test_clblas.py
SarckFour/purecl
72429ff03d224ea8a2665610e1c579cf59d1af53
[ "BSD-2-Clause-FreeBSD" ]
9
2015-08-05T12:13:46.000Z
2021-04-15T01:03:40.000Z
""" Copyright (c) 2014, Samsung Electronics Co.,Ltd. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of Samsung Electronics Co.,Ltd.. """ """ opencl4py - OpenCL cffi bindings and helper classes. URL: https://github.com/Samsung/opencl4py Original author: Alexey Kazantsev <[email protected]> """ """ Tests some of the api in opencl4py.blas._clBlas module. """ import unittest import logging import numpy import opencl4py as cl import opencl4py.blas as blas import os class Test(unittest.TestCase): def setUp(self): self.old_env = os.environ.get("PYOPENCL_CTX") if self.old_env is None: os.environ["PYOPENCL_CTX"] = "0:0" self.blas = blas.CLBLAS() def tearDown(self): if self.old_env is None: del os.environ["PYOPENCL_CTX"] else: os.environ["PYOPENCL_CTX"] = self.old_env del self.old_env def _test_gemm(self, gemm, dtype): ctx = cl.Platforms().create_some_context() queue = ctx.create_queue(ctx.devices[0]) a = numpy.zeros([127, 353], dtype=dtype) b = numpy.zeros([135, a.shape[1]], dtype=dtype) c = numpy.zeros([a.shape[0], b.shape[0]], dtype=dtype) numpy.random.seed(numpy.array([123], dtype=numpy.int32)[0]) a[:] = numpy.random.rand(a.size).astype(dtype).reshape(a.shape) b[:] = numpy.random.rand(b.size).astype(dtype).reshape(b.shape) gold_c = numpy.dot(a, b.transpose()) a_buf = ctx.create_buffer( cl.CL_MEM_READ_WRITE | cl.CL_MEM_COPY_HOST_PTR, a) b_buf = ctx.create_buffer( cl.CL_MEM_READ_WRITE | cl.CL_MEM_COPY_HOST_PTR, b) c_buf = ctx.create_buffer( cl.CL_MEM_READ_WRITE | cl.CL_MEM_COPY_HOST_PTR, c) gemm([queue], blas.clblasRowMajor, blas.clblasNoTrans, blas.clblasTrans, a.shape[0], b.shape[0], a.shape[1], 1.0, a_buf, b_buf, 0.0, c_buf) queue.flush() queue.read_buffer(c_buf, c) max_diff = numpy.fabs(c - gold_c).max() self.assertLess(max_diff, 0.00001 if dtype == numpy.float64 else 0.00015) def test_sgemm(self): logging.debug("ENTER: test_sgemm") self._test_gemm(self.blas.sgemm, numpy.float32) logging.debug("EXIT: test_sgemm") def test_dgemm(self): logging.debug("ENTER: test_dgemm") self._test_gemm(self.blas.dgemm, numpy.float64) logging.debug("EXIT: test_dgemm") if __name__ == "__main__": logging.basicConfig(level=logging.DEBUG) unittest.main()
38.872549
79
0.700631
4a250966e8b5afb68d4c15439c392e443329d1c4
328
py
Python
dms_importer/config/docs.py
deepeshgarg007/dms_importer
bc21d2e89b80214a62d2b80ed613965b1260840a
[ "MIT" ]
null
null
null
dms_importer/config/docs.py
deepeshgarg007/dms_importer
bc21d2e89b80214a62d2b80ed613965b1260840a
[ "MIT" ]
null
null
null
dms_importer/config/docs.py
deepeshgarg007/dms_importer
bc21d2e89b80214a62d2b80ed613965b1260840a
[ "MIT" ]
null
null
null
""" Configuration for docs """ # source_link = "https://github.com/[org_name]/dms_importer" # docs_base_url = "https://[org_name].github.io/dms_importer" # headline = "App that does everything" # sub_heading = "Yes, you got that right the first time, everything" def get_context(context): context.brand_html = "Dms Importer"
27.333333
68
0.731707
4a2509da2465fb6d4450ffb2f6598fb16874eba1
16,184
py
Python
sqlite3ct/test/regression.py
bhuztez/sqlite3ct
df8888bdbff0ee5c6830e2ed9681c5f70245ed51
[ "Zlib" ]
1
2020-07-02T14:47:46.000Z
2020-07-02T14:47:46.000Z
sqlite3ct/test/regression.py
bhuztez/sqlite3ct
df8888bdbff0ee5c6830e2ed9681c5f70245ed51
[ "Zlib" ]
null
null
null
sqlite3ct/test/regression.py
bhuztez/sqlite3ct
df8888bdbff0ee5c6830e2ed9681c5f70245ed51
[ "Zlib" ]
null
null
null
# pysqlite2/test/regression.py: pysqlite regression tests # # Copyright (C) 2006-2010 Gerhard Häring <[email protected]> # # This file is part of pysqlite. # # This software is provided 'as-is', without any express or implied # warranty. In no event will the authors be held liable for any damages # arising from the use of this software. # # Permission is granted to anyone to use this software for any purpose, # including commercial applications, and to alter it and redistribute it # freely, subject to the following restrictions: # # 1. The origin of this software must not be misrepresented; you must not # claim that you wrote the original software. If you use this software # in a product, an acknowledgment in the product documentation would be # appreciated but is not required. # 2. Altered source versions must be plainly marked as such, and must not be # misrepresented as being the original software. # 3. This notice may not be removed or altered from any source distribution. import datetime import unittest import sqlite3ct as sqlite import weakref from test import support class RegressionTests(unittest.TestCase): def setUp(self): self.con = sqlite.connect(":memory:") def tearDown(self): self.con.close() def test_PragmaUserVersion(self): # This used to crash pysqlite because this pragma command returns NULL for the column name cur = self.con.cursor() cur.execute("pragma user_version") def test_PragmaSchemaVersion(self): # This still crashed pysqlite <= 2.2.1 con = sqlite.connect(":memory:", detect_types=sqlite.PARSE_COLNAMES) try: cur = self.con.cursor() cur.execute("pragma schema_version") finally: cur.close() con.close() def test_StatementReset(self): # pysqlite 2.1.0 to 2.2.0 have the problem that not all statements are # reset before a rollback, but only those that are still in the # statement cache. The others are not accessible from the connection object. con = sqlite.connect(":memory:", cached_statements=5) cursors = [con.cursor() for x in range(5)] cursors[0].execute("create table test(x)") for i in range(10): cursors[0].executemany("insert into test(x) values (?)", [(x,) for x in range(10)]) for i in range(5): cursors[i].execute(" " * i + "select x from test") con.rollback() def test_ColumnNameWithSpaces(self): cur = self.con.cursor() cur.execute('select 1 as "foo bar [datetime]"') self.assertEqual(cur.description[0][0], "foo bar") cur.execute('select 1 as "foo baz"') self.assertEqual(cur.description[0][0], "foo baz") def test_StatementFinalizationOnCloseDb(self): # pysqlite versions <= 2.3.3 only finalized statements in the statement # cache when closing the database. statements that were still # referenced in cursors weren't closed and could provoke " # "OperationalError: Unable to close due to unfinalised statements". con = sqlite.connect(":memory:") cursors = [] # default statement cache size is 100 for i in range(105): cur = con.cursor() cursors.append(cur) cur.execute("select 1 x union select " + str(i)) con.close() @unittest.skipIf(sqlite.sqlite_version_info < (3, 2, 2), 'needs sqlite 3.2.2 or newer') def test_OnConflictRollback(self): con = sqlite.connect(":memory:") con.execute("create table foo(x, unique(x) on conflict rollback)") con.execute("insert into foo(x) values (1)") try: con.execute("insert into foo(x) values (1)") except sqlite.DatabaseError: pass con.execute("insert into foo(x) values (2)") try: con.commit() except sqlite.OperationalError: self.fail("pysqlite knew nothing about the implicit ROLLBACK") def test_WorkaroundForBuggySqliteTransferBindings(self): """ pysqlite would crash with older SQLite versions unless a workaround is implemented. """ self.con.execute("create table foo(bar)") self.con.execute("drop table foo") self.con.execute("create table foo(bar)") def test_EmptyStatement(self): """ pysqlite used to segfault with SQLite versions 3.5.x. These return NULL for "no-operation" statements """ self.con.execute("") def test_TypeMapUsage(self): """ pysqlite until 2.4.1 did not rebuild the row_cast_map when recompiling a statement. This test exhibits the problem. """ SELECT = "select * from foo" con = sqlite.connect(":memory:",detect_types=sqlite.PARSE_DECLTYPES) con.execute("create table foo(bar timestamp)") con.execute("insert into foo(bar) values (?)", (datetime.datetime.now(),)) con.execute(SELECT) con.execute("drop table foo") con.execute("create table foo(bar integer)") con.execute("insert into foo(bar) values (5)") con.execute(SELECT) def test_ErrorMsgDecodeError(self): # When porting the module to Python 3.0, the error message about # decoding errors disappeared. This verifies they're back again. with self.assertRaises(sqlite.OperationalError) as cm: self.con.execute("select 'xxx' || ? || 'yyy' colname", (bytes(bytearray([250])),)).fetchone() msg = "Could not decode to UTF-8 column 'colname' with text 'xxx" self.assertIn(msg, str(cm.exception)) def test_RegisterAdapter(self): """ See issue 3312. """ self.assertRaises(TypeError, sqlite.register_adapter, {}, None) def test_SetIsolationLevel(self): # See issue 27881. class CustomStr(str): def upper(self): return None def __del__(self): con.isolation_level = "" con = sqlite.connect(":memory:") con.isolation_level = None for level in "", "DEFERRED", "IMMEDIATE", "EXCLUSIVE": with self.subTest(level=level): con.isolation_level = level con.isolation_level = level.lower() con.isolation_level = level.capitalize() con.isolation_level = CustomStr(level) # setting isolation_level failure should not alter previous state con.isolation_level = None con.isolation_level = "DEFERRED" pairs = [ (1, TypeError), (b'', TypeError), ("abc", ValueError), ("IMMEDIATE\0EXCLUSIVE", ValueError), ("\xe9", ValueError), ] for value, exc in pairs: with self.subTest(level=value): with self.assertRaises(exc): con.isolation_level = value self.assertEqual(con.isolation_level, "DEFERRED") def test_CursorConstructorCallCheck(self): """ Verifies that cursor methods check whether base class __init__ was called. """ class Cursor(sqlite.Cursor): def __init__(self, con): pass con = sqlite.connect(":memory:") cur = Cursor(con) with self.assertRaises(sqlite.ProgrammingError): cur.execute("select 4+5").fetchall() with self.assertRaisesRegex(sqlite.ProgrammingError, r'^Base Cursor\.__init__ not called\.$'): cur.close() def test_StrSubclass(self): """ The Python 3.0 port of the module didn't cope with values of subclasses of str. """ class MyStr(str): pass self.con.execute("select ?", (MyStr("abc"),)) def test_ConnectionConstructorCallCheck(self): """ Verifies that connection methods check whether base class __init__ was called. """ class Connection(sqlite.Connection): def __init__(self, name): pass con = Connection(":memory:") with self.assertRaises(sqlite.ProgrammingError): cur = con.cursor() def test_CursorRegistration(self): """ Verifies that subclassed cursor classes are correctly registered with the connection object, too. (fetch-across-rollback problem) """ class Connection(sqlite.Connection): def cursor(self): return Cursor(self) class Cursor(sqlite.Cursor): def __init__(self, con): sqlite.Cursor.__init__(self, con) con = Connection(":memory:") cur = con.cursor() cur.execute("create table foo(x)") cur.executemany("insert into foo(x) values (?)", [(3,), (4,), (5,)]) cur.execute("select x from foo") con.rollback() with self.assertRaises(sqlite.InterfaceError): cur.fetchall() def test_AutoCommit(self): """ Verifies that creating a connection in autocommit mode works. 2.5.3 introduced a regression so that these could no longer be created. """ con = sqlite.connect(":memory:", isolation_level=None) def test_PragmaAutocommit(self): """ Verifies that running a PRAGMA statement that does an autocommit does work. This did not work in 2.5.3/2.5.4. """ cur = self.con.cursor() cur.execute("create table foo(bar)") cur.execute("insert into foo(bar) values (5)") cur.execute("pragma page_size") row = cur.fetchone() def test_ConnectionCall(self): """ Call a connection with a non-string SQL request: check error handling of the statement constructor. """ self.assertRaises(TypeError, self.con, 1) def test_Collation(self): def collation_cb(a, b): return 1 self.assertRaises(sqlite.ProgrammingError, self.con.create_collation, # Lone surrogate cannot be encoded to the default encoding (utf8) "\uDC80", collation_cb) def test_RecursiveCursorUse(self): """ http://bugs.python.org/issue10811 Recursively using a cursor, such as when reusing it from a generator led to segfaults. Now we catch recursive cursor usage and raise a ProgrammingError. """ con = sqlite.connect(":memory:") cur = con.cursor() cur.execute("create table a (bar)") cur.execute("create table b (baz)") def foo(): cur.execute("insert into a (bar) values (?)", (1,)) yield 1 with self.assertRaises(sqlite.ProgrammingError): cur.executemany("insert into b (baz) values (?)", ((i,) for i in foo())) def test_ConvertTimestampMicrosecondPadding(self): """ http://bugs.python.org/issue14720 The microsecond parsing of convert_timestamp() should pad with zeros, since the microsecond string "456" actually represents "456000". """ con = sqlite.connect(":memory:", detect_types=sqlite.PARSE_DECLTYPES) cur = con.cursor() cur.execute("CREATE TABLE t (x TIMESTAMP)") # Microseconds should be 456000 cur.execute("INSERT INTO t (x) VALUES ('2012-04-04 15:06:00.456')") # Microseconds should be truncated to 123456 cur.execute("INSERT INTO t (x) VALUES ('2012-04-04 15:06:00.123456789')") cur.execute("SELECT * FROM t") values = [x[0] for x in cur.fetchall()] self.assertEqual(values, [ datetime.datetime(2012, 4, 4, 15, 6, 0, 456000), datetime.datetime(2012, 4, 4, 15, 6, 0, 123456), ]) def test_InvalidIsolationLevelType(self): # isolation level is a string, not an integer self.assertRaises(TypeError, sqlite.connect, ":memory:", isolation_level=123) def test_NullCharacter(self): # Issue #21147 con = sqlite.connect(":memory:") self.assertRaises(ValueError, con, "\0select 1") self.assertRaises(ValueError, con, "select 1\0") cur = con.cursor() self.assertRaises(ValueError, cur.execute, " \0select 2") self.assertRaises(ValueError, cur.execute, "select 2\0") def test_CommitCursorReset(self): """ Connection.commit() did reset cursors, which made sqlite3 to return rows multiple times when fetched from cursors after commit. See issues 10513 and 23129 for details. """ con = sqlite.connect(":memory:") con.executescript(""" create table t(c); create table t2(c); insert into t values(0); insert into t values(1); insert into t values(2); """) self.assertEqual(con.isolation_level, "") counter = 0 for i, row in enumerate(con.execute("select c from t")): with self.subTest(i=i, row=row): con.execute("insert into t2(c) values (?)", (i,)) con.commit() if counter == 0: self.assertEqual(row[0], 0) elif counter == 1: self.assertEqual(row[0], 1) elif counter == 2: self.assertEqual(row[0], 2) counter += 1 self.assertEqual(counter, 3, "should have returned exactly three rows") def test_Bpo31770(self): """ The interpreter shouldn't crash in case Cursor.__init__() is called more than once. """ def callback(*args): pass con = sqlite.connect(":memory:") cur = sqlite.Cursor(con) ref = weakref.ref(cur, callback) cur.__init__(con) del cur # The interpreter shouldn't crash when ref is collected. del ref support.gc_collect() def test_DelIsolation_levelSegfault(self): with self.assertRaises(AttributeError): del self.con.isolation_level class UnhashableFunc: __hash__ = None def __init__(self, return_value=None): self.calls = 0 self.return_value = return_value def __call__(self, *args, **kwargs): self.calls += 1 return self.return_value class UnhashableCallbacksTestCase(unittest.TestCase): """ https://bugs.python.org/issue34052 Registering unhashable callbacks raises TypeError, callbacks are not registered in SQLite after such registration attempt. """ def setUp(self): self.con = sqlite.connect(':memory:') def tearDown(self): self.con.close() def test_progress_handler(self): f = UnhashableFunc(return_value=0) with self.assertRaisesRegex(TypeError, 'unhashable type'): self.con.set_progress_handler(f, 1) self.con.execute('SELECT 1') self.assertFalse(f.calls) def test_func(self): func_name = 'func_name' f = UnhashableFunc() with self.assertRaisesRegex(TypeError, 'unhashable type'): self.con.create_function(func_name, 0, f) msg = 'no such function: %s' % func_name with self.assertRaisesRegex(sqlite.OperationalError, msg): self.con.execute('SELECT %s()' % func_name) self.assertFalse(f.calls) def test_authorizer(self): f = UnhashableFunc(return_value=sqlite.SQLITE_DENY) with self.assertRaisesRegex(TypeError, 'unhashable type'): self.con.set_authorizer(f) self.con.execute('SELECT 1') self.assertFalse(f.calls) def test_aggr(self): class UnhashableType(type): __hash__ = None aggr_name = 'aggr_name' with self.assertRaisesRegex(TypeError, 'unhashable type'): self.con.create_aggregate(aggr_name, 0, UnhashableType('Aggr', (), {})) msg = 'no such function: %s' % aggr_name with self.assertRaisesRegex(sqlite.OperationalError, msg): self.con.execute('SELECT %s()' % aggr_name)
36.698413
98
0.608873
4a250a1924e20872b7aae983ee58db03555f8dd1
3,740
py
Python
subset.py
ajyl/KEMP
d71d34e3fb1d636db7f2cf40f6a3aa0040681389
[ "MIT" ]
null
null
null
subset.py
ajyl/KEMP
d71d34e3fb1d636db7f2cf40f6a3aa0040681389
[ "MIT" ]
null
null
null
subset.py
ajyl/KEMP
d71d34e3fb1d636db7f2cf40f6a3aa0040681389
[ "MIT" ]
null
null
null
""" Subset """ import os import ast from collections import defaultdict from constants import KEMP_HOME KEMP_FILEPATH = os.path.join(KEMP_HOME, "result/KEMP/KEMP.txt") def load_data(filepath): """ Load data """ with open(filepath, "r") as file_p: data = file_p.readlines() emotion = None context = None concept = None preds = None ref = None formatted = {} curr_id = 0 for idx, line in enumerate(data): if line.startswith("Emotion:"): if emotion is not None: breakpoint() raise RuntimeError("Unexpected emotion") emotion = line.replace("Emotion:", "").strip() elif line.startswith("Context:"): if context is not None: breakpoint() raise RuntimeError("Unexpected context") context = line.replace("Context:", "").strip() context = ast.literal_eval(context) elif line.startswith("Concept:"): if concept is not None: breakpoint() raise RuntimeError("Unexpected concept") concept = line.replace("Concept:", "").strip() header = "[defaultdict(<class \"list\">, " concept = concept[len(header):-2] concept = ast.literal_eval(concept) elif line.startswith("Pred:"): if preds is not None: breakpoint() raise RuntimeError("Unexpected pref.") pred = line.replace("Pred:", "").strip() sents = pred.replace("! ", ". ").split(".") sents = [ sent.replace("?", "").replace("!", "").strip() for sent in sents if sent != "" ] preds = [x for x in sents if x != ""] elif line.startswith("Ref:"): if ref is not None: breakpoint() raise RuntimeError("Unexpected ref") ref = line.replace("Ref:", "").strip() formatted[idx] = { "emotion": emotion, "context": context, "concept": concept, "preds": preds, "ref": ref, } emotion = None context = None concept = None preds = None ref = None return formatted def reformat(data): """ Reformat data into mapping of emotions to list of ids """ reformatted = defaultdict(list) for _id, obj in data.items(): reformatted[obj["emotion"]].append(obj["preds"]) return reformatted def reformat_sentiment(data): """ Reformat into positive, negative sentiments. """ sentiments = { # Positive "joyful": "positive", "excited": "positive", "hopeful": "positive", "faithful": "positive", "content": "positive", "nostalgic": "positive", "grateful": "positive", "trusting": "positive", "impressed": "positive", "proud": "positive", # Negative "guilty": "negative", "lonely": "negative", "sad": "negative", "angry": "negative", "disappointed": "negative", "annoyed": "negative", "terrified": "negative", "ashamed": "negative", "furious": "negative", } reformatted = defaultdict(list) for _id, obj in data.items(): emotion = obj["emotion"] if emotion not in sentiments: continue reformatted[sentiments[emotion]].append(obj["preds"]) return reformatted if __name__ == "__main__": _data = load_data(KEMP_FILEPATH) split = reformat(_data) breakpoint()
26.714286
63
0.517647
4a250b363f8e5f5bb61e0480c78ab305ef88b28f
1,499
py
Python
library/setup.py
philwil/ads1015-python
47c0effd311f1a9f2aff9b282bc8ca60e237e53a
[ "MIT" ]
5
2020-01-28T15:09:49.000Z
2022-02-07T12:44:06.000Z
library/setup.py
philwil/ads1015-python
47c0effd311f1a9f2aff9b282bc8ca60e237e53a
[ "MIT" ]
14
2019-07-07T17:36:18.000Z
2022-01-13T12:51:52.000Z
library/setup.py
philwil/ads1015-python
47c0effd311f1a9f2aff9b282bc8ca60e237e53a
[ "MIT" ]
4
2020-02-24T14:58:22.000Z
2021-10-31T02:01:47.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Copyright (c) 2016 Pimoroni Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from setuptools import setup, __version__ from pkg_resources import parse_version minimum_version = parse_version('30.4.0') if parse_version(__version__) < minimum_version: raise RuntimeError("Package setuptools must be at least version {}".format(minimum_version)) setup( packages=['ads1015'], install_requires=['i2cdevice>=0.0.6', 'setuptools>={}'.format(minimum_version)] )
40.513514
96
0.781855
4a250b8d1295dfd5b7f8b99a0521da59c2bbfe0d
233
py
Python
Greedy/1758.py
esdx245/algorithms
39dd06c9277f30bfdce594a86ce71f52e28e5dc8
[ "MIT" ]
null
null
null
Greedy/1758.py
esdx245/algorithms
39dd06c9277f30bfdce594a86ce71f52e28e5dc8
[ "MIT" ]
null
null
null
Greedy/1758.py
esdx245/algorithms
39dd06c9277f30bfdce594a86ce71f52e28e5dc8
[ "MIT" ]
null
null
null
n = int(input()) lista = [] result = 0 for _ in range(n): lista.append(int(input())) lista.sort(reverse = 1) for i in range(n): temp = lista[i] - i if temp > 0: result += temp temp = 0 else: temp = 0 print(result)
16.642857
28
0.575107
4a250cd84636f48e240f1e71686132eb9ec8eda0
10,473
py
Python
geemap/utils.py
XianranZ/geemap
d2c5489b24bbb9aa1e4238a3700c0411d75cb27c
[ "MIT" ]
null
null
null
geemap/utils.py
XianranZ/geemap
d2c5489b24bbb9aa1e4238a3700c0411d75cb27c
[ "MIT" ]
null
null
null
geemap/utils.py
XianranZ/geemap
d2c5489b24bbb9aa1e4238a3700c0411d75cb27c
[ "MIT" ]
null
null
null
import ee try: ee.Initialize() except Exception as e: ee.Authenticate() ee.Initialize() # Compute area in square meters def vec_area(f): # Compute area in square meters. Convert to hectares. areaSqm = f.area() # A new property called 'area' will be set on each feature. return f.set({'area': areaSqm}) def vec_area_sqkm(f): areaSqkm = f.area().divide(1000 * 1000) return f.set({'area': areaSqkm}) def vec_area_ha(f): # Compute area in square meters. Convert to hectares. areaHa = f.area(1).divide(100 * 100) # A new property called 'area' will be set on each feature. return f.set({'area': areaHa}) def get_year(date): return ee.Date(date).get('year') # Convert string to number def str_to_number(str): return ee.Number.parse(str) # Calculate array sum def array_sum(arr): return ee.Array(arr).accum(0).get([-1]) # Calculate array mean def array_mean(arr): sum = ee.Array(arr).accum(0).get([-1]) size = arr.length() return ee.Number(sum.divide(size)) def get_annual_NAIP(year): try: collection = ee.ImageCollection('USDA/NAIP/DOQQ') start_date = str(year) + '-01-01' end_date = str(year) + '-12-31' naip = collection.filterDate(start_date, end_date) \ .filter(ee.Filter.listContains("system:band_names", "N")) return naip except Exception as e: print(e) def get_all_NAIP(start_year=2009, end_year=2018): try: def get_annual_NAIP(year): try: collection = ee.ImageCollection('USDA/NAIP/DOQQ') start_date = ee.Date.fromYMD(year, 1, 1) end_date = ee.Date.fromYMD(year, 12, 31) naip = collection.filterDate(start_date, end_date) \ .filter(ee.Filter.listContains("system:band_names", "N")) return ee.ImageCollection(naip) except Exception as e: print(e) years = ee.List.sequence(start_year, end_year) collection = years.map(get_annual_NAIP) return collection except Exception as e: print(e) # Create NAIP mosaic for a specified year def annual_NAIP(year, geometry): start_date = ee.Date.fromYMD(year, 1, 1) end_date = ee.Date.fromYMD(year, 12, 31) collection = ee.ImageCollection('USDA/NAIP/DOQQ') \ .filterDate(start_date, end_date) \ .filterBounds(geometry) time_start = ee.Date( ee.List(collection.aggregate_array('system:time_start')).sort().get(0)) time_end = ee.Date( ee.List(collection.aggregate_array('system:time_end')).sort().get(-1)) image = ee.Image(collection.mosaic().clip(geometry)) NDWI = ee.Image(image).normalizedDifference( ['G', 'N']).select(['nd'], ['ndwi']) NDVI = ee.Image(image).normalizedDifference( ['N', 'R']).select(['nd'], ['ndvi']) image = image.addBands(NDWI) image = image.addBands(NDVI) return image.set({'system:time_start': time_start, 'system:time_end': time_end}) # Find all available NAIP images for a geometry def find_NAIP(geometry, add_NDVI=True, add_NDWI=True): init_collection = ee.ImageCollection('USDA/NAIP/DOQQ') \ .filterBounds(geometry) \ .filterDate('2009-01-01', '2018-12-31') \ .filter(ee.Filter.listContains("system:band_names", "N")) yearList = ee.List(init_collection.distinct( ['system:time_start']).aggregate_array('system:time_start')) init_years = yearList.map(lambda y: ee.Date(y).get('year')) # remove duplicates init_years = ee.Dictionary(init_years.reduce( ee.Reducer.frequencyHistogram())).keys() years = init_years.map(lambda x: ee.Number.parse(x)) # years = init_years.map(lambda x: x) # Available NAIP years with NIR band def NAIPAnnual(year): start_date = ee.Date.fromYMD(year, 1, 1) end_date = ee.Date.fromYMD(year, 12, 31) collection = init_collection.filterDate(start_date, end_date) # .filterBounds(geometry) # .filter(ee.Filter.listContains("system:band_names", "N")) time_start = ee.Date( ee.List(collection.aggregate_array('system:time_start')).sort().get(0)) time_end = ee.Date( ee.List(collection.aggregate_array('system:time_end')).sort().get(-1)) col_size = collection.size() image = ee.Image(collection.mosaic().clip(geometry)) if add_NDVI: NDVI = ee.Image(image).normalizedDifference( ['N', 'R']).select(['nd'], ['ndvi']) image = image.addBands(NDVI) if add_NDWI: NDWI = ee.Image(image).normalizedDifference( ['G', 'N']).select(['nd'], ['ndwi']) image = image.addBands(NDWI) return image.set({'system:time_start': time_start, 'system:time_end': time_end, 'tiles': col_size}) # remove years with incomplete coverage naip = ee.ImageCollection(years.map(NAIPAnnual)) mean_size = ee.Number(naip.aggregate_mean('tiles')) total_sd = ee.Number(naip.aggregate_total_sd('tiles')) threshold = mean_size.subtract(total_sd.multiply(1)) naip = naip.filter(ee.Filter.Or(ee.Filter.gte( 'tiles', threshold), ee.Filter.gte('tiles', 15))) naip = naip.filter(ee.Filter.gte('tiles', 7)) naip_count = naip.size() naip_seq = ee.List.sequence(0, naip_count.subtract(1)) def set_index(index): img = ee.Image(naip.toList(naip_count).get(index)) return img.set({'system:uid': ee.Number(index).toUint8()}) naip = naip_seq.map(set_index) return ee.ImageCollection(naip) # Get NWI by HUC def filter_NWI(HUC08_Id, geometry): nwi_asset_prefix = 'users/wqs/NWI-HU8/HU8_' nwi_asset_suffix = '_Wetlands' nwi_asset_path = nwi_asset_prefix + HUC08_Id + nwi_asset_suffix nwi_huc = ee.FeatureCollection(nwi_asset_path).filterBounds(geometry) \ .filter(ee.Filter.notEquals(**{'leftField': 'WETLAND_TY', 'rightValue': 'Riverine'})) return nwi_huc # Find HUC08 intersecting a geometry def filter_HUC08(geometry): USGS_HUC08 = ee.FeatureCollection('USGS/WBD/2017/HUC08') # Subbasins HUC08 = USGS_HUC08.filterBounds(geometry) return HUC08 # Find HUC10 intersecting a geometry def filter_HUC10(geometry): USGS_HUC10 = ee.FeatureCollection('USGS/WBD/2017/HUC10') # Watersheds HUC10 = USGS_HUC10.filterBounds(geometry) return HUC10 # Find HUC08 by HUC ID def find_HUC08(HUC08_Id): USGS_HUC08 = ee.FeatureCollection('USGS/WBD/2017/HUC08') # Subbasins HUC08 = USGS_HUC08.filter(ee.Filter.eq('huc8', HUC08_Id)) return HUC08 # Find HUC10 by HUC ID def find_HUC10(HUC10_Id): USGS_HUC10 = ee.FeatureCollection('USGS/WBD/2017/HUC10') # Watersheds HUC10 = USGS_HUC10.filter(ee.Filter.eq('huc10', HUC10_Id)) return HUC10 # find NWI by HUC08 def find_NWI(HUC08_Id): nwi_asset_prefix = 'users/wqs/NWI-HU8/HU8_' nwi_asset_suffix = '_Wetlands' nwi_asset_path = nwi_asset_prefix + HUC08_Id + nwi_asset_suffix nwi_huc = ee.FeatureCollection(nwi_asset_path) \ .filter(ee.Filter.notEquals(**{'leftField': 'WETLAND_TY', 'rightValue': 'Riverine'})) return nwi_huc # # Extract NWI by providing a geometry # def extractNWI(geometry): # HUC08 = filterHUC08(geometry) # HUC_list = ee.List(HUC08.aggregate_array('huc8')).getInfo() # # print('Intersecting HUC08 IDs:', HUC_list) # nwi = ee.FeatureCollection(HUC_list.map(findNWI)).flatten() # return nwi.filterBounds(geometry) # NWI legend: https://www.fws.gov/wetlands/Data/Mapper-Wetlands-Legend.html def nwi_add_color(fc): emergent = ee.FeatureCollection( fc.filter(ee.Filter.eq('WETLAND_TY', 'Freshwater Emergent Wetland'))) emergent = emergent.map(lambda f: f.set( 'R', 127).set('G', 195).set('B', 28)) # print(emergent.first()) forested = fc.filter(ee.Filter.eq( 'WETLAND_TY', 'Freshwater Forested/Shrub Wetland')) forested = forested.map(lambda f: f.set('R', 0).set('G', 136).set('B', 55)) pond = fc.filter(ee.Filter.eq('WETLAND_TY', 'Freshwater Pond')) pond = pond.map(lambda f: f.set('R', 104).set('G', 140).set('B', 192)) lake = fc.filter(ee.Filter.eq('WETLAND_TY', 'Lake')) lake = lake.map(lambda f: f.set('R', 19).set('G', 0).set('B', 124)) riverine = fc.filter(ee.Filter.eq('WETLAND_TY', 'Riverine')) riverine = riverine.map(lambda f: f.set( 'R', 1).set('G', 144).set('B', 191)) fc = ee.FeatureCollection(emergent.merge( forested).merge(pond).merge(lake).merge(riverine)) # base = ee.Image(0).mask(0).toInt8() base = ee.Image().byte() img = base.paint(fc, 'R') \ .addBands(base.paint(fc, 'G') .addBands(base.paint(fc, 'B'))) return img # calculate total image area (unit: m2) def image_area(img, geometry, scale): pixelArea = img.Add(ee.Image(1)).multiply( ee.Image.pixelArea()) imgArea = pixelArea.reduceRegion(**{ 'geometry': geometry, 'reducer': ee.Reducer.sum(), 'scale': scale, 'maxPixels': 1e9 }) return imgArea # calculate total image area (unit: ha) def image_area_ha(img, geometry, scale): pixelArea = img.Add(ee.Image(1)).multiply( ee.Image.pixelArea()).divide(10000) imgArea = pixelArea.reduceRegion(**{ 'geometry': geometry, 'reducer': ee.Reducer.sum(), 'scale': scale, 'maxPixels': 1e9 }) return imgArea # get highest value def max_value(img, scale=30): max_value = img.reduceRegion(**{ 'reducer': ee.Reducer.max(), 'geometry': img.geometry(), 'scale': scale, 'maxPixels': 1e9 }) return max_value # get lowest value def min_value(img, scale=30): min_value = img.reduceRegion(**{ 'reducer': ee.Reducer.min(), 'geometry': img.geometry(), 'scale': scale, 'maxPixels': 1e9 }) return min_value # get mean value def mean_value(img, scale=30): mean_value = img.reduceRegion(**{ 'reducer': ee.Reducer.mean(), 'geometry': img.geometry(), 'scale': scale, 'maxPixels': 1e9 }) return mean_value # get standard deviation def std_value(img, scale=30): std_value = img.reduceRegion(**{ 'reducer': ee.Reducer.stdDev(), 'geometry': img.geometry(), 'scale': scale, 'maxPixels': 1e9 }) return std_value
31.262687
107
0.636589
4a250f96a14ce5573c44cfb00553490a6b521924
9,818
py
Python
plugins/login.py
Mehmetbaba06/Instagram-Bot
09eb2ff455ae5378d8ec41f6706e12915a05f94e
[ "MIT" ]
null
null
null
plugins/login.py
Mehmetbaba06/Instagram-Bot
09eb2ff455ae5378d8ec41f6706e12915a05f94e
[ "MIT" ]
null
null
null
plugins/login.py
Mehmetbaba06/Instagram-Bot
09eb2ff455ae5378d8ec41f6706e12915a05f94e
[ "MIT" ]
null
null
null
#MIT License #Copyright (c) 2021 subinps #Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is #furnished to do so, subject to the following conditions: #The above copyright notice and this permission notice shall be included in all #copies or substantial portions of the Software. #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE #SOFTWARE. from pyrogram.types import InlineKeyboardButton, InlineKeyboardMarkup from pyrogram import Client, filters from config import Config from utils import * import os from instaloader import Profile, TwoFactorAuthRequiredException, BadCredentialsException from asyncio.exceptions import TimeoutError USER=Config.USER STATUS=Config.STATUS OWNER=Config.OWNER HOME_TEXT=Config.HOME_TEXT insta = Config.L @Client.on_message(filters.command("login") & filters.private) async def login(bot, message): if str(message.from_user.id) != OWNER: await message.reply_text( HOME_TEXT.format(message.from_user.first_name, message.from_user.id, USER, USER, USER, OWNER), disable_web_page_preview=True, reply_markup=InlineKeyboardMarkup( [ [ InlineKeyboardButton("👨🏼‍💻Developer", url='https://t.me/Mahoaga'), InlineKeyboardButton("👨🏼‍💻Developer", url="https://t.me/Mahoaga") ], [ InlineKeyboardButton("👨🏼‍💻Developer", url="https://t.me/Mahoaga"), InlineKeyboardButton("👨🏼‍💻Developer", url="https://t.me/Mahoaga") ], [ InlineKeyboardButton("👨🏼‍🦯Nasıl Kullanılır?", callback_data="help#subin") ] ] ) ) return username=USER if 1 in STATUS: m=await bot.send_message(message.from_user.id, "Instagram'dan ayrıntılar getir") profile = Profile.own_profile(insta.context) mediacount = profile.mediacount name = profile.full_name bio = profile.biography profilepic = profile.profile_pic_url igtvcount = profile.igtvcount followers = profile.followers following = profile.followees await m.delete() await bot.send_photo( chat_id=message.from_user.id, caption=f"Zaten Oturum Açmış durumdasınız {name}\n\n**Hesap Bilgileriniz**\n\n🏷 **İsim**: {name}\n🔖 **Kullanıcı adı**: {profile.username}\n📝 **Biyo**: {bio}\n📍 **Hesap Türü**: {acc_type(profile.is_private)}\n🏭 **İşletme Hesabı mı?**: {yes_or_no(profile.is_business_account)}\n👥 **Toplam Takipçi Sayısı**: {followers}\n👥 **Toplam Takip**: {following}\n📸 **Toplam Gönderi Sayısı**: {mediacount}\n📺 **IGTV Videolar**: {igtvcount}", photo=profilepic ) return while True: try: password = await bot.ask(text = f"Merhaba {USER} Hesabınıza giriş yapmak için Instagram Şifrenizi girin 🙈", chat_id = message.from_user.id, filters=filters.text, timeout=30) except TimeoutError: await bot.send_message(message.from_user.id, "Hata!!\n\nİstek zamanlanmış.\nKullanarak yeniden başlatma /login") return passw=password.text break try: insta.login(username, passw) insta.save_session_to_file(filename=f"./{username}") f=await bot.send_document( chat_id=message.from_user.id, document=f"./{username}", file_name=str(message.from_user.id), caption="⚠️ BU OTURUM DOSYASINI GÜVENDE TUTUN VE KIMSEYLE PAYLAŞMAYIN" ) file_id=f.document.file_id await bot.send_message(message.from_user.id, f"Şimdi git: [Heroku](https://dashboard.heroku.com/apps) ve Ortam değişkenini ayarlayın.\n\n\n**KEY**: <code>INSTA_SESSIONFILE_ID</code>\n\n**VALUE**: <code>{file_id}</code>\n\nBunu ayarlamazsanız Heroku yeniden başlatıldığında tekrar giriş yapmanız gerekebilir.", disable_web_page_preview=True) STATUS.add(1) m=await bot.send_message(message.from_user.id, "Instagram'dan ayrıntılar getir") profile = Profile.from_username(insta.context, username) mediacount = profile.mediacount name = profile.full_name bio = profile.biography profilepic = profile.profile_pic_url igtvcount = profile.igtvcount followers = profile.followers following = profile.followees await m.delete() await bot.send_photo( chat_id=message.from_user.id, caption=f"🔓Başarıyla Oturum Açtı {name}\n\n**Hesap Bilgileriniz**\n\n🏷 **İsim**: {name}\n🔖 **Kullanıcı adı**: {profile.username}\n📝 **Biyo**: {bio}\n📍 **Hesap Türü**: {acc_type(profile.is_private)}\n🏭 **İşletme Hesabı mı?**: {yes_or_no(profile.is_business_account)}\n👥 **Toplam Takipçi Sayısı**: {followers}\n👥 **Toplam Takip**: {following}\n📸 **Toplam Gönderi SayısıToplam Gönderi Sayısı**: {mediacount}\n📺 **IGTV Videolar**: {igtvcount}", photo=profilepic ) except TwoFactorAuthRequiredException: while True: try: code = await bot.ask(text = "Oh!!\nInstagram hesabınızda İki Faktörlü Kimlik Doğrulama etkin🔐\n\nTelefonunuza bir OTP gönderildi\nEnter OTP", chat_id = message.from_user.id, filters=filters.text, timeout=30) except TimeoutError: await bot.send_message(message.from_user.id, "Hata!!\n\nİstek zamanlanmış.\nKullanarak yeniden başlatma /login") return codei=code.text try: codei=int(codei) break except: await bot.send_message(message.from_user.id, "OTP Tamsayı Olmalıdır") continue try: insta.two_factor_login(codei) insta.save_session_to_file(filename=f"./{username}") f=await bot.send_document( chat_id=message.from_user.id, document=f"./{username}", file_name=str(message.from_user.id), caption="⚠️ BU OTURUM DOSYASINI GÜVENDE TUTUN VE HERHANGI BIR YER ILE PAYLAŞMAYIN" ) file_id=f.document.file_id await bot.send_message(message.from_user.id, f"Now go to [Heroku](https://dashboard.heroku.com/apps) and set Environment variable.\n\n\n**KEY**: <code>INSTA_SESSIONFILE_ID</code>\n\n**VALUE**: <code>{file_id}</code>\n\nIf you do not set this you may need to Login again When Heroku restarts.", disable_web_page_preview=True) STATUS.add(1) m=await bot.send_message(message.from_user.id, "Instagram'dan ayrıntılar getir") profile = Profile.from_username(insta.context, username) mediacount = profile.mediacount name = profile.full_name bio = profile.biography profilepic = profile.profile_pic_url igtvcount = profile.igtvcount followers = profile.followers following = profile.followees await m.delete() await bot.send_photo( chat_id=message.from_user.id, caption=f"🔓Başarıyla Oturum Açtı {name}\n\n**Hesap Bilgileriniz**\n\n🏷 **İsim**: {name}\n🔖 **Kullanıcı adı**: {profile.username}\n📝**Biyo**: {bio}\n📍**Hesap Türü**: {acc_type(profile.is_private)}\n🏭**İşletme Hesabı mı?**: {yes_or_no(profile.is_business_account)}\n👥**Toplam Takipçi Sayısı**: {followers}\n👥**Toplam Takip**: {following}\n📸**Toplam Gönderi Sayısı**: {mediacount}\n📺**IGTV Videolar**: {igtvcount}", photo=profilepic ) except BadCredentialsException: await bot.send_message(message.from_user.id, "Yanlış Kimlik Bilgileri\n\n/login yine") pass except Exception as e: await bot.send_message(message.from_user.id, f"{e}\nTry /login again") print("Logged in") except Exception as e: await bot.send_message(message.from_user.id, f"{e}\nYeniden deneyin veya Bu Sorunu Bildir [Developer](tg://user?id=1957316197)") @Client.on_message(filters.command("logout") & filters.private) async def logout(bot, message): if str(message.from_user.id) != OWNER: await message.reply_text( HOME_TEXT.format(message.from_user.first_name, message.from_user.id, USER, USER, USER, OWNER), disable_web_page_preview=True, reply_markup=InlineKeyboardMarkup( [ [ InlineKeyboardButton("👨🏼‍💻Developer", url='https://t.me/Mahoaga'), InlineKeyboardButton("👨🏼‍💻Developer", url="https://t.me/Mahoaga") ], [ InlineKeyboardButton("👨🏼‍💻Developer", url="https://t.me/Anshu888o"), InlineKeyboardButton("👨🏼‍💻Developer", url="https://t.me/Mahoaga") ], [ InlineKeyboardButton("👨🏼‍🦯Nasıl Kullanılır?", callback_data="help#subin") ] ] ) ) return if 1 in STATUS: await message.reply_text("Başarıyla Oturumu Kapat") STATUS.remove(1) os.remove(f"./{USER}") else: await message.reply_text("Oturum Açmadınız\nKullanmak /login açınız")
49.585859
452
0.650336
4a250fe633e2420d23eb46a6ad48858b05e613c2
77
py
Python
torch_rl/torch_rl/algos/__init__.py
RobertSamoilescu/RL_CarRacing
c1b4c3bed00fd1630e68f32a02798034df57c73a
[ "MIT" ]
39
2019-10-30T08:59:35.000Z
2022-03-18T01:28:01.000Z
torch_rl/torch_rl/algos/__init__.py
RobertSamoilescu/RL_CarRacing
c1b4c3bed00fd1630e68f32a02798034df57c73a
[ "MIT" ]
10
2019-12-29T17:10:40.000Z
2021-07-03T09:32:22.000Z
torch_rl/torch_rl/algos/__init__.py
RobertSamoilescu/RL_CarRacing
c1b4c3bed00fd1630e68f32a02798034df57c73a
[ "MIT" ]
12
2020-01-19T09:31:29.000Z
2022-02-08T01:30:08.000Z
from torch_rl.algos.a2c import A2CAlgo from torch_rl.algos.ppo import PPOAlgo
38.5
38
0.857143
4a2510e4b7eedd3aa5f3ae3d52c040474e7df9fb
11,649
py
Python
angr/storage/memory_mixins/__init__.py
BA7JCM/angr
187a713c35759d998d93dfc5280630976d42d717
[ "BSD-2-Clause" ]
null
null
null
angr/storage/memory_mixins/__init__.py
BA7JCM/angr
187a713c35759d998d93dfc5280630976d42d717
[ "BSD-2-Clause" ]
null
null
null
angr/storage/memory_mixins/__init__.py
BA7JCM/angr
187a713c35759d998d93dfc5280630976d42d717
[ "BSD-2-Clause" ]
null
null
null
# pylint:disable=abstract-method from typing import Iterable, Tuple, Dict, Any, Optional import claripy from ...state_plugins.plugin import SimStatePlugin from ...errors import SimMemoryError class MemoryMixin(SimStatePlugin): SUPPORTS_CONCRETE_LOAD = False def __init__(self, memory_id=None, endness='Iend_BE'): super().__init__() self.id = memory_id self.endness = endness def copy(self, memo): o = type(self).__new__(type(self)) o.id = self.id o.endness = self.endness return o @property def category(self): """ Return the category of this SimMemory instance. It can be one of the three following categories: reg, mem, or file. """ if self.id in ('reg', 'mem'): return self.id elif self.id.startswith('file'): return 'file' elif '_' in self.id: return self.id.split('_')[0] else: raise SimMemoryError('Unknown SimMemory category for memory_id "%s"' % self.id) @property def variable_key_prefix(self): s = self.category if s == 'file': return (s, self.id) return (s,) def find(self, addr, data, max_search, **kwargs): pass def _add_constraints(self, c, add_constraints=True, condition=None, **kwargs): if add_constraints: if condition is not None: to_add = (c & condition) | ~condition else: to_add = c self.state.add_constraints(to_add) def load(self, addr, **kwargs): pass def store(self, addr, data, **kwargs): pass def merge(self, others, merge_conditions, common_ancestor=None) -> bool: pass def widen(self, others): pass def permissions(self, addr, permissions=None, **kwargs): pass def map_region(self, addr, length, permissions, init_zero=False, **kwargs): pass def unmap_region(self, addr, length, **kwargs): pass # Optional interface: def concrete_load(self, addr, size, writing=False, **kwargs) -> memoryview: """ Set SUPPORTS_CONCRETE_LOAD to True and implement concrete_load if reading concrete bytes is faster in this memory model. :param addr: The address to load from. :param size: Size of the memory read. :param writing: :return: A memoryview into the loaded bytes. """ raise NotImplementedError() def erase(self, addr, size=None, **kwargs) -> None: """ Set [addr:addr+size) to uninitialized. In many cases this will be faster than overwriting those locations with new values. This is commonly used during static data flow analysis. :param addr: The address to start erasing. :param size: The number of bytes for erasing. :return: None """ raise NotImplementedError() def _default_value(self, addr, size, name=None, inspect=True, events=True, key=None, **kwargs): """ Override this method to provide default values for a variety of edge cases and base cases. :param addr: If this value is being filled to provide a default memory value, this will be its address. Otherwise, None. :param size: The size in bytes of the value to return :param name: A descriptive identifier for the value, for if a symbol is created. The ``inspect``, ``events``, and ``key`` parameters are for ``state.solver.Unconstrained``, if it is used. """ pass def _merge_values(self, values: Iterable[Tuple[Any,Any]], merged_size: int, **kwargs) -> Optional[Any]: """ Override this method to provide value merging support. :param values: A collection of values with their merge conditions. :param merged_size: The size (in bytes) of the merged value. :return: The merged value, or None to skip merging of the current value. """ raise NotImplementedError() def _merge_labels(self, labels: Iterable[Dict], **kwargs) -> Optional[Dict]: """ Override this method to provide label merging support. :param labels: A collection of labels. :return: The merged label, or None to skip merging of the current label. """ raise NotImplementedError() def replace_all(self, old: claripy.ast.BV, new: claripy.ast.BV): raise NotImplementedError() def _replace_all(self, addrs: Iterable[int], old: claripy.ast.BV, new: claripy.ast.BV): raise NotImplementedError() def copy_contents(self, dst, src, size, condition=None, **kwargs): """ Override this method to provide faster copying of large chunks of data. :param dst: The destination of copying. :param src: The source of copying. :param size: The size of copying. :param condition: The storing condition. :param kwargs: Other parameters. :return: None """ raise NotImplementedError() from .actions_mixin import ActionsMixinHigh, ActionsMixinLow from .address_concretization_mixin import AddressConcretizationMixin from .bvv_conversion_mixin import DataNormalizationMixin from .clouseau_mixin import InspectMixinHigh from .conditional_store_mixin import ConditionalMixin from .convenient_mappings_mixin import ConvenientMappingsMixin from .default_filler_mixin import DefaultFillerMixin, SpecialFillerMixin, ExplicitFillerMixin from .dirty_addrs_mixin import DirtyAddrsMixin from .hex_dumper_mixin import HexDumperMixin from .label_merger_mixin import LabelMergerMixin from .multi_value_merger_mixin import MultiValueMergerMixin from .name_resolution_mixin import NameResolutionMixin from .simplification_mixin import SimplificationMixin from .simple_interface_mixin import SimpleInterfaceMixin from .size_resolution_mixin import SizeNormalizationMixin, SizeConcretizationMixin from .smart_find_mixin import SmartFindMixin from .symbolic_merger_mixin import SymbolicMergerMixin from .top_merger_mixin import TopMergerMixin from .underconstrained_mixin import UnderconstrainedMixin from .unwrapper_mixin import UnwrapperMixin from .paged_memory.page_backer_mixins import ClemoryBackerMixin, ConcreteBackerMixin, DictBackerMixin from .paged_memory.paged_memory_mixin import PagedMemoryMixin, ListPagesMixin, UltraPagesMixin, \ ListPagesWithLabelsMixin, MVListPagesMixin, MVListPagesWithLabelsMixin from .paged_memory.privileged_mixin import PrivilegedPagingMixin from .paged_memory.stack_allocation_mixin import StackAllocationMixin from .paged_memory.pages import * from .slotted_memory import SlottedMemoryMixin from .regioned_memory import RegionedMemoryMixin, RegionCategoryMixin, StaticFindMixin, AbstractMergerMixin, \ MemoryRegionMetaMixin, RegionedAddressConcretizationMixin from .keyvalue_memory import KeyValueMemoryMixin from .javavm_memory import JavaVmMemoryMixin class DefaultMemory( HexDumperMixin, SmartFindMixin, UnwrapperMixin, NameResolutionMixin, DataNormalizationMixin, SimplificationMixin, InspectMixinHigh, ActionsMixinHigh, UnderconstrainedMixin, SizeConcretizationMixin, SizeNormalizationMixin, AddressConcretizationMixin, #InspectMixinLow, ActionsMixinLow, ConditionalMixin, ConvenientMappingsMixin, DirtyAddrsMixin, # ----- StackAllocationMixin, ConcreteBackerMixin, ClemoryBackerMixin, DictBackerMixin, PrivilegedPagingMixin, UltraPagesMixin, DefaultFillerMixin, SymbolicMergerMixin, PagedMemoryMixin, ): pass class DefaultListPagesMemory( HexDumperMixin, SmartFindMixin, UnwrapperMixin, NameResolutionMixin, DataNormalizationMixin, SimplificationMixin, ActionsMixinHigh, UnderconstrainedMixin, SizeConcretizationMixin, SizeNormalizationMixin, InspectMixinHigh, AddressConcretizationMixin, #InspectMixinLow, ActionsMixinLow, ConditionalMixin, ConvenientMappingsMixin, DirtyAddrsMixin, # ----- StackAllocationMixin, ClemoryBackerMixin, DictBackerMixin, PrivilegedPagingMixin, ListPagesMixin, DefaultFillerMixin, SymbolicMergerMixin, PagedMemoryMixin, ): pass class FastMemory( NameResolutionMixin, SimpleInterfaceMixin, SimplificationMixin, InspectMixinHigh, ConditionalMixin, ExplicitFillerMixin, DefaultFillerMixin, SlottedMemoryMixin, ): pass class AbstractMemory( UnwrapperMixin, NameResolutionMixin, DataNormalizationMixin, SimplificationMixin, InspectMixinHigh, ActionsMixinHigh, UnderconstrainedMixin, SizeConcretizationMixin, SizeNormalizationMixin, #InspectMixinLow, ActionsMixinLow, ConditionalMixin, RegionedAddressConcretizationMixin, # ----- RegionedMemoryMixin, ): pass class RegionedMemory( RegionCategoryMixin, MemoryRegionMetaMixin, StaticFindMixin, UnwrapperMixin, NameResolutionMixin, DataNormalizationMixin, SimplificationMixin, SizeConcretizationMixin, SizeNormalizationMixin, AddressConcretizationMixin, ConvenientMappingsMixin, DirtyAddrsMixin, # ----- ClemoryBackerMixin, DictBackerMixin, UltraPagesMixin, DefaultFillerMixin, AbstractMergerMixin, PagedMemoryMixin, ): pass class LabeledMemory( SizeNormalizationMixin, ListPagesWithLabelsMixin, DefaultFillerMixin, TopMergerMixin, LabelMergerMixin, PagedMemoryMixin, ): """ LabeledMemory is used in static analysis. It allows storing values with labels, such as `Definition`. """ def _default_value(self, addr, size, **kwargs): # TODO: Make _default_value() a separate Mixin if kwargs.get("name", "").startswith("merge_uc_"): # this is a hack. when this condition is satisfied, _default_value() is called inside Listpage.merge() to # create temporary values. we simply return a TOP value here. return self.state.top(size * self.state.arch.byte_width) # we never fill default values for non-existent loads kwargs['fill_missing'] = False return super()._default_value(addr, size, **kwargs) class MultiValuedMemory( SizeNormalizationMixin, MVListPagesMixin, DefaultFillerMixin, MultiValueMergerMixin, PagedMemoryMixin, ): def _default_value(self, addr, size, **kwargs): # TODO: Make _default_value() a separate Mixin if kwargs.get("name", "").startswith("merge_uc_"): # this is a hack. when this condition is satisfied, _default_value() is called inside Listpage.merge() to # create temporary values. we simply return a TOP value here. return self.state.top(size * self.state.arch.byte_width) # we never fill default values for non-existent loads kwargs['fill_missing'] = False return super()._default_value(addr, size, **kwargs) class KeyValueMemory( KeyValueMemoryMixin, ): pass class JavaVmMemory( JavaVmMemoryMixin, ): pass from angr.sim_state import SimState SimState.register_default('sym_memory', DefaultMemory) SimState.register_default('fast_memory', FastMemory) SimState.register_default('abs_memory', AbstractMemory) SimState.register_default('keyvalue_memory', KeyValueMemory) SimState.register_default('javavm_memory', JavaVmMemory)
30.981383
118
0.697227
4a2511be2292a757afbc1029baeffad1ffe2f3f9
174
py
Python
prob16.py
davidkartchner/project_euler
1f24bf115c460e00319da5f80777cd054d003165
[ "MIT" ]
null
null
null
prob16.py
davidkartchner/project_euler
1f24bf115c460e00319da5f80777cd054d003165
[ "MIT" ]
null
null
null
prob16.py
davidkartchner/project_euler
1f24bf115c460e00319da5f80777cd054d003165
[ "MIT" ]
null
null
null
""" David Kartchner Project Euler Problem 16 May 11, 2016 """ big_string = str(2**1000) digit_list = [int(i) for i in big_string] digit_sum = sum(digit_list) print digit_sum
17.4
41
0.735632
4a2514dd02fdcbf50f7d010b2ddebdb7f26ae8ca
30,649
py
Python
sdk/python/pulumi_azure_native/web/get_web_app_slot.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/web/get_web_app_slot.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/web/get_web_app_slot.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs __all__ = [ 'GetWebAppSlotResult', 'AwaitableGetWebAppSlotResult', 'get_web_app_slot', ] @pulumi.output_type class GetWebAppSlotResult: """ A web app, a mobile app backend, or an API app. """ def __init__(__self__, availability_state=None, client_affinity_enabled=None, client_cert_enabled=None, client_cert_exclusion_paths=None, client_cert_mode=None, container_size=None, custom_domain_verification_id=None, daily_memory_time_quota=None, default_host_name=None, enabled=None, enabled_host_names=None, host_name_ssl_states=None, host_names=None, host_names_disabled=None, hosting_environment_profile=None, https_only=None, hyper_v=None, id=None, identity=None, in_progress_operation_id=None, is_default_container=None, is_xenon=None, key_vault_reference_identity=None, kind=None, last_modified_time_utc=None, location=None, max_number_of_workers=None, name=None, outbound_ip_addresses=None, possible_outbound_ip_addresses=None, redundancy_mode=None, repository_site_name=None, reserved=None, resource_group=None, scm_site_also_stopped=None, server_farm_id=None, site_config=None, slot_swap_status=None, state=None, storage_account_required=None, suspended_till=None, tags=None, target_swap_slot=None, traffic_manager_host_names=None, type=None, usage_state=None, virtual_network_subnet_id=None): if availability_state and not isinstance(availability_state, str): raise TypeError("Expected argument 'availability_state' to be a str") pulumi.set(__self__, "availability_state", availability_state) if client_affinity_enabled and not isinstance(client_affinity_enabled, bool): raise TypeError("Expected argument 'client_affinity_enabled' to be a bool") pulumi.set(__self__, "client_affinity_enabled", client_affinity_enabled) if client_cert_enabled and not isinstance(client_cert_enabled, bool): raise TypeError("Expected argument 'client_cert_enabled' to be a bool") pulumi.set(__self__, "client_cert_enabled", client_cert_enabled) if client_cert_exclusion_paths and not isinstance(client_cert_exclusion_paths, str): raise TypeError("Expected argument 'client_cert_exclusion_paths' to be a str") pulumi.set(__self__, "client_cert_exclusion_paths", client_cert_exclusion_paths) if client_cert_mode and not isinstance(client_cert_mode, str): raise TypeError("Expected argument 'client_cert_mode' to be a str") pulumi.set(__self__, "client_cert_mode", client_cert_mode) if container_size and not isinstance(container_size, int): raise TypeError("Expected argument 'container_size' to be a int") pulumi.set(__self__, "container_size", container_size) if custom_domain_verification_id and not isinstance(custom_domain_verification_id, str): raise TypeError("Expected argument 'custom_domain_verification_id' to be a str") pulumi.set(__self__, "custom_domain_verification_id", custom_domain_verification_id) if daily_memory_time_quota and not isinstance(daily_memory_time_quota, int): raise TypeError("Expected argument 'daily_memory_time_quota' to be a int") pulumi.set(__self__, "daily_memory_time_quota", daily_memory_time_quota) if default_host_name and not isinstance(default_host_name, str): raise TypeError("Expected argument 'default_host_name' to be a str") pulumi.set(__self__, "default_host_name", default_host_name) if enabled and not isinstance(enabled, bool): raise TypeError("Expected argument 'enabled' to be a bool") pulumi.set(__self__, "enabled", enabled) if enabled_host_names and not isinstance(enabled_host_names, list): raise TypeError("Expected argument 'enabled_host_names' to be a list") pulumi.set(__self__, "enabled_host_names", enabled_host_names) if host_name_ssl_states and not isinstance(host_name_ssl_states, list): raise TypeError("Expected argument 'host_name_ssl_states' to be a list") pulumi.set(__self__, "host_name_ssl_states", host_name_ssl_states) if host_names and not isinstance(host_names, list): raise TypeError("Expected argument 'host_names' to be a list") pulumi.set(__self__, "host_names", host_names) if host_names_disabled and not isinstance(host_names_disabled, bool): raise TypeError("Expected argument 'host_names_disabled' to be a bool") pulumi.set(__self__, "host_names_disabled", host_names_disabled) if hosting_environment_profile and not isinstance(hosting_environment_profile, dict): raise TypeError("Expected argument 'hosting_environment_profile' to be a dict") pulumi.set(__self__, "hosting_environment_profile", hosting_environment_profile) if https_only and not isinstance(https_only, bool): raise TypeError("Expected argument 'https_only' to be a bool") pulumi.set(__self__, "https_only", https_only) if hyper_v and not isinstance(hyper_v, bool): raise TypeError("Expected argument 'hyper_v' to be a bool") pulumi.set(__self__, "hyper_v", hyper_v) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if identity and not isinstance(identity, dict): raise TypeError("Expected argument 'identity' to be a dict") pulumi.set(__self__, "identity", identity) if in_progress_operation_id and not isinstance(in_progress_operation_id, str): raise TypeError("Expected argument 'in_progress_operation_id' to be a str") pulumi.set(__self__, "in_progress_operation_id", in_progress_operation_id) if is_default_container and not isinstance(is_default_container, bool): raise TypeError("Expected argument 'is_default_container' to be a bool") pulumi.set(__self__, "is_default_container", is_default_container) if is_xenon and not isinstance(is_xenon, bool): raise TypeError("Expected argument 'is_xenon' to be a bool") pulumi.set(__self__, "is_xenon", is_xenon) if key_vault_reference_identity and not isinstance(key_vault_reference_identity, str): raise TypeError("Expected argument 'key_vault_reference_identity' to be a str") pulumi.set(__self__, "key_vault_reference_identity", key_vault_reference_identity) if kind and not isinstance(kind, str): raise TypeError("Expected argument 'kind' to be a str") pulumi.set(__self__, "kind", kind) if last_modified_time_utc and not isinstance(last_modified_time_utc, str): raise TypeError("Expected argument 'last_modified_time_utc' to be a str") pulumi.set(__self__, "last_modified_time_utc", last_modified_time_utc) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if max_number_of_workers and not isinstance(max_number_of_workers, int): raise TypeError("Expected argument 'max_number_of_workers' to be a int") pulumi.set(__self__, "max_number_of_workers", max_number_of_workers) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if outbound_ip_addresses and not isinstance(outbound_ip_addresses, str): raise TypeError("Expected argument 'outbound_ip_addresses' to be a str") pulumi.set(__self__, "outbound_ip_addresses", outbound_ip_addresses) if possible_outbound_ip_addresses and not isinstance(possible_outbound_ip_addresses, str): raise TypeError("Expected argument 'possible_outbound_ip_addresses' to be a str") pulumi.set(__self__, "possible_outbound_ip_addresses", possible_outbound_ip_addresses) if redundancy_mode and not isinstance(redundancy_mode, str): raise TypeError("Expected argument 'redundancy_mode' to be a str") pulumi.set(__self__, "redundancy_mode", redundancy_mode) if repository_site_name and not isinstance(repository_site_name, str): raise TypeError("Expected argument 'repository_site_name' to be a str") pulumi.set(__self__, "repository_site_name", repository_site_name) if reserved and not isinstance(reserved, bool): raise TypeError("Expected argument 'reserved' to be a bool") pulumi.set(__self__, "reserved", reserved) if resource_group and not isinstance(resource_group, str): raise TypeError("Expected argument 'resource_group' to be a str") pulumi.set(__self__, "resource_group", resource_group) if scm_site_also_stopped and not isinstance(scm_site_also_stopped, bool): raise TypeError("Expected argument 'scm_site_also_stopped' to be a bool") pulumi.set(__self__, "scm_site_also_stopped", scm_site_also_stopped) if server_farm_id and not isinstance(server_farm_id, str): raise TypeError("Expected argument 'server_farm_id' to be a str") pulumi.set(__self__, "server_farm_id", server_farm_id) if site_config and not isinstance(site_config, dict): raise TypeError("Expected argument 'site_config' to be a dict") pulumi.set(__self__, "site_config", site_config) if slot_swap_status and not isinstance(slot_swap_status, dict): raise TypeError("Expected argument 'slot_swap_status' to be a dict") pulumi.set(__self__, "slot_swap_status", slot_swap_status) if state and not isinstance(state, str): raise TypeError("Expected argument 'state' to be a str") pulumi.set(__self__, "state", state) if storage_account_required and not isinstance(storage_account_required, bool): raise TypeError("Expected argument 'storage_account_required' to be a bool") pulumi.set(__self__, "storage_account_required", storage_account_required) if suspended_till and not isinstance(suspended_till, str): raise TypeError("Expected argument 'suspended_till' to be a str") pulumi.set(__self__, "suspended_till", suspended_till) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if target_swap_slot and not isinstance(target_swap_slot, str): raise TypeError("Expected argument 'target_swap_slot' to be a str") pulumi.set(__self__, "target_swap_slot", target_swap_slot) if traffic_manager_host_names and not isinstance(traffic_manager_host_names, list): raise TypeError("Expected argument 'traffic_manager_host_names' to be a list") pulumi.set(__self__, "traffic_manager_host_names", traffic_manager_host_names) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) if usage_state and not isinstance(usage_state, str): raise TypeError("Expected argument 'usage_state' to be a str") pulumi.set(__self__, "usage_state", usage_state) if virtual_network_subnet_id and not isinstance(virtual_network_subnet_id, str): raise TypeError("Expected argument 'virtual_network_subnet_id' to be a str") pulumi.set(__self__, "virtual_network_subnet_id", virtual_network_subnet_id) @property @pulumi.getter(name="availabilityState") def availability_state(self) -> str: """ Management information availability state for the app. """ return pulumi.get(self, "availability_state") @property @pulumi.getter(name="clientAffinityEnabled") def client_affinity_enabled(self) -> Optional[bool]: """ <code>true</code> to enable client affinity; <code>false</code> to stop sending session affinity cookies, which route client requests in the same session to the same instance. Default is <code>true</code>. """ return pulumi.get(self, "client_affinity_enabled") @property @pulumi.getter(name="clientCertEnabled") def client_cert_enabled(self) -> Optional[bool]: """ <code>true</code> to enable client certificate authentication (TLS mutual authentication); otherwise, <code>false</code>. Default is <code>false</code>. """ return pulumi.get(self, "client_cert_enabled") @property @pulumi.getter(name="clientCertExclusionPaths") def client_cert_exclusion_paths(self) -> Optional[str]: """ client certificate authentication comma-separated exclusion paths """ return pulumi.get(self, "client_cert_exclusion_paths") @property @pulumi.getter(name="clientCertMode") def client_cert_mode(self) -> Optional[str]: """ This composes with ClientCertEnabled setting. - ClientCertEnabled: false means ClientCert is ignored. - ClientCertEnabled: true and ClientCertMode: Required means ClientCert is required. - ClientCertEnabled: true and ClientCertMode: Optional means ClientCert is optional or accepted. """ return pulumi.get(self, "client_cert_mode") @property @pulumi.getter(name="containerSize") def container_size(self) -> Optional[int]: """ Size of the function container. """ return pulumi.get(self, "container_size") @property @pulumi.getter(name="customDomainVerificationId") def custom_domain_verification_id(self) -> Optional[str]: """ Unique identifier that verifies the custom domains assigned to the app. Customer will add this id to a txt record for verification. """ return pulumi.get(self, "custom_domain_verification_id") @property @pulumi.getter(name="dailyMemoryTimeQuota") def daily_memory_time_quota(self) -> Optional[int]: """ Maximum allowed daily memory-time quota (applicable on dynamic apps only). """ return pulumi.get(self, "daily_memory_time_quota") @property @pulumi.getter(name="defaultHostName") def default_host_name(self) -> str: """ Default hostname of the app. Read-only. """ return pulumi.get(self, "default_host_name") @property @pulumi.getter def enabled(self) -> Optional[bool]: """ <code>true</code> if the app is enabled; otherwise, <code>false</code>. Setting this value to false disables the app (takes the app offline). """ return pulumi.get(self, "enabled") @property @pulumi.getter(name="enabledHostNames") def enabled_host_names(self) -> Sequence[str]: """ Enabled hostnames for the app.Hostnames need to be assigned (see HostNames) AND enabled. Otherwise, the app is not served on those hostnames. """ return pulumi.get(self, "enabled_host_names") @property @pulumi.getter(name="hostNameSslStates") def host_name_ssl_states(self) -> Optional[Sequence['outputs.HostNameSslStateResponse']]: """ Hostname SSL states are used to manage the SSL bindings for app's hostnames. """ return pulumi.get(self, "host_name_ssl_states") @property @pulumi.getter(name="hostNames") def host_names(self) -> Sequence[str]: """ Hostnames associated with the app. """ return pulumi.get(self, "host_names") @property @pulumi.getter(name="hostNamesDisabled") def host_names_disabled(self) -> Optional[bool]: """ <code>true</code> to disable the public hostnames of the app; otherwise, <code>false</code>. If <code>true</code>, the app is only accessible via API management process. """ return pulumi.get(self, "host_names_disabled") @property @pulumi.getter(name="hostingEnvironmentProfile") def hosting_environment_profile(self) -> Optional['outputs.HostingEnvironmentProfileResponse']: """ App Service Environment to use for the app. """ return pulumi.get(self, "hosting_environment_profile") @property @pulumi.getter(name="httpsOnly") def https_only(self) -> Optional[bool]: """ HttpsOnly: configures a web site to accept only https requests. Issues redirect for http requests """ return pulumi.get(self, "https_only") @property @pulumi.getter(name="hyperV") def hyper_v(self) -> Optional[bool]: """ Hyper-V sandbox. """ return pulumi.get(self, "hyper_v") @property @pulumi.getter def id(self) -> str: """ Resource Id. """ return pulumi.get(self, "id") @property @pulumi.getter def identity(self) -> Optional['outputs.ManagedServiceIdentityResponse']: """ Managed service identity. """ return pulumi.get(self, "identity") @property @pulumi.getter(name="inProgressOperationId") def in_progress_operation_id(self) -> str: """ Specifies an operation id if this site has a pending operation. """ return pulumi.get(self, "in_progress_operation_id") @property @pulumi.getter(name="isDefaultContainer") def is_default_container(self) -> bool: """ <code>true</code> if the app is a default container; otherwise, <code>false</code>. """ return pulumi.get(self, "is_default_container") @property @pulumi.getter(name="isXenon") def is_xenon(self) -> Optional[bool]: """ Obsolete: Hyper-V sandbox. """ return pulumi.get(self, "is_xenon") @property @pulumi.getter(name="keyVaultReferenceIdentity") def key_vault_reference_identity(self) -> Optional[str]: """ Identity to use for Key Vault Reference authentication. """ return pulumi.get(self, "key_vault_reference_identity") @property @pulumi.getter def kind(self) -> Optional[str]: """ Kind of resource. """ return pulumi.get(self, "kind") @property @pulumi.getter(name="lastModifiedTimeUtc") def last_modified_time_utc(self) -> str: """ Last time the app was modified, in UTC. Read-only. """ return pulumi.get(self, "last_modified_time_utc") @property @pulumi.getter def location(self) -> str: """ Resource Location. """ return pulumi.get(self, "location") @property @pulumi.getter(name="maxNumberOfWorkers") def max_number_of_workers(self) -> int: """ Maximum number of workers. This only applies to Functions container. """ return pulumi.get(self, "max_number_of_workers") @property @pulumi.getter def name(self) -> str: """ Resource Name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="outboundIpAddresses") def outbound_ip_addresses(self) -> str: """ List of IP addresses that the app uses for outbound connections (e.g. database access). Includes VIPs from tenants that site can be hosted with current settings. Read-only. """ return pulumi.get(self, "outbound_ip_addresses") @property @pulumi.getter(name="possibleOutboundIpAddresses") def possible_outbound_ip_addresses(self) -> str: """ List of IP addresses that the app uses for outbound connections (e.g. database access). Includes VIPs from all tenants except dataComponent. Read-only. """ return pulumi.get(self, "possible_outbound_ip_addresses") @property @pulumi.getter(name="redundancyMode") def redundancy_mode(self) -> Optional[str]: """ Site redundancy mode """ return pulumi.get(self, "redundancy_mode") @property @pulumi.getter(name="repositorySiteName") def repository_site_name(self) -> str: """ Name of the repository site. """ return pulumi.get(self, "repository_site_name") @property @pulumi.getter def reserved(self) -> Optional[bool]: """ <code>true</code> if reserved; otherwise, <code>false</code>. """ return pulumi.get(self, "reserved") @property @pulumi.getter(name="resourceGroup") def resource_group(self) -> str: """ Name of the resource group the app belongs to. Read-only. """ return pulumi.get(self, "resource_group") @property @pulumi.getter(name="scmSiteAlsoStopped") def scm_site_also_stopped(self) -> Optional[bool]: """ <code>true</code> to stop SCM (KUDU) site when the app is stopped; otherwise, <code>false</code>. The default is <code>false</code>. """ return pulumi.get(self, "scm_site_also_stopped") @property @pulumi.getter(name="serverFarmId") def server_farm_id(self) -> Optional[str]: """ Resource ID of the associated App Service plan, formatted as: "/subscriptions/{subscriptionID}/resourceGroups/{groupName}/providers/Microsoft.Web/serverfarms/{appServicePlanName}". """ return pulumi.get(self, "server_farm_id") @property @pulumi.getter(name="siteConfig") def site_config(self) -> Optional['outputs.SiteConfigResponse']: """ Configuration of the app. """ return pulumi.get(self, "site_config") @property @pulumi.getter(name="slotSwapStatus") def slot_swap_status(self) -> 'outputs.SlotSwapStatusResponse': """ Status of the last deployment slot swap operation. """ return pulumi.get(self, "slot_swap_status") @property @pulumi.getter def state(self) -> str: """ Current state of the app. """ return pulumi.get(self, "state") @property @pulumi.getter(name="storageAccountRequired") def storage_account_required(self) -> Optional[bool]: """ Checks if Customer provided storage account is required """ return pulumi.get(self, "storage_account_required") @property @pulumi.getter(name="suspendedTill") def suspended_till(self) -> str: """ App suspended till in case memory-time quota is exceeded. """ return pulumi.get(self, "suspended_till") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter(name="targetSwapSlot") def target_swap_slot(self) -> str: """ Specifies which deployment slot this app will swap into. Read-only. """ return pulumi.get(self, "target_swap_slot") @property @pulumi.getter(name="trafficManagerHostNames") def traffic_manager_host_names(self) -> Sequence[str]: """ Azure Traffic Manager hostnames associated with the app. Read-only. """ return pulumi.get(self, "traffic_manager_host_names") @property @pulumi.getter def type(self) -> str: """ Resource type. """ return pulumi.get(self, "type") @property @pulumi.getter(name="usageState") def usage_state(self) -> str: """ State indicating whether the app has exceeded its quota usage. Read-only. """ return pulumi.get(self, "usage_state") @property @pulumi.getter(name="virtualNetworkSubnetId") def virtual_network_subnet_id(self) -> Optional[str]: """ Azure Resource Manager ID of the Virtual network and subnet to be joined by Regional VNET Integration. This must be of the form /subscriptions/{subscriptionName}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworks/{vnetName}/subnets/{subnetName} """ return pulumi.get(self, "virtual_network_subnet_id") class AwaitableGetWebAppSlotResult(GetWebAppSlotResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetWebAppSlotResult( availability_state=self.availability_state, client_affinity_enabled=self.client_affinity_enabled, client_cert_enabled=self.client_cert_enabled, client_cert_exclusion_paths=self.client_cert_exclusion_paths, client_cert_mode=self.client_cert_mode, container_size=self.container_size, custom_domain_verification_id=self.custom_domain_verification_id, daily_memory_time_quota=self.daily_memory_time_quota, default_host_name=self.default_host_name, enabled=self.enabled, enabled_host_names=self.enabled_host_names, host_name_ssl_states=self.host_name_ssl_states, host_names=self.host_names, host_names_disabled=self.host_names_disabled, hosting_environment_profile=self.hosting_environment_profile, https_only=self.https_only, hyper_v=self.hyper_v, id=self.id, identity=self.identity, in_progress_operation_id=self.in_progress_operation_id, is_default_container=self.is_default_container, is_xenon=self.is_xenon, key_vault_reference_identity=self.key_vault_reference_identity, kind=self.kind, last_modified_time_utc=self.last_modified_time_utc, location=self.location, max_number_of_workers=self.max_number_of_workers, name=self.name, outbound_ip_addresses=self.outbound_ip_addresses, possible_outbound_ip_addresses=self.possible_outbound_ip_addresses, redundancy_mode=self.redundancy_mode, repository_site_name=self.repository_site_name, reserved=self.reserved, resource_group=self.resource_group, scm_site_also_stopped=self.scm_site_also_stopped, server_farm_id=self.server_farm_id, site_config=self.site_config, slot_swap_status=self.slot_swap_status, state=self.state, storage_account_required=self.storage_account_required, suspended_till=self.suspended_till, tags=self.tags, target_swap_slot=self.target_swap_slot, traffic_manager_host_names=self.traffic_manager_host_names, type=self.type, usage_state=self.usage_state, virtual_network_subnet_id=self.virtual_network_subnet_id) def get_web_app_slot(name: Optional[str] = None, resource_group_name: Optional[str] = None, slot: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetWebAppSlotResult: """ A web app, a mobile app backend, or an API app. API Version: 2020-12-01. :param str name: Name of the app. :param str resource_group_name: Name of the resource group to which the resource belongs. :param str slot: Name of the deployment slot. By default, this API returns the production slot. """ __args__ = dict() __args__['name'] = name __args__['resourceGroupName'] = resource_group_name __args__['slot'] = slot if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:web:getWebAppSlot', __args__, opts=opts, typ=GetWebAppSlotResult).value return AwaitableGetWebAppSlotResult( availability_state=__ret__.availability_state, client_affinity_enabled=__ret__.client_affinity_enabled, client_cert_enabled=__ret__.client_cert_enabled, client_cert_exclusion_paths=__ret__.client_cert_exclusion_paths, client_cert_mode=__ret__.client_cert_mode, container_size=__ret__.container_size, custom_domain_verification_id=__ret__.custom_domain_verification_id, daily_memory_time_quota=__ret__.daily_memory_time_quota, default_host_name=__ret__.default_host_name, enabled=__ret__.enabled, enabled_host_names=__ret__.enabled_host_names, host_name_ssl_states=__ret__.host_name_ssl_states, host_names=__ret__.host_names, host_names_disabled=__ret__.host_names_disabled, hosting_environment_profile=__ret__.hosting_environment_profile, https_only=__ret__.https_only, hyper_v=__ret__.hyper_v, id=__ret__.id, identity=__ret__.identity, in_progress_operation_id=__ret__.in_progress_operation_id, is_default_container=__ret__.is_default_container, is_xenon=__ret__.is_xenon, key_vault_reference_identity=__ret__.key_vault_reference_identity, kind=__ret__.kind, last_modified_time_utc=__ret__.last_modified_time_utc, location=__ret__.location, max_number_of_workers=__ret__.max_number_of_workers, name=__ret__.name, outbound_ip_addresses=__ret__.outbound_ip_addresses, possible_outbound_ip_addresses=__ret__.possible_outbound_ip_addresses, redundancy_mode=__ret__.redundancy_mode, repository_site_name=__ret__.repository_site_name, reserved=__ret__.reserved, resource_group=__ret__.resource_group, scm_site_also_stopped=__ret__.scm_site_also_stopped, server_farm_id=__ret__.server_farm_id, site_config=__ret__.site_config, slot_swap_status=__ret__.slot_swap_status, state=__ret__.state, storage_account_required=__ret__.storage_account_required, suspended_till=__ret__.suspended_till, tags=__ret__.tags, target_swap_slot=__ret__.target_swap_slot, traffic_manager_host_names=__ret__.traffic_manager_host_names, type=__ret__.type, usage_state=__ret__.usage_state, virtual_network_subnet_id=__ret__.virtual_network_subnet_id)
45.271787
1,108
0.687004
4a2514edd295622b075522bd9581988c6f41697b
13,682
py
Python
yolov5/models/yolo.py
Jeensh/adaptive-cruise-control
911b55a0c83d47c6eba557a662d5513b89206d91
[ "MIT" ]
12
2021-06-15T01:45:07.000Z
2022-03-29T12:01:37.000Z
models/yolo.py
shashank524/patent_analysis
bd3fde329797ea8b823749ea556b222fb7594fd3
[ "MIT" ]
null
null
null
models/yolo.py
shashank524/patent_analysis
bd3fde329797ea8b823749ea556b222fb7594fd3
[ "MIT" ]
6
2021-07-12T08:27:47.000Z
2022-03-19T14:45:29.000Z
"""YOLOv5-specific modules Usage: $ python path/to/models/yolo.py --cfg yolov5s.yaml """ import argparse import logging import sys from copy import deepcopy from pathlib import Path FILE = Path(__file__).absolute() sys.path.append(FILE.parents[1].as_posix()) # add yolov5/ to path from models.common import * from models.experimental import * from utils.autoanchor import check_anchor_order from utils.general import make_divisible, check_file, set_logging from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \ select_device, copy_attr try: import thop # for FLOPs computation except ImportError: thop = None logger = logging.getLogger(__name__) class Detect(nn.Module): stride = None # strides computed during build onnx_dynamic = False # ONNX export parameter def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer super(Detect, self).__init__() self.nc = nc # number of classes self.no = nc + 5 # number of outputs per anchor self.nl = len(anchors) # number of detection layers self.na = len(anchors[0]) // 2 # number of anchors self.grid = [torch.zeros(1)] * self.nl # init grid a = torch.tensor(anchors).float().view(self.nl, -1, 2) self.register_buffer('anchors', a) # shape(nl,na,2) self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2) self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv self.inplace = inplace # use in-place ops (e.g. slice assignment) def forward(self, x): # x = x.copy() # for profiling z = [] # inference output for i in range(self.nl): x[i] = self.m[i](x[i]) # conv bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() if not self.training: # inference if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic: self.grid[i] = self._make_grid(nx, ny).to(x[i].device) y = x[i].sigmoid() if self.inplace: y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953 xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i].view(1, self.na, 1, 1, 2) # wh y = torch.cat((xy, wh, y[..., 4:]), -1) z.append(y.view(bs, -1, self.no)) return x if self.training else (torch.cat(z, 1), x) @staticmethod def _make_grid(nx=20, ny=20): yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() class Model(nn.Module): def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes super(Model, self).__init__() if isinstance(cfg, dict): self.yaml = cfg # model dict else: # is *.yaml import yaml # for torch hub self.yaml_file = Path(cfg).name with open(cfg) as f: self.yaml = yaml.safe_load(f) # model dict # Define model ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels if nc and nc != self.yaml['nc']: logger.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") self.yaml['nc'] = nc # override yaml value if anchors: logger.info(f'Overriding model.yaml anchors with anchors={anchors}') self.yaml['anchors'] = round(anchors) # override yaml value self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist self.names = [str(i) for i in range(self.yaml['nc'])] # default names self.inplace = self.yaml.get('inplace', True) # logger.info([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))]) # Build strides, anchors m = self.model[-1] # Detect() if isinstance(m, Detect): s = 256 # 2x min stride m.inplace = self.inplace m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward m.anchors /= m.stride.view(-1, 1, 1) check_anchor_order(m) self.stride = m.stride self._initialize_biases() # only run once # logger.info('Strides: %s' % m.stride.tolist()) # Init weights, biases initialize_weights(self) self.info() logger.info('') def forward(self, x, augment=False, profile=False): if augment: return self.forward_augment(x) # augmented inference, None else: return self.forward_once(x, profile) # single-scale inference, train def forward_augment(self, x): img_size = x.shape[-2:] # height, width s = [1, 0.83, 0.67] # scales f = [None, 3, None] # flips (2-ud, 3-lr) y = [] # outputs for si, fi in zip(s, f): xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max())) yi = self.forward_once(xi)[0] # forward # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save yi = self._descale_pred(yi, fi, si, img_size) y.append(yi) return torch.cat(y, 1), None # augmented inference, train def forward_once(self, x, profile=False): y, dt = [], [] # outputs for m in self.model: if m.f != -1: # if not from previous layer x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers if profile: o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs t = time_synchronized() for _ in range(10): _ = m(x) dt.append((time_synchronized() - t) * 100) if m == self.model[0]: logger.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} {'module'}") logger.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}') x = m(x) # run y.append(x if m.i in self.save else None) # save output if profile: logger.info('%.1fms total' % sum(dt)) return x def _descale_pred(self, p, flips, scale, img_size): # de-scale predictions following augmented inference (inverse operation) if self.inplace: p[..., :4] /= scale # de-scale if flips == 2: p[..., 1] = img_size[0] - p[..., 1] # de-flip ud elif flips == 3: p[..., 0] = img_size[1] - p[..., 0] # de-flip lr else: x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale if flips == 2: y = img_size[0] - y # de-flip ud elif flips == 3: x = img_size[1] - x # de-flip lr p = torch.cat((x, y, wh, p[..., 4:]), -1) return p def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency # https://arxiv.org/abs/1708.02002 section 3.3 # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1. m = self.model[-1] # Detect() module for mi, s in zip(m.m, m.stride): # from b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85) b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image) b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) def _print_biases(self): m = self.model[-1] # Detect() module for mi in m.m: # from b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85) logger.info( ('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean())) # def _print_weights(self): # for m in self.model.modules(): # if type(m) is Bottleneck: # logger.info('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers logger.info('Fusing layers... ') for m in self.model.modules(): if type(m) is Conv and hasattr(m, 'bn'): m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv delattr(m, 'bn') # remove batchnorm m.forward = m.fuseforward # update forward self.info() return self def nms(self, mode=True): # add or remove NMS module present = type(self.model[-1]) is NMS # last layer is NMS if mode and not present: logger.info('Adding NMS... ') m = NMS() # module m.f = -1 # from m.i = self.model[-1].i + 1 # index self.model.add_module(name='%s' % m.i, module=m) # add self.eval() elif not mode and present: logger.info('Removing NMS... ') self.model = self.model[:-1] # remove return self def autoshape(self): # add AutoShape module logger.info('Adding AutoShape... ') m = AutoShape(self) # wrap model copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes return m def info(self, verbose=False, img_size=640): # print model information model_info(self, verbose, img_size) def parse_model(d, ch): # model_dict, input_channels(3) logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments')) anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors no = na * (nc + 5) # number of outputs = anchors * (classes + 5) layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args m = eval(m) if isinstance(m, str) else m # eval strings for j, a in enumerate(args): try: args[j] = eval(a) if isinstance(a, str) else a # eval strings except: pass n = max(round(n * gd), 1) if n > 1 else n # depth gain if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, C3TR]: c1, c2 = ch[f], args[0] if c2 != no: # if not output c2 = make_divisible(c2 * gw, 8) args = [c1, c2, *args[1:]] if m in [BottleneckCSP, C3, C3TR]: args.insert(2, n) # number of repeats n = 1 elif m is nn.BatchNorm2d: args = [ch[f]] elif m is Concat: c2 = sum([ch[x] for x in f]) elif m is Detect: args.append([ch[x] for x in f]) if isinstance(args[1], int): # number of anchors args[1] = [list(range(args[1] * 2))] * len(f) elif m is Contract: c2 = ch[f] * args[0] ** 2 elif m is Expand: c2 = ch[f] // args[0] ** 2 else: c2 = ch[f] m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module t = str(m)[8:-2].replace('__main__.', '') # module type np = sum([x.numel() for x in m_.parameters()]) # number params m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist layers.append(m_) if i == 0: ch = [] ch.append(c2) return nn.Sequential(*layers), sorted(save) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') opt = parser.parse_args() opt.cfg = check_file(opt.cfg) # check file set_logging() device = select_device(opt.device) # Create model model = Model(opt.cfg).to(device) model.train() # Profile # img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 320, 320).to(device) # y = model(img, profile=True) # Tensorboard (not working https://github.com/ultralytics/yolov5/issues/2898) # from torch.utils.tensorboard import SummaryWriter # tb_writer = SummaryWriter('.') # logger.info("Run 'tensorboard --logdir=models' to view tensorboard at http://localhost:6006/") # tb_writer.add_graph(torch.jit.trace(model, img, strict=False), []) # add model graph # tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard
43.993569
119
0.542538
4a2515ea951a190080b861d68cea716b6885cbeb
19,093
py
Python
code/dataset/transform.py
luozm/frog
ce29cdaddba5ecf78cc66bce1bfc64b301b706ca
[ "MIT" ]
null
null
null
code/dataset/transform.py
luozm/frog
ce29cdaddba5ecf78cc66bce1bfc64b301b706ca
[ "MIT" ]
null
null
null
code/dataset/transform.py
luozm/frog
ce29cdaddba5ecf78cc66bce1bfc64b301b706ca
[ "MIT" ]
null
null
null
""" Transformations for both images and masks. """ import os import cv2 import math import random import skimage import skimage.morphology from PIL import Image import numpy as np # for debug def dummy_transform(image): print('\tdummy_transform') return image # ------------------------------------------------------------------------------------ # transform both for images & masks # ------------------------------------------------------------------------------------ def resize_to_factor2(image, mask, factor=16): H,W = image.shape[:2] h = (H//factor)*factor w = (W //factor)*factor return fix_resize_transform2(image, mask, w, h) def fix_resize_transform2(image, mask, w, h): H,W = image.shape[:2] if (H,W) != (h,w): image = cv2.resize(image,(w,h)) mask = mask.astype(np.float32) mask = cv2.resize(mask,(w,h),cv2.INTER_NEAREST) mask = mask.astype(np.int32) return image, mask def fix_crop_transform2(image, mask, x,y,w,h): H,W = image.shape[:2] assert(H>=h) assert(W >=w) if (x==-1 & y==-1): x=(W-w)//2 y=(H-h)//2 if (x,y,w,h) != (0,0,W,H): image = image[y:y+h, x:x+w] mask = mask[y:y+h, x:x+w] return image, mask def random_crop_transform2(image, mask, w,h, u=0.5): x,y = -1,-1 if random.random() < u: H,W = image.shape[:2] if H!=h: y = np.random.choice(H-h) else: y=0 if W!=w: x = np.random.choice(W-w) else: x=0 return fix_crop_transform2(image, mask, x,y,w,h) def random_horizontal_flip_transform2(image, mask, u=0.5): if random.random() < u: image = cv2.flip(image,1) #np.fliplr(img) ##left-right mask = cv2.flip(mask,1) return image, mask def random_vertical_flip_transform2(image, mask, u=0.5): if random.random() < u: image = cv2.flip(image,0) mask = cv2.flip(mask,0) return image, mask def random_rotate90_transform2(image, mask, u=0.5): if random.random() < u: angle=random.randint(1,3)*90 if angle == 90: image = image.transpose(1,0,2) #cv2.transpose(img) image = cv2.flip(image,1) mask = mask.transpose(1,0) mask = cv2.flip(mask,1) elif angle == 180: image = cv2.flip(image,-1) mask = cv2.flip(mask,-1) elif angle == 270: image = image.transpose(1,0,2) #cv2.transpose(img) image = cv2.flip(image,0) mask = mask.transpose(1,0) mask = cv2.flip(mask,0) return image, mask def relabel_multi_mask(multi_mask): data = multi_mask data = data[:,:,np.newaxis] unique_color = set( tuple(v) for m in data for v in m ) #print(len(unique_color)) H, W = data.shape[:2] multi_mask = np.zeros((H,W),np.int32) for color in unique_color: #print(color) if color == (0,): continue mask = (data==color).all(axis=2) label = skimage.morphology.label(mask) index = [label!=0] multi_mask[index] = label[index]+multi_mask.max() return multi_mask def random_shift_scale_rotate_transform2( image, mask, shift_limit=[-0.0625,0.0625], scale_limit=[1/1.2,1.2], rotate_limit=[-15,15], borderMode=cv2.BORDER_REFLECT_101 , u=0.5): if random.random() < u: height, width, channel = image.shape angle = random.uniform(rotate_limit[0], rotate_limit[1]) #degree scale = random.uniform(scale_limit[0], scale_limit[1]) sx = scale sy = scale dx = round(random.uniform(shift_limit[0], shift_limit[1])*width) dy = round(random.uniform(shift_limit[0], shift_limit[1])*height) cc = math.cos(angle/180*math.pi)*(sx) ss = math.sin(angle/180*math.pi)*(sy) rotate_matrix = np.array([ [cc,-ss], [ss,cc] ]) box0 = np.array([ [0,0], [width,0], [width,height], [0,height], ]) box1 = box0 - np.array([width/2,height/2]) box1 = np.dot(box1,rotate_matrix.T) + np.array([width/2+dx,height/2+dy]) box0 = box0.astype(np.float32) box1 = box1.astype(np.float32) mat = cv2.getPerspectiveTransform(box0, box1) image = cv2.warpPerspective(image, mat, (width,height),flags=cv2.INTER_LINEAR, borderMode=borderMode,borderValue=(0,0,0,)) #cv2.BORDER_CONSTANT, borderValue = (0, 0, 0)) #cv2.BORDER_REFLECT_101 mask = mask.astype(np.float32) mask = cv2.warpPerspective(mask, mat, (width, height), flags=cv2.INTER_NEAREST,#cv2.INTER_LINEAR borderMode=borderMode, borderValue=(0,0,0,)) #cv2.BORDER_CONSTANT, borderValue = (0, 0, 0)) #cv2.BORDER_REFLECT_101 mask = mask.astype(np.int32) mask = relabel_multi_mask(mask) return image, mask # ------------------------------------------------------------------------------------ # transform for images # ------------------------------------------------------------------------------------ # -------------------------------- # photometric transform # -------------------------------- def random_brightness_shift_transform(image, limit=[16,64], u=0.5): if np.random.random() < u: alpha = np.random.uniform(limit[0], limit[1]) image = image + alpha*255 image = np.clip(image, 0, 255).astype(np.uint8) return image def random_brightness_transform(image, limit=[0.5,1.5], u=0.5): if np.random.random() < u: alpha = np.random.uniform(limit[0], limit[1]) image = alpha*image image = np.clip(image, 0, 255).astype(np.uint8) return image def random_contrast_transform(image, limit=[0.5,1.5], u=0.5): if np.random.random() < u: alpha = np.random.uniform(limit[0], limit[1]) coef = np.array([[[0.114, 0.587, 0.299]]]) #rgb to gray (YCbCr) gray = image * coef gray = (3.0 * (1.0 - alpha) / gray.size) * np.sum(gray) image = alpha*image + gray image = np.clip(image, 0, 255).astype(np.uint8) return image def random_saturation_transform(image, limit=[0.5,1.5], u=0.5): if np.random.random() < u: alpha = np.random.uniform(limit[0], limit[1]) coef = np.array([[[0.114, 0.587, 0.299]]]) gray = image * coef gray = np.sum(gray,axis=2, keepdims=True) image = alpha*image + (1.0 - alpha)*gray image = np.clip(image, 0, 255).astype(np.uint8) return image # https://github.com/chainer/chainercv/blob/master/chainercv/links/model/ssd/transforms.py # https://github.com/fchollet/keras/pull/4806/files # https://zhuanlan.zhihu.com/p/24425116 # http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html def random_hue_transform(image, limit=[-0.1,0.1], u=0.5): if random.random() < u: h = int(np.random.uniform(limit[0], limit[1])*180) #print(h) hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) hsv[:, :, 0] = (hsv[:, :, 0].astype(int) + h) % 180 image = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) return image def random_noise_transform(image, limit=[0, 0.5], u=0.5): if random.random() < u: H,W = image.shape[:2] noise = np.random.uniform(limit[0],limit[1],size=(H,W))*255 image = image + noise[:,:,np.newaxis]*np.array([1,1,1]) image = np.clip(image, 0, 255).astype(np.uint8) return image # -------------------------------- # geometric transform # -------------------------------- def resize_to_factor(image, factor=16): height, width = image.shape[:2] h = (height//factor)*factor w = (width //factor)*factor return fix_resize_transform(image, w, h) def fix_resize_transform(image, w, h): height,width = image.shape[:2] if (height,width) != (h,w): image = cv2.resize(image,(w,h)) return image def pad_to_factor(image, factor=16): height, width = image.shape[:2] h = math.ceil(height/factor)*factor w = math.ceil(width/factor)*factor image = cv2.copyMakeBorder(image, top=0, bottom=h-height, left=0, right=w-width, borderType=cv2.BORDER_REFLECT101, value=[0, 0, 0]) return image class GaussianDistortion: """ This class performs randomised, elastic gaussian distortions on images. """ def __init__(self, probability, grid_width, grid_height, magnitude, corner='bell', method='in', mex=0.5, mey=0.5, sdx=0.05, sdy=0.05): """ As well as the probability, the granularity of the distortions produced by this class can be controlled using the width and height of the overlaying distortion grid. The larger the height and width of the grid, the smaller the distortions. This means that larger grid sizes can result in finer, less severe distortions. As well as this, the magnitude of the distortions vectors can also be adjusted. :param probability: Controls the probability that the operation is performed when it is invoked in the pipeline. :param grid_width: The width of the gird overlay, which is used by the class to apply the transformations to the image. :param grid_height: The height of the gird overlay, which is used by the class to apply the transformations to the image. :param magnitude: Controls the degree to which each distortion is applied to the overlaying distortion grid. :param corner: which corner of picture to distort. Possible values: "bell"(circular surface applied), "ul"(upper left), "ur"(upper right), "dl"(down left), "dr"(down right). :param method: possible values: "in"(apply max magnitude to the chosen corner), "out"(inverse of method in). :param mex: used to generate 3d surface for similar distortions. Surface is based on normal distribution. :param mey: used to generate 3d surface for similar distortions. Surface is based on normal distribution. :param sdx: used to generate 3d surface for similar distortions. Surface is based on normal distribution. :param sdy: used to generate 3d surface for similar distortions. Surface is based on normal distribution. :type probability: Float :type grid_width: Integer :type grid_height: Integer :type magnitude: Integer :type corner: String :type method: String :type mex: Float :type mey: Float :type sdx: Float :type sdy: Float For values :attr:`mex`, :attr:`mey`, :attr:`sdx`, and :attr:`sdy` the surface is based on the normal distribution: .. math:: e^{- \Big( \\frac{(x-\\text{mex})^2}{\\text{sdx}} + \\frac{(y-\\text{mey})^2}{\\text{sdy}} \Big) } """ self.probability = probability self.grid_width = grid_width self.grid_height = grid_height self.magnitude = abs(magnitude) self.randomise_magnitude = True self.corner = corner self.method = method self.mex = mex self.mey = mey self.sdx = sdx self.sdy = sdy def perform_operation(self, images): """ Distorts the passed image(s) according to the parameters supplied during instantiation, returning the newly distorted image. :param images: The image(s) to be distorted. :type images: List containing PIL.Image object(s). :return: The transformed image(s) as a list of object(s) of type PIL.Image. """ w, h = images[0].size horizontal_tiles = self.grid_width vertical_tiles = self.grid_height width_of_square = int(math.floor(w / float(horizontal_tiles))) height_of_square = int(math.floor(h / float(vertical_tiles))) width_of_last_square = w - (width_of_square * (horizontal_tiles - 1)) height_of_last_square = h - (height_of_square * (vertical_tiles - 1)) dimensions = [] for vertical_tile in range(vertical_tiles): for horizontal_tile in range(horizontal_tiles): if vertical_tile == (vertical_tiles - 1) and horizontal_tile == (horizontal_tiles - 1): dimensions.append([horizontal_tile * width_of_square, vertical_tile * height_of_square, width_of_last_square + (horizontal_tile * width_of_square), height_of_last_square + (height_of_square * vertical_tile)]) elif vertical_tile == (vertical_tiles - 1): dimensions.append([horizontal_tile * width_of_square, vertical_tile * height_of_square, width_of_square + (horizontal_tile * width_of_square), height_of_last_square + (height_of_square * vertical_tile)]) elif horizontal_tile == (horizontal_tiles - 1): dimensions.append([horizontal_tile * width_of_square, vertical_tile * height_of_square, width_of_last_square + (horizontal_tile * width_of_square), height_of_square + (height_of_square * vertical_tile)]) else: dimensions.append([horizontal_tile * width_of_square, vertical_tile * height_of_square, width_of_square + (horizontal_tile * width_of_square), height_of_square + (height_of_square * vertical_tile)]) last_column = [] for i in range(vertical_tiles): last_column.append((horizontal_tiles-1)+horizontal_tiles*i) last_row = range((horizontal_tiles * vertical_tiles) - horizontal_tiles, horizontal_tiles * vertical_tiles) polygons = [] for x1, y1, x2, y2 in dimensions: polygons.append([x1, y1, x1, y2, x2, y2, x2, y1]) polygon_indices = [] for i in range((vertical_tiles * horizontal_tiles) - 1): if i not in last_row and i not in last_column: polygon_indices.append([i, i + 1, i + horizontal_tiles, i + 1 + horizontal_tiles]) def sigmoidf(x, y, sdx=0.05, sdy=0.05, mex=0.5, mey=0.5, const=1): sigmoid = lambda x1, y1: (const * (math.exp(-(((x1-mex)**2)/sdx + ((y1-mey)**2)/sdy) )) + max(0,-const) - max(0, const)) xl = np.linspace(0,1) yl = np.linspace(0, 1) X, Y = np.meshgrid(xl, yl) Z = np.vectorize(sigmoid)(X, Y) mino = np.amin(Z) maxo = np.amax(Z) res = sigmoid(x, y) res = max(((((res - mino) * (1 - 0)) / (maxo - mino)) + 0), 0.01)*self.magnitude return res def corner(x, y, corner="ul", method="out", sdx=0.05, sdy=0.05, mex=0.5, mey=0.5): ll = {'dr': (0, 0.5, 0, 0.5), 'dl': (0.5, 1, 0, 0.5), 'ur': (0, 0.5, 0.5, 1), 'ul': (0.5, 1, 0.5, 1), 'bell': (0, 1, 0, 1)} new_c = ll[corner] new_x = (((x - 0) * (new_c[1] - new_c[0])) / (1 - 0)) + new_c[0] new_y = (((y - 0) * (new_c[3] - new_c[2])) / (1 - 0)) + new_c[2] if method == "in": const = 1 else: if method == "out": const =- 1 else: const = 1 res = sigmoidf(x=new_x, y=new_y,sdx=sdx, sdy=sdy, mex=mex, mey=mey, const=const) return res def do(image): for a, b, c, d in polygon_indices: x1, y1, x2, y2, x3, y3, x4, y4 = polygons[a] sigmax = corner(x=x3/w, y=y3/h, corner=self.corner, method=self.method, sdx=self.sdx, sdy=self.sdy, mex=self.mex, mey=self.mey) dx = np.random.normal(0, sigmax, 1)[0] dy = np.random.normal(0, sigmax, 1)[0] polygons[a] = [x1, y1, x2, y2, x3 + dx, y3 + dy, x4, y4] x1, y1, x2, y2, x3, y3, x4, y4 = polygons[b] polygons[b] = [x1, y1, x2 + dx, y2 + dy, x3, y3, x4, y4] x1, y1, x2, y2, x3, y3, x4, y4 = polygons[c] polygons[c] = [x1, y1, x2, y2, x3, y3, x4 + dx, y4 + dy] x1, y1, x2, y2, x3, y3, x4, y4 = polygons[d] polygons[d] = [x1 + dx, y1 + dy, x2, y2, x3, y3, x4, y4] generated_mesh = [] for i in range(len(dimensions)): generated_mesh.append([dimensions[i], polygons[i]]) return image.transform(image.size, Image.MESH, generated_mesh, resample=Image.BICUBIC) augmented_images = [] for image in images: augmented_images.append(do(image)) return augmented_images def normalize_transform(image): # image = image[:,:,0] # image = image.reshape(image.shape+(1,)) std = np.std(image) if std <1e-10 or std>1e10: return None mean = np.mean(image) image_trans = (image-mean)/std return image_trans if __name__ == '__main__': print('%s: calling main function ... ' % os.path.basename(__file__)) from dataset.reader import ScienceDataset import matplotlib.pyplot as plt from skimage import exposure from common import IMAGE_DIR # import Augmentor # p = Augmentor.Pipeline(IMAGE_DIR + 'train1_norm/images') # p.random_distortion(0.5,16,16,5) # img = p.sample(10) # plt.imshow(img) # plt.show() dataset = ScienceDataset('train1_train_603', img_folder='train1_norm', mask_folder='stage1_train', mode='train') img = dataset[572] for img, mask, meta, idx in dataset: if img.shape[0]<513 and img.shape[1]<513: print(idx) 'f4c4db3df4ff0de90f44b027fc2e28c16bf7e5c75ea75b0a9762bbb7ac86e7a3' # mask_re = mask.reshape(mask.shape + (1,)) # img_concat = np.stack((img[:, :, 0], mask), axis=2) # result = random_contrast_transform(img, u=1) # result2 = random_brightness_transform(img, u=1) # img_norm = normalize_transform(img) # result = elastic_transform_2(img[:,:,0],img.shape[1]*2, img.shape[1]*0.08) # plt.imshow(img) # plt.figure() # plt.imshow(img_adapteq) # plt.figure() # plt.imshow(result2) # elastic_transform(img_concat, img_concat.shape[1]*2, img_concat.shape[1]*0.08, img_concat.shape[1]*0.08) print() print('\nsucess!')
36.788054
152
0.555596
4a251719926ebad3e6c081d334b27dba4c23974f
4,803
py
Python
tools/download_fuchsia_sdk.py
kofj/engine
e17ee4a5fff8a13626a9a7786b7e2534aba51df0
[ "BSD-3-Clause" ]
null
null
null
tools/download_fuchsia_sdk.py
kofj/engine
e17ee4a5fff8a13626a9a7786b7e2534aba51df0
[ "BSD-3-Clause" ]
null
null
null
tools/download_fuchsia_sdk.py
kofj/engine
e17ee4a5fff8a13626a9a7786b7e2534aba51df0
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # Copyright 2013 The Flutter Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # The return code of this script will always be 0, even if there is an error, # unless the --fail-loudly flag is passed. import argparse import tarfile import json import os import shutil import subprocess import sys SRC_ROOT = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) FUCHSIA_SDK_DIR = os.path.join(SRC_ROOT, 'fuchsia', 'sdk') FLUTTER_DIR = os.path.join(SRC_ROOT, 'flutter') SDK_VERSION_INFO_FILE = os.path.join(FLUTTER_DIR, '.fuchsia_sdk_version') # Prints to stderr. def eprint(*args, **kwargs): print(*args, file=sys.stderr, **kwargs) def FileNameForBucket(bucket): return bucket.split('/')[-1] def DownloadFuchsiaSDKFromGCS(bucket, verbose): file = FileNameForBucket(bucket) url = 'https://storage.googleapis.com/{}'.format(bucket) dest = os.path.join(FUCHSIA_SDK_DIR, file) if verbose: print('Fuchsia SDK url: "%s"' % url) print('Fuchsia SDK destination path: "%s"' % dest) if os.path.isfile(dest): os.unlink(dest) curl_command = [ 'curl', '--retry', '3', '--continue-at', '-', '--location', '--output', dest, url, ] if verbose: print('Running: "%s"' % (' '.join(curl_command))) curl_result = subprocess.run( curl_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, ) if curl_result.returncode == 0 and verbose: print('curl output:stdout:\n{}\nstderr:\n{}'.format( curl_result.stdout, curl_result.stderr, )) elif curl_result.returncode != 0: eprint('Failed to download: stdout:\n{}\nstderr:\n{}'.format( curl_result.stdout, curl_result.stderr, )) return None return dest def OnErrorRmTree(func, path, exc_info): """ Error handler for ``shutil.rmtree``. If the error is due to an access error (read only file) it attempts to add write permission and then retries. If the error is for another reason it re-raises the error. Usage : ``shutil.rmtree(path, onerror=onerror)`` """ import stat # Is the error an access error? if not os.access(path, os.W_OK): os.chmod(path, stat.S_IWUSR) func(path) else: raise def ExtractGzipArchive(archive, host_os, verbose): sdk_dest = os.path.join(FUCHSIA_SDK_DIR, host_os) if os.path.isdir(sdk_dest): shutil.rmtree(sdk_dest, onerror=OnErrorRmTree) extract_dest = os.path.join(FUCHSIA_SDK_DIR, 'temp') if os.path.isdir(extract_dest): shutil.rmtree(extract_dest, onerror=OnErrorRmTree) os.makedirs(extract_dest, exist_ok=True) if verbose: print('Extracting "%s" to "%s"' % (archive, extract_dest)) with tarfile.open(archive, 'r') as z: z.extractall(extract_dest) shutil.move(extract_dest, sdk_dest) # Reads the version file and returns the bucket to download # The file is expected to live at the flutter directory and be named .fuchsia_sdk_version. # # The file is a JSON file which contains a single object with the following schema: # ``` # { # "protocol": "gcs", # "identifiers": [ # { # "host_os": "linux", # "bucket": "fuchsia-artifacts/development/8824687191341324145/sdk/linux-amd64/core.tar.gz" # } # ] # } # ``` def ReadVersionFile(host_os): with open(SDK_VERSION_INFO_FILE) as f: try: version_obj = json.loads(f.read()) if version_obj['protocol'] != 'gcs': eprint('The gcs protocol is the only suppoted protocl at this time') return None for id_obj in version_obj['identifiers']: if id_obj['host_os'] == host_os: return id_obj['bucket'] except: eprint('Could not read JSON version file') return None def Main(): parser = argparse.ArgumentParser() parser.add_argument( '--fail-loudly', action='store_true', default=False, help="Return an error code if a prebuilt couldn't be fetched and extracted") parser.add_argument( '--verbose', action='store_true', default='LUCI_CONTEXT' in os.environ, help='Emit verbose output') parser.add_argument( '--host-os', help='The host os') args = parser.parse_args() fail_loudly = 1 if args.fail_loudly else 0 verbose = args.verbose host_os = args.host_os bucket = ReadVersionFile(host_os) if bucket is None: eprint('Unable to find bucket in version file') return fail_loudly archive = DownloadFuchsiaSDKFromGCS(bucket, verbose) if archive is None: eprint('Failed to download SDK from %s' % bucket) return fail_loudly ExtractGzipArchive(archive, host_os, verbose) success = True return 0 if success else fail_loudly if __name__ == '__main__': sys.exit(Main())
26.245902
98
0.684989
4a2518ce4917592c21b3be2f9d2140f32bc2fa13
2,859
py
Python
migrations/versions/08e57c6490ee_.py
amoskipz/pitch
477599a56958bc677e22764d7e0cc14d34510e8c
[ "Unlicense", "MIT" ]
null
null
null
migrations/versions/08e57c6490ee_.py
amoskipz/pitch
477599a56958bc677e22764d7e0cc14d34510e8c
[ "Unlicense", "MIT" ]
null
null
null
migrations/versions/08e57c6490ee_.py
amoskipz/pitch
477599a56958bc677e22764d7e0cc14d34510e8c
[ "Unlicense", "MIT" ]
null
null
null
"""empty message Revision ID: 08e57c6490ee Revises: Create Date: 2021-03-08 12:35:15.305897 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '08e57c6490ee' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('categories', sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=255), nullable=True), sa.Column('description', sa.String(length=255), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_table('users', sa.Column('id', sa.Integer(), nullable=False), sa.Column('username', sa.String(length=255), nullable=True), sa.Column('email', sa.String(length=255), nullable=True), sa.Column('password_hash', sa.String(length=255), nullable=True), sa.Column('pass_secure', sa.String(length=255), nullable=True), sa.Column('bio', sa.String(length=255), nullable=True), sa.Column('profile_pic_path', sa.String(), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_users_email'), 'users', ['email'], unique=True) op.create_table('pitches', sa.Column('id', sa.Integer(), nullable=False), sa.Column('pitch', sa.String(), nullable=True), sa.Column('category_id', sa.Integer(), nullable=True), sa.Column('user_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['category_id'], ['categories.id'], ), sa.ForeignKeyConstraint(['user_id'], ['users.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_table('comments', sa.Column('id', sa.Integer(), nullable=False), sa.Column('comment', sa.String(length=255), nullable=True), sa.Column('time_posted', sa.DateTime(), nullable=True), sa.Column('user_id', sa.Integer(), nullable=True), sa.Column('pitches_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['pitches_id'], ['pitches.id'], ), sa.ForeignKeyConstraint(['user_id'], ['users.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_table('votes', sa.Column('id', sa.Integer(), nullable=False), sa.Column('vote', sa.Integer(), nullable=True), sa.Column('user_id', sa.Integer(), nullable=True), sa.Column('pitches_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['pitches_id'], ['pitches.id'], ), sa.ForeignKeyConstraint(['user_id'], ['users.id'], ), sa.PrimaryKeyConstraint('id') ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('votes') op.drop_table('comments') op.drop_table('pitches') op.drop_index(op.f('ix_users_email'), table_name='users') op.drop_table('users') op.drop_table('categories') # ### end Alembic commands ###
36.653846
76
0.663519
4a251a114c81a5c658ae15c6d7aaba91f6981539
10,524
py
Python
qrf/qrf_cdf.py
RLstat/deep-conditional-distribution-regression
66e56bd90225f9959d00b633837285cb8b7cbf35
[ "Apache-2.0" ]
6
2020-09-13T20:16:35.000Z
2021-09-15T06:13:31.000Z
qrf/qrf_cdf.py
RLstat/deep-conditional-distribution-regression
66e56bd90225f9959d00b633837285cb8b7cbf35
[ "Apache-2.0" ]
null
null
null
qrf/qrf_cdf.py
RLstat/deep-conditional-distribution-regression
66e56bd90225f9959d00b633837285cb8b7cbf35
[ "Apache-2.0" ]
3
2019-05-06T06:45:04.000Z
2021-04-26T03:52:12.000Z
# -*- coding: utf-8 -*- """ Created on Sat Feb 9 11:36:03 2019 @author: RLstat """ import numpy as np import pandas as pd import matplotlib.pyplot as plt from skgarden import RandomForestQuantileRegressor from dcdr.utils import (evaluate_crps, evaluate_monotonicity, evaluate_quantile_loss, evaluate_rmse, evaluate_coverage, quantile_to_cdf) import gc class QRFCDF(RandomForestQuantileRegressor): def __init__(self, **kwargs): super(QRFCDF, self).__init__(**kwargs) def fit_cdf(self, train_x, train_y): train_x = np.array(train_x) train_y = np.array(train_y).flatten() if train_x.ndim < 2: train_x = train_x.reshape(-1, 1) self.p = train_x.shape[1] self.y_min = np.min(train_y) self.y_max = np.max(train_y) self.y_range = self.y_max - self.y_min self.y_lim = [self.y_min, self.y_max] self.fit(train_x, train_y) def predict_cdf(self, test_x, quantiles_grid=None, quantile_lim=[0.00001, 0.99999], n_quantiles=500, y_grid=None, pred_lim=None, pred_margin=0.1, ngrid=1000, keep_cdf_matrix=True, overwrite_y_grid=True, keep_test_x=True): if y_grid is None: if pred_lim is None: if pred_margin is None: pred_lim = self.ylim else: pred_lim = [self.y_min - pred_margin*self.y_range, self.y_max + pred_margin*self.y_range] y_grid = np.linspace(pred_lim[0], pred_lim[1], num=ngrid) self.pred_lim = pred_lim else: self.pred_lim = [np.min(y_grid), np.max(y_grid)] if not isinstance(test_x, np.ndarray): test_x = np.array(test_x) if test_x.ndim <2: test_x = test_x.reshape(-1, self.p) y_grid = y_grid.flatten() if quantiles_grid is None: quantiles_grid = np.linspace(quantile_lim[0], quantile_lim[1], num=n_quantiles) if keep_test_x: self.test_x = test_x if isinstance(quantiles_grid, list): rescaled_qt = [qt*100 for qt in quantiles_grid] else: rescaled_qt = quantiles_grid*100 quantile_output = self.predict(test_x, quantile=rescaled_qt) TestX_CDF_matrix = quantile_to_cdf(quantile_output, quantiles_grid, y_grid) if keep_cdf_matrix: self.TestX_CDF_matrix = TestX_CDF_matrix if overwrite_y_grid: self.y_grid = y_grid cdf_df = pd.DataFrame(TestX_CDF_matrix, columns=y_grid) return cdf_df def plot_PIT(self, test_x, test_y, density=True, return_cdf_value=False, block_size=None, **kwargs): if block_size is None: cdf_df = self.predict_cdf(test_x, y_grid=test_y, keep_cdf_matrix=False, overwrite_y_grid=False) cdf_values = [cdf_df.iloc[i,i] for i in range(cdf_df.shape[0])] else: cdf_values = [] if test_x.shape[0] % block_size == 0: nblocks = test_x.shape[0]//block_size else: nblocks = test_x.shape[0]//block_size + 1 for b in range(nblocks): cdf_df = self.predict_cdf(test_x[b*block_size : (b+1)*block_size], y_grid=test_y[b*block_size : (b+1)*block_size], keep_cdf_matrix=False, overwrite_y_grid=False) cdf_values.extend([cdf_df.iloc[i,i] for i in range(cdf_df.shape[0])]) del cdf_df gc.collect() fig, ax = plt.subplots(1, 1) ax.hist(cdf_values, density=density, **kwargs) if density: ax.axhline(y=1, color='red') if return_cdf_value: return ax, cdf_values else: return ax def plot_cdf(self, index=0, test_x=None, test_y=None, grid=None, pred_lim=None, pred_margin=0.1, true_cdf_func=None, figsize=(12, 8), title=None): if test_x is None: cdf = self.TestX_CDF_matrix[index, :].copy() xval = self.test_x[index, :] grid = self.y_grid.copy() else: cdf = self.predict_cdf(test_x, y_grid=grid, pred_lim=pred_lim, pred_margin=pred_margin, keep_cdf_matrix=False, overwrite_y_grid=True, keep_test_x=False).values.flatten() xval = test_x grid = self.y_grid.copy() cdf = cdf[grid.argsort()] grid.sort() fig, ax = plt.subplots(1, 1, figsize=figsize) ax.plot(grid, cdf, label='predicted cdf', lw=3) if true_cdf_func is not None: true_cdf = true_cdf_func(xval, grid) ax.plot(grid, true_cdf, label='true cdf', lw=3) ax.legend(loc='best', prop={'size':16}) if test_y is not None: if test_x is None: ax.axvline(x=test_y[index], color='black', lw=3) else: ax.axvline(x=test_y, color='black', lw=3) if title: ax.set_title(title, fontsize=20) tlt = ax.title tlt.set_position([0.5, 1.02]) ax.get_xaxis().set_tick_params(direction='out', labelsize=16) ax.get_yaxis().set_tick_params(direction='out', labelsize=16) ax.set_xlim(self.pred_lim) return ax def plot_density(self, index=0, test_x=None, test_y=None, grid=None, pred_lim=None, pred_margin=0.1, window=1, true_density_func=None, figsize=(12, 8), title=None, label=None, xlabel=None, ylabel=None, figure=None): if test_x is None: cdf = self.TestX_CDF_matrix[index, :].copy() xval = self.test_x[index, :] grid = self.y_grid.copy() else: cdf = self.predict_cdf(test_x, y_grid=grid, pred_lim=pred_lim, pred_margin=pred_margin, keep_cdf_matrix=False, overwrite_y_grid=True, keep_test_x=False).values.flatten() xval = test_x grid = self.y_grid.copy() if len(grid) < 2*window + 1: raise ValueError('''The density of the most left {0} and the most right {1} grid points won't be plotted, so it requires at least {2} grid points to make density plot'''.format(window, window, 2*window + 1)) cdf = cdf[grid.argsort()] grid.sort() density_binwidth = grid[(2*window):] - grid[:-(2*window)] cdf_diff = cdf[(2*window):] - cdf[:-(2*window)] density = cdf_diff/density_binwidth if figure is not None: fig, ax = figure else: fig, ax = plt.subplots(1, 1, figsize=figsize) if label is None: label = 'predicted density' ax.plot(grid[window:-window], density, label=label, lw=3) if true_density_func is not None: true_density = true_density_func(xval, grid[window:-window]) ax.plot(grid[window:-window], true_density, label='true density', lw=3) ax.legend(loc='best', prop={'size':16}) if title: ax.set_title(title, fontsize=20) tlt = ax.title tlt.set_position([0.5, 1.02]) if test_y is not None: if test_x is None: ax.axvline(x=test_y[index], color='black', lw=3) else: ax.axvline(x=test_y, color='black', lw=3) ax.get_xaxis().set_tick_params(direction='out', labelsize=16) ax.get_yaxis().set_tick_params(direction='out', labelsize=16) if xlabel is not None: ax.set_xlabel(xlabel, fontsize=18) if ylabel is not None: ax.set_ylabel(ylabel, fontsize=18) ax.set_xlim(self.pred_lim) return (fig, ax) def predict_quantile(self, test_x, quantiles): if isinstance(quantiles, list): rescaled_qt = [qt*100 for qt in quantiles] else: rescaled_qt = quantiles*100 quantile_output = self.predict(test_x, quantile=rescaled_qt) test_qt_df = pd.DataFrame(quantile_output, columns=quantiles) return test_qt_df def predict_mean(self, test_x): test_mean = self.predict(test_x) return test_mean def evaluate(self, test_x, test_y, y_grid=None, pred_margin=0.1, ngrid=1000, quantiles=None, interval=None, mode='CRPS'): if mode == 'QuantileLoss' and quantiles is not None: quantile_matrix = self.predict_quantile(test_x, quantiles).values test_score = evaluate_quantile_loss(quantile_matrix, test_y, quantiles) else: cdf_matrix = self.predict_cdf(test_x, y_grid=y_grid, pred_margin=pred_margin, ngrid=ngrid).values if mode == 'CRPS': test_score = evaluate_crps(cdf_matrix, test_y, self.y_grid) elif mode == 'RMSE': test_score = evaluate_rmse(cdf_matrix, test_y, self.y_grid) elif mode == 'Coverage' and interval is not None: test_score = evaluate_coverage(cdf_matrix, test_y, interval, self.y_grid) elif mode == 'Monotonicity': test_score = evaluate_monotonicity(cdf_matrix, self.y_grid) elif mode == 'Crossing': test_score = evaluate_monotonicity(cdf_matrix, self.y_grid, return_crossing_freq=True) return test_score
37.319149
125
0.528981
4a251a73f29ae5e8da6221d9d91e6789969e9dcf
253
py
Python
lisa/features/__init__.py
KsenijaS/lisa
f09291a088c81de40e57bc4e37e9348220a87417
[ "MIT" ]
1
2021-06-17T13:02:44.000Z
2021-06-17T13:02:44.000Z
lisa/features/__init__.py
KsenijaS/lisa
f09291a088c81de40e57bc4e37e9348220a87417
[ "MIT" ]
null
null
null
lisa/features/__init__.py
KsenijaS/lisa
f09291a088c81de40e57bc4e37e9348220a87417
[ "MIT" ]
null
null
null
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from .gpu import Gpu from .serial_console import SerialConsole from .sriov import Sriov from .startstop import StartStop __all__ = ["Gpu", "SerialConsole", "Sriov", "StartStop"]
25.3
56
0.766798
4a251be34511c1b4f2e8866f78b9e10c6c3cadb0
3,990
py
Python
tools/pytorch2onnx.py
dyhan0920/mmdetection
adc65ffc3e78c4dfd5f9c693210b69140c3f9a56
[ "Apache-2.0" ]
38
2020-11-03T14:45:49.000Z
2022-03-19T01:14:49.000Z
tools/pytorch2onnx.py
13952522076/mmdet0
7c914eceda1e61bd7aea78d9db924ead1c582daa
[ "Apache-2.0" ]
8
2021-02-05T07:30:39.000Z
2022-03-16T06:45:46.000Z
tools/pytorch2onnx.py
13952522076/mmdet0
7c914eceda1e61bd7aea78d9db924ead1c582daa
[ "Apache-2.0" ]
9
2020-11-10T16:29:15.000Z
2021-06-07T08:00:38.000Z
import argparse import io import mmcv import onnx import torch from mmcv.ops import RoIAlign, RoIPool from mmcv.runner import load_checkpoint from onnx import optimizer from torch.onnx import OperatorExportTypes from mmdet.models import build_detector def export_onnx_model(model, inputs, passes): """Trace and export a model to onnx format. Modified from https://github.com/facebookresearch/detectron2/ Args: model (nn.Module): inputs (tuple[args]): the model will be called by `model(*inputs)` passes (None or list[str]): the optimization passed for ONNX model Returns: an onnx model """ assert isinstance(model, torch.nn.Module) # make sure all modules are in eval mode, onnx may change the training # state of the module if the states are not consistent def _check_eval(module): assert not module.training model.apply(_check_eval) # Export the model to ONNX with torch.no_grad(): with io.BytesIO() as f: torch.onnx.export( model, inputs, f, operator_export_type=OperatorExportTypes.ONNX_ATEN_FALLBACK, # verbose=True, # NOTE: uncomment this for debugging # export_params=True, ) onnx_model = onnx.load_from_string(f.getvalue()) # Apply ONNX's Optimization if passes is not None: all_passes = optimizer.get_available_passes() assert all(p in all_passes for p in passes), \ f'Only {all_passes} are supported' onnx_model = optimizer.optimize(onnx_model, passes) return onnx_model def parse_args(): parser = argparse.ArgumentParser( description='MMDet pytorch model conversion to ONNX') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument( '--out', type=str, required=True, help='output ONNX filename') parser.add_argument( '--shape', type=int, nargs='+', default=[1280, 800], help='input image size') parser.add_argument( '--passes', type=str, nargs='+', help='ONNX optimization passes') args = parser.parse_args() return args def main(): args = parse_args() if not args.out.endswith('.onnx'): raise ValueError('The output file must be a onnx file.') if len(args.shape) == 1: input_shape = (3, args.shape[0], args.shape[0]) elif len(args.shape) == 2: input_shape = (3, ) + tuple(args.shape) else: raise ValueError('invalid input shape') cfg = mmcv.Config.fromfile(args.config) cfg.model.pretrained = None # build the model and load checkpoint model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg) load_checkpoint(model, args.checkpoint, map_location='cpu') # Only support CPU mode for now model.cpu().eval() # Customized ops are not supported, use torchvision ops instead. for m in model.modules(): if isinstance(m, (RoIPool, RoIAlign)): # set use_torchvision on-the-fly m.use_torchvision = True # TODO: a better way to override forward function if hasattr(model, 'forward_dummy'): model.forward = model.forward_dummy else: raise NotImplementedError( 'ONNX conversion is currently not currently supported with ' f'{model.__class__.__name__}') input_data = torch.empty((1, *input_shape), dtype=next(model.parameters()).dtype, device=next(model.parameters()).device) onnx_model = export_onnx_model(model, (input_data, ), args.passes) # Print a human readable representation of the graph onnx.helper.printable_graph(onnx_model.graph) print(f'saving model in {args.out}') onnx.save(onnx_model, args.out) if __name__ == '__main__': main()
31.92
76
0.646115
4a251cb5868c668b353aed5a150dcca6742005f7
460
py
Python
user.py
fuaad001/password-locker
4cae9f14f4ca646898b4cc76690b3500750de5e2
[ "MIT" ]
null
null
null
user.py
fuaad001/password-locker
4cae9f14f4ca646898b4cc76690b3500750de5e2
[ "MIT" ]
null
null
null
user.py
fuaad001/password-locker
4cae9f14f4ca646898b4cc76690b3500750de5e2
[ "MIT" ]
null
null
null
class User: """ Class that generates new instances of users """ user_list = [] def __init__(self, user_name, password): ''' __init__ method that defines properties for our users objects. ''' self.user_name = user_name self.password = password def create_user(self): ''' create_user method adds new users objects into user_list ''' User.user_list.append(self)
20.909091
70
0.591304
4a251e70b17c01a72e1dd1bf5fa3daa003b2fd91
561
py
Python
Anil/sixth.py
tf153/Connect-Bud
99489f0494c7a7eb7a4586a8d33f9e261f93419e
[ "MIT" ]
null
null
null
Anil/sixth.py
tf153/Connect-Bud
99489f0494c7a7eb7a4586a8d33f9e261f93419e
[ "MIT" ]
null
null
null
Anil/sixth.py
tf153/Connect-Bud
99489f0494c7a7eb7a4586a8d33f9e261f93419e
[ "MIT" ]
null
null
null
c1=50 c2=20 print(c1+c2) print(c1-c2) print(c1*c2) print(c1/c2) print(c1%c2) print("---------------") c1=c1+30 c2+=40 print(c1) print(c2) print("-------------") c1-=10 c2*=20 print(c1) print(c2) print("-------------") c1/=7 print(c1) c1%=3 print(c1) print("-------------") c3=50 print(c3//5) c3//=10 print(c3) print("---------------") print(10==20) print(25==25) print(10<25) print("--------------") if(10==20): print("not equal") else: print("equal") print("-------------") operator=input("Operator = ") if operator=="+": print("30+70")
11
29
0.493761
4a251e94b4f0952acb6ae0d030351cdaeb53b9e8
1,097
py
Python
sofi/ui/basicblock.py
screamingskulls/sofi
1d75bc97683151864f8a4cafb59ef8e50de63ee4
[ "MIT" ]
402
2016-04-05T23:11:07.000Z
2022-02-22T21:10:49.000Z
sofi/ui/basicblock.py
screamingskulls/sofi
1d75bc97683151864f8a4cafb59ef8e50de63ee4
[ "MIT" ]
87
2016-03-31T00:09:39.000Z
2021-02-22T04:49:25.000Z
sofi/ui/basicblock.py
screamingskulls/sofi
1d75bc97683151864f8a4cafb59ef8e50de63ee4
[ "MIT" ]
54
2016-03-31T00:10:33.000Z
2021-06-23T21:38:36.000Z
from .element import Element class BasicBlock(Element): """Implements <pre> tag""" def __init__(self, text=None, cl=None, ident=None, style=None, attrs=None): super().__init__(cl=cl, ident=ident, style=style, attrs=attrs) if text: self._children.append(text) def __repr__(self): return "<BasicBlock>" def __str__(self): output = [ "<pre" ] if self.ident: output.append(" id=\"") output.append(self.ident) output.append("\"") if self.cl: output.append(" class=\"") output.append(self.cl) output.append("\"") if self.style: output.append(" style=\"") output.append(self.style) output.append("\"") if self.attrs: for k in self.attrs.keys(): output.append(' ' + k + '="' + self.attrs[k] + '"') output.append(">") for child in self._children: output.append(str(child)) output.append("</pre>") return "".join(output)
23.847826
79
0.511395
4a251eb35e43cc2ca3a014243ba4202984d870d1
2,960
py
Python
pokedex.py
trlucasr/pokedex
9afb6d6ee413d9840aa0e43a8685bfbdafcd4020
[ "MIT" ]
null
null
null
pokedex.py
trlucasr/pokedex
9afb6d6ee413d9840aa0e43a8685bfbdafcd4020
[ "MIT" ]
null
null
null
pokedex.py
trlucasr/pokedex
9afb6d6ee413d9840aa0e43a8685bfbdafcd4020
[ "MIT" ]
null
null
null
from flask import Flask, render_template, request, redirect, session, flash, url_for app = Flask(__name__) app.secret_key = 'flask' class Pokemon: def __init__(self, nome, especie, tipo): self.nome = nome self.especie = especie self.tipo = tipo class Treinadora: def __init__(self, id, nome, senha): self.id = id self.nome = nome self.senha = senha #criação das terindoras treinadora1 = Treinadora('Mary', 'Mary Jackson ', '1234') treinadora2 = Treinadora('Ada', 'Ada Lovelace', '1234') treinadora3 = Treinadora('Katherine', 'Katherine Johnson', '1234') treinadoras = {treinadora1.id: treinadora1, treinadora2.id: treinadora2, treinadora3.id: treinadora3} #base de dados de pokemons pokemon1 = Pokemon('Meowth', 'Arranha Gato', 'Normal') pokemon2 = Pokemon('Charmander', 'Lagarto', 'Fogo') pokemon3 = Pokemon('Clefairy', 'Fada', 'Fada') pokemon4 = Pokemon('Machop', 'Superpoder', 'Lutador') pokemon5 = Pokemon('Rhyhorn', 'Espigão', 'Terrestre/pedra') pokemon6 = Pokemon('Cyndaquil', 'Rato de fogo', 'Fogo') pokemon7 = Pokemon('Shuckle', 'Mofo', 'Pedra') pokemon8 = Pokemon('Whismur', 'Sussuro', 'Normal') pokemon9 = Pokemon('Swablu', 'Pássaro de algodão', 'Voador') pokemon10 = Pokemon('Bidoof', 'Rato Gorducho', 'Normal') lista = [pokemon1, pokemon2,pokemon3,pokemon4,pokemon5,pokemon6,pokemon7,pokemon8,pokemon9,pokemon10] #configuração da rota index. @app.route('/') def index(): return render_template('lista.html', titulo='Pokedex', pokemons=lista) @app.route('/novo') def novo(): if 'usuario_logado' not in session or session['usuario_logado'] == None: return redirect(url_for('login', proxima=url_for('novo'))) return render_template('novo.html', titulo='Novo Pokemon') @app.route('/criar', methods=['POST',]) def criar(): nome = request. form['nome'] especie = request. form['especie'] tipo = request. form['tipo'] pokemon = Pokemon(nome, especie, tipo) lista.append(pokemon) return redirect(url_for('index')) @app.route('/login') def login(): proxima = request.args.get('proxima') return render_template('login.html', proxima=proxima) @app.route('/autenticar', methods=['POST', ]) def autenticar(): if request.form['treinadora'] in treinadoras: treinadora = treinadoras[request.form['treinadora']] if treinadora.senha == request.form['senha']: session['usuario_logado'] = treinadora.id flash(treinadora.nome + ' acesso permitido!') proxima_pagina = request.form['proxima'] return redirect(proxima_pagina) else: flash('Acesso negado, digite novamente!') return redirect(url_for('login')) @app.route('/logout') def logout(): session['usuario_logado'] = None flash('Treinadora, logue novamente para cadastrar os pokemons que encontrar!') return redirect(url_for('index')) app.run(debug=True)
34.418605
101
0.671959
4a251f3038bd15ebaf503f0cc92bbdb5567bc535
737
py
Python
agsconfig/services/jpip_server_extension.py
DavidWhittingham/agsconfig
c0ac6c37e5e49f87d2812220d756aef118c08024
[ "BSD-3-Clause" ]
1
2019-05-17T01:44:41.000Z
2019-05-17T01:44:41.000Z
agsconfig/services/jpip_server_extension.py
DavidWhittingham/agsconfig
c0ac6c37e5e49f87d2812220d756aef118c08024
[ "BSD-3-Clause" ]
2
2019-04-09T02:01:26.000Z
2019-06-25T05:27:11.000Z
agsconfig/services/jpip_server_extension.py
DavidWhittingham/agsconfig
c0ac6c37e5e49f87d2812220d756aef118c08024
[ "BSD-3-Clause" ]
2
2019-03-21T04:58:18.000Z
2019-09-09T23:00:48.000Z
"""This module contains the jpip Server extension class""" # Python 2/3 compatibility # pylint: disable=wildcard-import,unused-wildcard-import,wrong-import-order,wrong-import-position from __future__ import (absolute_import, division, print_function, unicode_literals) from future.builtins.disabled import * from future.builtins import * from future.standard_library import install_aliases install_aliases() # pylint: enable=wildcard-import,unused-wildcard-import,wrong-import-order,wrong-import-position from .extension_base import ExtensionBase class JPIPServerExtension(ExtensionBase): """ jpip server extension properties for arcGIS services """ def __init__(self, editor): super().__init__(editor, "JPIPServer")
38.789474
97
0.800543
4a251f7c95a035b4bc1bce0fc0a2b5387d19b634
16,145
py
Python
test/functional/mempool_accept.py
Zachinquarantine/bitcoindx
1a106a5ed6e6bfd0432368e71bdd2ca342afe6f9
[ "MIT" ]
1
2022-01-25T15:50:11.000Z
2022-01-25T15:50:11.000Z
test/functional/mempool_accept.py
Zachinquarantine/bitcoindx
1a106a5ed6e6bfd0432368e71bdd2ca342afe6f9
[ "MIT" ]
3
2021-12-31T16:41:15.000Z
2022-01-23T12:22:46.000Z
test/functional/mempool_accept.py
Zachinquarantine/bitcoindx
1a106a5ed6e6bfd0432368e71bdd2ca342afe6f9
[ "MIT" ]
2
2022-01-15T15:52:28.000Z
2022-01-22T00:37:46.000Z
#!/usr/bin/env python3 # Copyright (c) 2017-2020 The BitcoinDX Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test mempool acceptance of raw transactions.""" from decimal import Decimal import math from test_framework.test_framework import BitcoinDXTestFramework from test_framework.key import ECKey from test_framework.messages import ( BIP125_SEQUENCE_NUMBER, COIN, COutPoint, CTxIn, CTxOut, MAX_BLOCK_BASE_SIZE, MAX_MONEY, tx_from_hex, ) from test_framework.script import ( CScript, OP_0, OP_2, OP_3, OP_CHECKMULTISIG, OP_HASH160, OP_RETURN, ) from test_framework.script_util import ( script_to_p2sh_script, ) from test_framework.util import ( assert_equal, assert_raises_rpc_error, ) class MempoolAcceptanceTest(BitcoinDXTestFramework): def set_test_params(self): self.num_nodes = 1 self.extra_args = [[ '-txindex','-permitbaremultisig=0', ]] * self.num_nodes self.supports_cli = False def skip_test_if_missing_module(self): self.skip_if_no_wallet() def check_mempool_result(self, result_expected, *args, **kwargs): """Wrapper to check result of testmempoolaccept on node_0's mempool""" result_test = self.nodes[0].testmempoolaccept(*args, **kwargs) for r in result_test: r.pop('wtxid') # Skip check for now assert_equal(result_expected, result_test) assert_equal(self.nodes[0].getmempoolinfo()['size'], self.mempool_size) # Must not change mempool state def run_test(self): node = self.nodes[0] self.log.info('Start with empty mempool, and 200 blocks') self.mempool_size = 0 assert_equal(node.getblockcount(), 200) assert_equal(node.getmempoolinfo()['size'], self.mempool_size) coins = node.listunspent() self.log.info('Should not accept garbage to testmempoolaccept') assert_raises_rpc_error(-3, 'Expected type array, got string', lambda: node.testmempoolaccept(rawtxs='ff00baar')) assert_raises_rpc_error(-8, 'Array must contain between 1 and 25 transactions.', lambda: node.testmempoolaccept(rawtxs=['ff22']*26)) assert_raises_rpc_error(-8, 'Array must contain between 1 and 25 transactions.', lambda: node.testmempoolaccept(rawtxs=[])) assert_raises_rpc_error(-22, 'TX decode failed', lambda: node.testmempoolaccept(rawtxs=['ff00baar'])) self.log.info('A transaction already in the blockchain') coin = coins.pop() # Pick a random coin(base) to spend raw_tx_in_block = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[{'txid': coin['txid'], 'vout': coin['vout']}], outputs=[{node.getnewaddress(): 0.3}, {node.getnewaddress(): 49}], ))['hex'] txid_in_block = node.sendrawtransaction(hexstring=raw_tx_in_block, maxfeerate=0) node.generate(1) self.mempool_size = 0 self.check_mempool_result( result_expected=[{'txid': txid_in_block, 'allowed': False, 'reject-reason': 'txn-already-known'}], rawtxs=[raw_tx_in_block], ) self.log.info('A transaction not in the mempool') fee = Decimal('0.000007') raw_tx_0 = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[{"txid": txid_in_block, "vout": 0, "sequence": BIP125_SEQUENCE_NUMBER}], # RBF is used later outputs=[{node.getnewaddress(): Decimal('0.3') - fee}], ))['hex'] tx = tx_from_hex(raw_tx_0) txid_0 = tx.rehash() self.check_mempool_result( result_expected=[{'txid': txid_0, 'allowed': True, 'vsize': tx.get_vsize(), 'fees': {'base': fee}}], rawtxs=[raw_tx_0], ) self.log.info('A final transaction not in the mempool') coin = coins.pop() # Pick a random coin(base) to spend output_amount = Decimal('0.025') raw_tx_final = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[{'txid': coin['txid'], 'vout': coin['vout'], "sequence": 0xffffffff}], # SEQUENCE_FINAL outputs=[{node.getnewaddress(): output_amount}], locktime=node.getblockcount() + 2000, # Can be anything ))['hex'] tx = tx_from_hex(raw_tx_final) fee_expected = coin['amount'] - output_amount self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': True, 'vsize': tx.get_vsize(), 'fees': {'base': fee_expected}}], rawtxs=[tx.serialize().hex()], maxfeerate=0, ) node.sendrawtransaction(hexstring=raw_tx_final, maxfeerate=0) self.mempool_size += 1 self.log.info('A transaction in the mempool') node.sendrawtransaction(hexstring=raw_tx_0) self.mempool_size += 1 self.check_mempool_result( result_expected=[{'txid': txid_0, 'allowed': False, 'reject-reason': 'txn-already-in-mempool'}], rawtxs=[raw_tx_0], ) self.log.info('A transaction that replaces a mempool transaction') tx = tx_from_hex(raw_tx_0) tx.vout[0].nValue -= int(fee * COIN) # Double the fee tx.vin[0].nSequence = BIP125_SEQUENCE_NUMBER + 1 # Now, opt out of RBF raw_tx_0 = node.signrawtransactionwithwallet(tx.serialize().hex())['hex'] tx = tx_from_hex(raw_tx_0) txid_0 = tx.rehash() self.check_mempool_result( result_expected=[{'txid': txid_0, 'allowed': True, 'vsize': tx.get_vsize(), 'fees': {'base': (2 * fee)}}], rawtxs=[raw_tx_0], ) self.log.info('A transaction that conflicts with an unconfirmed tx') # Send the transaction that replaces the mempool transaction and opts out of replaceability node.sendrawtransaction(hexstring=tx.serialize().hex(), maxfeerate=0) # take original raw_tx_0 tx = tx_from_hex(raw_tx_0) tx.vout[0].nValue -= int(4 * fee * COIN) # Set more fee # skip re-signing the tx self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'txn-mempool-conflict'}], rawtxs=[tx.serialize().hex()], maxfeerate=0, ) self.log.info('A transaction with missing inputs, that never existed') tx = tx_from_hex(raw_tx_0) tx.vin[0].prevout = COutPoint(hash=int('ff' * 32, 16), n=14) # skip re-signing the tx self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'missing-inputs'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A transaction with missing inputs, that existed once in the past') tx = tx_from_hex(raw_tx_0) tx.vin[0].prevout.n = 1 # Set vout to 1, to spend the other outpoint (49 coins) of the in-chain-tx we want to double spend raw_tx_1 = node.signrawtransactionwithwallet(tx.serialize().hex())['hex'] txid_1 = node.sendrawtransaction(hexstring=raw_tx_1, maxfeerate=0) # Now spend both to "clearly hide" the outputs, ie. remove the coins from the utxo set by spending them raw_tx_spend_both = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[ {'txid': txid_0, 'vout': 0}, {'txid': txid_1, 'vout': 0}, ], outputs=[{node.getnewaddress(): 0.1}] ))['hex'] txid_spend_both = node.sendrawtransaction(hexstring=raw_tx_spend_both, maxfeerate=0) node.generate(1) self.mempool_size = 0 # Now see if we can add the coins back to the utxo set by sending the exact txs again self.check_mempool_result( result_expected=[{'txid': txid_0, 'allowed': False, 'reject-reason': 'missing-inputs'}], rawtxs=[raw_tx_0], ) self.check_mempool_result( result_expected=[{'txid': txid_1, 'allowed': False, 'reject-reason': 'missing-inputs'}], rawtxs=[raw_tx_1], ) self.log.info('Create a signed "reference" tx for later use') raw_tx_reference = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[{'txid': txid_spend_both, 'vout': 0}], outputs=[{node.getnewaddress(): 0.05}], ))['hex'] tx = tx_from_hex(raw_tx_reference) # Reference tx should be valid on itself self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': True, 'vsize': tx.get_vsize(), 'fees': { 'base': Decimal('0.1') - Decimal('0.05')}}], rawtxs=[tx.serialize().hex()], maxfeerate=0, ) self.log.info('A transaction with no outputs') tx = tx_from_hex(raw_tx_reference) tx.vout = [] # Skip re-signing the transaction for context independent checks from now on # tx = tx_from_hex(node.signrawtransactionwithwallet(tx.serialize().hex())['hex']) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-vout-empty'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A really large transaction') tx = tx_from_hex(raw_tx_reference) tx.vin = [tx.vin[0]] * math.ceil(MAX_BLOCK_BASE_SIZE / len(tx.vin[0].serialize())) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-oversize'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A transaction with negative output value') tx = tx_from_hex(raw_tx_reference) tx.vout[0].nValue *= -1 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-vout-negative'}], rawtxs=[tx.serialize().hex()], ) # The following two validations prevent overflow of the output amounts (see CVE-2010-5139). self.log.info('A transaction with too large output value') tx = tx_from_hex(raw_tx_reference) tx.vout[0].nValue = MAX_MONEY + 1 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-vout-toolarge'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A transaction with too large sum of output values') tx = tx_from_hex(raw_tx_reference) tx.vout = [tx.vout[0]] * 2 tx.vout[0].nValue = MAX_MONEY self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-txouttotal-toolarge'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A transaction with duplicate inputs') tx = tx_from_hex(raw_tx_reference) tx.vin = [tx.vin[0]] * 2 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-inputs-duplicate'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A non-coinbase transaction with coinbase-like outpoint') tx = tx_from_hex(raw_tx_reference) tx.vin.append(CTxIn(COutPoint(hash=0, n=0xffffffff))) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-prevout-null'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A coinbase transaction') # Pick the input of the first tx we signed, so it has to be a coinbase tx raw_tx_coinbase_spent = node.getrawtransaction(txid=node.decoderawtransaction(hexstring=raw_tx_in_block)['vin'][0]['txid']) tx = tx_from_hex(raw_tx_coinbase_spent) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'coinbase'}], rawtxs=[tx.serialize().hex()], ) self.log.info('Some nonstandard transactions') tx = tx_from_hex(raw_tx_reference) tx.nVersion = 3 # A version currently non-standard self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'version'}], rawtxs=[tx.serialize().hex()], ) tx = tx_from_hex(raw_tx_reference) tx.vout[0].scriptPubKey = CScript([OP_0]) # Some non-standard script self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'scriptpubkey'}], rawtxs=[tx.serialize().hex()], ) tx = tx_from_hex(raw_tx_reference) key = ECKey() key.generate() pubkey = key.get_pubkey().get_bytes() tx.vout[0].scriptPubKey = CScript([OP_2, pubkey, pubkey, pubkey, OP_3, OP_CHECKMULTISIG]) # Some bare multisig script (2-of-3) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bare-multisig'}], rawtxs=[tx.serialize().hex()], ) tx = tx_from_hex(raw_tx_reference) tx.vin[0].scriptSig = CScript([OP_HASH160]) # Some not-pushonly scriptSig self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'scriptsig-not-pushonly'}], rawtxs=[tx.serialize().hex()], ) tx = tx_from_hex(raw_tx_reference) tx.vin[0].scriptSig = CScript([b'a' * 1648]) # Some too large scriptSig (>1650 bytes) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'scriptsig-size'}], rawtxs=[tx.serialize().hex()], ) tx = tx_from_hex(raw_tx_reference) output_p2sh_burn = CTxOut(nValue=540, scriptPubKey=script_to_p2sh_script(b'burn')) num_scripts = 100000 // len(output_p2sh_burn.serialize()) # Use enough outputs to make the tx too large for our policy tx.vout = [output_p2sh_burn] * num_scripts self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'tx-size'}], rawtxs=[tx.serialize().hex()], ) tx = tx_from_hex(raw_tx_reference) tx.vout[0] = output_p2sh_burn tx.vout[0].nValue -= 1 # Make output smaller, such that it is dust for our policy self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'dust'}], rawtxs=[tx.serialize().hex()], ) tx = tx_from_hex(raw_tx_reference) tx.vout[0].scriptPubKey = CScript([OP_RETURN, b'\xff']) tx.vout = [tx.vout[0]] * 2 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'multi-op-return'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A timelocked transaction') tx = tx_from_hex(raw_tx_reference) tx.vin[0].nSequence -= 1 # Should be non-max, so locktime is not ignored tx.nLockTime = node.getblockcount() + 1 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'non-final'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A transaction that is locked by BIP68 sequence logic') tx = tx_from_hex(raw_tx_reference) tx.vin[0].nSequence = 2 # We could include it in the second block mined from now, but not the very next one # Can skip re-signing the tx because of early rejection self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'non-BIP68-final'}], rawtxs=[tx.serialize().hex()], maxfeerate=0, ) if __name__ == '__main__': MempoolAcceptanceTest().main()
46.393678
147
0.623599
4a2521866f35e621ccfdd067a898cbce77063711
9,377
py
Python
debug_tools/test_volsdf_algo.py
YangChenye/neurecon
972e810ec252cfd16f630b1de6d2802d1b8de59a
[ "MIT" ]
432
2021-09-08T07:38:36.000Z
2022-03-30T08:35:14.000Z
debug_tools/test_volsdf_algo.py
ashawkey/neurecon
972e810ec252cfd16f630b1de6d2802d1b8de59a
[ "MIT" ]
7
2021-09-16T03:08:58.000Z
2022-03-08T01:46:50.000Z
debug_tools/test_volsdf_algo.py
ashawkey/neurecon
972e810ec252cfd16f630b1de6d2802d1b8de59a
[ "MIT" ]
43
2021-09-08T07:43:39.000Z
2022-03-28T12:18:31.000Z
from models.frameworks import get_model from models.frameworks.volsdf import error_bound, sdf_to_sigma from utils import io_util, rend_util import torch import numpy as np import matplotlib.pyplot as plt import argparse parser = argparse.ArgumentParser() parser.add_argument("--load_pt", type=str, default=None) parser.add_argument("--config", type=str, default=None) # play yourself! parser.add_argument("--beta_net", type=float, default=0.003) parser.add_argument("--init_num", type=int, default=128) parser.add_argument("--eps", type=float, default=0.1) parser.add_argument("--far", type=float, default=6.0) parser.add_argument("--max_iter", type=int, default=5) args = parser.parse_args() args, unknown = parser.parse_known_args() if args.config is not None: config = io_util.load_yaml(args.config) other_dict = vars(args) other_dict.pop("config") config.update(other_dict) args = config model, trainer, render_kwargs_train, render_kwargs_test, volume_render_fn = get_model(args) model.cuda() if args.load_pt is not None: state_dict = torch.load(args.load_pt, map_location='cuda') model.load_state_dict(state_dict['model']) sdf_model = model.forward_surface # # NOTE: you can also try this out: on real sdf model. def sdf1d(x: torch.Tensor, netchunk=1024): global sdf_model device = x.device x = x.cuda() # # some test rays @scene adius=3.0 rays_o = torch.tensor([ 0.8598, 1.0232, -1.4689]).float().cuda().reshape(1, 3) rays_d = torch.tensor([-0.4857, -0.4841, 0.7386]).float().cuda().reshape(1, 3) pts = rays_o + rays_d * x[..., None] with torch.no_grad(): sdf = [] for i in range(0, pts.shape[0], netchunk): pts_i = pts[i:i+netchunk] sdf_i = sdf_model(pts_i) sdf.append(sdf_i) sdf = torch.cat(sdf, dim=0) return sdf.to(device) else: # def sdf1d(x: torch.Tensor): # # deviding point: 1.6, 1.8 # # (0, 1.8) # # (1.6, 0.2) # # (1.8, 0.4) # # (2.2, 0.) # y_cond1 = -x + 1.8 # y_cond2 = x - 1.4 # y_cond3 = -x + 2.2 # cond12 = x < 1.8 # y = torch.zeros_like(x) # y[cond12] = torch.where(x[cond12] < 1.6, y_cond1[cond12], y_cond2[cond12]) # y[~cond12] = y_cond3[~cond12] # return y # NOTE: you can also try this out def sdf1d(x: torch.Tensor): # deviding point: 1.6, 1.8 # (0, 1.65) # (1.6, 0.05) # (1.8, 0.25) # (2.05, 0.) y_cond1 = -x + 1.65 y_cond2 = x - 1.55 y_cond3 = -x + 2.05 cond12 = x < 1.8 y = torch.zeros_like(x) y[cond12] = torch.where(x[cond12] < 1.6, y_cond1[cond12], y_cond2[cond12]) y[~cond12] = y_cond3[~cond12] return y # def sdf1d(x: torch.Tensor): # return torch.ones_like(x) def plot(x, sdf, sigma, bounds, alpha, beta, upsampled_x=None): device = sdf.device # [N-1] delta_i = x[..., 1:] - x[..., :-1] # [N] R_t = torch.cat( [ torch.zeros([*sdf.shape[:-1], 1], device=device), torch.cumsum(sigma[..., :-1] * delta_i, dim=-1) ], dim=-1) opacity_approx = 1 - torch.exp(-R_t[..., :-1]) # -------------- ground truth compare # ground truth data dense_sigma = sdf_to_sigma(dense_sdf, alpha, beta) # [N-1] dense_delta_i = dense_x[..., 1:] - dense_x[..., :-1] # [N] dense_R_t = torch.cat( [ torch.zeros([*dense_sdf.shape[:-1], 1]), torch.cumsum(dense_sigma[..., :-1] * dense_delta_i, dim=-1) ], dim=-1) dense_opacity_current_beta = 1 - torch.exp(-dense_R_t[..., :-1]) # get nearest neibor dis = torch.abs(x[..., :-1, None] - dense_x[..., None, :-1]) ind = torch.argmin(dis, dim=-1) opaticy_real = dense_opacity_current_beta[ind] error = torch.abs(opacity_approx - opaticy_real) # -------------- try inverse cdf sampling d_fine = rend_util.sample_cdf(x, opacity_approx, 32) # plot # x_np = x.data.cpu().numpy() # sdf_np = sdf.data.cpu().numpy() # sigma_np = sigma.data.cpu().numpy() # bounds_np = bounds.data.cpu().numpy() fig, (ax1, ax2) = plt.subplots(2,1, figsize=(15, 15)) ax1.plot(x, sdf, label='sdf') ax1.plot(x, sigma / sigma.max(), label='normalized sigma') ax1.plot(x[..., :-1], opacity_approx, label='opacity') ax1.plot(x[..., :-1], opaticy_real, label='opacity gt for current beta') ax1.plot(dense_x, opaticy_oracal, label='oracal opacity') ax1.scatter(d_fine, np.zeros_like(d_fine), s=20.0, label='try O^{-1} sampling') ax1.legend() ax2.step(x[..., :-1], bounds, label='error bounds') ax2.step(x[..., :-1], error, label='error') if upsampled_x is not None: ax2.scatter(upsampled_x, np.zeros_like(upsampled_x), label='upsampled points') ax2.legend() plt.show() # settings or oracal data eps = args.eps init_num = args.init_num beta_net = args.beta_net alpha_net = 1./beta_net M = args.far max_iter = args.max_iter x = torch.linspace(0, M, init_num) dense_x = torch.linspace(0, M, 100001) dense_sdf = sdf1d(dense_x) opaticy_oracal = torch.where(dense_sdf > 0, torch.zeros_like(dense_sdf), torch.ones_like(dense_sdf)) # init beta = np.sqrt((M**2) / (4 * (init_num-1) * np.log(1+eps))) # beta = alpha_net * (M**2) / (4 * (init_num-1) * np.log(1+eps)) # algorithm alpha = 1./beta # alpha = alpha_net # ------------- calculating sdf = sdf1d(x) sigma = sdf_to_sigma(sdf, alpha, beta) bounds = error_bound(x, sdf, alpha, beta) bounds_net = error_bound(x, sdf, alpha_net, beta_net) print("init beta+ = {:.3f}".format(beta)) is_end_with_matching = False it_algo = 0 while it_algo < max_iter and (net_bound_max := bounds_net.max()) > eps: print("it =", it_algo) print("net_bound_max = {:.6f}".format(net_bound_max.item())) it_algo += 1 #------------- update: upsample upsampled_x = rend_util.sample_pdf(x, bounds, init_num, det=True) plot(x, sdf, sigma, bounds, alpha, beta, upsampled_x=upsampled_x) x = torch.cat([x, upsampled_x], dim=-1) # x, _ = torch.sort(x, dim=-1) # sdf = sdf1d(x) x, sort_indices = torch.sort(x, dim=-1) sdf = torch.cat([sdf, sdf1d(upsampled_x)], dim=-1) sdf = torch.gather(sdf, dim=-1, index=sort_indices) print("more samples:", x.shape[-1]) bounds_net = error_bound(x, sdf, alpha_net, beta_net) if bounds_net.max() > eps: #-------------- find beta using bisection methods # left: > eps # right: < eps beta_left = beta_net beta_right = beta for _ in range(10): beta_tmp = 0.5 * (beta_left + beta_right) alpha_tmp = 1./beta_tmp # alpha_tmp = alpha_net bounds_tmp = error_bound(x, sdf, alpha_tmp, beta_tmp) bounds_max_tmp = bounds_tmp.max() if bounds_max_tmp < eps: beta_right = beta_tmp elif bounds_max_tmp == eps: beta_right = beta_tmp break else: beta_left = beta_tmp beta = beta_right alpha = 1./beta # alpha = alpha_net sigma = sdf_to_sigma(sdf, alpha, beta) bounds = error_bound(x, sdf, alpha, beta) else: is_end_with_matching = True break print("new beta+ = {:.3f}".format(beta)) if (not is_end_with_matching) and (it_algo != 0): beta_net = beta_right alpha_net = 1./beta_net print("it=", it_algo) print("final beta:", beta_net) sigma = sdf_to_sigma(sdf, alpha_net, beta_net) bounds = error_bound(x, sdf, alpha_net, beta_net) print("final error bound max:", bounds.max()) plot(x, sdf, sigma, bounds, alpha_net, beta_net) ## ---------------------- backup # def sdf_to_sigma(sdf: torch.Tensor, alpha, beta): # # sdf *= -1 # NOTE: this will cause inplace opt! # sdf = -sdf # expsbeta = torch.exp(sdf / beta) # psi = torch.where(sdf <= 0, 0.5 * expsbeta, 1 - 0.5 / expsbeta) # return alpha * psi # def error_bound(d_vals, sdf, alpha, beta): # """ # d_vals: [(B), N_rays, N_pts] # sdf: [(B), N_rays, N_pts] # """ # device = sdf.device # sigma = sdf_to_sigma(sdf, alpha, beta) # # [(B), N_rays, N_pts] # sdf_abs_i = torch.abs(sdf) # # [(B), N_rays, N_pts-1] # delta_i = d_vals[..., 1:] - d_vals[..., :-1] # # [(B), N_rays, N_pts] # R_t = torch.cat( # [ # torch.zeros([*sdf.shape[:-1], 1], device=device), # torch.cumsum(sigma[..., :-1] * delta_i, dim=-1) # ], dim=-1) # # [(B), N_rays, N_pts-1] # d_i_star = torch.clamp_min(0.5 * (sdf_abs_i[..., :-1] + sdf_abs_i[..., 1:] - delta_i), 0.) # # [(B), N_rays, N_pts-1] # errors = alpha/(4*beta) * (delta_i**2) * torch.exp(-d_i_star / beta) # # [(B), N_rays, N_pts-1] # errors_t = torch.cumsum(errors, dim=-1) # # [(B), N_rays, N_pts-1] # bounds = torch.exp(-R_t[..., :-1]) * (torch.exp(errors_t) - 1.) # # TODO: better solution # # NOTE: nan comes from 0 * inf # # NOTE: every situation where nan appears will also appears c * inf = "true" inf, so below solution is acceptable # bounds[torch.isnan(bounds)] = np.inf # return bounds
34.222628
119
0.580783
4a2522001b01921f369b2d45c3b3ffc6715c8d9c
7,713
py
Python
custom_components/shelly/binary_sensor.py
cetex/ShellyForHASS
7d722e738e7b283a0944c6f64bf598518112533f
[ "MIT" ]
541
2019-05-25T10:48:19.000Z
2022-03-25T07:38:09.000Z
custom_components/shelly/binary_sensor.py
cetex/ShellyForHASS
7d722e738e7b283a0944c6f64bf598518112533f
[ "MIT" ]
579
2019-05-25T15:37:48.000Z
2022-03-31T19:37:41.000Z
custom_components/shelly/binary_sensor.py
cetex/ShellyForHASS
7d722e738e7b283a0944c6f64bf598518112533f
[ "MIT" ]
125
2019-05-29T15:00:50.000Z
2022-03-31T02:50:08.000Z
""" Shelly platform for the sensor component. For more details about this platform, please refer to the documentation https://home-assistant.io/components/shelly/ """ import logging import time from threading import Timer from homeassistant.util import slugify from homeassistant.helpers.dispatcher import async_dispatcher_connect try: from homeassistant.components.binary_sensor import BinarySensorEntity except: from homeassistant.components.binary_sensor import \ BinarySensorDevice as BinarySensorEntity from homeassistant.helpers.restore_state import RestoreStateData from . import (CONF_OBJECT_ID_PREFIX) from .device import ShellyDevice from .block import ShellyBlock from .const import * _LOGGER = logging.getLogger(__name__) CLICK_EVENTS = { 'S' : 'single', 'SS' : 'double', 'SSS': 'triple', 'L': 'long', 'SL': 'short-long', 'LS': 'long-short' } async def async_setup_entry(hass, config_entry, async_add_entities): """Set up Shelly sensor dynamically.""" async def async_discover_sensor(dev, instance): """Discover and add a discovered sensor.""" if isinstance(dev, dict): if 'sensor_type' in dev: sensor_type = dev['sensor_type'] async_add_entities([ShellyBinaryInfoSensor(dev['itm'], instance, sensor_type, sensor_type)]) return if dev.device_type == "SWITCH": async_add_entities([ShellySwitch(dev, instance)]) elif dev.device_type == "BINARY_SENSOR": async_add_entities([ ShellyBinarySensor(dev, instance, dev.sensor_type, dev.sensor_type) ]) async_dispatcher_connect( hass, "shelly_new_binary_sensor", async_discover_sensor ) class ShellySwitch(ShellyDevice, BinarySensorEntity): """Representation of a Shelly Switch state.""" def __init__(self, dev, instance): """Initialize an ShellySwitch.""" ShellyDevice.__init__(self, dev, instance) self._unique_id += "_switch" self.entity_id += "_switch" self._state = None self._click_delay = 700 self._last_state_change = 0 self._click_cnt = 0 self._click_timer = None self._name_ext = "Switch" self._last_event = None self._event_cnt = None self.update() @property def is_on(self): """Return true if the binary sensor is on.""" return self._state @property def icon(self): """Return the button icon.""" return "mdi:light-switch" def _millis(self): return int(round(time.time() * 1000)) def _click_timeout(self): self._send_click_event() self._click_cnt = 0 self._click_timer = None def _send_click_event(self): self.hass.bus.fire('shelly_switch_click', \ {'entity_id' : self.entity_id, 'click_cnt': self._click_cnt, 'state' : self._state}) def _send_event(self, type): self.hass.bus.fire('shellyforhass.click', \ {'entity_id' : self.entity_id, 'click_type' : type}) def update(self): """Fetch new state data for this switch.""" millis = self._millis() new_state = None if self._dev.state is None else self._dev.state != 0 if self._state is not None and new_state != self._state: if self._click_timer is not None: self._click_timer.cancel() diff = millis - self._last_state_change if diff < self._click_delay or self._click_cnt == 0: self._click_cnt += 1 else: self._click_cnt = 1 self._last_state_change = millis self._click_timer = Timer(self._click_delay/1000, self._click_timeout) self._click_timer.start() self._state = new_state if self._dev.event_cnt != self._event_cnt: event = CLICK_EVENTS.get(self._dev.last_event, None) if not self._event_cnt is None: self._send_event(event) self._event_cnt = self._dev.event_cnt self._last_event = event @property def device_state_attributes(self): attrs = super().device_state_attributes if self._last_event: attrs[ATTRIBUTE_CLICK_TYPE] = self._last_event attrs[ATTRIBUTE_CLICK_CNT] = self._event_cnt return attrs class ShellyBinarySensor(ShellyDevice, BinarySensorEntity): """Representation of a Shelly Sensor.""" def __init__(self, dev, instance, sensor_type, sensor_name): """Initialize an ShellySensor.""" self._sensor_cfg = SENSOR_TYPES_CFG[SENSOR_TYPE_DEFAULT] ShellyDevice.__init__(self, dev, instance) self._unique_id += "_" + sensor_name self.entity_id += "_" + sensor_name self._sensor_type = sensor_type self._sensor_name = sensor_name #self._battery = None self._config = instance.conf self._state = None if self._sensor_type in SENSOR_TYPES_CFG: self._sensor_cfg = SENSOR_TYPES_CFG[self._sensor_type] self._master_unit = True self.update() @property def is_on(self): """State""" return self._state @property def quantity_name(self): """Name of quantity.""" return self._sensor_cfg[0] @property def unit_of_measurement(self): """Return the unit of measurement.""" return self._sensor_cfg[1] @property def icon(self): """Return the icon.""" return self._sensor_cfg[2] @property def device_class(self): """Return the device class.""" return self._sensor_cfg[3] def update(self): """Fetch new state data for this sensor.""" self._state = self._dev.state class ShellyBinaryInfoSensor(ShellyBlock, BinarySensorEntity): """Representation of a Shelly Info Sensor.""" def __init__(self, block, instance, sensor_type, sensor_name): self._sensor_cfg = SENSOR_TYPES_CFG[SENSOR_TYPE_DEFAULT] ShellyBlock.__init__(self, block, instance, "_" + sensor_name) self.entity_id = "sensor" + self.entity_id self._sensor_name = sensor_name self._sensor_type = sensor_type if self._sensor_type in SENSOR_TYPES_CFG: self._sensor_cfg = SENSOR_TYPES_CFG[self._sensor_type] self._state = None self._name_ext = self.quantity_name() self.update() def update(self): """Fetch new state data for this sensor.""" if self._block.info_values is not None: self._state = self._block.info_values.get(self._sensor_name, None) @property def is_on(self): """Return the state of the sensor.""" return self._state def quantity_name(self): """Name of quantity.""" return self._sensor_cfg[0] @property def unit_of_measurement(self): """Return the unit of measurement.""" return self._sensor_cfg[1] @property def icon(self): """Return the icon.""" return self._sensor_cfg[2] @property def device_class(self): """Return the device class.""" return self._sensor_cfg[3]
33.38961
81
0.599767
4a252244456ae8a40bacff74c63ab9f432e78833
823
py
Python
functional_tests/test_layout_and_styling.py
gajimenezmaggiora/gus-django
cbfcd3109c1b8b3c9192020968e0e42e18364ebe
[ "MIT" ]
null
null
null
functional_tests/test_layout_and_styling.py
gajimenezmaggiora/gus-django
cbfcd3109c1b8b3c9192020968e0e42e18364ebe
[ "MIT" ]
null
null
null
functional_tests/test_layout_and_styling.py
gajimenezmaggiora/gus-django
cbfcd3109c1b8b3c9192020968e0e42e18364ebe
[ "MIT" ]
null
null
null
from .base import FunctionalTest class LayoutAndStylingTest(FunctionalTest): def test_layout_and_styling(self): # Edith goes to the home page self.browser.get(self.server_url) self.browser.set_window_size(1024, 768) # She notices the input box is nicely centered inputbox = self.get_item_input_box() self.assertAlmostEqual( inputbox.location['x'] + inputbox.size['width'] / 2, 512, delta=5 ) # She starts a new list and sees the input is nicely # centered there too inputbox.send_keys('testing\n') inputbox = self.get_item_input_box() self.assertAlmostEqual( inputbox.location['x'] + inputbox.size['width'] / 2, 512, delta=5 )
30.481481
64
0.592953
4a2522f8d2d12d0295749f0b52e2c6f1291959c7
1,742
py
Python
desktop/core/ext-py/django-nose-1.4.5/testapp/tests.py
kokosing/hue
2307f5379a35aae9be871e836432e6f45138b3d9
[ "Apache-2.0" ]
5,079
2015-01-01T03:39:46.000Z
2022-03-31T07:38:22.000Z
desktop/core/ext-py/django-nose-1.4.5/testapp/tests.py
zks888/hue
93a8c370713e70b216c428caa2f75185ef809deb
[ "Apache-2.0" ]
1,623
2015-01-01T08:06:24.000Z
2022-03-30T19:48:52.000Z
desktop/core/ext-py/django-nose-1.4.5/testapp/tests.py
zks888/hue
93a8c370713e70b216c428caa2f75185ef809deb
[ "Apache-2.0" ]
2,033
2015-01-04T07:18:02.000Z
2022-03-28T19:55:47.000Z
"""Django model tests.""" from datetime import datetime from django.test import TestCase from testapp.models import Question, Choice class NoDatabaseTestCase(TestCase): """Tests that don't read or write to the database.""" def test_question_str(self): """Test Question.__str__ method.""" question = Question(question_text="What is your name?") self.assertEqual("What is your name?", str(question)) def test_choice_str(self): """Test Choice.__str__ method.""" choice = Choice(choice_text='My name is Sir Lancelot of Camelot.') self.assertEqual('My name is Sir Lancelot of Camelot.', str(choice)) class UsesDatabaseTestCase(TestCase): """Tests that read and write to the database.""" def test_question(self): """Test that votes is initialized to 0.""" question = Question.objects.create( question_text="What is your quest?", pub_date=datetime(1975, 4, 9)) Choice.objects.create( question=question, choice_text="To seek the Holy Grail.") self.assertTrue(question.choice_set.exists()) the_choice = question.choice_set.get() self.assertEqual(0, the_choice.votes) class UsesFixtureTestCase(TestCase): """Tests that use a test fixture.""" fixtures = ["testdata.json"] def test_fixture_loaded(self): """Test that fixture was loaded.""" question = Question.objects.get() self.assertEqual( 'What is your favorite color?', question.question_text) self.assertEqual(datetime(1975, 4, 9), question.pub_date) choice = question.choice_set.get() self.assertEqual("Blue.", choice.choice_text) self.assertEqual(3, choice.votes)
34.156863
79
0.665901
4a252330bcb4745491c4f46df7a32afdb94b7928
24,492
py
Python
electrum_dsv/plugins/coldcard/coldcard.py
mboyd1/electrum-dsv
1f8e26e6f6a50827fd83dfe018c5916fadde10c1
[ "MIT" ]
null
null
null
electrum_dsv/plugins/coldcard/coldcard.py
mboyd1/electrum-dsv
1f8e26e6f6a50827fd83dfe018c5916fadde10c1
[ "MIT" ]
null
null
null
electrum_dsv/plugins/coldcard/coldcard.py
mboyd1/electrum-dsv
1f8e26e6f6a50827fd83dfe018c5916fadde10c1
[ "MIT" ]
null
null
null
# # Coldcard Electrum plugin main code. # # import os, time, io import traceback from typing import TYPE_CHECKING, Optional import struct from electrum_dsv import bip32 from electrum_dsv.bip32 import BIP32Node, InvalidMasterKeyVersionBytes from electrum_dsv.i18n import _ from electrum_dsv.plugin import Device, hook, runs_in_hwd_thread from electrum_dsv.keystore import Hardware_KeyStore, KeyStoreWithMPK from electrum_dsv.transaction import PartialTransaction from electrum_dsv.wallet import Standard_Wallet, Multisig_Wallet, Abstract_Wallet from electrum_dsv.util import bfh, bh2u, versiontuple, UserFacingException from electrum_dsv.base_wizard import ScriptTypeNotSupported from electrum_dsv.logging import get_logger from ..hw_wallet import HW_PluginBase, HardwareClientBase from ..hw_wallet.plugin import LibraryFoundButUnusable, only_hook_if_libraries_available _logger = get_logger(__name__) try: import hid from ckcc.protocol import CCProtocolPacker, CCProtocolUnpacker from ckcc.protocol import CCProtoError, CCUserRefused, CCBusyError from ckcc.constants import (MAX_MSG_LEN, MAX_BLK_LEN, MSG_SIGNING_MAX_LENGTH, MAX_TXN_LEN, AF_CLASSIC, AF_P2SH, AF_P2WPKH, AF_P2WSH, AF_P2WPKH_P2SH, AF_P2WSH_P2SH) from ckcc.client import ColdcardDevice, COINKITE_VID, CKCC_PID, CKCC_SIMULATOR_PATH requirements_ok = True class ElectrumColdcardDevice(ColdcardDevice): # avoid use of pycoin for MiTM message signature test def mitm_verify(self, sig, expect_xpub): # verify a signature (65 bytes) over the session key, using the master bip32 node # - customized to use specific EC library of Electrum. pubkey = BIP32Node.from_xkey(expect_xpub).eckey try: pubkey.verify_message_hash(sig[1:65], self.session_key) return True except: return False except ImportError: requirements_ok = False COINKITE_VID = 0xd13e CKCC_PID = 0xcc10 CKCC_SIMULATED_PID = CKCC_PID ^ 0x55aa class CKCCClient(HardwareClientBase): def __init__(self, plugin, handler, dev_path, *, is_simulator=False): HardwareClientBase.__init__(self, plugin=plugin) self.device = plugin.device self.handler = handler # if we know what the (xfp, xpub) "should be" then track it here self._expected_device = None if is_simulator: self.dev = ElectrumColdcardDevice(dev_path, encrypt=True) else: # open the real HID device hd = hid.device(path=dev_path) hd.open_path(dev_path) self.dev = ElectrumColdcardDevice(dev=hd, encrypt=True) # NOTE: MiTM test is delayed until we have a hint as to what XPUB we # should expect. It's also kinda slow. def __repr__(self): return '<CKCCClient: xfp=%s label=%r>' % (xfp2str(self.dev.master_fingerprint), self.label()) @runs_in_hwd_thread def verify_connection(self, expected_xfp: int, expected_xpub=None): ex = (expected_xfp, expected_xpub) if self._expected_device == ex: # all is as expected return if expected_xpub is None: expected_xpub = self.dev.master_xpub if ( (self._expected_device is not None) or (self.dev.master_fingerprint != expected_xfp) or (self.dev.master_xpub != expected_xpub)): # probably indicating programing error, not hacking _logger.info(f"xpubs. reported by device: {self.dev.master_xpub}. " f"stored in file: {expected_xpub}") raise RuntimeError("Expecting %s but that's not what's connected?!" % xfp2str(expected_xfp)) # check signature over session key # - mitm might have lied about xfp and xpub up to here # - important that we use value capture at wallet creation time, not some value # we read over USB today self.dev.check_mitm(expected_xpub=expected_xpub) self._expected_device = ex if not getattr(self, 'ckcc_xpub', None): self.ckcc_xpub = expected_xpub _logger.info("Successfully verified against MiTM") def is_pairable(self): # can't do anything w/ devices that aren't setup (this code not normally reachable) return bool(self.dev.master_xpub) @runs_in_hwd_thread def close(self): # close the HID device (so can be reused) self.dev.close() self.dev = None def is_initialized(self): return bool(self.dev.master_xpub) def label(self): # 'label' of this Coldcard. Warning: gets saved into wallet file, which might # not be encrypted, so better for privacy if based on xpub/fingerprint rather than # USB serial number. if self.dev.is_simulator: lab = 'Coldcard Simulator ' + xfp2str(self.dev.master_fingerprint) elif not self.dev.master_fingerprint: # failback; not expected lab = 'Coldcard #' + self.dev.serial else: lab = 'Coldcard ' + xfp2str(self.dev.master_fingerprint) return lab def manipulate_keystore_dict_during_wizard_setup(self, d: dict): master_xpub = self.dev.master_xpub if master_xpub is not None: try: node = BIP32Node.from_xkey(master_xpub) except InvalidMasterKeyVersionBytes: raise UserFacingException( _('Invalid xpub magic. Make sure your {} device is set to the correct chain.').format(self.device) + ' ' + _('You might have to unplug and plug it in again.') ) from None d['ckcc_xpub'] = master_xpub @runs_in_hwd_thread def has_usable_connection_with_device(self): # Do end-to-end ping test try: self.ping_check() return True except: return False @runs_in_hwd_thread def get_xpub(self, bip32_path, xtype): assert xtype in ColdcardPlugin.SUPPORTED_XTYPES _logger.info('Derive xtype = %r' % xtype) xpub = self.dev.send_recv(CCProtocolPacker.get_xpub(bip32_path), timeout=5000) # TODO handle timeout? # change type of xpub to the requested type try: node = BIP32Node.from_xkey(xpub) except InvalidMasterKeyVersionBytes: raise UserFacingException(_('Invalid xpub magic. Make sure your {} device is set to the correct chain.') .format(self.device)) from None if xtype != 'standard': xpub = node._replace(xtype=xtype).to_xpub() return xpub @runs_in_hwd_thread def ping_check(self): # check connection is working assert self.dev.session_key, 'not encrypted?' req = b'1234 Electrum Plugin 4321' # free up to 59 bytes try: echo = self.dev.send_recv(CCProtocolPacker.ping(req)) assert echo == req except: raise RuntimeError("Communication trouble with Coldcard") @runs_in_hwd_thread def show_address(self, path, addr_fmt): # prompt user w/ address, also returns it immediately. return self.dev.send_recv(CCProtocolPacker.show_address(path, addr_fmt), timeout=None) @runs_in_hwd_thread def show_p2sh_address(self, *args, **kws): # prompt user w/ p2sh address, also returns it immediately. return self.dev.send_recv(CCProtocolPacker.show_p2sh_address(*args, **kws), timeout=None) @runs_in_hwd_thread def get_version(self): # gives list of strings return self.dev.send_recv(CCProtocolPacker.version(), timeout=1000).split('\n') @runs_in_hwd_thread def sign_message_start(self, path, msg): # this starts the UX experience. self.dev.send_recv(CCProtocolPacker.sign_message(msg, path), timeout=None) @runs_in_hwd_thread def sign_message_poll(self): # poll device... if user has approved, will get tuple: (addr, sig) else None return self.dev.send_recv(CCProtocolPacker.get_signed_msg(), timeout=None) @runs_in_hwd_thread def sign_transaction_start(self, raw_psbt: bytes, *, finalize: bool = False): # Multiple steps to sign: # - upload binary # - start signing UX # - wait for coldcard to complete process, or have it refused. # - download resulting txn assert 20 <= len(raw_psbt) < MAX_TXN_LEN, 'PSBT is too big' dlen, chk = self.dev.upload_file(raw_psbt) resp = self.dev.send_recv(CCProtocolPacker.sign_transaction(dlen, chk, finalize=finalize), timeout=None) if resp != None: raise ValueError(resp) @runs_in_hwd_thread def sign_transaction_poll(self): # poll device... if user has approved, will get tuple: (legnth, checksum) else None return self.dev.send_recv(CCProtocolPacker.get_signed_txn(), timeout=None) @runs_in_hwd_thread def download_file(self, length, checksum, file_number=1): # get a file return self.dev.download_file(length, checksum, file_number=file_number) class Coldcard_KeyStore(Hardware_KeyStore): hw_type = 'coldcard' device = 'Coldcard' plugin: 'ColdcardPlugin' def __init__(self, d): Hardware_KeyStore.__init__(self, d) # Errors and other user interaction is done through the wallet's # handler. The handler is per-window and preserved across # device reconnects self.force_watching_only = False self.ux_busy = False # we need to know at least the fingerprint of the master xpub to verify against MiTM # - device reports these value during encryption setup process # - full xpub value now optional self.ckcc_xpub = d.get('ckcc_xpub', None) def dump(self): # our additions to the stored data about keystore -- only during creation? d = Hardware_KeyStore.dump(self) d['ckcc_xpub'] = self.ckcc_xpub return d def get_xfp_int(self) -> int: xfp = self.get_root_fingerprint() assert xfp is not None return xfp_int_from_xfp_bytes(bfh(xfp)) def get_client(self): # called when user tries to do something like view address, sign somthing. # - not called during probing/setup # - will fail if indicated device can't produce the xpub (at derivation) expected rv = self.plugin.get_client(self) if rv: xfp_int = self.get_xfp_int() rv.verify_connection(xfp_int, self.ckcc_xpub) return rv def give_error(self, message, clear_client=False): self.logger.info(message) if not self.ux_busy: self.handler.show_error(message) else: self.ux_busy = False if clear_client: self.client = None raise UserFacingException(message) def wrap_busy(func): # decorator: function takes over the UX on the device. def wrapper(self, *args, **kwargs): try: self.ux_busy = True return func(self, *args, **kwargs) finally: self.ux_busy = False return wrapper def decrypt_message(self, pubkey, message, password): raise UserFacingException(_('Encryption and decryption are currently not supported for {}').format(self.device)) @wrap_busy def sign_message(self, sequence, message, password): # Sign a message on device. Since we have big screen, of course we # have to show the message unabiguously there first! try: msg = message.encode('ascii', errors='strict') assert 1 <= len(msg) <= MSG_SIGNING_MAX_LENGTH except (UnicodeError, AssertionError): # there are other restrictions on message content, # but let the device enforce and report those self.handler.show_error('Only short (%d max) ASCII messages can be signed.' % MSG_SIGNING_MAX_LENGTH) return b'' path = self.get_derivation_prefix() + ("/%d/%d" % sequence) try: cl = self.get_client() try: self.handler.show_message("Signing message (using %s)..." % path) cl.sign_message_start(path, msg) while 1: # How to kill some time, without locking UI? time.sleep(0.250) resp = cl.sign_message_poll() if resp is not None: break finally: self.handler.finished() assert len(resp) == 2 addr, raw_sig = resp # already encoded in Bitcoin fashion, binary. assert 40 < len(raw_sig) <= 65 return raw_sig except (CCUserRefused, CCBusyError) as exc: self.handler.show_error(str(exc)) except CCProtoError as exc: self.logger.exception('Error showing address') self.handler.show_error('{}\n\n{}'.format( _('Error showing address') + ':', str(exc))) except Exception as e: self.give_error(e, True) # give empty bytes for error cases; it seems to clear the old signature box return b'' @wrap_busy def sign_transaction(self, tx, password): # Upload PSBT for signing. # - we can also work offline (without paired device present) if tx.is_complete(): return client = self.get_client() assert client.dev.master_fingerprint == self.get_xfp_int() raw_psbt = tx.serialize_as_bytes() try: try: self.handler.show_message("Authorize Transaction...") client.sign_transaction_start(raw_psbt) while 1: # How to kill some time, without locking UI? time.sleep(0.250) resp = client.sign_transaction_poll() if resp is not None: break rlen, rsha = resp # download the resulting txn. raw_resp = client.download_file(rlen, rsha) finally: self.handler.finished() except (CCUserRefused, CCBusyError) as exc: self.logger.info(f'Did not sign: {exc}') self.handler.show_error(str(exc)) return except BaseException as e: self.logger.exception('') self.give_error(e, True) return tx2 = PartialTransaction.from_raw_psbt(raw_resp) # apply partial signatures back into txn tx.combine_with_other_psbt(tx2) # caller's logic looks at tx now and if it's sufficiently signed, # will send it if that's the user's intent. @staticmethod def _encode_txin_type(txin_type): # Map from Electrum code names to our code numbers. return {'standard': AF_CLASSIC, 'p2pkh': AF_CLASSIC, 'p2sh': AF_P2SH, 'p2wpkh-p2sh': AF_P2WPKH_P2SH, 'p2wpkh': AF_P2WPKH, 'p2wsh-p2sh': AF_P2WSH_P2SH, 'p2wsh': AF_P2WSH, }[txin_type] @wrap_busy def show_address(self, sequence, txin_type): client = self.get_client() address_path = self.get_derivation_prefix()[2:] + "/%d/%d"%sequence addr_fmt = self._encode_txin_type(txin_type) try: try: self.handler.show_message(_("Showing address ...")) dev_addr = client.show_address(address_path, addr_fmt) # we could double check address here finally: self.handler.finished() except CCProtoError as exc: self.logger.exception('Error showing address') self.handler.show_error('{}\n\n{}'.format( _('Error showing address') + ':', str(exc))) except BaseException as exc: self.logger.exception('') self.handler.show_error(exc) @wrap_busy def show_p2sh_address(self, M, script, xfp_paths, txin_type): client = self.get_client() addr_fmt = self._encode_txin_type(txin_type) try: try: self.handler.show_message(_("Showing address ...")) dev_addr = client.show_p2sh_address(M, xfp_paths, script, addr_fmt=addr_fmt) # we could double check address here finally: self.handler.finished() except CCProtoError as exc: self.logger.exception('Error showing address') self.handler.show_error('{}.\n{}\n\n{}'.format( _('Error showing address'), _('Make sure you have imported the correct wallet description ' 'file on the device for this multisig wallet.'), str(exc))) except BaseException as exc: self.logger.exception('') self.handler.show_error(exc) class ColdcardPlugin(HW_PluginBase): keystore_class = Coldcard_KeyStore minimum_library = (0, 7, 7) DEVICE_IDS = [ (COINKITE_VID, CKCC_PID), (COINKITE_VID, CKCC_SIMULATED_PID) ] SUPPORTED_XTYPES = ('standard', 'p2wpkh-p2sh', 'p2wpkh', 'p2wsh-p2sh', 'p2wsh') def __init__(self, parent, config, name): HW_PluginBase.__init__(self, parent, config, name) self.libraries_available = self.check_libraries_available() if not self.libraries_available: return self.device_manager().register_devices(self.DEVICE_IDS, plugin=self) self.device_manager().register_enumerate_func(self.detect_simulator) def get_library_version(self): import ckcc try: version = ckcc.__version__ except AttributeError: version = 'unknown' if requirements_ok: return version else: raise LibraryFoundButUnusable(library_version=version) def detect_simulator(self): # if there is a simulator running on this machine, # return details about it so it's offered as a pairing choice fn = CKCC_SIMULATOR_PATH if os.path.exists(fn): return [Device(path=fn, interface_number=-1, id_=fn, product_key=(COINKITE_VID, CKCC_SIMULATED_PID), usage_page=0, transport_ui_string='simulator')] return [] @runs_in_hwd_thread def create_client(self, device, handler): if handler: self.handler = handler # We are given a HID device, or at least some details about it. # Not sure why not we aren't just given a HID library handle, but # the 'path' is unabiguous, so we'll use that. try: rv = CKCCClient(self, handler, device.path, is_simulator=(device.product_key[1] == CKCC_SIMULATED_PID)) return rv except Exception as e: self.logger.exception('late failure connecting to device?') return None def setup_device(self, device_info, wizard, purpose): device_id = device_info.device.id_ client = self.scan_and_create_client_for_device(device_id=device_id, wizard=wizard) return client def get_xpub(self, device_id, derivation, xtype, wizard): # this seems to be part of the pairing process only, not during normal ops? # base_wizard:on_hw_derivation if xtype not in self.SUPPORTED_XTYPES: raise ScriptTypeNotSupported(_('This type of script is not supported with {}.').format(self.device)) client = self.scan_and_create_client_for_device(device_id=device_id, wizard=wizard) client.ping_check() xpub = client.get_xpub(derivation, xtype) return xpub @runs_in_hwd_thread def get_client(self, keystore, force_pair=True, *, devices=None, allow_user_interaction=True) -> Optional['CKCCClient']: # Acquire a connection to the hardware device (via USB) client = super().get_client(keystore, force_pair, devices=devices, allow_user_interaction=allow_user_interaction) if client is not None: client.ping_check() return client @staticmethod def export_ms_wallet(wallet: Multisig_Wallet, fp, name): # Build the text file Coldcard needs to understand the multisig wallet # it is participating in. All involved Coldcards can share same file. assert isinstance(wallet, Multisig_Wallet) print('# Exported from Electrum', file=fp) print(f'Name: {name:.20s}', file=fp) print(f'Policy: {wallet.m} of {wallet.n}', file=fp) print(f'Format: {wallet.txin_type.upper()}' , file=fp) xpubs = [] derivs = set() for xpub, ks in zip(wallet.get_master_public_keys(), wallet.get_keystores()): # type: str, KeyStoreWithMPK fp_bytes, der_full = ks.get_fp_and_derivation_to_be_used_in_partial_tx(der_suffix=[], only_der_suffix=False) fp_hex = fp_bytes.hex().upper() der_prefix_str = bip32.convert_bip32_intpath_to_strpath(der_full) xpubs.append( (fp_hex, xpub, der_prefix_str) ) derivs.add(der_prefix_str) # Derivation doesn't matter too much to the Coldcard, since it # uses key path data from PSBT or USB request as needed. However, # if there is a clear value, provide it. if len(derivs) == 1: print("Derivation: " + derivs.pop(), file=fp) print('', file=fp) assert len(xpubs) == wallet.n for xfp, xpub, der_prefix in xpubs: if derivs: # show as a comment if unclear print(f'# derivation: {der_prefix}', file=fp) print(f'{xfp}: {xpub}\n', file=fp) def show_address(self, wallet, address, keystore: 'Coldcard_KeyStore' = None): if keystore is None: keystore = wallet.get_keystore() if not self.show_address_helper(wallet, address, keystore): return txin_type = wallet.get_txin_type(address) # Standard_Wallet => not multisig, must be bip32 if type(wallet) is Standard_Wallet: sequence = wallet.get_address_index(address) keystore.show_address(sequence, txin_type) elif type(wallet) is Multisig_Wallet: assert isinstance(wallet, Multisig_Wallet) # only here for type-hints in IDE # More involved for P2SH/P2WSH addresses: need M, and all public keys, and their # derivation paths. Must construct script, and track fingerprints+paths for # all those keys pubkey_deriv_info = wallet.get_public_keys_with_deriv_info(address) pubkey_hexes = sorted([pk.hex() for pk in list(pubkey_deriv_info)]) xfp_paths = [] for pubkey_hex in pubkey_hexes: pubkey = bytes.fromhex(pubkey_hex) ks, der_suffix = pubkey_deriv_info[pubkey] fp_bytes, der_full = ks.get_fp_and_derivation_to_be_used_in_partial_tx(der_suffix, only_der_suffix=False) xfp_int = xfp_int_from_xfp_bytes(fp_bytes) xfp_paths.append([xfp_int] + list(der_full)) script = bfh(wallet.pubkeys_to_scriptcode(pubkey_hexes)) keystore.show_p2sh_address(wallet.m, script, xfp_paths, txin_type) else: keystore.handler.show_error(_('This function is only available for standard wallets when using {}.').format(self.device)) return def xfp_int_from_xfp_bytes(fp_bytes: bytes) -> int: return int.from_bytes(fp_bytes, byteorder="little", signed=False) def xfp2str(xfp: int) -> str: # Standardized way to show an xpub's fingerprint... it's a 4-byte string # and not really an integer. Used to show as '0x%08x' but that's wrong endian. return struct.pack('<I', xfp).hex().lower() # EOF
38.031056
133
0.621591
4a2524653fa4c95c4b1c1d98c2b2572aa54c6668
69,092
py
Python
reflred/steps.py
krzywon/reductus
cc5c42ac619bf6150b7f07bde02a689affa910a1
[ "Unlicense" ]
null
null
null
reflred/steps.py
krzywon/reductus
cc5c42ac619bf6150b7f07bde02a689affa910a1
[ "Unlicense" ]
null
null
null
reflred/steps.py
krzywon/reductus
cc5c42ac619bf6150b7f07bde02a689affa910a1
[ "Unlicense" ]
null
null
null
# This program is public domain import os import numpy as np from copy import copy from dataflow.automod import cache, nocache, module # TODO: maybe bring back formula to show the math of each step # TODO: what about polarized data? @module def nop(data): """ No operation. **Inputs** data (refldata[]): Input data **Returns** output (refldata[]): Unaltered data 2015-12-31 Paul Kienzle """ return data @module def ncnr_load(filelist=None, check_timestamps=True): """ Load a list of nexus files from the NCNR data server. **Inputs** filelist (fileinfo[]): List of files to open. check_timestamps (bool): verify that timestamps on file match request **Returns** output (refldata[]): All entries of all files in the list. 2016-06-29 Brian Maranville | 2017-08-21 Brian Maranville Change to refldata, force cache invalidate | 2018-06-18 Brian Maranville Change to nexusref to ignore areaDetector | 2018-12-10 Brian Maranville get_plottable routines moved to python data container from js | 2020-03-03 Paul Kienzle Just load. Don't even compute divergence """ # NB: used mainly to set metadata for processing, so keep it minimal # TODO: make a metadata loader that does not send all data to browser # NB: Fileinfo is a structure with # { path: "location/on/server", mtime: timestamp } from .load import url_load_list datasets = [] for data in url_load_list(filelist, check_timestamps=check_timestamps): datasets.append(data) return datasets @module def dark_current(data, poly_coeff=[0], poly_cov=None): r""" Correct for the dark current, which is the average number of spurious counts per minute of measurement on each detector channel. **Inputs** data (refldata[]) : data to scale poly_coeff {Polynomial coefficients of dark current vs slit1} (float[]) : Polynomial coefficients (highest order to lowest) representing the dark current as a function of slit 1 opening. Units in counts/(minute . mm ^ N), for the coefficient of (slit1 ^ N). Default is [0]. poly_cov {Polynomial covariance matrix} (float[]) : Flattened covariance matrix for polynomial coefficients if error propagation is desired. For an order N polynomial, must have size N^2. If left blank, no error propagation will occur. **Returns** output (refldata[]): Dark current subtracted data. darkcurrent (refldata[]): Dark current that was subtracted (for plotting) | 2020-03-04 Paul Kienzle | 2020-03-12 Paul Kienzle Add slit 1 dependence for DC rate | 2021-06-11 David Hoogerheide generalize to refldata, prevent either adding counts or oversubtracting | 2021-06-13 David Hoogerheide add dark current output | 2021-06-14 David Hoogerheide change to polynomial input and add error propagation """ # TODO: datatype hierarchy: accepts any kind of refldata from dataflow.lib.uncertainty import Uncertainty as U datasets = list() dcs = list() order = len(poly_coeff) for d in data: dcdata = copy(d) # hackish way to get dark current counts dcdata.detector = copy(d.detector) # calculate rate and Jacobian at each point rate = np.polyval(poly_coeff, dcdata.slit1.x) # error propagation rate_var = np.zeros_like(rate) if poly_cov is not None: poly_cov = np.array(poly_cov).reshape((order, order)) for i, s1 in enumerate(dcdata.slit1.x): J = np.array([s1**float(i) for i in range(0, order)[::-1]]) rate_var[i] = np.dot(J.T, np.dot(poly_cov, J)) dc = dcdata.monitor.count_time*(rate/60.) dc[dc < 0] = 0.0 # do not allow addition of dark counts from negative rates dc_var = rate_var * (dcdata.monitor.count_time/60.)**2 # condition dark counts to the correct dimensionality ndetectordims = np.ndim(d.detector.counts) dc = np.expand_dims(dc, tuple(range(1, ndetectordims))) dc_var = np.expand_dims(dc_var, tuple(range(1, ndetectordims))) dcdata.detector.counts = np.ones_like(dcdata.detector.counts) * dc # should preserve dimensionality correctly dcdata.detector.counts_variance = np.ones_like(dcdata.detector.counts_variance) * dc_var # should preserve dimensionality correctly detcounts = U(d.detector.counts, d.detector.counts_variance) darkcounts = U(dcdata.detector.counts, dcdata.detector.counts_variance) detdarkdiff = detcounts - darkcounts d.detector.counts, d.detector.counts_variance = detdarkdiff.x, detdarkdiff.variance d.detector.counts[d.detector.counts < 0] = 0.0 # only renormalize if apply_norm has already populated d.normbase, i.e. if it's a standalone module if d.normbase is not None: d = normalize(d, d.normbase) dcdata = normalize(dcdata, dcdata.normbase) # create outputs datasets.append(d) dcs.append(dcdata) return datasets, dcs @module def fit_dead_time(data, source='detector', mode='auto'): """ Fit detector dead time constants (paralyzing and non-paralyzing) from measurement of attenuated and unattenuated data for a range of count rates. **Inputs** data (refldata[]): Data sets with different attenuation levels source (opt:detector|monitor): Tube that is being measured mode (opt:P|NP|mixed|auto): Dead-time mode **Returns** dead_time (deadtime): Dead time constants, attenuator estimate and beam rate 2015-12-17 Paul Kienzle """ from .deadtime import fit_dead_time dead_time = fit_dead_time(data, source=source, mode=mode) return dead_time @module def monitor_dead_time(data, dead_time, nonparalyzing=0.0, paralyzing=0.0): """ Correct the monitor dead time from the fitted dead time. The deadtime constants are chosen as follows: #. If either *tau_NP* and *tau_P* are non-zero, then use them. #. If the dead time terminal is attached to a dead time fit, use it. #. If the dead time constants are given in the data file, then use them. #. Otherwise don't do any dead time correction. **Inputs** data (refldata) : Uncorrected data dead_time (deadtime?) : Output of dead time estimator nonparalyzing (float:us<0,inf>) : non-paralyzing dead time constant paralyzing (float:us<0,inf>) : paralyzing dead time constant **Returns** output (refldata): Dead-time corrected data 2015-12-17 Paul Kienzle """ from .deadtime import apply_monitor_dead_time data = copy(data) data.monitor = copy(data.monitor) if nonparalyzing != 0.0 or paralyzing != 0.0: apply_monitor_dead_time(data, tau_NP=nonparalyzing, tau_P=paralyzing) elif dead_time is not None: apply_monitor_dead_time(data, tau_NP=dead_time.tau_NP, tau_P=dead_time.tau_P) elif data.monitor.deadtime is not None and np.isfinite(data.monitor.deadtime).all(): try: tau_NP, tau_P = data.monitor.deadtime except Exception: tau_NP, tau_P = data.monitor.deadtime, 0.0 apply_monitor_dead_time(data, tau_NP=tau_NP, tau_P=tau_P) else: pass # no deadtime correction parameters available. return data @module def detector_dead_time(data, dead_time, nonparalyzing=0.0, paralyzing=0.0): """ Correct the detector dead time from the fitted dead time. If *tau_NP* and *tau_P* are non-zero, then use them. If a dead_time fit result is supplied, then use it. If the dead time constants are given in the data file, then use them. Otherwise don't do any dead time correction. **Inputs** data (refldata) : Uncorrected data dead_time (deadtime?) : Output from dead time estimator nonparalyzing (float:us<0,inf>) : non-paralyzing dead time constant paralyzing (float:us<0,inf>) : paralyzing dead time constant **Returns** output (refldata): Dead-time corrected data 2016-03-21 Paul Kienzle """ from .deadtime import apply_detector_dead_time data = copy(data) if nonparalyzing != 0.0 or paralyzing != 0.0: data.detector = copy(data.detector) apply_detector_dead_time(data, tau_NP=nonparalyzing, tau_P=paralyzing) elif dead_time is not None: data.detector = copy(data.detector) apply_detector_dead_time(data, tau_NP=dead_time.tau_NP, tau_P=dead_time.tau_P) elif data.detector.deadtime is not None and not np.all(np.isnan(data.detector.deadtime)): try: tau_NP, tau_P = data.detector.deadtime except Exception: tau_NP, tau_P = data.detector.deadtime, 0.0 data.detector = copy(data.detector) apply_detector_dead_time(data, tau_NP=tau_NP, tau_P=tau_P) else: raise ValueError("no valid deadtime provided in file or parameter") return data @module def monitor_saturation(data): """ Correct the monitor dead time from stored saturation curve. **Inputs** data (refldata): Uncorrected data **Returns** output (refldata): Dead-time corrected data 2017-02-22 Paul Kienzle """ from .deadtime import apply_monitor_saturation data = copy(data) if getattr(data.monitor, 'saturation', None) is not None: data.monitor = copy(data.monitor) apply_monitor_saturation(data) else: data.warn("no monitor saturation for %r"%data.name) return data @module def detector_saturation(data): """ Correct the detector dead time from stored saturation curve. **Inputs** data (refldata): Uncorrected data **Returns** output (refldata): Dead-time corrected data 2015-12-17 Paul Kienzle """ from .deadtime import apply_detector_saturation data = copy(data) if getattr(data.detector, 'saturation', None) is not None: #print("detector "+str(data.detector.__dict__)) data.detector = copy(data.detector) apply_detector_saturation(data) else: data.warn("no detector saturation for %r"%data.name) return data @module def theta_offset(data, offset=0.0): """ Correct the theta offset of the data for a misaligned sample, shifting sample and detector angle and updating $q_x$ and $q_z$. **Inputs** data (refldata) : Uncorrected data offset (float:degree) : amount of shift to add to sample angle and subtract from detector angle **Returns** output (refldata): Offset corrected data 2015-12-17 Paul Kienzle """ from .angles import apply_theta_offset data = copy(data) data.sample = copy(data.sample) data.detector = copy(data.detector) data.sample.angle_x = copy(data.sample.angle_x) data.detector.angle_x = copy(data.detector.angle_x) apply_theta_offset(data, offset) return data @module def back_reflection(data): """ Reverse the sense of the reflection angles, making positive angles negative and vice versa. **Inputs** data (refldata): Uncorrected data **Returns** output (refldata): Angle corrected data 2015-12-17 Paul Kienzle """ from .angles import apply_back_reflection data = copy(data) data.sample = copy(data.sample) data.detector = copy(data.detector) data.sample.angle_x = copy(data.sample.angle_x) data.detector.angle_x = copy(data.detector.angle_x) apply_back_reflection(data) return data @module def absolute_angle(data): """ Assume all reflection is off the top surface, reversing the sense of negative angles. **Inputs** data (refldata): Uncorrected data **Returns** output (refldata): Angle corrected data 2015-12-17 Paul Kienzle """ from .angles import apply_absolute_angle data = copy(data) data.sample = copy(data.sample) data.detector = copy(data.detector) data.sample.angle_x = copy(data.sample.angle_x) data.detector.angle_x = copy(data.detector.angle_x) apply_absolute_angle(data) return data @module def sample_broadening(data, width=0): r""" Increase (or decrease) nominal divergence due to the effects of sample broadening (or focussing) if this is not supported by the reflectivity analysis program. **Inputs** data (refldata): data without resolution estimate width (float) : amount of increased divergence in degrees, using 1-\ $\sigma$ change in width. This can be estimated from the FWHM of the rocking curve relative to the expected value with no broadening, divided by 2.35 to convert FWHM to 1-\ $\sigma$. **Returns** output (refldata): data with resolution estimate 2020-05-05 Paul Kienzle """ from .angles import apply_sample_broadening if width != 0: data = copy(data) apply_sample_broadening(data, width) return data @module def divergence_fb(data, sample_width=None): r""" Estimate divergence from slit openings. Does nothing if divergence is already defined by the instrument. **Inputs** data (refldata): data without resolution estimate sample_width (float?:<0,inf>) : width of the sample in mm if it acts like a slit. By default, this uses the value in the file. **Returns** output (refldata): data with resolution estimate 2020-05-05 Paul Kienzle """ from .angles import apply_divergence_front_back if data.angular_resolution is None: data = copy(data) apply_divergence_front_back(data, sample_width) return data @module def divergence(data, sample_width=None, sample_broadening=0): r""" Estimate divergence from slit openings. Does nothing if divergence is already defined by the instrument. **DEPRECATED** use divergence_fb instead **Inputs** data (refldata): data without resolution estimate sample_width (float?:<0,inf>) : width of the sample in mm if it acts like a slit. By default, this uses the value in the file. sample_broadening (float) : amount of increased divergence in degrees, using 1-\ $\sigma$ change in width. This can be estimated from the FWHM of the rocking curve relative to the expected value with no broadening, divided by 2.35 to convert FWHM to 1-\ $\sigma$. **Returns** output (refldata): data with resolution estimate 2016-06-15 Paul Kienzle 2020-05-05 Paul Kienzle """ from .angles import apply_divergence_simple, apply_sample_broadening if data.angular_resolution is None: data = copy(data) apply_divergence_simple(data, sample_width) apply_sample_broadening(data, sample_broadening) return data #@module def mask_specular(data): """ Identify and mask out specular points. This defines the *mask* attribute of *data* as including all points that are not specular or not previously masked. The points are not actually removed from the data, since this operation is done by *join*. **Inputs** data (refldata) : background data which may contain specular point **Returns** output (refldata) : masked data 2015-12-17 Paul Kienzle """ from .background import apply_specular_mask data = copy(data) apply_specular_mask(data) return data def mask_action(data=None, mask_indices=None, **kwargs): """ Remove data at the indicated indices """ if mask_indices: data = copy(data) data.apply_mask(mask_indices) return data @module def mask_points(data, mask_indices=None): """ Identify and mask out user-specified points. This defines the *mask* attribute of *data* to include all data except those indicated in *mask_indices*. Any previous mask is cleared. The masked data are not actually removed from the data, since this operation is done by *join*. **Inputs** data (refldata) : background data which may contain specular point mask_indices (index[]*) : 0-origin data point indices to mask. For example, *mask_indices=[1,4,6]* masks the 2nd, 5th and 7th point respectively. Each dataset should have its own mask. **Returns** output (refldata) : masked data | 2018-04-30 Brian Maranville | 2019-07-02 Brian Maranville: change self.points after mask """ data = copy(data) output = mask_action(data=data, mask_indices=mask_indices) return output @module def mark_intent(data, intent='auto'): r""" Mark the file type based on the contents of the file, or override. *intent* can be 'infer', to guess the intent from the measurement geometry, 'auto' to use the recorded value for the intent if present, otherwise infer it from the geometry, or the name of the intent. For inferred intent, it is 'specular' if incident angle matches detector angle within 0.1*angular divergence, 'background+' if incident angle is greater than detector angle, 'background-' if incident angle is less than detector angle, 'slit' if incident and detector angles are zero, 'rock sample' if only the incident angle changes, 'rock detector' if only the detector angle changes, or 'rock qx' if only $Q_x$ is changing throughout the scan. **Inputs** data (refldata) : data file which may or may not have intent marked intent (opt:auto|infer|specular|background+\|background-\|slit \|rock sample|rock detector|rock qx) : intent to register with the datafile, or auto/infer to guess **Returns** output (refldata) : marked data 2016-03-20 Paul Kienzle """ from .intent import apply_intent data = copy(data) apply_intent(data, intent) return data @module def group_by_intent(data): """ Split a bundle into multiple bundles using intent. **Inputs** data (refldata[]) : data files with intent marked **Returns** specular (refldata[]) : specular measurements backp {Background+} (refldata[]) : positive offset background measurements backm {Background-} (refldata[]) : negative offset background measurements intensity (refldata[]) : beam intensity measurements rock {Rocking curve} (refldata[]) : rocking curve measurements other (refldata[]) : everything else 2016-07-20 Brian Maranville """ map_intent = { 'specular': 'specular', 'intensity': 'intensity', 'background+': 'backp', 'background-': 'backm', 'rock sample': 'rock', 'rock detector': 'rock', 'rock qx': 'rock', } groups = {} for intent in set(map_intent.values()): groups[intent] = [] groups['other'] = [] for d in data: #print("intent %s %s"%(d.intent, d.path)) groups[map_intent.get(d.intent, 'other')].append(d) return [groups[intent] for intent in 'specular backp backm intensity rock other'.split()] @module def extract_xs(data, xs="++"): r""" Get a polarization cross-section from a bundle **Inputs** data (refldata[]): data files in of all cross sections xs {Cross-section} (opt:++\|--\|+-\|-+\|+\|-\|unpolarized): cross-section to extract **Returns** output (refldata[]): data matching just that cross-section | 2016-05-05 Brian Maranville | 2020-03-24 Brian Maranville: added half-pol cross-sections """ # Note: no need to copy data since it is not being modified if xs == 'unpolarized': xs = '' output = [d for d in data if d.polarization == xs] return output @module def filter(data, key="", comparator="eq", value=None): r""" Get a subset of the datasets bundle based on the test **Inputs** data (refldata[]): data files in key (str): name to test in the dataset value (str?): value to compare comparator {Compare operator} (opt:eq|ne|lt|le|gt|ge): comparison operator **Returns** output (refldata[]): data matching the comparison 2017-02-24 Brian Maranville """ import operator compare_lookup = { "==": operator.eq, "!=": operator.ne, "<": operator.lt, "<=": operator.le, ">=": operator.ge, ">": operator.gt, "eq": operator.eq, "ne": operator.ne, "lt": operator.lt, "le": operator.le, "ge": operator.ge, "gt": operator.gt, } compare_op = compare_lookup[comparator] return [d for d in data if hasattr(d, key) and compare_op(getattr(d, key), value)] @module def normalize(data, base='auto'): """ Estimate the detector count rate. *base* can be monitor, time, roi, power, or none for no normalization. For example, if base='monitor' then the count rate will be counts per monitor count. Note that operations that combine datasets require the same normalization on the points. If *base* is auto then the default will be chosen, which is 'monitor' if the monitor exists, otherwise it is 'time'. If neither exists (not sure that can happen) then the data will be unnormalized. The detector region of interest (*roi*) and reactor *power* have not been tested and should not be used. The detector efficient, the dead time corrections and attenuator scaling have not been applied to the roi measurement. Since the measurement is only useful if a portion of the detector is exposed to the incident beam, this corrections will be especially important. In the case where the monitor is unreliable and reactor power has been fluctuating, you may be able to estimate the incident intensity based on the integrated reactor power. This uses a simple average of the reactor power measurements multiplied by the measurement time. **Inputs** data (refldata) : data to normalize base {Normalize by} (opt:auto|monitor|time|roi|power|none) : how to convert from counts to count rates **Returns** output (refldata) : data with count rate rather than counts 2015-12-17 Paul Kienzle 2020-03-10 Paul Kienzle auto almost always equals monitor """ # Note: reflpak supported visualization like "counts per 10000 monitor" # so that the displayed data looked roughly like the measured data, except # all scaled to a common monitor. This is not available in reductus. # TODO: consistent use of data.detector.counts vs. data.v # see in particular the detector/monitor dead time, spectral efficiency, # dark current, etc. from .scale import apply_norm data = copy(data) apply_norm(data, base) return data @module def psd_center(data, center=128): """ Set center pixel for the detector. **Inputs** data (psddata) : data to scale center (float) : beam center pixel (should be the same for all datasets) **Returns** output (psddata) : scaled data 2020-02-04 Paul Kienzle """ data = copy(data) data.detector = copy(data.detector) data.detector.center = (center, 0) return data @module def psd_integrate( data, spec_scale=1, spec_pixel=5., left_scale=1., left_pixel=5., right_scale=1., right_pixel=5., min_pixel=5., max_pixel=251., degree=1., mc_samples=1000, slices=None, #(0.01, 0.05, 0.10, 0.15), ): r""" Integrate specular and background from psd. Specular and background regions are computed from beam divergence and pixel width using the following: spec = spec scale * divergence + spec pixels left = left scale * divergence + left pixels right = right scale * divergence + right pixels The beam divergence used in the equations above is estimated from the slit openings. The specular signal is the sum over pixels in [-spec, +spec]. The background signal is determined by fitting a polynomial of degree n to the pixels in [-spec - left, -spec) and (spec, spec + right), then integrating that polynomial over the specular pixels. Specular uncertainty comes from simply integrating over the pixels. Background uncertainty comes from the uncertainty in the polynomial fitting parameters. It can be estimated using Monte Carlo sampling, or by simple Gaussian propagation of uncertainty if mc samples is 0. MC estimates are stochastic, so rerunning with a different random number sequence will give a different result. To make the reduction reproducible, the number of samples is used as the seed value for the random number generator. To assess the variation in the background estimate, try slightly longer sequence lengths. We have found 100 samples gives a background estimate that is approximately stable (variation in estimate is well within uncertainty). A default value of 1000 was chosen because it is reasonably fast and reasonably stable. Test on your own data by comparing mc_samples to mc_samples+1 The residual after subtracting the background estimate is also returned. Use this to verify that the integration ranges are chosen appropriately. There is an additional output to show slices for selected frames---this will show the quality of background estimate. **Inputs** data (refldata) : data to integrate spec_scale {Spec scale}(float:<0,inf>) : Specular width as a divergence multiple, or zero for fixed width. spec_pixel {Spec offset}(float:pixel) : Fixed broadening in pixels (or narrowing if negative) left_scale {Back- scale}(float:<0,inf>) : Left background width as a divergence multiple, or zero for fixed width. left_pixel {Back- offset}(float:pixel) : Left background shift in pixels. right_scale {Back+ scale}(float:<0,inf>) : Right background width as a divergence multiple, or zero for fixed width. right_pixel {Back+ offset}(float:pixel) : Right background shift in pixels. min_pixel {Left edge}(float:pixel<1,256>) : Left background cutoff pixel. max_pixel {Right edge}(float:pixel<1,256>) : Right background cutoff pixel. degree {Polynomial degree}(int:<0,9>) : Background polynomial degree. mc_samples {MC samples}(int:<0,inf>) : Number of MC samples for uncertainty analysis, or zero for simple gaussian. slices {Slice value}(float) : Display data cross-sections at the given values. **Returns** specular (refldata) : integrated specular background (refldata) : integrated background residual (psddata) : background subtracted psd data sliceplot (plot) : slices plot | 2020-02-03 Paul Kienzle """ from .ng7psd import apply_integration from dataflow.data import Plottable mc_seed = mc_samples if mc_samples > 0 else None #print("slices", slices) spec, back, resid, sliceplot = apply_integration( data, spec=(spec_scale, spec_pixel), left=(left_scale, left_pixel), right=(right_scale, right_pixel), pixel_range=(min_pixel, max_pixel), degree=degree, mc_samples=mc_samples, seed=mc_seed, slices=[slices] if slices is not None else [], ) return spec, back, resid, Plottable(sliceplot) @module def rescale(data, scale=1.0, dscale=0.0): """ Rescale the count rate by some scale and uncertainty. **Inputs** data (refldata) : data to scale scale (scale*) : amount to scale, one for each dataset dscale {Scale err} (float*:<0,inf>) : scale uncertainty for gaussian error propagation **Returns** output (refldata) : scaled data 2015-12-17 Paul Kienzle """ from .scale import apply_rescale data = copy(data) apply_rescale(data, scale, dscale) return data #@nocache @module def join(data, Q_tolerance=0.5, dQ_tolerance=0.002, order='file', group_by="polarization", tolerance=None): r""" Join operates on a list of datasets, returning a list with one dataset, or one dataset per polarization state. When operating on a single dataset, it joins repeated points into single points. *Qtol* and *dQtol* are scale factors on $\Delta \theta$ used to determine whether two angles are equivalent. For a given tolerance $\epsilon_Q, \epsilon_{\Delta Q}$, a point at incident angle $\theta_1$ can be joined with one with incident angle $\theta_2$ when $|\theta_1 - \theta_2| < \epsilon_Q \cdot \Delta\theta$ and $|\Delta\theta_1 - \Delta\theta_2| < \epsilon_{\Delta Q} \cdot \Delta\theta$. Values of $\epsilon_Q=0.5$ and $\epsilon_{\Delta Q}=0.002$ work well in practice. If the tolerances are both 0 then join is performed against the desired positions rather than the actual positions; this more closely corresponds with user intent. The join algorithm is greedy, so if you have a sequence of points with individual separation less than $\epsilon\cdot\Delta\theta$ but total spread greater than $\epsilon\cdot\Delta\theta$, they will be joined into multiple points with the final with the final point having worse statistics than the prior points. Join operates on one dimension at a time, first grouping points with common $\Delta\theta$, then joining points within each $\Delta\theta$ by common $\theta_\text{incident}$, then by common $\theta_\text{detector}$. This algorithm should work well enough on the common reflectometry scans, but it may fail for example if applied to a set of $Q_x$ scans with different $Q_z$ values. *order* is the sort order of the files that are joined. The first file in the sorted list determines the metadata such as the base file name for the joined file. The joined datasets will be sorted as appropriate for the the measurement intent. Masked points will be removed. Data must be normalized before join. **Inputs** data (refldata[]) : data to join Q_tolerance (float:1-sigma<0,inf>) : allowed separation between points while still joining them to a single point; this is relative to the angular resolution and wavelength dispersion of each point dQ_tolerance (float:1-sigma<0,inf>) : allowed difference in resolution between combined points; this is relative to the angular resolution and wavelength dispersion of each point order (opt:file|time|theta|slit|none) : order determines which file is the base file, supplying the metadata for the joined set group_by (opt:polarization|probe|entry|filenumber|instrument|intent|sample.name|sample.description) : key by which the files are grouped prior to join tolerance(float?:1-sigma<0,inf>) : **deprecated** value for Qtol and dQtol; ignored if the value is None or not specified. **Returns** output (refldata[]) : joined data | 2017-02-09 Paul Kienzle: split tolerance into Qtol and dQtol | 2017-05-05 Paul Kienzle: consistent sort order for outputs | 2017-07-03 Brian Maranville: rearrange to group by Ti, Td before dT, dQ | 2018-05-14 Brian Maranville: group by Qx first for all rocking curves | 2020-10-14 Paul Kienzle fixed uncertainty for time normalized data | 2020-12-15 Brian Maranville added roi_counts and source_power to columns """ from .joindata import sort_files, join_datasets from .util import group_by_key # No copy necessary; join is never in-place. # TODO: parse **deprecated** in automod and hide deprecated inputs on ui if tolerance is not None: Q_tolerance = dQ_tolerance = tolerance datasets = [v for k, v in sorted(group_by_key(group_by, data).items())] output = [] for group in datasets: group = sort_files(group, order) result = join_datasets(group, Q_tolerance, dQ_tolerance) output.append(result) return output @module def mix_cross_sections(data, mix_sf=False, mix_nsf=False): """ Mix (combine) cross-sections, usually to improve statistics when cross-sections are expected to be indistinguishable in the model (e.g. spin-flip when no chirality) Typically this is done after load and before "join" All inputs are passed to the output, and in addition: When *mix_sf* is enabled, all input datasets with polarization "-+" will be copied and added to the output with polarization = "+-", and vice-versa for "+-" inputs. When *mix_nsf* is enabled, all input datasets with polarization "++" will be copied and added to the output with polarization = "--", and similarly "--" inputs sent to "++" **Inputs** data (refldata[]) : datasets in mix_sf {Mix Spin-Flip?} (bool) : Perform mixing on spin-flip cross-sections, i.e. "+-" and "-+" mix_nsf {Mix Non-Spin-Flip?} (bool) : Perform mixing on spin-flip cross-sections, i.e. "++" and "--" or "+" and "-" **Returns** output (refldata[]) : relabeled and copied datasets (around twice as many as in the input) 2021-11-17 Brian Maranville """ output = copy(data) mappings = { "sf": { "+-": "-+", "-+": "+-" }, "nsf": { "++": "--", "--": "++", "+": "-", "-": "+" } } def duplicate_and_remap_items(xs_type): mapping = mappings[xs_type] items = [d for d in data if d.polarization in mapping] for item in items: new_item = copy(item) new_item.polarization = mapping[item.polarization] output.append(new_item) if mix_sf: duplicate_and_remap_items("sf") if mix_nsf: duplicate_and_remap_items("nsf") return output #@module def align_background(data, align='auto'): """ Determine the Qz value associated with the background measurement. The *align* flag determines which background points are matched to the sample points. It can be 'sample' if background is measured using an offset from the sample angle, or 'detector' if it is offset from detector angle. If *align* is 'auto', then use 'Qz_target' to align the background scan. For 'auto' alignment without Qz_target set, we can only distinguish relative and constant offsets, and cannot determine which of sample and detector is offset from the specular condition, so we must rely on convention. If the offset is constant for each angle, then it is assumed to be a sample offset. If the the offset is proportional to the angle (and therefore offset divided by angle is constant), then it is assumed to be a detector offset. If neither condition is met, it is assumed to be a sample offset. The 'auto' test is robust: 90% of the points should be within 5% of the median value of the vector for the offset to be considered a constant. **Inputs** data (refldata) : background data with unknown $q$ align (opt:auto|sample|detector) : angle which determines $q_z$ **Returns** output (refldata) : background with known $q$ 2015-12-17 Paul Kienzle 2020-10-16 Paul Kienzle rename 'offset' to 'align' """ from .background import set_background_alignment data = copy(data) set_background_alignment(data, align) return data @module def subtract_background(data, backp, backm, align="none"): """ Subtract the background datasets from the specular dataset. The specular, background+ and background- signals should already be joined into single datasets. For each, the background is interpolated onto the specular Q values, extending above and below with the final background measurement. If there are no backgrounds, then data is sent through unchanged. Background subtraction is applied independently to the different polarization cross sections. The *align* flag determines which background points are matched to the sample points. It can be 'sample' if background is measured using an offset from the sample angle, or 'detector' if it is offset from detector angle. If it is 'none' then use the 'Qz_basis' value set in the loader. The 'auto' option uses 'Qz_target' if it exists, or tries to guess from the measured angles. **Inputs** data (refldata) : specular data backp {Background+} (refldata?) : plus-offset background data backm {Background-} (refldata?) : minus-offset background data align (opt:none|sample|detector|auto) : apply align_background to background inputs with offset='auto' **Returns** output (refldata) : background subtracted specular data 2016-03-23 Paul Kienzle """ from .background import apply_background_subtraction # Note: This changes backp and backm, so copy first. if align != "none": if backp is not None: backp = copy(backp) align_background(backp, align=align) if backm is not None: backm = copy(backm) align_background(backm, align=align) #print "%s - (%s+%s)/2"%(data.name, (backp.name if backp else "none"), (backm.name if backm else "none")) data = copy(data) apply_background_subtraction(data, backp, backm) return data @module def interpolate_background(data, backp, backm, align='auto'): """ Interpolate background data onto specular angles. The *align* flag determines which background points are matched to the specular points. The 'auto' option uses the Qz_basis set in the file loader, otherwise align the sample angle or the detector angle. This sets Qz_basis to align so that a subsequent subtraction operation will use the same interpolation. Masking of background or specular should occur before interpolation or after subtraction. **Inputs** data (refldata) : specular data backp {Background+} (refldata?) : plus-offset background data backm {Background-} (refldata?) : minus-offset background data align (opt:auto|sample|detector|sample_target|detector_target) : angle which determines $q_z$ **Returns** output (refldata) : unchanged specular outp (refldata) : interpolated plus-offset background data outm (refldata) : interpolated minus-offset background data 2020-11-20 Paul Kienzle new module """ from .background import apply_interpolation if backp is not None: backp = copy(backp) backp.sample = copy(backp.sample) backp.detector = copy(backp.detector) apply_interpolation(data=backp, base=data, align=align) if backm is not None: backm = copy(backp) backm.sample = copy(backp.sample) backm.detector = copy(backp.detector) apply_interpolation(data=backm, base=data, align=align) return data, backp, backm @module def fit_background_field(back, fit_scale=True, scale=1.0, epsD0=0.01, epssi=1.109e-4, LS3=380, LS4=1269, LSD=1675, HD=150, maxF=76.2, Qcutoff=0.05): """ Fit the background field from a thin liquid reservoir to background datasets. Background datasets: o Can be any at any (non-specular) condition o Should already be normalized by incident intensity o Can involve any number of scans The background datasets are fit using a Levenberg-Marquardt algorithm to a model involving a two parameters: epsD, the product of the incoherent attenuation coefficient of the reservoir (eps) and the reservoir thickness D, and a scale factor that accounts for uncertainty in the instrument geometry, i.e. the post-sample slit distances and/or the solid angle subtended by the detector. The uncertainty in the optimized parameters are estimated from the covariance matrix, and the chi-squared value of the fit (typically 1.5 or less) is also calculated and available in the parameter output. Note that the covariance matrix itself is passed to subract_background_field because the parameters are correlated. If the scale factor is not included in the fit, the accuracy of the calculation depends critically on correct values for the instrument geometry. The geometry is inferred from the data files; if it is missing, certain values can be overridden using the data entry boxes. These include the slit4-detector distance (0 for instruments with no slit4) and the detector height (for horizontal reflectometers, the width). The calculation assumes a geometry like that of the NIST liquid flow cell, in which the liquid reservoir is encased in silicon. For a different cell material (e.g. sapphire), the appropriate incoherent extinction coefficient for the material should replace the default Si value. **Inputs** back (refldata[]) : group of background datasets epsD0 {Reservoir extinction coefficient guess (mm^-1)} (float:mm^-1) : initial guess for product of incoherent extinction coefficient of reservoir and reservoir thickness epssi {Extinction coefficient of Si (mm^-1)} (float:mm^-1) : incoherent extinction coefficient of Si or cell materials fit_scale {Include scale factor in fit?} (bool) : True if scale factor on detector solid angle should be included in fit (use if uncertain of the instrument geometry) scale {Scale factor value} (float) : Value of scale factor. Initial guess if scale factor is included in fit; otherwise fixed scale factor value. Qcutoff {Target Qz cutoff (Ang^-1)} (float:Ang^-1) : Cutoff target Q_z value below which background data are excluded from background fit LS3 {sample-slit3 distance (mm)} (float:mm) : Distance from sample to slit3 LS4 {sample-slit4 distance (mm)} (float:mm) : Distance from sample to slit4 LSD {sample-detector distance (mm)} (float:mm) : Distance from sample to detector HD {detector height (mm)} (float:mm) : Height of detector maxF {maximum beam footprint (mm)} (float:mm) : Sample dimension in beam direction **Returns** fitparams (ncnr.refl.backgroundfield.params) : fit parameters, covariances, and chi-squared fit (refldata[]) : ReflData structure containing fit outputs (for plotting against background inputs to inspect background field fit) 2018-06-12 David P. Hoogerheide; last updated 2018-10-12 """ from .backgroundfield import fit_background_field bff, outfitdata = fit_background_field(back, epsD0, epssi, fit_scale, scale, LS3, LS4, LSD, HD, Qcutoff, maxF) return bff, outfitdata @module def subtract_background_field(data, bfparams, epsD=None, epsD_var=None, scale=None, scale_var=None, scale_epsD_covar=None): """ Subtract the background field from a thin liquid reservoir from a specular dataset, which should already be normalized by the incident intensity. Applies the background field fit with the "Fit Background Field" module. See that module's description for more details. **Inputs** data (refldata[]) : specular data bfparams (ncnr.refl.backgroundfield.params) : background field parameters epsD {epsD} (float) : p epsD_var {epsD variance} (float) : dp2 scale {scale} (float) : s scale_var {scale factor variance} : ds2 scale_epsD_covar {covariance of scale factor and epsD} : dsp **Returns** output (refldata[]) : background subtracted specular data 2018-06-12 David P. Hoogerheide; last updated 2018-10-12 """ from .backgroundfield import apply_background_field_subtraction data = [copy(d) for d in data] if epsD is None: epsD = bfparams.p if epsD_var is None: epsD_var = bfparams.dp2 if scale is None: scale = bfparams.s if scale_var is None: scale_var = bfparams.ds2 if scale_epsD_covar is None: scale_epsD_covar = bfparams.dsp pcov = np.array([[scale_var, scale_epsD_covar], [scale_epsD_covar, epsD_var]]) apply_background_field_subtraction(data, epsD, bfparams.epssi, bfparams.LS3, bfparams.LS4, bfparams.L4D, bfparams.HD, bfparams.maxF, scale, pcov) return data @module def divide_intensity(data, base): """ Scale data by incident intensity. Data is matched to the incident scan according to the measurement type: By default it is aligned by the angular resolution of both scans, assuming all data with the same angular resolution was subject to the same incident intensity. For Candor data it is aligned by the slit 1 opening (slit.x), and for MAGIK horizontal mode it is aligned by the incident angle (sample.angle_x) **Inputs** data (refldata) : specular, background or subtracted data base (refldata) : intensity data **Returns** output (refldata) : reflected intensity | 2015-12-17 Paul Kienzle | 2020-07-23 Brian Maranville add align_intensity flag to data to match incident and reflected points """ if base is not None: from .scale import apply_intensity_norm data = copy(data) apply_intensity_norm(data, base) return data @module def smooth_slits(datasets, degree=1, span=2, dx=0.01): """ Align slits with a moving window 1-D polynomial least squares filter. Updates *slit1.x*, *slit2.x* and *angular_resolution* attributes of the slit measurements so they all use a common set of points. Updates divergence automatically after smoothing. **Inputs** datasets (refldata[]) : slits to align and smooth degree (int) : polynomial degree on smoothing filter span (int) : number of consecutive points to use in the fit. Odd sized *span* is preferred. *span* must be larger than *degree*. *degree=1* and *span=2* is equivalent to linear interpolation. dx (float:mm<0,>) : size within which slits can be merged. **Returns** outputs (refldata[]) : aligned and smoothed slits. 2015-12-17 Paul Kienzle """ from .smoothslits import apply_smoothing datasets = [copy(d) for d in datasets] for d in datasets: d.slit1, d.slit2 = copy(d.slit1), copy(d.slit2) apply_smoothing(datasets, dx=dx, degree=degree, span=span) return datasets @module def abinitio_footprint(data, Io=1., width=None, offset=0.): """ Apply an *ab initio* footprint correction to the data. Footprint is computed from the slits and the sample angle so those must be available in the data. If the data has been stitched to common Q from different theta, lambda combinations, then footprint will no longer be available. Footprint is computed using sample angle. If background is measured using sample angle offset, then footprint should be applied before background subtraction. For detector angle offset the correction is the same for specular and background, so it can be applied before or after subtraction. **Inputs** data (refldata) : uncorrected measurement Io (float:): scale factor to account for vertical beam spill. width (float:mm) : sample width along the beam. If not provided, use the value stored in the file. offset (float:mm) : offset of the center of rotation of the sample in the direction of the beam, toward the detector. **Returns** outputs (refldata): footprint-corrected data 2016-09-02 Paul Kienzle """ from .footprint import apply_abinitio_footprint data = copy(data) apply_abinitio_footprint(data, Io, width, offset) return data @module def fit_footprint(data, fit_range=[None, None], origin=False): """ Fit a footprint using a range of data below the critical edge. If a range is not provided, then no footprint is fitted and instead the footprint slope and intercept from the *correct_footprint* component are used. **Inputs** data (refldata[]) : uncorrected measurement fit_range (range?:x): x-region over which to fit origin (bool) : True if data should go through the origin **Returns** fitted_footprint (ncnr.refl.footprint.params?) : slope and intercept 2016-04-30 Paul Kienzle """ from .footprint import fit_footprint if fit_range is None: fit_range = [None, None] footprint = fit_footprint(data, fit_range[0], fit_range[1], kind='slope' if origin else 'line') return footprint @module def correct_footprint(data, fitted_footprint, correction_range=[None, None], slope=None, slope_error=0.0, intercept=None, intercept_error=0.0): """ Apply fitted footprint correction to each data set. If not footprint is fitted, then values must be entered for *slope* and *intercept*. **Inputs** data (refldata) : uncorrected measurement fitted_footprint (ncnr.refl.footprint.params?) : fitted footprint correction_range {Correction Application Range} (range?:x) : Lower bound of region to apply footprint correction slope (float) : footprint slope slope_error {Error on slope} (float): and uncertainty intercept (float) : footprint intercept intercept_error {Error on intercept} (float): and uncertainty **Returns** outputs (refldata): footprint-corrected data 2017-06-29 Paul Kienzle """ from .footprint import apply_fitted_footprint, FootprintData if correction_range is None: correction_range = [None, None] # always use manually-provided error on slope and intercept (not fitted) dp = np.array([slope_error, intercept_error]) if fitted_footprint is None: # make empty footprint data object p = np.array([None, None]) fitted_footprint = FootprintData(p, None) if slope is not None: fitted_footprint.p[0] = slope if intercept is not None: fitted_footprint.p[1] = intercept # in all cases, overwrite the error in fitted_footprint with specified # values: fitted_footprint.dp = dp data = copy(data) apply_fitted_footprint(data, fitted_footprint, correction_range) return data @nocache @module def estimate_polarization(data, FRbalance=50.0, Emin=0.0, Imin=0.0, clip=False): """ Compute polarizer and flipper efficiencies from the intensity data. If clip is true, reject points above or below particular efficiencies. The minimum intensity is 1e-10. The minimum efficiency is 0.9. The computed values are systematically related to the efficiencies: beta: intensity/2 fp: front polarizer efficiency is F rp: rear polarizer efficiency is R ff: front flipper efficiency is (1-x)/2 rf: rear flipper efficiency is (1-y)/2 reject is the indices of points which are clipped because they are below the minimum efficiency or intensity. See PolarizationEfficiency.pdf for details on the calculation. **Inputs** data (refldata[]) : direct beam measurement to determine polarization FRbalance (float:%<0,100>) : front/rear balance of to use for efficiency loss Emin (float:%<0,100>) : minimum efficiency cutoff Imin (float:counts/s<0,>) : minimum intensity cutoff clip {Clip efficiency} (bool) : clip efficiency between Emin and one **Returns** polarization (poldata) : estimated polarization correction factors 2015-12-18 Paul Kienzle """ from .polarization import PolarizationData poldata = PolarizationData(data, FRbal=0.01*FRbalance, Emin=0.01*Emin, Imin=Imin, clip=clip) return poldata @nocache @module def correct_polarization(data, polarization, spinflip=True): """ Correct data for polarizer and flipper efficiencies. **Inputs** data (refldata[]) : polarized data to be corrected polarization (poldata) : estimated polarization efficiency spinflip {Correct spinflip data} (bool) : correct spinflip data if available **Returns** output (refldata[]) : polarization corrected data 2015-12-18 Paul Kienzle | 2017-08-22 Brian Maranville interpolate back to Qz-basis for that cross-section """ from .polarization import apply_polarization_correction data = copy(data) apply_polarization_correction(data, polarization, spinflip) return data @module def save(data, name='auto', ext='auto', path='auto'): """ Save data to a particular file **Inputs** data (refldata) : data to save name (opt:auto|...) : name of the file, or 'auto' to use the basename ext {Extension} (opt:auto|...) : file extension, or 'auto' to use the id of the last step path (opt:auto|...) : data path, or 'auto' to use the current directory 2015-12-17 Paul Kienzle """ if path == 'auto': path = '.' if ext == 'auto': ext = '.dat' elif not ext.startswith('.'): ext = '.' + ext if name == 'auto': name = data.name filename = os.path.join(path, name+ext) data.save(filename) @cache @module def ng7_psd( filelist=None, detector_correction=False, monitor_correction=False, center=None, intent='auto', sample_width=None, base='none'): r""" Load a list of NG7 PSD files from the NCNR data server. **Inputs** filelist (fileinfo[]): List of files to open. detector_correction {Apply detector deadtime correction} (bool) : If True, use deadtime constants in file to correct detector counts. monitor_correction {Apply monitor saturation correction} (bool) : If True, use the measured saturation curve in file to correct : the monitor counts. center {Beam center} (int) : Detector pixel containing the beam center. This is needed for : plotting Qx-Qz, etc., and for setting the specular integration region. intent (opt:auto|specular|intensity|scan) : Measurement intent (specular, slit, or some other scan), auto or infer. : If intent is 'scan', then use the first scanned variable. sample_width {Sample width (mm)} (float?) : Width of the sample along the beam direction in mm, used for calculating the effective resolution when the sample is smaller than the beam. Leave blank to use value from data file. base {Normalize by} (opt:auto|monitor|time|roi|power|none) : How to convert from counts to count rates. : Leave this as none if your template does normalization after integration. **Returns** output (refldata[]): All entries of all files in the list. | 2020-02-05 Paul Kienzle | 2020-02-11 Paul Kienzle include divergence estimate in startup """ from .load import url_load_list from .ng7psd import load_entries # Note: divergence is required for join, so always calculate it. If you # really want it optional then use: # # auto_divergence {Calculate dQ} (bool) # : Automatically calculate the angular divergence of the beam. # auto_divergence = True datasets = [] for data in url_load_list(filelist, loader=load_entries): data.Qz_basis = 'target' if intent not in [None, 'auto']: data.intent = intent if center is not None: data = psd_center(data, center) if auto_divergence: data = divergence(data, sample_width) if detector_correction: data = detector_dead_time(data, None) if monitor_correction: data = monitor_saturation(data) data = normalize(data, base=base) #print "data loaded and normalized" datasets.append(data) return datasets @cache @module def super_load(filelist=None, detector_correction=False, monitor_correction=False, intent='auto', Qz_basis='actual', sample_width=None, base='auto'): r""" Load a list of nexus files from the NCNR data server. *Qz_basis* uses one of the following values: **actual** calculates Qx and Qz as (x,z)-components of $(\vec k_{\text{out}} - \vec k_\text{in})$ in sample coordinates, **detector** ignores the sample angle and calculates Qz as $(4\pi/\lambda \sin(\theta_\text{detector}/2))$, **sample** ignores the detector angle and calculates Qz as $(4\pi/\lambda \sin(\theta_\text{sample}))$ **target** uses the user-supplied Qz_target values **Inputs** filelist (fileinfo[]): List of files to open. detector_correction {Apply detector deadtime correction} (bool) : Which deadtime constant to use for detector deadtime. monitor_correction {Apply monitor deadtime correction} (bool) : Which deadtime constant to use for monitor deadtime. intent (opt:auto|specular|background+\|background-\|intensity|rock sample|rock detector|rock qx|scan) : Measurement intent (specular, background+, background-, slit, rock), auto or infer. If intent is 'scan', then use the first scanned variable. Qz_basis (opt:actual|detector|sample|target) : How to calculate Qz from instrument angles. sample_width {Sample width (mm)} (float?) : Width of the sample along the beam direction in mm, used for calculating the effective resolution when the sample is smaller than the beam. Leave blank to use value from data file. base {Normalize by} (opt:auto|monitor|time|roi|power|none) : how to convert from counts to count rates **Returns** output (refldata[]): All entries of all files in the list. | 2017-01-13 Brian Maranville | 2017-02-15 Paul Kienzle normalize by time if monitor is not present | 2017-08-21 Brian Maranville use fileName from trajectory | 2018-05-01 Brian Maranville import temperature metadata | 2018-05-07 Brian Maranville detector deadtime correction defaults to True | 2018-05-10 Brian Maranville export all columns if intent is scan | 2018-05-11 Brian Maranville detector deadtime correction defaults to False | 2018-06-18 Brian Maranville change to nexusref to ignore areaDetector | 2018-06-20 Brian Maranville promote detector.wavelength to column (and resolution) | 2018-08-29 Paul Kienzle ignore sampleTilt field for NG7 | 2018-12-10 Brian Maranville get_plottable routines moved to python data container from js | 2020-01-21 Brian Maranville updated loader to handle hdf-nexus | 2020-12-18 Brian Maranville adding source_power column to monitor """ from .load import url_load_list #from .intent import apply_intent #from .angles import apply_divergence # Note: Fileinfo is a structure with # { path: "location/on/server", mtime: timestamp } # Note: divergence is required for join, so always calculate it. If you # really want it optional then use: # # auto_divergence {Calculate dQ} (bool) # : Automatically calculate the angular divergence of the beam. # auto_divergence = True # TODO: sample_width is ignored if datafile defines angular_divergence datasets = [] for data in url_load_list(filelist): data.Qz_basis = Qz_basis if intent not in [None, 'auto']: data.intent = intent if auto_divergence: data = divergence(data, sample_width) if detector_correction: data = detector_dead_time(data, None) if monitor_correction: data = monitor_dead_time(data, None) data = normalize(data, base=base) #print "data loaded and normalized" datasets.append(data) return datasets @cache @module def magik_horizontal(filelist=None, detector_correction=False, monitor_correction=False, intent='auto', Qz_basis='actual', sample_width=None, base='auto'): r""" Load a list of nexus files from the NCNR data server. *Qz_basis* uses one of the following values: **actual** calculates Qx and Qz as (x,z)-components of $(\vec k_{\text{out}} - \vec k_\text{in})$ in sample coordinates, **detector** ignores the sample angle and calculates Qz as $(4\pi/\lambda \sin(\theta_\text{detector}/2))$, **sample** ignores the detector angle and calculates Qz as $(4\pi/\lambda \sin(\theta_\text{sample}))$ **target** uses the user-supplied Qz_target values **Inputs** filelist (fileinfo[]): List of files to open. detector_correction {Apply detector deadtime correction} (bool) : Which deadtime constant to use for detector deadtime. monitor_correction {Apply monitor deadtime correction} (bool) : Which deadtime constant to use for monitor deadtime. intent (opt:auto|specular|background+\|background-\|intensity|rock sample|rock detector|rock qx|scan) : Measurement intent (specular, background+, background-, slit, rock), auto or infer. If intent is 'scan', then use the first scanned variable. Qz_basis (opt:actual|detector|sample|target) : How to calculate Qz from instrument angles. sample_width {Sample width (mm)} (float?) : Width of the sample along the beam direction in mm, used for calculating the effective resolution when the sample is smaller than the beam. Leave blank to use value from data file. base {Normalize by} (opt:auto|monitor|time|roi|power|none) : how to convert from counts to count rates **Returns** output (refldata[]): All entries of all files in the list. | 2020-07-21 Brian Maranville | 2020-07-23 Brian Maranville Added a flag to the loader, to control divide_intensity align_by | 2020-09-03 Brian Maranville Vertical slit readout changed | 2021-09-20 Brian Maranville use horizontalGeom.angle for sample.angle_x (ignore tilt except in ROCK) """ from .load import url_load_list from .magik_horizontal import load_entries # Note: Fileinfo is a structure with # { path: "location/on/server", mtime: timestamp } # Note: divergence is required for join, so always calculate it. If you # really want it optional then use: # # auto_divergence {Calculate dQ} (bool) # : Automatically calculate the angular divergence of the beam. # auto_divergence = True # TODO: sample_width is ignored if datafile defines angular_divergence datasets = [] for data in url_load_list(filelist, loader=load_entries): data.Qz_basis = Qz_basis if intent not in [None, 'auto']: data.intent = intent if auto_divergence: data = divergence(data, sample_width) if detector_correction: data = detector_dead_time(data, None) if monitor_correction: data = monitor_dead_time(data, None) data = normalize(data, base=base) #print "data loaded and normalized" datasets.append(data) return datasets @cache @module def super_load_sorted(filelist=None, detector_correction=False, monitor_correction=False, sample_width=None, base='auto'): """ Load a list of nexus files from the NCNR data server, to be sorted by the intent stored in the file. If intent does not match 'specular', 'background+', 'background-' or 'intensity', it is not returned. **Inputs** filelist (fileinfo[]): List of files to open. detector_correction {Apply detector deadtime correction} (bool) : Which deadtime constant to use for detector deadtime. monitor_correction {Apply monitor deadtime correction} (bool) : Which deadtime constant to use for monitor deadtime. sample_width {Sample width (mm)} (float): Width of the sample along the beam direction in mm, used for calculating the effective resolution when the sample is smaller than the beam. Leave blank to use value from data file. base {Normalize by} (opt:auto|monitor|time|roi|power|none) : how to convert from counts to count rates **Returns** spec (refldata[]): All entries of all spec files in the list. bgp (refldata[]): All entries of all bg+ files in the list. bgm (refldata[]): All entries of all bg- files in the list. slit (refldata[]): All entries of all slit files in the list. 2016-06-30 Brian Maranville """ from .load import url_load_list auto_divergence = True sorting_key = "intent" sort_values = ["specular", "background+", "background-", "intensity"] outputs = dict([(key, []) for key in sort_values]) for data in url_load_list(filelist): if auto_divergence: data = divergence(data, sample_width) if detector_correction: data = detector_dead_time(data, None) if monitor_correction: data = monitor_dead_time(data, None) data = normalize(data, base=base) intent = getattr(data, sorting_key, None) if intent in outputs: outputs[intent].append(data) return tuple([outputs[k] for k in sort_values]) @module def spin_asymmetry(data): """ Do the calculation (up-up - down-down) / (up-up + down-down) and return a single dataset. **Inputs** data (refldata[]): input data; must contain up-up and down-down polarizations **Returns** output (refldata): calculated spin asymmetry. 2016-04-04 Brian Maranville """ mm = [d for d in data if d.polarization in ('-', '--')][0] pp = [d for d in data if d.polarization in ('+', '++')][0] output = copy(mm) output.vscale = "linear" output.vlabel = "Spin asymmetry (pp-mm)/(pp+mm) " output.vunits = "unitless" shortest = min(mm.v.shape[0], pp.v.shape[0]) mmv = mm.v[:shortest] mmdv = mm.dv[:shortest] ppv = pp.v[:shortest] ppdv = pp.dv[:shortest] denom = (mmv + ppv) output.v = (ppv - mmv) / denom # d(sa)/d(x) = 2*x/(x+y)**2, d(sa)/d(y) = -2*y/(x+y)**2 output.dv = np.sqrt(((2.0*mmv*mmdv)/(denom**2))**2 + ((2.0*ppv*ppdv)/(denom**2))**2) return output @module def average_flux(data, base, beam_height=25): """ Calculate time-averaged flux on the sample Data is matched according to angular resolution, assuming all data with the same angular resolution was subject to the same incident intensity. Does not work on polarized beam data with multiple slit scans Beam area is taken to be beam_height * slit2 aperture (from file) **Inputs** data (refldata[]) : specular, background or subtracted data base (refldata) : intensity data beam_height (float:mm): height of the beam at the sample position **Returns** flux (ncnr.refl.flux.params?) : integrated flux data 2018-03-01 Brian Maranville """ from dataflow.modules import refl TIME_RESOLUTION = 1e-6 # 1 microsecond for NCNR timers. if base is not None: from .scale import calculate_number from dataflow.lib import err1d fluxes = [] total_number = 0.0 total_number_variance = 0.0 total_time = 0.0 total_time_variance = 0.0 sum_weighted_flux = 0.0 sum_weighted_flux_variance = 0.0 for datum in data: datum = copy(datum) beam_area = datum.slit2.x * beam_height / 100.0 # both in mm, convert to cm N, varN = calculate_number(datum, base, time_uncertainty=TIME_RESOLUTION) S, varS = err1d.sum(N, varN) P, varP = err1d.div(N, varN, beam_area, 0.0) A, varA = err1d.sum(P, varP) # time-weighted average of Flux/Area T, varT = err1d.sum(datum.monitor.count_time, TIME_RESOLUTION**2) F, varF = err1d.div(A, varA, T, varT) # average Flux/(Area * Time) fluxes.append({ "name": datum.name, "number_incident": S, "number_incident_error": np.sqrt(varS), "number_incident_units": "neutrons", "average_flux": F, "average_flux_error": np.sqrt(varF), "average_flux_units": "neutrons/(second * cm^2)", "total_time": float(T), "total_time_error": float(np.sqrt(varT)) }) total_number += S total_number_variance += varS total_time += T total_time_variance += varT sum_weighted_flux += A sum_weighted_flux_variance += varA aggregated_flux, aggregated_flux_variance = err1d.div(sum_weighted_flux, sum_weighted_flux_variance, total_time, total_time_variance) output = refl.FluxData(fluxes, { "aggregated_average_flux": aggregated_flux, "aggregated_average_flux_error": np.sqrt(aggregated_flux_variance), "aggregated_time": total_time, "aggregated_time_error": np.sqrt(total_time_variance) }) else: output = refl.FluxData([], None) return output
33.736328
205
0.678776
4a2525ae8706f36fdc033866a349e07912666da3
1,281
py
Python
preprocess/load_data/data_loader.py
Doarakko/awesomebook
650aa3833fb3110ad1c1ed804530617196e4989a
[ "BSD-3-Clause" ]
123
2018-04-08T10:35:22.000Z
2022-02-17T14:13:43.000Z
preprocess/load_data/data_loader.py
Doarakko/awesomebook
650aa3833fb3110ad1c1ed804530617196e4989a
[ "BSD-3-Clause" ]
null
null
null
preprocess/load_data/data_loader.py
Doarakko/awesomebook
650aa3833fb3110ad1c1ed804530617196e4989a
[ "BSD-3-Clause" ]
116
2018-04-17T06:31:16.000Z
2022-03-18T12:08:15.000Z
import pandas as pd import os def load_hotel_reserve(): customer_tb = pd.read_csv(os.path.dirname(__file__)+'/../../data/customer.csv') hotel_tb = pd.read_csv(os.path.dirname(__file__) + '/../../data/hotel.csv') reserve_tb = pd.read_csv(os.path.dirname(__file__) + '/../../data/reserve.csv') return customer_tb, hotel_tb, reserve_tb def load_holiday_mst(): holiday_tb = pd.read_csv(os.path.dirname(__file__)+'/../../data/holiday_mst.csv', index_col=False) return holiday_tb def load_production(): production_tb = pd.read_csv(os.path.dirname(__file__)+'/../../data/production.csv') return production_tb def load_production_missing_num(): production_tb = pd.read_csv(os.path.dirname(__file__)+'/../../data/production_missing_num.csv') return production_tb def load_production_missing_category(): production_tb = pd.read_csv(os.path.dirname(__file__)+'/../../data/production_missing_category.csv') return production_tb def load_monthly_index(): monthly_index_tb = \ pd.read_csv(os.path.dirname(__file__)+'/../../data/monthly_index.csv') return monthly_index_tb def load_meros_txt(): with open(os.path.dirname(__file__)+'/../../data/txt/meros.txt', 'r') as f: meros = f.read() f.close() return meros
29.113636
102
0.706479
4a2527d480a35b364d2acdfe133f4bbf72eea545
18,097
py
Python
demeter/model.py
shemic/demeter
01f91aac43c325c48001dda86af17da43fb8d6fe
[ "MIT" ]
1
2017-12-05T08:17:53.000Z
2017-12-05T08:17:53.000Z
demeter/model.py
shemic/demeter
01f91aac43c325c48001dda86af17da43fb8d6fe
[ "MIT" ]
null
null
null
demeter/model.py
shemic/demeter
01f91aac43c325c48001dda86af17da43fb8d6fe
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ demeter name:model.py author:rabin """ import os import uuid import short_url import json import traceback import re import math import datetime from demeter.core import * class Model(object): __table__ = '' __comment__ = '' def __init__(self, type, db, config): self.db = db self._type = type self._config = config self._set = '' self._bind = {} self._attr = {} self._key = {} self.call = False self.log = [] self.sql = False self.bind = False self.place = '%s' if self._type == 'sqlite': self.place = '?' self.setTable(self.__table__) self.create() def setTable(self, name): if 'prefix' in self._config and self._config['prefix']: self._table = self._config['prefix'] + '_' + name else: self._table = name def setCall(self, call): self.call = call return self def addLog(self, value): self.log.append(value) def getLog(self): return self.log def cur(self): return self.db.cursor() def commit(self): return self.db.commit() def lastId(self, cur): if hasattr(cur, 'lastrowid'): id = cur.lastrowid if not id: id = cur.fetchone()[0] else: id = cur.fetchone()[0] return id def query(self, sql, bind=[], fetch='fetchone', method='', cur=False, call=False): if call: self.setCall(call) if not cur: cur = self.cur() if not method: if 'select' in sql: method = 'select' if 'insert' in sql: method = 'insert' self.sql = sql self.bind = bind self.addLog((sql, bind)) try: cur.execute(sql, bind) if method == 'select': return self.fetch(cur, fetch) id = True if method == 'insert': id = self.lastId(cur) self.commit() except Exception as e: self.addLog(str(e)) return False self._set = {} return id def execute(self, sql, method='select', fetch='fetchall'): cur = self.cur() bind = [] state_true = True state_false = False if self._type == 'mysql': state_true = '1' state_false = '2' if self._set: for key in self._set: self.check(key, self._set[key], self._attr[key]) if self._set[key] == 'time': self._set[key] = self.time() elif self._set[key] == 'True': self._set[key] = state_true elif self._set[key] == 'False': self._set[key] = state_false elif 'date' in key and type(self._set[key]) != int: self._set[key] = self.mktime(self._set[key]) elif self._attr[key].md5: self._set[key] = self.createMd5(self._set[key]) bind.append(self._set[key]) for value in self._key: if value[0] in self._bind and self._bind[value[0]] != None: val = self._bind[value[0]] if method == 'insert': self.check(value[0], val, self._attr[value[0]]) self._attr[value[0]].unset() if type(val) == list and val: for i in val: bind.append(i) else: bind.append(val) if method == 'select' and ';' in sql: temp = sql.split(';') sql = temp[1] totalSql = temp[0] cur.execute(totalSql, bind) Demeter.config['page']['totalNum'] = self.fetch(cur, 'fetchone', 'count') Demeter.config['page']['total'] = int(math.ceil(round(float(Demeter.config['page']['totalNum'])/float(Demeter.config['page']['num']),2))) elif ';' in sql: temp = sql.split(';') result = [] for v in temp: result.append(self.query(v, (), fetch=fetch, method=method, cur=cur)) return result return self.query(sql, bind, fetch=fetch, method=method, cur=cur) def fetchAll(self): return self.fetch(self.cur(), type='fetchall') def fetch(self, cur, type='fetchall', method = ''): load = getattr(cur, type) rows = load() desc = self._key desc = cur.description if type == 'fetchall': result = [] if rows: for key in rows: row = {} i = 0 for v in key: row[desc[i][0]] = self.data(desc[i][0], v) i = i + 1 result.append(row) elif method == 'count': return rows[0] else: result = {} i = 0 if rows: for v in rows: if not v: v = '' result[desc[i][0]] = self.data(desc[i][0], v) i = i + 1 return result def data(self, key, value): if type(value) == datetime.datetime: value = str(value) if self.call: value = self.call(key, value) if value == None or not value: value = '' return value def attr(self, method): fields = vars(self.__class__) self._attr = {} self._bind = {} self._key = {} if Demeter.checkPy3(): col = (int, str, float, bool, uuid.UUID) code = (str,) else: col = (int, str, long, float, unicode, bool, uuid.UUID) code = (str, unicode) for field in fields: if isinstance(fields[field], Fields): self._attr[field] = fields[field] self._key[field] = self._attr[field].getKey() insert = (method == 'insert') update = (insert or method == 'update') if insert and self._attr[field].uuid: self.setUuid(field, col) bind = False val = self._attr[field].getArgv() if val or val == False: bind = True else: val = getattr(self, field) if isinstance(val, col): setattr(self, field, self._attr[field]) bind = True elif insert and self._attr[field].default: val = self._attr[field].default bind = True if val == 'time': val = self.time() elif '.' in val: temp = val.split('.') val = Demeter.config[temp[0]][temp[1]] elif method == 'select' and self._attr[field].default and field == 'state': val = self._attr[field].default bind = True if bind and val != None: if type(val) == list: length = len(val) if length <= 1: val = val[0] if insert and self._attr[field].md5: val = self.createMd5(val) if self._attr[field].type == 'boolean' and isinstance(val, code): val = Demeter.bool(val, self._type) if type(val) == list: val = tuple(val) self._bind[field] = val self._attr[field].val(self._bind[field]) self._attr[field].bind(self.place) self._key = sorted(self._key.items(), key=lambda d:d[1], reverse = False) Counter().unset() def check(self, field, val, attr): if val == 'undefined': self.error(error) if attr.match == 'not': if not val: self.error(field + ' not exists') elif attr.match: if '|' in attr.match: temp = attr.match.split('|') match = temp[0] error = temp[1] else: match = attr.match error = field + ' not match:' + match if hasattr(Check, match): method = getattr(Check, match) result = method(val) else: result = re.search(match, val) if not result: self.error(error) def error(self, msg): for value in self._key: if value[0] in self._bind and self._bind[value[0]] != None: self._attr[value[0]].unset() self._set = {} Demeter.error(msg) def time(self): return Demeter.time() def mktime(self, value): return Demeter.mktime(value) def setUuid(self, field, col): id = getattr(self, self._attr[field].uuid) if isinstance(id, col): system = short_url.encode_url(id) else: system = self._attr[field].uuid name = system + '.' + self.__table__ result = Demeter.uuid(name) setattr(self, field, result) def createMd5(self, value): return Demeter.md5(value, salt=True) def createState(self): if 'create' in self._config: create = Demeter.bool(self._config['create']) if create: return Demeter.runtime(self._type, self.__table__, json.dumps(self._key)) return False def drop(self): return self.handle('drop') def create(self): return self.handle('create') def insert(self): return self.handle('insert') def update(self, *args, **kwargs): if args: self._set = args[0] else: self._set = kwargs return self.handle('update', set=self._set) def delete(self): return self.handle('delete') def select(self, type='fetchall',col = '*', order = 'cdate desc', group = '', limit = '0,100', page=False, call=False): if call: self.setCall(call) pageConfig = {} if page and 'page' in Demeter.config: pageConfig['current'] = Demeter.config['page']['current'] if page == True: pageConfig['num'] = 15 elif 'num' in page: pageConfig['num'] = page['num'] Demeter.config['page']['num'] = pageConfig['num'] return self.handle('select', type=type, col=col, order=order, group=group, limit=limit, page=pageConfig) def manage(self): self.attr(method) return def handle(self, method='select', type='fetchall', col = '*', order = '', group = '', limit = '0,100', page=False, set = ''): self.attr(method) if method == 'create': create = self.createState() if create == False: return False if type == 'fetchone': limit = '0,1' load = getattr(Sql(self._type, self.place), method) return self.execute(load(self._table, {'key':self._key, 'fields':self._attr, 'col':col, 'order':order, 'group':group, 'limit':limit, 'page':page, 'set':set, 'table_comment':self.__comment__}), method, type) class Fields(object): def __init__(self, type='', default='', primaryKey=False, autoIncrement=False, null=True, unique=False, check='', constraint='', comment='', uuid='', index=False, indexs=False, md5=False, match='', manage=''): self.type = type self.default = default self.primaryKey = primaryKey self.autoIncrement = autoIncrement self.null = null self.unique = unique self.check = check self.constraint = constraint self.comment = comment self.uuid = uuid self.index = index self.indexs = indexs self.md5 = md5 self.key = Counter().inc() self.match = match self.value = '' self.argv = '' self.bindValue = '' self.expValue = '=' self.logicValue = 'and' self.manage = manage # set value def assign(self, value, exp='=', logic='and'): self.add(value) self.exp(exp) self.logic(logic) return self def ins(self, value): self.argv = value self.exp('in') return self def nq(self, value): self.argv = value self.exp('!=') return self def like(self, value): self.argv = '%' + value + '%' self.exp('like') return self def mlike(self, value): self.argv = value self.exp('~') self.logic('and') return self def time(self, value): self.add(Demeter.mktime(value)) return self def start(self, value): self.time(value) self.exp('>=') self.logic('and') return self def end(self, value): self.time(value) self.exp('<=') self.logic('and') return self def bind(self, value): self.bindValue = value return self def exp(self, value): """ if type(self.expValue) != list: self.expValue = [] self.expValue.append(value) """ self.expValue = value return self def logic(self, value): """ if type(self.logicValue) != list: self.logicValue = [] self.logicValue.append(value) """ self.logicValue = value return self def val(self, value, exp='=', logic='and'): if type(value) == list: length = len(value) if length <= 1: value = value[0] self.value = value if not self.expValue: self.exp(exp) if not self.logicValue: self.logic(logic) return self def getArgv(self): return self.argv def getVal(self): return self.value def getBind(self): return self.bindValue def getExp(self): if not self.expValue: return '' if type(self.expValue) == list: length = len(self.expValue) if length <= 1: result = self.expValue[0] else: result = self.expValue else: result = self.expValue return result def getKey(self): return self.key def getLogic(self): if not self.logicValue: return '' if type(self.logicValue) == list: length = len(self.logicValue) if length <= 1: result = self.logicValue[0] else: result = self.logicValue else: result = self.logicValue return result def unset(self): self.argv = None self.value = None self.bindValue = None self.expValue = '=' self.logicValue = 'and' return self def add(self, value): """ if not self.argv: self.argv = [] self.argv.append(value) """ self.argv = value return self class Counter(object): num = 0 """ instance = None def __new__(cls, *args, **kwd): if Counter.instance is None: Counter.instance = object.__new__(cls, *args, **kwd) return Counter.instance """ def inc(self): self.num = self.num + 1 return self.num def dec(self): self.num = self.num - 1 return self.num def unset(self): self.num = 0 return self.num class Sql(object): """ instance = None def __new__(cls, *args, **kwd): if Sql.instance is None: Sql.instance = object.__new__(cls, *args, **kwd) return Sql.instance """ def __init__(self, type, place): self.type = type self.place = place self.prefix = '`' if self.type == 'postgresql': self.prefix = '' def drop(self, table, args): sql = 'DROP TABLE IF EXISTS ' + table return sql def alter(self, table, args): sql = 'ALTER TABLE ' + table + ' ADD COLUMN ' return sql def create(self, table, args): create = [] primary = [] unique = [] indexs = [] index = [] comment = {} for value in args['key']: key = value[0] val = args['fields'][key] if val.primaryKey: primary.append(key) if val.unique: unique.append(key) if val.index: index.append((key, val.index)) if val.indexs: indexs.append(key) fields = [] fields.append(self.prefix + key + self.prefix) if val.autoIncrement and self.type == 'postgresql': fields.append('SERIAL') elif self.type == 'mysql' and val.type == 'boolean': fields.append('int') elif self.type == 'sqlite' and val.type == 'int': if val.autoIncrement and val.primaryKey: fields.append('integer PRIMARY KEY autoincrement') else: fields.append('integer') else: fields.append(val.type) if not val.null: fields.append('NOT NULL') if val.autoIncrement and self.type == 'mysql': fields.append('AUTO_INCREMENT') #约束 if val.constraint: fields.append('CONSTRAINT ' + val.constraint) if val.check: fields.append('CHECK ' + val.check) if val.default: default = val.default if val.default == 'time': default = '0' if '.' in val.default: temp = val.default.split('.') default = Demeter.config[temp[0]][temp[1]] if self.type == 'mysql' and val.type == 'boolean': default = Demeter.bool(default, self.type) fields.append('DEFAULT \'' + str(default) + '\'') if val.comment: if self.type == 'mysql': fields.append('COMMENT \'' + val.comment + '\'') else: comment[key] = val.comment fields = ' '.join(fields) create.append(fields) if primary and self.type != 'sqlite': create.append('PRIMARY KEY (' + ','.join(primary) + ')') if unique: create.append('UNIQUE (' + ','.join(unique) + ')') create = ','.join(create) sql = 'CREATE TABLE ' + table + '(' + create + ')' sql = self.drop(table, args) + ';' + sql if indexs: name = '_'.join(indexs) value = ','.join(indexs) sql = sql + ';' + 'CREATE INDEX ' + table + '_' + name +' ON ' + table + '(' + value + ')' if index: for value in index: sql = sql + ';' + 'CREATE INDEX ' + table + '_' + value[0] +' ON ' + table + value[1] if comment and self.type != 'sqlite': if args['table_comment']: sql = sql + ';' + 'COMMENT ON TABLE ' + table + ' IS \''+args['table_comment']+'\'' for key in comment: sql = sql + ';' + 'COMMENT ON COLUMN ' + table + '.'+key+' IS \''+comment[key]+'\'' return sql def insert(self, table, args): fields = [] values = [] for value in args['key']: key = value[0] val = args['fields'][key].getBind() if val: values.append(val) fields.append(self.prefix + key + self.prefix) fields = ','.join(fields) values = ','.join(values) sql = 'INSERT INTO ' + table + ' (' + fields + ') VALUES (' + values + ')' if self.type == 'postgresql': sql = sql + ' RETURNING id' return sql def update(self, table, args): fields = [] for key in args['set']: fields.append(self.prefix + key + self.prefix + ' = ' + self.place) fields = ','.join(fields) sql = 'UPDATE ' + table + ' SET ' + fields + self.where(args['key'], args['fields']) return sql def delete(self, table, args): sql = 'DELETE FROM ' + table + self.where(args['key'], args['fields']) return sql def select(self, table, args): string = ' FROM ' + table + self.where(args['key'], args['fields']) + ' ' + self.group(args['group']) sql = '' if args['page']: sql = 'SELECT count(1) as total' + string + ';' sql = sql + 'SELECT ' + args['col'] + string + ' ' + self.order(args['order']) + ' ' + self.limit(args['limit'], args['page']) return sql def where(self, key, fields): fields = self.fields(key, fields) if fields: return ' WHERE ' + fields return '' def fields(self, key, fields): result = '' k = 0 for value in key: key = value[0] field = fields[key] bind = field.getBind() val = field.getVal() logic = field.getLogic() exp = field.getExp() if type(val) == list and val: n = 0 for i in val: data = self.field(field, bind, key, k, logic[n], exp[n]) n = n + 1 if data: result = result + data k = 1 else: data = self.field(field, bind, key, k, logic, exp) if data: result = result + data k = 1 return result def field(self, field, val, key, k, logic, exp): result = '' if val: if k == 0: logic = '' else: logic = ' ' + logic result = logic + ' ' + self.prefix + key + self.prefix + ' ' + exp + ' ' + str(val) return result def order(self, value): result = '' if value: result = ' ORDER BY ' + value return result def group(self, value): result = '' if value: result = ' GROUP BY ' + value return result def limit(self, value, page): result = '' if page: value = str((int(page['current'])-1) * page['num']) + ',' + str(page['num']) if value: value = value.split(',') if self.type == 'mysql': result = ' LIMIT ' + value[0] + ',' + value[1] elif self.type == 'postgresql': result = ' LIMIT ' + value[1] + ' OFFSET ' + value[0] return result
24.323925
210
0.608333
4a2527e4c3f4f06e72c2d3b3d594040739f717c7
1,932
py
Python
bin/abi2fasta.py
dytk2134/genomic_data_processing
c22ad51f67fd6563d40ec749a95725fc11bcf19e
[ "MIT" ]
null
null
null
bin/abi2fasta.py
dytk2134/genomic_data_processing
c22ad51f67fd6563d40ec749a95725fc11bcf19e
[ "MIT" ]
null
null
null
bin/abi2fasta.py
dytk2134/genomic_data_processing
c22ad51f67fd6563d40ec749a95725fc11bcf19e
[ "MIT" ]
null
null
null
#!/usr/bin/env python # Contributed by Li-Mei Chiang <dytk2134 [at] gmail [dot] com> (2020) import os import sys import logging from Bio import SeqIO __version__ = '1.0.0' # logger logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) if not logger.handlers: lh = logging.StreamHandler() lh.setFormatter(logging.Formatter('%(levelname)-8s %(message)s')) logger.addHandler(lh) def abi2fasta(input_files): fasta_dict = dict() for input_file in input_files: record = SeqIO.read(input_file, 'abi') if record.id in fasta_dict: logger.error('Duplicate Seq ID: %s' % (record.id)) sys.exit(1) fasta_dict[record.id] = record.seq return fasta_dict def write_fasta(fasta_dict, output_prefix): output_file = output_prefix + '.fasta' with open(output_file, 'w') as out_f: for seq_id in fasta_dict: out_f.write('>' + seq_id + '\n') seqs = [str(fasta_dict[seq_id])[i:i+80] for i in range(0, len(str(fasta_dict[seq_id])), 80)] for seq in seqs: out_f.write(seq + '\n') def main(): import argparse from textwrap import dedent parser = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter, description=dedent("""\ This script is for converting ABI files to FASTA files. Quick start: %(prog)s """)) # argument parser.add_argument('-i', '--input_files', nargs='+', help='Input ABI files', required=True) parser.add_argument('-o', '--output_prefix', type=str, help='Specify the output prefix', default='output') parser.add_argument('-v', '--version', action='version', version='%(prog)s ' + __version__) args = parser.parse_args() fasta_dict = abi2fasta(args.input_files) write_fasta(fasta_dict, args.output_prefix) if __name__ == '__main__': main()
33.310345
115
0.641304
4a25281ed2190927b0a11504bc18ceb15dee38c0
300
py
Python
isimip_data/download/viewsets.py
ISI-MIP/isimip-data
a0e4772362cc60db91e7689ec397840dcaaacddb
[ "MIT" ]
3
2020-02-10T10:13:17.000Z
2021-12-21T09:10:50.000Z
isimip_data/download/viewsets.py
ISI-MIP/isimip-data
a0e4772362cc60db91e7689ec397840dcaaacddb
[ "MIT" ]
17
2020-02-10T16:09:12.000Z
2021-07-02T09:03:37.000Z
isimip_data/download/viewsets.py
ISI-MIP/isimip-data
a0e4772362cc60db91e7689ec397840dcaaacddb
[ "MIT" ]
null
null
null
from rest_framework.mixins import ListModelMixin from rest_framework.viewsets import GenericViewSet from .constants import COUNTRIES from .serializers import CountrySerializer class CountryViewSet(ListModelMixin, GenericViewSet): serializer_class = CountrySerializer queryset = COUNTRIES
25
53
0.843333
4a25286a91f3878ec1fbe919ad84dcca09ee49e9
594
py
Python
tests/test_open.py
GitBib/asstosrt
1e671a9d7339dba3567ceeba37239469775f68d3
[ "Apache-2.0" ]
null
null
null
tests/test_open.py
GitBib/asstosrt
1e671a9d7339dba3567ceeba37239469775f68d3
[ "Apache-2.0" ]
null
null
null
tests/test_open.py
GitBib/asstosrt
1e671a9d7339dba3567ceeba37239469775f68d3
[ "Apache-2.0" ]
null
null
null
from pathlib import Path import pytest from pyasstosrt import Subtitle def test_open(): path = 'tests/sub.ass' sub = Subtitle(path) assert sub def test_open_use_pathlib(): path = Path('tests/sub.ass') sub = Subtitle(path) assert sub def test_open_use_object(): file = open('tests/sub.ass', 'r') with pytest.raises(TypeError): Subtitle(file) def test_open_folder(): with pytest.raises(FileNotFoundError): Subtitle('tests/') def test_open_broken_file(): with pytest.raises(FileNotFoundError): Subtitle('tests/sub1.ass')
17.470588
42
0.675084
4a2528abdbbd943137e5fd547b3bbbe0474d4310
3,384
py
Python
fabric_mb/message_bus/messages/extend_reservation_avro.py
fabric-testbed/MessageBus
2f44f1adca9cfe1551116d4b2d9484c4aa94a2aa
[ "MIT" ]
null
null
null
fabric_mb/message_bus/messages/extend_reservation_avro.py
fabric-testbed/MessageBus
2f44f1adca9cfe1551116d4b2d9484c4aa94a2aa
[ "MIT" ]
null
null
null
fabric_mb/message_bus/messages/extend_reservation_avro.py
fabric-testbed/MessageBus
2f44f1adca9cfe1551116d4b2d9484c4aa94a2aa
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # MIT License # # Copyright (c) 2020 FABRIC Testbed # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # # Author: Komal Thareja ([email protected]) from fabric_mb.message_bus.message_bus_exception import MessageBusException from fabric_mb.message_bus.messages.auth_avro import AuthAvro from fabric_mb.message_bus.messages.abc_message_avro import AbcMessageAvro from fabric_mb.message_bus.messages.constants import Constants class ExtendReservationAvro(AbcMessageAvro): """ Implements Avro representation of an Extend Reservation Message """ def __init__(self): super(ExtendReservationAvro, self).__init__() self.name = AbcMessageAvro.extend_reservation self.guid = None self.auth = None self.reservation_id = None self.end_time = None self.new_units = -1 self.new_resource_type = None self.request_properties = None self.config_properties = None self.id_token = None def from_dict(self, value: dict): """ The Avro Python library does not support code generation. For this reason we must provide conversion from dict to our class for de-serialization :param value: incoming message dictionary """ if value[Constants.NAME] != AbcMessageAvro.extend_reservation: raise MessageBusException(Constants.ERROR_INVALID_MESSAGE) for k, v in value.items(): if k in self.__dict__ and v is not None: if k == Constants.AUTH: self.__dict__[k] = AuthAvro() self.__dict__[k].from_dict(value=v) else: self.__dict__[k] = v def get_id_token(self) -> str: """ Return identity token """ return self.id_token def validate(self) -> bool: """ Check if the object is valid and contains all mandatory fields :return True on success; False on failure """ ret_val = super().validate() if self.guid is None or self.auth is None or self.callback_topic is None or self.reservation_id is None or \ self.new_units is None or self.new_resource_type is None or self.request_properties is None or \ self.config_properties is None: ret_val = False return ret_val
40.285714
116
0.690307
4a2528c993c6e1826fed9a7a1940a9ea576d4a85
409
py
Python
mongo/venv/Scripts/pip3.7-script.py
AnastasiaYiChen/Python
13b1ce38b6f0e7b83c72c825ca24523c08d4e489
[ "CNRI-Python" ]
null
null
null
mongo/venv/Scripts/pip3.7-script.py
AnastasiaYiChen/Python
13b1ce38b6f0e7b83c72c825ca24523c08d4e489
[ "CNRI-Python" ]
null
null
null
mongo/venv/Scripts/pip3.7-script.py
AnastasiaYiChen/Python
13b1ce38b6f0e7b83c72c825ca24523c08d4e489
[ "CNRI-Python" ]
null
null
null
#!C:\git\w0443276\PROG1700\mongo\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==19.0.3','console_scripts','pip3.7' __requires__ = 'pip==19.0.3' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==19.0.3', 'console_scripts', 'pip3.7')() )
31.461538
70
0.662592
4a2529040553172fb55e66794275d0e43e7cc416
5,745
py
Python
Q Learning Discretization Tile Coding/Q_Learning_with_Tile_Coding_for_Continuous_RL.py
eayvali/DeepRL
4722af0f75487dd3167faafd4eabe8f01aea4305
[ "MIT" ]
2
2020-01-29T20:49:29.000Z
2020-03-27T21:45:12.000Z
Q Learning Discretization Tile Coding/Q_Learning_with_Tile_Coding_for_Continuous_RL.py
eayvali/DeepRL
4722af0f75487dd3167faafd4eabe8f01aea4305
[ "MIT" ]
null
null
null
Q Learning Discretization Tile Coding/Q_Learning_with_Tile_Coding_for_Continuous_RL.py
eayvali/DeepRL
4722af0f75487dd3167faafd4eabe8f01aea4305
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Tue Dec 24 20:43:09 2019 @author: elif.ayvali """ import sys import gym import pandas as pd import numpy as np import matplotlib.collections as mc import matplotlib.pyplot as plt from helpers import create_uniform_grid,discretize,visualize_samples,\ create_tilings,create_tiling_grid,TiledQTable class QLearningAgent: """Q-Learning agent that can act on a continuous state space by discretizing it.""" def __init__(self, env, tq, alpha=0.02, gamma=0.99, epsilon=1.0, epsilon_decay_rate=0.9995, min_epsilon=.01, seed=505): """Initialize variables, create grid for discretization.""" # Environment info self.env = env self.tq = tq self.state_sizes = tq.state_sizes # list of state sizes for each tiling self.action_size = self.env.action_space.n # 1-dimensional discrete action space self.seed = np.random.seed(seed) print("Environment:", self.env) print("State space size:", self.state_sizes) print("Action space size:", self.action_size) # Learning parameters self.alpha = alpha # learning rate self.gamma = gamma # discount factor self.epsilon = self.initial_epsilon = epsilon # initial exploration rate self.epsilon_decay_rate = epsilon_decay_rate # how quickly should we decrease epsilon self.min_epsilon = min_epsilon def reset_episode(self, state): """Reset variables for a new episode.""" # Gradually decrease exploration rate self.epsilon *= self.epsilon_decay_rate self.epsilon = max(self.epsilon, self.min_epsilon) self.last_state = state Q_s = [self.tq.get(state, action) for action in range(self.action_size)] self.last_action = np.argmax(Q_s) return self.last_action def reset_exploration(self, epsilon=None): """Reset exploration rate used when training.""" self.epsilon = epsilon if epsilon is not None else self.initial_epsilon def act(self, state, reward=None, done=None, mode='train'): """Pick next action and update internal Q table (when mode != 'test').""" Q_s = [self.tq.get(state, action) for action in range(self.action_size)] # Pick the best action from Q table greedy_action = np.argmax(Q_s) if mode == 'test': # Test mode: Simply produce an action action =greedy_action else: # Train mode (default): Update Q table, pick next action # Note: We update the Q table entry for the *last* (state, action) pair with current state, reward #Instead of overwriting Q(state, action) with value, perform soft-update: #Q(state, action) = alpha * value + (1.0 - alpha) * Q(state, action) value = reward + self.gamma * max(Q_s) self.tq.update(self.last_state, self.last_action, value, self.alpha) # Exploration vs. exploitation do_exploration = np.random.uniform(0, 1) < self.epsilon if do_exploration: # Pick a random action action = np.random.randint(0, self.action_size) else: # Pick the best action from Q table action = greedy_action # Roll over current state, action for next step self.last_state = state self.last_action = action return action def run(agent, env, num_episodes=10000, mode='train'): """Run agent in given reinforcement learning environment and return scores.""" scores = [] max_avg_score = -np.inf for i_episode in range(1, num_episodes+1): # Initialize episode state = env.reset() action = agent.reset_episode(state) total_reward = 0 done = False # Roll out steps until done while not done: state, reward, done, info = env.step(action) total_reward += reward action = agent.act(state, reward, done, mode) # Save final score scores.append(total_reward) # Print episode stats if mode == 'train': if len(scores) > 100: avg_score = np.mean(scores[-100:]) if avg_score > max_avg_score: max_avg_score = avg_score if i_episode % 100 == 0: print("\rEpisode {}/{} | Max Average Score: {}".format(i_episode, num_episodes, max_avg_score), end="") sys.stdout.flush() return scores def plot_scores(scores, rolling_window=100): """Plot scores and optional rolling mean using specified window.""" plt.plot(scores); plt.title("Scores"); rolling_mean = pd.Series(scores).rolling(rolling_window).mean() plt.plot(rolling_mean); return rolling_mean # Create an environment env = gym.make('Acrobot-v1') env.seed(505); # Explore state (observation) space print("State space:", env.observation_space) print("- low:", env.observation_space.low) print("- high:", env.observation_space.high) # Explore action space print("Action space:", env.action_space) n_bins = 5 low = [-1.0, -5.0] high = [1.0, 5.0] bins = tuple([n_bins]*env.observation_space.shape[0]) offset_pos = (env.observation_space.high - env.observation_space.low)/(3*n_bins) tiling_specs = [(bins, -offset_pos), (bins, tuple([0.0]*env.observation_space.shape[0])), (bins, offset_pos)] tq = TiledQTable(env.observation_space.low, env.observation_space.high, tiling_specs, env.action_space.n) agent = QLearningAgent(env, tq) scores = run(agent, env) rolling_mean = plot_scores(scores)
38.046358
123
0.63168
4a2529b225600e591cf6c8b93048d658f5d5fa6b
14,752
py
Python
dvc/state.py
kss682/dvc
550cd28028cb872f83c5482d7bffbc9852e33da6
[ "Apache-2.0" ]
1
2019-09-02T00:28:11.000Z
2019-09-02T00:28:11.000Z
dvc/state.py
kss682/dvc
550cd28028cb872f83c5482d7bffbc9852e33da6
[ "Apache-2.0" ]
null
null
null
dvc/state.py
kss682/dvc
550cd28028cb872f83c5482d7bffbc9852e33da6
[ "Apache-2.0" ]
1
2019-09-02T00:29:40.000Z
2019-09-02T00:29:40.000Z
"""Manages state database used for checksum caching.""" from __future__ import unicode_literals import os import sqlite3 import logging from dvc.config import Config from dvc.utils import remove, current_timestamp, relpath, to_chunks from dvc.exceptions import DvcException from dvc.utils.fs import get_mtime_and_size, get_inode from dvc.utils.compat import fspath_py35 SQLITE_MAX_VARIABLES_NUMBER = 999 logger = logging.getLogger(__name__) class StateVersionTooNewError(DvcException): """Thrown when dvc version is older than the state database version.""" def __init__(self, dvc_version, expected, actual): super(StateVersionTooNewError, self).__init__( "you are using an old version '{dvc_version}' of dvc that is " "using state file version '{expected}' which is not compatible " "with the state file version '{actual}' that is used in this " "repo. Please upgrade right now!".format( dvc_version=dvc_version, expected=expected, actual=actual ) ) class StateNoop(object): files = [] def save(self, path_info, checksum): pass def get(self, path_info): return None def save_link(self, path_info): pass def __enter__(self): pass def __exit__(self, exc_type, exc_val, exc_tb): pass class State(object): # pylint: disable=too-many-instance-attributes """Class for the state database. Args: repo (dvc.repo.Repo): repo instance that this state belongs to. config (configobj.ConfigObj): config for the state. Raises: StateVersionTooNewError: thrown when dvc version is older than the state database version. """ VERSION = 3 STATE_FILE = "state" STATE_TABLE = "state" STATE_TABLE_LAYOUT = ( "inode INTEGER PRIMARY KEY, " "mtime TEXT NOT NULL, " "size TEXT NOT NULL, " "md5 TEXT NOT NULL, " "timestamp TEXT NOT NULL" ) STATE_INFO_TABLE = "state_info" STATE_INFO_TABLE_LAYOUT = "count INTEGER" STATE_INFO_ROW = 1 LINK_STATE_TABLE = "link_state" LINK_STATE_TABLE_LAYOUT = ( "path TEXT PRIMARY KEY, " "inode INTEGER NOT NULL, " "mtime TEXT NOT NULL" ) STATE_ROW_LIMIT = 100000000 STATE_ROW_CLEANUP_QUOTA = 50 MAX_INT = 2 ** 63 - 1 MAX_UINT = 2 ** 64 - 2 def __init__(self, repo, config): self.repo = repo self.dvc_dir = repo.dvc_dir self.root_dir = repo.root_dir state_config = config.get(Config.SECTION_STATE, {}) self.row_limit = state_config.get( Config.SECTION_STATE_ROW_LIMIT, self.STATE_ROW_LIMIT ) self.row_cleanup_quota = state_config.get( Config.SECTION_STATE_ROW_CLEANUP_QUOTA, self.STATE_ROW_CLEANUP_QUOTA, ) if not self.dvc_dir: self.state_file = None return self.state_file = os.path.join(self.dvc_dir, self.STATE_FILE) # https://www.sqlite.org/tempfiles.html self.temp_files = [ self.state_file + "-journal", self.state_file + "-wal", ] self.database = None self.cursor = None self.inserts = 0 @property def files(self): return self.temp_files + [self.state_file] def __enter__(self): self.load() def __exit__(self, typ, value, tbck): self.dump() def _execute(self, cmd, parameters=()): logger.debug(cmd) return self.cursor.execute(cmd, parameters) def _fetchall(self): ret = self.cursor.fetchall() logger.debug("fetched: {}".format(ret)) return ret def _to_sqlite(self, num): assert num >= 0 assert num < self.MAX_UINT # NOTE: sqlite stores unit as signed ints, so maximum uint is 2^63-1 # see http://jakegoulding.com/blog/2011/02/06/sqlite-64-bit-integers/ if num > self.MAX_INT: ret = -(num - self.MAX_INT) else: ret = num assert self._from_sqlite(ret) == num return ret def _from_sqlite(self, num): assert abs(num) <= self.MAX_INT if num < 0: return abs(num) + self.MAX_INT assert num < self.MAX_UINT assert num >= 0 return num def _prepare_db(self, empty=False): from dvc import __version__ if not empty: cmd = "PRAGMA user_version;" self._execute(cmd) ret = self._fetchall() assert len(ret) == 1 assert len(ret[0]) == 1 assert isinstance(ret[0][0], int) version = ret[0][0] if version > self.VERSION: raise StateVersionTooNewError( __version__, self.VERSION, version ) elif version < self.VERSION: msg = ( "State file version '{}' is too old. " "Reformatting to the current version '{}'." ) logger.warning(msg.format(version, self.VERSION)) cmd = "DROP TABLE IF EXISTS {};" self._execute(cmd.format(self.STATE_TABLE)) self._execute(cmd.format(self.STATE_INFO_TABLE)) self._execute(cmd.format(self.LINK_STATE_TABLE)) # Check that the state file is indeed a database cmd = "CREATE TABLE IF NOT EXISTS {} ({})" self._execute(cmd.format(self.STATE_TABLE, self.STATE_TABLE_LAYOUT)) self._execute( cmd.format(self.STATE_INFO_TABLE, self.STATE_INFO_TABLE_LAYOUT) ) self._execute( cmd.format(self.LINK_STATE_TABLE, self.LINK_STATE_TABLE_LAYOUT) ) cmd = ( "INSERT OR IGNORE INTO {} (count) SELECT 0 " "WHERE NOT EXISTS (SELECT * FROM {})" ) self._execute(cmd.format(self.STATE_INFO_TABLE, self.STATE_INFO_TABLE)) cmd = "PRAGMA user_version = {};" self._execute(cmd.format(self.VERSION)) def load(self): """Loads state database.""" retries = 1 while True: assert self.database is None assert self.cursor is None assert self.inserts == 0 empty = not os.path.exists(self.state_file) self.database = sqlite3.connect(self.state_file) self.cursor = self.database.cursor() # Try loading once to check that the file is indeed a database # and reformat it if it is not. try: self._prepare_db(empty=empty) return except sqlite3.DatabaseError: self.cursor.close() self.database.close() self.database = None self.cursor = None self.inserts = 0 if retries > 0: os.unlink(self.state_file) retries -= 1 else: raise def _vacuum(self): # NOTE: see https://bugs.python.org/issue28518 self.database.isolation_level = None self._execute("VACUUM") self.database.isolation_level = "" def dump(self): """Saves state database.""" assert self.database is not None cmd = "SELECT count from {} WHERE rowid=?".format( self.STATE_INFO_TABLE ) self._execute(cmd, (self.STATE_INFO_ROW,)) ret = self._fetchall() assert len(ret) == 1 assert len(ret[0]) == 1 count = self._from_sqlite(ret[0][0]) + self.inserts if count > self.row_limit: msg = "cleaning up state, this might take a while." logger.warning(msg) delete = count - self.row_limit delete += int(self.row_limit * (self.row_cleanup_quota / 100.0)) cmd = ( "DELETE FROM {} WHERE timestamp IN (" "SELECT timestamp FROM {} ORDER BY timestamp ASC LIMIT {});" ) self._execute( cmd.format(self.STATE_TABLE, self.STATE_TABLE, delete) ) self._vacuum() cmd = "SELECT COUNT(*) FROM {}" self._execute(cmd.format(self.STATE_TABLE)) ret = self._fetchall() assert len(ret) == 1 assert len(ret[0]) == 1 count = ret[0][0] cmd = "UPDATE {} SET count = ? WHERE rowid = ?".format( self.STATE_INFO_TABLE ) self._execute(cmd, (self._to_sqlite(count), self.STATE_INFO_ROW)) self.database.commit() self.cursor.close() self.database.close() self.database = None self.cursor = None self.inserts = 0 @staticmethod def _file_metadata_changed(actual_mtime, mtime, actual_size, size): return actual_mtime != mtime or actual_size != size def _update_state_record_timestamp_for_inode(self, actual_inode): cmd = "UPDATE {} SET timestamp = ? WHERE inode = ?".format( self.STATE_TABLE ) self._execute( cmd, (current_timestamp(), self._to_sqlite(actual_inode)) ) def _update_state_for_path_changed( self, actual_inode, actual_mtime, actual_size, checksum ): cmd = ( "UPDATE {} SET " "mtime = ?, size = ?, " "md5 = ?, timestamp = ? " "WHERE inode = ?" ).format(self.STATE_TABLE) self._execute( cmd, ( actual_mtime, actual_size, checksum, current_timestamp(), self._to_sqlite(actual_inode), ), ) def _insert_new_state_record( self, actual_inode, actual_mtime, actual_size, checksum ): assert checksum is not None cmd = ( "INSERT INTO {}(inode, mtime, size, md5, timestamp) " "VALUES (?, ?, ?, ?, ?)" ).format(self.STATE_TABLE) self._execute( cmd, ( self._to_sqlite(actual_inode), actual_mtime, actual_size, checksum, current_timestamp(), ), ) self.inserts += 1 def get_state_record_for_inode(self, inode): cmd = ( "SELECT mtime, size, md5, timestamp from {} WHERE " "inode=?".format(self.STATE_TABLE) ) self._execute(cmd, (self._to_sqlite(inode),)) results = self._fetchall() if results: # uniquness constrain on inode assert len(results) == 1 return results[0] return None def save(self, path_info, checksum): """Save checksum for the specified path info. Args: path_info (dict): path_info to save checksum for. checksum (str): checksum to save. """ assert path_info.scheme == "local" assert checksum is not None path = fspath_py35(path_info) assert os.path.exists(path) actual_mtime, actual_size = get_mtime_and_size( path, self.repo.dvcignore ) actual_inode = get_inode(path) existing_record = self.get_state_record_for_inode(actual_inode) if not existing_record: self._insert_new_state_record( actual_inode, actual_mtime, actual_size, checksum ) return self._update_state_for_path_changed( actual_inode, actual_mtime, actual_size, checksum ) def get(self, path_info): """Gets the checksum for the specified path info. Checksum will be retrieved from the state database if available. Args: path_info (dict): path info to get the checksum for. Returns: str or None: checksum for the specified path info or None if it doesn't exist in the state database. """ assert path_info.scheme == "local" path = fspath_py35(path_info) if not os.path.exists(path): return None actual_mtime, actual_size = get_mtime_and_size( path, self.repo.dvcignore ) actual_inode = get_inode(path) existing_record = self.get_state_record_for_inode(actual_inode) if not existing_record: return None mtime, size, checksum, _ = existing_record if self._file_metadata_changed(actual_mtime, mtime, actual_size, size): return None self._update_state_record_timestamp_for_inode(actual_inode) return checksum def save_link(self, path_info): """Adds the specified path to the list of links created by dvc. This list is later used on `dvc checkout` to cleanup old links. Args: path_info (dict): path info to add to the list of links. """ assert path_info.scheme == "local" path = fspath_py35(path_info) if not os.path.exists(path): return mtime, _ = get_mtime_and_size(path, self.repo.dvcignore) inode = get_inode(path) relative_path = relpath(path, self.root_dir) cmd = "REPLACE INTO {}(path, inode, mtime) " "VALUES (?, ?, ?)".format( self.LINK_STATE_TABLE ) self._execute(cmd, (relative_path, self._to_sqlite(inode), mtime)) def remove_unused_links(self, used): """Removes all saved links except the ones that are used. Args: used (list): list of used links that should not be removed. """ unused = [] self._execute("SELECT * FROM {}".format(self.LINK_STATE_TABLE)) for row in self.cursor: relpath, inode, mtime = row inode = self._from_sqlite(inode) path = os.path.join(self.root_dir, relpath) if path in used: continue if not os.path.exists(path): continue actual_inode = get_inode(path) actual_mtime, _ = get_mtime_and_size(path, self.repo.dvcignore) if inode == actual_inode and mtime == actual_mtime: logger.debug("Removing '{}' as unused link.".format(path)) remove(path) unused.append(relpath) for chunk_unused in to_chunks( unused, chunk_size=SQLITE_MAX_VARIABLES_NUMBER ): cmd = "DELETE FROM {} WHERE path IN ({})".format( self.LINK_STATE_TABLE, ",".join(["?"] * len(chunk_unused)) ) self._execute(cmd, tuple(chunk_unused))
30.991597
79
0.57016
4a2529c3d2076f65ff853b389c32c1f2201cf644
4,571
py
Python
test/Fortran/FORTRAN.py
bdbaddog/scons-gh-migrate
c76589c83ec00650a2d07dce79fc6dc5ca6465fb
[ "MIT" ]
null
null
null
test/Fortran/FORTRAN.py
bdbaddog/scons-gh-migrate
c76589c83ec00650a2d07dce79fc6dc5ca6465fb
[ "MIT" ]
null
null
null
test/Fortran/FORTRAN.py
bdbaddog/scons-gh-migrate
c76589c83ec00650a2d07dce79fc6dc5ca6465fb
[ "MIT" ]
null
null
null
#!/usr/bin/env python # # __COPYRIGHT__ # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "__FILE__ __REVISION__ __DATE__ __DEVELOPER__" import TestSCons from common import write_fake_link _python_ = TestSCons._python_ _exe = TestSCons._exe test = TestSCons.TestSCons() write_fake_link(test) test.write('myg77.py', r""" import getopt import sys opts, args = getopt.getopt(sys.argv[1:], 'co:') for opt, arg in opts: if opt == '-o': out = arg infile = open(args[0], 'rb') outfile = open(out, 'wb') for l in infile.readlines(): if l[:4] != '#g77': outfile.write(l) sys.exit(0) """) test.write('SConstruct', """ env = Environment(LINK = r'%(_python_)s mylink.py', LINKFLAGS = [], FORTRAN = r'%(_python_)s myg77.py') env.Program(target = 'test01', source = 'test01.f') env.Program(target = 'test02', source = 'test02.F') env.Program(target = 'test03', source = 'test03.for') env.Program(target = 'test04', source = 'test04.FOR') env.Program(target = 'test05', source = 'test05.ftn') env.Program(target = 'test06', source = 'test06.FTN') env.Program(target = 'test07', source = 'test07.fpp') env.Program(target = 'test08', source = 'test08.FPP') """ % locals()) test.write('test01.f', "This is a .f file.\n#link\n#g77\n") test.write('test02.F', "This is a .F file.\n#link\n#g77\n") test.write('test03.for', "This is a .for file.\n#link\n#g77\n") test.write('test04.FOR', "This is a .FOR file.\n#link\n#g77\n") test.write('test05.ftn', "This is a .ftn file.\n#link\n#g77\n") test.write('test06.FTN', "This is a .FTN file.\n#link\n#g77\n") test.write('test07.fpp', "This is a .fpp file.\n#link\n#g77\n") test.write('test08.FPP', "This is a .FPP file.\n#link\n#g77\n") test.run(arguments = '.', stderr = None) test.must_match('test01' + _exe, "This is a .f file.\n") test.must_match('test02' + _exe, "This is a .F file.\n") test.must_match('test03' + _exe, "This is a .for file.\n") test.must_match('test04' + _exe, "This is a .FOR file.\n") test.must_match('test05' + _exe, "This is a .ftn file.\n") test.must_match('test06' + _exe, "This is a .FTN file.\n") test.must_match('test07' + _exe, "This is a .fpp file.\n") test.must_match('test08' + _exe, "This is a .FPP file.\n") fc = 'f77' f77 = test.detect_tool(fc) FTN_LIB = test.gccFortranLibs() if f77: test.write("wrapper.py", """import os import sys open('%s', 'wb').write("wrapper.py\\n") os.system(" ".join(sys.argv[1:])) """ % test.workpath('wrapper.out').replace('\\', '\\\\')) test.write('SConstruct', """ foo = Environment(FORTRAN = '%(fc)s') f77 = foo.Dictionary('FORTRAN') bar = foo.Clone(FORTRAN = r'%(_python_)s wrapper.py ' + f77) foo.Program(target = 'foo', source = 'foo.f') bar.Program(target = 'bar', source = 'bar.f') """ % locals()) test.write('foo.f', r""" PROGRAM FOO PRINT *,'foo.f' STOP END """) test.write('bar.f', r""" PROGRAM BAR PRINT *,'bar.f' STOP END """) test.run(arguments = 'foo' + _exe, stderr = None) test.run(program = test.workpath('foo'), stdout = " foo.f\n") test.must_not_exist('wrapper.out') import sys if sys.platform[:5] == 'sunos': test.run(arguments = 'bar' + _exe, stderr = None) else: test.run(arguments = 'bar' + _exe) test.run(program = test.workpath('bar'), stdout = " bar.f\n") test.must_match('wrapper.out', "wrapper.py\n") test.pass_test() # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
31.095238
73
0.661781
4a2529e172c55034bf5f5c1dbb6aecad2867b00f
1,287
py
Python
2020/d18/d18.py
adam-blinzler/advent_of_code_2020
a9681c04e1618090913411c24d3872cd97fc6ec9
[ "MIT" ]
null
null
null
2020/d18/d18.py
adam-blinzler/advent_of_code_2020
a9681c04e1618090913411c24d3872cd97fc6ec9
[ "MIT" ]
null
null
null
2020/d18/d18.py
adam-blinzler/advent_of_code_2020
a9681c04e1618090913411c24d3872cd97fc6ec9
[ "MIT" ]
null
null
null
def run_calc(total, operation, number): if operation == '': total = number elif operation == '+': total += number elif operation == '*': total *= number else: print("FAILUE: Invalid operation") return total def solve_calc(line): calc = 0 op = '' no_calc = False for char in list(line): if no_calc: if char == '(': nested += 1 elif char == ')': nested -= 1 if nested > 0: sub_set = sub_set + char else: if char == ')': no_calc = False calc = run_calc(calc,op,solve_calc(sub_set)) else: if char.isdigit(): calc = run_calc(calc,op,int(char)) elif char in ['+','*']: op = char elif char == '(': sub_set = '' nested = 1 no_calc = True return calc ################# total = 0 for i, line in enumerate(open("input.txt"),1): if line: calc = solve_calc(line.strip().replace(' ','')) #print(i," = ",calc) total += calc print("Sum Total of all values =",total) # 30263286928615 too low
25.74
64
0.43512
4a252a4fa97cf450b05dab733c1378e7112b7eed
19,098
py
Python
fantasyopt/optimizer/dfs.py
lynshi/fantasy-optimizer
d24d79ffc7220e85255219973dcbcf416292a2df
[ "MIT" ]
null
null
null
fantasyopt/optimizer/dfs.py
lynshi/fantasy-optimizer
d24d79ffc7220e85255219973dcbcf416292a2df
[ "MIT" ]
null
null
null
fantasyopt/optimizer/dfs.py
lynshi/fantasy-optimizer
d24d79ffc7220e85255219973dcbcf416292a2df
[ "MIT" ]
null
null
null
import json import pulp from fantasyopt.optimizer.exceptions import OptimizerException from fantasyopt.player import Player class DfsOptimizer: UTILITY_CONSTRAINT = 'utility_constraint' IP_STATUS = 'ip_solve_status' LINEUP_SALARY = 'lineup_cost' LINEUP_POINTS = 'lineup_points' LINEUP_PLAYERS = 'lineup_players' IGNORE_PLAYER_PREFIX = 'ignore_' TEAM_MAX_PREFIX = 'team_max_' REQUIRE_PLAYER_PREFIX = 'require_' AVOID_OPPONENT_PREFIX = 'avoid_opponent_' def __init__(self, players, positions, budget, flex_positions=None, utility_requirement=0): """ Construct IP model for player selection optimization :param players: dictionary of dictionaries representing players :param positions: dictionary of position -> requirement :param budget: budget for player selection :param flex_positions: dict of flex position name -> (set of valid positions, number required) One position should not be present in two flex positions :param utility_requirement: number of utility players required. This parameter should only be used for roster positions that accept players from any position (e.g. Util in Yahoo NBA DFS) :raises ValueError: if any player does not have all required attributes """ for player, attributes in players.items(): for attr in [Player.NAME, Player.POINTS_PROJECTION, Player.OPPONENT, Player.GAME_TIME, Player.SALARY, Player.INJURY_STATUS, Player.TEAM, Player.POSITION]: if attr not in attributes.keys(): raise ValueError('player \'' + player + '\' is missing ' 'required ' 'attribute \'' + str(attr) + '\'') self.players = players # pass '%' so there is no leading underscore in the variable name player_variables = pulp.LpVariable.dict('%s', players.keys(), lowBound=0, upBound=1, cat='Integer') position_constraints = {} non_flex_count = self.add_position_constraints(player_variables, position_constraints, positions, flex_positions, utility_requirement) if flex_positions is not None: self.add_flex_constraints(player_variables, position_constraints, flex_positions, non_flex_count, utility_requirement) if utility_requirement > 0: non_utility_count = 0 for pos, count in positions.items(): non_utility_count += count if flex_positions is not None: for flex, (pos, count) in flex_positions.items(): non_utility_count += count self.add_utility_constraint(player_variables, position_constraints, utility_requirement, non_utility_count) budget_expression = \ pulp.LpAffineExpression([(player_variables[player], attributes[Player.SALARY]) for player, attributes in players.items()]) budget_constraint = pulp.LpConstraint( budget_expression, pulp.LpConstraintLE, DfsOptimizer.LINEUP_SALARY, budget) self.model = pulp.LpProblem('DFS Optimizer', pulp.LpMaximize) self.model += sum([ attributes[Player.POINTS_PROJECTION] * player_variables[player] for player, attributes in players.items() ]) self.model.constraints = position_constraints self.model.constraints.update({ self.LINEUP_SALARY: budget_constraint }) def add_position_constraints(self, player_variables, position_constraints, positions, flex_positions, utility_requirement): """ Add position constraints :param player_variables: dict of player id -> pulp variable :param position_constraints: dict of constraint name -> pulp constraint :param positions: dictionary of position -> requirement :param flex_positions: dict of flex position name -> (set of valid positions, number required) One position should not be present in two flex positions :param utility_requirement: number of utility players required. This parameter should only be used for roster positions that accept players from any position (e.g. Util in Yahoo NBA DFS) :return: total number of players required """ # the number of players at flex positions that # aren't used for the flex position non_flex_count = {} # position to the flex position they can contribute to position_to_flex_map = {} if flex_positions is not None: for flex, (allowed, requirement) in flex_positions.items(): non_flex_count[flex] = 0 for p in allowed: non_flex_count[flex] += positions[p] position_to_flex_map[p] = flex for position, requirement in positions.items(): affine_expression = \ pulp.LpAffineExpression([(player_variables[player], 1) for player, attributes in self.players.items() if attributes[Player.POSITION] == position]) sense = pulp.LpConstraintEQ if position in position_to_flex_map or utility_requirement > 0: sense = pulp.LpConstraintGE position_constraints[position] = pulp.LpConstraint( affine_expression, sense, position, requirement) return non_flex_count def add_flex_constraints(self, player_variables, position_constraints, flex_positions, non_flex_count, utility_requirement): """ Add flex constraints :param player_variables: dict of player id -> pulp variable :param position_constraints: dict of constraint name -> pulp constraint :param flex_positions: dict of flex position name -> (set of valid positions, number required) One position should not be present in two flex positions :param non_flex_count: dict of flex position -> number of players required in positional requirements :param utility_requirement: number of utility players required. This parameter should only be used for roster positions that accept players from any position (e.g. Util in Yahoo NBA DFS) :return: None """ for flex, (allowed, requirement) in flex_positions.items(): affine_expression = \ pulp.LpAffineExpression([(player_variables[player], 1) for player, attributes in self.players.items() if attributes[Player.POSITION] in allowed]) sense = pulp.LpConstraintEQ if utility_requirement > 0: sense = pulp.LpConstraintGE position_constraints[flex] = pulp.LpConstraint( affine_expression, sense, flex, requirement + non_flex_count[flex]) def add_utility_constraint(self, player_variables, position_constraints, utility_requirement, non_utility_count): """ Add utility position requirement. A utility position is one that accepts a player from any position. :param player_variables: dict of player id -> pulp variable :param position_constraints: dict of constraint name -> pulp constraint :param utility_requirement: number of utility players required :param non_utility_count: number of players required to be non-utility :return: None """ affine_expression = \ pulp.LpAffineExpression([(player_variables[player], 1) for player, attributes in self.players.items()]) position_constraints[DfsOptimizer.UTILITY_CONSTRAINT] = \ pulp.LpConstraint(affine_expression, pulp.LpConstraintEQ, DfsOptimizer.UTILITY_CONSTRAINT, utility_requirement + non_utility_count) def optimize(self) -> dict: """ Optimize IP to find best lineup for given model :return: dictionary of the form { DfsOptimizer.IP_STATUS_STR: solve status, DfsOptimizer.LINEUP_SALARY_STR: cost of lineup, DfsOptimizer.LINEUP_PLAYERS_STR: set of players to put in lineup, DfsOptimizer.LINEUP_POINTS_STR: total points scored projection } """ self.model.solve() result = {DfsOptimizer.IP_STATUS: self.model.status, DfsOptimizer.LINEUP_SALARY: None, DfsOptimizer.LINEUP_PLAYERS: set(), DfsOptimizer.LINEUP_POINTS: None} if self.model.status != pulp.LpStatusOptimal: raise OptimizerException('Model exited with status ' + str(self.model.status)) result[DfsOptimizer.LINEUP_SALARY] = \ pulp.value( self.model.constraints[DfsOptimizer.LINEUP_SALARY]) - \ self.model.constraints[DfsOptimizer.LINEUP_SALARY].constant result[DfsOptimizer.LINEUP_POINTS] = \ pulp.value(self.model.objective) for var_name, var in self.model.variablesDict().items(): if var.varValue == 1: result[DfsOptimizer.LINEUP_PLAYERS].add(var.name) return result def generate_lineup(self, display_lineup=True): """ Generate optimal DFS lineup based on player salaries and point projections :param display_lineup: if true, print lineup in JSON to console :return: dict that is the lineup, organized by position """ result = self.optimize() lineup = {} for p in result[DfsOptimizer.LINEUP_PLAYERS]: player = self.players[p] pos = player[Player.POSITION] if pos not in lineup: lineup[pos] = [] # to remove extra information that may be contained in player lineup[pos].append({ Player.NAME: player[Player.NAME], Player.POINTS_PROJECTION: player[Player.POINTS_PROJECTION], Player.OPPONENT: player[Player.OPPONENT], Player.GAME_TIME: player[Player.GAME_TIME], Player.SALARY: player[Player.SALARY], Player.INJURY_STATUS: player[Player.INJURY_STATUS], Player.TEAM: player[Player.TEAM] }) if display_lineup is True: print(json.dumps(lineup, sort_keys=True, indent=4)) return lineup def ignore_player(self, player_name, player_position=None, player_team=None): """ Ignore player named by player_name so that it is never used in the lineup. The position and team of the player can be specified for further granularity (e.g. in the case two players have the same name). All players satisfying the given conditions are ignored. :param player_name: name of the player; Player.NAME :param player_position: position of the player; Player.POSITION :param player_team: team of the player; Player.TEAM :return: None :raises RuntimeError: if no player with the given conditions is found """ constraint_name = DfsOptimizer.IGNORE_PLAYER_PREFIX + player_name player_variables = [] for var_id, var in self.model.variablesDict().items(): if self.players[var.name][Player.NAME] == player_name: player_variables.append((var, 1)) if player_position is not None: constraint_name += player_position temp = [] for var, coefficient in player_variables: if self.players[var.name][Player.POSITION] == player_position: temp.append((var, coefficient)) player_variables = temp if player_team is not None: constraint_name += player_team temp = [] for var, coefficient in player_variables: if self.players[var.name][Player.TEAM] == player_team: temp.append((var, coefficient)) player_variables = temp if len(player_variables) == 0: error_msg = 'No player named ' + player_name if player_position is not None: error_msg += ' (' + player_position + ')' if player_team is not None: error_msg += ' on ' + player_team raise RuntimeError(error_msg + ' found') affine_expression = pulp.LpAffineExpression(player_variables) self.model.constraints[constraint_name] = pulp.LpConstraint( affine_expression, pulp.LpConstraintEQ, constraint_name, 0) def ignore_team(self, team_name): """ Constrain the solver so that no players from the given team can be placed in the lineup. :param team_name: name of the team to ignore :return: None :raises RuntimeError: if no team with the given name is found """ constraint_name = DfsOptimizer.IGNORE_PLAYER_PREFIX + team_name player_variables = [] for var_id, var in self.model.variablesDict().items(): if self.players[var.name][Player.TEAM] == team_name: player_variables.append((var, 1)) if len(player_variables) == 0: raise RuntimeError('No players on ' + team_name + ' found') affine_expression = pulp.LpAffineExpression(player_variables) self.model.constraints[constraint_name] = pulp.LpConstraint( affine_expression, pulp.LpConstraintEQ, constraint_name, 0) def avoid_opponent(self, team_name): """ Constrain the solver so that no players playing against team_name are selected for the lineup :param team_name: name of the opponent to avoid :return: None :raises RuntimeError: if no team with the given name is found """ constraint_name = DfsOptimizer.AVOID_OPPONENT_PREFIX + team_name player_variables = [] for var_id, var in self.model.variablesDict().items(): if self.players[var.name][Player.OPPONENT] == team_name: player_variables.append((var, 1)) if len(player_variables) == 0: raise RuntimeError('No players playing against ' + team_name + ' found') affine_expression = pulp.LpAffineExpression(player_variables) self.model.constraints[constraint_name] = pulp.LpConstraint( affine_expression, pulp.LpConstraintEQ, constraint_name, 0) def set_max_players_from_same_team(self, maximum): """ Constrain the solver so that at most 'maximum' players from the same team can be placed in the lineup. :param maximum: max number of players from team team_name allowed :return: None """ team_expressions = {} for var_id, var in self.model.variablesDict().items(): team = self.players[var.name][Player.TEAM] if team not in team_expressions: team_expressions[team] = pulp.LpAffineExpression(name=team, constant=0) team_expressions[team] = team_expressions[team] + var team_constraints = {} for team in team_expressions: team_constraints[DfsOptimizer.TEAM_MAX_PREFIX + team] = \ pulp.LpConstraint(team_expressions[team], pulp.LpConstraintLE, DfsOptimizer.TEAM_MAX_PREFIX + team, maximum) self.model.constraints.update(team_constraints) def require_player(self, player_name, player_position=None, player_team=None): """ Requires player named by player_name so that it is always used in the lineup. he position and team of the player can be specified for further granularity (e.g. in the case two players have the same name). If many players satisfy the given condition, exactly one is allowed to be chosen. :param player_name: name of the player; Player.NAME :param player_position: position of the player; Player.POSITION :param player_team: team of the player; Player.TEAM :return: None :raises RuntimeError: if no player with the given conditions is found """ constraint_name = DfsOptimizer.REQUIRE_PLAYER_PREFIX + player_name player_variables = [] for var_id, var in self.model.variablesDict().items(): if self.players[var.name][Player.NAME] == player_name: player_variables.append((var, 1)) if player_position is not None: constraint_name += player_position temp = [] for var, coefficient in player_variables: if self.players[var.name][Player.POSITION] == player_position: temp.append((var, coefficient)) player_variables = temp if player_team is not None: constraint_name += player_team temp = [] for var, coefficient in player_variables: if self.players[var.name][Player.TEAM] == player_team: temp.append((var, coefficient)) player_variables = temp if len(player_variables) == 0: error_msg = 'No player named ' + player_name if player_position is not None: error_msg += ' (' + player_position + ')' if player_team is not None: error_msg += ' on ' + player_team raise RuntimeError(error_msg + ' found') affine_expression = pulp.LpAffineExpression(player_variables) self.model.constraints[constraint_name] = pulp.LpConstraint( affine_expression, pulp.LpConstraintEQ, constraint_name, 1)
44.004608
87
0.594198
4a252a5ed70467fa88ca94455f3bc12068b92194
610
py
Python
task2/train.py
RainEggplant/traffic-sign-classification
413d9229576d50e25031868229a1397b7b6e763d
[ "MIT" ]
null
null
null
task2/train.py
RainEggplant/traffic-sign-classification
413d9229576d50e25031868229a1397b7b6e763d
[ "MIT" ]
null
null
null
task2/train.py
RainEggplant/traffic-sign-classification
413d9229576d50e25031868229a1397b7b6e763d
[ "MIT" ]
null
null
null
from argparse import ArgumentParser from pytorch_lightning import Trainer from stn_cnn import StnCnn def main(args): model = StnCnn(args) trainer = Trainer.from_argparse_args(args) trainer.fit(model) if __name__ == '__main__': parser = ArgumentParser() # add PROGRAM level args # parser.add_argument('--conda_env', type=str, default='some_name') # add model specific args parser = StnCnn.add_model_specific_args(parser) # add all the available trainer options to argparse parser = Trainer.add_argparse_args(parser) args = parser.parse_args() main(args)
22.592593
71
0.721311
4a252b113c55bf722325a7812537c3b4f2c1ab8d
1,691
py
Python
code/maciek_code/Hamming_extended.py
mholowko/Solaris
25f65e72667f1e92e0d5c26bc9cbe159a6a15ace
[ "Apache-2.0" ]
null
null
null
code/maciek_code/Hamming_extended.py
mholowko/Solaris
25f65e72667f1e92e0d5c26bc9cbe159a6a15ace
[ "Apache-2.0" ]
null
null
null
code/maciek_code/Hamming_extended.py
mholowko/Solaris
25f65e72667f1e92e0d5c26bc9cbe159a6a15ace
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Mon Feb 22 10:00:48 2021 @author: hol428 """ # -*- coding: utf-8 -*- """ Created on Wed Feb 10 10:16:38 2021 @author: hol428 """ from scipy.spatial.distance import hamming import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns def separate(sequence): sequence2 = [] for elem in sequence: sequence2.append(elem) return(sequence2) df1 = pd.read_excel("Designs.xlsx", sheet_name = "TOP15") df2 = pd.read_excel("Designs.xlsx", sheet_name = "All") instances1 = [] instances2 = [] for seq in df1['Core'].to_list(): seq = str(seq) instances1.append(seq.upper()) for seq in df2['Core'].to_list(): seq = str(seq) instances2.append(seq.upper()) sequences = [] distance = [] values = [] number=[] difference = [] violindf = pd.DataFrame(columns=['Parent','Neighbour']) for seq1 in instances1[0:1]: print(instances1[0:1]) seq1sep = separate(seq1) container = [] for seq2 in instances2: seq2sep = separate(seq2) for h in range (6): h += 1 if hamming(seq1sep,seq2sep)*len(seq1sep) == h: container.append(seq2) distance.append(h) values.append(df2.loc[df2['Core'] == container[-1]]['TIR'].values.astype(int)[0]) sequences.append(seq1) number.append(len(container)) print(distance) print(values) data = pd.DataFrame ({'TIR': values, 'Distance': distance}, columns = ['TIR','Distance']) print(data.head(60)) # data = data.sort_values(by=['TIR']) ax = sns.swarmplot(data=data, x='Distance', y='TIR', palette='viridis') ax.axhline(78,color='black') plt.show()
23.486111
97
0.627439
4a252c3895ec3e40d7310e8dad0b40c1ca5b50b3
1,665
py
Python
modulo/conf/settings_class.py
Exanis/modulo
6b1c17b4cdb4100055e521a7e8f6fdd69d1c9f08
[ "MIT" ]
null
null
null
modulo/conf/settings_class.py
Exanis/modulo
6b1c17b4cdb4100055e521a7e8f6fdd69d1c9f08
[ "MIT" ]
null
null
null
modulo/conf/settings_class.py
Exanis/modulo
6b1c17b4cdb4100055e521a7e8f6fdd69d1c9f08
[ "MIT" ]
null
null
null
from os import environ from tempfile import gettempdir() from typing import Any, Optional from importlib import import_module from .exceptions import MissingConfigurationException, MissingConfigurationKeyException from .env import env_bool, env_list, env_str from modulo.session.backend import File DEFAULT_SETTINGS = { 'APPLICATION_KEY': env_str('APPLICATION_KEY'), 'DEBUG': env_bool('DEBUG'), 'CUSTOM_HANDLERS': {} 'ROUTES': [] 'SESSION_BACKEND': File, 'SESSION_OPTIONS': { 'folder': gettempdir() }, 'SESSION_LIFETIME': 86400 } class Settings(): def __init__(self: Settings, module: Optional[str] = None) -> None: if module is None: module = environ.get('MODULO_CONFIG_MODULE', None) if module is None: raise MissingConfigurationException('Missing configuration module. You must either set the MODULO_CONFIG_MODULE environment variable or pass it as a parameter to your settings instance.') try: self._original_values = import_module(module) except ModuleNotFoundError: raise MissingConfigurationException(f'Module {module} cannot be loaded.') self._values = {} def __getattr__(self: Settings, key: str) -> Any: if key not in self._values: try: self._values[key] = getattr(self.values, key) except AttributeError: if key in DEFAULT_SETTINGS: self._values[key] = DEFAULT_SETTINGS[key] else: raise AttributeError(f'Setting {key} is not defined and have no default value') return self._values[key]
37.840909
199
0.663063
4a252c6db93f398fd30a64d99060e32d22fc17b1
2,575
py
Python
ip-memo/tests/unit/test_handler.py
rosolovskiy/ip-memo-lambda
8e9de8b70d202fbbd8a6ee1c0299aa6a75104d05
[ "Apache-2.0" ]
null
null
null
ip-memo/tests/unit/test_handler.py
rosolovskiy/ip-memo-lambda
8e9de8b70d202fbbd8a6ee1c0299aa6a75104d05
[ "Apache-2.0" ]
null
null
null
ip-memo/tests/unit/test_handler.py
rosolovskiy/ip-memo-lambda
8e9de8b70d202fbbd8a6ee1c0299aa6a75104d05
[ "Apache-2.0" ]
null
null
null
import json import pytest from ip_memo import app @pytest.fixture() def apigw_event(): """ Generates API GW Event""" return { "body": '{ "test": "body"}', "resource": "/{proxy+}", "requestContext": { "resourceId": "123456", "apiId": "1234567890", "resourcePath": "/{proxy+}", "httpMethod": "POST", "requestId": "c6af9ac6-7b61-11e6-9a41-93e8deadbeef", "accountId": "123456789012", "identity": { "apiKey": "", "userArn": "", "cognitoAuthenticationType": "", "caller": "", "userAgent": "Custom User Agent String", "user": "", "cognitoIdentityPoolId": "", "cognitoIdentityId": "", "cognitoAuthenticationProvider": "", "sourceIp": "127.0.0.1", "accountId": "", }, "stage": "prod", }, "queryStringParameters": {"foo": "bar"}, "headers": { "Via": "1.1 08f323deadbeefa7af34d5feb414ce27.cloudfront.net (CloudFront)", "Accept-Language": "en-US,en;q=0.8", "CloudFront-Is-Desktop-Viewer": "true", "CloudFront-Is-SmartTV-Viewer": "false", "CloudFront-Is-Mobile-Viewer": "false", "X-Forwarded-For": "127.0.0.1, 127.0.0.2", "CloudFront-Viewer-Country": "US", "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8", "Upgrade-Insecure-Requests": "1", "X-Forwarded-Port": "443", "Host": "1234567890.execute-api.us-east-1.amazonaws.com", "X-Forwarded-Proto": "https", "X-Amz-Cf-Id": "aaaaaaaaaae3VYQb9jd-nvCd-de396Uhbp027Y2JvkCPNLmGJHqlaA==", "CloudFront-Is-Tablet-Viewer": "false", "Cache-Control": "max-age=0", "User-Agent": "Custom User Agent String", "CloudFront-Forwarded-Proto": "https", "Accept-Encoding": "gzip, deflate, sdch", }, "pathParameters": {"proxy": "/examplepath"}, "httpMethod": "POST", "stageVariables": {"baz": "qux"}, "path": "/examplepath", } def test_lambda_handler(apigw_event, mocker): ret = app.lambda_handler(apigw_event, "") data = json.loads(ret["body"]) assert ret["statusCode"] == 200 assert "message" in ret["body"] assert data["message"] == "hello world" # assert "location" in data.dict_keys()
34.797297
99
0.515728
4a252cde6cd9c1ac1d1a5292e2447b2dcde98862
11,413
py
Python
pandaserver/server/panda.py
mkycanopus/panda-server
0f7c36800c033fada8bbde53dceaab98770b6df2
[ "Apache-2.0" ]
1
2019-08-30T13:47:51.000Z
2019-08-30T13:47:51.000Z
pandaserver/server/panda.py
mkycanopus/panda-server
0f7c36800c033fada8bbde53dceaab98770b6df2
[ "Apache-2.0" ]
null
null
null
pandaserver/server/panda.py
mkycanopus/panda-server
0f7c36800c033fada8bbde53dceaab98770b6df2
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python """ entry point """ import datetime import traceback import types # config file from config import panda_config # initialize cx_Oracle using dummy connection from taskbuffer.Initializer import initializer initializer.init() # initialzie TaskBuffer from taskbuffer.TaskBuffer import taskBuffer taskBuffer.init(panda_config.dbhost,panda_config.dbpasswd,panda_config.nDBConnection,True) # initialize JobDispatcher from jobdispatcher.JobDispatcher import jobDispatcher if panda_config.nDBConnection != 0: jobDispatcher.init(taskBuffer) # initialize DataService from dataservice.DataService import dataService if panda_config.nDBConnection != 0: dataService.init(taskBuffer) # initialize UserIF from userinterface.UserIF import userIF if panda_config.nDBConnection != 0: userIF.init(taskBuffer) # import web I/F allowedMethods = [] from taskbuffer.Utils import isAlive, putFile, deleteFile, getServer, updateLog, fetchLog,\ touchFile, getVomsAttr, putEventPickingRequest, getAttr, getFile, uploadLog allowedMethods += ['isAlive','putFile','deleteFile','getServer','updateLog','fetchLog', 'touchFile','getVomsAttr','putEventPickingRequest','getAttr','getFile', 'uploadLog'] from dataservice.DataService import datasetCompleted, updateFileStatusInDisp allowedMethods += ['datasetCompleted', 'updateFileStatusInDisp'] from jobdispatcher.JobDispatcher import getJob, updateJob, getStatus, genPilotToken,\ getEventRanges, updateEventRange, getKeyPair, updateEventRanges, getDNsForS3, getProxy, getCommands, ackCommands,\ checkJobStatus, checkEventsAvailability, updateJobsInBulk, getResourceTypes allowedMethods += ['getJob', 'updateJob', 'getStatus', 'genPilotToken', 'getEventRanges', 'updateEventRange', 'getKeyPair', 'updateEventRanges', 'getDNsForS3', 'getProxy', 'getCommands', 'ackCommands', 'checkJobStatus', 'checkEventsAvailability', 'updateJobsInBulk', 'getResourceTypes'] from userinterface.UserIF import submitJobs, getJobStatus, queryPandaIDs, killJobs, reassignJobs,\ getJobStatistics, getJobStatisticsPerSite, resubmitJobs, queryLastFilesInDataset, getPandaIDsSite,\ getJobsToBeUpdated, updateProdDBUpdateTimes, runTaskAssignment, getAssigningTask, getSiteSpecs,\ getCloudSpecs, runBrokerage, seeCloudTask, queryJobInfoPerCloud, registerProxyKey, getProxyKey,\ getJobIDsInTimeRange, getPandIDsWithJobID, getFullJobStatus, getJobStatisticsForBamboo,\ getNUserJobs, addSiteAccess, listSiteAccess, getFilesInUseForAnal, updateSiteAccess,\ getPandaClientVer, getSlimmedFileInfoPandaIDs, runReBrokerage, getQueuedAnalJobs, getHighestPrioJobStat,\ getActiveDatasets, setCloudTaskByUser, getSerialNumberForGroupJob, getCachePrefixes,\ checkMergeGenerationStatus, sendLogInfo, getNumPilots, retryFailedJobsInActive,\ getJobStatisticsWithLabel, getPandaIDwithJobExeID, getJobStatisticsPerUserSite,\ getDisInUseForAnal, getLFNsInUseForAnal, getScriptOfflineRunning, setDebugMode,\ insertSandboxFileInfo, checkSandboxFile, changeJobPriorities, insertTaskParams,\ killTask, finishTask, getCmtConfigList, getJediTasksInTimeRange, getJediTaskDetails,\ retryTask, getRetryHistory, changeTaskPriority, reassignTask, changeTaskAttributePanda,\ pauseTask, resumeTask, increaseAttemptNrPanda, killUnfinishedJobs, changeTaskSplitRulePanda,\ changeTaskModTimePanda, avalancheTask, getPandaIDsWithTaskID, reactivateTask, getTaskStatus, \ reassignShare, listTasksInShare, getTaskParamsMap, updateWorkers, harvesterIsAlive,\ reportWorkerStats, addHarvesterDialogs, getJobStatisticsPerSiteResource, setNumSlotsForWP,\ reloadInput, enableJumboJobs, updateServiceMetrics, getUserJobMetadata, getJumboJobDatasets, getGShareStatus allowedMethods += ['submitJobs','getJobStatus','queryPandaIDs','killJobs','reassignJobs', 'getJobStatistics','getJobStatisticsPerSite','resubmitJobs','queryLastFilesInDataset','getPandaIDsSite', 'getJobsToBeUpdated','updateProdDBUpdateTimes','runTaskAssignment','getAssigningTask','getSiteSpecs', 'getCloudSpecs','runBrokerage','seeCloudTask','queryJobInfoPerCloud','registerProxyKey','getProxyKey', 'getJobIDsInTimeRange','getPandIDsWithJobID','getFullJobStatus','getJobStatisticsForBamboo', 'getNUserJobs','addSiteAccess','listSiteAccess','getFilesInUseForAnal','updateSiteAccess', 'getPandaClientVer','getSlimmedFileInfoPandaIDs','runReBrokerage','getQueuedAnalJobs','getHighestPrioJobStat', 'getActiveDatasets','setCloudTaskByUser','getSerialNumberForGroupJob','getCachePrefixes', 'checkMergeGenerationStatus','sendLogInfo','getNumPilots','retryFailedJobsInActive', 'getJobStatisticsWithLabel','getPandaIDwithJobExeID','getJobStatisticsPerUserSite', 'getDisInUseForAnal','getLFNsInUseForAnal','getScriptOfflineRunning','setDebugMode', 'insertSandboxFileInfo','checkSandboxFile','changeJobPriorities','insertTaskParams', 'killTask','finishTask','getCmtConfigList','getJediTasksInTimeRange','getJediTaskDetails', 'retryTask','getRetryHistory','changeTaskPriority','reassignTask','changeTaskAttributePanda', 'pauseTask','resumeTask','increaseAttemptNrPanda','killUnfinishedJobs','changeTaskSplitRulePanda', 'changeTaskModTimePanda','avalancheTask','getPandaIDsWithTaskID', 'reactivateTask', 'getTaskStatus', 'reassignShare', 'listTasksInShare', 'getTaskParamsMap', 'updateWorkers', 'harvesterIsAlive', 'reportWorkerStats', 'addHarvesterDialogs', 'getJobStatisticsPerSiteResource', 'setNumSlotsForWP', 'reloadInput', 'enableJumboJobs', 'updateServiceMetrics', 'getUserJobMetadata', 'getJumboJobDatasets', 'getGShareStatus'] # import error import taskbuffer.ErrorCode # FastCGI/WSGI entry if panda_config.useFastCGI or panda_config.useWSGI: import os import cgi import sys from pandalogger.PandaLogger import PandaLogger # logger _logger = PandaLogger().getLogger('Entry') # dummy request object class DummyReq: def __init__(self,env,): # environ self.subprocess_env = env # header self.headers_in = {} # content-length if self.subprocess_env.has_key('CONTENT_LENGTH'): self.headers_in["content-length"] = self.subprocess_env['CONTENT_LENGTH'] # get remote host def get_remote_host(self): if self.subprocess_env.has_key('REMOTE_HOST'): return self.subprocess_env['REMOTE_HOST'] return "" # accept json def acceptJson(self): try: if self.subprocess_env.has_key('HTTP_ACCEPT'): return 'application/json' in self.subprocess_env['HTTP_ACCEPT'] except: pass return False # application def application(environ, start_response): # get method name methodName = '' if environ.has_key('SCRIPT_NAME'): methodName = environ['SCRIPT_NAME'].split('/')[-1] _logger.debug("PID=%s %s start" % (os.getpid(),methodName)) regStart = datetime.datetime.utcnow() retType = None # check method name if not methodName in allowedMethods: _logger.error("PID=%s %s is forbidden" % (os.getpid(),methodName)) exeRes = "False : %s is forbidden" % methodName else: # get method object tmpMethod = None try: exec "tmpMethod = %s" % methodName except: pass # object not found if tmpMethod == None: _logger.error("PID=%s %s is undefined" % (os.getpid(),methodName)) exeRes = "False" else: try: # get params tmpPars = cgi.FieldStorage(environ['wsgi.input'], environ=environ, keep_blank_values=1) # convert to map params = {} for tmpKey in tmpPars.keys(): if tmpPars[tmpKey].file != None and tmpPars[tmpKey].filename != None: # file params[tmpKey] = tmpPars[tmpKey] else: # string params[tmpKey] = tmpPars.getfirst(tmpKey) if panda_config.entryVerbose: _logger.debug("PID=%s %s with %s" % (os.getpid(),methodName,str(params.keys()))) # dummy request object dummyReq = DummyReq(environ) # exec exeRes = apply(tmpMethod,[dummyReq],params) # extract return type if type(exeRes) == types.DictType: retType = exeRes['type'] exeRes = exeRes['content'] # convert bool to string if exeRes in [True,False]: exeRes = str(exeRes) except: errType,errValue = sys.exc_info()[:2] _logger.error("execution failure : %s %s %s" % (errType,errValue,traceback.format_exc())) errStr = "" for tmpKey,tmpVal in environ.iteritems(): errStr += "%s : %s\n" % (tmpKey,str(tmpVal)) _logger.error(errStr) # return internal server error start_response('500 INTERNAL SERVER ERROR', [('Content-Type', 'text/plain')]) return ["%s %s" % (errType,errValue)] if panda_config.entryVerbose: _logger.debug("PID=%s %s out" % (os.getpid(),methodName)) regTime = datetime.datetime.utcnow() - regStart _logger.info("PID=%s %s exec_time=%s.%03d sec, return len=%s B" % (os.getpid(), methodName,regTime.seconds, regTime.microseconds/1000, len(str(exeRes)))) # return if exeRes == taskbuffer.ErrorCode.EC_NotFound: start_response('404 Not Found', [('Content-Type', 'text/plain')]) return ['not found'] elif isinstance(exeRes,taskbuffer.ErrorCode.EC_Redirect): start_response('302 Redirect', [('Location', exeRes.url)]) return ['redirect'] else: if retType == 'json': start_response('200 OK', [('Content-Type', 'application/json')]) else: start_response('200 OK', [('Content-Type', 'text/plain')]) return [exeRes] # start server if panda_config.useFastCGI: from flup.server.fcgi import WSGIServer WSGIServer(application,multithreaded=False).run()
50.277533
129
0.634014
4a252d074a34f116ccb5de75b663c01cbf4014dd
3,257
py
Python
Backend/project/views.py
divSivasankaran/BioSecure
0bd1494da2a3c7463809ea4d8a6957170e449503
[ "Unlicense" ]
3
2019-09-19T12:36:07.000Z
2020-09-21T02:09:21.000Z
Backend/project/views.py
div1090/BioSecure
0bd1494da2a3c7463809ea4d8a6957170e449503
[ "Unlicense" ]
null
null
null
Backend/project/views.py
div1090/BioSecure
0bd1494da2a3c7463809ea4d8a6957170e449503
[ "Unlicense" ]
2
2019-07-08T11:58:34.000Z
2020-12-13T13:10:29.000Z
# -*- coding: utf-8 -*- """ Created on Wed Aug 23 15:48:21 2017 @author: divya """ from flask import jsonify from flask import request, render_template from flask import abort, make_response from PIL import Image from scipy.spatial import distance import numpy as np import io import os from .import app from . import FaceVerifier base = "/biosecure/api/v1" FV = None ######################## #### helper methods #### ######################## def import_data(request): img = None try: if 'image' in request.files: img = request.files['image'] print("Image Received") except KeyError as e: raise ValidationError('Invalid image: Operation failed') return img def initVGG(): global FV FV = FaceVerifier.FaceVerifier() FV.init() FV.loadVGGFace() def getVGGFeature(image): global FV feature = None if FV != None: feature = FV.get_caffe_feature(image) return feature def saveEnrolledFeature(feature): np.array(feature) np.savetxt(os.path.join('project', 'data',"enrolled_feature.csv"),feature) return None def loadEnrolledFeature(): return np.loadtxt(os.path.join('project', 'data',"enrolled_feature.csv")) def compare(feature1,feature2): score = -1 score = distance.cosine(feature1,feature2) return score ######################## #### api methods #### ######################## @app.route(base + '/') def index(): return jsonify(render_template('index.html')),200 @app.route(base + '/enroll', methods=['POST']) def enroll(): print("args ", request.args) print("files ", request.files) print("data ",request.data) print("val ", request.values) print("json ", request.form) img = import_data(request) if img == None: abort(415) try: img.save(os.path.join('project', 'data', 'enrolled_image.jpg')) fp = os.path.join(os.getcwd(), 'project', 'data', 'enrolled_image.jpg') print(fp) feature = getVGGFeature(fp) saveEnrolledFeature(feature) except KeyError as e: abort(503) return jsonify({'status': 'Success'}),200 @app.route(base + '/verify', methods=['POST']) def verify(): if not os.path.isfile("project/data/enrolled_feature.csv"): abort(412) img = import_data(request) if img == None: abort(415) img.save(os.path.join('project', 'data', 'verify_image.jpg')) test_feature = getVGGFeature(os.path.join(os.getcwd(), 'project', 'data', 'verify_image.jpg')) enrolled_feature = loadEnrolledFeature() score = compare(test_feature,enrolled_feature) print("SCORE ", score) return jsonify({'status': 'Success', 'score': str(score)}),200 ####### ERROR HANDLERS ####### @app.errorhandler(404) def not_found(error): return make_response(jsonify({'error': 'Not found'}), 404) @app.errorhandler(415) def invalid_image(error): return make_response(jsonify({'error': 'Invalid Image'}), 415) @app.errorhandler(503) def enroll_fail(error): return make_response(jsonify({'error': 'Failed to enroll. Try again'}), 503) @app.errorhandler(412) def no_enrollments(error): return make_response(jsonify({'error': 'No enrollments. Enroll first.'}), 412)
26.056
98
0.63494
4a252dbfe52b29810de92aee140d2618ecc9b1bf
838
py
Python
heuristics/opponentdistance_heuristic.py
TeamJumpstart/InformatiCup2021
a4d07992f772d3a1e9ef715fa8e9ce2234cd47a4
[ "MIT" ]
10
2021-04-18T17:54:02.000Z
2021-07-26T19:58:41.000Z
heuristics/opponentdistance_heuristic.py
DiddiZ/InformatiCup2021
a4d07992f772d3a1e9ef715fa8e9ce2234cd47a4
[ "MIT" ]
1
2021-04-21T15:13:41.000Z
2021-04-21T15:13:41.000Z
heuristics/opponentdistance_heuristic.py
DiddiZ/InformatiCup2021
a4d07992f772d3a1e9ef715fa8e9ce2234cd47a4
[ "MIT" ]
1
2021-04-20T09:42:50.000Z
2021-04-20T09:42:50.000Z
import numpy as np from heuristics.heuristic import Heuristic class OpponentDistanceHeuristic(Heuristic): """Computes the distance sum to all players up to a threshold.""" def __init__(self, dist_threshold=16): """Initialize OpponentDistanceHeuristic.""" self.dist_threshold = dist_threshold def score(self, cells, player, opponents, rounds, deadline): """Computes the distance to all players.""" min_opponent_dist = min( min(np.sum(np.abs((player.position - o.position))) for o in opponents if o.active), self.dist_threshold ) return min_opponent_dist / np.sum(cells.shape) def __str__(self): """Get readable representation.""" return "OpponentDistanceHeuristic(" + \ f"dist_threshold={self.dist_threshold}" + \ ")"
34.916667
115
0.661098
4a252dc2f707ab536c65c08bd3ec27c5049a0ee9
36,565
py
Python
gs_quant/test/timeseries/test_measures_reports.py
webclinic017/gs-quant
ebb8ee5e1d954ab362aa567293906ce51818cfa8
[ "Apache-2.0" ]
null
null
null
gs_quant/test/timeseries/test_measures_reports.py
webclinic017/gs-quant
ebb8ee5e1d954ab362aa567293906ce51818cfa8
[ "Apache-2.0" ]
null
null
null
gs_quant/test/timeseries/test_measures_reports.py
webclinic017/gs-quant
ebb8ee5e1d954ab362aa567293906ce51818cfa8
[ "Apache-2.0" ]
null
null
null
""" Copyright 2020 Goldman Sachs. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import datetime import pandas import pandas as pd import pytest from testfixtures import Replacer from testfixtures.mock import Mock import gs_quant.timeseries.measures_reports as mr from gs_quant.api.gs.assets import GsTemporalXRef from gs_quant.api.gs.data import MarketDataResponseFrame from gs_quant.data.core import DataContext from gs_quant.errors import MqValueError from gs_quant.markets.portfolio_manager import CustomAUMDataPoint from gs_quant.markets.report import PerformanceReport, ThematicReport from gs_quant.markets.securities import Stock from gs_quant.models.risk_model import FactorRiskModel as Factor_Risk_Model from gs_quant.target.common import ReportParameters, XRef from gs_quant.target.portfolios import RiskAumSource from gs_quant.target.reports import Report, PositionSourceType, ReportType from gs_quant.target.risk_models import RiskModel, RiskModelCoverage, RiskModelTerm, RiskModelUniverseIdentifier risk_model = RiskModel(coverage=RiskModelCoverage.Country, id_='model_id', name='Fake Risk Model', term=RiskModelTerm.Long, universe_identifier=RiskModelUniverseIdentifier.gsid, vendor='GS', version=1.0) factor_risk_report = Report(position_source_id='position source id', position_source_type=PositionSourceType.Portfolio, type_=ReportType.Portfolio_Factor_Risk, id_='report_id', parameters=ReportParameters(risk_model='risk_model_id'), status='new') asset_factor_risk_report = Report(position_source_id='position source id', position_source_type=PositionSourceType.Asset, type_=ReportType.Portfolio_Factor_Risk, id_='report_id', parameters=ReportParameters(risk_model='risk_model_id'), status='new') ppa_report = Report(position_source_id='position source id', position_source_type=PositionSourceType.Portfolio, type_=ReportType.Portfolio_Performance_Analytics, id_='report_id', parameters=ReportParameters(risk_model='risk_model_id'), status='new') factor_data = [ { 'date': '2020-11-23', 'reportId': 'report_id', 'factor': 'factor_id', 'factorCategory': 'CNT', 'pnl': 11.23, 'exposure': -11.23, 'proportionOfRisk': 1 }, { 'date': '2020-11-24', 'reportId': 'report_id', 'factor': 'factor_id', 'factorCategory': 'CNT', 'pnl': 11.24, 'exposure': -11.24, 'proportionOfRisk': 2 }, { 'date': '2020-11-25', 'reportId': 'report_id', 'factor': 'factor_id', 'factorCategory': 'CNT', 'pnl': 11.25, 'exposure': -11.25, 'proportionOfRisk': 3 } ] aggregate_factor_data = [ { 'date': '2020-11-23', 'reportId': 'report_id', 'factor': 'Factor', 'factorCategory': 'CNT', 'pnl': 11.23, 'exposure': -11.23, 'proportionOfRisk': 1, 'dailyRisk': 1, 'annualRisk': 1 }, { 'date': '2020-11-24', 'reportId': 'report_id', 'factor': 'Factor', 'factorCategory': 'CNT', 'pnl': 11.24, 'exposure': -11.24, 'proportionOfRisk': 2, 'dailyRisk': 2, 'annualRisk': 2 }, { 'date': '2020-11-25', 'reportId': 'report_id', 'factor': 'Factor', 'factorCategory': 'CNT', 'pnl': 11.25, 'exposure': -11.25, 'proportionOfRisk': 3, 'dailyRisk': 3, 'annualRisk': 3 } ] constituents_data_l_s = { 'assetId': [ "MA1", "MA1", "MA1", "MA2", "MA2", "MA2" ], 'quantity': [ -1., -2., -3., 1., 2., 3. ], 'netExposure': [ -1., -2., -3., 1., 2., 3. ], 'pnl': [ 0., -1., -1., 0., 1., 1. ], 'date': [ '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-02', '2020-01-03', '2020-01-04' ] } pnl_data_l_s = { 'quantity': [ -1., -2., -3., -1., -2., -3., 1., 2., 3., 1., 2., 3. ], 'pnl': [ 0., -1., -1., 0., -1., -1., 0., 1., 1., 0., 1., 1. ], 'date': [ '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-02', '2020-01-03', '2020-01-04' ] } constituents_data = { 'netExposure': [ 1., 2., 3. ], 'assetId': [ "MA", "MA", "MA" ], 'quantity': [ 1., 1., 1. ], 'pnl': [ 0., 1., 1. ], 'date': [ '2020-01-02', '2020-01-03', '2020-01-04' ] } constituents_data_s = { 'netExposure': [ -1., -2., -3. ], 'assetId': [ "MA", "MA", "MA" ], 'quantity': [ -1., -1., -1. ], 'pnl': [ 0., 1., 1. ], 'date': [ '2020-01-02', '2020-01-03', '2020-01-04' ] } thematic_data = [ { "date": "2021-07-12", "reportId": "PTAID", "basketId": "MA01GPR89HZF1FZ5", "region": "Asia", "grossExposure": 3.448370345015856E8, "thematicExposure": 2, "thematicBeta": 1, "updateTime": "2021-07-20T23:43:38Z" }, { "date": "2021-07-13", "reportId": "PTAID", "basketId": "MA01GPR89HZF1FZ5", "region": "Asia", "grossExposure": 3.375772519907556E8, "thematicExposure": 2, "thematicBeta": 1, "updateTime": "2021-07-20T23:43:38Z" }, { "date": "2021-07-14", "reportId": "PTAID", "basketId": "MA01GPR89HZF1FZ5", "region": "Asia", "grossExposure": 3.321189950666118E8, "thematicExposure": 2, "thematicBeta": 1, "updateTime": "2021-07-20T23:43:38Z" }, { "date": "2021-07-15", "reportId": "PTAID", "basketId": "MA01GPR89HZF1FZ5", "region": "Asia", "grossExposure": 3.274071805135091E8, "thematicExposure": 2, "thematicBeta": 1, "updateTime": "2021-07-20T23:43:38Z" } ] def mock_risk_model(): risk_model = RiskModel(coverage=RiskModelCoverage.Country, id_='model_id', name='Fake Risk Model', term=RiskModelTerm.Long, universe_identifier=RiskModelUniverseIdentifier.gsid, vendor='GS', version=1.0) replace = Replacer() # mock getting risk model entity() mock = replace('gs_quant.api.gs.risk_models.GsRiskModelApi.get_risk_model', Mock()) mock.return_value = risk_model actual = Factor_Risk_Model.get(model_id='model_id') replace.restore() return actual def test_factor_exposure(): replace = Replacer() # mock getting risk model entity() mock = replace('gs_quant.api.gs.risk_models.GsRiskModelApi.get_risk_model', Mock()) mock.return_value = risk_model mock = replace('gs_quant.api.gs.reports.GsReportApi.get_report', Mock()) mock.return_value = factor_risk_report # mock getting report factor data mock = replace('gs_quant.api.gs.reports.GsReportApi.get_factor_risk_report_results', Mock()) mock.return_value = factor_data # mock getting risk model dates mock = replace('gs_quant.api.gs.risk_models.GsRiskModelApi.get_risk_model_dates', Mock()) mock.return_value = ['2010-01-01'] # mock getting risk model factor category mock = replace('gs_quant.api.gs.risk_models.GsFactorRiskModelApi.get_risk_model_data', Mock()) mock.return_value = { 'results': [{ 'factorData': [{ 'factorId': 'factor_id', 'factorCategory': 'Factor Name' }]} ]} # mock getting risk model factor entity mock = replace('gs_quant.api.gs.risk_models.GsFactorRiskModelApi.get_risk_model_factor_data', Mock()) mock.return_value = [{ 'identifier': 'factor_id', 'type': 'Factor', 'name': 'Factor Name', 'factorCategory': 'Factor Name' }] with DataContext(datetime.date(2020, 11, 23), datetime.date(2020, 11, 25)): actual = mr.factor_exposure('report_id', 'Factor Name') assert all(actual.values == [-11.23, -11.24, -11.25]) with pytest.raises(MqValueError): mr.factor_exposure('report_id', 'Wrong Factor Name') replace.restore() def test_factor_exposure_percent(): replace = Replacer() # mock getting risk model entity() mock = replace('gs_quant.api.gs.risk_models.GsRiskModelApi.get_risk_model', Mock()) mock.return_value = risk_model mock = replace('gs_quant.api.gs.reports.GsReportApi.get_report', Mock()) mock.return_value = factor_risk_report # mock getting report factor data mock = replace('gs_quant.api.gs.reports.GsReportApi.get_factor_risk_report_results', Mock()) mock.return_value = factor_data # mock getting risk model dates mock = replace('gs_quant.api.gs.risk_models.GsRiskModelApi.get_risk_model_dates', Mock()) mock.return_value = ['2010-01-01'] # mock getting risk model factor category mock = replace('gs_quant.api.gs.risk_models.GsFactorRiskModelApi.get_risk_model_data', Mock()) mock.return_value = { 'results': [{ 'factorData': [{ 'factorId': 'factor_id', 'factorCategory': 'Factor Name' }]} ]} # mock getting risk model factor entity mock = replace('gs_quant.api.gs.risk_models.GsFactorRiskModelApi.get_risk_model_factor_data', Mock()) mock.return_value = [{ 'identifier': 'factor_id', 'type': 'Factor', 'name': 'Factor Name', 'factorCategory': 'Factor Name' }] # mock getting aum source mock = replace('gs_quant.markets.portfolio_manager.PortfolioManager.get_aum_source', Mock()) mock.return_value = RiskAumSource.Custom_AUM with DataContext(datetime.date(2020, 11, 23), datetime.date(2020, 11, 25)): # mock getting aum mock = replace('gs_quant.markets.portfolio_manager.PortfolioManager.get_custom_aum', Mock()) mock.return_value = [CustomAUMDataPoint(date=datetime.date(2020, 11, 23), aum=2), CustomAUMDataPoint(date=datetime.date(2020, 11, 24), aum=2), CustomAUMDataPoint(date=datetime.date(2020, 11, 25), aum=2)] actual = mr.factor_exposure('report_id', 'Factor Name', 'Percent') assert all(actual.values == [-11.23 * 50, -11.24 * 50, -11.25 * 50]) with pytest.raises(MqValueError): # mock getting aum with missing data mock = replace('gs_quant.markets.portfolio_manager.PortfolioManager.get_custom_aum', Mock()) mock.return_value = [CustomAUMDataPoint(date=datetime.date(2020, 11, 23), aum=2), CustomAUMDataPoint(date=datetime.date(2020, 11, 25), aum=2)] mr.factor_exposure('report_id', 'Factor Name', 'Percent') replace.restore() def test_factor_pnl(): replace = Replacer() # mock getting risk model entity() mock = replace('gs_quant.api.gs.risk_models.GsRiskModelApi.get_risk_model', Mock()) mock.return_value = risk_model mock = replace('gs_quant.api.gs.reports.GsReportApi.get_report', Mock()) mock.return_value = factor_risk_report # mock getting report factor data mock = replace('gs_quant.api.gs.reports.GsReportApi.get_factor_risk_report_results', Mock()) mock.return_value = factor_data # mock getting risk model dates mock = replace('gs_quant.api.gs.risk_models.GsRiskModelApi.get_risk_model_dates', Mock()) mock.return_value = ['2010-01-01'] # mock getting risk model factor category mock = replace('gs_quant.api.gs.risk_models.GsFactorRiskModelApi.get_risk_model_data', Mock()) mock.return_value = { 'results': [{ 'factorData': [{ 'factorId': 'factor_id', 'factorCategory': 'Factor Name' }]} ]} # mock getting risk model factor entity mock = replace('gs_quant.api.gs.risk_models.GsFactorRiskModelApi.get_risk_model_factor_data', Mock()) mock.return_value = [{ 'identifier': 'factor_id', 'type': 'Factor', 'name': 'Factor Name', 'factorCategory': 'Factor Name' }] with DataContext(datetime.date(2020, 11, 23), datetime.date(2020, 11, 25)): actual = mr.factor_pnl('report_id', 'Factor Name') assert all(actual.values == [11.23, 11.24, 11.25]) with pytest.raises(MqValueError): mr.factor_pnl('report_id', 'Wrong Factor Name') replace.restore() def test_factor_pnl_percent(): replace = Replacer() # mock getting risk model entity() mock = replace('gs_quant.api.gs.risk_models.GsRiskModelApi.get_risk_model', Mock()) mock.return_value = risk_model mock = replace('gs_quant.api.gs.reports.GsReportApi.get_report', Mock()) mock.return_value = factor_risk_report # mock getting report factor data mock = replace('gs_quant.api.gs.reports.GsReportApi.get_factor_risk_report_results', Mock()) mock.return_value = factor_data # mock getting risk model dates mock = replace('gs_quant.api.gs.risk_models.GsRiskModelApi.get_risk_model_dates', Mock()) mock.return_value = ['2010-01-01'] # mock getting risk model factor category mock = replace('gs_quant.api.gs.risk_models.GsFactorRiskModelApi.get_risk_model_data', Mock()) mock.return_value = { 'results': [{ 'factorData': [{ 'factorId': 'factor_id', 'factorCategory': 'Factor Name' }]} ]} # mock getting risk model factor entity mock = replace('gs_quant.api.gs.risk_models.GsFactorRiskModelApi.get_risk_model_factor_data', Mock()) mock.return_value = [{ 'identifier': 'factor_id', 'type': 'Factor', 'name': 'Factor Name', 'factorCategory': 'Factor Name' }] with DataContext(datetime.date(2020, 11, 23), datetime.date(2020, 11, 25)): # mock getting aum source mock = replace('gs_quant.markets.portfolio_manager.PortfolioManager.get_aum_source', Mock()) mock.return_value = RiskAumSource.Long # mock getting performance report mock = replace('gs_quant.markets.portfolio_manager.PortfolioManager.get_performance_report', Mock()) mock.return_value = PerformanceReport(id='ID') # mock getting aum mock = replace('gs_quant.markets.report.PerformanceReport.get_long_exposure', Mock()) mock.return_value = pandas.DataFrame.from_dict({'date': ['2020-11-25'], 'longExposure': [100]}) actual = mr.factor_pnl('report_id', 'Factor Name', 'Percent') assert all(actual.values == [11.23, 11.24, 11.25]) with DataContext(datetime.date(2020, 11, 23), datetime.date(2020, 11, 25)): # mock getting aum source mock = replace('gs_quant.markets.portfolio_manager.PortfolioManager.get_aum_source', Mock()) mock.return_value = RiskAumSource.Short # mock getting performance report mock = replace('gs_quant.markets.portfolio_manager.PortfolioManager.get_performance_report', Mock()) mock.return_value = PerformanceReport(id='ID') # mock getting aum mock = replace('gs_quant.markets.report.PerformanceReport.get_short_exposure', Mock()) mock.return_value = pandas.DataFrame.from_dict({'date': ['2020-11-25'], 'shortExposure': [100]}) actual = mr.factor_pnl('report_id', 'Factor Name', 'Percent') assert all(actual.values == [11.23, 11.24, 11.25]) with DataContext(datetime.date(2020, 11, 23), datetime.date(2020, 11, 25)): # mock getting aum source mock = replace('gs_quant.markets.portfolio_manager.PortfolioManager.get_aum_source', Mock()) mock.return_value = RiskAumSource.Gross # mock getting performance report mock = replace('gs_quant.markets.portfolio_manager.PortfolioManager.get_performance_report', Mock()) mock.return_value = PerformanceReport(id='ID') # mock getting aum mock = replace('gs_quant.markets.report.PerformanceReport.get_gross_exposure', Mock()) mock.return_value = pandas.DataFrame.from_dict({'date': ['2020-11-25'], 'grossExposure': [400]}) actual = mr.factor_pnl('report_id', 'Factor Name', 'Percent') assert all(actual.values == [11.23 / 4, 11.24 / 4, 11.25 / 4]) with DataContext(datetime.date(2020, 11, 23), datetime.date(2020, 11, 25)): # mock getting aum source mock = replace('gs_quant.markets.portfolio_manager.PortfolioManager.get_aum_source', Mock()) mock.return_value = RiskAumSource.Net # mock getting performance report mock = replace('gs_quant.markets.portfolio_manager.PortfolioManager.get_performance_report', Mock()) mock.return_value = PerformanceReport(id='ID') # mock getting aum mock = replace('gs_quant.markets.report.PerformanceReport.get_net_exposure', Mock()) mock.return_value = pandas.DataFrame.from_dict({'date': ['2020-11-25'], 'netExposure': [200]}) actual = mr.factor_pnl('report_id', 'Factor Name', 'Percent') assert all(actual.values == [11.23 / 2, 11.24 / 2, 11.25 / 2]) with pytest.raises(MqValueError): # mock getting aum source mock = replace('gs_quant.markets.portfolio_manager.PortfolioManager.get_aum_source', Mock()) mock.return_value = RiskAumSource.Net # mock getting performance report mock = replace('gs_quant.markets.portfolio_manager.PortfolioManager.get_performance_report', Mock()) mock.return_value = PerformanceReport(id='ID') # mock getting aum mock = replace('gs_quant.markets.report.PerformanceReport.get_net_exposure', Mock()) mock.return_value = pandas.DataFrame.from_dict({'date': ['2020-11-24'], 'netExposure': [200]}) mr.factor_pnl('report_id', 'Factor Name', 'Percent') replace.restore() def test_asset_factor_pnl_percent(): replace = Replacer() # mock getting risk model entity() mock = replace('gs_quant.api.gs.risk_models.GsRiskModelApi.get_risk_model', Mock()) mock.return_value = risk_model mock = replace('gs_quant.api.gs.reports.GsReportApi.get_report', Mock()) mock.return_value = asset_factor_risk_report # mock getting report factor data mock = replace('gs_quant.api.gs.reports.GsReportApi.get_factor_risk_report_results', Mock()) mock.return_value = factor_data # mock getting risk model dates mock = replace('gs_quant.api.gs.risk_models.GsRiskModelApi.get_risk_model_dates', Mock()) mock.return_value = ['2010-01-01'] # mock getting risk model factor category mock = replace('gs_quant.api.gs.risk_models.GsFactorRiskModelApi.get_risk_model_data', Mock()) mock.return_value = { 'results': [{ 'factorData': [{ 'factorId': 'factor_id', 'factorCategory': 'Factor Name' }]} ]} # mock getting risk model factor entity mock = replace('gs_quant.api.gs.risk_models.GsFactorRiskModelApi.get_risk_model_factor_data', Mock()) mock.return_value = [{ 'identifier': 'factor_id', 'type': 'Factor', 'name': 'Factor Name', 'factorCategory': 'Factor Name' }] with pytest.raises(MqValueError): mr.factor_pnl('report_id', 'Factor Name', 'Percent') replace.restore() def test_factor_proportion_of_risk(): replace = Replacer() # mock getting risk model entity() mock = replace('gs_quant.api.gs.risk_models.GsRiskModelApi.get_risk_model', Mock()) mock.return_value = risk_model mock = replace('gs_quant.api.gs.reports.GsReportApi.get_report', Mock()) mock.return_value = factor_risk_report # mock getting report factor data mock = replace('gs_quant.api.gs.reports.GsReportApi.get_factor_risk_report_results', Mock()) mock.return_value = factor_data # mock getting risk model dates mock = replace('gs_quant.api.gs.risk_models.GsRiskModelApi.get_risk_model_dates', Mock()) mock.return_value = ['2010-01-01'] # mock getting risk model factor category mock = replace('gs_quant.api.gs.risk_models.GsFactorRiskModelApi.get_risk_model_data', Mock()) mock.return_value = { 'results': [{ 'factorData': [{ 'factorId': 'factor_id', 'factorCategory': 'Factor Name' }]} ]} # mock getting risk model factor entity mock = replace('gs_quant.api.gs.risk_models.GsFactorRiskModelApi.get_risk_model_factor_data', Mock()) mock.return_value = [{ 'identifier': 'factor_id', 'type': 'Factor', 'name': 'Factor Name', 'factorCategory': 'Factor Name' }] with DataContext(datetime.date(2020, 11, 23), datetime.date(2020, 11, 25)): actual = mr.factor_proportion_of_risk('report_id', 'Factor Name') assert all(actual.values == [1, 2, 3]) with pytest.raises(MqValueError): mr.factor_proportion_of_risk('report_id', 'Wrong Factor Name') replace.restore() def test_get_factor_data(): replace = Replacer() mock = replace('gs_quant.api.gs.reports.GsReportApi.get_report', Mock()) mock.return_value = ppa_report with pytest.raises(MqValueError): mr.factor_proportion_of_risk('report_id', 'Factor Name') replace.restore() def test_aggregate_factor_support(): replace = Replacer() # mock getting risk model entity() mock = replace('gs_quant.api.gs.risk_models.GsRiskModelApi.get_risk_model', Mock()) mock.return_value = risk_model mock = replace('gs_quant.api.gs.reports.GsReportApi.get_report', Mock()) mock.return_value = factor_risk_report # mock getting report factor data mock = replace('gs_quant.api.gs.reports.GsReportApi.get_factor_risk_report_results', Mock()) mock.return_value = aggregate_factor_data # mock getting risk model dates mock = replace('gs_quant.api.gs.risk_models.GsRiskModelApi.get_risk_model_dates', Mock()) mock.return_value = ['2010-01-01'] # mock getting risk model factor category mock = replace('gs_quant.api.gs.risk_models.GsFactorRiskModelApi.get_risk_model_data', Mock()) mock.return_value = { 'results': [{ 'factorData': [{ 'factorId': 'factor_id', 'factorCategory': 'Factor Name' }]} ]} # mock getting risk model factor entity mock = replace('gs_quant.api.gs.risk_models.GsFactorRiskModelApi.get_risk_model_factor_data', Mock()) mock.return_value = [{ 'identifier': 'factor_id', 'type': 'Factor', 'name': 'Factor Name', 'factorCategory': 'Factor Name' }] with DataContext(datetime.date(2020, 11, 23), datetime.date(2020, 11, 25)): actual = mr.factor_proportion_of_risk('report_id', 'Factor') assert all(actual.values == [1, 2, 3]) with DataContext(datetime.date(2020, 11, 23), datetime.date(2020, 11, 25)): actual = mr.daily_risk('report_id', 'Factor') assert all(actual.values == [1, 2, 3]) with DataContext(datetime.date(2020, 11, 23), datetime.date(2020, 11, 25)): actual = mr.annual_risk('report_id', 'Factor') assert all(actual.values == [1, 2, 3]) with pytest.raises(MqValueError): mr.daily_risk('report_id', 'Factor Name') with pytest.raises(MqValueError): mr.annual_risk('report_id', 'Factor Name') replace.restore() def test_normalized_performance(): idx = pd.date_range('2020-01-02', freq='D', periods=3) replace = Replacer() expected = {None: pd.Series(data=[1, 2, 3], index=idx, name='normalizedPerformance', dtype='float64'), "Long": pd.Series(data=[1, 2, 3], index=idx, name='normalizedPerformance', dtype='float64')} mock = replace('gs_quant.api.gs.portfolios.GsPortfolioApi.get_reports', Mock()) mock.return_value = [ Report.from_dict({'id': 'RP1', 'positionSourceType': 'Portfolio', 'positionSourceId': 'MP1', 'type': 'Portfolio Performance Analytics', 'parameters': {'transactionCostModel': 'FIXED'}})] # mock PerformanceReport.get_portfolio_constituents() mock = replace('gs_quant.markets.report.PerformanceReport.get_portfolio_constituents', Mock()) mock.return_value = MarketDataResponseFrame(data=constituents_data) # mock PerformanceReport.get() mock = replace('gs_quant.markets.report.PerformanceReport.get', Mock()) mock.return_value = PerformanceReport(report_id='RP1', position_source_type='Portfolio', position_source_id='MP1', report_type='Portfolio Performance Analytics', parameters=ReportParameters(transaction_cost_model='FIXED')) for k, v in expected.items(): with DataContext(datetime.date(2020, 1, 1), datetime.date(2019, 1, 3)): actual = mr.normalized_performance('MP1', k) assert all(actual.values == v.values) replace.restore() def test_normalized_performance_short(): idx = pd.date_range('2020-01-02', freq='D', periods=3) replace = Replacer() expected = {"Short": pd.Series(data=[1, 1 / 2, 1 / 3], index=idx, name='normalizedPerformance', dtype='float64'), "Long": pd.Series(data=[1, 2, 3], index=idx, name='normalizedPerformance', dtype='float64'), None: pd.Series(data=[1, (2 + 1 / 2) / 2, (3 + 1 / 3) / 2], index=idx, name='normalizedPerformance', dtype='float64')} mock = replace('gs_quant.api.gs.portfolios.GsPortfolioApi.get_reports', Mock()) mock.return_value = [ Report.from_dict({'id': 'RP1', 'positionSourceType': 'Portfolio', 'positionSourceId': 'MP1', 'type': 'Portfolio Performance Analytics', 'parameters': {'transactionCostModel': 'FIXED'}})] # mock PerformanceReport.get_portfolio_constituents() mock = replace('gs_quant.markets.report.PerformanceReport.get_portfolio_constituents', Mock()) mock.return_value = MarketDataResponseFrame(data=constituents_data_l_s) # mock PerformanceReport.get() mock = replace('gs_quant.markets.report.PerformanceReport.get', Mock()) mock.return_value = PerformanceReport(report_id='RP1', position_source_type='Portfolio', position_source_id='MP1', report_type='Portfolio Performance Analytics', parameters=ReportParameters(transaction_cost_model='FIXED')) for k, v in expected.items(): with DataContext(datetime.date(2020, 1, 1), datetime.date(2019, 1, 3)): actual = mr.normalized_performance('MP1', k) assert all((actual.values - v.values) < 0.01) replace.restore() def test_get_long_pnl(): idx = pd.date_range('2020-01-02', freq='D', periods=3) replace = Replacer() expected = pd.Series(data=[0, 2, 2], index=idx, name='longPnl', dtype='float64') mock = replace('gs_quant.api.gs.portfolios.GsPortfolioApi.get_reports', Mock()) mock.return_value = [ Report.from_dict({'id': 'RP1', 'positionSourceType': 'Portfolio', 'positionSourceId': 'MP1', 'type': 'Portfolio Performance Analytics', 'parameters': {'transactionCostModel': 'FIXED'}})] # mock PerformanceReport.get_portfolio_constituents() mock = replace('gs_quant.markets.report.PerformanceReport.get_portfolio_constituents', Mock()) mock.return_value = MarketDataResponseFrame(data=pnl_data_l_s) # mock PerformanceReport.get() mock = replace('gs_quant.markets.report.PerformanceReport.get', Mock()) mock.return_value = PerformanceReport(report_id='RP1', position_source_type='Portfolio', position_source_id='MP1', report_type='Portfolio Performance Analytics', parameters=ReportParameters(transaction_cost_model='FIXED')) with DataContext(datetime.date(2020, 1, 1), datetime.date(2019, 1, 3)): actual = mr.long_pnl('MP1') assert all(actual.values == expected.values) replace.restore() def test_get_short_pnl(): idx = pd.date_range('2020-01-02', freq='D', periods=3) replace = Replacer() expected = pd.Series(data=[0, -2, -2], index=idx, name='shortPnl', dtype='float64') mock = replace('gs_quant.api.gs.portfolios.GsPortfolioApi.get_reports', Mock()) mock.return_value = [ Report.from_dict({'id': 'RP1', 'positionSourceType': 'Portfolio', 'positionSourceId': 'MP1', 'type': 'Portfolio Performance Analytics', 'parameters': {'transactionCostModel': 'FIXED'}})] # mock PerformanceReport.get_portfolio_constituents() mock = replace('gs_quant.markets.report.PerformanceReport.get_portfolio_constituents', Mock()) mock.return_value = MarketDataResponseFrame(data=pnl_data_l_s) # mock PerformanceReport.get() mock = replace('gs_quant.markets.report.PerformanceReport.get', Mock()) mock.return_value = PerformanceReport(report_id='RP1', position_source_type='Portfolio', position_source_id='MP1', report_type='Portfolio Performance Analytics', parameters=ReportParameters(transaction_cost_model='FIXED')) with DataContext(datetime.date(2020, 1, 1), datetime.date(2019, 1, 3)): actual = mr.short_pnl('MP1') assert all(actual.values == expected.values) replace.restore() def test_get_short_pnl_empty(): replace = Replacer() expected = pd.Series(dtype=float) mock = replace('gs_quant.api.gs.portfolios.GsPortfolioApi.get_reports', Mock()) mock.return_value = [ Report.from_dict({'id': 'RP1', 'positionSourceType': 'Portfolio', 'positionSourceId': 'MP1', 'type': 'Portfolio Performance Analytics', 'parameters': {'transactionCostModel': 'FIXED'}})] # mock PerformanceReport.get_portfolio_constituents() mock = replace('gs_quant.markets.report.PerformanceReport.get_portfolio_constituents', Mock()) mock.return_value = MarketDataResponseFrame(data=constituents_data) # mock PerformanceReport.get() mock = replace('gs_quant.markets.report.PerformanceReport.get', Mock()) mock.return_value = PerformanceReport(report_id='RP1', position_source_type='Portfolio', position_source_id='MP1', report_type='Portfolio Performance Analytics', parameters=ReportParameters(transaction_cost_model='FIXED')) with DataContext(datetime.date(2020, 1, 1), datetime.date(2019, 1, 3)): actual = mr.short_pnl('MP1') assert all(actual.values == expected.values) replace.restore() def test_get_long_pnl_empty(): replace = Replacer() expected = pd.Series(dtype=float) mock = replace('gs_quant.api.gs.portfolios.GsPortfolioApi.get_reports', Mock()) mock.return_value = [ Report.from_dict({'id': 'RP1', 'positionSourceType': 'Portfolio', 'positionSourceId': 'MP1', 'type': 'Portfolio Performance Analytics', 'parameters': {'transactionCostModel': 'FIXED'}})] # mock PerformanceReport.get_portfolio_constituents() mock = replace('gs_quant.markets.report.PerformanceReport.get_portfolio_constituents', Mock()) mock.return_value = MarketDataResponseFrame(data=constituents_data_s) # mock PerformanceReport.get() mock = replace('gs_quant.markets.report.PerformanceReport.get', Mock()) mock.return_value = PerformanceReport(report_id='RP1', position_source_type='Portfolio', position_source_id='MP1', report_type='Portfolio Performance Analytics', parameters=ReportParameters(transaction_cost_model='FIXED')) with DataContext(datetime.date(2020, 1, 1), datetime.date(2019, 1, 3)): actual = mr.long_pnl('MP1') assert all(actual.values == expected.values) replace.restore() def test_thematic_exposure(): replace = Replacer() # mock getting PTA report mock = replace('gs_quant.markets.report.ThematicReport.get', Mock()) mock.return_value = ThematicReport(id='report_id') # mock getting thematic exposure mock = replace('gs_quant.markets.report.ThematicReport.get_thematic_exposure', Mock()) mock.return_value = pd.DataFrame(thematic_data) # mock getting asset mock = Stock('MAA0NE9QX2ABETG6', 'Test Asset') xrefs = replace('gs_quant.timeseries.measures.GsAssetApi.get_asset_xrefs', Mock()) xrefs.return_value = [ GsTemporalXRef(datetime.date(2019, 1, 1), datetime.date(2952, 12, 31), XRef(ticker='basket_ticker', )) ] replace('gs_quant.markets.securities.SecurityMaster.get_asset', Mock()).return_value = mock with DataContext(datetime.date(2020, 7, 12), datetime.date(2020, 7, 15)): actual = mr.thematic_exposure('report_id', 'basket_ticker') assert all(actual.values == [2, 2, 2, 2]) replace.restore() def test_thematic_beta(): replace = Replacer() # mock getting PTA report mock = replace('gs_quant.markets.report.ThematicReport.get', Mock()) mock.return_value = ThematicReport(id='report_id') # mock getting thematic exposure mock = replace('gs_quant.markets.report.ThematicReport.get_thematic_betas', Mock()) mock.return_value = pd.DataFrame(thematic_data) # mock getting asset mock = Stock('MAA0NE9QX2ABETG6', 'Test Asset') xrefs = replace('gs_quant.timeseries.measures.GsAssetApi.get_asset_xrefs', Mock()) xrefs.return_value = [ GsTemporalXRef(datetime.date(2019, 1, 1), datetime.date(2952, 12, 31), XRef(ticker='basket_ticker', )) ] replace('gs_quant.markets.securities.SecurityMaster.get_asset', Mock()).return_value = mock with DataContext(datetime.date(2020, 7, 12), datetime.date(2020, 7, 15)): actual = mr.thematic_beta('report_id', 'basket_ticker') assert all(actual.values == [1, 1, 1, 1]) replace.restore() if __name__ == '__main__': pytest.main(args=[__file__])
36.934343
118
0.617011
4a252e69a870d22d7b4d6220d6bc4c2a57053958
36,447
py
Python
apigpio_fork/apigpio.py
magnusnordlander/silvia-pi
3b927f73f8c8608a17f1f0e6458d06eff0f1d09a
[ "MIT" ]
16
2020-06-09T22:34:18.000Z
2021-02-09T15:31:16.000Z
apigpio_fork/apigpio.py
magnusnordlander/silvia-pi
3b927f73f8c8608a17f1f0e6458d06eff0f1d09a
[ "MIT" ]
null
null
null
apigpio_fork/apigpio.py
magnusnordlander/silvia-pi
3b927f73f8c8608a17f1f0e6458d06eff0f1d09a
[ "MIT" ]
1
2020-09-03T15:21:15.000Z
2020-09-03T15:21:15.000Z
import asyncio import socket import struct import sys import functools from .ctes import * exceptions = True # pigpio command numbers _PI_CMD_MODES = 0 _PI_CMD_MODEG = 1 _PI_CMD_PUD = 2 _PI_CMD_READ = 3 _PI_CMD_WRITE = 4 _PI_CMD_PWM = 5 _PI_CMD_PRS = 6 _PI_CMD_PFS = 7 _PI_CMD_SERVO = 8 _PI_CMD_WDOG = 9 _PI_CMD_BR1 = 10 _PI_CMD_BR2 = 11 _PI_CMD_BC1 = 12 _PI_CMD_BC2 = 13 _PI_CMD_BS1 = 14 _PI_CMD_BS2 = 15 _PI_CMD_TICK = 16 _PI_CMD_HWVER = 17 _PI_CMD_NO = 18 _PI_CMD_NB = 19 _PI_CMD_NP = 20 _PI_CMD_NC = 21 _PI_CMD_PRG = 22 _PI_CMD_PFG = 23 _PI_CMD_PRRG = 24 _PI_CMD_HELP = 25 _PI_CMD_PIGPV = 26 _PI_CMD_WVCLR = 27 _PI_CMD_WVAG = 28 _PI_CMD_WVAS = 29 _PI_CMD_WVGO = 30 _PI_CMD_WVGOR = 31 _PI_CMD_WVBSY = 32 _PI_CMD_WVHLT = 33 _PI_CMD_WVSM = 34 _PI_CMD_WVSP = 35 _PI_CMD_WVSC = 36 _PI_CMD_TRIG = 37 _PI_CMD_PROC = 38 _PI_CMD_PROCD = 39 _PI_CMD_PROCR = 40 _PI_CMD_PROCS = 41 _PI_CMD_SLRO = 42 _PI_CMD_SLR = 43 _PI_CMD_SLRC = 44 _PI_CMD_PROCP = 45 _PI_CMD_MICRO = 46 _PI_CMD_MILLI = 47 _PI_CMD_PARSE = 48 _PI_CMD_WVCRE = 49 _PI_CMD_WVDEL = 50 _PI_CMD_WVTX = 51 _PI_CMD_WVTXR = 52 _PI_CMD_WVNEW = 53 _PI_CMD_I2CO = 54 _PI_CMD_I2CC = 55 _PI_CMD_I2CRD = 56 _PI_CMD_I2CWD = 57 _PI_CMD_I2CWQ = 58 _PI_CMD_I2CRS = 59 _PI_CMD_I2CWS = 60 _PI_CMD_I2CRB = 61 _PI_CMD_I2CWB = 62 _PI_CMD_I2CRW = 63 _PI_CMD_I2CWW = 64 _PI_CMD_I2CRK = 65 _PI_CMD_I2CWK = 66 _PI_CMD_I2CRI = 67 _PI_CMD_I2CWI = 68 _PI_CMD_I2CPC = 69 _PI_CMD_I2CPK = 70 _PI_CMD_SPIO = 71 _PI_CMD_SPIC = 72 _PI_CMD_SPIR = 73 _PI_CMD_SPIW = 74 _PI_CMD_SPIX = 75 _PI_CMD_SERO = 76 _PI_CMD_SERC = 77 _PI_CMD_SERRB = 78 _PI_CMD_SERWB = 79 _PI_CMD_SERR = 80 _PI_CMD_SERW = 81 _PI_CMD_SERDA = 82 _PI_CMD_GDC = 83 _PI_CMD_GPW = 84 _PI_CMD_HC = 85 _PI_CMD_HP = 86 _PI_CMD_CF1 = 87 _PI_CMD_CF2 = 88 _PI_CMD_FG = 97 _PI_CMD_FN = 98 _PI_CMD_NOIB = 99 _PI_CMD_BI2CC = 89 _PI_CMD_BI2CO = 90 _PI_CMD_BI2CZ = 91 _PI_CMD_I2CZ = 92 _PI_CMD_WVCHA = 93 _PI_CMD_SLRI = 94 _PI_CMD_BSPIC = 111 _PI_CMD_BSPIO = 112 _PI_CMD_BSPIX = 113 # pigpio error text _errors = [ [PI_INIT_FAILED, "pigpio initialisation failed"], [PI_BAD_USER_GPIO, "gpio not 0-31"], [PI_BAD_GPIO, "gpio not 0-53"], [PI_BAD_MODE, "mode not 0-7"], [PI_BAD_LEVEL, "level not 0-1"], [PI_BAD_PUD, "pud not 0-2"], [PI_BAD_PULSEWIDTH, "pulsewidth not 0 or 500-2500"], [PI_BAD_DUTYCYCLE, "dutycycle not 0-range (default 255)"], [PI_BAD_TIMER, "timer not 0-9"], [PI_BAD_MS, "ms not 10-60000"], [PI_BAD_TIMETYPE, "timetype not 0-1"], [PI_BAD_SECONDS, "seconds < 0"], [PI_BAD_MICROS, "micros not 0-999999"], [PI_TIMER_FAILED, "gpioSetTimerFunc failed"], [PI_BAD_WDOG_TIMEOUT, "timeout not 0-60000"], [PI_NO_ALERT_FUNC, "DEPRECATED"], [PI_BAD_CLK_PERIPH, "clock peripheral not 0-1"], [PI_BAD_CLK_SOURCE, "DEPRECATED"], [PI_BAD_CLK_MICROS, "clock micros not 1, 2, 4, 5, 8, or 10"], [PI_BAD_BUF_MILLIS, "buf millis not 100-10000"], [PI_BAD_DUTYRANGE, "dutycycle range not 25-40000"], [PI_BAD_SIGNUM, "signum not 0-63"], [PI_BAD_PATHNAME, "can't open pathname"], [PI_NO_HANDLE, "no handle available"], [PI_BAD_HANDLE, "unknown handle"], [PI_BAD_IF_FLAGS, "ifFlags > 3"], [PI_BAD_CHANNEL, "DMA channel not 0-14"], [PI_BAD_SOCKET_PORT, "socket port not 1024-30000"], [PI_BAD_FIFO_COMMAND, "unknown fifo command"], [PI_BAD_SECO_CHANNEL, "DMA secondary channel not 0-6"], [PI_NOT_INITIALISED, "function called before gpioInitialise"], [PI_INITIALISED, "function called after gpioInitialise"], [PI_BAD_WAVE_MODE, "waveform mode not 0-1"], [PI_BAD_CFG_INTERNAL, "bad parameter in gpioCfgInternals call"], [PI_BAD_WAVE_BAUD, "baud rate not 50-250000(RX)/1000000(TX)"], [PI_TOO_MANY_PULSES, "waveform has too many pulses"], [PI_TOO_MANY_CHARS, "waveform has too many chars"], [PI_NOT_SERIAL_GPIO, "no bit bang serial read in progress on gpio"], [PI_NOT_PERMITTED, "no permission to update gpio"], [PI_SOME_PERMITTED, "no permission to update one or more gpios"], [PI_BAD_WVSC_COMMND, "bad WVSC subcommand"], [PI_BAD_WVSM_COMMND, "bad WVSM subcommand"], [PI_BAD_WVSP_COMMND, "bad WVSP subcommand"], [PI_BAD_PULSELEN, "trigger pulse length not 1-100"], [PI_BAD_SCRIPT, "invalid script"], [PI_BAD_SCRIPT_ID, "unknown script id"], [PI_BAD_SER_OFFSET, "add serial data offset > 30 minute"], [PI_GPIO_IN_USE, "gpio already in use"], [PI_BAD_SERIAL_COUNT, "must read at least a byte at a time"], [PI_BAD_PARAM_NUM, "script parameter id not 0-9"], [PI_DUP_TAG, "script has duplicate tag"], [PI_TOO_MANY_TAGS, "script has too many tags"], [PI_BAD_SCRIPT_CMD, "illegal script command"], [PI_BAD_VAR_NUM, "script variable id not 0-149"], [PI_NO_SCRIPT_ROOM, "no more room for scripts"], [PI_NO_MEMORY, "can't allocate temporary memory"], [PI_SOCK_READ_FAILED, "socket read failed"], [PI_SOCK_WRIT_FAILED, "socket write failed"], [PI_TOO_MANY_PARAM, "too many script parameters (> 10)"], [PI_NOT_HALTED, "script already running or failed"], [PI_BAD_TAG, "script has unresolved tag"], [PI_BAD_MICS_DELAY, "bad MICS delay (too large)"], [PI_BAD_MILS_DELAY, "bad MILS delay (too large)"], [PI_BAD_WAVE_ID, "non existent wave id"], [PI_TOO_MANY_CBS, "No more CBs for waveform"], [PI_TOO_MANY_OOL, "No more OOL for waveform"], [PI_EMPTY_WAVEFORM, "attempt to create an empty waveform"], [PI_NO_WAVEFORM_ID, "No more waveform ids"], [PI_I2C_OPEN_FAILED, "can't open I2C device"], [PI_SER_OPEN_FAILED, "can't open serial device"], [PI_SPI_OPEN_FAILED, "can't open SPI device"], [PI_BAD_I2C_BUS, "bad I2C bus"], [PI_BAD_I2C_ADDR, "bad I2C address"], [PI_BAD_SPI_CHANNEL, "bad SPI channel"], [PI_BAD_FLAGS, "bad i2c/spi/ser open flags"], [PI_BAD_SPI_SPEED, "bad SPI speed"], [PI_BAD_SER_DEVICE, "bad serial device name"], [PI_BAD_SER_SPEED, "bad serial baud rate"], [PI_BAD_PARAM, "bad i2c/spi/ser parameter"], [PI_I2C_WRITE_FAILED, "I2C write failed"], [PI_I2C_READ_FAILED, "I2C read failed"], [PI_BAD_SPI_COUNT, "bad SPI count"], [PI_SER_WRITE_FAILED, "ser write failed"], [PI_SER_READ_FAILED, "ser read failed"], [PI_SER_READ_NO_DATA, "ser read no data available"], [PI_UNKNOWN_COMMAND, "unknown command"], [PI_SPI_XFER_FAILED, "SPI xfer/read/write failed"], [PI_BAD_POINTER, "bad (NULL) pointer"], [PI_NO_AUX_SPI, "need a A+/B+/Pi2 for auxiliary SPI"], [PI_NOT_PWM_GPIO, "gpio is not in use for PWM"], [PI_NOT_SERVO_GPIO, "gpio is not in use for servo pulses"], [PI_NOT_HCLK_GPIO, "gpio has no hardware clock"], [PI_NOT_HPWM_GPIO, "gpio has no hardware PWM"], [PI_BAD_HPWM_FREQ, "hardware PWM frequency not 1-125M"], [PI_BAD_HPWM_DUTY, "hardware PWM dutycycle not 0-1M"], [PI_BAD_HCLK_FREQ, "hardware clock frequency not 4689-250M"], [PI_BAD_HCLK_PASS, "need password to use hardware clock 1"], [PI_HPWM_ILLEGAL, "illegal, PWM in use for main clock"], [PI_BAD_DATABITS, "serial data bits not 1-32"], [PI_BAD_STOPBITS, "serial (half) stop bits not 2-8"], [PI_MSG_TOOBIG, "socket/pipe message too big"], [PI_BAD_MALLOC_MODE, "bad memory allocation mode"], [PI_TOO_MANY_SEGS, "too many I2C transaction segments"], [PI_BAD_I2C_SEG, "an I2C transaction segment failed"], [PI_BAD_SMBUS_CMD, "SMBus command not supported"], [PI_NOT_I2C_GPIO, "no bit bang I2C in progress on gpio"], [PI_BAD_I2C_WLEN, "bad I2C write length"], [PI_BAD_I2C_RLEN, "bad I2C read length"], [PI_BAD_I2C_CMD, "bad I2C command"], [PI_BAD_I2C_BAUD, "bad I2C baud rate, not 50-500k"], [PI_CHAIN_LOOP_CNT, "bad chain loop count"], [PI_BAD_CHAIN_LOOP, "empty chain loop"], [PI_CHAIN_COUNTER, "too many chain counters"], [PI_BAD_CHAIN_CMD, "bad chain command"], [PI_BAD_CHAIN_DELAY, "bad chain delay micros"], [PI_CHAIN_NESTING, "chain counters nested too deeply"], [PI_CHAIN_TOO_BIG, "chain is too long"], [PI_DEPRECATED, "deprecated function removed"], [PI_BAD_SER_INVERT, "bit bang serial invert not 0 or 1"], ] class ApigpioError(Exception): """pigpio module exception""" def __init__(self, value): self.value = value def __str__(self): return repr(self.value) def error_text(errnum): """ Returns a text description of a pigpio error. errnum:= <0, the error number ... print(pigpio.error_text(-5)) level not 0-1 ... """ for e in _errors: if e[0] == errnum: return e[1] return "unknown error ({})".format(errnum) # A couple of hacks to cope with different string handling # between various Python versions # 3 != 2.7.8 != 2.7.3 # fixme : remove as we only support 3.4+ if sys.hexversion < 0x03000000: def _b(x): return x else: def _b(x): return x.encode('latin-1') if sys.hexversion < 0x02070800: def _str(x): return buffer(x) else: def _str(x): return x def u2i(uint32): """ Converts a 32 bit unsigned number to signed. uint32:= an unsigned 32 bit number ... print(u2i(4294967272)) -24 print(u2i(37)) 37 ... """ mask = (2 ** 32) - 1 if uint32 & (1 << 31): v = uint32 | ~mask else: v = uint32 & mask return v def _u2i(uint32): """ Converts a 32 bit unsigned number to signed. If the number is negative it indicates an error. On error a pigpio exception will be raised if exceptions is True. """ v = u2i(uint32) if v < 0: if exceptions: raise ApigpioError(error_text(v)) return v class _callback_ADT: """An ADT class to hold callback information.""" def __init__(self, gpio, edge, func): """ Initialises a callback ADT. gpio:= Broadcom gpio number. edge:= EITHER_EDGE, RISING_EDGE, or FALLING_EDGE. func:= a user function taking three arguments (gpio, level, tick). """ self.gpio = gpio self.edge = edge self._func = func self.bit = 1 << gpio @property def func(self): def _f(*args, **kwargs): # protect our-self from faulty callbacks try: self._func(*args, **kwargs) except Exception as e: print('Exception raised when running callback {}'.format(e)) return _f class _callback_handler(object): """ A class to handle callbacks. Each instance of this class open it's own connection to gpiod, which is only used to listen for notifications. """ def __init__(self, pi): self._loop = pi._loop self.pi = pi self.handle = None self.monitor = 0 self.callbacks = [] self.f_stop = asyncio.Future(loop=self._loop) self.f_stopped = asyncio.Future(loop=self._loop) @asyncio.coroutine def _connect(self, address): # FIXME: duplication with pi.connect self.s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Disable the Nagle algorithm. self.s.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) self.s.setblocking(False) # TODO: handle connection errors ! yield from self._loop.sock_connect(self.s, address) self.handle = yield from self._pigpio_aio_command(_PI_CMD_NOIB, 0, 0) asyncio.ensure_future(self._wait_for_notif(), loop=self._loop) @asyncio.coroutine def close(self): if not self.f_stop.done(): self.handle = yield from self._pigpio_aio_command(_PI_CMD_NC, self.handle, 0) self.f_stop.set_result(True) yield from self.f_stopped @asyncio.coroutine def _wait_for_notif(self): last_level = 0 while True: MSG_SIZ = 12 f_recv = self._loop.sock_recv(self.s, MSG_SIZ) tup = yield from asyncio.\ wait([f_recv, self.f_stop], return_when=asyncio.FIRST_COMPLETED) done, pending = tup if self.f_stop in done: break else: buf = done.pop().result() # buf = yield from self._loop.sock_recv(self.s, MSG_SIZ) while len(buf) < MSG_SIZ: yield from self._loop.sock_recv(self.s, MSG_SIZ-len(buf)) seq, flags, tick, level = (struct.unpack('HHII', buf)) if flags == 0: changed = level ^ last_level last_level = level for cb in self.callbacks: if cb.bit & changed: new_level = 0 if cb.bit & level: new_level = 1 if cb.edge ^ new_level: cb.func(cb.gpio, new_level, tick) else: if flags & NTFY_FLAGS_WDOG: print('watchdog signal') gpio = flags & NTFY_FLAGS_GPIO for cb in self.callbacks: if cb.gpio == gpio: cb.func(cb.gpio, TIMEOUT, tick) if flags & NTFY_FLAGS_ALIVE: print('keep alive signal') # no event for now # elif flags & NTFY_FLAGS_EVENT: # event = flags & NTFY_FLAGS_GPIO # for cb in self.events: # if cb.event == event: # cb.func(event, tick) self.s.close() self.f_stopped.set_result(True) @asyncio.coroutine def append(self, cb): """Adds a callback.""" self.callbacks.append(cb.callb) self.monitor = self.monitor | cb.callb.bit yield from self.pi._pigpio_aio_command(_PI_CMD_NB, self.handle, self.monitor) @asyncio.coroutine def remove(self, cb): """Removes a callback.""" if cb in self.callbacks: self.callbacks.remove(cb) new_monitor = 0 for c in self.callbacks: new_monitor |= c.bit if new_monitor != self.monitor: self.monitor = new_monitor yield from self.pi._pigpio_aio_command( _PI_CMD_NB, self.handle, self.monitor) @asyncio.coroutine def _pigpio_aio_command(self, cmd, p1, p2,): # FIXME: duplication with pi._pigpio_aio_command data = struct.pack('IIII', cmd, p1, p2, 0) yield from self._loop.sock_sendall(self.s, data) response = yield from self._loop.sock_recv(self.s, 16) _, res = struct.unpack('12sI', response) return res class Callback: """A class to provide gpio level change callbacks.""" def __init__(self, notify, user_gpio, edge=RISING_EDGE, func=None): """ Initialise a callback and adds it to the notification thread. """ self._notify = notify self.count = 0 if func is None: func = self._tally self.callb = _callback_ADT(user_gpio, edge, func) # FIXME yield from self._notify.append(self.callb) @asyncio.coroutine def cancel(self): """Cancels a callback by removing it from the notification thread.""" yield from self._notify.remove(self.callb) def _tally(self, user_gpio, level, tick): """Increment the callback called count.""" self.count += 1 def tally(self): """ Provides a count of how many times the default tally callback has triggered. The count will be zero if the user has supplied their own callback function. """ return self.count class Pi(object): @asyncio.coroutine def _pigpio_aio_command(self, cmd, p1, p2,): """ Runs a pigpio socket command. sl:= command socket and lock. cmd:= the command to be executed. p1:= command parameter 1 (if applicable). p2:= command parameter 2 (if applicable). """ with (yield from self._lock): data = struct.pack('IIII', cmd, p1, p2, 0) yield from self._loop.sock_sendall(self.s, data) response = yield from self._loop.sock_recv(self.s, 16) _, res = struct.unpack('12sI', response) return res @asyncio.coroutine def _pigpio_aio_command_ext(self, cmd, p1, p2, p3, extents): """ Runs an extended pigpio socket command. sl:= command socket and lock. cmd:= the command to be executed. p1:= command parameter 1 (if applicable). p2:= command parameter 2 (if applicable). p3:= total size in bytes of following extents extents:= additional data blocks """ with (yield from self._lock): return (yield from self._pigpio_aio_command_ext_unlocked(cmd, p1, p2, p3, extents)) @asyncio.coroutine def _pigpio_aio_command_ext_unlocked(self, cmd, p1, p2, p3, extents): """Run extended pigpio socket command without any lock.""" ext = bytearray(struct.pack('IIII', cmd, p1, p2, p3)) for x in extents: if isinstance(x, str): ext.extend(_b(x)) else: ext.extend(x) yield from self._loop.sock_sendall(self.s, ext) response = yield from self._loop.sock_recv(self.s, 16) _, res = struct.unpack('12sI', response) return res @asyncio.coroutine def connect(self, address): """ Connect to a remote or local gpiod daemon. :param address: a pair (address, port), the address must be already resolved (for example an ip address) :return: """ self.s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.s.setblocking(False) # Disable the Nagle algorithm. self.s.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) yield from self._loop.sock_connect(self.s, address) yield from self._notify._connect(address) @asyncio.coroutine def stop(self): """ :return: """ print('closing notifier') yield from self._notify.close() print('closing socket') self.s.close() @asyncio.coroutine def get_version(self): res = yield from self._pigpio_aio_command(_PI_CMD_PIGPV) print('version: {}'.format(res)) @asyncio.coroutine def get_pigpio_version(self): """ Returns the pigpio software version. ... v = pi.get_pigpio_version() ... """ res = yield from self._pigpio_aio_command(_PI_CMD_PIGPV, 0, 0) @asyncio.coroutine def store_script(self, script): """ Store a script for later execution. script:= the script text as a series of bytes. Returns a >=0 script id if OK. ... sid = pi.store_script( b'tag 0 w 22 1 mils 100 w 22 0 mils 100 dcr p0 jp 0') ... """ if len(script): res = yield from self._pigpio_aio_command_ext(_PI_CMD_PROC, 0, 0, len(script), [script]) return _u2i(res) else: return 0 @asyncio.coroutine def run_script(self, script_id, params=None): """ Runs a stored script. script_id:= id of stored script. params:= up to 10 parameters required by the script. ... s = pi.run_script(sid, [par1, par2]) s = pi.run_script(sid) s = pi.run_script(sid, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) ... """ # I p1 script id # I p2 0 # I p3 params * 4 (0-10 params) # (optional) extension # I[] params if params is not None: ext = bytearray() for p in params: ext.extend(struct.pack("I", p)) nump = len(params) extents = [ext] else: nump = 0 extents = [] res = yield from self._pigpio_aio_command_ext(_PI_CMD_PROCR, script_id, 0, nump * 4, extents) return _u2i(res) @asyncio.coroutine def script_status(self, script_id): """ Returns the run status of a stored script as well as the current values of parameters 0 to 9. script_id:= id of stored script. The run status may be . . PI_SCRIPT_INITING PI_SCRIPT_HALTED PI_SCRIPT_RUNNING PI_SCRIPT_WAITING PI_SCRIPT_FAILED . . The return value is a tuple of run status and a list of the 10 parameters. On error the run status will be negative and the parameter list will be empty. ... (s, pars) = pi.script_status(sid) ... """ res = yield from self._pigpio_aio_command(_PI_CMD_PROCP, script_id, 0) bytes = u2i(res) if bytes > 0: # Fixme : this sould be the same a _rxbuf # data = self._rxbuf(bytes) data = yield from self._loop.sock_recv(self.s, bytes) while len(data) < bytes: b = yield from self._loop.sock_recv(self.s, bytes-len(data)) data.extend(b) pars = struct.unpack('11i', _str(data)) status = pars[0] params = pars[1:] else: status = bytes params = () return status, params @asyncio.coroutine def stop_script(self, script_id): """ Stops a running script. script_id:= id of stored script. ... status = pi.stop_script(sid) ... """ res = yield from self._pigpio_aio_command(_PI_CMD_PROCS, script_id, 0) return _u2i(res) @asyncio.coroutine def delete_script(self, script_id): """ Deletes a stored script. script_id:= id of stored script. ... status = pi.delete_script(sid) ... """ res = yield from self._pigpio_aio_command(_PI_CMD_PROCD, script_id, 0) return _u2i(res) @asyncio.coroutine def read_bank_1(self): """ Returns the levels of the bank 1 gpios (gpios 0-31). The returned 32 bit integer has a bit set if the corresponding gpio is high. Gpio n has bit value (1<<n). ... print(bin(pi.read_bank_1())) 0b10010100000011100100001001111 ... """ res = yield from self._pigpio_aio_command(_PI_CMD_BR1, 0, 0) return res @asyncio.coroutine def clear_bank_1(self, bits): """ Clears gpios 0-31 if the corresponding bit in bits is set. bits:= a 32 bit mask with 1 set if the corresponding gpio is to be cleared. A returned status of PI_SOME_PERMITTED indicates that the user is not allowed to write to one or more of the gpios. ... pi.clear_bank_1(int("111110010000",2)) ... """ res = yield from self._pigpio_aio_command(_PI_CMD_BC1, bits, 0) return _u2i(res) @asyncio.coroutine def set_bank_1(self, bits): """ Sets gpios 0-31 if the corresponding bit in bits is set. bits:= a 32 bit mask with 1 set if the corresponding gpio is to be set. A returned status of PI_SOME_PERMITTED indicates that the user is not allowed to write to one or more of the gpios. ... pi.set_bank_1(int("111110010000",2)) ... """ res = yield from self._pigpio_aio_command(_PI_CMD_BS1, bits, 0) return _u2i(res) @asyncio.coroutine def set_mode(self, gpio, mode): """ Sets the gpio mode. gpio:= 0-53. mode:= INPUT, OUTPUT, ALT0, ALT1, ALT2, ALT3, ALT4, ALT5. ... pi.set_mode( 4, apigpio.INPUT) # gpio 4 as input pi.set_mode(17, apigpio.OUTPUT) # gpio 17 as output pi.set_mode(24, apigpio.ALT2) # gpio 24 as ALT2 ... """ res = yield from self._pigpio_aio_command(_PI_CMD_MODES, gpio, mode) return _u2i(res) @asyncio.coroutine def set_pull_up_down(self, gpio, pud): """ Sets or clears the internal GPIO pull-up/down resistor. gpio:= 0-53. pud:= PUD_UP, PUD_DOWN, PUD_OFF. ... yield from pi.set_pull_up_down(17, apigpio.PUD_OFF) yield from pi.set_pull_up_down(23, apigpio.PUD_UP) yield from pi.set_pull_up_down(24, apigpio.PUD_DOWN) ... """ res = yield from self._pigpio_aio_command(_PI_CMD_PUD, gpio, pud) return _u2i(res) @asyncio.coroutine def get_mode(self, gpio): """ Returns the gpio mode. gpio:= 0-53. Returns a value as follows . . 0 = INPUT 1 = OUTPUT 2 = ALT5 3 = ALT4 4 = ALT0 5 = ALT1 6 = ALT2 7 = ALT3 . . ... print(pi.get_mode(0)) 4 ... """ res = yield from self._pigpio_aio_command(_PI_CMD_MODEG, gpio, 0) return _u2i(res) @asyncio.coroutine def write(self, gpio, level): """ Sets the gpio level. gpio:= 0-53. level:= 0, 1. If PWM or servo pulses are active on the gpio they are switched off. ... pi.set_mode(17, pigpio.OUTPUT) pi.write(17,0) print(pi.read(17)) 0 pi.write(17,1) print(pi.read(17)) 1 ... """ res = yield from self._pigpio_aio_command(_PI_CMD_WRITE, gpio, level) return _u2i(res) @asyncio.coroutine def read(self, gpio): """ Returns the GPIO level. gpio:= 0-53. ... yield from pi.set_mode(23, pigpio.INPUT) yield from pi.set_pull_up_down(23, pigpio.PUD_DOWN) print(yield from pi.read(23)) 0 yield from pi.set_pull_up_down(23, pigpio.PUD_UP) print(yield from pi.read(23)) 1 ... """ res = yield from self._pigpio_aio_command(_PI_CMD_READ, gpio, 0) return _u2i(res) @asyncio.coroutine def gpio_trigger(self, user_gpio, pulse_len=10, level=1): """ Send a trigger pulse to a GPIO. The GPIO is set to level for pulse_len microseconds and then reset to not level. user_gpio:= 0-31 pulse_len:= 1-100 level:= 0-1 ... pi.gpio_trigger(23, 10, 1) ... """ # pigpio message format # I p1 user_gpio # I p2 pulse_len # I p3 4 ## extension ## # I level extents = [struct.pack("I", level)] res = yield from self._pigpio_aio_command_ext(_PI_CMD_TRIG, user_gpio, pulse_len, 4, extents) return _u2i(res) @asyncio.coroutine def set_glitch_filter(self, user_gpio, steady): """ Sets a glitch filter on a GPIO. Level changes on the GPIO are not reported unless the level has been stable for at least [*steady*] microseconds. The level is then reported. Level changes of less than [*steady*] microseconds are ignored. user_gpio:= 0-31 steady:= 0-300000 Returns 0 if OK, otherwise PI_BAD_USER_GPIO, or PI_BAD_FILTER. This filter affects the GPIO samples returned to callbacks set up with [*callback*] and [*wait_for_edge*]. It does not affect levels read by [*read*], [*read_bank_1*], or [*read_bank_2*]. Each (stable) edge will be timestamped [*steady*] microseconds after it was first detected. ... pi.set_glitch_filter(23, 100) ... """ res = yield from self._pigpio_aio_command(_PI_CMD_FG, user_gpio, steady) return _u2i(res) @asyncio.coroutine def set_noise_filter(self, user_gpio, steady, active): """ Sets a noise filter on a GPIO. Level changes on the GPIO are ignored until a level which has been stable for [*steady*] microseconds is detected. Level changes on the GPIO are then reported for [*active*] microseconds after which the process repeats. user_gpio:= 0-31 steady:= 0-300000 active:= 0-1000000 Returns 0 if OK, otherwise PI_BAD_USER_GPIO, or PI_BAD_FILTER. This filter affects the GPIO samples returned to callbacks set up with [*callback*] and [*wait_for_edge*]. It does not affect levels read by [*read*], [*read_bank_1*], or [*read_bank_2*]. Level changes before and after the active period may be reported. Your software must be designed to cope with such reports. ... pi.set_noise_filter(23, 1000, 5000) ... """ # pigpio message format # I p1 user_gpio # I p2 steady # I p3 4 ## extension ## # I active extents = [struct.pack("I", active)] res = yield from self._pigpio_aio_command_ext(_PI_CMD_FN, user_gpio, steady, 4, extents) return _u2i(res) @asyncio.coroutine def set_PWM_dutycycle(self, user_gpio, dutycycle): """ Starts (non-zero dutycycle) or stops (0) PWM pulses on the GPIO. user_gpio:= 0-31. dutycycle:= 0-range (range defaults to 255). The [*set_PWM_range*] function can change the default range of 255. ... pi.set_PWM_dutycycle(4, 0) # PWM off pi.set_PWM_dutycycle(4, 64) # PWM 1/4 on pi.set_PWM_dutycycle(4, 128) # PWM 1/2 on pi.set_PWM_dutycycle(4, 192) # PWM 3/4 on pi.set_PWM_dutycycle(4, 255) # PWM full on ... """ res = yield from self._pigpio_aio_command(_PI_CMD_PWM, user_gpio, int(dutycycle)) return _u2i(res) @asyncio.coroutine def add_callback(self, user_gpio, edge=RISING_EDGE, func=None): """ Calls a user supplied function (a callback) whenever the specified gpio edge is detected. user_gpio:= 0-31. edge:= EITHER_EDGE, RISING_EDGE (default), or FALLING_EDGE. func:= user supplied callback function. The user supplied callback receives three parameters, the gpio, the level, and the tick. If a user callback is not specified a default tally callback is provided which simply counts edges. The count may be retrieved by calling the tally function. The callback may be cancelled by calling the cancel function. A gpio may have multiple callbacks (although I can't think of a reason to do so). ... def cbf(gpio, level, tick): print(gpio, level, tick) cb1 = pi.callback(22, pigpio.EITHER_EDGE, cbf) cb2 = pi.callback(4, pigpio.EITHER_EDGE) cb3 = pi.callback(17) print(cb3.tally()) cb1.cancel() # To cancel callback cb1. ... """ cb = Callback(self._notify, user_gpio, edge, func) yield from self._notify.append(cb) return cb @asyncio.coroutine def set_servo_pulsewidth(self, user_gpio, pulsewidth): """ Starts (500-2500) or stops (0) servo pulses on the GPIO. user_gpio:= 0-31. pulsewidth:= 0 (off), 500 (most anti-clockwise) - 2500 (most clockwise). The selected pulsewidth will continue to be transmitted until changed by a subsequent call to set_servo_pulsewidth. The pulsewidths supported by servos varies and should probably be determined by experiment. A value of 1500 should always be safe and represents the mid-point of rotation. You can DAMAGE a servo if you command it to move beyond its limits. ... yield from pi.set_servo_pulsewidth(17, 0) # off yield from pi.set_servo_pulsewidth(17, 1000) # safe anti-clockwise yield from pi.set_servo_pulsewidth(17, 1500) # centre yield from pi.set_servo_pulsewidth(17, 2000) # safe clockwise ... """ res = yield from self._pigpio_aio_command(_PI_CMD_SERVO, user_gpio, int(pulsewidth)) return _u2i(res) @asyncio.coroutine def bb_spi_open(self, cs, miso, mosi, sclk ,b, spf): """Open a bspi device on a bus.""" extents = [struct.pack('IIIII', int(miso), int(mosi), int(sclk), int(b), int(spf))] res = yield from self._pigpio_aio_command_ext(_PI_CMD_BSPIO, cs, 0, 20, extents=extents) return _u2i(res) @asyncio.coroutine def bb_spi_close(self, cs): """Close a bspi device on a bus.""" res = yield from self._pigpio_aio_command(_PI_CMD_BSPIC, cs, 0) return _u2i(res) @asyncio.coroutine def bb_spi_xfer(self, cs, data): bytes = PI_CMD_INTERRUPTED with (yield from self._lock): bytes = yield from self._pigpio_aio_command_ext_unlocked( _PI_CMD_BSPIX, cs, 0, len(data), [data]) if bytes > 0: data = yield from self._rxbuf(bytes) else: data = "" return bytes, data @asyncio.coroutine def spi_open(self, spi_channel, baud, spi_flags=0): # I p1 spi_channel # I p2 baud # I p3 4 ## extension ## # I spi_flags """Open an spi device on a bus.""" extents = [struct.pack('I', spi_flags)] res = yield from self._pigpio_aio_command_ext(_PI_CMD_SPIO, spi_channel, baud, 4, extents=extents) return _u2i(res) @asyncio.coroutine def spi_close(self, handle): """Close a spi device on a bus.""" res = yield from self._pigpio_aio_command(_PI_CMD_SPIC, handle, 0) return _u2i(res) @asyncio.coroutine def spi_write(self, handle, data): # I p1 handle # I p2 0 # I p3 len ## extension ## # s len data bytes res = yield from self._pigpio_aio_command_ext(_PI_CMD_SPIW, handle, 0, len(data), [data]) return _u2i(res) @asyncio.coroutine def i2c_open(self, bus, address): """Open an i2c device on a bus.""" res = yield from self._pigpio_aio_command(_PI_CMD_I2CO, int(bus), int(address)) return _u2i(res) @asyncio.coroutine def i2c_close(self, handle): """Close an i2c handle.""" res = yield from self._pigpio_aio_command(_PI_CMD_I2CC, handle) return _u2i(res) @asyncio.coroutine def i2c_write_byte_data(self, handle, register, data): """Write byte to i2c register on handle.""" extents = [struct.pack("I", data)] res = yield from self._pigpio_aio_command_ext(_PI_CMD_I2CWB, handle, int(register), 1, extents) return _u2i(res) @asyncio.coroutine def _rxbuf(self, count): """"Returns count bytes from the command socket.""" ext = yield from self._loop.sock_recv(self.s, count) while len(ext) < count: ext.extend((yield from self._loop.sock_recv(self.s, count - len(ext)))) return ext @asyncio.coroutine def i2c_read_byte_data(self, handle, register): """Write byte to i2c register on handle.""" res = yield from self._pigpio_aio_command(_PI_CMD_I2CRB, handle, int(register)) return _u2i(res) @asyncio.coroutine def i2c_read_i2c_block_data(self, handle, register, count): """Read count bytes from an i2c handle.""" extents = [struct.pack("I", count)] with (yield from self._lock): bytes = yield from self._pigpio_aio_command_ext_unlocked(_PI_CMD_I2CRI, handle, int(register), 4, extents) if bytes > 0: data = yield from self._rxbuf(count) else: data = "" return data def __init__(self, loop=None): if loop is None: loop = asyncio.get_event_loop() self._loop = loop self.s = None self._notify = _callback_handler(self) self._lock = asyncio.Lock()
31.12468
118
0.601257
4a252e7ad3a5302fd540eac89093d6b1d1cb09c3
3,459
py
Python
install/app_store/tk-multi-publish/v0.10.7/python/tk_multi_publish/ui/publish_progress_form.py
JoanAzpeitia/lp_sg
e0ee79555e419dd2ae3a5f31e5515b3f40b22a62
[ "MIT" ]
null
null
null
install/app_store/tk-multi-publish/v0.10.7/python/tk_multi_publish/ui/publish_progress_form.py
JoanAzpeitia/lp_sg
e0ee79555e419dd2ae3a5f31e5515b3f40b22a62
[ "MIT" ]
null
null
null
install/app_store/tk-multi-publish/v0.10.7/python/tk_multi_publish/ui/publish_progress_form.py
JoanAzpeitia/lp_sg
e0ee79555e419dd2ae3a5f31e5515b3f40b22a62
[ "MIT" ]
1
2020-02-15T10:42:56.000Z
2020-02-15T10:42:56.000Z
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'publish_progress_form.ui' # # by: pyside-uic 0.2.15 running on PySide 1.2.2 # # WARNING! All changes made in this file will be lost! from tank.platform.qt import QtCore, QtGui class Ui_PublishProgressForm(object): def setupUi(self, PublishProgressForm): PublishProgressForm.setObjectName("PublishProgressForm") PublishProgressForm.resize(651, 384) self.verticalLayout_4 = QtGui.QVBoxLayout(PublishProgressForm) self.verticalLayout_4.setObjectName("verticalLayout_4") self.horizontalLayout = QtGui.QHBoxLayout() self.horizontalLayout.setObjectName("horizontalLayout") spacerItem = QtGui.QSpacerItem(40, 20, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) self.horizontalLayout.addItem(spacerItem) self.verticalLayout_3 = QtGui.QVBoxLayout() self.verticalLayout_3.setSpacing(-1) self.verticalLayout_3.setObjectName("verticalLayout_3") spacerItem1 = QtGui.QSpacerItem(20, 100, QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Fixed) self.verticalLayout_3.addItem(spacerItem1) self.title = QtGui.QLabel(PublishProgressForm) self.title.setStyleSheet("#title {\n" "font-size: 24px;\n" "}") self.title.setObjectName("title") self.verticalLayout_3.addWidget(self.title) self.progress_bar = QtGui.QProgressBar(PublishProgressForm) self.progress_bar.setProperty("value", 24) self.progress_bar.setObjectName("progress_bar") self.verticalLayout_3.addWidget(self.progress_bar) self.details = QtGui.QLabel(PublishProgressForm) self.details.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignTop) self.details.setWordWrap(False) self.details.setObjectName("details") self.verticalLayout_3.addWidget(self.details) self.stage_progress_bar = QtGui.QProgressBar(PublishProgressForm) self.stage_progress_bar.setProperty("value", 24) self.stage_progress_bar.setObjectName("stage_progress_bar") self.verticalLayout_3.addWidget(self.stage_progress_bar) spacerItem2 = QtGui.QSpacerItem(20, 0, QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Expanding) self.verticalLayout_3.addItem(spacerItem2) self.verticalLayout_3.setStretch(5, 1) self.horizontalLayout.addLayout(self.verticalLayout_3) spacerItem3 = QtGui.QSpacerItem(40, 20, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Minimum) self.horizontalLayout.addItem(spacerItem3) self.horizontalLayout.setStretch(0, 1) self.horizontalLayout.setStretch(1, 5) self.horizontalLayout.setStretch(2, 1) self.verticalLayout_4.addLayout(self.horizontalLayout) self.verticalLayout_4.setStretch(0, 1) self.retranslateUi(PublishProgressForm) QtCore.QMetaObject.connectSlotsByName(PublishProgressForm) def retranslateUi(self, PublishProgressForm): PublishProgressForm.setWindowTitle(QtGui.QApplication.translate("PublishProgressForm", "Form", None, QtGui.QApplication.UnicodeUTF8)) self.title.setText(QtGui.QApplication.translate("PublishProgressForm", "Publishing...", None, QtGui.QApplication.UnicodeUTF8)) self.details.setText(QtGui.QApplication.translate("PublishProgressForm", "(Details)", None, QtGui.QApplication.UnicodeUTF8)) from . import resources_rc
52.409091
141
0.740966
4a2530028727febb561176eec21ca810e97f7674
81,111
py
Python
syncplay/ui/GuiConfiguration.py
nipkownix/syncplay
5b93aeb20e80d3c208a766583363e87ea61ee85b
[ "Apache-2.0" ]
null
null
null
syncplay/ui/GuiConfiguration.py
nipkownix/syncplay
5b93aeb20e80d3c208a766583363e87ea61ee85b
[ "Apache-2.0" ]
null
null
null
syncplay/ui/GuiConfiguration.py
nipkownix/syncplay
5b93aeb20e80d3c208a766583363e87ea61ee85b
[ "Apache-2.0" ]
1
2022-01-15T19:24:48.000Z
2022-01-15T19:24:48.000Z
import os import sys import threading from datetime import datetime from syncplay import constants from syncplay import utils from syncplay.messages import getMessage, getLanguages, setLanguage, getInitialLanguage from syncplay.players.playerFactory import PlayerFactory from syncplay.utils import isBSD, isLinux, isMacOS, isWindows from syncplay.utils import resourcespath, posixresourcespath, playerPathExists from syncplay.vendor.Qt import QtCore, QtWidgets, QtGui, __binding__, IsPySide, IsPySide2 from syncplay.vendor.Qt.QtCore import Qt, QSettings, QCoreApplication, QSize, QPoint, QUrl, QLine, QEventLoop, Signal from syncplay.vendor.Qt.QtWidgets import QApplication, QLineEdit, QLabel, QCheckBox, QButtonGroup, QRadioButton, QDoubleSpinBox, QPlainTextEdit from syncplay.vendor.Qt.QtGui import QCursor, QIcon, QImage, QDesktopServices try: if hasattr(QtCore.Qt, 'AA_EnableHighDpiScaling'): QtWidgets.QApplication.setAttribute(QtCore.Qt.AA_EnableHighDpiScaling, True) except AttributeError: pass # To ignore error "Attribute Qt::AA_EnableHighDpiScaling must be set before QCoreApplication is created" if hasattr(QtCore.Qt, 'AA_UseHighDpiPixmaps'): QtWidgets.QApplication.setAttribute(QtCore.Qt.AA_UseHighDpiPixmaps, True) if IsPySide2: from PySide2.QtCore import QStandardPaths class GuiConfiguration: def __init__(self, config, error=None, defaultConfig=None): self.defaultConfig = defaultConfig self.config = config self._availablePlayerPaths = [] self.error = error constants.DEBUG_MODE = config['debug'] def run(self): if QCoreApplication.instance() is None: self.app = QtWidgets.QApplication(sys.argv) dialog = ConfigDialog(self.config, self._availablePlayerPaths, self.error, self.defaultConfig) configLoop = QEventLoop() dialog.show() dialog.closed.connect(configLoop.quit) configLoop.exec_() def setAvailablePaths(self, paths): self._availablePlayerPaths = paths def getProcessedConfiguration(self): return self.config class WindowClosed(Exception): pass class GetPlayerIconThread(threading.Thread, QtCore.QObject): daemon = True done = QtCore.Signal(str, str) def __init__(self): threading.Thread.__init__(self, name='GetPlayerIcon') QtCore.QObject.__init__(self) self.condvar = threading.Condition() self.playerpath = None def setPlayerPath(self, playerpath): self.condvar.acquire() was_none = self.playerpath is None self.playerpath = playerpath if was_none: self.condvar.notify() self.condvar.release() def run(self): while True: self.condvar.acquire() if self.playerpath is None: self.condvar.wait() playerpath = self.playerpath self.playerpath = None self.condvar.release() self.done.emit('spinner.mng', '') iconpath = PlayerFactory().getPlayerIconByPath(playerpath) self.done.emit(iconpath, playerpath) class ConfigDialog(QtWidgets.QDialog): pressedclosebutton = True moreToggling = False closed = Signal() def automaticUpdatePromptCheck(self): if self.automaticupdatesCheckbox.checkState() == Qt.PartiallyChecked: reply = QtWidgets.QMessageBox.question( self, "Syncplay", getMessage("promptforupdate-label"), QtWidgets.QMessageBox.StandardButton.Yes | QtWidgets.QMessageBox.StandardButton.No) if reply == QtWidgets.QMessageBox.Yes: self.automaticupdatesCheckbox.setChecked(True) else: self.automaticupdatesCheckbox.setChecked(False) def moreToggled(self): self.setSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Minimum) if self.moreToggling is False: self.moreToggling = True if self.showmoreCheckbox.isChecked(): self.tabListFrame.show() self.resetButton.show() self.playerargsTextbox.show() self.playerargsLabel.show() self.mediapathTextbox.show() self.mediapathLabel.show() self.mediabrowseButton.show() self.runButton.show() self.saveMoreState(True) self.tabListWidget.setCurrentRow(0) self.ensureTabListIsVisible() if isMacOS(): self.mediaplayerSettingsGroup.setFixedHeight(self.mediaplayerSettingsGroup.minimumSizeHint().height()) self.stackedFrame.setFixedHeight(self.stackedFrame.minimumSizeHint().height()) else: self.tabListFrame.hide() self.resetButton.hide() self.playerargsTextbox.hide() self.playerargsLabel.hide() self.runButton.hide() if self.mediapathTextbox.text() == "": self.mediapathTextbox.hide() self.mediapathLabel.hide() self.mediabrowseButton.hide() else: self.mediapathTextbox.show() self.mediapathLabel.show() self.mediabrowseButton.show() self.saveMoreState(False) self.stackedLayout.setCurrentIndex(0) if isMacOS(): self.mediaplayerSettingsGroup.setFixedHeight(self.mediaplayerSettingsGroup.minimumSizeHint().height()) newHeight = self.connectionSettingsGroup.minimumSizeHint().height()+self.mediaplayerSettingsGroup.minimumSizeHint().height()+self.bottomButtonFrame.minimumSizeHint().height()+50 else: newHeight = self.connectionSettingsGroup.minimumSizeHint().height()+self.mediaplayerSettingsGroup.minimumSizeHint().height()+self.bottomButtonFrame.minimumSizeHint().height()+13 if self.error: newHeight += self.errorLabel.height()+3 self.stackedFrame.setFixedHeight(newHeight) self.adjustSize() if isMacOS(): newHeight = self.connectionSettingsGroup.minimumSizeHint().height()+self.mediaplayerSettingsGroup.minimumSizeHint().height()+self.bottomButtonFrame.minimumSizeHint().height()+50+16 self.setFixedWidth(self.sizeHint().width()) self.setFixedHeight(newHeight) else: self.setFixedSize(self.sizeHint()) self.moreToggling = False self.setFixedWidth(self.minimumSizeHint().width()) def openHelp(self): self.QtGui.QDesktopServices.openUrl(QUrl("https://syncplay.pl/guide/client/")) def openRoomsDialog(self): RoomsDialog = QtWidgets.QDialog() RoomsLayout = QtWidgets.QGridLayout() RoomsTextbox = QtWidgets.QPlainTextEdit() RoomsDialog.setWindowTitle(getMessage("roomlist-msgbox-label")) RoomsPlaylistLabel = QtWidgets.QLabel(getMessage("roomlist-msgbox-label")) RoomsTextbox.setLineWrapMode(QtWidgets.QPlainTextEdit.NoWrap) RoomsTextbox.setPlainText(utils.getListAsMultilineString(self.config['roomList'])) RoomsLayout.addWidget(RoomsPlaylistLabel, 0, 0, 1, 1) RoomsLayout.addWidget(RoomsTextbox, 1, 0, 1, 1) RoomsButtonBox = QtWidgets.QDialogButtonBox() RoomsButtonBox.setOrientation(Qt.Horizontal) RoomsButtonBox.setStandardButtons(QtWidgets.QDialogButtonBox.Ok | QtWidgets.QDialogButtonBox.Cancel) RoomsButtonBox.accepted.connect(RoomsDialog.accept) RoomsButtonBox.rejected.connect(RoomsDialog.reject) RoomsLayout.addWidget(RoomsButtonBox, 2, 0, 1, 1) RoomsDialog.setLayout(RoomsLayout) RoomsDialog.setModal(True) RoomsDialog.setWindowFlags(RoomsDialog.windowFlags() & ~Qt.WindowContextHelpButtonHint) RoomsDialog.show() result = RoomsDialog.exec_() if result == QtWidgets.QDialog.Accepted: newRooms = utils.convertMultilineStringToList(RoomsTextbox.toPlainText()) newRooms = sorted(newRooms) self.relistRoomList(newRooms) def safenormcaseandpath(self, path): if utils.isURL(path): return path else: return os.path.normcase(os.path.normpath(path)) def _tryToFillPlayerPath(self, playerpath, playerpathlist): settings = QSettings("Syncplay", "PlayerList") settings.beginGroup("PlayerList") savedPlayers = settings.value("PlayerList", []) if not isinstance(savedPlayers, list): savedPlayers = [] else: for i, savedPlayer in enumerate(savedPlayers): savedPlayers[i] = self.safenormcaseandpath(savedPlayer) playerpathlist = list(set(playerpathlist + savedPlayers)) settings.endGroup() foundpath = "" if playerpath is not None and playerpath != "": if utils.isURL(playerpath): foundpath = playerpath self.executablepathCombobox.addItem(foundpath) else: if not playerPathExists(playerpath): expandedpath = PlayerFactory().getExpandedPlayerPathByPath(playerpath) if expandedpath is not None and playerPathExists(expandedpath): playerpath = expandedpath elif "mpvnet.exe" in playerpath and playerPathExists(playerpath.replace("mpvnet.exe","mpvnet.com")): self.executablepathCombobox.addItem(playerpath) if playerPathExists(playerpath): foundpath = playerpath self.executablepathCombobox.addItem(foundpath) for path in playerpathlist: if utils.isURL(path): if foundpath == "": foundpath = path if path != playerpath: self.executablepathCombobox.addItem(path) elif playerPathExists(path) and os.path.normcase(os.path.normpath(path)) != os.path.normcase(os.path.normpath(foundpath)): self.executablepathCombobox.addItem(path) if foundpath == "": foundpath = path if foundpath != "": settings.beginGroup("PlayerList") playerpathlist.append(self.safenormcaseandpath(foundpath)) settings.setValue("PlayerList", list(set(playerpathlist))) settings.endGroup() return foundpath @QtCore.Slot(str, str) def _updateExecutableIcon(self, iconpath, playerpath): if iconpath is not None and iconpath != "": if iconpath.endswith('.mng'): movie = QtGui.QMovie(resourcespath + iconpath) movie.setCacheMode(QtGui.QMovie.CacheMode.CacheAll) self.executableiconLabel.setMovie(movie) movie.start() else: self.executableiconImage.load(resourcespath + iconpath) self.executableiconLabel.setPixmap(QtGui.QPixmap.fromImage(self.executableiconImage)) else: self.executableiconLabel.setPixmap(QtGui.QPixmap.fromImage(QtGui.QImage())) self.updatePlayerArguments(playerpath) def updateExecutableIcon(self): """ Start getting the icon path in another thread, which will set the GUI icon if valid. This is performed outside the main thread because networked players may take a long time to perform their checks and hang the GUI while doing so. """ currentplayerpath = str(self.executablepathCombobox.currentText()) self._playerProbeThread.setPlayerPath(currentplayerpath) def updatePlayerArguments(self, currentplayerpath): argumentsForPath = utils.getPlayerArgumentsByPathAsText(self.perPlayerArgs, currentplayerpath) self.playerargsTextbox.blockSignals(True) self.playerargsTextbox.setText(argumentsForPath) self.playerargsTextbox.blockSignals(False) def changedPlayerArgs(self): currentplayerpath = self.executablepathCombobox.currentText() if currentplayerpath: NewPlayerArgs = self.playerargsTextbox.text().split(" ") if self.playerargsTextbox.text() else "" self.perPlayerArgs[self.executablepathCombobox.currentText()] = NewPlayerArgs def languageChanged(self): setLanguage(str(self.languageCombobox.itemData(self.languageCombobox.currentIndex()))) QtWidgets.QMessageBox.information(self, "Syncplay", getMessage("language-changed-msgbox-label")) def browsePlayerpath(self): options = QtWidgets.QFileDialog.Options() defaultdirectory = "" browserfilter = "All files (*)" if os.name == 'nt': browserfilter = "Executable files (*.exe);;All files (*)" if "PROGRAMFILES(X86)" in os.environ: defaultdirectory = os.environ["ProgramFiles(x86)"] elif "PROGRAMFILES" in os.environ: defaultdirectory = os.environ["ProgramFiles"] elif "PROGRAMW6432" in os.environ: defaultdirectory = os.environ["ProgramW6432"] elif isLinux(): defaultdirectory = "/usr/bin" elif isMacOS(): defaultdirectory = "/Applications/" elif isBSD(): defaultdirectory = "/usr/local/bin" fileName, filtr = QtWidgets.QFileDialog.getOpenFileName( self, "Browse for media player executable", defaultdirectory, browserfilter, "", options) if fileName: if isMacOS() and fileName.endswith('.app'): # see GitHub issue #91 # Mac OS X application bundles contain a Info.plist in the Contents subdirectory of the .app. # This plist file includes the 'CFBundleExecutable' key, which specifies the name of the # executable. I would have used plistlib here, but since the version of this library in # py < 3.4 can't read from binary plist files it's pretty much useless. Therefore, let's # play a game of "Guess my executable!" # Step 1: get all the executable files. In a Mac OS X Application bundle, executables are stored # inside <bundle root>/Contents/MacOS. execPath = os.path.join(os.path.normpath(fileName), 'Contents', 'MacOS') execFiles = [] for fn in os.listdir(execPath): fn = os.path.join(execPath, fn) if os.path.isfile(fn) and os.access(fn, os.X_OK): execFiles.append(fn) # Step 2: figure out which file name looks like the application name baseAppName = os.path.basename(fileName).replace('.app', '').lower() foundExe = False for fn in execFiles: baseExecName = os.path.basename(fn).lower() if baseAppName == baseExecName: fileName = fn foundExe = True break # Step 3: use the first executable in the list if no executable was found try: if not foundExe: fileName = execFiles[0] except IndexError: # whoops, looks like this .app doesn't contain a executable file at all pass self.executablepathCombobox.setEditText(os.path.normpath(fileName)) def loadLastUpdateCheckDate(self): settings = QSettings("Syncplay", "Interface") settings.beginGroup("Update") try: self.lastCheckedForUpdates = settings.value("lastCheckedQt", None) if self.lastCheckedForUpdates: if self.config["lastCheckedForUpdates"] != None and self.config["lastCheckedForUpdates"] != "": if self.lastCheckedForUpdates.toPython() > datetime.strptime(self.config["lastCheckedForUpdates"], "%Y-%m-%d %H:%M:%S.%f"): self.config["lastCheckedForUpdates"] = self.lastCheckedForUpdates.toString("yyyy-MM-d HH:mm:ss.z") else: self.config["lastCheckedForUpdates"] = self.lastCheckedForUpdates.toString("yyyy-MM-d HH:mm:ss.z") except: self.config["lastCheckedForUpdates"] = None def loadSavedPublicServerList(self): settings = QSettings("Syncplay", "Interface") settings.beginGroup("PublicServerList") self.publicServers = settings.value("publicServers", None) def loadMediaBrowseSettings(self): settings = QSettings("Syncplay", "MediaBrowseDialog") settings.beginGroup("MediaBrowseDialog") self.mediadirectory = settings.value("mediadir", "") settings.endGroup() def saveMediaBrowseSettings(self): settings = QSettings("Syncplay", "MediaBrowseDialog") settings.beginGroup("MediaBrowseDialog") settings.setValue("mediadir", self.mediadirectory) settings.endGroup() def getMoreState(self): settings = QSettings("Syncplay", "MoreSettings") settings.beginGroup("MoreSettings") morestate = str.lower(str(settings.value("ShowMoreSettings", "false"))) settings.endGroup() if morestate == "true": return True else: return False def saveMoreState(self, morestate): settings = QSettings("Syncplay", "MoreSettings") settings.beginGroup("MoreSettings") settings.setValue("ShowMoreSettings", morestate) settings.endGroup() def updateServerList(self): try: servers = utils.getListOfPublicServers() except IOError as e: self.showErrorMessage(e.args[0]) return currentServer = self.hostCombobox.currentText() self.hostCombobox.clear() if servers: i = 0 for server in servers: self.hostCombobox.addItem(server[1]) self.hostCombobox.setItemData(i, server[0], Qt.ToolTipRole) i += 1 settings = QSettings("Syncplay", "Interface") settings.beginGroup("PublicServerList") settings.setValue("publicServers", servers) self.hostCombobox.setEditText(currentServer) def fillRoomsCombobox(self): previousRoomSelection = self.roomsCombobox.currentText() self.roomsCombobox.clear() for roomListValue in self.config['roomList']: self.roomsCombobox.addItem(roomListValue) self.roomsCombobox.setEditText(previousRoomSelection) def relistRoomList(self, newRooms): filteredNewRooms = [room for room in newRooms if room and not room.isspace()] self.config['roomList'] = filteredNewRooms self.fillRoomsCombobox() def addRoomToList(self, newRoom=None): if newRoom is None: newRoom = self.roomsCombobox.currentText() if not newRoom: return roomList = self.config['roomList'] if newRoom not in roomList: roomList.append(newRoom) roomList = sorted(roomList) self.config['roomList'] = roomList def showErrorMessage(self, errorMessage): QtWidgets.QMessageBox.warning(self, "Syncplay", errorMessage) def browseMediapath(self): self.loadMediaBrowseSettings() options = QtWidgets.QFileDialog.Options() if IsPySide: if self.config["mediaSearchDirectories"] and os.path.isdir(self.config["mediaSearchDirectories"][0]): defaultdirectory = self.config["mediaSearchDirectories"][0] elif os.path.isdir(self.mediadirectory): defaultdirectory = self.mediadirectory elif os.path.isdir(QDesktopServices.storageLocation(QDesktopServices.MoviesLocation)): defaultdirectory = QDesktopServices.storageLocation(QDesktopServices.MoviesLocation) elif os.path.isdir(QDesktopServices.storageLocation(QDesktopServices.HomeLocation)): defaultdirectory = QDesktopServices.storageLocation(QDesktopServices.HomeLocation) else: defaultdirectory = "" elif IsPySide2: if self.config["mediaSearchDirectories"] and os.path.isdir(self.config["mediaSearchDirectories"][0]): defaultdirectory = self.config["mediaSearchDirectories"][0] elif os.path.isdir(self.mediadirectory): defaultdirectory = self.mediadirectory elif os.path.isdir(QStandardPaths.standardLocations(QStandardPaths.MoviesLocation)[0]): defaultdirectory = QStandardPaths.standardLocations(QStandardPaths.MoviesLocation)[0] elif os.path.isdir(QStandardPaths.standardLocations(QStandardPaths.HomeLocation)[0]): defaultdirectory = QStandardPaths.standardLocations(QStandardPaths.HomeLocation)[0] else: defaultdirectory = "" browserfilter = "All files (*)" fileName, filtr = QtWidgets.QFileDialog.getOpenFileName( self, "Browse for media files", defaultdirectory, browserfilter, "", options) if fileName: self.mediapathTextbox.setText(os.path.normpath(fileName)) self.mediadirectory = os.path.dirname(fileName) self.saveMediaBrowseSettings() def _runWithoutStoringConfig(self): self._saveDataAndLeave(False) def _saveDataAndLeave(self, storeConfiguration=True): self.config['noStore'] = not storeConfiguration if storeConfiguration: self.automaticUpdatePromptCheck() self.loadLastUpdateCheckDate() self.config["perPlayerArguments"] = self.perPlayerArgs self.config["mediaSearchDirectories"] = utils.convertMultilineStringToList(self.mediasearchTextEdit.toPlainText()) self.config["trustedDomains"] = utils.convertMultilineStringToList(self.trusteddomainsTextEdit.toPlainText()) if self.serverpassTextbox.isEnabled(): self.config['password'] = self.serverpassTextbox.text() self.processWidget(self, lambda w: self.saveValues(w)) if self.hostCombobox.currentText(): self.config['host'] = self.hostCombobox.currentText() if ":" in self.hostCombobox.currentText() else self.hostCombobox.currentText() + ":" + str(constants.DEFAULT_PORT) self.config['host'] = self.config['host'].replace(" ", "").replace("\t", "").replace("\n", "").replace("\r", "") else: self.config['host'] = None self.config['playerPath'] = str(self.safenormcaseandpath(self.executablepathCombobox.currentText())) self.config['language'] = str(self.languageCombobox.itemData(self.languageCombobox.currentIndex())) if self.mediapathTextbox.text() == "": self.config['file'] = None elif os.path.isfile(os.path.abspath(self.mediapathTextbox.text())): self.config['file'] = os.path.abspath(self.mediapathTextbox.text()) else: self.config['file'] = str(self.mediapathTextbox.text()) self.config['publicServers'] = self.publicServerAddresses self.config['room'] = self.roomsCombobox.currentText() if self.config['autosaveJoinsToList']: self.addRoomToList(self.config['room']) self.pressedclosebutton = False self.close() self.closed.emit() def closeEvent(self, event): if self.pressedclosebutton: super(ConfigDialog, self).closeEvent(event) self.closed.emit() sys.exit() def keyPressEvent(self, event): if event.key() == Qt.Key_Escape: sys.exit() def dragEnterEvent(self, event): data = event.mimeData() urls = data.urls() if urls and urls[0].scheme() == 'file': event.acceptProposedAction() def dropEvent(self, event): data = event.mimeData() urls = data.urls() if urls and urls[0].scheme() == 'file': dropfilepath = os.path.abspath(str(event.mimeData().urls()[0].toLocalFile())) if dropfilepath[-4:].lower() == ".exe": self.executablepathCombobox.setEditText(dropfilepath) else: self.mediapathTextbox.setText(dropfilepath) self.mediapathTextbox.show() self.mediapathLabel.show() self.mediabrowseButton.show() if not self.showmoreCheckbox.isChecked(): newHeight = self.connectionSettingsGroup.minimumSizeHint().height() + self.mediaplayerSettingsGroup.minimumSizeHint().height() + self.bottomButtonFrame.minimumSizeHint().height() + 3 if self.error: newHeight += self.errorLabel.height() + 3 self.stackedFrame.setFixedHeight(newHeight) self.adjustSize() self.setFixedSize(self.sizeHint()) def processWidget(self, container, torun): for widget in container.children(): self.processWidget(widget, torun) if hasattr(widget, 'objectName') and widget.objectName() and widget.objectName()[:3] != "qt_": torun(widget) def loadTooltips(self, widget): tooltipName = widget.objectName().lower().split(constants.CONFIG_NAME_MARKER)[0] + "-tooltip" if tooltipName[:1] == constants.INVERTED_STATE_MARKER or tooltipName[:1] == constants.LOAD_SAVE_MANUALLY_MARKER: tooltipName = tooltipName[1:] widget.setToolTip(getMessage(tooltipName)) def loadValues(self, widget): valueName = str(widget.objectName()) if valueName[:1] == constants.LOAD_SAVE_MANUALLY_MARKER: return if isinstance(widget, QCheckBox) and widget.objectName(): if valueName[:1] == constants.INVERTED_STATE_MARKER: valueName = valueName[1:] inverted = True else: inverted = False if self.config[valueName] is None: widget.setTristate(True) widget.setCheckState(Qt.PartiallyChecked) widget.stateChanged.connect(lambda: widget.setTristate(False)) else: widget.setChecked(self.config[valueName] != inverted) elif isinstance(widget, QRadioButton): radioName, radioValue = valueName.split(constants.CONFIG_NAME_MARKER)[1].split(constants.CONFIG_VALUE_MARKER) if self.config[radioName] == radioValue: widget.setChecked(True) elif isinstance(widget, QLineEdit): widget.setText(self.config[valueName]) def saveValues(self, widget): valueName = str(widget.objectName()) if valueName[:1] == constants.LOAD_SAVE_MANUALLY_MARKER: return if isinstance(widget, QCheckBox) and widget.objectName(): if widget.checkState() == Qt.PartiallyChecked: self.config[valueName] = None else: if valueName[:1] == constants.INVERTED_STATE_MARKER: valueName = valueName[1:] inverted = True else: inverted = False self.config[valueName] = widget.isChecked() != inverted elif isinstance(widget, QRadioButton): radioName, radioValue = valueName.split(constants.CONFIG_NAME_MARKER)[1].split(constants.CONFIG_VALUE_MARKER) if widget.isChecked(): self.config[radioName] = radioValue elif isinstance(widget, QLineEdit): self.config[valueName] = widget.text() def connectChildren(self, widget): widgetName = str(widget.objectName()) if widgetName in self.subitems: widget.stateChanged.connect(lambda: self.updateSubwidgets(self, widget)) self.updateSubwidgets(self, widget) def updateSubwidgets(self, container, parentwidget, subwidgets=None): widgetName = parentwidget.objectName() if not subwidgets: subwidgets = self.subitems[widgetName] for widget in container.children(): self.updateSubwidgets(widget, parentwidget, subwidgets) if hasattr(widget, 'objectName') and widget.objectName() and widget.objectName() in subwidgets: widget.setDisabled(not parentwidget.isChecked()) def addBasicTab(self): config = self.config playerpaths = self.playerpaths error = self.error if self.datacleared == True: error = constants.ERROR_MESSAGE_MARKER + "{}".format(getMessage("gui-data-cleared-notification")) self.error = error if config['host'] is None: host = "" elif ":" in config['host'] and '[' not in config['host']: host = config['host'] else: host = config['host'] + ":" + str(config['port']) self.perPlayerArgs = self.config["perPlayerArguments"] self.mediaSearchDirectories = self.config["mediaSearchDirectories"] self.trustedDomains = self.config["trustedDomains"] self.connectionSettingsGroup = QtWidgets.QGroupBox(getMessage("connection-group-title")) self.loadSavedPublicServerList() self.hostCombobox = QtWidgets.QComboBox(self) if self.publicServers: i = 0 for publicServer in self.publicServers: serverTitle = publicServer[0] serverAddressPort = publicServer[1] self.hostCombobox.addItem(serverAddressPort) self.hostCombobox.setItemData(i, serverTitle, Qt.ToolTipRole) if serverAddressPort not in self.publicServerAddresses: self.publicServerAddresses.append(serverAddressPort) i += 1 self.hostCombobox.setEditable(True) self.hostCombobox.setEditText(host) self.hostLabel = QLabel(getMessage("host-label"), self) self.usernameTextbox = QLineEdit(self) self.usernameTextbox.setObjectName("name") self.serverpassLabel = QLabel(getMessage("password-label"), self) self.roomsCombobox = QtWidgets.QComboBox(self) self.roomsCombobox.setEditable(True) caseSensitiveCompleter = QtWidgets.QCompleter("", self) caseSensitiveCompleter.setCaseSensitivity(Qt.CaseSensitive) self.roomsCombobox.setCompleter(caseSensitiveCompleter) self.fillRoomsCombobox() self.roomsCombobox.setEditText(config['room']) self.usernameLabel = QLabel(getMessage("name-label"), self) self.serverpassTextbox = QLineEdit(self) self.serverpassTextbox.setText(self.storedPassword) self.defaultroomLabel = QLabel(getMessage("room-label"), self) self.editRoomsButton = QtWidgets.QToolButton() self.editRoomsButton.setIcon(QtGui.QIcon(resourcespath + 'bullet_edit_centered.png')) self.editRoomsButton.setObjectName(constants.LOAD_SAVE_MANUALLY_MARKER + "edit-rooms") self.editRoomsButton.released.connect(self.openRoomsDialog) self.hostLabel.setObjectName("host") self.hostCombobox.setObjectName(constants.LOAD_SAVE_MANUALLY_MARKER + "host") self.usernameLabel.setObjectName("name") self.usernameTextbox.setObjectName("name") self.serverpassLabel.setObjectName("password") self.serverpassTextbox.setObjectName(constants.LOAD_SAVE_MANUALLY_MARKER + "password") self.hostCombobox.editTextChanged.connect(self.updatePasswordVisibilty) self.hostCombobox.currentIndexChanged.connect(self.updatePasswordVisibilty) self.defaultroomLabel.setObjectName("room") self.roomsCombobox.setObjectName("room") self.connectionSettingsLayout = QtWidgets.QGridLayout() self.connectionSettingsLayout.addWidget(self.hostLabel, 0, 0) self.connectionSettingsLayout.addWidget(self.hostCombobox, 0, 1) self.connectionSettingsLayout.addWidget(self.serverpassLabel, 1, 0) self.connectionSettingsLayout.addWidget(self.serverpassTextbox, 1, 1) self.connectionSettingsLayout.addWidget(self.usernameLabel, 2, 0) self.connectionSettingsLayout.addWidget(self.usernameTextbox, 2, 1) self.connectionSettingsLayout.addWidget(self.defaultroomLabel, 3, 0) self.connectionSettingsLayout.addWidget(self.editRoomsButton, 3, 2, Qt.AlignRight) self.connectionSettingsLayout.addWidget(self.roomsCombobox, 3, 1) self.connectionSettingsLayout.setSpacing(10) self.connectionSettingsGroup.setLayout(self.connectionSettingsLayout) if isMacOS(): self.connectionSettingsGroup.setFixedHeight(self.connectionSettingsGroup.minimumSizeHint().height()) else: self.connectionSettingsGroup.setMaximumHeight(self.connectionSettingsGroup.minimumSizeHint().height()) self.playerargsTextbox = QLineEdit("", self) self.playerargsTextbox.textEdited.connect(self.changedPlayerArgs) self.playerargsLabel = QLabel(getMessage("player-arguments-label"), self) self.mediaplayerSettingsGroup = QtWidgets.QGroupBox(getMessage("media-setting-title")) self.executableiconImage = QtGui.QImage() self.executableiconLabel = QLabel(self) self.executableiconLabel.setFixedWidth(16) self.executableiconLabel.setAlignment(Qt.AlignRight | Qt.AlignVCenter) self.executablepathCombobox = QtWidgets.QComboBox(self) self.executablepathCombobox.setEditable(True) self.executablepathCombobox.currentIndexChanged.connect(self.updateExecutableIcon) self.executablepathCombobox.setEditText(self._tryToFillPlayerPath(config['playerPath'], playerpaths)) self.executablepathCombobox.editTextChanged.connect(self.updateExecutableIcon) self.executablepathLabel = QLabel(getMessage("executable-path-label"), self) self.executablebrowseButton = QtWidgets.QPushButton(QtGui.QIcon(resourcespath + 'folder_explore.png'), getMessage("browse-label")) self.executablebrowseButton.clicked.connect(self.browsePlayerpath) self.mediapathTextbox = QLineEdit(config['file'], self) self.mediapathLabel = QLabel(getMessage("media-path-label"), self) self.mediabrowseButton = QtWidgets.QPushButton(QtGui.QIcon(resourcespath + 'folder_explore.png'), getMessage("browse-label")) self.mediabrowseButton.clicked.connect(self.browseMediapath) self.executablepathLabel.setObjectName("executable-path") self.executablepathCombobox.setObjectName("executable-path") self.executablepathCombobox.setMinimumContentsLength(constants.EXECUTABLE_COMBOBOX_MINIMUM_LENGTH) self.executablepathCombobox.setSizeAdjustPolicy(QtWidgets.QComboBox.AdjustToMinimumContentsLength) self.mediapathLabel.setObjectName("media-path") self.mediapathTextbox.setObjectName(constants.LOAD_SAVE_MANUALLY_MARKER + "media-path") self.playerargsLabel.setObjectName("player-arguments") self.playerargsTextbox.setObjectName(constants.LOAD_SAVE_MANUALLY_MARKER + "player-arguments") self.mediaplayerSettingsLayout = QtWidgets.QGridLayout() self.mediaplayerSettingsLayout.addWidget(self.executablepathLabel, 0, 0, 1, 1) self.mediaplayerSettingsLayout.addWidget(self.executableiconLabel, 0, 1, 1, 1) self.mediaplayerSettingsLayout.addWidget(self.executablepathCombobox, 0, 2, 1, 1) self.mediaplayerSettingsLayout.addWidget(self.executablebrowseButton, 0, 3, 1, 1) self.mediaplayerSettingsLayout.addWidget(self.mediapathLabel, 1, 0, 1, 2) self.mediaplayerSettingsLayout.addWidget(self.mediapathTextbox, 1, 2, 1, 1) self.mediaplayerSettingsLayout.addWidget(self.mediabrowseButton, 1, 3, 1, 1) self.mediaplayerSettingsLayout.addWidget(self.playerargsLabel, 2, 0, 1, 2) self.mediaplayerSettingsLayout.addWidget(self.playerargsTextbox, 2, 2, 1, 2) self.mediaplayerSettingsLayout.setSpacing(10) self.mediaplayerSettingsGroup.setLayout(self.mediaplayerSettingsLayout) iconWidth = self.executableiconLabel.minimumSize().width()+self.mediaplayerSettingsLayout.spacing() maxWidth = max( self.hostLabel.minimumSizeHint().width(), self.usernameLabel.minimumSizeHint().width(), self.serverpassLabel.minimumSizeHint().width(), self.defaultroomLabel.minimumSizeHint().width(), self.executablepathLabel.minimumSizeHint().width(), self.mediapathLabel.minimumSizeHint().width(), self.playerargsLabel.minimumSizeHint().width() ) self.hostLabel.setMinimumWidth(maxWidth+iconWidth) self.usernameLabel.setMinimumWidth(maxWidth+iconWidth) self.serverpassLabel.setMinimumWidth(maxWidth+iconWidth) self.defaultroomLabel.setMinimumWidth(maxWidth+iconWidth) self.executablepathLabel.setMinimumWidth(maxWidth) self.mediapathLabel.setMinimumWidth(maxWidth+iconWidth) self.playerargsLabel.setMinimumWidth(maxWidth+iconWidth) self.showmoreCheckbox = QCheckBox(getMessage("more-title")) self.showmoreCheckbox.setObjectName(constants.LOAD_SAVE_MANUALLY_MARKER + "more") self.basicOptionsFrame = QtWidgets.QFrame() self.basicOptionsLayout = QtWidgets.QVBoxLayout() if error: error = str(error) self.errorLabel = QLabel(self) if error[:1] != constants.ERROR_MESSAGE_MARKER: self.errorLabel.setStyleSheet(constants.STYLE_ERRORLABEL) else: error = error[1:] self.errorLabel.setStyleSheet(constants.STYLE_SUCCESSLABEL) self.errorLabel.setText(error) self.errorLabel.setAlignment(Qt.AlignCenter) self.basicOptionsLayout.addWidget(self.errorLabel) self.connectionSettingsGroup.setMaximumHeight(self.connectionSettingsGroup.minimumSizeHint().height()) self.basicOptionsLayout.setAlignment(Qt.AlignTop) self.basicOptionsLayout.addWidget(self.connectionSettingsGroup) self.basicOptionsLayout.addSpacing(5) self.basicOptionsLayout.addWidget(self.mediaplayerSettingsGroup) self.basicOptionsFrame.setSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Minimum) self.basicOptionsFrame.setLayout(self.basicOptionsLayout) self.stackedLayout.addWidget(self.basicOptionsFrame) def addReadinessTab(self): self.readyFrame = QtWidgets.QFrame() self.readyLayout = QtWidgets.QVBoxLayout() self.readyFrame.setLayout(self.readyLayout) # Initial state self.readyInitialGroup = QtWidgets.QGroupBox(getMessage("readiness-title")) self.readyInitialLayout = QtWidgets.QVBoxLayout() self.readyInitialGroup.setLayout(self.readyInitialLayout) self.readyatstartCheckbox = QCheckBox(getMessage("readyatstart-label")) self.readyatstartCheckbox.setObjectName("readyAtStart") self.readyInitialLayout.addWidget(self.readyatstartCheckbox) self.readyLayout.addWidget(self.readyInitialGroup) # Automatically pausing self.readyPauseGroup = QtWidgets.QGroupBox(getMessage("pausing-title")) self.readyPauseLayout = QtWidgets.QVBoxLayout() self.readyPauseGroup.setLayout(self.readyPauseLayout) self.pauseonleaveCheckbox = QCheckBox(getMessage("pauseonleave-label")) self.pauseonleaveCheckbox.setObjectName("pauseOnLeave") self.readyPauseLayout.addWidget(self.pauseonleaveCheckbox) self.readyLayout.addWidget(self.readyPauseGroup) # Unpausing self.readyUnpauseGroup = QtWidgets.QGroupBox(getMessage("unpause-title")) self.readyUnpauseLayout = QtWidgets.QVBoxLayout() self.readyUnpauseGroup.setLayout(self.readyUnpauseLayout) self.readyUnpauseButtonGroup = QButtonGroup() self.unpauseIfAlreadyReadyOption = QRadioButton(getMessage("unpause-ifalreadyready-option")) self.readyUnpauseButtonGroup.addButton(self.unpauseIfAlreadyReadyOption) self.unpauseIfAlreadyReadyOption.setStyleSheet(constants.STYLE_SUBCHECKBOX.format(posixresourcespath + "chevrons_right.png")) self.unpauseIfAlreadyReadyOption.setObjectName("unpause-ifalreadyready" + constants.CONFIG_NAME_MARKER + "unpauseAction" + constants.CONFIG_VALUE_MARKER + constants.UNPAUSE_IFALREADYREADY_MODE) self.readyUnpauseLayout.addWidget(self.unpauseIfAlreadyReadyOption) self.unpauseIfOthersReadyOption = QRadioButton(getMessage("unpause-ifothersready-option")) self.readyUnpauseButtonGroup.addButton(self.unpauseIfOthersReadyOption) self.unpauseIfOthersReadyOption.setStyleSheet(constants.STYLE_SUBCHECKBOX.format(posixresourcespath + "chevrons_right.png")) self.unpauseIfOthersReadyOption.setObjectName("unpause-ifothersready" + constants.CONFIG_NAME_MARKER + "unpauseAction" + constants.CONFIG_VALUE_MARKER + constants.UNPAUSE_IFOTHERSREADY_MODE) self.readyUnpauseLayout.addWidget(self.unpauseIfOthersReadyOption) self.unpauseIfMinUsersReadyOption = QRadioButton(getMessage("unpause-ifminusersready-option")) self.readyUnpauseButtonGroup.addButton(self.unpauseIfMinUsersReadyOption) self.unpauseIfMinUsersReadyOption.setStyleSheet(constants.STYLE_SUBCHECKBOX.format(posixresourcespath + "chevrons_right.png")) self.unpauseIfMinUsersReadyOption.setObjectName("unpause-ifminusersready" + constants.CONFIG_NAME_MARKER + "unpauseAction" + constants.CONFIG_VALUE_MARKER + constants.UNPAUSE_IFMINUSERSREADY_MODE) self.readyUnpauseLayout.addWidget(self.unpauseIfMinUsersReadyOption) self.unpauseAlwaysUnpauseOption = QRadioButton(getMessage("unpause-always")) self.readyUnpauseButtonGroup.addButton(self.unpauseAlwaysUnpauseOption) self.unpauseAlwaysUnpauseOption.setStyleSheet(constants.STYLE_SUBCHECKBOX.format(posixresourcespath + "chevrons_right.png")) self.unpauseAlwaysUnpauseOption.setObjectName("unpause-always" + constants.CONFIG_NAME_MARKER + "unpauseAction" + constants.CONFIG_VALUE_MARKER + constants.UNPAUSE_ALWAYS_MODE) self.readyUnpauseLayout.addWidget(self.unpauseAlwaysUnpauseOption) self.readyLayout.addWidget(self.readyUnpauseGroup) self.readyLayout.setAlignment(Qt.AlignTop) self.stackedLayout.addWidget(self.readyFrame) def addMiscTab(self): self.miscFrame = QtWidgets.QFrame() self.miscLayout = QtWidgets.QVBoxLayout() self.miscFrame.setLayout(self.miscLayout) self.coreSettingsGroup = QtWidgets.QGroupBox(getMessage("core-behaviour-title")) self.coreSettingsLayout = QtWidgets.QGridLayout() self.coreSettingsGroup.setLayout(self.coreSettingsLayout) ### Privacy: self.filenameprivacyLabel = QLabel(getMessage("filename-privacy-label"), self) self.filenameprivacyButtonGroup = QButtonGroup() self.filenameprivacySendRawOption = QRadioButton(getMessage("privacy-sendraw-option")) self.filenameprivacySendHashedOption = QRadioButton(getMessage("privacy-sendhashed-option")) self.filenameprivacyDontSendOption = QRadioButton(getMessage("privacy-dontsend-option")) self.filenameprivacyButtonGroup.addButton(self.filenameprivacySendRawOption) self.filenameprivacyButtonGroup.addButton(self.filenameprivacySendHashedOption) self.filenameprivacyButtonGroup.addButton(self.filenameprivacyDontSendOption) self.filesizeprivacyLabel = QLabel(getMessage("filesize-privacy-label"), self) self.filesizeprivacyButtonGroup = QButtonGroup() self.filesizeprivacySendRawOption = QRadioButton(getMessage("privacy-sendraw-option")) self.filesizeprivacySendHashedOption = QRadioButton(getMessage("privacy-sendhashed-option")) self.filesizeprivacyDontSendOption = QRadioButton(getMessage("privacy-dontsend-option")) self.filesizeprivacyButtonGroup.addButton(self.filesizeprivacySendRawOption) self.filesizeprivacyButtonGroup.addButton(self.filesizeprivacySendHashedOption) self.filesizeprivacyButtonGroup.addButton(self.filesizeprivacyDontSendOption) self.filenameprivacyLabel.setObjectName("filename-privacy") self.filenameprivacySendRawOption.setObjectName("privacy-sendraw" + constants.CONFIG_NAME_MARKER + "filenamePrivacyMode" + constants.CONFIG_VALUE_MARKER + constants.PRIVACY_SENDRAW_MODE) self.filenameprivacySendHashedOption.setObjectName("privacy-sendhashed" + constants.CONFIG_NAME_MARKER + "filenamePrivacyMode" + constants.CONFIG_VALUE_MARKER + constants.PRIVACY_SENDHASHED_MODE) self.filenameprivacyDontSendOption.setObjectName("privacy-dontsend" + constants.CONFIG_NAME_MARKER + "filenamePrivacyMode" + constants.CONFIG_VALUE_MARKER + constants.PRIVACY_DONTSEND_MODE) self.filesizeprivacyLabel.setObjectName("filesize-privacy") self.filesizeprivacySendRawOption.setObjectName("privacy-sendraw" + constants.CONFIG_NAME_MARKER + "filesizePrivacyMode" + constants.CONFIG_VALUE_MARKER + constants.PRIVACY_SENDRAW_MODE) self.filesizeprivacySendHashedOption.setObjectName("privacy-sendhashed" + constants.CONFIG_NAME_MARKER + "filesizePrivacyMode" + constants.CONFIG_VALUE_MARKER + constants.PRIVACY_SENDHASHED_MODE) self.filesizeprivacyDontSendOption.setObjectName("privacy-dontsend" + constants.CONFIG_NAME_MARKER + "filesizePrivacyMode" + constants.CONFIG_VALUE_MARKER + constants.PRIVACY_DONTSEND_MODE) self.coreSettingsLayout.addWidget(self.filenameprivacyLabel, 3, 0) self.coreSettingsLayout.addWidget(self.filenameprivacySendRawOption, 3, 1, Qt.AlignLeft) self.coreSettingsLayout.addWidget(self.filenameprivacySendHashedOption, 3, 2, Qt.AlignLeft) self.coreSettingsLayout.addWidget(self.filenameprivacyDontSendOption, 3, 3, Qt.AlignLeft) self.coreSettingsLayout.addWidget(self.filesizeprivacyLabel, 4, 0) self.coreSettingsLayout.addWidget(self.filesizeprivacySendRawOption, 4, 1, Qt.AlignLeft) self.coreSettingsLayout.addWidget(self.filesizeprivacySendHashedOption, 4, 2, Qt.AlignLeft) self.coreSettingsLayout.addWidget(self.filesizeprivacyDontSendOption, 4, 3, Qt.AlignLeft) ## Syncplay internals self.internalSettingsGroup = QtWidgets.QGroupBox(getMessage("syncplay-internals-title")) self.internalSettingsLayout = QtWidgets.QVBoxLayout() self.internalSettingsGroup.setLayout(self.internalSettingsLayout) self.alwaysshowCheckbox = QCheckBox(getMessage("forceguiprompt-label")) self.alwaysshowCheckbox.setObjectName(constants.INVERTED_STATE_MARKER + "forceGuiPrompt") self.internalSettingsLayout.addWidget(self.alwaysshowCheckbox) self.automaticupdatesCheckbox = QCheckBox(getMessage("checkforupdatesautomatically-label")) self.automaticupdatesCheckbox.setObjectName("checkForUpdatesAutomatically") self.internalSettingsLayout.addWidget(self.automaticupdatesCheckbox) self.autosaveJoinsToListCheckbox = QCheckBox(getMessage("autosavejoinstolist-label")) self.autosaveJoinsToListCheckbox.setObjectName("autosaveJoinsToList") self.internalSettingsLayout.addWidget(self.autosaveJoinsToListCheckbox) ## Media path directories self.mediasearchSettingsGroup = QtWidgets.QGroupBox(getMessage("syncplay-mediasearchdirectories-title")) self.mediasearchSettingsLayout = QtWidgets.QVBoxLayout() self.mediasearchSettingsGroup.setLayout(self.mediasearchSettingsLayout) self.mediasearchTextEdit = QPlainTextEdit(utils.getListAsMultilineString(self.mediaSearchDirectories)) self.mediasearchTextEdit.setObjectName(constants.LOAD_SAVE_MANUALLY_MARKER + "mediasearcdirectories-arguments") self.mediasearchTextEdit.setLineWrapMode(QtWidgets.QPlainTextEdit.NoWrap) self.mediasearchSettingsLayout.addWidget(self.mediasearchTextEdit) self.mediasearchSettingsGroup.setMaximumHeight(self.mediasearchSettingsGroup.minimumSizeHint().height()) self.miscLayout.addWidget(self.coreSettingsGroup) self.miscLayout.addWidget(self.internalSettingsGroup) self.miscLayout.addWidget(self.mediasearchSettingsGroup) self.miscLayout.setAlignment(Qt.AlignTop) self.stackedLayout.addWidget(self.miscFrame) def addSyncTab(self): self.syncSettingsFrame = QtWidgets.QFrame() self.syncSettingsLayout = QtWidgets.QVBoxLayout() self.desyncSettingsGroup = QtWidgets.QGroupBox(getMessage("sync-otherslagging-title")) self.desyncOptionsFrame = QtWidgets.QFrame() self.desyncSettingsOptionsLayout = QtWidgets.QHBoxLayout() config = self.config self.slowdownCheckbox = QCheckBox(getMessage("slowondesync-label")) self.slowdownCheckbox.setObjectName("slowOnDesync") self.rewindCheckbox = QCheckBox(getMessage("rewindondesync-label")) self.rewindCheckbox.setObjectName("rewindOnDesync") self.fastforwardCheckbox = QCheckBox(getMessage("fastforwardondesync-label")) self.fastforwardCheckbox.setObjectName("fastforwardOnDesync") self.desyncSettingsLayout = QtWidgets.QGridLayout() self.desyncSettingsLayout.setSpacing(2) self.desyncFrame = QtWidgets.QFrame() self.desyncFrame.setLineWidth(0) self.desyncFrame.setMidLineWidth(0) self.desyncSettingsLayout.addWidget(self.slowdownCheckbox, 0, 0, 1, 2, Qt.AlignLeft) self.desyncSettingsLayout.addWidget(self.rewindCheckbox, 1, 0, 1, 2, Qt.AlignLeft) self.desyncSettingsLayout.setAlignment(Qt.AlignLeft) self.desyncSettingsGroup.setLayout(self.desyncSettingsLayout) self.desyncSettingsOptionsLayout.addWidget(self.desyncFrame) self.desyncFrame.setLayout(self.syncSettingsLayout) self.othersyncSettingsGroup = QtWidgets.QGroupBox(getMessage("sync-youlaggging-title")) self.othersyncOptionsFrame = QtWidgets.QFrame() self.othersyncSettingsLayout = QtWidgets.QGridLayout() self.dontslowwithmeCheckbox = QCheckBox(getMessage("dontslowdownwithme-label")) self.dontslowwithmeCheckbox.setObjectName("dontSlowDownWithMe") self.othersyncSettingsLayout.addWidget(self.dontslowwithmeCheckbox, 2, 0, 1, 2, Qt.AlignLeft) self.othersyncSettingsLayout.setAlignment(Qt.AlignLeft) self.othersyncSettingsLayout.addWidget(self.fastforwardCheckbox, 3, 0, 1, 2, Qt.AlignLeft) ## Trusted domains self.trusteddomainsSettingsGroup = QtWidgets.QGroupBox(getMessage("syncplay-trusteddomains-title")) self.trusteddomainsSettingsLayout = QtWidgets.QVBoxLayout() self.trusteddomainsSettingsGroup.setLayout(self.trusteddomainsSettingsLayout) self.trusteddomainsTextEdit = QPlainTextEdit(utils.getListAsMultilineString(self.trustedDomains)) self.trusteddomainsTextEdit.setObjectName(constants.LOAD_SAVE_MANUALLY_MARKER + "trusteddomains-arguments") self.trusteddomainsTextEdit.setLineWrapMode(QtWidgets.QPlainTextEdit.NoWrap) self.trusteddomainsSettingsLayout.addWidget(self.trusteddomainsTextEdit) self.trusteddomainsSettingsGroup.setMaximumHeight(self.trusteddomainsSettingsGroup.minimumSizeHint().height()) self.othersyncSettingsGroup.setLayout(self.othersyncSettingsLayout) self.othersyncSettingsGroup.setMaximumHeight(self.othersyncSettingsGroup.minimumSizeHint().height()) self.syncSettingsLayout.addWidget(self.othersyncSettingsGroup) self.syncSettingsLayout.addWidget(self.desyncSettingsGroup) self.syncSettingsLayout.addWidget(self.trusteddomainsSettingsGroup) self.syncSettingsFrame.setLayout(self.syncSettingsLayout) self.desyncSettingsGroup.setMaximumHeight(self.desyncSettingsGroup.minimumSizeHint().height()) self.syncSettingsLayout.setAlignment(Qt.AlignTop) self.stackedLayout.addWidget(self.syncSettingsFrame) def addChatTab(self): self.chatFrame = QtWidgets.QFrame() self.chatLayout = QtWidgets.QVBoxLayout() self.chatLayout.setAlignment(Qt.AlignTop) # Input self.chatInputGroup = QtWidgets.QGroupBox(getMessage("chat-title")) self.chatInputLayout = QtWidgets.QGridLayout() self.chatLayout.addWidget(self.chatInputGroup) self.chatInputGroup.setLayout(self.chatInputLayout) self.chatInputEnabledCheckbox = QCheckBox(getMessage("chatinputenabled-label")) self.chatInputEnabledCheckbox.setObjectName("chatInputEnabled") self.chatInputLayout.addWidget(self.chatInputEnabledCheckbox, 1, 0, 1, 1, Qt.AlignLeft) self.chatDirectInputCheckbox = QCheckBox(getMessage("chatdirectinput-label")) self.chatDirectInputCheckbox.setObjectName("chatDirectInput") self.chatDirectInputCheckbox.setStyleSheet( constants.STYLE_SUBCHECKBOX.format(self.posixresourcespath + "chevrons_right.png")) self.chatInputLayout.addWidget(self.chatDirectInputCheckbox, 2, 0, 1, 1, Qt.AlignLeft) self.inputFontLayout = QtWidgets.QHBoxLayout() self.inputFontLayout.setContentsMargins(0, 0, 0, 0) self.inputFontFrame = QtWidgets.QFrame() self.inputFontFrame.setLayout(self.inputFontLayout) self.inputFontFrame.setSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Minimum) self.chatFontLabel = QLabel(getMessage("chatinputfont-label"), self) self.chatFontLabel.setStyleSheet(constants.STYLE_SUBCHECKBOX.format(self.posixresourcespath + "chevrons_right.png")) self.chatFontLabel.setObjectName("font-label") self.chatInputFontButton = QtWidgets.QPushButton(getMessage("chatfont-label")) self.chatInputFontButton.setObjectName("set-input-font") self.chatInputFontButtonGroup = QtWidgets.QButtonGroup() self.chatInputFontButtonGroup.addButton(self.chatInputFontButton) self.chatInputFontButton.released.connect(lambda: self.fontDialog("chatInput")) self.chatInputColourButton = QtWidgets.QPushButton(getMessage("chatcolour-label")) self.chatInputColourButton.setObjectName("set-input-colour") self.chatInputColourButtonGroup = QtWidgets.QButtonGroup() self.chatInputColourButtonGroup.addButton(self.chatInputColourButton) self.chatInputColourButton.released.connect(lambda: self.colourDialog("chatInput")) self.inputFontLayout.addWidget(self.chatFontLabel, Qt.AlignLeft) self.inputFontLayout.addWidget(self.chatInputFontButton, Qt.AlignLeft) self.inputFontLayout.addWidget(self.chatInputColourButton, Qt.AlignLeft) self.chatInputLayout.addWidget(self.inputFontFrame, 3, 0, 1, 3, Qt.AlignLeft) self.chatInputPositionFrame = QtWidgets.QFrame() self.chatInputPositionLayout = QtWidgets.QHBoxLayout() self.chatInputPositionLayout.setContentsMargins(0, 0, 0, 0) self.chatInputPositionFrame.setLayout(self.chatInputPositionLayout) self.chatInputPositionFrame.setSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Minimum) self.chatInputPositionLabel = QLabel(getMessage("chatinputposition-label"), self) self.chatInputPositionLabel.setStyleSheet(constants.STYLE_SUBCHECKBOX.format(self.posixresourcespath + "chevrons_right.png")) self.chatInputPositionGroup = QButtonGroup() self.chatInputTopOption = QRadioButton(getMessage("chat-top-option")) self.chatInputMiddleOption = QRadioButton(getMessage("chat-middle-option")) self.chatInputBottomOption = QRadioButton(getMessage("chat-bottom-option")) self.chatInputPositionGroup.addButton(self.chatInputTopOption) self.chatInputPositionGroup.addButton(self.chatInputMiddleOption) self.chatInputPositionGroup.addButton(self.chatInputBottomOption) self.chatInputPositionLabel.setObjectName("chatinputposition") self.chatInputTopOption.setObjectName("chatinputposition-top" + constants.CONFIG_NAME_MARKER + "chatInputPosition" + constants.CONFIG_VALUE_MARKER + constants.INPUT_POSITION_TOP) self.chatInputMiddleOption.setObjectName("chatinputposition-middle" + constants.CONFIG_NAME_MARKER + "chatInputPosition" + constants.CONFIG_VALUE_MARKER + constants.INPUT_POSITION_MIDDLE) self.chatInputBottomOption.setObjectName("chatinputposition-bottom" + constants.CONFIG_NAME_MARKER + "chatInputPosition" + constants.CONFIG_VALUE_MARKER + constants.INPUT_POSITION_BOTTOM) self.chatInputPositionLayout.addWidget(self.chatInputPositionLabel) self.chatInputPositionLayout.addWidget(self.chatInputTopOption) self.chatInputPositionLayout.addWidget(self.chatInputMiddleOption) self.chatInputPositionLayout.addWidget(self.chatInputBottomOption) self.chatInputLayout.addWidget(self.chatInputPositionFrame) self.subitems['chatInputEnabled'] = [self.chatInputPositionLabel.objectName(), self.chatInputTopOption.objectName(), self.chatInputMiddleOption.objectName(), self.chatInputBottomOption.objectName(), self.chatInputFontButton.objectName(), self.chatFontLabel.objectName(), self.chatInputColourButton.objectName(), self.chatDirectInputCheckbox.objectName()] # Output self.chatOutputGroup = QtWidgets.QGroupBox(getMessage("chatoutputheader-label")) self.chatOutputLayout = QtWidgets.QGridLayout() self.chatLayout.addWidget(self.chatOutputGroup) self.chatOutputGroup.setLayout(self.chatOutputLayout) self.chatOutputEnabledCheckbox = QCheckBox(getMessage("chatoutputenabled-label")) self.chatOutputEnabledCheckbox.setObjectName("chatOutputEnabled") self.chatOutputLayout.addWidget(self.chatOutputEnabledCheckbox, 1, 0, 1, 1, Qt.AlignLeft) self.outputFontLayout = QtWidgets.QHBoxLayout() self.outputFontLayout.setContentsMargins(0, 0, 0, 0) self.outputFontFrame = QtWidgets.QFrame() self.outputFontFrame.setLayout(self.outputFontLayout) self.outputFontFrame.setSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Minimum) self.chatOutputFontLabel = QLabel(getMessage("chatoutputfont-label"), self) self.chatOutputFontLabel.setStyleSheet(constants.STYLE_SUBCHECKBOX.format(self.posixresourcespath + "chevrons_right.png")) self.chatOutputFontLabel.setObjectName("font-output-label") self.chatOutputFontButton = QtWidgets.QPushButton(getMessage("chatfont-label")) self.chatOutputFontButton.setObjectName("set-output-font") self.chatOutputFontButtonGroup = QtWidgets.QButtonGroup() self.chatOutputFontButtonGroup.addButton(self.chatOutputFontButton) self.chatOutputFontButton.released.connect(lambda: self.fontDialog("chatOutput")) self.chatOutputColourButton = QtWidgets.QPushButton(getMessage("chatcolour-label")) self.outputFontLayout.addWidget(self.chatOutputFontLabel, Qt.AlignLeft) self.outputFontLayout.addWidget(self.chatOutputFontButton, Qt.AlignLeft) self.chatOutputLayout.addWidget(self.outputFontFrame, 2, 0, 1, 3, Qt.AlignLeft) self.chatOutputModeLabel = QLabel(getMessage("chatoutputposition-label"), self) self.chatOutputModeLabel.setStyleSheet(constants.STYLE_SUBCHECKBOX.format(self.posixresourcespath + "chevrons_right.png")) self.chatOutputModeGroup = QButtonGroup() self.chatOutputChatroomOption = QRadioButton(getMessage("chat-chatroom-option")) self.chatOutputScrollingOption = QRadioButton(getMessage("chat-scrolling-option")) self.chatOutputModeGroup.addButton(self.chatOutputChatroomOption) self.chatOutputModeGroup.addButton(self.chatOutputScrollingOption) self.chatOutputModeLabel.setObjectName("chatoutputmode") self.chatOutputChatroomOption.setObjectName("chatoutputmode-chatroom" + constants.CONFIG_NAME_MARKER + "chatOutputMode" + constants.CONFIG_VALUE_MARKER + constants.CHATROOM_MODE) self.chatOutputScrollingOption.setObjectName("chatoutputmode-scrolling" + constants.CONFIG_NAME_MARKER + "chatOutputMode" + constants.CONFIG_VALUE_MARKER + constants.SCROLLING_MODE) self.chatOutputModeFrame = QtWidgets.QFrame() self.chatOutputModeLayout = QtWidgets.QHBoxLayout() self.chatOutputModeLayout.setContentsMargins(0, 0, 0, 0) self.chatOutputModeFrame.setLayout(self.chatOutputModeLayout) self.chatOutputModeFrame.setSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Minimum) self.chatOutputModeLayout.addWidget(self.chatOutputModeLabel) self.chatOutputModeLayout.addWidget(self.chatOutputChatroomOption) self.chatOutputModeLayout.addWidget(self.chatOutputScrollingOption) self.chatOutputLayout.addWidget(self.chatOutputModeFrame) self.subitems['chatOutputEnabled'] = [self.chatOutputModeLabel.objectName(), self.chatOutputChatroomOption.objectName(), self.chatOutputScrollingOption.objectName(), self.chatOutputFontButton.objectName(), self.chatOutputFontLabel.objectName()] # chatFrame self.chatFrame.setLayout(self.chatLayout) self.stackedLayout.addWidget(self.chatFrame) def fontDialog(self, configName): font = QtGui.QFont() font.setFamily(self.config[configName + "FontFamily"]) font.setPointSize(self.config[configName + "RelativeFontSize"]) font.setWeight(self.config[configName + "FontWeight"]) font.setUnderline(self.config[configName + "FontUnderline"]) ok, value = QtWidgets.QFontDialog.getFont(font) if ok: self.config[configName + "FontFamily"] = value.family() self.config[configName + "RelativeFontSize"] = value.pointSize() self.config[configName + "FontWeight"] = value.weight() self.config[configName + "FontUnderline"] = value.underline() def colourDialog(self, configName): oldColour = QtGui.QColor() oldColour.setNamedColor(self.config[configName + "FontColor"]) colour = QtWidgets.QColorDialog.getColor(oldColour, self) if colour.isValid(): self.config[configName + "FontColor"] = colour.name() def addMessageTab(self): self.messageFrame = QtWidgets.QFrame() self.messageLayout = QtWidgets.QVBoxLayout() self.messageLayout.setAlignment(Qt.AlignTop) # OSD self.osdSettingsGroup = QtWidgets.QGroupBox(getMessage("messages-osd-title")) self.osdSettingsLayout = QtWidgets.QVBoxLayout() self.osdSettingsFrame = QtWidgets.QFrame() self.showOSDCheckbox = QCheckBox(getMessage("showosd-label")) self.showOSDCheckbox.setObjectName("showOSD") self.osdSettingsLayout.addWidget(self.showOSDCheckbox) self.showSameRoomOSDCheckbox = QCheckBox(getMessage("showsameroomosd-label")) self.showSameRoomOSDCheckbox.setObjectName("showSameRoomOSD") self.showSameRoomOSDCheckbox.setStyleSheet(constants.STYLE_SUBCHECKBOX.format(posixresourcespath + "chevrons_right.png")) self.osdSettingsLayout.addWidget(self.showSameRoomOSDCheckbox) self.showNonControllerOSDCheckbox = QCheckBox(getMessage("shownoncontrollerosd-label")) self.showNonControllerOSDCheckbox.setObjectName("showNonControllerOSD") self.showNonControllerOSDCheckbox.setStyleSheet(constants.STYLE_SUBCHECKBOX.format(posixresourcespath + "chevrons_right.png")) self.osdSettingsLayout.addWidget(self.showNonControllerOSDCheckbox) self.showDifferentRoomOSDCheckbox = QCheckBox(getMessage("showdifferentroomosd-label")) self.showDifferentRoomOSDCheckbox.setObjectName("showDifferentRoomOSD") self.showDifferentRoomOSDCheckbox.setStyleSheet(constants.STYLE_SUBCHECKBOX.format(posixresourcespath + "chevrons_right.png")) self.osdSettingsLayout.addWidget(self.showDifferentRoomOSDCheckbox) self.slowdownOSDCheckbox = QCheckBox(getMessage("showslowdownosd-label")) self.slowdownOSDCheckbox.setObjectName("showSlowdownOSD") self.slowdownOSDCheckbox.setStyleSheet(constants.STYLE_SUBCHECKBOX.format(posixresourcespath + "chevrons_right.png")) self.osdSettingsLayout.addWidget(self.slowdownOSDCheckbox) self.showOSDWarningsCheckbox = QCheckBox(getMessage("showosdwarnings-label")) self.showOSDWarningsCheckbox.setObjectName("showOSDWarnings") self.showOSDWarningsCheckbox.setStyleSheet(constants.STYLE_SUBCHECKBOX.format(posixresourcespath + "chevrons_right.png")) self.osdSettingsLayout.addWidget(self.showOSDWarningsCheckbox) self.subitems['showOSD'] = ["showSameRoomOSD", "showDifferentRoomOSD", "showSlowdownOSD", "showOSDWarnings", "showNonControllerOSD"] self.osdSettingsGroup.setLayout(self.osdSettingsLayout) self.osdSettingsGroup.setMaximumHeight(self.osdSettingsGroup.minimumSizeHint().height()) self.osdSettingsLayout.setAlignment(Qt.AlignTop) self.messageLayout.addWidget(self.osdSettingsGroup) # Other display self.displaySettingsGroup = QtWidgets.QGroupBox(getMessage("messages-other-title")) self.displaySettingsLayout = QtWidgets.QVBoxLayout() self.displaySettingsLayout.setAlignment(Qt.AlignTop & Qt.AlignLeft) self.displaySettingsFrame = QtWidgets.QFrame() self.showDurationNotificationCheckbox = QCheckBox(getMessage("showdurationnotification-label")) self.showDurationNotificationCheckbox.setObjectName("showDurationNotification") self.displaySettingsLayout.addWidget(self.showDurationNotificationCheckbox) self.languageFrame = QtWidgets.QFrame() self.languageLayout = QtWidgets.QHBoxLayout() self.languageLayout.setContentsMargins(0, 0, 0, 0) self.languageFrame.setLayout(self.languageLayout) self.languageFrame.setSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Minimum) self.languageLayout.setAlignment(Qt.AlignTop & Qt.AlignLeft) self.languageLabel = QLabel(getMessage("language-label"), self) self.languageCombobox = QtWidgets.QComboBox(self) self.languageCombobox.addItem(getMessage("automatic-language").format(getMessage("LANGUAGE", getInitialLanguage()))) self.languages = getLanguages() for lang in self.languages: self.languageCombobox.addItem(self.languages[lang], lang) if lang == self.config['language']: self.languageCombobox.setCurrentIndex(self.languageCombobox.count()-1) self.languageCombobox.currentIndexChanged.connect(self.languageChanged) self.languageLayout.addWidget(self.languageLabel, 1, Qt.AlignLeft) self.languageLayout.addWidget(self.languageCombobox, 1, Qt.AlignLeft) self.displaySettingsLayout.addWidget(self.languageFrame) self.languageLabel.setObjectName("language") self.languageCombobox.setObjectName("language") self.languageFrame.setMaximumWidth(self.languageFrame.minimumSizeHint().width()) self.displaySettingsGroup.setLayout(self.displaySettingsLayout) self.displaySettingsGroup.setMaximumHeight(self.displaySettingsGroup.minimumSizeHint().height()) self.displaySettingsLayout.setAlignment(Qt.AlignTop & Qt.AlignLeft) self.messageLayout.addWidget(self.displaySettingsGroup) # messageFrame self.messageFrame.setLayout(self.messageLayout) self.stackedLayout.addWidget(self.messageFrame) def addBottomLayout(self): config = self.config self.bottomButtonFrame = QtWidgets.QFrame() self.bottomButtonLayout = QtWidgets.QHBoxLayout() self.helpButton = QtWidgets.QPushButton(QtGui.QIcon(resourcespath + 'help.png'), getMessage("help-label")) self.helpButton.setObjectName("help") self.helpButton.setMaximumSize(self.helpButton.sizeHint()) self.helpButton.released.connect(self.openHelp) self.resetButton = QtWidgets.QPushButton(QtGui.QIcon(resourcespath + 'cog_delete.png'), getMessage("reset-label")) self.resetButton.setMaximumSize(self.resetButton.sizeHint()) self.resetButton.setObjectName("reset") self.resetButton.released.connect(self.resetSettings) self.runButton = QtWidgets.QPushButton(QtGui.QIcon(resourcespath + 'accept.png'), getMessage("run-label")) self.runButton.released.connect(self._runWithoutStoringConfig) self.runButton = QtWidgets.QPushButton(QtGui.QIcon(resourcespath + 'accept.png'), getMessage("run-label")) self.runButton.pressed.connect(self._runWithoutStoringConfig) self.runButton.setToolTip(getMessage("nostore-tooltip")) self.storeAndRunButton = QtWidgets.QPushButton(QtGui.QIcon(resourcespath + 'accept.png'), getMessage("storeandrun-label")) self.storeAndRunButton.released.connect(self._saveDataAndLeave) self.bottomButtonLayout.addWidget(self.helpButton) self.bottomButtonLayout.addWidget(self.resetButton) self.bottomButtonLayout.addWidget(self.runButton) self.bottomButtonLayout.addWidget(self.storeAndRunButton) self.bottomButtonFrame.setLayout(self.bottomButtonLayout) if isMacOS(): self.bottomButtonLayout.setContentsMargins(15, 0, 15, 0) else: self.bottomButtonLayout.setContentsMargins(5, 0, 5, 0) self.mainLayout.addWidget(self.bottomButtonFrame, 1, 0, 1, 2) self.bottomCheckboxFrame = QtWidgets.QFrame() if isMacOS(): self.bottomCheckboxFrame.setContentsMargins(3, 0, 6, 0) else: self.bottomCheckboxFrame.setContentsMargins(0, 0, 0, 0) self.bottomCheckboxLayout = QtWidgets.QGridLayout() self.alwaysshowCheckbox = QCheckBox(getMessage("forceguiprompt-label")) self.enableplaylistsCheckbox = QCheckBox(getMessage("sharedplaylistenabled-label")) self.bottomCheckboxLayout.addWidget(self.showmoreCheckbox) self.bottomCheckboxLayout.addWidget(self.enableplaylistsCheckbox, 0, 2, Qt.AlignRight) self.alwaysshowCheckbox.setObjectName(constants.INVERTED_STATE_MARKER + "forceGuiPrompt") self.enableplaylistsCheckbox.setObjectName("sharedPlaylistEnabled") self.bottomCheckboxFrame.setLayout(self.bottomCheckboxLayout) self.mainLayout.addWidget(self.bottomCheckboxFrame, 2, 0, 1, 2) def tabList(self): self.tabListLayout = QtWidgets.QHBoxLayout() self.tabListFrame = QtWidgets.QFrame() self.tabListWidget = QtWidgets.QListWidget() self.tabListWidget.addItem(QtWidgets.QListWidgetItem(QtGui.QIcon(resourcespath + "house.png"), getMessage("basics-label"))) self.tabListWidget.addItem(QtWidgets.QListWidgetItem(QtGui.QIcon(resourcespath + "control_pause_blue.png"), getMessage("readiness-label"))) self.tabListWidget.addItem(QtWidgets.QListWidgetItem(QtGui.QIcon(resourcespath + "film_link.png"), getMessage("sync-label"))) self.tabListWidget.addItem(QtWidgets.QListWidgetItem(QtGui.QIcon(resourcespath + "user_comment.png"), getMessage("chat-label"))) self.tabListWidget.addItem(QtWidgets.QListWidgetItem(QtGui.QIcon(resourcespath + "error.png"), getMessage("messages-label"))) self.tabListWidget.addItem(QtWidgets.QListWidgetItem(QtGui.QIcon(resourcespath + "cog.png"), getMessage("misc-label"))) self.tabListLayout.addWidget(self.tabListWidget) self.tabListFrame.setLayout(self.tabListLayout) self.tabListFrame.setFixedWidth(self.tabListFrame.minimumSizeHint().width() + constants.TAB_PADDING) self.tabListWidget.setStyleSheet(constants.STYLE_TABLIST) self.tabListWidget.currentItemChanged.connect(self.tabChange) self.tabListWidget.itemClicked.connect(self.tabChange) self.tabListWidget.itemPressed.connect(self.tabChange) self.mainLayout.addWidget(self.tabListFrame, 0, 0, 1, 1) def ensureTabListIsVisible(self): self.stackedFrame.setFixedWidth(self.stackedFrame.width()) while self.tabListWidget.horizontalScrollBar().isVisible() and self.tabListFrame.width() < constants.MAXIMUM_TAB_WIDTH: self.tabListFrame.setFixedWidth(self.tabListFrame.width()+1) def tabChange(self): self.setFocus() self.stackedLayout.setCurrentIndex(self.tabListWidget.currentRow()) def resetSettings(self): self.clearGUIData(leaveMore=True) self.config['resetConfig'] = True self.pressedclosebutton = False self.close() self.closed.emit() def showEvent(self, *args, **kwargs): self.ensureTabListIsVisible() self.setFixedWidth(self.minimumSizeHint().width()) def clearGUIData(self, leaveMore=False): settings = QSettings("Syncplay", "PlayerList") settings.clear() settings = QSettings("Syncplay", "MediaBrowseDialog") settings.clear() settings = QSettings("Syncplay", "MainWindow") settings.clear() settings = QSettings("Syncplay", "Interface") settings.beginGroup("Update") settings.setValue("lastChecked", None) settings.setValue("lastCheckedQt", None) settings.endGroup() settings.beginGroup("PublicServerList") settings.setValue("publicServers", None) settings.endGroup() if not leaveMore: settings = QSettings("Syncplay", "MoreSettings") settings.clear() self.datacleared = True def populateEmptyServerList(self): if self.publicServers is None: if self.config["checkForUpdatesAutomatically"] == True: self.updateServerList() else: currentServer = self.hostCombobox.currentText() self.publicServers = constants.FALLBACK_PUBLIC_SYNCPLAY_SERVERS i = 0 for server in self.publicServers: self.hostCombobox.addItem(server[1]) self.hostCombobox.setItemData(i, server[0], Qt.ToolTipRole) if not server[1] in self.publicServerAddresses: self.publicServerAddresses.append(server[1]) i += 1 self.hostCombobox.setEditText(currentServer) def updatePasswordVisibilty(self): if (self.hostCombobox.currentText() == "" and self.serverpassTextbox.text() == "") or str(self.hostCombobox.currentText()) in self.publicServerAddresses: self.serverpassTextbox.setDisabled(True) self.serverpassTextbox.setReadOnly(True) if self.serverpassTextbox.text() != "": self.storedPassword = self.serverpassTextbox.text() self.serverpassTextbox.setText("") else: self.serverpassTextbox.setEnabled(True) self.serverpassTextbox.setReadOnly(False) self.serverpassTextbox.setText(self.storedPassword) def createMenubar(self): self.menuBar = QtWidgets.QMenuBar() # Edit menu self.editMenu = QtWidgets.QMenu(getMessage("edit-menu-label"), self) self.cutAction = self.editMenu.addAction(getMessage("cut-menu-label")) self.cutAction.setShortcuts(QtGui.QKeySequence.Cut) self.copyAction = self.editMenu.addAction(getMessage("copy-menu-label")) self.copyAction.setShortcuts(QtGui.QKeySequence.Copy) self.pasteAction = self.editMenu.addAction(getMessage("paste-menu-label")) self.pasteAction.setShortcuts(QtGui.QKeySequence.Paste) self.selectAction = self.editMenu.addAction(getMessage("selectall-menu-label")) self.selectAction.setShortcuts(QtGui.QKeySequence.SelectAll) self.editMenu.addSeparator() self.menuBar.addMenu(self.editMenu) self.mainLayout.setMenuBar(self.menuBar) def __init__(self, config, playerpaths, error, defaultConfig): self.config = config self.defaultConfig = defaultConfig self.playerpaths = playerpaths self.datacleared = False self.config['resetConfig'] = False self.subitems = {} self.publicServers = None self.publicServerAddresses = [] self._playerProbeThread = GetPlayerIconThread() self._playerProbeThread.done.connect(self._updateExecutableIcon) self._playerProbeThread.start() if self.config['clearGUIData'] == True: self.config['clearGUIData'] = False self.clearGUIData() self.QtWidgets = QtWidgets self.QtGui = QtGui self.error = error if isWindows(): resourcespath = utils.findWorkingDir() + "\\resources\\" else: resourcespath = utils.findWorkingDir() + "/resources/" self.posixresourcespath = utils.findWorkingDir().replace("\\", "/") + "/resources/" self.resourcespath = resourcespath super(ConfigDialog, self).__init__() self.setWindowTitle(getMessage("config-window-title")) self.setWindowFlags(self.windowFlags() & Qt.WindowCloseButtonHint & ~Qt.WindowContextHelpButtonHint) self.setWindowIcon(QtGui.QIcon(resourcespath + "syncplay.png")) self.stackedLayout = QtWidgets.QStackedLayout() self.stackedFrame = QtWidgets.QFrame() self.stackedFrame.setLayout(self.stackedLayout) self.mainLayout = QtWidgets.QGridLayout() self.mainLayout.setSpacing(0) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.storedPassword = self.config['password'] self.addBasicTab() self.addReadinessTab() self.addSyncTab() self.addChatTab() self.addMessageTab() self.addMiscTab() self.tabList() if isMacOS(): self.createMenubar() self.config['menuBar'] = dict() self.config['menuBar']['bar'] = self.menuBar self.config['menuBar']['editMenu'] = self.editMenu else: self.config['menuBar'] = None self.mainLayout.addWidget(self.stackedFrame, 0, 1) self.addBottomLayout() self.updatePasswordVisibilty() if self.getMoreState() == False: self.tabListFrame.hide() self.resetButton.hide() self.playerargsTextbox.hide() self.playerargsLabel.hide() self.runButton.hide() if self.mediapathTextbox.text() == "": self.mediapathTextbox.hide() self.mediapathLabel.hide() self.mediabrowseButton.hide() else: self.mediapathTextbox.show() self.mediapathLabel.show() self.mediabrowseButton.show() if isMacOS(): newHeight = self.connectionSettingsGroup.minimumSizeHint().height()+self.mediaplayerSettingsGroup.minimumSizeHint().height()+self.bottomButtonFrame.minimumSizeHint().height()+50 else: newHeight = self.connectionSettingsGroup.minimumSizeHint().height()+self.mediaplayerSettingsGroup.minimumSizeHint().height()+self.bottomButtonFrame.minimumSizeHint().height()+13 if self.error: newHeight += self.errorLabel.height() + 3 self.stackedFrame.setFixedHeight(newHeight) else: self.showmoreCheckbox.setChecked(True) self.tabListWidget.setCurrentRow(0) self.stackedFrame.setFixedHeight(self.stackedFrame.minimumSizeHint().height()) self.showmoreCheckbox.toggled.connect(self.moreToggled) self.setLayout(self.mainLayout) if self.config['noStore']: self.runButton.setFocus() else: self.storeAndRunButton.setFocus() if isMacOS(): initialHeight = self.connectionSettingsGroup.minimumSizeHint().height()+self.mediaplayerSettingsGroup.minimumSizeHint().height()+self.bottomButtonFrame.minimumSizeHint().height()+50 if self.error: initialHeight += 40 self.setFixedWidth(self.sizeHint().width()) self.setFixedHeight(initialHeight) else: self.setFixedSize(self.sizeHint()) self.setAcceptDrops(True) if constants.SHOW_TOOLTIPS: self.processWidget(self, lambda w: self.loadTooltips(w)) self.processWidget(self, lambda w: self.loadValues(w)) self.processWidget(self, lambda w: self.connectChildren(w)) self.populateEmptyServerList()
53.858566
204
0.699375