File size: 6,810 Bytes
7bc3850
 
 
 
 
 
 
 
 
 
 
 
bcfa0fa
 
 
 
 
 
7c48778
bcfa0fa
 
cff9e5a
cce86b7
 
cff9e5a
cce86b7
 
0a9a39b
cce86b7
 
bcfa0fa
92af311
bcfa0fa
 
7fd20bd
715df9a
69ac811
 
8eb80ef
69ac811
b75b8b4
 
 
 
 
 
 
 
7ce7d00
 
bcfa0fa
 
 
92af311
 
 
 
 
 
d35cc11
92af311
 
 
 
 
 
 
 
 
 
19a6988
92af311
 
 
 
 
7c43ffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
715df9a
7c43ffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92af311
 
 
 
 
cff9e5a
 
 
 
 
 
 
 
 
92af311
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
---
license: apache-2.0
task_categories:
- visual-question-answering
language:
- en
tags:
- spatial-reasoning
- cross-viewpoint localization
pretty_name: ViewSpatial-Bench
size_categories:
- 1K<n<10K
configs:
- config_name: ViewSpatial-Bench
  data_files:
  - split: test
    path: ViewSpatial-Bench.json
---
# **ViewSpatial-Bench: Evaluating Multi-perspective Spatial Localization in Vision-Language Models**

<!-- Provide a quick summary of the dataset. -->
<a href="https://arxiv.org/abs/2505.21500" target="_blank">
    <img alt="arXiv" src="https://img.shields.io/badge/arXiv-ViewSpatial_Bench-red?logo=arxiv" height="20" />
</a>
<a href="https://github.com/ZJU-REAL/ViewSpatial-Bench" target="_blank">
    <img alt="github" src="https://img.shields.io/badge/github-ViewSpatial_Bench-white?logo=github" height="20" />
</a>
<a href="https://zju-real.github.io/ViewSpatial-Page/" target="_blank">
    <img alt="Webpage" src="https://img.shields.io/badge/%F0%9F%8C%8E_Website-ViewSpatial_Bench-green.svg" height="20" />
</a>

## Dataset Description

<!-- Provide a longer summary of what this dataset is. -->
We introduce **ViewSpatial-Bench**, a comprehensive benchmark with over 5,700 question-answer pairs across 1,000+ 3D scenes from ScanNet and MS-COCO validation sets. This benchmark evaluates VLMs' spatial localization capabilities from multiple perspectives, specifically testing both egocentric (camera) and allocentric (human subject) viewpoints across five distinct task types.

ViewSpatial-Bench addresses a critical gap: while VLMs excel at spatial reasoning from their own perspective, they struggle with perspective-taking—adopting another entity's spatial frame of reference—which is essential for embodied interaction and multi-agent collaboration.The figure below shows the construction pipeline and example demonstrations of our benchmark.

<img alt="ViewSpatial-Bench construction pipeline and example questions" src="https://cdn.jsdelivr.net/gh/lidingm/blog_img/img/202505222134833.png" style="width: 100%; max-width: 1000px;" />

The dataset contains the following fields:
| Field Name | Description |
| :--------- | :---------- |
| `question_type` | Type of spatial reasoning task, includes 5 distinct categories for evaluating different spatial capabilities |
| `image_path` | Path to the source image, includes data from two sources: `scannetv2_val` (ScanNet validation set) and `val2017` (MS-COCO validation set) |
| `question` | The spatial reasoning question posed to the model |
| `answer` | The correct answer to the question |
| `choices` | Multiple choice options available for the question |
- **Language(s) (NLP):** en
- **License:** apache-2.0

## Uses

**I. With HuggingFace datasets library.**
```py
from datasets import load_dataset
ds = load_dataset("lidingm/ViewSpatial-Bench")
```
**II. Evaluation using Open-Source Code.**

Evaluate using our open-source evaluation code available on Github.(Coming Soon)
```py
# Clone the repository
git clone https://github.com/lidingm/ViewSpatial-Bench.git
cd ViewSpatial-Bench

# Install dependencies
pip install -r requirements.txt

# Run evaluation
python evaluate.py --model_path your_model_path
```
You can configure the appropriate model parameters and evaluation settings according to the framework's requirements to obtain performance evaluation results on the ViewSpatial-Bench dataset.

## Benchamrk
We provide benchmark results for various open-source models as well as **GPT-4o** and **Gemini 2.0 Flash** on our benchmark. *More model evaluations will be added.*
<table>
  <thead>
    <tr>
      <th rowspan="2">Model</th>
      <th colspan="3">Camera-based Tasks</th>
      <th colspan="4">Person-based Tasks</th>
      <th rowspan="2">Overall</th>
    </tr>
    <tr>
      <th>Rel. Dir.</th>
      <th>Obj. Ori.</th>
      <th>Avg.</th>
      <th>Obj. Ori.</th>
      <th>Rel. Dir.</th>
      <th>Sce. Sim.</th>
      <th>Avg.</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>InternVL2.5 (2B)</td>
      <td>38.52</td><td>22.59</td><td>32.79</td>
      <td>47.09</td><td>40.02</td><td>25.70</td><td>37.04</td>
      <td>34.98</td>
    </tr>
    <tr>
      <td>Qwen2.5-VL (3B)</td>
      <td>43.43</td><td>33.33</td><td>39.80</td>
      <td>39.16</td><td>28.62</td><td>28.51</td><td>32.14</td>
      <td>35.85</td>
    </tr>
    <tr>
      <td>Qwen2.5-VL (7B)</td>
      <td>46.64</td><td>29.72</td><td>40.56</td>
      <td>37.05</td><td>35.04</td><td>28.78</td><td>33.37</td>
      <td>36.85</td>
    </tr>
    <tr>
      <td>LLaVA-NeXT-Video (7B)</td>
      <td>26.34</td><td>19.28</td><td>23.80</td>
      <td>44.68</td><td>38.60</td><td>29.05</td><td>37.07</td>
      <td>30.64</td>
    </tr>
    <tr>
      <td>LLaVA-OneVision (7B)</td>
      <td>29.84</td><td>26.10</td><td>28.49</td>
      <td>22.39</td><td>31.00</td><td>26.88</td><td>26.54</td>
      <td>27.49</td>
    </tr>
    <tr>
      <td>InternVL2.5 (8B)</td>
      <td>49.41</td><td><b>41.27</b></td><td>46.48</td>
      <td>46.79</td><td>42.04</td><td><b>32.85</b></td><td>40.20</td>
      <td><b>43.24</b></td>
    </tr>
    <tr>
      <td>Llama-3.2-Vision (11B)</td>
      <td>25.27</td><td>20.98</td><td>23.73</td>
      <td>51.20</td><td>32.19</td><td>18.82</td><td>33.61</td>
      <td>28.82</td>
    </tr>
    <tr>
      <td>InternVL3 (14B)</td>
      <td><b>54.65</b></td><td>33.63</td><td><b>47.09</b></td>
      <td>33.43</td><td>37.05</td><td>31.86</td><td>33.88</td>
      <td>40.28</td>
    </tr>
    <tr>
      <td>Kimi-VL-Instruct (16B)</td>
      <td>26.85</td><td>22.09</td><td>25.14</td>
      <td><b>63.05</b></td><td><b>43.94</b></td><td>20.27</td><td><b>41.52</b></td>
      <td>33.58</td>
    </tr>
    <tr>
      <td>GPT-4o</td>
      <td>41.46</td><td>19.58</td><td>33.57</td>
      <td>42.97</td><td>40.86</td><td>26.79</td><td>36.29</td>
      <td>34.98</td>
    </tr>
    <tr>
      <td>Gemini 2.0 Flash</td>
      <td>45.29</td><td>12.95</td><td>33.66</td>
      <td>41.16</td><td>32.78</td><td>21.90</td><td>31.53</td>
      <td>32.56</td>
    </tr>
    <tr>
      <td>Random Baseline</td>
      <td>25.16</td><td>26.10</td><td>25.50</td>
      <td>24.60</td><td>31.12</td><td>26.33</td><td>27.12</td>
      <td>26.33</td>
    </tr>
  </tbody>
</table>



## Citation

```
@misc{li2025viewspatialbenchevaluatingmultiperspectivespatial,
      title={ViewSpatial-Bench: Evaluating Multi-perspective Spatial Localization in Vision-Language Models}, 
      author={Dingming Li and Hongxing Li and Zixuan Wang and Yuchen Yan and Hang Zhang and Siqi Chen and Guiyang Hou and Shengpei Jiang and Wenqi Zhang and Yongliang Shen and Weiming Lu and Yueting Zhuang},
      year={2025},
      eprint={2505.21500},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2505.21500}, 
}
```