Datasets:
File size: 5,341 Bytes
7bc3850 bcfa0fa 92af311 bcfa0fa 92af311 bcfa0fa 92af311 7ce7d00 bcfa0fa 92af311 7c43ffb 92af311 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
---
license: apache-2.0
task_categories:
- visual-question-answering
language:
- en
tags:
- spatial-reasoning
- cross-viewpoint localization
pretty_name: ViewSpatial-Bench
size_categories:
- 1K<n<10K
configs:
- config_name: ViewSpatial-Bench
data_files:
- split: test
path: ViewSpatial-Bench.json
---
# ViewSpatial-Bench: Evaluating Multi-perspective Spatial Localization in Vision-Language Models
<!-- Provide a quick summary of the dataset. -->
## Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
We introduce ViewSpatial-Bench to quantitatively evaluate VLMs' spatial localization capabilities in 3D environments from multiple perspectives. Our benchmark contains over 5,700 question-answer pairs spanning more than 1,000 unique 3D scenes, with source imagery from the validation sets of ScanNet and MS-CoCo.
ViewSpatial-Bench is the first comprehensive benchmark designed specifically for evaluating multi-viewpoint spatial orientation recognition capabilities of vision-language models (VLMs) across five distinct task types. The benchmark assesses how well VLMs can perform spatial reasoning from different perspectives, focusing on both egocentric (camera) and allocentric (human subject) viewpoints.
The benchmark addresses a critical limitation in current VLMs: while they excel at egocentric spatial reasoning (from the camera's perspective), they struggle to generalize to allocentric viewpoints when required to adopt another entity's spatial frame of reference. This capability, known as "perspective-taking," is crucial for embodied interaction, spatial navigation, and multi-agent collaboration.
- **Language(s) (NLP):** en
- **License:** apache-2.0
## Uses
**I. With HuggingFace datasets library.**
```py
from datasets import load_dataset
ds = load_dataset("lidingm/ViewSpatial-Bench")
```
**II. Evaluation using Open-Source Code.**
Evaluate using our open-source evaluation code available on Github.(Coming Soon)
```py
# Clone the repository
git clone https://github.com/lidingm/ViewSpatial-Bench.git
cd ViewSpatial-Bench
# Install dependencies
pip install -r requirements.txt
# Run evaluation
python eval.py --model_name your_model --dataset_path path/to/dataset
```
You can configure the appropriate model parameters and evaluation settings according to the framework's requirements to obtain performance evaluation results on the ViewSpatial-Bench dataset.
## Benchamrk
We provide benchmark results for various open-source models as well as **GPT-4o** and **Gemini 2.0 Flash** on our benchmark. *More model evaluations will be added.*
<table>
<thead>
<tr>
<th rowspan="2">Model</th>
<th colspan="3">Camera-based Tasks</th>
<th colspan="4">Person-based Tasks</th>
<th rowspan="2">Overall</th>
</tr>
<tr>
<th>Rel. Dir.</th>
<th>Obj. Ori.</th>
<th>Avg.</th>
<th>Obj. Ori.</th>
<th>Rel. Dir.</th>
<th>Sce. Sim.</th>
<th>Avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>InternVL2.5 (2B)</td>
<td>38.52</td><td>22.59</td><td>32.79</td>
<td>47.09</td><td>40.02</td><td>25.70</td><td>37.04</td>
<td>34.98</td>
</tr>
<tr>
<td>Qwen2.5-VL (3B) [Backbone]</td>
<td>43.43</td><td>33.33</td><td>39.80</td>
<td>39.16</td><td>28.62</td><td>28.51</td><td>32.14</td>
<td>35.85</td>
</tr>
<tr>
<td>Qwen2.5-VL (7B)</td>
<td>46.64</td><td>29.72</td><td>40.56</td>
<td>37.05</td><td>35.04</td><td>28.78</td><td>33.37</td>
<td>36.85</td>
</tr>
<tr>
<td>LLaVA-NeXT-Video (7B)</td>
<td>26.34</td><td>19.28</td><td>23.80</td>
<td>44.68</td><td>38.60</td><td>29.05</td><td>37.07</td>
<td>30.64</td>
</tr>
<tr>
<td>LLaVA-OneVision (7B)</td>
<td>29.84</td><td>26.10</td><td>28.49</td>
<td>22.39</td><td>31.00</td><td>26.88</td><td>26.54</td>
<td>27.49</td>
</tr>
<tr>
<td>InternVL2.5 (8B)</td>
<td>49.41</td><td><b>41.27</b></td><td>46.48</td>
<td>46.79</td><td>42.04</td><td><b>32.85</b></td><td>40.20</td>
<td><b>43.24</b></td>
</tr>
<tr>
<td>Llama-3.2-Vision (11B)</td>
<td>25.27</td><td>20.98</td><td>23.73</td>
<td>51.20</td><td>32.19</td><td>18.82</td><td>33.61</td>
<td>28.82</td>
</tr>
<tr>
<td>InternVL3 (14B)</td>
<td><b>54.65</b></td><td>33.63</td><td><b>47.09</b></td>
<td>33.43</td><td>37.05</td><td>31.86</td><td>33.88</td>
<td>40.28</td>
</tr>
<tr>
<td>Kimi-VL-Instruct (16B)</td>
<td>26.85</td><td>22.09</td><td>25.14</td>
<td><b>63.05</b></td><td><b>43.94</b></td><td>20.27</td><td><b>41.52</b></td>
<td>33.58</td>
</tr>
<tr>
<td>GPT-4o</td>
<td>41.46</td><td>19.58</td><td>33.57</td>
<td>42.97</td><td>40.86</td><td>26.79</td><td>36.29</td>
<td>34.98</td>
</tr>
<tr>
<td>Gemini 2.0 Flash</td>
<td>45.29</td><td>12.95</td><td>33.66</td>
<td>41.16</td><td>32.78</td><td>21.90</td><td>31.53</td>
<td>32.56</td>
</tr>
<tr>
<td>Random Baseline</td>
<td>25.16</td><td>26.10</td><td>25.50</td>
<td>24.60</td><td>31.12</td><td>26.33</td><td>27.12</td>
<td>26.33</td>
</tr>
</tbody>
</table>
## Citation
```
Coming Soon
``` |