modelId
stringlengths
5
122
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]
downloads
int64
0
738M
likes
int64
0
11k
library_name
stringclasses
245 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
48 values
createdAt
timestamp[us, tz=UTC]
card
stringlengths
1
901k
baxtos/bartik04-3
baxtos
2024-07-02T06:36:51Z
0
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-07-02T06:34:26Z
Entry not found
YongjieNiu/prior-2Relu-adl-cat-1-500
YongjieNiu
2024-07-02T10:32:29Z
0
0
diffusers
[ "diffusers", "text-to-image", "diffusers-training", "lora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:SDXL_model", "license:openrail++", "region:us" ]
text-to-image
2024-07-02T06:34:54Z
--- license: openrail++ library_name: diffusers tags: - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers base_model: SDXL_model instance_prompt: a photo of adl cat widget: - text: a photo of adl cat by the sea output: url: image_0.png - text: a photo of adl cat by the sea output: url: image_1.png - text: a photo of adl cat by the sea output: url: image_2.png - text: a photo of adl cat by the sea output: url: image_3.png --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - YongjieNiu/prior-2Relu-adl-cat-1-500 <Gallery /> ## Model description These are YongjieNiu/prior-2Relu-adl-cat-1-500 LoRA adaption weights for SDXL_model. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: VAE. ## Trigger words You should use a photo of adl cat to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](YongjieNiu/prior-2Relu-adl-cat-1-500/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
RichardErkhov/MayaPH_-_GodziLLa2-70B-gguf
RichardErkhov
2024-07-03T00:41:12Z
0
0
null
[ "gguf", "region:us" ]
null
2024-07-02T06:35:02Z
Entry not found
LzSavage/LLama3-70B-DPO_hh-rlhf
LzSavage
2024-07-02T06:35:17Z
0
0
null
[ "region:us" ]
null
2024-07-02T06:35:17Z
Entry not found
wieheistdu/distilbert-base-uncased-finetuned-squad2-ep4-batch16
wieheistdu
2024-07-02T07:51:22Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "question-answering", "generated_from_trainer", "base_model:distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2024-07-02T06:35:20Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-squad2-ep4-batch16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad2-ep4-batch16 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5125 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2658 | 1.0 | 4118 | 1.2433 | | 1.0043 | 2.0 | 8236 | 1.2286 | | 0.8315 | 3.0 | 12354 | 1.3488 | | 0.7225 | 4.0 | 16472 | 1.5125 | ### Framework versions - Transformers 4.41.2 - Pytorch 1.13.1+cu116 - Datasets 2.19.2 - Tokenizers 0.19.1
pandapeng/chinese-llama3-8b-chat
pandapeng
2024-07-02T06:36:40Z
0
0
null
[ "region:us" ]
null
2024-07-02T06:36:40Z
Entry not found
PLASIVIA/whisper-small-dv
PLASIVIA
2024-07-02T06:37:32Z
0
0
null
[ "region:us" ]
null
2024-07-02T06:37:32Z
Entry not found
webognkbhuvan/phi-2-health
webognkbhuvan
2024-07-02T06:42:32Z
0
0
transformers
[ "transformers", "safetensors", "phi-msft", "text-generation", "custom_code", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-07-02T06:39:10Z
Entry not found
baxtos/bartik05-3
baxtos
2024-07-02T06:42:14Z
0
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-07-02T06:39:55Z
Entry not found
Sunsun1010/a
Sunsun1010
2024-07-02T06:40:09Z
0
0
null
[ "region:us" ]
null
2024-07-02T06:40:09Z
Entry not found
QuangHuy46/OCR_HSMT
QuangHuy46
2024-07-02T06:40:48Z
0
0
null
[ "region:us" ]
null
2024-07-02T06:40:48Z
Entry not found
whizzzzkid/whizzzzkid_395_2
whizzzzkid
2024-07-02T06:41:17Z
0
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-07-02T06:40:59Z
Entry not found
houbw/llama38b_ruozhiba_5
houbw
2024-07-02T06:42:36Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-Instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-07-02T06:42:29Z
--- base_model: unsloth/llama-3-8b-Instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** houbw - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
sudhan1998/hu
sudhan1998
2024-07-02T06:44:42Z
0
0
null
[ "region:us" ]
null
2024-07-02T06:44:42Z
Entry not found
bhadauriaupendra062/my-fine-tuned-model-ppo
bhadauriaupendra062
2024-07-02T06:45:05Z
0
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-02T06:44:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
baxtos/bartik06-3
baxtos
2024-07-02T06:47:49Z
0
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-07-02T06:45:27Z
Entry not found
mayarmostafa/videomae-base-finetuned-bleeding-exp_2
mayarmostafa
2024-07-02T08:32:11Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "videomae", "video-classification", "generated_from_trainer", "base_model:MCG-NJU/videomae-base", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2024-07-02T06:49:00Z
--- license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer model-index: - name: videomae-base-finetuned-bleeding-exp_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-bleeding-exp_2 This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 600 ### Framework versions - Transformers 4.40.2 - Pytorch 1.12.0 - Datasets 2.19.1 - Tokenizers 0.19.1
habulaj/240380211698
habulaj
2024-07-02T06:49:31Z
0
0
null
[ "region:us" ]
null
2024-07-02T06:49:23Z
Entry not found
upendrawappgo/my-fine-tuned-model-ppo
upendrawappgo
2024-07-02T06:50:14Z
0
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-02T06:49:58Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kmpartner/bkcnft-testsr32
kmpartner
2024-07-02T06:56:48Z
0
0
diffusers
[ "diffusers", "safetensors", "region:us" ]
null
2024-07-02T06:50:42Z
Entry not found
baxtos/bartik07-3
baxtos
2024-07-02T06:53:26Z
0
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-07-02T06:50:59Z
Entry not found
teemperor/starcoder2-15b-Q6_K-GGUF
teemperor
2024-07-02T06:52:07Z
0
0
transformers
[ "transformers", "gguf", "code", "llama-cpp", "gguf-my-repo", "text-generation", "dataset:bigcode/the-stack-v2-train", "base_model:bigcode/starcoder2-15b", "license:bigcode-openrail-m", "model-index", "endpoints_compatible", "region:us" ]
text-generation
2024-07-02T06:51:14Z
--- base_model: bigcode/starcoder2-15b datasets: - bigcode/the-stack-v2-train library_name: transformers license: bigcode-openrail-m pipeline_tag: text-generation tags: - code - llama-cpp - gguf-my-repo inference: parameters: temperature: 0.2 top_p: 0.95 widget: - text: 'def print_hello_world():' example_title: Hello world group: Python model-index: - name: starcoder2-15b results: - task: type: text-generation dataset: name: CruxEval-I type: cruxeval-i metrics: - type: pass@1 value: 48.1 - task: type: text-generation dataset: name: DS-1000 type: ds-1000 metrics: - type: pass@1 value: 33.8 - task: type: text-generation dataset: name: GSM8K (PAL) type: gsm8k-pal metrics: - type: accuracy value: 65.1 - task: type: text-generation dataset: name: HumanEval+ type: humanevalplus metrics: - type: pass@1 value: 37.8 - task: type: text-generation dataset: name: HumanEval type: humaneval metrics: - type: pass@1 value: 46.3 - task: type: text-generation dataset: name: RepoBench-v1.1 type: repobench-v1.1 metrics: - type: edit-smiliarity value: 74.08 --- # teemperor/starcoder2-15b-Q6_K-GGUF This model was converted to GGUF format from [`bigcode/starcoder2-15b`](https://huggingface.co/bigcode/starcoder2-15b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/bigcode/starcoder2-15b) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo teemperor/starcoder2-15b-Q6_K-GGUF --hf-file starcoder2-15b-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo teemperor/starcoder2-15b-Q6_K-GGUF --hf-file starcoder2-15b-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo teemperor/starcoder2-15b-Q6_K-GGUF --hf-file starcoder2-15b-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo teemperor/starcoder2-15b-Q6_K-GGUF --hf-file starcoder2-15b-q6_k.gguf -c 2048 ```
RichardErkhov/RajuKandasamy_-_tamillama_tiny_30m-gguf
RichardErkhov
2024-07-02T06:52:10Z
0
0
null
[ "region:us" ]
null
2024-07-02T06:52:10Z
Entry not found
hiruymet/Chef
hiruymet
2024-07-02T06:52:35Z
0
0
null
[ "license:mit", "region:us" ]
null
2024-07-02T06:52:35Z
--- license: mit ---
chihlunLee/NoInstruct-small-Embedding-v0-Q4_0-GGUF
chihlunLee
2024-07-02T06:52:37Z
0
0
sentence-transformers
[ "sentence-transformers", "gguf", "feature-extraction", "mteb", "sentence-similarity", "transformers", "llama-cpp", "gguf-my-repo", "en", "base_model:avsolatorio/NoInstruct-small-Embedding-v0", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-07-02T06:52:35Z
--- base_model: avsolatorio/NoInstruct-small-Embedding-v0 language: - en library_name: sentence-transformers license: mit pipeline_tag: sentence-similarity tags: - feature-extraction - mteb - sentence-similarity - sentence-transformers - transformers - llama-cpp - gguf-my-repo model-index: - name: NoInstruct-small-Embedding-v0 results: - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en) type: mteb/amazon_counterfactual config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 75.76119402985074 - type: ap value: 39.03628777559392 - type: f1 value: 69.85860402259618 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification type: mteb/amazon_polarity config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 93.29920000000001 - type: ap value: 90.03479490717608 - type: f1 value: 93.28554395248467 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (en) type: mteb/amazon_reviews_multi config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 49.98799999999999 - type: f1 value: 49.46151232451642 - task: type: Retrieval dataset: name: MTEB ArguAna type: mteb/arguana config: default split: test revision: c22ab2a51041ffd869aaddef7af8d8215647e41a metrics: - type: map_at_1 value: 31.935000000000002 - type: map_at_10 value: 48.791000000000004 - type: map_at_100 value: 49.619 - type: map_at_1000 value: 49.623 - type: map_at_3 value: 44.334 - type: map_at_5 value: 46.908 - type: mrr_at_1 value: 32.93 - type: mrr_at_10 value: 49.158 - type: mrr_at_100 value: 50.00599999999999 - type: mrr_at_1000 value: 50.01 - type: mrr_at_3 value: 44.618 - type: mrr_at_5 value: 47.325 - type: ndcg_at_1 value: 31.935000000000002 - type: ndcg_at_10 value: 57.593 - type: ndcg_at_100 value: 60.841 - type: ndcg_at_1000 value: 60.924 - type: ndcg_at_3 value: 48.416 - type: ndcg_at_5 value: 53.05 - type: precision_at_1 value: 31.935000000000002 - type: precision_at_10 value: 8.549 - type: precision_at_100 value: 0.9900000000000001 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 20.081 - type: precision_at_5 value: 14.296000000000001 - type: recall_at_1 value: 31.935000000000002 - type: recall_at_10 value: 85.491 - type: recall_at_100 value: 99.004 - type: recall_at_1000 value: 99.644 - type: recall_at_3 value: 60.242 - type: recall_at_5 value: 71.479 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P type: mteb/arxiv-clustering-p2p config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 47.78438534940855 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S type: mteb/arxiv-clustering-s2s config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 40.12916178519471 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions type: mteb/askubuntudupquestions-reranking config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 62.125361608299855 - type: mrr value: 74.92525172580574 - task: type: STS dataset: name: MTEB BIOSSES type: mteb/biosses-sts config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 88.64322910336641 - type: cos_sim_spearman value: 87.20138453306345 - type: euclidean_pearson value: 87.08547818178234 - type: euclidean_spearman value: 87.17066094143931 - type: manhattan_pearson value: 87.30053110771618 - type: manhattan_spearman value: 86.86824441211934 - task: type: Classification dataset: name: MTEB Banking77Classification type: mteb/banking77 config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 86.3961038961039 - type: f1 value: 86.3669961645295 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P type: mteb/biorxiv-clustering-p2p config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 39.40291404289857 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S type: mteb/biorxiv-clustering-s2s config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 35.102356817746816 - task: type: Retrieval dataset: name: MTEB CQADupstackAndroidRetrieval type: mteb/cqadupstack-android config: default split: test revision: f46a197baaae43b4f621051089b82a364682dfeb metrics: - type: map_at_1 value: 31.013 - type: map_at_10 value: 42.681999999999995 - type: map_at_100 value: 44.24 - type: map_at_1000 value: 44.372 - type: map_at_3 value: 39.181 - type: map_at_5 value: 41.071999999999996 - type: mrr_at_1 value: 38.196999999999996 - type: mrr_at_10 value: 48.604 - type: mrr_at_100 value: 49.315 - type: mrr_at_1000 value: 49.363 - type: mrr_at_3 value: 45.756 - type: mrr_at_5 value: 47.43 - type: ndcg_at_1 value: 38.196999999999996 - type: ndcg_at_10 value: 49.344 - type: ndcg_at_100 value: 54.662 - type: ndcg_at_1000 value: 56.665 - type: ndcg_at_3 value: 44.146 - type: ndcg_at_5 value: 46.514 - type: precision_at_1 value: 38.196999999999996 - type: precision_at_10 value: 9.571 - type: precision_at_100 value: 1.542 - type: precision_at_1000 value: 0.202 - type: precision_at_3 value: 21.364 - type: precision_at_5 value: 15.336 - type: recall_at_1 value: 31.013 - type: recall_at_10 value: 61.934999999999995 - type: recall_at_100 value: 83.923 - type: recall_at_1000 value: 96.601 - type: recall_at_3 value: 46.86 - type: recall_at_5 value: 53.620000000000005 - task: type: Retrieval dataset: name: MTEB CQADupstackEnglishRetrieval type: mteb/cqadupstack-english config: default split: test revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 metrics: - type: map_at_1 value: 29.84 - type: map_at_10 value: 39.335 - type: map_at_100 value: 40.647 - type: map_at_1000 value: 40.778 - type: map_at_3 value: 36.556 - type: map_at_5 value: 38.048 - type: mrr_at_1 value: 36.815 - type: mrr_at_10 value: 45.175 - type: mrr_at_100 value: 45.907 - type: mrr_at_1000 value: 45.946999999999996 - type: mrr_at_3 value: 42.909000000000006 - type: mrr_at_5 value: 44.227 - type: ndcg_at_1 value: 36.815 - type: ndcg_at_10 value: 44.783 - type: ndcg_at_100 value: 49.551 - type: ndcg_at_1000 value: 51.612 - type: ndcg_at_3 value: 40.697 - type: ndcg_at_5 value: 42.558 - type: precision_at_1 value: 36.815 - type: precision_at_10 value: 8.363 - type: precision_at_100 value: 1.385 - type: precision_at_1000 value: 0.186 - type: precision_at_3 value: 19.342000000000002 - type: precision_at_5 value: 13.706999999999999 - type: recall_at_1 value: 29.84 - type: recall_at_10 value: 54.164 - type: recall_at_100 value: 74.36 - type: recall_at_1000 value: 87.484 - type: recall_at_3 value: 42.306 - type: recall_at_5 value: 47.371 - task: type: Retrieval dataset: name: MTEB CQADupstackGamingRetrieval type: mteb/cqadupstack-gaming config: default split: test revision: 4885aa143210c98657558c04aaf3dc47cfb54340 metrics: - type: map_at_1 value: 39.231 - type: map_at_10 value: 51.44800000000001 - type: map_at_100 value: 52.574 - type: map_at_1000 value: 52.629999999999995 - type: map_at_3 value: 48.077 - type: map_at_5 value: 50.019000000000005 - type: mrr_at_1 value: 44.89 - type: mrr_at_10 value: 54.803000000000004 - type: mrr_at_100 value: 55.556000000000004 - type: mrr_at_1000 value: 55.584 - type: mrr_at_3 value: 52.32 - type: mrr_at_5 value: 53.846000000000004 - type: ndcg_at_1 value: 44.89 - type: ndcg_at_10 value: 57.228 - type: ndcg_at_100 value: 61.57 - type: ndcg_at_1000 value: 62.613 - type: ndcg_at_3 value: 51.727000000000004 - type: ndcg_at_5 value: 54.496 - type: precision_at_1 value: 44.89 - type: precision_at_10 value: 9.266 - type: precision_at_100 value: 1.2309999999999999 - type: precision_at_1000 value: 0.136 - type: precision_at_3 value: 23.051 - type: precision_at_5 value: 15.987000000000002 - type: recall_at_1 value: 39.231 - type: recall_at_10 value: 70.82000000000001 - type: recall_at_100 value: 89.446 - type: recall_at_1000 value: 96.665 - type: recall_at_3 value: 56.40500000000001 - type: recall_at_5 value: 62.993 - task: type: Retrieval dataset: name: MTEB CQADupstackGisRetrieval type: mteb/cqadupstack-gis config: default split: test revision: 5003b3064772da1887988e05400cf3806fe491f2 metrics: - type: map_at_1 value: 25.296000000000003 - type: map_at_10 value: 34.021 - type: map_at_100 value: 35.158 - type: map_at_1000 value: 35.233 - type: map_at_3 value: 31.424999999999997 - type: map_at_5 value: 33.046 - type: mrr_at_1 value: 27.232 - type: mrr_at_10 value: 36.103 - type: mrr_at_100 value: 37.076 - type: mrr_at_1000 value: 37.135 - type: mrr_at_3 value: 33.635 - type: mrr_at_5 value: 35.211 - type: ndcg_at_1 value: 27.232 - type: ndcg_at_10 value: 38.878 - type: ndcg_at_100 value: 44.284 - type: ndcg_at_1000 value: 46.268 - type: ndcg_at_3 value: 33.94 - type: ndcg_at_5 value: 36.687 - type: precision_at_1 value: 27.232 - type: precision_at_10 value: 5.921 - type: precision_at_100 value: 0.907 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 14.426 - type: precision_at_5 value: 10.215 - type: recall_at_1 value: 25.296000000000003 - type: recall_at_10 value: 51.708 - type: recall_at_100 value: 76.36699999999999 - type: recall_at_1000 value: 91.306 - type: recall_at_3 value: 38.651 - type: recall_at_5 value: 45.201 - task: type: Retrieval dataset: name: MTEB CQADupstackMathematicaRetrieval type: mteb/cqadupstack-mathematica config: default split: test revision: 90fceea13679c63fe563ded68f3b6f06e50061de metrics: - type: map_at_1 value: 16.24 - type: map_at_10 value: 24.696 - type: map_at_100 value: 25.945 - type: map_at_1000 value: 26.069 - type: map_at_3 value: 22.542 - type: map_at_5 value: 23.526 - type: mrr_at_1 value: 20.149 - type: mrr_at_10 value: 29.584 - type: mrr_at_100 value: 30.548 - type: mrr_at_1000 value: 30.618000000000002 - type: mrr_at_3 value: 27.301 - type: mrr_at_5 value: 28.563 - type: ndcg_at_1 value: 20.149 - type: ndcg_at_10 value: 30.029 - type: ndcg_at_100 value: 35.812 - type: ndcg_at_1000 value: 38.755 - type: ndcg_at_3 value: 26.008 - type: ndcg_at_5 value: 27.517000000000003 - type: precision_at_1 value: 20.149 - type: precision_at_10 value: 5.647 - type: precision_at_100 value: 0.968 - type: precision_at_1000 value: 0.136 - type: precision_at_3 value: 12.934999999999999 - type: precision_at_5 value: 8.955 - type: recall_at_1 value: 16.24 - type: recall_at_10 value: 41.464 - type: recall_at_100 value: 66.781 - type: recall_at_1000 value: 87.85300000000001 - type: recall_at_3 value: 29.822 - type: recall_at_5 value: 34.096 - task: type: Retrieval dataset: name: MTEB CQADupstackPhysicsRetrieval type: mteb/cqadupstack-physics config: default split: test revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 metrics: - type: map_at_1 value: 29.044999999999998 - type: map_at_10 value: 39.568999999999996 - type: map_at_100 value: 40.831 - type: map_at_1000 value: 40.948 - type: map_at_3 value: 36.495 - type: map_at_5 value: 38.21 - type: mrr_at_1 value: 35.611 - type: mrr_at_10 value: 45.175 - type: mrr_at_100 value: 45.974 - type: mrr_at_1000 value: 46.025 - type: mrr_at_3 value: 42.765 - type: mrr_at_5 value: 44.151 - type: ndcg_at_1 value: 35.611 - type: ndcg_at_10 value: 45.556999999999995 - type: ndcg_at_100 value: 50.86000000000001 - type: ndcg_at_1000 value: 52.983000000000004 - type: ndcg_at_3 value: 40.881 - type: ndcg_at_5 value: 43.035000000000004 - type: precision_at_1 value: 35.611 - type: precision_at_10 value: 8.306 - type: precision_at_100 value: 1.276 - type: precision_at_1000 value: 0.165 - type: precision_at_3 value: 19.57 - type: precision_at_5 value: 13.725000000000001 - type: recall_at_1 value: 29.044999999999998 - type: recall_at_10 value: 57.513999999999996 - type: recall_at_100 value: 80.152 - type: recall_at_1000 value: 93.982 - type: recall_at_3 value: 44.121 - type: recall_at_5 value: 50.007000000000005 - task: type: Retrieval dataset: name: MTEB CQADupstackProgrammersRetrieval type: mteb/cqadupstack-programmers config: default split: test revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 metrics: - type: map_at_1 value: 22.349 - type: map_at_10 value: 33.434000000000005 - type: map_at_100 value: 34.8 - type: map_at_1000 value: 34.919 - type: map_at_3 value: 30.348000000000003 - type: map_at_5 value: 31.917 - type: mrr_at_1 value: 28.195999999999998 - type: mrr_at_10 value: 38.557 - type: mrr_at_100 value: 39.550999999999995 - type: mrr_at_1000 value: 39.607 - type: mrr_at_3 value: 36.035000000000004 - type: mrr_at_5 value: 37.364999999999995 - type: ndcg_at_1 value: 28.195999999999998 - type: ndcg_at_10 value: 39.656000000000006 - type: ndcg_at_100 value: 45.507999999999996 - type: ndcg_at_1000 value: 47.848 - type: ndcg_at_3 value: 34.609 - type: ndcg_at_5 value: 36.65 - type: precision_at_1 value: 28.195999999999998 - type: precision_at_10 value: 7.534000000000001 - type: precision_at_100 value: 1.217 - type: precision_at_1000 value: 0.158 - type: precision_at_3 value: 17.085 - type: precision_at_5 value: 12.169 - type: recall_at_1 value: 22.349 - type: recall_at_10 value: 53.127 - type: recall_at_100 value: 77.884 - type: recall_at_1000 value: 93.705 - type: recall_at_3 value: 38.611000000000004 - type: recall_at_5 value: 44.182 - task: type: Retrieval dataset: name: MTEB CQADupstackRetrieval type: mteb/cqadupstack config: default split: test revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 metrics: - type: map_at_1 value: 25.215749999999996 - type: map_at_10 value: 34.332750000000004 - type: map_at_100 value: 35.58683333333333 - type: map_at_1000 value: 35.70458333333333 - type: map_at_3 value: 31.55441666666667 - type: map_at_5 value: 33.100833333333334 - type: mrr_at_1 value: 29.697250000000004 - type: mrr_at_10 value: 38.372249999999994 - type: mrr_at_100 value: 39.26708333333334 - type: mrr_at_1000 value: 39.3265 - type: mrr_at_3 value: 35.946083333333334 - type: mrr_at_5 value: 37.336999999999996 - type: ndcg_at_1 value: 29.697250000000004 - type: ndcg_at_10 value: 39.64575 - type: ndcg_at_100 value: 44.996833333333335 - type: ndcg_at_1000 value: 47.314499999999995 - type: ndcg_at_3 value: 34.93383333333334 - type: ndcg_at_5 value: 37.15291666666667 - type: precision_at_1 value: 29.697250000000004 - type: precision_at_10 value: 6.98825 - type: precision_at_100 value: 1.138 - type: precision_at_1000 value: 0.15283333333333332 - type: precision_at_3 value: 16.115583333333333 - type: precision_at_5 value: 11.460916666666666 - type: recall_at_1 value: 25.215749999999996 - type: recall_at_10 value: 51.261250000000004 - type: recall_at_100 value: 74.67258333333334 - type: recall_at_1000 value: 90.72033333333334 - type: recall_at_3 value: 38.1795 - type: recall_at_5 value: 43.90658333333334 - task: type: Retrieval dataset: name: MTEB CQADupstackStatsRetrieval type: mteb/cqadupstack-stats config: default split: test revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a metrics: - type: map_at_1 value: 24.352 - type: map_at_10 value: 30.576999999999998 - type: map_at_100 value: 31.545 - type: map_at_1000 value: 31.642 - type: map_at_3 value: 28.605000000000004 - type: map_at_5 value: 29.828 - type: mrr_at_1 value: 26.994 - type: mrr_at_10 value: 33.151 - type: mrr_at_100 value: 33.973 - type: mrr_at_1000 value: 34.044999999999995 - type: mrr_at_3 value: 31.135 - type: mrr_at_5 value: 32.262 - type: ndcg_at_1 value: 26.994 - type: ndcg_at_10 value: 34.307 - type: ndcg_at_100 value: 39.079 - type: ndcg_at_1000 value: 41.548 - type: ndcg_at_3 value: 30.581000000000003 - type: ndcg_at_5 value: 32.541 - type: precision_at_1 value: 26.994 - type: precision_at_10 value: 5.244999999999999 - type: precision_at_100 value: 0.831 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 12.781 - type: precision_at_5 value: 9.017999999999999 - type: recall_at_1 value: 24.352 - type: recall_at_10 value: 43.126999999999995 - type: recall_at_100 value: 64.845 - type: recall_at_1000 value: 83.244 - type: recall_at_3 value: 33.308 - type: recall_at_5 value: 37.984 - task: type: Retrieval dataset: name: MTEB CQADupstackTexRetrieval type: mteb/cqadupstack-tex config: default split: test revision: 46989137a86843e03a6195de44b09deda022eec7 metrics: - type: map_at_1 value: 16.592000000000002 - type: map_at_10 value: 23.29 - type: map_at_100 value: 24.423000000000002 - type: map_at_1000 value: 24.554000000000002 - type: map_at_3 value: 20.958 - type: map_at_5 value: 22.267 - type: mrr_at_1 value: 20.061999999999998 - type: mrr_at_10 value: 26.973999999999997 - type: mrr_at_100 value: 27.944999999999997 - type: mrr_at_1000 value: 28.023999999999997 - type: mrr_at_3 value: 24.839 - type: mrr_at_5 value: 26.033 - type: ndcg_at_1 value: 20.061999999999998 - type: ndcg_at_10 value: 27.682000000000002 - type: ndcg_at_100 value: 33.196 - type: ndcg_at_1000 value: 36.246 - type: ndcg_at_3 value: 23.559 - type: ndcg_at_5 value: 25.507 - type: precision_at_1 value: 20.061999999999998 - type: precision_at_10 value: 5.086 - type: precision_at_100 value: 0.9249999999999999 - type: precision_at_1000 value: 0.136 - type: precision_at_3 value: 11.046 - type: precision_at_5 value: 8.149000000000001 - type: recall_at_1 value: 16.592000000000002 - type: recall_at_10 value: 37.181999999999995 - type: recall_at_100 value: 62.224999999999994 - type: recall_at_1000 value: 84.072 - type: recall_at_3 value: 25.776 - type: recall_at_5 value: 30.680000000000003 - task: type: Retrieval dataset: name: MTEB CQADupstackUnixRetrieval type: mteb/cqadupstack-unix config: default split: test revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 metrics: - type: map_at_1 value: 26.035999999999998 - type: map_at_10 value: 34.447 - type: map_at_100 value: 35.697 - type: map_at_1000 value: 35.802 - type: map_at_3 value: 31.64 - type: map_at_5 value: 33.056999999999995 - type: mrr_at_1 value: 29.851 - type: mrr_at_10 value: 38.143 - type: mrr_at_100 value: 39.113 - type: mrr_at_1000 value: 39.175 - type: mrr_at_3 value: 35.665 - type: mrr_at_5 value: 36.901 - type: ndcg_at_1 value: 29.851 - type: ndcg_at_10 value: 39.554 - type: ndcg_at_100 value: 45.091 - type: ndcg_at_1000 value: 47.504000000000005 - type: ndcg_at_3 value: 34.414 - type: ndcg_at_5 value: 36.508 - type: precision_at_1 value: 29.851 - type: precision_at_10 value: 6.614000000000001 - type: precision_at_100 value: 1.051 - type: precision_at_1000 value: 0.13699999999999998 - type: precision_at_3 value: 15.329999999999998 - type: precision_at_5 value: 10.671999999999999 - type: recall_at_1 value: 26.035999999999998 - type: recall_at_10 value: 51.396 - type: recall_at_100 value: 75.09 - type: recall_at_1000 value: 91.904 - type: recall_at_3 value: 37.378 - type: recall_at_5 value: 42.69 - task: type: Retrieval dataset: name: MTEB CQADupstackWebmastersRetrieval type: mteb/cqadupstack-webmasters config: default split: test revision: 160c094312a0e1facb97e55eeddb698c0abe3571 metrics: - type: map_at_1 value: 23.211000000000002 - type: map_at_10 value: 32.231 - type: map_at_100 value: 33.772999999999996 - type: map_at_1000 value: 33.982 - type: map_at_3 value: 29.128 - type: map_at_5 value: 31.002999999999997 - type: mrr_at_1 value: 27.668 - type: mrr_at_10 value: 36.388 - type: mrr_at_100 value: 37.384 - type: mrr_at_1000 value: 37.44 - type: mrr_at_3 value: 33.762 - type: mrr_at_5 value: 35.234 - type: ndcg_at_1 value: 27.668 - type: ndcg_at_10 value: 38.043 - type: ndcg_at_100 value: 44.21 - type: ndcg_at_1000 value: 46.748 - type: ndcg_at_3 value: 32.981 - type: ndcg_at_5 value: 35.58 - type: precision_at_1 value: 27.668 - type: precision_at_10 value: 7.352 - type: precision_at_100 value: 1.5 - type: precision_at_1000 value: 0.23700000000000002 - type: precision_at_3 value: 15.613 - type: precision_at_5 value: 11.501999999999999 - type: recall_at_1 value: 23.211000000000002 - type: recall_at_10 value: 49.851 - type: recall_at_100 value: 77.596 - type: recall_at_1000 value: 93.683 - type: recall_at_3 value: 35.403 - type: recall_at_5 value: 42.485 - task: type: Retrieval dataset: name: MTEB CQADupstackWordpressRetrieval type: mteb/cqadupstack-wordpress config: default split: test revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 metrics: - type: map_at_1 value: 19.384 - type: map_at_10 value: 26.262999999999998 - type: map_at_100 value: 27.409 - type: map_at_1000 value: 27.526 - type: map_at_3 value: 23.698 - type: map_at_5 value: 25.217 - type: mrr_at_1 value: 20.702 - type: mrr_at_10 value: 27.810000000000002 - type: mrr_at_100 value: 28.863 - type: mrr_at_1000 value: 28.955 - type: mrr_at_3 value: 25.230999999999998 - type: mrr_at_5 value: 26.821 - type: ndcg_at_1 value: 20.702 - type: ndcg_at_10 value: 30.688 - type: ndcg_at_100 value: 36.138999999999996 - type: ndcg_at_1000 value: 38.984 - type: ndcg_at_3 value: 25.663000000000004 - type: ndcg_at_5 value: 28.242 - type: precision_at_1 value: 20.702 - type: precision_at_10 value: 4.954 - type: precision_at_100 value: 0.823 - type: precision_at_1000 value: 0.11800000000000001 - type: precision_at_3 value: 10.844 - type: precision_at_5 value: 8.096 - type: recall_at_1 value: 19.384 - type: recall_at_10 value: 42.847 - type: recall_at_100 value: 67.402 - type: recall_at_1000 value: 88.145 - type: recall_at_3 value: 29.513 - type: recall_at_5 value: 35.57 - task: type: Retrieval dataset: name: MTEB ClimateFEVER type: mteb/climate-fever config: default split: test revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 metrics: - type: map_at_1 value: 14.915000000000001 - type: map_at_10 value: 25.846999999999998 - type: map_at_100 value: 27.741 - type: map_at_1000 value: 27.921000000000003 - type: map_at_3 value: 21.718 - type: map_at_5 value: 23.948 - type: mrr_at_1 value: 33.941 - type: mrr_at_10 value: 46.897 - type: mrr_at_100 value: 47.63 - type: mrr_at_1000 value: 47.658 - type: mrr_at_3 value: 43.919999999999995 - type: mrr_at_5 value: 45.783 - type: ndcg_at_1 value: 33.941 - type: ndcg_at_10 value: 35.202 - type: ndcg_at_100 value: 42.132 - type: ndcg_at_1000 value: 45.190999999999995 - type: ndcg_at_3 value: 29.68 - type: ndcg_at_5 value: 31.631999999999998 - type: precision_at_1 value: 33.941 - type: precision_at_10 value: 10.906 - type: precision_at_100 value: 1.8339999999999999 - type: precision_at_1000 value: 0.241 - type: precision_at_3 value: 22.606 - type: precision_at_5 value: 17.081 - type: recall_at_1 value: 14.915000000000001 - type: recall_at_10 value: 40.737 - type: recall_at_100 value: 64.42 - type: recall_at_1000 value: 81.435 - type: recall_at_3 value: 26.767000000000003 - type: recall_at_5 value: 32.895 - task: type: Retrieval dataset: name: MTEB DBPedia type: mteb/dbpedia config: default split: test revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 metrics: - type: map_at_1 value: 8.665000000000001 - type: map_at_10 value: 19.087 - type: map_at_100 value: 26.555 - type: map_at_1000 value: 28.105999999999998 - type: map_at_3 value: 13.858999999999998 - type: map_at_5 value: 16.083 - type: mrr_at_1 value: 68.5 - type: mrr_at_10 value: 76.725 - type: mrr_at_100 value: 76.974 - type: mrr_at_1000 value: 76.981 - type: mrr_at_3 value: 75.583 - type: mrr_at_5 value: 76.208 - type: ndcg_at_1 value: 55.875 - type: ndcg_at_10 value: 41.018 - type: ndcg_at_100 value: 44.982 - type: ndcg_at_1000 value: 52.43 - type: ndcg_at_3 value: 46.534 - type: ndcg_at_5 value: 43.083 - type: precision_at_1 value: 68.5 - type: precision_at_10 value: 32.35 - type: precision_at_100 value: 10.078 - type: precision_at_1000 value: 1.957 - type: precision_at_3 value: 50.083 - type: precision_at_5 value: 41.3 - type: recall_at_1 value: 8.665000000000001 - type: recall_at_10 value: 24.596999999999998 - type: recall_at_100 value: 50.612 - type: recall_at_1000 value: 74.24 - type: recall_at_3 value: 15.337 - type: recall_at_5 value: 18.796 - task: type: Classification dataset: name: MTEB EmotionClassification type: mteb/emotion config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 55.06500000000001 - type: f1 value: 49.827367590822035 - task: type: Retrieval dataset: name: MTEB FEVER type: mteb/fever config: default split: test revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 metrics: - type: map_at_1 value: 76.059 - type: map_at_10 value: 83.625 - type: map_at_100 value: 83.845 - type: map_at_1000 value: 83.858 - type: map_at_3 value: 82.67099999999999 - type: map_at_5 value: 83.223 - type: mrr_at_1 value: 82.013 - type: mrr_at_10 value: 88.44800000000001 - type: mrr_at_100 value: 88.535 - type: mrr_at_1000 value: 88.537 - type: mrr_at_3 value: 87.854 - type: mrr_at_5 value: 88.221 - type: ndcg_at_1 value: 82.013 - type: ndcg_at_10 value: 87.128 - type: ndcg_at_100 value: 87.922 - type: ndcg_at_1000 value: 88.166 - type: ndcg_at_3 value: 85.648 - type: ndcg_at_5 value: 86.366 - type: precision_at_1 value: 82.013 - type: precision_at_10 value: 10.32 - type: precision_at_100 value: 1.093 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 32.408 - type: precision_at_5 value: 19.973 - type: recall_at_1 value: 76.059 - type: recall_at_10 value: 93.229 - type: recall_at_100 value: 96.387 - type: recall_at_1000 value: 97.916 - type: recall_at_3 value: 89.025 - type: recall_at_5 value: 90.96300000000001 - task: type: Retrieval dataset: name: MTEB FiQA2018 type: mteb/fiqa config: default split: test revision: 27a168819829fe9bcd655c2df245fb19452e8e06 metrics: - type: map_at_1 value: 20.479 - type: map_at_10 value: 33.109 - type: map_at_100 value: 34.803 - type: map_at_1000 value: 35.003 - type: map_at_3 value: 28.967 - type: map_at_5 value: 31.385 - type: mrr_at_1 value: 40.278000000000006 - type: mrr_at_10 value: 48.929 - type: mrr_at_100 value: 49.655 - type: mrr_at_1000 value: 49.691 - type: mrr_at_3 value: 46.605000000000004 - type: mrr_at_5 value: 48.056 - type: ndcg_at_1 value: 40.278000000000006 - type: ndcg_at_10 value: 40.649 - type: ndcg_at_100 value: 47.027 - type: ndcg_at_1000 value: 50.249 - type: ndcg_at_3 value: 37.364000000000004 - type: ndcg_at_5 value: 38.494 - type: precision_at_1 value: 40.278000000000006 - type: precision_at_10 value: 11.327 - type: precision_at_100 value: 1.802 - type: precision_at_1000 value: 0.23700000000000002 - type: precision_at_3 value: 25.102999999999998 - type: precision_at_5 value: 18.457 - type: recall_at_1 value: 20.479 - type: recall_at_10 value: 46.594 - type: recall_at_100 value: 71.101 - type: recall_at_1000 value: 90.31099999999999 - type: recall_at_3 value: 33.378 - type: recall_at_5 value: 39.587 - task: type: Retrieval dataset: name: MTEB HotpotQA type: mteb/hotpotqa config: default split: test revision: ab518f4d6fcca38d87c25209f94beba119d02014 metrics: - type: map_at_1 value: 36.59 - type: map_at_10 value: 58.178 - type: map_at_100 value: 59.095 - type: map_at_1000 value: 59.16400000000001 - type: map_at_3 value: 54.907 - type: map_at_5 value: 56.89999999999999 - type: mrr_at_1 value: 73.18 - type: mrr_at_10 value: 79.935 - type: mrr_at_100 value: 80.16799999999999 - type: mrr_at_1000 value: 80.17800000000001 - type: mrr_at_3 value: 78.776 - type: mrr_at_5 value: 79.522 - type: ndcg_at_1 value: 73.18 - type: ndcg_at_10 value: 66.538 - type: ndcg_at_100 value: 69.78 - type: ndcg_at_1000 value: 71.102 - type: ndcg_at_3 value: 61.739 - type: ndcg_at_5 value: 64.35600000000001 - type: precision_at_1 value: 73.18 - type: precision_at_10 value: 14.035 - type: precision_at_100 value: 1.657 - type: precision_at_1000 value: 0.183 - type: precision_at_3 value: 39.684999999999995 - type: precision_at_5 value: 25.885 - type: recall_at_1 value: 36.59 - type: recall_at_10 value: 70.176 - type: recall_at_100 value: 82.836 - type: recall_at_1000 value: 91.526 - type: recall_at_3 value: 59.526999999999994 - type: recall_at_5 value: 64.713 - task: type: Classification dataset: name: MTEB ImdbClassification type: mteb/imdb config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 90.1472 - type: ap value: 85.73994227076815 - type: f1 value: 90.1271700788608 - task: type: Retrieval dataset: name: MTEB MSMARCO type: mteb/msmarco config: default split: dev revision: c5a29a104738b98a9e76336939199e264163d4a0 metrics: - type: map_at_1 value: 21.689 - type: map_at_10 value: 33.518 - type: map_at_100 value: 34.715 - type: map_at_1000 value: 34.766000000000005 - type: map_at_3 value: 29.781000000000002 - type: map_at_5 value: 31.838 - type: mrr_at_1 value: 22.249 - type: mrr_at_10 value: 34.085 - type: mrr_at_100 value: 35.223 - type: mrr_at_1000 value: 35.266999999999996 - type: mrr_at_3 value: 30.398999999999997 - type: mrr_at_5 value: 32.437 - type: ndcg_at_1 value: 22.249 - type: ndcg_at_10 value: 40.227000000000004 - type: ndcg_at_100 value: 45.961999999999996 - type: ndcg_at_1000 value: 47.248000000000005 - type: ndcg_at_3 value: 32.566 - type: ndcg_at_5 value: 36.229 - type: precision_at_1 value: 22.249 - type: precision_at_10 value: 6.358 - type: precision_at_100 value: 0.923 - type: precision_at_1000 value: 0.10300000000000001 - type: precision_at_3 value: 13.83 - type: precision_at_5 value: 10.145999999999999 - type: recall_at_1 value: 21.689 - type: recall_at_10 value: 60.92999999999999 - type: recall_at_100 value: 87.40599999999999 - type: recall_at_1000 value: 97.283 - type: recall_at_3 value: 40.01 - type: recall_at_5 value: 48.776 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (en) type: mteb/mtop_domain config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 95.28727770177838 - type: f1 value: 95.02577308660041 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (en) type: mteb/mtop_intent config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 79.5736434108527 - type: f1 value: 61.2451202054398 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (en) type: mteb/amazon_massive_intent config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 76.01210490921318 - type: f1 value: 73.70188053982473 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (en) type: mteb/amazon_massive_scenario config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 79.33422999327504 - type: f1 value: 79.48369022509658 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P type: mteb/medrxiv-clustering-p2p config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 34.70891567267726 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S type: mteb/medrxiv-clustering-s2s config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 32.15203494451706 - task: type: Reranking dataset: name: MTEB MindSmallReranking type: mteb/mind_small config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 31.919517862194173 - type: mrr value: 33.15466289140483 - task: type: Retrieval dataset: name: MTEB NFCorpus type: mteb/nfcorpus config: default split: test revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 metrics: - type: map_at_1 value: 5.992 - type: map_at_10 value: 13.197000000000001 - type: map_at_100 value: 16.907 - type: map_at_1000 value: 18.44 - type: map_at_3 value: 9.631 - type: map_at_5 value: 11.243 - type: mrr_at_1 value: 44.272 - type: mrr_at_10 value: 53.321 - type: mrr_at_100 value: 53.903 - type: mrr_at_1000 value: 53.952999999999996 - type: mrr_at_3 value: 51.393 - type: mrr_at_5 value: 52.708999999999996 - type: ndcg_at_1 value: 42.415000000000006 - type: ndcg_at_10 value: 34.921 - type: ndcg_at_100 value: 32.384 - type: ndcg_at_1000 value: 41.260000000000005 - type: ndcg_at_3 value: 40.186 - type: ndcg_at_5 value: 37.89 - type: precision_at_1 value: 44.272 - type: precision_at_10 value: 26.006 - type: precision_at_100 value: 8.44 - type: precision_at_1000 value: 2.136 - type: precision_at_3 value: 37.977 - type: precision_at_5 value: 32.755 - type: recall_at_1 value: 5.992 - type: recall_at_10 value: 17.01 - type: recall_at_100 value: 33.080999999999996 - type: recall_at_1000 value: 65.054 - type: recall_at_3 value: 10.528 - type: recall_at_5 value: 13.233 - task: type: Retrieval dataset: name: MTEB NQ type: mteb/nq config: default split: test revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 metrics: - type: map_at_1 value: 28.871999999999996 - type: map_at_10 value: 43.286 - type: map_at_100 value: 44.432 - type: map_at_1000 value: 44.464999999999996 - type: map_at_3 value: 38.856 - type: map_at_5 value: 41.514 - type: mrr_at_1 value: 32.619 - type: mrr_at_10 value: 45.75 - type: mrr_at_100 value: 46.622 - type: mrr_at_1000 value: 46.646 - type: mrr_at_3 value: 41.985 - type: mrr_at_5 value: 44.277 - type: ndcg_at_1 value: 32.59 - type: ndcg_at_10 value: 50.895999999999994 - type: ndcg_at_100 value: 55.711999999999996 - type: ndcg_at_1000 value: 56.48800000000001 - type: ndcg_at_3 value: 42.504999999999995 - type: ndcg_at_5 value: 46.969 - type: precision_at_1 value: 32.59 - type: precision_at_10 value: 8.543000000000001 - type: precision_at_100 value: 1.123 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 19.448 - type: precision_at_5 value: 14.218 - type: recall_at_1 value: 28.871999999999996 - type: recall_at_10 value: 71.748 - type: recall_at_100 value: 92.55499999999999 - type: recall_at_1000 value: 98.327 - type: recall_at_3 value: 49.944 - type: recall_at_5 value: 60.291 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval type: mteb/quora config: default split: test revision: e4e08e0b7dbe3c8700f0daef558ff32256715259 metrics: - type: map_at_1 value: 70.664 - type: map_at_10 value: 84.681 - type: map_at_100 value: 85.289 - type: map_at_1000 value: 85.306 - type: map_at_3 value: 81.719 - type: map_at_5 value: 83.601 - type: mrr_at_1 value: 81.35 - type: mrr_at_10 value: 87.591 - type: mrr_at_100 value: 87.691 - type: mrr_at_1000 value: 87.693 - type: mrr_at_3 value: 86.675 - type: mrr_at_5 value: 87.29299999999999 - type: ndcg_at_1 value: 81.33 - type: ndcg_at_10 value: 88.411 - type: ndcg_at_100 value: 89.579 - type: ndcg_at_1000 value: 89.687 - type: ndcg_at_3 value: 85.613 - type: ndcg_at_5 value: 87.17 - type: precision_at_1 value: 81.33 - type: precision_at_10 value: 13.422 - type: precision_at_100 value: 1.5270000000000001 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.463 - type: precision_at_5 value: 24.646 - type: recall_at_1 value: 70.664 - type: recall_at_10 value: 95.54 - type: recall_at_100 value: 99.496 - type: recall_at_1000 value: 99.978 - type: recall_at_3 value: 87.481 - type: recall_at_5 value: 91.88499999999999 - task: type: Clustering dataset: name: MTEB RedditClustering type: mteb/reddit-clustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 55.40341814991112 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P type: mteb/reddit-clustering-p2p config: default split: test revision: 385e3cb46b4cfa89021f56c4380204149d0efe33 metrics: - type: v_measure value: 61.231318481346655 - task: type: Retrieval dataset: name: MTEB SCIDOCS type: mteb/scidocs config: default split: test revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88 metrics: - type: map_at_1 value: 4.833 - type: map_at_10 value: 13.149 - type: map_at_100 value: 15.578 - type: map_at_1000 value: 15.963 - type: map_at_3 value: 9.269 - type: map_at_5 value: 11.182 - type: mrr_at_1 value: 23.9 - type: mrr_at_10 value: 35.978 - type: mrr_at_100 value: 37.076 - type: mrr_at_1000 value: 37.126 - type: mrr_at_3 value: 32.333 - type: mrr_at_5 value: 34.413 - type: ndcg_at_1 value: 23.9 - type: ndcg_at_10 value: 21.823 - type: ndcg_at_100 value: 30.833 - type: ndcg_at_1000 value: 36.991 - type: ndcg_at_3 value: 20.465 - type: ndcg_at_5 value: 17.965999999999998 - type: precision_at_1 value: 23.9 - type: precision_at_10 value: 11.49 - type: precision_at_100 value: 2.444 - type: precision_at_1000 value: 0.392 - type: precision_at_3 value: 19.3 - type: precision_at_5 value: 15.959999999999999 - type: recall_at_1 value: 4.833 - type: recall_at_10 value: 23.294999999999998 - type: recall_at_100 value: 49.63 - type: recall_at_1000 value: 79.49199999999999 - type: recall_at_3 value: 11.732 - type: recall_at_5 value: 16.167 - task: type: STS dataset: name: MTEB SICK-R type: mteb/sickr-sts config: default split: test revision: 20a6d6f312dd54037fe07a32d58e5e168867909d metrics: - type: cos_sim_pearson value: 85.62938108735759 - type: cos_sim_spearman value: 80.30777094408789 - type: euclidean_pearson value: 82.94516686659536 - type: euclidean_spearman value: 80.34489663248169 - type: manhattan_pearson value: 82.85830094736245 - type: manhattan_spearman value: 80.24902623215449 - task: type: STS dataset: name: MTEB STS12 type: mteb/sts12-sts config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 85.23777464247604 - type: cos_sim_spearman value: 75.75714864112797 - type: euclidean_pearson value: 82.33806918604493 - type: euclidean_spearman value: 75.45282124387357 - type: manhattan_pearson value: 82.32555620660538 - type: manhattan_spearman value: 75.49228731684082 - task: type: STS dataset: name: MTEB STS13 type: mteb/sts13-sts config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 84.88151620954451 - type: cos_sim_spearman value: 86.08377598473446 - type: euclidean_pearson value: 85.36958329369413 - type: euclidean_spearman value: 86.10274219670679 - type: manhattan_pearson value: 85.25873897594711 - type: manhattan_spearman value: 85.98096461661584 - task: type: STS dataset: name: MTEB STS14 type: mteb/sts14-sts config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 84.29360558735978 - type: cos_sim_spearman value: 82.28284203795577 - type: euclidean_pearson value: 83.81636655536633 - type: euclidean_spearman value: 82.24340438530236 - type: manhattan_pearson value: 83.83914453428608 - type: manhattan_spearman value: 82.28391354080694 - task: type: STS dataset: name: MTEB STS15 type: mteb/sts15-sts config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 87.47344180426744 - type: cos_sim_spearman value: 88.90045649789438 - type: euclidean_pearson value: 88.43020815961273 - type: euclidean_spearman value: 89.0087449011776 - type: manhattan_pearson value: 88.37601826505525 - type: manhattan_spearman value: 88.96756360690617 - task: type: STS dataset: name: MTEB STS16 type: mteb/sts16-sts config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 83.35997025304613 - type: cos_sim_spearman value: 85.18237675717147 - type: euclidean_pearson value: 84.46478196990202 - type: euclidean_spearman value: 85.27748677712205 - type: manhattan_pearson value: 84.29342543953123 - type: manhattan_spearman value: 85.10579612516567 - task: type: STS dataset: name: MTEB STS17 (en-en) type: mteb/sts17-crosslingual-sts config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 88.56668329596836 - type: cos_sim_spearman value: 88.72837234129177 - type: euclidean_pearson value: 89.39395650897828 - type: euclidean_spearman value: 88.82001247906778 - type: manhattan_pearson value: 89.41735354368878 - type: manhattan_spearman value: 88.95159141850039 - task: type: STS dataset: name: MTEB STS22 (en) type: mteb/sts22-crosslingual-sts config: en split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 67.466167902991 - type: cos_sim_spearman value: 68.54466147197274 - type: euclidean_pearson value: 69.35551179564695 - type: euclidean_spearman value: 68.75455717749132 - type: manhattan_pearson value: 69.42432368208264 - type: manhattan_spearman value: 68.83203709670562 - task: type: STS dataset: name: MTEB STSBenchmark type: mteb/stsbenchmark-sts config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 85.33241300373689 - type: cos_sim_spearman value: 86.97909372129874 - type: euclidean_pearson value: 86.99526113559924 - type: euclidean_spearman value: 87.02644372623219 - type: manhattan_pearson value: 86.78744182759846 - type: manhattan_spearman value: 86.8886180198196 - task: type: Reranking dataset: name: MTEB SciDocsRR type: mteb/scidocs-reranking config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 86.18374413668717 - type: mrr value: 95.93213068703264 - task: type: Retrieval dataset: name: MTEB SciFact type: mteb/scifact config: default split: test revision: 0228b52cf27578f30900b9e5271d331663a030d7 metrics: - type: map_at_1 value: 58.31699999999999 - type: map_at_10 value: 67.691 - type: map_at_100 value: 68.201 - type: map_at_1000 value: 68.232 - type: map_at_3 value: 64.47800000000001 - type: map_at_5 value: 66.51 - type: mrr_at_1 value: 61.0 - type: mrr_at_10 value: 68.621 - type: mrr_at_100 value: 68.973 - type: mrr_at_1000 value: 69.002 - type: mrr_at_3 value: 66.111 - type: mrr_at_5 value: 67.578 - type: ndcg_at_1 value: 61.0 - type: ndcg_at_10 value: 72.219 - type: ndcg_at_100 value: 74.397 - type: ndcg_at_1000 value: 75.021 - type: ndcg_at_3 value: 66.747 - type: ndcg_at_5 value: 69.609 - type: precision_at_1 value: 61.0 - type: precision_at_10 value: 9.6 - type: precision_at_100 value: 1.08 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 25.667 - type: precision_at_5 value: 17.267 - type: recall_at_1 value: 58.31699999999999 - type: recall_at_10 value: 85.233 - type: recall_at_100 value: 95.167 - type: recall_at_1000 value: 99.667 - type: recall_at_3 value: 70.589 - type: recall_at_5 value: 77.628 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions type: mteb/sprintduplicatequestions-pairclassification config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.83267326732673 - type: cos_sim_ap value: 96.13707107038228 - type: cos_sim_f1 value: 91.48830263812842 - type: cos_sim_precision value: 91.0802775024777 - type: cos_sim_recall value: 91.9 - type: dot_accuracy value: 99.83069306930693 - type: dot_ap value: 96.21199069147254 - type: dot_f1 value: 91.36295556665004 - type: dot_precision value: 91.22632103688933 - type: dot_recall value: 91.5 - type: euclidean_accuracy value: 99.83267326732673 - type: euclidean_ap value: 96.08957801367436 - type: euclidean_f1 value: 91.33004926108374 - type: euclidean_precision value: 90.0 - type: euclidean_recall value: 92.7 - type: manhattan_accuracy value: 99.83564356435643 - type: manhattan_ap value: 96.10534946461945 - type: manhattan_f1 value: 91.74950298210736 - type: manhattan_precision value: 91.20553359683794 - type: manhattan_recall value: 92.30000000000001 - type: max_accuracy value: 99.83564356435643 - type: max_ap value: 96.21199069147254 - type: max_f1 value: 91.74950298210736 - task: type: Clustering dataset: name: MTEB StackExchangeClustering type: mteb/stackexchange-clustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 62.045718843534736 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P type: mteb/stackexchange-clustering-p2p config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 36.6501777041092 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions type: mteb/stackoverflowdupquestions-reranking config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 52.963913408053955 - type: mrr value: 53.87972423818012 - task: type: Summarization dataset: name: MTEB SummEval type: mteb/summeval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.44195730764998 - type: cos_sim_spearman value: 30.59626288679397 - type: dot_pearson value: 30.22974492404086 - type: dot_spearman value: 29.345245972906497 - task: type: Retrieval dataset: name: MTEB TRECCOVID type: mteb/trec-covid config: default split: test revision: bb9466bac8153a0349341eb1b22e06409e78ef4e metrics: - type: map_at_1 value: 0.24 - type: map_at_10 value: 2.01 - type: map_at_100 value: 11.928999999999998 - type: map_at_1000 value: 29.034 - type: map_at_3 value: 0.679 - type: map_at_5 value: 1.064 - type: mrr_at_1 value: 92.0 - type: mrr_at_10 value: 96.0 - type: mrr_at_100 value: 96.0 - type: mrr_at_1000 value: 96.0 - type: mrr_at_3 value: 96.0 - type: mrr_at_5 value: 96.0 - type: ndcg_at_1 value: 87.0 - type: ndcg_at_10 value: 80.118 - type: ndcg_at_100 value: 60.753 - type: ndcg_at_1000 value: 54.632999999999996 - type: ndcg_at_3 value: 83.073 - type: ndcg_at_5 value: 80.733 - type: precision_at_1 value: 92.0 - type: precision_at_10 value: 84.8 - type: precision_at_100 value: 62.019999999999996 - type: precision_at_1000 value: 24.028 - type: precision_at_3 value: 87.333 - type: precision_at_5 value: 85.2 - type: recall_at_1 value: 0.24 - type: recall_at_10 value: 2.205 - type: recall_at_100 value: 15.068000000000001 - type: recall_at_1000 value: 51.796 - type: recall_at_3 value: 0.698 - type: recall_at_5 value: 1.1199999999999999 - task: type: Retrieval dataset: name: MTEB Touche2020 type: mteb/touche2020 config: default split: test revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f metrics: - type: map_at_1 value: 3.066 - type: map_at_10 value: 9.219 - type: map_at_100 value: 15.387 - type: map_at_1000 value: 16.957 - type: map_at_3 value: 5.146 - type: map_at_5 value: 6.6739999999999995 - type: mrr_at_1 value: 40.816 - type: mrr_at_10 value: 50.844 - type: mrr_at_100 value: 51.664 - type: mrr_at_1000 value: 51.664 - type: mrr_at_3 value: 46.259 - type: mrr_at_5 value: 49.116 - type: ndcg_at_1 value: 37.755 - type: ndcg_at_10 value: 23.477 - type: ndcg_at_100 value: 36.268 - type: ndcg_at_1000 value: 47.946 - type: ndcg_at_3 value: 25.832 - type: ndcg_at_5 value: 24.235 - type: precision_at_1 value: 40.816 - type: precision_at_10 value: 20.204 - type: precision_at_100 value: 7.611999999999999 - type: precision_at_1000 value: 1.543 - type: precision_at_3 value: 25.169999999999998 - type: precision_at_5 value: 23.265 - type: recall_at_1 value: 3.066 - type: recall_at_10 value: 14.985999999999999 - type: recall_at_100 value: 47.902 - type: recall_at_1000 value: 83.56400000000001 - type: recall_at_3 value: 5.755 - type: recall_at_5 value: 8.741999999999999 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification type: mteb/toxic_conversations_50k config: default split: test revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de metrics: - type: accuracy value: 69.437 - type: ap value: 12.844066827082706 - type: f1 value: 52.74974809872495 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification type: mteb/tweet_sentiment_extraction config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 61.26768534238823 - type: f1 value: 61.65100187399282 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering type: mteb/twentynewsgroups-clustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 49.860968711078804 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 type: mteb/twittersemeval2015-pairclassification config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 85.7423854085951 - type: cos_sim_ap value: 73.47560303339571 - type: cos_sim_f1 value: 67.372778183589 - type: cos_sim_precision value: 62.54520795660036 - type: cos_sim_recall value: 73.00791556728232 - type: dot_accuracy value: 85.36091077069798 - type: dot_ap value: 72.42521572307255 - type: dot_f1 value: 66.90576304724215 - type: dot_precision value: 62.96554934823091 - type: dot_recall value: 71.37203166226914 - type: euclidean_accuracy value: 85.76026703224653 - type: euclidean_ap value: 73.44852563860128 - type: euclidean_f1 value: 67.3 - type: euclidean_precision value: 63.94299287410926 - type: euclidean_recall value: 71.02902374670185 - type: manhattan_accuracy value: 85.7423854085951 - type: manhattan_ap value: 73.2635034755551 - type: manhattan_f1 value: 67.3180263800684 - type: manhattan_precision value: 62.66484765802638 - type: manhattan_recall value: 72.71767810026385 - type: max_accuracy value: 85.76026703224653 - type: max_ap value: 73.47560303339571 - type: max_f1 value: 67.372778183589 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus type: mteb/twitterurlcorpus-pairclassification config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.67543757519307 - type: cos_sim_ap value: 85.35516518531304 - type: cos_sim_f1 value: 77.58197635511934 - type: cos_sim_precision value: 75.01078360891445 - type: cos_sim_recall value: 80.33569448721897 - type: dot_accuracy value: 87.61400240617844 - type: dot_ap value: 83.0774968268665 - type: dot_f1 value: 75.68229012162561 - type: dot_precision value: 72.99713876967095 - type: dot_recall value: 78.57252848783493 - type: euclidean_accuracy value: 88.73753250281368 - type: euclidean_ap value: 85.48043564821317 - type: euclidean_f1 value: 77.75975862719216 - type: euclidean_precision value: 76.21054187920456 - type: euclidean_recall value: 79.37326763166 - type: manhattan_accuracy value: 88.75111576823068 - type: manhattan_ap value: 85.44993439423668 - type: manhattan_f1 value: 77.6861329994845 - type: manhattan_precision value: 74.44601270289344 - type: manhattan_recall value: 81.22112719433323 - type: max_accuracy value: 88.75111576823068 - type: max_ap value: 85.48043564821317 - type: max_f1 value: 77.75975862719216 --- # chihlunLee/NoInstruct-small-Embedding-v0-Q4_0-GGUF This model was converted to GGUF format from [`avsolatorio/NoInstruct-small-Embedding-v0`](https://huggingface.co/avsolatorio/NoInstruct-small-Embedding-v0) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/avsolatorio/NoInstruct-small-Embedding-v0) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo chihlunLee/NoInstruct-small-Embedding-v0-Q4_0-GGUF --hf-file noinstruct-small-embedding-v0-q4_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo chihlunLee/NoInstruct-small-Embedding-v0-Q4_0-GGUF --hf-file noinstruct-small-embedding-v0-q4_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo chihlunLee/NoInstruct-small-Embedding-v0-Q4_0-GGUF --hf-file noinstruct-small-embedding-v0-q4_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo chihlunLee/NoInstruct-small-Embedding-v0-Q4_0-GGUF --hf-file noinstruct-small-embedding-v0-q4_0.gguf -c 2048 ```
gguichard/wsd_myriade_distil_adapter
gguichard
2024-07-02T06:53:43Z
0
0
transformers
[ "transformers", "safetensors", "camembert", "token-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-07-02T06:52:52Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Nishika26/codellama-sql-sft-merged
Nishika26
2024-07-02T07:04:32Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-02T06:54:21Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
QuantFactory/llama3-8B-DarkIdol-2.2-Uncensored-1048K-GGUF
QuantFactory
2024-07-02T07:46:05Z
0
0
null
[ "gguf", "region:us" ]
null
2024-07-02T06:54:51Z
Entry not found
baxtos/bartik08-3
baxtos
2024-07-02T06:59:03Z
0
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-07-02T06:56:40Z
Entry not found
casque/0241_brown_fur_coat_v1
casque
2024-07-02T06:58:14Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2024-07-02T06:57:05Z
--- license: creativeml-openrail-m ---
Danielrahmai1991/sentimentnewsModel_4bit
Danielrahmai1991
2024-07-02T07:01:01Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "base_model:sujet-ai/Sujet-Finance-8B-v0.1", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-07-02T06:57:13Z
--- base_model: sujet-ai/Sujet-Finance-8B-v0.1 language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft --- # Uploaded model - **Developed by:** Danielrahmai1991 - **License:** apache-2.0 - **Finetuned from model :** sujet-ai/Sujet-Finance-8B-v0.1 This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
QuantFactory/llama3-8B-DarkIdol-1.2-GGUF
QuantFactory
2024-07-02T07:49:56Z
0
0
null
[ "gguf", "region:us" ]
null
2024-07-02T06:57:59Z
Entry not found
Pranja/temp-llama-8b-unsloth-merged
Pranja
2024-07-02T07:07:59Z
0
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-07-02T06:59:10Z
--- base_model: unsloth/llama-3-8b-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** Pranja - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
drishanarora/cogito-v2-recipe-qwen2-7b-sft
drishanarora
2024-07-03T01:27:16Z
0
0
transformers
[ "transformers", "tensorboard", "qwen2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-02T06:59:27Z
Entry not found
nidhistrive/whisper-small-hi
nidhistrive
2024-07-02T06:59:39Z
0
0
null
[ "region:us" ]
null
2024-07-02T06:59:39Z
Entry not found
KasuleTrevor/wav2vec2-large-xls-r-300m-lg-cv-10hr-v3
KasuleTrevor
2024-07-02T09:04:28Z
0
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-07-02T07:02:04Z
--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-lg-cv-10hr-v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/asr-africa-research-team/ASR%20Africa/runs/o0fw7ke6) # wav2vec2-large-xls-r-300m-lg-cv-10hr-v3 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6399 - Wer: 0.5490 - Cer: 0.1258 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:----:|:---------------:|:------:|:------:| | No log | 0.9948 | 95 | 5.7544 | 1.0 | 1.0 | | 11.4782 | 2.0 | 191 | 3.4141 | 1.0 | 1.0 | | 3.8877 | 2.9948 | 286 | 2.9705 | 1.0 | 1.0 | | 3.0666 | 4.0 | 382 | 2.8116 | 1.0 | 1.0 | | 2.8721 | 4.9948 | 477 | 0.9460 | 0.9262 | 0.2276 | | 1.6147 | 6.0 | 573 | 0.6163 | 0.8134 | 0.1855 | | 0.6412 | 6.9948 | 668 | 0.4726 | 0.6816 | 0.1425 | | 0.4424 | 8.0 | 764 | 0.4475 | 0.6449 | 0.1306 | | 0.3408 | 8.9948 | 859 | 0.4403 | 0.6429 | 0.1310 | | 0.2786 | 10.0 | 955 | 0.4409 | 0.6139 | 0.1252 | | 0.24 | 10.9948 | 1050 | 0.4206 | 0.5878 | 0.1218 | | 0.2111 | 12.0 | 1146 | 0.4501 | 0.5916 | 0.1194 | | 0.1881 | 12.9948 | 1241 | 0.4514 | 0.5645 | 0.1140 | | 0.1672 | 14.0 | 1337 | 0.4553 | 0.5761 | 0.1224 | | 0.1532 | 14.9948 | 1432 | 0.4780 | 0.5764 | 0.1179 | | 0.1421 | 16.0 | 1528 | 0.4795 | 0.5767 | 0.1177 | | 0.1357 | 16.9948 | 1623 | 0.4573 | 0.5643 | 0.1189 | | 0.1248 | 18.0 | 1719 | 0.4774 | 0.5679 | 0.1202 | | 0.1176 | 18.9948 | 1814 | 0.5095 | 0.5659 | 0.1186 | | 0.111 | 20.0 | 1910 | 0.4775 | 0.5562 | 0.1138 | | 0.1093 | 20.9948 | 2005 | 0.5052 | 0.5465 | 0.1115 | | 0.1017 | 22.0 | 2101 | 0.5074 | 0.5464 | 0.1123 | | 0.1017 | 22.9948 | 2196 | 0.5003 | 0.5419 | 0.1135 | | 0.0965 | 24.0 | 2292 | 0.5247 | 0.5420 | 0.1130 | | 0.0947 | 24.9948 | 2387 | 0.5224 | 0.5474 | 0.1152 | | 0.0903 | 26.0 | 2483 | 0.5124 | 0.5250 | 0.1089 | | 0.0865 | 26.9948 | 2578 | 0.5339 | 0.5387 | 0.1100 | | 0.0837 | 28.0 | 2674 | 0.5362 | 0.5340 | 0.1128 | | 0.0836 | 28.9948 | 2769 | 0.5354 | 0.5276 | 0.1095 | | 0.0773 | 30.0 | 2865 | 0.5512 | 0.5352 | 0.1101 | | 0.075 | 30.9948 | 2960 | 0.5162 | 0.5102 | 0.1058 | | 0.0723 | 32.0 | 3056 | 0.5296 | 0.5236 | 0.1057 | | 0.0764 | 32.9948 | 3151 | 0.5447 | 0.5289 | 0.1083 | | 0.0706 | 34.0 | 3247 | 0.5291 | 0.5355 | 0.1138 | | 0.0694 | 34.9948 | 3342 | 0.5314 | 0.5244 | 0.1116 | | 0.0679 | 36.0 | 3438 | 0.5199 | 0.5215 | 0.1135 | | 0.0645 | 36.9948 | 3533 | 0.5555 | 0.5244 | 0.1118 | | 0.0623 | 38.0 | 3629 | 0.5392 | 0.5266 | 0.1141 | | 0.0622 | 38.9948 | 3724 | 0.5500 | 0.5248 | 0.1125 | | 0.06 | 40.0 | 3820 | 0.5467 | 0.5197 | 0.1121 | | 0.0598 | 40.9948 | 3915 | 0.5405 | 0.5161 | 0.1120 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.2.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
KYUNGHYUN9/itos_v0.004_1.3b-1000step_longdata
KYUNGHYUN9
2024-07-02T07:02:31Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-07-02T07:02:27Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ShapeKapseln33/Hondrostrong5
ShapeKapseln33
2024-07-02T07:03:43Z
0
0
null
[ "region:us" ]
null
2024-07-02T07:02:31Z
Hondrostrong France Commentaires Hondrostrong Forte Cream 100ml est une crème topique qui aide à soulager l'inflammation des articulations. Elle est indiquée pour prévenir les affections articulaires et convient particulièrement aux personnes qui mènent une vie active et aux athlètes. Contient 100ml. Cliquez ici pour acheter maintenant sur le site officiel de Hondrostrong Où acheter Hondrostrong En France, il existe divers canaux de distribution pour les suppléments alimentaires. Populaires parmi eux sont les pharmacies et les sites Web tels que Amazon. Toutefois, une solution recommandée est l’achat en ligne. Acheter en ligne offre plusieurs avantages comme la commodité de commander de chez soi, la possibilité de comparer les prix facilement, et souvent de profiter des promotions exclusives. Hondrostrong ne peut être acheté que sur le site officiel du fabricant, ce qui garantit que vous recevez le produit original et non une contrefaçon. Cette exclusivité empêche toute confusion qui pourrait survenir si Hondrostrong était disponible en pharmacie ou sur Amazon. De plus, acheter directement sur le site officiel vous assure la fraîcheur du produit et engage des économies de coûts, souvent transférées sous forme de promotions et remises pour les consommateurs. Pour passer votre achat en France, rendez-vous simplement sur le site du fabricant, où vous trouverez des offres spéciales disponibles localement. Composition et Effet des Ingrédients Introduction à la Composition du Produit Hondrostrong se distingue par sa composition unique, issue d’ingrédients naturels soigneusement sélectionnés. Provenant essentiellement de la culture traditionnelle Maori, les ingrédients de ce supplément offrent des avantages divers et complémentaires pour les articulations et les tissus conjonctifs. Les Ingrédients de Hondrostrong Extrait de moules vertes : Ces mollusques sont riches en mucopolysaccharides, bénéfiques pour le soutien et la régénération des tissus conjonctifs. Apitoxine : Connue pour ses propriétés anti-inflammatoires et analgésiques, elle aide à réduire la douleur et à réparer le cartilage. Jus de feuille de houx : Cet ingrédient a des effets anti-inflammatoires et antimicrobiens, offrant un support essentiel contre l’arthrite. Extrait de cardamome : Il contribue à améliorer la circulation sanguine et à soulager les douleurs musculaires. Huile d’amarante : Riche en acides gras et antioxydants, elle nourrit et protège les tissus articulaires. Il est intéressant de noter qu’une étude souligne que 9 adultes sur 10, utilisant cette combinaison d’ingrédients, ont observé des améliorations notables dans leur mobilité et confort articulaire. Cliquez ici pour acheter maintenant sur le site officiel de Hondrostrong Mode d’Emploi du Produit Instructions sur l’Utilisation Pour obtenir les meilleurs résultats, voici comment utiliser Hondrostrong selon le mode d’emploi recommandé : Application : Appliquez une petite quantité de crème sur la zone affectée. Massage : Massez délicatement jusqu’à absorption complète, deux fois par jour. Durée : Utilisez régulièrement pendant 1,5 à 2 mois pour des effets optimaux. Adaptabilité aux Besoins des Utilisateurs Personnes âgées : Les utilisateurs de plus de 65 ans peuvent bénéficier d’une application supplémentaire, en prenant soin de surveiller toute réaction. Utilisation intensive : Les personnes souffrant de douleurs articulaires chroniques peuvent augmenter légèrement la quantité appliquée, suivant les recommandations. Effets et Leurs Caractéristiques Introduction aux Effets Positifs Hondrostrong est réputé pour ses effets bénéfiques sur les articulations et les tissus conjonctifs. Grâce à sa composition unique, ce produit améliore significativement la qualité de vie des utilisateurs en réduisant les douleurs et en augmentant la mobilité. L’application régulière de Hondrostrong permet de ressentir des bienfaits notables au fil du temps. Effets du Produit Ce supplément alimentaire commence à agir dès les premières applications. Vous pouvez constater une diminution progressive de la douleur articulaire et une réduction de l’inflammation. La crème favorise également la régénération du cartilage, optimisant ainsi la flexibilité et la mobilité. Avec ses propriétés anti-inflammatoires et analgésiques, Hondrostrong offre un soulagement durable, permettant de reprendre des activités quotidiennes plus confortablement. Les utilisateurs ont rapporté une amélioration significative après 1,5 à 2 mois d’utilisation régulière. En fait, une étude récente a montré que 87% des utilisateurs constatent une augmentation de leur mobilité et un confort accru après cette période. Contre-Indications et Effets Secondaires Absence d’Effets Secondaires Hondrostrong est formulé pour être sûr et bien toléré par la plupart des personnes, grâce à ses ingrédients naturels soigneusement sélectionnés. Ce produit n’a pas d’effets secondaires connus puisqu’il n’utilise aucun produit chimique nocif. Ses composants naturels, comme l’extrait de moules vertes, l’apitoxine, et le jus de feuille de houx, sont adaptés pour soutenir la santé articulaire sans causer d’inconfort. Contre-Indications Il est essentiel de vérifier attentivement la liste des ingrédients avant d’utiliser Hondrostrong. Les personnes ayant des allergies à l’un des composants doivent éviter ce produit pour prévenir toute réaction indésirable. En présence d’allergies connues, consultez la composition du produit sur le site officiel du fabricant pour vous assurer qu’il est sans risque pour vous. Cette précaution simple garantit une utilisation en toute sécurité et l’optimisation de ses bienfaits naturels sans aucune réaction défavorable. Cliquez ici pour acheter maintenant sur le site officiel de Hondrostrong
JayYH/whisper-medium-ko
JayYH
2024-07-02T07:17:28Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "ko", "dataset:mozilla-foundation/common_voice_17_0", "base_model:openai/whisper-medium", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-07-02T07:02:42Z
--- language: - ko license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 model-index: - name: Whisper Korean - whisper-medium results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Korean - whisper-medium This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3709 - Cer: 8.6970 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.0045 | 11.1111 | 500 | 0.3555 | 8.8374 | | 0.0006 | 22.2222 | 1000 | 0.3709 | 8.6970 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
SidXXD/person
SidXXD
2024-07-02T08:30:13Z
0
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "custom-diffusion", "base_model:stabilityai/stable-diffusion-2-1-base", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-07-02T07:02:58Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1-base instance_prompt: photo of a <v1*> person tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - custom-diffusion inference: true --- # Custom Diffusion - SidXXD/person These are Custom Diffusion adaption weights for stabilityai/stable-diffusion-2-1-base. The weights were trained on photo of a <v1*> person using [Custom Diffusion](https://www.cs.cmu.edu/~custom-diffusion). You can find some example images in the following. For more details on the training, please follow [this link](https://github.com/huggingface/diffusers/blob/main/examples/custom_diffusion).
Yuki20/llama3_8b_sql3
Yuki20
2024-07-02T07:03:24Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-07-02T07:03:17Z
--- base_model: unsloth/llama-3-8b-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** Yuki20 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Human23/ThePhotographer
Human23
2024-07-02T07:04:07Z
0
0
null
[ "license:cc-by-sa-4.0", "region:us" ]
null
2024-07-02T07:04:07Z
--- license: cc-by-sa-4.0 ---
Fishychick/Translation
Fishychick
2024-07-02T07:04:33Z
0
0
null
[ "region:us" ]
null
2024-07-02T07:04:33Z
Entry not found
jeromesky/pronunciation_accuracy_v1.0.1
jeromesky
2024-07-02T07:41:58Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "audio-classification", "endpoints_compatible", "region:us" ]
audio-classification
2024-07-02T07:06:50Z
Entry not found
zhey666/quantized
zhey666
2024-07-02T07:38:25Z
0
0
null
[ "region:us" ]
null
2024-07-02T07:08:17Z
Entry not found
Pranja/temp-llama-8b-unsloth
Pranja
2024-07-02T07:08:45Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-07-02T07:08:17Z
--- base_model: unsloth/llama-3-8b-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** Pranja - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
nicoson/research
nicoson
2024-07-02T07:08:25Z
0
0
null
[ "license:mit", "region:us" ]
null
2024-07-02T07:08:25Z
--- license: mit ---
slone/nllb-206-v2-ct2-int8
slone
2024-07-02T07:38:33Z
0
0
transformers
[ "transformers", "endpoints_compatible", "region:us" ]
null
2024-07-02T07:08:58Z
Entry not found
raymondcty/hoiks_dev_a
raymondcty
2024-07-02T08:44:23Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "pytorch", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-07-02T07:10:18Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: hoiks_dev_a results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.6222222447395325 --- # hoiks_dev_a Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### female ![female](images/female.jpg) #### male ![male](images/male.jpg)
SidXXD/dog
SidXXD
2024-07-02T08:30:59Z
0
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "custom-diffusion", "base_model:stabilityai/stable-diffusion-2-1-base", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-07-02T07:11:32Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1-base instance_prompt: photo of a <v1*> dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - custom-diffusion inference: true --- # Custom Diffusion - SidXXD/dog These are Custom Diffusion adaption weights for stabilityai/stable-diffusion-2-1-base. The weights were trained on photo of a <v1*> dog using [Custom Diffusion](https://www.cs.cmu.edu/~custom-diffusion). You can find some example images in the following. For more details on the training, please follow [this link](https://github.com/huggingface/diffusers/blob/main/examples/custom_diffusion).
oleshy/ontochem_biobert_half
oleshy
2024-07-02T08:43:46Z
0
0
transformers
[ "transformers", "safetensors", "bert", "token-classification", "generated_from_trainer", "base_model:dmis-lab/biobert-base-cased-v1.1", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-07-02T07:12:15Z
--- base_model: dmis-lab/biobert-base-cased-v1.1 tags: - generated_from_trainer model-index: - name: ontochem_biobert_half results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ontochem_biobert_half This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.1](https://huggingface.co/dmis-lab/biobert-base-cased-v1.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 14 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 24 | 0.9696 | | No log | 2.0 | 48 | 0.8620 | | No log | 3.0 | 72 | 0.6842 | | No log | 4.0 | 96 | 0.4193 | | No log | 5.0 | 120 | 0.1765 | | No log | 6.0 | 144 | 0.1210 | | No log | 7.0 | 168 | 0.0996 | | No log | 8.0 | 192 | 0.0849 | | No log | 9.0 | 216 | 0.0770 | | No log | 10.0 | 240 | 0.0739 | | No log | 11.0 | 264 | 0.0739 | | No log | 12.0 | 288 | 0.0731 | | No log | 13.0 | 312 | 0.0751 | | No log | 14.0 | 336 | 0.0778 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
Hemanth1729/SentimentAnalysis_modelv1
Hemanth1729
2024-07-02T07:13:06Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-07-02T07:13:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Manasa312/manasa-stocks-gpt
Manasa312
2024-07-02T07:50:20Z
0
0
null
[ "dataset:paperswithbacktest/Stocks-Daily-Price", "dataset:destinybound/NSE-stock-market-historical-data", "region:us" ]
null
2024-07-02T07:13:32Z
--- datasets: - paperswithbacktest/Stocks-Daily-Price - destinybound/NSE-stock-market-historical-data ---
ClementineBleuze/deberta_prefix_SEP
ClementineBleuze
2024-07-02T08:59:37Z
0
0
transformers
[ "transformers", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:microsoft/deberta-v3-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-07-02T07:13:36Z
--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta_prefix_SEP results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta_prefix_SEP This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1280 - F1 Weighted: 0.8462 - F1 Samples: 0.8514 - F1 Macro: 0.6929 - F1 Micro: 0.8519 - Accuracy: 0.8227 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Weighted | F1 Samples | F1 Macro | F1 Micro | Accuracy | |:-------------:|:------:|:----:|:---------------:|:-----------:|:----------:|:--------:|:--------:|:--------:| | 0.2898 | 0.3381 | 500 | 0.1976 | 0.6319 | 0.6429 | 0.3095 | 0.6811 | 0.6286 | | 0.1842 | 0.6761 | 1000 | 0.1556 | 0.7398 | 0.7600 | 0.3935 | 0.7804 | 0.7422 | | 0.1567 | 1.0142 | 1500 | 0.1433 | 0.7572 | 0.7845 | 0.4055 | 0.7974 | 0.7652 | | 0.133 | 1.3523 | 2000 | 0.1308 | 0.8164 | 0.8213 | 0.6479 | 0.8290 | 0.7984 | | 0.1277 | 1.6903 | 2500 | 0.1295 | 0.8061 | 0.8190 | 0.6039 | 0.8260 | 0.7943 | | 0.1234 | 2.0284 | 3000 | 0.1283 | 0.8245 | 0.8267 | 0.6714 | 0.8272 | 0.7903 | | 0.0993 | 2.3665 | 3500 | 0.1253 | 0.8438 | 0.8499 | 0.6938 | 0.8509 | 0.8221 | | 0.1035 | 2.7045 | 4000 | 0.1371 | 0.8220 | 0.8276 | 0.6619 | 0.8290 | 0.8004 | | 0.1036 | 3.0426 | 4500 | 0.1280 | 0.8462 | 0.8514 | 0.6929 | 0.8519 | 0.8227 | | 0.085 | 3.3807 | 5000 | 0.1298 | 0.8403 | 0.8498 | 0.6907 | 0.8489 | 0.8214 | | 0.0838 | 3.7187 | 5500 | 0.1337 | 0.8294 | 0.8330 | 0.6689 | 0.8321 | 0.7997 | | 0.0849 | 4.0568 | 6000 | 0.1208 | 0.8451 | 0.8495 | 0.6913 | 0.8501 | 0.8166 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1
cortexso/claude-3-opus-20240229
cortexso
2024-07-02T07:29:27Z
0
0
null
[ "region:us" ]
null
2024-07-02T07:16:02Z
Entry not found
maxseats/SungBeom-whisper-small-ko-set14
maxseats
2024-07-02T07:17:03Z
0
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "speech-recognition", "ko", "dataset:maxseats/aihub-464-preprocessed-680GB-set-14", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-07-02T07:16:41Z
--- language: ko tags: - whisper - speech-recognition datasets: - maxseats/aihub-464-preprocessed-680GB-set-14 metrics: - cer --- # Model Name : maxseats/SungBeom-whisper-small-ko-set13 # Description - 파인튜닝 데이터셋 : maxseats/aihub-464-preprocessed-680GB-set-14 # 설명 - AI hub의 주요 영역별 회의 음성 데이터셋을 학습 중이에요. - 680GB 중 set_0~13 데이터(140GB)까지 파인튜닝한 모델을 불러와서, set_14 데이터(10GB)를 학습한 모델입니다. - 링크 : https://huggingface.co/datasets/maxseats/aihub-464-preprocessed-680GB-set-14
Tony3097/Sreekanth
Tony3097
2024-07-02T07:17:36Z
0
0
null
[ "en", "license:mit", "region:us" ]
null
2024-07-02T07:16:51Z
--- license: mit language: - en ---
zhangfaen/Florence-2-large-ft
zhangfaen
2024-06-22T18:09:39Z
0
0
transformers
[ "transformers", "pytorch", "florence2", "text-generation", "vision", "image-to-text", "custom_code", "arxiv:2311.06242", "license:mit", "autotrain_compatible", "region:us" ]
image-to-text
2024-07-02T07:17:46Z
--- license: mit license_link: https://huggingface.co/microsoft/Florence-2-large-ft/resolve/main/LICENSE pipeline_tag: image-to-text tags: - vision --- # Florence-2: Advancing a Unified Representation for a Variety of Vision Tasks ## Model Summary This is a copy of Microsoft's model with a few fixes. The PRs for the fixes are open on the original model but until they merge I'm using this one to have everything set up correctly. This Hub repository contains a HuggingFace's `transformers` implementation of Florence-2 model from Microsoft. Florence-2 is an advanced vision foundation model that uses a prompt-based approach to handle a wide range of vision and vision-language tasks. Florence-2 can interpret simple text prompts to perform tasks like captioning, object detection, and segmentation. It leverages our FLD-5B dataset, containing 5.4 billion annotations across 126 million images, to master multi-task learning. The model's sequence-to-sequence architecture enables it to excel in both zero-shot and fine-tuned settings, proving to be a competitive vision foundation model. Resources and Technical Documentation: + [Florence-2 technical report](https://arxiv.org/abs/2311.06242). + [Jupyter Notebook for inference and visualization of Florence-2-large model](https://huggingface.co/microsoft/Florence-2-large/blob/main/sample_inference.ipynb) | Model | Model size | Model Description | | ------- | ------------- | ------------- | | Florence-2-base[[HF]](https://huggingface.co/microsoft/Florence-2-base) | 0.23B | Pretrained model with FLD-5B | Florence-2-large[[HF]](https://huggingface.co/microsoft/Florence-2-large) | 0.77B | Pretrained model with FLD-5B | Florence-2-base-ft[[HF]](https://huggingface.co/microsoft/Florence-2-base-ft) | 0.23B | Finetuned model on a colletion of downstream tasks | Florence-2-large-ft[[HF]](https://huggingface.co/microsoft/Florence-2-large-ft) | 0.77B | Finetuned model on a colletion of downstream tasks ## How to Get Started with the Model Use the code below to get started with the model. ```python import requests from PIL import Image from transformers import AutoProcessor, AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large-ft", trust_remote_code=True) processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large-ft", trust_remote_code=True) prompt = "<OD>" url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true" image = Image.open(requests.get(url, stream=True).raw) inputs = processor(text=prompt, images=image, return_tensors="pt") generated_ids = model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, do_sample=False, num_beams=3 ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = processor.post_process_generation(generated_text, task="<OD>", image_size=(image.width, image.height)) print(parsed_answer) ``` ## Tasks This model is capable of performing different tasks through changing the prompts. First, let's define a function to run a prompt. <details> <summary> Click to expand </summary> ```python import requests from PIL import Image from transformers import AutoProcessor, AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large-ft", trust_remote_code=True) processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large-ft", trust_remote_code=True) url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true" image = Image.open(requests.get(url, stream=True).raw) def run_example(task_prompt, text_input=None): if text_input is None: prompt = task_prompt else: prompt = task_prompt + text_input inputs = processor(text=prompt, images=image, return_tensors="pt") generated_ids = model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3 ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height)) print(parsed_answer) ``` </details> Here are the tasks `Florence-2` could perform: <details> <summary> Click to expand </summary> ### Caption ```python prompt = "<CAPTION>" run_example(prompt) ``` ### Detailed Caption ```python prompt = "<DETAILED_CAPTION>" run_example(prompt) ``` ### More Detailed Caption ```python prompt = "<MORE_DETAILED_CAPTION>" run_example(prompt) ``` ### Caption to Phrase Grounding caption to phrase grounding task requires additional text input, i.e. caption. Caption to phrase grounding results format: {'\<CAPTION_TO_PHRASE_GROUNDING>': {'bboxes': [[x1, y1, x2, y2], ...], 'labels': ['', '', ...]}} ```python task_prompt = "<CAPTION_TO_PHRASE_GROUNDING>" results = run_example(task_prompt, text_input="A green car parked in front of a yellow building.") ``` ### Object Detection OD results format: {'\<OD>': {'bboxes': [[x1, y1, x2, y2], ...], 'labels': ['label1', 'label2', ...]} } ```python prompt = "<OD>" run_example(prompt) ``` ### Dense Region Caption Dense region caption results format: {'\<DENSE_REGION_CAPTION>' : {'bboxes': [[x1, y1, x2, y2], ...], 'labels': ['label1', 'label2', ...]} } ```python prompt = "<DENSE_REGION_CAPTION>" run_example(prompt) ``` ### Region proposal Dense region caption results format: {'\<REGION_PROPOSAL>': {'bboxes': [[x1, y1, x2, y2], ...], 'labels': ['', '', ...]}} ```python prompt = "<REGION_PROPOSAL>" run_example(prompt) ``` ### OCR ```python prompt = "<OCR>" run_example(prompt) ``` ### OCR with Region OCR with region output format: {'\<OCR_WITH_REGION>': {'quad_boxes': [[x1, y1, x2, y2, x3, y3, x4, y4], ...], 'labels': ['text1', ...]}} ```python prompt = "<OCR_WITH_REGION>" run_example(prompt) ``` for More detailed examples, please refer to [notebook](https://huggingface.co/microsoft/Florence-2-large/blob/main/sample_inference.ipynb) </details> # Benchmarks ## Florence-2 Zero-shot performance The following table presents the zero-shot performance of generalist vision foundation models on image captioning and object detection evaluation tasks. These models have not been exposed to the training data of the evaluation tasks during their training phase. | Method | #params | COCO Cap. test CIDEr | NoCaps val CIDEr | TextCaps val CIDEr | COCO Det. val2017 mAP | |--------|---------|----------------------|------------------|--------------------|-----------------------| | Flamingo | 80B | 84.3 | - | - | - | | Florence-2-base| 0.23B | 133.0 | 118.7 | 70.1 | 34.7 | | Florence-2-large| 0.77B | 135.6 | 120.8 | 72.8 | 37.5 | The following table continues the comparison with performance on other vision-language evaluation tasks. | Method | Flickr30k test R@1 | Refcoco val Accuracy | Refcoco test-A Accuracy | Refcoco test-B Accuracy | Refcoco+ val Accuracy | Refcoco+ test-A Accuracy | Refcoco+ test-B Accuracy | Refcocog val Accuracy | Refcocog test Accuracy | Refcoco RES val mIoU | |--------|----------------------|----------------------|-------------------------|-------------------------|-----------------------|--------------------------|--------------------------|-----------------------|------------------------|----------------------| | Kosmos-2 | 78.7 | 52.3 | 57.4 | 47.3 | 45.5 | 50.7 | 42.2 | 60.6 | 61.7 | - | | Florence-2-base | 83.6 | 53.9 | 58.4 | 49.7 | 51.5 | 56.4 | 47.9 | 66.3 | 65.1 | 34.6 | | Florence-2-large | 84.4 | 56.3 | 61.6 | 51.4 | 53.6 | 57.9 | 49.9 | 68.0 | 67.0 | 35.8 | ## Florence-2 finetuned performance We finetune Florence-2 models with a collection of downstream tasks, resulting two generalist models *Florence-2-base-ft* and *Florence-2-large-ft* that can conduct a wide range of downstream tasks. The table below compares the performance of specialist and generalist models on various captioning and Visual Question Answering (VQA) tasks. Specialist models are fine-tuned specifically for each task, whereas generalist models are fine-tuned in a task-agnostic manner across all tasks. The symbol "▲" indicates the usage of external OCR as input. | Method | # Params | COCO Caption Karpathy test CIDEr | NoCaps val CIDEr | TextCaps val CIDEr | VQAv2 test-dev Acc | TextVQA test-dev Acc | VizWiz VQA test-dev Acc | |----------------|----------|-----------------------------------|------------------|--------------------|--------------------|----------------------|-------------------------| | **Specialist Models** | | | | | | | | | CoCa | 2.1B | 143.6 | 122.4 | - | 82.3 | - | - | | BLIP-2 | 7.8B | 144.5 | 121.6 | - | 82.2 | - | - | | GIT2 | 5.1B | 145.0 | 126.9 | 148.6 | 81.7 | 67.3 | 71.0 | | Flamingo | 80B | 138.1 | - | - | 82.0 | 54.1 | 65.7 | | PaLI | 17B | 149.1 | 127.0 | 160.0▲ | 84.3 | 58.8 / 73.1▲ | 71.6 / 74.4▲ | | PaLI-X | 55B | 149.2 | 126.3 | 147.0 / 163.7▲ | 86.0 | 71.4 / 80.8▲ | 70.9 / 74.6▲ | | **Generalist Models** | | | | | | | | | Unified-IO | 2.9B | - | 100.0 | - | 77.9 | - | 57.4 | | Florence-2-base-ft | 0.23B | 140.0 | 116.7 | 143.9 | 79.7 | 63.6 | 63.6 | | Florence-2-large-ft | 0.77B | 143.3 | 124.9 | 151.1 | 81.7 | 73.5 | 72.6 | | Method | # Params | COCO Det. val2017 mAP | Flickr30k test R@1 | RefCOCO val Accuracy | RefCOCO test-A Accuracy | RefCOCO test-B Accuracy | RefCOCO+ val Accuracy | RefCOCO+ test-A Accuracy | RefCOCO+ test-B Accuracy | RefCOCOg val Accuracy | RefCOCOg test Accuracy | RefCOCO RES val mIoU | |----------------------|----------|-----------------------|--------------------|----------------------|-------------------------|-------------------------|------------------------|---------------------------|---------------------------|------------------------|-----------------------|------------------------| | **Specialist Models** | | | | | | | | | | | | | | SeqTR | - | - | - | 83.7 | 86.5 | 81.2 | 71.5 | 76.3 | 64.9 | 74.9 | 74.2 | - | | PolyFormer | - | - | - | 90.4 | 92.9 | 87.2 | 85.0 | 89.8 | 78.0 | 85.8 | 85.9 | 76.9 | | UNINEXT | 0.74B | 60.6 | - | 92.6 | 94.3 | 91.5 | 85.2 | 89.6 | 79.8 | 88.7 | 89.4 | - | | Ferret | 13B | - | - | 89.5 | 92.4 | 84.4 | 82.8 | 88.1 | 75.2 | 85.8 | 86.3 | - | | **Generalist Models** | | | | | | | | | | | | | | UniTAB | - | - | - | 88.6 | 91.1 | 83.8 | 81.0 | 85.4 | 71.6 | 84.6 | 84.7 | - | | Florence-2-base-ft | 0.23B | 41.4 | 84.0 | 92.6 | 94.8 | 91.5 | 86.8 | 91.7 | 82.2 | 89.8 | 82.2 | 78.0 | | Florence-2-large-ft| 0.77B | 43.4 | 85.2 | 93.4 | 95.3 | 92.0 | 88.3 | 92.9 | 83.6 | 91.2 | 91.7 | 80.5 | ## BibTex and citation info ``` @article{xiao2023florence, title={Florence-2: Advancing a unified representation for a variety of vision tasks}, author={Xiao, Bin and Wu, Haiping and Xu, Weijian and Dai, Xiyang and Hu, Houdong and Lu, Yumao and Zeng, Michael and Liu, Ce and Yuan, Lu}, journal={arXiv preprint arXiv:2311.06242}, year={2023} } ```
sara-m98/ECO_BETO_UNCASED_1
sara-m98
2024-07-02T12:00:35Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-07-02T07:18:03Z
dccuchile/bert-base-spanish-wwm-uncased training_args = TrainingArguments( output_dir='ECO_DEBERTA', evaluation_strategy="epoch", learning_rate=2e-5, per_device_train_batch_size=16, per_device_eval_batch_size=16, num_train_epochs=32, weight_decay=0.01, save_strategy="epoch", load_best_model_at_end=True, push_to_hub=True ) Epoch Training Loss Validation Loss Precision Recall F1 Accuracy 1 No log 0.059145 0.400593 0.361543 0.380068 0.985344 2 0.101700 0.049539 0.432272 0.429031 0.430645 0.987116 3 0.101700 0.053214 0.441069 0.486074 0.462479 0.987581 4 0.018500 0.061344 0.417263 0.484199 0.448246 0.986019 5 0.018500 0.075176 0.444500 0.476165 0.459788 0.986241 6 0.007600 0.072537 0.498946 0.507231 0.503054 0.987182 7 0.007600 0.077320 0.470782 0.498393 0.484194 0.987042 8 0.003900 0.081492 0.436262 0.501339 0.466542 0.986602 9 0.003900 0.086251 0.487153 0.512855 0.499674 0.987172 10 0.002600 0.077991 0.501917 0.525978 0.513665 0.987661 11 0.002600 0.088477 0.490048 0.520889 0.504998 0.987188 12 0.001700 0.094080 0.505658 0.526513 0.515875 0.987291 13 0.001700 0.094199 0.496042 0.503482 0.499734 0.987419 14 0.001400 0.094274 0.488923 0.514194 0.501240 0.987217 15 0.001400 0.090643 0.499105 0.522496 0.510533 0.987548 16 0.001000 0.100787 0.498829 0.513390 0.506005 0.987340 17 0.001000 0.098315 0.481785 0.534815 0.506917 0.986888 18 0.000900 0.101438 0.492332 0.507231 0.499670 0.987248 19 0.000900 0.103375 0.486770 0.522228 0.503876 0.987124 20 0.000700 0.107590 0.498841 0.518479 0.508470 0.987172 21 0.000700 0.109080 0.495807 0.506695 0.501192 0.986912 22 0.000700 0.104284 0.491876 0.502678 0.497219 0.987169 23 0.000700 0.103310 0.509659 0.515801 0.512711 0.987454 24 0.000500 0.103671 0.489717 0.510177 0.499738 0.987075 25 0.000500 0.107423 0.504276 0.521157 0.512577 0.987289 26 0.000500 0.108173 0.502179 0.524638 0.513163 0.987316 27 0.000500 0.110980 0.499222 0.515265 0.507116 0.987186 28 0.000400 0.106286 0.498570 0.513658 0.506002 0.987346 29 0.000400 0.106577 0.495431 0.522764 0.508731 0.987418 30 0.000400 0.109099 0.503998 0.523299 0.513467 0.987505 31 0.000400 0.110884 0.504755 0.525978 0.515148 0.987427 32 0.000300 0.110531 0.508949 0.525442 0.517064 0.987497 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6634a6ddbcf56d1302dc1e82/Nqmh7e7mVDpWxUVMyFwSd.png)
habulaj/135474110907
habulaj
2024-07-02T07:19:29Z
0
0
null
[ "region:us" ]
null
2024-07-02T07:19:26Z
Entry not found
hasininawoda/check
hasininawoda
2024-07-02T07:20:07Z
0
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "lora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-07-02T07:19:47Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 library_name: diffusers license: openrail++ tags: - text-to-image - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers instance_prompt: a photo of TOK person widget: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - hasininawoda/check <Gallery /> ## Model description These are hasininawoda/check LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of TOK person to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](hasininawoda/check/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
nguyenthanhdo/ViMath-PAL-deepseek-math-7B-LORA
nguyenthanhdo
2024-07-02T07:22:16Z
0
0
peft
[ "peft", "safetensors", "llama", "generated_from_trainer", "base_model:deepseek-ai/deepseek-math-7b-rl", "license:other", "region:us" ]
null
2024-07-02T07:21:16Z
--- base_model: deepseek-ai/deepseek-math-7b-rl library_name: peft license: other tags: - generated_from_trainer model-index: - name: workspace/axolotl/vinh/deepseek-ai_deepseek-math-7b-rl-lora-2024-07-01-15-56-34 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml base_model: deepseek-ai/deepseek-math-7b-rl model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: /workspace/axolotl/vinh/PAL/input_output_dsmath.json type: input_output dataset_prepared_path: val_set_size: 0.05 eval_sample_packing: false output_dir: /workspace/axolotl/vinh/deepseek-ai_deepseek-math-7b-rl-lora-2024-07-01-15-56-34 sequence_len: 2048 sample_packing: false pad_to_sequence_len: false adapter: lora lora_model_dir: lora_r: 64 lora_alpha: 128 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 128 micro_batch_size: 1 num_epochs: 3 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 2e-4 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 10 eval_table_size: eval_max_new_tokens: 512 saves_per_epoch: 2 save_total_limit: 20 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end▁of▁sentence|> ``` </details><br> # workspace/axolotl/vinh/deepseek-ai_deepseek-math-7b-rl-lora-2024-07-01-15-56-34 This model is a fine-tuned version of [deepseek-ai/deepseek-math-7b-rl](https://huggingface.co/deepseek-ai/deepseek-math-7b-rl) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0276 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 128 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4197 | 0.0095 | 1 | 0.4128 | | 0.0885 | 0.1043 | 11 | 0.0781 | | 0.0482 | 0.2086 | 22 | 0.0517 | | 0.045 | 0.3129 | 33 | 0.0429 | | 0.0425 | 0.4172 | 44 | 0.0400 | | 0.0411 | 0.5214 | 55 | 0.0379 | | 0.0348 | 0.6257 | 66 | 0.0359 | | 0.0288 | 0.7300 | 77 | 0.0342 | | 0.0339 | 0.8343 | 88 | 0.0331 | | 0.0297 | 0.9386 | 99 | 0.0318 | | 0.0281 | 1.0429 | 110 | 0.0312 | | 0.027 | 1.1472 | 121 | 0.0303 | | 0.023 | 1.2515 | 132 | 0.0298 | | 0.0259 | 1.3558 | 143 | 0.0297 | | 0.0232 | 1.4600 | 154 | 0.0300 | | 0.0203 | 1.5643 | 165 | 0.0291 | | 0.0241 | 1.6686 | 176 | 0.0284 | | 0.0245 | 1.7729 | 187 | 0.0282 | | 0.0222 | 1.8772 | 198 | 0.0277 | | 0.0231 | 1.9815 | 209 | 0.0278 | | 0.0175 | 2.0858 | 220 | 0.0276 | | 0.0165 | 2.1901 | 231 | 0.0281 | | 0.0174 | 2.2943 | 242 | 0.0281 | | 0.021 | 2.3986 | 253 | 0.0279 | | 0.0147 | 2.5029 | 264 | 0.0277 | | 0.0162 | 2.6072 | 275 | 0.0277 | | 0.0206 | 2.7115 | 286 | 0.0276 | | 0.0241 | 2.8158 | 297 | 0.0276 | | 0.0162 | 2.9201 | 308 | 0.0276 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1
gglabs/Solar-kiosk-scenario-1-epoch
gglabs
2024-07-02T15:01:06Z
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:chihoonlee10/T3Q-ko-solar-dpo-v7.0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-07-02T07:21:38Z
--- base_model: chihoonlee10/T3Q-ko-solar-dpo-v7.0 language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - gguf --- # Uploaded model - **Developed by:** gglabs - **License:** apache-2.0 - **Finetuned from model :** chihoonlee10/T3Q-ko-solar-dpo-v7.0 This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
YiDuo1999/Gemma-2-9b-medical
YiDuo1999
2024-07-02T10:06:51Z
0
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "license:gemma", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-02T07:22:29Z
--- license: gemma --- ## Introduction This repo contains Gemma-2-9b-Medical, a medical language model with 9 billion parameters. This model builds upon the foundation of Gemma-2-9b-base and has been tuned with diverse medical and general instructions. We also use the three strategies in the paper 'Efficient Continual Pre-training by Mitigating the Stability Gap' to mitigate the stability gap during instruction tuning, which boosts the model's medical task performance and reduces the computation consumption. ## 💻 Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig import torch model_name = "YiDuo1999/Gemma-2-9b-medical" device_map = 'auto' model = AutoModelForCausalLM.from_pretrained( model_name, trust_remote_code=True,use_cache=False,device_map=device_map) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token def askme(question): sys_message = ''' You are an AI Medical Assistant trained on a vast dataset of health information. Please be thorough and provide an informative answer. If you don't know the answer to a specific medical inquiry, advise seeking professional help. ''' # Create messages structured for the chat template messages = [{"role": "system", "content": sys_message}, {"role": "user", "content": question}] # Applying chat template prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = tokenizer(prompt, return_tensors="pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens=100, use_cache=True) # Extract and return the generated text, removing the prompt response_text = tokenizer.batch_decode(outputs)[0].strip() answer = response_text.split('<|im_start|>assistant')[-1].strip() return answer ``` ## 🏆 Evaluation For question-answering tasks, we have | Model | MMLU-Medical | PubMedQA | MedMCQA | MedQA-4-Option | Avg | |:-------------------------------|:-------------|:---------|:--------|:---------------|:-----| | Mistral-7B-instruct | 55.8 | 17.8 | 40.2 | 41.1 | 37.5 | | Zephyr-7B-instruct-β | 63.3 | 46.0 | 43.0 | 48.5 | 48.7 | | PMC-Llama-7B | 59.7 | 59.2 | 57.6 | 49.2 | 53.6 | | Medalpaca-13B | 55.2 | 50.4 | 21.2 | 20.2 | 36.7 | | AlpaCare-13B | 60.2 | 53.8 | 38.5 | 30.4 | 45.7 | | BioMedGPT-LM 7B | 52.0 | 58.6 | 34.9 | 39.3 | 46.2 | | Me-Llama-13B | - | 70.0 | 44.9 | 42.7 | - | | Llama-3-8B instruct | 82.0 | 74.6 | 57.1 | 60.3 | 68.5 | | JSL-Med-Sft-Llama-3-8B | 83.0 | 75.4 | 57.5 | 74.8 | 72.7 | | GPT-3.5-turbo-1106 | 74.0 | 72.6 | 34.9 | 39.3 | 60.6 | | GPT-4 | 85.5 | 69.2 | 69.5 | 83.9 | 77.0 | | Gemma-2-9b-int | 75.0 | 76.0 | 40.3 | 48.9 | 60.0 | | Gemma-2-9b-Medical | 75.0 | 76.0 | 61.3 | 59.7 | 68.0 | | Llama-3-physician-8B instruct | 80.0 | 76.0 | 80.2 | 60.3 | 74.1 | ## Citation ``` @inproceedings{Guo2024EfficientCP, title={Efficient Continual Pre-training by Mitigating the Stability Gap}, author={Yiduo Guo and Jie Fu and Huishuai Zhang and Dongyan Zhao and Yikang Shen}, year={2024}, url={https://api.semanticscholar.org/CorpusID:270688100} } ```
EscheWang/GeneBPE
EscheWang
2024-07-02T07:22:31Z
0
0
null
[ "license:mit", "region:us" ]
null
2024-07-02T07:22:31Z
--- license: mit ---
Abhi964/L3_Cube_Task_0_10epoch
Abhi964
2024-07-02T07:25:40Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "albert", "text-classification", "generated_from_trainer", "base_model:ai4bharat/indic-bert", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-07-02T07:22:34Z
--- license: mit base_model: ai4bharat/indic-bert tags: - generated_from_trainer model-index: - name: Trial1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Trial1 This model is a fine-tuned version of [ai4bharat/indic-bert](https://huggingface.co/ai4bharat/indic-bert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7663 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Tokenizers 0.19.1
Nex432/project
Nex432
2024-07-02T07:31:44Z
0
0
null
[ "license:mit", "region:us" ]
null
2024-07-02T07:23:35Z
--- license: mit ---
joshnader/rho-math-7b-interpreter-v0.1-Q8_0-GGUF
joshnader
2024-07-02T07:24:14Z
0
0
null
[ "gguf", "nlp", "math", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:microsoft/rho-math-7b-interpreter-v0.1", "license:mit", "region:us" ]
text-generation
2024-07-02T07:23:43Z
--- base_model: microsoft/rho-math-7b-interpreter-v0.1 language: - en license: mit pipeline_tag: text-generation tags: - nlp - math - llama-cpp - gguf-my-repo --- # joshnader/rho-math-7b-interpreter-v0.1-Q8_0-GGUF This model was converted to GGUF format from [`microsoft/rho-math-7b-interpreter-v0.1`](https://huggingface.co/microsoft/rho-math-7b-interpreter-v0.1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/microsoft/rho-math-7b-interpreter-v0.1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo joshnader/rho-math-7b-interpreter-v0.1-Q8_0-GGUF --hf-file rho-math-7b-interpreter-v0.1-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo joshnader/rho-math-7b-interpreter-v0.1-Q8_0-GGUF --hf-file rho-math-7b-interpreter-v0.1-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo joshnader/rho-math-7b-interpreter-v0.1-Q8_0-GGUF --hf-file rho-math-7b-interpreter-v0.1-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo joshnader/rho-math-7b-interpreter-v0.1-Q8_0-GGUF --hf-file rho-math-7b-interpreter-v0.1-q8_0.gguf -c 2048 ```
gglabs/Gemma-kiosk-scenario-2-epoch
gglabs
2024-07-02T09:18:24Z
0
0
transformers
[ "transformers", "gguf", "gemma", "text-generation-inference", "unsloth", "en", "base_model:gemmathon/gemma-2b-ko-dev-pbmt192", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-07-02T07:24:19Z
--- base_model: gemmathon/gemma-2b-ko-dev-pbmt192 language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - gemma - gguf --- # Uploaded model - **Developed by:** gglabs - **License:** apache-2.0 - **Finetuned from model :** gemmathon/gemma-2b-ko-dev-pbmt192 This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
abhayesian/LLama3_HarmBench_LAT_10
abhayesian
2024-07-02T16:44:15Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-07-02T07:25:28Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Laim/Llama-3-WebAgentMaps-8B-Instruct_v2
Laim
2024-07-02T07:31:03Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-02T07:25:30Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
yongjinchoi/sdxl-webtoon-model_0702
yongjinchoi
2024-07-02T07:25:56Z
0
0
null
[ "region:us" ]
null
2024-07-02T07:25:56Z
Entry not found
skaty5678/temp-SOP-full-deduped-810
skaty5678
2024-07-02T07:26:44Z
0
0
null
[ "region:us" ]
null
2024-07-02T07:26:44Z
Entry not found
wangjin2000/esm2_t6_8M-lora-binding-sites_2024-07-02_09-26-54
wangjin2000
2024-07-03T01:15:55Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:facebook/esm2_t6_8M_UR50D", "license:mit", "region:us" ]
null
2024-07-02T07:26:54Z
--- base_model: facebook/esm2_t6_8M_UR50D library_name: peft license: mit metrics: - accuracy - precision - recall - f1 tags: - generated_from_trainer model-index: - name: esm2_t12_35M-lora-binding-sites_2024-07-02_09-26-54 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # esm2_t6_8M-lora-binding-sites_2024-07-02_09-26-54 This model is a fine-tuned version of [facebook/esm2_t6_8M_UR50D](https://huggingface.co/facebook/esm2_t6_8M_UR50D) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3706 - Accuracy: 0.8880 - Precision: 0.1563 - Recall: 0.7878 - F1: 0.2608 - Auc: 0.8392 - Mcc: 0.3192 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005701568055793089 - train_batch_size: 12 - eval_batch_size: 12 - seed: 8893 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Auc | Mcc | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|:------:| | 0.2569 | 1.0 | 14485 | 0.3706 | 0.8880 | 0.1563 | 0.7878 | 0.2608 | 0.8392 | 0.3192 | ### Framework versions - PEFT 0.11.1 - Transformers 4.40.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
gglabs/Gemma-kiosk-scenario-3-epoch
gglabs
2024-07-02T09:55:33Z
0
0
transformers
[ "transformers", "gguf", "gemma", "text-generation-inference", "unsloth", "en", "base_model:gemmathon/gemma-2b-ko-dev-pbmt192", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-07-02T07:27:12Z
--- base_model: gemmathon/gemma-2b-ko-dev-pbmt192 language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - gemma - gguf --- # Uploaded model - **Developed by:** gglabs - **License:** apache-2.0 - **Finetuned from model :** gemmathon/gemma-2b-ko-dev-pbmt192 This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
sloshywings/my_food_model
sloshywings
2024-07-02T07:39:39Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-07-02T07:27:31Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: my_food_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_food_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6229 - Accuracy: 0.908 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7124 | 0.992 | 62 | 2.5371 | 0.807 | | 1.8389 | 2.0 | 125 | 1.8040 | 0.883 | | 1.6124 | 2.976 | 186 | 1.6229 | 0.908 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
nguyenthanhdo/ViMath-PAL-Llama-3-8B-LORA
nguyenthanhdo
2024-07-02T07:28:49Z
0
0
peft
[ "peft", "safetensors", "llama", "generated_from_trainer", "base_model:NousResearch/Meta-Llama-3-8B-Instruct", "license:other", "region:us" ]
null
2024-07-02T07:27:44Z
--- base_model: NousResearch/Meta-Llama-3-8B-Instruct library_name: peft license: other tags: - generated_from_trainer model-index: - name: workspace/axolotl/vinh/NousResearch_Meta-Llama-3-8B-Instruct-lora-2024-07-01-14-28-39 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml base_model: NousResearch/Meta-Llama-3-8B-Instruct model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: /workspace/axolotl/vinh/PAL/input_output_llama3.json type: input_output dataset_prepared_path: val_set_size: 0.05 eval_sample_packing: false output_dir: /workspace/axolotl/vinh/NousResearch_Meta-Llama-3-8B-Instruct-lora-2024-07-01-14-28-39 sequence_len: 2048 sample_packing: false pad_to_sequence_len: false adapter: lora lora_model_dir: lora_r: 64 lora_alpha: 128 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 128 micro_batch_size: 1 num_epochs: 3 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 2e-4 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 10 eval_table_size: eval_max_new_tokens: 512 saves_per_epoch: 2 save_total_limit: 20 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ``` </details><br> # workspace/axolotl/vinh/NousResearch_Meta-Llama-3-8B-Instruct-lora-2024-07-01-14-28-39 This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B-Instruct](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0392 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 128 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5339 | 0.0095 | 1 | 0.5036 | | 0.0879 | 0.1043 | 11 | 0.0813 | | 0.0582 | 0.2086 | 22 | 0.0629 | | 0.06 | 0.3129 | 33 | 0.0566 | | 0.0593 | 0.4172 | 44 | 0.0514 | | 0.054 | 0.5214 | 55 | 0.0483 | | 0.0459 | 0.6257 | 66 | 0.0469 | | 0.0397 | 0.7300 | 77 | 0.0460 | | 0.0453 | 0.8343 | 88 | 0.0449 | | 0.04 | 0.9386 | 99 | 0.0429 | | 0.0338 | 1.0429 | 110 | 0.0418 | | 0.0322 | 1.1472 | 121 | 0.0422 | | 0.0275 | 1.2515 | 132 | 0.0416 | | 0.0322 | 1.3558 | 143 | 0.0416 | | 0.0266 | 1.4600 | 154 | 0.0404 | | 0.0249 | 1.5643 | 165 | 0.0397 | | 0.0292 | 1.6686 | 176 | 0.0393 | | 0.031 | 1.7729 | 187 | 0.0385 | | 0.0265 | 1.8772 | 198 | 0.0375 | | 0.0273 | 1.9815 | 209 | 0.0375 | | 0.0175 | 2.0858 | 220 | 0.0377 | | 0.0168 | 2.1901 | 231 | 0.0396 | | 0.0182 | 2.2943 | 242 | 0.0403 | | 0.0201 | 2.3986 | 253 | 0.0397 | | 0.0138 | 2.5029 | 264 | 0.0393 | | 0.0173 | 2.6072 | 275 | 0.0392 | | 0.0186 | 2.7115 | 286 | 0.0392 | | 0.0209 | 2.8158 | 297 | 0.0392 | | 0.0185 | 2.9201 | 308 | 0.0392 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1
EmbeddedLLM/Phi-3-mini-4k-instruct-062024-onnx
EmbeddedLLM
2024-07-02T09:27:28Z
0
0
null
[ "onnx", "ONNX", "DML", "ONNXRuntime", "phi3", "nlp", "conversational", "custom_code", "text-generation", "en", "license:mit", "region:us" ]
text-generation
2024-07-02T07:28:10Z
--- license: mit pipeline_tag: text-generation tags: - ONNX - DML - ONNXRuntime - phi3 - nlp - conversational - custom_code inference: false language: - en --- # EmbeddedLLM/Phi-3-mini-4k-instruct-062024 ONNX ## Model Summary This model is an ONNX-optimized version of [microsoft/Phi-3-mini-4k-instruct (June 2024)](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct), designed to provide accelerated inference on a variety of hardware using ONNX Runtime(CPU and DirectML). DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning, providing GPU acceleration for a wide range of supported hardware and drivers, including AMD, Intel, NVIDIA, and Qualcomm GPUs. ## ONNX Models Here are some of the optimized configurations we have added: - **ONNX model for int4 DirectML:** ONNX model for AMD, Intel, and NVIDIA GPUs on Windows, quantized to int4 using AWQ. ## Usage ### Installation and Setup To use the EmbeddedLLM/Phi-3-mini-4k-instruct-062024 ONNX model on Windows with DirectML, follow these steps: 1. **Create and activate a Conda environment:** ```sh conda create -n onnx python=3.10 conda activate onnx ``` 2. **Install Git LFS:** ```sh winget install -e --id GitHub.GitLFS ``` 3. **Install Hugging Face CLI:** ```sh pip install huggingface-hub[cli] ``` 4. **Download the model:** ```sh huggingface-cli download EmbeddedLLM/Phi-3-mini-4k-instruct-062024-onnx --include="onnx/directml/Phi-3-mini-4k-instruct-062024-int4/*" --local-dir .\Phi-3-mini-4k-instruct-062024-int4 ``` 5. **Install necessary Python packages:** ```sh pip install numpy==1.26.4 pip install onnxruntime-directml pip install --pre onnxruntime-genai-directml==0.3.0 ``` 6. **Install Visual Studio 2015 runtime:** ```sh conda install conda-forge::vs2015_runtime ``` 7. **Download the example script:** ```sh Invoke-WebRequest -Uri "https://raw.githubusercontent.com/microsoft/onnxruntime-genai/main/examples/python/phi3-qa.py" -OutFile "phi3-qa.py" ``` 8. **Run the example script:** ```sh python phi3-qa.py -m .\Phi-3-mini-4k-instruct-062024-int4 ``` ### Hardware Requirements **Minimum Configuration:** - **Windows:** DirectX 12-capable GPU (AMD/Nvidia) - **CPU:** x86_64 / ARM64 **Tested Configurations:** - **GPU:** AMD Ryzen 8000 Series iGPU (DirectML) - **CPU:** AMD Ryzen CPU ## Model Description - **Developed by:** Microsoft - **Model type:** ONNX - **Language(s) (NLP):** Python, C, C++ - **License:** Apache License Version 2.0 - **Model Description:** This model is a conversion of the Phi-3-mini-4k-instruct-062024 for ONNX Runtime inference, optimized for DirectML.
haiefff/cartoon-anime-3
haiefff
2024-07-02T07:55:09Z
0
0
transformers
[ "transformers", "tensorboard", "onnx", "safetensors", "vit", "image-classification", "autotrain", "dataset:haiefff/anime-or-not", "base_model:google/vit-base-patch16-224", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-07-02T07:29:34Z
--- tags: - autotrain - image-classification base_model: google/vit-base-patch16-224 widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace datasets: - haiefff/anime-or-not --- # Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metrics No validation metrics available
sakasaku/SpaceInvadersNoFrameskip
sakasaku
2024-07-02T07:29:42Z
0
0
null
[ "region:us" ]
null
2024-07-02T07:29:42Z
Entry not found
z3n7r4ck3r/filtered_dataset_20240702_093010
z3n7r4ck3r
2024-07-02T07:30:09Z
0
0
null
[ "region:us" ]
null
2024-07-02T07:30:09Z
Entry not found
itay-nakash/model_387dff9370_sweep_classic-totem-1173
itay-nakash
2024-07-02T07:30:36Z
0
0
null
[ "region:us" ]
null
2024-07-02T07:30:36Z
Entry not found
Rohithqwerty/mistral_film
Rohithqwerty
2024-07-02T07:40:44Z
0
0
transformers
[ "transformers", "gguf", "mistral", "text-generation-inference", "unsloth", "en", "base_model:unsloth/mistral-7b-v0.3-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-07-02T07:30:56Z
--- base_model: unsloth/mistral-7b-v0.3-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - gguf --- # Uploaded model - **Developed by:** Rohithqwerty - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-v0.3-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
2utku2/brad
2utku2
2024-07-02T07:31:25Z
0
0
null
[ "region:us" ]
null
2024-07-02T07:31:25Z
Entry not found
FazleHasan191/paligemma_attire_300_896
FazleHasan191
2024-07-02T07:31:55Z
0
0
null
[ "region:us" ]
null
2024-07-02T07:31:55Z
Entry not found
nguyenthanhdo/ViMath-PAL-CodeQwen1.5-7B-LORA
nguyenthanhdo
2024-07-02T07:34:01Z
0
0
peft
[ "peft", "safetensors", "qwen2", "generated_from_trainer", "base_model:Qwen/CodeQwen1.5-7B-Chat", "license:other", "region:us" ]
null
2024-07-02T07:32:54Z
--- base_model: Qwen/CodeQwen1.5-7B-Chat library_name: peft license: other tags: - generated_from_trainer model-index: - name: workspace/axolotl/vinh/Qwen_CodeQwen1.5-7B-Chat-lora-2024-07-01-14-28-29 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml base_model: Qwen/CodeQwen1.5-7B-Chat model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: /workspace/axolotl/vinh/PAL/input_output_qwen.json type: input_output dataset_prepared_path: val_set_size: 0.05 eval_sample_packing: false output_dir: /workspace/axolotl/vinh/Qwen_CodeQwen1.5-7B-Chat-lora-2024-07-01-14-28-29 sequence_len: 2048 sample_packing: false pad_to_sequence_len: false adapter: lora lora_model_dir: lora_r: 64 lora_alpha: 128 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 128 micro_batch_size: 1 num_epochs: 3 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 2e-4 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 10 eval_table_size: eval_max_new_tokens: 512 saves_per_epoch: 2 save_total_limit: 20 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: ``` </details><br> # workspace/axolotl/vinh/Qwen_CodeQwen1.5-7B-Chat-lora-2024-07-01-14-28-29 This model is a fine-tuned version of [Qwen/CodeQwen1.5-7B-Chat](https://huggingface.co/Qwen/CodeQwen1.5-7B-Chat) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0411 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 128 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.3706 | 0.0095 | 1 | 0.3514 | | 0.1022 | 0.1043 | 11 | 0.0935 | | 0.0636 | 0.2086 | 22 | 0.0700 | | 0.0624 | 0.3129 | 33 | 0.0633 | | 0.0638 | 0.4172 | 44 | 0.0579 | | 0.0587 | 0.5214 | 55 | 0.0547 | | 0.0512 | 0.6257 | 66 | 0.0520 | | 0.0505 | 0.7300 | 77 | 0.0496 | | 0.0431 | 0.8343 | 88 | 0.0481 | | 0.0437 | 0.9386 | 99 | 0.0460 | | 0.0346 | 1.0429 | 110 | 0.0450 | | 0.0366 | 1.1472 | 121 | 0.0448 | | 0.0329 | 1.2515 | 132 | 0.0443 | | 0.0385 | 1.3558 | 143 | 0.0437 | | 0.0326 | 1.4600 | 154 | 0.0438 | | 0.0331 | 1.5643 | 165 | 0.0426 | | 0.036 | 1.6686 | 176 | 0.0415 | | 0.0352 | 1.7729 | 187 | 0.0411 | | 0.0267 | 1.8772 | 198 | 0.0405 | | 0.0304 | 1.9815 | 209 | 0.0404 | | 0.0251 | 2.0858 | 220 | 0.0407 | | 0.0197 | 2.1901 | 231 | 0.0423 | | 0.0221 | 2.2943 | 242 | 0.0421 | | 0.0252 | 2.3986 | 253 | 0.0413 | | 0.019 | 2.5029 | 264 | 0.0411 | | 0.0208 | 2.6072 | 275 | 0.0411 | | 0.028 | 2.7115 | 286 | 0.0411 | | 0.0296 | 2.8158 | 297 | 0.0411 | | 0.0224 | 2.9201 | 308 | 0.0411 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1
wanib26/finetunetest
wanib26
2024-07-02T07:34:17Z
0
0
null
[ "arxiv:1910.09700", "region:us" ]
null
2024-07-02T07:33:43Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
itay-nakash/model_387dff9370_sweep_swept-pyramid-1174
itay-nakash
2024-07-02T07:34:24Z
0
0
null
[ "region:us" ]
null
2024-07-02T07:34:24Z
Entry not found
atmatechai/speecht5_tts_dataset_primer_female_1090
atmatechai
2024-07-02T08:37:27Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "endpoints_compatible", "region:us" ]
text-to-audio
2024-07-02T07:34:30Z
Entry not found
FazleHasan191/paligemma_attire_500
FazleHasan191
2024-07-02T11:12:08Z
0
0
null
[ "tensorboard", "safetensors", "region:us" ]
null
2024-07-02T07:34:32Z
Entry not found
manbeast3b/ZZZZZZZZdriver130
manbeast3b
2024-07-02T07:36:52Z
0
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-07-02T07:34:59Z
Entry not found
lewy666/llava-hr-ChartInstruction
lewy666
2024-07-02T17:23:03Z
0
0
transformers
[ "transformers", "pytorch", "llava", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-07-02T07:35:03Z
Entry not found
zavliju/tes_upload
zavliju
2024-07-02T07:37:53Z
0
0
null
[ "license:mit", "region:us" ]
null
2024-07-02T07:35:48Z
--- license: mit ---
ankitvad/tempHF2
ankitvad
2024-07-02T09:17:01Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2024-07-02T07:36:00Z
--- license: apache-2.0 ---
hoangngx/vietnamese-correction-v2
hoangngx
2024-07-02T10:23:52Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-07-02T07:37:48Z
Entry not found
Lemoooon/LexMatcher_8B
Lemoooon
2024-07-02T07:50:55Z
0
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-07-02T07:37:50Z
Entry not found
nguyenthanhdo/ViMath-PAL-Qwen2-7B-LORA
nguyenthanhdo
2024-07-02T07:39:17Z
0
0
peft
[ "peft", "safetensors", "qwen2", "generated_from_trainer", "base_model:Qwen/Qwen2-7B-Instruct", "license:apache-2.0", "region:us" ]
null
2024-07-02T07:38:11Z
--- base_model: Qwen/Qwen2-7B-Instruct library_name: peft license: apache-2.0 tags: - generated_from_trainer model-index: - name: workspace/axolotl/vinh/Qwen_Qwen2-7B-Instruct-lora-2024-07-01-14-29-26 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml base_model: Qwen/Qwen2-7B-Instruct model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: /workspace/axolotl/vinh/PAL/input_output_qwen.json type: input_output dataset_prepared_path: val_set_size: 0.05 eval_sample_packing: false output_dir: /workspace/axolotl/vinh/Qwen_Qwen2-7B-Instruct-lora-2024-07-01-14-29-26 sequence_len: 2048 sample_packing: false pad_to_sequence_len: false adapter: lora lora_model_dir: lora_r: 64 lora_alpha: 128 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 128 micro_batch_size: 1 num_epochs: 3 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 2e-4 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 10 eval_table_size: eval_max_new_tokens: 512 saves_per_epoch: 2 save_total_limit: 20 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: ``` </details><br> # workspace/axolotl/vinh/Qwen_Qwen2-7B-Instruct-lora-2024-07-01-14-29-26 This model is a fine-tuned version of [Qwen/Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 128 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4503 | 0.0095 | 1 | 0.4264 | | 0.0836 | 0.1043 | 11 | 0.0792 | | 0.0532 | 0.2086 | 22 | 0.0566 | | 0.0511 | 0.3129 | 33 | 0.0496 | | 0.0511 | 0.4172 | 44 | 0.0457 | | 0.0475 | 0.5214 | 55 | 0.0436 | | 0.0435 | 0.6257 | 66 | 0.0420 | | 0.0361 | 0.7300 | 77 | 0.0407 | | 0.0406 | 0.8343 | 88 | 0.0391 | | 0.0349 | 0.9386 | 99 | 0.0384 | | 0.0304 | 1.0429 | 110 | 0.0373 | | 0.0305 | 1.1472 | 121 | 0.0374 | | 0.0251 | 1.2515 | 132 | 0.0365 | | 0.0288 | 1.3558 | 143 | 0.0370 | | 0.0251 | 1.4600 | 154 | 0.0366 | | 0.0236 | 1.5643 | 165 | 0.0353 | | 0.0266 | 1.6686 | 176 | 0.0353 | | 0.0281 | 1.7729 | 187 | 0.0348 | | 0.0246 | 1.8772 | 198 | 0.0340 | | 0.0249 | 1.9815 | 209 | 0.0339 | | 0.0169 | 2.0858 | 220 | 0.0349 | | 0.0155 | 2.1901 | 231 | 0.0371 | | 0.0178 | 2.2943 | 242 | 0.0369 | | 0.0194 | 2.3986 | 253 | 0.0361 | | 0.0139 | 2.5029 | 264 | 0.0357 | | 0.0157 | 2.6072 | 275 | 0.0356 | | 0.0197 | 2.7115 | 286 | 0.0357 | | 0.0188 | 2.8158 | 297 | 0.0357 | | 0.0163 | 2.9201 | 308 | 0.0356 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1
quissuiven/donut-ktp-v2-test
quissuiven
2024-07-02T07:52:50Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vision-encoder-decoder", "generated_from_trainer", "dataset:imagefolder", "base_model:naver-clova-ix/donut-base", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-07-02T07:39:23Z
--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-ktp-v2-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-ktp-v2-test This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
triplee/supernatural_dataset_negativeQA_3epo_model
triplee
2024-07-02T07:40:38Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-07-02T07:39:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
z3n7r4ck3r/filtered_dataset_20240702_094001
z3n7r4ck3r
2024-07-02T07:40:00Z
0
0
null
[ "region:us" ]
null
2024-07-02T07:40:00Z
Entry not found