modelId
stringlengths 5
122
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC] | downloads
int64 0
738M
| likes
int64 0
11k
| library_name
stringclasses 245
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 48
values | createdAt
timestamp[us, tz=UTC] | card
stringlengths 1
901k
|
---|---|---|---|---|---|---|---|---|---|
chaanks/DNSMOS | chaanks | 2024-06-29T17:12:09Z | 0 | 0 | null | [
"onnx",
"region:us"
] | null | 2024-06-29T17:11:30Z | Entry not found |
shivs28/whisper-small-mr | shivs28 | 2024-06-29T17:12:26Z | 0 | 0 | null | [
"region:us"
] | null | 2024-06-29T17:12:26Z | Entry not found |
tdooms/TinyStories-6-512-g | tdooms | 2024-06-29T17:13:12Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-06-29T17:12:49Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
imgeorgiev/pwm | imgeorgiev | 2024-07-02T20:36:12Z | 0 | 0 | null | [
"license:mit",
"region:us"
] | null | 2024-06-29T17:13:21Z | ---
license: mit
---
# PWM: Policy Learning with Large World Models
[Ignat Georgiev](https://www.imgeorgiev.com/), [Varun Giridhar](https://www.linkedin.com/in/varun-giridhar-463947146/), [Nicklas Hansen](https://www.nicklashansen.com/), [Animesh Garg](https://animesh.garg.tech/)
[Project website](http://imgeorgiev.com/pwm) [Paper](TODO) [Models & Datasets](https://huggingface.co/imgeorgiev/pwm)
## Overview

Instead of building world models into algorithms, we propose using large-scale multi-task world models as
differentiable simulators for policy learning. When well-regularized, these models enable efficient policy
learning with first-order gradient optimization. This allows PWM to learn to solve 80 tasks in < 10 minutes
each without the need for expensive online planning.
## Structure of repository
```
pwm
βββ dflex
β βββ data - data used for dflex world model pre-training
β βββ pretrained - already trained world models that can be used in dflex experiments
βββ multitask - pre-trained world models for multitask evaluation
βββ pedagogical - pre-trained world models for recreating pedagogical examples
βββ README.md
```
|
iamalexcaspian/GumballWatterson-TAWOG-LoganGrove | iamalexcaspian | 2024-06-29T18:44:23Z | 0 | 0 | null | [
"region:us"
] | null | 2024-06-29T17:15:23Z | Entry not found |
baxtos/bigirnik01-28 | baxtos | 2024-06-29T17:18:06Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-06-29T17:15:25Z | Entry not found |
youssouf128/youssouf | youssouf128 | 2024-06-29T17:23:04Z | 0 | 0 | null | [
"region:us"
] | null | 2024-06-29T17:15:59Z | Entry not found |
PrunaAI/internlm-AlchemistCoder-DS-6.7B-HQQ-2bit-smashed | PrunaAI | 2024-06-29T17:17:23Z | 0 | 0 | transformers | [
"transformers",
"llama",
"text-generation",
"pruna-ai",
"conversational",
"base_model:internlm/AlchemistCoder-DS-6.7B",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | text-generation | 2024-06-29T17:16:06Z | ---
thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
base_model: internlm/AlchemistCoder-DS-6.7B
metrics:
- memory_disk
- memory_inference
- inference_latency
- inference_throughput
- inference_CO2_emissions
- inference_energy_consumption
tags:
- pruna-ai
---
<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with hqq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on HARDWARE_NAME with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo internlm/AlchemistCoder-DS-6.7B installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install hqq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from hqq.engine.hf import HQQModelForCausalLM
from hqq.models.hf.base import AutoHQQHFModel
try:
model = HQQModelForCausalLM.from_quantized("PrunaAI/internlm-AlchemistCoder-DS-6.7B-HQQ-2bit-smashed", device_map='auto')
except:
model = AutoHQQHFModel.from_quantized("PrunaAI/internlm-AlchemistCoder-DS-6.7B-HQQ-2bit-smashed")
tokenizer = AutoTokenizer.from_pretrained("internlm/AlchemistCoder-DS-6.7B")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model internlm/AlchemistCoder-DS-6.7B before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). |
PrunaAI/internlm-AlchemistCoder-DS-6.7B-QUANTO-int2bit-smashed | PrunaAI | 2024-07-01T08:00:34Z | 0 | 0 | transformers | [
"transformers",
"pruna-ai",
"base_model:internlm/AlchemistCoder-DS-6.7B",
"endpoints_compatible",
"region:us"
] | null | 2024-06-29T17:20:56Z | ---
thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
base_model: internlm/AlchemistCoder-DS-6.7B
metrics:
- memory_disk
- memory_inference
- inference_latency
- inference_throughput
- inference_CO2_emissions
- inference_energy_consumption
tags:
- pruna-ai
---
<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with quanto.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on HARDWARE_NAME with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo internlm/AlchemistCoder-DS-6.7B installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install quanto
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
IMPORTS
model = AutoModelForCausalLM.from_pretrained("PrunaAI/internlm-AlchemistCoder-DS-6.7B-QUANTO-int2bit-smashed", trust_remote_code=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained("internlm/AlchemistCoder-DS-6.7B")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model internlm/AlchemistCoder-DS-6.7B before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). |
baxtos/bigirnik03-28 | baxtos | 2024-06-29T17:24:11Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-06-29T17:21:34Z | Entry not found |
PrunaAI/internlm-AlchemistCoder-DS-6.7B-HQQ-4bit-smashed | PrunaAI | 2024-06-29T17:24:21Z | 0 | 0 | transformers | [
"transformers",
"llama",
"text-generation",
"pruna-ai",
"conversational",
"base_model:internlm/AlchemistCoder-DS-6.7B",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | text-generation | 2024-06-29T17:22:19Z | ---
thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
base_model: internlm/AlchemistCoder-DS-6.7B
metrics:
- memory_disk
- memory_inference
- inference_latency
- inference_throughput
- inference_CO2_emissions
- inference_energy_consumption
tags:
- pruna-ai
---
<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with hqq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on HARDWARE_NAME with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo internlm/AlchemistCoder-DS-6.7B installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install hqq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from hqq.engine.hf import HQQModelForCausalLM
from hqq.models.hf.base import AutoHQQHFModel
try:
model = HQQModelForCausalLM.from_quantized("PrunaAI/internlm-AlchemistCoder-DS-6.7B-HQQ-4bit-smashed", device_map='auto')
except:
model = AutoHQQHFModel.from_quantized("PrunaAI/internlm-AlchemistCoder-DS-6.7B-HQQ-4bit-smashed")
tokenizer = AutoTokenizer.from_pretrained("internlm/AlchemistCoder-DS-6.7B")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model internlm/AlchemistCoder-DS-6.7B before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). |
QueryloopAI/Phi-3-mini-128K-instruct-cpo-simpo | QueryloopAI | 2024-06-29T17:26:03Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"phi3",
"feature-extraction",
"custom_code",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | feature-extraction | 2024-06-29T17:22:28Z | ---
license: apache-2.0
---
# Phi-3-mini-128K-instruct with CPO-SimPO
This repository contains the Phi-3-mini-128K-instruct model enhanced with the CPO-SimPO technique. CPO-SimPO combines Contrastive Preference Optimization (CPO) and Simple Preference Optimization (SimPO).
## Introduction
Phi-3-mini-128K-instruct is a model optimized for instruction-based tasks. This approach has demonstrated notable improvements in key benchmarks, pushing the boundaries of AI preference learning.
### What is CPO-SimPO?
CPO-SimPO is a novel technique, which combines elements from CPO and SimPO:
- **Contrastive Preference Optimization (CPO):** Adds a behavior cloning regularizer to ensure the model remains close to the preferred data distribution.
- **Simple Preference Optimization (SimPO):** Incorporates length normalization and target reward margins to prevent the generation of long but low-quality sequences.
### Github
**[CPO-SIMPO](https://github.com/fe1ixxu/CPO_SIMPO)**
## Model Performance
### Base Scores:
- **MMLU:** 68.7
- **HellaSwag:** 80.09
- **GSM8K:** 69.52
- **ARC:** 63.14
- **Winogrande:** 72.85
- **TruthfulQA:** 54.12
### New Scores after CPO-SimPO:
- **MMLU:** 68.79
- **HellaSwag:** 80.78
- **GSM8K:** 78.01
- **ARC:** 62.97
- **Winogrande:** 74.47
- **TruthfulQA:** 56.19
### Key Improvements:
- **Enhanced Model Performance:** Significant score improvements, particularly in GSM8K (up by 8.49 points!) and TruthfulQA (up by 2.07 points).
- **Quality Control:** Improved generation of high-quality sequences through length normalization and reward margins.
- **Balanced Optimization:** The BC regularizer helps maintain the integrity of learned preferences without deviating from the preferred data distribution.
## Usage
### Installation
To use this model, you need to install the `transformers` library from Hugging Face.
```bash
pip install transformers
```
### Inference
Here's an example of how to perform inference with the model:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
torch.random.manual_seed(0)
model = AutoModelForCausalLM.from_pretrained(
"QueryloopAI/Phi-3-mini-128K-instruct-cpo-simpo",
device_map="cuda",
torch_dtype="auto",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained("Syed-Hasan-8503/Phi-3-mini-128K-instruct-cpo-simpo")
messages = [
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
{"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"},
]
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
)
generation_args = {
"max_new_tokens": 500,
"return_full_text": False,
"temperature": 0.0,
"do_sample": False,
}
output = pipe(messages, **generation_args)
print(output[0]['generated_text'])
``` |
PrunaAI/internlm-AlchemistCoder-DS-6.7B-QUANTO-int4bit-smashed | PrunaAI | 2024-07-01T07:59:44Z | 0 | 0 | transformers | [
"transformers",
"pruna-ai",
"base_model:internlm/AlchemistCoder-DS-6.7B",
"endpoints_compatible",
"region:us"
] | null | 2024-06-29T17:22:36Z | ---
thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
base_model: internlm/AlchemistCoder-DS-6.7B
metrics:
- memory_disk
- memory_inference
- inference_latency
- inference_throughput
- inference_CO2_emissions
- inference_energy_consumption
tags:
- pruna-ai
---
<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with quanto.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on HARDWARE_NAME with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo internlm/AlchemistCoder-DS-6.7B installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install quanto
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
IMPORTS
model = AutoModelForCausalLM.from_pretrained("PrunaAI/internlm-AlchemistCoder-DS-6.7B-QUANTO-int4bit-smashed", trust_remote_code=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained("internlm/AlchemistCoder-DS-6.7B")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model internlm/AlchemistCoder-DS-6.7B before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). |
mjfan1999/BlakeShelton2016 | mjfan1999 | 2024-06-29T17:33:15Z | 0 | 0 | null | [
"license:unknown",
"region:us"
] | null | 2024-06-29T17:22:41Z | ---
license: unknown
---
|
random2344/Graphic | random2344 | 2024-06-29T17:24:11Z | 0 | 0 | null | [
"region:us"
] | null | 2024-06-29T17:23:31Z | Entry not found |
mharb/Reinforce-cartpole-v1 | mharb | 2024-06-29T17:23:55Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | 2024-06-29T17:23:44Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-cartpole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
kira192/changkyun | kira192 | 2024-06-29T17:25:00Z | 0 | 0 | null | [
"region:us"
] | null | 2024-06-29T17:24:31Z | Entry not found |
itay-nakash/model_73a455d87c_sweep_divine-firefly-981 | itay-nakash | 2024-06-29T17:26:58Z | 0 | 0 | null | [
"region:us"
] | null | 2024-06-29T17:26:58Z | Entry not found |
baxtos/bigirnik04-28 | baxtos | 2024-06-29T17:30:29Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-06-29T17:27:50Z | Entry not found |
jdmccaffrey/custom_billsum_model | jdmccaffrey | 2024-07-01T11:25:25Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | text2text-generation | 2024-06-29T17:29:02Z | Entry not found |
Malkovitz/Miroslaw_Utta | Malkovitz | 2024-06-29T17:32:45Z | 0 | 0 | null | [
"license:unknown",
"region:us"
] | null | 2024-06-29T17:29:56Z | ---
license: unknown
---
|
thanhduc1180/VistralSummaryAbmusu_Final | thanhduc1180 | 2024-06-29T17:36:12Z | 0 | 0 | peft | [
"peft",
"arxiv:1910.09700",
"base_model:Viet-Mistral/Vistral-7B-Chat",
"region:us"
] | null | 2024-06-29T17:31:31Z | ---
library_name: peft
base_model: Viet-Mistral/Vistral-7B-Chat
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.11.1 |
NoNameFactory/llama-3-8b-it-4bit-ContdPT_2_10 | NoNameFactory | 2024-06-29T17:34:03Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-instruct-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-06-29T17:31:49Z | ---
base_model: unsloth/llama-3-8b-instruct-bnb-4bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
---
# Uploaded model
- **Developed by:** NoNameFactory
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
PrunaAI/lamm-mit-Cephalo-Phi-3-vision-128k-4b-alpha-HQQ-4bit-smashed | PrunaAI | 2024-06-29T17:33:15Z | 0 | 0 | transformers | [
"transformers",
"phi3_v",
"text-generation",
"pruna-ai",
"conversational",
"custom_code",
"base_model:lamm-mit/Cephalo-Phi-3-vision-128k-4b-alpha",
"autotrain_compatible",
"region:us"
] | text-generation | 2024-06-29T17:32:06Z | ---
thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
base_model: lamm-mit/Cephalo-Phi-3-vision-128k-4b-alpha
metrics:
- memory_disk
- memory_inference
- inference_latency
- inference_throughput
- inference_CO2_emissions
- inference_energy_consumption
tags:
- pruna-ai
---
<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with hqq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on HARDWARE_NAME with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo lamm-mit/Cephalo-Phi-3-vision-128k-4b-alpha installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install hqq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from hqq.engine.hf import HQQModelForCausalLM
from hqq.models.hf.base import AutoHQQHFModel
try:
model = HQQModelForCausalLM.from_quantized("PrunaAI/lamm-mit-Cephalo-Phi-3-vision-128k-4b-alpha-HQQ-4bit-smashed", device_map='auto')
except:
model = AutoHQQHFModel.from_quantized("PrunaAI/lamm-mit-Cephalo-Phi-3-vision-128k-4b-alpha-HQQ-4bit-smashed")
tokenizer = AutoTokenizer.from_pretrained("lamm-mit/Cephalo-Phi-3-vision-128k-4b-alpha")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model lamm-mit/Cephalo-Phi-3-vision-128k-4b-alpha before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). |
PrunaAI/lamm-mit-Cephalo-Phi-3-vision-128k-4b-alpha-QUANTO-int4bit-smashed | PrunaAI | 2024-07-01T07:59:30Z | 0 | 0 | transformers | [
"transformers",
"pruna-ai",
"base_model:lamm-mit/Cephalo-Phi-3-vision-128k-4b-alpha",
"endpoints_compatible",
"region:us"
] | null | 2024-06-29T17:32:46Z | ---
thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
base_model: lamm-mit/Cephalo-Phi-3-vision-128k-4b-alpha
metrics:
- memory_disk
- memory_inference
- inference_latency
- inference_throughput
- inference_CO2_emissions
- inference_energy_consumption
tags:
- pruna-ai
---
<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with quanto.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on HARDWARE_NAME with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo lamm-mit/Cephalo-Phi-3-vision-128k-4b-alpha installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install quanto
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
IMPORTS
model = AutoModelForCausalLM.from_pretrained("PrunaAI/lamm-mit-Cephalo-Phi-3-vision-128k-4b-alpha-QUANTO-int4bit-smashed", trust_remote_code=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained("lamm-mit/Cephalo-Phi-3-vision-128k-4b-alpha")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model lamm-mit/Cephalo-Phi-3-vision-128k-4b-alpha before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). |
PrunaAI/lamm-mit-Cephalo-Phi-3-vision-128k-4b-alpha-QUANTO-int8bit-smashed | PrunaAI | 2024-07-01T08:01:08Z | 0 | 0 | transformers | [
"transformers",
"pruna-ai",
"base_model:lamm-mit/Cephalo-Phi-3-vision-128k-4b-alpha",
"endpoints_compatible",
"region:us"
] | null | 2024-06-29T17:32:46Z | ---
thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
base_model: lamm-mit/Cephalo-Phi-3-vision-128k-4b-alpha
metrics:
- memory_disk
- memory_inference
- inference_latency
- inference_throughput
- inference_CO2_emissions
- inference_energy_consumption
tags:
- pruna-ai
---
<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with quanto.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on HARDWARE_NAME with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo lamm-mit/Cephalo-Phi-3-vision-128k-4b-alpha installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install quanto
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
IMPORTS
model = AutoModelForCausalLM.from_pretrained("PrunaAI/lamm-mit-Cephalo-Phi-3-vision-128k-4b-alpha-QUANTO-int8bit-smashed", trust_remote_code=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained("lamm-mit/Cephalo-Phi-3-vision-128k-4b-alpha")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model lamm-mit/Cephalo-Phi-3-vision-128k-4b-alpha before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). |
PrunaAI/lamm-mit-Cephalo-Phi-3-vision-128k-4b-alpha-QUANTO-int2bit-smashed | PrunaAI | 2024-07-01T08:00:02Z | 0 | 0 | transformers | [
"transformers",
"pruna-ai",
"base_model:lamm-mit/Cephalo-Phi-3-vision-128k-4b-alpha",
"endpoints_compatible",
"region:us"
] | null | 2024-06-29T17:32:47Z | ---
thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
base_model: lamm-mit/Cephalo-Phi-3-vision-128k-4b-alpha
metrics:
- memory_disk
- memory_inference
- inference_latency
- inference_throughput
- inference_CO2_emissions
- inference_energy_consumption
tags:
- pruna-ai
---
<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with quanto.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on HARDWARE_NAME with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo lamm-mit/Cephalo-Phi-3-vision-128k-4b-alpha installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install quanto
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
IMPORTS
model = AutoModelForCausalLM.from_pretrained("PrunaAI/lamm-mit-Cephalo-Phi-3-vision-128k-4b-alpha-QUANTO-int2bit-smashed", trust_remote_code=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained("lamm-mit/Cephalo-Phi-3-vision-128k-4b-alpha")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model lamm-mit/Cephalo-Phi-3-vision-128k-4b-alpha before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). |
baxtos/bigirnik05-28 | baxtos | 2024-06-29T17:37:03Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-06-29T17:34:20Z | Entry not found |
kandarp0809/Grid | kandarp0809 | 2024-06-29T17:36:10Z | 0 | 0 | null | [
"region:us"
] | null | 2024-06-29T17:34:40Z | Entry not found |
hadestest999/testersssss | hadestest999 | 2024-06-29T17:35:40Z | 0 | 0 | null | [
"license:cdla-permissive-2.0",
"region:us"
] | null | 2024-06-29T17:34:55Z | ---
license: cdla-permissive-2.0
---
|
yuvrajAI/gemma-2b-medical | yuvrajAI | 2024-06-29T17:36:06Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-06-29T17:35:11Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
AdamKasumovic/llama3-70b-instruct-ids-winogrande-train-s-af-winogrande-high | AdamKasumovic | 2024-06-29T17:53:23Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"conversational",
"en",
"base_model:unsloth/llama-3-70b-Instruct-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-06-29T17:35:42Z | ---
base_model: unsloth/llama-3-70b-Instruct-bnb-4bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
---
# Uploaded model
- **Developed by:** AdamKasumovic
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-70b-Instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
PrunaAI/lamm-mit-Cephalo-Phi-3-vision-128k-4b-alpha-QUANTO-float8bit-smashed | PrunaAI | 2024-07-01T07:58:40Z | 0 | 0 | transformers | [
"transformers",
"pruna-ai",
"base_model:lamm-mit/Cephalo-Phi-3-vision-128k-4b-alpha",
"endpoints_compatible",
"region:us"
] | null | 2024-06-29T17:36:06Z | ---
thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
base_model: lamm-mit/Cephalo-Phi-3-vision-128k-4b-alpha
metrics:
- memory_disk
- memory_inference
- inference_latency
- inference_throughput
- inference_CO2_emissions
- inference_energy_consumption
tags:
- pruna-ai
---
<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with quanto.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on HARDWARE_NAME with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo lamm-mit/Cephalo-Phi-3-vision-128k-4b-alpha installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install quanto
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
IMPORTS
model = AutoModelForCausalLM.from_pretrained("PrunaAI/lamm-mit-Cephalo-Phi-3-vision-128k-4b-alpha-QUANTO-float8bit-smashed", trust_remote_code=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained("lamm-mit/Cephalo-Phi-3-vision-128k-4b-alpha")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model lamm-mit/Cephalo-Phi-3-vision-128k-4b-alpha before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). |
impossibleexchange/waitingonweights | impossibleexchange | 2024-07-02T00:12:51Z | 0 | 0 | null | [
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] | null | 2024-06-29T17:36:13Z | ---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
mgh6/Pair_Fold_CNN | mgh6 | 2024-07-01T17:24:56Z | 0 | 0 | null | [
"tensorboard",
"safetensors",
"region:us"
] | null | 2024-06-29T17:38:23Z | Entry not found |
baxtos/bigirnik06-28 | baxtos | 2024-06-29T17:43:13Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-06-29T17:40:39Z | Entry not found |
Arsalanzabeeb/vehicle-tires-health | Arsalanzabeeb | 2024-06-29T17:46:14Z | 0 | 0 | null | [
"license:mit",
"region:us"
] | null | 2024-06-29T17:40:48Z | ---
license: mit
---
|
youssouf128/ABAYAZID | youssouf128 | 2024-06-29T17:41:47Z | 0 | 0 | null | [
"region:us"
] | null | 2024-06-29T17:41:47Z | Entry not found |
Niggendar/cashmoneyAnime_v10 | Niggendar | 2024-06-29T17:48:27Z | 0 | 0 | diffusers | [
"diffusers",
"safetensors",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionXLPipeline",
"region:us"
] | text-to-image | 2024-06-29T17:42:26Z | ---
library_name: diffusers
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 𧨠diffusers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
LiqunMa/FBI-LLM_7B | LiqunMa | 2024-07-01T08:37:28Z | 0 | 0 | transformers | [
"transformers",
"pytorch",
"llama",
"text-generation",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | text-generation | 2024-06-29T17:45:47Z | ---
license: apache-2.0
---
|
baxtos/bigirnik07-28 | baxtos | 2024-06-29T17:49:38Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-06-29T17:46:55Z | Entry not found |
LiqunMa/FBI-LLM_130M | LiqunMa | 2024-06-30T17:42:41Z | 0 | 0 | transformers | [
"transformers",
"pytorch",
"llama",
"text-generation",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | text-generation | 2024-06-29T17:47:16Z | ---
license: apache-2.0
---
|
QueryloopAI/Llama-3-8B-NOLA | QueryloopAI | 2024-06-29T17:50:52Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | text-generation | 2024-06-29T17:48:08Z | ---
library_name: transformers
license: apache-2.0
---
# Llama-3-8B-NOLA
Llama-3-8B-NOLA is a fine-tuned variant of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on [OpenAssistant/oasst1](https://huggingface.co/datasets/OpenAssistant/oasst1)
for 100 steps only. The goal of this experiment was to try out this new technique NOLA and see the the number of trainable parameters. Due to limited compute, the results of this experiment
might not be satisfactory. **1x A5000** was used for this experiment.
## NOLA (Compressing LoRA using Linear Combination of Random Basis)
NOLA is a novel approach for fine-tuning large models such as LLMs and Vision Transformers. Similar to LoRA, NOLA uses a low-rank decomposition of weight matrices for the fine-tuning step. However, LoRA face two primary limitations:
* The parameter count is lower-bounded by the rank one decomposition
* The extent of reduction is heavily influenced by both the model architecture and the chosen rank.
NOLA brings parameter count felexiblity to LoRA. NOLA achieves this by re-parameterizing the low-rank matrices in LoRA using linear combinations of randomly generated matrices (basis) and optimizing the linear
coefficients only. This approach allows us to decouple the number of trainable parameters from both the choice of rank and the network architecture.
## Evaluation Results
***** train metrics *****
epoch = 0.0907
total_flos = 4091386GF
train_loss = 1.618
train_runtime = 2:02:24.94
train_samples_per_second = 0.109
train_steps_per_second = 0.014
***** eval metrics *****
epoch = 0.0907
eval_loss = 1.5115
eval_runtime = 0:11:33.00
eval_samples_per_second = 0.144
eval_steps_per_second = 0.144
## Usage
```
!pip install -qU transformers accelerate bitsandbytes
from transformers import AutoTokenizer
import transformers
import torch
model = "QueryloopAI/Llama-3-8B-NOLA"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype":torch.bfloat16,"load_in_4bit":True}
)
prompt = '''What is Machine Learning?'''
prompt = f"""{prompt}"""
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
|
AdamKasumovic/llama3-70b-instruct-ids-winogrande-train-s-af-winogrande-med | AdamKasumovic | 2024-06-29T17:48:33Z | 0 | 0 | transformers | [
"transformers",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-70b-Instruct-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-06-29T17:48:33Z | ---
base_model: unsloth/llama-3-70b-Instruct-bnb-4bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
---
# Uploaded model
- **Developed by:** AdamKasumovic
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-70b-Instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
morteza76/seta | morteza76 | 2024-06-29T17:48:53Z | 0 | 0 | null | [
"license:other",
"region:us"
] | null | 2024-06-29T17:48:53Z | ---
license: other
license_name: seta
license_link: LICENSE
---
|
Soorya1998/taxi-v1 | Soorya1998 | 2024-06-29T17:49:40Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | 2024-06-29T17:49:13Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: taxi-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.46 +/- 2.70
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="Soorya1998/taxi-v1", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
habulaj/295100262864 | habulaj | 2024-06-29T17:49:46Z | 0 | 0 | null | [
"region:us"
] | null | 2024-06-29T17:49:35Z | Entry not found |
devilga/dac_16khZ_8kbps | devilga | 2024-06-29T17:50:49Z | 0 | 0 | null | [
"region:us"
] | null | 2024-06-29T17:50:49Z | Entry not found |
AdamKasumovic/llama3-70b-instruct-ids-mmlu-college-medicine-af-mmlu-high | AdamKasumovic | 2024-06-29T18:17:07Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"conversational",
"en",
"base_model:unsloth/llama-3-70b-Instruct-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-06-29T17:51:29Z | ---
base_model: unsloth/llama-3-70b-Instruct-bnb-4bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
---
# Uploaded model
- **Developed by:** AdamKasumovic
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-70b-Instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
baxtos/bigirnik08-28 | baxtos | 2024-06-29T17:56:05Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-06-29T17:53:16Z | Entry not found |
AdamKasumovic/llama3-70b-instruct-ids-mmlu-college-medicine-af-mmlu-med | AdamKasumovic | 2024-06-29T19:07:59Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"conversational",
"en",
"base_model:unsloth/llama-3-70b-Instruct-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-06-29T17:57:50Z | ---
base_model: unsloth/llama-3-70b-Instruct-bnb-4bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
---
# Uploaded model
- **Developed by:** AdamKasumovic
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-70b-Instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
AdamKasumovic/llama3-70b-instruct-ids-winogrande-train-s-af-winogrande-low | AdamKasumovic | 2024-06-29T20:09:29Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"conversational",
"en",
"base_model:unsloth/llama-3-70b-Instruct-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-06-29T17:59:35Z | ---
base_model: unsloth/llama-3-70b-Instruct-bnb-4bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
---
# Uploaded model
- **Developed by:** AdamKasumovic
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-70b-Instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
baxtos/bigirnik09-28 | baxtos | 2024-06-29T18:02:17Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-06-29T17:59:42Z | Entry not found |
Destr/00000.zip | Destr | 2024-06-29T18:02:49Z | 0 | 0 | null | [
"region:us"
] | null | 2024-06-29T18:02:49Z | Entry not found |
baxtos/bigirnik10-28 | baxtos | 2024-06-29T18:08:35Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-06-29T18:05:54Z | Entry not found |
AdamKasumovic/llama3-70b-instruct-ids-mmlu-college-medicine-af-mmlu-low | AdamKasumovic | 2024-06-29T19:13:40Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"conversational",
"en",
"base_model:unsloth/llama-3-70b-Instruct-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-06-29T18:07:22Z | ---
base_model: unsloth/llama-3-70b-Instruct-bnb-4bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
---
# Uploaded model
- **Developed by:** AdamKasumovic
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-70b-Instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
baxtos/bigirnik11-28 | baxtos | 2024-06-29T18:15:04Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-06-29T18:12:28Z | Entry not found |
Nikt271/Kurak | Nikt271 | 2024-06-29T18:21:25Z | 0 | 0 | null | [
"region:us"
] | null | 2024-06-29T18:17:54Z | Entry not found |
quocdat25/A100_trt-llm_engine | quocdat25 | 2024-06-29T18:20:10Z | 0 | 0 | transformers | [
"transformers",
"endpoints_compatible",
"region:us"
] | null | 2024-06-29T18:18:05Z | Entry not found |
baxtos/bigirnik12-28 | baxtos | 2024-06-29T18:21:32Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-06-29T18:18:54Z | Entry not found |
habulaj/7860557029 | habulaj | 2024-06-29T18:20:12Z | 0 | 0 | null | [
"region:us"
] | null | 2024-06-29T18:20:05Z | Entry not found |
random2344/minimal1 | random2344 | 2024-06-29T18:22:26Z | 0 | 0 | null | [
"region:us"
] | null | 2024-06-29T18:21:40Z | Entry not found |
Destr/laion2b_00000 | Destr | 2024-06-29T18:24:50Z | 0 | 0 | null | [
"region:us"
] | null | 2024-06-29T18:24:50Z | Entry not found |
debiao29/Qwen-Qwen1.5-0.5B-1719685507 | debiao29 | 2024-06-29T18:25:11Z | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:Qwen/Qwen1.5-0.5B",
"region:us"
] | null | 2024-06-29T18:25:07Z | ---
base_model: Qwen/Qwen1.5-0.5B
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.11.1 |
baxtos/bigirnik13-28 | baxtos | 2024-06-29T18:28:00Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-06-29T18:25:16Z | Entry not found |
LevonHakobyan/adapter_freezed_base_const_lr_1-e3_batch32 | LevonHakobyan | 2024-06-29T20:06:44Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"wav2vec2-bert",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice_17_0",
"base_model:facebook/w2v-bert-2.0",
"license:mit",
"model-index",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2024-06-29T18:26:44Z | ---
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: adapter_freezed_base_const_lr_1-e3_batch32
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_17_0
type: common_voice_17_0
config: hy-AM
split: test
args: hy-AM
metrics:
- name: Wer
type: wer
value: 0.9351439238829339
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# adapter_freezed_base_const_lr_1-e3_batch32
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_17_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0721
- Wer: 0.9351
- Cer: 0.2622
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|
| 0.7435 | 3.0769 | 500 | 0.8858 | 0.9372 | 0.2669 |
| 0.5367 | 6.1538 | 1000 | 0.8872 | 0.9318 | 0.2544 |
| 0.3519 | 9.2308 | 1500 | 1.0721 | 0.9351 | 0.2622 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
Akirami/phi-3-medium_text2cypher_recommendations | Akirami | 2024-06-29T18:27:07Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"mistral",
"trl",
"en",
"base_model:unsloth/phi-3-medium-4k-instruct-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-06-29T18:26:48Z | ---
base_model: unsloth/phi-3-medium-4k-instruct-bnb-4bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
---
# Uploaded model
- **Developed by:** Akirami
- **License:** apache-2.0
- **Finetuned from model :** unsloth/phi-3-medium-4k-instruct-bnb-4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Frixi/Randy_NotaLoka | Frixi | 2024-06-29T18:35:37Z | 0 | 0 | null | [
"license:openrail",
"region:us"
] | null | 2024-06-29T18:30:08Z | ---
license: openrail
---
|
Destr/small_file_part_aa | Destr | 2024-06-29T18:46:05Z | 0 | 0 | null | [
"region:us"
] | null | 2024-06-29T18:31:18Z | Entry not found |
Destr/small_file_part_ab | Destr | 2024-06-29T18:47:00Z | 0 | 0 | null | [
"region:us"
] | null | 2024-06-29T18:34:49Z | Entry not found |
bradpacito/brapacito | bradpacito | 2024-06-29T18:36:31Z | 0 | 0 | null | [
"license:wtfpl",
"region:us"
] | null | 2024-06-29T18:36:31Z | ---
license: wtfpl
---
|
SpatelECOMM/my_model_on_hf_hub | SpatelECOMM | 2024-06-29T18:36:46Z | 0 | 0 | transformers | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-06-29T18:36:45Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
itay-nakash/model_73a455d87c_sweep_dry-wind-982 | itay-nakash | 2024-06-29T18:38:51Z | 0 | 0 | null | [
"region:us"
] | null | 2024-06-29T18:38:51Z | Entry not found |
CoBaLD/xlm-roberta-base-cobald-parser-ru | CoBaLD | 2024-07-01T15:00:09Z | 0 | 0 | allennlp | [
"allennlp",
"tensorboard",
"token-classification",
"ru",
"region:us"
] | token-classification | 2024-06-29T18:38:54Z | ---
language:
- ru
library_name: allennlp
pipeline_tag: token-classification
---
# XLM-RoBERTa Base CoBaLD parser
This version of parser is based on XLM-R Base encoder. The encoder weights were initialized from `xlm-roberta-base` model.
## Usage
1. Clone https://github.com/CobaldAnnotation/CobaldParser, go to the repo directory and install requirements.
2. Download the `model.tag.gz` file. You can do it manually of via:
```
git clone https://huggingface.co/CoBaLD/xlm-roberta-base-cobald-parser-ru
```
3. Run `predict.sh` script to inference the model against an input conllu file you want to annotate with CoBaLD:
```
./predict.sh PATH_TO_MODEL.tar.gz INPUT.conllu OUTPUT.conllu
```
4. Now see the results in OUTPUT.conllu. |
deadf00d/captain-llama-8b-instruct-2000-mixed | deadf00d | 2024-06-29T18:41:46Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-06-29T18:41:38Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
sara-m98/PRUEBA | sara-m98 | 2024-06-30T15:09:07Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"bert",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | token-classification | 2024-06-29T18:42:44Z | Entry not found |
srinivasan-sridhar28/marian-finetuned-kde4-en-to-fr | srinivasan-sridhar28 | 2024-06-29T20:01:32Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"marian",
"text2text-generation",
"translation",
"generated_from_trainer",
"dataset:kde4",
"base_model:Helsinki-NLP/opus-mt-en-fr",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | translation | 2024-06-29T18:48:46Z | ---
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-en-fr
tags:
- translation
- generated_from_trainer
datasets:
- kde4
model-index:
- name: marian-finetuned-kde4-en-to-fr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# marian-finetuned-kde4-en-to-fr
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
micdoh/2024_JOCN_XLRON | micdoh | 2024-06-29T18:51:12Z | 0 | 0 | null | [
"doi:10.57967/hf/2654",
"license:mit",
"region:us"
] | null | 2024-06-29T18:48:47Z | ---
license: mit
---
|
AdamKasumovic/llama3-70b-instruct-stbt-winogrande-train-s-af-winogrande-high | AdamKasumovic | 2024-06-29T19:10:20Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"conversational",
"en",
"base_model:unsloth/llama-3-70b-Instruct-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-06-29T18:52:07Z | ---
base_model: unsloth/llama-3-70b-Instruct-bnb-4bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
---
# Uploaded model
- **Developed by:** AdamKasumovic
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-70b-Instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
jacobcd52/mats-saes | jacobcd52 | 2024-07-02T14:01:12Z | 0 | 0 | null | [
"license:mit",
"region:us"
] | null | 2024-06-29T18:55:39Z | ---
license: mit
---
|
RITTIHILATTI/gpt2 | RITTIHILATTI | 2024-06-29T18:56:55Z | 0 | 0 | null | [
"region:us"
] | null | 2024-06-29T18:56:55Z | Entry not found |
debiao29/Qwen-Qwen1.5-0.5B-1719687419 | debiao29 | 2024-06-29T18:57:01Z | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:Qwen/Qwen1.5-0.5B",
"region:us"
] | null | 2024-06-29T18:56:59Z | ---
base_model: Qwen/Qwen1.5-0.5B
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.11.1 |
Callyde/Li | Callyde | 2024-06-29T18:59:50Z | 0 | 0 | null | [
"region:us"
] | null | 2024-06-29T18:59:50Z | Entry not found |
ilya94prok/test | ilya94prok | 2024-06-29T19:01:32Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2024-06-29T19:01:32Z | ---
license: apache-2.0
---
|
habulaj/375846341463 | habulaj | 2024-06-29T19:01:57Z | 0 | 0 | null | [
"region:us"
] | null | 2024-06-29T19:01:52Z | Entry not found |
samad321kk/ee | samad321kk | 2024-06-29T19:06:55Z | 0 | 0 | null | [
"license:openrail",
"region:us"
] | null | 2024-06-29T19:02:20Z | ---
license: openrail
---
|
Phoenix91/Phoenix | Phoenix91 | 2024-06-29T19:02:44Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2024-06-29T19:02:44Z | ---
license: apache-2.0
---
|
AdamKasumovic/llama3-70b-instruct-stbt-mmlu-college-medicine-af-mmlu-high | AdamKasumovic | 2024-06-29T20:09:12Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"conversational",
"en",
"base_model:unsloth/llama-3-70b-Instruct-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-06-29T19:02:58Z | ---
base_model: unsloth/llama-3-70b-Instruct-bnb-4bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
---
# Uploaded model
- **Developed by:** AdamKasumovic
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-70b-Instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
habulaj/219802191934 | habulaj | 2024-06-29T19:03:17Z | 0 | 0 | null | [
"region:us"
] | null | 2024-06-29T19:03:15Z | Entry not found |
Kuntima/Reinforce-0 | Kuntima | 2024-06-29T19:03:18Z | 0 | 0 | null | [
"region:us"
] | null | 2024-06-29T19:03:18Z | Entry not found |
Kuntima/Reinforce-v0 | Kuntima | 2024-06-29T19:03:41Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | reinforcement-learning | 2024-06-29T19:03:27Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-v0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
AdamKasumovic/llama3-70b-instruct-stbt-winogrande-train-s-af-winogrande-med | AdamKasumovic | 2024-06-29T19:33:09Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"conversational",
"en",
"base_model:unsloth/llama-3-70b-Instruct-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-06-29T19:03:30Z | ---
base_model: unsloth/llama-3-70b-Instruct-bnb-4bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
---
# Uploaded model
- **Developed by:** AdamKasumovic
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-70b-Instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
AdamKasumovic/llama3-70b-instruct-stbt-winogrande-train-s-af-winogrande-low | AdamKasumovic | 2024-06-29T20:31:48Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"conversational",
"en",
"base_model:unsloth/llama-3-70b-Instruct-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-06-29T19:04:15Z | ---
base_model: unsloth/llama-3-70b-Instruct-bnb-4bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
---
# Uploaded model
- **Developed by:** AdamKasumovic
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-70b-Instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
debiao29/Qwen-Qwen1.5-0.5B-1719687922 | debiao29 | 2024-06-29T19:05:25Z | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:Qwen/Qwen1.5-0.5B",
"region:us"
] | null | 2024-06-29T19:05:22Z | ---
base_model: Qwen/Qwen1.5-0.5B
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.11.1 |
ljlu/fine_tuned_model | ljlu | 2024-06-29T19:05:49Z | 0 | 0 | null | [
"region:us"
] | null | 2024-06-29T19:05:49Z | Entry not found |
Rezapar/khan5 | Rezapar | 2024-06-29T19:06:21Z | 0 | 0 | null | [
"license:openrail",
"region:us"
] | null | 2024-06-29T19:06:20Z | ---
license: openrail
---
|
AdamKasumovic/llama3-70b-instruct-stbt-mmlu-college-medicine-af-mmlu-med | AdamKasumovic | 2024-06-29T20:15:26Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"conversational",
"en",
"base_model:unsloth/llama-3-70b-Instruct-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-06-29T19:07:42Z | ---
base_model: unsloth/llama-3-70b-Instruct-bnb-4bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
---
# Uploaded model
- **Developed by:** AdamKasumovic
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-70b-Instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
prometheus04/tinystarcoder-rlhf-model | prometheus04 | 2024-06-29T19:09:16Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gpt_bigcode",
"text-generation",
"trl",
"reward-trainer",
"generated_from_trainer",
"base_model:bigcode/tiny_starcoder_py",
"license:bigcode-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | text-generation | 2024-06-29T19:08:21Z | ---
license: bigcode-openrail-m
base_model: bigcode/tiny_starcoder_py
tags:
- trl
- reward-trainer
- generated_from_trainer
model-index:
- name: tinystarcoder-rlhf-model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tinystarcoder-rlhf-model
This model is a fine-tuned version of [bigcode/tiny_starcoder_py](https://huggingface.co/bigcode/tiny_starcoder_py) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
Abdelbaki/t5-small-finetuned-xsum | Abdelbaki | 2024-06-29T19:53:34Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"t5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | text2text-generation | 2024-06-29T19:10:16Z | Entry not found |
Al-Hathboor-Bikal-ai-2023/llama3-8b-srtip-v.1.0 | Al-Hathboor-Bikal-ai-2023 | 2024-06-30T03:38:33Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | text-generation | 2024-06-29T19:11:31Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.