modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756113070
Ferdi3425
2025-08-25T09:11:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious deadly otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T09:11:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious deadly otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
swardiantara/ADFLER-xlnet-base-cased
swardiantara
2025-08-25T09:11:24Z
7
0
null
[ "pytorch", "safetensors", "xlnet", "token-classification", "en", "base_model:xlnet/xlnet-base-cased", "base_model:finetune:xlnet/xlnet-base-cased", "license:mit", "region:us" ]
token-classification
2024-11-14T11:46:29Z
--- license: mit language: - en base_model: - xlnet/xlnet-base-cased pipeline_tag: token-classification ---
Josephzzz/act-fold-towel
Josephzzz
2025-08-25T09:11:17Z
0
0
lerobot
[ "lerobot", "safetensors", "act", "robotics", "dataset:Josephzzz/fold_towel", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-08-25T09:01:16Z
--- datasets: Josephzzz/fold_towel library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - act - robotics - lerobot --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756112909
Ferdi3425
2025-08-25T09:08:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious deadly otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T09:08:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious deadly otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
eason668/2b509713-486e-488a-bf91-393179e986f5
eason668
2025-08-25T09:08:18Z
36
0
peft
[ "peft", "safetensors", "qwen2", "text-generation", "axolotl", "base_model:adapter:Qwen/Qwen2.5-1.5B", "lora", "transformers", "conversational", "base_model:Qwen/Qwen2.5-1.5B", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-24T11:40:48Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B tags: - axolotl - base_model:adapter:Qwen/Qwen2.5-1.5B - lora - transformers pipeline_tag: text-generation model-index: - name: 2b509713-486e-488a-bf91-393179e986f5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.13.0.dev0` ```yaml adapter: lora base_model: Qwen/Qwen2.5-1.5B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f480d36acec9bc4e_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_instruction: instruct field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true group_by_length: false hub_model_id: eason668/2b509713-486e-488a-bf91-393179e986f5 learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/f480d36acec9bc4e_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_max_length: 2048 tokenizer_truncation: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.1 wandb_entity: null wandb_mode: online wandb_project: Gradients-On-Demand wandb_run: 2b509713-486e-488a-bf91-393179e986f5 wandb_runid: 2b509713-486e-488a-bf91-393179e986f5 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 2b509713-486e-488a-bf91-393179e986f5 This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7391 - Memory/max Mem Active(gib): 10.49 - Memory/max Mem Allocated(gib): 10.49 - Memory/device Mem Reserved(gib): 12.74 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 16 - total_train_batch_size: 1024 - total_eval_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mem Active(gib) | Mem Allocated(gib) | Mem Reserved(gib) | |:-------------:|:------:|:----:|:---------------:|:---------------:|:------------------:|:-----------------:| | No log | 0 | 0 | 1.1335 | 8.89 | 8.89 | 9.42 | | 0.9481 | 0.0280 | 13 | 0.9827 | 10.49 | 10.49 | 11.72 | | 0.84 | 0.0561 | 26 | 0.7955 | 10.49 | 10.49 | 12.74 | | 0.7109 | 0.0841 | 39 | 0.7662 | 10.49 | 10.49 | 12.74 | | 0.7087 | 0.1121 | 52 | 0.7523 | 10.49 | 10.49 | 12.74 | | 0.7001 | 0.1401 | 65 | 0.7443 | 10.49 | 10.49 | 12.74 | | 0.7474 | 0.1682 | 78 | 0.7404 | 10.49 | 10.49 | 12.74 | | 0.7315 | 0.1962 | 91 | 0.7391 | 10.49 | 10.49 | 12.74 | ### Framework versions - PEFT 0.17.0 - Transformers 4.55.2 - Pytorch 2.7.1+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
koloni/blockassist-bc-deadly_graceful_stingray_1756111238
koloni
2025-08-25T09:08:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T09:08:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
manueldeprada/dola
manueldeprada
2025-08-25T09:08:14Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "custom_generate", "conversational", "arxiv:2309.03883", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-25T09:08:09Z
--- library_name: transformers tags: - custom_generate --- ## Description Implementation of [Decoding by Contrasting Layers (DoLa)](https://huggingface.co/papers/2309.03883), a contrastive decoding strategy for improving factuality and reducing hallucinations in language model outputs. DoLa works by **contrasting the logits** from the final layer with those from earlier layers of the model, amplifying factual knowledge localized in specific layers and suppressing spurious information. This can be useful for: * **Short-answer tasks** (e.g., TruthfulQA) β€” using higher layers (`dola_layers="high"`) * **Long-answer reasoning tasks** (e.g., GSM8K, StrategyQA, FACTOR, VicunaQA) β€” using lower layers (`dola_layers="low"`) DoLa is **not recommended for smaller models** such as GPT-2, as the improvement may be negligible. This implementation matches the `DoLa` functionality present in `transformers<4.53.0`. --- ## Base model * [Qwen/Qwen3-0.6B](https://huggingface.co/Qwen/Qwen3-0.6B) --- ## Model compatibility * Decoder-only transformer models --- ## Additional Arguments * **`dola_layers`** (*str* or *List\[int]*, optional): Which earlier layers to contrast with the final layer. Can be: * `"low"` β€” lower half of layers (recommended for long answers) * `"high"` β€” upper half of layers (recommended for short answers) * List of integer indices (e.g., `[18, 20]`) **Note:** * Layer 0 is the word embedding; layer 1 is the first transformer block. * If the model has tied word embeddings, layer 0 is skipped and counting starts at layer 2. * Typical defaults: | # Layers | `"low"` range | `"high"` range | | -------- | ------------------- | ------------------- | | > 40 | `(0, 20, 2)` | `(N - 20, N, 2)` | | ≀ 40 | `range(0, N//2, 2)` | `range(N//2, N, 2)` | * **`repetition_penalty`** (*float*, optional, defaults to `None`): Helps reduce repetition. A value of `1.2` is recommended. --- ## Output Type changes * The `generate` method output remains the same as default `transformers` generation, but logits are post-processed using the DoLa contrastive scoring before token selection. --- ## Example usage ### Using higher layers (short-answer tasks) ```python # requires `transformers>=4.56.0`, previously, it was part of the library import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-0.6B") model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen3-0.6B", torch_dtype=torch.float16 ).to("cuda") inputs = tokenizer("What is the highest peak in the world?", return_tensors="pt").to("cuda") outputs = model.generate( **inputs, max_new_tokens=50, do_sample=False, custom_generate="transformers-community/dola", trust_remote_code=True, dola_layers="high" ) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) ``` --- ### Contrasting specific layers ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-0.6B") model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen3-0.6B", torch_dtype=torch.float16 ).to("cuda") inputs = tokenizer("What is the highest peak in the world?", return_tensors="pt").to("cuda") outputs = model.generate( **inputs, max_new_tokens=50, do_sample=False, repetition_penalty=1.2, custom_generate="transformers-community/dola", trust_remote_code=True, dola_layers=[18, 20] ) # Only decode the newly generated tokens print(tokenizer.batch_decode(outputs[:, inputs.input_ids.shape[-1]:], skip_special_tokens=True)) ```
quanglequocduy/hipages_sentiment
quanglequocduy
2025-08-25T09:08:09Z
3
0
null
[ "safetensors", "distilbert", "text-classification", "sentiment-analysis", "en", "license:apache-2.0", "region:us" ]
text-classification
2025-08-25T03:30:23Z
--- language: en license: apache-2.0 pipeline_tag: text-classification tags: - text-classification - sentiment-analysis --- # Sentiment Analysis for Hipages Homeowner Reviews This is a fine-tuned DistilBERT model for classifying sentiment as positive or negative. **Model:** `distilbert-base-uncased` **Dataset:** Custom dataset from Hipages
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756112750
Ferdi3425
2025-08-25T09:06:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious deadly otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T09:06:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious deadly otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
andyyy324/blockassist-bc-dappled_fierce_alligator_1756111442
andyyy324
2025-08-25T09:05:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dappled fierce alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T09:05:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dappled fierce alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chainway9/blockassist-bc-untamed_quick_eel_1756111198
chainway9
2025-08-25T09:05:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T09:05:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
eusuf01/blockassist-bc-smooth_humming_butterfly_1756112620
eusuf01
2025-08-25T09:04:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "smooth humming butterfly", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T09:04:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - smooth humming butterfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756112471
Ferdi3425
2025-08-25T09:01:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious deadly otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T09:01:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious deadly otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
acidjp/blockassist-bc-pesty_extinct_prawn_1756108119
acidjp
2025-08-25T09:00:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pesty extinct prawn", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T08:59:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pesty extinct prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
arqwe23/blockassist-bc-gregarious_nasty_prawn_1756111296
arqwe23
2025-08-25T08:58:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gregarious nasty prawn", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T08:58:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gregarious nasty prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
albertuspekerti/whispertiny_fruit25syl_v7_2
albertuspekerti
2025-08-25T08:58:03Z
108
0
null
[ "tensorboard", "safetensors", "whisper", "generated_from_trainer", "base_model:albertuspekerti/whispertiny_fruit25syl_v3_2", "base_model:finetune:albertuspekerti/whispertiny_fruit25syl_v3_2", "license:apache-2.0", "region:us" ]
null
2025-08-12T02:47:49Z
--- license: apache-2.0 base_model: albertuspekerti/whispertiny_fruit25syl_v3_2 tags: - generated_from_trainer metrics: - wer model-index: - name: whispertiny_fruit25syl_v7_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whispertiny_fruit25syl_v7_2 This model is a fine-tuned version of [albertuspekerti/whispertiny_fruit25syl_v3_2](https://huggingface.co/albertuspekerti/whispertiny_fruit25syl_v3_2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0405 - Wer: 2.34 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 900000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:---:|:---:|:---:|:---:|:---:| | 0.0015 | 0.00 | 2000 | 0.1650 | 13.69 | | 0.0023 | 0.00 | 4000 | 0.4859 | 26.23 | | 0.0017 | 0.01 | 6000 | 0.3551 | 23.24 | | 0.0030 | 0.01 | 8000 | 0.1757 | 18.02 | | 0.0015 | 0.01 | 10000 | 0.2069 | 18.25 | | 0.0365 | 1.00 | 12000 | 0.7034 | 41.99 | | 0.0007 | 1.00 | 14000 | 0.2721 | 20.08 | | 0.0012 | 1.01 | 16000 | 0.1604 | 14.07 | | 0.0038 | 1.01 | 18000 | 0.5626 | 28.47 | | 0.0019 | 1.01 | 20000 | 0.2777 | 23.72 | | 0.0031 | 1.01 | 22000 | 0.2175 | 17.92 | | 0.0199 | 2.00 | 24000 | 0.2511 | 17.33 | | 0.0014 | 2.00 | 26000 | 0.1804 | 16.60 | | 0.0007 | 2.01 | 28000 | 0.1997 | 15.62 | | 0.0017 | 2.01 | 30000 | 0.1679 | 13.25 | | 0.0021 | 2.01 | 32000 | 0.6248 | 29.96 | | 0.0020 | 2.01 | 34000 | 0.2805 | 22.55 | | 0.0007 | 3.00 | 36000 | 0.1912 | 15.72 | | 0.0017 | 3.00 | 38000 | 0.6397 | 24.51 | | 0.0024 | 3.01 | 40000 | 0.1851 | 13.44 | | 0.0005 | 3.01 | 42000 | 0.2569 | 21.54 | | 0.0005 | 3.01 | 44000 | 0.5288 | 28.18 | | 0.0050 | 4.00 | 46000 | 0.2538 | 15.05 | | 0.0026 | 4.00 | 48000 | 0.0993 | 10.70 | | 0.0009 | 4.00 | 50000 | 0.5376 | 23.57 | | 0.0010 | 4.01 | 52000 | 0.4009 | 21.67 | | 0.0018 | 4.01 | 54000 | 0.2099 | 14.74 | | 0.0016 | 4.01 | 56000 | 0.1439 | 13.13 | | 0.0107 | 5.00 | 58000 | 0.0643 | 7.68 | | 0.0011 | 5.00 | 60000 | 0.1293 | 11.51 | | 0.0009 | 5.01 | 62000 | 0.0721 | 8.04 | | 0.0008 | 5.01 | 64000 | 0.3456 | 24.58 | | 0.0007 | 5.01 | 66000 | 0.1930 | 16.79 | | 0.0005 | 5.01 | 68000 | 0.1542 | 12.18 | | 0.0009 | 6.00 | 70000 | 0.1657 | 13.00 | | 0.0004 | 6.00 | 72000 | 0.1262 | 11.16 | | 0.0004 | 6.01 | 74000 | 0.2233 | 12.73 | | 0.0010 | 6.01 | 76000 | 0.1117 | 11.79 | | 0.0021 | 6.01 | 78000 | 0.3011 | 24.35 | | 0.0014 | 6.01 | 80000 | 0.1536 | 14.13 | | 0.0010 | 7.00 | 82000 | 0.0863 | 7.93 | | 0.0014 | 7.00 | 84000 | 0.2631 | 16.91 | | 0.0003 | 7.01 | 86000 | 0.1333 | 10.72 | | 0.0004 | 7.01 | 88000 | 0.1723 | 16.66 | | 0.0008 | 7.01 | 90000 | 0.2139 | 19.11 | | 0.0047 | 8.00 | 92000 | 0.0988 | 8.88 | | 0.0003 | 8.00 | 94000 | 0.0784 | 7.12 | | 0.0004 | 8.00 | 96000 | 0.2343 | 17.37 | | 0.0019 | 8.01 | 98000 | 0.2397 | 18.74 | | 0.0010 | 8.01 | 100000 | 0.1677 | 12.29 | | 0.0004 | 8.01 | 102000 | 0.1551 | 14.36 | | 0.0013 | 9.00 | 104000 | 0.1314 | 11.37 | | 0.0003 | 9.00 | 106000 | 0.1554 | 9.61 | | 0.0004 | 9.01 | 108000 | 0.0906 | 9.04 | | 0.0001 | 9.01 | 110000 | 0.6560 | 34.02 | | 0.0009 | 9.01 | 112000 | 0.2301 | 17.58 | | 0.0007 | 9.01 | 114000 | 0.2159 | 14.63 | | 0.0007 | 10.00 | 116000 | 0.1608 | 10.86 | | 0.0005 | 10.00 | 118000 | 0.0831 | 8.62 | | 0.0005 | 10.01 | 120000 | 0.1421 | 9.19 | | 0.0004 | 10.01 | 122000 | 0.1187 | 10.68 | | 0.0003 | 10.01 | 124000 | 0.4213 | 25.16 | | 0.0006 | 10.01 | 126000 | 0.2728 | 16.96 | | 0.0002 | 11.00 | 128000 | 0.0876 | 9.04 | | 0.0008 | 11.00 | 130000 | 0.1947 | 16.94 | | 0.0005 | 11.01 | 132000 | 0.0990 | 8.75 | | 0.0008 | 11.01 | 134000 | 0.1164 | 8.94 | | 0.0004 | 11.01 | 136000 | 0.1203 | 12.85 | | 0.0019 | 12.00 | 138000 | 0.0438 | 4.48 | | 0.0003 | 12.00 | 140000 | 0.1088 | 8.65 | | 0.0004 | 12.00 | 142000 | 0.1215 | 9.92 | | 0.0015 | 12.01 | 144000 | 0.2885 | 21.79 | | 0.0014 | 12.01 | 146000 | 0.1768 | 12.10 | | 0.0004 | 12.01 | 148000 | 0.1216 | 10.13 | | 0.0013 | 13.00 | 150000 | 0.1339 | 10.36 | | 0.0017 | 13.00 | 152000 | 0.1112 | 8.96 | | 0.0001 | 13.01 | 154000 | 0.0948 | 7.98 | | 0.0002 | 13.01 | 156000 | 0.3108 | 20.68 | | 0.0008 | 13.01 | 158000 | 0.1587 | 15.30 | | 0.0015 | 13.01 | 160000 | 0.1346 | 10.93 | | 0.0005 | 14.00 | 162000 | 0.1653 | 13.21 | | 0.0005 | 14.00 | 164000 | 0.1019 | 11.03 | | 0.0006 | 14.01 | 166000 | 0.1058 | 8.35 | | 0.0002 | 14.01 | 168000 | 0.1135 | 10.51 | | 0.0002 | 14.01 | 170000 | 0.2589 | 21.16 | | 0.0010 | 15.00 | 172000 | 0.0872 | 7.39 | | 0.0002 | 15.00 | 174000 | 0.0600 | 6.66 | | 0.0007 | 15.00 | 176000 | 0.4865 | 31.15 | | 0.0011 | 15.01 | 178000 | 0.2016 | 15.32 | | 0.0005 | 15.01 | 180000 | 0.1639 | 10.70 | | 0.0006 | 15.01 | 182000 | 0.1186 | 12.50 | | 0.0006 | 16.00 | 184000 | 0.1166 | 9.92 | | 0.0005 | 16.00 | 186000 | 0.1155 | 7.33 | | 0.0004 | 16.01 | 188000 | 0.0656 | 6.72 | | 0.0008 | 16.01 | 190000 | 0.2959 | 17.06 | | 0.0002 | 16.01 | 192000 | 0.1560 | 12.60 | | 0.0005 | 16.01 | 194000 | 0.2069 | 12.79 | | 0.0015 | 17.00 | 196000 | 0.1045 | 8.83 | | 0.0002 | 17.00 | 198000 | 0.1018 | 8.73 | | 0.0003 | 17.01 | 200000 | 0.1292 | 7.20 | | 0.0009 | 17.01 | 202000 | 0.0931 | 9.25 | | 0.0019 | 17.01 | 204000 | 0.1964 | 17.42 | | 0.0013 | 17.01 | 206000 | 0.0973 | 7.10 | | 0.0007 | 18.00 | 208000 | 0.0941 | 7.79 | | 0.0003 | 18.00 | 210000 | 0.1350 | 11.12 | | 0.0001 | 18.01 | 212000 | 0.1246 | 8.33 | | 0.0002 | 18.01 | 214000 | 0.1008 | 10.11 | | 0.0001 | 18.01 | 216000 | 0.1457 | 12.60 | | 0.0013 | 19.00 | 218000 | 0.0435 | 4.33 | | 0.0002 | 19.00 | 220000 | 0.0605 | 5.19 | | 0.0003 | 19.00 | 222000 | 0.2734 | 18.36 | | 0.0003 | 19.01 | 224000 | 0.2369 | 15.24 | | 0.0001 | 19.01 | 226000 | 0.0959 | 6.91 | | 0.0003 | 19.01 | 228000 | 0.0936 | 7.28 | | 0.0008 | 20.00 | 230000 | 0.0783 | 6.45 | | 0.0002 | 20.00 | 232000 | 0.1215 | 9.19 | | 0.0002 | 20.01 | 234000 | 0.0851 | 8.71 | | 0.0001 | 20.01 | 236000 | 0.3519 | 22.84 | | 0.0003 | 20.01 | 238000 | 0.1444 | 12.20 | | 0.0005 | 20.01 | 240000 | 0.1581 | 9.67 | | 0.0003 | 21.00 | 242000 | 0.1343 | 9.57 | | 0.0003 | 21.00 | 244000 | 0.1086 | 7.72 | | 0.0002 | 21.01 | 246000 | 0.1358 | 7.54 | | 0.0002 | 21.01 | 248000 | 0.0717 | 6.30 | | 0.0004 | 21.01 | 250000 | 0.1298 | 10.74 | | 0.0001 | 21.01 | 252000 | 0.1443 | 9.32 | | 0.0003 | 22.00 | 254000 | 0.0451 | 4.10 | | 0.0002 | 22.00 | 256000 | 0.1284 | 10.82 | | 0.0001 | 22.01 | 258000 | 0.1014 | 7.26 | | 0.0005 | 22.01 | 260000 | 0.1175 | 7.58 | | 0.0002 | 22.01 | 262000 | 0.0875 | 7.64 | | 0.0006 | 23.00 | 264000 | 0.0402 | 3.81 | | 0.0001 | 23.00 | 266000 | 0.0462 | 5.05 | | 0.0002 | 23.00 | 268000 | 0.0650 | 7.98 | | 0.0007 | 23.01 | 270000 | 0.1429 | 12.75 | | 0.0002 | 23.01 | 272000 | 0.0977 | 7.75 | | 0.0001 | 23.01 | 274000 | 0.0982 | 8.52 | | 0.0005 | 24.00 | 276000 | 0.0998 | 7.05 | | 0.0002 | 24.00 | 278000 | 0.1020 | 7.75 | | 0.0001 | 24.01 | 280000 | 0.0735 | 6.64 | | 0.0002 | 24.01 | 282000 | 0.3529 | 19.78 | | 0.0003 | 24.01 | 284000 | 0.1658 | 14.15 | | 0.0001 | 24.01 | 286000 | 0.1560 | 11.45 | | 0.0002 | 25.00 | 288000 | 0.1662 | 10.49 | | 0.0004 | 25.00 | 290000 | 0.1091 | 10.30 | | 0.0001 | 25.01 | 292000 | 0.1403 | 9.94 | | 0.0002 | 25.01 | 294000 | 0.1119 | 8.92 | | 0.0000 | 25.01 | 296000 | 0.3880 | 22.00 | | 0.0002 | 26.00 | 298000 | 0.0605 | 4.67 | | 0.0000 | 26.00 | 300000 | 0.0621 | 4.92 | | 0.0003 | 26.00 | 302000 | 0.2317 | 13.61 | | 0.0002 | 26.01 | 304000 | 0.0863 | 6.93 | | 0.0005 | 26.01 | 306000 | 0.0940 | 6.74 | | 0.0006 | 26.01 | 308000 | 0.0879 | 8.10 | | 0.0001 | 27.00 | 310000 | 0.0515 | 4.14 | | 0.0001 | 27.00 | 312000 | 0.0680 | 4.42 | | 0.0000 | 27.01 | 314000 | 0.0987 | 8.14 | | 0.0005 | 27.01 | 316000 | 0.3038 | 16.45 | | 0.0000 | 27.01 | 318000 | 0.0865 | 6.36 | | 0.0003 | 27.01 | 320000 | 0.1186 | 7.60 | | 0.0004 | 28.00 | 322000 | 0.1314 | 8.14 | | 0.0000 | 28.00 | 324000 | 0.0978 | 6.28 | | 0.0001 | 28.01 | 326000 | 0.1021 | 7.26 | | 0.0007 | 28.01 | 328000 | 0.1285 | 10.45 | | 0.0006 | 28.01 | 330000 | 0.1283 | 10.91 | | 0.0003 | 28.01 | 332000 | 0.1309 | 9.92 | | 0.0002 | 29.00 | 334000 | 0.1114 | 9.09 | | 0.0006 | 29.00 | 336000 | 0.1049 | 9.48 | | 0.0000 | 29.01 | 338000 | 0.0879 | 7.08 | | 0.0001 | 29.01 | 340000 | 0.0644 | 5.57 | | 0.0004 | 29.01 | 342000 | 0.1470 | 10.53 | | 0.0003 | 30.00 | 344000 | 0.0425 | 3.39 | | 0.0000 | 30.00 | 346000 | 0.0358 | 3.22 | | 0.0002 | 30.00 | 348000 | 0.2155 | 13.50 | | 0.0002 | 30.01 | 350000 | 0.1227 | 10.49 | | 0.0001 | 30.01 | 352000 | 0.1400 | 7.77 | | 0.0033 | 30.01 | 354000 | 0.1205 | 10.40 | | 0.0001 | 31.00 | 356000 | 0.0440 | 3.39 | | 0.0002 | 31.00 | 358000 | 0.0825 | 5.44 | | 0.0002 | 31.01 | 360000 | 0.0743 | 7.77 | | 0.0004 | 31.01 | 362000 | 0.2200 | 15.57 | | 0.0002 | 31.01 | 364000 | 0.1102 | 8.39 | | 0.0001 | 31.01 | 366000 | 0.1132 | 7.81 | | 0.0003 | 32.00 | 368000 | 0.1195 | 8.92 | | 0.0001 | 32.00 | 370000 | 0.0605 | 4.67 | | 0.0000 | 32.01 | 372000 | 0.0545 | 4.31 | | 0.0003 | 32.01 | 374000 | 0.1234 | 10.55 | | 0.0001 | 32.01 | 376000 | 0.0810 | 8.04 | | 0.0001 | 32.01 | 378000 | 0.1075 | 7.14 | | 0.0004 | 33.00 | 380000 | 0.0766 | 6.05 | | 0.0005 | 33.00 | 382000 | 0.0983 | 8.42 | | 0.0000 | 33.01 | 384000 | 0.0772 | 5.69 | | 0.0002 | 33.01 | 386000 | 0.0823 | 6.89 | | 0.0004 | 33.01 | 388000 | 0.0938 | 8.33 | | 0.0001 | 34.00 | 390000 | 0.0531 | 3.75 | | 0.0003 | 34.00 | 392000 | 0.0452 | 3.43 | | 0.0004 | 34.00 | 394000 | 0.1294 | 11.22 | | 0.0004 | 34.01 | 396000 | 0.1213 | 10.17 | | 0.0000 | 34.01 | 398000 | 0.1238 | 8.77 | | 0.0004 | 34.01 | 400000 | 0.0922 | 6.09 | | 0.0003 | 35.00 | 402000 | 0.0613 | 4.73 | | 0.0000 | 35.00 | 404000 | 0.0533 | 3.18 | | 0.0001 | 35.01 | 406000 | 0.0726 | 6.26 | | 0.0002 | 35.01 | 408000 | 0.2262 | 13.33 | | 0.0002 | 35.01 | 410000 | 0.0819 | 7.35 | | 0.0000 | 35.01 | 412000 | 0.0978 | 6.85 | | 0.0001 | 36.00 | 414000 | 0.1319 | 8.42 | | 0.0001 | 36.00 | 416000 | 0.0543 | 4.31 | | 0.0002 | 36.01 | 418000 | 0.0757 | 5.57 | | 0.0001 | 36.01 | 420000 | 0.0819 | 7.62 | | 0.0001 | 36.01 | 422000 | 0.1564 | 10.95 | | 0.0001 | 37.00 | 424000 | 0.0912 | 6.49 | | 0.0003 | 37.00 | 426000 | 0.0702 | 5.32 | | 0.0004 | 37.00 | 428000 | 0.1477 | 9.02 | | 0.0000 | 37.01 | 430000 | 0.0772 | 6.18 | | 0.0001 | 37.01 | 432000 | 0.0775 | 6.47 | | 0.0002 | 37.01 | 434000 | 0.0546 | 5.00 | | 0.0000 | 38.00 | 436000 | 0.0444 | 3.27 | | 0.0001 | 38.00 | 438000 | 0.0380 | 2.85 | | 0.0005 | 38.01 | 440000 | 0.1071 | 8.73 | | 0.0003 | 38.01 | 442000 | 0.1291 | 10.03 | | 0.0000 | 38.01 | 444000 | 0.0772 | 6.18 | | 0.0001 | 38.01 | 446000 | 0.0799 | 6.28 | | 0.0001 | 39.00 | 448000 | 0.0480 | 3.56 | | 0.0000 | 57.01 | 658000 | 0.0630 | 3.75 | | 0.0001 | 57.01 | 660000 | 0.0610 | 3.73 | | 0.0000 | 57.01 | 662000 | 0.0430 | 2.72 | | 0.0006 | 57.01 | 664000 | 0.0494 | 2.87 | | 0.0000 | 58.00 | 666000 | 0.0523 | 2.95 | | 0.0003 | 58.00 | 668000 | 0.0455 | 2.78 | | 0.0001 | 58.01 | 670000 | 0.0379 | 2.43 | | 0.0000 | 58.01 | 672000 | 0.0588 | 3.64 | | 0.0000 | 58.01 | 674000 | 0.0365 | 2.34 | | 0.0000 | 58.01 | 676000 | 0.0395 | 2.60 | | 0.0000 | 59.00 | 678000 | 0.0662 | 3.77 | | 0.0000 | 59.00 | 680000 | 0.0376 | 2.34 | | 0.0000 | 59.01 | 682000 | 0.0406 | 2.34 | | 0.0003 | 59.01 | 684000 | 0.0385 | 2.22 | | 0.0001 | 59.01 | 686000 | 0.0551 | 3.18 | | 0.0000 | 60.00 | 688000 | 0.0409 | 2.72 | | 0.0001 | 60.00 | 690000 | 0.0397 | 2.32 | | 0.0001 | 60.00 | 692000 | 0.0471 | 3.31 | | 0.0001 | 60.01 | 694000 | 0.0348 | 2.16 | | 0.0000 | 60.01 | 696000 | 0.0338 | 2.22 | | 0.0000 | 60.01 | 698000 | 0.0358 | 2.30 | | 0.0000 | 61.00 | 700000 | 0.0376 | 2.24 | | 0.0000 | 61.00 | 702000 | 0.0386 | 2.41 | | 0.0000 | 61.01 | 704000 | 0.0429 | 2.60 | | 0.0002 | 61.01 | 706000 | 0.0675 | 3.94 | | 0.0000 | 61.01 | 708000 | 0.0381 | 2.47 | | 0.0000 | 61.01 | 710000 | 0.0419 | 2.72 | | 0.0001 | 62.00 | 712000 | 0.0607 | 3.54 | | 0.0000 | 62.00 | 714000 | 0.0379 | 2.22 | | 0.0000 | 62.01 | 716000 | 0.0412 | 2.60 | | 0.0008 | 62.01 | 718000 | 0.0753 | 4.00 | | 0.0001 | 62.01 | 720000 | 0.0420 | 2.45 | | 0.0000 | 63.00 | 722000 | 0.0385 | 2.30 | | 0.0000 | 63.00 | 724000 | 0.0563 | 2.99 | | 0.0000 | 63.00 | 726000 | 0.0358 | 2.18 | | 0.0000 | 63.01 | 728000 | 0.0337 | 2.14 | | 0.0001 | 63.01 | 730000 | 0.0351 | 2.26 | | 0.0000 | 63.01 | 732000 | 0.0408 | 2.60 | | 0.0000 | 64.00 | 734000 | 0.0339 | 2.05 | | 0.0001 | 64.00 | 736000 | 0.0373 | 2.14 | | 0.0000 | 64.01 | 738000 | 0.0566 | 3.37 | | 0.0000 | 64.01 | 740000 | 0.0374 | 2.41 | | 0.0000 | 64.01 | 742000 | 0.0350 | 2.20 | | 0.0000 | 64.01 | 744000 | 0.0354 | 2.24 | | 0.0000 | 65.00 | 746000 | 0.0341 | 2.16 | | 0.0000 | 65.00 | 748000 | 0.0366 | 2.37 | | 0.0001 | 65.01 | 750000 | 0.0459 | 2.57 | | 0.0001 | 65.01 | 752000 | 0.0494 | 2.76 | | 0.0000 | 65.01 | 754000 | 0.0333 | 1.99 | | 0.0000 | 65.01 | 756000 | 0.0345 | 1.99 | | 0.0000 | 66.00 | 758000 | 0.0401 | 2.32 | | 0.0001 | 66.00 | 760000 | 0.0315 | 1.82 | | 0.0000 | 66.01 | 762000 | 0.0365 | 1.90 | | 0.0000 | 66.01 | 764000 | 0.0446 | 2.55 | | 0.0000 | 66.01 | 766000 | 0.0370 | 2.11 | | 0.0000 | 67.00 | 768000 | 0.0322 | 1.90 | | 0.0000 | 67.00 | 770000 | 0.0394 | 2.18 | | 0.0001 | 67.00 | 772000 | 0.0437 | 2.60 | | 0.0000 | 67.01 | 774000 | 0.0334 | 1.95 | | 0.0000 | 67.01 | 776000 | 0.0363 | 2.14 | | 0.0000 | 67.01 | 778000 | 0.0368 | 2.16 | | 0.0000 | 68.00 | 780000 | 0.0315 | 1.86 | | 0.0000 | 68.00 | 782000 | 0.0409 | 2.28 | | 0.0001 | 68.01 | 784000 | 0.0441 | 2.53 | | 0.0000 | 68.01 | 786000 | 0.0380 | 2.26 | | 0.0000 | 68.01 | 788000 | 0.0384 | 2.20 | | 0.0000 | 68.01 | 790000 | 0.0372 | 2.18 | | 0.0000 | 69.00 | 792000 | 0.0374 | 2.26 | | 0.0000 | 69.00 | 794000 | 0.0357 | 2.20 | | 0.0000 | 69.01 | 796000 | 0.0415 | 2.47 | | 0.0000 | 69.01 | 798000 | 0.0439 | 2.60 | | 0.0000 | 69.01 | 800000 | 0.0411 | 2.24 | | 0.0002 | 69.01 | 802000 | 0.0416 | 2.32 | | 0.0000 | 70.00 | 804000 | 0.0395 | 2.30 | | 0.0000 | 70.00 | 806000 | 0.0352 | 2.09 | | 0.0001 | 70.01 | 808000 | 0.0353 | 2.07 | | 0.0000 | 70.01 | 810000 | 0.0387 | 2.03 | | 0.0000 | 70.01 | 812000 | 0.0387 | 2.07 | | 0.0000 | 71.00 | 814000 | 0.0370 | 2.14 | | 0.0000 | 71.00 | 816000 | 0.0400 | 2.22 | | 0.0001 | 71.00 | 818000 | 0.0458 | 2.64 | | 0.0000 | 71.01 | 820000 | 0.0376 | 2.09 | | 0.0000 | 71.01 | 822000 | 0.0386 | 2.18 | | 0.0000 | 71.01 | 824000 | 0.0385 | 2.16 | | 0.0000 | 72.00 | 826000 | 0.0369 | 2.14 | | 0.0000 | 72.00 | 828000 | 0.0405 | 2.18 | | 0.0000 | 72.01 | 830000 | 0.0474 | 2.57 | | 0.0000 | 72.01 | 832000 | 0.0484 | 2.68 | | 0.0000 | 72.01 | 834000 | 0.0445 | 2.53 | | 0.0000 | 72.01 | 836000 | 0.0444 | 2.51 | | 0.0000 | 73.00 | 838000 | 0.0447 | 2.55 | | 0.0000 | 73.00 | 840000 | 0.0411 | 2.45 | | 0.0000 | 73.01 | 842000 | 0.0413 | 2.49 | | 0.0000 | 73.01 | 844000 | 0.0430 | 2.43 | | 0.0000 | 73.01 | 846000 | 0.0409 | 2.37 | | 0.0000 | 74.00 | 848000 | 0.0399 | 2.39 | | 0.0000 | 74.00 | 850000 | 0.0425 | 2.47 | | 0.0000 | 74.00 | 852000 | 0.0390 | 2.24 | | 0.0000 | 74.01 | 854000 | 0.0392 | 2.28 | | 0.0000 | 74.01 | 856000 | 0.0410 | 2.30 | | 0.0000 | 74.01 | 858000 | 0.0409 | 2.30 | | 0.0000 | 75.00 | 860000 | 0.0393 | 2.26 | | 0.0000 | 75.00 | 862000 | 0.0429 | 2.47 | | 0.0000 | 75.01 | 864000 | 0.0426 | 2.43 | | 0.0000 | 75.01 | 866000 | 0.0421 | 2.45 | | 0.0000 | 75.01 | 868000 | 0.0432 | 2.47 | | 0.0000 | 75.01 | 870000 | 0.0425 | 2.45 | | 0.0000 | 76.00 | 872000 | 0.0423 | 2.45 | | 0.0000 | 76.00 | 874000 | 0.0423 | 2.43 | | 0.0000 | 76.01 | 876000 | 0.0423 | 2.45 | | 0.0000 | 76.01 | 878000 | 0.0423 | 2.41 | | 0.0000 | 76.01 | 880000 | 0.0422 | 2.41 | | 0.0000 | 76.01 | 882000 | 0.0422 | 2.37 | | 0.0000 | 77.00 | 884000 | 0.0415 | 2.37 | | 0.0000 | 77.00 | 886000 | 0.0405 | 2.32 | | 0.0000 | 77.01 | 888000 | 0.0405 | 2.32 | | 0.0000 | 77.01 | 890000 | 0.0405 | 2.32 | | 0.0000 | 77.01 | 892000 | 0.0406 | 2.32 | | 0.0000 | 78.00 | 894000 | 0.0406 | 2.34 | | 0.0000 | 78.00 | 896000 | 0.0405 | 2.32 | | 0.0000 | 78.00 | 898000 | 0.0405 | 2.34 | | 0.0000 | 78.01 | 900000 | 0.0405 | 2.34 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
bokanamo/blockassist-bc-huge_lumbering_toad_1756112169
bokanamo
2025-08-25T08:57:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "huge lumbering toad", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T08:57:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - huge lumbering toad --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
eusuf01/blockassist-bc-smooth_humming_butterfly_1756112119
eusuf01
2025-08-25T08:55:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "smooth humming butterfly", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T08:55:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - smooth humming butterfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ChenWu98/numina_qwen_2.5_sft_identical_split_random_weighted_alpha3.0_1
ChenWu98
2025-08-25T08:55:17Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:Qwen/Qwen2.5-1.5B", "base_model:finetune:Qwen/Qwen2.5-1.5B", "endpoints_compatible", "region:us" ]
null
2025-08-25T08:54:03Z
--- base_model: Qwen/Qwen2.5-1.5B library_name: transformers model_name: numina_qwen_2.5_sft_identical_split_random_weighted_alpha3.0_1 tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for numina_qwen_2.5_sft_identical_split_random_weighted_alpha3.0_1 This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/chenwu/huggingface/runs/qohkms55) This model was trained with SFT. ### Framework versions - TRL: 0.19.1 - Transformers: 4.51.1 - Pytorch: 2.7.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Sayemahsjn/blockassist-bc-playful_feline_octopus_1756110902
Sayemahsjn
2025-08-25T08:54:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T08:54:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aleebaster/blockassist-bc-sly_eager_boar_1756110500
aleebaster
2025-08-25T08:54:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sly eager boar", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T08:54:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sly eager boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
zavodman332/blockassist-bc-sharp_aquatic_hare_1756111940
zavodman332
2025-08-25T08:52:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sharp aquatic hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T08:52:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sharp aquatic hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ricodr/blockassist-bc-twitchy_toothy_clam_1756111819
ricodr
2025-08-25T08:51:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "twitchy toothy clam", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T08:51:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - twitchy toothy clam --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
thaymanhinhsamsung24h/tiem-thay-man-hinh-samsung-a73-gia-re
thaymanhinhsamsung24h
2025-08-25T08:51:24Z
0
0
null
[ "region:us" ]
null
2025-08-25T08:50:43Z
<h1><strong>Tiệm Thay M&agrave;n H&igrave;nh Samsung A73 5G Gi&aacute; RαΊ» TPHCM &ndash; Dα»‹ch Vα»₯ Chuy&ecirc;n Nghiệp TαΊ‘i Bệnh Viện Điện ThoαΊ‘i, Laptop 24h</strong></h1> <p>Khi m&agrave;n h&igrave;nh Samsung A73 5G cα»§a bαΊ‘n gαΊ·p sα»± cα»‘, việc t&igrave;m kiαΊΏm mα»™t <a href="https://chamsocdidong.com/thay-man-hinh-samsung-galaxy-a73-ds16940" target="_blank">tiệm thay m&agrave;n h&igrave;nh Samsung A73 5G gi&aacute; rαΊ» TPHCM</a>&nbsp;l&agrave; Δ‘iều cαΊ§n thiαΊΏt. TαΊ‘i <strong>Bệnh Viện Điện ThoαΊ‘i, Laptop 24h</strong>, ch&uacute;ng t&ocirc;i cung cαΊ₯p dα»‹ch vα»₯ thay m&agrave;n h&igrave;nh Samsung ch&iacute;nh h&atilde;ng vα»›i mα»©c gi&aacute; hợp l&yacute;, bαΊ£o Δ‘αΊ£m chαΊ₯t lượng v&agrave; mang lαΊ‘i hiệu quαΊ£ cao. H&atilde;y c&ugrave;ng t&igrave;m hiểu chi tiαΊΏt về dα»‹ch vα»₯ thay m&agrave;n h&igrave;nh Samsung tαΊ‘i Bệnh Viện Điện ThoαΊ‘i, Laptop 24h.</p> <p style="text-align: center;"><img src="https://chamsocdidong.com/upload_images/images/thay-man-hinh-samsung-a73-5g/thay-man-hinh-samsung-a73.jpg" alt="" /></p> <h3>Khi N&agrave;o CαΊ§n Thay M&agrave;n H&igrave;nh Samsung?</h3> <p>M&agrave;n h&igrave;nh l&agrave; mα»™t trong nhα»―ng bα»™ phαΊ­n quan trọng nhαΊ₯t cα»§a chiαΊΏc Δ‘iện thoαΊ‘i Samsung. Khi m&agrave;n h&igrave;nh cα»§a bαΊ‘n bα»‹ hỏng, n&oacute; c&oacute; thể g&acirc;y αΊ£nh hưởng lα»›n Δ‘αΊΏn trαΊ£i nghiệm sα»­ dα»₯ng. DΖ°α»›i Δ‘&acirc;y l&agrave; nhα»―ng dαΊ₯u hiệu cho thαΊ₯y bαΊ‘n cαΊ§n phαΊ£i Δ‘αΊΏn <a href="https://issuu.com/thaymanhinhsamsung24h" target="_blank">cα»­a h&agrave;ng thay m&agrave;n h&igrave;nh Samsung gi&aacute; rαΊ»</a>&nbsp;để thay thαΊΏ m&agrave;n h&igrave;nh:</p> <ol> <li> <p><strong>M&agrave;n h&igrave;nh bα»‹ vα»‘ hoαΊ·c nα»©t</strong>: Đ&acirc;y l&agrave; dαΊ₯u hiệu r&otilde; r&agrave;ng nhαΊ₯t khi bαΊ‘n cαΊ§n phαΊ£i thay m&agrave;n h&igrave;nh. Sau khi Δ‘iện thoαΊ‘i bα»‹ rΖ‘i hoαΊ·c va Δ‘αΊ­p mαΊ‘nh, m&agrave;n h&igrave;nh c&oacute; thể bα»‹ vα»‘ hoαΊ·c nα»©t. NαΊΏu t&igrave;nh trαΊ‘ng n&agrave;y xαΊ£y ra, việc thay m&agrave;n h&igrave;nh mα»›i l&agrave; cαΊ§n thiαΊΏt để bαΊ£o vệ Δ‘iện thoαΊ‘i v&agrave; tiαΊΏp tα»₯c sα»­ dα»₯ng mα»™t c&aacute;ch an to&agrave;n.</p> </li> <li> <p><strong>M&agrave;n h&igrave;nh kh&ocirc;ng hiển thα»‹ hoαΊ·c hiển thα»‹ mờ</strong>: M&agrave;n h&igrave;nh Samsung cα»§a bαΊ‘n kh&ocirc;ng hiển thα»‹ h&igrave;nh αΊ£nh hoαΊ·c c&oacute; h&igrave;nh αΊ£nh mờ, nh&ograve;e l&agrave; dαΊ₯u hiệu r&otilde; rệt cho thαΊ₯y m&agrave;n h&igrave;nh Δ‘&atilde; bα»‹ hΖ° hỏng. Thay m&agrave;n h&igrave;nh sαΊ½ gi&uacute;p bαΊ‘n phα»₯c hα»“i lαΊ‘i chαΊ₯t lượng hiển thα»‹ ban Δ‘αΊ§u.</p> </li> <li> <p><strong>CαΊ£m α»©ng kh&ocirc;ng phαΊ£n hα»“i</strong>: NαΊΏu m&agrave;n h&igrave;nh kh&ocirc;ng nhαΊ­n cαΊ£m α»©ng hoαΊ·c cαΊ£m α»©ng bα»‹ trα»…, Δ‘iều n&agrave;y cho thαΊ₯y m&agrave;n h&igrave;nh cα»§a bαΊ‘n Δ‘&atilde; bα»‹ lα»—i. <strong>Thay m&agrave;n h&igrave;nh Samsung</strong> l&agrave; giαΊ£i ph&aacute;p tα»‘t nhαΊ₯t để khαΊ―c phα»₯c t&igrave;nh trαΊ‘ng n&agrave;y.</p> </li> <li> <p><strong>M&agrave;n h&igrave;nh xuαΊ₯t hiện c&aacute;c vαΊΏt loang mα»±c hoαΊ·c vαΊΏt Δ‘en</strong>: Nhα»―ng vαΊΏt Δ‘en hoαΊ·c vαΊΏt loang mα»±c tr&ecirc;n m&agrave;n h&igrave;nh kh&ocirc;ng chỉ l&agrave;m giαΊ£m t&iacute;nh thαΊ©m mα»Ή m&agrave; c&ograve;n αΊ£nh hưởng Δ‘αΊΏn khαΊ£ nΔƒng sα»­ dα»₯ng. Đ&acirc;y l&agrave; dαΊ₯u hiệu cho thαΊ₯y bαΊ‘n cαΊ§n thay m&agrave;n h&igrave;nh Samsung mα»›i.</p> </li> <li> <p><strong>M&agrave;n h&igrave;nh sai m&agrave;u hoαΊ·c Δ‘α»™ s&aacute;ng kh&ocirc;ng đều</strong>: Khi m&agrave;n h&igrave;nh cα»§a bαΊ‘n hiển thα»‹ m&agrave;u sαΊ―c kh&ocirc;ng ch&iacute;nh x&aacute;c hoαΊ·c Δ‘α»™ s&aacute;ng kh&ocirc;ng Δ‘α»“ng đều, việc thay m&agrave;n h&igrave;nh ch&iacute;nh h&atilde;ng sαΊ½ gi&uacute;p bαΊ‘n c&oacute; mα»™t trαΊ£i nghiệm tα»‘t hΖ‘n.</p> </li> </ol> <p>NαΊΏu bαΊ‘n gαΊ·p phαΊ£i bαΊ₯t kα»³ vαΊ₯n đề n&agrave;o tr&ecirc;n, h&atilde;y Δ‘αΊΏn ngay <strong>cα»­a h&agrave;ng thay m&agrave;n h&igrave;nh Samsung gi&aacute; rαΊ»</strong> tαΊ‘i <strong>Bệnh Viện Điện ThoαΊ‘i, Laptop 24h</strong> để được kiểm tra v&agrave; thay m&agrave;n h&igrave;nh ch&iacute;nh h&atilde;ng.</p> <h3>Địa Chỉ Thay M&agrave;n H&igrave;nh Samsung Ch&iacute;nh H&atilde;ng Gi&aacute; RαΊ»</h3> <p>Khi t&igrave;m kiαΊΏm mα»™t <strong>Δ‘α»‹a chỉ thay m&agrave;n h&igrave;nh Samsung ch&iacute;nh h&atilde;ng gi&aacute; rαΊ»</strong>, <strong>Bệnh Viện Điện ThoαΊ‘i, Laptop 24h</strong> l&agrave; lα»±a chọn Δ‘&aacute;ng tin cαΊ­y. Ch&uacute;ng t&ocirc;i cam kαΊΏt mang Δ‘αΊΏn dα»‹ch vα»₯ thay m&agrave;n h&igrave;nh Samsung vα»›i m&agrave;n h&igrave;nh ch&iacute;nh h&atilde;ng, bαΊ£o Δ‘αΊ£m chαΊ₯t lượng v&agrave; t&iacute;nh nΔƒng vượt trα»™i. DΖ°α»›i Δ‘&acirc;y l&agrave; l&yacute; do v&igrave; sao bαΊ‘n n&ecirc;n chọn ch&uacute;ng t&ocirc;i:</p> <ul> <li> <p><strong>M&agrave;n h&igrave;nh ch&iacute;nh h&atilde;ng Samsung</strong>: Ch&uacute;ng t&ocirc;i chỉ sα»­ dα»₯ng m&agrave;n h&igrave;nh ch&iacute;nh h&atilde;ng tα»« Samsung, gi&uacute;p Δ‘αΊ£m bαΊ£o Δ‘iện thoαΊ‘i cα»§a bαΊ‘n hoαΊ‘t Δ‘α»™ng α»•n Δ‘α»‹nh v&agrave; kh&ocirc;ng gαΊ·p phαΊ£i c&aacute;c sα»± cα»‘ về m&agrave;n h&igrave;nh sau khi thay thαΊΏ.</p> </li> <li> <p><strong>Gi&aacute; cαΊ£ hợp l&yacute; v&agrave; minh bαΊ‘ch</strong>: Dα»‹ch vα»₯ thay m&agrave;n h&igrave;nh Samsung tαΊ‘i <strong>Bệnh Viện Điện ThoαΊ‘i, Laptop 24h</strong> c&oacute; gi&aacute; cαΊ£ hợp l&yacute;, ph&ugrave; hợp vα»›i nhu cαΊ§u cα»§a kh&aacute;ch h&agrave;ng. Ch&uacute;ng t&ocirc;i cam kαΊΏt cung cαΊ₯p mα»©c gi&aacute; minh bαΊ‘ch, kh&ocirc;ng c&oacute; chi ph&iacute; αΊ©n.</p> </li> <li> <p><strong>Thời gian thay m&agrave;n h&igrave;nh nhanh ch&oacute;ng</strong>: Ch&uacute;ng t&ocirc;i hiểu rαΊ±ng bαΊ‘n cαΊ§n sα»­ dα»₯ng Δ‘iện thoαΊ‘i ngay, v&igrave; vαΊ­y qu&aacute; tr&igrave;nh thay m&agrave;n h&igrave;nh sαΊ½ được thα»±c hiện trong thời gian nhanh nhαΊ₯t, thường chỉ trong khoαΊ£ng 1-2 giờ.</p> </li> <li> <p><strong>BαΊ£o h&agrave;nh d&agrave;i hαΊ‘n</strong>: Sau khi thay m&agrave;n h&igrave;nh, bαΊ‘n sαΊ½ nhαΊ­n được chαΊΏ Δ‘α»™ bαΊ£o h&agrave;nh d&agrave;i hαΊ‘n, gi&uacute;p bαΊ‘n y&ecirc;n t&acirc;m sα»­ dα»₯ng Δ‘iện thoαΊ‘i m&agrave; kh&ocirc;ng lo về chαΊ₯t lượng m&agrave;n h&igrave;nh.</p> </li> </ul> <p>Vα»›i dα»‹ch vα»₯ chαΊ₯t lượng v&agrave; gi&aacute; cαΊ£ hợp l&yacute;, <strong>Bệnh Viện Điện ThoαΊ‘i, Laptop 24h</strong> l&agrave; Δ‘α»‹a chỉ tin cαΊ­y để thay m&agrave;n h&igrave;nh Samsung ch&iacute;nh h&atilde;ng tαΊ‘i TPHCM.</p> <p style="text-align: center;"><img src="https://chamsocdidong.com/upload_images/images/thay-man-hinh-samsung-a73-5g/truoc-va-sau-khi-thay-man-hinh-samsung-A73(1).jpg" alt="" /></p> <h3>Thay M&agrave;n H&igrave;nh Samsung C&oacute; αΊ’nh Hưởng G&igrave; Đến M&aacute;y Kh&ocirc;ng?</h3> <p>Mα»™t trong nhα»―ng mα»‘i lo ngαΊ‘i cα»§a nhiều người khi thay m&agrave;n h&igrave;nh Samsung l&agrave; liệu việc thay thαΊΏ c&oacute; αΊ£nh hưởng Δ‘αΊΏn c&aacute;c bα»™ phαΊ­n kh&aacute;c trong m&aacute;y hay kh&ocirc;ng. Tuy nhi&ecirc;n, nαΊΏu bαΊ‘n chọn dα»‹ch vα»₯ thay m&agrave;n h&igrave;nh tαΊ‘i <strong>Bệnh Viện Điện ThoαΊ‘i, Laptop 24h</strong>, bαΊ‘n ho&agrave;n to&agrave;n c&oacute; thể y&ecirc;n t&acirc;m.</p> <p><strong>L&yacute; do tαΊ‘i sao thay m&agrave;n h&igrave;nh kh&ocirc;ng αΊ£nh hưởng Δ‘αΊΏn m&aacute;y</strong>:</p> <ol> <li> <p><strong>Sα»­ dα»₯ng m&agrave;n h&igrave;nh ch&iacute;nh h&atilde;ng</strong>: Ch&uacute;ng t&ocirc;i chỉ sα»­ dα»₯ng m&agrave;n h&igrave;nh ch&iacute;nh h&atilde;ng tα»« Samsung, Δ‘αΊ£m bαΊ£o t&iacute;nh tΖ°Ζ‘ng th&iacute;ch vα»›i c&aacute;c linh kiện kh&aacute;c cα»§a Δ‘iện thoαΊ‘i. Việc thay m&agrave;n h&igrave;nh ch&iacute;nh h&atilde;ng gi&uacute;p m&aacute;y hoαΊ‘t Δ‘α»™ng α»•n Δ‘α»‹nh m&agrave; kh&ocirc;ng g&acirc;y αΊ£nh hưởng Δ‘αΊΏn c&aacute;c bα»™ phαΊ­n kh&aacute;c.</p> </li> <li> <p><strong>Đội ngΕ© kα»Ή thuαΊ­t vi&ecirc;n chuy&ecirc;n nghiệp</strong>: C&aacute;c kα»Ή thuαΊ­t vi&ecirc;n cα»§a <strong>Bệnh Viện Điện ThoαΊ‘i, Laptop 24h</strong> đều c&oacute; kinh nghiệm l&acirc;u nΔƒm trong việc thay thαΊΏ m&agrave;n h&igrave;nh Samsung. Họ sαΊ½ thα»±c hiện qu&aacute; tr&igrave;nh thay m&agrave;n h&igrave;nh mα»™t c&aacute;ch cαΊ©n thαΊ­n v&agrave; ch&iacute;nh x&aacute;c, kh&ocirc;ng l&agrave;m αΊ£nh hưởng Δ‘αΊΏn c&aacute;c linh kiện kh&aacute;c trong Δ‘iện thoαΊ‘i.</p> </li> <li> <p><strong>Kiểm tra kα»Ή lΖ°α»‘ng sau khi thay m&agrave;n h&igrave;nh</strong>: Sau khi thay m&agrave;n h&igrave;nh, ch&uacute;ng t&ocirc;i sαΊ½ kiểm tra to&agrave;n bα»™ c&aacute;c t&iacute;nh nΔƒng cα»§a Δ‘iện thoαΊ‘i nhΖ° cαΊ£m α»©ng, hiển thα»‹, Δ‘α»™ s&aacute;ng để Δ‘αΊ£m bαΊ£o mọi thα»© hoαΊ‘t Δ‘α»™ng b&igrave;nh thường.</p> </li> </ol> <p>Vα»›i nhα»―ng yαΊΏu tα»‘ tr&ecirc;n, bαΊ‘n c&oacute; thể y&ecirc;n t&acirc;m rαΊ±ng việc thay m&agrave;n h&igrave;nh Samsung tαΊ‘i <strong>Bệnh Viện Điện ThoαΊ‘i, Laptop 24h</strong> sαΊ½ kh&ocirc;ng g&acirc;y αΊ£nh hưởng Δ‘αΊΏn m&aacute;y cα»§a bαΊ‘n.</p> <h3>Bệnh Viện Điện ThoαΊ‘i, Laptop 24h &ndash; Sα»­ Dα»₯ng M&agrave;n H&igrave;nh Ch&iacute;nh H&atilde;ng Để Thay Cho Kh&aacute;ch H&agrave;ng</h3> <p><strong>Bệnh Viện Điện ThoαΊ‘i, Laptop 24h</strong> cam kαΊΏt sα»­ dα»₯ng <strong>m&agrave;n h&igrave;nh ch&iacute;nh h&atilde;ng Samsung</strong> trong tαΊ₯t cαΊ£ c&aacute;c dα»‹ch vα»₯ thay m&agrave;n h&igrave;nh. Việc sα»­ dα»₯ng m&agrave;n h&igrave;nh ch&iacute;nh h&atilde;ng gi&uacute;p bαΊ£o vệ Δ‘iện thoαΊ‘i cα»§a bαΊ‘n v&agrave; Δ‘αΊ£m bαΊ£o mọi t&iacute;nh nΔƒng hoαΊ‘t Δ‘α»™ng nhΖ° ban Δ‘αΊ§u.</p> <p><strong>C&aacute;c loαΊ‘i m&agrave;n h&igrave;nh ch&iacute;nh h&atilde;ng m&agrave; ch&uacute;ng t&ocirc;i sα»­ dα»₯ng</strong>:</p> <ul> <li> <p><strong>M&agrave;n h&igrave;nh Super AMOLED</strong>: Đ&acirc;y l&agrave; c&ocirc;ng nghệ m&agrave;n h&igrave;nh cao cαΊ₯p cα»§a Samsung, mang lαΊ‘i m&agrave;u sαΊ―c sα»‘ng Δ‘α»™ng, Δ‘α»™ tΖ°Ζ‘ng phαΊ£n cao v&agrave; tiαΊΏt kiệm nΔƒng lượng. M&agrave;n h&igrave;nh n&agrave;y được sα»­ dα»₯ng trong c&aacute;c d&ograve;ng Δ‘iện thoαΊ‘i cao cαΊ₯p nhΖ° Galaxy S, Note v&agrave; A series.</p> </li> <li> <p><strong>M&agrave;n h&igrave;nh AMOLED ti&ecirc;u chuαΊ©n</strong>: M&agrave;n h&igrave;nh n&agrave;y th&iacute;ch hợp cho c&aacute;c d&ograve;ng Δ‘iện thoαΊ‘i tαΊ§m trung, mang Δ‘αΊΏn chαΊ₯t lượng hiển thα»‹ sαΊ―c n&eacute;t v&agrave; tiαΊΏt kiệm nΔƒng lượng.</p> </li> <li> <p><strong>M&agrave;n h&igrave;nh LCD</strong>: M&agrave;n h&igrave;nh LCD ph&ugrave; hợp vα»›i c&aacute;c d&ograve;ng Δ‘iện thoαΊ‘i gi&aacute; rαΊ», mang lαΊ‘i Δ‘α»™ s&aacute;ng cao v&agrave; hiển thα»‹ r&otilde; r&agrave;ng trong mọi Δ‘iều kiện &aacute;nh s&aacute;ng.</p> </li> </ul> <p>Ch&uacute;ng t&ocirc;i cam kαΊΏt mang Δ‘αΊΏn cho kh&aacute;ch h&agrave;ng mα»™t dα»‹ch vα»₯ thay m&agrave;n h&igrave;nh Samsung chαΊ₯t lượng, gi&uacute;p bαΊ‘n y&ecirc;n t&acirc;m sα»­ dα»₯ng Δ‘iện thoαΊ‘i m&agrave; kh&ocirc;ng lo gαΊ·p phαΊ£i sα»± cα»‘ về m&agrave;n h&igrave;nh.</p> <p style="text-align: center;"><img src="https://chamsocdidong.com/upload_images/images/thay-man-hinh-samsung-a73-5g/cam-ket-voi-khach-hang.jpg" alt="" /></p> <h3>HΖ°α»›ng DαΊ«n Sα»­ Dα»₯ng Dα»‹ch Vα»₯ TαΊ‘i Bệnh Viện Điện ThoαΊ‘i, Laptop 24h</h3> <p>Để sα»­ dα»₯ng dα»‹ch vα»₯ thay m&agrave;n h&igrave;nh tαΊ‘i <strong>Bệnh Viện Điện ThoαΊ‘i, Laptop 24h</strong>, bαΊ‘n c&oacute; thể l&agrave;m theo c&aacute;c bΖ°α»›c sau:</p> <ol> <li> <p><strong>Li&ecirc;n hệ vα»›i ch&uacute;ng t&ocirc;i</strong>: Gọi Δ‘iện Δ‘αΊΏn hotline hoαΊ·c truy cαΊ­p website <strong>chamsocdidong.com</strong> để y&ecirc;u cαΊ§u tΖ° vαΊ₯n hoαΊ·c Δ‘αΊ·t lα»‹ch thay m&agrave;n h&igrave;nh.</p> </li> <li> <p><strong>Mang Δ‘iện thoαΊ‘i Δ‘αΊΏn cα»­a h&agrave;ng</strong>: Đến mα»™t trong c&aacute;c chi nh&aacute;nh cα»§a ch&uacute;ng t&ocirc;i để kα»Ή thuαΊ­t vi&ecirc;n kiểm tra v&agrave; thay m&agrave;n h&igrave;nh cho bαΊ‘n.</p> </li> <li> <p><strong>Thα»±c hiện thay m&agrave;n h&igrave;nh</strong>: Qu&aacute; tr&igrave;nh thay m&agrave;n h&igrave;nh sαΊ½ diα»…n ra nhanh ch&oacute;ng, chỉ trong khoαΊ£ng 1-2 giờ Δ‘α»“ng hα»“.</p> </li> <li> <p><strong>NhαΊ­n bαΊ£o h&agrave;nh</strong>: Sau khi thay m&agrave;n h&igrave;nh, bαΊ‘n sαΊ½ nhαΊ­n được phiαΊΏu bαΊ£o h&agrave;nh ch&iacute;nh h&atilde;ng, gi&uacute;p bαΊ‘n y&ecirc;n t&acirc;m sα»­ dα»₯ng Δ‘iện thoαΊ‘i l&acirc;u d&agrave;i.</p> </li> </ol> <p>H&atilde;y Δ‘αΊΏn <strong>Bệnh Viện Điện ThoαΊ‘i, Laptop 24h</strong> để trαΊ£i nghiệm dα»‹ch vα»₯ thay m&agrave;n h&igrave;nh Samsung ch&iacute;nh h&atilde;ng, nhanh ch&oacute;ng v&agrave; gi&aacute; rαΊ». Ch&uacute;ng t&ocirc;i lu&ocirc;n sαΊ΅n s&agrave;ng phα»₯c vα»₯ bαΊ‘n!</p>
ankitA2003/blockassist-bc-fishy_dappled_elephant_1756111828
ankitA2003
2025-08-25T08:51:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy dappled elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T08:51:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy dappled elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/collage-art-style
Muapi
2025-08-25T08:50:34Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T08:50:02Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Collage Art Style ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: hyacinthcollage ## 🧠 Usage (Python) πŸ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:726166@811998", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/romance-book-cover-ce
Muapi
2025-08-25T08:49:57Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T08:49:42Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Romance Book Cover - CE ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: rmcebkCE style ## 🧠 Usage (Python) πŸ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:747447@835872", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
hoatac/gemma-3n-E2B-Turkish-Medical-QA-Merged
hoatac
2025-08-25T08:48:16Z
0
0
transformers
[ "transformers", "safetensors", "gemma3n", "image-text-to-text", "text-generation-inference", "unsloth", "conversational", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-08-25T08:18:48Z
--- base_model: unsloth/gemma-3n-e2b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3n license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** hoatac - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3n-e2b-it-unsloth-bnb-4bit This gemma3n model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
aceail/qwen2-test_250825
aceail
2025-08-25T08:48:10Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "endpoints_compatible", "region:us" ]
null
2025-08-25T01:10:05Z
--- library_name: transformers model_name: qwen2-test_250825 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for qwen2-test_250825 This model is a fine-tuned version of [None](https://huggingface.co/None). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="aceail/qwen2-test_250825", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/aceail-yonsei-university/huggingface/runs/tin5dlkh) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.0 - Pytorch: 2.7.1 - Datasets: 3.3.2 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
badaoui/HuggingFaceTB-SmolLM2-135M-Instruct-neuron
badaoui
2025-08-25T08:48:03Z
20
0
null
[ "llama", "neuron", "optimized", "aws-neuron", "text-generation", "base_model:HuggingFaceTB/SmolLM2-135M-Instruct", "base_model:finetune:HuggingFaceTB/SmolLM2-135M-Instruct", "region:us" ]
text-generation
2025-08-22T12:36:16Z
--- tags: - neuron - optimized - aws-neuron - text-generation base_model: HuggingFaceTB/SmolLM2-135M-Instruct --- # Neuron-Optimized HuggingFaceTB/SmolLM2-135M-Instruct This repository contains AWS Neuron-optimized files for [HuggingFaceTB/SmolLM2-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-135M-Instruct). ## Model Details - **Base Model**: [HuggingFaceTB/SmolLM2-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-135M-Instruct) - **Task**: text-generation - **Optimization**: AWS Neuron compilation - **Generated by**: [badaoui](https://huggingface.co/badaoui) - **Generated using**: [Optimum Neuron Compiler Space](https://huggingface.co/spaces/optimum/neuron-export) ## Usage This model has been optimized for AWS Neuron devices (Inferentia/Trainium). To use it: ```python from optimum.neuron import NeuronModelForCausalLM model = NeuronModelForCausalLM.from_pretrained("badaoui/HuggingFaceTB-SmolLM2-135M-Instruct-neuron") ``` ## Performance These files are pre-compiled for AWS Neuron devices and should provide improved inference performance compared to the original model when deployed on Inferentia or Trainium instances. ## Original Model For the original model, training details, and more information, please visit: [HuggingFaceTB/SmolLM2-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-135M-Instruct)
Muapi/flux-katsura-masakazu-videogirl-i-s-d.n.a2-artist-style
Muapi
2025-08-25T08:47:34Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T08:47:16Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # [Flux] Katsura Masakazu/ζ‘‚ζ­£ε’Œ γ€ŠVideoGirl》/η”΅ε½±ε°‘ε₯³γ€γ€ŠI"sγ€‹γ€γ€ŠD.N.A2》 ε€©ι‡Žηˆ±/θ‹‡ζœˆδΌŠη»‡/θ‘΅εŠ ζž—- Artist Style ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Ai Amano, Yoshizuki iori ## 🧠 Usage (Python) πŸ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:910169@1018565", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
kabiawu/Llama-3.2-3B-ascii-cats-aj-lora-F32-GGUF
kabiawu
2025-08-25T08:47:11Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "trl", "llama-cpp", "gguf-my-lora", "en", "base_model:kabiawu/Llama-3.2-3B-ascii-cats-aj-lora", "base_model:quantized:kabiawu/Llama-3.2-3B-ascii-cats-aj-lora", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-25T08:47:07Z
--- base_model: kabiawu/Llama-3.2-3B-ascii-cats-aj-lora language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - llama-cpp - gguf-my-lora --- # kabiawu/Llama-3.2-3B-ascii-cats-aj-lora-F32-GGUF This LoRA adapter was converted to GGUF format from [`kabiawu/Llama-3.2-3B-ascii-cats-aj-lora`](https://huggingface.co/kabiawu/Llama-3.2-3B-ascii-cats-aj-lora) via the ggml.ai's [GGUF-my-lora](https://huggingface.co/spaces/ggml-org/gguf-my-lora) space. Refer to the [original adapter repository](https://huggingface.co/kabiawu/Llama-3.2-3B-ascii-cats-aj-lora) for more details. ## Use with llama.cpp ```bash # with cli llama-cli -m base_model.gguf --lora Llama-3.2-3B-ascii-cats-aj-lora-f32.gguf (...other args) # with server llama-server -m base_model.gguf --lora Llama-3.2-3B-ascii-cats-aj-lora-f32.gguf (...other args) ``` To know more about LoRA usage with llama.cpp server, refer to the [llama.cpp server documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/server/README.md).
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756111316
Ferdi3425
2025-08-25T08:42:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious deadly otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T08:42:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious deadly otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
motza0025/blockassist-bc-fierce_webbed_pig_1756109721
motza0025
2025-08-25T08:41:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fierce webbed pig", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T08:41:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fierce webbed pig --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
KritiBanka1204/llama_finetuned_1320
KritiBanka1204
2025-08-25T08:39:39Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:codellama/CodeLlama-7b-Instruct-hf", "lora", "transformers", "text-generation", "conversational", "arxiv:1910.09700", "base_model:codellama/CodeLlama-7b-Instruct-hf", "region:us" ]
text-generation
2025-08-25T08:38:15Z
--- base_model: codellama/CodeLlama-7b-Instruct-hf library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:codellama/CodeLlama-7b-Instruct-hf - lora - transformers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.1
indoempatnol/blockassist-bc-fishy_wary_swan_1756109532
indoempatnol
2025-08-25T08:39:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T08:39:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
taposighorai26/blockassist-bc-pudgy_aquatic_raccoon_1756111063
taposighorai26
2025-08-25T08:38:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pudgy aquatic raccoon", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T08:38:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pudgy aquatic raccoon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1756109502
kojeklollipop
2025-08-25T08:38:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T08:38:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756111073
Ferdi3425
2025-08-25T08:38:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious deadly otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T08:38:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious deadly otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sunrunner79hot1/blockassist-bc-bold_noisy_woodpecker_1756109500
sunrunner79hot1
2025-08-25T08:38:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bold noisy woodpecker", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T08:38:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bold noisy woodpecker --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
EmilRyd/gpt-oss-20b-aquarat-ground-truth-on-policy-3e5-stylized-1000-100
EmilRyd
2025-08-25T08:38:09Z
0
0
transformers
[ "transformers", "safetensors", "gpt_oss", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-25T08:32:57Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1756109392
lisaozill03
2025-08-25T08:36:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T08:36:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
eusuf01/blockassist-bc-smooth_humming_butterfly_1756110951
eusuf01
2025-08-25T08:36:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "smooth humming butterfly", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T08:36:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - smooth humming butterfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756110900
Ferdi3425
2025-08-25T08:35:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious deadly otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T08:35:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious deadly otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1756110834
liukevin666
2025-08-25T08:35:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T08:34:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
seoseo99/qwen2_1.5B_ge_train_summarize_ko
seoseo99
2025-08-25T08:32:44Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-25T08:32:44Z
--- license: apache-2.0 ---
Muapi/air-bubbles_v02
Muapi
2025-08-25T08:30:31Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T08:30:17Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Air Bubbles_v02 ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) πŸ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:592057@1161795", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Medved444/blockassist-bc-bellowing_finicky_manatee_1756109332
Medved444
2025-08-25T08:29:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bellowing finicky manatee", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T08:29:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bellowing finicky manatee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
useless223/qwen3-16bit-lora_model
useless223
2025-08-25T08:28:53Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-25T08:28:41Z
--- base_model: unsloth/qwen3-4b-thinking-2507-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** useless223 - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen3-4b-thinking-2507-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Muapi/carbonite-style-xl-sd1.5-f1d-illu-pony
Muapi
2025-08-25T08:25:03Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T08:13:34Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Carbonite style XL + SD1.5 + F1D + Illu + Pony ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: frozen Carbonite board style, frozen , Carbonite board ## 🧠 Usage (Python) πŸ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:513542@1441498", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1756108540
katanyasekolah
2025-08-25T08:21:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T08:21:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
thefirstgoku/25_second_l29
thefirstgoku
2025-08-25T08:19:27Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-25T08:18:47Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
jamyoun/blockassist-bc-hunting_beaked_camel_1756109814
jamyoun
2025-08-25T08:19:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hunting beaked camel", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T08:19:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hunting beaked camel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AylinNaebzadeh/AVA-Llama-3-V2-formalizer-qlora
AylinNaebzadeh
2025-08-25T08:19:06Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-25T07:58:48Z
--- library_name: transformers tags: [] ---
OpenSQZ/Qwen2.5-3B-classifier
OpenSQZ
2025-08-25T08:18:52Z
2
0
transformers
[ "transformers", "safetensors", "qwen2", "text-classification", "quality-assessment", "text-quality", "regression", "en", "zh", "base_model:Qwen/Qwen2.5-1.5B", "base_model:finetune:Qwen/Qwen2.5-1.5B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2025-08-21T06:53:53Z
--- license: apache-2.0 base_model: - Qwen/Qwen2.5-1.5B - Qwen/Qwen2.5-3B task_categories: - text-classification language: - en - zh tags: - quality-assessment - text-quality - regression pipeline_tag: text-classification library_name: transformers --- # Qwen2.5 Text Quality Classifier Fine-tuned Qwen2.5-1.5B and Qwen2.5-3B models for automated text quality assessment. Predicts quality scores on a 0-1 scale focusing on educational value and mathematical intelligence. ## Model Details - **Base Models**: Qwen2.5-1.5B / Qwen2.5-3B - **Task**: Text Quality Regression - **Languages**: English, Chinese - **Training Data**: [OpenSQZ/Classifiers-Data](https://huggingface.co/datasets/OpenSQZ/Classifiers-Data) - **Loss Function**: MSE Loss ## Performance | Model | Test MSE Loss | |-------|---------------| | Qwen2.5-1.5B | 0.00226 | | Qwen2.5-3B | 0.00209 | ## Quick Start ### Installation ```bash pip install transformers torch ``` ### Usage ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch # Load model and tokenizer model_name = "OpenSQZ/Qwen2.5-1.5B-Classifier" # or Qwen2.5-3B-Quality-Classifier model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Predict quality score text = "Linear algebra is fundamental to understanding vector spaces and matrix operations in mathematics." inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=8192) with torch.no_grad(): outputs = model(**inputs) score = torch.sigmoid(outputs.logits).item() print(f"Quality Score: {score:.3f}") # Output: Quality Score: 0.847 ``` ## Quality Score Interpretation | Score Range | Quality Level | Use Case | |-------------|---------------|----------| | 0.8 - 1.0 | Excellent | Premium training data | | 0.6 - 0.8 | Good | Standard training data | | 0.4 - 0.6 | Average | Conditional use | | 0.0 - 0.4 | Poor | Filter out | ## Model Selection - **1.5B Model**: Faster inference, good for real-time applications - **3B Model**: Higher accuracy, better for batch processing ## Limitations - Optimized for educational and mathematical content - May not generalize well to creative or subjective content - Scores should be used as guidance, not absolute judgments ## Citation ```bibtex @model{qwen25_quality_classifier_2025, title={Qwen2.5 Text Quality Classifier}, author={Chao Li, Yifan Zhang}, year={2025}, publisher={OpenSQZ} } ``` ## License Apache 2.0
aleebaster/blockassist-bc-sly_eager_boar_1756108145
aleebaster
2025-08-25T08:13:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sly eager boar", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T08:13:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sly eager boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
david3621/blockassist-bc-gentle_meek_cat_1756108053
david3621
2025-08-25T08:12:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle meek cat", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T08:02:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle meek cat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
BootesVoid/cmeco6lt90ef4rts8oxxaogj7_cmeo1efdy08j4tlqbr631hcis
BootesVoid
2025-08-25T08:12:36Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-25T08:12:34Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: AL1NA --- # Cmeco6Lt90Ef4Rts8Oxxaogj7_Cmeo1Efdy08J4Tlqbr631Hcis <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `AL1NA` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "AL1NA", "lora_weights": "https://huggingface.co/BootesVoid/cmeco6lt90ef4rts8oxxaogj7_cmeo1efdy08j4tlqbr631hcis/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmeco6lt90ef4rts8oxxaogj7_cmeo1efdy08j4tlqbr631hcis', weight_name='lora.safetensors') image = pipeline('AL1NA').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2500 - Learning rate: 9e-05 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmeco6lt90ef4rts8oxxaogj7_cmeo1efdy08j4tlqbr631hcis/discussions) to add images that show off what you’ve made with this LoRA.
thyYu2024/qwen2-7b-instruct-trl-sft-newnewnew
thyYu2024
2025-08-25T08:11:09Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:Qwen/Qwen2-VL-7B-Instruct", "base_model:finetune:Qwen/Qwen2-VL-7B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-25T07:56:35Z
--- base_model: Qwen/Qwen2-VL-7B-Instruct library_name: transformers model_name: qwen2-7b-instruct-trl-sft-newnewnew tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for qwen2-7b-instruct-trl-sft-newnewnew This model is a fine-tuned version of [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="thyYu2024/qwen2-7b-instruct-trl-sft-newnewnew", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/ruoxue2-stony-brook-university/qwen2vl-sft-mydataset/runs/49vbxpv9) This model was trained with SFT. ### Framework versions - TRL: 0.20.0 - Transformers: 4.55.2 - Pytorch: 2.6.0+cu118 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
511break/KRT_lora_model
511break
2025-08-25T08:09:38Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen3", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-25T08:09:34Z
--- base_model: unsloth/qwen3-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** 511break - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen3-8b-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Muapi/love-booster-for-rendered-romance-contest-flux-il
Muapi
2025-08-25T08:08:54Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T08:08:36Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # LOVE Booster for 🌹Rendered Romance Contest🌹 [FLUX+IL] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: aidmaLOVEboost ## 🧠 Usage (Python) πŸ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1206739@1358978", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/anato-finnstark
Muapi
2025-08-25T08:07:20Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T08:07:08Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Anato Finnstark ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Art by Anato Finnstark ## 🧠 Usage (Python) πŸ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1404194@1587261", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/1960-s-ads-illustration-bob-peak-style
Muapi
2025-08-25T08:06:37Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T08:06:16Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # 1960's Ads Illustration - Bob Peak Style ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: a brushstroke illustration of, in the style of bob-peak ## 🧠 Usage (Python) πŸ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:584357@1122467", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
maxibillion1975/blockassist-bc-iridescent_squeaky_sandpiper_1756107545
maxibillion1975
2025-08-25T08:06:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "iridescent squeaky sandpiper", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T08:05:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - iridescent squeaky sandpiper --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ayasindemir/finetuned_model
ayasindemir
2025-08-25T08:05:47Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gpt_oss", "trl", "en", "base_model:unsloth/gpt-oss-20b-unsloth-bnb-4bit", "base_model:finetune:unsloth/gpt-oss-20b-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-25T08:05:24Z
--- base_model: unsloth/gpt-oss-20b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gpt_oss - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** ayasindemir - **License:** apache-2.0 - **Finetuned from model :** unsloth/gpt-oss-20b-unsloth-bnb-4bit This gpt_oss model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Muapi/80-s-horror-fantasy-flux
Muapi
2025-08-25T08:05:42Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T08:05:19Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # 80's Horror Fantasy - Flux ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) πŸ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:815392@911794", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
klmdr22/blockassist-bc-wild_loud_newt_1756109019
klmdr22
2025-08-25T08:04:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wild loud newt", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T08:04:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wild loud newt --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fnlp/XY_Tokenizer_TTSD_V0_32k
fnlp
2025-08-25T08:04:31Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-25T07:41:34Z
--- license: apache-2.0 ---
usmanalam82/Qwen_0.5b_FineTuned_v1_5epochs
usmanalam82
2025-08-25T08:03:53Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-25T08:03:26Z
--- base_model: unsloth/qwen2.5-0.5b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** usmanalam82 - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-0.5b-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1756107512
helmutsukocok
2025-08-25T08:03:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T08:02:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/the-pulp-session
Muapi
2025-08-25T08:02:35Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T08:02:21Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # The Pulp Session ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: pulp cartoon ## 🧠 Usage (Python) πŸ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:702282@785748", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756108766
Ferdi3425
2025-08-25T07:59:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious deadly otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T07:59:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious deadly otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
klmdr22/blockassist-bc-wild_loud_newt_1756108682
klmdr22
2025-08-25T07:59:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wild loud newt", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T07:58:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wild loud newt --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
joanna302/Qwen3-8B-Base_ar_alpaca_0.66_part_SFT_2e-05
joanna302
2025-08-25T07:58:42Z
26
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "trl", "sft", "unsloth", "conversational", "base_model:unsloth/Qwen3-8B-Base", "base_model:finetune:unsloth/Qwen3-8B-Base", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-17T15:55:26Z
--- base_model: unsloth/Qwen3-8B-Base library_name: transformers model_name: Qwen3-8B-Base_ar_alpaca_0.66_part_SFT_2e-05 tags: - generated_from_trainer - trl - sft - unsloth licence: license --- # Model Card for Qwen3-8B-Base_ar_alpaca_0.66_part_SFT_2e-05 This model is a fine-tuned version of [unsloth/Qwen3-8B-Base](https://huggingface.co/unsloth/Qwen3-8B-Base). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="joanna302/Qwen3-8B-Base_ar_alpaca_0.66_part_SFT_2e-05", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/prism-eval/Qwen3-8B-Base_ar_alpaca_0.66_part_SFT_2e-05/runs/espls84s) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
N4F1U/sentiment-analysis-distilbert
N4F1U
2025-08-25T07:58:33Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-25T07:58:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Muapi/ghost-in-the-shell-xl-f1d-japanese-manga-cyberpunk-style-xl
Muapi
2025-08-25T07:57:53Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T07:57:36Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Ghost in the Shell XL + F1D (Japanese Manga Cyberpunk) style XL ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Ghost in the Shell style ## 🧠 Usage (Python) πŸ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:412507@1135580", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/the-nazg-l-the-lord-of-the-rings-flux1.d-sdxl
Muapi
2025-08-25T07:57:08Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T07:56:52Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # The NazgΓ»l - The Lord of the Rings - Flux1.D & SDXL ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: NazgΓ»l wearing a cloak ## 🧠 Usage (Python) πŸ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:211589@871727", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
m97j/npc_LoRA-fps
m97j
2025-08-25T07:56:52Z
0
0
peft
[ "peft", "safetensors", "lora", "transformers", "korean", "npc", "game-ai", "text-generation", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:adapter:Qwen/Qwen2.5-3B-Instruct", "license:mit", "region:us" ]
text-generation
2025-08-25T07:25:49Z
--- license: mit base_model: Qwen/Qwen2.5-3B-Instruct library_name: peft pipeline_tag: text-generation tags: - lora - transformers - korean - npc - game-ai --- # npc_LoRA **npc_LoRA** is a LoRA adapter built on top of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct), designed to generate emotionally rich, context-aware dialogue for non-player characters (NPCs) in Korean-language game environments. This project is part of a portfolio for industrial service roles in AI and game development, showcasing practical model design, multi-head training, and real-world integration strategies. ## 🧠 Model Architecture - **Base model**: Qwen2.5-3B-Instruct - **Adapter type**: LoRA (via PEFT) - **Language**: Korean - **Task**: Text generation with auxiliary heads - **Heads added**: - `delta_head`: Predicts 2D continuous values for narrative state change - `flag_head`: Predicts 3 or more binary flags for game logic triggers ## πŸ—οΈ Training Setup - **Environment**: Google Colab with A100 GPU - **Quantization**: 4-bit (nf4) via BitsAndBytes - **Batch size**: 2 (gradient accumulation: 8) - **Epochs**: 6 - **Losses**: - Language modeling (CrossEntropy) - Delta prediction (MSE) - Flag prediction (BCE) ## πŸ“œ Prompt Format ```text <SYS> NPC_ID=... TAGS: location=... quest_stage=... relationship=... trust=... npc_mood=... player_reputation=... style=... REQUIRE: ... FORMAT: <RESPONSE>...</RESPONSE> <DELTA ...> <FLAG ...> </SYS> <CTX> player: ... npc: ... </CTX> <PLAYER>... <NPC> ``` ## πŸ” Inference Example ```python from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel import torch.nn as nn BASE_MODEL = "Qwen/Qwen2.5-3B-Instruct" ADAPTER_PATH = "minjae/npc_LoRA" tokenizer = AutoTokenizer.from_pretrained(ADAPTER_PATH, use_fast=True) model = AutoModelForCausalLM.from_pretrained(BASE_MODEL, device_map="auto", trust_remote_code=True) model = PeftModel.from_pretrained(model, ADAPTER_PATH) # Add heads hidden_size = model.config.hidden_size model.delta_head = nn.Linear(hidden_size, 2).to(model.device) model.flag_head = nn.Linear(hidden_size, 3).to(model.device) prompt = "<SYS>...<CTX>...<PLAYER>...<NPC>" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model(**inputs, output_hidden_states=True) gen_ids = model.generate(**inputs, max_new_tokens=100) generated_text = tokenizer.decode(gen_ids[0], skip_special_tokens=True) last_hidden = outputs.hidden_states[-1][:, -1, :] delta = model.delta_head(last_hidden) flag = model.flag_head(last_hidden) print("Response:", generated_text) print("Delta:", delta) print("Flags:", torch.sigmoid(flag)) ``` ## 🧩 Use Cases - NPC dialogue generation in Korean RPGs - Emotionally adaptive storytelling - Game logic trigger prediction (e.g., quest progression, item handoff) ## πŸ“ Repository Structure ``` npc_LoRA/ β”œβ”€β”€ lora-output-jason-mom-head/ # LoRA adapter files β”œβ”€β”€ README.md ``` ## πŸ“Œ Notes - Adapter is optimized for Korean-language prompts and multi-turn dialogue. - Designed to integrate with game engines or AI-driven simulation platforms. - Compatible with Hugging Face Spaces (CPU/GPU) and local inference. ## πŸ“œ License MIT ## πŸ‘€ Author Created by **Minjae** Portfolio: [GitHub Profile](https://github.com/m97j) Contact: [[email protected]]
Muapi/zoot-s-human-photo-realmaxxer-for-flux
Muapi
2025-08-25T07:56:40Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T07:56:30Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Zoot's Human Photo Realmaxxer For Flux ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) πŸ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:790722@884240", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
dadsdD4fs/blockassist-bc-restless_poisonous_orangutan_1756107740
dadsdD4fs
2025-08-25T07:56:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "restless poisonous orangutan", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T07:56:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - restless poisonous orangutan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
zavodman332/blockassist-bc-sharp_aquatic_hare_1756108455
zavodman332
2025-08-25T07:54:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sharp aquatic hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T07:54:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sharp aquatic hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
2hpsatt/blockassist-bc-huge_deft_eagle_1756108401
2hpsatt
2025-08-25T07:54:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "huge deft eagle", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T07:54:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - huge deft eagle --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/marvel-rivals-style-il-noobai-flux-shrekman-styles
Muapi
2025-08-25T07:53:19Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T07:53:08Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Marvel Rivals Style - IL&NoobAI&Flux | Shrekman Styles ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: MarvelRivalsStyle-Flux.V1 ## 🧠 Usage (Python) πŸ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1054387@1183083", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/the-forbidden-book
Muapi
2025-08-25T07:53:03Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T07:52:50Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # The Forbidden Book ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: frbddnbk ## 🧠 Usage (Python) πŸ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:879212@990547", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/vhs-box
Muapi
2025-08-25T07:52:33Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T07:52:12Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # VHS Box ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: vhs_box ## 🧠 Usage (Python) πŸ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:839390@939082", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
liukevin666/blockassist-bc-yawning_striped_cassowary_1756108181
liukevin666
2025-08-25T07:50:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T07:50:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
calegpedia/blockassist-bc-stealthy_slimy_rooster_1756106611
calegpedia
2025-08-25T07:50:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy slimy rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T07:50:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy slimy rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Ferdi3425/blockassist-bc-amphibious_deadly_otter_1756108108
Ferdi3425
2025-08-25T07:49:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious deadly otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T07:48:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious deadly otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tor4k/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-sizable_robust_squirrel
tor4k
2025-08-25T07:48:59Z
141
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am sizable_robust_squirrel", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-21T10:39:56Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am sizable_robust_squirrel --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1756106581
quantumxnode
2025-08-25T07:48:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T07:48:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/ayami-kojima-style-flux
Muapi
2025-08-25T07:48:05Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T07:47:49Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Ayami Kojima Style (Flux) ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Ayami Kojima, Traditional Artwork ## 🧠 Usage (Python) πŸ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:743096@865844", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/flux.1-dev-lora-cinematic
Muapi
2025-08-25T07:47:19Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T07:47:08Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # FLUX.1-dev-LoRA-Cinematic ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: cinematic_1940s ## 🧠 Usage (Python) πŸ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1351798@1527024", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
szhuggingface/ModernBert_Unsloth_Test1
szhuggingface
2025-08-25T07:47:06Z
0
0
transformers
[ "transformers", "safetensors", "modernbert", "text-classification", "text-generation-inference", "unsloth", "trl", "en", "base_model:answerdotai/ModernBERT-base", "base_model:finetune:answerdotai/ModernBERT-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-25T07:46:25Z
--- base_model: answerdotai/ModernBERT-base tags: - text-generation-inference - transformers - unsloth - modernbert - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** szhuggingface - **License:** apache-2.0 - **Finetuned from model :** answerdotai/ModernBERT-base This modernbert model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
indrarg/blockassist-bc-pensive_zealous_hyena_1756107943
indrarg
2025-08-25T07:46:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pensive zealous hyena", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T07:46:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pensive zealous hyena --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Gulshanair/blockassist-bc-sprightly_pawing_turtle_1756107937
Gulshanair
2025-08-25T07:46:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sprightly pawing turtle", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T07:46:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sprightly pawing turtle --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/butts-on-stuff-flux
Muapi
2025-08-25T07:46:44Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T07:46:07Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Butts on Stuff [FLUX] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Cartoon illustration of (OBJECT) shaped like a human buttocks, with exaggerated proportions. ## 🧠 Usage (Python) πŸ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1111516@1248965", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
8septiadi8/blockassist-bc-curious_lightfooted_mouse_1756107853
8septiadi8
2025-08-25T07:46:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "curious lightfooted mouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T07:46:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - curious lightfooted mouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
2hpsatt/blockassist-bc-huge_deft_eagle_1756107805
2hpsatt
2025-08-25T07:44:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "huge deft eagle", "arxiv:2504.07091", "region:us" ]
null
2025-08-25T07:44:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - huge deft eagle --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/niji-zero
Muapi
2025-08-25T07:44:05Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-25T07:43:50Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Niji Zero ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) πŸ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:716145@800850", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
enteruto/checkpoints
enteruto
2025-08-25T07:40:15Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-25T07:27:36Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: checkpoints tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for checkpoints This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="enteruto/checkpoints", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.4 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```