modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
ali2066/finetuned_token_2e-05_all_16_02_2022-15_43_42
ali2066
2022-02-16T14:46:02Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_2e-05_all_16_02_2022-15_43_42 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_all_16_02_2022-15_43_42 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1750 - Precision: 0.3286 - Recall: 0.3334 - F1: 0.3310 - Accuracy: 0.9447 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3355 | 0.0975 | 0.2358 | 0.1380 | 0.8361 | | No log | 2.0 | 76 | 0.3177 | 0.1359 | 0.2709 | 0.1810 | 0.8398 | | No log | 3.0 | 114 | 0.3000 | 0.1542 | 0.3043 | 0.2047 | 0.8471 | | No log | 4.0 | 152 | 0.3033 | 0.1589 | 0.3060 | 0.2091 | 0.8434 | | No log | 5.0 | 190 | 0.3029 | 0.1629 | 0.3110 | 0.2138 | 0.8447 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
marcopost-it/biobert-it
marcopost-it
2022-02-16T14:15:27Z
153
1
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
Hi! This model has been trained on Italian biomedical data. For further information, do not hesitate to send me a message! ;) [email protected] (Marco Postiglione)
ali2066/finetuned_token_2e-05_16_02_2022-14_37_42
ali2066
2022-02-16T13:40:00Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_2e-05_16_02_2022-14_37_42 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_16_02_2022-14_37_42 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1722 - Precision: 0.3378 - Recall: 0.3615 - F1: 0.3492 - Accuracy: 0.9448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 | | No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 | | No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 | | No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 | | No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/finetuned_token_2e-05_16_02_2022-14_25_47
ali2066
2022-02-16T13:28:05Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_2e-05_16_02_2022-14_25_47 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_16_02_2022-14_25_47 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1722 - Precision: 0.3378 - Recall: 0.3615 - F1: 0.3492 - Accuracy: 0.9448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 | | No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 | | No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 | | No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 | | No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/finetuned_token_2e-05_16_02_2022-14_23_23
ali2066
2022-02-16T13:25:42Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_2e-05_16_02_2022-14_23_23 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_16_02_2022-14_23_23 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1722 - Precision: 0.3378 - Recall: 0.3615 - F1: 0.3492 - Accuracy: 0.9448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 | | No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 | | No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 | | No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 | | No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/finetuned_token_2e-05_16_02_2022-14_20_41
ali2066
2022-02-16T13:23:18Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_2e-05_16_02_2022-14_20_41 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_16_02_2022-14_20_41 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1722 - Precision: 0.3378 - Recall: 0.3615 - F1: 0.3492 - Accuracy: 0.9448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3781 | 0.1512 | 0.2671 | 0.1931 | 0.8216 | | No log | 2.0 | 76 | 0.3020 | 0.1748 | 0.2938 | 0.2192 | 0.8551 | | No log | 3.0 | 114 | 0.2723 | 0.1938 | 0.3339 | 0.2452 | 0.8663 | | No log | 4.0 | 152 | 0.2574 | 0.2119 | 0.3506 | 0.2642 | 0.8727 | | No log | 5.0 | 190 | 0.2521 | 0.2121 | 0.3623 | 0.2676 | 0.8756 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/finetuned_token_2e-05_16_02_2022-14_15_41
ali2066
2022-02-16T13:18:14Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_2e-05_16_02_2022-14_15_41 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_16_02_2022-14_15_41 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1746 - Precision: 0.3191 - Recall: 0.3382 - F1: 0.3284 - Accuracy: 0.9439 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.2908 | 0.1104 | 0.1905 | 0.1398 | 0.8731 | | No log | 2.0 | 76 | 0.2253 | 0.1682 | 0.3206 | 0.2206 | 0.9114 | | No log | 3.0 | 114 | 0.2041 | 0.2069 | 0.3444 | 0.2585 | 0.9249 | | No log | 4.0 | 152 | 0.1974 | 0.2417 | 0.3603 | 0.2894 | 0.9269 | | No log | 5.0 | 190 | 0.1958 | 0.2707 | 0.3683 | 0.3120 | 0.9299 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
Zohar/distilgpt2-finetuned-restaurant-reviews
Zohar
2022-02-16T12:53:21Z
8
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-restaurant-reviews results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-restaurant-reviews This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on a subset of the Yelp restaurant reviews dataset. It achieves the following results on the evaluation set: - Loss: 3.4668 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.6331 | 1.0 | 2536 | 3.5280 | | 3.5676 | 2.0 | 5072 | 3.4793 | | 3.5438 | 3.0 | 7608 | 3.4668 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.11.0
joe5campbell/BERT_Tweet_Sentiment_TEST
joe5campbell
2022-02-16T11:03:42Z
7
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: BERT_Tweet_Sentiment_TEST results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_Tweet_Sentiment_TEST This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5541 - Train Accuracy: 0.9375 - Validation Loss: 0.6546 - Validation Accuracy: 1.0 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'clipnorm': 1.0, 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.6902 | 0.625 | 0.6677 | 1.0 | 0 | | 0.5541 | 0.9375 | 0.6546 | 1.0 | 1 | ### Framework versions - Transformers 4.16.2 - TensorFlow 2.8.0 - Tokenizers 0.11.0
chaitanya97/wav2vec2-large-xls-r-300m-turkish-colab
chaitanya97
2022-02-16T10:38:44Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 33.1265 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 21.4247 | 4.0 | 4 | 33.1265 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
joe5campbell/BERT_Tweet_Sentiment_100_2epochs
joe5campbell
2022-02-16T10:34:00Z
7
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: BERT_Tweet_Sentiment_100_2epochs results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_Tweet_Sentiment_100_2epochs This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6279 - Train Accuracy: 0.6824 - Validation Loss: 0.7791 - Validation Accuracy: 0.2667 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'clipnorm': 1.0, 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.7045 | 0.4882 | 0.7236 | 0.2667 | 0 | | 0.6279 | 0.6824 | 0.7791 | 0.2667 | 1 | ### Framework versions - Transformers 4.16.2 - TensorFlow 2.8.0 - Tokenizers 0.11.0
premrawat/en_ner_model
premrawat
2022-02-16T09:23:12Z
6
0
spacy
[ "spacy", "token-classification", "en", "model-index", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - spacy - token-classification language: - en model-index: - name: en_ner_model results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.3624161074 - name: NER Recall type: recall value: 0.384341637 - name: NER F Score type: f_score value: 0.3730569948 --- | Feature | Description | | --- | --- | | **Name** | `en_ner_model` | | **Version** | `0.1.1` | | **spaCy** | `>=3.2.1,<3.3.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (1 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `SKILL` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 37.31 | | `ENTS_P` | 36.24 | | `ENTS_R` | 38.43 | | `TOK2VEC_LOSS` | 305790.85 | | `NER_LOSS` | 801195.82 |
vxvxx/t5-small-finetuned-no_paragraph-to-yes_paragraph-2
vxvxx
2022-02-16T07:13:28Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: t5-small-finetuned-no_paragraph-to-yes_paragraph-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-no_paragraph-to-yes_paragraph-2 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 - Bleu: 0.0 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:----:|:-------:| | 0.006 | 1.0 | 8081 | 0.0002 | 0.0 | 19.0 | | 0.0032 | 2.0 | 16162 | 0.0001 | 0.0 | 19.0 | | 0.0026 | 3.0 | 24243 | 0.0001 | 0.0 | 19.0 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
jatinshah/bert-finetuned-ner
jatinshah
2022-02-16T03:50:43Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9330024813895782 - name: Recall type: recall value: 0.9491753618310333 - name: F1 type: f1 value: 0.9410194377242012 - name: Accuracy type: accuracy value: 0.9861511744275033 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0599 - Precision: 0.9330 - Recall: 0.9492 - F1: 0.9410 - Accuracy: 0.9862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0852 | 1.0 | 1756 | 0.0647 | 0.9147 | 0.9345 | 0.9245 | 0.9826 | | 0.0305 | 2.0 | 3512 | 0.0599 | 0.9333 | 0.9463 | 0.9398 | 0.9858 | | 0.0212 | 3.0 | 5268 | 0.0599 | 0.9330 | 0.9492 | 0.9410 | 0.9862 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 1.18.3 - Tokenizers 0.10.3
jkang/espnet2_librispeech_100_conformer
jkang
2022-02-16T01:05:55Z
4
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "dataset:librispeech_100", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: noinfo datasets: - librispeech_100 license: cc-by-4.0 --- ## ESPnet2 ASR model ### `jkang/espnet2_librispeech_100_conformer` - This model was trained by jaekookang using librispeech_100 recipe in [espnet](https://github.com/espnet/espnet/). - Gradio Demo: [🤗 ESPNet2 ASR Librispeech Conformer](https://huggingface.co/spaces/jkang/espnet2_asr_librispeech_100h) ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 140704c146f8beeed74973f5258379f6133dcdfb pip install -e . cd egs2/librispeech_100/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model jkang/espnet2_librispeech_100_conformer ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Fri Feb 11 01:42:52 KST 2022` - python version: `3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]` - espnet version: `espnet 0.10.7a1` - pytorch version: `pytorch 1.10.1` - Git hash: `140704c146f8beeed74973f5258379f6133dcdfb` - Commit date: `Tue Feb 8 16:06:02 2022 -0500` - GPU: NVIDIA GeForce RTX 3090 (single GPU took: 13h) ## asr_conformer_lr2e-3_warmup15k_amp_nondeterministic ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.acc.ave/dev_clean|2703|54402|94.5|5.1|0.4|0.7|6.3|56.6| |decode_asr_asr_model_valid.acc.ave/dev_other|2864|50948|84.8|13.7|1.5|2.1|17.3|80.7| |decode_asr_asr_model_valid.acc.ave/test_clean|2620|52576|94.2|5.3|0.5|0.8|6.6|57.4| |decode_asr_asr_model_valid.acc.ave/test_other|2939|52343|84.7|13.8|1.5|2.0|17.3|81.5| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.acc.ave/dev_clean|2703|288456|98.2|1.1|0.8|0.7|2.5|56.6| |decode_asr_asr_model_valid.acc.ave/dev_other|2864|265951|93.3|4.1|2.6|2.0|8.7|80.7| |decode_asr_asr_model_valid.acc.ave/test_clean|2620|281530|98.0|1.1|0.9|0.7|2.7|57.4| |decode_asr_asr_model_valid.acc.ave/test_other|2939|272758|93.5|4.0|2.5|1.9|8.4|81.5| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.acc.ave/dev_clean|2703|69558|92.0|5.0|3.0|0.7|8.7|56.6| |decode_asr_asr_model_valid.acc.ave/dev_other|2864|64524|81.3|13.2|5.4|2.4|21.1|80.7| |decode_asr_asr_model_valid.acc.ave/test_clean|2620|66983|91.8|5.1|3.1|0.6|8.8|57.4| |decode_asr_asr_model_valid.acc.ave/test_other|2939|66650|81.2|13.1|5.7|2.1|20.9|81.5| ## ASR config <details><summary>expand</summary> ``` config: conf/train_asr.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_conformer_lr2e-3_warmup15k_amp_nondeterministic ngpu: 1 seed: 2022 num_workers: 4 num_att_plot: 0 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: false collect_stats: false write_collected_feats: false max_epoch: 70 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 4 no_forward_run: false resume: true train_dtype: float32 use_amp: true log_interval: 400 use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 16000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_bpe5000_sp/train/speech_shape - exp/asr_stats_raw_en_bpe5000_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_en_bpe5000_sp/valid/speech_shape - exp/asr_stats_raw_en_bpe5000_sp/valid/text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_clean_100_sp/wav.scp - speech - kaldi_ark - - dump/raw/train_clean_100_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - kaldi_ark - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.002 weight_decay: 1.0e-06 scheduler: warmuplr scheduler_conf: warmup_steps: 15000 token_list: - <blank> - <unk> - ▁THE - S - ▁AND - ▁OF - ▁TO - ▁A - ▁IN - ED - ▁I - ▁HE - ▁WAS - ▁THAT - ING - ▁IT - '''' - ▁HIS - ▁HAD - ▁WITH - ▁YOU - ▁FOR - T - ▁AS - ▁HER - LY - ▁NOT - ▁BUT - ▁SHE - ▁BE - D - E - ▁IS - ▁AT - ▁ON - ▁HIM - ▁THEY - ▁BY - ▁HAVE - Y - ▁MY - ▁SO - ▁ALL - ▁THIS - ▁WERE - ▁WHICH - ▁ME - ▁FROM - ▁ONE - ▁SAID - ▁WE - N - ER - ▁NO - ▁THERE - ▁WHEN - ▁AN - ▁THEIR - ▁OR - ▁WOULD - ▁WHO - ▁THEM - R - ▁IF - ▁WHAT - ▁ARE - ▁BEEN - ▁OUT - ▁UP - M - ▁WILL - ▁DO - ▁MAN - ▁COULD - C - ▁THEN - ▁INTO - ▁MORE - ▁SOME - ES - P - ▁VERY - ▁NOW - ▁YOUR - ▁LITTLE - ▁TIME - ▁ABOUT - ▁DID - ▁THAN - ▁LIKE - ▁HAS - L - G - AL - IN - ▁UPON - ▁CAN - ▁WELL - ▁OTHER - ▁OVER - US - ▁TWO - ▁ONLY - ▁ANY - ▁OUR - O - EN - RE - ▁MADE - U - ▁AFTER - ▁SEE - ▁S - ▁DOWN - ▁BEFORE - LL - ST - B - ▁OLD - ▁DAY - ▁MISS - ▁GREAT - ▁US - ▁KNOW - OR - ▁SUCH - ▁GOOD - ▁WAY - A - ▁THESE - ▁CAME - ▁UN - ▁SHOULD - ▁HOW - ▁MISTER - ▁GO - ▁MUCH - ▁WHERE - ▁MUST - ▁NEVER - ▁COME - ▁BACK - ION - 'ON' - ▁LONG - F - ▁AGAIN - ▁FIRST - LE - ▁MEN - ▁EVEN - NESS - ▁MIGHT - ▁OWN - ▁MAY - K - ▁HIMSELF - ▁SAY - ▁JUST - ▁THROUGH - ▁RE - ▁AM - ▁ITS - ▁WENT - ▁THOUGHT - ▁ - ▁DE - ▁MAKE - I - ▁HAND - ▁THINK - ▁HOUSE - ▁HERE - IC - H - ATION - ▁LIFE - IT - ▁EYES - ▁MOST - ▁WITHOUT - ▁TOO - ▁THOSE - ABLE - ▁EVERY - ▁DON - ▁MANY - ▁AWAY - ITY - VE - W - ▁STILL - ▁BEING - ▁C - ▁LAST - ▁NIGHT - ▁O - ▁HEAD - AN - ▁FOUND - ▁NOTHING - ▁YOUNG - ▁WHILE - ▁TAKE - ▁GET - ▁PEOPLE - RO - ▁OFF - ▁THOUGH - EST - ▁YET - ▁THREE - TH - ▁RIGHT - ▁UNDER - AR - ▁FACE - IES - ▁ROOM - ▁NEW - ▁SAW - RA - V - ▁ASKED - ▁TELL - ERS - ▁SAME - MENT - ▁HEART - LESS - ▁WORK - ▁PLACE - ▁ANOTHER - ▁EVER - ▁LEFT - ▁SHALL - ▁FATHER - ▁PUT - ▁ONCE - ▁TOOK - ▁LET - ▁ALWAYS - ▁SEEMED - ▁PART - IL - UR - ▁WHY - ▁TOLD - ▁GIVE - ▁LOVE - CE - ▁MIND - ▁LOOKED - ▁HEARD - ▁SOON - ▁LOOK - ▁MOTHER - ▁FAR - IVE - ▁BECAUSE - ▁HOME - OUS - ▁T - EL - ▁D - ▁SOMETHING - ▁SIDE - ▁KING - IS - ATE - ▁MOMENT - ENT - RY - ▁THINGS - ▁ST - ▁LIGHT - ▁FIND - ▁GOING - ▁THING - ▁WORLD - IR - AT - ▁WATER - ▁END - ▁DOOR - ISH - ▁KNEW - ▁WOMAN - ▁SIR - ▁EACH - RI - ▁HAVING - ▁AGAINST - ▁FEW - ▁E - ▁BEGAN - ▁BETTER - ▁YES - ▁NAME - ▁ENOUGH - ET - ▁HARD - ▁VOICE - ▁YEARS - ▁GOT - ▁WHOLE - ▁WHITE - ▁WANT - ▁GIRL - ▁DONE - ▁SEEN - ▁HUNDRED - ▁CALLED - ▁BETWEEN - ▁MORNING - FUL - AS - ▁FELT - TER - ▁KIND - X - CH - ▁HERSELF - ANT - ▁TOWARD - ▁HALF - ▁OH - ▁AMONG - ▁HOWEVER - ▁TURNED - ▁ALSO - ▁BOTH - ▁POOR - ▁PERHAPS - ▁REPLIED - ▁COURSE - UL - ▁QUITE - ▁REST - ▁DOES - ▁MYSELF - NG - LO - ANCE - ▁MA - ▁SET - ▁SMALL - ▁B - ▁SURE - ▁F - ▁GAVE - ▁PRESENT - ▁HIGH - ▁ALMO - ▁R - CK - ▁WHOM - ▁NEAR - ▁CARE - ▁WAR - ▁GOD - ▁TOGETHER - ▁SAT - ▁SHOW - TE - NE - ▁BEST - ▁UNTIL - ▁OPEN - ▁W - ▁FOUR - ▁DEAR - ▁HANDS - ▁WORDS - ▁SINCE - ▁LAND - ▁DIS - MAN - ▁ANYTHING - ▁FEET - ▁NEXT - ▁GENERAL - LING - ▁LAY - ▁NOR - ▁STOOD - ▁BLACK - ▁POWER - ▁BROUGHT - Z - IE - ▁ROUND - ▁BELIEVE - ▁LARGE - ▁ALONG - ▁HELP - ▁DAYS - ▁FIVE - ▁K - ▁HOPE - AM - ▁CO - ▁KEEP - ▁FULL - ▁WALK - ▁MASTER - ATED - ▁NATURE - ▁JOHN - ▁POINT - ▁DUR - ▁MATTER - ▁MONEY - ▁CHILD - ▁LOOKING - ▁RATHER - ▁AIR - IA - ▁P - ▁TWENTY - ▁FIRE - OL - ▁LESS - ▁SHORT - ▁PASSED - ▁INDEED - TY - ▁CASE - ▁WORD - ▁WISH - ▁COUNTRY - LED - ID - ▁BOY - ▁SOUND - ▁FORM - ▁CRIED - LA - ▁FRIEND - TON - ▁FACT - ▁UNCLE - ▁TAKEN - ▁AL - ▁TEN - IAN - ▁GONE - ▁SEA - ▁REASON - TING - ▁WHOSE - ▁OTHERS - AC - ▁LI - ▁DEATH - ▁CERTAIN - ▁ANSWERED - ▁THEMSELVES - ▁LADY - ▁STATE - ▁CAR - ▁WIFE - ▁THOUSAND - ▁TRUE - ▁BEHIND - AGE - ▁DOCTOR - ▁FEAR - ▁OFTEN - OM - ▁TILL - ▁HA - IOUS - ▁AROUND - IST - ▁SENT - ▁SPEAK - ▁WOMEN - ▁GROUND - VER - ENCE - NA - ▁TALK - ▁CHILDREN - TION - CO - MO - ▁HEAR - ▁ORDER - ▁LEAVE - ▁PRO - ▁ALREADY - ▁LA - ▁FINE - SE - ▁BA - PP - ▁THUS - AD - ▁NEED - ▁SIGHT - ▁CALL - ▁FELL - ▁MANNER - MP - ▁BECAME - UM - ▁WATCH - OW - ▁FOOT - ▁CANNOT - ▁BODY - ▁TOWN - ▁LIVE - INE - ▁RETURNED - ▁WONDER - MA - ▁G - UT - ▁CLOSE - UN - IM - ▁ALONE - ▁DIDN - ▁LORD - ▁RED - ARY - ▁GIVEN - ▁SIX - ▁EVERYTHING - ▁DARK - ▁DEAD - ▁STRONG - ▁SON - ▁COMING - URE - ▁HELD - ▁ABOVE - ▁REALLY - ▁BEAUTIFUL - ▁SECOND - ARD - ▁EVENING - ▁CON - ▁HOUR - ▁FELLOW - ▁ROSE - ▁PERSON - ▁EX - ▁CH - ▁FORCE - ▁MO - ▁ARM - ▁CAUSE - ▁TURN - ▁CITY - ▁DOUBT - ▁QUESTION - TIC - ▁DEEP - ▁HAIR - ICAL - ▁MEAN - ▁DI - ▁CLEAR - ▁SOMETIMES - ▁STRANGE - ▁FEEL - ▁HO - ▁IMP - WARD - AUGHT - ▁CAPTAIN - ▁USE - ▁UNDERSTAND - ▁KEPT - ▁BR - ▁WOOD - ▁PRE - ▁YEAR - ▁TI - ▁LEAST - ▁BED - ▁SA - ▁TABLE - ▁BECOME - ▁FREE - ▁FAMILY - ME - ▁EYE - ▁WHETHER - ▁MAKING - ▁WITHIN - ▁SORT - ▁ANSWER - ▁PO - ▁SAYS - ▁EARTH - ▁RETURN - ▁SUDDENLY - ▁FRIENDS - ▁GREEN - ▁SUN - ▁FAIR - ▁TH - ▁FALL - ▁EITHER - ▁BO - ▁PRINCE - ▁THOU - ▁ITSELF - ▁CHURCH - ▁BIG - ▁ABLE - ▁DIFFERENT - ▁SEVERAL - ▁DAUGHTER - ▁WON - ▁WIND - ▁BAD - ▁LOST - ▁READ - ▁STORY - ▁APPEARED - DE - ▁NUMBER - ▁SP - ▁LOW - ▁ROAD - ▁POSSIBLE - ▁HUMAN - ▁RIVER - ▁STREET - ▁GA - ▁COLD - ▁MET - ▁ACT - ▁BROTHER - ▁AGE - ▁KNOWN - ▁CONTINUED - ▁BRING - ▁ILL - ▁RUN - ▁LAW - ▁SUBJECT - ▁CUT - J - PER - ▁PA - ▁TROUBLE - ▁GLAD - HE - ▁SLEEP - MEN - ▁LATE - ▁MEANS - ▁ASK - ▁REACHED - ▁RAN - AK - ▁HORSE - ▁USED - WAY - OP - ▁WINDOW - ▁SNOW - ▁PAST - ▁OBJECT - ▁THEREFORE - IONS - ▁TREE - ▁COMP - ▁BLUE - CA - ▁VI - ▁SIGN - ▁EIGHTEEN - ▁GARDEN - ▁BUSINESS - ▁PETER - ▁FOLLOWED - ▁SEEM - ▁HOLD - ▁HAPPY - ▁LONGER - ▁ACROSS - ▁BU - BE - ▁ELSE - ▁PLAY - ▁SOUL - ▁STAND - ▁ARMS - ▁SCHOOL - ▁PRINCESS - ▁CERTAINLY - LT - ▁ENGLISH - ▁SEVEN - ▁PER - ▁IDEA - ▁LE - ▁BOOK - ▁FEELING - ▁HUSBAND - ▁LINE - PT - THOUGH - ▁OUGHT - ▁RICH - IP - ▁VIEW - ▁DREAM - ▁SENSE - ▁LO - ▁READY - ▁CARRIED - ▁M - ▁REGARD - ▁CHANCE - ▁WANTED - ▁LIVED - ▁LATER - ▁INTEREST - ▁EN - ▁EFFECT - ▁CLA - ▁CHANGE - ▁CA - ▁REAL - ▁SUPPOSE - LES - ▁ART - ▁TIMES - ▁MAR - IF - ▁WILD - ▁ADDED - ▁LETTER - IAL - ▁THANK - ▁PARTY - LAND - ▁PAY - ▁BREATH - ▁TAKING - ▁COURT - ▁COUNT - ILY - ▁COMMON - ▁PUBLIC - ▁PURPOSE - ▁PRETTY - ▁TRUTH - ▁STAY - ▁EM - NT - ▁SH - ▁REMEMBER - ▁ENTERED - ▁RECEIVED - RED - ▁SPOKE - ▁USUAL - ▁THY - ▁FIGURE - ▁LED - ▁TREES - ▁TRIED - ▁FORWARD - NED - ▁HAT - ▁BLOOD - ▁BEYOND - ▁BANK - ▁LIVING - ▁JOY - ▁HOURS - ▁ENGLAND - ▁STONE - VI - GE - ▁SWEET - ▁POSITION - ▁FRONT - ▁GIRLS - ▁VISIT - ▁CHARACTER - ▁SPIRIT - ▁TA - BO - QUE - QUI - ▁OPENED - ▁OCCASION - ▁MEET - ▁EIGHT - ▁REMAIN - ▁PASS - TO - ▁NORTH - ▁SERVICE - ▁SISTER - ▁SE - ▁BEAR - ▁PLEASURE - ▁CHIEF - ▁FOREST - ▁BELL - ▁EXPERIENCE - ▁STRUCK - ▁CARRY - ORY - ▁WARM - 'NO' - ▁WORTH - ▁SAYING - ▁SILENCE - ▁CROSS - ▁JE - ▁H - ▁BEAUTY - PH - ▁DEAL - KE - ▁SECRET - DY - ▁MILES - ▁LU - ▁DOING - ▁BOYS - ▁CROWD - ▁ACCOUNT - REW - ISM - TI - ▁FE - ▁NONE - ▁RO - ▁NEARLY - ▁CHA - ▁YOUTH - ▁CAP - HA - ▁BIT - ▁LIE - ▁ATTENTION - ▁STANDING - ▁STAR - ▁RESPECT - ▁FURTHER - ATIONS - ▁ROCK - ▁BOW - EM - ▁EARLY - ▁MOUTH - ▁BOAT - UB - ▁IMMEDIATELY - ▁EXCEPT - SHIP - ▁PICTURE - ▁BRIGHT - ▁WA - ▁GREW - ▁LEAD - ▁CUR - ▁TONE - RRY - RS - ▁WIDE - CHE - ▁FORTH - IG - OS - ▁NEITHER - ▁YOURSELF - ▁SMILE - ▁DRESS - ▁OPINION - ▁HAPPENED - ▁WAIT - ▁SIT - ▁SHIP - ▁AH - ▁DESIRE - ▁THICK - ▁THIRD - ▁GRAND - ▁FOLLOW - ▁GATHER - ▁HILL - ALLY - ▁COMPANY - ▁CHAIR - DER - ▁TOP - ▁PAR - ▁LENGTH - ▁THIRTY - ▁MINE - ▁MI - ▁EAT - ▁EQUAL - ▁AFRAID - ▁FRESH - ▁TAIL - ▁FILLED - ▁SU - ▁MINUTES - ▁FAST - BU - ▁ENTER - ▁QUEEN - ▁UTTER - AG - ▁FLOOR - ▁SHA - DI - ▁HEAVEN - ▁STOPPED - ▁GUARD - ▁HALL - ▁BAR - ▁COMPLETE - ▁NINE - ▁WEEK - ▁GOLD - VA - ▁FIFTY - ▁BEAT - ▁PRESS - ▁ATTEMPT - ▁EXCLAIMED - DO - ▁CONF - ▁SEEMS - ▁STARTED - ▁EL - ▁HAR - ▁EXPRESSION - ▁TRA - ▁WONDERFUL - ▁SAINT - ▁APPEARANCE - ▁GRAVE - ▁OFFICE - ▁INSTEAD - ▁SILENT - ▁SOUTH - ▁AGO - ▁CAMP - ▁LOVED - ▁PATH - ▁LEARN - ▁PLAN - ▁GOVERNMENT - OUR - PPED - ▁SITTING - ▁SEAT - TEN - RESS - SIDE - ▁MOVED - ▁DIE - ▁RESULT - ▁SPRING - ▁PLEASE - ▁RI - ▁NATURAL - ▁ANNE - ▁STA - ▁CORNER - ▁WALL - ▁IMPOSSIBLE - ▁BROWN - ▁SUIT - ▁MUSIC - PI - ▁TRY - ▁DIED - ▁TEARS - ▁JU - ▁COMFORT - ▁DANGER - ▁MEASURE - ▁PROPERTY - ▁BORN - CON - ▁CR - ▁BROKEN - ▁MASS - EVER - IER - ▁EXPRESS - ▁POCKET - ▁SCARCE - ▁SELF - NY - ▁MADAME - ▁LAUGHED - ▁TOUCH - ▁APPEAR - ▁LONDON - ▁SAFE - ▁SHARP - ▁ATTACK - ▁JANE - ▁COVERED - ▁OUTSIDE - ▁WHATEVER - ▁PLACED - ▁RACE - ▁SHORE - ▁LAID - ▁ROMAN - ▁PERSONAL - UP - AU - ▁REMAINED - ▁HAPPINESS - ▁AFTERNOON - ▁DISTANCE - ▁STORM - ▁MARRIED - ▁FRANK - ▁VALLEY - ▁BOUND - ▁TALKING - ▁JO - ▁QUICK - ▁STEP - AND - ▁ARMY - ▁EFFORT - ▁FRENCH - ▁V - LEY - ▁PARTICULAR - ▁START - ATING - OO - LU - ▁TRANS - ▁HAPPEN - ▁HABIT - ▁VILLAGE - ▁BELOW - ▁GENTLEMAN - BLE - ▁BILL - ▁SAVE - ACT - ▁SOCIETY - ▁MAJOR - ▁QUARTER - ▁SKY - ▁GUESS - CY - ▁SAD - ILE - ▁SL - ▁PLEASANT - ▁STRAIGHT - ▁STRENGTH - ▁FORTUNE - ▁WRONG - ▁COMMAND - ▁BOX - ▁QUIET - ISE - ▁JA - IBLE - ▁TREAT - ▁GLANCE - ▁NECESSARY - ▁FORGET - ▁MOUNTAIN - ▁WINTER - ▁DREW - ▁WAV - ▁PLAIN - ▁ENTIRELY - ▁TEA - ▁SOFT - ▁QUICKLY - ▁INFLUENCE - ▁DINNER - ▁FOOD - ▁CHAPTER - ▁YE - ▁REACH - ▁GETT - ▁PAPER - ▁GIVING - ▁BEGINNING - ▁SEND - ▁FIGHT - ▁SCENE - ▁RUSH - ▁PI - ▁MARK - ▁NA - ▁BROKE - ▁CLASS - ▁BATTLE - ▁EASY - ▁GROUP - BY - ▁STOP - ▁DIRECTION - ▁BESIDE - ▁MOR - HAM - UFF - ▁WEST - ▁OBLIG - ▁COLOR - ▁SINGLE - ▁EASILY - ▁PALE - ▁ACTION - ▁INTER - ▁STRANGER - ▁WI - ▁CONVERSATION - ▁BLOW - ▁MARY - ▁MU - ▁TERRIBLE - ▁THINKING - ▁PULL - ▁MOON - AB - ▁REP - ▁ESPECIALLY - ▁HEAVY - ▁SICK - ▁LUCK - ▁TRAIN - ▁GUN - ▁GU - ▁WAITING - ▁TURNING - ITIES - ▁BREAD - ▁BELONG - ▁LOUD - ▁REPORT - ▁AMERICAN - ▁JOURNEY - ▁ANXIOUS - ▁LIPS - ▁KILLED - IGHT - GO - ▁CONSIDER - ▁PROBABLY - ▁PALACE - ▁HISTORY - ▁LAKE - ▁SHUT - ▁SIMPLY - WA - ▁PAIN - ▁HORSES - ▁SEEING - FULLY - ▁EXPECTED - ▁EVIL - ▁BURN - ▁SIMPLE - ▁DIRECT - IFIED - HER - ▁SLOWLY - ▁LEG - UGH - ▁SAIL - RIC - ▁WISHED - ▁RULE - ▁LAD - ▁MORAL - ▁MOVE - ▁FOLLOWING - ▁SILVER - ▁SEARCH - ▁CHANGED - ▁HANDSOME - ▁COULDN - ▁PASSION - ▁HU - ▁SMILED - ▁STREAM - ▁CONCERN - ▁PRESENCE - STER - ▁CONTENT - ▁BOARD - ▁SHAPE - ▁DECIDED - ▁MARRY - ▁PERFECT - ▁STEPS - ▁CLOSED - ABLY - DEN - ▁WEAK - ▁SUFFICIENT - ▁SHADOW - ▁EXPECT - ▁SPOT - ▁DUTY - ▁SPEAKING - ▁BESIDES - ▁FIELD - ▁ROLL - ▁TRYING - ▁EAR - ▁VER - ▁MARRIAGE - ▁SHOT - ▁SLAVE - ▁MILL - ▁NATION - ▁NECK - ▁ARRIVED - ▁TALL - ▁GRACE - LIN - ▁FORTY - ▁BROAD - ▁SUMMER - ▁COUSIN - ▁BEGIN - ▁CATCH - ▁FO - ▁PE - ▁MEANT - ▁THIN - IO - ▁GROW - ▁TRO - ▁NOTICE - ▁CRY - ▁FISH - ▁COM - ▁DEGREE - ▁HONOUR - ▁UNDERSTOOD - ▁SHOP - ▁TRUST - ▁CONDITION - ▁FARM - IZ - ▁SUDDEN - ▁SUCCESS - ▁SURPRISE - ORS - ▁THOUGHTS - UND - ▁ALLOWED - ITE - ▁NARROW - ▁GLASS - ▁SERIOUS - ▁STICK - ▁GAME - ▁SPENT - ▁SELL - ▁GRA - ▁LOWER - ▁RAISED - ▁PIN - ▁ALLOW - ▁CALM - FT - ▁L - ▁PU - ▁FIT - ACH - ▁SUFFER - ▁LEGS - ▁SUPPORT - ▁FRANCE - ▁LATTER - OV - ▁TASTE - ▁GATE - ▁INSTANT - ▁MINUTE - ▁OFFER - ▁GREATER - ▁PORT - ILL - ▁INDIVIDUAL - ▁AUNT - ▁EAST - ▁ADVANTAGE - ▁FASHION - ▁SWORD - ▁TWELVE - ▁HONOR - ▁MOVEMENT - ▁ISLAND - ACK - ▁WOODS - NCH - ▁PLEASED - ▁ENEMY - ▁RAIN - ▁VARIOUS - ▁OBSERVED - ▁LADIES - ▁BELIEVED - ▁CAST - ▁RISE - ▁BALL - ▁MONTHS - ICE - ▁MURDER - ▁CONDUCT - ▁SOCIAL - ▁TENDER - ▁LEARNED - ▁FRA - ▁FIRM - CLOCK - ▁PREVENT - ▁RING - LIE - ▁GOLDEN - ▁DECLARED - ▁BUILDING - ▁WRITE - ▁ATTEND - ▁CARRIAGE - ▁SITUATION - IDE - ▁NOBLE - ▁HUNG - ▁RUNN - ▁YELLOW - ▁KNOWLEDGE - ▁YORK - ▁PUSH - ▁LEAVING - ▁POST - ▁CIRCUMSTANCES - ▁SEEK - ▁FINALLY - ▁MAIN - ▁LETTERS - ▁POL - ▁ADD - FE - ▁ANCIENT - ▁MARCH - ▁WINE - ▁STATES - ▁WALLS - ▁PRISONER - ▁ISABEL - ▁TEMPER - ▁JUDGE - ▁FAINT - ▁POND - ▁GRASS - ▁FAM - OUT - ▁LAUGH - ▁GRAY - IGN - ▁ESCAPE - ▁KILL - ▁PRAY - ▁COMES - ▁ABSOLUTE - ▁BLIND - ▁WIN - ▁HOST - ▁MERELY - ▁RID - ▁EVERYBODY - ▁MATERIAL - ▁STRETCH - ▁DUE - ▁ROW - ▁TIN - ▁PROMISE - ▁LISTEN - ▁WALKING - ▁COMPANION - ▁INDIAN - ▁BREAK - ▁BENEATH - ▁RUIN - ▁EDGE - ▁WOR - ▁FORMER - ▁WORSE - ▁EVIDENTLY - ▁HARM - ▁CENT - ▁PIECE - ▁LOT - ▁PRESIDENT - ▁SPECIAL - ▁LABOR - ▁HEALTH - GA - ▁PLACES - ▁BEN - ▁SOMEWHAT - ▁DROPPED - ▁AFFECTION - ▁EXACTLY - ▁DARKNESS - ▁FALLEN - ▁DRESSED - ▁BILLY - ▁ACCEPT - ▁FL - ▁HOT - ▁REPEATED - ▁MEETING - PA - ▁PERIOD - ▁HONEST - ▁INSTANCE - ▁FLA - ▁PASSAGE - ▁NE - ▁POSSESSION - ▁WEAR - ▁PEACE - ▁COAT - ▁HOUSES - ▁MOUNTAINS - ▁FIFTEEN - ▁WELCOME - ▁YARD - ▁PROPER - ▁MUS - ADE - ▁RECEIVE - ▁SKIN - ▁GROWN - ▁AFTERWARDS - ANG - ▁DA - ▁DIFFICULT - ▁PERSONS - ▁ACCORDING - ▁FARMER - ▁SPEECH - ▁IMPORTANT - PAR - ▁PERFECTLY - ▁MIN - ▁CONSIDERED - ▁NU - ▁DEPEND - ▁MORROW - ▁MOUNT - ▁KISS - ▁LYING - ▁SUFFERING - ▁EXIST - ERY - OOK - BA - ▁PAINT - AH - ▁CAT - ▁PURE - ▁WISE - ▁PRIVATE - ▁REBECCA - ▁VESSEL - ▁CLEAN - ▁GENTLEMEN - ▁IRON - ▁STORE - ▁FUR - ▁INDIANS - ▁LOSE - ▁BATH - ▁NEWS - ▁CHI - ▁FA - ▁CHARGE - ▁PRIEST - ▁WRITTEN - ▁FORGOTTEN - ▁TRAIL - ▁CLOTHES - ▁ALIVE - ▁SUB - ▁REPLY - ▁THROW - ▁AB - ▁SOLDIERS - ▁ISN - ▁COTTAGE - ▁COURAGE - ▁CONTAIN - ▁BUILT - ▁PAID - ▁HUNT - ▁CASTLE - HOOK - ▁MERE - GGED - ▁NI - ▁UNC - ▁PREPARED - ▁BARE - ▁SMILING - ▁SPREAD - ▁WEATHER - ▁EDWARD - ▁GERMAN - ▁CURIOUS - ▁SERVANT - ▁DISCOVERED - ▁TRAVEL - EY - ▁DANCE - ▁PEN - BR - GEN - ▁BREAKFAST - ▁CHAMBER - ▁WILLIAM - ▁TERROR - ▁SPITE - ▁TIRED - ▁LOCK - ▁CONSIDERABLE - TLE - ▁MANAG - ▁DRY - ▁FINISHED - ▁MILLION - ▁FRE - ▁MIS - ▁PASSING - ▁DRAW - ▁BON - ▁VA - ▁VEN - ▁MAKES - ▁VAIN - ▁BOTTOM - ▁DRINK - ▁FUTURE - ▁RACHEL - ▁SORROW - ▁SIXTEEN - ▁KNIT - ▁PROUD - WI - ▁TOBY - ▁NOISE - ▁SLIGHT - ▁PROCEED - ▁FER - ▁COVER - ▁DRAWING - ▁FAVOR - ▁CATHERINE - ▁NEWSPAPER - ▁NOBODY - ▁ROOF - ▁WEALTH - ▁PROVE - ▁DRAWN - TTED - OKE - ▁DETERMINED - ▁DOG - ▁REMEMBERED - ▁OPENING - ▁FLOWERS - ▁GENTLE - ▁KNIGHT - ▁RECOVER - ▁DESERT - ▁MOTION - ▁NICE - ▁INTENTION - ▁GROWING - ▁CLOUD - ▁MONTH - HOOD - ▁POT - UDE - ▁PLANT - ▁MAD - ▁ENJOY - ▁FAT - ▁COR - ▁KNOWING - ▁IDEAS - IZED - ▁CHEEK - ▁EUROPE - ▁KNOCK - ▁ALARM - ▁TONGUE - ▁SPACE - ▁PATSY - ▁MISTRESS - ▁HENRY - ▁JERRY - ▁LIKED - ▁PLAYED - ▁BOOKS - ▁MODER - ▁CORN - ▁ELIZABETH - ▁CLUB - ▁BRAIN - ▁TROOP - ▁COOK - ▁DU - ▁FUN - DAY - ▁QUA - ▁FLOW - ▁DARE - ▁DELIGHT - ▁WOUND - ▁DESCEND - ▁EVERYWHERE - ▁FRIGHTENED - ▁GEORGE - ▁PECULIAR - ▁MACHINE - ▁PATIENT - ▁MEADOW - ▁PEASANT - ▁BURST - ▁ORDINAR - ▁SONG - ▁BRAVE - ▁EXISTENCE - ▁LUCY - ▁J - ▁CAREFULLY - ▁PRESENTLY - ▁GEN - ▁COW - LLY - ▁PROMISED - UOUS - ▁LIFTED - ▁MEANING - ALL - ▁FAIL - NER - ▁REGULAR - ▁VIRTUE - ▁STUDY - ▁PROTECT - ▁FOND - ▁FANCY - ▁STOCK - ▁KEY - ▁JUSTICE - ▁PACK - LET - ▁AFFAIRS - ▁DIFFICULTY - ▁WORE - ▁COST - ▁HEAT - ▁SHOULDER - ▁OFFERED - ▁MISTAKE - ▁DOLLARS - ▁LOOKS - QUA - ▁BREAST - ▁PRINCIPLE - ▁CHARLES - ▁TEETH - ▁OCCUPIED - ▁DROP - ▁PAPA - ▁SHEEP - ▁KNOWS - ▁DECK - ▁BORE - ▁EXC - ▁SURPRISED - ▁STATION - ▁PL - ▁PR - ▁OURSELVES - ▁SYMPATHY - ▁RUTH - ▁EXCITED - ▁CONTROL - ▁ANGRY - ▁IMAGINATION - ▁WITNESS - ▁HOLDING - THER - DA - ▁TRADE - ▁CREATURE - ▁SISTERS - ▁JOIN - LAS - ▁ALTOGETHER - ▁CIVIL - ▁EMPTY - ▁LEAP - ▁HURT - ▁BOLD - ▁TASK - ▁POLICE - ▁DRAGON - ▁MAID - ▁CLAIM - ▁SHAME - ▁PHYSICAL - ▁CONC - ▁SEIZED - ▁OB - ▁LIVES - ▁HEIGHT - ▁GI - ▁PAL - ▁CHARMING - ▁FEELINGS - ▁SERVANTS - ▁DELIVER - ▁FRUIT - ▁SATISFIED - ▁STRUGGLE - ▁WROTE - ▁CONCEAL - ▁MOVING - ▁FLASH - ▁OPPOSITE - ▁HURRY - ▁ROUGH - ▁PRICE - ▁AWFUL - ▁SAND - ▁SLIPP - ▁SHOWN - ▁SPRA - ▁AGREED - ▁FIXED - ▁PERCEIVED - ▁UPPER - ▁FINGER - ▁FINGERS - ▁EAGER - LF - ▁EARS - LIGHT - ▁IMAGINE - ▁LIKELY - ▁COAST - ▁UNITED - ▁VAN - ▁EXPLAINED - ▁TELLING - ▁DANGEROUS - ▁DICK - ▁COOL - ▁CAL - ▁INSIST - BI - ▁SECURE - ▁HILLS - ▁SAN - ▁CHEER - ▁FILL - ▁BUY - ZA - HI - ▁CLOTH - ▁POSSESSED - ▁ADVANCE - ▁METHOD - ATIVE - ▁GREATLY - ▁SMOKE - ▁HIGHER - ▁COMPANIONS - ▁ANIMALS - ▁GALL - ▁QUIETLY - ▁TRAVELL - ▁RESOLVED - ▁FLEW - ▁CARLYLE - ▁MEMORY - ▁RESIST - ▁GRAHAM - ▁LAUGHING - ▁FAITH - ▁BIRD - CRI - ▁LEAVES - ▁AMERICA - ▁DEMAND - BOARD - ▁AWAKE - ▁CURIOSITY - ▁LANGUAGE - ▁VIOLENT - ▁AWARE - ▁DOUBLE - ▁LOOSE - LIKE - ▁ADAM - ▁RISING - ▁HOTEL - ▁BAND - ▁ENGAGED - ▁HEADS - ▁LOG - ▁FORMED - ▁WINDOWS - ▁PREFER - RUS - ▁THROWN - ▁ARCH - ▁PAUSE - ▁SERVE - KIN - ▁FALLING - ▁VO - ▁WHISPERED - ▁POWERFUL - ▁ER - ▁DEPART - ▁CRUEL - ▁EXAMPLE - ▁SMOOTH - ▁INTRODUC - ▁RELIGION - ▁SEVENTEEN - ▁ABSENCE - ▁PRINT - ▁SHINING - ▁ICE - ▁POET - ▁DREADFUL - ▁REQUIRED - ▁ORIGINAL - ▁POINTED - ▁INSIDE - ▁BROTHERS - ▁PRODUCED - ▁SPOKEN - ▁CREATURES - ▁FLY - ▁TOM - ▁PURSU - ▁SYSTEM - ▁EXCELLENT - ▁EXCITEMENT - ▁MIDDLE - ▁FALSE - ▁REGRET - ▁RAY - ▁PHYSICIAN - ▁COP - ▁VALUE - ▁TOUCHED - ▁FLAT - ▁OAK - ▁SUM - ▁LOSS - ▁PAPERS - ▁STEPP - ▁REVER - ▁SHADE - SOME - ▁LISTENED - ▁N - ▁DISCOVER - ▁BITTER - TERN - ▁HOLE - ▁ADVANCED - ▁PICK - ARTAGNAN - ▁CORPORAL - ▁ASLEEP - ▁TEMPLE - ▁INDICAT - IUM - ▁FARTHER - ▁EXCUSE - ▁FLU - ▁NOSE - ▁SIXTY - ▁SUPPOSED - ▁PROVED - ▁RATE - ▁SHOULDERS - ▁AFFAIR - ▁FIELDS - ▁REMARKED - AVE - ▁WEEKS - ▁ESTABLISH - ▁PARIS - ▁ADMIT - ▁NEIGHBOR - ▁ATTRACT - ▁CUSTOM - ▁DISTINGUISH - ▁SURFACE - ▁COUPLE - ▁DEVIL - ▁LIMIT - ▁ROYAL - ▁FOOL - ▁RARE - ▁PRIDE - ▁PROFESSOR - ▁SAKE - ▁DALE - ▁VAST - ▁REFUSED - ▁FAILED - ▁BAG - ▁ROB - ▁WASH - ▁FAIRY - ▁FREQUENT - ▁MARILLA - ▁PROGRESS - ▁RELIEF - ▁DROVE - ▁DOZEN - ▁AHEAD - ▁ADVENTURE - ▁GRANT - ▁PRIM - ▁MENTAL - ▁PAIR - ▁IMPRESSION - ▁WOUNDED - ▁FULLY - ▁DISAPPEARED - ▁MILE - ▁DRIVE - ▁MUD - ▁SIZE - ▁ANIMAL - ZE - ▁GRE - ▁REPRESENT - ▁ACQUAINTANCE - ▁INSTRUMENT - ▁SPLENDID - ▁UNKNOWN - ▁CORONEL - ▁EMPEROR - ▁EARNEST - ▁EXTEND - ▁BRIEF - ▁RENDER - ▁PARENTS - ▁GENTLY - ▁CALLING - ▁TRIBE - ▁CHRISTIAN - ▁INTERESTING - ▁LAMP - ▁JIMM - ▁DIV - ▁LOVER - UCH - ▁HID - ▁NEEDED - ▁ORDERED - ▁MEAL - ▁SLOW - ▁DAM - ▁CLOUDS - ▁DAN - ▁GAR - ▁EXPLAIN - ▁QUI - ▁CLIMB - ▁HURRIED - ▁MURMUR - ▁SWIFT - ▁ARTHUR - ▁JEFF - ▁KINGDOM - ▁MESSAGE - ▁PROTEST - ▁ORGAN - ▁RISK - ▁FORGIVE - ▁OCCURRED - ▁PEARL - ▁ODD - ▁INFORMATION - ▁BUSY - ▁TRI - ▁LACK - ▁BAY - ▁FLEET - ▁CROWN - ▁WAITED - ▁BIRDS - ▁PITY - ▁SUCCEEDED - ▁INFORMED - ▁WISHES - ▁DIRECTLY - ▁CABIN - ▁AUGUST - ▁COUNTENANCE - ▁HORROR - ▁PHILIP - ▁POPULAR - ▁PREVIOUS - ▁CONTRARY - ▁ARTICLE - ▁DIFFERENCE - ▁HIDDEN - ▁HUGE - ▁AUTHORITY - ▁POUND - ▁JUMP - ▁SPI - ▁SHAKE - ▁EVENTS - ▁FRO - ▁LEAN - ▁CRO - ▁TRIM - ▁SHARE - ▁FISHER - ▁SETTLED - ▁QUESTIONS - ▁SI - ▁VAL - ▁APPROACHED - ▁SUGGESTED - ▁CONTINU - ▁PERFORM - ▁ACKNOWLEDG - ▁CLIFF - ▁COLONEL - ▁GHOST - ▁MAJESTY - ▁EMOTION - ▁SUPPER - ▁DISTANT - ▁INTERESTED - ▁JACK - ▁HUM - ▁TRAMP - ▁BRI - ▁POUR - ▁SHIPS - ▁CHAIN - ▁DY - ▁RANK - ▁MATTERS - ▁LOVELY - AW - ▁PAT - ▁WORKING - ▁CONSEIL - ▁EVIDENCE - ▁MERCHANT - ▁SOLEMN - ▁CONSTANT - ▁MINISTER - ▁OFFICIAL - ▁SENTIMENT - ▁CENTURY - ▁DELAY - ▁JAMES - ▁MATCH - ▁FOREIGN - ▁AROSE - ▁BEAST - ▁BAB - ▁WIT - ▁REMARKABLE - ▁THOR - ▁COMPAR - ▁MAL - ▁NEARER - ▁FOURTH - ▁GREY - ▁MENTION - ▁RUBB - ▁CHARM - ▁BARON - ▁DESIRED - SCAR - ▁HOPED - ▁TEACHER - ▁MON - ITCH - BEL - ▁PARTS - ▁EIGHTY - LAC - GGING - ▁REFLECT - ▁COLLECT - ▁BULL - ▁CONSCIOUS - ▁MOMENTS - ▁DISTURB - ▁COLLEGE - ▁EGGS - ▁STUPID - ▁YESTERDAY - ▁EXAMINE - ▁FAULT - ▁DEPTH - ▁ROOT - ▁MOUSE - ▁SOUGHT - ▁TURTLE - ▁NATIVE - ▁CRACK - ▁SOLD - ▁INVIT - ▁PICKED - ▁CEASED - ▁HEARING - ▁MIDS - ▁PLAYING - ▁STAGE - ▁UNTO - ▁GAIN - ▁MIST - ▁ORDERS - ▁KNEES - ▁TALE - ▁DISTINCT - ▁BENT - ▁DESPAIR - ▁TRIUMPH - ▁SQUARE - ▁THROAT - ▁BOUGHT - ▁PERMIT - ▁SPEND - ▁TRIP - ▁THREATEN - ▁ROME - INESS - ▁EXPOS - GON - ▁WRITING - ▁INCREASED - ▁PORTION - ▁TENT - IUS - ▁YO - ▁INTENDED - ▁NAMED - RATION - ▁NOTIC - ▁PIPE - ▁WILLING - ▁INSTANTLY - ▁SERVED - ▁BAL - ▁POSSESS - ▁CRE - ▁ADMIRATION - ▁LIBERTY - ▁OPPORTUNITY - ▁SELDOM - ▁BIRTH - ▁GLOW - ▁INCLUD - ▁REQUEST - ▁TYPE - ▁SLEPT - ▁CRIME - ▁MOTIVE - ▁ELSIE - ▁BEGUN - ▁CONSENT - ▁ADMITTED - ▁AVOID - ▁ADDRESS - ▁HATE - ▁DEMANDED - ▁APPARENTLY - ▁SUGGESTION - ▁CONSIDERATION - ▁BLESS - ▁PROCEEDED - NCY - ▁PRISON - ▁CONT - ▁SHOUTED - ▁FACES - ▁SPIRITS - ▁DEVELOP - ▁ACCIDENT - ▁ADVICE - ▁INNOCENT - ▁INSTINCT - ▁UNCONSCIOUS - ▁MYSTERIOUS - ▁PRETEND - ▁PEEP - ▁ANYONE - ▁DUKE - ▁PLUM - VILLE - ▁SEVERE - ▁ALAS - ▁DELIGHTED - ▁ISSUE - ▁ASKING - ▁CROW - ▁ACCEPTED - ▁RIDE - ▁DOORS - ▁TAR - ▁PREPAR - ▁SUGGEST - WOOD - ▁CITIZEN - ▁ENTRANCE - ▁LINCOLN - ▁POLITICAL - ▁PRACTICAL - ▁STIFF - ▁WIDOW - ▁CAPITAL - ▁CLEVER - ▁MAMMA - ▁CREDIT - ▁OBEY - ▁STRING - ▁DAILY - ▁ARGUMENT - ▁HEAP - ▁APARTMENT - ▁FLIGHT - ▁ELDER - ▁PUR - ▁PAGE - ▁DUST - ▁GAZE - ▁NATIONAL - ▁BABY - DDING - ISTS - ▁TEACH - ▁STREETS - CAL - ▁GE - AFF - ▁GOES - ▁POSSIBL - UNG - ▁LINES - GUE - ▁VOTE - ▁HUNTING - ▁QUO - ▁RESEMBL - ▁BASKET - ▁CIRCLE - ▁CONSEQUENCE - ▁KITCHEN - ▁TREASURE - ▁NEVERTHELESS - ▁FANCI - ▁ASSEMBL - ▁GRIEF - ▁VEIL - ▁SEASON - ▁INVENT - ▁VIRGINIA - ▁HUT - ▁GUEST - ▁ROAR - ▁BEHOLD - ▁VICTORY - ▁CAPABLE - ▁DULL - ▁SHOE - ▁FLOAT - ▁MERRY - ▁IMMEDIATE - ETH - ▁ELEANOR - ▁EXPLANATION - ▁PARLIAMENT - ▁PRINCIPAL - ▁PROPORTION - ▁RESOLUTION - ▁UNUSUAL - ▁BLUFF - ▁NINETEEN - ▁SENSATION - ▁VISIBLE - ▁INCOME - ▁FATE - ▁SUPER - ▁LAUGHTER - ▁EASE - ▁LOAD - ▁JEW - ▁ZE - ▁FEVER - ▁WEDDING - ▁JOINED - ▁TRACE - ▁LEADER - ▁CLEARLY - ▁FLOWER - ▁TERMS - ▁EMPLOYED - OCK - ▁PARTICULARLY - ▁MEMBERS - ▁CONFESS - ▁GRO - ▁ADDRESSED - ▁CHRIST - ▁ACCOMPANI - ▁AFFORD - ▁AMOUNT - ▁BRILLIANT - ▁COMMUNICAT - ▁FIERCE - ▁RECORD - ▁SACRIFICE - ▁TEMPT - ▁CORDIAL - ▁COLOUR - ▁PROOF - ▁ESTATE - ▁PARDON - ▁ADVIS - ▁ATTITUDE - ▁IMPORTANCE - ▁BOOT - ▁SHOCK - ▁FIR - ▁PLENT - ▁HIT - ▁MEMBER - ▁SUR - ▁SEATED - ▁MAG - AVING - ▁FAVOUR - ▁REMARK - ▁DIM - ▁FAITHFUL - ▁SAVED - CHI - ▁SIN - THE - ▁CONFIDENCE - ▁EXTRAORDINARY - ▁FORTUNATE - ▁MISFORTUNE - ▁PATIENCE - ▁RELIGIOUS - ▁SATISFACTION - ▁POSITIVE - ▁SIMILAR - ▁EXCHANG - ▁RETREAT - ▁FLESH - ▁ADMIRE - ▁SPIRITUAL - ▁DAWN - ▁BURIED - ▁URGE - ▁SUNDAY - ▁FOX - ▁EMMA - ▁NURSE - ▁SNAPP - ▁PARK - ▁OBTAIN - ▁RECOGNIZED - ▁SPEED - ▁MAGIC - ▁LAWS - ▁REMOVED - ▁HAM - ▁PRESERV - ▁AID - HOUSE - ▁MENTIONED - ▁CONSCIENCE - ▁CONTEMPT - ▁DETAIL - ▁IMMENSE - ▁NERVOUS - ▁PRISCILLA - ▁UNFORTUNATE - ▁UNHAPPY - ▁COMPLAIN - ▁TWICE - ▁WHISTL - ▁SNAKE - ▁WASHINGTON - ▁PIRATE - ▁WICKED - ▁BODIES - ▁DESIGN - ▁JASON - ▁VAGUE - ▁CONSIST - ▁GIFT - ▁ANGEL - ▁RODE - ▁FOLD - ▁BRIDE - ▁ANGER - ▁BASE - ITUDE - ▁CONCLUDED - ▁ALTER - ▁FRI - ▁PANT - ▁BID - ▁HIGHEST - ▁SAILOR - MPLE - ▁OBSERV - ▁CHEERFUL - IFICATION - RID - ▁DESCRIBED - ▁BIN - ▁JEWEL - ▁ARTIST - ▁PEER - ▁NORA - ▁SKI - ▁DIAMOND - ▁ENCOURAGE - ▁PRIVILEGE - ▁PROJECT - ▁ANYBODY - ▁ENCOUNTER - ▁HOLLOW - ▁YIELD - ▁BOBBY - ▁SAVAGE - ▁SOMEBODY - ▁OTHERWISE - ▁PRAISE - ▁PROBLEM - ▁DISTRESS - ▁UGLY - ▁WARRIOR - ▁MOURN - ▁RELIEV - ▁DESK - ▁FOOLISH - ▁STARTLED - ▁SKILL - SHONE - ▁LONE - ▁OBSERVATION - ▁DENI - ▁NEST - ▁SOLDIER - ▁RELATION - ▁TRULY - ▁VISITOR - ▁OFFICERS - ERSON - ▁YA - ▁EVIDENT - ▁DREAMS - ▁KEEPING - ▁PLAINLY - ▁DRUNK - ▁EMBRAC - ▁INTELLIGENCE - ▁LIEUTENANT - ▁PERSUADE - ▁SURROUNDING - ▁UNIVERSAL - ▁GLEAM - ▁SUPERIOR - ▁WHEEL - ▁JEALOUS - ▁QUEER - ▁PIERRE - ▁MILK - ▁RAIL - ▁FLUSH - ▁STAIRS - ▁JESUS - ▁HORN - ▁REGION - ▁SAFETY - ▁KA - ▁GUIDE - ▁CAKE - ▁CUP - ▁INQUIRED - ▁DEFI - ▁LESSON - ▁WRETCHED - ▁PACE - ▁TEST - ▁READING - ▁ENTIRE - ▁NET - ▁DOGS - ▁COMMANDER - ▁PRODUCE - ▁GAINED - ▁ARRIVAL - ▁FAMILIAR - ▁MEANWHILE - ▁SUSPICION - ▁CHOICE - ▁IMPULSE - ▁THRUST - ▁PROCESS - ▁SUMMON - ▁SHEPHERD - ▁HASTILY - ▁GRASP - ▁COUNTESS - ▁STYLE - ▁DWELL - ▁MERIT - ▁PITCH - ▁HUNGRY - ▁SPORT - ▁LOUISE - ▁STERN - ▁PROVIDED - ▁ASSUME - ▁EARLIE - ▁RAGE - ▁U - ▁RAPIDLY - PORT - ▁SUCCESSFUL - ▁FLED - ▁AGREE - ▁CONDITIONS - ▁RELATIONS - ▁DREAD - ▁NATURALLY - ▁EARL - ▁GAY - ▁HYPNOTI - ▁PUTT - ▁GAZ - ▁JIM - ▁PAUS - ▁PROPOS - ▁ADMINISTRATION - ▁ELEVEN - ▁HOSPITAL - ▁MAGISTRATE - ▁STRIKE - ▁DIGNITY - ▁GLORY - ▁BOTTLE - ▁THRONE - ▁RECKON - ▁COSETTE - ▁MOREOVER - ▁APPLI - ▁HIND - ▁PRODUCT - ▁POOL - ▁TRIAL - HAN - ▁ERIC - ▁CUB - ▁PIECES - ▁EXCEPTION - ▁ENJOYED - ▁DARED - ▁TRU - ▁CLOSELY - ▁RAPID - ▁AFFECTED - ▁REQUIRE - ▁SOFTLY - ▁BROW - UCK - ▁MARKED - ▁SEVENT - ▁ELECT - ▁FORGOT - ▁CORRECT - ▁FRANCS - ▁MARGUERITE - ▁SCIENCE - ▁UNEXPECTED - ▁FOUGHT - ▁MILITA - ▁THUNDER - ▁VOYAGE - ▁GANEM - ▁FREEDOM - ▁NODDED - ▁CAPTURE - ▁MORTAL - ▁OWNER - ▁POLITE - ▁VISION - ▁EDUCATION - ▁GOVERNOR - ▁RAV - ▁REWARD - ▁HASTE - ▁REPEAT - ▁DETERMIN - ▁PITI - ▁KNEE - LINE - ▁DEVOTED - ▁INTERRUPTED - ▁FOLKS - ▁EXTREME - ▁APPROACH - ▁CONTINUE - ▁BEARING - ▁CHAP - ▁ACQUAINTED - ▁GLIMPSE - ▁GRADUALLY - ▁SUNSHINE - ▁PRACTICE - ▁SUPPLI - ▁DAVID - ▁DRIFT - ▁SHOWING - ▁LEVEL - ▁PROMPT - ▁QUARREL - ▁REPRESENTATIVE - ▁PLUNG - ▁GIANT - FALL - ▁STOUT - CHA - WEPT - ▁GLANC - ▁SALT - ▁CHOSEN - ▁BUCK - ▁REALIZED - ▁REALITY - ▁TUR - ▁DRIVEN - ▁CARD - ▁PRAYER - ▁TERM - AID - ▁HOLY - ▁ENDURE - ▁RANGE - ▁HANG - ▁SAM - LAN - ▁CAVE - INA - ▁GRI - ▁SIGH - ▁NEIGHBOUR - ▁COUNCIL - ▁EXERCISE - ▁NAUTILUS - ▁SOMEWHERE - ▁SYLVIA - ▁THOROUGH - ▁VICTIM - ▁BRIDGE - ▁COMPELLED - ▁INCLINED - ▁OVERCOME - ▁RESERVE - ▁ARREST - ▁PRECIOUS - ▁DUTCH - ▁OCEAN - ▁ACQUIR - ▁RECALL - ▁DESTIN - ▁ATTACH - ▁SLIM - ▁WEEP - ▁CONSCIOUSNESS - ▁TIGHT - ▁WAKE - ▁COMFORTABLE - ▁ACTIVE - ▁WINGS - ▁GRIN - ▁AFFECT - ▁WHIT - ▁IDEAL - ▁EASTER - ▁APPROACHING - ▁CREATED - ▁PLANS - ▁INCREASE - ▁FLYING - ▁SHOUT - OES - MISSION - ▁ARMED - ABILITY - ▁BLUSH - ▁CONNECTION - ▁MATTHEW - ▁MEDICINE - ▁REMIND - ▁EXHIBIT - ▁BLOCK - ▁DESERVE - ▁LISTENING - ▁TITLE - ▁FLOUR - ▁FLAME - ▁AGENT - ▁USEFUL - ▁BRIG - ▁BOIL - ▁ASSURED - ▁REFLECTION - ▁PINE - ▁WAG - ▁YOUNGER - ▁BEARD - ▁KINDNESS - CTUALLY - ▁ACTUAL - ▁WEIGHT - ▁LILY - ▁IMPRESS - ▁DESCRIBE - ▁BEHELD - ▁COMMUNITY - ▁DESPERATE - ▁DISPLAY - ▁ENEMIES - ▁MELANCHOLY - ▁MIRROR - ▁RECOMMEND - ▁SPANISH - ▁BLAME - ▁VOLUME - ▁SHOOT - ▁COMBIN - ▁SHAKING - ▁SOUTHERN - ▁MYSTERY - ▁EVERYONE - ▁COMMISSION - ▁COMPOSED - ▁UDO - ▁IMAGE - ▁DECEIV - ▁FAILURE - ▁PATTY - ▁ALICE - ▁FRAME - ▁MODEST - ▁MAGNIFICENT - ▁BRANCHES - ▁REIGN - ▁RAG - ▁PARISH - ▁KATE - ▁AMID - ▁SLEEPING - ▁ANNOUNCED - ▁EAGERLY - ▁WIRE - ▁LAP - ▁ARAB - ▁EATING - ▁RUM - ▁CAREFUL - ▁DISCUSS - WORTH - ▁DISTRICT - ▁FOREHEAD - ▁FRANCIS - ▁INCIDENT - ▁APPEAL - ▁EMBARRASS - ▁MAINTAIN - ▁PRONOUNC - ▁FURNISH - ▁STRAIN - ▁ELEMENT - ▁SILK - ▁FEAST - ▁RECENT - ▁DANCING - ▁LODGE - ▁ASHAMED - ▁TRICK - ▁BOBO - ▁STUFF - ▁ET - ▁ASSERT - ▁SANK - ▁TREATMENT - ECI - ▁SWIM - ▁BECOMING - ▁SINGING - ▁PLATE - ▁SCATTERED - ▁EXTREMELY - ▁GRIM - ▁SANG - ▁FIGHTING - ▁FACTOR - ▁PAINFUL - ▁HIDE - ▁FUNN - ▁AFTERWARD - ▁FROG - ▁VENTURE - ▁DISAPPOINT - ▁COMRADE - ▁MONSIEUR - ▁OBVIOUS - ▁PASSENGER - ▁PROFOUND - ▁PUBLISH - ▁ACCUSTOM - ▁BLOOM - ▁SMITH - ▁RELATIVE - ▁ACCUSE - ▁MANIFEST - ▁SOLID - ▁MONSTER - ▁MARIUS - ▁CANDLE - ▁PROCUR - ▁INTERFERE - ▁HOUSEHOLD - ▁DEVELOPMENT - ▁AGREEABLE - ▁HALT - ▁NECESSITY - FOLD - ▁CITIES - ▁REGI - ▁GLOOMY - BBL - ▁SEPARATED - ▁CHEST - ▁STRIP - ▁SPAR - ▁DUN - ▁SETTLE - ▁STARED - ▁HANGING - ▁FEATURES - ▁PILE - ▁ORIGIN - ARIES - ▁LION - ▁ALI - ▁ASTONISHMENT - ▁COMPLIMENT - ▁DELICATE - ▁COUNSEL - ▁FIFTH - ▁SUPPRESS - ▁BURDEN - ▁COMPLEX - ▁ADDITION - ▁CRUSH - ▁TWIST - ▁PIANO - ▁BRUSH - ▁CHECK - ▁ANNIE - ▁SHELTER - ▁IMPROV - ▁WESTERN - ▁LOCAL - ▁APPLE - ▁GREET - ▁MASK - ▁RUSSIAN - ▁TOWER - ▁CREW - ▁TIP - ▁WANDERING - ▁READER - ▁WANDERED - ▁DESTROY - ▁OBSERVE - MORE - ▁ESCAPED - ▁PET - ▁BUILD - ▁REAR - ▁DESTROYED - HIN - ▁OWE - ▁RANG - ▁TEAR - ▁NED - ▁OFFICER - ▁TRAP - ▁OCCUR - ▁APPOINTED - ▁ATMOSPHERE - ▁CHOOSE - ▁CONCLUSION - ▁CULTIVAT - ▁DESCRIPTION - ▁ENORMOUS - ▁EXHAUSTED - ▁LANDSCAPE - ▁NATASHA - ▁PROSPECT - ▁REFRESH - ▁SPECIES - ▁SURROUNDED - ▁WEAPON - ▁BLANK - ▁DEFEND - ▁EDITH - ▁HORRIBL - ▁BETRAY - ▁FERKO - ▁LABOUR - ▁NEGRO - ▁RESUMED - ▁LEAF - ▁MUSKET - ▁INTENSE - ▁MERCY - ▁ADOPT - ▁SCORE - ▁DASH - ▁LAWYER - ▁SLOPE - ▁CHUCK - ▁ASSISTANCE - ▁BROOK - ▁BREAKING - ▁ASSIST - ▁GROAN - ▁HELEN - ▁BEHAV - ▁MAIDEN - ▁CRIS - ▁SHOUTING - ▁NAY - ▁PIG - ▁ACCORDINGLY - ETTE - ▁DESIR - ▁RUB - ▁GRU - ▁PIT - ▁HEAVI - ▁OBTAINED - ▁SPARE - ▁BRANCH - ▁COUNTER - ▁APART - ▁AMBITION - ▁ASTONISHED - ▁CORRESPOND - ▁DRIVING - ▁ENERGY - ▁HISTORIAN - ▁REVOLUTION - ▁SWEEP - ▁TREMBLING - ▁CRAFT - ▁FAMILIES - ▁LITERATURE - SBURG - ▁FEMALE - ▁TILNEY - ▁GENEROUS - ▁SUBMIT - ▁INTELLECTUAL - ▁ORCHARD - ▁STORIES - ▁DIANA - ▁VEIN - ▁TRIFL - ▁TWIN - ▁WORSHIP - ▁MARBLE - ▁GALLANT - ▁SENSIBLE - ▁NEAT - ▁BROWNIE - ▁JUNE - ▁SHAW - ▁WORST - ▁USELESS - ▁FISHING - ▁CRYING - ▁MAYBE - ▁VARI - ▁PRESERVE - ▁VOL - ▁EMPLOY - ▁INTERRUPT - ▁SLIGHTLY - ▁ACCOMPLISHED - NEY - ▁STEAM - ▁BALANC - ▁LEANING - ▁SIGHED - ▁REFUSE - ▁IMAGINED - ▁DATE - GROUND - ▁ENTERTAIN - ▁PERCEIVE - ▁ABROAD - ▁CHEESE - ▁DESTRUCTION - ▁ESSENTIAL - ▁EXPEDITION - ▁GRANDFATHER - ▁INFINITE - ▁LIBRARY - ▁MULTITUDE - ▁NEGLECT - ▁SWALLOW - ▁VILLEFORT - ▁BELOVED - ▁COMMITTEE - ▁CONFIDENT - ▁PURPLE - ▁PURCHAS - ▁SCRAP - ▁SPOIL - ▁LIKEWISE - ▁EXTRA - ▁STRAW - ▁SALUT - ▁SOURCE - ▁HASTENED - ▁RESENT - ▁FLOCK - ▁LOFT - ▁FLO - ▁CLO - ▁CONVINCED - ▁GOODNESS - ▁HYPNOTIZ - ▁SETTING - ▁HAIL - ▁PHI - ▁GROVE - ▁DISCOVERY - ▁DAMP - ▁WHISPER - ▁LIFT - ▁HOP - ▁SUSPECTED - ▁SCR - OLI - ▁FAC - ▁BUSH - ▁FOREVER - ▁BARRICADE - ▁CONSTITUTION - ▁ENDEAVOR - ▁ENTHUSIASM - ▁EXECUTION - ▁HYACINTH - ▁PERCEVAL - ▁PSYCHE - ▁REPROACH - ▁THIRTEEN - ▁ABSORB - ▁GRATITUDE - ▁MERCER - ▁REPUTATION - ▁SCREAM - ▁PUPIL - ▁RETIRED - ▁STEEP - ▁SUMMIT - ▁MISERABLE - ▁STRICT - ▁MINGLED - ▁DEFEAT - ▁REVEAL - ▁LOVING - ▁GOOSE - ▁ECHO - ▁AWAIT - ▁MOOD - ▁CRAWLEY - ▁CELL - ▁ENGAGEMENT - ▁PRECED - ▁SOMEONE - ▁ARRANGEMENT - ▁PICKET - ▁GASP - ▁HUMOR - ▁INVITATION - ▁JOB - WITHSTAND - ▁LAMENT - ▁CLASSES - ▁HUNGER - ▁DISPOSED - ▁STEAMER - ▁FEARFUL - ▁GER - ▁FINAL - ▁FLAG - ▁JULY - ▁DIG - WORK - ▁OPPOS - ▁ANXIETY - ▁AUDIENCE - ▁BACHELOR - ▁COLUMN - ▁HANDKERCHIEF - ▁IMPATIENT - ▁JUDGMENT - ▁KNIFE - ▁SOVEREIGN - ▁STRIKING - ▁THOMPSON - ▁EMPIRE - ▁FULFIL - ▁CONSULT - ▁JENNY - ▁THENARDIER - ▁POYSER - ▁FOURTEEN - ▁JAPANESE - ▁INDULG - ▁MARTIAN - ▁COUNTRIES - ▁FETCH - ▁CRITIC - ▁ROBBER - ▁CROOK - ▁DEPARTURE - ▁MABEL - ▁PREACH - ESCENT - ▁WHIP - ▁NAIL - ▁DELIGHTFUL - ▁DISCUSSION - ▁SENTENCE - ▁LANE - ▁ENGINEER - ▁ARRANGED - MMY - ▁LEST - ▁RENT - MMED - ▁LIST - ▁ROBE - ▁MISSION - ▁GRACEFUL - ▁LIGHTN - STONE - COURT - ▁CONCEPTION - ▁CONTRACT - ▁DROWN - ▁EXPERIMENT - ▁HITHERTO - ▁PLAGUE - ▁PORTHOS - ▁SHRIEK - ▁DETECT - ▁ACCENT - ▁ERECT - ▁SAZEN - ▁PROFIT - ▁VIVID - ▁SQUIRE - ▁OPERATION - ▁SMELL - ▁SIMON - ▁EXTENT - ▁KEEN - ▁EMERG - ▁REVIV - ▁REGIMENT - ▁DISAPPOINTMENT - ▁STOLE - ▁DIVINE - ▁GUILTY - ▁COWARD - ▁EXPECTATION - ▁SIGNOR - ▁MODE - ▁CENTRE - ▁FIL - HOW - ▁WEARI - ▁TOTAL - ▁VICTOR - ▁GOVERN - ▁RAISE - ▁ABANDON - ▁ABSURD - ▁ASPECT - ▁CRIMINAL - ▁DEFINITE - ▁DELIBERAT - ▁FEATHER - ▁FLORINA - ▁MIDNIGHT - ▁RICHMOND - ▁SATISFY - ▁SINGULAR - ▁STEADILY - ▁SUPREME - ▁TIMBER - ▁PSYCHOLOG - ▁GESTURE - ▁VALUABLE - ▁INTERVAL - ▁CONFUSION - ▁FLUTTER - ▁SACRED - ▁DISEASE - ▁UNDERTAKE - ▁PENETRAT - ▁MARVEL - ▁NORTHERN - ▁GRIEV - ▁GENIUS - ▁SADDLE - ▁NOVEL - ▁MISERY - ▁CONVICTION - ▁SINK - ▁WAGON - ▁ARISE - ▁COMMENT - ▁BARN - UPON - ▁FENCE - ▁ASSOCIATION - ▁BONES - ▁IDLE - ▁DOUBTFUL - ▁PREPARATION - IZZ - ▁RAIS - ▁BITTERLY - ▁JOE - ▁RELI - ADI - ▁METAL - ▁EXACT - ▁GLOOM - FIELD - ▁DANGLARS - ▁DISGRACE - ▁EXAMINATION - ▁FASCINAT - ▁GLITTER - ▁INCREASING - ▁MESSENGER - ▁PATRIOT - ▁PLATFORM - ▁PROVISION - ▁QUALITIES - ▁SELECT - ▁STEADY - ▁POVERTY - ▁POWDER - ▁PROPHET - ▁HOLLAND - ▁TRUNK - ▁VARIETY - ▁PLANCHET - ▁CONQUER - ▁CONCEIVE - ▁COMBAT - ▁STOOP - ▁SHIRT - ▁GENERATION - ▁COMMITTED - ▁INSULT - ▁CONFUSED - ▁RADIAN - ▁DEBT - ▁IMITAT - ▁DART - ▁CAROLINE - ▁SWAM - ▁WREN - ▁CHILDHOOD - ▁BRAND - ▁JOKE - ▁FRIENDSHIP - ▁DIRT - ▁JOLL - ▁BUSHES - ▁MINK - ▁ROUT - ▁EQUALITY - ▁HESITATED - ▁BARK - ▁ANTI - ▁STATEMENT - PHER - ▁SUNK - ▁DAT - ▁BACKWARD - ▁SUSPECT - ▁OBJECTION - ▁RAP - ▁CHIN - ▁MATE - ▁REDUC - ▁GREGG - ▁ACCOMPANY - ▁ANYWHERE - ▁BENEFIT - ▁CLERK - ▁EXPENSE - ▁FETNAH - ▁INTERPRET - ▁LUKASHKA - ▁NUMEROUS - ▁SURGEON - ▁PUZZL - ▁RESCUE - ▁GRATEFUL - ▁APPROV - ▁RIVAL - ▁NIECE - ▁FLOOD - ▁VANISHED - ▁ERROR - ▁BLAZ - ▁TUMBL - ▁WENDY - ▁PERSIST - ▁CONSOL - ▁SOAP - ▁HUMOUR - ▁FITTED - ▁HOUSEKEEPER - ▁ENABL - ▁OCCASIONALLY - ▁HATRED - ▁SWELL - ▁WORRY - ▁RUST - ▁PURSUIT - ▁INTIMATE - ▁SEAL - ▁COLLECTION - ▁TREMBLED - ▁DENY - ▁HUMANITY - ▁FATAL - ▁COCK - ▁DRIVER - ▁HOPELESS - ▁MISTAKEN - ▁LUC - ▁ACCOMPLISH - ▁COAL - ▁ACCORD - ▁PURSE - ▁SEPARATE - ▁ARRIVE - ▁SMOK - ▁MADAM - ▁ASSOCIAT - ▁INSTRUCT - ▁CELEBR - ▁CHANNEL - ▁CIVILIZATION - ▁DOCTRINE - ▁ENDEAVOUR - ▁GLACIER - ▁INTELLIGENT - ▁INVOLVE - ▁LEATHER - ▁MUTTERED - ▁OLENIN - ▁PENCROFT - ▁PERPLEX - ▁SPECTATOR - ▁UNIVERSITY - ▁ATTAIN - ▁INEVITABL - ▁YONDER - ▁ENCHANT - ▁REPAIR - ▁CURRENT - ▁ASCEND - ▁CREEK - ▁SPARKL - ▁RUE - ▁BEAVER - ▁INFANT - ▁CONTINUALLY - ▁CLASP - ▁IRISH - ▁ROLLIN - ▁PUNISHMENT - ▁LUNCH - ▁AGONY - ▁RUDE - ▁DRAGG - ▁INQUIRI - ▁SEX - ▁TERRIFI - ▁ROBIN - ▁PROFESSIONAL - ▁SPUR - ▁GRAIN - ▁VINE - ▁PENN - ▁ROC - ▁CHASE - ▁INFORM - ▁WRITER - ▁AVO - ▁TAP - ▁CREAT - ▁WHIL - ▁BARR - ▁ASSURE - ▁CIRCUMSTANCE - ▁OIL - ▁ROUSE - ▁COLUMB - ▁CUNNING - ▁DOMESTIC - ▁GLORIOUS - ▁INDIGNATION - ▁PRECISELY - ▁PRUDENCE - ▁RAILROAD - ▁SATURDAY - ▁UTMOST - ▁VIOLENCE - ▁WHIRL - ▁CALCULAT - ▁OVERWHELM - ▁PERPETUAL - ▁QUARLES - ▁SLENDER - ▁TELEGRAPH - ▁ALOUD - ▁OPPRESS - ▁CROPPER - ▁CANADIAN - ▁HERBERT - ▁TIMID - ▁SUPPLY - ▁STROLL - ▁CREEP - ▁OATH - ▁DUSK - ▁EXCESS - ▁HUMBLE - ▁FURIOUS - ▁RIDGE - ▁BULLET - ▁PONY - ▁STATU - ▁ENJOYMENT - ▁CONWAY - ▁DIFFICULTIES - ▁PATCH - ▁JOYCE - ▁CLOCK - ▁RESTORED - ▁ARGU - ▁WIG - ▁CHATT - ▁PLAC - ▁REMOVE - ▁TORN - ▁DISAPPEAR - TIME - WELL - ▁RECOGNIZE - ▁FISHE - ▁DECLARE - ISTIC - ▁AUTHOR - ▁WHISK - ▁COFFEE - ▁COMPREHEND - ▁DISGUISE - ▁ELZEVIR - ▁ENTERPRISE - ▁HOLIDAY - ▁HORIZON - ▁IGNORANT - ▁INTERVIEW - ▁OLIVER - ▁RONICKY - ▁CAPACITY - ▁DISPOSITION - ▁EXTERNAL - ▁OPPOSITION - ▁REPUBLIC - ▁WHEAT - ▁CORPSE - ▁DARLING - ▁THRILL - ▁INHABITANTS - ▁ORNAMENT - ▁SHIFT - ▁RECOGNISE - ▁SHIVER - ▁BOAST - ▁HINT - ▁BOSTON - ▁MULTI - IFYING - ▁STEAL - ▁INSTRUCTIONS - ▁ELECTRIC - ▁SWING - ▁SOOTH - ▁SCALE - ▁MORLAND - ▁DISLIKE - ▁FLATTER - ▁COACH - ▁LEIF - ▁STAMP - ▁ANYHOW - ▁MOTIONLESS - ▁ANDREA - ▁LOSING - ▁PAUL - ▁CAROL - ▁ADVANC - ▁IMAGIN - ▁CENTER - ▁JAR - ▁SUCCEED - ▁DISMISS - CTOR - ▁RECEIV - ▁DRAG - ▁INTENT - ▁BARBAR - ▁PUNISH - ▁ABRUPTLY - ▁BERNARD - ▁DECISION - ▁INDEPENDENT - ▁PROVINCE - ▁SLEEVE - ▁TREMENDOUS - ▁UNPLEASANT - ▁LEISURE - ▁THRONG - ▁THUMB - ▁BANNER - ▁CONTRADICT - ▁RESTRAIN - ▁DIVIDED - ▁WRAPPED - ▁HAUNT - ▁SNEER - CHESTER - ▁JULIA - ▁MILD - ▁CONTACT - ▁MEANTIME - ▁NEEDLE - ▁BLOT - ▁BARREL - ▁ISABELLA - ▁THEATRE - ▁ESTABLISHMENT - ▁MARKET - ▁CHINA - ▁FORBID - ▁PERISH - ▁DOORWAY - ▁CARLING - ▁PERIL - ▁PRIZE - ▁HATCH - ▁CURL - ▁REFER - ▁DEVOT - EMBER - MONT - ▁CANOE - ▁PROFESSION - ▁CONVICT - ▁CRAWL - ▁ACTIVITY - ▁BEWILDER - ▁BREEZE - ▁CONTEMPLAT - ▁DISGUST - ▁FATIGUE - ▁MERRICK - ▁PRAIRIE - ▁REFORM - ▁SPECTACLE - ▁STUDENT - ▁TUMULT - ▁UNIFORM - ▁VIGOROUS - ▁CONDEMN - ▁GENUINE - ▁THOMAS - ▁ARROW - ▁PILLOW - ▁FEEBLE - ▁RALPH - ▁SCHEME - ▁COLLAR - ▁JUSTINIAN - ▁NERVE - ▁OYSTER - ▁BENNET - ▁DUTIES - ▁BINGLEY - ▁CHRISTMAS - ▁CONVEY - ▁DESPIS - ▁RATTL - ▁GARMENTS - ▁GOWN - ▁BERYL - ▁BARRIER - ▁CHARACTERISTIC - ▁MEDITAT - ▁DISCOURSE - ▁STAFF - ▁KARA - ▁MONTE - ▁READILY - ▁VENTUR - ▁HENCE - ▁ROPE - ▁CRIES - ▁ANGLE - ▁RESPECTABLE - ▁MOAN - ▁OUTLINE - BORN - ▁FIX - ▁INTEND - LIA - ▁CHILL - ▁CREP - ▁CHOSE - ▁SPECULAT - ▁ATTRIBUT - ▁BUFFALO - ▁ENTREAT - ▁ENVELOP - ▁FREDERICK - ▁IMPATIENCE - ▁INDIFFERENCE - ▁INDUSTRY - ▁INSTITUTION - ▁LYNDE - ▁RETAIN - ▁TROUTINA - ▁UNCOMFORTABL - ▁VENGEANCE - ▁JENKS - ▁CONGRESS - ▁SMART - ▁THITHER - ▁DISAGREE - ▁IMPROVEMENT - ▁PISTOL - ▁GOSSIP - ▁ETERNAL - ▁BELIEF - ▁SLEDGE - ▁AROUSED - ▁ORANGE - ▁FASTENED - ▁MONKEY - ▁WITHDREW - ▁OFFEND - ▁PIERC - ▁MOONLIGHT - ▁OARS - ▁GROOM - ▁FIDDLER - ▁BARBARA - SHIRE - ▁ATTENDANT - ▁DIVERS - ▁DUCK - ▁PROPOSAL - ▁GROWTH - ▁CURATE - ▁STEWAR - ▁MOCK - ▁SUCCESSION - ▁CREATION - ▁PARTIAL - ▁SWU - ▁FROST - ▁EIGHTH - ▁AWE - ▁PERCH - ▁LACE - SPOON - ▁ARRANGE - SERIES - ▁FOG - ▁SCU - ▁ABRAHAM - ▁ADMIRAL - ▁BARBICANE - ▁CAMPAIGN - ▁CONSEQUENTLY - ▁CULTURE - ▁GRAMMONT - ▁GWYNPLAINE - ▁HAPPILY - ▁HOOPDRIVER - ▁INDEPENDENCE - ▁LEOPOLD - ▁MISCHIEF - ▁MONTGOMERY - ▁NECESSARILY - ▁PSYCHIC - ▁RABBIT - ▁REFUGE - ▁RESPONSIBILIT - ▁SENATOR - ▁UNCERTAIN - ▁MENSTRUA - ▁FANNY - ▁SUBSTANCE - ▁APRIL - ▁ELBOW - ▁QUALITY - ▁BORDER - ▁BRUTAL - ▁CARPET - ▁SOLITAR - ▁FROWN - ▁SCENT - ▁ANNOY - ▁NAKED - ▁BOSOM - ▁CONSUM - ▁TIGER - ▁ITALIAN - ▁PARSON - ▁DECLIN - ▁NEIGHBORHOOD - ▁GREGGORY - ▁EXCEED - ▁SILLY - ▁ICELAND - ▁HIDEOUS - ▁STRU - ▁ALTERNAT - ▁CABINET - ▁ABILITY - ▁BEECH - ▁SECRETARY - ▁CONTEST - ▁MONK - ▁PADD - ▁EVA - ▁CREST - ▁FINISH - ▁APPARENT - ▁MIX - ▁SLIP - ▁LUXURI - ▁AUTUMN - ▁CIRCULAR - ▁COMPOSITION - ▁DISPLEAS - ▁EXCELLENC - ▁FURNITURE - ▁GRADUATE - ▁INDIFFERENT - ▁JOSEPH - ▁OCCUPATION - ▁POSSIBILITY - ▁RENEWED - ▁RESPONDED - ▁PREVAIL - ▁HOARSE - ▁PRACTIS - ▁FAREWELL - ▁JULIET - ▁OVERHEAD - ▁THREAD - ▁APPLICATION - ▁SOLITUDE - ▁ADAPT - ▁FALK - ▁LARK - ▁COARSE - ▁MANKIND - ▁KICK - ▁BATTER - ▁SOLICIT - ▁RESIGN - ▁MOTOR - ▁STEEL - ▁CONTRIV - ▁AUTHORITIES - ▁HARSH - ▁FAVORITE - ▁TALENT - ▁FLEECE - ▁AGITATION - ▁ABBE - ▁STUCK - ▁HEDGE - ▁BIBLE - ▁RECOLLECTION - ▁PARTNER - ▁DAMON - ▁SHINE - ▁HOOK - ▁CONFESSION - ▁ASSENT - ▁ELDE - ▁BIGGE - ▁PEACEFUL - SCRIBED - ▁WEIGH - CARLET - ▁DECIDE - ▁RECOLLECT - ▁BOHEMIA - ▁CALIFORNIA - ▁CONSTRUCT - ▁DEMONSTRAT - ▁DISTRIBUT - ▁FRIGHTFUL - ▁GNOME - ▁IGNORANCE - ▁JANUARY - ▁JULIUS - ▁MEMORIES - ▁OCCUPY - ▁PHRASE - ▁WHIRLWIND - ▁WILMINGTON - ▁CARLINI - ▁CHAUVELIN - ▁ESTEEM - ▁GENZABURO - ▁GLOBE - ▁LECOQ - ▁MARGARET - ▁MONARCH - ▁NAPOLEON - ▁SCORN - ▁STAGGER - ▁SUSTAIN - ▁TRADITION - ▁ADJUST - ▁FROZEN - ▁IMPRISON - ▁LANTERN - ▁MICHEL - ▁STOMACH - ▁TORRENT - ▁WITHDRAW - ▁FRANZ - ▁POISON - ▁SURVEY - ▁BRITISH - ▁ELEVAT - ▁AWOKE - ▁ESTHER - ▁INHERIT - ▁TRAVERS - ▁STOPPING - ▁IRELAND - ▁COMPARATIVE - ▁SOBB - ▁FAVOURITE - ▁CANVAS - ▁CLOAK - ▁GLAR - ▁ASSISTANT - ▁DAMAGE - ▁PEAK - ▁DISTINCTION - FARE - ▁DOLLAR - ▁BEGGAR - LUSIVE - ▁MODEL - ▁SECUR - ▁DISPOS - ▁SLID - ▁PEA - ▁SPEEDI - HOLD - ▁SNAP - ▁CIGAR - ▁AFFLICT - ▁AMAZEMENT - ▁LAUNCELOT - ▁LEAGUE - ▁MARIPOSA - ▁POPULATION - ▁UNEASY - ▁BLOSSOM - ▁CATERPILLAR - ▁INCLINATION - ▁SUSPEND - ▁SYNDIC - ▁TAYLOR - ▁WILSON - ▁CONTRAST - ▁PORTRAIT - ▁CORONER - ▁GREEK - ▁BUNDLE - ▁BLEW - ▁THORPE - ▁ORPHAN - ▁MUSCLE - ▁DEAF - ▁SURVIV - ▁EXCEEDINGLY - ▁TENDENC - ▁ISRAEL - ▁QUANTIT - ▁PENSION - ▁DRIED - TEXT - ▁REFERENCE - ▁REPOSE - ▁FOLLY - ▁REPLACE - ▁TERR - ▁ANKLE - ▁SUNLIGHT - ▁SECURITY - ▁SHOV - ▁RAW - CULAR - ▁JACKET - ▁TUNE - ▁HOBB - ▁MARTIN - DUCED - ▁FIST - ▁BEGG - ▁CHOK - ▁INQUIRE - ▁INTELLECT - ▁AMUSEMENT - ▁APPROPRIATE - ▁CONGRATULAT - ▁CONVENTION - ▁DISCOURAG - ▁EXQUISITE - ▁FOUNTAIN - ▁JUNIOR - ▁NONSENSE - ▁OBSTACLE - ▁SPECIMEN - ▁SWEAR - ▁TRANQUIL - ▁VEHICLE - ▁WISDOM - ▁ASCERTAIN - ▁CAUTIOUS - ▁CENTURIES - ▁CORRUPT - ▁EXPLOR - ▁TURKEY - ▁BARGAIN - ▁CONFOUND - ▁FUNCTION - ▁GRACIOUS - ▁MONICA - ▁ILLUSTRAT - ▁CRUMB - ▁REMEDY - ▁REMOTE - ▁REVENGE - ▁BABYLON - ▁CAUTION - ▁INTERIOR - ▁CRISTEL - ▁BRAZ - ▁THIRST - ▁PROBABLE - ▁HARMONY - ▁CHARITY - ▁DECAY - ▁COLONI - ▁AVAIL - ▁REPULS - ▁ABSENT - ▁PULSE - ▁PRESUM - ▁CRANE - ▁NEIGHBOURHOOD - ▁SUNSET - ▁CANNON - ▁GRAPE - ▁SOFA - ▁DRANK - MINOUS - ▁DECLARATION - ▁CLOSING - ▁MEEK - ▁STARV - ▁BUNCH - ▁PERFORMANCE - ▁ENTERTAINMENT - ▁STRIV - ▁EMILY - ▁VALET - MPOSED - ▁INTIMA - ▁POLISH - ▁HIRE - POST - ▁TREMBLE - ▁CEASE - ▁VIRGIN - ▁RUSSIA - COURSE - ▁EDUCAT - BOUND - ▁INHABIT - ▁SUPERINTEND - ▁BISCUIT - ▁CHICAGO - ▁CHOKICHI - ▁CONFLICT - ▁ENCLOS - ▁EXCLUSION - ▁EXECUTIVE - ▁GRANDMOTHER - ▁HEADQUARTERS - ▁INFERIOR - ▁INVISIBLE - ▁MUTUAL - ▁OPPONENT - ▁SENSITIVE - ▁STUDIED - ▁TEMPORARY - ▁UNWILLING - ▁PERMANENT - ▁BEDROOM - ▁NOVEMBER - ▁COMPLICAT - ▁DEVOUR - ▁SCRAMBL - ▁SECTION - ▁PROPOSITION - ▁DEPRIV - ▁RYNCH - ▁PLEAD - ▁TORTURE - ▁SCOUT - ▁PILOT - ▁CHERISH - ▁SPEAR - ▁SUGAR - ▁JASPER - ▁STRAY - ▁RIFLE - ▁NORMAL - ▁JERK - ▁HONEY - ▁AWAKENED - ▁QUIVER - ▁PYE - ▁APPLY - LICK - JA - ▁ANNOUNC - FORE - ▁ENGINE - ▁HESITATE - ▁PROVIDE - ▁REALIZE - ▁SEIZE - ▁RESTORE - MOUTH - FOOT - ▁DIFFER - ▁ULTIMATE - ▁ABUNDANCE - ▁APPRECIATE - ▁APPREHENSION - ▁AVENUE - ▁AWKWARD - ▁CETERA - ▁CHIMNEY - ▁CLUTCH - ▁CONVENIENT - ▁CORRIDOR - ▁DISTRACT - ▁ELEGANT - ▁ELSEWHERE - ▁ENTHUSIASTIC - ▁EXECUTE - ▁EXTREMIT - ▁JERUSALEM - ▁MIRACLE - ▁MONSTROUS - ▁OBEDIENCE - ▁OBSCURE - ▁PHENOMENA - ▁RESIDENCE - ▁RESOURCE - ▁REVOLT - ▁SCIENTIFIC - ▁SHIELD - ▁SIMPSON - ▁UNIVERSE - VOLUNTARY - ▁ATTENTIVE - ▁BRENDA - ▁DEPOSIT - ▁MAXIM - ▁REJECT - ▁STIRRED - ▁DISORDER - ▁SERENE - ▁TOBACCO - ▁MILTON - ▁BALLOON - ▁STEPHEN - ▁STRAIT - ▁CHINESE - ▁COURTEOUS - ▁RELEASE - ▁RECESS - ▁COTTON - ▁STUMP - ▁TANK - ▁PROMOTE - ▁DERIVE - ▁LOYAL - ▁GRANIT - ▁DISMAL - ▁CATTLE - ▁DOONE - ▁CUPID - DIGNIFIED - ▁RIPE - ▁EXILE - ▁ANTIQU - UMINAT - ▁SUPPOS - ▁WRETCH - ▁IDENTI - ▁EASI - ▁SERV - ▁QUEST - TOWN - ▁ACHIEVEMENT - ▁APPETITE - ▁BUCCANEER - ▁COMMENCED - ▁DELAWARE - ▁DISCERN - ▁IMMORTAL - ▁INDIGNANT - ▁JOSIANA - ▁MECHANICAL - ▁MUSKRAT - ▁REVIEW - ▁ROBARTS - ▁SIGNIFICANT - ▁SUBSEQUENT - ▁YOURSELVES - ▁ANGRILY - ▁BORROW - ▁SUBLIME - ▁AFRICA - ▁CHICKEN - ▁DEGRAD - ▁GEORGI - ▁HUMILIAT - ▁LODGING - ▁REDCOAT - ▁VIOLET - ▁HOPKINS - ▁RAWDON - ▁PRICK - ▁WHALE - ▁FUNERAL - ▁GUINEA - ▁DISMAY - ▁PORCH - ▁HARVEST - ▁PARCEL - ▁SUBDU - ▁SYRIA - ▁PANIC - ▁BOUGHS - ▁CIGARETTE - ▁CHRON - ▁INQUIRY - ▁CRYSTAL - ▁SPELL - ▁PLUCK - ▁PATTERN - ▁DARING - ▁CRITICISM - ▁DAINT - ▁DISTURBANCE - ▁BUTCHER - ▁LITERA - ▁ABUSE - IXTURE - ▁ANIMAT - ▁WRIT - ▁BELIEV - ▁INDUCE - COMING - ▁DRAMA - ▁AGITAT - SHAW - ▁IMPERFECT - ▁MANUFACTURE - ▁AFFIRM - ▁ANGUISH - ▁ARTIFICIAL - ▁BIBBS - ▁CHARLOTTE - ▁CIRCUS - ▁CONNISTON - ▁CONSTITUTE - ▁DAZZL - ▁DEFECT - ▁DISCHARG - ▁ESCORT - ▁EXAGGERAT - ▁GWENDOLEN - ▁IRRESISTIBL - ▁PHILOSOPHY - ▁PHOTOGRAPH - ▁PILGRIM - ▁PLEASING - ▁QUIXOTE - ▁RESPONSE - ▁SCRATCH - ▁SERGEANT - ▁SHERIFF - ▁SHUDDER - ▁STRUCTURE - ▁SUFFRAGE - ▁SURRENDER - ▁SWORE - ▁VILLAIN - ▁HESITATING - ▁FLORENCE - ▁IRRITAT - ▁RIGID - ▁SINISTER - ▁STUDIO - ▁RAFT - ▁CHAMPION - ▁PAVEMENT - ▁WOLF - ▁DEVICE - ▁WRECK - ▁HESITATION - ▁LAZY - ▁ADJO - ▁DECENT - ▁INTERVEN - ▁WOOL - ▁ILLUSION - ▁HAWK - ▁IMPART - ▁LUNGS - ▁WINNING - ▁VITAL - ▁CONSPI - ▁SUBTLE - ▁CONSTANC - ▁HURL - ▁AMIABL - ▁FOLK - GGY - ▁NECESSIT - ▁PROFESS - WASH - ▁ADMIRING - ▁AMBITIOUS - ▁ANTHONY - ▁CEREMONY - ▁CONTRIBUTE - ▁CRAGGS - ▁DETAIN - ▁DISCLOS - ▁DWELT - ▁EGYPT - ▁FELIX - ▁JOURNAL - ▁KWAIRYO - ▁LIBERAL - ▁LUMBER - ▁OCTOBER - ▁ORGANIZATION - ▁POPULACE - ▁PRECAUTION - ▁PREJUDICE - ▁PROCLAIM - ▁PROPRIETOR - ▁RESPONSIBLE - ▁RHYTHM - ▁RIDICULOUS - ▁SCHOLAR - ▁SQUEEZ - ▁SUBSTITUTE - ▁SURPASS - ▁THRESHOLD - ▁WHARTON - ▁FLICKER - ▁AMAZED - ▁BRONZE - ▁COSSACK - ▁SPILETT - ▁CASUAL - ▁DARCY - ▁PARLOUR - ▁SEXUAL - ▁INSECT - ▁NATHAN - ▁EMINENT - ▁PENCIL - ▁PETITION - ▁ROTTEN - ▁VIGIL - ▁CAESAR - ▁EAGLE - ▁TREAD - ▁REACTION - ▁TACIT - ▁PARLOR - ▁SPAIN - ▁WILDERNESS - ▁DICTAT - ▁GRATIFY - ▁STOVE - ▁SKIRT - ▁UTILI - ▁CONCERT - ▁GORGE - ▁DECORAT - ▁LATIN - ▁ANCHOR - ▁KNOT - ▁MONDAY - ▁GABLES - ▁TOLERABL - ▁ROGER - BERRIES - ▁INVAD - IMMER - OMETER - ▁PRODUC - OBIL - ▁PERMISSI - FICIENCY - ▁WANDER - RREL - PIECE - HORN - ▁COMMIT - ▁ACCUMULAT - ▁JAPAN - ▁ABUNDANT - ▁ACADEMY - ▁ALBERT - ▁BANQUET - ▁DELICIOUS - ▁DOCUMENT - ▁EXCLAMATION - ▁FEBRUARY - ▁GROTESQUE - ▁HEATHERSTONE - ▁HUMPHREY - ▁HURSTWOOD - ▁MOHAMMED - ▁MOSCOW - ▁NICHOLAS - ▁OBSTINATE - ▁PHANTOM - ▁PHILOSOPHER - ▁RECEPTION - ▁SPANIARD - ▁SWOLLEN - ▁TELEPHONE - ▁TRIBUTE - ▁TUNNEL - ▁UNREASONABL - ▁WIGWAM - ▁BUTTERFLY - ▁COLLINS - ▁DISPATCH - ▁EDITOR - ▁CONTINENT - ▁DIMINISH - ▁HORRID - ▁KEATS - ▁PROVIDENCE - ▁BEHALF - ▁CHARLEY - ▁DRAKE - ▁LAUNCH - ▁SALOON - ▁GIGANT - ▁DISPUTE - ▁HYSTERI - ▁DEFENCE - ▁SCREEN - ▁VAULT - ▁NINTH - ▁HARBOR - ▁FLANK - ▁SPECK - ▁UPRIGHT - ▁KEMP - ▁CANADA - ▁STALK - ▁OWL - ▁BRUTE - ▁FERRIS - ▁DECREE - ▁HABITUAL - ▁BRISK - ▁INSPIRE - ▁HUSH - ▁CROUCH - ▁FRIDAY - ▁MOUNTAINEER - ▁HISTORIC - ▁BATES - ▁RUSK - ▁SEMI - DICTION - ▁BUSI - ▁REMOV - MMI - ▁SUFFIC - ▁FLEE - ▁LOUIS - NLEA - ▁IMPORT - OLOGY - ▁CLERGY - ▁ADVERTISEMENT - ▁BENEVOLEN - ▁BORODINO - ▁CATHOLIC - ▁COMMERCIAL - ▁CONJECTURE - ▁CURTAIN - ▁CUTHBERT - ▁DEMOCRACY - ▁GUARANTEE - ▁HYPNOSIS - ▁INDEFINITE - ▁INVESTIGATION - ▁IRREGULAR - ▁KOYO - ▁MERRIWIG - ▁MIRANDA - ▁NICHOLL - ▁ONLOOKER - ▁PERSECUT - ▁RECOGNITION - ▁REJOICE - ▁REMEMBRANCE - ▁REVELATION - ▁SCOLD - ▁SENIOR - ▁SQUIRREL - ▁SYMPATHETIC - ▁TEMPEST - ▁TREACHER - ▁UNDERNEATH - ▁UNEASINESS - ▁UNNECESSARY - ▁UPSTAIRS - ▁VEXATION - ▁ACCESS - ▁CHEAP - ▁ESTIMATE - ▁HAZARD - ▁HORSEBACK - ▁PLUNDER - ▁RASCAL - ▁ROSTOV - ▁ACCUR - ▁GRAVITY - ▁SITUATED - ▁INVARIABL - ▁PLENTIFUL - ▁SPENCER - ▁WALLACE - ▁POLICY - ▁WARRANT - ▁ENVY - ▁LAMB - ▁EXTRACT - ▁CORRAL - ▁PANEL - ▁LINK - ▁LILIES - ▁BECKON - ▁SENOR - ▁BORG - ▁DEBATE - ▁STEER - COGNI - COMB - ▁SETTL - ▁VENERA - ▁FEATURE - ▁TERRIBL - CAPABLE - OLOGICAL - ▁INCESSANT - ▁RESOLUTE - SHAUGHNESSY - ▁ABOLITION - ▁ASSASSIN - ▁BEHAVIOUR - ▁BLUNT - ▁COMMERCE - ▁CONSTANTINOPLE - ▁CRICKET - ▁DISCIPLINE - ▁DROUET - ▁DWARF - ▁INJUSTICE - ▁LUXURY - ▁MANUSCRIPT - ▁MISUNDERSTAND - ▁POLITICIAN - ▁REDOUBT - ▁SALVATION - ▁SERMON - ▁STRUGGLING - ▁SURPRISING - ▁TRIGGER - ▁TUESDAY - ▁TWILIGHT - ▁UNDOUBTEDLY - ▁VEGETABLE - ▁VULGAR - ▁WAISTCOAT - ▁WRINKLE - ▁ALEXANDER - ▁CEILING - ▁ECONOMIC - ▁EVERLASTING - ▁INFLICT - ▁LEVISON - ▁LOBSTER - ▁OVERFLOW - ▁SNATCH - ▁TRAGEDY - ▁DEASEY - ▁ENLIGHTEN - ▁FRIGATE - ▁INSPECT - ▁MARVELLOUS - ▁ATLANTIC - ▁LUFTON - ▁BLADE - ▁CRASH - ▁SLAUGHTER - ▁ANNUAL - ▁CONFERENCE - ▁TWIG - ▁REASSUR - ▁UNIQUE - ▁WRATH - ▁CRADLE - ▁HULLO - ▁LIQUID - ▁MIRTH - ▁EXPERT - ▁HARVEY - ▁RESTORATION - ▁PRETTI - ▁APOLOGY - ▁SLAIN - ▁BARBER - ▁UPROAR - ▁SCANT - ▁BADGER - ▁GROCER - ▁ACRES - ▁BRIDLE - ▁SPECIFI - ▁TANGLE - ▁FERTIL - ▁PATRON - WIXT - LAMOUR - ▁DARN - ▁POPE - ▁PERCEIV - ▁CONCLUDE - ▁SIMPL - ▁GUILT - ▁CARRIE - EFFICIENT - SGIVING - ▁APPOINTMENT - ▁APPRECIATION - ▁CARTRIDGE - ▁CHALLENGE - ▁CRAYFISH - ▁CRIMSON - ▁CUCUMETTO - ▁ENERGETIC - ▁EPOCH - ▁EXAMINING - ▁EXTENSIVE - ▁EXTINGUISH - ▁GLOODY - ▁INSIGNIFICANT - ▁LANDLORD - ▁LANGUID - ▁LEGISLATURE - ▁MAJESTIC - ▁PACIFIC - ▁PASTRINI - ▁PHRONSIE - ▁RECONCIL - ▁SIMULTANEOUS - ▁SKELETON - ▁SKETCH - ▁TRANSFORM - ▁UNJUST - ▁VEXED - ▁ASYLUM - ▁CLUSTER - ▁ERRAND - ▁EXPEND - ▁NEGATIVE - ▁NORHALA - ▁SCANDAL - ▁STIMULAT - ▁SWEAT - ▁COMPOUND - ▁DECEMBER - ▁EXPAND - ▁PROLONG - ▁PURITAN - ▁CONQUEST - ▁MAGUA - ▁SANCHO - ▁TRENCH - ▁ENTITLE - ▁PEPPER - ▁DISASTER - ▁REGAIN - ▁SHREWD - ▁SULLEN - ▁CLAVIER - ▁COLOSS - ▁SHILLING - ▁ETHEL - ▁MYSTERIES - ▁BULK - ▁GRANDEUR - ▁AGNES - ▁CONVERT - ▁WRIST - ▁GLID - ▁TERRACE - ▁SONYA - ▁DANTES - ▁MOULD - ▁MAGNET - ▁PLOT - RANK - ▁CAVIT - ▁SUBSID - ▁SLAP - TURNED - ▁THREAT - BREAK - ▁ANCESTORS - ▁ANTICIPATED - ▁APPLAUSE - ▁ASSAULT - ▁ATTORNEY - ▁AUTOMATIC - ▁CARAVAN - ▁CATASTROPHE - ▁CAVALCANTI - ▁CROMWELL - ▁ENVOY - ▁EXHAUSTION - ▁FIEND - ▁GENEROSITY - ▁GIMBLET - ▁HARDQUANONNE - ▁HOUARN - ▁INJURY - ▁MACKINSON - ▁OGLETHORPE - ▁PETTICOAT - ▁RASPBERR - ▁REHNHJELM - ▁REJOICING - ▁REMNANT - ▁SCOTLAND - ▁SHRINK - ▁STANDPOINT - ▁TESTIMONY - ▁THEREAFTER - ▁THIRTIETH - ▁TWENTIETH - ▁TYRANT - ▁VENTNOR - ▁VETERAN - ▁WHITTAKER - ▁ZVERKOV - ▁ARCHITECTUR - ▁BLUNDER - ▁DENSHER - ▁FORTNIGHT - ▁JUDITH - ▁MARIANNE - ▁MEMORABLE - ▁REFINED - ▁REVOLV - ▁UNDERTAKING - ▁CLUMP - ▁GRUMBLE - ▁SYMPATHI - ▁TICKET - ▁TWITCH - ▁EDITION - ▁FALANDER - ▁CARTHAGE - ▁ORLEANS - ▁POSSUM - ▁SWITCH - ▁CLUNG - ▁CARDINAL - ▁GNAW - ▁LOCATED - ▁HARROW - ▁RASH - ▁SIEGE - ▁LOAF - ▁BRUISE - ▁REGULAT - ▁RESORT - ▁SARAH - ▁LEVIN - ▁NAVY - ▁MOOSE - ▁STOOL - ▁CHANCELLOR - ▁INGENIOUS - ▁CHALK - ▁PRETENCE - ▁REPAY - ▁ROAST - ▁PLUTO - ▁BAFFL - ▁STUMBL - ▁SPHERE - ▁PLEDGE - ▁SPRAWL - ▁WRAP - ▁FRINGE - ▁DREAR - ARRINGTON - ▁FEDERA - KEEPER - ▁PHYSIC - ▁ADVENT - HUMAN - OLOGIST - ▁ALEXANDR - ▁APPARITION - ▁BARTHOLEMY - ▁CITOYEN - ▁CLIMATE - ▁CONTEMPORAR - ▁DESOLATE - ▁DISCONTENT - ▁ELEPHANT - ▁FERNANDO - ▁FERRALTI - ▁FOLIAGE - ▁FUGITIVE - ▁GAMBLING - ▁INVOLUNTARILY - ▁LABYRINTH - ▁LEGITIMATE - ▁MILLIONAIRE - ▁PERCEPTION - ▁PROPRIETY - ▁REBELLION - ▁REFRAIN - ▁RUGGLES - ▁SCRIPTURE - ▁SPLENDOR - ▁SQUADRON - ▁STRICKEN - ▁SWARM - ▁THEODORA - ▁TOMORROW - ▁VELVET - ▁WOLVES - ▁DISREGARD - ▁GLIMMER - ▁SHROUD - ▁TWINKLING - ▁UNEQUAL - ▁CHANNING - ▁CLUMS - ▁ENIGMA - ▁NAVIGAT - ▁TARKAS - ▁TEMPERATURE - ▁DIVISION - ▁GRATIFICATION - ▁MONUMENT - ▁SQUEAK - ▁KAVIN - ▁INTERPOSE - ▁THORNTON - ▁SOLUTION - ▁STREAK - ▁SHRILL - ▁APRON - ▁PITEOUS - ▁HAUGHTY - ▁RECKLESS - ▁EMPTI - ▁WADMAN - ▁BONNET - ▁MARTHA - ▁DUMB - ▁SHATTER - ▁ACUTE - ▁BRINK - ▁CAPRICE - ▁HURON - ▁INFERN - ▁FOWL - ▁ENRAGE - ▁ADORN - ▁CRUIS - ▁PROBABILIT - ▁EXPIR - ▁IMPETU - ▁OVERHEAR - BURTON - ▁TRANSLAT - ▁ENGAGE - ▁CONVINCE - ▁ABNORMAL - ▁GESTICULAT - ▁ABOMINABL - ▁ADVERSARY - ▁ADVERTISER - ▁ADVERTISING - ▁ANNIHILAT - ▁ARTILLERY - ▁CATHEDRAL - ▁COMPETITOR - ▁COULSON - ▁CREVICE - ▁CUSHION - ▁DEBRAY - ▁DEJECT - ▁DIETRICH - ▁DISADVANTAGE - ▁ELLISON - ▁EMPHASIS - ▁EXCURSION - ▁FANTASTIC - ▁HYPOTHES - ▁INCONVENIENCE - ▁INDESCRIBABLE - ▁INDUSTRI - ▁INVALID - ▁MERCILESS - ▁MESOPOTAMIA - ▁MOSQUITO - ▁NARRATIVE - ▁NOWADAYS - ▁OPPORTUNITIES - ▁PROMISING - ▁RECTANGLE - ▁REMONSTRANCE - ▁RESTAURANT - ▁RIBBON - ▁SCIENTIST - ▁SHALMANESER - ▁SKULL - ▁SPRUCE - ▁SUBSTANTIAL - ▁SYMBOL - ▁TEAPOT - ▁TERRITORY - ▁TRAFFIC - ▁TREASON - ▁TRUMPET - ▁TYRANN - ▁UNANIMOUS - ▁UNAWARE - ▁VICINITY - ▁WREATH - ▁ZADIG - ▁CHATEAU - ▁CONFRONT - ▁DUCHESS - ▁EMBODI - ▁FEMININ - ▁FURNACE - ▁MONTONI - ▁RENOWN - ▁SMASH - ▁HARVARD - ▁NEWBERRY - ▁PERFUME - ▁SIGNATURE - ▁SPLASH - ▁SUPPOSITION - ▁HARBOUR - ▁ASSURANCE - ▁BRISTOL - ▁BUCKINGHAM - ▁DUDLEY - ▁INTENSITY - ▁CHOPIN - ▁ENLIST - Q - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false use_preprocessor: true token_type: bpe bpemodel: data/en_token_list/bpe_unigram5000/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: n_fft: 512 win_length: 400 hop_length: 160 fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 27 num_freq_mask: 2 apply_time_mask: true time_mask_width_ratio_range: - 0.0 - 0.05 num_time_mask: 5 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_en_bpe5000_sp/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 256 attention_heads: 4 linear_units: 1024 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true rel_pos_type: latest pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.7a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
ali2066/finetuned_token_2e-05_16_02_2022-01_30_30
ali2066
2022-02-16T00:32:55Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_token_2e-05_16_02_2022-01_30_30 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_token_2e-05_16_02_2022-01_30_30 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1748 - Precision: 0.3384 - Recall: 0.3492 - F1: 0.3437 - Accuracy: 0.9442 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 38 | 0.3180 | 0.0985 | 0.1648 | 0.1233 | 0.8643 | | No log | 2.0 | 76 | 0.2667 | 0.1962 | 0.2698 | 0.2272 | 0.8926 | | No log | 3.0 | 114 | 0.2374 | 0.2268 | 0.3005 | 0.2585 | 0.9062 | | No log | 4.0 | 152 | 0.2305 | 0.2248 | 0.3247 | 0.2657 | 0.9099 | | No log | 5.0 | 190 | 0.2289 | 0.2322 | 0.3166 | 0.2679 | 0.9102 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
explosion/en_healthsea
explosion
2022-02-15T23:40:53Z
14
5
spacy
[ "spacy", "token-classification", "text-classification", "en", "model-index", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: - spacy - token-classification - text-classification language: - en model-index: - name: en_healthsea results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 80.77 - name: NER Recall type: recall value: 79.92 - name: NER F Score type: f_score value: 80.34 --- # Welcome to Healthsea ✨ Create better access to health with machine learning and natural language processing. This is the trained healthsea pipeline for analyzing user reviews to supplements by extracting their effects on health. This pipeline features a trained NER model and a custom Text Classification model with Clause Segmentation and Blinding capabilities. > Read more in the [blog post](https://explosion.ai/blog/healthsea) and visit the [healthsea repository](https://github.com/explosion/healthsea) for all training workflows, custom components and training data. | Feature | Description | | --- | --- | | **Name** | `en_healthsea` | | **Version** | `0.0.0` | | **spaCy** | `>=3.2.0,<3.3.0` | | **Default Pipeline** | `sentencizer`, `tok2vec`, `ner`, `benepar`, `segmentation`, `clausecat`, `aggregation` | | **Components** | `sentencizer`, `tok2vec`, `ner`, `benepar`, `segmentation`, `clausecat`, `aggregation` | | **Vectors** | 684830 keys, 684830 unique vectors (300 dimensions) | | **Sources** | n/a | | **License** | MIT | | **Author** | [Explosion](explosion.ai) | ### Label Scheme <details> <summary>View label scheme (6 labels for 2 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `BENEFIT`, `CONDITION` | | **`clausecat`** | `POSITIVE`, `NEUTRAL`, `NEGATIVE`, `ANAMNESIS` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 80.34 | | `ENTS_P` | 80.77 | | `ENTS_R` | 79.92 | | `CATS_SCORE` | 74.87 | | `CATS_MICRO_P` | 82.17 | | `CATS_MICRO_R` | 80.85 | | `CATS_MICRO_F` | 81.51 | | `CATS_MACRO_P` | 78.01 | | `CATS_MACRO_R` | 72.41 | | `CATS_MACRO_F` | 74.87 | | `CATS_MACRO_AUC` | 92.76 | | `CATS_LOSS` | 297.22 |
huggingartists/led-zeppelin
huggingartists
2022-02-15T22:19:29Z
4
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/led-zeppelin", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/led-zeppelin tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/e4763bba12e6411077a3e573cd290da0.433x433x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Led Zeppelin</div> <a href="https://genius.com/artists/led-zeppelin"> <div style="text-align: center; font-size: 14px;">@led-zeppelin</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Led Zeppelin. Dataset is available [here](https://huggingface.co/datasets/huggingartists/led-zeppelin). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/led-zeppelin") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/cpexpb1w/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Led Zeppelin's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/bna2epba) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/bna2epba/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/led-zeppelin') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/led-zeppelin") model = AutoModelWithLMHead.from_pretrained("huggingartists/led-zeppelin") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
Leostronkest/DialoGPT
Leostronkest
2022-02-15T21:59:14Z
8
0
transformers
[ "transformers", "pytorch", "tf", "jax", "gpt2", "text-generation", "conversational", "arxiv:1911.00536", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png tags: - conversational license: mit --- ## A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT) DialoGPT is a SOTA large-scale pretrained dialogue response generation model for multiturn conversations. The [human evaluation results](https://github.com/dreasysnail/Dialogpt_dev#human-evaluation) indicate that the response generated from DialoGPT is comparable to human response quality under a single-turn conversation Turing test. The model is trained on 147M multi-turn dialogue from Reddit discussion thread. * Multi-turn generation examples from an interactive environment: |Role | Response | |---------|--------| |User | Does money buy happiness? | | Bot | Depends how much money you spend on it .| |User | What is the best way to buy happiness ? | | Bot | You just have to be a millionaire by your early 20s, then you can be happy . | |User |This is so difficult ! | | Bot | You have no idea how hard it is to be a millionaire and happy . There is a reason the rich have a lot of money | Please find the information about preprocessing, training and full details of the DialoGPT in the [original DialoGPT repository](https://github.com/microsoft/DialoGPT) ArXiv paper: [https://arxiv.org/abs/1911.00536](https://arxiv.org/abs/1911.00536) ### How to use Now we are ready to try out how the model works as a chatting partner! ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large") model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large") # Let's chat for 5 lines for step in range(5): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) # pretty print last ouput tokens from bot print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
Sourabh714/distilbert-base-uncased-finetuned-squad
Sourabh714
2022-02-15T20:47:37Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1573 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2188 | 1.0 | 5533 | 1.1708 | | 0.9519 | 2.0 | 11066 | 1.1058 | | 0.7576 | 3.0 | 16599 | 1.1573 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
espnet/roshansh_how2_asr_raw_ft_sum_valid.acc
espnet
2022-02-15T19:51:13Z
0
0
espnet
[ "espnet", "audio", "automatic-speech-summarization", "en", "dataset:how2", "arxiv:2110.06263", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-summarization language: en datasets: - how2 license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/roshansh_how2_asr_raw_ft_sum_valid.acc` This model was trained by roshansh-cmu using how2 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout e6f42a9783a5d9eba0687c19417f933e890722d7 pip install -e . cd egs2/how2/sum1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/roshansh_how2_asr_raw_ft_sum_valid.acc ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Mon Feb 7 15:24:21 EST 2022` - python version: `3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0]` - espnet version: `espnet 0.10.6a1` - pytorch version: `pytorch 1.10.1` - Git hash: `04561cdf3b6c3bc1d51edb04c93b953759ef551d` - Commit date: `Mon Feb 7 09:06:12 2022 -0500` ## asr_raw_ft_sum |dataset|Snt|Wrd|ROUGE-1|ROUGE-2|ROUGE-L|METEOR|BERTScore| |---|---|---|---|---|---|---|---| |decode_sum_asr_model_valid.acc.best/dev5_test_sum|2127|69795|60.72|44.7|56.1|29.36|91.53| ## ASR config <details><summary>expand</summary> ``` config: conf/train_asr_conformer_vid_lf.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_raw_ft_sum ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 8 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 45875 dist_launcher: null multiprocessing_distributed: true unused_parameters: true sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 100 patience: 10 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 10 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: 5000 use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: - exp/asr_raw_utt_conformer/valid.acc.ave_10best.pth:::ctc ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 60000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_vid_sum/train/speech_shape - exp/asr_stats_raw_vid_sum/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_vid_sum/valid/speech_shape - exp/asr_stats_raw_vid_sum/valid/text_shape.bpe batch_type: length valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/tr_2000h_sum_trim/wav.scp - speech - sound - - dump/raw/tr_2000h_sum_trim/text - text - text valid_data_path_and_name_and_type: - - dump/raw/cv05_sum_trim/wav.scp - speech - sound - - dump/raw/cv05_sum_trim/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.001 scheduler: reducelronplateau scheduler_conf: mode: min factor: 0.5 patience: 1 token_list: - <blank> - <unk> - '[hes]' - S - ▁THE - ▁TO - '''' - ▁AND - ▁YOU - ▁A - ▁IT - T - ▁THAT - ▁OF - ▁I - ▁IS - RE - ▁IN - ING - ▁WE - M - ▁GOING - ▁SO - ▁THIS - ▁YOUR - ▁ON - E - D - ▁BE - ▁CAN - N - Y - O - ER - ▁HAVE - ▁JUST - ▁FOR - ▁WITH - ▁DO - ED - ▁ARE - ▁WANT - ▁UP - R - LL - P - ▁ - L - B - ▁IF - C - ▁ONE - ▁S - ▁OR - A - ▁GO - ▁LIKE - ▁NOW - ▁HERE - VE - LE - U - ▁GET - ▁WHAT - ▁OUT - IN - W - ▁C - ▁LITTLE - ▁THERE - LY - ▁AS - ▁MAKE - I - ▁THEY - ▁MY - K - ▁THEN - ▁BUT - AL - G - ▁ALL - OR - ▁BACK - ▁NOT - ▁ABOUT - ▁RIGHT - ▁OUR - EN - ▁SOME - ▁DOWN - F - ▁WHEN - CH - ▁F - ▁HOW - AR - ▁WILL - ▁RE - CK - ▁G - ES - CE - ▁TAKE - ▁AT - ▁FROM - ▁WAY - TER - ▁SEE - RA - ▁USE - ▁REALLY - RI - TH - ▁TWO - ▁ME - ▁VERY - ▁E - ▁B - AT - ▁THEM - ▁DON - ▁AN - ▁BECAUSE - ▁MORE - RO - H - 'ON' - LI - ▁PUT - ▁ST - IL - ▁BIT - ▁START - ▁NEED - ▁INTO - UR - ▁TIME - ▁OVER - ▁W - ▁DE - ▁LOOK - ▁THESE - ▁LET - ▁GOOD - ▁ALSO - AN - ▁OFF - ▁HE - ▁KIND - ▁SIDE - ▁CO - ▁SURE - ▁AGAIN - ▁MA - ▁KNOW - IT - ▁WOULD - IC - ▁OTHER - LA - ▁P - ▁WHICH - '-' - IR - ▁LA - ▁HAND - EL - ▁LOT - ▁WHERE - ▁THREE - ▁PA - ION - LO - ▁KEEP - ▁SHOW - ▁THING - ▁FIRST - TE - ENT - ATE - ▁COME - AD - ▁GOT - NG - ▁NICE - ▁T - ET - ▁MO - ▁ANY - ▁ACTUALLY - ▁DIFFERENT - ▁SE - GE - ▁WORK - ▁THROUGH - ▁O - KE - V - ▁AROUND - ▁BA - PE - ▁HI - ▁BY - SH - ATION - ▁SU - ▁CA - ▁D - ▁LO - ▁HAS - ▁LI - ▁PLAY - Z - ▁ADD - ▁RO - ▁TA - AS - ▁FOUR - ▁CON - ▁THOSE - MP - NE - ▁SP - UT - ▁GIVE - ▁WELL - ▁BALL - TING - RY - X - ▁HO - INE - IVE - ▁NEXT - ▁PO - ▁STEP - ▁EVEN - TION - ▁MI - MENT - ▁CUT - ▁BO - ▁LINE - ▁MUCH - ▁THINGS - ▁TALK - UN - ▁PART - ▁WAS - ▁FA - ▁SOMETHING - PP - ANCE - ND - DI - ▁RA - AGE - ▁SAME - ▁EXPERT - ▁DOING - ▁LEFT - IST - ▁DI - ▁NO - RU - ME - TA - UL - TI - ▁VILLAGE - DE - ERS - ▁PEOPLE - ▁TURN - VER - ▁FL - ▁LEG - ▁ONCE - ▁COLOR - ▁PULL - ▁USING - VI - ▁WATER - ▁SHE - ▁TOP - ▁OKAY - ▁ANOTHER - ▁THEIR - ▁SAY - URE - ▁HA - ▁IMPORTANT - ▁PIECE - ▁FOOT - ▁TRA - ▁SC - ▁BODY - ▁SET - ▁POINT - ▁HELP - ▁TODAY - ▁BRING - ▁V - ▁END - MA - ▁CH - ▁MOST - ▁K - ▁AHEAD - ▁HER - OL - ▁SA - AM - IES - ▁THINK - ▁NAME - ▁TRY - ▁MOVE - ONE - ▁LE - ▁TOO - TO - UM - ▁PLACE - ▁COULD - ▁FIND - ▁FIVE - ▁ALWAYS - ID - TY - NT - ▁FEEL - ▁HEAD - ▁THAN - NA - ▁EX - ▁EYE - ITY - CI - OP - ▁SHOULD - ▁MIGHT - ▁HOLD - ▁CAR - AND - ▁GREAT - ▁RI - ▁BU - ▁HIGH - ▁OPEN - ▁BEFORE - US - ▁FRONT - ▁LONG - ▁TOGETHER - NI - ▁HAIR - ▁LIGHT - ▁TEN - ▁HIT - EST - OUS - ▁PRETTY - ▁TYPE - IP - CO - ▁FINGER - ▁JO - ▁UN - ▁PRO - ▁STRAIGHT - ▁BEHALF - ▁TI - ▁SIX - ▁CLEAN - ▁DIS - ▁DA - ▁POSITION - IGHT - ACT - ▁CHA - ▁PE - GG - AP - ▁MEAN - ▁COMP - FI - ▁KNEE - ▁CALLED - ▁HANDS - ▁PRE - ▁FORWARD - ▁AREA - ANT - ▁TE - ▁WA - ▁AFTER - ▁SMALL - ▁THROW - ▁EVERY - ▁SHOULDER - NC - PER - ▁MAYBE - ▁ABLE - ▁BASICALLY - ▁AM - ▁READY - ▁BOTTOM - IE - ▁HALF - FF - ▁BIG - ▁EACH - ▁PUSH - ▁EIGHT - ▁NEW - ▁DONE - ▁MAY - ▁GETTING - HO - ▁HIS - ▁HARD - ▁CLOSE - ALLY - ▁SECOND - ▁FEET - ICAL - ▁JA - ▁PAINT - ▁LEARN - ▁SOUND - HE - ▁ROLL - ▁ONLY - ▁DOESN - WA - ▁DRAW - ▁VI - ▁DID - ▁SHA - ▁CENTER - CU - ▁CLIP - ▁PI - ▁CARD - ▁INSIDE - ▁PERSON - ▁STILL - ▁MAKING - 'NO' - ▁EVERYTHING - . - ▁FUN - ARD - ▁REMEMBER - ▁AWAY - ATED - COM - ▁SEVEN - ▁BEEN - ▁MANY - ABLE - ▁DAY - ▁SIT - IZE - ▁REAL - ▁HIP - ▁BASIC - ▁KICK - ▁TU - ATING - ▁STICK - ▁FLAT - ▁WHO - END - HA - ▁EXP - ▁PICK - ▁MIX - ▁TRI - ▁BI - ▁WHOLE - ▁STRETCH - ▁BOTH - ▁PROBABLY - CA - ▁HIM - ▁STRING - ▁EDGE - ▁BASE - ▁COMING - UGH - ▁LIFT - ▁STA - ▁WORKING - ▁MU - ▁QUICK - ▁SOMETIMES - ▁HAPPEN - ▁YOURSELF - ▁TALKING - ▁DR - ▁TELL - ▁ANYTHING - ▁BRA - ▁LOOKING - ▁SLOW - ▁NE - ▁STAND - NER - ▁COMES - ▁GOES - ISE - BE - ▁USED - ▁UNDER - ▁BETWEEN - ▁HU - ▁CREATE - ▁NA - ▁USUALLY - ▁ARM - ▁DRY - ▁RUN - LING - ▁BRUSH - ▁COVER - ▁HEAR - ▁DOES - ▁STAY - ▁EN - ▁FOLD - ▁CHANGE - ▁LAST - ▁EASY - ▁US - ▁PER - ▁FACE - ▁EAR - ▁TIGHT - ▁FE - ▁PIN - ▁MAN - ▁BETTER - ▁CALL - ▁PRI - ▁BEST - ▁KI - ▁COUPLE - ▁WHILE - ▁SHAPE - ▁GAME - IV - ▁SHOT - ▁PAPER - ▁OWN - ▁ALRIGHT - ▁HAD - TIC - ▁BREATH - ▁TOOL - '2' - ▁ENOUGH - ▁COURSE - ▁SKIN - ▁SPIN - ▁VA - ▁ARMS - ▁TEA - ▁BREAK - ▁DOG - ▁1 - QUE - ▁DROP - ▁NUMBER - IG - ▁RED - ▁NOTE - ▁WEIGHT - WARD - ▁PLAYING - ▁FINISH - ▁MINUTE - ▁R - ▁PRESS - ▁EITHER - ▁CHE - ▁PU - BER - ▁FEW - ▁SIZE - ▁MADE - ▁LEAVE - ▁GA - ▁ALREADY - ▁GUY - ▁FAR - ▁HOME - ▁BAR - UP - ▁GRAB - ▁MARK - ▁WHITE - ▁PROPER - ▁CAUSE - ▁OK - ▁ART - HI - ▁SORT - ▁EXERCISE - ▁LOWER - PORT - ▁PLANT - ▁BOARD - ▁CASE - ▁YEAR - CENT - ▁DU - ▁CHECK - ▁WHATEVER - ▁OIL - ▁IDEA - ▁SIMPLE - ▁PRACTICE - ▁FAST - '0' - ▁CONTROL - ▁J - ▁KEY - ▁MIDDLE - ▁FULL - ▁GLASS - ▁OUTSIDE - ▁LOW - ▁REST - ▁STUFF - ▁ACT - ▁UNTIL - ▁BLACK - ▁POP - ▁CLICK - ▁HOLE - ▁Z - ▁COUNT - ▁POT - ▁ALLOW - ▁HAVING - ▁TRYING - ▁MUSCLE - ▁GU - ▁BOX - ▁NOTICE - ▁EXAMPLE - UND - ▁ALONG - FUL - ISH - ▁STORE - ▁LU - ▁FLOOR - ▁MOVING - ▁LARGE - ▁STOP - ▁PH - ▁WALK - '5' - ▁QU - ▁TECHNIQUE - ▁SOFT - ▁GROUND - ▁JUMP - ▁JU - ▁FILL - ▁WHY - ▁BUY - ▁GREEN - ▁WALL - ▁HEEL - NESS - ▁LEVEL - ▁UNDERNEATH - ▁PATTERN - ▁BEHIND - ▁OLD - ▁TIP - ▁COMPLETE - ▁WON - ▁TEACH - ▁FIT - ▁NECK - ▁REMOVE - ▁TRICK - ▁MOVEMENT - ▁TOWARDS - ▁PARTICULAR - ▁CHI - ▁EFFECT - J - ▁FREE - ▁ACROSS - ▁BEND - ▁SAFE - ▁SLIDE - ▁PROBLEM - ▁BLOCK - ▁PAN - ▁NATURAL - ▁TOUCH - ▁CHILD - LINE - ▁CROSS - ▁REASON - '4' - ▁POWER - ▁APPLY - ▁FOLLOW - ▁DESIGN - ▁SPACE - ▁ORDER - ▁WOOD - ▁RID - '3' - ▁COOK - ▁BEGIN - ▁WATCH - ▁STYLE - QUA - ▁PRODUCT - ▁TAKING - ▁PUTTING - ▁EXHALE - ▁THOUGH - ▁DEEP - IAN - ▁REACH - ▁FOOD - ▁ALMOST - ▁COOL - ▁SECTION - ▁SAID - ▁ANGLE - ▁MUSIC - ▁RELAX - ▁CORNER - ▁DARK - ▁CHORD - ▁ESPECIALLY - ▁SCALE - ▁WARM - ▁WITHOUT - ▁WHEEL - ▁SEGMENT - ▁TABLE - ▁BOOK - ▁PASS - ▁ELBOW - ▁ROUND - ▁INHALE - ▁SMOOTH - ▁ROOM - / - ▁NINE - ▁SHORT - ▁MEASURE - ▁LESS - ▁TWIST - ▁BALANCE - ▁PROCESS - ▁SWITCH - ▁GENERAL - ▁CLAY - ▁CERTAIN - ▁NEVER - ▁BLUE - ▁CUP - ▁HOUSE - ▁EXTRA - ▁MOTION - ▁PRESSURE - ▁FIRE - ▁SIMPLY - ▁DOUBLE - ▁TWENTY - ▁CATCH - ▁BECOME - ▁BUILD - ▁SPEED - ▁TRANS - ▁DRUM - ▁CHEST - ▁PICTURE - ▁LENGTH - ▁CONTINUE - ▁COMFORTABLE - ▁FISH - ▁PHOTO - ▁LOOSE - ▁SKI - ▁LIFE - ▁DEGREE - ▁OPTION - ▁WORD - ▁SHARP - ▁SHOOT - ▁FOUND - ▁STRONG - ▁QUITE - ▁THIRD - ▁GLUE - ▁MIND - ▁DEFINITELY - ▁EASIER - GRAPH - ▁HOOK - ▁CLEAR - ▁POSE - ▁BUTTON - ▁CHOOSE - ▁THICK - ▁SYSTEM - ▁PERFECT - ▁BEAUTIFUL - ▁SPOT - ▁GROW - ▁SIGN - ▁ELSE - ▁CONNECT - ▁SELECT - ▁PUNCH - ▁DIRECTION - ▁WRAP - ▁RELEASE - QUI - SIDE - ▁CAREFUL - ▁VIDEO - ▁INSTEAD - ▁CIRCLE - ▁WIRE - ▁NOSE - ▁AMOUNT - ▁FOCUS - ▁NORMAL - ▁MAJOR - ▁WHETHER - ▁SURFACE - ▁THUMB - ▁DRIVE - ▁SCREW - ▁POSSIBLE - ▁OBVIOUSLY - ▁COMMON - ▁REGULAR - ▁ADJUST - ▁WIDE - ▁BLADE - ▁FRET - ▁RECOMMEND - ▁BOWL - BOARD - ▁IMAGE - ▁DEPENDING - ▁PROTECT - ▁CLOTH - ▁HEALTH - ▁WRIST - ▁CLUB - ▁DRINK - ▁SINCE - ▁FRIEND - '00' - ▁RUNNING - ▁ITSELF - ▁RECORD - ▁SWING - ▁DIRECT - ▁MATERIAL - ▁YO - ▁LEAST - ▁EXACTLY - ▁BEGINNING - ▁SLIGHTLY - ▁TREAT - ▁CAMERA - ▁QUARTER - ▁WINDOW - '8' - ▁SOMEBODY - ▁BURN - ▁DEMONSTRATE - ▁DIFFERENCE - ▁COMPUTER - IBLE - ▁SHOE - ▁PERFORM - ▁SQUARE - ▁CONSIDER - ▁DRILL - ▁TEXT - ▁FILE - ▁RUB - ▁FABRIC - ▁HUNDRED - ▁GRIP - ▁CHARACTER - ▁SPECIFIC - ▁KNOT - ▁CURL - ▁STITCH - ▁BLEND - ▁FRAME - ▁THIRTY - '1' - ▁HORSE - ▁ATTACH - ▁GROUP - ▁STROKE - ▁GUITAR - ▁APART - ▁MACHINE - ▁CLASS - ▁COMB - ▁ROOT - ▁HELLO - ▁ENERGY - ▁ATTACK - ▁CORRECT - ▁EXTEND - ▁MINOR - ▁PROFESSIONAL - ▁MONEY - ▁STRIP - ▁FLAVOR - ▁EVERYBODY - ▁RULE - ▁DIFFICULT - ▁PROJECT - ▁DISCUSS - ▁FIGURE - ▁HOWEVER - ▁FINAL - ▁STRENGTH - ▁ENTIRE - ▁FIELD - ▁CONTACT - ▁SUPPORT - ▁PALM - ▁SERIES - ▁ENJOY - '6' - ▁WORLD - ▁DECIDE - ▁SPEAK - ▁SEVERAL - ▁WRITE - ▁PROGRAM - ABILITY - ▁KNIFE - ▁PLASTIC - ▁ORGAN - '7' - ▁UNDERSTAND - ▁FIFTEEN - ▁FLEX - ▁INFORMATION - ▁TWELVE - ▁DETAIL - ▁STRIKE - ▁ACTUAL - ▁SPRAY - ▁LOCAL - ▁MOUTH - ▁NIGHT - ▁VEHICLE - ▁OPPOSITE - ▁SCHOOL - '9' - ▁QUESTION - ▁SPECIAL - ▁BIGGER - ▁DEVELOP - ▁PEPPER - ▁PREFER - Q - '%' - ']' - '[' - '&' - ',' - _ - '#' - '=' - '@' - + - '*' - $ - '~' - <sos/eos> init: null input_size: null ctc_conf: ignore_nan_grad: true model_conf: ctc_weight: 0.0 lsm_weight: 0.15 length_normalized_loss: false use_preprocessor: true token_type: bpe bpemodel: data/en_token_list/bpe_unigram1000/bpe.model non_linguistic_symbols: data/nlsyms cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: n_fft: 512 hop_length: 256 fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_vid_sum/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 512 attention_heads: 8 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true pos_enc_layer_type: abs_pos selfattention_layer_type: lf_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 attention_windows: - 40 - 40 - 40 - 40 - 40 - 40 - 40 - 40 - 40 - 40 - 40 - 40 attention_dilation: - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 attention_mode: tvm decoder: transformer decoder_conf: attention_heads: 4 linear_units: 512 num_blocks: 6 dropout_rate: 0.15 positional_dropout_rate: 0.15 self_attention_dropout_rate: 0.15 src_attention_dropout_rate: 0.15 required: - output_dir - token_list version: 0.10.0 distributed: true ``` </details> Please cite the following paper if you use this recipe: ```BibTex @misc{sharma2022speech, title={Speech Summarization using Restricted Self-Attention}, author={Roshan Sharma and Shruti Palaskar and Alan W Black and Florian Metze}, year={2022}, eprint={2110.06263}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title##3={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass{cs.CL} ```
AI-Nordics/bert-large-swedish-cased
AI-Nordics
2022-02-15T16:52:53Z
162
11
transformers
[ "transformers", "pytorch", "megatron-bert", "fill-mask", "sv", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: sv --- # A Swedish Bert model ## Model description This model follows the Bert Large model architecture as implemented in [Megatron-LM framework](https://github.com/NVIDIA/Megatron-LM). It was trained with a batch size of 512 in 600k steps. The model contains following parameters: <figure> | Hyperparameter | Value | |----------------------|------------| | \\(n_{parameters}\\) | 340M | | \\(n_{layers}\\) | 24 | | \\(n_{heads}\\) | 16 | | \\(n_{ctx}\\) | 1024 | | \\(n_{vocab}\\) | 30592 | ## Training data The model is pretrained on a Swedish text corpus of around 85 GB from a variety of sources as shown below. <figure> | Dataset | Genre | Size(GB)| |----------------------|------|------| | Anföranden | Politics |0.9| |DCEP|Politics|0.6| |DGT|Politics|0.7| |Fass|Medical|0.6| |Författningar|Legal|0.1| |Web data|Misc|45.0| |JRC|Legal|0.4| |Litteraturbanken|Books|0.3O| |SCAR|Misc|28.0| |SOU|Politics|5.3| |Subtitles|Drama|1.3| |Wikipedia|Facts|1.8| ## Intended uses & limitations The raw model can be used for the usual tasks of masked language modeling or next sentence prediction. It is also often fine-tuned on a downstream task to improve its performance in a specific domain/task. <br> <br> ## How to use ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("AI-Nordics/bert-large-swedish-cased") model = AutoModelForMaskedLM.from_pretrained("AI-Nordics/bert-large-swedish-cased")
Xibanya/sunset_city
Xibanya
2022-02-15T16:31:37Z
0
3
null
[ "PyTorch", "Transformers", "text-to-image", "ru", "en", "license:cc-by-sa-4.0", "region:us" ]
text-to-image
2022-03-02T23:29:05Z
--- license: cc-by-sa-4.0 language: - ru - en pipeline_tag: text-to-image tags: - PyTorch - Transformers --- # Sunset Cities This is the [Malevich](https://huggingface.co/sberbank-ai/rudalle-Malevich) ruDALL-E model finetuned on anime screenshots of big cities at sunset. <img style="text-align:center; display:block;" src="https://huggingface.co/Xibanya/sunset_city/resolve/main/citysunset.png" width="256"> ### installation ``` pip install rudalle ``` ### How to use Basic implementation to get a list of image data objects. ```python from translate import Translator from rudalle import get_rudalle_model, get_tokenizer, get_vae from rudalle.pipelines import generate_images model = get_rudalle_model('Malevich', pretrained=True, fp16=True, device='cuda') model.load_state_dict(torch.load(CHECKPOINT_PATH)) vae = get_vae().to('cuda') tokenizer = get_tokenizer() input_text = Translator(to_lang='ru').translate('city at sunset') images, _ = generate_images( text=input_text, tokenizer=tokenizer, dalle=model, vae=vae, images_num=1, top_k=2048, top_p=0.95, temperature=1.0 ) ``` the Malevich model only recognizes input in Russian. If you're going to paste Cyrillic directly into the code rather than filter an English prompt through the translate API, you will need to put this at the top of the file: ```python #!/usr/bin/env python3 # -*- coding: utf-8 -*- ```
GleamEyeBeast/Mandarin_naive
GleamEyeBeast
2022-02-15T13:44:34Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: Mandarin_naive results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mandarin_naive This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4584 - Wer: 0.3999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.8963 | 3.67 | 400 | 1.0645 | 0.8783 | | 0.5506 | 7.34 | 800 | 0.5032 | 0.5389 | | 0.2111 | 11.01 | 1200 | 0.4765 | 0.4712 | | 0.1336 | 14.68 | 1600 | 0.4815 | 0.4511 | | 0.0974 | 18.35 | 2000 | 0.4956 | 0.4370 | | 0.0748 | 22.02 | 2400 | 0.4881 | 0.4235 | | 0.0584 | 25.69 | 2800 | 0.4732 | 0.4193 | | 0.0458 | 29.36 | 3200 | 0.4584 | 0.3999 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
joe5campbell/BERT_Tweet_Sentiment_10k
joe5campbell
2022-02-15T12:42:41Z
9
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: BERT_Tweet_Sentiment_10k results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_Tweet_Sentiment_10k This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3891 - Train Accuracy: 0.8273 - Validation Loss: 0.4749 - Validation Accuracy: 0.8073 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'clipnorm': 1.0, 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.3891 | 0.8273 | 0.4749 | 0.8073 | 0 | ### Framework versions - Transformers 4.16.2 - TensorFlow 2.8.0 - Tokenizers 0.11.0
CLAck/vi-en
CLAck
2022-02-15T11:33:16Z
47
1
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "en", "vi", "dataset:ALT", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:04Z
--- language: - en - vi tags: - translation license: apache-2.0 datasets: - ALT metrics: - sacrebleu --- This is a finetuning of a MarianMT pretrained on Chinese-English. The target language pair is Vietnamese-English. ### Example ``` %%capture !pip install transformers transformers[sentencepiece] from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # Download the pretrained model for English-Vietnamese available on the hub model = AutoModelForSeq2SeqLM.from_pretrained("CLAck/vi-en") tokenizer = AutoTokenizer.from_pretrained("CLAck/vi-en") sentence = your_vietnamese_sentence # This token is needed to identify the source language input_sentence = "<2vi> " + sentence translated = model.generate(**tokenizer(input_sentence, return_tensors="pt", padding=True)) output_sentence = [tokenizer.decode(t, skip_special_tokens=True) for t in translated] ``` ### Training results | Epoch | Bleu | |:-----:|:-------:| | 1.0 | 21.3180 | | 2.0 | 26.8012 | | 3.0 | 29.3578 | | 4.0 | 31.5178 | | 5.0 | 32.8740 |
CLAck/en-km
CLAck
2022-02-15T11:26:53Z
39
3
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:04Z
--- tags: - translation --- This model translate from English to Khmer. It is the pure fine-tuned version of MarianMT model en-zh. This is the result after 30 epochs of pure fine-tuning of khmer language. ### Example ``` %%capture !pip install transformers transformers[sentencepiece] from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # Download the pretrained model for English-Vietnamese available on the hub model = AutoModelForSeq2SeqLM.from_pretrained("CLAck/en-km") tokenizer = AutoTokenizer.from_pretrained("CLAck/en-km") # Download a tokenizer that can tokenize English since the model Tokenizer doesn't know anymore how to do it # We used the one coming from the initial model # This tokenizer is used to tokenize the input sentence tokenizer_en = AutoTokenizer.from_pretrained('Helsinki-NLP/opus-mt-en-zh') # These special tokens are needed to reproduce the original tokenizer tokenizer_en.add_tokens(["<2zh>", "<2khm>"], special_tokens=True) sentence = "The cat is on the table" # This token is needed to identify the target language input_sentence = "<2khm> " + sentence translated = model.generate(**tokenizer_en(input_sentence, return_tensors="pt", padding=True)) output_sentence = [tokenizer.decode(t, skip_special_tokens=True) for t in translated] ```
msintaha/bert-base-uncased-finetuned-copa-data-new
msintaha
2022-02-15T08:41:46Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "multiple-choice", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "endpoints_compatible", "region:us" ]
multiple-choice
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-copa-data-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-copa-data-new This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5995 - Accuracy: 0.7000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 25 | 0.6564 | 0.6600 | | No log | 2.0 | 50 | 0.5995 | 0.7000 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
hyerim/distilbert-base-uncased-finetuned-ner
hyerim
2022-02-15T08:37:29Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9273570324574961 - name: Recall type: recall value: 0.9397024275646045 - name: F1 type: f1 value: 0.9334889148191365 - name: Accuracy type: accuracy value: 0.9837641190207635 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0617 - Precision: 0.9274 - Recall: 0.9397 - F1: 0.9335 - Accuracy: 0.9838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2403 | 1.0 | 878 | 0.0714 | 0.9171 | 0.9216 | 0.9193 | 0.9805 | | 0.0555 | 2.0 | 1756 | 0.0604 | 0.9206 | 0.9347 | 0.9276 | 0.9829 | | 0.031 | 3.0 | 2634 | 0.0617 | 0.9274 | 0.9397 | 0.9335 | 0.9838 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.7.1 - Datasets 1.18.3 - Tokenizers 0.10.1
Rafat/wav2vec2-base-timit-demo-colab
Rafat
2022-02-15T01:18:00Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4229 - Wer: 0.2386 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.5486 | 4.0 | 500 | 2.1672 | 0.9876 | | 0.6819 | 8.0 | 1000 | 0.4502 | 0.3301 | | 0.2353 | 12.0 | 1500 | 0.4352 | 0.2841 | | 0.1427 | 16.0 | 2000 | 0.4237 | 0.2584 | | 0.0945 | 20.0 | 2500 | 0.4409 | 0.2545 | | 0.0671 | 24.0 | 3000 | 0.4257 | 0.2413 | | 0.0492 | 28.0 | 3500 | 0.4229 | 0.2386 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
hark99/distilbert-base-uncased-finetuned-squad
hark99
2022-02-14T23:05:56Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2251 | 1.0 | 5533 | 1.1707 | | 0.9554 | 2.0 | 11066 | 1.1211 | | 0.7645 | 3.0 | 16599 | 1.1642 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
jfarray/Model_dccuchile_bert-base-spanish-wwm-uncased_50_Epochs
jfarray
2022-02-14T21:41:05Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 50, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 55, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
NicoGrageda/wav2vec2-base-timit-demo-colab
NicoGrageda
2022-02-14T21:18:23Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4519 - Wer: 0.3375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4351 | 4.0 | 500 | 1.2740 | 0.8259 | | 0.5828 | 8.0 | 1000 | 0.4276 | 0.4403 | | 0.2274 | 12.0 | 1500 | 0.4646 | 0.3739 | | 0.135 | 16.0 | 2000 | 0.4320 | 0.3662 | | 0.0962 | 20.0 | 2500 | 0.4831 | 0.3607 | | 0.0719 | 24.0 | 3000 | 0.4506 | 0.3463 | | 0.0556 | 28.0 | 3500 | 0.4519 | 0.3375 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
jfarray/Model_dccuchile_bert-base-spanish-wwm-uncased_10_Epochs
jfarray
2022-02-14T21:06:23Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 11, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_bert-base-multilingual-uncased_100_Epochs
jfarray
2022-02-14T20:23:54Z
8
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 100, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 110, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
huggingtweets/magicrealismbot
huggingtweets
2022-02-14T18:15:59Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/668872745329885184/67TNOs2A_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Magic Realism Bot</div> <div style="text-align: center; font-size: 14px;">@magicrealismbot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Magic Realism Bot. | Data | Magic Realism Bot | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 0 | | Short tweets | 0 | | Tweets kept | 3250 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1nx0qvg7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @magicrealismbot's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/9vq0074d) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/9vq0074d/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/magicrealismbot') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
NewT5SharedHeadsSharedKeyValues/t5-efficient-small-sh
NewT5SharedHeadsSharedKeyValues
2022-02-14T16:23:08Z
6
0
transformers
[ "transformers", "t5", "text2text-generation", "t5-new-failed", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - t5-new-failed --- # Test Hf T5: -146.39734268188477 MTF T5: -72.12132263183594
NewT5SharedHeadsSharedKeyValues/t5-efficient-xl-sh
NewT5SharedHeadsSharedKeyValues
2022-02-14T16:23:01Z
8
0
transformers
[ "transformers", "t5", "text2text-generation", "t5-new-failed", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - t5-new-failed --- # Test Hf T5: -118.6875057220459 MTF T5: -76.85459899902344
NewT5SharedHeadsSharedKeyValues/t5-efficient-base-sh
NewT5SharedHeadsSharedKeyValues
2022-02-14T16:22:41Z
4
0
transformers
[ "transformers", "t5", "text2text-generation", "t5-new-failed", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - t5-new-failed --- # Test Hf T5: -95.86687088012695 MTF T5: -67.8558578491211
vblagoje/dpr-ctx_encoder-single-lfqa-wiki
vblagoje
2022-02-14T15:51:28Z
4,105
3
transformers
[ "transformers", "pytorch", "dpr", "en", "dataset:vblagoje/lfqa", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: en datasets: - vblagoje/lfqa license: mit --- ## Introduction The context/passage encoder model based on [DPRContextEncoder](https://huggingface.co/docs/transformers/master/en/model_doc/dpr#transformers.DPRContextEncoder) architecture. It uses the transformer's pooler outputs as context/passage representations. See [blog post](https://towardsdatascience.com/long-form-qa-beyond-eli5-an-updated-dataset-and-approach-319cb841aabb) for more details. ## Training We trained vblagoje/dpr-ctx_encoder-single-lfqa-wiki using FAIR's dpr-scale in two stages. In the first stage, we used PAQ based pretrained checkpoint and fine-tuned the retriever on the question-answer pairs from the LFQA dataset. As dpr-scale requires DPR formatted training set input with positive, negative, and hard negative samples - we created a training file with an answer being positive, negatives being question unrelated answers, while hard negative samples were chosen from answers on questions between 0.55 and 0.65 of cosine similarity. In the second stage, we created a new DPR training set using positives, negatives, and hard negatives from the Wikipedia/Faiss index created in the first stage instead of LFQA dataset answers. More precisely, for each dataset question, we queried the first stage Wikipedia Faiss index and subsequently used SBert cross-encoder to score questions/answers (passage) pairs with topk=50. The cross-encoder selected the positive passage with the highest score, while the bottom seven answers were selected for hard-negatives. Negative samples were again chosen to be answers unrelated to a given dataset question. After creating a DPR formatted training file with Wikipedia sourced positive, negative, and hard negative passages, we trained DPR-based question/passage encoders using dpr-scale. ## Performance LFQA DPR-based retriever (vblagoje/dpr-question_encoder-single-lfqa-wiki and vblagoje/dpr-ctx_encoder-single-lfqa-wiki) slightly underperform 'state-of-the-art' Krishna et al. "Hurdles to Progress in Long-form Question Answering" REALM based retriever with KILT benchmark performance of 11.2 for R-precision and 19.5 for Recall@5. ## Usage ```python from transformers import DPRContextEncoder, DPRContextEncoderTokenizer tokenizer = DPRContextEncoderTokenizer.from_pretrained("vblagoje/dpr-ctx_encoder-single-lfqa-wiki") model = DPRContextEncoder.from_pretrained("vblagoje/dpr-ctx_encoder-single-lfqa-wiki") input_ids = tokenizer("Where an aircraft passes through a cloud, it can disperse the cloud in its path...", return_tensors="pt")["input_ids"] embeddings = model(input_ids).pooler_output ``` ## Author - Vladimir Blagojevic: `dovlex [at] gmail.com` [Twitter](https://twitter.com/vladblagoje) | [LinkedIn](https://www.linkedin.com/in/blagojevicvladimir/)
huggingtweets/dojacat
huggingtweets
2022-02-14T15:30:50Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/dojacat/1644852645931/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1487993727918374915/aN2YUrbc_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jean-Emmanuel De La Martinière</div> <div style="text-align: center; font-size: 14px;">@dojacat</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jean-Emmanuel De La Martinière. | Data | Jean-Emmanuel De La Martinière | | --- | --- | | Tweets downloaded | 1569 | | Retweets | 124 | | Short tweets | 322 | | Tweets kept | 1123 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3mc5ryte/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dojacat's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3urxj6el) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3urxj6el/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dojacat') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
groar/gpt-neo-1.3B-finetuned-escape3
groar
2022-02-14T15:17:25Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt_neo", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: gpt-neo-1.3B-finetuned-escape3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-neo-1.3B-finetuned-escape3 This model is a fine-tuned version of [EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
reach-vb/wav2vec2-large-xls-r-1B-common_voice7-lt-ft
reach-vb
2022-02-14T13:39:07Z
4
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-1B-common_voice7-lt-ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-1B-common_voice7-lt-ft This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 2.5101 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 36 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 72 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 900 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 2.3491 | 31.24 | 500 | 3.9827 | 1.0 | | 0.0421 | 62.48 | 1000 | 2.9544 | 1.0 | | 0.0163 | 93.73 | 1500 | 2.5101 | 1.0 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3
hrdipto/wav2vec2-xls-r-300m-bangla-command-generated-data-finetune
hrdipto
2022-02-14T08:58:20Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer model-index: - name: wav2vec2-xls-r-300m-bangla-command-generated-data-finetune results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-bangla-command-generated-data-finetune This model is a fine-tuned version of [hrdipto/wav2vec2-xls-r-300m-bangla-command-data](https://huggingface.co/hrdipto/wav2vec2-xls-r-300m-bangla-command-data) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0099 - eval_wer: 0.0208 - eval_runtime: 2.5526 - eval_samples_per_second: 75.217 - eval_steps_per_second: 9.402 - epoch: 71.43 - step: 2000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
huggingartists/bill-wurtz
huggingartists
2022-02-14T08:56:26Z
8
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/bill-wurtz", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/bill-wurtz tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/0d4b35ed37091d5f6fd59806810e14ca.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bill Wurtz</div> <a href="https://genius.com/artists/bill-wurtz"> <div style="text-align: center; font-size: 14px;">@bill-wurtz</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Bill Wurtz. Dataset is available [here](https://huggingface.co/datasets/huggingartists/bill-wurtz). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/bill-wurtz") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/27ysbe74/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Bill Wurtz's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2f8oa51l) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2f8oa51l/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/bill-wurtz') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/bill-wurtz") model = AutoModelWithLMHead.from_pretrained("huggingartists/bill-wurtz") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
ASCCCCCCCC/distilbert-base-uncased-finetuned-clinc
ASCCCCCCCC
2022-02-14T08:54:32Z
18
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer model_index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.9.0 - Pytorch 1.7.1+cpu - Datasets 1.17.0 - Tokenizers 0.10.3
jatinshah/marian-finetuned-kde4-en-to-fr
jatinshah
2022-02-14T05:47:21Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 model-index: - name: marian-finetuned-kde4-en-to-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.8815 - Score: 52.2204 - Counts: [166010, 120787, 91973, 70929] - Totals: [228361, 207343, 189354, 173335] - Precisions: [72.69630103213771, 58.254679444205976, 48.57198686058916, 40.92018345977443] - Bp: 0.9695 - Sys Len: 228361 - Ref Len: 235434 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0a0+0aef44c - Datasets 1.18.3 - Tokenizers 0.11.0
fastai/fastbook_06_multicat_Biwi_Kinect_Head_Pose
fastai
2022-02-14T05:21:20Z
6
2
fastai
[ "fastai", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - fastai --- # Amazing! Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (template below and [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using the 🤗Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join our fastai community on the Hugging Face Discord! Greetings fellow fastlearner 🤝! --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
jfarray/Model_bert-base-multilingual-uncased_30_Epochs
jfarray
2022-02-13T23:54:47Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 30, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 33, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_bert-base-multilingual-uncased_10_Epochs
jfarray
2022-02-13T23:21:43Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 11, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_all-distilroberta-v1_100_Epochs
jfarray
2022-02-13T20:50:24Z
9
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 100, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 110, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_all-distilroberta-v1_30_Epochs
jfarray
2022-02-13T20:00:26Z
9
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 30, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 33, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_all-distilroberta-v1_10_Epochs
jfarray
2022-02-13T19:47:38Z
10
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 11, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_all-distilroberta-v1_5_Epochs
jfarray
2022-02-13T19:40:19Z
10
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 6, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
turing1729/gpt-neo-1.3B-news
turing1729
2022-02-13T10:21:51Z
4
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 --- Fine-tuned on short news articles for summarization with GPT-neo 1.3B parameters
srosy/distilbert-base-uncased-finetuned-emotion
srosy
2022-02-13T09:39:07Z
4
1
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.939 - name: F1 type: f1 value: 0.9391566069722169 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1582 - Accuracy: 0.939 - F1: 0.9392 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4977 | 1.0 | 1000 | 0.1919 | 0.9255 | 0.9253 | | 0.1545 | 2.0 | 2000 | 0.1582 | 0.939 | 0.9392 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.8.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
mujeensung/albert-base-v2_mnli_bc
mujeensung
2022-02-13T05:23:40Z
5
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: albert-base-v2_mnli_bc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.9398776667163956 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2_mnli_bc This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.2952 - Accuracy: 0.9399 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2159 | 1.0 | 16363 | 0.2268 | 0.9248 | | 0.1817 | 2.0 | 32726 | 0.2335 | 0.9347 | | 0.0863 | 3.0 | 49089 | 0.3014 | 0.9401 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.1+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
mujeensung/roberta-base_mnli_bc
mujeensung
2022-02-13T05:13:00Z
23
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: roberta-base_mnli_bc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.9583768461882739 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base_mnli_bc This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.2125 - Accuracy: 0.9584 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2015 | 1.0 | 16363 | 0.1820 | 0.9470 | | 0.1463 | 2.0 | 32726 | 0.1909 | 0.9559 | | 0.0768 | 3.0 | 49089 | 0.2117 | 0.9585 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.1+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
jfarray/Model_paraphrase-multilingual-mpnet-base-v2_100_Epochs
jfarray
2022-02-13T00:33:38Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 100, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 110, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_paraphrase-multilingual-mpnet-base-v2_10_Epochs
jfarray
2022-02-12T22:32:17Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 11, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_paraphrase-multilingual-mpnet-base-v2_1_Epochs
jfarray
2022-02-12T21:48:20Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 2, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_paraphrase-multilingual-MiniLM-L12-v2_100_Epochs
jfarray
2022-02-12T21:38:44Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 100, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 110, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_paraphrase-multilingual-MiniLM-L12-v2_50_Epochs
jfarray
2022-02-12T21:16:09Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 50, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 55, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_paraphrase-multilingual-MiniLM-L12-v2_30_Epochs
jfarray
2022-02-12T21:00:41Z
8
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 30, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 33, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_paraphrase-multilingual-MiniLM-L12-v2_5_Epochs
jfarray
2022-02-12T20:37:59Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 6, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_distiluse-base-multilingual-cased-v1_100_Epochs
jfarray
2022-02-12T19:45:48Z
137
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 100, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 110, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jfarray/Model_distiluse-base-multilingual-cased-v1_30_Epochs
jfarray
2022-02-12T14:08:36Z
142
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 30, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 33, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ArBert/roberta-base-finetuned-ner-kmeans-twitter
ArBert
2022-02-12T12:53:00Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: roberta-base-finetuned-ner-kmeans-twitter results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-ner-kmeans-twitter This model is a fine-tuned version of [ArBert/roberta-base-finetuned-ner](https://huggingface.co/ArBert/roberta-base-finetuned-ner) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6645 - Precision: 0.6885 - Recall: 0.7665 - F1: 0.7254 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | No log | 1.0 | 245 | 0.2820 | 0.6027 | 0.7543 | 0.6700 | | No log | 2.0 | 490 | 0.2744 | 0.6308 | 0.7864 | 0.7000 | | 0.2301 | 3.0 | 735 | 0.2788 | 0.6433 | 0.7637 | 0.6984 | | 0.2301 | 4.0 | 980 | 0.3255 | 0.6834 | 0.7221 | 0.7022 | | 0.1153 | 5.0 | 1225 | 0.3453 | 0.6686 | 0.7439 | 0.7043 | | 0.1153 | 6.0 | 1470 | 0.3988 | 0.6797 | 0.7420 | 0.7094 | | 0.0617 | 7.0 | 1715 | 0.4711 | 0.6702 | 0.7259 | 0.6969 | | 0.0617 | 8.0 | 1960 | 0.4904 | 0.6904 | 0.7505 | 0.7192 | | 0.0328 | 9.0 | 2205 | 0.5088 | 0.6591 | 0.7713 | 0.7108 | | 0.0328 | 10.0 | 2450 | 0.5709 | 0.6468 | 0.7788 | 0.7067 | | 0.019 | 11.0 | 2695 | 0.5570 | 0.6642 | 0.7533 | 0.7059 | | 0.019 | 12.0 | 2940 | 0.5574 | 0.6899 | 0.7656 | 0.7258 | | 0.0131 | 13.0 | 3185 | 0.5858 | 0.6952 | 0.7609 | 0.7265 | | 0.0131 | 14.0 | 3430 | 0.6239 | 0.6556 | 0.7826 | 0.7135 | | 0.0074 | 15.0 | 3675 | 0.5931 | 0.6825 | 0.7599 | 0.7191 | | 0.0074 | 16.0 | 3920 | 0.6364 | 0.6785 | 0.7580 | 0.7161 | | 0.005 | 17.0 | 4165 | 0.6437 | 0.6855 | 0.7580 | 0.7199 | | 0.005 | 18.0 | 4410 | 0.6610 | 0.6779 | 0.7599 | 0.7166 | | 0.0029 | 19.0 | 4655 | 0.6625 | 0.6853 | 0.7656 | 0.7232 | | 0.0029 | 20.0 | 4900 | 0.6645 | 0.6885 | 0.7665 | 0.7254 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
ArBert/roberta-base-finetuned-ner-agglo-twitter
ArBert
2022-02-12T11:40:08Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: roberta-base-finetuned-ner-agglo-twitter results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-ner-agglo-twitter This model is a fine-tuned version of [ArBert/roberta-base-finetuned-ner](https://huggingface.co/ArBert/roberta-base-finetuned-ner) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6645 - Precision: 0.6885 - Recall: 0.7665 - F1: 0.7254 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | No log | 1.0 | 245 | 0.2820 | 0.6027 | 0.7543 | 0.6700 | | No log | 2.0 | 490 | 0.2744 | 0.6308 | 0.7864 | 0.7000 | | 0.2301 | 3.0 | 735 | 0.2788 | 0.6433 | 0.7637 | 0.6984 | | 0.2301 | 4.0 | 980 | 0.3255 | 0.6834 | 0.7221 | 0.7022 | | 0.1153 | 5.0 | 1225 | 0.3453 | 0.6686 | 0.7439 | 0.7043 | | 0.1153 | 6.0 | 1470 | 0.3988 | 0.6797 | 0.7420 | 0.7094 | | 0.0617 | 7.0 | 1715 | 0.4711 | 0.6702 | 0.7259 | 0.6969 | | 0.0617 | 8.0 | 1960 | 0.4904 | 0.6904 | 0.7505 | 0.7192 | | 0.0328 | 9.0 | 2205 | 0.5088 | 0.6591 | 0.7713 | 0.7108 | | 0.0328 | 10.0 | 2450 | 0.5709 | 0.6468 | 0.7788 | 0.7067 | | 0.019 | 11.0 | 2695 | 0.5570 | 0.6642 | 0.7533 | 0.7059 | | 0.019 | 12.0 | 2940 | 0.5574 | 0.6899 | 0.7656 | 0.7258 | | 0.0131 | 13.0 | 3185 | 0.5858 | 0.6952 | 0.7609 | 0.7265 | | 0.0131 | 14.0 | 3430 | 0.6239 | 0.6556 | 0.7826 | 0.7135 | | 0.0074 | 15.0 | 3675 | 0.5931 | 0.6825 | 0.7599 | 0.7191 | | 0.0074 | 16.0 | 3920 | 0.6364 | 0.6785 | 0.7580 | 0.7161 | | 0.005 | 17.0 | 4165 | 0.6437 | 0.6855 | 0.7580 | 0.7199 | | 0.005 | 18.0 | 4410 | 0.6610 | 0.6779 | 0.7599 | 0.7166 | | 0.0029 | 19.0 | 4655 | 0.6625 | 0.6853 | 0.7656 | 0.7232 | | 0.0029 | 20.0 | 4900 | 0.6645 | 0.6885 | 0.7665 | 0.7254 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
sylviachency/distilbert-base-uncased-finetuned-cola
sylviachency
2022-02-12T06:48:04Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5235221651747541 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.9155 - Matthews Correlation: 0.5235 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5275 | 1.0 | 535 | 0.5174 | 0.4181 | | 0.3496 | 2.0 | 1070 | 0.5617 | 0.4857 | | 0.2359 | 3.0 | 1605 | 0.6661 | 0.5029 | | 0.1701 | 4.0 | 2140 | 0.8052 | 0.5091 | | 0.1266 | 5.0 | 2675 | 0.9155 | 0.5235 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
jgammack/multi-qa-distilbert-base-uncased
jgammack
2022-02-11T23:40:41Z
141
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # jgammack/multi-qa-distilbert-base-uncased This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('jgammack/multi-qa-distilbert-base-uncased') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('jgammack/multi-qa-distilbert-base-uncased') model = AutoModel.from_pretrained('jgammack/multi-qa-distilbert-base-uncased') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=jgammack/multi-qa-distilbert-base-uncased) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
jimypbr/bert-base-uncased-squad
jimypbr
2022-02-11T22:28:31Z
17
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 --- # BERT-Base Uncased SQuADv1 `bert-base-uncased` trained on question answering with `squad`. Evalulation scores: ``` ***** eval metrics ***** epoch = 3.0 eval_exact_match = 80.6906 eval_f1 = 88.1129 eval_samples = 10784 ```
huggingtweets/sauce__world
huggingtweets
2022-02-11T22:14:53Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/sauce__world/1644617665459/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1488960307305218049/nAFuBERK_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">poolboy sauce world</div> <div style="text-align: center; font-size: 14px;">@sauce__world</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from poolboy sauce world. | Data | poolboy sauce world | | --- | --- | | Tweets downloaded | 3192 | | Retweets | 323 | | Short tweets | 513 | | Tweets kept | 2356 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/20dtxww4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sauce__world's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/vh9fgsnx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/vh9fgsnx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/sauce__world') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ibombonato/swin-age-classifier
ibombonato
2022-02-11T21:42:47Z
272
1
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: swin-age-classifier results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8174999952316284 --- # swin-age-classifier Trained on 80 epochs - Data from: Ai Crowd - Blitz ai-blitz-xiii - Age Prediction https://www.aicrowd.com/challenges/ai-blitz-xiii/problems/age-prediction/ Notebook based on HuggingPics Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
BigSalmon/InformalToFormalLincoln21
BigSalmon
2022-02-11T21:24:42Z
11
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
Informal to Formal: Wordy to Concise: Fill Missing Phrase: ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln21") model = AutoModelWithLMHead.from_pretrained("BigSalmon/InformalToFormalLincoln21") ``` ``` https://huggingface.co/spaces/BigSalmon/GPT2 (The model for this space changes over time) ``` ``` https://huggingface.co/spaces/BigSalmon/GPT2_Most_Probable (The model for this space changes over time) ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ```` ``` infill: increasing the number of sidewalks in suburban areas will [MASK]. Translated into the Style of Abraham Lincoln: increasing the number of sidewalks in suburban areas will ( ( enhance / maximize ) community cohesion / facilitate ( communal ties / the formation of neighborhood camaraderie ) / forge neighborly relations / lend themselves to the advancement of neighborly ties / plant the seeds of community building / flower anew the bonds of friendship / invite the budding of neighborhood rapport / enrich neighborhood life ). infill: corn fields [MASK], [MASK] visibly as one ventures beyond chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), ( manifesting themselves ) visibly as one ventures beyond chicago. infill: the [MASK] the SAT will soon be [MASK]. [MASK] an examination undertaken on one's laptop. [MASK] will allow students to retrieve test results promptly. Translated into the Style of Abraham Lincoln: the ( conventional form of ) the SAT will soon be ( consigned to history ). ( replacing it will be ) an examination undertaken on one's laptop. ( so doing ) will allow students to retrieve test results promptly. infill: ``` ``` *** wordy: chancing upon a linux user is a rare occurrence in the present day. Translate into Concise Text: present-day linux users are rare. *** wordy: an interest in classical music is becoming more and more less popular. Translate into Concise Text: classical music appreciation is dwindling. Translate into Concise Text: waning interest in classic music persists. Translate into Concise Text: interest in classic music is fading. *** wordy: the ice cream was only one dollar, but it was not a good value for the size. Translate into Concise Text: the one dollar ice cream was overpriced for its size. Translate into Concise Text: overpriced, the one dollar ice cream was small. *** wordy: ```
microsoft/codebert-base
microsoft
2022-02-11T19:59:44Z
574,944
236
transformers
[ "transformers", "pytorch", "tf", "jax", "rust", "roberta", "feature-extraction", "arxiv:2002.08155", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
## CodeBERT-base Pretrained weights for [CodeBERT: A Pre-Trained Model for Programming and Natural Languages](https://arxiv.org/abs/2002.08155). ### Training Data The model is trained on bi-modal data (documents & code) of [CodeSearchNet](https://github.com/github/CodeSearchNet) ### Training Objective This model is initialized with Roberta-base and trained with MLM+RTD objective (cf. the paper). ### Usage Please see [the official repository](https://github.com/microsoft/CodeBERT) for scripts that support "code search" and "code-to-document generation". ### Reference 1. [CodeBERT trained with Masked LM objective](https://huggingface.co/microsoft/codebert-base-mlm) (suitable for code completion) 2. 🤗 [Hugging Face's CodeBERTa](https://huggingface.co/huggingface/CodeBERTa-small-v1) (small size, 6 layers) ### Citation ```bibtex @misc{feng2020codebert, title={CodeBERT: A Pre-Trained Model for Programming and Natural Languages}, author={Zhangyin Feng and Daya Guo and Duyu Tang and Nan Duan and Xiaocheng Feng and Ming Gong and Linjun Shou and Bing Qin and Ting Liu and Daxin Jiang and Ming Zhou}, year={2020}, eprint={2002.08155}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
huggingtweets/ezeojeda_97
huggingtweets
2022-02-11T18:26:54Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/ezeojeda_97/1644604009323/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1491399079779352581/L0_MeHf1_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Easy</div> <div style="text-align: center; font-size: 14px;">@ezeojeda_97</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Easy. | Data | Easy | | --- | --- | | Tweets downloaded | 348 | | Retweets | 25 | | Short tweets | 58 | | Tweets kept | 265 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2mcrv516/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ezeojeda_97's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/12ymakai) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/12ymakai/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ezeojeda_97') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
AKulk/wav2vec2-base-timit-epochs5
AKulk
2022-02-11T16:48:06Z
22
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-epochs5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-epochs5 This model is a fine-tuned version of [facebook/wav2vec2-lv-60-espeak-cv-ft](https://huggingface.co/facebook/wav2vec2-lv-60-espeak-cv-ft) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 5 - total_train_batch_size: 80 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
ArBert/bert-base-uncased-finetuned-ner-kmeans
ArBert
2022-02-11T16:45:09Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-uncased-finetuned-ner-kmeans results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-ner-kmeans This model is a fine-tuned version of [ArBert/bert-base-uncased-finetuned-ner](https://huggingface.co/ArBert/bert-base-uncased-finetuned-ner) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1169 - Precision: 0.9084 - Recall: 0.9245 - F1: 0.9164 - Accuracy: 0.9792 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.036 | 1.0 | 1123 | 0.1010 | 0.9086 | 0.9117 | 0.9101 | 0.9779 | | 0.0214 | 2.0 | 2246 | 0.1094 | 0.9033 | 0.9199 | 0.9115 | 0.9784 | | 0.014 | 3.0 | 3369 | 0.1169 | 0.9084 | 0.9245 | 0.9164 | 0.9792 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
jgammack/distilbert-base-mean-pooling
jgammack
2022-02-11T15:49:11Z
143
5
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # jgammack/distilbert-base-mean-pooling This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('jgammack/distilbert-base-mean-pooling') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('jgammack/distilbert-base-mean-pooling') model = AutoModel.from_pretrained('jgammack/distilbert-base-mean-pooling') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=jgammack/distilbert-base-mean-pooling) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
sshasnain/wav2vec2-xls-r-300m-bangla-command-word-combination-synthetic
sshasnain
2022-02-11T13:25:09Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-xls-r-300m-bangla-command-word-combination-synthetic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-bangla-command-word-combination-synthetic This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0068 - Wer: 0.4111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.2982 | 17.86 | 500 | 2.4580 | 1.1089 | | 0.9644 | 35.71 | 1000 | 0.1250 | 0.5156 | | 0.1767 | 53.57 | 1500 | 0.0310 | 0.4267 | | 0.0912 | 71.43 | 2000 | 0.0149 | 0.4178 | | 0.0505 | 89.29 | 2500 | 0.0068 | 0.4111 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
sshasnain/wav2vec2-xls-r-300m-bangla-command
sshasnain
2022-02-11T13:10:44Z
7
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "bn", "audio", "speech", "dataset:custom", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: Bengali datasets: - custom metrics: - wer tags: - bn - audio - automatic-speech-recognition - speech license: apache-2.0 model-index: - name: wav2vec2-xls-r-300m-bangla-command results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: custom type: custom args: ben metrics: - name: Test WER type: wer value: 0.006 --- # wav2vec2-xls-r-300m-bangla-command *** ## Usage Commands '৫ টা কলম দেন' 'চেয়ারটা কোথায় রেখেছেন' 'ডানের বালতিটার প্রাইজ কেমন' 'দশ কেজি আলু কত' 'বাজুসের ল্যাপটপটা এসেছে' 'বাসার জন্য দরজা আছে' 'ম্যাম মোবাইলটা কি আছে' 'হ্যালো শ্যাম্পুর দাম বল'
edbeeching/test-trainer-to-hub
edbeeching
2022-02-11T10:36:07Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: test-trainer-to-hub results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8455882352941176 - name: F1 type: f1 value: 0.893760539629005 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-trainer-to-hub This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7352 - Accuracy: 0.8456 - F1: 0.8938 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 459 | 0.4489 | 0.8235 | 0.8792 | | 0.5651 | 2.0 | 918 | 0.4885 | 0.8260 | 0.8811 | | 0.3525 | 3.0 | 1377 | 0.7352 | 0.8456 | 0.8938 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
espnet/Wangyou_Zhang_chime4_enh_train_enh_beamformer_mvdr_raw
espnet
2022-02-11T06:24:00Z
67
1
espnet
[ "espnet", "audio", "audio-to-audio", "dataset:chime4", "arxiv:1804.00015", "arxiv:2011.03706", "license:cc-by-4.0", "region:us" ]
audio-to-audio
2022-03-02T23:29:05Z
--- tags: - espnet - audio - audio-to-audio language: datasets: - chime4 license: cc-by-4.0 --- ## ESPnet2 ENH model ### `espnet/Wangyou_Zhang_chime4_enh_train_enh_beamformer_mvdr_raw` This model was trained by Wangyou Zhang using chime4 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet pip install -e . cd egs2/chime4/enh1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/Wangyou_Zhang_chime4_enh_train_enh_beamformer_mvdr_raw ``` ## ENH config <details><summary>expand</summary> ``` config: conf/tuning/train_enh_beamformer_mvdr.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/enh_train_enh_beamformer_mvdr_raw ngpu: 1 seed: 0 num_workers: 4 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 2 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 35841 dist_launcher: null multiprocessing_distributed: true cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 70 patience: 4 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - si_snr - max - - valid - loss - min keep_nbest_models: 1 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null unused_parameters: false use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null pretrain_path: null init_param: [] freeze_param: [] num_iters_per_epoch: null batch_size: 8 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/enh_stats_16k/train/speech_mix_shape - exp/enh_stats_16k/train/speech_ref1_shape - exp/enh_stats_16k/train/noise_ref1_shape valid_shape_file: - exp/enh_stats_16k/valid/speech_mix_shape - exp/enh_stats_16k/valid/speech_ref1_shape - exp/enh_stats_16k/valid/noise_ref1_shape batch_type: folded valid_batch_type: null fold_length: - 80000 - 80000 - 80000 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/tr05_simu_isolated_6ch_track/wav.scp - speech_mix - sound - - dump/raw/tr05_simu_isolated_6ch_track/spk1.scp - speech_ref1 - sound - - dump/raw/tr05_simu_isolated_6ch_track/noise1.scp - noise_ref1 - sound valid_data_path_and_name_and_type: - - dump/raw/dt05_simu_isolated_6ch_track/wav.scp - speech_mix - sound - - dump/raw/dt05_simu_isolated_6ch_track/spk1.scp - speech_ref1 - sound - - dump/raw/dt05_simu_isolated_6ch_track/noise1.scp - noise_ref1 - sound allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.001 eps: 1.0e-08 weight_decay: 0 scheduler: reducelronplateau scheduler_conf: mode: min factor: 0.5 patience: 1 init: xavier_uniform model_conf: loss_type: mask_mse mask_type: PSM^2 use_preprocessor: false encoder: stft encoder_conf: n_fft: 512 hop_length: 128 separator: wpe_beamformer separator_conf: num_spk: 1 loss_type: mask_mse use_wpe: false wnet_type: blstmp wlayers: 3 wunits: 300 wprojs: 320 wdropout_rate: 0.0 taps: 5 delay: 3 use_dnn_mask_for_wpe: true use_beamformer: true bnet_type: blstmp blayers: 3 bunits: 512 bprojs: 512 badim: 320 ref_channel: 3 use_noise_mask: true beamformer_type: mvdr_souden bdropout_rate: 0.0 decoder: stft decoder_conf: n_fft: 512 hop_length: 128 required: - output_dir version: 0.9.7 distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{li2021espnetse, title={{ESPnet-SE}: End-to-End Speech Enhancement and Separation Toolkit Designed for {ASR} Integration}, author={Li, Chenda and Shi, Jing and Zhang, Wangyou and Subramanian, Aswin Shanmugam and Chang, Xuankai and Kamo, Naoyuki and Hira, Moto and Hayashi, Tomoki and Boeddeker, Christoph and Chen, Zhuo and Watanabe, Shinji}, booktitle={Proc. IEEE Spoken Language Technology Workshop (SLT)}, pages={785--792}, year={2021}, } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } @inproceedings{li2021espnetse, title={{ESPnet-SE}: End-to-End Speech Enhancement and Separation Toolkit Designed for {ASR} Integration}, author={Li, Chenda and Shi, Jing and Zhang, Wangyou and Subramanian, Aswin Shanmugam and Chang, Xuankai and Kamo, Naoyuki and Hira, Moto and Hayashi, Tomoki and Boeddeker, Christoph and Chen, Zhuo and Watanabe, Shinji}, year={2020}, eprint={2011.03706}, archivePrefix={arXiv}, primaryClass={eess.AS} } ```
infinitejoy/wav2vec2-large-xls-r-300m-indonesian
infinitejoy
2022-02-11T05:56:28Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "id", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - id license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-indonesian results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-indonesian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - ID dataset. It achieves the following results on the evaluation set: - Loss: 0.2759 - Wer: 0.3256 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 4000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.0387 | 4.72 | 1000 | 3.0892 | 1.0 | | 1.7911 | 9.43 | 2000 | 0.8451 | 0.6702 | | 1.2826 | 14.15 | 3000 | 0.4211 | 0.4166 | | 1.1802 | 18.87 | 4000 | 0.3508 | 0.4690 | | 1.1065 | 23.58 | 5000 | 0.3319 | 0.4662 | | 1.0921 | 28.3 | 6000 | 0.3056 | 0.3880 | | 1.0366 | 33.02 | 7000 | 0.2997 | 0.3665 | | 0.9988 | 37.74 | 8000 | 0.2972 | 0.3653 | | 0.9864 | 42.45 | 9000 | 0.2697 | 0.3371 | | 0.9558 | 47.17 | 10000 | 0.2739 | 0.3141 | | 0.9094 | 51.89 | 11000 | 0.2657 | 0.3533 | | 0.9034 | 56.6 | 12000 | 0.2699 | 0.3397 | | 0.8907 | 61.32 | 13000 | 0.2765 | 0.3470 | | 0.8631 | 66.04 | 14000 | 0.2774 | 0.3346 | | 0.8389 | 70.75 | 15000 | 0.2743 | 0.3365 | | 0.8214 | 75.47 | 16000 | 0.2778 | 0.3201 | | 0.8195 | 80.19 | 17000 | 0.2725 | 0.3286 | | 0.7994 | 84.91 | 18000 | 0.2782 | 0.3315 | | 0.7816 | 89.62 | 19000 | 0.2775 | 0.3363 | | 0.7816 | 94.34 | 20000 | 0.2731 | 0.3278 | | 0.7635 | 99.06 | 21000 | 0.2767 | 0.3259 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
lgris/wav2vec2-large-xlsr-coraa-portuguese-cv8
lgris
2022-02-10T23:23:59Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xlsr-coraa-portuguese-cv8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-coraa-portuguese-cv8 This model is a fine-tuned version of [Edresson/wav2vec2-large-xlsr-coraa-portuguese](https://huggingface.co/Edresson/wav2vec2-large-xlsr-coraa-portuguese) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.1626 - Wer: 0.1365 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5614 | 0.1 | 100 | 0.2542 | 0.1986 | | 0.5181 | 0.19 | 200 | 0.2740 | 0.2146 | | 0.5056 | 0.29 | 300 | 0.2472 | 0.2068 | | 0.4747 | 0.39 | 400 | 0.2464 | 0.2166 | | 0.4627 | 0.48 | 500 | 0.2277 | 0.2041 | | 0.4403 | 0.58 | 600 | 0.2245 | 0.1977 | | 0.4413 | 0.68 | 700 | 0.2156 | 0.1968 | | 0.437 | 0.77 | 800 | 0.2102 | 0.1919 | | 0.4305 | 0.87 | 900 | 0.2130 | 0.1864 | | 0.4324 | 0.97 | 1000 | 0.2144 | 0.1902 | | 0.4217 | 1.06 | 1100 | 0.2230 | 0.1891 | | 0.3823 | 1.16 | 1200 | 0.2033 | 0.1774 | | 0.3641 | 1.25 | 1300 | 0.2143 | 0.1830 | | 0.3707 | 1.35 | 1400 | 0.2034 | 0.1793 | | 0.3767 | 1.45 | 1500 | 0.2029 | 0.1823 | | 0.3483 | 1.54 | 1600 | 0.1999 | 0.1740 | | 0.3577 | 1.64 | 1700 | 0.1928 | 0.1728 | | 0.3667 | 1.74 | 1800 | 0.1898 | 0.1726 | | 0.3283 | 1.83 | 1900 | 0.1920 | 0.1688 | | 0.3571 | 1.93 | 2000 | 0.1904 | 0.1649 | | 0.3467 | 2.03 | 2100 | 0.1994 | 0.1648 | | 0.3145 | 2.12 | 2200 | 0.1940 | 0.1682 | | 0.3186 | 2.22 | 2300 | 0.1879 | 0.1571 | | 0.3058 | 2.32 | 2400 | 0.1975 | 0.1678 | | 0.3096 | 2.41 | 2500 | 0.1877 | 0.1589 | | 0.2964 | 2.51 | 2600 | 0.1862 | 0.1568 | | 0.3068 | 2.61 | 2700 | 0.1809 | 0.1588 | | 0.3036 | 2.7 | 2800 | 0.1769 | 0.1573 | | 0.3084 | 2.8 | 2900 | 0.1836 | 0.1524 | | 0.3109 | 2.9 | 3000 | 0.1807 | 0.1519 | | 0.2969 | 2.99 | 3100 | 0.1851 | 0.1516 | | 0.2698 | 3.09 | 3200 | 0.1737 | 0.1490 | | 0.2703 | 3.19 | 3300 | 0.1759 | 0.1457 | | 0.2759 | 3.28 | 3400 | 0.1778 | 0.1471 | | 0.2728 | 3.38 | 3500 | 0.1717 | 0.1462 | | 0.2398 | 3.47 | 3600 | 0.1767 | 0.1451 | | 0.256 | 3.57 | 3700 | 0.1742 | 0.1410 | | 0.2712 | 3.67 | 3800 | 0.1674 | 0.1414 | | 0.2648 | 3.76 | 3900 | 0.1717 | 0.1423 | | 0.2576 | 3.86 | 4000 | 0.1672 | 0.1403 | | 0.2504 | 3.96 | 4100 | 0.1683 | 0.1381 | | 0.2406 | 4.05 | 4200 | 0.1685 | 0.1399 | | 0.2403 | 4.15 | 4300 | 0.1656 | 0.1381 | | 0.2233 | 4.25 | 4400 | 0.1687 | 0.1371 | | 0.2546 | 4.34 | 4500 | 0.1642 | 0.1377 | | 0.2431 | 4.44 | 4600 | 0.1655 | 0.1372 | | 0.2337 | 4.54 | 4700 | 0.1625 | 0.1370 | | 0.2607 | 4.63 | 4800 | 0.1618 | 0.1363 | | 0.2292 | 4.73 | 4900 | 0.1622 | 0.1366 | | 0.2232 | 4.83 | 5000 | 0.1626 | 0.1365 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
lgris/wav2vec2-large-xlsr-coraa-portuguese-cv7
lgris
2022-02-10T23:22:48Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "pt", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer - pt - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-large-xlsr-coraa-portuguese-cv7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-coraa-portuguese-cv7 This model is a fine-tuned version of [Edresson/wav2vec2-large-xlsr-coraa-portuguese](https://huggingface.co/Edresson/wav2vec2-large-xlsr-coraa-portuguese) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.1777 - Wer: 0.1339 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4779 | 0.13 | 100 | 0.2620 | 0.2020 | | 0.4505 | 0.26 | 200 | 0.2339 | 0.1998 | | 0.4285 | 0.39 | 300 | 0.2507 | 0.2109 | | 0.4148 | 0.52 | 400 | 0.2311 | 0.2101 | | 0.4072 | 0.65 | 500 | 0.2278 | 0.1899 | | 0.388 | 0.78 | 600 | 0.2193 | 0.1898 | | 0.3952 | 0.91 | 700 | 0.2108 | 0.1901 | | 0.3851 | 1.04 | 800 | 0.2121 | 0.1788 | | 0.3496 | 1.17 | 900 | 0.2154 | 0.1776 | | 0.3063 | 1.3 | 1000 | 0.2095 | 0.1730 | | 0.3376 | 1.43 | 1100 | 0.2129 | 0.1801 | | 0.3273 | 1.56 | 1200 | 0.2132 | 0.1776 | | 0.3347 | 1.69 | 1300 | 0.2054 | 0.1698 | | 0.323 | 1.82 | 1400 | 0.1986 | 0.1724 | | 0.3079 | 1.95 | 1500 | 0.2005 | 0.1701 | | 0.3029 | 2.08 | 1600 | 0.2159 | 0.1644 | | 0.2694 | 2.21 | 1700 | 0.1992 | 0.1678 | | 0.2733 | 2.34 | 1800 | 0.2032 | 0.1657 | | 0.269 | 2.47 | 1900 | 0.2056 | 0.1592 | | 0.2869 | 2.6 | 2000 | 0.2058 | 0.1616 | | 0.2813 | 2.73 | 2100 | 0.1868 | 0.1584 | | 0.2616 | 2.86 | 2200 | 0.1841 | 0.1550 | | 0.2809 | 2.99 | 2300 | 0.1902 | 0.1577 | | 0.2598 | 3.12 | 2400 | 0.1910 | 0.1514 | | 0.24 | 3.25 | 2500 | 0.1971 | 0.1555 | | 0.2481 | 3.38 | 2600 | 0.1853 | 0.1537 | | 0.2437 | 3.51 | 2700 | 0.1897 | 0.1496 | | 0.2384 | 3.64 | 2800 | 0.1842 | 0.1495 | | 0.2405 | 3.77 | 2900 | 0.1884 | 0.1500 | | 0.2372 | 3.9 | 3000 | 0.1950 | 0.1548 | | 0.229 | 4.03 | 3100 | 0.1928 | 0.1477 | | 0.2047 | 4.16 | 3200 | 0.1891 | 0.1472 | | 0.2102 | 4.29 | 3300 | 0.1930 | 0.1473 | | 0.199 | 4.42 | 3400 | 0.1914 | 0.1456 | | 0.2121 | 4.55 | 3500 | 0.1840 | 0.1437 | | 0.211 | 4.67 | 3600 | 0.1843 | 0.1403 | | 0.2072 | 4.8 | 3700 | 0.1836 | 0.1428 | | 0.2224 | 4.93 | 3800 | 0.1747 | 0.1412 | | 0.1974 | 5.06 | 3900 | 0.1813 | 0.1416 | | 0.1895 | 5.19 | 4000 | 0.1869 | 0.1406 | | 0.1763 | 5.32 | 4100 | 0.1830 | 0.1394 | | 0.2001 | 5.45 | 4200 | 0.1775 | 0.1394 | | 0.1909 | 5.58 | 4300 | 0.1806 | 0.1373 | | 0.1812 | 5.71 | 4400 | 0.1784 | 0.1359 | | 0.1737 | 5.84 | 4500 | 0.1778 | 0.1353 | | 0.1915 | 5.97 | 4600 | 0.1777 | 0.1349 | | 0.1921 | 6.1 | 4700 | 0.1784 | 0.1359 | | 0.1805 | 6.23 | 4800 | 0.1757 | 0.1348 | | 0.1742 | 6.36 | 4900 | 0.1771 | 0.1341 | | 0.1709 | 6.49 | 5000 | 0.1777 | 0.1339 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
lgris/wavlm-large-CORAA-pt-cv7
lgris
2022-02-10T23:16:09Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wavlm", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "pt", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - pt datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wavlm-large-CORAA-pt-cv7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wavlm-large-CORAA-pt-cv7 This model is a fine-tuned version of [lgris/WavLM-large-CORAA-pt](https://huggingface.co/lgris/WavLM-large-CORAA-pt) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2546 - Wer: 0.2261 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6029 | 0.13 | 100 | 0.3679 | 0.3347 | | 0.5297 | 0.26 | 200 | 0.3516 | 0.3227 | | 0.5134 | 0.39 | 300 | 0.3327 | 0.3167 | | 0.4941 | 0.52 | 400 | 0.3281 | 0.3122 | | 0.4816 | 0.65 | 500 | 0.3154 | 0.3102 | | 0.4649 | 0.78 | 600 | 0.3199 | 0.3058 | | 0.461 | 0.91 | 700 | 0.3047 | 0.2974 | | 0.4613 | 1.04 | 800 | 0.3006 | 0.2900 | | 0.4198 | 1.17 | 900 | 0.2951 | 0.2891 | | 0.3864 | 1.3 | 1000 | 0.2989 | 0.2862 | | 0.3963 | 1.43 | 1100 | 0.2932 | 0.2830 | | 0.3953 | 1.56 | 1200 | 0.2936 | 0.2829 | | 0.3962 | 1.69 | 1300 | 0.2952 | 0.2773 | | 0.3811 | 1.82 | 1400 | 0.2915 | 0.2748 | | 0.3736 | 1.95 | 1500 | 0.2839 | 0.2684 | | 0.3507 | 2.08 | 1600 | 0.2914 | 0.2678 | | 0.3277 | 2.21 | 1700 | 0.2895 | 0.2652 | | 0.3344 | 2.34 | 1800 | 0.2843 | 0.2673 | | 0.335 | 2.47 | 1900 | 0.2821 | 0.2635 | | 0.3559 | 2.6 | 2000 | 0.2830 | 0.2599 | | 0.3254 | 2.73 | 2100 | 0.2711 | 0.2577 | | 0.3263 | 2.86 | 2200 | 0.2685 | 0.2546 | | 0.3266 | 2.99 | 2300 | 0.2679 | 0.2521 | | 0.3066 | 3.12 | 2400 | 0.2727 | 0.2526 | | 0.2998 | 3.25 | 2500 | 0.2648 | 0.2537 | | 0.2961 | 3.38 | 2600 | 0.2630 | 0.2519 | | 0.3046 | 3.51 | 2700 | 0.2684 | 0.2506 | | 0.3006 | 3.64 | 2800 | 0.2604 | 0.2492 | | 0.2992 | 3.77 | 2900 | 0.2682 | 0.2508 | | 0.2775 | 3.9 | 3000 | 0.2732 | 0.2440 | | 0.2903 | 4.03 | 3100 | 0.2659 | 0.2427 | | 0.2535 | 4.16 | 3200 | 0.2650 | 0.2433 | | 0.2714 | 4.29 | 3300 | 0.2588 | 0.2394 | | 0.2636 | 4.42 | 3400 | 0.2652 | 0.2434 | | 0.2647 | 4.55 | 3500 | 0.2624 | 0.2371 | | 0.2796 | 4.67 | 3600 | 0.2611 | 0.2373 | | 0.2644 | 4.8 | 3700 | 0.2604 | 0.2341 | | 0.2657 | 4.93 | 3800 | 0.2567 | 0.2331 | | 0.2423 | 5.06 | 3900 | 0.2594 | 0.2322 | | 0.2556 | 5.19 | 4000 | 0.2587 | 0.2323 | | 0.2327 | 5.32 | 4100 | 0.2639 | 0.2299 | | 0.2613 | 5.45 | 4200 | 0.2569 | 0.2310 | | 0.2382 | 5.58 | 4300 | 0.2585 | 0.2298 | | 0.2404 | 5.71 | 4400 | 0.2543 | 0.2287 | | 0.2368 | 5.84 | 4500 | 0.2553 | 0.2286 | | 0.2514 | 5.97 | 4600 | 0.2517 | 0.2279 | | 0.2415 | 6.1 | 4700 | 0.2524 | 0.2270 | | 0.2338 | 6.23 | 4800 | 0.2540 | 0.2265 | | 0.219 | 6.36 | 4900 | 0.2549 | 0.2263 | | 0.2428 | 6.49 | 5000 | 0.2546 | 0.2261 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
emre/wav2vec2-xls-r-300m-Turkish-Tr-small-CommonVoice8
emre
2022-02-10T22:57:23Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-Turkish-Tr-small-CommonVoice8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-Turkish-Tr-small-CommonVoice8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4813 - Wer: 0.7207 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.2 | 0.53 | 400 | 3.1949 | 0.9964 | | 2.9387 | 1.07 | 800 | 2.5015 | 1.0337 | | 1.5975 | 1.6 | 1200 | 1.0928 | 0.9945 | | 1.0688 | 2.13 | 1600 | 0.8388 | 0.9390 | | 0.8977 | 2.66 | 2000 | 0.7106 | 0.8889 | | 0.789 | 3.2 | 2400 | 0.6051 | 0.8273 | | 0.7116 | 3.73 | 2800 | 0.5580 | 0.7855 | | 0.6576 | 4.26 | 3200 | 0.5033 | 0.7433 | | 0.6002 | 4.79 | 3600 | 0.4813 | 0.7207 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
emre/wav2vec2-xls-r-300m-Turkish-Tr-small
emre
2022-02-10T22:55:52Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-Turkish-Tr-small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-Turkish-Tr-small This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4375 - Wer: 0.5050 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.8735 | 4.21 | 400 | 2.8173 | 1.0002 | | 1.0073 | 8.42 | 800 | 0.4981 | 0.6717 | | 0.3395 | 12.63 | 1200 | 0.4470 | 0.5866 | | 0.2254 | 16.84 | 1600 | 0.4349 | 0.5491 | | 0.1648 | 21.05 | 2000 | 0.4454 | 0.5284 | | 0.1325 | 25.26 | 2400 | 0.4552 | 0.5131 | | 0.1102 | 29.47 | 2800 | 0.4375 | 0.5050 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
emre/wav2vec2-large-xlsr-53-W2V2-TR-MED
emre
2022-02-10T22:55:21Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-large-xlsr-53-W2V2-TR-MED results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-W2V2-TR-MED This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4467 - Wer: 0.4598 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.1343 | 4.21 | 400 | 2.3674 | 1.0372 | | 0.8075 | 8.42 | 800 | 0.4583 | 0.6308 | | 0.3209 | 12.63 | 1200 | 0.4291 | 0.5531 | | 0.2273 | 16.84 | 1600 | 0.4348 | 0.5378 | | 0.1764 | 21.05 | 2000 | 0.4550 | 0.5326 | | 0.148 | 25.26 | 2400 | 0.4839 | 0.5319 | | 0.1268 | 29.47 | 2800 | 0.4515 | 0.5070 | | 0.1113 | 33.68 | 3200 | 0.4590 | 0.4930 | | 0.1025 | 37.89 | 3600 | 0.4546 | 0.4888 | | 0.0922 | 42.11 | 4000 | 0.4782 | 0.4852 | | 0.082 | 46.32 | 4400 | 0.4605 | 0.4752 | | 0.0751 | 50.53 | 4800 | 0.4358 | 0.4689 | | 0.0699 | 54.74 | 5200 | 0.4359 | 0.4629 | | 0.0633 | 58.95 | 5600 | 0.4467 | 0.4598 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
squish/BertHarmon
squish
2022-02-10T21:28:51Z
6
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- thumbnail: "https://en.memesrandom.com/wp-content/uploads/2020/11/juega-ajedrez.jpeg" widget: - text: "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1 White <MOVE_SEP> [MASK]" - example_title: Empty Board - text: "6Q1/5k2/3P4/1R3p2/P4P2/7Q/6RK/8 b - - 2 60 Black <MOVE_SEP> [MASK]" - example_title: Late Game Board --- # BertHarmon Research done at Johns Hopkins University by Michael DeLeo Contact: [email protected] ![iu-13](logo.png) ## Introduction BertHarmon is a BERT model trained for the task of Chess. ![IMG_0145](chess-example.GIF) ## Sample Usage ```python from transformers import pipeline task = pipeline('fill-mask', model='squish/BertHarmon') task("rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1 White <MOVE_SEP> [MASK]") ``` The base string consists of the FEN_position followed by the player color and a move seperator. Finally with the [MASK] token. The mask token is the algebraic notation for a chess move to be taken givent the current board state in FEN Notation ## Links [Github](https://github.com/deleomike/NLP-Chess) [HuggingFace](https://huggingface.co/squish/BertHarmon)
FuriouslyAsleep/markuplm-large-finetuned-qa
FuriouslyAsleep
2022-02-10T20:30:55Z
22
0
transformers
[ "transformers", "pytorch", "markuplm", "question-answering", "arxiv:2110.08518", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
# MarkupLM Large fine-tuned on WebSRC to allow Question Answering. This model is adapted from Microsoft's MarkupLM. This fine-tuned model is the result of partially following instructions in the MarkupLM git repo (with adjustments described farther below under the Fine-tuning args section.) This version not endorsed by Microsoft. Test the question answering out in the [Markup QA space here](https://huggingface.co/spaces/FuriouslyAsleep/markupQAdemo) \--------------------------------------------------------------------------------- **Fine-tuned Multimodal (text +markup language) pre-training for [Document AI](https://www.microsoft.com/en-us/research/project/document-ai/)** ## Introduction (From Microsoft MarkupLM Large Model Card) MarkupLM is a simple but effective multi-modal pre-training method of text and markup language for visually-rich document understanding and information extraction tasks, such as webpage QA and webpage information extraction. MarkupLM archives the SOTA results on multiple datasets. For more details, please refer to our paper: [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) Junlong Li, Yiheng Xu, Lei Cui, Furu Wei \--------------------------------------------------------------------------------- Fine-tuning args: --per_gpu_train_batch_size 4 --warmup_ratio 0.1 --num_train_epochs 4 ## Training was performed on only a small subset of the WebSRC: \ The number of total websites is 60 The train websites list is ['ga09'] The test websites list is [] The dev websites list is ['ga12', 'ph04', 'au08', 'ga10', 'au01', 'bo17', 'mo02', 'jo11', 'sp09', 'sp10', 'ph03', 'ph01', 'un09', 'sp14', 'jo03', 'sp07', 'un07', 'bo07', 'mo04', 'bo09', 'jo10', 'un12', 're02', 'bo01', 'ca01', 'sp15', 'au12', 'un03', 're03', 'jo13', 'ph02', 'un10', 'au09', 'au10', 'un02', 'mo07', 'sp13', 'bo08', 'sp03', 're05', 'sp06', 'ca02', 'sp02', 'sp01', 'au03', 'sp11', 'mo06', 'bo10', 'un11', 'un06', 'ga01', 'un04', 'ph05', 'au11', 'sp12', 'jo05', 'sp04', 'jo12', 'sp08'] The number of processed websites is 60 \--------------------------------------------------------------------------------- Inference test here may not work. Use the transformers markuplm branch from [NielsRogge transformers markuplm branch](https://github.com/NielsRogge/transformers/tree/modeling_markuplm) After installing from there, try the following model and tokenizer assignemnts (consider using a file for the tags dict) model = MarkupLMForQuestionAnswering.from_pretrained("FuriouslyAsleep/markuplm-large-finetuned-qa") tokenizer = MarkupLMTokenizer( vocab_file="vocab.json", merges_file="merges.txt", tags_dict= {"a": 0, "abbr": 1, "acronym": 2, "address": 3, "altGlyph": 4, "altGlyphDef": 5, "altGlyphItem": 6, "animate": 7, "animateColor": 8, "animateMotion": 9, "animateTransform": 10, "applet": 11, "area": 12, "article": 13, "aside": 14, "audio": 15, "b": 16, "base": 17, "basefont": 18, "bdi": 19, "bdo": 20, "bgsound": 21, "big": 22, "blink": 23, "blockquote": 24, "body": 25, "br": 26, "button": 27, "canvas": 28, "caption": 29, "center": 30, "circle": 31, "cite": 32, "clipPath": 33, "code": 34, "col": 35, "colgroup": 36, "color-profile": 37, "content": 38, "cursor": 39, "data": 40, "datalist": 41, "dd": 42, "defs": 43, "del": 44, "desc": 45, "details": 46, "dfn": 47, "dialog": 48, "dir": 49, "div": 50, "dl": 51, "dt": 52, "ellipse": 53, "em": 54, "embed": 55, "feBlend": 56, "feColorMatrix": 57, "feComponentTransfer": 58, "feComposite": 59, "feConvolveMatrix": 60, "feDiffuseLighting": 61, "feDisplacementMap": 62, "feDistantLight": 63, "feFlood": 64, "feFuncA": 65, "feFuncB": 66, "feFuncG": 67, "feFuncR": 68, "feGaussianBlur": 69, "feImage": 70, "feMerge": 71, "feMergeNode": 72, "feMorphology": 73, "feOffset": 74, "fePointLight": 75, "feSpecularLighting": 76, "feSpotLight": 77, "feTile": 78, "feTurbulence": 79, "fieldset": 80, "figcaption": 81, "figure": 82, "filter": 83, "font-face-format": 84, "font-face-name": 85, "font-face-src": 86, "font-face-uri": 87, "font-face": 88, "font": 89, "footer": 90, "foreignObject": 91, "form": 92, "frame": 93, "frameset": 94, "g": 95, "glyph": 96, "glyphRef": 97, "h1": 98, "h2": 99, "h3": 100, "h4": 101, "h5": 102, "h6": 103, "head": 104, "header": 105, "hgroup": 106, "hkern": 107, "hr": 108, "html": 109, "i": 110, "iframe": 111, "image": 112, "img": 113, "input": 114, "ins": 115, "kbd": 116, "keygen": 117, "label": 118, "legend": 119, "li": 120, "line": 121, "linearGradient": 122, "link": 123, "main": 124, "map": 125, "mark": 126, "marker": 127, "marquee": 128, "mask": 129, "math": 130, "menu": 131, "menuitem": 132, "meta": 133, "metadata": 134, "meter": 135, "missing-glyph": 136, "mpath": 137, "nav": 138, "nobr": 139, "noembed": 140, "noframes": 141, "noscript": 142, "object": 143, "ol": 144, "optgroup": 145, "option": 146, "output": 147, "p": 148, "param": 149, "path": 150, "pattern": 151, "picture": 152, "plaintext": 153, "polygon": 154, "polyline": 155, "portal": 156, "pre": 157, "progress": 158, "q": 159, "radialGradient": 160, "rb": 161, "rect": 162, "rp": 163, "rt": 164, "rtc": 165, "ruby": 166, "s": 167, "samp": 168, "script": 169, "section": 170, "select": 171, "set": 172, "shadow": 173, "slot": 174, "small": 175, "source": 176, "spacer": 177, "span": 178, "stop": 179, "strike": 180, "strong": 181, "style": 182, "sub": 183, "summary": 184, "sup": 185, "svg": 186, "switch": 187, "symbol": 188, "table": 189, "tbody": 190, "td": 191, "template": 192, "text": 193, "textPath": 194, "textarea": 195, "tfoot": 196, "th": 197, "thead": 198, "time": 199, "title": 200, "tr": 201, "track": 202, "tref": 203, "tspan": 204, "tt": 205, "u": 206, "ul": 207, "use": 208, "var": 209, "video": 210, "view": 211, "vkern": 212, "wbr": 213, "xmp": 214}, add_prefix_space=True,) Go to [https://github.com/uwts/ProjectRisk](https://github.com/uwts/ProjectRisk) for sample script.
Chiuchiyin/DialoGPT-small-Donald
Chiuchiyin
2022-02-10T20:16:00Z
7
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- tags: - conversational --- Donald Trump DialoGPT Model built by following tutorial by [Ruolin Zheng](https://youtu.be/Rk8eM1p_xgM). The data used for training was 2020 presidential debate. More work is needed to optimize it. I don't have access to larger VRAM.
skhurana/test_model
skhurana
2022-02-10T16:28:36Z
0
0
null
[ "pytorch", "region:us" ]
null
2022-03-02T23:29:05Z
# Hugging-face testing --- language: - "List of ISO 639-1 code for your language" - lang1 - lang2 thumbnail: "url to a thumbnail used in social sharing" tags: - PyTorch license: apache-2.0 datasets: - dataset1 - dataset2 metrics: - metric1 ---
satyaalmasian/temporal_tagger_German_GELECTRA
satyaalmasian
2022-02-10T15:23:51Z
61
1
transformers
[ "transformers", "pytorch", "electra", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
# BERT based temporal tagged Token classifier for temporal tagging of plain text using German Gelectra model. # Model description GELECTRA is a transformer (ELECTRA) model pretrained on a large corpus of German data in a self-supervised fashion. We use GELECTRA for token classification to tag the tokens in text with classes (tags are from english timex3 format): ``` O -- outside of a tag I-TIME -- inside tag of time B-TIME -- beginning tag of time I-DATE -- inside tag of date B-DATE -- beginning tag of date I-DURATION -- inside tag of duration B-DURATION -- beginning tag of duration I-SET -- inside tag of the set B-SET -- beginning tag of the set ``` # Intended uses & limitations This model is best used accompanied with code from the [repository](https://github.com/satya77/Transformer_Temporal_Tagger). Especially for inference, the direct output might be noisy and hard to decipher, in the repository we provide alignment functions and voting strategies for the final output. The repo examples the english models, the german model can be used the same way. # How to use you can load the model as follows: ``` tokenizer = AutoTokenizer.from_pretrained("satyaalmasian/temporal_tagger_German_GELECTRA", use_fast=False) model = BertForTokenClassification.from_pretrained("satyaalmasian/temporal_tagger_German_GELECTRA") ``` for inference use: ``` processed_text = tokenizer(input_text, return_tensors="pt") result = model(**processed_text) classification= result[0] ``` for an example with post-processing, refer to the [repository](https://github.com/satya77/Transformer_Temporal_Tagger). We provide a function `merge_tokens` to decipher the output. to further fine-tune, use the `Trainer` from hugginface. An example of a similar fine-tuning can be found [here](https://github.com/satya77/Transformer_Temporal_Tagger/blob/master/run_token_classifier.py). # Training data For pre-training we use a large corpus of automatically annotated news articles with heideltime. We use 2 data sources for fine-tunning. : [Tempeval-3](https://www.cs.york.ac.uk/semeval-2013/task1/index.php%3Fid=data.html),automatically translated to gemran, [KRAUTS dataset](https://github.com/JannikStroetgen/KRAUTS). # Training procedure The model is trained from publicly available checkpoints on huggingface (`deepset/gelectra-large`), with a batch size of 192. We use a learning rate of 1e-07 with an Adam optimizer and linear weight decay for pretraining. For fine-tuning we use a batch size of 16. We use a learning rate of 5e-05 with an Adam optimizer and linear weight decay. We fine-tune with 3 different random seeds, this version of the model is the only seed=7. For training, we use 2 NVIDIA A100 GPUs with 40GB of memory.
ajaiswal1008/wav2vec2-large-xls-r-300m-hi-colab_new
ajaiswal1008
2022-02-10T15:11:14Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-hi-colab_new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hi-colab_new This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
am-shb/bert-base-multilingual-uncased-pretrained
am-shb
2022-02-10T14:49:27Z
4
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer model-index: - name: bert-base-multilingual-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-uncased This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2198 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 1337 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.11.2 - Pytorch 1.10.0 - Datasets 1.8.0 - Tokenizers 0.10.3
SetFit/deberta-v3-large__sst2__train-32-1
SetFit
2022-02-10T11:56:20Z
4
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-32-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-32-1 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4201 - Accuracy: 0.8759 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7162 | 1.0 | 13 | 0.6832 | 0.5385 | | 0.6561 | 2.0 | 26 | 0.7270 | 0.4615 | | 0.4685 | 3.0 | 39 | 1.0674 | 0.5385 | | 0.2837 | 4.0 | 52 | 1.0841 | 0.5385 | | 0.1129 | 5.0 | 65 | 0.3502 | 0.9231 | | 0.0118 | 6.0 | 78 | 0.4829 | 0.9231 | | 0.0022 | 7.0 | 91 | 0.7430 | 0.8462 | | 0.0007 | 8.0 | 104 | 0.8219 | 0.8462 | | 0.0005 | 9.0 | 117 | 0.8787 | 0.8462 | | 0.0003 | 10.0 | 130 | 0.8713 | 0.8462 | | 0.0003 | 11.0 | 143 | 0.8473 | 0.8462 | | 0.0002 | 12.0 | 156 | 0.8482 | 0.8462 | | 0.0002 | 13.0 | 169 | 0.8494 | 0.8462 | | 0.0002 | 14.0 | 182 | 0.8638 | 0.8462 | | 0.0002 | 15.0 | 195 | 0.8492 | 0.8462 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/deberta-v3-large__sst2__train-8-6
SetFit
2022-02-10T09:46:57Z
4
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large__sst2__train-8-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-6 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4331 - Accuracy: 0.7106 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6486 | 1.0 | 3 | 0.7901 | 0.25 | | 0.6418 | 2.0 | 6 | 0.9259 | 0.25 | | 0.6169 | 3.0 | 9 | 1.0574 | 0.25 | | 0.5639 | 4.0 | 12 | 1.1372 | 0.25 | | 0.4562 | 5.0 | 15 | 0.6090 | 0.5 | | 0.3105 | 6.0 | 18 | 0.4435 | 1.0 | | 0.2303 | 7.0 | 21 | 0.2804 | 1.0 | | 0.1388 | 8.0 | 24 | 0.2205 | 1.0 | | 0.0918 | 9.0 | 27 | 0.1282 | 1.0 | | 0.0447 | 10.0 | 30 | 0.0643 | 1.0 | | 0.0297 | 11.0 | 33 | 0.0361 | 1.0 | | 0.0159 | 12.0 | 36 | 0.0211 | 1.0 | | 0.0102 | 13.0 | 39 | 0.0155 | 1.0 | | 0.0061 | 14.0 | 42 | 0.0158 | 1.0 | | 0.0049 | 15.0 | 45 | 0.0189 | 1.0 | | 0.0035 | 16.0 | 48 | 0.0254 | 1.0 | | 0.0027 | 17.0 | 51 | 0.0305 | 1.0 | | 0.0021 | 18.0 | 54 | 0.0287 | 1.0 | | 0.0016 | 19.0 | 57 | 0.0215 | 1.0 | | 0.0016 | 20.0 | 60 | 0.0163 | 1.0 | | 0.0014 | 21.0 | 63 | 0.0138 | 1.0 | | 0.0015 | 22.0 | 66 | 0.0131 | 1.0 | | 0.001 | 23.0 | 69 | 0.0132 | 1.0 | | 0.0014 | 24.0 | 72 | 0.0126 | 1.0 | | 0.0011 | 25.0 | 75 | 0.0125 | 1.0 | | 0.001 | 26.0 | 78 | 0.0119 | 1.0 | | 0.0008 | 27.0 | 81 | 0.0110 | 1.0 | | 0.0007 | 28.0 | 84 | 0.0106 | 1.0 | | 0.0008 | 29.0 | 87 | 0.0095 | 1.0 | | 0.0009 | 30.0 | 90 | 0.0089 | 1.0 | | 0.0008 | 31.0 | 93 | 0.0083 | 1.0 | | 0.0007 | 32.0 | 96 | 0.0075 | 1.0 | | 0.0008 | 33.0 | 99 | 0.0066 | 1.0 | | 0.0006 | 34.0 | 102 | 0.0059 | 1.0 | | 0.0007 | 35.0 | 105 | 0.0054 | 1.0 | | 0.0008 | 36.0 | 108 | 0.0051 | 1.0 | | 0.0007 | 37.0 | 111 | 0.0049 | 1.0 | | 0.0007 | 38.0 | 114 | 0.0047 | 1.0 | | 0.0006 | 39.0 | 117 | 0.0045 | 1.0 | | 0.0006 | 40.0 | 120 | 0.0046 | 1.0 | | 0.0005 | 41.0 | 123 | 0.0045 | 1.0 | | 0.0006 | 42.0 | 126 | 0.0044 | 1.0 | | 0.0006 | 43.0 | 129 | 0.0043 | 1.0 | | 0.0006 | 44.0 | 132 | 0.0044 | 1.0 | | 0.0005 | 45.0 | 135 | 0.0045 | 1.0 | | 0.0006 | 46.0 | 138 | 0.0043 | 1.0 | | 0.0006 | 47.0 | 141 | 0.0043 | 1.0 | | 0.0006 | 48.0 | 144 | 0.0041 | 1.0 | | 0.0007 | 49.0 | 147 | 0.0042 | 1.0 | | 0.0005 | 50.0 | 150 | 0.0042 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3